Section 9. Compatibility

Introduction e 9-3
SystemBoard e 9-3
Diskette Drivesand Controller 9-4
Fixed Disk Drives and Controlier 9-5
Application Guidelines 9-6
Hardware Interrupts 0 i i 9-6
Software Interrupts 9-7
High-Level Language Considerations 9-8
Assembler Language Programming Considerations 9-8
Opcodes e e 9-8

80286 Anomalieso 9-10

ROM BIOS and Operating System Function Calls 9-11
Hardware Compatibility 9-14
Muttitasking Provisions 9-15
Interfaces e e 9-15

L0 T2 9-16
Time-0uts 9-17
Machine-Sensitive Programs 9-18

Compatibility 9-1

Notes:

9-2 Compatibility

Introduction

This section discusses the major differences between the systems in
the IBM Personal Computer and Personal System/2 product lines.
Also included are programming considerations that must be taken
into account when designing application programs for the IBM
Personal Computer and Personal System/2 products.

System Board

The Model 50 and Model 60 system boards use an 80286
microprocessor and have provisions to install an optional 80287 math
coprocessor. These B0286/80287 systems are generally compatible
with applications written for the 8087 Math Coprocessor. Math
coprocessor compatibility is discussed in “8087 to 80287
Compatibility” on page 3-7.

The 80286 system microprocessor and general architecture of the
Model 50 and Model 60 have created some fundamental differences
between them and other systems. These differences must be taken
into consideration when designing programs exclusively for these
Personal System/2 products or programs compatible across the IBM
Personal Computer and Personal System/2 product lines.
Programming considerations are discussed in “Application
Guidelines” on page 9-6.

Compatibility 9-3

Diskette Drives and Controller

The following figure shows the read, write, and format capabilities for
each type of diskette drive used by the Model 50 and Model 60.

Diskette 160/180K 320/360K 1.44M 720K
Drive Type Mode Mode Mode Mcde
5.25-Inch Diskette Drive:
Single Sided (48 TPI) RWF - - -
Double Sided (48 TPI) RWF RWF -— -
3.5-Inch Diskette Drive:
720KB Drive - - -— RWF
1.44MB Drive -— - RWF RWF

R-Read W-Write F-Format

Figure 9-1. Diskette Drive Read, Write, and Format Capabilities

Notes:

1. 5.25-inch diskettes designed for the 1.2M mode cannot be used in
either a 160/180K or a 320/360K diskette drive.

2. 3.5-inch diskettes designed for the 1.44M mode cannot be used in
a 720K diskette drive.

Warning: 16-bit operations to the video subsystem can cause a
diskette overrun in the 1.44M mode because data width conversions
may require more than 12 microseconds. If an overrun occurs, BIOS
returns an error code and the operation should be retried.

Copy Protection

The following methods of copy protection may not work on systems
using the 5.25-inch high capacity diskette drive or the 3.5-inch 1.44M
diskette drive.

® Bypassing BIOS Routines

— Track Density: The 5.25 inch high capacity diskette drive
records tracks at a density of 96 tracks per inch (TPI}. This
drive has to double-step in the 48 TPl mode, which is
performed oy BIOS,

9-4 Compatibility, Diskette Drive Controller

— Data Transfer Rate: BIOS selects the proper data transfer
rate for the media being used.

— Diskette Parameters Table: Copy protection, which creates
its own Diskette Parameters Table may not work on these
drives.

e Diskette Drive Controls

— Rotational Speed: The time between two events on a diskette
is a function of the controller.

— Access Time: Diskette BIOS routines must set the
track-to-track access time for the ditferent types of media
used in the drives,

— Diskette Change Signal: Copy protection may not be able to
reset this signal.

e Write Current Control—Copy protection that uses write current
control will not work because the controller selects the proper
write current for the media being used.

