
RadiSys Corporation
5445 NE Dawson Creek Drive
Hillsboro, OR 97124
(503) 615-1100
FAX: (503) 615-1150
www.radisys.com

December 2000

RadiSys ARTIC960
Programmer’s
Guide

EPC, iRMX, INtime, Inside Advantage, and RadiSys are registered trademarks of RadiSys Corporation.
Spirit, DAI, DAQ, ASM, Brahma, and SAIB are trademarks of RadiSys Corporation.

† All other trademarks, registered trademarks, service marks, and trade names are the property of their
respective owners.

December 2000

Copyright  2000 by RadiSys Corporation

All rights reserved

References in this publication to RadiSys Corporation products, programs, or services do not imply that
RadiSys intends to make these available in all countries in which RadiSys operates.

Any reference to a RadiSys licensed program or other RadiSys product in this publication is not in-
tended to state or imply that only RadiSys Corporation’s program or other product can be used. Any
functionally equivalent product, program, or service that does not infringe on any of
RadiSys Corporation’s intellectual property rights or other legally protectible rights can be used in-
stead of the RadiSys product, program, or service. Evaluation and verification of operation in con-
junction with other products, programs, or services, except those expressly designated by RadiSys,
are the user’s responsibility.

RadiSys may have patents or pending patent applications covering subject matter in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquires, in writing, to:

RadiSys Corporation
5445 NE Dawson Creek Drive
Hillsboro, OR 97124
(561) 981-3200

Contents
About This Book... vii
Contents Description... vii
Notational Conventions .. viii
Terms .. viii
Where To Get More Information.. ix

Reference Publications .. ix
Developer’s Assistance Program... x

Summary of Changes ... xi
November 1998... xi
March 1998 ... xi

Chapter 1: ARTIC960 Overview... 1
Supported Adapters... 2
Kernel.. 2
On-Card STREAMS Environment ... 3

Chapter 2: Kernel Process Management ... 5
Processes ... 5
Process Scheduling ... 5
Process States.. 6
Process Initialization... 6
Process Termination ... 7
Process Instance Data Services... 7
Spawning Processes .. 7
Process Memory Protection .. 8
Summary ... 9

Chapter 3: Kernel Device Drivers and Subsystems... 11
Device Driver/Subsystem Initialization.. 11
Device Driver/Subsystem Access ... 12

OpenDev .. 12
InvokeDev.. 13
CloseDev.. 13

Interrupt Handlers ... 13
Vector Sharing .. 14
Memory Protection ... 14
Summary ... 15

Chapter 4: Kernel Resources .. 17
Resource Management.. 17

Software Resources ... 17
Hardware Resources .. 18
Contents iii

Memory Management... 18
Allocation .. 18
Suballocation ... 21
Dynamic Memory Allocation .. 22
Data Cache... 22
Big-Endian Memory Addressing... 23
Internal Data RAM .. 23
Summary.. 24

Process Synchronization ... 24
Semaphores.. 25
Events .. 26
Summary.. 27

Process Communication ... 27
Queues ... 28
Mailboxes .. 28
Signals ... 32
Summary.. 33

Timer Support ... 34
Software Timers... 34
Time of Day... 34
Performance Timer .. 35
Summary.. 35

Hooks .. 35

Chapter 5: Kernel Asynchronous Events .. 37
Asynchronous Events Notification ... 37
Terminal Error Notification .. 40

Exception Dependent Data Structures ... 41

Chapter 6: Kernel Trace Services ... 47
Trace APIs .. 47
printf C Function... 47
Summary ... 48

Chapter 7: Kernel Commands ... 49
Using Kernel Commands.. 51
Summary ... 52

Chapter 8: System Unit Support ... 53
Implementing API Functions.. 53
Base API Services... 54
Summary of Base API Services.. 55
Mailboxes.. 55
Utilities.. 56

Application Loader .. 56
Reset Utility ... 57
Configuration Utility ... 57
Status Utility .. 57
Dump Utility.. 57
Trace Utilities .. 58
Diagnostics Utility ... 58
iv ARTIC960 Programmer’s Guide

Chapter 9: Compiling and Linking Programs... 59
ARTIC960 Programs .. 59
OS/2 System Unit Programs ... 60
AIX System Unit Programs .. 60
Windows NT System Unit Programs.. 61

Index .. 63
Contents v

vi ARTIC960 Programmer’s Guide

About This Book
This book contains information about the ARTIC960 services available for writing
adapter-resident programs. It also contains a brief description of the system unit utility
programs and the steps required to compile and link both system unit and adapter
programs. The book does not include sample code.

Contents Description
The following lists the contents of this guide.

Chapter Description
1 ARTIC960 Overview Describes the ARTIC960 adapter, including hardware,

software, and supported adapters.
2 Kernel Process Management Describes the kernel’s view of processes and

describes many of the process management services
provided by the kernel.

3 Kernel Device Drivers
and Subsystems

Describes the kernel device drivers and subsystems,
including access calls, interrupt handling, and memory
protection.

4 Kernel Resources Describes the kernel resources, including hardware
and software.

5 Kernel Asynchronous Events Provides information on conditions than can occur on
the adapter.

6 Kernel Trace Services Describes the APIs and function to capture
information about adapter activity.

7 Kernel Commands Describes using kernel commands.
8 System Unit Support Provides information on the base API services,

mailboxes, and utilities.
9 Compiling and Linking

Programs
Explains how to compile and link ARTIC960 programs
and OS/2 system unit programs
About This Book vii

Notational Conventions
This manual uses the following notations:

• Screen text and syntax strings appear in this font.

• All counts in this book are assumed to start at zero and all bit numbering conforms to
the industry standard of the most significant bit having the highest bit number.

• All numeric parameters and command line options are assumed to be decimal values,
unless otherwise noted.

• To pass a hexadecimal value for any numeric parameter, the parameter should be
prefixed by 0x or 0X. Thus, the numeric parameters 16, 0x10, and 0X10 are all
equivalent.

• All representations of bytes, words, and double words are in the little endian format.

• Utilities all accept the ? switch as a request for help with command syntax.

Terms
• ARTIC960 refers to the RadiSys ARTIC960 environment and can refer to programs

that run on the following adapters, or the adapters themselves.

– ARTIC960 PCI refers to functions supported only on ARTIC960 PCI adapters.

– ARTIC960Rx refers to functions supported only on the ARTIC960Rx adapter.

– ARTIC960Hx refers to functions supported only on the ARTIC960Hx adapter.

– ARTIC960RxD refers to functions supported only on the ARTIC960RxD adapter

– ARTIC960 MCA refers to functions supported only on the ARTIC960 Micro
Channel adapter.

• System bus can refer to either the Micro Channel or PCI bus.

Notes indicate important information
about the product.

Cautions indicate situations that may
result in damage to data or the hardware.

Tips indicate alternate techniques or
procedures that you can use to save
time or better understand the product.

ESD cautions indicate situations that
may cause damage to hardware from
electrostatic discharge.

The globe indicates a World Wide
Web address.

Warnings indicate situations that may
result in physical harm to you or
the hardware.
viii ARTIC960 Programmer’s Guide

Where To Get More Information
You can find out more about ARTIC960 from these sources:

• World Wide Web: RadiSys maintains an active site on the World Wide Web. The site
contains current information about the company and locations of sales offices, new
and existing products, contacts for sales, service, and technical support information.
You can also send e-mail to RadiSys using the web site.

Requests for sales, service, and technical support information receive
prompt response.

• Other: If you purchased your RadiSys product from a third-party vendor, you can
contact that vendor for service and support.

Reference Publications

You may need to use one or more of the following publications for reference:

• ARTIC960 Programmer’s Reference

• ARTIC960 STREAMS Environment Reference

• Operating and Installation documentation provided with your computer system

• Guide to Operations books for one of the following co-processor adapters:

ARTIC960 Micro Channel adapter

ARTIC960 PCI adapter

ARTIC960Hx adapter

ARTIC960Rx adapter

ARTIC960RxD adapter

Each book contains a description of the co-processor adapter, instructions for
physically installing the adapter, parts listings, and warranty information.

IBM Publications

• IBM Operating System/2 (OS/2) Version 3.0

• IBM Advanced Interactive Executive (AIX) Version 4.1 and 4.2

• IBM AIX Version 4.x Kernel Extensions and Device Support, Programming Concepts,
SC23-2207

• IBM XL C Language Reference, SC09-1260

• IBM Personal System/2 Hardware Reference, S85F-1678

When sending e-mail for technical support, please include information about
both the hardware and software, plus a detailed description of the problem,
including how to reproduce it.

To access the RadiSys web site, enter this URL in your web browser:

http://www.radisys.com
About This Book ix

Intel Publications:

• i960 RP Microprocessor User’s Manual

• i960 Rx I/O Microprocessor Developer’s Manual

• i960 Hx Microprocessor User’s Manual

• i960 Cx Microprocessor User’s Manual

STREAMS Information:

For information about writing a STREAMS module or driver, refer to the IBM Web site:

AIX supports a subset of SVR4.2 STREAMS calls, and the on-card STREAMS subsystem
supports a subset of AIX STREAMS.

Developer’s Assistance Program

Programming and hardware development assistance is provided by the RadiSys
Developer’s Assistance Program (DAP). The DAP provides, via phone and electronic
communications, on-going technical support—such as sample programs, debug
assistance, and access to the latest microcode upgrades.

You can get more information or activate your free DAP membership by contacting us.

• By telephone, call (561) 981-3200

• By e-mail, send to artic@radisys.com

http://www.rs6000.ibm.com/doc_link/en_US/a_doc_lib/
aixprggd/progcomc/ch10_streams.htm
x ARTIC960 Programmer’s Guide

Summary of Changes
This section lists the changes made to this book for recent releases.

November 1998
For this edition, the changes to the ARTIC960 Programmer’s Guide are as follows:

• AIX support for the ARTIC960RxD adapter had been added.

• ARTIC960 support for AIX can support a total of 14 adapters—card 0 through
card 13.

Note: System unit mailboxes support remote communication only with adapters 0
through 9. Local mailboxes can be used on all adapters.

March 1998
For this edition, the changes included the ARTIC960 Support for Windows NT,
Version 1.0.

• Implementing API Functions on page 53

• Base API Services on page 54

• Mailboxes on page 55

• Windows NT System Unit Programs on page 61
Summary of Changes xi

xii ARTIC960 Programmer’s Guide

1
 ARTIC960 Overview Chapter 1
The ARTIC960 adapters are 80960-based co-processor adapters that act as a hardware/
software platform for the development of user applications. They are customized to meet
specific applications by the addition of daughter boards, such as the PCI Mezzanine Card
(PMC) or Application Interface Boards (AIBs), and user-developed software. Some
typical applications consist of an AIB or PMC with communications (such as ISDN, SS7,
frame relay, or X.25) and adapter-resident processes that perform hardware management,
protocol conversion, data formatting, and data transmission to the system unit and/or other
ARTIC960 adapters.

ARTIC960 hardware capability includes:

• Up to 32-MB memory

• Memory protection

• Hardware timers

• Two system channels

• An AIB or PMC (daughter cards)

The software provided for the ARTIC960 adapters is segmented into two parts: the part
that runs on the adapter itself, called the kernel, and the part that runs on the system unit,
called system unit support.

The kernel is a collection of executable files providing the following capabilities:

• Real-time multitasking kernel

• System unit-to-adapter process communications

• Adapter-to-adapter process communications

The system unit support is a collection of IBM Operating System/2 (OS/2) 3.0 (and
higher), IBM Advanced Interactive Executive (AIX) Versions 4.1 or 4.2, and Windows NT
Version 4.0 executable files that provide:

• Adapter status and configuration information

• System unit-to-adapter process communications

• Application loader

• Adapter dump facility

• Debug facilities

The ARTIC960 RxD is supported only on AIX.
Chapter 1: ARTIC960 Overview 1

Supported Adapters
Table 1-1 shows which adapters are supported by each operating system.

Kernel
The ARTIC960 kernel is a real-time multitasking kernel designed for high performance,
but also with usability and portability as important objectives. It has a high level of
function with extensive process management, process synchronization, and process
communication support, as well as device driver, timer support, and asynchronous error
notification capabilities. The kernel consists of the following executables:

Each of these files is a relocatable image, which is downloaded to the adapter’s random
access memory (RAM). Some of the files can be passed initialization information when
they are loaded. For example, ric_kern.rel accepts a set of kernel configuration parameters
that define how it will operate. Chapters 2 through 7 describe the capabilities provided by
the kernel.

Refer to the ARTIC960 Programmer’s Reference for information on the base kernel
development version and the PCI local bus configuration device driver.

Table 1-1. Operating System Support for Adapters

Adapter
OS/2 Version

1.2.2
AIX Version

1.4.1
Windows NT
Version 1.2.0

ARTIC960 Micro Channel √ √
ARTIC960 PCI √ √ √
ARTIC960 Rx PCI √ √ √
ARTIC960 Hx PCI √ √ √
ARTIC960 RxD PCI √
ARTIC960 Rx Frame Relay PCI √ √

Executable Description
ric_kern.rel Base kernel
ric_kdev.rel Base kernel (development version)
ric_base.rel Memory protection portion of the base kernel
ric_mcio.rel Input/output subsystem
ric_scb.rel Peer-to-peer transport subsystem
ric_oss.rel STREAMS subsystem
ric_ess.rel STREAMS cross-bus driver

ric_pci.rel PCI local bus configuration device driver
2 ARTIC960 Programmer’s Guide

On-Card STREAMS Environment
The ARTIC960 runtime environment provides the standard UNIX System V Release 3
and 4 STREAMS tool set for running STREAMS-based modules and drivers on the
ARTIC960 co-processor. For reference, use the following publications:

• Programming:

STREAMS Modules and Drivers
Unix System V Release 4.2
ISBN 0-13-066879

• Reference:

Device Driver Reference
Unix System V Release 4.2
ISBN 0-13-042631-8

Contact Prentice Hall at (515) 284-6761 to order single copies of the documentation.

Contact the Corporate Sales Department at (201) 592-2863 to make a bulk purchase in
excess of 30 copies.

Benefits associated with STREAMS on the ARTIC960 co-processor include the
following:

• Offloads the system unit from running communication protocol stacks by
downloading protocol stacks to the ARTIC960 co-processor.

