RadiSys ARTIC960 STREAMS

Environment Reference

RadiSys Corporation
5445 NE Dawson Creek Drive
Hillsboro, OR 97124
(503) 615-1100
(503) 615-1150
www.radisys.com
June 1999



RadiSys ARTIC960 STREAMS Environment Reference

Before using this information and the product it supports, be sure to read all the information in
Appendix A, Notices.

This edition replaces and makes obsol ete the previous edition.

This edition applies to the following RadiSys support programs and to all subsequent versions and rel eases
until otherwise indicated in new editions.

» RadiSys ARTIC960 Support for OS/2, Version 1.2.1
* RadiSys ARTIC960 Support for AlX, Version 1.3.1
* RadiSys ARTIC960 Support for Windows NT, Version 1.0

These programs support the following adapter cards:
* RadiSys ARTIC960 Micro Channel

* RadiSys ARTIC960 PCI

* RadiSys ARTIC960Rx PCI

* RadiSys ARTIC960Hx PCI

* RadiSys ARTIC960RxD PCI

EPC, INtime, and Radi Sys are registered trademarks of RadiSys Corporation.

Tt All other trademarks, registered trademarks, service marks, and trade names are the property of their
respective owners.

June 1999

© RadiSys Corporation 1999. All rights reserved.
© Copyright International Business Machines Corporation 1998. All rights reserved.

Note to U.S. Government Users—Documentation related to restricted rights—Use, duplication or
disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp. All rights
reserved.



About this Guide

This book provides information on the On-card STREAMS Environment. This book does

not include sample code.

Guide contents

The following lists the contents of this Guide.

Chapter

Description

1 RadiSys ARTIC960
STREAMS Overview

Provides an overview for the RadiSys ARTIC960
On-card STREAMS environment.

2 AIX STREAMS960 Application
Device Driver

Describes how to change or list parameters of the
STREAMS S96ADD or its devices, how to enable
or disable STREAMS, and also lists the supported
S96ADD APIs.

3 On-card STREAMS Subsystem
and Cross Bus Driver

Provides information about loading and configuring
the On-card STREAMS Subsystem (OSS) and
cross-bus driver (ESS).

4 STREAMS-based Module/
Driver Information

Describes how to build an on-card
STREAMS-based module/driver and information
about the Standard Kernel Functions (SKFs) and
On-card STREAMS Subsystem (OSS) Kernel
Functions (OKF).

5 Developing a Cross-bus Driver

Describes the process to develop a cross-bus
driver.

6 STREAMS Access Library

Describes the STREAMS Access Library (SAL) and
how requirements for using with various operating
systems.

7 STREAMS Access
Library Functions

Describes the memory and stream functions that
are included as part of the SAL system unit
support.

Appendices

The appendices provide additional information about RadiSys products.

Appendix

Description

A Notices

Lists notices related to availability of RadiSys
products and contact information for license
information.




RadiSys ARTIC960 STREAMS Environment Reference

Conventions

Notations

Terms

This manual uses the following notationa conventions:
*  All numbers are decimal unless otherwise stated.

» Bit Oisthelow-order hit. If abit isset to 1, the associated description istrue unless
otherwise stated.

e Data structures and syntax strings appear in this font.

<!

Notes indicate important information Cautions indicate situations that may
about the product. result in damage to data or the hardware.

&)

procedures that you can use to save may cause damage to hardware via
time or better understand the product. electro-static discharge.

Tips indicate alternate techniques or ﬂ ESD cautions indicate situations that

M

The globe indicates a World Wide Warnings indicate situations that may
Web address. result in physical harm to you or
the hardware.

This manual uses the following terms:
System bus: refers to either the Micro Channel or PCI bus.

Radi Sys ARTIC960
refers to programs that run on the RadiSys ARTIC960, RadiSys ARTIC960
PCI, RadiSys ARTIC960Rx PClI, or RadiSys ARTIC960Hx PCl adapters, or
the adapters themselves.

Radi Sys ARTIC960 PCI
refers to functions supported only on the RadiSys ARTIC960 PCl adapter.

Radi Sys ARTIC960 MCA
refers to functions supported only on the RadiSys ARTIC960 Micro Channel
adapter.

Radi Sys ARTIC960Rx PClI
refers to functions supported by the RadiSys ARTIC960Rx PCl adapter.

ARTIC960Hx PCI
refers to functions supported by the RadiSys ARTIC960Hx PCl adapter.

ARTIC960RxD PCI
refersto functions supported by the base card of the Radi Sys ARTIC960RxD
Quad Digital Trunk PCI adapter.



About this Guide

Symbols

This manual uses the following symboals:

All counts in this book are assumed to start at zero.

All bit numbering conformsto the industry standard of the most significant bit having
the highest bit number.

All numeric parameters and command line options are assumed to be decimal values,
unless otherwise noted.

To pass a hexadecimal value for any numeric parameter, the parameter should be
prefixed by Ox or 0X. Thus, the numeric parameters 16, 0x10, and 0X10 are
all equivalent.

All representations of bytes, words, and double words are in the little endian format.

Utilities all accept the ? switch as arequest for help with command syntax.

RadiSys ARTIC960 Developer’s Kit—Contents

The Developer’s Kit is aset of publications and programs designed to help
Radi Sys ARTI1C960 software developers develop for the Radi Sys ARTIC960 platform.
The following items make up the Devel oper’s Kit:

Radi Sys ARTIC960 Hardware Technical Reference presents technical details of the
adapter’s system, options, and hardware interfaces. It provides descriptions and data
related to the card configuration, functions, hardware interfaces, and

programming considerations.

Radi Sys ARTIC960 Programmer’s Guide contains information about the

Radi Sys ARTIC960 services available for writing adapter-resident programs. It also
contains abrief description of the system unit utility programs, and the steps required
to compile and link both system unit and adapter programs.

The RadiSys ARTIC960 Programmer’s Reference provides an overview of both the
adapter kernel support and the associated processes and utilities, aswell as each of the
services provided by the system unit support and the adapter kernel support.

Radi Sys ARTIC960 Application Interface Board Devel oper’s Guide provides the
hardware and the software developer with AIB design requirements, and a collection
of productivity toolsto aid in the development of an AlIB.

A set of operating system packages, each containing sample programs and utilities to
support the development of system unit and adapter applications. These packages are
to be used with the Radi Sys ARTIC960 Programmer’s Guide, the Radi Sys ARTIC960.
Programmer’s Reference, and the RadiSys ARTIC960 Application Interface Board
Developer’s Guide.

You can obtain these books from the World Wide Web (WWW) at:

(%‘, http://ww. radi sys. conf products/artic/



RadiSys ARTIC960 STREAMS Environment Reference

If you do not have access to the WWW, you can obtain these books from the no-fee
Developer’'s Assistance Program (DAP).

Developer’s Assistance Program

In addition to the Developer’s Kit, further programming and hardware devel opment
assistanceis provided by the RadiSys ARTIC960 Devel oper’s Assistance Program (DAP).
The DAP provides, by way of phone and el ectronic communications, on-going technical
support—such as sample programs, debug assistance, and access to the latest

microcode upgrades.

You can get more information or activate your free RadiSys ARTIC960 DA P membership
by contacting us.

By telephone, call (561) 454-3200.
By E-mail, send to artic@radisys.com.

Where to Get More Information

You may need to use one or more of the following publications for reference:

vi

Radi Sys ARTIC960 Programmer’s Guide
Radi Sys ARTIC960 Programmer’s Reference

IBM Operating Systemy/2 (0S/2) Version 3.0, Advanced Interactive Executive (AlX)
Version 4.1 and 4.2

Operating and Installation documentation provided with your computer system
Guide to Operations books for one of the following co-processor adapters:
Radi Sys ARTIC960 Micro Channel adapter
RadiSys ARTIC960 PCl adapter
ARTIC960Rx PCI adapter
ARTIC960Hx PCI adapter
ARTIC960RxD PCI adapter

Each book contains a description of the co-processor adapter, instructions for
physically installing the adapter, and parts listings.

AlX Version 4.x Kernel Extensions and Device Support, Programming
Concepts (SC23-2207)

Radi Sys ARTIC960 Programmer’s Guide and Reference
XL C Language Reference (SC09-1260)
Personal Systemy2 Hardware Reference (S85F-1678)

Intel Publications:

1960 RP Microprocessor User’s Manual

1960 Rx 1/0 Microprocessor Developer’s Manual



About this Guide

e 1960 Hx Microprocessor User’s Manual
e 1960 Cx Microprocessor User's Manual

e For information about writing a STREAMS module or driver, refer to the AlX
Web site:

@ http://ww. rs6000.i bm conf doc_link/en_US/a_doc_Iib/
= ai xpr ggd/ progcont/toc. htm

AIX supports asubset of SVR4.2 STREAMS calls, and the on-card STREAM S subsystem
supports a subset of AIX STREAMS.

Vii



RadiSys ARTIC960 STREAMS Environment Reference

viii



Contents

Chapter 1: RadiSys ARTIC960 STREAM S OVEN VIEW ......ovuriririeiineeeeseeeseeisessseessssssseseees
Chapter 2: AIX STREAM S960 Application Device Driver

16000110 = 1[0 o USSP
STREAMS SIB0ADD ..ottt ettt e sttt b b ese bbb e et b ek eb e sese s b e beb e b ee e b e be st se et et e nene st esebenens
USING the COMMIBNG LINE.....c.ciuiiriiriiiiririerrieriee ettt ene e
USING the SMIT MENU.....cuiiitiiiie ettt st s b e et st s e et nn s e e bt seebe e
STREAMS SIB0ADD DEVICES .....cveueuiriieteititsirie ettt e ettt be b se bbbt st se bbb ese bt se e ee b e ene b ebebenens
Enabling/Disabling STREAMS ...ttt e et b e s hesae b et s be e et eneeneeneenea
USiNG the COMMEANG LINE......cc.oiiiiiiitiiie ettt sttt s ss et e e ebesbenbeseens
USING the SMIT MENU.....cuiiitiieieee et et et st st st e s et e s e se b e seebe e
SUPPOIEA SIBADD APIS ...ttt sttt st et b et bt b Rt b st ke st b et ekttt be et nr e

Chapter 3: On-card STREAM S Subsystem and Cross Bus Driver

Loading On-card STREAMS SUDSYSEEM ......cueuiiiiiirieiiieiinitcsieiesie ettt et
Loading On-card STREAMS Cross-BuS DIIVEr (ESS) ..ot
Configuring On-card STREAM S SUDSYSEEM ......c.ciiiiiiiine it eie et s st s e
Configuring On-card STREAMS CrosS-BUS DIIVES .......couiiiiiiie et e
Initialization Error and EXCEPLION COOES.........coeiiiiirieieeeieiieere sttt sttt ene e

