

--...- ------ -------- ~ ---- - - -----------~-.-

ACADEMIC OPERATING SYSTEM 4.3

ACADEMIC OPERATING SYSTEM

VOLUME III

IBM Academic Operating System 4.3

Volume III

Assembler Reference Manual IBM/4.3-PSD:I-l

Assembler Reference Manual for IBMj4.3

ABSTRACT

This article is an updated version of an article entitled Berkeley V A XI UNIX AJ­
Jembler Reference Manual, written in November 1979 by John F. Reiser and
Robert R. Henry and revised in February 1983. The original article, which is in
Volume 1 of UNIX Programmer's Supplementary Document.,;, has been rewrit­
ten and includes additions and changes for IBM/4.3 and corrections where ap­
propriate.

15 Dec 1986

IBM/4.3-PSD: 1-2 Assembler Reference Manual

1. INTRODUCTION

This document describes the usage and input syntax of the IBM/4.3 assembler, as, for
the IBM RT PC and IBM 6152 Academic System. A.r assembles the code produced
by the C compiler. This article is intended for those writing a compiler or maintain­
ing the assembler; it is not a user's guide for writing assembler code.

Examples of syntax in this article use the following conventions:

• [Argument] means that the specified argument is optional; 0 or more instances
may be included.

• Words in boldface must appear literally.

• \Vords in italics represent specific values to be supplied.

15 nee 1986

Assembler Reference Manual IBM/4.3-PSD:1-3

2. USAGE

As is invoked with these command arguments:

as [- I.,VWRDT] [- t directory] [- 0 outfile] [name
l
) ••• [namen]

The arguments are explained below:

-IJ Instructs the assembler to save labels beginning with an "L" in the symbol
table portion of the file specified as outfile. Labels are not saved by default,
as the default action of the link editor ld is to discard them anyway.

-V Tells the assembler to place its interpass temporary file in virtual memory.
In normal circumstances, the system manager will decide where the tem­
porary file should lie. Experiments with a temporary file of lIS kbytes have
shown this option to have a negligible (1-20/0) effect on assembly time on an
unloaded machine.

-W Turns off all warning error reporting.

-R Make initialized data segments read-only by concatenating them to the text
segments. This obviates the need to run editor scripts on assembler source
to "read - only" fix initialized data segments. Uninitialized data (via .lcomm
and .comm directives) are still assembled into the bss segment.

-D Prints assembler debugging information and dumps 'the symbol table, pro­
vided the assembler has been compiled with DEBUG defined.

-T Prints the token file, provided the assembler has been compiled with DE­
BUG defined. This information is useful when debugging the assembler.

-t Causes the assembler to place its single temporary file in directory instead of
in Itmp , provided the - V flag is not set.

-0 Causes the output to be placed in the file outfile. By default, the output of
the assembler is placed in the file a.out in the current directory.

name l _n Causes input to be taken sequentially from the files name, ... namen• The
files are not assembled separately; name 1 is effectively concatenated to name2
so multiple defmitions cannot occur among the input sources. By default,
input is taken from the standard input.

Note: Arguments -J and -d are ignored.

15 Dec 1986

IBM/4.3-PSD: 1-4 Assembler Reference Manual

3. IjEXICAlj CONVENTIONS

Assembler tokens include identifiers (alternatively, "symbols" or "names"), constants,
and operators.

3.1. Identifiers

An identifier consists of a sequence of alphanumeric characters, including the spe­
cial characters period (.), underscore L), and doJlar ($). The first character may
not be a digit or a dollar sign. For all practical purposes, the length of identifiers
is arbitrary; all characters are significant. All keywords, operation mnemonics, re­
gister names, and macro names are reserved and are not available as user-defined
names.

3.2. Constants

3.2.1. Integral Constants

All integral (non floating point) constants arc (potentially) 64 bits wide. In­
tegral constants are initially evaluated to a full 64 bits, but arc pared down by
discarding high order copies of the sign bit and categorizing the number as a
long (32 bits) or double-long (64 bits) integer. Numbers with less precision
than 32 bits are treated as 32-bit quantities. As cannot perfonn arithmetic on
constants larger than 32 bits and supports 64-bit integers only so they can be
used to fill initialized data space.

The digits are "0123456789abcdefABCDEF" with the obvious values.

A decimal constant consists of a sequence of digits without a leading zero.

An octal constant consists of a sequence of digits with a leading zero.

A hexadecimal constant consists of the characters "Ox" (or "OX") followed by
a sequence of digits.

A single-character constant consists of a single quote (') followed by an ASCII
character, including ASCII newline. The constant's value is the code for the
given character.

3.2.2. Floating Point Constants

IEEE single and double precision constants are supported by the .float and
.double directives respectively. The atof (3) man page describes the range of
representable values and their syntax. There is presently no support for IEEE
double extended precision constants. For a description of the IEEE represen­
tations, please see the IEEE Standard 754 for Binary Floating Point Arithmetic.
The assembler uses the library routine alof (3) to convert floating point
numbers.

The operand field syntax of .float and .double is:

O[expe)([+ -J) [dec) + (.)([dec()([expl)« + -))([dec) +»
where:

expe An exponent delimiter and type specification character (fPdD).

dec A decimal digit (0 I 2 3 4 5 6 7 8 9).

expt A type specification character (eEfFdD).

x· 0 or more occurrences of x.

x + 1 or more occurrences of x.

15 Dec 1986

Assembler Reference Manual IBl\1/4.3-PSD: 1-5

The standard semantic interpretation is used for the signed integer, fraction and
signed power of 10 exponent. If the exponent delimiter is specified, it must be
either an "e" or "E", or must agree with the initial type specification character
that is used. A .double constant must have d or D specified as its type
specification character; a .float constant must have f or F specified as its type
specification character.

Collectively, all floating point numbers, together with double-long integral
numbers, are called "bignums". When as requires a bignum, a 32-bit scalar
quantity may also be used.

3.2.3. String Constants

A string constant is defined using the same syntax and semantics as the C
language uses. Strings begin and end with a double quote ("). All C backslash
conventions are observed. Strings are known by their value and their length;
the assembler does not implicitly end strings with a null byte.

3.3. Operators

There are several single-character operators; see Section 6.1.

3.4. Blanks

Blank and tab characters may be interspersed freely between tokens, but may not
be used within tokens (except character constants). A blank or tab is required to
separate adjacent identifiers or constants not otherwise separated.

3.5. Single l,ine Comments

The character "#" introduces a comment which extends through the end of the
line. COlnments starting in column 1, having the fonnat "# expression string", are
interpreted as an indication that the assembler is now assembling file string at line
expression. Thus, one can use the C preprocessor on an assembly language source
file, and use the #include and #define preprocessor directives. Other comments
may not start in column I if the assembler source is given to the C preprocessor
because the preprocessor will misinterpret them. Comments are otherwise ignored
by the assembler.

To retain compatibility with existing .s files, comments beginning with "I" are also
accepted. However, this use is deprecated, and support for this feature will be re­
moved in subsequent releases.

3.6. C Style Comments

The assembler will recognize C style comments, introduced with the prologue /*
and ending with the epilogue */. C style comments may extend across multiple
lines and are the preferred comment style to use if you choose to use the C
preprocessor.

If a C style comment does extend across "n" lines, the line numbers in any subse­
quent error messages generated by the assembler will be low by n-l lines, since the
assembler increments the line count only once for a multiple C style comment.

15 Dec 1986

IBM/4.3-PSD: 1-6 Assembler Reference Manual

4. SEGMENTS AND I.lOCATION COUNTERS

Assembled code and data fall into three segments: the text segment, the data seg­
ment, and the bss segment. The operating system makes some assumptions about
the content of these segments; the assembler does not. Within the text and data seg­
ments there are a number of sub-segments, distinguished by number ("text 0", "text
I", "data 0", "data 1" , ...). Currently there are four subsegments each in text and
data. The subsegments are for programming convenience only.

Before writing the output file, the assembler zero-pads each text subsegment to a
multiple of eight bytes and then concatenates the subsegments in order to form the
text segment; an analogous operation is done for the data segment. Requesting that
the loader define symbols and storage regions is the only action allowed by the as­
sembler with respect to the bss segment. Assembly begins in "text 0".

Associated with each (sub)segment is an implicit location counter which begins at
zero and is incremented by I for each byte assembled into the (sub)segmcnt. There is
no way to explicitly reference a location countcr. Note that the location countcrs of
subsegments other than "text 0" and "data 0" hchavc peculiarly due to thc concatc­
nation uscd to fonn the text and data segmcnts.

IS Dec 1986

As...crembler Reference Manual IBM/4.3-PSD:I-7

5. STATEMENTS

A source program is composed of a sequence of statements. Statements are separated
by new lines or by semicolons. There are two kinds of statements: null statements
and keyword statements. Either kind of statement may be preceded by one or more
labels.

5.1. Named Labels

A named label consists of a name followed by a colon. The effect of a named la­
bel is to assign the current value and type of the location counter to the name.
An error is indicated in pass I if the name is already defined; an error is indicated
in pass 2 if the value assigned changes the definition of the label.

Named labels beginning with an IC L" are not retained in the a.out symbol table
unless the - L option is in effect.

5.2. Numeric l,ocal Labels

A numeric label consists of a digit between 0 and 9 followed by a colon. A
numeric label dermes temporary symbols of the fonn "nb" and "nf" where n is the
digit of the label. As in the case of named labels, a numeric . label assigns the
current value and type of the location counter to the temporary symbol. Howev­
er, several numeric labels with the same digit may be used within the same assem­
bly. References to symbols of the form "nb" refer to the first numeric label n:
backward from the reference; "nf" symbols refer to the first numeric label n: for­
ward from the reference.

As turns local labels into labels of the form Ln\OOlm for internal purposes.

5.3. Null Statements

A null statement is an empty statement ignored by the assembler. A null state­
ment may be labeled, however.

5.4. Keyword Statements

A keyword statement begins with one of the many predefined keywords known to
as; the syntax of the remainder of the statement depends on the keyword. All in­
struction opcodes, listed in Section 8, are keywords. The remaining keywords are
assembler pseudo-operations, also called "directives." The pseudo-operations are
listed in Section 7, together with the syntax they require.

15 Dec 1986

IBM/4.3-PSI>: 1-8 Assembler Reference Manual

6. EXPRESSIONS

An expression is a sequence of symbols representing a value. Its constituents are
identifiers, constants, operators, and parentheses. Each expression has a type.

All operators in expressions are fundamentally binary in nature. Arithmetic is two's
complement and has 32 bits of precision. A.f cannot perform arithmetic operations
on floating point numbers or on double-long integral numbers. There are four levels
of precedence, listed here from lowest precedence level to highest:

precedence
binary
binary
binary
unary

operators
+ -
&" !

• I 0/0

All operators of the same precedence arc evaluated strictly left to right, except for the evalua­
tion order enforced by parentheses.

6.1. Expres..'iion Operators

The operators are:

operator

+

•
I

0/0

&
"

>
»
<

«

meaning
addition
(binary) subtraction
multiplication
division
modulo
(unary) two's complement
bitwise and
bitwise exclusive or
bitwise or not
bitwise ones' complement
logical right shift
logical right shift
logical left shift
logical left shift

Expressions may be grouped with parentheses.

6.2. I>ata Types

Every user-defined symbol has one of the following types. The type propagation rules in
the next section describe how expression types are derived from symbol types.

undefined Upon first encounter, each sytnbol is undefined unless its first encounter defines
it. It may become undefined if it is assigned an undefined expression. lbe as­
sembler changes all undefined types to undefined external just prior to pass 2.

undefined external
A symbol which is declared .glob) but not defined in the current assembly is an
undefmed external. If such a symbol is declared, the link editor Id must be used
to load the assembler's output with another routine that defines the undefmed
reference.

absolute An absolute symbol is defmed in a .sct by an expression of type absolute. Con­
stants have type absolute.

15 Dec 1986

Assembler Reference Manual IBI\1/4.3-PSD: 1-9

text A symbol appearing as a label in a text segment has type text, as does a symbol
defined in a .set by an expression of type text. The value of a text symbol is
measured with respect to the beginning of the text segment of the program. If
the assembler output is link-edited, its text symbols may change in value since
the program need not be the first in the link editor's output.

data A symbol appearing as a label in a data segment has type data, as does a sym­
bol defined in a .set by an expression of type data. The value of a data symbol
is measured with respect to the origin of the data segment of a program. The
value of a data symbol may change during a subsequent link-editor run since
previously loaded programs may have data segments.

bss A symbol defined in a .comm or .lcomm directive has type bss, as does a symbol
defined in a .set by an expression of type bss. The value of a bss symbol is
measured from the beginning of the bss segment of a program. The value of a
bss symbol may change during a subsequent link-editor run, since previously
loaded programs may have bss segments.

external absolute, text, data, or bss
Symbols declared .globl and defined within an assembly as absolute, text; data,
or bss types may be used exactly as if they were not declared .globl; however,
their value and type are available to the link editor so that the program may be
loaded with others that reference these symbols.

6.3. Type Propagation in Expressions

When operands are combined by expression operators, the result has a type which depends
on the types of the operands and on the operator. The rules involved are complex to state
but were intended to be sensible and predictable. For purposes of expression evaluation,
the important types are:

undefined
absolute
text
data
bss
undefined external
relocatable: any of text, data, bss, or undefined external

The combination rules are:

(1) If one of the operands is undefined, the result is undefined.

(2) If both operands are absolute, the result is absolute.

(3) An absolute operand may be added to or subtracted from any other type,
and the type of the result is that of the other operand.

(4) An operand of type text, data, or bss may be subtracted from an operand
having the same type, and the type of the result is absolute.

(5) Any other combination is an error.

15 Dec 1986

IBM/4.3-I)SI>: 1-10 Assembler Reference Manual

7. PSEUDO-OPERATIONS (I>IRECTIVES)

The keywords listed below introduce pseudo-operations (directives) to influence the
later behavior of the assembler, define symbols, or create data. They are grouped
below into functional categories.

7.1. Interface to a Previous Pass

.ABORT

As soon as the assembler sees this directive, it ignores all further input (but it does
read to the end of file) and aborts the assembly. No files arc created. It is antici­
pated that this would be used in a pipe interconnected version of a compiler,
where the fIrst major syntax error would cause the compiler to issue this directive,
saving unnecessary work in assembling code that would have to be discarded any­
way .

. file string

This directive causes the assembler to think it is in file Siring, so that error mes­
sages reflect the proper source ftle .

. line expression

This directive causes the assembler to think it is on line expression so that error
messages reflect the proper source line.

The only effect of assembling multiple files specified in the command string is to
insert the file and line directives, with the appropriate values, at the beginning of
the source from each file.

expression Siring

This is the only instance where a comment is meaningful to the assembler. The
u#" must be in the frrst column. This meta comment causes the assembler to be­
lieve it is on line expression. The second argument, if included, causes the assem­
bler to believe it is in ftle string; otherwise the current file name does not change.

7.2. I.A»Cation Counter Control

.data [expression]

.text [expression]

These two directives cause the assembler to begin assembling into the indicated
text or data sub segment, If specified, expreSJion must be defined and absolute; an
omitted expression is treated as zero. Assembly starts in the .text 0 subsegment.

The directives .align and .org also control the placement of the location counter.

While the comments within the assembler may refer to the location counter as u."
or "dot", there is no explicit reference allowed to the location counter. Numeric
local labels may be used with almost equal convenience and more predictable
results.

15 Dec 1986

As.~embler Reference Manual IBM/4.3-psn:I-11

7.3. Filled Data

.align align _ expr

The location counter is adjusted so that the align_expr lowest bits of the location
counter become zero. This is done by assembling from 0 to 2oiign .. .,.t!:xpr -I bytes of
o. Thus ".align 2" pads by null bytes to make the location counter evenly divisi­
ble by 4. The align _ expr must be defined, absolute, nonnegative, and less than
16.

Warning: the sub segment concatenation convention and the current loader con­
ventions may not preserve attempts at aligning to more than 3 low-order zero bits .

. org org_ expr{ Ji "_ exprJ

The location counter is set equal to the value of org_ expr, which must be of type
text or data and greater than the current value of that segment's location counter.
Space between the current value of the location counter and the desired value are
filled with bytes taken from the low order byte of fil(expr, which must be abso­
lute and defaults to o .

. space space _ expr{ Ji "_ expr]

The location counter is advanced by space _ expr bytes. Space _ expr must be
defined and absolute. The space is filled in with bytes taken from the low order
byte of fil(expr, which must be dermed and absolute. FiI(expr defaults to O.
The .fill directive is a more general way to accomplish the .space directive .

. fill rep _ expr, size _ expr, fil(expr

All three expressions must be absolute. Fil(expr, treated as an expression of size
size_expr bytes, is assembled and replicated rep_expr times. The effect is to ad­
vance the current location counter rep _ expr • size _ expr bytes. Size _ expr must be
between 1 and 8.

7.4. Initialized nata

. byte

. short

.int

.long

expr{,expr) . . .
expr{,expr) . . .
expr{,expr) . . .
expr{,expr) . . .

Expr represents an expression. Expressions are truncated to the size indicated by the key­
word in the table below, and assembled in successive locations. Non-absolute expressions
in a .byte or .short engender a warning message.

keyword length (bits)

.byte 8

.short 16

.int 32

.long 32

Each expression may optionally be of the form:

expressionl : expression2

15 Dec 1986

IBM/4.3-PSD: 1-12 Assembler Reference Manual

In this case, the value of expression2 is truncated to expre.uion. bits, and assem­
bled in the next expression. bit field which fits in the natural data size being as­
sembled. Bits which are skipped because a field docs not fit are filled with zeros.
Thus, ".byte 123" is equivalent to ".byte 8:123", and ".byte 3:1,2:1,5:1" assembles
two bytes, containing the values Ox28 and Ox08.

. dlong

. float

.double

number[,number]. . .
number[,number]. . .
number[,number] . ..

These initialize bignums (see Section 3.2.2) in successive locations whose size is a function
of the keyword. The type of the bignum (detennined by the exponent field, or lack
thereof) may not agree with the type implied by the keyword. The following table shows
the keywords, their size, and the data types for the bignums they expect.

keyword fonnat length (bits) valid number (s)
.dlong integral 64 integral
.float ieee single 32 floating and integral
.double ieee double 64 floating and integral

.a.~cii string[, string] . . .

. a.~ciz string[, string] . . .

Each string in the list is assembled into successive locations, with the first letter in the
string heing placed into the first location, etc. The .ascii directive will not null tenninate
the string; the .asciz directive will null tenninate the string. (Recall that strings arc known
by their length and need not be terminated with a null, and that the C conventions for es­
caping are understood.) The .ascii directive is identical to:

.byte stringo' stringl' ...

. comm name, expression

Provided the name is not defmed elsewhere, its type is made "undefined external",
and its value is expre.uion. In fact the name hehaves in the current assembly just
like an undefined external. However, the link editor ld has been special-cased so
that all undefined external symbols that have a non-zero value arc defined to lie in
the bss segment, and space is reserved after the symbol to hold expre.uion hytes .

.lcomm name, expression

Expression bytes wi1J be allocated in the bss segment and name assigned the loca­
tion of the first byte, but the name is not declared as global and hence will he
unknown to the link editor .

. globl name

This directive makes name external. If it is otherwise defined (by .sct or by ap­
pearance as a label) it acts within the assembly exactly as if the .globl directive
were not given; however, the link editor may be used to combine this object
module with other modules referring to this symbol.

Conversely, if the given symbol is not defined within the current assembly, the
link editor can combine the output of this assembly with that of others which
defme the symbol.

15 Dec 1986

Assembler Reference Manual IBM/4.3-PSD: 1-13

.set name, expression

The (name, expression) pair is entered into the symbol table. MUltiple .sct state­
ments with the same name are legal; the most recent value replaces all previous
values .

.Isym name, expression

A unique instance of the (name, expression) pair is created in the symbol table.
This mechanism can be used to pass local symbol definitions to the link editor
and debugger. Note that name may not be referenced .

. stabs string, expr}, expr2, expr3, expr4

.stabn expr}, expr2' expr3' exr4

.stabd expr}, expr2' expr3
The .stabx directives place symbols in the symbol table for the symbolic debugger,
dbx. A "stab" is a symbol table entry. The .stabs is a string stab, the .stab" is a
stab not having a string, and the .stabd is a "dot" stab that implicitly references
"dot", the current location counter.

The string in the .stabs directive is the name of a symbol. If the symbol name is
zero, the .stab" directive may be used instead.

The other expressions are stored in the name list structure of the symbol table and
preserved by the loader for reference by dbx; the values of the expressions are
peculiar to formats required by dbx.

cxpr} Is used as a symbol table tag (ntist field n_type).

cxpr2 Is always zero (nlist field n_other).

expr3 Is used for either the source line number, or for a nesting level (ntist field
n_desc).

expr4 Is used as tag specific information (nlist field n_value). In the case of the
.stabd directive, this expression is nonexistent, and is taken to be the
value of the location counter at the following instruction. Since there is
no associated name for a .stabd directive, it can be used only in cir­
cumstances where the name is zero. The effect of a .stabd directive can
be achieved by one of the other .stabx directives in the following manner:

.stabn exprl' expr2' expr3' IJjn
LLn:

The .stabd directive is preferred, because it does not clog the symbol table with la­
bels used only for the stab symbol entries.

IS. Dec 1986

IBM/4.3-PSD: 1-14 Assembler Reference Manual

7.5. Addrcs."ability

.using expr,register, ...

The .using directive tells the assembler that it can rely on the value in a register for
the purpose of creating base + displacement addresses for machine instructions.

Expr may be any relocatable expression of type text or data. lbe register is as­
sumed to contain an address pointing to the storage location described by the re­
locatable expression. Each additional specified register is assumed to contain an
address Ox8000 bytes greater than the previous register.

There may be one .using specified for each text subsegment and one for each data
sub segment (i.e. up to eight .using's may be in effect at any time). If a .using is
not provided for a .text or for a .data subsegment but is provided for a lower­
numbered text or data subsegment, the one for the lower-numbered subsegment
will be used. If no .using is provided for any text subsegment, reference to an ad­
dress of type text encodes a warning message and register II is assumed to point
to the beginning of the text 0 subsegment. If no .using is provided for any data
subsegment, reference to an address of type data engenders an error message. If a
proper register and displacement cannot be formed from a .using statement, an er­
ror message is issued.

If a second .using is specified while one is active within the same subsegment,. the
second replaces the first. A .using foUowed by a rc10catable expression without a
register unassigns the base register.

Symbols in the relocatable expression need not be defined before the appearance
of the .using directive.

7.6. Literal Operands

The following construct may be used in machine instructions wherever a relocat­
able instruction operand may be used:

S.data-directive expres.rion

The arguments are explained below:

data-directive

expression

Any of .byte, .short, .int, .long, .dlong, .float, .double, .ascii,
or .asciz.

Any single expression that is Jegal for the respective assembler direc­
tive.

The following lines show examples of literals:

Ie rl,$.byte Oxl8
1h r2,$.short (4 < < 8)
1 r2,$.int 123456

The line:

r7,$.long root

is equivalent to:

r7,ZOOOOI

ZOOOO I: .long root

15 Dec 1986

Assembler Reference Manual IBM/4.3-PSD:l-15

Literals are accumulated into a pool and duplicates are removed. Literals are considered
duplicates when they are written in exactly the same way; constants which assemble to the
same value but which have different source forms are different literals, except that .long and
.int are considered to be equal. String literals are never considered to be equal. The literal
pool is sorted such that the items with the more restrictive alignment arc placed first. The
beginning of the literal pool is aligned to the boundary implied by the first literal in the
pool.

.Itorg

This directive indicates the start of a literal pool and causes the accumulated literal values
to be emitted. The .Itorg directive can appear in either a text or data segment, and it can
appear more than once. If literals are used and no .Itorg follows, a warning will be issued
and the literals will be emitted at the end of the .text 0 subsegment.

15 Dec 1986

IBM/4.3-PSD:I-16 Assembler Reference Manual

8. MACHINE INSTRUCTIONS

This section describes the machine instructions, extended branch mnemonics, and macro
instructions supported by as.

8.1. Summary of Machine Instructions

The symbols used to describe the source syntax are:

abs An absolute expression representing a displacement
from a base.

f An absolute value representing a register bit position.

An absolute expression representing an immediate
value, optionally preceded by a "$".

Ibl A name of type text, data, or undefined external.

ra,rb,rc Register expressions. J\ register expression is one of
the predefined symbols rO, ... rl5, sp, or a "0/0" fol­
lowed by an absolute in the range 0-15. sp is
equivalent to r I.

reloc An address operand of one of the following fonns:
abs(register-expression)
$literal expn
An expression of type text or data covered by a
base register defined in a ".using" directive.

The following symbols are used to show the assembled result. J\ character repeated indi­
cates that the field is wider that one hex digit.

a,b,c Registers ra, rb, and rc.

f A register bit position.

n A numeric field.

d A displacement from a register or the current location.

Most numeric fields and displacements represent sign-extended two's complement quanti­
ties. In the Operations column of the following table, "(unsigned)" indicates instructions
that do not sign-extend.

15 Dec 1986

As..-;embler Reference Manual IBM/4.3-PSD: 1-17

Assembled
Source Syntax Fonnat Operation

a ra,rb elab Add
abs ra,rb eOab Absolute
ae ra,rb flab Add Extended
ael ra,rb,i dlab nnnn Add Extended Immediate
al ra, [rb,j i (Macro) See Section 8.5
ail ra,rb,i clab nnnn Add Immediate Long
rus ra,i 90an Add Immediate Short
bala lbl 8ann nnnn Branch and Link Absolute (unsigned)
balax Ibl 8bnn nnnn Branch and Link Absolute with Execute (unsigned) ++
bali ra,lbl 8cad dddd Branch and Link Immediate
balix ra,lbl 8dad dddd Branch and Link Immediate with Execute + +
baIr ra,rb ecab Branch And Link Register
balrx ra,rb edab Brand And Link Register with Execute + +
bb f,lbl 8efd dddd Branch on Bit
bbr f,ra eefa Branch on Bit
bbrx f,ra effa Branch on Bit with Execute
bbx f,lbl 8ffd dddd Branch on Bit with Execute
bnb f,Ibl 88fd dddd Branch on Not Bit
bnbr f,ra e8fa Branch on Not Bit
bnbrx f,ra e9fa Branch on Not Bit with Execute
bnbx f,Ibl 89fd dddd Branch on Not Bit with Execute
c ra,rb b4ab Compare
ca16 ra,rb Dab Compute Address 16-bit
cal ra,reloc c8ab dddd Compute Address Lower Iialf
cal16 ra,reloc c2ab dddd Compute Address Lower flalf 16-bit (unsigned)
cas ra,rb,rc 6abc Compute Address Short
cau ra,reloc d8ab dddd Compute Address Upper Half (unsigned)
Cl ra, I (Macro) See Section 8.S
cit ra,i d40a nnnn Compare Immediate Long
CIS ra,l 94an Compare Immediate Short
cl ra,rb b3ab Compare Logical
eli ra, i (Macro) See Section 8.S
elil ra,i d30a nnnn Compare Logical Immediate Long
cIrbl ra,i 99an Clear Bit Lower
cIrbu ra,i 98an Clear Bit Upper
elrsb ra,i 9 San Clear SCR Bit
clz ra,rb fSab Count Leading Zeros
d ra,rb b6ab Divide Step
dec ra,i 93an Decrement
exts ra,rb blab Extend Sign
get + ra,$expr (Macro) See Section 8.S
get + ra,reloc (Macro) See Section 8. S
mc ra,l 91an Increment
lor ra,reloc cbab dddd Input/Output Read (unsigned)
lOW ra,reloc dbab dddd Input/Output Write (unsigned)
jb f,lbl 08dd to Ofdd Jump on Bit
jnb flbl ~Odd to 07dd Jump on Not Bit

++ If a two-byte instruction follows a Branch and Link with Execute, as appends a 'jnop'.

15 Dec 1986

IBM/4.3-PSI>: 1- 18 Assembler Reference Manual

Assemhled
Source Syntax Format OpeJation

1 ra,re1oc cdab dddd lA>ad
le ra,re1oc ceab dddd Load Character
les ra,reloc 4dah Load Character Short
Ih ra,reloc daab dddd Load Half
Iha ra,reloc caab dddd Load I lair Algehraic
Ihas ra,reloc Sdab Load I laIr Algebraic Short
Ihs ra,O(rb) ebah Load I lair Short
lis ra,i a4an Load Immediate Short
load + ra,exprr(rb)) (Macro) See Section R.S
1m ra,reloc c9ah dddd Load Multiple
Ips i,reloc dOnb dddd Load Program Status
Is ra,reloc 7dah Load Short
m ra,rb e6ab Multiply Step
mc03 ra,rh f9ah Move Character 0 from 3
mcl3 ra,rb faab Move Character I from 3
mc23 ra,rb fbab Move Character 2 from 3
mc30 ra,rb fdab Move Character 3 from 0
mc31 ra,rb feab Move Character 3 from 1
mc32 ra,rh ffab Move Character 3 from 2
mc33 ra,rb fcab Move Character 3 from 3
mfs ra,rh 96ah Move From SCR ra to register rh

-mftb ra,rh bcab Move From Test nit
mftbil ra,i 9dan Move From Test nit Immediate Lower
mftbiu ra,i 9can Move From Test Bit Immediate Upper
mr ra,rb (Macro) See Section 8. S
mts ra,rb bSah Move To SCR ra from register rb
mttb ra,rb bfab Move To Test Bit
mttbil ra,i 9fan Move To Test Bit Immediate l..ower
mttbiu ra,i gean Move To Test nit Immediate Upper
n ra,rh eSab And
m ra,rh,i (Macro) See Section 8.S
nilo ra,rb,i c6ah nnnn And Immediate I A>wer I lair Extended Ones (unsigned)
nilz ra,rb,i cSab nnnn And Immediate l,ower Ilalf Extended Zeros (unsigned)
niuo ra,rh,i d6ab nnnn And Immediate Upper Half Extended Ones (unsigned)
niuz ra,rb,i dSab nnnn And Immediate Upper Half Extended Zeros (unsigned)
0 ra,rb e3ah Or
01 ra,rb,i (Macro) See Section 8.S
oil ra,rh,i c4ah nnnn Or Immediate Lower Half (unsigned)
oiu ra,rb,i c3ab nnnn Or Immediate Upper J laIr (unsigned)
onec ra,rh f4ah Ones' Complement
put + ra,reloe (Macro) See Section 8.S
s ra,rb e2ab Suhtract
sar ra,rb bOab Shift Algebraic Right
san ra,i aOan Shift Algebraic Right Immediate
sari 16 ra,i alan Shift Algebraic Right Immediate plus 16
se ra,rb f2ab Suhtract Extended
setbi ra,i 9ban Set Bit Lower

15 Dec 1986

Assembler Reference Manual IBM/4.3-PSD:I-19

Assembled
Source Syntax Format Operation

setbu ra,i 9aan Sct Bit Upper
setsb ra,i 97an Set SCR Bit
sf ra,rb b2ab Subtract Prom
sfi ra,rb,i d2ab nnnn Subtract From Immediate
shl ra,i (Macro) See Section 8.5
shla ra,i (Macro) See Section 8.5
shr ra,i (Macro) Sec Section 8.5
shra ra,i (Macro) See Section 8.5
Sl ra,[rb,)i (Macro) See Section 8.5
sil ra,rb,i (Macro) Sec Section 8.5
sis ra,i 92an Subtract Immediate Short
sl ra,rb baab Shift Left
sli ra,i aaan Shift Left Immediate
sli16 ra,i aban Shift Left Immediate plus 16
sIp ra,rb bbab Shift Left Paired
sIpi ra,i aean Shift Left Paired Immediate
slpi 16 ra,i afan Shift Left Paired Immediate plus 16
sr ra,rb b8ab Shift Right
sn ra,i a8an Shift Right Immediate
sri16 ra,i a9an Shift Right Immediate plus 16
srp ra,rb b9ab Shift Right Paired
srpi ra,i acan Shift Right Paired Immediate
srpil6 ra,l adan Shift Right Paired Immediate plus 16
st ra,reloc ddab dddd Store
stc ra,reloc deab dddd Store Character
stcs ra,reloc I dab Store Character Short
sth ra,reloc dcab dddd Store Ilalf
sths ra,reloc 2dab Store·llalf Short
stm ra,reloc d9ab dddd Store Multiple
store'" ra,expr[(rb »),rc (Macro) See Section 8.5
sts ra,reloc 3dab Store Short
svc abs(ra) cOOa nnnn Supervisor Call (unsigned)
tgte ra,rb bdab Trap if Register Greater Than or Equal
ti f,ra,i ccfa nnnn Trap on Condition Immediate
tIt ra,rb beab Trap if Register Less Than
tsh ra,reloc cfab dddd Test and Set I laIr
twoc ra,rb e4ab Two's Complement
wait moo Wait
x ra,rb e7ab Exclusive Or
Xl ra,rb,i (Macro) See Section 8.5
xiI ra,rb,i c7ab nnnn Exclusive Or Immediate Lower I laIr (unsigned)
XlU ra rb,i d7ab nnnn Exclusive Or Immediate Upper I lair (unsigned)

IS Dec 1986

IBM/4.3-PSD:1-20 Assembler Ref~rence Manual

8.2. Extended Mnemonics: Branch on Bit

Assembled
Source Syntax Format Operation

b lbl 888d dddd Branch
bcO lbl 8ecd dddd Branch on Carry 0
be lbl 8ead dddd Branch on Equal
beq lbl 8ead dddd Branch on Equal
bh lbl 8ebd dddd Branch on IIigh
bhe lbl 889d dddd Branch on lligh or Equal
bl lbl 8e9d dddd Branch on I,Ow
ble lbl 88bd dddd Branch on Low or Equal
bm lbl 8e9d dddd Branch on Minus
bncO lbl 88cd dddd Branch on Not Carry 0
bne lbl 88ad dddd Branch on Not Equal
bnh lbl 88bd dddd Branch on Not I Iigh
bnl lbl 889d dddd Branch on Not l,Ow
bnm lbl 889d dddd Branch on Not Minus
bno lbl 88ed dddd Branch on Not Overflow
bnp Ibl 88bd dddd Branch on Not Plus
bntb Ibl 88fd dddd Branch on Not Test Bit
bnz Ibl 88ad dddd Branch on Not Zero
bo lbl 8eed dddd Branch on Overflow
bp Ibl 8ebd dddd Branch on Plus
btb Ibl 8efd dddd Branch on Test Bit
bz Ibl 8ead dddd Branch on Zero
nop Ibl 8eod dddd No Operation

bcOx lbl 8fcd dddd Branch on Carry 0 with Execute
beqx Ibl 8fad dddd Branch on Equal with Execute
bex Ibl 8fad dddd Branch on Equal with Execute
bhex Ibl 899d dddd Branch on lligh or Equal with Execute
bhx lbl 8fbd dddd Branch on IIigh with Execute
blex lbl 89bd dddd Branch on Low or Equal with Execute
blx lbl 8f9d dddd Branch on Low with Execute
bmx lbl 8f9d dddd Branch on Minus with Execute
bncOx lbl 89cd dddd Branch on Not Carry 0 with Execute
bnex Ibl 89ad dddd Branch on Not Equal with Execute
bnhx lbl 89bd dddd Branch on Not IIigh with Execute
bnlx Ibl 899d dddd Branch on Not I,Ow with Execute
bnmx lbl 899d dddd Branch on Not I\finus with Execute
bnox lbl 8ged dddd Branch on Not Overflow with Execute
bnpx lbl 89bd dddd Branch on Not Plus with Execute
bntbx Ibl 89fd dddd Branch on Not Test Bit with Execute
bnzx Ibl 89ad dddd Branch on Not Zero with Execute
box Ibl 8fed dddd Branch on Overflow with Execute
bpx lbl 8fbd dddd Branch on Plus with Execute
btbx lbl 8ffd dddd Branch on Test Bit with Execute
bx lbl 898d dddd Branch with Execute
bzx lbl 8fad dddd Branch on Zero with Execute
nopx lbl 8f8d dddd No Operation with Execute

15 Dec 1986

Assembler Reference Mantlal IBM/4.3-PSD:1-21

8.3. Extended Mnemonics: Branch on Bit Register

Assembled
Source Syntax Fonnat Operation

bcOr ra eeca Branch on Carry 0
beqr ra eeaa Branch on Equal
ber ra eeaa Branch on Equal
bher ra e89a Branch on I Iigh or Equal
bhr ra eeba Branch on High
bIer ra e8ba Branch on Low or Equal
bir ra ee9a Branch on L.ow
bmr ra ee9a Branch on Minus
bncOr ra e8ca Branch on Not Carry 0
bner ra e8aa Branch on Not Equal
bnhr ra e8ba Branch on Not I Iigh
bnlr ra e89a Branch on Not low
bnmr ra e89a Branch on Not Minus
bnor ra e8ea Branch on Not Overflow
bnpr ra e8ba Branch on Not Plus
bntbr ra e8fa Branch on Not Test Bit
bnzr ra e8aa Branch on Not Zero
bar ra ceca Branch on Overflow
bpr ra eeba Branch on Plus
br ra e88a Branch
btbr ra eefa Branch on Test Bit
bzr ra eeaa Branch on Zero
nORr ra ee8a No Operation

bcOrx ra efca Branch on Carry 0 with Execute
beqrx ra efaa Branch on Equal with Execute
berx ra efaa Branch on Equal with Execute
bherx ra e99a Branch on Iligh or Equal with Execute
bhrx ra efba Branch on IIigh with Execute
blerx ra e9ba Branch on Low or Equal with Execute
blrx ra ef9a Branch on Low with Execute
bmrx ra ef9a Branch on Minus with Execute
bncOrx ra e9ca Branch on Not Carry 0 with Execute
bnerx ra e9aa Branch on Not Equal with Execute
bnhrx ra e9ba Branch on Not Iligh with Execute
bnlrx ra e99a Branch on Not I,ow with Execute
bnmrx ra e99a Branch on Not Minus with Execute
bnorx ra egea Branch on Not Overflow with Execute
bnprx ra e9ba Branch on Not Plus with Execute
bntbrx ra e9fa Branch on Not Test Bit with Execute
bnzrx ra e9aa Branch on Not Zero with Execute
borx ra efea Branch on Overflow with Execute
bprx ra efba Branch on Plus with Execute
brx ra e98a Branch with Execute
btbrx ra effa Branch on Test Bit with Execute
bzrx ra efaa Branch on Zero with Execute
noprx ra ef8a No Operation but with Execute

15 Dec 1986

IBM/4.3-I~SD:1-22 Assembler Reference Manual

8.4. Extended Mnemonics: .Jump

The operand field consists of a label defined in the same text or data segment as the jump
instruction, and located within -256 to + 254 bytes.

Assembled
Source Syntax Format Operation

j lbl OOdd Jump
jcO Ibl Ocdd Jump on Carry 0
Je Ibl Oadd Jump on Equal
jeq lbl Oadd Jump on Equal
jh lbl Obdd Jump on Iligh
jhe lbl Oldd Jump on High or Equal
jl lbl 09dd Jump on Low
jle lbl 03dd Jump on Low or Equal
jm lbl 09dd Jump on Minus
jncO lbl 04dd Jump on Not Carry 0
jne lbl 02dd Jump on Not Equal
jnh lbl 03dd Jump on Not Iligh
jnl lbl Oldd Jump on Not Low
jnm lbl Oldd Jump on Not Minus
jno lbl 06dd Jump on Not Overflow
jnop lbl 08dd No Operation
jnp lbl 03dd Jump on Not Positive
jntb lbl 07dd Jump on Not Test Bit
jnz lbl 02dd Jump on Not Zero
jo lbl Oedd Jump on Overflow

JP Ibl Obdd Jump on Positive
jtb lbl Ofdd Jump on Test Bit
jz Ibl Oadd Jump on Zero

15 Dec 1986

As..~embler Reference Manual IBM/4.3-PSD:I-23

8.5. Macro Instructions

The macro instructions generate different instruction sequences depending upon the value
of an operand:

sil ra,rb,i

generates an 'ail' with the value of i negated; i must be between - 32767 and 32768.

mr ra,rb

generates a 'cas' with rO as the third operand.

ai ra, Irb,) i
si ra, Irb,) i
ci ra, i
eli ra, i

generates a long or short format instruction depending upon the value of i, and substitutes
ra for an omitted rb.

ni ra,rb,i

gives the effect of an and with a 32-bit i by generating a sequence of one or two 'niuz',
'niuo', 'nilz', and 'nilo' instructions.

xi ra,rb,i

gives the effect of an exclusive or with a 32-bit i by generating 'xiu', 'xil', 'xiu' and 'xiI', or
'cal' and 'x'.

oi ra,rb,i

gives the effect of an inclusive or with a 32-bit i by generating 'oiu', 'oil', 'oiu' and 'oil', or
'cal' and '0'.

shl ra,i
shla ra,i

generates a 'sli' or 'sli16', depending on i. i must be in 0-31.

shr ra,i

generates a 'sri' or '8riI6', depending on the value of i. i must be in 0-31.

shra ra,i

generates a 'sari' or 'sari16', depending on the value of i. i must be in 0-31.

15 Dec 1986

IBM/4.3-PSD: 1-24

gct
getha
geth
gctc
put
puth
putc

ra, reloc
ra, rcloc
ra, reloc
ra, rcloc
ra, reloc
ra, reloc
ra, reloc

Assembler Rcfcrcnce Manual

generates a storage reference instruction in long or short fonn depending on the value of
the displacement.

The following macros facilitate generating address constants, and loading and. storing in
arbitrary memory locations, by exploiting split address relocation. (See a.out(5).)

gct ra, $exprl(rb)1
getha ra, $cxpr
geth ra, $expr
gctc ra, $expr

If the optional index (rb) is present, as generates a 'cau' and 'cal'. Otherwise, for an abso­
lute $expr, as generates a 'lis', 'cal', 'ca116', or 'cal 16' and 'oiu', depending upon the value
of expr. For a relocatable or external $expr, a.f generates a 'cal 16' and 'oiu'.

load
load
loadh
loadha
loadc

ra, expr(rb)J
ra, expr(rb)J
ra, expr(rb)J
ra, expr(rb)J
ra, expr(rb)J

As generates a 'cau ra' followed by 'I,' 'Ih,' 'lha,' or 'Ic'. expr may be absolute, rclocatable,
or external. ra may not be rD.

store
storeh
storch a
storec

ra, exprl(rb)J,rc
ra, exprl(rb)l,rc
ra, exprl(rb)J,rc
ra, exprl(rb)J,rc

As generates a 'cau rc' followed by 'st', 'sth', or 'stc'. expr may be absolute, rclocatable, or
external. rc is a temporary register and may not be rOo storeha is equivalent to storeh.

15 Dec 1986

Assembler Reference Manual IBM/4.3-PSD:I-25

9. DIAGNOSTICS

Diagnostics are written to standard output. They are intended to be self-explanatory and
report errors and warnings. Error diagnostics complain about lexical, syntactic and some
semantic errors, and abort the assembly.

The assembler may abandon a statement in error and continue processing sometimes on the
same line, sometimes on the next. The result is that one error may lead to spurious diagnostic
messages and sometimes "phase errors" where a label has a changed value in the second pass.

10. lJMITS

limit

arbitrary I
BUFSIZ
arbitrary
arbitrary
arbitrary
4
4

what

Files to assemble
Significant characters per name
Characters per input line
Characters per string
Symbols
Text segments
Data segments

The number of tokens in a literal definition is limited by the size of the tokenized literal (i.e.
by the size of the literal after it has been scanned by the assembler to fonn a string of tokens).
The effective limit is approximately twenty terms in one literal expression.

lAlthough the number of characters avai1able to the argv line is restricted by UNIX operating systems to 10240.

15 Dec 1986

IBM/4.3-PSI>:1-26 Assembler Reference Manual

This page intentionally left blank.

15 f)ec 1986

Floating Point Arithmetic IBM/4.3-PSD:2-1

Floating Point Arithmetic

ABSTRACT

This article describes floating point arithmetic in IBM/4.3. The article includes
the following sections:

1. Comparison with Vax F- and D-Format Arithmetic

2. Compatibility with Previous Releases

3. Floating Point Hardware

December 1987

IBM/4.3-PSD:2-2 floating Point Arithmetic

Floating point arithmetic in IBM/4.3 conforms to IEEE Standard 754 for binary floating point
arithmetic. Single-and double representations are supported.

1. Comparison with F- and D-Format Arithmetic

IEEE arithmetic produces results that in general are at least as accurate as those from IBM
System/370 arithmetic. Single precision is very similar to VAX F-format in range and preci­
sion. Double precision is comparable to V AX D-format; see (1) below.

The salient differences from the F- and D-fonnat arithmetic used in C and 4.3BSD on the
V AX are as follows:

(1) Type double has a mantissa of 53 bits rather than 56; thc exponent range is
approximately 3e-308 to le308, rather than 3e-39 to le38. Magnitudes as small
as 3e-324 are represented with reduced precision.

(2) IEEE arithmetic includes representations for plus and minus infinity and a collec­
tion of "Not-a-Number" (NaN) values. Printf(3S) represents these on output as
INF and NANO. Signed zero values are also supported; + 0 = - 0, but
1/-0=-INF.

(3) Rounding modes and exception handling are supported; user code can change the
settings via library functions; see ieee(3) and ecvt(3). IEEE default settings are in
force initially: the rounding mode is round to nearest; on an exception, proceed
without trap (that is, return a reasonable result).

(4) With the default exception handling, several arithmetic operations that signal
SIGFPE on the VAX do not on the IBM RT PC. Exponent overflow receives
IEEE default handling, which is to return infmity. Other values larger than le38
are represented correctly rather than overflowing. 0/0, INF /INF and certain
other operations produce NaNs, which will propagate through subsequent arith­
metic operations. Library functions that signaled SIGFPE, however, continue to
do so.

(5) VAX F and D formats differ only in mantissa width: the first word in D-format
has the same interpretation as an F-fonnat number. Consequently, on a VAX,
type mismatches can produce plausible incorrect results, differing from the correct
results by one part in a million. IEEE single and double formats differ in
exponent width as well as mantissa width, so type mismatches (from nonportable
unioning, function calls, or using CC

O
/ oe" for "%le" in scan/(3S) , for instance)

generally produce answers that are dramatically, rather than subtly, wrong.

(6) The IEEE recommended functions are supported; see ieee(3) for details.

Also, two new functions are provided to perform the IEEE required operations of
round floating-point number to integral value (according to the current rounding
mode) and floating-point remainder. These arc rint and drem (see ieee(3».

2. Compatibility with Previous Releases

Note that while this initial release of the new IBM/4.3 Floating Point support gives the max­
imum compatibility possible, future releases may not. Most a.outs compiled and linked under
previous releases will produce the same results when run under this release. However, perfor­
mance will be improved by recompiling, especially if running on an RT with an APC.

2.1. A.outs Linked with -Ifpa Option

The -Ifpa option, in previous releases, was intended for use when the FP A was the only
supported floating point hardware. This new support eliminates the need for the flag.
Executables (a.outs) previously linked with -Ifpa will not run on a machine with an APC
card and without an FP A. These executables should be recompiled and rclinked.

December 1987

Floating Point Arithmetic IBM/4.3-PSD:2-3

For those systems where users have many lVfakefiles, scripts, and so forth, that depend on
the -Ifpa flag, the system administrator can install a dummy library to satisfy the loader. A
dummy library is provided for this purpose in /usr/sre/old//pa.

2.2. Linking Old and New Object Files (.o's)

Por best performance, object files linked to one another should be recompiled under
IBM/4.3 so that all modules are using the same support. If you choose not to recompile,
Id(1) will print a warning message. The resulting executable (a.out) will use the FPA (if it
is present) or the emulator (if the FPA is not present).

3. Floating Point Hardware

Floating point operations can be performed by the following types of hardware:

FP A The fust Floating Point Accelerator for the R l' (sometimes
called the FPA I) supports both single and double precision.

AFP A The second, or Advanced, Floating Point Accelerator for the RT
(sometimes called the FPA II) supports both single and double precision.

MC881 The Motorola 68881 on the Advanced Processor Card (APC)
supports extended as well as single and double precision (but the
latter two cause a performance degradation). Extended precision is
the default. The MC881 offers the fastest performance.

In the absence of floating point hardware, R l' floating point instructions can be executed via
an emulation package (which performs the same computations in software as the FPA).

Floating point support is chosen in the following order, if available:

(I) MC881

(2) AFPA

(3) FPA

(4) Emulator

To force the use of one of the above, set the environment variable FPA to me88 I , a/pa, [pa,
or emul. If the named hardware is available, that support will be chosen rather than the
default.

Due to the 68881 's higher default precision, there may be a slight difference in results for float­
ing point instructions executed via the 68881 and the PPAs or emulator. For example, inter­
mediate results left in extended precision during calculation:

a = b"'c-d

may cause "a" to differ slightly from "a" computed as:

t = b"'c
a = t-d

Furthermore, register variables are left in extended precision in the MC881 and in single or
double precision in the FPA, AFPA, and emulator.

To offer the best performance for floating point instructions, IBM/4.3 by default uses the
fastest hardware available, and the "fastest" precision for that hardware (depending upon
operation and type of arguments). To accommodate the need for predictable results regardless

December 1987

IBM/4.3-PSD:2-4 floating Point Arithmetic

of hardware or software used, IBM/4.3 provides a new environment variable,
FP _PRECISION, with four options:

fast (default)

precise (use widest possible precision)

double (round all operations to double)

single (round all single operations to single and all others to double; used rarely but
required by the IEEE 754 Standard)

Double and single modes provide cross-hardware conformance. That is, the results of a float­
ing point instruction performed in single (or double) mode are identical, whether the instruc­
tion is performed using the MC881, FP As, or emulator.

Note, however, that forcing the precision may seriously degrade performance. The following
table summarizes the effect of the precision mode on the generated code:

mode 68881 FPAs(AFPA1 FPA, Emulator)
fast extended ops on all single ops on single args

(this implies extended math) double ops on double args
(this implies double math)

precise extended ops on all double ops on all
(this implies extended math} (this implies double math)

double 68881 mode set to double double ops on all
(this implies double math) (this implies double math)

single 68881 mode set to double single ops on single args
double ops on double args double ops on double args
(this implies double math) (this implies double math)
single ops on single args
(set mode to single for op,
then set it back to double)

See "IBM/4.3 Linkage Convention" in Volume II, Supplementary Documents for more infor­
mation.

December 1987

Experimental Display Interface IBM/4.3-PSD:3-1

The C Subroutine Interface for the
IBM Academic Information Systems Experimental Display

ABSTRACT

This paper describes a subroutine interface for the IBM Academic Infonnation
Systems experimental display transported for use under the C programming
language and IBM/4.3. It contains the following chapters and appendices:

I. Introduction contains some background information on the experimental display.

2. Controlling the Interface describes the subroutines that control the interface session.

3. Setting Graphics Parameters describes the subroutines that set graphics parameters. Graph­
ics parameters modify the way in which subroutines that update the screen operate.

4. Querying Graphics Parameters describes the subroutines that return the current values of
graphics parameters.

5. Issuing Graphics Primitives describes the subroutines that build orders that update the
screen.

6. Controlling the Cursor describes the subroutines that enable programs to control the experi­
mental display cursor.

7. Defining Fonts describes the orders that control the experimental display font mechanism.

S. Manipulating Fonts describes the subroutines that manipulate fonts.

Appendix A describes the format of a font file.

Appendix B describes character deflnitions.

Appendix C describes aedjournal(I) and aednmner(I), supplied programs which display and
run commands in a log file.

Appendix D describes the examples supplied with the subroutine interface.

31 Mar 1986

IBM/4.3-PSI>:3-2 Experiml'ntal I>isplay Interface

1. INTRODUCTION

The experimental display is a black-and-white, all-points-addre~~able, bit-mapped di~play that
attaches to the IBM RT PC. The experimental display features 819,200 points on the screen,
each one individually selectable. The experimental display adapter contains a very fast on­
board processor that allows text and graphics to be drawn at a rate much faster than the host
alone would allow. The experimental display processor is programmed to accept high-level
orders from the host, and to present the results on the screen.

The characteristics of communicating with the experimental display are detennined by the
microprogram running in the experimental display adapter processor. 'Ibis program is stored
in writable control store and is loadable from the host.

The interface described in this paper is a set of functions designed to support a window
manager, and is composed primarily of subroutines, as distinguished from functions. A typical
subroutine uses parameters to receive input as wel1 as to return output. C passes parameters
by value; to call a subroutine which returns information, you must supply an address for the
retunling value as the parameter.

Calls that supply an addres.r for return in this package should u~ually ~upply the address of a
short (16-bit) integer. Calls that pass integer values can usually get by with either .f/tOrl or int.
See the individual routines.

Many of the subroutines do return a value as a function would. Generally, values are used for
error return codes and special case handling. It is strongly recommended that applications
monitor return codes in order to prevent bizarre events and possihly more severe errors.

When linking, you must specify -laed to pick up the experimental display library.

31 Mar 1986

Experimental Display Interface IBM/4.3-PSD:3-3

2. CONTROLLING THE INTERFACE

This chapter describes the subroutines that control the interface.

2.1. VI _ Init: Initialize the Subroutine Interface

VI_In it initializes the experimental display and returns the dimensions of the screen.
Current display models are 1024 bits wide by 800 bits high. The top left point is (0,0) and
the bottom right point is (1023,799). A 16-bit word used as an image on the experimental
display will have its least significant bits to the right. /ut;r/lib/aed/whim.aed must be acces­
sible at run time.

Because VI_Init initializes the experimental display, it should be called before the other
routines of the package.

VI_Init has the following format:

VI_Init(wd,ht)
short *wd, *ht; / * screen dimensions + /

2.2. VI_Force: Force Output of Graphics Orders

Commands built with subroutines described in "Setting Graphics Parameters" and "Issuing
Graphics Primitives" later in this paper generally do not send their output to the screen
immediately. Instead the output remains in a butTer until the butTer is full, when its output
is sent to the screen. Use VI_Force to force output in the current butTer to be transmitted
before the buffer is full.

VI_Force has the following format:

VI_ForceO

2.3. VI_Login: Begin Logging Subroutine Calls

VI_Login specifies that subsequent subroutine calls are to be echoed into the specified fIle.
If a log file is already open, VI_Login closes it before opening the new file; VI_Login
overwrites an existing file. All orders to the experimental display arc logged until a logout
call (Logout) is issued. The log file may later be executed from within a program using.
VI_Run or on its own using aedrunner(I). It may also be examined with aedjouma/(l).
(Appendix C of this paper describes these programs.) VI _Login returns a negative value if
there is an error, and a nonnegative value if the call is successful.