• Allows STREAMS-based protocol drivers written under UNIX STREAMS System V
Release 3 and 4 specification from a UNIX or non-UNIX operating system to run
under the ARTIC960 Kernel environment.

• Provides a flexible, portable, and reusable set of tools for development of system
communication services following a widely distributed standard in the industry.

• Allows easy creation of independent modules that offer standard data communications
services and the ability to manipulate those modules on a stream.

• From the system unit, on-card drivers can be dynamically loaded and interconnected
(linked) on the ARTIC960 adapter making it possible to connect protocol stack drivers
from various vendor sources.
Chapter 1: ARTIC960 Overview 3

To provide on-card STREAMS access and services to system unit applications, the
On-Card STREAMS Environment consists of the following major parts:

• A system unit component called STREAMS Access Library (SAL) provides the access
to the On-Card STREAMS Environment through an application program interface
(API) that provides easy and unrestricted access to the On-Card STREAMS
Environment from both UNIX- and non-UNIX-based operating systems.

• An on-card component called On-Card STREAMS Subsystem (OSS) provides the
UNIX System V Release 3 and 4 STREAMS tool set in the ARTIC960 adapter.

• An on-card component called On-Card STREAMS Cross Bus Driver (ESS) provides
support to transmit STREAMS data across the system bus between SAL and OSS.

For more information on OSS, refer to the ARTIC960 STREAMS Environment Reference.
4 ARTIC960 Programmer’s Guide

2
 Kernel Process Management Chapter 2
This chapter describes the kernel’s view of processes and describes many of the process
management services provided by the kernel. A complete list is on page 9, and a detailed
description of each is in the ARTIC960 Programmer’s Reference.

Processes
An ARTIC960 process is one or more programs bound together into a single executable
that can be run on the ARTIC960 adapters. It can be downloaded onto the adapters by the
application loader (RICLOAD) or spawned (created) by an existing process. Processes
consist of the following components/attributes:

• Code, data, stack, and optional load parameters

• Process name, process ID, priority

• Resources allocated, such as memory, semaphores, and mailboxes

• Optional signal handler, exit handler, or asynchronous notification handler

There is no fixed limit on the number of processes that the kernel supports. The maximum
number is a function of the memory available and the total number of resources allocated.
A process is uniquely identified by its name (supplied when it is loaded or created) or its
process identification (ID). Most kernel application program interface (API) calls use the
process ID. The kernel service QueryProcessStatus resolves the process name to the
process ID as well as providing other status information.

Process Scheduling
Process scheduling is priority based and preemptive. Each process has a priority, and the
kernel ensures that the highest-priority process (that is ready to run) runs. In addition,
when a process becomes ready to run that has a higher priority than the currently
executing process, the current process is preempted and the new process is dispatched.
QueryProcessInExec returns the process ID of the currently executing process.

Priority levels are from 0 to 255, with 0 the highest and 255 the lowest priority. Levels 0
through 15 are reserved for the kernel and its subsystems; levels 16 through 31 are
reserved for user subsystems. Priority level can be set at load time, through a kernel
service, or by default with a value set in the kernel configuration file. The kernel services
QueryPriority and SetPriority calls dynamically return and set priority levels, respectively.

A time-slice timer is used to guarantee sharing of the CPU among processes running on
the same priority level. In this case, the processes share the CPU in a round-robin fashion.
The time-slice timer has a configurable granularity (through the kernel configuration file)
that defaults to 10 milliseconds and can be totally disabled.
Chapter 2: Kernel Process Management 5

Because processes can be preempted at any time, the kernel services EnterCritSec and
ExitCritSec are provided to disable and enable preemption around critical sections of
code. These services also allow interrupts to be enabled and disabled. They maintain a
depth count so that critical sections can be easily nested. For example, a routine called
from within another routine’s critical section can perform an EnterCritSec and ExitCritSec
pair, and preemption (or interrupts) remains disabled until the calling routine performs its
ExitCritSec. A process cannot, however, keep preemption and/or interrupts disabled
across dispatch cycles. If a process blocks itself or calls a service that blocks, the kernel
enables interrupts or preemption, or both, and resets the depth count.

Process States
At any given time, a process is in one of the following states:

• Stopped

• Ready

• Blocked

• Running

• Suspended

• Stopping

Process Initialization
When a process begins execution, it performs any required initialization, such as memory
and other resource allocation. Once initialization is complete, it may issue a CompleteInit
call to the kernel. This call allows the process to report its initialization status to the kernel.
This status can be retrieved by the application loader and the status utility (for more
information on these utilities, see Utilities on page 56). If a process reports an error code
value of zero, CompleteInit returns to the calling process. If a non-zero error code is
provided, the process is stopped, and any resources it acquired are freed.

Figure 2-1. Process State Diagram

Suspend Process/Resume Process

Dispatch

Start Process

StoppedReadyRunningSuspended

Release SEM

Stop Process

Suspend Process/Resume Process

Suspend Process

Resume Process
Request SEM
Wait Event

Blocked
Stop Process

Stopping
6 ARTIC960 Programmer’s Guide

Process Termination
A process can be stopped or unloaded. When it is stopped, it remains intact on the adapter,
but any resources it acquired are freed by the kernel. When a process is unloaded, it is
removed from the adapter and its resources are freed.

A process can be stopped by:

• Calling StopProcess or UnloadProcess—either from itself or by another process.

• The C startup library routine. If a process is coded such that it returns from main(),
either through return, by a closing brace, or by exit().

• Calling the C exit library routine.

• Calling CompleteInit with a non-zero error code.

• The kernel, if the process causes certain fault conditions. For more information, see
Chapter 5: Kernel Asynchronous Events on page 37.

A stopped process can be restarted using the StartProcess call, the RICLOAD utility, or
the kernel Command facility (see Chapter 7: Kernel Commands on page 49).

A process is unloaded only when it, or another process, calls UnloadProcess.

A process can register a routine to be called when it terminates through the
SetExitRoutine service.

An exit handler may call most, but not all, kernel services. (See the ARTIC960
Programmer’s Reference for the restrictions.)

Process Instance Data Services
The SetProcessData and GetProcessData services provide a means for an application
driver to define process-dependent data and to retrieve the data when needed.

The process data services maintains pointers to process instance data for up to 15
application IDs per process. Application IDs 0—63 are reserved for ARTIC960 kernel.

An application that needs to make use of process instance data should define a single
structure to contain all the data needed by all services in that application environment.

Spawning Processes
A process can be spawned through CreateProcess. It creates a new process that shares the
code and data areas of the caller. The new process is actually a peer of the creating
process; it is not a child process. If the creating process dies, the new process is unaffected.
Additionally, the new process does not have access to any of the resources that the creating
process acquired. If access is needed, the new process must open the resources itself. Even
if the creating process is a device driver or subsystem, the new process will be a normal
process. (See Chapter 3: Kernel Device Drivers and Subsystems on page 11 for more
information.)
Chapter 2: Kernel Process Management 7

Process Memory Protection
The development version of the kernel supports process memory protection on the
ARTIC960 and ARTIC960 PCI adapters. It is optional and is controlled through the
MEMORY_PROTECTION parameter in the kernel configuration file. When turned on, all
processes run with memory protection (with the possible exception of subsystem/device
drivers). It is expected that memory protection will be used primarily as a debug facility.

When running with memory protection, processes cannot address memory or memory
mapped I/O locations that they have not acquired. If they want to share memory with
another process, they must access that memory using the OpenMem kernel call. If a
process attempts to address memory it does not own, it is stopped.

Memory protection for processes is accomplished by maintaining a memory protection
map for each executing process. The map contains access right information for each page
of memory in the system. When memory protection is enabled, hardware checks each
address issued by the processor against the protection map. If the process does not have
the proper access, the kernel is notified through a high-priority interrupt (trap).
8 ARTIC960 Programmer’s Guide

Summary
The Process Management Services are summarized below. Refer to the ARTIC960
Programmer’s Reference for a detailed description of each service.

Service Description
CompleteInit Notifies the kernel that the calling process has completed

initialization. This call can also indicate initialization errors.
QueryProcessStatus Gets the status and other related information for a process. This

call can also be used to resolve a process name into a process
ID.

SetExitRoutine Sets the exit routine for the process. The kernel calls an exit
routine of the process, if the process is to be stopped or
unloaded. The exit routine can be used for any cleanup that is
required.

QueryCardInfo Gives level information of software and hardware.
QueryConfigParams Returns the kernel configuration parameters.
CreateProcess Creates a new process. A set of parameters can be passed to

the new process. The new process shares the creator’s code
and data, but gets its own stack. The new process does not get
access to any other resources acquired by the creator.

StartProcess Starts a stopped process.
StopProcess Stops a started process. All resources acquired by the process

are released. The memory for the process code, data, and stack
is not released so the process can be restarted later.

UnloadProcess Unloads the process. All the resources acquired by the process
are released. The memory for the process code, data, and stack
is also released.

SuspendProcess Takes a process off the dispatch queue and suspends it.
ResumeProcess Queues the process on the dispatch queue.
QueryProcessInExec Returns the process ID of the process currently executing.
SetPriority Changes the priority of the current process.
QueryPriority Queries the priority of a process.
SetProcessData Defines process instance data.
GetProcessData Retrieves process instance data.
EnterCritSec Disables interrupts or preemption selectively for the caller.
ExitCritSec Enables interrupts or preemption selectively for the caller.
Dispatch Causes the next process on the same priority level to run, if

ready.
Chapter 2: Kernel Process Management 9

10 ARTIC960 Programmer’s Guide

3
 Kernel Device Drivers
and Subsystems Chapter 3
Device drivers and subsystems are a special class of processes that act as service
providers. They are used to insulate the application writer from hardware details or to
implement new classes of services. Unlike normal processes, they have access to
privileged kernel services to allocate hardware resources, interrupt vectors, and to modify
memory protection rights. Page 15 lists all services related to device drivers and
subsystems. Refer to the ARTIC960 Programmer’s Reference for a detailed description of
each.

Device drivers do not have a process-time component. They run only during initialization,
through an interrupt or a request for service by another process. Subsystems have the
capabilities of device drivers but, additionally, have their own process time.

Processes access device drivers/subsystems by performing an OpenDev call. Access is
removed by the CloseDev call. Actual calls to a device driver or subsystem are made using
the InvokeDev call.

Device Driver/Subsystem Initialization
When processes are first loaded onto the adapter, they have normal process status. To
become a subsystem or device driver, a process must declare itself to be a device driver or
a subsystem by calling the CreateDev service. This service specifies to the kernel whether
the caller is to be a device driver or subsystem, as well as specifying the open, close, and
call entry points, and whether the process should run with memory protection on or off. At
this point, the process has established itself as a device driver or subsystem and can use the
following privileged kernel services, in addition to the normal services:

• SetProcMemProt

• QueryProcMemProt

• AllocVector

• ReturnVector

• SetVector

• AllocHW

• ReturnHW

• QueryHW

• AllocVectorMux

• SetVectorMux
Chapter 3: Kernel Device Drivers and Subsystems 11

During initialization, resources such as memory, queues, semaphores, and hardware
(which are to be owned by the device driver/subsystem) should be allocated. (For more
information on resources, see Chapter 4: Kernel Resources on page 17.)

When initialization is complete, CompleteInit is called—which tells the kernel that the
device driver or subsystem can now be called by other processes. Because a device driver
has no process time of its own, it does not regain control after the call to CompleteInit.

Device Driver/Subsystem Access
Any process (including device drivers and subsystems) can access a device driver or
subsystem by way of the OpenDev, InvokeDev, and CloseDev calls. Each of these calls
results in the specified subsystem/device driver getting control. There are no restrictions
on the use of kernel services while executing in a subsystem or device driver. However,
because it is running on the caller’s process time, any resource allocated belongs to the
calling process. If the device driver needs to own a resource, it must be allocated at
initialization. A subsystem can allocate resources it owns either at initialization or when it
is running on its own process time.

OpenDev

To establish a connection with a subsystem/device driver, the requester issues an OpenDev
call with the name of the subsystem or device driver (optionally, other parameters can be
passed). The kernel resolves this name to a subsystem/device driver open entry point and
calls that entry point. The subsystem/device driver can then perform any instance
initialization required. Any resources allocated at this time belongs to the requesting
process. If the device driver/subsystem accesses resources on behalf of the calling process,
it must open the resource with the requesting process’s context.

When the subsystem/device driver returns to the kernel, the kernel provides a handle to the
requester, which is passed on subsequent InvokeDev and CloseDev calls.

A correlation value called DevMemo can be passed back to the kernel by the subsystem/
device driver when returning from the open call. This value is provided by the kernel back
to the subsystem/device driver when the opener issues an InvokeDev. The content of this
variable is implementation defined, but is primarily intended as a pointer or an index to aid
the subsystem/device driver in locating instance-specific information. For example, a
device driver may need to initialize a control block with some opening process-specific
information. By returning a pointer to this control block in the DevMemo field, the device
driver can easily access it on subsequent InvokeDev calls.

Refer to the ARTIC960 Programmer’s Reference for additional information on CreateDev
and OpenDev.
12 ARTIC960 Programmer’s Guide

InvokeDev

Processes actually request service through the InvokeDev call. This call accepts a handle
and a pointer to a subsystem/device driver defined parameter control block.

When InvokeDev is issued, the subsystem/device driver gets control at its call entry point.
A pointer to the parameter block, parameter block size, process ID, and devmemo
information is provided by the kernel.

Refer to the ARTIC960 Programmer’s Reference for additional information on CreateDev
and InvokeDev.

CloseDev

The CloseDev call removes the connection to a subsystem/device driver previously
established by OpenDev. The subsystem/device driver should free any resources
previously allocated when it was opened by the requester.

If CloseDev is issued by a subsystem or device driver, the kernel removes the connection
between it and all processes that had previously opened it. Further attempts to access the
subsystem/device driver will fail.

Refer to the ARTIC960 Programmer’s Reference for additional information on CreateDev
and OpenDev.

Interrupt Handlers
Device drivers and subsystems may require interrupt handlers to perform their function.
The kernel is made aware of the need for an interrupt handler through the AllocVector
service.

The requester specifies the interrupt vector number it wants, the interrupt handler entry
point, and whether the interrupt handler should be called with or without memory
protection.