TR TR T (o gl = oSSR

RUNEIME EXCEPLIONS. ......etiiiiteieite ittt st st b ke s et e et sttt st e b

Chapter 4: STREAM S-based M odule/Driver Information
S FUNCEIONS .. .ottt ettt e et e s et e e e st e e s e ettt e saeeesabeeesasseesaaseessabeeeaasseesanseessbeesaasesesaseessaseeesaseeesannnesanrenes
OSS KEIME] FUNCLIONS ...t et e e et e e e ettt e st e e s et et e sastetsaaeessaseesaasseesanaeessabeesaasesesaseessseessaseeesaneeesanrenas

Building @ STREAM S-DESEA DIIVEY ......c.oiieiiieiirieirieirieien sttt ettt st
Using the Compile COMMANG ..........cceirieieieeri e e e sresaestesteseeeeseseenennessensesrens
Using the LinKedit COMMANGS..........coeiirieieeeiriseresesie e tes e sese e sseseseestestesaeseeseeneeseesensessessessensessens

Chapter 5: Developing a Cross-bus Driver
FLOW CREITS. ...ttt h bbbttt b ettt ettt e e sttt ne st e sbene
ReQIStEriNg @ CrOSS-BUS DIIVEN ..ottt bbbt b e ee et
Linking an On-Card SLrEamM SEOMENT ........ccueeirirerireeiertere et s e et st esresesbeseesbe e seeeensesee e esessessesaens
Unlinking an ON-card Sream SEOMENT..........ooir it eae bbb e b ne e ene
C LANQUBOE SUPPIOIT ...ttt sttt et b st h bt h e sa e et se e se e e eae e s eh e e s eh e e e bt e b e b e s bese e e b e s e ne e e e e eneenis
oo I o001 1 (| OO OSSOSO
CXB_LINK HEAD ..o eeeseeseeesseessesssssss s s sssessssssass s ssessssessssnssns s sssnsssnssans s sssnssnsean
CXB_OSS _REQ......cutitiiteteiirtrtetettit sttt sttt et b et st e bt et st bt ese e se b eseaeseebeb e et e b e ke st e se b e e et ebeb e e nbenens
CXB_REG_DRIVER ...ttt bbb bt s b bbbttt s
CXB_UNLINK _HEAD ..o ettt ettt skttt st ee bt

O 0000 ~NO O 010Ul

© ©O© ©



RadiSys ARTIC960 STREAMS Environment Reference

_SIZEOF _IPCB_EXTRA ... ettt st st b sttt sttt ettt st sb e 44
_GET _OPEN_SSD ..ottt ettt sttt bbb bt st h bt n e bbbt e e b bt e b b e e bbb 45
IS STE _OPEN ...ttt bbb b bbbt bbbt e £ bbbt e bt e b 45
IS STE _CLOSE ... oottt sttt b bt bbbkt £ e bbb e se e b e et s bbbt e benas 45
IS TPCB_ERROR ..ottt sttt sttt ettt s bbbt bbbt sttt ettt sttt et eb e 45
CXD_CANPULINEXT ...ttt ettt b et b st bbbt bbb bt b et b et b e et et b et et e e ettt nbene 46
Lo o T 1111 > O TSSO 47
Element Control BIOCKS FOIMMEL ..........ccuiiiiiiiiireireee sttt 48
0 ex 11 =1 oot £& 3OS 48
STE_OPEN — OPEN SIIEAIM.......eiitiitieiieriee ettt sttt et sae e e e see e b e s e e beebeesbesaeeseesaeesseeeesbeeseesbesnnenes 48
STE_CLOSE — ClOSE SIIBAIM ......etiuiitirirtesirteseste ettt ettt st st st sesbeseebeseebeseebeseebeneebeeebesesseseeneneas 49
STE_XSEND — SENU DBIA.....cveuertieeriereriesirieseste ettt st st seebeseebeseebeseebeseebeseebeeebeseebeseeneneas 49
STE_XPUSH i0CtH — PUSh MOAUIE........ootiiiiieeie ettt s 53
STE_XPOP I0Ct — POP MOUUIE ...ttt e bbb 54
STE XLINK TOCH — LiNK DIIVEN ...cve ittt ettt re e ae s ae e sae s ntesae e tesreentenneenes 55
ISTE_XLINK octl — Permanent Link DIIVEN........ccoooieireiineeseese sttt 56
STE_XUNLINK i0CtH — UNIINK DIIVES ..ottt sttt s e sne e 57
STE_XUNLINK ioctl — Permanent UnlinK DIVEY .........cocoiviiriiniineiieceeee s 58
STE_XLOOK ioctl — Retrieve TOp MOAUIE NBIME.........ccoiiiriiiie et 59
STE_XFIND ioctl — Find ModUIE NGIME.........ccviieiriceecieee ettt et s see e sae et 60
STE _XLIST ioCtl — LiSt MOAUIE NAIMES........ccviieieiiceecte ettt st reenne s 61
STE_XSETCLTIME i0Ct — Set ClOSE TIME ...veeitereeiereeie ettt sttt se e see e seenenea 62
STE_XGETCLTIME i0Ct — Gt ClOSE TIME ...ttt sttt sttt seene e 63
STE_XRECEIVE Response Code — RECEIVE MESSAGES ........ceruririeierieirieeeieeeiesesiesestesessenessesessesesseseas 64
Chapter 6: STREAMS AccessLibrary
C LANQUBOE SUPPOIT ...ttt sttt ettt ettt s bt h e sa e b se e s se e s s e s es e e s eb e e s e bt eh e b e e be s e e e s e e e e e e e e eneenis 65
ADX CONSIAEIBLIONS ...ttt b et bbbt e st st n et bt bt nr e 65
OS/2 CONSIUEIALIONS.......eveveeeterteee sttt sr s e bt e st s e se s e se s e s beb e b ee e b es bt b et bt nn e nn e s 66
WiINAOWS NT CONSIAEIBLIIONS. ......vcveveieeieeriiesiisessestsses st es ettt ee e b b nn e 66
RUNEIME VATADIES ...ttt bttt sttt bt sbene 66
ADLX CONFIGUIBLION ...ttt st st bbbt b et be b e st s et e b et et et e s e e b e e e b eneebeneene s 67
1025 2 ®o g1 181 = o] o OO PRR 68
Installation of AIX SAL asa STREAMS-DESEU DIVEN ..ottt 70
Linking the AIX SAL and the ARTIC960 Adapter Stream DIIVES ........cccoverireiierereeereee e 70
WiINAOWS NT CONFIQUIBLION ...ttt ettt st e e e b et b e sbe s bese e st e seeseene et eneenens 70
Chapter 7: STREAMS Access Library Functions
FUNCLIONS SYNCHIONIZALION ...ttt b et be bbb e e et enee e eneenea 72
RESPONSE HANAIES ...ttt b e st b e bbb bbbkt e b ettt be e 74
ProgrammMiNg NOLES ......c..eu ittt b et h bbbt b et et e e et et s et e et e ne st et s be e s be e sbene 75
PrIOMEY IMESSA0ES. ... veeteniteeete ettt h bbb et b st bt b e s ket e ek ettt s et e et et et et st e nbe e sbene 75
FLOW CONEIO ..ottt et bbbt e et bt nn e 76
DOWNSITEAIM FIOW......c.veiitiiiiteiiite sttt b e et b et bt b et r et et b et 76
UPSETEAIM FIOW. ...ttt b bbbt et b et aeeb e s b e se e st e sbesbene et ene e e e 77
TN I 1 o 1 o] L OSSO 78
SEFEAM FUNCLIONS ...ttt sttt et st et b e st b bbbt b bt s b et b et s b e et e et e et ettt be et 79
SO CBNPIUL ...tttk sttt et h et e h e Rt Rt ee R e R R Re e eR e R R R R R R R e R e e enn s 79
LS L o [0 = USSR 80
L[S 0001101 = (PRSP 8l
LSS G oo 11 [ o LU | USSR 82



Contents

LSS T o | OSSR 83

LSS LR 0] 0/ o F TSP PSP PR 87
S96_ SO ...ttt b bbb b e b b £ e R R R £ R bR RS R R e e A bRt bRt et b et bt b 89
IMEIMOPY FUNCLIONS. ...ttt ettt a e h bbbt b et b et e se e e et e e e re e et eb e e aeebesbenbesbe e e bensenenneaneas 92
G968 UFCEIL ...t a ettt b et b et ne s 92

LSS GR 0 L= = T = OSSOSO 9

LSS G 0o OO 96

LSS R 1 1= TSSOSO USSR PTTTPPRRT 97

LS L 1 (o PSSR 98

LSS G (= o [ = USSR 100

S0 G (= oo ISP P PR U RSP SPR 101

SO _UNDUFCAIL ...ttt bbbt b ettt et et e bbbt b e 102
RESPONSE COUES ...ttt sttt ettt bbbt bbbt £ e st e b e b e e et et e s et e s et e ne s b et s b st nbe e sbene 103
L OQ DEVICE DIV ...ttt ettt ae bt b et b et e se e e et e e e ne e aeeb e s aeebeshenbesbe e e banseneeneaneas 105
USEN-LBVE] ACCESS. ...ttt ettt st h e e b e e b st b ettt h et b e se bt et bt bbb bbb e bt n e nen s 105
KEIMEI-LBVE ACCESS..... vttt sttt sttt etttk etk b e st b s b st b e se b e s e et e st et e st ebeneebeneenens 107
EITOE COUBS....... ettt sttt b e bbb £t s e e E et et e b e s et e s et et s b ne et nenbe e nbene 108
OS/2-SPECITIC FUNCLIONS. ..ottt ettt bbbt bbbttt sttt ettt 109
LS G == 1115l [T 109

£ L T (o1 o TSR 110

LS L 012 1 11 TSR 110
WiNdOwWS NT-SPeCifiC FUNCLIONS.........c.iriiiiriiieiiieieeeieeet sttt sttt b e ene s 111
LSS R == 101 o [T 111

LSS G o Lo (0= (o OO 112

LSS G 1 4T LY TP 112

LSS G 1 4TSV USSR 112

LS L L {0 1= o1 SR 113

LSS G o LAY 1] 1= o LU ORI 114
APPENAIX A INOLICES ...ttt 115
FIVEX ottt 117

Xi



RadiSys ARTIC960 STREAMS Environment Reference

Figures

Figure 1-1.
Figure 5-1.
Figure 5-2.
Figure 5-3.
Figure 5-4.
Figure 6-1.