VI_Login has the following format:

int VI _ Login(filename)
char +filename; / + file to log to + /

2.4. VI_Logout: Close a Log File

VI_Logout closes the log file and returns one of three values:

Value Meaning

o Normal completion
-1 Error in closing file
-2 No file found to close

VI _Logout has the following format:

int VI _ LogoutO

31 Mar 1986

IBM/4.3-PSD:3-4 Experim<.'ntal Display Interface

2.5. VI_Run: Process a I.,og File

VI_Run executes the commands logged in the specified file; filename is the name of a log
file that was created by VI_Login. Using VI_Run with a tog file has the same effect of exe­
cuting aedrunner(I) from within a program, allowing a series of orders which require much
calculation to be figured only once, logged, then quickly retrieved when needed. VI_Run
returns 0 for a normal completion, and -1 for an error condition.

VI_Run has the following format:

int VI_Run(filename)
char • filename; /. log file name • /

2.6. VI Term: Terminate the Subroutine Interface

VI_Term completes processing, closes the log file, and forces transmission of the graphics
buffer to the experimental display.

VI_Term has the following format:

VI_TermO

31 Mar 1986

Experimental Display Interface IBM/4.3-PSD:3-5

3. SE'rrING GRAPHICS PARAMETERS

Graphics parameters modify the way in which the primitives described later in this paper
operate. This chapter describes the subroutines that set graphic parameters. rIlle initial values
of these parameters are:

Clipping window The clipping window is set to the whole screen.

Screen color

Dash pattern

Font

The screen color is white 1 's on black D's, color O.

The line dash pattern is solid I's.

The font is O. No font is selected.

Merge mode

Line width

The merge mode is 12, for replace mode. Data bits replace screen bits.

Line width is I.

3.1. VI_Clip: Set Clipping Window

VI_ Clip specifies that subsequent primitives drawn on the screen are to be clipped to the
specified area. It is the user's responsibility to ensure the sensibility of the window
definition.

VI_ Clip has the following fonnat:

VI _ Clip(lx,ly ,hx,hy)
int IX,ly; I + top left corner of clipping area +1
int hx,hy; I + bottom right corner of area +1

3.2. VI_Color: Change Screen Color

VI_ Color sets the color of the screen to the specified value: 0 means that bits having the
binary value "0" will be black on the screen; I means that bits having the binary value "I"
will be black on the screen. If this value is different from the previous value, the screen
will be inverted, so as to make the change transparent to the application.

VI_ Color has the following format:

VI _ Color(color)
int color; 1+ new color, true for white +1

3.3. VI_Dash: Set Line Dash Pattern

If no dash pattern has been set, lines drawn with the VI_RLine and VI_ALine subroutines
described in "Issuing Graphics Primitives" are solid lines of I's. If a pattern has been set,
the bits of the pattern word are used in sequence whenever the vector generator would nor­
mally output a 1. Setting a pattern of Ox5555 produces a very acceptable dotted line. Other
patterns may be used to vary the size of dashes in the line. 'I be length of the pattern can
range from 1 to 16 bits. The pattern bits should be left-justified. Setting the pattern length
to 0 specifies a return to solid lines.

VI_Dash has the following format:

VI _ Dash(dash ,dashlen)
unsigned short dash; 1+ dash pattern +1
short dashlen; I + dash pattern length + I

3.4. VI_Font: Select Font

The current font affects the results of the Vl_ String primitive described under "Issuing
Graphics Primitives." Font IDs range from 0 to 255 and are returned by calls to
VI_ GetFont. See "Defining Fonts" later in this paper for more information.

31 Mar 1986

IBM/4.3-PSIl:3-6 Experimental Ilisplay Interface

VI_Font has the following format:

VI_ Font(fontid)
int fontid; 1+ font ID +1

3.5. VI_Merge: Set Merge Mode

The merge mode is a number from 0 to 15 that specifics how the hits generated by primi­
tives are to be combined with bits already on the screen. The merge mode is simply an
encoding of the logical function used to comhine screen hits and data bits. Encoding the
desired result of each of the combinations in the table below generates the merge mode that
should be used to get that effect. For example, to or the data you are adding with the data
already on the screen, you would use a merge mode of 14:

Data Bit 1 0 0
Screen Bit 0 1 0
Example: 0 R mode 1 I 0 14

VI_Merge has the following format:

VI _ Merge(merge)
int merge; I + merge mode +1

3.6. VI_Width: Set I..ine Width

VI_Widtlt specifies a value between 1 and 16 that is to be the line width. Normally, lines
are 1 bit thick.

VI_ Width has the following format:

VI_ Width(width)
int width; 1+ line width +1

31 Mar 1986

Experimental Display Interface IBM/4.3-PSD:3-7

4. QUERYING GRAPHICS PARAMETERS

The subroutines in this chapter return the current values of the graphics parameters described
above. Each subroutine requires an address in which to store the value to be returned. All of
these subroutines force transmission of graphics data in the current buffer.

4.1. VI_ QClip: Query Clipping Rectangle

VI_QClip returns the current clipping rectangle.

VI_QClip has the following format:

VI_ QClip(lx,ly,hx,hy)
short "'lx, "'ly; /"'top left corner of clipping area'" /
short "'hx, "'hy; /+ bottom right corner'" /

4.2. VI_ QColor: Query Current Color

VI _QColor returns the current color of the screen: 0 means that bits having the binary
value "0" will be black on the screen; 1 means that bits having the binary value" I" will be
black on the screen.

VI_QColor has the following format:

VI_ QColor(color)
short "'color; /'" current color, true for white + /

4.3. VI_QDash: Query Dash Pattern

VI_QDash returns the current line dash pattern in the format described for VI Dash. If
da.fjhlen is 0, the lines are solid.

VI_QDash has the following fonnat:

VI _ Q Dash(dash,dashlen)
unsigned short "'dash; / '" dash pattern '" /
short "'dashlen; /'" length of dash pattern • /

4.4. VI_ QFont: Query Font

VI_QFont returns the 10 and name of the current font. 'Ibe font ID is 0 if no font has
been set. The pointer fontname should point to a block of characters large enough to hold
a file natne (including an extension) on your operating system, along with a string­
termination byte. If you know beforehand the size of your file name, you may allow only
as many bytes as required. Be aware of the string-terminator hyte; there must be room for
it.

VI_QFont has the following fonnat:

VI_ QFont(fontid,fontname)
short "'fontid; /'" current font ID + /
char "'fontname; / '" current font name • /

4.5. VI_ QMerge: Query Merge Mode

VI_QMerge returns the current merge mode in the format described for the VI_Merge sub­
routine described in "Setting Graphics Parameters."

VI_QMerge has the following format:

VI_ QMerge(merge)
short "'merge; /'" current merge mode +/

31 Mar 1986

IBM/4.3-PSD:3-8 Experimental Display Interface

4.6. VI_ QPoint: Query Current Point

VI_QPoint returns the location of the current point. This command is especially useful
after a VI_String primitive has been issued, since character definitions can change the
current point in unpredictable ways.

VI_QPoint has the following format:

VI_ QPoint(x,y)
short "'x, "'y; / '" current point • /

4.7. VI_QWidth: Query Line Width

Vl_QWidth returns the current line width as a number between 1 and 16.

VI_QWidth has the following format:

VI_ QWidth(width)
short ·width; / '" line width • /

31 Mar 1986

Experimental Display Interface IBM/4.3-PSD:3-9

5. ISSUING GRAPHICS PRIMITIVES

This chapter describes the subroutines that build orders that update the screen. Orders are
transmitted only when the buffer is full, when specified with VI_Force, or when other non­
graphics subroutines are called.

The graphics primitives work in screen coordinates: x represents the horizontal axis on the
screen, and increases to the right; y represents the vertical axis and increases to the bottom of
the screen. The coordinates (0,0) represent the top-left corner of the screen. Subroutines will
accept coordinates that are off the screen; the behavior is as if there were a clipping window
the size of the screen in a larger universe.

Several of the primitives depend on the current point. This point is initially set to (0,0) and
can be modified by primitives.

5.1. VI_AMove: Move the Current Point to an Absolute Location

VI_AMove moves the current point to the specified coordinates. No change is made to the
screen.

VI_AMove has the following format:

VI _ AMove(x,y)
int x,y; I + new point +1

5.2. VI _ RMove: Move the Current Point to a Relative l,ocation

VI_RMove moves the current point by the specified displacement. No change is made to
the screen.

VI_RMove has the following format:

VI _ RMove(dx,dy)
int dX,dy; I + displacement from old point "'I

5.3. VI_AIJnc: Draw a Line with an Absolute l,ocation

VI_ALine draws a line from the current point to the specified point (the line's end point)
according to the current values of the width and dash pattern parameters. i\ line is nor­
mally of 1 's, and is merged with the window data according to the current merge mode.
The specified point becomes the current point.

VI_ALine has the following fonnat:

VI _ ALine(x,y)
int x,y; 1+ end point of line'" I

5.4. VI_RLine: Draw a Line with a Relative Location

VI_ RLine draws a line from the current point to the current point displaced by the
specified values, according to the current values of the width and dash pattern parameters.
A line is normally of l's, and is merged with the window data according to the current
merge tnode. The current point is incremented by the displacement.

VI_RLine has the following fonnat:

VI_ RLine(dX,dy)
int dX,dy; 1+ displacement to endpoint +/

5.5. VI _ Cirele: Draw a Circle

VI_Circle draws a eircle with the specified radius and the current point as its center. The
current point is unchanged.

31 Mar 1986

IBM/4.3-PSD:3-10 Experimental Display Interface

VI_ Circle has the following fonnat:

VI_ Circle(radius)
int radius; 1+ circle radius + /

5.6. VI_Mlmage: Draw an Image from J\1emory

VI_Mlmage draws an image of the specifIcd dimensions whose top left comer is at the
current point. The current point is not changed.

Data must he the first byte of an image large enough to fIn the rectangle specified by wd
and ht, or an addressing error may result. The image data should be in scanline order,
from top to bottom, with each scantine padded to the next 16-bit word. For example, for
a width of WD and height of liT, there should he 2+IIT+(\VD + 15)/16 bytes of image
data.

VI_Mlmafte has the following format:

VI_MImage(wd,ht,data)
int wd,ht; / + dimensions of image +1
unsigned short +data; 1+ first byte of image +1

5.7. VI_FImage: Draw an Image from a Hie

VI_Flmage draws the image contained in the specified file, placing its top left comer at the
current point. The current point is unchanged.

The image file must have the format shown below. l11e data words should be in the same
format as for the VI_Mlmage subroutine.

Offset (bytes) Description

o
2
4

VI_Flmage has the following fonnat:

VI_ FImage(filename)

The width of the image
The height of the image
Image data

char "'filename; 1+ file name of image to draw +1

5.8. VI_Tile: Tile a Rectangle

VI Tile fills a rectangle of the specified dimensions with the specified pattern. The
rectangle's top left corner will be at the current point. The tile pattern must follow the
rules for images (see the VI_Mlmage subroutine above), and can be of any size. 'The tile
pattern is aligned to multiples of twd and Ihl, not to the bounds of the tiled rectangle, so
that rectangular subareas of larger figures can be tiled without regard to their bounds, and
the tile patterns will match. loe current point is unchanged.

A full rectangle black or white fill can be most quickly drawn by requesting a one-by-one
tile. Clearly, only all ON or all OFF may be drawn with this method, but any merge
mode may be used.

VI_Tile has the following fonnat:

VI_Tile(wd,ht,twd,tht,tile)
int wd,ht; I + dimensions of rectangle +1
int twd,tht; 1+ dimensions of tile + /
unsigned short +tile; I + first byte of pattern + /

31 Mar 1986

Experimental Display Interface IBM/4.3-PSD:3-11

5.9. VI_String: Draw a String

VI_ String draws the specified string at the current point. Since a character definition is
really a sequence of other graphics commands (usually VI_MImage and VI_RMm'e) , the
way in which characters arc positioned, stepped, and drawn depends on the font definition.
Character definitions typically modify the current point. See "Dcfining Fonts" latcr in this
paper for more information.

VI_String has the following format:

VI _ String(s)
char *5; 1* string to draw >I< I

5.10. VI_Copy: Copy an Area

VI_Copy duplicates the rectangle at sx,sy with the dimcnsions wd,ht to the point tx,ty.
The copied bits are mergcd with the target area using the spccified merge modc, not the
merge mode set by VI_Merge.

Doth the source and destination rectangles must be completely on the screen. The current
setting of the clipping window is ignored.

VI_Copy has the following format:

VI _ Copy(sX,sy ,tx,ty ,wd,ht,merge)
int sX,sy; 1+ source top-left +1
int tx,ty; 1+ target top-left +1
int wd,ht; 1+ rectangle dimensions +1
int merge; / + merge mode +1

5.11. VI_MRead: Read Display Data into Memory

VI _M Read reads the specified area of the screen into the array passcd as data. Image bytes
are in the same format as expected by VI _ M Image. If the screen color is white, the bits are
inverted on readback to make the data read back indepcndcnt of scrcen color. The area to
be read must be completely on the scrcen. Thc current setting of the clipping window is
ignored.

VI_MRead has the following format:

VI_MRead(x,y,wd,ht,data)
int x,y; 1+ top-left corner of area +1
int wd,ht; 1+ dimensions of area +1
unsigned short +data; I + first bytc of data +1

5.12. VI_FRead: Read Display Data into a File

VI FRead reads the specified area of thc screen and placcs it in the spccified file. The file
ha~the same format as expccted by VI_Flmage. Ifthc window color is whitc, data bits arc
inverted to make the data independent of thc screen color. The area to hc read must be
completely on the screen. The current setting of the clipping window is ignored.

VI_FRead has the following format:

VI _ F Read(x,y, wd,ht,filename)
int x,y; 1+ top-left corncr of area +1
int wd,ht; /+ dimensions of area +1
char +filename; 1+ name of file to placc imagc in +1

31 Mar 1986

IBl\1/4.3-PSD:3-12 Experimental Display Interface

6. CONTROLLING THE CURSOR

The following routines allow programs to control the experimental display cursor by defining
it, enabling and disabling it, and changing its position. Note that because the experimental
display maintains the cursor separately from the display buffer, the cursor docs not have to he
removed when a graphics primitive intersects its position.

Initially the cursor is transparent and disabled, and is positioned at the center of the screen.

6.1. VI_MDefnCur: Set Cursor Pattern from Memory

VI_ M D efn Cur sets the cursor as specified. xojJ,yoff is the displacement of the cursor pat­
tern from the current position of the cursor. For example, a value of (32,32) would center
the cursor pattern around the current point.

The cursor pattern itself is a 64-by-64 bit image, with two planes. A I in the black plane
indicates that that bit of the cursor should be black. A 1 in the white plane indicates that
the cursor should be white in that position. If a bit has a 0 in both planes, the cursor is
transparent in that position. If a bit is I in both planes, the cursor is white.

The two planes are images in the same format as accepted by VI_MlmaKc, and must be
64-by-64, or 512 bytes each.

VI_AIDefnCur has the following format:

VI _M DefnCur(xoff,yoff,black ,white)
int xoff; /+ x offset of cursor center + /
int yoff; /+ y offset of cursor center +/
unsigned short +black; /+first byte black mask + /
unsigned short +white; / +first byte white mask + /

6.2. VI_FDcfnCur: Sct Cursor Pattern from File

VI FDefnCur sets the cursor to the definition in the specified file. '[be file has the follow­
ing format:

Offset (bytes) Description

o XOFF
2 YOPF
4 BLACK bit pattern

516 WHITE bit pattern

See the description of VI_MDefnCur for a description of the fields.

VI_FDefnCur has the following format:

VI_FDefnCur(filename)
char +filename; /+ name of cursor definition file + /

6.3. VI _ EnCur: Enablc Cursor

VI_En Cur enables the cursor and displays it if it is not already present. Disabling and ree­
nabling the cursor do not affect its position.

VI_ En Cur has the following format:

VI_EnCurO

6.4. VI DisCur: Disable Cursor

VI_DisCur disables the cursor and removes it from the screen if it is present. Disabling
and reenabling the cursor do not affect its pattern or position.

31 Mar 1986

Experimental Display Interface IBI\1/4.3-PSD:3-13

VI_DisCur has the following format:

VI_DisCurO

6.5. VI_PosnCur: Set Cursor Position

VI_PosnCur moves the cursor to the specificd position. Thc cursor cannot be moved ofT
the screen.

VI_PosnCur has the following format:

VI_ PosnCur(x,Y)
int X,Y; /+ new cursor position +/

31 Mar 1986

IBM/4.3-PSD:3-14 Experimental Display Interface

7. DEI,'INING FONTS

The font mechanism supported by the experimental display is very general. Characters are not
simply raster patterns; instead, each character definition is a simple graphics subroutine, able to
move the current point, draw images, change the merge mode, etc. The orders that can occur
in a character definition are a subset of the orders built by the graphics primitives subroutines.
In addition, two orders, push and pop, control parameters within a character definition.

7.1. Standard Raster Characters

The most typical use of the font mechanism is for standard raster characters. The sequence
of orders is similar to the following:

(1) VI_Image at the current point.

(2) V 1_ RM ove right by the width of the characters.

This example draws all characters down from the current y value.

7.2. Raster Character with Baseline Defined for the I;'ont

The next most common use is a raster character with a baseline defined for the font. The
sequence of orders would be similar to the following:

(I) VI_RMove up by the ascender height (height above haseline).

(2) VI_Image at the current point.

(3) V 1_ RM ove down and right by the ascender height and character width.

7.3. Stroked Fonts

Stroked fonts can be defined using VI_RMove and VI RI-ine commands. Stroked charac­
ters can be tnixed freely with raster characters.

7.4. Three-Color Characters

Three-color characters can be defined with a sequence such as the following:

(1) VI_RMove to top of character image.

(2) VI_Merge 2, which turns ofT the screen data having the binary value" I ", and leaves
it unchanged for screen data having the binary value "0".

(3) VI_Image, with a pattern that turns ofT the hlack bits of the character.

(4) VI_Merge 14, OR mode.

(5) VI_Image, with a pattern that tunlS on the white hits.

(6) VI RMove to start of next character.

With this font selected, characters drawn hy the V 1_ Siring command would draw black.
white and transparent patterns, suitable for text drawn over a complex graphics image.

31 Mar 1986

Experimental Display Interface IBM/4.3-PSD:3-15

8. MANIPULATING FONTS

Fonts are stored in files, which are loaded into the IBM RT PC memory when requested by
applications using the VI_ GetFont subroutine. Once a font is loaded, it is kept in memory
until the program ends, unless explicitly dropped with the VI_DropFont subroutine.

8.1. VI_GetFont: l,oad a Font into Memory

V 1_ Getll'ont loads the specified font into memory, if it is not already present. If the font is
successfully loaded, the font ID is returned. Setting the current font to this ID with the
VI_Font routine causes subsequent strings to be displayed in the font. If a font ID of 0 is
returned, either the font could not be found, or it did not fit in memory. If the font did
not fit in memory, a message will be sent to slderr.

VI_ GetFont has the following format:

VI_ Get Font(name,fontid)
char +name;
short +fontid;

8.2. VI_DropFont: Release Font

1+ font name +1
/+ font ID +/

VI_DropFont drops the specified font from memory. The application should not attempt
to use the font ID again. If the font is required, a new font II) should be generated by a
request to VI_GetFont.

VI_DropFont has the following format:

VI_Drop Font(fontid)
int fontid; 1+ ID of font to release +1

31 Mar 1986

I8M/4.3-PSD:3-16 Experimental Display Interface

APPENDIX A. I<'ORMAT OF A FONT FILE

I\. font definition file begins with an index by character codepoint. The first entry is for
codepoint OxOO, the second for OxOl, and so on, up to OxFF. An index entry has the fol­
lowing format:

Offset Length in bytes Description

o

4
6
8
]0
]2
14

4

2
2
2
2
2
2

Offset of the character definition in the file;
an undefined character has an offset of zero.
Width of inner box of the character.
Height of inner box of the character.
Total x displacement caused by character.
Total y displacement caused by character.
Distance frotn the initial x position to the left edge of the inner box.
Distance from the initial y position to the top edge of the inner box.

A font file consists largely of character definitions, which follow the index. Character
definitions do not necessarily appear in order. Undefined characters are not included.
Each character definition has the following format:

Offset Length in bytes Description

o
2

4

2
2

count+2

Character codepoint, in the low byte of the word.
Length of character definition, in 16-bit words, not including the count.
The length of a character definition must be less than 2000 words.
Character definition. A definition consists of a series of orders,
as described in Appendix B of this article.

31 Mar 1986

Experimental Display Interface IBM/4.3-PSD:3-17

APPENDIX B. CHARACTER DEFINITIONS

Before reading this, you should understand the format of the font file, which contains char­
acter definitions, described in Appendix A of this article.

Character definitions consist of a string of orders from the following list. Note that param­
eter changes made by character definitions do not persist after the character has been com­
pleted.

Set Merge Mode

Offset in 16-bit words Value

o Merge Command (= I)
1 Merge Mode

The merge mode is changed to the specified value. The fonnat is the same as described for
the VI_Merge subroutine.

Set Line Dash Pattern

Offset in 16-bit words Value

o Set Dash Command (= 3)
1 Dash Pattern
2 Pattern length

Lines drawn after this command use the specified pattern. A pattern length of zero
specifies a return to nonnal solid lines. The pattern is from 1 to 16 bits, left-justified in the
pattern word.

Set Line Width

Offset in 16-bit words Value

o Set Width Command (= 4)
I Line Width

Subsequent lines are drawn with the specified width.

Push Modes

Offset in 16-bit words Value

o Push Command (= 12)

The modifiable parameters (merge mode, dash pattern, line width) are pushed onto an
internal stack. They may be changed and then later restored with the pop order. \Vhen a
character defmition ends, the original modes are restored, regardless of push or pop orders
within a definition.

Pop Modes

Offset in 16-bit words Value

o Pop Command (= 13)

31 Mar 1986

IBM/4.3-I>SD:3-18 Experim~ntal Display Interface

The modifiable parameters (merge mode, dash pattern, line width) are restored from the
internal stack. When a character definition ends, the original modes are restored, regardless
of push or pop orders within a definition.

l\1ove Relative

Offset in 16-bit words Value

o Move Relative Command (= 6)
1 X displacement
2 Y displacement

The indicated displacement is added to the current point. If either coordinate of the
current point goes outside the range -32768 to 32767, the value wraps (overflows or
underflows).

Draw Line Relative

Offset in 16-bit words Value

o Draw Line Relative Command (= 8)
1 X displacement
2 Y displacement

A line is drawn from the current point to the current point plus the displacement. The
ending point becomes the new current point. If either coordinate of the current point goes
outside the range ~32768 to 32767, the value wraps (overflows or underflows).

Draw Circle

Offset in 16-bit words Value

o Draw Circle Command (= 14)
1 Circle Radius

A circle with the specified radius is drawn around the current point. The current point is
unchanged.

Draw Image

Offset in 16-bit words Value

o Draw Image Command (= 9)
I Image width
2 Image height
3 Image data

The image given is drawn with its top left corner at the current point. 'Ibecurrent point is
unchanged.

The scanlines of the image must be padded to the next 16-hit word. Thus, the number of
words in the image is height +(width + 15) I 16.

Tile Rectangle

Offset in 16-bit words Value

31 Mar 1986

Experimental Display Interface IBl\I/4.3-PSI>:3- 19

o Tile Command (= 10)
1 Rectangle width
2 Rectangle height
3 Tile width
4 Tile height
5 Tile data

The tile image is repeated over the whole area of the indicated rectangle. The tile image
data has the same fonnat as data in the VI_Image order described above.

31 Mar 1986

IBM/4.3-PSD:3-20 Experimental Display Interface

APPENDIX C. AEDJOURNAIJ AND AEDRUNNER

A edjourna l(l) and aedrunner(1) are supplied programs which use the interface. Both
operate on a log file created with VI_I,ogin and VI_Logout. Aedjournal displays the com­
mands built into the file; aedrunner executes those commands.

Debugging with acdjournal

aedjournal file

Although there is no debugging facility as such supplied with this package, you can usc
VI_Login and VI_Logout with aedjournal to help follow your application program's
actions. A edjournal deciphers a file produced by VI_Login and reports to standard output
all orders passed to the experimental display. Standard output may be redirected as usual.
You may inspect this output to discover unintended results.

Beware of the length of logged files. It is very easy to generate thousands of display orders
for a seemingly simple picture; thus, try to log the smallest group of orders you believe
contains the error. The log routines may be called several times in one application to pro­
duce several files of orders, requiring only that each call to VI_I,ogin provide a distinct file
name.

Executing a log file with acdrunner

aedrunner file ...

A edrunner executes the orders logged into the specified file, which must have been created
with VI_I,ogin and VI_Logout. Aedrunner terminates upon discovery of any error or
inconsistency in the file. All additional files which were needed when the log file was con­
structed must be available in the current directory. Such files are any font, image, or cursor
definition files you may have used, and /usr/lih/aed/wltim.acd must exist. Images, cursors,
or tiles defined from memory are handled by the log routines and do not require regenera­
tion.

31 Mar 1986

Experimental Display Interface IBM/4.3-PSD:3-21

APPENDIX D. SUPPlJED EXAMPLES

All files associated with this package reside in the directory /u.fir/Jrc/u.fir.lih/lihaed/example.f.

Among the HIes supplied with the microcode and subroutine library are some source and
executable files for you to investigate. The following list includes some of those files, and
brief descriptions. It should be easy to figure out the nature of any other files from their
names, behavior, or above documentation.

The following programs are copyrighted property of International Business Machines Cor­
poration.

+ .fnt Piles with the extension fnt are font HIes.

showfont A program that shows a font on the experimental display. The syntax is
showfont filename.

showfont.c Source for show/ont.

zip A demo that takes up to three parameters. Parameter I is number of vectors
to remain on the screen. Parameter 2 is minimum delta for each new vector
endpoint. It is roughly equivalent to the speed of the zipper. Parameter 3 is
maximum delta. The default is zip 30 2 /4.

zip2 Like zip but with two zippers. It takes up to 6 parameters. The default is
zip2 30 2 14 90 I 4.

zipn Like zip but with 1 to 16 zippers. Parameter I is number of zippers. Param­
eters 2, 3, and 4 are number vectors for zipper I, minimum delta, and max­
imum delta. Parameters 5, 6, and 7 are for zipper 2, etc. The default for
unspecified zippers is 30, 2,/4. The default is zipn I.

zip.c Zip source code.

aedrunner.c Aedrunner source code.

31 Mar 1986

IBM/4.3-PSD:3-22 Experimental Display Interface

This page intentionally Idl blank.

31 Mar 1986

Programmer's Notcs IHl\f/4.3-PSD:4-1

Programmer's Notes

ABSTRACT

This article is a compendium of insights, suggestions, and notes gathered from
the programmers who ported applications to IBM/4.3. The information may
save time and frustration for others with the same task.

15 Dec 1986

IBM/4.3-PSD:4-2 Programmer's Notes

1. SAl\1PLE FILES PROVIDED

Four sample files (.login, .eshrc, .logout, and .profile) are provided in /usr/ske1. Using these
files will simplify initial installation and operation of IBM/4.3.

2. CHARACTER TYPE IS UNSIGNED

Variables of type char are unsigned (range 0 .. 255) by default on the RT PC, in contrast to the
VAX, where they are signed (range -128 .. 127) by default. With the High C compiler (hc(I»,
the type signed char is available, as well as a command-line option
-llofJ= char_default_unsigned to make characters signed by default. 'Ibis option generally pro­
duces less efficient code, but can be of value in detennining whether signedness is the cause of
a bug.

The unsigned default uncovers a maehine dependency in a common technique for end-of-file
testing. In the following program fragment

char c;

if «c = getcharO) = = EOP) ...

the test always fails, since EOP is -1 and c IS ttl 0 .. 255. Declaring c as an int is a good
machine-independent solution.

With pcc(I), there is no type signed char, but the following macro might be useful if you need
to use an unsigned character as though it were signed:

#if '\377' < 0
#define Signed(x) (x)
#else
#define Signed(x) «(x)" 128)-128)
#endif

3. BYTE ORDERING IS DIFf~ERENT

The IBM RT PC has sixteen 32-bit general registers. Memory on the IBM RT PC is byte­
addressed, but differently than on the VAX.

On the V AX, high order bits are at higher addresses, thus:

I -word2---1 -wordl I -wordO
le3 ,C2 ,el ,CO le3 ,C2 ,el ,CO IC3 ,C2 ,CI ,CO
I B 3 1 B 0 I B 3 I B 0 1 B 3 I . B 0

On the IBM RT PC, high order bits are at lower addresses, thus:

I - wo r d 0 - - - I - - - w 0 r d I - - - I - - - w 0 r d 2 - - - 1

ICO ,CI ,C2 ,c3leo ,e] ,C2 ,e3ICO ,el ,e2 ,e31
IBO D31IBO B31IBO B311

Non-portable code which depends upon byte ordering for retrieving data must he rewritten.

4. ALIJ MEMORY REFERENCES ARE AIJGNED

Word and half-word data are stored most significant byte first and aligned on natural boun­
daries. Off-boundary storage references are t1(it supported. The low two or one address bits
are silently ignored, creating unexpected results.

If lint(1) is run against such programs, it complains about a "possible alignment problem."

15 Dec 1986

Programmer's Notcs IBM/4.3-PSI>:4-3

5. FLOATING POINT IS IEEE S'f ANDARD

IBM/4.3 conforms to IEEE Standard 754 for binary floating point arithmetic. The article
"rIoating Point Arithmetic" in Volume II notes the differences from VAX floating point.

A class of programming errors easily overlooked on the VAX -- treating the first half of a dou­
ble quantity as a float quantity, or vice versa -- is highly visible on the RT pc. If numeric
results are incorrect, look first for unions, casts, or function arguments that mismatch double
and float. The scan/format "O/of' instead of "%lr' is particularly subtle.

6. OLD CALLING SEQUENCE IS NO LONGER SlJPPORTED

The subroutine calling sequence currently used in InM/4.3 first appeared in the March 1986
release. As a transition aid, that release also supported the old calling sequence.

neginning with the December 1986 release (PRPQ #5799-CGZ, Release 2), only the current
calling sequence is supported. In the unlikely event that your installation still has programs
not recompiled since you installed the March release, you must recompile and relink them. In
the current release, running an old a.out will produce the message: old calling S('(jucncc, then
terminate.

In the even more unlikely event that the source for the old program is no longer available, you
can reinstate support for the old calling sequence in the current release (with a performance
penalty) by specifying "option DUALCALL" in the kernel config file and rebuilding the ker­
nel. See the article "Building IBM/4.3 Systems with Con fig" in Volume II.

Some of the IBM Support tools provided in the March release used the old calling sequence.
Be sure to replace these by the versions provided in subsequent releases.

7. CAUTION WI-IEN USING THE 4.3 AT COMMAND

The 4.3 al(l) command does not pass the environmental variable TERM into a user's at spool
file. Spool-file processing may break if the user's .c!ihrc file includes a reference of the form
"$TERM" and the user's environmental shell is csh. To be defensive, csh users should code
their .cshrc files in such a way as to test whether a variable is set before being referenced. For
example:

if ($'!fERM) then

endif

if ($TERM = = hI9) then
setenv MORE-c

end if

is TERM defined?

(This is good programming practice for .login files as wel1).

8. CAUTION WHEN USING THE 4.3 CSH ON SETlJID SCRIPTS

The 4.3 csh(l) command requires that a -b flag be used on the interpreter line of setuid csh
scripts. Csh exits with a "Permission denied" error message if the -b flag is not specified.

15 I>ee 1986

IBM/4.3-PSD:4-4 Programmer's Notes

This page intentionally left blank.

15 Dec 1986

IBM/4.3 Linkage IRM/4.3-PSI>:5-1

IBM/4.3 Linkage Convention

ABSTRACT

The IBM/4.3 linkage convention provides an efficient method of calling, execut­
ing and returning from functions. The convention provides support for cus­
tomary facilities of C, FORTRAN, and Pascal, including vararg.r, alloca, and
profiling.

This article is intended for compiler writers and others who must write or
analyze programs at the machine-instruction level. It presumes understanding
of the IBM RT PC or IBM 6152 Academic System architecture and the
IBM/4.3 assembler language.

Also described is the Floating Point Arithmetic linkage, which presents a low­
overhead, uniform interface to the various types of floating point hardware as
well as a software emulator.

July 1987

IBM/4.3-PSI):5-2 IBM/4.3 l,inkage

1. Introduction

A C function foo consists of a text area and a data area. The data area is named foo and, in
addition to quantities specified below, may contain constants and initialized vari-;'bles. The
text area contains machine instructions followed by a trace table that provides auxiliary infor­
mation for debuggers.

Each can of roo creates a stack frame containing arguments, local variables, and space to save
the caller's registers to be restored on return to the caller.

When foo is called, the caller first prepares an argument list, then transfers control to the text
location named _.foo, which is foo's entry point. A stack frame is built by foo's prolog to hold
local variables and saves any registers that are to be preserved for the caller. Execution
proceeds through the body of foo, possibly ca11ing other functions, and ends in the epilog,
which prepares the return value, restores the caller's registers, releases the stack frame, and
transfers control back to the caller.

2. Stack Usage and Stack Frame Format

The stack holds frames for currently active functions and signal handlers. The stack will
occupy the highest possible locations in the core image, growing downward from Ox I flTeOOO.
The stack is automatically extended as requircd. The data segment is only extended as
requested by brk(2). A "red zone" of protected addresses separates the stack from the data
segment, which starts at Ox I 0000000 and may grow upward as the result of brk(2) and .rbrk(2)
usage. Register rl indicates the low address of the stack frame of the currently executing func­
tion. Locations above (d) - Ox64 are preserved over interrupts. Locations below (rI) - Ox64
are considered unallocated storage and may he overwritten if a signal handler is activated. Fig­
ure 1 is a graphic representation of the stack frame format.

The stack is not self-describing, but with information from the trace tables in program text, a
debugger can decompose the stack into frames and backtrace through it.

foo's stack frame holds the following areas, from lowest address (bottom of the figure) to
highest (top of the figure):

a) Words 5 through pmax of outgoing argument lists. pmax represents the number of
words in the longest argument list for functions that foo cans.

b) Local variables: autos and temporaries.

c) 0 or 18 (six registers • 12 bytes) or 64 (reserved for future expansion) words of save area
for caller's floating point registers.

d) 1-16 words of save area for caller's general registers.

e) 1 word of static link for Pascal procedures: pointer to enclosing procedure'S frame. Not
used by C or FORTRAN.

t) 4 words of linkage area are reserved. Two words are now used to save floating point
register 6.

g) 4 words allocated for the first four words of foo's incoming argument list.

.July 1987

IBM/4.3 Linkage

rl for foo's caller ---.

r I while foo is active ---.

lowest protected -- >
stack location
(rt - Ox64)

Incoming Arguments
(first 4 words)

Reserved

Pascal static link

General Register
save area

Floating Point
Register save area

Local variables

Outgoing Arguments
(words 5 through pmax)

-------------.---

General Register
save area for callee

FIGURE I. A STACK FRAME

IBM/4.3-PSD:5-3

high addresses T

(4 words)

(4 words)

(1 word)

(I - 16 words)

(0, 18, or 64 words)

«pmax-4) words, or
o if (pmax < 4»

low addresses !

July 1987

IBM/4.3-PSD:5-4 I8M/4.3 l..inkage

foo can use the Store Multiple (stm) and Load Multiple (1m) instructions to save and restore
registers, from any starting register through r IS. Ilowever, registers rO-r5 do not need to be
preserved. Prolog and epilog examples below show how the ca11er's r1 is restored.

The float.ing register save area holds up to 4 doubleword registers ending with register 5. No
space is allocated if no floating registers need to be preserved.

The file /usr/include/frame.h gives symbolic definitions for the sizes and offsets of some of
these areas.

3. Register IJsage

Certain registers, such as r I, have specific uses throughout execution; others, like r 15, are
spccified during a call and are free at other times. The following table defines register usage at
the call interface.

Register Preserved over call Usage
rO no called function's data area pointer
rl yes stack pointer (to caner's frame)
r2 no argument word I and returned value
r3 no argument word 2 and second word of

a returned double value
r4 no argument word 3
r5 no argument word 4

r6-r13 yes register variables, etc.
rl4 yes data area pointer (not required)
r15 no return address
mq no multiply /divide register

rl always addresses the bottom of the stack frame of the currently executing function. A com­
piler may assign another register to address the high end of the stack frame. The portable C
compiler, for instance, points rl3 at the last 64 bytes of auto storage. The linkage convention
requires this second register only for alloca support (see the section entitled Alloca Storage
Allocation below). The register number and the offset from the frame top, which are arbitrary,
are recorded in the trace table.

Ploating-point registers 0 and 1 are not preserved over a can. Registers 2 - 7 must be
preserved. Floating point registers are not used to pass arguments or return results.

4. The Data Area

The data area (also called "constant pool," which is a misnomer) is addressed by rO on entry
to foo. The word pointed to by rO must contain _.foo, the address of foo's entry point. lbe
following word supports the profiling option, and if present must be initialized to zero; the
third word, also optional, supports alloca storage allocation.

It is conventional, but not required, for rl4 to address the data area during execution. Clbe
optional profiling linkage, which follows the prolog, does require it momentarily.)

Por easy addressability, other data such as static variables, strings, or a literal pool may be
located in the data area, either before or after the word addressed hy r 14.

A value &foo of type pointer to function corresponds to the address of _foo, the function's
data area, not the address of _.foo, the function's entry point. A program that does arithmetic
on function pointers, assuming that they address entry points, witl probably malfunction.

July 1987

IBM/4.3 Linkage IBM/4.3-PSI>:5-5

5. Argument I..ists

Arguments are word-aligned and allocated to consecutive stack locations. rille list spans frame
boundaries: words 1-4 are allocated in the top of the called function's frame, and the
remainder are stored in the bottom of the caller's frame, which is adjacent. Argument words
1-4 are passed in registers r2-r5, not on the stack. The called function may choose to store
them in the allocated stack locations, but this is not necessary except in a function like print!
which accesses its argument list via a pointer variable. Such functions must use the varargs(3)
macros to assure that argument words 1-4 get stored properly.

Arguments are passed as follows, based on argument type:

An int is passed in a single word.

A long, short, pointer, or char is treated as an int and passed in a word. A function
pointer is represented by the address of the function's data area.

A double is passed in two successive words.

A float is converted to a double and passed in two successive words.

A structure is word-aligned to a full word and left justified, except for structures of 1, 2,
or 3 bytes, which are right justified.

If the function is declared to return a structure, the caller passes the address of a result area in
r2, and word 1 of the explicit argument list is passed in r3. Subsequent argument words are
shifted accordingly.

6. Calling Sequence

A typical call of a function roo first prepares the argument list, then executes the following:

bali x rl5, .foo # call
I rO,$]ong(_foo) # get its data area pointer

Dereferencing a function pointer calls a function without needing to know its name. Suppose
that the function pointer, which addresses the function's data area, is in r8. A typical instruc­
tion sequence is:

7. Prolog

Is
balrx
mr

r7,0(r8)
rl5,r7
rO,r8

get address of entry point
call whomever
rO = data area pointer

The prolog saves the caller's registers and obtains stack space for the stack frame. A
typical instruction sequence is:

.foo: stm rlO, - 60(rl) # save caller's registers
al r I, - framesize # allocate our stack frame
mr r 14,rO # initialize data pointer

Other instruction sequences are needed for frame sizes larger than 32768 bytes. A sequence
that decreases r 1 in two stages is acceptable if the stack remains protected at an times. An
example of an unacceptable sequence for a frame size of 64536 is

cal rl, - bothalf(rl) # - bothalf = 1000
cau rI, -tophalf(rI) # -tophalf = - I

This momentarily increases r1, letting an iII-titned interrupt destroy the stack.

July 1987

I8M/4.3-I>SD:5-6 18M/4.3 IJnkage

8. Profiling

If either the -p or -pg option is selected, this instruction sequence follows the prolog and
accomplishes data collection for performance monitoring:

9. Epilog

mr rO,rlS
bali r1S,mcount # rO = caBer's return address

rI4 = our data address
r 15 = our return address

The epilog prepares a result, restores the caller's environment, and returns control. A typical
instruction sequence is:

lis r2,0 # zero result returned in r2
1m r 1 O,framesize - 60(r I) # restore registers
brx rlS # return
at r I ,frame size # adjust stack frame

The location of the return value depends on the function type:

An int, long, short, pointer, or char is returned in r2.

A double is retunled in r2 and r3.

A float is returned as a double.

A structure result is returned by moving it into the area pointed to by the first argument
list word (in r2 on entry).

10. Alloca Storage Allocation

The implementation-dependent storage allocator alloca (see malloc(3)) expands its ca1ler's
stack frame by decreasing r 1, to obtain a storage area that is automatically deallocated on
return. The storage area so obtained starts at the end of the maximum-length argument list in
the newly expanded frame. alloca can be called from any function that fol1ows two conven­
tions:

(1) It addresses outgoing argument lists through r I, and addresses all other areas in the
stack frame through some other register (identified in the trace table as frame_reg).

(2) In its data area, which must be addressed by r14, the halfword at (r14) + 8 holds the
value Oxf690 (a magic number, used for validity checking). The halfworcl at (rI4) + 10
holds the length of the longest outgoing argument list (exclusive of the first four words,
which do not occupy space in the frame).

Files compiled with the hc(1) or pcc(1) option -ma adhere to these conventions.

11. Trace Tables

Debuggers rely on a trace table of 6-10 bytes following the text of each function. A debugger
locates a trace table by searching forward through program text (generally from a point indi­
catcd by a call's return address). The search stops when it finds two successive halfwords,
each having Oxdf in its first byte. For compiled C functions, or assembler functions fol1owing
the same conventions, the trace table corrcsponds to the following structure:

struct TT_D_COM {
unsigned magic 1 : 8

code : 8
magic2: 8

Oxdf,
7,
Oxdf,

July 1987

I8M/4.3 Linkage I8M/4.3-PSI>: 5-7

first_gpr : 4,
optw : I
optx : 1,
opty : 1,

: I
char npars : 4,

frame_reg: 4;
char fpr_save : 8;
char lcl_off_size: 2,

lcl_ offset I : 6,
lcl_ offsetn[lcl_ off_size];
}

l,

O' ,

I*this byte present only if opty = = 1*1
1* lcl_ offset is variable length *1

firstJpr is the fIrst register saved by the store multiple instruction in the prolog. This indi­
cates the size of the general register save area.

opty is 1 if the byte holding fpr _.'lave is present; otherwise, it is O.

npars is the number of words of declared arguments. The maximum value of 15 does not res­
trict the actual length of argument lists.

frame _reg identifies the register used to address local variables, etc., in the stack frame.
frame _reg is 1 unless an alternative register is used (for example, r 13 for pcc-compiled func­
tions).

fpr_save is present only if opty is 1. It is a 6-bit mask (right-justified) indicating which floating
point registers are saved. The rightmost bit corresponds to floating point register 7, thus:

o 0 x x x x x x

&2 &3 fr4 fr5 fr6 &7

If fpr _,rave is 0 or not present, no floating registers are saved.

lcl_ offset is an unsigned integer 6, 14, 22, or 30 bits long. It indicates the distance, in words, to
the top of the stack frame from the point addressed by register frame_reg.

12. as(1) Routines

A very simple C function or hand-coded assembler function, that doesn't call other functions,
can take some shortcuts. It may not need to save and restore registers, and need not allocate a
stack frame if the protected area between (rl)-Ox64 and (rl) gives it sufficient storage.

Such a function has a simpler trace table: the four byte sequence Oxdm2dmO. Debuggers may
not be able to backtrace from this function if the caller's rl4 and rl5 are disturbed.

Temporarily each file must include the lines:

.globl .0Vncs

.set .0Vncs,O

This is used by Id(1) to detect use of an obsolete linkage convention. Compilers generate
definitions of .0 V ncs automatically.

13. Addressability in Very Large Modules

When .0 files are linked by Id(I), theiBsulting object module may be so large that the text of
the caller and callee are more than 2 bytes apart. The balix instruction in the call cannot

July 1987

IBM/4.3-I~S)):5-8 IBM/4.3 l.inkage

thcn address the callee, and fd modifics the instruction in onc of two ways to estahlish addres­
sability.

A balax2~eplaccs the balix if it can duplicate thc balix's effects, that is, the canee's address is
below 2 and r15 is the link register. Otherwisc, the balix is replaced by a balix to a piece of
"trampoline code" that derives the callee's entry point address from the contents of rO and
branches to it.

Other than in function calls, addresses are always carned as 32-bit values, so addressability is
unaffected by module size.

14. Hoating Point Arithmetic l.inkagc

IBM/4.3 provides a floating point environment in which executahle programs will run on all
supported models of the IBM RT PC, selecting at runtimc the highest performance floating
point hardware installed in a given machine.

14.1. What the Compiler Must))0

Thc kcy to this environment is that thc cOJl1pilcr(s) produces gcneric floating point instruc­
tions rathcr than instructions specific to any particular floating point hardware. lbese gen­
eric instructions are generated as follows:

(I) The compiler sets asidc a small block in the data area.

(2) In that block the compilcr placcs thc following:

(a) an instruction to save general rcgister 15 (the return address)

(b) an instruction to branch to a pre-defincd location, the "glue code."

(c) a description of the specific floating point instruction (such as add)

(d) the operands for the instruction (such as one or more floating point registers)

(e) SOIne additional information

This information follows thc well-defined format described below, hut is not specific
to any floating point hardware.

(3) At the point in the code where the floating point instruction is to he performed, the
compiler generates a branch-and-link instruction to the block it set up in the data
area. Note that if at some point latcr in the codc gcneration the compiler wants to
generate the same floating point instruction (such as to add the same two floating
point registers), it need only place a hranch-and-link instruction to the same block
in the data area.

When finished, the compiler will have generated branch-and-links in all places where float­
ing point instructions occur, and a block in the data area for each unique instruction.

At execution, via a system call, the glue code gets the address of a floating point "code gen­
erator" in the kernel and invokes it. This code g(~nerator interprets the generic instruction
stored in the data area and translates it into code appropriate to the floating point hardware
installed or the emulator.

14.2. Compiler Specifications

The generic instructions are intended to hide floating point hardware specifics from both
the user and the compiler-writer. There are, however, important aspects of floating point
which, though ultimately dependent on particular hardware, can be guaranteed by IBM/4.3
and, indeed, mustbe known by the compiler. J\ discussion of these aspects follows.

July 1987

IBM/4.3 Linkage IBM/4.3-PSD:5-9

14.2.1. IEEE Floating Point

The most important of these aspects is that floating point logic adheres to IEEE Stan­
dard 754. The compiler writer can assume that all floating point performed by this sup­
port will conform to the standard for single and double precision. Likewise, this sup­
port assumes that the compiler will adhere to the standard in those cases which are
affected by the language (such as four-way compares).

14.2.2. }<'Ioating Point Registers

Floating point registers are referred to as frO,frJ , ... ; general registers are referred to as
ro,rt,
IBM/4.3 Floating Point support assumes there are eight floating point registers available
(frO through fr7). Each register can contain either a single or a double precision value.
The compiler wi1l be responsible, if it so chooses, for managing these registers (for inter­
tnediate results, or register variables).

The registers frO and fr 1 are considered scratch registers. Registers fr2 through fr7 must
be saved across function calls; load- and store-multiple instructions for these registers
are provided. A save area of 6+ 12 bytes (18 words) must he reserved in the stack frame
if any floating point registers are saved (not 8+(# registers saved) as in 4.2/RT).

14.2.3. Format for Generic Instructions

The following illustration graphically dcpicts a general data area hlock for a floating
point instruction, as a variable-length array of half-words. The start of each block must
be full-word aligncd, and ccrtain operands may require fun-word alignment--sec descrip­
tion of operands below.

0 Save r15
2

HAL to Glue

6

8

10

12

14

Opnd I (optional)

Opnd2 (optional)

July 1987

IBM/4.3-PSD:5-10 IUM/4.3 J..inkage

Opnd N (optional)

The first instruction, Save r15 moves rIS into rO: "cas rO,r1S,rO".

The second instruction, HAl .. to Glue will be ".long FPGLUE", where FPGLUE is
defined in libc with ".set PPGLlJE,fpglue + Ox8aOOOOOO" (a bala to fpglue, the actual
glue code).

OpCode is a byte specifying the particular operation being done. The opcodes for each
operation are defined in < mac/tine/rtjlopJ.h > .

The next byte, # Operands, specifics the number of operands for this instruction. If the
operation requires n operands, this number may be either n or (n+ I). The result of
the operation is always placed in operand I, and the operation is perfonned on the last
n operands. In summary,

o
Floating Point
Instruction
Op x
Op xy
Op x y
Op x y z

Type of Operation
Monadic
Monadic (or move)
Dyadic
Dyadic

Description
x < - Op(x)
x < - Op(y)
x < - Op(x,y)
x < - Op(y,z)

Scratch Regs is a bit map of the general registers available for the code generator to use
(the scratch registers at this point in the program). Bits 0-15, numbered left. to right,
each represent a corresponding general register rO-IS. If a particular bit is set, that gen­
eral register is available for use. However, TO and rlS are always considered scratch;
their bits will be ignored, but should always be set. The multiplier-quotient· (mq) regis­
ter is also considered scratch. General register operands which do not need to be
preserved over the operation can and should be marked scratch. NOTE: If the code
generator needs more registers than arc available, it will usc the stack to save and restore
register contents. For this reason, the compiler must insure that the stack below the
stack pointer (rl) is available; floating point instructions must be generated only after r 1
has been decreased to allocate the stack frame in prologs and before the caller's rl has
been restored in epilogs.

MySize is a byte containing the size of each floating point instruction block, measured
in bytes. (Since the size and number of operands varies, the compiler must tell the code
generator how big the block is.) A minimum of 12 bytes is required. See Appendix A
of this article for the rules dictating the size of a floating point instruction block.

Scratch FP Regs is similar to Scratt'h Regs, but is one byte long, and each bit
corresponds to a floating point register frO-fr7. Floating point register operands which
do not need to be preserved over the operation can (and should) be marked scratch.
Specifying any scratch floating point registers is not required, but may help performance
in the following cases:

(I) Moves and monadic operations where no operands are floating point registers
(one scratch register will help).

(2) Dyadic operations where only one operand is a floating point register (one
scratch register will help).

July 1987

IBM/4.3 lJnkagc IBM/4.3-PSI>:5-11

(3) Dyadic operations where no operands are floating point registers (two scratch
registers will help).

OpndN Type is a byte specifying the type of its corresponding operand. The byte
immediately following the type is the operand itself (or a part thereof) for register­
number operands, or it is O. The one (or two) word values of operands follow all of the
types and byte operands (in their respective order) to allow easy full-word alignments.
The following table lists operand types; all are defined in < machine/rtflops.h > .

Operand Size
1 byte

1 byte

1 byte
I word

2 words
1 byte + 1 word

vanes

OPERAND TYPES
Operand Value
General register number, containing a signed or unsigned
integer or single precision
Two general register numbers, containing a double precision
(high half in register specified in high-order nibble;
low half in register specified in low-order nibble)
Floating point register containing a single or double precision
Immediate value, signed or unsigned integer, or single or
double precision
Immediate value, double precision
Address of a signed or unsigned integer,
a single or double precision, or a function pointer
(a general register number + a 32-bit offset)
Special value, dependent on special OpCode

Some operand types may have no meaning in certain circumstances. For example, an
immediate value cannot be the result of an instruction. All full-word operand values
(immediate and address-offset) must be full-word aligned.

t 4.2.4. Operations and Operands

Most of the operations fall into the monadic or dyadic category and are treated simi­
larly. All of the integer and floating point operand types shown in the table above are
legal operand types for these operations. The same types, with the exception of the
immediate values, are also valid results. All of the monadic and dyadic operations,
except CMP and CMPT, allow an extra operand; this means the first "operand" is the
result, and the following operands are the actual arguments to the operation.

Comparisons (opcodes CMP and CMPT) require two operands, and set the RT condi­
tion code appropriately (GT, EQ, LT, or none--the latter if the comparison involved a
NaN). CMP generates code for a non-trapping compare, and should be used on com­
parisons of equality (and inequality) only. CMPT generates code for a trapping com­
pare, and should be used on all comparisons of order (LT, GT, LE, and GE). (CMPT
will cause an exception when comparing NaNs.)

Operations on operands of differing precision will always involve the appropriate
conversions (converting to wider precision, performing the operation, and converting
back to destination precision). A MOVE from one precision to another implies a
conversion; MOVEs from floating point to integers will always truncate.

The STOREM and LOADM operations (store-multiple and load-multiple) take two
operands, both of type "special." The first operand is a bit-map (stored in the byte fol­
lowing the operand type in the instruction) marking the floating point registers to be
saved or restored. The second operand is the address of the save area, in the same
register/offset format as other address-type operands.

July 1987

18M/4.3-I)SD:5-12 18M/4.3 IJnkagc

14.3. Uscr-IJcvcllntcrface

This section describes the glue code that accommodates IBM/4.3 floating point support.

The code generator, like the floating point emulator, witl be linked into the kernel. This
has a significant advantage over linking it directly into user programs, as subsequent
hardware releases will require only a new kernel; existing programs do not have to be
recompiled or re-linked. The source for the code generator is in /urr/Jrc/ufr.lib/lipfp/gen/p.

The glue code is linked into crtO.o so that it will always be addressable by a "bala." (The
source for the glue code is in /uJr/src/lib/libc/maclzine/csu/fpglue..r.)

The glue code, when executed the first time, will set up appropriate information needed for
code generation. (Most of this information wiH be gottcn from the kernel via system calls.)
Then it will invoke the code gencrator. Subsequent "cans" to the glue code will only
invoke thc code gencrator.

14.4. Compatibility with Prcvious Relcases

This initial release of the new IBM/4.3 Floating Point support gives the maximum compa­
tibility possible with previously linked programs. (Note, however, that future releases may
not provide this compatibility.) Most a.outs compiled and linked under previous releases
will produce the same results when run under this relcase. IIowever, pcrfonnance will be
improved by recompiling, especially if running on an RT with an APC. See further notes
in the article entitled "Floating Point Arithmetic."

REFERENCES

(1) Johnson, S. C. and D. M. Ritchie. "The C Language Calling Sequence," Comput­
ing Science Technical Report No. 102, Bell Laboratories, Murray Hill, NJ, 1981.

(2) "Assembler Reference Manual for IBM/4.3," in Volume II, Supplementary Docu­
ments.

(3) "Floating Point Arithmetic," in Volume II, Supplementary Documents.

(4) IBM RT PC Hardware Technical Reference, SV21-S024

July 1987

IBM/4.3 Ijnkagc IBM/4.3-PSD:5-13

APPENDIX A. RULES GOVERNING INSTRUCTION BLOCK SIZES

A minimum of 12 bytes is required for each floating point instruction. If more space is
required, routines are included to calculate and allocate such space. However, this may
degrade performance. Another alternative is to allocate a maximum size, but this is an
inefficient use of space. To fine tune a program that uses floating point arithmetic, con­
sider using the following rules to detennine the size of the data block required for an
instruction.

