ACADEMIC OPERATING SYSTEM 4.3

ACADEMIC OPERATING SYSTEM

“ _-v

ACADEMIC OPERATING SYSTEM 4.3

ACADEMIC OPERATING SYSTEM

VOLUME Il

IBM Academic Operating System 4.3

Volume 111

Assembler Reference Manual IBM/4.3-PSD:1-1

Assembler Reference Manual for IBM/4.3

ABSTRACT

This article is an updated version of an article entitled Berkeley VAX/UNIX As-
sembler Reference Manual, written in November 1979 by John F. Reiser and
Robert R. Henry and revised in February 1983. The original article, which is in
Volume 1 of UNIX Programmer’s Supplementary Documents, has been rewrit-
ten and includes additions and changes for IBM/4.3 and corrections where ap-
propriate.

15 Dec 1986

IBM/4.3-PSD:1-2 Assembler Reference Manual

1. INTRODUCTION

This document describes the usage and input syntax of the IBM/4.3 assembler, as, for
the IBM RT PC and IBM 6152 Academic System. As assemblcs the code produced
by the C compiler. This article is intended for those writing a compiler or maintain-
ing the assembler; it is not a user’s guide for writing assembler code.

Examples of syntax in this article use the following conventions:

] [Argument] means that the specified argument is optional; 0 or more instances
may be included.

e Words in boldface must appear literally.
J Words in italics represent specific values to be supplicd.

15 Dec 1986

Assembler Reference Manual IBM/4.3-PSD:1-3

2. USAGE
As is invoked with these command arguments:
as [~LVWRDT][—t directory][— o outfile | | name,] . .. | name,]

The arguments are explained below:

-L Instructs the assembler to save labels beginning with an “L” in the symbol
table portion of the file specified as outfile. Labels are not saved by default,
as the default action of the link editor /d is to discard them anyway.

-V Tells the assembler to place its interpass temporary file in virtual memory.
In normal circumstances, the system manager will decide where the tem-
porary file should lie. Experiments with a temporary file of 115 kbytes have
shown this option to have a negligible (1-2%) effect on assembly time on an
unloaded machine.

-W Turns off all warning error reporting.

-R Make initialized data segments read-only by concatenating them to the text
segments. This obviates the need to run editor scripts on assembler source
to “read —only” fix initialized data segments. Uninitialized data (via Jcomm
and .comm directives) are still assembled into the bss segment.

-D Prints assembler debugging information and dumps 'the symbol table, pro-
vided the assembler has been compiled with DEBUG defined.
-T Prints the token file, provided the assembler has been compiled with DE-

BUG defined. This information is useful when debugging the assembler.

-t Causes the assembler to place its single temporary file in directory instead of
in /tmp , provided the —V flag is not set. ‘

-0 Causes the output to be placed in the file outfile. By default, the output of
the assembler is placed in the file a.out in the current directory.

name, Causes input to be taken sequentially from the files name, .
files are not assembled separately; name, is effectively concatenated to name,

so multiple definitions cannot occur among the input sources. By default,
input is taken from the standard input.

.. name,. The

Note: Arguments -J and -d are ignored.

15 Dec 1986

IBM/4.3-PSD:1-4 Assembler Reference Manual

3. LEXICAL CONVENTIONS

Assembler tokens include identifiers (alternatively, “symbols” or “names’’), constants,
and operators.

3.1. Identifiers

An identifier consists of a sequence of alphanumeric characters, including the spe-
cial characters period (.), underscore (), and dollar ($). The first character may
not be a digit or a dollar sign. For all practical purposes, the length of identifiers
is arbitrary; all characters are significant. All keywords, operation mnemonics, re-
gister names, and macro names are reserved and are not available as user-defined
names.

3.2. Constants
3.2.1. Integral Constants

All integral (non floating point) constants are (potentially) 64 bits wide. In-
tegral constants are initially evaluated to a full 64 bits, but arc pared down by
discarding high order copies of the sign bit and categorizing the number as a
long (32 bits) or double-long (64 bits) integer. Numbers with less precision
than 32 bits are treated as 32-bit quantities. As cannot perform arithmetic on
constants larger than 32 bits and supports 64-bit integers only so they can be
used to fill initialized data space.

The digits are “0123456789abcdefABCDLEF" with the obvious values.

A decimal constant consists of a sequence of digits without a leading zero.

An octal constant consists of a sequence of digits with a lcading zero.

A hexadecimal constant consists of the characters “0x” (or “0X") followed by
a sequence of digits.

A single-character constant consists of a single quote (") followed by an ASCII
character, including ASCII newline. The constant’s valuc is the code for the
given character.

3.2.2. Floating Point Constants

IEEE single and double precision constants are supported by the .float and
double directives respectively. The atof (3) man page describes the range of
representable values and their syntax. There is presently no support for IEEE
double extended precision constants. For a description of the IEEE represen-
tations, please see the IEEE Standard 754 for Binary Floating Point Arithmeltic.
The assembler uses the library routine atof (3) to convert floating point
numbers.

The operand field syntax of .float and .double is:
Ofexpel([+ -]) [dec] * (.Y decl Y([exptl([+ -)(Idec] *))
where:
expe An exponent delimiter and type specification character (fFdD).

dec A decimal digit (012345678D9).
expt A type specification character (e[:fFdD).

-

X 0 or more occurrences of x.

xt 1 or more occurrences of x.

15 Dec 1986

Assembler Reference Manual IBM/4.3-PSD:1-5

The standard semantic interpretation is usced for the signed integer, fraction and
signed power of 10 exponent. If the exponent delimiter is specified, it must be
either an “e” or “E”, or must agree with the initial type spccification character
that is used. A .double constant must have d or D specified as its type
specification character; a .float constant must have f or F specified as its type

specification character.

Collectively, all floating point numbers, together with double-long integral
numbers, are called “bignums”. When as requires a bignum, a 32-bit scalar
quantity may also be used.

3.2.3. String Constants

A string constant is defined using the same syntax and semantics as the C
language uses. Strings begin and end with a double quote (). All C backslash
conventions are observed. Strings are known by their value and their length;
the assembler does not implicitly end strings with a null byte.

3.3. Operators
There are several single-character operators; see Section 6.1.
3.4. Blanks

Blank and tab characters may be interspersed frecly between tokens, but may not
be used within tokens (except character constants). A blank or tab is required to
separate adjacent identifiers or constants not otherwise separated.

3.5. Single Line Comments

The character “#” introduces a comment which extends through the end of the
line. Comments starting in column 1, having the format “# expression string”, are
interpreted as an indication that the assembler is now assembling file string at line
expression. Thus, one can use the C preprocessor on an assembly language source
file, and use the #include and #define preprocessor directives. Other comments
may not start in column 1 if the assembler source is given to the C preprocessor
because the preprocessor will misinterpret them. Comments are otherwise ignored
by the assembler.

To retain compatibility with existing .s files, comments beginning with *“|”" are also
accepted. However, this use is deprecated, and support for this feature will be re-
moved in subsequent releases.

3.6. C Style Comments

. The assembler will recognize C style comments, introduced with the prologue [*
and ending with the epilogue */. C style comments may extend across multiple
lines and are the preferred comment style to use if you choose to use the C
preprocessor.

If a C style comment does extend across “n” lines, the linc numbers in any subse-
quent error messages generated by the assembler will be low by n-1 lines, since the
assembler increments the line count only once for a multiple C style comment.

15 Dec 1986

IBM/4.3-PSD:]-6 Assembler Reference Manual

4. SEGMENTS AND LOCATION COUNTERS

Asscmbled code and data fall into three segments: the text scgment, the data seg-
ment, and the bss segment. The operating system makes some assumptions about
the content of these segments; the assembler does not. Within the text and data scg-
ments there are a number of sub-segments, distinguished by number (“text 0", “text
17, “data 07, “data 1” , . ..). Currently there are four subscgments each in text and
data. The subsegments are for programming convenience only.

Before writing the output file, the assembler zcro-pads each text subscgment to a
multiple of eight bytes and then concatenates the subsegments in order to form the
text segment; an analogous operation is done for the data segment. Requesting that
the loader define symbols and storage regions is the only action allowed by the as-
sembler with respect to the bss segment. Asscmbly begins in “text 0.

Associated with each (sub)segment is an implicit location counter which begins at
zero and is incremented by 1 for each byte asscmbled into the (sub)segment. There is
no way to explicitly reference a location counter. Note that the location counters of
subsegments other than ‘“‘text 0"’ and “data 0" behave peculiarly due to the concate-
nation used to form the text and data segments.

15 Dec 1986

Assembler Reference Manual IBM/4.3-PSD:1-7

5. STATEMENTS

A source program is composed of a scquence of statements. Statements are separated
by newlines or by semicolons. There are two kinds of statements: null statements
and keyword statements. Either kind of statement may be preceded by one or more
labels.

5.1. Named Labels

A named label consists of a name followed by a colon. The effect of a named la-
bel is to assign the current value and type of the location counter to the name.
An error is indicated in pass 1 if the name is already defined; an error is indicated
in pass 2 if the value assigned changes the definition of the label.

Named labels beginning with an “L” are not retained in the a.out symbol table
unless the — L option is in effect.

5.2. Numeric Local Labels

A numeric label consists of a digit between 0 and 9 followed by a colon. A
numeric label defines temporary symbols of the form “nb” and “nf’ where n is the
digit of the label. As in the case of named labels, a numeric label assigns the
current value and type of the location counter to the temporary symbol. Howev-
er, several numeric labels with the same digit may be used within the same assem-
bly. References to symbols of the form *“nb” refer to the first numeric label n:
backward from the reference; “‘nf”’ symbols refer to the first numeric label n: for-
ward from the reference.

As turns local labels into labels of the form Ln\001m for internal purposes.

5.3. Null Statements

A null statement is an empty statement ignored by the assembler. A null state-
ment may be labeled, however.

5.4. Keyword Statements

A keyword statement begins with one of the many predefined keywords known to
as; the syntax of the remainder of the statement depends on the keyword. All in-
struction opcodes, listed in Section 8, are keywords. The remaining keywords are
assembler pseudo-operations, also called ‘“‘directives.” The pseudo-operations are
listed in Section 7, together with the syntax they require.

15 Dec 1986

IBM/4.3-PSD:1-8

6. EXPRESSIONS

Assembler Reference Manual

An expression is a sequence of symbols rcpresenting a value. Its constituents are
identifiers, constants, operators, and parentheses. Fach expression has a type.

All operators in expressions are fundamentally binary in nature. Arithmetic is two’s
complement and has 32 bits of precision. As cannot perform arithmetic operations
on floating point numbers or on double-long integral numbers. There are four levels
of precedence, listed here from lowest precedence level to highest:

precedence operators
binary + -
binary & ~ !
binary * I %
unary - -

All operators of the same precedence are evaluated strictly left to right, except for the evalua-

tion order enforced by parentheses.

6.1. Expression Operators
The operators are:

operator _meaning

+ addition
- (binary) subtraction
* multiplication
/ division
% modulo
- (unary) two’s complement
& bitwise and
A bitwise cxclusive or
! bitwise or not
- bitwise ones’ complement
> logical right shift

> > logical right shift
< logical left shift

<< logical left shift

Expressions may be grouped with parentheses.

6.2. Data Types

Every uscr-defined symbol has one of the following types. The type propagation rules in
the next section describe how expression types are derived from symbol types.

undefined Upon first encounter, each symbol is undefined unless its first encounter defines
it. It may become undefined if it is assigned an undefined expression. The as-
sembler changes all undefined types to undcfined external just prior to pass 2.

undefined external

A symbol which is declared .globl but not defined in the current assembly is an
undefined external. If such a symbol is declared, the link editor /d must be used
to load the assembler’s output with another routine that defines the undefined

reference.

absolute

An absolute symbol is defined in a .set by an expression of type absolute. Con-
stants have type absolute.

15 Dec 1986

Assembler Reference Manual IBM/4.3-PSD:1-9

text

data

bss

A symbol appearing as a label in a text segment has type text, as does a symbol
defined in a .set by an expression of type text. The value of a text symbol is
measured with respect to the beginning of the text segment of the program. If
the assembler output is link-edited, its text symbols may change in value since
the program need not be the first in the link editor’s output.

A symbol appearing as a label in a data scgment has type data, as does a sym-
bol defined in a .set by an expression of type data. The value of a data symbol
is measured with respect to the origin of the data scgment of a program. The
value of a data symbol may change during a subsequent link-editor run since
previously loaded programs may have data segments.

A symbol defined in a .comm or .Icomm directive has type bss, as does a symbol
defined in a .set by an expression of typec bss. The value of a bss symbol is
measured from the beginning of the bss segment of a program. The value of a
bss symbol may change during a subsequent link-editor run, since previously
loaded programs may have bss segments.

external absolute, text, data, or bss

Symbols declared .globl and defined within an assembly as absolute, text; data,
or bss types may be used cxactly as if they were not declared .globl; however,
their value and type are available to the link editor so that the program may be
loaded with others that reference these symbols.

6.3. Type Propagation in Expressions

When operands are combined by expression operators, the result has a type which depends
on the types of the operands and on the operator. The rules involved are complex to state
but were intended to be sensible and predictable. For purposes of expression evaluation,
the important types are: '

undefined

absolute

text

data

bss

undefined external

relocatable: any of text, data, bss, or undefined extcrnal

The combination rules are:

(D
@
©)

(4)

()

If one of the operands is undefined, the result is undefined.
If both operands are absolute, the result is absolute.

An absolute operand may be added to or subtracted from any other type,
and the type of the result is that of the other operand.

An operand of type text, data, or bss may be subtracted from an operand
having the same type, and the type of the result is absolute.

Any other combination is an error.

15 Dec 1986

IBM/4.3-PSD:1-10 : Assembler Reference Manual

7. PSEUDO-OPERATIONS (DIRECTIVES)

The keywords listed below introduce pseudo-operations (directives) to influence the
later behavior of the assembler, define symbols, or create data. They are grouped
below into functional categories.

7.1. Interface to a Previous Pass

.ABORT

As soon as the assembler sees this directive, it ignores all further input (but it does
read to the end of file) and aborts the assembly. No files are created. It is antici-
pated that this would be used in a pipe interconnected version of a compiler,
where the first major syntax error would cause the compiler to issue this directive,
saving unnecessary work in assembling code that would have to be discarded any-
way.

file string

This directive causes the assembler to think it is in file string, so that error mes-
sages reflect the proper source file.

line expression

This directive causes the assembler to think it is on line expression so that crror
messages reflect the proper source line.

The only eflect of assembling multiple files specified in the command string is to
insert the file and line directives, with the appropriate values, at the begmnmg of
the source from each file.

expression string

This is the only instance where a comment is meaningful to the assembler. The
“4#” must be in the first column. This meta comment causes the assembler to be-
lieve it is on line expression. The second argument, if included, causes the assem-
bler to believe it is in file string; otherwise the current file name does not change.

7.2. Location Counter Control

data [expression]
text [expression]

These two directives causc the assembler to begin assembling into the indicated
text or data subsegment, If specified, expression must be defined and absolute; an
omitted expression is treated as zero. Assembly starts in the .text () subscgment.

The directives .align and .org also control the placement of the location counter.

[13n2)

While the comments within the assembler may refer to the location counter as
or “dot”, there is no explicit reference allowed to the location counter. Numenc
local labels may be used with almost equal convenience and more predictable
results.

15 Dec 1986

Assembler Reference Manual IBM/4.3-PSD:1-11

7.3. Filled Data

.align align_expr
The location counter is adjusted so that the align_expr lowest bits of the location
counter become zero. This is done by assembling from 0 to 27#".*" .1 bytes of

0. Thus “.align 2” pads by null bytes to make the location counter evenly divisi-
ble by 4. The align_expr must be defined, absolute, nonnegative, and less than

16.

Warning: the subsegment concatenation convention and the current loader con-
ventions may not preserve attempts at aligning to more than 3 low-order zero bits.

org org_expr| fill_expr]

The location counter is set equal to the value of org_expr, which must be of type
text or data and greater than the current value of that segment’s location counter.
Space between the current value of the location counter and the desired value are
filled with bytes taken from the low order byte of fill_expr, which must be abso-
lute and defaults to 0.

space space_expr fill_expr]

The location counter is advanced by space expr bytes. Space_expr must be
defined and absolute. The space is filled in with bytes taken from the low order
byte of fill expr, which must be defined and absolute. Fill_expr defaults to 0.
The fill directive is a more general way to accomplish the .space directive.

fill rep_expr, size_expr, fill_expr

All three expressions must be absolute. Fill_expr, treated as an expression of size
size_expr bytes, is assembled and replicated rep_expr times. The effect is to ad-
vance the current location counter rep_expr * size_expr bytes. Size_expr must be
between 1 and 8.

7.4. Initialized Data

Jbyte expri,expr]. .

short expr{,expr]. . .
Jint expri,expr]. . .
long expriexpr]. ..

Expr represents an expression. Expressions are truncated to the size indicated by the key-
word in the table below, and assembled in successive locations. Non-absolute expressions
in a .byte or .short engender a warning message.

keyword length (bits)

.byte 8
.short 16
.int 32
Jong 32

Each expression may optionally be of the form:

expression, : expression,

15 Dec 1986

IBM/4.3-PSD:1-12 Assembler Reference Manual

In this case, the value of expressionz 1s truncated to expression, bits, and assem-
bled in thc next expression, bit field which fits in the natural data size being as-

sembled. Bits which are skipped because a ficld does not fit are filled with zcros.
Thus, “.byte 123" is equivalent to *“.byte 8:123"", and “.byte 3:1,2:1,5:1”" assembles
two bytes, containing the values 0x28 and 0x08.

dlong number|,number]. . .
foat number{,number]. . .
double number{,number]. . .

These initialize bignums (see Section 3.2.2) in successive locations whose size is a function
of the keyword. The type of the bignum (dctermined by the exponent field, or lack
thereof) may not agree with the type implied by the keyword. The following table shows
the keywords, their size, and the data types for the bignums they expect.

keyword format length (bits) valid number (s)

.dlong integral 64 integral
float ieee single 32 floating and integral
double iece double 64 floating and intcgral

ascii string], string]. . .
.asciz string|, string]. . .

Each string in the list is assembled into successive locations, with the first letter in the
string being placed into the first location, etc. The .ascii dircctive will not null terminate
the string; the .asciz directive will null terminate the string. (Recall that strings are known
by their length and need not be terminated with a null, and that the C conventions for es-
caping are understood.) The .ascii directive is identical to:

byte string,, string,, . . .

.comm narne, expression

Provided the name is not defined elsewhere, its type is made “undefined external”,
and its value is expression. In fact the name bechaves in the current assembly just
like an undefined external. However, the link editor /d has been special-cased so
that all undefined external symbols that have a non-zero valuc are defined to lie in
the bss segment, and space is reserved after the symbol to hold expression bytes.

Jecomm name, expression

Expression bytes will be allocated in the bss scgment and name assigned the loca-
tion of the first byte, but the name is not declared as global and hence will be
unknown to the link editor.

.globl name

This directive makes name external. If it is otherwise dcfined (by .set or by ap-
pearance as a label) it acts within the assembly exactly as if the .globl directive
were not given; however, the link editor may be used to combine this object
module with other modules referring to this symbol.

Conversely, if the given symbol is not defined within the current asscmbly, the
link editor can combine the output of this asscmbly with that of others which
define the symbol. :

15 Dec 1986

Assembler Reference Manual IBM/4.3-PSD:1-13

.set name, expression

The (name, expression) pair is entered into the symbol table. Multiple .set state-
ments with the same name are legal; the most recent value replaces all previous
values.

Asym name, expression

A unique instance of the (name, expression) pair is crcated in the symbol table.
This mechanism can be used to pass local symbol definitions to the link editor
and debugger. Note that name may not be referenced.

stabs string, expr,, expr,, expr,, expr,

stabn expr,, expr,, expr,, exr,

stabd expr,, expr,, expr,

The .stabx directives place symbols in the symbol tablc for the symbolic debugger,
dbx. A ‘'stab” is a symbol table entry. The .stabs is a string stab, the .stabn is a

stab not having a string, and the .stabd is a “dot” stab that implicitly references
“dot”, the current location counter.

The string in the .stabs directive is the name of a symbol. If the symbol name is
zero, the .stabn directive may be used instead.

The other expressions are stored in the name list structure of the symbol table and
preserved by the loader for reference by dbx; the values of the expressions are
peculiar to formats required by dbx.

expr, Is used as a symbol table tag (nlist ficld n_type).

expr Is always zero (nlist field n_other).

2

expr, Is used for either the source line number, or for a nesting level (nlist field
n_desc).

expr, Is used as tag specific information (nlist ficld n_value). In the case of the

stabd directive, this expression is nonexistent, and is taken to be the
value of the location counter at the following instruction. Since there is
no associated name for a .stabd directive, it can be used only in cir-
cumstances where the name is zero. The effect of a .stabd directive can
be achieved by one of the other .stabx directives in the following manner:

stabn expr,, expr,, expr,, LL,_
LLn:

The .stabd directive is preferred, because it does not clog the symbol table with la-
bels used only for the stab symbol entries.

15 Dec 1986

IBM/4.3-PSD:1-14 Assembler Reference Manual

7.5. Addressability
.using expr,register,. . .

The .using directive tells the assembler that it can rely on the value in a register for
the purpose of creating base + displacement addresses for machine instructions.

Expr may be any relocatable expression of type text or data. The register is as-
sumed to contain an address pointing to the storage location described by the re-
locatable expression. Each additional specified register is assumed to contain an
address 0x8000 bytes greater than the previous register.

There may be one .using specified for each text subsegment and one for cach data
subsegment (i.e. up to eight .using’s may be in effect at any time). If a .using is
not provided for a .text or for a .data subscgment but is provided for a lower-
numbered text or data subsegment, the one for the lower-numbered subscgment
will be used. If no .using is provided for any text subscgment, reference to an ad-
dress of type text encodes a warning message and register 11 is assumed to point
to the beginning of the text 0 subsegment. If no .using is provided for any data
subsegment, reference to an address of type data engenders an error message. If a
proper register and displacement cannot be formed from a .using statement, an er-
ror message is issued.

If a second .using is specified while one is active within the same subsegment, the
second replaces the first. A .using followed by a rclocatable expression without a
register unassigns the base register.

Symbols in the relocatable expression need not be defined before the appearance
of the .using directive.

7.6. Literal Operands

The following construct may be used in machine instructions wherever a relocat-
able instruction operand may be used:

S$.data-directive expression

The arguments are explained below:

data-directive Any of .byte, short, .int, long, .dlong, .float, .double, .ascii,
or .asciz.

expression Any single expression that is legal for the respective assembler direc-
tive,

The following lines show examples of literals:

Ic rl,$.byte 0x18
lh 2,$.short (4< <8)

I r2,$.int 123456
The line:

1 r7,$.long root
is equivalent to:

1 r7,Z00001

Z00001:.Jong root

15 Dec 1986

Assembler Reference Manual ; IBM/4.3-PSD:1-15

Literals are accumulated into a pool and duplicates are removed. Literals are considered
duplicates when they are written in exactly the same way; constants which assemble to the
same value but which have different source forms are different literals, except that .long and
.int are considered to be equal. String literals are never considered to be equal. The literal
pool is sorted such that the items with the more restrictive alignment are placed first. The
beginning of the literal pool is aligned to the boundary implied by the first literal in the
pool.

Jtorg

This directive indicates the start of a literal pool and causes the accumulated literal values
to be emitted. The .Itorg directive can appear in either a text or data segment, and it can
appear more than once. If literals are used and no .Itorg follows, a warmning will be issued
and the literals will be emitted at the end of the .text 0 subsegment.

15 Dec 1986

IBM/4.3-PSD:1-16 Assembler Reference Manual

8. MACHINE INSTRUCTIONS

This section describes the machine instructions, extended branch mnemonics, and macro
instructions supported by as.

8.1. Summary of Machine Instructions

The symbols used to describe the source syntax are:

abs An absolute expression representing a displacement
from a base.

f An absolute valuc representing a register bit position.

i An absolute cxpression representing an immediate

value, optionally preceded by a “$".
Ibl A name of type text, data, or undefined external.

rayrb,rc Register expressions. A register expression is one of
the predefined symbols 10, . . . rl5, sp, or a “%" fol-
lowed by an absolute in the range 0-15. sp is
equivalent to rl.

reloc An address operand of one of the following forms:
abs(register-expression)
$literal expn
An expression of type text or data covered by a
base register defined in a “.using” directive.

The following symbols are used to show the assembled result. A character repeated indi-
cates that the field is wider that one hex digit.

ab,c Registers ra, rb, and rc.

f A register bit position.
n A numeric field.
d A displacement from a register or the current location.

Most numeric fields and displacements represent sign-extended two’s complement quanti-
ties. In the Operations column of the following table, “(unsigned)” indicates instructions
that do not sign-extend.

15 Dec 1986

Assembler Reference Manual

IBM/4.3-PSD:1-17

Assembled

Source Syntax Format Operation
a ra,rb elab Add
abs ra,rb elab Absolute
ae ra,rb flab Add Extended
aei ra,rb,i dlab nnnn Add Extended Immediate
ai ra, [tb,] i (Macro) Sec Section 8.5
ail ra,rb,i clab nnnn Add Immediate Long
ais ra,i 90an Add Immediate Short
bala bl 8ann nnnn Branch and Link Absolute (unsigned)
balax 1bl 8bnn nnnn Branch and Link Absolute with Execute (unsigned) **
bali ra,lbl 8cad dddd Branch and Link Immediate
balix ra,lbl 8dad dddd Branch and Link Immediate with Execute **
balr ra,rtb ecab Branch And Link Register
balrx ra,rb edab Brand And Link Register with Execute **
bb f,1bl 8efd dddd Branch on Bit
bbr fra eefa Branch on Bit
bbrx fra effa Branch on Bit with Execute
bbx f,lbl 8ffd dddd Branch on Bit with Execute
bnb f,lbl 88fd dddd Branch on Not Bit
bnbr fra e8fa Branch on Not Bit
bnbrx fra e9fa Branch on Not Bit with Execute
bnbx f,lbl 89fd dddd Branch on Not Bit with Execute
c ra,rb b4ab Compare
calé6 ra,rb f3ab Compute Address 16-bit
cal ra,reloc c8ab dddd Compute Address Lower Half
callé ra,reloc c2ab dddd Compute Address Lower Half 16-bit (unsigned)
cas ra,rb,rc 6abc Compute Address Short
cau ra,reloc | d8ab dddd Compute Address Upper Half (unsigned)
ci ra, i (Macro) Sec Section 8.5
cil ra,i d40a nnnn Compare Immediate Long
cis ra,i 94an Compare Immediate Short
cl ra,rb b3ab Compare Logical
cli ra, i : (Macro) See Scction 8.5
clil ra,i d30a nnnn Compare Logical Immediate Long
clrbl ra,i 99an Clear Bit Lower
cltbu raji 98an Clear Bit Upper
clrsb rafi 95an Clear SCR Bit
clz ra,tb fSab Count Leading Zeros
d ra,rb b6ab Divide Step
dec ra,i 93an Decrement
exts ra,rb blab Extend Sign
get* ra,$expr (Macro) Sec Section 8.5
get* ra,reloc (Macro) See Section 8.5
inc ra,i 9lan Increment
ior ra,reloc cbab dddd Input/Output Read (unsigned)
iow rareloc | dbab dddd Input/Output Write (unsigned)
ib f,lbl 08dd to 0fdd | Jump on Bit
inb f,1bl 00dd to 07dd | Jump on Not Bit

+ If a two-byte instruction follows a Branch and Link with Execute, as appends a ‘jnop’.

15 Dec 1986

IBM/4.3-PSD:1-18

Assembler Reference Manual

Assembled

Source Syntax Format Operation
1 ra,reloc cdab dddd | 1.oad
Ic ra,reloc ceab dddd | Load Character
Ics ra,reloc 4dab I.oad Character Short
1h ra,reloc daab dddd | Load Half
lha ra,reloc caab dddd | Load IHalf Algebraic
lhas ra,reloc 5dab Load Half Algebraic Short
lhs ra,0(rb) ebab Load Half Short '
lis ra,i adan Load Immediate Short
load* ra,expr](rb)] (Macro) See Section 8.5
lm ra,reloc c9ab dddd | Load Multiple
Ips i,reloc dOnb dddd | load Program Status
Is ra,reloc 7dab I.oad Short
m ra,rb e6ab - Multiply Step
mc03 ra,rb f9ab Move Character 0 from 3
mcl3 ra,rb faab Move Character 1 from 3
mc23 ra,rb fbab Move Character 2 from 3
mc30 ra,rb fdab Move Character 3 from 0
mc31 ra,rb feab Move Character 3 from 1|
mc32 ra,rb flab Move Character 3 from 2
mc33 ra,rb fcab Move Character 3 from 3
mfs ra,rb 96ab Move From SCR ra to register b
‘mftb rarb bcab Move From Test Bit
mftbil ra,i 9dan Move From Test Bit Immediate Lower
mftbiu ra,i 9can Move From Test Bit Immediate Upper
mr ra,rb (Macro) See Section 8.5
mts ra,rb b5ab Move To SCR ra from register rb
mttb ra,rb bfab Move To Test Bit
mttbill ra,i 9fan Move To Test Bit Immediate Lower
mttbiu ra,i 9ean Move To Test Bit Immediate Upper
n ra,rb eSab And
ni ra,rb,i (Macro) Sce Scction 8.5
nilo ra,rb,i c6ab nnnn | And Immediate Lower Half Extended Ones (unsigned)
nilz ra,rb,i cSab nnnn | And Immediatc I.ower Half Extended Zeros (unsigned)
niuo ra,rb,i d6ab nnnn | And Immediate Upper Half Extended Ones (unsigned)
niuz ra,rb,i dSab nnnn | And Immediate Upper Half Extended Zcros (unsigned)
0 ra,rb e3ab Or
oi ra,rb,i (Macro) Sce Section 8.5
oil ra,rb,t cdab nnnn | Or Immediate Lower Half (unsigned)
oiu ra,rb,i c3ab nnnn | Or Immecdiate Upper Half (unsigned)
onec ra,rb f4ab Ones’ Complement
put* ra,reloc (Macro) Sce Section 8.5
s ra,rb e2ab Subtract
sar ra,rb b0ab Shift Algebraic Right
sari ra,i alan Shift Algebraic Right Immediate
sarilé ra,i alan Shift Algebraic Right Immediate plus 16
se ra,rb f2ab Subtract Extended
setbl ra,i 9ban Set Bit Lower

15 Dec 1986

Assembler Reference Manual

IBM/4.3-PSD:1-19

Assembled

Source Syntax Format Operation
setbu ra,i 9aan Set Bit Upper
setsb ra,i 97an Set SCR Bit
sf ra,rb b2ab Subtract From
sfi ra,rb,i d2ab nnnn | Subtract From Immediate
shl ra,i (Macro) Sce Section 8.5
shla ra,i (Macro) See Section 8.5
shr ra,i (Macro) Sece Section 8.5
shra ra,i (Macro) See Section 8.5
si ra,[rb,]i (Macro) See Section 8.5
sil ra,rb,i (Macro) Sec Section 8.5
sis ra,i 92an Subtract Immediate Short
sl ra,rb baab Shift Left
shi ra,i aaan Shift Left Immediate
sli16 rai aban Shift Left Immediate plus 16
slp ra,rb bbab Shift Left Paired
slpi ra,i aean Shift Left Paired Immediate
slpilé ra,i afan Shift Left Paired Immediate plus 16
Ny ra,rb b8ab Shift Right
sri ra,i a8an Shift Right Immediate
stil6 ra,i a%an Shift Right Immediate plus 16
SIp ra,rb b9ab Shift Right Paired
srpi ra,i acan Shift Right Paired Immediate
stpil6 ra,i adan Shift Right Paired Immediate plus 16
st ra,reloc ddab dddd | Store
stc ra,reloc deab dddd | Store Character
stcs ra,reloc 1dab Store Character Short
sth ra,reloc dcab dddd | Store Half
sths ra,reloc 2dab Store Half Short
stm ra,reloc d9ab dddd | Store Multiple
store* ra,expr|(rb)],rc (Macro) See Section 8.5
sts ra,reloc 3dab Store Short
sve abs(ra) c00a nnnn | Supervisor Call (unsigned)
tgte ra,rb bdab Trap if Register Greater Than or Equal
ti fra,i ccfa nnnn Trap on Condition Immediate
tlt ra,rb beab Trap if Register Less Than
tsh ra,reloc cfab dddd | Test and Set Ialf
twoc ragrb edab Two’s Complement
wait f000 Wait
X ra,rb e7ab Exclusive Or
xi ra,rb,i (Macro) Sce Scction 8.5
xil ra,rb,i c7ab nnnn | Exclusive Or Immediate Lower alf (unsigned)
xiu rarbi d7ab nnnn | Exclusive Or Immediate Upper Half (unsigned)

15 Dec 1986

IBM/4.3-PSD:1-20 Assembler Reference Manual

8.2. Extended Mnemonics: Branch on Bit

Assembled
Source Syntax Format Opecration
b Ibl 888d dddd | Branch
bc0 1bl 8ecd dddd | Branch on Carry 0
be 1bl 8ead dddd | Branch on Lqual

beq Ibl 8ead dddd | Branch on Equal

bh 1bl 8ebd dddd | Branch on High

bhe 1bl - 889d dddd | Branch on High or Fqual
bl Ibl 8¢9d dddd | Branch on lLow

ble Ibl 88bd dddd | Branch on Low or Fqual
bm Ibl 8¢9d dddd | Branch on Minus

bnc0 bl 88cd dddd | Branch on Not Carry 0
bne 1b1 88ad dddd | Branch on Not FEqual
bnh 1bl 88bd dddd | Branch on Not Iligh

bnl 1bl 889d dddd | Branch on Not Low
bnm 1bl 889d dddd | Branch on Not Minus
bno 1bl 88ed dddd | Branch on Not Overflow
bnp Ibl 88bd dddd | Branch on Not Plus
bntb 1bl 88fd dddd | Branch on Not Test Bit
bnz Ibl 88ad dddd | Branch on Not Zero

bo Ibl 8ced dddd | Branch on Qverflow

bp 1bl 8¢bd dddd | Branch on Plus

btb 1bl 8efd dddd Branch on Test Bit

bz 1bl 8cad dddd | Branch on Zero

nop Ibl 8¢od dddd | No Operation

bcOx Ibl 8fcd dddd | Branch on Carry 0 with Execute

beqx bl 8fad dddd | Branch on Equal with Execute

bex Ibl 8fad dddd | Branch on Equal with Execute

bhex Ibl 899d dddd | Branch on High or Equal with Exccute
bhx 1bl 8fbd dddd | Branch on High with Execute

blex Ibl 89bd dddd | Branch on Low or Equal with Fxecute
blx 1bl 8f9d dddd | Branch on Low with Execute

bmx 1bl 8f9d dddd | Branch on Minus with Execute

bncOx 1bl 89cd dddd | Branch on Not Carry 0 with Exccute
bnex bl 89ad dddd | Branch on Not Equal with Execute
bnhx bl 89bd dddd | Branch on Not High with Exccute
bnlx Ibl 899d dddd | Branch on Not [.ow with Exccute
bnmx bl 899d dddd | Branch on Not Minus with Exccute
bnox 1bl 89ed dddd | Branch on Not Overflow with Exccute
bnpx Ibl 89bd dddd | Branch on Not Plus with Fxccute
bntbx 1bl 89fd dddd | Branch on Not Test Bit with Exccute
bnzx 1bl 89ad dddd | Branch on Not Zero with Iixccute
box ibl 8fed dddd Branch on Overflow with Execute
bpx 1bl 8fbd dddd | Branch on Plus with Execute

btbx bl 8ffd dddd Branch on Test Bit with Execute

bx Ibl 898d dddd | Branch with Execute

bzx bl 8fad dddd Branch on Zero with Execute

nopx _ lbl 8f8d dddd | No Opecration with Execute

15 Dec 1986

Assembler Reference Manual IBM/4.3-PSD:1-21

8.3. Extended Mnemonics: Branch on Bit Register

Assembled
Source Syntax Format Operation
bcOr ra eeca Branch on Carry 0
beqr ra eeaa Branch on Equal
ber ra ecaa Branch on Equal
bher ra c89a Branch on Iigh or Equal
bhr ra eeba Branch on High
bler ra e8ba Branch on Low or Equal
blr ra ec9a Branch on Low
bmr ra ee9a Branch on Minus
bncOr ra e8ca Branch on Not Carry 0
bner ra c8aa Branch on Not Equal
bnhr ra e8ba Branch on Not High
bnlr ra €89a Branch on Not low
bnmr ra e89a Branch on Not Minus
bnor ra e8ea Branch on Not Overflow
bnpr ra e8ba Branch on Not Plus
bntbr ra e8fa Branch on Not Test Bit
bnzr ra e8aa Branch on Not Zero
bor ra ceea Branch on Overflow
bpr ra eeba Branch on Plus
br ra e88a Branch
btbr ra cefa Branch on Test Bit
bzr ra ecaa Branch on Zero
nopr ra ce8a No Operation
bcOrx ra efca Branch on Carry 0 with Execute
beqrx ra efaa Branch on Equal with Execute
berx ra efaa Branch on Equal with Execute
bherx ra €99a Branch on High or Fqual with Execcute
bhrx ra efba Branch on Iigh with Execute
blerx ra eJba Branch on Low or Equal with Execute
blrx ra ef9a Branch on Low with Iixecute
bmrx ra ef9a Branch on Minus with Execute
bnclrx ra e9ca Branch on Not Carry 0 with Exccutce
bnerx ra e%aa Branch on Not Equal with Execute
bnhrx ra ¢9ba Branch on Not High with Execute
bnlrx ra €99a Branch on Not I.ow with Execute
bnmrx ra €99a Branch on Not Minus with Execute
bnorx ra e9ea Branch on Not Overflow with Fxccute
bnprx ra e9ba Branch on Not Plus with Execute
bntbrx ra e9fa Branch on Not Test Bit with Exccute
bnzrx ra ¢9aa Branch on Not Zero with Exccute
borx ra efea Branch on Overflow with Execute
bprx ra efba Branch on Plus with Iixecute
brx ra e98a Branch with Execute
btbrx ra effa Branch on Test Bit with Exccute
bzrx ra efaa Branch on Zero with Execute
noprx __ ra ef8a No Operation but with Execute

15 Dec 1986

IBM/4.3-PSD:1-22 Assembler Reference Manual

8.4. Extcnded Mnemonics: Jump

The operand field consists of a label defined in the same text or data scgment as the jump
instruction, and located within -256 to + 254 bytes.

Assecmbled
Source Syntax Format Operation
j 1bl 00dd Jump
jc0 1bl Ocdd Jump on Carry 0
je Ibl Oadd Jump on Equal
jeq 161 Oadd Jump on Equal
jh bl Obdd Jump on High
jhe 1bl 0ldd Jump on High or LFqual
il 1bl 09dd Jump on Low
jle 1bl 03dd Jump on Low or Equal
jm Ibl 09dd Jump on Minus
jncO 1bl 04dd Jump on Not Carry 0
jne 1bl 02dd Jump on Not Equal
jnh bl 03dd Jump on Not High
jnl 1bl 0ldd Jump on Not Low
jnm Ibl 01dd Jump on Not Minus
jno Ibl 06dd Jump on Not Overflow
jnop 1bl 08dd No Operation
jnp bl 03dd Jump on Not Positive
jntb bl 07dd Jump on Not Test Bit
inz 1bl 02dd Jump on Not Zero
jo Ibl Oedd Jump on Overflow
ip Ibl Obdd Jump on Positive
jtb Ibl 0fdd Jump on Test Bit
iz 1bl Oadd Jump on Zero

15 Dec 1986

Assembler Reference Manual IBM/4.3-PSD:1-23

8.5. Macro Instructions

The macro instructions generate different instruction sequences depending upon the value
of an operand:

sil ra,rb,i

generates an ‘ail’ with the value of i negated; i must be between — 32767 and 32768.

mr ra,rb

generates a ‘cas’ with r0 as the third operand.

ai ra, [rb] i
si ra, [rb,] i
ci ra, i
cli ra, i

generates a long or short format instruction depending upon the value of i, and substitutes
ra for an omitted rb.

ni ra,rb,i

gives the effect of an and with a 32-bit i by generating a scquence of one or two ‘niuz’,
‘nivo’, ‘nilz’, and ‘nilo’ instructions.

xi ra,rb,i

gives the effect of an exclusive or with a 32-bit i by generating ‘xiu’, ‘xil’, ‘xiu’ and ‘xil’, or
‘cal’ and x’. .

oi rasrb,i

gives the effect of an inclusive or with a 32-bit i by generating ‘oiu’, ‘oil’, ‘oiu’ and ‘oil’, or
‘cal’ and ‘o’. ’

shl ra,i
shla ra,i

generates a ‘sli’ or ‘slil6’, depending oni. i must be in 0-31.

shr ra,i

generates a ‘sri’ or ‘sril6’, depending on the value of i. i must be in 0-31.

shra ra,

generates a ‘sari’ or ‘saril6’, depending on the value of i. 1 must be in 0-31.

15 Dec 1986

IBM/4.3-PSD:1-24 Assembler Rcference Manual

get ra, reloc
getha ra, reloc
geth ra, reloc
gete ra, reloc
put ra, reloc
puth ra, reloc
putc ra, reloc

generates a storage reference instruction in long or short form depending on the value of
the displacement.

The following macros facilitate generating address constants, and loading and storing in
arbitrary memory locations, by exploiting split address relocation. (See a.out(5).)

get ra, Sexpr{(rb)]
getha ra, Sexpr
geth ra, Sexpr
getc ra, Sexpr

If the optional index (rb) is present, as gencrates a ‘cau’ and ‘cal’. Otherwise, for an abso-
lute $expr, as generates a ‘lis’, ‘cal’, ‘call6’, or ‘cal16’ and ‘oiu’, depending upon the value
of expr. For a relocatable or external $expr, as generates a ‘cal16’ and ‘oiu’.

load ra, exprj(rb)]
load ra, expr|(rb)}
loadh ra, expri(rb)]
loadha ra, exprl(rb)]
loadc ra, expri(rb)]

As generates a ‘cau ra’ followed by ‘1’ ‘lh,’ ‘Iha,’ or ‘Ic’. expr may be absolute, relocatable,
or external. ra may not be 0. ‘

store ra, expr|(rb)],rc
storeh ra, exprj(rb)],rc
storcha ra, expri(rb)],rc
storec ra, expr|(rb)],rc

As generates a ‘cau rc’ followed by ‘st’, ‘sth’, or ‘stc’. expr may be absolute, relocatable, or
external. rc is a temporary register and may not be r0. storcha is equivalent to storch.

15 Dec 1986

Assembler Refcrence Manual

9. DIAGNOSTICS

IBM/4.3-PSD:1-25

Diagnostics are written to standard output. They are intended to be sclf-explanatory and
report errors and warnings. Error diagnostics complain about lexical, syntactic and some
semantic errors, and abort the assembly.

The assembler may abandon a statement in error and continue processing sometimes on the
same line, sometimes on the next. The result is that one error may lead to spurious diagnostic
messages and sometimes “phase errors” where a label has a changed value in the second pass.

10. LIMITS
limit

what

arbitrary!
BUFSIZ
arbitrary
arbitrary
arbitrary
4

4

Files to assemble

Significant characters per name
Characters per input line
Characters per string

Symbols

Text segments

Data segments

The number of tokens in a literal definition is limited by the size of the tokenized literal (i.e.
by the size of the literal after it has been scanned by the assembler to form a string of tokens).
The effective limit is approximately twenty terms in one literal expression.

1Ajthough the number of characters available to the argv line is restricted by UNIX operating systems to 10240.

15 Dec 1986

IBM/4.3-PSD:1-26 Assembler Refercnce Manual

This page intentionally lcft blank.

15 Dec 1986

Floating Point Arithmetic IBM/4.3-PSD:2-1

Floating Point Arithmetic

ABSTRACT

This article describes floating point arithmetic in IBM/4.3. The article includes
the following sections:

1. Comparison with Vax F- and D-Format Arithmetic
2. Compatibility with Previous Releases
3. Floating Point Hardware

December 1987

IBM/4.3-PSD:2-2 Floating Point Arithmetic

Floating point arithmetic in IBM/4.3 conforms to IEEE Standard 754 for bmary floating point
arithmetic. Single-and double representations are supported.

1. Comparison with F- and D-Format Arithmetic

IEEE arithmetic produces results that in gencral are at least as accurate as those from IBM
System/370 arithmetic. Single precision is very similar to VAX F-format in range and preci-
sion. Double precision is comparable to VAX D-format; see (1) below.

The salient differences from the F- and D-format arithmetic used in C and 4.3BSD on the
VAX are as follows:

M

2

3

(4)

(%)

(6)

Type double has a mantissa of 53 bits rather than 56; the exponent range is
approximately 3e-308 to 1e308, rather than 3e-39 to 1e38. Magnitudes as small
as 3e-324 are represented with reduced precision.

IEEE arithmetic includes represcentations for plus and minus infinity and a collec-
tion of “Not-a-Number” (NaN) values. Printf (3S) represents these on output as
INF and NAN(). Signed zero values are also supported; +0= —0, but
1/—0= —INF.

Rounding modes and exception handling are supported; user code can change the
settings via library functions; sce ieece(3) and ecvt(3). IEEE default settings are in
force initially: the rounding mode is round to necarest; on an exception, proceed
without trap (that is, return a reasonable result).

With the default exception handling, scveral arithmetic operations that signal
SIGFPE on the VAX do not on the IBM RT PC. Exponent overflow receives
IEEE default handling, which is to return infinity. Other values larger than 1e38
are represented correctly rather than overflowing. 0/0, INF/INF and certain
other operations produce NaNs, which will propagate through subsequent arith-
metic operations. Library functions that signaled SIGFPE, however, continue to
do so.

VAX F and D formats differ only in mantissa width: the first word in D-format
has the same interpretation as an F-format number. Consequently, on a VAX,
type mismatches can produce plausible incorrect results, differing from the correct
results by one part in a million. IEEE single and double formats differ in
exponent width as well as mantissa width, so type mismatches (from nonportable
unioning, function calls, or using “%e” for “%le” in scanf (3S), for instance)
generally produce answers that are dramatically, rather than subtly, wrong.

The IEEE recommended functions are supported; scc ieee(3) for details.

Also, two new functions are provided to perform the IEEE required operations of
round floating-point number to integral value (according to the current rounding
mode) and floating-point remainder. These are rint and drem (sce ieee(3)).

2. Compatibility with Previous Releases

Note that while this initial release of the new 1BM/4.3 Floating Point support gives the max-
imum compatibility possible, future releases may not. Most a.outs compiled and linked under
previous releases will produce the same results when run under this release. IHowever, perfor-
mance will be improved by recompiling, especially if running on an RT with an APC.

2.1. A.outs Linked with -lfpa Option

The -lfpa option, in previous releases, was intended for use when the FPA was the only
supported floating point hardware. This new support climinates the need for the flag.
Executables (a.outs) previously linked with -lfpa will not run on a machine with an APC
card and without an FPA. These executables should be recompiled and relinked.

December 1987

Floating Point Arithmetic IBM/4.3-PSD:2-3

For those systems where users have many Makefiles, scripts, and so forth, that depend on
the -Ifpa flag, the system administrator can install a dummy library to satisfy the loader. A
dummy library is provided for this purpose in Jusr/src/old/fpa.

2.2. Linking Old and New Object Files (.0’s)

For best performance, object files linked to one another should be recompiled under
IBM/4.3 so that all modules are using the same support. If you choose not to recompile,
Id(1) will print a warning message. The resulting executable (a.out) will use the FPA (if it
is present) or the emulator (if the FPA is not present).

3. Floating Point Hardware
Floating point operations can be performed by the following types of hardware:

FPA The first Floating Point Accelerator for the RT (sometimes
called the FPA I) supports both single and double precision.

AFPA The second, or Advanced, Floating Point Accelerator for the RT
(sometimes called the FPA II) supports both single and double precision.

MC881 The Motorola 68881 on the Advanced Processor Card (APC)
supports extended as well as single and double precision (but the
latter two cause a performance degradation). Extended precision is
the default. The MC881 offers the fastest performance.

In the absence of floating point hardware, RT floating point instructions can be executed via
an emulation package (which performs the same computations in software as the FPA).

Floating point support is chosen in the following order, if available:

(1) MCssl
(2) AFPA
(3) FPA

(4 Emulator
To force the use of one of the above, set the environment variable FPA to mc881, afpa, fpa,
or emul. If the named hardware is available, that support will be chosen rather than the
default.
Due to the 68881’s higher default precision, there may be a slight difference in results for float-
ing point instructions executed via the 68881 and the FPAs or emulator. For example, inter-
mediate results left in extended precision during calculation:

a = b*c-d

may cause ‘‘a” to differ slightly from “a” computed as:
t = b*c
a=td

Furthermore, register variables are left in extended precision in the MC881 and in single or
double precision in the FPA, AFPA, and emulator.

To offer the best performance for floating point instructions, IBM/4.3 by default uses the
fastest hardware available, and the ‘fastest” precision for that hardware (depending upon
operation and type of arguments). To accommodate the need for predictable results regardless

December 1987

IBM/4.3-PSD:2-4

of hardware or

software

FP_PRECISION, with four options:
fast (default)

precise (use widest possible precision)

double (round all operations to double)

used, IBM/4.3 provides

Floating Point Arithmetic

a’ new environment

variable,

single (round all single operations to single and all others to double; used rarely but
required by the IEEE 754 Standard)

Double and single modes provide cross-hardware conformance. That is, the results of a float-
ing point instruction performed in single (or double) mode are identical, whether the instruc-
tion is performed using the MC881, FPAs, or emulator.

Note, however, that forcing the precision may scriously degrade performance. The following
table summarizes the effect of the precision mode on the generated code:

mode

68881

FPAs (AFPA, FPA, Emulator)

fast

extended ops on all
(this implies extended math)

single ops on single args
double ops on double args
(this implies double math)

precise

extended ops on all
(this implies extended math)

double ops on all
(this implies double math)

double

68881 mode set to double
(this implies double math)

double ops on all

(this implies double math)

single

68881 mode set to double
double ops on double args
(this implies double math)
single ops on single args

(set mode to single for op,
then set it back to double)

single ops on single args
double ops on double args
(this implies double math)

See “IBM/4.3 Linkage Convention” in Volume 1I, Supplementary Documents for more infor-

mation.

December 1987

Experimental Display Interface IBM/4.3-PSD:3-1

The C Subroutine Interface for the
IBM Academic Information Systems Experimental Display

ABSTRACT

This paper describes a subroutine interface for the IBM Academic Information
Systems experimental display transported for use under the C programming
language and IBM/4.3. It contains the following chapters and appendices:
1. Introduction contains some background information on the experimental display.
Controlling the Interface describes the subroutines that control the interface session.

3. Setting Graphics Parameters describes the subroutines that set graphics parameters. Graph-
ics parameters modify the way in which subroutines that update the screen operate.

4. Querying Graphics Parameters describes the subroutines that return the current values of
graphics parameters.

5. Issuing Graphics Primitives describes the subroutines that build orders that update the
screen.

6. Controlling the Cursor describes the subroutines that enable programs to control the experi-
mental display cursor.

7. Defining Fonts describes the orders that control the experimental display font mechanism.
8. Manipulating Fonts describes the subroutines that manipulate fonts.

Appendix A describes the format of a font file.

Appendix B describes character definitions.

Appendix C describes aedjournal(1) and aedrunner(1), supplied programs which display and
run commands in a log file.

Appendix D describes the examples supplied with the subroutine interface.

31 Mar 1986

IBM/4.3-PSD:3-2 Experimental Display Interface

1. INTRODUCTION

The experimental display is a black-and-white, all-points-addressable, bit-mapped display that
attaches to the IBM RT PC. The experimental display features 819,200 points on the screen,
each one individually selectable. The experimental display adapter contains a very fast on-
board processor that allows text and graphics to be drawn at a rate much faster than the host
alone would allow. The experimental display processor is programmed to accept high-level
orders from the host, and to present the results on the screen.

The characteristics of communicating with the experimental display are determined by the
microprogram running in the experimental display adapter processor. This program is stored
in writable control store and is loadable from the host.

The interface described in this paper is a sct of functions designed to support a window
manager, and is composed primarily of subroutines, as distinguished from functions. A typical
subroutine uses parameters to receive input as well as to return output. C passes parameters
by value; to call a subroutine which returns information, you must supply an address for the
returning value as the parameter.

Calls that supply an address for rcturn in this package should usually supply the address of a
short (16-bit) integer. Calls that pass integer values can usually get by with either short or int.
See the individual routines.

Many of the subroutines do return a value as a function would. Generally, valucs arc used for
error return codes and special case handling. It is strongly rccommended that applications
monitor return codes in order to prevent bizarre events and possibly more severe errors.

When linking, you must specify -laed to pick up the experimental display library.

31 Mar 1986

Experimental Display Interface IBM/4.3-PSD:3-3

2. CONTROLLING THE INTERFACE

This chapter describes the subroutines that control the interface.

2.1. VL Init: Initialize the Subroutine Interface

VI Init initializes the experimental display and returns the dimensions of the screen.
Current display models are 1024 bits wide by 800 bits high. The top left point is (0,0) and
the bottom right point is (1023,799). A 16-bit word used as an image on the experimental
display will have its least significant bits to the right. /usr/lib/aed/whim.aed must be acces-
sible at run time.

Because VI [nit initializes the experimental display, it should be called before the other
routines of the package.

VI _Init has the following format:

VI_Init(wd,ht)
short *wd,*ht; /* screen dimensions */

2.2. VI _Force: Force Output of Graphics Orders

Commands built with subroutines described in “‘Setting Graphics Parameters” and “Issuing
Graphics Primitives” later in this paper generally do not send their output to the screen
immediately. Instead the output remains in a buffer until the buffer is full, when its output
is sent to the screen. Use VI _Force to force output in the current buffer to be transmitted
before the bufler is full.

VI_Force has the following format:
VI _Force()

2.3. VI_Login: Begin Logging Subroutine Calls

VI _Login specifies that subsequent subroutine calls are to be echoed into the specified file.
If a log file is already open, VI_Login closes it before opening the new file; VI_Login
overwrites an existing file. All orders to the experimental display are logged until a logout
call (Logout) is issued. The log file may later be executed from within a program using
VI _Run or on its own using aedrunner(1). It may also be cxamined with aedjournal(1).
(Appendix C of this paper describes these programs.) VI _Login returns a negative value if
there is an error, and a nonnegative value if the call is successful.

VI_Login has the following format:
int VI_Login(filename)
char *filename; /* file to log to */
2.4. VI_Logout: Close a Log File
VI Logout closes the log file and returns one of three values:

Value Meaning

0 Normal completion
-1 Error in closing file
-2 No file found to close

VI _Logout has the following format:
int VI_Logout()

31 Mar 1986

IBM/4.3-PSD:3-4 Experimental Display Interface

2.5. VI_Run: Process a Log File
VI_Run executes the commands logged in the specified file; filename is thec name of a log
file that was created by VI _Login. Using VI_Run with a log file has the same effect of exe-
cuting aedrunner(1) from within a program, allowing a series of orders which require much
calculation to be figured only once, logged, then quickly retrieved when nceded. V/I_Run
returns 0 for a normal completion, and -1 for an error condition.
VI_Run has the following format: '

int VI_Run(filename)
char *filename; /* log file name */

2.6. VI_Term: Terminate the Subroutine Interface
VI _Term completes processing, closes the log file, and forces transmission of the graphics
buffer to the experimental display.

VI_Term has the following format:
VI_Term()

31 Mar 1986

Experimental Display Interface IBM/4.3-PSD:3-5

3. SETTING GRAPHICS PARAMETERS

Graphics parameters modify the way in which the primitives described later in this paper
operate. This chapter describes the subroutines that set graphic parameters. The initial values
of these parameters are:

Clipping window The clipping window is set to the whole screen.

Screen color The screen color is white 1’s on black 0’s, color 0.

Dash pattern The line dash pattern is solid 1’s.

Font The font is 0. No font is selected.

Merge mode The merge mode is 12, for replace mode. Data bits replace screen bits.
Line width Line width is 1.

3.1. VI_Clip: Set Clipping Window

VI _Clip specifies that subsequent primitives drawn on the screen are to be clipped to the
specified area. It is the user’s responsibility to ensure the sensibility of the window
definition.

