
RadiSys ARTIC960 STREAMS

Environment Reference

RadiSys Corporation

5445 NE Dawson Creek Drive

Hillsboro, OR 97124

(503) 615-1100

(503) 615-1150

www.radisys.com

June 1999

RadiSys ARTIC960 STREAMS Environment Reference

Before using this information and the product it supports, be sure to read all the information in
Appendix A, Notices .
This edition replaces and makes obsolete the previous edition.

This edition applies to the following RadiSys support programs and to all subsequent versions and releases
until otherwise indicated in new editions.

• RadiSys ARTIC960 Support for OS/2, Version 1.2.1

• RadiSys ARTIC960 Support for AIX, Version 1.3.1

• RadiSys ARTIC960 Support for Windows NT, Version 1.0

These programs support the following adapter cards:

• RadiSys ARTIC960 Micro Channel

• RadiSys ARTIC960 PCI

• RadiSys ARTIC960Rx PCI

• RadiSys ARTIC960Hx PCI

• RadiSys ARTIC960RxD PCI

EPC, INtime, and RadiSys are registered trademarks of RadiSys Corporation.

† All other trademarks, registered trademarks, service marks, and trade names are the property of their
respective owners.

June 1999

© RadiSys Corporation 1999. All rights reserved.
© Copyright International Business Machines Corporation 1998. All rights reserved.

Note to U.S. Government Users—Documentation related to restricted rights—Use, duplication or
disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp. All rights
reserved.
ii

About this Guide
This book provides information on the On-card STREAMS Environment. This book does
not include sample code.

Guide contents
The following lists the contents of this Guide.

Appendices

The appendices provide additional information about RadiSys products.

Chapter Description
1 RadiSys ARTIC960

STREAMS Overview
Provides an overview for the RadiSys ARTIC960
On-card STREAMS environment.

2 AIX STREAMS960 Application
Device Driver

Describes how to change or list parameters of the
STREAMS S96ADD or its devices, how to enable
or disable STREAMS, and also lists the supported
S96ADD APIs.

3 On-card STREAMS Subsystem
and Cross Bus Driver

Provides information about loading and configuring
the On-card STREAMS Subsystem (OSS) and
cross-bus driver (ESS).

4 STREAMS-based Module/
Driver Information

Describes how to build an on-card
STREAMS-based module/driver and information
about the Standard Kernel Functions (SKFs) and
On-card STREAMS Subsystem (OSS) Kernel
Functions (OKF).

5 Developing a Cross-bus Driver Describes the process to develop a cross-bus
driver.

6 STREAMS Access Library Describes the STREAMS Access Library (SAL) and
how requirements for using with various operating
systems.

7 STREAMS Access
Library Functions

Describes the memory and stream functions that
are included as part of the SAL system unit
support.

Appendix Description
A Notices Lists notices related to availability of RadiSys

products and contact information for license
information.
iii

RadiSys ARTIC960 STREAMS Environment Reference
Conventions

Notations

This manual uses the following notational conventions:

• All numbers are decimal unless otherwise stated.

• Bit 0 is the low-order bit. If a bit is set to 1, the associated description is true unless
otherwise stated.

• Data structures and syntax strings appear in this font.

Terms

This manual uses the following terms:

System bus: refers to either the Micro Channel or PCI bus.

RadiSys ARTIC960
refers to programs that run on the RadiSys ARTIC960, RadiSys ARTIC960
PCI, RadiSys ARTIC960Rx PCI, or RadiSys ARTIC960Hx PCI adapters, or
the adapters themselves.

RadiSys ARTIC960 PCI
refers to functions supported only on the RadiSys ARTIC960 PCI adapter.

RadiSys ARTIC960 MCA
refers to functions supported only on the RadiSys ARTIC960 Micro Channel
adapter.

RadiSys ARTIC960Rx PCI
refers to functions supported by the RadiSys ARTIC960Rx PCI adapter.

ARTIC960Hx PCI
refers to functions supported by the RadiSys ARTIC960Hx PCI adapter.

ARTIC960RxD PCI
refers to functions supported by the base card of the RadiSys ARTIC960RxD
Quad Digital Trunk PCI adapter.

Notes indicate important information
about the product.

Cautions indicate situations that may
result in damage to data or the hardware.

Tips indicate alternate techniques or
procedures that you can use to save
time or better understand the product.

ESD cautions indicate situations that
may cause damage to hardware via
electro-static discharge.

The globe indicates a World Wide
Web address.

Warnings indicate situations that may
result in physical harm to you or
the hardware.
iv

About this Guide
Symbols

This manual uses the following symbols:

• All counts in this book are assumed to start at zero.

• All bit numbering conforms to the industry standard of the most significant bit having
the highest bit number.

• All numeric parameters and command line options are assumed to be decimal values,
unless otherwise noted.

• To pass a hexadecimal value for any numeric parameter, the parameter should be
prefixed by 0x or 0X. Thus, the numeric parameters 16, 0x10, and 0X10 are
all equivalent.

• All representations of bytes, words, and double words are in the little endian format.

• Utilities all accept the ? switch as a request for help with command syntax.

RadiSys ARTIC960 Developer’s Kit—Contents
The Developer’s Kit is a set of publications and programs designed to help
RadiSys ARTIC960 software developers develop for the RadiSys ARTIC960 platform.
The following items make up the Developer’s Kit:

• RadiSys ARTIC960 Hardware Technical Reference presents technical details of the
adapter’s system, options, and hardware interfaces. It provides descriptions and data
related to the card configuration, functions, hardware interfaces, and
programming considerations.

• RadiSys ARTIC960 Programmer’s Guide contains information about the
RadiSys ARTIC960 services available for writing adapter-resident programs. It also
contains a brief description of the system unit utility programs, and the steps required
to compile and link both system unit and adapter programs.

• The RadiSys ARTIC960 Programmer’s Reference provides an overview of both the
adapter kernel support and the associated processes and utilities, as well as each of the
services provided by the system unit support and the adapter kernel support.

• RadiSys ARTIC960 Application Interface Board Developer’s Guide provides the
hardware and the software developer with AIB design requirements, and a collection
of productivity tools to aid in the development of an AIB.

• A set of operating system packages, each containing sample programs and utilities to
support the development of system unit and adapter applications. These packages are
to be used with the RadiSys ARTIC960 Programmer’s Guide, the RadiSys ARTIC960.
Programmer’s Reference, and the RadiSys ARTIC960 Application Interface Board
Developer’s Guide.

• You can obtain these books from the World Wide Web (WWW) at:

http://www.radisys.com/products/artic/
v

RadiSys ARTIC960 STREAMS Environment Reference
If you do not have access to the WWW, you can obtain these books from the no-fee
Developer’s Assistance Program (DAP).

Developer’s Assistance Program
In addition to the Developer’s Kit, further programming and hardware development
assistance is provided by the RadiSys ARTIC960 Developer’s Assistance Program (DAP).
The DAP provides, by way of phone and electronic communications, on-going technical
support—such as sample programs, debug assistance, and access to the latest
microcode upgrades.

You can get more information or activate your free RadiSys ARTIC960 DAP membership
by contacting us.

By telephone, call (561) 454-3200.

By E-mail, send to artic@radisys.com.

Where to Get More Information
You may need to use one or more of the following publications for reference:

• RadiSys ARTIC960 Programmer’s Guide

• RadiSys ARTIC960 Programmer’s Reference

• IBM Operating System/2 (OS/2) Version 3.0, Advanced Interactive Executive (AIX)
Version 4.1 and 4.2

• Operating and Installation documentation provided with your computer system

• Guide to Operations books for one of the following co-processor adapters:

RadiSys ARTIC960 Micro Channel adapter

RadiSys ARTIC960 PCI adapter

ARTIC960Rx PCI adapter

ARTIC960Hx PCI adapter

ARTIC960RxD PCI adapter

Each book contains a description of the co-processor adapter, instructions for
physically installing the adapter, and parts listings.

• AIX Version 4.x Kernel Extensions and Device Support, Programming
Concepts (SC23-2207)

• RadiSys ARTIC960 Programmer’s Guide and Reference

• XL C Language Reference (SC09-1260)

• Personal System/2 Hardware Reference (S85F-1678)

Intel Publications:

• i960 RP Microprocessor User’s Manual

• i960 Rx I/O Microprocessor Developer’s Manual
vi

About this Guide
• i960 Hx Microprocessor User’s Manual

• i960 Cx Microprocessor User’s Manual

• For information about writing a STREAMS module or driver, refer to the AIX
Web site:

AIX supports a subset of SVR4.2 STREAMS calls, and the on-card STREAMS subsystem
supports a subset of AIX STREAMS.

http://www.rs6000.ibm.com/doc_link/en_US/a_doc_lib/
aixprggd/progcomc/toc.htm
vii

RadiSys ARTIC960 STREAMS Environment Reference
viii

Contents
Chapter 1: RadiSys ARTIC960 STREAMS Overview .. 1

Chapter 2: AIX STREAMS960 Application Device Driver
Configuration .. 5
STREAMS S960ADD .. 5

Using the Command Line... 5
Using the SMIT Menu.. 6

STREAMS S960ADD Devices .. 6
Enabling/Disabling STREAMS.. 7

Using the Command Line... 8
Using the SMIT Menu.. 8

Supported S96ADD APIs ... 8

Chapter 3: On-card STREAMS Subsystem and Cross Bus Driver
Loading On-card STREAMS Subsystem ... 9
Loading On-card STREAMS Cross-Bus Driver (ESS) .. 9
Configuring On-card STREAMS Subsystem ... 9
Configuring On-card STREAMS Cross-Bus Driver .. 13
Initialization Error and Exception Codes.. 13

Initialization Errors.. 14
Runtime Exceptions... 15

Chapter 4: STREAMS-based Module/Driver Information
SKF Functions .. 17
OSS Kernel Functions .. 20

qhipri.. 21
qlopri.. 22
s96_devinst .. 23

Building a STREAMS-based Driver .. 24
Using the Compile Command ... 24
Using the Linkedit commands ... 25

Chapter 5: Developing a Cross-bus Driver
Flow Charts... 32

Registering a Cross-Bus Driver ... 33
Linking an On-card Stream Segment .. 34
Unlinking an On-card Stream Segment... 36

C Language Support ... 37
cxb_control ... 38

CXB_LINK_HEAD .. 40
CXB_OSS_REQ.. 41
CXB_REG_DRIVER .. 42
CXB_UNLINK_HEAD... 43

Macros .. 44
ix

RadiSys ARTIC960 STREAMS Environment Reference
_SIZEOF_IPCB_EXTRA ... 44
_GET_OPEN_SSD.. 45
_IS_STE_OPEN .. 45
_IS_STE_CLOSE.. 45
_IS_IPCB_ERROR ... 45

cxb_canputnext ... 46
cxb_putnext... 47
Element Control Blocks Format ... 48
ipcb Blocks ... 48

STE_OPEN — Open Stream... 48
STE_CLOSE — Close Stream .. 49
STE_XSEND — Send Data .. 49
STE_XPUSH ioctl — Push Module.. 53
STE_XPOP ioctl — Pop Module .. 54
STE_XLINK ioctl — Link Driver... 55
iSTE_XLINK octl — Permanent Link Driver... 56
STE_XUNLINK ioctl — Unlink Driver ... 57
STE_XUNLINK ioctl — Permanent Unlink Driver ... 58
STE_XLOOK ioctl — Retrieve Top Module Name ... 59
STE_XFIND ioctl — Find Module Name... 60
STE_XLIST ioctl — List Module Names... 61
STE_XSETCLTIME ioctl — Set Close Time .. 62
STE_XGETCLTIME ioctl — Get Close Time ... 63
STE_XRECEIVE Response Code — Receive Messages ... 64

Chapter 6: STREAMS Access Library
C Language Support ... 65

AIX Considerations ... 65
OS/2 Considerations .. 66
Windows NT Considerations... 66

Runtime Variables .. 66
AIX Configuration .. 67
 OS/2 Configuration.. 68
Installation of AIX SAL as a STREAMS-based Driver ... 70
Linking the AIX SAL and the ARTIC960 Adapter Stream Driver .. 70
Windows NT Configuration ... 70

Chapter 7: STREAMS Access Library Functions
Functions Synchronization ... 72
Response Handler ... 74
Programming Notes .. 75
Priority Messages.. 75
Flow Control ... 76

Downstream Flow.. 76
Upstream Flow... 77

SAL Functions .. 78
Stream Functions .. 79

s96_canput ... 79
s96_close.. 80
s96_commstate .. 81
s96_couldput.. 82
x

Contents
s96_ioctl... 83
s96_open .. 87
s96_send .. 89

Memory Functions .. 92
s96_bufcall... 92
s96_deregister .. 94
s96_expand .. 96
s96_free.. 97
s96_info ... 98
s96_register.. 100
s96_reorg ... 101
s96_unbufcall... 102

Response Codes .. 103
Log Device Driver .. 105

User-Level Access. .. 105
Kernel-Level Access.. 107

Error Codes ... 108
OS/2-Specific Functions ... 109

s96_freemsg... 109
s96_idc_init ... 110
s96_os2_init ... 110

Windows NT-Specific Functions.. 111
s96_freemsg... 111
s96_nt_getcard... 112
s96_nt_haltsys ... 112
s96_nt_initsys .. 112
s96_nt_timeout .. 113
s96_nt_untimeout .. 114

Appendix A: Notices ... 115

Index .. 117
xi

RadiSys ARTIC960 STREAMS Environment Reference
Figures
Figure 1-1. System Unit and Co-Processor Components.. 3
Figure 5-1. Example of an On-card Lower-end Interface... 28
Figure 5-2. Registering a Cross-bus Driver with OSS.. 33
Figure 5-3. Linking an On-card Stream Segment with the Cross-bus Driver... 34
Figure 5-4. Unlinking an On-card Stream Segment from the Cross-bus Driver... 36
Figure 6-1. AIX Application Device Driver Communication with RadiSys ARTIC960 Adapter

Application Device Driver ... 68
Figure 6-2. OS/2 ADD Communication with RadiSys ARTIC960 Device Driver .. 69
Figure 6-3. OS/2 ADD (Media Access Control Driver) (Example) ... 69
Figure 7-1. Downstream Flow — SMI_TRYALLOC Situations ... 94
Figure 7-2. Error and Trace Loggers... 105
xii

Contents
Tables
Table 3-1. Load-time Parameters... 10
Table 3-2. Error Classification... 14
Table 3-3. Initialization Errors... 14
Table 3-4. Exceptions .. 15
Table 4-1. Standard Kernel Functions (SKFs)... 18
Table 4-2. OSS Kernel Functions (OKFs)... 20
Table 5-1. Requests for CXB_OSS_REQ Operation (Mandatory) ... 42
Table 5-2. Requests for CXB_OSS_REQ Operation (Optional)... 42
Table 5-3. STE_OPEN... 48
Table 5-4. STE_CLOSE .. 49
Table 5-5. STE_XSEND Data—Messages.. 49
Table 5-6. M_FLUSH—Message.. 50
Table 5-7. M_READ—Message.. 51
Table 5-8. M_START—Message.. 51
Table 5-9. M_STOP—Message... 52
Table 5-10. M_STARTI—Message... 52
Table 5-11. M_STOPI—Message ... 53
Table 5-12. STE_XPUSH — ioctl... 53
Table 5-13. STE_XPOP — ioctl.. 54
Table 5-14. STE_XLINK — ioctl ... 55
Table 5-15. STE_XLINK — ioctl ... 56
Table 5-16. STE_XUNLINK — ioctl.. 57
Table 5-17. STE_XUNLINK — ioctl.. 58
Table 5-18. STE_XLOOK — ioctl.. 59
Table 5-19. STE_XFIND — ioctl.. 60
Table 5-20. STE_XLIST — ioctl... 61
Table 5-21. STE_XSETCLTIME — ioctl ... 62
Table 5-22. STE_XGETCLTIME — ioctl .. 63
Table 5-23. STE_XRECEIVE — Response Code .. 64
Table 6-1. SAL Runtime Variables ... 66
Table 7-1. SAL Functions.. 72
Table 7-2. SAL Responses Received by the Response Handler... 73
Table 7-3. High-priority Messages .. 75
Table 7-4. Descriptions of Supported s96_ioctl Commands ... 84
Table 7-5. Error Codes... 108
Table 7-6. Additional Error Codes Returned by OS/2 APIs.. 108
Table 7-7. Additional Error Codes Returned by Windows NT APIs .. 109
xiii

RadiSys ARTIC960 STREAMS Environment Reference
xiv

1
RadiSys ARTIC960
STREAMS Overview Chapter 1
This book provides information on the RadiSys ARTIC960 On-card STREAMS
environment (hereafter called RadiSys ARTIC960 STREAMS). Before using this
information, you must be familiar with the UNIX† STREAMS architecture.

The RadiSys ARTIC960 runtime environment provides the standard UNIX System V
STREAMS Releases 3 and 4 tool set for running STREAMS-based module/drivers on an
RadiSys ARTIC960 adapter. Benefits associated with RadiSys ARTIC960 STREAMS on
an RadiSys ARTIC960 adapter are as follows:

• RadiSys ARTIC960 STREAMS off-loads the system unit from running
communication protocol stacks by downloading protocol stacks to the
RadiSys ARTIC960 adapter.

• RadiSys ARTIC960 STREAMS allows a STREAMS-based module/driver, written
under the UNIX System V STREAMS Releases 3 and 4 specification, to run in the
RadiSys ARTIC960 kernel environment from a UNIX or non-UNIX
operating system.

• RadiSys ARTIC960 STREAMS provides a flexible, portable, and reusable set of tools
for development of system communication services following a widely-distributed
standard in the industry.

• RadiSys ARTIC960 STREAMS allows creation of independent modules that offer
standard data communications services and the ability to manipulate those modules on
a stream.

• From the system unit, an on-card STREAMS-based module/drivers can be
dynamically loaded and interconnected (linked) on an RadiSys ARTIC960 adapter,
making it possible to connect protocol stack drivers from various vendor sources.

To provide streams access and services to system unit applications, RadiSys ARTIC960
STREAMS consists of four major parts:

STREAMS960 Application Device Driver (S960ADD)

A device driver that allows AIX STREAMS applications to communicate with a
STREAMS module or driver on the adapter.

STREAMS Access Library (SAL)

A system unit component that provides the access to the On-card STREAMS Subsystem
through a system device driver application program interface (API) from both UNIX- and
non-UNIX-based operating systems.

Programming to the SAL interface is needed only if you cannot use the AIX S960ADD.

See Chapter 6, STREAMS Access Library , for more information.
1

RadiSys ARTIC960 STREAMS Environment Reference
On-card STREAMS Subsystem (OSS)

An on-card component that provides the UNIX System V STREAMS Releases 3 and 4
tool set on an RadiSys ARTIC960 adapter.

See Chapter 3, On-card STREAMS Subsystem and Cross Bus Driver , for
more information.

RadiSys On-card STREAMS Cross-Bus Driver (ESS)

An on-card component that provides the support to transmit STREAMS data across the
system bus between SAL and OSS. See Chapter 3, On-card STREAMS Subsystem and
Cross Bus Driver for information on how to load this separately loaded module.

If you need other cross-bus support, see Chapter 4, STREAMS-based Module/
Driver Information , for instructions on how to write a cross-bus driver.

Figure 1-1 illustrates how these different components interact with each other between the
system unit and an RadiSys ARTIC960 adapter.
2

Chapter 1: RadiSys ARTIC960 STREAMS Overview
Figure 1-1. System Unit and Co-Processor Components
3

RadiSys ARTIC960 STREAMS Environment Reference
4

2
AIX STREAMS960 Application
Device Driver Chapter 2
The STREAMS960 application device driver (S960ADD) allows AIX STREAMS
applications to communicate with a STREAMS module or driver on the adapter. With the
S960ADD and OSS, STREAMS modules on the AIX system unit can put messages
(putmsg) and get messages (getmsg) from STREAMS modules or drivers running on the
RadiSys ARTIC960 adapter.

If you are using S960ADD, you do not need to develop your own cross-bus device driver
or program to the STREAMS Access Library (SAL).

Configuration
You can change or list parameters of the STREAMS S96ADD or its devices.

STREAMS S960ADD
To change or list parameters to configure the S96ADD, do one of the following:

• Use the STREAMS-specific chdev command

• Use the SMIT menu Change/Show Characteristics of RadiSys RadiSys ARTIC960
STREAMS Device Driver.

Using the Command Line

Issue the command:

chdev –l 'ric96add0' <-a CardPoolSize=xxx> <-a CardPacketSize=YYY>
 <-a SalPipeTimeout=T> <-a SalMaxUpstrLen=LLL>

Parameters

CardPoolSize
This is the number of buffers allocated. The size of each buffer is defined by
CardPacketSize. The total amount of memory used on the adapter is
(CardPacketSize * CardPoolSize) bytes. The default size is 200 buffers.

CardPacketSize
This is the size of a buffer allocated on an adapter. S960ADD and the cross-bus
driver use these buffers when transferring a message to the adapter. The default
size is 512 bytes.

CardPacketSize
This is the size of a buffer allocated on an adapter. S960ADD and the cross-bus
driver use these buffers when transferring a message to the adapter. The default
size is 512 bytes.
5

RadiSys ARTIC960 STREAMS Environment Reference
SalPipeTimeout
This is the value in seconds and defines the timeout value used by SAL in case
of pipe full condition. The default is 5 seconds.

SalMaxUpstrLen
This is the maximum size of a message sent upstream from the adapter to
ADD. The default size is 4106 bytes.

Using the SMIT Menu

To display the STREAMS S960ADD configuration information:

1. Type: smitty

2. Select Devices.

3. Select Communication.

4. Select RadiSys ARTIC960 STREAMS Device Driver.

5. Select Change/Show Characteristics of RadiSys ARTIC960 STREAMS Device
Driver.

6. Select ric960add0.

7. Increase or decrease the parameters as needed. Then press Enter to change.

STREAMS S960ADD Devices
To change or list parameters to configure the STREAMS S96ADD devices, do one of the
following:

• Use the STREAMS-specific cst960dev command

• Use the SMIT menu Change/Show Characteristics of Devices of
RadiSys ARTIC960 STREAMS Device Driver.

Using the Command Line

Issue the command:

cst960dev -p <HiWat|LoWat> &lbrk.-v<value>&rbrk

The command device parameters follow:

High Water Mark (HiWat)
This is the high water mark for STREAMS queues flowing from the adapter.
This value is the number of bytes contained in a queue before flow control
begins to block messages from being added to the STREAMS queue. The
default is 0x1000 bytes.

Low Water Mark (LoWat)
This is the low water mark for STREAMS queues flowing from the adapter.
When the value of bytes remaining in a queue reaches this level, the queue is
unblocked by STREAMS. The default is 0x200 bytes.