Figure 6-2.
Figure 6-3.
Figure 7-1.
Figure 7-2.

i

System Unit and Co-Processor COMPONENES.........cieireerereriieriereseereseesessesesse s s sesessesenesseses 3
Example of an On-card Lower-end INTErface.........cooveiiiiinninne e 28
Registering a Cross-bus Driver With OSS..........ccoiiiire e 33
Linking an On-card Stream Segment with the CroSs-buS DIIVES ..o 34
Unlinking an On-card Stream Segment from the Cross-bus DIIVES.........cccovvenninninnieeeeeeeens 36
AlX Application Device Driver Communication with Radi Sys ARTIC960 Adapter

APPITICALTON DEVICE DITVES ...ttt st st sttt ettt bne 68
0S/2 ADD Communication with RadiSys ARTIC960 DeVvice DIVEX .......ccccvivinenennennesneeee 69
0S/2 ADD (Media Access Control Driver) (EXampPle) ......ccoeeririrnirnirneseeeeseeesee e 69
Downstream FIow — SMI_TRY ALLOC SitUBLIONS........coceerrrirnierinierieie s seenennes 9
ErrOr @N0 TraCe LOGOENS. . ..eiveuereeuerieuirteeeeteseetesesteseeteseebesaebesae e ste st stesesbeseebeseebeseeseseeseseebeneebeseeneseeneneas 105



Contents

Tables

Table 3-1.
Table 3-2.
Table 3-3.
Table 3-4.
Table4-1.
Table 4-2.
Table 5-1.
Table 5-2.
Table 5-3.
Table 5-4.
Table 5-5.
Table 5-6.
Table 5-7.
Table 5-8.
Table 5-9.

Table 5-10.
Table 5-11.
Table 5-12.
Table 5-13.
Table 5-14.
Table 5-15.
Table 5-16.
Table 5-17.
Table 5-18.
Table 5-19.
Table 5-20.
Table 5-21.
Table 5-22.
Table 5-23.

Table 6-1.
Table 7-1.
Table 7-2.
Table 7-3.
Table 7-4.
Table 7-5.
Table 7-6.
Table 7-7.

L 0BO-1IME PArAIMELETS. ... .cue ettt ettt ettt st b ettt e be e b e seeb et ebeseebeseebe e 10
ErTOr ClasSifiCAION. .. ..ottt ettt et st st st ettt b e e b e 14
INItIAlTZAETON EFTOIS....c.ectiecticeceese ettt sttt n et et 14
(o= o o] USRI 15
Standard Kernel FUNCHIONS (SKFS) .....couiitiiieiiieie ettt sttt st s 18
OSS Kernel FUNCLIONS (OKFS) ..ottt sttt 20
Requests for CXB_OSS REQ Operation (Mandatory) .........ccoveireireeneineeesieesieesieesie s sessenens 42
Reguests for CXB_OSS REQ Operation (Optional).........ccoerereririeirieineeeeesie e 42
STE_OPEN ...ttt sttt bbb bbbk ee bbb e e e e bbb s b et e b e et b b st e s nnenas 48
STE _CLOSE ...ttt ettt eb ettt bbbt e b bbbkt b ke b e e ee b e b e e b e b e b e et b et bt nes b nas 49
STE _XSEND Dal@—IMESSAJES........coouiiueeieitieniesieeiie sttt eteesee st e seesaeesesshesasesbeessesse s e e sseeneesaessesaesnsens 49
M _FLUSH-MESSA0E. ... eeeeeereereeieeeseresiesesesesesaesenesesessesesesesteseseessesesenesessesssenssessesesensssesensnsssesesenens 50
M_READ—IMESSBJE. ......eeeitiriiiiri ettt st e e n e sr e e e e 51
M STARTIMESSAGE. ...ttt ettt st b e e e s he b e e st e bt eaeesbesaeeseesaeebeeeesbeeneesresnnenes 51
M STOP—IMESSAJE. .....ccueiiieiteeieet ettt sttt ettt ettt b e s beshe e e e sae et e eae e bt eae e besaeeseesaeenbe s e e sbeeneesaeennees 52
M _STARTI—MESSAGE. ...c.ecvveuinireeiete ettt et st b ekttt et s bbbt b es b et bt ebeene bbb 52
M _STOPRI—IMESSAGE ...ttt ettt sttt et b et eh et b e er e b neene e e e s ene e e e 53
ST I S U 1S e [ o O 53
ST I R 2 O oo (OO T 54
STE_XLINK m— TOCH ettt ettt st s 55
STE_XLINK m TOCH ettt ettt bbbt nbe s 56
STE XUNLINK — HOC 1.ttt sttt s 57
STE_XUNLINK —= HOC ..ttt s sae e enessesesene e ssesenesessnsenas 58
STE_XLOOK —— HOCH ...ttt st sesese e s enenessesesenesessesenesensnsenas 59
ST I S N Tt T o o TSR 60
STE XLIST mm TOCH ..ttt bbbttt sttt e 61
STE_XSETCLTIME — HOC ...vtiiiietteeiresieiee sttt bbb 62
STE_XGETCLTIME — TOCH ...ttt s 63
STE_XRECEIVE — RESPONSE COUE ..ottt st 64
SAL RUNGIME VATADIES ...ttt 66
TN I 1 o 1 o ST 72
SAL Responses Received by the Response Handler ..o 73
High-Priority MESSAgES ......ciiitirieiie ettt bbb et h e s he et et e b seene e e ene e e ene 75
Descriptions of Supported S96_i0Ctl COMMANGS ...........ciuirierierieeiereer e 84
EITOF COUBS......neeteeeteeeteee ittt st st s b e e b et st e bt s e e st e et et et e e e st e b neebeseeb et et e neeneneeneneas 108
Additional Error Codes Returned by OS/2 APIS.......ccoooireiieiieiesee st 108
Additional Error Codes Returned by WIndows NT APIS ... 109

Xiii



RadiSys ARTIC960 STREAMS Environment Reference

Xiv



RadiSys ARTIC960
STREAMS Overview

This book provides information on the Radi Sys ARTIC960 On-card STREAMS
environment (hereafter called RadiSys ARTIC960 STREAMS). Before using this
information, you must be familiar with the UNIXt STREAMS architecture.

The RadiSys ARTIC960 runtime environment provides the standard UNIX System V
STREAMS Releases 3 and 4 tool set for running STREAM S-based module/drivers on an
RadiSys ARTIC960 adapter. Benefits associated with RadiSys ARTIC960 STREAMS on
an RadiSys ARTIC960 adapter are asfollows:

» RadiSys ARTIC960 STREAMS off-loads the system unit from running
communication protocol stacks by downloading protocol stacks to the
Radi Sys ARTIC960 adapter.

* RadiSys ARTIC960 STREAMS allows a STREAM S-based module/driver, written
under the UNIX System V STREAMS Releases 3 and 4 specification, to run in the
RadiSys ARTIC960 kernel environment from a UNIX or non-UNIX
operating system.

* RadiSys ARTIC960 STREAMS provides aflexible, portable, and reusable set of tools
for development of system communication services following a widely-distributed
standard in the industry.

* RadiSys ARTIC960 STREAMS allows creation of independent modules that offer
standard data communi cations services and the ability to manipulate those modules on
astream.

*  From the system unit, an on-card STREAM S-based module/drivers can be
dynamically loaded and interconnected (linked) on an Radi Sys ARTIC960 adapter,
making it possible to connect protocol stack drivers from various vendor sources.

To provide streams access and services to system unit applications, RadiSys ARTIC960
STREAMS consists of four major parts:

STREAMS960 Application Device Driver (S960ADD)

A devicedriver that allows AIX STREAMS applications to communicate with a
STREAMS module or driver on the adapter.

STREAMS Access Library (SAL)

A system unit component that provides the access to the On-card STREAMS Subsystem
through a system device driver application program interface (API) from both UNIX- and
non-UNIX-based operating systems.

Programming to the SAL interfaceis needed only if you cannot use the AIX S960ADD.
See Chapter 6, STREAMS Access Library , for more information.



RadiSys ARTIC960 STREAMS Environment Reference

On-card STREAMS Subsystem (0OSS)

An on-card component that provides the UNIX System V STREAMS Releases 3 and 4
tool set on an RadiSys ARTIC960 adapter.

See Chapter 3, On-card STREAMS Subsystem and Cross Bus Driver , for
more information.
RadiSys On-card STREAMS Cross-Bus Driver (ESS)

An on-card component that provides the support to transmit STREAMS data across the
system bus between SAL and OSS. See Chapter 3, On-card STREAMS Subsystem and
Cross Bus Driver for information on how to load this separately loaded module.

If you need other cross-bus support, see Chapter 4, STREAM S-based Module/
Driver Information , for instructions on how to write a cross-bus driver.

Figure 1-1 illustrates how these different componentsinteract with each other between the
system unit and an RadiSys ARTIC960 adapter.



Chapter 1: RadiSys ARTIC960 STREAMS Overview

APPS APPL AFFS
Systen Umit
STREAMS

L1 ‘ Strean Segrent Env i rornent.

¥

5

T

L Applicalion Dewice Driver

H (K00 oy S9E0A00)

u ' I\i‘il‘ﬂ.&"[l ’

] i e

1 STREAMS Access Library

T —

[5AL}
| ARTICSED Device Driver

R ———— 1l S I T — [ A1 | e p—
5 —

R MLCID Subsystbem

T —

1 |

[ SCE  Subsystenm

9 ARTIC960 —_

& —

a Kernel Cross-Bus Oriver {355

v

A

u]

L]

P

1 On-card STREAMS Subsysten Shared Monory foar
L | STREAMS Data Messeges
& +— txchanged Between {55

(085) and Sl

l T Strean Segrent

STREANS-Based Module

l ]' Strean Segrent

FTREANS-Based Driver

Hardware Devloes

oL b

Figure 1-1. System Unit and Co-Processor Components




RadiSys ARTIC960 STREAMS Environment Reference




AlX STREAM S960 Application
Device Driver

The STREAM S960 application device driver (S960ADD) allows AIX STREAMS
applications to communicate with a STREAMS module or driver on the adapter. With the
S960ADD and OSS, STREAMS modules on the AIX system unit can put messages

(putmsg) and get messages (getmsg) from STREAMS modules or drivers running on the
Radi Sys ARTIC960 adapter.

If you are using S960ADD, you do not need to develop your own cross-bus device driver
or program to the STREAMS Access Library (SAL).

Configuration
You can change or list parameters of the STREAMS S96ADD or its devices.

STREAMS S960ADD
To change or list parameters to configure the S96ADD, do one of the following:
* Usethe STREAMS-specific chdev command

* Usethe SMIT menu Change/Show Char acteristics of RadiSysRadiSys ARTIC960
STREAM S Device Driver.

Using the Command Line

| ssue the command:

chdev -l 'ric96add0’ <-a CardPool Si ze=xxx> <-a CardPacket Si ze=YYY>
<-a Sal Pi peTi neout =T> <-a Sal MaxUpstrLen=LLL>

Parameters

CardPoolSze

Thisisthe number of buffers allocated. The size of each buffer is defined by
CardPacketSize. The total amount of memory used on the adapter is
(CardPacketSize * CardPool Size) bytes. The default size is 200 buffers.