VI_Clip has the following format:
VI_Clip(Ix,ly,hx,hy)
int Ix,ly; /* top left corner of clipping area */
int hx,hy; /* bottom right corner of area */

3.2. VI_Color: Change Screen Cofor
VI_Color sets the color of the screen to the specified value: 0 means that bits having the
binary value “0" will be black on the screen; 1 means that bits having the binary value “1”
will be black on the screen. If this value is different from the previous value, the screen
will be inverted, so as to make the change transparent to the application.

VI_Color has the following format:

VI_Color(color)
int color; /* new color, true for white */

3.3. VI_Dash: Set Line Dash Pattern

If no dash pattern has been set, lines drawn with the V/_RLine and VI_ALine subroutines
described in “Issuing Graphics Primitives” are solid lines of 1's. If a pattern has been set,
the bits of the pattern word are used in sequence whenever the vector generator would nor-
mally output a 1. Setting a pattern of 0x5555 produces a very acceptable dotted line. Other
patterns may be used to vary the size of dashes in the line. The length of the pattern can
range from 1 to 16 bits. The pattern bits should be left-justified. Setting the pattern length
to 0 specifies a retumn to solid lines.

VI _Dash has the following format:

VI_Dash(dash,dashlen)
unsigned short dash; /* dash pattern */
short dashlen; /* dash pattern length */

34. VI_Font: Select Font

The current font affects the results of the VI _String primitive described under “Issuing
Graphics Primitives.” Font IDs range from 0 to 255 and are returned by calls to
VI_GetFont. See “Defining Fonts later in this paper for more information.

31 Mar 1986

IBM/4.3-PSD:3-6 Experimental Display Interface

VI_Font has the following format:

VI_Font(fontid)
int fontid; /¥ font ID */

3.5. VI_Merge: Set Merge Mode

The merge mode is a number from 0 to 15 that specifies how the bits generated by primi-
tives are to be combined with bits already on the screen. The merge mode is simply an
encoding of the logical function used to combinc scrcen bits and data bits. Encoding the
desired result of each of the combinations in the table below generates the merge mode that
should be used to get that effect. For example, to or the data you are adding with the data
already on the screen, you would use a merge mode of 14:

Data Bit 1 1 0 O
Screen Bit 1 0 1 0

Example: ORmode 1 1 1 0 =14

VI_Merge has the following format:
VI_Merge(merge)
int merge; /* merge mode */
3.6. VI_Width: Set Line Width

VI_Width specifies a value between 1 and 16 that is to be the line width. Normally, lines
are 1 bit thick.

VI_Width has the following format:

VI_Width(width)
int width; /* line width */

31 Mar 1986

Experimental Display Interface 1IBM/4.3-PSD:3-7

4. QUERYING GRAPHICS PARAMETERS

The subroutines in this chapter return the current values of the graphics parameters described
above. Fach subroutine requires an address in which to store the value to be retumed. All of
these subroutines force transmission of graphics data in the current buffer.

4.1. VI_QClip: Query Clipping Rectangle
VI_QClip returns the current clipping rectangle.
VI_QClip has the following format:

VI_QClip(ix,ly,hx,hy)
short *Ix,*ly; /*top left comner of clipping area*/
short *hx,*hy; /* bottom right corner */

4.2. VI_QColor: Query Current Color

VI_QColor returns the current color of the screen: 0 means that bits having the binary
value 0" will be black on the screen; 1 means that bits having the binary value ““1" will be
black on the screen.

VI_QColor has the following format:
VI_QColor(color)
short *color; /* current color, true for white */
4.3. VI_QDash: Query Dash Pattern
VI _QDash returns the current line dash pattern in the format described for VI_Dash. If
dashlen is 0, the lines are solid.
VI _QDash has the following format:

VI_QDash(dash,dashlen)
unsigned short *dash; /* dash pattern */
short *dashlen; /* length of dash pattern */

44. VI_QFont: Query Font

VI QFont returns the ID and name of the current font. The font ID is 0 if no font has
been set. The pointer fontname should point to a block of characters large enough to hold
a file name (including an extension) on your opcrating system, along with a string-
termination byte. If you know beforehand the size of your file name, you may allow only
as many bytes as required. Be aware of the string-terminator byte; there must be room for
it.

VI _QFont has the following format:

V1_QFont(fontid fontname)
short *ontid,; /* current font 1D */
char *fontname; /* current font name */

4.5. VI_QMerge: Query Merge Mode

VI _QMerge returns the current merge mode in the format described for the VI_Merge sub-
routine described in ‘“Setting Graphics Parameters.”

VI_QMerge has the following format:

VI_QMerge(merge)
short *merge; /* current merge mode */

31 Mar 1986

IBM/4.3-PSD:3-8 Experimental Display Interface

4.6. VI_QPoint: Query Current Point
VI_QPoint returns the location of the current point. This command is cspecially useful

after a VI_String primitive has been issued, since character definitions can change the

current point in unpredictable ways.
VI _QPoint has the following format:
VI_QPoint(x,y)
short *x,*y;

4.7. VI_QWidth: Query Line Width
VI_QWidth returns the current line width as a number between 1 and 16.

/* current point */

VI _QWidth has the following format:

VI_QWidth(width)
short *width; /* line width */

31 Mar 1986

Experimental Display Interface IBM/4.3-PSD:3-9

5. ISSUING GRAPHICS PRIMITIVES

This chapter describes the subroutines that build orders that update the scrcen. Orders are
transmitted only when the buffer is full, when specified with VI_Force, or when other non-
graphics subroutines are called.

The graphics primitives work in screen coordinates: x represents the horizontal axis on the
screen, and increases to the right; p represents the vertical axis and increases to the bottom of
the screen. The coordinates (0,0) represent the top-left corner of the screen. Subroutines will
accept coordinates that arc off the screen; the behavior is as if there were a clipping window
the size of the screen in a larger universe.

Several of the primitives depend on the current point. This point is initially sct to (0,0) and
can be modified by primitives.

5.1. VI_AMove: Move the Current Point to an Absolute Location

VI_AMove moves the current point to the specified coordinates. No change is made to the
screen.

VI _AMove has the following format:
VI_AMove(x,y)
int x,y; /* new point */
5.2. VI_RMove: Move the Current Point to a Relative Location

VI_RMove moves the current point by the specified displacement. No change is made to
the screen.

V1_RMaove has the following format:
VI_RMove(dx,dy)
int dx,dy; /* displacement from old point */
5.3. VI_ALine: Draw a Line with an Absolute Location

VI _ALine draws a line from the current point to the specified point (the line’s end point)
according to the current values of the width and dash pattern parameters. A line is nor-
mally of 1’s, and is merged with the window data according to the current merge mode.
The specified point becomes the current point.

VI_ALine has the following format:
VI_ALine(x,y)
int x,y; /* end point of line */
5.4. VI_RLinc: Draw a Line with a Relative Location

VI Rline draws a line from the current point to the current point displaced by the
specified values, according to the current values of the width and dash pattern parameters.
A line is normally of 1's, and is merged with the window data according to the current
merge mode. The current point is incremented by the displacement.

VI_RLine has the following format:
VI_RLine(dx,dy)
int dx,dy; /* displacement to endpoint */
5.5. VI_Circle: Draw a Circle

VI Circle draws a circle with the specified radius and the current point as its center. The
current point is unchanged.

31 Mar 1986

IBM/4.3-PSD:3-10 Experimental Display Interface

VI_Circle has the following format:

VI _Circle(radius)
int radius; /* circle radius ¥/

5.6. VI_Mlmage: Draw an Image from Mcmory

VI _MImage draws an image of the specificd dimensions whose top left comer is at the
current point. The current point is not changed.

Data must be the first byte of an image large cnough to fill the rectangle specificd by wd
and At, or an addressing error may result. The image data should be in scanline order,
from top to bottom, with each scanlinc padded to the next 16-bit word. For example, for
a width of WD and height of HT, there should be 2*HT*(WD+ 15)/16 bytes of image

data.
VI_MImage has the following format:
VI_MImage(wd,ht,data)
int wd ht; /* dimensions of image */
unsigned short *data; /* first byte of image */

5.7. VI_FImage: Draw an Image from a File
V1 _Flmage draws the image contained in the specified file, placing its top left corner at the
current point. The current point is unchanged.
The image file must have the format shown below. The data words should be in the same
format as for the VI_MImage subroutinc.

Offset (bytes) Description

0 The width of the image
2 The height of the image
4 Image data

VI _Flmage has the following format:

VI_FImage(filename)
char *ilename; /* filc name of image to draw */

5.8. VI_Tile: Tile a Rectangle

VI Tile fills a rectangle of the specified dimensions with the specificd pattern. The
rectangle’s top left corner will be at the current point. The tile pattern must follow the
rules for images (see the VI_MImage subroutine above), and can be of any size. The tile
pattern is aligned to multiples of twd and tAt, not to the bounds of the tiled rectangle, so
that rectangular subareas of larger figures can be tiled without regard to their bounds, and
the tile patterns will match. The current point is unchanged.

A full rectangle black or white fill can be most quickly drawn by requesting a one-by-one
tile. Clearly, only all ON or all OFIF may be drawn with this mcthod, but any merge

mode may be used.
VI_Tile has the following format:

VI_Tile(wd,ht,twd,tht,tile)
int wd,ht; /* dimensions of rectangle */
int twd,tht; /* dimensions of tilc */
unsigned short *tile; /* first byte of pattern */

31 Mar 1986

Experimental Display Interface IBM/4.3-PSD:3-11

5.9. VI_String: Draw a String

VI String draws the specified string at the current point. Since a character definition is
really a sequence of other graphics commands (usually VI _MImage and VI_RMove), the
way in which characters are positioned, stepped, and drawn depends on the font definition.
Character definitions typically modify the current point. See “Defining Fonts™ later in this
paper for more information.

VI String has the following format:
VI String(s)
char *s; /¥ string to draw */
5.10. VI_Copy: Copy an Area

VI _Copy duplicates the rectangle at sx,sy with the dimensions wd,At to the point tx,tp.
The copied bits are merged with the target arca using the specified merge mode, not the
merge mode set by VI_Merge.

Both the source and destination rectangles must be completely on the screen. The current
setting of the clipping window is ignored.

VI _Copy has the following format:
VI_Copy(sx,sy,tx,ty,wd,ht,merge)

int sx,sy; /* source top-left */
int tx,ty; /* target top-left */

int wd,ht; /* rectangle dimensions */
int merge; /* merge mode */

5.11. VI_MRead: Read Display Data into Memory

VI_MRead reads the specified area of the screen into the array passed as data. Image bytes
are in the same format as expected by V/I_MImage. If the screen color is white, the bits are
inverted on readback to make the data read back independent of screen color. The area to
be read must be completely on the screen. The current setting of the clipping window is
ignored.

VI _MRead has the following format:
VI_MRead(x,y,wd,ht,data)

int x,y; /* top-left corner of area */
int wd,ht; /* dimensions of area */
unsigned short *data; /* first byte of data */

5.12. VI_FRead: Read Display Data into a File

VI _FRead reads the specified area of the screen and places it in the specified file. The file
has the same format as expected by VI _Fimage. If the window color is white, data bits are
inverted to make the data independent of the screen color. The area to be read must be
completely on the screen. The current sctting of the clipping window is ignored.

VI _FRead has the following format:
VI_FRead(x,y,wd,ht filename)

int x,y; /* top-left corner of area */
int wd ht; J* dimensions of arca */
char *filename; /* name of file to place image in */

31 Mar 1986

IBM/4.3-PSD:3-12 Experimental Display Interface

6. CONTROLLING THE CURSOR

The following routines allow programs to control the experimental display cursor by defining
it, enabling and disabling it, and changing its position. Notc that because the experimental
display maintains the cursor separately from the display buffer, the cursor does not have to be
removed when a graphics primitive intersects its position.

Initially the cursor is transparent and disabled, and is positioned at the center of the screen.

6.1. VI_MDefnCur: Set Cursor Pattern from Memory

I'I_MDefnCur sets the cursor as specified. xoff,poff is the displacement of the cursor pat-
tern from the current position of the cursor. For example, a value of (32,32) would center
the cursor pattern around the current point.

The cursor pattern itself is a 64-by-64 bit image, with two planes. A 1 in the black plane
indicates that that bit of the cursor should be black. A 1 in the white planc indicates that
the cursor should be white in that position. If a bit has a 0 in both planes, the cursor is
transparent in that position. If a bit is 1 in both planes, the cursor is white.

The two planes are images in the same format as accepted by VI_MImage, and must be
64-by-64, or 512 bytes each.
VI_MDefnCur has the following format:

VI_MDefnCur(xoff,yoff,black,whitc)
int xoff; /* x offset of cursor center */
int yoff; /* y offset of cursor center */
unsigned short *black; /*first byte black mask */
unsigned short *white; /*first byte white mask */

6.2. VI_FDcfnCur: Sct Cursor Pattern from File
VI _FDefnCur sets the cursor to the definition in the specified file. The file has the follow-

ing format:
Offset (bytes) Description
0 XOFF
2 YOFF
4 BLACK bit pattern
516 WIHI'TE bit pattern

See the description of ¥VI_MDefnCur for a description of the ficlds.
VI_FDefnCur has the following format:
VI_IFDefnCur(filename)
char *filename; /* name of cursor dcfinition file */
6.3. VI_EnCur: Enable Cursor

VI _EnCur enables the cursor and displays it if it is not alrcady present. Disabling and ree-
nabling the cursor do not affect its position.

VI_EnCur has the following format:
VI_EnCur()
6.4. VI_DisCur: Disable Cursor

VI _DisCur disables the cursor and removes it from the screen if it is present. Disabling
and reenabling the cursor do not affect its pattern or position.

31 Mar 1986

Experimental Display Interface IBM/4.3-PSD:3-13

VI _DisCur has the following format:
VI _DisCur()

6.5. VI_PosnCur: Set Cursor Position

VI _PosnCur moves the cursor to the specified position. The cursor cannot be moved off
the screen.

VI_PosnCur has the following format:

VI_PosnCur(x,y)
int X,y; /* new cursor position */

31 Mar 1986

IBM/4.3-PSD:3-14 Experimental Display Interface

7. DEFINING FONTS

The font mechanism supported by the experimental display is very general. Characters are not
simply raster patterns; instead, each character definition is a simple graphics subroutine, able to
move the current point, draw images, change the merge mode, etc. The orders that can occur
in a character definition are a subsct of the orders built by the graphics primitives subroutines.
In addition, two orders, push and pop, control paramcters within a character definition.

7.1. Standard Raster Characters

The most typical use of the font mechanism is for standard raster characters. The sequence
of orders is similar to the following: '

(1) VI _Image at the current point.
(2) VI_RMove right by the width of the characters.

This cxample draws all characters down from the current p value.

7.2. Raster Character with Bascline Defined for the Font

The next most common use is a raster character with a bascline defined for the font. The
sequence of orders would be similar to the following:

(1) VI _RMove up by the ascender height (height above bascline).
(2) VI _Image at the current point.
(3) VI_RMove down and right by the ascender height and character width.

7.3. Stroked Fonts

Stroked fonts can be defined using ¥/_RMove and VI_Rl.ine commands. Stroked charac-
ters can be mixed freely with raster characters.

7.4. Three-Color Characters
Three-color characters can be defined with a sequence such as the following:
(1) VI_RMove to top of character image.

((ll’

(2) VI _Merge 2, which turns off the screen data having the binary value
it unchanged for screen data having the binary valuec “0".

, and lcaves

(3) VI _Image, with a pattern that turns off the black bits of the character.
(4 VI Merge /4, OR mode.

(5) VI _Image, with a pattern that turns on the white bits.

(6) VI_RMove to start of next character.

With this font selected, characters drawn by the V/_String command would draw black,
white and transparent patterns, suitable for text drawn over a complex graphics image.

31 Mar 1986

Experimental Display Interface IBM/4.3-PSD:3-15

8. MANIPULATING FONTS

Fonts are stored in files, which are loaded into the IBM RT PC memory when rcquested by
applications using the VI_GetFont subroutine. Once a font is loaded, it is kept in memory
until the program ends, unless explicitly dropped with the VI_DropFont subroutine.

8.1. VI_GetFont: Load a Font into Memory

VI _GetFont loads the specified font into memory, if it is not already present. If the font is
successfully loaded, the font ID is returned. Setting the current font to this 1D with the
VI Font routine causes subscquent strings to be displayed in the font. If a font ID of 0 is
returned, either the font could not be found, or it did not fit in memory. If the font did
not fit in memory, a message will be scnt to stderr.

VI_GetIFont has the following format:

VI_GetFont(name,fontid)
char *name; /* font name */
short *fontid; [* font 1D */

8.2. VI_DropFont: Release Font

VI _DropFont drops the specified font from memory. The application should not attempt
to use the font ID again. If the font is required, a new font 1D should be generated by a
request to VI_GetFont.

VI _DropFont has the following format:

VI_DropFont(fontid)
int fontid; /* ID of font to release */

31 Mar 1986

IBM/4.3-PSD:3-16 Experimental Display Interface

APPENDIX A. FORMAT OF A FONT FILE

A font definition file begins with an index by character codepoint. The first entry is for
codepoint 0x00, the second for 0x01, and so on, up to OxIFI*. An index entry has the fol-

lowing format:
Offset Length in bytes Description

0 4 Offset of the character definition in the file;
an undefined character has an offsct of zero.

4 2 Width of inner box of the character.

6 2 Height of inner box of the character.

8 2 Total x displaccment caused by character.

10 2 Total y displacement caused by character.

12 2 Distance from the initial x position to the left edge of the inner box.
14 2 Distance from the initial y position to the top edge of the inner box.

A font file consists largely of character definitions, which follow the index. Character
definitions do not necessarily appear in order. Undefined characters are not included.

IFach character definition has the following format:

- Offset Fength in bytes : Description
0 2 Character codepoint, in the low byte of the word.
2 2 Length of character definition, in 16-bit words, not including the count.
The length of a character dcﬁnitjon must be less than 2000 words.
4 count*2 Character definition. A definition consists of a scnes of orders,

as described in Appendix B of this article.

31 Mar 1986

Experimental Display Interface IBM/4.3-PSD:3-17

APPENDIX B. CHARACTER DEFINITIONS

Before reading this, you should understand the format of the font file, which contains char-
acter definitions, described in Appendix A of this article.

Character definitions consist of a string of orders from the following list. Note that param-
eter changes made by character definitions do not persist after the character has been com-
pleted.

Set Merge Mode

Offset in 16-bit words Value
0 Merge Command (= 1)
1 Merge Mode

The merge mode is changed to the specificd value. The format is the same as described for
the VI_Merge subroutine.

Set Linec Dash Pattern

Offset in 16-bit words Value

0 Set Dash Command (=3)
1 Dash Pattern

2 Pattern length

Lines drawn after this command use the specified pattern. A pattern length of zero
specifies a return to normal solid lines. The pattern is from 1 to 16 bits, left-justified in the
pattern word.

Set Line Width

Offset in 16-bit words Value
0 Set Width Command (=4)
1 Line Width

Subsequent lines are drawn with the specified width.

Push Modes
Offset in 16-bit words Value
0 Push Command (= 12)

The modifiable parameters (merge mode, dash pattern, line width) arc pushed onto an
internal stack. They may be changed and then later restored with the pop order. When a
character definition ends, the original modes are rcstored, regardless of push or pop orders
within a definition.

Pop Modes
Offset in 16-bit words Value
0 Pop Command (= 13)

31 Mar 1986

IBM/4.3-PSD:3-18 Experimental Display Interface

The modifiable parameters (merge mode, dash pattern, line width) are restored from the
internal stack. When a character definition ends, the original modes are restored, regardless
of push or pop orders within a dcfinition. '

Move Relative

Offset in 16-bit words Valuc

0 Move Relative Command (= 6)
1 X displacement

2 Y displacement

The indicated displacement is added to the current point. If either coordinate of the
current point goes outside the range -32768 to 32767, the value wraps (overflows or
underflows).

Draw Line Relative

Offset in 16-bit words Value

0 Draw Linc Relative Command (= 8)
1 X displacement

2 Y displacement

A line is drawn from the current point to the current point plus the displacement. The
ending point becomes the new current point. If cither coordinate of the current point goes
outside the range -32768 to 32767, the valuc wraps (overflows or underflows).

Draw Circle

Offset in 16-bit words Value
0 Draw Circle Command (= 14)
1 ' Circle Radius

A circle with the specified radius is drawn around the current point. The current point is
unchanged.

Draw Image

Offsct in 16-bit words Value
0 Draw Image Command (= 9)
1 Image width
2 Image height
3 Image data

The image given is drawn with its top left corner at the current point. The current point is
unchanged.

The scanlines of the image must be padded to the next 16-bit word. Thus, the number of
words in the image is height*(width+ 15) / 16.

Tile Rectangle
Offset in 16-bit words Value

31 Mar 1986

Experimental Display Interface IBM/4.3-PSD:3-19

0 Tile Command (= 10)
| Rectangle width

2 Rectangle height

3 Tile width

4 Tile height

5 Tile data

The tile image is repeated over the whole arca of the indicated rectangle. The tile image
data has the same format as data in the VI _Image order described above.

31 Mar 1986

IBM/4.3-PSD:3-20 Experimental Display Interface

APPENDIX C. AEDJOURNAL AND AEDRUNNER

Aedjournal(1) and aedrunner(1) are supplied programs which use the interface. Both
operate on a log file created with VI _Login and VI _Logout. Aedjournal displays the com-
mands built into the file; aedrunner exccutes those commands.

Debugging with aedjournal

acdjournal file

Although there is no debugging facility as such supplied with this package, you can use
VI _Login and VI Logout with aedjournal to hclp follow your application program’s
actions. Aedjournal deciphers a file produced by VI _Login and reports to standard output
all orders passed to the experimental display. Standard output may be redirected as usual.
You may inspect this output to discover unintended results.

Bewarc of the length of logged files. It is very casy to gencrate thousands of display orders
for a seemingly simple picture; thus, try to log the smallest group of orders you believe
contains the error. The log routines may be called scveral times in one application to pro-
duce several files of orders, requiring only that each call to V/_Login provide a distinct file
name.

Executing a log file with aedrunner

acdrunner file ...

Aedrunner executes the orders logged into- the specified file, which must have been created
with VI _Login and VI _Logout. Aedrunner terminates upon discovery of any error or
inconsistency in the file. All additional files which were nceded when the log file was con-
structed must be available in the current directory. Such files are any font, image, or cursor
definition files you may have used, and /usr/lib/aed/whim.aed must cxist. Images, cursors,
or tiles defined from memory are handled by the log routines and do not require regenera-
tion.

31 Mar 1986

Experimental Display Interface IBM/4.3-PSD:3-21

APPENDIX D. SUPPLIED EXAMPLES

All files associated with this package reside in the dircctory [usr/src/usr.lib}libaed|examples.

Among the files supplied with the microcode and subroutine library are some source and
executable files for you to investigate. The following list includes some of those files, and
brief descriptions. It should be easy to figurc out the nature of any other files from their
names, behavior, or above documentation.

The following programs are copyrighted property of International Business Machines Cor-

poration.

* fnt
showfont

showfont.c
zip

zip2

zipn

zip.c

aedrunner.c

Files with the extension fnt are font files.

A program that shows a font on the experimental display. The syntax is
showfont filename.

Source for showfont.

A demo that takes up to three parameters. Parameter 1 is number of vectors
to remain on the screen. Paramcter 2 is minimum delta for each new vector
endpoint. It is roughly equivalent to the speed of the zipper. Parameter 3 is
maximum delta. The default is zip 30 2 /4.

Like zip but with two zippers. It takes up to 6 parameters. The default is
zip2 30 2 14 90 1 4.

Like zip but with 1 to 16 zippers. Parameter 1 is number of zippers. Param-
eters 2, 3, and 4 are number vectors for zipper 1, minimum delta, and max-
imum delta. Parameters 5, 6, and 7 are for zipper 2, etc. The default for
unspecified zippers is 30, 2,/4. The default is zipn /.

Zip source code.

Aedrunner source code.

31 Mar 1986

IBM/4.3-PSD:3-22 Experimental Display Interface

This page intentionally Ieft blank.

31 Mar 1986

Programmer’s Notes IBM/4.3-PSD:4-1

Programmer’s Notes

ABSTRACT
This article is a compendium of insights, suggestions, and notes gathered from

the programmers who ported applications to IBM/4.3. ‘The information may
save time and frustration for others with the same task.

15 Dec 1986

IBM/4.3-PSD:4-2 Programmer’s Notes

1. SAMPLE FILES PROVIDED

FFour sample files (.login, .cshre, Jogout, and .profile) are provided in /fustr/skel. Using thesc
files will simplify initial installation and operation of IBM/4.3.

2. CHARACTER TYPE IS UNSIGNED

Variables of type char are unsigned (range 0..255) by default on the R'T PC, in contrast to the:
VAX, where they are signed (range -128..127) by dcfault. With the High C compiler (hc(1)),
the type signed char is available, as well as - a command-line option
-Hoff= char_default_unsigned to make characters signed by default. This option gencerally pro-
duces less efficient code, but can be of valuc in dctermining whether signedness is the cause of
a bug.

The unsigned default uncovers a machine dependency in a common technique for end-of-file
testing. In the following program fragment

char c;
if ((c = getchar()) = = BOF) ...

the test always fails, since EOF is -1 and c is in 0..255. Declaring ¢ as an int is a good
machine-independent solution.

With pec(1), there is no type signed char, but the following macro might be useful if you need
to use an unsigned character as though it were signed:

#E\377 < 0

#define Signed(x) (x)

ffelse

#define Signed(x) (((x)~128)-128)

#endif

3. BYTE ORDERING IS DIFFERENT

The IBM RT PC has sixteen 32-bit general registers. Memory on the IBM RT PC is byte-
addressed, but differently than on the VAX.

On the VAX, high order bits are at higher addresses, thus:

|---word2---|---w0rd]---I---wordO---l

jc3,c2,Cl1,C0]C3,C2,CI ,(‘()IC3,C2,CI,C0|

[B31...... B0|B3l BoO|B31...... BO|
On the IBM RT PC, high order bits are at lower addresses, thus:

] ---word0O---]---wordl---]---word2---|

j¢co,c1,c2,c3|co,c1,c2,Cc3|]Cco,Ct1,C2,C3|

[BO B31|BO. B31|BO. B31|

Non-portable code which depends upon byte ordering for retricving data must be rewritten.

4. ALL MEMORY REFERENCES ARE ALIGNED

Word and half-word data are stored most significant byte first and aligned on natural boun-
daries. Off-boundary storage references are not supported. The low two or one address bits
are silently ignored, creating unexpected results.

If lint(1) is run against such programs, it complains about a “possible alignment problem.”

15 Dec 1986

Programmer’s Notcs IBM/4.3-PSD:4-3

5. FLOATING POINT IS IEEE STANDARD

IBM/4.3 conforms to IEEE Standard 754 for binary floating point arithmetic. The article
“Floating Point Arithmetic”’ in Volume II notes the differcnces from VAX floating point.

A class of programming errors easily overlooked on the VAX -- trcating the first half of a dou-
ble quantity as a float quantity, or vice versa -~ is highly visible on the RT PC. If numeric
results arc incorrect, look first for unions, casts, or function arguments that mismatch double
and float. The scanf format “%f” instead of “%lIf"" is particularly subtle.

6. OLD CALLING SEQUENCE IS NO LONGER SUPPORTED

The subroutine calling sequence currently used in IBM/4.3 first appecared in the March 1986
release. As a transition aid, that release also supported the old calling sequence.

Beginning with the December 1986 release (PRPQ #5799-CGZ, Release 2), only the current
calling scquence is supported. In the unlikely event that your installation still has programs
not recompiled since you installed the March release, you must recompile and relink them. In
the current release, running an old a.out will produce the message: old calling sequence, then
terminate.

In the even more unlikely event that the source for the old program is no longer available, you
can reinstate support for the old calling sequence in the current release (with a performance
penalty) by specifying “option DUALCALL” in the kernel config file and rebuilding the ker-
nel. See the article “Building IBM/4.3 Systems with Config” in Volume I1.

Some of the IBM Support tools provided in the March releasc used the old calling scquence.
Be sure to replace these by the versions provided in subscquent rcleases.

7. CAUTION WHEN USING THE 4.3 AT COMMAND

The 4.3 at(1) command does not pass the environmental variable TERM into a user’s at spool
file. Spool-file processing may break if the usecr’s .cshrc file includes a reference of the form
"$TERM” and the user’s environmental shell is csh. To be defensive, csh users should code
their .cshre files in such a way as to test whether a variable is sct before being referenced. For
example:

if ($?7TERM) then # is TERM defined?
if STERM = = h19) then
setenv MORE -c
endif
endif
(This is good programming practice for .login files as well).

8. CAUTION WHEN USING THE 4.3 CSH ON SETUID SCRIPTS

The 4.3 csh(1) command requires that a -b flag be used on the interpreter line of sctuid csh
scripts. Csh exits with a ‘‘Permission denied” error message if the -b flag is not specified.

15 Dec 1986

IBM/4.3-PSD:4-4 Programmer’s Notes

This page intentionally left blank.

15 Dec 1986

IBM/4.3 Linkage IBM/4.3-PSD:5-1

IBM/4.3 Linkage Convention

ABSTRACT

The IBM/4.3 linkage convention provides an efficient method of calling, execut-
ing and returning from functions. The convention provides support for cus-
tomary facilitics of C, FORTRAN, and Pascal, including varargs, alloca, and
profiling.

This article is intended for compiler writers and others who must write or
analyze programs at the machine-instruction level. It presumes understanding
of the IBM RT PC or IBM 6152 Academic System architecture and the
IBM/4.3 assembler language.

Also described is the Floating Point Arithmetic linkage, which presents a low-

overhead, uniform interface to the various types of floating point hardware as
well as a software emulator.

July 1987

IBM/4.3-PSD:5-2 IBM/4.3 Linkage

1.

Introduction

A C function foo consists of a text area and a data area. The data arca is named _foo and, in
addition to quantitics specified below, may contain constants and initialized variables. The
text area contains machine instructions followed by a trace table that provides auxiliary infor-
mation for decbuggers.

Each call of foo creates a stack frame containing arguments, local vanables, and space to save
the caller’s registers to be restored on return to the caller.

When foo is called, the caller first preparcs an argument list, then transfers control to the text
location named _.foo, which is foo’s cntry point. A stack frame is built by foo's prolog to hold
local variables and saves any registers that are to be preserved for the caller. Execution
proceeds through the body of foo, possibly calling other functions, and ends in the epilog,
which prepares the return value, restores the caller’s registers, rcleases the stack frame, and
transfers control back to the caller.

Stack Usage and Stack Frame Format

The stack holds frames for currently active functions and signal handlers. The stack will
occupy the highest possible locations in the core image, growing downward from 0x1{ffe000.
The stack is automatically extended as rcquired. The data segment is only extended as
requested by brk(2). A “red zone” of protected addresses scparates the stack from the data
scgment, which starts at 0x10000000 and may grow upward as the result of brk(2) and sbrk(2)
usage. Register rl indicates the low address of the stack frame of the currently exccuting func-
tion. Locations above (rl) — 0x64 are preserved over interrupts. Locations below (rl) — 0x64
are considered unallocated storage and may be overwritten if a signal handler is activated. Fig-
ure 1 is a graphic representation of the stack frame format.

The stack is not self-describing, but with information from the trace tables in program text, a
debugger can decompose the stack into frames and backtrace through it.

foo's stack frame holds the following areas, from lowest address (bottom of the figure) to
highest (top of the figure):

a) Words S through pmax of outgoing argument lists. pmax represents the number of
words in the longest argument list for functions that foo calls.

b) lLocal variables: autos and temporarics.

c) 0 or 18 (six registers * 12 bytes) or 64 (reserved for future expansion) words of save area
for caller’s floating point registers.

d) 1-16 words of save area for caller’s general registers.

e) 1 word of static link for Pascal procedures: pointer to enclosing procedure’s frame. Not
used by C or FORTRAN.

f) 4 words of linkage area are rescrved. Two words are now used to save floating point
register 6.

g) 4 words allocated for the first four words of foo'’s incoming argument list.

July 1987

IBM/4.3 Linkage IBM/4.3-PSD:5-3

rl for foo’s caller — high addresses 1

Incoming Arguments (4 words)
(first 4 words)

Reserved (4 words)
Pascal static link (1 word)
General Register (1 - 16 words)
save arca
Floating Point (0, 18, or 64 words)

Register save area

Local variables

Outgoing Arguments ((pmax-4) words, or
(words 5 through pmax) | 0 if (pmax < 4))

r] while foo is active —

General Register
save area for callee
lowest protected --> - --------aa--.
stack location
(rl - 0x64) low addresses |

FIGURE 1. A STACK FRAME

July 1987

IBM/4.3-PSD:5-4 IBM/4.3 Linkage

foo can use the Store Multiple (stm) and I.oad Multiple (Im) instructions to save and rcstore
registers, from any starting register through r15. However, registers r0-rS do not need to be
preserved. Prolog and epilog examples below show how the caller’s r1 is restored.

The floating register save arca holds up to 4 doubleword registers ending with register 5. No
space is allocated if no floating registers necd to be preserved.

The file jusr/include[frame.h gives symbolic definitions for the sizes and offsets of some of
thesc arcas.
3. Register Usage

Certain registers, such as rl, have specific uses throughout cxecution; others, like rl5, are
specified during a call and are free at other times. The following table dcfines register usage at
the call interface.

Register Preserved over call Usage

r0 no called function’s data area pointer

rl yes stack pointer (to caller’s frame)

r2 no argument word 1 and returned value

r3 no argument word 2 and second word of
a returncd double value

r4 no argument word 3

r5 no argument word 4

r6-ri3 yes register vaniables, ctc.

ri4 yes data arca pointer (not rcquired)

rls no return address

mq no multiply/divide register

rl always addresses the bottom of the stack frame of the currently executing function. A com-
piler may assign another register to address the high end of the stack frame. The portable C
compiler, for instance, points r13 at the last 64 bytes of auto storage. The linkage convention
requires this second register only for alloca support (scc the section entitled Alloca Storage
Allocation below). The register number and the offsct from the frame top, which arc arbitrary,
are recorded in the trace table.

Iloating-point registers 0 and 1 are not preserved over a call. Registers 2 - 7 must be
preserved. TPloating point registers are not used to pass arguments or return results.

4. The Data Areca

The data arca (also called “constant pool,” which is a misnomer) is addressed by r0 on entry
to foo. The word pointed to by r0 must contain _.foo, the address of foo'’s entry point. The
following word supports the profiling option, and if present must be initialized to zero; the
third word, also optional, supports alloca storage allocation.

It is conventional, but not required, for r14 to address the data arca during cxecution. (The
optional profiling linkage, which follows the prolog, does require it momentarily.)

For casy addressability, other data such as static variables, strings, or a literal pool may be
located in the data area, either before or after the word addressed by rl4.

A value &foo of type pointer to function corresponds to the address of _foo, the function’s
data area, not the address of _.foo, the function’s entry point. A program that does arithmetic
on function pointers, assuming that they address entry points, will probably malfunction.

July 1987

IBM/4.3 Linkage IBM/4.3-PSD:5-5

5. Argument Lists

Arguments are word-aligned and allocated to consecutive stack locations. The list spans frame
boundaries: words 1-4 are allocated in the top of the called function’s frame, and the
remainder are stored in the bottom of the caller's frame, which is adjacent. Argument words
1-4 are passed in registers r2-r5, not on the stack. The called function may choose to store
them in the allocated stack locations, but this is not nccessary except in a function like printf
which accesses its argument list via a pointer variable. Such functions must use the varargs(3)
macros to assure that argument words 1-4 get stored properly.

Arguments are passed as follows, based on argument type:
- An int is passed in a single word.

- A long, short, pointer, or char is treated as an int and passed in a word. A function
pointer is represented by the address of the function’s data area.

- A double is passed in two successive words.
- A float is converted to a double and passed in two successive words.

- A structure is word-aligned to a full word and left justified, except for structures of 1, 2,
or 3 bytes, which are right justified.

If the function is declared to return a structure, the caller passcs the address of a result area in
r2, and word 1 of the explicit argument list is passed in r3. Subscquent argument words are
shifted accordingly.

6. Calling Sequence
A typical call of a function foo first prepares the argument list, then executes the following:

balix rlS5, foo # call
1 r0,$.long(_foo) # get its data area pointer

Dereferencing a function pointer calls a function without needing to know its name. Suppose
that the function pointer, which addresses the function’s data area, is in r8. A typical instruc-
tion sequence is:

Is r7,0(r8) # get address of entry point
balrx rl517 # call whomever
mr 10,r8 # r0 = data area pointer

7. Prolog

The prolog saves the caller’s registers and obtains stack space for the stack frame. A
typical instruction sequence is:

_foo: stm rl0,—60(r1) # save caller’s registers
ai rl,—framesize # allocate our stack frame
mr rl4,0 # initialize data pointer

Other instruction sequences are needed for frame sizes larger than 32768 bytes. A scquence
that decreases rl in two stages is acceptable if the stack remains protccted at all times. An
example of an unacceptable sequence for a frame size of 64536 is

cal rl,—bothalf(rl) # —bothalf = 1000
cau rl,—tophalf(rl) # —tophalf = —1

This momentarily increases rl, letting an ill-timed interrupt destroy the stack.

July 1987

IBM/4.3-PSD:5-6 1BM/4.3 Linkage

8.

Profiling
If either the -p or -pg option is sclected, this instruction scquence follows the prolog and
accomplishes data collection for performance monitoring:

mr r0,rl5

bali r15mcount # 10 = caller's rcturn address
r14 = our data address
115 = our return address

Epilog

The cpilog prepares a result, restores the caller’s environment, and returns control. A typical
instruction sequence is:

lis r2,0 # zero result returned in 12
Im rl0,framesize —60(r]) # restore registers

brx rl5 # return

at r1,framesize # adjust stack frame

The location of the return value depends on the function type:
- An'int, long, short, pointer, or char is returncd in r2.

- A double is returned in r2 and 3.

- A float is returned as a double.

- A structure result is returned by moving it into the area pointed to by the first argument
list word (in 12 on entry).

10. Alloca Storage Allocation

11.

The implementation-dependent storage allocator alloca (sece malloc(3)) expands its caller’s
stack frame by decreasing rl, to obtain a storage area that is automatically deallocated on
return. The storage area so obtained starts at the end of the maximum-length argument list in
the newly expanded frame. alloca can be called from any function that follows two conven-
tions:

(1) It addresses outgoing argument lists through rl, and addresses all other areas in the
stack frame through some other register (identified in the trace table as frame_reg).

(2) In its data area, which must be addressed by r14, the halfword at (r14)+ 8 holds the
value 0xf690 (a magic number, used for validity checking). The halfword at (r14)+ 10
holds the length of the longest outgoing argument list (exclusive of the first four words,
which do not occupy space in the frame).

Files compiled with the Ac(1) or pce(1) option -ma adhere to these conventions.

Trace Tables

Debuggers rely on a trace table of 6-10 bytes following the text of each function. A debugger
locates a trace table by searching forward through program text (generally from a point indi-
cated by a call’s return address). The search stops when it finds two successive halfwords,
each having Oxdf in its first byte. For compiled C functions, or assembler functions following
the same conventions, the trace table corresponds to the following structure:

struct TT_D_COM {

unsigned magicl : 8 = 0Oxdf,
code :8 =17,
magic2: 8 = (xdf,

July 1987

IBM/4.3 Linkage IBM/4.3-PSD:5-7

first_gpr : 4,
optw : 1 = 1,
optx :1,
opty : 1,
01 = (;

char npars : 4,
frame_reg : 4,
char fpr save :8; /*this byte present only if opty = = 1*/
char lcl off size : 2, [* lIcl_offset is variable length */
Icl_offsetl : 6, ‘
lcl offsetn[lcl_off size];

}

first_gpr is the first register saved by the store multiple instruction in the prolog. This indi-
cates the size of the gencral register save arca.

opty is 1 if the byte holding fpr save is present; otherwise, it is 0.

npars is the number of words of declared arguments. The maximum value of 15 does not res-
trict the actual length of argument lists.

Jframe_reg identifies the register used to address local variables, etc., in the stack frame.
Jrame_reg is 1 unless an alternative register is used (for example, r13 for pcc-compiled func-
tions).

Jpr_save is present only if opty is 1. It is a 6-bit mask (right-justified) indicating which floating
point registers are saved. The rightmost bit corresponds to floating point register 7, thus:

0 0 X X X X X X

fr2 fr3 frd frS fr6 fr7
If fpr_save is 0 or not present, no floating registers are saved.

lcl_offset is an unsigned integer 6, 14, 22, or 30 bits long. It indicates the distance, in words to
the top of the stack frame from the point addressed by register frame_reg.

12. as(1) Routines

A very simple C function or hand-coded assembler function, that doesn’t call other functions,
can take some shortcuts. It may not need to save and restore registers, and necd not allocate a
stack frame if the protected area between (r1) — 0x64 and (r1) gives it sufficient storage.

Such a function has a simpler trace table: the four byte sequence 0xdf02df00. Dcbuggers may
not be able to backtrace from this function if the caller’s r14 and rl15 are disturbed.

Temporarily each file must include the lines:

.globl .oVncs
.set .o0Vncs,0

This is used by /d(1) to detect use of an obsolete linkage convention. Compilers generate
definitions of .0Vncs automatically.

13. Addressability in Very Large Modules

When .o files are linked by /d(1), the igsulting object module may be so large that the text of
the caller and callee are more than 2" bytes apart. The balix instruction in the call cannot

July 1987

IBM/4.3-PSD:5-8 I1BM/4.3 Linkage

then address the callee, and /d modifics the instruction in onc of two ways to establish addres-
sability.

A balax_replaces the balix if it can duplicate the balix’s effects, that is, the callee’s address is
below 2“7 and rl15 is the link register. Otherwise, the balix is replaced by a balix to a piece of
“trampoline code” that derives the callee’s entry point address from the contents of r0 and
branches to it.

Other than in function calls, addresses arc always carried as 32-bit values, so addressability is
unaffected by module size.

14. Floating Point Arithmetic Linkage

IBM/4.3 provides a floating point environment in which cxecutable programs will run on all
supported models of the IBM RT PC, selecting at runtime the highest performance floating
point hardware installed in a given machine.

14.1. What the Compiler Must Do

The key to this environment is that the compiler(s) produces generic floating point instruc-
tions rather than instructions specific to any particular floating point hardwarc. These gen-
eric instructions are generated as follows:

(1) The compiler sets aside a small block in the data arca.
(2) In that block the compiler places the following:
(a) an instruction to save general rcgister 15 (the return address)
(b) an instruction to branch to a pre-defined location, the “glue code.”
(c) a description of the specific floating point instruction (such as add)
(d) the operands for the instruction (such as one or more floating point registers)
(e) some additional information

This information follows the well-defined format described below, but is not specific
to any floating point hardware.

(3) At the point in the code where the floating point instruction is to be performed, the
compiler generates a branch-and-link instruction to the block it sct up in the data
area. Note that if at some point later in the code generation the compiler wants to
generate the same floating point instruction (such as to add the same two floating
point registers), it need only place a branch-and-link instruction to the same block
in the data area.

When finished, the compiler will have generated branch-and-links in all places where float-
ing point instructions occur, and a block in the data arca for cach unique instruction.

At execution, via a system call, the glue code gets the address of a floating point “code gen-
erator” in the kernel and invokes it. This code generator interprets the generic instruction
stored in the data area and translatcs it into code appropriate to the floating point hardware
installed or the emulator.

14.2. Compiler Specifications

The generic instructions are intended to hide floating point hardware specifics from both
the user and the compiler-writer. There are, however, important aspects of floating point
which, though ultimately dependent on particular hardware, can be guaranteed by IBM/4.3
and, indecd, must be known by the compiler. A discussion of these aspects follows.

July 1987

IBM/4.3 Linkage IBM/4.3-PSD:5-9

14.2.1. IEEE Floating Point

The most important of these aspects is that floating point logic adheres to IEEE Stan-
dard 754. The compiler writer can assume that all floating point performed by this sup-
port will conform to the standard for single and double precision. Likewisc, this sup-
port assumes that the compiler will adherc to the standard in those cases which are
affected by the language (such as four-way compares).

14.2.2. Floating Point Registers

I'loating point registers are referred to as fr0,frl,...; gencral registers are referred to as
rO,rl,....

IBM/4.3 Floating Point support assumes there arc cight floating point registers available
(fr0 through fr7). Each register can contain cither a single or a double precision value.
The compiler will be responsible, if it so chooses, for managing these registers (for inter-
mediate results, or register variables).

The registers fr0 and frl are considered scratch registers. Registers fr2 through fr7 must
be saved across function calls; load- and storc-multiple instructions for these registers
are provided. A save area of 6*12 bytes (18 words) must be reserved in the stack frame
if any floating point registers are saved (not 8*(# registers saved) as in 4.2/RT).

14.2.3. Format for Generic Instructions
The following illustration graphically depicts a general data arca block for a floating
point instruction, as a variable-length array of half-words. The start of each block must
be full-word aligned, and certain operands may require full-word alignment--see descrip-
tion of operands below.

Save rl5
BAL to Glue
6 OpCode l # Operands
, Scratch Regs
10 MySize Scratch I'P Regs
12 Opndl Type Opnd] byte or 0
14 Opnd2 Type Opnd2 byte or 0

l Opndl (optional) |

I Opnd2 (optional) I

July 1987

IBM/4.3-PSD:5-10 IBM/4.3 Linkage

| OpndN (optional) |

The first instruction, Save r15 moves r15 into r): "cas r0,r15,r0”.

The sccond instruction, BAL to Glue will be ”.long FPGLUE", where FPGILUE is
defined in libc with ".set FPGLUE,fpglue + 0x8a000000” (a bala to fpglue, the actual
glue code).

OpCode is a byte specifying the particular operation being done. The opcodes for each
operation are defined in < machine/rtflops.h> .

The next byte, # Operands, specifies the number of operands for this instruction. If the
operation requires n operands, this number may be either n or (n+ /). The result of
the operation is always placed in operand 1, and the operation is performed on the last
n operands. In summary,

0
Floating Point
Instruction Type of Operation Description
Op x Monadic x <-Op(x)
Opxy Monadic (or move) x <- Op(y)
Opxy Dyadic x <-O0p(xry)
Opxyz Dyadic x <-Op(y,z)

Scratch Regs is a bit map of the gencral registers available for the code gencrator to use
(the scratch registers at this point in the program). Bits 0-15, numbered left to right,
each represent a corresponding general register r0-15. If a particular bit is sct, that gen-
eral register is available for use. However, r0) and rl5 are always considered scratch;
their bits will be ignored, but should always be set. The multiplicr-quotient (mq) regis-
ter is also considered scratch. Gencral register operands which do not nced to be
preserved over the operation can and should be marked scratch. NOTE: If the code
gencrator needs more registers than are available, it will use the stack to save and restore
register contents. For this reason, the compiler must insure that the stack below the
stack pointer (r1) is available; floating point instructions must be generated only after rl
has been decreased to allocate the stack frame in prologs and before the caller’s rl has
been restored in epilogs.

MySize is a byte containing the size of cach floating point instruction block, measured
in bytes. (Since the size and number of operands varies, the compiler must tell the code
generator how big the block is.) A minimum of 12 bytes is required. Sec Appendix A
of this article for the rules dictating the sizc of a floating point instruction block.

Scratch FP Regs is similar to Scratch Regs, but is onc byte long, and cach bit
corresponds to a floating point register fr0-fr7. Floating point register operands which
do not need to be preserved over the opcration can (and should) be marked scratch.
Specifying any scratch floating point registers is not required, but may help performance
in the following cases:

(1) Moves and monadic operations where no operands are floating point registers
(one scratch register will help).

(2) Dyadic operations where only one operand is a floating point register (one
scratch register will help).

July 1987

IBM/4.3 Linkage IBM/4.3-PSD:5-11

(3) Dyadic operations where no operands are floating point registers (two scratch
registers will help).

OpndN Type is a byte specifying the type of its corresponding operand. The byte
immediately following the type is the operand itself (or a part thereof) for register-
number operands, or it is 0. The one (or two) word valucs of operands follow all of the
types and byte operands (in their respective order) to allow easy full-word alignments.
The following table lists operand types; all are defined in < machine/rtflops.h> .

OPERAND TYPES

Operand Size Operand Value

1 byte General register number, containing a signed or unsigned
integer or single precision

1 byte Two general register numbers, containing a double precision

(high half in register specified in high-order nibble;
low half in register specificd in low-order nibble)

1 byte Floating point register containing a single or double precision

1 word Immediate value, signed or unsigned integer, or single or
double precision

2 words Immediate value, double precision

I byte + 1 word Address of a signed or unsigned integer,
a single or double precision, or a function pointer
(a general register number + a 32-bit offset)
varies Special value, dependent on special OpCode

Some operand types may have no meaning in certain circumstances. For example, an
immediate value cannot be the result of an instruction. All full-word operand values
(immediate and address-offset) must be full-word aligned.

14.2.4. Operations and Operands

Most of the operations fall into the monadic or dyadic category and are treated simi-
larly. All of the integer and floating point operand types shown in the table above are
legal operand types for these operations. The same types, with the exception of the
immediate values, are also valid results. All of the monadic and dyadic operations,
except CMP and CMPT, allow an extra operand; this means the first “operand” is the
result, and the following operands are the actual arguments to the operation.

Comparisons (opcodes CMP and CMPT) require two operands, and set the RT condi-
tion code appropriately (GT, EQ, LT, or nonc--the latter if the comparison involved a
NaN). CMP generates code for a non-trapping compare, and should be used on com-
parisons of equality (and inequality) only. CMPT gencrates code for a trapping com-
pare, and should be used on all comparisons of order (1T, GT, LE, and GE). (CMPT
will cause an exception when comparing NaNs.)

Operations on operands of differing precision will always involve the appropriate
conversions (converting to wider precision, performing the operation, and converting
back to destination precision). A MOVE from one precision to another implies a
conversion; MOVEs from floating point to integers will always truncate.

The STOREM and LOADM operations (store-multiple and load-multiple) take two
operands, both of type “special.” The first operand is a bit-map (stored in the byte fol-
lowing the operand type in the instruction) marking the floating point registers to be
saved or restored. The second operand is the address of the save area, in the same
register/offset format as other address-type operands.

July 1987

IBM/4.3-PSD:5-12 IBM/4.3 Linkage

14.3. User-Level Interface
This section describes the glue code that accommodates IBM/4.3 floating point support.

The code generator, like the floating point emulator, will be linked into the kemel. This
has a significant advantage over linking it directly into user programs, as subsequent
hardware releases will require only a new kerncl; existing programs do not have to be
recompiled or re-linked. The source for the code generator is in Jusr/src/usr.lib/lipfp/genfp.

The glue code is linked into crt0.0 so that it will always be addressable by a “bala.” (The
source for the gluc code is in Jusr/src/lib/libc/machine/csul{pglue.s.)

The glue code, when executed the first time, will sct up appropriate information needed for
code gencration. (Most of this information will be gotten from the kernel via system calls.)

Then it will invoke the code gencrator. Subsequent “calls” to the glue code will only
invoke the code gencrator.

14.4. Compatibility with Previous Relcases

This initial release of the new IBM/4.3 Floating Point support gives the maximum compa-
tibility possible with previously linked programs. (Note, however, that future rcleases may
not provide this compatibility.) Most a.outs compiled and linked under previous releases
will produce the same results when run under this relcase. However, performance will be
improved by recompiling, especially if running on an RT with an APC. See further notes
in the article entitled “Floating Point Arithmetic.”

REFERENCES

(1Y Johnson, S. C. and D. M. Ritchie. ‘“The C Language Calling Sequence,” Comput-
ing Science Technical Report No. 102, Bell L.aboratorics, Murray Hill, NJ, 1981.

(2) “Assembler Reference Manual for IBM/4.3,” in Volume 11, Supplementary Docu-
ments.

(3) “Floating Point Arithmetic,” in Volume II, Supplementary Documents.
(4) IBM RT PC Hardware Technical Reference, SV21-8024

July 1987

IBM/4.3 Linkage IBM/4.3-PSD:5-13

APPENDIX A. RULES GOVERNING INSTRUCTION BLOCK SIZES

A minimum of 12 bytes is required for each floating point instruction. If more space is
required, routines are included to calculate and allocate such space. However, this may
degrade performance. Another alternative is to allocate a maximum size, but this is an
inefficient use of space. To fine tune a program that uses floating point arithmetic, con-
sider using the following rules to determine the size of the data block required for an
instruction.

Most operations:
24 MINIMUM

Operands:
+32 each non-floating point register operand, or fr7
(because fr7 is not on the FPA, it should be
considered a NON-floating point register)
+ 12 for each conversion
+12 if 3rd operand type !'= lst operand type

Other:
+32 if operation is CMP
+64 if operation is CMPT

Loadm, Storem:
34 MINIMUM (one register being saved/restored)

+24 for each additional register
+8 if one of the registers is fr7

General scratch registers:
+16 if no scratch
+8 if 1 scratch
+4 if 2 scratch
+0 if 3 or more scratch

Floating point scratch registers:
Monadic operations:
IF 1st operand is a floating point register, no scratch necded.

IF Ist operand is not a floating point register:
+64 if no scratch
+0 if 1 or more scratch

Dyadic operations:
IF no operands are floating point registers:
+112 if no scratch
+64 if 1 scratch
+0 if 2 or more scratch

IF 2 operands:
IF both floating point registers, no scratch needed.

IF 1Ist operand is a floating point register AND the 2nd operand is not:
+64 if no scratch .

July 1987

IBM/4.3-PSD:5-14 IBM/4.3 Linkage

+0 if 1 or more scratch

IF 3 operands:
II7 all floating point registers, no scratch needed.

IF 1st and 3rd operands are different floating point registers,
no scratch needed. If they are the same, follow next rule.

IF 1st operand is a floating point registcr AND the 3rd operand is not:
+64 if no scratch
+0 if | or more scratch

IF 1st operand is NOT a floating point register AND the 3rd operand IS:
+64 if no scratch
+0 if 1 or more scratch

IT 1st and 3rd operands are NOT floating point registers:
+ 112 if no scratch

+64 if 1 scratch

+0 if 2 or more scratch

July 1987

Recompiling with High C IBM/4.3-PSD:6-1

Recompiling with High C

ABSTRACT

Both pcec (the standard C compiler provided with Berkeley systems) and
MetaWare High C are available in IBM/4.3. Iligh C offers significant advan-
tages over its predecessor and is the default C compiler. This article serves as a
guide for C programmers in recompiling existing programs with High C. The
article contains three chapters:

Introduction describes High C, contrasting it with pcc.

2. Diagnostic Messages explains a sample High C diagnostic message and describes messages
frequently encountered when recompiling programs with High C.

3. Run-Time Differences describes those differences between pce and High C that may not
manifest themselves until run-time.

15 Dec 1986

IBM/4.3-PSD:6-2 Recompiling with High C

1. INTRODUCTION

IBM/4.3 now provides a new optimizing C compiler, MetaWare High C, in addition to the
standard pcc-based C compiler. High C provides extensive code optimization, producing com-
piled programs that run up to twice as fast as pcc-compiled programs. It also generates tighter
code; object file text is typically 15% smaller than with pce.

Hc has been tested against the C Test Suite provided by Human Computing Resources Cor-
poration, and is used to compile the entire IBM/4.3 system (with the exception of assembler
routines and a few other files).

The commands Ac(1) and pce(1) are available in the /bin directory. Users are not obliged to
use one compiler or the other. The command cc(1) in /bin is a symbolic link that may point
to either Ac or pcc. In the IBM/4.3 system as distributed, /bin/cc points to Ac.

The Ac feature you will notice first is probably its meticulous semantic and syntactic checking
and precise diagnostics. Many old programs that compile “crror free” with pce gencrate wam-
ings and errors with Ac, usually for good reason. In recompiling IBM/4.3, we found that mes-
sages sometimes pointed out type mismatches, incorrect-length argument lists, and uninitial-
ized or misspelled variables that had been undetected for years. The “Iigh C Programmer’s
Guide” tells how to use flags and toggles to adjust the crror and waming scnsitivity up or
down; we recommend ‘“‘up” during program development.