Using the SMIT Menu

To display the STREAMS S960ADD devices configuration information:
6

Chapter 2: AIX STREAMS960 Application Device Driver
1. Type: smitty

2. Select Devices.

3. Select Communication.

4. Select RadiSys ARTIC960 STREAMS Device Driver.

5. Select Change/Show Characteristics of Devices of RadiSys ARTIC960
STREAMS Device Driver.

6. Increase or decrease the parameters as needed. Then press Enter to change.

7. Reboot the system to have the changes take effect.

Enabling/Disabling STREAMS
When the S960ADD is installed, the device driver periodically queries all the
RadiSys ARTIC960 adapters found in the system to determine when the OSS and the
cross-bus driver (ESS) are downloaded to the adapter. These queries are usually harmless,
but in cases where they impact the performance of non-STREAMS adapters, it might be
desirable to unconfigure the STREAMS environment on the adapters.

STREAMS queries can be disabled by doing one of the following:

• Using the STREAMS-specific setaddmask command.

• Using the SMIT menu Configure STREAMS Support for All
RadiSys ARTIC960 Adapters.
7

RadiSys ARTIC960 STREAMS Environment Reference
Using the Command Line

Issue the command:

setaddmask -s ricioX -o <0|1>

where

X is the adapter number, and 0 means disable and 1 means enable in the <0|1> parameter..

Using the SMIT Menu

To display the STREAMS S960ADD devices configuration information:

1. Type: smitty

2. Select Devices.

3. Select Communication.

4. Select RadiSys ARTIC960 STREAMS Device Driver.

5. Select Configure STREAMS Support for All RadiSys ARTIC960 Adapters.

6. Select Enable/Disable STREAMS Support for an RadiSys ARTIC960 Adapter.

7. Select the correct adapter.

8. Use the Tab key to toggle between Enable and Disable, and then press Enter
to change.

Supported S96ADD APIs
The S960ADD supports the following APIs:

open
close
ioctl
getmsg
putmsg

If STREAMS is not configured on an adapter and a STREAMS message is
sent, the application is returned an ENOCONNECT error.
8

3
On-card STREAMS Subsystem
and Cross Bus Driver Chapter 3
An on-card component called On-card STREAMS Subsystem (OSS) provides the UNIX V
STREAMS Releases 3 and 4 tool set on an RadiSys ARTIC960 STREAMS.

An on-card component called On-card STREAMS Cross-Bus Driver (ESS) provides the
support to transmit STREAMS data across the system bus between the STREAMS Access
Library (SAL) and the OSS.

Loading On-card STREAMS Subsystem
The OSS must be loaded onto an RadiSys ARTIC960 adapter prior to any On-card
STREAMS-based module/drivers process. Use the RICLOAD system utility to load the
OSS (ric_oss.rel). For information on RICLOAD, refer to the RadiSys ARTIC960
Programmer’s Reference. The OSS runs at a privileged high priority when loaded onto an
RadiSys ARTIC960 adapter.

Loading On-card STREAMS Cross-Bus Driver (ESS)
If the RadiSys ARTIC960 cross-bus support is being used (that is, you did not write a
cross-bus driver and plan to use the cross-bus driver provided with the RadiSys ARTIC960
support), use the RICLOAD system utility to load ESS (ric_ess.rel) after the SCB
subsystem and OSS.

Configuring On-card STREAMS Subsystem
Configuration for the On-card STREAMS Subsystem is done through load-time
parameters that can be passed on the command line or through a configuration file when
using RICLOAD. These parameters take the form of keywords (representing specific
parameters) followed by an equal sign (=) and their value. The encoding of these
parameters follows the same rules as described in the RadiSys ARTIC960 Programmer’s
Reference. The configuration parameter values of the OSS are independent of the
operating system being used..

Table 3-1 describes the load-time parameters. All parameters are numeric decimal.

Refer to the RadiSys ARTIC960 Programmer’s Reference for information
about loading the kernel and subsystems.

Refer to the RadiSys ARTIC960 Programmer’s Reference for information
about configuring the kernel and subsystems. There is no specific tuning of
configuration parameters for operation of the RadiSys ARTIC960 STREAMS.
9

RadiSys ARTIC960 STREAMS Environment Reference
Table 3-1. Load-time Parameters

Parameter Range Default Description

BUFREGION 0–1 0 This parameter determines how memory addresses for
RadiSys ARTIC960 STREAMS buffers are formatted. If
BUFREGION = 0 or is not specified, the memory addresses are
in little endian format. If this parameter is specified as 1,
memory addresses for STREAMS buffers are in the big endian
format.

Once the buffer pool is allocated, all STREAMS data buffers
addresses have the desired format.

EXPFACTOR 1–(no
upper
limit)

10 Expansion factor for RadiSys ARTIC960 STREAMS resources.

This parameter indicates the number of units to increase a
resource pool. Expansion is realized until the maximum number
of resources is allotted.

LOWSCALE 1–99 70 Watermark (in percent) for low-priority RadiSys ARTIC960
STREAMS user-data-buffer memory allocation.

This parameter indicates a watermark under which the
RadiSys ARTIC960 STREAMS user-data-buffer memory
allocation will fail for low-priority requests. For example, using
the default value, requests of low-priority memory allocations
are honored as long as no more than 70% of the total
RadiSys ARTIC960 STREAMS user-data-buffer memory pool is
allocated (at least 30% of the pool is free).

MAXBLOCKLEN 1–(no
upper
limit)

4096 This parameter indicates the maximum length for the
user-data-buffer portion of a stream data block (dblk_t)
allocation. This value represents the maximum value (in bytes)
that an on-card STREAMS-based module/drivers can specify
during an allocb Standard Kernel Function (SKF) API. This size
must not include the data (dblk_t) or message (mblk_t) block
used to construct the stream message.

MAXDATAB 1–(no
upper
limit)

200 This parameter indicates the maximum number of
RadiSys ARTIC960 STREAMS user-data-buffers (size
determined by the MAXBLOCKLEN parameter) that can be
allocated by the OSS. Initially, the pool of the
RadiSys ARTIC960 STREAMS user-data-buffer memory is
created with a minimum amount of buffers (specified by the
EXPFACTOR parameter) and expanded as needed when
requests from the on-card STREAMS-based module/drivers
require new buffer allocations. Once expanded to the full
maximum number specified with this parameter, the on-card
STREAMS-based module/drivers program’s request for memory
is not satisfied until RadiSys ARTIC960 STREAMS
user-data-buffer memory is released. Depending on the priority
of the memory allocation request, the amount of available
memory for allocation is determined by a scale factor specified
by the LOWSCALE and MEDSCALE parameters.
10

Chapter 3: On-card STREAMS Subsystem and Cross Bus Driver
MAXEXTB 1–(no
upper
limit)

200 This parameter indicates the maximum number of
RadiSys ARTIC960 STREAMS extended data blocks managed
by the On-card STREAMS Subsystem. Initially, the
RadiSys ARTIC960 STREAMS extended data blocks’ pool is
created with a minimum amount of blocks (specified by the
EXPFACTOR parameter) and expanded as needed when
on-card STREAMS-based module/driver’s requests require new
block allocations to take place (using the esballoc SKF API).
Once expanded to the full maximum number specified with this
parameter, the STREAMS-based module/driver’s request for
extended data blocks is not satisfied until one or more are
released. Depending on the block allocation request’s priority,
the amount of available blocks for allocation is determined by a
scale factor specified by the LOWSCALE and MEDSCALE
parameters.

MAXHIGHB 1–(no
upper
limit)

4 This parameter indicates the maximum number of STREAMS
Access Library (SAL) data buffers (size determined by the
MAXBLOCKLEN parameter) that are allocated by the OSS and
available exclusively for the system unit SAL to realize
high-priority RadiSys ARTIC960 STREAMS message
allocation. Initially, the SAL data buffers’ pool is created with the
default value specified by this parameter. Therefore, there is no
further pool expansion because it is allocated at its maximum.

MAXSCBQUEUED 3–(no
upper
limit)

300 This parameter indicates a threshold beyond which transmission
of RadiSys ARTIC960 STREAMS messages between the
system unit and a given RadiSys ARTIC960 adapter, in the
direction where congestion occurs, is stopped. Transmission
resumes when the partner side (SAL or OSS) dequeues enough
messages so that a low watermark level is reached (defaulted to
one third of this parameter’s value, which is currently 100). One
direction being flow controlled does not prevent the other from
functioning properly if its flow is clear. When the flow gets
controlled at this level, all RadiSys ARTIC960 STREAMS
opened with the RadiSys ARTIC960 adapter at that time get
flow controlled for their low-priority messages, regardless of
their own congested status. Reaching this threshold denotes a
major communication or configuration problem between the
system unit and the RadiSys ARTIC960 adapter. Finer tuning
might be necessary according to the host’s speed and/or
available co-processor adapter memory.

Parameter Range Default Description
11

RadiSys ARTIC960 STREAMS Environment Reference
MEDSCALE 1–99 90 Watermark (in percent) for medium priority RadiSys ARTIC960
STREAMS user-data-buffer memory allocation.

This parameter indicates a watermark under which
RadiSys ARTIC960 STREAMS user-data-buffer memory
allocation will fail for medium priority requests. For example,
using the default value, medium priority memory allocations’
requests are honored as long as not more than 90% of the total
RadiSys ARTIC960 STREAMS user-data-buffer memory pool is
allocated (at least 10% of the pool is free).

High-priority Requests

High-priority requests are not subject to restriction and are
honored until there is no more RadiSys ARTIC960 STREAMS
user-data-buffer memory available.

MINMSGLEN 0–(no
upper
limit)

64 The minimum amount of bytes to take into account in a queue
load when an RadiSys ARTIC960 STREAMS message
is queued.

This parameter indicates a minimum amount of bytes that are
counted in a queue load (q_count field) when a message whose
length is lower gets queued. The purpose is to ensure that a
stream carrying short messages does not exhaust memory
resources and that flow control is activated before a large
amount of messages get queued. A value of 0 disables this
feature and the real accounting takes place, regardless of the
length of the RadiSys ARTIC960 STREAMS message.

STRMS_PER_TASK 1–65536 1048 This parameter determines the maximum number of streams
that can be opened by all system unit application processes.
When the application process of a system unit opens a stream
with a STREAMS-based driver, it allocates one file descriptor
from the OSS.

STRSCBQUEUED 3–(no
upper
limit)

30 This parameter indicates a threshold beyond which transmission
of RadiSys ARTIC960 STREAMS messages between one
system unit stream’s segment and a given RadiSys ARTIC960
adapter stream’s segment, in the direction where congestion
occurs, is stopped. Transmission resumes when the partner
stream participating in the communication dequeues enough
messages so a low watermark level is reached (defaulted to one
third of this parameter’s value, which is currently 10). One
direction being flow controlled does not prevent the other from
functioning properly if its flow is clear. When the flow gets
controlled at this level, only the stream being congested at that
time gets flow controlled for its low-priority messages. See Flow
Control on page 76 for more information.

Parameter Range Default Description
12

Chapter 3: On-card STREAMS Subsystem and Cross Bus Driver
Configuring On-card STREAMS Cross-Bus Driver
ESS is not configurable.

Initialization Error and Exception Codes
When a failure occurs during the On-card STREAMS Subsystem initialization’s phase, an
error code is returned, which can be retrieved through the application loader’s –w option.
For kernel return codes, refer to the RadiSys ARTIC960 Programmer’s Reference.

0xEERRRRRR

where:

EE Is the error code part

RRRRRR Is the kernel return code part (the lower six hexadecimal digits of the return
codes listed in the RadiSys ARTIC960 Programmer’s Reference.

SRVSLICE 1–(no
upper
limit)

8 Maximum number of messages delivered when using getq SKF
API during the same service procedure.

This parameter indicates a threshold above which a getq SKF
API returns null (no more message) while having already
delivered the specified number of messages during the time the
same service procedure was run without being interrupted.
Nevertheless, when this threshold is reached, the service
procedure is automatically rescheduled after other service
procedures have had a chance to run. The purpose of this
feature is to enhance the RadiSys ARTIC960 STREAMS
scheduling scheme by adding fairness among different
applications’ type, thus regulating RadiSys ARTIC960
STREAMS traffic.

This feature is in effect only for the queue in service. If a
message is taken out from another queue than the one being
serviced, the feature will not apply.

This support is transparent to STREAMS-based module/drivers,
but developers should pay attention to the following note before
enabling the feature.

Attention

Some on-card STREAMS-based module/drivers programs
could be sensitive to such processing and not be able to support
this feature. This is particularly true when a driver uses the null
condition being returned as a trigger to update its own state and/
or flush queues, and so forth. The feature should then be
disabled by setting a fairly high value for this parameter, thus
never reaching the threshold triggering the processing. (A
reasonable value would be 0x0000ffff, for example, as it is very
unlikely to have that amount of messages queued at one time in
a given queue.)

Parameter Range Default Description
13

RadiSys ARTIC960 STREAMS Environment Reference
Initialization Errors
Table 3-2. Error Classification

Table 3-3. Initialization Errors

Error Code Description
0xF1 Runtime parameter failure (OSSINIT_PARAM)
0xF2 Memory allocation failure (OSSINIT_ALLOC)
0xF3 Miscellaneous allocation failure (OSSINIT_MEMORY)
0xF6 Semaphore failure (OSSINIT_SCHEDSEM)
0xF7 Process information failure (OSSINIT_PRIORITY)
0xF8 Cross-Bus Main Program Loop (MPL) failure (OSSINIT_CXMPL)
0xF9 On-card Main Program Loop failure (OSSINIT_MPL)
0xFA OSS Statistics setup failure (OSSINIT_STAT)
0xFB Log device driver failure (OSSINIT_LOGDRVR)
0xE0 Cross-Bus service failure (ESSINIT_INITIALIZE)
0xC0 Memory manager service failure (CBMINIT_INITIALIZE)

Error Code Description
0xF1RRRRRR Error passing a runtime parameter. See RadiSys ARTIC960

Programmer’s Guide and Reference for return code part.
0xF2000001 Invalid MAXBLOCKLEN value.
0xF2000002 Error registering data buffers memory pool.
0xF2000003 Error expanding data buffers memory pool.
0xF2000004 Error registering expanded buffers memory pool.
0xF2000005 Error expanding expanded buffers memory pool.
0xF2000006 Error expanding timers pool.
0xF2000007 Error registering high-priority buffers memory pool.
0xF2000008 Error expanding high-priority buffers memory pool.
0xF3000000 Task table allocation.
0xF6RRRRRR Error creating OSS scheduling semaphore. Return code from

CreateSem() kernel service.
0xF7RRRRRR Error setting OSS priority. Return code from Query/SetPriority()

kernel service.
0xF8000001 Error allocating cross-bus MPL’s queues.
0xF9000001 Error allocating on-card MPL’s queues.
0xFARRRRRR Error allocating memory for OSS statistics. Return code from

CreateMem() kernel service.
0xFBRRRRRR Error installing the Log device driver. Return code from s96_devinst()

OSS service.
0xE0RRRRRR Error initializing cross-bus service.
0xC0RRRRRR Error initializing Memory Manager Service.
14

Chapter 3: On-card STREAMS Subsystem and Cross Bus Driver
Runtime Exceptions

The OSS might report several types of exceptions during runtime panic situations. These
exceptions are fatal errors. When the exception occurs, the exception data should be
extracted through the RadiSys ARTIC960 status utility using the “exception conditions”
item from its main menu. The format of each of the exceptions shown in Table 3-4 follows
the exception display format for the utility.

Table 3-4. Exceptions

1 Represents a pointer

2 Represents the address of a pointer

Exception Code Exception Data (word 0) Exception Data (word 1)

0x04 (OSSERR_QELM) Doublelinked head2 element1

0x05 (OSSERR_QUERYPROCESS) QueryProcessInExec retcode n/a

0x07 (OSSERR_PUTQUEUE) queue_t1 mblk_t1

0x09 (OSSERR_REQSCHEDSEM) RequestSem retcode Semaphore handle

0x0A (OSSERR_RELSCHEDSEM) ReleaseSem retcode Semaphore handle

0x0B (OSSERR_RECEIVE) queue_t1 mblk_t1

0x0D (OSSERR_MALLOC) n/a Size requested (in bytes)

0x0E (OSSERR_BUFCALL) Reason (EAGAIN,EINVAL)

0x0F (OSSERR_INVCODEPATH) n/a n/a

0x10 (OSSERR_PANIC) n/a char string1

0x11 (OSSERR_TIMER) Start/StopSwTimer retcode timeo1
15

RadiSys ARTIC960 STREAMS Environment Reference
16

4
STREAMS-based Module/
Driver Information Chapter 4
This chapter contains information on how to build an on-card STREAMS-based module/
driver and information about the following available services to the STREAMS-based
module/driver application processes.

• Standard Kernel Functions (SKFs)

• On-card STREAMS Subsystem (OSS) Kernel Functions (OKF)

Restrictions

System Calls (getmsg, getpmsg, putmsg, and putpmsg) are not provided by the
RadiSys ARTIC960 STREAMS because an on-card stream is opened, controlled, and
maintained from the system unit.

Also, RadiSys ARTIC960 kernel calls that block are not allowed to be used by an on-card
STREAMS module or driver because OSS is the dispatching kernel when loaded.

All services are usable at RadiSys ARTIC960 STREAMS service procedure time, which
is the regular mode STREAMS-based module/drivers are run under. However, many
message handling services cannot be used from an interrupt handler. This could impact
any STREAMS-based module/driver’s design.

Transparent Ioctl is not supported by RadiSys ARTIC960 STREAMS. Also, banding is
not supported by RadiSys ARTIC960 STREAMS; therefore, services using banding
parameters are not listed in the following table..

The Interrupt Handler column specifies whether the function can be called from an
interrupt handler.

SKF Functions
All functions listed in Table 4-1 are considered Standard Kernel Functions (SKFs) when
using UNIX System V STREAMS terminology. Refer to the UNIX SVR4.2 Device Driver
Reference for information on these functions.

Notes

• A STREAMS-based module/driver is not intended to have a signal handler,
an asynchronous handler, or a process exit routine. Consequently, these
modes are not specified in Table 4-1 or Table 4-2.

• The Macro column specifies whether the function is provided as an inline
macro.
17

RadiSys ARTIC960 STREAMS Environment Reference
Table 4-1. Standard Kernel Functions (SKFs)

Function Macro
Interrupt
Handler

Description

adjmsg No Yes1 Trims bytes in a message

allocb No Yes1 Allocates a message, data block, and data buffer

backq No No Returns a pointer to the queue behind a given queue

bcopy Yes Yes Copies a memory zone

bufcall No Yes1 Recovers from failure of the allocb function

bzero Yes Yes Zeroes a memory zone

canput No No Tests for available space in a queue

copyb No Yes1 Copies a message (single)

copymsg No Yes1 Copies a message (multiple)

datamsg Yes Yes Tests whether the message is a data message

dupb No Yes1 Duplicates a message block descriptor (single)

dupmsg No Yes1 Duplicates a message block descriptor (multiple)

enableok Yes No Enables a queue to be scheduled for service

esballoc No Yes1 Allocates a message and data block (no data buffer)

esbbcall No Yes1 Recovers from failure of the esballoc function

flushq No No Flushes a queue

freeb No Yes1 Frees a message (single)

freemsg No Yes1 Frees a message (multiple)

getadmin No No Returns a pointer to a module

getmid No No Returns a module ID

getq No No Gets a message from a queue

insq No No Puts a message at a specific place in a queue

linkb No Yes Concatenates two messages into one

Major Yes Yes Extracts the major portion of a device number

makedev Yes Yes Makes a device number with major/minor numbers

minor Yes Yes Extracts the minor portion of a device number

msgdsize No Yes Gets the number of data bytes in a message

noenable Yes No Prevents a queue from being scheduled

OTHERQ Yes Yes Returns the pointer to the write queue

pullupmsg No Yes1 Concatenates and aligns bytes in a message

putbq No No Returns a message to the beginning of a queue

putctl No No Passes a control message

putctl1 No No Passes a control message with a one-byte parameter

putnext Yes No Passes a message to the next queue

putq No No Puts a message on a queue

qenable No Yes Puts a queue in the scheduling ring

qreply No No Sends a message on a stream in the reverse direction

qsize No No Finds the number of messages on a queue

RD Yes Yes Gets the pointer to the read queue
18

Chapter 4: STREAMS-based Module/Driver Information
1 Call available from Interrupt Handlers only for OSS versions 1.2.0 and higher.

rmvb No Yes Removes a message block from a message

rmvq No No Removes a message from a queue

splstr Yes Yes Sets the processor level to disable interrupts

splx Yes Yes Exits a previous splstr condition

strlog No No Generates error-logging and event-tracing messages

strqget No Yes Obtains information about a queue

strqset No No Changes information about a queue

suser No Yes Informs about a user privilege

testb No Yes Tests if given message size can be allocated

timeout No No Schedules a function to be called after a specified interval
environment

unbufcall No Yes1 Cancels a pending bufcall

unlinkb No Yes Removes a message block from the head of a message

untimeout No No Cancels a pending timeout

WR Yes Yes Gets the pointer to the write queue
19

RadiSys ARTIC960 STREAMS Environment Reference
OSS Kernel Functions
The RadiSys ARTIC960 STREAMS encompasses an extra set of functions for
STREAMS-based module/drivers to use. These functions are called OSS Kernel
Functions (OKFs).

The sections following Table 4-2 contain more information about these functions.

Table 4-2. OSS Kernel Functions (OKFs)

Function Macro
Interrupt
Handler

Description

qhipri Yes No Sets a queue at high priority when scheduled
qlopri Yes No Sets a queue at default priority when scheduled
s96_devinst No No Dynamically installs a STREAMS-based module/

drivers in the OSS switch tables
20

Chapter 4: STREAMS-based Module/Driver Information
qhipri

Sets a queue at high priority when scheduled

Macro Prototype

qhipri (queue_t *q);

Parameters

q Input. The queue pointer for which high scheduling priority has to be enabled.

Remarks

This function enhances the RadiSys ARTIC960 STREAMS scheduling scheme by
allowing some queues in the system to be prioritized when they are candidates for
scheduling. A high-priority queue will be scheduled after all already queued high-priority
queues but before any low priority ones. This function can be called during the queue
open process or at any other time to switch from/to high priority to/from low priority.
21

RadiSys ARTIC960 STREAMS Environment Reference
qlopri

Sets a queue at low priority when scheduled

Macro Prototype

 qlopri (queue_t *q);

Parameters

q Input. The queue pointer for which regular scheduling priority has to
be enabled.

