Insert the hardtab tabeled “Move Mode” here
and discard this page.

Move Mode

Chapter1. Overview 1-1
Operational Characteristics 1-4
Peer to Peer Relationships 1-7
Queueing Control Elements 1-9
Control Element Delivery 1-11
I/O Address Space e 1-15
Physical Interface Support oL 1-15
Attention Port 1-16
Subsystem Control Port 1-17
Command Busy/Status Port 1-18
Memory Address Spaceo 1-19
Delivery Pipe 1-19
Local Enqueue Control Area 1-21
Surrogate Enqueue Control Area 1-24
Local Dequeue Control Area 1-25
Surrogate Dequeue Control Area 1-28
Signalling Control Area 1-29
Control Elements 1-32
Basic Structure 1-32
TypeField 1-33
LengthField, 1-33
Value Field 1-33
General Structure 1-33
Common Indicators Field 1-34
SourceField 1-37
Destination Field 1-37
Correlation Field 1-38
Entity toEntity Field 1-38
Function Codes 1-39
Request, Reply, and Error Control Elements 1-40
Initialize 1-40
Read e 1-42
Read List e 1-43
Read Immediate 1-45
Write . . e 1-47
Write List 1-49
Write Immediate 1-50
Execute LiSt e 1-52
Mark . . e 1-54

© Copyright IBM Corp. 1991. 1

Cancel e 1-54

Reset 1-57
Read Configuration 1-58
Diaghose 1-60
Event Control Elements 1-62
Resume 1-62
Notification 1-63
Inform 1-63
Wrap . . e 1-64
Chapter 2, Physicallevel 21
Structure 2-1
System e 2-3
Adapter 2-3
SupportLogic 2-3
PushandPull 2-4
Signal 2-5
Memory Address Space L. 2-8
IO Address Space 2-9
Physical Level Services 2-10
Push 2-10
Pull 2-11
Signal 2-12
DataDelivery e 2-13
Physical Level Protocols 2-13
Control Areas 2-13
Physical interface 2-14
Feature Adapter to System Unit Protocols 2-14
Feature Adapter to Feature Adapter Protocols 2-16
Chapter 3. DeliveryLevel 341
Structure e 3-1
Delivery Pipes 3-3
Signalling 3-5
Send and Receiveinterfaces 3-5
Delivery Level Services 3-6
Enqueue Service 3-6
Dequeue Service 3-7
Delivery Level Protocols 3-8
Enqueue Protocol 3-11
Engueue Initialization 3-14
Enqueue Receive Signal 3-14
Enqueue Function 3-15

Enqueue State Change Function 3-18

Dequeue Protocol 3-19
Dequeue Initialization 3-20
Dequeue Receive Signal 3-21
Dequeue Function 3-21
Dequeue State Change Function 3-23

Chapter 4. Processinglevel 4-1
StrUCtUNe e e e e e 4-1
Processing Level Operation 4-2

Send e 4-6

ReCeiVe e 4-6

Interrupt 4-8

Processing Level Services 4-8
Processing Level Protocols 4-9

Command Chaining 4-9

Data Chaining 4-9
Direct Data Chaining 4-10
Indirect Data Chaining 4-10

Notificationand Wait 0 4-11

Chapter 5. Design Conslderatlons 5-1
Configuration 5-1

UnitLevel e 5-1

SystemLevel 5-2

PeerbLevel e 5-3

Initiglization 5-4

Unit Level Initialization 5-4

System Level Initialization 5-4

Peer Level Initialization 5-10

Exception Handling, 5-13
Management Relationships 5-14
Chapter 6. Archiectural Compllance 6-1
Physical Level 6-2
Base Protocols 6-2
Additional Architected Protocols 6-2
Delivery Level L 6-2
Base Protocols 6-2
Additional Architected Protocols 6-3
Processing Level o 6-3
Base Protocols 6-3
Additionai Architected Protocols 6-4

Management,

Base Protocols 6-4
Additional Architected Protocols 6-4
Appendix A. Clanguage A-1
Appendix B. Assembler Language B-1
Index X-1

v

Figures

1-1.
1-2.
1-3.
1-4,
1-5.
1-6.
1-7.
1-8.
1-9.
1-10.
1-11.
1-12.
1-13.
1-14,
1-15.
1-16.
1-17.
1-18.
1-19.
1-20.
1-21.
1-22.
1-23.
1-24.
1-25.

1-26.
1-27.
1-28.
1-29.
1-30.
1-31.
1-32,
1-33.
1-34.
1-35,
1-36.
1-37.
1-38.

Control Element Delivery Structure
Peer to Peer Delivery Model
Handling Control Elements
Control Element Delivery Flow
I/0 Address Space Map - Physical Interface
AttentionPort
Subsystem Control Port
Command Busy/Status Port
Pipe Area
Control Areas Associated with a Single Pipe
Local Enqueue Control Area Structure
Enqueue Status Field
Surrogate Start of Free Field
Surrogate Enqueue Status Field
Local Dequeue Control Area Structure
Dequeue Status Field
Surrogate Start of Elements Field
Surrogate Dequeue Status Field
Signalling Control Areas
Signaliling Control Area Structure
Basic Control Element Structure
Control Element Structure-FIDO
Control Element Common Indicators Field
Control Element Source and Destination Fields
Architected Function Codes in the Common Indicators
Field e
Initialization Request Control Element
Initialization Reply Control Element
Initialization Error Control Element
Read Request Controi Element
Read Reply Control Element
Read Error Control Element
Read List Request Control Element
Read List Error Control Element
Read Immediate Request Control Element
Read Immediate Reply Contro! Element
Read immediate Error Control Element
Write Request Control Element
Write Reply Control Element

© Copyright IBM Corp. 1991.

vi

1-39.
1-40,
1-41,
1-42.
1-43.
1-44.
1-45.
1-46.
1-47.
1-48,
1-49.
1-50,
1-51.
1-52.
1-53.
1-54.
1-55.
1-56.
1-57.
1-58.

1-59.
1-60.
1-61.
1-62.
1-63.

2-2.
2-3.
3-1.
3-2.
3-3.
3-4.
3-5.
3-6.
4-1.
4-2,
4-3.
4-4,
5-1.
5-2.
5-3.
5-4.

Write Error Control Element 1-48

Write List Request Control Element 1-49
Write List Error Control Element 1-50
Write Immediate Request Control Element 1-51
Write immediate Reply Controi Element 1-51
Write immediate Error Control Element 1-52
Execute List Request Control Element 1-53
Execute List Reply Control Element 1-53
Mark Request Control Element 1-54
Cance! Request Control Element 1-55
Cancel Reply Control Element . ., 1-56
Cancel Error Control Element 1-56
Reset Request Control Element 1-587
Reset Reply Control Element 1-58
Reset Error Control Element 1-58
Read Configuration Request Control Element 1-59
Read Configuration Reply Control Efement 1-59
Read Configuration Error Control Element 1-60
Diagnose Request Control Element 1-60
Diagnose Reply Control Element 1-61
Diagnose Error Control Element 1-62
Resume Event Control Element 1-63
Notification Event Control Element 1-63
Inform Event Control Element, . 1-64
Wrap Event Control Element 1-64
Physical Level 2-2
Signalling 2-8
Interrupt SupportLogic 2-7
Overall Delivery Level Structure 3-2
Delivery Pipe and Associated Control Areas 3-3
Multiple Unit Structure 3-4
Delivery Pipe and Associated Control Areas 3-9
Signalling Control ArealUse 3-10
Various Examples of PipeUse 3-1
Device Driver or Handler Model 4-3
Device Driver or Handler Model 4-5
Indirect Data Chaining 4-11
Notify and Wait Actions 4-12
Systemn Configuration Record Format 5-5
Configuration Field Format 5-7
Peer Configuration Record Format 5-11
Unit Management Relationships 5-15

Chapter 1. Overview

The Move mode supports the delivery of contro! information between
cooperating entities using a variable-length control element. This
control element can contain requests, replies, errors, or event
notifications for an entity in another adapter or system unit, or for
entities in the same adapter or system unit.

At the processing level, operation of the Move mode is similar to that
of the Locate mode (client entities build requests, requests are
delivered to server entities, server entities build replies, and replies
are delivered to client entities).

However, in the Move mode, a client entity can be in an adapter as
well as in a system unit, which means an entity acting as a client in
an adapter can send requests to a server entity in another adapter or
to the system unit. This capability provides a peer-to-peer
relationship between entities independent of their role (client or
server) or their physical location (adapter or system unit). A server
canh be in the system unit, which means that the system unit can
receive requests from an adapter.

The Move mode defines a method of delivery that permits a varying
number of control elements to be moved from an entity in one unit to
a correspondent entity in angther unit through a pair of delivery
pipes. An entity uses one pipe for sending control elements and the
other pipe for receiving control elements. Each pipe can contain
requests, replies, errors or event notifications for a specific entity in
another unit, or for different entities in the same unit.

The Move mode detines the pipe-related protocols and the services
that support the control element delivery.

Figure 1-1 on page 1-3 shows how various levels of delivery-support
relate to each other and to the various control areas in I/O space and
shared memory. This figure also shows that there is send-interface
logic and receive-interface logic between the delivery support and the
client and server entities. These interfaces provide the support
necessary to adapt the entity-intertace requirements to those of
delivery support, taking into account the specific local operating

© Copyright IBM Corp. 1991, 1-1

environment. There is, however, no unit-to-unit protocol associated
with the send-interface logic and receive-interface logic.

The architecture definition of the control areas, control elements,

services, and protocols used in Move mode are presented in the
remainder of this manual.

1-2 Overview—January 1991

Entity 000 Entity Control Data
Element
..........]............................[.......... Local Loca|
Send / Receive Interface Enqueue Dequeue
Delivery | == =————— = ———— -
Support I
Loglc i
/O Space | I
T T T T T !
| | Physical L
! Port Set | Support I Data
|| Adapter#1 | | T |
|
| 0 :—l Hardware | Data
| 0 | Channel |
| | : Data
| | Port Set | |
| |Adapter#n | |— '
| | | Data
| | Physical
L ______ [Support _—: ———
l i Signaliing
i Control
Delivery Areas |
Support I
Logic e e - -
Local Memory
Sand / Receive Interface . | Local Local
eeusrearas I I..........: E Enqueue Dequeue
: Control
Entity | 0o Entity : | Element | | Data

Figure 1-1. Control Element Delivery Structure

Overview — January 1991 1-3

Operational Characteristics

The following are some of the key operational characteristics of the
Move mode.

Request and Reply Support

A request and reply protocol is used to support the delivery of
control elements. An adapter can send requests to the system
unit and receive replies from the system unit because an adapter
can contain a client entity or a server entity. This support
includes a means to:

— 8Send one or more requests and receive one or more replies
in response.

— Correlate a request with one or more replies.

— |Identify the source and destination of both requests and
replies.

— Send and receive unsolicited information.
Bidirectional Delivery

Requests and replies can flow in both directions.
Peer-to-Peer Delivery Support

An entity in a system unit or adapter can send requests directly
to, and receive replies directly from the entities in a system unit
or another adapter attached to the channel. This means an entity
in an adapter can send requests and receive replies directly from
an entity in another adapter without having to go through a
system unit.

Variable Length Requests and Replies

Requests and replies are exchanged using variable-length
control elements. The control elements allow a variable number
of parameters of any size to be passed between client and server
entities. This provides a simple way of tailoring control elements
to the task to be performed rather than using fixed-length control
elements.

1-4 Overview —January 1991

Delivery Pipes

Request and reply control elements are moved between entities
in a source unit and entities in a destination unit using a delivery
pipe. A delivery pipe is similar to a first-in, first-out queue, which
makes the control elements appear to be contiguous. This allows
for the chaining of multiple control elements into a single request.

Asynchronous Operation

The use of a delivery pipe allows multipie control elements to be
delivered and processed asynchronously by the entities within
each unit (system unit or adapter).

Fuli Duplex

A pipe for each direction of delivery between each unit (system
unit or adapter) allows control elements to be delivered in one
direction independent of the flow of control elements in the other
direction.

Multiplexed

Control elements for multiple entities in the same destination unit
can be found within the same delivery pipe.

The delivery pipe supports the intermixing of requests and
replies as well as other types of control elements (errors and
events) within the same pipe for different entities.

Continuous Running

The structure of the delivery pipe allows control element delivery
to appear as a continuous stream of control elements flowing
between client and server entities in the source and destination
units. There are elements of the architecture that assist in the
management of this continuous stream of control elements:

— Suspending the delivery of control elements at the
entity-to-entity level.

— Notifying the destination entity that a control element is
available.

— Synchronizing the exchange of control elements between
source and destination entities.

Overview —January 1991 1-§

¢ Shared Memory

Shared memory allows control structures that convey control
elements, as well as the control structures supporting the
delivery pipes, to be placed in the memory of either an adapter or
system unit. This greatly enhances the ability to make cost and
performance trade-offs when designing advanced function
adapters.

* Reduction of Interrupts

It is possible to reduce or eliminate the use of physical interrupts
between units (system unit or adapter). Each delivery pipe can
specify whether interrupts are used and what conditions require
the use of interrupts.

1-6 Overview —January 1981

Peer to Peer Relationships

In a peer-to-peer relationship, entities performing the roles of clients
and servers are not restricted to being in an adapter or a system unit,
but can be located in either place. Therefore, control elements can
be delivered directly between a system unit and an adapter, or
between any two adapters on the channel.

To operate in a peer-to-peer relationship, the delivery support must
allow requests and replies to flow in either direction and allow control
elements for entities in the same destination unit to be intermixed on
the same delivery pipe. In control-element delivery, this is supported
by having independent delivery of control elements in either
direction, and by allowing clients to be located in system units or
adapters, and servers to be located in system units or adapters. A
peer-to-peer relationship also requires supportin both system units
and adapters to resolve contention when two or more system units or
adapters attempt to deliver control elements to the same destination
at the same time.

The term peer-to-peer must be qualified by the leve! of support being
discussed and not used as a unit-to-unit term without qualification.

The peer-to-peer delivery support has a pair of delivery pipes tor
each unit-to-unit pair with entities that communicate with each other.
An example of this is shown in the following figure. The labels R1,
R2, and so on, on the client and server entities indicate the entity
pairings. The dotted lines indicate the delivery support portion in
each unit.

Overview — January 1991 1-7

Unit X

Client of
R1

Server
R3

Cliont of
R1 and R4

Client of
R2

Client of

Channel

[}

Client of
R3

Client of
R5

Server Server Server
R5 R2 R4
Unit Z

Figure 1-2. Peer to Peer Delivery Model

1-8 Overview — January 1991

Queueing Control Elements

Figure 1-3 on page 1-10 shows an example of the flow of a request
through the delivery pipe to the specific server queues. Each entity
pair is responsible for ensuring that a pending-receive indication is
sent so that one entity cannot block others from using the pipe. | the
pending-receive indication is not sent, the delivery-level support can
discard the control element and notify the entity that sent the control
element. Queueing by the server is an optional function, which is
performed within the processing level.

Overview — January 1991 1-9

Ciient R1 Client R2

re - T T T T T e T T T T T T e — — — '|
| Delivery I
| Sarvica |
I |
I |
I |
I Element R2-7 f |
I { Element R1-6 I
: { Element R1-5 :
| Element R2-6 ,l |
: Element R2-5 '
| i Element R1-4 :
| v |
! |
R1 ' R2 '
7 Server B] Servar i
Queus Queus

§ : Element R2-4
Element R1-3 E : Element R2-3
Element R1-2 : : Element R2-2

Sever R1 | | . | server R2

Element A1-1 || L [[Erement R2-1

Figure 1-3. Handling Control Elements

1-10 Overview —January 1981

Control Element Delivery
The following figure shows the overall flow of a request or a reply

between the server entity (device attachment or processing software)
in an adapter and the client entity in another adapter or system unit.

Overview —January 1991 1-11

Entity Local Memory
Threads Entity Entity Entity N :
1)
. '
implomentaton {1 | Local '
definad .]
ieriaces i 1| | Dequeus :
1
.................... P SRR | Control Area !
Receive Interface Logic ! :
o de SOCONS TOTAC O o PUUUUU! U o .
Kernel / \
Threads E Shared Memory
. {Dequeue Receive Dequeuse Support CTTmmemss----- '
: Signal Logic Logic ! '
7 1| Signalling '
: \ 1| Control Area !
: - '
== ' P P . Physical Support | FrTT— , !
: y Push/Pull : . 1
s P Logie 3T L[[Sumogae |
S Hardware & . .. + | Enqueue :
! , v | Control Area | |
t Vo ! Channel : '
1 1 ! [}
j Space i P :
1 1 L]
: I E Hardware ‘ :] :
) T T P L P L - 1 P f
! ' : Push/Pul Physical Support : puvru S E !
" o | Sene Logic CPTTPUPUIPI: ,]
- d , H :
: ' \
/ i | Surrogate ‘
i | Dequeue '
Enqueue Receive | | Enquaue Support i | Control Area !
Signal Logic Logic , '
\ / Local Memory
Send Interface Logic R ikt
1 1
"B I :
erfaces i | Enqueue !
] 1
Enti . + | Control Area '
Thre“;ds Entity Entity Entity : !
(Device) (Device} : '
Figure 1-4. Control Element Delivery Flow

The following describes the flow and logic for delivering a request to
the server. The flow and logic for delivering a reply to a client is
identical but inverted.

112

Overview — January 1991

The send-interface logic is responsible for sending control elements
from an entity in one unit to a correspondent entity in the same or
different unit. This interface enforces the policies of the send
operation that are consistent with a particular implementation and
operating environment. For example, it defines the form that the call
takes, and how waits and sharing of the delivery pipe are handled.
The send-interface logic also handles the changing of addresses from
the local address space to the address space in shared memory (this
logic is determined by, and specific to, the implementation).

The send-interface logic calls the enqueue logic with the address and
count of the number of control elements to be sent. Using the
information in the Destination and Length fields of each control
element, the enqueue logic places the control elements one at a time
into the appropriate delivery pipe and updates the associated
pointers. This continues until all the control elements are placed into
the delivery pipe or the pipe becomes full.

If the pipe becomes full, the enqueue logic stops enqueueing control
elements, updates the Status fields in the Local and Surrogate
Enqueue Control areas, sends a signal to the dequeue logic at the
other end of the delivery pipe, and returns a pipe-fuil condition to the
send-interface logic

If the delivery pipe is empty when a control element is enqueued, the
enqueue logic updates the Status fields in the Local and Surrogate
Enqueue Control areas, and sends a signal to the dequeue logic at
the other end of the delivery pipe.

The enqueue logic sends a signal to the dequeue logic by first setting
the dequeue state-change indicator in the Signalling Control area
assigned to the unit and then invoking the signalling services of the
physical-support logic.

If the system unit is being signalled, then the physical-support logic
activates the appropriate interrupt-request line. If the adapter is
being signalied, then the physical-support logic writes the
appropriate attention code into the Attention port of the adapter.

Overview — Janpuary 1991 1-13

Note: Each state-change indicator {enqueue, dequeue, and
management) is assigned to a separate byte in the Signalling
Control area. This allows each state-change indicator to be
written separately and requires only the posting of the
appropriate delivery-support or management-support logic
when a state-change indicator is set.

On the receive side, the receive-interface logic is responsible for
providing the interface between the dequeue logic and the entities
that receive control elements from correspondent entities. This
interface enforces the policies of the receive operation that are
consistent with a particular implementation and operating
environment. For example, it defines:

* What form the call takes

* How waits are handled

* Whether a read pending is indicated to remove control elements
or a queue of the removed control elements is maintained.

The receive-interface logic also handies the transformation of
addresses and the movement of control elements from the shared
memory address space to the local address space of the receiving
entity or queue (these are determined by, and specific to, the
implementation).

The receive-interface logic initiates the removal of control elements
from a delivery pipe by calling the dequeue logic. If there is a control
element in the delivery pipe, the dequeue logic calls the
receive-interface logic with the address of the control element to be
dequeued. The receive-interface logic, using information in the
control element (Dastination and Length fields), determines where
the control element should be sent. Depending on the policy of the
receive-interface logic, it can choose to:

¢ Route it directly to the destination entity

¢ Place it on a queue maintained by the receive-interface logic for
the destination entity

¢ Return it to the originating entity

+ Discard it.

When the receive-interface logic returns to the dequeue logic, the
information in the Local and Surrogate Control areas associated with
the delivery pipe is updated and the process is repeated until all
control elements in the delivery pipe are removed. At this time, the

1-14 QOverview —January 1991

dequeue logic returns to the receive-interface logic at the point of the
original invocation.

Receiving a signal sent by the enqueue logic at the other end of the
delivery pipe can also initiate removing control elements from a
delivery pipe. In this case, the interrupt logic associated with the
physical-support logic examines all Signalling Control areas and,
based on the state-change indicators, posts the appropriate dequeue
receive-signal logic.

The posting, in effect, allows the receive-intertace logic and dequeue
logic to run under the kernel thread. It also allows the logic to
synchronize with the entity thread portion of the receive-interface
logic for the entity indicated by the Destination field of each control
element removed from the delivery pipe.

I/0 Address Space

Multiple ports are defined in the architecture for the physical
interface. In this context, a Port describes a byte or set of contiguous
bytes located in |/O address space.

Since several adapters can be present on the channel, the 1/0
addresses are shown as offsets from the base I/0O address of the
adapter. The base I/0 address used by each adapter is determined
during system configuration.

Physical Interface Support

The physical interface supports the delivery of control elements
between a system unit and an adapter as well as between adapters.
It uses the following subset of the Locate mode ports:

* Attention port
* Subsystem Control port
* Command Busy/Status port.

Overview—January 1991 115

Base [/0 Address

31]
e Hm==mmmmm - I
— + —» Command Port
L e oo ff———m—————— - -
7 0
— +4 —» Attention Port
7 ¢}
— +5 —» Subsystem Control Port
7 0
| -

— +6 —» L Interrupt Status Port

F— 47 —» Command Busy/Status Port

~
— +8 —» L Device Interrupt Identifier Port

_________ //_ —_—— - — — — —
Figure 1-5. I/O Address Space Map - Physical Interface

The Command, Interrupt Status, and Device Interrupt Identifier ports
are present, but are not used by Move mode after the physical
adapter has reached operational state.

Aftentlon Port

The Attention port is an 8-bit port used by the physical-support logic
in a system unit or adapter to signal, or request the attention of,
another adapter. Writing to the Attention port causes the adapter to
be interrupted and indicates that signalling information has been
placed into the Signalling Control area assigned to the system unit or
adapter writing to the Attention port. (See “Signal” on page 2-5 for
additional information on the Signalling operation and “Signalling
Control Area” on page 1-29 for a description of the Signalling Control
areas.)

The format and content of the Attention port are shown in the
following figure.

1-16 Qverview — January 1991

Signal Code Address

Figure 1-6. Attention Port

The Signal Code field (bits 7-4) must be set to hex D, and the Address
field (bits 3-0} must be set to 0.

Subsystem Control Port

The Subsystem Control port is an 8-bit port that is used by the system
unit to provide direct hardware control of several adapter functions.
This port contains contro! bits that are used to:

+ Enable interrupts from the adapter
+ Enable the bus-master operations by the adapter
* Reset the adapter.

The following figure shows the format and content of the Subsystem
Control port and is followed by a description of the individual bits.

7 6 5 4 3 2 1 0

RST R R R R R EBM | EI

Figure 1-7. Subsystem Control Port

Bit7 The reset bit (RST) is used to provide a
hardware-controlled reset of the adapter and its
associated resources and attached devices. When set to
1, all subsystem and device activities on the adapter are
halted and the subsystem is placed in the reset state.

Bits 6 —2 These bits are reserved.

Bit1 The enable-bus-master bit (EBM) is used to controi
bus-master operations from the adapter. Setting this bit to
1 enables the adapter to initiate bus-master operations.
Setting this bit to 0 disabtes the initiation of bus-master
operations by the adapter. The enable-bus-master bit is
initialized to 0 when the adapter is powered-on or reset.

Note: The enable-bus-master bit is primarily used to
debug hardware. However, it can also be used to

Overview — January 1981 1-17

force the adapter to halt adapter-initiated channel
activity.

Bit 0 The enable-interrupt bit (El) is used to control the
interrupts generated by requests from the adapter.
Setting this bit to 1 allows the adapter to send interrupt
requests to the system unit. Setting the bit to 0 prevents
the adapter from sending physical interrupts. The
enable-interrupt bit is set to 0 when the adapter is
powered-on or reset.

Command Busy/Status Port
The Command Busy/Status port is an 8-bit port that has three
functions:

¢ |tindicates that an interrupt to the system unit is pending.

* ltindicates that a signal to the adapter is pending when used in
conjunction with the Attention port.

¢ |tindicates that a reset request is in progress in the adapter when
used in conjunction with the Subsystem Control port.

The following figure shows the format and content of the Command
Busy/Status port and is followed by a description of the individual
bits.

7 2 1 0

Reserved v QP

Figure 1-8. Command Busy/Status Port

Bits 7—2 These bits are reserved.

Bit1 The interrupt-valid bit (IV) indicates that there is a valid
interrupt request pending from this adapter to the system
unit. It is set as part of the signalling logic and is reset
when the physical-support logic in the system unit reads
the Command Busy/Status port.

BIit o The operation-pending bit (OP) indicates the current state
of a signaliling operation or the progress of a hardware
reset of the adapter {for example, the toggling of the reset
{RST) bit in the Subsystem Control port).