High C represents a significant step toward the draft ANSI C standard, and supports a more
extended C language than does pcc. The IHigh C Language Reference Manual describes the
extensions in full. One extension that may affect existing programs is the presence of new key-
words: signed, const, and volatile for ANSI, plus pragma (borrowed from Ada). A program
using any of these four names for identifiers will have to be modified, for instance by adding
the line:

define const _const
Two other ANSI-related changes, character escapes and widening rules, are discussed in the
scctions on “Character Escapes” and “Integer Widening” below.

In general, High C supports the semantics of “classical” C, where this is not precluded by
adhcrence to the draft ANSI C standard. Tven so, therc are circumstances in which a
language construct that is incompletely defincd may cxecute differently when compiled with Ac
and pcc. Chapter 3, “Run-Time Differences,” discusses constructs whose scmantics may
differ.

2. DIAGNOSTIC MESSAGES

This section provides an explanation of a sample diagnostic message and includes a list of
diagnostics frequently produced when recompiling with Ac. The list provides an cxplanation of
cach diagnostic and, where appropriate, a recommended solution.

2.1. Sample Diagnostic Message

The following shows a code fragment, a diagnostic message generated by the code, and an
explanation of the message.

15 Dec 1986

Recompiling with High C IBM/4.3-PSD:6-3

Code Fragment:

1 /* this file is named test.c ¥/
2

3 main()

4

5

6 char *j;

7 int i;

8

9 i=j+
10

il }

Diagnostic Message:

E “test.c”, L9/CS5:
| Type *Unsigned-Char (at “test.c”, 1.6/C6) is not assignment compatible with type Signed-Int.

Explanation:

. The “IE” stands for Error. Warning messages begin with a “w.”
° “test.c” is the name of the module containing the error.

. L.9/CS5 indicates the error was detected in Line 9, Column §.

] The body of the error message explains that a value (j + i) of type pointer to
unsigned char was being assigned to a variable (i) of type signed int. This is illegal
(but unchecked by pcc).

. The phrase (at “test.c”, L6/C6) locates the declaration that gave rise to the value of
type pointer to unsigned char. This is particularly helpful in locating declarations in
#include files.

¢ The vertical bar “|” in the first column indicates a continuation line of a multiline
message.

2.2. Common Diagnostic Messages

This section lists the most frequently encountered messages and suggests ways to resolve
them. Sce the section on diagnostic messages in the “High C Programmer’s Guide” for a
complete list of warning and error messages.

Type t is not assignment compatible with type t’.

The mismatched-type message appears for any of several reasons. Most fre-
quently, it has to do with pointer conversion, and can be climinated by using
explicit casts. In this example, the comments proposc ways to rewrite each
statement.

main()

{
char *pc;
int *pi, i, x;

pc = pi; /* should be: pc = (char *)pi; */
X = pc + i /* should be: x = (int)(pc + i); */
i = pe; /* should be: i = (int)pc; */

15 Dec 1986

IBM/4.3-PSD:6-4 Recompiling with High C

Another common causc of this message is shortcuts in structure initialization.
As an example, given the declaration:

struct sl {int i, j; };

the shortcut initialization:

struct sl x = 0;

is allowed by pce, but C syntax (and /c) require braces around the initializer:

struct s1 x = {0};

Variable is sct but is never referenced.

This message warns of an initialized variable that is not used in the module. It
may be a symptom of a logic error.

This diagnostic prints in another common situation: if RCS or SCCS variables
are contained in the program hcader. In this case, you can ignore the message.

Result of comparison never varies.

An expression was found whose operands are such that the value of the expres-
sion is always the same. The usual cause is a logic error arising from confusion
over signed/unsigned types. I'or example, an unsigned char cannot be negative;
thercfore, a comparison with a ncgative constant will ncver vary. Look for
assumptions that the type char is really signed.

Variable required.

This generally points out an illegal left-hand side of an assignment. This error
can be produced by statements of the form:

(CONDITION ?i:j) = -1;
which pcc (incorrectly) allows if CONDITION involves only constants and
preprocessor variables. Rewrite it as:

*(CONDITION ? &i : &j) = -1;

This is multiply-declared.

This may be the result of a variable declared extern, then redeclared later in the
same module as static. This is often caused by an extern declaration in an
#include file. Pcc allowed the redeclaration. Correct this by using distinct
names for the two variables. :

Local function is never < refcrenced; no code will be gencrated for it.

A function of storage class static is not called anywhere in the compilation unit.
Since it is not exported, there can be no reference to the function, and it is elim-
inated as dead code. The -g option disables this optimization, so that dbx(1)
sessions can access such functions.

Expression has no side effect and has been deleted.

The value of an expression is not assigned to a variable or otherwise used to
affect the computation. For example, ‘“2+ 3;” is uscless and is deleted.

This function declaration is inconsistent with the “int”-returning function declaration
imputed at Ln/Cm.

A function that is called before it is declared is assumed to return int. Any sub-
sequent declaration of the function must declare it to do so.

15 Dec 1986

Recompiling with High C IBM/4.3-PSD:6-5

Correct this by placing an explicit declaration of the function with the proper
return type before the first call (and check all calls for their assumptions about
the return type!).

Unexpected char.

Pcc allows multi-character character constants; Ac does not. For example, for
the following declaration:

int x = 'abcd’;

pcc assigns the value 0x61626364 to x, but hc generates the above error message.
Fewer arguments given than function has parameters.

He checks argument lists in calls of functions that are declared in the same
module.

3. RUN-TIME DIFFERENCES

Some of the differences between Ac and pcc will not manifest themselves until load- or run-
time. This chapter describes these differences and provides an cxplanation for their causes.

3.1. Order of Execution

C semantics permit subexpressions in a larger cxpression to be evaluated in any order, or
even concurrently. The statements

i=3)+ j++;

foo(i, i--);
do not have well-defined meanings and may well execute differently with Ac and pcc. To

assure that side effects like assignment occur in a defined sequence, break such expressions
into multiple statements.

3.2. Multiple Assignments

Look out for multiple assignments that require both narrowing and widening integer
values, such as:

int i; char c;

i = ¢ = integer-expression;
Here the integer-expression is “narrowed” on assignment to c. Language rules require (and
hc supports) assignment of the narrowed value to i, not the original value. Code generated
by pce often fails to narrow the value correctly, and some incorrect programs may execute

as intended only because of this pcc bug. Reorder the assignments, or write two state-
ments. '

3.3. Keyword “asm” Not Supported

Pcc allows inclusion of assembler statements within C programs via the “asm” construct.
As hc does not produce intermediate code and generates code which is optimized across
statements, this keyword is not supported.

Existing code which contains ‘““asm”s will generate errors at load-time, with *“_.asm” and
“_asm”’ as unresolved references.

3.4. Volatile Memory
Hec optimizes the following code:
if (*p == 0) buf = *p;

15 Dec 1986

IBM/4.3-PSD:6-6 Recompiling with High C

by loading the contents of location p into a rcgister for the comparison, then using this
same register for the assignment as well. If p is the address of memory that is volatile (for
instance, it is an I/O register that is updated after each rcference), the assignment will not
reflect the changed value. Correct the problem by declaring p volatile. Or, since this type
of code is common in device drivers (and other portions of the kemel), use the flag (-
Hvolatile) to disable all common subexpression recognition across statement boundaries.

3.5. Use of setjimp(3) and longjmp(3)

ANSI specifies the values of local variables changed between a call of setjmp() and of
longjmp() to be indeterminate after longjmp is called. Despite this, most implementations
reliably update auto variables, and many existing programs rely implicitly on auto variables
having current values after a longjmp. (Register variables are chancier.)

To accommodate this practice, Ac recognizes the use of the function names ‘“‘setjmp” or
etjmp”’ to assure that auto variables are reliably updated.

3.6. Character Escapes
Hc supports the draft ANSI complement of character escapes:

\a alert (bell) \t horizontal tab

\b backspace \v vertical tab

\f form feed \xnnn hexadecimal numeric
\n newline \" single quote

\r return \"" double quote

Use of an undefined character escape results in a warning message.

3.7. Integer Widening: Value-Prescrving vs. Unsignedness-Preserving

Historically, C compilers have used either of two widening rules: unsignedness-preserving
(u-p) widens an unsigned char or short to unsigned int; value-preserving (v-p) widens it to
a signed int. U-p is sometimes uscful but crcates many anomalous situations. Note the
following example.

void f ()
{

unsigned char ¢ = getchar ();

if(c-'0" < 0]jc-'0" >9)
printf("This character is not a digit”);

}

Because pcc uses the u-p rule, the test (¢ - 0" < 0) will always fail (sincc an unsigned int
can never have a value less than 0). Becausc Ac uscs the v-p rule, ¢ will be widened to a
signed integer; the test will work as expected. The v-p rule almost always produces the
expected result, and is the rule chosen by the ANST committce in the draft standard.

References ,
] Appendix C of this manual, which contains the “Iligh C Programmer’s Guide”
. High C Language Reference Manual, available from:

MetaWare Incorporated

903 Pacific Avenue, Suite 201
Santa Cruz, CA 95060

(408) 429-META

15 Dec 1986

Recompiling with High C IBM/4.3-PSD:6-7

. Draft proposed American National Standard for the C Language; con-
tact ANSI Committee X3J11 for the most recent draft.

15 Dec 1986

IBM/4.3-PSD:6-8 Recompiling with High C

This page intentionally left blank.

15 Dec 1986

Professional Pascal Differences IBM/4.3-PSD:7-1

Professional Pascal Differences

ABSTRACT

Professional Pascal is available as a separatcly-licensed feature of IBM/4.3. Pro-
fessional Pascal offers significant advantages over other Pascal compilers. Itis a
highly optimizing Pascal compiler that conforms to the ANSI Standard, and in-
cludes many useful extensions, such as support of varying length strings, bitwise
operations, packages, and iterators.

This article points out the major differences between Berkeley Pascal and Pro-
fessional Pascal, as an aid to programmers recompiling existing programs with
Professional Pascal. The article has two chapters:

1. Introduction describes Professional Pascal, contrasting it with Berkeley Pascal.

2. Significant Differences briefly describes those differences that may prevent a program that
compiles with Berkeley Pascal from compiling (or executing correctly) with Professional
Pascal.

15 Dec 1986

IBM/4.3-PSD:7-2 Professional Pascal Differences

1. Introduction

Pascal programs which are not dependent upon a particular compiler’s extensions, that is, pro-

grams written in ANSI Standard Pascal, should port to IBM/4.3 using Professional Pascal'
with little or not effort. However, programs written in Berkeley Pascal may not port so easily.
Berkeley Pascal includes many extensions to standard Pascal (which are outlined in Appendix
A, “Appendix to Wirth’s Pascal Report,” of the “Berkeley Pascal User's Manual” in Volume
1 of UNIX Programmers’ Supplementary Documents. 1f a program uses any of these exten-
sions, it may not compile or execute as expected.

This article concentrates on the features of thc Berkeley Pascal compiler? that arc missing or
differ from Professional Pascal. The article docs not attempt to point out the many features of
Professional Pascal which are not found in Berkeley Pascal. For a complete description of
Professional Pascal extensions, please sce Professional Pascal language Extensions Manual
with Rationale and Tutorials, available from MctaWarc Incorporated.

2. Significant Differences

Several differences exist between pp and pc which may affect your programs. This section
points out these differences.

2.1. Case of Identifiers

In pc, the names of identifiers are case-sensitive. In pp, they are casc-insensitive; all names
are shifted to lower case. Be sure all identificrs are uniquely named regardless of case.

2.2. In-Line Compiler Directives
Pc supports in-line control of compile-time options from within comments:
{$option}

Pp provides similar support of “toggle” sctting via pragma statements. Sec ‘‘Compiler
Toggles” in the Professional Pascal Programmer’s Guide.

2.3. Octal Constants:

In pc, an integer constant is expressed in octal by a series of digits terminated with “B” or
“b" (e.g. 777b). Pp precedes the digit serics with the character string “8#" (c.g. 84777).

2.4. New Reserved Words

In addition to standard Pascal keywords, thc words pragma, package, iterator, value, and
otherwise arc reserved in pp. (They are not reserved in pe.)

2.5. Predefined Routines
The following predefined routines found in pc are not supported in pp:

] Predefined procedures: date, flush, linelimit, message, null, pack, remove, stlimit, time,
and unpack.

. Predefined functions: card, expo, random, seed, sysclock, undefined, and wallclock.

'Hereinafter referred to as pp.

2ITereinafter referred to as pc. Note that what is true for pc in this article is also true for pi, the Berkeley Pascal
interpreter. Therefore, pc can be taken to mean “pc and pi.”

15 Dec 1986

Professional Pascal Differences IBM/4.3-PSD:7-3

The routines argc and argv are not predefined as they are in pc, but they are defined in the
“arg” package provided with pp. Note, however, the slightly different semantics for these
routines as they are defined in “Utility Packages” in the Professional Pascal Language

Extensions manual.
Similarly, the clock function is not predefined but is included in the pp “system” package.

The procedure halt is predefined in pp (as it is in pc), but it does not produce a control
flow backtrace upon termination.

2.6. Writing Expression in Octal or Hexadecimal
In pc, the value i is displayed in octal by:

write(i oct)

or in hexadecimal by:

write(i hex)
where i is a boolean, char, integer, pointer or cnumerated type. In pp, the equivalent
would be:

write(ord(i):n:8)

or:
write(ord(i):n:16)

where “n” is the minimum field width.

2.7. Reading and Writing Enumerated Types
Reading and writing of enumerated types is not allowed in pp.

2.8. Associating File Name and Variable Name

In pc, a global file variable appearing in the program header is associated with a physical
file of the same name. In pp, file variables appearing in the program header are associated
with file names appearing as command-line arguments. See “Invoking the Compiler” in
the Professional Pascal Programmer’s Guide.

2.9. No Assert Statement
The assert statement of pc is not supported in pp.

2.10. Relational Operators on Scts
The relational operators “ < and >’ may not be applicd to sets in pp as can be done in

pc.

2.11. Simple Types Intcger and Real
In pc, an integer is 32 bits wide. That is, it follows the conceptual definition:

type integer = — 2147483648..2147483647;

In pp, an integer is 16 bits wide; it follows the conceptual definition:
type integer = — 32768..32767,;

Pp predefines the type longint to represent 32-bit integers; it is equivalent to pc's type
integer.

15 Dec 1986

IBM/4.3-PSD:7-4 Professional Pascal Differences

Pc represents a real in double-precision, or 64 bits. Pp represents real in single-precision,
or 32 bits. Pp predefines the type longreal to represent double-precision; it is equivalent to
pc’s type real.

If a pc program which is dependent on 32-bit integers and double-precision reals is ported
to pp, the following redefinitions can be uscd:

type
integer = longint;
real = longreal;
const
maxint = maxlong;

2.12. Predefined Types

Pc predefines the types alfa and intset as:

type
alfa = packed array [1..10] of char;
intset = set of 0..127;

These types are not predefined in pp; the above definitions can be added to existing pro-
grams that depend upon these types.

2.13. Subrange Mapping

In pc, the subrange 0..255 is mapped to a 16-bit word. In pp, it is mapped to an unsigned
byte. \

Pc maps the subrange 0..65535 to a 32-bit longword; pp maps it to an unsigned (16-bit)
word.

2.14. Global Variables

In pc, all variables at the outermost level are made global static. In pp, such variables are
made local static by default. The preferred way to share variables across modules in pp is
via interface packages; however, the statement “pragma data(COMMON);” can be
specified before the first variable declaration to achiceve the same effect from pp.

2.15. Predefined Constants

Pc predefines the integer constant “minint”; pp does not. The following definition can be
used: :

const
minint = —maxint— I;

The predefined character constants ‘“‘minchar,” “maxchar,” “bell,” and “tab” of pc are not
supported in pp.

References
¢ Appendix C of this manual, which contains the “Iligh C Programmer’s Guide”
. Professional Pascal Documentation Set, available from:

MetaWare Incorporated

903 Pacific Avenue, Suite 201
Santa Cruz, CA 95060

(408) 429-META

15 Dec 1986

PIC — A Graphics Language for Typesetting
User Manual

Brian W. Kernighan

ABSTRACT

PIC is a language for drawing simple figures on a typesctter. The basic
objects in PIC arc boxes, circles, ellipses, lines, arrows, arcs, spline curves, and
text. These may be placed anywhere, at positions specificd absolutely or in terms
of previous objects. The example below illustrates the general capabilitics of the
language.

r——=—=—=- A

pic | o IBL/EQN, | ppopp
, (optional) |
| J

This picture was created with the input

ellipse "document”

arrow

box "PIC”

arrow

box "TBL/EQN” "(optional)” dashed
arrow

box "TROFF”

arrow

ellipse “'typesetter”

PIC is another TROFF processor; it passes most of its input through
untouched, but translates commands between .PS and .PE into TROFF com-
mands that draw the pictures.

1. Introduction

PIC is a language for drawing simple pictures. It operates as yet another TROFF[1] prepro-
cessor, (in the same style as EQNJf2], TBL[3] and REFER[4}), with pictures marked by .PS and
.PE.

PIC was inspired partly by Chris Van Wyk'’s early work on IDEAL[S); it has somewhat the
same capabilities, but quite a different flavor. In particular, PIC is much more procedural —a pic-
ture is drawn by specifying (sometimes in painful dctail) the motions that onc goes through to
draw it. Other direct influences include the PICTURE language [6] and the V viewgraph language
[7].

This paper is primarily a user's manual for PIC; a discussion of design issues and user
experience may be found in [8]. The next section shows how to use PIC in the most simple way.
Subsequent sections describe how to change the sizes of objects when the defaults are wrong, and
how to change their positions when the standard positioning rules are wrong. An appendix

-2-

describes the language succinctly and more or less preciscly.

2. Basics

PIC provides boxes, lines, arrows, circles, ellipses, arcs, and splines (arbitrary smooth
curves), plus facilities for positioning and labeling them. The picture below shows all of the fun-
damental objects (except for splines) in their default sizes:

line arrow
box - iV
arc\

‘ach picture begins with .PS and ends with .PE; betwcen them are commands to describe the
picturc. Fach command is typed on a line by itsclf. For cxample

.PsS
box 'this is” “a box”
.PE

creates a standard box (% inch wide, %2 inch high) and centers the two picces of text in it:

this is
a box

EZach line of text is a separate quoted string. Quotcs are mandatory, even if the text contains
no blanks. (Of course there needn’t be any text at all.) Each linc will be printed in the current
size and font, centered horizontally, and separated vertically by the current TROFF linc spacing.

PIC does not center the drawing itself, but the dcfault definitions of .PS and .PE in the -ms
macro package do.

You can use circle or ellipse in place of box:

Text 1s centered on lines and arrows; if there is more than one line of text, the lines are cen-
tered above and below:

.PS
arrow “’this is” ”an arrow”
.PE
produces
this is
—_—
an arrow

and
line ’this is” "a line”

gives

-3
this is

a lmc

Boxes and lines may be dashed or dotted; just add the word dashed or dotted after box or
line.

Arcs by default turn 90 degrees counterclockwisc from the current direction; you can make
them turn clockwise by saying arc cw. So

line; arc; arc cw; arrow

produces

A spline might well do this job better; we will rcturn to that shortly.
As you might guess,

arc; arc; arc; arc

draws a circle, though not very efficiently.
Objects are normally drawn one after another, left to right, and connected at the obvious
places. Thus the input

arrow; box “input”; arrow; box “process”; arrow; box “outpul”; arrow

produces the figure

——=! input process output |——

If you want to leave a space at some place, use move:

box; move; box; move; box

produces

Notice that several commands can be put on a single linc if they are separated by semicolons.

Although objects are normally connected left to right, this can be changed. If you specify a
direction (as a separate object), subsequent objects will be joined in that direction. Thus

down; box; arrow; ellipse; arrow; circle

produces

and
left; box; arrow; ellipse; arrow; circle

produces

Each new picture begins going to the right.

Normally, figures are drawn at a fixed scale, with objects of a standard size. It is possible,
however, to arrange that a figure be expanded to fit a particular width. If the .PS line contains a
number, the drawing is forced to be that many inches wide, with the height scaled propor-
tionately. Thus

.PS 3.5i

causes the picture to be 3.5 inches wide.

PIC is pretty dumb about the size of text in rclation to the size of boxes, circles, and so on.
There is as yet no way to say “make a box that just fits around this text” or “make this text fit
inside this circle” or “draw a line as long as this text.” All of these facilities are useful, so the limi-
tations may go away in the fullness of time, but don’t hold your breath. In the meantime, tight
fitting of text can generally only be done by trial and error.

Speaking of errors, if you make a grammatical error in thec way you describe a picture, PIC
will complain and try to indicate where. For example, the invalid input

box arrow box

will draw the message

pic: syntax error near line 5, file -
context is
box arrow * box

The carct * marks the place where the error was first noted; it typically follows the word in error.

3. Controlling Sizecs

This section deals with how to control the sizes of objects when the “default” sizes are not
what is wanted. The next section deals with positioning them when the default positions are not
right.

Fach object that PIC knows about (boxcs, circles, etc.) has associated dimensions, like
height, width, radius, and so on. By default, PIC trics to choose sensible default values for these
dimenstons, so that simple pictures can be drawn with a minimum of fuss and bother. All of the
figures and motions shown so far have been in their default sizes:

box Ya” wide x %4 high
circle V2" diameter

ellipse Yo" wide x ‘4" high

arc V2" radius

line or arrow %" long

move Y2”” in the current direction

When necessary, you can make any object any size you want. For example, the input
box width 3i height 0.1i

draws a long, flat box

[]

3 inches wide and 1/10 inch high. There must be no space between the number and the “i” that
indicates a measurement in inches. In fact, the “i’" is optional; all positions and dimensions are
taken to be in inches.

Giving an attribute like width changes only the one instance of the object. You can also
change the default size for all objects of a particular type, as discussed later.

The attributes of height (which you can abbreviate to ht) and width (or wid) apply to boxes,
circles, ellipses, and to the head on an arrow. The attributes of radius (or rad) and diameter (or
diam) can be used for circles and arcs if they seem more natural.

ILines and arrows are most easily drawn by specifying the amount of motion from where one
is right now, in terms of directions. Accordingly the words up, down, left and right and an
optional distance can be attached to line, arrow, and move. For cxample,

.PS

line up 1i right 2i

arrow left 2i

move left 0.1i

line <-> down i "height”
.PE

draws

height

The notation <-> indicates a two-hcaded arrow; use - > for a head on the end and <- for one
on the start. Lines and arrows are really the samc thing; in fact, arrow is a synonym for line - > .
If you don’t put any distance after up, down, ctc., PIC uses the standard distance. So '

line up right; line down; line down left; line up

draws the parallelogram

Warning: a very common error (which hints at a language defect) is to say
line 3i
A direction is needed:

line right 3i

Boxes and lines may be dotted or dashed:

comes from
box dotted; line dotted; move; line dashed

If therc is a number after dot, the dots will be that far apart. You can also control the sizc of the
dashes (at least somewhat): if there is a length after the word dashed, the dashes will be that long,
and the intervening spaces will be as close as possible to that size. So, for instance,

comes from the inputs (as separate pictures)

line right 51 dashed

line right 5i dashed 0.25i
line right 5i dashed 0.5i
line right 5i dashed 1i

Sorry, but circles and arcs can’t be dotted or dashed yet, and probably ncver will be.

You can make any object invisible by adding the word invis(ible) after it. This is particu-
larly useful for positioning things correctly near text, as we will sce later.

Text may be positioned on lines and arrows:

.PS

arrow "on top of”’; move

arrow above” “below”’; move
arrow ”above’ above; move

arrow below” below; move

arrow “above” on top of” “below”

.PE
produces above
above above on.
f below > below i
below

The “width” of an arrowhead is the distance across its tail; the “height” is the distance along
the shaft. The arrowheads in this picture are default size.

As we said earlier, arcs go 90 degrees counterclockwise from where you are right now, and
arc cw changes this to clockwise. The default radius is the same as for circles, but you can change
it with the rad attribute. It is also easy to draw arcs between specific places; this will be described
in the next section.

To put an arrowhead on an arc, use one of <-,-> or <->.

In all cascs, unless an explicit dimension for some object is specified, you will get the default
size. If you want an object to have the same size as the previous onc of that kind, add the word
same. Thus in the set of boxes given by

down; box ht 0.2i wid 1.5i; move down 0.15i; box same; move same; box same

[|
l |
| |

the dimensions set by the first box are used several times; similarly, the amount of motion for the
second move is the same as for the first one.

-8-
It is possible to change the default sizes of objects by assigning values to certain variables:

boxwid, boxht

linewid, lineht

dashwid

circlerad

arcrad

ellipsewid, ellipseht

movewid, moveht

arrowwid, arrowht (These refer to the arrowhecad.)

So if you want all your boxes to be long and skinny, and relatively close together,

boxwid = 0.1i; boxht = 1i
movewid = 0.2i
box; move; box; move; box

gives

PIC works internally in what it thinks are inches. Sctting the variable scale to some valuc
causes all dimensions to be scaled down by that value. Thus, for cxample, scale=2.54 causes
dimensions to be interpreted as centimeters.

The number given as a width in the .PS linc overrides the dimensions given in the picture;
this can be used to force a picture to a particular size cven when coordinates have been given in
inches. Experience indicates that the easiest way to get a picture of the right size is to enter its
dimensions in inches, then if necessary add a width to the .PS linc.

4. Controlling Positions

You can place things anywhere you want; PIC provides a variety of ways to talk about
places. PIC uses a standard Cartesian coordinate system, so any point or object has an x and p
position. The first object is placed with its start at position 0,0 by default. The x,y position of a
box, circle or ellipse is its geometrical center; the position of a line or motion is its beginning; the
position of an arc is the center of the corresponding circle.

Position modifiers like from, to, by and at arc followed by an x,p pair, and can be attached
to bozxes, circles, lines, motions, and so on, to specify or modify a position.

You can also use up, down, right, and left with line and move. Thus

.PS2

box ht 0.2 wid 0.2 at 0,0 "1

move to 0.5,0 # or "move right 0.5”

box 2" same # use same dimensions as last box
move same # use same motion as before

box 3" same

.PE

draws three boxes, like this:

Note the use of same to repeat the previous dimensions instcad of reverting to the default values.
Comments can be used in pictures; they begin with a # and end at the end of the line.

Attributes like ht and wid and positions like at can be written out in any order. So

box ht 0.2 wid 0.2 at 0,0
box at 0,0 wid 0.2 ht 0.2
box ht 0.2 at 0,0 wid 0.2

are all equivalent, though the last is harder to read and thus less desirable.

The from and to attributes are particularly uscful with arcs, to specify the endpoints. By
default, arcs are drawn counterclockwise,

arc from 0.5i,0 to 0,0.5i
is the short arc and
arc from 0,0.5i to 0.5i,0

is the long one:

If the from attribute is omitted, the arc starts where you are now and goes to the point given by
to. The radius can be made large to provide flat arcs:

arc -> cw from 0,0 to 2i,0 rad 15i

produces

- 10 -

We said earlier that objects arc normally connected lcft to right. This is an over-
simplification. The truth is that objects are connected together in the dircction specified by the
most recent up, down, left or right (either alone or as part of some object). Thus, in

arrow left; box; arrow; circle; arrow

the left implics connection towards the left:

This could also be written as

left; arrow; box; arrow; circle; arrow

Objects are joined in the order determined by the last up, down, etc., with the entry point of
the second object attached to the exit point of the first. Fntry and exit points for boxes, circles
and cllipses arc on opposite sides, and the start and end of lines, motions and arcs. It's not
entircly clear that this automatic conncction and direction sclection is the right design, but it
scems to simplify many examples.

If a set of commands is enclosed in braces {...}, the current position and direction of motion
when the group is finished will be exactly where it was when cntered. Nothing elsc is restored.
There is also a more general way to group objects, using [and |, which is discussed in a later sec-
tion.

5. Labels and Corners
Objects can be labelled or named so that you can talk about them later. For example,

.PS
Box1:
box ...
... other stuff ...
move to Box1
.PE

Place names have to begin with an upper casc letter (to distinguish them from variables, which
begin with lower case letters). The name refers to the “center’” of the object, which is the
geometric center for most things. It’s the beginning for lines and motions.

Other combinations also work:

line from Box1 to Box2

move to Box1 up 0.1 right 0.2

move to Box1 + 0.2,0.1 # same as previous
line to Box1 - 0.5,0

The reserved name Here may be used to record the current position of some object, for example
as

- 11 -

Box1: Here

Labels are variables — they can be resct scveral times in a single picture, so a line of the
form

Boxl: Box! + 1i,ti

is perfectly legal.

You can also refer to previously drawn objects of each type, using the word last. TFor exam-
ple, given the input

box ”A”; circle ”B”’; box ”C”

then ‘last box’ refers to box C, ‘last circle’ refers to circle B, and ‘2nd last box’ refers to box A.
Numbering of objects can also be done from the beginning, so boxes A and C are ‘Ist box’ and
‘2nd box’ respectively.

To cut down the need for explicit coordinates, most objects have “comers’ named by com-
pass points:

B.nw B.n B.ne
B.w B.c B.e
B.sw B B.se

The primary compass points may also be written as .r, .b, I, and .t, for right, bottom, left, and
top. The box above was produced with

PS 1.5

B: box ”B.c”

” B.e” at B.e ljust

” B.ne” at B.ne ljust
” B.se” at B.se ljust
”B.s” at B.s below
”B.n” at B.n above
”B.sw ” at B.sw rjust
"B.w » at B.w rjust
"B.nw ” at B.nw rjust
.PE

Note the use of ljust, rjust, above, and below to alter the default positioning of text, and of a blank
with some strings to help space them away from a vertical line.

Lines and arrows have a start, an end and a center in addition to corners. (Arcs have only a
center, a start, and an end.) There are a host of (i.e., too many) ways to talk about the comers of
an object. Besides the compass points, almost any sensible combination of left, right, top, bot-
tom, upper and lower will work. Furthermore, if you don't like the .’ notation, as in

-12-

last box.ne
you can instead say
upper right of last box
A longer statement like
line from upper left of 2nd last box to bottom of 3rd last ellipse

begins to wear after a while, but it is descriptive. This part of the language is probably fat that
will get trimmed.

It is sometimes easiest to position objects by positioning some part of onc at some part of
another, for example the northwest corner of onc at the southcast corner of another. The with
attribute in PIC permits this kind of positioning. For example,

box ht 0.75i wid 0.75i
box ht 0.5i wid 0.5i with .sw at last box.se

produces

Notice that the corner after with is written .sw.
As another example, consider

ellipse; ellipse with .nw at last ellipse.se

which makes

Sometimes it is desirable to have a line intersect a circle at a point which is not one of the
eight compass points that PIC knows about. In such cases, the proper visual cffect can be
obtained by using the attribute chop to chop off part of the line:

- 13 -

circle ”a”

circle ’b” at 1st circle - (0.75i, ti)
circle ’c” at 1st circle + (0.75i, -1i)
line from 1st circle to 2nd circle chop
line from 1st circle to 3rd circle chop

produces

By default the line is chopped by circlerad at each end. This may be changed:
fine ... chop r

chops both ends by r, and
fine ... chop r/ chop r2

chops the beginning by r/ and the end by r2.

There is one other form of positioning that is sometimes useful, to refer to a point some
fraction of the way between two other points. This can be expressed in PIC as

Jraction of the way between position] and position2

Jraction is any expression, and position/ and position2 are any positions. You can abbreviate this
rather windy phrase; “of the way” is optional, and the whole thing can be written instcad as

Sraction < positionl , position2 >
As an example,

box
arrow right from 1/3 of the way between last box.ne and last box.se
arrow right from 2/3 <last box.ne, last box.se >

produces

- 14 -

Naturally, the distance given by fraction can be greater than 1 or less than 0.

6. Variables and Exhressions

It’s generally a bad idea to write everything in absolute coordinates if you are likely to
change things. PIC variables let you parameterize your picture:

box wid a ht b
ellipse wid a/2 ht 1.5*%b
move to Box1 - (a/2, b/2)

Expressions may use the standard operators +, —, *, /, and %, and parentheses for group-
ing.

Probably the most important variables are the predefined onces for controlling the default
sizes of objects, listed in Section 4. These may be set at any time in any picture, and retain their
values until reset.

You can use the height, width, radius, and x and p coordinates of any object or comer in
an expression:

Box1.x # the x coordinate of Box1

Box1.ne.y #f the y coordinate of the northeast corner of Box1
Box1.wid ff the width of Box1

Box1.ht # and its height

2nd last circle.rad # the radius of the 2nd last circle

Any pair of expressions enclosed in parentheses defines a position; furthermore such posi-
tions can be added or subtracted to yield new positions:

{x,»)
(xp,2) +(x5,9,)

If p, and p, are positions, then

(reory)

refers to the point

(p1x,pyy)

7. More on Text

Normally, text is centered at the geomctric center of the object it is associated with. The
attributc ljust causes the left end to be at the specificd point (which means that the text lies to the
right of the specified place!), and rjust puts the right ecnd at the place. above and below center the
text one half line space in the given direction.

- 15 -

At the moment you can not compound text attributes: however natural it might seem, it is
illegal to say ”...” above ljust. This will be fixed cventually.

Text is most often an attribute of some other object, but you can also have scif-standing
text:

"this is some text” at 1,2 ljust

8. Lines and Splines
A “line” may actually be a path, that is, it may consist of connected scgments like this:

This line was produced by

line right 1i then down .5i left 1i then right 1i

A spline is a smooth curve guided by a set of straight lines just like the linc above. It begins
at the same place, ends at the same place, and in between is tangent to the mid-point of each
guiding line. The syntax for a spline is identical to a (path) linc except for using spline instead of
line. Thus:

line dashed right 1i then down .5i left 1i then right 1i
spline from start of last line \
right 1i then down .5i left 1i then right 1i

produces

-

(Long input lines can be split by ending each piece with a backslash.)

The elements of a path, whether for line or splinc, are specified as a series of points, either
in absolute terms or by up, down, etc. If necessary to disambiguate, the word then can be used to
separate components, as in

spline right then up then left then up
which is not the same as

spline right up left up

At the moment, arrowheads may only be put on the ends of a line or spline; splines may
not be dotted or dashed.

- 16 -

9. Blocks

Any sequence of PIC statements may be enclosed in brackets [...] to form a block, which
can then be treated as a single object, and manipulated rather like an ordinary box. For example,
if we say

box "]”
[box *2”; arrow 3" above; box "4”] with .n at last box.s - (0,0.1)
”thing” at last [}.s

we get

3

thing

Notice that “last”-type constructs treat blocks as a unit and don’t look inside for objects: “last
box.s” refers to box 1, not box 2 or 4. You can use last ||, etc., just like last box.

Blocks have the same compass corners as boxes (determined by the bounding box). It is
also possible to position a block by placing either an absolute coordinate (like 0,0) or an internal
label (like A) at some external point, as in

[..5 A ..]with.A at ...

Blocks join with other things like boxes do (i.c., at the center of the appropriate side). It’s
not clear that this is the right thing to do, so it may change.

Names of variables and places within a block are local to that block, and thus do not affect
variables and places of the same name outside. You can get at the internal place names with con-
structs like

last [LA
or
B.A

where B is a name attached to a block like so:

When combined with define statements (next section), blocks provide a reasonable simulation of a
procedure mechanism.

Although blocks nest, it is currently possible to look only onc level deep with constructs like
B.A, although A may be further qualified (i.e., B.A.sw or top of B.A are legal).

-17 -

The following example illustrates most of the points made above about how blocks work:

h = .5i
dh = .02i
dw = .1i
[
Ptr: [
boxht = h; boxwid = dw
A: box
B: box
C: box
box wid 2*boxwid ”...”
D: box
]
Block: |

boxht = 2*dw; boxwid = 2*dw

movewid = 2*dh

A: box; move

B: box; move

C: box; move

box invis ”...”” wid 2*boxwid; move

D: box
] with .t at Ptr.s - (0,h/2)
arrow from Ptr.A to Block.A.nw
arrow from Ptr.B to Block.B.nw
arrow from Ptr.C to Block.C.nw
arrow from Ptr.D to Block.D.nw

]
box dashed ht last [J.ht+ dw wid last [|.wid + dw at last |]

This produces

10. Macros

PIC provides a rudimentary macro facility, the simple form of which is identical to that in
EQN:

define name X replacement text X

defines name to be the replacement texi; X is any character that does not appear in the replace-
ment. Any subsequent occurrence of name will be replaced by replacement text.

Macros with arguments are also available. The replacement text of a macro definition may
contain occurrences of $1 through $9; these will be replaced by the corresponding actual argu-
ments when the macro is invoked. The invocation for a macro with arguments is

name(argl, arg2, ...)

Non-existent arguments are replaced by null strings.
As an example, one might define a square by

define square X box ht $1 wid $1 $2 X

Then
square(1i, ”one” "inch”)

calls for a one inch square with the obvious label, and
square(0.5i)

calls for a square with no label:

one
inch

Coordinates like x,y may be enclosed in parenthescs, as in (x,p), so they can be included in a
macro argument.

11. TROFF Interface
PIC is usually run as a TROFF preprocessor:

pic file | troff -ms

Run it before EQN and TBL if they are also prcscnf.
If the .PS line looks like

.PS <file

then the contents of file are inserted in place of the .PS line (whcther or not the file contains .PS
or .PE).

Other than this file inclusion facility, PIC copics the .PS and .PE lines from input to output
intact, except that it adds two things right on the same line as the .PS:

PShw

h and w are the picture height and width in units. The -ms macro package has simple definitions
for .PS and .PE that cause pictures to be centered and offset a bit from surrounding text.

-19 -

If “.PF” is used instead of .PE, the position after printing is restored to where it was before
the picture started, instead of being at the bottom. “F” is for “flyback.”)

Any input line that begins with a period is assumed to be a TROFF command that makes
sense at that point; it is copied to the output at that point in the document. It is asking for trou-
ble to add spaces or in any way fiddle with the line spacing herc, but point size and font changes
are generally harmless. So, for example,

.ps 24

circle radius .4i at 0,0

.ps 12

circle radius .2i at 0,0

.ps 8

circle radius .1i at 0,0

.ps 6

circle radius .05i at 0,0

.ps 10 \” don’t forget to restore size

gives

It is also safe to muck about with sizes and fonts and local motions within quoted strings
(”...”) in PIC, so long as whatever changes are made are unmade before exiting the string. For
example, to print text in Old English in size 8, use

ellipse **\s8\[(OESmile!\fP\s0"”

This produces

This is essentially the same rule as applies in EQN.

There is a subtle problem with complicated cquations inside PIC pictures — they come out
wrong if EQN has to leave extra vertical space for the equation. If your equation involves more
than subscripts and superscripts, you must add to the beginning of cach equation the cxtra infor-
mation space 0:

arrow
box “$space 0 {H(omega)} over {1 - H(omega)}$”
arrow

This produces

=20 -

—. 257text: 815 <- —; b=0h=60If=1rf=1

[

—. 257text: SIS <- —; b=0h=60,If=l,rf=1

—. 257text: SIS <- =y b=0h=60if=1r=1
H ()
splace() B
1= H(T—

PIC normally generates commands for a new version of TROFF that has operators for
drawing graphical objects like lines, circles, and so on. As distributed, PIC assumes that its out-
put is going to the Mergenthaler Linotron 202 unless told otherwise with the -T option. At
present, the other alternatives are -Tcat (the Graphic Systems CA'T, which does slanted lines and
curves badly) and -Taps (the Autologic APS-5). It is likely that the option will already have been
set to the proper default for your system, unless you have a choice of typesetters.

12. Some Examplcs
Herewith a handful of larger examples:

ndtable: I Inll dlI n3]d.’il l n2 Idzl

hashtab:

_ ndblock

The input for the picture above was:

-21-

define ndblock X
box wid boxwid/2 ht boxht/2
down; box same with .t at bottom of last box; box same
X
boxht = .2i; boxwid = .3i; circlerad = .3i
down; box; hox; box; box ht 3*boxht ".” "," ™.
L: box; box; box invis wid 2*boxwid "hashtab:” with .e at st box .w
right
Start: box wid .5i with .sw at st box.ne + (.4i,.2i) "..."”
N1: box wid .2i "n1™ D1: box wid .3i "dI”
N3: box wid .4i "n3"; D3: box wid .3i "d3"
box wid .4i "..."
N2: box wid .5i "n2"; D2: box wid .2i "d2"
arrow right from 2nd box
ndblock
spline - > right .2i from 3rd last box then to N1.sw + (0.05i,0)
spline - > right .3i from 2nd last box then to D1.sw + (0.05i,0)
arrow right from last box
ndblock
spline - > right .2i from 3rd last box to N2.sw-0.05i,.2i) to N2.sw + (0.05i,0)
spline - > right .3i from 2nd last box to D 2.sw-(0.05i,.2i) to D2.sw + (0.05i,0)
arrow right 2*linewid from L
ndblock
spline - > right .2i from 3rd last box to N3.sw + (0.05i,0)
spline - > right .3i from 2nd last box to D3.sw + (0.05i,0)
circle invis "ndblock” at last box.e + (.7i,.2i)
arrow dotted from last circle to last box chop
box invis wid 2*boxwid "ndtable:” with .e at Start.w

This is the second example:

diagnostic
g symbol
message
. 8 table
printer
lexical syntactic
corrector corrector
source lexical tokens ntermediatd semantic
parser S
code analyzer code checker

This is the input for the picture:

-2

PS5
.ps 8
arrow "’source
LA: box ”lexical” "analyzer”
arrow “tokens” above

99 93

code”

P: box "parser”
arrow “intermediate” ”code”
Sem: box ”semantic” checker”
arrow

arrow <-> up from top of LA
LLC: box lexical” "corrector”
arrow <-> up from top of P

(1)

Syn: box ”syntactic” corrector”
arrow up
DMP: box "diagnostic” ”message’
arrow <-> right from right of DMP
ST: box ”symbol” “table”
arrow from LC.ne to DMP.sw
arrow from Sem.nw to DMP.se
arrow <-> from Sem.top to ST.bot

2 9

printer”’

.PE

There are eighteen objects (boxes and arrows) in the picture, and one line of PIC input for
each; this seems like an acceptable level of verbosity.

The next example is the following:

input OO rollers

character CPU
defns (16-bit mini)

Basic Digital Typesctter

This is the input for example 3:

.KS

.PS 5i

circle ”"DISK”

arrow “character” defns”

box "CPU” ”(16-bit mini)”

{ arrow <- from top of last box up "input ” rjust }
arrow

CRT:” CRT” ljust

line from CRT - 0,0.075 up 0.15\
then right 0.5 \

then right 0.5 up 0.25 \

then down 0.5+0.15 \

then left 0.5 up 0.25 \

then left 0.5

Paper: CRT + 1.0-+0.05,0
arrow from Paper + 0,0.75 to Paper - 0,0.5
{ move to start of last arrow down 0.25
{ move left 0.015; circle rad 0.05 }
{ move right 0.015; circle rad 0.05; ” rollers” ljust }
}
” paper” ljust at end of last arrow right 0.25 up 0.25
line left 0.2 dotted
.PE
.ce
Basic Digital Typesetter
.sp
KE

13. Final Observations

PIC is not a sophisticated tool. The fundamental approach — Cartesian coordinates and
real measurements — is not the easiest thing in the world to work with, although it does have the
merit of being in some sense sufficient. Much of the syntactic sugar (or corn syrup) — corners,
joining things implicitly, etc. — is aimed at making positioning and sizing automatic, or at least
relative to previous things, rather than explicit.

Nonetheless, PIC does seem to offer some positive values. Most notably, it is integrated
with the rest of the standard Unix document preparation software. In particular, it positions text
correctly in relation to graphical objects; this is not truc of any of the interactive graphical editors
that I am aware of. It can even deal with equations in a natural manner, modulo the space 0
nonsense alluded to above.

A standard question is, “Wouldn't it be better if it were interactive?” The answer seems to
be both yes and no. If one has a decent input device (which I do not), interaction is certainly
better for sketching out a figure. But if one has only standard terminals (at home, for instance),
then a linear representation of a figure is better. Furthermore, it is possible to generate PIC input
from a program: I have used AWK|9] to extract numbers from a report and generate the PIC
commands to make histograms. This is hard to imagine with most of the interactive systems I
know of. .

In any case, the issue is far from settled; comments and suggestions are welcome.

- 24 -

Acknowledgements

I am indebted to Chris Van Wyk for ideas from scveral versions of IDEAL. Ile and Doug

Mcllroy have also contributed algorithms for line and circle drawing, and made useful suggestions
on the design of PIC. Theo Pavlidis contributed the basic spline algorithm. Charles Wetherell
pointed out reference [2] to me, and made several valuable criticisms on an carly draft of the
language and manual. The exposition in this version has been greatly improved by suggestions
from Jim Blinn. I am grateful to my early users — Brenda Baker, Dottie Luciani, and Paul
Tukey — for their suggestions and cheerful use of an often shaky and clumsy system.

References

I.

J. IF. Ossanna, “NROFF/TROFF User’s Manual,” UNIX Programmer’s Manual, vol. 2, Bell
Iaboratories, Murray Hill, N.J., January 1979. Section 22

Brian W. Kernighan and Lorinda L. Cherry, “A System for Typesetting Mathematics,”
Communications of the ACM, vol. 18, no. 3, pp. 151-157, 1975.

DNL, M. E. Lesk, “Tbl — A Program to Format Tables,” UNIX Programmer’s Manual,
vol. 2, Bell Laboratories, Murray Hill, N.J., January 1979. Secction 10

DNL, M. E. Lesk, “Some Applications of Inverted Indexes on the UNIX System,” UNIX
Programmer’s Manual, vol. 2, Bell Laboratorics, Murray Hill, N.J., January 1979. Section
11

Christopher J. Van Wyk and C. J. Van Wyk, “A Graphics Typesetting I.anguage,” SIG-
PLAN Symposium on Text Manipulation, Portland, Oregon, June, 1981.

John C. Beatty, “PICTURE — A picture-drawing language for the Trix/Red Report Edi-
tor,” Lawrence Livermore Laboratory Report UCID-30156, April 1977. '

Anon., “V — A viewgraph generating language,” Bell Laboratories internal memorandum,
May 1979.

B. W. Kernighan, “PIC — A Language for Typesetting Graphics,” Software Practice &
Experience, vol. 12, no. 1, pp. 1-21, January, 1982.

A. V. Aho, P. J. Weinberger, and B. W. Kernighan, “AWK - A Pattern Scanning and Pro-
cessing Language,” Software Practice and Experience, vol. 9, pp. 267-280, April 1979.

- 25-

Appendix A: PIC Reference Manual

Pictures

The top-level object in PIC is the “picture’:

picture:
.PS optional-width
element-list
PE

If optional-width is present, the picture is made that many inches wide, regardless of any dimen-
stons used internally. The height is scaled in the same proportion.

If instead the line is
PS <f

the file f is inserted in place of the .PS line.

If .PF is used instead of .PE, the position after printing is restored to what it was upon
entry.

Elements

An element-list is a list of elements (what else?); the elements are

element:
primitive attribute-list
placename : element
placename : position
variable = expression
direction
troff-command
{ element-list }
[element-list |

Elements in a list must be separated by newlines or semicolons; a long element may be con-

tinued by ending the line with a backslash. Comments are introduced by a # and terminated by a
newline.

Variable names begin with a lower case letter; place names begin with upper case. Place and
variable names retain their values from one picture to the next.

The current position and direction of motion arc saved upon entry to a {...} block and
restored upon exit.

Elements within a block enclosed in |...] are treated as a unit; the dimensions are determined

by the extreme points of the contained objects. Names, variables, and direction of motion within
a block are local to that block.

troff-command is any line that begins with a period. Such lines are assumed to make sense
in the context where they appear; accordingly, if it doesn’t work, don't call.

Primitives
The primitive objects are

primitive:
box
circle
ellipse
arc
line
arrow
move
spline
"any text at all”

arrow is a synonym for fine - >.

Attributes

- 26 -

An attribute-list is a sequence of zcro or more attributes; cach attribute consists of a key-
word, perhaps followed by a value. In the following, e is an expression and opt-e an optional

expression.
attribute:
h(eigh)t e
rad(ius) e
up opt-¢
right opt-e

from position
at position
bye, e
dotted opt-e
chop opt-e
same
text-list

Missing attributes and values are filled in from dcfaults.

wid(th) e
diam(eter) e
down opt-¢
left opt-e

to position
with corner
then

dashed opt-e

> < T.>

invis

Not all attributes make sense for all

primitives; irrelevant ones are silently ignored. Thesce arc the currently meaningful attributes:

-27 -

box:
height, width, at, dotted, dashed, invis, same, text
circle and ellipse:
radius, diameter, height, width, at, invis, same, rext
arc:
up, down, left, right, height, width, from, to, at, radius,
invis, same, cw, <-,->, <-> fext
line, arrow
up, down, left, right, height, width, from, to, by, then,
dotted, dashed, invis, same, <-, ->, <-> text
spline:
up, down, left, right, height, width, from, to, by, then,
invis, <-,->, <.> text
move:
up, down, left, right, to, by, same, text
"text...”:

at, text

The attribute at implies placing the geometrical center at the specified place. For lines, splines
and arcs, height and width refer to arrowhead size.

Text

Text is normally an attribute of some primitive; by default it is placed at the geometrical
center of the object. Stand-alone text is also permitted. A text-list is a list of text items; a text
item is a quoted string optionally followed by a positioning request:

text-item:

"..."
.77 center
”..7 ljust
.. rjust
...”" above
... below

If there are multiple text items for some primitive, they are centered vertically except as qualified.
Positioning requests apply to each item independently.

Text items can contain TROFF commands for size and font changes, local motions, etc.,
but make sure that these are balanced so that the entering state is restored before exiting.

Positions and places
A position is ultimately an x,p coordinate pair, but it may be specified in other ways.

position:
e e
place + ¢, e
(position, position)
e [of the way] between position and position
e < position , position >

The pair ¢, e may be enclosed in parentheses.

-28 -

place:
placename optional-corner
corner placename
Here
corner of nth primitive
nth primitive optional-corner

A corner is onc of the eight compass points or the center or the start or end of a primitive. (Not
text!)

corner:
.N e .W s .ne .se .nW .SwW
t.boor ol
.c .start .end

Fach object in a picture has an ordinal number; nth refers to this.

nth:
nth
nth last

Since barbarisms like Ith are barbaric, synonyms likc 1st and 3st are accepted as well.

Variables
The built-in variables and their default values are:

boxwid 0.75i boxht 0.5i
circlerad 0.25i

ellipsewid 0.75i cllipseht 0.5i
arcrad 0.25i

linewid 0.5i lineht 0.5i
movewid 0.5i movewid 0.5i
arrowht 0.1i arrowwid 0.05i
dashwid 0.1i

scale 1

These may be changed at any time, and the new values remain in force until changed again.
Dimensions are divided by scale during output.

Expressions

Expressions in PIC are evaluated in floating point. All numbers representing dimensions are
taken to be in inches.

-29 .

expression:

e+ e

e e

e*e

ele

e % e (modulus)

-e
(e)
variable
number
place x
place .y
place .ht
place .wid
place .rad

Definitions
The define statement is not part of the grammar.

define:
define name X replacement text X

Occurrences of $1 through $9 in the replacement text will be replaced by the corresponding argu-
ments if name is invoked as

name(argl, arg2, ...)

Non-existent arguments are replaced by null strings. Replacement text may contain newlines.

This page intentionally left blank.

December 1987

4.3 for the IBM RT PC Appendices

APPENDICES

The following appendices are provided:

Appendix A. Software Description

lists those few functions of 4.3BSD that arc not supported in this distribution of
IBM/4.3.

Appendix B. Graphics Manual Pages

contains manual pages for the graphics routines used by the C subroutine interface
described in Volume I1.

Appendix C. High C Programmer’s Guide

contains a guide for programming in C, using the High C compiler from MetaWare
Incorporated.

1 July 1987

4.3 for the IBM RT PC Appendices

This page intentionally left blank.

2 July 1987

Software Description IBM/4.3-PSD:8-1

Appendix A. Software Description

This appendix contains a listing of unsupported functions found in IBM/4.3.

1. UNSUPPORTED FUNCTIONS

The following sections list the functions of 4.3BSD for the VAX that are not supported by
IBM/4.3.