Remarks

This routine enhances the RadiSys ARTIC960 STREAMS scheduling algorithm by
allowing some queues in the system to be prioritized when they are candidates for
scheduling. A low priority queue will be scheduled after all already queued high- and
low-priority queues (this is the regular mode of operation). This routine can be called
during the queue open process or at any other time to switch from/to high priority to/from
low priority.
22

Chapter 4: STREAMS-based Module/Driver Information
s96_devinst

Installs a STREAMS-based module/driver into the OSS device/module switch tables.

Functional Prototype

int s96_devinst (int operation,
 s96conf_t *conf);
typedef struct s96conf
{

char *name;
struct streamtab *stab;
int flags;
dev_t dev;

} s96conf_t;

Parameters

operation
Input. The operation to perform. Two operations are available:

S96_LOAD_MOD
Installs a module in the module switch table

S96_LOAD_DEV
Installs a device in the driver switch table

Note: After the STREAMS-based module/driver is loaded
successfully, the only way to unload it is to reset the adapter. There
is no selectable unload operation available.

conf Input. Pointer to the configuration block. The following fields are significant.

name Input. Specifies the name of the extension.

For modules, this name is used during IOCTL operations.

For drivers, this name is used during SAL’s s96_open operations.
See STE_OPEN — Open Stream on page 48 for more
information. The maximum length for the name is FMNAMESZ
+ 1 (null-termination character included).

Note: FMNAMESZ is defined in the C language support
include file.

stab Input. Points to a streamtab structure. The streamtab memory
block must be allocated by the caller and must remain allocated for
the duration of the STREAMS-based module/driver’s load.

flags Input. Specifies the style of the module or driver open routine.
Acceptable values are (mutually exclusive):

S96_SVR3_OPEN
Specifies the open syntax and semantics used in
UNIX System V STREAMS Release 3
23

RadiSys ARTIC960 STREAMS Environment Reference
S96_SVR4_OPEN
Specifies the open syntax and semantics used in
UNIX System V STREAMS Release 4

dev Output. For a driver, contains the major number allocated by the
OSS. The major number is formatted as a device number, so it can
be manipulated using the major, minor, and makedev functions.

For a module, the value returned is –1.

returned value
Output. On successful handling of the request, a value of zero (0) is returned.
An error code other than 0 indicates the error.

Error Codes

On failure, the routine returns one of the following error codes:

EEXIST The extension specified already exists in the OSS
switch tables.

EINVAL A parameter contains an unacceptable value.

ENOMEM Not enough RadiSys ARTIC960 memory
is available.

Building a STREAMS-based Driver
The OSS provides C language support to develop custom STREAMS-based modules/
drivers running on an RadiSys ARTIC960 adapter. Such a module/driver will be built the
same way as any other RadiSys ARTIC960 process. Refer to the RadiSys ARTIC960
Programmer’s Reference for information on how to build an RadiSys ARTIC960 adapter-
resident program (RadiSys ARTIC960 process) for the RadiSys ARTIC960 adapter. In
addition, the OSS C language support includes header files and a binary library that are
used in order to make the RadiSys ARTIC9600 process a STREAMS-based module/driver
for RadiSys ARTIC960 STREAMS.

Using the Compile Command

The osssvc.h header file, provided with the RadiSys ARTIC960 STREAMS C support,
enables the RadiSys ARTIC960 process to access the SKF APIs. This file must be
included whenever an SKF call is made within the C language support module. All other
RadiSys ARTIC960 STREAMS include files are to be included when a particular
structure, prototype, or external definition is needed. The compile command must also
define compile switches. The mandatory switch is S96. Cross-bus drivers must include
the cxbuser.h file for cross-bus driver structure definitions.

Assuming the RadiSys ARTIC960 STREAMS and other RadiSys ARTIC960 header files
are located in the directory referenced by the makefile variable RIC960_INCLUDE, the
following compile command’s template can be used to generate an object file.
24

Chapter 4: STREAMS-based Module/Driver Information
ic960 -c -ACA -Gbc -w1 -g -DS96 -DRIC_KERNEL -I. -I$(RIC960_INCLUDE) \
danyboon.c -o danyboon.o

Using the Linkedit commands

The C support library libosse.a participates in the linkedit phase of the build process and
must be included.

Assuming the RadiSys ARTIC960 STREAMS and other RadiSys ARTIC960 runtime
libraries are located in the directory referenced by the makefile variable RIC960_LIB, the
following linkedit command’s template can be used to generate a STREAMS-based
module/driver executable file or a cross-bus driver.

lnk960 -ACA -L$(RIC960_LIB) danyboon.o $(RIC960_LIB)/ricproc.ld -
losse

-o danyboon.rel
lnk960 -r -ACA -L$(RIC960_LIB) danyboon.o $(RIC960_LIB)/ricproc.ld
-losse

-o danyboon.rel
cof960 -lpv danyboon.rel
25

RadiSys ARTIC960 STREAMS Environment Reference
26

5
Developing a
Cross-bus Driver Chapter 5
A cross-bus driver is a special kind of streams driver that is linked above the OSS and
provides communication across the system bus.

The OSS needs to have one cross-bus driver loaded on the adapter and attached to
communicate with the system unit or another peer RadiSys ARTIC960 adapter. IBM
provides ric_ess.rel, a cross-bus driver (ESS), to communicate with the STREAMS Access
Library (SAL). However, if you need to provide a different way of communicating with
the system unit and are not planning to use ESS, follow the instructions in this chapter.
The OSS includes special macros and SKF functions for use by a cross-bus driver
described in this chapter. See Chapter 4, STREAMS-based Module/Driver Information
for other OSS functions and macros that can be used by the cross-bus driver and for
instructions on building a cross-bus driver.

After a cross-bus driver is installed, it remains attached to the OSS until the card is reset
(that is, it cannot be uninstalled).

The cross-bus driver is a loadable RadiSys ARTIC960 subsystem whose primary task
during its initialization process is to register one cross-bus driver with the OSS and then go
to sleep, running exclusively under the service-processing time of OSS. When
successfully registered, it gets a handle back which it uses for all control requests it sends
to the OSS subsystem.

Each cross-bus driver is identified by a callback routine and a parameter field which the
driver has to provide during registration. The callback function is used by the OSS
provider to communicate to the cross-bus driver when a control request is completed or an
unsolicited event has to be delivered.

Figure 5-1 shows one example of a cross-bus driver communicating with the OSS and how
services can be used to implement a cross-bus driver. In the diagram, the inbound and
outbound cross-bus transfer represents the cross-bus driver’s interface to the system bus..

There should be a flow-control mechanism between the system unit application and the
cross-bus driver.

This implementation is only an example and will change depending on
your requirements.
27

RadiSys ARTIC960 STREAMS Environment Reference
(1) Messages received through the cross-bus driver’s upper interface are taken out from
the super write queue and processed by the cross-bus driver’s write service
procedure (one queue for all streams).

(2) Control messages are passed directly to the Main Program Logic (MPL) control logic
in OSS (using the cxb_control function).

(3) Data messages are passed directly to the first On-card STREAMS module/driver if
the segment is not flow controlled (using the cxb_putnext function).

(4) Data messages are queued in the cross-bus driver’s write flow-control queue if the
segment is flow controlled (one queue per opened stream).

Figure 5-1. Example of an On-card Lower-end Interface
28

Chapter 5: Developing a Cross-bus Driver
(5) When the stream gets out of the flow control situation, the cross-bus driver’s write
service procedure is called, emptying (6) the cross-bus driver’s write queue filled
with elements enqueued in (4). Data messages are queued in the cross-bus driver’s
write queue if the segment goes back into flow control.

(7) The MPL control logic processes the control element given at (2) and, occasionally,
originates a stream message for the On-card STREAMS driver/module (an I_LINK
command, for example).

(8) The On-card STREAMS module/driver forwards a data message through the OSS
read put procedure.

(9) Control messages are given to the MPL control logic which will process and
eventually forward them to the cross-bus driver, as described in (10).

(10) The MPL control logic sends element control blocks to the cross-bus driver through
the registered callback routine.

(11) The cross-bus driver’s callback routine immediately performs the outbound cross-bus
transfer for the element control block.

(12) Data messages are given to the cross-bus driver’s read put procedure if not
flow controlled.

(13) Data messages are queued in the OSS read queue if the cross-bus driver’s read
queue is flow controlled (one queue per stream).

(14) When the cross-bus driver’s read queue becomes available, the OSS read
service procedure gets scheduled, dequeues any data message pending in its
read queue and forwards them to the cross-bus driver’s read put procedure.

(15) The read put procedure immediately performs the outbound cross-bus transfer for
the element control block or defers the transfer by queueing the block if outbound
transfer is temporarily unavailable. The queueing is performed in the message queue,
thus using the flow-control procedure.

(16) When the outbound cross-bus transfer becomes available again, the cross-bus
driver’s super read service procedure is run, dequeueing the internally queued
control blocks first.

(17) Following (14), any cross-bus driver stream that was blocked because of outbound
cross-bus transfer unavailability has its read service procedure run to dequeue
and send data messages outbound.

(1) Messages received through the cross-bus driver’s upper interface are taken out from
the super write queue and processed by the cross-bus driver’s write service
procedure (one queue for all streams).
29

RadiSys ARTIC960 STREAMS Environment Reference
Element Control Block Structure

Element control blocks are exchanged during requests as well as responses/indications
using the GenCXB structure.

struct GenCXB
{
 struct q_prefix qp; /* fixed OSS reserved area
*/
 unsigned long header2[4]; /* fixed header */
 // element control block
 // pointer to this location is passed to the control routine,
 // however the entire GenCXB block is allocated.
 union element_ctrl_block {
 struct ipcb oss_req; /* for OSS requests
*/
 struct cbms_cb cbm_req; /* Reserved
*/
 } elmblock;
};

where:

qp Is the queue prefix. This is used by OSS only as a queueing prefix and does not
need to be initialized by the cross-bus driver. However, the cross-bus driver
can use the entire location to store its own data until the element control block’s
ownership is transferred to the OSS (using cxb_control).

header2 Is the block header. This is reserved for use by the cross-bus driver for its own
purpose. This reserved area is 16 bytes long and should never be exceeded nor
reduced. There is no guarantee that the memory will not be altered during
processing of the request as the GenCXB control block ownership is
transferred to the OSS when the cxb_control function is called. In the same
manner, the OSS will not rely on this memory location to store any data for
responses/indications because it also loses ownership of the location after
calling the cross-bus driver’s callback function.

elmblock
Are the parameter blocks for various elements:

• When the callback routine’s response field elmorigin is
OSS_SCB_ELEM, the element control block will be formatted as an
ipcb block.

• When the callback routine’s response field elmorigin is
CBM_SCB_ELEM, the element control block will be formatted as a
cbms_cb block..

cbms_cb blocks are currently not documented or supported by cross-
bus drivers.
30

Chapter 5: Developing a Cross-bus Driver
Callback Routine

The following explains the prototype and fields for the callback routine (cxbcallback_rtn).

void cxbcallback_rtn (cxbresp_t *resp);

typedef struct cxbresp
{
 unsigned long elmorigin;
 unsigned long cxbcallback_prm;
 unsigned long elmblock_len;
 union element_ctrl_block *elmblock_ptr;
 unsigned long elmblock_memo;
 unsigned long reserved;
} cxbresp_t;

where:

elmorigin
Is the origin of the response. This identifies the component delivering the
response/indication element control block to the cross-bus driver. Currently
the following values are defined:

OSS_SCB_ELEM
Originating from the OSS. This must be supported by the
cross-bus driver interface as it conveys all stream-related elements
back to the cross-bus driver.

CBM_SCB_ELEM
Originating from the CBMS. If the cross-bus driver does not use
CBMS services, no CBMS elements will be delivered through this
interface. Thus, this can only be optionally supported by the
cross-bus driver interface..

cxbcallback_prm
Callback routine’s parameter. This value is specified by the cross-bus driver
during the CXB_REG_DRIVER operation and is provided unaltered during
callback. (See CXB_REG_DRIVER for details.)

elmblock_len
Size (in bytes) of the element control block, including its (optional) data and
control fields.

elmblock_ptr
Pointer to the beginning of the element control block containing the response
parameters. The pointer value is set to the address of the elmblock union into
the GenCXB memory block. (See page 30.) The cross-bus driver owns the
GenCXB memory block while in its callback routine. It is then responsible for
freeing the block (using the free() kernel service) at any time, before or after
returning from the callback routine.

The current version of this document does not include CBMS elements.
31

RadiSys ARTIC960 STREAMS Environment Reference
elmblock_memo
Correlation value.

If the origin is OSS_SCB_ELEM:
This value has been specified only once by the cross-bus driver
during a STE_OPEN in the ctltype field of the element control
block. (See page 48 for how to encode the ipcb block.)

Device Profiles

The cross-bus driver must create at least one device profile to link its cross-bus driver
queues to the stream head queues (CXB_LINK_HEAD). To create a device profile, use
the s96_devinst function call as you would use it to install a STREAMS-based module/
driver. The following is mandatory when installing a device profile:

• Use the S96_LOAD_DEV operation.

• Declare a write service procedure in the streamtab structure.

• Provide high and low watermarks for the read side to ensure effective flow control for
outbound transfers.

The cross-bus driver has no limitation on the number of profiles being defined. The device
number returned by the s96_devinst function call must be saved and provided during the
link head step.

Flow Charts
The following charts show an example of how a cross-bus driver can be designed.
32

Chapter 5: Developing a Cross-bus Driver
Registering a Cross-Bus Driver

(1) The cross-bus driver, during its initialization phase, registers a callback routine and a
parameter using the CXB_REG_DRIVER operation.

(2) The OSS saves information into its cross-bus driver table, allocates a task ID for the
new cross-bus driver and, if successful, returns a handle which is used by the
cross-bus driver for its further control operations.

(3) The cross-bus driver, during its initialization phase, registers an on-card
STREAMS-based module driver in order to create a profile containing addresses of
service procedures, queue high and low watermarks, and so forth.

(4) The OSS saves information into its on-card STREAMS-based module/driver tables,
allocates a device number and, if successful, returns this device number which is
used by the cross-bus driver for its CXB_LINK_HEAD operation requiring a device
profile to create the cross-bus driver queue pair.

Figure 5-2. Registering a Cross-bus Driver with OSS
33

RadiSys ARTIC960 STREAMS Environment Reference
Linking an On-card Stream Segment

(1) The system unit sends down a STE_OPEN request formatted in an ipcb block. The
cross-bus driver receives the request and queues it into a STREAMS
service procedure.

(2) The cross-bus driver service procedure gets control and detects that the element is a
STE_OPEN control block.

• It dynamically allocates a memory block and saves the memory pointer as a memo
in the reserved ctltype field of the STE_OPEN control block. (See page 48 for
coding.) This pointer is used at (7) to initialize the q_ptr field.

• It dynamically allocates a GenCXB structure block and copies the incoming ipcb
block into it.

• It performs a CXB_OSS_REQ operation, using the cross-bus driver handle
acquired as described in the registration sequence in Registering a Cross-Bus
Driver on page 33.

(3) The OSS processes the open request and calls the target driver’s queue open
routine. On return from the queue open routine, the return code is provided by the
target driver.

(4) The OSS initiates a reply to the previous STE_OPEN request through the cross-bus
driver’s callback routine. The memo field saved by the cross-bus driver from the
STE_OPEN request is returned during the reply.

(5) The cross-bus driver checks the open return code and, if successful, tries to link itself
to the stream head queues created by OSS for the on-card stream segment by using
the CXB_LINK_HEAD operation. The device profile has been acquired as described
in Registering a Cross-Bus Driver on page 33.

(6) The OSS allocates a pair of queues, performs the link between the cross-bus driver
queues and the stream head queues and then, if successful, returns a pointer on the
write queue of the allocated cross-bus driver pair.

Figure 5-3. Linking an On-card Stream Segment with the Cross-bus Driver
34

Chapter 5: Developing a Cross-bus Driver
(7) The cross-bus driver initializes the q_ptr field of the cross-bus driver write queue with
the memo value returned from the STE_OPEN, which was a pointer on a memory
block allocated in (2). This block is used by the cross-bus driver to keep
instance-specific information about the on-card stream segment. Then it replies to
the system unit request.

(8) The callback routine is returned.
(9) The first cxb_control function is returned.
35

RadiSys ARTIC960 STREAMS Environment Reference
Unlinking an On-card Stream Segment

(1) The system unit sends down a STE_CLOSE request formatted in an ipcb block. The
cross-bus driver performs a CXB_OSS_REQ operation, using the cross-bus driver
handle acquired as described in the registration sequence in Registering a
Cross-Bus Driver on page 33.

(2) The OSS processes the close request. It internally marks the link between the stream
head queues and the cross-bus driver’s queues as unusable and calls the target
driver’s queue close routine.

(3) The OSS initiates a reply to the previous STE_CLOSE request through the cross-bus
driver’s callback routine. The memo field saved by the cross-bus driver from the
STE_OPEN request is returned during the reply. The cross-bus driver recognizes that
the incoming response is a STE_CLOSE.

(4) The cross-bus driver releases the memory attached to the q_ptr field of its write
queue and unlinks its own queues by using the CXB_UNLINK_HEAD operation. Its
pair of queues is freed at that time.

(5) The cross-bus driver responds to the STE_CLOSE request.
(6) The callback routine is returned.
(7) The first cxb_control function is returned.

Figure 5-4. Unlinking an On-card Stream Segment from the Cross-bus Driver
36

Chapter 5: Developing a Cross-bus Driver
C Language Support
The operations, functions, and macros listed in the tables below provide information on
how to develop your own cross-bus driver to interface between the system unit and the
OSS. They are part of the OSS C language support and are described in this section. They
follow the same rules as Standard Kernel Functions (SKFs) and OSS Kernel Functions
(OKFs) explained in SKF Functions on page 17 and OSS Kernel Functions on page 20..

The Macro column specifies whether it is provided as an inline macro.

The Interrupt Handler column specifies whether it can be called from an interrupt handler.

A cross-bus driver is not considered a STREAMS-based module/driver.
Rather, it is considered a hybrid using a set of cross-bus driver commands
and STREAMS service processing time for its cross-bus driver queues.
Although functions described in the C language support for a
STREAMS-based module/driver can be used by a cross-bus driver, the
cxb_canputnext and cxb_putnext functions must be used in place of the
canput and putnext functions for downstream communication from the
cross-bus driver to the on-card stream. See Chapter 4, STREAMS-based
Module/Driver Information for a list of other functions available to the
cross-bus driver.

Operation Macro
Interrupt
Handler Description

See
Page

Through the Cross-Bus Control Interface (cxb_control Function)
CXB_CBM_REQ No No Sends a control request to the CBMS 40
CXB_LINK_HEAD No No Links cross-bus driver queues to an

on-card stream segment
40

CXB_OSS_REQ No No Sends a control request to the OSS 41
CXB_REG_DRIVER No No Dynamically registers a cross-bus

driver into OSS.
42

CXB_UNLINK_HEAD No No Unlinks cross-bus driver queues from
an on-card stream segment

43
37

RadiSys ARTIC960 STREAMS Environment Reference
cxb_control
Controls the interface between the cross-bus driver and OSS/CMBS components.

Functional Prototype

int cxb_control (cxbreq_t *req);

typedef struct cxbreq
{
 unsigned long operation;
 unsigned long cxbhandle;
 union = {
 cxbreg_t reg;
 cxblink_t link;
 cxbunlink_t unlink;
 cxbossreq_t oss_req;
 cxbcbmreq_t cbm_req;
 { cmd;
} cxbreq_t;

Parameters

exbhandle
Input/output

Input This is the cross-bus driver handle obtained from a previous successful
CXB_REG_DRIVER operation. This handle must be provided to all other

Macro
Interrupt
Handler Description

See
Page

_SIZEOF_IPCB_EXTRA Yes Computes the control and data extra
reply fields in an ipcb structure

44

_GET_OPEN_SSD Yes Extracts the on-card stream descriptor from
a STE_OPEN response control block

45

_IS_STE_OPEN Yes Checks whether the command is a
STE_OPEN

45

_IS_STE_CLOSE Yes Checks whether the command is a
STE_CLOSE

45

_IS_IPCB_ERROR Yes Checks whether the ipcb response control
block has an error set

45

Function Macro
Interrupt
Handler Description

See
Page

Cross-Bus Data Interface
cxb_canputnext No No Tests for available space in the next

driver’s write queue
46

cxb_putnext No No Passes a message to the next write
queue

47
38

Chapter 5: Developing a Cross-bus Driver
operations defined in the cxb_control function (except the
CXB_REG_DRIVER operation).

Output This is the cross-bus driver handle returned during a successful
CXB_REG_DRIVER operation.

operation
Input. The following are available operations:

CXB_LINK_HEAD
Allocates and links cross-bus driver queues to an on-card stream
segment (see CXB_LINK_HEAD).

CXB_OSS_REQ
Sends a control request to the OSS component (see
CXB_OSS_REQ).

CXB_REG_DRIVER
Installs a cross-bus driver in the cross-bus switch table (see
CXB_REG_DRIVER).

CXB_UNLINK_HEAD
Unlinks and deallocates cross-bus driver queues from an On-card
Stream (see CXB_UNLINK_HEAD).

returned value
Output. On successful handling of the request, a value of zero is returned. An
error code other than zero indicates the error.

Error Codes

On failure, the function returns one of the following error codes:

ENXIO The cross-bus driver’s handle is invalid.

EINVAL A parameter contains an unacceptable value.

EPERM The operation is not permitted at this time.

Remarks

All operations must be sent to OSS from a service procedure during OSS processing time.
39

RadiSys ARTIC960 STREAMS Environment Reference
CXB_LINK_HEAD

Allocates and links cross-bus driver queues to the on-card stream segment’s head queues.

Functional Prototype

typedef struct cxblink
{
 dev_t devprofile;
 unsigned long ssd;
 queue_t *wq;
 unsigned long reserved;
} cxblink_t;

Parameters

devprofile
Input. Cross-bus driver device profile number. This is the device number
assigned during a successful s96_devinst function call issued by the cross-bus
driver to install a profile for its own operational queues. Queues are allocated
during the link phase according to specifications contained in this profile. It is
possible for a cross-bus driver to have multiple outstanding profiles (as many
times as s96_devinst is called) and choose the operational one for this
particular stream connection at link time.

For more information on how to create device profiles, see Device Profiles on
page 32.

ssd Input. On-card stream descriptor. This value should be extracted by the
cross-bus driver from the STE_OPEN response control block if the On-card
Stream has been opened successfully. This represents the on-card stream
segment that the cross-bus driver wants to link its queue pair with..

wq Output. Pointer to the allocated cross-bus driver write queue. The read queue
pointer is obtained using the OTHERQ stream macro.

reserved Input. Reserved field (must be 0).