CardPacketSze
Thisisthesize of abuffer allocated on an adapter. S960A DD and the cross-bus
driver usethese bufferswhen transferring amessageto the adapter. Thedefault
sizeis 512 bytes.

CardPacketSize
Thisisthesize of abuffer allocated on an adapter. S960A DD and the cross-bus
driver usethese bufferswhen transferring amessageto the adapter. Thedefault
sizeis 512 bytes.



RadiSys ARTIC960 STREAMS Environment Reference

Sal PipeTimeout
Thisisthe value in seconds and defines the timeout value used by SAL in case
of pipe full condition. The default is 5 seconds.

SalMaxUpstrLen
Thisisthe maximum size of a message sent upstream from the adapter to
ADD. The default size is 4106 bytes.

Using the SMIT Menu

To display the STREAM S S960A DD configuration information:

1. Typesmtty

Select Devices.

Select Communication.

Select RadiSys ARTIC960 STREAM S Device Driver.

Select Change/Show Characteristics of RadiSys ARTIC960 STREAM S Device
Driver.

Select ric960addO.

7. Increase or decrease the parameters as needed. Then press Enter to change.

o > N

o

STREAMS S960ADD Devices

To change or list parameters to configure the STREAMS S96ADD devices, do one of the
following:

*  Usethe STREAMS-specific cst960dev command

* Usethe SMIT menu Change/Show Characteristics of Devices of
RadiSys ARTIC960 STREAM S Device Driver.

Using the Command Line

I ssue the command:

cst 960dev -p <Hi Wat | LoWat > &l brk. - v<val ue>&r brk

The command device parameters follow:

High Water Mark (HiWat)
Thisisthe high water mark for STREAMS queues flowing from the adapter.
Thisvalue is the number of bytes contained in a queue before flow control
begins to block messages from being added to the STREAMS queue. The
default is 0x1000 bytes.

Low Water Mark (LoWat)
Thisisthe low water mark for STREAM S queues flowing from the adapter.
When the value of bytes remaining in aqueue reachesthis level, the queueis
unblocked by STREAMS. The default is 0x200 bytes.

Using the SMIT Menu
To display the STREAMS S960ADD devices configuration information:



Chapter 2: AIX STREAMS960 Application Device Driver

Type: smitty

Select Devices.

Select Communication.

Select RadiSys ART1C960 STREAM S Device Driver.

Select Change/Show Char acteristics of Devices of RadiSys ARTIC960
STREAM S Device Driver.

Increase or decrease the parameters as needed. Then press Ent er to change.
7. Reboot the system to have the changes take effect.

o N PE

o

Enabling/Disabling STREAMS

When the SO960ADD isinstalled, the device driver periodically queries all the

Radi Sys ARTIC960 adapters found in the system to determine when the OSS and the
cross-bus driver (ESS) are downloaded to the adapter. These queries are usually harmless,
but in cases where they impact the performance of non-STREAMS adapters, it might be
desirable to unconfigure the STREAMSS environment on the adapters.

STREAMS queries can be disabled by doing one of the following:
* Using the STREAM S-specific setaddmask command.

* Using the SMIT menu Configure STREAM S Support for All
RadiSys ARTIC960 Adapters.



RadiSys ARTIC960 STREAMS Environment Reference

Using the Command Line

I ssue the command:

setaddmask -s ricioX -o <0| 1>
where

X isthe adapter number, and 0 means disable and 1 means enable in the <0|1> parameter..

-% If STREAMS is not configured on an adapter and a STREAMS message is
sent, the application is returned an ENOCONNECT error.

Using the SMIT Menu

To display the STREAM S S960ADD devices configuration information:

Type: smitty

Select Devices.

Select Communication.

Select RadiSys ARTIC960 STREAM S Device Driver.

Select Configure STREAM S Support for All RadiSys ARTIC960 Adapters.
Select Enable/Disable STREAM S Support for an RadiSys ARTI1C960 Adapter.
Select the correct adapter.

© N o g~ w NP

Use the Tab key to toggle between Enable and Disable, and then press Enter
to change.

Supported S96ADD APIs
The S960ADD supports the following APIs:

open
close
ioctl
getmsg
putmsg



On-card STREAMS Subsystem
and Cross Bus Driver

An on-card component called On-card STREAMS Subsystem (OSS) providesthe UNIX V
STREAMS Releases 3 and 4 tool set on an RadiSys ARTIC960 STREAMS.

An on-card component called On-card STREAMS Cross-Bus Driver (ESS) providesthe
support to transmit STREAM S data across the system bus between the STREAM S Access
Library (SAL) and the OSS.

Loading On-card STREAMS Subsystem

The OSS must be loaded onto an RadiSys ARTIC960 adapter prior to any On-card
STREAM S-based modul e/drivers process. Use the RICLOAD system utility to load the
OSS (ric_oss.rel). For information on RICLOAD, refer to the Radi Sys ARTIC960
Programmer’s Reference. The OSS runs at a privileged high priority when loaded onto an
Radi Sys ARTIC960 adapter.

% Refer to the RadiSys ARTIC960 Programmer’s Reference for information
about loading the kernel and subsystems.

Loading On-card STREAMS Cross-Bus Driver (ESS)

If the RadiSys ARTIC960 cross-bus support is being used (that is, you did not write a
cross-bus driver and plan to use the cross-bus driver provided with the RadiSys ARTIC960
support), use the RICLOAD system utility to load ESS (ric_ess.rel) after the SCB
subsystem and OSS.

Configuring On-card STREAMS Subsystem

Configuration for the On-card STREAMS Subsystem is done through load-time
parameters that can be passed on the command line or through a configuration file when
using RICLOAD. These parameters take the form of keywords (representing specific
parameters) followed by an equal sign (=) and their value. The encoding of these
parameters follows the same rules as described in the RadiSys ARTIC960 Programmer’s
Reference. The configuration parameter values of the OSS are independent of the
operating system being used..

-% Refer to the RadiSys ARTIC960 Programmer’s Reference for information
about configuring the kernel and subsystems. There is no specific tuning of
configuration parameters for operation of the RadiSys ARTIC960 STREAMS.

Table 3-1 describes the load-time parameters. All parameters are numeric decimal.



RadiSys ARTIC960 STREAMS Environment Reference

Parameter

Range

Table 3-1. Load-time Parameters

Default

Description

BUFREGION

0-1

0

This parameter determines how memory addresses for
RadiSys ARTIC960 STREAMS buffers are formatted. If
BUFREGION = 0 or is not specified, the memory addresses are
in little endian format. If this parameter is specified as 1,
memory addresses for STREAMS buffers are in the big endian
format.

Once the buffer pool is allocated, all STREAMS data buffers
addresses have the desired format.

EXPFACTOR

1-(no

upper
limit)

Expansion factor for RadiSys ARTIC960 STREAMS resources.

This parameter indicates the number of units to increase a
resource pool. Expansion is realized until the maximum number
of resources is allotted.

LOWSCALE

1-99

70

Watermark (in percent) for low-priority RadiSys ARTIC960
STREAMS user-data-buffer memory allocation.

This parameter indicates a watermark under which the
RadiSys ARTIC960 STREAMS user-data-buffer memory
allocation will fail for low-priority requests. For example, using
the default value, requests of low-priority memory allocations
are honored as long as no more than 70% of the total

RadiSys ARTIC960 STREAMS user-data-buffer memory pool is
allocated (at least 30% of the pool is free).

MAXBLOCKLEN

1-(no

upper
limit)

4096

This parameter indicates the maximum length for the
user-data-buffer portion of a stream data block (dblk_t)
allocation. This value represents the maximum value (in bytes)
that an on-card STREAMS-based module/drivers can specify
during an allocb Standard Kernel Function (SKF) API. This size
must not include the data (dblk_t) or message (mblk_t) block
used to construct the stream message.

MAXDATAB

1-(no

upper
limit)

200

This parameter indicates the maximum number of

RadiSys ARTIC960 STREAMS user-data-buffers (size
determined by the MAXBLOCKLEN parameter) that can be
allocated by the OSS. Initially, the pool of the

RadiSys ARTIC960 STREAMS user-data-buffer memory is
created with a minimum amount of buffers (specified by the
EXPFACTOR parameter) and expanded as needed when
requests from the on-card STREAMS-based module/drivers
require new buffer allocations. Once expanded to the full
maximum number specified with this parameter, the on-card
STREAMS-based module/drivers program’s request for memory
is not satisfied until RadiSys ARTIC960 STREAMS
user-data-buffer memory is released. Depending on the priority
of the memory allocation request, the amount of available
memory for allocation is determined by a scale factor specified
by the LOWSCALE and MEDSCALE parameters.

10



Chapter 3: On-card STREAMS Subsystem and Cross Bus Driver

Parameter Range Default

Description

MAXEXTB 1-(no 200

upper
limit)

This parameter indicates the maximum number of

RadiSys ARTIC960 STREAMS extended data blocks managed
by the On-card STREAMS Subsystem. Initially, the

RadiSys ARTIC960 STREAMS extended data blocks’ pool is
created with a minimum amount of blocks (specified by the
EXPFACTOR parameter) and expanded as needed when
on-card STREAMS-based module/driver’'s requests require new
block allocations to take place (using the esballoc SKF API).
Once expanded to the full maximum number specified with this
parameter, the STREAMS-based module/driver’s request for
extended data blocks is not satisfied until one or more are
released. Depending on the block allocation request’s priority,
the amount of available blocks for allocation is determined by a
scale factor specified by the LOWSCALE and MEDSCALE
parameters.

MAXHIGHB 1-(no 4

upper
limit)

This parameter indicates the maximum number of STREAMS
Access Library (SAL) data buffers (size determined by the
MAXBLOCKLEN parameter) that are allocated by the OSS and
available exclusively for the system unit SAL to realize
high-priority RadiSys ARTIC960 STREAMS message
allocation. Initially, the SAL data buffers’ pool is created with the
default value specified by this parameter. Therefore, there is no
further pool expansion because it is allocated at its maximum.

MAXSCBQUEUED 3—(no 300

upper
limit)

This parameter indicates a threshold beyond which transmission
of RadiSys ARTIC960 STREAMS messages between the
system unit and a given RadiSys ARTIC960 adapter, in the
direction where congestion occurs, is stopped. Transmission
resumes when the partner side (SAL or OSS) dequeues enough
messages so that a low watermark level is reached (defaulted to
one third of this parameter’s value, which is currently 100). One
direction being flow controlled does not prevent the other from
functioning properly if its flow is clear. When the flow gets
controlled at this level, all RadiSys ARTIC960 STREAMS
opened with the RadiSys ARTIC960 adapter at that time get
flow controlled for their low-priority messages, regardless of
their own congested status. Reaching this threshold denotes a
major communication or configuration problem between the
system unit and the RadiSys ARTIC960 adapter. Finer tuning
might be necessary according to the host’'s speed and/or
available co-processor adapter memory.