When an interrupt occurs, the kernel’s first-level interrupt handler saves the environment
of the interrupted process (or interrupt handler) and then calls the subsystem/device
drivers interrupt entry point. At this time, interrupts are enabled and the processor is
executing at the priority level of the interrupt. Higher-priority interrupts can be received
but none at the same- or lower-priority level. Interrupts can be totally enabled or disabled
using the enter (EnterCritSec) and exit (ExitCritSec) critical service calls described on
page 9.

Most kernel services are available to interrupt handlers. However, there are some
restrictions. For instance, resources cannot be allocated or freed. (See Chapter 4: Kernel
Resources on page 17, for information on resources.) Nor can calls be made that require
process blocking, such as SuspendProcess. Refer to the ARTIC960 Programmer’s
Reference for a list of services and their interrupt time-usage restrictions.
Chapter 3: Kernel Device Drivers and Subsystems 13

Vector Sharing
ARTIC960 Support for AIX, Version 1.2, and ARTIC960 Support for Windows 1.0
support sharing of interrupt vectors on the adapter. Two new kernel services have been
added to support this feature. AllocVectorMux and SetVectorMux allow allocating/
resetting a handler for a shared vector. The handlers must return a value to indicate
whether the interrupt was claimed. A macro, SetInterruptPriority, has also been added. It
allows an interrupt handler to lower its priority to allow other interrupts at the same level
to be serviced.

All vectors that are registered for a shared interrupt are called when the interrupt occurs.
The order in which vectors are called is unspecified.

Memory Protection
Three memory protection options relate to subsystems/device drivers:

• Global memory

• Subsystem/device driver process-time and call memory protection

• Subsystem/device driver interrupt-time memory protection

The global memory option is controlled by the parameter MEMORY_PROTECTION
(YES|NO) contained in the kernel parameter file. The second and third options are
contained in the CreateDev and AllocVector calls, respectively.

These options control whether memory protection is in effect when the subsystem/device
driver is called, either as an extension of the calling process, by the dispatcher on its own
process time, or at interrupt time. The options are hierarchical in nature. The global option
must be on for the process/call option to have any effect, and the process/call option must
be on for the interrupt time option to have any effect.

Memory-Protection Maps

When a subsystem/device driver is called with memory protection enabled, the kernel
switches to that subsystem/device drivers’ memory-protection map and adds access to the
parameter block passed on the call—allowing access to the parameter block by the
subsystem/device drivers. When the called subsystem/device driver returns to the kernel,
the parameter block is unmapped, and the kernel switches back to the calling process’s
memory protection map.

Any addresses passed in the parameter block are not mapped by the kernel. The memory
associated with these addresses have to be explicitly mapped and unmapped using the
SetProcMemProt call. Device drivers and subsystems should check memory access rights
on these addresses if the caller is running with memory protection. In particular:

• Input data pointers should be checked for read access by the caller

• Output data pointers should be checked for read/write access by the caller

• Code pointers should be checked for read access.
14 ARTIC960 Programmer’s Guide

In addition, device drivers and subsystems that are running with memory protection need
to get read/write access to return output parameters using user-provided pointers. This
access needs to be dropped before returning to the caller. The access can be added and
dropped using the SetProcMemProt service.

Dynamic Memory

If a driver or subsystem allocates dynamic memory in a handler, and wants to pass that
memory address to a process that is running with memory protection active, it must
explicitly give the process access to the allocated memory using the SetProcMemProt call.

Summary
The Device Driver/Subsystem Services are summarized below. Refer to the ARTIC960
Programmer’s Reference for a detailed description of each service.

Service Description
CreateDev Registers the calling process as a subsystem or device driver. This

service also takes entry point addresses for subsystem and device
driver call.

OpenDev Opens a previously registered subsystem or device driver. The
subsystem or device driver gets control at its open entry point.

CloseDev Releases access to a registered subsystem or device driver. The
subsystem or device driver gets control at its close entry point.

InvokeDev Calls a subsystem or device driver at its strategy entry point. The
subsystem or device driver gets control at its call entry point.

AllocVector Allocates a set of interrupt vectors to the calling subsystem or device
driver.

ReturnVector Returns a set of interrupt vectors to the calling subsystem or device
driver.

SetVector Sets a new entry point for an allocated interrupt vector.
AllocHW Allocates a hardware device to the calling subsystem or device

driver.
ReturnHW Returns a hardware device to the calling subsystem or device driver.
QueryHW Returns the allocation status of a hardware device to the calling

subsystem or device driver.
AllocVectorMux Allocates a shared interrupt vector to the calling subsystem or device

driver.
SetVectorMux Sets a new entry point for allocated shared interrupt vector.
Chapter 3: Kernel Device Drivers and Subsystems 15

16 ARTIC960 Programmer’s Guide

4
 Kernel Resources Chapter 4
The kernel (which is downloaded to the adapter) supports both hardware and software
resources. Software resources consist of the following:

• Memory

• Semaphores

• Events

• Queues

• Mailboxes

• Signals

• Timers

• Hooks

Hardware resources include:

• Hardware devices such as DMA channels and communication ports

• Vectors

Refer to the ARTIC960 Programmer’s Reference for a detailed description of these
resources.

Resource Management
The kernel provides services for managing resources.

Software Resources

A resource is acquired by issuing either a create or an open call for the resource that is to
be accessed. The create can be used at any time to allocate a resource, whereas open is
used when another process wants to share a resource previously created by another
process. All software resources, except software timers, can be shared.

A resource must be identified by name if it is to be shared. If it is not to be shared, it can
remain nameless. The name is a null-terminated American National Standard Code for
Information Interchange (ASCII) string of up to 16 characters in length.

The create and open calls usually return a resource handle that is used for other services
pertaining to the resource. A resource handle is unique to each requester of a resource. A
process must create or open each resource that it accesses. The resource handle cannot be
shared among peer processes.

To release access to a resource, processes use a close service.
Chapter 4: Kernel Resources 17

In most cases, all processes that share a resource are peers, regardless of whether they used
a create or open service to acquire the resource. When the last process closes a shared
resource, the resource ceases to exist. Peer processes that share a resource can be notified
through Asynchronous Event Notification when one of the peers is stopped or unloaded.
See Chapter 5: Kernel Asynchronous Events on page 37 for more information.

Hardware Resources

Hardware resources are acquired by performing an allocate call for the particular resource
and freed using a return call. Unlike software resources, hardware resources can never be
shared.

Memory Management
The kernel supports three levels of memory management:

• Allocation
The method a process uses to dynamically allocate large pieces of memory. It is
always performed in page size (4K) increments.

• Suballocation
Smaller allocation sizes can be handled using suballocation because it is an efficient
management scheme for acquiring and releasing buffers from a block of memory
already allocated by a process.

• Dynamic memory allocation
Allows allocating and freeing of small blocks of memory from a dynamic memory
pool.

A complete list of memory management services is shown on page 24. Refer to the
ARTIC960 Programmer’s Reference for a detailed description of each.

Allocation

Memory can be dynamically allocated and deallocated using the CreateMem and
CloseMem services. A process wanting to share memory with another process does so
using the OpenMem call. When allocating memory, the requester specifies, among other
things, the type of memory and the access rights of that memory.

Memory Type

ARTIC960 adapters can contain two separate banks of memory—instruction memory and
packet memory. Instruction memory access is optimized for program code and local data.
Packet Memory access is optimized for DMA data buffers. This approach maximizes
performance by having less memory contention between the central processor unit (CPU)
and direct memory access (DMA) channels. Memory access contention only occurs when
the CPU and a DMA channel simultaneously attempt to access the same bank of memory.
18 ARTIC960 Programmer’s Guide

Access Rights

Access rights define whether a memory block can be read or written, or both, and what
source has the ability to access it. Potential sources are CPU, daughter card, and system
bus, and they are defined as follows:

CPU Memory references resulting from code running in the processor—includes
instruction fetches and memory reference instruction addresses.

Daughter Card DMA
Memory references either going to or coming from a daughter card.

System bus
Memory references to and from this adapter as a system bus slave, as well as
memory references resulting from the adapter’s system bus DMA channels.

A set of constants has been defined, which the caller of CreateMem and OpenMem can
use to specify access rights. The access rights are listed on page 20. They can be ORed
together to achieve whatever access is wanted.

The access rights work slightly differently, depending on whether the access is a CPU
access or a daughter card/system bus access. For CPU access, each process can specify the
access rights it wants. For example, one process could create a block of memory named
MEM1 and give it CPU read and write access. A second process could open MEM1 and
give it only read access.

For daughter card/system bus, the access rights specified for a block of memory is based
on all processes that requested access to that memory. For example, one process could
create a block of memory named DMABUFFERS with system bus read access. A second
process opens DMABUFFERS with system bus read and system bus write access. The
MEM_OVERRIDE_MC_ACCESS (or MEM_OVERRIDE_AIB_ACCESS) must be specified
when a second process opens a memory area, if the access to be changed is different from
when the memory area was created). The memory access for DMABUFFERS would then
be system bus read and write. If an opener of DMABUFFERS wants to set the access
rights unconditionally and independently of other processes, it must specify
MEM_OVERRIDE_MC_ACCESS along with the access rights it wants.

For the ARTIC960, hardware memory protection only validates CPU and system bus slave
accesses. Daughter card DMA and system bus DMA addresses are validated by software
prior to loading the DMA channels.
Chapter 4: Kernel Resources 19

Memory Access-Right Constants

Memory Sharing

For two or more processes to share memory, one process must first create the memory.
Subsequent sharing processes then open that memory. The memory must be named and
created as sharable. The access rights on CreateMem and the OpenMem can be different.
Processes should never attempt to bypass this sharing mechanism. It precludes using
memory protection.

Constant Description
MEM_SHARE Memory is sharable with other processes. The

default is that memory is not sharable.
MEM_READABLE The memory can be read by the 80960. The

default is the memory cannot be read or written by
the 80960.

MEM_WRITABLE The memory can be written by the 80960. The
default is the memory cannot be read or written by
the 80960.

MEM_OVERRIDE_MC_ACCESS The current system bus access to the created
memory is overridden. The default system bus (or
daughter card) access is not changed.

MEM_MC_READABLE Memory can be read from the system bus. In
addition, the on-card system bus DMA can read
the memory. The default is memory cannot be read
or written from the system bus.

MEM_MC_WRITABLE Memory can be written from the system bus. In
addition, the on-card system bus DMA can write to
memory. The default is memory cannot be read or
written from the system bus.

MEM_OVERRIDE_AIB_ACCESS The current daughter card access to the created
memory is overridden. The default system bus (or
daughter card) access is not changed.

MEM_AIB_READABLE The daughter card DMA can read from the
memory. The default is memory cannot be read or
written by the daughter card DMA.

MEM_AIB_WRITABLE The daughter card DMA can write to the memory.
The default is memory cannot be read or written by
the daughter card DMA.

MEM_DCACHE Memory can be cached. The default is that
memory cannot be cached.

MEM_BIG_ENDIAN Memory is treated as big endian. By default, all
memory is treated as little endian. Big-endian
memory regions are supported only on the
ARTIC960Hx adapter.
20 ARTIC960 Programmer’s Guide

Using Memory Allocation

The following describes how Process A goes about sharing memory with Process B.
Process A has CPU read/write, whereas Process B has CPU read access. The memory
block also has daughter card read-only access.

• Process A does a CreateMem call with the following access rights:

MEM_SHARE | MEM_READABLE | MEM_WRITEABLE | MEM_AIB_READABLE

• Process B does an OpenMem call with the access right of

MEM_READABLE

If Process B wanted to modify the daughter card access to make it read/write instead of
read only:

• Process A does a CreateMem call with the following access rights:

MEM_SHARE | MEM_READABLE | MEM_WRITEABLE | MEM_AIB_READABLE

• Process B does an OpenMem call with the access rights of

MEM_READABLE | MEM_OVERRIDE_AIB_ACCESS | MEM_AIB_READABLE |
MEM_AIB_WRITEABLE

Suballocation

A block of memory can be suballocated into some number of smaller fixed-size blocks,
using the InitSubAlloc call. One or more of these smaller blocks can then be allocated and
freed, using GetSubAlloc and FreeSubAlloc. The GetSubAllocSize service is provided to
calculate the required size of the larger block, given the number and size of the smaller
blocks.

Because a portion of the larger memory block is used for management of the smaller
blocks, the GetSubAllocSize returns the total size required, given the number and size of
smaller blocks needed. Processes should use GetSubAllocSize to insulate themselves from
the internal kernel suballocation management overhead. Otherwise, application breakage
could occur on a later release of the kernel.

Using Memory Suballocation

The following describes how a process sets a block of memory for suballocation into a
pool of 100 256-byte blocks:

• Issues GetSubAllocSize with a unit count of 100 and a unit size of 256.

• Does a CreateMem with a size equal to that returned on GetSubAllocSize.

• Issues InitSubAlloc with:

– A pointer to the memory returned on CreateMem

– Unit count of 100

– Unit size of 256

The process can now perform GetSubAlloc and FreeSubAlloc calls to obtain buffers of
256 bytes or multiples of 256 bytes.
Chapter 4: Kernel Resources 21

Dynamic Memory Allocation

The MallocMem, FreeMem, and CollectMem services allow allocating and freeing of
small blocks of memory on demand.

The dynamic memory allocation services allocate memory from a dynamic memory pool.
Memory that is freed is returned to the dynamic memory pool. Memory is allocated only
while it is being used.

If there is not enough memory available in the dynamic memory pool, a new page is taken
from the Memory Page Pool and added to the dynamic memory pool. When all allocations
from this memory page are freed, the page is returned to the memory page pool.

The services do not keep owner, size, and validity information on the memory allocations.
Therefore, when a process terminates, memory not freed is not returned to the dynamic
memory pool. Memory must be explicitly freed using FreeMem before the process
terminates.

The MallocMem and FreeMem services can be called from within software handlers or
interrupt handlers.

The CollectMem service can be used to force the return of free pages in the dynamic
memory pool to the memory page pool. For performance reasons, the kernel may not
always automatically return a free page to the memory page pool.

Data Cache

The firmware supports use of the i960 processor data cache on ARTIC960 adapters that
have data cache enabling hardware.

The Status Utility Configuration message shows whether data cache hardware is present
on the adapter. The DATA_CACHE kernel configuration parameter enables use of data cache
if the hardware is present. Refer to the ARTIC960 Programmer’s Reference for
information on the Status Utility and kernel parameters.

