
www.radisys.com 007-01232-0002 • September 2003

ARTIC STREAMS
Support
WAN Driver
Interface Reference

Release 1.6

September 2003
Copyright ©2000, 2003 by RadiSys Corporation

All rights reserved.
EPC and RadiSys are registered trademarks of RadiSys Corporation.
ASM, Brahma, DAI, DAQ, MultiPro, SAIB, Spirit, and ValuePro are trademarks of RadiSys Corporation.
DAVID, MAUI, OS-9, OS-9000, and SoftStax are registered trademarks of RadiSys Microware Communications Software Division, Inc.
FasTrak, Hawk, and UpLink are trademarks of RadiSys Microware Communications Software Division, Inc.
† All other trademarks, registered trademarks, service marks, and trade names are the property of their respective owners.

Contents

Before you begin .. xi.
Contents overview .. xi.
Conventions.. xii.

Adapter names ... xii.
Terms used in this book ... xii.
Notations ... xiii.

Reference publications .. xiv.

Customer Support... xvi.
Accessing the Web Site ... xvi.
Calling Technical Support .. xvi.

Summary of changes ... xvii.
Release 1.6.. xvii.
Release 1.4 and Release 1.5 .. xviii.
Release 1.3.. xviii.
Release 1.2.. xviii.

Chapter 1: Overview
Supported adapters, hardware, and protocols... 3.

Chapter 2: Protocol descriptions
HDLC framing ... 7.

Bisynchronous protocol .. 8.

SS7 low-level processing ... 9.

WAN driver in relation to MTP2 ... 10.

Special SS7 features .. 11.

Special TTC SS7 features.. 11.

SS7 SU Reception (DAEDR)... 12.

SU filtering ... 13.

SU transmission (DAEDT) ... 14.

Error Rate Monitor (ERM) .. 17.

Implementation of SUERM for SS7 ... 17.

Implementation of SUERM for TTC SS7 ... 17.

Implementation of AERM for SS7 and TTC SS7 ... 18.

Clear Channel Capability Mode... 19.

Physical layer ... 19.

LSSU/FISU/MSU length indicator/sequence numbering .. 19.

Acceptance of alignment .. 20.

Error monitoring ... 20.

T1/E1/J1 interface .. 22.

SC-bus implementation.. 24.

CT-bus implementation.. 25.

ATM in SS7 environments ... 27.
iii

ARTIC STREAMS Support WAN Driver Interface Reference
AAL5 protocol reference model ... 27.

Physical layer ... 28.

ATM layer ... 29.

ATM Adaptation Layer 5 (AAL5).. 30.

Common Part (CP) .. 30.

Service Specific Convergence Sublayer (SSCS).. 30.

Operation and Maintenance (OAM) .. 31.

Chapter 3: WAN driver STREAMS interface
About minor numbers... 33.

Configuring the WAN driver .. 33.

Creating STREAMS.. 34.

Non-clone open with SNID decode .. 35.

Non-clone open with no SNID decode ... 35.

Clone open with SNID decode ... 35.

Clone open with no SNID decode .. 35.

Types of WAN driver STREAMS messages and commands.. 36.

Chapter 4: Serial and Multiplexed WAN drivers (command sequences)
Serial synchronous WAN driver running SS7 protocol.. 37.

Serial synchronous WAN driver in HDLC framing mode ... 40.

Serial synchronous WAN driver in bisynchronous mode .. 42.

Multiplexed WAN driver in SS7 or HDLC framing .. 44.

Multiplexed WAN driver in Clear Channel Capability mode .. 45.

Multiplexed WAN driver in ATM mode... 46.

SC-bus connection scenarios ... 47.

CT-bus connection scenarios .. 47.

Chapter 5: Serial and Multiplexed WAN drivers (common operations)
STREAMS service messages.. 50.

WAN_SID — Set subnetwork ID ... 51.

WAN_REG — Registration message — start hardware.. 54.

WAN_CTL — Connection management .. 56.

WAN_DAT — Data messages for transmission and reception ... 61.

STREAMS management commands.. 67.

W_DISABLE/W_ENABLE — Disable/enable transmission of data... 69.

W_GETDRVINFO — Get driver configuration information.. 71.

W_GETHWTYPE — Get hardware type ... 74.

W_GETSTATS — Get statistics ... 78.

W_ZEROSTATS — Clear channel statistics... 81.

W_SETTUNE — Set configuration .. 83.

W_GETTUNE — Get configuration .. 93.

W_SET_SNID — Allocate internal channel and associate SNID to it ... 94.

W_GET_SNID — Get the assigned internal channel ID ... 101.

W_REL_SNID — Release internal channel ID ... 102.

Chapter 6: Signaling System Number 7 (SS7) (specific operations)
Relation between SS7 and HDLC modes .. 103.

STREAMS service messages for SS7.. 104.

WAN_ACTSS7 — Control SS7 features ... 105.

WAN_NOTIFSS7 — Notify SS7 status .. 107.

WAN_RESETSS7 — Reset filtering operation.. 109.
iv

Contents
STREAMS management commands for SS7 ... 111.

W_SETSS7 — Set SS7 configuration parameters .. 112.

W_GETSS7 — Get SS7 configuration parameters .. 115.

W_SETSS7_JPN — Set TTC SS7 configuration parameters.. 117.

W_GETSS7_JPN — Get TTC SS7 configuration parameters.. 120.

W_SETSS7_CCC — Set SS7 Clear Channel Capability configuration parameters 122.

W_GETSS7_CCC — Get SS7 Clear Channel Capability configuration parameters 125.

Chapter 7: T1/E1 interface (specific operations)
Identifying the T1/E1 components .. 128.

STREAMS service messages for T1/E1 ... 128.

WAN_NOTIFDI — Inform upper level of T1/E1 events .. 129.

WAN_NOTIFTIM — Send a timestamped notification .. 134.

STREAMS management commands for T1/E1 .. 136.

W_DI_TEST_CFG — Set test configuration for a physical port ... 137.

W_SET_PHY_PIPE — Define and undefine time slots ... 140.

W_GET_PHY_PIPE — Retrieve time-slot information... 144.

W_SETCH_MAP — Set up channel map table... 146.

W_GETCH_MAP — Get channel map table settings ... 156.

W_SETDI — Set attributes common to all digital interfaces... 158.

W_GETDI — Get attributes common to all digital interfaces... 164.

W_SETDI_PORT — Set attributes of a physical port ... 165.

W_GETDI_PORT — Get attributes of a physical port ... 174.

W_GETDI_STATS — Get port statistics .. 176.

W_ZERODI_STATS — Clear port statistics .. 178.

W_SETDI_LPBK — Put port in loopback .. 179.

W_SETDI_NOTIF — Set event filter for a physical port .. 181.

W_SET_TIMESTAMP — Set timestamp .. 183.

Chapter 8: ATM (specific operations)
STREAMS service messages for ATM... 186.

WAN_NOTIF_ATM — Notify ATM cell stream status... 187.

STREAMS management commands for ATM. ... 189.

W_SET_ATM — Define parameters for a physical layer of an ATM cell stream........................ 190.

W_GET_ATM — Obtain ATM physical-layer parameters and current state.............................. 193.

W_GET_VCC_STATS — Get statistics for a virtual channel.. 195.

W_ZERO_VCC_STATS — Retrieve and clear statistics for a virtual channel 198.

W_GET_ATM_STATS — Get statistics for a physical ATM cell stream 200.

W_ZERO_ATM_STATS — Retrieve and clear statistics for a physical ATM cell stream........... 203.

Chapter 9: Extensions to Serial WAN driver provided by RadiSys
Interacting with the Serial WAN driver... 205.

Serial WAN driver STREAMS interface.. 206.

STREAMS service message for the Serial WAN driver.. 206.

WAN_NOTIFY — Notification of errors .. 207.

STREAMS management commands for the Serial WAN driver .. 208.

W_SETLINE — Define line characteristics ... 209.

W_GETLINE — Get line characteristics .. 220.

W_SETSIG — Output signal control .. 221.

W_GETSIG — Return the states of control .. 223.

W_RESET — Reset communications chip .. 225.
v

ARTIC STREAMS Support WAN Driver Interface Reference
W_SENDBREAK — Send break character ... 227.

W_SETMODE — Set port mode.. 229.

W_STATIONADDR — Set filtering address .. 231.

Chapter 10: Configuration and program development
Executable files required for ARTIC environments ... 233.

Load WAN drivers ... 234.

Command-line parameters.. 235.

Initial line characteristics .. 242.

Serial WAN driver in synchronous mode — defaults.. 242.

Multiplexed WAN driver for any of its ports — defaults ... 242.

Multiplexed WAN driver for any of its channels — defaults .. 242.

Interfacing with the WAN driver .. 243.

LED use .. 244.

Glossary ... 245.

Index ... 251.
vi

Contents
Figures
Figure 2-1. WAN driver in relation to MTP2 ... 10.
Figure 2-2. SU filtering .. 13.
Figure 2-3. Format for each type of Signal Unit... 15.
Figure 2-4. 1.5 and 2.0 Mbit/s rate format for each type of Signal Unit .. 20.
Figure 2-5. SC-bus switching support.. 24.
Figure 2-6. CT-bus switching support ... 26.
Figure 2-7. AAL5 protocol reference model .. 27.
Figure 2-8. ATM cell at an NNI.. 29.
Figure 3-1. Non-clone versus clone open... 34.
Figure 4-1. Serial synchronous WAN driver running SS7 protocol .. 39.
Figure 4-2. Serial synchronous WAN driver in HDLC framing mode.. 41.
Figure 4-3. Serial synchronous WAN driver in bisynchronous mode... 43.
Figure 5-1. Encoded SNID .. 51.
Figure 5-2. Message flow for WAN_SID ... 53.
Figure 5-3. Message flow for WAN_REG ... 55.
Figure 5-4. Message flow for WAN_CTL.. 60.
Figure 5-5. Message flow for WAN_DAT ... 63.
Figure 5-6. Message flow for WAN_DAT — ATM protocol mode ... 66.
Figure 5-7. Message flow for W_ENABLE/W_DISABLE... 70.
Figure 5-8. Message flow for W_GETDRVINFO.. 73.
Figure 5-9. Message flow for W_GETHWTYPE ... 77.
Figure 5-10. Message flow for W_GETSTATS .. 80.
Figure 5-11. Message flow for W_ZEROSTATS ... 82.
Figure 5-12. Format of WAN_interface of WAN_hddef structure... 86.
Figure 5-13. Message flow for W_SETTUNE (SS7)... 92.
Figure 5-14. Message flow for W_GETTUNE... 93.
Figure 5-15. Connection points that make a data path.. 99.
Figure 5-16. Message flow for W_SET_SNID ... 100.
Figure 5-17. Message flow for W_GET_SNID .. 101.
Figure 5-18. Message flow for W_REL_SNID... 102.
Figure 6-1. Message flow for WAN_ACTSS7.. 106.
Figure 6-2. Message flow for WAN_NOTIFSS7.. 108.
Figure 6-3. Message flow for WAN_RESETSS7 .. 110.
Figure 6-4. Message flow for W_SETSS7 .. 114.
Figure 6-5. Message flow for W_GETSS7 ... 116.
Figure 6-6. Message flow for W_SETSS7_JPN .. 119.
Figure 6-7. Message flow for W_GETSS7_JPN ... 121.
Figure 6-8. Message flow for W_SETSS7_CCC... 124.
Figure 6-9. Message flow for W_GETSS7_CCC.. 126.
Figure 7-1. Message flow for W_NOTIFDI... 133.
Figure 7-2. Message flow for WAN_NOTIFTIM .. 135.
Figure 7-3. Message flow for W_DI_TEST_CFG... 139.
Figure 7-4. Message flow for W_SET_PHY_PIPE ... 143.
Figure 7-5. Message flow for W_GET_PHY_PIPE .. 145.
Figure 7-6. Port assignments for ARTIC960 4-Port T1/E1 Mezzanine Card ... 147.
Figure 7-7. Port assignments for ARTIC 4-Port T1/E1/J1 DSP PMC and ARTIC 1000/2000 Series 149.
Figure 7-8. Possible paths.. 154.
vii

ARTIC STREAMS Support WAN Driver Interface Reference
Figure 7-9. Message flow for W_GETCH_MAP ... 157.
Figure 7-10. Relationship between recovered clocks.. 163.
Figure 7-11. Message flow for W_SETDI .. 163.
Figure 7-12. Message flow for W_GETDI ... 164.
Figure 7-13. Message flow for W_SETDI_PORT .. 173.
Figure 7-14. Message flow for W_GETDI_PORT ... 175.
Figure 7-15. Message flow for W_GETDI_STATS .. 177.
Figure 7-16. Message flow for W_ZERODI_STATS ... 178.
Figure 7-17. Message flow for W_SETDI_LPBK ... 180.
Figure 7-18. Message flow for W_SETDI_NOTIF... 182.
Figure 7-19. Message flow for W_SET_TIMESTAMP .. 183.
Figure 8-1. Message flow for WAN_NOTIF_ATM... 188.
Figure 8-2. Message flow for W_SET_ATM.. 192.
Figure 8-3. Message flow for W_GET_ATM... 194.
Figure 8-4. Message flow for W_GET_VCC_STATS... 197.
Figure 8-5. Message flow for W_ZERO_VCC_STATS.. 199.
Figure 8-6. Message flow for W_GET_ATM_STATS.. 202.
Figure 8-7. Message flow for W_ZERO_ATM_STATS... 204.
Figure 9-1. Message flow for WAN_NOTIFY... 207.
Figure 9-2. Message flow for W_SETLINE ... 219.
Figure 9-3. Message flow for W_GETLINE .. 220.
Figure 9-4. Message flow for W_SETSIG .. 222.
Figure 9-5. Message flow for W_GETSIG ... 224.
Figure 9-6. Message flow for W_RESET ... 226.
Figure 9-7. Message flow for W_SENDBREAK .. 228.
Figure 9-8. Message flow for W_SETMODE .. 230.
Figure 9-9. Message flow for W_STATIONADDR ... 232.
viii

Contents
Tables
Table 1-1. Adapters supporting SS7 MTP2/HDLC and monitoring APIs .. 3.
Table 1-2. Adapters supporting SS7 MTP2/HSL monitoring and HDLC Send and Receive APIs 3.
Table 1-3. Summary of supported hardware with ARTIC adapters... 4.
Table 1-4. Summary of supported protocols ... 5.
Table 2-1. HDLC Framing .. 7.
Table 2-2. Valid BISYNC message types ... 9.
Table 2-3. ERM summary .. 18.
Table 2-4. T1/E1 available features ... 22.
Table 5-1. Summary of service messages .. 50.
Table 5-2. STREAMS management commands common to Serial and Multiplexed WAN drivers 68.
Table 5-3. Actions taken for WAN_RMT_CC_REW and WAN_RMT_CC_ACT bits............................ 92.
Table 5-4. SET_SNID command—combinations for channelled mode for Multiplexed WAN driver 98.
Table 6-1. STREAMS service messages and management commands for SS7.. 103.
Table 7-1. STREAMS service message and management commands for the T1/E1 interface 127.
Table 8-1. STREAMS service messages and management commands for ATM....................................... 185.
Table 10-1. W_MONITOR_MODE — possible values .. 239.
Table 10-2. Initialization error codes .. 241.
Table 10-3. Header file organization... 243.
Table 10-4. LED usage summary .. 244.
ix

ARTIC STREAMS Support WAN Driver Interface Reference
x

Before you begin

This book provides information on the interface between the Wide Area Network
(WAN) device driver (referred to in this book as the WAN driver) and other
subsystems in a STREAMS environment.

Contents overview
The following describes the contents of this book.

Chapter Page Description
1 Overview 1 Provides an overview of the WAN driver

and a summary of PMCs, electrical
interfaces, and supported protocols.

2 Protocol descriptions 7 Provides a brief description of various
protocols.

33 Provides STREAMS-specific details.
4 Serial and Multiplexed WAN

drivers (command
sequences)

37 Provides message exchanges for the Serial
and Multiplexed WAN drivers when
running various protocols.

5 Serial and Multiplexed WAN
drivers (common operations)

49 Provides operations common to the Serial
and the Multiplexed WAN drivers.

6 Signaling System
Number 7 (SS7) (specific
operations)

103 Provides operations specific to Signaling
System Number 7 (SS7). These SS7
operations are common to the Serial and
the Multiplexed WAN drivers.

7 T1/E1 interface
(specific operations)

127 Provides operations specific to the T1/E1
interface (multiplexed mode).

8 ATM (specific operations) 185 Provides operations specific to the ATM
protocol mode, which implements higher
speeds for SS7 signaling.

9 Extensions to Serial WAN
driver provided by RadiSys

205 Provides extensions to the Serial WAN
driver provided by RadiSys.

10 Configuration and program
development

233 Provides WAN driver load time
configuration, initial port characteristics,
and program development information.
xi

ARTIC STREAMS Support WAN Driver Interface Reference
Conventions

Adapter names

The following table shows the different ways an adapter can be identified.

Terms used in this book

The terms used in this book are as follows:

ARTIC960 and ARTIC 1000/2000 Series
refer always to the RadiSys ARTIC960 and ARTIC 1000/2000 Series
adapters.

WAN driver
refers to a WAN driver that runs in the STREAMS environment on either
an ARTIC960 adapter or an ARTIC 1000/2000 Series adapter.

ARTIC960 WAN driver
refers to a WAN driver that runs in the STREAMS environment on an
ARTIC960 adapter.

ARTIC 1000/2000 Series WAN driver
refers to a WAN driver that runs in the STREAMS environment on an
ARTIC 1000/2000 Series adapter.

Part # Code Name Product Name

IOP-CPCI-10000 Tomcat ARTIC 1000 CompactPCI I/O Platform

IOP-PMC-01000 Hornet ARTIC 4-Port T1/E1/J1 DSP PMC

IOP-PMC-02000 Spitfire ARTIC 4-Port T1/E1/J1 Line PMC

IOP-PMC-03000 Remora Rear I/O ARTIC 4-Port Serial PMC

IOP-RTM-00100 Hornet RTM ARTIC 8-Port T1/E1/J1 / 2-Port Ethernet Rear Transition
Module

IOP-RTM-00300 Remora RTM ARTIC 8-Port Serial / 2-Port Ethernet Rear Transition
Module

87H3800 Stingray ARTIC960Rx Frame Relay PCI Adapter

87H3450 Tigershark ARTIC960Hx PCI Adapter

87H3530
87H3550

Mantaray ARTIC960Rx PCI 3.3V 4MB VR
ARTIC960Rx PCI 3.3V 8MB (no VR)

NA NA ARTIC960 2-Port Selectable PMC (paired with Mantaray)

87H3410 Remora ARTIC960 4-Port Selectable PMC

87H3448 Orca ARTIC960 4-Port T1/E1 Mezzanine Card

NA NA ARTIC960 4-Port AIB

NA NA Cipher PMC001

NA NA Cipher AIB 802
xii

Before you begin
 Serial WAN driver
refers to a WAN driver that provides access to a physical interface
capable of serial communications over which multiplexing of data is not
possible or available (for example, a 56-kbps leased line).

Multiplexed WAN driver
refers to a WAN driver that provides access to a physical interface over
which multiplexing of data as separate logical channels (or time slots) is
possible (for example, T1, E1 or CT bus).

Line refers to one of the physical ports controlled by the Serial WAN driver.

Line or channel
for the Multiplexed WAN driver, refers to one of the multiplexed signals
on a port (or one of the time slots).

Notations

This manual uses the following conventions:

• All numbers are decimal unless otherwise stated.

• All bit numbering conforms to the industry standard of the most significant bit
having the highest bit number

• All counts in this book are assumed to start at zero.

• Data structures and syntax strings appear in this font.

Notes indicate important information
about the product.
Tips indicate alternate techniques or
procedures that you can use to save
time or better understand the product.
The globe indicates a World Wide
Web address.
The book indicates a book or file.

ESD cautions indicate situations that
may cause damage to hardware via
electro-static discharge (ESD).

Cautions indicate potentially
hazardous situations which, if not
avoided, may result in minor or
moderate injury, or damage to
data or hardware. It may also
alert you about unsafe practices.
Warnings indicate potentially
hazardous situations which, if not
avoided, can result in death or
serious injury.
Danger indicates imminently
hazardous situations which, if not
avoided, will result in death or
serious injury.
xiii

ARTIC STREAMS Support WAN Driver Interface Reference
Reference publications
• ANSI T1.403-1999 Specification

• ITU-T Recommendation Q.703, Specification of SS#7 - Signalling Link (MTP2)
(hereafter referred to as ITU-T Q.703)

• ITU-T Recommendation G.704, Synchronous Frame Structures used at 1544,
6312, 2048, 8488 and 44736 Kbits/s Hierarchical Levels (hereafter referred to
as ITU-T G.704)

• ITU-T Recommendation G.775, Loss Of Signal (LOS) and Alarm Indication
Signal (AIS) Defect Detection and Clearance Criteria (hereafter referred to as
ITU-T G.775)

• ITU-T Recommendation I.361, B-ISDN ATM Layer Specification, 11/95
(hereafter referred to as ITU-T I.361)

• ITU-T Recommendation I.363, B-ISDN ATM Adaptation Layer Specification,
03/93 (hereafter referred to as ITU-T I.363)

• ITU-T Recommendation I.363.5, B-ISDN ATM Adaptation Layer
Specification:Type 5 AAL, 08/96 (hereafter referred to as ITU-T I.363.5)

• ITU-T Recommendation I.610, B-ISDN Operation and Maintenance Principles
and Functions, 11/95 (hereafter referred to as ITU-T I.610)

• ITU-T Recommendation I.432, B-ISDN User-Network Interface-Physical
Layer Specification, 03/93 (hereafter referred to as ITU-T I.432)

• ITU-T Recommendation I.432.1, B-ISDN User-Network Interface-Physical
Layer Specification: General Characteristics, 08/96 (hereafter referred to as
ITU-T I.432.1)

• ITU-T Recommendation G.804, ATM cell mapping into Plesiochronous Digital
Hierarchy (PDH), 11/93 (hereafter referred to as ITU-T G.804)

• ITU-T Recommendation G.704, Synchronous Frame Structures used at 1544,
6312, 2048, 8488 and 44736 Kbits/s Hierarchical Levels, 07/95 (hereafter
referred to as ITU-T G.704)

• Generic requirements for CCS Nodes Supporting ATM High-speed Signaling
Links (HSLs), Bellcore GR-2878-CORE, 11/95

• The ATM Forum Technical Committee-E1 Physical Interface Specification
af-phy-0064.000, 09/96

• The ATM Forum Technical Committee-DS1 Physical Layer Specification
af-phy-0016.000, 09/94

• RFC 1406, Definitions of Managed Objects for DS1 and E1 Interface Types,
Trunk MIB Working Group, January 1993

• Primary Rate User-Network Interface-Layer 1 Specifications ITU-T I.431

• RFC 1659 Definitions of Managed Objects for RS-232 like hardware devices
using SMIv2; B.Stewart; July 1994.

• STREAMS Modules and Drivers, UNIX† SVR4.2, UNIX Press
xiv

Before you begin
• Infinon PEB2254

• VLSI Technology, Inc., SC4000 Universal Timeslot Interchange

• SCSA architecture:

– Software model — SCSA Telephony Application Object Framework

– Hardware model — SCSA

• RadiSys

– ARTIC960 Programmer’s Guide

– ARTIC960 Programmer’s Reference

– ARTIC960 STREAMS Environment Reference

– ARTIC 1000/2000 Software Reference

– SS7 Data Link Layer Software Reference

• IBM

– General Information — Binary Synchronous Communications,
GA27-3004-02

– Implementation of X.21 Interface General Information, GA27-3287-03

• SpiderX25 WAN Implementation Guide, r8.0, by Spider Systems

• SpiderISDN WAN Implementation Guide, r4.0, by Shiva Corporation
xv

ARTIC STREAMS Support WAN Driver Interface Reference
Customer Support

Accessing the Web Site

RadiSys maintains an active site on the World Wide Web. The site contains current
information about the company and locations of sales offices, new and existing
products, contacts for sales, service, and technical support information. You can
also send e-mail to RadiSys using the web site. In-depth printable service manuals
and other documentation are available for download from the RadiSys web site:

Note: When sending e-mail for technical support, include information about both
the hardware and software, plus a detailed description of the problem,
including how to reproduce it.

Then click on Support and Service to access a link to the documentation, drivers,
and BIOS. Documentation is available at this Web site in Adobe† Acrobat† .PDF
format, and may be viewed and printed using the free Acrobat† Reader† software.
BIOS files are available as self-extracting files. Links are provided to various
partners’ web sites where any files and tools needed to install drivers are available
for download.

Calling Technical Support

1. Have the RadiSys product information, such as name and release level,
available.

2. Call Technical Support:

• In the continental USA, Monday—Friday, 6:00 a.m.—5:00 p.m., Pacific
Time, dial 866–385–6167.

• Outside the USA, dial 503–615–1640 (add long distance/international
access codes).

• In Europe, Monday—Friday, 8:30 a.m.—5:00 p.m., dial +31–36–5365595.

Requests for sales, service, and technical support information receive prompt
response.

If you purchased your RadiSys product from a third-party vendor, you can contact
that vendor for service and support.

To access the RadiSys web site, enter this URL in your web browser:
http://www.radisys.com
xvi

http://www.radisys.com
http://www.radisys.com
http://www.radisys.com/service_support/index.cfm
http://www.radisys.com/service_support
http://www.radisys.com/service_support/index.cfm
http://www.radisys.com/service_support

Summary of changes

This document contains the following changes.

Release 1.6
• Changed the ARTIC8260 environment to the ARTIC 1000/2000 Series

environment.

• Added Clear Channel Capability mode information, which includes the
following new STREAMS management commands:

– W_SETSS7_CCC

– W_GETSS7_CCC

• Operations common to the Serial and Multiplexed WAN drivers:

– Changed a STREAMS management command — W_GETDRVINFO

• Operations specific to Signaling System Number 7 (SS7):

– Changed a STREAMS service message — WAN_ACTSS7

• Operations specific to T1/E1 interface:

– Added a new STREAMS service message — WAN_NOTIFTIM

– Added a new STREAMS management command — W_SET_TIMESTAMP

– Changed STREAMS management commands:

— W_SET_PHY_PIPE

— W_SETDI_PORT

• Command line parameters:

– Added a new parameter — W_TDM_CLOCK_RATE

– Added new values for the parameter W_MONITOR_MODE

To ensure your adapter supports this mode, contact your RadiSys
representative.
xvii

 ARTIC STREAMS Support WAN Driver Interface Reference
Release 1.4 and Release 1.5
Added support for TTC SS7, CT bus, and the ARTIC8260 environment.

TTC SS7 includes the following new commands:

• W_GETSS7_JPN

• W_SETSS7_JPN

The following commands have been changed.

• WAN_ACTSS7

• W_GETDRVINFO

• W_GETHWTYPE

• W_SETLINE

• W_SETSS7

• W_SETTUNE

The following command-line parameters have been added:

• BSN_FLAG

• PMC_SELECT

• RX_CRC_SELECT

• SS7_FILTER_COUNT

• W_MONITOR_MODE

Release 1.3
Added support for the SC bus. Changed the following commands:

• WAN_NOTIFDI

• W_SETDI

• W_SETCH_MAP

• W_GETCH_MAP

Release 1.2
• Added Serial WAN driver support for the following ARTIC adapters:

– RadiSys ARTIC960 Frame Relay PCI Adapter

– RadiSys ARTIC960 2-Port Selectable PMC

– Cipher PMC001

• Added Serial WAN driver support for the X.21 electrical interface. This X.21
support is for leased-line, full-duplex, and external clocking only. X.21 is not
supported on the Cipher 802 8-port adapter.
xviii

Summary of changes
• Changed the W_SETLINE command for the Serial WAN driver.

• Added support for the Multiplexed WAN driver:

– Added new AAL5-specific commands.

– Changed the following commands:

— WAN_DAT

— WAN_SET_SNID

— W_SETTUNE

— W_DITEST_CFG

• Added a new header file, wan_atm.h.
xix

 ARTIC STREAMS Support WAN Driver Interface Reference
xx

1 Overview Chapter 1

This chapter provides an overview of the WAN drivers and a summary of PMCs,
electrical interfaces, and supported protocols

The Wide Area Network Device Drivers, referred to in this book as WAN driver, are
STREAMS drivers that provide physical-layer communications support in the
STREAMS environment. STREAMS defines standard interfaces for input and
output, and the mechanism is simple and flexible. The WAN drivers provide
support for transmitting and receiving data, in addition to providing support for
programming the hardware to the appropriate line parameters.

The WAN drivers run in the STREAMS environment on a RadiSys ARTIC960
adapter and an ARTIC 1000/2000 Series adapter.

ARTIC960 Adapter
The STREAMS environment emulation is provided by the On-card
STREAMS Subsystem (OSS) module that is loaded on the RadiSys
ARTIC960 adapter. AIX†, OS/2†, Windows NT†, Novell, and OEM
operating system applications use the STREAMS Access Library (SAL) to
gain access to the ARTIC960 STREAMS environment. Such applications
often configure additional protocol layer processing (that is, X.25, Frame
Relay, SS7) in the ARTIC960 STREAMS environment.

The ARTIC960 WAN driver operates in little endian format. The system
unit software can be operating in little or big endian format. If the
system unit software is operating in big endian format, the ARTIC960
adapter’s memory regions will handle the issues related with little/big
endian. Refer to the RadiSys ARTIC960 STREAMS Environment
Reference for more details.

ARTIC 1000/2000 Series Adapter
The STREAMS environment emulation is provided by the On-card
STREAMS kernel that is loaded on the adapter. Windows NT†, Linux,
Solaris and OEM operating system applications use the STREAMS
Access Library (SAL) to gain access to the ARTIC 1000/2000 Series
STREAMS environment.

The ARTIC 1000/2000 Series WAN driver can support up to two PMC
adapters configured as a first and second PMC adapter in a
CompactPCI† (cPCI) environment. In addition, in the cPCI
environment, a Rear Transition Module (RTM) can be used in
conjunction with the ARTIC 1000 Series adapter and PMCs. This RTM
is used to connect all cables from the rear of the system unit.

The ARTIC 1000 Series adapter supports two PMC adapters.
The ARTIC 2000 Series adapter supports one PMC adapter.
1

ARTIC STREAMS Support WAN Driver Interface Reference
The ARTIC 1000/2000 Series WAN driver operates in big endian
format. The system unit software needs to ensure that data is presented
to the WAN driver in big endian format.

The WAN drivers operate in serial or multiplexed mode. When a physical interface
provides capability for multiplexing (that is, a T1, E1 or CT bus), the Multiplexed
WAN driver is used.

The WAN drivers recognize various Application Interface Boards (AIBs) or PCI
Mezzanine Cards (PMCs).

• The structures shown in this book are for illustration purposes. the
structures are defined in include files that are distributed with the WAN
driver available from the World Wide Web (see Customer Support on
page xvi for instructions).

• Electrical interfaces are selected by cable type except for the X.21
electrical interface, which is selected by issuing a W_SETLINE
command.

• All reserved fields named as w_reservedx or w_spare must be set to
zero, unless specified otherwise.

• A combined value of bit-wise ORed fields equaling zero indicates there
is no change from previous settings or default settings.
2

Chapter 1: Overview
Supported adapters, hardware, and protocols

Refer to the RadiSys SS7 Data Link Layer Software Reference for information
about the SS7 MTP2 and HDLC APIs.

Table 1-1. Adapters supporting SS7 MTP2/HDLC and monitoring APIs

Send/Receive Monitor

Part Number Form Factor Ports
Physical

 Interface

Maximum
MTP2/HSL

links

Maximum
HSL links

Maximum
MTP2/HDLC

links

Maximum
HSL links

IOP-1107-T8 cPCI 8 T1/E1/J1 128 N/A 128 8

IOP-1107-T4 cPCI 4 T1/E1/J1 64 N/A 72 4

IOP-1107-H8 cPCI 8 T1/E1/J1 N/A 4 128 8

IOP-1107-V8 cPCI 8 Serial V.35 8 N/A 8 N/A

IOP-1107-V4 cPCI 4 Serial V.35 4 N/A 4 N/A

IOP-2107-T4 PCI 4 T1/E1/J1 64 N/A 72 4

IOP-2107-V4 PCI 4 Serial V.35 4 N/A 4 N/A

IOP-2507-M4 PCI 4 T1/E1/J1 64 2 72 4

Table 1-2. Adapters supporting SS7 MTP2/HSL monitoring and HDLC Send and Receive APIs

Send/Receive Monitor

Part Number Form Factor Ports
Physical

 Interface

Maximum
MTP2/HSL

links

Maximum
HSL links

Maximum
MTP2/HDLC

links

Maximum
HSL links

IOP-1107-V21 cPCI 8 T1/E1/J1 128 4 128 8

IOP-CPCI-11100 cPCI 4 T1/E1/J1 64 2 72 4

IOP-PCI-11100 PCI 4 T1/E1/J1 64 2 72 4

IOP-PCI-11100L PCI
5V only

4 T1/E1/J1 64 2 72 4
3

ARTIC STREAMS Support WAN Driver Interface Reference
Table 1-3. Summary of supported hardware with ARTIC adapters

PMC name /
Part number

of ports Channels
per port

of logical
channels

supported by
the hardware

Logical
channels

available for
data transfer

Electrical
interfaces

Protocol
supported

WAN driver
REL file

ARTIC960 PMCs

ARTIC960
4-Port
Selectable PMC

87H3410

 4 1 4 4 • RS-232
• RS-449/v.36
• V.35 DTE
• V.35 DCE
• EIA-530
• X.21

• HDLC framing
only (default)

• HDLC framing
+ SS7 low-
level
processing

• Bisynchronous

ric_wvol.rel
Synchronous
Serial WAN Driver

ARTIC960
4-Port T1/E1
Mezzanine Card

 4 32 for E1
24 for T1

96 for T1
or

128 for E1

32 • RJ-48 for T1 or
E1

• BNC
ungrounded/b
alanced
connector for
E1

• BNC
grounded/unb
alanced
connector for
E1

• Phone jack
connector for
T1

• HDLC framing
only per
channel
(default)

• HDLC framing
+ SS7 low-
level
processing per
channel

• AAL5 for NNI
signaling

ric_wmux.rel
Multiplexed WAN
Driver

ric_aal5.rel
Multiplexed WAN
Driver

ARTIC 1000/2000 Series

ARTIC 4-Port
Serial PMC

87H3410

4 1 4 4 • RS-232
• RS-449/v.36
• V.35 DTE
• V.35 DCE
• EIA-530
• X.21

• HDLC framing
only (default)

• HDLC framing
+ SS7
low-level
processing

rpq_wans.rel
Synchronous
Serial WAN Driver

ARTIC 4-Port
T1/E1/J1 DSP
PMC

IOP-PMC-5000

4 32 for E1
24 for T1

96 for T1
or

128 for E1

64 • RJ-48 for T1 or
E1

• HDLC framing
only per
channel
(default)

• HDLC framing
+ SS7
low-level
processing
per channel

• AAL5 for NNI
signaling

rpq_wanm.rel
Multiplexed WAN
Driver
4

Chapter 1: Overview
Table 1-4 contains a summary of supported protocols. For details, see the page
indicated for the appropriate protocol.

Table 1-4. Summary of supported protocols

AIB/PMC Definition Selected See
Page

HDLC Stands for High-level Data Link
Control and is governed by the
ISO3309 specifications.

Default for the Serial and Multiplexed
WAN drivers.

7

Bisynchronous Sends and receives messages in
bisynchronous format.

Selected by way of W_SETLINE to the
Serial WAN driver.

8

SS7
(Signaling System
Number 7)

Defines a set of protocols used by
the telecommunications industry to
provide a way for the transfer of
signaling messages between
telecom network nodes and
exchanges.

Selected when either the Serial or
Multiplexed WAN driver is loaded and
WAN-ACTSS7 with W_SS7_START is
issued on the opened stream.

9

ATM
(Asynchronous
Transfer Mode)

Uses asynchronous time division
multiplexing technique to multiplex
information flow in fixed blocks
called cells.

Selected by loading the Multiplexed
WAN driver.

185
5

ARTIC STREAMS Support WAN Driver Interface Reference
6

2 Protocol descriptions Chapter 2

This chapter briefly describes the protocols implemented by the WAN driver. A full
description is beyond the scope of this book. Refer to the appropriate standards
documents for a complete description (see Reference publications on page xiv for a
list of the standards documents).

HDLC framing
The framing structure for High-level Data Link Control (HDLC) is described in
the ISO 3309 document. The frame can be broken down as follows:

Table 2-1. HDLC Framing

Flag All frames start and end with the flag sequence which provides for frame
synchronization. A single flag can be used as both the closing flag for one
frame and the opening flag for the next frame. The flag value in
hexadecimal is 7E.

Data or Information

This can be any sequence of bits.

Transparency

The transmitter inserts a “0” bit after all sequences of 5 contiguous “1”
bits of the Data and Frame Check Sequence (FCS) to ensure that a flag
sequence is not simulated. The receiver examines the data and FCS field,
and discards any “0” bit that directly follows 5 contiguous “1” bits.

Frame Check Sequence(FCS)

The FCS is 16 bits long and generates an FCS based on a polynomial,
X**16 + X**12 + X**5 + 1. All bits involved in the data field are used
for FCS. Bits inserted for transparency are not included in this
calculation. The WAN driver also supports other types of FCS that are
selectable in the serial mode of the driver using the W_SETLINE
command described in W_SETLINE — Define line characteristics on
page 209.

Aborted Frame

A frame that ends with a “1” bit sequence of seven or more bits is
considered to be an aborted frame.

Flag Data or Information Frame Check
Sequence (FCS) Flag

01111110 binary Varying number of bits 16 bits 01111110 binary
7

 ARTIC STREAMS Support WAN Driver Interface Reference
Bisynchronous protocol
Support for both normal and transparent operation is provided. Both EBCDIC and
ASCII text messages can be sent and received. For ASCII data, the WAN driver
sends and receives 7-bit data with odd parity. Transmit data will be converted to
odd parity. The parity bit will be stripped from received data.

The WAN driver performs low-level BISYNC message-type determination on
received data. BISYNC messages without errors are parsed. The BISYNC message
type is returned in the M_PROTO header block that accompanies the received data.
See page 62 for a description of all BISYNC received message types.

For control frames that contain only control characters, the message type is
returned, and no data is transferred from the WAN driver. For example, if an ACK0
was received, the message type WC_ACK0 is returned in the M_PROTO header
block, and the received data pointer is null. If a receive error occurs, the error status
is reported using wan_notify if indicated in the w_setline w_notifymask, and the
message is thrown away.

The application must format its own BISYNC messages for transmission, including
beginning and ending control characters, to send to the WAN driver. The
application does not have to add leading or imbedded SYNs to a transmit message
because the RadiSys ARTIC adapter will add leading and imbedded SYNs to all
transmitted messages. The RadiSys ARTIC adapter will append the correct frame
check sequence and/or pad where necessary to transmitted messages.

To send transparent data, set WC_BSC_TRANSP along with WC_TX in the
M_PROTO header block. The WAN driver will insert beginning, ending, and
imbedded DLEs; therefore, the application should not insert DLEs before beginning
and ending control characters or within the data.

For more information about BISYNC framing, refer to the IBM General
Information — Binary Synchronous Communications book.
8

Chapter 2: Protocol descriptions
Table 2-2 contains examples of how BISYNC messages are formatted.

Table 2-2. Valid BISYNC message types

D = Data

SS7 low-level processing
SS7 (Signaling System Number 7) is a dedicated digital network for performing call
control. The SS7 protocol is divided into functional blocks, referred to as levels, that
are similar to the 7-layer model Open System Interconnect (OSI) defined by the
International Standards Organization (ISO). These protocols are defined by the
International Telecommunication Union (ITU) and Bellcore. The WAN driver
implements Message Transfer Part 1 (MTP1) and some parts of Message Transfer
Part 2 (MTP2). Refer to ITU-T Publications Q.700, Q.701 and Q.703 for a
detailed description.

Message Type Actual Data
ASCII EBCDIC

ACK0
ACK1
WACK
RVI
EOT
NAK
ENQ
D D D ENQ
D D D ACK0
D D D ACK1
D D D NAK

10H,30H
10H,31H
10H,3BH
10H,3CH
04H
15H
05H
D,D,D,05H
D,D,D,10H,30H
D,D,D,10H,31H
D,D,D,15H

10H,70H
10H,61H
10H,6BH
10H,7CH
37H
3DH
2DH
D,D,D,2DH
D,D,D,10H,70H
D,D,D,10H,61H
D,D,D,3DH

Non-transparent
STX D D D ETX
STX D D D ITB
STX D D D ETB
STX D D D ENQ
SOH D D D ITB
SOH D D D ETB
SOH D D D ENQ
SOH D STX D D D ETX
SOH D STX D D D ITB
SOH D STX D D D ETB
SOH D STX D D D ENQ

02H,D,D,D,03H
02H,D,D,D,1FH
02H,D,D,D,17H
02H,D,D,D,05H
01H,D,D,D,1FH
01H,D,D,D,17H
01H,D,D,D,05H
01H,D,02H,D,D,D,03H
01H,D,02H,D,D,D,1FH
01H,D,02H,D,D,D,17H
01H,D,02H,D,D,D,05H

02H,D,D,D,03H
02H,D,D,D,1FH
02H,D,D,D,26H
02H,D,D,D,2DH
01H,D,D,D,1FH
01H,D,D,D,26H
01H,D,D,D,2DH
01H,D,02H,D,D,D,03H
01H,D,02H,D,D,D,1FH
01H,D,02H,D,D,D,26H
01H,D,02H,D,D,D,2DH

Transparent
DLE STX D D D DLE ETX
DLE STX D D D DLE ITB
SOH D DLE STX D D DLE ETX
SOH D DLE STX D D DLE ITB
SOH D DLE STX D D DLE ETB
SOH D DLE STX D D DLE ENQ

10H,02H,D,D,D,10H,03H
10H,02H,D,D,D,10H,1FH
01H,D,10H,02H,D,D,10H,03H
01H,D,10H,02H,D,D,10H,1FH
01H,D,10H,02H,D,D,10H,17H
01H,D,10H,02H,D,D,10H,05H

10H,02H,D,D,D,10H,03H
10H,02H,D,D,D,10H,1FH
01H,D,10H,02H,D,D,10H,03H
01H,D,10H,02H,D,D,10H,1FH
01H,D,10H,02H,D,D,10H,26H
01H,D,10H,02H,D,D,10H,2DH
9

 ARTIC STREAMS Support WAN Driver Interface Reference
WAN driver in relation to MTP2

The following describes the WAN driver in relation to MTP2 as described by
ITU-T Q.703, ANSI to 111-3, and TTC SS7.

Figure 2-1. WAN driver in relation to MTP2

The WAN driver implements DAEDR, DAEDT and SUERM as described by the
ITU-T Q.703 specifications. Due to the split nature of the WAN driver and MTP2,
the implementation of AERM differs slightly from that described in the
ITU-T Q.703 specifications. These deviations are described in Error Rate Monitor
(ERM) on page 17 and WAN_NOTIFSS7 — Notify SS7 status on page 107. In
addition, the receiver performs SU filtering and the transmitter performs automatic
generation of some SUs.

RM Alignment Error Rate Monitor
DR Delimitation, Alignment, Error

Detection for receive
DT Delimitation, Alignment, Error

Detection for transmit
Initial Alignment Control

LSC Link State Control
RC Reception Control
SUERM Signal Unit Error Rate Monitor
TC Transmit Control
SU Signal Unit or a Frame

LSC

IAC

TC

SUERM/ AERM

DAEDR

RC

DAEDT

Upper Level

WAN Driver

Start/Stop

Link
Failure Abort

Proving

Emer/Norm
Start/Stop

Tx Request

SU/Start

SU

Start

SU Error/Correct SU

SU Error

Set Correct SU

Bits Bits

EIM
10

Chapter 2: Protocol descriptions
Special SS7 features

SS7 has a unique data link protocol (called level 2 of the Message Transfer Part or
MTP2) based on HDLC, which requires the continuous presence of frames on the
link. Frames are thus back-to-back. In this way, the MTP can be informed
immediately of an upcoming link failure (as soon as erroneous frames or the
absence of frames is discovered).

In SS7 terminology, an HDLC frame is called a Signal Unit (SU). SUs are classified
in three categories:

• Fill In Signal Unit (FISU) of length 5 bytes including FCS

• Link Status Signal Unit (LSSU) of length 6-7 bytes including FCS

• Message Signal Unit (MSU) of length 8-278 bytes including FCS

Special TTC SS7 features

The TTC SS7 standard (the Japanese version of SS7) sends MSUs (user data)
without any restrictions (they can be sent back-to-back). If there are no MSUs to
send, then FISUs are sent at a specific interval. This interval period is configurable.
During alignment, LSSUs are transmitted at specific intervals only. These interval
periods are configurable.

The reception is the same as the ITU-T/ANSI standards.

Conditions that activate the Octet Counting Mode (OCM) are:

• Too long of a frame, or

• HDLC abort

The conditions are the same as the ITU-T/ANSI standards and actions taken are
configurable. If OCM is disabled, every 16 octets do not generate SU in error to the
ERMs. However, the conditions that activated OCM are treated as SU in error. If
OCM is enabled, OCM logic works in a manner similar to the ITU-T/ANSI
standard.

TTC SS7 runs AERM and SUERM in emergency mode and both have the optional
support of a timer, which, if enabled, is used to control when the respective error
counters are incremented.
11

 ARTIC STREAMS Support WAN Driver Interface Reference
SS7 SU Reception (DAEDR)

The WAN driver implements the DAEDR requirements as described by the
flowcharts in the ITU-T Q.703 specifications. These requirements are summarized
as follows:

SU format requirements that are the same as HDLC

• Data must be surrounded by opening and closing flags. The bit pattern of the
flag is 01111110.

• Data must finish with 16 check bits (the 16-bit CRC-CCITT) for error
detection.

• Inserted 0 bits in the data (to prevent seven consecutive 1’s, that is, 1111111)
must be detected and removed.

SU format requirements that are unique to SS7

• Frames of less than 5 octets (not counting the flags but including the FCS) are
discarded and reported to the ERM.

• Frames of more than 278 octets trigger a special mode called the Octet
Counting Mode (OCM).

• Loss of alignment (seven consecutive ones in the data) also triggers the OCM.

• While in OCM, erroneous frames and the number of incoming octets affect the
counters used by the ERM. See Error Rate Monitor (ERM) on page 17 for
more details.

• The ERM logic needs to track all frames.
12

Chapter 2: Protocol descriptions
SU filtering

Because SS7 requires the continuous presence of frames, there is a series of similar
FISUs or LSSUs that are 5 to 7 octets long. Therefore, the WAN driver performs
filtering of similar FISUs or LSSUs that are 5 to 7 octets in length (including FCS).
The first different SU following a series of similar SUs are preceded with the number
of SUs that were discarded because of filtering. Figure 2-2 explains the filtering
mechanism.

Again, filtering applies only to SUs that are 5 to 7 octets long. The filtering
mechanism keeps a count of all good SUs because the number of discarded SUs due
to filtering must be relayed to the upper level. This count is provided in the
M_DATA block that contains the new SU. See WAN_DAT — Data messages for
transmission and reception on page 61 for details.

Figure 2-2. SU filtering

Filter count of 0 + FISU/LSSU

Filter count of 0 + MSU #3

Filter count of 3 + MSU #2

Filter count of 0 + FISU/LSSU

Filter count of 2 + MSU #1

F CK Data F

F CK Data F

F CK Data F

F CK Data F

F CK Data F

F CK Data F

F CK Data F

F CK Data F

F CK Data F

F CK Data F

FISU/LSSU

FISU/LSSU

FISU/LSSU

FISU/LSSU

FISU/LSSU

FISU/LSSU

FISU/LSSU

MSU #1

MSU #2

MSU #3

Similar SUs

Similar SUs

Filter SU Operation

Sent on arrival of first FISU/LSSU
after MSU #3

Sent on arrival of first FISU/LSSU
after MSU #1
13

 ARTIC STREAMS Support WAN Driver Interface Reference
Use the SS7_FILTER_COUNT command-line parameter, described on page 238, to
specify the number of duplicate SUs, 5 to 7 octets long, that will not be filtered and
will be passed upstream. The example shown in Figure 2-2 on page 13 shows the
default case with the parameter set to 0 (zero). If this parameter is set to 1, one
duplicate SU is sent, resulting in two identical SUs being sent upstream.

A special reset filtering (WAN_RESETSS7 — Reset filtering operation on page 109)
request from the upper level allows the interruption of the filtering mechanism for
one SU. Thus, after the WAN driver receives a Reset Filtering request, the SU
currently being filtered is sent “up.” As usual, this SU is preceded by the filter count.
See WAN_DAT — Data messages for transmission and reception on page 61 for
details.

SU transmission (DAEDT)

The WAN driver implements the DAEDT requirements as described by the
flowcharts in the ITU-T Q.703 specifications. In addition to these flowcharts, the
WAN driver performs the automatic generation of certain SUs, described as follows.

SS7 requires the continuous presence of SUs on the signaling link. The WAN driver
therefore automatically generates certain SUs without the involvement of the upper
layer. To perform this task, the driver must always keep the first two octets of the
previously transmitted SU. These two octets hold the following:

• Backward Sequence Number (BSN)—7 bits

• Backward Indicator Bit (BIB)—1 bit

• Forward Sequence Number (FSN)—7 bits

• Forward Indicator Bit (FIB)—1 bit

These two octets are used to keep messages in sequence, to acknowledge properly
received SUs, and to request the retransmission of corrupted SUs. All MTP2 frames
start with the BSN, BIB, FSN, and FIB. This group of fields is called the SU Header
(SUH).

The SUH of the last transmitted SU is stored in the LSUH (L for Last).
14

Chapter 2: Protocol descriptions
Figure 2-3 shows the location of the SUH in each type of SU.