1.1. Section 1: Commands and Application Programs.

Man Page Name Section and Description

fp fp (1) functional programming language compiler/interpreter

geore geore (1) get core images of running processes

lisp lisp (1) Lisp interpreter

liszt liszt (1) compile a Franz Lisp programx

Ixref Ixref (1) Lisp cross reference program

pc pc (1) Pascal compiler

pdx pdx (1) Pascal debugger

pi pi (1) Pascal interpreter code translator

pix pix * (1) Pascal interpreter and executor

pmerge pmerge (1) Pascal file merger

px - px (1) Pascal interpreter

pxp pPXp * (1) Pascal execution profiler

pxref pxref (1) Pascal cross-reference program

sces sccs (1) front end for the sccs subsystem

tc tc (1) phototypesetter simulator

tcopy tcopy (1) copy a mag tape

tk tk . (1) paginator for the Tcktronix 4014

tp tp (1) manipulate tape archive

vip vip n forr[r;at Lisp programs to be printed with nroff, vtroff, or
tro

vwidth vwidth (1) make troff width table for a font

1.2. Section 2: System Calls

NONIE
1.3. Section 3: C Library Subroutines
NONE
1.4. Section 3F: FORTRAN Library
Man Page Name Section and Description
plot arc (3F) {77 library interface to plot(3X) libraries
plot box (3I7) {77 library interface to plot(3X) libraries
plot circle (3F) {77 library interface to plo{(3X) libraries
plot clospl * (3F) {77 library interface to plot(3X) libraries
plot cont (3FF) {77 library interface to plot(3X) libraries
plot erase (3F) 177 library interface to plot(3X) libraries
plot label (3F) f77 library interface to plot(3X) libraries
plot line (3F) f77 library interface to plot(3X) libraries

December 1987

IBM/4.3-PSD:8-2 Software Description

plot linemd (3F) 177 library interface to plot(3X) libraries
plot move (3IF) {77 library interface to plot(3X) libraries
plot openpl (3F) 177 library interface to plot(3X) libraries
plot plot (317) f77 library interface to plot(3X) libraries
plot point (319) f77 library interface to plot(3X) libraries
plot space (3I) {77 library interface to plot(3X) libraries
random drandm (31) better random number generator
random irandm (3F) better random number generator
random random (3I') better random number generator

1.5. Section 3G: AED Graphics Subroutines

NONE
1.6. Section 3M: Math Library
Man Page Name Section and Description
infnan infnan (3M) signals invalid floating point operations on a

VAX (tcmporary)
1.7. Section 3N: Internet Network Library

Man Page Name Scction and Description
ns ns_addr (3N) Xcrox NS(tm) address conversion routines
ns ns_ntoa (3N) Xerox NS(tm) address conversion routines

1.8. Section 3S: C Standard 1/O Library Subroutincs

NONE
1.9. Section 3X: Other Libraries
Man Page Name - Section and Description
1ib2648 1ib2648 (3X) subroutines for the HP 2648 graphics terminal
plot arc (3X) graphics interface
plot circle (3X) graphics interface
plot closepl (3X) graphics interface
plot cont (3X) graphics interface
plot erase (3X) graphics interface
plot label (3X) graphics interface
plot line (3X) graphics intcrface
plot linemod (3X) graphics intcrface
plot move (3X) graphics interface
plot openpl (3X) graphics interface
plot plot (3X) graphics interface
plot point (3X) graphics interface
plot - space (3X) graphics interface

1.10. Section 3C: Compatibility Library Subroutines
NONE

December 1987

Software Description

1.11. Section 4: Special Files

Man Page

acc
ad
css
crl
ct
ddn
de
dh
dhu
dmc

dmf
dmz
dn
dz
ec
en

nsip

pecl
ps

qe
X
spp
tm
tmscp
ts

tu
uda
up

ut

Name

acc
ad
css
crl
ct
ddn
de
dh
dhu
dmc

dmf
dmz
dn
dz
ec
en

nsip

pcl
ps

qe
X
Spp
tm
tmscp
ts

tu
uda
up

ut

IBM/4.3-PSD:8-3

Section and Description

(4) ACC LIH/DII IMP interface

(4) Data Translation A/D converter

(4) DEC IMP-11A LI/DH IMP interface

(4) VAX 8600 console R1.02 interface

(4) phototypesetter interface

(49) DDN Standard Index.25 IMP Interface

(4) DEC DEUNA 10 Mb/s Lthernet Interface

(4) DIH-11/DM-11 communications multiplexer

(4) DHU-11 communications multiplexer

() DEC DMC-11/DMR-11 point-to-point communications
device

(49) DMF-32, terminal multiplexer

(4) DMZ.-32 terminal multiplexer

(4) DN-I1 autocall unit interface

(4) DZ-11 communications multiplexer

(4) 3Com 10 Mb/s Ethernet interface

(4) Xerox 3 Mb/s Ethernet interface

(4) Excclan 10 Mb/s Ethernct interface

(4) console diskette interface

(4) ACCIF-11/HDH IMP interface

(4) RK6-11/RK06 and RK07 moving head disk

(4) MASSBUS disk interface

(4 TM-03/TE-16,TU-45TU-77 MASSBUS magtape interface

(4) Network Systems Hyperchannel interface

(4P) Xerox Internet Datagram Protocol

(4) Ikonas frame buffer, graphics device interface

(4) Interlan 10 Mb/s Ethernet interface

(4) 1822 network interface

(4) Interlan NP100 10 Mb/s Ethernet interface

(4) KL-11/DL-11W line clock

(4) TM78/TU-78 MASSBUS magtape interface

(4) Interlan NP100 Mb/s Ethernet interface

(4I") Xerox Network Systems(tm) protocol family

(4) software network interface encapsulating ns packets in ip
packets

(4) DIEC CSS PCI-11 B Network Interface

(4) Evans and Sutherland Picture System 2 graphics device
interface

(4) DIEC DEQNA Q-bus 10 Mb/s FEthernet interface

(4) DILC RX02 diskette interface

(4P) Xerox Sequenced Packet Protocol

(4) TM-11/TE-10 magtape interface

(4) DEC TMSCP magtape interface

(4) TS-11 magtape interface

(4) VAX-11/730 and VAX-11/750 TUS8 console cassette interface

(4) UDA-50 disk controller interface

(4) unibus storage module controller/drives

(4) UNIBUS TU4S tri-density tape drive interface

December 1987

IBM/4.3-PSD:8-4

uu
va
vp
vv

uu
va
vp
vv

Software Description

(4) TUS8/DECtape 11 UNIBUS cassette interface
(4) Benson-Varian interface

(4) Versatec interface

(4) Proteon proNET 10 Megabit ring

December 1987

Software Description IBM/4.3-PSD:8-5

1.12. Section 5: File Formats

Man Page Name Section and Description
tp tp (5) DEC/mag tape formats
vfont viont (5) font formats for the Benson-Varian or Versatec

1.13. Section 6: Games

Man Page Name Section and Description

aardvark aardvark (6) yet another exploration game
adventure adventure (6) an cxploration game

arithmetic arithmetic (6) provide drill in number facts
backgammon backgammon (6) the game of backgammon

banner banner (6) print large banner on printer
battlestar battlestar (6) a tropical adventure game

bed bed (6) convert to antique media

boggle boggle (6) the game of boggle

canfield canfield (6) the solitaire card game Canficld
canfield cfscores (6) the solitaire card game Canfield

chess chess (6) the game of chess

ching ching (6) the book of changes and other cookies
cribbage cribbage (6) the card game cribbage

doctor doctor (6) interact with a psychoanalyst

fish fish (6) play Go Fish

fortune fortune (6) print a random, hopefully interesting, adage
hangman hangman (6) computer version of the game hangman
hunt hunt (6) a multiplayer multiterminal game
mille mille (6) play Mille Bournes

monop monop (6) the game of Monopoly

number number (6) convert Arabic numerals to English
quiz quiz (6) test your knowledge

rain rain (6) animated raindrops display

rogue rogue (6) exploring the dungeons of doom

sail sail (6) mulituser wooden ships and iron men
snake snake (6) display chase game

snake snscore (6) display chase game

trek trek (6) trekkiec game

worm worm (6) the growing worm game

worms worms (6) animate worms on a display terminal
wump wump (6) the game of hunt-the-wumpus

zork zork (6) the game of dungeon

1.14. Section 7: Miscellaneous
NONE
1.15. Section 8: System Maintenance

Man Page Name Section and Description

analyze analyze (8) virtual UNIX postmortem crash analyzer
arff arfl (8R) archiver and copier for diskette

arfl flcopy (8) archiver and copier for diskette

December 1987

1IBM/4.3-PSD:8-6

bad144
drtest
implog
implogd
rxformat
XNSrouted

bad144
drtest
implog
implogd
rxformat

X NSrouted

Software Description

(8) rcad/write DEC standard 144 bad sector information
(8) standalonc disk test program

(8C) IMP log interpreter

(8C) IMP logger process

(8V) format diskettes

(8C) NS Routing Information Protocol daemon

December 1987

Graphics Manual Pages

Appendix B. Graphics Manual Pages for the
IBM Academic Information Systems Experimental Display

IBM/4.3-PSD:9-1

This scction contains the manual pages for section 3G; they describe the display graphics subrou-

tines. You may want to file these manual pages in Volume 1.

[]

intro (3G3)
circle (3G)
clip (3G)
color (3G)
copy (3G)
cursor (3G)
dash (3G)
font (3G)
force (3G)
image (3G)
init (3G)

line (3G)
log (3G)
merge (3G)
move (3G)
query (3G)
read (3G)
run (3G)
string (3G)
tite (3G)
width (3G)

15 Dec 1986

1BM/4.3-PSD:9-2 Graphics Manual Pages

This page intentionally left blank.

15 Dec 1986

INTRO(3G) INTRO (3G)

NAME
intro — introduction to display graphics subroutines

DESCRIPTION
This section describes the subroutines that arc part of the interface for the IBM Academic Infor-
mation Systems experimental display (hercin after called “‘the experimental display™). The sub-
routines are graphics routines for controlling the experimental display in all-points addressable
mode.

The interface described in this section provides access to a set of functions designed to support a
window manager, and is composed primarily of subroutines, as distinguished from functions. A
typical subroutine uses parameters to receive input and return output. C passes parameters by
value; to call a subroutine which returns information, you must supply an address for the return-
ing value as the parameter.

Calls that supply an address for return in this package should usually supply the address of a short
(16-bit) integer. Calls that pass integer values can usually get by with either short or int. See the
individual routines.

Many of the subroutines do return a value as a function would, generally for error return codes
and special case handling. It is strongly recommended that applications monitor return codes to
prevent bizarre events and possibly more scvere errors.

When linking, specify -laed to pick up the experimental-display library.

All subroutines use screen coordinates with the origin in the upper left comner of the experimental

display.
LIST OF FUNCTIONS
Name Appears on Page Description
VI_AlLine line.3g draw a line to an absolute location
VI_AMove move.3g move the current point to an absolute location
VI _Circle circle.3g draw a circle
VI Clip clip.3g set clipping window
VI_Color color.3g change screen color
VI_Copy copy.3g copy an area
VI_Dash dash.3g set line dash pattern
VI _DisCur cursor.3g disable cursor
VI_DropFont font.3g release font
VI_EnCur cursor.3g enable cursor
VI _FDefnCur cursor.3g set cursor pattern from file
VI_FlImage image.3g draw an image from a file
VI_Font font.3g select font
VI _Force force.3g force output of graphics orders
VI _Fread read.3g read experimental-display data into a file
VI_GetlI'ont font.3g load a font into memory
VI_Init init.3g initialize the subroutine interface
VI_Login log.3g begin logging subroutine calls
VI_Logout log.3g close a log file
VI _MDefnCur cursor.3g set cursor pattern from memory
VI _Merge merge.3 set merge mode
VI _MImage image.3g draw an image from memory
VI_MRead read.3g read experimental-display data into memory
VI _PosnCur cursor.3g set cursor position
VI_QClip query.3 query clipping rectangle
VI_QColor query.3g query current color
VI_QDash query.3g query dash pattern

PRPQs 5799-WZ.Q)/5799-PFF: IBM/4.3 31 Jan 1985 1

INTRO(3G) INTRO(3G)

VI QFont query.3g query font
VI_QMerge query.3g query merge mode
VI_QPoint query.3g query current point
VI _QWidth query.3g query line width
VI_RlLine line.3g draw a linc to a relative location
VI_RMove move.3g move the current point to a relative location
VI Run run.3g process a log file
VI _String string.3g draw a string
VI Term init.3g terminate the subroutine interface
VI_Tile tile.3g tile a rectangle
VI Width width.3g set line width
FILES
Just/lib/aed/whim.aed
fusr/lib/aed/pcfont.fnt
Jusr/lib/libaed.a
fusr/src/usr.lib/libacd /examples
Jdev/acd
NOTE

These subroutines apply only to the IBM Academic Information Systems experimental display.

SEE ALSO
“The C Subroutine Interface for the IBM Academic Information Systems Expcrimental Display”
in Volume I, Supplementary Documents.

PRPQs 5799-WZQ/5799-PFF: IBM/4.3 31 Jan 1985 2

CIRCLE(3G) CIRCLE(3G)

NAME
VI _Circle — draw a circle
SYNOPSIS
VI_Circle(radius)
int radius; [* circle radius */
DESCRIPTION

VI _Circle draws a circle with the specificd radius and the current point as its ccnter. The current
point is unchanged.

NOTE
VI _Circle applies only to the IBM Academic Information Systems experimental display. The line
attributes VI_Dash and VI_Width do not apply to VI_Circle.

Nothing is drawn if the radius is less than or equal to zero. You cannot use concentric circles to
do a solid area fill.

PRPQs 5799-WZQ/5799-PFF: IBM/4.3 30 Sep 1985 1

This page intentionally lcft blank.

CLIP(3G)

CLIP(3G)
NAME
VI _Clip — set clipping window
SYNOPSIS
VI_Clip(Ix,ly,hx,hy)
int Ix,ly; [* top left corner of clipping area */
int hx,hy; [* bottom right corner of clipping arca */
DESCRIPTION

VI _Clip specifies that subsequent primitives drawn on the screen are to be clipped to the specified
area. It is the user’s responsibility to ensure the sensibility of the window definition. The clipping

window is initially set to the whole screen.

NOTE
VI Clip applics only to the IBM Academic Information Systems experimental display.

SEE ALSO
query(3G)

PRPQs 5799-WZ.Q/5799-PFF: IBM/4.3 30 Sep 1985

This page intentionally lcft blank.

COLOR (3G) COLOR(3G)

NAME

VI Color — change screen color
SYNOPSIS

VI_Color(color)

int color; /* new color, truc for white */

" DESCRIPTION

VI _Color scts the color of the screen to the specified value: 0 mecans that bits having the binary
value “0” will be black on the screen; 1 mcans that bits having the binary value “1”” will be black
on the screen. If this value is different from the previous value, the screen will be inverted, so as
to make the change transparent to the application. The screen color is initially white 1’s on black
(s, color ().

NOTFE
VI _Color applies only to the IBM Academic Information Systems experimental display.

SEE ALSO
query(3G)

PRPQs 5799-WZQ/5799-PFF: IBM/4.3 31 Mar 1986

This page intentionally lcft blank.

COPY (3G) COPY (3G)

NAME
VI_Copy — copy an area
SYNOPSIS
VI_Copy(sx,sy,tx, ty,wd,htmerge)
int sx,sy; [* source top-left */
int tx,ty; [* target top-left */
int wd,h¢; [* rectangle dimensions */
int merge; [* merge mode */

DESCRIPTION
VI_Copy duplicates the rectangle at sx,sy with the dimensions wd, At to the point tx,ty. The copied
bits are merged with the target area using the specified merge mode, not the merge mode set by
merge(3G). See merge(3G) for a description of merge modes.

Both the source and destination rectangles must be completely on the screen. The current setting
of the clipping window is ignored.

NOTE
VI_Copy applies only to the IBM Academic Information Systems experimental display.

VI _Copy cannot copy an area onto itself with a mode change, e.g. for highlighting. A fast way to
highlight is to use VI_Merge with XOR mode and VI _Tile.

SEE ALSO
merge (3G)

PRPQs 5799-WZ.Q/5799-PFF: IBM/4.3 30 Sep 1985 1

This page intentionally lcft blank.

CURSOR (3G) CURSOR(3G)

NAME
VI_MDefnCur, VI_FDefnCur, VI_EnCur, VI_DisCur, VI_PosnCur — control the display cursor

SYNOPSIS
VI_MDefnCur(xoff,yoff,black,white)
int xoff; [* x offsct of cursor center */
int yoff; /* y offsct of cursor center */
unsigned short *black; /* first byte of black mask */
unsigned short *white; [* first byte of white mask */

VI_FDefuCur(filename)
char *filename; [* name of cursor definition file */

VI_EnCur()
VI_DisCur()

VI_PosnCur(x,y)
int x,y; /* new cursor position */

DESCRIPTION
These subroutines allow programs to control the display cursor by defining it, enabling and disa-
bling it, and changing its position. Disabling and reenabling the cursor do not aflect its pattern or
position. Because the display maintains the cursor separately from the display buffer, the cursor
does not have to be removed when a graphics primitive intersects its position. Initially the cursor
is transparent and disabled, and is positioned at the center of the screen.

VI_MDefnCur Sets the cursor as specified. xoff,poff is the displacement of the cursor pattern
from the current position of the cursor. For example, a value of (32,32) would
center the cursor pattern around the current point. The cursor pattern itself is a
64-by-64 bit image, with two planes. A 1 in the black plane indicates that that bit
of the cursor should be black. A 1 in the white plane indicates that the cursor
should be white in that position. If a bit has a 0 in both planes, the cursor is
transparent in that position. If a bit is 1 in both planes, the cursor is white. The
two planes are images in thc samc format as accepted by M/mage, and must be
64-by-64, or 512 bytes each.

VI _FDefnCur Sets the cursor to the definition in the specified file. The file has the format
shown below; the fields are explained under MDefnCur.

Offset (bytes) Description
0 XOFF
2 YOFF
4 BLACK bit pattern
516 WHITE bit pattern
See the description of MDefnCur for a description of the fields.
VI_EnCur Enables the cursor and displays it if it is not already present.
VI_DisCur Disables the cursor and removes it from the screen if it is present.

VI PosnCur Moves the cursor to the specified position. It cannot be moved off the screen.

NOTE

VI_Cursor applies only to the IBM Academic Information Systems experimental display.
SEE ALSO

image(3G)

PRPQs 5799-WZQ/5799-PFF: IBM/4.3 30 Sep 1985 1

This page intentionally left blank.

DASH(3G) DASH(3G)

NAME
V1 _Dash — set line dash pattern
SYNOPSIS
VI_Dash(dash,dashlen)
unsigned short dash; [* dash pattern */
short dashlen; [* dash pattern length */

DESCRIPTION

If no dash pattern has been sct, lines drawn with the VI_RLine and VI_ALine subroutincs
described under /ine(3G) are solid lines of 1I's. If a pattern has been set, the bits of the pattern
word are used in sequence whenever the vector generator would normally output a 1. Setting a
pattern of 0x5555 produces a very acceptable dotted linc. Other patterns may be used to vary the
size of dashes in the line. The length of the pattern can range from 1 to 16 bits. The pattern bits
should be left-justified. Setting the pattern length to 0 specifies a return to solid lines. The line
dash pattern is initially sct to solid 1’s.

SEE ALSO
line(3G), merge(3(3), query(3G), width(3G)

NOTE
VI _Dash applies only to the IBM Academic Information Systems experimental display. VI_Dash
does not support VI _Circle.

PRPQs 5799-WZ.Q)/5799-PFF: IBM/4.3 30 Scp 1985 1

This page intentionally Icft blank.

FONT(3G) FONT(3G)

NAME
VI_Font, VI_GetFont, VI_DropFont — sclect and manipulate fonts
SYNOPSIS
VI_Font(fontid)
int fontid,; [* font ID */
VI_GetFont(name,fontid)
char *name; [* font name */
short *fontid; [* font 1D */
VI_DropFont(fontid)
int fontid; [* ID of font to release */
DESCRIPTION

Fonts are stored in files, which are loaded into the workstation memory when requested by appli-
cations using VI_GetIont. Once a font is loaded, it is kept in memory until the program ends,
unless explicitly dropped with VI _DropFont.

VI GetFont Loads the specified font into memory, if it is not already present. If the font is

successfully loaded, the font ID is returned. Setting the current font to this ID
with VI _Font causes subscquent strings to be displayed in the font.

VI_Font Selects the font with the specified font ID. Font IDs range from 0 to 255 and are
returned by calls to VI_GetFont.

VI_DropFont Drops the specified font from memory. The application should not attempt to
use the font ID again. If the font is required, a new font 1D should be generated
by a request to VI_GetFont.

NOTE
VI _Font applies only to the IBM Academic Information Systems experimental display.

SEE ALSO
string(3G)

DIAGNOSTICS
If VI_GetFont retumns a font 1D of 0, either the font could not be found, or it did not fit in

memory. If the font did not fit in memory, a message will be sent to stderr.

PRPQs 5799-WZQ/5799-PFF: IBM/4.3 30 Sep 1985 1

This page intentionally left blank.

FORCE(3G) FORCE(3G)

NAME
VI_Force — force output of graphics orders

SYNOPSIS
VI_Force()

DESCRIPTION
Commands built with subroutines described in “Setting Graphics Parameters” and “Issuing
Graphics Primitives” in ““The C Subroutine Interface for the IBM Academic Information Systems
Experimental Display” generally do not send their output to the screcn immediately. Instead the
output rcmains in a buffer until the bufler is full, when its output is sent 1o the screen. Use
VI _Force to force output in the current bufler to be transmitted before the buffer is full.

NOTE
VI _Force applies only to the IBM Academic Information Systems experimental display.

SEE ALSO
init(3G)

PRPQs 5799-WZQ/5799-PFF: IBM/4.3 30 Sep 1985 1

This page intentionally Icft blank.

“Juejq Yoy Ajeuonuojur o3ed sy,

INIT(3G) INIT(3G)

NAME
VI _Init, VI_Term — initialize and terminate the subroutine interface
SYNOPSIS
VI_Init(wd,ht)
short *wd,*ht; /* screen dimensions */
VI_Term()
DESCRIPTION

These functions initialize and terminate the subroutine interface.

VI Init Initializes the display and returns the dimensions of the screen. The display currently
has a width of 1024 bits and a height of 800 bits. V/I_/nit must be the first call. The
top left point is (0,0); the bottom right point is (1023,799).

VI _Term Completes processing, closes any log files, and forces transmission of the graphics
buffer to the display.

FILES
Jdev/aed
Jusr/lib/aed/whim.aed
Jusr/lib/aed/pcfont.fnt

NOTE
VI _Init applies only to the IBM Academic Information Systems experimental display.

SEE ALSO
force(3G), log(3G)

PRPQs 5799-WZQ/5799-PFF: IBM/4.3 31 Mar 1986 1

IMAGE(3G) IMAGE (3G)

NAME
VI_MImage, VI_Flmage — draw an image
SYNOPSIS ’
VI_MImage(wd,ht,data)
int wd,ht; [* dimensions of image */
unsigned short *data; [* first byte of image */
VI_FImage(filcname)
char *filename; [* file name of image to draw */
DESCRIPTION

These functions draw an image from memory or from a file. The current point is unchanged.
The image data should be in scanline order, from top to bottom, with each scanline padded to the
next 16-bit word. For example, for a width of WD and height of HT, there should be
2*HT(WD + 15)/16 bytes of image data.

VI_MImage Draws an image of the specified dimensions whose top left corner is at the current

point. data must be the first byte of an image large enough to fill the rectangle
specified by wd and A¢, or an addressing error may result.

VI _FImage Draws the image contained in the specified file, placing its top left comer at the
current point. The image file must have the following format:

Offset (bytes) Description
0 The width of the image
2 The height of the image
4 Image data
NOTE
VI _Image applies only to the IBM Academic Information Systems experimental display.
SEE ALSO

read(3G)

PRPQs 5799-WZQ/5799-PFF: IBM/4.3 30 Sep 1985 1

This page intentionally left blank.

INIT(3G) . INIT(3G)

NAME
VI _Init, VI_Term - initialize and terminate the subroutine interface
SYNOPSIS
VI_Init(wd,ht)
short *wd,*ht; [* screen dimensions */
VI_Term()
DESCRIPTION

These functions initialize and terminate the subroutine interface.

VI Init Initializes the display and returns the dimensions of the screen. The display currently
has a width of 1024 bits and a height of 800 bits. VI_/nit must be the first call. The
top left point is (0,0); the bottom right point is (1023,799).

VI_Term Completes processing, closes any log files, and forces transmission of the graphics
buffer to the display.

FILES
/dev/aed
/usr/lib/aed/whim.aed
/usr/lib/aed/pcfont.fnt

NOTE
VI _Init applies only to the IBM Academic Information Systems experimental display.

SEE ALSO
force(3G), log(3G)

PRPQs 5799-WZQ/5799-PFF: IBM/4.3 31 Mar 1986 1

This page intentionally Icft blank.

LINE(3G) LINE(3G)

NAME
VI_Aline, VI_RLine — draw a line
SYNOPSIS
VI_ALine(x,y)
int x,y; [* end point of linc */
VI_RLinc(dx,dy)
int dx,dy; [* displacement to end point */
DESCRIPTION

These functions draw a line to an absolute or a relative location. A line is normally of 1’s, and is
merged with the window data according to the current merge mode.

VI_ALine Draws a line from the current point to the specified point (the line’s end point)
according to the current values of the merge, width, and dash pattern parameters. The
specified point becomes the current point.

VI_Rline Draws a line from the current point to the current point displaced by the specified
values, according to the current values of the merge, width, and dash pattern parame-
ters. The current point is incremented by the displacement.

NOTE
VI Line applies only to the IBM Academic Information Systems experimental display.

SEE ALSO
clip(3G), dash(3G), merge(3G), width(3G)

PRPQs 5799-WZQ/5799-PFF: IBM/4.3 30 Sep 1985

This page intentionally left blank.

LOG(3G) LOG(3G)

NAME
VI_Login, VI_Logout — begin logging subroutine calls and close a log file

SYNOPSIS
int VI_Login(filename)
char *filename; /* file to log to */

int VI_Logout()

DESCRIPTION
These subroutines begin logging subroutine calls and closc the log file.

VI Login Specifies that subsequent subroutine calls are 1o be echoed into the specified file. If
a log file is already open, VI _Login closes it before opening the new file; VI_Login
overwrites an existing file. All orders to the display are logged until a logout call
(VI _Logout) is issued. The log file may later be executed from within a program
using V/_Run or on its own using aedrunner(1). It may also be examined with

aedjournal(1).
VI Logout Closes the log file.

NOTE
VI Log applies only to the IBM Academic Information Systems experimental display.

SEE ALSO
aedjournal(1), aedrunner(1), init(3G), run(3G)

“The C Subroutine Interface for the IBM Academic Information Systems Experimental Display”
in Volume II.

DIAGNOSTICS
VI Login returns a negative value if there is an error, and a nonnegative value if the call is suc-

cessful.

VI_Logout returns one of three values:

Value Mecaning

0 Normal completion
-1 Error in closing file
-2 No file found to close

PRPQs 5799-WZ.Q/5799-PFF: IBM/4.3 30 Sep 1985

This page intentionally left blank.

MERGIL(3G) MERGE(3G)

NAME
VI_Merge — set merge mode
SYNOPSIS
VI_Merge(merge)
int merge; [* merge mode */
DESCRIPTION
The merge mode is a number from 0 to 15 that specifies how the bits generated by primitives are
to be combined with bits already on the screen, as shown in the following table:
Merge Mode Meaning
0 OFF
1 NOR
2 NOT DATA AND SCREEN
3 NOT DATA
4 DATA AND NOT SCREEN
5 NOT SCREEN
6 XOR (NEQ)
7 NAND
8 AND
9 EQ
10 SCREEN (ignore)
11 NOT DATA OR SCREEN
12 DATA (replace)
13 DATA OR NOT SCREEN
14 OR
15 ON
The merge mode is initially set to 12, for replace mode. Data bits replace screen bits. The merge
mode is simply an encoding of the logical function used to combine screen bits and data bits.
Encoding the desired result of each of the combinations in the table below generates the merge
mode that should be used to get that effect. For example, to or the data you are adding with the
data already present on the screen, you would use a merge mode of 14:
Data Bit 1 1 0 0
Screen Bit 1 0 1 0
Example:
OR mode 1 1 1 0 = 14
NOTE
VI Merge applies only to the IBM Academic Information Systems experimental display.
SEE ALSO

circle(3G), color(3G), line(3G), query(3G)

PRPQs 5799-WZQ/5799-PFF: IBM/4.3 30 Sep 1985 1

This page intentionally lcft blank.

MOVE(3G) MOVE(3G)

NAME
VI_AMove, VI_RMove — move the current point
SYNOPSIS
VI_AMove(x,y)
int x,y; [* new point */
VI_RMove(dx,dy)
int dx,dy; /* displacement from old point */
DESCRIPTION

These functions move the current point; they do not change the screen. The current point is ini-
tially set to (0,0).

VI_AMove Moves the current point to the specified coordinates.
VI_RMove Moves the current point by the specified displacement.

NOTE
VI _Move applies only to the IBM Academic Information Systcms experimental display.

SEE ALSO
query(3G)

PRPQs 5799-WZQ/5799-PFF: IBM/4.3 30 Sep 1985 1

This page intentionally lcft blank.

QUERY (3G)

NAME

QUERY (3G)

VI_QClip, VI_QColor, VI_QDash, VI_QFont, VI_QMerge, VI_QPoint, VI_QWidth — query
graphics parameters

SYNOPSIS

VI_QClip(Ix,ly,hx hy)

short *Ix,*ly; [* top left corner of clipping area */

short *hx,*hy; /* bottom right corner */
VI_QColor(color)

short *color; [* current color, true for white */
VI_QDash(dash dashlen)

unsigned short *dash; /* dash pattern */

short *dashlen; [* length of dash pattern */
VI_QFont(fontid,fontname)

short *fontid; [* current font ID */

char *fontname; /* current font name */
VI_QMerge(merge)

short *merge; [* current merge mode */
VI_QPoint(x,y)
short *x,*y [* current point */
VI_QWidth(width)
short *width; [* line width */
DESCRIPTION

These subroutines return the current values of the graphics parameters. Each subroutine requires
an address in which to store the value to be returned. All of these subroutines force transmission
of graphics data in the current buffer.

VI_QClip
VI_QColor

VI_QDash

VI_QFont

VI_QMerge

VI_QPoint

VI_QWidth
NOTE

Returns the the current clipping rectangle.

Returns the current color of the screen: 0 means that bits having the binary value
“0” will be black on the screen; 1 means that bits having the binary value “1” will
be black on the screen.

Returns the current line dash pattern in the format described for dash (3G). If
dashlen is 0, the lines are currently solid.

Returns the ID and name of the current font. The font ID is 0 if no font has been
set. The pointer fontname should point to a block of characters large enough to
hold a file name along with a string-termination byte. If you know beforehand the
size of your file name, you may allow only as many bytes as required. Be aware of
the string-terminator byte; there must be room for it.

Returns the current merge mode in the format described for merge(3G).

Returns the location of the current point. This command is especially useful after
string(3G) has been issued, since character definitions can change the current point
in unpredictable ways.

Returns the current line width as a number between 1 and 16.

VI _Query applies only to the IBM Academic Information Systems experimental display.

SEE ALSO

clip(3G), color(3G), dash(3G), merge(3G), move(3G), string(3G), width(3G)

PRPQs 5799-WZQ/5799-PFF: IBM/4.3 31 Mar 1986 1

This page intentionally Icft blank.

READ(3G) READ(3G)

NAME
VI_MRead, VI_FRead — read display data
SYNOPSIS
VI_MRead(x,y,wd,ht,data)
int x,y; [* top left corner of area */
int wd ht; [* dimensions of area */
unsigned short *data; /* first byte of data */
VI_FRead(x,y,wd,ht filenamc)
int x,y; [* top left corner of area */
int wd,ht; /* dimensions of arca */
char *filename; [* name of file to place image in */
DESCRIPTION

These functions read display data into memory or into a file. The area to be read must be com-
pletely on the screen. The current setting of the clipping window is ignored.

VI_MRead Reads the specified area of the screen into the array passed as data. Image bytes are
in the same format as cxpected by MImage. If the screen color is white, the bits are
inverted on readback to make the data read back independent of screen color. The
area to be read must be completely on the screen.

VI_T'Rcad Reads the specified area of the screen and places it in the specified file. The file has
the same format as expected by Flmage. If the window color is white, data bits are
inverted to make the data independent of the screen color.

NOTE
VI_Read applies only to the IBM Academic Information Systems experimental display.

SEE ALSO
image(3G)

PRPQs 5799-WZQ/5799-PFF: IBM/4.3 30 Sep 1985 1

This page intentionally left blank.

RUN(3G) RUN(3G)

NAME
VI_Run — process a log file

SYNOPSIS
int VI_Run(filename)
char *filename; /* log file name */

DESCRIPTION
VI_Run executes the commands logged in the specified file; filename is the name of a log file that

was created by VI Login. Using VI _Run with a log file has the same effect as executing
aedrunner(1) from within a program, allowing a series of orders which require much calculation to
be figured only once, logged, then quickly retrieved when needed.

NOTE
VI_Run applies only to the IBM Academic Information Systems experimental display.

SEE ALSO
aedjournal(1), aedrunner(1), log(3G)

DIAGNOSTICS
VI_Run returns 0 for normal completion, and -1 if it detects any kind of inconsistency or unex-

plained results in the file.

PRPQs 5799-WZQ/5799-PFF: IBM/4.3 30 Sep 1985

This page intentionally Ieft blank.

STRING (3G) STRING (3G)

NAME
VI_String — draw a string
SYNOPSIS
VI_String(s)
char *s; [* string to draw */
DESCRIPTION

~ VI_String draws the specified string at the current point. Since a character definition is really a
sequence of other graphics commands (usually VI_MImage and VI_RMove), the way in which
characters are positioned, stepped, and drawn depends on the font definition. Character
definitions typically modify the current point.

NOTE
V1_String applies only to the IBM Academic Information Systems experimental display.

SEE ALSO
font(3G)

“Defining Fonts” in “The C Subroutine Interface for the IBM Academic Information Systems
Experimental Display”

PRPQs 5799-WZ.Q/5799-PI'F: IBM/4.3 30 Sep 1985 1

This page intentionally left blank.

TILE(3G) , TILE(3G)

NAME
VI_Tile — tile a rectangle
SYNOPSIS
VI_Tile(wd,ht,twd,tht,tile)
int wd ht; [* dimensions of rectangle */
int twd,tht; [* dimensions of tile */
unsigned short *tile; [* first byte of pattern */
DESCRIPTION
VI _Tile fills a rectangle of the specified dimensions with the specified pattern. The rectangle’s top
left corer will be at the current point. The tile pattern must follow the rules for images as ex-
plained in image(3G), and can be of any size. The tile pattern is aligned to multiples of twd and
tht, not to the bounds of the tiled rectangle, so that rectangular subareas of larger figures can be
tiled without regard to their bounds, and the tile patterns will match. The current point is un-
changed.
A full rectangle black or white fill can be most quickly drawn by requesting a one-by-one tile.
Clearly, only all ON or all OFF may be drawn with this method, but any merge mode may be
used.
NOTE
VI _Tile applies only to the IBM Academic Information Systems experimental display.
SEE ALSO

image(3G)

PRPQs 5799-WZQ/5799-PFF: IBM/4.3 30 Sep 1985 1

This page intentionally left blank.

WIDTH(3G) WIDTH(3G)

NAME
VI_Width — set line width
SYNOPSIS
VI_Width(width)
int width; /* line width */
DESCRIPTION
VI _Width specifies a value between 1 and 16 that is to be the line width. Line width is initially
set to 1.
NOTE

VI _Width applies only to the IBM Academic Information Systems experimental display.

SEE ALSO
line(3G), query(3G)

PRPQs 5799-WZQ/5799-PFF: IBM/4.3 30 Sep 1985 1

This page intentionally Icft blank.

High C Programmer’s Guide IBM/4.3-PSD:10-1

Appendix C. High C Programmer’s Guide

This section contains the “High C Programmer’s Guide,” produced by MetaWare Incorporated.

15 Dec 1986

IBM/4.3-PSD:10-2 High C Programmer’s Guide

This page intentionally left blank.

15 Dec 1986

Appendix C. High C ™ Programmer’s Guide

© Copyright 1983-1987, MetaWare '™ Incorporated, Santa Cruz, CA, U.S.A.
High C and MetaWare are trademarks of MetaWare Incorporated.

ABSTRACT

This is a guide to the operation of the High C compiler as implemented for Academic Information Systems 4.3
for the IBM RT PC (“4.3/RT”). It contains:

1INTRODUCTION 1 8 EXTERNALS 22
8.1 ThealiasPragma 22
2 INVOKING THE COMPILER 3 8.2 Data Segmentation: the Data
Pragma 22
2.1 TheheCommand 3
2.2 Invoking the C Macro Preprocessor .. 3 9 ASSEMBLY LANGUAGE
2.3 Command Options 3 COMMUNICATION 24
3 COMPILER PRAGMAS 6 9.1 Assembly Routines 24
9.2 Function Naming Conventions 24
3.1 Syntax of Pragmas 6 9.3 Examples: Calling Assembly from
3.2 Compiler Pragma Summaries 6 C oo 25
33 If1°1“de Pragmas: Including Source 9.4 Example: Calling C from Assembly . 26
Files.................ooil. 7 9.5 Data Communication 26
4 COMPILER TOGGLES 9 10 LISTINGS 28
10.1 Pragmas Page, Skip, Title .. 28
5 STORAGE MAPPING 14 10.2 Formatof Listings 28
5.1 Data TprS in Storage 14 11 MAKING CROSS REFERENCES 38
5.2 Storage Classes 15
11.1 Features of the Cross Reference ... 38
6 RUN-TIME ORGANIZATION 16 11.2 Using the hexref Command 38
. 11.3 Cross-Reference Format 39
6.1 RegisterUsage 16 L -
6.2 The Data Area " 16 11.4 Distinction of File Names 40
6.3 Stack Frame Layout 16 12 DIAGNOSTIC MESSAGES 41
6.4 ArgumentPassing 17 ‘
6.5 FunctionResults 17 12.1 FileI/OEmorsocuuuuen.. 41
6.6 Calling Sequences............... 18 12.2 SystemErrors 41
6.7 Prqlogue 18 12.3 User Errors and Warnings 42
6.8 Epilogueccovvnnt. 19 12.4 Error and Warning Messages 43
6.9 AssemblerIssues 19
Appendix A CROSS-JUMPING
7 SYSTEM SPECIFICS 20 OPTIMIZATIONS 50
7.1 Floating-Point Arithmetic 20 Index 54
7.2 Size of Complilation Unit......... 20

7.3 Some ANSI-Required Specifics 20

This page intentionally left blank.

PRPQ 5799-CGZ: IBM 4.3/RT

4.3 for the IBM RT PC High C Programmer’s Guide

1. INTRODUCTION

This is a guide to the operation of the High C compiler implemented for IBM Academic Information Systems
4.3 for thc IBM RT PC (“4.3/RT").

The Compiler generates relocatable object modules directly, in contrast to most C compilers on UNIX
opcrating systems, which generate assembly files.

High C was designed to facilitate scrious professional programming. It is available on numerous processors.
It supports the draft ANSI Standard (ANSI document X3J11/85-102, August, 1985) and a fcw extcnsions.

C is a mixed-level systems language designed by Dennis Ritchie at AT&T’s Bell Laboratorics. It grew in
popularity because of its use in implementing the UNIX operating system, its elegant (and deceptive) sim-
plicity, and its close-to-the-machine features. As its popularity has grown, many softwarc devclopers have
uscd it for real-world applications as well as systems software.

Later implementations of C were extended to add enumeration types and a few other features. More recently
many extensions have been proposed to make C a safer language while still being consisient with the
philosophy of the original language. Today there is a core language being standardized by thc American
National Standards Institute (ANSI).

High C includes what most likely will be ANSI Standard C and also provides extensions that were carcfully
designed to be consistent with the philosophy of C. Some of the best features of such other languages as
Pascal, MetaWare’s Professional Pascal, and Ada were incorporated as extensions. Incompatibilitics were
minimized by introducing a minimum of new key words and by retaining the original syntax. Yet the
extensions are such that they will be flagged by any Standard-conforming compiler.

Portability. Standard C programs can be compiled with an ANSI option that turns off the extensions and
reduces the language to the Standard core. Alternatively, such programs can be gradually upgraded by not
choosing the ANSI option and using the extensions as required.

Safety, efficiency. While the close-to-the-machine features of C are available, High C supplics the new strong
type-checking specified in ANSI C. In addition, the compiler provides many checking fcatures usually avail-
able only in a scparate “lint” program. Thus one gets both efficiency and reliability. It is an excellent language
for both applications and systems programming.

Other important features and extensions include:

- three integer ranges and two floating-point precisions

- many compiler controls and options, including one for strict Standard checking

- nested functions complete with up-level references, as in Pascal

- nested functions passable as parameters to other functions, as in Pascal

- intrinsic functions, such as _abs, min, max, and fill char, for efficiency

- many optimizations, some of which are usually found only in mainframe compilers, including:

common subexpression elimination
retention and reuse of register contents
dead-code elimination

cross jumping (tail merging)
jump-instruction size minimization
constant folding

numerous strength reductions

automatic allocation of variables to registers

This guide contains all system-specific information necessary for using the compiler effectively. Readers new
to the product should scan the Table of Contents for an overview of the guide. Briefly, we describe:

C-1 2 July 87

4.3 for the IBM RT PC High C Programmer’s Guide

- how to compile, link, and run

- how to usc compiler controls

- machine specilfics, such as storage mapping and run-time organization

- dcfaults and limits

- communication with programs writtcn in other languages

- listings and cross-references

- CrTor messages

An extensive index provides for quick reference to all scctions that discuss or significantly relate to cach topic.

This guide docs not explain the C language or the High C extensions. They arc treated in the MctaWare /igh
C Language Reference Manual. Neither this guide nor the manual attempts to tcach C programming; consult
the manual for references to several C textbooks.

C-2 2 July 87

4.3 for the IBM RT PC High C Programmer’s Guide
2. INVOKING THE COMPILER

2.1 The hec Command

The he command invokes the High C compiler, which translates C programs into exccutable load modules or
into relocatable binary object modules suitable for linking with 1d. The syntax of the command is:

he [optionsj... files...

Any number of options and one or more files may be specified. Each option specified in the command applics
to all the specified files for which it makes scnse, except as noted below.

Scveral types of file names arc allowed. A file name ending with “. c” is taken to be a C source module. It is
compiled and an object module is produced with the samc name as the source except with *“. o” substituted for
“.c”. The “.o” file is normally deleted after linking when a single-module C program is compiled and linked.

A file name ending with “. s” is taken to be an assembly source module and is assembled, producing a “.o”
file. Any other file specification is assumed to be an object module or archive library to be linked via 14.

All “. o” files are placed in the current working directory.

In general, 14 is invoked if no compilation errors were detected and the —¢ option was not specificd. The
resultant load module is named “a . out” unless specified otherwise with the -o option (described below). Any

(L)

argument beginning with a dash (“-”) is taken as an option specification.

Example. The following command compiles the program in file sort. ¢, links it, and generates a load module
named sort:

hc -o sort sort.c

2.2 Invoking the C Macro Preprocessor

The High C compiler has an integrated “inboard” macro preprocessor, documented in the IHigh C Language
Reference Manual. The preprocessor conforms to the proposed ANSI C Standard. However the “outboard” C
macro preprocessor on most UNIX operating systems does not conform to the proposed Standard in some
ways.

Because many C programs ‘written for UNIX operating systems depend on minor idiosyncrasies of the
outboard C preprocessor, the ~Hepp/-Hnocpp! options are provided. The -Hepp option causes the outboard
preprocessor to be invoked on the source file sending the output to a temporary file, which then serves as input
to the compiler. -Hnocpp suppresses this action. The compiler is provided with the -Hepp option on by
default. The macro name _ HIGHC is predefined, except when the -Hansi option is specified. The macro
name¢ _ STDC_ s always predefined.

2.3 Command Options

Below is a description of each compiler option. Any option that is not recognized by he is assumed to be a
linker option and is passed on to 1d. Options applicable only to High C are prefixed with an B!

~Hansi Causes the compiler to accept only programs conforming to the proposed ANSI Standard.

Note: Since the proposed ANSI Standard is under revision at the time of this writing, this
option’s primary function is to turn off the High C language extensions.

-Hasm Directs the compiler to produce an assembly listing of the gencrated code on standard output, by
initializing the Asm toggle to on. The assembly listing is annotated with lines from the main
source file, but not with lines from any included files. These lincs appcar as comments
immediately preceding the corresponding assembly instructions. If the -s option (described

1. “H” stands for High C. It is used to avoid conflicts with existing or future pcc options.

C-3 2 July 87

4.3 for the IBM RT PC High C Programmer’s Guide

-Bstring

-C

~-Hepp

~Hnocpp

-Dname

below) is also specified, the generated . s file is annotated with lines from the source file, and no
listing is written on standard output.

Finds substitute compiler executables in the files named string with the suffixes cpp and
hccom. If no string is given, the default /usr/c/o is used; that is, the defaults are
/usr/c/ocpp and /usr/c/ohccom.

Suppresses the invocation of 14, and forces an object file to be produced even if only one module
is compiled.

Specifies that the outboard C macro preprocessor (/1ib/cpp) is to be used, rather than the
inboard preprocessor. -Hepp is the default.

Specifies the use of the inboard C macro preprocessor. See §2.2 Invoking the C Macro
Preprocessor for details.

~Dname=def

-g

~Idir

-Hlines=n

-Hlist

-mx

-0 output

Defines the name name to the preprocessor as if by #define. If no der is given, the name is
defined to be 1 (one). Note: There is no space between -D and name.

Specifies that the outboard C macro preprocessor is to be invoked and no compilation done. The
preprocessor output is sent to standard output. -E overrides -Hnocpp.

Directs the compiler to emit additional symbol table information for the dbx debugger and omit
certain optimizations..

Unless -0 is specified, —g turns off the cross-jumping optimization and suppresses the deletion of
unreferenced local functions.

Specifies an alternate directory to be searched to locate an include file. This option may be
specified several times to indicate several directories to be searched. If a particular file is not
located after searching the specified directories, one or more standard directories are searched.
See §3 COMPILER PRAGMAS. Note: There is no space between -I and the directory name

dir.

Causes a page eject to occur after every n lines written to standard output. The default of 60 is
appropriate for most é-lines-per-inch printers, which have a total of 66 lines per page. The
setting of lines is intended to allow some blank space at page boundaries. When using 8-lines-
per-inch, typically there are 88 lines per page, so —-Hlines should be set to 80 or 82. This option
is used in conjunction with the -H1ist and -Hasm options. If nis 0, no page ejects are emitted.

Causes the compiler to generate a source listing on standard output. It works by initializing the
List toggle to on. See §4 COMPILER TOGGLES.

Specifies that the outboard C macro preprocessor is to be invoked and Makefile dependencies
are to be generated. The output is sent to standard output. No compilation occurs.

Specifies a machine-dependent option. Currently available options are:

-ma Specifies that the C library function alloca may be called from within the source file(s).
alloca must extend the stack frame of alloca’s caller and needs certain information about the
size of the caller’s stack frame. This option makes the information available in the caller’s data
area. If alloca is called from a function that was not compiled with the -ma option, an error
diagnostic is generated at run-time,

-ms Causes the compiler to put out minimum-size floating-point data blocks (normally they are
generously padded). This guarantees that the size of objects remains approxmimately that of
previous releases, at the expense of performance.

Is passed on to the 1d command and names the final executable output file cutput. When this
option is used, any existing a.out file is left undisturbed. Note: White space is required after
the -o.

C-4 2 July 87

4.3 for the IBM RT PC High C Programmer’s Guide

-0 Specifics that all optimizations supported by the compiler are to be performed on the generated
code. This is the default unless -g is specificd. Therefore, this option has meaning only when
uscd in conjunction with -g.

-Hon=toggle

-Hoff=toggle
Turns a toggle onor 0££. See §4 COMPILER TOGGLES.

-p Produces code that counts the number of times each function is called during execution. If 1dis
invoked, the profiling library /usr/1ib/libc_p.a is scarched in licu of the standard C library
/lib/libc.a. Also replaces the standard start-up function with one that automatically calls
monitor (3) at the start and writes out a mon.out file. An execution profile can then be
generated by use of prof (1).

-pg Invokes a run-time recording mechanism as does -p, but keeps more extensive statistics and
produces a gmon . out file. An execution profile can then be generated by use of gprof (1).

-Hppo

~-Hppo=filename
Specifies that the compiler is to invoke its inboard preprocessor only and send the results to
filename. If -Hppo alone is given, the preprocessor output is printed to the standard output.
No object module is generated, nor is 1d invoked. “ppo” can be read “pre-process only” or
“print preprocessor output”. The preprocessor output is suitable for input to the compiler.

With -Hppo, any Include pragmas are not processed, since —Hppo turns off all processing past
the preprocessor, and a later phase of the compiler handles the Include pragma. Alternatively,
use -Hon=Print_ppo to obtain preprocessor output with processing of Include pragmas.

-R Makes all initialized static variables shared and read-only. This option is implemented by the
assembler and therefore -Hasm acts as if -S was specified.

-S Produces an assembly source file instead of an object file (for cach source file). The assembly
source is written into a file with the same name as the C source with “. c” replaced by “. s”. The
file is always placed in the current working directory. No object file is written, nor is 1d invoked.

Note: Unlike other compilers for UNIX operating systems, thc High C compiler normally
generates an object module directly, without producing an assembly file. The -S option
essentially directs the last phase of the compiler to produce assembly source as the object code is
generated. If the -Hasm option is also specified, the “. s” file is annotated with interlisted source

file lines.
-Uname Removes any initial definition of macro name. See -D above.
-v Causes the name of each subprocess to be printed as it begins to exccute. (To get announcements

of compiler-phase execution also, set ~-Hoff=Quiet.)

-Hvolatile
Forces the compiler to read from memory on all pointer dercferences. This is necessary only
when pointers are used as addresses whose contents are “"volatile” (can change via external

forces).
-w Causes all warning messages from the compiler to be suppressed.
~-H+w Issues all warnings, and comes highly recommended. The default is to issue only warnings that

pce would issue.

C-5 2 July 87

4.3 for the IBM RT PC High C Programmer’s Guide

3. COMPILER PRAGMAS

The High C compiler provides “pragmas” (the term comes from Ada) that dircct compiler operations. Pragmas
control the inclusion and listing of source text, the production of object code files, the gencration of optional
additional program and dcbugging information, and so on.

3.1 Syntax of Pragmas

Compiler pragmas take one of the following gencral forms:

pragma <Pragma name>; /* or */
pragma <Pragma name>(<Pragma_ parameters>);

where <Pragma_parameters> is a list of constant expressions separated by commas. The number and types
of the cxpressions arc dependent upon the particular <Pragma name>. A pragma can appear anywherc a state-
ment or declaration can appear. Sec the Iigh C Language Reference Manual for a specification of the precise

placcment of pragmas.

<Pragma_name>$ arc casc inscnsitive.

3.2 Compiler Pragma Summaries

The following pragmas are availablc:

Pragma Purpose
Toggles — scec §4 COMPILER TOGGLES:
On,0ff,Pop Turns On or Of £, or reinstates a prior status of a compiler switch or “toggle”.
Externals — scc §8 EXTERNALS:
Alias Specifics the external name to be associated with a global identificr.
Data Specifics the use of named blocks for data storage allocation. This is primarily intended for
communicating with other languages.
Inclusions — sce §3.3 COMPILER PRAGMAS/Include Pragmas: Including Source Files:
Include Includes the source of another file in the compilation unit.

C_include

R_include

RC include

Page

Skip

Title

Conditional form of Include.

Includes the source of another file in the compilation unit, treating the path name as Relative 1o
the directory of the file containing the pragma. This pragma trcats the path name in the same
manner as the #include preprocessor directive.

Conditional form of R_include.

Listings — scc §10 LISTINGS:

Causes page ejects to be inserted into the listing. This pragma takes effect only when the List
toggle is On.

Causcs blank lines to be inserted into the listing. This pragma takes effect only when the List
toggle is On.

Causcs a title to appear at the top of each subsequent page. This pragma takes effect only
when the List toggle is On.

2 July 87

4.3 for the IBM RT PC High C Programmer’s Guide

3.3 Include Pragmas: Including Source Files

When source text from an alternate file is to be included in a compilation, the #include preprocessor dircctive
is commonly used. The High C compiler supports, in addition, pragmas with altcrnate scarch strategics for
including files. This section describes the various strategices used to search for include files.

Note: Include pragmas are processed only by the High C compiler. If an outboard preprocessor is to be uscd,
we recommend using the #include directive rather than the Include pragma, as the outboard preprocessor
will not process files included via the Include pragma. Thus the command line option -Hnocpp should be
specified when the Include pragma is used. See §2 INVOKING THE COMPILER.

The Include pragma is used to include source from other files while the compilation unit is being compiled.
The pragma operates slightly differently from the standard C #include directive. There are four forms of the
Include pragma:

pragma Include (<File name>);
pragma C_include(<File name>);
pragma R_include (<File_name>);
pragma RC include(<File name>);

where <File name> is a string constant denoting the name of a file.
Examples:

pragma Include ("a_lot");
pragma R include ("dclns");
pragmaC_include ("math.h");

The Include pragma directs the compiler to include a file unconditionally. The C_include pragma causes
the file to be included only if it has not been included before — “conditionally included”. R include has
exactly the same effect as the standard C #include directive; that is, it is a “relative include”. RC_include
does a “conditional relative include”.

The term relative include refers to an include in which the file is first sought relative to the directory of the file
where the include pragma appears. If the file is not found in that directory, then any directories specified in
any -I command line options are searched in order of appearance. Sce §2 INVOKING THE COMPILER for a
description of the -1 option. If the file is still not found, then one or more standard directories arc scarched.

A non-relative include rcfers to an include in which the file is first sought relative to the current working
dircctory irrespective of the location of the file in which the Include pragma appears. If the file is not found
in that directory, then any directories specified in any -I command line options are searched in order of
appearance. See §2 INVOKING THE COMPILER for a description of the -I option. If the file is still not
found, then one or more standard directories are searched.

A file name specification that begins with “/” is assumed to be an absolute file reference and no directories are
searched.

Preprocessor directive #include " filename” specifies arelative include.
Directive #include <filename> specifies that only the -I and standard directories are searched.

Warning. There should be nothing to the right of an Tnclude pragma. After the Included file is processed,
processing resumes on the line immediately following the one containing the Include pragma. In effect, the
rest of the line is a comment.

Identity of file names. For the ¢ _include and RC_include pragmas, file names, including path, are
considered the same only if they are textually identical. Thus, these two pragmas may cause two includes to
occur:

pragma C include("strings.h");
pragma C include("/usr/include/strings.h");

even though both includes may refer to the same file.

Also, for the purposes of textual comparison, file name casing is significant, due to the operating system casing
convention.

C-7 2 July 87

4.3 for the IBM RT PC High C Programmer’s Guide

Methodology. The primary use for conditional includes is to support modularity.

Assume file trees.h is merely a collection of declarations defining the interface to a trees module. Suppose
further that trees.h makes reference 10 a type Symbol in another module defined in symbols.h, If a
standard #include "symbols.h" were placed within trees.h, a duplicate declaration of Symbol would
occur in any compilation unit that Included both trees.h and symbols.h. If, instcad, a conditional includc
were uscd in both trees . h and any compilation unit including symbols.h, at most onc copy of symbols.h
would be included.

With conditional includes, cach interface file F can conditionally include all other intcrface files that are
necessary for the definition of the resources in F. Therefore any user of F can simply Include F and
automatically gets other resources that are needed, without duplication.

C-8 2 July 87

4.3 for the IBM RT PC High C Programmer’s Guide

4. COMPILER TOGGLES

Pragmas can be used to turn On and Of £ various compiler switches or “toggles”. In such cases, the pragma
syntax is:

pragma <Pragma name>(<Pragma_parameter>);

The <Pragma name> is either On, Off, or Pop, and the single <Pragma parameter> is the name of the
toggle to be affected. All compiler toggles are described below.

On turns the toggle on; O£ £ turns it off; and Pop reinstates it to a prior value. Toggles operate in a stack-like
fashion, where cach on or 0f £ is a “push” of on or of £, and a Pop “pops” the stack. The stack for each toggle
is at least 16 elements deep, but no diagnostic is given if the stack overflows or underflows. Examples:

pragma On (List); —— Turns on the source listing.
pragma Off(List); -- Turns off the source listing.
pragma On (List); —-—- Turns on the source listing.
pragma Pop(List): —-- Back to off for the listing.
pragma Pop(List); -— Back to on for the listing.

Recall that toggles can also be initialized on the command line, with -Hon and -Hoff. See §2 INVOKING
THE COMPILER.

The default values, names, and meanings of the compiler toggles are described below.
Align_members — Default: On

When 0On, causes members of structures to be aligned. When 0f £, no such alignment takes place. See §5
STORAGE MAPPING.

Asm — Default: Off

When 0On, causes an assembly listing to be generated, annotated with source code as assembly comments.
If the Asm toggle is to be turned on and Off over sections of a module, the pragma should appear among
executable statements rather than declarations for best results; otherwise, the point at which the pragma
takes effect may not be obvious.

Auto_reg alloc — Default: On

When 0On, causes the compiler to allocate auto variables to registers automatically. The compiler weights
variables used within loops more heavily than those not so used in making its decision which variables to
allocate to registers; furthermore it does not allocate to registers any variables that are used too
infrequently. See §5 STORAGE MAPPING. A call of setjmp or _set jmp disables Auto reg alloc
for the entire containing function. '

Char default_unsigned — Default: On
When On, causes type char to be unsigned by default.

The Standard allows the type char by itself, that is, without the adjectives unsigned or signed, to be
either signed or unsigned. Of course, the types unsigned char and signed char can be used to
explicitly control signedness.

Double return — Default: On

‘When 0n, causes any function returning type f£loat to instead return type double. For certain numeric
coprocessors, such as the Motorola 68881 or Intel 80x87, this is of little consequence since the coprocessor
already uses long double math exclusively. However, other coprocessors, such as the Weitek 1167, use
both single and double formats internally. A program that uses f£loats predominantly would incur extra
overhead were £ 1loat-returning functions changed to return double; hence this toggle.

The toggle applies to any functions declared within the range in which the toggle is on. Functions declared
with the toggle O£ f instead suffer the conversion.

c-9 2 July 87

4.3 for the IBM RT PC High C Programmer’s Guide

Downshift file names — Default: Off

When 0n, causcs the file name specification of any subsequent Include pragma to be interpreted as if it
were in all lower case. This toggle is useful when moving source code {from an operating sysicm in which
filc name casing is not significant to a system in which it is significant.

Emit_line table — Default: Off

When ©On, causes the compiler to add entries to the symbol table that associate source line numbers with
object code addresses. Debuggers use this information to associate object code with source lines.

The -g command-line option turns this toggle on.

Note: This toggle does not affect the size of the gencrated code, but it docs add about cight bytes per
statement to the object module’s name list.

Int function_warnings — Default: Off

When 0f £, suppresses the warmning message normally gencrated when a function rcturning int has no
return exprn; statement within it, or a function returning int contains a return; within it.

This is to remove {requent warnings for old C source that did not use the reserved word void to indicate a
function returning no result, because such functions return int by default,

List — Default: Off

When 0n, causces the compiler to produce a listing on standard output. It is typically given when starting
the compilation but may appcar in the source file to turn the listing On or O£ f around a particular scction
of source.

Literals_in code — Default: On
When on, causes lengthy literals in a program to be placed in the code space rather than in the data space.

Note: Not all C literals can be placed in code. A string litcral is a writable data item and hence cannot be
placed in code; for such a literal Literals in code has no effect. See Read_only_strings below.

Long_enums — Default: On

When 0n, causes any variable of an enum type to be mapped to a fullword so as to be compatible with the
portable C compiler pcc.

Make externs_global — Default: On

When On, any local declaration of an object with storage class extern is made global if there is not
alrcady a global declaration of the object. Early C compilers promotcd an extern dcclaration within a
function to the global scope. This toggle supports programs depending upon that “fcature”.