The following memory areas can be cached:

• A stack section of a process

• A data section of a process

• Memory created by a process

The loader allows the stack and/or data section of a process to be designated as cacheable.
The CreateMem and MallocMem services allow a process to designate created memory as
cacheable.

The i960 data cache does not support bus snooping. Therefore, memory that can be
accessed by the system bus or by the daughter card Interface Chip cannot be cached. Any
attempt to access cached memory by either the system bus or daughter card results in
cache coherency problems. Only memory regions that are accessed only by the 80960
should be cached.

If the use of data cache is enabled, the ARTIC960 kernel creates its internal data structures
as being able to be cached. Additionally, the kernel can be loaded with its stack and/or data
sections designated as being able to be cached.
22 ARTIC960 Programmer’s Guide

Big-Endian Memory Addressing

The ARTIC960 Support for OS/2, Version 1.2.1, ARTIC960 Support for AIX, Version 1.2
or higher, and ARTIC960 Support for Windows NT, Version 1.0 or higher, support use of
big-endian memory addressing on ARTIC960 adapters that have big-endian enabling
hardware. On these adapters, the MEM_BIG_ENDIAN option can be used with the memory
allocation services to provide access to memory in which data is stored in the big-endian
format. Normally, all ARTIC960 memory data is stored in little-endian format.

Big-endian addressing can be used to facilitate shared memory communications between
the ARTIC960 and systems which are big endian by default. For example, system memory
on the RISC System/6000 is stored in the big-endian format. Data can be transferred
directly between the system unit and the adapter without having to perform byte swapping
when big-endian memory regions are used.

Internal Data RAM

The ARTIC960 Support for OS/2, Version 1.2.1, supports the use of i960 internal data
RAM. However, the kernel does not currently manage this data. Refer to the ARTIC960
Programmer’s Reference for information on using internal data RAM.
Chapter 4: Kernel Resources 23

Summary

The Memory Allocation/Suballocation Services are summarized below. Refer to the
ARTIC960 Programmer’s Reference for a detailed description of each service.

Process Synchronization
Process synchronization is accomplished using semaphores and events. Each allows a
process to notify another process that some action has occurred. Detailed descriptions of
semaphore and event services follow. For a list of the services, refer to page 27. Refer to
the ARTIC960 Programmer’s Reference for a detailed description of each.

Service Description
CreateMem Allocates a new block of memory. Takes parameters for sharing,

access privileges, and boundary alignment.
OpenMem Gets access to a previously-allocated block of memory. Takes

parameters for access privileges.
CloseMem Releases access to a block of memory. When the last process

closes the memory, the block is returned to the free pool.
ResizeMem Returns a portion of previously-allocated memory.
SetMemProt Changes the access rights for the calling process to a block of

memory.
SetProcMemProt For device drivers or subsystems, this service changes the access

rights for the calling process to a block of memory.
QueryMemProt Queries the access rights for a calling process to a block of

memory.
QueryProcMemProt For device drivers or subsystems, this service queries the access

rights for a process to a block of memory.
QueryFreeMem Queries the total amount and size of largest contiguous block of

free memory.
InitSuballoc Initializes a block of memory for suballocation. Takes

parameters for suballocation unit size, suballocation unit
alignment, and suballocation pool size.

GetSuballoc Suballocates memory from a suballocation pool.
FreeSuballoc Returns suballocated memory to a suballocation pool.
GetSuballocSize Returns the size of memory that should be allocated to make a

suballocation pool with given suballocation unit size and
alignment. This service should be called before CreateMem to
find out how much memory should be allocated for a
suballocation pool.

MallocMem Allocates memory from the dynamic memory pool.
FreeMem Returns memory to the dynamic memory pool.
CollectMem Returns unused pages from the dynamic memory pool to the

main memory page pool.
24 ARTIC960 Programmer’s Guide

Semaphores

Semaphores are the post/wait mechanism for all processes. A semaphore can exist as one
of two types: mutual exclusion or counting. (The type is defined when the semaphore is
created.)

• A mutual exclusion (mutex) semaphore is used for serializing access to code or data
structures. It can take on a count of 0 or 1. A count of 0 indicates that it is in use,
whereas a count of 1 means that it is available.

• A counting semaphore is used for signaling between processes or for maintaining a
count of a resource—for example, the number of free buffers in a buffer pool. It can
assume a count ranging from 0 to 32767. Any count other than 0 means that it
is available.

Extra error checking is performed for mutex semaphores, such as not letting the same
process request a mutex semaphore twice in a row without releasing it in between and not
letting a process release a semaphore it does not own. Additionally, if an owner closes a
mutex semaphore that it owns, or if it is stopped while it owns a mutex semaphore, all
processes waiting on the semaphore are awakened with an error and the mutex semaphore
count is re-initialized to 1 (available).

A process obtains a semaphore by performing a RequestSem. If a semaphore is available
when requested, its count is decremented and the requesting process continues to run. If
not, the requesting process is blocked. Issuing a ReleaseSem causes a semaphore to be
released. When a semaphore is released, a process blocked on that semaphore is made
ready to run. (If it is a higher priority than the running process, it runs immediately.) When
more than one process is blocked on the semaphore, the first process that is blocked is the
first process to be made ready to run. When no processes are waiting, the semaphore count
is incremented.

Semaphores can be explicitly allocated and manipulated by processes by way of the calls
described in this section. These semaphores are defined as explicit. Semaphores are also
allocated by the kernel for use with queues, mailboxes, and other resources. These
semaphores are defined as implicit. The kernel manages the requesting and releasing of
these implicit semaphores for the process. Implicit semaphores cannot be used directly by
semaphore services. They can be used in the event services that follow.

Using Mutex Semaphores

A mutex semaphore protects resources from simultaneous access by multiple processes.
For example, there may be a critical section of code that is used by more than one process
but cannot be reentered. If, at the beginning of this critical section, it performs a
RequestSem and at the end it does a ReleaseSem, it will be protected. For example, if
Process A calls a routine that has a critical section but is preempted by Process B that then
calls the same routine, Process B blocks until Process A finishes the critical section.

Using Counting Semaphores

A counting semaphore provides a signaling mechanism between two processes or a
subsystem/device driver and its interrupt handler. A process can use this type of
semaphore to block until a specific action has occurred.
Chapter 4: Kernel Resources 25

As an example, assume Process A needs to be notified when Process B has completed
some activity. Process A creates a counting semaphore, setting its initial count to 0.
Process B opens this semaphore. Process A then requests the semaphore. Because its
count was 0, Process A blocks on the semaphore. Later, when Process B has completed its
activity, it releases the semaphore. This causes Process A to be placed on the dispatch
queue to run. If Process A is a higher priority than Process B, A preempts B and runs
immediately. If A’s priority is equal to or lower than B’s priority, B runs until it either
blocks itself or is preempted by a higher priority process.

Because counting semaphores maintain a count of the number of times they have been
released, they can indicate the number of times an action has occurred. In the preceding
example, if Process B was equal to or had a higher priority than Process A, Process B
could perform its action n times before Process A ran. In this case, the semaphore count
would be n. Process A could call RequestSem n times before it would again be blocked.

A further application of counting semaphores is to use them to keep a count of the number
of resources available. For example, if Process A is sharing five instances of a resource
with Process B, the semaphore count could be set to 5. Prior to obtaining an instance of the
resource, each process would perform a RequestSem and, after releasing the resource, it
would do a ReleaseSem. In this way, if all five of the resource instances were in use at the
same time, the requesting process would block until a resource became available.

Events

Processes can wait for up to 32 semaphores with event services. The process builds a list
of semaphore handles and control information describing whether the process should wait
for any or all of the semaphores. The list of semaphore handles can be any combination of
implicit and explicit semaphores, as well as any combination of mutual exclusion and
counting semaphores. If a process is waiting for an explicit semaphore as part of an event,
the semaphore is decremented before control is returned to the process. If a process is
waiting for an implicit semaphore as part of an event, the semaphore count is not
decremented before control is returned to the process. The semaphore is decremented
when the process calls the service (such as queues and mailboxes) that uses
the semaphore.

Using Events

Typically, events are used by processes to wait for one in a group of semaphores to become
available. For example, Process A may have an implicit semaphore named ONE
associated with a mailbox, and semaphore TWO associated with an action from Process B.
Process A needs to wake when it receives a message in its mailbox or when Process B
signals it. (See Mailboxes on page 28 for more information on mailboxes.) To accomplish
this, Process A creates an event with the handles of the two semaphores. It then does a
WaitEvent using the EVENT_WAIT_ANY option. Process A is now blocked until the
semaphore count of either of the two semaphores goes non-zero. When Process A wakes
up, it receives a status indicating which of the two semaphores caused it to run. If it awoke
as a result of semaphore TWO becoming available, it must get the message from its
mailbox prior to performing another WaitEvent. Otherwise, it immediately returns because
there is still a message in the mailbox.
26 ARTIC960 Programmer’s Guide

If the same semaphore is being used in an event wait and direct wait through RequestSem,
these rules must be followed:

• If the semaphore is released, processes waiting for the event take priority over
processes waiting with RequestSem. If the event is satisfied, the process waiting for
the event is awakened before a process waiting on just the semaphore. This more
evenly balances who gets the semaphore, since events are harder to satisfy.

• If a process calls RequestSem for the semaphore where processes are currently
waiting for the event, but the semaphore is available, the caller of RequestSem gets
ownership of the semaphore because the processes waiting on the event still have not
gotten the other semaphores that make up the event.

Summary

The Process Synchronization Services are summarized below. Refer to the ARTIC960
Programmer’s Reference for a detailed description of each service.

Process Communication
Process communication can be accomplished through queues, mailboxes, and signals. The
services defined for each are listed on page 33. Refer to the ARTIC960 Programmer’s
Reference for a detailed description of each.

Queues are the most primitive of the three methods and offer the least protection from
corruption by an ill-behaved application. They require that shared memory exist between
processes that use queues. Further, the queue element linkages reside within the queue
element itself. Other than the queue element linkages, the format of the queue element is
up to the application.

Service Description
CreateSem Allocates a new semaphore.
OpenSem Gets access to a previously-allocated semaphore.
CloseSem Gives up access to a semaphore. When the last process closes a

semaphore, the semaphore ceases to exist.
ReleaseSem Makes a semaphore available to the next process waiting on it. If

no processes are waiting on the semaphore, its count is
incremented.

RequestSem Waits on a semaphore until it is available. If the semaphore count
is positive, the count is decremented.

QuerySemCount Returns the current count of a semaphore.
SetSemCount Sets the initial count of a semaphore.
CreateEvent Allocates a new event.
OpenEvent Gets access to a previously-allocated event. The process must

already have access to the event’s semaphores.
CloseEvent Releases access to an event. When the last process closes the

event, the event ceases to exist.
WaitEvent Waits for a list of semaphores. The service takes a mask as a

parameter to specify which semaphores should be included in the
wait. This allows processes to create one event with all their
semaphores, and then wait for any subset of the semaphores.
Chapter 4: Kernel Resources 27

Mailboxes are the preferred method of interprocess communications. Messages sent to a
mailbox can reside either in process-shared or private memory. Because mailbox queue
linkages are maintained separately from the mailbox message storage, mailbox message
format is totally left to the application.

Mailbox messages can be sent between processes on the same ARTIC960 adapter,
different adapters, and an adapter and the system unit. (Messages cannot reside in shared
memory when they travel off the adapter.)

Signals are provided as a party-line method that processes can use to send messages to
other processes. Signals are similar to software interrupts in that a signal can be sent from
one process to one or more processes, and the receiving process does not have to be
dispatched to receive it. The message contained in the signal does not have to be in
shared storage.

Queues

Queues allow processes to communicate by way of shared memory. Therefore, when
queues are used, the storage for the queue elements must come from memory that is
accessible by all processes using the queue. Queues also allow a process to communicate
with its interrupt handler. Because an interrupt handler shares memory with its owner
process, shared memory is the default in this case.

Queue elements are added and removed from a queue through the PutQueue and the
GetQueue services. Queue elements can be put on the queue in first in first out (FIFO) or
last in first out (LIFO) order. Because the order is specified when the element is placed on
the queue, a high-priority queue element can easily be placed at the top of a FIFO queue.
GetQueue optionally removes the element from the queue or leaves the element in place
on the queue.

A specific queue element on a queue can be located through the SearchQueue service.
This service locates a queue element based on either its address or the value of a location
within the queue element.

Because the queue linkages are contained within the queue element, the size of the queue
element must be two words larger than the size needed for the application.

A common application for queues is as a message-passing mechanism between a device
driver process time and its interrupt handler.

Mailboxes

Mailboxes allow processes to send messages to one another. Mailboxes are similar to
queues but provide additional function. For example, mailbox messages can be sent not
only between processes on the same adapter but between other adapters and the
system unit.

A mailbox connection is one directional. To receive messages, a process creates a
mailbox. Processes wanting to send messages to that mailbox must open it. Therefore, for
two processes to each send messages to each other, each must create its own mailbox and
open the other’s mailbox.

When a mailbox is created, storage for messages that arrive at that mailbox is also
allocated—based on the parameters specified in the CreateMbx service. Other processes
28 ARTIC960 Programmer’s Guide

can now open the created mailbox, providing they know the mailbox name. The opener
determines whether it shares the message storage area with the mailbox creator or has its
own pool. Sharing the storage area is the most efficient means of passing messages
because only a pointer to the message must be passed, rather than an actual copy.
However, copying the message provides more isolation between processes. Messages sent
between adapters and system unit as well as adapter to adapter are automatically copied.

At create time, a mailbox is defined as being local or global. A global mailbox can receive
messages from processes located on another adapter or the system unit. A local mailbox
can only receive messages originating from processes on its adapter.

At open time, the caller can specify where to look for the mailbox to be opened. A global
search looks on other adapters or the system unit if the mailbox is not found on the
opener’s adapter. A local search looks only on the opener’s adapter.

The GetMbxBuffer and FreeMbxBuffer services provide a means to get and free mailbox
buffers. Mailbox messages must be placed in a mailbox buffer prior to sending.