Most operations:
24 MINIMUM

Operands:
+32

+ 12
+ 12

Other:
+32
+64

Loadm, Storem:

each non-floating point register operand, or fr7
(because fr7 is not on the FPA, it should be
considered a NON-floating point register)
for each conversion
if 3rd operand type! = 1st operand type

if operation is eMP
if operation is CMPT

34 MINIMUM (one register being saved/restored)

+ 24 for each additional register
+ 8 if one of the registers is fr7

General scratch registers:
+ 16 if no scratch
+ 8 if 1 scratch
+ 4 if 2 scratch
+ 0 if 3 or more scratch

Floating point scratch registers:
Monadic operations:

IF 1st operand is a floating point register, no scratch needed.

IF 1st operand is not a floating point register:
+ 64 if no scratch
+ 0 if 1 or more scratch

Dyadic operations:
IF no operands are floating point registers:
+ 112 if no scratch
+ 64 if 1 scratch
+ 0 if 2 or more scratch

IF 2 operands:
IF both floating point registers, no scratch needed.

IF 1 st operand is a floating point register AND the 2nd operand is not:
+ 64 if no scratch

July 1987

IHM/4.3-PSD:5-14 IBM/4.3 l.inkage

+ 0 if 1 or more scratch

IF 3 operands:
IF all floating point registers, no scratch needed.

IF I st and 3rd operands arc different floating point registers,
no scratch needed. If they are the same, follow next rule.

IF 1 st operand is a floating point register AND the 3rd operand is not:
+ 64 if no scratch
+ 0 if 1 or more scratch

IF 1st operand is NOT a floating point register AND the 3rd operand IS:
+ 64 if no scratch
+ 0 if 1 or more scratch

IF 1st and 3rd operands are NOT floating point registers:
+ 112 if no scratch
+ 64 if 1 scratch
+ 0 if 2 or more scratch

.July 1987

Recompiling with High C IDM/4.3-PSD:6-1

Recompiling with High C

ABSTRACT

Both pee (the standard C compiler provided with Berkeley systems) and
MetaWare High C are available in IBM/4.3. High C offers significant advan­
tages over its predecessor and is the default C compiler. 'Ibis article serves as a
guide for C programmers in recompiling existing programs with Iligh C. The
article contains three chapters:

I. Introduction describes High C, contrasting it with pee.

2. Diagnostic Messages explains a sample High C diagnostic message and describes messages
frequently encountered when recompiling programs with Iligh C.

3. Run-Time Differences describes those differences between pee and Iligh C that may not
manifest themselves until run-time.

15 Dec 1986

IHM/4.3-PSD:6-2 Recompiling with High C

I. INTRODlJCTION

IBM/4.3 now provides a new optimizing C compiler, Meta\Vare High C, in addition to the
standard pee-based C compiler. High C provides extensive code optimization, producing com­
piled programs that run up to twice as fast as pee-compiled programs. It also generates tighter
code; object file text is typically 150/0 smaller than with pee.

lie has been tested against the C Test Suite provided by Human Computing Resources Cor­
poration, and is used to compile the entire IBM/4.3 system (with the exception of assembler
routines and a few other files).

The commands he(l) and pee(l) are available in the /bin directory. Users are not obliged to
use one compiler or the other. The command ee(t) in /bin is a symbolic link that may point
to either he or pcc. In the IBM/4.3 system as distributed, /llin/ec points to hc.

The hc feature you witl notice first is probably its meticulous semantic and syntactic checking
and precise diagnostics. Many old programs that compile "error free" with pee generate warn­
ings and errors with hc, usualty for good reason. In recompiling IBM/4.3, we found that mes­
sages sometimes pointed out type mismatches, incorrect-length argument lists, and uninitial­
ized or misspelled variables that had been undetected for years. The "Iligh C Programmer's
Guide" tells how to use flags and toggles to adjust the error and warning sensitivity up or
down; we recommend "up" during program development.

High C represents a significant step toward the draft ANSI C standard, and supports a more
extended C language than does pec. The lIigll C [,anguage Reference Afanual describes the
extensions in full. One extension that may affect existing programs is the presence of new key­
words: signed, const, and volatile for ANSI, plus pragma (borrowed from Ada). A program
using any of these four names for identifiers witl have to be modified, for instance by adding
the line:

define const _ const

Two other ANSI-related changes, character escapes and widening rules, are discussed in the
sections on "Character Escapes" and "Integer Widening" below.

In general, High C supports the semantics of "classical" C, where this is not precluded by
adherence to the draft ANSI C standard. Even so, there are circumstances in which a
language construct that is incompletely defined may execute differently when compiled with he
and pce. Chapter 3, "Run-Time Differences," discusses constructs whose semantics may
differ.

2. DIA(;NOSTIC MESSAGES

This section provides an explanation of a sample diagnostic message and includes a list of
diagnostics frequently produced when recompiling with he. The list provides an explanation of
each diagnostic and, where appropriate, a recommended solution.

2.1. Sample Diagnostic Message

The following shows a code fragment, a diagnostic message generated by the code, and an
explanation of the message.

15 Dec 1986

Recompiling with High C

Code Fragment:

1
2
3
4
5
6
7
8
9
10
11

/ + this file is named test.c + /

mainO

{

}

char +j;
int i;

i = j + 1;

Diagnostic M{'ssage:

E "test.c", L9/C5:

IBl\I/4.3-PSD:6-3

I Type +Unsigned-Char (at "test.c" , I ,6/C6) is not assignment compatible with type Signed-Int.

Explanation:

• The "E" stands for Error. Warning messages begin with a "w."

• "test.c" is the name of the module containing the error.

• L9/C5 indicates the error was detected in I,ine 9, Column 5.

• The body of the error message explains that a value (j + i) of type pointer to
unsigned char was being assigned to a variable (i) of type signed into nlis is illegal
(but unchecked by pee).

• The phrase (at "test.c", L6/C6) locates the declaration that gave rise to the value of
type pointer to unsigned char. This is particularly helpful in locating declarations in
#include fIles.

• The vertical bar "I" in the first column indicates a continuation line of a multiline
message.

2.2. Common Diagnostic Messages

This section lists the most frequently encountered messages and suggests ways to resolve
them. See the section on diagnostic messages in the "High C Programmer's Guide" for a
complete list of warning and error messages.

Type t is not assignment compatible with type t'.

The mismatched-type message appears for any of several reasons. Most fre­
quently, it has to do with pointer conversion, and can be eliminated by using
explicit casts. In this example, the comments propose ways to rewrite each
statement.

mainO
{

}

char fpC;
int +pi, i, x;

pc = pi;
x = pc + i;
i = pc;

1+ should be: pc = (char +)pi; +1
1+ should be: x = (int)(pc + i); +1
I + should be: i = (int)pc; +,

15 Dec 1986

IBM/4.3- PSD:6-4 Recompiling with High C

Another common cause of this message is shortcuts in structure initialization.
As an example, given the declaration:

struct sl { int i, j; };

the shortcut initialization:

struct sl x = 0;

is allowed by pee, but e syntax (and he) require hraces around the initializer:

struct sl x = {OJ;

Variable is set but is never referenced.

This message warns of an initialized variahle that is not used in the module. It
may be a symptom of a logic error.

This diagnostic prints in another common situation: if Res or sees variables
are contained in the program header. In this case, you can ignore the message.

R(,Slllt of comparison never varies.

An expression was found whose operands are such that the value of the expres­
sion is always the same. The usual cause is a logic error arising from confusion
over signed/unsigned types. For example, an unsigned char cannot be negative;
therefore, a comparison with a negative constant will never vary. Look for
assumptions that the type char is reaHy signed.

Variable required.

This generally points out an i11egal left-hand side of an assignment. This error
can be produced by statements of the fonn:

(CONDITION? i : j) = -1;

which pee (incorrectly) allows if CONDITION involves only constants and
preprocessor variables. Rewrite it as:

+(CONDITION ? &i : &j) = -I;

This is multiply-declared.

This lTIay be the result of a variable declared extern, then redeclared later in the
same module as static. This is often caused by an extern declaration in an
#include file. Pee allowed the redeclaration. Correct this by using distinct
names for the two variables.

I./ocal function is never < referenced; no code will be generated for it.

A function of storage class static is not called anywhere in the compilation unit.
Since it is not exported, there can be no reference to the function, and it is elim­
inated as dead code. The -g option disables this optimization, so that dhx(l)
sessions can access such functions.

Expression has no side effect and has been deleted.

The value of an expression is not assigned to a variable or otherwise used to
affect the computation. For example, "2 + 3;" is useless and is deleted.

This function declaration is inconsistent with the "int"-returning function declaration
imputed at Ln/Cm.

A function that is called before it is declared is assumed to return int. Any sub­
sequent declaration of the function must declare it to do so.

15 Dec 1986

Recompiling with High C IBI\1/4.3-PSD:6-5

Correct this by placing an explicit declaration of the function with the proper
return type before the first call (and check all calls for their assumptions about
the return type!).

Unexpected char.

Pee allows multi-character character constants; he does not. Por example, for
the following declaration:

int x = 'abcd';

pee assigns the value Ox61626364 to x, but he generates the above error message.

Fewer arguments given than function has parameters.

/-Ie checks argument lists in calls of functions that are declared in the same
module.

3. RUN-TIME DIFFERENCES

Some of the differences between he and pee will not manifest themselves until load- or run­
time. This chapter describes these differences and provides an explanation for their causes.

3. t . Order of Execution

C semantics permit subexpressions in a larger expression to be evaluated in any order, or
even concurrently. The statements

i=j+j++;
foo(i, i--);

do not have well-defmed meanings and may well execute differently with he and pee. To
assure that side effects like assignment occur in a defined sequence, break such expressions
into multiple statements.

3.2. Multiple Assignments

Look out for multiple assignments that require both narrowing and widening integer
values, such as:

int i; char c;
i = c = integer-expression;

Here the integer-expression is "narrowed" on assignment to c. Language rules require (and
he supports) assignment of the narrowed value to i, not the original value. Code generated
by pee often fails to narrow the value correctly, and some incorrect programs may execute
as intended only because of this pee bug. Reorder the assignments, or write two state­
ments.

3.3. Keyword "asm" Not Supported

Pee allows inclusion of assembler statements within C programs via the "asm" construct.
As he does not produce intermediate code and generates code which is optimized across
statements, this keyword is not supported.

Existing code which contains "asm"s will generate errors at load-time, with "_.asm" and
" asm" as unresolved references.

3.4. Volatile Memory

He optimizes the following code:

if ("'p = = 0) buf = "'p;

15 Dec 1986

IBM/4.3-PSD:6-6 Recompiling with High C

hy loading the contents of location p into a register for the comparison, then using this
same register for the assignment as well. If p is the address of memory that is volatile (for
instance, it is an I/O register that is updated after each reference), the assignment will not
reflect the changed value. Correct the prohlem hy declaring p volatile. Or, since this type
of code is common in device drivers (and other portions of the kernel), use the flag (­
Hvolatile) to disable all common suhexpression recognition across statement houndaries.

3.5. IJse of Jetjmp(3) and lonKimp(3)

ANSI specifies the values of local variahles changed hetween a call of setjmpO and of
10ngjmpO to be indeterminate after longjmp is ·called. Despite this, most implementations
reliahly update auto variables, and many existing programs rely implicitly on auto variables
having current values after a longjmp. (Register variables are chancier.)

To accommodate this practice, he recognizes the use of the function names "setjmp" or
etjmp" to assure that auto variables are reliably updated.

3.6. Character l::"lIicapcs

lie supports the draft ANSI complement of character escapes:

\a alert (bell) \t horizontal tab
\b backspace \v vertical tab
\f form feed \xnnn hexadecimal numeric
\n newline \' single quote
\r return \" double quote

Use of an undefined character escape results in a warning message.

3.7. Integer \Videning: Value-Preserving vs. Unsignedncs..IIi-Prcscrving

Historical1y, C compilers have used either of two widening rules: unsigned ness-preserving
(u-p) widens an unsigned char or short to unsigned int; value-preserving (v-p) widens it to
a signed int. U -p is sometimes useful but creates many anomalous situations. Note the
following example.

void f 0
{

}

unsigned char c = getchar 0;

if (c - '0' < 0 II c - '0' > 9)
printf("This character is not a digit");

Because pee uses the u-p rule, the test (c - '0' < 0) will always fail (since an unsigned int
can never have a value less than 0). Because he uses the v-p rule, c will be widened to a
signed integer; the test will work as expected. The v-p rule almost always produces the
expected result, and is the rule chosen by the ANSI committee in the draft standard.

Refcrenc('s

• Appendix C of this manual, which contains the "lIigh C Programmer's Guide"

• High C Language Reference Manual, available from:

MetaWare Incorporated
903 Pacific Avenue, Suite 20 I
Santa Cruz, CA 95060
(408) 429-META

15 Dec 1986

Recompiling with High C IBM/4.3-PSD:6-7

• Draft proposed American National Standard for the C l.anguage; con­
tact ANSI Committee X3J II for the most recent draft.

15 Dec 1986

IB1\1/4.3-PSD:6-8 Recompiling with High C

This page intentionally left blank.

15 Dec 1986

Prof('ssional Pa~cal Differences I8M/4.3-PSJ):7-1

Professional Pascal Differences

ABSTRACT

Professional Pascal is available as a separately-licensed feature of IBM/4.3. Pro­
fessional Pascal offers significant advantages over other Pascal compilers. It is a
highly optimizing Pascal compiler that confonns to the ANSI Standard, and in­
cludes many useful extensions, such as support of varying length strings, bitwise
operations, packages, and iterators.

This article points out the major differences between Berkeley Pascal and Pro­
fessional Pascal, as an aid to programmers recompiling existing programs with
Professional Pascal. The article has two chapters:

1. Introduction describes Professional Pascal, contrasting it with Berkeley Pascal.

2. Significant Differences briefly describes those differences that may prevent a program that
compiles with Berkeley Pascal from compiling (or executing correctly) with Professional
Pascal.

15 Dec 1986

IBI\1/4.3-PSD:7-2 Profes...~ional Pascal Differences

1. Introduction

Pascal programs which are not dependent upon a particular compiler's extensions, that is, pro­
grams written in ANSI Standard Pascal, should port to IBM/4.3 using Professional PascalI
with little or not effort. However, programs written in Berkeley Pascal may not port so easily.
Berkeley Pascal includes many extensions to standard Pascal (which are outlined in Appendix
A, "Appendix to Wirth's Pascal Report," of the "Berkeley Pascal User's Manual" in Volume
] of UNIX Programmers' Supplementary Documents. If a program uses any of these exten­
sions, it may not compile or execute as expected.

This article concentrates on the features of the Berkeley Pascal compiler2 that are missing or
differ from Professional Pascal. The article docs not attempt to point out the many features of
Professional Pascal which are not found in Berkeley Pascal. For a complete description of
Professional Pascal extensions, please see Profe.r.rional Pascal I~anguage Exlenfiions Manual
with Rationale and Tutorial .. , available from 1\tletaWare Incorporated.

2. Significant Differences

Several differences exist between pp and pc which may affect your programs. This section
points out these differences.

2.1. Case of Identifiers

In pc, the names of identifiers are case-sensitive. In pp, they are case-insensitive; all name."
are shifted to lower case. Be sure all identifiers are uniquely named regardless of casco

2.2. In-IJne Compiler Directives

Pc supports in-line control of compile-time options from within comments:

{$option}

J>p provides similar support of "toggle" setting via pragma statements. See "Compiler
Toggles" in the Professional Pascal Programmer's Guide.

2.3. Octal Constants:

In pc, an integer constant is expressed in octal by a series of digits terminated with "8" or
"b" (e.g. 777b). Pp precedes the digit series with the character string "8#" (e.g. 8#777).

2.4. New Reserved Words

In addition to standard Pascal keywords, the words pragma, package, iterator, value, and
otherwise are reserved in pp. (They are not reserved in pc.)

2.5. Predefined Routines

The following predefined routines found in pc arc not supported in pp:

• Predefined procedures: dale, flush, linelimit, meJJage, null, pack, remove, stlimit, time,
and unpack.

• Predefined functions: card, expo, random, seed, .rysclock, undefined, and wallclock.

1 Hereinafter referred to as pp.

2IIereinafter referred to as pc. Note that what is true for pc in this article is also true for pi, the 8erkeley Pascal
interpreter. Therefore, pc can be taken to mean "pc and pi."

15 Dec 1986

Professional Pac;cal Differences IBl\f/4.3-PSD:7-3

The routines argc and argv are not predefined as they arc in pc, but they arc defined in the
"arg" package provided with pp. Note, however, the slightly different semantics for these
routines as they are defined in "Utility Packages" in the Profe.uional Pascal Language
ExtenJionJ manual.

Similarly, the clock function is not predefined hut is included in the pp "system" package.

The procedure halt is predefined in pp (as it is in pc), but it does not produce a control
flow backtrace upon tennination.

2.6. Writing Expression in Octal or Hexadecimal

In pc, the value i is displayed in octal by:

write(i oct)

or in hexadecimal by:

write(i hex)

where i is a boolean, char, integer, pointer or enumerated type. In pp, the equivalent
would be:

write(ord(i):n:8)

or:

write(ord(i):n: 16)

where "n" is the minimum field width.

2.7. Reading and Writing Enumerated Types

Reading and writing of enumerated types is not allowed in pp.

2.S. As..c;ociating File Name and Variable Name

In pc, a global file variable appearing in the program header is associated with a physical
file of the same name. In pp, file variables appearing in the program header are associated
with file names appearing as command-line arguments. See "Invoking the Compiler" in
the ProfeJJional Pascal Programmer's Guide.

2.9. No Assert Statement

The aCiSert statement of pc is not supported in pp.

2.10. Relational Operators on Sets

The relational operators CI < " and CI > " may not be applied to sets in pp as can be done in
pc.

2. t 1. Simple Types Integer and Real

In pc, an integer is 32 bits wide. That is, it follows the conceptual definition:

type integer = - 2147483648 .. 2147483647;

In pp, an integer is 16 bits wide; it follows the conceptual definition:

type integer = - 32768 .. 32767;

Pp predefines the type longint to represent 32-bit integers; it is equivalent to pc's type
integer.

15 Dec 1986

IBM/4.3-PSD:7-4 Professional Pascal Differences

Pc represents a real in double-precision, or 64 bits. Pp represents real in single-precision,
or 32 bits. Pp predefines the type longreal to represent double-precision; it is equivalent to
pc's type real.

If a pc program which is dependent on 32-bit integers and double-precision reals is ported
to pp, the following redefinitions can be used:

type
integer = longint;
real = longreal;

const
maxint = maxlong;

2.12. Predcfincd Types

Pc predefines the types alfa and intset as:

type
alfa = packed array [1.. 10) of char;
intset = set of 0 .. 127;

These types are not predefmed in pp; the above definitions can be added to existing pro­
grams that depend upon these types.

2.13. Subrange Mapping

In pc, the subrange 0 .. 255 is mapped to a 16-bit word. In pp, it is mapped to an unsigned
byte.

Pc maps the subrange 0 .. 65535 to a 32-bit longword; pp maps it to an unsigned (16-bit)
word.

2.14. Global Variablcs

In pc, all variables at the outermost level are made global static. In pp, such variables are
made local static by default. The preferred way to share variables across modules in pp is
via interface packages; however, the statement "pragma data(COMMON);" can be
specified before the first variable declaration to achieve the same effect from pp.

2.15. Predefined Constants

Pc predefines the integer constant "minint"; pp does not. The following definition can be
used:

const
minint = - maxint - I;

The predefined character constants "minchar," "maxchar," "bell," and "tab" of pc are not
supported in pp.

References

• Appendix C of this manual, which contains the "High C Programmer's Guide"

• Professional Pascal Documentation Set, available from:

MetaWare Incorporated
903 Pacific Avenue, Suite 201
Santa Cruz, CA 95060
(408) 429-META

15 Dec 1986

PI C - A Graphics Language for Typesetting
User Manual

Brian W. Kernighan

ABSTRAC'T

PIC is a language for drawing simple figures on a typesetter. The basic
objects in PIC are boxes, circles, ellipses, lines, arrows, arcs, spline curves, and
text. These lllay be placed anywhere, at positions specified absolutely or in terms
of previous objects. The example below illustrates the general capabilities of the
language.

Socument ----'<3I~1 PIC I--_~~'I~BI~/EQN~ <311 TROFF <31: (optional) :I------;:~
~ ______ ~ L ______ J

This picture was created with the input

ellipse "document"

arrow

box "PIC"

arrow

box "TBL/EQN" "(optional)" dashed

arrow

box "TROFF"

arrow

ellipse "typesetter"

I)IC is another TROFF processor; it passes most of its input through
untouched, but translates commands between .I)S and .PE into TROFF com­
mands that draw the pictures.

1. Introduction

PIC is a language for drawing simple pictures. It operates as yet another TROI;F(I] prepro­
cessor, (in the same style as EQN[2J, TBL[3] and REFER(4I), with pictures marked by .PS and
.PE.

PIC was inspired partly by Chris Van Wyk's early work on IDEAL(5); it has somewhat the
same capabilities, but quite a different flavor. In particular, PIC is much more procedural- a pic­
ture is drawn by specifying (sometimes in painful detail) the motions that one goes through to
draw it. Other direct influences include the PICTURE language (6) and the V viewgraph language
[7].

This paper is primarily a user's manual for I)IC; a discussion of design issues and user
experience may be found in (8]. The next section shows how to use PIC in the most simple way.
Subsequent sections describe how to change the sizes of objects when the defaults are wrong, and
how to change their positions when the standard positioning rules are wrong. An appendix

- 2 -

describes the language succinctly and more or le~s precisely.

2. Basics

PIC provides boxes, lines, arrows, circlcs, ellipses, arcs, and splines (arhitrary smooth
curves), plus facilities for positioning and labeling them. The picture below shows all of the fun­
damental objects (except for splines) in their default sizes:

line arrow
~ 8 ar~

Each picture begins with .PS and ends with .PE; betwecn them are commands to describe the
picture. Each command is typed on a line by itself. For example

.PS

box "this is" "a box"

.PE

creates a st.andard box (% inch wide, '12 inch high) and centers the two pieces of text in it:

this is
a box

Each line of text is a separate quoted string. Quotes are mandatory, even if the text contains
no blanks. (Of course there needn't be any text at all.) Each line will be printed in the current
size and font, cent.ered horizontally, and separated vertically by the current TROf"F line spacing.

PIC docs not center the drawing itself, but the default definitions of .PS and .PE in the -ms
macro package do.

You can use circle or ellipse in place of box:

Text is centered on lines and arrows; if there is mOTe than one line of text, the lines are cen­
tered above and below:

.PS

arrow "this is" "an arrow"

.PE

produces
this is

" an arrow
and

line "this is" "a line"

gives

- 3 -

this is
a hne

Boxes and lines may be dashed or dotted; just add the word dashed or dott('(1 after box or
line.

Arcs by default turn 90 degrees counterclockwise from the current direction; you can make
them turn clockwise by saying arc cw. So

line; arc; arc cw; arrow

produces

_f
A spline might welJ do this job better; we will return to that shortly.

As you might guess,

arc; arc; arc; arc

draws a circle, though not very efficiently.

Objects are normally drawn one after another, left to right, and connected at the obvious
places. Thus the input

arrow; box "input"; arrow; box "process"; arrow; box "output"; arrow

produces the figure

--~~ I input I ~I proress 1----':~~[UutPut
If you want to leave a space at some place, use move:

box; move; box; move; box

produces

DDD
Notice that several commands can be put on a single line if they are separated by semicolons.

Although objects are normally connected left to right, this can be changed. If you specify a
direction (as a separate object), subsequent objects will be joined in that direction. Thus

down; box; arrow; ellipse; arrow; circle

- 4 -

produces

and

left; box; arrow; ellipse; arrow; circle

produces

Each new picture begins going to the right.

Normally, figures are drawn at a fixed scale, with objects of a standard size. It is possible,
however, to arrange that a figure be expanded to fit a particular width. If the .PS line contains a
number, the drawing is forced to be that many inches wide, with the height scaled propor­
tionately. Thus

.PS 3.Si

causes the picture to be 3.5 inches wide.

PIC is pretty dumb about the size of text in relation to the size of boxes, circles, and so on.
There is as yet no way to say "make a box that just fits around this text" or "make this text fit
inside this circle" or "draw a line as long as this text." All of these facilities are useful, so the limi­
tations may go away in the fullness of time, but don't hold your hreath. In the meantime, tight
fitting of text can generally only be done by trial and error.

Speaking of errors, if you make a grammatical error in the way you describe a picture, PIC
will complain and try to indicate where. For example, the invalid input

box arrow box

will draw the message

pic: syntax error near line S, file -

context is

box arrow" box

- 5 -

The caret" marks the place where the error was first noted; it typically follow.r the word in error.

3. Controlling Sizes

This section deals with how to control the sizes of objects when the Cldefault" sizes are not
what is wanted. The next section deals with positioning them when the default positions are not
right.

Each object that PIC knows about (boxes, circles, etc.) has associated dimensions, like
height, width, radius, and so on. By default, PIC tries to choose sensible default values for these
dimensions, so that simple pictures can be drawn with a minimum of fuss and bother. All of the
figures and motions shown so far have been in their default sizes:

box
circle
ellipse
arc
line or arrow
move

% II wide x Yz II high
Yz II diameter
% II wide x Yz" high
Yz" radius
Yz" long
'/z" in the current direction

When necessary, you can make any object any size you want. For example, the input

box width 3i height O.li

draws a long, flat box

3 inches wide and 1/10 inch high. There must be no space between the number and the "i" that
indicates a tneasurement in inches. In fact, the "i" is optional; all positions and dimensions are
taken to be in inches.

Giving an attribute like width changes only the one instance of the object. You can also
change the default size for all objects of a particular type, as discussed later.

The attributes of height (which you can abbreviate to ht) and width (or wid) apply to boxes,
circles, ellipses, and to the head on an arrow. The attributes of radius (or rad) and diameter (or
diam) can be used for circles and arcs if they seem more natural.

Lines and arrows are most easily drawn by specifying the amount of motion from where one
is right now, in terms of directions. Accordingly the words up, down, left and right and an
optional distance can be attached to line, arrow, and mm.'e. For example,

draws

.PS

line up 1 i right 2i

arrow left 2i

move left 0.1 i

line < - > down 1 i "height"

.PE

- 6 -

The notation < - > indicates a two-headed arrow; usc - > for a head on the end and < - for one
on the start. Lines and arrows are realty the same thing; in fact, arrow is a synonym for line - > .

If you don't put any distance after up, down, etc., PIC uses the standard distance. So

line up right; line down; line down left; line up

draws the parallelogram

Warning: a very common error (which hints at a language defect) is to say

line 3i

A direction is needed:

line right 3i

Boxes and lines may be dotted or dashed:

comes from

box dottcd; linc dotted; move; line dashed

If there is a number after dot, the dots will be that far apart. You can also control the size of the
dashes (at least somewhat): if there is a length after the word dashed, the dashes will be that long,
and the intervening spaces will be as close as possihle to that size. So, for instance,

comes from the inputs (as separate pictures)

line right Si dashed

line right Si dashcd 0.2Si

line right Si dashed O.5i

line right Si dashed 1 i

- 7 -

Sorry, but circles and arcs can't be dotted or dashed yet, and probably never will be.

You can make any object invisible by adding the \\lord illvis(iblc) after it. This is particu­
larly useful for positioning things correctly near text, as we witt sec later.

Text may be positioned on lines and arrows:

.PS

arrow "on top or'; move

arrow "above" "below"; move

arrow "abovc" above; move

arrow "below" below; move

arrow "above" "on top or' "below"

.PE

produces

on top~f
above
belo~

above
---~ bclo~

above
Ofl-~

below
The "width" of an arrowhead is the distance across its tail; the "height" is the distance along

the shaft. The arrowheads in this picture are default size.

As we said earlier, arcs go 90 degrees counterclock\\lisc from where you are right now, and
arc cw changes this to clockwise. The default radius is the samc as for circles, but you can change
it with the rad attribute. It is also easy to draw arcs bctwccn specific places; this will be described
in the next section.

To put an arrowhead on an arc, use one of < -, - > or < - > .

In all cascs, unless an explicit dimension for some object is specified, you will get the default
SIze. If you want an object to have the same size as the previous one of that kind, add the word
samc. Thus in the set of boxes given by

down; box ht O.2i wid 1.5i; move down 0.1 Si; box same; move same; box same

_______ J
the dimensions set by the fust box are used several times; similarly, the amount of motion for the
second move is the same as for the fust one.

- 8 -

It is possible to change the default sizes of objects by assigning values to certain variables:

boxwid, boxht

linewid, Iineht

dashwid

circlerad

arcrad

cllipscwid, ellipseht

movewid, moveht

arrowwid, arrowht (These refer to the arrowhead.)

So if you want all your boxes to be long and skinny, and relatively close together,

gives

box wid "" 0.1 i; boxht = 1 i
movewid = O.2i

box; move; box; move; box

PIC works internally in what it thinks are inches. Setting the variable scale to some value
causes all dimensions to be scaled down by that value. Thus, for example, scale = 2.54 causes
dimensions to be interpreted as centimeters.

The number given as a width in the .PS line overrides the dimensions given in the picture;
this can be used to force a picture to a particular size even when coordinates have been given in
inches. Experience indicates that the easiest way to get a picture of the right size is to enter its
dimensions in inches, then if necessary add a width to the .PS line.

4. Controlling Positions

You can place things anywhere you want; PIC provides a variety of ways to talk about
places. I>IC uses a standard Cartesian coordinate system, so any point or object has an x and y
position. The first object is placed with its start at position 0,0 by default. The x,y position of a
box, circle or ellipse is its geometrical center; the position of a line or motion is its heginning; the
position of an arc is the center of the corresponding circle.

Position modifiers like from, to, by and at are followed by an x,y pair, and can be attached
to boxes, circles, lines, motions, and so on, to specify or modify a position.

You can also use up, down, right, and Icft with line and mo\'c. Thus

- 9 -

.PS 2

box ht 0.2 wid 0.2 at 0,0 "I"

or "move right OS' move to 0.5,0

box "2" same

move same

box "3" same

use same dimensions as last box

use same motion as before

.PE

draws three boxes, like this:

Note the use of same to repeat the previous dimensions instead of reverting to the defau1t values.

Comments can be used in pictures; they begin with a # and end at the end of the line.

Attributes like ht and wid and positions like at can be written out in any order. So

box ht 0.2 wid 0.2 at 0,0

box at 0,0 wid 0.2 ht 0.2

box ht 0.2 at 0,0 wid 0.2

are all equivalent, though the last is harder to read and thus less desirable.

The from and to attributes are particularly useful with arcs, to specify the endpoints. By
default, arcs are drawn counterclockwise,

arc from O.Si,O to O,O.Si

is the short arc and

arc from O,O.5i to O.Si,O

is the long one:

If the from attribute is omitted, the arc starts where you are now and goes to the point given by
to. The radius can be made large to provide flat arcs:

arc - > cw from 0,0 to 2i,O rad l5i

produces

- 10 -

We said earlier that objects arc nonnally connected left to right. lbi~ i~ an over­
simplification. The truth is that objects are connected together in the direction specified by the
most recent up, down, Icft or right (either alone or as part of some object). Thus, in

arrow left; box; arrow; circle; arrow

the left implies connection towards the left:

This could also be written as

left; arrow; box; arrow; circle; arrow

Objects arc joined in the order detennincd by the last up, down, ctc., with thc cntry point of
the second object attached to the exit point of the first. Entry and cxit points for boxes, circles
and ellipses arc on opposite sides, and the start and end of lincs, motions and arc~. It's not
entirely clear that this automatic connection and direction selcction is the right design, but it
seems to simplify many examples.

If a set of commands is enelosed in braces { ... J, the currcnt position and direction of motion
when the group is finished will be exactly where it was when entercd. Nothing else is restored.
There is also a more general way to group objects, using I and I, which is discussed in a later sec­
tion.

5. Labels and Corncrs

Objects can be labelled or named so that you can talk about them later. For example,

.PS

Roxl:

.PE

box ...

... other stuff ...

move to Box1

Place names have to begin with an upper case Icttcr (to distinguish them from variables, which
begin with lower case letters). lbe name refers to the "centcr" of the object, which is the
geometric center for most things. It's the beginning for lines and motions.

Other combinations also work:

line from Roxt to Box2

move to Rox1 up 0.1 right 0.2

move to Boxl + 0.2,0.1 # same as previous

line to Rox 1 - 0.5,0

The reserved name Here may be used to record the current position of some object, for example
as

- 11 -

Box): Here

I Abels are variables - they can be reset several times in a single picture, so a line of the
form

Iloxl: Iloxl + 1i,1i

is perfectly legal.

You can also refer to previously drawn ohjects of each type, using the word last. Por exam­
ple, given the input

box" A"; circle "Il"; box "e"

then 'last box' refers to box C, 'last circle' refers to circ1e n, and '2nd last box' refers to box A.
Numbering of objects can also be done from the beginning, so boxes A and C are '1st box' and
'2nd box' respectively.

To cut down the need for explicit coordinates, most objects have "corners" named by com­
pass points:

B .nw .--____ B_.n ___ ----. B .ne

B.w B.c D.e

B.sw ~---""'B""-----~ D.se .s

The primary compass points may also be written as .r, .b, .I, and .t, for right, bottom, left, and
top. The box above was produced with

.PS 1.5

Il: box "Il.c"

" Il.e" at Re ljust

" Rne" at n.ne ljust

" Rse" at B.se ljust

"B.s" at B.s below

"B.n" at B.n above

"B.sw " at B.sw rjust

"B.w" at B.w rjust

"B.nw " at Rnw rjust

.PE

Note the use of Ijust, rjust, above, and below to alter the default positioning of text, and of a blank
with some strings to help space them away from a vertical line.

Lines and arrows have a start, an end and a center in addition to corners. (Arcs have only a
center, a start, and an end.) There are a host of (Le., too many) ways to talk about the comers of
an object. Besides the compass points, almost any sensible combination of left, right, top, bot­
tom, upper and lower will work. Furthermore, if you don't like the'.' notation, as in

- 12-

last box.ne

you can instead say

upper right of last box

A longer statement like

line from upper left of 2nd last box to bottom of 3 rd last ellipse

hegins to wear after a while, but it is descriptive. This part of the language is probably fat that
will get trimmed.

It is sometimes easiest to position objects by positioning some part of one at some part of
another, for example the northwest comer of one at the southeast comer of another. lbe with
attribute in PIC permits this kind of positioning. For example,

box ht O.75i wid O.75i

box ht O.Si wid O.Si with .sw at last box.se

produces

Notice that the comer after with is written .-sw.

As another example, consider

ellipse; ellipse with .nw at last ellipse.se

which makes

Sometimes it is desirable to have a line intersect a circle at a point which is not one of the
eight compass points that PIC knows about. In such cases, the proper visual effect can be
obtained by using the attribute chop to chop off part of the line:

circle "a"

circle "b" at 1 st circle - (O.75i, Ii)

circle "c" at 1st circle + (O.75i, -Ii)

line from 1 st circle to 2nd circle chop

line from I st circle to 3rd circle chop

produces

- 13 -

By default the line is chopped by circlerad at each end. This may be changed:

line ... chop r

chops both ends by r, and

line ... chop r1 chop r2

chops the beginning by rl and the end by r2.

There is one other fonn of positioning that is sometimes useful, to refer to a point some
fraction of the way between two other points. lbis can be expressed in PIC as

fraction of the way between position 1 and position2

fraction is any expression, and positionl and position2 are any positions. You can abbreviate this
rather windy phrase; "of the way" is optional, and the whole thing can be written instead as

fraction < position1 ,position2 >

As an example,

box

arrow right from 1/3 of the way between last box.ne and last box.se

arrow right from 2/3 < last box.ne, last box.se >

produces

:

- 14-

Naturally, the distance given by fraction can be greater than 1 or less than O.

6. Variables and Expressions

It's general1y a bad idea to write everything in absolute coordinates if you are likely to
change things. PIC variables let you parameterize your picture:

ing.

a = 0.5; b = 1

box wid a ht b

ellipse wid aj2 ht 1.5*b

move to Roxt - (aj2, bj2)

Expressions may use the standard operators +, -, *, I, and 0/0 , and parentheses for group-

Probably the most important variables are the predefined ones for contro1ling the default
sizes of objects, listed in Section 4. These may he set at any time in any picture, and retain their
values until reset.

You can use the height, width, radius, and x and y coordinates of any ohject or comer in
an expressIOn:

nox1.x

Rox1.ne.y

noxl.wid

Boxl.ht

the x coordinate of nox1

" the y coordinate of the northeast corner of nox 1

II the width of Rox1

" and its height
2nd last circle.rad # the radius of the 2nd last circle

Any pair of expressions enclosed in parentheses defines a position; furthermore such posi­
tions can be added or subtracted to yield new positions:

(x ,y)

(XI 'YI) + (x2 'Y2)

If PI and P2 are positions, then

refers to the point

7. More Oil Text

Nonnally, text is centered at the geometric center of the object it is associated with. lbe
attribute Ijust causes the left end to be at the specified point (which means that the text lies to the
right of the specified place!), and rjust puts the right end at the place. above and below center the
text one half line space in the given direction.

- 15 -

At the moment you can not compound tcxt attrihutes: however natural it might seem, it is
illegal to say " ... " above Ijust. This will be fixed eventually.

Text is most often an attribute of some other object, but you can also have self-standing
text:

"this is some text" at t,2 Ijust

8. I..ines and Splines

A "line" may actually be a path, that is, it may consist of connected segments like this:

This line was produced by

line right 1 i then down .5i left t i then right t i

A spline is a smooth curve guided by a set of straight lines just like the line above. It hegins
at the same place, ends at the same place, and in between is tangent to the mid-point of each
guiding line. The syntax for a spline is identical to a (path) line except for using spline instead of
line. Thus:

line dashed right 1 i then down .5i left 1 i then right t i
spline from start of last line \

right li then down .5i left 1i then right Ii

produces

(Long input lines can be split by ending each piece with a back slash .)

The elements of a path, whether for line or spline, are specified as a series of points, either
in absolute terms or by up, down, etc. If necessary to disambiguate, the word th{'n can be used to
separate components, as in

spline right then up then left then up

which is not the same as

spline right up left up

At the moment, arrowheads may only be put on the ends of a line or spline; splines may
not be dotted or dashed.

- 16 -

9. Blocks

Any sequence of PIC statements may be enclosed in brackets ' ... 1 to form a block, which
can then be treated as a single object, and manipulated rather like an ordinary box. For example,
if we say

we get

box "1"

[box "2"; arrow "3" above; box "4"] with .n at last box.s - (0,0.1)

"thing" at last n.s

[CJ
'---_2_--'1 th~n: 1'---_4_--'

Notice that "last"-type constructs treat blocks as a unit and don't look inside for objects: "last
box.s" refers to box 1, not box 2 or 4. You can usc last I), etc., just like Ia.."t box.

Blocks have the same compass corners as boxes (determined by the bounding box). It is
also possible to position a block by placing either an absolute coordinate (like 0,0) or· an internal
label (like A) at some external point, as in

[... ; A: ... ; ...] with .A at ...

Blocks join with other things like boxes do (Le., at the center of the appropriate side). It's
not clear that this is the right thing to do, so it may change.

Names of variables and places within a block are local to that block, and thus do not affect
variables and places of the same name outside. You can get at the internal place names with con­
structs like

last [].A

or

B.A

where B is a name attached to a block like so:

B: [... ; A: ... ;]

When combined with define statements (next section), blocks provide a reasonable simulation of a
procedure mechanism.

Although blocks nest, it is currently possible to look only one level deep with constructs like
B.A, although A may be further qualified (Le., B.A.sw or top of B.A are legal).

- 17 -

The following example illustrates most of the points made ahove about how hlocks work:

h = .5i

dh = .02i

dw = .1i

Ptr: [
boxht = h; box wid = dw

A: box

B: box

C: box

box wid 2*boxwid " ... "

D: box

Block: [

boxht = 2*dw; box wid = 2*dw
movewid = 2*dh

A: box; move

8: box; move

C: box; move

box invis " ... " wid 2*boxwid; move

D: box

] with .t at Ptr.s - (O,h/2)

arrow from Ptr.A to Block.A.nw

arrow from Ptr.8 to Block.B.nw

arrow from Ptr.C to B1ock.C.nw

arrow from Ptr.D to Block.D.nw

box dashed ht last (].ht + dw wid last [). wid + dw at last n

This produces

r-------------,

10. Macros

PIC provides a rudimentary macro facility, the simple form of which is identical to that in
EQN:

define name X replacement text X

defines name to be the replacement text; X is any character that does not appear in the replace­
ment. Any subsequent occurrence of name will be replaced by replacement text.

Macros with arguments are also available. The replacement text of a macro definition may
contain occurrences of $1 through $9; these will be replaced by the corresponding actual argu­
ments when the macro is invoked. The invocation for a macro with arguments is

- 18 -

name(argl, arg2, ...)

Non-existent arguments are replaced by null strings.

As an example, one might define a square by

define square X box ht $1 wid $1 $2 X

Then

squarc(1 i, "one" "inch")

calls for a one inch square with the obvious label, and

square(O.5i)

cans for a square with no label:

one
inch

Coordinates like x,y may be enclosed in parentheses, as in (x,y) , so they can be included in a
macro argument.

11. TROFF Interface

PIC is usually run as a TROFF preprocessor:

pic file I trofT -ms

Run it before EQN and TBL if they are also present.

If the .I)S line looks like

.PS < file

then the contents of file are inserted in place of the .PS line (whether or not the file contains .PS
or .PE).

Other than this file inclusion facility, PIC copies the .PS and .PE lines from input to output
intact, except that it adds two things right on the same line as the .PS:

.PS h w

hand ware the picture height and width in units. The -ms macro package has simple defmitions
for .PS and .PE that cause pictures to be centered and offset a bit from surrounding text.

- 19 -

If ".PF" is used instead of .PE, the position after printing is restored to where it was before
the picture started, instead of being at the bottom. "1-" is for "flyback.")

Any input line that begins with a period is assumed to be a TROFF command that makes
sense at that point; it is copied to the output at that point in the document. It is asking for trou­
ble to add spaces or in any way fiddle with the line spacing here, hut point size and font changes
are generally harmless. So, for example,

gives

.ps 24
circle radius Ai at 0,0

.ps 12

circle radius .2i at 0,0

.ps 8

circle radius .1 i at 0,0

.ps 6

circle radius .05i at 0,0

.ps 10 \" don't forget to restore size

It is also safe to muck about with sizes and fonts and local motions within quoted strings
(" ... ") in PIC, so long as whatever changes are made are unmade before exiting the string. For
example, to print text in Old English in size 8, use

ellipse "\s8\f(OESmile!\fp\sO"

This produces

This is essentially the same rule as applies in EQN.

There is a subtle problem with complicated equations inside PIC pictures - they come out
wrong if EQN has to leave extra vertical space for the equation. If your equation involves more
than subscripts and superscripts, you must add to the beginning of each equation the extra infor­
mation space 0:

arrow

box "$space 0 {H(omega)} over {1 - H(omega)}$"

arrow

This produces

- 20 -

257text: SIS < - -; b= O,h = 60,/f= I,rf= I

257text: SIS < - -; b= O,h= 60,/f= I,rf= I

257text: SIS <- h = O,h = 60,/f= I,rf= I

PIC normally generates commands for a new version of TROFF that has operators for
drawing graphical objects like lines, circles, and so on. As distributed, PIC assumes that its out­
put is going to the Mergenthaler Linotron 202 unless told otherwise with the -T option. At
present, the other alternatives are -Teat (the Graphic Systems CAT, which does slanted lines and
curves badly) and -Taps (the Autologic APS-5). It is likely that the option will already have been
set to the proper default for your system, unless you have a choice of typesetters.

12. Some Examples

Herewith a handful of larger examples:

ndtable:

hashtab:

The input for the picture above was:

- 21 -

define ndblock X
box wid boxwid/2 ht boxht/2
down; box same with .t at bottom of last boX; box same

X
boxht = .2i; boxwid = .3i; circlerad = .3i
down; box; box; boX; box ht 3"boxht "

L: box; box; box invis wid 2"boxwid "hashtab:" with .e at 1st box .w
right
Start box wid .Si with .sw at 1st box.ne + (.4i,.2i)

NI: box wid .2i "nl"; 01: box wid .3i "dl"
N3: box wid Ai "n3"; 03: box wid .3i "d3"
box wid Ai

N2: box wid .Si "n2"; 02: box wid .2i "d2"
arrow right from 2nd box
ndblock
spline - > right .2i from 3rd last box then to Nl.sw + (O.OSi,O)
spline - > right .3i from 2nd last box then to Ol.sw + (O.OSi,O)
arrow right from last box
ndblock
spline - > right .2i from 3rd last box to N2.sw-(O.OSi,.2i) to N2.sw t (O.OSi,O)
spline - > right .3i from 2nd last box to 02.sw-(O.OSi,.2i) to 02.sw -t (O.OSi,O)

arrow right 2"Jinewid from L
ndblock
spline - > right .2i from 3rd last box to N3.sw + (O.OSi,O)
spline - > right .3i from 2nd last box to D3.sw + (O.05i,O)
circle invis "ndblock" at last box.e + (.1i,.2i)
arrow dotted from last circle to last box chop
box invis wid 2"boxwid "ndtable:" with .e at Start.w

This is the second example:

diagnostic

message

printer

~

lexical syntactic

corrector corrector

~ I'

~ II

source lexical tokens
.... parser

code - analyzer

This is the input for the picture:

--

ntermedi~t(

code

symbol

table

I

w

semantic

checker

.PS 5

.ps 8

arrow "source" "code"

LA: box "lexical" "analyzer"

arrow "tokens" above

P: box "parser"

arrow "intermediate" "code"

Sem: box "semantic" "checker"

arrow

arrow < - > up from top of LA

LC: box "Iexical" "corrector"

arrow < - > up from top of P

Syn: box "syntactic" "corrector"

arrow up

- 22 -

DMP: box "diagnostic" "message" "printer"

arrow < - > right from right of D M P

ST: box "symbol" "table"

.PE

arrow from LC.ne to DMP.sw

arrow from Sem.nw to DMP.se

arrow < - > from Sem.top to ST.bot

There are eighteen objects (boxes and arrows) in the picture, and one line of PIC input for
each; this seems like an acceptable level of verbosity.

The next example is the following:

This is the input for example 3:

input

CPU
(16-bit mini)

Basic Digital Typesetter

CRT

..... paper

.KS

.PS 5i

circle "DISK"

arrow "character" "defns"

box "CPU" "(16-bit mini)"

- 23 -

{ arrow < - from top of last box up "input" rjusl }
arrow

CRT:" CRT" ljust

line from CRT - 0,0.075 up 0.15 \

then right 0.5 \

then right 0.5 up 0.25 \

then down 0.5 + 0.15 \

then left 0.5 up 0.25 \

then left 0.5

Paper: CRT + 1.0 + 0.05,0

arrow from Paper + 0,0.75 to Paper - 0,0.5

{ move to start of last arrow down 0.25

{ move left 0.0 I 5; circle rad 0.05 }

{ move right 0.0 t 5; circle rad 0.05;" rollers" Ijust }

}

" paper" Ijust at end of last arrow right 0.25 up 0.25

line left 0.2 dotted

.PE

.ce

Basic Digital Typesetter

.sp

.KE

13. Final Observations

PIC is not a sophisticated tool. lbe fundamental approach - Cartesian coordinates and
real measurements - is not the easiest thing in the world to work with, although it does have the
merit of being in some sense sufficient. Much of the syntactic sugar (or com syrup) - corners,
joining things implicitly, etc. - is aimed at making positioning and sizing automatic, or at least
relative to previous things, rather than explicit.

Nonetheless, PIC does seem to offer some positive values. Most notably, it is integrated
with the rest of the standard Unix document preparation software. In particular, it positions text
correctly in relation to graphical objects; this is not true of any of the interactive graphical editors
that I am aware of. It can even deal with equations in a natural manner, modulo the space 0
nonsense alluded to above.

A standard question is, "Wouldn't it be better if it were interactive?" lbe answer seems to
be both yes and no. If one has a decent input device (which I do not), interaction is certainly
better for sketching out a figure. But if one has only standard tcnninals (at home, for instance),
then a linear representation of a figure is better. Furthermore, it is possible to generate PIC input
from a program: I have used A WK[91 to extract numbers from a report and generate the PIC
commands to make histograms. lbis is hard to imagine with most of the interactive systcms I
knowof.

In any case, the issue is far from settled; comments and suggestions are welcome.

- 24 -

Acknowledgements

I am indebted to Chris VanWyk for ideas from several versions of IDEAl... I Ie and Doug
McIlroy have also contributed algorithms for line and circle drawing, and made useful suggestions
on the design of PIC. Theo Pavlidis contributed the basic spline algorithm. Charles Wetherell
pointed out reference [21 to me, and made several valuable criticisms on an early draft of the
language and manual. The exposition in this version has been greatly improved by suggestions
from .Tim Blinn. I am grateful to my early users - Brenda Baker, Dottie Luciani, and Paul
Tukey - for their suggestions and cheerful use of an often shaky and clumsy system.

References

1. .T. r. Ossanna, "NROFF/TROFF User's Manual," UNIX Programmer'!; Manual, vol. 2, Bell
Laboratories, Murray Hill, N.J., January 1979. Section 22

2. Brian W. Kemjghan and Lorinda L. Cherry, "A System for Typesetting Mathematics,"
Communications of the ACM, vol. 18, no. 3, pp. 151-157, 1975.

3. DNL, M. E. Lesk, "Tbl - A Program to Format Tables," UNIX Programmer's Manual,
vol. 2, Bell Laboratories, Murray Hill, N.J., January 1979. Section 10

4. DNL, M. E. Lesk, "Some Applications of Inverted Indexes on the UNIX System," UNIX
Programmer's Manual, vol. 2, Bell Laboratories, Murray Hill, N.J., January 1979. Section
11

5. Christopher J. Van Wyk and C. J. Van \Vyk, CIA Graphics Typesetting Language," SIG­
PLAN Symposium on Text Manipulation, Portland, Oregon, June, 1981.

6. John C. Beatty, "PICTURE - A picture-drawing language for the Trix/Red Report Edi­
tOf," Lawrence Livermore Laboratory Report lJCID-30156, April 1977.

7. Anon., "V - A viewgraph generating language," Ben Laboratories internal memorandum,
May 1979.

8. B. W. Kernighan, "PIC - A Language for Typesetting Graphics," Software Practice &
Experience, vol. 12, no. 1, pp. 1-21, January, 1982.

9. A. V. Abo, P. 1. Weinberger, and B. W. Kernighan, "AWK - A Pattern Scanning and Pro­
cessing Language," Software Practice and Experience, vol. 9, pp. 267-280, April 1979.

- 25 -

Appendix A: I)IC Reference Manual

Pictures

The top-level object in PIC is the "picture":

picture:

.PS optional-width

element-list

.PE

If optional-width is present, the picture is made that many inches wide, regardless of any dimen­
sions used internally. The height is scaled in the same proportion.

If instead the line is

.PS < f

the file f is inserted in place of the .PS line.

If .PF is used instead of .PE, the position after printing is restored to what it was upon
entry.

Elements

An element-list is a list of elements (what else?); the elements are

element

primitive attribute-list

placename : element

placename : position

variable = expression

direction

troff-command

{ element-list}

[element-list]

Elements in a list must be separated by newlines or semicolons; a tong element may be con­
tinued by ending the line with a backslash. Comments are introduced by a # and terminated by a
newline.

Variable names begin with a lower case letter; place names begin with upper case. Place and
variable names retain their values from one picture to the next.

The current position and direction of motion are saved upon entry to a { ... J block and
restored upon exit.

Elements within a block enclosed in (... J are treated as a unit; the dimensions are determined
by the extreme points of the contained objects. Names, variables, and direction of motion within
a block are local to that block.

troff-command is any line that begins with a period. Such Jines are assumed to make sense
in the context where they appear; accordingly, if it doesn't work, don't call.

Primitivl'S

The primitive objects are

primitive:

box

circlc

ellipse

arc

line

arrow

move

spline

"any text at all"

arrow is a synonym for line - > .

Attributes

- 26-

An attribute-list is a sequence of zero or more attributes; each attrihute consists of a key­
word, perhaps followed by a value. In the following, e is an expression and npl-e an optional
expression.

attribute:

h(eigh)t e

rad(ius) e
up opt-e

right opt-e

from position

at position

bye, e
dottcd opt-e

chop opt-e

same

text-list

wid(th) e
diam(ctcr) e

down opl-e

left opl-e

to position

with corner

then

dashed opt-e
.... ~ -< - >

in vis

Missing attributes and values are filled in from defaults. Not all attributes make sense for all
primitives; irrelevant ones are silently ignored. These are the currently meaningful attributes:

- 27 -

box:

height, width, at, dotted, dashed, invis, same, text

circle and ellipse:

arc:

radius, diameter, height, width, at, invis, same, text

up, down, left, right, height, width, from, to, at, radius,

invis, same, cw, < -, - >, < - >, text
line, arrow

up, down, left, right, height, width, from, to, by, then,

dotted, dashed, invis, same, < -, - >, < - > , text

spline:

up, down, left, right, height, width, from, to, by, then,

invis, < -, - >, < - > , text

move:

up, down, left, right, to, by, same, text

"text...":

at, text

The attribute at implies placing the geometrical center at the specified place. Por lines, splines
and arcs, height and width refer to arrowhead size.

Text

Text is normally an attribute of some primitive; by default it is placed at the geometrical
center of the object. Stand-alone text is also permitted. A text-list is a list of text items; a text
item is a quoted string optionally followed by a positioning request:

text-item:

" ... " center

" ... " ljust

" ... " rjust

" ... " above

" ... " below

If there are multiple text items for some primitive, they are centered vertically except as qualified.
Positioning requests apply to each item independently.

Text items can contain TROFF commands for size and font changes, local motions, etc.,
but make sure that these are balanced so that the entering state is restored before exiting.

Positions and places

A position is ultimately an x,y coordinate pair, but it may be specified in other ways.

position:

e, e

place ± e, e

(position, position)

e lof the way J between position and position

e < position ,position >

The pair e, e may be enclosed in parentheses.

place:

placename oplional-corner

corner placename

Here

corner of nih primitive

nih primitive opllonal-corner

- 28 -

A corner is one of the eight compass points or the center or the start or end of a primitive. (Not
text!)

corner:

.n .e .W .s .ne .se .nw .sw

.t .b .r .I

.c .start .end

Each object in a picture has an ordinal number; nth refers to this.

nih:

nth

nth last

Since barbarisms like Ith are barbaric, synonyms like 1st and 3stare accepted as well.