1-18 Overview — January 1991

Memory Address Space

Shared memory is used to hold control elements (request, reply,
error, and event) within the in-bound and out-bound pipes. It also
contains:

* Surrogate Contro! areas
¢ Signalling Control areas
* Data areas.

The format, content, and use of control elements are described in
“Control Elements” on page 1-32. This section describes the format,
content, and use of the following control areas:

¢ Delivery pipe areas

* Enqueue Control areas

¢ Dequeue Control areas
» Signalling Control areas.

Delivery Pipe

A delivery pipe is a control area maintained in shared memory. itis
used to support the exchange of control elements between
cooperating entities in different units (system units or adapters). The
pipe space is managed as a first-in first-out (FIFO) stream in which
entities in one unit insert control elements at one end and entities in
another unit take the control elements out at the other end.

A system unit or adapter has a pair of pipes for each adapter or
system unit it exchanges control elements with. One pipe handies
the flow of control elements in one direction; the other pipe handles
the flow of control elements in the opposite direction.

Each pipe represents a circular queue and contains an area to hold

the actual control elements. The structure of this area is shown in the
following tigure.

Overview — January 1991 1-18

BASE T
Dffset to
Start of Elements
Offset to
Start of Free
Space - Element 1 -{ — Start of Elements
I Element 2 —
— Element n —
¥
Start of Free — — End of Elements
TOP
END

Figure 1-9. Pipe Area

Additional control areas are used to manage the operation of the
pipe. For each pipe there is a Local Enqueue Control area, Surrogate
Enqueue Contro! area, Local Dequeue Control area, and Surrogate
Dequeue Control area. The relationship of these control areas to the
pipe and to each other is shown in Figure 1-10 on page 1-21.

Note: The Surrogate Enqueue Control area is write only to the
enqueue logic and read only to the dequeue logic at the other
end of the pipe. The Surrogate Dequeue Control area is read
only to the enqueue logic and write only to the dequeue logic
at the other end of the pipe.

1-20 Overview —January 1991

Local

Enqueue |#——— Enqueue
Control —» Logic
Area

I I I 1

: Surrogate Enqueue : : Surrogate Dequeue :
| : Control Area : : Control Area :
| : 0ffset To - P — 0ffset to : 1
Start Of Free [:— i —»|Start of Elements|:
| : p : |
: : e : :
I : Surrogate « :1 Surrggate H |
’ :| Engueue Status }f: #| Dequeue Status |
T e N S P B
l l Local
Dequeue Degueue

Logic ——| Control
+——— Area

Figure 1-10. Control Areas Associated with a Single Pipe
Local Enqueue Control Area

Within a given unit, there is a Local Enqueue Control area for each
pipe. Each control area is identical in structure.

The Local Enqueue Control area is constructed and maintained in
either local or shared memory from information provided in the
configuration record at initialization time. (See “Configuration” on
page 5-1 and “Initialization” on page 5-4 for details on Configuration
and Initialization.)

Fields within each Local Enqueue Control area identify the location of
the pipe, indicate its current status {full, empty, or wrap), and provide
state information identifying the starting and ending offsets of control

elements in the pipe. The foliowing shows the structure and format of
the Local Enqueue Contral area and describes each of the fields.

Overview — January 1991 1-21

33z2z2z2zzzz2221111111111
10987654321098765432109876543210
Pipe Address (BASE)
£nqueue Status (ES) Wrap Element Offset (WE}
End of Free Space (EF) Start of Free Space {5F)
Offset to Top (TOP) 0ffset to End (END)

Figure 1-11. Local Enqueue Control Area Structure

The Pipe Address field is a 32-bit, doubleword-aligned field
containing the 32-bit physical address of the area in shared memory
where the circular queue of control elements is maintained.

The Enqueue Status field is a 16-bit, word-aligned field containing bits
used to maintain current status information of the pipe as perceived
by the local enqueue logic. The format and content of this field are
shown below and are followed by a description of each of the bits.

111111
5432109876543210

- - —-lof-{-|Wi---- -~ E|F

Figure 1-12. Enqueue Status Field

Bits 15—12 These bits are reserved.

Bit 11 The queued bit (Q) indicates that a control element has
been successfully placed into the pipe.

Bits 10—9 These bits are reserved.

Bit8 The wrap bit (W) indicates that a control element would
not fit into the space remaining between the start-of-free
space (SF) and the top-of-pipe space (TOP). The
engueue logic toggles the current setting of this bit. The
bit is initially set to 0 during initialization or after
management services re-establish the synchronization
of both ends of a delivery pipe.

Blis 7—2 These bits are reserved.

1-22 Overview — January 1991

Bit1 The empty bit (E) is set to reflect the setting of the
empty bit in the Surrogate Dequeue Status field.

Bit 0 The full bit (F) indicates whether the pipe is full. The
enqueue logic sets this bit to 1 (full) when it tries to
place a control element into the pipe and there is
insufficient space. The enqueue logic resets this bit
each time it successfully places a control element into
the pipe. This bit is also reset to 0 (not full) during
initialization or after re-establishing the synchronization
of the pipe.

Note: The queued and empty bits are implementation
specific and are shown here to help in
understanding the enqueue algorithm that is
presented later.

The Wrap Element Offset field is a 16-bit, word-aligned field
containing the offset, in bytes, from the pipe address (BASE) to the
location of the wrap control element in the pipe. This field is updated
each time a wrap control element is placed into the pipe.

The End of Free Space field (EF) is a 16-bit, word-aligned field
containing the offset, in bytes, to the end-of-free space (TAIL) in the
pipe. This field represents the end of the available space for placing
control elements into the pipe. This field is updated each time the
enqueue logic is called. It is checked against the Start of Elements
field in the Surrogate Dequeue Control area to insure control
elements that have not been dequeued are not overwritten.

The Start of Free Space field (SF) is a 16-bit, word-aligned field
containing the offset, in bytes, to the start-of-free space (HEAD) in the
pipe. Itis the location for the next control element that is placed into
the pipe. This field is updated each time a control element is placed
into the pipe.

The Offset to Top field (TOP) is a 16-bit, word-aligned field containing
the offset, in bytes, to the end of the pipe that is used for holding
control elements. This field is set at initialization time and is a copy
of information contained in the configuration record.

The Offset to End field (END) is a 16-bit, word-aligned field containing
the oftset, in bytes, to the end of the pipe. This field represents the

Overview —January 1991 1-23

physical size of the pipe when allocating space in shared memory for
the pipe and is based on product requirements.

Note: Offset to Top and Offset to End fields ensure that sufficient
space is reserved at the end of the pipe to hold a wrap controf
element.

Surrogate Enqueue Control Area

There are two fields in the Surrogate Enqueue Control area
associated with the enqueue operations of a pipe: Surrogate Start of
Free (SSF) and Surrogate Enqueue Status (SES). In this context,
Surrogate means that the information in these two fields is a copy of
the information found in the Local Enqueue Control area. This
surrogate information is used by the dequeue logic, at the other end
of the pipe, in conjunction with the information from the Local
Enqueue Control area to manage the distributed aspects of the pipe.

Surrogate Enqueue Control areas are constructed and maintained in
shared memory from information provided in the configuration record
at initialization time. (See “"Configuration” on page 5-1 and
“Initialization” on page 5-4 for detaiis on Configuration and
Initialization.)

Surrogate Start of Free: The Surrogate Start of Free field is a 16-bit,
word-aligned field containing the offset in bytes from the pipe address
{BASE) to the location in the pipe where the enqueue logic places the
next control element. The format of the field is shown in the following
figure.

111111
54321098765432140

QFFSET TO START OF FREE

Figure 1-13. Surrogate Start of Free Field
The Surrogate Start of Free field is updated by the enqueue logic

after each control element is placed into the pipe. The enqueue logic
writes to the field and the dequeue logic reads from the field.

1-24 Overview — January 1991

Surrogate Enqueue Status: The Surrogate Enqueue Status fieldis a
16-bit, word-aligned field that contains bits used to inform the
dequeue logic of the current state of the pipe, as perceived by the
enqueue logic. The enqueue logic writes to this field, and the
dequeue logic reads from this field.

Note: The enqueue logic updates all of the bits in the Surrogate
Enqueue Siatus fieid each time a control element is place into
the pipe.

The following shows the format and content of the field and describes
each of the bits.

——————— W-------F

Figure 1-14. Surrogate Enqueue Status Field

Bits 15 — 9 These bits are reserved.

Bits 8,0 These bits are copies of the bits in the Enqueue Status
field. (See the description of the Enqueue Status field on
page 1-22.)

Bits 7—1 These bits are reserved.

Local Dequeue Control Area

Like the Local Enqueue Control area described previously, there is
one Local Dequeue Control area in a given unit for each incoming
pipe. They are all identical in structure.

The Local Dequeue Gontrol area is constructed and maintained in
either local or shared memory from information provided in the
configuration record at initialization time. (See "“Configuration” on
page 5-1 and “Initialization” on page 5-4 for details on Configuration
and Initialization.}

Fields within the Local Dequeue Control area identify the physical
location of the pipe, indicate the current status of the pipe (full,
empty, or wrap), and provide state information identifying the starting
and ending offsets of control elements in the pipe. The following

Overview —January 1991 1-25

figure shows the structure of the Local Dequeue Control area. Itis
followed by a description of the content and use of each of its fields.

33222222¢22221111111%1t11
109876543210987 654 169876543210
Pipe Address (BASE)
Dequeue Status (DS) Wrap Element Cffset (WE)
End of Elements (EE) Start of Flements (SE)
0ffset to Top {TOP) 0ffset to End (END)

Figure 1-15. Local Dequeue Control Area Structure

The Pipe Address field (BASE) is a 32-bit, doublewcrd-aligned field,
containing the 32-bit physical address of the area in shared memory
where the circular queue of control elements is maintained.

The Dequeue Status field (DS) is a 16-bit field containing bits used to
maintain status information about the current state of the pipe, as
perceived by the local dequeue togic. The following figure shows the
format and meaning of the bits and is followed by a description of
each bit.

111111
54321098768543210

- =|-|-[oj7[-{W[]- - - - - - E[F

Figure 1-16. Dequeue Status Field

Bits 15— 12 These bits are reserved.

Bit 11 The dequeued bit (D) is an internal bit that indicates a
contro! element has been removed from the pipe. It is
reset to 0 prior to exiting the dequeue logic.

Bit 10 The pre-empt bit (P) is an internal bit that indicates no
more control elements will be removed from the pipe,
even if the pipe is not empty. This bit is set and reset by
the dequeue logic. it is set depending upon the value
returned from the receive-interface logic.

Bit 9 This bit is reserved.

1-26 Overview — January 1991

Bit8 The wrap bit (W) indicates that a wrap control element has
been placed in the pipe because there was insufficient
space between the top of the pipe and the start of free
space for the control element. The dequeue logic toggles
the current setting of this bit after removing a wrap control
element. The bitis initially set to 0 during initialization or
after re-establishing the synchronization of the pipe.

Bits 7—2 These bits are reserved.

Bit 1 The empty bit (E) indicates whether the pipe is empty.
The degueue logic sets this bit to 1 when it determines
that the pipe is empty. The dequeue logic resets this bit to
0 (not empty) when it determines that the empty bit in the
Surrogate Engueue Status area is set to 0. The bit is also
set to 1 (empty) during initialization or after
re-establishing the synchronization of the pipe.

Bit 0 The full bit (F) is set to reflect the setting of the full bit in
the Surrogate Enqueue Status field.

Note: The dequeued, pre-empt, and full bits are
impiementation specific and are shown here to
help in understanding the dequeue algorithm that
is presented later.

The Wrap Element Offset field is a 16-bit, word-aligned field
containing the offset, in bytes, from the pipe address to the location of
the wrap control element in the pipe.

The End of Elements fieid is a 16-bit, word-aligned field containing
the offset, in bytes, to the end of the control elements in the pipe.
This points to the byte immediately following the last control element
in the pipe. This field is updated each time the dequeue logic is
called; it is a copy of information maintained as an offset in the Start
of Free field in the Surrogate Enqueue Control area.

The Start of Elements field is a 16-bit, word-aligned field containing
the offset, in bytes, to the start of the next control element in the pipe.
This tield is updated each time a control element is removed from the

pipe.
The Offset To Top field is a 16-bit, word-aligned field containing the

offset, in bytes, to the end of the usable area in the pipe for hoiding
control elements. This field is set at initialization time using

Qverview — January 1991 1-27

information maintained in the configuration record. (See
“Configuration” on page 5-1 and “Initialization” on page 5-4 for
details on Contiguration and Initialization.)

The Offset To End field is a 16-bit, word-aligned field containing the
offset, in bytes, to the physical end of the pipe. This field represents
the physical size of the pipe when allocating space in shared memory
for the pipe and is based on product requirements.

Note: Offset to Top and Offset to End fields ensure that sufficient
space is reserved at the end of the pipe to hold a wrap control
element.

Surrogate Dequeue Control Area

There are two fields in the Surrogate Dequeue Control area
associated with the dequeue operations of a pipe: Surrogate Start of
Elements (SSE) and Surrogate Dequeue Status (SDS). In this context,
Surrogate means that the information in these two fields is a copy of
information found in the Local Dequeue Control area. This surrogate
information is used by the enqueue logic, at the other end of the pipe,
in conjunction with information from the Local Enqueue Control area
to manage the distributed aspects of the pipe.

Surrogate Start of Elements: The Surrogate Start of Elements field
(SSE) is a single 16-bit, word-aligned field containing the offset, in
bytes, from the pipe address to the location in the pipe where the
dequeue logic finds the next control element to be removed.

111111
5432109876543210

OFFSET TO START OF ELEMENTS

Figure 1-17. Surrogate Start of Elements Field

The Surrogate Start of Elements field is updated by the dequeue logic
each time a control element is removed from the pipe. The Surrogate
Start of Elements field is read, but never written to by the enqueue
logic.

1-28 Overview —January 1991

Surrogate Dequeue Status: The Surrogate Dequeue Status field is a
single 16-bit, word-aligned field containing bits used to inform the
enqueue logic of the current state of the pipe, as perceived by the
dequeue logic. The format and content of the field is shown in the
following figure. It is followed by a description of the meaning and
use of each of its bits.

[
w
o]
~
=)
wn
Iy
[N
~
—
<

_______ w______E_

Figure 1-18. Surrogate Dequeue Status Field

Bits 15—9 These bits are reserved.

Bits 8,1 These bits are copies of the bits in the Local Dequeue
Status field. (See the description of the Local Dequeue
Status fieid on page 1-26.)

Bits 7—2 These bits are reserved.

Bit0 This bit is reserved.

The Surrogate Dequeue Control areas are constructed and
maintained in shared memary from information provided in the
configuration record at initialization time. (See “Configuration” on
page 5-1 and “Initialization” on page 5-4 for details on Configuration
and Initialization.)

Signalling Control Area

A system unit or adapter that receives signals from other units
maintains a Signalling Control area in shared memory. It assigns a
specific area within this Signalling Controi area to each unit that will
be signalling it (see Figure 1-19 on page 1-30).

These Signalling Control areas serve two purposes: they provide the

means for identifying the source of the signal or interrupt and the
means for indicating the reason for the signal or interrupt.

Overview — January 1991 1-29

The location of these Signalling Control areas is provided in the
configuration record at initialization time. (See “Configuration™ on
page 5-1 and “Initialization” on page 5-4 for details.)

Unit A UnitC
Shared Memary
Sicgnalling e " Slg:alling
ontrol ~. h ' |~ ntrol
aa N) | area
! UnttB D UnitA
UnitC ¢ UnitD

.............. : Unit A :]
T H '
Signalling ! © UnitC : Signalling
Control. | S A B R : N ool
Area ' ! Area
R '
Unit B Unit D

Figure 1-19. Signalling Control Areas

The following figure shows the structure of the Signalling Controi
area. It is followed by a description of the content and use of each of
its fields.

3322222222221111111111

10987654321098765432109876543218
Reserved {D Reserved Reserved M| Reserved E

| bDequewe | | Management | Enqueue |

Figure 1-20. Signalling Control Area Structure

1-30 Overview—January 1991

—

The Enqueue field is an 8-bit field; bit 0 indicates that a change in the
state of the pipe is being signalied to the enqueue logic by the
delivery-support logic at the other end of the pipe. The reason for the
state change can be determined by examining the contents of the
Surrogate Dequeue Status field associated with the pipe. Some state
changes that can cause setting bit 0 of this field are:

s A control element has been placed into a previously empty
delivery pipe.

s A control element could not be placed into a delivery pipe due to
a full condition.

* A control element has been placed into a delivery pipe.

» A request to re-establish synchronization for the control
structures at the other end of the delivery pipe.

Except for the last item, ali of the above are optional and are
specified in the configuration record at initialization time. (See
“Configuration” on page 5-1 and “Initialization” on page 5-4 for
details on Configuration and Initialization.)

Bits 7 — 1 of the Enqueue field are reserved.

The Management field is an B-bit field; bit 0 is used to indicate a
change in the state of the delivery logic at one end of the delivery
pipe which requires the attention of the management logic at the
other end of the delivery pipe. An example of such a state change is
the timer expiration.

Bits 7 — 1 of the Management field are reserved.

The Dequeue field is an B-bit field; bit O indicates that a change in the
state of the pipe is being signalled to the dequeue logic by the
delivery-support logic at the other end of the pipe. The reason for the
state change can be determined by examining the contents of the
Surrogate Enqueue Status field associated with the pipe. Some state
changes that can cause setting bit 0 of this field are:

¢ A control element has been removed from a previously full
delivery pipe.

+ The last control element has been removed from a delivery pipe
resulting in an empty condition.

* A control element was removed from a delivery pipe.

Overview —January 1991 1-#1

* A request to re-establish synchronization for the control
structures to the other end of the deiivery pipe has been
requested.

Except tor the last item, ali of the above are optional and are
specified in the configuration record at initialization time. (See
“Configuration” on page 5-1 and “Initialization” on page 5-4 for
details on Configuration and Initialization.)

Bits 7—1 of the Dequeue field are reserved.

In addition to identifying the reason for a signal, the Signalling
Control area is also used to identify the source of the signal. The
system unit and adapters can organize the Signalling Control area as
a contiguous table. Each entry in the table would correspond to a
Signalling Control area. This allows the location of each Signaliing
Control area to be assigned sequentially at initialization time, when
configuration records are exchanged and updated (see
“Configuration” on page 5-1 and “Initialization” on page 5-4 for
details on Configuration and Initialization.)

Control Elements

In the Move mode, control elements are used to exchange control
information and data between client and server. Some fields of a
control element are used by the delivery service, as weill as the client
and server, while other tields contain information meaningful only to
the client and server.

Note: Control elements are not used in Locate mode. in the Move
mode, control elements must be aligned in doubleword
boundaries.

Basic Structure

Each control element contains three components: type, length, and
value. The type component is used to identify the format of the
control element. The length component specifies the length of the
control element. The value component contains information used by
both the delivery service and the cooperating peer entities to

1-32 Overview — January 1991

coordinate the exchange and processing of command and control
information.

3 11
1 65 0
Type Length
/
/ value /
{ J
L

Figure 1-21. Basic Control Element Structure
Type Fleld

The type component of the controi element contains a single field, the
Format ldentifier field (FID). This field is a 16-bit, word-aligned field
used to specify the format and content of the architected portion of
the control element. Control elements with a format-identifier value
of 0 identify control elements defined for the Move mode.

Length Field

The length component of the control element contains a single field,
the Length field. This field is a 16-bit, word-aligned field used to
specify the total length of the control element. The length is specitied
in bytes and includes two bytes for the Length field, and a variable
number of bytes tor the Value field.

Value Field

The value component of the control element is variable in length and
contains information whose structure and content is determined by
the value of the Format 1dentifier tield.

General Structure

Move mode control elements are identified by a format identifier of 0.
The value component of these control elements consists of a
fixed-length header and a variable-length body. The header part is
common to all the Move mode control elements and contains the
following fields:

¢ 16-bit Common Indicators field

Overview —January 1991 1-33

* 16-bit Reserved field

¢ 16-bit Source field

+ 16-bit Destination field
* 32-bit Correlation field.

The body consists of 0 or more variabie-length Entity-to-Entity fields.
The presence, format, content, and use of these fields are determined
by the content of the Common indicators field.

The Format Identifier and Length fields along with the content of the
Value field are used by the delivery service, as well as the client and
server. The remaining field, the Entity-to-Entity field, contains
information meaningful only to the client and server.

The following describes, the format and content of each of these
fields as it pertains to the delivery service. it also describes a set of
common control elements that ¢can be used to set up and manage the
exchange of data between client and server.

3 11
1 65]
Format Identifier O Length Field
Common Indicators Reserved
Source Field Destination Field
Correlaticn Field

S e

/ Entity-to-Entity Field
/
i

Figure 1-22. Control Element Structure - FID 0

Common Indicators Field

The Common Indicators field is a 16-bit, word-aligned field used to
identify a contrel element and indicate how to interpret the remaining
fields within the basic control element. The format and content of the
Control Indicators field is illustrated in the following figure.

1-34 Overview —January 1991

;.
;.
i
%

EID[S| € |1|N|W|E FC

Figure 1-23. Control Element Common Indicators Field

The Common Indicators field consists of the following bits and
subfields:

Bits 15, 14 The Element ldentifier (EID) is a 2-bit subfield used to
identify the control element type. The value in this
subfield identifies one of four possible control element
types:

ID Description

00 The request is a control element sent by a
client to a server asking it to perform a unit of
work on its behalf. It allows the transter of
data and control information between client
and server.

01 The repiy is a control element sent by a server
in response to certain request controi
elements. Not all request control elements are
answered by replies, only those that request
intformation.

10 The event is a control element that contains
information about the progress of a request,
the state of a previous request, or the status of
a client or server. Events are unsolicited and
can be sent by either a server or a client.

11 The error is a control element that provides
error information about a previous request, or
about the status of a server or delivery agent.

Bit 13 The suppress-reply bit (S} indicates whether the client
wants the server to return a reply control element when
the processing of this request control element has been
completed successfully. When set to 1, the reply is
suppressed and no reply control element is returned.
When set to 0, the entity-to-entity protocol determines
whether a reply control element is returned. The

Overview —January 1991 1-35

suppress-reply bit is only valid in a request control
element.

Bits 12, 11 The chaining bits (C) indicate a group of two or more

Bit10

Bit9

control elements which represent a single unit of work to
be processed in the order in which they appear. The
following indicates how the chaining bits are interpreted.
The chaining bits are only valid in a request control
element.

ID Description

00 No chaining (each control element is a
separate unit of work)

01 First control element in a chain

11 Intermediate control etement in a chain

10 Last control element in a chain.

The indirect bit (I) indicates whether the Entity-to-Entity
field of a controt element contains the parameters for the
specified function, or just the length of and a pointer to the
area in shared memory where the actual parameters are
stored. When set to 1, the Entity-to-Entity field contains
the length of and a pointer to the area containing the
parameters. The indirect bit is only valid in a request
control element.

The notification bit {N) indicates whether a client has
requested notification by the server when the processing
of this control element begins. When setto 1, a
notification is returned to the client in an event control
element when processing begins. The notification bit is
only valid in a request control element (see “Notification
and Wait” on page 4-11 for additional information).

The wait bit (W) indicates whether a client has requested
the server to wait before processing this request control
element, or any other request control elements from this
client. The server suspends processing of the control
element from that client until that client instructs the
server to resume processing. When set to 1, all request
control element processing is suspended, pending the
receipt of a resume event control element. The wait bit is

1-36 Overview —January 1991

only valid in a request control element (see “Notification
and Wait” on page 4-11 for additional information).

Bit 7 The expedite bit (E) identifies the control element that the
client wants the server to process as soon as possible
(before any other control elements that might be waiting
to be processed). When this bit is set to 1, the control
element is expedited. The expedite bit is only validin a
request control element.

Bits 8—0 The Function Code subfield (FC) is a 7-bit subfield used to
identity the function to be performed and indicate how to
interpret the contents of the Entity-to-Entity field. Each of
the Function Codes are described in detail in "Function
Codes” on page 1-39.

Source Field

The Source field is a 16-bit, word-aligned field used to identify the
originator or source of a control element. It consists of an 8-bit unit
identifier and an 8-bit entity identifier (see Figure 1-24 on page 1-38).

The unit identifier in the Source field contains an identifier used to
indicate which physical unit (system unit or adapter) the entity
sending the control element is located. The value assighed to the
unit identifier is determined by the delivery service during
initialization. (See “Configuration” on page 5-1 and "Initialization”
on page 5-4 for additional information.)

The entity identifier in the Source field contains an identifier used to
indicate which of the possible 256 entities in the source unit is the
originator of the control element. The value assigned to the entity
identifier is determined by unit-level management and is
implementation dependent.

Destination Field

The Destination field is a 16-bit, word-aligned field used to identify the
target or destination of a control element. Like the Source field, it is
a structured field containing an 8-bit unit identifier and an 8-bit entity
identitier (see Figure 1-24 on page 1-38).

The unit identifier part of the Destination field contains an identifier
used to indicate the location of the destination entity (system unit or

Overview —January 1931 1-37

adapter). The value assigned to the unit identifier is determined by
the delivery service during initialization. (See “Configuration” on
page 5-1 and “Initialization” on page 5-4 for additional information.)

The entity identifier part of the Source field contains an identifier
used to indicate which of the possible 256 entities in the destination
unit is the recipient of the control element. The value assigned to the
entity identifier is determined by unit-level management and is
implementation dependent.