SendMbx accepts a pointer to a message buffer to send to another mailbox. If the message
buffer pools are not shared, the SendMbx copies the message from one mailbox pool to
another. Otherwise, it just passes a pointer to the message to the destination mailbox. It
accepts an option to automatically return the message buffer to the free pool if the sender
and receiver are not sharing message buffer pools. (It is not returned when sharing pools
because the message could be lost.) When pools are shared, it also optionally copies the
message, if requested.

ReceiveMbx returns a pointer to the next available message in the mailbox. It accepts an
optional timeout to wait for a message to appear. The message also can be read from the
mailbox without being removed.

Refer to the ARTIC960 Programmer’s Reference for a list of System Unit mailbox
restrictions and more information on system-unit mailbox services and ARTIC960 kernel
mailbox API services.

The concept of message buffer-pool sharing provides much flexibility for optimizing the
performance of mailboxes used on the same adapter. More than one mailbox can be
created using the same message buffer pool. Thus, processes can receive messages in one
or more of their mailboxes and pass them along to mailboxes of other processes without
ever performing a copy of the message. Table 4-1 on page 30 gives a complete picture of
the memory-sharing options available and the method of specifying each option. The
column entitled “Local Mailboxes” deals with mailboxes where the creator and opener are
on the same unit (not supported in the system unit). The “Remote Mailbox” column is for
mailboxes where the creator is on one unit and the openers are on another. Each delineates
how the mailbox memory names passed on the create/open calls are used to achieve a
given option.
Chapter 4: Kernel Resources 29

In summary, creators and openers of the same or different mailboxes on the same unit
share a memory pool only if they specify the same memory-pool name. As with any
resource, NULL named pools cannot be shared. Also, pools cannot be shared across
adapters or the adapters and the system unit.

Table 4-1. Mailbox Memory Options

Memory pool
configuration

Local mailboxes Remote mailboxes

Creator and openers
of the same mailbox
do not share memory
pools

• Creator specifies a named memory
pool or a null-name memory pool

• Openers specify a named memory
pool different than the creator’s or a
null-name memory pool

• Creator specifies a named memory pool
or a null-name memory pool.

• Openers specify a named memory pool
or a null-name memory pool. Because
the openers and creator are on different
units, the storage pool names can be
the same and the storage is not shared.

Creator and openers
of the same mailbox
share memory pools

• Creator specifies a named memory
pool

• Openers specify the same named
memory pool as the creator

Not valid for remote mailboxes

Openers of the same
mailbox (but not the
creator) share
memory pools

• Creator specifies a named or null-
named memory pool

• Openers specify the same named
memory pool but different than the
creators (if specified)

When openers are on same unit, they
specify the same named memory pool.
Invalid when openers are on different
units.

Creators of different
mailboxes (but not the
opener) share
memory pools

• Creators specify the same memory
area name

• Openers specify a memory area
name different than the creators’
name or a null memory name

When creators are on same unit, they
specify the same named memory pool.
Invalid when creators are on different
units.

Openers of different
mailboxes (but not the
creator) share
memory pools

• Creators specify different named
memory pools or null memory area
names

• Openers specify the same named
memory pool but different than the
creators’ (if specified)

Same as local for openers on the same
unit. Invalid across units.

Creators and openers
of different mailboxes
share memory pools

• Creators specify the same memory
pool

• Openers specify the same named
memory pool as the creators

Same as local for creators and openers on
the same unit. Invalid across units.
30 ARTIC960 Programmer’s Guide

Using Mailboxes

The following flows describe sending a mailbox message between process A and process
B, using mailboxes that share memory and mailboxes that do not.

Shared Memory

• Process A does a CreateMbx with a mailbox name of “Steve” and a memory name of
“Louise.” It receives a mailbox handle.

• Process B does an OpenMbx with a mailbox name of “Steve” and a memory name of
“Louise.” It receives a mailbox handle.

• Process B does a GetMbxBuffer using Steve’s handle and receives a pointer to a
buffer.

• Process B puts the message in the buffer and does a SendMbx with the buffer pointer
as the message pointer parameter.

• Process A does a ReceiveMbx. It receives a pointer to the message buffer that contains
the message.

• Process A processes the message and then does a FreeMbxBuffer with the buffer
pointer as a parameter.

Private Memory

• Process A does a CreateMbx with a mailbox name of “Steve” and a memory name of
“Louise.” It receives a mailbox handle.

• Process B does an OpenMbx with a mailbox name of “Steve” and a memory name of
“Chris.” (When not on the same adapter, the name could have been “Louise.”) It
receives a mailbox handle.

• Process B does a GetMbxBuffer using Steve’s handle and receives a pointer to a
buffer.

• Process B puts the message in the buffer and does a SendMbx with the buffer pointer
as the message pointer parameter.

• Process B either does a FreeMbxBuffer for the buffer pointer at this point, or if
correlation with a response is required, it waits until the response is received to free
the buffer.

• Process A does a ReceiveMbx. It receives a pointer to the message buffer that contains
the message.

• Process A processes the message and then does a FreeMbxBuffer with the buffer
pointer as a parameter.
Chapter 4: Kernel Resources 31

Signals

Signals are modeled after a hardware bus. There is always one sender and there can be
more than one receiver. Selective addressing of receivers as well as broadcast modes are
supported.

CreateSig and OpenSig allow the caller to define and access a signal. They specify an
optional entry-point address to be called when the signal is called. (If the entry point is not
specified, the signal can only be sent and not received). Additionally, the caller can specify
that it only wants to receive the signal when it is sent with a given signal ID.

The InvokeSig call sends a signal. It accepts a pointer to the information to be sent. The
sender can optionally request that all processes that have access to the signal be notified,
regardless of signal ID.

Typically, signals are used to send a short message from one process to a group of
processes. Processing done in signals is kept to a minimum because they are a software
equivalent of hardware interrupts and no processes can run while a signal is being
performed. While signals can be used as an interface mechanism between a server process
and its clients, it is best for the server process to declare itself as a device driver or
subsystem.
32 ARTIC960 Programmer’s Guide

Summary

The process communication services are summarized below. Refer to the ARTIC960
Programmer’s Reference for detailed descriptions.

Service Description
CreateQueue Allocates a new queue.
OpenQueue Gets access to a previously-allocated queue.
CloseQueue Releases access to a queue. When the last process closes the queue,

the queue ceases to exist.
PutQueue Adds an element to a queue. If processes are waiting for a queue

element, the first process is awakened and given the new queue
element.

GetQueue Gets or peeks at the top element of a queue. If the queue is empty, the
process is blocked, with an optional timeout, until an element is put on
the queue.

SearchQueue Searches the queue for an element with a matching address or key
value. The service optionally removes the element from the queue.

CreateMbx Allocates a new mailbox. Takes parameters for message unit size and
number of message units.

OpenMbx Gets access to a previously-allocated mailbox.
CloseMbx Releases access to a mailbox.
GetMbxBuffer Allocates a mailbox buffer. If no buffers are available, the process can

wait optionally until a buffer is available.
FreeMbxBuffer Returns a mailbox buffer to the free pool. This is typically called by a

process that receives a mailbox message.
SendMbx Sends a mailbox message. The message buffer is acquired with

GetMbxBuffer.
ReceiveMbx Receives a mailbox message. The process can wait with a timeout if

the mailbox is empty.
CreateSig Creates a new signal, and optionally registers a signal handler.
OpenSig Gets access to a previously-created signal, and optionally registers a

signal handler.
CloseSig Releases access to a signal. This service also de-registers the signal

handler of a process, if necessary. When the last process closes the
signal, the signal ceases to exist.

InvokeSig Calls the registered signal handlers and passes them a parameter
block. Signal handlers can be called selectively or a broadcast can be
done.
Chapter 4: Kernel Resources 33

Timer Support
Timer support includes software timers, time-of-day clock, and a performance timer.
Page 35 lists the services defined for each. Refer to the ARTIC960 Programmer’s
Reference for a detailed description of each.

Software Timers

Software timers provide processes with a fairly accurate method of measuring a time
period. Time periods can range from 5 milliseconds to approximately 65 seconds with a
granularity of 5 milliseconds.

Software timers come into existence by calling CreateSwTimer. Unlike most other
resources, a software timer cannot be shared; therefore, there is no need for an open
software timer service.

The StartSwTimer service starts the timer running. It takes a time value in milliseconds
ranging from 1 to 65535 (values are be rounded up to a multiple of 5), the address of a
timer handler that is called when the timer expires, and whether the timer should restart
itself after it expires. The caller can also pass a TimerMemo value. The kernel does not
examine the contents of this parameter but passes its value to the timer handler when the
timer expires. It is useful as an identifier when a timer is used for more than one purpose.

A timer handler is similar to an interrupt handler. Although it does not actually run on an
interrupt level, it should limit the amount of time it executes. Hardware interrupts can
interrupt software handlers, but no process can run until a timer handler has completed.

Timer handlers can use any of the kernel services available to interrupt handlers. Refer to
the ARTIC960 Programmer’s Reference for a list of services callable from an interrupt
handler.

Because software timers are multiplexed off a single hardware timer, some degree of
inaccuracy can be expected. If a high degree of accuracy is required, special timer
hardware must be added through a daughter card.

Time of Day

The time-of-day clock gives applications easy access to time-of-day information.
Applications not needing this capability can disable it through the TIME_OF_DAY
parameter in the kernel configuration file. It can be initialized when the kernel’s base
device driver is loaded (or anytime thereafter) by setting the -T option of the application
loader (ricload). Refer to the ARTIC960 Programmer’s Reference for more information.

Time of day can also be set by an application using the SetSystemTime call, as explained
in the ARTIC960 Programmer’s Reference. Once set, time can be read by calling
QuerySystemTime. If synchronization with the system unit or another adapter is required,
it must be provided by the application.
34 ARTIC960 Programmer’s Guide

Performance Timer

ARTIC960 provides a performance timer for use by developers to obtain precision-timing
information. It has a range of 1 microsecond to approximately 5.5 seconds. Because it is a
single hardware resource and intended as a developer’s tool, it does not require create or
open calls. If multiple processes are using it, they must agree on a strategy for serializing
access to it.

The performance timer is started using the StartPerfTimer call. If it is already running,
when StartPerfTimer is issued, an error is returned. It can be read and stopped by the
ReadPerfTimer and StopPerfTimer calls, respectively.

Summary

The timer services are summarized below. Refer to the ARTIC960 Programmer’s
Reference for a detailed description of each service.

Hooks
The kernel provides hooks so that processes can be notified of special actions. These
hooks have the option of pre-processing or post-processing. In other words, processes can
be notified either before the action occurs or they can be notified after the action occurs.
This notification takes the form of calling a hook handler registered by the process. Within
the hook handler, the process can take whatever actions are required.

Only one hook is initially provided, which is for the dispatcher. A dispatcher hook handler
might want to save and restore an environment for processes as they are dispatched.

Refer to the ARTIC960 Programmer’s Reference for information on RegisterHook and
DeregisterHook.

Service Description
CreateSwTimer Allocates a new software timer.
CloseSwTimer Releases access to a software timer.
StartSwTimer Starts a timer. The service takes a timeout Size, a timer handler

that should be called on timer expiration, a flag specifying
whether the timer should be restarted after expiration, and a
memo field to be passed to the timer handler on timer expiration.

StopSwTimer Cancels a running timer.
SetSystemTime Sets the time-of-day clock.
QuerySystemTime Reads the current time of day.
StartPerfTimer Starts the performance timer.
StopPerfTimer Stops the performance timer and returns its value.
ReadPerfTimer Reads the performance timer without stopping it.
Chapter 4: Kernel Resources 35

36 ARTIC960 Programmer’s Guide

5
 Kernel Asynchronous Events Chapter 5
This chapter provides information on conditions than can occur on the adapter.

Asynchronous Events Notification
Asynchronous event notification provides a means for processes on the ARTIC960 adapter
to be made aware of certain hardware and software events. A process can use the
RegisterAsyncHandler call to register that an asynchronous event notification handler be
called when an event occurs. Notification is canceled by calling DeRegisterAsyncHandler.
Refer to the ARTIC960 Programmer’s Reference for a description of both calls.

An asynchronous event handler is similar to an interrupt handler, and its processing time
should be limited. Also, some kernel services are not available. Refer to the ARTIC960
Programmer’s Reference for a list of the modes in which each kernel service can be called.

Asynchronous events are categorized as software events, processor events, and adapter
events.

• Software Events

– Process stop

– Process start

– Device driver termination

– Closing a shared resource

• 80960 Processor Events

– Arithmetic

– Constraint

– Operation

– Protection

– Type
Chapter 5: Kernel Asynchronous Events 37

• Adapter Events

– Watchdog timeout

– Parity (multibit ECC error and local bus parity)

– Memory protection violation (80960 master)

– Memory protection violation (system bus master)

– PCI bus error.

The asynchronous events are also categorized according to their severity into three main
groups: normal events, process error events, and adapter error events. This classification
determines the action that the kernel takes after calling the registered asynchronous event
notification handlers.

Normal Events

Normal events are those that are not errors. Execution resumes after all handlers have been
called. The following events are classified as normal events:

• Software Events

– Process stop

– Process start

– Device driver termination

– Closing a shared resource

– PCI bus error

Process Error Events

Process error events are errors that occur at process time and cause the currently executing
process to be stopped. The following events are classified as process error events:

• 80960 Processor Events

– Operation

– Arithmetic

– Constraint

– Protection

– Type

• Adapter Events

– 80960 memory protection violation at process time

– AIB bus read parity error with 80960 master

If non-existent memory is accessed, memory-protection violations can
occur, even with memory protection turned off.
38 ARTIC960 Programmer’s Guide

Adapter Error Events

Adapter error events are errors that always cause all processes to be stopped. These
include process error events that occur while executing in software handlers. Specifically,
all processes are stopped when an error occurs in an interrupt handler, timer handler,
asynchronous event notification handler, or device driver/subsystem open, close, or call
(invoke). The following events are classified as adapter error events:

• 80960 Processor Events occurring in software handlers

– Operation

– Arithmetic

– Constraint

– Protection

– Type

• Adapter Events

– Watchdog timeout

– Parity error (multibit ECC error and local bus parity error)

– System bus memory protection violation

– 80960 memory protection violation

– PCI bus error.