11



RadiSys ARTIC960 STREAMS Environment Reference

Parameter Range Default

Description

MEDSCALE 1-99 90

Watermark (in percent) for medium priority RadiSys ARTIC960
STREAMS user-data-buffer memory allocation.

This parameter indicates a watermark under which

RadiSys ARTIC960 STREAMS user-data-buffer memory
allocation will fail for medium priority requests. For example,
using the default value, medium priority memory allocations’
requests are honored as long as not more than 90% of the total
RadiSys ARTIC960 STREAMS user-data-buffer memory pool is
allocated (at least 10% of the pool is free).

High-priority Requests

High-priority requests are not subject to restriction and are
honored until there is no more RadiSys ARTIC960 STREAMS
user-data-buffer memory available.

MINMSGLEN 0—(no 64

upper
limit)

The minimum amount of bytes to take into account in a queue
load when an RadiSys ARTIC960 STREAMS message
is queued.

This parameter indicates a minimum amount of bytes that are
counted in a queue load (q_count field) when a message whose
length is lower gets queued. The purpose is to ensure that a
stream carrying short messages does not exhaust memory
resources and that flow control is activated before a large
amount of messages get queued. A value of 0 disables this
feature and the real accounting takes place, regardless of the
length of the RadiSys ARTIC960 STREAMS message.

STRMS_PER_TASK 1-65536 1048

This parameter determines the maximum number of streams
that can be opened by all system unit application processes.
When the application process of a system unit opens a stream
with a STREAMS-based driver, it allocates one file descriptor
from the OSS.

STRSCBQUEUED 3-(no 30

upper
limit)

This parameter indicates a threshold beyond which transmission
of RadiSys ARTIC960 STREAMS messages between one
system unit stream’s segment and a given RadiSys ARTIC960
adapter stream'’s segment, in the direction where congestion
occurs, is stopped. Transmission resumes when the partner
stream participating in the communication dequeues enough
messages so a low watermark level is reached (defaulted to one
third of this parameter’s value, which is currently 10). One
direction being flow controlled does not prevent the other from
functioning properly if its flow is clear. When the flow gets
controlled at this level, only the stream being congested at that
time gets flow controlled for its low-priority messages. See Flow
Control on page 76 for more information.

12



Chapter 3: On-card STREAMS Subsystem and Cross Bus Driver

Parameter Range Default Description

SRVSLICE 1-(no 8 Maximum number of messages delivered when using getq SKF
upper API during the same service procedure.
limit) This parameter indicates a threshold above which a getq SKF

API returns null (no more message) while having already
delivered the specified number of messages during the time the
same service procedure was run without being interrupted.
Nevertheless, when this threshold is reached, the service
procedure is automatically rescheduled after other service
procedures have had a chance to run. The purpose of this
feature is to enhance the RadiSys ARTIC960 STREAMS
scheduling scheme by adding fairness among different
applications’ type, thus regulating RadiSys ARTIC960
STREAMS traffic.

This feature is in effect only for the queue in service. If a
message is taken out from another queue than the one being
serviced, the feature will not apply.

This support is transparent to STREAMS-based module/drivers,
but developers should pay attention to the following note before
enabling the feature.

Attention

Some on-card STREAMS-based module/drivers programs
could be sensitive to such processing and not be able to support
this feature. This is particularly true when a driver uses the null
condition being returned as a trigger to update its own state and/
or flush queues, and so forth. The feature should then be
disabled by setting a fairly high value for this parameter, thus
never reaching the threshold triggering the processing. (A
reasonable value would be 0x0000ffff, for example, as it is very
unlikely to have that amount of messages queued at one time in
a given queue.)

Configuring On-card STREAMS Cross-Bus Driver

ESSis not configurable.

Initialization Error and Exception Codes

When afailure occurs during the On-card STREAMS Subsystem initialization’s phase, an
error code is returned, which can be retrieved through the application loader’s —w option.
For kernel return codes, refer to the Radi Sys ARTIC960 Programmer’s Reference.

OXEERRRRRR
where:
EE Isthe error code part

RRRRRR Isthe kernel return code part (the lower six hexadecimal digits of the return
codes listed in the RadiSys ARTIC960 Programmer’s Reference.

13



RadiSys ARTIC960 STREAMS Environment Reference

Initialization Errors

14

Table 3-2. Error Classification

Error Code Description

OxF1 Runtime parameter failure (OSSINIT_PARAM)

OxF2 Memory allocation failure (OSSINIT_ALLOC)

OxF3 Miscellaneous allocation failure (OSSINIT_MEMORY)

OxF6 Semaphore failure (OSSINIT_SCHEDSEM)

OxF7 Process information failure (OSSINIT_PRIORITY)

OxF8 Cross-Bus Main Program Loop (MPL) failure (OSSINIT_CXMPL)

O0xF9 On-card Main Program Loop failure (OSSINIT_MPL)

OxFA OSS Statistics setup failure (OSSINIT_STAT)

OxFB Log device driver failure (OSSINIT_LOGDRVR)

OxEO Cross-Bus service failure (ESSINIT_INITIALIZE)

0xCO0 Memory manager service failure (CBMINIT_INITIALIZE)
Table 3-3. Initialization Errors

Error Code Description

O0xF1IRRRRRR Error passing a runtime parameter. See RadiSys ARTIC960
Programmer’s Guide and Reference for return code part.

0xF2000001 Invalid MAXBLOCKLEN value.

0xF2000002 Error registering data buffers memory pool.

0xF2000003 Error expanding data buffers memory pool.

0xF2000004 Error registering expanded buffers memory pool.

0xF2000005 Error expanding expanded buffers memory pool.

0xF2000006 Error expanding timers pool.

0xF2000007 Error registering high-priority buffers memory pool.

0xF2000008 Error expanding high-priority buffers memory pool.

0xF3000000 Task table allocation.

OXF6RRRRRR Error creating OSS scheduling semaphore. Return code from
CreateSem() kernel service.

O0xF7RRRRRR Error setting OSS priority. Return code from Query/SetPriority()
kernel service.

0xF8000001 Error allocating cross-bus MPLs queues.

0xF9000001 Error allocating on-card MPLs queues.

OXFARRRRRR Error allocating memory for OSS statistics. Return code from
CreateMem() kernel service.

OXFBRRRRRR Error installing the Log device driver. Return code from s96_devinst()
OSS service.

OXEORRRRRR Error initializing cross-bus service.

O0XCORRRRRR Error initializing Memory Manager Service.




Chapter 3: On-card STREAMS Subsystem and Cross Bus Driver

Runtime Exceptions

The OSS might report several types of exceptions during runtime panic situations. These
exceptions are fatal errors. When the exception occurs, the exception data should be
extracted through the Radi Sys ARTIC960 status utility using the “ exception conditions’
item from its main menu. The format of each of the exceptions shown in Table 3-4 follows
the exception display format for the utility.

Table 3-4. Exceptions

Exception Code Exception Data (word 0) Exception Data (word 1)
0x04 (OSSERR_QELM) Doublelinked head? element?

0x05 (OSSERR_QUERYPROCESS) QueryProcessIinExec retcode n/a

0x07 (OSSERR_PUTQUEUE) queue_t! mblk_t*

0x09 (OSSERR_REQSCHEDSEM) RequestSem retcode Semaphore handle
OX0A (OSSERR_RELSCHEDSEM) ReleaseSem retcode Semaphore handle
0x0B (OSSERR_RECEIVE) queue_t! mblk_t*

0x0D (OSSERR_MALLOC) n/a Size requested (in bytes)
OX0E (OSSERR_BUFCALL) Reason (EAGAIN,EINVAL)

OXOF (OSSERR_INVCODEPATH) n/a n/a

0x10 (OSSERR_PANIC) n/a char string*

0x11 (OSSERR_TIMER) Start/StopSwTimer retcode timeol

1 Represents a pointer

2 Represents the address of a pointer

15



RadiSys ARTIC960 STREAMS Environment Reference

16



STREAM S-based M odulée/
Driver |nformation

This chapter contains information on how to build an on-card STREAM S-based module/
driver and information about the following available services to the STREAM S-based
module/driver application processes.

e Standard Kernel Functions (SKFs)
* On-card STREAMS Subsystem (OSS) Kernel Functions (OKF)

Restrictions

System Calls (getmsg, getpmsg, putmsg, and putpmsg) are not provided by the
RadiSys ARTIC960 STREAMS because an on-card stream is opened, controlled, and
maintained from the system unit.

Also, RadiSys ARTIC960 kernel callsthat block are not allowed to be used by an on-card
STREAMS module or driver because OSS is the dispatching kernel when |oaded.

All services are usable at RadiSys ARTIC960 STREAMS service procedure time, which
is the regular mode STREAM S-based module/drivers are run under. However, many
message handling services cannot be used from an interrupt handler. This could impact
any STREAM S-based module/driver’s design.

Transparent loctl is not supported by RadiSys ARTIC960 STREAMS. Also, banding is
not supported by RadiSys ARTIC960 STREAMS; therefore, services using banding
parameters are not listed in the following table..

Notes

» A STREAMS-based module/driver is not intended to have a signal handler,
an asynchronous handler, or a process exit routine. Consequently, these
modes are not specified in Table 4-1 or Table 4-2.

» The Macro column specifies whether the function is provided as an inline
macro.

The Interrupt Handler column specifies whether the function can be called from an
interrupt handler.

SKF Functions

All functions listed in Table 4-1 are considered Standard Kernel Functions (SKFs) when
using UNIX System V STREAMS terminology. Refer to the UNIX SVR4.2 Device Driver
Reference for information on these functions.