Variables

The built-in variables and their default values are:

box wid O.7Si

circler ad O.2Si

ellipse wid O.7Si

arcrad 0.2Si

Iinewid O.5i

movewid O.Si

arrowht 0.1 i

dashwid O.li

scale 1

boxht O.Si

cllipscht O.Si

Iincht O.Si

movcwid O.5i

arrowwid O.OSi

These may be changed at any time, and the new values remam 10 force until changed again.
Dimensions are divided by scale during output.

Expressions

Expressions in PIC are evaluated in floating point. All numbers representing dimensions are
taken to be in inches.

expression:

e + e

Definitions

e -- e

e*e

e/e
e % e (modulus)

- e
(e)

variable

number

place .x

place .y

place .ht

place .wid

place .rad

- 29 -

The define statement is not part of the grammar.

define:

define name X replacement text X

Occurrences of $1 through $9 in the replacement text will be replaced by the corresponding argu­
ments if name is invoked as

namc(argl, arg2, ...)

Non-existent arguments are replaced by null strings. Replacement text may contain newlines.

This page intentionally left blank.

December 1987

4.3 for the IBl\1 RT PC Appendices

APPENDICES

The following appendices are provided:

• Appendix A. Software Description

lists those few functions of 4.3BSD that are flat supported In this distribution of
IBM/4.3.

• Appendix B. Graphics Manual Pages

contains manual pages for the graphics routines used by the C subroutine interface
described in Volume II.

• Appendix C. High C Programmer's Guide

contains a guide for programming in C, using the Iligh C compiler from Meta W are
Incorporated.

July 1987

4.3 for the IBM RT PC Appendices

This page intentionally left blank.

2 .July 1987

Software Dc..~cription IBM/4.3-PSD:8-1

Appendix A. Software Description

This appendix contains a listing of unsupported functions found in IBM/4.3.

1. UNSlJPI)ORTED FlJNCTIONS

The following sections list the functions of 4.3BSD for the V AX that are not supported by
IBM/4.3.

1.1. Section I: Commands and Application Programs.

Man Page Name Section and Description

fp fp
gcore gcore
lisp lisp
liszt liszt
Ixref lxref
pc pc
pdx pdx
pi pi
pix piX
pmerge pmerge
px px
pxp pxp
pxref pxref
sccs sccs
tc tc
tcopy tcopy
tk tk
tp tp
vIp vIp

vwidth vwidth

1.2. Section 2: System Calls

NONE
1.3. Section 3: C Library Subroutines

NONE
1.4. Section 3F: FORTRAN Library

Man Page Name

plot arc
plot box
plot circle
plot c10spl
plot cont
plot erase
plot label
plot line

(1) functional programming language compiler/interpreter
(I) get core images of running processes
(1) I jsp interpreter
(I) compile a Franz Lisp programx
(I) Lisp cross reference program
(I) Pascal compiler
(I) Pascal debugger
(I) Pascal interpreter code translator
(I) Pascal interpreter and executor
(1) Pascal file merger
(I) Pascal interpreter
(I) Pascal execution pro filer
(I) Pascal cross-reference program
(1) front end for the sccs subsystem
(I) phototypesetter simulator
(I) copy a mag tape
(1) paginator for the Tektronix 4014
(1) manipulate tape archive
(1) format Lisp programs to be printed with moff, vtroff, or

trofT
(1) make trofT width table for a font

Section and Description

(31') f77 library interface to plot(3X) libraries
(31') f77 library interface to plot(3X) libraries
(31') f77 library interface to plot(3X) libraries
(31') f77 library interface to plot(3X) libraries
(31') f77 library interface to plot(3X) libraries
(3F) f77 library interface to plot(3X) libraries
(31') f77 library interface to plot(3X) libraries
(31') f77 library interface to plot(3X) libraries

December 1987

IBI\1/4.3-PSD:8-2

plot
plot
plot
plot
plot
plot
random
random
random

linemd
move
openpl
plot
point
space
drandm
irandm
random

Software Description

(31') f77 library interface to plol(3X) libraries
(3F) fn library interface to plol(3X) libraries
(31') f77 library interface to plol(3X) libraries
(31') f77 library interface to plol(3X) libraries
(31') f77 library interface to plot(3X) libraries
(317) f77 library interface to plot(3X) libraries
(3 F) better random number generator
(3F) better random number generator
(3 F) bet ter random number generator

1.5. Section 3G: AED Graphies Subl'outin('s

NONE

1.6. Section 3M: Math Library

Man Page Name

infnan infnan

1.7. Section 3N: Internet Network Library

Man Page

ns
ns

Name

ns addr
ns ntoa

Section and Description

(3M) signals invalid floating point operations on a
VAX (temporary)

Section and Description

(3N) Xerox NS(tm) address conversion routines
(3N) Xerox NS(tm) address conversion routines

1.8. Section 3S: C Standard I/O I..ibrary Subroutines

NONE

1.9. Section 3X: Other Libraries

Man Page Name Section and Description

Iib2648
plot
plot
plot
plot
plot
plot
plot
plot
plot
plot
plot
plot
plot

lib2648
arc
circle
closept
cont
erase
label
line
linemod
move
openpl
plot
point
space

(3X) suhroutines for the III' 2648 graphics tenninal
(3X) graphics interface
(3X) graphics interface
(3X) graphics interface
(3X) graphics interface
(3X) graphics interface
(3X) graphics interface
(3X) graphics interface
(3X) graphics interface
(3X) graphics interface
(3X) graphics interface
(3X) graphics interface
(3X) graphics interface
(3X) graphics interface

1.10. Section 3C: Compatibility Library Subroutines

NONE

December 1987

Software Description

1.11. Section 4: Special Files

Man Page Name

acc acc
ad ad
css css
crl crl
ct ct
ddn ddn
de de
dh dh
dhu dhu
dmc dmc

dmf dlnf
dmz dmz
dn dn
dz dz
ec ec
en en
ex ex
fl fl
hdh hdh
hk hk
hp hp
ht ht
hy hy
idp idp
ik ik
il il
imp imp
ix IX

kg kg
mt mt
np np
ns ns
nsip nSlp

pel pel
ps ps

qe qe
rx rx
spp spp
tm tm
tmscp tmsep
ts ts
tu tu
uda uda
up up
ut ut

IBM/4.3-PSD:8-3

Section and Description

(4) ACC LIJ/DII IMP interface
(4) Data Translation A/D converter
(4) DEC IMP-IIA LIJ/DII IMP interface
(4) VAX 8600 console RL02 interface
(4) phototypesetter interface
(4) DON Standard Index.25 IMP Interface
(4) DEC DEUNA 10 Mb/s Ethernet Interface
(4) DII-II/DM-II communications multiplexer
(4) DIIU-II communications multiplexer
(4) DEC DMC-II/DMR-II point-to-point communications

device
(4) DMF-32, tenninal multiplexer
(4) DMZ-32 tenninal multiplexer
(4) 0 N -11 autocall unit interface
(4) DZ-II communications multiplexer
(4) 3Com 10 Mb/s Ethernet interface
(4) Xerox 3 Mb/s Ethernet interface
(4) Excclan 10 Mb/s Ethernet interface
(4) console diskette interface
(4) ACC IF-II/IIDII IMP interface
(4) RK6-II/RK06 and RK07 moving head disk
(4) MASS D US disk interface
(4) TM-03/TE-16,TU-45,TU-77 MASSBUS magtape interface
(4) Network Systems Hyperchanncl interface
(4P) Xerox Internet Datagram Protocol
(4) Ikonas frame buffer, graphics device interface
(4) Interlan 10 Mb/s Ethernet interface
(4) 1822 network interface
(4) Interlan NPIOO 10 Mb/s Ethernet interface
(4) KL-ll/DL-ll\V line clock
(4) TM78/TU-78 MASS nus magtape interface
(4) Interlan NP 100 Mb/s Ethernet interface
(41') Xerox Network Systems(tm) protocol family
(4) software network interface encapsulating ns packets in ip

packets
(4) DEC CSS PCL-II D Network Interface
(4) Evans and Sutherland Picture System 2 graphics device

interface
(4) DEC DEQNA Q-bus 10 Mb/s Ethernet interface
(4) DEC RX02 diskette interface
(4P) Xerox Sequenced Packet Protocol
(4) 'I'M-II /TE-I 0 magtape interface
(4) DEC TMSCP magtape interface
(4) TS-II magtape interface
(4) VAX-I 1/730 and VAX-I 1/750 TUS8 console cassette interface
(4) UDA-SO disk controller interface
(4) unibus storage module controller/drives
(4) UNIBUS TlJ45 tri-density tape drive interface

December 1987

IBM/4.3-PSD:8-4

uu
va
vp
vv

uu
va
vp
vv

Software Description

(4) TU58/DECtape II UNIBUS cassette interface
(4) Benson -Varian interface
(4) Versatec interface
(4) Proteon pro NET 10 Megabit ring

December 1987

Software De..'tcription

1.12. Scction 5: File Formats

1.13.

1.14.

Man Page

tp
vfont

Section 6: Games

Man Page

aardvark
adventure
arithmetic
backgammon
banner
battlestar
bcd
boggle
canfield
canfield
chess
ching
cribbage
doctor
fish
fortune
hangman
hunt
mille
monop
number
quiz
ram
rogue
sail
snake
snake
trek
worm
worms
wump
zork

Name

tp
vfont

Name

aardvark
adventure
arithmetic
backgammon
banner
battlestar
bcd
boggle
canfield
cfscores
chess
ching
cribbage
doctor
fish
fortune
hangman
hunt
mille
monop
number
quiz
rain
rogue
sail
snake
snscore
trek
worm
worms
wump
zork

Section 7: Miscellaneous

NONE

1.15. Section 8: System Maintenance

Man Page Name

analyze analyze
arIT arff
arIT flcopy

IBM/4.3-PSD:8-5

Section and Description

(5) DEC/mag tape formats
(5) font fonnats for the Benson-Varian or Versatec

Section and Description

(6) yet another exploration game
(6) an exploration game
(6) provide driH in number facts
(6) the game of backgammon
(6) print large banner on printer
(6) a tropical adventure game
(6) convert to antique media
(6) the game of boggle
(6) the solitaire card game Canfield
(6) the solitaire card game Canfield
(6) the game of chess
(6) the book of changes and other cookies
(6) the card game cribbage
(6) interact with a psychoanalyst
(6) play Go fish
(6) print a random, hopefully interesting, adage
(6) computer version of the game hangman
(6) a multi player multitenninal game
(6) play Mille Bournes
(6) the game of Monopoly
(6) convert Arabic numerals to English
(6) test your knowledge
(6) animated raindrops display
(6) exploring the dungeons of doom
(6) mulituser wooden ships and iron men
(6) display chase game
(6) display chase game
(6) trekkie game
(6) the growing worm game
(6) animate worms on a display terminal
(6) the game of hunt-the-wumpus
(6) the game of dungeon

Section and Description

(8) virtual UNIX postmortem crash analyzer
(8R) archiver and copier for diskette
(8) archiver and copier for diskette

December 1987

IBM/4.3-PSD:8-6

bad 144
drtest
implog
implogd
rxformat
XNSrouted

bad 144
drtest
implog
implogd
rxfo rm at
X NSrouted

Software Description

(H) read/write DEC standard 144 bad sector information
(H) standalone disk test program
(8e) IMP log interpreter
(HC) IMP logger process
(8V) format diskettes
(8C) NS Routing Information Protocol daemon

December 1987

Graphics Manual Pages IBM/4.3-PSD:9-1

Appendix B. Graphics Manual Pages for the
IBM Academic Information Systems Experimental Display

This section contains the manual pages for section 3G; they describe the display graphics subrou­
tines. You may want to file these manual pages in Volume I.

• intro (3G) • line (3G)

• circle (3G) • log (3G)

• clip (3G) • merge (3G)

• color (3G) • move (3G)

• copy (3G) • query (3G)

• cursor (3G) • read (3G)

• dash (3G) • run (3G)

• font (3G) • string (3G)

• force (3G) • tile (3G)

• image (3G) • width (3G)

• init (3G)

15 Dec 1986

IHM/4.3-PSD:9-2 Graphics l\1anual Pages

This page intentionally left blank.

15 Dec 1986

INTRO(3G) INTRO(3G)

NAME
intro - introduction to display graphics subroutines

DESCRIPTION
This section describes the subroutines that are part of the interface for the IBM Academic Infor­
tnation Systems experimental display (herein after called "the experimental display"). The sub­
routines are graphics routines for controlling the experimental display in all-points addressable
mode.

The interface described in this section provides access to a set of functions designed to support a
window manager, and is composed primarily of subroutines, as distinguished from functions. A
typical subroutine uses parameters to receive input and return output. C passes parameters by
value; to call a subroutine which returns information, you must supply an address for the return­
ing value as the parameter.

Calls that supply an address for return in this package should usually supply the address of a short
(16-bit) integer. Calls that pass integer values can usually get by with either short or into See the
individual routines.

Many of the subroutines do return a value as a function would, generally for error return codes
and special case handling. It is strongly recommended that applications monitor return codes to
prevent bizarre events and possibly more severe errors.

When linking, specify -laed to pick up the experimental-display library.

All subroutines use screen coordinates with the origin in the upper left corner of the experimental
display.

LIST OF FUNCTIONS
Name Appears on Page

VI_ALine line.3g
VI_AMove move.3g
VI Circle circle.3g
VI_Clip clip.3g
VI Color color.3g
VI_Copy copy.3g
VI Dash dash.3g
VI DisCur cursor.3g
VI_DropFont font.3g
VI EnCur cursor.3g
VI FDefnCur cursor.3g
VI_ FImage image.3g
VI Pont font.3g
VI Force force.3g
VI Fread read.3g
VI Getront font.3g
VI Init init.3g
VI_ Login log.3g
VI_Logout log.3g
VI MDefnCur cursor.3g
VI_Merge merge. 3
VI _ MImage image.3g
VI MRead read.3g
VI PosnCur cursor.3g
VI_QClip query.3
VI_ QColor query.3g
VI_QDash query.3g

PRPQs 5799-WZQ/5799-PFF: IBM/4.3

Description

draw a line to an absolute location
move the current point to an absolute location
draw a circle
set clipping window
change screen color
copy an area
set line dash pattern
disable cursor
release font
enable cursor
set cursor pattern from file
draw an image from a file
select font
force output of graphics orders
read experimental-display data into a file
load a font into memory
initialize the subroutine interface
begin logging subroutine calls
close a log file
set cursor pattern from memory
set merge mode
draw an image from memory
read experimental-display data into memory
set cursor position
query clipping rectangle
query current color
query dash pattern

3 I Jan 1985

INTRO(3G)

FILES

NOTE

VI_QFont
VI_QMerge
VI_OPoint
VI_OWidth
VI RLine
VI RMove
VI Run
VI_String
VI Term
VI Tile
VI Width

query.3g
query.3g
query.3g
query.3g
line.3g
move.3g
run.3g
string.3g
init.3g
tile.3g
width.3g

/usr/lib/aed/whim.aed
/usr/lib/aed/pcfont.fnt
/usr/lib/lihaed.a
/usr/src/usr.lib/libaed/examples
/dev/aed

query font
query merge mode
query current point
query line width
draw a line to a relative location
move the current point to a relative location
process a log file
draw a string
terminate the subroutine interface
tile a rectangle
set line width

INTRO(3G)

These subroutines apply only to the IBM Academic Information Systems experimental display.

SEE ALSO
"The C Subroutine Interface for the IBM Academic Information Systems Experimental DispJay"
in Volume II, Supplementary Documents.

PRPQs 5799-WZQ/5799-PFF: IBM/4.3 31 Jan 1985 2

CfRCLE(3G) CIRCLE(3G)

NAME
VI Circle - draw a circle

SYNOPSIS
VI_ Circlc(radius)

int radius; /* circle radius * /
DESCRIPTION

NOTE

VI_Circle draws a circle with the specified radius and the current point as its center. lbe current
point is unchanged.

VI_ Circle applies only to the IBM Academic Information Systems experimental display. The line
attributes VI_Dash and VI_Width do not apply to VI_Circle.

Nothing is drawn if the radius is less than or equal to zero. You cannot use concentric circles to
do a solid area fill.

PRPQs 5799-WZQ/5799-PFF: IBM/4.3 30 Sep 1985

This page intentionally left blank.

CLIP(3G)

NAMK
VI_Clip - set clipping window

SYNOPSIS
VI _ Clip(lx,ly ,hx,hy)

int Ix,ly;
int hx,hy;

DI~SCRJPTION

/* top left corner of clipping area * /
/* bottom right corner of clipping area * /

CLIP(3G)

Vl_ Clip specifies that subsequent primitives drawn on the screen are to be clipped to the specified
area. It is the user's responsibility to ensure the sensibility of the window definition. 'Ibe clipping
window is initial1y set to the whole screen.

NOTK
VI_ Clip applies only to the IBM Academic Information Syst.ems experimental display.

SEK ALSO
query(3G)

PRPQs 5799-WZQ/5799-PFF: IBM/4.3 30 Sep]985

This page intentionally left blank.

COIJOR(JG)

NAME
VI_Color - change screen color

SVNOPSIS
VI_ Color(color)

int color;

DESCRIPTION

COLOR(3G)

/* new (~olor, true for white * /

VI_ Color sets the color of the screen to the specified value: 0 means that bits having the binary
value "0" will be black on the screen; I means that bits having the binary value" 1" will be black
on the screen. If this value is different from the previous value, the screen will be inverted, so as
to make the change transparent to the application. The screen color is initially white I's on black
O's, color O.

NOTE
VI_ Color applies only to the IBM Academic Information Systems experimental display.

S.~E ALSO
query(3G)

PRPQs 5799-WZQ/5799-PFF: IBM/4.3 3] Mar 1986

This page intentionally left blank.

COPY(3G) COPY(3G)

NAME
VI_Copy - copy an area

SYNOPSIS
VI_ Copy(sx,sy ,tx,ty ,wd ,ht ,merge)

int sX,sy; /* source top-I(~ft */
int tx,ty; /* target top-left * /
int wd,ht; /* rcctan~lc dimcnsions * /
int merge; /* merge mode * /

DF:SCRIPTION

NOTF:

VI_Copy duplicates the rectangle at SX,JY with the dimensions wd,/tt to the point Ix,ly. The copied
bits are merged with the target area using the specified merge mode, not the merge mode set by
merge(3G). See merge(3G) for a description of merge modes.

Both the source and destination rectangles must be completely on the screen. 'nle current setting
of the clipping window is ignored.

VI_Copy applies only to the IBM Academic Information Systems experimental display.

Vl_ C'opy cannot copy an area onto itself with a mode change, e.g. for highlighting. A fast way to
highlight is to use VI_Merge with XOR mode and VI_Tile.

SI~I~ ALSO
merge (3G)

PRPQs 5799-WZQ/5799-PFF: IBM/4.3 30 Scp 1985

This page intentionally left blank.

ClJRSOR(3G) CURSOR(3G)

NAMI~

VI_MDefnCur, VI_FDefnCur, VI_EnCur, VI_DisCur, VI_PosnCur - control the display cursor

SYNOPSIS
VI_MDcfnCur(xoff,yoff,bIack,white)

int xoff; /* x of[C\ct of cursor ccntcr * /
int yoff; /* y off.~ct of cursor centcr * /
unsigncd short *black; /* first bytc of black mask * /
unsigned short *whitc; /* first byte of whitc mask * /

VI_FDefnCur(filcname)
char *filcnamc;

VI_EnCurO

VI_DisCurO

VI_PosnCur(x,y)
int x,y;

/* namc of cursor dcfinition file * /

/* ncw cursor position * /

DESCRIPTION

NOTE

These subroutines allow programs to control the display cursor by defining it, enabling and disa­
bling it, and changing its position. Disabling and reenahling the cursor do not affect its pattern or
position. Because the display maintains the cursor separately from the display buffer, the cursor
does not have to be removed when a graphics primitive intersects its position. Initially the cursor
is transparent and disabled, and is positioned at the center of the screen.

VI _ MDefnCur Sets the cursor as specified. xoff,yojJ is the displacement of the cursor pattern
from the current position of the cursor. For example, a value of (32,32) would
center the cursor pattern around the current point. The cursor pattern itself is a
64-by-64 bit image, with two planes. A 1 in the black plane indicates that that bit
of the cursor should be black. A 1 in the white plane indicates that the cursor
should be white in that position. If a bit has a 0 in both planes, the cursor is
transparent in that position. If a bit is 1 in both planes, the cursor is white. The
two planes are images in the same format as accepted by Mlmage, and must be
64-by-64, or 512 bytes each.

VI FDefnCur Sets the cursor to the definition in the specified file. The file has the fonnat
shown below; the fields are explained under M DefnCur.

Offset (bytes)

o
2
4

516

Description

XOFF
YOPF
D LA CK bit pattern
WH ITE bit pattern

See the description of M DefnCur for a description of the fields.

VI EnCur Enables the cursor and displays it if it is not already present.

VI DisCur Disables the cursor and removes it from the screen if it is present.

VI PosnCur Moves the cursor to the specified position. It cannot be moved ofT the screen.

VI_Cursor applies only to the IBM Academic Information Systems experimental display.

SEE ALSO
image(3G)

PRPQs 5799-WZQ/5799-PFF: IBM/4.3 30 Sep 1985

This page intentionally left blank.

DASH(3G) DASH(3G)

NAME
VI_ Dash - set line dash pattern

SYNOPSIS
VI _I>ash(dash ,dash len)

unsigned short dash;
short da.'ihlcn;

/* da.'ih pattern * /
/* dash pattcrn Icngth * /

DESCRIPTION
If no dash pattern has been set, lines drawn with the VI_RLine and VI_ALine subroutines
described under line(3G) are solid lines of 1 'so If a pattern has been set, the bits of the pattern
word are used in sequence whenever the vector generator would normally output a 1. Setting a
pattern of Ox5555 produces a very acceptable dotted line. Other patterns may be used to vary the
size of dashes in the line. The length of the pattern can range from I to 16 bits. 'rhe pattern bits
should be left-justified. Setting the pattern length to 0 specifies a return to solid lines. The line
dash pattern is initially set to solid l's.

SEE ALSO

NOTE

line(3G), merge(3G), query(3G), width(3G)

VI_Dash applies only to the IBM Academic Information Systems experimental display. VI Da.rh
does not support Vl_ C'ircle.

PRPQs 5799-WZQ/5799-PFF: IBM/4.3 30 Scp 1985

This page intentionally left blank.

PONT(3G) FONT(3G)

NAME
VI_Pont, VI_ GetPont, VI_DropPont -

SYNOPSIS

scJect and manipulate fonts

VI_Font(fontid)
int fontid;

VI_ GetFont(namc,fontid)
char *namc;
short *fontid;

VI_DropFont(fontid)
int fontid;

/* font ID */

/* font name *1
/* font ID */

/* ID of font to rcleacre *1
DESCRIPTION

NOTE

Ponts are stored in files, which are loaded into the workstation memory when requested by appli­
cations using VI_ GetFont. Once a font is loaded, it is kept in memory until the program ends,
unless explicitly dropped with VI_DropFont.

VI GetFont Loads the specified font into memory, if it is not already present. If the font is
successfully loaded, the font ID is returned. Setting the current font to this ID
with VI_Font causes subsequent strings to be displayed in the font.

VI Font ScJects the font with the specified font ID. Pont IDs range from 0 to 255 and are
returned by calls to VI_ GetFont.

VI_DropFont Drops the specified font from memory. The application should not attempt to
use the font ID again. If the font is required, a new font ID should be generated
by a request to VI_ GetFont.

VI_Font applies only to the IBM Academic Information Systems experimental display.

SEE ALSO
string(3G)

DIAGNOSTICS
If Vl_ GetFont returns a font ID of 0, either the font could not be found, or it did not fit in
memory. If the font did not fit in memory, a message will be sent to slderr.

PRPQs 5799-WZQ/5799-PFF: IBM/4.3 30 Sep 1985

This page intentionally left blank.

FORCE(3G)

NAME
VI_Force - force output of graphics orders

SYNOPSIS
VI_ForceO

DESCRIPTION

FORCE(3G)

Commands built with subroutines described in "Setting Graphics Parameters" and "Issuing
Graphics Primitives" in "The C Subroutine Interface for the IBM Academic Information Systems
Experimental Display" generally do not send t.heir output to the screen immediately. Instead the
output remains in a buffer until the buffer is full, when its output is sent to the screen. Use
VI_Force to force.output in the current buffer to be transmitted before the buffer is full.

NOTE
VI_Force applies only to the IBM Academic Information Systems experimental display.

SEE ALSO
init(3G)

PRPQs 5799-WZQ/5799-PFF: IBM/4.3 30 Sep 1985

This page intentionally left blank.

INIT(3G)

NAME
VI_Init, VI_ Tenn - initialize and tenninate the subroutine interface

SYNOPSIS
VI_Init(wd,ht)

short *wd, *ht;

VI_TcrmO

DESCRIPTION

/* screen dimensions * /

These functions initialize and terminate the subroutine interface.

INIT(3G)

VI Init Initializes the display and returns the dimensions of the screen. The display currently
has a width of 1024 bits and a height of 800 bits. VI_lnit must be the first call. The
top left point is (0,0); the bottom right point is (1023,799).

FILES

NOTE

VI Term Completes processing, closes any log files, and forces transmission of the graphics
buffer to the display.

/dev/aed
/usr/lib/aed/whim.aed
/usr/lib/aed/pcfont.fnt

VI_Init applies only to the IBM Academic Infonnation Systems experimental display.

SEE ALSO
force(3G), log(3G)

PRPQs S799-WZQ/S799-PFF: IBM/4.3 31 Mar 1986

IMAGE(3G) IMAGE(3G)

NAME
VI_Mlmage, VI_Flmage - draw an image

SYNOPSIS
VI_MImage(wd,ht,data)

int wd,ht;
unsigned short *data;

VI_ Flmagc(filcname)
char *filcnamej

/* dimensions of image * /
/* first byte of image * /

/* file name of image to draw * /

DESCRIPTION

NOTE

These functions draw an image from memory or from a file. The current point is unchanged.
The image data should be in scan line order, from top to bottom, with each scan line padded to the
next 16-bit word. For example, for a width of WD and height of lIT, there should be
2+I1T(WD+ 15)/16 bytes of image data.

VI_Mlmage Draws an image of the specified dimensions whose top left comer is at the current
point. data must be the first byte of an image large enough to fill the rectangle
specified by wd and ht, or an addressing error may result.

VI_Flmage Draws the image contained in the specified file, placing its top left comer at the
current point. The image file must have the fol1owing fonnat:

Offset (bytes)

o
2
4

Description

The width of the image
The height of the image
Image data

VI_Image applies only to the IBM Academic Infonnation Systems experimental display.

SEE ALSO
read(3G)

PRPQs 5799-WZQ/5799-PFF: IBM/4.3 30 Sep 1985

This page intentionally len blank.

INIT(3G)

NAME
VI _ Init, VI_ Tenn - initialize and tenninate the subroutine interface

SYNOPSIS
VI_Init(wd,ht)

short *wd, *ht;

VI_TermO

DESCRIPTION

/* screen dimensions */

These functions initialize and terminate the subroutine interface.

INIT(3G)

VI Init Initializes the display and returns the dimensions of the screen. The display currently
has a width of] 024 bits and a height of 800 bits. V 1_' nit must be the first call. The
top left point is (0,0); the bottom right point is (1023,799).

FILES

NOTE

VI Term Completes processing, closes any log files, and forces transmission of the graphics
buffer to the display.

/dev/aed
/usr/lib/aed/whim.aed
/usr/Hb/aed/pcfont.fnt

VI_In it applies only to the IBM Academic Infonnation Systems experimental display.

SEE ALSO
force(3G), 10g(3G)

PRPQs S799-WZQ/S799-PFF: IBM/4.3 31 Mar 1986

This page intentionally left blank.

LINE(3G) LINE(3G)

NAME
VI_ALine, VI_RLine - draw a line

SYNOPSIS
VI_AIJnc(x,y)

int x,y;

VI_RLine(dx,dy)
int dx,dy;

/* end point of line * /

/* displacement to end point *1
DESCRIPTION

NOTE

These functions draw a line to an absolute or a relative location. A line is nonnally of l's, and is
merged with the window data according to the current merge mode.

VI_ALine Draws a line from the current point to the specified point (the line's end point)
according to the current values of the merge, width, and dash pattern parameters. The
specified point becomes the current point.

VI R Line Draws a line from the current point to the current point displaced by the specified
values, according to the current values of the merge, width, and dash pattern parame­
ters. The current point is incremented by the displacement.

VI_Line applies only to the IBM Academic Infonnation Systems experimental display.

SEE ALSO
clip(3G), dash(3G), merge(3G), width(3G)

PRPQs 5799-WZQ/5799-PFF: IBM/4.3 30 Sep 1985

This page intentionally left blank.

LOG(3G) LOG(3G)

NAME
VI_ Login, VI_Logout - begin logging subroutine ca1ls and close a log file

SYNOPSIS
int VI_ Login(filename)

char *filcnamc; /* file to log to * /

int VI _ LogoutO

DESCRIPTION

NOTE

These subroutines begin logging subroutine calls and close the log file.

VI_ Login Specifies that subsequent subroutine calls are to be echoed into the specified file. If
a log file is already open, VI_Login closes it before opening the new file; VI_Login
overwrites an existing file. Al1 orders to the display are logged until a logout call
(VI_Logout) is issued. The log file may later be executed from within a program
using VI_Run or on its own using aed,unner(I). It may also be examined with
aedJournal(1).

VI_Logout Closes the log file.

VI_Log applies only to the IBM Academic Information Systems experimental display.

SEE ALSO
aedjournal(I), aedrunner(1), init(3G), run(3G)

"The C Subroutine Interface for the IBM Academic Information Systems Experimental Display"
in Volume II.

DIAGNOSTICS
VI_Login returns a negative value if there is an error, and a nonnegative value if the call is suc­
cessful.

VI_Logout returns one of three values:

Value

o
-1
-2

Meaning

Normal completion
Error in closing file
No file found to close

PRPQs 5799-WZQ/5799-PFF: IBM/4.3 30 Sep 1985

This page intentionally len blank.

MERGE(3G) MERGE(3G)

NAME
VI _ Merge - set merge mode

SYNOPSIS
VI_Merge(merge)

int merge; /* merge mode * /
DESCRIPTION

NOTE

The merge mode is a number from 0 to 15 that specifics how the bits generated by primitives are
to be combined with bits already on the screen, as shown in the following table:

Merge Mode

o
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Meaning

OFF
NOR
NOT DATA AND SCREEN
NOT DATA
DATA AND NOT SCREEN
NOT SCREEN
XOR (NEQ)
NAND
AND
EQ
SCREEN (ignore)
NOT DATA OR SCREEN
DATA (replace)
DATA OR NOT SCREEN
OR
ON

The merge mode is initially set to 12, for replace mode. Data bits replace screen bits. The merge
mode is simply an encoding of the logical function used to combine screen bits and data bits.
Encoding the desired result of each of the combinations in the table below generates the merge
mode that should be used to get that effect. For example, to or the data you are adding with the
data already present on the screen, you would use a merge mode of 14:

Data Bit 1 I 0 0
Screen Bit 1 0 I 0

Example:
OR mode 0 = 14

VI_Merge applies only to the IBM Academic Information Systems experimental display.

SEE ALSO
circle(3G), co1or(3G), line(3G), query(3G)

PRPQs 5799-WZQ/5799-PFF: IBM/4.3 30 Sep 1985

This page intentionally left blank.

MOVE(3G)

NAME
VI_AMove, VI_RMove - move the current point

SYNOPSIS
VI_AMove(x,y)

int x,y;

VI_RMove(dx,dy)
int dx,dy;

DESCRIPTION

/* new point * /

/* displacement from old point * /

MOVE(3G)

These functions move the current point; they do not change the screen. 'Ibe current point is ini­
tially set to (0,0).

VI AMove Moves the current point to the specified coordinates.

VI_RMove Moves the current point by the specified displacement.

NOTE
VI_Move applies only to the IBM Academic Information Systems experimental display.

SEE ALSO
query(3G)

PRPQs 5799-WZQ/5799-PFF: IBM/4.3 30 Sep 1985

This page intentionally left blank.

QUERY(3G) QUERY(3G)

NAMF.
VI_QClip, VI_QColor, VI_QDash, VI_Qront, VI_QMerge, VI_QPoint, VI_QWidth - query
graphics parameters

SYNOPSIS
VI_ QCIiP(lx,ly ,hx,hy)

short *Ix, *Iy;
short *hx, *hy;

VI_ QColor(color)
short *color;

VI_ QDash(dash,da..«ihlen)
unsigned short *dash;
short *dashlenj

VI_ QFont(fontid,fontname)

/* top left corner of clipping area * /
/* bottom right corner * /

/* current color, true for white */

/* dash pattern * /
/* length of dash pattern * /

short *fontid; /* current font ID * /
char *fontname; /* current font name * /

VI_ QMerge(merge)
short *merge;

VI_ QPoint(x,y)
short *x,*y

VI_ QWidth(width)
short *width;

/* current merge mode * /

/* current point * /

/* line width * /

DESCRIPTION

NOTE

These subroutines return the current values of the graphics parameters. Each subroutine requires
an address in which to store the value to be returned. All of these subroutines force transmission
of graphics data in the current buffer.

VC QClip Returns the the current clipping rectangle.

VC QColor Returns the current color of the screen: 0 means that bits having the binary value
"0" will be black on the screen; I means that bits having the binary value "I" will
be black on the screen.

VI_ QDash Returns the current line dash pattern in the fonnat described for dash (3G). If
dashlen is 0, the lines are currently solid.

VI_ QFont Returns the ID and name of the current font. The font ID is 0 if no font has been
set. The pointer fontname should point to a block of characters large enough to
hold a file name along with a string-tennination byte. If you know beforehand the
size of your file name, you may allow only as many bytes as required. Be aware of
the string-terminator byte; there must be room for it.

VI_QMerge Returns the current merge mode in the fonnat described for merge(3G).

VI_ QPoint Returns the location of the current point. This command is especially useful after
string(3G) has been issued, since character definitions can change the current point
in unpredictable ways.

VI_ QWidth Returns the current line width as a number between I and 16.

VI_Query applies only to the IBM Academic Infonnation Systems experimental display.

SEE ALSO
c1ip(3G), color(3G), dash(3G), merge(3G), move(3G), string(3G), width(3G)

PRPQs 5799-WZQ/5799-PFF: IBM/4.3 31 Mar 1986

This page intentionally left blank.

READ(3G) READ(3G)

NAME
VI_MRead, VI_FRead - read display data

SYNOPSIS
VI_ MRead(x,y ,wd,ht,data)

int x,y;
int wd,ht;
unsigned short *data;

VI _FRead(x,y,wd,ht,filename)
int x,y;
int wd,ht;
char *filename;

/* top left corner of area * /
/* dimensions of area * /
/* first byte of data * /

/* top left corner of area * /
/* dimensions of area * /

/* name of file to place image in * /

DESCRIPTION

NOTE

These functions read display data into memory or into a file. The area to be read must be com­
pletely on the screen. The current setting of the clipping window is ignored.

VI MRead Reads the specified area of the screen into the array passed as data. Image bytes are
in the same format as expected by M Image. If the screen color is white, the bits arc
inverted on readback to make the data read back independent of screen color. The
area to be read must be completely on the screen.

VI FRead Reads the specified area of the screen and places it in the specified file. The file has
the same format as expected by FI mage. If the window color is white, data bits are
inverted to make the data independent of the screen color.

VI_Read applies only to the IBM Academic Information Systems experimental display.

SEE ALSO
image(3G)

PRPQs 5799-\VZQ/5799-PFF: IBM/4.3 30 Sep 1985

This page intentionally left blank.

RUN(3G)

NAME
VI_Run - process a log me

SYNOPSIS
int VI_Run(filename)

char *filenamc;

DESCRIPTION

RUN(3G)

/* log filc namc * /

VI_Run executes the commands logged in the specified file; filename is the name of a log file that
was created by VI_Login. Using VI_Run with a log file has the same effect as executing
aedrunner(I) from within a program, allowing a series of orders which require much calculation to
be figured only once, logged, then quickly retrieved when needed.

NOTE
VI_Run applies only to the IBM Academic Information Systems experimental display.

SEE ALSO
aedjournal(I), aedrunner(1), log(3G)

DIAGNOSTICS
VI_ Run returns 0 for normal completion, and -1 if it detects any kind of inconsistency or unex­
plained results in the file.

PRPQs 5799-WZQ/5799-PFF: IBM/4.3 30 Sep 1985

This page intentionally left blank.

STRING(3G) STRING(3G)

NAME
VI_String - draw a string

SYNOPSIS
VI _ String(s)

char *s; /* string to draw * /

DESCRIPTION

NOTE

, V I_Siring draws the specified string at the current point. Since a character definition is really a
sequence of other graphics commands (usually VI_Mlmage and VI_RMove), the way in which
characters are positioned, stepped, and drawn depends on the font definition. Character
definitions typically modify the current point.

VI_String applies only to the IBM Academic Infonnation Systems experimental display.

SEE ALSO
font(3G)

"Defining Fonts" in "The C Subroutine Interface for the IBM Academic Infonnation Systems
Experimental Display"

PRPQs 5799-WZQ/5799-PFF: IBM/4.3 30 Sep 1985

This page intentionally left blank.

TILE(3G) TILE(3G)

NAME
VI_Tile - tile a rectangle

SYNOPSIS
VI_ Tilc(wd,ht,twd,tht,tile)

int wd,ht;
int twd,tht;
unsigned short *tile;

/* dimensions of rectangle * /
/* dimensions of tile * /
/* first byte of pattern * /

DESCRIPTION

NOTE

VI_Tile fills a rectangle of the specified dimensions with the specified pattern. The rectangle's top
left corner will be at the current point. The tile pattern must follow the rules for images as ex­
plained in image(3G) , and can be of any size. The tile pattern is aligned to multiples of Iwd and
thl, not to the bounds of the tiled rectangle, so that rectangular subareas of larger figures can be
tiled without regard to their bounds, and the tile patterns will match. The current point is un­
changed.

A full rectangle black or white fill can be most quickly drawn by requesting a one-by-one tile.
Clearly, only all ON or all OFF may be drawn with this method, but any merge mode may be
used.

VI_Tile applies only to the IBM Academic Information Systems experimental display.

SEE ALSO
image(3G)

PRPQs 5799-WZQ/5799-PFF: IBM/4.3 30 Sep 1985

This page intentionally left blank.

WIDTH(3G)

NAME
VI Width - set line width

SYNOPSIS
VI_ Width(width)

int width;

DESCRIPTION

/* line width * /

WIDTII(3G)

VI_Width specifies a value between 1 and 16 that is to be the line width. Line width is initially
set to 1.

NOTE
VI_Width applies only to the IBM Academic Information Systems experimental display.

SEE ALSO
line(3G), query(3G)

PRPQs 5799-WZQ/5799-PFF: IBM/4.3 30 Sep 1985

This page intentionally left blank.

High C Programmer's Guide IBM/4.3-PSD:10-1

Appendix C. High C Programmer's Guide

This section contains the "High C Programmer's Guide," produced by MetaWare Incorporated.

15 Dec 1986

IBM/4.3-PSD: 10-2 High C Pr~rammcr's Guide

This page intentionally left blank.

15 Dec 1986

Appendix C. High C ™ Programmer's Guide
© Copyright 1983-1987, MetaWare™ Incorporated, Santa Cruz, CA, U.S.A.

High C and Meta Ware are trademarks of Meta Ware Incorporated.

ABSTRACT

This is a guide to the operation of the High C compiler as implemented for Academic Information Systems 4.3
for the IBM RT PC ("4.3/RT"). It contains:

1 INTRODUCTION 1 8 EXTERNALS 22

2 INVOKING THE COMPILER 3

2.1 The hc Command 3
2.2 Invoking the C Macro Preprocessor .. 3
2.3 Command Options 3

3 COMPILER PRAGMAS 6

3.1 Syntax ofPragmas 6
3.2 Compiler Pragma Summaries. 6
3.3 Include Pragmas: Including Source

Files 7

8.1 The Alias Pragma 22
8.2 Data Segmentation: the Data

Pragma 22

9 ASSEMBLY LANGUAGE
COMMUNICATION 24

9.1 Assembly Routines 24
9.2 Function Naming Conventions 24
9.3 Examples: Calling Assembly from

C 25
9.4 Example: Calling C from Assembly. 26
9.5 Data Communication 26

4 COMPILER TOGGLES 9 10 LISTINGS 28

5 STORAGE MAPPING 14
10.1 Pragmas Page, Skip, Title .. 28
10.2 Format of Listings 28

5.1 Data Types in Storage 14 11 MAKING CROSS REFERENCES 38
5.2 Storage Classes. 15

6 RUN-TIME ORGANIZATION 16

6.1 Register Usage 16
6.2 The Data Area. 16
6.3 Stack Frame Layout 16
6.4 Argument Passing 17
6.5 Function Results 17
6.6 Calling Sequences. 18
6.7 Prologue 18
6.8 Epilogue 19
6.9 Assembler Issues 19

11.1 Features of the Cross Reference . .. 38
11.2 Using the hcxref Command 38
11.3 Cross-Reference Format 39
11.4 Distinction of File Names 40

12 DIAGNOSTIC MESSAGES 41

12.1 File I/O Errors 41
12.2 System Errors 41
12.3 User Errors and Warnings 42
12.4 Error and Warning Messages 43

Appendix A CROSS-JUMPING
7 SYSTEM SPECIFICS 20 OPTIMIZATIONS 50

7.1 Floating-Point Arithmetic 20 Index 54
7.2 Size of Complilation Unit. 20
7.3 Some ANSI-Required Specifics 20

This page intentionally left blank.

PRPQ 5799-CGZ: IBM 4.3/RT

4.3 for the IUl\1 RT PC High C Programmer's Guide

1. INTRODUCTION

This is a guide to the operation of the High C compiler implemented for IBM Academic Infonnation Systems
4.3 for the IBM RT PC ("4.3/RT").

The Compiler generates rclocatable object modules directly, in contrast to most C compilers on UNIX
operating systems, which generate assembly files.

High C was designed to facilitate serious professional programming. It is available on numerous processors.
It supports the draft ANSI Standard (ANSI document X3J11/85-102, August, 1985) and a few extensions.

C is a mixed-level systems language designed by Dennis Ritchie at AT&T's Bell Laboratories. It grew in
popularity because of its use in implementing the UNIX operating system, its elegant (and deceptive) sim­
plicity, and its close-to-the-machine features. As its popularity has grown, many software developers have
used it for real-world applications as well as systems software.

Later implementations of C were extended to add enumeration types and a few other features. More recently
many extensions have been proposed to make C a safer language while still being consistent with the
philosophy of the original language. Today there is a core language being standardized by the American
National Standards Institute (ANSI).

High C includes what most likely will be ANSI Standard C and also provides extensions that were carefully
designed to be consistent with the philosophy of C. Some of the best features of such other languages as
Pascal, MetaWare's Professional Pascal, and Ada were incorporated as extensions. Incompatibilities were
minimized by introducing a minimum of new key words and by retaining the original syntax. Yet the
extensions are such that they will be flagged by any Standard-conforming compiler.

Portability. Standard C programs can be compiled with an ANSI option that turns off the extensions and
reduces the language to the Standard core. Alternatively, such programs can be gradually upgraded by not
choosing the ANSI option and using the extensions as required.

Safety, efficiency. While the close-to-the-machine features of C are available, High C supplies the new strong
type-checking specified in ANSI C. In addition, the compiler provides many checking features usually avail­
able only in a separate "lint" program. Thus one gets both efficiency and reliability. It is an excellent language
for both applications and systems programming.

Other important features and extensions include:

three integer ranges and two floating-point precisions

many compiler controls and options, including one for strict Standard checking

nested functions complete with up-level references, as in Pascal

nested functions passable as parameters to other functions, as in Pascal

intrinsic functions, such as _abs, _min, _max, and _fill_char, for efficiency

many optimizations, some of which are usually found only in mainframe compilers, including:

common subexpression elimination
retention and reuse of register contents
dead-code elimination
cross jumping (tail merging)
jump-instruction size minimization
constant folding
numerous strength reductions
automatic allocation of variables to registers

This guide contains all system-specific information necessary for using the compiler effectively. Readers new
to the product should scan the Table of Contents for an overview of the guide. Briefly, we describe:

C -1 2 July 87

4.3 for the IBM RT PC

how to compile, link, and run

how to use compiler controls

machine specifics, such as storage mapping and run-time organization

defaults and limits

communication with programs written in other languages

listings and cross-references

error messages

High C Programmer's Guide

An extensive index provides for quick reference to all sections that discuss or significantly relate to each topic.

This guide docs not explain the C language or the High C extensions. They are treated in the MetaWare lIigh
C Language Reference Manual. Neither this guide nor the manual attempts to teach C programming; consult
the manual for references to several C textbooks.

C - 2 2 July 87

4.3 for the IBM RT PC High C Programmer's Guide

2. INVOKING THE COMPILER

2.1 The he Command

The he command invokes the High C compiler, which translates C programs into executable load modules or
into relocatable binary object modules suitable for linking with Id. The syntax of the command is:

he [options] ... files ...

Any number of options and one or more files may be specified. Each option specified in the command applies
to all the specified files for which it makes sense, except as noted below.

Several types of file names are allowed. A file name ending with" . c" is taken to be a C source module. It is
compiled and an object module is produced with the same name as the source except with" . 0" substituted for
" . c". The". 0" file is normally deleted after linking when a single-module C program is compiled and linked.

A file name ending with". s" is taken to be an assembly source module and is assembled, producing a ".0"

file. Any other file specification is assumed to be an object module or archive library to be linked via Id.

All " .0" files are placed in the current working directory.

In general, Id is invoked if no compilation errors were detected and the -e option was not specified. The
resultant load module is named "a . out" unless specified otherwise with the -0 option (described below). Any
argument beginning with a dash ("-") is taken as an option specification.

Example. The following command compiles the program in file sort. c, links it, and generates a load module
named sort:

he -0 sort sort.c

2.2 Invoking the C Macro Preprocessor

The High C compiler has an integrated "inboard" macro preprocessor, documented in the lIigh C Language
Reference Manual. The preprocessor conforms to the proposed ANSI C Standard. However the "outboard" C
macro preprocessor on most UNIX operating systems does not conform to the proposed Standard in some
ways.

Because many C programs written for UNIX operating systems depend on minor idiosyncrasies of the
outboard C preprocessor, the -Hepp/-Hnoeppt options are provided. The -Hepp option causes the outboard
preprocessor to be invoked on the source file sending the output to a temporary file, which then serves as input
to the compiler. -Hnoepp suppresses this action. The compiler is provided with the -Hepp option on by
default. The macro name _ HIGHC _ is predefined, except when the -Hansi option is specified. The macro
name _ STOC _ is always predefined.

2.3 Command Options

Below is a description of each compiler option. Any option that is not recognized by he is assumed to be a
linker option and is passed on to Id. Options applicable only to High C are prefixed with an H.t

-Hansi

-Hasm

Causes the compiler to accept only programs conforming to the proposed ANSI Standard.

Note: Since the proposed ANSI Standard is under revision at the time of this writing, this
option's primary function is to tum off the High C language extensions.

Directs the compiler to produce an assembly listing of the generated code on standard output, by
initializing the Asm toggle to On. The assembly listing is annotated with lines from the main
source file, but not with lines from any included files. These lines appear as comments
immediately preceding the corresponding assembly instructions. If the -s option (described

1. "H" stands for High C. It is used to avoid conflicts with existing or future pee options.

C - 3 2 July 87

4.3 for the IBM RT PC High C Programmer's Guide

below) is also specified, the generated . s file is annotated with lines from the source file, and no
listing is written on standard output

-Bs t r in g Finds substitute compiler executables in the files named s t r in g with the suffixes cpp and
hccom. If no string is given, the default /usr/c/o is used; that is, the defaults are
lusr/c/ocpp and lusr/c/ohccom.

-c Suppresses the invocation of Id, and forces an object file to be produced even if only one module
is compiled.

-Hcpp Specifies that the outboard C macro preprocessor (! 1 ib I cpp) is to be used, rather than the
inboard preprocessor. -Hcpp is the default.

-Hnocpp

-Dname
-Dname=def

-E

-9

-Idir

Specifies the use of the inboard C macro preprocessor.
Preprocessor for details.

See §2.2 Invoking the C Macro

Defines the name name to the preprocessor as if by 'define. If no def is given, the name is
defined to be 1 (one). Note: There is no space between -D and name.

Specifies that the outboard C macro preprocessor is to be invoked and no compilation done. The
preprocessor output is sent to standard output. -E overrides -Hnocpp.

Directs the compiler to emit additional symbol table information for the dbx debugger and omit
certain optimizations ..

Unless -0 is specified, -9 turns off the cross-jumping optimization and suppresses the deletion of
unreferenced local functions.

Specifies an alternate directory to be searched to locate an include file. This option may be
specified several times to indicate several directories to be searched. If a particular file is not
located after searching the specified directories, one or more standard directories are searched.
See §3 COMPILER PRAGMAS. Note: There is no space between -I and the directory name
dir.

-Hlines=n Causes a page eject to occur after every n lines written to standard output. The default of 60 is
appropriate for most 6-lines-per-inch printers, which have a total of 66 lines per page. The
setting of lines is intended to allow some blank space at page boundaries. When using 8-lines­
per-inch, typically there are 88 lines per page, so -Hlines should be set to 80 or 82. This option
is used in conjunction with the -Hlist and -Hasm options. If n is 0, no page ejects are emitted.

-Hlist Causes the compiler to generate a source listing on standard output. It works by initializing the
List toggle to On. See §4 COMPILER TOGGLES.

-M Specifies that the outboard C macro preprocessor is to be invoked and Makefile dependel\cies
are to be generated. The output is sent to standard output. No compilation occurs.

-mx Specifies a machine-dependent option. Currently available options are:

-rna Specifies that the C library function alloca may be called from within the source file(s).
alloca must extend the stack frame of alloca 's caller and needs certain information about the
size of the caller's stack frame. This option makes the information available in the caller's data
area. If alloca is called from a function that was not compiled with the -rna option, an error
diagnostic is generated at run-time.

-rna Causes the compiler to put out minimum-size floating-point data blocks (normally they are
generously padded). This guarantees that the size of objects remains approxmimately that of
previous releases, at the expense of performance.

-0 output Is passed on to the Id command and names the final executable output file output. When this
option is used, any existing a. out file is left undisturbed. Note: White space is required after
the -0.

C-4 2 July 87

4.3 for the IBM RT PC High C Programmer's Guide

-0 Specifies that all optimizations supported by the compiler are to be performed on the generated
code. This is the default unless -g is specified. Therefore, this option has meaning only when
used in conjunction with -g.

-Hon=toggle
-Hoff=toggle

Turns a toggle On or Off. See §4 COMPILER TOGGLES.

-p Produces code that counts the number of times each function is called during execution. If Id is
invoked, the profiling library lusr 11 ib/l ibc _p. a is searched in lieu of the standard C library
Ilib/l ibc. a. Also replaces the standard start-up function with one that automatically calls
man i tor (3) at the start and writes out a man. out file. An execution profile can then be
generated by use of prof (1) .

-pg Invokes a run-time recording mechanism as does -p, but keeps more extensive statistics and
produces a gmon. out file. An execution profile can then be generated by use of gprof (1) •

-Hppo
-Hppo=filename

-R

-s

-Uname

-v

-Hvolatile

Specifies that the compiler is to invoke its inboard preprocessor only and send the results to
fil ename. If -Hppo alone is given, the preprocessor output is printed to the standard output.
No object module is generated, nor is Id invoked. "ppo" can be read "pre-process only" or
"print preprocessor output". The preprocessor output is suitable for input to the compiler.

With -Hppo, any Include pragmas are not processed, since -Hppo turns off all processing past
the preprocessor, and a later phase of the compiler handles the Include pragma. Alternatively,
use -Hon=Print_ppo to obtain preprocessor output with processing of Include pragmas.

Makes all initialized static variables shared and read-only. This option is implemented by the
assembler and therefore -Hasm acts as if -s was specified.

Produces an assembly source file instead of an object file (for each source file). The assembly
source is written into a file with the same name as the C source with". c" replaced by". s". The
file is always placed in the current working directory. No object file is written, nor is Id invoked.

Note: Unlike other compilers for UNIX operating systems, the High C compiler normally
generates an object module directly, without producing an assembly file. The -s option
essentially directs the last phase of the compiler to produce assembly source as the object code is
generated. If the -Hasm option is also specified, the" . s" file is annotated with interlisted source
file lines.

Removes any initial definition of macro name. See -D above.

Causes the name of each subprocess to be printed as it begins to execute. (To get announcements
of compiler-phase execution also, set -Hoff=Quiet.)

Forces the compiler to read from memory on all pointer dereferences. This is necessary only
when pointers are used as addresses whose contents are "volatile" (can change via external
forces).

-w Causes all warning messages from the compiler to be suppressed.

-H+w Issues all warnings, and comes highly recommended. The default is to issue only warnings that
pee would issue.

C - 5 2 July 87

4.3 for the IBM RT PC High C Programmer's Guide

3. COMPILER PRAGMAS

The High C compiler provides "pragmas" (the term comes from Ada) that direct compiler operations. Pragmas
control the inclusion and listing of source text, the production of object code files, the generation of optional
additional program and debugging information, and so on.

3.1 Syntax of Pragmas

Compiler pragmas take one of the following general forms:

pragma <Pragma_name>; /* or */
pragma <Pragma name> «Pragma_parameters» ;

where <Pragma_parameters> is a list of constant expressions separated by commas. The number and types
of the expressions are dependent upon the particular <Pragma_name>. A pragma can appear anywhere a state­
ment or declaration can appear. See the Iligh C Language Reference Manual for a specification of the precise
placement of pragmas.

<Pragma_name>s are case insensitive.

3.2 Compiler Pragma Summaries

The following pragmas are available:

Pragma Purpose

Toggles - see §4 COMPILER TOGGLES:

On, Off, Pop Turns On or Off, or reinstates a prior status of a compiler switch or "toggle".

Alias

Data

Externals - see §8 EXTERNALS:

Specifies the external name to be associated with a global identifier.

Specifies the use of named blocks for data storage allocation. This is primarily intended for
communicating with other languages.

Inclusions - see §3.3 COMPILER PRAGMAS/lnclude Pragmas: Including Source Files:

Inc 1 u d e Incl udes the source of another file in the compilation uni t.

C include ~onditional form of Include.

R include Includes the source of another file in the compilation unit, treating the path name as Relative to
the directory of the file containing the pragma. This pragma treats the path name in the same
manner as the #include preprocessor directive.

RC include ~onditionalformofR include.