The PCI bus error event allows the asynchronous event handler to return
a value indicating whether the event should be treated as a normal event
or an adapter error event. Refer to the ARTIC960 Programmer’s
Reference for more information on RegisterAsyncHandler.
Chapter 5: Kernel Asynchronous Events 39

Terminal Error Notification
The system unit processes can be notified of terminal errors on the adapter. Terminal
errors are defined as errors that are so severe that adapter processes cannot notify system
unit processes through the standard communications channels, such as mailboxes.
Terminal errors are composed of the adapter events defined in the previous section, as well
as failures of the kernel or related subsystems. Processes in the system unit can be notified
of terminal errors by the system unit device driver service RICGetException. Refer to the
ARTIC960 Programmer’s Reference for information on RICGetException and terminal
error code definitions. The actual terminal error information is passed in a structure called
RIC_Except, which has the following definition:

 struct RIC_Except
 {
 RIC_ULONG ExceptionCode;
 RIC_ULONG ExceptionDataSize;
 union
 {
 struct RIC_AsyncEvent EventInfo;
 struct RIC_Invalid_Intr InvIntr;
 struct RIC_Data_Corrupt BadData;
 struct RIC_Kern_Init KernIni;
 struct RIC_MBXErrInfo MBXInfo;
 struct RIC_SCBErrInfo SCBInfo;
 struct RIC_MCErrInfo MCInfo;
 struct RIC_RPErrInfo RPInfo;
 struct RIC_HxErrInfo HxInfo;
 } ExceptionData;
 };

where:

ExceptionCode
Is an error code indicating which terminal error has occurred on the adapter.
The operating system support needs to check this code when interrupted by
an adapter. If ErrCode is 0, no error occurred. The exception codes follow.

ExceptionDataSize
Is the size of the exception-specific data plus the ExceptionCode and
ExceptionDataSize fields.

EventInfo Asynchronous event information detailed in the next section (see page 41)

InvIntr Interrupt error information (see page 42)

BadData Kernel failure due to internal data corruption (see page 43)

KernIni Kernel-initialization error information (see page 43)

MBXInfo External mailbox failure information (see page 44)

SCBInfo SCB subsystem failure information (see page 45)

MCInfo System bus I/O failure information (see page 45)

RPInfo Information specific to a nonmaskable interrupt (NMI) on the ARTIC960Rx
and the ARTIC960RxD adapters (see page 46)
40 ARTIC960 Programmer’s Guide

HxInfo Information specific to a PLX 9080 interrupt on the ARTIC960Hx adapter
(see page 46)

The system unit device driver needs to understand only the first two words: Exception
Code and Data Size. The rest of the parameters only needs to be copied, and is understood
and formatted by the dump facility or status utility.

Exception Dependent Data Structures

The system unit device driver needs to understand only the first two words,
ExceptionCode and ExceptionData. The rest of the parameters are to be copied, and will
be interpreted and formatted by the Dump or Status utility.

The ExceptionData is a union of several structures. The structure used depends on the
value in ExceptionCode. The table below shows the data structures associated with each
code.

ExceptionCode ExceptionData

TERMERR_WATCHDOG
TERMERR_PARITY
TERMERR_MEM_PROCESSOR
TERMERR_MEM_MICROCHANNEL
TERMERR_MEM_AIB
TERMERR_PROCESSOR

EventInfo

If one of these exceptions occurs, EventInfo is returned as
ExceptionCode. Refer to the ARTIC960 Programmer’s
Reference for a definition of this structure.
Chapter 5: Kernel Asynchronous Events 41

TERMERR_INVALID_INTR InvIntr

If this exception occurs, InvIntr is returned as ExceptionData,
using the following format.

struct RIC_Invalid_Intr
{

RIC_ULONG VectorNum;
RIC_ULONG ProcType;
RIC_ULONG IntPend;
union
struct
{

RIC_ULONG NMIPend;
RIC_ULONG XI7Pend;
RIC_ULONG X16Pend;
RIC_ULONG InbPend;
struct

 {
 RIC_ULONG NMIPend;

 RIC_ULONG XI7Pend;
 RIC_ULONG X16Pend;
 RIC_ULONG InbPend;
 } RP;

} Pend;
}

where:

VectorNum
Is the vector number that interrupted.

ProcType
Is the processor type. The value can be equal to one of
the following:

PROC_960CX
PROC_960HX
PROC_960JX (ARTIC960Rx or ARTIC960RxD adapter)

IntPend
Is the value of the Interrupt Pending Register (IPND).

If the adapter is the ARTIC960Rx or ARTIC960RxD
adapter, the following information is also provided:

NMIPend
NMI Interrupt Status Register (NISR)

XI7Pend
XINT7 Interrupt Status Register (X7ISR)

XI6Pend
XINT6 Interrupt Status Register (X6ISR)

InbPend
Inbound Interrupt Status Register (IISR)

ExceptionCode ExceptionData
42 ARTIC960 Programmer’s Guide

TERMERR_DATA_CORRUPTION BadData

If this exception occurs, BadData is returned as ExceptionData,
using the following format.

struct RIC_Data_Corrupt
{

RIC_PROCESSID ProcessId;
void *ItsPCB;
RIC_ULONG ResHandle;

RIC_ULONG RetCode;
}

where:

ProcessId
Process whose data structure was bad.

ItsPCB
Pointer to the internal data structure for the process.
See note.

ResHandle
Specific resource returning a return code indicating bad
data.See note.

RetCode
Actual return code.

Note: If RetCode is RC_INVALID_CALLER_POSITION,
a stack overflow has occurred. The ItsPCB field
indicates the process stack address that caused the
overflow, and the ResHandle field indicates the address
limit for the stack.

TERMERR_KERNEL_INIT KernIni

If this exception occurs, KernIni is returned as ExceptionData,
using the following format.

struct RIC_KernInitErr
{

RIC_ULONG FailureCode;
}

where:

FailureCode
Is the reason for the kernel failure.

ExceptionCode ExceptionData
Chapter 5: Kernel Asynchronous Events 43

TERMERR_EXTMAIL_FAIL MBXInfo

If this exception occurs, MBXInfo is returned as ExceptionData,
using the following format.

struct RIC_MBXErrInfo
{

RIC_ULONG FailureCode;

RIC_ULONG ErrType;
}

where:

FailureCode
Is the reason the subsystem failure. Valid values are:

TERMERR_NO_MORE_MEM
There was not enough memory left in the internal
pools for the operation to be performed.

TERMERR_NO_MORE_QUEUES
There was no queue available for the operation to be
performed.

TERMERR_NO_MORE_SEM
There was no semaphore available for the operation
to be performed.

TERMERR_NO_MORE_TIMERS
There was no timer available for the operation to be
performed.

TERMERR_MC_ERRA
A system bus error occurred while an attempt was
being made to read a mailbox message.

TERMERR_INVOKING_RIC_MCIO
An error occurred during an attempt to access the
System Bus Subsystem.

TERMERR_INVOKING_RIC_SCB
An error occurred during an attempt to access the
SCB Subsystem.

ErrType
Type of error that occurred. If the failure code is
TERMERR_MC_ERR, possible values are:

TERMERR_DATA_PARITY
TERMERR_CHCK
TERMERR_CARD_SEL_FDBACK
TERMERR_LOSS_OF_CHANNEL
TERMERR_LOCAL_BUS_PARITY
TERMERR_EXCEPTION
TERMERR_TIMEOUT

If the failure code is TERMERR_INVOKING_RIC_MCIO
or TERMERR_INVOKING_RIC_SCB, ErrType is the
kernel return code. Otherwise, this field is not used.

ExceptionCode ExceptionData
44 ARTIC960 Programmer’s Guide

TERMERR_SCB_FAIL SCBInfo

If this exception occurs, SCBInfo is returned as ExceptionData,
using the following format.

struct RIC_SCBErrInfo
{

RIC_ULONG FailureCode;

RIC_ULONG McErrType;
}

where:

FailureCode
Is the reason the subsystem failure. Valid values are:

TERMERR_NO_MORE_MEM
There was not enough memory left in the internal
pools for the operation to be performed.

TERMERR_MC_ERRA
A system bus error occurred during an attempt to
enqueue an SCB control element.

MCErrType
Is the type of error that occurred if the failure code is
TERMERR_MC_ERR. Otherwise, this field is unused. Valid
values are:

TERMERR_PIPE_ACCESS
TERMERR_PIPE_TIMEOUT

TERM_MC_IO_SYSFAIL MCInfo

If this exception occurs, MCInfo is returned as ExceptionData,
using the following format.

struct RIC_MCErrInfo
{

RIC_ULONG FailureCode;

RIC_ULONG ProcessID;
}

where:

FailureCode
Is the reason the subsystem failure. Valid values are:

TERMERR_NO_MORE_MEM
Not enough memory is left in the internal pools for the
operation to be performed.

ProcessID
Is the Process ID of the process that issued the system
bus operation.

ExceptionCode ExceptionData
Chapter 5: Kernel Asynchronous Events 45

TERMERR_NMI_INTERRUPT RPInfo

If this exception occurs, RPInfo is returned as ExceptionData,
using the following format.

struct RIC_RPErrInfo
{

RIC_ULONG NMIISR;
RIC_ULONG PBISR;
RIC_ULONG SBISR;
RIC_ULONG PATUISR;
RIC_ULONG SATUISR;
RIC_ULONG COREISR;
RIC_ULONG MEAR;
RIC_ULONG IISR;

}

where:

NMIISR
NMI Interrupt Status Register (NISR)

PBISR
Primary Bridge Interrupt Status Register (PBISR)

SBISR
Secondary Bridge Interrupt Status Register (SBISR)

PATUISR
Primary ATU Interrupt Status Register (PATUISR)

SATUISR
Secondary ATU Interrupt Status Register (SATUISR)

COREISR
Local Processor Interrupt Status Register (LPISR)

MEAR
Memory Error Address Register (MEAR)

ISSR
Inbound Interrupt Status Register (IISR)

TERMERR_PLX_INTERRUPT HxInfo

If this exception occurs, HxInfo is returned as ExceptionData,
using the following format.

struct RIC_HxErrInfo
{

RIC_ULONG PLXStatus;
}

where:

PLXStatus
Status portion of the PLX 9080 Status/Command
Register.

TERMERR_ASYNC_NO_MORE_RES If this exception occurs, there is not enough memory in the
internal asynchronous event pools to process the asynchronous
event. Therefore, the event cannot be processed.

ExceptionCode ExceptionData
46 ARTIC960 Programmer’s Guide

6
 Kernel Trace Services Chapter 6
Use Kernel Trace Services to capture information about adapter activity.

Trace APIs
The ARTIC960 kernel provides APIs that allow adapter processes to trace kernel calls or
paths, or both, through their own code. Utilities are provided to dump and display this
data. (See Trace Utilities on page 58 for more information.) Page 48 lists the kernel trace
services available. Refer to the ARTIC960 Programmer’s Reference for a detailed
description of each service.

Trace information is stored in a trace buffer whose size is set by the InitTrace service. Also
set is whether tracing should cease when the trace buffer is full or whether trace
information should wrap.

Tracing can be selectively enabled and disabled on a service class basis by the
EnableTrace and DisableTrace calls. Examples of kernel service classes are
MAILBOX_SERVICE and SEMAPHORE_SERVICE. Applications can define their own
service classes. 128 unused service classes are available.

Users can place their own trace information in the trace buffer by calling LogTrace. It
accepts a pointer to user-defined data to place in the trace buffer as well as a format
indicator. The format indicator tells the trace utilities how to format the trace buffer
for display.

printf C Function
The printf C function can also be used to capture data on the adapter. This function works
with the kernel trace services. The ARTIC960 C support library allows processes running
on the adapter to use the printf C function to write data to stdout or stderr. The trace buffer
used by the LogTrace service serves as the output device. The data can be recovered in the
same way as the LogTrace data by using the system unit trace utilities. Refer to the
ARTIC960 Programmer’s Reference for information.

Calling the printf C function automatically enables tracing if it has not been enabled
previously. A 1 KB buffer is allocated for accumulating the printf data. Whenever the
printf buffer is full, the 1 KB of data is written to the LogTrace buffer using service class
C_CLIB. The procedure IDs used are P_FD_STDOUT or P_FD_STDERR.

The printf buffer is written automatically to the LogTrace buffer when a process exits. The
fflush function can be used to force a write of the printf buffer before it is full.
Chapter 6: Kernel Trace Services 47

Summary
The kernel trace services are summarized below. Refer to the ARTIC960 Programmer’s
Reference for a detailed description of each service.

Service Description
Init Trace Initializes a trace buffer for logging
EnableTrace Enables one or more service classes for tracing
DisableTrace Disables one or more service classes for tracing
LogTrace Places trace data in the trace buffer
48 ARTIC960 Programmer’s Guide

7
 Kernel Commands Chapter 7
At its initialization, the kernel establishes a mailbox of its own for receiving commands
from the system unit or other adapters. These kernel commands are listed on page 52.
Refer to the ARTIC960 Programmer’s Reference for a detailed description of each
command.

The name of the kernel’s command mailbox is “RIC_KERNMBXn”, where n is the
logical adapter number. Commands sent to the kernel mailbox take the following form.
For more information on logical adapter numbers, see Base API Services on page 54.

struct RIC_KernCommand
{
 struct RIC_KernMbxCmd Header;
 union
 {
 struct RIC_RegisterResponseMbxCmd Cmd0;
 struct RIC_DeregisterResponseMbxCmd Cmd1;
 struct RIC_QueryProcessStatusCmd Cmd2;
 struct RIC_StopProcessCmd Cmd3;
 struct RIC_StartProcessCmd Cmd4;
 struct RIC_UnloadProcessCmd Cmd5;
 }Cmds;
};
struct RIC_KernMbxCmd
{
 RIC_ULONG CommandNum;
 RIC_RESPMBX RespMbxID;
 RIC_ULONG CorrelationID;
 RIC_ULONG ReturnCode;
 RIC_ULONG Reserved;
};

where:

CommandNum
Command number unique to each kernel command.

RespMbxID
ID returned on RegisterResponseMbx.

CorrelationID
A value, which is not interpreted by the kernel and can be used by the
requester to correlate command responses.

ReturnCode
Reserved field (must be set to 0).