Unit ID Entity ID

Figure 1-24. Control Element Source and Destination Fields
Correlation Field

The Correlation field is a 32-bit, word-aligned field used to provide an
identifier for associating or correlating a reply control element, error
control element, or an event control element with a previous request
control element. The format, content, and use of the Correlation field
are determined by the entity that originates the request control
element. The field can contain a sequence number, the address of a
control block, or the address of a data buffer. The content of the
Correlation field is returned to the originator of a requestin a reply,
error, or event control element.

Entity to Entity Fleld

The Entity-to-Entity field of a control element is a variabie-fength field
used to hold information such as status, parameters, or data required
by the clients and servers to perform the operation identified by the
function code in the Type field. The length, format, and type of
information the field contains varies depending on the function
specified. The information in the Entity-te-Entity field is meaningful
only to the clients and servers and is defined as part of the
entity-to-entity protocol.

1-38 Overview—January 1991

Function Codes

Within the Common indicators field of a Move mode control element,
a function code is used to identify not only the operation to be
performed but also to indicate how the contents of the Entity-to-Entity
field should be interpreted. The high-order bit of the function code is
used to distinguish between commonly-used function codes and
implementation-defined function codes. When the high-order bit (6) is
set to 1, it indicates that the remaining bits (56— 0) contain an
implementation-defined function code. When set to 0, bit 6 indicates
that the remaining bits (0 —5) contain one of the following
commonly-used function codes.

Function Code Name

1 Reserved
2 Initialize
3 Reserved
4 Read
5 Read List
6 Read immediate
7 Write
B Write List
9 Write Immediate
10 Execute List
11 Mark
12 Cancel
13 Reset
14 Read Configuration
15 Diagnose
16 Reserved
17 Resume
18 Notify
19 Inform

20-31 Reserved

32-39 Reserved
40 Reserved

41-62 Reserved
B3 Wrap

Figure 1-25. Architected Function Codes in the Common Indicators Field

The resume, notify, inform, and wrap function codes are used
exclusively with the event control element. “Event Control Elements”
on page 1-62 provides a detailed description of these function codes.
All other function codes are used with request, reply, and error
control elements and are described in the next section.

Overview —January 1991 1-39

Request, Reply, and Error Control Elements

The architecture defines a number of control elements for sending
and receiving requests and replies. The following section describes
these control elements. Each control element provides a set of
primitives that can be used to create the specific protocol required for
the task at hand. The rules determining protocol requirements such
as the number, type, order of exchange, and required responses are
determined by the two cooperating entities. This becomes the
user-defined processing-ievel protocol.

InRiallze

The Initialize function is used in request, reply, and error control
elements. In a request control element, it invokes the Initialize
function of the server. The Source, Destination, and Correlation
Identifier fields, and Entity-to-Entity field, containing any additional
parameters required by the server Initialize function, are passed to
the server in the request control element.

33z2z2zz2z2222 11
1098765432 65 0

Format I[dentifier = 0 Length Field

REQIS| C |I|N|W[E| Initialize Reserved

Source Destination

Correlation Identifier

{ Initialization Parameters

L~

Figure 1-26. Initialization Request Control Element

The initialization parameters passed to the server in the
Entity-to-Entity field of the request control element are server
dependent and need to be defined on a server-by-server basis.

If the indirect bit is set in the Common Indicators field of the
initialization request control element, then the Entity-to-Entity field
does not contain the actual initialization parameters. Instead, it
contains the location and the length of a data area in shared memory
where they are stored.

1-40 Overview — January 1991

A server reports the successful completion of an initialization request
by returning a reply control eiement to the requestor. The Source,
Destination, and Correlation Identifier fields from the initialization
request control element, along with any return values, are returned to
the requestor in the reply control element.

33z2zzz2222 11
1098765432 65 0

Format Identifier = 0 Length Field

Rer(-| - [-[-|-|-] Initialize Reserved

Source Destination

Correlation Identifier

{ Optional Return Parameters _j

Figure 1-27. Initialization Reply Control Element

The optional return parameters passed in the Entity-to-Entity field of a
reply control element are server dependent.

A client can choose to suppress the returning of a reply control
element by setting the suppress bit in the Common Indicators field of
the initialization request control element.

If unsuccessful, an error control element containing the Source,
Destination, and Correlation Identifier fields from the initialization
request control element, along with status information identifying the
cause of the failure, are returned to the requestor.

3322222222 11
1098765432 65 0
Format Identifier = 0 Length Field
ERR|—| — [-|=|~|~| Initialize Reserved
Source Destination
Correlation Identifier
{ Status Information /

Figure 1-28. Initialization Error Control Element

Overview —January 1891 1-41

Read

The Read function is used in request, reply, and error control
elements. In a request control element, it is used to set up and
initiate the transfer of data from a server to a client. The Source,
Destination, and Correlation Identifier fields, and the Entity-to-Entity
field containing the parameters required by the server to perform the
read, are passed to a server in the request control element.

j3zz2zzzezz 11
10987654132 65 0

Format Identifier = @ Length Field

REQ|S| C [L[|NiW[E Read Reserved

Source Destination

Correlation Identifier

Byte Count

Data Address

{ Opticnal Parameters {

Figure 1-28. Read Request Control Element

The parameters contained in the Entity-to-Entity field of a request
control element are not limited to those identified above. Additional
parameters can be supplied to meet the requirements of each client
and server relationship.

If the indirect bit is set in the Common Indicators field of the read
request control element, the Entity-to-Entity field does not contain the
byte count, data address, and optional parameters. Instead, it
contains the location and the length of a data area in shared memory
where these parameters are stored.

When a server has successfully completed the transfer, it returns a
reply control element with the Source, Destination, and Correlation
Identifier fields from the read request control element and the actual
number of bytes transferred during the read operation.

142 Overview —.January 1991

3322222222 11
1998765432 6 5 0
Format Identifier = O Length Field
REPI-| = |-[-|-|— Read Reserved
Source Destination

Correlation Identifier

Number Of 8ytes Transferred

Figure 1-30. Read Reply Control Element

A client can choose to suppress the returning of a reply control
element by setting the suppress bit in the Commeon Indicators field of
the read request contro! element.

If unsuccessful, an error control element containing the Source,
Destination, and Correlation Identifier from the read reguest control
etement, along with status information identifying the cause of the
failure, is returned to the requestor.

33ez2zez2eze 11
109876584132 65]
Format Identifier = @ Length Field
ERR|—| — t—=[-1—[— Read Reserved
Source Destination
Correlation Identifier
/ Status Information

L~

[

Figure 1-31. Read Error Control Element

Read List

The Read List function is used in request, reply, and error control
elements. !t is used to establish and initiate the transfer of data and
control information from a server into several, possibly
noncontiguous, areas in shared memory. This is often referred to as
data chaining. The Source, Destination, and Correlation Identifier
fields, and the Entity-to-Entity field containing the list of byte counts
and data addresses required by the Read List function, are passed to
the server in the request control element.

Overview — January 1891 1-43

3322222222 11
1998765432 65 8
Format Identifier = 0 Length Field
REG|S| C [I{N|W]|E| Read List Reserved
Source Destinaticn
Correlation Identifier
Byte Count
Data Address
Optional Parameters
: /
/ : /
! :
Byte Count
Data Address
{ Optional Parameters /

Figure 1-32. Read List Request Control Element

If the Indirect list is indicated in the Common Indicators field, the
Entity-to-Entity field does not contain the byte count, data address, or
optional parameters. Instead, it contains the location and the length
of an area in shared memory where the actual list is stored.

When a server has successfully completed the transter, it returns a
reply control element with the Source, Destination, and Correlation
Identifier fields from the read list request control element, and
residual-byte count in the reply control element. The format and
content of the read list reply control element is the same as the read
reply control element {(see “Read” on page 1-42).

A client can choose to suppress the returning of a reply control
element by setting the suppress bit in the Common Indicators field of
the read list request control element.

If unsuccessful, the following are returned to the requester in an error
control element.

* The Source, Destination, and Correlation Identifier fields from the
read list request control element

1-44 Overview — January 1991

* The status information identifying the cause of the failure
+ The pointer to the last data address that was processed
+ The actual number of bytes read.

3322222222 11
1098765432 65 2]
Format Identifier = 0 Length Field
ERR|-| - [-|-|-]-| Read List Reserved
Source Destination

Correlation ldentifier

Status Information

Last Data Address

Bytes Read

Figure 1-33. Read List Error Control Element
Read immediate

The Read Immediate function is used in request, reply, and error
control elements. It is used to request the transfer of data and control
information from a server to a client. It differs from the Read Request
function in that the data is to be returned in the Entity-to-Entity field of
the reply control element where it becomes immediately available to
the client. The Source, Destination, Correlation identifier fields, and
the Entity-to-Entity field, containing the parameters required by the
Read Immediate function, are all passed to a server in the request
control element.

3322222222 11
10987654372 65 4]
Format Identifier = 9 Length Field
REQ[—} C |—|NIW|E| Read Immed Reserved
Source Destination
Correlation Edentifier
{ Optional Parameters /

Figure 1-34. Read ‘mmediate Request Control Element

Overview —January 1991 1-45

Note: The amount of data that can be returned using the read
immediate request control element is configuration dependent.
That is, it is directly related to the size of the delivery pipe
(queue). Therefore, care should be exercised when using this
request control element.

To complete the requested operation, the server returns a reply
control element with the Source, Destination, and Correlation
Identifier fields from the read immediate request control element. In
the Entity-to-Entity field, it returns the immediate data.

3322222222 11
10987654132 65 (¢
Format I[dentifier = @ Length Field
REP(—| — [~{—|—|—| Read Immed Reserved
Source Destination
Correlation Identifier
/ Immediate Data /

Figure 1-35. Read Immediate Reply Control Element

The Read immediate function ignores the suppress bit if it is set in
the Common Indicators field of the read immediate request control
element because it always returns a reply controi element.

If unsuccessful, an error control element containing the Source,
Destination, Correlation Identifier fields from the read immediate
request control element, and status information identifying the cause
of the failure, are returned to the requestor.

1-46 Overview—January 1991

3322222222 11
10987654132 65 ¢}
Format Identifier = @ Length Field
ERR[-| = [—[=|=|~| Read Immed Reserved
Source Destination
Correlation Identifier
{ Status Information {

Figure 1-36. Read Immediate Error Contro! Element

Write

The Write function is used in request, reply, and error control
elements. It is used to set up and initiate the transfer of data and
control information from a client to a server. The Source,
Destination, Correlation Identitier, and the Entity-to-Entity fields are
all passed to a server in the request control element.

jizezzzei? 11
1098765432 65 0

Format Identifier = 0 Length Field

REQYIS| C |L|NIW|E Write Reserved

Source Destination

Correlation Identifier

Byte Count

Data Address

{ Optional Parameters {

Figure 1-37. Write Request Contro! Element

The Entity-to-Entity field contains the amount and location of the data
to be transferred by the Write function. The Entity-to-Entity field is not
limited to these parameters. Additionai parameters can be supplied
to meet the requirements of each client and server relationship.

If the indirect bit is set in the Common Indicators field of the write

request control element, the Entity-to-Entity field does not contain the
byte count, data address, or optional parameters. Instead, it contains

Overview —January 1991 1-47

the location and length of the area in shared memory where data is
stored.

When the server completes the transfer, it returns a reply control

element with the Source, Destination, and Correlation Identifier tields

trom the write request control element.

3322222222 11
1098765432 65
Format Identifier = & Length Field
REP(-} — |- |-]-[~ Write Reserved
Source Destination
Correlation Identifier

Figure 1-38. Write Reply Control Element

A client can suppress the returning of a reply control element by
setting the suppress bit in the Common Indicators field of the write
request control element.

If unsuccessful, an error control element containing the Source,
Destination, and Correlation Identifier fields from the write request
control element, and status information identifying the cause of the
failure, is returned to the requestor.

j3z222222:e2 11
1698765432 65]
Format Identifier = 0 Length Field
ERR[~| = |=|=|~|~ Write Reserved
Source Destination
Correlation Identifier
{ Status Information {

Figure 1-39. Write Error Control Element

1-48 Overview —January 1991

Write List

The Write List function is used in request, reply, and error control
elements. It is used to set up and initiate the transfer of data and
control information to a server from several possibly noncontiguous
areas of shared memory. This is often referred to as data chaining.
The Source, Destination, and Correlation Identifier fields, and the
Entity-to-Entity field containing the list of byte counts, data addresses,
and optional parameters required by the Write List function, are all
passed to the server in the request control element.

33z2zez2zz2z 11
189878654132 65]
format ldentifier = 0 Length Field
REQ|(S{ C [I[N|W|{E| Write List Reserved
Source Destination
Correlation Identifier
Byte Count
Data Address
Optional Parameters
/
/ {
/
Byte Count
Data Address
{ Opticonal Parameters {

Figure 1-40. Write List Request Conirol Element

If the indirect bit is set in the Common Indicators field of the write list
request control element, the Entity-to-Entity field does not contain the
byte count, data address, and optional parameters. Instead, it
contains the location and length of the area in shared memory for the
list.

When the server has completed the transfer, it returns a reply control
element with the Source, Destination, Correlation Identifier tields

from the write list request control element, and residual-byte count in
the Entity-to-Entity field of the reply control element. The format and

Overview —January 1981 1-48

content of the write list reply control element is the same as the write
reply control element (see “Write"” on page 1-47).

A ctient can choose to suppress the returning of a reply control
element by setting the suppress bit in the Common Indicators field of
the write list request control element.

If unsuccessful, the following are returned to the requester in an error
control element:

* The Source, Destination, and Correlation Identifier fields from the
write list request control element

¢ The status information identifying the cause of the failure

* The pointer to the last data address that was processed

¢ The actual number of bytes transferred.

3322222222 i1
1898765432 65 e
Format Identifier = 0 Length Field
ERR|-| - [-[-1-]-| Write List Reserved
Source Destination

Correlation Identifier

Status Information

Last Data Address

Bytes Transferred

Figure 1-41. Write List Error Control Element
Write Immediate

The Write Immediate function is used in request, reply, and error
control elements. It is used to carry data and control information
from a client to a server. It differs from the write request in that the
data is present in the Entity-to-Entity field of the request control
element and is immediately available to the server. The Source,
Destination, and Correlation Identifier fields, and data are passedto a
server in the request control element.

1-50 Overview—January 1991

3322222222 11
10987654132 65 a
Format Identifier = 0 Length Field
REQ|S| C |—[N[W|E| Write Immed Reserved
Source Destination
Correlation Identifier
! Immediate Data /

Figure 1-42. Write Immediate Request Control Element

The format and meaning of the data contained in the Entity-to-Entity
field of the request control element are client and server dependent
and, as such, are not defined here.

Note: The amount of data that can be transferred using the write
immediate request control element is configuration dependent.
That is, it is directly related to the size of the delivery pipe
(queue). Therefore, care should be exercised when using this
request control element.

When the server has successfully received the data, it returns a reply
control element with the Source, Destination, and Correlation
Identifier fields from the write immediate request control element
and, in the Entity-to-Entity field, a count of the actual number of bytes
received.

3 22 11
1 32 65 0
Format Identifier = & Length Field
REP|=| — |=]|—[~|~| Write Immed Reserved
Source Destination

Correlation Identifier

Number Of Bytes Transferred

Figure 1-43. Write Immediate Reply Control Element

Overview —January 1991 1-51

A client can suppress the returning of a reply control element by
setting the suppress bit in the Common Indicators field of the write
immediate request control element.

If unsuccessful, an error control element is returned to the requestor.
This control element contains the Source, Destination, and
Correlation Identifier fields from the write immediate request control
element, and status information identifying the cause of the failure.

3322222222 11
1098765432 65 0
Format Identifier = 0 Length Field
ERR{—| = |=]-|=|=| Write Immed Reserved
Source Destination
Correlation Identifier
{ Status Information {

Figure 1-44. Write Inmediate Error Control Element

Execute List

The Execute List function is used in request and reply controi
elements. It is used to set up a repetitive loop for executing a list of
request control elements one or more times. The Source,
Destination, and Correlation Identifier fields, and the Entity-to-Entity
field containing the location, length, and repetition count required by
the Execute List function are all passed to a server in the request
control element.

1-52 Overview —January 1991

332z22222¢2¢ 11
1098765432 65 @
Format ldentifier = @ Length Field
REQ[S] € |—IN|W|E|Execute List Reserved
Source Destination

Correlation Identifier

Length Of List

Address Of List

Repetition Count

Figure 1-45. Execute List Request Control Element

The list can consist of one or more request control elements that
must be contiguous in shared memory. Because each control
element in the list contains its own length field, the start of the next
control element can be determined. The Length of List field
determines where the list ends. On each pass through the list, the
repetition count is decremented by 1, and if not 0, the list is executed
again. If the initia! repetition count is negative or 0, the request
terminates.

The request control elements contained in the list can use any
available function code and common indicator.

When the repetition count goes to 0, the list is terminated and the
server returns a reply control element with the Source, Destination,
and Correlation Identifier fields from the original execute list request
control element.

3322222222 11
1698765432 65 0
Format Identifier = 0 Length Field
REP|—| = [={=|—)—|Execute List Reserved
Source Destination
Correlation [dentifier

Figure 1-46. Execute List Reply Control Element

Overview — January 1991 1.53

A client can choose to suppress the returning of a reply control
element by setting the suppress bit in the Commaon Indicators field of
the execute list request control element.

If an error occurs while processing any control element within the list,
the list is terminated and the control element with the error is
returned.

Mark

The Mark function is used only in a request control efement to
provide a means of synchronization between a client and a server.
Its only function is to pass the Correlation Identifier field to the
server.

3j3azzzzz2ziz 11
19098765432 65 0
Format Identifier = @ Length Field
REG|—| € |—|N[W[- Mark Reserved
Source Destination
Correlation ldentifier

Figure 1-47. Mark Request Control Element

The Mark function can utilize the notify and wait bits to cause a
server to inform a client of the current processing state of the server.,
For more details refer to “Notification and Wait” on page 4-11.

The Mark function ignores the indirect, suppress, and expedite bits if
set in a mark request control element.

Cancel

The Cancel function is used in the request, reply, and error control
elements. In a request control element, it is used to cancel one or
more outstanding requests. The Source, Destination, Correlation
Identifier, and Entity-to-Entity fields contain the cancellation qualitier
and the cancellation list of request control element correlation
identifiers.

1-54 Overview —January 1991

j3zzz2z2z2z 11
19987654132 65 a
Format Identifier =0 Length Field
REQ|-| C JI[NJW|E Cancel Reserved
Source Destination
Correlation Identifier
Reserved Cancellation Qualifier
{ Cancellation List {

Figure 1-48, Cancel Request Control Element

The cancellation qualifier bits identify the request control elements to
be cancelled:

e All outstanding requests (bit0 = 1)

* Requests that match the Source ID (bit 1 = 1)

* First request matching the cancellation list value (bit 2 = 1)
* All requests matching the cancellation list value (bit 3 = 1).

If bits 2 or 3 of the cancellation qualifier are set to 1, a cancellation
fist is present. If bit 1 is set, then bit 2 or 3 must also be set.

If the indirect bit is set in the Common Indicators field of the cancel
request control element, the Entity-to-Entity field does not contain the
cancellation list. Instead, it contains the location and length of the
area in shared memory for the list.

When the server has successfully completed the Cancel function, it
returns a reply control element to the requestor. The Source,
Destination, and Correlation Identifier fields trom the cancel request
control element are returned in the reply control element.

Overview —January 1991 1-55

3322222222 11
1098765432 65 Q
Format Identifier = @ Length Field
REP[-| = |-|-|-I— Cance] Reserved
Source Destination
Correlation ldentifier

Figure 1-49. Cancel Reply Control Elemeant

The server tries to cancel all the requests whose Correlation
Identifier fields are in the Entity-to-Entity field of the cancel request.
If the server cannot cancel ail requests, it returns an error controt
element with the status and the list of Correlation Identifiers fields
from the cancelled requests. An empty list indicates that it was
unable to perform the cancel on any of the identified control
elements.

3

1

222
765

[
o
@

3jzzz2z2zz2:2
098765432

Format Identifier = O Length Field

ERR|—[= [-{—[~1~ Cancel Reserved

Source Destination

Correlation Identifier

Status Information

Correlation Identifier Of Cancelled Element

Correlation Identifier Of Cancelled Element

Figure 1-50. Cancel Error Control Element
However, a cancel request control element with the all outstanding

control element qualifier set does not return an error control element
with the list of cancelled control elements.

1-56 Overview—January 1991

Reset

The Reset function is used in request, reply, and error control
elements. In a request control element, it is used to request a server
to place itself into a known state. The Source, Destination, and
Correlation Identifier fields, and the Entity-to-Entity field containing
the desired state, are ail passed to a server in the request control
element.

3j3zzza2zeze 11
1098765432 65 8
Format Identifier = @ Length Field
REQ|—| € |—|N[W|E Reset Reserved
Source Destination

Correlation Identifier

State

Figure 1-51. Reset Request Control Element

A reset request control element with a value of 0 for the State field
requests the device to return to the initialization state. All other
values are implementation dependent.

When reset to the initialization state, the server purges all work in all
queues, and any outstanding requests are terminated with an error
control element. All requests except for the initialize control elément
are rejected with an error control element when in the
reset-to-initialization state.

When the server has completed the reset, it returns a reply control

element with the Source, Destination, and Correlation |dentifier fields
from the request control element to the client.

Overview — January 1981 1-57

3ijzzzzz2zz22 11
1098765432 65 6
Format Identifier = 0 Length Field
REFI-| = |-]-|-|— Reset Reserved
Source Destinatien
Correlation Identifier

Figure 1-52. Reset Reply Control Element

The Reset function ignores the suppress and indirect bits, if the bits
are set in a reset request control element.

If unsuccessful, an error control element containing the Source,
Destination, and Correlation tdentifier fields from the reset request
control element, and status information identifying the cause of the
failure, are returned to the requestor.

33222222122 11
1098765432 65 0
Format Identifier = 0 Length Field
ERR|=] = [—|—[-i— Reset Reserved
Saurce Destination
Correlation Identifier
/ Status Information {

Figure 1-53. Reset Error Control Element
Read Configuration

The Read Configuration function is used in request, reply, and error
control elements. When used in a request, it causes the server to
return configuration information to the client. The Source,
Destination, and Correlation ldentifier fields, and the Entity-to-Entity
field containing the byte count, data address, and optional
parameters are passed to the server in the request control element.

1-58 Overview—January 1991

3 222
1 765

o
[
(=)

3jzz2 222
098 432

Format Identifier = @ Length Field

REQ|S| C |I|N[W|E] Read Config Reserved

Source Destination

Correlaticn ldentifier

Byte Count

Data Address

{ Optional Parameters

L~

Figure 1-54. Read Configuration Request Control Element

The parameters contained in the Entity-to-Entity field of a read
configuration request control element are not limited to those
identified above. Additional parameters can be supplied to meet the
requirements of each client and server relationship.

If the indirect bit is set to 1 in the Common Indicators field of the read
configuration request control element, the Entity-to-Entity field does
not contain the byte count, data address, and optional parameters.
Instead, it contains the location and the length of the data area in
shared memory where the parameters are stored.

A server reports the successful completion of a read configuration
request by returning a reply control element to the requestor. The
Source, Destination, and Correlation Identifier fields are returned in
the reply control element.

3322222222 11
1698765432 6 5 0
Format Identifier =0 Length Field
REPI-| — |=[~|—|~| Read Config Reserved
Source Destination
Correlation Identifier

Figure 1-55. Read Configuration Reply Control Element

Overview — January 1991 1-59

A client can suppress returning a reply control element by setting the
suppress bit to 1 in the Common Indicators field of the read
configuration request control element.

If the server is unable to report configuration information, an error
control element is returned to the requestor. This control element
contains the Source, Destination, and Correlation ldentifier fields
from the read configuration request control element, along with the
reason.

33ez22z2z2:z222 11
19098765432 65]
Format Identifier = 0 Length Field
ERR|-| = |—[-[~|-] Read Config Reserved
Source Destination
Correlation Identifier

{ Status Information

L

Figure 1-56. Read Configuration Error Control Element

The Diagnose function is used in request, reply, and error control
elements. In a request, the Diagnose function initiates diagnostic
routines by a server. The Source, Destination, and Correlation
Identifier fields, and the Entity-to-Entity field which identifies the
specific diagnostic tests to be run, as well as any operational
parameters, are passed to the server in the request controi element.

3322222¢e22 11
10987654132 65 @
Format I[dentifier = O Length Field
REQ|SI C [I{N{W[E| Diagnose Reserved
Source Destination
Correlation Identifier
{ Optional Parameters j

Figure 1-57. Diagnose Request Control Element

160 Overview—dJanuary 1991

If the indirect bit is set in the Common Indicators field of the diagnose
request controt element, the Entity-to-Entity field does not contain the
optional parameters. Instead, it contains the location and iength of
the area in shared memory for the parameters.

A server reports the results of running the diagnostic tests by
returning a reply controf element to the requestor. The Source,
Destination, and Correlation Identifier fields from the diagnose
request control element, and the Entity-to-Entity field containing the
test results, are returned to the reply control element.