17



RadiSys ARTIC960 STREAMS Environment Reference

Table 4-1. Standard Kernel Functions (SKFs)

Function Macro m;irdrlueﬁt Description

adjmsg No Yes?! Trims bytes in a message

alloch No Yes?! Allocates a message, data block, and data buffer
backq No No Returns a pointer to the queue behind a given queue
bcopy Yes Yes Copies a memory zone

bufcall No Yes! Recovers from failure of the allocb function

bzero Yes Yes Zeroes a memory zone

canput No No Tests for available space in a queue

copyb No Yes! Copies a message (single)

copymsg No Yes! Copies a message (multiple)

datamsg Yes Yes Tests whether the message is a data message
dupb No Yes?! Duplicates a message block descriptor (single)
dupmsg No Yes! Duplicates a message block descriptor (multiple)
enableok Yes No Enables a queue to be scheduled for service
esballoc No Yes?! Allocates a message and data block (no data buffer)
esbbcall No Yes! Recovers from failure of the esballoc function

flushq No No Flushes a queue

freeb No Yes?! Frees a message (single)

freemsg No Yes?! Frees a message (multiple)

getadmin No No Returns a pointer to a module

getmid No No Returns a module 1D

getq No No Gets a message from a queue

insq No No Puts a message at a specific place in a queue

linkb No Yes Concatenates two messages into one

Major Yes Yes Extracts the major portion of a device number
makedev Yes Yes Makes a device number with major/minor numbers
minor Yes Yes Extracts the minor portion of a device number
msgdsize No Yes Gets the number of data bytes in a message
noenable Yes No Prevents a queue from being scheduled

OTHERQ Yes Yes Returns the pointer to the write queue

pullupmsg No Yes! Concatenates and aligns bytes in a message

putbqg No No Returns a message to the beginning of a queue
putctl No No Passes a control message

putctll No No Passes a control message with a one-byte parameter
putnext Yes No Passes a message to the next queue

putq No No Puts a message on a queue

genable No Yes Puts a queue in the scheduling ring

greply No No Sends a message on a stream in the reverse direction
gsize No No Finds the number of messages on a queue

RD Yes Yes Gets the pointer to the read queue

18



Chapter 4: STREAMS-based Module/Driver Information

rmvb No Yes Removes a message block from a message

rmvq No No Removes a message from a queue

splstr Yes Yes Sets the processor level to disable interrupts

splx Yes Yes Exits a previous splstr condition

strlog No No Generates error-logging and event-tracing messages

strqget No Yes Obtains information about a queue

strgset No No Changes information about a queue

suser No Yes Informs about a user privilege

testb No Yes Tests if given message size can be allocated

timeout No No Schedules a function to be called after a specified interval
environment

unbufcall No Yes?! Cancels a pending bufcall

unlinkb No Yes Removes a message block from the head of a message

untimeout No No Cancels a pending timeout

WR Yes Yes Gets the pointer to the write queue

1 Call available from Interrupt Handlers only for OSS versions 1.2.0 and higher.

19



RadiSys ARTIC960 STREAMS Environment Reference

OSS Kernel Functions

20

The RadiSys ARTIC960 STREAMS encompasses an extra set of functions for
STREAMS-based module/driversto use. These functions are called OSS Kernel
Functions (OKFs).

The sections following Table 4-2 contain more information about these functions.
Table 4-2. OSS Kernel Functions (OKFs)

Function Macro Interrupt Description

Handler
ghipri Yes No Sets a queue at high priority when scheduled
glopri Yes No Sets a queue at default priority when scheduled
s96 devinst No No Dynamically installs a STREAMS-based module/

drivers in the OSS switch tables




Chapter 4: STREAMS-based Module/Driver Information

ghipri

Sets aqueue at high priority when scheduled

Macro Prototype

ghi pri ( queue_t *q);

Parameters

q Input. The queue pointer for which high scheduling priority hasto be enabled.
Remarks

This function enhances the Radi Sys ARTIC960 STREAMS scheduling scheme by
allowing some queues in the system to be prioritized when they are candidates for
scheduling. A high-priority queue will be scheduled after all already queued high-priority
gueues but before any low priority ones. This function can be called during the queue
open process or at any other time to switch from/to high priority to/from low priority.

21



RadiSys ARTIC960 STREAMS Environment Reference

glopri

22

Sets aqueue at low priority when scheduled

Macro Prototype

gl opri ( queue_t *q);
Parameters
q Input. The queue pointer for which regular scheduling priority hasto
be enabled.
Remarks

This routine enhances the Radi Sys ARTIC960 STREAM S scheduling a gorithm by
allowing some queues in the system to be prioritized when they are candidates for
scheduling. A low priority queue will be scheduled after all already queued high- and
low-priority queues (thisisthe regular mode of operation). This routine can be called
during the queue open process or at any other time to switch from/to high priority to/from
low priority.



Chapter 4: STREAMS-based Module/Driver Information

s96 _devinst
Installs a STREAM S-based module/driver into the OSS device/module switch tables.

Functional Prototype

i nt s96_devi nst (int operation,
s96conf _t *conf);
typedef struct s96conf
{
char *nane;
struct streantab *st ab;
i nt fl ags;
dev t dev;
} s96conf _t;
Parameters
operation
Input. The operation to perform. Two operations are available:
S96 LOAD_MOD
Installs a module in the modul e switch table
S96_LOAD_DEV
Installs adevice in the driver switch table
Note: After the STREAM S-based module/driver is loaded
successfully, the only way to unload it isto reset the adapter. There
is no selectable unload operation available.
conf Input. Pointer to the configuration block. The following fields are significant.

name Input. Specifies the name of the extension.
For modules, this nameis used during IOCTL operations.

For drivers, thisnameis used during SAL’ss96_open operations.
See STE_OPEN — Open Stream on page 48 for more
information. The maximum length for the name is FMNAMESZ
+ 1 (null-termination character included).

Note: FMNAMESZ is defined in the C language support
includefile.

stab Input. Points to a streamtab structure. The streamtab memory
block must be allocated by the caller and must remain allocated for
the duration of the STREAM S-based module/driver’ s load.

flags Input. Specifiesthe style of the module or driver open routine.
Acceptable values are (mutually exclusive):

S96_SVR3_OPEN
Specifies the open syntax and semantics used in
UNIX System V STREAMS Release 3

23



RadiSys ARTIC960 STREAMS Environment Reference

S96_SVR4_OPEN
Specifies the open syntax and semantics used in
UNIX System V STREAMS Release 4

dev Output. For adriver, contains the major number allocated by the
OSS. The major number isformatted as a device number, soit can
be manipulated using the major, minor, and makedev functions.

For amodule, the value returned is —1.

returned value
Output. On successful handling of the request, a value of zero (0) is returned.
An error code other than O indicates the error.

Error Codes

On failure, the routine returns one of the following error codes:

EEXIST The extension specified already existsin the OSS
switch tables.

EINVAL A parameter contains an unacceptable value.

ENOMEM Not enough RadiSys ARTIC960 memory
isavailable.

Building a STREAMS-based Driver

The OSS provides C language support to develop custom STREAM S-based modul es/
drivers running on an RadiSys ARTIC960 adapter. Such a module/driver will be built the
same way as any other RadiSys ARTIC960 process. Refer to the RadiSys ARTIC960
Programmer’s Reference for information on how to build an RadiSys ARTIC960 adapter-
resident program (RadiSys ARTIC960 process) for the RadiSys ARTIC960 adapter. In
addition, the OSS C language support includes header files and abinary library that are
used in order to make the Radi Sys ARTIC9600 process a STREAM S-based module/driver
for RadiSys ARTIC960 STREAMS.

Using the Compile Command

24

The osssvc.h header file, provided with the Radi Sys ARTIC960 STREAMS C support,
enabl es the Radi Sys ARTIC960 process to access the SKF APIs. Thisfile must be
included whenever an SKF call is made within the C language support module. All other
RadiSys ARTIC960 STREAMS includefiles are to be included when a particular
structure, prototype, or external definition is needed. The compile command must also
define compile switches. The mandatory switch is S96. Cross-bus drivers must include
the cxbuser.h file for cross-bus driver structure definitions.

Assuming the RadiSys ARTIC960 STREAMS and other Radi Sys ARTIC960 header files
are located in the directory referenced by the makefile variable RIC960_INCLUDE, the
following compile command’s template can be used to generate an object file.



Chapter 4: STREAMS-based Module/Driver Information

ic960 -c -ACA -Gbc -wl -g -DS96 -DRIC KERNEL -1. -1$(RIC960_I NCLUDE) \
danyboon. ¢ - o danyboon. o

Using the Linkedit commands

The C support library libosse.a participates in the linkedit phase of the build process and
must be included.

Assuming the Radi Sys ARTIC960 STREAMS and other Radi Sys ARTIC960 runtime
libraries are located in the directory referenced by the makefile variable RIC960_LIB, the
following linkedit command’s template can be used to generate a STREAM S-based
modul e/driver executable file or a cross-bus driver.

| nk960 - ACA -L$(RI C960 LI B) danyboon.o $(RI C960 LIB)/ricproc.ld -
| osse

-0 danyboon. rel
| nk960 -r - ACA -L$(RI C960_LIB) danyboon.o $(RIC960 LIB)/ricproc.ld
-1 osse

-0 danyboon. rel
cof 960 -1 pv danyboon. rel

25



RadiSys ARTIC960 STREAMS Environment Reference

26



Developing a
Cross-bus Driver

A cross-bus driver is a specia kind of streams driver that is linked above the OSS and
provides communication across the system bus.

The OSS needs to have one cross-bus driver loaded on the adapter and attached to
communicate with the system unit or another peer RadiSys ARTIC960 adapter. IBM
providesric_ess.rel, across-busdriver (ESS), to communicate with the STREAM S Access
Library (SAL). However, if you need to provide a different way of communicating with
the system unit and are not planning to use ESS, follow the instructionsin this chapter.
The OSS includes special macros and SKF functions for use by a cross-bus driver
described in this chapter. See Chapter 4, STREAM S-based Module/Driver Information
for other OSS functions and macros that can be used by the cross-bus driver and for
instructions on building a cross-bus driver.

After across-bus driver isinstalled, it remains attached to the OSS until the card is reset
(that is, it cannot be uninstalled).

The cross-bus driver is aloadable Radi Sys ARTIC960 subsystem whose primary task
during itsinitialization processisto register one cross-bus driver with the OSS and then go
to sleep, running exclusively under the service-processing time of OSS. When
successfully registered, it gets a handle back which it uses for al control requestsit sends
to the OSS subsystem.

Each cross-bus driver isidentified by a callback routine and a parameter field which the
driver has to provide during registration. The callback function is used by the OSS
provider to communicate to the cross-bus driver when a control request is completed or an
unsolicited event has to be delivered.

Figure 5-1 shows one example of a cross-bus driver communicating with the OSS and how
services can be used to implement a cross-bus driver. In the diagram, the inbound and
outbound cross-bus transfer represents the cross-bus driver’sinterface to the system bus..

This implementation is only an example and will change depending on
your requirements.

There should be a flow-control mechanism between the system unit application and the
cross-bus driver.

27



RadiSys ARTIC960 STREAMS Environment Reference

28

@)

@)
®3)
(4)

inbound cross-bus driver transfer

ON-CARD
CROZ5-BUS I
DRIVER W — internal emd quéue
— R
16
) }
3 &

Super Writé Srv proc ‘ Super read sryv proc

17
*| read srv proc |

.

control queues v
putbaund cross-bus
f————— driver transfer

(]

control data
| 9 12 OM-CARD STREAMS
4 SUBSYSTEM
:
M
|8
—r

| |write put proc | |rea|:| ary pr-::|

Ll ‘

ON-CARD
STREAMS-BASED
MODULE/ORIVER

Figure 5-1. Example of an On-card Lower-end Interface

Messages received through the cross-bus driver’'s upper interface are taken out from
the super write queue and processed by the cross-bus driver'swri te service
procedure (one queue for all streams).

Control messages are passed directly to the Main Program Logic (MPL) control logic
in OSS (using the cxb_control function).