Page

Skip

Title

Listings - see §10 LISTINGS:

Causes page ejects to be inserted into the listing. This pragma takes effect only when the List
toggle is On.

Causes blank lines to be inserted into the listing. This pragma takes effect only when the List
toggle is On.

Causes a title to appear at the top of each subsequent page. This pragma takes effect only
when the List toggle is On.

C -6 2 July 87

4.3 for the IBM RT PC High C Programmer's Guide

3.3 Include Pragmas: Including Source Files

When source text from an alternate file is to be included in a compilation, the #include preprocessor directive
is commonly used. The High C compiler supports, in addition, pragmas with alternate search strategies for
including files. This section describes the various strategies used to search for include files.

Note: Incl ude pragmas are processed only by the High C compiler. If an outboard preprocessor is to be used,
we recommend using the #include directive rather than the Include pragma, as the outboard preprocessor
will not process files included via the Incl ude pragma. Thus the command line option -Hnocpp should be
specified when the Incl ude pragma is used. See §2 INVOKING TIlE COMPILER.

The Include pragma is used to include source from other files while the compilation unit is being compiled.
The pragma operates slightly differently from the standard C #include directive. There arc four forms of the
Incl ude pragma:

pragma Include«File_name»;
pragma C include«File_name»;
pragma R include«File_name»;
pragma RC include«File_name»;

where <F i le _name> is a string constant denoting the name of a file.

Examples:

pragma Include("a lot");
pragma R include ("dclns");
pragmaC include ("math.h");

The Include pragma directs the compiler to include a file unconditionally. The C_)nclude pragma causes
the file to be included only if it has not been included before - "conditionally included". R _ incl ude has
exactly the same effect as the standard C #include directive; that is, it is a "relative include". RC _ incl ude
docs a "conditional relative include".

The term relative include refers to an include in which the file is first sought relative to the directory of the file
where the include pragma appears. If the file is not found in that directory, then any directories specified in
any -I command line options arc searched in order of appearance. See §2 INVOKING THE COMPILER for a
description of the -I option. If the file is still not found, then one or more standard directories arc searched.

A non-relative include refers to an include in which the file is first sought relative to the current working
directory irrespective of the location of the file in which the Include pragma appears. If the file is not found
in that directory, then any directories specified in any -I command line options arc searched in order of
appearance. See §2 INVOKING THE COMPILER for a description of the -I option. If the file is still not
found, then one or more standard directories are searched.

A file name specification that begins with "j" is assumed to be an absolute file reference and no directories are
searched.

Preprocessor directive #include II fi 1 ename II specifies a relative include.

Directive #include <fil ename> specifies that only the -I and standard directories are searched.

Warning. There should be nothing to the right of an Include pragma. After the Included file is processed,
processing resumes on the line immediately following the one containing the Incl ude pragma. In effect, the
rest of the line is a comment.

Identity of file names. For the C_include and RC_include pragmas, file names, including path, arc
considered the same only if they are textually identical. Thus, these two pragmas may cause two includes to
occur:

pragma C_include ("strings.h");
pragma C include("/usr/include/strings.h");

even though both includes may refer to the same file.

Also, for the purposes of textual comparison, file name casing is significant, due to the operating system casing
convention.

C -7 2 July 87

4.3 for the IUM RT PC High C Programmer's Guide

Methodology. The primary use for conditional includes is to support modularity.

Assume file trees. h is merely a collection of declarations defining the interface to a trees module. Suppose
further that trees. h makes reference to a type Symbol in another module defined in symbols .h. If a
standard #include II symbol s. h II were placed within trees. h, a duplicate declaration of Symbol would
occur in any compilation unit that Incl uded both trees. h and symbol s. h. If, instead, a conditional include
were used in both trees.h and any compilation unit including symbols .h, at most one copy of symbols.h
would be included.

With conditional includes, each interface file F can conditionally include all other interface files that are
necessary for the definition of the resources in F. Therefore any user of F can simply Include F and
automatically gets other resources that are needed, without duplication.

C·8 2 July 87

4.3 for the IBM RT PC High C Programmer's Guide

4. COMPILER TOGGLES

Pragmas can be used to turn On and Off various compiler switches or "toggles". In such cases, the pragma
syntax is:

pragma <Pragma name>«Pragma_parameter»;

The <Pragma_name> is either On, Off, or Pop, and the single <Pragma_parameter> is the name of the
toggle to be affected. All compiler toggles are described below.

On turns the toggle on; Off turns it off; and Pop reinstates it to a prior value. Toggles operate in a stack-like
fashion, where each On or Off is a "push" of on or off, and a Pop "pops" the stack. The stack for each toggle
is at least 16 elements deep, but no diagnostic is given if the stack overflows or underflows. Examples:

pragma On (List);
pragma Off(List);
pragma On (List);
pragma Pop(List);
pragma Pop(List);

Turns on the source listing.
Turns off the source listing.
Turns on the source listing.
Back to off for the listing.
Back to on for the listing.

Recall that toggles can also be initialized on the command line, with -Hon and -Hoff. See §2 INVOKING
THE COMPILER.

The default values, names, and meanings of the compiler toggles are described below.

Align_members - Default: On

When On, causes members of structures to be aligned. When Off, no such alignment takes place. See §5
STORAGE MAPPING.

Asm - Default: Off

When On, causes an assembly listing to be generated, annotated with source code as assembly comments.
If the Asm toggle is to be turned On and Off over sections of a module, the pragma should appear among
executable statements rather than declarations for best results; otherwise, the point at which the pragma
takes effect may not be obvious.

Auto_reg_alloe - Default: On

When On, causes the compiler to allocate auto variables to registers automatically. The compiler weights
variables used within loops more heavily than those not so used in making its decision which variables to
allocate to registers; furthermore it does not allocate to registers any variables that are used too
infrequently. See §5 STORAGE MAPPING. A call of setjmp or setjmp disables Auto_reg_alloc
for the entire containing function.

Char_default_unsigned - Default: On

When On, causes type char to be unsigned by default.

The Standard allows the type char by itself, that is, without the adjectives unsigned or signed, to be
either signed or unsigned. Of course, the types unsigned char and signed char can be used to
explicitly control signedness.

Double_return - Default: On

When On, causes any function returning type float to instead return type double. For certain numeric
coprocessors, such as the Motorola 68881 or Intel80x87, this is of little consequence since the coprocessor
already uses long double math exclusively. However, other coprocessors, such as the Weitek 1167, use
both single and double formats internally. A program that uses floats predominantly would incur extra
overhead were float-returning functions changed to return double; hence this toggle.

The toggle applies to any functions declared within the range in which the toggle is on. Functions declared
with the toggle 0 f f instead suffer the conversion.

C - 9 2 July 87

4.3 for the IBM RT PC High C Programmer's Guide

Downshift file names - Default: Off - -
When On, causes the file name specification of any subsequent Include pragma to be interpreted as if it
were in all lower case. This toggle is useful when moving source code from an operating system in which
file name casing is not significant to a system in which it is significant.

Emit line table - Default: Off - -
When On, causes the compiler to add entries to the symbol table that associate source line numbers with
object code addresses. Debuggers use this information to associate objcct code with source lines.

The -g command-line option turns this toggle On.

Note: This toggle does not affect the size of the generated code, but it docs add about eight bytes per
statement to the object module's name list.

Int_function_warnings - Default: Off

When Off, suppresses the warning message normally generated when a function returning int has no
return exprn; statement within it, or a function returning int contains a return; within it.

This is to remove frequent warnings for old C source that did not use the reserved word void to indicate a
function returning no result, because such functions return int by default.

List - Default: Off

When On, causes the compiler to produce a listing on standard output. It is typically given when starting
the compilation but may appear in the source file to turn the listing On or Off around a particular section
of source.

Literals in code - Default: On

When On, causes lengthy literals in a program to be placed in the code space rather than in the data space.

Note: Not all C literals can be placed in code. A string literal is a writable data item and hence cannot be
placed in code; for such a literal Literals_in_code has no effect. See Read only strings below.

Long_enums - Default: On

When On, causes any variable of an enum type to be mapped to a fullword so as to be compatible with the
portable C compiler pcc.

Make_externs_global - Default: On

When On, any local declaration of an object with storage class extern is made global if there is not
already a global declaration of the object. Early C compilers promoted an extern declaration within a
function to the global scope. This toggle supports programs depending upon that "feature".

Optimize_for_space - Default: Off

When On, causes the generation of more space-efficient but potentially less time-efficient code. May have
no effect for some machines2.

Optimize_xjmp - Default:On

When On, enables the cross-jumping optimization. This is an effective space-saving optimization that
leaves execution time invariant. It slows the code generator slightly, and can produce code that is difficult
to debug. See §A CROSS-JUMPING OPTIMIZATIONS of this guide for more information on the
specifics of this optimization. See also the Optimi ze _x jmp _space toggle below2.

Optimize_xjmp_space - Default: On

When On, enables a cross-jumping optimization that saves space, but always at the expense of time. This
toggle takes effect only if Optimi ze _x jmp is also On. This optimization slows the code generator
slightly, and can produce code that is difficult to debug. See §A CROSS-JUMPING OPTIMIZATIONS of
this guide for more information on the specifics of this optimization. See also the Opt imi z e x jmp toggle
above2. -

2. It is not advisable to use optimizations in a debugging/emulation environment.

C -10 2 July 87

4.3 for the IBM RT PC High C Programmer's Guide

Parm_warnings - Default: On

When On, causes the compiler to produce warnings whenever arguments to a non-prototype (old-style)
function F do not match the types of the declared formal parameters of F. Frequently this inconsistency is
a source of disastrous or difficult-to-find bugs.

Example:

double square{x) double x; {return x*x;}

printf{"%d\n",square(3));

square is passed the integer 3, not the double 3.0, and the compiler issues a warning. The C language
definition prohibits the compiler from casting 3 to a double before passing it.

To eliminate the compiler warnings, turn Off the toggle Parm _warnings. We recommend, however, that
the program text be repaired to eliminate the offending function calls rather than eliminating the
potentially useful feedback from the compiler.

PCC_msgs - Default: On

When On, the diagnostic capabilities of the compiler are reduced to the pcc ("portable C compiler") level,
in that the following warnings are not emitted:

Function called but not defined.
Function return value never specified within

function.
This "return" should return a value of type ttt

since the enclosing function returns this type.
"=" used where "==" may have been intended.
Only fields of type "unsigned int" or

"unsigned long int" are supported.
External function is never referenced.
Declared type is never referenced.

The next four messages are suppressed for global variables when pee _ msgs is On:

Variable is never used.
Variable is referenced before it is set.
Variable is referenced but is never set.
Variable is set but is never referenced.

When all warnings are enabled in High C, code must be "squeaky clean" to get through the compiler
without a warning. Some users have code that was designed with a compiler that is not so demanding, and
would prefer fewer prods from the compiler. Hence the pee _ msg s toggle is supplied.

Pointers_compatible - Default: Off

When On, allows pointers of any type to be compatible with each other. Although this is in violation of the
Standard and High C specifications, many old C programs improperly assign pointers of different types to
each other. This toggle allows such programs to be compiled without modification.

Pointers_compatible_with_ints - Default: Off

When On, allows pointers of any type to be compatible with intS. Although this is in violation of the
Standard and High C specifications, many old C programs improperly assign pointers to ints and vice­
versa. This toggle allows such programs to be compiled without modification.

ANSI and High C disallow this dangerous practice because pointers are not necessarily the same size as
ints on all machines. The programmer should ensure that intermixed pointer and int values have the
same size; otherwise a pointer stored in an int may not be retrieved as expected.

Print-ppo - Default: Off

When On, causes preprocessed input to be written to standard output. With this toggle, it is possible to
print what the compiler proper receives over a local area of source code. This toggle is used to inspect the
expansion of a macro, by turning the toggle On prior to the macro invocation and Off after it. Note: This
toggle is ignored unless -Hnocpp is specified or is the default.

C -11 2 July 87

4.3 for the IBM RT PC, High C Programmer's Guide

Print-protos - Default: Off

When On, causes the compiler to write to standard output a new, prototype-style function header for each
function definition. This toggle aids in the conversion of C programs to the ANSI prototype syntax
derived from the C++ language. For example, for the function definition:

int f (x, y, z) int *x, z []; double (*y) (); { ... }

the compiler produces:

int f{int *x, double (*y) (), int *z);

The old function header can then be replaced with the generated one.

There is a minor pitfall in having the compiler automatically generate prototype headers: array parameters,
according to the semantics of C, are converted to pointer parameters.

Print_reg_vars - Default: Off

When On, causes the compiler to report (on standard output) each variable that is mapped to a register.
This saves the programmer the trouble of looking at the generated code to discover such information.

Prototype_conversion_warn - Default: On

When On, causes the compiler to generate a warning message when a function's argument is converted due
to a prototype declaration.

When using function prototypes, the compiicr may automatically convert a function's argument so that the
argument's type matches that of the formal parameter. Wherever such a conversion does not match what
would happen in the absence of prototypes, such C code would probably not run correctly on older C
compiicrs that lack prototypes. Turn On toggle Prototype_conversion_warn to have the compiler flag
all such occurrences.

Prototype_override_warnings - Default: On

When On, causes the compiler to produce a warning whenever a declaration (not definition) for a function
using the new prototype syntax overrides the semantics of an old-style function definition.

Standard C requires that function prototype declarations override old-style function definitions. This
means that the simple inclusion of a . h header file with prototype declarations of functions obtains the
new prototype semantics for the definitions of those functions. This feature has both disadvantages and
advantages.3

The advantage is that the new prototype semantics - the Pascal-style assignment-conversion of arguments
to the types of the formal parameters - is obtainable by merely including a declaration in a header file.
The disadvantage is that a definition can no longer be read out-of-context; without searching header files
one cannot determine whether the compiler compiles the function using prototype-style semantics or not.
For example:

file heade r . h :
int func(float f,long 1);

file prog.c:
#include "header.h"
int func{f,l) float f; long 1; {

void sub ()
func{3, 4.4);
}

/* Passes 3.0 and 4L via */
/* automatic conversion. */

Were header. h not included, the call to func in sub would pass the int 3 and the double 4.4; func

would probably not work right. With the header file included, the interface for func is changed to

3. The interested reader may wish to consult the Winter 1987 (volume 2, number 3) issue of the C Journal for an article by Tom Pennella
of Meta Ware on the subject of prototypes.

C -12 2 July 87

4.3 for the IBM RT PC High C Programmer's Guide

prototype-style (3 is converted to float and 4.4 to long). Thus, one can know how the compiler treats
func only by searching all of the header files.

To obviate the need for searching, High C provides a warning message whenever an old-style definition is
overridden by a prototype. The warning message can be disabled by turning Off toggle Pro tot ype _
override_warnings.

We recommend that function definitions be written with the new prototype syntax for improved
readability and reliability. To wit:

file prog. c:
int func(float f,long 1)

The ANSI committee permitted the override feature for two reasons: first, it would take some work to
convert programs to use the new syntax in the definition (although with toggle Print_protos, High C
generates the headers from old-style definitions); second, most compilers do not support prototype-form
definitions, and the use of a header that is conditionally included based upon the compiler being used
makes code more easily compilable by different compilers.

Public_var_warnings - Default: On

When Off, suppresses the warning messages:

Variable is never used.
Variable is referenced before it is
Variable is referenced but is never

set.
set.

Variable is set but is never referenced.

for all variables exported, that is, non-automatic variables not declared static or extern.

Such messages occur only for such variables that are not declared within a #included file. If one adheres
to the discipline that all imported variables are defined in included files, the message does not occur.

Quiet - Default: On

When Off, causes each compilation phase to be announced in turn as the compilation progresses. (This
toggle is not turned Off by -v.)

Read_only_strings - Default: Off

When On, string literals are considered true literals. Identical string literals appear in the object code only
once and the Literals_in_code toggle (see above) takes effect for string literals, causing them to be
placed in code.

C string literals are not true literals since they are writable data items. This means that they cannot
normally be placed in code space. Furthermore, two identical C string literals must normally be duplicated
in a program's object code, since one might be modified and the other not. To avoid this, use Read_
only _ str ings and Li terals _ in_code. These two toggles cause C string literals to be placed in code.

The -Roption turns Read_only_strings On initially.

Summarize - Default: Off

When On, causes the production of summaries of compilation activities. The summaries are produced at
various stages of compilation.

Warn - Default: On

When Off, causes warning messages to be suppressed. The -w option turns Warn Off initially.

C -13 2 July 87

4.3 for the IBM RT PC High C Programmer's Guide

5. STORAGE MAPPING

5.1 Data Types in Storage

The table below summarizes the size and alignment of various C data types, and whether a variable of each
type can be allocated to a register.

char and int types have the same size regardless of whether they are signed; therefore the table does not
mention the sign.

Data TYlle Size Alirrnment Allo~able
char 1 (bytes) 1 (bytes) y

short int 2 2 y

int 4 4 y

long int 4 4 y

float 4 4 y

double 8 4 y

long double 8 4 y

enum See Note 3
Pointer 4 4 y

Full-function4 8 4 N
T[n] n*sizeof(T) Same as T N
struct{ ... } See Note 1. See Note 2. N
union { ... } See Note 1. See Note 2. N

Note 1: The size of a struct or union is dependent upon whether the compiler generates padding to align
members. The compiler will generate such padding by default if the toggle Align_members is On, and will
not do so by default if the toggle is 0 f f. The keywords "'packed and _unpacked have been added to High C
to allow control over member alignment on an individual struct or union basis. A "'packed struct is not
padded; an _unpacked struct is padded. See §4 COMPILER TOGGLES to determine the default setting of
Align_members.

The size of an unpadded union is the size of the biggest member. The size of a padded union is the size of
the biggest member padded so that its size is evenly divisible by its alignment.

The size of an unpadded struct is the sum of the sizes of its members. Non-bit-field members always start on
byte boundaries, and there is no padding between members except in the case of bit fields; see below. The size
of a padded struct is the sum of the sizes of its members including alignment padding between members. It
is padded so that its size is evenly divisible by its alignment.

Nqte 2: A struct or union is aligned according to the most stringent requirements among its members.

Note 3: The size of enum types depends on the status of the Long_enums toggle. If the toggle is Off, the
type is mapped to the smallest of a byte, half-word, or full word, such that all the values can be represented. If
the toggle is On, the enum maps to a full word (matching the convention of the Portable C Compiler). See §4
COMPILER TOGGLES.

Bit members. Only unsigned bit members are supported. A bit member may not exceed 32 bits and is packed
in each consecutive byte as shown in the map below. A bit member must fit within a four-byte word that is
aligned to a four-byte boundary. Padding is added where appropriate to make this true.

A bit member of length zero causes alignment to occur at the next full-word boundary, that is, where an int
would be aligned.

For example, the structure definition:

struct {unsigned x:ll,y:9,z:13,w:l; char c; short i;}

4. A full-function value is a High C extension. It consists of a function address and a static link. See the IIigh C Language Reference
Manual for details.

C ·14 2 July 87

4.3 for the IBM RT PC

is mapped to memory as follows:

7 654 3 2 1 0 7 654 3 2 1 0 7 654 3 2 1 0 7 654 3 2 1 0
<---Byte 0 ---> <---Byte 1 ---> <---Byte 2 ---> <---Byte 3 --->
X X X X X X X X X X X Y Y Y Y Y Y Y Y Y

7 654 3 2 1 0 7 654 3 2 1 0 7 6 5 4 3 2 1 0 7 654 3 2 1 0
<---Byte 4 ---> <---Byte 5 ---> <---Byte 6 ---> <---Byte 7 --->
z z z z z z z z z z z z z w

7 654 3 2 1 0 7 654 3 2 1 0
<---Byte 8 ---> <---Byte 9 --->
iii iii iii iii iii i

5.2 Storage Classes

c c c c c c c c

High C Programmer's Guide

Each static variable is placed in either the BSS section or the DATA section - the latter if it is initialized.

Each global variable with no extern specifier that is not initialized is defined as a common block; if it is
initialized, it is mapped into the DATA section and given the global attribute. Each extern variable is given
the global and undefined attributes.

Each auto variable is assigned either to a machine register or to storage in the routine's "stack frame". See §6
RUN-TIME ORGANIZATION. The compiler chooses which of the auto-classed variables to place in registers
based upon the variable's type, frequency of reference, and whether the & operator is ever applied to it. In a
function containing calls to set jump, auto variables are not mapped to registers, so that their values are not
lost across such calls.

Each register variable is assigned similarly, except that it is given extra weight in assignment to a machine
register. Be warned that use of library functions set jmp and longjmp can produce unpredictable results in
the context of register variables. See set jmp (3).

C -15 2 July 87

4.3 for the IBM RT PC High C Programmer's Guide

6. RUN-TIME ORGANIZATION

The High C compiler adheres to the standard linkage convention established by 4.3/RT5. This chapter
presumes knowledge of the 4.3/RT architecture and assembly language. Throughout this chapter the term
word denotes a four-byte storage unit.

6.1 Register Usage

Certain registers, such as r 1, have specific uses throughout execution; others, such as r 15, are used during a
function call and are free at other times. The following table defines register usage at the call interface.

Saved
Regi- over
ster call Use

rO no called-function data area pointer
r1 yes stack pointer (caller's frame pointer)
r2 no argument word 1 and returned value
r3 no argument word 2 and lower half of

a returned double value
r4 no argument word 3
r5 no argument word 4
r6-r12 yes register variables, etc.
r13 yes frame pointer
r14 yes data area pointer
r15 no return address
mq no m ultipl y /di vide register

In addition, floating-point registers 0 and 1 are not saved over a call; registers 2-7 are preserved.

6.2 The Data Area

Each C function has an "entry point" and a "data area". Both must be referenced at the point of a call.

The entry point is where the code of the function begins. The data area (also called a "constant pool", which is
a misnomer) contains strings, function addresses, and other literals.

A function faa normally has an entry point named _. faa and a data area named _faa.

The call instruction sequence sets rO to the address of the called-function's data area. The first word in the
data area is the entry point of the called function. The word following supports the code profiling option (-p),
and if present must be initialized to zero; the third word, also optional, supports alloca storage allocation.

In the function prologue code, r 0 is copied to r 14; thus, r 14 is used to address the associated data area from
within a function.

The data area is placed in the OAT A section so that r 14 may be used as a base for referencing local static
variables. Static variables are usually mapped before the various data areas; therefore, static variable
references employ negative offsets from r 14.

When a pointer to a function is assigned the "value" of a function, it is actually assigned the address of the
function's data area. The first word of the data area always contains the entry point, that is, the address of the
first instruction of the function.

5. Portions of this chapter copyright International Business Machines Corporation, 1987. Excerpts by permission, from the manual entitled
Academic Information Systems 4.3 for the IBM RT PC. More information may be found in the section entitled "4.3/RT Linkage
Convention" in Part n, Supplementary Documents.

C -16 2 July 87

4.3 for the IBM RT PC High C Programmer's Guide

6.3 Stack Frame Layout

The stack holds frames for currently active functions. It is word-aligned and grows downward. r 1, the "stack
pointer", indicates the low address of the stack frame of the currently executing function.

A stack frame is divided into the following areas, highest address first:

a) space for incoming argument list (four words)
b) linkage area (four words; reserved)
c) static link (one word)
d) general register save area (sixteen words maximum)
e) floating-point register save area (zero or eighteen words)
f) local variables and temporary storage
g) words 5 through n of out-going argument lists

The static link applies to a function that is nested within another function; it is the address of the enclosing
function's stack frame. (Nested function definitions, as in Pascal, are a High C extension to Standard C.) The
static link is used to do "up-level addressing", that is, referencing local variables of containing functions.
While executing level-one functions, the static link field is uninitialized.

The caller's return address (r1S) is saved at a fixed offset of ten words below the top of the stack frame, at the
top of the general register save area.

The floating-point register save area is up to eighteen words long. It is empty if no such registers need
preserving.

The compiler uses r 13 to reference the top of the stack frame. Since it is more efficient to access variables
with small positive displacements, the compiler often biases the value of r13 to improve the code for local
variable accesses (see §6.7 Prologue below for more information).

6.4 Argument Passing

Arguments are word-aligned and allocated to consecutive words on the stack. The list lies across frame
boundaries: words 1-4 are allocated in the top of the callee' s frame, and the remainder are in the bottom of the
caller's frame, which is adjacent. In a call, words 1-4 are actually passed in registers r2-rS.

Arguments are passed as follows, based on argument type:

An int is passed in a single word.

A long, short, pointer, or char is treated as an int and passed in a word.

A double is passed in two consecutive words.

A float is converted to double and passed in two consecutive words, unless it is being passed to a
prototyped function that was declared to receive a float, in which case it is passed in a word.

A structure is aligned to a word and left justified, except for a structure one, two, or three bytes long, which
is right justified.

A pointer to a function is passed as a pointer to the function's data area.

A full-function value6 is passed as two words. The first contains the address of the data area; the second
contains the static link.

If a function is declared as returning a structure, the caller passes the address of a result area in r 2. The first
word of the explicit argument list is passed in r3. Subsequent arguments are shifted accordingly.

6. A full-function value is a High C extension. It consists of a function address and a static link. See the High C Language Reference
Manual for details.

C ·17 2 July 87

4.3 for the IBM RT PC High C Programmer's Guide

6.S Function Results

A result is returned from a function in one of three ways, depending on the function's return type:

an int, long, short, pointer or char is returned in r2.

a double is returned in r2 and r3.

a float is widened and returned as a double.

a structure result or full-function value is returned by moving it into the area pointed to by the first word in
the argument list (in r2 on entry).

6.6 Calling Sequences

A call of a known function faa first prepares the argument list, then executes the following:

balix r15,_.foo # Call.
1 rO,$.long(_foo) # Get its data area

pointer, r14 relative.

If the function being called is nested within another function (High C, not plain C), the caller stores the static
link, that is, the frame pointer of the enclosing function, into - 36 (r 1) before executing the balix.

Note that the address of the data area of the function being called is in the data area of the caller and is
referenced off of r 14 .

A call to a function via a function pointer is done as follows. Recall that a function pointer addresses the
function's data area. If the pointer is in r8, typical code is:

ls rt,O (r8)
balrx r15,rt
m.r rO,r8

6.7 Prologue

Get address of entry point.
Call.
Load rO with data area address.

Prologue code saves the caller's registers, establishes the frame pointer (r13), and obtains stack space for the
stack frame. Typical code is:

. foo: stm
m.r

m.r
cal

rn,-76+(n-6)*4(r1)# Save caller's regs .
r14,rO # Set up addressability

to data area.
r13,r1 # Set up frame pointer.
r1,frame_size(r1) # Allocate stack frame.

Here n (6S:;nS:;13) is the register number of the first general register to be saved, and frame _ si ze is the size
of the stack frame (word-aligned) including the space required for the caller's save area. Other instruction
sequences arc needed for frame sizes larger than 32,767 bytes.

If floating-point registers must be saved, the following code is inserted before the allocation of the stack frame:

cal
balr

r15,stm(r14)
r15,r15

where stm (r14) references a floating-point storem instruction to save non-volatile floating-point registers in
the floating-point save area. See the section entitled "4.3/RT Linkage Convention" in Part II, Supplementary
Documents.

As noted earlier, r13 may be biased by some negative amount so as to improve code references to stack frame
variables. For example, "mr r 13, r 1" may be replaced with "cal r 13, -80 (r 1) ".

C -18 2 July 87

4.3 for the IBM RT PC High C Programmer's Guide

6.8 Epilogue

The epilogue restores the caller's environment and returns control. Typical code is:

mr
1m
br

ri,r13
rn,-76+(n-6)*4(ri)
r15

Restore stack pointer.
Restore general reg.
Return to caller.

where n is the same value as in the stm instruction of the corresponding prologue.

If floating-point registers are involved, these instructions appear before the 1m instruction:

cal
balr

r15,lm(r14)
r15,r15

where 1m (r14) references a floating-point loadm instruction to restore those floating-point registers saved in
the prologue.

6.9 Assembler Issues

Temporarily, all modules linked by ld must have the global symbol. oVncs defined as an absolute with value
o. This distinguishes modules using an earlier linkage convention that is now obsolete. In assembly language,
the symbol can be defined via:

.qlobl .oVncs

. set .oVncs,O

The compiler also defines the following to help identify compilation specifics:

.qlobl .oVhcversion

. set . VXxOy

where version indicates the compiler version number, such as 1.4; x may be either E or e, meaning that the
code was compiled with toggle Long_enums either On or Off, respectively; and y may be either u or s,
meaning that the code was compiled with toggle Char_default_unsigned either On or Off, respectively.

C -19 2 July 87

4.3 for the IBM RT PC High C Programmer's Guide

7. SYSTEM SPECIFICS

This section describes some system-specific aspects of the High C compiler for IBM Academic Information
Systems 4.3 for the IBM RT PC.

7.1 Floating-Point Arithmetic

High C uses the IEEE Standard 754 formats to represent floating-point data.

Each float is a 32-bit value with an 8-bit exponent and a 23-bit mantissa. The absolute values of the repre­
sentable numbers lie in the range 8.43xIO-37 to 3.37xIO+38.

Each double and long double is a 64-bit value with an II-bit exponent and a 52-bit mantissa. The absolute
values of the representable numbers lie in the range 4.19xIO-307 to 1.67xIO+308.

7.2 Size of Complilation Unit

Each compilation unit is limited in size to perhaps 15,000 lines of "typical" C code, after macro expansion, due
to a limit of 65K nodes in a tree representation of the entire module as expanded.

7.3 Some ANSI-Required Specifics

Here are some additional system specifics that the ANSI document X3Jll/86-I02 requests each C
implementation provide.

Identifiers. The number of significant characters in an identifier is 32,000, since that is the longest input line
acceptable to the compiler. Casing is preserved.

Characters. The characters in the source and the execution character set are the standard ASCII characters.
Each character in the source character set maps into the identical character in the execution character set.
Without exception, all character constants map into some value in the execution character set.

A character is stored in a byte and there are four bytes in an into

High C does not permit a character constant that contains more than one character. Such a construction is
usually machine-dependent.

The type spccifier char, when not accompanied by an adjective, denotes an unsigned character type.
However, this can be changed by turning Off the toggle Char_default_unsigned.

Integers. Integers are represented in twos-complement binary form. The following table illustrates the ranges
of values to which the various integer types are restricted:

TY1!.e Range

signed char -128 to 127
unsigned char 0 to 255
short -32,768 to 32,767
unsigned short 0 to 65,535
int -2,147,483,648 to 2,147,483,647
unsigned int 0 to 4,294,967,296
long -2,147,483,648 to 2,147,483,647
unsigned long 0 to 4,294,967,296

Conversion of an integer to a shorter signed integer or int bit field is done by bit truncation; that is, when
storing an X-bit value into a Y-bit receptacle, where x > Y, the rightmost Y bits of the first value are stored.
Conversion of an unsigned integer u to a signed integer I where sizeof (U) = sizeof (I) consists in
transferring the bits of U into I, whether or not the value of u is representable in 1. For example, (short
int) (short unsigned) 65535 is the short int value -1. The sizeof operator returns an into

The results of bitwise operations on signed integers are the same as if the integers were treated as unsigned.

C - 20 2 July 87

4.3 for the IBM RT PC High C Programmer's Guide

The sign of the remainder on integer division is the same as the sign of the dividend.

The right shift of a signed integral type is arithmetic; that is, the sign bit is propagated to the right.

Floating point. Floating-point representation is IEEE Standard 754. The default rounding mode is "round to
nearest". See §5 STORAGE MAPPING for the length required for each floating-point type.

When a negative floating-point number is truncated to an integral type, the truncation is toward zero. Thus
,.-2. 7 is truncated to -2 and -1 .2 to -l.

Arrays and Pointers. The type returned by sizeof is type int, and the difference of the pointers is type
into

Registers. A register variable is eligible for assignment to a machine register if its type is appropriate. See
the table in §5 STORAGE MAPPING for a list of such types.

Potentially, as many variables can be placed in registers as there are "nonvolatile" registers. See §6 RUN­
TIME ORGANIZATION for a list of the nonvolatile registers.

Structures, unions, and bit fields. Only unsigned bit fields are supported. A bit field declared as int is
treated as unsigned into For more information on structures, unions, and bit fields, see §5 STORAGE
MAPPING.

Declarators. There may be at most 65,535 declarators modifying a basic type.

Statements. There may be at most 65,535 cases in a switch statement.

Preprocessing directives. A single-character constant in a constant expression controlling conditional inclu­
sion is always non-negative in value, ranging from 0 to 255.

For the method of locating includable source files, see §2 INVOKING THE COMPILER.

c - 21 2 July 87

4.3 for the IBM RT PC High C Programmer's Guide

8. EXTERNALS

The names of variables and functions that are communicated across module boundaries are normally made
global in the resultant objcct module. In large programs there may be hundreds or even thousands of such
names, so name conflicts are likely to occur.

Unfortunately neither C nor most linkers provide for a structured name space - for named packages of
resources, for example. Thus the well-chosen "internal" names in a program may not also be usable as
"external" names (those known to the linker) as they should be. Thus some method of aliasing internal names
to externals is needed, and High C provides it.

It is important to be able to alias such names to avoid conflicts in the linker's external symbol dictionary, rather
than being forced to pervert the internal names themselves. It is the internal names that are most important to
be well-chosen "containers of meaning", for program maintainability?

8.1 The Alias Pragma

This pragma specifies, for a specific internal name, another name for external or public purposes. It is the
alternate name that appears in the object module. The form of the Alias pragma is as follows:

pragma Alias «Internal_name>,<External_name»;

where <Internal_name> is the function or variable identifier being aliased and <External_name> is a
constant string expression whose value denotes the alternate or external name.

The Alias pragma must appear in the scope of the declaration of the internal name.
Example:

void Initialize();
pragma Alias(Initialize,"x_initialize IJ

);

/* The function Initialize is referenced in the */
/* object-module name list as "x initialize". */

int BA;
pragma Alias (BA, "PhD") ;
/* "BA" is referenced in the name list as "PhD". */

8.2 Data Segmentation: the Data Pragma

Audience. This section may be skipped except by those interested in either (a) linking with programs written
in Professional Pascal or (b) using a data communication convention different from that of Standard C.

Communication between separately-compiled modules is achieved by using the extern storage class in C.
Multiple defining declarations of a variable x are allowed, as long as at most one of them initializes x (thus the
extern storage class is not required).

The Da ta pragma provides an alternative method of sharing data, using named blocks. Its general usage is
illustrated by:

pragma Data(class,"blockname");
int X,Y,Z;

/* Other normal C declarations may appear here. */
pragma Data;

/ * "Turns off" the prior Data pragma. * /

where class is one of Common, Import, or Export, and "blockname" is a constant string expression. The
ending Data pragma has no parameters.

7. The external names are also important in that respect, but we believe that the proper solution is a "module interconnection language"
and associated linker with a structured dictionary to match the overall structure of the program.

C - 22 2 July 87

4.3 for the IBM RT PC High C Programmer's Guide

Only the given block name is made known to the linker as a global symbol: each variable is addressed at a
fixed offset within the block. When the Import class is specified, the symbol is given the undefined global
attributes and a value of 0; when Export, the symbol is defined in the module's bss or data segment and
given the global attribute. When Common, the symbol is flagged as a named common block, that is, given the
undefined global attributes and a value that is equal to its length.

Scope. Each Data pragma must be terminated or "turned off' as illustrated above in the same scope in which it
is turned on. The storage class specification applies only to variable declarations between the specification and
its termination, but not to any variables declared within embedded function definitions (a High C extension).
That is, variables declared at lower levels - local to surrounded (nested) function declarations - are not
affected: at a function declaration, any active Data pragma temporarily becomes inactive and the default
applies through the end of the function.

A compile-time warning is issued if a Data pragma is specified when a prior Data pragma is still active (in
which case the subsequent pragma applies), or if a Data pragma is active at the end of a function declaration or
at the end of a compilation unit. Thus Data pragmas cannot be nested within a single function, though they
can be nested if they apply to the local variables of distinct functions.

Example:

pragma Data(Common,nblock n);
int Tables are loaded: Boolean;
struct { ... } Tables;
pragma Data;

Here, the names, Tables and Tables _are loaded, are mapped at consecutive displacements (subject to
boundary alignment) within the common block block.

C - 23 2 July 87

4.3 for the IBM RT PC High C Programmer's Guide

9. ASSEMBLY LANGUAGE COMMUNICATION

9.1 Assembly Routines

§6 RUN-TIME ORGANIZATION describes the code that an assembly routine must execute to be callable from
C, how arguments are passed, and how function results are returned. In short, an assembly routine should be
coded according to the following guidelines. Symbols in i tali cs are to be filled in appropriately .

. text

.globl .name

.globl name
.name: stm rn, -76+ (n-6) *4 (rl)

mr r14,rO
mr r13,rl
cal rl, frame_ size{rl)

The body of the routine goes here.
mr rl,r13
1m rn, -76+ (n-6) *4 (rl)
br r15
. data
.align 2

name:

. long .name

where name is the function's name as referenced from C; n (6~n~13) is the register number of the first general
register to be saved; frame _ si ze is the size of the stack frame (word-aligned) including the space required for
the caller's save area.

9.2 Function Naming Conventions

An identifier that is global, that is, accessible across module boundaries, must have information provided to the
linker that associates its name with its address. This is done by placing a corresponding name in the name list
of the object module and giving it the "global" attribute.

There are two names associated with every function: one referring to the entry point and the other to the
associated data area. The name that references the data area of a C function faa is _faa; the entry point is
referenced by _. faa.

C - 24 2 July 87

4.3 for the IBM RT PC

9.3 Examples: Calling Assembly from C

Example #1:

High C:

extern void and(int *dest, int *src, int len);
void main ()

{

int a[256],b[256];

and(a,b,256);

Assembly:

and:

.and:

L:

exit:

. data

.globl

.globl

. align

. long

. text

stm
mr
mr
cal
cis
jle
Is
Is
n
sis
bx
sts
mr
1m
br

and
.and

2

.and

r13,-48(rl)
r14,rO
r13,rl
rl,-48(rl)
r4,O
exit
rO,O(r2)
r5,O(r3)
rO,r5
r4,1
L
rO,O(r2)
rl,r13
r13, -48 (rl)
r15

High C Programmer's Guide

Since the assembly routine does not modify non-volatile registers and has a zero-length stack frame (except for
the caller's save area), it can be optimized to the following:

. data

.globl - and

.globl .and

. align 2
and: . long .and

. text
.and:

L: cis r4,O
bIer r15
Is rO,O(r2)
Is r5,O(r3)
n rO,r5
sis r4,1
bx L
sts rO,O(r2)

However, if an exception should occur in the optimized routine, for example, an invalid address passed in, the
debugger may be hampered in identifying the context.

C - 25 2 July 87

4.3 for the IBM RT PC

Example #2:

High C:

extarn char peek (char *adr);
void main(){

char b;

b = peek(Ox8000);

Assembly:

. data

.qlobl _peek

.qlobl .peek

. align 2
_peek: .lonq .peek

text
.peek: Ie r2,O(r2)

br r15

9.4 Example: Calling C from Assembly

High C Programmer's Guide

Return the byte.

To call a C function faa from assembly language, first store the arguments in r2 through r5 (putting any
additional arguments on the stack at 0 (r 1)) and then execute the following two instructions.

balix
1

r15, _. faa
rO,x(r14)

where x (r 14) refers to a memory location containing the address of _faa.

Example:

High C:

void write_string(char *s)
{

printf("%s\n",s);
}

Assembly:

. text

.qlobl

.qlobl
name: . long

. long
.name: stm

_write_string
.write string
. name

_write_string
r13,-48(rl)

mr r13,rl
mr

qat
balix
1

r14,rO # Set up reference
to data area.

r2,$msg
r15,_.write_string
rO,4 (r14) # i. e., name + 4

msg: .asciz "This is a message."

9.5 Data Communication

A global variable "x" appears in the name list as "_x", unless specified otherwise with an Alias pragma -
see §8 EXTERNALS.

C - 26 2 July 87

4.3 for the IBM RT PC High C Programmer's Guide

§5 STORAGE MAPPING explains how the various C data types are mapped into storage. Note that
uninitialized global variables without the extern qualifier are actually defined as individual common blocks.
The following examples illustrate the sharing of variables across C and assembly modules:

High C:

int alpha, beta;
char hextable[] = "0123456789ABCDEF";
extern char *names[]; /*A read-only table of names.*/
extern short status;

Assembly:
.comm _alpha, 4
.comm _beta, 4
.globl hextable # Imported from C .
. text
.globl names # Read-only;

names: . long LOI # in text segment.
. long L02
. long L03
. long 0

LOl: .asciz "alfred"
L02: .asciz "bonny"
L03: .asciz "charlie"

. data

.globl status
status:

.short 0

High C provides the ability to map more than one variable into a named block. for example. a common block
as in FORTRAN. This facility is provided by the Data pragma and is documented in §8 EXTERNALS. The
following illustrates how such a common block may be accessed from assembly language.

C Common Block Definition:

pragma Data(Common,"BLOCK_NAME");
int a,b;
char c,d;
short e;

pragma Data;

Assembly Language Equivalent:

.comm BLOCK_NAME, 12

.set a,O

. set b,4

. set c,8

. set d,9

. set e,lO

Usage:
get r2,BLOCK_NAME
1 r3,a (r2) # Load value of a.
1 r4,b(r2) # Load value of b.
Ie r5,c(r2) # Load value of c, etc.

Note that variables a, b, c, d, and e are not global; that is. they do not appear in the name list with the "global"
attribute. The only name that appears in the name list is BLOCK _NAME.

C - 27 2 July 87

4.3 for the IBM RT PC High C Programmer's Guide

10. LISTINGS

This chapter describes the format of a listing generated by the compiler. Those pragmas that have an effect on
the listing are described as well.

10.1 Pragmas Page, Skip, Title

To cause n page ejccts at some point in the listing, insert:

pragma Page(n); /* where n is the number of ejects. */

To cause n lines to be blank at some point in the listing, insert:

pragma Skip(n); /* where n is the number of blanks. */

To cause a title T to appear at the top of each successive page, place the following pragma in the source:

pragma Title(T); /* where T is a string constant. */

Each successive Tit 1 e pragma changes the title for subsequent pages; therefore the title does not appear on the
first page.

10.2 Format of Listings

Ruler. The first line after any header and title lines on each page is a "ruler" that defines three fields for each
line. The fields are for: (1) three level numbers, (2) the line number, and (3) the line contents. The ruler is as
follows:

Levels LINE# 1----+----1----+----2----+----3----+----4----+----5--...

Level-numbers can be used to find a missing} or comment terminator when a message such as "Unexpected
end-of -f ile. " is produced by the compiler. All three level-numbers are initially zero, but they are printed
as blank rather than o.

The first level-number indicates the scope nesting level for struct or union declarations.

The second level-number indicates the statement nesting level. It is incremented at the beginning of each { and
is decremented at the corresponding }.

The third level-number indicates the structure initialization nesting level. It is incremented at the beginning of
each { and decremented at the corresponding }.

Include files. A first-level Include file named File_name is indicated as starting after a line containing
"+ (File_name" in the line number field, and ending just before a matching "+) File_name" line. The
included lines have "+" in the leftmost column of the line-number field, and those lines are numbered
independently of the main source file.

An Included file inside an Include file has an extra "+" on each of its lines for each level of inclusion,
except that line numbers take precedence over "+"s in the line-number field if and when the "+"s would
otherwise intrude into the field.

The listing facility should be used in conjunction with the -Hnocpp option. Otherwise the output of the
outboard C preprocessor will be listed; each Include file specified with the #include preprocessor
statement is back substituted with no indication on the listing.

Example. Because a picture is worth a thousand words, a sample program listing appears on the next two
pages, enhanced with boldface reserved words and followed by the optional assembly listing requested by
-Hasm on the following compile command line:

hc queens.c -Hlist -Hasm -Hnocpp

C - 28 2 July 87

4.3 for the IBM RT PC High C Programmer's Guide

MetaWare High C Compiler 1.4 07-Jul-86 17:13:14 queens.c
Copyright (C) 1983-87 MetaWare Incorporated.

Target:
Levels

1 1
1 1
2 2
2 2
3 3
3 3
3 3
3 3
3 3
4 4
4 4
5 5
5 5
5 5
5 5
4 4
3 3
3 3
2 2
1 1
1 1

4.3/RT
LINE #

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

(Code generator 2.7)
1----+----1----+----2----+----3----+----4----+----5----+
1/* From Wirth's Algorithms+Data structures=Programs. */
1/* This program is suitable for a code-generation */
1/* benchmark, especially given common sub-expressions*/
1/* in array indexing. See the Programmer's Guide for*/
1/* how to get a machine code interlisting. */
I
Ipragma Title("Eight Queens problem.");
I
Itypedef anum {False, True} Boolean;
Itypedef int Integer;
I
lidefine Asub(I) A[(1)-1] /*C's restriction that array */
lidefine Bsub(I) B[(1)-2] /* indices start at zero */
lidefine Csub(I) C[(1)+7] /* prompts definition of */
lidefine Xsub(I) X[(1)-1] /* macros to do subscripting.*/

static Boolean
static Boolean
static Boolean
static Integer

A[8] ;
B [15] ;
C [15] ;
X[8] ;

/* Pascal equivalents: */
/* A:array[1 .. 8] of Boolean */
/* B:array[2 .. 16] of Boolean */
/* C:array[-7 .. 7] of Boolean */
/* X:array[1 .. 8] of Integer */

void Try (Integer I, Boolean *Q) {
Integer J = 0;
do {

J++; *Q = False;
if (Asub(J) && Bsub(I+J) && Csub(I-J)) {

Xsub (1) = J;
Asub(J) = False;
Bsub(I+J) = False;
Csub(I-J) = False;
if (I < 8) {

Try (1+1, Q) ;
if (! *Q) {

Asub(J) =

Bsub (I+J)
Csub (I-J)
}

else *Q
}

True;

while (! (*Q I I J==8));
}

True;
True;

= True;

pragma Page(l); /* Page eject requested. */

C - 29

Page 1

2 July 87

4.3 for the IBM RT PC High C Programmer's Guide

MetaWare High C Compiler 1.4 07-Jul-86 17:13:14 queens.c Page 2

Eight Queens problem.
Levels LINE # 1----+----1----+----2----+----3----+----4----+----5----+

45 Ivoid main () {

1 1 46 1 Integer I; Boolean Q;
1 1 47 1 printf("%s\n","go");
1 1 48 1 for (I 1 ; I <= 8; Asub (1++) True);
1 1 49 1 for (1 = 2; I <= 16 ; Bsub (1++) True);
1 1 50 1 for (1 = -7; I <= 7; Csub (1++) True);
1 1 51 1 Try (1, &Q) ;
1 1 52 Ipragma Skip(3); /* Skip 3 lines. */

1 1 53 if (Q)
1 1 54 for (1 = 1; I <= 8;) {

2 2 55 printf ("%4d", Xsub (1++» ;
2 2 56 }

1 1 57 printf("\n");
1 1 58 }

If the -Hasm option is specified, the source-annotated assembly listing on the next few pages is produced. (The
page boundaries have been adjusted to fit the present page sizes.)

C - 30 2 July 87

4.3 for the IBM RT PC High C Programmer's Guide

MetaWare High C Compiler 1.4 07-Jul-86 17:13:14 queens.c
Copyright (C) 1983-86 MetaWare Incorporated.

Target: 4.2/RT
Levels LINE #

1
2
3
4
5

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

1 23
1 24
2 25
2 26
3 27
3 28
3 29
3 30
3 31
4 32
4 33
5 34
5 35
5 36
5 37
4 38
3 39
3 40
2 41
1 42
1 43

44

(Code generator 1.3)
1----+----1----+----2----+----3----+----4----+----5----+
1/* From Wirth's Algorithms+Data Structures = Programs.*/
1/* This program is suitable for a code-generation */
1/* benchmark, especially given common sub-expressions */
1/* in array indexing. See the Programmer's Guide for */
1/* how to get a machine code interlisting.

*/

Ipragma Title("Eight Queens problem.");
1

Itypedef enum {False, True} Boolean;
Itypedef int Integer;
1

I#define
I#define
I#define
I#define
1

Asub(I) A[(1)-1] /* C's restriction that array*/
Bsub(I) B[(1)-2] /* indices start at zero */
Csub(I) C[(1)+7] /* prompts definition of */
Xsub(I) X[(1)-1] /* macros to do subscripting.*/

/* Pascal equivalents: */
1 static Boolean A[8]; /*
Istatic Boolean B[15]; /*
1 static Boolean C[15]; /*
Istatic Integer X[8]; /*
1

A:array[1 .. 8] of Boolean */
B:array[2 .. 16] of Boolean */
C:array[-7 .. 7] of Boolean */
X:array[1 .. 8] of Integer */

Ivoid Try (Integer I, Boolean *Q) {
1 Integer J = 0;
1 do {
1 J++; *Q = False;

if (Asub(J) && Bsub(I+J) && Csub(I-J» {
Xsub (I) = J;
Asub(J) = False;
Bsub(I+J) = False;
Csub(I-J) = False;
if (I < 8) {

Try(I+1,Q) ;
if (! *Q) {

Asub(J) = True;
Bsub(I+J) True;
Csub(I-J) = True;
}

else *Q True;

while (! (*Q II J==8»;
}

Ipragma Page(l); /* Page eject requested. */

C - 31

Page 1

2 July 87

4.3 for the IBM RT PC High C Programmer's Guide

MetaWare High C Compiler 1.4 07-Jul-86 17:13:14 queens.c Page 2

Eight Queens problem.
Levels LINE # 1----+----1----+----2----+----3----+----4----+----5----+

45 Ivoid main () {

1 46 1 Integer I; Boolean Q;
1 47 1 printf("%s\n","go");
1 48 1 for (1 1 ; I <= 8; Asub(I++) True) ;
1 49 1 for (I = 2; I <= 16; Bsub (1++) True) ;
1 50 1 for (I = -7; I <= 7; Csub(1++) True) ;
1 51 1 Try(l,&Q);
1 52 Ipragma Skip (3) ; /* Skip 3 lines. */

1 53 if (Q)
1 54 for (I = 1; I <= 8;) {

2 55 printf("%4d",Xsub(I++));
2 56 }

1 57 printf("\n");
1 58 }

C - 32 2 July 87

4.3 for the IBM RT PC High C Programmer's Guide

MetaWare High C Compiler 1.4 07-Jul-86 17:13:14 queens.c

Addr ~ect

Eight Queens problem.
Source Program and Assembly Listing

.globl .oVncs

. set .oVncs,O

.globl _printf

.globl .printf
#/* From Wirth's Algorithms+Data Structures = Programs */
#/* This program is suitable for a code-generation */
#/* benchmark, especially given common sUb-expressions */
#/* in array indexing. See the Programmer's Guide for */
#/* how to get a machine code interlisting.