3322222222 11
1698765432 65]
Format Identifier = @ tength Field
REP|-t — |—[-]1-|-] Diagnose Reserved
Source Destination
Correlation Identifier
{ Optional Diagnostic Information /

Figure 1-58. Diagnose Reply Control Element

A client can suppress returning a reply control element by setting the
suppress bit in the Common Indicators field of the diagnose request
control element.

If a server is unable to perform the requested diagnostic test, an error
control element is returned and the Entity-to-Entity field indicates the
cause of the error. This error control element contains the Source,
Destination, and Correlation Identifier fields from the diagnose
request control element.

Overview — January 1991 1-61

3jzzzzzzz2z2z 11
1098765432 65 0
Format Identifier = 0 Length Field
ERR|—| = |-|—[=]~| Diagnose Reserved
Source Destination
Correlation [dentifier

{ Status Information {

Figure 1-59. Diagnose Error Control Element
Event Control Elements

The avent control element is provided by the delivery service in
addition to the request, reply, and error control elements. It provides
information about the progress of a request, or about the side-effects
of a previous request. The event control element differs from the
other control elements in that it reports a change in the state of one of
the communicating entities (client or server). Because of the impact
of these state changes, the entity must be informed of the change as
quickly as possible. The following sections describe the format,
content, and use of event control elements,

Resume

A resume event is used to notify a server of a change in a clients
processing state. A client uses this event to notify a server that a
client is now in a state that allows the processing of request control
elements to be resumed. The Source, Destination, and Correlation
Identifier fields of the original request control element causing the
suspension are returned to the server in the resume event control
element.

1-62 Overview — January 1991

33zzzzzeee 11
16987654832 65]
Format Identifier = 0 Length Field
EVT{= ~ |—|-}—|E Resume Reserved
Source Destination

Correlation Identifier

Figure 1-60. Resume Event Control Element

A resume event is ignored if it is received from a client other than the
one responsible for the suspended state or from a client that is not in
the suspended state.

Naotification

A notification event is used to confirm the receipt of a request control
element with the notification bit of the Common Indicators field set to
1 (see “Notification and Wait” on page 4-11). The Source,
Destination, and Correlation Identifier fields of the request control
element containing the notification bit, are returned to the client in the
Entity-to-Entity field of the event control element.

3322222222 11
1098765432 65]
Format Identifier = 0 Length Field
EVT[-{ — {—|—[~[E Natify Reserved
Source Destination
Correlation Identifier

Figure 1-61. Notification Event Control Element

Inform
An inform event is used to provide a means of conveying information

regarding the processing state of either a client or a server from one
1o the other.

Overview —January 1991 1-63

Jizzezzzz22z2 11
1098765432 65 a
Format Identifier = @ Length Field
EVT[-] - [-|-]-|E Inform Reserved
Source Destination
Corretation Identifier
;I‘_ User Information J/

Figure 1-62. Inform Event Control Element
Wrap

A wrap event is a management and control-initiated event used
internally by the delivery service. Itis used to synchronize the
operations associated with the in-bound or out-bound delivery pipes.

A wrap event control element can be sent only by the delivery
service. This control element informs the delivery service that there
was insufficient space in the pipe for the next control element.
Therefore, the control element is placed in the start of the pipe.
3 2
1 2

32222222 11
09876543 65 0

Format Identifier = 0 Length Field

EVT|-] - - [-|-|- Wrap Reserved

Figure 1-63. Wrap Event Control Element

1-64 Overview—January 1991

Chapter 2. Physical Level

At the physical level, Move mode defines the services, functions, and
protocols that are used by the delivery-support logic to physically
manage control-element delivery betwsen units attached to the
channel.

The physical level provides a set of services for gaining access to /0
and memory address space, and for signalling between units that are
attached to the channel that is independent of the hardware. This
allows ditferent forms of system unit and adapter hardware to be
used by the same delivery-support logic.

The physical leve! allows for differences in the way services are
provided by various system units and adapters. The location and use
of control areas; the method of generating and handling interrupts;
and the protocols used to access I/O and memory address space are
transparent to the logic at the delivery level. Only the physical level
needs to be aware of how the services are mapped to the underlying
hardware.

Physical-level services can be used to push or pull data between
local memory address space and control areas in shared memory.
The data can be signalling information, surrogate-state information, a
control element, or data pointed to by the control elements.

Structure

The following figure shows the physical-level structure tor a
configuration with a single system unit (Unit X) and two adapters (Unit
¥ and Unit Z). The services of the physical level are provided by a
combination of hardware, physical-support togic in each unit, control
areas in I/0 address space, and controi areas (signalling) in shared
memory.

© Copyright IBM Corp. 1991, 241

Entity o000 Entity
....... USRI I
: Send/Receive Interface :
................... [
Delivery
Logic
I
Physical Shared
Support Logic Memory
1 E . -7 T=" .
1 1
] =
: Interrupt Hardware VO Instructions Memory Slave :
: i
1 1
! Channel !
-1 - - Bl 3| &]
v B g = E|l @ 2| |
! E Read/Write £ !
: [1 :
]]
' Mamory | | Bus vo vo Bus Memory ,
- Slave Master | | Siave Siave | | Master | | Slave [
]]
E |] '
Physical Physical
Support Logic Support Logic
[|
Delivery Delivery
Support Support Unit Z
Logic Logic
B [e T |
: Send/Receive Interface . Send/Recelve Interface '
....... R R B R
Entity | coo Entity Entity | coc | Entity

Figure 2-1. Physical Level

2-2 Physical Level —January 1991

System

System unit designs typically provide support for system interrupts,
memory slaves, and /O slaves.

The interrupt controller provides hardware support for signalling
system interrupts from an adapter to a system unit. The
memory-access instructions (such as Load and Store) provide a
means for gaining access to data and control information located in
shared memory. The I/0-access instructions (such as In and Out)
provide a means for gaining access to control information located in
control areas in /0 address space. The bus-master support allows
adapters to control the channel.

Adapter

Adapter designs typically provide support for I/0 slaves, bus masters,
and optional memeory slaves. The 1/0 slave provides hardware
support for initializing an adapter, enabling access to an adapter,
signalling between adapters, and identifying the adapter that is the
source of an interrupt. The memory slave provides hardware support
for gaining access to data and control areas in shared memory from a
system unit or from another adapter with bus-master capabilities.

The bus master provides hardware support for gaining access to data
and control areas in either shared or local memory and control areas
in 170 address space in other system units or adapters.

Support Logic

The support logic is responsible for implementing the set of services
provided to the detivery level for the specific hardware used by an
adapter or system unit. The protocols used between two units are
determined by the hardware and must be implemented by the support
logic in the source and destination units. Support logic must be
provided tor the following services: push, pull, and signal.

Physical Level —January 1991 2-3

Push and Pull

The support logic for the push and pull service must establish the
addresses and the method to be used to move the data into or out of
shared memory. The protocols can vary for different combinations of
system units and adapters. The following sequence is used to
establish the addressing for performing the Push or Pull functions.

* During system configuration, the specific 10 and shared memory
address ranges are defined for the various units.

+ During initialization, specific control areas in shared memory are
established. initialization includes establishing any address
translations between the channel address form and the local
memory address form.

* Adapters can establish the addresses just before performing the
push or pull operation. In this case, establishing the address can
be done locally or it can be visible on the channel.

The data can be moved in one of several ways, depending on the
functions available in the adapter. The data migration includes
hardware to provide an interface from the unit to the channel, as waell
as providing the following functions.

« [f a unit (such as a system) has hardware that supports
memory-mapped /0 instructions, these instructions are used to
push and pull data.

+ |f a unit (such as an adapter) has bus-master capabilities, it is
used to push and pull data between units.

The hardware in each unit that is used to support the push and pull
operations can also be shared with the protocols that move data that
is pointed to by the control elements.

The architecture requires control areas in memory to be aligned on
word (2-byte) boundaries so that they are accessed as words in
shared memory. This eliminates the possibility of having
word-aligned surrogate information split when it is accessed by the
delivery-support logic.

2-4 Physical Level —January 1991

Signal

The context for describing the signalling logic is shown in Figure 2-2
on page 2-6. The signalling service is supported by a combination of
hardware and support logic in the sending and receiving units. The
support logic in the receiving unit uses the information in the
Signalling Control areas to determine which units have interrupts
pending and the reasons for those interrupts.

The send-signal logic and receive-signal logic operate in support of
the signalling protocols detfined at the delivery level.

+ The send-signal logic is used by the delivery or
management-support iogic to cause the interrupt of another unit
after it has pushed signalling information into the Signalling
Control area assigned to it in the other unit,

* The receive-signal logic examines all Signalling Control areas
whenever a hardware interrupt is received. This ensures that all
signalling indications are captured even though an interrupt could
have been missed by a hardware-busy or masked condition.

Using the information in the Signalling Control areas, the
receive-signal logic posts the appropriate delivery-support logic
at the delivery level and clears the contents of the Signalling
Control area to 0. For management, it posts the
unit-management logic and resets the management indicator in
the appropriate Signalling Control area.

Physical Level —January 1991 2.5

Signalling Signalling Signalling
Area Unit A Area Unit Y Area Unit Z
DJR{jM]E DIRIMIJE DIR|M]E
ETE)IE&G|N EJTEJG|N E|E{G]{N
Q1S T]|Q e]s|T|Q Qls]|T]Q

R e N TR !
L L ! Dispatch
Receive Signal
Logic
Interrupt Related
Unit X Hardware
'y
From Unit A From Unit Z
To Unit A 4+——— ————— To Unit Z
Unit ¥ [nterrupt Related Write To
Hardware Appropriate

t

Signalling Area

Send Signal
Logic

T

Delivery
Support Logic

!

Figure 2-2. Signalling

Unit Management
Support Logic

The signalling service operates in a variety of physical

implementations by using Signalling Control areas in shared memory
and simple signalting primitives. To support peer-to-peer delivery,
each sending unit has a separate Sitgnalling Control area that
identifies it to the receiving unit. An indication in a particular
Signalling Control area defines which unit is signalling. The

receiving unit has a Signalling Control area for each unit it

communicates with.

2-6 Physical Level—

January 1991

The structure and content of the Signaliing Control area is described
in detail in “Signalling Control Area” on page 1-29.

The support logic for the signalling portion can be viewed as having a
part that establishes access 1o the interrupt hardware and a part that
causes an interrupt in the destination unit.

{ Various
Delivery Level,
Delivery Support Management Level,

Logic Timer Functions
) Signalling Interface —
Establish
Access
Cause
Interrupt

l

Hardware

Figure 2-3. Interrupt Support Logic

The protocols can vary for differences:
* Between unit types (adapters and systems)
* In types of adapters (such as LAN, COMM, and SCSI)

* In the processor architectures used for the specific hardware.

Access to the interrupt hardware is established at specific times:

« During system configuration, the interrupt level is allocated along
with the 1/O addresses used by the adapter.

» During adapter initiatization, the locations of the specific control
areas, including the Signalling Controi area, are established. The
type of unit determines the location of the control area and the
value that causes an interrupt.

Physical Leve! —January 1991 2-7

¢ During operation, when the interrupt is shared, then some form of
interrupt-sharing protocol could be required.

The specific protocol for generating the interrupt is determined by the
type of unit being signalled.

* |f the unit is a system unit, an interrupt is caused by hardware
(IRQ) lines in the channel that connect to the interrupt controller
hardware.

* |f the unit is an adapter, an interrupt is caused by writing a
predefined value into a specific control area (port) in I/0 address
space. The value and location are specified as part of the
configuration and initiatization process.

Memory Address Space

The physical level provides access to data and control areas in
shared memory.

The physical-level and delivery-level protocols in the source and
destination units must have access to (and in some instances share)
data and control information in the same address space.

At the delivery level, this includes the control elements in the data
areas associated with each delivery pipe, as well as their associated
Surrogate Control areas.

At the physical level, this includes the Signalling Control areas
associated with each unit (system and adapter). The information in
the Signalling Control area is also accessed by the support logic
implementing the delivery-level protocol in the source and
destination units.

Assigning these control areas to locations in shared memory allows
them to be accessed, and the information they contain to be shared,
by different units on the channel.

The data buffers used to support certain forms of entity-to-entity data
transfers (defined by addresses within specific request and reply
control elements} are also assigned locations in shared memory.
The location of these data buffers is determined by the logic at the

2-8 Physical Leveli—January 1991

processing level, which supports entity-to-entity data transfers, and
can change from control element to control element.

The shared memory structure utilizes the physical addresses on the
channel to define the address space that is shared between system
units and adapters.

The controi areas in shared memory are used for the delivery pipes
and their associated Surrogate Control areas. The location of each
control area is assigned either at system configuration or adapter
initialization time and remains constant throughout the operation of
the system. The shared memory can be physically located in either
the system unit, the adapter, or both. Each of these areas is
accessed using the memory-slave support in their respective units.

The physical-support logic handles the access to all control
information in the various shared memory locations using the
appropriate hardware tor the specific unit (system unit or adapter)
performing the access.

Note: The ability to assign shared memory to various units and the
ability to assign control areas to any location in shared
memory allows for various cost-performance tradeofis to be
implemented using the same delivery-level and
processing-level protocols.

110 Address Space

The physical-support logic provides access to a set of control areas
(ports) in /0 address space that are confined to, and shared at, the
physical level between system units and adapters. This space is
shared across units and is supported by the I/0 slave supportin
adapters.

The range of /O addresses assigned to each adapter is defined by
programmable options select (POS) parameters provided during
system setup. The location and use of control areas in this I/0
address space for a given adapter type can be found in “I/O Address
Space” on page 1-15.

Physical Level —January 1991 2-8

Physical Level Services

Operations provided by the physical level are used to access control
information in locations in shared memory or 1/0 address space and
to support the sending and receiving of signals by any system unit or
adapter on the channel. The operations provided are:

* Push
* Pull
s Signal.

The delivery-support logic uses the 1/0 address space to move
control parameters between the system unit and adapter. it uses the
shared memory to move state information and variable-length control
elements between delivery-support logic in different units (system
unit as well as adapters).

A system unit can use processor memory-mapped 1/0 or
programmed I/Q instructions to access control areas in I/0 address
space.

In an adapter, these operations can be provided by memory-mapped
instructions or by bus-master operations, depending upon the specitic
system unit or adapter implementation.

Push

The push operation moves control information from a location in the

caller's memory to a location in shared memory.

Note: The caller’'s memory can be located in local address space or
in shared memory address space.

The push operation is an internal function and is not defined by the
architecture. However, the following conceptual service primitive
illustrates the parameters required when invoking the service:

PUSH (unit id, address space, from address, to address, length, return code)

Unit ID This parameter identifies the system unit or adapter
that is the target of the push operation.

2-10 Physical Level —January 1991

Address space

From address

To address

Length

Return code

Puli

This parameter indicates whether the to address
argument refers to a location in shared memory or
I/Q address space.

This parameter identifies the location in the caller’s
memory that is the source of the information to be
pushed into the location in shared memory or /O
address space indicated by the to address
parameter.

This parameter identifies the location in shared
memory or /O address space that is to be the
destination for the information indicated by the from
address parameter.

This parameter indicates the number of bytes to be
pushed into the location in shared memaory or /0
address space identified by the to address
parameter.

This parameter indicates the success or failure of
the push operation.

The pull operation moves information from a focation in /O or shared
memory to a location in the caller’s memory.

Note: The caller’'s memory can be located in local address space or
shared memory address space.

The pull operation is an internal function and is not defined by the
architecture. However, the following conceptual service primitive
illustrates the parameters required when invoking the service:

PULL (unit id, address space, from address, to address, length, return code)

Unit ID

Address space

This parameter identifies the system unit or adapter
that is the target of the pull operation.

This parameter indicates whether the from address
argument refers to a location in shared memory or
I/QO address space.

Physical Level —January 1981 2-11

From address

To address

Length

Return code

Signal

This parameter identifies the location in 1/0O space or
shared memory that is the source of the information
to be pulled into the caller’'s memory as indicated by
the to address parameter.

This parameter identifies the location in the caller’s
memeory that is the destination for the information
indicated by the from address parameter.

This parameter indicates the number of bytes to be
pulied from the location in I/O or shared memory
identified by the from address parameter.

This parameter indicates the success or failure of
the puli operation.

In addition to the push and pull operation primitives, the physical
level also provides a service primitive for signalling between units.
The physical-level logic at the source unit maps the signalling
primitive into the appropriate set of hardware signals to cause an
interrupt at the destination unit (system unit or adapter).

The signal operation is an internal function and is not defined by the
architecture. However, the following conceptual service primitive
illustrates the parameters required when invoking the service.

SIGNAL (unit id, area, value, return code)

Unit ID This parameter identifies the system unit or adapter,

Area This parameter identifies the specific area within the
Signalling Contro! area (the enqueue area, the dequeue
area, or the management area).

Value This parameter identifies the value to be written to the
specitied area.

Return code This parameter indicates the success or failure of the
signal operation.

2-12 Physical Level —January 1991

Data Delivery

In adapters, bus-master support can also be used to transfer data to

or from entities in the adapter. The requsest and reply control
elements contain pointers to the iocation in shared memory of the
data to be accessed by the adapter entities. The push and pull
operations can be used by the entities at the processing level, and
the support-logic at the delivery level, to access data in shared
memaory.

Physical Level Protocols

This section defines the architecture for the various types of
physical-level protocols supported. The definition for each type

includes the protocols for both system unit to adapter and for adapter

to adapter.

Control Areas

The physical level uses the following parameters that are part of the

system configuration:

Memory address space
I/0 address space
Interrupt level
Arbitration level.

The assignment and uses of specific control areas in I/0Q space for

each interface type are included as part of the architecture definition

of each unit type.
Signalling Control areas use shared-memory and are used by the

delivery level in conjunction with the signalling protocols. These
operations are defined in “Signal” on page 2-5.

Physical Level —January 1991

2-13

Physical Interface

An adapter can support either the Locate or Move mode architecture
using hardware with the same set of control areas in I/O address
space and with setup support to tailor the operation of the
interrupt-valid bit and reset the protocel to match either mode.

At the physical level, the Move mode architecture defines the number
and location of the control areas in I/0 address space and the rules
or protocols for their use in:

Establishing access to the interrupt

Causing the interrupt to an adapter

Identifying the cause of the interrupt

Resetting the interrupt

Establishing addressability for the push or pull operation.

The base address of the |/0O address space is defined during system
configuration (Setup). The control areas within that /O address space
for a unit with a physical interface are defined in "Physical Intertace
Support” on page 1-15.

Note: Before using a unit with a physical interface, the
enable-interrupt and the enable-bus-master bits in the
Subsystem Control port (defined in “Subsystem Controt Port”
on page 1-17) must be set to 1.

Feature Adapter to System Unit Protocols
The following section defines the protocols used with the physical
interface for the push, pull, and signal operations,

* Pushing and Pulling

The protocol used to push and pull to or from shared memory is
done differently depending upon whether it is being done from a
system unit or adapter.

~ A system unit uses either Load and Store instructions or DMA
operations to push and pull data, depending on the data
being transferred.

- Adapters perform the push and pull operation to or from
shared memory using the bus-master function when the
shared memory is not physically located on the adapter.

2-14 Physical Level — January 1991

+ Signalling (which causes a hardware interrupt)

The protocol used to generate an interrupt to a system unit differs
from that used to generate an interrupt to an adapter.

An interrupt of a system unit by an adapter or another system
unit is caused by raising the interrupt level {IRQ line) defined
at system configuration time (Setup}.

Because system units allow an interrupt level to be shared by
several adapters, Signalling Control areas are used to
identify the unit that generates the interrupt.

The interrupt-valid bit in the Command Busy/Status port
(defined in “Command Busy/Status Port” on page 1-18) also
indicates which unit generated the interrupt.

An interrupt of an adapter is caused by writing to the
Attention port. The reason code of hex D and the device
number of hex 0 must be written to the Attention port as
defined in “Attention Port” on page 1-16. Only reason code
D and device number 0 are used by the physical protocol.

When the Attention port is written to, the operation-pending
bit in the Command Busy/Status port is setto 1. The
receive-signal logic in the adapter is responsible for resetting
this bit. Interrupt support in the adapter-control program
invokes the receive-signal logic .

The send-signal logic and receive-signal fogic operate in
support of the signalling protocols defined at the delivery
level.

— The send-signal logic (at the physical level) is used by
the send-signal logic (at the delivery level) after it has
pushed the signalling information into the appropriate
Signalling Control area.

— The receive-signal logic examines all Signaliling Control
areas when a hardware interrupt is received. This
ensures that all signalling indications are captured even
though a hardware interrupt could have been missed by
some hardware-busy or masked condition.

Using the information in the Signalling Control areas, the
receive-signal logic posts the appropriate delivery-signal
logic {at the delivery level} and clears the contents of the
Signalling Control area to 0. For management, it posts

Physical Level —January 1991 2-15

the unit-management logic and resets the management
indicator in the appropriate Signalling Control area.

Note: In order to prevent the loss of interrupts when the
operation-pending bit in the Command/Busy Status
port is set to 1, the processing of any interrupt should
include the processing of all Signalling Control areas.
Then, following the reset of the operation-pending bit,
a final recheck of all the Signalling Control areas
should be periormed.

Feature Adapter 1o Feature Adapter Protocols

Push, pull, and signal operations are also defined between two
adapters, each having a physical interface.

The push and puli operations use the bus-master-DMA operations in
both directions.

The signal operation (which causes a hardware interrupt) is done in
the same manner as defined from adapter to system unit. The
Signatling Control area identifies the cause and source of the
interrupts.

2-16 Physical Level —January 1991

Chapter 3. Delivery Level

The delivery level defines the services and protocols for managing
the delivery of one or more control elements between a system unit
and adapter or between adapters. The delivery level uses the
services provided by the underlying physical level.

The primary function of the delivery level is to support the sending
and receiving of control elements. Control elements are exchanged
using a pair of delivery pipes. One delivery pipe is used for sending
control elements, the other for receiving them.

The delivery level provides a set of services that can place control
elements into a delivery pipe (enqueue}, take control elements out of
a delivery pipe (dequeue), and signal between units.

The delivery level defines the protocols used in the delivery of control
elements. These protocols operate with the control areas located in
shared memeory, and are built on top of the physical-level support.

Structure

Figure 3-1 on page 3-2 shows the delivery-level structure for a
configuration supporting control element delivery between a pair of
units. The Local Enqueue and Local Dequeue Control areas are in
memeory that is local to each unit, and the Surrogate Enqueue and
Surrogate Dequeue Control areas are in shared memory. The pipes,
one in-bound and one out-bound, are also located in shared memory.
There can be multiple pairs of delivery pipes in a user’s system
containing multiple units {system units and adapters).

Figure 3-1 on page 3-2 also shows that delivery support consists of
enqueue logic, dequeue logic, and management logic and provides a
set of services to these entities through the send and receive
interfaces.

© Copyright IBM Corp. 1991. 341

r
i
i

Channel

|
|
|
i
|
|
|
L
b
[
L
|
|
|
|

Figure 3-1. Overall Delivery Level Structure

3-2 Delivery Level —January 1991

Delivery Pipes

The following figure shows the relationship of the delivery pipe to the
enqueue logic and dequeue logic (at either end of the delivery pipe)
and the individual control areas associated with each pipe. For more
information on the delivery pipe and the asscciated control areas,
see "Delivery Pipe” on page 1-19.

LOCAL SURROGATE
ENQUEUE | @ | ENQUEUE | <«— |DEQUEUE
CONTROL LOGIC CONTROL
AREA l AREA

p

I

P

E

l

SURRDGATE LOCAL
ENQUEUE —+ | DEQUEUE | <+—» | DEQUEUE
CONTROL LOGIC CONTROL
AREA AREA

Figure 3-2. Delivery Pipe and Associated Control Areas

The enqueue iogic places the control elements into the delivery pipe
at the source; the dequeue logic removes the control elements from
the delivery pipe at the destination. When a system contains several
units, each pair of units has its own pair of delivery pipes (one
in-bound and one out-bound). An example of a multiple unit structure
is shown in the following figure.

Delivery Level — January 1991 3-3

i

l‘)'("“ Send / Receive interfaces
Dequeus Enqueus
LECA LDCA LECA LDCA
X's Local Memory
Y == i
P < - g o
VB MBI E FE)
t 1 1 1
| N] e N 2] 7 |
i .- .. .’
i Unit Y Uses Unit Z Uses :
| XsSharedMemory i
l Physical Support Logic I
Channel
| |
Uni Unit
o Physical Support Logic 7 Physical Support Logic
I_:__’: _‘__.:__ﬂ[:__.:__,: _i__”_‘ _;
| b=~ [l - [l | ; - 1~ - i |l i
H ' 1 | F < 1 1 < 1] I
i ‘.f. **FE; | ‘O.f.E 'f'i
i I:w: U al e * ARG
= Unit X Uses Unit Z Uses I ! Unit Y Uses Unit X Uses I
 Y's Shared Memory J' i Z's Shared Memory !
[LECA] LLDCA| [LECA] LDCA] ILECA] LDCA] ILECA| LLDCA}
¥'s Local Memory Z's Local Memory
Enqueus Dequaue Enqueue I Dequeus
| Send / Receive Interfaces | l Send / Receive Interfaces |

Figure

3-3. Multipte Unit Structure

In the example, the control areas and the delivery pipes are shown
within dotted lines to indicate that they are located in shared

memory.