Data messages are passed directly to the first On-card STREAMS module/driver if
the segment is not flow controlled (using the cxb_putnext function).

Data messages are queued in the cross-bus driver’s write flow-control queue if the
segment is flow controlled (one queue per opened stream).



Chapter 5: Developing a Cross-bus Driver

1)

(5)

(7)

(8)
(9)
(10)
(11)
(12)
(13)

(14)

(15)

(16)

(17)

Messages received through the cross-bus driver’'s upper interface are taken out from
the super write queue and processed by the cross-bus driver'swri te servi ce
procedure (one queue for all streams).

When the stream gets out of the flow control situation, the cross-bus driverswri t e
servi ce procedure is called, emptying (6) the cross-bus driver’'s write queue filled
with elements enqueued in (4). Data messages are queued in the cross-bus driver’s
write queue if the segment goes back into flow control.

The MPL control logic processes the control element given at (2) and, occasionally,
originates a stream message for the On-card STREAMS driver/module (an |_LINK
command, for example).

The On-card STREAMS module/driver forwards a data message through the OSS
read put procedure.

Control messages are given to the MPL control logic which will process and
eventually forward them to the cross-bus driver, as described in (10).

The MPL control logic sends element control blocks to the cross-bus driver through
the registered callback routine.

The cross-bus driver’s callback routine immediately performs the outbound cross-bus
transfer for the element control block.

Data messages are given to the cross-bus driver's r ead put procedure if not
flow controlled.

Data messages are queued in the OSS r ead queue if the cross-bus driver’s r ead
gueue is flow controlled (one queue per stream).

When the cross-bus driver's r ead queue becomes available, the OSS r ead
servi ce procedure gets scheduled, dequeues any data message pending in its
r ead queue and forwards them to the cross-bus driver's r ead put procedure.

Theread put procedure immediately performs the outbound cross-bus transfer for
the element control block or defers the transfer by queueing the block if outbound
transfer is temporarily unavailable. The queueing is performed in the message queue,
thus using the flow-control procedure.

When the outbound cross-bus transfer becomes available again, the cross-bus
driver’s super read servi ce procedure is run, dequeueing the internally queued
control blocks first.

Following (14), any cross-bus driver stream that was blocked because of outbound
cross-bus transfer unavailability has its r ead ser vi ce procedure run to dequeue
and send data messages outbound.

29



RadiSys ARTIC960 STREAMS Environment Reference

30

Element Control Block Structure

Element control blocks are exchanged during requests as well as responses/indications
using the GenCXB structure.

struct GenCXB

{
struct g_prefix ap; /* fixed CSS reserved area
*/
unsi gned | ong header 2[ 4] ; /* fixed header */
/1 element control block
/1 pointer to this location is passed to the control routine,
/1 however the entire GenCXB bl ock is allocated.
union el ement _ctrl _block {
struct ipch 0SS_req; /* for OSS requests
*/
struct cbms_cb cbmreq; /* Reserved
*/
} el nbl ock;
1
where:
ap Isthe queue prefix. Thisisused by OSS only as aqueueing prefix and does not

need to be initialized by the cross-bus driver. However, the cross-bus driver
can usetheentirelocation to storeits own datauntil the element control block’ s
ownership istransferred to the OSS (using cxb_control).

header2  Istheblock header. Thisisreserved for use by the cross-busdriver for itsown
purpose. Thisreserved areais 16 byteslong and should never be exceeded nor
reduced. There is no guarantee that the memory will not be atered during
processing of the request as the GenCXB control block ownershipis
transferred to the OSS when the cxb_control function is called. In the same
manner, the OSS will not rely on this memory location to store any data for
responses/indications because it also loses ownership of the location after
calling the cross-bus driver’ s callback function.

elmblock
Are the parameter blocks for various elements:

*  When the callback routine's response field elmorigin is
0SS _SCB_ELEM, the element control block will be formatted as an
ipchb block.

» When the callback routine's response field elmorigin is
CBM_SCB_ELEM, the element control block will be formatted as a
cbms_cb block..

-% cbms_cb blocks are currently not documented or supported by cross-
bus drivers.



Chapter 5: Developing a Cross-bus Driver

Callback Routine
The following explains the prototype and fields for the callback routine (cxbcallback_rtn).

voi d cxbcal I back_rtn ( cxbresp_t *resp);

t ypedef struct cxbresp

{

unsi gned | ong el mori gi n;
unsi gned | ong cxbcal | back_prm
unsi gned | ong el mbl ock_| en
union el ement _ctrl _block *el nblock ptr;
unsi gned | ong el mbl ock_neno;
unsi gned | ong reserved;

} cxbresp_t;

where:

elmorigin

Isthe origin of the response. This identifies the component delivering the
response/indication element control block to the cross-bus driver. Currently
the following values are defined:

OSS SCB_ELEM
Originating from the OSS. This must be supported by the
cross-busdriver interfaceasit conveysall stream-related elements
back to the cross-bus driver.

CBM_SCB_ELEM
Originating from the CBMS. If the cross-bus driver does not use
CBM S services, no CBM S elementswill be delivered through this
interface. Thus, this can only be optionally supported by the
cross-bus driver interface..

i% The current version of this document does not include CBMS elements.

cxbcallback prm
Callback routine's parameter. Thisvalue is specified by the cross-bus driver
during the CXB_REG_DRIVER operation and is provided unaltered during
callback. (See CXB_REG_DRIVER for details.)

emblock len
Size (in bytes) of the element control block, including its (optional) data and
control fields.

elmblock_ptr
Pointer to the beginning of the element control block containing the response
parameters. The pointer value is set to the address of the elmblock union into
the GenCXB memory block. (See page 30.) The cross-bus driver owns the
GenCXB memory block whileinits callback routine. It isthen responsible for
freeing the block (using the free() kernel service) at any time, before or after
returning from the callback routine.

31



RadiSys ARTIC960 STREAMS Environment Reference

elmblock_memo
Correlation value.

If theoriginisOSS SCB_ELEM:
This value has been specified only once by the cross-bus driver
during a STE_OPEN in the ctltypefield of the element control
block. (See page 48 for how to encode the ipcb block.)

Device Profiles

The cross-bus driver must create at least one device profile to link its cross-bus driver
gueues to the stream head queues (CXB_LINK_HEAD). To create a device profile, use
the s96_devinst function call as you would use it to install a STREAM S-based module/
driver. The following is mandatory when installing a device profile:

* UsetheS96 LOAD_DEV operation.
 Declareawrite service procedurein the streamtab structure.

» Provide high and low watermarks for the read side to ensure effective flow control for
outbound transfers.

The cross-bus driver has no limitation on the number of profiles being defined. The device
number returned by the s96_devinst function call must be saved and provided during the
link head step.

Flow Charts

32

The following charts show an example of how a cross-bus driver can be designed.



Chapter 5: Developing a Cross-bus Driver

Registering a Cross-Bus Driver

(1)
(2)

3)

(4)

Un=card
System Uit Cross-Bus Driver 0ss STREAMS-based Oriver

. cxb_control {CXE_REG_DRIVER,callback,param)

g—(l}=0

: tﬁb handla
(2}

) s?B_dE?inst[streiﬂtab_ptr]
r——(3)}—=n

j dewpro
ca=(d)

Figure 5-2. Registering a Cross-bus Driver with OSS

The cross-bus driver, during its initialization phase, registers a callback routine and a
parameter using the CXB_REG_DRIVER operation.

The OSS saves information into its cross-bus driver table, allocates a task ID for the
new cross-bus driver and, if successful, returns a handle which is used by the
cross-bus driver for its further control operations.

The cross-bus driver, during its initialization phase, registers an on-card
STREAMS-based module driver in order to create a profile containing addresses of
service procedures, queue high and low watermarks, and so forth.

The OSS saves information into its on-card STREAMS-based module/driver tables,
allocates a device number and, if successful, returns this device number which is
used by the cross-bus driver for its CXB_LINK_HEAD operation requiring a device
profile to create the cross-bus driver queue pair.

33



RadiSys ARTIC960 STREAMS Environment Reference

Linking an On-card Stream Segment

34

(1)

(@)

3)

(4)

(5)

(6)

On-card
System Unit  Crpss-Bus Driver 055 STREAMS-based Oriver

. STE_OPEN(req)
D—I]:l_?ﬂ

cxb_control (CXB_0S5 REQ,STE_OPEN,mem)
g——————(2)->p .

qupen{q.fla;s,..:l
g——————[i}—0o

Brrna
L=

. calTback (GenCx8_ptr)
ge={4)

cxb_control (X B-_II_ [NK_HEAD,devpro, $$|‘I:I

(5) =0

—_—

o -
&
I =
—
=

. STE_OPEM{resp)

==(7)

Figure 5-3. Linking an On-card Stream Segment with the Cross-bus Driver

The system unit sends down a STE_OPEN request formatted in an ipcb block. The
cross-bus driver receives the request and queues it into a STREAMS
service procedure.

The cross-bus driver service procedure gets control and detects that the element is a
STE_OPEN control block.

» Itdynamically allocates a memory block and saves the memory pointer as a memo
in the reserved ctltype field of the STE_OPEN control block. (See page 48 for
coding.) This pointer is used at (7) to initialize the g_pt r field.

It dynamically allocates a GenCXB structure block and copies the incoming ipcb
block into it.

It performs a CXB_OSS_REQ operation, using the cross-bus driver handle
acquired as described in the registration sequence in Registering a Cross-Bus
Driver on page 33.

The OSS processes the open request and calls the target driver’s queue open

routine. On return from the queue open routine, the return code is provided by the

target driver.

The OSS initiates a reply to the previous STE_OPEN request through the cross-bus
driver’s callback routine. The memo field saved by the cross-bus driver from the
STE_OPEN request is returned during the reply.

The cross-bus driver checks the open return code and, if successful, tries to link itself
to the stream head queues created by OSS for the on-card stream segment by using
the CXB_LINK_HEAD operation. The device profile has been acquired as described
in Registering a Cross-Bus Driver on page 33.

The OSS allocates a pair of queues, performs the link between the cross-bus driver
gueues and the stream head queues and then, if successful, returns a pointer on the
write queue of the allocated cross-bus driver pair.



Chapter 5: Developing a Cross-bus Driver

(7) The cross-bus driver initializes the g_ptr field of the cross-bus driver write queue with
the memo value returned from the STE_OPEN, which was a pointer on a memory
block allocated in (2). This block is used by the cross-bus driver to keep
instance-specific information about the on-card stream segment. Then it replies to
the system unit request.

(8) The callback routine is returned.

(9) The first cxb_control function is returned.