Reserved Must be set to 0.
Chapter 7: Kernel Commands 49

Each kernel command returns response information that takes the following form.

struct RIC_KernResponse
{
 RIC_ULONG CorrelationID;
 RIC_ULONG ReturnCode;
 RIC_ULONG Reserved;
 union
 {
 struct RIC_RegisterResponseMbxResp Resp0;
 struct RIC_QueryProcessStatusResp Resp1;
 }Resp;
{;

where:

CorrelationID
A value passed in the command. It can be used to correlate command
responses.

ReturnCode
Return code that is returned by the kernel to indicate the completion status of
the command.

Reserved Must be set to 0.

A process can send commands to the kernel mailbox and receive responses to those
commands in any mailbox it specifies. To establish the response mailbox, the process must
first open the kernel mailbox and then send a RegisterResponseMbx command using
SendMbx. RegisterResponseMbx takes a mailbox name as input and returns a response
mailbox ID. This response mailbox ID is provided on subsequent kernel commands and
tells the kernel where to send command response information. Prior to issuing
RegisterResponseMbx, the specified mailbox must have been created as a global mailbox.
When a process terminates or no longer needs to send kernel commands, it should issue a
DeRegisterResponseMbx command.
50 ARTIC960 Programmer’s Guide

Using Kernel Commands
The following sequence describes how a system unit process obtains the status of a card
process named “CardProc” on logical card 0 using the QueryProcessStatusCmd.

1. Create mailbox xyz with the MBX_CREATE_GLOBAL option.

2. Open mailbox KERNMBX0 using the MBX_OPEN_SEARCH_GLOBAL option.

3. Build a RegisterResponseMbx command in a buffer acquired using GetMbxBuffer
(using the KERNMBX0 handle). The fields are set as follows:

RIC_KernCommand.RIC_KernMbxCmd.CommandNum = KERN_REG_RESP_MBX
RIC_KernCommand.RIC_KernMbxCmd.RegisterResponseMbxCmd.MbxName = "xyz"

4. Send the command to mailbox KERNMBX0 using SendMbx.

5. Wait for a response by calling ReceiveMbx for mailbox xyz.

6. Check RIC_KernResponse.ReturnCode to verify the command was completed
successfully. Then save the response ID value contained in
RIC_KernRespnse.RIC_RegisterResponseMbxResp.RespMbxID for use in later
commands.

7. Return both the command and response buffers using FreeMbxBuffer.

8. Obtain a buffer and build the QueryProcessStatusCmd with the fields set as follows:

RIC_KernCommand.RIC_KernMbxCmd.CommandNum = KERN_QUERY_PROC_STAT
RIC_KernCommand.RIC_KernMbxCmd.RespMbxId = value saved in previous
step
RIC_KernCommand.RIC_KernMbxCmd.QueryProcessStatusCmd.ProcName =
"CardProc"

9. Send the command to mailbox KERNMBX0 using SendMbx.

10. Wait for a response by calling ReceiveMbx for mailbox xyz.

11. Check RIC_KernResponse.ReturnCode to verify the command was completed
successfully. Then obtain the desired status information from the
RIC_ProcessStatusBlock structure.

12. Return the command and response buffers using FreeMbxBuffer.

In the preceding sequence, the first seven steps are set up to establish the response mailbox
and do not need to be repeated unless a different response mailbox is desired or a
DeRegisterResponseMbx command is issued. Also, the same buffer could be used to send
both commands, if it was sized to accommodate the larger of the two commands.
Chapter 7: Kernel Commands 51

Summary
The kernel commands are summarized below. Refer to the ARTIC960 Programmer’s
Reference for a detailed description of each command.

Command Description
RegisterResponseMbx Registers a command response mailbox.
DeRegisterResponseMbx De-registers a command response mailbox.
QueryProcessStatus Gets the status and other related information for a process.

This call can also be used to resolve a process name into a
process ID.

StartProcess Starts a stopped process.
StopProcess Stops a started process. All resources acquired by the

process are released. The memory for the process code,
data, and stack is not released so that the process can be
restarted later.

UnloadProcess Unloads the process. All the resources acquired by the
process are released. The memory for the process code,
data, and stack is also released.
52 ARTIC960 Programmer’s Guide

8
 System Unit Support Chapter 8
The ARTIC960 system unit support consists of three categories of services:

• Base API services

• Mailboxes

• Utilities

Each is described in this chapter and in more detail in the ARTIC960 Programmer’s
Reference.

Implementing API Functions
System unit support API functions are implemented using the following executables and
libraries.

These files must be loaded and configured before the associated API calls are used. Refer
to the ARTIC960 Programmer’s Reference for more information.

Operating System
Executables and
Libraries

Description

OS/2 ricio16.sys OS2 3.0 device driver
OS/2 ricio32.dll Base API dynamic link library routines
OS/2 ricmbx32.exe Mailbox process
OS/2 ricmbx32.dll Mailbox-process dynamic link library

routines
AIX ricio AIX device driver
AIX libric.a Base API library
AIX ricmbx Mailbox daemon
AIX libmbx.a AIX mailbox API library
Windows NT ibma960.sys Windows NT 4.0 device driver
Windows NT librica.dll Base API dynamic link library routines
Windows NT librica.lib Base API dynamic link library
Chapter 8: System Unit Support 53

Base API Services
The base API services allow a process to perform various low-level operations, such as
reading and writing adapter memory, resetting an adapter, and getting configuration and
exception information. The operations are implemented in the following.

• OS/2 — Device driver and associated dynamic link library routines

• AIX — Device driver and associated library routines

• Windows NT — Device driver and associated services

See page 55 for a list of the services. Refer to the ARTIC960 Programmer’s Reference for
a detailed description of each. There is no concept of synchronization/signaling between
adapter processes and system unit processes provided in the base API. All signaling
should use the mailbox facility.

Because a system unit can support more than one ARTIC960 adapter, each adapter is
referred to by a logical card number.

OS/2 In OS/2, logical card numbers range from 0 to 6 and are assigned by the
device driver at its initialization. The device driver scans the physical system
first for a Micro Channel bus, and then for a PCI bus. Depending on the bus
found, the following occurs:

Micro Channel bus
The driver checks each slot, from low slot number to high slot number, and
assigns logical card numbers consecutively. These logical card numbers
range from 0 to 6 (for a maximum of seven Micro Channel bus adapters).

PCI bus
The driver interrogates the PCI BIOS for all ARTIC960 PCI, ARTIC960Hx,
and ARTIC960Rx adapters, in this order. For each adapter found, the device
driver assigns a logical card number starting at one greater than the number
of Micro Channel bus cards (for example, the first logical PCI card can be 0
to 6). The driver supports a maximum of seven PCI adapters.

There is no correspondence between the adapter logical card number and the
slot it occupies. The slot number is stored as 0xFF. Slot numbers can be
accessed through the ARTIC960 RICGetConfig base API.

AIX In AIX, logical card numbers are equivalent to device minor numbers
assigned by the AIX configuration manager. The supported range for logical
card numbers is 0 to 13.

Windows NT
In Windows NT, logical card numbers range from 0–6 and are assigned by
the device driver at its initialization. The device driver scans the PCI bus for
ARTIC960 PCI adapters.

Prior to calling any of the base services, the adapter must be opened by way of the
RICOpen call. It takes a logical card number as input and returns a handle. The handle is
used on subsequent base API calls. When the application process is finished using base
API calls, it should close the adapter by calling RICClose.

A process can read or write ARTIC960 memory using the RICRead and RICWrite
services. RICRead reads data at a specified ARTIC960 address and places it into the
54 ARTIC960 Programmer’s Guide

specified system unit buffer. RICWrite writes data from a specified system unit address to
a specified ARTIC960 adapter address. Lengths can be as much as 64 KB. All ARTIC960
adapter addresses are local memory addresses—not system bus addresses.

A process can reset the card to its power-on state by issuing RICReset. When a card is
reset, the kernel, any application processes, and configuration information is lost.

Fatal errors on the adapter are reported to system unit processes using the
RICGetException call. An application can call this service with a timeout, or it can wait
until an exception occurs. RICGetException returns exception data in the form of a
structure called ExceptData. For more information on exceptions, see Chapter 5: Kernel
Asynchronous Events on page 37.

Summary of Base API Services
The base API services are summarized below. Refer to the ARTIC960 Programmer’s
Reference for a detailed description of each service.

Mailboxes
Mailboxes on the system unit follow the same API as mailboxes on ARTIC960 adapters.
For details on their operation, refer to Mailboxes on page 28. However, there are some
restrictions on system unit mailboxes that do not apply to adapter mailboxes. The
following are restrictions for both OS/2 and AIX Mailboxes:

• There is no concept of local mailboxes, that is, mailboxes for communicating between
processes residing only on the system unit. Mailbox communication can occur only
between system unit processes and ARTIC960 processes. Memory pool sharing
between mailboxes is still possible. For example, the creator of a mailbox on the
system unit can share memory with the opener of a mailbox on the system unit.

• A single allocation using GetMbxBuffer cannot exceed 65,503 bytes.

OS/2 Mailboxes

• Because OS/2 does not support counting semaphores, the event semaphore returned
on CreateMbx does not reflect the number of messages in the mailbox. It has only two
states. It is cleared when messages are available and set when the mailbox is empty. A
process wanting to perform a semaphore wait using the mailbox semaphore must first
call ReceiveMbx with the no-wait timeout before waiting for the semaphore.

Service Description
RICOpen Gets access to the ARTIC960 device
RICClose Releases access to the ARTIC960 device
RICRead Reads data from ARTIC960 memory into system unit memory
RICWrite Writes data from system unit memory into ARTIC960 memory
RICReset Resets a ARTIC960 adapter
RICGetConfig Gets hardware configuration information
RICGetVersion Gets software version numbers
RICGetException Gets ARTIC960 adapter exception information
Chapter 8: System Unit Support 55

AIX Mailboxes

• Superuser authority is required to call the Mailbox Daemon.

• The MBX_PIN_MEMORY option is ignored in AIX CreateMbx and OpenMbx.

• The Mailbox API registers the SIGALRM signal during the first call to CreateMbx or
OpenMbx. Therefore, mailbox users must not use AIX functions that require the
SIGARLM signal or use the SIGARLM signal in any way.

• Mailboxes are supported only for logical cards 0 through 9.

• A child is forked for each mailbox application. This child is dormant until the mailbox
application exits. Its function is to notify the mailbox daemon that the mailbox
application died and the child exits.

• When using a ARTIC960 PCI adapter, applications on both the system unit and the
card can issue SendMbx requests if the SIZE parameter is in the range 0 < size <
16384.

Windows NT Mailboxes

Not supported.

Utilities
The utilities for the ARTIC960 adapter follow.

Each is described briefly in the following paragraphs and in more detail in the ARTIC960
Programmer’s Reference.

Application Loader

The loader utility accepts relocatable executable files in the Common Object File Format
supplied by the Intel 80960 linker. It performs relocatable addressing as required and
downloads the file to the specified logical card number. The loader is used to load the
kernel and its subsystems, as well as application processes.

Refer to the ARTIC960 Programmer’s Reference for a list of the loader options. Options
include the capability to perform the following.

• Specify the file name of a list of files to be loaded.

• Pass parameters to the loading process in the form of C language argc,argv, either on
the command line or through a separate file.

• Instruct the loader to wait until the loading process executes the kernel CompleteInit
service. Waiting allows a process to return initialization information for display by the
Application Loader.

• Start a previously-loaded process that has not yet been started.

• Unload a previously-loaded process.

Task Utilities
Initialize the ARTIC960 operating environment Loader, Reset, Configuration
Debug and performance Status, Dump, Trace
Run hardware diagnostics Diagnostics
56 ARTIC960 Programmer’s Guide

Reset Utility

The reset utility allows a user to reset a card to its power-on state. When a card is reset, the
kernel and any application processes and configuration information are lost. Multiple
adapters can be reset with a single call of the reset utility. Refer to the ARTIC960
Programmer’s Reference for more detailed information on this utility.

Configuration Utility

The Configuration utility configures the adapter for communication between itself and the
system unit or other adapters, or both. It must be run after the kernel and its subsystems are
loaded, but prior to application loading. If a card reset is performed, the utility must be
rerun.

This utility specifies the size of pipes that are used for off-card communications. It
defaults to a size that should accommodate most applications. However, if necessary, the
pipe size may be explicitly specified when the utility is called.

Refer to the ARTIC960 Programmer’s Reference for more detailed information on this
utility.

Status Utility

The Status utility is a debug tool that allows a developer to display information about the
state of the adapter and the processes loaded on it. Some of the information provided are:

• Slot number, I/O address, memory size, and so forth

• List of processes loaded and their states

• Memory display

• List of all resources allocated

• List of resources allocated by a process

• Details about each resource allocated

• Exception conditions

• Vital Product Data (VPD) information for the adapter and the daughter card, if a
daughter card is connected

This utility also is used to display memory and register information gathered by the Dump
utility.

Refer to the ARTIC960 Programmer’s Reference for more detailed information on this
utility.

Dump Utility

The Dump utility captures an image of ARTIC960 memory and stores it to disk for later
display by the Status utility. It has two modes of operation: triggered and immediate.
When running in triggered mode, the utility waits until an adapter exception condition
before dumping memory. In immediate mode, the utility performs its function when
called.

Refer to the ARTIC960 Programmer’s Reference for more detailed information on this
utility.
Chapter 8: System Unit Support 57

Trace Utilities

The ARTIC960 kernel provides APIs that allow adapter processes to trace kernel calls and
paths through their own code (for more information on kernel trace services see Chapter
6: Kernel Trace Services on page 47). There are three system unit utilities that aid in
gathering and displaying trace data from the adapter: Set Trace, Get Trace, and Format
Trace.

Set Trace Initializes, enables, and disables tracing of specified services.

Get Trace Reads the trace buffer from the adapter and stores it on the system unit in a
user-definable trace file.

Format Trace
Formats the trace file into a user-readable format.

Refer to the ARTIC960 Programmer’s Reference for more detailed information on these
utilities.

Diagnostics Utility

The Diagnostics utility is used for running hardware diagnostics. It is installed with the
operating system support programs. Refer to the installation readme file provided with the
support programs for information on using this utility.
58 ARTIC960 Programmer’s Guide

9
 Compiling and Linking Programs Chapter 9
This chapter explains how to compile and link:

• ARTIC960 programs

• OS/2 system unit programs

• AIX system unit programs for AIX Version 4

ARTIC960 Programs
ARTIC960 adapter-resident programs are compiled and linked using the Intel set of 80960
processor C language tools. These tools include a compiler, linker, disassembler, and
librarian.