Fixed Disk Drives and Controller

Reading from and writing to the fixed disk drive is initiated in the
same way as with IBM Personal Computer products; however, new
functions are supported. Detailed information about specific fixed
disk drives and fixed disk adapters is available in separate technical
references.

Compatibility, Fixed Disk Drive Controller 9-5

Application Guidelines

Use the following information to develop application programs for the
IBM Personal Computer and Personal System/2 products. Whenever
possible, BIOS should be used as an interface to hardware in order to
provide maximum compatibility and portability of applications across
systems.

Hardware Interrupts

Hardware interrupts are level-sensitive for systems using the Micro
Channel architecture while systems using the Personal Computer
type /0 channel design have edge-sensitive hardware interrupts. On
edge-sensitive interrupt systems, the interrupt controller clears its
internal interrupt-in-progress latch when the interrupt routine sends
an End-of-Interrupt (EQI) command to the controller. The EOI is sent
whether the incoming interrupt request to the controller is active or
inactive.

In level-sensitive systems, the interrupt-in-progress latch is readable
at an I/0 address bit position. This latch is read during the interrupt
service routine and may be reset by the read operation or may
require an explicit reset.

Note: Designers may want to limit the number of devices sharing an
interrupt level for performance and latency considerations.

The interrupt controller on level-sensitive systems requires the
interrupt request to be inactive at the time the EQI is sent; otherwise,
a “new” interrupt request will be detecied and another
microprocessor interrupt caused.

To avoid this problem, a level-sensitive interrupt handler must clear
the interrupt condition {usually by a Read or Write to an {/0 port on
the device causing the interrupt}. After clearing the interrupt
condition, a JMP $+ 2 should be executed prior to sending the EOIl to
the interrupt controller. This ensures that the interrupt request is
removed prior to re-enabling the interrupt controller. Another

JMP $+2 should be executed after sending the EQI, but prior to
enabling the interrupt through the set Set Interrupt Enabie Flag (ST!)
command.

9-6 Compatibility, Applications Guidelines

In the level-sensitive systems, hardware prevents the interrupt
controllers from being set to the edge-sensitive mode.

Hardware interrupt IRQ9 is defined as the replacement interrupt level
for the cascade level IRQ2. Program interrupt sharing shouid be
implemented on IRQ2, interrupt hex 0A. The following processing
occurs to maintain compatibility with the IRQ2 used by IBM Personal
Computer products:

1. A device drives the interrupt request active on IRQ2 of the
channel.

2. This interrupt request is mapped in hardware to IRQ9 input on the
second interrupt controller.

3. When the interrupt occurs, the system microprocessor passes
control to the {RQ9 (interrupt hex 71) interrupt handler.

4. This interrupt handier performs an end of interrupt (EO1) to the
second interrupt controlier and passes control to IRQ2 (interrupt
hex 0A) interrupt handler.

5. This IRQ2 interrupt handler, when handling the interrupt, causes
the device to reset the interrupt request prior to performing an
EOI to the master interrupt controlier that finishes servicing the
IRQ2 request.

Software Inierrupts

With the advent of software interrupt sharing, software interrupt
routines must daisy chain interrupts. Each routine must check the
function value and if it is not in the range of function calls for that
routine, it must transfer control to the next routine in the chain.
Because software interrupts are initially pointed to 0:0, before daisy
chaining, it is necessary to check for this case. If the next routine is
peointed to 0:0 and the function call is out of range, the appropriate
action is to set the carry flag and do a RET 2 to indicate an error
condition,

Compatibility, Applications Guidelines 9-7

High-Level Language Considerations

The IBM-supported languages of IBM C, BASIC, FORTRAN, COBOL,
and Pascal are the best choices for writing compatible programs.

If a program uses specific features of the hardware, that program
may not be compatible with all IBM Personal Computer and Personal
System/2 products. Specifically, the use of assembler language
subroutines or hardware-specitic commands (In, Out, Peek, Poke, ...}
must follow the assembler language rules. See "Assembler
Language Programming Considerations” on page 9-8.