Optimize for space — Default: Off

When 0n, causes the generation of more space-efficient but potentially less time-efficient code. May have
no effect for some machines?2.
Optimize xjmp — Default:On

When On, enables the cross-jumping optimization. This is an effective space-saving optimization that
leaves execution time invariant. It slows the code generator slightly, and can produce code that is difficult
to debug. See §A CROSS-JUMPING OPTIMIZATIONS of this guide for more information on the
specifics of this optimization. See also the Optimize xJmp_space toggle below?.

Optimize_xjmp space — Default: On

When On, enables a cross-jumping optimization that saves space, but always at the expense of time. This
toggle takes effect only if Optimize xJmp is also On. This optimization slows the code gencrator
slightly, and can produce code that is difficult to decbug. See §A CROSS-JUMPING OPTIMIZATIONS of
this ggide for more information on the specifics of this optimization. Sce also the Optimize xJmp toggle
above~.

2. It is not advisable to use optimizations in a debugging/emulation environment,

C-10 2 July 87

4.3 for the IBM RT PC High C Programmer’s Guide

Parm warnings — Default: On

When 0On, causes the compiler to produce warnings whenever arguments to a non-prototype (old-style)
function r do not match the types of the declared formal parameters of . Frequently this inconsistency is
a source of disastrous or difficult-to-find bugs.

Example:

double square(x) double x; {return x*x;}

printf ("$d\n", square (3));

square is passed the integer 3, not the double 3.0, and the compiler issues a warning. The C language
definition prohibits the compiler from casting 3 to a doubla before passing it.

To eliminate the compiler warnings, turn Of £ the toggle Parm _warnings. We recommend, however, that
the program text be repaired to eliminate the offending function calls rather than eliminating the
potentially useful feedback from the compiler.

PCC msgs — Default: On

When on, the diagnostic capabilitics of the compiler are reduced to the pee (“portable C compiler”) level,
in that the following warnings are not emitted:

Function called but not defined.

Function return value never specified within
function.

This "return" should return a value of type it
since the enclosing function returns this type.

"=" used where "==" may have been intended.

Only fields of type "unsigned int" or
"unsigned long int" are supported.

External function is never referenced.

Declared type is never referenced.

The next four messages are suppressed for global variables when PCC_msgs is On:

Variable is never used.

Variable is referenced before it is set.
Variable 1s referenced but is never set.
Variable is set but is never referenced.

When all warnings are enabled in High C, code must be “squeaky clean” to get through the compiler
without a warning. Some users have code that was designed with a compiler that is not so demanding, and
would prefer fewer prods from the compiler. Hence the PCC_msgs toggle is supplied.

Pointers_compatible — Default: Off

When On, allows pointers of any type to be compatible with each other. Although this is in violation of the
Standard and High C specifications, many old C programs improperly assign pointers of different types to
each other. This toggle allows such programs to be compiled without modification.

Pointers_compatible with_ints — Default: Off

When on, allows pointers of any type to be compatible with ints. Although this is in violation of the
Standard and High C specifications, many old C programs improperly assign pointers to ints and vice-
versa. This toggle allows such programs to be compiled without modification.

ANSI and High C disallow this dangerous practice because pointers are not necessarily the same size as
ints on all machines. The programmer should ensure that intermixed pointer and int values have the
same size; otherwise a pointer stored in an int may not be retrieved as expected.

Print ppo — Default: Off

When On, causes preprocessed input to be written to standard output. With this toggle, it is possible to
print what the compiler proper receives over a local area of source code. This toggle is used to inspect the
expansion of a macro, by turning the toggle On prior to the macro invocation and O£ £ after it. Note: This
toggle is ignored unless -Hnocpp is specified or is the default.

C-11 2 July 87

4.3 for the IBM RT PC. High C Programmer’s Guide

Print_protos — Default: Off

When on, causes the compiler to write to standard output a new, prototype-style function hecader for each
function definition. This toggle aids in the conversion of C programs to the ANSI prototype syntax
derived from the C++ language. For example, for the function dcfinition:

int f(x,y,z) int *x,z[]; double (*y) (}; {...}
the compiler produces:

int f(int *x, double (*y) (), int *z);
The old function header can then be replaced with the generated one.

There is a minor pitfall in having the compiler automatically generate prototype headers: array parameters,
according to the semantics of C, are converted to pointer parameters.

Print reg vars — Default: Off

When 0n, causes the compiler to report (on standard output) each variable that is mapped to a register.
This saves the programmer the trouble of looking at the gencrated code to discover such information.

Prototype conversion warn — Default: On

When 0n, causes the compiler to generate a warning message when a function’s argument is converted due
to a prototype declaration.

When using function prototypes, the compiler may automatically convert a function’s argument so that the
argument’s type matches that of the formal parameter. Wherever such a conversion does not match what
would happen in the absence of prototypes, such C code would probably not run correctly on older C
compilers that lack prototypes. Turn On toggle Prototype conversion warn to have the compiler flag
all such occurrences.

Prototype override warnings — Default: On

When on, causes the compiler to produce a warning whenever a declaration (not definition) for a function
using the new prototype syntax overrides the semantics of an old-style function definition.

Standard C requires that function prototype declarations override old-style function definitions. This
means that the simple inclusion of a . h header file with prototype declarations of functions obtains the
new prototype semantics for the definitions of those functions. This feature has both disadvantages and
advantages.>

The advantage is that the new prototype semantics — the Pascal-style assignment-conversion of argaments
to the types of the formal parameters — is obtainable by merely including a declaration in a header file.
The disadvantage is that a definition can no longer be read out-of-context; without scarching header files
onc cannot determine whether the compiler compiles the function using prototype-style semantics or not.
For example:

file header.h:
int func(float f,long 1l);

file prog.c:
#include "header.h”
int func(f,l) fleoat f; long 1; {

}

void sub () {
func(3, 4.4); /* Passes 3.0 and 4L via */
} /* automatic conversion. */

Were header . h nrot included, the call to func in sub would pass the int 3 and the double 4.4; func
would probably not work right. With the header file included, the interface for func is changed to

3. The interested reader may wish to consult the Winter 1987 (volume 2, number 3) issue of the C Journal for an article by Tom Pennello
of MetaWare on the subject of prototypes.

C-12 2 July 87

4.3 for the IBM RT PC High C Programmer’s Guide

prototype-style (3 is converted to £loat and 4.4 to long). Thus, one can know how the compiler treats
func only by searching all of the header files.

To obviate the need for searching, High C provides a warning message whenever an old-style definition is
overridden by a prototype. The warning message can be disabled by turning Off toggle Prototype
override warnings.

We recommend that function definitions be written with the new prototype syntax for improved
readability and reliability. To wit:

file prog.c:
int func(float f,long 1) {
}
The ANSI committee permitted the override featare for two reasons: first, it would take some work to
convert programs to use the new syntax in the definition (although with toggle Print protos, High C
generates the headers from old-style definitions); second, most compilers do not support prototype-form

definitions, and the use of a header that is conditionally included based upon the compiler being used
makes code more easily compilable by different compilers.

Public_var warnings — Default: On
When 0Of £, suppresses the warning messages:

Variable is never used.

Variable is referenced before it is set.
Variable is referenced but is never set.
Variable is set but is never referenced.

for all variables exported, that is, non-automatic variables not declared static or extern.

Such messages occur only for such variables that are not declared within a #included file. If one adheres
to the discipline that all imported variables are defined in included files, the message does not occur.

Quiet — Default: On

When 0f£f, causes each compilation phase to be announced in turn as the compilation progresses. (This
toggle is not turned O£ £ by -v.)

Read_only strings — Default: Off

‘When 0n, string literals are considered true literals. Identical string literals appear in the object code only
once and the Literals in code toggle (see above) takes effect for string literals, causing them to be
placed in code.

C string literals are not true literals since they are writable data items. This means that they cannot
normally be placed in code space. Furthermore, two identical C string literals must normally be duplicated
in a program’s object code, since one might be modified and the other not. To avoid this, use Read
only stringsandLiterals_in_ code. These two toggles cause C string literals to be placed in code.

The -R option turns Read_only strings On initially.
Summarize — Default: Off

When 0On, causes the production of summaries of compilation activities. The summaries are produced at
various stages of compilation.

Warn — Default: On

When of £, causes warning messages to be suppressed. The -w option turns Warn Off initially.

C-13 2 July 87

4.3 for the IBM RT PC High C Programmer’s Guide

5. STORAGE MAPPING

5.1 Data Types in Storage
The table below summarizes the size and alignment of various C data types, and whether a variable of each
type can be allocated to a register.

char and int types have the same size regardless of whether they are signed; therefore the table docs not
mention the sign.

Data Type Size Alignment Allocable
char 1 (bytes) 1 (bytes) Y
short int 2 2 Y
int 4 4 Y
long int 4 4 Y
float 4 4 Y
double 8 4 Y
long double 8 4 Y
enum . . . See Note 3 .

Pointer 4 4 Y
Full-function? 8 4 N
T[n] n*sizeof (T) Same as T N
struct{..} See Note 1. See Note 2. N
union {..} See Note 1. See Note 2. N

Note 1: The size of a struct or union is dependent upon whether the compiler generates padding to align
members. The compiler will generate such padding by default if the toggle Align members is On, and will
not do so by default if the toggle is 0f£. The keywords _packed and _unpacked have been added to High C
to allow control over member alignment on an individual struct or union basis. A _packed struct isnot
padded; an _unpacked struct is padded. See §4 COMPILER TOGGLES to determine the default setting of

Align_members.

The size of an unpadded union is the size of the biggest member. The size of a padded union is the size of
the biggest member padded so that its size is evenly divisible by its alignment.

The size of an unpadded struct is the sum of the sizes of its members. Non-bit-ficld members always start on
byte boundaries, and there is no padding between members except in the case of bit ficlds; see below. The size
of a padded struct is the sum of the sizes of its members including alignment padding between members. It
is padded so that its size is evenly divisible by its alignment.

Note 2: A struct or union is aligned according to the most stringent requircments among its members.

Note 3: The size of enum types depends on the status of the Long_enums toggle. If the toggle is 0f £, the
type is mapped to the smallest of a byte, half-word, or full word, such that all the values can be represented. If
the toggle is On, the enum maps to a full word (matching the convention of the Portable C Compiler). See §4
COMPILER TOGGLES. -

Bit members. Only unsigned bit members are supported. A bit member may not exceed 32 bits and is packed
in each consecutive byte as shown in the map below. A bit member must fit within a four-byte word that is
aligned to a four-byte boundary. Padding is added where appropriate to make this true.

A bit member of length zero causes alignment to occur at the next full-word boundary, that is, where an int
would be aligned. '

For example, the structure definition:

struct {(unsigned x:11,y:9,2:13,w:1; char c; short i;}

4. A full-function value is a High C extension. It consists of a function address and a static link. See the High C Language Reference
Manual for details.

C-14 2 July 87

4.3 for the IBM RT PC High C Programmer’s Guide

is mapped to memory as follows:

76543210 76543210 76543210 76543210
<---Byte 0 ---> <---Byte 1 ---> <—---Byte 2 —-—-> <---Byte 3 —-->
X X X XX XXX XXXYYYYY YYVYY

76543210 76543210 76543210 763543210
<---Byte 4 —---> <---Byte 5 ---> <---Byte 6 -—-> <---Byte 7 —-==>
22222222 222ZZZW cccccecccc

76543210 76543210
<---Byte 8 -~-> <---Byte 9 --->
ii1ii1idiii 1iididiidid

5.2 Storage Classes

Each static variable is placed in either the BSS section or the DATA section — the latter if it is initialized.

Each global variable with no extern specifier that is not initialized is defined as a common block; if it is
initialized, it is mapped into the DATA section and given the global attribute. Each extern variable is given
the global and undefined attributes.

Each auto variable is assigned either to a machine register or to storage in the routine’s “stack frame”. See §6
RUN-TIME ORGANIZATION. The compiler chooses which of the auto-classed variables to place in registers
based upon the variable’s type, frequency of reference, and whether the s operator is ever applied to it. In a
function containing calls to set jump, aute variables are not mapped to registers, so that their values are not
lost across such calls.

Each register variable is assigned similarly, except that it is given extra weight in assignment to a machine
register. Be warned that use of library functions set jmp and longjmp can produce unpredictable results in
the context of register variables. See setjmp (3).

Cc-15 2 July 87

4.3 for the IBM RT PC High C Programmer’s Guide

6. RUN-TIME ORGANIZATION

The High C compiler adheres to the standard linkage convention established by 4.3/RT5. This chapter
presumcs knowledge of the 4.3/RT architecture and assembly language. Throughout this chapter the term
word denotes a four-byte storage unit.

6.1 Register Usage

Certain registers, such as r1, have specific uses throughout execution; others, such as r15, are used during a
function call and are frce at other times. The following table defines register usage at the call interface.

Saved
Regi- over
ster call Use
r0 no called-function data arca pointer
rl yes stack pointer (caller’s frame pointer)
r2 no argument word 1 and returned value
r3 no argument word 2 and lower half of
a rcturned double value
r4 no argument word 3
r5 no argument word 4
ré-rl2 yes register variablcs, etc.
rl3 yes frame pointer
rl4 yes data arca pointer
rls no return address
mg no multiply/divide register

In addition, floating-point registers 0 and 1 are not saved over a call; registers 2-7 are preserved.

6.2 The Data Area

Each C function has an “entry point” and a “data area”. Both must be referenced at the point of a call.

The entry point is where the code of the function begins. The data area (also called a “constant pool”, which is
a misnomer) contains strings, function addresses, and other literals.

A function foo normally has an entry point named _. foo and a data area named _foo.

The call instruction sequence scts r0 to the address of the called-function’s data arca. The first word in the
data area is the entry point of the called function. The word following supports the code profiling option (-p),
and if present must be initialized to zero; the third word, also optional, supports alloca storage allocation.

In the function prologue code, r0 is copied to r14; thus, r14 is used to address the associated data arca from
within a function.

The data area is placed in the DATA section so that r14 may be used as a base for referencing local static
variables. Static variables are usually mapped before the various data arcas; therefore, static variable
references employ negative offscts from r14.

When a pointer to a function is assigned the “value” of a function, it is actually assigned the address of the
function’s data area. The first word of the data area always contains the entry point, that is, the address of the
first instruction of the function.

5. Portions of this chapter copyright International Business Machines Corporation, 1987. Excerpts by permission, from the manual entitled
Academic Information Systems 4.3 for the IBM RT PC. More information may be found in the section entitled “4.3/RT Linkage
Convention™ in Part II, Supplementary Documents.

C-16 2 July 87

4.3 for the IBM RT PC High C Programmer’s Guide

6.3 Stack Frame Layout

The stack holds frames for currently active functions. It is word-aligned and grows downward. r1, the “stack
pointer”, indicates the low address of the stack frame of the currently exccuting function.

A stack frame is divided into the following areas, highest address first:

a) space for incoming argument list (four words)

b) linkage arca (four words; reserved)

¢) static link (one word)

d) general register save area (sixteen words maximum)

¢) floating-point register save area (zero or eighteen words)
f) local variables and temporary storage

g) words 5 through n of out-going argument lists

The static link applies to a function that is nested within another function; it is the address of the enclosing
function’s stack frame. (Nested function definitions, as in Pascal, are a High C extension to Standard C.) The
static link is used to do “up-level addressing”, that is, referencing local variables of containing functions.
While executing level-one functions, the static link field is uninitialized.

The caller’s return address (r15) is saved at a fixed offset of ten words below the top of the stack frame, at the
top of the general register save area.

The floating-point register save area is up to eighteen words long. It is empty if no such registers need
preserving.

The compiler uses r13 to reference the top of the stack frame. Since it is more efficient to access variables
with small positive displacements, the compiler often biases the value of r13 to improve the code for local
variable accesses (see §6.7 Prologue below for more information).

6.4 Argument Passing

Arguments are word-aligned and allocated to consecutive words on the stack. The list lies across frame
boundaries: words 1-4 are allocated in the top of the callee’s frame, and the remainder are in the bottom of the
caller’s frame, which is adjacent. In a call, words 1-4 are actually passed in registers r2-r5.

Arguments are passed as follows, based on argument type:

- An int is passed in a single word.

- A long, short, pointer, or char is treated as an int and passed in a word.
- A doubla is passed in two consecutive words.

- A float is converted to double and passed in two consecutive words, unless it is being passed to a
prototyped function that was declared to receive a £1oat, in which case it is passed in a word.

- A structure is aligned to a word and left justified, except for a structure one, two, or three bytes long, which
is right justified.
- A pointer to a function is passed as a pointer to the function’s data area.

- A full-function value?® is passed as two words. The first contains the address of the data area; the second
contains the static link.

If a function is declared as returning a structure, the caller passes the address of a result area in r2. The first
word of the explicit argument list is passed in r3. Subsequent arguments are shifted accordingly.

6. A full-function value is a High C extension. It consists of a function address and a static link. See the High C Language Reference
Manual for deails.

c-17 2 July 87

4.3 for the IBM RT PC High C Programmer’s Guide

6.5 Function Results

A result is returned from a function in one of three ways, depending on the function’s return type:
- anint, long, short, pointer or char is returned in r2.

- adoubleisreturned in r2 and r3.

- afloat is widened and returncd as a double.

- astructure result or full-function value is returned by moving it into the area pointed to by the first word in
the argument list (in r2 on entry).

6.6 Calling Sequences

A call of a known function foo first prepares the argument list, then executes the following:

balix rl15,_.foo # Call.
1 r0,%.long(_foo) # Get its data area
pointer, rl4 relative.

If the function being called is nested within another function (High C, not plain C), the caller stores the static
link, that is, the frame pointer of the enclosing function, into —36 (r1) before executing the balix.

Note that the address of the data area of the function being called is in the data arca of the caller and is
referenced off of r14.

A call to a function via a function pointer is done as follows. Recall that a function pointer addresses the
function’s data arca. If the pointer is in r8, typical code is:

1s rt,0{r8) # Get address of entry point.

balrx rl5,rt # Call.

mr rQ0,r8 # Load r0 with data area address.
6.7 Prologue

Prologue code saves the caller’s registers, establishes the frame pointer (r13), and obtains stack space for the
stack frame. Typical code is:

.foo: stm rn,-76+(n-6)*4 (rl)# Save caller’s regs.

mr rl4,r0 # Set up addressability
to data area.

mr rl3,rl # Set up frame pointer.

cal rl, frame_size(rl) # Allocate stack frame.

Here n (6<n<13) is the register number of the first general register to be saved, and frame size is the size
of the stack frame (word-aligned) including the space required for the caller’s save area. Other instruction
scquences are nceded for frame sizes larger than 32,767 bytes.

If floating-point registers must be saved, the following code is inserted before the allocation of the stack frame:

cal rl5, stm(rl4)
balr rl15,rl5

where stm(r14) references a floating-point storem instruction to save non-volatile floating-point registers in
the floating-point save area. See the section entitled “4.3/RT Linkage Convention” in Part II, Supplementary
Documents.

As noted earlier, r13 may be biased by some negative amount so as to improve code references to stack frame
variables. For example, “mr r13, r1” may be replaced with “cal r13,-80(rl)”.

Cc-18 2 July 87

4.3 for the IBM RT PC High C Programmer’s Guide

6.8 Epilogue

The epilogue restores the caller’s environment and returns control. Typical code is:

mr rl,rl3 # Restore stack pointer.
lm rn,-76+(n-6) *4 (rl) # Restore general req.
bxr rls # Return to caller.

where n is the same value as in the stm instruction of the corresponding prologue.
If floating-point registers are involved, these instructions appear before the 1m instruction:

cal rl5, Im(rl4)
balr rl15,rl5

where 1m(r14) references a floating-point loadm instruction to restore those floating-point registers saved in
the prologue.

6.9 Assembler Issues

Temporarily, all modules linked by 1d must have the global symbol .ovncs defined as an absolute with value
0. This distinguishes modules using an earlier linkage convention that is now obsolete. In assembly language,
the symbol can be defined via:

.globl .oVncs
.set .oVncs, 0

The compiler also defines the following to help identify compilation specifics:

.globl .oVhcversion
.set VXxDy

where version indicates the compiler version number, such as 1.4; x may be either E or e, meaning that the
code was compiled with toggle Long enums either On or Off, respectively; and y may be either u or s,
meaning that the code was compiled with toggle Char default unsigned either On or Of f, respectively.

C-19 2 July 87

4.3 for the IBM RT PC High C Programmer’s Guide

7. SYSTEM SPECIFICS

This section describes some system-specific aspects of the High C compiler for IBM Academic Information
Systems 4.3 for the IBM RT PC.

7.1 Floating-Point Arithmetic

High C uses the IEEE Standard 754 formats to represent floating-point data.

Each £loat is a 32-bit valuc with an 8-bit exponent and a 23-bit mantissa. The absolute valucs of the repre-
sentable numbers lic in the range 8.43x10737 to 3.37x10+38,

Each double and long doublae is a 64-bit value with an 11-bit exponent and a 52-bit mantissa. The absolute
values of the representable numbers lie in the range 4.19x107307 to 1.67x10+308,

7.2 Size of Complilation Unit

Each compilation unit is limited in size to perhaps 15,000 lines of “typical” C code, after macro expansion, duc
to a limit of 65K nodes in a tree representation of the entire module as expanded.

7.3 Some ANSI-Required Specifics
Here are some additional system specifics that the ANSI document X3J11/86-102 requests each C
implementation provide.

Identifiers. The number of significant characters in an identifier is 32,000, since that is the longest input line
acceptable to the compiler. Casing is preserved.

Characters. The characters in the source and the execution character set are the standard ASCII characters.
Each character in the source character set maps into the identical character in the execution character sct.
Without exception, all character constants map into some value in the execution character set.

A character is stored in a byte and there are four bytes in an int.

High C does not permit a character constant that contains more than one character. Such a construction is
usually machine-dependent.

The type specifier char, when not accompanied by an adjective, denotes an unsigned character type.
However, this can be changed by turning O£ £ the toggle Char default unsigned.

Integers. Integers are represented in twos-complement binary form. The following table illustrates the ranges
of values to which the various integer types are restricted:

Type Range

signed char -128 to 127
unsigned char 0 to 255
short -32,768 to 32,767
unsigned short 0 to 65,535
int -2,147,483,648 to 2,147,483,647
unsigned int 0 to 4,294,967,296
long -2,147,483,648 to 2,147,483,647
unsigned long 0 to 4,294,967,296

Conversion of an integer to a shorter signed integer or int bit field is done by bit truncation; that is, when
storing an X-bit value info a Y-bit receptacle, where X > Y, the rightmost Y bits of the first value are stored.
Conversion of an unsigned integer U to a signed integer I where sizeof (U) = sizeof(I) consists in
transferring the bits of U into 1, whether or not the value of U is representable in I. For example, (short
int) (short unsigned) 65535 is the short int value -1. The sizeof operator returns an int.

The results of bitwise operations on signed integers are the same as if the integers were treated as unsigned.

C-20 2 July 87

4.3 for the IBM RT PC High C Programmer’s Guide

The sign of the remainder on integer division is the same as the sign of the dividend.
The right shift of a signed integral type is arithmetic; that is, the sign bit is propagated to the right.

Floating point. Floating-point representation is IEEE Standard 754. The default rounding mode is “round to
nearest”. Sce §5 STORAGE MAPPING for the length required for each floating-point type.

When a negative floating-point number is truncated to an integral type, the truncation is toward zcro. Thus
=2 .7 is truncated to ~2 and -1.2 to ~1.

Arrays and Pointers. The type returned by sizeof is type int, and the difference of the pointers is type
int.

Registers. A register variable is eligible for assignment to a machine register if its type is appropriate. Sec
the table in §5 STORAGE MAPPING for a list of such types.

Potentially, as many variables can be placed in registers as there are “nonvolatile” registers. Sce §6 RUN-
TIME ORGANIZATION for a list of the nonvolatile registers. '

Structures, unions, and bit fields. Only unsigned bit fields are supported. A bit field declared as int is
treated as unsigned int. For more information on structures, unions, and bit ficlds, sce §5 STORAGE
MAPPING.

Declarators. There may be at most 65,535 declarators modifying a basic type.
Statements. There may be at most 65,535 cases in a switch statement.

Preprocessing directives. A single-character constant in a constant expression controlling conditional inclu-
sion is always non-negative in value, ranging from 0 to 255.

For the method of locating includable source files, see §2 INVOKING THE COMPILER.

Cc-21 2 July 87

4.3 for the IBM RT PC High C Programmer’s Guide

8. EXTERNALS

The names of variables and functions that are communicated across module boundaries are normally made
global in the resultant object module. In large programs there may be hundreds or even thousands of such
names, so name conflicts are likely to occur.

Unfortunately neither C nor most linkers provide for a structured name space — for named packages of
resources, for example. Thus the well-chosen “internal” names in a program may not also be usable as
“external” names (those known to the linker) as they should be. Thus some method of aliasing internal names
to externals is needed, and High C provides it.

It is important to be able to alias such names to avoid conflicts in the linker’s external symbol dictionary, rather
than being forced to pervert the internal names themselves. It is the internal names that are most important 10
be well-chosen “containers of meaning”, for program maintainability.”

8.1 The Alias Pragma

This pragma specifies, for a specific internal name, another name for external or public purposes. It is the
altcrnate name that appears in the object module. The form of the A1ias pragma is as follows:

pragma Alias(<Internal name>,<External_name>);

where <Internal name> is the function or variable identifier being aliased and <External name> is a
constant string expression whose value denotes the alternate or external name.

The Alias pragma must appear in the scope of the declaration of the intcrnal name.
Example:
void Initialize();

pragma Alias(Initialize,”x initialize™);

/* The function Initialize is referenced in the */

/* object-module name list as "x_initialize". */
int BA;

pragma Alias(BA,"PhD");

/* "BA" is referenced in the name list as “PhD". */

8.2 Data Segmentation: the Data Pragma

Audience. This section may be skipped except by those interested in either (a) linking with programs written
in Professional Pascal or (b) using a data communication convention different from that of Standard C.

Communication between scparately-compiled modules is achieved by using the extern storage class in C.
Multiple defining declarations of a variable x are allowed, as long as at most one of them initializes x (thus the
extern storage class is not required).

The Data pragma provides an altcrnative method of sharing data, using named blocks. Its gencral usage is
illustrated by:

pragma Data(class,"blockname");
int X,Y,Z;
/* Other normal C declarations may appear here. */
pragma Data;
/* "Turns off" the prior Data pragma. */

where class is one of Common, Import, or Export, and "blockname™ is a constant string expression. The
ending Data pragma has no parameters.

7. The external names are also important in that respect, but we believe that the proper solution is a “module interconncction language”
and associated linker with a structured dictionary to match the overall structure of the program.

C-22 2 July 87

4.3 for the IBM RT PC High C Programmer’s Guide

Only the given block name is made known to the linker as a global symbol: ecach variable is addressed at a
fixed offset within the block. When the Import class is specified, the symbol is given the undefined global
attributcs and a value of 0; when Export, the symbol is defined in the module’s bss or data scgment and
given the global attribute. When Common, the symbol is flagged as a named common block, that is, given the
undefined global attributcs and a value that is cqual to its length.

Scope. Each Data pragma must be terminated or “turned off” as illustrated above in the same scope in which it
is turned on. The storage class specification applies only to variable declarations between the specification and
its termination, but not to any variables declared within embedded function definitions (a High C extension).
That is, variables declarcd at lower levels — local to surrounded (nested) function declarations — are not
affected: at a function declaration, any active Data pragma temporarily becomes inactive and the default
applies through the end of the function.

A compile-time wamning is issucd if a Data pragma is specified when a prior Data pragma is still active (in
which case the subscquent pragma applies), or if a Data pragma is active at the end of a function declaration or
at the end of a compilation unit. Thus Data pragmas cannot be nested within a single function, though they
can be nested if they apply to the local variables of distinct functions.

Example:

pragma Data (Common, "block");

int Tables_are_loaded: Boolean;
struct (...} Tables;

pragma Data;

Here, the names, Tables and Tables are loaded, are mapped at consecutive displacements (subject to
boundary alignment) within the common block block.

C-23 2 July 87

4.3 for the IBM RT PC High C Programmer’s Guide
9. ASSEMBLY LANGUAGE COMMUNICATION

9.1 Assembly Routines

§6 RUN-TIME ORGANIZATION describes the code that an assembly routine must execute to be callable from
C, how arguments arc passed, and how function results are rcturned. In short, an assembly routine should be
coded according to the following guidelines. Symbolsin italics are to be filled in appropriately.

.text

.globl .name
.globl name

_.name: stm rn,=76+(n-6)*4 (rl)
mr rl4,r0
mxr ri3,rl
cal rl, frame size(rl)
The body of the routine goes here.
mr rl,rl3
1m rn,-76+(n-6) *4 (rl)
br ris
.data
.align 2
__name:
.long _.name

where name is the function’s name as referenced from C; n (6<n<13) is the register number of the first gencral
register to be saved; frame size is the size of the stack frame (word-aligned) including the space required for
the caller’s save arca.

9.2 Function Naming Conventions

An identifier that is global, that is, accessible across module boundaries, must have information provided to the
linker that associates its name with its address. This is done by placing a corresponding name in the name list
of the object module and giving it the “global” attribute.

There are two names associated with every function: one referring to the entry point and the other to the
associated data area. The name that references the data area of a C function foo is _foo; the entry point is
referenced by . foo.

C-24 2 July 87

4.3 for the IBM RT PC High C Programmer’s Guide

9.3 Examples: Calling Assembly from C

Example #1:
High C:

extern void and(int *dest, int *src, int len);
void main{()

{
int a(256],b[256];
and(a,b,256);

}

Assembly:
.data
.globl and
.globl _.and
.align 2
_and: .long _.and
.text
_.and:
stm rl3,-48(rl)
mr rl4, r0
mr rl3, rl
cal rl,-48(xrl)
L: cis rd4d,0
jle exit
1s r0,0(r2)
1ls r5,0(r3)
n r0,r5
sis rd,1
bx L
sts r0,0(r2)
exit: nr rl,rl13
1m rl3,-48(rl)
br rl5

Since the assembly routine does not modify non-volatile registers and has a zero-length stack frame (except for
the caller’s save area), it can be optimized to the following:

.data
.globl and
.globl _ .and
.align 2

_and: .long _.and
.text

__.and:

L: cis r4,0
bler ri5
ls r0,0(r2)
1s r5,0(r3)
n r0,r5
8is rd4,1
bx L
sts r0,0(xr2)

However, if an exception should occur in the optimized routine, for example, an invalid address passed in, the
debugger may be hampered in identifying the context.

C-25 2 July 87

4.3 for the IBMRT PC High C Programmer’s Guide

Example #2:
High C:
extern char peek (char *adr);
void main () {
char b;
b = peek (0x8000);

}

Assembly:
.data
.globl peek
.globl .peek
.align 2
_peek: .long _.peek
text
_.peek: le r2,0(r2) # Return the byte.
br rls '

9.4 Example: Calling C from Assembly

To call a C function foo from assembly language, first store the arguments in r2 through r5 (putting any
additional arguments on the stack at 0 (r1)) and then execute the following two instructions.

balix rl5, .foo
1 r0,x(r14)

where x (r14) refers to a memory location containing the address of foo.
Example:
High C:

void write_string(char *s)
{
printf("%s\n",s);
}

Assembly:
.text
.globl write_string
.globl .write string
_name: .long __.name
.long _write string
__.name: stm rl3,-48(rl)
mr rl3,rl
mr ri4, r0 # Set up reference
cen # to data area.
get r2,$msg
balix rl5, .write string v
1 r0,4(rl4) # i.e., name + 4
msgqg: .asciz "This is a message."”

9.5 Data Communication

A global variable “x” appears in the name list as “ x”, unless specified otherwise with an Alias pragma —
see §8 EXTERNALS.

C-26 2 July 87

4.3 for the IBM RT PC High C Programmer’s Guide

§5 STORAGE MAPPING explains how the various C data types are mapped into storage. Note that
uninitialized global variables without the extern qualifier are actually defined as individual common blocks.
The following examples illustrate the sharing of variables across C and assembly modules:

High C:

int alpha,beta;

char hextable[] = "0123456789ABCDEF"™;

extern char *names[]; /*A read-only table of names.*/
extern short status:;

Assembly:
.comm _alpha,4
.comm _beta,4
.globl hextable # Imported from C.
.text
.globl names # Read-only:
_names: .long LO1 # in text segment.
.long .02
.long L03
.long 0
LO1: .asciz "alfred"
L02: .asciz "bonny"
L03: .asciz "charlie"
.data
.gloebl status
_status:
.short ©0

High C provides the ability to map more than one variable into a named block, for example, a common block
as in FORTRAN. This facility is provided by the Data pragma and is documented in §8 EXTERNALS. The
following illustrates how such a common block may be accessed from assembly language.

C Common Block Definition:
pragma Data (Common, "BLOCK_NAME™) ;

int a,b;
char c,d;
short e;

pragma Data;
Assembly Language Equivalent:
.comm BLOCK NAME, 12

.set a,0
.set b, 4
.sat c,8
.sat d, 9
.set e, 10
Usage:
get r2,BLOCK_NAME
1 r3,a{r2) # Load value of a.
1 r4,b(r2) # Load value of b.
lc r5,c(r2) # Load value of c, etc.

Note that variables a, b, c, d, and e are not global; that is, they do not appear in the name list with the “global”
attribute. The only name that appears in the name list is BLOCK_NAME.

C-27 2 July 87

4.3 for the IBM RT PC High C Prograhimer’s Guidé

10. LISTINGS

This chapter describes the format of a listing generated by the compiler. Those pragmas that have an effect on
the listing are described as well.

10.1 Pragmas Page, Skip, Title

To cause n page ejccts at some point in the listing, insert:

pragma Page(n); /* where n is the number of ejects. */

To cause n lincs to be blank at some point in the listing, insert:

pragma Skip(n); /* where n is the number of blanks. */

To cause a title T to appear at the top of each successive page, place the following pragma in the source:
pragma Title(T); /* where T is a string constant. */

Each successive Title pragma changes the title for subsequent pages; therefore the title does not appear on the
first page.

10.2 Format of Listings

Ruler. The first line after any header and title lines on each page is a “ruler” that defines three fields for each
line. The fields are for: (1) three level numbers, (2) the line number, and (3) the line contents. The ruler is as
follows:

Levels LINE#|-—=—t===—l=—mmfmm——2m o345

Level-numbers can be used to find a missing } or comment terminator when a message such as “Unexpected
end-of-file.” is produced by the compiler. All three level-numbers are initially zero, but they are printed
as blank rather than 0.

The first level-number indicates the scope nesting level for st ruct or union declarations.

The second level-number indicates the statement nesting level. It is incremented at the beginning of each { and
is decremented at the corresponding }.

The third level-number indicates the structure initialization nesting level. It is incremented at the beginning of
each { and decremented at the corresponding }.

Include files. A first-level Include file named File name is indicated as starting after a line containing
“+(File_name” in the line number field, and ending just before a matching “+)File name” line. The

included lines have “+” in the leftmost column of the line-number field, and those lines are numbered
independently of the main source file.

An Included file inside an Include file has an extra “+” on each of its lines for each level of inclusion,
except that line numbers take precedence over “+”s in the line-number field if and when the “+”s would
otherwise intrude into the field.

The listing facility should be used in conjunction with the -Hnocpp option. Otherwise the output of the
outboard C preprocessor will be listed; each Include file specified with the #include preprocessor
statement is back substituted with no indication on the listing.

Example. Because a picture is worth a thousand words, a sample program listing appears on the next two
pages, enhanced with boldface reserved words and followed by the optional assembly listing requested by
-Hasm on the following compile command line:

he queens.c -Hlist -Hasm -Hnocpp

C-28 2 July 87

4.3 for the IBM RT PC

MetaWare High C Compiler 1.4 07-Jul-86 17:13:14 queens.c
Copyright (C) 1983-87 MetaWare Incorporated.

Target:
Levels

R NWWSOmaad D WWwwwwioN e

P EPNWWSEOTOOOOS D WWWWwWwNoN e

4.3/RT
LINE #
1

w N

(e e N

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

(Code generator 2.7)
| ===l 23— f ————f— = =5 ————}
|/* From Wirth's Algorithms+Data Structures=Programs. */
|/* This program is suitable for a code-generation */
| /* benchmark, especially given common sub-expressions*/

[/* in array indexing. See the Programmer’s Guide for*/
|/* how to get a machine code interlisting. */

|pragma Title("Eight Queens problem.");

|

|typedef enum {False,True} Boolean;

|[typedef int Integer;

|

|#define Asub(I) A[(I)-1] /*C’'s restriction that array */
| #define Bsub (I) B[(I)-2] /* indices start at zero */
| #define Csub(I) C[(I)+7] /* prompts definition of */
| #define Xsub(I) X[(I)-1] /* macros to do subscripting.*/
I /* Pascal equivalents: */

| statie Boolean A[8]; /* A:array(1.. 8] of Boolean */
|static Boolean B[15]; /* B:array([2..16] of Boolean */

| statie Boolean C[15]; /* C:array([-7.. 7] of Boolean */
|static Integer X[8]; /* X:array[1.. 8] of Integer */

!

|void Try{Integer I, Boolean *Q) {

| Integer J = 0O;

| do {

| J++; *Q = False;

| if (Asub(J) && Bsub(I+J) && Csub(I-J)) {

| Xsub (I} = J;

| Asub (J) = False;

| Bsub (I+J) = False;

| Csub(I-J) = False;

| if (I < 8) {

| Try(I+1,0Q);

| if (1*Q) |

| Asub (J) = True;

| Bsub (I+J) = True;

| Csub (I-J) True;
|

|

|

|

|

|

|

|

I

}
}
aelsa *Q = True;
}
}
while (! (*Q || J==8));
}
pragma Page{l); /* Page eject requested. */

High C Programmer’s Guide

Page 1

2 July 87

4.3 for the IBM RT PC High C Programmer’s Guide

MetaWare High C Compiler 1.4 07-Jul-86 17:13:14 queens.c Page 2

Eight Queens problem.
Levels LINE # |-——4-—=]l—"-"-4——--2———-4———-3————fomm—fmm e -5}
45 |wvoid main () {
11 46 | Integer I; Boolean Q;
11 47 | printf ("$s\n","go");
11 48 | for (I = 1; I <= 8; Asub(I++) = True):
11 49 | for (I = 2; I <= 16; Bsub(I++) = True);
11 50 | for (I = -7; I <= 7; Csub(I++) = True);
11 51 | Try(1,&Q);
11 52 |pragma Skip(3); /* Skip 3 lines. */
11 53 | if (Q)
11 54 | for (I = 1; I <= 8;) {
2 2 55 | printf("%44d", Xsub (I++));
22 56 | }
11 57 | printf("\n");
11 58 | }

If the ~Hasm option is specified, the source-annotated assembly listing on the next few pages is produced. (The
page boundaries have been adjusted to fit the present page sizes.)

C-30 2 July 87

4.3 for the IBM RT PC

MetaWare High C Compiler 1.4

High C Programmer’s Guide

07-Jul-86 17:13:14 queens.c

Copyright (C) 1983-86 MetaWare Incorporated.
Target: 4.2/RT (Code generator 1.3)
Levels LINE # |-————+-———-]1—~——4—-=-2-motmme—Bmm e m— e —— = =5}
1 |/* From Wirth’s Algorithms+Data Structures = Programs.*/
2 |/* This program is suitable for a code-generation */
3 |/* benchmark, especially given common sub-expressions */
4 |/* in array indexing. See the Programmer’s Guide for */
5 |/* how to get a machine code interlisting.
*/
6 |
7 |pragma Title("Eight Queens problem.");
8 |
9 |typedef enum {False,True} Boolean;
10 |typedef int Integer;
11 |
12 |f#define Asub(I) A[(I)-1] /* C’'s restriction that array*/
13 |#define Bsub(I) B[(I)-2] /* indices start at zero */
14 |#define Csub(I) C[(I)+7] /* prompts definition of */
15 |#define Xsub(I) X[(I)-1] /* macros to do subscripting.*/
16 | /* Pascal equivalents: */
17 |static Boolean A[8]; /* A:array(1.. 8] of Boolean */
18 |static Boolean B[15]; /* B:array[2..16) of Boolean */
19 |static Boolean C[15]; /* C:array(-7.. 7] of Boolean */
20 |static Integer X[8]; /* X:array[1.. 8] of Integer */
21 |
22 |void Try(Integer I, Boolean *Q) {
1 23 | Integer J = 0;
1 24 | do {
2 25 | J++; *Q = False;
2 26 | if (Asub(J) && Bsub(I+J) && Csub(I-J)) {
3 27 | Xsub(I) = J;
3 28 | Asub(J) = False;
3 29 | Bsub (I+J) = False;
3 30 | Csub(I-J) = False;
3 31 | if (I < 8) {
4 32 | Try (I+1,Q);
4 33 | if (!*Q) |
5 34 | Asub(J) = True;
5 35 | Bsub (I+J) = True;
5 36 | Csub(I-J) = True;
5 37 | } '
4 38 | }
3 39 | else *Q = True;
3 40 | }
2 41 | }
1 42 | while (! (*Q || J==8));
1 43 | }
44 |pragma Page(l); /* Page eject requested. */

Page 1

2 July 87

4.3 for the IBM RT PC

MetaWare High C Compiler 1.4

Levels

=

I =

o NN e

LINE #
45
46
47
48
49
50
51
52

53
54
55
56
57
58

Eight Queens problem.

High C Programmer’s Guide

07-Jul-86 17:13:14 queens.c Page 2

e B Juat B B e e
|wvoid main () {

pragma Skip(3);

Integer I; Boolean Q;
printf ("%s\n", "go");

for (I = 1; I <= 8;
for (I = 2; I <= 16;
for (I = -7; I <= 7;

Try(1,&Q);

if (Q)

Asub (I++) = True);
Bsub(I++) = True);
Csub(I++) = True};

/* Skip 3 lines. */

for (I = 1; I <= 8;) {
printf ("%$44", Xsub (I++));

}
printf ("\n");
}

C-32 2 July 87

4.3 for the IBM RT PC

MetaWare High C Compiler 1.4

07-Jul-86 17:13:14

Eight Queens problem.

queens.c

High C Programmer’s Guide

Programs */

*/

See the Programmer’s Guide for */

16]

/* C's restriction that array*/
indices start at zero

/* macrocs to do subscripting.*/

of Boolean

of Boolean

of Boolean

of Integer

Addr Object Source Program and Assembly Listing
.globl .oVncs
.set .oVncs, 0
.globl printf
.globl .printf
#/* From Wirth’s Algorithms+Data Structures =
#/* This program is suitable for a code-generation
#/* benchmark, especially given common sub-expressions */
#/* in array indexing.
#/* how to get a machine code interlisting.
#tpragma Title("Eight Queens problem.");
ttypedef enum {False,True} Boolean;
ttypedef int Integer;
##defina Asub(I) A[(I)-1]
##define Bsub(I) B[(I)-2] /*
*/
##define Csub(I) C[(I)+7] /* prompts definition of
*/
##define Xsub (I) X[(I)-1]
/* Pascal equivalents:
*/
#static Boolean A[8]; /* A:array![1.. 8]
.data
0000 LOOC _DATA:
0000 00 .byte 0
.set _A,LOO0_DATA+O
#static Boolean B[15]; /* B:array| 2..
0001 .space 7
0008 00 .byte 0
.set _B,L0O0_DATA+8
#static Boolean C[15]; /* C:array(-7.. 7]
0009 .spaca 15
0018 00 .byte 0
.sat _C,LOO_DATA+24
#static Integer X[8]; /* X:array[1.. 8]
0019 .space 15
0028 00 .byta 0
.set _X,L00_DATA+40
#void Try(Integer I, Boolean *Q) {
.text
0000 .align 1
0000 L00O:
.globl .Try
_.Try:
0000 D961 FFB4 stm r6,-76(rl)
0004 6EO0O mr rl4,r0
0006 6D10 mx rl3,rl
0008 C811 FFB4 cal rl,-76(rl)
000C 6C20 mx rl2,r2
O00E 6B30 mr rll,r3
Integer J = 0;
0010 A4A0 lis rl0,0
do {
J++; *Q = False;
0012 L012:
0012 90Al ais rl0,1
0014 A490 lis r9,0

*/

*/

*/

Page 3

2 July 87

4.3 for the IBM RT PC

MetaWare High C

Compiler 1.4 07-Jul-86 17:13:14

Eight Queens problem.

queens.c

Addr Object Source Program and Assembly Listing
0016 109B stcs r9,0(rll)

if (Asub(J) && Bsub (I+J) && Csub(I-J))
0018 C82E FFAS8 cal r2,-88(rl4)
001C 682A cas r8,r2,r10
001E CE38 FFFF lc r3,-1(r8)
0022 B439 c r3,r9
0024 0A2D je LO7E
0026 63AC cas r3,rl0,rl2
0028 6723 cas r7,r2,r3
002A 4637 lcs r3,6(r7)
002C B439 c r3,r9
002E 0AZ28 je LO7E
0030 63CO mr r3,rl2
0032 E23A s r3,rl0
0034 6623 cas r6,r2,r3
0036 CE36 001F lc r3,31(x6)
003A B439 c r3,r9
003C 0A21 je LO7E

Xsub(I) = J;
003E 63C0 mr r3,rl2
0040 AA32 sli r3,2
0042 E123 a r2,r3
0044 39A2 sts r10,36(r2}

Asub(J) = False;
0046 DE98 FFFF stc r9,-1(xr8)

Bsub (I+J) = False;
004A 1697 stecs r9,6(xr7)

Csub(I-J) = False;
004C 94cs8 cis rl2,8

if (I < 8) {
004E 89900016 bhex LO7A
0052 DE96 001F stc r9,31(r6)

Try (I+1,Q);
0056 62CO mr r2,rl2
0058 9021 ais r2,1
005A 63B0O mr r3,rl1l
005C 8DFFFFD2 balix ri5, .Try # Try
0060 C80E 0000 cal r0,0(rl4)

if (1*Q) |
0064 402B les r2,0(xrll)
0066 B429 c r2,r9
0068 020B jne LO7E

Asub(J) = True;
006A A491 lis r9,1
006C DE98 FFFF stc r9,-1(r8)

Bsub (I+J) = True;
0070 1697 stes r9,6(r7)

Csub(I-J) = True;
0072 89800006 bx LO7E
0076 DE96 001F stc r9,31(x6)

}

}

C-34

{

High C Programmer’s Guide

Page 4

2 July 87

4.3 for the IBM RT PC

MetaWare High C Compiler 1.4

Eight Queens problem.

07-Jul-86 17:13:14

queens.c

Addr Object Source Program and Assembly Listing
else *Q = True;
007A LO7A:
007A 2421 lis r2,1
007C 102B stcs r2,0(rll)
}
}
while (! (*Q 1{] J==8));
007E LOTE:
007E 402B lcs r2,0(x1l)
0080 9420 cis r2,0
0082 0203 jne 1088
0084 94A8 cis rlQ, 8
0086 02C6 jne 1012
0088 L088:
0088 61DO mr rl,rl3
008A C961 FFRB4 1m re,-76(rl)
008E EB88F br rl5
0090 DFO7DF68 .long 0xDF07DF68
First gpr=ré6
0094 2DO0OO .short 0x2D00 # npars=2,
.data 1
.globl Try
0058 _Try:
0058 00000000° .long LOoO
005¢C .align 2
}
#pragma Page(l); /* Page eject requested.
#void main () {
.text
0096 .align 1
0096 1.096:
.globl _.main
_.main:
0096 D9B1 FFC8 stm rll,-56(rl)
009A 6EOO mxr rl4,r0
009C 6D10 mr rl3,rl
009E C811 FFC4 cal rl,-60(rl)
C-35

off=0

High C Programmer’s Guide

Page 5

2 July 87

4.3 for the IBM RT PC

MetaWare High C Compiler 1.4 07-Jul-86 17:13:14

Eight Queens problem.

queens.c

High C Programmer’s Guide

Page 6

Addr Obiject Source Program and Assembly Listing
Integer I; Boolean Q;
printf ("$s\n", "go");
00A2 C82E FFEC cal r2,-20(rl4)
00A6 C83E FFFO cal r3,-16(rl4)
00AA 8DF00000” balix rl5, .printf
O0AE CDOE 0004 1 r0,4(rl4)
for (I = 1; I <= 8; Asub(I++) = True);
00B2 A4cC1 lis rl2,1
00B4 LOB4:
00B4 94cCs8 cis rl2,8
00B6 O0OBO9 jh LoCS8
00B8 A421 lis r2,1
00BA 6BCO mr rll,rl2
00BC EI1C2 a rl2,r2
O0BE 63BE cas r3,rll,rl4
00CO 898FFFFA bx LOB4
00C4 DE23 FFA3 stc r2,-93(r3)
for (I = 2; 1 <= 16; Bsub(I++) = True);
oocs L0C8:
00C8 A4cC2 lis rl2,2
00CaA LOCA:
00CA D40C0010 ci rl2z, 16
00CE O0BO09 jh LOEO
00D0 A421 lis r2,1
00D2 6BCO mr rll,rl2
00D4 E1C2 a rl2,r2
00D6 63BE cas r3,ril,rl4
00D8 898FFFF9 bx LOCA
00DC DE23 FFAA stec r2,—-86(r3)
for (I = -7; I <= 7; Csub{(I++) = True);
00EO LOEO:
O0OEO C8CO FFF9 cal rl2,-7(x0)
0OE4 LOE4:
O0E4 94C7 cis rl2,7
00E6 O0BO09 jh LOF8
OCE8 A421 lis r2,1
00EA 6BCO nr rll,rl2
00EC E1C2 a rl2,r2
0OCEE 63BE cas r3,rll,rl4
00F0 898FFFFA bx LOE4
00OF4 DE23 FFC3 stc r2,-61(r3)
Try(1,&Q);
00F8 LOF8:
00F8 A421 lis r2,1
0OFA C8BD FFC7 cal rll,-57(rl3)
OO0FE 63BO mr r3,rll
0100 8DFFFF80 balix rl5, .Try # Try
0104 CDOE 0008 1
r0,8(rl4)
#pragma Skip(3); /* Skip 3 lines. */
if (Q)
0108 402B lcs r2,0(rll)
010A 9420 cis r2,0
010C o0Aal11l je
C-36 2 July 87

4.3 for the IBM RT PC

MetaWare High C Compiler 1.4

Eight Queens problem.

07-Jul-86 17:13:14

High C Programmer’s Guide

cqueens.c

Addr Object Source Program and Assembly Listing
LO012E
for (I = 1; I <= 8;) {
010E A4cCl lis rlz,1
0110 L00110:
0110 94cCs8 cis rl2,8
0112 OBOE jh LO012E
printf ("%4d",Xsub(I++));
0114 CB82E FFF4 cal r2,-12(rl4)
0118 6BCO mr rll,rl2
011A 90C1 ais rl2,1
011C AABR2 sli rll,2
011E 63BE cas r3,rll,rl4
0120 CD33 FFC8 1 r3,-56(r3)
0124 8DF00000° balix rl5, .printf
0128 CDOE 0004 1 r0,4(rl4)
012C O0O0F2 3j 100110
}
printf ("\n");
012E LOO012E:
012E C82E FFF8 cal r2,-8(rld)
0132 8DF00000’ balix rl5, .printf
0136 CDOE 0004 1 r0,4(rl4)
013A 61DO mr rl,rl3
013C C9B1 FFC8 1m rli,-56(xrl)
0140 EB88F br rl5
0142 DFO7DFB8 .long 0xDF07DFBS8
First gpr=rll
0146 0ODOO .short O0x0D0OC # npars=0, off=0
.data 1
.globl main
005C _main:
005C 00000096" .long 1096
0060 00000000" .long~
_printf
0064 00000058° .long Try
0068 .align 2
.data
0029 .spaca 31
0048 .LITERALS.:
0048 2573027 .ascii "%s\012"
004B 00 .byte 0
004C 676F .ascii "go”
004E 00 .byte 0
004F .space 1
0050 253464 .ascii "s4d"
0053 00 .byte 0
0054 0A .ascii r\o012”»
0055 00 .byte 0
.data
0056 .space 2

No user errors

4 unprinted warnings

End of processing, 07-Jul-86 17:13:19

queens.c

Page 7

2 July 87

4.3 for the IBM RT PC High C Programmer’s Guide

11. MAKING CROSS REFERENCES

This chapter explains how to use the hexref command to generate a cross-reference listing of one or more
High C modules.

11.1 Features of the Cross Reference

Cross references have the following features:

References to source files. All cross-reference information refers to line numbers within files compiled, as
opposed to linc numbers within a listing, Therefore no listing is necessary to usc the cross reference.

Include files. Included source files are handled properly. That is, they do not interfere with the process, and
their names are included correctly in the results.

Assignments versus uses. References that assign values into variables are distinguished from references that
use values of variables.

Annotated listing. It is possible to generate an annotated source listing of one or more program files. The
listing contains cross-reference information to the right of the source text listed.

Multi-module cross references. A cross reference can span multiple compilation units by cross-refcrencing
many modules at once and showing references from one module into the other. Thus, a single cross reference
can be produced for a program that is broken up into separately compiled modules.

Inter-module usage summaries. A list of the names that one module uses that are located in other files can be
produced, organized by file. This helps one understand the module interconnectivity of a large program.

11.2 Using the hexref Command

The hexref command processes one or more High C source files and produces a cross-reference listing on
standard output. The listing consists of up to four components as described in §11.3 Cross-Reference Format
below.

The command has the following form:
hexref [-ilmpus] [preprocessor options].. files..

where files denotes one or more High C source files, and preprocessor_options denotes zero or more
preprocessor options (for example, -Idir or -Dname) that are required when compiling the files.

The -1 option causes a listing of the source files to be generated, annotated with cross-reference information.
Include files are not expanded in the listing unless -1 is also specified.

The -m option causes a listing to be produced, for each module M, of the names referenced in M that were
defined elscwhere.

Names that are declared but not referenced do not appear in the cross reference unless the -u option is
specificd.

The -p option causes the outboard C preprocessor to be invoked on each source file. The output of the
preprocessor is then processed by the cross referencer instead of the source files themselves. If this option is
not specified, the inboard preprocessor is used. This option is analogous to the -Hepp option of the he
command. The -1 and -i options are ignored when used in conjunction with -p.

The -s option specifies that various statistics relating to the cross reference are to be printed.

The hexref command invokes the High C compiler in a special mode to generate the cross-reference
information. Therefore, if any of the source files contains errors, appropriate diagnostics are generated.

C-38 2 July 87

4.3 for the IBM RT PC High C Programmer’s Guide

11.3 Cross-Reference Format

Components. Each cross reference is self-documenting and consists of four components:

(1) An alphabetized list of all names declared in the program, together with an ordered list of all the
references to each name.

(2) An alphabetized table of all files used in the program and a file reference number for each.

(3) A list for each module M of all the names used by M that are declared in other files — if requested.
(4) An annotated cross reference for each module — if requested.

When the components are produced:

Item (1) is always produced.

Item (2) is produced if the cross reference involves more than one file; this happens if more than one module is
cross-referenced, or if any compiled include files were involved in the modules being cross-referenced.
Item (3) is produced if the -m option is specified.

Item (4) is produced if the ~1 option is specified.

What each component consists of’:

Item (1) presents the following information for each distinct name in the program:

- The line and column number of the declaration of the name. If the name occurs in a compiled Include
file, or if several modules are being cross-referenced, the file number is also given.

- The declared name N, and its owner: the name of the function that contains N’s declaration.

- Information about the named object, such as its storage class (static, extern, typedef, register,
etc.) and in some cases, the object’s type.

- The numbers of any lines containing references to the name. If the references are not in the module being
cross-referenced, (they may be in an Included file), or if several modules are being cross-referenced, the
line numbers are presented in the format £n<I> where n is the number of the file containing the references
and I is the list of line numbers. Occasionally the entry in this field is of the form resolved at ref
where ref is a line number or fn<..> reference as just described. This means that the name was
introduced by an extern declaration whose actual definition was given at rer.

- References that assign, or may assign, a value to a variable are marked with the character *.

Item (2) presents the correspondence between file numbers and file names. References in items (1) and (3) use
the file number rather than file names, to keep the listing brief. Item (2) is used to determine the corresponding
file name.

Item (3) is optional. It is requested by the -m option. The output produced is a listing for each module M of the
names used by M that are declared in other files. The list is organized by file. This is useful for determining the
interconnectivity between modules. For example, if module M1 refers to no function names within module M2,
it may be possible to overlay the code of M1 and M2.