When no SU is available for transmission, the general rule is to continuously
transmit a FISU constructed with the LSUH. This rule is superseded when the last
transmitted SU is an LSSU. This LSSU is continuously transmitted until another SU
is pending for transmission. The exception to this rule is the “Busy” LSSU (called
SIB, with SF=0x5), which is transmitted only once. In addition to the LSUH, the
WAN driver tracks LSSU retransmission with:

• The LSSU Retransmission Flag (LSSURT)

• The Current Status Field (CSF)

Initially, when transmission starts, the LSUH is 0xFFFF, LSSURT is false, and CSF
is 0x0000.

Figure 2-3. Format for each type of Signal Unit

BIB Backward Indicator Bit
BSN Backward Sequence Number
FIB Forward Indicator Bit
FISU Fill-in Signal Unit
FSN Forward Sequence Number
LI Length Indicator
LSSU Link Status Signal Unit

LSUH Last SU Header
MSU Message Signal Unit
SF Status Field
SIF Signaling Information Field
SIO Service Information Octet
SUH SU Header

BSN FSN
B
I
B

F
I
B

LI
\

\

7 1 7 1 6 2

8 or 16

SF

8n (2<= n <= 272) Bit Lengths

Bit Lengths

Bit Lengths

FISU

LSSU

MSU BSN FSN
B
I
B

F
I
B

LI
\

\

7 1 7 1 6 2

BSN FSN
B
I
B

F
I
B

LI
\

\

7 1 7 1 6 2

SIO

8

SIF

SU Header
15

 ARTIC STREAMS Support WAN Driver Interface Reference
Transmission logic

When transmission of an SU is scheduled, the logic is as follows:

If an MSU is the next SU to transmit
Transmit the MSU
Obtain the LSUH from the MSU
LSSURT = false

Else, if a FISU is the next SU to transmit
Transmit the FISU
Obtain the LSUH from the FISU
LSSURT = false

Else, if a LSSU is the next SU to transmit
Transmit the LSSU
Obtain the LSUH from the LSSU
If LSSU < > SIB

LSSURT = true
Get the CSF from the LSSU

Else
LSSURT = false

Else, there is no SU available for transmission
If LSSURT

Transmit a LSSU with the LSUH and the CSF
Else

Transmit a FISU with the LSUH

Standard HDLC processing is applied on the outgoing frames:

• Data finishes with the 16 check bits (the 16-bit CRC-CCITT) for error
detection.

• A 0 is inserted after every sequence of five consecutive 1’s (to ensure that the
HDLC flag is not imitated by the data).

• The resulting frame is surrounded by opening and closing flags. The bit pattern
of the flag is 01111110.
16

Chapter 2: Protocol descriptions
Error Rate Monitor (ERM)

Depending on the state of the SS7 signaling link, Error Rate Monitor (ERM) is of
these two forms:

• If the signaling link is being aligned (not the same as frame alignment), the
Alignment ERM (AERM) is active.

• In the normal state, the Signal Unit ERM (SUERM) is active.

The ERM gets indications from frame processing on the occurrence of erroneous
and valid SUs. It does not need to look into the SU data. Each type of ERM keeps a
counter:

• Cs for SUERM

• Ca for AERM

The active counter is incremented or decremented, and when it reaches a certain
threshold, the Link Failure or Abort Proving indication is sent to the upper level.
The upper level controls the reset of the counters and must select which counter is
active. Link alignment (with the Ca counter) also has the notion of normal versus
emergency alignment.

Implementation of SUERM for SS7

The WAN driver implements SUERM based on the flowcharts in the ITU-T Q.703
specifications. An error counter is used to determine if the link has failed. The error
counter is incremented by one after each bad SU is received. This error counter is
decremented after a window of 256 SUs are received.

Implementation of SUERM for TTC SS7

The WAN driver implementation of SUERM for the TTC SS7 version consists of the
optional use of a timer, which is used to determine if the link has failed.

If the timer is enabled for TTC SS7 SUERM, the expiration of the timer causes the
decrement of the error counter by one if the last SU received was good. Otherwise,
the counter is incremented by w_param_D (the default is 16).

If the timer is not enabled for TTC SS7 SUERM, a bad SU causes the error counter
to be incremented by the w_param_D and a good SU causes the error counter to be
decremented by one until it reaches zero.
17

 ARTIC STREAMS Support WAN Driver Interface Reference
Implementation of AERM for SS7 and TTC SS7

For both the SS7 and the TTC SS7 versions, the AERM differs from ITU-T/ANSI
standards in the following ways:

• AERM does not stop automatically when Ca reaches its threshold (Tin or Tie).
It issues Abort Proving, resets Ca to zero, and reenters Monitoring state. After
AERM is started, it can be stopped by MTP2 only when an explicit Stop AERM
request is issued.

• In the Monitoring state, the AERM accepts Set Ti to Tin and Set Ti to Tie
input requests.

• Set Ti to Tin and Set Ti to Tie requests reset Ca to zero

The previous changes are necessary in order to avoid a small window where no
ERM is active when SIN or SIE are being received. With these modifications, the
MTP2 starts the AERM when the alignment procedure is started. Table 2-3
describes the logic behind each ERM counter. Note that the thresholds are
programmable.

Table 2-3. ERM summary

Counters Incremented
when:

Decremented
when: Thresholds Event

triggered
Cs for
SUERM

SU in error
received

256 SUs (correct or
incorrect) received

T = 64 Link
Failure

Ca for
AERM

SU in error
received

Never • Tin = 4 for
normal
alignment

• Tie = 1 for
emergency
alignment

Abort
proving
18

Chapter 2: Protocol descriptions
Clear Channel Capability Mode

The Clear Channel Capability mode supports enhanced MTP2 functions and
procedures that are suitable for the operation and control of signalling links at data
rates of 1.5 Mbit/s (T1) and 2.0 Mbit/s (E1) as a national option. Refer to the
ITU-T Recommendation Q.703 Annex A and Bellcore GR246 for a detailed
description.

The Multiplexed WAN driver supports Clear Channel Capability. Use the
WAN_ACTSS7 service message to activate or deactivate Clear Channel Capability
mode and to start or stop the Errored Interval Monitor (ERM). If a link failure
occurs during EIM monitoring, WAN_ACTSS7 must be used to restart the EIM. See
WAN_ACTSS7 — Control SS7 features on page 105 for information.

Physical layer

MTP2 messages are directly mapped over T1 or E1 frame structures. The messages
are generated and extracted out of a specific set of channels. A maximum of 64
channels per PMC can be used for Clear Channel Capability operation. However,
there may be performance-related restrictions.

Use the WAN driver W_SET_PHY_PIPE management command to assign the time
slots that make up a physical stream by specifying the w_phy_pipe parameter and
the w_options field with the option W_SS7_MODE, described in
W_SET_PHY_PIPE — Define and undefine time slots on page 140.

The WAN driver assumes that timeslots used for Clear Channel Capability run at
64 Kbps.

LSSU/FISU/MSU length indicator/sequence numbering

Clear Channel Capability defines an optional extended sequence number format
that is 12 bits long. If the extended sequence number format is used:

• The MTP2 Forward Sequence Number (FSN) and Backward Sequence Number
(BSN) increase from 7 to 12 bits, providing a cyclic sequence from 0 to 4095.

• The length indicator (LI) increases from 6 to 9 bits and supports messages up to
273 octets. The check for the correct signal unit length is increased by three
octets. A length indicator that does not match the message octet count is treated
as an SU in error condition. The maximum frame size is 279 octets. The length
indicator is in network (big endian) byte order.

Use the WAN driver W_SETSS7_CCC management command to select extended
sequence number format. See W_SETSS7_CCC — Set SS7 Clear Channel
Capability configuration parameters on page 122 for information.

To ensure your adapter supports this mode, contact your RadiSys
representative.
19

 ARTIC STREAMS Support WAN Driver Interface Reference
.

Acceptance of alignment

For Clear Channel Capability, the EIM is applied instead of the SUERM. Octet
Counting Mode (OCM) is not used for EIM. However, OCM may be used for
Alignment Error Rate Monitor (AERM), which is operational during normal and
emergency proving periods.

Error monitoring

The EIM has as its function the estimation of signalling link fault conditions by
monitoring errors over a prescribed interval to model the queue buildup on the
transmitting end. An interval is errored if one or more SUs are rejected by the
acceptance procedure or if a flag is lost. The four fields that determine the EIM are:

• w_ccc_Te — The number of intervals where SUs have been received in error that
will cause an error rate high indication to level 3, TE (intervals).

• w_ccc_Ue — The constant UE for incrementing the counter.

• w_ccc_De — The constant DE for decrementing the counter

• w_ccc_T8 — Timer T8, the interval for monitoring errors

Figure 2-4. 1.5 and 2.0 Mbit/s rate format for each type of Signal Unit

BSN FSN
F
I
B

LI

12 1 713

8n, n>=2 Bit Lengths

Bit Lengths

Bit Lengths

FISU

LSSU

MSU
8

R
e
s

B
I
B

R
e
s

Spare

12 93

BSN FSN
F
I
B

LI

12 1 713

R
e
s

B
I
B

R
e
s

Spare

12 93

 SF

8 or 16

BSN FSN
F
I
B

LI

12 1 713

R
e
s

B
I
B

R
e
s

Spare

12 93

 SIO SIF

BIB Backward Indicator Bit
BSN Backward Sequence Number
FIB Forward Indicator Bit
FISU Fill-in Signal Unit
FSN Forward Sequence Number
LI Length Indicator
LSSU Link Status Signal Unit

LSUH Last SU Header
MSU Message Signal Unit
SF Status Field
SIF Signaling Information Field
SIO Service Information Octet
SUH SU Header
20

Chapter 2: Protocol descriptions
The EIM is implemented in the form of an up and down counter:

• Decremented at a fixed rate DE for every interval where no SU is errored, but
not below zero, and

• Incremented at a fixed rate UE for every interval where one or more SU errors
are detected by the SU acceptance procedure, or where no flag is received but
not above threshold.

An excessive error rate shall be indicated whenever the threshold is reached.

The OCM, which provides an estimate of an SU, is not used for the EIM because
this procedure is not based on an accounting of individual errors.

When the link is brought into service, the monitor count will start from zero.

For Clear Channel Capability operation, the WAN driver management commands
can be used as follows:

• W_SETSS7_CCC — to specify AERM and EIM counter thresholds and the
EIM monitoring interval. See W_SETSS7_CCC — Set SS7 Clear Channel
Capability configuration parameters on page 122 for more information.

• W_GETSS7_CCC — to obtain the type of ERM currently in operation and the
ERM counter values for Clear Channel Capability operation. See
W_GETSS7_CCC — Get SS7 Clear Channel Capability configuration
parameters on page 125 for more information.
21

 ARTIC STREAMS Support WAN Driver Interface Reference
T1/E1/J1 interface

The T1/E1/J1 interface (hereinafter referred to as T1/E1) is capable of providing
various alarms, statistics, and data link messaging capabilities. The standards that
govern these are as follows:

• General Aspects of Digital Transmission Systems, ITU-T G.704

• General Aspects of Digital Transmission Systems, LOS and AIS defect detection
and clearance criteria ITU-T G.775

• Primary Rate User-Network Interface-Layer 1 Specifications ITU-T I.431

• RFC 1406, Definitions of Managed Objects for DS1 and E1 Interfaces Types,
Trunk MIB Working Group

Depending on the application, you need to report certain alarm conditions as
disconnects as soon as they occur. You can choose which ones generate disconnects.

SS7 signaling links do not impose specific use of the T1/E1 capabilities (it is up to
the SS7 network operator). The WAN driver must thus allow complete control and
monitoring of the T1/E1 capabilities. Table 2-4 shows the T1/E1 features that are
accessible from the Multiplexed WAN driver. Terms that are separated by slashes (/)
are equivalent.

J1 standards are similar to T1.

Table 2-4. T1/E1 available features (Part 1 of 2)

Attributes T1 (J1 is similar to T1) E1
Code • AMI

• B8ZS
• AMI
• HDB3

Framing • Super Frame (SF) / 12-frame
multiframe / D4

• Extended Super Frame (ESF) /
24-frame multiframe

• Double Frame (DF)
• Multiframe (MF)

with/without CRC-4

Signaling support • Channel Associated signaling
(CAS)/Robbed-bit signaling not
implemented

• Common Channel signaling (CCS) not
implemented

• 4-Kbps Data Link (DL) of ESF not
implemented except for RAI and idle
code

• TS16 signaling (CAS or
CCS) not implemented

CRC Reception and
Generation

• CRC-6 Optional for ESF • CRC-4 optional for MF
22

Chapter 2: Protocol descriptions
Remote Alarm Indication
(RAI) / Yellow Alarm

• Reported when received
• Near-end transmits RAI on Loss Of Frame (LOF) failure
• For SF, signaled in F-bit of twelfth

frame or when b2=0 in all channels
• For ESF, signaled with

1111111100000000 pattern in DL
• Near-end transmits RAI on Loss Of

Frame (LOF) failure

• Signaled in TS0 of every
other frame

Alarm Indication Signal
(AIS) / Blue Alarm

• Reported when received
• When all 1’s are received

Loss Of Signal (LOS) /
Red Alarm

• Reported when received

Loss Of Frame (LOF)
Alignment

• Increments a counter
• Automatically generates a RAI to the far end

Available counters • Framing errors
• Code violations
• Errored seconds
• CRC errors for ESF • CRC errors for MF

• E-bit errors
Loopback Modes • Payload — Rx to Tx with framing generated

• Remote — Rx to Tx including framing signal
• Local — Tx back to Rx
• Channel — Tx back to Rx on a channel basis

Chaining • Entire port can be chained to another port, all channels are connected
to their equivalent channel on the other port

• Individual channel can be connected to another channel on the same
or different port

Shorts • Reported when received
• Transmit Line Short (significant only if ternary line interface is used)
• Transmit Line Open

Monitor Mode To monitor T1/E1 data and HDLC or SS7 traffic of the T1/E1 lines, load
the multiplexed WAN driver with the W_MONITOR_MODE=YES
command line parameter. In monitor mode:

• Transmitters of all T1/E1 ports are tri-stated and the receiver sensitivity
is increased to detect an incoming signal of -20 db resistive
attenuation.

• The WAN driver sets the Loss of Signal (LOS) detection limit to 0.16v
in short haul mode and 0.10v in long haul mode.

• In T1 mode, the application can
control this receiver sensitivity by
setting w_signal_mode to the
appropriate values when the
W_SETDI_PORT ioctl is issued.

Table 2-4. T1/E1 available features (Part 2 of 2)

Attributes T1 (J1 is similar to T1) E1
23

 ARTIC STREAMS Support WAN Driver Interface Reference
SC-bus implementation

The ARTIC960 4-Port T1/E1 Mezzanine Card provides an SC-bus connector so
that one can connect to other ARTIC960 4-Port T1/E1 Mezzanine Cards or
adapters from other vendors over the SC bus.

The SC bus consists of a 16-wire Time Division Multiplexed (TDM) data bus and a
message channel for control and signaling. Currently there exists a standard for
communicating between adapters in a universal way, the SCSA architecture. This
architecture is composed of two parts:

• Software model — SCSA Telephony Application Object Framework

• Hardware model — SCSA

The WAN driver specification provides support for the SCSA hardware model. The
optional messaging channel is not implemented.

SC-bus programming support

The ARTIC960 4-Port T1/E1 Mezzanine Card hardware switching support can be
viewed as follows:

Figure 2-5. SC-bus switching support

Data paths are:
1. To and from network switch to processing switch.
2. To and from network switch to other boards connected via the SC bus
3. To and from other boards connected via SC bus to process switch
4. To and from network port

Network
Switch

Process
Switch

Data to be
Processed

S
C

B
u
s

(1)

(4)

(3) (2) From
Network
24

Chapter 2: Protocol descriptions
CT-bus implementation

The ARTIC 4-Port T1/E1/J1 DSP PMC provides a CT-bus connector so that one
can connect to other ARTIC 4-Port T1/E1/J1 DSP PMCs or adapters from other
vendors over the CT bus.

The CT bus is implemented with H.100 or H.110 variants. These are industry
standard real-time TDM buses for computer telephony and conform to the
Enterprise Computer Telephony Forum (ECTF) standard bus for interoperable
computer telephone (CT) systems. The CT bus consists of 32 synchronous serial
lines that can be programmed to run at three bit rates, each for 32, 64, or 128
timeslots per line:

• 2.048 Mbps — yields 1024 total timeslots

• 4.096 Mbps — yields 2048 total timeslots

• 8.192 Mbps — yields 4096 total timeslots

The H.100 bus is used when the PMC is used as a PCI-bus daughter board. A
ribbon cable connector on the PMC adapter is used to connect all the CT devices.

The H.110 bus is used when the PMC is configured in a Compact PCI system where
the H.110 bus resides in the CompactPCI motherboard and is common with all
other CompactPCI adapters using the main cPCI bus.
25

 ARTIC STREAMS Support WAN Driver Interface Reference
CT-bus programming support

ARTIC 4-port T1/E1/J1 DSP PMC hardware switching support can be viewed as
follows:

Figure 2-6. CT-bus switching support

Data paths are:
1. To and from T1/E1 network switch to DSP processor.
2. To and from T1/E1 network to other boards connected via the CT bus
3. To and from other boards connected via CT bus.
4. To and from T1/E1 network port

CT Switch
T8105

Q-FALC DSP

(4)

(1)

(3)(2)

CT Bus (H.100/H.110)
26

Chapter 2: Protocol descriptions
ATM in SS7 environments

ATM (Asynchronous Transfer Mode) is a packet-oriented transfer mode and uses
asynchronous time division multiplexing technique to multiplex information flow in
fixed blocks called cells.

In a B-ISDN transport network, ATM is the transfer mode of choice to achieve
higher speeds in the SS7 signaling environment. Signaling link functions are
provided by the Signaling ATM Adaptation Layer (SAAL).

The WAN driver provides support for higher speeds (see Physical layer on page 28
for rates).

The WAN driver implements:

• Parts of the ATM Adaptation Layer 5 (AAL5) Protocol stack that are generic in
nature so that it can be used in SS7 and other environments

• The NNI (Network Node Interface) format for the ATM layer.

AAL5 protocol reference model

The following shows a model of the AAL5 protocol.

Implementing higher speeds for signaling is also referred to as High-speed
Signaling Link (HSL).

Figure 2-7. AAL5 protocol reference model

AAL5 ATM Adaptation Layer 5
CPCS Common Part Convergence Sublayer
CP Common Part
CS Convergence Sublayer
MTP3 Message Transfer Part 3
NNI Network Node Interface
PM Physical Medium

SAAL Signaling ATM Adaptation Layer
SAR Segmentation and Reassembly
SSCF Service Specific Coordination Function
SSCOP Service Specific

Connection Oriented Protocol
TC Transmission Convergence

CPCS of AAL5

SAR

MTP3

ATM

TC

PM

CS
SSCS

CP

Physical Layer

AAL5
 or
SAAL

Service Specific CS
(can be null)

For SS7, the SSCS is made up
of the SSCF (ITU-T Q2140) and
the SSCOP (ITU-T Q2110)

As defined by

As defined by ITU-T I.361

ITU-T I.363

As defined by ITU-T
G.703, G704, G.804

WAN
Driver
27

 ARTIC STREAMS Support WAN Driver Interface Reference
Physical layer

The physical layer provides a means for transporting ATM cells. The following rates
(or a fraction thereof) are the physical rates that can be achieved with the WAN
driver.

• T1 — 1,544,000 bps

• E1 — 2,048,000 bps

Fractional rates are achieved by combining time slots of the T1 or E1 links.

The WAN driver is capable of combining time slots from the SC-bus. When using
fractional rates it is possible to have multiple ATM cell streams. ATM cells are
directly mapped into a DS1 or E1 frame. Refer to the ITU-T G.804 specification for
further details.
28

Chapter 2: Protocol descriptions
ATM layer

ATM is a specific packet-oriented transfer mode using an asynchronous time
division multiplexing technique. ATM provides high efficiency and flexibility as it
provides virtual channels instead of dedicated physical channels.

The multiplexed information is organized in a fixed-size block called a cell. A cell is
53 bytes in length and it consists of a 5-byte header and a 48-byte payload. Cells
originating from a connection end point are delivered at the destination end point in
the same order they were originated, hence providing cell sequence integrity.

ATM cells are labeled, using the Virtual Path Identifier (VPI) and Virtual Channel
Identifier (VCI) fields. These fields are part of the ATM cell header. These fields
provide a way for routing cells through the ATM network. Refer to the ITU-T I.361
specification for details. Figure 2-8 shows an ATM cell at an NNI.

Figure 2-8. ATM cell at an NNI

CLP Cell Loss Priority
HEC Header Error Checksum
PT Payload Type

VCI Virtual Channel Identifier
VPI Virtual Path Identifier

ATM Cell Structure

VPI

VPI VCI

VCI

VCI PT CLP

HEC

Payload or
Information Field

48 Octets

1

2

3

4

5

53

8 7 6 5 4 3 2 1

.

.

.

.

.

.

.

6

29

 ARTIC STREAMS Support WAN Driver Interface Reference
ATM Adaptation Layer 5 (AAL5)

The ATM Adaptation Layer 5 (AAL5) enhances the services provided by the ATM
Layer to support the functions required by the next higher layer (for example,
signaling). The AAL5 consists of the Common Part (CP) and the Service Specific
Convergence Sublayer (SSCS). Two modes of services are defined: Message and
Streaming mode. See the ITU-T I.363 specification for a description of these modes.

Common Part (CP)

CP consists of these layers:

• Common Part Convergence Sublayer (CPCS):

– Receives a variable length frame from its upper layer (1–65535 bytes in
length) and pads this frame so that the total length becomes an integral
multiple of 48 (the ATM cell payload length).

– Provides a CRC-32 function to detect errors.

• Segmentation and Reassembly (SAR):

– Accepts a frame whose length is a multiple of 48

– Maps the frame into multiple ATM cell payloads

– Provides a way to identify the begin and end using the payload type field.

Service Specific Convergence Sublayer (SSCS)

Different SSCS protocols to support specific AAL user services or groups of services
have been defined. The SSCS may be NULL. For the SS7 signaling environment,
SSCS has been broken down into two parts:

• Service Specific Connection Oriented Protocol (SSCOP) — A connection-
oriented protocol with error recovery and reliable data transfer services. Refer
to the ITU-T Q.2110 specification for details.

• Service Specific Coordination Function (SSCF) — Maps the services of SSCOP
to the requirements of MTP Level 3. For signaling, two types of SSCF are
defined at the User-to-Network Interface (UNI) or the Network Node Interface
(NNI). Refer to the ITU-T Q.2140 specification for details on SSCF at NNI.
30

Chapter 2: Protocol descriptions
Operation and Maintenance (OAM)

The ITU-T specifications describe how to operate and maintain the physical layer
and the ATM layer to provide for:

• Fault management

• Performance management

• Activation/Deactivation of procedures

• System management for end systems.

This activity is done using special Operation and Maintenance (OAM) ATM cells.
The WAN driver performs some of the previously mentioned functions at the
Virtual Channel (VC) level and the rest can be performed by a separate STREAMS
module residing on the base adapter.
31

 ARTIC STREAMS Support WAN Driver Interface Reference
32

3 WAN driver STREAMS interfaceChapter 3

This chapter provides information about WAN driver configuration, creating
STREAMS, and the types of STREAMS messages and commands.

About minor numbers
The WAN driver follows the UNIX paradigm for defining subdevices. For these
devices, the minor numbers are used in the following manner:

The system configuration process defines special files called device special files in
the UNIX file system. They usually represent a fixed profile to users. The system
configuration process assigns fixed numbers, called minor numbers, which are
passed to the driver when the device special file is opened. The process of opening
such a special file is called specific open or non-clone open in this book.

The system configuration process also defines a wild card special file, called a clone
device. When a clone open is done, the driver assigns the minor number for that
open. In this case, the user can perform control functions to the driver or, in other
cases, the user can operate the device like a normal device.

The WAN driver defines a variable number of minor numbers for specific opens.
The maximum minor numbers is a configurable parameter. The clone open minor
numbers are assigned after those for a specific minor number open. Both these
numbers can be conveyed to the WAN driver at the load time through command
line parameters. The maximum number for specific open could be zero, and also the
number of clone opens could be made zero by setting the number of specific opens
equal to the total maximum minor numbers.

Configuring the WAN driver
The WAN driver assumes a support of a configuration utility to get the hardware
configuration and control information. The configuration activity can be performed
on any stream (a stream is assigned by the system on any open to the WAN driver).

The number of logical channels, a stream where data transfer takes place, depends
on the hardware and its capabilities. Table 1-3, “Summary of supported hardware
with ARTIC adapters,” on page 4 lists the maximum number of logical channels for
each hardware supported. The number of clone devices is software choice and
depends on how the system is architected, and how many processes need to monitor
or configure the driver, or both. The WAN driver supports various configuration
choices in order to be able to work in various situations. The following sections
describe the choices and the configuration steps involved in implementing them.
33

WAN Driver ARTIC STREAMS Support WAN Driver Interface Reference
Creating STREAMS
The RadiSys ARTIC STREAMS environment supports two types of open(). They
are defined as follows. (See Figure 3-1 on page 34 for details.)

non-clone open()

Opens the logical channel identified by the minor number. The WAN
driver invokes the hardware open immediately. The SNID that will be
associated with the stream is then referenced in subsequent management
commands.

clone open()

Allows the creation of a management path that is not associated with any
logical channel and carries only management commands. The hardware
open operation is not invoked.

A WAN_SID message sent down on a clone stream binds it to a logical
channel. Beyond that point, a clone stream is equivalent to a non-clone
stream. Also, it ceases to be a management stream at that point.

When opening a CLONE stream to the serial WAN using the
SNID_DECODE=NO command line parameter, a W_SET_SNID
command must be issued before a WAN_SID command. After the
stream is closed, the W_SET_SNID command is still in effect. You can
release the SNID by issuing the W_REL_SNID command.

The stream opening procedure differs from the SpiderX25 WAN Implementation
Guide, r8.0, by Spider Systems.

Figure 3-1. Non-clone versus clone open

Non-clone
minor-line x

open()

line x

WAN Driver

Stream

Stream Head

Non-clone open()

line x

WAN Driver

Stream

Step 1

Clone

open()

Stream Head

Clone open()
Step 2

SNID =
line x

WAN_SID
34

Chapter 3: WAN driver STREAMS interface
Non-clone open with SNID decode

In this mode, a logical channel is preassigned to a minor number. The mapping is:

Logical channel number = minor number + 1

Synchronous serial WAN driver: Opening the special file for minor number 0
allows you to operate the port number 1. When the WAN_SID message is sent
down, the SNID decode must result in the port number for the minor number being
opened, or else an error is generated for the WAN_SID service message.

Multiplexed WAN driver: This mode is not supported for this driver.

Non-clone open with no SNID decode

In this mode, a logical channel is preassigned to a minor number with the same
mapping as shown in Non-clone open with SNID decode on page 35. The only
difference is that the WAN_SID message assigns an identifier only to the stream
rather than selecting a port or a channel.

Synchronous serial WAN driver: The minor number also selects the
corresponding port.

Multiplexed WAN driver: This mode is not supported for this driver.

Clone open with SNID decode

In this mode, the logical channels are not preassigned to minor numbers. The SNID
in the WAN_SID message is decoded by the WAN driver to know:

Synchronous Serial WAN driver: Port number.

Multiplexed WAN driver: Physical port and channel number.

Clone open with no SNID decode

In this mode, all logical channels are not preassigned to minor numbers. But the
configuration utility assigns SNIDs to logical channels when it configures them to
the WAN driver by way of the W_SET_SNID command. The SNID in the
WAN_SID message is searched by the WAN driver for the following:

Synchronous serial WAN driver: Port number.

Multiplexed WAN driver: Physical port and channel number.

When opening a CLONE stream to the WAN driver using the
SNID_DECODE=NO command line parameter, a W_SET_SNID command
must be issued before a WAN_SID command. After the stream is closed, the
W_SET_SNID command is still in effect. You can choose to release the SNID by
issuing the W_REL_SNID command.
35

WAN Driver ARTIC STREAMS Support WAN Driver Interface Reference
Types of WAN driver STREAMS messages and commands
The STREAMS interface of the WAN driver is composed of the following types
of messages:

• Service messages — M_PROTO, M_PCPROTO and M_DATA messages that
control and provide the reception/transmission of frames for the line associated
with the Stream.

• Management commands — M_IOCTL messages that allow management
(parameters setting and statistics) of various lines with M_IOACK and
M_IOCNAK as responses.

• Error messages — M_ERROR messages that the WAN driver responds with
when errors are detected on a service message.
36

4 Serial and Multiplexed WAN
drivers (command sequences) Chapter 4

This chapter lists the order for command sequences to the serial synchronous WAN
driver running SS7 protocol and in HDLC framing mode. It also provides SC-bus
connection scenarios.

Serial synchronous WAN driver running SS7 protocol
The following is the order in which the upper-level process should issue commands
to the WAN driver. The calls made are standard STREAMS application interface
calls.

1. Open a stream to the WAN driver using the open() STREAMS call.

2. Set the SNID (Subnetwork ID) for the port opened in step 1 by building an
M_PROTO message using the wan_sid structure. Send this message on the
opened stream using the putmsg() call. This message can be sent at a later time.

If the driver was loaded with the SNID_DECODE=YES configuration
parameter, the SNID identifies the physical port number.

If the driver was loaded with the SNID_DECODE=NO configuration
parameter, the W_SET_SNID command would associate the physical port
number to the SNID.

3. Set the mode of the WAN driver to SS7 by sending the W_ACTSS7 service
message. This command starts the SS7 function. Send this message on the
opened stream using the putmsg() call.

4. Configure the characteristics of the WAN driver by sending the W_SETSS7
management command. This command sets the attributes of the SS7 link. This
command is issued using an ioctl STREAMS call with the line parameters set in
structure wan_setss7.

5. Set the line configuration parameters using the W_SETTUNE management
command. This command is issued using an ioctl STREAMS call with the line
parameters set in structure wan_tune.

6. Register with the WAN driver using the wan_reg structure encapsulated within
an M_PROTO message. The wan_type field in the wan_reg structure should be
set to WAN_REG. Use the putmsg STREAMS call to send this message to the
WAN driver.
37

 ARTIC STREAMS Support WAN Driver Interface Reference
7. Once registration is completed, the WAN driver programs the hardware based
on the options selected in the W_SETTUNE command. Depending on the
interface used, it enables the output signals and checks for the input signals. If
the signals are available, it sends up an M_PCPROTO message with the
wan_command field set to WC_CONNECT and wan_status set to
WAN_SUCCESS in the wan_ctl structure. This indicates to the upper layer that
the WAN driver is ready for data transfer. The upper layer at this point can
either wait for this message after doing the registration, or it can time out. If the
upper layer did not receive this message, it can send down an explicit
M_PCPROTO message using the wan_ctl structure with the wan_command set
to WC_CONNECT. This message prompts the WAN driver to check for signals
and the WAN driver replies with an M_PCPROTO message using the wan_ctl
structure with wan_command set to WC_CONCNF and wan_status set to
WAN_SUCCESS or WAN_FAIL. This confirms whether the WAN driver can
start data transmission and reception.

8. If the upper layer gets an M_PCPROTO message from the WAN driver with the
wan_ctl structure and wan_command set to WC_CONNECT, as described in
step 7, and if the upper layer is ready for data transfer, it should send down its
confirmation (for data transfer) in the form of an M_PCPROTO message using
the wan_ctl structure with the wan_command field set to WC_CONCNF and
wan_status field to WAN_SUCCESS. This message has to be issued using the
putpmsg() STREAMS call. This sets the internal state of the WAN driver to be
able to transmit and receive frames.

9. The upper layer can now start transmitting data by sending down M_PROTO
messages using the wan_msg structure. The wan_type field of this structure
must be set to WAN_DAT. Use the putmsg() STREAMS call to send down this
message.

10. Start/Stop SUERM/AERM in the WAN driver by sending the W_ACTSS7
service command. Send this message on the opened stream using the putmsg()
call.

11. The upper layer must be prepared to receive the WAN_FILTSS7 message. This is
a message initiated by the WAN driver. It carries the number of Signal Units that
were discarded due to filtering. This message is sent before the regular
WAN_DAT service message which carries the first different SU following a
series of similar Signal Units. This is an M_PROTO message.

12. The upper layer should be in a position to handle messages from the WAN
driver throughout this sequence. The receiver and transmitter are enabled on a
WC_CONCNF when received from the upper layer or when sent to the upper
layer. The upper layer can receive messages (at any time during this sequence) by
issuing a getmsg() STREAMS call. The upper layer has to decode the type of the
message and verify whether it makes sense depending upon the context that it
(the upper layer) is in. For example, after sending down the M_PROTO
message for registration (WAN_REG), the upper layer should expect an
M_PCPROTO message containing the wan_ctl structure with the
wan_command field set to WAN_CONNECT.
38

Chapter 4: Serial and Multiplexed WAN drivers (command sequences)
13. If a control signal drops, the WAN driver sends a WC_DISC to the upper layer.
The upper layer must send a WC_DISCCNF. The WAN driver checks the
presence of the signals on a periodic basis. If the signals are active again, the
WAN driver sends a WC_CONNECT to the upper layer, which must be
acknowledged by a WC_CONCNF. After this, data transfer resumes normally.

14. In the case where the upper layer sends a WC_DISC, the WAN driver does not
drop any signals, but suspends transmission and reception of data. The WAN
driver replies with WC_DISCCNF. If the upper layer sends a WC_CONNECT,
the WAN driver replies with WC_CONCNF and data transfer resumes
normally. Signals are dropped only in the case of W_DISABLE.

Figure 4-1. Serial synchronous WAN driver running SS7 protocol

Upper Level WAN Driver

STREAMS Open Open a stream to the
WAN driver

M_PROTO
WAN_SID

M_PROTO
WAN_ACTSS7

M_PROTO
WAN_REG

M_PCPROTO
WAN_CTL (WC_CONNECT)

M_PCPROTO
WAN_CTL (WC_CONCNF)

M_PROTO
WAN_ACTSS7

M_PROTO + M_DATA
WAN_DAT

M_PROTO + M_DATA
WAN_DAT

M_PROTO + M_DATA
WAN_DAT

M_PROTO + M_DATA
WAN_DAT

M_PROTO + M_DATA
WAN_DAT

M_PCPROTO
WAN_CTL (WC_CONNECT)

M_PCPROTO
WAN_CTL (WC_CONCNF)

M_PCPROTO
WAN_CTL (WC_DISC)

M_PCPROTO
WAN_CTL (WC_DISCCNF)

M_PROTO
WAN_FILTSS7

M_IOCTL
iocblk(W_SETSS7)

M_IOCACK
iocblk(W_SETSS7)

M_IOCACK
iocblk(W_SETTUNE)

M_IOCTL
iocblk(W_SETTUNE)

+

+ M_DATA
wan_ss7_ioc

M_DATA
wan_tune

Set the SNID for
the port

Select SS7 (W_SS7_START)

SS7 settings

Line settings

Start the physical line

Bring line into data

Start SUERM/AERM

Send data

Data received

Filter notification

Data received

Loss of signal

Signal returns

Return to data-transfer state

Send data

Data received
39

 ARTIC STREAMS Support WAN Driver Interface Reference
Serial synchronous WAN driver in HDLC framing mode
The following is the order in which the upper level process should issue commands
to the WAN driver. The calls made are standard STREAMS application interface
calls.

1. Open a stream to the WAN driver using the open() STREAMS call.

2. Set the SNID (Sub Network Id) for the port opened in step 1 by building an
M_PROTO message using the wan_sid structure. Send this message on the
opened stream using the putmsg() call.

If the driver was loaded with the SNID_DECODE=YES configuration
parameter, the SNID identifies the physical port number.

If the driver was loaded with the SNID_DECODE=NO configuration
parameter, the W_SET_SNID command would associate the physical port
number to the SNID.

3. If the default values need to be changed, set the line configuration parameters
using the W_SETTUNE command. This command is issued using an ioctl
STREAMS call with the line parameters set in the structure wan_tune.

4. Register with the WAN driver using the wan_reg structure encapsulated within
an M_PROTO message. The wan_type field in the wan_reg structure should be
set to WAN_REG. Use the putmsg STREAMS call to send this message to the
WAN driver.

5. Once registration is done, the WAN driver programs the hardware based on the
options selected in the W_SETTUNE command. Depending on the interface
used, it enables the output signals and checks for the input signals. If the signals
are available, it sends up an M_PCPROTO message with wan_command field
set to WC_CONNECT using the wan_ctl structure. This indicates to the upper
layer that the WAN driver is ready for data transfer. The upper layer at this
point can either wait for this message after doing the registration, or it can time
out. If the upper layer did not receive this message, it can send down an explicit
M_PCPROTO message using the wan_ctl structure with the wan_command set
to WC_CONNECT. This message prompts the WAN driver to check for signals
and the WAN driver replies with an M_PCPROTO message using the wan_ctl
structure with wan_command set to WC_CONCNF and wan_status set to
WAN_SUCCESS or WAN_FAIL. This confirms whether the WAN driver can
start data transmission and reception.

6. If the upper layer gets an M_PCPROTO message from the WAN driver with the
wan_ctl structure and wan_command set to WC_CONNECT (as described in
step 5, and if the upper layer is ready for data transfer, it should send down its
confirmation (for data transfer) in the form of an M_PCPROTO message using
the wan_ctl structure with the wan_command field set to WC_CONCNF and
the wan_status field to WAN_SUCCESS. This message has to be issued using the
putpmsg() STREAMS call. This sets the internal state of the WAN driver to be
able to transmit and receive frames.
40

Chapter 4: Serial and Multiplexed WAN drivers (command sequences)
7. The upper layer can now start transmitting data by sending down M_PROTO
messages using the wan_msg structure. The wan_type field of this structure
must be set to WAN_DAT. Use the putmsg() STREAMS call to send down this
message.

8. It must be noted that the upper layer should be in a position to handle messages
from the WAN driver throughout this sequence. The receiver and transmitter
are enabled on a WC_CONCNF when received from the upper layer or when
sent to the upper layer. The upper layer can receive messages (at any time during
this sequence) by issuing a getmsg() STREAMS call. The upper layer has to
decode the type of the message and verify whether it makes sense, depending on
the context that it (the upper layer) is in. For example, after sending down the
M_PROTO message for registration (WAN_REG), the upper layer should
expect an M_PCPROTO message containing the wan_ctl structure with the
wan_command field set to WAN_CONNECT.

9. If a control signal drops, the WAN driver sends a WC_DISC to the upper layer.
The upper layer must send a WC_DISCCNF. The WAN driver checks the
presence of the signals on a periodic basis. If the signals are active again, the
WAN driver sends a WC_CONNECT to the upper layer, which must be
acknowledged by a WC_CONCNF. After this, data transfer resumes normally.

10. In the case where the upper layer sends a WC_DISC, the WAN driver does not
drop any signals, but suspends transmission and reception of data. The WAN
driver replies reply with the WC_DISCCNF. If the upper layer sends a
WC_CONNECT, the WAN driver replies with WC_CONCNF and data
transfer resume normally. Signals are dropped only in the case of W_DISABLE.

Figure 4-2. Serial synchronous WAN driver in HDLC framing mode

Upper Level WAN Driver

STREAMS Open Open a stream to the
WAN driver

M_PROTO
WAN_SID

M_PROTO
WAN_REG

M_PCPROTO
WAN_CTL (WC_CONNECT)

M_PCPROTO
WAN_CTL (WC_CONCNF)

M_PROTO + M_DATA
WAN_DAT

M_PROTO + M_DATA
WAN_DAT

M_IOCACK
iocblk(W_SETTUNE)

M_IOCTL
iocblk(W_SETTUNE)

+ M_DATA
wan_tune

Set the SNID for
the port

Configure the line

Start the physical line

Bring line into data

Send data

Data received
41

 ARTIC STREAMS Support WAN Driver Interface Reference
Serial synchronous WAN driver in bisynchronous mode
The following is the order in which the upper level process should issue commands
to the WAN driver. The calls made are standard STREAMS application interface
calls.

1. Open a stream to the WAN driver using the open() STREAMS call.

2. Set the SNID (Subnetwork ID) for the port opened in step 1 by building an
M_PROTO message using the wan_sid structure. Send this message on the
opened stream using the putmsg() call.

If the driver was loaded with the SNID_DECODE=YES configuration
parameter, then the SNID identifies the physical port number.

If the driver was loaded with the SNID_DECODE=NO configuration
parameter, then the W_SET_SNID command would associate the physical port
number to the SNID.

3. Set the line configuration parameters using the W_SETLINE command. This
command is issued using an ioctl STREAMS call with the line parameters set in
the structure wan_setlinef.

4. Register with the WAN driver using the wan_reg structure encapsulated within
an M_PROTO message. The wan_type field in the wan_reg structure should be
set to WAN_REG. Use the putmsg STREAMS call to send this message to the
WAN driver.

5. Once registration is done, the WAN driver programs the hardware based on the
options selected in the W_SETLINE command. Depending on the interface
used, it enables the output signals and checks for the input signals. If the signals
are available, it sends up an M_PCPROTO message with wan_command field
set to WC_CONNECT using the wan_ctl structure. This indicates to the upper
layer that the WAN driver is ready for data transfer. The upper layer at this
point can either wait for this message after doing the registration, or it can time
out. If the upper layer did not receive this message, it can send down an explicit
M_PCPROTO message using the wan_ctl structure with the wan_command set
to WC_CONNECT. This message prompts the WAN driver to check for signals
and the WAN driver replies with an M_PCPROTO message using the wan_ctl
structure with wan_command set to WC_CONCNF and wan_status set to
WAN_SUCCESS or WAN_FAIL. This confirms whether the WAN driver can
start data transmission and reception.

6. If the upper layer gets an M_PCPROTO message from the WAN driver with the
wan_ctl structure and wan_command set to WC_CONNECT (as described in
step 5), and if the upper layer is ready for data transfer, it should send down its
confirmation (for data transfer) in the form of an M_PCPROTO message using
the wan_ctl structure with the wan_command field set to WC_CONCNF and
the wan_status field to WAN_SUCCESS. This message has to be issued using the
putpmsg() STREAMS call. This sets the internal state of the WAN driver to be
able to transmit and receive frames.
42

Chapter 4: Serial and Multiplexed WAN drivers (command sequences)
7. The upper layer can now start transmitting data by sending down M_PROTO
messages using the wan_msg structure. The wan_type field of this structure
must be set to WAN_DAT. Use the putmsg() STREAMS call to send down this
message.

8. It must be noted that the upper layer should be in a position to handle messages
from the WAN driver throughout this sequence. The receiver and transmitter
are enabled on a WC_CONCNF when received from the upper layer or when
sent to the upper layer. The upper layer can receive messages (at any time during
this sequence) by issuing a getmsg() STREAMS call. The upper layer has to
decode the type of the message and verify whether it makes sense, depending on
the context that it (the upper layer) is in. For example, after sending down the
M_PROTO message for registration (WAN_REG), the upper layer should
expect an M_PCPROTO message containing the wan_ctl structure with the
wan_command field set to WAN_CONNECT.

9. If a control signal drops, the WAN driver sends a WC_DISC to the upper layer.
The upper layer must send a WC_DISCCNF. The WAN driver checks the
presence of the signals on a periodic basis. If the signals are active again, the
WAN driver sends a WC_CONNECT to the upper layer, which must be
acknowledged by a WC_CONCNF. After this, data transfer resumes normally.

10. In the case where the upper layer sends a WC_DISC, the WAN driver does not
drop any signals, but suspends transmission and reception of data. The WAN
driver replies reply with the WC_DISCCNF. If the upper layer sends a
WC_CONNECT, the WAN driver replies with WC_CONCNF and data
transfer resume normally. Signals are dropped only in the case of W_DISABLE.

Figure 4-3. Serial synchronous WAN driver in bisynchronous mode

Upper Level WAN Driver

STREAMS Open Open a stream to the
WAN driver

M_PROTO
WAN_SID

M_PROTO
WAN_REG

M_PCPROTO
WAN_CTL (WC_CONNECT)

M_PCPROTO
WAN_CTL (WC_CONCNF)

M_PROTO + M_DATA
WAN_DAT

M_PROTO + M_DATA
WAN_DAT

M_IOCACK
iocblk(W_SETLINE)

M_IOCTL
iocblk(W_SETLINE)

+ M_DATA
wan_setlinef

Set the SNID for
the port

Configure the line

Start the physical line

Bring line into data

Send data

Data received
43

 ARTIC STREAMS Support WAN Driver Interface Reference
Multiplexed WAN driver in SS7 or HDLC framing
The following takes the user through an ideal configuration scenario and explains
how the state of hardware changes.

1. The configuration utility (developed by the user) opens a clone device to the
WAN driver.

2. The configuration utility issues one or more W_SETDI_PORT commands to the
stream, thus setting the parameters (for example, frame format and CRC) for
those ports. At this point, the WAN driver programs the hardware.

3. The configuration utility issues a W_SETDI command to set the clocking source
for the ports. This decides which port provides the master clock and also sets up
the backup sources.

4. Depending on the command-line parameter when the WAN driver is loaded
(SNID_DECODE=NO or YES), a series of W_SET_SNID commands or a series
of WAN_SID commands are necessary to give identity to each logical channel
and map them to physical ports and channels. If logical channels map to
physical channels on the SC bus, W_SET_CHMAP commands should be issued
to set up the processing paths.

5. The configurable parameters of each logical channel can be set by issuing a
series of W_SETTUNE commands (such as maximum frame size).

6. A clone device open and subsequent WAN_SID command makes the correlation
between the SNID and the logical channel, and the binding would be complete.
A clone device open is not bound to a specific logical channel until a WAN_SID
has been sent.

7. The configuration utility issues a WAN_REG command, which programs the
hardware for this channel based on WAN_SID, and takes into account the
parameters set by W_SETDI_PORT, W_SETTUNE, and W_SET_CHMAP
commands that were issued in the previous steps. After this step, you cannot
change the attributes of the hardware port associated with this channel or the
configurable parameters for this channel. Switching operating mode (HDLC or
SS7) is also not allowed.

Now the message flow is similar to the Serial WAN driver.

8. At the time of close, depending on the state of the logical channel, the following
action is taken: if the channel had been in SS7 mode, it is taken out and put in
standard HDLC mode. The channel mapping between the internal and the
physical channel is not forgotten.

Steps 2 and 3 and can be interchanged.
44

Chapter 4: Serial and Multiplexed WAN drivers (command sequences)
Multiplexed WAN driver in Clear Channel Capability mode

The following is the order in which the upper-level process should issue commands
to the WAN driver. The calls made are standard STREAMS application interface
calls.

1. Open streams to the WAN driver using the open() STREAMS call. Note that all
opens to a Multiplexed WAN driver are clone opens. The number of streams
opened should be equal to the number of pipes that are to be opened, plus one
more stream to perform management commands (before and after the pipes
enter the data transfer state).

2. Issue W_SETDI and/or W_SETDI_PORT commands to set up the parameters of
the physical links and backup clocks.

3. Issue W_SET_PHY_PIPE commands to specify which time slots are to be
combined for the SS7 pipe streams. A unique identifier for a pipe is returned in
the w_phy_pipe_id field.

4. Issue one or more W_SET_SNID commands (one for every pipe that is opened).
This command ties together the following:

• The pipe stream identifier, which indicates a combination of time slots over
which the physical layer is operating (specified in the w_port_id field)

• A SNID (unique identifier)

• An internal channel number returned by the command.

5. Issue one or more W_SETTUNE commands to specify the configurable
parameters for the pipes.

6. Send a WAN_SID message on each pipe stream to associate a SNID with the
stream.

7. Send a WAN_ACTSS7 message on each pipe stream using the W_CCC_START
action to set the mode to SS7 Clear Channel Capability.

8. Issue W_SETSS7_CCC commands to configure the attributes of the SS7 Clear
Channel Capability link.

9. At this point, connections can be initiated by issuing WAN_REG and
WAN_CTL commands. Once the data transfer mode is entered, WAN_DATs
are exchanged between the upper level and the WAN driver.

10. Occasionally, WAN_NOTIFSS7 can be issued by the WAN driver to the upper
level.

The data-transfer state can be terminated by issuing WAN_CTL with WC_DISC
and performing a close() on the stream.

To ensure your adapter supports this mode, contact your RadiSys
representative.
45

 ARTIC STREAMS Support WAN Driver Interface Reference
Multiplexed WAN driver in ATM mode
The following is the order in which the upper-level process should issue commands
to the WAN driver. The calls made are standard STREAMS application interface
calls.

1. Open streams to the WAN driver using the open() STREAMS call. Note that all
opens to a Multiplexed WAN driver are clone opens. The number of streams
opened should be equal to the number of virtual channels that are to be opened,
plus one more stream to perform management commands (before and after the
virtual channels enter the data transfer state).

2. Issue W_SETDI and/or W_SETDI_PORT commands to set up the parameters of
the physical links and backup clocks.

3. Issue the W_SET_PHY_PIPE command to specify which time slots are to be
combined for the ATM cell stream. Specify a unique identifier in the
w_phy_pipe_id field.

4. Issue the W_SET_ATM command to set the parameters related to the physical
layer of the ATM. Use the w_phy_pipe_id field to identify the ATM cell stream.
This step is optional and can be issued at a later point. However, it cannot be
issued after a WAN_REG has been issued on a virtual channel that is operating
over this ATM cell stream.

5. Issue one or more W_SET_SNID commands (one for every virtual channel that
is to be opened). This command ties together the following:

– The ATM cell stream, which is a combination of time slots over which the
ATM physical layer is operating (specified in the w_port_id field)

– A VPI/VCI (specified in the w_chnl_id field)

– A SNID (unique identifier)

– An internal channel.

6. Issue one or more W_SETTUNE commands to specify the parameters for the
CPCS layer.

7. At this point, virtual channels can be started by issuing WAN_SID, WAN_REG
and WAN_CTL commands. Once the data transfer mode is entered,
WAN_DATs are exchanged between the upper level and the WAN driver.
Occasionally, WAN_NOTIF_ATM can be issued by the WAN driver to the
upper level.