Error Codes

EBADF The on-card stream’s descriptor is not a valid open
stream descriptor.

ENOMEM Not enough RadiSys ARTIC960 adapter
memory available.

EFAULT The wq pointer is not a valid cross-bus driver write
queue pointer.

ENOENT Device profile not installed.

Setting ssd to NULL causes the cross-bus driver queues to be
allocated but not linked with any on-card stream. This feature can be
used for “super queues” allocation.
40

Chapter 5: Developing a Cross-bus Driver
Remarks

Cross-bus queues, once allocated, are managed totally by the cross-bus driver. Their
deallocation has to take place using the CXB_UNLINK_HEAD operation at the time the
on-card stream segment is closed. The q_ptr field is free to store
instance-dependant information.

CXB_OSS_REQ

Sends a control request to the OSS.

Functional Prototype

typedef struct cxbossreq
{
 unsigned long elmblock_len;
 struct ipcb *elmblock_ptr;
 unsigned long reserved;
} cxbossreq_t;

Parameters

elmblock_len
Input. Size (in bytes) of the element control block, including its (optional) data
and control fields.

elmblock_ptr
Input. Pointer to the beginning of the element control block containing the
request parameters, formatted in an ipcb control block. The pointer value is set
to the address of the elmblock union into the GenCXB memory block. The
cross-bus driver must use the malloc function to acquire the GenCXB memory
block. GenCXB memory block’s ownership is transferred from the cross-bus
driver to the OSS after the cxb_control function is called. The cross-bus driver
must not perform any more operations on that GenCXB memory block, nor
reuse the memory block after it calls the cxb_control function.

reserved Input. Reserved field (must be 0).

Error Codes

EBADF The On-card stream’s descriptor is not a valid open
stream descriptor.

Remarks

If an error code is returned, the elmblock_ptr block’s ownership is retained by the caller.
OSS does not free the GenCXB memory block if it returns an error code value from this
operation. The cross-bus driver is expected to provide a response to the error request’s
originator because OSS will not deliver any further response for such request in error.

STREAMS data messages should be sent using the cxb_putnext function described on
page 47.
41

RadiSys ARTIC960 STREAMS Environment Reference
The CXB_OSS_REQ operation should be used only for mandatory control requests (see
page 41). Optional requests can be formatted as STREAMS messages and sent using
either the cxb_putnext (preferred method) or the cxb_control functions.

The following requests have to be carried using the CXB_OSS_REQ operation:

Table 5-1. Requests for CXB_OSS_REQ Operation (Mandatory)

The following requests can either be carried using the CXB_OSS_REQ function or
directly as stream messages through the cxb_putnext function.

Table 5-2. Requests for CXB_OSS_REQ Operation (Optional)

CXB_REG_DRIVER

Description

Registers a callback routine into the OSS’s cross-bus driver table and stores the cross-bus
driver’s memo value, which will be provided during the callback routine invocation. A
cross-bus driver can register as many callback routines as it needs to accommodate its own
design. The cxbreq_t structure field cxbhandle is initialized with the newly allocated
driver’s handle if the operation is successful. This handle must be used for all other
operations defined by the cxb_control function.

Functional Prototype

typedef struct cxbreg
{
 void (*cxbcallback_rtn)();
 unsigned long cxbcallback_prm;
 unsigned long reserved;

ConnectorPage Page
STE_OPEN
STE_CLOSE
STE_XPUSH
STE_XPOP
STE_XLINK (Link)
STE_XLINK (Permanent Link)
STE_XUNLINK (Unlink)
STE_XUNLINK (Permanent Unlink)
STE_XLOOK
STE_XFIND
STE_XLIST
STE_XSETCLTIME
STE_XGETCLTIME

48
49
53
54
55
56
57
58
59
60
61
62
63

ConnectorPage Page
M_FLUSH
M_READ
M_START
M_STOP
M_STARTI
M_STOPI

50
51
51
52
52
53
42

Chapter 5: Developing a Cross-bus Driver
} cxbreg_t;

Parameters

cxbcallback_rtn
Input. Specifies the pointer to the callback routine used by the OSS to deliver
control messages to the cross-bus driver. The callback function’s prototype is
defined on page 31.

cxbcallback_prm
Input. Callback function parameter. This value is returned unaltered when the
callback routine is invoked. The content of this variable is defined by how it is
used. It is primarily intended as a pointer or index to aid the cross-bus driver in
locating instance-specific information. Its use is optional.

reserved Input. Reserved field (must be 0).

Error Codes

ENOMEM Not enough RadiSys ARTIC960 adapter
memory available.

EMFILE Too many cross-bus drivers registered. The
maximum has been reached.

Remarks

If the operation is successful, the cxbhandle that is returned will be used in all other
operations to correlate which cross-bus driver initiated the request. All responses and
unsolicited indications will use this handle to retrieve the cross-bus driver’s callback
routine and parameters.

CXB_UNLINK_HEAD

Unlinks the cross-bus driver queues from the on-card stream segment’s head queues and
deallocates them.

Functional Prototype

typedef struct cxbunlink
{
 queue_t *wq;
 unsigned long reserved;
} cxbunlink_t;

Parameters

wq Input. Pointer to the allocated cross-bus driver write queue. This is the queue
pointer returned during a successful CXB_LINK_HEAD operation.

reserved Input. Reserved field (must be 0).

Error Codes

EFAULT The wq pointer is not a valid cross-bus driver write
queue pointer.
43

RadiSys ARTIC960 STREAMS Environment Reference
Remarks

The cross-bus driver should release any memory attached using the private q_ptr field
prior to issuing this operation because queues’ memory is freed by this operation.

Macros
The following macros are defined to ease the implementation of cross-bus drivers when
manipulating data structures of element control blocks.

_SIZEOF_IPCB_EXTRA

Returns the size of the extra bytes to allocate for the optional response’s control and
data areas.

To minimize cross-bus memory occupation, the cross-bus driver might not want to allocate
the extra bytes present at the tail of the elmblock union if these bytes are only used for the
response. In that case, this macro computes the amount of extra memory needed at the
bottom of the GenCXB structure to fulfill the response’s requirements. The resulting size
should be added to the size of the GenCXB structure before dynamically allocating the
memory block.

Functional Prototype

unsigned long _SIZEOF_IPCB_EXTRA (struct ipcb *ipcbp);

Parameters

ipcbp Input. Pointer to the beginning of the ipcb request block.

Returns

Amount of bytes to append to the ipcb request block.

Macro Page
_SIZEOF_IPCB_EXTRA
_GET_OPEN_SSD
_IS_STE_OPEN
_IS_STE_CLOSE
_IS_IPCB_ERROR

44
45
45
45
45
44

Chapter 5: Developing a Cross-bus Driver
_GET_OPEN_SSD

Extracts the descriptor value of the on-card stream’s segment from a STE_OPEN’s ipcb
response block.

Functional Prototype

unsigned long _GET_OPEN_SSD (struct ipcb *ipcbp);

Parameters

ipcbp Input. Pointer to the beginning of the ipcb response block.

Returns

Descriptor value of on-card stream’s segment.

_IS_STE_OPEN

Checks if the ipcb control block carries a STE_OPEN command.

Functional Prototype

unsigned long _IS_STE_OPEN (struct ipcb *ipcbp);

Parameters

ipcbp Input. Pointer to the beginning of the ipcb request/response block.

Returns

The value 1 is returned if the control block is a STE_OPEN; otherwise, 0 is returned.

_IS_STE_CLOSE

Checks if the ipcb block carries a STE_CLOSE request.

Functional Prototype

unsigned long _IS_STE_CLOSE (struct ipcb *ipcbp);

Parameters

ipcbp Input. Pointer to the beginning of the ipcb request/response block.

Returns

The value 1 is returned if the control block is a STE_CLOSE; otherwise, 0 is returned.

_IS_IPCB_ERROR

Checks if the ipcb control block is in error.

Description

For ipcb blocks carrying an error code, this macro retrieves the value from the ipcb
response block.
45

RadiSys ARTIC960 STREAMS Environment Reference
Functional Prototype

unsigned long _IS_IPCB_ERROR (struct ipcb *ipcbp);

Parameters

ipcbp Input. Pointer to the beginning of the ipcb element control block.

Returns

The error number is returned; otherwise, 0 is returned.

cxb_canputnext
Tests the next driver’s write queue for availability

Returns the status of the next lower driver’s write queue in the on-card stream’s segment
by checking its amount of bytes accumulated toward its configured high- and low-water
marks. If the queue is not flow controlled, the cross-bus driver uses the cxb_putnext
function to send data messages to the lower STREAMS-based module driver.
High-priority messages should not be subject to flow control.

Functional Prototype

int cxb_canputnext (queue_t *wq);

Parameters

wq Input. Pointer to the cross-bus driver allocated write queue. This queue has
been previously allocated by a successful CXB_LINK_HEAD operation.

returned value
Output.

1 This driver can accept data messages if the next driver’s write
queue is not flow controlled.

0 The on-card stream’s segment is temporarily flow controlled.
When this condition occurs the cross-bus driver’s write queue is
automatically marked as blocked, and thus it will be back-enabled
as soon as the target lower driver queue’s byte count drops below
its low water mark.

–1 The on-card stream’s segment is not able to process any data.
There is a severe permanent condition needing control commands
to clear.

Remarks

Although canput appears to perform the same function, it should not be used to check a
downstream queue. The cxb_canputnext function must be used instead.
46

Chapter 5: Developing a Cross-bus Driver
cxb_putnext
Calls the put procedure associated with the next STREAMS-based module/driver below
the stream head, passing a message block into it. The message has to be formatted strictly
as a stream message with no restriction from the standard UNIX SVR3/4 message format.

Functional Prototype

int cxb_putnext (queue_t *wq,
 mblk_t *mp);

Parameters

wq Input. Pointer to the cross-bus driver-allocated write queue. This queue has
been previously allocated by a successful CXB_LINK_HEAD operation.

mp Input. Stream message pointer. On successful completion, ownership of the
message is transferred to the called STREAMS-based module/driver. The
cross-bus driver should not attempt to reuse the same message pointer after it
has successfully called the cxb_putnext function. (See returned value
for exceptions.)

returned value
Output.

1 Indicates that the message has been delivered.

–1 Indicates that the on-card stream’s segment is not able to process
any data. There is a severe permanent condition needing control
commands to clear. In that case, and only in that case, ownership
of the message pointer remains to the cross-bus driver after
the call.

Remarks

Although putnext appears to perform the same function, it should not be used to send data
to a downstream queue. The cxb_putnext function must be used instead.
47

RadiSys ARTIC960 STREAMS Environment Reference
Element Control Blocks Format
The cross-bus driver communicates with the On-card STREAMS Subsystem using
element control blocks, either formatted as an ipcb block for OSS requests/responses, or as
a cbms_cb block for CBMS requests/responses..

When no value is specified for a field, the field is not significant and does not need to be
initialized (although setting a value of 0 for these is a recommended coding practice). A
value specified in a request block and not used for the response is not altered.

ipcb Blocks
Each ipcb control block has optional control and data parts at the tail of the structure. The
size of this area can be determined using the macro _SIZEOF_IPCB_EXTRA.

STE_OPEN — Open Stream
Table 5-3. STE_OPEN

The cross-bus driver has to intercept the STE_OPEN if it needs to set a memo value
associated with the opened stream. This memo value is returned unaltered to the cross-bus
driver when its callback routine is invoked for this particular stream.

The current version of IBM’s OSS does not support cross-bus driver
CBMS elements.

Field Request Response
mtype STE_OPEN
input 1
mseq
error Error number or 0
slotid Device driver memo
ctltype cross-bus driver memo Descriptor of opened

stream
ctllen Device name length (with ASCII

termination)
0

datalen 0
Flags Stream’s flags
extl 0
ext2 devno (minor) devno (major/minor)
Control and Data parts
control part Device name (with ASCII termination)
data part

The devno is updated in the response field with the card major number of the
device name specified.
48

Chapter 5: Developing a Cross-bus Driver
The device name to set in the request’s control section must be the name specified by the
STREAMS-based driver during its installation using the s96_devinst function (name of
the configuration structure).

STE_CLOSE — Close Stream

Table 5-4. STE_CLOSE

STE_XSEND — Send Data

The OSS offers the possibility to convey some sensitive high-priority messages into an
ipcb block, thus ensuring more reliable delivery across the bus. The cross-bus driver can
choose not to use the feature and still carry these high priority messages like a regular
send. Note that the datalen field plays an important role in determining if a stream data
block pointer is present or not.

Table 5-5. STE_XSEND Data—Messages

Field Request Response
mtype STE_CLOSE
input 0
mseq
error Error number or 0
slotid Stream descriptor Device driver memo
ctltype
ctllen 0
datalen 0
flags
ext1
ext2
Control and Data parts
control part
data part

This is an immediate command. No further response is generated after the
request unless an error occurs during processing.

Field Request
mtype STE_XSEND
input 0
mseq
error
slotid Stream descriptor
ctltype db_type field value from system unit's dblk_t block.
ctllen 0
datalen 0
flags
ext1 Stream data block pointer
ext2
49

RadiSys ARTIC960 STREAMS Environment Reference
The stream data block pointer is a flat RadiSys ARTIC960 adapter pointer value. Memory
for data blocks and data buffers should have been acquired through CBMS and all links
made with flat RadiSys ARTIC960 adapter pointer values.

1. It is unnecessary to transport the message block between the system unit and the card.
It will be rebuilt by the OSS before the message is written downstream at the stream
head, and by the SAL before the message is delivered through the STE_XRECEIVE
response code.

2. Putting the db_type value in ctltype enables priority queueing in OSS’s MPL.

M_FLUSH

Table 5-6. M_FLUSH—Message

Control and Data parts
control part
data part

Field Request
mtype STE_XSEND
input 1
mseq
error
slotid Stream descriptor
ctltype M_FLUSH
ctllen 1
datalen –1
flags
ext1
ext2
Control and Data parts
control part Flush mode (Read,Write,Read/Write)
data part
50

Chapter 5: Developing a Cross-bus Driver
M_READ

Table 5-7. M_READ—Message

M_START

Table 5-8. M_START—Message

Field Request
mtype STE_XSEND
input 0
mseq
error
slotid Stream descriptor
ctltype M_READ
ctllen 0
datalen –1
flags
ext1 Number of bytes to be read
ext2
Control and Data parts
control part
data part

Field Request
mtype STE_XSEND
input 0
mseq
error
slotid Stream descriptor
ctltype M_START
ctllen 0
datalen –1
flags
ext1
ext2
Control and Data parts
control part
data part
51

RadiSys ARTIC960 STREAMS Environment Reference
M_STOP

Table 5-9. M_STOP—Message

M_STARTI

Table 5-10. M_STARTI—Message

Field Request
mtype STE_XSEND
input 0
mseq
error
slotid Stream descriptor
ctltype M_STOP
ctllen 0
datalen –1
flags
ext1
ext2
Control and Data parts
control part
data part

Field Request
mtype STE_XSEND
input 0
mseq
error
slotid Stream descriptor
ctltype M_STARTI
ctllen 0
datalen –1
flags
ext1
ext2
Control and Data parts
control part
data part
52

Chapter 5: Developing a Cross-bus Driver
M_STOPI

Table 5-11. M_STOPI—Message

STE_XPUSH ioctl — Push Module
Table 5-12. STE_XPUSH — ioctl

Field Request
mtype STE_XSEND
input 0
mseq
error
slotid Stream descriptor
ctltype M_STOPI
ctllen 0
datalen –1
flags
ext1
ext2
Control and Data parts
control part
data part

Field Request Response
mtype STE_XPUSH
input 1
mseq
error Error number or 0
slotid Stream descriptor Device driver memo
ctltype
ctllen 0
datalen Module name length (with

ASCII termination)
0

flags
ext1
ext2
Control and Data
parts
control part
data part Module name (with ASCII

termination)
53

RadiSys ARTIC960 STREAMS Environment Reference
STE_XPOP ioctl — Pop Module
Table 5-13. STE_XPOP — ioctl

Field Request Response
mtype STE_XPOP
input 0
mseq
error Error number or 0
slotid Stream descriptor Device driver memo
ctltype
ctllen 0
datalen 0
flags
ext1
ext2
Control and Data parts
control part
data part
54

Chapter 5: Developing a Cross-bus Driver
STE_XLINK ioctl — Link Driver
Table 5-14. STE_XLINK — ioctl

Notes

• If the request’s ext1 parameter value is zero, the ioctl is a LINK ioctl. If it is 1, it
is a PLINK ioctl.

• The request’s ext2 parameter value is used when the system unit needs to
assign the same link ID as the one it got from its own I_LINK system unit
request. This feature is used mostly by system units supporting streams and is
particularly useful so the application device driver does not have to keep a
correspondence between system unit and card link IDs.

Field Request Response
mtype STE_XLINK
input 0
mseq
error Error number or 0
slotid Multiplexing driver’s Stream

Descriptor
Device driver memo for mux
stream

ctltype Stream descriptor to connect
below the multiplexor

Multiplexor ID number

ctllen 0
datalen 0
flags
ext1 0
ext2 Multiplexor ID number(l_index)
Control and Data parts
control part
data part
55

RadiSys ARTIC960 STREAMS Environment Reference
iSTE_XLINK octl — Permanent Link Driver
Table 5-15. STE_XLINK — ioctl

Notes

• If the request’s ext1 parameter value is zero, the ioctl is a LINK ioctl. If it is 1,
it is a PLINK ioctl.

• The request’s ext2 parameter value is used when the system unit needs to
assign the same link ID as the one it got from its own I_PLINK system unit
request. This feature is mostly used by system units supporting streams and is
particularly useful so the application device driver does not have to keep a
correspondence between system unit and card link IDs.

Field Request Response
mtype STE_XLINK
input 0
mseq
error Error number or 0
slotid Multiplexing driver’s stream

descriptor
Device driver memo for mux
stream

ctltype Stream descriptor to connect
below the multiplexor

Multiplexor ID number

ctllen 0
datalen 0
flags
ext1 1
ext2 Multiplexor ID number(l_index)
Control and Data parts
control part
data part
56

Chapter 5: Developing a Cross-bus Driver
STE_XUNLINK ioctl — Unlink Driver
Table 5-16. STE_XUNLINK — ioctl

Field Request Response
mtype STE_XUNLINK
input 0
mseq
error Error number or 0
slotid Multiplexing driver’s stream

descriptor
Device driver memo for mux
stream

ctltype Multiplexor ID number (or –1)
ctllen 0
datalen 0
flags
ext1 0
ext2
Control and Data parts
control part
data part

If the request’s ext1 parameter value is zero, the ioctl is a LINK ioctl. If it is 1, it
is a PLINK ioctl.
57

RadiSys ARTIC960 STREAMS Environment Reference
STE_XUNLINK ioctl — Permanent Unlink Driver
Table 5-17. STE_XUNLINK — ioctl

Field Request Response
mtype STE_XUNLINK
input 0
mseq
error Error number or 0
slotid Multiplexing driver’s Stream

Descriptor
Device driver memo for mux
stream

ctltype Multiplexor ID number (or –1)
ctllen 0
datalen 0
flags
ext1 1
ext2
Control and Data parts
control part
data part

If the request’s ext1 parameter value is zero, the ioctl is a LINK ioctl. If it is 1, it
is a PLINK ioctl.
58

Chapter 5: Developing a Cross-bus Driver
STE_XLOOK ioctl — Retrieve Top Module Name
Table 5-18. STE_XLOOK — ioctl

Field Request Response
mtype STE_XLOOK
input 0
mseq
error Error number or 0
slotid Stream descriptor Device driver memo
ctltype
ctllen 0
datalen FMNAMESZ + 1 Module name length (with

ASCII termination)
flags
ext1
ext2
Control and Data parts
control part
data part Module name (with ASCII

termination)
59

RadiSys ARTIC960 STREAMS Environment Reference
STE_XFIND ioctl — Find Module Name
Table 5-19. STE_XFIND — ioctl

Field Request Response
mtype STE_XFIND
input 1
mseq
error Error number or 0
slotid Stream descriptor Device driver memo
ctltype 1 if present; otherwise, 0.
ctllen 0
datalen Module name length (with ASCII

termination)
0

flags
ext1
ext2
Control and Data parts
control part
data part Module name (with ASCII

termination)
60

Chapter 5: Developing a Cross-bus Driver
STE_XLIST ioctl — List Module Names
Table 5-20. STE_XLIST — ioctl

In order to contain all modules names, the maximum length of data part specified in the
request should normally be equal to:

Number of entries to list * sizeof(str_mlist)

Field Request Response
mtype STE_XLIST
input 0
mseq
error Error number or 0
slotid Stream descriptor Device driver memo
ctltype Number of entries to list Number of entries listed
ctllen 0
datalen Maximum length of data part
flags
ext1
ext2
Control and Data parts
control part
data part Modules list (str_mlist

structures)
61

RadiSys ARTIC960 STREAMS Environment Reference
STE_XSETCLTIME ioctl — Set Close Time
Table 5-21. STE_XSETCLTIME — ioctl

Field Request Response
mtype STE_XSETCLTIME
input 0
mseq
error Error number or 0
slotid Stream descriptor Device driver memo
ctltype Time delay value (in

milliseconds)
ctllen 0
datalen 0
flags
ext1
ext2
Control and Data parts
control part
data part
62

Chapter 5: Developing a Cross-bus Driver
STE_XGETCLTIME ioctl — Get Close Time
Table 5-22. STE_XGETCLTIME — ioctl

Field Request Response
mtype STE_XGETCLTIME
input 0
mseq
error Error number or 0
slotid Stream descriptor Device driver memo
ctltype
ctllen 0
datalen 0
flags
ext1 Time delay value (in

milliseconds)
ext2
Control and Data parts
control part
data part
63

RadiSys ARTIC960 STREAMS Environment Reference
STE_XRECEIVE Response Code — Receive Messages
Table 5-23. STE_XRECEIVE — Response Code

The stream message pointer is a flat RadiSys ARTIC960 pointer value. Memory for the
message and data blocks has been acquired through CBMS and should be deallocated
using CBMS services. All internal links are made with flat RadiSys ARTIC960
pointer values.

Field Response
mtype STE_XRECEIVE
input
mseq
error 0
slotid Device driver memo
ctltype
ctllen 0
datalen 0
flags
ext1 Stream message pointer
ext2
Control and Data parts
control part
data part
64

6
STREAMS Access Library Chapter 6
The STREAMS Access Library (SAL) is a tool set enabling a system unit kernel-mode
driver to communicate with one (or many) RadiSys ARTIC960 adapters’ On-card
STREAMS Subsystems (OSSs). In this chapter, a kernel-mode driver is referred to as the
application device driver (ADD). RadiSys ARTIC960 Support for AIX also provides the
STREAMS960 Application Device Driver (called S960ADD), but SAL lets users
communicate STREAMS messages to the adapter while communicating to
non-STREAMS applications above from the AIX kernel space.