#pragma
#typedef
#typedef
##define
##define
*/

*/
Title ("Eight Queens problem.");
enum {False, True} Boolean;
int Integer;
Asub (I) A [(I) -1]
Bsub(I) B[(I)-2]

/* C's restriction that array*/
/* indices start at zero

##define Csub(I) C[(I)+7]
*/

/* prompts definition of

##define Xsub(I) X[(I)-l]

/* macros to do subscripting.*/
/* Pascal equivalents:

0000
0000 00

0001
0008 00

0009
0018 00

0019
0028 00

0000
0000

0000 D961
0004 6EOO
0006 6D10
0008 C811
OOOC 6C20
OOOE 6B30

0010 A4AO

0012
0012 90A1
0014 A490

FFB4

FFB4

*/
#static Boolean A[8]; /* A:array[1 .. 8] of Boolean */

. data
LOO DATA:

. byte 0

. set _A, LOO_DATA+O
#static Boolean B[15]; /* B:array[2 .. 16] of Boolean */

.space 7

. byte 0

. set _B,LOO_DATA+8
#static Boolean C[15]; /* C:array[-7 .. 7] of Boolean */

.space 15

. byte 0

. set _C,LOO DATA+24
#static Integer X[8]; /* X:array[1 .. 8] of Integer */

.space 15

. byte 0

. set X,LOO DATA+40
#void Try(Integer I, Boolean *Q)

. text

. align 1
LOOO:

.globl .Try
.Try:

stm r6,-76(r1)
mr r14,rO
mr r13,r1
cal r1,-76(r1)
mr r12,r2
mr r11,r3

Integer J 0;
lis r10,O

do {

J++; *Q = False;
L012:

ais r10,l
lis r9,0

C - 33

Page 3

2 July 87

4.3 for the IBM RT PC

MetaWare High C Compiler 1.4 07-Jul-86 17:13:14 queens.c

Addr
0016

0018
001C
001E
0022
0024
0026
0028
002A
002C
002E
0030
0032
0034
0036
003A
003C

003E
0040
0042
0044

0046

004A

004C

004E

Object
109B

C82E FFA8
682A
CE38 FFFF
B439
OA2D
63AC
6723
4637
B439
OA28
63CO
E23A
6623
CE36 001F
B439
OA21

63CO
AA32
E123
39A2

DE98 FFFF

1697

94C8

89900016
0052 DE96 001F

0056 62CO
0058 9021
005A 63BO
005C 8DFFFFD2
0060 C80E 0000

0064 402B
0066 B429
0068 020B

006A A491
006C DE98 FFFF

0070 1697

0072 89800006
0076 DE96 001F

Eight Queens problem.
Source Program and Assembly Listing

stcs r9,0(r11)
if (Asub(J) && Bsub(I+J) && Csub(I-J»

cal
cas
lc
c
ja
cas
cas
lcs
c
je
mr
s

r2,-88(r14)
r8,r2,r10
r3,-1(r8)
r3,r9
L07E
r3,r10,r12
r7,r2,r3
r3,6(r7)
r3,r9
L07E
r3,r12
r3,r10

cas r6,r2,r3
lc r3,31(r6)
c r3,r9
je L07E
Xsub(I) = J;

mr r3,r12
sli r3,2
a r2,r3
sts r10,36(r2}

Asub(J} = False:
stc r9,-1(r8)

Bsub(I+J} = False;
stcs r9,6 (r7)
Csub(I-J} = False;

cis r12,8
if (I < 8) {

bhex L07A
stc r9,31(r6)

Try(I+1,Q} ;
mr r2,r12
ais r2,1
mr r3,r11
balix r15, .Try
cal rO,0(r14)

if (! *Q) {

lcs r2,0(r11)
c
jne

lis
stc

stcs

bx
stc

r2,r9
L07E

Asub(J} = True;
r9,1
r9,-1(r8)

Bsub(I+J} True;
r9,6(r7)

Csub(I-J) True;
L07E
r9,31(r6)

}

C - 34

Try

High C Programmer's Guide

Page 4

2 July 87

4.3 for the IBM RT PC High C Programmer's Guide

MetaWare High C Compiler 1.4 07-Jul-86 17:13:14 queens.c

Addr Object

007A
007A A421
007C 102B

007E
007E 402B
0080 9420
0082 0203
0084 94A8
0086 02C6
0088
0088 6100
008A C961
008E E88F

FFB4

0090 OF070F68

0094

0058
0058
005C

0096
0096

2000

00000000'

0096 09B1 FFC8
009A 6EOO
009C 6010
009E C811 FFC4

Eight Queens problem.
Source Program and Assembly Listing
else *Q = True;
L07A:

lis
stcs

r2,1
r2,0 (r11)

while (! (*Q I I J==8));
L07E:

L088:

_Try:

lcs r2,0(r11)
cis r2,0
jne L088
cis r10,8
jne L012

mr
1m
br
. long

. short

. data

.globl

r1,r13
r6,-76(r1)
r15
OxOF070F68

First gpr=r6
Ox2000 # npars=2, off=O
1
_Try

. long LOOO

.align 2

#pragma Page(l); /* Page eject requested. */
#void main () {

L096:

.main:

. text

.align 1

.globl

stm
mr
mr
cal

.main

r11,-56(r1)
r14,rO
r13,r1
r1,-60 (r1)

C - 35

Page 5

2 July 87

4.3 for the IUM RT PC High C Programmer's Guide

MetaWare High C Compiler 1.4 07-Jul-86 17:13:14 queens.c Page 6

Eight Queens problem.
Addr Object Source Program and Assembly Listing

Integer I; Boolean Q;

00A2
00A6
OOAA
OOAE

C82E FFEC
C83E FFFO
80FOOOOO'
COOE 0004

printf("%s\n","go");
cal r2,-20(r14)
cal r3,-16(r14)
balix r15,_.printf
1 rO,4(r14)

for (I = 1; I <= 8; Asub(1++)
00B2 A4Cl
00B4
00B4
00B6
00B8
OOBA
OOBC

94C8
OB09
A421
6BCO
EIC2

LOB4:
lis

cis
jh
lis
mr
a

OOBE 63BE cas
OOCO 898FFFFA bx
00C4 OE23 FFA3 stc

for (I =
00C8 LOC8:
00C8 A4C2
OOCA
OOCA
OOCE
0000
0002
0004
0006
0008

040COOIO
OB09
A42l
6BCO
EIC2
63BE
898FFFF9

LOCA:
lis

ci
jh
lis
mr
a
cas
bx

r12,1

r12,8
LOC8
r2,1
rll,r12
r12,r2
r3,rl1,r14
LOB4
r2,-93(r3)

2; I <= 16; Bsub(1++)

r12,2

r12,16
LOEO
r2,1
rll,r12
r12,r2
r3,rl1,r14
LOCA

OOOC DE23 FFAA stc r2,-86(r3)
for (I = -7; I <= 7; Csub(I++)

OOEO LOEO:
OOEO C8CO FFF9 cal
00E4 LOE4:
00E4 94C7 cis
00E6 OB09 jh
00E8 A42l lis
OOEA 6BCO mr
OOEC EIC2 a
OOEE 63BE cas
OOFO 898FFFFA bx
00F4 OE23 FFC3 stc

Try (1, &Q) ;
00F8 LOF8:
00F8
OOFA
OOFE
0100
0104

A42l
C8BO FFC7
63BO
80FFFF80
COOE 0008

lis
cal
mr
balix
1

r12,-7(rO)

r12,7
LOF8
r2,1
r11,r12
r12,r2
r3,rll,r14
LOE4
r2,-6l(r3)

r2,1
rll,-57(r13)
r3,rll
r15, .Try

rO,8(r14)

Try

#pragma Skip(3); /* Skip 3 lines. */
if (Q)

0108
010A
OIOC

402B
9420
OAll

lcs
cis
je

r2,0(rll)
r2,0

C - 36

True);

True);

True) ;

2 July 87

4.3 for the IBM RT PC

MetaWare High C Compiler 1.4 07-Jul-86 17:13:14 cqueens.c

Addr Object

010E
0110
0110
0112

0114
0118
011A
011C
011E
0120
0124
0128
012C

012E
012E
0132
0136
013A
013C
0140
0142

0146

005C
005C
0060

0064
0068

0029
0048
0048
004B
004C
004E
004F
0050
0053
0054
0055

A4C1

94C8
OBOE

C82E FFF4
6BCO
90C1
AAB2
63BE
CD33 FFC8
8DFOOOOO'
CDOE 0004
00F2

C82E FFF8
8DFOOOOO'
CDOE 0004
61DO
C9B1 FFC8
E88F
DF07DFB8

ODOO

00000096'
00000000'

00000058'

25730A
00
676F
00

253464
00
OA
00

Eight Queens problem.
Source Program and Assembly Listing

L0012E
for (I 1; I <= 8;)

lis r12,1
L00110:

cis r12,8
jh LOO12E

printf("%4d",Xsub(I++»;
cal r2,-12(r14)
mr r11,r12
ais r12,1
sli r11,2
cas r3,r11,r14
1 r3,-56(r3)
balix r15, .printf

-
1 rO,4(r14)
j L00110

}

printf("\n");
L0012E:

main:

cal
balix
1
mr
1m
br
. long

. short

. data

.globl

. long

. long-

. long

. align

r2,-8(r14)
r15,_.printf
rO,4(r14)
r1,r13
r11,-56(r1)
r15
OxDF07DFB8

First gpr=r11
OxODOO # npars=O, off=O
1
main

L096

_printf
_Try
2

. data

.space 31
. LITERALS. :

.ascii

. byte

.ascii

. byte

. space

.ascii

. byte

.ascii

. byte

. data

"%s\012"
o
"go"
o
1
"%4d"
o
"\012"
o

0056 .space 2

High C Programmer's Guide

Page 7

No user errors 4 unprinted warnings
End of processing, 07-Jul-86 17:13:19 queens.c

C - 37 2 July 87

4.3 for the IBM RT PC High C Programmer's Guide

11. MAKING CROSS REFERENCES

This chapter explains how to use the hex ref command to generate a cross-reference listing of one or more
High C modules.

11.1 Features of the Cross Reference

Cross references have the following features:

References to source files. All cross-reference information refers to line numbers within files compiled, as
opposed to line numbers within a listing. Therefore no listing is necessary to use the cross reference.

Include files. Included source files are handled properly. That is, they do not interfere with the process, and
their names are included correctly in the results.

Assignments versus uses. References that assign values into variables are distinguished from references that
use values of variables.

Annotated listing. It is possible to generate an annotated source listing of one or more program files. The
listing contains cross-reference information to the right of the source text listed.

Multi-module cross references. A cross reference can span multiple compilation units by cross-referencing
many modules at once and showing references from one module into the other. Thus, a single cross reference
can be produced for a program that is broken up into separately compiled modules.

Inter-module usage summaries. A list of the names that one module uses that are located in other files can be
produced, organized by file. This helps one understand the module interconnectivity of a large program.

11.2 Using the hexref Command

The hexref command processes one or more High C source files and produces a cross-reference listing on
standard output. The listing consists of up to four components as described in § 11.3 Cross-Reference Format
below.

The command has the following form:

hcxref [-i1mpus] [preprocessor_options] ... files ...

where files denotes one or more High C source files, and preprocessor_options denotes zero or more
preprocessor options (for example, -I dir or -Dname) that are required when compiling the files.

The -1 option causes a listing of the source files to be generated, annotated with cross-reference information.
Incl ude files are not expanded in the listing unless -i is also specified.

The -m option causes a listing to be produced, for each module M, of the names referenced in M that were
defined elsewhere.

Names that are declared but not referenced do not appear in the cross reference unless the -u option is
specified.

The -p option causes the outboard C preprocessor to be invoked on each source file. The output of the
preprocessor is then processed by the cross referencer instead of the source files themselves. If this option is
not specified, the inboard preprocessor is used. This option is analogous to the -Hepp option of the he
command. The -1 and -i options are ignored when used in conjunction with -po

The - 8 option specifies that various statistics relating to the cross reference are to be printed.

The hcxref command invokes the High C compiler in a special mode to generate the cross-reference
information. Therefore, if any of the source files contains errors, appropriate diagnostics are generated.

C - 38 2 July 87

4.3 for the IBM RT PC High C Programmer's Guide

11.3 Cross-Reference Format

Components. Each cross reference is self-documenting and consists of four components:

(1) An alphabetized list of all names declared in the program, together with an ordered list of all the
references to each name.

(2) An alphabetized table of all files used in the program and a file reference number for each.

(3) A list for each module M of all the names used by M that are declared in other files - if requested.

(4) An annotated cross reference for each module - if requested.

When the components are produced:

Item (1) is always produced.

Item (2) is produced if the cross reference involves more than one file; this happens if more than one module is
cross-referenced, or if any compiled include files were involved in the modules being cross-referenced.

Item (3) is produced if the -m option is specified.

I tern (4) is produced if the -1 option is specified.

What each component consists of:

Item (1) presents the following information for each distinct name in the program:

The line and column number of the declaration of the name. If the name occurs in a compiled Include
file, or if several modules are being cross-referenced, the file number is also given.

The declared name N, and its owner: the name of the function that contains N' S declaration.

Information about the named object, such as its storage class (static, extern, typedef, register,
etc.) and in some cases, the object's type.

The numbers of any lines containing references to the name. If the references are not in the module being
cross-referenced, (they may be in an Included file), or if several modules are being cross-referenced, the
line numbers are presented in the format fn<I> where n is the number of the file containing the references
and I is the list of line numbers. Occasionally the entry in this field is of the form resolved at ref

where ref is a line number or fn< ... > reference as just described. This means that the name was
introduced by an extern declaration whose actual definition was given at ref.

References that assign, or may assign, a value to a variable are marked with the character *.

Item (2) presents the correspondence between file numbers and file names. References in items (1) and (3) use
the file number rather than file names, to keep the listing brief. Item (2) is used to determine the corresponding
file name.

Item (3) is optional. It is requested by the -m option. The output produced is a listing for each module M of the
names used by M that are declared in other files. The list is organized by file. This is useful for determining the
interconnectivity between modules. For example, if module Ml refers to no function names within module M2,

it may be possible to overlay the code of Ml and M2.

In Items (1) and (3) a reference to a name N declared at reference point P is changed to a reference to a point
P' , if the definition at P' resolves the declaration at P. Typically this happens when N is declared in an
interface file F, is used in a module M, and is defined at P' in a module M'. The module usage in Item (3)
shows that M refers to P' in module M' , not P in interface file F. That is, one gets references to the implementa­
tions rather than the interfaces through which they were supplied.

Item (4) is optional and is is generated by the -1 option. The result is a line-numbered listing of the source of
the compiled program, with each line annotated on the right with the line numbers of the definitions of names
used on the line.

If n names are used on the line, n line numbers appear to the right of the line, corresponding positionally. A
line number alone is a reference into the file being listed. If the letter i appears instead, the name referenced is
an intrinsic, such as find_char or _abs. Finally, a line number followed by f and another number means

C - 39 2 July 87

4.3 for the IBM RT PC High C Programmer's Guide

that the name was declared in a file other than the one being listed; the file number can be used to discover that
file's name in Item(2). Line# fF ile# was used.instead of F ile#<Line#> as in Item (1) for brevity.

11.4 Distinction of File Names

In a multi-module cross reference, a particular interface file may have been included by several modules
because each of the modules being cross referenced needs the resources in that file. The cross referencer
assumes that a repeated declaration of a name in a compiled Inc 1 ude file is the same declaration if it appears
at the same line and column number of the same Incl ude file.

For purposes of determining "sameness of Include files" the cross referencer uses the text of the file name
including the path. Therefore, to cross-reference several modules successfully, do not use different names for
the same Include file.

For example, if module Ml includes .. /utils/trees. h, and M2 includes /prog/utils/trees. h, and if
these two references denote the same file, the cross referencer will not recognize them as the same.

C - 40 2 July 87

4.3 for the IBM RT PC High C Programmer's Guide

12. DIAGNOSTIC MESSAGES

Messages from the High C compiler report (a) file I/O errors, (b) system errors, and (c) user errors and
warnings.

12.1 File I/O Errors

File I/O errors are fatal. 8 They can occur in attempting to open a non-existent file or in writing a compiler
output file when not enough file space is available. The errors likely to be seen are:

Unable to open file fff: file not found.

This message is produced when any input source file, such as that specified on the command line or in an
Include pragma, cannot be found.

This message is produced twice: it is written once to standard output and once to standard error. If
standard output is not redirected, the message appears on the screen twice.

***Error occurred on writing instruction file:
***Error occurred on writing object file: write failed.

Usually caused by too little space on disk. Remove unnecessary disk files and try again.

12.2 System Errors

System errors are fata18 and should rarely occur. They take the form:

»» s Y S T E MER R 0 R n ««, in Module:Function
Error message text.

where n numbers the occurrences of system errors, Module is the module name, and Function is the function
name. The only system error messages with which the user should be concerned are:

Dynamic array allocation/reallocation failed.
Out of memory.

This error indicates that the user's virtual memory quota was exceeded.

Recover: Exceeded the following limit: Limdt.

In repairing a syntax error, a table overflowed. The table limit is fixed, so no increase in memory can
improve the situation. Repair the error.

There are many other system error messages that the compiler could produce, but they are associated with
internal compiler errors or inconsistencies that should not occur.

Stack dump. Compiler system errors are always accompanied by a call-stack dump. The dump can usually be
ignored, but when reporting a problem to the support staff, the history of called functions can be helpful;
include a listing of the dump in any written correspondence. The following is a sample dump:

»»> S Y S T E MER R 0 R 1 ««<, in Seanner:Read_sean_tables
No sean tables found.

Line
Rout.1.ne F.1.1e /Off Addr Parma •••

syserr syserr.p 66
read_sean_tables stread.p 69
get_sean_tables.stread stread.p 39
analdrvr analdrvr.p 19
initialize_prefix.sk skelinit.p 2de
dolt skeldrvr.p e
pp_maln skeldrvr.p 6

main ppinit 1d
start 3d

Error was severe. Program terminated.

54d3a
bef2
eO 05
44ed
14eB
111£
115a
59645
4d

e09B,e080,O,66290,66320
2004a4e,fffa60,44ed,663e4
663e4,66290,fffade,14eB,1
1,663e4,66416,O,1,lB6de
fffaee,115a,fffaf4,59645
fffaf4,59645,fffb04,4d,3
fffb04,4d,3,fffbOB,fffblB
3,fffb08,fffb1B,ufffb38
fffb3d,fffb45,O,fffb4b

8. Fatal errors may result in compiler temporary files being left in the /tmp directory. They should be removed.

C - 41 2 July 87

4.3 for the IBM RT PC High C Programmer's Guide

The Routine and File columns are usually sufficient alone when reporting a problem to support personnel.

System errors due to a bug in the compiler's code generator are accompanied by a line "Code was being

generated for program text near Ln/Cm." following the call-stack dump. This helps isolate the
program text causing the problem and may facilitate reducing the problem program to a few lines, which then
can be easily sent to compiler support personnel.

NOTE: Code generator errors can frequently be "cured" by inserting a label before the line causing the
problem. Even if this cures the problem, please report the problem to support personnel.

12.3 User Errors and Warnings

User error messages are grouped in the three categories (1) lexical, (2) syntactic, and (3) constraint. Warnings
do not suppress object file generation; errors always do. Also, some diagnostics that are warnings become
errors when the compiler is run in ANSI mode.

Messages that report errors terminate compilation after the phase issuing the diagnostic, so errors that would
otherwise have been detected by later phases are not reported until all earlier errors are repaired and the
compiler is reinvoked.

All user diagnostics are accompanied by the file name, a line number n, and column number m, in the form
""filename", Ln/Cm", reporting where the error was detected. In addition, when -Hlist is specified on
the command line, as assumed in the examples below, lexical and syntactic errors are generally accompanied
by the erroneous line with a caret "A" beneath it at the point of error detection. Error messages begin with "E"

and warnings with "w", and usually occupy a single line.

Lexical error messages are produced when an improperly formed word is detected, such as a string with a
missing closing quote.
Example:

Levels LINE # 1----+----1----+----2----+----3----+----4----+----5
1 1 vo1.d main () {

1 1 2 1 char * S ;
1 1 3 1 S = "Hello;

C15 ---------------
E "file", L3/C15: (lexical) Unexpected end-of-line encountered.
1 1 4 1 }

Syntactic error messages are produced for programs that are ill-formed on the phrase level, such as a missing
"; " or inserted spurious symbol. The message is accompanied by a statement of the REP AI R that the compiler
effected so it could keep processing input.
Example:

Levels LINE # 1----+----1----+----2----+----3----+----4----+----5
1 Ivo1.d main() (

1 1 2 1 printf "Hello");
Cll ----------"

1 1 3 1 }

E "file", L2/Cll: (syntactic) unexpected symbol:'<STRING>':"Hello"
REPAIR: ' (' was inserted before '<STRING>' :"Hello"@L2/C11

Constraint error and warning messages diagnose more subtle problems, such as an undeclared identifier or
type mismatch. There are nearly 200 such diagnostics, each of which is meant to be self-explanatory. Most of
them prevent the generation of object code, but some are merely warnings and are intended to assist the
programmer.
Examples:

Levels LINE # 1----+----1----+----2----+----3----+----4----+----5
1 Ivo1.d main() {

1 1 2 1 1.nt i;
1 1 3 1 i = Undeclared_identifier;
1 1 4 1 }

E "file", L3/C8: Undeclared_identifier: This is undeclared.
1 user error No warnings 453K of memory unused.

C - 42 2 July 87

4.3 for the IBM RT PC High C Programmer's Guide

Levels LINE # 1----+----1----+----2----+----3----+----4----+----5
1 Ivoid main() {

1 2 1 int i, Unused;
1 3 1 i /= 0;

1 1 4 1 }

w "file", L2/C8: i: Variable is set but is never referenced.
w "file", L2/C11: Unused: Variable is never used.
E "file", L3/C6: Division by zero.
1 user error 2 warnings 457K of memory unused.

12.4 Error and Warning Messages

This section presents all compiler diagnostic messages, except automatically generated lexical and syntactic
messages, in alphabetical order, with explanations where appropriate.

(lexical) Unexpected ...

(syntactic) Unexpected symbol: ...

"=" used where "==" may have been intended.
"=" was detected as an operator in a Boolean expression, such as "if (x

mistake, as "if (x == y) C .. } " was intended.
y} (... }". Often this is a

"auto" must appear within a function.
Storage class auto cannot be given for declarations that do not appear within a function.

"break" must appear within while, do, for, or switch.

"case" must appear within a "switch".

"continue" must appear within while, do, or for.

"default" must appear within a "switch".

"pragma Data" active at end of module.

"pragma Data" active at end of function.
A pragma Data (...) ; was given in a module or function, with no terminating pragma Data;. This is
permitted but the programmer may have forgotten to supply the terminating pragma, thus perhaps including
more data declarations in a data segment than intended.

"register" is the only allowable storage class for a parameter. Ignored.
In a function definition or declaration, a storage class other than register was given, such as in int
f (i) static i; {. .. }.

"register" must appear within a function.
Storage class register cannot be given for declarations that do not appear within a function definition.

"void" is illegal here.

A bit field is not valid as an argument to &.
One cannot take the address of a bit field, since such a field is not necessarily on a byte boundary.

A bit field is not valid as an argument to sizeof.
Since bit fields need not occupy an integral number of bytes, taking their sizeof is prohibited.

A function may not return a function (but may return a pointer thereto).

A function may not return an array (but may return a pointer thereto).

A function may not return an incomplete type.
A function cannot return a struct or union type whose fields have not yet been specified. For example,
struct s; struct s * f () { ... } is legal since f returns a pointer to an incomplete struct type, but
struct s; struct s g () { ... } is illegal.

A functionality typedef cannot be used in a function definition.
typedef int f (); f g {return 3;} is illegal: the type definition for f cannot be used to specify
that g is a function.

A parameter may not be a function (but may be a pointer thereto) .

C - 43 2 July 87

4.3 for the IBM RT PC High C Programmer's Guide

A parameter name must be given here.
For function definitions, parameter names must be supplied. Thus, for example, void f (int, float g)

{ ... } is illegal because the first parameter lacks a name.

A register-class function makes no sense.
For example, register f () { ... } is illegal.

An array may not contain functions (but may contain pointers thereto) .

An array must have a positive number of elements.

An array of objects of an incomplete type is illegal.
An array cannot contain a struct or union type whose fields have not yet been specified. For example,
struct s; struct s * a [10] ; is legal since" a" contains pointers to an incomplete struct type, but
struct s; struct s b [10] ; is illegal.

An object of type ttt cannot be initialized.

Argument to "#include" must be a string.

Argument type ttt is not compatible with formal parameter type ttt'.
An attempt was made to pass an argument of a wrong type to a function, such as passing a float for a
parameter that is a struct. When using standard C function definitions, this is a warning only, since C
permits such mismatches, but when using prototype syntax, it is an error. This warning provides the
security of Pascal function call semantics.

Array size exceeds addressability limits.

Bit fields must fit in a register or register pair.

Cannot dereference a pointer to void.
Type *void was introduced as a means of defining a "generic pointer" compatible with other pointers. But
there is no such thing as an object of type void. Therefore, dereferencing a pointer to void is illegal.

Cannot initialize a typedef.
Something like typedef int T = 1; was attempted.

Cannot initialize an imported variable.
Something like extern int T = 1; was attempted. A variable may be initialized only by its definition.

Cannot take sizeof a function type.

Cannot take sizeof an incomplete type.
The sizeof a struct or union type whose fields have not yet been specified is not known. For example,
struct s; (. ..) sizeof (struct s) (. ..) is illegal since the size of the structure is unknown.

Cannot take sizeof type void.
There are no objects of type void, therefore taking sizeof void makes no sense.

Cannot take the address of a register variable.

Declared type is never referenced.

Divide by zero.
This was detected in a constant expression at compile time.

Enclosing function's return type is "void"; therefore nothing may be returned.
ret urn E; for some expression E was found in a function whose return type is void.

End of file encountered within #if construct.

End of file encountered within arguments to a macro. Probably a missing right
parenthesis.

End of file encountered within macro definition.

End of file encountered within macro formal parameter list.

Expression has no side effect and has been deleted.
An expression used in a statement context has no side effect; therefore the expression is useless. For
example, 2 + 3 ; •

C·44 2 July 87

4.3 for the IBM RT PC High C Programmer's Guide

External function is never referenced.

Fewer arguments given than function has parameters.

for loop will never execute.

Function called but not defined.
Any function that was called but not defined is noted as a warning. Although such practice is permissible
in C, especially useful when calling library functions, a common error is to misspell a function name. The
error goes undetected until link-time without this warning. Furthermore, errors in parameter linkage can
occur when a call is made to an undefined function. We recommend that the library". h" header files
always be included to get parameter checking, and that function prototypes be used for external function
declarations, rather than making use of the "feature" of C for calling undefined functions.

Function expected.
The expression f preceding the arguments in a function call f (...) must denote a function.

Function parameter names are allowed only on function definitions, not
declarations.

int f (a, b, c); is a function declaration that names the parameters (a, b, c). This is illegal unless
function prototype syntax is used, as in int f (int a, int b, int c);.

Function return value never specified within function.
A function with a non-void return type contains no return statement. This typically happens with "old"
C programs that did not use void to indicate that a function returns nothing.

Functions may not be nested.
In ANSI-Standard C, functions cannot be declared within functions. In High C they can. This message is
produced when the compiler is doing ANSI checking.

Identifier required after #ifde£ or #ifndef.

Identifier required. Pragma ignored.

Incompatible tag reference: The ttt tag class does not match the tag class ttt'
defined at Ln/Cm.

Something like struct s; union s {int x;}; was encountered. The tag s cannot simultaneously be
the tag for a struct, union, and/or enum.

Incomplete type: the atruct/union type at Ln/Cm must be completed before it can
be used here.

A reference has been detected to a field of a struct or union type whose fields have not yet been
specified.

Incorrect number of parameters to macro. Macro invocation ignored.
The number of arguments to a macro must agree exactly with the number of parameters in its #define.

Integer constant exceeds largest unsigned number.

Invalid digit in non-decimal number: X.

Local function is never referenced; no code will be generated for it.
A function of storage class static is not called anywhere in the compilation unit. Since it is not exported,
there can be no reference to the function and it is essentially deleted.

Lower bound of range is greater than upper bound.
This can only happen in High C case statements where range expressions are allowed as labels (an
extension). Macro name must be an identifier.

Macro parameter must be an identifier.

Members cannot be of an incomplete type.
A struct or union cannot contain a atruct or union type whose fields have not yet been specified. For
example, struct s; struct t {struct s *p;} is legal since p is a pointer to an incomplete struct
type, but struct s; struct t {struct s p;} is illegal.

Mismatched #if-#elif-#else-#endif.

More arguments given than function has parameters.

C - 4S 2 July 87

4.3 for the IBM RT PC High C Programmer's Guide

Must be a compile- or load-time computable expression.
The initializers for a static variable must be determinable when a program is loaded.

Must be a compile-time computable constant.

Must be a pointer.

Must be a scalar (int, char, floating, or pointer) type.

Must be a static variable reference.

Must be a string.

Must be a struct or union.

Must be a type.

Must be an identifier.

Must be an integral int or char type.

Must be of a pointer type.

Must be of an extended-function type.

Named parameter association is prohibited for this function since its declaration
near Ln/Cm does not name all parameters.

An attempt was made to call a function F using named parameter association, but F's declaration did not
name all of its parameters. Example:

void F(int a,float); ... F(a=>37, 3.3);
/*Illegal.*/

void F(int a,float b); ... F(a=>37,b=>3.3);
/*Fine.*/

No "pragma Data" is active.
pragma Da t a; was encountered without a preceding, and matching, pragma D at a (...) ;.

No member is declared here.
A declaration with no declared object was found within a struct or union. For example,

struct s {int; float; struct t {int y};}
contains three declarations, none of which declare an object. However, this construct is not entirely
vacuous because the declaration of struct t is visible outside of struct s and therefore can be used to
declare objects of type struct t.

No object may be of type void.

No parameter declarations may be given here.
In defining a function using prototype syntax, where the parameter types were specified in the parameter
list, an attempt was made to re-declare the parameters following the parameter list. For example, int
x, y; is illegal in void f (int x, int y) int x, y; { ... }.

Non-decimal constant exceeds largest unsigned number.

Only a parameter may be declared here.
Preceding a function definition's {, only the function's parameters may be declared.

Only fields of type "unsigned int" or "unsigned long int" are supported.
Bit fields may be of only these two types. Any bit field of another type is coerced to one of them,
depending upon the size of the bit field.

Only one "default" is permitted in a "switch".

Operand type inappropriate for operator.
An inappropriate operand was detected for a built-in operator such as &, I, - etc. For example, float
f 1, f 2 ; (...) f 1 = f 1 & f 2; is illegal: & requires integral operands.

Parameter not found or specified more than once.
In a function call using named parameter association, a parameter was named twice, or a non-existent
parameter was referenced.

Parameter ppp not supplied.
In a function call using named parameter association, parameter ppp was not given an argument value.

C - 46 2 July 87

4.3 for the IBM RT PC High C Programmer's Guide

Parameter separator must be a comma.
In a 'define of a macro with parameters, parameter names must be separated by commas. For example,
,define M (a b) c is illegal; a, b is required.

Pointer dereferencing disallowed in static context.

"pragma Code" may not occur within a function.
The Code pragma must appear only at the outermost declaration level- outside of all functions.

Pragma has too few parameters.

Pragma has too many parameters.

Previous "pragma. Data" is still active.
pragma Data (...); was given in the context of an already active pragma Data (...) ;. Insert pragma

Data () ; preceding the offending pragma to "turn off' the active pragma.

Real constant has too many digits.

Result of comparison never varies.
An expression was found whose operands, while they are not all constants, are such that the value of the
expression is always the same. For example, an expression of type unsigned int is never less than zero.

Right operand of shift operator is negative.

Since the first parameter was specified by the type "void", there may be no other
parameters.

The special syntax exemplified by int f (void) ; denotes a function f taking no parameters. Because of
this, no parameter can be specified after void: int f (void, float, int); is illegal.

Size change in cast involving pointer type: casted-to type ttt is not the same size
as casted-from type ttt, .

Specified storage class for this declaration is unnecessary and was ignored.
In a declaration such as static struct s {int x;};, the storage class static is useless since no
object was declared.

Static initialization of bit fields is not supported.

Storage-class nonsensical for function definition.

String too long for initialized array.

Structure has no contents (is of size zero).

Subscripted expression must be an array or pointer.

The 2nd and 3rd operands of a conditional expression must be both arithmetic, or
of the same type, or one a pointer and the other zero.

The declarator must be a function. This declaration has been discarded.
A declaration such as int f { ... }; was encountered, where a function body { ... } was given for a non­
function.

The rest of this line is extraneous.

The sign (signed/unsigned) has been specified more than once.

The storage-class (auto, extern, etc.) has been specified more than once.

The width (long/short) has been specified more than once.

This "return" should return a value of type ttt since the enclosing function returns
this type.

This can be of an incomplete type only if it is "extern" or has an initializer
supplying its size.

This code will never be executed.

This construct would have been deleted as an optimization had it contained no
labels.

A construct such as while (0) { ... } was detected but cannot be deleted due to the presence of one or
more labels within { ... }. This is questionable programming practice at best.

C - 47 2 July 87

4.3 for the IBM RT PC High C Programmer's Guide

This function declaration is inconsistent with the "int"-returning function
declaration imputed at Ln/Cm.

A function called before it is declared is assumed to be a function returning int, and any subsequent
declaration of the function must declare it to be so. For example, rna i n () { (. ..) f (3) ; (...) } void
f () { ... } is illegal since f was called before being defined and therefore assumed to return into

This function declaration is inconsistent with the declaration at Ln/Cm.

This is already defined as a macro. Redefinition ignored.
A redefinition of a macro is permitted only if the redefinition agrees exactly with the previous definition.
To otherwise redefine a macro, use #undef to explicitly undefine the macro before re-defining it.

This is multiply declared.

This is permissible only in conjunction with "int" or "char".

This is permissible only in conjunction with "int" or "double".

This is permissible only in conjunction with "int" .

This is undeclared.

This may not be a pointer to a function (but may be a pointer to an object) .

This tag name is more than 80 characters long.

This type lacks a tag and hence cannot be used.
A declaration such as struct { int x;}; was encountered. Without a tag the struct cannot be
referenced and hence is useless.

Toggle name required. Pragma ignored.

Too many initializers here.

Type ttt is not assignment compatible with type ttt' .
(a) In an assignment expression, the right operand of type t t t may not be assigned to the left operand of
type ttt'.

(b) In a function call, an argument of the type t t t may not be passed to a function that expects a parameter
of type t t t' .

Type ttt is not compatible with type ttt'.
In a comparison, the left operand of type t t t may not be compared with the right operand, of type t t t' .

Unexpected symbol in expression. Line ignored.

Unknown preprocessing directive.

Unrecognizable Data class. Static assumed.

Unrecognizable field name.

Unrecognizable pragma name. Pragma ignored.

Unrecognizable toggle name. Pragma ignored.

Up-level reference to a register-class variable

Variable is never used.

Variable is referenced but is never set.

Variable is set but is never referenced.

Variable is referenced before it is set.

Variable required.

is not allowed.

In this context a so-called "lvalue" is required but was not found. An lvalue is something whose address
can be taken, and is required on the left side of an assignment expression and as an operand to &, ++, and
--. The rules of C require the automatic conversion of some objects into non-Ivalues. For example, the
operand of & must be an Ivalue, so int i == & (a+b) produces the "Variable required." diagnostic.

A common cause of this message is the use of a construct such as:
int * p;
c == *«char*)p)++;

C - 48 2 July 87

4.3 for the IBM RT PC High C Programmer's Guide

which is legal on most pce compilers, but disallowed by the Standard. Use instead:
int * p;
c = *(*(char**)&p)++;

to circumvent the restriction.

Zero-length bit fields may not be named.
A declaration such as etruct {int i: 0, j : 2 }; was encountered. "i" must be omitted. As is, it is
possible to refer to the field. Such a reference would be illegal.

{~} inappropriate here for initializing a scalar.

c - 49 2 July 87

4.3 for the IBM RT PC High C Programmer's Guide

Appendix A

CROSS-JUMPING OPTIMIZATIONS

MetaWare compilers support an optimization that usually obtains a 2% to 5% reduction in code size and is
often accompanied by a decrease in execution time. The optimization is known as "cross-jumping". It and the
two toggles that control it are explained here.

Consider the following source code:

if (!eof) readbytes(&buf,&cnt,512); /*Code C.*/
/*L:*/ while (cnt > 0) {

writebytes(&buf,cnt);
if (!eof) readbytes(&buf,&cnt,512); /*Code C' .*/
} /*Implicit jump back to the implicit label.*/

The compiler can improve the code size of this program without any loss in execution speed by effectively
rewriting the code as:

Top: if (!eof) readbytes(&buf,&cnt,512); /*Code C = c' .*/
/*L: */ if (cnt > 0) {

writebytes(&buf,cnt);
goto Top;
}

The optimization involves the recognition of some code c immediately preceding a jump j to some label L.

where some code c' identical to c immediately precedes L. The transformation consists in deleting c and re­
placing j with a jump to c' instead:

Original Code

L:

some code C
j~ L

some code C'

Transformed Code
jmp L'

L': some code C = C'
L:

This optimization is called "cross jumping" or "tail merging" in the compiler literature. since it was first
invented to handle common code at the ends of the arms of conditional statements. and was effected by
jumping across from one arm to the other. that is. by merging the tails of the two arms. It is surprisingly
effective and always saves code space while never giving up execution speed.

Here we include another optimization under that name as well. The second optimization is even more
effective. but gains its (sometimes considerable) code space in trade for a small loss of speed. Consider the
program fragment:

if (buf[cnt]==O) g(&buf);
else if (buf[cnt]== '\n') {buf[cnt] 0; g(&buf);}
else ...

The compiler effectively transforms this into:

if (buf[cnt]==O) goto L';
else if (buf[cnt]=='\n') {buf[cnt] = 0; L': g(&buf);}
else ...

Here. both occurrences of 9 (& bu f) ; precede a jump to the statement following the entire conditional. One of
the instances of 9 (&buf) ; is replaced with a jump to the other. saving the code space for the call to 9 at the
expense of inserting an additional jump. Opportunities for this kind of optimization are even more frequent
than the standard cross-jumping optimization. In general. the optimization can be depicted as follows:

C - 50 2 July 87

4.3 for the IBM RT PC

Original Code

L:

some code C
jmp L

some code C' (= C)
jmp L

Transformed Code
jmp L'

L': some code C
jmp L

L:

High C Programmer's Guide

C'

Both optimizations are turned On by default. Both may be disabled by turning Off the toggle Optimize_
xjmp, with either -Hoff=Optimize_xjmp on the compiler execution line, or including pragma Off (Opti­
mi ze _x jmp) ; in the program. The second of the two optimizations can be disabled by turning Of f the toggle
Optimi ze _x jmp _space, so named because the second optimization saves space but always increases
execution time.

During the development phase of a project, it may be desirable to tum Optimize_xjmp Off. The reason is
that the optimization can cause such a contortion of code that using debuggers, whether assembly-language
level or line-oriented symbolic, can be difficult. As a case in point, consider the following program, which
compares the fields of two different structures to determine if they are the same:

union {

struct {int x, y;}
struct {int a,b,c;}
struct {int e, f; }
struct {int g,h; int
} ul,u2;

int f(i) int i; {
switch(i) { /* What

case 1: return

case 2: return

case 3: return

case 4: return

case 5: return

i[1a];}

kind of
u1.f1.x
u1.f1.y
ul. f2.c
u1.f2.a
ul. f2.b
u1.f3.e
u1.f3.f

fl;
f2;
f3;
f4;

structure to compare? */
u2.f1.x &&
u2.fl.y;
u2.f2.c &&
u2.f2.a &&
u2.f2.b;
u2.f3.e &&
u2.f3.f;

ul.f4.g u2.f4.g &&
memcmp(ul.f4.i,u2.f4.i,
si zeof (u 1 . f 4 . i » ! = a ;

ul.f4.h == u2.f4.h &&
memcmp(ul.f4.i,u2.f4.i,
si zeof (u 1 . f 4 . i» ! = a ;

Here cases 1 and 3 are recognized as being identical, and matching the tail end of case 2. Furthermore, cases 4
and 5 share a common tail. Compiling the code produces the tightly-coded result presented next. Even a
skilled assembly-language programmer would rarely have the patience to produce such highly optimized code:

C - 51 2 July 87

4.3 for the IBM RT PC

Unt
it

LOOO:

.f:

L02A:

it
it
it
L034:

it

L052:

L064 :

L074:

f(i) int i;
switch (i) { /* What kind of

. text

.a1iqn

.q1ob1 .f

stm r12,-52(rl)
mr r14,rO
mr r13,r1
cal r1, -52 (r1)
mr r12,r2
mr r15,r12
sis r15,1
eli r15,4
jh LOCO
a r15,r15
qet r2,$L02A
a r15,r2
1has r15,O(r15)
a r15,r2
br r15

. short L052-L02A

. short L034-L02A

. short L052-L02A

. short L074-L02A

. short L08C-L02A
case 1: return ul.f1.x

ul.f1.y
case 2 : return ul.f2.c

qet r2,$ u1
ls r3,8(r2)
qet r4,$ u2
ls r5,8(r4)
c r3,r5
jne LOBE
bx L064
ls r3,O(r2)

ul.f2.a
ul.f2.b

case 3: return ul. f3.e

qet r2,$_u1
ls r3,O(r2)
qet r4,$_u2

ls r5,O(r4)
c r3,r5
jne LOBE
ls r2,4(r2)
ls r3,4(r4)
c r2,r3
jne LOBE
j LOBA

ul.f3.f
case 4 : return ul.f4.g

qet r2,$_u1
ls r3,0(r2)
qet r4,$_ui
bx LOAD
1s r5,O(r4)

structure to compare?

u2.f1.x &&
u2.f1.y;
u2.f2.c &&

u2.f2.a &&
u2.f2.b;
u2.f3.e &&

u2.f3.f;
u2.f4.g &&

memcmp(u1.f4.i,u2.f4.i,sizeof(u1.f4.i» !=O;
case 5: return u1.f4.h == u2.f4.h &&
L08C:

qet r2,$_u1
ls r3,4(r2)
qet r4,$_u2
1s r5,4(r4)

LOAO:
c r3,r5
jne LOBE
inc r2,8
cal r3,8(r4)
cal r4,40(rO)

C - 52

High C Programmer's Guide

*/

2 July 87

4.3 for the IBM RT PC High C Programmer's Guide

bal1.x r15,_.memcmp
1 rO,4 (r14)
a1.a r2,O
je LOBE

LOBA:
11.. r2,1
j LOCO

LOBE:
11.. r2,O

LOCO:
mr rl,r13
1m r12,-52(rl)
br r15
. long OxDF07DFC8 4t First gpr=r12
.ahort OxlDOO 4t npars=l, off=O
. data 1
.globl f

f:
• long LOOO
. long _memcmp
.al1.gn 2
. data

In summary,

1. Cross-jumping is an amazingly effective optimization.

2. Toggle Opt imi ze _x jmp is set On by default, and turning it Of f disables all cross-jumping.

3. Toggle Optimize_xjmp_space is On by default, and turning it Off disables cross-jumping optimization
that decreases space at the expense of time.

The cross-jumping optimization adds perhaps 20% to the execution time of the code generator phase of the
compiler, thus perhaps 3% overall.

C - S3 2 July 87

4.3 for the IBM RT PC High C Programmer's Guide

Index

Starting below is a "permuted key word in context" index for this document. In the center column is the
particular key word W being indexed, in the context of a phrase or sentence containing W. The phrase appears
to the left and right of W.

Occasionally the text of the phrase preceding W does not fit in the space to the left of W. In that case the index
entry looks like

is text that was too long to precede the WORD being indexed. This 7

where the first word "This" of the sentence did not fit on the left. Similarly the text to the right of W can be
crowded:

right. This WORD is followed by too much text on the 7

where "the right" did not fit on the right.

After locating an entry, proceed directly to the referenced page.

C - 54 2 July 87

4.3 for the IBM RT PC High C Programmer's Guide

... text to left WORD text to right Page

A
up-level addressing .. 17

variables. addressing local and exported .. 15
Alias .. 22

pragma Alias. . .. 22
Alias ... 6

The Alias Pragma. . .. 22
aliasing variable and function names. 22

bit member alignment. .. 14
data type alignments and sizes .. 14

Align_members ... 9
provide stack frame information for alloca. -rna:4

cross reference. annotated inter-modular, inter-lingual .. 38
reference. annotated multi-modular cross .. 38

Annotated_listing, list_module_usage. . .. 38
compilation phase announcements. . .. 13

Some ANSI -Required Specifics. . .. 20
data area. 16

The Data Area ... 16
Argument Passing .. 17

Floating -Point Arithmetic. . .. 20
dynamic array - out of memory ... 41

arrays .. 21
Asm .. 9
Assembler Issues ... 19

Example: Calling C from Assembly ... 26
Calling Assembly from C .. 24

Examples: Calling Assembly from C .. 25
ASSEMBLY LANGUAGE COMMUNICATION. 24

-Hasm: produce assembly listing ... 3
assembly listing ... 9
Assembly Routines. 24

OS: produce assembly source. . .. 5
auto variables. 15
Auto_reg_alloc. 9

B
-B: invoke substitute compiler.4

struct padding, bit fields. 14
bit fields .. 21
bit member alignment. .. 14
blank lines in listings ... 6

oms: minimum-size floating-point data blocks. . .. 4

C
Calling Assembly from C. 24

Examples: Calling Assembly from C ... 25
Example: Calling C from Assembly. . .. 26

Invoking the C Macro Preprocessor .. 3
module. -c: suppress linkage, create object4

post-mortem call trace call-stack dump .. 10
call-chain stack dump ... 10

post-mortem call trace call-stack dump ... 10
Calling Assembly from C. . .. 24

Examples: Calling Assembly from C. . .. 25
Example: Calling C from Assembly. . .. 26

Calling Sequences. . .. 18
characters. 20
Char_default_unsigned .. 20, 9

external name clashes: linker limitations. . .. 22
Storage Classes ... 15

prologue code.18
-pg: produce profiling code. . .. 5

-p: produce profiling code. . .. 5
code optimization .. 10

literals in data vs. code space ... 10,13
The hc Command. 3

C - 55 2 July 87

4.3 for the IBM RT PC High CProgrammer's Guide

Using the hcxref Command .. 38
Command Options. . .. 3
Common segments ... 23

ASSEMBLY LANGUAGE COMMUNICATION. 24
Data Communication ' 26

modules. data communication in separately compiled ... 22
pointer compatibility.11

compilation phase announcements. 13
compilation statistics and summary. . .. 13

data communication in separately compiled modules .. 22
mVOKING THE COMPILER .. 3

compiler or source listing. · 1 0
Compiler Pragma Summaries. . .. 6
COMPILER PRAGMAS. 6
compiler switches or toggles ... 9
COMPILER TOGGLES .. 9

Size of Complilation Unit. . .. 20
Methodology: conditional includes for modularity. 7

conditional source file inclusion .. 6
constant pool. ... 16
constraint error. . .. 42
constraint error and warning messages.42

naming conventions. 24
Function Naming Conventions. . .. 24

-c: suppress linkage, create object module .. .4
annotated multi-modular cross reference ... 38

Features of the Cross Reference. 38
annotated inter-modular, inter-lingual cross reference ... 38

MAKING CROSS REFERENCES. 38
sameness of include files for cross references40

CROSS-JUMPmG OPTIMIZA TrONS.49
Cross-Reference Fonnat. 38
cross-reference listing ... 38
C_include ... 6

pragmas Include, C_inc1ude, R_inc1ude. RC_include .. 6

D
-D: #define a symbol. .. 4
Data .. 6
data area. 16

The Data Area .. 16
-ms: minimum-size floating-point data blocks .. .4

Data Communication. 26
compiled modules. data communication in separately ... 22

Data Segmentation: the Data Pragma. . .. 22
Data Segmentation: the Data Pragma. 22
data type alignments and sizes. . .. 14
Data Types in Storage ... 14

literals in data vs. code space .. 10, 13
-g: emit dbx records .. 4
emitting debugging infonnation. . .. 10

declarators .. 21
-D: #define a symbol. '" , 4

-M: generate Makefile dependencies .. .4
-Hvolatile: memory read on pointer dereferences.5

DIAGNOSTIC MESSAGES.41
-dir: specify include directory4

preprocessing directives :' .. 21
-dir: specify include directory. ~ .. 4

directory search for input files. 6
Distinction of File Names40
Double_return. . .. 9
Downshift_file_names. 9

call-chain stack dump. . .. 1 0
post-mortem call trace call-stack dump , 10

stack dump. . .. 41
dynamic array - out of memory ... 41

E
-E: invoke outboard preprocessor only .. .4

C - 56 2 July 87

4.3 for the IBM RT PC High C Programmer's Guide

-fUines: emit page eject every n lines .. .4
page ejects in listings ... 6

-g: emit dbx records. . .. 4
-Hlines: emit page eject every n lines .. .4

emitting debugging information ... 10
Emit_line_table .. 10
entry point. . .. 16
Epilogue ... 18

constraint error ... 42
constraint error and warning messages.42

Error and Warning Messages.43
syntactic error messages ... 42

lexical error messages ... 42
System Errors .. 41
File I/O Errors .. 41

User Errors and Warnings .. 42
Errors, file I/O ... 41

-Hlines: emit page eject every n lines.4
example listing. . .. 28
Example: Calling C from Assembly .. 26
Examples: Calling Assembly from C. .. 25

addressing local and exported variables .. 15
-Hansi: tum off extensions. 3

limitations. external name clashes: linker ... 22
EXTERNALS ... 22

F
Features of the Cross Reference. 38

struct padding, bit fields ... ~ 14
bit fields .. 21

Include file ... 28,38
-0: name output file ... 4

Include file. 6
Errors, file I/O ... 41

File I/O Errors. 41
conditional source file inclusion. 6

Distinction of File Names. 40
Identity of file names. 7

include file search path. 6
include files. 28

directory search for input files .. 6
Include Pragmas: Including Source Files .. 6

sameness of include files for cross references.40
floating point. ... 21
Floating-Point Arithmetic. . .. 20

-ms: minimum-size floating-point data blocks .. .4
Cross-Reference Format ... 38

Format of Listings .. 28
-rna: provide stack frame information for alloca.4

Stack Frame Layout. 16
aliasing variable and function names. . .. 22

Function Naming Conventions. . .. 24
Function Results. 17

G
-g: emit dbx records. 4

-M: generate Makefile dependencies4
-Hlist: generate source listing .. 4

H
-H+w: produce warnings .. 5
-Hansi: tum off extensions. . .. 3
-Hasm: produce assembly listing. 3
he .. 3

The he Conunand ... 3
-Hcpp: use outboard preprocessor ... 4

Using the hcxref Command ... 38
-mines: emit page eject every n lines .. , .. .4
-Hlist: generate source listing4
-Hnocpp: use inboard preprocessor .. 4

C - 57 2 July 87

4.3 for the IBM RT PC High C Programmer's Guide

-Hoff=toggle: turns toggle Off ... 5
-Hon=toggle: turns toggle On .. 5

only. -Hppo: invoke inboard preprocessor .. 5
dereferences. -Hvolatile: memory read on pointer ... 5

I
Errors, file I/O. . .. 41

File I/O Errors. . .. 41
identifiers. . .. 20
Identity of file names _ 7

-Hnocpp: use inboard preprocessor ... 4
-Hppo: invoke inboard preprocessor only ... 5

inboard vs outboard preprocessor ... 3
-dir: specify include directory.4

Include file. . .. 28,38,6
include file search path. 6
include files ... 28

sameness of include files for cross references .. .40
Files. Include Pragmas: Including Source ... 6

RC_include. pragmas Include, C_include, R_include, .. 6
Methodology: conditional includes for modularity ... 7

Include Pragmas: Including Source Files. 6
conditional source file inclusion. . .. 6

emitting debugging infonnation ... 10
-rna: provide stack frame infonnation for alloca.4

directory search for input files .. 6
integers. . .. 20

annotated inter-modular, inter-lingual cross reference .. 38
reference. annotated inter-modular, inter-lingual cross .. 38

INTRODUCTION ... 1
Int_function_ warnings. . .. 1 0

-Hppo: invoke inboard preprocessor only ... 5
-E: invoke outboard preprocessor only4
-B: invoke substitute compiler.4

Invoking the C Macro Preprocessor ... 3
INVOKING THE COMPILER ... 3

Assembler Issues .. 19

L
ASSEMBLY LANGUAGE COMMUNICATION .. 24
Stack Frame Layout. 16
linking with ld. 19

level-numbers. 28
lexical error messages ... 42

external name clashes: linker limitations. . .. 22
nesting-level. line-numbers, scope-level, ... 28

-Hlines: emit page eject every n lines4
blank lines in listings. 6
static link. 16

-c: suppress linkage, create object module.4
external name clashes: linker limitations ... 22

linking with ld. 19
List. .. 10

compiler or source listing .. 10
example listing .. 28

-Hasm: produce assembly listing ... 3
Queens program listing .. 31

cross-reference listing .. 38
-Hlist: generate source listing ... 4

assembly listing ... 9
listing ruler. 28
llSTINGS .. 28

Fonnat of Listings. . .. 28
page titles in listings .. 6

page ejects in listings .. 6
blank lines in listings .. 6

Annotated_listing, list_module_usage .. 38
literals in data vs. code space. . .. 10, 13
Literals_in_code ... 10

addressing local and exported variables. . .. 15

C - 58 2 July 87

4.3 for the IBM RT PC High C Programmer's Guide

long_enums ... 10

M
-M: generate Makefile dependencies4
-m: machine-dependent option.4

for alloca. -rna: provide stack frame information .. .4
-m: machine-dependent option .. 4

Invoking the C Macro Preprocessor .. 3
-R: make static variables read-only ... 5

-M: generate Makefile dependencies.4
Make_externs-&lobal. .. 1 0
MAKING CROSS REFERENCES ... 38

STORAGE MAPpmG. " '" " 14
bit member alignment14

dynamic array - out of memory .. 41
-Hvolatile: memory read on pointer dereferences5

DIAGNOSTIC MESSAGES.41
syntactic error messages ... 42

lexical error messages. 42
constraint error and warning messages. 42

Error and Warning Messages ... 43
modularity. Methodology: conditional includes for .. 7
blocks. -ms: minimum-size floating-point data4

Methodology: conditional includes for modularity .. " 7
-c: suppress linkage, create object module4

communication in separately compiled modules. data ... 22
blocks. -ms: minimum-size floating-point data4

annotated multi-modular cross reference. . .. 38

N
-Hlines: emit page eject every n lines. . .. 4

external name clashes: linker limitations ... 22
-0: name output file. . .. 4

aliasing variable and function names. 22
Distinction of File Names. 40

-v: print subprocess names. . .. 5
Identity of file names. . .. 7

naming conventions. . .. 24
Function Naming Conventions .. 24

line-numbers, scope-level, nesting-level. ... 28

o
-0: name output file .. 4
-0: optimize. 4

-c: suppress linkage, create object module.4
obj_init. .. 3

On, Off, Pop ... 6
On, Off, Pop. 6

-E: invoke outboard preprocessor only. . .. 4
-Hppo: invoke inboard preprocessor only .. 5

code optimization. . .. 1 0
CROSS-JUMPING OPTIMlZA TIONS.49

-0: optimize ... 4
OptimizeJor_space. . .. 10
Optimize_xjmp10
Optimize_xjmp_space ... 10

-m: machine-dependent option .. 4
Command Options. 3

RUN-TIME ORGANIZATION ... 16
inboard vs outboard preprocessor .. 3
-Hcpp: use outboard preprocessor4
-E: invoke outboard preprocessor only , 4

-0: name output file. 4

P
-p: produce profiling code ... 5

struct padding, bit fields. . .. 14
Page .. 6

-Hlines: emit page eject every n lines .. .4
page ejects in listings. . .. 6

C - 59 2 July 87

4.3 for the IBM RTPC High C Programmer's Guide

page titles in listings. 6
Pragmas Page, Skip, Title. , 28

parameter passing. . .. 17
Pann_ warnings. . .. 11

parameter passing ... 17
Argument Passing. . .. 17

include file search path. . .. 6
PC:C_msgs .. 11
-pg: produce profiling code .. 5

compilation phase announcements ... 13
entry point. . .. 16

floating point. . .. 21
pointer compatibility11

-Hvolatile: memory read on pointer dereferences.5
pointers. . .. 21
Pointers_compatible. . .. 11
Pointers_compatible_ with_ints .. 11

constant pool. 16
On, Off, Pop. . .. 6

Pop .. 9
post-mortem call trace call-stack dump ... 10

The Alias Pragma. . .. 22
Data Segmentation: the Data Pragma. . .. 22

pragma Alias. . .. 22
Compiler Pragma Summaries .. 6

pragma summary .. 6
COMPILER PRAGMAS .. 6

Syntax of Pragmas ... 6
RC_include. pragmas Include, C_include, R_include, ... 6

Pragmas Page, Skip, Title. . .. 28
Include Pragmas: Including Source Files .. 6

preprocessing directives. 21
inboard vs outboard preprocessor. 3

Invoking the C Macro Preprocessor. 3
-Hnocpp: use inboard preprocessor ... 4

-Hcpp: use outboard preprocessor ... 4
-E: invoke outboard preprocessor only. 4

-Hppo: invoke inboard preprocessor only. 5
-v: print subprocess names. 5

Print-ppo ... 11
Print-protos ... 12
Print_reg_ vars ... 12

-Hasm: produce assembly listing .. 3
-S: produce assembly source. 5
-p: produce profiling code. 5

-pg: produce profiling code. 5
-H+w: produce warnings. 5

-pg: produce profiling code. . .. 5
-p: produce profiling code. . .. 5

Queens program listing. . .. 31
Prologue. 18
prologue code. 18
Prototype_conversion_warn .. 12
Prototype_override_warnings ... 12

alloca. -rna: provide stack frame infonnation for4
Public_ var_ warnings .. 13

Q
Queens program listing. . .. 31
Quiet .. 13

R
-R: make static variables read-only .. 5
RC_include. . .. 6

pragmas Include, C_include, R_include, RC_include. . .. 6
-Hvolatile: memory read on pointer dereferences .. .5

-R: make static variables read-only .. 5
Read_only_strings .. 13

-g: emit dbx records .. 4
recover ... 41

C - 60 2 July 87

4.3 for the IBM RT PC High C Programmer's Guide

annotated multi-modular cross reference ... 38
inter-modular, inter-lingual cross reference. annotated .. 38

Features of the Cross Reference. . .. 38
MAKING CROSS REFERENCES. . .. 38

sameness of include files for cross references.40
Register Usage .. 16
register variables. 15

saving registers. . .. 16
registers. . .. 21

Function Results ... 17
Assembly Routines. 24

ruler " ... 28
listing ruler. 28

RUN-TIME ORGANIZATION ... 16
R_include. 6

pragmas Include, C_include, R_include, RC_include ... 6

S
-S: produce assembly source ... 5

references. sameness of include files for cross .. .40
saving registers. . .. 16

line-numbers, scope-level, nesting-level. ... 28
directory search for input files. 6

include file search path ... 6
Data Segmentation: the Data Pragma. 22

Common segments. 23
data communication in separately compiled modules. 22

Calling Sequences. . .. 18
Size of Complilation Unit. . .. 20

data type alignments and sizes " ... 14
Skip .. 6

Pragmas Page, Skip, Title. . .. 28
Some ANSI-Required Specifics ... 20

-S: produce assembly source. . .. 5
conditional source file inclusion. 6

Include Pragmas: Including Source Files .. 6
compiler or source listing ,•... 10

-Hlist: generate source listing ... 4
literals in data vs. code space ... 10, 13

SYSTEM SPECIFICS. 20
Some ANSI -Required Specifics. 20

-dir: specify include directory.4
call-chain stack dump. '.' 10

stack dump. 41
-rna: provide stack frame information for alloca .. '4

Stack Frame Layout .. 16
statements. . .. 21
static link. 16

-R: make static variables read-only ... 5
compilation statistics and summary. . .. 13

Data Types in Storage. . .. 14
Storage Oasses .. 15
STORAGE MAPPING .. 14
struct padding, bit fields. 14
structures. 21

-v: print subprocess names. 5
-B: invoke substitute compiler. . .. 4

Compiler Pragma Summaries ... 6
Summarize. 13

compilation statistics and summary. 13
pragma summary. . .. 6

-c: suppress linkage, create object module .. .4
-w: suppress warnings " ... 5

compiler switches or toggles. . .. 9
-D: #defme a symbol. ... 4
-U: #undef a symbol. ... 5

syntactic error messages. 42
Syntax of Pragmas. . .. 6
System Errors. 41

C - 61 2 July 87

4.3 for the IBM RT PC High C Programmer's Guide

SYSTEM SPECIFICS ... 20

T
IN'VOKIN"G mE COMPILER.3

Pragmas Page, Skip, Title. 28
Title .. 6

page titles in listings. 6
-Hoff=toggle: turns toggle Off. 5
-Hon=toggle: turns toggle On .. 5

COMPILER TOGGLES ... 9
compiler switches or toggles .. 9

post-mortem call trace call-stack dump.10
-Hansi: tum off extensions ... 3

-Hoff=toggle: turns toggle Off ... 5
-Hon=toggle: turns toggle On ... 5

data type alignments and sizes .. 14
Data Types in Storage. 14

U
-U: #undef a symbol.5

-U: #Undef a symbol. ... 5
unions ... 21

Size of COITlplilation Unit. 20
up-level addressing. 16

Register Usage16
-Hnocpp: use inboard preprocessor4

-Hcpp: use outboard preprocessor ... 4
User Errors and Warnings .. 42
Using the hex ref Command. . .. 38

V
-v: print subprocess nlUlles. . .. 5

aliasing variable and function nlUlles. . .. 22
auto variables. 15

register variables. 15
addressing local and exported variables. 15

-R: make static variables read-only5
inboard vs outboard preprocessor. 3

W
-w: suppress warnings .. 5
Warn .. 13

constraint error and warning messages. . .. 42
Error and Warning Messages ... 43

User Errors and Warnings .. '" 42
-w: suppress warnings. . .. 5

-H+w: produce warnings. . .. 5

C - 62 2 July 87

4.3 on the IBM RT PC Ordering Information for MetaWare

Ordering Infonnation for MetaWare Manuals

Copies of the lIigh C Language Reference Manual may be ordered directory from MetaWare.
The manual retails for $16.95 and is available at an educational discounted price of $12.95.