The data-transfer state can be terminated by issuing WAN_CTL with WC_DISC
and performing a close() on the stream.
46

Chapter 4: Serial and Multiplexed WAN drivers (command sequences)
SC-bus connection scenarios
• Standalone case — The ARTIC960 4-Port T1/E1 Mezzanine Card is not

connected to other adapters by way of the SC bus.

In this case, the user need not issue any commands to configure the SC bus. The
default configuration lets the user process data from the network.

• Multiple adapters are connected by way of the SC bus. — However, the
ARTIC960 4-Port T1/E1 Mezzanine Card does not forward any data to or from
the SC bus.

In this case, load the WAN driver with proper values for
W_SCBUS_XMIT_WIRE and W_SCBUS_RECV_WIRE dedicated wires to
avoid conflict. Configure for SC-bus master (because this ARTIC960 4-Port
T1/E1 Mezzanine Card is connected to the network) and the proper speed of the
SC-bus. Once this is done, the user can process data from the network without
any conflicts.

• Multiple adapters are connected by way of the SC bus — One of the ARTIC960
4-Port T1/E1 Mezzanine Cards is connected to the network. All other adapters,
and the ARTIC960 4-Port T1/E1 Mezzanine Card, process data from the
network.

In this case, load the WAN driver with proper values for
W_SCBUS_XMIT_WIRE and W_SCBUS_RECV_WIRE dedicated wires (this is
optional). Also, configure the ARTIC960 4-Port T1/E1 Mezzanine Card that is
connected to the network to be the master of the SC-bus. Next, to process data
on other adapters, issue W_SETCH_MAP commands to set up the processing
paths. Make sure they do not use the dedicated wires (if any are defined). To
process data from a network port on the ARTIC960 4-Port T1/E1 Mezzanine
Card, you do not need to issue the W_SETCH_MAP command to set the
processing path if dedicated wires are defined. Otherwise, the W_SETCH_MAP
command must be used to set up the processing paths.

CT-bus connection scenarios
The CT bus is implemented with H.100 or H.110 variants.

• The H.100 bus can be used when the PMC is configured in a PCI system. A
ribbon cable connector on the PMC will be used to connect all the CT devices.

• The H.110 bus can be used when the PMC is configured in a Compact PCI
system where the H.110 bus resides in the CompactPCI motherboard and is
common with all other Compact PCI adapters using the main cPCI bus.
47

 ARTIC STREAMS Support WAN Driver Interface Reference
48

5 Serial and Multiplexed WAN
drivers (common operations) Chapter 5

This chapter describes operations that are common to the Serial and the
Multiplexed WAN driver when operating under different protocol modes.
Supported protocol modes are:

• Synchronous mode (HDLC framing) — The default when either the Serial or
Multiplexed WAN driver is loaded.

• Asynchronous mode — Selected by way of W_SETLINE to the Serial WAN
driver.

• HDLC framing plus SS7 — Selected when either the Serial or Multiplexed WAN
driver is loaded and WAN_ACTSS7 with W_SS7_START is issued on the
opened stream.

• Bisynchronous mode — Selected by way of W_SETLINE to the Serial
WAN driver.

Most of the streams operations are the same as defined in the SpiderX25 WAN
Implementation Guide, r8.0, by Spider Systems. However, the following operations
are different:

• Encoding of the SNID, described in WAN_SID — Set subnetwork ID on
page 51.

• Associating SNID to a port or channel, described in W_SET_SNID — Allocate
internal channel and associate SNID to it on page 94.

• Rate licensing mechanism, described in W_SETTUNE — Set configuration on
page 83.

• The control of modem signal DCD (data carrier detect), described in
W_SETTUNE — Set configuration on page 83.

• The actions taken on W_DISABLE, described on page 68.

• Currently, there is no SNMP (Simple Network Management Protocol) support.
49

 ARTIC STREAMS Support WAN Driver Interface Reference
STREAMS service messages
These are the messages that are sent on the stream associated with the targeted line
or channel.

The WAN driver supports different types of service messages. Depending on the
value of wan_type, the messages are classified as:

• Initialization

• Registration

• Control

• Data

Each of these types are explained with their respective structures. These are
messages, as opposed to commands, and no immediate response message is
expected in the opposite direction.

union WAN_primitives {
uint8 wan_type;
struct wan_reg wreg;
struct wan_sid wsid;
struct wan_ctl wctl;
struct wan_msg wmsg;
.........

};

Table 5-1 summarizes these service messages. Refer to the referenced pages for
details.

Table 5-1. Summary of service messages

The structures shown in this book are for illustration purposes. The structures
are defined in include files that are distributed with the WAN driver.

Message Type Direction Parameters Use See
Page

WAN_SID Down SNID Sent to the driver right after
the open. Assigns a SNID to
the stream.

51

WAN_REG Down SNID on any stream Registers the upper layer. It
indicates that the upper layer
is ready to receive data

54

WAN_CTL Down or Up • Command type
• Remote address
• Return result Diagnostics

Controls the connection setup
and clear down. Needed when
the type of interface has the
concept of a data transfer
state.

56

WAN_DAT Down or Up • Command type for Tx
or Rx

• M_DATA follows with
data

Exchanges data messages. 61
50

Chapter 5: Serial and Multiplexed WAN drivers (common operations)
WAN_SID — Set subnetwork ID

This message type is used by the upper module when it informs the WAN driver of
the subnetwork identifier associated with the stream.

This message can be sent down on any stream, clone or non-clone. Using this
message, the user assigns an identity to the stream on which it is sent. A WAN_CTL
with WC_CONNECT command is needed before the user stream can enter data
transfer state.

Only one WAN_SID message can be sent down on a stream.

The following structure is associated with this M_PROTO message:

struct wan_sid {
uint8 wan_type;
uint8 wan_spare[3];
uint32 wan_snid;

};

Parameters

wan_type This is set to WAN_SID.

wan_snid The subnetwork identifier. There are two formats in which this can
be specified.

• As a 32-bit integer. In this case, the SNID is a number identifying the
channel or line to the Management Entity. The assignment of the
stream to a particular line or channel must be achieved in some other
way.

• Certain bits of the 32-bit integer occupy the line number. This line
number is encoded in ASCII format. The line number is extracted by
subtracting hexadecimal 30. This mode is chosen by loading the
WAN driver with the command line parameter
SNID_DECODE=YES (not supported in ATM mode or pipes). This
encoding can be in one of two possible forms, described in Figure 5-1.

Figure 5-1. Encoded SNID

31 24 23 16 15 8 7 0
MSB LSB

31 24 23 16 15 8 7 0
MSB LSB

SNID line no. ‘c’=0x63 chan no. Format 1

SNID line no. ‘c’=0x63 chan no. Format 2

Bits 31-24
Bits 23-16
Bits 7-0

= SNID_KEY= ASCII character ‘c’
= Channel number in ASCII

= Line number in ASCII

Bits 23-16
Bits 15-8
Bits 7-0

= SNID_KEY= ASCII character ‘c’
= Channel number in ASCII

= Line number in ASCII

or
WAN_SID — Set subnetwork ID — 51

 ARTIC STREAMS Support WAN Driver Interface Reference
The WAN driver first looks at bit positions 8 through 15 for ASCII ‘c’
(SNID_KEY).

• If a ‘c’ is found, bits 16 through 23 carry the line number encoded in
ASCII; else bit positions 16 through 23 are examined for ASCII
‘c’ (SNID_KEY).

• If ‘c’ is found in those positions (16 through 23), bits 24 through 31
carry the line number encoded in ASCII. The line number ranges from
1 to 4.

• For the Serial WAN driver, the line number is the same as the port
number. The Serial WAN driver ignores bits 0 through 7.

• For the Multiplexed WAN driver:

– The line number refers to the T1/E1 port number ranging from
1 to 4.

– The channel number field refers to the time slot within that
T1/E1 line, ranging from 1 to H for T1 and 2 to P for E1.

Error codes

0 The message was successfully processed. There is no indication of this in
the reverse direction. In case of an error, an M_ERROR message is sent
upstream with the appropriate error code. Note that the stream is
unusable in such an event.

ENODEV Either the SNID format cannot be deciphered or cannot be found in
SNID_DECODE=NO mode

EINVAL The message size does not match.

EEXIST The SNID supplied is already used by another stream.

ERANGE Either the line or channel number decoded from the SNID field is too
large for the current hardware configuration or SNID_KEY is not
detected.

EBUSY Either the channel is currently used by another stream, or the channel is
chained to another channel due to chaining at the port level or individual
channel basis.

ENOSR The WAN driver received more WAN_SID messages than the maximum
number of logical channels it can support.

EIO The WAN_SID is in the wrong state.

ENXIO A severe hardware error has occurred. Run diagnostics to find out more
about the type of failure. A card reset may remove the problem.

A WAN_SID can be issued again if a W_DISABLE had been issued previously.
To return to the connected state, issue a WAN_REG.
52 — WAN_SID — Set subnetwork ID

Chapter 5: Serial and Multiplexed WAN drivers (common operations)
Figure 5-2. Message flow for WAN_SID

Upper Level WAN Driver

M_PROTO
WAN_SID
WAN_SID — Set subnetwork ID — 53

 ARTIC STREAMS Support WAN Driver Interface Reference
WAN_REG — Registration message — start hardware

This message type is used by the upper module when it would like to register itself
with the WAN driver. The WAN driver activates the hardware associated with the
line or channel.

 Unlike other M_PROTO messages, this message can be sent on any stream.

The following structure is associated with this M_PROTO message:

struct wan_reg {
uint8 wan_type;
uint8 wan_spare[3];
uint32 wan_snid;

};

Parameters

wan_type

This is set to WAN_REG.

wan_snid The subnetwork identifier. See the description of the wan_snid parameter
on page 51.

Error codes

0 The message was successfully processed. There is no indication of this in
the reverse direction. In case of an error, an M_ERROR message is sent
upstream with the appropriate error code. Note that the stream is
unusable in such an event.

ENODEV Either the SNID cannot be found among the SNIDs, the SNID format
cannot be deciphered, or WAN_SID was not issued.

EINVAL The message size does not match.

EXDEV The configuration for the port was in conflict, hence was not
programmed. That is, the current operational mode of the hardware does
not match the cable ID of the attached cable.

EBUSY The port is already activated.

EIO Either the line or channel is disconnected or in the wrong state, or does
not have an associated DSP channel.

ENXIO A severe hardware error has occurred. Run diagnostics to find out more
about the type of failure. A card reset may remove the problem.

ENOMEM
Insufficient memory to register the line or channel.
54 — WAN_REG — Registration message — start hardware

Chapter 5: Serial and Multiplexed WAN drivers (common operations)
E2BIG The host’s maximum receive-buffer size is too small to hold the largest
frame.

If the hardware cannot be started for any reason, an M_ERROR message is
sent upstream

Figure 5-3. Message flow for WAN_REG

Upper Level WAN Driver

M_PROTO
WAN_REG
WAN_REG — Registration message — start hardware — 55

 ARTIC STREAMS Support WAN Driver Interface Reference
WAN_CTL — Connection management

This message type is used by the upper module and the WAN driver to exchange
control messages relating to connection setup and clear down.

This message is sent down a particular stream after it has been bound to a line or
channel by way of the WAN_SID message.

The following structure is associated with this M_PCPROTO message:

struct wan_ctl {
uint8 wan_type;
uint8 wan_command;
uint8 wan_remtype;
uint8 wan_remsize;
uint8 wan_remaddr[20];
uint8 wan_status;
uint8 wan_diag;

};

Parameters

wan_type This is set to WAN_CTL.

wan_command

Identifies the action to be taken by the recipient on receipt of the message.
There are four commands: WC_CONNECT, WC_CONCNF,
WC_DISC, and WC_DISCCNF.

WC_CONNECT

When Received by the WAN Driver — Causes it to take
appropriate action on the interface hardware to bring the line
into a data-transfer state, that is, enables reception and
transmission on the line or the
T1/E1 channel.

When Sent by the WAN Driver — Indicates to the upper
module that the line is ready to enter a data-transfer state
and is awaiting WC_CONCNF from the upper layer. If the
upper layer does not send WC_CONCNF, the WAN driver
does not enter the data-transfer state.

If there is no cable connected to the adapter, the WAN driver
waits until one is connected, and then sends WC_CONCNF
with the wan_success field set to WAN_SUCCESS or
WAN_FAIL when the line is ready.

In both cases, none of the following fields is used:

• wan_remtype

• wan_remsize

• wan_remaddr

• wan_status

• wan_diag
56 — WAN_CTL — Connection management

Chapter 5: Serial and Multiplexed WAN drivers (common operations)
WC_CONCNF

When Received by the WAN Driver — Is an indication from
the upper layer as to whether it accepts or rejects a previous
connect request.

When Sent by the WAN Driver — Is an indication to the
upper module in response to a previous connect request as to
the result of an attempt to bring the line into data transfer
state.

• For the Serial WAN driver, this means proper modem
signals are up for the appropriate interface.

• For the Multiplexed WAN driver, this means flags have
been detected on that channel.

Both sides are ready for data transfer if wan_status indicates
WAN_SUCCESS, meaning idle flags will be transmitted. If
SS7 mode was selected on that stream (with W_ACTSS7 and
W_START_SS7), the transmission algorithm, described in
Transmission logic on page 16, is taken into effect after the
upper layer attempts to transmit the first SU.

In both cases:

• wan_status is the connection result status and is one of
WAN_SUCCESS or WAN_FAIL.

• wan_diag contains any additional hardware or
system diagnostic.

• wan_remtype, wan_remaddr and wan_remsize are not
used (undefined).

WC_DISC When Received by the WAN Driver — Causes it to take
appropriate action on the interface hardware to take the line
out of data transfer state, that is, disable reception and
transmission on the line or channel.

• For the Serial WAN driver, control signals are not
affected.

• For the Multiplexed WAN driver, the idle code is
transmitted on the channel.
WAN_CTL — Connection management — 57

 ARTIC STREAMS Support WAN Driver Interface Reference
When Sent by the WAN Driver — Is an indication to the
upper module that the line has just exited from data transfer
state.

• For the Serial WAN driver, this indicates that one or
more modem signals (DCD, CTS or DSR) are down
(wan_diag is set to 0) or the nominal rate exceeds the
chosen license rate (wan_diag is set to EACCES).

• For the Multiplexed WAN driver, this indicates that a
Loss Of Signal failure or errors dictated by ITU-T
Recommendation G.775 have been detected on the
T1/E1 port.

In both cases:

• wan_diag — Contains any additional hardware or
system diagnostic.

• wan_remtype, wan_remaddr, wan_status and
wan_remsize are not used (undefined).

If a cable is disconnected when the stream is in a data-
transfer state, a WC_DISC is sent to the upper layer. The
WAN driver polls every second to check if the cable is
plugged back in. The operator can plug in the same or a
different type of cable.

For the Serial WAN driver, this programs the hardware based
on the cable that was plugged in and, if appropriate control
signals are present, a WC_CONNECT message is sent to the
upper layer. The serial WAN driver waits indefinitely for the
control signals.

For the Multiplexed WAN driver, this compares the cable
type with the current operational mode of the driver. If they
match, the driver waits for flag characters to arrive before
sending the WC_CONNECT to the upper layer.

See W_SETDI_PORT — Set attributes of a physical port on
page 165 for additional details.

WC_DISCCNF

When Received by the WAN Driver — Is an indication from
the upper layer as to whether it accepts or rejects a previous
disconnect request.

When Sent by the WAN Driver — Is an indication to the
upper module, in response to a previous disconnect request,
as to the result of an attempt to remove the line from a data
transfer state. Currently the WAN driver does not reject a
disconnect request.
58 — WAN_CTL — Connection management

Chapter 5: Serial and Multiplexed WAN drivers (common operations)
In both cases, the fields show the following:

• wan_status is the disconnection result status and is one
of WAN_SUCCESS or WAN_FAIL.

• wan_diag contains any additional hardware or
system diagnostic.

• wan_remtype, wan_remaddr, wan_status and
wan_remsize are not used (undefined).

wan_status

This field carries WAN_SUCCESS or WAN_FAIL.

wan_diag Additional information codes or reasons for failure.

• For the Serial WAN driver, this field carries the result of WC_DISC,
described previously.

• For the Multiplexed WAN driver, see the wan_event field description
in WAN_NOTIFDI — Inform upper level of T1/E1 events on
page 129 for status bits reported.
WAN_CTL — Connection management — 59

 ARTIC STREAMS Support WAN Driver Interface Reference
Error codes

0 The message was successfully processed. There is no indication of this in
the reverse direction. In case of an error, an M_ERROR message is sent
upstream with the appropriate error code. The stream is unusable in such
an event.

EINVAL Either the wan_command was not understood or the message size does
not match.

ENXIO Either the default configuration for the port was in conflict, and hence
was not programmed, or there was a severe hardware error. Run
diagnostics to find out more about the type of failure. A card reset may
remove the problem.

EIO The line or channel is in the wrong state.

E2BIG The host’s maximum receive-buffer size is too small to hold the largest
frame.

.

• Unless specified otherwise, the fields wan_remtype, wan_remaddr,
wan_status, and wan_remsize are not used and should be set to zero when
sending the message downstream. The same is done on upstream.

• In case WC_CONNECT or WC_DISC are crossed, an explicit confirmation is
still required.

• A disconnect does not mean the hardware is de-programmed. It only means
that some signals necessary for transmission of messages are lost. When they
return to normal status, the port/channel can be operated.

• For the Serial WAN driver, if a cable is removed during normal operation and
a new cable is plugged in, the WAN driver checks for the proper control
signals for this new cable type. If these control signals are present, a
WC_CONNECT with WAN_SUCCESS is sent to the upper layer.

Upper Level WAN Driver

M_PROTO
WAN_CTL

Figure 5-4. Message flow for WAN_CTL
60 — WAN_CTL — Connection management

Chapter 5: Serial and Multiplexed WAN drivers (common operations)
WAN_DAT — Data messages for transmission and reception

This message type is used by the upper module and the WAN driver to exchange
(transmit and receive) data messages on the connection (Virtual Channel
Connection (VCC) for the ATM protocol). The received messages will be of
command type WC_RX, and the transmit messages will be of command type
WC_TX.

The following structure is associated with the M_PROTO block of this service
message:

struct wan_msg {
uint8 wan_type;
uint8 wan_command;

};

ATM protocol mode

For the ATM protocol mode, the following structures are associated with the first
M_DATA block of this service message:

#ifdef INCLUDE_ATM
struct wan_msg_atm_rx {

uint8 wan_aal5_rx_status[8];
uint8 wan_atm_pt;
uint8 wan_atm_clp;
uint8 wan_aal5_uu;
uint8 wan_aal5_cpi;

};
struct wan_msg_atm_tx {

uint8 wan_atm_pt;
uint8 wan_atm_clp;
uint8 wan_aal5_uu;
uint8 wan_aal5_cpi;

};

#endif
#define rx_begin(p) (uint8 *)((struct wan_msg_atm_rx *)p+1)
#define tx_begin(p) (uint8 *)((struct wan_msg_atm_tx *)p+1)

Also see Parameters Specific to the ATM Protocol Mode on page 64 for more
information.

SS7 mode

For SS7 mode, the M_DATA block in the receive direction is formatted as follows:

#ifdef SS7_MODE
struct M_DATA_BLK {
uint8 wan_l2_rsv[RX_HDR_SPACE];/* Defined by the configuration param.*/
uint32 wan_fltr_cnt ; /* Filter count 0-0xffffffff, if in SS7 mode */
uint8 wan_begin[1] ; /* Actual data stored here */

}
#endif

For the ATM protocol mode, based on how the VCC is set up (W_SETTUNE),
this message carries CPCS, ATM, or OAM data.
WAN_DAT — Data messages for transmission and reception — 61

 ARTIC STREAMS Support WAN Driver Interface Reference
Other protocol modes

For all other protocol modes, the M_DATA block in the receive direction is
formatted as follows:

#ifdef HDLC_MODE
struct M_DATA_BLK
uint8 wan_l2_rsv[RX_HDR_SPACE];/* Defined by the configuration param.*/
uint8 wan_begin[1] ; /* Actual data stored here */

#endif

Parameters

wan_type Input. This is set to WAN_DAT (for all protocols).

wan_command

Input/Output.

WC_TX Input for transmit.

This bit needs to be set on all messages to be transmitted.

WC_BSC_TRANSP

Input to specify transparent data. Set this bit along with
WC_TX for bisynchronous protocol only.

WC_RX Output for received messages.

For BISYNC transparent mode, the WAN driver sets one of
the following receive message types along with WC_RX.

Message Type Message Description
WC_ETB ETB
WC_ETX ETX
WC_ACK0 ACK0
WC_ACK1 ACK1
WC_WACK WAK
WC_NAK NAK
WC_ENQ ENQ
WC_EOT EOT
WC_RVI RVI
WC_DISC_BSC DLE EOT (DISCONNECT)
WC_STX_ITB STX ITB
WC_STX_ETB STX ETB
WC_STX_ETX STX ETX
WC_STX_ENQ STX ENQ (TTD)
WC_SOH_ITB SOH ITB
WC_SOH_ETB SOH ETB
WC_SOH_ETX SOH ETX
WC_SOH_ENQ SOH ENQ
WC_DATA_ACK0 data ACK0
62 — WAN_DAT — Data messages for transmission and reception

Chapter 5: Serial and Multiplexed WAN drivers (common operations)
WC_DATA_ACK1 data ACK1
WC_DATA_NAK data NAK
WC_DATA_ENQ data ENQ

• The data is contained in one or more M_DATA blocks following the
M_PROTO header block. There is no significance in the division of data
between M_DATA blocks. If the upper layers can make sure that the data is
contained in a single M_DATA block, the user can set
ONE_DATA_MSG_ONLY=YES command-line parameter.

• The ONE_DATA_MSG_ONLY=YES command-line parameter is
recommended when using the ATM protocol.

• This interface can be changed using the DATA_MSG_ONLY=YES command
line parameter, in which case, only M_DATA blocks are present (no
M_PROTO header). In some cases, it may be worthwhile to avoid the
overhead of allocation and freeing of the little M_PROTO header. BISYNC
does not support DATA_MSG_ONLY=YES.

• This M_DATA interface can be effectively used only if the data blocks do not
go up to the stream head, because the stream head could concatenate all
M_DATA blocks while delivering them across the read () system call interface.

• RX_HDR_SPACE is defined at configuration time when the driver is loaded.
See Command-line parameters on page 235 for more details. The field
wan_l2_rsv is used by the layers above the driver. The field wan_fltr_cnt is
used only when the stream is in SS7 mode.

• When in SS7 mode, the WAN driver assumes that the FISU, LSSU and the
first three bytes of an MSU are contained in one M_DATA block.

Upper Level WAN Driver

M_PROTO + M_DATA
 WAN_DAT

Transmit data (WC_TX)

Received data (WC_RX)

Figure 5-5. Message flow for WAN_DAT
WAN_DAT — Data messages for transmission and reception — 63

 ARTIC STREAMS Support WAN Driver Interface Reference
Parameters Specific to the ATM Protocol Mode

The M_DATA block in the receive and transmit direction is formatted as defined by
the wan_msg_atm_rx and wan_msg_atm_tx structures respectively. The following
defines the structure’s members.

wan_aal5_rx_status

Output. This is set by the WAN driver on a received frame. The following
lists the format of this field and is in accordance with the ITU-T 363.5
specifications. This field is filled in only if the
WAN_CRPT_DATA_DLVR_ FLAG field is set to TRUE in the
W_SETTUNE command.

where:

OK Is set if no errors were detected.

Err_A Is set if an illegal CRC remainder was detected.

Err_B Is set if an illegal CPI was detected.

Err_C Is set if the value of the Length field in the perceived
CPCS-PDU trailer is 0.

Err_D Is set if an illegal length of a PAD field was detected.

Err_E Is set if the value of the Length field in the perceived
CPCS-PDU trailer exceeds the value of the WAN_maxframe
parameter.

Err_F Is set if the CPCS-SDU length exceeds the value of the
WAN_crpt_sdu_dlvr_len parameter.

Err_G Is set if a reassembly timer expiration has occurred prior to
completion of the CPCS-SDU assembly. In this case, Val_A,
Val_B, and Val_C have no information.

Val_A Contains the second octet of the assumed CPCS-PDU trailer
(CPI). If OK is set, this field is ignored.

Val_B Contains the third and fourth octets of the assumed
CPCS-PDU trailer (Length). If OK is set, this field is ignored.

Val_C Contains the last four octets of the assumed CPCS-PDU
trailer (CRC). If OK is set, this field is ignored.

Flags

Val_A

Val_B

Val_C

OK

Err_A

Err_B

Err_C

Err_D

Err_E

Err_F

Err_G

b7

b6

b5

b4

b3

b2

b1

b0

[0]

[1]

[2]
[3]

[4]
[5]
[6]
[7]

wan_aal5_rx_status
64 — WAN_DAT — Data messages for transmission and reception

Chapter 5: Serial and Multiplexed WAN drivers (common operations)
wan_atm_pt

Input/Output. This field contains the payload type as explained in the
ITU-TI I.361 specifications and is specified by the least-significant 3 bits
(rightmost) of this field. (Bits 3, 2, and 1 of this field, with bit 1 being the
least-significant bit, correspond to bits 4, 3 and 2 of the ITU-T
specifications.)

Receive Direction (from the line)
For a CPCS-SAR VCC, the WAN driver sets this to the payload type
indicated by the last SAR-UNITDATA. Note that the congestion
indicator is a bit within the payload type.

Transmit Direction (to the line)
Depending on the mode of the VCC (the WAN driver does not make any
checks for bits being improper for a particular VCC mode), the
following applies:

WAN_CPCS Mode

The WAN driver copies bits 3 and 1 of this field into the payload type
field’s bits 4 and 2, respectively, for every SAR-UNITDATA. In addition:

• The WAN driver controls the setting of bit 3 of the payload type field,
which is the ATM user-to-ATM user indication bit. Hence, bit 2 of
this field must be set to zero.

• Bit 3 of this field indicates whether the message is a CPCS PDU or a
F5 OAM cell.

WAN_CRC10 or WAN_ATM_CELLS Mode

The payload type field’s bits 4, 3 and 2 are set according to bits 3, 2 and
1 of this field, respectively.

wan_atm_clp

Input/Output. This field indicates the cell loss priority and is specified in
the least significant bit.

Receive Direction
For a CPCS-SAR VCC, this is a binary OR of all SAR-UNITDATAs that
made up this CPCS PDU.

Transmit Direction
For a CPCS-SAR VCC, the WAN driver sets this in every
SAR-UNITDATA.

wan_aal5_uu

Input/Output. Depending on the direction, the following applies.

Receive Direction
Set by the WAN driver to indicate the received CPCS
user-to-user information.

Transmit Direction
Set by the upper layer to indicate the CPCS user-to-user information.
WAN_DAT — Data messages for transmission and reception — 65

 ARTIC STREAMS Support WAN Driver Interface Reference
wan_aal5_cpi

Input/Output. Depending on the direction, the following applies.

Receive Direction
Set by the WAN driver to indicate the received CPCS Common Part
indicator.

Transmit Direction
Set by the upper layer to indicate the CPCS Common Part indicator.

.

• In the transmit direction, if the data length is greater than a cell’s payload
length, and the VCC is in raw mode (that is, W_SETTUNE with
WAN_ATM_CELLS), then the WAN driver will segment the data into multiple
ATM cells with PT and CLP as specified by the wan_atm_pt and
wan_atm_clp fields.

• In the receive direction, if the VCC is in raw mode (that is, W_SETTUNE with
WAN_ATM_CELLS), the WAN driver does not do any OAM processing or CRC-10
on these cells; they will be passed up to the upper level on an as-is basis

Upper Level WAN Driver

M_PROTO + M_DATA
 WAN_DAT

Received data (WC_RX)

WAN_DAT

M_PROTO + M_DATA

Transmit data (WC_TX)

Figure 5-6. Message flow for WAN_DAT — ATM protocol mode
66 — WAN_DAT — Data messages for transmission and reception

Chapter 5: Serial and Multiplexed WAN drivers (common operations)
STREAMS management commands
These are M_IOCTL commands that are exchanged on any stream. They contain
one M_IOCTL message block with an iocblk structure in its data block followed by
zero or more M_DATA message blocks. The WAN driver knows the associated
channel or line through the use of the given SNID. All M_IOCTL commands are
replied to by the WAN driver setting the ioctl message block type to M_IOCACK or
M_IOCNAK for success or failure respectively. For the following commands, the
actions or information passed is different for Serial and Multiplexed WAN drivers.

• W_SETTUNE

• W_GETTUNE

• W_DISABLE

• W_ENABLE

Commands that are not supported or not valid for the driver (that is, the Serial
WAN driver getting commands for T1/E1) will be replied by M_IOCNAK.

Table 5-2, “STREAMS management commands common to Serial and Multiplexed
WAN drivers,” on page 68 summarizes the management commands.
67

 ARTIC STREAMS Support WAN Driver Interface Reference
Table 5-2. STREAMS management commands common to Serial and Multiplexed WAN drivers

ioctl Command M_DATA Content
besides SNID Use See

Page
W_DISABLE To disable a port; allows for a temporary

disable without doing close.
69

W_ENABLE To enable a port; allows for re-enabling of a
port that was temporarily disabled without
doing close.

69

W_GETDRVINFO Various driver
parameters; no
SNID is associated
with this.

To obtain information, such as version number
and command-line parameter settings.

71

W_GETHWTYPE Electrical interface To obtain the type of cable attached and
current operational mode.

74

W_GETSTATS Table of statistics To read the statistics associated with a line or
channel.

78

W_ZEROSTATS Table of statistics To reset the statistics for a line or channel. 81
W_SETTUNE Table of tuning

values
To set the configurable parameters for a line. 83

W_GETTUNE Table of tuning
values

To obtain the configurable parameters for a
line.

93

W_SET_SNID wan_set_snid_ioc To allocate internal channel ID and associate
SNID to it

94

W_GET_SNID wan_set_snid_ioc To obtain the internal channel ID and physical
port/channel associated with the SNID

101

W_REL_SNID wan_rel_snid_ioc To free internal channel ID 102
68

Chapter 5: Serial and Multiplexed WAN drivers (common operations)
W_DISABLE/W_ENABLE — Disable/enable transmission of data

When W_DISABLE is received by the WAN driver, all received data is discarded (if
the line or channel is capable of receiving data). Any request for transmission of
data is ignored.

For the Serial WAN driver:

• The output control signals are turned off depending on the interface board.

• W_DISABLE results in WAN_CTL/WC_DISC on the corresponding data
stream. A subsequent W_ENABLE would result in
WAN_CTL/WC_CONNECT if appropriate control signals are present.

For the Multiplexed WAN driver:

• The transmitter transmits the flag-idle pattern.

• The user can disable a channel, change the current mapping, and then enable it.

• W_DISABLE results in WAN_CTL/WC_DISC on the corresponding data
stream. A subsequent W_ENABLE would result in
WAN_CTL/WC_CONNECT if the channel starts receiving flags again.

• When a WAN_SID is issued on the stream for the first time, the channel is
enabled by default. Subsequently, a WAN_REG would bring the channel into
data transfer. Now, if a W_DISABLE is issued, then W_ENABLE must be done,
even if the corresponding data stream is closed and some other stream uses
WAN_SID.

W_ENABLE is sent to re-enable the reception and transmission of data.

The following structure is associated with this command:

struct wan_hdioc {
uint8 w_type;
uint8 w_spare[3];
uint32 w_snid;

};

Parameters

IOCTL_COMMAND

Input. The ioc_cmd field in struct iocblk should be W_DISABLE
or W_ENABLE.

w_type Input. This is set to WAN_PLAIN.

w_snid Input. The subnetwork identifier. See the description of the wan_snid
parameter on page 51.
W_DISABLE/W_ENABLE — Disable/enable transmission of data — 69

 ARTIC STREAMS Support WAN Driver Interface Reference
Error codes

0 The command was successfully processed. The IOCTL is acknowledged
with M_IOCACK in the reverse direction. In case of an error, an
M_IOCNAK message is sent upstream with the appropriate error code.

ENODEV Either the SNID cannot be found among the SNIDs or the SNID format
cannot be deciphered.

EINVAL The message size does not match.

EIO The new mapping, done while the channel was disabled, put this channel
into the wrong state. See error EIO for WAN_REG on page 54.

ENXIO A severe hardware error has occurred. Run diagnostics to find out more
about the type of failure. A card reset may remove the problem.

Upper Level WAN Driver

M_IOCTL + M_DATA
iocblk(W_ENABLE or W_DISABLE) wan_hd_ioc

 M_IOCACK
 iocblk(W_ENABLE or W_DISABLE)

M_IOCNAK
iocblk(W_ENABLE or W_DISABLE)

or

Figure 5-7. Message flow for W_ENABLE/W_DISABLE
70 — W_DISABLE/W_ENABLE — Disable/enable transmission of data

Chapter 5: Serial and Multiplexed WAN drivers (common operations)
W_GETDRVINFO — Get driver configuration information

When W_GETDRVINFO is received by the WAN driver, all the information
regarding the driver is sent back to the upper layer.

The following structure is associated with this command:

typedef struct wan_params {
uint32 w_max_non_clone ;
uint32 w_max_opens ;
uint32 w_snid_decode ;
uint32 w_snid_key ;
uint32 w_data_msg_only ;
uint32 w_one_data_msg_only ;
uint32 w_test_interface ;
uint32 w_tx_blks ;
uint32 w_rx_blks ;
uint32 w_rx_hdr_space ;
uint32 w_scbus_xmit_wire ;
uint32 w_scbus_recv_wire ;
uint32 w_scbus_framing_mode ;
uint32 w_net_switch_mode ;
uint32 w_interface_type ;
uint32 w_bsn_flag ;
uint32 w_logical_port_base ;
uint32 w_pmc_select ;
uint32 w_rx_crc_select
uint32 w_ss7_filter_count ;
uint32 w_monitor_mode ;
uint32 w_tdm_clock_rate ;

} wan_params_t ;

typedef struct wan_mux_hw {
uint32 w_num_of_dsps ;
uint32 w_chans_per_dsp ;
uint32 w_num_of_proc_ports ;

} wan_mux_hw_t;

typedef struct wan_devinfo {
uint32 w_wan_ver ;
uint32 w_func_spec_ver ;
uint32 w_wan_type ;
wan_params_t w_params ;
wan_mux_hw_t w_mux_hw ;

} wan_devinfo_t ;

struct wan_drvinfo {
uint8 w_type;
uint8 w_spare[3];
wan_devinfo_t w_devinfo ;

};
W_GETDRVINFO — Get driver configuration information — 71

 ARTIC STREAMS Support WAN Driver Interface Reference
Parameters

IOCTL_COMMAND

Input. The ioc_cmd field in struct iocblk should be W_GETDRVINFO.

w_type Input. This is set to WAN_GETDRVINFO.

w_wan_ver

Output. This is set to the version number of the driver code that is loaded.

w_func_spec_ver

Output. This is set to the version number of the functional specifications
of the WAN driver.

w_wan_type

Output. This is set to the type of the WAN driver (W_SERIAL, W_MUX
or W_ASYNC).

wan_params structure

Output. See Command-line parameters on page 235 for details about the
individual parameters.

wan_mux_hw structure

Output. Applies to the Multiplexed WAN driver and indicates how the
workload is distributed.

w_num_of_dsps

Total number of DSPs on the PMC

w_chans_per_dsp

Number of channels processed per DSP

w_num_of_proc_ports

Number of processing ports that are available.

For the ARTIC 4-Port T1/E1 PMC, this is set to 1.

For the ARTIC 4-Port T1/E1/J1 DSP PMC, this is set to 2.

Error codes

0 The command was successfully processed. The IOCTL is acknowledged
with M_IOCACK in the reverse direction. In case of an error, an
M_IOCNAK message is sent upstream with the appropriate error code.

EINVAL The message size does not match.
72 — W_GETDRVINFO — Get driver configuration information

Chapter 5: Serial and Multiplexed WAN drivers (common operations)

Figure 5-8. Message flow for W_GETDRVINFO

Upper Level WAN Driver

M_IOCTL + M_DATA
iocblk(W_GETDRVINFO) (wan_drvinfo)

M_IOCACK + M_DATA
iocblk(W_GETDRVINFO) (wan_drvinfo)

 or
M_IOCNAK
iocblk(W_GETDRVINFO)
W_GETDRVINFO — Get driver configuration information — 73

 ARTIC STREAMS Support WAN Driver Interface Reference
W_GETHWTYPE — Get hardware type

This command is used to obtain information on the hardware (cable type and
current mode) for a particular line.

ARTIC960

The following structure is associated with this command:

struct wan_gethwtype_ioc {
uint8 w_type;
uint8 w_spare[3];
uint32 w_port_id;
uint32 w_cable_type;
uint32 w_current_mode;

};

ARTIC 1000/2000 Series

The following structure is associated with this command:

struct wan_gethwtype_ioc {
uint8 w_type;
uint8 w_spare[3];
uint32 w_port_id;
uint32 w_cable_type;
uint32 w_rtm;
uint32 w_pmc1;
uint32 w_pmc2;
uint32 w_cable_type1;
uint32 w_cable_type2;
uint32 w_current_mode;

};

Parameters

IOCTL_COMMAND

Input. The ioc_cmd field in struct iocblk should be W_GETHWTYPE.

w_type Input. This is always WAN_GETHWTYPE.

w_port_id

Input. The port number for which the information is requested.

w_cable_type

Output. The type of cable found on the card. The following types are
defined:

WAN_V35_DTE

V.35 DTE interface

WAN_V35_DCE

V.35 DCE interface

WAN_RS449

RS-449 interface
74 — W_GETHWTYPE — Get hardware type

Chapter 5: Serial and Multiplexed WAN drivers (common operations)
WAN_RS422

RS-422 or EIA-530 interface

WAN_RS232

RS-232 or V.24 interface

WAN_X21

X.21 interface

WAN_2PORT_2TYPE

Port 0 = V.35 DTE
Port 1 = RS-232

WAN_RJ48

Generic RJ-48 connection

WAN_T1_RJ48_BAL

T1 interface, balanced RJ-48 jack connector

WAN_T1_TELCO_BAL

T1 interface, balanced telephone-jack connector

WAN_E1_RJ48_BAL

E1 interface, balanced RJ-48 jack connector

WAN_E1_BNC_UNBAL

E1 interface, unbalanced BNC connector

WAN_E1_BNC_BAL

E1 interface, balanced BNC connector

WAN_NO_WRAP_OR_CABLE

If no wrap plug or cable is attached

WAN_120_PIN_WRAP

If a 120-pin wrap plug is connected

WAN_T1E1_WRAP

If a T1/E1 wrap plug is connected

WAN_UNKNOWN

Cable ID is invalid.

w_current_mode

Output. The current operational mode for the RadiSys 4-Port T1/E1
PMC.

The following settings are defined:

W_T1 Configured for T1

W_E1 Configured for E1

W_J1 Configured for J1

The above cables are available in 2-port and 4-port configurations.
2-port cards support both the 2-port and 4-port cables.
W_GETHWTYPE — Get hardware type — 75

 ARTIC STREAMS Support WAN Driver Interface Reference
w_rtm Output. Indicates whether the Rear IO module has been
detected. The following types are defined:

W_RTM_ATTACHED

The Rear I/O module has been detected by the
software. If the RTM is connected, only Rear I/O
is allowed; that is, the rear cable connections must
be used.

W_RTM_NOTATTACHED

The Rear IO module has not been detected.
Normal cable connection will be enabled.

w_pmc1 Output. Returns the following, depending on whether PMC
#1 is attached.

W_PMC1_NOTATTACHED

PMC #1 is not attached.

W_PMC1_SERIAL

PMC #1 is attached and the adapter is an ARTIC
4-Port Serial PMC.

W_PMC1_T1E1_DSP

PMC #1 is attached and the adapter is an ARTIC
4-Port T1/E1/J1 DSP PMC.

w_pmc2 Output. Returns the following, depending on whether PMC
#2 is attached.

W_PMC2_NOTATTACHED

PMC #2 is not attached.

W_PMC2_SERIAL

PMC #2 is attached and the adapter is an ARTIC
4-Port Serial PMC.

W_PMC2_T1E1_PMC

PMC #2 is attached and the adapter is an ARTIC
4-Port T1/E1/J1 DSP PMC.

w_cabletype1

Output. This describes the cable attached to PMC #1 for the
ARTIC 4-Port T1/E1/J1 DSP PMC. For Serial PMCs on
ARTIC 1000/2000 Series, see w_cable_type on page 74
for a list of the cable types defined.

w_cabletype2

Output. This describes the cable attached to PMC #2 for the
ARTIC 4-Port T1/E1/J1 DSP PMC. For Serial PMCs on
ARTIC 1000/2000 Series, see w_cable_type on page 74
for a list of the cable types defined.
76 — W_GETHWTYPE — Get hardware type

Chapter 5: Serial and Multiplexed WAN drivers (common operations)
Error codes

0 The command was successfully processed. The IOCTL is acknowledged
with M_IOCACK in the reverse direction. In case of an error, an
M_IOCNAK message is sent upstream with the appropriate error code.

EINVAL The message size does not match.

ERANGE The port number supplied is out of range for the current hardware.

• The hardware type is determined by the PMC attached.
• The initial settings for the hardware are documented in the section Initial line

characteristics on page 242.
• The behavior of the Multiplexed WAN driver during initialization is described

in W_SETDI_PORT — Set attributes of a physical port on page 165.

Figure 5-9. Message flow for W_GETHWTYPE

Upper Level WAN Driver

M_IOCTL + M_DATA
iocblk(W_GETHWTYPE) (wan_gethwtype_ioc)

M_IOCACK + M_DATA
iocblk(W_GETHWTYPE) (wan_gethwtype_ioc)

 or
M_IOCNAK
iocblk(W_GETHWTYPE)
W_GETHWTYPE — Get hardware type — 77

 ARTIC STREAMS Support WAN Driver Interface Reference
W_GETSTATS — Get statistics

This command is used to read the statistics from the WAN driver. Statistics are
maintained on a line or channel basis, and the required line or channel is selected
using the w_snid field. The hdlc_stats field holds the returned statistics.

The following structure is associated with this command:

typedef struct hstats {
uint32 hc_txgood;
uint32 hc_txurun;
uint32 hc_rxgood;
uint32 hc_rxorun;
uint32 hc_rxcrc;
uint32 hc_rxnobuf;
uint32 hc_rxnflow;
uint32 hc_rxoflow;
uint32 hc_rxabort;
uint32 hc_intframes;

} hdlcstats_t;

struct wan_stioc {
uint8 w_type;
uint8 w_state;
uint8 w_spare[2];
uint32 w_snid;
hdlcstats_t hdlc_stats;

};

Parameters

IOCTL_COMMAND

Input. The ioc_cmd field in struct iocblk should be W_GETSTATS.

w_type Input. This is always WAN_STATS.

w_state Output. This reflects the state of the hardware state machine. Reserved
for internal use only.

w_snid Input. The subnetwork identifier. See the description of the wan_snid
parameter on page 51.

hdlcstats

These are the statistics collected since the last time the counters were
cleared. The following fields are defined for the structure:

hc_txgood

Output. The number of good frames transmitted.

hc_txurun

Output. The number of transmit underruns.

hc_rxgood

Output. The number of good frames received.

This command is not valid in ATM mode.
78 — W_GETSTATS — Get statistics

Chapter 5: Serial and Multiplexed WAN drivers (common operations)
hc_rxorun

Output. The number of receive overruns.

hc_rxcrc Output. The number of receive CRC/Framing/short-frame
errors.

hc_rxnobuf

Output. The number of receive frames with no buffer.

For BISYNC, the number of received messages with parity
error.

hc_rxnflow

Output. The number of receive frames with no flow control.

hc_rxoflow

Output. The number of times the receive buffer overflowed.

hc_rxabort

Output. The number of aborted frames.

For BISYNC, the number of pad errors.

hc_intframes

Output. The number of frames failed to be transferred due to
loss of signals.

This will be used to report the number of transmit CTS
underruns.

Error codes

0 The command was successfully processed. The IOCTL is acknowledged
with M_IOCACK in the reverse direction. In case of an error, an
M_IOCNAK message is sent upstream with the appropriate error code.

ENODEV Either the SNID cannot be found among the SNIDs, or the SNID format
cannot be deciphered.

EINVAL The message size does not match.

ENXIO A severe hardware error has occurred. Run diagnostics to find out more
about the type of failure. A card reset may remove the problem.
W_GETSTATS — Get statistics — 79

 ARTIC STREAMS Support WAN Driver Interface Reference
Figure 5-10. Message flow for W_GETSTATS

Upper Level WAN Driver

M_IOCTL + M_DATA
iocblk(W_GETSTATS) (wan_stioc)

M_IOCACK + M_DATA
iocblk(W_GETSTATS) (wan_stioc)

 or
M_IOCNAK
iocblk(W_GETSTATS)
80 — W_GETSTATS — Get statistics

Chapter 5: Serial and Multiplexed WAN drivers (common operations)
W_ZEROSTATS — Clear channel statistics

This command is used to reset the statistics maintained by the WAN driver.
Statistics are maintained on a line or channel basis and the required line or channel
is selected using the w_snid field. The hdlc_stats field holds the statistics before the
counters in the driver are cleared.

The following structure is associated with this command:

struct wan_stioc {
uint8 w_type;
uint8 w_state;
uint8 w_spare[2];
uint32 w_snid;
hdlcstats_t hdlc_stats;

};

Parameters

IOCTL_COMMAND

Input. The ioc_cmd field in struct iocblk should be W_ZEROSTATS.

w_type Input. This is always WAN_STATS.

w_state Output. This reflects the state of the hardware state machine.

w_snid Input. The subnetwork identifier. See the description of the wan_snid
parameter on page 51.

hdlc_stats

These are values of the counters before they were cleared. The entity
responsible for collecting must add these numbers to previously acquired
ones. See W_GETSTATS — Get statistics on page 78 for a description of
this field and its elements.

Error codes

0 The command was successfully processed. The IOCTL is acknowledged
with M_IOCACK in the reverse direction. In case of an error, an
M_IOCNAK message is sent upstream with the appropriate error code.

ENODEV Either the SNID cannot be found among the SNIDs, or the SNID format
cannot be deciphered.

EINVAL The message size does not match, or the command is not valid for the
ATM mode.

ENXIO A severe hardware error has occurred. Run diagnostics to find out more
about the type of failure. A card reset might remove the problem.

This command is not valid in ATM mode.
W_ZEROSTATS — Clear channel statistics — 81

 ARTIC STREAMS Support WAN Driver Interface Reference
Figure 5-11. Message flow for W_ZEROSTATS

Upper Level WAN Driver

M_IOCTL + M_DATA
iocblk(W_ZEROSTATS) (wan_stioc)

M_IOCACK + M_DATA
iocblk(W_ZEROSTATS) (wan_stioc)

 or
M_IOCNAK
iocblk(W_ZEROSTATS)
82 — W_ZEROSTATS — Clear channel statistics

Chapter 5: Serial and Multiplexed WAN drivers (common operations)
W_SETTUNE — Set configuration

For the Serial WAN driver and the Multiplexed WAN driver, this command is used
to set the following.

• Configurable parameters of the logical line

• Parameters associated with an ATM virtual channel

For Serial WAN, this command can be used in lieu of W_SETLINE.

The following structures are associated with this command:

struct WAN_atm_vcc {
uint32 WAN_crpt_sdu_dlvr_len;
uint32 WAN_cpcs_timer_value;
uint32 WAN_event_disc;
uint32 WAN_options;

};
struct WAN_mux {

uint16 WAN_stat_port;
uint16 WAN_bit_inv;
uint32 WAN_event_disc;

};
struct WAN_hddef {

uint32 WAN_baud;
uint16 WAN_maxframe;
uint16 WAN_interface;
union }

uint16 WAN_cptype;
struct WAN_mux WAN_muxdef;
struct WAN_atm_vcc WAN_atmdef;

} WAN_cpdef;
};
typedef struct wan_tune {

uint16 WAN_options;
uint16 WAN_pad;
struct WAN_hddef WAN_hd;

}wantune_t;
struct wan_tnioc {

uint8 w_type;
uint8 w_spare[3];
uint32 w_snid;
wantune_t wan_tune;

} ;

To use the X.21 electrical interface in the synchronous Serial WAN driver, you
must issue a W_SETLINE command. The W_SETTUNE command will not
initialize the X.21 interface. The X.21 cable can be configured and used in
non-X.21 mode.
W_SETTUNE — Set configuration — 83

 ARTIC STREAMS Support WAN Driver Interface Reference
Parameters

IOCTL_COMMAND

Input. The ioc_cmd field in struct iocblk should be W_SETTUNE.

w_type Input. This is set to WAN_TUNE.

w_snid Input. The subnetwork identifier. See the description of the wan_snid
parameter on page 51.

WAN_options (associated with the wan_tune structure)
Input. Options for addressing.

W_NO_TRANSLATE

No address translation.

W_TRANSLATE

Address translation; not supported.

WAN_pad Input. This field must be set to zero.

WAN_baud Input. The number of bits per second (bps) at which the communication
takes place.

W_EXT_CLK_VERF_TXC

External clock from TXC with verification of rate. If the
nominal rate is greater than the provided one (license rate bits
28–0), a WC_DISC is sent up the stream. This is a bit field (bit
31) that must be logical ORed with the internally generated
baud rate. The hardware is acting as a DTE. Data received
from DCE is sampled using the RXC from DCE. Rate
comparison is done using the TXC from DCE. The
comparison process is started when a WAN_REG is received.
If this comparison fails, a WC_DISC is sent up the stream
asynchronously. After any disconnect from either side, this
process is repeated on entering the connect state. XTC is
transmitted to the DCE and is taken from the TXC.