3-4 Delivery Level —~January 1991

Signalling

The enqueue and dequeue protocols operate using status information
maintained in shared memory and do not require signalling
operations. However, for certain implementations and protocols,
there might be a need to signal the other unit when certain changes
of the delivery pipe occur. The following are optional signalling
conditions:

When a delivery pipe goes from empty to not empty

When a delivery pipe goes from not empty to empty

When a delivery pipe goes from full to not full

When a delivery pipe goes from not full to full

When an control element is placed into a delivery pipe
When an control element is removed from a delivery pipe.

The Move mode architecture also defines signalling protocols which
support the management of the delivery-support logic.

Send and Receive Interfaces

Figure 3-1 on page 3-2 shows the send-interface logic between an
entity sending a control element and the enqueue logic. The
send-interface {ogic separates the various forms of operating-support
interfaces and schedufing policies from the enqueue protocols used
between units.

Figure 3-1 on page 3-2 shows the receive-interface logic between an
entity receiving a control element and the dequeue logic. The
receive-interface logic separates the various forms of
operating-support interfaces and scheduling policies from the
dequeue-logic protocols used between units.

Delivery Level —January 1991 3-5

Delivery Level Services

The services provided by the delivery level are used by entities at the
processing level to exchange requests and replies in the form of
control elements between correspondent entities. They include
services to:

¢+ Enqueue control elements
¢ Dequeue control elements.

Enqueue Service

The enqueue service is used to place one or more variable-length
control elements into the delivery pipe. The enqueue logic uses the
services provided by the underlying physicat level to access the
control areas associated with the destination unit and to place control
elements into the delivery pipe in shared memory.

The specifics for calling this service are an internal function and are
not defined by the architecture. However, the following illustrates the
parameters required when calling this service:

ENQUEUE (address, count, urgency, return code)

The address parameter indicates the location in the address space of
the cailer of the control element to be placed into the delivery pipe.

The count parameter indicates the number of contro! elements to be
enqueued. If more than one control element is specified, all the
control elements must be contiguous to one another in the memory
space identified by the address parameter.

The urgency parameter indicates the relative priority of the request to
engueue a control element: normal or expedited.

The return code parameter is returned to the caller and indicates the
success or failure of the enqueue operation.

The Destination field in the control element determines the
destination unit and the delivery pipe that deliver the control element.

3-6 Dellvery Level —January 1991

The Source field in the control element identifies the source unit and
delivery pipe used when returning a reply.

Dequeue Service

The dequeue service is used to initiate the removai of control
elements from the delivery pipe. Control elements are always
removed from the head of the delivery pipe. The dequeue logic uses
the services provided by the underlying physical level to access the
control areas associated with the delivery pipe, as well as the
delivery pipe.

Control elements are passed to the receive-interface togic using a
call-back mechanism. Using this approach, the receive-interface
logic calls the dequeue logic, which in turn calls back the
receive-interface logic with the address and length of the control
element at the head of the delivery pipe. The receive-interface logic
uses the contents of the control element to determine which entity
receives the control element and how to handie the delivery of the
control element to the destination entity.

This process repeats itself until the delivery pipe is empty or until the
receive-interface logic indicates it cannot accept any more control
elements.

Local policy determines the means of delivery. The control element
can be passed directly to the entity, or it can be queued for
processing later. If the entity is not active, does not exist, or does not
have an active read pending, the control element can be returned to
the sender.

The specifics for calling this service are an internal function and are
not defined by the architecture. However, the following conceptual
service illustrates the parameters required when calling the dequeue
service:

DEQUEUE (urit ID, return code)

The unit ID parameter identifies which delivery pipe is used.

The return code parameter is returned to the caller and indicates the
success or failure of the service call.

Delivery Level —January 1891 3-7

Delivery Level Protocols

The delivery-level protocols define the operations of the
delivery-level support as they appear across the channel. This
includes defining the push and pull operations used with the
physical-level services, and the signalling operations used with the
signalling services.

The operation of the delivery-level protocols is defined for a given
pipe. Atthe delivery level, all pipes operate the same. An overview
of the push and pull operations between the enqueue logic and its
control areas and the dequeue logic and its control areas is shown in
Figure 3-4 on page 3-9. The specific definitions for these control
areas can be found in "Delivery Pipe” on page 1-19. The locations in
shared memory for the control areas shown are defined at
initialization by the configuration records. The layout of the
configuration record is shown in Figure 5-1 on page 5-5.

3-8 Delivery Level —January 1991

Local
Enqueus ~-— Store Enqueue
Control
Load —e= Logic
Area ¢ 9
Push JJ I\L Pull -
r Push Pull q
Shared Memory \ Pugh
' P RELITECLoNE: ST ; Feen : !
| ¢ Surrogate Enqueue . Surrogate Dequeue : !
'} Control Area ! Cortrol Area P
1 T
i| startof Free Start of Elements | : !
[T
¥ 3
[T
'i{ Enqueue Status Dequeue Status | : .
i | | E | | i F)
! |
- |
' 1
Locat
—— Store .-
Dequeue
Control
load ——
= Arsa

Figure 3-4. Delivery Pipe and Associated Control Areas

The overall operation of the signalling portion of the enqueue and
dequeue logic is shown in Figure 3-5 on page 3-10. The specific
definition of the Signalling Control area can be found in “Signailing
Control Area” on page 1-29.

Delivery Level —January 1991 3-9

Management Enqueue Dequeue
Support Logic Support Logic Support Logic Shared Memory
in Unit X
___________________ P/
' Signalling Control Area
: For Unit Y
5 M
: ™ TN [e]r]¥]E
3
L . Q|s | y1Q
4‘ 4 |
I | Y Delivery Delivery
" Pipe Pipa
PR IgIE XtoY Yto X
' E | E N
' M
{)
! Signalling Control Area
, For Unit X
Dequeue Enqueus Management
Support Logic Support Logic Support Logic
In Unlt Y

Figure 3-5. Signalling Control Area Use

Each delivery pipe has a set of pointers in the Local Enqueue Control
area and in the Local Dequeue Control area. The pointers in the
Local Enqueue Control area indicate the start-of-free space and the
end-of-free space. The pointers in the Local Dequeue Control area
indicate the start-of-elements and the end-of-elements. Both control
areas have pointers that indicate the limits of the delivery pipe:

¢ TOP - the threshold point for normal engqueue operations.
e BASE - the beginning of the usable space in a delivery pipe.
¢ END - the end of the usable space.

3-10 Delivery Level — January 1991

Examples of the delivery pipe in different states are shown in the
following figure. An example of a control element that is being
wrapped is included. This occurs when a control element does not fit
into the space remaining between the current end-of-free space (EF)
and the top-cf-pipe (TOP).

END END END
TOP TOP ToP
WE | **wrap**
i
11
i
SF I
HHTTTTEEE [7i11111|5E
i EF
1T
et
i
i
i
SF f1|SE
IR EF SF
it HH1HTLEE
Hi 1"
1 i
1 1
i 1
1 I
M| SE Hi
BASE BASE BASE

Figure 3-6. Various Examples of Pipe Use

The following sections define the specific protocols for the enqueue
logic and dequeue logic. The logic is defined in pseudo code, which
operates on the information in the control areas and calls the
services of the physical level.

Enqueue Protocol

The protocol defines the operation of the enqueue logic that provides
control elements with the enqueue service.

The following discusses how the enqueue logic uses the control

areas in shared memory to manage the operation of the delivery

Delivery Level —January 1991 3-11

pipe. The individual bits and fields are described in “Delivery Pipe”
on page 1-19 and “Signalling Control Area” on page 1-29.

* The size of a control element is specified in bytes and can be
found in the Length field of the control element. Several control
elements can be enqueued with a single invocation of the
enqueue service. However, all of the control elements involved
must be contiguous in memory (see “Enqueue Service” on
page 3-6).

* The location of the top-of-pipe (FOP) is determined by the
implementation but must be sufficient to hold at least one wrap
control element.

+ The enqueueing of a control element is a local operation when
the delivery pipe is physically located in the source unit. itis a
distributed operation and involves a push of the control element
across the channel when the delivery pipe is physically located in
the destination unit.

* The type of operation (local or distributed) required to access the
Surrogate Start of Free and Surrogate Enqueue Status fields
depends on where they are located in shared memory.

* For the enqueue logic, the receive-signal logic is used to
synchronize the state of the empty bit in the Surrogate Dequeue
Control area with the state of the empty bit in the Local Enqueue
Control area.

* To allow the tailoring of signalling conditions, several signalling
options can be specified during configuration and initiafization.
These options are used by the state-change function of the
enqueue logic to indicate the conditions under which a signal is
sent by the engueue logic to the dequeue logic at the other end of
the delivery pipe. The following describes the signaliing-option
hits and the actions taken when they are set to 1.

— If the not-full to fult option is selected, a signal is sent when
the pipe goes from a not-full state to a full state.

— If the empty to not-empty option is selected, a signal is sent
when the pipe goes from an empty state to a not-empty state.

— If the sighal-on-enqueue option is selected, a signal is sent
each time a control element is placed into the pipe.

Nole: Care should be exercised when configuring the signal
on-enqueue option. Use of this option with high-speed

3-12 Delivery Level —January 1991

adapters could result in an overload of the destination
unit’'s interrupt handler.

+ Several bits in the Enqueue Status field of the Local Enqueue

Control area are used internally to control the operation of the
engueue logic.

— The queued bit, when set to 1, indicates a control element
has been successfully placed into the delivery pipe.

— The empty bit, when set to 1, indicates the empty bit in the
Surrogate Dequeue Status field is set to 1.

Several other bits in the Enqueue Status field of the Local
Enqueue Control area hold information used to update the Status
field in the Surrogate Enqueue Control area.

— The full-status bit, when set to 1, indicates the delivery pipe is
full from the perspective of the enqueue logic.

— The wrap bit is used to indicate that a wrap control element
has been placed into the delivery pipe by the enqueue logic.
The engueueing of a wrap control element causes a toggling
of this bit (1to 0 or 0 to 1).

Delivery Levet—January 1991 3-13

The pseudo code in the following pages is an example of the enqueue
protocols. These protocols are:

Enqueue initialization

Enqueue receive signal
Enqueue function

Engueue state-change function.

Enqueue Inftlalization

The following occurs when the delivery service in a unit is initialized.

{Setup the fields in the local enqueue contrgl area containing
the starting and ending offset values for start_of_free and
end_of free.}

SET start_of_free = BASE
SET end_of_free = top_of pipe

{Setup various flag bits in the enqueue status field of the
Tocal engueue control area to their correct initial value.}

SET enqueue_wrap = D
SET full =@

SET queued = @

SET empty = 1

{Setup the field in the surrogate dequeue control area containing
the starting offset value for start_of elements.}

SET surrogate start_of_elements = BASE

{Setup the various flag bits in the dequeue status field of the
surrogate dequeue contro) area to their correct initial value.}

SET surrogate dequeue wrap = 9
SET surrqgate empty = 1

Enqueue Recelve Signal

The following occurs when a signal is received from the dequeue
logic at the other of the delivery pipe. This is done prior to invoking
the enqueue logic.

IF surrogate empty = 1 THEN
SET empty = 1
ENDIF

3-14 Delivery Level —January 1991

Enqueue Function

The following pseudo code represents the main-line code of the
enqueue-support logic. 1t is called by the send-interface or
receive-interface logic to place control elements into a delivery pipe.
See “Enqueue Service” on page 3-6 for a description of the calling
parameters and the return codes.

PROCEDURE Enqueue {control element address, number, urgency, return code)

{Call the queue routine to place a control element in the pipe
for as long as there are contro) elements to enqueue or until
an exception condition is encountered. }

0o
CALL queue_element (control element address, return code)
SET number = number - 1

WHILE return = successful and number # 0

RETURN return code to caller
ENDPROC

The following pseudo code is called by the main-line code of the
enqueue-support logic. It places control elements into the pipe one at
a time, updates the appropriate Local and Surrogate Control areas,
and signals the dequeue logic at the other end of the pipe, when
necessary.

Delivery Level — January 1991 3-15

PROCEDURE queue_element (control element address, return code)

{Update the end of free space (enqueue tail) by tracking
where the start of elements (dequeue head) is currently
located.}

IF (end_of_free > surrogate start_of_element) OR
{end_of_free = surrogate start_of_element AND
engueue_wrap = surrogate degueue_wrap)
THEN
SET end_of_free = top_of_pipe
ELSE
SET end_of_free = surrogate start_of_efements
ENDIF

{Check to see if an element can be placed in the
pipe. If so, place it in the pipe, update the
enqueue state information, and return indication
that the enqueue was successful,}

IF Tength of element = end_of_free - start_of free
THEN

{Element can he placed into the pipe.}

move element onto pipe at start_of_free
increment start_of_free by length of element
SET queued = 1
CALL state_change
RETURN successful indication to caller

ELSE

{Element won't fit in the pipe. Check if the pipe
needs to wrap to the top_of_pipe. If it does,
build wrap control element, place it in the pipe,
update the enqueue state information, and try
again to place the element in the pipe. If it
does not, update enqueue state information and
return pipe full indication to caller.}

I[F end_of_free = top_of_pipe
THEN

{A wrap condition exists.}

push wrap element onto pipe at start_of_free
SET end_of_free = surrogate start_of_elements
SET start_of_free = base

{Toggle the state of the wrap bit.}

IF enqueue_wrap = 0

THEN
SET enqueue_wrap = 1
ELSE
SET enqueue_wrap = 0
ENDIF

3-16 Delivery Level — fanuary 1991

{Now check to see if control element will fit
in the pipe after we have wrapped to BASE of
the pipe., If it does, move control element
into the pipe and update the enqueue state
information. If not, update state information
and return full condition to caller. }

IF element length = end_of _free - start_of_free
THEN

{Element will fit in the pipe.}

push element onto pipe at start_of_free

increment start_of free by element length

SET queued = 1

CALL State_Change

RETURN successful indication to caller
ELSE

{Element still won't fit in the pipe.

SET full = 1

CALL State_Change

RETURN pipe ful) indication to cailer
ENDIF

ELSE

{Pipe has not wrapped, but it is full. Update
the engueue state information and indicate
control element not queued.}

SET full = 1
CALL State_Change
RETURN pipe full indication to caller
ENDIF
ENDIF
ENDPROC

Delivery Level —January 1991

317

Enqueue State Change Functlon

The following pseudo code represents the state-change code of the
enqueue-support logic. It is called by the enqueue function to update
the status information associated with the Surrogate Enqueue Control
area, and to determine if a signal must be sent to the unit at the other
end of the delivery pipe.

PROCEDURE state_change()
{Update the surrogate enqueue control area.}

Move enqueue status to surrogate enqueue_status
Move start_of _free to surrogate start_of_free

{Determine if a change in the state of the pipe has
occurred which requires the sending of a physical
signal to the dequeue Togic in the unit at the other
end of the pipe.}

IF (queued = 1 AND signal on-enqueue = 1) OR
(queued = 1 AND surrogate empty = 1 AND
empty to non-empty = 1) OR
{full = 1 AND not-full to full = 1)

THEN

{Physically send a signal to the dequeue logic in
the specified unit indicating a change in state.,}

CALL signal(unit, dequeue logic, state_change)
ENDIF
SET empty = 0
SET full = 0
SET queued =
ENDPROC

0

3-18 Delivery Level —January 1991

Dequeue Protocol

The dequeue protocol defines the operation of the dequeue logic that
provides the control element dequeue service.

The following discusses how the dequeue logic uses the control
areas in shared memory to manage the operation of the delivery
pipe. The individual bits and fields are described in “Delivery Pipe”
on page 1-19 and “Signalling Control Area” on page 1-29.

The dequeueing of a control element is a local operation if the
delivery pipe is physically located in the destination unit. Itis a
distributed operation and involves a pull across the channel
when the delivery pipe is physically located in the source unit.

The type of operation (local or distributed) required to access the
Surrogate Control areas depends upon where they are physically
located in shared memory.

The dequeue logic removes and discards the wrap control
element when dequeueing so that the space between the wrap
control element and the top-of-pipe (if any) can be made
available to the enqueue logic.

For the dequeue logic, the receive-signal logic is used to
synchronize the state of the full bit in the Surrogate Enqueue
Control area with the state of the full bit in the Local Dequeue
Control area prior to inveking the dequeue logic.

To allow the tailoring of signalling conditions, several signalling
options can be specified during configuration and initialization.
These options are used by the state-change function of the
dequeue logic to indicate the conditions under which a signal is
sent by the dequeue logic to the enqueue logic at the other end of
the delivery pipe. The following describes the signalling-option
bits and the actions taken when they are set to 1.

— It the not-empty to empty option is selected, a signal is sent
when the pipe goes from a not-empty state to an empty state.

— If the full to not-full option is selected, a signa! is sent when
the pipe goes from a full state to a not-full state.

— 1f the signal-on-dequeue option is selected, a signal is sent
each time a control element is removed from the pipe.

Delivery Level — January 1991 3-19

Note: Care should be exercised when configuring the signal
on-dequeue option. Use of this option with high speed
adapters could overload the source unit’s interrupt
handler.

* Several bits in the Dequeue Status field of the Local Dequeue
Control area are used internally to control the operation of the
dequeue logic.

— The dequeued bit, when set to 1, indicates a control element
has been successfully removed from the delivery pipe.

— The pre-empt bit, when set to 1, indicates the current
dequeue operation is terminated even it the delivery pipe is
not empty. The pre-empt hit is set based on the return code
from the receive-interface iogic. A value of 0 indicates that
another control element can be passed to this logic. A value
of 1 indicates that no more control elements are passed at
this time.

* Several other bits in the Dequeue Status field of the Local
Enqueue Control area hold information used to update the Status
field in the Surrogate Dequeue Control area.

— The empty bit, when set to 1, indicates the delivery pipe is
empty from the perspective of the dequeue logic.

— The wrap bit is used to indicate that a wrap control element
has been removed from the delivery pipe by the dequeue
logic. The dequeueing of a wrap control element causes a
toggling of this bit {1 to 0 or 0 to 1).

The pseudo code in the following pages is an example of the dequeue
protocols. These protocols are:

Dequeue initialization

Dequeue receive signal
Dequeue function

Dequeue state-change function.

Dequeue Initialization

The following occurs when the dequeue portion of the delivery
service in a unit is initialized.

3-20 Delivery Level —January 1991

{Setup the fields in the local dequeue control area containing
the starting and ending offset values for start_of_elements and
end_of_elements.}

SET start_of_elements = BASE
SET end_of_elements = BASE

{Setup the various flag bits in the dequeue status field of the
lTocal dequeue control area to their correct initial value.}

SET dequeue_wrap = @
SET pre-empt = 8@

SET dequeued = 0

SET full = 0

SET empty = 1

{Setup the field in the surrogate enqueue control area containing
the starting offset value for start_of_free.}

SET surrogate start_of_free = BASE

{Setup the various flag bits in the enqueue status field of the
surrogate enqueue control area to their correct initial value.}

SET surrogate enqueue_wrap = 0
SET surrogate full =0

ENDPROC
Dequeue Receive Signal

The following occurs when a signal is received from the enqueue
logic at the other of the delivery pipe. This is done prior to invoking
the dequeue logic.

IF surrogate full = 1 THEN
SET full = 1
ENDIF

Dequeue Funcilon

The following pseudo code represents the main-line code of the
dequeue-support logic. It is called by the receive-interface logic to
initiate removing control elements from a delivery pipe. See
“Dequeue Service” on page 3-7 for a description of the calling
parameters and the return codes.

Delivery Level —January 1991 3-21

PROCEDURE dequeue (unit, return code)

IF start_of_elements = surrogate start_of free AND
dequeue_wrap = surrogate enqueue_wrap
THEN
CALL state_change
RETURN pipe empty to caller
ELSE

{Remove all the elements from the pipe and pass them one at
a time to the input router of the receive interface logic.}

Do
SET end_of_elements = surrogate start_of_free

{Check the element at the head of the pipe. If it is a wrap
element, discard it, reset the start of elements pointer to

the base of the pipe, and toggle the setting of the dequeue wrap
state. If not, call the input router function of the receive
interface Jogic with the address of the element.}

IF element at start_of_elements is a wrap element
THEN
dequeue and discard the wrap element
SET start_of_elements = base of pipe
SET dequeued = 1

{Toggle the dequeue wrap state.}

IF dequeue_wrap = 0

THEN
SET dequeue wrap = 1
ELSE
SET dequeue wrap = 0
ENDIF

ELSE
CALL receive_input_router (start_of_elements)
IF return_code = 1 THEN
SET pre-empt =1
SET start_of_elements = start_of_elements + element length
SET dequeued flag = 1
CALL state_change
ENDIF

WHILE (pre-empt = 8) AND
(start_of_elements # end_of elements OR
dequeue_wrap ¥ surrogate_wrap)

{Determine if we stopped because pipe was empty. If so,
set empty and call state_change.}

IF pre_empt # 1 THEN
SET empty = 1
SET pre-empt = 0
CALL state_change
ENDIF
ENDIF
ENDPROC

3-22 Delivery Level — January 1991

Dequeue State Change Function

The following pseudo code represents the state-change code of the
dequeue-support logic. It is called by the dequeue function to update
the status information associated with the Surrogate Dequeue Control
area, and to determine if a signal must be sent to the unit at the other
end of the delivery pipe.

PROCEDURE state_change ();
{Update the surrogate dequeue control area.}

Push dequeue_status to surrogate dequeue_status
Push start_of_elements to surrogate start_of_elements

{Determine if a change in the state of the pipe has
occurred which requires the sending of a physical
signal to the engueue logic in the unit at the other
end of the pipe.}

IF (dequeued = 1 AND signal on dequeue = 1) OR
(surrogate full = 1 AND full to not-full = 1) OR
{empty = 1 AND not-empty to empty = 1}

THEN

{Physically send a signal to the engueue logic in
the specified unit indicating a change in state.}

CALL signal(unit, enqueue logic, state_change)
ENDIF

SET empty = 0
SET full =0
SET dequeued = 0

ENDPROC

Delivery Level —January 1991 3-23

Notes:

3-24 Delivery Level — January 1991

Chapter 4. Processing Level

At the processing level, requests and the responses to those requests
are exchanged between entities using the services provided by the
underlying delivery level. These entities represent the clients and
the servers in the various system units and adapters attached to the
channel.

An entity sends a request to another entity or receives a reply to a
previous request using control elements. The information contained
in these control elements, their number, order of exchange, and
meaning, constitute a protacol between the two entities. This
protocol is used by the two entities to coordinate and control their
activities. The architecture does not define these protocols.
However, the architecture does define the structure and format of the
control elements and the content and use of a common header that is
required in all control elements.

The delivery service uses information in this common header to
deliver control elements without knowing or understanding what is
contained in the body of the control element.

The cooperating entities use information in the common header to
identify the source, indicate the type and urgency of the information
contained in the control element, and to correlate replies with
previous requests,

Structure

The processing level is structured into two parts: an intertace part
and a processing part. The interface part provides a means for
tailoring the interface between the entities at this level, the local
operating environment, and the underlying enqueue and dequeue
services provided by the delivery level. The processing part consists
of the entities that use the underlying delivery service to
communicate with one another in the performance of a common task.

The send-interface and receive-interface logics provide a means of
tailoring the local interface in each unit (system unit or adapter) to

© Copyright IBM Corp. 1991. 4-1

the processing requirements of the entities, their operating
environment, and the underlying delivery service.

This allows the receive-interface logic to place control elements in a
local queue until the destination entity is ready to process them,
instead of requiring the destination entity to wait for the arrival of a
control element.

The operating environment at one end of the delivery pipe might not
support the ability to block or suspend the execution of an entity
pending the receipt of a control element, while the operating
environment at the other end of the delivery pipe might be able to do
50.

Each of these situations has an impact on the local behavior of the
communicating entities, but not on their ability to send or receive
control elements to each other.

The content of control elements is totaliy dependent on the entity
pair. However, the architecture defines a set of common-use control
elements and protocols at the processing level when either command
or data chaining is used. The architecture also makes provisions for
defining additional control elements used between entities whose
requirements cannot be met by the control elements in the
common-use set.

Processing Level Operation

The delivery-support logic operates in conjunction with the various
entities and the underlying operating environment. The following
shows an example of this interaction.

4-2 Processing Level —January 1991

UNIT X : H :
H Thread : Thread : Thread
Using
Entities
Hardware
— — 1 Interrupt
Kernel . N H
Delivery : H : : : :
Support Lol H H
Outbound Internal - [:]
Delivery ' Delivery
Pipe Flow D D

UNIT ¥ [:3 [:] Inbound
Internal Delivery
r_—] [-:] — Delivery Pipe

Fiow
Delivery | veres eieae ewoas
Support HEE I : : H
: : : : H Hardware
Hamtt ot Hal] 1 Interrupt
Kernel l : : ' : :
Using : ¥3: 2
Entities H H :
: Thread Thread + Thread

Figure 4-1. Device Driver or Handler Model

Processing Level —January 1991

4-3

Each entity using the delivery support is operated on a unit of
dispatching (called a thread). The delivery support is functionally
similar to that of a device driver in operating-systems environments
(Figure 4-2 on page 4-5).

It has a strategy portion which runs under the same thread as the
entity.

it can allow only one thread at a time to use the delivery-support
logic. This feature can be used to serialize the enqueueing of
control elements into the shared-delivery pipe.

It allows the delivery-support logic to cause a wait condition
(block) on a specific thread. This can be used to handle pipe-full
or receive-pending conditions.

It has a local-data area for the delivery-support logic. This can be
used for pipes as well as for delivery state and configuration.

It has an interrupt handler which is called when a hardware
interrupt occurs. This can be used to support the signalling
protocol and initiate the dequeue fogic.