The provided API is designed to enable:

• Bridging a native UNIX SVR3/4 Stream environment from the system unit (for
example, AIX) with the RadiSys ARTIC960 STREAMS located in the
RadiSys ARTIC960 adapter. This is also called a transparent service (XPAR).

• Bridging a system unit not supporting the UNIX SVR3/4 Stream environment (for
example, OS/2) with the RadiSys ARTIC960 STREAMS located in the
RadiSys ARTIC960. This is also called a non-transparent service (NON-XPAR).

SALSER describes two kinds of services that are both included as part of the SAL system
unit support:

• Stream services

• Memory services

The SAL underlying protocol to communicate with the adapter is not addressed in
this book.

C Language Support
The SAL C language support requires the operating system’s standard libraries for device
driver support. The SAL C language support consists of a header file, saluser.h, providing
prototypes to access the library routines and declares, and a definition of SAL command
codes and structures. The ADD should include this header file whenever it calls a stream
or memory service.

SAL commands available to ADDs are all prefixed with s96_.

AIX Considerations

The SAL C language support provided for IBM AIX includes a library, libsal.a,
containing all SAL routines. This library should be linked with other ADD object
modules, along with the standard libraries of IBM AIX device drivers.
65

RadiSys ARTIC960 STREAMS Environment Reference
OS/2 Considerations

The SAL C language support provided for IBM OS/2 includes a library, sal.lib, containing
all SAL routines. This library should be statically linked with other ADD object modules
along with the standard libraries of IBM OS/2 device drivers.

Windows NT Considerations

The following header files are needed by the Windows NT driver. They must be included
to provide the environment to access SAL functions by the Windows NT driver.

Runtime Variables
The prototype definition of the following variables is in the saluser.h user include file. All
these variables have default values which you can change.

Table 6-1. SAL Runtime Variables

ric.h RadiSys ARTIC960 card-specific defines

salntstr.h STREAMS defines for the Windows NT environment
oerrno.h STREAMS error codes
saluser.h Common functions across the various platforms that are provided by

the SAL
salntusr.h Functions specifically provided for the Windows NT environment
saldefs.h Common SAL defines across the various platforms
salnt.h Defines specific to the Windows NT SAL
cbmuser.h Defines for card buffer management functions

Variable Description
sal_pipe_timeout The SAL is monitoring the SCB (ric_scb.rel) pipe status and will

timeout if it cannot enqueue any SCB control element to be processed
by the RadiSys ARTIC960 adapter for more than a defined period of
time. By default, the timer value is set to 5 seconds. It can be changed
by the ADD using the externalized sal_pipe_timeout variable. (See
saluser.h include file.) If timeout occurs, the SAL issues an
STE_CONNECT response to the ADD, indicating that communication
with the card is broken.
66

Chapter 6: STREAMS Access Library
AIX Configuration
Configuration is the process of establishing communication between the ADD and the
RadiSys ARTIC960 adapter device driver. The SAL is the component being directly
attached to the RadiSys ARTIC960 adapter device driver. Once this communication is
established successfully, SAL commands can be used and responses from the
RadiSys ARTIC960 adapter’s device driver will be received by the ADD.

The SAL is a library statically linked with the ADD. Through this library, the ADD has
access to services described in SAL Functions on page 78. The SAL also has an interface
with the operating system’s streams subsystem after it is installed as a
STREAMS-based driver.

AIX can use a daemon to hold the controlling stream open.

sal_deq_option The SAL has two modes of operation: interrupt dequeueing and
service dequeueing.

interrupt dequeueing

In this mode, the ADD response handler is called at interrupt time,
running under the RadiSys ARTIC960 adapter device driver’s
off-level interrupt handler’s time. Using this mode implies that the
ADD’s response handler and routines must be permanently resident
in kernel space memory in order to function properly. Set the
variable to SAL_INTERRUPT_DEQ to select this mode.

service dequeueing

In this mode, the application device driver’s response handler is
called at STREAMS service queue time, running under the
operating system’s streams scheduler’s time. This is the default
mode of operation and the associated variable is
SAL_SERVICE_DEQUE.

sal_maxupstr_len The SAL has a default message length for messages flowing
upstream, set into the sal_maxupstr_len variable. The default length is
SAL_MAX_REC_BUFF. (See the saluser.h include file for values.)
The ADD can select a smaller or larger value by changing the value of
the sal_maxupstr_len variable. Because downstream message length
is dictated by the size of the buffer pool registered, it is not necessary
to have a similar parameter for the downstream flow.

sal_ent_name The SAL has a default SCB entity name when it registers its SCB
entity. Providing an alternate SCB entity name enables the ADD to
have two (or more) independent SCB communication pipes
established between the SAL and the RadiSys ARTIC960 adapter
device driver. The maximum length for the SCB entity name is fixed to
MAX_RES_USER (ASCII string).

sal_cardmask The SAL has a default cardmask of 0xFFFFFFFF. Each bit in this
32-bit unsigned long represents the status of cards numbered 0-31 in
the system. A value of 1 indicates a disabled STREAMS environment
on that card. You can use smit to change the value of this variable.
67

RadiSys ARTIC960 STREAMS Environment Reference
 OS/2 Configuration
There is no native streams support for OS/2. The configuration for the ADD would be
specific to the environment within which the ADD operates. The configuration could be
read from configuration files and/or be set by way of specific commands issued to
the ADD.

In the specific case of an OS/2 implementation, the Media Access Control Driver extracts
the port configuration from the file PROTOCOL.INI. This is typically done at boot time.
The file is updated within the Multiple Protocol Transport Services (MPTS) environment.
The Protocol Driver also binds, using the NDIS interface, with the MAC Driver at boot
time. The MAC driver talks with the Protocol Driver by way of the NDIS/ANDIS interface
on its upper layer and talks with the card components, on its lower layer, using the IDC
(OS/2 Inter Driver Communication support) interface. The OS/2 SAL encapsulates the
streams interface within its APIs.

Figure 6-1. AIX Application Device Driver Communication with RadiSys ARTIC960
Adapter Application Device Driver
68

Chapter 6: STREAMS Access Library
Figure 6-2. OS/2 ADD Communication with RadiSys ARTIC960 Device Driver

Figure 6-3. OS/2 ADD (Media Access Control Driver) (Example)
69

RadiSys ARTIC960 STREAMS Environment Reference
Installation of AIX SAL as a STREAMS-based Driver
To install the SAL as a STREAMS-based driver within the operating system streams
subsystem, the ADD must explicitly call the stream installation (str_install) method
provided by the operating system. The installation process registers the SAL’s streamtab
structure within the operating system’s device table in order for user-level processes to
open a stream with the SAL. The ADD has access to the SAL’s streamtab using the
externalized name salmuxinfo (see saluser.h include file). Other installation parameters,
such as the major node number, are directly provided to the ADD’s configuration routine.

Linking the AIX SAL and the ARTIC960 Adapter Stream Driver
The SAL communicates with the RadiSys ARTIC960 adapter stream driver using a
stream. To establish this stream, do the following:

1. Open a clone stream with the RadiSys ARTIC960 adapter device driver.

• The RadiSys ARTIC960 adapter AIX Device Driver installs itself in the AIX
Streams Subsystem using the name se960dd. The application is responsible for
creating the device resource name corresponding to the major number assigned to
this driver by the operating system (usually in the UNIX dev directory).

2. Open a clone or specific stream with the SAL stream driver. The ADD is responsible
for giving a name to the stream extension installed and thus has total control over
retrieving the major number allocated by the system.

3. Link the two streams together, the RadiSys ARTIC960 adapter stream driver being
linked below the SAL. Then a link daemon must keep the link established. After the
link is established, the link daemon cannot use system calls to communicate with the
SAL through the controlling stream. The controlling stream must not be used further.

Windows NT Configuration
The configuration for the ADD would be specific to the environment within which the
ADD operates. The configuration could be read from configuration files, the registry, and/
or be set by way of specific commands issued to the ADD. It is recommended that you do
not use native streams support for Windows NT.
70

7
STREAMS Access
Library Functions Chapter 7
This chapter describes two kinds of functions that are both included as part of the
STREAMS Access Library (SAL) system unit support:

• Stream Functions — Used to open, monitor, transfer data, and close a stream with the
RadiSys ARTIC960 adapter.

• Memory Functions — Used to allocate and free memory for streams data transfer with
the RadiSys ARTIC960 adapter. The same functions are used by the
RadiSys ARTIC960 adapter OSS but are sheltered from the STREAMS-based
module/driver through the On-card Standard Kernel Function’s (SKF) API.

Stream Functions

The following are the Stream functions:

Memory Functions are described beginning on page 92. Each command is described with
its prototype and restrictions.

Memory Functions

The following are the memory functions:

Call Description
s96_canput Queries if the on-card stream is available to receive

non-high priority messages from upstream
s96_close Closes an on-card stream
s96_commstate Queries the status of communication with an adapter
s96_couldput Informs the SAL about a non-high priority message

transmission upstream (flow control)
s96_ioctl Performs an ioctl to the on-card stream
s96_open Opens an on-card stream
s96_send Sends a stream message to the on-card stream

Call Description
s96_bufcall Registers a callback routine called when enough memory

is available in the pool
s96_deregister Deregisters a memory pool
s96_expand Expands the available amount of memory in a pool
s96_free Frees a block of memory
s96_info Retrieves information about a pool
s96_register Registers a memory pool
s96_reorg Reorganizes a memory pool
s96_unbufcall Cancels a pending s96_bufcall request
71

RadiSys ARTIC960 STREAMS Environment Reference
See the memory functions beginning on page Memory Functions on page 92 for a
description of each command with its prototype and restrictions.

Functions Synchronization
Responses can be either immediate or asynchronous.

Immediate

The application synchronization is automatically realized because the application resumes
execution following the call to the function subroutine only after the function has been
completely processed. The final error code is returned when the application resumes
execution. An immediate function does not sleep in the function subroutine.

Asynchronous

The application code continues execution after the call, parallel with the function
processing on the RadiSys ARTIC960 adapter. The process is notified when the function
operation completes by a call to a response handler, defined by the application. The final
error code is returned in the response handler.

The SAL is responsible for the delivery of these responses and calls the application’s
response handler with parameters. These parameters are sufficient to correlate the
response with a previous outstanding request so that the application can mark the request
as completed with the accurate completion code value and any needed arguments.

The user must provide the response handler routine to handle responses from the
RadiSys ARTIC960 STREAMS. A response is typically an incoming stream message
flowing upstream and reaching the SAL. See Response Handler on page 74 for
information on the s96_resphandler function.

For all requests, memory for function parameters is available for reuse as soon as control
is returned to the application code after the SAL call.

Table 7-1 lists all SAL functions.

Table 7-1. SAL Functions

The application device driver (ADD) cannot allocate memory from a memory
pool because the SAL handles the data transfer to/from the system unit and
the RadiSys ARTIC960 adapter.

Immediate requests do not have an acronym defined because there is no
asynchronous response associated with them.

Function Response Code Synchronization Page
Stream Functions
s96_canput N/A immediate 79
s96_close STE_CLOSE asynchronous 80
s96_commstate N/A immediate 81
s96_couldput N/A immediate 82
s96_ioctl STE_PUSH asynchronous 84
72

Chapter 7: STREAMS Access Library Functions
1 See s96_send for details on situations where a response can be provided on
error conditions.

Table 7-2. SAL Responses Received by the Response Handler

s96_ioctl STE_POP asynchronous 84
s96_ioctl STE_LINK asynchronous 84
s96_ioctl STE_UNLINK asynchronous 85
s96_ioctl STE_LOOK asynchronous 85
s96_ioctl STE_FIND asynchronous 86
s96_ioctl STE_LIST asynchronous 86
s96_ioctl STE_SETCLTIME asynchronous 86
s96_ioctl STE_GETCLTIME asynchronous 86
s96_open STE_OPEN asynchronous 87
s96_send STE_XSEND1 immediate 89

Memory Functions
s96_bufcall N/A immediate 92
s96_deregister STE_DEREG asynchronous 94
s96_expand STE_EXPAND asynchronous 96
s96_free N/A immediate 97
s96_info N/A immediate 98
s96_register STE_REGISTER asynchronous 100
s96_reorg STE_REORG asynchronous 101
s96_unbufcall N/A immediate 102

Function Response Code Description Page
N/A STE_XRECEIVE Stream message

received
103

N/A STE_STOPXMIT Stop sending messages
downstream

103

N/A STE_STARTXMIT Restart sending
messages downstream

103

N/A STE_CONNECT Informs on the status of
an adapter

104

Function Response Code Synchronization Page
73

RadiSys ARTIC960 STREAMS Environment Reference
Response Handler
The response handler must be provided by the ADD. The SAL defines the
s96_resphandler function with the following prototype.

Functional Prototype

void s96_resphandler (unsigned long memo,
 unsigned long command,
 unsigned long errcode,
 unsigned long arg1,
 unsigned long arg2,
 unsigned long reserved);

Parameters

memo Memo value related to the on-card stream. This is the memo value given during
an s96_open function by the application device driver. The memo identifies the
on-card stream from where the response originates.

command Function code. Each response recalls the function code (see Table 7-1) and
supported responses are listed in Table 7-2.

errcode Error code number. Possible error codes are listed with each request and
indication commands. For a response, a value of 0 is returned if the request has
been successfully processed. Otherwise, the error number qualifies the error.
For a response, a value of 0 is always returned in this parameter.

arg1/arg2
Response additional information. This information is needed by the device
driver to analyze the response. The data type of arg1/arg2 depends on the
particular response command code value, but it is either an integer (int) or a
pointer to a response-specific information block.

reserved Reserved use by provider. Value is always 0.

Remarks

The response handler is executing under a critical section of code. The application’s
response handler must never sleep. As for other handlers, the receive handler routine
should be kept as short as possible. Otherwise, it may decrease device driver and/or system
performance. If an extensive processing of the response needs to be performed, it may be
necessary to queue the response data and service it at a lower processing level.

All pointer parameters passed to the response handler are valid until the response handler
is returned. A pointer parameter might be saved and reused after the response handler is
returned, unless otherwise instructed in the routine description.
74

Chapter 7: STREAMS Access Library Functions
Programming Notes
In order to separate SAL and ADD variables and functions, the SAL prefixes all its
variables and function names with sal_. The ADD should follow a similar convention to
avoid using the SAL prefix and thereby prevent conflicts with the SAL variables.

Priority Messages
The following list of message types are high-priority messages in the
RadiSys ARTIC960 STREAMS.

Table 7-3. High-priority Messages

Special Considerations: All supported high-priority messages types, except the
M_PCPROTO, are transferred from the system unit to the RadiSys ARTIC960 STREAMS
without using on-card memory. The SAL determines which message type is being sent
and extracts the message’s parameters to initialize an SCB’s entity-to-entity field before
sending the SCB element to the RadiSys ARTIC960 STREAMS.

The M_PCPROTO message type is treated differently because its potential length may not
fit the SCB element’s requirements. The SAL uses an internal high-priority on-card
memory pool to transfer the M_PCPROTO message from the system unit to the
RadiSys ARTIC960 STREAMS. Depending on the condition, the s96_send function
returns the following error codes.

Primitive Origin Direction of Flow Comments
M_COPYIN MD Upstream Not supported.
M_COPYOUT MD Upstream Not supported.
M_ERROR MD Upstream
M_FLUSH WSH / MD Upstream / downstream
M_HANGUP MD Upstream
M_IOCACK MD Upstream
M_IOCDATA WSH Downstream Not supported.
M_IOCNAK MD Upstream
M_PCPROTO WSH / MD Upstream / downstream See note following this

table for special
considerations.

M_PCRSE MD Upstream / downstream Message freed by SAL if
sent downstream; by OSS,
if sent upstream.

M_PCSIG MD Upstream
M_READ WSH Downstream
M_START /
M_STOP

MD Downstream

M_STARTI /
M_STOPI

MD Downstream

Note: MD = module or driver; WSH = Write of the stream head.
75

RadiSys ARTIC960 STREAMS Environment Reference
AL_EAGAINS In the event that the SCB element carrying the
high-priority message cannot be transferred
successfully to the RadiSys ARTIC960 adapter.

ENOMEM If memory cannot be allocated from the high-priority
on-card memory pool.

If either condition occurs, the ADD must queue the high-priority message and retry it.
Queueing the high-priority message in a stream function queue forces the queue to be
serviced. Following this protocol avoids having to have an asynchronous indication trigger
the s96_send function retry.

For transfers of high-priority messages from the RadiSys ARTIC960 STREAMS to the
system unit (including M_PCPROTO), the SAL receives the stream message as it is
originally built by the on-card STREAMS-based module/driver. The message is delivered
to the ADD through the asynchronous response handler, using the STE_XRECEIVE
response code, in the same manner as for other stream messages.

Flow Control
Flow control applies to downstream and upstream message flows.

• The downstream flow is directed from the system unit to the
RadiSys ARTIC960 adapter.

• The upstream flow is directed from the RadiSys ARTIC960 adapter to the system unit.

Flow control is based on a certain number of outstanding low-priority data messages being
exchanged between the RadiSys ARTIC960 adapter and the system unit per stream
opened, as well as for the SCB channel established between those two peers and used to
carry information elements back and forth.

Downstream Flow

The on-card stream receives data messages from the system unit’s stream and uses the
stream’s flow control mechanism before forwarding messages to the next on-card
STREAMS-based module/driver by invoking the canput() SKF API. When the next
STREAMS-based module/driver reaches its high-water mark for its write service queue,
the on-card stream head begins queueing received data messages and servicing them when
it gets back-enabled after the next STREAMS-based module/driverwater mark goes below
its low level. The system unit’s SAL increments the outstanding number of data messages
each time a successful s96_send function is performed by the ADD. This same number is
decremented by the OSS when it can successfully forward the data message to the next
STREAMS-based module/driver.

As OSS is queueing data messages when the next on-card STREAMS-based module/
driver is flow controlled, the number of outstanding data messages reaches its own
high-water mark. (See page 12 for information on the STRSCBQUEUED OSS
parameter.) When this happens, the SAL calls the ADD’s response handler with a
STE_STOPXMIT response code for the stream being flow controlled.

The ADD should stop sending data messages downstream until it is instructed to do so by
receiving a STE_STARTXMIT response code through its response handler for that stream.
Failure of the ADD to comply with this protocol provokes depletion of other resources. In
76

Chapter 7: STREAMS Access Library Functions
the event of an attempt to send other data messages downstream, and if the flow control
condition persists, the SAL issues another STE_STOPXMIT response code for each
attempt. However, the data message will be handled as long as other contributing
resources are available.

The STE_STARTXMIT response code comes from the OSS when, while decrementing
the outstanding number of data message, it finds that the count is now below its low-water
mark and the SAL has issued a STE_STOPXMIT response code to the ADD.

Global Communication Channel Flow

The Global Communication Channel is the SCB pipe established between the SAL and the
OSS. This channel can also get congested during transfer peaks. This channel is not under
control of the ADD, but its state will lead to control all data traffic back and forth between
the RadiSys ARTIC960 adapter and the system unit for all streams.

• When the channel high-water mark is reached (see page 11 for information on the
MAXSCBQUEUED OSS parameter), the ADD gets a STE_STOPXMIT response
code through its response handler as it normally would for stream congestion, and
reacts in the same manner as described in Downstream Flow on page 76.

• When the channel low-water mark is reached again, the SAL gives the ADD an event
indicating the Global Communication Channel is available again. An
STE_CONNECT response code, using subcode S96_COMM_XON, is delivered
through the ADD response handler. The ADD should retry all streams that have been
blocked through a STE_STOPXMIT response code because this S96_COMM_XON
is a global event for all streams.

Upstream Flow

The ADD receives data messages from the OSS through its response handler using the
STE_XRECEIVE response code. The expected STE_XRECEIVE response code
processing is to forward the data message to the next STREAMS-based module/driver or
queue it for further processing. It is not possible for the ADD to refuse a data message
delivered through its response handler. On return from the response handler the SAL
considers the message is being handled by the ADD. The OSS increments the outstanding
number of data messages each time it can successfully send a data message upstream. This
same number is decremented by the ADD when it can successfully forward the data
message to the next STREAMS-based module/driver upstream. As ADD is queueing data
messages when the next STREAMS-based module/driver is flow controlled, the number
of outstanding data messages reach its own high-water mark. (See page 12 for information
on the STRSCBQUEUED parameter.) When this happens, the OSS begins queueing data
messages coming from the STREAMS-based module/driver attached below its stream
head, which in turn provokes this driver to be flow-controlled by the RadiSys ARTIC960
STREAMS flow control mechanism. This situation remains until the OSS receives a
STE_XSTARTXMIT response code.

When the ADD starts emptying its data message queue to forward the message upstream it
has to call the s96_couldput function. This function takes care of decrementing the
number of outstanding data messages for the stream.

The STE_XSTARTXMIT response code comes from the SAL during the s96_couldput
function processing (if, while) decrementing the outstanding number of data messages, it
77

RadiSys ARTIC960 STREAMS Environment Reference
finds that the count is now below its low-water mark and the OSS is currently flow
controlling the on-card stream.

SAL Functions
The SAL’s functions provide the capability for a system unit’s device driver to open,
maintain and close RadiSys ARTIC960 adapter on-card streams.

All function names are prefixed with s96_, which identifies functions directed to the
RadiSys ARTIC960 STREAMS.

Unused bits in parameters should be cleared to 0 for future use.

The Functional Prototype section of each function description includes the type of each
parameter. The following types are defined.

int Signed 32 bits integer

dev_t Unsigned 32 bits integer

mblk_t Stream message block structure

dblk_t Stream data block structure

The Response Description section of each function description has the response code that
indicates which component is responsible for that function’s initialization. The following
naming convention is used.

Any output response code parameter should be saved by the application process/device
driver as it may be requested in other functions as input.

For asynchronous functions, the request’s return is relevant to the SAL’s ability to
successfully handle and transmit the request to the RadiSys ARTIC960 adapter. Therefore
the final return code, delivered when the request has been completely handled by the
RadiSys ARTIC960 adapter, is known when the response handler is called.

Value Parameter Loaded By
input Application process/device driver
output SAL and/or OSS subroutines

If a non-zero error code is returned at the time of the request, it is assumed
that the request has failed and that no further asynchronous response is
delivered for this particular request.
78

Chapter 7: STREAMS Access Library Functions
Stream Functions
The following sections describe each stream function with its prototype and restrictions.

s96_canput

Queries if an on-card stream is available for messages to be received.