W_DCE_INT_XTC_EXT_RXC

The hardware is acting as a DCE. The internal clock is
generated on XTC based on the baud rates that are set (bits
28–0). This clocks DCE’s TXD pin. The DCE’s RXC receives
the clock from the DTE’s XTC, which is used to sample the
DCE’s RXD. This is a bit field (bit 30) that must be logical
ORed with an internally generated baud rate.
84 — W_SETTUNE — Set configuration

Chapter 5: Serial and Multiplexed WAN drivers (common operations)
W_DCE_INT_XTC_INT_RXC

The hardware is acting as a DCE. The internal clock is
generated on the XTC based on the baud rates that are set
(bits 28–0). This clocks DCE’s TXD pin. DCE’s RXC receives
the clock from DCE’s XTC internally, which is used to
sample DCE’s RXD. This is a bit field (bit 29) that must be
logical ORed with an internally generated baud rate.

The following WAN_baud options have bit rate options that
are used as bits 28–0 to specify a bit rate:

• W_EXT_CLK_VERF_TXC

• W_DCE_INT_XTC_EXT_RXC

• W_DCE_INT_XTC_INT_RXC

The bit rate options are as follows:

W_DTE_CLK_FROM_TXC

The hardware is acting as a DTE (clocking from
external source). The data received from the DCE
is sampled using the receive clock from the DCE.
The receive clock is also used as the clock for
DTE’s transmitted data.

This is the only option supported X.21 port types.

This option has a value of zero and is the default.

W_300_BPS 300 bits per second
W_600_BPS 600 bits per second
W_1200_BPS 1,200 bits per second
W_2400_BPS 2,400 bits per second
W_3600_BPS 3,600 bits per second
W_4800_BPS 4,800 bits per second
W_7200_BPS 7,200 bits per second
W_9600_BPS 9,600 bits per second
W_19200_BPS 19,200 bits per second
W_38400_BPS 38,400 bits per second
W_48500_BPS 48,500 bits per second
W_56000_BPS 56,000 bits per second
W_64000_BPS 64,000 bits per second
W_76800_BPS 76,800 bits per second
W_1544_BPS 1,544,000 bits per second
W_2048_BPS 2,048,000 bits per second
W_SETTUNE — Set configuration — 85

 ARTIC STREAMS Support WAN Driver Interface Reference
W_DTE_TX_FROM_TXC_RX_FROM_RXC

The hardware is acting as a DTE (clocking from external
source). The data received from the DCE is sampled using the
receive clock from the DCE. The DCE transmit clock is used
as the clock for DTE’s transmit data. DTE transmit data is
transmitted based on the external transmit clock. This is valid
only for RS-232 electrical interface.

WAN_maxframe

Input. WAN maximum frame size expressed in bytes. See Multiplexed
WAN driver for any of its channels — defaults on page 242 for default
values.

WAN_interface

Input. The hardware interface type and control of DCD modem signal.
The LSB is the hardware interface.

For the Serial WAN driver, the MSB reflects the effect of DCD going
down.

• The description of this parameter (WAN_baud) contains a list of all supported
bit rates as bits per second (actual value). The bit rates supported depend on
the type of application interface board, the type of adapter, the system
requirements, and the I/O mode. These are used only as the transmit baud
rate.

• The Multiplexed WAN driver supports W_56000_BPS and W_64000_BPS.
• When the hardware is acting as a DTE, the external clock provided by DCE

can range from 0–2,048,000 bits per second.
• BISYNC supports only DTE (external) clock options.

Figure 5-12. Format of WAN_interface of WAN_hddef structure

MSB LSB
15 8 7 0

If non-0
 the connection is closed when
 DCD is down for 15 seconds
else,
 connection is closed immediately
 when DCD goes down

WAN_interface
field

WAN_interface
86 — W_SETTUNE — Set configuration

Chapter 5: Serial and Multiplexed WAN drivers (common operations)
The following values are valid for this hardware interface parameter:

WAN_V35 Input selects V.35 interface.

WAN_V36 Input selects V.36 interface.

WAN_RS232 Input selects RS-232 interface.

WAN_RS422 Input selects RS-422 interface.

WAN_T1E1 Input selects T1/E1 Multiplexer interface. In this case,
bits 8–15 are ignored. Also, the union WAN_cpdef is always
interpreted as struct WAN_mux.

WAN_ATM Input selects ATM operation.

WAN_2PORT_2TYPE

Input selects:

• V35 DTE interface on Port 0

• RS-232 interface on Port 1

When the cable type is selected using the W_SETTUNE
command’s wan_interface parameter, the Serial WAN driver
will test the cable type attached and select the interface based
on the cable attached. Issue a W_GETTUNE command to
verify the cable type attached.

WAN_X21 Input selects the X.21 electrical interface.

To use the X.21 electrical interface, a W_SETLINE command
must be issued with the w_porttype parameter set to
WAN_X21, with the X.21 cable attached. If this is not done,
the X.21 cable can be used without the X.21 electrical
interface. See W_SETLINE — Define line characteristics on
page 209 for more information.

WAN_stat_port

This field is reserved for future use and must be set to 0.

WAN_bit_inv

Input.

W_NO_CHANGE

No change from previous setting.

W_INVERT Apply bit inversion to incoming and outgoing bit streams.

W_NO_INVERT

Normal mode; no inversion. (Default)
W_SETTUNE — Set configuration — 87

 ARTIC STREAMS Support WAN Driver Interface Reference
WAN_event_disc

Input. Defines which events will be reported as disconnect; that is,
generates WC_DISC. This bit field takes bit combinations as defined in
the wan_event field of the WAN_NOTIFDI message (see
WAN_NOTIFDI — Inform upper level of T1/E1 events on page 129).
The default for HDLC and SS7 modes is the following (that is, generates
disconnect if any of these events are detected):

• W_DI_FAR_RAI

• W_DI_FAR_AIS

• W_DI_LOS

• W_DI_FAR_LFA

• W_DI_FAR_LMFA

WAN_crpt_sdu_dlvr_len

Input. If WAN_DATA_DLVR_FLAG is TRUE, this field indicates the
maximum number of octets of an assumed CPCS SDU that can be
delivered to the CPCS user. This parameter corresponds to the
Max_Corrupted_SDU_ Deliver_Length parameter, as described in the
ITU-T I.363.5 specifications. The default value is 4,120.

WAN_cpcs_timer_value

Input. This specifies the reassembly timer value. A nonzero value
indicates the timer value in multiples of 125 microseconds, and its value
should not exceed 65535. This provides a maximum time-out value of
approximately eight seconds. The actions taken on timer expiration are
described in Annex E of the ITU-T 363.5 specification.

The default value is zero, indicating the reassembly timer is not to be
used.

WAN_options (associated with the WAN_atm_vcc structure)
For the ATM protocol mode, the WAN driver performs some Operation
and Maintenance Support (OAM) functions based on the ITU-T I.610
specifications. OAM cells either will be processed by the WAN driver or
passed up to the upper level for further processing (such as System
Management and Performance Monitoring). This is a bit-wise OR field.
The default value of the WAN_options field is zero. The following
options are provided:

WAN_AIS

When this bit is reset (0), any OAM AIS cells that are received
will be passed up to the upper level by the WAN driver.

When this bit is set (1), the WAN driver will enter the VC-AIS
state when the OAM AIS cell is received. Once in the VC-AIS
state, the WAN driver takes actions as defined by the
ITU-T I.610 specifications.
88 — W_SETTUNE — Set configuration

Chapter 5: Serial and Multiplexed WAN drivers (common operations)
WAN_RDI

When this bit is reset (0), any OAM RDI cells that are
received will be passed up to the upper level by the WAN
driver.

When this bit is set (1), the WAN driver will enter the
VC-RDI state when the OAM RDI cell is received. Once in
the VC-RDI state, the WAN driver takes actions as defined by
ITU-T I.610 specifications.

WAN_RMT_CC_REQ

When this bit is reset (0), a request for activation of continuity
check using an OAM cell will be denied by the WAN driver.

When this bit is set (1), a continuity check activation request
will be confirmed by the WAN driver. The WAN driver will
respond to an activation request for AB, BA or both
directions. Actions taken are defined by the ITU-T I.610
specifications (that is, generate CC cells if the direction is BA
and monitor for CC cells in the AB direction).

WAN_RMT_CC_ACT

When this bit is reset (0), any received continuity check OAM
cells will be passed up to the upper level by the WAN driver.

When this bit is set (1), the WAN driver will take action as
defined by the ITU-T I.610 specifications.

WAN_LPBK

When this bit is reset (0), the WAN driver will pass up
loopback OAM cells to the upper level. When this bit is set
(1), the WAN driver responds to loopback OAM cells
initiated by the remote end.

WAN_RMT_PM_REQ

When this bit is reset (0), a request for activation of
performance monitoring using an OAM cell will be denied by
the WAN driver. Otherwise, the WAN driver will confirm the
performance monitoring request as long as the direction bits
indicate that the performance monitoring cells will be
originated by the remote end. All other directions will be
denied.

WAN_RMT_PM_ACT

When this bit is reset (0), the WAN driver passes performance
monitoring OAM cells to the upper level for further
processing; else it will respond to these cells.

WAN_SYS_MGMT

When this bit is reset (0), the WAN driver passes up system
management OAM cells to the upper level for further
processing. Otherwise, the WAN driver discards these cells.
W_SETTUNE — Set configuration — 89

 ARTIC STREAMS Support WAN Driver Interface Reference
WAN_DATA_DLVR_FLAG

This specifies corrupted data delivery option.

When enabled, as octets are received, the length is checked
against the value specified by the WAN_crpt_sdu_dlvr_len
field. If this is exceeded, ERR_F is set in the
wan_aal5_rx_status field of the WAN_DAT message.

When disabled, as octets are received, the length is checked
against the value specified by the WAN_maxframe field. If
this is exceeded, received data is discarded, and the
Segmentation and Reassembly (SAR) process is restarted. In
addition, when this flag is set, the WAN_DAT message in the
receive direction will contain appropriate values in the
wan_aal5_rx_status field.

WAN_CPCS

When this bit is set, the WAN driver performs AAL5
CPCS/SAR and F5 OAM functions (based on the payload
type) on the cells for this VCC. The WAN driver will calculate
or check CRC-10 for F5 OAM cells. Likewise, the WAN
driver will calculate or check CRC-32 for AAL5 CPCS data.
This is the default.

WAN_ATM_CELLS

When this bit is set, the WAN driver passes up the raw ATM
cells for this VCC.

WAN_CRC10

When this bit is set, the WAN driver performs the CRC-10
function on the cells for this VCC, which would be used for
F4 OAM operations.
90 — W_SETTUNE — Set configuration

Chapter 5: Serial and Multiplexed WAN drivers (common operations)
Error codes

0 The command was successfully processed. The IOCTL is acknowledged
with M_IOCACK in the reverse direction. In case of an error, an
M_IOCNAK message is sent upstream with the appropriate error code.

ENODEV Either the SNID cannot be found among the SNIDs, or the SNID format
cannot be deciphered.

EINVAL The message size does not match.

E2BIG The host’s maximum receive-buffer size is too small to hold the largest
frame.

ENOMEM
Cannot allocate a single buffer for the requested frame size.

ENXIO A severe hardware error has occurred. Run diagnostics to find out more
about the type of failure. A card reset may remove the problem.

EIO Command is being issued after WAN_REG.

EXDEV Current operational mode does not match what is specified in
WAN_interface.

• When the cable type is selected using the W_SETTUNE command’s
WAN_interface parameter, the Serial WAN driver will test the cable type
attached and select the interface based on the cable attached. Issue a
W_GETTUNE command to verify the cable type attached.

• ATM Mode Notes:
– When OAM cells are processed by the upper level, the WAN driver will still

validate and generate a CRC-10.
– The WAN_maxframe parameter of this command specifies the maximum

size of the CPCS Service Data Unit (SDU) in octets that can be delivered to
a CPCS user. If a received SDU’s length exceeds this, the received data is
discarded if WAN_DATA_DLVR_FLAG is reset; else, an error is flagged as
ERR_E in the wan_aal5_rx_status field of the WAN_DAT message. The
default value is 4100. This parameter corresponds to the
MAX_SDU_Deliver_Length of the ITU-T I.363.5 specifications.

– WAN_CPCS, WAN_ATM_CELLS and WAN_CRC10 are mutually exclusive
bits. That is, only one of them must be set.

– Table 5-3 on page 92 contains a summary of actions taken for various
combinations of WAN_RMT_CC_REQ and WAN_RMT_CC_ACT bits.
W_SETTUNE — Set configuration — 91

 ARTIC STREAMS Support WAN Driver Interface Reference
Table 5-3. Actions taken for WAN_RMT_CC_REW and WAN_RMT_CC_ACT bits

Similar actions are taken for various settings of WAN_RMT_PM_REQ and
WAN_RMT_PM_ACT bits.

WAN_RMT_CC_REQ WAN_RMT_CC_ACT Description
0 0 The WAN driver will deny a CC activation request

and pass any received CC cells to the upper level.
0 1 The WAN driver will deny a CC activation request

and discard any CC cells that are received.
1 0 The WAN driver will confirm a CC activation

request and pass any received CC cells to the
upper level.

1 1 The WAN driver will confirm a CC activation
request and handle received CC cells as defined
by the ITU-T I.610 specifications.

Figure 5-13. Message flow for W_SETTUNE (SS7)

Upper Level WAN Driver

M_IOCTL + M_DATA
iocblk(W_SETTUNE) (wan_tune)

M_IOCACK + M_DATA
iocblk(W_SETTUNE) (wan_tune)

 or
M_IOCNAK
iocblk(W_SETTUNE)
92 — W_SETTUNE — Set configuration

Chapter 5: Serial and Multiplexed WAN drivers (common operations)
W_GETTUNE — Get configuration

This command returns the line parameters set by W_SETTUNE. The structure
associated with this command is the same as W_SETTUNE. See W_SETTUNE —
Set configuration on page 83 for details. The only exception is that the ioc_cmd
field in struct iocblk should be set to W_GETTUNE.

Error codes

0 The command was successfully processed. The IOCTL is acknowledged
with M_IOCACK in the reverse direction. In case of an error, an
M_IOCNAK message is sent upstream with the appropriate error code.

ENODEV Either the SNID cannot be found among the SNIDs, or the SNID format
cannot be deciphered.

EINVAL The message size does not match.

ENXIO A severe hardware error has occurred. Run diagnostics to find out more
about the type of failure. A card reset may remove the problem.

Figure 5-14. Message flow for W_GETTUNE

Upper Level WAN Driver

M_IOCTL + M_DATA
iocblk(W_GETTUNE) (wan_tune)

M_IOCACK + M_DATA
iocblk(W_GETTUNE) (wan_tune)

 or
M_IOCNAK
iocblk(W_GETTUNE)
W_GETTUNE — Get configuration — 93

 ARTIC STREAMS Support WAN Driver Interface Reference
W_SET_SNID — Allocate internal channel and associate SNID to it

This command associates a SNID to an internal channel.

Usually this command is used in the clone open with SNID_DECODE=NO mode.

The following structures are associated with this command:

#if defined(INCLUDE_MUX) && (defined(INCLUDE_ATM)||defined(INCLUDE_SCB))
typedef union {

uint32 chan;
struct {

#if defined(BIG_ENDIAN_MEMORY)
uint16 vci;
uint16 vpi;

#else
uint16 vpi;
uint16 vci;

#endif
} vpi_vci;
struct {

#if defined(BIG_ENDIAN_MEMORY)
uint16 tx;
uint16 rx;

#else
uint16 rx;
uint16 tx;

#endif
} rx_tx;

} vcc_chan;

#define w_chnl_id w_chan.chan
#define w_vpi w_chan.vpi_vci.vpi
#define w_vci w_chan.vpi_vci.vci
#define w_chan_rx w_chan.rx_tx.rx
#define w_chan_tx w_chan.rx_tx.tx

The structures associated with this command are not compatible with the
previous version of the Multiplexed WAN Driver (Specifications Version 1.1). A
recompilation of the code is necessary for Multiplexed WAN driver-based
protocol stacks.
• For the Serial WAN driver, this command attaches a SNID to a physical port.
• For the Multiplexed WAN driver, this command attaches a SNID to an

internal channel that may or may not be connected to a physical-channel
end port.
94 — W_SET_SNID — Allocate internal channel and associate SNID to it

Chapter 5: Serial and Multiplexed WAN drivers (common operations)
typedef union {
uint32 port;
uint32 pipe_id;
struct {

#if defined(BIG_ENDIAN_MEMORY)
uint16 tx;
uint16 rx;

#else
uint16 rx;
uint16 tx;

#endif
} rx_tx;

} vcc_port;

#define w_pprt_id w_port.port
#define w_pipe_id w_port.pipe_id
#define w_port_rx w_port.rx_tx.rx
#define w_port_tx w_port.rx_tx.tx
#endif /* INCLUDE_MUX */

struct wan_set_snid_ioc {
uint8 w_type;
uint8 w_spare[3];
uint32 w_snid;

#if defined(INCLUDE_MUX) && (defined(INCLUDE_ATM) ||defined(INCLUDE_SCB))
vcc_port w_port;
vcc_chan w_chan;

#else
uint32 w_port_id;
uint32 w_chnl_id;

#define w_pprt_id w_port_id
#endif

uint32 w_internal_id;
};

Parameters

IOCTL_COMMAND

Input. The ioc_cmd field in struct iocblk should be W_SET_SNID.

w_type Input. This is always WAN_SET_SNID.

w_snid Input. The subnetwork identifier to be assigned. Unlike other SNID
inputs, this field is taken as a 32-bit quantity and is never interpreted by
the driver.
W_SET_SNID — Allocate internal channel and associate SNID to it — 95

 ARTIC STREAMS Support WAN Driver Interface Reference
w_port_id

Input on W_SET_SNID and Output on W_GET_SNID.

• For the Serial WAN driver, valid port numbers range from 1 to 4.

• For the Multiplexed WAN driver, valid port number ranges are
described in Figure 7-6 on page 147 and Figure 7-7 on page 149. If
the port number is zero, the driver allocates an internal channel and
the w_chnl_id field is ignored.

This can be used to perform chaining or mapping using the internal
channel numbers by way of the W_SETCH_MAP command. Using this
method, you can associate a SNID to a channel as follows:

• In a physical port

• In an SC-bus or CT-bus port

• Within a DSP explicitly

Also, see Channelled mode using SC-bus and CT-bus channels for HDLC
or SS7 on page 97 for a description of how this field is interpreted to
accommodate SC-bus or CT-bus channels.

w_chnl_id

Input on W_SET_SNID and Output on W_GET_SNID.

• For the Serial WAN driver, this field is ignored.

• For the Multiplexed WAN driver, this is the channel number within
the port. Valid channel number ranges are described in Figure 7-6 on
page 147 and Figure 7-7 on page 149. If the w_port_id specifies a
DSP port, this indicates the channel on that DSP port.

Also, see Channelled mode using SC-bus and CT-bus channels for HDLC
or SS7 on page 97 for a description of how this field is interpreted to
accommodate SC-bus channels.

Regarding the ARTIC960 4-Port T1/E1 Mezzanine Card, there are two
IBM MWave DSP processors and each can process up to 16 channels.
Therefore, if this field is set to 17, DSP number 1 (0 based) channel
number 0 performs the work, and so on. Upper layers should use the
GETDRVINFO command (see W_GETDRVINFO — Get driver
configuration information on page 71) to determine the workload of the
underlying hardware (as viewed by the WAN driver).

w_internal_id

Input/Output. Must be set to 0 as input. On output, this is the internal
channel number allocated for this SNID.
96 — W_SET_SNID — Allocate internal channel and associate SNID to it

Chapter 5: Serial and Multiplexed WAN drivers (common operations)
ATM, HDLC, or SS7 fat/fractional modes for the Multiplexed WAN driver

w_pprt_id

Input. This is the value of the w_phy_pipe_id field returned by the
W_SET_PHY_PIPE command.

w_vpi For ATM mode, this is the VPI value.

For HDLC mode, this field must be set to zero.

w_vci For ATM mode, this is the VCI value.

For HDLC mode, this field must be set to zero.

Channelled mode using SC-bus and CT-bus channels for HDLC or SS7

To accommodate the SC-bus and CT-bus channels, the Multiplexed WAN driver
interprets the w_port_id and w_chnl_id fields as follows.

w_port_id

This is broken into two fields, as follows.

w_port_tx

Specify the bus wire in the transmit direction (from the WAN
driver towards the bus). The following shows the possible
values range, inclusive of both numbers.

SC bus — 0x40 through 0x4f

CT bus — 0x40 through 0x5f

w_port_rx

Specify the SC-bus or CT-bus wire in the receive direction.

w_chnl_id

This field is broken into two fields, as follows.

w_chan_tx

Specify the channel within the transmit SC-bus or CT-bus
wire (w_port_id field most significant 16 bits) on which the
WAN driver will put the transmit data.

w_chan_rx

Specify the channel within the receive SC-bus or CT-bus wire
(w_port_id field least-significant 16 bits) from which the
WAN driver will receive data.

Table 5-4 on page 98 summarizes all possible combinations for this command for
the channelled mode for the Multiplexed WAN driver.
W_SET_SNID — Allocate internal channel and associate SNID to it — 97

 ARTIC STREAMS Support WAN Driver Interface Reference
Table 5-4. SET_SNID command—combinations for channelled mode for Multiplexed WAN driver

w_port_id w_chnl_id Channels
Allocated

Tx Rx Tx Rx IC DC BC Description
0 0 0 0 X IC allocated, which is not connected to any resource. User

connects this IC to IC or BC or PC using W_SETCH_MAP
prior to doing a WAN_REG. If a WAN_REG is done prior
to W_SETCH_MAP, error EIO is returned. DC is allocated
at WAN_SID time, if it has not been allocated by the
W_SETCH_MAP command.

0 0x80-
0xBF

0 0x01-
0x10

X Connects to DC. User connects this DC to IC or BC or PC
using W_SETCH_MAP prior to doing a WAN_REG;
otherwise, error EIO is returned.

0 0x40-
0x4F

0 0x01-
0x20
or
0x01-
0x40

X X Allocates a DC and connects receive only to the BC
specified by LSB of w_port_id and w_chnl_id.

0x40-
0x4F
or
0x40-
0x5F

0 0x01-
 0x20
 or
 0x01-
 0x40

0 X X Allocates a DC and connects transmit only to the BC
specified by MSB of w_port_id and w_chnl_id.
See Figure 7-6 on page 147 and Figure 7-7 on page 149
for a description of valid channel number ranges.

0x40-
0x4F
or
0x40-
0x5F

0x40-
0x4F
or
0x40-
0x5F

 0x01-
 0x20
 or
 0x01-
 0x40

0x01-
0x20
or
0x01-
0x40

X X Allocates a DC and connects receive to BC specified by
LSB of w_port_id and w_chnl_id and connects transmit to
BC specified by MSB of w_port_id and w_chnl_id. In this
case, BCs within dedicated wires cannot be used.
See Figure 7-6 on page 147 and Figure 7-7 on page 149
for a description of valid channel number ranges.

0 0x01-
0x04
or
0x01-
0x08

0 0x02-
0x20
or
0x01-
0x18

X X X This is possible only if dedicated wires are defined during
WAN driver load time. Allocates a DC, BC, and IC.
See Figure 7-6 on page 147 and Figure 7-7 on page 149
for a description of valid channel number ranges.

0 0x100-
0x1FF

 0x0001-
 0xFFFF

0x0001-
0xFFFF

X Allocates a VCC within this ATM pipe, with VPI and VCI
specified in MSB and LSB of w_chnl_id field and the pipe
ID specified in LSB of w_port_id. SNID is associated with
this VCC.

0 0x100-
0x1FF

0 0 X SNID is associated to this pipe. The pipe must be in
HDLC mode.

The terms used in this table are defined as follows:
Tx Transmit
Rx Receive
IC Internal Channel

DC DSP Channel
BC SC-bus or CT-bus Channel
PC Physical Channel
98 — W_SET_SNID — Allocate internal channel and associate SNID to it

Chapter 5: Serial and Multiplexed WAN drivers (common operations)
Error codes

0 The command was successfully processed. The IOCTL is acknowledged
with M_IOCACK in the reverse direction. In case of an error, an
M_IOCNAK message is sent upstream with the appropriate error code.

EINVAL The command size does not match.

ERANGE Either the port number or the channel number supplied is out of range
for the current hardware.

EEXIST The SNID being assigned is not unique among those already defined.

EIO Either the selected port is currently in remote or payload loop, or the
channel is currently in use, or it is reserved (for example, channels 25
through 32 are in T1 mode).

EBUSY The specified port or channel is currently being used.

ENOSR All internal channels (4 or 32) have been allocated.

The following summarizes the internal workings of the Multiplexed WAN driver
for this command.
• The internal channel number is allocated by the Multiplexed WAN driver and

is used as a key in mapping to a DSP or SC bus, or to a physical/network port
and channel.

• W_SET_SNID can be viewed as a shortcut to doing the W_SETCH_MAP
command, where the allocated internal channel (w_internal_id) field is
equivalent to the w_map field. The w_port_id and w_chnl_id fields are
equivalent to the w_rec and w_xmt fields.

• STREAMS modules use the w_snid field to identify and operate on the data
path (commands such as the WAN_REG and W_DISABLE), whereas the
WAN driver uses the corresponding internal ID to map and connect various
connection points so that data can flow to the ultimate destination. A data
path consists of the connection points shown in Figure 5-15.

Figure 5-15. Connection points that make a data path

SCB
channel

DSP
channel

Internal
channel

Physical
channel

 Stream Network

Each box represents a connection point.
W_SET_SNID — Allocate internal channel and associate SNID to it — 99

 ARTIC STREAMS Support WAN Driver Interface Reference

• A mapping operation (W_SET_SNID or an entry in W_SETCH_MAP) specifies
the two connection points of a data path. The w_map field in W_SETCH_MAP
always specifies a full-duplex connection point.

• The Multiplexed WAN driver attempts to allocate the connection points along
the data path if the mapping is of the following type:
– Internal channel to/from SC-bus channel — An appropriate DSP channel

is allocated.
– Internal channel to/from Physical channel — A DSP channel and SC-bus

or CT-bus channels are allocated if dedicated wires are defined.
Otherwise, this would be an error. (The CT-bus does not require a
dedicated wire.)

– DSP channel to Physical channel — The SC-bus channel is allocated if
dedicated wires are defined. Otherwise, this would be an error.

• To take complete control of this mapping, allocate only an internal channel
using W_SET_SNID (w_port_id and w_chnl_id fields set to zero) and then
perform mapping using the W_SETCH_MAP command.

• When in ATM cell stream mode, configure the time slots for the cell stream
first (using the W_SET_PHY_PIPE command) and then issue this command
to associate a SNID to a virtual channel over this cell stream.

• When in ATM cell stream mode, do not issue this command with the
w_port_id and w_chnl_id fields set to zero.

• The maximum number of VCCs that can be set over an ATM pipe is limited
to 8.

Figure 5-16. Message flow for W_SET_SNID

Upper Level WAN Driver

M_IOCTL + M_DATA
iocblk(W_SET_SNID) (wan_set_snid_ioc)

M_IOCACK + M_DATA
iocblk(W_SET_SNID) (wan_set_snid_ioc)

 or
M_IOCNAK
iocblk(W_SET_SNID)
100 — W_SET_SNID — Allocate internal channel and associate SNID to it

Chapter 5: Serial and Multiplexed WAN drivers (common operations)
W_GET_SNID — Get the assigned internal channel ID

This command returns the internal channel assigned to a SNID, and it also returns
the physical port and channel number associated with the SNID. For the
Multiplexed WAN driver, this information can be used for chaining two logical
channels. The structure associated with this command is the same as the one for the
W_SET_SNID command, which is described in W_SET_SNID — Allocate internal
channel and associate SNID to it on page 94.

Parameters

IOCTL_COMMAND

Input. The ioc_cmd field in struct iocblk should be W_GET_SNID.

w_type Input. This is always WAN_GET_SNID.

w_snid Input. The subnetwork identifier to be assigned. Unlike other SNID
inputs, this field is taken as a 32-bit quantity and is never interpreted by
the driver.

w_port_id, w_chnl_id, w_internal_id

Output. The values are filled in by the driver.

Error codes

0 The command was successfully processed. The IOCTL is acknowledged
with M_IOCACK in the reverse direction. In case of an error, an
M_IOCNAK message is sent upstream with the appropriate error code.

EINVAL The command size does not match.

ENODEV The SNID is not found among those already defined.

Figure 5-17. Message flow for W_GET_SNID

Upper Level WAN Driver

M_IOCTL + M_DATA
iocblk(W_GET_SNID) (wan_set_snid_ioc)

M_IOCACK + M_DATA
iocblk(W_GET_SNID) (wan_set_snid_ioc)

 or
M_IOCNAK
iocblk(W_GET_SNID)
W_GET_SNID — Get the assigned internal channel ID — 101

 ARTIC STREAMS Support WAN Driver Interface Reference
W_REL_SNID — Release internal channel ID

This command releases the internal channel ID associated with a SNID. Usually this
command is used in the clone close with SNID_DECODE=NO mode.

The following structure is associated with this command:

struct wan_rel_snid_ioc {
uint8 w_type;
uint8 w_spare[3];
uint32 w_snid;

};

Parameters

IOCTL_COMMAND

Input. The ioc_cmd field in struct iocblk should be W_REL_SNID.

w_type Input. This is always WAN_REL_SNID.

w_snid Input. The subnetwork identifier to be released. Unlike other SNID
inputs, this field is taken as a 32-bit quantity and is never interpreted by
the Multiplexed WAN driver.

Error codes

0 The command was successfully processed. The IOCTL is acknowledged
with M_IOCACK in the reverse direction. In case of an error, an
M_IOCNAK message is sent upstream with the appropriate error code.

EINVAL The command size does not match.

ENODEV The SNID being released is not found among those already defined.

EBUSY The specified port or channel is currently being used. That is, WAN_SID
has been issued on this stream and a close has not been issued yet.

Figure 5-18. Message flow for W_REL_SNID

Upper Level WAN Driver

M_IOCTL + M_DATA
iocblk(W_REL_SNID) (wan_rel_snid_ioc)

M_IOCACK + M_DATA
iocblk(W_REL_SNID) (wan_rel_snid_ioc)

 or
M_IOCNAK
iocblk(W_REL_SNID)
102 — W_REL_SNID — Release internal channel ID

6 Signaling System Number 7 (SS7)
(specific operations) Chapter 6

This chapter provides information related to operations specific to Signaling System
Number 7 (SS7). The Serial synchronous and the Multiplexed WAN drivers support
SS7 low-level processing protocol.

The SS7 functions require the creation of STREAMS service messages and
management commands for both the Serial and Multiplexed WAN drivers. The
format of these messages and commands is based on the existing ones.

Table 6-1. STREAMS service messages and management commands for SS7

Relation between SS7 and HDLC modes
An SS7 link is operated on top of regular HDLC protocol. The SS7 functions on a
logical channel are activated using the W_SS7_START action of the WAN_ACTSS7
service message. This message must precede all SS7-related messages on that stream
and all SS7 management commands for that SNID. The SS7 mode is exited when
the W_SS7_STOP action on the WAN_ACTSS7 service message is received.

Message Use Type Direction Page
WAN_ACTSS7 To control the SS7 features:

activation/deactivation and ERM
Service
Message
(M_PROTO)

Down on any
appropriate stream

105

WAN_NOTIFSS7 To inform the upper level of SS7
and ERM generated events

Service
Message
(M_PROTO)

Up on any
appropriate stream

107

WAN_RESETSS7 To reset the FISU/LSSU filtering.
See SU filtering on page 13 for a
description of the reset operation.

Service
Message
(M_PROTO)

Down on any
appropriate stream

109

W_SETSS7 To set the ITU-T/ANSI SS7
attributes of a logical channel
ERM type, counter’s threshold,
ERM parameters

Management
Command
(M_IOCTL)

Down on any
opened stream

112

W_GETSS7 To obtain the ITU-T/ANSI SS7
attributes of a logical channel

Management
Command
(M_IOCTL)

Down on any
opened stream

115

W_SETSS7_JPN To set the TTC SS7 attributes of a
line or channel, ERM parameters,
transmission time intervals

Management
Command
(M_IOCTL)

Down on any
opened stream

117

W_GETSS7_JPN To obtain the TTC SS7 attributes
of a logical channel

Management
Command
(M_IOCTL)

Down on any
opened stream

120
103

WAN Driver ARTIC STREAMS Support WAN Driver Interface Reference
STREAMS service messages for SS7

Message Structure in M_PROTO M_DATA? Direction
WAN_ACTSS7 wan_actss7

(see WAN_ACTSS7 — Control SS7
features on page 105)

No To WAN driver

WAN_NOTIFSS7 wan_notifss7
(see WAN_NOTIFSS7 — Notify SS7
status on page 107)

No From WAN driver

WAN_RESETSS7 wan_resetss7
(see WAN_RESETSS7 — Reset filtering
operation on page 109)

Yes, Filter
count + SU

To WAN driver
104

Chapter 6: Signaling System Number 7 (SS7) (specific operations)
WAN_ACTSS7 — Control SS7 features

This message performs SS7-related actions on a stream. The possible actions are:

• Selecting ITU-T/ANSI SS7, Clear Channel Capability, or TTC SS7 mode or
function

• Starting and stopping SUERM

• Starting and stopping AERM in normal or emergency mode

• Starting and stopping EIM in Clear Channel Capability mode

• Selecting the alignment mode (normal or emergency) when AERM is in Idle or
Monitoring state.

Normally, a service message does not need a response. However, this message is
returned as a confirmation after the appropriate action has been taken. Errors are
reported in the w_error field.

The following structure is associated with this command:

struct wan_actss7 {
uint8 w_type;
uint8 w_spare[3];
uint32 w_action;
uint32 w_error;

};

Parameters

w_type Input. This is always WAN_ACTSS7.

w_action Input. The action requested on that SS7 link. The allowed values are:

W_SS7_START
Select or activate ITU-T/ANSI SS7 mode.

W_JSS7_START
Select or activate TTC SS7 mode.

W_CCC_START

Select or activate ITU-T/ANSI SS7 Clear Channel Capability
mode.

W_SS7_STOP
Deselect or deactivate SS7 mode or TTC SS7 mode.

W_SS7_START_AERM
Start Alignment ERM.

W_SS7_SET_TIN
Put Alignment ERM in normal mode.

W_SS7_SET_TIE
Put Alignment ERM in emergency mode.

W_SS7_START_SUERM
Start Signal Unit ERM.
WAN_ACTSS7 — Control SS7 features — 105

 ARTIC STREAMS Support WAN Driver Interface Reference
W_SS7_STOP_AERM
Stop AERM.

W_SS7_STOP_SUERM
Stop SUERM.

W_JSS7_INC_SUERM_COUNTER
Increment SUERM counter.

W_EIM_START

Start EIM ERM.

W_EIM_STOP

Stop EIM ERM.

w_error Output. Contains the error codes defined in the following section.

Error codes

0 No error if command was successfully processed.

EINVAL Either the message size does not match or the action is invalid.

EIO The line or channel is in the wrong state.

ENXIO A severe hardware error has occurred. Run diagnostics to find out more
about the type of failure. A card reset may remove the problem.

EACCES SS7 mode is not activated on this line or channel; that is, W_SS7_START
was not issued, was started twice, or was stopped without starting.

• Switching between HDLC and SS7 modes is not allowed when a stream is
opened (issuing W_SS7_START and W_SS7_STOP).

• When w_action is W_SS7_SET_TIN or W_SS7_SET_TIE, the logic resets the
current error counter (Ca) to zero.

Figure 6-1. Message flow for WAN_ACTSS7

Upper Level WAN Driver

M_PROTO
wan_actss7

M_PROTO
wan_actss7
106 — WAN_ACTSS7 — Control SS7 features

Chapter 6: Signaling System Number 7 (SS7) (specific operations)
WAN_NOTIFSS7 — Notify SS7 status

This message notifies the upper level of events related to a SS7 link. Reported events
are the following:

• Link failure due to SUERM or EIM threshold surpassed

• Abort proving due to AERM threshold surpassed

• Number of errored signal units at a periodic time interval

This message is sent on the stream that is associated with the SS7 link.

The following structure is associated with this M_PROTO message:

typedef struct wan_ss7_stats {
uint32 wan_ss7_su_err_cnt ;

} wan_ss7_stats_t ;

struct wan_notifss7 {
uint8 wan_type;
uint8 wan_spare[3];
uint32 wan_event;
uint32 wan_diag;
wan_ss7_stats_t wan_ss7_info;

};

Parameters

wan_type Output. This is set to WAN_NOTIFSS7.

wan_event

Output. This indicates the events being reported. This is a bit-wise OR of
the following values:

WAN_SS7_LINK_FAIL
A failure of the link due to the SUERM threshold being
surpassed.

WAN_SS7_ABRT_PROV
An abort proving due to the AERM threshold being
surpassed. After reporting this event, the AERM logic resets
the Ca to zero and reenters the monitoring mode.

WAN_SS7_ERM_STATS
Number of signal units that were received in error during the
past intervals. Field wan_ss7_su_err_cnt in wan_ss7_info is
nonzero when this bit is set, that is, this event is reported only
when the count of errored signal units is nonzero. This count
is cleared once the event is reported.

wan_diag Output. For the Multiplexed WAN driver, this field reports additional
information codes or reasons for failure. See the description for the
wan_event field in WAN_NOTIFDI — Inform upper level of T1/E1
events on page 129 for status bits reported. Note that only the lower 8
bits of the wan_event field will be reported in wan_diag because it is only
8-bits wide.
WAN_NOTIFSS7 — Notify SS7 status — 107

 ARTIC STREAMS Support WAN Driver Interface Reference
wan_ss7_info

Output.

wan_ss7_su_err_cnt

Output. The driver maintains a count of the number of signal
units that were received in error as defined by the Alignment
and Signal Unit Error Rate Monitors. This count is cleared
when the WAN_SS7_ERM_STATS event is reported.

• SUERM goes to the idle state when the event WAN_SS7_LINK_FAIL is
reported. The upper layer must issue a W_SS7_START_SUERM to get it
started again. In this case, if a W_GETSS7 is issued, w_erm_type is set to
NO_ERM_RUNNING. Also, note that the OCM logic remains unaffected by
these events, meaning WAN_SS7_ERM_STATS will be reported if errored
SUs are detected, even though none of the Error Rate Monitors are active.

• The AERM resets the counter Ca to zero and reenters the monitoring state
after WAN_SS7_ABRT_PROV is reported. A W_SS7_START_AERM need not
be issued.

Figure 6-2. Message flow for WAN_NOTIFSS7

Upper Level WAN Driver

M_PROTO
wan_notifss7

wan_notifss7
M_PROTO

WAN Driver
108 — WAN_NOTIFSS7 — Notify SS7 status

Chapter 6: Signaling System Number 7 (SS7) (specific operations)
WAN_RESETSS7 — Reset filtering operation

This service message resets the FISU or LSSU filtering temporarily. In this way, the
current FISU or LSSU is passed to the upper level for processing. The WAN driver
acknowledges this message by updating the wan_error and wan_reset_status fields.
An M_DATA message follows this acknowledgement if the reset operation was
successful; that is, wan_reset_status is zero. This command forces the filtering
process to restart. Hence, the filter count is reset to zero and the next incoming SU
is sent up the stream and, from then on, the filtering process starts.

The following structure is associated with this M_PROTO message:

struct wan_resetss7 {
uint8 wan_type;
uint8 wan_spare[3];
uint32 wan_reset_type;
uint32 wan_error ;
uint32 wan_reset_status ;

};

Parameters

wan_type Input. This is set to WAN_RESETSS7

wan_reset_type

Input. The type of filtering reset requested. The allowed values are:

WAN_RST_FISU
Reset FISU filtering.

WAN_RST_LSSU
Reset LSSU filtering.

wan_error

Output. Contains error codes, defined in the following section. In case of
error, M_DATA message will not follow.

0 No error. Check wan_reset_status for more information.

EIO The line or channel is in the wrong state.

ENXIO A severe hardware error has occurred. Run diagnostics to find
out more about the type of failure. A card reset may remove
the problem.

EACCES SS7 mode is not activated on this line or channel.

EINVAL Either wan_reset_type contains an invalid value or the
message size does not match.
WAN_RESETSS7 — Reset filtering operation — 109

 ARTIC STREAMS Support WAN Driver Interface Reference
wan_reset_status

Output.

0 Reset operation was completed without errors. M_DATA
message containing the filter count and SU data will follow.

WAN_RESET_INVALID
Reset operation failed because the requested SU is not being
filtered currently.

WAN_RESET_CNT_ZERO
So far, the requested SU has been seen only once by the WAN
driver; hence, the current filter count is zero.

Figure 6-3. Message flow for WAN_RESETSS7

Upper Level WAN Driver

M_PROTO
wan_resetss7

M_PROTO + M_DATA
wan_dat <Filter count + SU> (if wan_error is 0)

OR

Upper Level

M_PROTO
wan_resetss7

M_PROTO + M_DATA
wan_dat <Filter count + SU> (if wan_error is 0)

WAN Driver

M_PROTO
wan_resetss7

M_PROTO
wan_resetss7
110 — WAN_RESETSS7 — Reset filtering operation

Chapter 6: Signaling System Number 7 (SS7) (specific operations)
STREAMS management commands for SS7

ioc_cmd value of
iocblk structure in
M_IOCTL

Structure in M_DATA after M_IOCTL M_DATA with
M_IOCACK?

W_SETSS7 wan_setss7_ioc
(see W_SETSS7 — Set SS7 configuration parameters on
page 112)

No

W_GETSS7 wan_getss7_ioc
(see W_GETSS7 — Get SS7 configuration parameters on
page 115)

Yes,
wan_getss7_ioc

W_SETSS7_JPN wan_jpn_setss7_ioc
(see W_SETSS7_JPN — Set TTC SS7 configuration
parameters on page 117)

No

W_GETSS7_JPN wan_jpn_getss7_ioc
(see W_GETSS7_JPN — Get TTC SS7 configuration
parameters on page 120)

Yes,
wan_jpn_getss7_ioc

W_SETSS7_CCC wan_ccc_setss7_ioc
(see W_SETSS7_CCC — Set SS7 Clear Channel
Capability configuration parameters on page 122)

No

W_GETSS7_CCC wan_ccc_getss7_ioc
(see W_GETSS7_CCC — Get SS7 Clear Channel
Capability configuration parameters on page 125)

Yes,
wan_ccc_getss7_ioc
111

 ARTIC STREAMS Support WAN Driver Interface Reference
W_SETSS7 — Set SS7 configuration parameters

This management command is used to configure different ITU/ANSI SS7 attributes
of a line or channel. Configurable SS7 attributes are the following:

• SUERM counter threshold — T — defaults to 64

• Normal AERM counter threshold — Tin — defaults to 4

• Emergency AERM counter threshold — Tie — defaults to 1

• Number of good/erroneous SUs that needs to be received to decrement the
SUERM counter — D — defaults to 256

• Number of octets needed in Octet Counting Mode before the SU in Error
notification is generated — N — defaults to 16

The following structure is associated with this command:

typedef struct wan_ss7_info {
uint16 w_erm_type ;
uint16 w_suerm_cntr ;
uint16 w_aerm_cntr ;
uint16 w_ocm ;
uint16 w_thres_T ;
uint16 w_thres_Tin ;
uint16 w_thres_Tie ;
uint16 w_param_D ;
uint16 w_param_N ;
uint16 w_spare ;

} wan_ss7_info_t ;

struct wan_setss7_ioc {
uint8 w_type;
uint8 w_spare[3];
uint32 w_snid;
wan_ss7_info_t w_ss7;

};

Parameters

IOCTL_COMMAND

Input. The ioc_cmd field in struct iocblk should be W_SETSS7.

w_type Input. This is always WAN_SETSS7.

w_snid Input. The subnetwork identifier. See the description of the wan_snid
parameter on page 51.

w_ss7 Input. The structure describing the parameters to be set. The following
fields are defined for the structure:

w_erm_type, w_suerm_cntr, w_aerm_cntr, w_ocm

Output. These fields are used only by the W_GETSS7
command. They are not used by the W_SETSS7 command.
112 — W_SETSS7 — Set SS7 configuration parameters

Chapter 6: Signaling System Number 7 (SS7) (specific operations)
w_thresh_T

Input. Threshold for SUERM counter. The default depends
on how WAN_ACTSS7 was issued.

w_thresh_Tin

Input. Threshold for AERM counter in normal alignment.
The default value is 4.

w_thresh_Tie

Input. Threshold for AERM counter in emergency alignment.
The default value is 1.

w_param_D

Input. The D parameter of SUERM. The default depends on
how WAN_ACTSS7 was issued. To override the default
value, issue the command again.

w_param_N

Input. The N parameter used when determining the SU error
notification. When in Octet Counting Mode, the SU in error
notification to ERM is generated every N octets. The default
value is 16.

Error codes

0 The command was successfully processed. The IOCTL is acknowledged
with M_IOCACK in the reverse direction. In case of an error, an
M_IOCNAK message is sent upstream with the appropriate error code.

ENODEV Either the SNID cannot be found among the SNIDs, or the SNID format
cannot be deciphered.

EINVAL The message size does not match.

ENXIO A severe hardware error has occurred. Run diagnostics to find out more
about the type of failure. A card reset may remove the problem.

EACCES SS7 has not been activated on the line or channel.

EIO Command issued while in data transfer state.

Issued with Default
W_SS7_START 64
W_JSS7_START 285

Issued with Description and Default
W_SS7_START Specifies the number of good or erroneous

SUs that need to be received to decrement
the SUERM counter. The default is 256.

W_JSS7_START Specifies the number to be added to the
SUERM counter when an erroneous SU is
received. The default is 16.
W_SETSS7 — Set SS7 configuration parameters — 113

 ARTIC STREAMS Support WAN Driver Interface Reference
The message flow is shown in Figure 6-4.

Figure 6-4. Message flow for W_SETSS7

Upper Level WAN Driver

M_IOCTL + M_DATA
iocblk(W_SETSS7) wan_setss7_ioc

M_IOCACK + M_DATA
iocblk(W_SETSS7) wan_setss7_ioc

OR
M_IOCNAK
iocblk(W_SETSS7)
114 — W_SETSS7 — Set SS7 configuration parameters

Chapter 6: Signaling System Number 7 (SS7) (specific operations)
W_GETSS7 — Get SS7 configuration parameters

This management command is used to obtain the different ITU-T/ANSI SS7
attributes of a logical channel. In addition to the attributes listed in W_SETSS7 —
Set SS7 configuration parameters on page 112, this command also obtains the
following:

• Type of ERM

• Values of SUERM and AERM counters

• Octet Counting Mode status

The following structure is associated with this command:

struct wan_getss7_ioc {
uint8 w_type;
uint8 w_spare[3];
uint32 w_snid;
wan_ss7_info_t w_ss7;

};

Parameters

IOCTL_COMMAND

Input. The ioc_cmd field in struct iocblk should be W_GETSS7.

w_type Input. This is always WAN_INFOSS7.

w_snid Input. The subnetwork identifier. See the description of the wan_snid
parameter on page 51.

w_ss7 Output. The structure describing the attributes of the SS7 line or channel.
Certain members of this structure are the same as the one described in
W_SETSS7 — Set SS7 configuration parameters on page 112. Additional
structure members are described here.

w_erm_type

Output. The type of ERM currently in operation on the
signalling link. This can be either:

• SU_ERM

• A_NORM

• A_EMERG

• NO_ERM_RUNNING

w_suerm_cntr

Output. Value of SUERM counter.

w_aerm_cntr

Output. Value of AERM counter.

w_ocm

Output. Status of Octet Counting Mode: OCM_ACTIVE (for
active) and OCM_INACTIVE (for inactive).
W_GETSS7 — Get SS7 configuration parameters — 115

 ARTIC STREAMS Support WAN Driver Interface Reference
Error codes

0 The command was successfully processed. The IOCTL is acknowledged
with M_IOCACK in the reverse direction. In case of an error, an
M_IOCNAK message is sent upstream with the appropriate error code.

ENODEV Either the SNID cannot be found among the SNIDs or the SNID format
cannot be deciphered.

EINVAL The message size does not match.

ENXIO A severe hardware error has occurred. Run diagnostics to find out more
about the type of failure. A card reset may remove the problem.

EACCES SS7 has not been activated on the line or channel.

Figure 6-5. Message flow for W_GETSS7

Upper Level WAN Driver

M_IOCTL + M_DATA
iocblk(W_GETSS7) wan_getss7_ioc

M_IOCACK + M_DATA
iocblk(W_GETSS7) wan_getss7_ioc

OR
M_IOCNAK
iocblk(W_GETSS7)
116 — W_GETSS7 — Get SS7 configuration parameters

Chapter 6: Signaling System Number 7 (SS7) (specific operations)
W_SETSS7_JPN — Set TTC SS7 configuration parameters

This management command is used to configure different TTC SS7 attributes of a
line or channel. Configurable SS7 attributes are the following:

• SUERM counter threshold — T — defaults to 285

• Emergency AERM counter threshold — Tie — defaults to 1

• Number of good/erroneous SUs that needs to be received to decrement the
SUERM counter — D — defaults to 256

• Number of octets needed in Octet Counting Mode before the SU in Error
notification is generated — N — defaults to 16

The following structure is associated with this command:

typedef struct wan_jpn_ss7_info

{
uint32 w_param_Ts ;
uint32 w_param_Ps ;
uint32 w_param_To ;
uint32 w_param_Ta ;
uint32 w_param_Tf ;
uint32 w_param_Te ;
uint32 w_OCM_flag ;

} wan_jpn_ss7_info_t ;

struct wan_jpn_setss7_ioc

{
uint8 w_type ;
uint8 w_spare[3] ;
uint32 w_snid ;
wan_jpn_ss7_info_t w_jpn_ss7 ;

};

Parameters

IOCTL_COMMAND

Input. The ioc_cmd field in struct iocblk should be W_SETSS7_JPN.

w_type Input. This is always WAN_SETSS7_JPN.

w_snid Input. The subnetwork identifier. See the description of the wan_snid
parameter on page 51.
W_SETSS7_JPN — Set TTC SS7 configuration parameters — 117

 ARTIC STREAMS Support WAN Driver Interface Reference
w_jpn_ss7

Input. The structure describing the parameters to be set. The following
fields are defined for the structure:

w_param_Ts

Input. This sets the time interval between transmission of an
SIOS (Status Indicator Out of Service), which is a type of
LSSU with Status Field set to 0x03. Idle flags (0x7e) are
transmitted in between these SIOSs.

w_param_Ps

Input. This defines the maximum period that SIOSs are
transmitted.

w_param_To

Input. This sets the time interval between transmission of an
SIO (Service Information Out of Alignment), which is a type
of LSSU with Status Field set to 0x00. Idle flags (0x7e) are
transmitted in between these SIOs.

w_param_Ta

Input. This sets the time interval between transmission of an
SIE (Status Indicator Emergency), which is a type of LSSU
with Status Field set to 0x02. Idle flags (0x7e) are transmitted
in between these SIEs.

w_param_Tf

Input. This sets the time interval between transmission of an
FISU. Idle flags (0x7e) are transmitted in between these
FISUs.