Any program that requires precise timing information should obtain it
through an operating system or language interface; for example,
TIMES in BASIC. If greater precision is required, the assembler
techniques in “Assembler Language Programming Considerations”
are available. The use of programming loops may prevent a program
from being compatible with other IBM Personal Computer products,
IBM Personal System/2 products, and software.

Assembler Language Programming Considerations

This section describes fundamental differences between the systems
in the Personal Computer and Personal System/2 product lines that
may affect program development.

Opcodes

The following opcodes work difterently on systems using the 80286
microprocessor than they do on systems using the 8088 or 8086
microprocessor.

e PUSH SP

The 80286 microprocessor pushes the current stack pointer; the
8088 and B086 microprocessors push the new stack pointer, that
is, the value of the stack peinter after the PUSH SP instruction is
completed.

& Single step interrupt (when TF=1) on the interrupt instruction
(Opcode hex CC, CD});

9-8 Compatibility, Applications Guideiines

The 80286 microprocessor does not perform a single-step
interrupt on the INT instruction; the 8088 and 8086
microprocessors do perform a single-step interrupt on the INT
instruction.

The divide error exception (interrupt 0):

The 80286 microprocessor pushes the CS:IP of the instruction that
caused the exception; the 8088 and B086 microprocessors push
the CS:IP of the instruction following the instruction that caused
the exception.

Shift counts for the 80286 microprocessor:

Shift counts are masked to 5 bits. Shift counts greater than 31 are
treated mod 32. For example, a shift count of 36 shifts the
operand tour places.

Multiple lockout instructions:

There are several microprocessor instructions that, when
executed, iock out external bus signals. DMA requests are not
honored during the execution of these instructions. Consecutive
instructions of this type prevent DMA activity from the start of the
first instruction to the end of the last instruction. To allow for
necessary DMA cycles, as required by the diskette controiler in a
multitasking system, multiple lock-out instructions must be
separated by a JMP SHORT §+2.

Back-to-back I/0 commands:

Back-to-back /O commands to the same 1/O ports do not permit
enough recovery time for some 1/O adapters. To ensure enough
time, a JMP SHORT $+2 must be inserted between IN/OUT
instructions to the same 1/O adapters.

Note: MOV AL, AH type instruction does not allow enough
recovery time. An example of the correct procedure
follows:

OUT 10_ADD,AL
JMP SHORT $+2
MOV AL,AH

OUT I0D_ADD,AL

Compatibility, Applications Guidelines 9-9

¢ |/O commands foliowed by an STl instruction:

I/0 commands followed immediately by an STI instruction do not
permit enough recovery time for some system board and channel
operations. To ensure enough time, a JMP SHORT $+2 mustbe
inserted between the 1O command and the STl instruction.

Note: MOV AL AH type instruction does not altow enough
recovery time. An example of the correct procedure
follows:

OUT T0_ADD,AL
JMP SHORT $+2
MOV AL, AH
STI

80286 Anomalies

in the Protected Mode, when any of the null selector values (0000H,
0001H, 0002H, 0003H) are loaded into the DS or ES registers with a
MOV or POP instruction or a task switch, the 80286 always loads the
nult selector 0000H into the corresponding register.

If a coprocessor (80287) operand is read from an “executable and
readable” and conforming (ERC) code segment, and the coprocessor
operand is sufficiently near the segment limit that the second or
subsequent byte lies outside the limit, no protection exception #9 will
be generated.

The following describes the operation of all 80286 parts:

e Instructions longer than 10 bytes (instructions using multipie
redundant prefixes) generate exception #13 (General Purpose
Exception) in both the Real Address Mode and Protected Mode.

¢ |f the second operand of an ARPL instruction is a null selector,
the instruction generates an exception #13.