In Items (1) and (3) a reference to a name N declared at reference point P is changed to a reference to a point
pr, if the definition at P’ resolves the declaration at p. Typically this happens when N is declared in an
interface file F, is used in a module M, and is defined at P’ in a module M/. The module usage in Item (3)
shows that M refers to P/ in module M’ , not P in interface file F. That is, one gets references to the implementa-
tions rather than the interfaces through which they were supplied.

Item (4) is optional and is is generated by the -1 option. The result is a line-numbered listing of the source of
the compiled program, with each line annotated on the right with the line numbers of the definitions of names
used on the line.

If n names are used on the line, n line numbers appear to the right of the line, corresponding positionally. A
line number alone is a reference into the file being listed. If the letter i appears instead, the name referenced is
an intrinsic, such as _find char or _abs. Finally, a line number followed by £ and another number means

C-39 2 July 87

4.3 for the IBM RT PC High C Programmer’s Guide

that the name was declared in a file other than the one being listed; the file number can be used to discover that
file’s name in Item(2). Line#fFile# was used.instead of File#<Line#> as in Item (1) for brevity.

11.4 Distinction of File Names

In a multi-module cross reference, a particular interface file may have been included by several modules
because each of the modules being cross referenced needs the resources in that file. The cross referencer
assumes that a repcated declaration of a name in a compiled Include file is the same declaration if it appears
at the same line and column number of the same Include file.

For purposes of determining “sameness of Include files” the cross referencer uses the text of the file name
including the path. Therefore, to cross-reference several modules successfully, do not use different names for
the same Include file.

For example, if module M1 includes . ./utils/trees.h, and M2 includes /prog/utils/trees.h, and if
these two references denote the same file, the cross referencer will not recognize them as the same.

C-40 2 July 87

4.3 for the IBM RT PC High C Programmer’s Guide

12. DIAGNOSTIC MESSAGES

Messages from the High C compiler report (a) file I/O errors, (b) system errors, and (c) user errors and
warnings.

12.1 File I/O Errors

File I/O errors are fatal.® They can occur in attempting to open a non-existent file or in writing a compiler
output file when not enough file space is available. The errors likely to be seen are:

Unable to open file fff: file not found.

This message is produced when any input source file, such as that specified on the command line or in an
Include pragma, cannot be found.

This message is produced twice: it is written once to standard output and once to standard error. If
standard output is not redirected, the message appears on the screen twice.

***Error occurred on writing instruction file:
***Error occurred on writing object file: write failed.

Usually caused by too little space on disk. Remove unnecessary disk files and try again.

12.2 System Errors

System errors are fatal® and should rarely occur. They take the form:

>>>> S YSTEM ERROR n <<<<, in Module:Function
Error message text.

where n numbers the occurrences of system errors, Module is the module name, and Function is the function
name. The only system error messages with which the user should be concerned are:

Dynamic array allocation/reallocation failed.
Out of memory.

This error indicates that the user’s virtual memory quota was exceeded.
Recover: Exceeded the following limit: Limit.

In repairing a syntax error, a table overflowed. The table limit is fixed, so no increase in memory can
improve the situation. Repair the error.

There are many other system error messages that the compiler could produce, but they are associated with
internal compiler errors or inconsistencies that should not occur.

Stack dump. Compiler system errors are always accompanied by a call-stack dump. The dump can usually be
ignored, but when reporting a problem to the support staff, the history of called functions can be helpful;
include a listing of the dump in any written correspondence. The following is a sample dump:

>>>>> S Y S TEM ERROR1 <KL, in Scanner:Read_scan_tables
No scan tables found.

Line

Routine File /Off Addr Parms...

syserr syserr.p 66 54d3a c098,c080,0,66290,66320
read_scan_tables stread.p 69 bef2 2004adc,fffa60,44ed,663c4
get_scan_tables.stread stread.p 39 c005 663c4,66290,fffadc, 14e8,1
analdrvr analdrvr.p 19 44ed 1,663c4,66416,0,1,186dc
initialize prefix.sk skelinit.p 2dc 14e8 fffaec,115a,fffaf4,59645
doit skeldrvr.p e 111f fffaf4, 59645, f£ffb04,44d,3
pp_main skeldrvr.p 6 115a fffb04,4d, 3, fffb08, fffbl8
_main ppinit 1d 59645 3, fffb08,fffb18,ufffb38
start 3d 4d fffb3d, f££fb45,0, f£fbdb

Error was severe. Program terminated.

8. Fatal errors may result in compiler temporary files being left in the /tmp directory. They should be removed.

C-41 2 July 87

4.3 for the IBM RT PC High C Programmer’s Guide

The Routine and File columns are usually sufficient alone when reporting a problem to support personnel.

System errors due to a bug in the compiler’s code generator are accompanied by a line “Code was being
generated for program text near Ln/Cm.” following the call-stack dump. This helps isolate the
program text causing the problem and may facilitate reducing the problem program to a few lines, which then
can be easily sent to compiler support personnel.

NOTE: Code generator errors can frequently be “cured” by inserting a label before the line causing the
problem. Even if this cures the problem, please report the problem to support personnel.

12.3 User Errors and Warnings

User error messages are grouped in the three categories (1) lexical, (2) syntactic, and (3) constraint. Warnings
do not suppress object file generation; errors always do. Also, some diagnostics that are warnings become
errors when the compiler is run in ANSI mode.

Messages that report errors terminate compilation after the phase issuing the diagnostic, so errors that would
otherwise have been detected by later phases are not reported until all earlier errors are repaired and the
compiler is reinvoked.

All user diagnostics are accompanied by the file name, a line number n, and column number m, in the form
“wfilename"™, Ln/Cm”, reporting where the error was detected. In addition, when -H1ist is specified on
the command line, as assumed in the examples below, lexical and syntactic errors are generally accompanicd
by the erroneous line with a carct “~” beneath it at the point of crror detection. Error messages begin with “E”

Y]

and warnings with “w”, and usually occupy a single line.

Lexical error messages are produced when an improperly formed word is detected, such as a string with a
missing closing quote.

Example:
Levels LINE # |————t—===]-——=+4 2 + 3 + e p———=5
1 |void main() {
11 2 | char *s;
11 3] S = "Hello;
Cl5 —————mmmmmm ~
E "file", L3/C15: (lexical) Unexpected end-of-line encountered.
11 4 | }

Syntactic error messages are produced for programs that are ill-formed on the phrase level, such as a missing

;7 or inserted spurious symbol. The message is accompanied by a statement of the REPAIR that the compiler
effected so it could keep processing input.

Example:
Levels LINE # |-—==t——==leo——et=e==2 + 3 + 4 + 5
1 |void main() {

11 2 | printf "Hello");

Cll ———mm———mme ~
11 3] }
E "file”, L2/Cll: (syntactic) unexpected symbol:’<STRING>':"Hello"
REPAIR: ’(* was inserted before ’<STRING>’:"Hello"@L2/C1l1l

Constraint error and warning messages diagnose more subtle problems, such as an undeclared identifier or
type mismatch. There are nearly 200 such diagnostics, each of which is meant to be self-explanatory. Most of
them prevent the generation of object code, but some are merely warnings and are intended to assist the
programmer.

Examples:

Levels LINE # | + 1+ 2———1 3 t=——=q + 5
1 |wvoid main{() {

11 2 | int i;

11 3| i = Undeclared_identifier;

11 4 | }

E "file", 1L3/cC8: Undeclared_identifier: This is undeclared.

1 user error No warnings 453K of memory unused.

C-42 2 July 87

4.3 for the IBM RT PC High C Programmer’s Guide

Levels LINE # |-—-——t———=l-=——toc2——pooe B e p=m =5
1 |void main() {

11 2 | int i, Unused;

11 3| i /=0;

11 4 | }

w "file", L2/C8: i: Variable is set but 1s never referenced.

w "file", L2/Cll: Unused: Variable is never used.

E "file”, L3/Cé6: Division by zero.

1 user error 2 warnings 457K of memory unused.

12.4 Error and Warning Messages

This section presents all compiler diagnostic messages, except automatically generated lexical and syntactic
messages, in alphabetical order, with explanations where appropriate.

(lexical) Unexpected ..

{syntactic) Unexpected symbol:

"=" used where "==" may have been intended.
“=" was detected as an operator in a Boolean expression, such as “if (x = y) (..)”. Often thisis a
mistake, as “if (x == y) (..)” was intended.

"auto" must appear within a function.
Storage class auto cannot be given for declarations that do not appear within a function.

"break" must appear within whila, do, for, or switch.
"casa" must appear within a "switch".

"continuae" must appear within while, do, or for.
"default” must appear within a "switch".

"pragma Data” active at end of module.

"pragma Data” active at end of function.
A pragma Data{(..); was given in a module or function, with no terminating pragma Data;. This is
permitted but the programmer may have forgotten to supply the terminating pragma, thus perhaps including
more data declarations in a data segment than intended.

"register”" is the only allowable storage class for a parameter. Ignored.
In a function definition or declaration, a storage class other than register was given, such as in int
f(i) statie i; {..}.

"register"” must appear within a function.
Storage class ragister cannot be given for declarations that do not appear within a function definition.

"void" is illegal here.

A bit field is not valid as an argument to &.
One cannot take the address of a bit field, since such a field is not necessarily on a byte boundary.

A bit field is not valid as an argument to sizeof.
Since bit fields need not occupy an integral number of bytes, taking their sizeof is prohibited.

A function may not return a function (but may return a pointer thereto).
A function may not return an array (but may return a pointer thereto).

A function may not return an incomplete type.
A function cannot return a struct or union type whose fields have not yet been specified. For example,
struct s; struct s *f() (..} islegal since £ returns a pointer t0 an incomplete struct type, but
struct s; struct s g() (..} isillegal

A functionality typedef cannot be used in a function definition.
typedef int f(); f g {(return 3;} isillegal: the type definition for £ cannot be used to specify
that g is a function.

A parameter may not be a function (but may be a pointer thereto).

C-43 2 July 87

4.3 for the IBM RT PC High C Programmer’s Guide

A parameter name must be given here.
For function definitions, parameter names must be supplied. Thus, for example, void f (int, float g)
{...} is illegal because the first parameter lacks a name.

A register—-class function makes no sense.
For example, register f() {..} isillegal.

An array may not contain functions (but may contain pointers thereto).
An array must have a positive number of elements.

An array of objects of an incomplete type is illegal.
An array cannot contain a struct or union type whose fields have not yet been specified. For example,

struct s; struct s *a[10]; is legal since “a” contains pointers to an incomplete struct type, but
struct s; struct s b[10]; isillegal

An object of type {it cannot be initialized.

Argument to "#include"” must be a string.

Argument type it is not compatible with formal parameter type ttt’.
An attempt was made to pass an argument of a wrong type to a function, such as passing a £loat for a
parameter that is a struct. When using standard C function definitions, this is a warning only, since C
permits such mismatches, but when using prototype syntax, it is an error. This warning provides the
security of Pascal function call semantics.

Array size exceeds addressability limits.
Bit fields must fit in a register or register pair.

Cannot dereference a pointer to void.
Type *void was introduced as a means of defining a “generic pointer” compatible with other pointers. But
there is no such thing as an object of type void. Therefore, dereferencing a pointer to void is illegal.

Cannot initialize a typedef.
Something like typedef int T = 1; was attempted.

Cannot initialize an imported variable.
Something like extern int T = 1; wasattempted. A variable may be initialized only by its definition.

Cannot take sizeof a function type.

Cannot take sizeof an incomplete type.
The sizeof a struct or union type whose fields have not yet been specified is not known. For example,
struct s; (..) sizeof(struct s) (..) isillegal since the size of the structure is unknown.

Cannot take sizeof type void.
There are no objects of type void, therefore taking sizeof void makes no sense.

Cannot take the address of a register variable.
Declared type is never referenced:

Divide by zero.
This was detected in a constant expression at compile time.

Enclosing function’s return type is "woid"; therefore nothing may be returned.
return E; for some expression E was found in a function whose return type is void.

End of file encountered within #if construct.

End of file encountered within arguments to a macro. Probably a missing right
parenthesis.

End of file encountered within macro definition.
End of file encountered within macroc formal parameter list.

Expression has no side effect and has been deleted.
An expression used in a statement context has no side effect; therefore the expression is useless. For
example, 2+3;.

C-44 2 July 87

4.3 for the IBM RT PC ' High C Programmer’s Guide

External function is never referenced.
Fewer arguments given than function has parameters.
for loop will never execute.

Function called but not defined.
Any function that was called but not defined is noted as a warning. Although such practice is permissible
in C, especially useful when calling library functions, a common error is to misspell a function name. The
error goes undetected until link-time without this warning. Furthermore, errors in parameter linkage can
occur when a call is made to an undefined function. We recommend that the library “.h” header files
always be included to get parameter checking, and that function prototypes be used for external function
declarations, rather than making use of the “feature” of C for calling undefined functions.

Function expected.
The expression £ preceding the arguments in a function call £ (..) must denote a function.

Function parameter names are allowed only on function definitions, not
declarations.
int f(a,b,c); is a function declaration that names the parameters (a,b,c). This is illegal unless
function prototype syntax is used, as in int f(int a, int b, int c);.

Function return value never specified within function.
A function with a non-void return type contains no return statement. This typically happens with “old”
C programs that did not use void to indicate that a function returns nothing.

Functions may not be nested.

In ANSI-Standard C, functions cannot be declared within functions. In High C they can. This message is
produced when the compiler is doing ANSI checking.

Identifier required after #ifdef or #ifndef.
Identifier required. Pragma ignored.

Incompatible tag reference: The tit tag class does not match the tag class tit’
defined at Ln/Cm.
Something like struct s; union s {int x;}; wasencountered. The tag s cannot simultaneously be
the tag for a struct, union, and/or enum,

Incomplete type: the struct/union type at Ln/Cm must be completed before it can
be used here.

A reference has been detected to a field of a struct or union type whose fields have not yet been
specified.

Incorrect number of parameters to macro. Macro invocation ignored.
The number of arguments to a macro must agree exactly with the number of parameters in its #define.
Integer constant exceeds largest unsigned number.

Invalid digit in non-decimal number: X.

Local function is never referenced; no code will be generated for it.
A function of storage class static is not called anywhere in the compilation unit. Since it is not exported,
there can be no reference to the function and it is essentially deleted.

Lower bound of range is greater than upper bound.
This can only happen in High C case statements where range expressions are allowed as labels (an
extension). Macro name must be an identifier.

Macro parameter must be an identifier.

Members cannot be of an incomplete type.
A struct or union cannot contain a struct or union type whose fields have not yet been specified. For -
example, struct s; struct t {struct s *p;} islegal since p is a pointer to an incomplete stxuct
type, but struct s; struct t {struct s p;} isillegal

Mismatched #if-#elif-#alse-f#endif.

More arguments given than function has parameters.

C-45 2 July 87

4.3 for the IBM RT PC High C Programmer’s Guide

Must be a compile- or load-time computable expression.
The initializers for a static variable must be determinable when a program is loaded.

Must be a compile-time computable constant.
Must be a pointer.

Must be a scalar (int, char, floating, or pointer) type.
Must be a static variable reference.

Must be a string.

Must be a struect or union.

Must be a type.

Must be an identifier.

Must be an integral int or char type.

Must be of a pointer type.

Must be of an extended-function type.

Named parameter association is prohibited for this function since its declaration
near Ln/Cm does not name all parameters.
An attempt was made to call a function ¥ using named parameter association, but ¥’s declaration did not
name all of its parameters. Example:

void F(int a,float); .. F(a=>37, 3.3);
/*Illegal.*/

void F (int a,float b);.. F(a=>37,b=>3.3);
/*Fine.*/

No "pragma Data" is active.
pragma Data; was encountered without a preceding, and matching, pragma Data(..) ;.

No member is declared here.
A declaration with no declared object was found within a struct or union. For example,
struct s {int; float; struct t {int vy};}
contains three declarations, none of which declare an object. However, this construct is not entirely
vacuous because the declaration of struct t is visible outside of struct s and therefore can be used to
declare objects of type struct t.

No object may be of type void.

No parameter declarations may be given here.
In defining a function using prototype syntax, where the parameter types were specified in the parameter
list, an attempt was made to re-declare the parameters following the parameter list. For example, int
x,y; isillegal in void f(int x, int y) int x,y; { .. }.

Non-decimal constant exceeds largest unsigned number.

Only a parameter may be declared here.
Preceding a function definition’s {, only the function’s parameters may be declared.

Only fields of type "unsigned int" or "unsigned long int" are supported.
Bit fields may be of only these two types. Any bit field of another type is coerced to one of them,
depending upon the size of the bit field.

Only one "default" is permitted in a "switch".

Operand type inappropriate for operator.
An inappropriate operand was detected for a built-in operator suchas &, |, ~, etc. For example, float
£1,£2; (.)f1 = £1 & £2; isillegal: s requires integral operands.

Parameter not found or specified more than once.
In a function call using named parameter association, a parameter was named twice, or a non-existent
parameter was referenced.

Parameter ppp not supplied.
In a function call using named parameter association, parameter ppp was not given an argument value.

C-46 2 July 87

4.3 for the IBM RT PC High C Programmer’s Guide

Parameter separator must be a comma.
In a #define of a macro with parameters, parameter names must be separated by commas. For example,
#define M(a b) cisillegal; a,b is required.

Pointer dereferencing disallowed in static context.

"pragma Code" may not occur within a function.
The Code pragma must appear only at the outermost declaration level — outside of all functions.

Pragma has too few parameters.
Pragma has too many parameters.

Previous "pragma Data" is still active.
pragma Data(..); was given in the context of an already active pragma Data(..);. Insert pragma
Data () ; preceding the offending pragma to “turn off” the active pragma.

Real constant has too many digits.

Result of comparison never varies.
An expression was found whose operands, while they are not all constants, are such that the value of the
expression is always the same. For example, an expression of type unsigned int is never less than zero.

Right operand of shift operator is negative.

Since the first parameter was specified by the type "void", there may be no other
parameters.
The special syntax exemplified by int £ (void) ; denotes a function £ taking no parameters. Because of
this, no parameter can be specified after void: int f(void, float, int); isillegal.

Size change in cast involving pointer type: casted-to type tft is not the same size
as casted-from type f{tt’.

Specified storage class for this declaration is unnecessary and was ignored.
In a declaration such as static struct s{int x;};, the storage class static is useless since no
object was declared.

Static initialization of bit fields is not supported.
Storage-class nonsensical for function definition.
String too long for initialized array.

Structure has no contents (is of size zero).
Subscripted expression must be an array or pointer.

The 2nd and 3rd operands of a conditional expression must be both arithmetic, or
of the same type, or one a pointer and the other zero.

The declarator must be a function. This declaration has been discarded.
A declaration such as int £ {..}); was encountered, where a function body {..} was given for a non-
function.

The rest of this line is extraneous.

The sign (signed/unsignad) has been specified more than once.

The storage-class (auto, extern, etc.) has been specified more than once.
The width (long/short) has been specified more than once.

This "return" should return a value of type it since the enclosing function returns
this type.

This can be of an incomplete type only if it is "extern" or has an initializer
supplying its size.

This code will never be executed.

This construct would have been deleted as an cptimization had it contained no
labels.
A construct such as while (0) {..} was detected but cannot be deleted due to the presence of one or
more labels within {..}. This is questionable programming practice at best.

C-47 2 July 87

4.3 for the IBM RT PC High C Programmer’s Guide

This function declaration is inconsistent with the "int"-returning function
declaration imputed at Ln/Cm. ’
A function called before it is declared is assumed to be a function returning int, and any subsequent
declaration of the function must declare it to be so. For example, main () { (.) £(3);(.) } veid
£() {..}isillegal since £ was called before being defined and therefore assumed to return int.

This function declaration is inconsistent with the declaration at Ln/Cm.

This is already defined as a macro. Redefinition ignored.
A redefinition of a macro is permitted only if the redefinition agrees exactly with the previous definition.
To otherwise redefine a macro, use $undef to explicitly undefine the macro before re-defining it.

This is multiply declared.

This 1s permissible only in conjunction with "int" or "char".

This is permissible only in conjunction with "int" or "double".

This is permissible only in conjunction with "int".

This is undeclared.

This may not be a pointer to a function (but may be a pointer to an object).
This tag name is more than 80 characters long.

This type lacks a tag and hence cannot be used.
A declaration such as struct {int x;}; was encountered. Without a tag the struect cannot be
referenced and hence is useless.

Toggle name required. Pragma ignored.
Too many initializers here.

Type it is not assignment compatible with type ttt’,
(a) In an assignment expression, the right operand of type ttt may not be assigned to the left operand of
type ttt’.

(b) In a function call, an argument of the type ttt may not be passed to a function that expects a parameter
of type ttt’.

Type ttt is not compatible with type ttt’.
In a comparison, the left operand of type ttt may not be compared with the right operand, of type ttt’.

Unexpected symbol in expression. Line ignored.
Unknown preprocessing directive.

Unrecognizable Data class. Static assumed.
Unrecognizable field name.

Unrecognizable pragma name. Pragma ignored.
Unrecognizable toggle name. Pragma ignored.
Up-level reference to a register-class variable is not allowed.
Variable is never used.

Variable is referenced but is never set.
Variable is set but is never referenced.
Variable is referenced before it is set.

Variable required.
In this context a so-called “Ivalue” is required but was not found. An lvalue is something whose address
can be taken, and is required on the left side of an assignment expression and as an operand to &, ++, and
--. The rules of C require the automatic conversion of some objects into non-lvalues. For example, the
operand of & must be an Ivalue, so int i = & (a+b) produces the “Variable required.” diagnostic.

A common cause of this message is the use of a construct such as:
int * p;
c = *({(char*)p)++;

C-48 2 July 87

4.3 for the IBM RT PC High C Programmer’s Guide

which is legal on most PCC compilers, but disallowed by the Standard. Use instead:
int * p;
c = *(*(char**)s&p) ++;

to circumvent the restriction.

Zero-length bit fields may not be named.
A declaration such as struct {int 1:0,3:2}; was encountered. “i” must be omitted. As is, it is
possible to refer to the field. Such a reference would be illegal.

{..} inappropriate here for initializing a scalar.

C-49 2 July 87

4.3 for the IBM RT PC High C Programmer’s Guide

Appendix A
CROSS-JUMPING OPTIMIZATIONS

MetaWare compilers support an optimization that usually obtains a 2% to 5% reduction in code size and is
often accompanied by a decrease in execution time. The optimization is known as “cross-jumping”. It and the
two toggles that control it are explained here.

Consider the following source code:

if (!eof) readbytes(sbuf,s&cnt,512); /*Code C.*/
/*L:*/ while (cnt > 0) {
writebytes(sbuf,cnt);
if (!eof) readbytes{(sbuf,&cnt,512); /*Code C’.*/
} /*Implicit jump back to the implicit label.*/

The compiler can improve the code size of this program without any loss in execution speed by effectively
rewriting the code as:

Top: if (!eof) readbytes(sbuf,&cnt,512); /*Code C = C’.*/
/*L:*/ if (cnt > Q) |

writebytes (&buf,cnt);

goto Top:

}

The optimization involves the recognition of some code ¢ immediately preceding a jump 3 to some label L,
where some code ¢’ identical to ¢ immediately precedes L. The transformation consists in deleting ¢ and re-
placing j with a jump to C‘ instead:

Original Code Transformed Code
some code C jmp L'
jmp L
some code C’ L*: some code C = C’
L: . L:

This optimization is called “cross jumping” or “tail merging” in the compiler literature, since it was first
invented to handle common code at the ends of the arms of conditional statements, and was effected by
jumping across from one arm to the other, that is, by merging the tails of the two arms. It is surprisingly
effective and always saves code space while never giving up execution speed.

Here we include another optimization under that name as well. The second optimization is even more
effective, but gains its (sometimes considerable) code space in trade for a small loss of speed. Consider the
program fragment:

if (buflcnt]l==0) g(&buf);
alsa if (buf(cnt)== "\n’) {(bufi{cnt] = 0; g(&buf);}
else ..

The compiler effectively transforms this into:
if (buflcnt]==0) goto L’;

else if (buf(cnt]=='\n’) {buflcnt] = 0; L’: g(&buf);}
else ..

Here, both occurrences of g (sbuf) ; precede a jump to the statement following the entire conditional. One of
the instances of g (sbuf) ; is replaced with a jump to the other, saving the code space for the call to g at the
expense of inserting an additional jump. Opportunities for this kind of optimization are even more frequent
than the standard cross-jumping optimization. In general, the optimization can be depicted as follows:

C-50 2 July 87

4.3 for the IBM RT PC : High C Programmer’s Guide

Original Code Transformed Code
some code C jmp L'
Jrp L
some code C’ (= C) L': some code C = C’
Jmp L jmp L
L: . L:

Both optimizations are turned on by default. Both may be disabled by turning off the toggle Optimize
xjmp, with either -Hof£=Opt imize xjmp on the compiler execution line, or including pragma Off (Opti-
mize xjmp) ; in the program. The second of the two optimizations can be disabled by turning Of £ the toggle
Optimize xjmp space, so named because the second optimization saves space but always increases
execution time.

During the development phase of a project, it may be desirable to turn Optimize xjmp Off. The reason is
that the optimization can cause such a contortion of code that using debuggers, whether assembly-language
level or line-oriented symbolic, can be difficult. As a case in point, consider the following program, which
compares the fields of two different structures to determine if they are the same:

union {
struct (int x,y;} f1;
struct {int a,b,c;} £2;
struct {(int e, f;)} £3;
struct (int g,h; int 1{10]1;} £f4;
} ul,u2;
int f£(i) int i; {
switch(i) { /* What kind of structure to compare? */
case 1: return ul.fl.x == u2.fl.x &&
ul.fl.y == u2.fl.y;
case 2: return ul.f2.c == u2.f2.c &&
ul.f2.a == u2.f2.a &&
ul.f2.b == u2.f2.b;
casa 3: return ul.f3.e == u2.f3.e &s&
ul.£3.f == u2.£3.£f;
casa 4: raturn ul.f4.g == u2.f4.g &&
memcmp (ul.f4.i,u2.£4.1,
sizeof (ul.f4.1i)) 1=0;
case 5: return ul.f4.h == u2.f4.h &&
memcmp (ul.f4.i,u2.£4.1,
sizeof (ul.f4.i)) !=0;

b}

Here cases 1 and 3 are recognized as being identical, and matching the tail end of case 2. Furthermore, cases 4
and 5 share a common tail. Compiling the code produces the tightly-coded result presented next. Even a
skilled assembly-language programmer would rarely have the patience to produce such highly optimized code:

C-51 2 July 87

4.3 for the IBM RT PC High C Programmer’s Guide

#int f(i)}) int i; {

switch (i) { /* What kind of structure to compare? */
.text
.align 1

L0000
.globl _.f

_.f:
stm ri2,-52 (rl)
mr rl4,r0
mr rl3,rl
cal rl,-52(rl)
nr ri2,r2
nr ris,rl2
sis rl5,1
cli ri5,4
3h LOCO
a rl5,rl5
get r2,$L02A
a rl5,r2
lhas rl5,0(rl9)
a rl5,r2
br rl5

LO2A:

.short 1L052-L02A
.short L034~L02A
.short 1L052-L02A
.short 1074-L02A
.short 1L08C-L02A

case 1: return ul.fl.x == u2.fl.x &&
ul.fl.y u2.fl.y;
case 2: return ul.f2.c == u2.f2.c &&
L034:

get r2,$_ul

1ls r3,8(r2)

get r4,$_u2

ls r5,8(r4)

c r3,r5

jne LOBE

bx L064

1s r3,0(r2)
ul.f2.a == uv2.f2.a &&
ul.f2.b u2.f2.b;
case 3: rxeturn ul.f3.e == u2.f3.e &&
L052:

get r2,%_ul

1ls r3,0(r2})

get r4,$_u2
L064:

1s r5,0(r4)

c r3,r5

jne LOBE

1s r2,4(r2)

1s r3,4(r4)

c r2,r3

Ine LOBE

3 LOBA
ul.f3.f == u2.£f3.f;
case 4: return ul.fd.g == u2.f4.g &&
L074:

get r2,$_ul

1s r3,0(r2)

get rd,$_u2

bx LOAO

ls r5,0(r4d)
mememp (ul.fd4.i,u2.f4.i,sizeof (ul.f4.1)) 1=0;
case 5: return ul.fd4d.h == u2.f4.h &&
Lo8cC:

get r2,$_ul

1s r3,4(r2)

get r4,$_u2

1ls r5,4(rd)
LOAO:

c r3,r5

jne LOBE

inc r2,8

cal r3,8(rd)

cal r4,40(x0)

C-52 2 July 87

4.3 for the IBM RT PC
balix rl$5, .memcmp
1 r0,4(rl4)
cis r2,0
R LOBE

LOBA:
lis r2,1
3 LOCO

LOBE:
1lis r2,0

LOCO:
nr rl,rl3
im rl2,-52(rl)
br rls
.long 0xDF07DFC8 # First gpr=rl2
.short 0x1D0O # npars=1, off=0
.data 1
.gqlobl f

_f:
.long L00O
.long _memcmp
.align 2
.data

In summary,

Cross-jumping is an amazingly effective optimization.

Toggle Optimize xjmp is set On by default, and turning it Of £ disables all cross-jumping.

High C Programmer’s Guide

Toggle Optimize x jmp_spéce is On by default, and turning it 0f £ disables cross-jumping optimization
that decreases space at the expense of time.

The cross-jumping optimization adds perhaps 20% to the execution time of the code generator phase of the
compiler, thus perhaps 3% overall.

2 July 87

4.3 for the IBM RT PC , High C Programmer’s Guide

Index

Starting below is a “permuted key word in context” index for this document. In the center column is the
particular key word W being indexed, in the context of a phrase or sentence containing W. The phrase appears
to the left and right of W. :

Occasionally the text of the phrase preceding W does not {it in the space to the left of W. In that case the index
entry looks like

is text that was too long to precede the WORD being indexed. This ...l 7

where the first word “This” of the sentence did not fit on the left. Similarly the text to the right of W can be
crowded:

right. This WORD is followed by toomuch textonthe 7
where “the right” did not fit on the right.

After locating an entry, proceed directly to the referenced page.

C-54 2 July 87

4.3 for the IBM RT PC

up-level
variables.

pragma
The

bit member
data type

provide stack frame information for
cross reference.
reference.

compilation phase
Some

data

The Data

Floating-Point
dynamic

Example: Calling C from
Calling
Examples: Calling

-Hasm: produce

-S: produce

struct padding,

-ms: minimum-size floating-point data

Calling Assembly from

Examples: Calling Assembly from
Example: Calling

Invoking the

module.

post-mortem

post-mortem call trace

Examples:
Example:

external name
Storage

prologue

-pg: produce profiling
-p: produce profiling

literals in data vs.
The he

High C Programmer’s Guide

WORD et torght ... oo vve ittt e e e Page
AdATSSING. . oottt ittt e e e 17
addressing local and exported i e e 15
Alias. ...l e e e e 22
AIAS. Lo e e e e e e 22
ALBaS. o e e e e 6
Allas Pragma. . ..o e 22
aliasing variable and function names.ceiiieereiinirriineiennaaaan. 22
AlIBNMENL. L. .ttt e e 14
aligNments and SIZES.ttt e i 14
AlGN_MEMDETS.ttt 9
alloCa. “Ma: . . e 4
annotated inter-modular, inter-lingual L i i 38
annotated multi-modularCross o il e 38
Annotated_listing, list_module_usage.ol i i e 38
ANNOUNCEIMENES. 1+« ettt tes et e ttaans e ntessaanseeneneneseantneennnesennnos 13
ANSI-Required Specifics.uuuiuiiiiiiiiiii i i i e e 20
0 TR PN 16
N 16
Argument Passing. e e 17
ARNMELIC. .« ..ttt et e e e e e e 20
armay - OUL Of MEMOTY. . ittt ittt ittt ittt iie et aanne 41
AITAYS. « ottt te s e taastt e e et eees e ensneesennneesennoeeennnoeonnsonn 21
ASINL e e e e e 9
Assembler IsSUes. ovn i i e e et e 19
ASSEIMDLY. .. .o e e e 26
Assembly from C. e e e 24
Assembly from C. ... i e e e e it e 25
ASSEMBLY LANGUAGE COMMUNICATION.ttt 24
assembly listing. R 3
assembly Listing. . ..o oottt i i i e e e 9
Assembly ROUtINES.vtuutii i i e e e 24
assembly source.c0iieiinea.s e ettt S
AULO VATIADLES. ...t e e e et 15
AULO_Teg alloC. vttt e e et e e e 9
-B: invoke substitute compiler. e e e 4
Bt flelds. . o e e 14
bitflelds. . ..o e 21
bitmember alignment.ttt i e it 14
blank lines in HSNGS.ottt e e e 6
BlOCKS. .« ettt e e e e e 4
e e e e e et e 24
LS 25
Cfrom Assembly.ouitinnini i e i i e e 26
C MaCTO PreproCeSSOL. « o v vv vt vee i iieetiitite e tennateeteinnnnnneeaeeonnns 3
-c: suppress linkage, create objECt i i e i 4
calltrace call-stack dump.ci oot e 10
call-chain stack dump.ttt ittt ittt ittt i, 10
call-stack dump. ... ouu i e i e e 10
Calling Assembly from C. i ittt it eiaa e 24
Calling Assembly from C.ottt i i i et 25
Calling Cfrom Assembly.ottt it 26
Calling SequencCes.uuutin ittt i i it it e e i e 18
o E0 2 1o -3 - 20
Char_default_unsigned.ttt it i 20,9
clashes: linker HMItations.c..ueuueniieeneeeeeneneeaunnenaoneanannaens 22
ClASSES. .« vttt et ettt e et ea e e 15
1 18
LT A 5
O, .« o\ttt ittt e et 5
COAE OPLIMIZALION. & oottt it ettt tte e e eee e eeeeneeaeanecannaneanneens 10
COHE SPACE. .+ vttt ietee ettt ee ettt ettt e 10, 13
Command.oiiiiiiiiiii i e e e e 3

C-55 2 July 87

4.3 for the IBM RT PC High C Programmer’s Guide

Using the hexref Command. i i i ettt e 38

Command OPHONS.ttt ittt ettt e et 3

COMIMON SEZMENES. . < et v oee et evneee s neaneesenennesasnnaeeeneeennuasenesnns 23

ASSEMBLY LANGUAGE COMMUNICATION. e e 24
Data CommuniCation.t uuuuututtt ittt taatenaeeeeaeeareaaaaeenns 26

modules. data communication in separately compiled i i i, 22

pointer compatibility.t e e e 11

compilation phase announcements. e e e e 13

compilation Statistics and SUMMATY.oviuutiiteniiniiureneeenernnneenennan 13

data communication in separately compiled modules. e e 22
INVOKING THE COMPILER.t ettt ettt e et e ettt aeennnnaas 3

compiler or source listing. AP 10

Compiler Pragma Summaries. i e 6

COMPILER PRAGMAS. . i e e e 6

compiler switches ortoggles. i i e 9

COMPILER TOGGLES.ttt e e e e e 9

Size of Complilation Unit.t ittt iitiiiiinnaaannnns 20

Methodology: conditional includes formodularity. ittt 7

conditional source file inclusion. o i i e 6

CONSIANE POOL. . ¢ttt ittt ittt e teeiee et atnenesenuaeeneonesennneeasnnnannnas 16

CONSHIAIME EITOT. .+ et v v vttt vt v e ettt et et e e ae e e eteen s oot eeteeeenonennenneas 42

constraint error and WarnNing MesSaGes.vuin ittt nenneeeonunannas 42

NAMING CONVENLONS. .+« v vt vttt vanannetetnuneneeeananeeennaeseanesesuniesennnnes 24

Function Naming Conventions.uuiuuitueueeetenntttetrorinineieeatonieereneens 24

-c: suppress linkage, createobjectmodule. 4
annotated multi-modular cross reference. ... it i e e e e 38
Features of the Cross Reference.c.oiiiiineiiiiiiiiiiiiiiiiiii i e 38

annotated inter-modular, inter-lingual Cross reference.v vttt i i e et e 38
MAKING CROSSREFERENCES.ttt ittt 38

sameness of include files for cross references.ottt e 40
CROSS-JUMPING OPTIMIZATIONS. ...ttt ittt iieiieaeeanas 49

Cross-Reference Format.ottt 38

cross-reference Listing.ovvtuniinenenaiitetonenertaiereaneesosnnannnns 38

L O T 13T L PP 6

pragmas Include, C_include, R_include, RC_include.ottt 6
-Di#idefineasymbol. e 4

DA, .t e et 6

data area. et 16

The Data Area.ottt ittt e tia ettt 16

-ms: minimum-size floating-point data blocks.ttt e e i e 4
Data CommUNICatON. .. .vuvutttt ettt ittt ittt eenaanneeeannnn 26

compiled modules. data communication inseparately i it e 22

Data Segmentation: the DataPragma.t i i e e 22
Data Segmentation: the DataPragma. i iiiiiiiiiiiiiineiennannnn. 22

data type alignments and sizes. it e e 14

Data Types in SIOrage. ... o.vnnnniii ittt ettt itereeeonanenenn 14

literals in data vs.code SPace.coniiiiiiiiiii i i e e 10, 13

sgremit dbX records. ...l e e e 4

emitting debugging information. i i e e 10

AECIATALOTS, .« o\ttt ittt ittt et e e 21

-D: #defineasymbol. ... e 4

-M: generate Makefile dependencies.ooiiiiiii it e e i e 4
-Hvolatile: memory read on pointer dereferences.ouiuuneeetiniunereenreeeeeeennneeneeaneannaneeeaanns 5
DIAGNOSTIC MESSAGES. ...t e ettt e e 41

-dir: specify include direCtory. vviun ittt e e e e 4

preprocessing directives. et e 21

-dir: specify include directory.ttt et e 4
directory search forinputfiles. i 6

Distinction of File Names. i i 40

DoUble _TelUM. ...ttt e e e e 9

Downshift_file_ names.ivtiriuinninerntiineiieereeeneenennnesanennass 9

call-chain stack dUIP.ottt ittt ittt tianreesaareeaecensenanosonasannan 10
post-mortem call trace call-stack dump., e e i e 10
StaCk UMD, ...t i ettt e 41

dynamic array -out of memory. ool e 41

-E: invoke outboard preprocessor only.ueeeriinte it 4

C-56 2 July 87

4.3 for the IBM RT PC High C Programmer’s Guide

-Hlines: emit page eject every NNES.ciuuninuttinnnier it iietiiatenerenensanannas 4
page €jects M USHUNES. ...ttt ittt it it ittt it e 6

S8 eI DX TECOTAS. « v vt vi ittt ittt tineeeeenetnaenssoanessononsesnnesnenss 4

-Hlines: emit page eject every nlINes. ovin et unnin it eeruneneonenerenereans 4

emitting debugging information. i i il it e 10

Emit Jine table.oovuiitiiiii i i i e e e i e e 10

ENITY POINL. . ittt ettt ettt ettt eee ettt te et et aeiee e eeeeneanas 16

Bpilogue. ... e e e 18

CONSITAINL EITOT. & . vttt iueee sttt e e e e e et ee e tae s enunnssonaenoaennseneneoennss 42
constraint error and Waming MEeSSAZES.utteunun et eneuiiererneneennaneennnesannss 42

Error and Waming Messages.uuniiiiiieeeteteiuinennnnnnneenenand 43

SYNLACLIC EITOTIMESSAZES. « -« « v e e neee et et e eae e e e ees e eaenesnennennnnnnneaens 42

lexical eITOrMESSAGES. v v vuvtv ettt ittt ittt ettt eeainaneneereeanns 42

System Errors. . .ot i e e e e e e 41

FHET/O ErTOrs. « oottt ittt i e e ettt ia e aeaaas 41

User Errors and Wamings.ooietnnnniiin ittt iiiiie et 42

Errors, file J/O. . v e e 41

-Hlines: emit page €ject every NINes.ouuutuitiiiiii ittt iiiiiaaianaaeaeaans 4
example HStNg. . ..ooovvnnni it i e i i i e 28

Example: Calling C from Assembly. ...ttt 26

Examples: Calling Assembly from C. i it 25

addressing local and exported variables. e e 15
-Hansi: tum off eXtenSions.uuttttutnntn ittt it et i e e 3
limitations. external name clashes: linker i e 22
EXTERNALS. . o e e e e i e 22

Features of the Cross Reference. oo iiiiiiiiiiiiiiine, 38

struct padding, bit fields. o i e e 14
bit flelds. ..o e e e e 21

Include file.ottt e i e e 28,38

—orname output file. e e e e i et 4
Include file. ...ttt i i it it it ittt i 6

Ermors, flle IO, ...t i e e i i et a ettt et et 41

Fe /O EIOrs. ..ottt ittt it ittt ettt ie ey 41

conditional source file INClUSION.uunin it i i e 6
Distinction of File Names.uuuiiiiiiiiiiii ittt i 40
Identity Of file MAMES. .. .vuitttttuteen et ietaeeesuentaeasesssnoseasoasnsnnseonnsss 7

include filesearchpath.o. i i i i i 6

Include fIles. . .vvuin ittt ittt i i i i i i it e e e 28

directory search forinput files. o o i e e 6
Include Pragmas: Including Source Files. it e e 6
sameness of include files forcross references.ot i i i 40
floating POINt.ttt e i i e 21

Floating-Point Arithmetic.cooiitui ittt it iiiiinsrenneeennnse 20

-ms: minimum-size floating-pointdatablocks. i e 4
Cross-Reference Format.ottt ittt iiiiiaa e 38
Format of Listings. covuuniiniiiiii ittt e e 28

-ma: provide stack frame informationforalloca.o il 4
Stack Frame Layout.uitiuuinntunennnounneereneneossessensssnonsonnansns 16

aliasing variable and funCHON NAMES.uttutu ittt ettt neaeaneaaaaanesenenns 22
Function Naming Conventions.ootttiiiiiiiiiiinienneneennnnnanns 24

FunctionResults. ... i i et 17

-gremitdbX TECOTdS. ...t i e i e e 4

-M: generate Makefile dependencies.t e e i 4

-Hlist: generate source listing.t tvt ittt ittt e it it 4

“HAwW: produce Wamings.ovvvuniiit it iiiii it e e 5

-Hansi: tum off extensions.ttt i i it 3

-Hasm: produce assembly listing.c.coviiiriiiiiiiiiiinieiiinrriionnnnnn 3
(T AR 3

The heCommand. ...t it ittt anaaas 3

-Hepp: use outboard preprocessor.o vv it iiiiiii ittt ittt 4

Using the hexref Command.ottt ittt it et eneaneenaeaas 38

-Hlines: emit page ejectevery nlines.ovviniiinnniiiiiinininiieneeeennas 4

-Hlist: generate source Listing.ouuunnniin it iiiiiiiiiininnnnneeeaeannd 4

-Hnocpp: use inboard PreproCESSOT. . « v vvvvv ittt vneeereieseoseseenaseesoosnnnsns 4

C-57 2 July 87

4.3 for the IBM RT PC High C Programmer’s Guide

-Hoff=toggle: tumstoggle Off. it 5

-Hon=toggle: tumstoggle On.t i i 5

only. -Hppo: invoke inboard preprocessorcuiiuueeeeetiiinnineneeenannnns 5

dereferences. -Hvolatile: memory read on pointeroiitiienin it ieiinnan.n 5

Errors, flle /0. ..ot i i e i e i e e e e 41

File O EIOrs. ... it et ettt et et e eeeaanans 41

IAENtfIerS. ... e e 20

Identityof filenames.coeviiiiiin... e e e, 7

-Hnocpp: use inboard PreproCessOr. vvv v vu ettt s ittt e tiatneeteteneaneneeeonnns 4

-Hppo: invoke inboard preprocessor only. oottt ittt e 5
inboard vs OUIbOArd PreProCESSOT. . . oot vttt ettt it eieiiteaasaneeeaeenenn. 3

-dir: specify include directory.o e 4

Include file. ii i i it it it e 28,38,6

include file searchpath.o i i i e 6

include files. ouuii et e 28

sameness of include files for cross references. o il i 40

Files. Include Pragmas: Including Source o i il 6

RC_include. pragmas Include, C_include,R_include, o it innann.. 6
Methodology: conditional includes formodularity. oo e 7
Include Pragmas: Including Source Files. i i it 6
conditional source file INCIUSION.\ .uuui i i i e e 6
emitting debugging information. L 10
-ma: provide stack frame information foralloca. i i e 4
directory search for inputfiles. i e e 6
IMEEBBIS. .« vttt ettt et toe ettt ettt eeennee ittt enaanons 20

annotated inter-modular, inter-lingual crossreference. i il e 38
reference. annotated inter-modular, inter-lingual crosso i i il 38
INTRODUCTION. . . ottt e e et e et eaaans 1
Int_function_Wamings.oeeenuiieimmunineuinieernenoeanneienanennns 10

-Hppo: invoke inboard preprocessoronly. i S

-E: invoke outboard preprocessor only.vovuiii ittt i e 4

-B: invoke substitute compiler. e e 4

Invoking the C Macro Preprocessor.ottt 3

INVOKING THECOMPILER. it ie et i e 3

Assembler ISSues. i e e e et 19
ASSEMBLY LANGUAGE COMMUNICATION. . .\ ittttiiiiiiiiit i iiiiniiinneeaoennand 24

Stack Frame Layout.ot e e e 16

Tinking with 1d. . oo vt e e e 19
level-numbers. ... e e 28

leXical eITOT MEeSSAGES. « ot ve ettt ettt iie it et e 42

external name clashes: linker lmitations.t i i i e 22
nesting-level. line-numbers, scope-level, i i e e 28

-Hlines: emit page eject eVery m LMES.ttt ittt ettt et ettt it 4
blank lines In LiStNES. ... ootttuntnnt ittt ittt 6

static INK. ..o e e e 16

-c: suppress linkage, create objectmodule. i i e i e e 4

external name clashes: linker Hmitations.o inti ittt i it e 22
linking withld. ... o i e 19

5 PP 10

compilerorsource listing.onnn i i e e e 10
example LISHNG. . ..ottt e e 28

-Hasm: produce assembly Listing.ouunnii i i i ittt ittt e e e 3
Queens program Listing.ooiiuttiiutiii ittt it i it e 31
cross-reference LStNg.ttt i i e et it 38

-Hlist: generate source JiSting.o .ottt ittt ittt ettt e e 4
assembly LiStng.o oo i e e e 9

BStNg MUl o vttt ittt e e et et e 28

LISTINGS. it i i ittt ittt e i 28

Format Of Listings. . .ovvtutn ittt it ittt ittt e i tteeteeieenananenaaaannnnnn 28

pagetitles in JISHNES. ..o in it it i i e it 6
pageejects in HSHNGS.ottt e e 6

blank lines in LStngs. « . vv ittt ittt ittt ittt ettt 6
Annotated_listing, list_module_usage.oii ittt e e e 38
literals in data vs. COdE SPACE. uuretninie i iiiati e 10,13

Literals_in_Code. ...ttt i e e e e e 10

addressing local and exported variables. il e e 15

C-58 2 July 87

4.3 for the IBM RT PC

for alloca.

-m:

Invoking the C
-R:

-M: generate

STORAGE

bit

dynamic array - out of

-Hvolatile:

DIAGNOSTIC

syntactic error

lexical error

constraint error and waming
Error and Warning

modularity.

blocks. -ms:

Methodology: conditional includes for
-c: suppress linkage, create object

communication in separately compiled
blocks.

annotated

-Hlines: emit page eject every

external

-o:

aliasing variable and function
Distinction of File

-v: print subprocess

Identity of file

Function
line-numbers, scope-level,

-c: suppress linkage, create

On,

-E: invoke outboard preprocessor
-Hppo: invoke inboard preprocessor

code
CROSS-JUMPING

-m: machine-dependent
Command
RUN-TIME

struct

-Hlines: emit

High C Programmer’s Guide

Jong _enums. e e e e 10
-M: generate Makefile dependencies.coiiiiiiiiiiiiiii i 4
-m: machine-dependent option. i i e, 4
-ma: provide stack frame information i 4
machine-dependent option. i i e e 4
MaCTO PrePrOCESSOL. « . ot et ittt et ettt et e it e e e e e 3
make static variablesread-only. e S
Makefile dependencies.iutiiiii i e e e s 4
Make_externs_global. i e e 10
MAKING CROSSREFERENCES.ttt iiiieii i eeeeennneens 38
MAPPING. ..ottt i e e e 14
member alignment. e e e e 14
110 11T o UGt 41
memory read on pointer dereferences.vviiiiii it i e S
MESSAGES. i e e e 41
TIESSAZES. & o v v teeeoe s eneeeeenansas s ieeeeneeaoeenteaeea et e 42
IMIESSAZES. « v v ov s et v veaee e ee bt oo ate e et taaeeeetane e et 42
TIESSAZES. « v o et ee s e naeaeeannaneasanansenuneneeenoeeeasnosneeneanonsonons 42
BESSaBS. « v ittt e ittt et e e 43
Methodology: conditional includes for i il 7
minimum-size floating-pointdata i i i i i 4
MOAUIATILY. .\ttt e e e e e 7
MOdUle. ..o et 4
modules. data e 22
-ms: minimum-size floating-pointdata ittt 4
multi-modularcross reference. i i i 38
NINES. oo e e 4
name clashes: linker limitations. i i i i i 22
nameoutput file. e i i 4
DAINES. ot et tev e aetaneee e asnses e e e e e 22
Names. ..o e e e 40
0T« 2T 5
DAIMNES. .« ottt et ittt tate et e et e eeaee et e et 7
NAMING CONVENTIONS. .« oottt ittt ettt ittt ettt tenaetneenanassntanaeanenenesennn 24
Naming Conventions. ouurttire ittt ittt 24
nesting-level. ... e 28
orname output file. i i e 4
SO OPUMIZE. .« vttt ettt e e e e e 4
objectmodule. e 4
L0 PP 3
L0 00 o 6
On, Off, POp. et i e e e 6
MY, ottt e e e e e e 4
MY, 4ttt it e e e e e e e 5
OPUIMIZALION. .+t vttt ittt e ittt et et e e amaae e renannaannaess 10
OPTIMIZATIONS. it et et ettt ee i eeaaaad 49
OPLITIZE. + o vttt vt ittt ettt et e ettt e i e e e r ettt 4
Optimize_for_space.oiiiiiiiiii i i e s 10
OPHMIZE_XJIMP. .« ettt ettt ittt et et ettt et ie e eaeeeeaneanennsoanraeeens 10
OPtMizZe XJMP_SPACE. « o v v vttt vttt irieeeitetaenaeanroeannens 10
L T A AU 4
OPLIONS. .« . ittt e e et 3
ORGANIZATION. .\ttt i ittt ittt e e ettt eaannans 16
OULDOATA PIEPIOCESSOT. .+ vt v v et teteerneaessisnnanesennnanneesonenssnnnnnns 3
Outboard PreProCeSSOT.o iu i ittt ittt ittt it 4
outboard PreprocessOr ONLY. . oo v vt viint ittt ittt raennnnnreeeaeeoas 4
OULPUL fIe. ..t e e i i it i i 4
-p: produce profiling code. i e 5
padding, bitfields.uuiiiii e e e 14
Page. .. e e e 6
pageejecteverynlines.ol i e i i e 4
pageejects INLISUNGS.onn it i i i e e 6

C-59 2 July 87

4.3 for the IBM RT PC High C Programmer’s Guide

pagetitles inliSUNGS. iutuiiiniiii it i i e 6

Pragmas Page, Skip, Title.ottt iriiierereanenerranenaanaans 28

PArAMELEr PASSING. .+ . oot vvvitte ettt ettt tet ettt aaan 17

Parm_wamings. e e et 11

PATAMELET PASSING. . . .o vttt ittt ettt ettt st et etao e e eeear s 17

Argument Passing. i e e e e 17
includefile search path. i i e e e e 6
PO NS S, ettt e e e et e 11

-pg: produce profiling code. L i i i i et 5

compilation phase aNNOUNCEMENIS.t utt it et tat e et aanreennerrennnoasnaneesnaneaans 13

ENITY POINL & vttt ettt ettt tet it et et e e et aaeeseaaaasaneeseanennnsnsnnsnnns 16

floating POIML ..ttt ittt it ettt ete e ieeete e raaannneeeessanansnsesanans 21

pointer compatibility.o e e i 11

-Hvolatile: memory read on pointer dereferences.oiuiuiiiutiiiuiiietiiineieinniereeieeranens 5
POMIIETS. ..ttt ettt ettt ettt ettt eeeeeeeasaeonansaseenacennanennnnnnn 21

Pointers_compatible. i e e et e 1n
Pointers_compatible_with_ints. it i it it 11

CONSIANE POOL. ..ttt it i i e e e et e e 16

L0 TR0 5 R ' P 6

S T 9

post-mortem call trace call-stack dump.coiiii ittt 10

The Alias Pragma.uointin ittt ieeeiaeanreesensensoansaneenaeeneennnnn 22

Data Segmentation: the Data Pragma. ittt ittt e e 22
Pragma Alias.uuiii e e e it 22

Compiler Pragma Summaries.u.uuun it i i e 6

Pragma SUMMATY. & .. ot vventvennnneesunnonsasunnessonasoeennesennonoseannonssd 6

COMPILER PRAGMAS. .. it ittt ittt ettt ettt ianaraanens 6

Syntax of Pragmas. i e et e 6
RC_include. pragmas Include, C_include,R include, oo it 6
Pragmas Page, Skip, Title.o e 28

Include Pragmas: Including Source Files....... ... i 6
Preprocessing direClivVes.vuitviinuine ettt iiiinrnetereainneeenns 21

inboard vs OUtbOArd PrEPrOCESSOT. . vutvu it it ittt et ittt ittt ettt easananasessonnsnnans 3
Invoking the C Macro Preprocessor.ttt iiienenanseeeennnaneenn 3
-Hnocpp: use inboard PreproCessOr.uoeouetuttteetennenateneenennenaeeaeeaeeseneeaneeeenns 4
-Hepp: use outboard PreproCessor.uutunen ittt ettt ettt ittt et 4
-E: invoke outboard preprocessor OnlY.ouiinitiuiiitiiiiii ittt et e 4
-Hppo: invoke inboard preprocessorOnly.oviiiottetiuteteteeeeeeeenatonenaneeeeeneeeannnns 5
-V: Print SUDPIOCESS MAIMES. « .o\ vv vt vttt teteteeneeranienonnoeeesoosseseaenns 5

20 ¢ o o T e 11

Print_Protos. .. .uu ettt i i e i e e et e 12

51 (T 7 T PP 12

-Hasm: produce assembly listing. oot 3

-S: produce assembly SOUTCE. .« ..\ vvtuiutrtunnneetsunneoroneaeesoeesonneanoonosans 5

-p: produce profiling code. e 5

-pg: produce profiling code.ttt i i et e e e, 5

-H+w: produce wamings.ttt i i e e 5

-pg: produce profiling code.l e e i et 5
-prproduce profiling code.ol i e e e e e 5

Queens program LiStNG.uunnniniiiii it it i i i i e e 31

PrologUE. ottt e e e e e e 18

Prologue COAE. .. v vu ittt ittt ittt i it it i e 18
Prototype_CONVErSION_WAmM.uuuuteonnnneesurnnsoosoneretneneanonasansnns 12
Prototype_override_Wamings.c..veureunreeeennneeenaaearonereinnnaananns 12

alloca. -ma: provide stack frame informationfor il il 4
Public_var_ Wamings.ouunu ettt e et 13

Queens program isting.oiiuue i i e 31

LT N 13

-R: make static variablesread-only. o i i 5

O 17 [T 3PP 6

pragmas Include, C_include, R_include, RC_include. i ittt it iiiererrersernronoeoonnnnns 6
-Hvolatile: memory read on pointerdereferences.o ittt ittt 5
-R: make static variables read-0nly. e e e i e 5
Read _only_Stings. ..ot ittt e e e, 13

—gremitdbX reCOTdS. ..o e e et 4

PEOOVET. &t ettt s een ettt e it ie e e e e eaaeanneennennsonnennennesnnesneennss 41

C-60 2 July 87

4.3 for the IBM RT PC High C Programmer’s Guide

annotated multi-modular cross FEference.ttt i e i e e 38
inter-modular, inter-lingual cross reference. annOtated iniiit it ier it e i it 38
Features of the Cross Reference. ... e e i eeaad 38
MAKING CROSS REFERENCES.ttt et ittt s e ee et aeaannns 38
sameness of include files for cross references.c.uiiiiiiiiit i e e e 40
Register Usage.ttt 16

register variables. e e e e 15

SAVING TEGISTEIS. Lottt ittt ettt it tat et s et eae et etnnaeeeteranannnnnanensen 16

(T - P 21

Function Results. e e 17

Assembly Routines.ottt i e 24

TUIBT. i i e e 28

LSHNG TUICL. ..ottt it ettt e et e 28

RUN-TIME ORGANIZATION. ...\ttt ittt ens 16

Ronclude. .ottt e i e e e e 6

pragmas Include, C_include, R_include, RC_include. it ittt iaeinneannns 6
-S: produce assembly SOUICE. .. oo vtt et e e e 5

references. sameness of include files forcross. ... il i 40

SAVIME TEGISIEIS. . .o vttt vttt ittt ettt aeiiteenenae e eeeenerneannnnnns 16

line-numbers, scope-level, nesting-level. o i i i e 28

directory search forinputfiles. i e e 6

include file searchpath. e e e 6

Data Segmentation: the Data Pragma. AP R 22

CommOn SEEMENLS. tutttt et ettt tetnttteaanniaeareatseeaansereaennranenananns 23

data communication in separately compiledmodules. i i i e e 22
Calling SeqUeENCES. tuun ittt ettt et e et tnaaesataeeenneeannnenns 18

Size of Complilation Unit.vttinnt it iiieeeeiiienrerearenesooannannan 20

data type alignments and SIZes.ttt e e e e e i e 14
I P 6

Pragmas Page, SKip, Title,outuiniteinin it enenenoruaneeeonaaesaesaanasensosannnnn 28

Some ANSI-Required Specifics.coiiiiiiiiiiiiiiiiiiiiii it 20

-S: produce assembly SOUICE.ituututtti it ittt et it et it i i e 5
conditional sourcefileinclusion. i i il e e 6

Include Pragmas: Including Source Files.o i e 6
comPiler Or SOUTCE HSHNG. + . oottt ettt tiine et onneeeroseeeeneseeeonsasannaeeosaeannans 10

-Hlist: generate SOUTCE iSUNG.vvniinnu ittt ittt ettt ettt iei et renanana 4

literals in data VS. COAE SPACE.vunutinteinnn et ittetaneeenteeeneeeneeeaeennneeennaenenans 10,13

. SYSTEM SPECIFICS. ...ttt ittt ettt e it iee et aeanaeneaanns 20
Some ANSI-Required Specifics.ouvuueiiitiniiiii ittt iiiaaeet e eannnnaanaens 20
-dir: specify include directory.oiiii i e e e e 4

call-chain stack dump.iiinuit ittt ittt te i e 10

stackdump. ..., P 41

-ma: provide stack frame information foralloca.c.viiiiiiiiiiin ittt 4

Stack Frame Layout. ..ottt 16

SEAEMEILS. ...\ttt ettt ititiieenaiiteenaenaeesieraennnasnosneseeaenans 21

static lnK. .« o e i e e 16

-R: make static variablesread-only.o it i i i i it 5

compilation statistics and SUMMATY.ituittttutentnninnnrineneeeaeaeneonnnnnnnnn 13

Data Typesin StOrage.o.uuiiiiiiiiiiii ittt ittt itiainaneean, 14

StOrage Classes. & oo ivenee e iiien i ieenee et tieeeeneeeaouseerannanaoanaaannnns 15

STORAGEMAPPING.ttt ittt ettt et et i eiiaeases 14

struct padding, bitfields. i 14

SEIUCTUTES. & v eenee it teetee e seeseeneeeeanennsunsnoneesoneeanansanns 21

-V Print SUDPIOCESS MAMES. .+ .\ i vuvituut et iennuneeteeennoseneeeessonsannseneaasesnens 5

-B: invoke SubSttule COMPIlEL.tiiitnniiiereneetoenneeeonareceasnonnneeannnsennsd 4

Compiler Pragma Summaries.ttt ittt ittt et 6
SUIMANZE. . ittt it it ittt e it e e 13

compilation statistics and SUMIMAIY.ouuut ittt iiiee ittt eienretnnueatoeasseeeannaasnnnss 13
PTagMa SUMINATY. ... tvvnnnenennnnesansoneeenastoeannonsaonosennnessncensnsasnonsd 6

-c: suppress linkage, create objectmodule. i i i i i e e 4

“W: SUPPIESS WAITHIES. .+t et v tvttnonnteeennaauaseessannneoneeeseseeranonnneeenss 5

compiler switches ortoggles. i e e 9

-Difidefinea Symbol. ... o.uuuiii i i e et et e 4
SUsd#undefa symbol. ..ottt e e e e e 5

SYNEACHIC EITOT MESSAES. .« vt v v v ervernete et eonnnnonsossossseansoososasessnns 42

Syntax of Pragmas.o.uuiiiiiiii i i i it i e 6

System EIOrs. e e e e e 41

C-61 2 July 87

4.3 for the IBM RT PC

INVOKING
Pragmas Page, Skip,

page
-Hoff=toggle: tums
-Hon=toggle: tums
COMPILER
compiler switches or
post-mortem call
-Hansi:
-Hoff=toggle:
-Hon=toggle:

data

Data

-U:
Size of Complilation

Register
-Hnocpp:
-Hepp:

aliasing

auto

register

addressing local and exported
-R: make static

inboard

constraint error and
Error and

User Errors and
-W: suppress
-H+w: produce

High C Programmer’s Guide

SYSTEM SPECIFICS. . . .o i ittt e it i eaes 20
THE COMPILER. it e e e enns 3
THHle. .« ettt i e e e e e e 28
TR, ot e e e 6
titles iNJISHNGS. . ..un i i e 6
toggle Off. .. . e e e 5
BOBElE ON. ... e e e e 5
TOGGLES.ottt ettt ittt e et e 9
L2071 9
trace call-stack dump. e 10
tummn of f EXIENSIONS.ttt i e i e e e 3
mmstoggle Off. ... oo oo e 5
mMST0gEle ON. ...t it e e i i e e S
type alignments and SIZes. i i i i i 14
TyPes in StOrage. it 14
Usffundefasymbol. ... e 5
#undefasymbol. e e e S
UIHOMS. « ot ttttt e tennate e eenauaneeeseenansaressuunssneeoeoonnosonseseees 21
Unit. oo e i e i e e 20
up-level addressing. e e 16
U8, . oottt e e i e e 16
USE INDOATA PIEPIOCESSOL. . ottt vt ettt ettt e ennanananaeaesanaaneens 4
USE OUIDOATA PIEPIOCESSOT. .« ¢ vttt vt e vt eneuneeneeneaneenunnnnaneeseeroeseaeeas 4
User Errors and Wamings.ottt iiiiniiiiiiiiiieiiian e 42
Using the hexref Command.ooiiiiiiiiiiiiiiiiiiiininniiinninennnen, 38
-V: Print SUDPIOCESS MAIMES. .« ..ottt iue vt e et tnnneeeronsosnnneeonnsorenenson S
variable and functionnames. i i i e i e 22
Vamiables. ... i e e 15
VamiabIES. e i e 15
vaniables. e 15
variablesread-only. e e 5
VS OUtbOArd PrePrOCESSOT. . . ivt ittt ie it ieiiie it iaeeeeeiaeanennn 3
“W: SUPPIESS WAIMINES. « . v v v vttt vvntnseeeonnnnnneeensnnnseseseeeeannesneennns 5
£« 1 TP 13
WATTHNG INESSAES. .+ o v v v vt vnnnevne innetnnessnnnsnaeeennenanesssesnnnasnnesas 2
Waming Messages.ouiuuniiiiniietunnerirrineeensianeieneecronnaens 43
WVaINES. « oo te ettt ettt ettt ettt it e i e 42
WAITIIZS. .+ ottt et eteeaee e ateeseeesaeeeeeeeeeeenenasnnnanannnnnnsoeeonns 5
WAIMIIIIZS. « o ettt e et et eeeeeeteeeeaeeaeeeeeaeesssoenanansnsonnneaneenns 5

C-62 2 July 87

4.3 on the IBM RT PC Ordcring Information for MetaWare

Ordering Information for MetaWare Manuals

Copies of the HHigh C Language Reference Manual may be ordered directory from MetaWare.
The manual retails for $16.95 and is available at an educational discounted price of $12.95.