Default Range Precision
24 milliseconds 20–100 milliseconds 1 millisecond

Default Range Precision
3 milliseconds 1–100000 seconds 100 milliseconds

Default Range Precision
24 milliseconds 20–100 milliseconds 1 millisecond

Default Range Precision
24 milliseconds 20–100 milliseconds 1 millisecond

Default Range Precision
24 milliseconds 20–100 milliseconds 1 millisecond
118 — W_SETSS7_JPN — Set TTC SS7 configuration parameters

Chapter 6: Signaling System Number 7 (SS7) (specific operations)
w_param_Te

Input. This sets the time interval for checking the ERMs. A
value of 0 (zero) indicates that the timer is not to be used.

w_OCM_flag

Input.

0 Indicates normal OCM operation, where SU in error
indications are generated upon receipt of every 16
octets (once OCM is triggered) until a good SU is
received. This is the default.

1 Indicates that SU in error indications are not
generated upon receipt of every 16 octets (once OCM
is triggered).

Error codes

0 The command was successfully processed. The IOCTL is acknowledged
with M_IOCACK in the reverse direction. In case of an error, an
M_IOCNAK message is sent upstream with the appropriate error code.

ENODEV Either the SNID cannot be found among the SNIDs, or the SNID format
cannot be deciphered.

EINVAL The message size does not match.

ENXIO A severe hardware error has occurred. Run diagnostics to find out more
about the type of failure. A card reset may remove the problem.

EACCES SS7 has not been activated on the line or channel.

EIO Command issued while in data transfer state.

 The message flow is shown in Figure 6-6.

Default Range Precision
24 milliseconds 20–100 milliseconds

0–Do not use timer.

1 millisecond

Upper Level WAN Driver

M_IOCTL + M_DATA

M_IOCNAK

iocblk(W_SETSS7_JPN) wan_jpn_setss7_ioc

M_IOCACK

iocblk(W_SETSS7_JPN) wan_jpn_setss7_ioc

or

Figure 6-6. Message flow for W_SETSS7_JPN
W_SETSS7_JPN — Set TTC SS7 configuration parameters — 119

 ARTIC STREAMS Support WAN Driver Interface Reference
W_GETSS7_JPN — Get TTC SS7 configuration parameters

This management command is used to obtain the current settings of the TTC SS7-
specific configuration parameters from the WAN driver.

The following structure is associated with this command:

struct wan_jpn_getss7_ioc

{
uint8 w_type;
uint8 w_spare[3];
uint32 w_snid;
wan_jpn_ss7_info_t w_jpn_ss7;

};

See W_SETSS7_JPN — Set TTC SS7 configuration parameters on page 117 for a
description of the wan_jpn_ss7_info_t structure.

Parameters

IOCTL_COMMAND

Input. The ioc_cmd field in struct iocblk should be W_GETSS7_JPN.

w_type Input. This is always WAN_GETSS7_JPN.

w_snid Input. The subnetwork identifier. See the description of the wan_snid
parameter on page 51.

w_jpn_ss7

Output. The structure describing the attributes of the TTC SS7 line or
channel. See W_SETSS7_JPN — Set TTC SS7 configuration
parameters on page 117 for a description of this structure. The current
settings are returned.

Error codes

0 The command was successfully processed. The IOCTL is acknowledged
with M_IOCACK in the reverse direction. In case of an error, an
M_IOCNAK message is sent upstream with the appropriate error code.

ENODEV Either the SNID cannot be found among the SNIDs or the SNID format
cannot be deciphered.

EINVAL The message size does not match.

ENXIO A severe hardware error has occurred. Run diagnostics to find out more
about the type of failure. A card reset may remove the problem.

EACCES SS7 has not been activated on the line or channel.

EIO Command issued while in data transfer state.
120 — W_GETSS7_JPN — Get TTC SS7 configuration parameters

Chapter 6: Signaling System Number 7 (SS7) (specific operations)
The message flow is shown in Figure 6-7.

Upper Level WAN Driver

M_IOCTL + M_DATA

M_IOCNAK

iocblk(W_GETSS7_JPN) wan_jpn_getss7_ioc

M_IOCACK

iocblk(W_GETSS7_JPN) wan_jpn_getss7_ioc

or

Figure 6-7. Message flow for W_GETSS7_JPN
W_GETSS7_JPN — Get TTC SS7 configuration parameters — 121

 ARTIC STREAMS Support WAN Driver Interface Reference
W_SETSS7_CCC — Set SS7 Clear Channel Capability configuration
parameters

This management command is used to configure different ITU/ANSI SS7 attributes
of a line or channel for Clear Channel Capability mode. Configurable SS7 attributes
are the following:

• Normal AERM counter threshold — Tin — defaults to 4

• Emergency AERM counter threshold — Tie — defaults to 1

• Number of octets needed in Octet Counting Mode before the SU in Error
notification is generated — N — defaults to 16

• EIM counter threshold — Te

• EIM upcount — Ue

• EIM downcount — De

• EIM monitoring interval — T8

The following structure is associated with this command:

typedef struct wan_ccc_ss7_info {
uint32 w_eim_cntr ;
uint32 w_ccc_Te ;
uint32 w_ccc_U3 ;
uint32 w_ccc_De ;
uint32 w_ccc_T8 ;
uint16 w_ccc_esnf ;
uint16 w_ocm_enable ;
uint16 w_erm_type ;
uint16 w_aerm_cntr ;
uint16 w_ocm ;
uint16 w_thres_Tin ;
uint16 w_thres_Tie ;
uint16 w_param_N ;

} wan_ccc_ss7_info_t ;

struct wan_ccc_setss7_ioc {
uint8 w_type;
uint8 w_spare[3];
uint32 w_snid;
wan_ccc_ss7_info_t w_ss7;

};

Parameters

IOCTL_COMMAND

Input. The ioc_cmd field in struct iocblk should be W_SETSS7_CCC.

w_type Input. This is always WAN_SETSS7_CCC.

w_snid Input. The subnetwork identifier. See the description of the wan_snid
parameter on page 51.

To ensure this command is supported on your adapter, contact your RadiSys
representative.
122 — W_SETSS7_CCC — Set SS7 Clear Channel Capability configuration parameters

Chapter 6: Signaling System Number 7 (SS7) (specific operations)
w_ss7 Input. The structure describing the parameters to be set. The following
fields are defined for the structure:

w_eim_cntr

Output. This field is used only by the W_GETSSU_CCC
command. It is not used by the W_SETSS7_CCC command.

w_ccc_Te Input. Number of intervals where signal units have been
received in error that will cause an error rate high indication
to level 3. The default is as follows:

w_ccc_U3 Input. Constant for incrementing the EIM counter. :

w_ccc_De Input. Constant for decrementing the EIM counter.:

w_ccc_T8 Input. Timer interval (in milliseconds) for monitoring errors.:

w_ccc_esnf

Input. Specifies whether extended sequence number format is
used. This can be either:

W_ESNF_YES
Extended sequence number format is used.

W_ESNF_NO
Extended sequence number format is not used.
(Default)

w_ocm_enable

Input. Specifies whether OCM logic is enabled.

W_OCM_ENABLED
Enables OCM logic and applies it to AERM only.
(Default)

W_OCM_DISABLED
Disables OCM logic.

Default for T1 mode
(1.5 MBit/s)

Default for E1 mode
(2.0 MBit/s)

577169 793544

Default for T1 mode
(1.5 MBit/s)

Default for E1 mode
(2.0 MBit/s)

144292 198384

Default for T1 mode
(1.5 MBit/s)

Default for E1 mode
(2.0 MBit/s)

930 11328

Default for T1 mode
(1.5 MBit/s)

Default for E1 mode
(2.0 MBit/s)

100 ms 100 ms
W_SETSS7_CCC — Set SS7 Clear Channel Capability configuration parameters — 123

 ARTIC STREAMS Support WAN Driver Interface Reference
w_erm_type, w_aerm_cntr, w_ocm

Output. These fields are used only by the W_GETSS7_CCC
command. They are not used by the W_SETSS7_CCC
command.

w_thresh_Tin

Input. Threshold for AERM counter in normal alignment.
The default value is 4.

w_thresh_Tie

Input. Threshold for AERM counter in emergency alignment.
The default value is 1.

w_param_N

Input. The N parameter used when determining the SU error
notification. When in Octet Counting Mode, the SU in error
notification to ERM is generated every N octets. The default
value is 16.

Error codes

0 The command was successfully processed. The IOCTL is acknowledged
with M_IOCACK in the reverse direction. In case of an error, an
M_IOCNAK message is sent upstream with the appropriate error code.

ENODEV Either the SNID cannot be found among the SNIDs, or the SNID format
cannot be deciphered.

EINVAL The message size does not match.

ENXIO A severe hardware error has occurred. Run diagnostics to find out more
about the type of failure. A card reset may remove the problem.

EACCES SS7 has not been activated on the line or channel.

EIO Command issued while in data transfer state.

The message flow is shown in Figure 6-8.

Figure 6-8. Message flow for W_SETSS7_CCC

Upper Level WAN Driver

M_IOCTL + M_DATA
iocblk(W_SETSS7_CCC) wan_ccc_setss7_ioc

M_IOCACK + M_DATA
iocblk(W_SETSS7_CCC) wan_ccc_setss7_ioc

OR
M_IOCNAK
iocblk(W_SETSS7_CCC)
124 — W_SETSS7_CCC — Set SS7 Clear Channel Capability configuration parameters

Chapter 6: Signaling System Number 7 (SS7) (specific operations)
W_GETSS7_CCC — Get SS7 Clear Channel Capability configuration
parameters

This management command is used to obtain the different ITU-T/ANSI SS7
attributes of a logical channel for Clear Channel Capability mode. In addition to the
attributes listed in W_SETSS7_CCC — Set SS7 Clear Channel Capability
configuration parameters on page 122, this command also obtains the following:

• Type of ERM

• Values of EIM and AERM counters

• Octet Counting Mode status

The following structure is associated with this command:

struct wan_getss7_ccc_ioc {
uint8 w_type;
uint8 w_spare[3];
uint32 w_snid;
wan_ss7_info_t w_ss7;

};

Parameters

IOCTL_COMMAND

Input. The ioc_cmd field in struct iocblk should be W_GETSS7_CCC.

w_type Input. This is always WAN_INFOSS7_CCC.

w_snid Input. The subnetwork identifier. See the description of the wan_snid
parameter on page 51.

w_ss7 Output. The structure describing the attributes of the SS7 line or channel.
Certain members of this structure are the same as the one described in
W_SETSS7_CCC — Set SS7 Clear Channel Capability configuration
parameters on page 122. Additional structure members are described
here.

w_erm_type

Output. The type of ERM currently in operation on the
signalling link. This can be either:

• SU_ERM

• A_NORM

• A_EMERG

• NO_ERM_RUNNING

To ensure this command is supported on your adapter, contact your RadiSys
representative.
W_GETSS7_CCC — Get SS7 Clear Channel Capability configuration parameters — 125

 ARTIC STREAMS Support WAN Driver Interface Reference
w_eim_cntr

Output. Value of EIM counter.

w_aerm_cntr

Output. Value of AERM counter.

w_ocm Output. Status of Octet Counting Mode. This can be either:

• OCM_ACTIVE (for active)

• OCM_INACTIVE (for inactive).

Error codes

0 The command was successfully processed. The IOCTL is acknowledged
with M_IOCACK in the reverse direction. In case of an error, an
M_IOCNAK message is sent upstream with the appropriate error code.

ENODEV Either the SNID cannot be found among the SNIDs or the SNID format
cannot be deciphered.

EINVAL The message size does not match.

ENXIO A severe hardware error has occurred. Run diagnostics to find out more
about the type of failure. A card reset may remove the problem.

EACCES SS7 has not been activated on the line or channel.

The message flow is shown in Figure 6-9.

Figure 6-9. Message flow for W_GETSS7_CCC

Upper Level WAN Driver

M_IOCTL + M_DATA
iocblk(W_GETSS7_CCC) wan_ccc_getss7_ioc

M_IOCACK + M_DATA
iocblk(W_GETSS7_CCC) wan_ccc_getss7_ioc

OR
M_IOCNAK
iocblk(W_GETSS7_CCC)
126 — W_GETSS7_CCC — Get SS7 Clear Channel Capability configuration parameters

7 T1/E1 interface
(specific operations) Chapter 7

This chapter provides information related to operations specific to the T1/E1
interface (multiplexed mode). Complete T1/E1 control implies the creation of new
STREAMS service messages and management commands for the Multiplex WAN
driver. The format of these new messages and commands is based on the existing
ones. In this chapter, port, physical port, or digital interface refers to a T1/E1 port.

Table 7-1. STREAMS service message and management commands for the T1/E1 interface

Message Use Page
Type: Service Message (M_PROTO) — Direction: up on all streams

WAN_NOTIFDI To inform the upper level of T1/E1 events from a particular port 129
WAN_NOTIFTIM To send a timestamped notification 134

Type: Management Command (M_IOCTL) — Direction: down on any opened stream
W_DI_TEST_CFG To set up the hardware to generate certain test conditions, such as

alarm simulation on a physical port
137

W_SET_PHY_PIPE To define and undefine the time slots associated with a physical data
pipe

140

W_GET_PHY_PIPE To obtain time slot information associated with a physical data pipe 144
W_SETCH_MAP To connect channels 146
W_GETCH_MAP To obtain the current mapping of channels 156
W_SETDI To set the attributes common to all digital interfaces 158
W_GETDI To get the attributes common to all digital interfaces 164
W_SETDI_PORT To set the attributes of one of the physical ports 165
W_GETDI_PORT To get the attributes of a physical port 174
W_GETDI_STATS To obtain the statistics from a physical port 176
W_ZERODI_STATS To clear the statistics of a physical port 178
W_SETDI_LPBK To place a port in loopback mode 179
W_SETDI_NOTIF To enable/disable the notifications for T1/E1 events and alarms from a

particular port
181

W_SET_TIMESTAMP To set the current value of the timestamp 183
127

 ARTIC STREAMS Support WAN Driver Interface Reference
Identifying the T1/E1 components
Access to the T1/E1 components can be done at three levels:

• Global level — where all ports and channels are concerned. No identifier
needed.

• Port level — to access the parameters/statistics of a single port. The port
identifier is from 1 to 4.

• Channel level — to access one of the channels on a port. Channel numbers in
this document are one-based, whereas time slots in various ITU-T publications
are zero-based. Channel number 1 for T1 refers to time slot 0 and so on,
whereas channel number 2 for E1 refers to time slot 1. (Time slot 0 for E1 is
reserved for alignment, and so forth.)

– For a T1 port, channels are from 1 to 24

– For an E1 port, channels are from 2 to 32

To prevent duplication of messages, a group of DI (Digital Interface) messages are
created that apply to both T1 and E1 carrier types.

STREAMS service messages for T1/E1

Message Structure in M_PROTO M_DATA? Direction
WAN_NOTIFDI wan_notifdi

(see WAN_NOTIFDI — Inform upper level of T1/E1
events on page 129)

No From
WAN
driver

WAN_NOTIFTIM wan_notiftim
(see WAN_NOTIFTIM — Send a timestamped
notification on page 134)

No From
WAN
driver
128

Chapter 7: T1/E1 interface (specific operations)
WAN_NOTIFDI — Inform upper level of T1/E1 events

This service message informs the upper level of events related to one of the digital
interfaces. A message will be generated for each condition as it appears and
disappears. The WAN driver will send the message on:

• All streams associated with the port; that is, all streams that received a
WAN_SID command with the same port ID.

• All streams that have no association with a port; that is, all streams that did not
receive a WAN_SID command (also called a management stream.

The following events are physical-port-specific, and the wan_port_id field is set to
the physical port ID that is generating these events:

• W_DI_FAR_RAI

• W_DI_FAR_AIS

• W_DI_LOS

• W_DI_CLK_CHANGED

• W_DI_TX_SHORT

• W_DI_TX_OPEN

• W_DI_FAR_LMFA

• W_DI_FAR_LFA

• W_DI_SLN

• W_DI_SLP

For all other events, the wan_port_id field is set to GLOBAL_PORT.

The W_SETDI_NOTIF command uses a similar method to enable notification.

The following structure is associated with this M_PROTO message:

struct wan_notifdi {
uint8 wan_type;
uint8 wan_spare[3];
uint32 wan_port_id;
uint32 wan_event;
uint32 wan_other_event;
uint32 wan_status;
uint32 wan_curr_clk_src ;

};

Parameters

wan_type This is set to WAN_NOTIFDI.

wan_port_id

The number of the port (from 1 to 4) where the event occurred.
WAN_NOTIFDI — Inform upper level of T1/E1 events — 129

 ARTIC STREAMS Support WAN Driver Interface Reference
wan_event

This indicates the events being reported. This is a bit-wise OR of the
following values:

W_DI_FAR_RAI

Far-end alarm (yellow alarm for T1 and distant alarm for E1)

W_DI_FAR_AIS

Alarm Indication Signal (AIS) failure.

W_DI_LOS Failure of Loss of Signal (LOS).

W_DI_CLK_CHANGED

The current clock source has failed, and the new source is the
one defined in the wan_curr_clk_src field. This notification is
issued for the port that loses the clock, as well as for the one
that becomes the current master.

W_DI_TX_SHORT

For ternary-line interface. Indicates a short on transmit lines.

W_DI_TX_OPEN

Indicates an open on transmit lines.

W_DI_FAR_LMFA

Loss of multiframe alignment. This is applicable in:

• E1 mode, when a multiframe format is chosen, or

• T1 mode, when super-frame format is chosen.

W_DI_FAR_LFA

Loss of frame alignment.

W_DI_SLN Negative slip. The frequency of the receive route clock is
greater than the provided one. A frame will be skipped.

W_DI_SLP Positive slip. The frequency of the receive route clock is less
than the one provided. A frame will be repeated.

W_DI_XSLP Transmit slip. This event is reported when the
communications chip detects a wandering in the clocks. This
would occur when the source of the clock is changed (due to
LOS or programming a different source). This event will
occur in T1 mode.
130 — WAN_NOTIFDI — Inform upper level of T1/E1 events

Chapter 7: T1/E1 interface (specific operations)
WAN_OTHER This bit is set when any of the global events are set. When this
bit is used in the w_event field of W_SETDI_NOTIF or in the
WAN_event_disc field of W_SETTUNE, it either enables or
disables all global events. If one needs to selectively access
global events, this bit should be off. See the following
wan_other_event field for details.

wan_other_event

These are global events associated with GLOBAL_PORT, and are
reported when the WAN_OTHER bit is set in the wan_event field. This
is a bit-wise OR of the following values:

W_DI_CABLE_MISMATCH

Cable mismatch on this port (unknown or a mismatch). The
WAN driver will check the cable type every second to
determine if the problem is corrected.

W_DI_DSP_ERROR

Unexpected interrupt or return codes were received from the
DSP microcode. The WAN driver may or may not recover
from this event.

W_DI_SCBUS_MASTER

Reported when the card gains or loses the mastership of the
SC bus. For compatibility with the previous version of header
files, this bit is equated to W_DI_SCBUS_CLK_FAIL. For a
discussion about SC-bus mastership and how a failure of the
SC-bus clock affects it, see W_SETDI — Set attributes
common to all digital interfaces on page 158.

W_DI_NET_ERROR

This bit is set when the network switch detects a clocking
error while it was master on the SC bus. This may be a result
of two masters on the bus. This event does not cause the data
streams to get WC_DISC.

W_DI_NET_CLOCK

This bit is set when the network switch detects a long clock
failure (more than four SC-bus clock periods). Normally, if an
Armed Master is on the bus and the clock fails, the Armed
Master should take over within four SC-bus clock periods,
and none of the switches on the SC bus should detect the
failure. This event does not cause the data streams to get
WC_DISC.
WAN_NOTIFDI — Inform upper level of T1/E1 events — 131

 ARTIC STREAMS Support WAN Driver Interface Reference
W_DI_NET_CONFLICT

This bit is set when the network switch detects that one of its
channels is transmitting to an SC-bus time slot while some
other switch on the bus also is actively transmitting to the
same time slot. The WAN driver immediately disconnects all
channels from that SC-bus wire until the condition goes
away. It then will try to reconnect all of the channels. If the
user application takes no corrective action, the result could be
many repeated notifications. This event does not cause the
data streams to get WC_DISC.

The WAN driver prevents such a conflict from occurring for
all channel assignments (for both network and processing
switches).

W_DI_DATA_CLOCK

A loss of clock was detected on the processing switch.
Comments similar to those for W_DI_NET_CLOCK apply.
However, if this event is enabled in the WAN_event_disc field
of W_SETTUNE, it will cause a WC_DISC for those streams,
just as with other port-dependent events.

W_DI_DATA_CONFLICT

A conflict was detected on the processing switch. Comments
similar to those for W_DI_NET_CONFLICT apply. Also,
this event can cause a WC_DISC, if enabled.

wan_status

The status of the event. The allowed values are:

WAN_EVT_DETECTED

The following events or alarms have just been detected.

WAN_EVT_RELEASED

These events/alarms have gone away. For events W_DI_SLN
and W_DI_SLP, a WAN_EVT_ RELEASED is not generated.

wan_curr_clk_src

This field always reflects the current source of the clock. Possible values
are listed in the w_master_clk field of the W_SETDI command. See
W_SETDI — Set attributes common to all digital interfaces on page 158
for more details.

• Multiple messages might be generated if some events go away and some get
detected together. All detected events would be put together and all
going-away events would be put together.

• For events W_DI_TX_OPEN, W_DI_FAR_AIS, and W_DI_FAR_LMFA, a
WAN_EVT_RELEASED is generated on a polled basis; that is, within a
second after the event has gone away.
132 — WAN_NOTIFDI — Inform upper level of T1/E1 events

Chapter 7: T1/E1 interface (specific operations)
Figure 7-1. Message flow for W_NOTIFDI

Upper Level WAN Driver

M_PROTO
wan_notifdi
WAN_NOTIFDI — Inform upper level of T1/E1 events — 133

 ARTIC STREAMS Support WAN Driver Interface Reference
WAN_NOTIFTIM — Send a timestamped notification

This message type informs the upper level of events in relation to the timestamp. It
is used only when the Multiplexed WAN driver is running in monitor mode. See the
command-line parameter W_MONITOR_MODE on page 239 for information.

Reported events are as follows:

• WAN_TICK_EVENT

This event is sent on all active data streams to indicate that the timestamp has
crossed a 100 ms boundary. Frames sent after the tick event will have a
timestamp greater than, but not equal to, that of the tick event.

• WAN_NOTIFDI

This event is sent on the management stream to inform the upper level of events
related to one of the digital interfaces.

• WAN_NOTIF_ATM

This event is sent on the management stream to inform the upper level of events
related to the ATM cell stream.

The following structure is associated with this M_PROTO message:

typedef union {
struct wan_notifdi di;
struct wan_notif_atm atm;

} tim_event;
struct wan_notiftim {

uint8 wan_type;
uint8 wan_spare[3];
uint32 wan_event;
UINT64 wan_timestamp;
tim_event wan_notif;

};

Parameters

wan_type Output. This is always WAN_NOTIFTIM.

wan_event Output. This indicates the event being reported, and will have one of the
following values:

WAN_TICK_EVENT
A tick event is generated when the timestamp has crossed a
100 ms boundary.

WAN_NOTIFDI
Events related to one of the digital interfaces have occurred.
Information about these events is in the structure
wan_notifdi di field.

WAN_NOTIF_ATM
Events related to the ATM cell stream status have occurred.
Information about these events is in the structure
wan_notif_atm atm field.
134 — WAN_NOTIFTIM — Send a timestamped notification

Chapter 7: T1/E1 interface (specific operations)
wan_timestamp

Output. This is the timestamp value in milliseconds.

wan_notif Output. This is the notification information. For definitions of the
associated structures, see:

• WAN_NOTIFDI on page 127

• WAN_NOTIF_ATM on page 185.

This message is supported by the Multiplexed WAN driver only when using
monitor mode. See W_MONITOR_MODE on page 239 for information.
This message is not currently supported by the Serial WAN driver.

Figure 7-2. Message flow for WAN_NOTIFTIM

Upper Level WAN Driver

M_PROTO
WAN_NOTIFTIM
WAN_NOTIFTIM — Send a timestamped notification — 135

 ARTIC STREAMS Support WAN Driver Interface Reference
STREAMS management commands for T1/E1

ioc_cmd value of
iocblk structure in
M_IOCTL

Structure in M_DATA after M_IOCTL
M_DATA

with
M_IOCACK?

W_DI_TEST_CFG wan_ditestcfg_ioc
(see W_DI_TEST_CFG — Set test configuration for a physical
port on page 137)

Yes

W_SET_PHY_PIPE wan_setphypipe_ioc
(see W_SET_PHY_PIPE — Define and undefine time slots on
page 140)

Yes

W_GET_PHY_PIPE wan_getphypipe_ioc
(see W_GET_PHY_PIPE — Retrieve time-slot information on
page 144)

Yes

W_SETCH_MAP wan_setchmap_ioc
(see W_SETCH_MAP — Set up channel map table on
page 146)

Yes

W_GETCH_MAP wan_getchmap_ioc
(see W_GETCH_MAP — Get channel map table settings on
page 156)

Yes

W_SETDI wan_setdi_ioc
(see W_SETDI — Set attributes common to all digital
interfaces on page 158)

No

W_GETDI wan_getdi_ioc
(see W_GETDI — Get attributes common to all digital
interfaces on page 164)

Yes

W_SETDI_PORT wan_setdiprt_ioc
(see W_SETDI_PORT — Set attributes of a physical port on
page 165)

No

W_GETDI_PORT wan_getdiprt_ioc
(see W_GETDI_PORT — Get attributes of a physical port on
page 174)

Yes

W_GETDI_STATS wan_getdistats_ioc
(see W_GETDI_STATS — Get port statistics on page 176)

Yes

W_ZERODI_STATS wan_zerodistats_ioc
(see W_ZERODI_STATS — Clear port statistics on page 178)

No

W_SETDI_LPBK wan_setdilpbk_ioc
(see W_SETDI_LPBK — Put port in loopback on page 179)

No

W_SETDI_NOTIF wan_setdinotif_ioc
(see W_SETDI_NOTIF — Set event filter for a physical
port on page 181)

 No

W_SET_TIMESTAMP wan_time_ioc
(see W_SET_TIMESTAMP — Set timestamp on page 183)

Yes
136

Chapter 7: T1/E1 interface (specific operations)
W_DI_TEST_CFG — Set test configuration for a physical port

This command is useful in a test and development environment so that you can
verify various programming paths. This command relies on the hardware chips to
generate test conditions. Refer to Siemens PEB2254 data sheets for detailed
information on alarm simulation. PEB2254 registers that provide this support are as
follows:

• Framer Mode Register 0 (SIM bit)

• Framer Receive Status Register 2 (ESC2-ESC0 bits)

For T1, the simulation is carried out in eight steps. It is the upper layer’s
responsibility to set up the appropriate simulation step. Once the test is complete, it
should bring the hardware back to step zero and then turn simulation off.

For E1, the simulation is done in one step only.

Additionally, in ATM mode, this command can be used to generate ATM cells with
HEC errors.

The following structure is associated with this command:

typedef union_test_data {
uint32 w_esc;
struct test_atm_data {
uint8 parm0;
uint8 parm1;
uint16 parm2;
} test;

} test_data;
struct wan_ditestcfg_ioc {

uint8 w_type;
uint8 w_spare[3];
uint32 w_port_id;
uint32 w_action;
test_data w_test_data;

};

#define w_esc w_test_data.w_esc

Parameters

IOCTL_COMMAND

Input. The ioc_cmd field in struct iocblk should be W_DI_TEST_CFG.

w_type Input. This is set to WAN_DI_TEST_CFG.

w_port_id

Input. For ATM HEC testing, this specifies the pipe over which ATM cell
traffic is taking place and on which this test will be carried out.
Otherwise, this specifies the port number, a value between 1 and 4
(inclusive), on which the test is to be carried out.
W_DI_TEST_CFG — Set test configuration for a physical port — 137

 ARTIC STREAMS Support WAN Driver Interface Reference
w_action Input. A bit-wise OR field indicating parameters to set and tests that are
to be run. The bits are as follows:

T1/E1 Alarm Simulation Testing

WAN_START_ALARM_SIM

To start alarm simulation and move to the next alarm-
simulation step. Every time this command is issued, the
simulation step is bumped to the next step.

WAN_STOP_ALARM_SIM

To end alarm simulation.

ATM HEC Testing

W_SET_NUM_BAD_HEC

When this bit is set, the w_parm0 field specifies the number
of consecutive ATM cells with bad HECs (Header Error
Checksums) that are to be generated. The default is zero.

W_SET_NUM_GOOD_HEC

When this bit is set, the w_parm1 field specifies the number
of consecutive ATM cells with good HECs that are to be
generated. The default is zero.

W_START_HEC_TEST

When this bit is set, the ATM framer enters error generation
mode. When in this mode, the ATM framer transmits ATM
cells according to the parameters set by
W_SET_NUM_BAD_HEC and
W_SET_NUM_GOOD_HEC, where cells with bad HECs are
transmitted first (the number of such cells are defined by
w_parm0) followed by cells with good HECs (the number of
such cells are defined by w_parm1).

This pattern is repeated n times, where n is defined by the
w_parm2 field. If n is set to zero, this pattern will be repeated
indefinitely, until this command is issued with
W_STOP_HEC_TEST.

W_STOP_HEC_TEST

When this bit is set, it ends the test (error-generation mode)
and returns to normal operation, only if the test is in progress.

w_esc Output. For T1, Error Simulation Counter reflects the simulation step
number the hardware is in after issuing the command.

For E1, this value is not defined.
138 — W_DI_TEST_CFG — Set test configuration for a physical port

Chapter 7: T1/E1 interface (specific operations)
Error codes

0 The command was successfully processed. The IOCTL is acknowledged
with M_IOCACK in the reverse direction. In case of an error, an
M_IOCNAK message is sent upstream with the appropriate error code.

EINVAL Either there is an invalid option in w_action or the command size does
not match.

ERANGE The port number supplied is out of range for the current hardware.

ENXIO A severe hardware error has occurred. Run diagnostics to find out more
about the type of failure. A card reset may remove the problem.

• Currently this command is supported for T1 modes only. This command is
under study for E1 modes.

• Bits W_SET_NUM_BAD_HEC, W_SET_NUM_GOOD_HEC, and
W_START_HEC_TEST can be set at the same time, where parameters are
set and then the test starts.

• When bit W_STOP_HEC_TEST is set, no other bits should be set.
• When the test ends, parameters (iteration count, cells with good and bad

HECs) are reset to zero.

Figure 7-3. Message flow for W_DI_TEST_CFG

Upper Level WAN Driver

M_IOCTL + M_DATA
iocblk(W_DI_TEST_CFG) wan_ditestcfg_ioc

M_IOCACK + M_DATA
iocblk(W_DI_TEST_CFG) wan_ditestcfg_ioc

M_IOCNAK
iocblk(W_DI_TEST_CFG)

or
W_DI_TEST_CFG — Set test configuration for a physical port — 139

 ARTIC STREAMS Support WAN Driver Interface Reference
W_SET_PHY_PIPE — Define and undefine time slots

This management command is used for the following.

• Defining an ID for the physical stream

• Assigning time slots that make up the physical stream

• Configuring the physical stream for ATM, HDLC, or SS7

• Clear Channel Capability

When in ATM mode, this would be the first configuration command to be issued.
Time slots can be obtained from the physical ports or SC bus. Data from multiple
virtual channels can be carried over this physical stream by associating the identifier
of the cell stream with the SNID and VCC using the W_SET_SNID command.

The following structure is associated with this command:
typedef struct {

uint16 port_id;
uint16 chan_id;

} time_slot;

typedef struct phy_pipe {
uint32 w_phy_pipe_id;
uint32 w_num_of_time_slots;
time_slot w_rx_ts[32];
time_slot w_tx_ts[32];
uint32 w_disc_mask;
uint32 w_options;

} phy_pipe;

struct wan_set_phy_pipe_ioc {
uint8 w_type;
uint8 w_spare[3];
phy_pipe w_phy_pipe;

};
140 — W_SET_PHY_PIPE — Define and undefine time slots

Chapter 7: T1/E1 interface (specific operations)
Parameters

IOCTL_COMMAND

Input. The ioc_cmd field in struct iocblk should be W_SET_PHY_PIPE.

w_type Input. This should always be WAN_SET_PHY_PIPE.

w_phy_pipe

Input. The following fields are defined for the structure:

w_phy_pipe_id

Input/Output. This is a unique identifier associated with the
combination of the time slots defined by this command.

The WAN driver returns a unique identifier when time slots
are being defined for a physical pipe by the upper layer (that
is, the w_num_of_time slots field is nonzero).

This field is input when the w_num_of_time slots field is set
to zero by the upper layer, indicating that the upper layer
wants to undefine or free up the time slots associated with the
physical pipe.

w_num_of_time_slots

Input. This defines the total number of time slots that are to
be combined. Therefore, fill in the many entries of w_rx_ts
and w_tx_ts arrays starting from the first element of the
arrays. The Maximum value is 32 (decimal). If this value is set
to zero, it undefines or ungroups the time slots associated
with this physical pipe.

w_rx_ts, w_tx_ts

Input. This identifies the time slots from which data is to be
received and to which the data is to be transmitted. Data will
be combined in the order the time slots are specified. That is,
the time slot specified by array element 0 will be the first octet
of data, array element 1 will be the second octet of data, and
so on. See Figure 7-6 on page 147 and Figure 7-7 on page 149
for information on how the command defines the values for
port and channel numbers.
W_SET_PHY_PIPE — Define and undefine time slots — 141

 ARTIC STREAMS Support WAN Driver Interface Reference
w_disc_mask

Input. This is a bit-wise OR field, and the description of the
bits is the same as the wan_event field of the WAN_NOTIFDI
command. The default value is 0. This field applies only for
ATM.

This field plays a role when all channels that make up the pipe
are from the same physical port. In this case, and if one or
more of these bits are set, then when the appropriate event is
detected, the WAN driver will disable the ATM physical
layer. This will result in a WAN_NOTIF_ATM with
WAN_LOST_ATM_ CELL_ SYNCH. In addition, if the
WAN_event_disc field (bit WAN_CELL_SYNC) of the
W_SETTUNE command is set, WC_DISC will be generated
on appropriate data streams associated with this physical
pipe.

w_options

Input. This field consists of various options associated with
this pipe. This is a bit-wise OR field. The default for this field
is 0. The options are as follows:

W_BIT_INVERT

When enabled, this will perform 1’s complement
of the data before putting it on the line (transmit
direction), and 1’s complement of the data before
processing it (receive direction).

W_PIPE_MODE, W_ATM_MODE

The ATM physical layer will be selected when
either of these options are enabled.

W_HDLC_MODE

HDLC framing mode will be selected when this
option is enabled.

W_SS7_MODE

SS7 mode will be selected when this option is
enabled.

Error codes

0 The command was successfully processed. The IOCTL is acknowledged
with M_IOCACK. In case of an error, an M_IOCNAK message is sent
back with an appropriate error code.

EINVAL The message size does not match.

ENXIO A severe hardware error has occurred. Run diagnostics to find out more
about the type of failure. A card reset might remove the problem.

ERANGE One or more parameters do not contain the proper value.

ENOSR The specified configuration could not be set up because the underlying
resources are not available.
142 — W_SET_PHY_PIPE — Define and undefine time slots

Chapter 7: T1/E1 interface (specific operations)
ENODEV The specified w_phy_pipe_id does not exist.

EBUSY One or more virtual connections were open when an attempt was made
to ungroup the time slots associated with this physical pipe.

Other Errors
See the error codes listed under the EXDEV error for W_SETCH_MAP
— Set up channel map table on page 146.

• The order of the specified time slots is important and should match with the
other end.

• This command must be issued to obtain a pipe ID. Pipes are not created
by default.

• Either W_HDLC_MODE, W_PIPE_MODE, or W_ATM_MODE must be set
when using this command.

Figure 7-4. Message flow for W_SET_PHY_PIPE

Upper Level WAN Driver

iocblk(W_SET_PHY_PIPE)

M_IOCACK +
iocblk(W_SET_PHY_PIPE)

M_IOCNAK
iocblk(W_SET_PHY_PIPE)

or

wan_set_phy_pipe_ioc
+ M_DATAM_IOCTL

wan_set_phy_pipe_ioc
M_DATA
W_SET_PHY_PIPE — Define and undefine time slots — 143

 ARTIC STREAMS Support WAN Driver Interface Reference
W_GET_PHY_PIPE — Retrieve time-slot information

This management command is used to retrieve information associated with a
physical pipe that was previously set by the W_SET_PHY_PIPE command.

The following structure is associated with this command:

struct wan_get_phy_pipe_ioc {
uint8 w_type;
uint8 w_spare[3];
phy_pipe w_phy_pipe;

};

Parameters

IOCTL_COMMAND

The ioc_cmd field in struct iocblk should be W_GET_PHY_PIPE.

w_type Input. This should always be WAN_GET_PHY_PIPE.

w_phy_pipe

Only the w_phy_pipe_id field is input. The remaining structure fields are
output.

If this parameter is set to -1 and x_rx_ts[0] and w_tx_ts[0] are set to a
valid time slot of the pipe, then w_phy_pipe_id is returned with the valid
pipe ID.

See page 141 for a description of the fields for this structure.

Error codes

0 The command was successfully processed. The IOCTL is acknowledged
with M_IOCACK. In case of an error, an M_IOCNAK message is sent
back with the appropriate error code.

EINVAL The message size does not match.

ENXIO A severe hardware error has occurred. Run diagnostics to find out more
about the type of failure. A card reset might remove the problem.

ENODEV The physical pipe defined by the w_phy_pipe_id field is not defined.
144 — W_GET_PHY_PIPE — Retrieve time-slot information

Chapter 7: T1/E1 interface (specific operations)
Figure 7-5. Message flow for W_GET_PHY_PIPE

Upper Level WAN Driver

M_IOCTL + M_DATA

M_IOCNAK

 iocblk(W_GET_PHY_PIPE)

M_IOCACK + M_DATA

 iocblk(W_GET_PHY_PIPE)

or

iocblk(W_GET_PHY_PIPE)
W_GET_PHY_PIPE — Retrieve time-slot information — 145

 ARTIC STREAMS Support WAN Driver Interface Reference
W_SETCH_MAP — Set up channel map table

This command is used to configure how a particular channel is to be connected to
another channel. This command also can be used for breaking the connection
between channels. This is a fairly low-level command to implement various
configurations. It exposes to the upper layer, the switching capability of the
following:

• ARTIC960 4-Port T1/E1 Mezzanine Card (see Figure 7-6. Port assignments for
ARTIC960 4-Port T1/E1 Mezzanine Card on page 147)

• ARTIC 1000/2000 Series adapters (see Figure 7-7. Port assignments for ARTIC
4-Port T1/E1/J1 DSP PMC and ARTIC 1000/2000 Series on page 149).

ARTIC960 4-Port T1/E1 Mezzanine Card (for ARTIC960)

The following explains Figure 7-6. Port assignments for ARTIC960 4-Port T1/E1
Mezzanine Card on page 147.

• Network ports (0x01 to 0x08) carry a maximum of 32 full-duplex channels
numbered 1 through 0x20.

• Processing ports (0x80 to 0x8F) carry a maximum of 16 full-duplex channels
numbered 1 through 0x10, although the number of channels processed by the
processing ports is dependent on the DSP code and/or the application.

• The SC-bus ports (0x40–0x4F) can carry a maximum of 32 or 64 half-duplex
channels (1 to 0x20 or 1 to 0x40), depending on the SC-bus configuration.

• The P0 port is reserved and cannot be used in mapping.

• The port numbers P100 through P1FF are reserved for identifying the physical
pipes or channel groups formed using the W-SET_PHY_PIPE command. These
port numbers cannot be used in this command, but are used in W_SET_SNID to
configure a VCC on the pipe for ATM operation.

• The port number PFF is reserved for identifying global events in
W_SETDI_NOTIF and WAN_NOTIFDI. It also cannot be used in this
command.

When the physical channels are mapped to the SC-bus time slots, the w_xmt field
(see page 151) refers to transmission to the SC bus, which is actually the receive on
the physical port. For the internal and DSP channels, however, the sense of transmit
and receive is the same as the fields suggest.
146 — W_SETCH_MAP — Set up channel map table

Chapter 7: T1/E1 interface (specific operations)
Figure 7-6. Port assignments for ARTIC960 4-Port T1/E1 Mezzanine Card

SC
Bus

Network
Switch

Process
Switch

P1
P2
P3
P4

P5
P6
P7
P8

P80-8F

IC1-IC20

or
P40-4F

Port Number Assignments

Legend

P0 Reserved.
PFF Global port, for specifying and getting notifications on

the global events.
P1...P8 Network/Physical Ports connected to the card. P1–P4

for the ARTIC960 4-Port T1/E1 Mezzanine Card.
P80...P8F DSP/Processing Port where a channel can be

processed. P80 and P81 for the ARTIC960 4-Port
T1/E1 Mezzanine Card.

P100...P1FF The ports identifying the physical pipes configured
with W_SET_PHY_PIPE.

IC1...IC20 Internal channels 1–0x20.
P40...P4F Represents the 16 wires of the SC bus.
SC bus The 16-wire bus configured such that each wire

carries either 32 or 64 channels (Half-Duplex).
Network Switch The switch capable of switching any channel from Pi

(1–8) to any channel on the SC bus, or to another Pi.
Processor Switch The switch capable of switching any channel from Pi

(80–8f) or internal channels (IC1–IC20) to any
channel on the SC bus, or to another Pi or internal
channel.
W_SETCH_MAP — Set up channel map table — 147

 ARTIC STREAMS Support WAN Driver Interface Reference
ARTIC 4-Port T1/E1/J1 DSP PMC (for ARTIC 1000/2000 Series)

The following explains Figure 7-7. Port assignments for ARTIC 4-Port T1/E1/J1
DSP PMC and ARTIC 1000/2000 Series on page 149.

• The CT Switch (Computer Telephony Switch) of the ARTIC 1000 CompactPCI
I/O Platform adapter allows any internal channel of the DSP to be routed to any
channel within a network port (P1–P8) or any H.110-bus channel.

• Each of the network ports (0x01–0x8) can carry a maximum of 24 (for T1) or
30 (for E1) full-duplex channels numbered 1–0x1E for T1 or E1, respectively.
However, each PMC will support a total of 64 channels with PMC #1
supporting channels
1–0x40 and PMC #2 supporting channels 0x41–0x80.

• The H.100/H.110 bus has 32 serial ports (0x40–0x5F) that can be programmed
for three speeds in order to support 32, 64, or 128 half-duplex channels. The
number of connections to the H.100/H.110 bus is limited to 512 half-duplex
connections.

• The P0, PFF and P100–P1FF ports are treated as shown in Figure 7-7 on page
149.
148 — W_SETCH_MAP — Set up channel map table

Chapter 7: T1/E1 interface (specific operations)
Figure 7-7. Port assignments for ARTIC 4-Port T1/E1/J1 DSP PMC and ARTIC 1000/2000 Series

DSP Q-FALC

CT Switch
T8105

Q-FALCDSP

IC1:40

IC41:IC80
P5
P6
P7
P8

PMC1

PMC2

PMC1

PMC2

P1
P2
P3
P4

P40
P41

.

.

P5F
H.100/H.110-Bus

Legend

P0 Reserved.
PFF Global port, for specifying and getting notifications on

the global events
P1...P4
P5...P8

Network/Physical Ports connected to the first PMC
Network/Physical Ports connected to the second PMC

P100...P1FF Ports identifying the physical pipes configured with
W_SET_PHY_PIPE.

IC1...IC40
IC41...IC80

First PMC DSP channels 1–0x40
Second PMC DSP channels 0x41–0x80

P40...P5F Represents 32 wires of the H.100/H.110-bus.
H.100/H.110 bus The 32-wire bus configured so that each wire carries

either 32, 64, or 128 channels (half-duplex).
CT Switch The Computer Telephony Switch capable of routing

channels from Pi (1–8) to:
• any channel on the H.100/H.110 bus
• any DSP internal channel
• another Pi.
W_SETCH_MAP — Set up channel map table — 149

 ARTIC STREAMS Support WAN Driver Interface Reference
The following structure is associated with this command:

typedef union ch_type {
struct {

uint16 port;
uint16 chan;

} physical;
uint32 internal;

} w_chan_t;

typedef union wan_chnl_map {

struct {
uint32 w_use;
w_chan_t w_map;
w_chan_t w_rec;
w_chan_t w_xmt;

} map;

struct {
uint32 w_use;
w_chan_t w_map;
uint32 w_mpe;
uint32 w_rxe;
uint32 w_txe;

} resp;

} wan_chnl_map_t;

struct wan_setchmap_ioc {
uint8 w_type;
uint8 w_spare[3];
wan_chnl_map_t w_chnl_map [10];

};

Parameters

IOCTL_COMMAND

Input. The ioc_cmd field in struct iocblk should be W_SETCH_MAP.

w_type Input. This is always WAN_SETCHNL_MAP.

w_chnl_map

Input/Output. The structure describing the channel mapping to be set.
The following fields are defined for the structure:

w_use If nonzero, the w_chnl_map item from the array is used by the
WAN driver. This is a bit-wise OR of the following values:

W_USE Always use this option when the mapping entry in
w_chnl_map is to be used.

W_ERR In the response, this bit is turned on if the entry
was in error.

W_MAP_INTERNALS

The w_map field specifies an internal channel
number.
150 — W_SETCH_MAP — Set up channel map table

Chapter 7: T1/E1 interface (specific operations)
W_REC_INTERNAL

The w_rec field specifies an internal channel
number.

W_XMT_INTERNAL

The w_xmt field specifies an internal channel
number.

W_DIR_PROC_PORT

When the WAN driver breaks a connection, the
default direction is towards the network; for
example, if the w_map field specifies a DSP
channel, and w_xmt and w_rec are both set to
zero, and if this option is not specified, the
connection between the DSP channel and SC bus
or physical channel is broken. Alternatively, if this
option is specified, the connection between the
DSP channel and the internal channel is broken.
Likewise, this option can be used in
W_GETCH_MAP to obtain the mapping
information in the processing port direction.

w_map This is a full-duplex channel within a port (Network or DSP),
or an internal channel is being mapped. Valid values for the
port are shown in Figure 7-7 on page 149.

The internal channel numbers are specified as member
internal of the union w_chan_t.

w_rec This is the port channel or internal channel from where
w_map receives its data.

w_xmt This is the port channel or internal channel to where w_map
transmits its data.

w_mpe The error code for why the w_map field was seen as bad.

w_rxe The error code for why w_map could not be connected to
w_rec.

w_txe The error code for why w_map could not be connected to
w_xmt.
W_SETCH_MAP — Set up channel map table — 151

 ARTIC STREAMS Support WAN Driver Interface Reference
Error codes

0 The command was successfully processed. The IOCTL is acknowledged
with M_IOCACK in the reverse direction. Unlike other commands (even
in case of an error), an M_IOCACK message is sent upstream so that the
response buffer is copied back to the user. The following error codes are
for the command as a whole.

EINVAL The command size does not match, or the internal channel number is
incorrect.

EXDEV The requested mapping between two channels cannot be performed. In
this case, the response buffer has an error code for each wrong mapping
requested. If the w_err bit in the response is set, the following errors may
be set. Reasons are as follows:

• A map operation cannot specify channels on either side of the SC bus
(for example, w_map is on the processing-switch side, while either
w_xmt or w_rec is a physical channel), if:

– w_rec and w_xmt channels are different, or

– They are the same, but no dedicated wires have been specified on
the command line. Therefore, the WAN driver cannot allocate
SC-bus time slots to cross the SC bus.

• If w_map is a physical channel, w_rec and w_xmt cannot be different
unless they are SC-bus channels.

• An SC-bus time slot is on one of the dedicated lines.

ERANGE Either the port number or the channel number supplied is out of range
for the current hardware.

EIO The channel is in the wrong state. Possible reasons are:

• The channel being used is from a physical port that is in remote or
payload loopback.

• The WAN driver breaks all current mappings of the w_map_channel
field before attempting to connect the channels as given by the new
mapping. If the w_xmt or w_rec channels still remain mapped after
breaking current mappings, this error is given.

• If an internal channel is used in the mapping, and it does not yet
have a DSP channel, one will be assigned before completing the
mapping. While this channel is in use, it cannot be used in a new
mapping command. When an internal channel is used to break the
mapping, the DSP channel will be de-allocated.

• All channels used in W_SET_PHY_PIPE cannot be used in
W_SETCH_MAP. They can be used only when W_SET_PHY_PIPE
is used to undo the grouping.
152 — W_SETCH_MAP — Set up channel map table

Chapter 7: T1/E1 interface (specific operations)
EBUSY Reasons are as follows:

• A channel cannot be used here if it is in the data path to an internal
channel, and the corresponding SNID has been processed by
WAN_SNID and W_ENABLE. To change the mapping, issue a
W_DISABLE command, change the mapping, and then enable the
channel using W_ENABLE.