Functional Prototype

unsigned long s96_canput (unsigned long sd,
 unsigned long reserved);

Parameters

sd Input. On-card stream’s descriptor. This is the descriptor obtained from a
successful s96_open function.

reserved Input. Reserved use by provider. Value must be 0.

Returns

Output. If the stream is available, a value of 1 is returned. Otherwise, a value of 0
is returned.

Remarks

The s96_canput function determines if the on-card stream is available to receive more
non-high-priority messages.
79

RadiSys ARTIC960 STREAMS Environment Reference
s96_close

Closes an on-card stream access if other accesses remain after this close.

The last close for the on-card stream causes the stream associated with sd to be
dismantled. If there are data on the modules’ write queue, the close operation waits up to
15 seconds per module/driver for any output to drain before dismantling the stream. The
time delay can be changed using a STE_SETCLTIME s96_ioctl function.

Functional Prototype

unsigned long s96_close (unsigned long sd,
 unsigned long reserved);

Parameters

sd Input. On-card stream’s descriptor. This is the descriptor obtained from a
successful s96_open function.

reserved Input. Reserved use by provider. Value must be 0.

Returns

Output. On successful handling of the request, a value of 0 is returned. An error code other
than 0 indicates the error.

Error Codes

The stream access associated with the descriptor is closed unless one or more of the
following error codes are true.

SAL_EBADF The on-card stream’s descriptor (sd) is not a valid
open stream descriptor.

SAL_EINTR A signal was caught during the close operation.

SAL_EAGAIN Temporarily unable to send the request to the
RadiSys ARTIC960 adapter.

SAL_ENOCONNECT Unable to communicate with the RadiSys ARTIC960
STREAMS.

Response Description

The command parameter is set to STE_CLOSE. Both arguments, arg1 and arg2, are 0.
80

Chapter 7: STREAMS Access Library Functions
s96_commstate

Queries or changes the status of communication with an RadiSys ARTIC960 STREAMS.

Functional Prototype

unsigned long s96_commstate (int cardnum,
 unsigned long *commstate);

Parameters

cardnum Input. The logical RadiSys ARTIC960 adapter number. Valid adapter numbers
range from 0–15.

commstate
Input/output. Pointer to the adapter communication status returned or new
communication state to set. The following value can be used.

S96_COMM_QUERY
Input. Queries the status of the RadiSys ARTIC960 adapter
number specified by cardnum regarding communication with the
RadiSys ARTIC960 STREAMS. On return, the commstate
parameter is being updated by the current status. See page 73
(STE_CONNECT) for details on S96_COMM_UP and
S96_COMM_DOWN states. No asynchronous response is
provided after the call is returned.

Returns

Output. On successful handling of the request, a value of 0 is returned. An error code other
than 0 indicates the error.

Error Codes

The function succeeds unless the following error code is true.

SAL_EINVAL Invalid parameter specified.

Remarks

None
81

RadiSys ARTIC960 STREAMS Environment Reference
s96_couldput

Informs the SAL about a successful non-high-priority message transmission upstream.

Functional Prototype

unsigned long s96_couldput (unsigned long sd,
 unsigned long reserved);

Parameters

sd Input. On-card stream’s descriptor. This is the descriptor obtained from a
successful s96_open function.

reserved Input. Reserved use by provider. Value must be 0.

Returns

Output. If the stream is available to receive messages, then on successful handling of the
request, a value of 0 is returned. An error code other than 0 indicates the error.

Error Codes

The function succeeds unless one or more of the following error codes are true:

SAL_EINVAL Invalid parameter specified.

SAL_EBADF The on-card stream’s descriptor (sd) is not a valid
open stream descriptor.

SAL_ENOCONNECT Unable to communicate with the
RadiSys ARTIC960 STREAMS.

SAL_ENXIO I/O error.

Remarks

The s96_couldput function must be called by the ADD when it can successfully forward a
stream message received from its s96_resphandler function with the STE_XRECEIVE
response code.

For maximum flow control efficiency, the ADD should call the s96_couldput function at
the same time it passes the stream message to the next STREAMS-based module/driver
upstream, especially if the ADD has some means of internally queueing stream messages.

Only non-high-priority data messages are considered for flow control. Thus,
the ADD should check the first data block’s db_type field to make sure it is a
low-priority data message (value lower than QPCTL). It should then call the
s96_couldput function, giving the on-card stream descriptor (sd) for the
appropriate stream.

Only non-high-priority data messages are considered by flow control. The
s96_couldput function should be called only once for those non-high-priority
data messages.
82

Chapter 7: STREAMS Access Library Functions
s96_ioctl

Performs an ioctl on an on-card stream.

Functional Prototype

unsigned long s96_ioctl (unsigned long sd,
 unsigned long iocmd,
 unsigned long arg,
 unsigned long reserved);

Parameters

sd Input. On-card stream’s descriptor. This is the descriptor obtained from a
successful s96_open function.

iocmd Input. Ioctl request value. Currently supported ioctls are :

STE_PUSH Pushes a module to the top of the on-card stream. See
page 84 for more information.

STE_POP Removes a module from the top of the on-card
stream. See page 84 for more information.

STE_LINK Links two on-card streams. See page 84 for
more information.

STE_UNLINK Unlinks two on-card streams. See page 84 for
more information.

STE_LOOK Retrieves the name of the topmost module present on
the on-card stream. See page 84 for more information.

STE_FIND Checks if a specific module name is present on the
on-card stream. See page 84 for more information.

STE_LIST Lists all module names on the on-card stream. See
page 84 for more information.

STE_SETCLTIME Sets the closing time delay allowing write queues to
drain. See page 84 for more information.

STE_GETCLTIME Returns the closing time delay.

arg Input. Ioctl additional information. This information is needed by the device to
perform the requested function. The data type of arg depends on the particular
request value, but it is either an integer or a pointer to a request-specific
information block.

reserved Input. Reserved use by provider. Value must be 0.

Returns

Output. On successful handling of the request, a value of 0 is returned. An error code other
than 0 indicates the error.
83

RadiSys ARTIC960 STREAMS Environment Reference
Error Codes

The ioctl succeeds unless one or more of the following error codes are true or one or more
of the request-specific error codes are true.

SAL_EBADF The on-card stream’s descriptor is not a valid open
stream descriptor.

SAL_EINTR A signal was caught during the ioctl operation.

SAL_ENXIO Hangup received from the on-card stream.

SAL_EAGAIN Temporarily unable to send the request to the
RadiSys ARTIC960 adapter.

SAL_ENOCONNECT Unable to communicate with the
RadiSys ARTIC960 STREAMS.

Remarks

All incoming ioctls already formatted as messages (M_IOCTL), and not trapped by the
ADD, can be forwarded to the on-card stream using the s96_send function. They are then
transported transparently to the target on-card STREAMS-based module/driver without
being interpreted by the RadiSys ARTIC960 STREAMS.

The following sections describe each supported ioctl. Request-specific error codes are
valid for both the request and response phases.

Table 7-4. Descriptions of Supported s96_ioctl Commands

Description Response Description Error Codes

STE_PUSH ioctl

Pushes a STREAMS-based module,
whose name is pointed to by the arg
parameter, onto the top of the on-card
stream. It then calls the queue open
routine of the newly-pushed module.

The maximum length for a module
name (ASCII termination excluded) is
set to FMNAMESZ.

The command parameter is set to
STE_PUSH. Both arguments, arg1
and arg2, are 0.

SAL_EINVAL

Incorrect module name.

SAL_EFAULT

The arg parameter points
outside the allocated address
space.

SAL_ENXIO

The open routine of the new
module failed.

STE_POP ioctl

Removes a STREAMS-based module
previously pushed from the top of the
on-card stream. The value of the arg
parameter should be 0.

The command parameter is set to
STE_POP. Both arguments, arg1
and arg2, are 0.

SAL_EINVAL

No module is present in the
on-card stream.

STE_LINK ioctl
84

Chapter 7: STREAMS Access Library Functions
The _stelink structure contains the
following parameters.

unsigned long l_sdbot;
int l_index;

l_sdbot

The on-card stream descriptor (sd)
of the stream connected to another
on-card STREAMS-based driver.
The stream designated in this
parameter gets connected below
the multiplexing driver.

l_index

The link index to assign to this link.
If a link index value of 0 is passed, a
link index is assigned by the OSS
and propagated to the on-card
STREAMS multiplexer driver.

The command parameter is set to
STE_LINK.

The arg1 parameter contains the
multiplexer ID number (an identifier
used to disconnect the multiplexer).
(See the following STE_UNLINK
ioctl.) The arg2 parameter is 0.

SAL_ETIME

Time-out before
acknowledgment message
received.

SAL_EAGAIN

Temporarily unable to
allocate storage to perform
the operation.

SAL_ENOSR

Unable to allocate storage to
perform the operation
because of insufficient OSS
memory resources.

SAL_EBADF

The arg on-card stream’s
descriptor (sd) is not a valid
open stream descriptor.

SAL_EINVAL

The specified link operation
would cause a cycle in the
resulting configuration.

STE_UNLINK

Unlinks two on-card streams, where
sd is the on-card stream descriptor of
the stream connected to the
multiplexing driver, and the arg
parameter is the multiplexer ID
number that was returned by the
STE_LINK operation. If the value of
the arg parameter is –1, all on-card
streams that were linked to the sd
on-card stream are disconnected.

STE_UNLINK must be used to break
links established using the STE_LINK
ioctl.

The command parameter is set to
STE_UNLINK. Both arguments,
arg1 and arg2, are 0.

SAL_ETIME

Time-out before
acknowledgment message
received.

SAL_ENOSR

Unable to allocate storage to
perform the operation
because of insufficient OSS
memory resources.

SAL_EINVAL

One of the following:

• The arg parameter is an
invalid multiplexer ID number

• The sd descriptor is not the
on-card stream on which the
STE_LINK operation that
returned the arg value was
performed.

STE_LOOK

Description Response Description Error Codes
85

RadiSys ARTIC960 STREAMS Environment Reference
Retrieves the name of the module
located at the top of the on-card
stream. The arg parameter should be
set to 0.

The command parameter is set to
STE_LOOK.

The arg1 parameter is a pointer to a
null-terminated string containing the
module name retrieved. The arg2
parameter is 0.

SAL_EINVAL

No module is present in the
on-card stream.

STE_FIND

Checks if a specific module name is
present on the on-card stream.

Checks the names of all modules
currently present on the on-card
stream against the name pointed to by
the arg parameter. The name pointed
to by arg should be an
ASCII-terminated string.

The command parameter is set to
STE_FIND.

Depending on whether the named
module is present in the on-card
stream, the arg1 parameter is set as
follows:

• 1—if present

• 0—if not present.

The arg2 parameter is 0.

SAL_EFAULT

The arg parameter points
outside the allocated address
space.

SAL_EINVAL

The arg parameter does not
contain a valid module name.

STE_LIST

Lists all the module names present in
the on-card stream. If the value of the
arg parameter is null, only the number
of modules present in the on-card
stream are returned. If the arg
parameter contains the number of
entries to list, the list of modules is
returned.

The command parameter is set to
STE_LIST.

If the request contained a null arg,
the arg1 parameter is a value
indicating the number of modules
present on the on-card stream and
the arg2 parameter is set to null.
Otherwise, the arg1 parameter
indicates the number of modules
listed and arg2 points to an area
containing arg1 number of str_mlist
structures contiguous in memory.

The str_mlist structure contains the
following parameter.

char
modname[FMNAMESZ+1];

SAL_EAGAIN

Unable to allocate buffers.

STE_SETCLTIME

Sets the closing time delay allowing
write queues to drain. Before closing
each module and driver, the OSS
delays closing for the specified length
of time to allow the data to drain
normally. Any data left after the delay
is flushed.

The arg parameter contains the
number of milliseconds to delay. The
value is rounded up to the next
multiple of 10 milliseconds. By default,
the time delay is set to 15 seconds.

The command parameter is set to
STE_SETCLTIME. Both arguments,
arg1 and arg2, are 0.

SAL_EINVAL

The time value in the arg
parameter is invalid.

STE_GETCLTIME

Description Response Description Error Codes
86

Chapter 7: STREAMS Access Library Functions
s96_open

Opens an on-card stream access.

Opens a stream to a device (devname) located on the RadiSys ARTIC960 adapter number
(cardnum). If a cloned stream is requested, the stream flag is set to CLONEOPEN.
Otherwise, the minor portion of the device number (devno) specifies the specific device
resource to open.

Functional Prototype

unsigned long s96_open (int cardnum,
 char *devname,
 dev_t *devno,
 int sflag,
 unsigned long memo,
 unsigned long reserved);

Parameters

cardnum Input. The logical RadiSys ARTIC960 adapter number where the device is
defined. Valid adapter numbers range from 0–15.

devname Input. Pointer to the device name to open (ASCII string). This is a device name
defined by the device resource configuration process, for whom the system
unit device resource configuration process has assigned a major node number.
The RadiSys ARTIC960 adapter also needs to have this specific device name
configured in its device table. The function fails if the specified device name
cannot be found in the target RadiSys ARTIC960 adapter’s number.

devno Input. Pointer to the major/minor node number.

On input, only the minor portion of the device number is significant and holds
the minor node number of the device resource to open. The minor number
value is not significant if a CLONEOPEN is requested. (See the sflag
parameter description.) The minor number, if not CLONEOPEN, is
transparently forwarded by the RadiSys ARTIC960 STREAMS to the on-card
STREAMS-based driver’s queue open routine during the driver open
sequence.

sflag Input. Stream’s flags. The following flags are supported.

Returns the closing time delay, in
milliseconds, when an on-card stream
is closing.

The command parameter is set to
STE_GETCLTIME.

The arg1 parameter contains the
returned time delay in milliseconds.
The arg2 parameter is 0.

No specific error code defined.

The maximum length for a device name (ASCII termination excluded)
is set to FMNAMESZ (defined in the C language support include file).

Macros like makedev, major, and minor ease the manipulation and
construction of the device number.

Description Response Description Error Codes
87

RadiSys ARTIC960 STREAMS Environment Reference
0x00
Normal driver open. The minor node number specified in the
devno field is significant.

0x2 (CLONEOPEN)
Clone driver open. The minor node number specified in the devno
field is not significant on input. However, it is initialized before
returning to the caller with the device resource’s card minor node
number assigned by the On-card STREAMS-based driver.

memo Input. Correlation value. This value is provided during asynchronous
notification of events. The content of this variable is implementation defined,
but is primarily intended as a pointer or an index that would aid the device
driver in locating instance-specific information.

reserved Input. Reserved use by provider. Value must be 0.

Returns

Output. On successful handling of the request, a value of 0 is returned. An error code other
than 0 indicates the error.

Error Codes

The device resource specified is opened unless one or more of the following error codes
is true.

Remarks

The usual open flags O_NDELAY, O_NONBLOCK, O_RDONLY, O_WRONLY,
O_RDWR are not applicable in the open operation. However, by default, the on-card
stream is opened with O_NDELAY reset and O_RDWR set.

The effective user ID (uid) and group ID (gid) are both set to (0,0) when passed to the
RadiSys ARTIC960 STREAMS driver’s queue open routine.

SAL_EINVAL Invalid RadiSys ARTIC960 adapter
number specified.

SAL_ENAMETOOLONG The length of the device name argument exceeds
(FMNAMESZ) bytes.

SAL_EAGAIN Temporarily unable to send the request to the
RadiSys ARTIC960 adapter.

SAL_EMFILE The process has too many open files.
SAL_ENXIO An on-card STREAMS-based module or driver open

routine failed.
SAL_ENXIO The specified stream resource is already opened.
SAL_ENOSR Unable to allocate a stream.
SAL_ENOCONNECT Unable to communicate with the

RadiSys ARTIC960 STREAMS.
SAL_ENOMEM Not enough RadiSys ARTIC960 adapter

memory available.
SAL_ENOENT Device name not found.
SAL_EBUSY Device is in the closing state.
88

Chapter 7: STREAMS Access Library Functions
Response Description

The command parameter is set to STE_OPEN.

On successful completion, the arg1 parameter is the on-card stream’s descriptor (sd) value
for the opened on-card stream. This stream descriptor must be used whenever a
subsequent command applies to this on-card stream.

The arg2 parameter is a pointer to the adapter device number (major/minor node number)
corresponding to the device resource opened. The device number is a dev_t structure,
where the major portion holds the adapter major node number corresponding to the device
name specified in the request, and the minor portion holds the card minor node number
assigned by the on-card STREAMS-based driver if the request specified a clone open.

s96_send

Sends a stream message to an on-card stream’s segment.

Sends a message, pointed to by mp, to an on-card stream. The message must be formatted
according to the system unit’s operating system stream environment version. The
application is responsible for freeing any of the memory pointed to by mp. On successful
completion of the send request, the message is considered sent, giving the application the
opportunity to free the memory associated with the message as soon as the function
is returned..

Functional Prototype

unsigned long s96_send (unsigned long sd,
 unsigned long ehandle,
 mblk_t *mp,
 void **adp,
 unsigned long reserved);

Parameters

sd Input. On-card stream’s descriptor. This is the descriptor obtained from a
successful s96_open function.

ehandle Input. Entity’s on-card memory pool handle. This is the handle obtained from
a successful s96_register function.

mp Input. Pointer to the operating system’s stream message block structure. This
is a pointer to the stream message block structure (mblk_t), which contains a
pointer to the data block structure (dblk_t).

adp Input/output. Address of an additional data parameter returned, depending on
the return code value.

• When the SAL_EAGAIN return code is returned, on output, the adp
pointer value is initialized with the address of the on-card message. The
ADD should save the adp pointer value to provide it as input when the
send operation is retried later. Using this feature optimizes performance
by not reallocating on-card memory each time a send operation is retried

This is an immediate function; no further response is generated after the call
is returned.
89

RadiSys ARTIC960 STREAMS Environment Reference
because of a SCB-pipe-full condition. Instead, the on-card memory is held
as long as the ADD does not perform a specific s96_free function on the
on-card memory held, using this pointer value. (The value is a flat
RadiSys ARTIC960 adapter address.)

• When the SAL_ENOMEM return code is returned, on output, the adp
pointer value is initialized with the amount of data (in bytes) required to
perform the on-card memory allocation. This value serves as input to the
s96_bufcall function.

• On input, if the adp pointer value is not NULL, it is used as the on-card
memory location where the data block and buffer reside. The value
provided as input should be the one previously returned from a send
operation regarding the same message. (See s96_free for more
information.)

reserved Input. Reserved use by provider. Value must be 0.

Returns

Output. On successful handling of the request, a value of 0 is returned. An error code other
than 0 indicates the error.

Error Codes

The stream message is sent unless one or more of the following error codes are true.

Remarks

The mblk_t and dblk_t structures are UNIX SVR3/4 streams structures. However, each
operating system stream environment has its own set of internal reserved fields in these
structures. The SAL is built to correspond with the system unit’s operating system type
and version. Any change (upgrade) to the system unit’s operating system type and/or
version that would result in a change to the mblk_t or dblk_t structures format, may
require a change (upgrade) to the SAL version handling these new formats.

The RadiSys ARTIC960 STREAMS does not support queue banding. Only normal- and
high-priority messages are handled. If a message with a priority band greater than 0 is sent
to the RadiSys ARTIC960 STREAMS, the message priority is forced to 0 (normal) before

SAL_EBADF The on-card stream’s descriptor (sd) is not a valid open stream
descriptor.

SAL_EINVAL The entity’s on-card memory pool handle is invalid.
SAL_EFAULT Invalid message pointer (mp).
SAL_ENOMEM Not enough memory in the entity’s on-card memory pool

specified.
SAL_EAGAIN Temporarily unable to send the request to the

RadiSys ARTIC960 adapter.
SAL_ENOCONNECT Unable to communicate with the

RadiSys ARTIC960 STREAMS.
SAL_ENXIO The total message’s length exceeds the maximum on-card

memory buffer capacity. (See s96_register for more
information.)
90

Chapter 7: STREAMS Access Library Functions
it is processed by the RadiSys ARTIC960 adapter STREAMS-based module/driver.
Therefore, upstream messages originating from the RadiSys ARTIC960 STREAMS are
either normal or high-priority messages only, and the db_band field value is set to 0 in
both cases.

The ADD can alter the message priority before it forwards the message to the next
upstream module/driver by changing the db_band field value if desired..

Response Description

The command parameter is set to STE_XSEND.

A response is generated only if the send operation fails in the RadiSys ARTIC960 adapter.

If the SAL_EBADF error code is returned, the memo is set to the invalid on-card stream’s
descriptor (sd) passed during the s96_send() function call. Both arguments (arg1 and
arg2) are 0..

If the message type (db_type field) is an ioctl (M_IOCTL), the ioctl command
(ioc_cmd field) values ranging from 0x5300 to 0x53FF are
RadiSys ARTIC960 adapter reserved values that should not be used by the
ADD logic.

ADF stands for Adapter Description File.
91

RadiSys ARTIC960 STREAMS Environment Reference
Memory Functions
The following sections describe each memory function with its prototype and restrictions.

s96_bufcall

Registers a function to be called when a certain amount of bytes is available in the on-card
memory pool.

The function cfunc is registered and called back when at least csize bytes are available
for allocation in the pool. The function is called with cparm as the argument.

Functional Prototype

unsigned long s96_bufcall (unsigned long handle,
 unsigned long csize,
 b_callfunc cfunc,
 unsigned long cparm,
 unsigned long reserved);

Parameters

handle Input. On-card memory pool handle. The on-card memory pool handle
returned during an STE_REGISTER successful response. (See s96_register)

csize Input. Number of bytes to be available in the on-card memory pool for the
bufcall to mature (that is, the callback function is called). The number of bytes
cannot exceed the size of the registered maximum data buffer size for the pool.

cfunc Input. User callback function called when the bufcall matures (that is, the
callback function is called). The routine pointer must be a system unit address.

cparm Input. Parameter to pass to the cfunc user callback function when called.

reserved Input. Reserved use by provider. Value must be 0.

Returns

Output. On successful handling of the request, a value of 0 is returned. An error code other
than 0 indicates the error.

Error Codes

The bufcall is registered and pending, unless one or more of the following error codes
92

Chapter 7: STREAMS Access Library Functions
is true:

Remarks

Only one outstanding bufcall SKF API can be pending at a time for the same on-card
memory pool. If the s96_bufcall function is performed before a previous bufcall SKF API
request is completed, the information from the new request is used to override the pending
bufcall SKF API request.

To cancel an existing bufcall request, use the s96_unbufcall function.

The SMI_TRYALLOC is generated to account for the asynchronous nature of frees and
allocations because the two are done concurrently from different units. Consider the
following situation.