44 Procassing Level —January 1991

System Unit [_J

System Unit Entities

!

Kernel
STRATEGY ROUTINE Device Driver
Send Interface
Receive Interface
Enqueue Logic TIMER HAMDLER H
Signal Logic Receive Interface :
---------- Degqueue Logic
: Physical Delivery Signal Logic
: (ABIDS like) (wakeup)

HARDWARE INTERRUPT HANDLER
Receive Interface
Dequeue Logic Timer
Signal Legic Tick
Physical Delivery
{ABIOS Tike)

Hardware
L \ 4 Interrupt

Feature Adapter

Other Half of Delivery Support
(details not shown)

Figure 4-2. Device Driver or Handler Model

A hardware interrupt causes the scheduling of the signailing portion
of the delivery support for that unit. The physical protocol that causes
the interrupt differs for system units and adapters.

Figure 4-2 also shows that control elements can be removed from the

pipe going in one direction between units and placed in the pipe
going in the other direction between units (internal delivery flow).

Processing Level — January 1991 4-5

This routing of control elements can be considered an internal
operation. This capability is required to support the handling of
certain error conditions. The figure does not show the
physical-delivery support used to pass control elements, data, and
signals between the two units.

Send

The enqueue operation is performed in the device driver or handler
routine. The control elements move on the entity’s thread when the
Send command is executed. The details of the enqueue logic are
defined in “Control Element Delivery” on page 1-11.

The architecture does not define policy. However, the send-interface
logic provides a means of implementing local policy for each unit.
The send-interface logic determines:

* Whether a single control element or multiple control elements are
used.

* Whether control is returned directly to the cailing entity when the
pipe is full, or the thread is blocked until the full condition clears.

Receive

On the receive side, a receive pending exists for any Send command
between an entity pair. The Send command can involve requests,
replies to requests, or event type control elements. The specific
entity-to-entity protocol determines how the Send and Receive
commands are correlated. This correlation can be different for each
entity pair. It is not restricted by the architecture.

Any queueing for the server is performed at the processing level.
The delivery pipe is used only to mask the characteristics of the
physical interface when multipiexing the delivery of control elements
to multiple entities in the same unit. The model used for control
element delivery is that of a free-flowing pipe running between the
source and destination entities.

The receiving of control elements is handled the same as a
read-pending operation. The space for the control element must be
pinned and known by the receive-interface support so the control
element can be moved from the delivery pipe into shared memory
without performing a context switch. Placing the control element into

4-8 Processing Level —January 1931

shared memory satisfies the receive pending at the receiving entity.
if the thread with the receive pending was blocked, it becomes
unblocked.

If the receiving entity does not have a receive pending for the control
element sent, the receive-intertace logic removes the control element
from the delivery pipe, and either discards it or returns the common
header (returning the header is device dependent).

When the control element is returned:

* The Source and Destination fields are reversed.

e The control element is set to an error type control element.
* The Status Information field is updated.

* The remainder of the request control element is discarded.
* The Length field is updated.

To prevent flooding of the delivery pipe in the opposite direction, and
to prevent continuous wrapping of reply and error type control
elements, additional request control elements and any other type of
control elements received while a Receive command is not pending
might be discarded. This prevents out-of-step protocols associated
with one entity-to-entity tlow from blocking the flow to other entities.

The space management for the delivery pipes can provide space
within the pipe to accommodate this internal flow although the
delivery pipe could be considered fuil for normal flow.

The architecture does not define what makes up a receive pending. It
can be handled in a number of different ways because it depends on
each unit’'s receive-interface-support logic. For example, some
implementations choose to have the receive-interface logic maintain
a set of queues for control elements. There might be a single queue
tfor all entities at the destination, or there might be a separate queue
for each entity. These queues can be arranged by control element
type (request, reply, error, event), entity, or any other manner.

Processing Level —January 1991 4-7

Interrupt

The use of the device driver or handler model for the control element
delivery allows the hardware interrupts at the physical level to be
separated from the control element delivery provided to
entity-to-entity pairs.

Entity-to-entity protocols can operate using request, reply, error, and
event control elements which are passed through a pair of delivery
pipes. This separates the operation of the entity-to-entity protocols
from the hardware interrupts.

The detivery-level state information for the enqueue and dequeue
protocols is defined so that the pipe can operate without interrupts it
the support cbserves the changes in state and acts accordingly.

Hardware interrupts are used to assist certain implementations in
keeping the control elements in pipes flowing between units.
Separating requests from replies allows interrupt overhead to be
reduced because several control elements are dequeued when a
single hardware interrupt is handled.

The delivery-level protocols related to interrupts are called signails.
The architecture defines the signalling protocols if they are required
by the implementation. Signalling can be done at user specified
intervals to maintain the flow in the pipe and when certain state
changes occur within the delivery pipe. The specific state changes
are defined as part of the architected enqueue and dequeue
protocols.

Processing Level Services

The Move mode architecture does not define the services used at the
processing level. It only provides a means for tailoring the interfaces
between the entities at this tevel, the local operating environment,
and the underlying delivery level.

The functions provided by the send and receive interfaces depend on
the implementation. Individual implementations can consider
sending multiple control elements with a single call, and can decide
to return on a pipe-full condition or wait for the condition to clear.

4-8 Processing Level —January 1991

The receive-interface logic can provide the queueing of control
elements for entities that do not have a read pending. Each entity
can have its own individual queue or multiple queues corresponding
to the type of control element (request, reply, error, event).

Processing Level Protocols

In general, the processing-level protocols are not defined by the
architecture. However, the architecture does define common uses for
the control elements used in the entity-to-entity flow. These include:

Command chaining

Data chaining
Notification and wait
Initialization (peer level).

Command Chaining

The server can process the control elements synchronously or
asynchronously, depending on whether commands are being chained
or not. Normally, a server can process requests in any order
{asynchronously).

Command chaining is used to force the server to process control
elements synchronously. When the command-chaining bit is set, the
processing of the next control element in the chain cannot begin until
the server completes the processing of the current control element
and returns the appropriate reply to the client. The chaining process
continues until all control elements in the chain are processed or an
error is detected. When an error is detected, an error type control
element is returned and the remaining control elements in the chain
are discarded.

Data Chaining

Data chaining is a method of managing complex data transfers. For
example, a single logical block of data can be located in several
noncontiguous areas in shared memory and might need to be
transferred to a single destination. Or, a single block of data might
need to be transferred from a single source and placed in several
noncontiguous areas of shared memory.

Processing Level —January 1991 4-9

The architecture supports two methods of data chaining: direct and
indirect.

Direct Data Chaining

In direct data chaining, each noncontiguous data area is described by
an entry in a chaining tist that is included in the request control
element. The entry contains a byte count and an address pointer to a
data area. Afier each data area described by an entry is transferred,
the next entry in the list is processed. This action continues until all
the entries in the list have been processed or until no more data
exits. Direct data chaining is invoked by using the read list and write
list function codes (see “"Read List” on page 1-43 and “Write List" on
page 1-49).

Indirect Data Chaining

Indirect data chaining is similar to direct data chaining, except for the
location of the chaining list. The list, however, is not part of the
request control element. Instead, the list is kept separate and is
referenced by means of an indirect list pointer in the Value field of the
request control element. Indirect data chaining is invoked by setting
the indirect bit in a read or write list request control eilement. The
following figure illustrates how the request control element and
indirect list appear for a read list request.

4-10 Processing Level —January 1991

13z22222222221111111111
10987654321098765432109876543210
Format Identifier = 0 Length Field
Reqi|S % T|N|W[E| Read List Reserved
Source Destination

Correlation I[dentifier

Length of Indirect List

Address of Indirect List ——1
{Ar Byte Count

Data Address

Cptional Parameters

—
—

Byte Count

Data Address

Optional Parameters

Figure 4-3. Indirect Data Chaining
Notification and Wait

A client can request notification when a server is about to process a
specific control element by setting the notification bit (N) in that
control element. The server then returns an event control element
with the Source, Destination, and Correlation Identifier fields for the
appropriate control element to the client.

A client can suspend the processing of a chain of control elements at
a particular point by setting the wait bit (W) in the appropriate control
element prior to submitting it to the delivery service. This causes the
server to:

» Suspend further processing of request control elements

Processing Level —January 1991 4-11

* Return an event notification control element that contains the
Correlation |dentifier field of the control element with the suspend
bit in its Value field

* Wait for a resume event from the originating client before
continuing.

The original request control element that contains the wait bit is not
processed until the resume event is received from the client.

The tollowing table shows the actions taken for different combinations
of the wait and notification bits.

Notify

Walt

Action

0

0

Continue processing request control elements.

0

1

Suspend processing of the current control element and alt
subsequent request control elements from this source untit
a resume event control element is received from this
source.

Return a notification to this source and process the request
contro! element and all subsequent control elements from
this source.

Return a notification to this source and suspend
processing of the current control element and all
subsequent control elaments from this source until a
resume event control element is received from this source.

Figure 4-4. Notity and Wait Actions

4-12 Processing Level —January 1991

Z’:hapter 5. Desién Considerations

This section discusses the following areas, which are part of the
Move mode architecture definition.

* Configuration
Initialization

* Exception handling
» System management.

Configuration

Proper configuration of the system and the subsequent initialization
of the individual units (system units and adapters), as well as the
delivery service itself, are prerequisites for using the services. As
such, it is considered to be a part of the Move mode architecture.

The process of initializing the delivery services requires that the
following configuration information be defined and available at the
time the system is loaded:

+ Unit level
* System level
¢ Peer level.

Unit Level

Infoermation from the unit-level configuration is specific to a single
unit (system unit or adapter). The type of information provided is
similar to that in an adapter description file (adapter description file
is defined by the Setup Architecture). This includes, but is not limited
10, the following information:

Adapter ID

Adapter base |/0 address

Adapter base 1/0 size

Adapter base shared-memory address
s Adapter base shared-memory size
Interrupt level

* DMA arbitration level.

* & o o

© Copyright IBM Corp. 1991, 5-1

System Level

Information from the system-level configuration allows a pair of
cooperating units (system or adapter) to communicate with each
other. This information is used to set up and coordinate the delivery
service. This information includes, but is not limited to the following:

5-2

Unit ID

The delivery support uses a Unit ID to associate a unit with the
set of control areas in memory and {/0 address space.

Peer Unit ID

At the system level, each unit requires an |D and IDs of the other
units it sends control elements to or receives control elements
from.

Unit Type
The delivery service supports the following operations:

— System unit to adapter
— Adapter to adapter
— System unit to system unit.

Both units must identify the configuration information for the unit
type (system unit or adapter).

Resource Definitions
The delivery pipes require:

— Configuration information describing the size and location of
the delivery pipe

~ Operational information defining the use of the pipe
— Information indicating the current state of the pipe.

The following is a summary of the specific information required to
allocate and use these resources:

— Placement
The pipe can be located anywhere in shared memory.
— Size and {ocation

Both units need to know the size and location of the delivery
pipes and the associated control areas.

Design Considerations —January 1991

— Signalling Control area locations

The method of signalling between units is determined by the
unit type and unit pairing (system unit to adapter, adapter to
system unit, or adapter to adapter.}. Both units must have
the location of the Signalling Control area before signalling
the other unit.

— Signalling conditions

The delivery level supports a number of signalling options.
Both units must be configured to support the options used.
The foltowing are some optional signalling conditions:

— At specific time intervals.

— A delivery pipe goes from empty to not empty.

— A delivery pipe goes from not full to full.

— A delivery pipe goes from not empty to empty.

— A delivery pipe goes from full to not full.

— A control element is placed in a delivery pipe.

— A control element is removed from a delivery pipe.

~ Surrogate offset information

The offsets in the Surrogate Control areas (surrogate
start-of-iree and surrogate start-of-element) are used by both
the enqueue and dequeue logics.

— Surrogate status information

Information regarding the current state of the delivery pipes
(full, empty, wrap, etc.) is maintained for both pipes.

— Timer information

A watchdog or idle timer can be used to ensure reliable
operation of the delivery {evel in case interrupts are masked
or lost. If the timer is used, both units must support it and be
aware of the frequency used and the source.

Peer Level

Information from the peer-level configuration is used by the system
management to identity adapter-to-adapter pairings. This information
is needed during peer-level initialization to provide each of the
adapters with the parameters it needs to carry out unit-level
initialization with its peers.

Design Considerations —January 1991 5-3

Initialization

Unit Level Initialization

Units are initialized by the system unit at power-on. The POST
(power-on self-test) performs the initialization using the setup
information maintained in non-volatilte RAM,

System Level Initialization

System-level initialization is carried out by a system unit at IPL time
and by an adapter at IML time. The system-level initialization is a
multistage process. For system unit to adapter pairs, the first stage
is carried out by the system unit, the second stage by the adapter,
and the third stage by the system unit. In the third stage, the system
unit verifies that initialization is complete and notifies the adapter of
the status.

for adapter-to-adapter pairs, the initialization is done under the
control of system management as a third party operation, using the
initialization control element.

The first stage of the initialization is done by the system unit support
when it is loaded. As part of its initialization process, this support
constructs a configuration record for each bus unit it supports. The
configuration record is constructed in shared memory and its address
passed to each adapter during unit-level initialization. The format
and content of the configuration record is the same for all adapters
and is defined in Figure 5-1 on page 5-5.

During system-tevel initialization, the term out-bound refers to the
direction of flow and identifies the delivery pipe used to pass control
elements from the system unit to the adapter. The term in-bound
refers to the direction of flow and identifies the delivery pipe used to
pass control elements from the adapter to the system unit.

5-4 Design Considerations —January 1991

33¢22222222221111111111

1098765432109876543210698765432180
Format Identifier = O Length
Configuration Status Sys Unit ID Adpt Unit ID

System Signaliing Address

Adapter Signalling Address

Reserved

Adapter 8

ase 1/0 Address

System Mgmt ID | Unit of Time

Timer

Frequency

System Configuration Options

Adapter Con

figuration Qptions

Size of Im—Bound Pipe

Size of

Out—Bound Pipe

Address of In—Bound

Pipe

Address of In—Bound Surrocgate

Dequeue Status

Address of In—Bound Surrogate

Start-of-Element

Address of In—Bound Surrogate

Enqueue Status

Address of In—Bound Surrogate

Start-of-Free

Address of Out—Bound

Pipe

Address of Out—Bound Surrogate

Dequeue Status

Address of Out—Bound Surrogate

Start-of-Element

Address of Qut—Bound Surrogate

Enqueue Status

Address of Qut-Bound Surrogate

Start-of-Free

Format Identifler Fleld

This field identifies the format of the configuration record.
Configuration records with a Format Identifier field value of 0

Figure 5-1. System Configuration Record Format

indicate a Move mode configuration record. All other values are

reserved.

Length Fleld

This field contains the length of the configuration record in bytes,

including the two bytes required for the Length field.

Design Considerations — January 1991

5-6

Conflguration Status Field

This field holds status information that shows the current state of
the initialization process. It is set to all 1s by the system unit
after the configuration record is built.

System and Adapter Unit identification Flelds

These fields are set by the system unit and indicate the unit
assignments (logical to physical mapping) as well as the unit
pairing.

System Signalling Address Fieild

This field identifies the shared memory location of the Signalling
Control area where the adapter is to place signalling information
prior to signalting the system unit. The format and content of the
Signalling Control area can be found in Figure 1-20 on

page 1-30.

Adapter Signailing Address Fleld

This field identifies the shared memaory location of the Signalling
Control area where the system unit should place signalling
information prior to signalling the adapter. The format and
content of the Signalling Control area can be found in Figure 1-20
on page 1-30.

Adapter Base 1/O Address Field

This field contains the base I/O address assigned to the adapter
during Setup.

System Management ID Field

This fleld contains the entity identifier of the system-management
entity in the system unit.

Unlt of Time Fleld

This field indicates the granularity of the value in the Timer Value
field. Itis interpreted as:

01h - milliseconds

02h - 10s of milliseconds
04h - 100s of milliseconds
08h - seconds

10h - minutes

All other values are reserved.

Design Considerations — January 1991

Timer Frequency Fleld

The value in this field, when used with the Unit of Time field,
indicates the frequency the system unit will present a

timer-expiration signal of the paired unit. This fieid is valid only it
the signal-on-timer-expiration bit is also set in the Configuration

Options field of the appropriate bus unit.
System Configuration Options Field

This field contains information describing the system unit
configuration options. The format and content of the field are
found in the following figure.

Fipe Placement Unit Type Signalling Options

IXXXXXXX — Reserved

X1XXXXXX — On Timer Expiration
XXIXXXXX — Signal on Dequeue
XXX1XXXX — Signal on Enqueue
XXXX1XXX — On Empty to Not—empty
XXX — On Not—full to Full
XXXXXX1X — On Not—empty to Empty
XXXXXXX1 — On Full to Not—full

0000 - System Unit

8001 thru 0111 ~ Reserved
1600 — Physical Adapter
1681 — Reserved

1010 thru 1111 ~ Reserved

10600 — Feature Adapter Shared Memory
0100 - System Shared Memory

9010 — Reserved

9001 — Reserved

Figure 5-2. Configuration Field Format

Design Considerations —January 1991

5-7

Adapter Configuration Options Fleld

This field contains information describing the adapter
configuration options. The format and content of the field are
tound in Figure 5-2 on page 5-7.

Size of In-Bound and Size of Qut-Bound Pipe Flelds

These fields define the amount of storage in bytes that is
allocated for each pipe.

Note: For details on the roles of the remaining fields in the
configuration record, refer to Figure 3-4 on page 3-9. The
definitions for the pipe related control areas are found in
“Delivery Pipe” on page 1-19.

Address of In-Bound Pipe Fleld

This field contains the address, in shared memaory, for the pipe
from the adapter to the system unit,

Address of In-Bound Surrogate Dequeue Status

This address contains the address, in shared memory, of the
Surrogate Dequeue Status Control area that is written by the
dequeue logic in the adapter and read by the enqueue logic in the
system unit.

Address of In-Bound Surrogate Start-of-Element

This field contains the address, in shared memory, of the
Surrogate Start of Element Control area which is written by the
dequeue logic in the adapier and read by the enqueue logic in the
system unit.

Address of In-Bound Surrogate Enqueue Status

This tield contains the address, in shared memory, of the
Surrogate Enqueue Status Control area that is written by the
enqueue logic and read by the dequeue logic.

Address of In-Bound Surrogate Start-of-Free

This tield contains the address, in shared memory, of the
Surrogate Start of Free Control area that is written by the
enqueue logic and read by the dequeue logic.

Design Considerations — January 1991

Address of Qui-Bound Plpe Fleld

This field contains the base address, in shared memory, of the

delivery pipe used to pass control elements from the system unit

to the adapter.
Address of Out-Bound Surrogate Dequeue Status

This field contains the address, in shared memory, of the
Surrogate Dequeue Status Control area that is written by the
dequeue logic and read by the enqueuse logic.

Address of Out-Bound Surrogate Start-of-Element

This field contains the address, in shared memory, of the
Surrogate Start of Element Control area that is written by the
dequeue logic and read by the enqueue logic.

Address of Oul-Bound Surrogate Enqueue Status

This field contains the address, in shared memory, of the
Surrogate Enqueue Status Control area that is written by the
enqueue logic and read by the dequeue logic.

Address of Out-Bound Surrogate Start-of-Free

This field contains the address, in shared memory, of the
Surrogate Start of Free Control area that is written by the
enqueue logic and read by the dequeue logic.

The information required by system-level initialization can be
obtained from any or all of the following places:

Adapter description files and programs (ADF/ADP)
Parameters provided at device-driver installation

A separate configuration file created and maintained specifically

for initialization

Information compiled or assembled directly into the device driver

itself.

In general, system-level initialization is concerned with the

information required and not with how the information is obtained.

Design Considerations — January 1991

5-9

Peer Level Initialization

Pear-level, or adapter-to-adapter initialization, is performed following
system-level initiatization under the control of the system manager.

The configuration record used in peer-to-peer initialization is passed
in an initialization request control element between the
system-management entity in the system unit and the
unit-management entity in the adapter (Figure 5-3 on page 5-11).

In the foliowing tigure, the term Your represents the unit that is the

target of the initialization. The term Peer represents the unit that is
the source of the initialization.

5-10 Design Considerations —January 1991

3322222222221111111111
109876543210987654321098765432140
Format [dentifier = © Length
Configuration Status Peer Unit ID Your Unit ID
Peer Signalling Address
Your Signalling Address
Peer Base 1/0 Address Your Base I/0 Address
System Mgmt ID | Unit of Time Timer Frequency
Peer Configuration Options Your Configuration Options
Size of In—Bound Pipe Size of Qut—Bound Pipe

Address of In—Bound Pipe

Address of In—Bound Surrogate Dequeue Status

Address of In—Bound Surrcgate Start-of-Element

Address of In—Bound Surrogate Engqueue Status

Address of In—Bound Surrogate Start-of-Free

Address of Out—Bound Pipe

Address of Qut—Bound Surrogate Dequeue Status

Address of Qut—-Beund Surrogate Start-of-Element

Address of Out-Bound Surrogate Enqueue Status

Address of Qut—Bound Surrogate Start-of-Free

Figure 5-3. Peer Configuration Record Format

Peer-level initialization is similar to system-level initialization, except
that it is performed only for the adapter-to-adapter pairs, and is
performed using the management entities in the affected units.
System-level initialization must be complete prior to peer-level
initialization. Basically, the system-management entity acts as the
control point for peer-level initialization. Its function is:

1. Building an initial peer-configuration record for each of the peer
adapters.

2. Sending the configuration record to the management entity (entity
0) in the first adapter of the pair for processing. This is

Design Considerations —January 1991 5-11

accomplished by placing the contiguration record into an
initialization request control element.

3. Waiting for a response to the initialization request from the
management entity in the first adapter of the pair.

Upon receiving the initialization request, the management entity
in the adapter examines and optionally indicates changes to the
configuration record. Then, it returns the configuration record to
the system-management entity in the system unit using either a

reply or error control element.

4, After receiving a reply, the system-management entity sends the
configuration record with the first unit’s information to the
management entity in the second adapter for processing. This is
also accomplished by placing the configuration record into an
initialization request control element.

The second unit follows the same procedure as the first unit and
returns either a reply or error control element to the
system-management entity after indicating any needed changes
to the configuration record.

5. After receiving a reply control element with changes to the
configuration record, the system manager will reissue the
initialization request to the unit-management entity in the first
adapter, completing the initialization and confirming the
estabiishment of its delivery pipes.

6. The system-management entity notifies the unit-management
entity in the second adapter that the delivery pipes are
established and that the flow of information between the peer
adapters can now begin.

Any failure during the peer-level-initialization process is reported by
an error control element and is processed by the
system-management entity.

The manner in which adapters or system units are initially loaded
{IPLed) is not defined by the architecture.

5-12 Design Considerations —January 1991

Exception Handling

At the delivery level, certain delivery-related exception conditions
must be handled by the enqueue logic and dequeue logic. If the
following exceptions are detected during the specified operation, the
following action will be taken.

* Enqueue of a control element
— Delivery pipe is full - return an indication to the caller.

— Destination unit does not exist - return an indication to the
caller.

* Dequeue of a control element
- Delivery pipe is empty - return an indication to the caller.

— Destination entity does not exist - the action taken is
dependent on the send or receive interface policy. The
control element containing the error can be discarded or
returned to the originator with the appropriate exception
indication noted in the Status field of the error control
element.

— Destination entity not active - the action taken is dependent
on the send or receive interface policy. The control element
can be discarded, returned to the originator, or be queued for
retrieval when the entity becomes active.

At the physical level, the following exception conditions must be
detected and reported so that recovery actions can be taken by the
affected units (system unit and adapter):

¢ Channel data and address parity exceptions

¢ Channel non-parity exceptions

+ Master-dependent and slave-dependent exceptions
» Castrophic exceptions

+ Channel-timeout exceptions.

The recovery action taken is based on the operation in progress at
the time of the exception. Exceptions during the following operations
will result in the indicated recovery actions:

+ Memory read or write of a control element

Design Considerations — January 1981 5-13

- Retry the read or write of the control element until a specified
threshold value has been reached.

— Notity the unit-management entity for possible higher-level
recovery by the system manager.

* Memory read or write of the information in the Enqueue or
Dequeue Control areas

— Notify the unit-management entity for possible higher-level
recovery by the system manager.

* Memory read or write of the informatian in the Signalling Control
areas

— Retry the read or write operation until the a specified
threshold value has been reached.

— Notify the unit-management entity for possible higher-level
recovery by the system manager.

* /O read or write of a port in I/0 address space

— Retry the read or write operation until the a specified
threshold value has been reached.

— Notify the unit-management entity for possible higher-level
recovery by the system manager.

¢ Memory read or write of data

— Retry the read or write operation until the a specified
threshold value has been reached.

— Retry the command in the control element which initiated the
data read or write operation.

— Notity the unit management entity for possible higher-ievel
recovery by the system manager.

Management Relationships

The Move mode architecture also defines the relationship of the
various parts of the delivery services to the unit-management
services.

The unit-management services can be viewed as the platform on

5-14 Design Considerations —January 1991

o

which future delivery-management support and RAS-type services for
bus masters are built.