• An SC-bus time slot is being transmitted to by some other channel.

ENOSR There are not enough resources to perform all map operations together.
Try splitting them into more than one command.

• If the port number is zero in the w_rec and/or w_xmt fields, the channel
specified by the w_map field is not connected.

• If any of the w_chnl_map elements are in error, no partial mapping would be
performed.

• When operating in SNID_DECODE=YES mode, this command can be used
only to map physical channels that have not been associated with any logical
channels through the WAN_SID command.

• The established link must be broken before mapping it again for any of the
following conditions:
– If a loopback is done through W_SETDI_LPBK
– If a chaining is done through W_SETDI_PORT

The link can be broken through W_SETCH_MAP or W_SETDI_PORT (for
port chaining) or W_SETDI_LPBK before a new mapping or loopback can be
specified. This is true only for mapping between logical channels only or
physical channels only.

While breaking the mapping, only one side need be specified as broken; the
driver will implicitly declare the other end as disconnected, too. For example,
if p1,c1 is mapped to p2,c4, to break that link you need only specify p1,c1 as
mapped to nothing or p2,c4 as mapped to nothing. Both p1,c1 and p2,c4 do
not need to be specified. The same applies for making the link; you need
only specify that p1,c1 is mapped to p2,c4 to make the link. You do not have
to specify also that p2,c4 is mapped to p1,c1.
W_SETCH_MAP — Set up channel map table — 153

 ARTIC STREAMS Support WAN Driver Interface Reference
The following figure illustrates which paths are possible, and the text describes how
one can achieve this.

Figure 7-8. Possible paths

N
etw

ork
sw

itch

Processing
sw

itch

S C
 B U

 S

c2
c1

c3

These connections
are not allowed.
They send or receive
from different channels
across SC bus. (7)

Cross-connect
same or different
 channels (6)

Tx Only (9)

Tx- Rx to
diff chan
(10)
Rx Only
(11)

Direct Connect Only
 with dedicated wires (3)

Tx / Rx
 to and from (2b)
SC Bus

Cross-connect
same or
different channels
(6)

Disconnect (1)

These connections
are not allowed.
They send or receive
from different channels
on physical port.
 (5)

Channel
group or
pipe

Broadcast
Listen to
DSP or SC bus
(8)

DSP Channels Physical Channels

To physical ports only
with dedicated wires
and to the same physical
 port (4)

(1)

(2a)

c1
c2

c3
154 — W_SETCH_MAP — Set up channel map table

Chapter 7: T1/E1 interface (specific operations)
(1) The initial state; there are no default connections to and from the SC bus.

(2a) WAN transmits and receives data to and from the SC bus. This can be
done by W_SET_SNID specifying the SC-bus port and channel numbers
directly, or by first getting an internal channel using W_SET_SNID (with
the w_port_id and w_chnl_id fields set to 0) and then performing a
W_SETCH_MAP command to connect the internal channel to an SC-
bus channel.

(2b) A channel within a physical port transmits and receives data to and from
the SC bus. This is done by issuing a W_SETCH_MAP command.

(3) The WAN transmits and receives data to and from a channel within a
physical port. For this case to work, dedicated wires must be defined
(with command-line parameters w_scbus_xmit_wire and
w_scbus_recv_wire). To achieve this connection, one can issue a
W_SET_SNID command with appropriate physical-port and channel
numbers, or first issue a W_SET_SNID command to obtain an internal
channel ID, and then issue a W_SETCH_MAP command to map the
internal channel to the physical channel.

(4) Multiple physical channels are combined to form a pipe; the WAN driver
transmits and receives data to and from this pipe. This is achieved using
the W_SET_PHY_PIPE command.

(5) A physical channel is transmitting and receiving data to and from
different physical channels. This case is not possible.

(6) A physical channel transmits and receives data to and from another
physical channel, or an internal channel transmits and receives data to
and from another internal channel. This is done by issuing a
W_SETCH_MAP command, or the entire physical port is chained to
another physical port by the W_SETDI_PORT command.

(7) A physical channel transmits and receives data to and from different
internal channels, or an internal channel transmits and receives data to
and from different physical channels. This is not allowed.

(8) or (11)
An internal channel is simply receiving data from another internal
channel or from an SC-bus channel, as if it were listening to a broadcast.
This is achieved with either the W_SETCH_MAP or W_SET_SNID
command. The transmit channel is set to 0 (zero) in the mapping
command.

(9) An internal channel is simply transmitting data, as if it were to do a
broadcast. This is done with the W_SETCH_MAP command.

(10) An internal channel transmits to and receives from different internal
channels. This is acceptable, and can be achieved with the
W_SETCH_MAP command.
W_SETCH_MAP — Set up channel map table — 155

 ARTIC STREAMS Support WAN Driver Interface Reference
W_GETCH_MAP — Get channel map table settings

This command is used to obtain the channel map settings. Using this command, you
can also determine if the logical channel being worked with is mapped to any
physical port and how. The mapping also reveals if the channel is looped or chained
in some way.

The following structure is associated with this command:

struct wan_getchmap_ioc {
uint8 w_type;
uint8 w_spare[3];
wan_chnl_map_t w_chnl_rx [5];
wan_chnl_map_t w_chnl_tx [5];

};

Parameters

IOCTL_COMMAND

Input. The ioc_cmd field in struct iocblk should be W_GETCH_MAP.

w_type Input. This is always WAN_GETCHNL_MAP.

w_chnl_rx, w_chnl_tx

Input/Output. The structure describing the channel map that is currently
set. See Figure 7-6 on page 147 and Figure 7-7 on page 149 for various
fields.

As input to this command, the user gives the channel number to query.
Only the first item is used by the Multiplexed WAN driver. If the item is
0, the current stream’s logical channel is assumed.

As a response to this command, the Multiplexed WAN driver fills the
mapping information of the first connection in the first element.

Error codes

0 The command was successfully processed. The IOCTL is acknowledged
with an M_IOCACK message in the reverse direction. In case of an error,
an M_IOCNAK message is sent upstream with the appropriate
error code.

EINVAL The command size does not match.

EIO The w_chnl_rx(0) is 0, and the stream is a management stream.

ERANGE Either the port number supplied is out of range for the current hardware,
the channel number supplied is out of range for the current hardware, or
the internal channel number is incorrect.
156 — W_GETCH_MAP — Get channel map table settings

Chapter 7: T1/E1 interface (specific operations)
Figure 7-9. Message flow for W_GETCH_MAP

Upper Level WAN Driver

M_IOCTL + M_DATA
iocblk(W_GETCH_MAP) wan_getchmap_ioc

M_IOCACK + M_DATA
iocblk(W_GETCH_MAP) wan_getchmap_ioc

M_IOCNAK
iocblk(W_GETCH_MAP)

or
W_GETCH_MAP — Get channel map table settings — 157

 ARTIC STREAMS Support WAN Driver Interface Reference
W_SETDI — Set attributes common to all digital interfaces

This command is used to configure the attributes that are common to all T1/E1
ports of the PMC. The configurable attributes are:

• Clock source common to all ports (internal or from one of the ports)

• First, second, and third backup clock sources

• Defines which wires can be dedicated to the ARTIC960 4-Port T1/E1
Mezzanine Card for transfer of data between physical channels and internal
channels (channels processed by the ARTIC960 4-Port T1/E1 Mezzanine Card).
The WAN driver is free to control the direction of these wires, as they will be
defined as inputs for other adapters that are on the SC bus. The WAN driver
needs two wires: one to receive data from the network switch, and another to
transmit data to the network switch. This provides a way to avoid conflicts
when multiple adapters are on the SC bus.

The following structure is associated with this command:

typedef struct wan_di_info {
uint32 w_master_clk ;
uint32 w_bckup_clk_1;
uint32 w_bckup_clk_2;
uint32 w_bckup_clk_3;
uint32 w_current_clk;
uint32 w_net_switch_mode ;

} wan_di_info_t;

struct wan_setdi_ioc {
uint8 w_type;
uint8 w_spare[3];
wan_di_info_t w_di;

};

Parameters

IOCTL_COMMAND

Input. The ioc_cmd field in struct iocblk should be W_SETDI.

w_type Input. This is always WAN_SETDI.

Dedicated wires are not required for the ARTIC 4-Port T1/E1/J1 DSP PMC.
158 — W_SETDI — Set attributes common to all digital interfaces

Chapter 7: T1/E1 interface (specific operations)
w_di Input. The structure describing the parameters to be set, and general
information for the digital interface ports. The following fields are
defined for the structure:

w_master_clk

Indicates which port will provide the recovered clock from
the received data that will drive the internal system highway.
For the ARTIC 4-Port T1/E1/J1 DSP PMC, there can be up to
eight ports if there are two PMCs installed.

w_bckup_clk_1

The first backup clock source. Same values as w_master_clk.
The default is W_CLK_PORT_2.

w_bckup_clk_2

The second backup clock source. Same values as
w_master_clk. The default is W_CLK_PORT_3.

w_bckup_clk_3

The third backup clock source. Same values as w_master_clk.
The default is W_CLK_PORT_4.

w_current_clk

Not used by this command; it must be set to 0.

W_NO_CHANGE No change from the previous setting.
W_CLK_PORT_1 Clock from Port 1 (Default)
W_CLK_PORT_2 Clock from Port 2
W_CLK_PORT_3 Clock from Port 3
W_CLK_PORT_4 Clock from Port 4
W_CLK_PORT_5 Clock from Port 5
W_CLK_PORT_6 Clock from Port 6
W_CLK_PORT_7 Clock from Port 7
W_CLK_PORT_8 Clock from Port 8
W_SETDI — Set attributes common to all digital interfaces — 159

 ARTIC STREAMS Support WAN Driver Interface Reference
w_net_switch_mode

Specifies the operational mode of the network switch. It could
be operating in one of the following modes:

W_NO_CHANGE

No change from the previous setting.

SCBUS_MASTER

The network switch is the master of the SC bus,
and it drives the bus with appropriate clock
control signals. In this mode, the network switch
derives the clock from the source defined in the
w_master_clk field. In the event of a loss of clock,
the source clock is to be derived from sources
defined in w_bckup_clk_1, w_bckup_clk_2, and
w_bckup_clk_3, if the port number is different
from the failed port number. This is the default.

In this mode, the network switch does not
relinquish control of the bus, even if all ports
specified in w_master_clk and w_bckup_clk lose
their input signal. The driver assumes that no
other Armed Master is on the bus that can supply
clock signals to the SC bus. In the case where all
ports lose signals, the SC bus is driven by a local
oscillator. The only way to change this behavior is
with W_SETDI and a different
w_net_switch_mode.

SCBUS_ARMED_MASTER

The network switch is the armed master of the SC
bus, and it will drive the SC bus when an SC-bus
clock failure is detected. The clock source used is
defined by the w_master_clk field.

When a clock failure is detected on the bus, the
new mode of the switch will be SCBUS_MASTER.
In this mode, the network switch will always
provide a clock (either from one of the ports
specified in w_master_clk or w_bckup_clk, or
from the local oscillator). Also, it will remain in
this mode until changed by another W_SETDI
command.

SCBUS_BACKED_MASTER
In this mode, the network switch is the master on
the SC bus as long as any of the ports specified in
w_master_clk and w_bckup_clk have a signal.
When all lose their signals, the WAN driver
assumes that an Armed Master is configured on
the SC bus and will relinquish control.
160 — W_SETDI — Set attributes common to all digital interfaces

Chapter 7: T1/E1 interface (specific operations)
SCBUS_SLAVE

The network switch is put in slave mode, where it
never drives the clock control signals of the SC
bus.

Error codes

0 The command was successfully processed. The IOCTL is acknowledged
with M_IOCACK in the reverse direction. In case of an error, an
M_IOCNAK message is sent upstream with the appropriate error code.

EINVAL Either the clock source value for any of the fields is not defined, the
command size does not match, or SC-bus related parameters are
incorrect.

ERANGE The values programmed in the w_scbus_ded_wires field are out of range.

ENXIO A severe hardware error occurred in hardware. Run diagnostics to find
out more about the type of failure. A card reset might remove the
problem.

• On power-up, and in the absence of this command, Port 1 provides clocking for all
other ports, and it derives this clock from its received data.

• When the port providing the master clock fails, the communications chip for that port
will fall back to an internal clock source until the WAN driver can switch the master
clock source from a different port.

• When a port clock fails or recovers, the WAN driver searches for a backup master
clock source from the w_master_clk field through the w_bckup_clk_3 field, in order.

• When all ports are down, the internal highway is clocked from an internal crystal
clock source.

• The command-line parameters (at driver load time), w_scbus_xmit_wire and
w_scbus_recv_wire, indicate which wires are dedicated for the use of the Multiplexed
WAN driver (note that dedicated wires are not required for the ARTIC 4-Port T1/E1/J1
DSP PMC).
– w_scbus_xmit_wire refers to the wire that carries data from the processor in the

network direction.
– w_scbus_recv_wire refers to the wire that carries data from the network in the

processor direction.
For possible values, see Command-line parameters on page 235.
The lowest value represents SD0 of the SC-bus and so forth. If both of these are set
to 0 (zero), there are no dedicated wires in this SC-bus configuration, and you must
use the W_SETCH_MAP command to set up the processing paths. Also, if you
program one element to be a nonzero value, the other element also must be
programmed to a different nonzero value, unless the SC bus is programmed for
4.096 Mbps rate.

Notes:
W_SETDI — Set attributes common to all digital interfaces — 161

 ARTIC STREAMS Support WAN Driver Interface Reference
• The command-line parameter (at driver load time), w_scbus_framing_mode, selects
the framing mode of the SC bus. Possible values are:
W_SCBUS_AT_2048

The SC bus is configured for 2.048 Mbps, 256 bits/frame, and 32 time
slots/frame. This is the default.

W_SCBUS_AT_4096

The SC bus is configured for 4.096 Mbps, 512 bits/frame, and 64 time
slots/frame.

W_SCBUS_AT_8192

The SC bus is configured for 8.192 Mbps, 1024 bits/frame, and 128 time
slots/frame. This is not available on the ARTIC960 4-Port T1/E1 Mezzanine Card.

• In all network switch modes, the WAN driver will continue notification about all clock
failures on the physical ports. Using this information, the user application should be
able to determine if the system would be asynchronous if a particular PMC were
requested to be a master on the SC bus.

• In SCBUS_SLAVE and SCBUS_ARMED_MASTER mode, the physical port timing
towards the SC bus is always driven by the SC bus, regardless of the selection in
w_master_clk and w_bckup_clk.

• This API selects only the timing for the SC bus (or the internal system highway) and
the physical-ports interface timing to the system highway. The physical-port transmit
timing is dependent on whether a particular port is in master mode or not (see
w_clk_mode on page 169). Normally, the transmit timing is derived from the receive
bit stream (slave mode), but when a particular port is in master mode, or it loses its
receive signals, it uses the local oscillator for transmit timing (which could be
asynchronous to the SC-bus timing).

• The local oscillator also could drive the system highway if the current port selected for
the system highway loses its signals, and it could do so indefinitely, if all choices were
exhausted and the network switch remained the master of the SC bus.

• Care should be taken so that on a physical port connection, only one port is in master
mode and the other is in slave mode.
162 — W_SETDI — Set attributes common to all digital interfaces

Chapter 7: T1/E1 interface (specific operations)
The following figure shows the relationship between the recovered clocks from the
communication chips (FALCs) and the network switch.

Figure 7-10. Relationship between recovered clocks

Figure 7-11. Message flow for W_SETDI

Clock while
being master

SC 4000 (Network Switch)

NOTES:
1. The digital section (the
system highway inter-
face) of the FALCs is
only clocked by the clock
received from the SC
bus.
2. When the network
switch is in SLAVE
mode, the Clock MUX
has no effect on the sys-
tem timing.
3. The Clock MUX
selection is from
w_master_clk and
w_bckup_clk.
4. The master mode of
FALC or an LOS condi-
tion selects the local
oscillator for FALC Tx
timing. It is also indepen-
dent of the system high-
way timing.
5. Each port pair (Tx-Rx
to each other) must be
master-slave matched.

Clock
MUX

Clock received
on SC busTxRx

FALC Digital

FALC Analog

El
as

tic
 B

uf
fe

r

Clocks recovered
from input signals
on physical ports

Master
Transmit Clock

Local Oscillator (same for all ports)
Rx Tx

A physical port

Upper Level WAN Driver

M_IOCTL + M_DATA
iocblk(W_SETDI) wan_setdi_ioc

M_IOCACK + M_DATA
iocblk(W_SETDI) wan_setdi_ioc

M_IOCNAK
iocblk(W_SETDI)

or
W_SETDI — Set attributes common to all digital interfaces — 163

 ARTIC STREAMS Support WAN Driver Interface Reference
W_GETDI — Get attributes common to all digital interfaces

This command is used to obtain attributes that are common to all T1/E1 ports on
the PMC. See W_SETDI — Set attributes common to all digital interfaces on
page 158 for a list of the attributes.

The following structure is associated with this command:

struct wan_getdi_ioc {
uint8 w_type;
uint8 w_spare[3];
wan_di_info_t w_di;

};

Parameters

IOCTL_COMMAND

Input. The ioc_cmd field in struct iocblk should be W_GETDI.

w_type Input. This is always WAN_GETDI.

w_di Output. The structure describing the parameters currently set. See
W_SETDI — Set attributes common to all digital interfaces on page 158
for more information on the structure. The w_current_clk field indicates
the current master clock source.

Error codes

0 The command was successfully processed. The IOCTL is acknowledged
with M_IOCACK in the reverse direction. In case of an error, an
M_IOCNAK message is sent upstream with the appropriate error code.

EINVAL The command size does not match.

ENXIO A severe hardware error has occurred. Run diagnostics to find out more
about the type of failure. A card reset might remove the problem.

Figure 7-12. Message flow for W_GETDI

Upper Level WAN Driver

M_IOCTL + M_DATA
iocblk(W_GETDI) wan_getdi_ioc

M_IOCACK + M_DATA
iocblk(W_GETDI) wan_getdi_ioc

M_IOCNAK
iocblk(W_GETDI)

or
164 — W_GETDI — Get attributes common to all digital interfaces

Chapter 7: T1/E1 interface (specific operations)
W_SETDI_PORT — Set attributes of a physical port

This command is used to configure the attributes of a particular port. The
configurable attributes are:

• Line coding

• Frame format

• Control of blue alarm/AIS

• Chaining (all channels connected to equivalent channels on another port)

• Bit inversion for the entire port

• Alarm propagation

The following structure is associated with this command:

typedef struct wan_diprt_info {
uint32 w_frame_format;
uint32 w_crc_active;
uint32 w_T1_LOF_err_bits;
uint32 w_loop_back_conf;
uint32 w_line_status_gen;
uint32 w_line_status;
uint32 w_line_coding;
uint32 w_signal_mode;
uint32 w_fdl_type;
uint32 w_chain_flag;
uint32 w_chain_port;
uint32 w_bit_inv ;
uint32 w_clk_mode ;
uint32 w_port_fail_mask ;

} wan_diprt_info_t;

struct wan_setdiprt_ioc {
uint8 w_type;
uint8 w_spare[3];
uint32 w_port_id;
wan_diprt_info_t w_diprt;

};

Parameters

IOCTL_COMMAND

Input. The ioc_cmd field in struct iocblk should be W_SETDI_PORT.

w_type Input. This is always WAN_SETDI_PORT.

w_port_id
Input. The port number; a value between 1 and 8 (inclusive).
W_SETDI_PORT — Set attributes of a physical port — 165

 ARTIC STREAMS Support WAN Driver Interface Reference
w_diprt Input. The structure describing the parameters to be set. The following
fields are defined for the structure:

w_frame_format

Indicates the variety of the digital interface line. Valid values
are:

W_NO_CHANGE

No change from previous setting.

W_DI_ESF Only T1. Extended Super Frame (ESF). This is the
default.

W_DI_SF Only T1. Super Frame (SF) or AT&T D4 format.

W_DI_E1 Only E1. Double Frame Default.

W_DI_E1_MF

Only E1. Multiframe with CRC-4.

W_DI_E1_MF_G706_B

Only E1. Multiframe with CRC-4 and allows for
interworking between CRC-4 and non CRC-4
equipment.

w_crc_active

Indicates if CRC-6 values for T1 (ESF framing format) are
generated and accepted. Valid values are:

W_NO_CHANGE

No change from previous setting.

W_CRC_OFF

CRC inactive. This is the default.

W_CRC_ON CRC active.

w_T1_LOF_err_bits

Applicable to T1 mode, this field determines how loss of
frame alignment is declared.

W_NO_CHANGE

No change from previous setting.

W_DI_T1_LOF_2_OUT_OF_4

Two errors within four framing bits lead to loss of
frame alignment.

W_DI_T1_LOF_2_OUT_OF_5

Two errors within five framing bits lead to loss of
frame alignment. This is the default.

W_DI_T1_LOF_2_OUT_OF_6

Two errors within six framing bits lead to loss of
frame alignment.
166 — W_SETDI_PORT — Set attributes of a physical port

Chapter 7: T1/E1 interface (specific operations)
w_loop_back_conf

This field is not used by this command. It is used by the
W_GETDI_PORT command.

w_line_status_gen

Controls automatic generation of RAI and AIS. This is a
bit-wise OR of the following values:

W_DI_AUTO_RAI

The Remote Alarm bit is automatically set in the
outgoing data stream if the receiver is in
asynchronous state. The asynchronous state is
reached when the receiver loses frame alignment.
This is the default.

W_DI_NO_AUTO_RAI

The Remote Alarm bit is not automatically set in
the outgoing data stream if the receiver is in the
asynchronous state.

W_DI_TX_AIS

Send AIS toward the remote end.

W_DI_NO_TX_AIS

Stop sending AIS toward the remote end. This is
the default.

W_DI_TX_RAI

Send RAI toward the remote end.

W_DI_NO_TX_RAI

Stop sending RAI toward the remote end. This is
the default.

w_line_status

This field is not used by this command. It is used by the
W_GETDI_PORT command.

w_line_coding

Describes the variety of Zero Code Suppression used on the
link. Valid values are:

W_NO_CHANGE

No change from previous setting.

W_DI_B8ZS

Only T1. This is the default for T1.

W_DI_HDB3

Only E1. This is the default for E1.

W_DI_AMI For T1 or E1.
W_SETDI_PORT — Set attributes of a physical port — 167

 ARTIC STREAMS Support WAN Driver Interface Reference
w_signal_mode

The signaling mode of the interface. Valid values are:

W_NO_CHANGE

No change from previous setting.

E1 applications—short haul:

W_SHORT_HAUL

E1 applications—long haul:

W_LONG_HAUL

T1 applications—short haul:

W_0_40M 0–40 meters

W_40_81M 40–81 meters

W_81_122M 81–122 meters

W_122_162M 122–162 meters

W_162_200M 162–200 meters

W_0_133ft 0–133 feet

W_133_266ft 133–266 feet

W_266_399ft 266–399 feet

W_399_533ft 399–533 feet

W_533_655ft 533–655 feet

T1 applications—long haul:

W_0dB 0 dB loss

W_7_5dB –7.5 dB loss

W_15dB –15 dB loss

W_22_5dB –22.5 dB loss

w_fdl_type

Describes the use of the Facility Data Link (FDL) on the
interface. Reserved. Value must be 0=W_NO_CHANGE.
168 — W_SETDI_PORT — Set attributes of a physical port

Chapter 7: T1/E1 interface (specific operations)
w_chain_flag

Valid values are:

W_NO_CHANGE

No change from previous setting.

W_CHAIN Chain to the port specified by the w_chain_port
field. Alarms are not propagated.

W_NO_CHAIN

Do not chain. This is the default.

W_CHAIN_AND_PROPAGATE_TO_CHAIN_PORT

Chain and propagate alarms to the port specified
by the w_chain_port field. See the notes on page
172 for more information.

w_chain_port

The port number (1 to 4) on which this port is chained.

w_bit_inv

Valid values are:

W_NO_CHANGE

No change from previous setting.

W_INVERT Apply bit inversion to incoming and outgoing bit
streams.

W_NO_INVERT

Normal mode; no inversion. This is the default.

w_clk_mode

This field selects only the transmit clock source. The receive
clock is always extracted from the received signal.

W_NO_CHANGE

No change from the previous setting.

W_MASTER_CLK

Port uses the internal clock generated by the PMC
for transmission of data. The communications
chip is put in master mode.

W_SLAVE_CLK

The communications chip is put in slave mode.
The clock for transmit data is the recovered clock
from one of the ports that is acting as the master
clock source for the internal highway. This is the
default.

W_USE_RECOVERED_CLK

The communications chip is put in slave mode.
The clock for transmit data is the recovered clock
from its own receive port.
W_SETDI_PORT — Set attributes of a physical port — 169

 ARTIC STREAMS Support WAN Driver Interface Reference
w_port_fail_mask

Defines which events will result in a port disconnection,
causing the port-specific green LED to turn off. This bit field
takes bit combinations as defined in the wan_event field of
the WAN_NOTIFDI message (see WAN_NOTIFDI —
Inform upper level of T1/E1 events on page 129). The
port-specific green LED will default to off if any of the
following events are detected:

• W_DI_FAR_RAI

• W_DI_FAR_AIS

• W_DI_LOS

• W_DI_FAR_LFA

• W_DI_FAR_LMFA

Error codes

0 The command was successfully processed. The IOCTL is acknowledged
with M_IOCACK in the reverse direction. In case of an error, an
M_IOCNAK message is sent upstream with the appropriate error code.

ERANGE The port number supplied is out of range for the current hardware.

EINVAL Either the option value for any of the fields is not defined, or the
command size does not match.

EXDEV The current operational mode (T1/E1) of the port does not match the
request. Check the cable ID and current operational mode for the port
using the W_GETHWTYPE command.

EIO Either a loopback is active, or the companion port is in the wrong state.

EBUSY At least one channel of this port is being used.

ENXIO A severe hardware error has occurred. Run diagnostics to find out more
about the type of failure. A card reset might remove the problem.
170 — W_SETDI_PORT — Set attributes of a physical port

Chapter 7: T1/E1 interface (specific operations)
How to propagate alarms from port 1 to port 2 — example

Assume the following:

• Port 1 is connected to the E1 network.

• Port 2 is connected to the back end.

• Port 1 and Port 2 are chained together.

In order to chain the ports and have alarms from the E1 network propagate to the
back end, do the following:

1. Issue a S_SETDI_PORT command for Port 1 with the following parameter
settings:

– Set the w_chain_flag field to
W_CHAIN_AND_PROPAGATE_TO_CHAIN_PORT.

– Set the w_chain_port field to 2.

2. Issue a W_SETDI_PORT command for Port 2 with the following parameter
settings:

– Set the w_chain_flag field to W_CHAIN.

– Set the w_chain_port field to 1.
W_SETDI_PORT — Set attributes of a physical port — 171

 ARTIC STREAMS Support WAN Driver Interface Reference
See the notes on page 153 for W_SETCH_MAP — Set up channel map table for
more information.

• On power-up, and in the absence of a SETDI_PORT command, the port
would be programmed using the default values. A GETDI_PORT would
return those defaults.

• At driver load time, the operational mode (T1 or E1) is determined as follows:
– If a cable is attached and the cable ID is available, the type of cable

determines the operational mode.
– If the command-line parameter, W_INTERFACE_TYPE, was found, it

determinesthe operational mode of the card.
– If the command-line parameter also was not present, the operational

mode defaults to E1.
• Once the operational mode is determined, it cannot be changed by plugging

in a different type of cable. When a cable is disconnected, the Multiplexed
WAN driver continues to look for a cable that is the same as the current
operational mode. To change the current operational mode, the card must
be reset.

• When the cable is disconnected, the Multiplexed WAN driver switches to
balanced mode (high impedance). This is done to protect the circuitry when
the old cable was a low-impedance cable and the new cable is of high
impedance. When a new cable is plugged in, the Multiplexed WAN driver
programs the impedance accordingly (balanced or unbalanced).

• In T1 Super Frame (12-frame multiframe) mode, there are two ways to
indicate RAI (Remote Alarm Indication):
– Set data bit 2 of all channels to 0 (zero).
– Set the last bit of the multiframe alignment signal (bit 1 of frame 12) to 1

instead of 0. The WAN driver programs the hardware for this method to
signal RAI.

• In T1 mode, the hardware is programmed in clear-channel mode; that is, the
contents of the channel data are not overwritten by bit robbing and Zero
Code Suppression information.

• The w_chain_flag only enables channel loopback to the same channel
number on the port specified, until W_SETCH_MAP is issued to suggest a
different connection.

• If the w_chain_flag is W_NO_CHAIN, all unused channels are lost on the
card.

• If the w_chain_flag is W_CHAIN_AND_PROPAGATE_TO_CHAIN_PORT:
– The value is valid only for E1 operation. If this value is specified for a port

operating in T1 mode, an error code of EXDEV will be returned.
– w_port_id must be a value between 1 and 4 (inclusive).
172 — W_SETDI_PORT — Set attributes of a physical port

Chapter 7: T1/E1 interface (specific operations)

Figure 7-13. Message flow for W_SETDI_PORT

Upper Level WAN Driver

M_IOCTL + M_DATA
iocblk(W_SETDI_PORT) wan_setdiprt_ioc

M_IOCACK + M_DATA
iocblk(W_SETDI_PORT) wan_setdiprt_ioc

M_IOCNAK
iocblk(W_SETDI_PORT)

or
W_SETDI_PORT — Set attributes of a physical port — 173

 ARTIC STREAMS Support WAN Driver Interface Reference
W_GETDI_PORT — Get attributes of a physical port

This command is used to obtain the attributes of a particular port. In addition to
the attributes listed in W_SETDI_PORT — Set attributes of a physical port on
page 165, this command also allows the following to be obtained:

• The presence of alarms from the far end (yellow alarm/RAI, blue alarm/AIS, red
alarm/LOS)

• The generation of alarms at the near end

• The type of loopback (if any)

The following structure is associated with this command:

struct wan_getdiprt_ioc {
uint8 w_type;
uint8 w_spare[3];
uint32 w_port_id;
wan_diprt_info_t w_diprt;

};

Parameters

IOCTL_COMMAND

Input. The ioc_cmd field in struct iocblk should be W_GETDI_PORT.

w_type Input. This is always WAN_GETDI_PORT.

w_port_id

Input. The port number, a value between 1 and 4 (inclusive).

w_diprt Output. This structure is defined in W_SETDI_PORT — Set attributes
of a physical port on page 165. The fields that are unique to this
command are described as follows:

w_loop_back_conf

The loopback configuration of the interface. Valid values are:

W_DI_LOOP_NONE

Not in loopback mode.

W_DI_LOOP_PAYLOAD

Received signal is looped through the device (after
the signal has passed through framing function).

W_DI_LOOP_REMOTE

Entire signal is looped back out.

W_DI_LOOP_LOCAL

Transmitted signal is looped back in.
174 — W_GETDI_PORT — Get attributes of a physical port

Chapter 7: T1/E1 interface (specific operations)
w_line_status

The line status of the interface regardless of the notification
mask. This is a bit-wise OR of the values listed in the
wan_event field of the WAN_NOTIFDI service message. See
WAN_NOTIFDI — Inform upper level of T1/E1 events on
page 129 for more details. The following bits are defined in
addition to the ones mentioned previously.

W_DI_NO_ALARM

No alarm present.

W_DI_NEAR_AIS

Near end sending AIS.

W_DI_NEAR_RAI

Near end sending RAI.

Error codes

0 The command was successfully processed. The IOCTL is acknowledged
with M_IOCACK in the reverse direction. In case of an error, an
M_IOCNAK message is sent upstream with the appropriate error code.

EINVAL The command size does not match.

ERANGE The port number supplied is out of range for the current hardware.

ENXIO A severe hardware error has occurred. Run diagnostics to find out more
about the type of failure. A card reset might remove the problem.

Figure 7-14. Message flow for W_GETDI_PORT

Upper Level WAN Driver

M_IOCTL + M_DATA
iocblk(W_GETDI_PORT) wan_getdiprt_ioc

M_IOCACK + M_DATA
iocblk(W_GETDI_PORT) wan_getdiprt_ioc

M_IOCNAK
iocblk(W_GETDI_PORT)

or
W_GETDI_PORT — Get attributes of a physical port — 175

 ARTIC STREAMS Support WAN Driver Interface Reference
W_GETDI_STATS — Get port statistics

This command is used to obtain the statistics for a particular port. The available
statistics are:

• Number of Errored Seconds (ES)

• Number of framing errors

• Number of CRC errors (only for T1-ESF or E1-MF)

• Number of code violations

• Number of E-bit errors (only for E1-MF)

The following structure is associated with this command:

typedef struct wan_distats {
uint32 w_err_secs;
uint32 w_crc_err;
uint32 w_framing_err;
uint32 w_e_bit_err;
uint32 w_code_violats;

} wan_distats_t;

struct wan_getdistats_ioc {
uint8 w_type;
uint8 w_spare[3];
uint32 w_port_id;
wan_distats_t w_distats;

};

Parameters

IOCTL_COMMAND

Input. The ioc_cmd field in struct iocblk should be W_GETDI_STATS.

w_type Input. This is always WAN_GETDI_STATS.

w_port_id

Input. The port number, a value between 1 and 4 (inclusive).

w_distats

The statistics for that Digital Interface port. The following fields are
defined for the structure:

w_err_secs

The number of Errored Seconds (ES) encountered by the
interface.

w_crc_err

Only for T1-ESF and E1-MF. The number of CRC errors
encountered by the interface.

w_framing_err

The number of framing errors encountered by the interface.
176 — W_GETDI_STATS — Get port statistics

Chapter 7: T1/E1 interface (specific operations)
w_e_bit_err

Only for E1-MF. The number of E-bit errors encountered by
the interface.

w_code_violats

The number of code violations encountered by the interface.

Error codes

0 The command was successfully processed. The IOCTL is acknowledged
with M_IOCACK in the reverse direction. In case of an error, an
M_IOCNAK message is sent upstream with the appropriate error code.

EINVAL The command size does not match.

ERANGE The port number supplied is out of range for the current hardware.

ENXIO A severe hardware error has occurred. Run diagnostics to find out more
about the type of failure. A card reset might remove the problem.

Figure 7-15. Message flow for W_GETDI_STATS

Upper Level WAN Driver

M_IOCTL + M_DATA
iocblk(W_GETDI_STATS) wan_getdistats_ioc

M_IOCACK + M_DATA
iocblk(W_GETDI_STATS) wan_getdistats_ioc

M_IOCNAK
iocblk(W_GETDI_STATS)

or
W_GETDI_STATS — Get port statistics — 177

 ARTIC STREAMS Support WAN Driver Interface Reference
W_ZERODI_STATS — Clear port statistics

This command is used to clear the statistics for a particular port. The w_distats field
is filled with the current statistics just prior to clearing them so that the upper layer
can obtain the statistics and then clear them in one operation.

The following structure is associated with this command:

struct wan_distats_ioc {
uint8 w_type;
uint8 w_spare[3];
uint32 w_port_id;
wan_distats_t w_distats;

};

Parameters

IOCTL_COMMAND

Input. The ioc_cmd field in struct iocblk should be W_ZERODI_STATS.

w_type Input. This is always WAN_ZERODI_STATS.

w_port_id

Input. The port number, a value between 1 and 4 (inclusive).

w_distats

Output. This field holds the statistic values before they were cleared. See
page 176 for a description of this field and its elements.

Error codes

0 The command was successfully processed. The IOCTL is acknowledged
with M_IOCACK in the reverse direction. In case of an error, an
M_IOCNAK message is sent upstream with the appropriate error code.

EINVAL The command size does not match.

ERANGE The port number supplied is out of range for the current hardware.

ENXIO A severe hardware error has occurred. Run diagnostics to find out more
about the type of failure. A card reset might remove the problem.

Figure 7-16. Message flow for W_ZERODI_STATS

Upper Level WAN Driver

M_IOCTL + M_DATA
iocblk(W_ZERODI_STATS) wan_distats_ioc

M_IOCACK + M_DATA
iocblk(W_ZERODI_STATS) wan_distats_ioc

M_IOCNAK
iocblk(W_ZERODI_STATS)

or
178 — W_ZERODI_STATS — Clear port statistics

Chapter 7: T1/E1 interface (specific operations)
W_SETDI_LPBK — Put port in loopback

This command is used to control the loopback on a port. Possible loopback modes
are:

• Payload—Received data from the port is transmitted back with framing
generated locally.

• Remote—Received data from the port is transmitted back (including framing).

• Local—Data to be transmitted is received back on the port.

The following structure is associated with this command:

struct wan_setdilpbk_ioc {

uint8 w_type;
uint8 w_spare[3];
uint32 w_port_id;
uint32 w_loopback_mode;

};

Parameters

IOCTL_COMMAND

Input. The ioc_cmd field in struct iocblk should be W_SETDI_LPBK.

w_type This is set to WAN_SETDI_LPBK.

w_port_id

The port number. A value between 1 and 8 (inclusive).

w_loopback_mode
The loopback configuration of the port. Valid values are:

W_DI_LOOP_NONE

Not in loopback mode. This is the default.

W_DI_LOOP_PAYLOAD
Received signal is looped through the device (after the signal
has passed through the framing function).

W_DI_LOOP_REMOTE
Entire received signal is looped back out.

W_DI_LOOP_LOCAL
Transmitted signal is looped back in.

Error codes

0 The command was successfully processed. The IOCTL is acknowledged
with M_IOCACK in the reverse direction. In case of an error, an
M_IOCNAK message is sent upstream with the appropriate error code.

EINVAL Either an invalid option is in w_loopback_mode, or the command size
does not match.

ERANGE The port number supplied is out of range for the current hardware.
W_SETDI_LPBK — Put port in loopback — 179

 ARTIC STREAMS Support WAN Driver Interface Reference
EBUSY A stream is actively using a channel from this port. The stream must be
closed before a loopback can be initiated.

EIO The port is in the wrong state.

ENXIO A severe hardware error has occurred. Run diagnostics to find out more
about the type of failure. A card reset might remove the problem.

The port is programmed to the specified loopback configuration immediately.

Upper Level WAN Driver

M_IOCTL + M_DATA
iocblk(W_SETDI_LPBK) wan_setdilpbk_ioc

M_IOCACK + M_DATA
iocblk(W_SETDI_LPBK) wan_setdilpbk_ioc

M_IOCNAK
iocblk(W_SETDI_LPBK)

or

Figure 7-17. Message flow for W_SETDI_LPBK
180 — W_SETDI_LPBK — Put port in loopback

Chapter 7: T1/E1 interface (specific operations)
W_SETDI_NOTIF — Set event filter for a physical port

This command is used to control (enable or disable) the notification of events and
alarms from the digital interfaces. The reporting of the following events is
controlled by this message:

• Blue alarm/AIS

• Yellow alarm/RAI

• Red alarm/LOS

• Loss of clock

• Transmit line short

• Transmit line open

The following structure is associated with this command:

struct wan_setdinotif_ioc {
uint8 w_type;
uint8 w_spare[3];
uint32 w_port_id;
uint32 w_action;
uint32 w_event;

};

Parameters

IOCTL_COMMAND

Input. The ioc_cmd field in struct iocblk should be W_SETDI_NOTIF.

w_type Input. This is set to WAN_SETDI_NOTIF.

w_port_id

Input. The port number, a value between 1 and 4 (inclusive), where the
event is to be detected.

w_action Input. The type of notification control to perform. The allowed values
are:

WAN_EVT_ENABLE

To enable the event.

WAN_EVT_DISABLE

To disable the event.

w_event Input. The event/alarm being controlled for that port. These are bit-wise
ORed and their values are the same as wan_event, defined on page 130.

Error codes

0 The command was successfully processed. The IOCTL is acknowledged
with M_IOCACK in the reverse direction. In case of an error, an
M_IOCNAK message is sent upstream with the appropriate error code.

EINVAL Either there is an invalid option in w_action, an invalid condition in
w_event, or the command size does not match.
W_SETDI_NOTIF — Set event filter for a physical port — 181

 ARTIC STREAMS Support WAN Driver Interface Reference
ERANGE The port number supplied is out of range for the current hardware.

ENXIO A severe hardware error has occurred. Run diagnostics to find out more
about the type of failure. A card reset might remove the problem.

When events are enabled or disabled, the previous events mask is overwritten.
That is, the upper layer will need to track the events that it needs reported and
perform logical OR or AND operations to get the proper mask.

Figure 7-18. Message flow for W_SETDI_NOTIF

Upper Level WAN Driver

M_IOCTL + M_DATA
iocblk(W_SETDI_NOTIF) wan_setdinotif_ioc

M_IOCACK
iocblk(W_SETDI_NOTIF) wan_setdinotif_ioc

M_IOCNAK
iocblk(W_SETDI_NOTIF)

or

 + M_DATA
182 — W_SETDI_NOTIF — Set event filter for a physical port

Chapter 7: T1/E1 interface (specific operations)
W_SET_TIMESTAMP — Set timestamp

This command sets the current value of the timestamp, which is used when the
Multiplex WAN driver is running in monitor mode. See W_MONITOR_MODE on
page 239 for information.

The following structure is associated with this command.

struct wan_time_ioc {
uint8 w_type;
uint8 w_spare[7];
UINT64 w_current_time;

};

Parameters

IOCTL_COMMAND

Input. The ioc_cmd field in struct iocblk should be
W_SET_TIMESTAMP.

w_type Input. This is always WAN_SET_TIMESTAMP.

w_current_time

Input. This is the current time in milliseconds. It is in MSG_TIME
format.

Error codes

0 The command was successfully processed. The IOCTL is acknowledged
with M_IOCACK in the reverse direction. In case of an error, an
M_IOCNAK message is sent upstream with the appropriate error code.

EINVAL The current time value specified differs from the current timestamp by
more than the allowable skew amount (30 ms)..

Figure 7-19. Message flow for W_SET_TIMESTAMP

Upper Level WAN Driver

M_IOCTL + M_DATA
iocblk(W_SET_TIMESTAMP) (wan_time_ioc)

M_IOCACK + M_DATA
iocblk(W_SET_TIMESTAMP) (wan_time_ioc)

 or
M_IOCNAK
iocblk(W_SET_TIMESTAMP)
W_SET_TIMESTAMP — Set timestamp — 183

 ARTIC STREAMS Support WAN Driver Interface Reference
184

8 ATM (specific operations) Chapter 8

This chapter describes additional STREAMS service messages and management
commands needed for configuration and operation of the Multiplexed WAN driver
in an ATM environment. The Multiplexed WAN driver implements the following
ATM functions.

• Streaming mode service for ATM Adaptation Layer 5 (AAL5)

• AAL0 (raw mode) support

• Network Node Interface (NNI) format for the ATM layer

• Operation and Maintenance (OAM) support

Table 8-1. STREAMS service messages and management commands for ATM (Part 1 of 2)

Message Use Type Direction Page
WAN_DAT To send and receive

data to and from a VCC
Service Message
M_PROTO

Up or down on
appropriate
stream

61

WAN_NOTIF_ATM To inform upper level of ATM
layer-related events

Service Message
M_PROTO

Up only on all
management
streams (that is,
streams on
which
WAN_SID has
not been
issued)

187

W_SET_ATM To set ATM layer parameters Management
Command
M_IOCTL

Down on any
opened stream

190

W_GET_ATM To get ATM layer parameters
and its current state

Management
Command
M_IOCTL

Down on any
opened stream

193

W_SET_SNID To associate a VCC with an
ATM layer and obtain internal
channel ID

Management
Command
M_IOCTL

Down on any
opened stream

94

W_SETTUNE To set the parameters related
to VCC

Management
Command
M_IOCTL

Down on any
opened stream

83

W_DI_TEST_CFG To set test configuration for a
physical port

Management
Command
M_IOCTL

Down on any
opened stream

137
185

 ARTIC STREAMS Support WAN Driver Interface Reference
STREAMS service messages for ATM

W_GET_VCC_STATS To get statistics of a
VCC

Management
Command
M_IOCTL

Down on any
opened stream

195

W_ZERO_VCC_STATS To get and clear
statistics of a VCC

Management
Command
M_IOCTL

Down on any
opened stream

198

W_GET_ATM_STATS To get statistics of an ATM layer Management
Command
M_IOCTL

Down on any
opened stream

200

W_ZERO_ATM_STATS To get and clear
statistics of an ATM layer

Management
Command
M_IOCTL

Down on any
opened stream

203

Message Structure in M_PROTO M_DATA? Direction
WAN_DAT wan_msg

(see WAN_DAT — Data messages for transmission
and reception on page 61)

Yes To and from
WAN driver

WAN_NOTIF_ATM wan_notif_atm
(see WAN_NOTIF_ATM — Notify ATM cell stream
status on page 187)

Yes To and from
WAN driver

Table 8-1. STREAMS service messages and management commands for ATM (Part 2 of 2)

Message Use Type Direction Page
186

Chapter 8: ATM (specific operations)
WAN_NOTIF_ATM — Notify ATM cell stream status

This message notifies the upper level of events related to the ATM cell stream.
Reported events are:

• When the cell delineation process at the physical layer loses cell synchronization
(that is, the state machine changes the state from SYNCH to HUNT).

• When the cell delineation process at the physical layer gains cell synchronization
(that is, the state machine enters the SYNCH state).

This message is sent up by the WAN driver only on all management streams (that is,
streams on which WAN_SID has not been issued).

The following structure is associated with this M_PROTO message:

struct wan_notif_atm {
uint8 w_type;
uint8 w_spare[3];
uint32 w_phy_pipe_id;
uint32 wan_event;

} ;

Parameters

w_type Output. This is set to WAN_NOTIF_ATM.

w_phy_pipe_id

Output. An event has been detected on the pipe specified by this
identifier.

wan_event

Output. This indicates the events being reported. This is a bit-wise OR of
the following values:

WAN_LOST_ATM_CELL_SYNCH

The ATM cell delineation process lost cell synchronization
after ALPHA consecutive cells with incorrect HECs (Header
Error Controls).

WAN_GAINED_ATM_CELL_SYNCH

The ATM cell delineation process has regained cell
synchronization after DELTA consecutive cells with
correct HECs.

When a WAN_LOST_ATM_CELL_SYNCH event is detected, a WC_DISC will be
generated on a data stream (that is, WAN_SID has been issued) if the
WAN_event_disc field in the W_SETTUNE command has the
WAN_CELL_SYNC bit set. Likewise, a WC_CONNECT will be generated when
a WAN_GAINED_ATM_CELL_SYNCH event is detected.
WAN_NOTIF_ATM — Notify ATM cell stream status — 187

 ARTIC STREAMS Support WAN Driver Interface Reference

Figure 8-1. Message flow for WAN_NOTIF_ATM

Upper Level WAN Driver

M_PROTO
wan_notif_atm
188 — WAN_NOTIF_ATM — Notify ATM cell stream status

Chapter 8: ATM (specific operations)
STREAMS management commands for ATM.

ioc_cmd value of iocblk
structure in M_IOCTL Structure in M_DATA after M_IOCTL M_DATA with

M_IOCACK?
W_SET_ATM wan_set_atm_ioc

(see W_SET_ATM — Define parameters for a
physical layer of an ATM cell stream on
page 190)

No

W_GET_ATM wan_get_atm_ioc
(see W_GET_ATM — Obtain ATM physical-layer
parameters and current state on page 193)

Yes,
wan_get_atm_ioc

W_SET_SNID wan_set_snid_ioc
(see W_SET_SNID — Allocate internal channel
and associate SNID to it on page 94)

Yes,
wan_set_snid_ioc

W_SETTUNE wan_tnioc
(see W_SETTUNE — Set configuration on
page 83)

Yes,
wan_tnioc

W_DI_TEST_CFG wan_ditestcfg_ioc
(see W_DI_TEST_CFG — Set test configuration
for a physical port on page 137)

Yes,
wan_ditestcfg_ioc

W_GET_VCC_STATS wan_vcc_ioc
(see W_GET_VCC_STATS — Get statistics for a
virtual channel on page 195)

Yes,
wan_vcc_ioc

W_ZERO_VCC_STATS wan_vcc_ioc
(see W_ZERO_VCC_STATS — Retrieve and clear
statistics for a virtual channel on page 198)

Yes,
wan_vcc_ioc

W_GET_ATM_STATS wan_atm_ioc
(see W_GET_ATM_STATS — Get statistics for a
physical ATM cell stream on page 200)

Yes,
wan_atm_ioc

W_ZERO_ATM_STATS wan_atm_ioc
(see W_ZERO_ATM_STATS — Retrieve and clear
statistics for a physical ATM cell stream on
page 203)

Yes,
wan_atm_ioc
189

 ARTIC STREAMS Support WAN Driver Interface Reference
W_SET_ATM — Define parameters for a physical layer of an ATM cell
stream

This management command is used for:

• Defining parameters related to cell delineation

• Performing single-bit error correction or not

• Scrambling E1 payload data

The following structure is associated with this command:

typedef struct _atm_parms_ {
uint32 w_alpha;
uint32 w_delta;
uint32 w_scrambler_flag;
uint32 w_error_correction_flag;

} atm_parms;
struct wan_set_atm_parms_ioc {

uint8 w_type;
uint8 w_spare[3];
uint32 w_phy_pipe_id;
atm_parms w_atm_parms;

};

Parameters

IOCTL_COMMAND

The ioc_cmd field in struct iocblk should be W_SET_ATM.

w_type Input. This should always be WAN_SET_ATM.

w_phy_pipe_id

Input. This is a unique identifier associated with the combination of the
time slots or ATM cell stream over which this ATM physical layer is
operating. This was specified using the W_SET_PHY_PIPE command by
the upper level.

w_atm_parms

Input. The following fields are defined for the structure:

w_alpha Input. This specifies the ALPHA value of the cell delineation
state diagram, the number of consecutive HEC errors before
going back to the HUNT state and reporting
WAN_LOST_ATM_ CELL_ SYNCH using
WAN_NOTIF_ATM. The default value is 7.

w_delta Input. This specifies the DELTA value of the cell delineation
state diagram and the number of consecutive cells with
correct HEC before entering the SYNCH state.