When a user memory allocation fails, perhaps because of the pool’s memory shortage,
the user calls the s96_bufcall function to wait until memory is available again. But
during the time the failed allocation was tried and the s96_bufcall function call was
made, the other unit could have freed some buffers. There is the possibility that the
allocation would succeed now. In that case, the SMI_TRYALLOC code is returned
and the user is expected to retry its allocation. The RadiSys ARTIC960 STREAMS
keeps track of frees between each attempt at setting a bufcall and returns this error
code every time. So the loop of allocate-fail-bufcall is broken when either the
allocation succeeds, or the s96_bufcall succeeds. The scenario is depicted in Figure
7-1.

SMI_INVHANDLE Invalid on-card memory pool handle.
SAL_ENOCONNECT Unable to communicate with the

RadiSys ARTIC960 STREAMS.
SAL_EINVAL Invalid reserved parameter value.
SMI_INVPARM Invalid csize specified.

Invalid cfunc pointer specified.
SMI_TRYLATER Temporarily unable to send the request to the

RadiSys ARTIC960 adapter.
SMI_TRYALLOC This return code is an information code indicating that the

RadiSys ARTIC960 STREAMS user should retry allocating
a buffer from the pool because the RadiSys ARTIC960
STREAMS has detected some additional free memory.
The bufcall request was not registered. s96_bufcall
function must be called again.
93

RadiSys ARTIC960 STREAMS Environment Reference

Response Description

There is no response associated with this request.

s96_deregister

Deregisters a previously registered on-card memory pool located on the
RadiSys ARTIC960 adapter.

Functional Prototype

unsigned long s96_deregister (unsigned long handle,
 unsigned long reserved);

Parameters

handle Input. On-card memory pool handle. The memory pool handle returned during
an STE_REGISTER successful response. (See s96_register)

reserved Input. Reserved use by provider. Value must be 0.

Figure 7-1. Downstream Flow — SMI_TRYALLOC Situations
94

Chapter 7: STREAMS Access Library Functions
Returns

Output. On successful handling of the request, a value of 0 is returned. An error code other
than 0 indicates the error.

Error Codes

The memory pool is deregistered unless one or more of the following error codes are true:

SMI_INVHANDLE Invalid on-card memory pool handle.

SAL_ENOCONNECT Unable to communicate with the
RadiSys ARTIC960 STREAMS.

SAL_EINVAL Invalid reserved parameter value.

Remarks

The s96_deregister function schedules the deallocation of the on-card memory pool when
none of the memory from that pool is in use. The caller can then use only the s96_free
function to release the memory in use. (See s96_free for more information.)

Response Description

The command parameter is set to STE_DEREG.

The arg1 and arg2 parameters are set to 0.
95

RadiSys ARTIC960 STREAMS Environment Reference
s96_expand

Expands the size of an on-card memory pool.

Expands the available amount of bytes in an on-card memory pool with the amount of
bytes specified in rsize, or up to the maximum pool size, whichever is reached first.

Functional Prototype

unsigned long s96_expand (unsigned long handle,
 unsigned long rsize,
 unsigned long reserved);

Parameters

handle Input. The on-card memory pool handle returned during an STE_REGISTER
successful response. (See s96_register.)

rsize Input. Amount of bytes to add in the pool.

reserved Input. Reserved use by provider. Value must be 0.

Returns

Output. On successful handling of the request, a value of 0 is returned. An error code other
than 0 indicates the error.

Error Codes

The on-card memory pool is expanded unless one or more of the following error codes
are true:

Remarks

The s96_expand function checks that the pool did not reach its programmed maximum
size before expanding it.

The extra allocated size is always rounded up to the next maximum data buffer size
specified during a s96_register function.

Response Description

The command parameter is set to STE_EXPAND.

On successful completion, the arg1 parameter is set to the actual amount of bytes added to
the pool. Usually this should be the same amount as specified in the rsize request
parameter, but the following exceptions may apply.

SMI_INVHANDLE Invalid on-card memory pool handle.
SAL_ENOCONNECT Unable to communicate with the

RadiSys ARTIC960 STREAMS.
SAL_EINVAL Invalid reserved parameter value.
SMI_MAXSIZE The pool has reached its maximum size; it cannot expand.
SMI_OUTOFRESOURCE Not enough RadiSys ARTIC960 adapter

memory available.
96

Chapter 7: STREAMS Access Library Functions
• An arg1 value of 0, with the return code SMI_MAXSIZE, signifies that the pool has
reached its maximum size and cannot be further expanded.

• If rsize specified a size that makes the total pool size greater than its maximum size,
the amount of bytes added is reduced to fit the maximum pool size and the arg1
parameter gives the reduced amount added..

• If the request specified a size less than the maximum data buffer size, the size
allocated is rounded up to the next maximum data buffer size value.

The arg2 parameter is set to 0.

s96_free

Frees an allocated on-card memory pool area.

The SAL users usually do not need to free memory from messages allocated out of the
on-card memory pool handle they specify during a s96_send function because the SAL is
managing it during the send operation. However, when the s96_send function fails with
error code SAL_EAGAIN, the SAL might have allocated the stream message memory out
of the on-card memory pool and given the flat RadiSys ARTIC960 adapter memory
pointer back to the user. The s96_free function can be used to specifically free the on-card
stream message if the user does not want to keep the allocation in between retries.

Functional Prototype

unsigned long s96_free (unsigned long handle,
 void *ptr);

Parameters

handle Input. On-card memory pool handle. The memory pool handle returned during
an STE_REGISTER successful response (see s96_register).

ptr Input. Flat RadiSys ARTIC960 adapter pointer onto the memory area to free.

Returns

Output. On successful handling of the request, a value of 0 is returned. An error code other
than 0 indicates the error.

Error Codes

The memory is freed unless one or more of the following error codes are true:

SMI_INVHANDLE Invalid on-card memory pool handle.

SAL_ENOCONNECT Unable to communicate with the
RadiSys ARTIC960 STREAMS.

Remarks

There is no control on memory ownership in order to free the on-card memory area. If the
ptr is NULL or the handle addresses an adapter that has been reset since the on-card

Because the rsize is rounded up to the maximum data buffer size, the amount
may have increased the total pool size beyond its maximum size.
97

RadiSys ARTIC960 STREAMS Environment Reference
memory pool was created, the function returns SMI_SUCCESS but no action
is performed..

Response Description

There is no response associated with this request.

s96_info

Queries information about an on-card memory pool.

Functional Prototype

unsigned long s96_info (unsigned long handle,
 struct CBMS_info *bptr,
 unsigned long reserved);

Parameters

handle Input. On-card memory pool handle. The on-card memory pool handle
returned during an STE_REGISTER successful response (see s96_register).

bptr Input. Information Data Buffer pointer. This is the pointer on the first byte of
information data copied. The information data buffer is structured as:

struct CBMS_info {
 unsigned long msize;
 unsigned long csize;
 unsigned long cfree;
};

where:

msize Output. Maximum size, in bytes, of the on-card memory pool.
This is the maximum amount to which the pool may expand. See
s96_register for more details. This number may not be exactly the
same as the one on the s96_register function because the
RadiSys ARTIC960 STREAMS may do some rounding to
facilitate internal processing. Regardless, it will never be less than
the msize set in s96_register function.

csize Output. Current size, in bytes, of the on-card memory pool. This
value gets updated as the pool gets expanded or reorganized. This
value can never exceed the msize. The difference between these
numbers (msize – csize) is the amount the pool may be expanded.
(See rsize parameter description at s96_expand.)

cfree Output. Current number of bytes currently free in the on-card
memory pool. This value gets updated as the pool gets expanded
or reorganized. It is also updated whenever allocations and frees
are done from the pool. There is no guarantee that an allocation of
this cfree size will succeed as free memory might be scattered. The
success of any allocation depends on these key factors:

Unpredictable results may occur in certain circumstances while freeing the
same location twice.
98

Chapter 7: STREAMS Access Library Functions
• Fragmentation of the on-card memory pool.

• In any case the maximum size of an allocation never exceeds
the size of the maximum data buffer lengths. But this number
may be greater than the flblen size requested in s96_register
function call.

• As with any memory management scheme, there is a small
fixed overhead per allocation (8 bytes). Even if only one byte
is requested, a larger amount of memory gets subtracted from
this amount.

reserved Input. Reserved use by provider. Value must be 0.

Returns

Output. On successful handling of the request, a value of 0 is returned. An error code other
than 0 indicates the error.

Error Codes

The information is returned regarding the memory pool unless one or more of the
following error codes are true:

SMI_INVHANDLE Invalid on-card memory pool handle.

SAL_ENOCONNECT Unable to communicate with the
RadiSys ARTIC960 STREAMS.

SAL_EINVAL Invalid reserved parameter value.

SAL_EFAULT The bptr pointer is invalid.

Remarks

None.

Response Description

There is no response associated with this request.
99

RadiSys ARTIC960 STREAMS Environment Reference
s96_register

Registers a shared memory pool on the RadiSys ARTIC960 adapter.

Messages sent by the s96_send are stored in the memory pool. Before s96_send is called,
the shared memory must be expanded using the s96_expand function call.

Functional Prototype

unsigned long s96_register (int cardnum,
 unsigned long msize,
 unsigned long flblen,
 unsigned long memo,
 unsigned long reserved);

Parameters

cardnum Input. The logical RadiSys ARTIC960 adapter number where to register the
shared memory pool. Valid adapter numbers range from 0–15.

msize Input. Maximum pool size (in bytes). The pool can expand to the size specified
by this parameter.

flblen Input. Maximum data buffer size (in bytes). This parameter:

• Determines the maximum length a buffer can have for downstream
data transmission.

• May be rounded upward to facilitate its internal processing.

• Determines the multiple by which the pool will grow while performing a
s96_expand function call. If a value of 0 is passed, a default value, equal
to the OSS’s MAXBLOCKLEN parameter value, is set for the pool. (See
page 10 for a description of the MAXBLOCKLEN parameter.)

memo Input. Correlation value. This value is provided during asynchronous
notification of memory responses’ events. The content of this variable is
implementation defined, but is primarily intended as a pointer or an index that
would aid the device driver in locating instance-specific information.

reserved Input. Reserved use by provider. Value must be 0.

Returns

Output. On successful handling of the request, a value of 0 is returned. An error code other
than 0 indicates the error.

Error Codes

The shared memory pool is registered unless one or more of the following error codes
are true:

SMI_INVPARM Invalid parameters.

SMI_OUTOFRESOURCE Not enough RadiSys ARTIC960 adapter
memory available.

SAL_ENOCONNECT Unable to communicate with the
RadiSys ARTIC960 STREAMS.
100

Chapter 7: STREAMS Access Library Functions
SMI_TRYLATER Temporarily unable to send the request to the
RadiSys ARTIC960 adapter.

Remarks

The shared memory pool must be registered before any other memory function can
be performed.

More than one shared memory pool is allowed.

Response Description

The command parameter is set to STE_REGISTER.

On successful completion, the arg1 parameter is the shared memory pool handle for the
new pool registered. This handle must be used whenever a subsequent command applies to
this memory pool. The arg2 parameter is 0.

s96_reorg

Reorganizes the on-card memory pool.

When the on-card memory pool has been extensively used, especially performing small
allocations and frees, the RadiSys ARTIC960 STREAMS’s scan for a suited data buffer
within the maximum data buffer pool may take longer. Reorganizing the pool speeds up
the process.

Functional Prototype

unsigned long s96_reorg (unsigned long handle,
 unsigned long action,
 unsigned long reserved);

Parameters

handle Input. On-card memory pool handle. The memory pool handle returned during
an STE_REGISTER successful response (see s96_deregister).

action Input. Optional selective actions performed by the RadiSys ARTIC960
STREAMS if requested by the caller.

• RET_AVAIL

Instructs the RadiSys ARTIC960 STREAMS to deallocate any on-card
memory pool eligible for deallocation. An eligible on-card memory pool
is one with no outstanding suballocation. The remaining on-card memory
pool is then re-ordered to increase chances for a successful allocation.

reserved Input. Reserved use by provider. Value must be 0.

Returns

Output. On successful handling of the request, a value of 0 is returned. An error code other
than 0 indicates the error.
101

RadiSys ARTIC960 STREAMS Environment Reference
Error Codes

The on-card memory pool is expanded unless one or more of the following error codes
are true:

SMI_INVHANDLE Invalid on-card memory pool handle.

SAL_ENOCONNECT Unable to communicate with the
RadiSys ARTIC960 STREAMS.

SAL_EINVAL Invalid reserved parameter value.

SMI_INVPARAM Invalid action bits specified.

Remarks

None.

Response Description

The command parameter is set to STE_REORG.

The arg1 and arg2 parameters are set to 0.

s96_unbufcall

Deactivates a previous bufcall request.

The last successful s96_bufcall request is canceled.

Functional Prototype

unsigned long s96_unbufcall (unsigned long handle,
 unsigned long reserved);

Parameters

handle Input. The on-card memory pool handle returned during an STE_REGISTER
successful response. (See s96_register.)

reserved Input. Reserved use by provider. Value must be 0.

Returns

Output. On successful handling of the request, a value of 0 is returned. An error code other
than 0 indicates the error.

Error Codes

The bufcall is deregistered and pending unless one or more of the following error codes
are true:

SMI_INVHANDLE Invalid on-card memory pool handle.

SAL_ENOCONNECT Unable to communicate with the
RadiSys ARTIC960 STREAMS.
102

Chapter 7: STREAMS Access Library Functions
SAL_EINVAL Invalid reserved parameter value.

SMI_TRYLATER Temporarily unable to send the request to the
RadiSys ARTIC960 adapter.

Remarks

An s96_unbufcall function is ignored when there is no bufcall request in progress.
Because there can be only one outstanding bufcall request at a time per entity, the
unbufcall request cancels the current active bufcall request.

Response Description

There is no response associated with this function.

Response Codes
Response codes are command blocks sent by the OSS that are not responses to a previous
request triggered by the ADD. Response codes are delivered through the s96_resphandler
asynchronous response handler function. See Response Handler on page 74 for
information on the SAL’s use of the s96_resphandler function.

For all response codes, the memo parameter is the value passed during the s96_open
function for the stream unless otherwise specified.

The following are the response codes and their descriptions. There are no specific error
codes defined.

STE_XRECEIVE
Indicates the reception of a stream message from the
RadiSys ARTIC960 STREAMS.

The command parameter is set to STE_XRECEIVE.

The arg1 parameter is a pointer to the first message block structure (mblk_t) of
the message. The message block structure contains a pointer to one or more
data block structure(s) dblk_t. The message blocks and data block memory are
allocated using the system unit’s operating system stream environment. It is
the application’s (or, at least, the stream head’s) responsibility to free the
memory associated with the stream message received.

The arg2 parameter is 0.

STE_STOPXMIT
Instructs the ADD to stop sending messages downstream.

The command parameter is set to STE_STOPXMIT.

The on-card stream head write service queue becomes full when it receives
messages from the system unit and cannot deliver them successfully to the next
STREAMS-based module/driver, causing its predefined high water mark level
to be exceeded.

Both parameters, arg1 and arg2 are zero (0).

STE_STARTXMIT
Instructs the ADD to restart sending messages downstream.
103

RadiSys ARTIC960 STREAMS Environment Reference
The command parameter is set to STE_STARTXMIT.

The on-card stream head write service queue becomes available to process
messages from the system unit after its predefined low watermark level
is reached.

Both parameters, arg1 and arg2, are 0.

STE_CONNECT
Informs the ADD about the status of communication with an
RadiSys ARTIC960 STREAMS.

The command parameter is set to STE_CONNECT.

Each time the status of one of the RadiSys ARTIC960 adapters hosting the
RadiSys ARTIC960 STREAMS changes, the new state of the
RadiSys ARTIC960 adapter is reported to the ADD. The following states
are defined.

S96_COMM_UP
The state reported when SCB Pipes are configured and contact has
been established successfully between the SAL and the
RadiSys ARTIC960 STREAMS. In this state, the ADD can
communicate with the RadiSys ARTIC960 adapter using all verbs
from the SAL API.

S96_COMM_DOWN
The state reported whenever communication between the SAL
and an RadiSys ARTIC960 STREAMS is broken. Reasons
might be:

• The card is reset

• A terminal error was reported

• SCB pipes get unconfigured

• SCB pipes access timed out

• Any other error occurred in the
RadiSys ARTIC960 STREAMS.

S96_COMM_XON
The state reported whenever the Global Communication Channel
between the SAL and the RadiSys ARTIC960 STREAMS allows
non-high-priority messages to be sent downstream again (flow
control situation ends). The ADD should retry sending data
downstream for any of its opened streams that have previously
been flow controlled (STE_STOPXMIT received for the stream).

The arg1 parameter contains the logical card number for which status is
being reported.

The arg2 parameter contains the card status..

The memo parameter is set to 0.
104

Chapter 7: STREAMS Access Library Functions
Log Device Driver
The log driver is an RadiSys ARTIC960 STREAMS software device driver that provides
an interface for the RadiSys ARTIC960 STREAMS error and event-tracing processes. The
log driver presents the following separate interfaces.

• strlog() SKF API from within a STREAMS-based module/driver in the
RadiSys ARTIC960 adapter. The strlog() SKF API is described in the UNIX SVR4
STREAMS documentation.

• A subset of ioctl operations and RadiSys ARTIC960 STREAMS messages for
interaction with a user-level error logger and/or tracer.

User-Level Access.

The log device driver gets automatically installed as a STREAMS-based driver when the
OSS is loaded in the RadiSys ARTIC960 adapter.

Programming Note
All references to C defines and structures can be found in the sys/Ostrlog.h
file. This file is shared by both the system unit’s user-level process and the
RadiSys ARTIC960 adapter STREAMS-based module/driver, with either the
RIC_AIX_RS6000 or RIC_KERNEL define to be enabled.

Figure 7-2. Error and Trace Loggers
105

RadiSys ARTIC960 STREAMS Environment Reference
The log device driver is opened using the clone interface for the device name riclg. See
s96_open for details on open parameters. Each open of the riclg driver obtains a separate
stream to this driver, which is capable of acting as an error or trace logger. To select which
it will be, the user-level process uses a defined I_STR ioctl immediately after the stream
has been opened with the log driver.

error logger
The I_STR operation has an ic_cmd field value of I_ERRLOG with no
additional data.

trace logger
The I_STR operation has an ic_cmd field value of I_TRCLOG with additional
data specifying selected criteria the log record should meet in order to be
reported to the trace logger.

• The data buffer is an array of one or more card_trace_ids_t structures.
Each cell specifies mid, sid and level fields from which messages
are accepted.

• The strlog() SKF API accepts records whose values in the mid, sid and
level fields match the selection made through the
card_trace_ids_t structures.

• A value of –1 in any of the fields of the card_trace_ids_t structure
indicates that any value is accepted for that field.

At most, one error logger and one trace logger can be active at a time. Once the logger
process has identified itself using the ioctl operation described previously, the log driver
begins sending messages, subject to the restrictions previously selected. The user-level
process receives those log messages through the getmsg() system call. The control part of
the message contains a card_log_ctl_t structure that specifies:

mid Module ID

sid Subsystem ID

level Log level

flags Log flags

ttime Time in ticks since RadiSys ARTIC960 adapter’s reset when the log message
was submitted (with HZ = 200 for the RadiSys ARTIC960 adapter).

ltime Time in seconds since January 1, 1970, when the log message was submitted..

seq_no Sequence number for the log message

The data part of the message contains the formatted, null-terminated string with its
accompanied arguments passed by the strlog() SKF API.

In order for the time to be reported accurately by the
RadiSys ARTIC960 adapter, the time-of-day timer must be enabled.
Refer to the RadiSys ARTIC960 Programmer’s Reference for
information on the ricload utility.
106

Chapter 7: STREAMS Access Library Functions
The following error codes are returned on completion of the ioctl operation by the
log driver.

Kernel-Level Access

Refer to the sys/Ostrlog.h file for values to use for level and flags fields of the strlog()
SKF API.

SL_HEXA Addition

A flag, SL_HEXA, has been added to existing standard UNIX SVR3/4 flags. This new
flag gives the ability to report hexadecimal strings of bytes through the same interface,
thus enabling communication’s frames to be reported to the trace logger. SL_HEXA can
only be specified in conjunction with SL_TRACE and must have the strlog()'s arg1
parameter set to the actual hexadecimal string's length. fmt then contains the pointer on
that string.

ONLOGARGS defines the maximum number of variable arguments during a strlog() SKF
API call. The default is 6.

OLOGMSGSZ defines the maximum length (in bytes) for the log data portion (formatted
string). The default is 128.

Log messages received by the user-level logger through the getmsg() system call are
little-endian encoded. It is the responsibility of the user-level logger to transform them into
big-endian format for AIX.

ENXIO A logging process of the given operation type (I_ERRLOG/
I_TRCLOG) already exists.

ENXIO The I_TRCLOG operation does not contain any card_trace_ids_t
structures.

ENOSR Maximum number of specific sids per mid reached (64 sids maximum).
EINVAL Invalid operation code.
EINVAL Unsupported message type.
107

RadiSys ARTIC960 STREAMS Environment Reference
Error Codes
Error code values returned by SAL stream and memory function commands and response
handler are derived from UNIX System V errno values. For an ADD running under a
UNIX-type operating system, these error codes can be masked to clear the high order bit
(0x80000000) and used as if they were UNIX System V errno values.

The ANSI conformance defines errno’s by name and not by value, which indicates that
different operating systems might have the same name defined with two different values.
For the SAL, applicable values are the ones listed in the error code tables following each
function description.

Table 7-5. Error Codes

Table 7-6. Additional Error Codes Returned by OS/2 APIs

Name Value
SAL_EINVAL 0x80000016
SAL_ENAMETOOLONG 0x80000056
SAL_EAGAIN 0x8000000b
SAL_EMFILE 0x80000018
SAL_ENXIO 0x80000006
SAL_ENOSR 0x80000076
SAL_EBADF 0x80000009
SAL_EINTR 0x80000004
SAL_EFAULT 0x8000000e
SAL_ENOMEM 0x8000000c
SAL_ETIME 0x80000077
SAL_ENOCONNECT 0x80000032
SAL_ENOENT 0x80000002
SMI_INVPARM 0x80000016
SMI_OUTOFRESOURCE 0x8000000c
SMI_TRYALLOC 0x80000055
SMI_TRYLATER 0x8000000b
SMI_INVHANDLE 0x80000009
SMI_MAXSIZE 0x80000022

Name Value
SAL_ERR_NO_CARD 0x80001001
SAL_ERR_ALLOC_GDT 0x80001002
SAL_ERR_SETTIMER 0x80001003
SAL_ERR_MEMPOOL_INIT 0x80001004
SAL_ERR_COMMON_INIT 0x80001005
108

Chapter 7: STREAMS Access Library Functions
Table 7-7. Additional Error Codes Returned by Windows NT APIs

OS/2-Specific Functions
The following list of functions have been developed for the OS/2 SAL, in addition to the
Streams Functions and memory functions described in Stream Functions on page 79 and
Memory Functions on page 92.

s96_freemsg

This function frees a streams message and returns it to the internal SAL memory pool.