If your system includes the Professional Pascal 'I'M compiler, you may want the three-manual set,
including the programmer's guide, primer, and language extensions manual. This set retails for
$32.95 and is available at an educational discounted price of $24.95. The manual sct may also be
ordered from MetaWare.

These prices include mail/shipping costs. California residents please add 6.5% sales tax. Please
send: (1) an indication of educational affiliation, if appropriate, and (2) a check, money order, or
written authorization to charge to your MasterCard or VISA account, with account number and
expiration date to:

MetaWare Incorporated
903 Pacific Avenue, Suite 20 I
Santa Cruz, CA 95060-4429
(408) 429-META (= 6382)

July 1987

This page intentionally left blank.

PRPQ 5799-CGZ: IBM 4.3/RT

X Window System, Version 11 I Bl\1/4.3-USD: 1-1

The X Window System

ABSTRACT

This paper describes the X Window System, Version II, supported by IBM/4.3. It is divided into
two parts. The first part, the X User's Guide, is intended for people who use X with IBM/4.3.
The second part, the X Programmer's Guide, is intended for programmers and system administra­
tors who will configure, modify, and incorporate X into their application programs.

The X User's Guide contains the following chapters:

1. Overview describes the components of X.

2. A Learning Guide for Using the X Window System describes how to invoke and terminate
X for a display, how to use the mouse and keyboard, and how to move, resize, and manipu­
late windows.

3. Using X Applications describes the xterm, xclock, and xload applications.

The X Programmer's Guide contains the following chapters:

4. Utilities describes each of the utilities provided with X.

5. Customizing X describes how to change default window characteristics, and how to
configure X for particular environments.

6. Customizing Uwm describes how to modify the programmable window manager available
with X.

7. The Bitmap Editor describes how to use X's editor for creating and editing a bitmap.

The following appendices appear at the end of the paper:

A. X Colors

B. X Fonts

C. ASCII Code

D. Xterm Escape Sequences

January 1988

IBM/4.3-USD: 1-2 X \Vindow System, Version II

The X ·U ser's Guide

I. Overview describes the components of X.

2. A Learning Guide for Using the X Window System describes how to invoke and tenninate
X for a display, how to use the mouse and keyboard, and how to move, resize, and manipu­
late windows.

3. Using X Applications describes the xterm, xclock, xload, and xfd windows.

January 1988

X Window System, Version II IBM/4.3-USD:I-3

I. Overview

In X, a "display" is a server that manages one or more physical devices (called "screens") on
which computer output appears. Further, X lets you divide each screen into
multiple"windows." A "window" is a rectangular region on the screen that performs the func­
tions normally associated with the entire screen.

Further, more than one display (server) can be active on one workstation at a time. The
result, then, is a hierarchy, with multiple displays managing multiple screens, on each of which
multiple windows appear. It is important to understand this usage of the word "display," as it
permeates the remainder of this article.

X's network transparency allows applications that reside on one workstation to run on other
workstations with screens of the same or different model.

1.1. Components of the X System

To use X requires the components listed below. The rest of this chapter describes these
components.

• The IBM Academic Operating System 4.3
• Hardware
• User Interface
• The X Server
• X Applications

1.2. The IBM Academic Operating System 4.3

X runs under the IBM Academic Operating System 4.3. The user should be familiar with
a UNIX operating system before using X. All UNIX operations can be executed from the
X terminal emulator window, called the "xterm window."

1.3. Hardware

To use X, you must have a workstation equipped with a keyboard, a mouse, and one or
more of the following devices. X supports the following workstations and devices, plus a
standard keyboard and mouse:

• The IBM R T PC with up to three of the following:

The IBM 6155 Extended Monochrome Graphics Display

The IBM Academic Information Systems experimental display (which IS no
longer available)

The IBM 5081 Megapel Display

• The IBM 6152 Academic System with either or both of the following:

The IBM Video Graphics Array display adapter and displays

The IBM 8514-A Display

1.4. User Interface

X receives user input from three sources: the network, the keyboard and the mouse. Use
the keyboard to enter commands and edit files. Use the mouse to move to another win­
dow, invoke menus, and select menu options.

You can also use the mouse in X application programs, to scroll the contents of a window,
draw a picture, request information from a specific region of a window, or cut and paste
information.

January 1988

IBM/4.3-USI>: 1-4 X \Vindow System, Version II

When a workstation has more than one screen running the same X server, moving the
mouse can cause its cursor to jump from screen to screen.

1.5. The X Server

The X server interprets all X requests and monitors all display activity. l11e X server pro­
vides a library of fonts and colors that can be used in application windows, and to enhance
the appearance of information.

1.6. X Applications

Most X applications "open," or present, their own windows. The following table is a list
of supported X applications by type.

APPLICATION TYPE NAME FUNCTION
Operating System xtenn emulates DEC VTI02 terminal
Interface

Monitor xclock displays digital or analog clock
xload displays system load average

Utility xfd displays font characters
xhost accesses host
xinit initializes X from UNIX shell
xlsfonts lists all X fonts
xrdb establishes X defaults
xrefresh redraws entire screen
xset sets X environment parameters
xsetroot sets root window characteristics
xwd dumps a window into a file
xwininfo accesses system infonnation for a

window
xwud undumps a window from a file

Window Manager uwm manages windows

Graphics Editor bitmap cdits bitmap files

Sample lCO displays icosohedron in motion
muncher displays random pattern generator
paint paints and prints a simple picture
plaid generates a random plaid

Descriptions of these applications appear later in this paper.

January 1988

X Window Systcm, Version 11 181\1/4.3-USD: 1-5

2. A IJcarning Guide for Using the X Window System

This chapter includes the following topics:

• starting and ending X
• characteristics of an X display
• managing windows
• opening windows

2.1. Starting X

There are two ways X may be configured for startup:

• With X running continuously on the display
• With X invoked by a command from the UNIX shell

2.1.1. With X Running Continuously

If X is running continuously, you will sec a mouse cursor and a terminal window with a
"login:" line.

(I) Ensure that the mouse cursor is in the login window by moving the mouse if
necessary.

(2) Type:

loginlD < Enter>

where loginlD is your login ID.

(3) Type:

password < Enter>

where password is your password. If X normally runs continuously, you will not
be able to proceed with the learning exercises.

2.1.2. With X Invoked by a Command

If the X window system is not running continuously, you have to enter a command to
start it. To facilitate your learning of how X works, IBM has provided a command in
the directory /usr/guest/guest/xwindows for you to use with the following material.

(1) To begin, ensure that you have already logged into a UNIX shell (by entering
your login ID and password).

(2) Type:

set path = (fusr/gucst/gut'st/xwindows SPATH) < Enter>
xwindows (:displayllscreen . ..1 < Enter>

The values for display are :0 through :7, with :0 the default.

Note: More infonnation on the xwindows command can be obtained by typing:

man xwindows < Enter>

Simply typing xwindows starts a single display managing a single screen. X
searches for an available screen, using the following order:

8514,vga, rnpel, ega, apal6, acd

January 1988

IBM/4.3-USI>: 1-6

where:

X Window System, Version 11

8514 is the IBM 8514 PS/2 Color Graphics Display Adapter 8514/A
vga is the IBM Video Graphics Array (VGA) Display
mpe/ is the IBM 5081 Display with MegaPel adapter
ega is the IBM 5154 Enhanced Color Display with adapter
apa/6 is the IBM 6155 Extended Monochrome Graphics Display
aed is the IBM Academic Information Systems Experimental Display

On the RT, by default the mouse cursor moves from the IBM 5081 to the IBM
5154 to the IBM 6155 to the aed. On the IBM 6152, by default the mouse cur­
sor moves from the IBM 8514 to the VGA.

To start a display with more than one screen, include screen names on the com­
mand line. The sequence in which you enter the screen names, left to right,
overrides the default mouse cursor movement. By using screen names you can
ensure that the mouse cursor will move smoothly from left to right across your
screens in the order that they reside on your display table.

If you do not start an available screen when you start X, you can do so later by
issuing the xwindows command with the appropriate screen name. Note, how­
ever, that starting X separately for a screen invokes a separate copy of the
display (server) and prevents cursor travel between groups of screens.

2.1.3. X Initialization

As the display initializes, the background (known as the "root window") and its cursor
appear on each screen in the group. After a beep, an analog clock appears in the lower
right corner of each screen of the group. Then two xterm windows appear, one atop
the other, in the upper left comer of each screen. The xterm window which is darker
than all the rest is the console window. All system messages appear in it. In the lighter
xterm windows, the UNIX c-shell is running.

2.1.4. Console Focus

Console focus identifies the display that receives keyboard and mouse input. Ensure
that the console focus is set to the display on which the console window appears. If it
is not, the mouse does not move and keyboard input is not accepted. To change the
console focus, press the < Alt > and < Scroll I~ck > keys simultaneously.

2.1.5. Accessing Help

X includes an on-line help system with infonnation about commands, window manager
functions, and default keybindings. To access the IIelp Menu and select its options,
proceed as follows:

(I) Move the mouse cursor to the root window.

(2) Hold down the right-most mouse button. The Main Menu will appear.

(3) Move the mouse to highlight the IIelp option on the Main Menu.

(4) Release the mouse button. Again, hold down the right-most mouse button.
The Help Menu will appear. Select an option by moving the mouse cursor to
the option and then releasing the right mouse button. The options operate as
follows.

Help on Topic: When you select this option, another menu appears. Select one
of the topics, and the available help text will appear.

January 1988

X Window System, Version II IBM/4.3-USD:I-7

Help on Keybindings: A help list appears that describes how to managc windows
by keyboard and mouse.

X Command Summary: A help list appears that summarizes X applications and
their associated commands.

2.1.5.1. Menu Help

Function menus are those that can be chosen from the Main Menu. Each function
menu includes a Help option. Choose the IIelp option to view help information
describing the selections on that menu.

2.1.5.2. UNIX Help

UNIX man pages provide information on UNIX commands. You can view them
from the UNIX shell (an xterm window) by typing:

man command name < Entcr >

where commandname is the UNIX command name.

2.1.6. Ending X

You can end X from the Exit Menu or from the console xtcrm window.

2.1.6.1. Ending X from the Exit Menu

To end X from the Exit menu, do the following:

(1) Move the cursor to the display whcrc the consolc xtcrm was started.
(Remember, the console xtcrm is darker than the rest of the xterm windows.)

(2) Make sure the focus is on thc display containing the console xterm. If it is
not, press < AIt > and < Scroll Lock> simultancously to change the focus.

(3) With the cursor resting in thc root window, hold down the right mouse but­
ton. The Main Menu will appear.

(4) Move the mouse cursor to highlight the Exit option.

(5) Release the mouse button. Again, hold down the right mouse button. The
Exit Menu will appear.

(6) Move the mouse to the Exit X option.

(7) Release the right mouse button.

If X was started with a login window, all user-created windows disappear. A
login window with the "login:" prompt reappears.

If X was started with the xwindows command, aU windows disappear and the
UNIX shell display reappears.

If nothing happens, the cursor may not havc been in the console xtenn win­
dow, or the focus may not havc bccn on thc display containing the console
window. Carefully repeat the above steps.

2.1.6.2. Ending X from the Console Xtcrm \Vindow

To end X from the console xterm window, do the following:

(I) Move the mouse into the console xterm window.

(2) Type:

exit < Entcr >

January 1988

IBM/4.3-US)): 1-8 X \Vindow System, Version II

If X was started with a login window, all user-created windows disappear. A
login window with the "login:" prompt reappears.

If X was started with the xwindow!i command, all windows disappear and the
UNIX shell display reappears.

2.1.6.3. When All Else :Fails

If the console window is not receiving input, and if the menus are not working, you
can end X with UNIX comlnands. Enter these commands from an xterm window
that is running on that X server or from a display that is logged into the workstation
on which X is running.

(1) Type:

ps aux I grep Xibm < Enter>

The process id (PID) and other information ahout the Xihm process will
appear. Find the number in the second column of the displayed information
for the Xihm process (not the grep Xibm process). This is the Xihm PID.

(2) Type:

kill -9 pid < Enter>

where pid is the Xibm PID located in the previous step.

2.1.6.4. An X Startup Command Example

In the directory /usr/skel is a shell script named xwin. You can copy it to your
home directory and execute it. X win starts Xibm and one xterm window. Experi­
enced users will probably want to modify their copies of xwin to suit personal tastes.

2.2. Characteristics of an X Display

This section provides a brief introduction to an X display . You might want to have X
running so you can experiment with the mouse and keyboard.

2.2.1. \Vhen X First Comes Up

When an X work session (using the system defaults) begins, the following appear on the
display:

• the background, known as the root window
• the mouse cursor
• two xterm windows
• an analog xclock window

The next sections explain these items further.

2.2.2. The Mouse Cursor and Mouse

Generally, as you move the mouse, you make the mouse cursor on the display move in
the same direction at the same relative speed. This section describes two special
features of the mouse.

2.2.2.1. Movement Across Screens

When the X server is running more than one display, and the mouse cursor moves
off the right edge of one display, it appears on the left edge of another display.
(Which display is determined either by default or by the order in which the displays
were invoked. See "Starting X" earlier in this chapter.) If the cursor moves off the

January 1988

X Window System, Version II IBM/4.3-USD:I-9

right edge of the last display, it reappears on the left edge of the first display. Simi­
lar movement occurs from left to right.

2.2.2.2. Cursor Shapes

As the mouse cursor enters different windows on the screen, its shape may change.
The cursor resembles an "X" when it is in the root window. \Vhen the cursor enters
the xterm window, it becomes an "I." An X application may define several mouse
cursor shapes for use in its window. For example, when the cursor moves into the
scrollbar region of the xterm window, it is changes from an "I" to a double-headed
arrow. The mouse cursor shape serves as a visual indicator of the foreground pro­
cess within a window. The foreground process is the process that receives and acts
on mouse and keyboard input.

Information about specific cursor shapes and functions appears in later chapters that
describe specific X applications.

2.2.3. Windows

This section describes several types of windows and window presentation.

2.2.3.1. The Root Window

The "root window" is the display background, whose default pattern is a gray zig­
zag. The X server is the application that runs in the root window. All X application
windows are built on top of the root window. The root window also owns the X
cursor. To change the appearance of the background and cursor, see the xsetroot(I)
man page.

2.2.3.2. X Application Windows

Some X applications create their own windows; others operate within existing win­
dows. Each X application window can differ from others in function, size, use of
color and fonts, cursor function and shape, and so forth.

2.2.3.3. Window l,ayering

Each window on the display exists on its own "layer." X assigns the layer level
chronologically. That is, the first window to appear is on the bottom layer. The
next window is on top of the first one. If another window appears, it will occupy
the top layer. The group of layered windows is called the "window stack."

2.2.3.4. Overlapping vs. Tiled Window l\<lanagement

When a window manager allows layered windows to overlap one another, it is
known as a "overlapping" window manager. When a window manager prohibits
windows from overlapping one another, hut instead automatically resizes windows
to fit on the display without overlap, the window manager is known as a "tiled win­
dow manager." X provides a sophisticated overlapping window manager which
allows you to alter the layering order. To do so, you use the Top of Stack and Bot­
tom of Stack options on the Manage a Window Menu (discussed later in this
chapter).

2.2.3.5. The Focus Window

The "focus window" is the window that receives all keyboard and mouse input. X
is configured so that the window containing the cursor is the focus window. In X,
this is called "real estate mode." The focus may be changed so that a selected win­
dow is the focus window regardless of the cursor position. In X, this is called

January 1988

IBM/4.3-usn: 1-10 X Window System, Version II

"listener mode."

Listener mode (separating the focus window from the cursor window) applies only
to the display on which it was requested. If the same X server is running on two
displays, one may be in listener mode and the other in real estate mode. When the
mouse moves from one display to another, the mode in effect on that display takes

January 1988

X Window Systcm, V crsion 11 IBM/4.J.;USD:l-ll

effect. The mode does not transfer to the next display with mouse movement.
(Changing between real estate mode and listener mode is described later in this
paper.)

2.2.3.6. Icons

"Icons" are symbols that represent larger items or actions. In X, a window icon
represents a-window. You can change a window into an icon and back again, so
that the window remains readily accessible, but it appears in full size only when
needed.

Only the window manager can issue commands to window icons. They cannot
receive commands from the process running in the window. You can start a process
in a window and then reduce the window to an icon while the process is running.
You cannot provide additional keyboard input to that window until you change it
from an icon back to a window.

Note: Remember, icons cannot receive keyboard input. l1iereforc, if you move the
cursor to an icon and begin to type, X interprets this to mean that you want to
change the name of the icon.

2.3. Managing Windows

The X window manager (uwm) gives you the ability to move and resize windows, change
them to or from icons, and shuffie overlapped windows to the top of the window stack. It
also provides more advanced functions, such as freezing and unfreezing the display, creating
and exiting a window, and accessing help text.

The window manager includes menus from which you invoke window management func­
tions. You can also perform frequently-used functions with keyboard/mouse actions.

2.3.1. The Menus

The six window management menus are:

• Main Menu
• Create a Window
• Manage a Window
• Manage the Display
• Hosts
• Help
• Exit

Each screen has its own copy of the window manager, even if the screens are running
on the same X server. Therefore, window management functions apply only to the
screen on which they appear.

2.3.1.1. Using the Menus

Use the Main Menu to select one of the function menus. You learned earlier in this
chapter how to access the Help Menu. You access other function menus in the
same way:

(1) With the cursor in the root window, hold down the right-most mouse but­
ton. The Main Menu appears.

(2) Move the cursor to highlight one of the menu selections.

(3) Release the mouse button. Again, hold down the right mouse button. The
selected function menu will appear. Do not release the mouse button. You

January 1988

IBM/4.3-USI>:1-12 X Window System, Version II

must hold it down until you make a selection from the function menu.

(4) Move the cursor on the function menu to highlight the desired selection.

(5) Release the mouse button to make the selection.

2.3. t .2. The Help Option

Each function menu has a Help option. Choosing this option retrieves a help win­
dow describing the function menu selections.

2.3.1.3. Create a Window Menu

The Create a Window Menu enables you to create, or "open," five different types of
windows:

• Xterm
• Xclock Analog Clock
• Xclock Digital Clock
• System Load
• Console Xterm

When you select one of these options, the menu disappears and a special right angle
cursor appears. The right angle cursor represents the upper left corner of the win­
dow. A dimension box also appears in the upper left corner of the display. To
cause the selected window to appear, do the following:

(1) Move the cursor to the desired position.

(2) Click the right-hand mouse button. The window will appear.

2.3.1.4. Manage a Window Menu

The Manage a Window Menu lists the six operations that can be pcrfonned on a
window or icon:

• Move
• Resize
• (De)Iconify
• Top of Stack
• Bottom of Stack
• Close a Window

When you select one of these options, a special doughnut cursor appears. To
proceed with the operation, first move the cursor into the window where the action
is to occur. Be careful not to press a mouse button as you move the mouse; if you
do, the action is canceled.

2.3.1.4.1. Move

(1) As you hold down the right-most mouse button, move the mouse. An
outline of the window moves as the mouse cursor moves. This outline
shows the position the window will assume when you release the button.

(2) Release the button to complete the move.

2.3.1.4.2. Resize

The position of the doughnut cursor in the window detennines how the window
will be resized.

January 1988

X Window System, Version 11 IBl\1/4.3-USD:1-13

(1) To move a border, place the cursor just inside the center point of the
border. To move a corner, place the cursor just inside the comer.

(2) Hold down the right mouse button. The resize dimensions appear in the
upper left comer of the window. .

(3) Move the mouse out of the window to expand its size. Move the mouse
within the window to contract its size. The new size of the window is
indicated in the resize dimension box. For xtenn windows the resize
dimensions are expressed in number of characters. For all other windows,
they are expressed in number of pixels. An outline also indicates the size
the window will assume when you release the button.

(4) Release the mouse button to resize the window.

Note: Xtenn windows do not resize their character fonts. That is, the
characters within the xtenn window do not grow or diminish to match
the resized window.

2.3.1.4.3. (Dc)Iconify

This option converts a window to or from an icon. As the conversion occurs, X
may move the icon/window to a more suitable location.

(1) To initiate the conversion, move the cursor to the appropriate window or
icon.

(2) Press and release the right mouse button.

(3) To move the window/icon during the conversion, hold down the right
mouse button. Then move the mouse to the new location. An outline
shows the position the window/icon will assume when you release the
button.

(4) Release the button to complete the conversion.

2.3.1.4.4. Top of Stack

You cannot move a window to the top of the stack if it is completely hidden
beneath another window. If this is the case, first move the overlaying window,
or use the Send Bottom Window to Top option from the Manage the Display
Menu.

Move the mouse to the selected window and click the right button. The window
moves to the top of the stack.

2.3.1.4.5. Bottom of Stack

You cannot move a window to the bottom of the stack if it is completely hidden
beneath another window. If this is the case, first move the overlaying window.

Move the mouse to the selected window and click the right button. The window
moves to the bottom of the stack.

2.3.1.4.6. Close a Window

Move the cursor to the selected window and click the right mouse button. The
selected window disappears.

2.3.1.5. Manage the Display Menu

This menu lists seven display operations:

January 1988

IBM/4.3-USI>: 1-14 X Window System, Version II

• Focus Select
• Refresh Display
• Freeze Display
• Unfreeze Display
• Top Window to Bottom
• Bottom Window to Top
• Restart uwm

With the Refresh option, you needn't move the cursor. However, with any other
option, the special doughnut cursor appears. You must move the doughnut cursor
out of the menu. As you use the mouse to move the cursor, be careful not to press
a mouse button; if you do, the action is canceled.

Only the Focus Select option requires that the cursor be in a specific window. For
all other options, place the doughnut cursor anywhere on the display outside the
menu. When you have moved the cursor, click the right-most button to begin the
selected operation.

2.3.1.5.1. Focus Select

The Focus Select option toggles listener mode on and off. When listener mode
is on, all keyboard and mouse input is directed to one window, regardless of the
cursor position. For more information on listener mode, refer to "The Focus
Window" earlier in this chapter.

To toggle listener mode on or off, first choose the Focus Select option. Then
move the cursor to the desired focus window and click the mouse button.

2.3.1.5.2. Refresh

The Refresh option redraws the entire display. Just select the option to cause
the refresh.

2.3.1.5.3. Freeze Display

The Freeze Display option withholds input from the display. The display is not
updated as long as it is frozen. If the Refresh option is chosen after the display is
frozen, all the windows are rewritten, but their contents is missing; the contents
of the display buffer is not kept current through updates. Also, if windows are
moved after the display is frozen, portions of windows may be blank.

The Freeze Display option is useful to capture a particular display state before
dumping it to a printer with the UNIX bitprt command.

2.3.1.5.4. Unfreeze Display

The Unfreeze Display option undoes the Freeze Display option, restoring the
display to its normal operation.

2.3.1.5.5. Send Top Window to Bottom

This option sends the window on the top of the display stack to the bottom.
For a description of X display layering, see "Window Layering" earlier in this
chapter.

2.3.1.5.6. Send Bottom Window to Top

This option sends the window on the bottom of the display stack to the top.
For a description of X display layering, see "Window Layering" earlier in this

January 1988

X Window Systcm, Version 11 IBM/4.3-USI>: 1-15

chapter.

2.3.1.5.7. Restart uwm

This option kills the current window manager and restarts another based on the
$HOME/.uwmrc fIle. This enables the quick implementation of just-completed
modifications to the $HOME/.uwmrc file. (See the chapter entitled "Customiz­
ing Uwm" later in this paper.)

2.3.1.6. Hosts Menu

You use the Hosts Menu to perform a remote login to another workstation or
machine on the network. To do so, follow these steps:

(1) Choose the Hosts option from the Ilosts Menu. A window appears with the
Enter host name: prompt.

(2) Type:

machinename < Entcr >

A window appears on an xterm display logged into that machine.

2.3.1.6.1. Exit

The Exit Menu includes two exit options:

• Exit uwm
• Exit X

Neither option requires your further action after selection. A description of each
option follows. If for some reason the menu system becomes inaccessible, there
is a way to exit from an xterm window. (See "When All Else Fails" earlier in
this chapter.)

2.3.1.6.2. Exit uwm

This option kills the window manager. Window manager menus cease being
accessible, and the mouse and keyboard cease managing windows when you
select this option.

You may start a new window manager by typing the following command in an
xterm window:

uwm & < Enter>

2.3.1.6.3. Exit X

This option exits X. If X begins with a login window, this option logs you out
of the working session. If you started X with the xwindows command, all X
windows disappear and the UNIX shell display reappears.

2.3.2. UNIX Commands

The X server and each of the applications it runs are treated as a single process by the
UNIX system. Therefore, you can use the following UNIX commands to control the
X process:

January 1988

IBM/4.3-USD:I-16 X \Vindow System, Version II

COMMAND DESCRIPTION

command & initiates the named process in the background
bg moves stopped foreground process to background
fg moves newest background process to the foreground
kill -9 %x terminates the background process identified by job

number x (from the jobs -/ command)
kill -9 pid terminates the background process identified by

process number pid (from the ps -QUX command)

"C terminates a foreground process

"Z stops a foreground process

For more information on these commands, sec the respective UNIX man page.

2.3.3. Keybindings

The most frequently-used window management functions have been bound to keys and
mouse clicks. These functions and their keybindings and mouse movements are as fol­
lows:

MOUSE MOVES
FUNCTION KEY BUTTON MOUSE?

Move ALT right yes
Resize AlIT both yes
(De)iconify ALT left yes
Top of Stack Control right no
Bottom of Stack Control left no

Move the mouse to the selected window before performing these actions. Press the key
and mouse button in unison. When a function moves the mouse, the function is com­
pleted after you release the button.

This example describes how to move an xterm window.

(I) Place the mouse cursor in the xterm window.

(2) Hold down the right mouse button and the ALT key.

(3) Move the mouse to the desired location.

(4) Release the mouse button and ALT key.

These keybindings also appear under the lIelp on Keybindings option of the Help
Menu.

2.3.4. Programming The Window Manager

The X window manager is programmable, allowing you to change keybindings and
menus to suit your needs. You should be familiar with the default configuration of
uwm before programming your own. Information on the default configuration appears
in the chapter entitled "Customizing X." Information on programming uwm appears in
the chapter entitled "Customizing Uwm."

2.4. Opening Windows

Several X applications open their own windows. This section describes the command
options common to these application windows (color, fonts, window positioning).

January 1988

X Window Systcm, V crsion II IBI\1/4.3-USD:I-17

The five X applications that open windows are:

• bitmap
• xclock
• xfd
• xload
• xtenn

Typing the name of the application in an xterm window causes the new window to open
and the application to begin. (With bitmap, you must also supply the name of the bitmap
file.) Usually you run these applications in the background. Otherwise, no other com­
mand can be executed in the xterm window until the application terminates. Adding an
ampersand (&) to the end of the command line causes the process to run in the back­
ground. For example, xclock & begins the application, opens an xclock window, and frees
the xtenn window for other commands.

There is one advantage to running an application in the foreground: you can terminate it
in an instant by typing "C in the xtenn window.

2.4.1. Positioning a Window in Uwm

To position a window in a specific area of the screen, you enter "offsets" on the com­
mand line that invokes the application. When uwm is running, if you don't enter
offsets, the window does not automatically appear on the screen. Instead, the special
right angle cursor and the dimensions box appear. To make the window appear, first
place the right angle cursor where the upper left comer of the window is to be. Then
click either mouse button. The window appears with its upper left comer positioned at
the cursor.

2.4.2. X Application Options

If you simply enter the application name on the command line, X uses default settings
to fonnat the application window. You can override the default settings by adding the
following options to the command line. (Notc: Bitmap does not use any of these
options.)

bd (border color)

bg (background color)

fg (foreground color)

bw (border width)

fn (font); not used by xfd

rv (reverse video)

2.4.2.1. Colors

The "background color" is the window color on which all text and graphics are
drawn. The "foreground color" is the color used for text and graphics. The "border
color" is the color of the window frame. Appendix A lists available colors. The
default colors are:

January 1988

IBM/4.3-USD:I-18 X Window System, Version II

AREA DEFAULT COLOR
background white
foreground black

border black

To change the colors used by a window, type:

Xapplication -bg background -fg foreground -bd border & < Enter>

For example, to execute xload with an aquamarine foreground, a coral background,
and a light blue border, enter the following command in the xterm window:

xload -fg aquamarine -bg coral -bd LightBlue & < Enter>

On a monochrome display, X ignores color values other than "black" and "white."
If you enter other values, X substitutes the defaults.

2.4.2.2. Fonts

X includes an extensive library of fonts. Appendix B lists the font names. For the
following X applications, the font option (- fn) causes the named infonnation to
appear in the selected font:

• xclock: digital clock time and date

• xfd: verbose mode information (Note: uses the - bf rather than the -fn
option)

• xload: workstation name

• xterm: command entry and status messages

Note: You must choose a fixed font in the xterm window. In other windows, you
may choose either fixed or proportional fonts.

The following command invokes xtenn with an fg-13 font:

xterm -fn fg-13 & <Enter>

2.4.2.3. Reverse Video

The -rv option reverses the foreground and background colors. On a monochrome
display, the background becomes black and the foreground becomes white.

2.4.2.4. Border Width

Border width is expressed in pixels. The width does not impinge on window dimen­
sions, but is added onto the outside of the window. The command xload -bw 25 &
creates an xload window with a border that extends 25 pixels from each window
boundary.

2.4.2.5. host:display.screen

An X application may open a window on a workstation, server, or display other
than the one from which the application was started.

If the server is running on more than one display on a given workstation, each
display is assigned a number. The assigned number follows the order these displays
were listed on the xwindows command line. lbe leftmost display on the command
line is 0, the next is 1, and so on. Unless specified by the Xibm command (dis­
cussed in a later chapter of this paper), the first server started on a workstation is 0,

January 1988

X Window System, Version II

the second server is I, and so on.

For example, if you enter the command:

xclock rook:2.1 & < Enter>

IBM/4.3-USD:I-19

in an xterm window on the bishop workstation, you will start xclock on the rook
workstation's third server and that server's second display. (Remember, servers and
displays are numbered beginning with 0.)

2.4.2.6. Geometry

You can give specific dimensions to a window and place it anywhere on the screen
by using the geometry option. This option takes the form:

= wxh ± xoff ± yoff

where:

= wxh is the width and height of the window

± xoff is the pixel offset in the x direction

± yoff is the pixel offset in the y direction

The width and height are expressed in pixels for all windows except xtenn. For
xterm windows, width and height are expressed in characters. No blank spaces are
allowed between the parameters of this option.

There are four offset origins as summarized in the following table. In each of these
coordinate systems, x is the horizontal axis and y is the vertical axis.

SCREEN WINDOW CORNER
ORIGIN CORNER COUNTED TO
+0+0 upper left upper left
+0-0 lower left lower left
-0+0 upper right upper right
-0-0 lower right lower right

You need not enter the offset parameters. You can enter = wxh ± xoff ± yoff by
itself. To use the offset when uwm is running, the = wxh portion of the command
must be specified. If uwm is not running, you can enter offsets without specifying
width and height, but the equals sign must precede the offsets. Both offset parame­
ters must be entered.

For example, the command:

xload -bw 25 = 300x200-30+ 30 & < Enter>

places an xload window with a border of 25 pixels slightly inside the upper right
comer of the display. Because the offset is counted from the comer of the window,
not the border, the 25-pixel border rests 5 pixels within the upper right borders of the
root window.

The command

xload -bw 25 = 300x200 & < Enter>

creates a 300x200 xload window, but when uwm is running it will not automatically
appear. You must use the mouse to position the window. (See the next section.)

January 1988

IBM/4.3-usn: 1-20 X Window System, Version 11

The command

xload -bw 25 = -30 + 30 & < Enter>

places the xload window slightly within the upper right comer of the display when
uwm is not running. The window will assume its default size. If uwm is running,
you must use the mouse to position the window. It will be of default dimensions.

January 1988

X Window System, Version II I8M/4.3-USD: 1-21

3. Using X Applications

This chapter describes in detail how to use xterm, xclock, and xload and their windows.

3.t. Xterm

Xterm emulates a DEC VTI02 terminal, providing a consistent interface to the UNIX
operating system regardless of the configuration of your workstation. You can use the
xterm window to enter UNIX and X commands, including those for UNIX editors such as
emacs, vi, and ed, and those to compile and run programs. You can use all DEC VTI02
escape sequences. (See Appendix D for a list of these.)

The default xterm window provides cut, paste, and menu facilities. You can also request a
scrollbar and a log file to record keystrokes executed in the xterm window.

The rest of this section provides summary information on xterm options, and on using
scroll bars , cut and paste, and menus.

3.1.1. The Xterm Command Options

The xterm command options pertaining to colors and font are described in the preced­
ing chapter. Some special xterm options appear in this section. For a complete discus­
sion of the command, see the xterm man page.

Most of the options require a leading hyphen (-) or plus sign (+). The hyphen
activates the option. The plus sign returns the option to its default setting.

-132 This option enables the xterm window to switch between 80-column (the default)
and 132-column mode. Once enabled, the switch occurs when the xterm window
receives the following escape sequences:

• To switch from 80 to 132: Esc [? 3 h

• To switch from 132 to 80: Esc [? 3 I

where "1" is a lower case L. Note that typing the escape key (Esc) produces a 1\(
on the display. You can use echo to send these escape sequences to xterm,
enclosing the strings in double quotes thus:

echo "Escl?3h" < Enter>

or

echo "Escl?31" < Enter>

-b pixels
This option sets the size of the inner border (the space between the inner edge of
the xterm character display and the xterm window border). lbe default is one
pixel.

-C This option sends messages for /dev/console to the xterm window. It effectively
creates a console xtenn window.

-cr color
This option determines the color of the highlighted text cursor. The default is the
foreground color. If no foreground color is specified or if the display is mono­
chrome, it defaults to black.

-cu Because a bug exists in the curses(3x) cursor motion package, this option is neces­
sary for programs using curses to interact correctly with the DEC vr 1 02 tenninal.

For example, more(I) uses curses. If -cu is not specified when more is running,
leading tabs may intennittently disappear.

January 1988

IBM/4.3-USI>: 1-22 X 'Vindow System, Version·l1

-e command
This option dedicates the xterm window to the specified command. The com­
mand can take arguments in the normal fashion.

Note: The -e option must appear after all other options on the command line.
The xtenn window vanishes after the specified command terminates.

-fb font
Xterm writes all bold characters in the xterm window in the font specified in this
option. By default, bold characters are written as an overstrike of the font
specified by the -fn option. The font specified by this option must be of the same
point size as the the font specified by the -fn option. If the -fn option is not
specified, the font specified by this option is the normal font and there is no bold
font.

-1 This option causes xtenn to be an icon when it first appears on the display. By
default, the icon appears directly beneath the mouse cursor when the application
begins.

-j This option sets xtenn to "jump scroll," to scron more than one line at a time.
Xterm defaults to jump scroll.

-1 This option sets logging on. Logging causes every keystroke entered in the xtenn
window to be recorded in.a file. The default file name is XtermLog.XXXXX,
where XXXXX is the process ID of the xtenn window.

X tenn creates the log file in the directory from which xtenn was started. If the
xtenn window is a login xtenn (either option -Is or option -I.J was specified), the
log file appears in the home directory.

-If filename
This option overrides the default file name for the log file.

-Is This option causes the xterm window to run under the shell specified in the .login
file. Xterm reads the .login file and comes up in the home directory. This option
is not used when the xtenn window is opened using the xinit command in the
/etc/ttys file. In that case, the -L option is used.

-L The -L option creates a login window when X is initialized using the xinit com­
mand in the /etc/ttys file.

-mb This option turns on the right margin bell. 'Inc bell rings whenever the cursor
reaches the specified margin bell setting. This setting is established with the -nb
option. The bell may be set to visual rather than audio using the -vb option.

-ms color
This options sets the color for the mouse cursor when it is in the xtenn window.
The default is the foreground color.

-n windowname
This option specifies the name of the xterm window. This name appears in the
icon and dimensions box for the window, and is noted when xwininfo is run on
the window. The default name is xlerm.

-nb number
This is the location, expressed as the number of spaces left of the right margin, at
which the margin bell rings. The margin bell is activated using the -mb option.

-rw This option turns on reverse wraparound mode. In reverse wraparound mode, the
backspace key can move the cursor through the left margin and up to the end of
the previous line. The cursor does not wrap back through the prompt.

January 1988

X Window System, Version II IBM/4.3-USD:I-23

-s This option disables synchronous scron. The display is not continual1y updated
and current keystrokes do not appear as they are typed, but the tenninal executes
commands much more swiftly. This may be useful when network latencies are
very high, as when using xtenn across a very large internet.

-sb This option produces a scrollbar at the left border of the xtenn window. When
the cursor enters this area, it changes to the special double arrow, indicating that
mouse clicks will scroll the contents of the window backwards and forwards. The
number of lines available for scrolling is normally 64. To change this default, use
the -sl option.

-SI With the scrollbar enabled, this option prevents the xtenn window from scrolling
to the bottom when keyboard or system input is received.

-sl number
This option sets the number of lines that are saved "above" the top of the win­
dow when the scrollbar is activate. The default is 64 lines.

-vb This option transfonns the audio bell into a visual bell. The visual bell flashes the
entire window in reverse video.

± xoff ± yofT
This option sets icon geometry. Icon geometry detennines the position the icon
assumes when the window fIrst appears (using the -i option), or when the window
is changed to an icon. (The icon does not occupy this position when the icon
results from your selecting the (De) I conify option on the Manage a Window
menu.)

3.1.2. Menus

There are two xterm menus:

• xterm XII

• Modes
Both menus use a line to divide their menu options into two groups. lbe top group
are toggles for command line options. If one of these selections is on, a check mark
appears to the left of the selection.

The bottom group are commands. They provide a quick way to execute certain func­
tions, such as closing the xtenn window, resetting the xtenn window, and sending sig­
nals to the application running in xtenn.

3.1.2.1. Using Menus

To view the xterm XlI menu, hold down both the Shift key and the Control key.
Then press the left mouse button. The top of the menu will appear at the cursor
position. Release the Shift and Control key but do not release the left mouse but­
ton.

To view the Modes menu, hold down both the Shift key and the Control key.
Then press both mouse buttons. The top of the menu will appear at the cursor
position. Release both keys but do not release the mouse buttons.

To choose an option from either menu, move the cursor so it highlights the option.
Release the mouse button(s) to make your choice.

3.1.2.2. The Xterm X II Menu

The following table describes each xtenn X II menu selection, noting the default set­
tings.

January 1988

IBM/4.3-USD: 1-24 X Window System, Version II

SELECTION DEFAULT FUNCTION
Visual Bell off Turns on the visual bell; same as

-vb option
Logging off Turns on logging; same as -I op-

tion
Redraw -- Refreshes the xterm window
Continue -- Same as UNIX f2 (SIGCONT)
Suspend -- Same as UNIX "Z (SIGTSTP)
Interrupt -- Same as UNIX "C (SIGINT)
Hangup -- Closes the X window (SIGIIUP)
Terminate -- Closes the X window (SIGTERM)
Kill -- Closes the X window (SIGKILL)

3.1.2.3. The Modes Menu

The following table describes each Modes menu selection, noting the default settings.

SELECTION DEFAULT I~UNCTION

Jump Scroll on scrolls more than one line at a
time; same as -j

Reverse Video off reverses foreground and back-
ground color· same as -rv

Auto Wraparound on wraps long entries to next line
Reverse Wraparound off backspace key can move

through left margin to end of
previous line; same as -rw

Auto Linefeed off insert extra linefeed
Application Cursors off enables use of arrow cursors
Application Pad off enables use of numerical keypad
Auto Repeat on holding key down produces

multiple characters on display
Scrollbar ofT produces scrollbar at left bord-

er; same as -sb
Scroll to Bottom on Key on same as -sk
Scroll to Bottom on Input off same as -si
80 < - > 132 Columns ofT enables window to switch

between 80- and I 32-column
mode; same as -132

Curses Emulation ofT fixes bug in curses(3x); same as
-cu

Margin Bell ofT turns on right margin
bell; same as -mb
T1
Tek Window Showing ofT displays/hides Tek window
Alternate Screen off not available

January 1988

X Window System , Version 11 IBM/4.3-USJ):1-25

SELECTION DEFAULT I'UNCTION

Soft Reset -- reset scroll region

Full Reset -- clear window, reset tabs
to 8-column width, reset
terminal modes such as
wrap, smooth scroll

Select Tek Mode -- not available
Hide VT Window -- not available

3.1.3. The Scroll bar

You can enable the scrollbar either using the Modes menu or using options on the
command line. (See the -sb, -sl, and -si options on the xlerm man page.)

The highlighted region of the scrollbar represents the amount of text appearing in the
window. The darker region represents lines scrolled ofT the window. Use the -sl opton
to change the number of available scrolled lines. The default is 64. Use the scroll
options on the Modes menu to control scrollbar actions. Note that when the mouse
cursor enters the scrollbar area, it becomes a double-headed arrow.

With the cursor in the scrollbar area, proceed as follows to scroll text:

• To scroll to a specific portion of text, position the cursor at the desired text loca­
tion. (Remember, the length of the scrollbar represents the amount of scrolled
text.) Position the cursor at the desired text position. Click both mouse buttons.
The cursor becomes a horizontal arrow to indicate that the selected lines will
appear at the top of the window.

• To scroll up, click the left mouse button. rnle line of text at the cursor position
now appears at the top of the window. The cursor becomes an up arrow to indi­
cate that the lines are scrolling upward.

• To scroll down, click the right mouse button. The line of text at the top of the
window will now appear at the cursor position. The cursor becomes a down
arrow to indicate that lines are scrolling downward.

3.1.4. Cut and Paste

Xterm provides a cut and paste facility to copy text from one area of an xtenn window
to another or to copy between different xterm windows. You can use cut and paste in
the shell to construct commands from various already-executed commands and to paste
them on the current line for execution. You can also use cut and paste within the vi
editor.

To cut and paste text, proceed as follows:

(1) Position the cursor at the beginning of the text to be copied.

(2) Hold down the left mouse button.

(3) Move the cursor to highlight completely the text to be copied.

(4) Release the left mouse button.

(5) If you need to change the amount of selected text:

a. Hold down the right mouse button.

b. Move the mouse to adjust the text to be copied.

.January 1988

IBM/4.3-USI>:1-26 X Window System, Version II

c. Release the right mouse button.

(6) Position the mouse cursor in the window that is to receive the copied text.

(7) Position the text cursor at the location where the text is to be copied. Note: If
a space is needed between existing text and copied text, you must place the cur­
sor one space to the right of the existing text.

(8) Click both mouse buttons. The copied text is inserted after the text cursor.
Note that copying text in vi automatically opens up insert mode; vi remains in
insert mode after the paste operation.

3.1.5. Exiting Xterm

There are four ways to exit the xterm window:

• using the xterm x 11 menu

• using the Close a Window option from the Manage a Window menu

• typing exit at the xterm prompt

• using the UNIX kill command

If you type exit in the console window, the console window disappears and the X
server terminates. The console window must continually be displayed for the entire
duration of the X work session.

3.2. Xclock

Xclock reads the UNIX clock and displays the current time. You can view the time on
either an analog (face and hands) or digital clock.

3.2.1. The Xclock Command Options

Many of the xclock command options (those pertammg to colors and fonts) are
described in the preceding chapter. Options unique to xclock appear in this section.
For a complete discussion of the command, see the xclock man page.

-analog or -digital
The -analog option (the default) causes time to appear on a clock face. The ana­
log format does not include the date. The -digital option causes time and date to
appear in digital format: day date hr:min:Jec year.

-hI color
This options sets the color of the analog clock hands. Black is the default.

-padding pixels
This option specifies the distance in pixels from the time display to the inner edge
of the xcloek window border. The default in analog mode is 8 pixels; in digital, 10
pixels.

-update seconds
This option sets the frequency (in seconds) with which the time display is
updated. The default is once every 60 seconds. The second hand docs not appear
on the analog clock unless the display is updated at least every 30- seconds. To
update the clock display every second, type the command as follows:

xclock -update 1 & < Enter>

Regardless of the update setting, xclock automatically updates the display every
time it moves to the top of the window stack, and every time it changes from an
icon to a window.

January 1988

X Window System, Version 11 IBM/4.3-USD:I-27

3.3. Xload

Xload monitors the workstation's system load average and displays it on a bar graph. This
is the same value displayed by UNIX uptime.

Each scale line in the xload window is equivalent to one average process that is waiting for
execution. On a workstation with low activity, no horizontal scale lines appear because the
system load average is less than one process.

When the xload display appears on a different workstation using the host:display:screen
option, it shows the system load average of the original workstation, not the one on which
the display appears. The name of the monitored workstation automatically appears in the
upper left corner of the window.

3.3.1. The Xload Command Options

Many of the xload command options (those pertaining to colors and fonts) are
described in the preceding chapter. Options unique to xload appear in this section. For
a complete discussion of the command, see the xload man page.

-hI color
This option sets the color for the workstation name and scale lines.

-scale n
This option sets the number of vertical graph divisions. Each division is a hor­
izontalline across the window and marks one (average) process waiting for execu­
tion.

-update seconds
This option sets the frequency (in seconds) with which the load display is
updated. The minimum (and default) is once every 5 seconds.

Regardless of the update setting, xload automatically updates the display every
time it moves to the top of the window stack, and every time it changes from an
icon to a window.

January 1988

IBM/4.3-USl>:1-28 X Window System, Version II

The X Programmer's Guide

4. Utilities describes each of the utilities provided with X.

5. Customizing X describes how to change X default window characteristics, and
how to configure X for particular environments.

6. Customizing Uwm describes how to modify the programmable window manager
available with X.

7. The Bitmap Editor describes how to use X's editor for creating and editing a bit­
map.

January 1988

X Window System, Version II IBM/4.3-USD:I-29

4. Utilities

This chapter describes the utilities included with X:

• xfd
• xhost
• xlsfonts
• xrdb
• xrefresh
• xset
• xsetroot
• xwd
• xwininfo
• xwud

Enter these commands in the xtenn window, or from a screen not running X. You need not
type an ampersand at the end of the command when invoking one of these utilities. They exe­
cute immediately and will not inhibit further entries into the xterm window or UNIX shell.

4.1. Xfd

Xfd displays characters of a specified font. The location of the character on the screen
corresponds to its ASCII and hexadecimal code value. In the default xfd window, the
upper left box is decimal 0, hexadecimal OxO. These numbers increment across the row
and down the window. To view both the decimal and hexadecimal code for any character,
move the mouse cursor to the character and click both mouse buttons.

X supports 8-bit fonts, which can include up to 256 characters. Xfd defaults to a 16xl6
grid to display the characters in these fonts. If you resize the xfd window, the grid size
changes accordingly. If the characters are small enough, the entire 16x 16 xfd window fits
on the display. Otherwise, only a portion of the window appears. To view the remaining
characters, scroll the window by moving the mouse cursor into the xfd window and click­
ing the right and left mouse buttons respectively.

To display lower rows of the font display, use the -start option. This option specifies
which character will be displayed in the upper left corner of the grid; thereby shifting the
window's display focus.

January 1988

IHM/4.3-USI>: 1-30 X Window System, Version II

You can close the xfd window by typing one of the following in the xfd window:

q
Q
"C

If the window is an icon, you must change it back to a window before closing it.

4.1.1. The Xfd Command Options

Many of the xfd command options (those pertaining to colors) arc described in the
preceding chapter. Options unique to xfd appear in this section. For a complete dis­
cussion of the command, see the x/d man page.

font Specify on the command line the simple name of the font you want displayed:

xfdfont

The names of fonts available with X appears in Appendix B. If you omit this
option, the default font "fixed" appears. You need not include a file name exten­
sion or path name for the font. If the font you specify is not in the
/usr/lib/X II/fonts directory or has an extension other than .snf, then specify the
full pathname and/or extension.

For example, if the font "jazzy.cnf' exists in the /special directory, use the follow­
ing command to display it in an xfd window:

xfd /speeial/jazzy.enf & < Enter>

Note: Use the following command to display the 25-point cyrillic font in the
/usr/lib/X II/fonts directory:

xfd eyr-s25 & < Enter>

-bf/ont
This option selects the font used for character information that appears at the bot­
tom of the display.

NOTE: If you choose a very large font, you may need to resize the window to
read its information.

-gray This option highlights the empty region surrounding each character. lbis region
is part of the character. Using this option causes the window background to be
gray, the character to appear in the foreground color, and the empty region to
appear in the background color.

-in iconname
The -in iconname option sets the icon name to that specified by the -icon option.
This name appears in the icon, overriding any name specified by the -fl option.

-start character#
This option moves the specified character to the upper left box of the xfd grid.
Other characters follow this one in their usual order. Use this option to access the
lower rows of oversized fonts.

For example, if you choose character # 117 to appear in the upper left box, char­
acters 117 through 255 would follow it in the default 16x 16 grid. Characters 0
through 116 would fill in the remaining grid boxes.

-tl title
This option sets the name of the window. This name appears in the uwm sizing
box.

January 1988

X Window System, Version 11 IBM/4.3-USD:I-31

-verbose
This option causes additional information to appear when you move the mouse
cursor to a character and click both buttons. Normally, just the ASCII and hexa­
decimal codes for the character appear. The additional information includes:

character width
left bearing
right bearing
ascent
descent

Information provided by this option appears at the bottom of the xfd window.
Use the -bf font option to change the font in which this information appears.

4.2. Xhost

Xhost changes the list of hosts that can access the X server on the home workstation. The
changed access privileges last for the duration of the current work session. When X is
exited or when the user logs out of X, this access list is reset to that in the /etc/X + .hosts
files. (The" +" in the /etc/X + .hosts file name is the display number for the workstation.
For example, if the display number is I, the file /etc/X I.hosts lists the hosts that have
access privileges to the home workstation when display I is in use.

To grant a host permanent access privileges, you must either edit the /etc/X + .hosts fIle or
modify the .login file.

4.2.1. Command Format

Use the following command to invoke xhost:

xhost ± host ± host . •.

You must execute this command on the home workstation. The host entries may be
preceded by a +, -, or no sign, with the following effects:

+ or no sign
Grants access to the specified display for the named workstation(s).

Denies access to the specified display for the named workstation(s).

To review a list of workstations with current access privileges to a display, simply type
the xhost command (with no options). This list includes the name of the workstation,
and uses information in the /etc/hosts file.

4.3. Xisfonts

Use the xlsfonts command to list the name of the fonts in the /usr/lib/X II/fonts directory,
or to see if a particular font exists in the directory.

4.3.1. Command Format

Use the following command to invoke xlsfonts:

xlsfonts pattern host:display:screen

Use the pattern option to limit the list to fonts whose names match the pat­
tern. The? and * wildcard characters may be used in the pattern, thus:

? matches any single character

* matches any string of characters (including null)

January 1988

IBM/4.3-USD: 1-32 X Window System, Version II

If either of these wildcard characters is used, enclose the expression in single
quotes. For example, the following command presents a list of all fonts whose
names begin with gothic:

xlsfonts 'gothic*'

This produces the following list:

gothic. 12
gothic. 12.snf
gothic.lS
gothic.lS.snf

For information on the host:display:scrcen option see Chapter 2.