WAN_GAINED_ATM_CELL_SYNCH will be reported
using WAN_NOTIF_ATM, if this is not the first time WAN
enters SYNCH state. The default value is 8.
190 — W_SET_ATM — Define parameters for a physical layer of an ATM cell stream

Chapter 8: ATM (specific operations)
w_scrambler_flag

Input. This specifies whether the self-synchronizing scrambler
is to be applied to the cell payload data. Use the x**43 + 1
polynomial. This operation is defined in the ITU-T I.432 and
the ITU-T G.804 specifications. A value of 1 activates the
scrambler. The default value is 0, which does not perform
scrambling.

w_error_correction_flag

Input. This specifies whether single-bit errors in the cell
header are to be corrected. A value of 1 would make an
attempt to correct a single-bit error. The default value is 0,
which would not make an attempt to correct a single-bit error
and would discard the cell. It is suggested that this value be
set to 0, because DS1 or E1 lines incur multi-bit errors.

Currently, the WAN driver does not support this field.

Error codes

0 The command was successfully processed. The IOCTL is acknowledged
with M_IOCACK. In case of an error, an M_IOCNAK message is sent
back with the appropriate error code.

EINVAL The message size does not match.

ENXIO A severe hardware error has occurred. Run diagnostics to find out more
about the type of failure. A card reset might remove the problem.

ERANGE One or more parameters do not contain the proper value.

ENODEV The cell stream or physical pipe defined by the w_phy_pipe_id field is not
defined.

• It is assumed that synchronization will be achieved on a byte boundary, and
there is no need to perform a bit-by-bit synchronization.

• The ATM physical layer will be enabled when a WAN_REG is done for the
first time on this pipe by any VCC (stream). Likewise, the ATM physical layer
will be disabled when all VCCs (streams) associated with this pipe perform
W_DISABLE, or all streams are closed.

• ATM physical-layer parameters can be altered only when the ATM physical
layer is in the disabled state (that is, prior to the first WAN_REG, or after all
W_DISABLEs are performed).
W_SET_ATM — Define parameters for a physical layer of an ATM cell stream — 191

 ARTIC STREAMS Support WAN Driver Interface Reference
Figure 8-2. Message flow for W_SET_ATM

Upper Level WAN Driver

M_IOCTL + M_DATA

M_IOCACK

or

iocblk(W_SET_ATM)

iocblk(W_SET_ATM)

M_IOCNAK

iocblk(W_SET_ATM)

wan_set_atm_parms_ioc
192 — W_SET_ATM — Define parameters for a physical layer of an ATM cell stream

Chapter 8: ATM (specific operations)
W_GET_ATM — Obtain ATM physical-layer parameters and current state

This management command is used to retrieve ATM physical-layer parameters that
were set previously by the W_SET_ATM. It also returns the current state of the
ATM physical layer.

The following structure is associated with this command:

typedef struct _atm_state_ {
uint32 w_cell_delineation_state;
uint32 w_cell_hdr_start_bit;

atm_state;
}
struct wan_get_atm_ioc {

uint8 w_type;
uint8 w_spare[3];
uint32 w_phy_pipe_id;
atm_parms w_atm_parms;
atm_state w_atm_state;

};

Parameters

IOCTL_COMMAND

The ioc_cmd field in struct iocblk should be W_GET_ATM.

w_type Input. This should always be WAN_GET_ATM.

w_phy_pipe_id

Input. This is a unique identifier associated with the combination of the
time slots or ATM cell stream over which this ATM physical layer is
operating.

w_atm_parms

Output. See W_SET_ATM — Define parameters for a physical layer of
an ATM cell stream on page 190 for a description of the fields for this
structure.

w_atm_state
Output. Informs the upper level of the state of the physical layer:

w_cell_delineation_state

This represents the current state of the cell delineation state
machine and it can be one of the following values: HUNT,
PRESYNC, or SYNC.

w_cell_hdr_start_bit

This represents the bit position where bit synchronization
took place. Possible values range from 0–7, where 0
represents the
least-significant bit (rightmost).
W_GET_ATM — Obtain ATM physical-layer parameters and current state — 193

 ARTIC STREAMS Support WAN Driver Interface Reference
Error codes

0 The command was successfully processed. The IOCTL is acknowledged
with M_IOCACK. In case of an error, an M_IOCNAK message is sent
back with the appropriate error code.

EINVAL The message size does not match.

ENXIO A severe hardware error has occurred. Run diagnostics to find out more
about the type of failure. A card reset might remove the problem.

ENODEV The cell stream or physical pipe defined by the w_phy_pipe_id field is not
defined.

Figure 8-3. Message flow for W_GET_ATM

Upper Level WAN Driver

M_IOCTL + M_DATA

M_IOCACK

or

iocblk(W_GET_ATM)

iocblk(W_GET_ATM)

M_IOCNAK

iocblk(W_GET_ATM)

 wan_get_atm_ioc
194 — W_GET_ATM — Obtain ATM physical-layer parameters and current state

Chapter 8: ATM (specific operations)
W_GET_VCC_STATS — Get statistics for a virtual channel

This command is used for retrieving a virtual channel’s accumulated statistics from
the WAN Driver. These are maintained on a per-virtual-channel basis, and the
virtual channel is selected by specifying the proper value in the w_snid field. The
w_vcc_stats structure holds the returned statistics.

The following structure is associated with this command:

typedef struct _vcc_stats_ {
uint32 tx_total;
uint32 tx_oam_f5;
uint32 rx_total_OK;
uint32 rx_oam_f5;
uint32 rx_Err_A;
uint32 rx_Err_B;
uint32 rx_Err_C;
uint32 rx_Err_D;
uint32 rx_Err_E;
uint32 rx_Err_F;
uint32 rx_Err_G;
uint32 rx_nflow;

} vcc_stats;
struct wan_vcc_ioc {

uint8 w_type;
uint8 w_spare[3];
uint32 w_snid;
vcc_stats w_vcc_stats;

}

Parameters

IOCTL_COMMAND

The ioc_cmd field in struct iocblk should be W_GET_VCC_STATS.

w_type Input. This should always be WAN_GET_VCC_STATS.

w_snid Input. The subnetwork identifier associated with this stream or
virtual channel.

w_vcc_stats

Output. These are statistics collected since the last time the counters were
cleared. The following fields are defined for the structure:

tx_total Output. If this stream is a CPCS stream, this represents the
total number of CPCS SDUs that were transmitted. For all
others, this represents the number of cells that were
transmitted.

tx_oam_f5

Output. Total number of F5 OAM cells that were transmitted
on this VCC.
W_GET_VCC_STATS — Get statistics for a virtual channel — 195

 ARTIC STREAMS Support WAN Driver Interface Reference
rx_total_OK

Output. Total number of CPCS SDUs or cells that were
received without any errors.

rx_oam_f5

Output. Total number of F5 OAM cells that were received on
this VCC.

rx_Err_A Output. Total number of CPCS SDUs that were received with
Err_A or CRC-10 errors. See page 64 for an explanation
of Err_A.

rx_Err_B Output. Total number of CPCS SDUs that were received
with Err_B. See page 64 for an explanation of Err_B.

rx_Err_C Output. Total number of CPCS SDUs that were received
with Err_C. See page 64 for an explanation of Err_C.

rx_Err_D Output. Total number of CPCS SDUs that were received
with Err_D. See page 64 for an explanation of Err_D.

rx_Err_E Output. Total number of CPCS SDUs that were received
with Err_E. See page 64 for an explanation of Err_E.

rx_Err_F Output. Total number of CPCS SDUs that were received
with Err_F. See page 64 for an explanation of Err_F.

rx_Err_G Output. Total number of CPCS SDUs that were received
with Err_G. See page 64 for an explanation of Err_G.

rx_nflow Output. Total number of CPCS SDUs or OAM cells that were
dropped by the WAN driver. This happens when the upper
level has flow control of the WAN driver.

Error codes

0 The command was successfully processed. The IOCTL is acknowledged
with M_IOCACK. In case of an error, an M_IOCNAK message is sent
back with the appropriate error code.

EINVAL The message size does not match.

ENXIO A severe hardware error has occurred. Run diagnostics to find out more
about the type of failure. A card reset might remove the problem.

ENODEV Either the SNID cannot be found among the SNIDs, or the SNID format
cannot be deciphered.
196 — W_GET_VCC_STATS — Get statistics for a virtual channel

Chapter 8: ATM (specific operations)

Figure 8-4. Message flow for W_GET_VCC_STATS

Upper Level WAN Driver

M_IOCTL + M_DATA
 wan_vcc_ioc

M_IOCACK + M_DATA

or

iocblk(W_GET_VCC_STATS)

iocblk(W_GET_VCC_STATS)
M_IOCNAK

iocblk(W_GET_VCC_STATS)

 wan_vcc_ioc
W_GET_VCC_STATS — Get statistics for a virtual channel — 197

 ARTIC STREAMS Support WAN Driver Interface Reference
W_ZERO_VCC_STATS — Retrieve and clear statistics for a virtual channel

This command is used for retrieving a virtual channel’s accumulated statistics from
the WAN Driver and then clearing them. The virtual channel is selected by
specifying the proper value in the w_snid field. The w_vcc_stats structure holds the
returned statistics. See W_GET_VCC_STATS — Get statistics for a virtual
channel on page 195 for a description of the fields.

The following structure is associated with this command:

struct wan_vcc_ioc {
uint8 w_type;
uint8 w_spare[3];
uint32 w_snid;
vcc_stats w_vcc_stats;

}

Parameters

IOCTL_COMMAND

The ioc_cmd field in struct iocblk should be W_ZERO_VCC_STATS.

w_type Input. This should always be WAN_ZERO_VCC_STATS.

w_snid Input. The subnetwork identifier associated with this stream or virtual
channel.

w_vcc_stats

Output. These are statistics collected since the last time the counters were
cleared. The upper level is responsible for adding these numbers with the
previously acquired ones. See W_GET_VCC_STATS — Get statistics for
a virtual channel on page 195 for a description of the fields for this
structure.

Error codes

0 The command was successfully processed. The IOCTL is acknowledged
with M_IOCACK. In case of an error, an M_IOCNAK message is sent
back with the appropriate error code.

EINVAL The message size does not match.

ENXIO A severe hardware error has occurred. Run diagnostics to find out more
about the type of failure. A card reset may remove the problem.

ENODEV Either the SNID cannot be found among the SNIDs, or the SNID format
cannot be deciphered.
198 — W_ZERO_VCC_STATS — Retrieve and clear statistics for a virtual channel

Chapter 8: ATM (specific operations)

Figure 8-5. Message flow for W_ZERO_VCC_STATS

Upper Level WAN Driver

M_IOCTL + M_DATA

M_IOCACK + M_DATA

or

iocblk(W_ZERO_VCC_STATS)

iocblk(W_ZERO_VCC_STATS)
M_IOCNAK

iocblk(W_ZERO_VCC_STATS)

 wan_vcc_ioc

 wan_vcc_ioc
W_ZERO_VCC_STATS — Retrieve and clear statistics for a virtual channel — 199

 ARTIC STREAMS Support WAN Driver Interface Reference
W_GET_ATM_STATS — Get statistics for a physical ATM cell stream

This command is used for retrieving physical ATM cell stream-related statistics
from the WAN driver. These are maintained on a per-ATM-cell-stream basis, and
the cell stream is selected by specifying the proper value in the w_phy_pipe_id field.
The w_atm_stats structure holds the returned statistics.

The following structure is associated with this command:

typedef struct _atm_stats_ {
uint32 tx_atm_cells;
uint32 tx_oam_f5_cells;
uint32 tx_cong_cells;
uint32 tx_idles;
uint32 rx_atm_cells;
uint32 rx_oam_f5_cells;
uint32 rx_cong_cells;
uint32 rx_idles;
uint32 rx_discard;
uint32 rx_hec_errors;

} atm_stats;
struct wan_atm_ioc {

uint8 w_type;
uint8 w_spare[3];
uint32 w_phy_pipe_id;
atm_stats w_atm_stats;

};

Parameters

IOCTL_COMMAND

The ioc_cmd field in struct iocblk should be W_GET_ATM_STATS.

w_type Input. This should always be WAN_GET_ATM_STATS.

w_phy_pipe_id

Input. Unique identifier associated with this cell stream as returned by the
W_SET_PHY_PIPE command.

w_atm_stats

 Output. These are statistics collected since the last time the counters were
cleared. The following fields are defined for the structure:

tx_atm_cells

Output. Total number of ATM cells that were transmitted by
the ATM layer.

tx_oam_f5_cells

Output. Total number of F5 OAM cells that were transmitted
by the ATM layer.

tx_cong_cells

Output. Total number of congested cells that were
transmitted by the ATM layer.
200 — W_GET_ATM_STATS — Get statistics for a physical ATM cell stream

Chapter 8: ATM (specific operations)
tx_idles

Output. Total number of idle ATM cells that were
transmitted by the physical layer.

rx_atm_cells

Output. Total number of cells that were received for which a
virtual channel was opened by the upper level.

rx_oam_f5_cells

Output. Total number of F5 OAM cells that were received by
the ATM layer.

rx_cong_cells

Output. Total number of congested cells that were received
by the ATM layer.

rx_idles Output. Total number of idle cells that were received and
then discarded.

rx_discard

Output. Total number of cells that were discarded (not
including idles), because:

• A virtual channel (VCC is unknown) was not opened by
the upper level on this pipe.

• No buffers are left to hold the incoming user cells.

rx_hec_errors

Output. Total number of cells received with HEC errors.

Error codes

0 The command was successfully processed. The IOCTL is acknowledged
with M_IOCACK. In case of an error, an M_IOCNAK message is sent
back with the appropriate error code.

EINVAL The message size does not match.

ENXIO A severe hardware error has occurred. Run diagnostics to find out more
about the type of failure. A card reset might remove the problem.

ENODEV The pipe ID cannot be found among the pipe IDs.
W_GET_ATM_STATS — Get statistics for a physical ATM cell stream — 201

 ARTIC STREAMS Support WAN Driver Interface Reference

Figure 8-6. Message flow for W_GET_ATM_STATS

Upper Level WAN Driver

M_IOCTL + M_DATA

M_IOCACK + M_DATA

or

iocblk(W_GET_ATM_STATS)

iocblk(W_GET_ATM_STATS)

M_IOCNAK

iocblk(W_GET_ATM_STATS)

 wan_atm_ioc

 wan_atm_ioc
202 — W_GET_ATM_STATS — Get statistics for a physical ATM cell stream

Chapter 8: ATM (specific operations)
W_ZERO_ATM_STATS — Retrieve and clear statistics for a physical ATM
cell stream

This command is used for retrieving a physical ATM cell stream’s accumulated
statistics from the WAN driver and then clearing them. The physical ATM cell
stream is selected by specifying the proper value in the w_phy_pipe_id field. See
W_GET_ATM_STATS — Get statistics for a physical ATM cell stream on page 200
for a description of the fields for the w_atm_stats structure.

The following structure is associated with this command:

struct wan_atm_ioc {
uint8 w_type;
uint8 w_spare[3];
uint32 w_phy_pipe_id;
atm_stats w_atm_stats;

}

Parameters

IOCTL_COMMAND

The ioc_cmd field in struct iocblk should be W_ZERO_ATM_STATS.

w_type Input. This should always be WAN_ZERO_ATM_STATS.

w_phy_pipe_id

Input. The subnetwork identifier associated with this physical ATM
cell stream.

w_atm_stats

Output. These are statistics collected since the last time the counters were
cleared. The upper level is responsible for adding these numbers with the
previously acquired ones. See W_GET_ATM_STATS — Get statistics for
a physical ATM cell stream on page 200 for a description of the fields for
this structure.

Error codes

0 The command was successfully processed. The IOCTL is acknowledged
with M_IOCACK. In case of an error, an M_IOCNAK message is sent
back with the appropriate error code.

EINVAL The message size does not match.

ENXIO A severe hardware error has occurred. Run diagnostics to find out more
about the type of failure. A card reset might remove the problem.

ENODEV The pipe ID cannot be found among the pipe IDs.
W_ZERO_ATM_STATS — Retrieve and clear statistics for a physical ATM cell stream — 203

 ARTIC STREAMS Support WAN Driver Interface Reference

Figure 8-7. Message flow for W_ZERO_ATM_STATS

Upper Level WAN Driver

M_IOCTL + M_DATA

M_IOCACK + M_DATA

or

iocblk(W_ZERO_ATM_STATS)

iocblk(W_ZERO_ATM_STATS)
M_IOCNAK

iocblk(W_ZERO_ATM_STATS

 wan_atm_ioc

 wan_atm_ioc
204 — W_ZERO_ATM_STATS — Retrieve and clear statistics for a physical ATM cell stream

9 Extensions to Serial WAN driver
provided by RadiSys Chapter 9

This chapter provides extensions to the Serial WAN driver provided by RadiSys.
The Serial WAN driver is a combination of the existing Spider/Shiva X.25 WAN
driver, r8.0 and RadiSys proprietary implementation. For a description of Shiva’s
implementation of the Serial WAN driver, refer to SpiderX25 WAN Implementation
Guide, r8.0 by Spider Systems. This chapter describes only the RadiSys extensions.
The Serial WAN driver allows access to a device providing serial physical interfaces.
Serial interfaces are of the type:

• RS-232

• RS-422

• V.35

• V.36

• X.21

The Serial WAN driver operates in synchronous, asynchronous, and/or
bisynchronous modes, depending on the installed PMC or AIB. Not all interface
types are supported on all PMCs and AIBs.

Interacting with the Serial WAN driver
A non-clone open on the Serial WAN driver creates a stream to the Serial WAN
driver that can carry STREAMS messages for:

• Subnetwork identifier (SNID) assignment

• Upper-layer registration

• Data transfer control

• Transmission of frames

• Reception of frames

The SNID acts as the line identifier in all management commands. It allows
management commands to be carried on any of the streams opened to the Serial
WAN driver. The management commands include the following operations:

• Setting and obtaining configuration parameters for a line

• Clearing and obtaining statistics on the line

• Control of the interface address mapping
205

 ARTIC STREAMS Support WAN Driver Interface Reference
Serial WAN driver STREAMS interface
The STREAMS interface of the existing Serial WAN driver is composed of two
types of messages:

Service messages

M_PROTO messages that control and provide the reception or transmission of
frames for the line associated with the stream.

See the following messages and their descriptions for information.

• WAN_SID — Set subnetwork ID on page 51

• WAN_REG — Registration message — start hardware on page 54

• WAN_CTL — Connection management on page 56

• WAN_DAT — Data messages for transmission and reception on page 61

SS7-related service messages are described in Chapter 6, Signaling System
Number 7 (SS7) (specific operations) on page 103.

Management commands

M_IOCTL messages that allow management (parameters setting and statistics) of
the different lines.

See the following commands and their descriptions for information.

• W_GETSTATS — Get statistics on page 78

• W_ZEROSTATS — Clear channel statistics on page 81

STREAMS service message for the Serial WAN driver

Message Type Direction Structure and Parameters Use
WAN_NOTIFY Up wan_nty

• Status being reported
• Extra diagnostic

information

To inform the upper level
that an unsolicited status
change has occurred in
the hardware.
206

Chapter 9: Extensions to Serial WAN driver provided by RadiSys
WAN_NOTIFY — Notification of errors

This message notifies the upper process of a hardware error or change in control
signals. The following structure is associated with this M_PROTO message:

struct wan_nty {
uint8 w_type;
uint8 w_spare[3];
uint32 w_snid;
uint32 w_eventstat;
uint32 w_reserved1;
uint32 w_reserved2;

}

Parameters

w_type Output. This is set to WAN_NOTIFY.

w_snid Output. The subnetwork identifier. See WAN_SID — Set subnetwork
ID on page 51 for a description of the wan_snid parameter.

w_eventstat

Output. When an event occurs, the appropriate bit is set to 1. One or
more of the events are set, depending on which events were defined in the
w_notifymask field of the W_SETLINE command. See page 211 for a
description of the events.

Figure 9-1. Message flow for WAN_NOTIFY

Upper Level WAN Driver

M_PROTO
wan_nty
WAN_NOTIFY — Notification of errors — 207

 ARTIC STREAMS Support WAN Driver Interface Reference
STREAMS management commands for the Serial WAN driver
The management of the WAN driver is performed through the ioctl system call
mechanism using the I_STR command of STREAMS. All ioctl system calls are
replied to by the WAN driver by setting the ioctl message block type to M_IOCACK
or M_IOCNAK for success or failure, and calling qreply to return the message to
the user level.

ioctl Command M_DATA content
besides SNID Use See

Page

W_SETLINE wan_setlinef and
table of tuning values

To set the configurable parameters for a
line

209

W_GETLINE wan_setlinef and
table of tuning values

To obtain the configurable parameters for
a line

220

W_SETSIG wan_setsigf and
Signals bit map

To control the modem control signals 221

W_GETSIG wan_setsigf and
Signals bit map

To obtain the modem control signals 223

W_RESET wan_resetf To reset the Serial Communication
Controller

225

W_SENDBREAK wan_sendbreakf To send break signal in asynchronous
communications

227

W_SETMODE wan_setmodef To set the operating mode in
asynchronous communications

229

W_STATIONADDR wan_stationaddrf and
address of the station
for receiving data
frames

To control address filtering 231
208

Chapter 9: Extensions to Serial WAN driver provided by RadiSys
W_SETLINE — Define line characteristics

This command is used to set the configurable parameters of the line characteristics.

The W_SETLINE and W_GETLINE extension commands are functionally
equivalent to the W_SETTUNE and W_GETTUNE commands, except that
W_SETLINE supports more configurable options. The use of only one of these two
commands is supported if the defaults are not sufficient.

To change the supported configuration parameters using the W_SETLINE
command, the port must be in an open state but not yet registered.

• To change configuration parameters for w_maxdatasize and w_bitratetrans
on a port that is sending or receiving data, the port must be closed and
reopened, and the W_SETLINE command must be issued before the
registration (WAN_REG) command.

• For BISYNC, it is always necessary to issue a W_SETLINE command when
specifying BISYNC protocol, because HDLC is the default protocol. If any
W_SETLINE parameters need to be changed, the port must be closed and
then opened before another W_SETLINE can be done.

• To use the X.21 interface, you must issue the W_SETLINE command with the
w_porttype parameter equal to WAN_X21 and have the X.21 cable
attached. You need to do this to initialize the hardware into X.21 mode.
W_SETLINE — Define line characteristics — 209

 ARTIC STREAMS Support WAN Driver Interface Reference
The following structure is associated with this command:

struct sync_setline {
uint8 w_encoding;
uint8 w_crc;
uint8 w_shareflag;
uint8 w_idlepat;
uint8 w_options;
uint8 w_cptype;
uint8 w_extspeed;
uint8 w_elementtiming;

}

struct async_setline {
uint8 w_stopbits;
uint8 w_parity;
uint8 w_transmode;
uint8 w_xonchar;
uint8 w_xoffchar;
uint8 w_spare[3];

}

struct wan_setlinef {
uint8 w_type;
uint8 w_spare[3];
uint32 w_snid;
uint32 w_wanver;
uint32 w_notifymask;
uint16 w_maxdatasize;
uint16 w_reserved;
uint8 w_portmode;
uint8 w_connmask;
uint8 w_commtype;
uint8 w_databits;
uint8 w_porttype;
uint8 w_maxtransmits;
uint32 w_bitratercv;
uint32 w_bitratetrans;
uint8 w_spare2[8];
union {

struct sync_setline s_params;
struct async_setline a_params;

}params;
};

Parameters

IOCTL_COMMAND

Input. The ioc_cmd field in struct iocblk should be W_SETLINE.

w_type Input. This is set to WAN_SETLINE.

w_snid Input. The subnetwork identifier. See the description of the wan_snid
parameter on page 51.

w_wanver Input. This field is used to coordinate version numbers with the upper
level. This command is not supported. Use the W_GETDRVINFO
command to get the WAN version.
210 — W_SETLINE — Define line characteristics

Chapter 9: Extensions to Serial WAN driver provided by RadiSys
w_notifymask

Input. A set of bits indicating which events cause notification to the
upper level:

W_RECEIVE_BUFFER_OVFL

The receive buffer is not big enough.

W_FRAMING_ERROR

• CRC error for synchronous mode

• Invalid frame type for bisynchronous mode

W_TIMEOUT

Receive timeout

W_HD_OVERRUN

Hardware overrun error

W_ATTACHED_DEV_INACT

No clock from attached device. This function is supported
only for the X.21 electrical interface. Some of the multiple
causes of device inactive conditions are:

• Cable clocking problems

• Local attached device powered-off or malfunctioning

• Cable disconnected

W_ATTACHED_DEV_ACTIVE

Clock received from attached device. This function is
supported only for the X.21 electrical interface.

W_FCS_ERR

Error in FCS calculation

W_CTS_ON CTS signal asserted

W_CTS_OFF

CTS signal negated

W_DCD_ON DCD signal asserted

W_DCD_OFF DCD signal negated

W_DSR_ON DSR signal asserted

W_DSR_OFF

DSR signal negated

W_RI_ON RI signal asserted

W_RI_OFF RI signal negated

W_PARITY_ERROR

Parity error

W_BREAK_DETECTED

Break detected in asynchronous mode
W_SETLINE — Define line characteristics — 211

 ARTIC STREAMS Support WAN Driver Interface Reference
W_SHORT_FRAME

SDLC short frame

W_TX_UNDERRUN

Transmit DMA underrun

W_ABORT SDLC abort frame

W_RCL_NOTZERO

SDLC RCL not zero. Last character of I frame did not have
correct size.

W_BSC_PAD_ERR

BISYNC pad error

W_CTS_UNDERRUN

CTS signal negated during transmission

w_maxdatasize

Input. The maximum transmit or receive data size. The Serial WAN
driver will add an additional byte to w_maxdatasize before allocating
receive buffers. The default is 256 for synchronous and 2048 for
asynchronous mode.

w_portmode

Input. Options for port mode:

W_NO_CHANGE

No change to previous selection of default.

W_ASYNC_3309_FRM

OSI 3309 asynchronous framing mode

W_ASYNC_AWP2224_FRM

AWP224 framing

W_SYNC Synchronous HDLC Framing

W_BSC BISYNC protocol. The WAN strips leading and ending
control characters before giving received characters to upper
level.
212 — W_SETLINE — Define line characteristics

Chapter 9: Extensions to Serial WAN driver provided by RadiSys
w_connmask

Input. A byte that defines the control-signal connections. The byte is a
series of bit flags, one per control signal. The following provides the bit
assignments for each control signal. The default is all control signal lines
connected for synchronous mode. This option is not supported for X.21;
the X.21 is leased-line only and defaults to the leased-line value.

W_RTS_CONNECT

Connect RTS

W_CTS_CONNECT

Connect CTS

W_DSR_CONNECT

Connect DSR

W_DTR_CONNECT

Connect DTR

W_DCD_CONNECT

Connect DCD

W_RI_CONNECT

Connect RI

w_commtype

Input. Indicates if the line is duplex. The following values are valid for
this parameter:

W_NO_CHANGE

No change to previous selected value.

W_DUPLEX Duplex. This is the default.

W_H_DUPLEX

Half duplex. This is ignored for BISYNC, which is
half-duplex only.
W_SETLINE — Define line characteristics — 213

 ARTIC STREAMS Support WAN Driver Interface Reference
w_databits

Input. The number of data bits per character. The following values are
valid for this parameter:

W_NO_CHANGE

No change to previous selected value.

W_5_BPC 5 bits per character

W_6_BPC 6 bits per character

W_7_BPC 7 bits per character

W_8_BPC 8 bits per character. This is the default.

w_porttype

Input. Except for the WAN_T1E1 field, the fields for w_porttype are the
same as those for the WAN_interface field for W_SETTUNE. See
W_SETTUNE — Set configuration on page 83 for a description of the
fields.

• WAN_V35

• WAN_V36

• WAN_RS232

• WAN_RS422

• WAN_2PORT_2TYPE

• WAN_X21

• For BISYNC, w_databits is ignored.
• If w_encoding is:

– W_BSC_ASCII, the w_databits value will be set to W_7_BPC
– W_BSC_EBCDIC, the w_databits value will be set to W_8_BPC

• When the cable type is selected using the W_SETLINE command’s
w_porttype parameter, the Serial WAN driver will test the cable type attached
and select the interface based on the cable attached. Issue a W_GETLINE
command to verify the cable type attached.

• To use the X.21 electrical interface, a W_SETLINE command must be issued
with the w_porttype parameter set to WAN_X21, with the X.21 cable
attached. If this is not done, the X.21 cable can be used without the X.21
electrical interface.
214 — W_SETLINE — Define line characteristics

Chapter 9: Extensions to Serial WAN driver provided by RadiSys
w_maxtransmits

Input. The number of outstanding incomplete transmit commands
(not supported)

w_bitratercv

Input. Not used for synchronous applications. The receive clock is always
external. See the following w_bitratetrans field for the values for
this parameter.

w_bitratetrans

Input. The number of bits per second at which the communication chips
should receive and transmit data.

For HDLC, the fields for w_bitratetrans are the same as those for the
WAN_baud field for W_SETTUNE. See W_SETTUNE — Set
configuration on page 83 for a description of the fields.

• W_EXT_CLK_VERF_TXC

• W_DCE_INT_XTC_EXT_RXC

• W_DCE_INT_XTC_INT_RXC

• W_DTE_CLK_FROM_TXC

• W_DTE_TX_FROM_TXC_RX_FROM_RXC

w_stopbits

Input. The number of stop bits to be used by the asynchronous
transmitter and receiver circuits for character encoding and decoding.
This parameter is asynchronous-specific.

W_NO_CHANGE

No change to default or selected value.

W_1_STOP_BIT

1 stop bit.

W_15_STOP_BIT

1.5 stop bits.

W_2_STOP_BIT

2 stop bits.

w_parity Input. Parity is the parity used for each character encoding and decoding.
This parameter is asynchronous-specific. The following values are valid
for this parameter:

W_NO_CHANGE

No change to default or selected value.

W_NO_PARITY

No parity.

W_EVEN_PARITY

Even parity.

W_ODD_PARITY

Odd parity.
W_SETLINE — Define line characteristics — 215

 ARTIC STREAMS Support WAN Driver Interface Reference
w_transmode

Input. This parameter defines the transparency mode for the port. This
parameter is asynchronous-specific. The following values are valid for
this parameter:

W_NO_CHANGE

No change to default or selected value.

W_FLOW_CNTL_TRANS

Flow-control transparency.

W_FULL_TRANS

Full transparency.

w_xonchar

Input. This byte contains the XON character (not supported). This
parameter is asynchronous-specific.

w_xoffchar

Input. This byte contains the XOFF character (not supported). This
parameter is asynchronous-specific.

w_encoding

Input. The data encoding method to be used. The following values are
valid for this parameter:

W_NO_CHANGE

No change to default or selected value

W_NRZ NRZ

W_NRZI NRZI

W_FM1 FM1

W_FM0 FM0

If w_portmode is W_BSC, the following values are valid for this
parameter:

W_BSC_ASCII

ASCII BISYNC. This is the default.

W_BSC_EBCDIC

EBCDIC BISYNC
216 — W_SETLINE — Define line characteristics

Chapter 9: Extensions to Serial WAN driver provided by RadiSys
w_crc Input. The CRC indicates which CRC calculation and which preset
values are to be used. The following values are valid for this parameter:

W_NO_CHANGE

No change to default or selected value.

W_CRC_CCITT_0

CRC-CCITT, preset to 0’s.

W_CRC_CCITT_1

CRC-CCITT, preset to 1’s. This is the default.

W_CRC16_0

CRC-16, preset to 0’s.

W_CRC16_1

CRC-16, preset to 1’s.

W_LRC8_0 LRC-8, preset to 0’s.

w_shareflag

Input. Indicates if the frame synchronization flags should be shared, if
possible, when processing WRITE commands. Sharing the flags means
that the closing flag of the last transmitted frame becomes the starting
flag of the new outgoing frame.

W_NO_SHARE_FLAG

Do not share flags.

W_SHARE_FLAG

Share flags. This is the default.

w_idlepat

Input. The pattern sent when the link connection is in an idle state.

W_NO_CHANGE

Do not change chosen pattern.

W_MARK Mark pattern. This is the default.

W_FLAG Flag pattern.

• For BISYNC, w_crc is ignored.
• If w_encoding is:

– W_BSC_ASCII, the w_crc value will be set to W_LRC8_0
– W_BSC_EBCDIC, the w_crc value will be set to W_CRC16_0

For BISYNC, w_idlepat is ignored because BISYNC will idle marks,
except after transmission of an ITB message, in which case BISYNC
will idle SYNs.
W_SETLINE — Define line characteristics — 217

 ARTIC STREAMS Support WAN Driver Interface Reference
w_options

Input. Options for addressing.

W_NO_TRANSLATE

No address translation.

W_TRANSLATE

Address translation. (This option is not supported.)

w_cptype

Input. Call control procedure. The following value is valid for
this parameter:

W_NO_CP

No call control procedure supported.

w_extspeed

Output. Returns the external line speed. (This option is not supported.)

w_elementtiming

Input. Identifies if DCE signal element timing is supported for X.21. This
option supports the following parameters:

DCE_SET_SUPPORTED

Set this parameter if the DCE supports signal element timing.
This causes the WAN to set hardware parameters that
synchronize data with the clock signal. This parameter is
recommended for high speeds.

DCE_SET_NOT_SUPPORTED

Set this parameter if the DCE does not support signal element
timing. The WAN will not program the hardware to output
the clock back to the DCE.

Error codes

0 The command was successfully processed. The IOCTL is acknowledged
with M_IOCACK in the reverse direction. In case of an error, an
M_IOCNAK message is sent upstream with the appropriate error code.

EINVAL The message size does not match.

ENODEV Either the SNID cannot be found among the port SNIDs, or the SNID
format cannot be deciphered.

ECONNREFUSED
Incorrect version of the WAN driver.

E2BIG The host’s maximum receive-buffer size is too small to hold the largest
frame.
218 — W_SETLINE — Define line characteristics

Chapter 9: Extensions to Serial WAN driver provided by RadiSys
Figure 9-2. Message flow for W_SETLINE

Upper Level WAN Driver

M_IOCTL + M_DATA
iocblk(W_SETLINE) wan_setlinef

 M_IOCNAK
 iocblk(W_SETLINE)

or

M_IOCACK
iocblk(W_SETLINE)
W_SETLINE — Define line characteristics — 219

 ARTIC STREAMS Support WAN Driver Interface Reference
W_GETLINE — Get line characteristics

This is an IOCTL command with the ioc_cmd field in struct iocblk set to
W_GETLINE.

This command returns the line configuration values to the upper level. The
parameters were previously configured by a W_SETLINE command, or the default
values were used if the upper level has not configured the line.

There is no structure associated with this command. It is passed in the wan_setlinef
structure with the w_type field set to WAN_GETLINE. See W_SETLINE — Define
line characteristics on page 209 for more details on the structure.

Error codes

0 The command was successfully processed. The IOCTL is acknowledged
with M_IOCACK in the reverse direction. In case of an error, an
M_IOCNAK message is sent upstream with the appropriate error code.

EINVAL The message size does not match.

ENODEV Either the SNID cannot be found among the port SNIDs, or the SNID
format cannot be deciphered.

Figure 9-3. Message flow for W_GETLINE

Upper Level WAN Driver

M_IOCTL + M_DATA
iocblk(W_GETLINE) wan_setlinef

 M_IOCNAK
 iocblk(W_GETLINE)

or

M_IOCACK
iocblk(W_GETLINE)
220 — W_GETLINE — Get line characteristics

Chapter 9: Extensions to Serial WAN driver provided by RadiSys
W_SETSIG — Output signal control

This command allows the process to control the state of the output control signals.

The following structure is associated with this command:

typedef struct wan_setsig {
uint8 w_ctrlsignal;
uint8 w_reserved1[3];

}wan_setsig_t;

struct wan_setsigf {
uint8 w_type;
uint8 w_spare[3];
uint32 w_snid;
wan_setsig_t wan_setsig;

};

Parameters

IOCTL_COMMAND

Input. The ioc_cmd field in struct iocblk should be W_SETSIG.

w_type Input. This is set to WAN_SETSIG.

w_snid Input. The subnetwork identifier. See WAN_SID — Set subnetwork
ID on page 51 for a description of the wan_snid parameter.

w_ctrlsignal

Input. Indicates the state of the output control signals and which input
signals are required for transmission. CTRLSIGNAL is used for all
electrical interfaces.

The signals are controlled by the process setting the appropriate bits.

W_RTS_HIGH

RTS is set high.

W_DTR_HIGH

DTR is set high.

W_RTS_LOW RTS is set low.

W_DTR_LOW DTR is set low.

Error codes

0 The command was successfully processed. The IOCTL is acknowledged
with M_IOCACK in the reverse direction. In case of an error, an
M_IOCNAK message is sent upstream with the appropriate error code.

EINVAL The message size does not match.

ENODEV Either the SNID cannot be found among the port SNIDs, or the SNID
format cannot be deciphered.

This command is not recommended for X.21 protocol as the WAN is setting
and timing signals.
W_SETSIG — Output signal control — 221

 ARTIC STREAMS Support WAN Driver Interface Reference
Figure 9-4. Message flow for W_SETSIG

Upper Level WAN Driver

M_IOCTL + M_DATA
iocblk(W_SETSIG) wan_setsigf

 M_IOCNAK
 iocblk(W_SETSIG)

or

M_IOCACK
iocblk(W_SETSIG)
222 — W_SETSIG — Output signal control

Chapter 9: Extensions to Serial WAN driver provided by RadiSys
W_GETSIG — Return the states of control

This command allows the WAN driver to return the current control signals.

The structure is the same as for the W_SETSIG command. See W_SETSIG —
Output signal control on page 221 for more details.

Parameters

IOCTL_COMMAND

Input. The ioc_cmd field in struct iocblk should be W_GETSIG.

w_type Input. This is set to WAN_GETSIG.

w_snid Input. The subnetwork identifier. See the description of the wan_snid
parameter on page 51.

w_ctrlsignal

Output. Indicates the state of the input and output control signals.

W_RTS_HIGH

RTS is high. (RTS denotes C signal in X.21.)

W_DTR_HIGH

DTR is high.

W_DCD_HIGH

DCD is high.

W_DSR_HIGH

DSR is high.

W_CTS_HIGH

CTS is high. (CTS denotes I signal for X.21.)

W_RI_HIGH RI is high.
W_GETSIG — Return the states of control — 223

 ARTIC STREAMS Support WAN Driver Interface Reference
Error codes

0 The command was successfully processed. The IOCTL is acknowledged
with M_IOCACK in the reverse direction. In case of an error, an
M_IOCNAK message is sent upstream with the appropriate error code.

EINVAL The message size does not match.

ENODEV Either the SNID cannot be found among the port SNIDs, or the SNID
format cannot be deciphered.

Figure 9-5. Message flow for W_GETSIG

Upper Level WAN Driver

M_IOCTL + M_DATA
iocblk(W_GETSIG) wan_setsigf

 M_IOCNAK
 iocblk(W_GETSIG)

or

M_IOCACK
iocblk(W_GETSIG)
224 — W_GETSIG — Return the states of control

Chapter 9: Extensions to Serial WAN driver provided by RadiSys
W_RESET — Reset communications chip

This command resets the Serial Communication Controller interface hardware for a
port.

The following structure is associated with this command:

typedef struct wan_reset {
uint8 w_resettype;
uint8 w_reserved1[3];

}wan_reset_t;

struct wan_resetf {
uint8 w_type;
uint8 w_spare[3];
uint32 w_snid;
wan_reset_t wan_reset;

};

Parameters

IOCTL_COMMAND

Input. The ioc_cmd field in struct iocblk should be W_RESET.

w_type Input. This is set to WAN_RESET.

w_snid Input. The subnetwork identifier. See the description of the wan_snid
parameter on page 51.

w_resettype

Input. This identifies the type of reset requested. A soft reset clears the
read and write queues, but continues to use the line configuration
parameters from W_SETTUNE and W_SETLINE. A hard reset returns
the port to default values and clears both queues.

W_SOFT_RESET

Soft reset.

W_HARD_RESET

Hard reset.

Error codes

0 The command was successfully processed. The IOCTL is acknowledged
with M_IOCACK in the reverse direction. In case of an error, an
M_IOCNAK message is sent upstream with the appropriate error code.

EINVAL The message size does not match.

ENODEV Either the SNID cannot be found among the port SNIDs, or the SNID
format cannot be deciphered.
W_RESET — Reset communications chip — 225

 ARTIC STREAMS Support WAN Driver Interface Reference

Figure 9-6. Message flow for W_RESET

Upper Level WAN Driver

M_IOCTL + M_DATA
iocblk(W_RESET) wan_resetf

 M_IOCNAK
 iocblk(W_RESET)

or

M_IOCACK
iocblk(W_RESET)
226 — W_RESET — Reset communications chip

Chapter 9: Extensions to Serial WAN driver provided by RadiSys
W_SENDBREAK — Send break character

This is an asynchronous-only command. It causes the WAN driver to transmit a
break signal for one character time plus 50 times the duration value. The maximum
break duration is 500 ms or a w_duration value of 0xa.

The following structure is associated with this command:

typedef struct wan_sendbreak {
uint16 w_duration;
uint16 reserved1;

}wan_sendbreak_t;

struct wan_sendbreakf {
uint8 w_type;
uint8 w_spare[3];
uint32 w_snid;
wan_sendbreak_t wan_sendbreak;

};

Parameters

IOCTL_COMMAND

Input. The ioc_cmd field in struct iocblk should be W_SENDBREAK.

w_type Input. This is set to WAN_SENDBREAK.

w_snid Input. The subnetwork identifier. See the description of the wan_snid
parameter on page 51.

w_duration

Input. This is the time in 50-ms units for the break signal.

Error codes

0 The command was successfully processed. The IOCTL is acknowledged
with M_IOCACK in the reverse direction. In case of an error, an
M_IOCNAK message is sent upstream with the appropriate error code.

EINVAL The message size does not match.

ENODEV Either the SNID cannot be found among the port SNIDs, or the SNID
format cannot be deciphered.
W_SENDBREAK — Send break character — 227

 ARTIC STREAMS Support WAN Driver Interface Reference

Figure 9-7. Message flow for W_SENDBREAK

Upper Level WAN Driver

M_IOCTL + M_DATA
iocblk(W_SENDBREAK) wan_sendbreakf

 M_IOCNAK
 iocblk(W_SENDBREAK)

or

M_IOCACK
iocblk(W_SENDBREAK)
228 — W_SENDBREAK — Send break character

Chapter 9: Extensions to Serial WAN driver provided by RadiSys
W_SETMODE — Set port mode

This command sets the operating mode for this port.

The following structure is associated with this command:

typedef struct wan_setmode {
uint16 w_mode;
uint16 reserved1;

}wan_setmode_t;

struct wan_setmodef {
uint8 w_type;
uint8 w_spare[3];
uint32 w_snid;
wan_setmode_t wan_setmode;

};

Parameters

IOCTL_COMMAND

Input. The ioc_cmd field in struct iocblk should be W_SETMODE.

w_type Input. This is set to WAN_SETMODE.

w_snid Input. The subnetwork identifier. See the description of the wan_snid
parameter on page 51.

w_mode Input. The port mode parameter must be:

W_NDIS NDIS protocol.

W_CONN_MANGT

Connection management. This is the default.

Error codes

0 The command was successfully processed. The IOCTL is acknowledged
with M_IOCACK in the reverse direction. In case of an error, an
M_IOCNAK message is sent upstream with the appropriate error code.

EINVAL The message size does not match.

ENODEV Either the SNID cannot be found among the port SNIDs or the SNID
format cannot be deciphered.
W_SETMODE — Set port mode — 229

 ARTIC STREAMS Support WAN Driver Interface Reference

Figure 9-8. Message flow for W_SETMODE

Upper Level WAN Driver

M_IOCTL + M_DATA
iocblk(W_SETMODE) wan_setmodef

 M_IOCNAK
 iocblk(W_SETMODE)

or

M_IOCACK
iocblk(W_SETMODE)
230 — W_SETMODE — Set port mode

Chapter 9: Extensions to Serial WAN driver provided by RadiSys
W_STATIONADDR — Set filtering address

This command sets the filtering address for HDLC protocol, if the default station
address (0xff) is not desired.

The following structure is associated with this command:

typedef struct wan_stationaddr {
uint16 w_stationaddr;
uint8 w_sasize;
uint8 w_reserved3[16];

}wan_stationaddr_t;

struct wan_stationaddrf {
uint8 w_type;
uint8 w_spare[3];
uint32 w_snid;
wan_stationaddr_t wan_stationaddr;

};

Parameters

IOCTL_COMMAND

Input. The ioc_cmd field in struct iocblk should be W_STATIONADDR.

w_type Input. This is set to WAN_STATIONADDR.

w_snid Input. The subnetwork identifier. See the description of the wan_snid
parameter on page 51.

w_stationaddr

Input.

• The address of the station for receiving data frames. The address
contained in the data frame must match this address or the broadcast
address (FFh or FFFFh) for the frame’s acceptance.

• A value of 0 turns off address filtering. This is the default. If the
station address is one byte, the application must ensure that the high
byte of the parameter is 0. To disable address filtering, set the
w_stationaddr parameter to 0 and the w_sasize parameter to 1 or 2.

• For BISYNC, the poll or select address of the station for receiving
data messages. The message containing the address must be of the
format D ENQ, where D is a 1- or 2-byte address. The address in the
ENQ message must match the poll or select address, or the broadcast
address (FFh or FFFFh) for the message’s acceptance. All further
messages will be accepted until an EOT is received. To begin
receiving messages again, an ENQ with the correct address must be
received.

Setting w_stationaddr to 0000h turns off address filtering. This is
the default.
W_STATIONADDR — Set filtering address — 231

 ARTIC STREAMS Support WAN Driver Interface Reference
w_sasize Input. Indicates the size of the station address. The default size is one
byte.

W_NO_CHANGE

This option is not supported.

W_1BYTE_ADDR

1-byte station address.

W_2BYTE_ADDR

2-byte station address.

Error codes

0 The command was successfully processed. The IOCTL is acknowledged
with M_IOCACK in the reverse direction. In case of an error, an
M_IOCNAK message is sent upstream with the appropriate error code.

EINVAL The message size does not match.

ENODEV Either the SNID cannot be found among the port SNIDs, or the SNID
format cannot be deciphered.

Figure 9-9. Message flow for W_STATIONADDR

Upper Level WAN Driver

M_IOCTL + M_DATA
iocblk(W_STATIONADDR) wan_stationaddrf

 M_IOCNAK
 iocblk(W_STATIONADDR)

or

M_IOCACK
iocblk(W_STATIONADDR)
232 — W_STATIONADDR — Set filtering address

10 Configuration and program
development Chapter 10

This chapter provides WAN driver load-time configuration, initial port
characteristics, and program development information.

Executable files required for ARTIC environments
Because the WAN driver is an On-Card STREAMS Subsystem (OSS) driver,
after resetting the card, depending on the environment (ARTIC960 or ARTIC
1000/2000 Series), you must load the ARTIC executable files in the order listed
before loading WAN drivers on the card.

These executable files are supplied with the RadiSys ARTIC runtime support. A
basic load script or command file is also supplied. The order for loading these
executable files is the same order as that shown in the following sections, unless
overridden by the supplied load script or specified otherwise in the guide and
reference publications for the ARTIC960 or ARTIC 1000/2000 Series
environment.

ARTIC960 environment

1. ric_kern.rel

The on-card base operating system. See 7. ric_skrn.rel on page 234, which
can be used instead of ric_kern.rel.

2. ric_pci.rel

The local PCI-bus configuration device driver that identifies PCI resources
located on the PMC.

3. ric_oss.rel

The on-card STREAMS emulation system. See 7. ric_skrn.rel on page 234,
which can be used instead of ric_oss.rel.

4. ric_mcio.rel

The peer-to-peer and system-unit access subsystem. This is required only if
ric_scb.rel is to be loaded.

5. ric_scb.rel

The SCB (subsystem control block) protocol-handler subsystem. This is
required only if the cross-bus driver requires it. Check the cross-bus driver
documentation for its requirements. For the SCB to work correctly, the
system-unit utility riccnfg needs to be run on the host system. The riccnfg
utility sets up the communication areas for SCB between the ARTIC cards
and the system units.
233

 ARTIC STREAMS Support WAN Driver Interface Reference
6. ric_ess.rel

The cross-bus driver for all RadiSys solutions based on the STREAMS
environment. This requires that ric_scb.rel be loaded.

7. ric_skrn.rel

This combines the functions ric_kern.rel and ric_oss.rel to improve
performance. If you load ric_skrn.rel, you must load it first, to replace
1. ric_kern.rel on page 233 and 3. ric_oss.rel on page 233.

ARTIC 1000/2000 Series environment

1. rpq_skrn.rel

The on-card STREAMS-based operating system.

2. rpq_cxb.rel

The cross-bus driver that provides STREAMS message transfers to and from the
host environment.

Load WAN drivers
After successful loading of the basic support, the WAN driver can be loaded.
Choose the correct executable file based on the protocol needed and the hardware
installed on the card. For the required hardware type and the .rel file, see Table 1-3,
“Summary of supported hardware with ARTIC adapters,” on page 4 for the
ARTIC960 and ARTIC 1000/2000 Series environments.

Unless the driver is loaded, the mismatch between the driver and the hardware
cannot be known. The base support may not detect and inform the type of
mezzanine hardware installed. However, the WAN driver will query the hardware
during its initialization and abort if a mismatch is detected.

After being loaded, the WAN driver analyzes the command-line parameters and
proceeds to do the static initialization. During this process, it queries the hardware
and gets static resources based on the hardware configuration and the command-
line options. A success or failure at this step results in the driver process being
unloaded from the card. You can learn if there is a failure to load the driver
successfully by setting the wait option on the load command for the driver.