9-10 Compatibility, Applications Guidelines

ROM BIOS and Operating System Function Calls

For maximum portability, programs should pertorm ail /O operations
through operating system function calls. In environments where the
operating system does not provide the necessary programming
interfaces, programs should access the hardware through ROM BIOS
function calls, if permissible.

In some environments, program interrupts are used for access to
these functions. This practice removes the absolute addressing
from the program. Only the interrupt number is required.

The coprocessor detects six different exception conditions that
can occur during instruction execution. If the appropriate
exception mask within the coprocessor is not set, the coprocessor
sets the 'error’ signal. This ‘error’ signal generates a hardware
interrupt 13 (IRQ 13) causing the 'busy’ signal to be held in the
busy state. The ‘busy’ signal can be cleared by an 8-bit I/O Write
command to address hex 00F0 with bits DO through D7 equal to 0.

The power-on self-test code in the system ROM enables
hardware IRQ 13 and sets up its vector to point to a routine in
ROM. The ROM routine clears the ‘busy’ signal latch and then
transfers control to the address peinted to by the NMI vector,

This maintains code compatibility across the IBM Personal
Computer and Personal System/2 product lines. The NMI handier
reads the status of the coprocessor to determine if the NMI was
caused by the coprocessor. If the interrupt was not caused by the
coprocessor, control is passed to the original NMI handler.

In systems using the 80286 microprocessor, IRQ 8 is redirected to
INT hex 0A (hardware IRQ 2). This ensures that hardware
designed to use IRQ 2 will operate in these systems. See
“Hardware Interrupts” on page 9-6 for more information.

The system can mask hardware sensitivity. New devices can
change the ROM BIOS to accept the same programming interface
on the new device.

In cases where BIOS provides parameter tables, such as for
video or diskette, a program can substitute new parameter values
by building a new capy of the table and changing the vector to
point to that table. However, the program should copy the current
table, using the current vector, and then modify those locations in

Compatibility, Applications Guidelines 9-11

the tabie that need to be changed. In this way, the program does
not inadvertently change any values that should be left the same.

e The Diskette Parameters Table pointed to by INT hex 1E consists
of 11 parameters required for diskette operation. Itis
recommended that the values supplied in ROM be used. If it
becomes necessary to modify any of the parameters, build
another parameter block and modify the address at INT hex 1E
(0:78) to point to the new block.

The parameters were established to allow:

— Some models of the IBM Personal Computer to operate both
the 5.25-inch high capacity diskette drive (96 tracks per inch)
and the 5.25-inch double-sided diskette drive (48 tracks per
inch).

— Some models of the Personal System/2 to operate both the
3.5-inch 1.44M diskette drive and the 3.5-inch 720KB diskette
drive.

The Gap Length Parameter is not always retrieved from the
parameter block. The gap length used during diskette read,
write, and verify operations is derived from within diskette BIOS.
The gap length for format operations is still obtained from the
parameter block.

Note: Special considerations are required for format operations.
Refer to the diskette section of the /BM Personal System/2
and Personal Computer BIOS Interface Technical
Reference for the required details.

If a parameter block contains a head settle time parameter value
of 0 milliseconds, and a write or format operation is being
performed, the following minimum head settle times are
enforced.

9-12 Compatibility, Applications Guidelines

Drive Type Head Settie Time

5.25-Inch Diskette Drives:

Double Sided (48 TPI) 20 milliseconds

High Capacity (96 TPI) 15 milliseconds
3.5-Inch Diskette Drives:

720K 20 milliseconds

1.44M 15 milliseconds

Figure 9-2. Write and Format Head Settle Time

Read and verify operations use the head settle time provided by
the parameter biock.

if a parameter block contains a motor start wait parameter of less
than 500 milliseconds (1 second for a Personal Computer
product) for a write or verify operation, diskette BIOS enforces a
minimum time of 500 milliseconds {1 second for a Personal
Computer product). Read and write operations use the motor
start time provided by the parameter block.