4.4. Xrdb

Use xrdb to set the contents of the .Xdefaults file. For more infonnation on the
defaults fIle, see Chapter 4.

4.5. Xrcfrcsh

Use the xrefresh utility to redraw the entire display; To issue the command, mere­
ly type xrcfrcsh. You can specify a particular host, server, and display as follows:

xrefrcsh host:display:screen

For information on the host:display:screcn option, see Chapter 2.

4.6. Xset

Use the xset utility to set display preferences.

4.6.1. Command Format

Invoke xset with a command of the fonn:

xset b volume pitch duration c volume fp path led # m ace thresh p tableno color r s time (no)blank
host:display:screen

The following table lists the options and their usage.

January 1988

X Window System, Version 11 IBM/4.3-USD:I-33

OPTION OPTION NAME

t b vol pitch dura tion bell

t c vol key click

fp path font path

(-)Ied # led on/ofT

m acc thresh mouse

p tableno color pixel value

q query

t r autorepeat

s time (no) blank display saver

t Where x is the option letter:

- x sets the option off

USAGE

volume is % of maximum (0-100)
pitch is in Hertz
duration is in ms
b 0 turns bell ofT

volume is % of maximum (0-100)
c 0 turns click ofT

This is the path used to locate fonts.
The different directories should be
separated by a comma. fp default
sets the path to its default setting.

is the keyboard led number. where:
• 1 is NUM LOCK led
• 2 is CAPS LOCK led
.3 is SCROLL LOCK led
xset led turns all three leds on
xset -led turns all three leds ofT

The cursor moves ace times as fast
as the mouse.

thresh is the number of pixels the
mouse must move before X moves
the cursor on the display.

m sets the default
acc may be entered without thresh

this changes the color at the specified
tab/eno in the rgb data base to the
specified color (see Appendix A)

displays current xset settings

toggles autorepeat for keyboard keys

time in seconds determines how long
the display will sit with no input be-
fore display saver is turned on

noblank unmaps the X application
windows but leaves the root window
displayed when display saver is on

blank unmaps both the X application
windows and the root window when
display saver is on

x with no flag resets the option to its default valuc(s)

x on turns the option on

x off turns the option off

DEFAULT

0
400
100

0

/usr /lib/X II/fonts

ofT
ofT
ofT

1

--

none

--

on

600

noblank

noblank

January 1988

IBM/4.3-USD: 1-34 X Window System, Version II

4.7. Xsetroot

Xsetroot customizes the root window. To change the appearance of the root window per­
manently, place the xsetroot command in either:

• the .login file if X continuously runs on the display, or

• in the shell script that invokes X, if X is started by a UNIX command

4.7.1. Command Format

Use a command of the following format to customize the root window:

xsetroot -bg color -bitmap filename -cursor cursorftle maskfile -def -fg color -name string -"
host: display: screen

-bitmap filename
The specified filename, a bitmap file, is tiled over the entire root window as a
background. (For information on creating bitmaps, see Chapter 7.)

You can replace the -bitmap option with one of the following three options. Each
is described later in this section, and defines a root window display style.

• -gray (or -grey)
• -mod xy
• -solid color

-cursor cursorftle maskfile
This option uses the bitmap found in the cursorfile as the cursor in the root win­
dow. For information on creating bitmaps, see Chapter 7.

-def Use this option to return one or more options to their default setting. Por exam­
ple, use the command:

xsetroot -def

to set all options for this command to their default. (Note that you cannot use this
option to reset an option you have set elsewhere on the same command line.)

-gray (or -grey)
This option displays the root window as a gray display composed of black and
white pixels. This is not the same as specifying gray as a solid color with the
- solid option.

-mod xy
This option paints the root window in a plaid pattern determined by the x and y
entries (where x and y represent the distance between lines in a 16x 16 bitmap).
The x lines are vertical lines drawn in the background color (white for mono­
chromes). The y lines are horizontal lines drawn in the foreground color (black
for monochrome). This bitmap is tiled over the entire root window.

-name string
Use this option to set the name of the root window to string. lbe xwininfo com­
mand uses this name. There is no default value.

-rv This option reverses the foreground and background colors of the root window.
You can use it with other options, such as -mod and -bitmap.

-solid color
This option sets the root window to color. You can use any of the names or
numbers described in Appendix A for color.

January 1988

X Window System, Version II IBM/4.3-USD:I-35

See the xsetroot man page for more information on this command.

4.8. Xwd

The xwd command dumps a window image into a file. The window image can be
redisplayed using the xwud command. It cannot be redisplayed using the bitmap editor.

4.8.1. Command Format

Use a command of the following format to dump a window image to a file:

xwd -nobdrs -out fileTUlme -xy host:server.display

The xwd options are described below.

-nobdrs
This option dumps the window without its border.

-out filename
This names the me into which the window is dumped. If the -out option is not
specified, the window will be dumped to standard output. Dumping to standard
output permits piping the contents of the window into a program (perhaps a print
dump program). If xwd standard output is not directed to a program, then the
contents of the window will display in dump format in the shell where the com­
mand was typed.

-xy On color displays, this option dumps the window in black and white (XY for­
mat). This option has no effect when specified for a monochrome display.

host: server. display
This option specifies on which workstation and/or display the target window
resides. See Chapter 2 for more information.

For more information about this command, see the xwd man page.

4.8.2. Dumping a Window

The procedure for dumping a window is as follows:

(I) Type the xwd command and options. The cursor changes to a target shape.

(2) Move the target cursor into the window to be dumped (the "target window").

(3) Click any mouse button. The bell sounds once at the beginning of the dump
and twice at the end.

4.9. Xwininfo

The xwininfo command displays system information on the specified window. 8y default,
the following information is displayed:

Tree: includes the IDs and names of the root, parent, and child windows asso­
ciated with the selected window.

Events: lists the events for which the selected window is currently waiting.

Window Manager Hints: provides hints about how the window manager
interacts with the selected window.

4.9.1. Command Format

Type a command of the following format to view system information for a specific win­
dow:

xwininfo -bits -id #I -int -size -stats host:server.display

January 1988

IBM/4.3-USD: 1-36 X Window System, Version II

The rest of this section describes options of the xwininfo command.

-bits
Information on the window's raw bits is displayed when this option is specified.
This information includes:

• bit gravity
• window gravity
• backing-store hint
• backing planes to be preserved
• backing pixel
• save under availability

-id # Use this option to select a window by typing its ID number rather than clicking
the mouse in the selected window. 'Ibis option is handy when the target window
does not appear on the display, or when mouse clicks might interfere with the
normal operation of an application.

-int

One of these three options may be used in place of the -id option.

• -font Jontname
• -root
• -name windowname

With this option, you request that window IDs be displayed as integers rather
than as hexadecimal numbers (the default).

-name window name

-sIZe

-stats

Use this option to select a window by name rather than mouse click. For exam­
ple, the command:

xwininfo -name xterm

displays information for an xterm window (provided it has not had its name
altered by the -n option on the xterm command line).

Specifying the window by name rather than ID avoids confusion when two or
more of the same type of window exist on the display at the same time.

Use this option to request normal and zoom sizing hints for the selected window.
Sizing hints include:

user-supplied location (offsets)
user-supplied size (= wxh)
program-supplied minimum size
program-supplied x resize increment
program-supplied y resize increment
program-supplied minimum aspect ratio
program-supplied maximum aspect ratio

This option provides statistics about the current state of the window. Statistics
include:

upper left x pixel location
upper left y pixel location
window width
window height
window depth (refers to color)

January 1988

X Window System, Version 11 IBM/4.3-USD:I-37

border width
window class
window map state

4.9.2. Displaying X Window Information

To display X window information, proceed as follows:

(1) Type the xwininfo eommand and any desired options in the xtenn window or
other shell interface.

(2) If -name, -root, or -id # were not specified, the cursor assumes the target shape
and the following prompt appears:

xwininfo = = > Please select the window you wish
= = > information on by clicking the
= = > mouse in that window.

(3) Click the mouse button in the desired window as prompted.

(4) The information appears in the window from which the command was entered.
For more information on this command, see the xwininfo man page.

4.10. Xwud

This command "undumps" a window from a file created by xwd. The window image
appears on the display at the exact pixel location from which it was originally dumped.

Windows that were dumped in color format (Z fonnat) must be undumped on a color
display.

4.10.1. Command Format

To undump a window image, type a command of the following format:

xwud -inverse -in filename host:diJplay:screen

These options are described below.

-inverse
This option undumps the image in reverse video (for monochrome displays only).
This option is supplied because the display is "write white" (white= 1) and
printers are generally "write black" (black = 1).

-in filename
This option specifies the window dump file that will appear on the display. The
default is to display standard input.

host:server .display
This option specifies the host and/or display on which the window will appear.
The image may appear a display other than the one from which it was dumped.
It will appear in the corresponding pixel location from which it was originally
dumped.

For more information on this command, see the xwud man page.

January 1988

IBM/4.3-USD:I-38 X \Vindow System, Version II

5. Customizing X

This chapter describes how to change the X default window characteristics, and how to
configure X for particular environments.

5.1. Changing X Window Characteristics

X applications employ windows as part of the user interface. To change one or more
characteristics of these windows, you change the .Xdefaults file. Each line in the file sets
the default for one window characteristic and is of the fonn:

Xapplication.keyword:value

where:

Xapplication is the name of the X application that presents the window

keyword is the name of the characteristic

value is the setting for that characteristic

Upper- and lowercase distinctions and extra spaces are ignored in these entries.

If you omit the Xapplication portion of the command, the new setting will affect all win­
dows and/or menus. Such global defaults must precede all window-specific defaults in the
.Xdefaults fIle. A window-specific setting will override a global setting if the window­
specific setting appears after the global one in the file. The .Xdefaults file must reside in
the home directory.

5.1.1. Window Keywords

Keywords are equivalent to X command line options. Setting the default for the key­
word in the .Xdefaults file eliminates the need to specify the option on the command
line each time you invoke the X application. If you specify a command line option
when you invoke X from the UNIX shell, the option will override the keyword setting
in the .Xdefaults file.

The following table lists all keywords, grouped by X application. TIle first set of key­
words applies to all X applications. Use these keywords to make global settings. Use
the remaining groups of keywords to set the appearance of windows belonging to par­
ticular X applications.

Note: Keywords must be capitalized as shown in the table,

.January 1988

X Window System, Version 11 IBM/4.3-USD:1-39

RELATED
KEYWORD SETS: OPTION

all windows:

Background background color -bg
BodyFont default font -fn
Border border color -bd
BorderWidth border width -bw
Foreground foreground color -fg
Reverse Video foreground and background reversed -r

bitmap:

Highlight hot spot color, also temporarily indicates --
move, copy, set, and invert areas. Invert-
ed video is the default.

Mouse mouse color --
xclock:

Highlight color of the hands -hI
InternalBorder space between text and border (padding) -padding
Mode digital or analog -digital or -analog
Update update interval -update

xfd:

IconName icon name -in
Title window title -tl
xload:

Highlight color of hostname and scale lines -hI
Scale minimum scale -scale
Update u12date interval -update

xterm:

BoldFont default bold font -fb
Cl32 80 < = > 132 column switching capability -132
Curses curses fix -cu
Cursor text cursor color -cr
CursorShape cursor to arrow or I beam --
Geometry window size and position = wxh ± xoff ± yoff
lconStartup window or icon on creation -1

IntemalBorder space between text and border (padding) -b
Jump Scroll jump scroll -)

LogFile log file name or pipe command -If
Logging logging on/off -Is
LogInhibit inhibit logging --
LoginShell xterm to come up running login shell -I
MarginBell margin bell -mb
Mouse mouse color -ms
MultiScroll synchronous scroll -s
NMarginBell right margin -nb
Reverse Wrap reverse wraparound mode -rw
Save Lines saved lines when scrollbar on -sl
ScrollBar scrollbar -sb
ScrollInput reposition on input with scrollbar -si

January 1988

IBM/4.3-USD: 1-40 X \Vindow System, Version II

RELATED
KEYWORD SETS: OPTION
xterm (continued):
Signal Inhibit inhibit signals from xtenn menu --
StatusLine status line displayed on startup --
StatusNonnal status line in normal video --
VisualBell visual rather than audio bell -vb

5.1.2. Sample .Xdefaults File

The following is a sample .Xdefaults file. Note that the first three entries affect all win­
dows. The remaining entries affect only the window type specified.

The "xterm.background" overrides the global ".background" entry. Generally, the last
entered value, whether via a keyword in the appearance .

. background:

.foreground:

. borderwidth:
bitmap.highlight:
xclock. I lighlight:
xclock. update:
xclock.mode:
xload.scale:
xterm.background:
xterm.bodyfont:
xterm.cursorshape:
xterm.1oginshell:
xterm.reversewrap:
ctenn.scrollbar:
xtenn.savedlines:

5.1.3. Activating X Window Defaults

steel blue
goldenrod
5
firebrick
pink
I
analog
2
magenta
fg-13
arrow
on
on
on
100

To activate the X window characteristics in the .Xdefaults file for the root window, you
use the xrdb command:

xrdb host:server:display .Xdefaults

There are three ways to invoke the command:

• Type it on an xtenn command line

• Include it in the .login file (if X runs continuously)

• Include it in the startup shell script (if X is initiated by a UNIX shell command)

For more infonnation, see the xrdb man page.

5.2. Configuring X

You can configure X to run continuously on a display, or to be invoked by command
(either in a UNIX shell script or simply from the command line). This section explains
how to configure X for each of these environments.

5.2.1. The xinit and Xibm Commands

Both startup configurations use the xinit and Xibm commands. The xinit command
initializes Xibm and then initializes a specified X application. When the specified X

January 1988

X Window System, Version It IBM/4.3-USD: 1-41

application terminates, then the Xibm server also tenninates. Xibm actually starts the
server. It is embedded in the xinit command line:

xinit Xapplication options Xibm options &

5.2.2. .'or X To Run Continuously

To configure X to run continuously on a display, you must change the /etc/ttys file and
rename fIles in the /dev directory. Further, to cause an X application to start automati­
cally for a user, you must modify that user's .login file. 'Illis section explains how to
complete both these tasks.

5.2.2.1. Change /etc/ttys and /dev

Perform the following steps:

(1) Become the super user by typing the su command and password.

(2) Add the following line to the /etc/ttys file:

ttyvO "/usr/bin/Xll/xterm -L options host:display";xterm on window="/usr/bin/XII/Xibm
host:display options -screen - screen - screen"

Specify the -L option for the xtenn window to set X for continuous display.
This option causes X to present a window on which the user logs into the
UNIX shell. Use the -Is option to request that the .login fIle be sourced au­
tomatically.

You may name more than one display by using -display flags. List the
displays left to right on the command line as they rest left to right before the
user. This will preserve an orderly left-to-right movement of the cursor
between displays. The valid values for display names are:

apa16 for the IBM 6155 Extended Monochrome Graphics Display
aed for the IBM Academic Information Systems Experimental Display
mpel for the IBM 5081 Display with MegaPeI adapter
ega for the IBM 5154 Enhanced Color Display with adapter
8514 for the IBM PS/2 Color Graphics Display Adapter 8514/A
vga for the IBM Video Graphics Array (VGA) Display

(3) Place a pound sign (#) at the beginning of the line that currently
defines the display on which X will run. This "comments out" the
line.

(4) In the /dev directory, type the following commands:

mv ttypf ttyvO < Enter>
mv ptypf ptyvO < Enter>

(5) Type the following:

kill -HUP 1 < Enter>

This reinitiates the /etc/ttys file, so the new display defmition is read.
X will come up in an xterm window on the first screen named in the
ttyvO command line. Your .login file will be sourced in this window.
You can invoke additional xtenn windows for other displays from the
command line of your xterm window, or from a command in your
.login fIle. The displays are numbered from 0 in the order their
names appear in the command.

January 1988

IBM/4.3-USD: 1-42 X Window System, Version 11

5.2.2.2. Change the User's .login File

Add the following lines at the end of a user's .login file to start an X appli­
cation automatically on that user's display(s):

if ('tty' = = /dev /ttyvO) then
Xapplication options &
Xapplication options &

endif

5.2.3. For X Invoked by Command

You can imbed the xinit command in a shell script to invoke Xibm from the
UNIX shell. You can include the name of an X application that will be in­
voked as X is invoked. Xterm is usual1y the best choice, because exiting Xibm
requires that you exit xterm as well, and xterm is useful during an entire work
session.

Instead of the name of a single X application, you can substitute the name of a
shell script that lists several initial applications, such as xclock, xload, and
xterm.

You can also initiate X by simply typing xinit -- Xibm on the UNIX shell
command line.

5.2.4. Sample Shell Script

A sample shell script is provided on the X/BE2 Installation diskette, in a file
named Demouwml bini X. A sample start shell script is also provided, in a file
named Demouwml bini start.

5.2.5. The Xibm Command

Use the Xibm command to start the X server. (The X server appears as the
root window.) To start X applications as the server is started, use the x;n;t
command. The following table lists the options for the Xibm command. See
the Xibm man page for more information.

.January 1988

X Window System, Version 11

OPTION OPTION NAME

a# mouse acceleration

c# key click volume

-d display displays

-f # bell volume

-fc file cursor

IBM/4.3-USD: 1-43

USAGE
is a scale factor relating mouse movement
to cursor movement.

is the volUtne from a range of 0 through 8.
A -c entry turns the key click off.

each display on which this server is to run
should be listed; see Sections 3.3.1 and 2.1.2
for more infonnation

is the volume from a range of 0 through 8.

file is a cursor bitmap file. This cursor will
replace the default X cursor. T}

-fn font + window font + T{ font may be re­
placed by any of the fonts listed in Appen­
dix D, or any font along the path set by the
-fp option

-fp path font path path sets the font path, directories are
separated by a comma.

host:server host and server number host designates the workstation; server is a
number that arbitrarily identifies the server
in distinction from other servers on that
workstation

-s # screen saver timeout sets the screen saver timeout in minutes

-t # mouse threshold # is the number of pixels the mouse must
move before the cursor moves on the screen

January 1988

IBM/4.3-USD: 1-44 X Window System, Version II

6. Customizing Uwm

X includes a programmable window manager named uwm. You can customize uwm to your
users' needs and preferences. This chapter describes the files and procedures needed to custom­
Ize uwm.

ds In Starting Uwm"

6.1.

When you enter the command:

uwm&

the window manager is frrst configured using its internal default settings. Then it
uses a search path to locate and process two startup files (in the order listed):

/usr/new/lib/X/uwm/system.uwmrc

$HOME/.uwmrc

If system.uwmrc exists, uwm adds these settings to its default settings. Any
system.uwmrc file settings in conflict with the default settings override the default
settings. (The latest setting always overrides previous settings.)

If $1I0ME/.uwmrc exists, uwm adds these settings to the combined default and
system.uwmrc settings. Overrides occur as described above. lbis completes the
process of configuring uwm for operation.

System.uwmrc file is a startup file that applies to all machines on the network.
(The system administrator sets up this file.) $IIOME/.uwmrc me is specific to a
workstation. The default $HOME/.uwmrc file contains the commands that
configure the default window manager.

To specify another file as the uwm startup file, modify the uwm command as fol­
lows:

uwm -filename &

where filename is a startup file you create. Specifying this file eliminates searching
and reading both the system/.uwmrc and the $IIOME/.uwmrc files. Only the set­
tings in this file are added to uwm internal defaults.

6.2. Startup File Format

Startup files contain three parts which must appear in the order listed:

Global variables set characteristics for general uwm functions, such as the
fonts used for icon names and menus.

Keybindings link combinations of keyboard and mouse actions to window
manager functions. For example, pressing the right mouse button may
present a menu.

Menu definitions list each menu selection and the command that executes it.

The rest of this chapter describes the elements of a startup file. However, most of
the detail is in the uwm man page. Be sure you have access to it before starting to
write your own startup file.

6.3. Global Variables

Global variables must appear first in the startup file. To ensure that only current
startup file values are used, place the following three variables at the beginning of
the file:

January 1988

X Window System, Version II

reset bindings

resetmenus

resetvariables

IBM/4.3-USD:I-45

See the uwm man page for the rest of the global variables. They can appear in
any order as long as they appear at the beginning of the HIe. If a variable does
not appear in the file, it takes its value from the last file read. If it was not set in a
previous file, the variable is assigned the uwm default setting.

6.4. Keybindings

Keybindings appear after global variables, and take the form:

function = control keys:context:mouse actions:"menu name"

The control keys, context, and "menu name" entries are optional. Even though
you can omit a context or control keys entry, you must include the colons and/or
equal sign that precede and follow the entry; the command line must contain one
equals sign and two colons. If you specify a "menu name" you must add the third
colon.

Spaces may appear between the equals sign, colons, and an entry. You can use
spaces to make the entries easier to read and edit. You may want to preface the
keybindings with a comment line to serve as a heading, thus:

#FUNCTION= KEYS :CONTEXT: MOUSE EVENTS :"MENU NAME"

f.resize = m :wli: delta middle

6.4.1. function

See the uwm man page for a description of the available functions.

6.4.2. control keys

Control keys include the following, which may be used alone or in combinations of
two:

control or e (the Ctrl key on IBM keyboards) meta or m (the Alt key on IBM
keyboards) lock or I (the Caps Lock key on IBM keyboards) shift or s (the Shift
key on IBM keyboards)

NOTE: Although several keys on the IBM keyboard bear different labels, the words or
letters in bold above must be used in the file.

To designate a a combination of two control key, separate them by a vertical bar (I).
For example, the command:

f.move = mls : windowlicon: delta right

specifies that a window will be moved when the meta (Alt) and shift keys are
pressed simultaneously.

If no control key is specified, mouse events invoke the named function. For example,
the command:

f.move= : windowjicon: delta right

January 1988

IBM/4.3-USO: 1-46 X Window System, Version II

specifics that a window will be moved when the right mouse button is pressed and the
mouse is moved.

When defming keybindings, remember there arc keybindings already defined by each X
application. Uwm keybindings override X application keybindings, potentially crippling
certain application features. For example, the keybinding example above, which
specifies a delta right mouse move, will disable the cut capability of the right mouse
button in the xterm window.

6.4.3. context

Context refers to the region where the cursor is located when keyboard and mouse
actions occur. The four contexts are:

icon or i

window or w

root or r

any window (represented by a null entry)

You can combine any two of these contexts by using the vertical bar (I).

For example, the command:

f.ieonify = meta :w I i: left down

is a toggle to change a window to an icon and back again.

6.4.4. mouse actions

The mouse buttons are identified as:

left or I

right or r

middle or m (both mouse buttons pressed simultaneously)

Each mouse button can be in one of three states:

down, when the button is pressed

up, when the button is released

delta, when the mouse has moved more than delta pixels (where the number of
pixels is set by the delta variable)

For example, the command:

f.iconify = meta :w I i: I down

is a window/icon toggle activated when the left mouse button and the ALT key are
pressed.

The range of mouse actions is:.

right down
right up
delta right

left down
left up
delta left

middle down
middle up
delta middle

Note the mouse button name follows the word delta, but precedes the words up and
down.

January t 988

X Window System , Version II IBM/4.3-USD: 1-47

6.4.5. menu name

Using the f.menu function requires a "menu name" entry, which must match exactly the
name as it appears on the top of the displayed menu. The "menu name" is the last
entry on the keybinding command line, and is preceded by a colon.

For example, the command

f.menu = right down: "Main Menu"

causes a menu named "Main Menu" to appear when the right mouse button is pressed.

6.4.6. Slip-off Keybindings

Because a different function can be tied to the up, down, and delta states for each
mouse button, you can tie related sequential functions to the mouse action sequence
down, delta, up.

For example, f.iconify may be tied to right down, f.move to delta right, and f.raise to
right up. The result is the window licon changes its form on right down, the
window/icon moves on delta right, and the window/icon appears at the top of the stack
on right up.

6.4.7. Slip-off Menus

You can defme menus so that simply moving the mouse out of one menu will bring up
the next menu in that series. These are known as slip-ofT menus.

All menus in a slip-off menu series are bound to exactly the same control keys, context,
and mouse actions.

The f.menu entries are listed one after the other in the keybindings section of the
startup file. The first menu named is the first that appears when the associated key and
mouse actions occur. The next listed menu appears when the cursor slides out of the
first menu. The third listed menu appears when the cursor slides out of the second
menu, and so on. When the last menu in the series appears, uwm does not return to
the first menu. The user must again use the key and mouse actions to restart the series.

For example, the following keybindings define a slip-ofT menu series.

#FUNCTION=

f.menu=
f.menu=
f.menu=
f.menu=

6.5. Menu Definition

KEYS :CONTEXT: MOUSE EVENTS

.. right down ..

.. right down ..

.. right down

.. right down

:"MENU NAME"

:"Main Menu"
:"Manage a Window"
:"Create a Window"
:"Manage the Display"

The menu definition part of the startup file must contain one menu defmition for each
f.menu function that was listed in the keybindings part of the startup file. Menu defmitions
use the following format:

menu = "menu name" (fghd:bghd.fghl:bghl) {
"selection name" : (fg:bg): "action"
"selection name" : (fg:bg): "action"
}

January t 988

IBM/4.3-usn: t -48 X \Vindow System, Version t I

The "menu name" is the same as the one specified in the keybinding line. The selection
name is a menu selection that can be chosen by mouse click. The action is the process that
this selection triggers.

The selection names and actions must be enclosed in double quotes if they contain quotes,
special characters, parentheses, tabs, or blanks.

The fg, bg, fghl, and bghl entries set colors (only on color displays). If the display is
monochrome, or if the default settings are acceptable, these entry fields can· be omitted. A
menu cannot scroll, but can contain as many selections as will fit on the display.

6.5.1. Menu Actions

There are three types of menu actions:

\Vindow manager functions are defined in the uwm man page.

Shell commands must begin with exclamation point (!) and ·end with an amper­
sand (&). If the command includes spaces or special characters, enclose the com­
mand in double quotes. For example, the action:

!"xterm -rv &"

creates a reverse-video xterm window when its corresponding menu selection is chosen.

A tcxt string is placed in the server's cut buffer when the string's corresponding
menu selection is chosen. Once in the buffer, the string may be pasted into xterm
or any other window that provides cut and paste facilities. This is handy if a par­
ticularlylong text string is frequently used. For information on pasting the -string
into an individual window, see the paste instructions for that window.

When the menu action is a text string, it muse be preceded by one of two special char­
acters:

The caret (") precedes the entire string if it contains any newline characters, such
as carriage return or line feed:

""cd /usr/doc/ibmdoc/smm
Is -al"

The vertical bar (I) precedes the entire string if does not contain a newline charac­
ter: "Itbl xOO xOI x02 I ptroff -me"

6.5.2. Adding Color to Mcnus

The color designations in the menu definition correspond to the various menu regions
as follows:. fghd: foreground color for menu header. bghd: background color for
menu header. fghl: foreground color for highlighted selection • bghl: background
color for highlighted selection. fg: foreground color for rest of menu. bg: back­
ground color for rest of menu

Appendix A lists available colors.

Colors specifications in a file used to configure a monochrome display are ignored; the
display uses the default black/white settings.

On a color display, the colors default to the foreground and background colors of the
root window if any of the following is true:

• The number of color map entries has been exceeded.

• Either a foreground or a background color does not exist in the rgb data base; this
pair of colors uses the default.

January 1988

X Window System, Version 1 J IBM/4.3-USD: 1-49

• Either a foreground or background color is omitted; this pair of colors will use the
default.

• The number of colors specified exceeds the maxcolors variable (see uwm man
page).

• No colors are specified.

6.6. Sample Uwm File

A sample /fluwm me IS provided on the X/BE2 Installation diskette, in a me named
Demouwm/ src/ .uwmrc.

January 1988

IBM/4.3-USD: I-50 X Window System, Version II

7. The Bitmap Editor

X includes an editor to facilitate creating and editing bitmap files. A bitmap is a rectangular
array of black and white pixels (I and 0 bits) that form graphic displays that used as cursors,
icons, and tiles in the root window.

The bitmap window presents a magnified view of the rectangular array. A grid divides the rec­
tangle into boxes, each box representing one pixel. You turn individual pixcls on and ofT
using the mouse cursor and/or command buttons that appear to the right of the grid. You
also use the command buttons to access other functions, such as drawing lines and circles, and
operating on a specified area within the rectangle.

Below the Quit button in the window, you see a size representation of the bitmap. Beneath
this, there is a reverse video version of the bitmap drawn to scale.

When the editor writes a file, it also writes a program fragment. You can include this frag­
ment in C programs or use it with X commands to simplify the process of defining cursor and
icon shapes and sizes. Use #include to include the fragment in a C program. Use the frag­
ment with such X command as X, xsetroot, and xterm.

7.1. Masks for Cursor Bitmaps

Whereas most bitmap mes are rectangular, a cursor image occupies only a portion of its
rectangular area. You can set the non -cursor portion of the bitmap to "transparent" so
that the cursor is not just a square that contains a shape. To do so, create two bitmap
files, one for the cursor and one for an overlay or "mask." .
When you use this approach, keep the following in mind:

• All bits set to 0 in the mask are transparent, no matter how the overlapping bits in
the cursor file are set. That is, the mask bit value overrides the cursor bit value.

• When a mask bit and its corresponding cursor bit are both set to I, then the bit
appears in the foreground color.

(bu When a mask bit is set to I and its corresponding cursor bit is set to 0, then the bit
appears in the background color.

7.2. The Bitmap Command

To invoke the bitmap editor, use the following command:

bitmap filename dimensions = wxh ± xoff ± yoff host:scrver .display

The filename and dimensions options are described below. See the bitmap man page for a
complete discussion of this command.

7.2.1. filename

You must include a file name as the first parameter of the bitmap command. Other­
wise, an error message appears. If the file specified doesn't exist, a new file is created.
Use normal UNIX file naming conventions to name the file.

An existing file must be in bitmap format. (Remember that a file dumped by the xwd
command cannot be edited by bitmap.) For a description of bitmap file fonnat, see the
bitmap man page.

7.2.2. dimensions

The dimensions are the width and height of a new bitmap in pixels. The default is
16x 16. You cannot use this option to change the dimensions of an existing bitmap file.

January 1988

X Window System, Version 1 1 IBM/4.3-USD:1-51

7.2.3. Error Messages

If the systeln detects an error in the hitmap command you enter, one of the following
messages appears:

ERROR MESSAGE OCCURS WHEN
BitmaQ disfJ}ays these messages and then aborts:

could not connect to server on host:server.display • incorrect DISPLAY variable
• specified host is down
• home workstation is not in/etc/xhosts

file on specified host
• host is not running X
• host is refusing connections

could not open file filename for reading -- mes.rage specified file exists but could not be read
for the reason listed in me.uage

dimensions must be positive negative dimensions were entered

file filename does not have a valid width dimension the input file does not have the correct
fonnat

file filename does not have a valid height dimension the input fIle docs not have the correct
fonnat

file filename has an invalid nth array element the input fIle does not have the correct
fonnat

invalid dimension 'string' the dimensions were incorrectly entered or
were out of range

Bitmap displays these meSJa}!es in xterm after creatin}! a window:

Unrecognized variable name in file filename filename contains a variable ending m
something other than _x_hot. y_hot.
_width. or _height

XError:message there is a protocol error, i.e.:
• the X server is malfunctioning
• the X library is in error
• the X server and library are incompatible
• the X connection has been broken

XIOError same as conditions for XError

7.3. Using the Editor

You use the command buttons and mouse to draw a bitmap. As you draw the bitmap, its
actual size representation appears in normal and reverse video in areas to the right of the
grid.

7.3.1. Color Conventions

In bitmap, when you "set" a pixel (set it to I), it appears in the foreground color.
When you "clear" a pixel (set it to 0), it appears in the background color. Whenever

January 1988

IBM/4.3-USD:I-52 X \Vindow System, Version II

you change a pixel setting, the change appears in the normal and reverse video areas.
(You specify the foreground and background colors in the .Xdefaults file described in
Chapter 4.)

7.3.2. Command Buttons

Be sure to use the command buttons on a nonnal (not reverse video) grid. Areas
drawn on a reverse video grid with the command buttons may not appear as you
expect.

The command buttons and their functions are as follows:

Clear All Change all pixels to 0, the background color
Change all pixels to I, the foreground color
Change all set pixels to clear, all clear pixels to set
Change all pixels in the defined area to 0
Change all pixels in the defined area to 1

Set All
Invert All
Clear Area
Set Area
Invert Area
Copy Area
Move Area
Overlay Area
Line

In the defined area, change set pixcls to clear and vice versa
Copy the defined area to another location

Circle

Move the defined area to a new location
Combine the defined area with another
Draw a line between two points
Draw a circle with the specified center and radius
Draw a circle filled with the foreground color filled Circle

Set HotSpot
Clear, HotSpot
Write Output
Quit

Specify the pixel that is the exact pointer of the cursor
Clear any previously-set hot spot
Write this bitmap to the file named in the bitmap command
End this editor session

7.3.3. Selecting a Command Button

To select a command, move the mouse cursor into the command button box and click
either mouse button. The command button box becomes highlighted.

7.3.4. Command Button Operation

Several command buttons execute automatically when you select them, because they
require no further input. When the operation is complete, the button reverts to its nOT­
mal color. The automatic command buttons are as follows:

Clear All
Set All
Invert All
Clear HotSpot
Write Output
Quit (if preceded by a Write Output)

Other command buttons cause the following changes in the bitmap window:

(1) Mter you select the command button, the appearance of the cursor changes.

(2) The command button remains highlighted while you provide input (mouse
movement and clicks). The cursor may change appearance when you click the
mouse, especially if the command requires more than one mouse clicks.

(3) After you have provided all necessary input, the cursor reverts to its normal
shape and the command button reverts to its nonnal color.

January 1988

X Window System, Version t I IBI\1/4.3-USD: I-53

704. Drawing a Bitmap

Drawing a bitmap is nothing more than setting, clearing, and inverting pixels. You can do
so by working a pixel at a time, or by working with a defined area.

704.1. Setting, Clearing, and Inverting Individual Pixels

You set, clear, or invert an individual pixel as follows:

(1) Move the target cursor into one of the grid boxes.

(2) Click the the appropriate mouse button(s):

To set a pixel, click the left mouse button.

To clear a pixel, click the right mouse button.

To invert a pixel, click both mouse buttons.

704.2. Drawing l-ines, Curves, and Circles

You can use the mouse to draw freehand lines, curves, and circles in either the back­
ground or foreground color. You can use the command buttons to draw these same
shapes, but only in the foreground color.

704.2. t. Freehand Drawing

You can draw any line or curve with the mouse. Just hold down the appropriate
mouse button to set, clear, or invert the pixels as you move the mouse. Move the
mouse slowly to ensure that all pixels in its path are set or cleared correctly.

704.2.2. Line Command Button

You can use this command button to draw a line in the foreground color using only
three mouse clicks.

(I) Move the cursor into the Line command button and click any mouse button.

(2) Move the cursor to the grid box at which the line is to begin, and click any
mouse button. An X appears in that box to show the beginning of the line.

(3) Move the mouse cursor to the grid box at which the line is to end, and click
any mouse button. The boxes between the starting point and end point of
the line are set to the foreground color.

704.2.3. Circle Command Button

You can use this command button to set a circle of pixels in the foreground color
using only three mouse clicks.

(I) Move the cursor into the Circle command button and click any mouse but­
ton.

(2) Move the cursor to the box that represents the center of the circle, and click
any mouse button. An X appears to mark the circle's center.

(3) Move the cursor to a box at the outer edge of the circle, and click any mouse
button. The distance from the centerpoint to this box is the radius of the
circle. The circle will appear.

704.204. Filled Circle

The Filled Circle command button works exactly the same as the Circle command
button. The only difference is that all pixels within the circle are set when the circle
is drawn.

January 1988

IBM/4.3-usn: I-54 X Window System, Version II

704.3. Area Operations

The following command buttons perform operations on an area of the bitmap:

Clear Area
Set Area
Invert Area
Copy Area
Move Area
Overlay Area

70404. Clear Area, Set Area, Invert Area

These buttons have the same effect as the Clear All, Set All, and Invert All buttons,
except the effect is limited to an area you specify with mouse clicks:

(1) Move the cursor to the correct command button and click any mouse button.
An angled arrow that points to the upper left conler of the grid appears.

(2) Move this arrow to the box that represents the upper left comer of the area to
be cleared, set, or inverted.

(3) Hold down any mouse button. The cursor changes to an angled arrow that
points to the lower right comer of the grid.

(4) Still holding down the mouse button, move the cursor down and to the right
until you reach the box that represents the lower right comer of the area. An X
fills each box in the selected area. (If you move the cursor up and to the left,
and then release the mouse button, you cancel the operation.)

(5) Release the mouse button to complete the clear, set, or invert operation.

704.5. Copy Area, Move Area, Overlay Area

These functions operate as follows:

Copy Area
leaves the pattern in the original area, and copies it to another area, destroying any
existing pattern in the new area.

Move Area
removes the pattern from the original area, and places it in the new area, destroy­
ing any pattern in the new area.

Overlay Area
leaves the pattern in the original area, and superimposes that pattern in another
area. If a pattern already existed in the new area, it is combined with the overlay­
ing pattern.

Use any of these command buttons as follows:

(1) Move the cursor to the correct command button and click any mouse button.
An angled arrow that points to the upper left comer of the grid appears.

(2) Move this arrow to the box that represents the upper left comer of the area to
be cleared, set, or inverted.

(3) Hold down any mouse button. The cursor changes to an angled arrow that
points to the lower right comer of the grid.

(4) Still holding down the mouse button, move the cursor down and to the right
until you reach the box that represents the lower right comer of the area. An X
fills each box in the selected area. (If you move the cursor up and to the left,
and then release the mouse button, you cancel the operation.)

.January 1988

X Window System, Version II IBM/4.3- USD: I-55

(5) Release the mouse button. The cursor changes back to the left-angled arrow.

(6) Move the cursor to the box that is the upper left corner of the new area.

(7) Press any mouse button. The sc1ected pattern will be copied, moved or overlaid
in the designated area.

7.4.6. The Hot Spot

The hot spot is the pixel within the bitmap that the X server perceives as "active."
Usually this is a portion of the cursor. X does not keep track of entire bitmaps as they
move on the display. X only tracks the hot spot.

For example, you may use the bitmap editor to draw an arrow that will be used as a
cursor. You should set the hot spot to the pixel at the tip of the arrow. Whenever the
tip of the arrow crosses a window boundary, X considers the cursor to be in the new
window, even though much of its image on the display may be in the old window.

7.4.6.1. Set HotSpot, Clear HotSpot

Use the following instructions to set a hot spot. If a hot spot exists when you set a
new hot spot, the old hot spot is erased. Only the new hot spot remains in effect.

(1) Click any mouse button in the Set IlotSpot command button. The shape of
the cursor changes.

(2) Move the cursor to the grid box designated for the hot spot. (this can be a
set or a cleared pixel.)

(3) Click any mouse button. A diamond shape appears in the selected box,
which is now the hot spot for this bitmap.

To clear a hot spot, click any mouse button in the Clear II otSpot command button.
The hot spot disappears from the bitmap.

7.5. Saving the Bitmap

You can save the bitmap in the grid at any time by clicking any mouse button in the Write
Output command button. The Write Output button flashes in the foreground color and the
file is saved, using the filename specified on the command line.

If no path name is specified with the filename on the command line, the file is stored in the
directory from which the original bitmap command was issued in the xterm window.

7.6. Exiting Bitmap: Quit

Exit the bitmap editor via the Quit command button, as follows:

(1) Click any mouse button in the Quit command button. If no changes were made to
the bitmap since the last time the file was written or since the window was first
opened, the bitmap window closes.

(2) If changes were made too the bitmap, a window with the words Save changes
before quitting? appears in the upper left conler of the bitmap window.,

(3) Click any mouse button in one of this box's command buttons. The selected but-
ton will have the following effect:

Yes writes the bitmap to a file, and quits.

No quits without writing the bitmap to a file.

Cancel
Cancels the quit command and returns to the editor.

7.7. File Format'

For information on bitmap file format, see the bitmap man page.

.January 1988

IBM/4.3-USD: 1-56 X \Vindowing System, Version II

Appendix A: X Colors

The following list specifics the colors available with X. The list also appears in /usr/lib/rgb.txt.

The hexadecimal numbers to the left of the color name represent the intensities of red, green, and
blue respectively required to make the named color. You can specify a color in an X command
by name or by hexadecimal number. The hexadecimal numbers must be in one of the following
formats, where R = red, G = green, and B = blue:

#RGB
#RRGGBB
#RRRGGGBBB
#RRRRGGGGBBBB

To create your own color, enter a number combination on the command line (following the
appropriate option flag). Por example, the following command:

xtcrm -fg #567239042 &

invokes xterm with a foreground color equivalent to the specified hexadecimal mixture of red,
green, and blue.

When using color names, type the names exactly as they are listed, paying particular attention to
upper- and lowercase characters and spaces. If a color name includes spaces, enclose the name in
double quotes. For example, either of the fol1owing commands:

xtcrm -fg "cadet blue" &
xterm -fg Cadctnlue &

invokes xterm with Cadet Blue for the foreground color.

112 219 147
112 219 147
50204 153
50204 153
000
000
00255
00255
95 159 159
95 159 159
6666 III
6666 III
107 35 142
107 35 142
191 216216
191 216 216
143 143 188
143 143 188
50 50 204
50 50 204
127 0 255
127 0 255
4747 79
474779
35 35 142

aquamarine
Aquamarine
medium aquamarine
MediumAquamarine
black
Black
blue
Blue
cadet blue
Cadet Blue
cornflower blue
Cornflower Blue
dark slate blue
DarkSlate Blue
light blue
LightBlue
light steel blue
LightSteelBlue
medium blue
MediumBlue
medium slate blue
MediumSlate Blue
midnight blue
Midnight Blue
navy blue

January 1988

X Windowing System, Version 11 IBM/4.3-USD: I-57

35 35 142 Navy Blue
35 35 142 navy
35 35 142 Navy
50 153 204 sky blue
50 153 204 SkyBlue
o 127 255 slate blue
o 127 255 SlateBlue
35 107 142 steel blue
35 107 142 Steel Blue
2551270 coral
255 127 0 Coral
o 255 255 cyan
o 255 255 Cyan
142 35 35 firebrick
142 35 35 Pirebrick
204 127 50 gold
204 127 50 Gold
219219 112 goldenrod
219 219 112 Goldenrod
234234 173 medium goldenrod
234 234 173 MediumGoldenrod
02550 green
02550 Green
47 7947 dark green
47 7947 DarkGreen
79 7947 dark olive green
79 7947 DarkOliveGreen
35 142 35 forest green
35 14235 ForestGreen
50 204 50 lime green
50 204 50 LimeGreen
107 142 35 medium forest green
10714235 MediumForestGreen
66 III 66 medium sea green
66 111 66 MediumSeaGreen
127 255 0 medium spring green
127 255 0 MediumSpringGreen
143 188 143 pale green
143 188 143 Pale Green
35 142 107 sea green
35 142 107 SeaGreen
o 255 127 spring green
o 255 127 SpringGreen
153 204 50 yellow green
153 204 50 YellowGreen
47 79 79 dark slate grey
47 79 79 DarkSlateGrey
47 79 79 dark slate gray
47 79 79 DarkSlateC'Jfay
84 84 84 dim grey
84 84 84 DimGrey
84 84 84 dim gray
84 84 84 Dim Gray

January 1988

IBM/4.3-USD: I-58 X Windowing System, Version II

168 168 168 light grey
168 168 168 LightGrey
168 168 168 light gray
168 168 168 LightGray
159 159 95 khaki
159 159 95 Khaki
2550255 magenta
2550255 Magenta
14235107 maroon
14235107 Maroon
204 50 50 orange
204 50 50 Orange
219112219 orchid
219 112219 Orchid
153 50 204 dark orchid
153 50 204 DarkOrchid
147 112 219 medium orchid
147112219 MediumOrchid
188 143 143 pink
188 143 143 Pink
234 173 234 plum
234 173 234 Plum
25500 red
25500 Red
794747 indian red
794747 IndianRed
219 112 147 medium violet red
219 112 147 Medium Violet Red
255 0 127 orange red
255 0 127 OrangeRed
204 50 153 violet red
204 50 153 VioletRed
III 66 66 salmon
111 66 66 Salmon
142 107 35 sienna
142 107 35 Sienna
219 147 112 tan
219 147 112 Tan
216 191 216 thistle
216 191 216 Thistle
173 234 234 turquoise
173 234234 Turquoise
112 147 219 dark turquoise
112147219 DarkTurquoise
112 219 219 medium turquoise
112 219 219 ediumTurquoise
7947 79 violet
794779 Violet
159 95 159 blue violet
159 95 159 BlueViolet
216216 191 wheat
216216 191 Wheat
252252252 white

.January 1988

X "'indmving System, Version II

252 252 252
255 255 0
255 255 0
147 219 112
147 219 112

White
yellow
Yellow
green yellow
GreenYellow

181\1/4.3-USD: I-59

January 1988

X Windowing System, Version 11

lat-s30.snf
life I.snf
mailfont 12.snf
mct25.snf
micro.snf
mit.snf
oldera.snf
pe.12
pe.12.snf
plunk.snf
ree
rot-s 16.snf
mnlen.snf
s.30
s.30.snf
s.bold-italic.30
s.bold-italic.30.snf
s.bold.30
s.bold.30.snf
s.italic.30
s.italic.30.snf
script 12.snf
script 12b.snf
script 12bLsnf
script 12i.snf
shape 1 O.snf
ss.30
ss.30.snf
ss.bold-italic.30
ss.bold-italic.30.snf
s8.bold.30
ss.bold.30.snf
ss.italic.30
ss.italic.30.snf
stan.snf
stempl.snf
sub.snf
subsub.snf
sup.snf
supsup.snf
swd-s30.snf
sym-s25.snf
sym-s53.snf
symlO.snf
sym12.snf
sym12b.snf
sym8.snf
table 12.snf
trilD.snf
variable
variable.snf
vbee-36.snf
vctl-25.snf

vg-13.snf
vg-20.snf
vg-25.snf
vg-31.snf
vg-40.snf
vgb-25.snf
vgb-31.snf
vgbc-25.snf
vgh-25.snf
vgi-20.snf
vgi-25.snf
vgi-31.snf
vgl-40.snf
vgvb-31.snf
vmic-25.snf
vply-36.snf
vr-20.snf
vr-25.snf
vr-27.snf
vr-30.snf
vr-31.snf
vr-40.snf
vrb-25.snf
vrb-30.snf
vrb-31.snf
vrb-35.snf
vrb-37.snf
vri-25.snf
vri-30.snf
vri-31.snf
vri-40.snf
vsg-114.snf
vsgn-57.snf
vshd-40.snf
vxms-37.snf
vxms-43.snf
xif-s25.snf
zipicon 12.snf
ziticon 12.snf

IBl\1/4.3-USD: 1-61

January 1988

X Windowing System, Version 11 181\1/4.3-USD: 1-63

91 144 M-"P
92 145 M-"Q
93 146 M-"R
94 " 147 M-"S
95 148 M-"T -
96 , 149 M-"U
97 a 150 M-"V
98 b 151 M-"W
99 c 152 M-"X
100 d 153 = M-"Y
101 e 154 M-"Z
102 f 155 M-"[
103 = g 156 M-"\
104 h 157 M-"J
105 158 M-""
106 j 159 M-" -
107 k 160 M-
108 1 161 M-!
109 m 162 M-"
110 n 163 M-#
111 0 164 M-$
112 p 165 M-%
113 q 166 = M-&
114 r 167 M-'
115 s 168 M-(
116 t 169 M-)
117 u 170 M-+
118 v 171 = M-+
119 w 172 = M-,
120 x 173 = M--
121 y 174 M-.
122 = z 175 = M-/
123 { 176 M-O
124 I 177 M-l
125 } 178 M-2
126 179 M-3
127 ,,? 180 M-4
128 = M-"@ 181 M-5
129 M-"A 182 M-6
130 M-"B 183 = M-7
131 M-"C 184 M-8
132 M-"D 185 M-9
133 M-"E 186 = M-:
134 M-"F 187 = M-;
135 = M-"G 188 M-<
136 = M-"H 189 = M-=
137 M-"I 190 M->
138 = M-"J 191 M-?
139 M-I\K 192 = M-@
140 M-"L 193 M-A
141 M-I\M 194 M-B
142 M-I\N 195 M-C
143 M-"O 196 = M-D

January 1988

X Windowing Systcm, V crsion 11 IBM/4.3-USD:I-65

Appendix D: Xtcrm Escapc Scqucnces

This appendix lists the DEC VT 1 02 escape sequences, as well as special sequences used by such
xterm features as the scrollbar. An xterm window can receive these sequences from a program or
frmll the echo command:

echo "e,~cape seqllence" < Entcr >

Por example, the escape sequence that sets wraparound mode is:

Esc [? 7 h

This sequence can be echoed as follows. Note that typing the Escape key produces a ,,[on the
display.

ccho "1\1I?7h"

The escape sequences list begins on the next page.

January 1988

IBM/4.3-USD: 1-67 X \Vindowing System, Version 11

C = II n-Il -+ UnitL'tI States (USASCII)

II Esc-IT II "7-IT Save Cursor (DECSC)

II EsC-IT II 8-IT Restore Cursor (DEeRC)

II EscIT11 ;;-IT Application Keypad (DECPAM)

II Esc-IT II >-IT Normal Keypad (DECPNM)

ESC-IT II fj-IT Index (IND)

ESC-IT II IT-IT Next Line (NEL)

Esc-IT II frIT Tab Set (HTS)

ESC-IT II l\rIT Reverse Index (RI)

ESC-IT II frIT Single Shift Select of G2 Character Set (SS2)

ESC-IT II 6-IT Single Shift Select of G3 Character Set (SS3)

ESC-IT II f-IT f>s II U;-IT Change Window Title to I~

II Esc-IT II [-IT f>s II @-IT Insert Ps (Blank) Character(s) (default = I) (lCH)

II EsC-IT II [-ITf>s11 A-IT Cursor Up f>s Times (default = I) (CUU)

II Esc-IT II [-ITPsIl ij-IT Cursor Down f>s Times (default = I) (CUD)

II ESC-IT II [-IT f>s II c-IT Cursor Forward Ps Times (default = 1) (CUP)

II ESC-IT II [-IT f's II fj-IT Cursor Backward f>s Times (default = 1) (CUB)

II ~lll Dlf>sll ~lPsII IDl
Cursor Position [row;columnJ (default = [1,1)) (CUP)

II Esc-IT 1/ [-IT f>s" I-IT Erase in Display (ED)

Ps = " a-IT -+ Clear Below (default)

f>s = II I-IT -+ Clear Above

Ps = II 2"-IT -+ Clear All

II ESC-IT II [-IT Ps II j(-IT Erase in Line (EL)

Ps = II a-IT -+ Clear to Right (default)

Ps = II I-IT -+ Clear to Left

l~ = II 2"-rr -+ Clear All

II ESC-IT II [-IT f>s II [-IT Insert Ps Line(s) (default = 1) (lL)

II Esc-IT II [-IT Ps II I\rIT ,Delete Ps Line (s) (default = 1) (D L)

II EscITII [-ITPsII p-IT Delete Ps Character(s) (default = I) (DCB)

II EsC-IT" [-IT Ps II c-IT Device Atrributes (DA I)

II ~lll D1PsII ~lPsII LJl
Cursor Position [row;columnJ (default = [1,1)) (HVP)

II ESC-IT II [-IT Ps II i-IT Tab Clear

f>s = II a-IT, -+ Clear Current Column (default)

Ps = II 3-IT -+ Clear All

II ESC-IT II [-IT Ps II ii-IT Mode Set (SET)

Ps = II 4"-IT -+ Insert Mode (IRM)

Ps = II 2"-IT" a-rr -+ Automatic Linefeed (LNM)

II EsC-IT II [-IT Ps II [-IT Mode Reset (RST)

Ps = II 4"-rr -+ Insert Mode (lRM)

January 1988

IBM/4.3-USD: 1-69 X \Vindowing System, Version 11

I~ = II 4"-1111 8-11 -+ Reverse Status Line

II ~lll Dlllrlll'sllDl
DEC Private Mode Reset (DECRST)

I's = r-rr -. Normal Cursor Keys (DECCKM)

I's = I-rr -. 80 Column Mode (DECCOLM)

Ps = 4"-rr -. .Jump (Past) Scroll (DECSCLM)

Ps = S-rr -. Normal Video (DECSCNM)

I's = 6"-rr -. Normal Cursor Mode (DECOM)

Ps = 1"-rr -. No Wraparound Mode (DECA WM)

Ps = g-rr -. No Auto-repeat Keys (DECARM)

I's = 9"-rr -. Don't Send MIT Mouse Row & Column on Button Press

I's = 4"-rrll a-rr -. Disallow 80 H 132 Mode

I's = 4"-rr II I-rr -. No curses(5) fix

p.'i = 4"-rr II 4"-rr -. Turn OfT Margin Bell

Ps = 4"-rr II S-rr -. No Reverse-wraparound Mode

I's = 4"-rr II 6"-rr -. Stop Logging

P. = s

Ps=
II ~lll [-IT II r-rr I's II i-rr

4"-nll 1"-rr -. Use Normal Screen Buffer'

4"-rr II g-rr -. Un-reverse Status Line

Restore DEC Private Mode

I's = I-rr -) Normal/Application Cursor Keys (DECCKM)

I's = I-rr -. 80/132 Column Mode (DECCOLM)

I's = if-rr -. Jump (Fast)/Smooth (Slow) Scroll (DECSCLM)

Ps = S-rr -. Normal/Reverse Video (DECSCNM)

Ps = 6"-rr -. Normal/Origin Cursor Mode (DRCOM)

I's = 1"-rr -. No Wraparound/Wraparound Mode (DRCA WM)

Ps = g-rr -. Auto-repeat/No Auto-repeat Keys (DECARM)

Ps = II 9"-rr -. Don't Send/Send MIT Mouse Row & Column on Button

Press

P. = s

P. = s

P. = s

if-rr II a-rr -. Disallow/Allow 80 H 132 Mode

4"-rr I-rr -. Off/On curses(5) fix

4"-rr 4"-rr -. Tum OfT/On Margin Bell

P. = s

p. = s

if-rr S-rr -. No Reverse-wraparound/Reverse-wraparound Mode

if-rr 6"-rr -. Stop/Start Logging

p. = s

Ps=
II ESC-rr II [-IT II r-rr I's II i-rr

if-rr 1"-rr -. Use Normal/Alternate Screen Buffer

if-rr g-rr -. Un-reverse/Reverse Status Line

Save DEC Private Mode

I's = II I-rr -. Nonnal/Application Cursor Keys (DECCKM)

I's = II I-rr -. 80/132 Column Mode (DECCOLM)

I's = II if-rr -. Jump (Fast)/Smooth (Slow) Scroll (DECSCLM)

January 1988