For details on the Application Loader utility, refer to the guide and reference
publications for the ARTIC960 or ARTIC 1000/2000 Series environment. See
Reference publications on page xiv for a list of RadiSys reference books.

See Table 10-2 on page 241 for a list of the initialization errors.
234

Chapter 10: Configuration and program development
Command-line parameters
The WAN drivers take command-line parameters for the various load-time options
that are mentioned throughout this book. These parameters can be specified using
the Application Loader utility. Refer to the appropriate RadiSys reference book for
your adapter for information on how to specify the Application Loader parameters.
See Reference publications on page xiv for a list of RadiSys reference books.

The parameters are specified as follows:

• <Name>=<Value> with no intervening space

• A space separates two parameter specifications.

• In a parameter file, a new line also separates parameter specifications.

• Character strings are not case-sensitive.

• Numbers can be specified in C style; for example, decimal 20 could be specified
as 0x14.

MAX_NON_CLONE

Integer. This defines the maximum number of non-clone opens for the
WAN driver. The value can be 0 or a positive number, but cannot be
more than MAX_OPENS.

For the default, see Table 1-3 on page 4 for the maximum number of
logical channels for the hardware.

MAX_OPENS

Integer. This indicates the total number of streams to be opened to the
WAN driver. The number is based on the logical channels for the
hardware, the desired number of clone opens for normal protocol
operation, and those for activities such as configuration, monitoring, and
control.

This parameter must be nonzero and greater than, or equal to, the
MAX_NON_CLONE parameter.

The default is the maximum number of data streams the hardware can
support plus 1.

SNID_DECODE

This parameter controls whether the SNID in commands and messages is
to be decoded and, if yes, then how. See WAN_SID — Set subnetwork
ID on page 51 for more details on the decoding methods. Possible values
are:

• YES — SNID decoding is performed. Not supported in ATM mode
or with pipes.

• NO — No SNID decoding is performed. This is the default.
235

 ARTIC STREAMS Support WAN Driver Interface Reference
SNID_KEY Integer. See WAN_SID — Set subnetwork ID on page 51 for details.

The default is the ASCII code for character ‘c’ (0x63).

DATA_MSG_ONLY

This parameter controls whether the WAN driver uses the WAN_DAT
interface, where an M_PROTO header is attached to every data block in
either direction. Setting it to YES eliminates the overhead incurred during
the normal data path. Setting DATA_MSG_ONLY to YES is not
supported for BISYNC. Possible values and the default values are as
follows:

YES — Defaults to YES if ONE_DATA_MSG_ONLY is set to YES.

NO — Defaults to NO if ONE_DATA_MSG_ONLY is set to NO.

ONE_DATA_MSG_ONLY

Possible values are:

• YES — There will not be an M_PROTO header for the WAN_DAT
interface, and the data will be contained in one block in either
direction.

• NO (Default)

TEST_INTERFACE

Possible values are:

• YES — Tests the hardware by performing an internal loopback at
driver initialization time. The driver will not load if errors are found.

• NO (Default)

TX_BLKS Integer. This is a performance-tuning parameter, and it defines the total
number of DMA blocks available for transmit processing.

When running HSL, this parameter should be in the range 50–70.

• For the Multiplexed WAN driver, the default is 20 per channel.

• For the Serial WAN driver, the default is 40 per port.

RX_BLKS Integer. This is a performance-tuning parameter, and it defines the total
number of DMA blocks available for receive processing.

When running HSL, this parameter should be in the range 50–70.

• For the Multiplexed WAN driver, the default is 20 per channel.

• For the Serial WAN driver, the default is 17 per port.

RX_HDR_SPACE

Integer. This parameter governs how much space the WAN driver should
leave in the first M_DATA block. This is useful for the upper layers to
put information regarding this block.

The default is 0.
236

Chapter 10: Configuration and program development
W_SCBUS_XMIT_WIRE

Integer. This parameter specifies which SC-bus wire will be used for
transferring data from the processor to the network. This is not used for
the Serial WAN driver or the WAN driver for the ARTIC 1000/2000
Series adapters. For possible values, see Figure 7-6 on page 147 and
Figure 7-7 on page 149.

The default is 0x40.

W_SCBUS_RECV_WIRE

Integer. This parameter specifies which SC-bus wire is used for
transferring data from the network to the processor. This is not used for
the Serial WAN driver or the WAN driver for the ARTIC 1000/2000
Series adapters. For possible values, see Figure 7-6 on page 147 and
Figure 7-7 on page 149.

The default is 0x41.

W_SCBUS_FRAMING_MODE

This parameter specifies the speed of the SC bus. See page 162 for more
details. This is not used for the Serial WAN driver or the WAN driver for
the ARTIC 1000/2000 Series adapters. Possible values are:

• W_SCBUS_AT_2048

• W_SCBUS_AT_4096 (Default)

• W_SCBUS_AT_8192

W_NET_SWITCH_MODE

This parameter specifies the operational mode of the network switch. See
page 160 for more details. This is not used for the Serial WAN driver.
Possible values are:

• SCBUS_MASTER (Default)

• SCBUS_ARMED_MASTER

• SCBUS_BACKED_MASTER

• SCBUS_SLAVE

W_INTERFACE_TYPE

This parameter specifies the operational mode of the WAN driver. See
W_SETDI_PORT — Set attributes of a physical port on page 165 and
the notes on page 172 for more details. Possible values are:

• W_E1 (Default)

• W_T1

• W_J1
237

 ARTIC STREAMS Support WAN Driver Interface Reference
BSN_FLAG This parameter applies only to the Multiplexed WAN driver. Possible
values are:

• YES — Reduces the acknowledgement response time by applying the
BSN and BIB values to all SUs that are waiting to be transmitted.

• NO (Default)

LOGICAL_ PORT_BASE

Unsupported.

PMC_SELECT

This parameter selects the PMCs this WAN driver will process. Possible
values are:

0 Specifies that the first WAN driver loaded should attempt to own all
PMCs. An error will result if no PMC is installed on the adapter. This
is the default.

1 Specifies that the WAN driver should attempt to own the first PMC.
If the PMC is already owned, the WAN driver will exit initialization
in error and the owning WAN driver will remain. If the PMC is not
installed, the WAN driver load will exit in error.

2 Specifies that the WAN driver should attempt to own the second
PMC. If the PMC is already owned, the WAN driver will exit
initialization in error and the owning WAN driver will remain. If the
PMC is not installed, the WAN driver load will exit in error.

RX_CRC_SELECT

This parameter causes the CRC bytes of each received HDLC frame to be
passed upstream in the first two bytes of RX_HDR_SPACE. They are
placed only in the first M_DATA block of the received messages. Use this
parameter for further data integrity tests upstream. Possible values are:

• YES

• NO (Default)

SS7_FILTER_COUNT

Integer. This parameter specifies the number of duplicate FISUs (or
LSSUs) that will not be filtered out and will be passed upstream.

Assume that 20 identical, consecutive FISUs are received by the WAN
driver:

• If this parameter is set to 1, then two FISUs are sent (the first FISU
and one duplicate). The remaining 18 FISUs are filtered out.

• If this parameter is set to 2, then three FISUs are sent (the first FISU
and two duplicates). The remaining 17 FISUs are filtered out.

The default is 0.
238

Chapter 10: Configuration and program development
W_MONITOR_MODE

This parameter applies to the Serial and Multiplexed WAN drivers for the
ARTIC 1000/2000 Series adapters.

The following table shows the possible values and their descriptions.

Table 10-1. W_MONITOR_MODE — possible values

Value

Monitor
Enabled –
Attenuated
Note 1

Monitor
Enabled –
Not
Attenuated
Note 2

Monitor
SS7
traffic
Note 3

ATM
mode
Note 4

Timestamp
Note 5

Tick
event
generation
Note 6

PMC
Timestamp
Note 7

YES X X
NO (Default)
ATM_QSAAL_TIME_TICK X X X X
ATM_CPCS_TIME_TICK X X X X
ATM_QSAAL_TIME X X X
ATM_CPCS_TIME X X X
YES_NOATTEN X X
ATM_QSAAL_TIME_TICK_NOATTEN X X X X
ATM_CPCS_TIME_TICK_NOATTEN X X X X
ATM_QSAAL_TIME_NOATTEN X X X
ATM_CPCS_TIME_NOATTEN X X X
PMC_TIMESTAMP X X X
Notes:
1.This value puts all T1/E1/J1 ports in monitor mode where the transmitter is tri-stated and the

receiver’s sensitivity is increased to detect an incoming signal of –20 dB resistive attenuation.
2. If the user’s equipment does not need –20 db resistive attenuation, this value loads the

rpq_wanm.rel in monitor mode without resistive attenuation.
3.This value is used for monitoring SS7 traffic.
4.This value is effective only when running in ATM mode.
5.This value enables the timestamp facility to put a timestamp on the front of all data messages

and send a WAN_NOTIFTIM message to the upper level whenever an event occurs that is
related to:
• Digital interfaces (WAN_NOTIFDI)

• ATM cell stream status (WAN_NOTIF_ATM).

6.This value enables the tick event facility to send a WAN_NOTIFTIM message
(WAN_TICK_EVENT) to the upper level when the timestamp crosses a 100 ms boundary.
This message will be sent on every active data stream.

7.This value causes a 32-bit timestamp to be placed as the first field in every message. This
timestamp is applied as messages are received by the hardware. The timestamp value will be
in big endian format. The granularity of the timestamp will be as follows:
• Serial WAN driver — 60.606 nanoseconds

• Multiplexed WAN driver (T1/E1/J1) — 16 nanoseconds.

For more information on notes 5 and 6, see WAN_NOTIFTIM — Send a timestamped
notification on page 134 and W_SET_TIMESTAMP — Set timestamp on page 183.
239

 ARTIC STREAMS Support WAN Driver Interface Reference
 W_TDM_CLOCK_RATE

This parameter represents the rate at which the TDM clock will run. It
will be kept in the field wan_params.w_tdm_clock_rate. Possible values
are:

4 A 4 MB clock rate (Default).

8 The 8 MB clock rate is meant to be used by special applications that
require only one PMC, and which must be in slot 1. The maximum
number of channels i 72.
240

Chapter 10: Configuration and program development
Table 10-2. Initialization error codes

Error name Hexadecimal
Value Description

INIT_NO_HARDWARE 0xff000001 The WAN driver did not find the correct type of
mezzanine card. Either use a different driver or
different hardware.

INIT_PARAM_ERROR 0xff000002 The parameters passed are not correct or are
inconsistent.

INIT_ALLOC_ERROR 0xff000003 A general allocation error. Unless specified by a
specific error code, this error code indicates that some
resource required for operation could not be obtained.

INIT_NO_MEM 0xff000004 A general memory allocation error. Unless a specific
error code, this error code indicates that some
resource required for operation could not be obtained.

INIT_POD_ERROR 0xff000005 Basic diagnostics failure. For the Multiplexed WAN
driver, core diagnostics failed. For the Serial WAN
driver, the DMA and SCC chips could not be
initialized.

INIT_PORT1_FAIL 0xff000011 Port 1 loopback failed.
INIT_PORT2_FAIL 0xff000012 Port 2 loopback failed.
INIT_PORT3_FAIL 0xff000014 Port 3 loopback failed.
INIT_PORT4_FAIL 0xff000018 Port 4 loopback failed.
INIT_PORT5_FAIL 0xff000022 Port 5 loopback failed.
INIT_PORT6_FAIL 0xff000023 Port 6 loopback failed.
INIT_PORT7_FAIL 0xff000024 Port 7 loopback failed.
INIT_PORT8_FAIL 0xff000025 Port 8 loopback failed.
INIT_PORT9_FAIL 0xff000026 Port 9 loopback failed.
INIT_PORT10_FAIL 0xff000027 Port 10 loopback failed.
INIT_PORT11_FAIL 0xff000028 Port 11 loopback failed.
INIT_PORT12_FAIL 0xff000029 Port 12 loopback failed.
INIT_PORT13_FAIL 0xff00002A Port 13 loopback failed.
INIT_PORT14_FAIL 0xff00002B Port 14 loopback failed.
INIT_PORT15_FAIL 0xff00002C Port 15 loopback failed.
INIT_PORT16_FAIL 0xff00002D Port 16 loopback failed.
Note: INIT_PORTx_FAIL can be logically ORed to signify failures on multiple ports. When any of
these errors are encountered, the driver will not load.
241

 ARTIC STREAMS Support WAN Driver Interface Reference
Initial line characteristics
The WAN drivers provide an extensive set of commands to alter various port and
channel parameters for handling various line conditions. The WAN drivers program
the hardware to some default value. If these defaults meet your needs, you will not
need to go through the time-consuming configuration process.

Serial WAN driver in synchronous mode — defaults

The following list is for the Serial WAN driver in synchronous mode:

• HDLC framing
• For AIB, V.36 electrical Interface
• For PMC, the electrical interface depends on the cable ID
• External clocking
• 8 bits per character
• Flag idle (0x7E)
• Duplex
• CRC-CCITT (preset to 1’s)
• NRZ
• No address filtering
• No timeouts
• Maximum Frame Size = 256 bytes
• Shared frame synchronization flags

Multiplexed WAN driver for any of its ports — defaults

The following list is for the Multiplexed WAN driver for any of its ports:

• For T1 operational mode, the port is programmed for T1 ESF (Extended Super
Frame)

• For E1 operational mode, the port is programmed for E1 double-frame format.
• No frame CRC
• Line Coding:

– T1 B8ZS
– E1 HDB3
– J1 B8ZS

• No Alarm notifications.
• All channels on a port are not chained or looped back, causing data to be lost.

Multiplexed WAN driver for any of its channels — defaults

The following are for the Multiplexed WAN driver for any of its channels:

• The protocol mode is HDLC.
• The data rate is 64 Kbps.
• Maximum frame size is 280 bytes.
• For ATM mode, the default value is 4100.
242

Chapter 10: Configuration and program development
Interfacing with the WAN driver
The user of the WAN driver will need to write some programs to configure the
hardware, and write the protocol drivers to handle specific protocols on the port or
channel. For this purpose, the following header files are provided for programming
those components in C. For details on how to develop those programs, refer to the
programmer’s reference for the environment in which the program executes and the
applicable development environment.

The header files are organized so that only those extensions required for a particular
application can be included or, if desired, all extensions can be included for
handling all cases of the hardware and software options with the WAN driver. For
this purpose, Table 10-3 defines how the extensions are included in the basic
include file ric_wan.h.

Table 10-3. Header file organization

File name #define name Description
ric_wan.h Base header file. Define all needed extensions before including

this file. It has statements to correctly include those extensions for
you. Alternatively, include those individual files. This also sets up
the most common definitions, such as mapping of uint32 to a
32-bit quantity, including ric.h.
This file also includes the common command definitions.

wandefs.h Basic #defines for common WAN support. The commands and
messages in Chapter 5, Serial and Multiplexed WAN drivers
(common operations) on page 49 will use the definitions here.

wan_prot.h The common message definitions.
wan_cont.h The common command definitions.
wan_ss7.h INCLUDE_SS7 The SS7 command and message definitions.
wan_ibm.h INCLUDE_IBM The RadiSys command extensions and message definitions for the

Serial WAN driver.
wan_mux.h INCLUDE_MUX The extensions to command and message definitions for the

Multiplexed WAN driver operations.
wan.atm.h INCLUDE_ATM

INCLUDE_SCBUS
Adds support for ATM and SC bus.
243

 ARTIC STREAMS Support WAN Driver Interface Reference
LED use
The PMCs have a varying number of LEDs that can be used to indicate hardware
status. Table 10-4 summarizes the usage.

Table 10-4. LED usage summary

PMC Type and Number of
LEDs

State on
power-up State after WAN load

ARTIC960 4-Port
Selectable PMC

Amber/Green (1) OFF Green, if tests during WAN load are successful;
otherwise, Amber.

ARTIC960 4-Port
T1/E1 Mezzanine
Card

Main Amber/Green
(1) and Port Green
(4)

OFF If tests during the WAN driver load are not
successful, or if one or more ports have a
hardware error during normal operations, the
main Amber/Green LED is set to Amber; other-
wise, it is set to Green.
The port-specific Green LED is OFF if the cable
type and the current operational mode do not
match, or if an alarm is present on that port;
otherwise, it is set to Green.

ARTIC
1000/2000
Series

Amber/Green (4) OFF The port-specific Green LED is OFF if the
cable type and the current operational mode
do not match, or if an alarm is present on that
port; otherwise, it is set to Green.
244

Glossary

A
AAL ATM Adaptation Layer — Enhances the services provided by the ATM Layer to

support functions required by the next higher level.

AAL5 ATM Adaptation Layer 5 — Consists of the CP and SSCS.

AERM Alignment Error Rate Monitor

AIB Application Interface Boards

AIS Alarm Indication Signal

ATM Asynchronous Transfer Mode — Packet-oriented transfer mode that uses the
asynchronous time division multiplexing technique to multiplex information flow in
fixed blocks called cells.

AWP Architecture Working Standard

B
BIB Backward Indicator Bit

BISYNC Binary Synchronous Communications

BSN Backward Sequence Number

C
Ca The ERM gets indications from frame processing on the occurrence of erroneous

and valid SUs. It does not need to look into the SU data. Each type of ERM keeps a
counter: Ca for AERM.

CAS Channel Associated Signaling

CCS Common Channel Signaling

cell In ATM, a fixed-size block containing multiplexed information.

channel For the Multiplexed WAN driver, the terms line or channel are used to refer to one
of the multiplexed signals on a port (or one of the time slot).

clone device In the UNIX file system, the system configuration process defines a wild card special
file, called a clone device.

connection
manage-
ment mode

Sends standard asynchronous data frames without transparency. This mode can be
used to communicate with a modem.
245

ARTIC STREAMS Support WAN Driver Interface Reference
CP Common Part — Part of the AAL5 and consists of the SAR and CPCS.

cPCI CompactPCI† environment

CPCS Common Part Convergence Sublayer — A layer of the CP.

CRC Cyclic Redundancy Check

Cs The ERM gets indications from frame processing on the occurrence of erroneous
and valid SUs. It does not need to look into the SU data. Each type of ERM keeps a
counter: Cs for SUERM

CS Convergence Sublayer

CSF Current Status Field

CT Computer Telephony

D
DCD data carrier detect

DAEDR Delimitation, Alignment, Error Detection for receive

DAEDT Delimitation, Alignment, Error Detection for transmit

device
special files

The system configuration process defines special files called device special files in the
UNIX file system. They usually represent a fixed profile to users.

DF Double Frame

DI Digital Interface

DL Data Link

DLE Data Link Escape

DMA Direct Memory Access

E
ECTF Enterprise Computer Telephony — Standard bus for interoperable computer

telephony (CT) systems.

EIM Errored Interval Monitor

ERM Error Rate Monitor

ESF Extended Super Frame

F
FALC Recovered clocks from the communication chips

FCS Frame Check Sequence

FDL Facility Data Link

FIB Forward Indicator Bit
246

Glossary
FISU Fill-In Signal Unit

Flow
Control
Trans-
parency

Transparency mode supported by the Asynchronous HDLC WAN. Allows ASCII X-
ON (0x11) and X-OFF (0x13) characters to be sent transparently over the link
connection.

FSN Forward Sequence Number

Full Trans-
parency

Transparency mode supported by the Asynchronous HDLC WAN. Allows all ASCII
control characters to be sent transparently over the link.

H
HEC Header Error Checksum

HDLC High-Level Data Link Control governed by the ISO 3309 specifications.

HSL High-Speed Signaling Link. A term used for implementing higher speeds
for signaling.

I
IAC Initial Alignment Control

ISO International Standards Organization

ITU International Telecommunication Union

L
LED Light Emitting Diode

LI Length Indicator

line One of the physical ports controlled by the Serial WAN driver. For the Multiplexed
WAN driver the terms line or channel are used to refer to one of the multiplexed
signals on a port (or one of the time slots).

LOF Loss of Frame

long haul Cable length is more than 200 meters

LOS Loss of Signal

LSC Link State Control

LSSU Link Status Signal Unit

LSSURT LSSU retransmission flag

LSUH Last SU Header
247

ARTIC STREAMS Support WAN Driver Interface Reference
M
Message
Mode

A mode of service defined by the AAL5.

MF Multiframe

minor
numbers

The system configuration process defines special files called device special files in the
UNIX file system. They usually represent a fixed profile to users. The system
configuration process assigns fixed numbers, called minor numbers, which are
passed to the driver when the device special file is opened.

MSU Message Signal Unit

MTP1 Level 1 of the Message Transfer Part.

MTP2 Level 2 of the Message Transfer Part.

MTP3 Level 3 of the Message Transfer Part.

Multiplexed
WAN Driver

A WAN driver that provides access to a physical interface over which multiplexing
of data as separate logical channels (or time slots) is possible (for example, T1, E1
or J1).

N
NDIS
protocol
mode

Transparency mode wherein the asynchronous HDLC driver provides the data
transparency, FCS calculation, and framing necessary to conform to the ISO 3309
standard.

NNI Network Node Interface — A type of SSCF.

non-clone
open

The system configuration process defines special files called device special files in the
UNIX file system. They usually represent a fixed profile to users. The system
configuration process assigns fixed numbers, called minor numbers, which are
passed to the driver when the device special file is opened. The process of opening
such a special file is called specific open or non-clone open in this book

O
OAM Operation and Maintenance

OCM Octet Counting Mode

OSI Open System Interconnect

OSS On-card STREAMS Subsystem

P
PCI Peripheral Component Interconnect

PMC PCI Mezzanine Card

PM Physical Medium
248

Glossary
R
RAI Remote Alarm Indication

RC Reception Control

RTM Rear Transition Module

S
SAAL Signaling ATM Adaptation Layer

SAL STREAMS Access Library

SAP Service Access Points

SAR Segmentation and Reassembly — A layer of the CP.

SCB subsystem control block

SDU Service Data Unit

Serial WAN
driver

A WAN driver that provides access to a physical interface capable of serial
communications over which multiplexing of data is not possible or available (for
example, 56-Kbps leased line).

SF 1: Status Field; 2: Super Frame (T1 interface)

short haul Cable length is less than 200 meters

SIB Busy LSSU

SIE Status Indicator Emergency

SIF Signaling Information Field

SIO 1: Status Indicator Out of Alignment (a type of LSSU); 2: Service Information Octet

SIOS Status Indicator Out of Service

SNMP Simple network management protocol

specific
open

The system configuration process defines special files called device special files in the
UNIX file system. They usually represent a fixed profile to users. The system
configuration process assigns fixed numbers, called minor numbers, which are
passed to the driver when the device special file is opened. The process of opening
such a special file is called specific open or non-clone open in this book.

SSCF Service Specific Coordination Function — Part of the SSCS.

SSCOP Service Specific Connection Oriented Protocol — Part of the SSCS.

SSCS Service Specific Convergence Sublayer — Part of AAL5.

SS7 Signaling System Number 7 — A dedicated digital network to perform call control.

Streaming
Mode

A mode of service defined by the AAL5.

SU Signal Unit or a Frame
249

ARTIC STREAMS Support WAN Driver Interface Reference
sub-
networked
mode

Also referred to as the multiplexed mode.

SUH SU Header

SUERM Signal Unit Error Rate Monitor

SUH SU Header. All MTP2 frames start with the BSN, BIB, FSN and FIB. This group of
fields is called the SUH.

T
TC Transmission Control — SS7 mode

TC Transmission Convergence — ATM mode

TDM Time Division Multiplexed data bus

trans-
parency
mode

See NDIS protocol mode.

U
UNI User-to-Network Interface — A type of SSCF.

V
VC Virtual Channel

VPI Virtual Path Identifier — Field used to label ATM cells.

VCI Virtual Channel Identifier — Field used to label ATM cells.

W
WAN driver Wide Area Network Device driver
250

S
 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Index

A
AAL5 (ATM Adaptation Layer 5)

definition 30
protocol reference model 27
See also ATM (Asynchronous Transfer Mode)

aborted frame 7
AERM (Alignment Error Rate Monitor) 17
AIBs (Application Interface Boards) 4
alarm conditions 22
align signalling link 17
alignment loss 12
ARTIC 1000/2000 Series WAN driver xii, 1, 74
ARTIC960 WAN driver xii, 1, 74
asynchronous mode 49
Asynchronous Transfer Mode (ATM)

See ATM (Asynchronous Transfer Mode)
ATM (Asynchronous Transfer Mode)

command sequence 46
definition 27, 29
events, notify 187
management commands

list 185
W_GET_ATM 193
W_GET_ATM_STATS 200
W_GET_VCC_STATS 195
W_SET_ATM 190
W_ZERO_ATM_STATS 203
W_ZERO_VCC_STATS 198

operations 185
physical layer

define parameters 190
description 28
retrieve parameters 193

rates for transporting ATM cells 28
service messages

list 185
WAN_NOTIF_ATM 187

statistics
clear for a physical ATM cell 203
clear for a virtual channel 198
retrieve for a physical ATM cell 200
retrieve for a virtual channel 195

virtual channel, parameters 83
ATM Adaptation Layer 5 (AAL5)

See AAL5 (ATM Adaptation Layer 5)

B
BIB (Backward Indicator Bit) 14
bisynchronous mode

command sequence 42
definition 5
receive messages types 62
selecting 49

bisynchronous protocol 8
blue alarm 23
BSN (Backward Sequence Number) 14
BSN_FLAG, command line parameter 238
busy LSSU 15

C
cable types 74
channel ID, internal 101
channel, configure (T1/E1) 146
channel, Multiplexed WAN driver xiii
channelled mode 97
channels, logical 115
Clear Channel Capability 19, 45, 140
clock rate 240
clone device 33
clone open 33, 34
clone stream 34
command line parameters

BSN_FLAG 238
DATA_MSG_ONLY 236
MAX_NON_CLONE 235
MAX_OPENS 235
ONE_DATA_MSG_ONLY 236
PMC_SELECT 238
RX_BLKS 236
RX_CRC_SELECT 238
RX_HDR_SPACE 236
SNID_DECODE 235
SNID_KEY 236
SS7_FILTER_COUNT 238
TEST_INTERFACE 236
TX_BLKS 236
W_INTERFACE_TYPE 237
W_MONITOR_MODE 239
251

 ARTIC STREAMS Support WAN Driver Interface Reference

S A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

W_NET_SWITCH_MODE 237
W_SCBUS_FRAMING_MODE 237
W_SCBUS_RECV_WIRE 237
W_SCBUS_XMIT_WIRE 237
W_TDM_CLOCK_RATE 240

command sequences
ATM mode 46
bisynchronous mode 42
Clear Channel Capability 45
HDLC framing mode 40, 44
SS7 protocol 37, 49, 103

commands, summary
ATM 185
common to Serial and Multiplexed WAN drivers

68
RadiSys-specific 208
SS7 103
T1/E1 interface 127

Common Part (CP), part of AAL5 See CP (Common
Part)

Common Part Convergence Sublayer (CPCS), part of
Common Part

See CPCS (Common Part Convergence Sublayer)
communication speeds 84
communications support 1
configuration parameters

logical line 83
TTC SS7 120

configuration, default values
Multiplexed WAN driver (any channels) 242
Multiplexed WAN driver (any ports) 242
Serial WAN driver in synchronous mode 242

configuration, executable files 233
configure WAN driver 33
connection management mode 56
contiguous 1 bits 7
control messages, exchange 56
conventions, notational xiii
CP (Common Part), part of AAL5 30
CPCS (Common Part Convergence Sublayer) 30, 88
create STREAMS 34
CSF (Current Status Field) 15
CT bus

channelled mode 97
connection scenarios 47
H.100/H.110 variants 25
implementation 25

D
DAEDR (Delimitation, Alignment, Error Detection

for receive) 12
DAEDT (Delimitation, Alignment, Error Detection

for Transmit) 10, 14

data link protocol 11, 11
data transfer state 50
DATA_MSG_ONLY, command line parameter 236
default values, configuration

Multiplexed WAN driver (any channels) 242
Multiplexed WAN driver (any ports) 242
Serial WAN driver in synchronous mode 242

define subdevices 33
device special files 33
DI (Digital Interface) messages 128
digital network 9
disable reception/transmission 57, 69
disconnects 22
DMA blocks

receive, maximum 236
transmit, maximum 236

driver configuration information 71

E
ECTF (Enterprise Computer Telephony Forum 25
electrical interfaces, supported 4
enable reception/transmission 69
encoding SNID 49
ERM (Error Rate Monitor)

definition 17
SS7 SU reception 12

erroneous frames 12
Error Rate Monitor (ERM)

See ERM (Error Rate Monitor
events

ATM 187
SS7 107
T1/E1 129, 181

exchange control messages 56
executable files 233
extensions to the Serial WAN driver 205

F
FCS (Frame Check Sequence)

definition 7
SU categories 11, 11
SU format requirements 12

FIB (Forward Indicator Bit) 14
files

clone device 33
device special files 33
executable, configuration 233
header, list of 243
wild card special file 33

Fill In Signal Unit (FISU)
See FISU (Fill In Signal Unit)

filtering address for HDLC 231
252

Index

S A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

filtering operation, reset and start 109
filtering, SU 13
FISU (Fill In Signal Unit)

reset 109
SU category 11, 11
SU filtering, SS7 13

flag value 7
Forward Indicator Bit (FIB)

See FIB (Forward Indicator Bit)
Forward Sequence Number (FSN)

See FSN (Forward Sequence Number)
Frame Check Sequence (FCS)

See FCS (Frame Check Sequence)
frame, aborted 7
framing structure 7
FSN (Forward Sequence Number) 14

H
H.100/H.110, variants of CT bus 25
hardware

information 74
interface type 86
interface, reset 225
start 54
status, LEDs 244
supported 4
switching support 24, 26
test 236

HDLC (High-level Data Link Control)
aborted frame 7
channelled mode 97
commands, Multiplexed WAN driver 44
commands, Serial Synchronous WAN driver 40
definition 5
framing 7
framing plus SS7 mode 49
Serial Synchronous WAN driver 40
statistics collected 78, 81
SU (Signal Unit) 11, 11

header files, list of 243
High-level Data Link Control (HDLC)

See HDLC (High-level Data Link Control)
HSL (High-speed Signaling Link) 27

I
IAC (Initial Alignment Control) 10
idle flags, transmit 57
initialization error codes 241
interface type 86
interface, T1/E1 22
internal channel

allocate 94

get ID 101
release ID 102

ISO (International Standards Organization) 9
ITU (International Telecommunication Union) 9

L
LEDs 244
levels 9
line characteristics 220
line, Multiplexed WAN driver xiii
link alignment 17
Link Status Signal Unit (LSSU)

See LSSU (Link Status Signal Unit)
load time options 235
logic, transmission 16
logical channels 115
logical line 83
LSC (Link State Control) 10
LSSU (Link Status Signal Unit)

reset 109
retransmission flag 15
SU category 11, 11
SU filtering, SS7 13

LSSURT (LSSU retransmission flag) 15
LSUH (Last SU Header) 15, 20

M
M_DATA block, formatted 63, 236
management commands

definition 36
RadiSys-specific

W_GETLINE 220
W_GETSIG 223
W_RESET 225
W_SENDBREAK 227
W_SETLINE 209
W_SETMODE 229
W_SETSIG 221
W_STATIONADDR 231

STREAMS interface 206
summary

ATM 185
common to Serial and Multiplexed WAN

drivers 68
SS7 103
T1/E1 interface 127

W_DI_TEST_CFG 137, 185
W_DISABLE 69
W_ENABLE 69
W_GET_ATM 193
W_GET_ATM_STATS 200
W_GET_PHY_PIPE 144
253

 ARTIC STREAMS Support WAN Driver Interface Reference

S A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

W_GET_SNID 101
W_GET_VCC_STATS 195
W_GETCH_MAP 156
W_GETDI 164
W_GETDI_PORT 174
W_GETDI_STATS 176
W_GETDRVINFO 71
W_GETHWTYPE 74
W_GETSS7 115
W_GETSS7_CCC 125
W_GETSS7_JPN 120
W_GETSTATS 78
W_GETTUNE 93
W_REL_SNID 102
W_SET_ATM 190
W_SET_PHY_PIPE 140
W_SET_SNID 94, 185
W_SET_TIMESTAMP 183
W_SETCH_MAP 146
W_SETDI 158
W_SETDI_LPBK 179
W_SETDI_NOTIF 181
W_SETDI_PORT 165
W_SETSS7 112
W_SETSS7_CCC 122
W_SETSS7_JPN 117
W_SETTUNE 83, 185
W_ZERO_ATM_STATS 203
W_ZERO_VCC_STATS 198
W_ZERODI_STATS 178
W_ZEROSTATS 81

management stream 129
MAX_NON_CLONE, command line parameters

235
MAX_OPENS, command line parameter 235
message flow for WAN_CTL 60
Message Signal Unit (MSU)

See MSU (Message Signal Unit)
Message Transfer Part level 2 (MTP2)

See MTP2 (Message Transfer Part level 2)
messages, DI 128
minor numbers 33
modem signals, down 58
monitor mode 239
MSU (Message Signal Unit)

SU category 11
transmission logic 16

MTP2 (Message Transfer Part level 2)
definition 11
SS7 protocol 9

Multiplexed WAN driver
defaults 242
definition xiii

N
Network Node Interface (NNI) 27
network switch 237
non-clone open 33, 34, 235
notational conventions xiii

O
OAM (Operation and Maintenance)

purpose 31
rx_nflow 196
WAN_options parameter 88

OCM (Octet Counting Mode) 12
ONE_DATA_MSG_ONLY, command line

parameter 236
Operation and Maintenance (OAM)

See OAM (Operation and Maintenance)
operational mode 237
OSI (Open System Interconnect) 9

P
PMC_SELECT, command line parameter 238
PMCs (PCI Mezzanine Cards) 4, 238
protocol layer processing 1
protocols, supported 4

R
RadiSys-specific commands for the Serial WAN

driver
W_GETLINE 220
W_GETSIG 223
W_RESET 225
W_SENDBREAK 227
W_SETLINE 209
W_SETMODE 229
W_SETSIG 221
W_STATIONADDR 231

rates for transporting ATM cells 28
RC (Reception Control) 10
red alarm 23
reset filtering operation, SS7 14, 109
reset hardware interface 225
ric_ess.rel, executable file 234
ric_kern.rel, executable file 233
ric_mcio.rel, executable file 233
ric_oss.rel, executable file 233
ric_pci.rel, executable file 233
ric_scb.rel, executable file 233
ric_skrn.rel, executable file 234
ric_wan.h, header file 243
rpq_cxb.rel, executable file 234
rpq_skrn.rel, executable file 234
run-time support 233
254

Index

S A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

RX_BLKS, command line parameter 236
RX_CRC_SELECT, command line parameter 238
RX_HDR_SPACE, command line parameter 236

S
SC bus

channelled mode 97
connection scenarios 47
connector 24
implementation 24
speed 237
W_SCBUS_FRAMING_MODE, command line

parameter 237
W_SCBUS_RECV_WIRE, command line

parameter 237
W_SCBUS_XMIT_WIRE, command line

parameter 237
SCB protocol handler subsystem 233
Serial WAN Driver

definition xiii
Serial WAN driver

break character, send 227
control signals 223
defaults 242
filtering address for HDLC 231
hardware interface, reset 225
interface 206
line characteristics 209, 220
management commands 67
management commands, RadiSys-specific

list 208
W_GETLINE 220
W_GETSIG 223
W_RESET 225
W_SENDBREAK 227
W_SETLINE 209
W_SETMODE 229
W_SETSIG 221
W_STATIONADDR 231

management commands, STREAMS interface
206

port, operating mode 229
service messages 206
stream, create 205
WAN_NOTIFY, service message 207

service messages
ATM, summary 185
classifications 50
common to Serial and Multiplexed WAN

drivers, summary 50
definition 36
SS7, summary 103
STREAMS interface 206

T1/E1, summary 128
WAN_ACTSS7 105
WAN_CTL 56
WAN_NOTIF_ATM 187
WAN_NOTIFDI 129
WAN_NOTIFSS7 107
WAN_NOTIFTIM 134
WAN_NOTIFY, for Serial WAN driver 207
WAN_REG 54
WAN_RESETSS7 109
WAN_SID 51

Service Specific Connection Oriented Protocol
(SSCOP), part of SSCS

See SSCOP (Service Specific Connection
Oriented Protocol)

Service Specific Convergence Sublayer (SSCS)
See SSCS (Service Specific Convergence

Sublayer)
Service Specific Coordination Function (SSCF), part

of SSCS
See SSCF (Service Specific Coordination

Function)
Signal Unit (SU)

See SU (Signal Unit)
Signalling System Number 7 (SS7)

See SS7 (Signalling System Number 7)
signals, control 60
SNID_DECODE, command line parameter 235
SNID_KEY, command line parameter 236
specific minor number open 33
specific open 33
speed, communications 84
SS7 (Signalling System Number 7)

channels, logical 115
Clear Channel Capability 122, 125
command sequences, Multiplexed WAN driver

44
command sequences, Serial Synchronous WAN

driver 37
definition 5
filtering, reset and start 109
line, configure 112
low-level processing 9
management commands

W_GETSS7 115
W_GETSS7_CCC 125
W_SETSS7 112
W_SETSS7_CCC 122

relationship with HDLC modes 103
select 105
service messages

WAN_ACTSS7 105
WAN_NOTIFSS7 107
255

 ARTIC STREAMS Support WAN Driver Interface Reference

S A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

WAN_RESETSS7 109

speed, achieving higher 27
status 107
SU format requirements 5
TTC SS7 (Japan version) 11
wan_ss7.h, header file 243

SS7_FILTER_COUNT, command line parameter
238

SSCF (Service Specific Coordination Function) 30
SSCOP (Service Specific Connection Oriented

Protocol) 30
SSCS (Service Specific Convergence Sublayer) 30
standards 22
statistics

port, T1/E1 176
read 78
reset 81

status
hardware, LEDs 244
SS7 107

stream, clone/non-clone 34
STREAMS

calls 37
commands 36
create 34
environment emulation 1
interface 206
management commands for ATM 185
management commands for SS7 111
messages 36
service messages, T1/E1 128

STREAMS Access Library (SAL) 1
streams, maximum opened 235
SU (Signal Unit)

categories
FISU 11
LSSU 11
MSU 11

filtering 13
HDLC frame 11
transmission 14

sub-network ID 51
SUERM (Signal Unit Error Rate Monitor) 10, 17
SUH (SU Header) 15, 20
synchronous mode 49

T
T1/E1 interface

attributes, common 164
channel map settings 156
channel, configure 146
components, identifying 128
definition 22

events, notify 129, 181
information, retrieve 144
management commands

summary 127
W_DI_TEST_CFG 137
W_GET_PHY_PIPE 144
W_GETCH_MAP 156
W_GETDI 164
W_GETDI_PORT 174
W_GETDI_STATS 176
W_SET_PHY_PIPE 140
W_SET_TIMESTAMP 183
W_SETCH_MAP 146
W_SETDI 158
W_SETDI_LPBK 179
W_SETDI_NOTIF 181
W_SETDI_PORT 165
W_ZERODI_STATS 178

operations 127
physical stream, configure 140
ports

attributes 174
configure common 158
configure particular 165
loopback, control 179
statistics, clear 178
statistics, obtain 176

programming paths, verify 137
service messages

WAN_NOTIFDI 129
WAN_NOTIFTIM 134

STREAMS service messages 128
TC (Transmit Control) 10
TDM (Time Division Multiplexed) 24
technical support xvi
TEST_INTERFACE, command line parameter 236
tick event 134
time, set the current 183
timestamped notification, send 134
transmission logic 16
transmission, SU 14
transparency, framing 7
TTC SS7 (Japan version of SS7)

configuration parameters 117, 120
description 11
line, configure 117
management commands

W_GETSS7_JPN 120
W_SETSS7_JPN 117

TX_BLKS, command line parameter 236

W
W_DI_TEST_CFG, management command 137
256

Index

S A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

W_DISABLE, management command 69
W_ENABLE, management command 69
W_GET_ATM, management command for ATM

193
W_GET_ATM_STATS, management command for

ATM 200
W_GET_PHY_PIPE, management command for

T1/E1 144
W_GET_SNID, management command 101
W_GET_VCC_STATS, management command for

ATM 195
W_GETCH_MAP, management command for

T1/E1 156
W_GETDI_PORT, management command for

T1/E1 174
W_GETDI_STATS, management command for

T1/E1 176
W_GETDRVINFO, management command 71
W_GETHWTYPE, management command 74
W_GETLINE, RadiSys-specific management

command 220
W_GETSIG, RadiSys-specific management

command 223
W_GETSS7, management command for SS7 115
W_GETSS7_CCC, management command for SS7

125
W_GETSS7_JPN, management command for TTC

SS7 120
W_GETSTATS, management command 78
W_GETTUNE, management command 93
W_INTERFACE_TYPE, command line parameter

237
W_MONITOR_MODE, command line parameter

239
W_NET_SWITCH_MODE, command line

parameter 237
W_REL_SNID, management command 102
W_RESET, RadiSys-specific management command

225
W_SCBUS_FRAMING MODE, command line

parameter 237
W_SCBUS_RECV_WIRE, command line parameter

237
W_SCBUS_XMIT_WIRE, command line parameter

237
W_SENDBREAK, RadiSys-specific management

command 227
W_SET_ATM, management command for ATM

190
W_SET_PHY_PIPE, management command for

T1/E1 140
W_SET_SNID, management command 94
W_SET_TIMESTAMP, management command 183

W_SETCH_MAP, management command for T1/E1
146

W_SETDI, management command for T1/E1 158
W_SETDI_LPBK, management command for T1/E1

179
W_SETDI_NOTIF, management command for

T1/E1 181
W_SETDI_PORT, management command forT1/E1

165
W_SETLINE, RadiSys-specific

management command 209
W_SETMODE, RadiSys-specific management

command 229
W_SETSIG, RadiSys-specific management command

221
W_SETSS7, management command for SS7 112
W_SETSS7_CCC, management command for SS7

122
W_SETSS7_JPN, management command for TTC

SS7 117
W_SETTUNE, management command 83
W_STATIONADDR, RadiSys-specific management

command 231
W_TDM_CLOCK_RATE, command line parameter

240
W_ZERO_ATM_STATS, management command

for ATM 203
W_ZERO_VCC_STATS, management command

for ATM 198
W_ZERODI_STATS, management command for

T1/E1 178
W_ZEROSTATS, management command 81
WAN driver

ARTIC 1000/2000 Series, definition xii
ARTIC960, definition xii
configuring 33
DMA blocks, maximum 236
hardware test 236
header files 243
loading 233
M_DATA block 236
network switch 237
non-clone open 235
operational mode 237
overview 1
PMCs selection, processing 238
SC bus 237
STREAMS messages and commands 36
streams, maximum opened 235
WAN_DAT, uses 236

WAN_ACTSS7, service messages for SS7 105
wan_atm.h, header file 243
wan_cont.h, header file 243
257

 ARTIC STREAMS Support WAN Driver Interface Reference

S A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

WAN_CTL, service message 56
wan_ibm.h, header file 243
wan_mux.h, header file 243
WAN_NOTIF_ATM, service message 187
WAN_NOTIFDI, service message for T1/E1 129
WAN_NOTIFSS7, service message for SS7 107
WAN_NOTIFTIM, service message 134
WAN_NOTIFY, service message for Serial WAN

driver 207
wan_prot.h, header file 243
WAN_REG, service message 54

WAN_RESETSS7, service message for SS7 109
WAN_SID, service message 51
wan_ss7.h, header file 243
wandefs.h, header file 243
WC_CONCNF, command 57
WC_CONNECT, command 56
WC_DISC, command 57
WC_DISCCNF, command 58
web site xvi
wild card special file 33
258

	ARTIC STREAMS Support WAN Driver Interface Reference Release 1.6
	Contents
	Before you begin
	Contents overview
	Conventions
	Adapter names
	Terms used in this book
	Notations

	Reference publications
	Customer Support
	Accessing the Web Site
	Calling Technical Support

	Summary of changes
	Release 1.6
	Release 1.4 and Release 1.5
	Release 1.3
	Release 1.2

	Chapter 1. Overview
	Supported adapters, hardware, and protocols

	Chapter 2. Protocol descriptions
	HDLC framing
	Bisynchronous protocol
	SS7 low�level processing
	WAN driver in relation to MTP2
	Special SS7 features
	Special TTC SS7 features
	SS7 SU Reception (DAEDR)
	SU filtering
	SU transmission (DAEDT)
	Error Rate Monitor (ERM)
	Implementation of SUERM for SS7
	Implementation of SUERM for TTC SS7
	Implementation of AERM for SS7 and TTC SS7

	Clear Channel Capability Mode
	Physical layer
	LSSU/FISU/MSU length indicator/sequence numbering
	Acceptance of alignment
	Error monitoring

	T1/E1/J1 interface
	SC�bus implementation
	CT-bus implementation

	ATM in SS7 environments
	AAL5 protocol reference model
	Physical layer
	ATM layer
	ATM Adaptation Layer 5 (AAL5)
	Common Part (CP)
	Service Specific Convergence Sublayer (SSCS)

	Operation and Maintenance (OAM)

	Chapter 3. WAN driver STREAMS interface
	About minor numbers
	Configuring the WAN driver
	Creating STREAMS
	Non�clone open with SNID decode
	Non�clone open with no SNID decode
	Clone open with SNID decode
	Clone open with no SNID decode

	Types of WAN driver STREAMS messages and commands

	Chapter 4. Serial and Multiplexed WAN drivers (command sequences)
	Serial synchronous WAN driver running SS7 protocol
	Serial synchronous WAN driver in HDLC framing mode
	Serial synchronous WAN driver in bisynchronous mode
	Multiplexed WAN driver in SS7 or HDLC framing
	Multiplexed WAN driver in Clear Channel Capability mode
	Multiplexed WAN driver in ATM mode
	SC�bus connection scenarios
	CT-bus connection scenarios

	Chapter 5. Serial and Multiplexed WAN drivers (common operations)
	STREAMS service messages
	WAN_SID — Set subnetwork ID
	WAN_REG — Registration message — start hardware
	WAN_CTL — Connection management
	WAN_DAT — Data messages for transmission and reception

	STREAMS management commands
	W_DISABLE/W_ENABLE — Disable/enable transmission of data
	W_GETDRVINFO — Get driver configuration information
	W_GETHWTYPE — Get hardware type
	W_GETSTATS — Get statistics
	W_ZEROSTATS — Clear channel statistics
	W_SETTUNE — Set configuration
	W_GETTUNE — Get configuration
	W_SET_SNID — Allocate internal channel and associate SNID to it
	W_GET_SNID — Get the assigned internal channel ID
	W_REL_SNID — Release internal channel ID

	Chapter 6. Signaling System Number�7�(SS7) (specific operations)
	Relation between SS7 and HDLC modes
	STREAMS service messages for SS7
	WAN_ACTSS7 — Control SS7 features
	WAN_NOTIFSS7 — Notify SS7 status
	WAN_RESETSS7 — Reset filtering operation

	STREAMS management commands for SS7
	W_SETSS7 — Set SS7 configuration parameters
	W_GETSS7 — Get SS7 configuration parameters
	W_SETSS7_JPN — Set TTC SS7 configuration parameters
	W_GETSS7_JPN — Get TTC SS7 configuration parameters
	W_SETSS7_CCC — Set SS7 Clear Channel Capability configuration parameters
	W_GETSS7_CCC — Get SS7 Clear Channel Capability configuration parameters

	Chapter 7. T1/E1 interface (specific�operations)
	Identifying the T1/E1 components
	STREAMS service messages for T1/E1
	WAN_NOTIFDI — Inform upper level of T1/E1 events
	WAN_NOTIFTIM — Send a timestamped notification

	STREAMS management commands for T1/E1
	W_DI_TEST_CFG — Set test configuration for a physical port
	W_SET_PHY_PIPE — Define and undefine time slots
	W_GET_PHY_PIPE — Retrieve time-slot information
	W_SETCH_MAP — Set up channel map table
	W_GETCH_MAP — Get channel map table settings
	W_SETDI — Set attributes common to all digital interfaces
	W_GETDI — Get attributes common to all digital interfaces
	W_SETDI_PORT — Set attributes of a physical port
	W_GETDI_PORT — Get attributes of a physical port
	W_GETDI_STATS — Get port statistics
	W_ZERODI_STATS — Clear port statistics
	W_SETDI_LPBK — Put port in loopback
	W_SETDI_NOTIF — Set event filter for a physical port
	W_SET_TIMESTAMP — Set timestamp

	Chapter 8. ATM (specific operations)
	STREAMS service messages for ATM
	WAN_NOTIF_ATM — Notify ATM cell stream status

	STREAMS management commands for ATM.
	W_SET_ATM — Define parameters for a physical layer of an ATM cell stream
	W_GET_ATM — Obtain ATM physical-layer parameters and current state
	W_GET_VCC_STATS — Get statistics for a virtual channel
	W_ZERO_VCC_STATS — Retrieve and clear statistics for a virtual�channel
	W_GET_ATM_STATS — Get statistics for a physical ATM cell stream
	W_ZERO_ATM_STATS — Retrieve and clear statistics for a physical ATM cell stream

	Chapter 9. Extensions to Serial WAN driver provided by RadiSys
	Interacting with the Serial WAN driver
	Serial WAN driver STREAMS interface
	STREAMS service message for the Serial WAN driver
	WAN_NOTIFY — Notification of errors

	STREAMS management commands for the Serial WAN driver
	W_SETLINE — Define line characteristics
	W_GETLINE — Get line characteristics
	W_SETSIG — Output signal control
	W_GETSIG — Return the states of control
	W_RESET — Reset communications chip
	W_SENDBREAK — Send break character
	W_SETMODE — Set port mode
	W_STATIONADDR — Set filtering address

	Chapter 10. Configuration and program development
	Executable files required for ARTIC environments
	Load WAN drivers
	Command-line parameters
	Initial line characteristics
	Serial WAN driver in synchronous mode — defaults
	Multiplexed WAN driver for any of its ports — defaults
	Multiplexed WAN driver for any of its channels — defaults

	Interfacing with the WAN driver
	LED use

	Glossary
	Index