® Programs may be designed to reside on both 5.25-inch or 3.5-inch
diskettes. Since not all programs are operating-system
dependent, the following procedure can be used to determine the
type of media inserted into a diskette drive.

1. Verify Track 0, Head 0, Sector 1 (1 sector): This allows
diskette BIOS to determine if the format of the media is a
recognizable type.

If the verify operation fails, issue the reset function (AH=0) to
diskette BIOS and try the operation again. If another failure
occurs, the media needs to be formatted or is defective.

2. Verify Track 0, Head 0, Sector 16 (1 sector).

If the verify operation fails, either a 5.25-inch (48 TPI) or
3.5-inch 720KB diskette is installed. The type can be
determined by veritying Track 78, Head 1, Sector 1 (1 sector).
A successful verification of Track 78 indicates a 3.5-inch
720KB diskette is installed; a verification failure indicates a -
5.25-inch {48 TPI) diskette is installed.

Note: Refer to the DOS Technical Reference for the File

Allocation Table parameters for single-sided and
double-sided diskettes.

Compatibility, Applications Guidelines 9-13

3. Read the diskette controller status in BIOS starting with
address 40:42. The fifth byte defines the head that the
operation ended with, if the operation ended with head 1, the
diskette is a 5.25-inch High Capacity (96 TPI) diskette; if the
operation ended with head 0, the diskette is a 3.5-inch 1.44M
diskette.

Hardware Compatibility

The Personal System/2 products maintain many of the interfaces
used by the IBM Personal Computer AT. In most cases command and
status organization of these interfaces is maintained.

The functional interfaces for the Model 50 and Model 60 are
compatible with the following interfaces:

The intel 8259 interrupt contrellers (without edge triggering)
The Intel 8253 timers driven from 1.190 MHz {timer 0 and 2 onily)

The Intel 8237 DMA controller-address/transier counters, page
registers and status fields only. The Command and Request
registers are not supported. The rotate and mask functions are
not supported. The Mode register is partially supported.

The NS16450 serial port
The Intel 8088, 8086, and 80286 microprocessors
The Intel B272 diskette drive controller {level-sensitive interrupt)

The Motorola MC146818 Time of Day Clock command and status
(CMOS reorganized)

The Intel B042 keyboard port at address hex 0060

Display modes supported by the IBM Monochrome Display and
Printer Adapter, IBM Color/Graphics Moniter Adapter, and the
IBM Enhanced Graphics Display Adapter

The paraliel printer ports (Parallel 1, Parailel 2, and Paraliei 3) in
compatibility mode

Generally compatible with the Intel 80287 and 8087 math
coprocessors (See “B087 to 80287 Compatibility” on page 3-7 for
limitations).

9-14 Compatibility, Applications Guidelines

Multitasking Provisions

The BIOS contains a feature to assist multitasking implementation.
“Hooks” are provided for a multitasking dispatcher. Whenever a
busy (wait) loop occurs in the BIOS, a hook is provided for the
program to break out of the loop. Also, whenever BIOS services an
interrupt, a corresponding wait loop is exited, and another hook is
provided. Thus a program can be written that employs the bulk of the
device driver code. The following is valid only in the Real Address
Mode and must be taken by the code to allow this support.

® The program is responsible for the serialization of access to the
device driver. The BIOS code is not reentrant.

& The program is responsible for matching corresponding Wait and
Post calls.

Warning: 16-bit operations to the video subsystem can cause a
diskette overrun in the 1.44M mode because data width conversions
may require more than 12 microseconds. If an overrun occurs, BIOS
returns an error code and the operation should be retried.

interfaces
There are four interfaces to be used by the multitasking dispatcher:

Startup: First, the startup code hooks interrupt hex 15. The
dispatcher is responsible to check for function codes of AH= hex 90
or 91. The “Wait” and “Post” sections describe these codes. The
dispatcher must pass all other functions to the previous user of
interrupt hex 15. This can be done by a JMP or a CALL. If the
function code is hex 90 or 91, the dispatcher should do the
appropriate processing and return by the IRET instruction.