If your system includes the Professional Pascal TM compiler, you may want the three-manual set,
including the programmer’s guide, primer, and language extensions manual. This set retails for
$32.95 and is available at an educational discounted price of $24.95. The manual sct may also be
ordered from MetaWare.

These prices include mail/shipping costs. California residents please add 6.5% sales tax. Please
send: (1) an indication of educational affiliation, if appropriate, and (2) a check, money order, or
written authorization to charge to your MasterCard or VISA account, with account number and
expiration date to:
MetaWare Incorporated
903 Pacific Avenue, Suite 201
Santa Cruz, CA 95060-4429
(408) 429-META (= 6382)

July 1987

This page intentionally left blank.

PRPQ 5799-CGZ: IBM 4.3/RT

X Window System, Version 11 IBM/4.3-USD:1-1

The X Window System

ABSTRACT

This paper describes the X Window System, Version 11, supported by IBM/4.3. It is divided into
two parts. The first part, the X User’s Guide, is intended for people who use X with IBM/4.3.
The second part, the X Programmer’s Guide, is intended for programmers and system administra-
tors who will configure, modify, and incorporate X into their application programs.

The X User’s Guide contains the following chapters:
1. Overview describes the components of X.

2. A Learning Guide for Using the X Window System describes how to invoke and terminate
X for a display, how to use the mouse and keyboard, and how to move, resize, and manipu-
late windows.

3. Using X Applications describes the xterm, xclock, and xload applications.

The X Programmer’s Guide contains the following chapters:
4. Utilities describes each of the utilities provided with X.

5. Customizing X describes how to change default window charactenistics, and how to
configure X for particular environments.

6. Customizing Uwm describes how to modify the programmable window manager available
with X.

7. The Bitmap Editor describes how to use X'’s editor for creating and editing a bitmap.

The following appendices appear at the end of the paper:
A. X Colors
B. X Fonts
C. ASCI Code
D

Xterm Escape Sequences

January 1988

IBM/4.3-USD:1-2 X Window System, Version 11

The X User’s Guide

Overview describes the components of X.

2. A Learning Guide for Using the X Window System describes how to invoke and terminate
X for a display, how to use the mouse and keyboard, and how to move, resize, and manipu-
late windows.

3. Using X Applications describes the xterm, xclock, xload, and xfd windows.

January 1988

X Window System, Version 11 IBM/4.3-USD:1-3

1. Overview

In X, a “display” is a server that manages one or more physical devices (called “‘screens’) on
which computer output appears. Further, X lets you divide each screen into
multiple“‘windows.” A “window’’ is a rectangular region on the screen that performs the func-
tions normally associated with the entire screen.

Further, more than one display (server) can bc active on onc workstation at a time. The
result, then, is a hierarchy, with multiple displays managing multiple scrcens, on each of which
multiple windows appear. It is important to understand this usage of the word “display,” as it
permeates the remainder of this article.

X’s network transparency allows applications that reside on one workstation to run on other
workstations with screens of the same or different modcl.

1.1. Components of the X System

To use X requires the components listed below. The rest of this chapter describes these
components.

The IBM Academic Operating System 4.3
Hardware

User Interface

The X Server

X Applications

1.2. The IBM Academic Operating System 4.3

X runs under the IBM Academic Operating System 4.3. The user should be familiar with
a UNIX operating system before using X. All UNIX operations can be executed from the
X terminal emulator window, called the “xterm window.”

1.3. Hardware

To use X, you must have a workstation equipped with a keyboard, a mouse, and one or
more of the following devices. X supports the following workstations and devices, plus a
standard keyboard and mouse:

e The IBM RT PC with up to three of the following:
— The IBM 6155 Extended Monochrome Graphics Display

‘— The IBM Academic Information Systems experimental display (which is no
longer available)

— The IBM 5081 Megapel Display

e The IBM 6152 Academic System with either or both of the following:
~ The IBM Video Graphics Array display adapter and displays
— The IBM 8514-A Display

1.4. User Interface

X receives user input from three sources: the network, the keyboard and the mouse. Use
the keyboard to enter commands and edit files. Use the mouse to move to another win-
dow, invoke menus, and select menu options.

You can also use the mouse in X application programs, to scroll the contents of a window,
draw a picture, request information from a specific region of a window, or cut and paste
information.

January 1988

IBM/4.3-USD:1-4 X Window System, Version 11

When a workstation has more than onc screen running the same X server, moving the
mouse can cause its cursor to jump from screen to screen.

1.5. The X Server

The X server interprets all X requests and monitors all display activity. The X server pro-
vides a library of fonts and colors that can be uscd in application windows, and to enhance
the appearance of information.

1.6. X Applications

Most X applications “‘open,” or present, their own windows. The following table is 4 list
of supported X applications by type.

APPLICATION TYPE | NAME FUNCTION
Operating System xterm cmulates DEC VT102 terminal
Interface
Monitor xclock displays digital or analog clock
xload displays system load average
Utility xfd displays font characters
xhost accesses host
Xinit initializes X from UNIX shell
xlsfonts | lists all X fonts
xrdb establishes X defaults
xrefresh | redraws entire screen
xset sets X environment paramcters
xsetroot | sets root window characteristics
xwd dumps a window into a file
xwininfo | accesses system information for a
window
xwud undumps a window from a file
Window Manager uwm manages windows
Graphics Editor bitmap cdits bitmap files
Sample ico displays icosohedron in motion
muncher | displays random pattern gencrator
paint paints and prints a simple picture
plaid generates a random plaid

Descriptions of these applications appear later in this paper.

January 1988

X Window System, Version 11 IBM/4.3-USD:1-5

2. A Learning Guide for Using the X Window System
This chapter includes the following topics:

e starting and ending X

® characteristics of an X display
® managing windows

® opening windows

2.1. Starting X
There are two ways X may be configured for startup:

e With X running continuously on the display
¢ With X invoked by a command from the UNIX shell

2.1.1. With X Running Continuously

If X 1s running continuously, you will sec a mouse cursor and a terminal window with a

“login:”’ line.

(1) Ensure that the mouse cursor is in the login window by moving the mouse if
necessary.

(2) Type:

loginID < Enter >

where loginlD is your login ID.
(3) Type:
password < Enter >

where password is your password. If X normally runs continuously, you will not
be able to proceed with the learning excrcises.

2.1.2. With X Invoked by a Command

If the X window system is not running continuously, you have to enter a command to
start it. To facilitate your learning of how X works, IBM has provided a command in
the directory /usr/guest/guest/xwindows for you to use with the following material.

(1) To begin, ensure that you have already logged into a UNIX shell (by entering
your login ID and password).

(2) Type:
set path = (fusr/gucst/guest/xwindows SPATH) <Enter>
xwindows [-display] [screen . . .] <Enter>

The values for display are :0 through :7, with :0 the default.
Note: More information on the xwindows command can be obtained by typing:
man xwindows < Entcr>

Simply typing xwindows starts a singlc display managing a single screen. X
searches for an available screen, using the following order:

8514, vga, mpel, ega, apalé, aed

January 1988

IBM/4.3-USD:1-6 X Window System, Version 11

where:

8514 is the IBM 8514 PS/2 Color Graphics Display Adapter 8514/A
vga is the IBM Video Graphics Array (VGA) Display

mpel is the IBM 5081 Display with MegaPel adapter

ega is the IBM 5154 Enhanced Color Display with adapter

apal6 is the IBM 6155 Extended Monochrome Graphics Display
aed is the IBM Academic Information Systems Experimental Display

On the RT, by default the mouse cursor moves from the IBM 5081 to the IBM
5154 to the IBM 6155 to the acd. On the IBM 6152, by default the mouse cur-
sor moves from the IBM 8514 to the VGA.

To start a display with more than one screen, include screen names on the com-
mand line. The sequence in which you enter the screen names, left to right,
overrides the default mouse cursor movement. By using screcn names you can
ensure that the mouse cursor will move smoothly from left to right across your
screens in the order that they reside on your display table.

If you do not start an available screen when you start X, you can do so later by
issuing the xwindows command with the appropriate screcn name. Note, how-
ever, that starting X separately for a screen invokes a scparate copy of the
display (server) and prevents cursor travel between groups of screens.

2.1.3. X Initialization

As the display initializes, the background (known as the “root window’’) and its cursor
appear on each screen in the group. After a beep, an analog clock appears in the lower
right corner of each screen of the group. Then two xterm windows appear, one atop
the other, in the upper left corner of each screen. The xterm window which is darker
than all the rest is the console window. All system messages appear in it. In the lighter
xterm windows, the UNIX c-shell is running.

2.1.4. Console Focus

Console focus identifics the display that receives keyboard and mouse input. Ensure
that the console focus is set to the display on which the console window appears. If it
is not, the mouse does not move and keyboard input is not accepted. To change the
console focus, press the <Alt> and <Scroll L.ock > keys simultancously.

2.1.5. Accessing Help

X includes an on-line help system with information about commands, window manager
functions, and default keybindings. To access the Heclp Menu and sclect its options,
proceed as follows:

(1) Move the mouse cursor to the root window.
(2) Hold down the right-most mousc button. The Main Menu will appcar.
(3) Move the mouse to highlight the Hclp option on the Main Menu.

(4) Release the mouse button. Again, hold down the right-most mouse button.
The Help Menu will appear. Select an option by moving the mouse cursor to
the option and then releasing the right mouse button. The options operate as
follows.

Help on Topic: When you sclect this option, another menu appears. Select one
of the topics, and the available help text will appear.

January 1988

X Window System, Version 11 IBM/4.3-USD:1-7

Help on Keybindings: A help list appears that describes how to manage windows
by keyboard and mouse.

X Command Summary: A help list appears that summarizes X applications and
their associated commands.

2.1.5.1. Menu Help

Function menus are those that can be chosen from the Main Menu. Each function
menu includes a Help option. Choose the Help option to view help information
describing the selections on that menu.

2.1.5.2. UNIX Help

UNIX man pages provide information on UNIX commands. You can view them
from the UNIX shell (an xterm window) by typing;:

man commandname < Enter >

where commandname is the UNIX command name.

2.1.6. Ending X

You can end X from the Exit Menu or from the console xterm window.

2.1.6.1. Ending X from the Exit Menu
To end X from the Exit menu, do the following;:

o)
@)
3)

(4)
()

(6)
M

Move the cursor to the display where the console xterm was started.
(Remember, the console xterm is darker than the rest of the xterm windows.)

Make sure the focus is on the display containing the console xterm. If it is
not, press <Alt> and <Scroll Lock > simultancously to change the focus.

With the cursor resting in the root window, hold down the right mouse but-
ton. The Main Menu will appear.

Move the mouse cursor to highlight the Exit option.

Release the mouse button. Again, hold down the right mouse button. The
Exit Menu will appear.

Move the mouse to the Exit X option.

Release the right mouse button.

If X was started with a login window, all user-created windows disappear. A
login window with the “login:” prompt reappears.

If X was started with the xwindows command, all windows disappear and the
UNIX shell display reappcars.

If nothing happens, the cursor may not have been in the console xterm win-
dow, or the focus may not have been on the display containing the console
window. Carefully repeat the above steps.

2.1.6.2. Ending X from the Console Xterm Window

To end X from the console xterm window, do the following:

(M
2

Move the mouse into the console xterm window.
Type:

exit < Enter>

January 1988

IBM/4.3-USD:1-8 X Window System, Version 11

If X was started with a login window, all user-created windows disappear. A
login window with the “login:” prompt rcappecars.

If X was started with the xwindows command, all windows disappear and the
UNIX shell display reappears.

2.1.6.3. When All Else Fails

If the console window is not recciving input, and if the menus are not working, you
can end X with UNIX commands. Inter these commands from an xterm window
that is running on that X server or from a display that is logged into the workstation
on which X is running.

() Type:
ps aux | grep Xibm < Enter >
. The process id (PID) and other information about the Xibm process will

appear. Find the number in the second column of the displayed information
for the Xibm process (not the grep Xibm process). This is the Xibm PID.

(2) Type:
kilt -9 pid < Enter >

where pid is the Xibm PID located in the previous step.

2.1.6.4. An X Startup Command Example

In the directory fusr/skel is a shell script named xwin. You can copy it to your
home directory and execute it. Xwin starts Xibm and one xterm window. Experi-
enced users will probably want to modify their copics of xwin to suit personal tastes.

2.2. Characteristics of an X Display

This section provides a brief introduction to an X display. You might want to have X
running so you can experiment with the mouse and keyboard.

2.2.1. When X First Comes Up
When an X work session (using the system defaults) begins, the following appcar on the
display:

¢ the background, known as the root window
¢ the mouse cursor

® two xterm windows

¢ an analog xclock window

The next sections explain these items further.

2.2.2. The Mouse Cursor and Mouse

Generally, as you move the mouse, you make the mouse cursor on the display move in
the same direction at the same relative spced. This section describes two special
features of the mouse.

2.2.2.1. Movement Across Screens

When the X server is running more than one display, and the mouse cursor moves
off the right edge of one display, it appcars on the left edge of another display.
(Which display is determined either by default or by the order in which the displays
were invoked. See “‘Starting X earlicr in this chapter.) If the cursor moves off the

January 1988

X Window System, Version 11 IBM/4.3-USD:1-9

right edge of the last display, it reappcars on the left edge of the first display. Simi-
lar movement occurs from left to right.

2.2.2.2. Cursor Shapes

As the mouse cursor enters different windows on the screen, its shape may change.
The cursor resembles an “X” when it is in the root window. When the cursor enters
the xterm window, it becomes an “I.” An X application may define several mouse
cursor shapes for use in its window. For example, when the cursor moves into the
scrollbar region of the xterm window, it is changes from an “I” to a double-headed
arrow. The mouse cursor shape scrves as a visual indicator of the foreground pro-
cess within a window. The foreground process is the process that reccives and acts
on mouse and keyboard input.

Information about specific cursor shapes and functions appears in later chapters that
describe specific X applications.

2.2.3. Windows

This section describes several types of windows and window presentation.

2.2.3.1. The Root Window

The “root window” is the display background, whosc default pattern is a gray zig-
zag. The X server is the application that runs in the root window. All X application
windows are built on top of the root window. The root window also owns the X
cursor. To change the appearance of the background and cursor, sce the xsetroot(1)
man page.

2.2.3.2. X Application Windows

Some X applications create their own windows; others operate within existing win-
dows. FEach X application window can differ from others in function, size, use of
color and fonts, cursor function and shape, and so forth.

2.2.3.3. Window Layering

Each window on the display exists on its own “layer.”” X assigns the layer level
chronologically. That is, the first window to appear is on the bottom layer. The
next window is on top of the first one. If another window appears, it will occupy
the top layer. The group of layered windows is called the “window stack.”

2.2.34. Overlapping vs. Tiled Window Management

When a window manager allows laycred windows to overlap one another, it is
known as a “overlapping” window manager. When a window manager prohibits
windows from overlapping one another, but instcad automatically resizes windows
to fit on the display without overlap, the window manager is known as a “tiled win-
dow manager.” X provides a sophisticated overlapping window manager which
allows you to alter the layering order. To do so, you use the Top of Stack and Bot-
tom of Stack options on the Manage a Window Menu (discussed later in this
chapter).

2.2.3.5. The Focus Window

The “focus window” is the window that receives all keyboard and mouse input. X
is configured so that the window containing the cursor is the focus window. In X,
this is called “real estate mode.” The focus may be changed so that a selected win-
dow is the focus window regardless of the cursor position. In X, this is called

January 1988

IBM/4.3-USD:1-10 X Window System, Version 11

“listener mode.”

Listener mode (separating the focus window from the cursor window) applies only
to the display on which it was requested. If the samc X server is running on two
displays, one may be in listener mode and the other in real estate mode. When the
mouse moves from one display to another, the mode in effect on that display takes

January 1988

X Window System, Version 11 IBM/4.3-USD:1-11

eflect. The mode does not transfer to the next display with mouse movement.
(Changing between: real estate mode and listener mode is described later in this

paper.)

2.2.3.6. Icons

“Icons” are symbols that represent larger items or actions. In X, a window icon
represents a ‘window. You can change a window into an icon and back again, so
that the window remains readily accessible, but it appears in full size only when
needed.

Only the window manager can issue commands to window icons. They cannot
receive commands from the process running in the window. You can start a process
in a window and then reduce the window to an icon while the process is running.
You cannot provide additional keyboard input to that window until you change it
from an icon back to a window.

Note: Remember, icons cannot receive keyboard input. Therefore, if you move the
cursor to an icon and begin to type, X interprets this to mean that you want to
change the name of the icon.

2.3. Managing Windows

The X window manager (uwm) gives you the ability to move and resize windows, change
them to or from icons, and shuffle overlapped windows to the top of the window stack. It
also provides more advanced functions, such as freezing and unfreezing the display, creating
and exiting a window, and accessing help text.

The window manager includes menus from which you invoke window management func-
tions. You can also perform frequently-used functions with keyboard/mouse actions.

2.3.1. The Menus
The six window management menus are:

Main Menu

Create a Window
Manage a Window
Manage the Display
Hosts

Help

Exit

® ®© &6 & ¢ o o

Each screen has its own copy of the window manager, even if the screens are running
on the same X server. Therefore, window management functions apply only to the
screen on which they appear.

2.3.1.1. Using the Menus

Use the Main Menu to sclect one of the function menus. You learned earlier in this
chapter how to access the Help Menu. You access other function menus in the
same way:

(1) With the cursor in the root window, hold down the right-most mouse but-
ton. The Main Menu appears.

(2) Move the cursor to highlight one of the menu selections.

(3) Release the mouse button. Again, hold down the right mouse button. The
selected function menu will appear. Do not release the mouse button. You

January 1988

IBM/4.3-USD:1-12 - X Window System, Version 11

must hold it down until you make a sclection from the function menu.
(4) Move the cursor on the function menu to highlight the desired selection.

(5) Release the mouse button to make the sclection.

2.3.1.2. The Help Option

Each function menu has a Help option. Choosing this option retricves a help win-
dow describing the function menu sclections.

2.3.1.3. Create a Window Menu

The Create a Window Menu enables you to create, or “open,” five different types of
windows:

Xterm

Xclock Analog Clock
Xclock Digital Clock
System Load
Console Xterm

When you select one of these options, the menu disappears and a special right angle
cursor appears. The right angle cursor represents the upper left corner of the win-
dow. A dimension box also appears in the upper left corner of the display. To
cause the selected window to appear, do the following:

(1) Move the cursor to the desired position.

(2) Click the right-hand mouse button. The window will appear.

2.3.1.4. Manage a Window Menu

The Manage a Window Menu lists the six operations that can be performed on a
window or icon:

¢ Move

Resize
(De)Iconify

Top of Stack
Bottom of Stack
Close a Window

® & & o o

When you select one of these options, a special doughnut cursor appears. To
proceed with the operation, first move the cursor into the window where the action
is to occur. Be careful not to press a mouse button as you move the mouse; if you
do, the action is canceled.

2.3.1.4.1. Move

(1) As you hold down the right-most mouse button, move the mouse. An
outline of the window moves as the mouse cursor moves. This outline
shows the position the window will assume when you rclease the button.

(2) Release the button to complete the move.

2.3.1.4.2. Resize

The position of the doughnut cursor in the window determines how the window
will be resized.

January 1988

X Window System, Version 11 IBM/4.3-USD:1-13

(D
@)

©)

4

To move a border, place the cursor just inside the center point of the
border. To move a corner, place the cursor just inside the corner.

Hold down the right mouse button. The resize dimensions appear in the
upper left corner of the window. :

Move the mouse out of the window to expand its size. Move the mouse
within the window to contract its size. The new size of the window is
indicated in the resize dimension box. For xterm windows the resize
dimensions are expressed in number of characters. For all other windows,
they are expressed in number of pixels. An outline also indicates the size
the window will assume when you release the button.

Release the mouse button to resize the window.
Note: Xterm windows do not resize their character fonts. That is, the

characters within the xterm window do not grow or diminish to match
the resized window.

2.3.1.4.3. (De)lconify

This option converts a window to or from an icon. As the conversion occurs, X
may move the icon/window to a more suitable location.

(H

©)
&)

S

To initiate the conversion, move the cursor to the appropriate window or
icon.

Press and release the right mouse button.

To move the window/icon during the conversion, hold down the right
mouse button. Then move the mouse to the new location. An outline
shows the position the window/icon will assume when you release the
button.

Release the button to complete the conversion.

2.3.1.4.4. Top of Stack

You cannot move a window to the top of the stack if it is completely hidden
beneath another window. If this is the case, first move the overlaying window,
or use the Send Bottom Window to Top option from the Manage the Display

Menu.

Move the mouse to the selected window and click the right button. The window
moves to the top of the stack.

2.3.1.4.5. Bottom of Stack

You cannot move a window to the bottom of the stack if it is completely hidden
beneath another window. If this is the case, first move the overlaying window.

Move the mouse to the selected window and click the right button. The window
moves to the bottom of the stack. '

2.3.1.4.6. Close a Window

Move the cursor to the selected window and click the right mouse button. The
selected window disappears.

2.3.1.5. Manage the Display Menu

This menu lists seven display operations:

January 1988

IBM/4.3-USD:1- 14 ’ X Window System, Version 11

® Focus Select

¢ Refresh Display

¢ Freeze Display
Unfreeze Display

Top Window to Bottom
Bottom Window to Top
Restart uwm

With the Refresh option, you needn’t move the cursor. However, with any other
option, the special doughnut cursor appears. You must move the doughnut cursor
out of the menu. As you use the mousc to move the cursor, be carcful not to press
a mouse button; if you do, the action is canceled.

Only the Focus Select option requires that the cursor be in a specific window. For
all other options, place the doughnut cursor anywhere on the display outside the
menu. When you have moved the cursor, click the right-most button to begin the
selected operation.

2.3.1.5.1. Focus Seclect

The Focus Select option toggles listecner mode on and off. When listener mode
is on, all keyboard and mouse input is directed to one window, regardless of the
cursor position. For more information on listener mode, refer to “The Focus
Window” earlier in this chapter.

To toggle listener mode on or off, first choose the Focus Select option. Then
move the cursor to the desired focus window and click the mouse button.

2.3.1.5.2. Refresh

The Refresh option redraws the entire display. Just select the option to cause
the refresh.

2.3.1.5.3. Freecze Display

The Freeze Display option withholds input from the display. The display is not
updated as long as it is frozen. If the Refresh option is chosen after the display is
frozen, all the windows are rewritten, but their contents is missing; the contents
of the display buffer is not kept current through updates. Also, if windows are
moved after the display is frozen, portions of windows may be blank.

The Freeze Display option is useful to capture a particular display state before
dumping it to a printer with the UNIX bitpr¢t command.

2.3.1.5.4. Unfreeze Display
The Unfreeze Display option undocs the Freeze Display option, restoring the
display to its normal operation.

2.3.1.5.5. Send Top Window to Bottom

This option sends the window on the top of the display stack to the bottom.
For a description of X display layering, see “Window Layering” earlier in this
chapter.

2.3.1.5.6. Send Bottom Window to Top

This option sends the window on the bottom of the display stack to the top.
For a description of X display layering, sce “Window Layering” earlicr in this

January 1988

X Window System, Version 11 IBM/4.3-USD:1-15

chapter.

2.3.1.5.7. Restart uwm

This option kills the current window manager and restarts another based on the
$HOME/.uwmrc file. This enables the quick implementation of just-completed
modifications to the $HOME/.uwmrc file. (Scc the chapter entitled “Customiz-
ing Uwm” later in this paper.)

2.3.1.6. Hosts Menu

You use the Hosts Menu to perform a remote login to another workstation or
machine on the network. To do so, follow these steps:

(1) Choose the Hosts option from the Hosts Menu. A window appears with the
Enter host name: prompt.

(2) Type:
machinename < Enter >

A window appears on an xterm display logged into that machine.

2.3.1.6.1. Exit
The Exit Menu includes two exit options:
¢ Exit uwm
¢ Exit X

Neither option requires your further action after selection. A description of each
option follows. If for some reason the menu system becomes inaccessible, there
is a way to exit from an xterm window. (See “When All Else Fails” earlier in
this chapter.)

2.3.1.6.2. Exit uwm

This option kills the window manager. Window manager menus cease being
accessible, and the mouse and keyboard cease managing windows when you
select this option.

You may start a new window manager by typing the following command in an
xterm window:

uwm & <Enter>

2.3.1.6.3. Exit X

This option exits X. If X begins with a login window, this option logs you out
of the working session. If you started X with the xwindows command, all X
windows disappear and the UNIX shell display reappears.

2.3.2. UNIX Commands

The X server and each of the applications it runs are treated as a single process by the
UNIX system. Therefore, you can use the following UNIX commands to control the
X process:

January 1988

IBM/4.3-USD:1-16 X Window System, Version 11

COMMAND | DESCRIPTION

command & initiates the named process in the background

bg moves stopped foreground process to background

fg moves newest background process to the foreground

kill -9 %x terminates the background process identified by job
number x (from the jobs -/ command)

kill -9 pid terminates the background process identificd by
process number pid (from the ps -aux command)

~C terminates a foreground process

L stops a foreground process

For more information on these commands, scc the respective UNIX man page.

2.3.3. Keybindings

The most frequently-used window management functions have been bound to keys and
mouse clicks. These functions and their keybindings and mouse movements are as fol-

lows:
MOUSE MOVES
FUNCTION KEY BUTTON | MOUSE?
Move ALT right yes
Resize ALT both yes
(De)iconify ALT left yes
Top of Stack Control right no
Bottom of Stack | Control left no

Move the mouse to the selected window before performing these actions. Press the key
and mouse button in unison. When a function moves the mouse, the function is com-
pleted after you release the button.

This example describes how to move an xterm window.
(1) Place the mouse cursor in the xterm window. ‘
(2) Hold down the right mouse button and the AL'T key.
(3) Move the mouse to the desired location.
(4) Release the mouse button and AlL'T key.

These keybindings also appear under the /lelp on Keybindings option of the Help
Menu.

2.3.4. Programming The Window Manager

The X window manager is programmable, allowing you to change keybindings and
menus to suit your needs. You should be familiar with the dcfault configuration of
uwm before programming your own. Information on the default configuration appears
in the chapter entitled *‘Customizing X.” Information on programming uwm appears in
the chapter entitled “Customizing Uwm.”

2.4. Opening Windows

Several X applications open their own windows. This section describes the command
options common to these application windows (color, fonts, window positioning).

January 1988

X Window System, Version 11 IBM/4.3-USD:1-17

The five X applications that open windows are:

® bitmap
xclock
xfd
xload

xterm

Typing the name of the application in an xterm window causes the new window to open
and the application to begin. (With bitmap, you must also supply the name of the bitmap
file.) Usually you run these applications in the background. Otherwise, no other com-
mand can be executed in the xterm window until the application terminates. Adding an
ampersand (&) to the end of the command line causes the process to run in the back-
ground. For example, xclock & begins the application, opens an xclock window, and frees
the xterm window for other commands.

There is one advantage to running an application in the foreground: you can terminate it
in an instant by typing ~C in the xterm window.

2.4.1. Positioning a Window in Uwm

To position a window in a specific area of the screen, you enter “offsets” on the com-
mand line that invokes the application. When uwm is running, if you don’t enter
offsets, the window does not automatically appear on the screen. Instead, the special
right angle cursor and the dimensions box appear. To make the window appear, first
place the right angle cursor where the upper left comer of the window is to be. Then
click either mouse button. The window appears with its upper left corner positioned at
the cursor.

2.4.2. X Application Options

If you simply enter the application name on the command line, X uses default settings
to format the application window. You can override the default settings by adding the
following options to the command line. (Note: Bitmap does not use any of these
options.)

bd (border color)

bg (background color)

fg (foreground color)

bw (border width)

fn (font); not used by xfd

v (reverse video)

2.4.2.1. Colors

The “background color” is the window color on which all text and graphics are
drawn. The “foreground color” is the color used for text and graphics. The “border
color” is the color of the window frame. Appendix A lists available colors. The
default colors are:

January 1988

IBM/4.3-USD:1-18 X Window System, Version 11

AREA DEFAULT COLOR
background white
foreground black

border black

To change the colors used by a window, type:

Xapplication -bg background -fg foreground -bd border & < Enter>
For example, to execute xload with an aquamarine foreground, a coral background,
and a light blue border, enter the following command in the xterm window:

xload -fg aquamarine -bg coral -bd LightBlue & <Enter>

On a monochrome display, X ignores color values other than “black’ and “white.”
If you enter other values, X substitutes the defaults.

2.4.2.2. Fonts

X includes an extensive library of fonts. Appendix B lists the font names. For the
following X applications, the font option (—fn) causcs the named information to
appear in the selected font:

e xclock: digital clock time and date
U xfd: verbose mode information (Note: usecs the —bf rather than the —fn
option)
] xload: workstation name
] xterm: command entry and status messages
Note: You must choose a fixed font in the xterm window. In other windows, you
may choose either fixed or proportional fonts.
The following command invokes xterm with an fg-13 font:
xterm -fin fg-13 & <Enter>

2.4.2.3. Reverse Video

The -rv option reverses the foreground and background colors. On a monochrome
display, the background becomes black and the foreground becomes white.

2.4.2.4. Border Width

Border width is expressed in pixels. The width does not impinge on window dimen-
sions, but is added onto the outside of the window. The command xload -bw 25 &
creates an xload window with a border that extends 25 pixels from cach window
boundary.

2.4.2.5. host:display.screen

An X application may open a window on a workstation, server, or display other
than the one from which the application was started.

If the server is running on more than one display on a given workstation, each
display is assigned a number. The assigned number follows the order these displays
were listed on the xwindows command line. The lefimost display on the command
line is 0, the next is 1, and so on. Unless specified by the Xibm command (dis-
cussed in a later chapter of this paper), the first server started on a workstation is 0,

January 1988

X Window System, Version 11 IBM/4.3-USD:1-19

the second server is 1, and so on.
For example, if you enter the command:
xclock rook:2.1 & <Enter >
in an xterm window on the bishop workstation, you will start xclock on the rook

workstation’s third server and that server’s second display. (Remember, servers and
displays are numbered beginning with 0.)

2.4.2.6. Geometry

You can give specific dimensions to a window and place it anywhere on the screen
by using the geometry option. This option takes the form:

= wxh + xoff £+ yoff

where:
= wxh is the width and height of the window
+ xoff is the pixel offset in the x direction
+yoff is the pixel offset in the y direction

The width and height are expressed in pixels for all windows except xterm. For
xterm windows, width and height are expressed in characters. No blank spaces are
allowed between the parameters of this option.

There are four offset origins as summarized in the following table. In each of these
coordinate systems, X is the horizontal axis and y is the vertical axis.

SCREEN { WINDOW CORNER
ORIGIN | CORNER | COUNTED TO

+0+0 upper left upper left

+0-0 lower left lower left
-0+0 upper right | upper right
-0-0 lower right | lower right

You need not enter the offset parameters. You can enter =wxh = xoff+ yoff by
itself. To use the offset when uwm is running, the =wxh portion of the command
must be specified. If uwm is not running, you can enter offscts without specifying
width and height, but the equals sign must precede the offsets. Both oflset parame-
ters must be entered.

For example, the command:

xload -bw 25 =300x200-30+ 30 & <Enter>
places an xload window with a border of 25 pixels slightly inside the upper right
corner of the display. Because the offsct is counted from the comer of the window,

not the border, the 25-pixel border rests 5 pixels within the upper right borders of the
root window.

The command
xload -bw 25 =300x200 & < Enter >

creates a 300x200 xload window, but when uwm is running it will not automatically
appear. You must use the mouse to position the window. (See the next scction.)

January 1988

IBM/4.3-USD:1-20 X Window System, Version 11

The command
xload -bw 25 =-30+30 & <Enter>

places the xload window slightly within the upper right corner of the display when
uwm is not running. The window will assume its dcfault size. If uwm is running,
you must use the mouse to position the window. It will be of default dimensions.

January 1988

X Window System, Version 11 IBM/4.3-USD:1-21

3. Using X Applications

This chapter describes in detail how to use xterm, xclock, and xload and their windows.

3.1. Xterm

Xterm emulates a DEC VT102 terminal, providing a consistent interface to the UNIX
operating system regardless of the configuration of your workstation. You can use the
xterm window to enter UNIX and X commands, including those for UNIX editors such as
emacs, vi, and ed, and those to compile and run programs. You can usc all DEC VT102
escape sequences. (See Appendix D for a list of these.)

The default xterm window provides cut, paste, and menu facilities. You can also request a
scrollbar and a log file to record keystrokes exccuted in the xterm window.

The rest of this section provides summary information on xterm options, and on using
scrollbars, cut and paste, and menus.

3.1.1. The Xterm Command Options

The xterm command options pertaining to colors and font are described in the preced-
ing chapter. Some special xterm options appear in this section. For a complete discus-
sion of the command, see the xterrm man page.

Most of the options require a leading hyphen (—) or plus sign (+). The hyphen
activates the option. The plus sign returns the option to its default setting.

-132 This option enables the xterm window to switch between 80-column (the default)
and 132-column mode. Once enabled, the switch occurs when the xterm window
receives the following escape sequences:

U To switch from 80to 132: Esc[?3h
U To switch from 132 to 80: Esc[?31

where “I” is a lower case L. Note that typing the cscape key (Esc) produces a ~|
on the display. You can use echo to send these escape sequences to xterm,
enclosing the strings in double quotes thus:

echo ”Esc[?3h” < Enter >
or

echo "Esc[?31” < Enter >

-b pixels
This option sets the size of the inner border (the space between the inner edge of
the xterm character display and thc xterm window border). The default is one
pixel.

-C This option sends messages for /dev/console to the xterm window. It effectively
creates a console xterm window.

-cr color
This option determines the color of the highlighted text cursor. The default is the
foreground color. If no foreground color is specified or if the display is mono-
chrome, it defaults to black.

-cu Because a bug exists in the curses(3x) cursor motion package, this option is neces-
sary for programs using curses to interact correctly with the DEC VT102 terminal.

For example, more(1) uses curses. If -cu is not specified when more is running,
leading tabs may intermittently disappear.

January 1988

IBM/4.3-USD:1-22 X Window System, Version 11

-e command
This option dedicates the xterm window to the specified command. The com-
mand can take arguments in the normal fashion.

Note: The -e option must appear after all other options on the command line.
The xterm window vanishes after the specified command terminates.

-fb font
Xterm writes all bold characters in the xterm window in the font specified in this
option. By default, bold characters arc written as an overstrike of the font
specified by the -fn option. The font specified by this option must be of the same
point size as the the font specificd by the -fn option. If the -fn option is not
specified, the font specified by this option is the normal font and there is no bold
font.

-1 This option causes xterm to be an icon when it first appears on the display. By
default, the icon appears directly beneath the mouse cursor when the application
begins.

-} This option sets xterm to “jump scroll,” to scroll more than one line at a time.
Xterm defaults to jump scroll.

-1 This option sets logging on. Logging causes every keystroke entered in the xterm
window to be recorded in .a file. The default file name is XtermlLog. XXXXX,
where XXXXX is the process ID of the xterm window.

Xterm creates the log file in the directory from which xterm was started. If the
xterm window is a login xterm (either option -Is or option -L was specified), the
log file appears in the home directory. '

-If filename
This option overrides the default file name for the log file.

-Is This option causes the xterm window to run under the shell specified in the .login
file. Xterm reads the .login file and comes up in the home directory. This option
is not used when the xterm window is opened using the xinit command in the
[etc/ttys file. In that case, the -1 option is used.

- The -L option creates a login window when X is initialized using the xinit com-
mand in the Jetc/ttys file.

-mb This option turns on the right margin bell. The bell rings whenever the cursor
reaches the specified margin bell setting. This sctting is established with the -nb
option. The bell may be set to visual rather than audio using the -vb option.

-ms color
This options sets the color for the mouse cursor when it is in the xterm window.
The default is the foreground color.

-n windowname
This option specifies the name of the xterm window. This name appears in the
icon and dimensions box for the window, and is noted when xwininfo is run on
the window. The default name is xterm.

-nb number
This is the location, expressed as the number of spaces left of the right margin, at
which the margin bell rings. The margin bell is activated using the -mb option.

-rw This option turns on reverse wraparound mode. In reverse wraparound mode, the
backspace key can move the cursor through the left margin and up to the end of
the previous line. The cursor does not wrap back through the prompt.

January 1988

X Window System, Version 11 IBM/4.3-USD:1-23

-s This option disables synchronous scroll. The display is not continually updated
and current keystrokes do not appear as they are typed, but the terminal executes
commands much more swiftly. This may be useful when network latencies are
very high, as when using xterm across a very large internet.

-sb This option produces a scrollbar at the left border of the xterm window. When
the cursor enters this area, it changes to the special double arrow, indicating that
mouse clicks will scroll the contents of the window backwards and forwards. The
number of lines available for scrolling is normally 64. To change this default, use
the -sl option.

-si With the scrollbar enabled, this option prevents the xterm window from scrolling
to the bottom when keyboard or system input is received.

-sl number
This option sets the number of lines that are saved “above’ the top of the win-
dow when the scrollbar is activate. The default is 64 lines.

-vb This option transforms the audio bell into a visual bell. The visual bell flashes the
entire window in reverse video.

= xoff 4 yoff
This option sets icon geometry. Icon geometry determines the position the icon
assumes when the window first appears (using the -i option), or when the window
is changed to an icon. (The icon does not occupy this position when the icon
results from your selecting the (De)lconify option on the Manage a Window
menu.)

3.1.2. Menus
There are two xterm menus:
. xterm X11
U Modes

Both menus use a line to divide their menu options into two groups. The top group
are toggles for command line options. If onc of these selections is on, a check mark
appears to the left of the selection.

The bottom group are commands. They provide a quick way to execute certain func-
tions, such as closing the xterm window, resetting the xterm window, and sending sig-
nals to the application running in xterm.

3.1.2.1. Using Menus

To view the xterm X11 menu, hold down both the Shift key and the Control key.
Then press the left mouse button. The top of the menu will appear at the cursor
position. Release the Shift and Control key but do not release the left mouse but-
ton.

To view the Modes menu, hold down both the Shift key and the Control key.
Then press both mouse buttons. The top of the menu will appear at the cursor
position. Release both keys but do not release the mouse buttons.

To choose an option from either menu, move the cursor so it highlights the option.
Release the mouse button(s) to make your choice.
3.1.2.2. The Xterm X11 Menu

The following table describes each xterm X 11 menu selection, noting the default set-
tings.

January 1988

IBM/4.3-USD:1-24 X Window System, Version 11

SELECTION | DEFAULT | FUNCTION

Visual Bell off Turns on the visual bell; same as
-vb option

Logging off Turns on logging; same as -l op-
tion

Redraw -- Refreshes the xterm window

Continue -- Same as UNIX fg (SIGCONT)

Suspend -- Same as UNIX *Z (SIGTSTP)

Interrupt -- Same as UNIX ~C (SIGINT)

Hangup -- Closes the X window (SIGHUP)

Terminate -- Closes the X window (SIGTERM)

Kill -- Closes the X window (SIGKILL)

3.1.2.3. The Modes Mcnu

The following table describes cach Modes menu sclection, noting the default settings.

SELECTION DEFAULT | FUNCTION

Jump Scroll on scrolls more than onc linc at a
time; same as -

Reverse Video off reverses foreground and back-
ground color; same as -rv

Auto Wraparound on wraps long entries to next line

Reverse Wraparound off backspace key «can move
through left margin to end of
previous line; same as -rw

Auto Linefeed oflf inscrt extra linefeed

Application Cursors ofl enables use of arrow cursors

Application Pad off enables use of numerical keypad

Auto Repeat on holding key down produces
multiple characters on display

Scrollbar off produces scrollbar at left bord-
er; same as -sb

Scroll to Bottom on Key on same as -sk

Scroll to Bottom on Input | ofl same as -si

80 <-> 132 Columns off enables window to switch
between 80- and 132-column
mode; same as -132

Curses Emulation ofl fixes bug in curses(3x); same as
-cu

Margin Bell off turns on right margin

bell; same as -mb

T} ,

Tek Window Showing oflf displays/hides Tek window

Alternate Screen oflf not available

January 1988

X Window System, Version 11 IBM/4.3-USD:1-25

SELECTION DEFAULT | FUNCTION
Soft Reset -- reset scroll region
Full Reset -- clear window, reset tabs

to 8-column width, reset
terminal modecs such as
wrap, smooth scroll
Select Tek Mode -- not available

Hide VT Window | -- not available

3.1.3. The Scrollbar

You can enable the scrollbar either using the Modes menu or using options on the
command line. (See the -sb, -sl, and -si options on the xterm man page.)

The highlighted region of the scrollbar represents the amount of text appearing in the
window. The darker region represents lines scrolled off the window. Use the -sl opton
to change the number of available scrolled lines. The default is 64. Use the scroll
options on the Modes menu to control scrollbar actions. Note that when the mouse
cursor enters the scrollbar area, it becomes a double-hecaded arrow.

With the cursor in the scrollbar area, proceed as follows to scroll text:

. To scroll to a specific portion of text, position the cursor at the desired text loca-
tion. (Remember, the length of the scrollbar represents the amount of scrolled
text.) Position the cursor at the desired text position. Click both mouse buttons.
The cursor becomes a horizontal arrow to indicate that the selected lines will
appear at the top of the window.

e To scroll up, click the left mouse button. The linc of text at the cursor position
now appears at the top of the window. The cursor becomes an up arrow to indi-
cate that the lines are scrolling upward.

¢ To scroll down, click the right mousc button. The line of text at the top of the
window will now appear at the cursor position. The cursor becomes a down
arrow to indicate that lines are scrolling downward.

3.1.4. Cut and Paste

Xterm provides a cut and paste facility to copy text from one arca of an xterm window
to another or to copy between different xterm windows. You can use cut and paste in
the shell to construct commands from various already-executed commands and to paste
them on the current line for execution. You can also use cut and paste within the vi
editor.

To cut and paste text, proceed as follows:
(1) Position the cursor at the beginning of the text to be copied.
(2) Hold down the left mouse button.
(3) Move the cursor to highlight completely the text to be copied.
(4) Release the left mouse button.
(5) If you need to change the amount of sclected text:
a. Hold down the right mouse button.
b. Move the mouse to adjust the text to be copied.

January 1988

IBM/4.3-USD:1-26 X Window System, Version 11

c. Release the right mouse button.
(6) Position the mouse cursor in the window that is to receive the copied text.

(7) Position the text cursor at the location where the text is to be copied. Note: If
a space is needed between existing text and copied text, you must place the cur-
sor one space to the right of the cxisting text.

(8) Click both mouse buttons. The copied text is inserted after the text cursor.
Note that copying text in vi automatically opens up insert mode; vi remains in
insert mode after the paste opcration.

3.1.5. Exiting Xterm
There are four ways to cxit the xterm window:
¢ using the xterm x11 menu
e using the Close a Window option from the Manage a Window mcnu
. typing exit at the xterm prompt
® using the UNIX kill command

If you type exit in the console window, the console window disappears and the X
server terminates. The console window must continually be displayed for the entire
duration of the X work session.

3.2. Xclock

Xclock reads the UNIX clock and displays the current time. You can view the time on
either an analog (face and hands) or digital clock.

3.2.1. The Xclock Command Options

Many of the xclock command options (those pertaining to colors and fonts) are
described in the preceding chapter. Options unique to xclock appear in this section.
For a complete discussion of the command, scc the xclock man page.

-analog or -digital
The -analog option (the default) causcs time to appear on a clock face. The ana-
log format does not include the date. The -digital option causes time and date to
appear in digital format: day date hr:min:sec year.

-hl color
This options sets the color of the analog clock hands. Black is the default.

-padding pixels
This option specifies the distance in pixcls from the time display to the inner edge
of the xclock window border. The default in analog mode is 8 pixels; in digital, 10
pixels.

-update seconds
This option sets the frequency (in scconds) with which the time display is
updated. The default is once every 60 scconds. The second hand does not appear
on the analog clock unless the display is updated at least every 30 scconds. To
update the clock display every second, type the command as follows:

xclock -update 1 & < Enter>

Regardless of the update setting, xclock automatically updates the display every
time it moves to the top of the window stack, and every time it changes from an
icon to a window.

January 1988

X Window System, Version 11 IBM/4.3-USD:1-27

3.3. Xload

Xload monitors the workstation’s system load average and displays it on a bar graph. This
is the same value displayed by UNIX uptime.

Each scale line in the xload window is cquivalent to one average process that is waiting for
execution. On a workstation with low activity, no horizontal scale lines appear because the
system load average is less than one process.

When the xload display appears on a different workstation using the host:display:screen
option, it shows the system load average of the original workstation, not the one on which
the display appears. The name of the monitored workstation automatically appears in the
upper left corner of the window.

3.3.1. The Xload Command Options

Many of the xload command options (thosc pertaining to colors and fonts) are
described in the preceding chapter. Options unique to xload appear in this section. For
a complete discussion of the command, see the xload man page.

-hl color
This option sets the color for the workstation name and scale lines.

-scale n
This option sets the number of vertical graph divisions. Each division is a hor-
izontal line across the window and marks one (average) process waiting for execu-
tion.

-update seconds
This option sets the frequency (in scconds) with which the load display is
updated. The minimum (and default) is once every 5 seconds.

Regardless of the update setting, xload automatically updates the display every
time it moves to the top of the window stack, and every time it changes from an
icon to a window.

January 1988

IBM/4.3-USD:1-28 X Window System, Version 11

The X Programmer’s Guide

Utilities describes each of the utilitics provided with X.

5. Customizing X describes how to change X decfault window characteristics, and
how to configure X for particular environments.

6. Customizing Uwm describes how to modify the pr()grammablé window manager
available with X.

7. The Bitmap Editor describes how to use X's editor for creating and editing a bit-
map.

January 1988

X Window System, Version 11 IBM/4.3-USD:1-29

4. Utilities
This chapter describes the utilities included with X:

xfd
xhost
xlsfonts
xrdb
xrefresh
xset
xsetroot
xwd
xwininfo

xwud

L

¢ O & 0 ¢ 0 0 0 o

Enter these commands in the xterm window, or from a screen not running X. You need not
type an ampersand at the end of the command when invoking one of these utilities. They exe-
cute immediately and will not inhibit further entrics into the xterm window or UNIX shell.

4.1. Xfd

Xfd displays characters of a specified font. The location of the character on the screen
corresponds to its ASCII and hexadecimal code value. In the default xfd window, the
upper left box is decimal 0, hexadecimal 0x0. These numbers increment across the row
and down the window. To view both the decimal and hexadecimal code for any character,
move the mouse cursor to the character and click both mouse buttons.

X supports 8-bit fonts, which can include up to 256 characters. Xfd defaults to a 16x16
grid to display the characters in these fonts. If you resize the xfd window, the grid size
changes accordingly. If the characters are small enough, the entire 16x16 xfd window fits
on the display. Otherwise, only a portion of the window appears. To view the remaining
characters, scroll the window by moving the mouse cursor into the xfd window and click-
ing the right and left mouse buttons respectively.

To display lower rows of the font display, usc the -start option. This option specifies
which character will be displayed in the upper left corner of the grid, thercby shifting the
window’s display focus.

January 1988

IBM/4.3-USD:1-30 X Window System, Version 11

You can close the xfd window by typing one of the following in the xfd window:

q

Q
~C

If the window is an icon, you must change it back to a window before closing it.

4.1.1. The Xfd Command Options

Many of the xfd command options (those pertaining to colors) are described in the
preceding chapter. Options unique to xfd appear in this section. For a complete dis-
cussion of the command, see the xfd man page.

font Specify on the command line the simple name of the font you want displayed:
xfd font

The names of fonts available with X appcars in Appendix B. If you omit this
option, the default font “fixed’’ appears. You nced not include a file name exten-
sion or path name for the font. If the font you specify is not in the
Jusr/lib/X11/fonts directory or has an cxtension other than .snf, then specify the
full pathname and/or extension.

For example, if the font “jazzy.cnf”’ exists in the /special directory, use the follow-
ing command to display it in an xfd window:

xfd [special/jazzy.cnf & < Enter >

‘Note: Use the following command to display the 25-point cyrillic font in the
fusr/lib/X11/fonts directory:

xfd cyr-s25 & <Enter>

-bf font
This option selects the font used for character information that appears at the bot-
tom of the display.