The overall relationships for unit-level management are shown in

Figure 5-4
g
Entity 0
Unit
Level
Management
Services
’l
R
S
[
by
[
|
|
N !
1
1
1
oo eoeee
Lo
b]
o
t I
) tmmemmm e o
1
)
1
)
[}
1
1 === ==
i
L
1
o
I e e e e e e e e = =
1
)
] |ITTTETT TS TS
_1
1
i
H
——

Figure 5-4. Unit Management Relationships

There are different forms of relationships between the various parts
of the Move mode support and the unit-level management services.

Design Considerations — January 1891 §-15

* The management services are provided by a management entity
that is defined as entity 0. There is an entity 0 in each unit in the
configuration. This allows the overall management services to
send and receive management-type control elements to and from
the various units in the configuration after the delivery support is
initialized.

There can be control elements:

— Toreset the delivery pipes

— To notify the overall-management entity of events in the unit
— To report detail-error information for entities within the unit
— To run tests on the unit.

* Unit management services need independent operations of
entity-to-entity delivery and are required to have an independent
unit of execution (thread).

+ There is a portion of unit-management services that can be used
as logic that actually handles the turn-around for requests with
delivery-type errors. It also provides the coupling between the
receive-interface logic and the enqueue logic for the pipe in the
opposite direction.

+ There can be other portions of management support to handle
entity-level and physical-level error conditions as well as other
management-related operations.

* Initialization can aiso be considered part of unit-management
services.

The architecture requires that entity 0 be used for management-type
services and not for client-type or server-type entities.

5-16 Design Considerations — January 1991

E‘:hapter 6. Architectural Complianc

The architecture defines the Move mode protocols used to deliver
control elements between pairs of functional entities located in
different system units or adapters. Several functional entities can
exist within a system unit or adapter. Different entities within a
specific system unit can be located in different system units or
adapters.

By complying with the architecture, two compliant system units or
adapters, that are interconnected by a physical media and share
addressable memory, can support the same base set of delivery
protocols between entity pairs.

The architecture logically structures the delivery service into three
functional layers:

* The physical level
¢ The delivery level
* The processing level.

The statements of compliance for each level define the requirements
and the portion which can be configured. In addition to the protocols
defined as base requirements, there are other optional architected
protocols for a given implementation,

© Copyright IBM Corp. 1991. 6-1

Physical Level

The architecture defines several protocols for the physical-level
primitives.

Base Protocols

To comply with the architecture, a product must:
* Implement the architected physical-level protocols.

e Maintain compatibility with the existing products by using an
adapter that can use the physical level to support private
protocols.

Additional Architected Protocols

Because the initialization protocol is product defined, the
implementation of a physical-level protocal might not implement any
port which is not used as part of the physical-level delivery logic.

Delivery Level

The delivery-level protocols include the signalling protocol, the
enqueue protocol, the dequeue protocoi, and the receive-interface
protocol.

Base Protocols

To comply with the architecture, a product must:

+ Implement the signalling protocol for the six state-change signals
defined by the signalling logic in “Enqueue Protocol” on
page 3-11, and “Dequeue Protocol” on page 3-19.

* Implement Signalling Control areas for each unit as defined in
“Signalling Control Area” on page 1-29.

* Implement the delivery pipes for each pair of units supported as
defined by the above references and Chapter 3, "Delivery Level”
on page 3-1.

6-2 Architectural Compliance — January 1991

— Implement the delivery-pipe structure defined in “Delivery
Pipe” on page 1-19.

— Implement the function defined for control element enqueue
in “Enqueue Protocol” on page 3-11 and the Enqueue
Surrogate Control areas defined in “Surrogate Enqueue
Control Area” on page 1-24.

— Implement the function defined for control element dequeue
in “Dequeue Protocol” on page 3-19 and the Dequeue
Surrogate Control areas defined in “Surrogate Dequeue
Control Area” on page 1-28.

Additional Architected Protocols

The architecture defines the signalling of state-changes based on
device-dependent intervals for product implementation.

The architecture defines a management signal to indicate that
initialization is complete. The support for this during initialization is
optional for a product implementation.

- The architecture defines receive-interface error handling which is
optional for a product implementation.

Processing Level

In general, the entity-to-entity protocols are not defined by the
architecture. However, to comply with the architecture, certain
portions of the control element are supported by the delivery level.

Base Protocols

To comply with the architecture, a product must:

¢ Implement the control element structure, defined in “Control
Eiements” on page 1-32, on all control elements used.

~ This header contains the following fields:

— Format |dentifier
— length
— Common Indicators

Architectural Compliance —January 1981 6-3

— Source Unit

— Source Entity

— Destination Unit
— Destination Entity
— Correlation |ID.

¢ |Implement the bits of the Common Indicators field if these
functions are used.

* |mplement the architected form of the control element when the
same functions are used.

Additional Architected Protocols

The architecture detfines a number of commmon-use control elements
which are optional.

Management

The architecture defines protocols for configuring the delivery
services and for initializing each unit {(system unit and adapter) that
will use the delivery service.

Base Protocols

To comply with the architecture, a product must :

"

* Implement the configuration record as defined in “Configuration
on page 5-1.

¢ |mplement entity 0 as a management entity.

Additional Architected Protocols

The protocols for using the contfiguration record are
device-dependent.

6-4 Architectural Compliance — January 1991

Appendix A. C Language

| Header File: MOVMODE.H

| Descr

Statu

R
R

|
|
|
|
I
] C
i
I
tecmammm
*/
#ifndef
#define

/*

*

typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef

jption: Contains the include files, constants, data structures,
macro definitions, and function declarations common to
all Move mode Delivery Services components.

s Information:

reated: 04/01/89

evised: 01/10/68
evised: 07/17/90
___ +
_MOVMODE_H
_MOVMODE-H

B e ittt ettt +

| USEFUL TYPE DEFINITEONS

B L L L e e T +
int BOOLEAN;
unsigned char BYTE; /* full 8 bit char */
unsigned char *pBYTE; /* pointer to 8 bit char */
unsigned char far *fpBYTE; /* far pointer to 8 bit char */
unsigned short WORD; /* full 16 bit word */
unsigned short *pWORD; /* pointer to 16 bit word *f
unsigned short far *fpWORD; [/* far pointer to 16 bit word */
unsigned long DWORD; /* full 32 bit word */
unsigned Tong *pDWORD; /* pointer to 32 bit word */

typedef
typedef

/’r

*/

#include

unsigned long far *fpDWORD; /* far pointer to 32 bit word */

N L s +
I INCLUDE FILES |
B L L L +
<stdio.h> /* standard stream I/0 */

#ifdef _ TURBOC__

#inc)
#incl
#else
#incl
#incl
fendif

#include
#include

#include
#include

ude <alloc.h> /* Turbo C memory aliocation */
ude <mem.h> /* memory manipulation */
ude <malloc.h> /* MS/1IBM C memory allocation */
ude <memory.h> /* memory manipulation */
<stdlib.h> /* standard Tibrary */
<ctype.h> /* char classification/conversion */
"element.h" /* Control elements */
"pipe.h" /* Pipe (delivery queues) */

© Copyright IBM Carp. 1991,

A-1

/*

*f
#define FALSE ©
#define TRUE 1

#define OFF 0
#define ON 1

#define SUCCESS 1
#define FAILURE O

#endif

A-2 C Language — January 1991

/*
o e e mm i mm————— e ek M m e ——_———— +
Header File: pipe.h

Description: Contains the data structure and definitions for the
following control areas in shared memory address
space:

- configuration recerd

| |
| i
| |
I |
| |
~— | {
| - local enqueue control area 1
| - surrogate enqueue control areas |
| - Tocal dequeue control area i
| - surrogate dequeue control areas |
| - signalling areas |
| |
| $tatus Information: |
] |
| Created: 05/02/89 |
| Revised: 01/10/90 |
| Revised: 87/17/906 |
Ao o e e e e e e e e e +
*/
#ifndef _PIPE_H
#define PIPE_H
/*
Gy O +
| DATA STRUCTURES |
F oA ma e m——m———————— +
*/
* e
R The flags within the Configuration Record are used to indicate
the specific options to be used between a pair of bus units.
..... */
#ifdef __ TURBOC__
typedef struct { /* Configuration Options *f
/* Physical Placement of the Pipe */
unsigned adp_mem HE ¥ /* - bit 15 - in adapter */
/* D = outhound pipe in adapter *J
Fd 1 = inbound pipe in adapter */
unsigned sys_mem HE ' /* - bit 14 - in system unit */
> 0 = outbound pipe in system */
/* 1 = inbound pipe in system */
unsigned bl13 HINH /* - bit 13 - reserved */
unsigned bl2 ;1 /* - bit 12 - reserved *f
unsigned unit_type : 4; /* Bus Unit Type */
/* - DBOD - system unit */
/* - 0001 thru 0111 - reserved */
; /* - 1000 - adapter type 1 *;
’ /* - 1001 - adapter type 2 */
E /* - 1010 thru 1111 - reserved */
: - /* Signalling Conditions */
unsigned b7 I /* - bit 7 - reserved */
unsigned on_timer : 1; /* - bit & - on timer expiration */
unsigned on_notfull : 1; /* - hit 5 - on full to nen-full */
unsigned on_deque : 1; /* - bit 4 - on dequeue element */
unsigned on_enque : 1; /* =« bit 3 - on enqueue element */

C Language —January 1991 A-3

unsigned on_empty : 1; /* - bit 2 - on pipe empty */

unsigned on_full HB /* - bit 1 - on pipe full */
unsigned on_notempty: 1; /* - bit 0 - on empty to non-empty */
} CFG_QPT;
#else
typedef struct { /* Configuration Options */
* S1gnal]1ng Conditions */
unsigned on_notempty: 1; o it on empty to ncn-empty */
unsigned on_full 1: /* - bit 1 - on pipe full */
unsigned on_empty 1; /* - bit 2 - on pipe empty */
unsigned on_enque 1; /* - bit 3 - on enqueue element *f
unsigned on_deque 1 /* - bit 4 - on dequeue element */
unsigned on_notfull : 1; /* - bit 5 - on full to non-full */
unsigned on_timer 1; /* - hit 6 - on timer expiration */
unsigned b7 1; /* - bit 7 - reserved */
unsigned unit_type 4; /* Bus Unit Type */
J/* - 0080 - system unit */
/* - 0001 thru 8111 - reserved */
/* - 1000 - adapter type 1 */
/* - 1081 - adapter type 2 */
/* = 1018 thru 1111 - reserved */
unsigned bl2 s 1; /* - bit 12 - reserved *f
unsigned bl3 HEH /* - bit 13 - reserved */
/* Phy51ca1 Placement of the Pipe */
unsigned sys_mem s 1; /* - bit 14 - in system unit */
/* 9 = outbound pipe in system */
/* 1 = inbound pipe in system */
unsigned adp_mem HEH /* - bit 15 - in adapter */
/* ® = outbound pipe in adapter */
/* 1 = inbound pipe in adapter */
} CFG_OPT:
#endif
f* e

The fields within the Configuration Record (CFG_RCD) are used

at initialization time to identify the location of control areas
in shared memory address space and the options to be used when
using the delivery service between a pair of bus units.

..... */

typedef struct { /* Configuration Record *f
WORD fid; /* - Format Identifier */
WORD len; /* - length field */
WORD status; /* - configuration status field */
BYTE sid; /* - system unit identification field */
BYTE aid; /* - adapter identification field */
fpOWORD ss_addr; /* - system signalling address field */
fpDWORD as_addr; /* - adapter signalling address field */
WORD peer _io_addr; /* - base 1/0 addr - peer (from) */
WORD base_io_addr; /* - base I/0 addr - adapter {to) *f
BYTE smgmt_eid; /* - system manager entity id field */
BYTE time_units; /* - units of time *f
WORD time_freq; /* - timer freguency */
CFG_OPT sys_config; /* - system unit configuration options*/
CFG_OPT adp_config; /* - adapter configuration options */

A-4 C Language — January 1991

WORD out_size; /* - out-bound pipe size (sys to adp) */

WORD in_size; /* - in-bound pipe size {adp to sys} */
fpOWORD in_pipe; /* - in-bound pipe address */
fpOWORD in_sds; /* - in-bound surrogate dequeue */
/* status area address */
fpDWORD in_sse; /* « in-bound surrcgate start of */
/* elements control area *f
fpDWORD in_ses; /* - in-bound surrogate enqueue *f
I~ status area address */
fpOWORD in_ssf; /* - in-bound surrogate start of */
/* free control area address */
fpOWORD out_pipe: /* - out-bound pipe address */
fpDWORD out_sds; /* - out-bound surrogate dequeue */
/* status area address *f
fpOWORD out_sse: /* - out-bound surrogate start of */
/* elements control area address */
fpOWORD out_ses; /* - out-bound surrogate enqueue */
I* status area address */
fpOWORD out_ssf; /* - out-bound surrogate start of */
/* free control area address *f
} CFG_RCD:

The flags within the Enqueue Status Word are used by the Enqueue
Logic to maintain Yocal state information at the enqueue end of
the pipe.

..... */

#ifdef __TURBOC _

typedef struct { /* Enqueue Status Word Flags *f
unsigned h15 1 /* - bit 15 - reserved */
unsigned bla 1 /* - bit 14 - reserved */
unsigned bl3 1L /* - bit 13 - reserved */
unsigned bl2 t 1 /* - bit 12 - reserved */
unsigned queued 1 /* - bit 11 - element stored */
unsigned blo L /* - bit 10 - reserved */
unsigned b9 1 /* - bit & - reserved *f
unsigned wrap 1 /* - bit 8 - enqueue wrap */
unsigned b7 1 /* - bit 7 - reserved */
unsigned bé I /* - bit 6 - reserved */
unsigned b$ L /* - bit 5 - reserved */
unsigned b4 1 /* - bit 4 - reserved */
unsigned b3 L /* - bit 3 - reserved */
unsigned b2 1 /* -~ bit 2 - reserved */
unsigned empty t 1 /* - bit 1l - empty */
unsigned fulil 1 /* - bit 8 - queue full */

} LES_FLAGS;

#else

typedef struct { /* Enqueue Status Word Flags *f
unsigned full 1 /* - bit @ - queue full */
unsigned empty 13 /* - bit 1 - empty */
unsigned b2 I /* - bit 2 - reserved */
unsigned b3 HE /* - bit 3 - reserved *J
unsigned b4 1 /* - bit 4 - reserved */
unsigned bs 1 /* - bit 5 - reserved */
unsigned bé 1 /* - bit & - reserved *

C Language —January 1991 A-S5

/* - bit 7 - reserved

/* - bit 8 - enqueue wrap
/* - bit 9 - reserved

/* - bit 10 - reserved

bit 11 - element stored
/* - bit 12 - reserved

/* - bit 13 - reserved

/* - bit 14 - reserved

/* - bit 15 - reserved

unsigned b7
unsigned wrap
unsigned b%
unsigned bld
unsigned queued
unsigned bl?2
unsigned bl3
unsigned bl4
unsigned bl5
} LES_FLAGS;

NN

—
*
1

fendif

The fields within the Local Enqueue Control Area (LECA) identify
the Jocation of the pipe, indicate the status of the pipe, and
provide state information identifying the starting and ending
offsets of control elements within the pipe.

typedef struct { /* Local Engueue Control Area
fpDWORD base; /* - Pipe Address
WORD we; /* - offset to wrap element
union { /* - enqueue status
WORD fld; /* as a word
LES_FLAGS flg; /* as individual flags
}oes:
WORD sf; /* - start of free space in pipe
WORD ef; /* - end of free space in pipe
WORD end; /* - offset to end (of queue space)
WORD top; /* - offset to top {wrap point)
} LECA;
/.-

The flags within the Surrogate Enqueue Status Word are used by
the Enqueue Logic to convey the state of the pipe to the Dequeue
Logic at the gther end of the pipe.

#ifdef _TURBOC _

typedef struct { /* Surrogate Enqueue Status Word Flag

unsigned bl5 S H /* - bit 15 - reserved

unsigned bl4 HH /* - bit 14 - reserved

unsigned bl3 1 /* - bit 13 - reserved

unsigned bl2 : 13 /* - bit 12 - reserved

unsigned bll B H /* - bit 11 - reserved

unsigned bld HH /* - bit 18 - reserved

unsigned b9 A /* - bit 9 - reserved

unsigned wrap 1 /* - bit 8 - wrap of pipe occurred
unsigned b7 B H /* - bit 7 - reserved

unsigned b6 : 1; /* - bit 6 - reserved

unsigned b5 B H /* - bit 5 - reserved

unsigned bd 1 /* - bit 4 - reserved

unsigned b3 N H /* - bit 3 - reserved

unsigned b2 S H /* - bit 2 - reserved

unsigned bl HH /* - bit 1 - reserved

unsigned full 1 /* -bit 0 - pipe is full

} SES_FLAGS;

A-6 C Language— January 1991

#else

typedef struct {
unsigned full
unsigned bl
unsigned b2
unsigned bl
unsigned b4
unsigned h5
unsigned bt
unsigned b7
unsigned wrap
unsigned b9
unsigned blo
unsigned bll
unsigned bl2
unsigned bl3
unsigned hl4
unsigned bl5

1 SES_FLAGS;

tendif

typedef struct {
union {

WORD fld;
SES_FLAGS flg;
} ses;
WORD ssf;
} SECA;

b b e e g b b b b b e e e

/* Surrogate

/*
/*
/’r
/*

/*

Enqueue Status Word Flag */

- bit © - pipe is full */
- bit 1 - reserved *f
- bit 2 - reserved */
- bit 3 - reserved *f
- bit 4 - reserved */
- bit 5 - reserved *f
- hit & - reserved */
- bit 7 - reserved *f
- bit 8 - wrap of pipe occurred */
- bit 9 - reserved *f
- bit 10 - reserved *f
- bit 11 - reserved *f
- bit 12 - reserved */
- bit 13 - reserved *f
- bit 14 - reserved *f
- bit 15 - reserved *f
Surrogate Enqueue Contrel Area */
- surrogate engueus status */
as a word *f
as individual flags */

- offset to start of free space */

The flags within the Dequeue Status Word are used by the Dequeue
Logic to maintain local state information at the dequeue end of

pipe.
#ifdef __TURBOC__

typedef struct {
unsigned bl5
unsigned bl4
unsigned bl3
unsigned bl2
unsigned dequeued
unsigned prempt
unsigned b9
unsigned wrap
unsigned b7
unsigned bé
unsigned b5
unsigned b4
unsigned b3
unsigned b2
unsigned empty
unsigned full

} LDS_FLAGS;

e e et e e e b b e b b

Wi owe we we wa mb ome me M4 we GE WY wE ws We we

_____ */
/* Dequeue Status Word Flags *f
/* - bit 15 - reserved */
/* - bit 14 - reserved */
/* - bit 13 - reserved */
/* - bit 12 - reserved */
/* - bit 11 - element removed */
/* - bit 10 - stop dequeue operation */
/* - bit 9 - reserved *f
/* - bit 8 - wrap element toggle */
/* - bit 7 - reserved */
/* - bit & - reserved */
/* - bit 5 - reserved */f
/* - bit 4 - reserved */
/* - bit 3 - reserved */
/¥ =-bit 2 - reserved */
/* -bit 1 - pipe is empty */
/* - bit 0 - full *}

C Language — January 1991

A-7

#else

typedef struct { /* Dequeue Status Word Flags
unsigned full : 1; /* -bit® - full
unsigned empty : 13 /* - bit 1 - pipe is empty
unsigned b2 B f* - bit 2 - reserved
unsigned b3 : 1; /* - bit 3 - reserved
unsigned b4 : 1 /* - bit 4 - reserved
unsigned b5 [H /* - bit 5 - reserved
unsigned b6 : 13 /* - hit 6 - reserved
unsigned b7 ' f* - bit 7 - reserved
unsigned wrap HH /* - bit 8 - wrap element toggle
unsigned b9 1 /* - bit 9 - reserved
unsigned prempt ' H /* - bit 10 - stop dequeue operation
unsigned dequeued : I; /* = bit 11 - element removed
unsigned bl2 :1; /* - bit 12 - reserved
unsigned bl3 HE¥ /* - bit 13 - reserved
unsigned bl4 B /* - bit 14 - reserved
unsigned bl5 1 f* - bit 15 - reserved

} LDS_FLAGS;

#endif

The fields within the Local Dequeue Control Area (LDCA) identify
the location of the pipe, indicate the status of the pipe, and
provide state information identifying the starting and ending
offsets of control elements within the pipe.

typedef struct { /* Local Dequeue Control Area
fpDWORD base; /* - Pipe Address
WORD we; /* - offset to wrap element
union { /* - Dequeue status
WORD fld; /* as a word
LDS_FLAGS flg; /* as individual flags
} ds;
WORD se; /* - start of elements in pipe
WORD ee; /* - end of elements in pipe
WORD end: /* - offset to end (of queue space)
WORD top: /* - offset to top (wrap point)
} LDCA;
* -

The flags within the Surrogate Dequeue Status Word are used by
the Dequeue Logic to convey the state of the pipe to the Enqueue
Logic at the other end of the pipe.

#ifdef _ TURBOC

typedef struct { /* Surrogate Dequeue Status Flags
unsigned bl5 : /* = bit 15 - reserved
unsigned hl4 /* - bit 14 - reserved
unsigned bl3 /* - bit 13 - reserved
unsigned bl2 bit 12 - reserved
unsigned bll /* - bit 11 - reserved
unsigned bl0 /* - bit 10 - reserved
unsigned b9 /* - bit 9 - reserved

o s e e
wA M me e M owe e
s
*

]

A-8 C Language - January 1991

unsigned wrap 1 /* - bit 8 - wrap of pipe occurred */
unsigned b7 1 /* - bit 7 - reserved *f
unsigned b6 HH /* - bit 6 - reserved *f
unsigned bs : 1 /* - hit & - reserved */
unsigned b4 s 1 /* = bit 4 - reserved */
unsigned b3 s 1; /* - bit 3 - reserved *f
unsigned b2 HE /* - bit 2 - reserved */
unsigned empty : 1 /* - bit 1 - pipe is empty */
unsigned b® HH /* - bit 8 - reserved */

} SDS_FLAGS;

#else

typedef struct { /* Surrogate Dequeue Status Flags */
unsigned b@ 1 1 /* - bit @ - reserved */
unsigned empty 1 1; /* - bit 1 - pipe is empty *
unsigned b2 L /* - bit 2 - reserved *f
unsigned b3 1 /* - bit 3 - reserved */
unsigned b4 Y /* - bhit 4 - reserved *f
unsigned h5 L /* - bhit & - reserved */
unsigned b6 :1; /* - bit & - reserved */
unsigned b7 HH /* - bit 7 - reserved *f
unsigned wrap HB /* - bit 8 - wrap of pipe occurred */
unsigned b9 HB /* - bit 9 - reserved */
unsigned bl@ HIH /* - bit 10 - reserved *f
unsigned bil 1 /* - bit 11 - reserved */
unsigned biz 1 1; /* - bit 12 - reserved */
unsigned bl3 HEH /* - bit 13 - reserved */
unsigned bl4 I /* - bit 14 - reserved */
unsigned bl5 HEH /* - bit 15 - reserved *f

} SDS_FLAGS:

fendif

typedef struct { /* Surrogate Dequeue Control Area */
union { J* - surrogate dequeue status *f

WORD fid; f* as a word */
SDS_FLAGS fig: /* as individual flags *f

} sds;
WORD sse; /* - offset to start of elements */

} SDCA;

/-

The fields within the Signalling Area {SIGNAL) are used to identify
the source as well as the reason for signalling from one bus unit
to another.