Serilalization: It is up to the multitasking system to ensure that the

device driver code is used serially. Muitiple entries into the code can
result in serious errors.

Compatibility, Multitasking Provisions 9-15

Walt: Whenever the BIOS is about to enter a busy loop, it first issues
an interrupt hex 15 with a function code of hex 90 in AH. This signals
a wait condition. At this point, the dispatcher should save the task
status and dispatch another task. This allows overiapped execution
of tasks when the hardware is busy. The following is an outline of the
code that has been added to the BIOS to perform this function.

MOV AX, 90XXH ; wait code in AH and
; type code in AL

INT 15H : issue call

JC TIMEQUT ; optional: for time-out or
s if carry is set, time-out
; occurred

NORMAL TIMEOUT LOGIC ; normal time-out

Post: Whenever the BIOS has set an interrupt flag for a
corresponding busy loop, an interrupt hex 15 occurs with a function
code of hex 91 in AH. This signals a Post condition. At this point, the
dispatcher should set the task status to “ready to run” and return to
the interrupt routine. The following is an outline of the code added to
BIOS that performs this function.

MOV AX. 91XXH ; post code AH and
; type code AL

INT 15H ; issue call

Classes

The following types of wait loops are supported:

® The ciass for hex 0 to 7F is serially reusable. This means that for
the devices that use these codes, access to the BIOS must be
restricted to only one task at a time.

e The class for hex B0 to BF is reentrant. There is no restriction on
the number of tasks that can access the device.

& The class for hex CO to FF is noninterrupt. There is no
corresponding interrupt for the wait loop. Therefore, it is the
responsibility of the dispatcher to determine what satisfies this
condition to exit from the loop.

9-16 Compatibility, Multitasking Provisions

Function Code Classes

Type Code (AL) Description

00H->7FH Serially reusable devices; the operating system
must serialize access
80H->0BFH Reentrant devices; ES:BX is used to distinguish

different calls (multiple 10 calls are atlowed
simultaneously).

0COH->0FFH Wait-only calls; there is no complementary Post
for these waits--these are time-out only. Times
are function-number dependent.

Function Code Assignments: The following are specific assignments
for the Model 50 and Model 60 BIOS. Times are approximate. They
are grouped according to the classes described under “Function
Code Classes.”

Type Code {AL) Time Out Description

00H Yes (12 seconds) Fixed Disk

01H Yes (2 seconds) Diskette

02H No Keyboard

OFCH Yes Fixed Disk Reset
OFDH Yes (500-ms Read/Write) Diskette Motor Start
OFEH Yes (20 seconds) Printer

Figure 9-3. Functional Code Assignments

The asynchronous support has been omitted. The serial and parallel
controllers generate interrupts, but BIOS does not support them in the
interrupt mode. Therefore, the support should be included in the
multitasking system code if that device is to be supported.

Time-Outs

To support time-outs properly, the muititasking dispatcher must be
aware of time. If a device enters a busy loop, it generally should
remain there for a specific amount of time before indicating an error,
The dispatcher should return to the BIOS wait laop with the carry bit
set if a time-out occurs.

Compatibility, Muititasking Provisions 9-17

Machine-Sensitive Programs

Programs can select machine-specific features, but they must first
identify the machine and model type. IBM has defined methods for
uniguely determining the specific machine type. The location of the
machine model bytes can be found through interrupt 15 function code
(AH) = hex C0. The model bytes for Model 50 and Model 60 are
shown in the following figure.

Model Sub-Model

Byte Byte Product Name
FC 04 Model 50

FC s Model 60

Figure 9-4. Machine Model Bytes

See the IBM Personal Systemi2 and Personal Computer BIOS
Interface Technical Reference for a listing of model bytes for other
IBM products.

9-18 Compatibility, Multitasking Provisions