NOTE: If you choose a very large font, you may nced to resize the window to
read its information.

-gray This option highlights the empty region surrounding cach character. This region
is part of the character. Using this option causes the window background to be
gray, the character to appear in the forcground color, and the empty region to
appear in the background color.

-in iconname
The -in iconname option sets the icon name to that specified by the -icon option.
This name appears in the icon, overriding any name specified by the -tl option.

-start characterl
This option moves the specified character to the upper left box of the xfd grid.
Other characters follow this one in their usual order. Use this option to access the
lower rows of oversized fonts.

For example, if you choose character # 117 to appear in the upper left box, char-
acters 117 through 255 would follow it in the default 16x16 grid. Characters 0
through 116 would fill in the remaining grid boxes.

-tl title
This option sets the name of the window. This name appears in the uwm sizing
box.

January 1988

X Window System, Version 11 IBM/4.3-USD:1-31

-verbose
This option causes additional information to appear when you move the mouse
cursor to a character and click both buttons. Normally, just the ASCII and hexa-
decimal codes for the character appear. The additional information includes:

character width
left bearing
right bearing
ascent

descent

Information provided by this option appears at the bottom of the xfd window.
Use the -bf font option to change the font in which this information appears.

4.2. Xhost

Xhost changes the list of hosts that can access the X server on the home workstation. The
changed access privileges last for the duration of the current work session. When X is
exited or when the user logs out of X, this access list is reset to that in the fetc/X*.hosts
files. (The “*” in the /etc/X* hosts file name is the display number for the workstation.
For example, if the display number is 1, the file /etc/X1.hosts lists the hosts that have
access privileges to the home workstation when display 1 is in use.

To grant a host permanent access privileges, you must either edit the /etc/X*.hosts file or
modify the .login file.

4.2.1. Command Format
Use the following command to invoke xhost:
xhost =+ host + host ...
You must execute this command on the home workstation. The host entries may be
preceded by a +, —, or no sign, with the following effects:

+ or no sign
Grants access to the specified display for the named workstation(s).

- Denies access to the specified display for the named workstation(s).
To review a list of workstations with current access privileges to a display, simply type

the xhost command (with no options). This list includes the name of the workstation,
and uses information in the /etc/hosts file.

4.3. Xisfonts

Use the x/sfonts command to list the name of the fonts in the /usr/lib/X11/fonts directory,
or to see if a particular font exists in the directory.

4.3.1. Command Format
Use the following command to invoke xlsfonts:
xIsfonts pattern host:display:screen

Use the pattern option to limit the list to fonts whosec names match the pat-
tern. The ? and * wildcard characters may be used in the pattern, thus:

? matches any single character
* matches any string of characters (including null)

January 1988

IBM/4.3-USD:1-32 X Window System, Version 11

If either of these wildcard characters is used, enclose the expression in single
quotes. For example, the following command presents a list of all fonts whose

names begin with gothic:
xIsfonts ’gothic*’

This produces the following list:

gothic.12
gothic.12.snf
gothic.15
gothic.15.snf

For information on the host:display:screcn option sce Chapter 2.

4.4. Xrdb
Use xrdb to set the contents of the .Xdefaults file. For more information on the
defaults file, see Chapter 4.

4.5. Xrefresh

Use the xrefresh utility to redraw the entire display. To issuc thc command, mere-
ly type xrefresh. You can specify a particular host, server, and display as follows:

xrefresh host:display:screen

For information on the host:display:screen option, sce Chapter 2.

4.6. Xsct
Use the xset utility to set display preferences.

4.6.1. Command Format
Invoke xset with a command of the form:
xset b volume pitch duration ¢ volume fp path led # m acc thresh p tableno color v s time (no)blank
host:display:screen

The following table lists the options and their usage.

January 1988

X Window System, Version 11

IBM/4.3-USD:1-33

OPTION

OPTION NAME

USAGE

DEFAULT

t b vol pitch duration

t cvol

fp path

(-)led #

m acc thresh

p tableno color

q
t r

s time (no)blank

bell

key click

font path

led on/off

mouse

pixel value

query
autorepeat

display saver

volume is % of maximum (0-100)
pitch is in Hertz
duration is in ms
b 0 turns bell off

volume is % of maximum (0-100)
¢ 0 turns click off

This is the path used to locate fonts.
The different directories should be
separated by a comma. fp default
sets the path to its default setting.

is the keyboard led number, where:
¢ 1is NUM LOCK led

® 2 is CAPS LOCK led

® 3 ijs SCROLIL LOCK led

xset led turns all three leds on

xset -led turns all three leds off

The cursor moves acc times as fast
as the mouse.

thresh is the number of pixels the
mouse must move before X moves
the cursor on the display.

m sets the default
acc may be entered without thresh

this changes the color at the specified
tableno in the rgb data base to the
specified color (see Appendix A)

displays current xset settings
toggles autorepeat for keyboard keys

time in scconds determines how long
the display will sit with no input be-
fore display saver is turned on

noblank unmaps the X application
windows but leaves the root window
displayed when display saver is on

blank unmaps both the X application
windows and the root window when
display saver is on

0
400
100

Jusr/lib/X11/fonts

off
off
off

none

on

600

noblank

noblank

t Where x is the option letter:

—x sets the option off

x with no flag resets the option to its default value(s)

x on tums the option on

x off turns the option off

January 1988

IBM/4.3-USD:1-34 X Window System, Version 11

4.7. Xsetroot

Xsetroot customizes the root window: To change the appearance of the root window per-
manently, place the xsetroot command in cither:

L the .login file if X continuously runs on the display, or
® in the shell script that invokes X, if X is started by a UNIX command

4.7.1. Command Format
Use a command of the following format to customize the root window:

xsetroot -bg color -bitmap filename -cursor cursorfile maskfile -def -fg color -name string -rv
host:display:screen

-bitmap filename
The specified filename, a bitmap file, is tiled over the entire root window as a
background. (For information on creating bitmaps, see Chapter 7.)

You can replace the -bitmap option with one of the following three options. Each
is described later in this section, and defines a root window display style.

® -gray (or -grey)
* -mod x y
e -solid color

-cursor cursorfile maskfile
This option uses the bitmap found in the cursorfile as the cursor in the root win-
dow. For information on creating bitmaps, sce Chapter 7.

-def Use this option to return one or more options to their default sctting. For exam-
ple, use the command:

xsetroot -def

to set all options for this command to their default. (Note that you cannot use this
option to reset an option you have set elsewhere on the same command line.)

-gray (or -grey)
This option displays the root window as a gray display composed of black and
white pixels. This is not the same as specifying gray as a solid color with the
—solid option.

-mod x y
This option paints the root window in a plaid pattern determined by the x and y
entries (where x and y represent the distance between lines in a 16x16 bitmap).
The x lines are vertical lines drawn in the background color (white for mono-
chromes). The p lines are horizontal lines drawn in the foreground color (black
for monochrome). This bitmap is tiled over the entire root window.

-name string
Use this option to set the name of the root window to string. The xwininfo com-
mand uses this name. There is no default value.

-tv This option reverses the foreground and background colors of the root window.
You can use it with other options, such as -mod and -bitmap.

-solid color
This option sets the root window to color. You can use any of the names or
numbers described in Appendix A for color.

January 1988

X Window System, Version 11 IBM/4.3-USD:1-35

See the xsetroot man page for more information on this command.

4.8. Xwd

The xwd command dumps a window image into a file. The window image can be
redisplayed using the xwud command. It cannot be redisplayed using the bitmap editor.

4.8.1. Command Format
Use a command of the following format to dump a window image to a file:

xwd -nobdrs -out filename -xy host:server.display

The xwd options are described below.

-nobdrs
This option dumps the window without its border.

-out filename
This names the file into which the window is dumped. If the -out option is not
specified, the window will be dumped to standard output. Dumping to standard
output permits piping the contents of the window into a program (perhaps a print
dump program). If xwd standard output is not dirccted to a program, then the
contents of the window will display in dump format in the shell where the com-
mand was typed.

-xy On color displays, this option dumps the window in black and white (XY for-
mat). This option has no effect when specified for a monochrome display.

host:server.display
This option specifies on which workstation and/or display the target window
resides. See Chapter 2 for more information.

For more information about this command, see the xwd man page.

4.8.2. Dumping a Window
The procedure for dumping a window is as follows:
(1) Type the xwd command and options. The cursor changes to a target shape.
(2) Move the target cursor into the window to be dumped (the “target window"").

(3) Click any mouse button. The bell sounds once at the beginning of the dump
and twice at the end.

4.9, Xwininfo

The xwininfo command displays system information on the specified window. By default,
the following information is displayed:

Tree: includes the IDs and names of the‘root, parent, and child windows asso-
ciated with the selected window.

Events: lists the events for which the sclected window is currently waiting.

Window Manager Hints: provides hints about how the window manager
interacts with the selected window.

4.9.1. Command Format

Type a command of the following format to view system information for a specific win-
dow:

xwininfo -bits -id # -int -size -stats host:server.display

January 1988

IBM/4.3-USD:

1-36 X Window System, Version 11

The rest of this section describes options of the xwininfo command.

-bits

-id #

-int

Information on the window’s raw bits is displaycd when this option is specified.
This information includes:

* bit gravity

window gravity

backing-store hint

backing planes to be preserved
backing pixel

save under availability

Use this option to select a window by typing its ID number rather than clicking
the mouse in the selected window. This option is handy when the target window
does not appear on the display, or when mouse clicks might interfere with the
normal operation of an application.

One of these three options may be used in place of the -id option.

¢ -font fontname
® -root
® -name windowname

With this option, you request that window IDs be displayed as integers rather
than as hexadecimal numbers (the default).

-name windowname

-size

-stats

Use this option to select a window by name rather than mouse click. For exam-
ple, the command:

xwininfo -name xterm

displays information for an xterm window (provided it has not had its name
altered by the -n option on the xterm command line).

Specifying the window by name rather than ID avoids confusion when two or
more of the same type of window exist on the display at the same time.

Use this option to request normal and zoom sizing hints for the selected window.
Sizing hints include:

user-supplied location (offsets)
user-supplied size (= wxh)
program-supplied minimum size
program-supplied x resize increment
program-supplied y resize increment
program-supplied minimum aspect ratio
program-supplied maximum aspcct ratio

This option provides statistics about the current state of the window. Statistics
include:

upper left x pixel location

upper left y pixel location
window width

window height

window depth (refers to color)

January 1988

X Window System, Version 11 IBM/4.3-USD:1-37

border width
window class
window map state

4.9.2. Displaying X Window Information
To display X window information, proceed as follows:

(1) Type the xwininfo command and any desired options in the xterm window or
other shell interface.

(2) If -name, -root, or -id # were not specified, the cursor assumes the target shape
and the following prompt appears:

xwininfo = = > Please sclect the window you wish
= = > information on by clicking the
= = > mouse in that window.
(3) Click the mouse button in the desired window as prompted.

(4) The information appears in the window from which the command was entered.
For more information on this command, see the xwininfo man page.

4.10. Xwud

This command ‘“undumps” a window from a filc crcated by xwd. The window image
appears on the display at the exact pixel location from which it was originally dumped.

Windows that were dumped in color format (Z format) must be undumped on a color
display.

4.10.1. Command Format
To undump a window image, type a command of the following format:

xwud -inverse -in filename host:display:screen

These options are described below.

-inverse
This option undumps the image in reverse video (for monochrome displays only).
This option is supplied because the display is “write white” (white=1) and
printers are generally ‘“write black” (black=1).

-in filename
This option specifies the window dump file that will appear on the display. The
default is to display standard input.

host:server.display
This option specifies the host and/or display on which the window will appear.
The image may appear a display other than the one from which it was dumped.
It will appear in the corresponding pixcl location from which it was originally
dumped.

For more information on this command, see the xwud man page.

January 1988

IBM/4.3-USD:1-38 X Window System, Version 11

5. Customizing X

This chapter describes how to change the X default window characteristics, and how to
configure X for particular environments.

5.1. Changing X Window Characteristics

X applications employ windows as part of the user interface. To change onc or more
characteristics of these windows, you change the .Xdefaults file. LEach line in the file sets
the default for one window characteristic and is of the form:

Xapplicationkeyword:value

where:
Xapplication is the name of the X application that presents the window
keyword is the name of the characteristic

value is the setting for that characteristic

Upper- and lowercase distinctions and extra spaces are ignored in these entries.

If you omit the Xapplication portion of the command, the new setting will affect all win-
dows and/or menus. Such global defaults must precede all window-specific defaults in the
Xdefaults file. A window-specific setting will override a global setting if the window-
specific sctting appears after the global one in the file. The .Xdefaults file must reside in
the home directory.

5.1.1. Window Keywords

Keywords are equivalent to X command line options. Setting the defauit for the key-
word in the .Xdefaults file eliminates the need to specify the option on the command
line each time you invoke the X application. If you specify a command line option
when you invoke X from the UNIX shell, the option will override the keyword setting
in the .Xdefaults file.

The following table lists all keywords, grouped by X application. The first set of key-
words applies to all X applications. Use thesec keywords to make global settings. Use
the remaining groups of keywords to sct the appearance of windows belonging to par-
ticular X applications.

Note: Keywords must be capitalized as shown in the table,

January 1988

X Window System, Version 11

IBM/4.3-USD:1-39

RELATED

KEYWORD SETS: OPTION
all windows:
Background background color -bg
BodyFont default font -fn
Border border color -bd
BorderWidth border width -bw
Foreground foreground color -fg
ReverseVideo foreground and background reversed -r
bitmap:
Highlight hot spot color, also temporarily indicates | --

move, copy, set, and invert areas. Invert-

ed video is the default.
Mouse mouse color -
xclock:
Highlight color of the hands -hl
InternalBorder | space between text and border (padding) -padding
Mode digital or analog -digital or -analog
Update update interval -update
xfd:
IconName icon name -in
Title window title -tl
xload:
Highlight color of hostname and scale lines -hl
Scale minimum scale -scale
Update update interval -update
xterm:
BoldFont default bold font -fb
C132 80 < = > 132 column switching capability | -132
Curses curses fix -cu
Cursor text cursor color -cr
CursorShape cursor to arrow or I beam -
Geometry window size and position = wxh =+ xoff + yoff
IconStartup window or icon on creation -1
InternalBorder | space between text and border (padding) | -b
Jump Scroll jump scroll -
LogFile log file name or pipe command -If
Logging logging on/off -Is
LogInhibit inhibit logging -
LoginShell xterm to come up running login shell -1
MarginBell margin bell -mb
Mouse mouse color -ms
MultiScroll synchronous scroll -s
NMarginBell right margin -nb
ReverseWrap | reverse wraparound mode -rw
SaveLines saved lines when scrollbar on -s
ScrollBar scrollbar -sb
Scrolllnput reposition on input with scrollbar -si

January 1988

IBM/4.3-USD:1-40

X Window System, Version 11

RELATED
KEYWORD | SETS: OPTION
xterm (continued):
Signallnhibit | inhibit signals from xterm menu | --
StatusLine status line displayed on startup --
StatusNormal | status linc in normal vidco -
VisualBell visual rather than audio bell -vb

5.1.2. Sample v

Xdefaults File

The following is a sample .Xdefaults file. Note that the first three entrics affect all win-
dows. The remaining entries affect only the window type specified.

The “xterm.background” overrides the global “.background” entry. Generally, the last
entered value, whether via a keyword in the appcarance.

.background:
foreground:
.borderwidth:
bitmap.highlight:
xclock.Iighlight:
xclock.update:
xclock.mode:
xload.scale:

xterm.background:

xterm.bodyfont:

xterm.cursorshape:

xterm.loginshell:

Xterm.reversewrap:

cterm.scrollbar:
xterm.savedlines:

5.1.3. Activating X Window Defaults

To activate the X window characteristics in the .Xdefaults file for the root window, you

use the xrdb command:

xrdb host:server:display Xdcfaults

There are three ways to invoke the command:

] Type it on an xterm command line

steel bluc
goldenrod
5
fircbrick
pink

1

analog

2
magenta
fg-13
arrow

on

on

on

100

o Include it in the .login file (if X runs continuously)
. Include it in the startup shell script (if X is initiatcd by a UNIX shell command)

For more information, see the xrdb man page.

5.2. Configuring X

You can configure X to run continuously on a display, or to be invoked by command
(either in a UNIX shell script or simply from the command line). This section explains

how to configure X for each of these environments.

5.2.1. The xinit and Xibm Commands

Both startup configurations use the xinit and Xibm commands. The xinit command
initializes Xibm and then initializes a specified X application. When the specified X

January 1988

X Window System, Version 11 IBM/4.3-USD:1-41

application terminates, then the Xibm server also terminates. Xibm actually starts the
server. It is embedded in the xinit command line:

xinit Xapplication options Xibm options &

5.2.2. For X To Run Continuously

To configure X to run continuously on a display, you must change the /etc/ttys file and
rename files in the /dev directory. Further, to cause an X application to start automati-
cally for a user, you must modify that user’s .login file. This section explains how to
complete both these tasks.

5.2.2.1. Change [etc/ttys and [dev
Perform the following steps:

(1)
(2)

Become the super user by typing the su command and password.
Add the following line to the /etc/ttys file:

ttyv0 ”fusr/bin/X11/xterm -L options host:display”;xtcrm on window = ”fusr/bin/X11/Xibm
host:display options -screen - screen - screen”

&)

(4)

)

Specify the -L option for the xterm window to set X for continuous display.
This option causes X to present a window on which the user logs into the
UNIX shell. Use the -Is option to request that the .login file be sourced au-
tomatically. :

You may name more than one display by using -display flags. List the
displays left to right on the command line as they rest left to right before the
user. This will preserve an orderly left-to-right movement of the cursor
between displays. The valid values for display names are:

apal6 for the IBM 6155 Extended Monochrome Graphics Display
aed for the IBM Academic Information Systems Experimental Display
mpel for the IBM 5081 Display with MegaPel adapter

ega for the IBM 5154 Enhanced Color Display with adapter

8514 for the IBM PS/2 Color Graphics Display Adapter 8514/A

vga for the IBM Video Graphics Array (VGA) Display

Place a pound sign (#) at the beginning of the line that currently
defines the display on which X will run. This “comments out” the
line.

In the /dev directory, type the following commands:

my ttypf ttyv0 < Enter>
mv ptypf ptyv0 < Enter >

Type the following:
kill -HUP 1 < Enter>

This reinitiates the fetc/ttys file, so the new display definition is read.
X will come up in an xterm window on the first screen named in the
ttyv0 command line. Your .Jogin file will be sourced in this window.
You can invoke additional xterm windows for other displays from the
command line of your xterm window, or from a command in your
Jogin file. The displays are numbered from 0 in the order their
names appear in the command.

January 1988

IBM/4.3-USD:1-42 X Window System, Version 11

5.2.2.2. Change the User’s .login File

Add the following lines at the end of a user’s .login file to start an X appli-
cation automatically on that uscr’s display(s):

if (‘tty* = = [dev/ttyv0) then

Xapplication options &

Xapplication options &

endif

5.2.3. For X Invoked by Command

You can imbed the xinit command in a shell script to invoke Xibm from the
UNIX shell. You can include the name of an X application that will be in-
voked as X is invoked. Xterm is usually the best choice, because exiting Xibm
requires that you exit xterm as well, and xterm is useful during an entire work
session.

Instead of the name of a single X application, you can substitute the name of a
shell script that lists several initial applications, such as xclock, xload, and
xterm.

You can also initiate X by simply typing xinit -- Xibm on the UNIX shell
command line.

5.2.4. Sample Shell Script

A sample shell script is provided on the X/BE2 Installation diskette, in a file
named Demowwm/bin/X. A sample start shell script is also provided, in a file
named Demouwm)/bin/start.

5.2.5. The Xibm Command

Use the Xibm command to start the X scrver. (The X server appears as the
root window.) To start X applications as the scrver is started, use the xinit
command. The following table lists the options for the Xibm command. See
the Xibm man page for more information.

January 1988

X Window System, Version 11

1BM/4.3-USD:1-43

USAGE

OPTION OPTION NAME

a# mouse acceleration

c# key click volume

-d display | displays

f# bell volume

-fc file cursor

-fp path font path

host:server | host and server number
-s # screen saver timeout

-t # mouse threshold

is a scale factor relating mouse movement
to cursor movement.

is the volume from a range of 0 through 8.
A -c entry turns the key click off.

each display on which this server is to run
should be listed; see Sections 3.3.1 and 2.1.2
for more information

is the volume from a range of 0 through 8.

file is a cursor bitmap file. This cursor will
replace the default X cursor. T}

-fn font+ window font+ T{ font may be re-
placed by any of the fonts listed in Appen-
dix B, or any font along the path sct by the
-fp option

path sets the font path, directories are
separatcd by a comma.

host designates the workstation; server is a
number that arbitrarily identifies the server
in distinction from other servers on that
workstation

sets the screen saver timeout in minutes

is the number of pixels the mouse must
move before the cursor moves on the screen

January 1988

IBM/4.3-USD:1-44 X Window System, Version 11

6. Customizing Uwm

X includes a programmable window manager named wwm. You can customize uwm to your
users’ needs and preferences. This chapter describes the files and procedures needed to custom-
ize uwm.

. ds |n Starting Uwm”

6.1.
When you enter the command:
uwm &
the window manager is first configured using its internal default settings. Then it
uses a search path to locate and process two startup files (in the order listed):
Jusr/new/lib/X fawm/system.uwmrc
$HOME/.uwmrc

If system.uwmrc exists, uwm adds these scttings to its default settings. Any
system.uwmrc file settings in conflict with the default scttings override the default
scttings. (The latest setting always overrides previous settings.)

If $ITOMI:/.uwmrc exists, uwm adds these scttings to the combined default and
system.uwmrc settings. Overrides occur as described above. This completes the
process of configuring uwm for operation.

System.uwmrc file is a startup file that applics to all machines on the network.
(The system administrator sets up this file.) $IIOME/.uwmrc file is specific to a
workstation. The default $SHOME/uwmrc file contains the commands that
configure the default window manager.

To specify another file as the wwm startup file, modify the uwm command as fol-
lows:

uwm -filename &
where filename is a startup file you create. Specifying this file eliminates scarching

and reading both the system/.uwmrc and the $HOMI/.uwmrc files. Only the set-
tings in this file are added to uwm internal defaults.

6.2. Startup File Format
Startup files contain three parts which must appear in the order listed:

Global variables set characteristics for general wwm functions, such as the
fonts used for icon names and menus.

Keybindings link combinations of keyboard and mouse actions to window
manager functions. For example, pressing the right mouse button may
present a menu.

Menu definitions list each menu sclection and the command that exccutes it.

The rest of this chapter describes the elements of a startup file. However, most of
the detail is in the uwm man page. Be sure you have access to it before starting to
write your own startup file.

6.3. Global Variables

Global variables must appear first in the startup file. To cnsure that only current
startup file values are used, place the following three variables at the beginning of
the file:

January 1988

X Window System, Version 11 IBM/4.3-USD:1-45

resetbindings
resetmenus
resetvariables

See the wwm man page for the rest of the global variables. They can appear in
any order as long as they appear at the beginning of the file. If a variable does
not appear in the file, it takes its value from the last file read. If it was not sct in a
previous file, the variable is assigned the uwm default sctting.

6.4. Keybindings
Keybindings appear after global variables, and take the form:
Junction= control keys:context:mouse actions:”menu name”
The control keys, context, and "menu name” entries are optional. Even though
you can omit a context or control keys entry, you must include the colons andjor
equal sign that precede and follow the entry; the command line must contain one

equals sign and two colons. If you specify a “menu name” you must add the third
colon.

Spaces may appear between the equals sign, colons, and an entry. You can use
spaces to make the entries easier to read and edit. You may want to preface the
keybindings with a comment line to serve as a heading, thus:

#FUNCTION= KEYS :CONTEXT: MOUSE EVENTS :"MENU NAME”

f.resize = m wiic delta middle

6.4.1. function
See the uwm man page for a description of the available functions.

6.4.2. control keys

Control keys include the following, which may be used alone or in combinations of
two:

control or ¢ (the Ctrl key on IBM keyboards) meta or m (the Alt key on IBM
keyboards) lock or | (the Caps Lock key on IBM keyboards) shift or s (the Shift
key on IBM keyboards)

NOTE: Although several keys on the IBM keyboard bear different labels, the words or
letters in bold above nust be used in the file.

To designate a a combination of two control key, scparate them by a vertical bar (]).
For example, the command:

f.move= mjs :window|icon: delta right

specifies that a window will be moved when the meta (Alt) and shift keys are
pressed simultaneously.

If no control key is specified, mouse events invoke the named function. For example,
the command:

f.move = : window|icon: delta right

January 1988

IBM/4.3-USD:1-46 , X Window System, Version 11

specifies that a window will be moved when the right mouse button is pressed and the
mouse is moved.

When defining keybindings, remember there arc keybindings already defined by each X
application. Uwm keybindings override X application keybindings, potentially crippling
certain application features. For example, the keybinding example above, which
specifies a delta right mouse move, will disable the cut capability of the right mouse
button in the xterm window.

6.4.3. context

Context refers to the region where the cursor is located when keyboard and mouse
actions occur. The four contexts are:

icon or i

window or w

root or r

any window (represented by a null entry)
You can combine any two of these contexts by using the vertical bar (]).
For example, the command:

ficonify= meta :wli: left down

is a toggle to change a window to an icon and back again.

6.4.4. mouse actions
The mouse buttons are identified as:
left or 1
right or r
middle or m (both mouse buttons pressed simultaneously)
Each mouse button can be in one of three states:
down, when the button is pressed
up, when the button is released

delta, when the mouse has moved more than delta pixels (where the number of
pixels is set by the delta variable)

For example, the command:

ficonify= meta :wli: |down
is a window/icon toggle activated when the left mousc button and the ALT key are
pressed.

The range of mouse actions is:

right down left down middle down
right up left up middle up
delta right deltaleft delta middle

Note the mouse button name follows the word delta, but precedes the words up and
down. '

January 1988

X Window System, Version 11 IBM/4.3-USD:1-47

6.4.5. menu name

Using the f.menu function requires a ”menu name” entry, which must match exactly the
name as it appears on the top of the displayed menu. The “menu name” is the last
entry on the keybinding command line, and is preceded by a colon.

For example, the command

f.menu = S right down: ”Main Menu”

causes a menu named “Main Menu’’ to appear when the right mouse button is pressed.
pp

6.4.6. Slip-off Keybindings

Because a different function can be tied to the up, down, and delta states for each
mouse button, you can tie related sequential functions to the mouse action sequence
down, delta, up.

For example, ficonify may be tied to right down, f.move to delta right, and f.raise to
right up. The result is the window/icon changes its form on right down, the
window/icon moves on delta right, and the window/icon appears at the top of the stack

on right up.

6.4.7. Slip-off Menus

You can define menus so that simply moving the mouse out of one menu will bring up
the next menu in that series. These are known as slip-oflf menus.

All menus in a slip-off menu series are bound to exactly the same control keys, context,
and mouse actions. '

The fmenu entries are listed one after the other in the keybindings section of the
startup file. The first menu named is the first that appears when the associated key and
mouse actions occur. The next listed menu appears when the cursor slides out of the
first menu. The third listed menu appears when the cursor slides out of the second
menu, and so on. When the last menu in the series appears, uwm does not return to
the first menu. The user must again use the key and mouse actions to restart the series.

For example, the following keybindings dcfine a slip-off menu series.

#FUNCTION= KEYS :CONTEXT: MOUSE EVENTS :"MENU NAME”

f.menu= » right down :"Main Menu”
f.menu= i right down :”"Manage a Window”
f.menu= : right down "Create a Window”
f.menu= :: right down :”Manage the Display”

6.5. Menu Definition

The menu definition part of the startup file must contain one menu definition for each
f.menu function that was listed in the keybindings part of the startup file. Menu definitions
use the following format:

menu = "menu name" (fghd:bghd.fghl:bghl) {
"selection name” : (fg:bg): "action”
’selection name” : (fg:bg): "action”

}

January 1988

IBM/4.3-USD:1-48 ‘ X Window System, Version 11

The “menu name” is the same as the one specified in the keybinding line. The selection
name is a menu selection that can be chosen by mouse click. The action is the process that
this selection triggers.

The selection names and actions must be enclosed in double quotes if they contain quotes,
special characters, parentheses, tabs, or blanks.

The fg, bg, fghi, and bghl entries set colors (only on color displays). If the display is
monochrome, or if the default settings are acceptable, these entry ficlds can be omitted. A
menu cannot scroll, but can contain as many sclections as will fit on the display.

6.5.1. Menu Actions
There are three types of menu actions:
Window manager functions are defined in the uwm man page.

Shell commands must begin with exclamation point (') and end with an amper-
sand (&). If the command includes spaces or special characters, enclose the com-
mand in double quotes. For example, the action: ’

Mxterm -rv &”

creates a reverse-video xterm window when its corresponding menu selection is chosen.

A text string is placed in the server’s cut buffer when the string’s corresponding
menu selection is chosen. Once in the buffer, the string may be pasted into xterm
or any other window that provides cut and paste facilities. This is handy if a par-
ticularly long text string is frequently used. For information on pasting the string
into an individual window, see the paste instructions for that window.

When the menu action is a text string, it muse be preceded by one of two special char-
acters: ’

The caret (~) precedes the entire string if it contains any newline characters, such
as carriage return or line feed:

"acd fusr/doc/ibmdoc/smm
Is ‘-a]”

The vertical bar (}) precedes the entire string if does not contain a newline charac-
ter: ”jtbl x00 x01 x02 | ptroff -me”
6.5.2. Adding Color to Menus

The color designations in the menu definition correspond to the various menu regions
as follows: @ fghd: foreground color for menu header ® bghd: background color for
menu header ¢ fghl: foreground color for highlighted sclection @ bghl: background
color for highlighted selection ® fg: foreground color for rest of menu @ bg: back-
ground color for rest of menu

Appendix A lists available colors.

Colors specifications- in a file used to configure a monochrome display are ignored; the
display uses the default black/white settings.

On a color display, the colors default to the foreground and background colors of the
root window if any of the following is true:

¢ The number of color map entries has been exceeded.

. Either a foreground or a background color does not exist in the rgb data base; this
pair of colors uses the default.

January 1988

X Window System, Version 11 IBM/4.3-USD:1-49

. Either a foreground or background color is omitted; this pair of colors will use the
default.

¢ The number of colors specified exceeds the maxcolors variable (see wwm man
page).

] No colors are specified.

6.6. Sample Uwm File

A sample /fluwm file is provided on the X/BE2 Installation diskette, in a file named
Demouwm|src/.uwmrc.

January 1988

IBM/4.3-USD:1-50 X Window System, Version 11

7. The Bitmap Editor

X includes an editor to facilitate creating and editing bitmap files. A bitmap is a rectangular
array of black and white pixels (1 and 0 bits) that form graphic displays that used as cursors,
icons, and tiles in the root window.

The bitmap window presents a magnified view of the rectangular array. A grid divides the rec-
tangle into boxes, each box representing one pixel. You turn individual pixcls on and off
using the mouse cursor and/or command buttons that appear to the right of the grid. You
also use the command buttons to access other functions, such as drawing lines and circles, and
operating on a specified area within the rectangle.

Below the Quit button in the window, you see a size representation of the bitmap. Beneath
this, there is a reverse video version of the bitmap drawn to scale.

When the editor writes a file, it also writes a program fragment. You can include this frag-
ment in C programs or use it with X commands to simplify the process of defining cursor and
icon shapes and sizes. Use #include to include the fragment in a C program. Use the frag-
ment with such X command as X, xsetroot, and xterm.

7.1. Masks for Cursor Bitmaps

Whereas most bitmap files are rectangular, a cursor image occupies only a portion of its
rectangular area. You can set the non-cursor portion of the bitmap to “transparent” so
that the cursor is not just a square that contains a shape. To do so, crcate two bitmap
files, one for the cursor and one for an overlay or “mask.”

When you use this approach, keep the following in mind:

e All bits set to 0 in the mask are transparent, no matter how the overlapping bits in
the cursor file are set. That is, the mask bit value overrides the cursor bit value.

¢ When a mask bit and its corresponding cursor bit are both set to 1, then the bit
appears in the foreground color.

(bu When a mask bit is set to 1 and its corresponding cursor bit is set to 0, then the bit
appears in the background color.

7.2. The Bitmap Command
To invoke the bitmap editor, use the following command:
bitmap filename dimensions = wxh =+ xoff + yoff host:server.display

The filename and dimensions options are described below. See the bitrmap man page for a
complete discussion of this command.

7.2.1. filename

You must include a file name as the first parameter of the bitrmap command. Other-
wise, an error message appears, If the file specified doesn't exist, a new file is created.
Use normal UNIX file naming conventions to name the file.

An existing file must be in bitmap format. (Remember that a file dumped by the xwd
command cannot be edited by bitmap.) For a description of bitmap file format, see the
bitrnap man page.

7.2.2. dimensions

The dimensions are the width and height of a new bitmap in pixels. The default is
16x16. You cannot use this option to change the dimensions of an existing bitmap file.

January 1988

X Window System, Version 11

7.2.3. Error Messages

IBM/4.3-USD:1-51

If the system detects an error in the bitmap command you enter, one of the following

messages appears:

ERROR MESSAGE]

OCCURS WHEN

Bitmap displays these messa

es and then aborts:

could not connect to scrver on host:server.display

could not open file filename for reading -- message

dimensions must be positive

file filename does not have a valid width dimension

file filename does not have a valid height dimension

file filename has an invalid nth array element

invalid dimension ‘string*

¢ incorrect DISPLAY variable

o specified host is down

® home workstation is not in/etc/xhosts
file on specified host

® host is not running X

® host is refusing connections

specified file exists but could not be read
for the rcason listed in message

negative dimensions were entered

the input file does not have the correct
format

the input file does not have the correct
format

the input file does not have the correct
format

the dimensions were incorrectly entered or
were out of range

Bitmap displays these messages in xterm after creating a window:

Unrecognized variable name in file filename

XError:message

XIOError

filename contains a variable ending in
something other than _x hot, _y hot,
_width, or _height

there is a protocol error, i.e.:

e the X server is malfunctioning

¢ the X library is in error

o the X server and library are incompatible
¢ the X connection has been broken

same as conditions for XError

7.3. Using the Editor

You use the command buttons and mouse to draw a bitmap. As you draw the bitmap, its
actual size representation appears in normal and reverse video in areas to the right of the

grid.
7.3.1. Color Conventions

In bitmap, when you ‘‘set” a pixel (set it to

1), it appears in the foreground color.

When you “clear” a pixel (set it to 0), it appcars in the background color. Whenever

January 1988

IBM/4.3-USD:1-52 X Window System, Version 11

you change a pixel setting, the change appcars in the normal and reverse video areas.
(You specify the foreground and background colors in the .Xdefaults file described in
Chapter 4.)

7.3.2. Command Buttons

Be sure to use the command buttons on a normal (not reverse video) grid. Areas -
drawn on a reverse video grid with the command buttons may not appear as you

expect.

The command buttons and their functions are as follows:

Clear All Change all pixels to 0, the background color

Set All Change all pixels to 1, the foreground color
Invert All Change all set pixels to clear, all clear pixels to sct
Clear Area Change all pixels in the defined arca to 0

Set Area Change all pixels in the defined area to 1

Invert Arca In the defined area, change sct pixels to clear and vice versa
Copy Area Copy the defined arca to another location

Move Area Move the defined arca to a new location

Overlay Arca Combine the defined arca with another

Line Draw a line between two points

Circle Draw a circle with the specified center and radius
Filled Circle Draw a circle filled with the foreground color

Set HotSpot Specify the pixel that is the exact pointer of the cursor
Clear, HotSpot ~ Clear any previously-set hot spot

Write Output Write this bitmap to the file named in the bitmap command
Quit End this editor session

7.3.3. Selecting a Command Button

To select a command, move the mousc cursor into the command button box and click
either mouse button. The command button box becomes highlighted.

7.3.4. Command Button Operation

Several command buttons exccute automatically when you select them, because they
require no further input. When the operation is complete, the button reverts to its nor-
mal color. The automatic command buttons arc as follows:

Clear All

Set All

Invert All

Clear IlotSpot

Write Output

Quit (if preceded by a Write Qutput)

Other command buttons cause the following changes in the bitmap window:

(D
)

(3)

After you select the command button, the appearance of the cursor changes.

The command button remains highlighted while you provide input (mouse
movement and clicks). The cursor may change appearance when you click the
mouse, especially if the command requires more than one mouse clicks.

After you have provided all necessary input, the cursor reverts to its normal
shape and the command button reverts to its normal color.

January 1988

X Window System, Version 11 IBM/4.3-USD:1-53

7.4. Drawing a Bitmap

Drawing a bitmap is nothing more than setting, clearing, and inverting pixels. You can do
so by working a pixel at a time, or by working with a dcfined area.

7.4.1. Setting, Clearing, and Inverting Individual Pixels

You set, clear, or invert an individual pixel as follows:

(D
)

Move the target cursor into one of the grid boxes.

Click the the appropriate mouse button(s):

To set a pixel, click the left mouse button.
To clear a pixel, click the right mouse button.

To invert a pixel, click both mouse buttons.

7.4.2. Drawing Lines, Curves, and Circles

You can use the mouse to draw frechand lines, curves, and circles in either the back-
ground or foreground color. You can use the command buttons to draw these same
shapes, but only in the foreground color.

7.4.2.1. Freehand Drawing

You can draw any line or curve with the mouse. Just hold down the approprate
mouse button to set, clear, or invert the pixels as you move the mouse. Move the
mouse slowly to ensure that all pixels in its path arc sct or cleared correctly.

7.4.2.2. Line Command Button

You can use this command button to draw a line in the foreground color using only
three mouse clicks.

(M
)

)

Move the cursor into the Line command button and click any mouse button.

Move the cursor to the grid box at which the line is to begin, and click any
mouse button. An X appears in that box to show the beginning of the line.

Move the mouse cursor to the grid box at which the line is to end, and click
any mouse button. The boxes between the starting point and end point of
the line are set to the foreground color.

7.4.2.3. Circle Command Button

You can use this command button to set a circle of pixels in the foreground color
using only three mouse clicks.

(M
)

3)

Move the cursor into the Circle command button and click any mouse but-
ton.

Move the cursor to the box that represents the center of the circle, and click
any mouse button. An X appears to mark the circle’s center.

Move the cursor to a box at the outer edge of the circle, and click any mouse
button. The distance from the centerpoint to this box is the radius of the
circle. The circle will appear.

7.4.2.4. Filled Circle

The Filled Circle command button works exactly the same as the Circle command
button. The only difference is that all pixcls within the circle are set when the circle
is drawn.

January 1988

IBM/4.3-USD:1-54 X Window System, Version 11

7.4.3. Area Operations
The following command buttons perform operations on an area of the bitmap:

Clear Area
Set Area
Invert Area
Copy Area
Move Area
Overlay Area

7.44. Clear Area, Set Area, Invert Area

These buttons have the same effect as the Clear All, Set All, and Invert All buttons,
except the effect is limited to an area you specify with mouse clicks:

(1) Move the cursor to the correct command button and click any mouse button.
An angled arrow that points to the upper left corer of the grid appears.

(2) Move this arrow to the box that represents the upper left comner of the area to
be cleared, set, or inverted.

(3) Hold down any mouse button. The cursor changes to an angled arrow that
points to the lower right corner of the grid.

(4) Still holding down the mouse button, move the cursor down and to the right
until you reach the box that represents the lower right comer of the area. An X
fills each box in the selected area. (If you move the cursor up and to the left,
and then release the mouse button, you cancel the operation.)

(5) Release the mouse button to complete the clear, set, or invert operation.

7.4.5. Copy Area, Move Area, Overlay Arca
These functions operate as follows:

Copy Area
leaves the pattern in the original arca, and copies it to another arca, destroying any

existing pattern in the new area.

Move Area
removes the pattern from the original area, and places it in the new area, destroy-
ing any pattern in the new area.

Overlay Area
leaves the pattern in the original arca, and superimposes that pattern in another
area. If a pattern already existed in the new arcea, it is combined with the overlay-
ing pattern.

Use any of these command buttons as follows:

(1) Move the cursor to the correct command button and click any mouse button.
An angled arrow that points to the upper left corner of the grid appears.

(2) Move this arrow to the box that represents the upper left comer of the area to
be cleared, set, or inverted.

(3) Hold down any mouse button. The cursor changes to an angled arrow that
points to the lower right corner of the grid.

(4) Still holding down the mouse button, move the cursor down and to the right
until you reach the box that represents the lower right corner of the area. An X
fills each box in the selected area. (If you move the cursor up and to the left,
and then release the mouse button, you cancel the operation.)

January 1988

X Window System, Version 11 I1BM/4.3-USD:1-55

(5) Release the mouse button. The cursor changes back to the left-angled arrow.
(6) Move the cursor to the box that is the upper left corner of the new area.

(7) Press any mouse button. The sclected pattern will be copied, moved or overlaid
in the designated area.

7.4.6. The Hot Spot

The hot spot is the pixel within the bitmap that the X server perceives as ‘“active.”
Usually this is a portion of the cursor. X does not keep track of entire bitmaps as they
move on the display. X only tracks the hot spot.

For example, you may use the bitmap editor to draw an arrow that will be used as a
cursor. You should set the hot spot to the pixel at the tip of the arrow. Whenever the
tip of the arrow crosses a window boundary, X considers the cursor to be in the new
window, even though much of its image on the display may be in the old window.

7.4.6.1. Set HotSpot, Clear HotSpot

Use the following instructions to set a hot spot. If a hot spot exists when you set a
new hot spot, the old hot spot is erased. Only the new hot spot remains in effect.

(1) Click any mouse button in the Set [HotSpot command button. The shape of
the cursor changes.

(2) Move the cursor to the grid box designated for the hot spot. (this can be a
set or a cleared pixel.)

(3) Click any mouse button. A diamond shape appears in the selected box,
which is now the hot spot for this bitmap.

To clear a hot spot, click any mouse button in the Clear HotSpot command button.
The hot spot disappears from the bitmap.

7.5. Saving the Bitmap

You can save the bitmap in the grid at any time by clicking any mouse button in the Write
Output command button. The Write Output button flashes in the foreground color and the
file is saved, using the filename specified on the command line.

If no path name is specified with the filename on the command line, the file is stored in the
directory from which the original bitmap command was issucd in the xterm window.

7.6. Exiting Bitmap: Quit
Exit the bitmap editor via the Quit command button, as follows:

(1) Click any mouse button in the Quit command button. If no changes were made to
the bitmap since the last time the file was writtcn or since the window was first
opened, the bitmap window closes.

(2) H changes were made too the bitmap, a window with the words Save changes
before quitting? appears in the upper left corner of the bitmap window..

(3) Click any mouse button in one of this box’s command buttons. The selected but-
ton will have the following effect:

Yes writes the bitmap to a file, and quits.
No quits without writing the bitmap to a file.

Cancel
Cancels the quit command and returns to the editor.

7.7. File Format
For information on bitmap file format, see the bitrnap man page.
January 1988

IBM/4.3-USD:1-56 X Windowing System, Version 11

Appendix A: X Colors
The following list specifies the colors available with X. The list also appears in fusr/lib/rgb.txt.

The hexadecimal numbers to the left of the color name represent the intensities of red, green, and
blue respectively required to make the named color. You can specify a color in an X command
by name or by hexadecimal number. The hexadecimal numbers must be in onc of the following
formats, where R =red, G = green, and B = blue:

#RGB

#RRGGBB
#RRRGGGBBB
#RRRRGGGGBBBB

To create your own color, enter a number combination on the command line (following the
appropriate option flag). For example, the following command:

xterm -fg #567239042 &
invokes xterm with a foreground color equivalent to the specificd hexadecimal mixture of red,
green, and bluc.

When using color names, type the names exactly as they are listed, paying particular attention to
upper- and lowercase characters and spaces. If a color name includes spaces, enclose the name in
double quotes. For example, either of the following commands:

xterm -fg ”cadet blue” &
xterm -fg CadetBlue &

invokes xterm with Cadet Blue for the foreground color.

112 219 147 aquamarine
112 219 147 Aquamarine

50204 153 medium aquamarine
50 204 153 MediumAquamarine
000 black

000 Black

00255 blue

00255 Blue

95 159 159 cadet blue
95159 159 CadetBlue

66 66 111 cornflower blue
66 66 111 CornflowerBlue
107 35 142 dark slate blue
107 35 142 DarkSlateBlue
191 216 216 light blue

191 216 216 LightBlue

143 143 188 light steel blue
143 143 188 LightSteelBlue
50 50 204 medium blue

50 50 204 MediumBlue
127 0 255 medium slate blue
127 0 255 MediumSlateBlue
474779 midnight blue
474779 MidnightBlue

3535142 navy blue

January 1988

X Windowing System, Version 11

3535142
3535 142
3535 142
50 153 204
50 153 204
0127 255

0 127 255
35107 142
35107 142
2551270
2551270

0 255 255

0 255 255
142 35 35
142 35 35
204 127 50
204 127 50
219 219 112
219 219 112
234 234 173
234 234 173
02550
0250
47179 47
4779 47

79 79 47

79 79 47
35142 35
35 142 35
50 204 50
50 204 50
107 142 35
107 142 35
66 111 66
66 111 66
127 2550
127 2550
143 188 143
143 188 143
35 142 107
35 142 107
0 255 127

0 255 127
153 204 50
153 204 50
477979
477979
477979
4779 79

84 84 84

84 84 84

84 84 84

84 84 84

NavyBlue

navy

Navy

sky blue

SkyBlue

slate blue
SlateBlue

steel blue
SteclBlue

coral

Coral

cyan

Cyan

firebrick

Firebrick

gold

Gold

goldenrod
Goldenrod
medium goldenrod
MediumGoldenrod
green

Green

dark green
DarkGreen

dark olive green
DarkOliveGreen
forest green
ForestGreen

lime green
LimeGreen
medium forest green
MediumForestGreen
medium sea green
MediumSeaGreen
medium spring green
MediumSpringGreen
pale green
PaleGreen

sea green
SeaGreen

spring green
SpringGreen
yellow green
YellowGreen

dark slate grey
DarkSlateGrey
dark slate gray
DarkSlateGray
dim grey
DimGrey

dim gray
DimGray

IBM/4.3-USD:1-57

January 1988

IBM/4.3-USD:1-58

168 168 168
168 168 168
168 168 168
168 168 168
159 159 95
159 159 95
2550 255
2550 255
142 35 107
142 35 107
204 50 50
204 50 50

. 219112 219

219 112 219
153 50 204
153 50 204
147 112 219
147 112 219
188 143 143
188 143 143
234 173 234
234 173 234
25500
25500

79 47 47

79 47 47
219 112 147
219 112 147
2550 127
2550 127
204 50 153
204 50 153
111 66 66
111 66 66
142 107 35
142 107 35
219 147 112
219 147 112
216 191 216
216 191 216
173 234 234
173 234 234
112 147 219
112 147 219
112 219 219
112 219 219
79 47 79
794779
159 95 159
159 95 159
216 216 191
216 216 191
252 252 252

light grey
LightGrey
light gray
LightGray
khaki

Khaki
magenta
Magenta
maroon
Maroon
orange

Orange

orchid

Orchid

dark orchid
DarkOrchid
medium orchid
MediumOrchid
pink

Pink

plum

Plum

red

Red

indian red
IndianRed
medium violet red
MediumVioletRed
orange red
OrangeRed
violet red
VioletRed
salmon
Salmon

sienna

Sienna

tan

Tan

thistle

Thistle
turquoise
Turquoise
dark turquoise
DarkTurquoise
medium turquoise
ediumTurquoise
violet

Violet

blue violet
BlueViolet
wheat

Wheat

white

X Windowing System, Version 11

January 1988

X Windowing System, Version 11

252 252 252
2552550
25512550
147 219 112
147 219 112

White
yellow
Yellow

green yellow
GreenYellow

IBM/4.3-USD:1-59

January 1988

X Windowing System, Version 11

lat-s30.snf
lifel.snf
mailfont12.snf
met25.snf
micro.snf
mit.snf
oldera.snf
pe.12
pe.12.snf
plunk.snf

ree
rot-s16.snf
runlen.snf
5.30

s.30.snf
s.bold-italic.30
s.bold-italic.30.snf
s.bold.30
s.bold.30.snf
s.italic.30
s.italic.30.snf
script12.snf
script 12b.snf
script 12bi.snf
script12i.snf
shape10.snf
$s.30

$5.30.snf
ss.bold-italic.30
ss.bold-italic.30.snf
ss.bold.30
ss.bold.30.snf
ss.italic.30
ss.italic.30.snf
stan.snf
stempl.snf
sub.snf
subsub.snf
sup.snf
supsup.snf
swd-s30.snf
sym-s25.snf
sym-s53.snf
sym10.snf
sym12.snf
sym12b.snf
sym8.snf
table12.snf
tril0.snf
variable
variable.snf
vbee-36.snf
vctl-25.snf

1BM/4.3-USD:1-61

vg-13.snf
vg-20.snf
vg-25.snf
vg-31.snf
vg-40.snf
vgb-25.snf
vgb-31.snf
vgbc-25.snf
vgh-25.snf
vgi-20.snf
vgi-25.snf
vgi-31.snf
vgl-40.snf
vgvb-31.snf
vmic-25.snf
vply-36.snf
vr-20.snf
vr-25.snf
vr-27.snf
vr-30.snf
vr-31.snf
vr-40.snf
vrb-25.snf
vrb-30.snf
vrb-31.snf
vrb-35.snf
vrb-37.snf
vri-25.snf
vri-30.snf
vri-31.snf
vri-40.snf
vsg-114.snf
vsgn-57.snf
vshd-40.snf
vxms-37.snf
vxms-43.snf
xif-s25.snf
zipicon12.snf
ziticon12.snf

January 1988

X Windowing System, Version 11

91

92

93

94

95

96

97

98

99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

| | | | T | | | | (| (| | 1 O A T

> —t o —

I TN M g< g TR0 0B38 7RO QLT

>
~3

M-"@
M-~A
M-"B
M-~C
M-~D
M-"E
M-F
M-~G
M-"H
M-I
M-~J
M-"K
M-"L
M-"M
M-"N
M-~0

144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196

| (I | | | (| | N | | | | | [(| | | | | | | | | I O Y | B

IBM/4.3-USD:1-63

M-~P
M-~Q
M-*R
M-~§
M-~T
M-~U
M-~V
M-~W
M-~X
M-~Y
M-~Z

M-0

1 U)

{ZZXZXEIEERIELE
|A“"‘\D®\)O\V\AUN'—

1

ZTEZZX
TOw>e v

January 1988

X Windowing System, Version 11 IBM/4.3-USD:1-65

Appendix D: Xterm Escape Sequences

This appendix lists the DEC VT102 escape sequences, as well as special sequences used by such
xterm features as the scrollbar. An xterm window can receive these scquences from a program or
from the echo command:

echo "escape sequence” < Enter >

For example, the escape sequence that sets wraparound mode is:
Esc[?7h

This sequence can be echoed as follows. Note that typing the Liscape key produces a ~[on the
display.

echo ""*[[?7h”

The escape sequences list begins on the next page.

January 1988

IBM/4.3-USD:1-67 X Windowing System, Version 11

C = |l Bl - United States (USASCII)

[lesc Il 71 Save Cursor (DECSC)

[lescql|l 8711 Restore Cursor (DECRC)

Hesc{lfl =]l Application Keypad (DECPAM)

[lesc Il =71 Normal Keypad (DECPNM)

[lesc{l)l DI Index (IND)

sl B Next Line (NEL)

|lesc [TjI H I Tab Set (HTS)

[l esc {[{l M]I Reverse Index (RI)

[lesc |l N]I Single Shift Select of G2 Character Set (SS2)
[lesc|l|l Ol Single Shift Select of G3 Character Set (SS3)

[lesc]I|l T{IP|l tF]| Change Window Title to P,

lesc{lil T {IP]l @]l Insert P, (Blank) Character(s) (default = 1) (ICH)
llesc{l/l T TPl ATjl Cursor Up P, Times (default = 1) (CUU)
lesc [l T IRl Bjl Cursor Down P, Times (default = 1) (CUD)
lesc|[|l T {IPJl C |l Cursor Forward P, Times (default = 1) (CUF)
[lesci[{l T TPl D]l Cursor Backward P, Times (default = 1) (CUB)
(lesc Tl T QTP SR H T

Cursor Position [row;column] (default = [1,1]) (CUP)

llescTljl TRl I Erase in Display (ED)

P, = || 0_[I — Clear Below (default)

P, = || 1]| — Clear Above

P, = || 2] - Clear All
llescTll TP Kl Erase in Line (EL)

: P, = |l 07J — Clear to Right (default)

P = || T4 - Clear to Left

P, = |l 27| - Clear All
lWescl|l TR Tl Insert P, Line(s) (default = 1 (IL)
Nescl)l T 1IP)I M Delete P, Line(s) (default = 1) (DL)
lescl|l T {IPJl Pl Delete P, Character(s) (default = 1) (DCH)
fescqlil TRl c I Device Atrributes (DA1)
S AT A

Cursor Position [row;column] (default = [1,1}) (HVP)

) SETH TTANET Tab Clear

P, = || 0 [l — Clear Current Column (default)

P. = || 3] — Clear All |
llesc[I)l TRl b]l Mode Set (SET)

P = IILT — Insert Mode (IRM)

P. = || 27|l 0]I - Automatic Linecfeed (LNM)
Hesc[I]l T TPl T]I Mode Reset (RST)

P, = || 4]I — Insert Mode (IRM)

January 1988

IBM/4.3-USD:1-69 X Windowing System, Version 11

P. = |1 41|l 8 I — Reverse Status Line

flesc il Tl 2 QA 111

DEC Private Mode Reset (DECRST)
= || 1]l = Normal Cursor Keys (DECCKM)
= || 371 - 80 Column Mode (DECCOLM)
= || 471 - Jump (Fast) Scroll (DECSCLM)
= || 5] - Normal Video (DECSCNM)
= {| 6 [l » Normal Cursor Mode (DECOM)
= || 7]I - No Wraparound Mode (DECAWM)
= || 8]| » No Auto-repcat Keys (DECARM)
= || zﬂ - Don’t Send MIT Mouse Row & Column on Button Press
= |l 41|l 0]I - Disallow 80 < 132 Mode
= || 41|l 1[I = No curses(5) fix
= || 41|l 401 - Turn Off Margin Bell
= || 41|l 5] » No Reverse-wraparound Mode
= || 4I|l &1 - Stop Logging
= || 4 JIJl 71 - Use Normal Screen Buffer
= || 4]|l 871 — Un-reverse Status Linc

ST LT ST T ST ST ST T ST ST ST Y LT LY

Wesc T 0N 2110 11
Restore DEC Private Mode

P, = || 1]l -» Normal/Application Cursor Keys (DECCKM)

P, = || 3] - 80/132 Column Mode (DECCOLM)

P, = || 4] - Jump (Fast)/Smooth (Slow) Scroll (DECSCLM)

P. = || 5] » Normal/Reversc Video (DECSCNM)

P, = || 6 |l » Normal/Origin Cursor Mode (DECOM)

P, = || 7°]] » No Wraparound/Wraparound Mode (DECAWM)

P. = || 8]I - Auto-repeat/No Auto-repeat Keys (DECARM)

P. = |l 91 - Don’t Send/Send MIT Mouse Row & Column on Button
Press

P, = |l 470l 071 - Disallow/Allow 80 « 132 Mode

P, = || 4|l Tl - Off/On curses(5) fix
= || 401l 41 - Turn Off/On Margin Bell
= |l 41|l 51 » No Reverse-wraparound/Reverse-wraparound Mode
= || 41|l 61 - Stop/Start Logging
> = || 4 [/l 7]I - Use Normal/Alternate Screen Buffer
P, = || 40|l 8] » Un-reverse/Reverse Status Line
Wesc Tl T 2 A0 s
Save DEC Private Mode
P, = || 1]l - Normal/Application Cursor Keys (DECCKM)
P, = || 371 - 80/132 Column Mode (DECCOLM)
P, = [l 4] - Jump (Fast)/Smooth (Slow) Scroll (DECSCLM)

B
Py
F
A

January 1988