All programs using ARTIC960 kernel services must include the file ric.h. Prior to your
#include statement, the constant RIC_KERNEL must be defined to obtain the proper
declarations. The following code fragment illustrates this.

#define RIC_KERNEL
#include <ric.h>

To compile the program test.c, call the compiler as follows:

ic960 -c -ACA -Gbc test.c -I <path where header files are
installed>

The libraries for kernel services are contained in the file libricc.a for OS/2 and libriccx.a
for AIX. To link test.o with the kernel and other standard C libraries:

lnk960 <path where library is installed>ricproc.ld test.o -r\
-o test.rel -ACA -L<path where library is installed>

After linking in AIX, the relocatable executable file must be converted to little endian by
using the CTOOLS960 utility, cof960. To convert test.rel from big endian to little endian,
call cof960 as follows:

cof960 -lv test.rel

Processor Architecture Considerations

The architecture compiler option (-A) is used to specify the target instruction set.

If a module is loaded on a card which has a processor architecture that is different from the
one specified when the module is compiled, the loader may display a warning message
indicating processor mismatch. The module may be using instructions that are not
supported on the target processor.

Using the architecture compiler option -ACA produces code that will run on all
ARTIC960 adapters.
Chapter 9: Compiling and Linking Programs 59

OS/2 System Unit Programs
ARTIC960 system unit-resident programs are compiled and linked using the IBM C Set/2
language tools. These tools include a compiler, linker, source level debugger, and make
facility.

All programs using ARTIC960 system unit services must include the file ric.h. Prior to
your #include statement, the constant RIC_OS2_32 must be defined to obtain the proper
declarations. The following code fragment illustrates:

#define RIC_OS2_32
#include <ric.h>

To compile the program test.c, call the compiler as follows:

icc /C /Gt test.c

The libraries for base API calls are in the ricos232.lib file. The libraries for mailbox calls
are in the ricmbx32.lib file.

To link the test program test.obj with the base API and mailbox calls, call the linker as
follows:

link386 /NOI test.obj,test.exe,,ricos232.lib ricmbx32.lib;.

AIX System Unit Programs
ARTIC960 system unit resident programs are compiled using the C for AIX Compiler.

All programs using ARTIC960 system unit services must include the file: ric.h. Prior to
your #include statement, the constant RIC_AIX_RS6000 must be defined to obtain the
proper declarations. The following code fragment is an example.

#define RIC_AIX_RS6000
#include <ric.h>

To compile the program test.c, call the compiler as follows:

cc -o test -I/usr/lpp/devices.artic960/include test.c

The libraries for base API requests are in the libric.a file; the libraries for mailbox calls
are in the libmbx.a file.

To link the test program test.o with the base API and mailbox calls, call the linker as
follows:

 cc -o test -L/usr/lpp/devices.artic960/bin \
 -lric -lmbx test.o

The IBM VisualAge C ++ for OS/2 language tools also can be used.
60 ARTIC960 Programmer’s Guide

Windows NT System Unit Programs
ARTIC960 system unit resident programs are compiled using the Microsoft 32-bit C/C++
Optimizing Compiler for 80x86.

All programs using the ARTIC960 system unit services must include the file ric.h. Prior to
your #include statement, the constant RIC_WINNT must be defined to obtain the proper
declarations. The following code fragment is an example:

#define RIC_WINNT
#include <ric.h>

To compile and link the program test.c, call the compiler as follows:

cl test.c -Ic:\ric\inc -DRIC_WINNT /link c:\ric\lib\librica.lib

The libraries for the base API requests are in the librica.lib file.
Chapter 9: Compiling and Linking Programs 61

62 ARTIC960 Programmer’s Guide

Index
Numerics
80960 processor events 37

A
access

device driver/subsystem 12
rights, constants 20
rights, resource 19

adapter events 38
adapters, supported (chart) 2
address

ARTIC960 adapter 55
daughter card DMA 19
entry-point 32
I/O 57
memory 15
parameter block 14
queue element 28
timer handler 34

addressing, big-endian memory 23
AIX system unit programs 60
allocate

memory 18
resource 18
resource memory 21

AllocHW — Allocate an Interrupt Vector 11
AllocVector — Allocate an Interrupt Vector 11, 13
APIs, base services 54
application loader description 56
architecture considerations, processor 59
ARTIC960 programs 59
ASCII string name 17
asynchronous events

description 37
notification 37
terminal error notification 40

B
banks, memory 18
base API services 54
big-endian memory 20, 23
block
calculate size 21
initialize 12, 24

books, reference ix
broadcast modes 32
buffer-pool sharing 29
bus, Micro Channel/PCI 54

C
cache, i960 processor data 22
cached memory areas 22
call

create 17
open 17
signal handlers 32

call/close entry points 15
child, mailbox 56
CloseDev — Close a Subsystem or Device Driver 13
commands, kernel

summary 52
using 51

compile and link
ARTIC960 programs 59
OS/2 system unit programs 60
Windows NT system unit programs 61

CompleteInit — Mark Process as Completely Initialized 7,
12

constants, set of 19
conventions, notational viii
counting semaphores, using 25
CPU access 19
create

mailbox 29
memory 20
process 7

create call 17
CreateDev — Register a Subsystem or Device Driver 11
CreateProcess — Create a Process 7
creator, mailbox 26
critical code section 25

D
data cache, enable 22
data formatting/transmission 1
Index 63

data/code pointers 14
DATA_CACHE parameter 22
daughter card/system bus access 19
debug tool 57
depth count 5
device driver

accessing 12
description 11
initialization 11
memory-protection maps 14
services 15

device driver/subsystem
memory protection 14
ric_base.rel, file 2

diagnostics utility 58
DMA channels 18
dump utility, description 57
dynamic memory

allocation 15, 22
management 18

E
e-mail address, RadiSys ix
enable data cache 22
EnterCritSec — Enter Critical Section 5
entry point, call/close 15
error

checking, mutex semaphores 25
events, adapter 39
events, process 38
notification, terminal 40
PCI bus 38

event
asynchronous 37
notification, asynchronous 37
processes/semaphores, wait 26
using 26

exception conditions 37
exception data 55
ExitCritSec — Exit Critical Section 5
explicit semaphores 25

F
fatal errors 55
fflush C function 47
FIFO (first in first out) 28
forked child 56

G
global mailbox 29
global memory option 14
64 ARTIC960 Programmer’s Guide
H
handler

interrupt 13
timer 34

hardware
diagnostics 58
features 1
resources 18

high-priority interrupt (trap) 8
hooks, overview 35
HXInfo 46

I
image, relocatable 2
implicit semaphores 25
initialization

device driver/subsystem 11
process 6

input/output subsystem 2
instance data services, process 7
instruction

fetches 19
memory access 18

internal data RAM 23
interprocess communications 27
interrupt handlers 13, 34
InvokeDev — Call a Subsystem or Device Driver 13

K
kernel

asynchronous events 37
description 2
device driver/subsystem 11
hooks 35
memory management 18
overview 2
process management 5
process synchronization 24
resources 17
ric_kern.rel, file 2
timer support 34
trace services 47

L
level, priority 5
libraries

for base API requests 60
for kernel services 59
lnk960 (link) 59
ricproc.ld (link) 59

LIFO (last in first out) 28
linker, call 60

little-endian memory 20
lnk960 (link libraries) 59
load application, description 56
loader utility, application 56
local mailbox 29
logical card numbers 54

M
mailbox

child 56
description 28
general information 55
local/global 29
memory options 18
messages 26
queue linkages 27
restrictions 55
using 31

management
process, description of 5
resource 17

maps, memory protection 14
mask as parameter 27
memory

access-right constants 20
addressing, big-endian 23
allocation, resource 21
cached 22
create 20
management 18
open 20
pool 18
private 31
protection 8, 14
protection maps 14
protection, process 8
read/write 55
resource management 18
shared 31
sharing, resource 20
suballocation 21
type 18

memory management, summary of services 24
MEMORY_PROTECTION parameters 8
message, mailbox 26
Micro Channel bus 54
mutex semaphores 25

N
name

ASCII string 17
process 5

NMI (non-maskable interrupt) 41
normal events 38
notational conventions viii
notification

asynchronous event 37
terminal error 40

null-name memory pool 30

O
On-card STREAMS Environment 3
open

call 17
memory 20

OpenDev — Open a Subsystem or Device Driver 12
OpenMem — Get Addressability to Allocated Memory

8
overview

ARTIC960 1
hooks 35
process communication 27

P
Packet Memory access 18
parameter, DATA_CACHE 22
parameter, MEMORY_PROTECTION 8
parity error 39
PCI bus 54
peer process, defined 18
performance timer, description 35
pools

dynamic memory 22
message buffer 29

printf C function 47
priority level/process 5
private memory 31
process

initialization 6
instance data services 7
memory protection 8
scheduling 5
spawning 7
states 6
termination 7

process communication
description 27
summary of services 33

process management
overview 5
summary of services 9

process synchronization
overview 24
summary of services 27

processes, number supported 5
processor
Index 65

architecture considerations 59
data cache 22

processor events 37
programs

AIX system unit 60
ARTIC960 59
OS/2 system unit 60
Windows NT system unit 61

protection options, memory 14
protocol conversion 1
publications, reference ix

Q
QueryHW — Query Status of Hardware Device 11
QueryPriority — Query the Priority of the Process 5
QueryProcessInExec — Get ID of Process in Execution

5
QueryProcMemProt — Query a Process’ Memory

Protection 11
queue

described 28
element linkage 27

R
RadiSys, contacting ix
RAM, internal data 23
random access memory (RAM) 2
read/write adapter memory 54
reference publications ix
request semaphore 25
reset

card to power-on state 55
multiple adapters 57
utility 57

resources
access rights 19
allocation 18
dynamic memory 22
handle 17
hardware 18
keep count of 26
management 17
software 17
types of 17

ReturnHW — Return a Hardware Device 11
ReturnVector — Return an Interrupt Vector 11
ric_base.rel, kernel file 2
ric_kern.rel, kernel file 2
ric_mcio.rel, system bus I/O subsystem file 2
ric_scb.rel, SCB subsystem file 2
RICLOAD application loader 7
ricproc.ld 59
rights, resource access 19
66 ARTIC960 Programmer’s Guide
routine called within routine 5
RPInfo 46

S
scheduling, process 5
semaphore

counting 25
described 25
explicit 25
implicit 25
mutual exclusion (mutex) 25
using mutex 25

service providers 11
set

access rights 19
depth count 5

SetExitRoutine — Set the Exit Routine for the Process 7
SetPriority — Set the Priority of the Process 5
SetProcMemProt — Change a Process’ Memory

Protection 11
SetVector — Set a New Interrupt Vector Entry Point 11
share resource memory 20
shared memory 31
shared resources 17
signal

description 28, 32
handlers, call 33
ID 32

software events 37
spawning, process 7
stack, overflow 43
StartProcess — Start a Process 7
states, process 6
status utility, description 57
StopProcess — Stop a Process 7
STREAMS environment 3
string, name 17
suballocation

memory 18
resource memory 21

subsystem, initialization 11
summary

base API services 55
device driver/subsystem services 15
kernel commands 52
kernel trace services 48
memory management 24
process communication services 33
process synchronization services 27
timer services 35

supported adapters 2
synchronization, process 24
system unit

APIs 54
mailboxes 55
programs 60
support 1, 53

T
terminal error notification 40
termination, process 7
timers

performance 35
services 35
software 34
support 34
time of day 34
time-slice 5

time-slice timer 5
tools, C language 59
trap (high-priority interrupt) 8
types, memory 18

U
UNIX STREAMS 3
UnloadProcess — Unload a Process 7
unused service classes 47
URL, RadiSys ix
utility

application loader 56
configuration 57
diagnostics 58
dump 57
general information 56
reset 57
RICLOAD 7
status 57
trace 58

V
value

correlation (DevMemo) 12
location in queue element 28
TimerMemo 34

vector sharing 14
violation, memory protection 38, 39
VPD (Vital Product Data) 57

W
watchdog timeout 39
Windows NT system unit programs 61
World Wide Web, accessing RadiSys ix
Index 67

	Contents
	About This Book
	Contents Description
	Notational Conventions
	Terms
	Where To Get More Information
	Reference Publications
	Developer’s Assistance Program

	Summary of Changes
	November 1998
	March 1998

	Chapter 1. ARTIC960 Overview
	Supported Adapters
	Kernel
	On�Card STREAMS Environment

	Chapter 2. Kernel Process Management
	Processes
	Process Scheduling
	Process States
	Process Initialization
	Process Termination
	Process Instance Data Services
	Spawning Processes
	Process Memory Protection
	Summary

	Chapter 3. Kernel Device Drivers and Subsystems
	Device Driver/Subsystem Initialization
	Device Driver/Subsystem Access
	OpenDev
	InvokeDev
	CloseDev

	Interrupt Handlers
	Vector Sharing
	Memory Protection
	Summary

	Chapter 4. Kernel Resources
	Resource Management
	Software Resources
	Hardware Resources

	Memory Management
	Allocation
	Suballocation
	Dynamic Memory Allocation
	Data Cache
	Big-Endian Memory Addressing
	Internal Data RAM
	Summary

	Process Synchronization
	Semaphores
	Events
	Summary

	Process Communication
	Queues
	Mailboxes
	Signals
	Summary

	Timer Support
	Software Timers
	Time of Day
	Performance Timer
	Summary

	Hooks

	Chapter 5. Kernel Asynchronous Events
	Asynchronous Events Notification
	Terminal Error Notification
	Exception Dependent Data Structures

	Chapter 6. Kernel Trace Services
	Trace APIs
	printf C Function
	Summary

	Chapter 7. Kernel Commands
	Using Kernel Commands
	Summary

	Chapter 8. System Unit Support
	Implementing API Functions
	Base API Services
	Summary of Base API Services
	Mailboxes
	Utilities
	Application Loader
	Reset Utility
	Configuration Utility
	Status Utility
	Dump Utility
	Trace Utilities
	Diagnostics Utility

	Chapter 9. Compiling and Linking Programs
	ARTIC960 Programs
	OS/2 System Unit Programs
	AIX System Unit Programs
	Windows NT System Unit Programs

	Index