Functional Prototype

unsigned long s96_freemsg (mblk_t *mp)

Parameters

mp Input. Pointer to streams message block.

Remarks

Other than the b_rptr and b_wptr, no other internal field of the mblk_t structure must be
modified by the user of this function. If the b_next field of the structure is changed, it
should be made NULL before calling this function.

Error Codes

Any return code other than 0 is an error. The function could fail with the following
error codes.

3 The message pointer (parameter mp) is NULL.

5 The internal data structure of the message being freed is corrupted. The b_next
field of the message should be NULL.

Name Value
SAL_ERR_MEMSPINLOCK 0x80001001
SAL_ERR_NONPAGED_MEM 0x8000100d
SAL_ERR_DEV_OBJ_PTR x8000100f
SAL_ERR_ALLOCIRP 0x80001010
SAL_ERR_IOCALLDRIVER 0x80001011
SAL_ERR_IDCEVENT 0x80001012
SAL_ERR_INITOSS 0x80001015
SAL_ERR_INITMEM 0x80001016
SAL_ERR_NULLPTR 0x80001007
SAL_ERR_MSGLINKED 0x80001008

Function Description
s96_freemsg This function frees a streams message
s96_idc_init Initializes the SAL OS/2 interface with the OSS
s96_os2_init Initializes the SAL OS/2 interface
109

RadiSys ARTIC960 STREAMS Environment Reference
s96_idc_init

Initializes the SAL OS/2 interface with the OSS by issuing interdevice driver
communications (IDC) calls to the RadiSys ARTIC960 device driver.

Functional Prototype

unsigned long s96_idc_init ();

Parameters

None.

Remarks

The s96_idc_init function must be called during the INITIALIZATION COMPLETE
event, during which the OS/2 kernel calls the driver’s strategy routine with this function
code. The kernel allows the device drivers to set up any IDC interfaces at this point.

Error Codes

Any return code other than 0 is an error. The function could fail with the following
error codes.

SAL_ERR_MEMPOOL_INIT The SAL internal memory pool could not be allocated
and/or formatted.

SAL_ERR_COMMON_INIT The SAL failed to set up initial communication with
the card.

s96_os2_init

Initializes the SAL OS/2 interface by taking up appropriate resources that are required in
the KERNEL operating mode of the driver.

Functional Prototype

unsigned long s96_os2_init ()

Parameters

None.

Remarks

The s96_os2_init function must be called during the INIT mode of the OS/2 driver. It
should be noted that the call to this function is synchronous and the return code is
available immediately.

Error Codes

Any return code other than 0 is an error. The function could fail with the following
error codes.

SAL_ERR_NO_CARD No RadiSys ARTIC960 card is detected in
the system.
110

Chapter 7: STREAMS Access Library Functions
SAL_ERR_ALLOC_GDT Global Descriptor Table entries for memory
management could not be allocated.

SAL_ERR_SETTIMER The timer for the SAL internal timer functions could
not be started.

Windows NT-Specific Functions
The following list of functions have been developed for the Windows NT SAL, in addition
to the streams functions and memory functions described in Stream Functions on page 79
and Memory Functions on page 92.

s96_freemsg

Frees a streams message block and all its related structures.

This function must be called by the driver for all the messages that it gets upstream by way
of the SAL response handler. This function frees up the memory in the SAL pool and
makes it available for other messages being delivered by the RadiSys ARTIC960 driver to
the SAL.

Functional Prototype

unsigned long s96_freemsg (mblk_t *mp)

Parameters

mp Input. Pointer to streams message block.

Remarks

None.

Error Codes

Any return code other than 0 is an error. The function could fail with the following
error codes.

SAL_ERR_NULLPTR The message pointer passed is NULL.

SAL_ERR_MSGLINKED This message has a link to another message and,
therefore, cannot be freed.

Call Description
s96_freemsg Frees up a streams message block and all its

related structures.
s96_nt_getcard Returns the logical card number for each of the card

installed in the system.
s96_nt_haltsys Does the cleanup and resource allocation for the SAL.
s96_nt_initsys Does the global initialization and allocation of resources

required by the SAL.
s96_nt_timeout Registers a timer handler.
s96_nt_untimeout Cancels a previously registered timeout.
111

RadiSys ARTIC960 STREAMS Environment Reference
s96_nt_getcard

Returns the logical card number for each of the cards installed in the system.

Functional Prototype

int s96_nt_getcard (int PrevCardNumber);

Parameters

PrevCardNumber
Input. This is the card number returned by the function in the previous
invocation. For the first invocation, it should be GET_FIRST_CARD.

Returns

Returns the logical card number, starting from 0, onward. Returns NO_MORE_CARD
when all cards have been enumerated.

Remarks

This call must be made from the DriverEntry() of the Windows NT kernel driver after it
has made the call to s96_nt_initsys().

Error Codes

None.

s96_nt_haltsys

Does the cleanup and resource deallocation for the SAL.

Functional Prototype

void s96_nt_haltsys ()

Parameters

None.

Remarks

This function must be called by the Windows NT kernel driver at the time of driver unload.

Error Codes

None.

s96_nt_initsys

Does the global initialization and allocation of resources required by the SAL for all the
RadiSys ARTIC960 adapters in the system.
112

Chapter 7: STREAMS Access Library Functions
Functional Prototype

unsigned long s96_nt_initsys ()

Parameters

None.

Remarks

This function must be called by the Windows NT kernel driver when it gets called at its
DriverEntry() entry point.

Error Codes

Any return code other than 0 is an error. The function could fail with the following
error codes.

SAL_ERR_MEMSPINLOCK Failure to get memory for spin locks.

SAL_ERR_NONPAGED_MEM Failure to allocate non-paged memory pool.

SAL_ERR_DEV_OBJ_PTR Failure to get the device object pointer to the
RadiSys ARTIC960 driver.

SAL_ERR_ALLOCIRP Failure to allocate the I/O Request Packet (IRP) for
getting RadiSys ARTIC960 function pointers.

SAL_ERR_IOCALLDRIVER Failure to issue IoCallDriver() to the
RadiSys ARTIC960 driver.

SAL_ERR_IDCEVENT Error waiting for event to get interdevice driver
communications (IDC) function pointers.

SAL_ERR_INITOSS Failure to initialize and bind with the On-card
STREAMS Subsystem (OSS).

SAL_ERR_INITMEM Failure to initialize memory for received messages.

s96_nt_timeout

Registers a timer handler to be called after the expiration of the specified timeout period.

Functional Prototype

int s96_nt_timeout (PFNRV func, ULONG arg, ULONG msecs)

Parameters

func Input. Pointer to the function to be called at timeout.

arg Input. Argument to be passed to the function called at timeout.

msecs Input. Timeout period expressed in 1000-millisecond interval.

Remarks

None.
113

RadiSys ARTIC960 STREAMS Environment Reference
Error Codes

Any return code other than 0 is the correlation value, which is used to cancel the timeout
using the s96_nt_untimeout() function. Failure is indicated by returning a –1.

>0 Timeout correlation value.

–1 Failure to issue a timeout.

s96_nt_untimeout

Cancels a previously registered timeout.

Functional Prototype

void s96_nt_untimeout (unsigned long corr)

Parameters

corr Input. Correlation value returned previously by s96_nt_timeout().

Remarks

None.

Error Codes

None.
114

A
Notices Appendix A
This information was developed for products and services offered in the U.S.A.
RadiSys Corporation may not offer the products, services, or features discussed in this
document in other countries. Consult your local RadiSys representative for information on
the products and services currently available in your area. Any reference to a RadiSys
product, program, or service may be used. Any functionally equivalent product, program,
or service that does not infringe any RadiSys intellectual property right may be used
instead. However, it is the user’s responsibility to evaluate and verify the operation of any
non-RadiSys product, program, or service.

RadiSys may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any license
to these patents. You can send license inquiries, in writing, to:

RadiSys Corporation
5445 NE Dawson Creek Drive
Hillsboro, OR 97124
(561) 454-3200
115

RadiSys ARTIC960 STREAMS Environment Reference
116

Index
A
adapter memory size 5
ADD (application device driver) 65
ADF (Adapter Description File) 91
AIX application device driver communication 67
allocate memory 71
APIs

close 8
getmsg 8
ioctl 8
open 8
putmsg 8
supported S960ADD 8

application device driver (ADD) 65
ARTIC960 process 24
assign link address 85
asynchronous responses 72

B
banding parameters 17
big endian format 10
books, reference 6
buffer size 5
buffers allocated, number of 5
BUFREGION, load-time parameter 10
build On-card STREAMS-based module/driver 24

C
C language support 37
call put procedure 47
callback routine 27, 31
CardPacketSize parameter 5
CardPoolSize parameter 5
change

communication status 81
S960ADD parameters 5
time delay 80

channel flow, global communication 77
close API 8
close on-card stream access 80
closing time delay 83
commands
OS/2-specific 109
SAL functions 78
Windows NT-specific 111

compile command 24
configuration

between ADD and RadiSys ARTIC960 adapter driver
67

change s960ADD parameters 5
cycle 85
device resource 87
On-card STREAMS Subsystem 9
OS/2 68
Windows NT 70

connect protocol stack drivers 1
control blocks

See ipcb control blocks
control operations

CXB_LINK_HEAD 40
CXB_OSS_REQ 41
CXB_REG_DRIVER 42
CXB_UNLINK HEAD 43

conventions, notational 4
create independent modules 1
cross-bus driver

building 24
described 27
structure definitions 24

cxb_control function 38
CXB_LINK_HEAD control operation 40
CXB_OSS_REQ control operation 41
CXB_REG_DRIVER control operation 42
CXB_UNLINK_HEAD control operation 43

D
device profiles 32
download protocol stacks 1
downstream message flow 76

E
element control blocks 30, 48
elmblock 30
encode parameters 9
ENOCONNECT error 8
117

RadiSys ARTIC960 STREAMS Environment Reference
error classification 14
errors, initialization 14
ESS (cross-bus driver) 9
exception codes 13
exceptions, format of 15
EXPFACTOR, load-time parameter 10

F
fatal errors 15
find module name control block 60
flags, open 88
flags, STREAMS 87
flow charts 32
flow control, message 76
format, little/big endian 10
function types 72
functions

memory-specific
s96_bufcall 92
s96_deregister 94
s96_expand 96
s96_free 97
s96_info 98
s96_register 100
s96_reorg 101
s96_unbufcall 102

OS/2-specific
s96_freemsg 109
s96_idc_init 110
s96_os2_init 110

STREAMS-specific
s96_canput 79
s96_close 80
s96_commstate 81
s96_couldput 82
s96_ioctl 83
s96_open 87
s96_send 89

Windows NT-specific
s96_freemsg 111
s96_nt_getcard 112
s96_nt_haltsys 112
s96_nt_initsys 112
s96_nt_timeout 113
s96_nt_untimeout 114

functions synchronization 72

G
get close time control block 63
getmsg API 5, 8
global communication channel flow 77
118
H
hangup from on-card stream 84
high water mark (HiWat) 6
high-priority messages 75
high-priority requests 12

I
IDC (interdevice driver communications) 110
immediate requests 72
immediate responses 72
initialization error codes 13
initialization errors 14
install AIX SAL (STREAMS) 70
install STREAMS-based module/driver into switch

tables 23
ioctl API 8
ipcb control blocks

STE_CLOSE 49
STE_OPEN 48
STE_XFIND 60
STE_XGETCLTIME 63
STE_XLINK 55
STE_XLINK, permanent 56
STE_XLIST 61
STE_XLOOK 59
STE_XPOP 54
STE_XPUSH 53
STE_XRECEIVE 64
STE_XSEND 49
STE_XSETCLTIME 62
STE_XUNLINK 57
STE_XUNLINK, permanent 58

IRP (I/O Request Packet) 113

K
kernel functions, OSS 20
kernel-level access 107
keywords, form of 9

L
length, device name 87
link

AIX SAL to stream driver 70
driver control block 55
two on-card streams 83

linkedit commands 25
Linking an On-card Stream Segmen 34
list module names 86
list module names control block 61
little endian format 10
load On-card STREAMS Subsystem 9
load-time parameters 9

Index
log device driver 105
low water mark (LoWat) 6
LOWSCALE, load-time parameter 10

M
M_FLUSH, message 50
M_READ, message 51
M_START, message 51
M_STARTI, message 52
M_STOP, message 52
M_STOPI, message 53
macros

_GET_OPEN_SSD 45
_IS_IPCB_ERROR 45
_IS_STE_CLOSE 45
_IS_STE_OPEN 45
_SIZEOF_IPCB_EXTRA 44

MAXBLOCKLEN, load-time parameter 10
MAXDATAB, load-time parameter 10
MAXEXTB, load-time parameter 11
MAXHIGHB, load-time parameter 11
MAXSCBQUEUED, load-time parameter 11
MEDSCALE, load-time parameter 12
memo value, ADD 74
memory

addresses, formatting 10
allocate 71
functions 71, 92
reuse 72
user-data-buffer allocation 10

message
flows 76
handling services 17
size 5

messages
high-priority 75
M_FLUSH 50
M_READ 51
M_START 51
M_STARTI 52
M_STOP 52
M_STOPI 53

MINMSGLEN, load-time parameter 12
module names, list 86
modules, create independent 1

N
non-transparent service (NON-XPAR) 65
NON-XPAR (non-transparent service) 65
non-zero code 78
notational conventions 4
notices 115
null arg parameter 86
null condition, using 13

O
OKFs (OSS Kernel Functions) 20
On-card STREAMS Subsystem (OSS)

configuration 9
kernel functions 20
overview 9
runtime exceptions 15

open a clone 70
open API 8
open on-card stream 87
origin, response 31
OS/2 configuration 68
OS/2 considerations, SAL 66
OS/2-specific commands 109
OSS Kernel Functions (OKFs) 20

P
parameter, watermark 10
parameters (keywords) 9
permanent link driver control block 56
permanent unlink driver control block 58
pop module control block 54
priority messages 75
profile, device 32
programming notes 75
protocol stacks, download 1
publications, reference 6
push module control block 53
push module to stream top 83
putmsg API 5, 8

Q
queries, STREAM 7
query communication status 71
queue

banding 91
high water mark 6
high-priority message 76
low water mark 6
response data 74
set high/low priority 21

R
reference publications 6
response codes, OSS

STE_COMM_DOWN 104
STE_COMM_XON 104
STE_CONNECT 104
STE_STARTXMIT 103
STE_STOPXMIT 103
119

RadiSys ARTIC960 STREAMS Environment Reference
STE_XRECEIVE 103
response handler 74
response origin 31
responses, immediate/asynchronous 72
retrieve module name 86
retrieve top module name 59
ric_scb.rel, SCB pipe status 66
runtime

environment, ARTIC960 1
exceptions, OSS 15
variables, SAL 66

S
s96_bufcall function 92
s96_canput function 79
s96_close function 80
s96_commstate function 81
s96_couldput 82
s96_deregister function 94
s96_expand function 96
s96_free function 97
s96_freemsg, OS/2-specific function 109
s96_freemsg, Windows NT-specific function 111
s96_idc_init, OS/2-specific function 110
s96_info function 98
s96_ioctl function 83
s96_nt_getcard, Windows NT-specific function 112
s96_nt_haltsys, Windows NT-specific function 112
s96_nt_initsys, Windows NT-specific function 112
s96_nt_timeout, Windows NT-specific function 113
s96_nt_untimeout, Windows NT-specific function 114
s96_open function 87
s96_os2_init, OS/2-specific function 110
s96_register function 100
s96_reorg function 101
s96_send function 89
s96_unbufcall 102
S960ADD (STREAMS application device driver) 65
S960ADD devices 6
SAL (STREAMS Access Library)

AIX considerations 65
C language support 65
functions 78
installation as STREAMS-based driver 70
OS/2 considerations 66
overview 1
runtime variables 66
Windows NT considerations 66

SalMaxUpstrLen parameter 5
SalPipe Timeout parameter 5
saluser.h header file 65
send data control block 49
send stream message 89
120
set close time control block 62
size, message 5
SKFs (Standard Kernel Functions) 17, 71
SRVSLICE, load-time parameter 13
Standard Kernel Functions (SKFs) 17, 71
STE_CLOSE, control block 49
STE_COMM_DOWN, response code 104
STE_COMM_XON, response code 104
STE_CONNECT, response code 104
STE_FIND, ioctl 86
STE_GETCLTIME, ioctl 86
STE_LINK, ioctl 83
STE_LIST, ioctl 86
STE_LOOK, ioctl 85
STE_OPEN, control block 48
STE_POP, ioctl 83
STE_PUSH, ioctl 83
STE_SETCLTIME, ioctl 86
STE_STARTXMIT, response code 103
STE_STOPXMIT, response code 103
STE_UNLINK, ioctl 85
STE_XFIND, control block 60
STE_XGETCLTIME, control block 63
STE_XLINK (permanent), control block 56
STE_XLINK, control block 55
STE_XLIST, control block 61
STE_XLOOK, control block 59
STE_XPOP, control block 54
STE_XPUSH, control block 53
STE_XRECEIVE, control block 64
STE_XRECEIVE, response code 103
STE_XSEND, control block 49
STE_XSETCLTIME, control block 62
STE_XUNLINK (permanent), control block 58
STE_XUNLINK, control block 57
stream functions 79
STREAMS

Access Library (SAL) 1
application device driver (S960ADD) 5
build module/driver 24
change S96ADD parameters 5
described 1
flags 87
functions 71
memory 71
module/driver 17
On-card Subsystem 9
queries 7
S960ADD Devices 6

streamtab structure 23
STRMS_PER_TASK, load-time parameter 12
STRSCBQUEUED, load-time parameter 12
supported S960ADD APIs 8
system calls 17

Index
T
time delay, change 80
timeout value 5
transfers, high-priority message 76
transparent loctl 17
transparent service (XPAR) 65
types

exception 15
function 72
message 75
parameter 78

U
unlink

driver control block 57
On-card Stream segment 36
two on-card streams 83, 85

upstream flow 77
V
valid adapter numbers 81
value

correlation 88
link index 85
memo 74

variable, makefile 24

W
watermark parameter 10
Windows NT configuration 70
Windows NT considerations, SAL 66
Windows NT-specific commands 111
write service procedure 32

X
XPAR (transparent service) 65
121

RadiSys ARTIC960 STREAMS Environment Reference
122

	RadiSys�ARTIC960 STREAMS
	Environment�Reference
	About this�Guide
	Guide contents
	Appendices

	Conventions
	Notations
	Terms
	Symbols

	RadiSys�ARTIC960 Developer’s Kit—Contents
	Developer’s Assistance Program
	Where to Get More Information

	Contents
	Figures
	Tables

	Chapter 1: RadiSys ARTIC960 STREAMS Overview
	Chapter 2: AIX STREAMS960 Application Device Driver
	Configuration
	STREAMS S960ADD
	Using the Command Line
	Using the SMIT Menu

	STREAMS S960ADD Devices
	Enabling/Disabling STREAMS
	Using the Command Line
	Using the SMIT Menu

	Supported S96ADD APIs

	Chapter 3: On card STREAMS Subsystem and Cross Bus Driver
	Loading On�card STREAMS Subsystem
	Loading On�card STREAMS Cross�Bus Driver (ESS)
	Configuring On�card STREAMS Subsystem
	Configuring On�card STREAMS Cross�Bus Driver
	Initialization Error and Exception Codes
	Initialization Errors
	Runtime Exceptions

	Chapter 4: STREAMS-based Module/ Driver Information
	SKF Functions
	OSS Kernel Functions
	qhipri
	qlopri
	s96_devinst

	Building a STREAMS-based Driver
	Using the Compile Command
	Using the Linkedit commands

	Chapter 5: Developing a Cross bus Driver
	Flow Charts
	Registering a Cross�Bus Driver
	Linking an On�card Stream Segment
	Unlinking an On�card Stream Segment

	C Language Support
	cxb_control
	CXB_LINK_HEAD
	CXB_OSS_REQ
	CXB_REG_DRIVER
	CXB_UNLINK_HEAD

	Macros
	_SIZEOF_IPCB_EXTRA
	_GET_OPEN_SSD
	_IS_STE_OPEN
	_IS_STE_CLOSE
	_IS_IPCB_ERROR

	cxb_canputnext
	cxb_putnext
	Element Control Blocks Format
	ipcb Blocks
	STE_OPEN — Open Stream
	STE_CLOSE — Close Stream
	STE_XSEND — Send Data
	STE_XPUSH ioctl — Push Module
	STE_XPOP ioctl — Pop Module
	STE_XLINK ioctl — Link Driver
	iSTE_XLINK octl — Permanent Link Driver
	STE_XUNLINK ioctl — Unlink Driver
	STE_XUNLINK ioctl — Permanent Unlink Driver
	STE_XLOOK ioctl — Retrieve Top Module Name
	STE_XFIND ioctl — Find Module Name
	STE_XLIST ioctl — List Module Names
	STE_XSETCLTIME ioctl — Set Close Time
	STE_XGETCLTIME ioctl — Get Close Time
	STE_XRECEIVE Response Code — Receive Messages

	Chapter 6: STREAMS Access Library
	C Language Support
	AIX Considerations
	OS/2 Considerations
	Windows NT Considerations

	Runtime Variables
	AIX Configuration
	OS/2 Configuration
	Installation of AIX SAL as a STREAMS�based Driver
	Linking the AIX SAL and the ARTIC960 Adapter Stream Driver
	Windows NT Configuration

	Chapter 7: STREAMS Access Library Functions
	Functions Synchronization
	Response Handler
	Programming Notes
	Priority Messages
	Flow Control
	Downstream Flow
	Upstream Flow

	SAL Functions
	Stream Functions
	s96_canput
	s96_close
	s96_commstate
	s96_couldput
	s96_ioctl
	s96_open
	s96_send

	Memory Functions
	s96_bufcall
	s96_deregister
	s96_expand
	s96_free
	s96_info
	s96_register
	s96_reorg
	s96_unbufcall

	Response Codes
	Log Device Driver
	User�Level Access.
	Kernel�Level Access

	Error Codes
	OS/2�Specific Functions
	s96_freemsg
	s96_idc_init
	s96_os2_init

	Windows NT�Specific Functions
	s96_freemsg
	s96_nt_getcard
	s96_nt_haltsys
	s96_nt_initsys
	s96_nt_timeout
	s96_nt_untimeout

	Appendix A: Notices
	Index