..... */
typedef struct { /* Signalling Control Area *f
BYTE nyue; /* - enqueue state change */
BYTE wmgmt; /* - management state change */
BYTE byteZ; /* - reserved */
BYTE dqgue; /* - dequeue state change */
} sca;
#endif

C Language —January 1991 A-9

| Header File: ELEMENT.H
|

| Description: Contains the data structure definitions for the basic

control elements.
Status Enformation:

Revised: 01/10/90

f
i
i
!
] Created: 05/02/89
|
} Revised: €7/17/90
+

*/
#ifadef ELEMENT H
#define _ELEMENT H

/*
L e i T +
1 DEFINED CONSTANTS |
L i e e e e L L L T +
*f
AT Format Edentifier field values -~---- */
#define FID_MM 0 /* SCB Move Mode Format */
J* amee- Control Element Type field Element IDs ~---- *f
#define REQ EL 0 /* request */
fdefine REP_EL 1 /* reply %/
#define EVT EL 2 /* event ¥/
#define ERR_EL 3 /* error */
#define ERR_EL_LEN 20 /* length of error element
#define DEL_EL LEN 6 /* length of delivery wrap element
[* amn-- Control Element Type field Function Codes ----- */
/* 0 and 1 are reserved
#define FC_INIT 2 /% initialize
/* 3 is reserved

#define FC_READ
#define FC_READL
#define FC_READI /* read immediate
#define FC_WRITE /* write

4 /* read
5
[
7
#define FC_WRITEL 8 /* write list
g
16

/* read list

#define FC_WRITEL /* write immediate
#define FC_EXL /* execute list

#define FC_MARK 11 /* mark
#define FC_CANCEL 12 /* cancel
#define FC_PARAM 13 /* parameters
#define FC_ROCFG 14 /* read configuration
¥define FC_DIAG 15 /* run diagnostics
/* 16 is reserved
#define FC_RESUME 17 /* resume (event)
#define FC_NOTIFY 18 /* notification (event)
#define FC_INFORM 19 /* user status information (event)

A-10 C Language —January 1991

/* 20 thru 62 are reserved *f
#define FC_WRAP 63 /* wrap of queue (internal) */

[* - Control Element Value field Error Codes ----- */
#define NO_RECV_PENDING 1

/*

*

#ifdef _ TURBOC__

typedef struct { /* Common Indicators Field *f
unsigned id H-H /* - bit 15 - 14 identifier (ID} *f
unsigned suppress : 1; /* - bit 13 suppress reply flag (8} */
unsigned chain HrH /* - bit 12 - 11 chaining flag (C) *f
unsigned indirect : 1; /* - bit 10 indirect flag (1) *f
unsigned notify : 1; /* - bit 9 notification flag {(N) *f
unsigned wait I /* - bit B wait flag (W) *f
unsigned expedite : 1; /* - bit 7 expedited flag (E) */
unsigned function : 7; /% - bit 6 - O function code {(FC) *f

} CIND_FLD;

felse

typedef struct { /* Common Indicators Field *f
unsigned function : 7; /¥ - bit 6 - @ function code (FC) *f
unsigned expedite : 1; /* - bit 7 expedited flag (E) *f
unsigned wait s 1 /* - bit 8 wait flag (W) */
unsigned notify : 1; /* - bit 9 notification flag (N} *f
unsigned indirect : 1; /* - bit 10 indirect flag (I) */
unsigned chain H-H J* - bit 12 - 11 chaining flag (C) */
unsigned suppress : 1; J* - bit 13 suppress reply flag (S} */
unsigned id T 2; /* - bit 15 - 14 identifier {10) */

} CIND_FLD:

#endif

typedef struct { /* Element Source/Destination Field */
BYTE eid; /* - entity identifier *f
BYTE uid; /* - unit identifier *f

} ADDR_FLD;

typedef struct { /* Element descriptor */
WORD fid; /* - Format Identifier *}
WORD len; /* - length field *f
CIND_FLD cind; /* - common indicators field *f
WORD resl; /* - reserved for future use *f
ADDR_FLD dest; /* - destination field */
ADDR_FLD srce; /* - source field *f
DWORD cor_id; /* - correlation field */
DWCRD val_fld: /* - value field *f

} ELEMENT;

fendif

C Language —January 1991 A-11

|

Notes:

A-12 C Language—January 1991

Appendix B. Assembler Languag-;

* oK K ok ok o o dr W ok W W dr W ko dr ok ke ok ok ok ke kR k% ok ok ok ok

:*

;* s
;* INCLUDE FILE: MOVMODE.INC *
s *
hd COPYRIGHT: (C) Copyright IBM Corporation 1989, 1990. All *
* rights reserved. *
;* *
;¥ REV LEVEL: 1.1 *
;* *
;* DESCRIPTION: Contains constants, data structures, and macro *
W definitions common to all Move Mode Delivery *
Hal Services components. *
:* *
;* dok ok kR Rk kW ok U ko ok ik ko ko ko ok ko h ko Rk ok ok ok ok %k
INCLUDE “ELEMENT.INC" icontrol element

INCLUDE "PIPE.INC" ;delivery pipes

© Copyright IBM Gorp. 1991,

:*********************i*i*****tt*t**

53

;* INCLUDE FILE:

¥ % ¥ O N N O 3 ¥ * 4 & * A & N & *

COPYRIGHT:

REV LEVEL:

DESCRIPTION:

* %k % k % k h ok k kok ok ox ok x k ok ok ok ok ok ok ok ok v d o ok kW &k

PEPE. INC

(C) Copyright IBM Corporation 1989, 1990. All
rights reserved.

1.1

Contains data structure and definitions for the

following contrcl areas in shared memory address
space:

- configuration record

- Yocal enquewe contrel area

- surrogate enqueue control areas
- tocal dequeue control area

- surrogate dequeue centrol areas
- signalling areas

* F % 3 F % ¥ % F o * % * % * * 2 ¥ % *

FHEEAAEETAEENTRTREXFET R R LR KRN T RA R d I hE

* DATA STRUCTURES *

s T b ek sk R R e AR R AR A R A kR kA kR Ak

i* Flags within the Configuration Word (CFG_WRD} are used to indicate
;* specific options to be used between a pair of bus units.

CFG_OPT RECORD

adp_mem:

Sys_mnem:

;Physical Placement of the Pipe
1, ; - bit 15 - in feature adapter

;@ = outbound pipe in adapter

;1 = inbound pipe in adapter
1, ; - bit 14 - in system unit

i 9 = outbound pipe in system

i 1 = inbound pipe in system

cfg_bl3:1, i - bit 13 - reserved
cfg_bl2:1, 3 - bit 12 - reserved
unit_type:4, iBus Unit Type (bits 11-8)

i - 0006 - system unit

; - 0001 thru 8111 - reserved

i - 1006 - adapter type 1

;- 1001 - adapter type 2

; = 101@ thru 1111 - reserved

;Signalling Conditions
cfg b?:1, ; - bit 7 - reserved
on_timer:1, ; - bit & - on timer expiration
on_notfutl:1, ; - bit 5 - on full to non-full
on_deque:l, ; - bit 4 - on dequeue element
on_engue:1, ; - bit 3 - on enqueue element
on_empty:1, ; - bit 2 - on pipe empty
on_full:l, ; - bit 1 - on pipe full
on_notempty:1 ; - bit @ - on empty to non-empty

CFG_OPT ends

;* Fields within the Configuration Record (CFG_RCD) are used
i* at initialization time to identify the location of contro! areas

B-2 Assembler Language — January 1991

;* in shared memory address space and the options to be used when
:* using the delivery service between a pair of bus units.

CFG_RCD struc ;Configuration Record
fid dw ? - format identifier
Ten dw 7 - Jength field
status dw ? - configuration status field
sid db ? - system unit id field
aid db ? - adapter id field
ss_addr dd 7 - system signalling address field
as_addr dd ? - adapter signalling address field
peer_io_addr dw ? - base /0 address - peer (from}
base_io_addr dw ? - base 1/0 address - adapter (to)
smgmt_eid db ? - system manager entity id field
time_units db 7 - units of time

time_freq db ?
sys_config CFG_OPT <=
adp_config CFG_QPT <>

- timer frequency
- system unit configuration options
- adapter configuration options

free control area

out_pipe dd ? out-bound pipe address

out_size dw 7 - out-bound pipe size

in_size dw ? - in-bound pipe size

in_pipe dd ? - in-bound pipe address

in_sds dd ? - in-bound surrogate dequeue
status area

in_sse dd ? - in-bound surrogate start of
elements control area

in_ses dd ? - in-bound surrogate enqueue
status area

in_ssf dd ? - in-bound surrogate start of

out_sds dd ? - out-bound surrogate dequeue
status area

out_sse dd 7 - out-bound surrcgate start of
elements control area

out_ses dd 7?7 - out-bound surrogate enqueue
status area

out_ssf dd ? - out-bound surrogate start of

'
'
"
»
.
H
.
]
1
+
*
*
4
»
+
+
H
’
*
+
b1
1
1
b1
a
1
1
>
’
+
’
i
.
1]
.

free control area
CFG_RCD ends

-l
i* Flags within Local Engueue Status Flag (LES_FLAGS) are used by
;* Engueue Logic to maintain tocal state information at enqueue
:* end of the pipe.
LES_FLAGS RECORD iLocal Emqueue Status Word Flags
lesbls:1, s~ bit 15 - reserved
lesbid:1, i- bit 14 - reserved
leshl3:1, ;- bit 13 - reserved
lesdl2:1, 1- bit 12 - reserved
lesqgueued: 1, 1= bit 11 - element stored
lesbi@; 1, ;- bit 10 - reserved
lesb9:1, 1- bit 9 - reserved
leswrap:1, ;- bit 8 - enqueue wrap
lesb7:1, 1~ bit 7 - reserved
lesh6:1, ;- bit 6 - reserved
lesb5:1, 1= bit 5 - reserved
lesbd:1, - bit 4 - reserved

Assembler Language — January 1991

B-3

Tesb3:1, ;= bit 3 - reserved

lesb2:1, ;- bit 2 - reserved

Tesempty:1, ;- bit 1 - empty

lesfull:l ;- bit 0 - gqueue full
LES_FLAGS ENDS

Fields within the Local Engueue Control Area {LECA} identify
the location of the pipe, indicate the status of the pipe, and
provide state information identifying the starting and ending
offsets of control elements within the pipe.

* % * %

LECA STRUC ;Local Enqueue Control Area
base DD ? ;- Pipe Address
we 7 ;- offset to wrap element
status LES_FLAGS <> i~ engueue status
sf oW ? ;- start of free space in pipe
ef oW 7 ;- end of free space in pipe
end W ? ;- offset to end (of queue space)
top Dw 7 ;- offset to top (wrap point)
LECA ENDS

;* Flags within Surrogate Enqueue Status Word (SES_WRD) are used
;* by Enqueue Logic to convey state of the pipe to Degueue Logic
;* at the other end of the pipe.

SES_FLAGS RECCRD ;Surrogate Enqueue Status Word Flags

sesbl5:1, ;= bit 15 - reserved

sesbld4:1, i- bit 14 - reserved

sesbl3:1, ;- bit 13 - reserved

sesbi2:1, i- bit 12 - reserved

sesbil:l, ;- bit 11 - reserved

sesbl0:1, ;- bit 10 - reserved

seshd:1, ;- bit § - reserved

seswrap:1, ;- bit 8 - wrap of pipe occurred
sesb7:1, i= bit 7 - reserved

sesbb:1, ;= bit 6 - reserved

sesh5:1, i- bit 5 - reserved

sesbd:1, ;- bit 4 - reserved

sesh3:1, ;- bit 3 - reserved

sesbh2:1, :- bit 2 - reserved

sesbl:1, i- bit 1 - reserved

sesfull:l ;- bit 8 - pipe is full

SES_FLAGS ENDS

;* Fields within the Surrogate Enqueue Control Area (SECA)
+* are used by the Enqueue Logic to provide status and state
;% information to the Dequeue Logic at the other the pipe.

SECA STRUCT ;Surrogate Enqueue Control Area
status SES_FLAGS <> i= surrogate enqueue status
ssf DW ? ;- offset to start of free space
SECA ENDS

i* Flags within Local Dequeue Status Word (LDS_WRD) are used by
:* the Dequeue Logic to maintain local state information at the
:* dequeue end of pipe.

LDS_FLAGS RECORD ;Local Dequeue Status Flags

B-4 Assembler Language —January 1991

1dsbl5:1, ;- bit 15 - reserved

1dsb14:1, i- bit 14 - reserved

1dsb13:1, ;- bit 13 - reserved

1dsh12;:1, s- bit 12 - reserved
ldsdequeued:1, 3= bit 11 - element removed
ldsprempt:1, 3~ bit 10 - stop dequeue operation
1dsh9:1, ;- bit 9 - reserved

Tdswrap:1, ;- bit 8 - wrap element toggle
1dsh7:1, i- bit 7 - reserved

1dsb6:1, ;- bit & - reserved

1dsb5:1, ;- bit 5 - reserved

1dsha:1, ;- bit 4 - reserved

1dsb3:1, i= bit 3 - reserved

1dsb2:1, ;- bit 2 - reserved
ldsempty:1, ;- bit 1 - pipe is empty
1dsfull:l ;- bit B - full

LDS_FLAGS ENDS

;* Fields within Local Dequeue Control Area (LDCA) identify
+* the location of the pipe, indicate the status of the pipe, and
3* provide state information identifying the starting and ending
;* offsets of control elements within the pipe.
LDCA STRUC ;Local Dequeue Control Area

base po 7 ;- Pipe Address

we DW ? ;- offset to wrap element

ds LDS_FLAGS <> ;- Dequeue status

se DW ? ;- start of elements in pipe

ee W ? ;- end of elements in pipe

end W 7 ;- offset to end (of queue space)

top oW ? ;- offset to top (wrap point)
LDCA ends

i* Flags within Surrogate Dequeue Status Word {SDS_WRD) are used
;¥ by the Degueue Logic to convey the state of the pipe to the
% Enqueue Logic at the other end of the pipe.

SDS_FLAGS RECORD jSurrogate Dequeue Status Flags
sdsb15:1, ;- bit 15 - reserved
sdsbld:1, i~ bit 14 - reserved
sdsbl3:1, ;- bit 13 - reserved
sdshl2:1, ;- bit 12 - reserved
sdsb11:1, ;- bit 11 - reserved
sdsb16:1, 1= bit 10 - reserved
sdsb9:1, ;- bit 9 - reserved
sdswrap:1, ;- bit 8 - wrap of pipe occurred
sdsb7:1, ;- bit 7 - reserved
sdsbb:1, ;- bit 6 - reserved
sdsh5:1, ;- bit 5 - reserved
sdshé4:1, ;- bit 4 - reserved
sdsb3:1, 3= bit 3 - reserved
sdsb2:1, ;- bit 2 - reserved
sdsempty:1, i- bit 1 - pipe is empty
sdsh@:1 ;- bit 0 - reserved
SDS_FLAGS ENDS
SOCA STRUC ;Surrogate Degueue Control Area
sds SDS_FLAGS <> ;- surrogate dequeue status

Assembler Language —January 1991

B-§

sse W ? ;- offset to start of elements
SDCA ENDS

i* Fields within the Signalling Area {SIGNAL) are used to identify
:* the source as well as the reason for sigmalling from cne bus unit
1* to another.

SCA STRUC ;Signalling Control Area
nque DE ? ;- enqueue state change
mgmt [o]: ;- management state change
bytez DB 7?7 ;- reserved
dque DB ? ;- dequeue state change

SCA ENDS

B-6 Assembler Language — January 1991

INCLUDE

COPYR

REV Ll

Descrip

REQ_EL equ
REP_EL equ
EVT_EL equ
ERR_EL equ

ERR_EL_LEN
DEL_EL_LEN

FC_INIT

FC_READ
FC_READL
FC_READI
FC_WRITE
FC_WRITEL
FC_WRITEI
FC_EXL
FE_MARK
FC_CANCEL
FC_PARAM
FC_RDCFG
FC_DIAG

FC_RESUME

FC_NOTIFY
FC_ENFORM

FC_WRAP

FILE: ELEMENT.INC

IGHT: {C) Copyright IBM Corporation 1989, 1998. All
rights reserved.

EVEL: 1.1

tion:

MR EEEREEEEEI I I I I S N N L

0

---- Control Element

[EUN S B e]

equ 20
equ

o

Contains the data structure definitions for the
Move Mode control elements,

X Kk Kk dh K g ok A W % kK Kk ok ok % ok & %k ok ok &k ok k ok k ok k ok kX

*
*
*
*
*
*
*
k3
o
*
*
*

1SCB Move mode format
Type field Element IDs -----

srequest
ireply
;event
serror

;length of error element
;length of delivery wrap element

--- Control Element Type field Function Codes -----

equ 2

equ 4
equ 5
equ 6
equ 7
equ 8
equ 9
equ 10
equ 11
equ 12
equ 13
equ 14
equ 15

equ 17
equ 18
equ 19

equ 63

;0 and 1 are reserved
:initialize

;3 95 reserved

;read

;read list

;read immediate

write

iwrite Tist

;write immediate
sexecute list

smark

;cancel

;parameters

;read configuration

srun diagnostics

;16 is reserved

jresume (event)
inotification (event})
;user status information (event)
;20 thru 62 are reserved
;wrap of queue (internal)

-—- Control Element Value field Error Codes -----

NO_RECV_PENDING equ 1

/*

Assembler Language —January 1991

L g ——
*f
CIND _FLD RECORD
id:2,
suppress:1,
chain:2,
tndirect:1,
notify:1,
wajt:l,
expedite:1,
fe:7
CIND_FLD E£NDS
ADDR_FLD STRUC
eid DB 7
uid DB ?
ADDR_FLD ENDS
ELEMENT STRUC
fid W ?
len DW ?
type CIND_FLD <>
resl oW 7?7

dest ADDR_FLD <>

srce ADDR_FLD =>

cor_id DD ?

val_fid DD 7
ELEMENT ENDS

;common indicators field
;element id (bits 15-14)

+- (00) request

;- (01} reply

;- (18} event

;- (11} error

;suppress reply flag (bit 13)
;chaining flags (bits 12-11)
;- (08} no chaining

;= (D1} start of chain

;- {11) middle of chain

;- (10} end of chain

;- bit 10 indirect flag

;- bit 9 notification flag
;- bit 8 wait flag

;- bit 7 expedited flag
ifunction codes (bits 6-9)

;Source/Destination Field
;- entity identifier
;= unit identifier

sElement descriptor

;- format identifier

- length field

- commorn indicators field
- reserved for future use
- destination field

- source field

- correlation field

- value field

B-8 Assembler Language— January 1991

Index

A

address space 2-8, 2-9, 2-11
area 2-12
attention port 1-16

busy port 1-18

Cc

cancel 1-54
chaining 4-9
chaining bit 1-36
command busy/status port 1-18
configuration 5-1
configuration record 5-4
control area 1-21, 1-24, 1-25, 1-28,
1-29, 2-13
control element
basic structure 1-32
cancel 1-54
commoeon indicators 1-34
correlation field 1-38
destination field 1-37
diagnose 1-60
entity-to-entity fleld 1-38
error 1-35
cancel 1-56
diagnose 1-61
execute list 1-54
initialize 1-41
read 1-43
read configuration 1-80
read immediate 1-46

read list 1-44
reset 1-58
write 1-48

write immediate 1-52
write list 1-50

© Copyright iBM Corp. 1991.

control element (continued)
event 1-35, 1-62
inform 1-63
notification 1-63
resume 1-62
wrap 1-64
execute list 1-52
function codes 1-39
general structure 1-33
inform 1-63
initialize 1-40
mark 1-54
notification 1-63
read 1-42
read configuration 1-58
read immediate 1-45
read list 1-43
reply 1-35, 1-40
cancel 1-55
diagnose 1-61
execute list 1-53
initialize 1-41
read 1-42
read configuration 1-59
read immediate 1-46

read list 1-44
reset 1-58
write 1-48

write immediate 1-51

write list 1-49
request 1-35, 1-40

cancel 1-54

diagnose 1-60

execute list 1-52

initialize 1-40

mark 1-54

read 1-42

read configuration 1-58

read immediate 1-45

read list 1-43

reset 1-57

control element (continued)
request (continued)
write 1-47
write immediate 1-50
write list 1-49
reset 1-57
resume 1-62
source field 1-37
wrap 1-64
write 1-47
write immediate 1-50
write list 1-49
control element chaining 4-9
control element delivery 1-11
control element enqueue 3-6
control elements 1-40
correlation field 1-38

D

data chaining 4-9

data delivery 2-13
delivery 1-1

delivery flow 1-11
delivery level 3-1
delivery level protocols 3-8
delivery leve! services 3-6
delivery pipe 1-19
delivery structure 1-1
dequeue control area 1-25, 1-28
dequeuse protocot 3-19
dequeue service 3-7
dequeue status field 1-26
dequeued flag 1-26
design considerations 5-1
destination field 1-37
diagnose 1-60

direct data chaining 4-10

element identifier 1-35
empty bit 1-23, 1-27

X-2

enable bus master bit 1-17
enable interrupt bit 1-18
end of elements field 1-27
end of free space field 1-23
enqueue 3-14

enqueue control area 1-21, 1-24
enqueue field 1-31
enqueue initialization 3-14
enqueue protocol 3-11
enqueue pseudo code 3-14
enqueue status field 1-22
entity to entity field 1-38
error 1-35

event 1-35

exception handling 5-13
execute list 1-52

expedite bit 1-37

F

feature adapter 2-3

from address 2-11, 2-12
full bit 1-27

full flag 1-23

function code subfield 1-37
function codes 1-39

H

hardware support 2-3

indirect bit 1-36
indirect data chaining 4-10
inform 1-63

initialization 3-14, 5-3
initialize 1-40

interface 2-14

interrupt valid bit 1-18
IfO address space 2-9

L

length 2-11, 2-12
length field 1-33
local dequeue control area
local enqueue control area

1-25
1-21

management 5-14
mark 1-54
memory address space
move mode 1-1
chaining 4-9
characteristics 1-4
configuration 5-1
configuration record 5-4
consgiderations 5-1
control areas 2-13
control element chaining 4-8
control element delivery 1-11%
control element enqueue 3-6
data chaining 4-9
data delivery 2-13
delivery flow 1-11
delivery level 3-1
control element enqueue 3-6
dequeue protocol 3-1¢
dequeue service 3-7
enqueue 3-14
enqueue initialization 3-14
engueue protocol 3-11
enqueue pseudo code 3-14
protocols 3-8
receive interface 3-5
receive signal 3-14, 3-21
send interface 3-5
signalling 3-5
single control element
engueue 3-11
delivery levet protocols 3-8
dequeue 3-19
enqueue 3-11, 3-14
enqueue initialization 3-14
enqueue pseudo code 3-14

1-18, 2-8

move mode (continued)
delivery lavel protocols
{continued)
receive signal 3-14, 3-21
single control element
engueue 3-11
delivery level services 3-6
control element enqueue 3-6
dequeue 3-7
dequeue protocol 3-19
dequeue service 3-7
direct data chaining 4-1C
enqueue 3-14
enqueue initialization 3-14
enqueue protocol 3-11
enqueue pseudo code 3-14
entity level
chaining 4-9
control element chaining 4-9
data chaining 4-9
direct data chaining 4-10
indirect data chaining 4-10
notification and wait 4-11
protocols 4-9
services 4-8
entity level protocols
chaining 4-9
control element chaining 4-9
data chaining 4-9
direct data chaining 4-10
indirect data chaining 4-10
notification and wait 4-11
entity level services
exception handliing 5-13
feature adapter 2-3
feature adapter to feature
adapter 2-16
feature adapter to system
unit 2-14
hardware 2-3
indirect data chaining 4-10
initialization 5-3
170 address space 2-9
management 5-14

X-3

move mode (continued)

memory address space 2-8
mufitiple control element
enqueue 3-7
notification and wait 4-11
peer level 5-3
peer tevel initialization 5-10
peer unit 1D 5-2
physical interface 2-14
physical level 2-1
control areas 2-13
data delivery 2-13
feature adapter 2-3
feature adapter to feature
adapter 2-16
hardware 2-3
interface 2-14
11O address space 2-9
memory address space 2-8
protocols 2-13
pull 2-4, 2-14
push 2-4,2-14
services 2-10
signalling 2-5, 2-15
structure 2-1
support logic 2-3
system 2-3
physical level protocols 2-13
feature adapter to system
unit 2-14
physical interface 2-14
pull 2-14
push 2-14
signailing 2-15
physical level services 2-10
data delivery 2-13

pull 2-10
push 2-10
signal 2-12

processing level 4-1
processing level operation 4-2
processing level protocols 4-9
processing level services 4-8
pull 2-4,2-10, 2-14

X4

move mode (continued)
push 2-4, 2-10, 2-14
receive interface 3-5
receive signal 3-14, 3-21
resource definitions 5-2
send interface 3-5
signal 2-12
signalling 2-5, 2-15, 3-5, 5-3
single control element

enqueue 3-11

structure 2-1, 3-1
support logic 2-3
system 2-3
system lavel configuration 5-2
system level initialization 5-4
unitiD 5-2
unit level configuration 5-1
unit leve! initialization 5-4
unit type 5-2

multiple controt element

enqueue 3-7

notification 1-63
notification and wait 4-11
notification bit 1-36

o

offset to end field 1-23, 1-28
offset to top field 1-23, 1-27
operation pending bit 1-18
operational characteristics 1-4
ovarview, move mode 1-1

P

peer level 5-3

peer level initialization 5-10
peer to peer 1-7

peer unit iID 5-2

physical interface 1-15

physical level 2-1

physical level protocols 2-13
physical level services 2-10
pipe 1-19

pipe address field 1-22, 1-26
pre-empt flag 1-26
processing level 4-1
processing level operation 4-2
processing level protocols 4-9
processing level services 4-8
protocol 2-14, 2-16, 3-11
protocols 2-13, 4-9

pull 2-4, 2-10, 2-14

push 2-4,2-10, 2-14

Q

queued flag
queueing

1-22
1-9

read 1-42
read configuration 1-58
read immediate 1-45

read list 1-43

receive interface 3-5
receive signal 3-14, 3-21
reply 1-35

request 1-35

reset 1-57

reset bit 1-17
resource definitions 5-2
resume 1-62

raturn code 2-11, 2-12

S

send interface 3-5

signal 2-12

signal code 1-17

signalling 1-29, 2-5, 2-15, 3-5, 5-3
signalling control area 1-29

single control element
enqueue 3-11

source field 1-37

start of elements field 1.27

start of free space fleld 1-23

status port 1-18

structure 2-1, 3-1

subsystem control port

support logic 2-3

suppress reply bit 1-35

surrogate dequeus control
area 1-28

surrogate dequeue status

surrogate enqueue control
area 1-24

surrogate enqueue status

surrogate start of elements

surrogate start of free 1-24

system 2-3

system level configuration 5-2

system level initialization 5-4

T

to address 2-11, 2-12
type field 1-33

U

unitID 2-10, 2-11, 2-12, 5-2
unit level configuration 5-1
unit level initialization 5-4
unit type 5-2

Vv

value 2-12
value field

w

wait bit 1-36
wrap 1-64

1-17

1-29

1-25
1-28

1-33

X-5

wrap bit 1-22, 1-27

wrap element offset 1-23
wrap element offset field 1-27
write 1-47

write immediate 1-50

write list 1-49