35



RadiSys ARTIC960 STREAMS Environment Reference

Unlinking an On-card Stream Segment

On-card
System Unit  Crpss-Bus Driver 055 STREAMS-based Oriver
. STE_CLOSE(req) . cxb_control (CAB_0SS_REQ,STE CLOSE) .
o =0 (11==0 .
goiose(q)

o (2}-=0

L SSE—

. callback{GenCKE_ptr)
a=—{1]

cxb_contral (CKB_UNLINK_HEAD,wg)
{4)==0

I:|":
. STE_CLOSE{resp) |
=) —

-

a<—(7)

Figure 5-4. Unlinking an On-card Stream Segment from the Cross-bus Driver

(1) The system unit sends down a STE_CLOSE request formatted in an ipcb block. The
cross-bus driver performs a CXB_OSS_REQ operation, using the cross-bus driver
handle acquired as described in the registration sequence in Registering a
Cross-Bus Driver on page 33.

(2) The OSS processes the close request. It internally marks the link between the stream
head queues and the cross-bus driver's queues as unusable and calls the target
driver's queue cl ose routine.

(3) The OSS initiates a reply to the previous STE_CLOSE request through the cross-bus
driver’s callback routine. The memo field saved by the cross-bus driver from the
STE_OPEN request is returned during the reply. The cross-bus driver recognizes that
the incoming response is a STE_CLOSE.

(4) The cross-bus driver releases the memory attached to the g_ptr field of its write
gueue and unlinks its own queues by using the CXB_UNLINK_HEAD operation. Its
pair of queues is freed at that time.

(5) The cross-bus driver responds to the STE_CLOSE request.

(6) The callback routine is returned.

(7) The first cxb_control function is returned.

36



Chapter 5: Developing a Cross-bus Driver

C Language Support

The operations, functions, and macros listed in the tables below provide information on
how to develop your own cross-bus driver to interface between the system unit and the
OSS. They are part of the OSS C language support and are described in this section. They
follow the same rules as Standard Kernel Functions (SKFs) and OSS Kernel Functions
(OKFs) explained in SKF Functions on page 17 and OSS Kernel Functions on page 20..

A cross-bus driver is not considered a STREAMS-based module/driver.

‘% Rather, it is considered a hybrid using a set of cross-bus driver commands
and STREAMS service processing time for its cross-bus driver queues.
Although functions described in the C language support for a
STREAMS-based module/driver can be used by a cross-bus driver, the
cxb_canputnext and cxb_putnext functions must be used in place of the
canput and putnext functions for downstream communication from the
cross-bus driver to the on-card stream. See Chapter 4, STREAMS-based
Module/Driver Information for a list of other functions available to the
cross-bus driver.

The Macro column specifies whether it is provided as an inline macro.

The Interrupt Handler column specifies whether it can be called from an interrupt handler.

Interrupt See
Operation Macro  Handler Description Page
Through the Cross-Bus Control Interface (cxb_control Function)
CXB_CBM_REQ No No Sends a control request to the CBMS 40
CXB_LINK_HEAD No No Links cross-bus driver queuestoan 40
on-card stream segment
CXB_0OSS REQ No No Sends a control request to the 0SS 41
CXB_REG_DRIVER No No Dynamically registers a cross-bus 42
driver into OSS.
CXB_UNLINK_HEAD No No Unlinks cross-bus driver queues from 43

an on-card stream segment

37



RadiSys ARTIC960 STREAMS Environment Reference

Interrupt See
Macro Handler Description Page
_SIZEOF _IPCB_EXTRA Yes Computes the control and data extra 44
r epl y fields in an ipcb structure
_GET_OPEN_SSD Yes Extracts the on-card stream descriptor from 45
a STE_OPEN response control block
_IS_STE_OPEN Yes Checks whether the command is a 45
STE_OPEN
_IS_STE_CLOSE Yes Checks whether the command is a 45
STE_CLOSE
_IS_IPCB_ERROR Yes Checks whether the ipcb response control 45

block has an error set

Interrupt See
Function Macro Handler Description Page
Cross-Bus Data Interface
cxb_canputnext No No Tests for available space in the next 46
driver’s write queue
cxb_putnext No No Passes a message to the next write 47
queue
cxb_control

Controls the interface between the cross-bus driver and OSS/CMBS components.

Functional Prototype

i nt cxb_control ( cxbreq_t *req);

t ypedef struct cxbreq

{
unsi gned | ong operati on;
unsi gned | ong cxbhandl e;
uni on = {
cxbreg_t reg;
cxblink t link;
cxbunlink _t unl i nk;
cxbossreq_t 0SS_req;
cxbcbnreq_t cbmreq;
{ cnd;
} cxbreq_t;
Parameters
exbhandle
Input/output
Input Thisisthe cross-bus driver handle obtained from a previous successful

CXB_REG_DRIVER operation. This handle must be provided to all other

38



Chapter 5: Developing a Cross-bus Driver

operations defined in the cxb_control function (except the
CXB_REG_DRIVER operation).

Output Thisisthe cross-bus driver handle returned during a successful
CXB_REG_DRIVER operation.

operation
Input. The following are available operations:

CXB_LINK_HEAD
Allocates and links cross-bus driver queues to an on-card stream
segment (see CXB_LINK_HEAD).

CXB_0SS REQ
Sends a control request to the OSS component (see
CXB_0OSS _REQ).

CXB_REG_DRIVER
Installs a cross-bus driver in the cross-bus switch table (see
CXB_REG_DRIVER).

CXB_UNLINK_HEAD
Unlinks and deall ocates cross-bus driver queues from an On-card
Stream (see CXB_UNLINK_HEAD).

returned value
Output. On successful handling of the request, avalue of zero isreturned. An
error code other than zero indicates the error.

Error Codes

On failure, the function returns one of the following error codes.

ENXIO The cross-bus driver’s handle isinvalid.
EINVAL A parameter contains an unacceptable value.
EPERM The operation is not permitted at thistime.
Remarks

All operations must be sent to OSS from a service procedure during OSS processing time.

39



RadiSys ARTIC960 STREAMS Environment Reference

CXB_LINK_HEAD

Allocates and links cross-bus driver queues to the on-card stream segment’s head queues.

40

Functional Prototype

t ypedef struct cxblink

{

dev t

devprofile;

unsi gned | ong ssd;

queue_

t *wg;

unsi gned | ong reserved;
} cxblink_t;

Parameters

devprofile

wo

reserved

Input. Cross-bus driver device profile number. This is the device number
assigned during a successful s96_devinst function call issued by the cross-bus
driver toinstall aprofile for its own operational queues. Queues are allocated
during the link phase according to specifications contained in this profile. Itis
possible for a cross-bus driver to have multiple outstanding profiles (as many
times as s96_devingt is called) and choose the operational one for this
particular stream connection at link time.

For more information on how to create device profiles, see Device Profiles on
page 32.

Input. On-card stream descriptor. This value should be extracted by the
cross-bus driver from the STE_OPEN response control block if the On-card
Stream has been opened successfully. This represents the on-card stream
segment that the cross-bus driver wants to link its queue pair with..

-% Setting ssd to NULL causes the cross-bus driver queues to be
allocated but not linked with any on-card stream. This feature can be
used for “super queues” allocation.

Output. Pointer to the allocated cross-bus driver write gueue. The read queue
pointer is obtained using the OTHERQ stream macro.

Input. Reserved field (must be 0).

Error Codes

EBADF

ENOMEM

EFAULT

ENOENT

The on-card stream’ s descriptor is not avalid open
stream descriptor.

Not enough RadiSys ARTIC960 adapter
memory available.

Thewq pointer isnot avalid cross-bus driver write
gueue pointer.

Device profile not installed.



Chapter 5: Developing a Cross-bus Driver

Remarks

Cross-bus queues, once alocated, are managed totally by the cross-bus driver. Their
deallocation has to take place using the CXB_UNLINK_HEAD operation at the time the
on-card stream segment is closed. The q_ptr field is free to store

instance-dependant information.

CXB_0OSS_REQ
Sends a control request to the OSS.

Functional Prototype

t ypedef struct cxbossreq

{
unsi gned | ong el mbl ock_I en;
struct ipcb *el nbl ock_ptr;
unsi gned | ong reserved;

} cxbossreq_t;

Parameters

elmblock _|en
Input. Size (in bytes) of the element control block, including its (optional) data
and control fields.

elmblock_ptr
Input. Pointer to the beginning of the element control block containing the
request parameters, formatted in an ipcb control block. The pointer valueis set
to the address of the elmblock union into the GenCXB memory block. The
cross-busdriver must use the malloc function to acquire the GenCXB memory
block. GenCXB memory block’s ownership istransferred from the cross-bus
driver to the OSS after the cxb_control functionis called. The cross-busdriver
must not perform any more operations on that GenCXB memory block, nor
reuse the memory block after it calls the cxb_control function.

reserved  Input. Reserved field (must be 0).

Error Codes

EBADF The On-card stream’ s descriptor is hot avalid open
stream descriptor.

Remarks

If an error code isreturned, the elmblock_ptr block’s ownership is retained by the caller.
OSS does not free the GenCXB memory block if it returns an error code value from this
operation. The cross-bus driver is expected to provide aresponse to the error request’s
originator because OSS will not deliver any further response for such request in error.

STREAMS data messages should be sent using the cxb_putnext function described on
page 47.

41



RadiSys ARTIC960 STREAMS Environment Reference

The CXB_0OSS _REQ operation should be used only for mandatory control requests (see
page 41). Optional requests can be formatted as STREAM S messages and sent using
either the cxb_putnext (preferred method) or the cxb_control functions.

The following requests have to be carried using the CXB_OSS_REQ operation:
Table 5-1. Requests for CXB_0OSS_REQ Operation (Mandatory)

ConnectorPage Page
STE_OPEN 48
STE_CLOSE 49
STE_XPUSH 53
STE_XPOP 54
STE_XLINK (Link) 55
STE_XLINK (Permanent Link) 56
STE_XUNLINK (Unlink) 57
STE_XUNLINK (Permanent Unlink) 58
STE_XLOOK 59
STE_XFIND 60
STE_XLIST 61
STE_XSETCLTIME 62
STE_XGETCLTIME 63

The following requests can either be carried using the CXB_OSS _REQ function or
directly as stream messages through the cxb_putnext function.

Table 5-2. Requests for CXB_0OSS_REQ Operation (Optional)

ConnectorPage Page
M_FLUSH 50
M_READ 51
M_START 51
M_STOP 52
M_STARTI 52
M_STOPI 53

CXB_REG_DRIVER

Description

Registers a callback routine into the OSS's cross-bus driver table and stores the cross-bus
driver's memo value, which will be provided during the callback routine invocation. A
cross-bus driver can register as many callback routines asit needs to accommodate its own
design. The cxbreq_t structure field cxbhandle isinitialized with the newly allocated
driver’s handleif the operation is successful. This handle must be used for all other
operations defined by the cxb_control function.

Functional Prototype

t ypedef struct cxbreg

{
voi d (*cxbcal | back_rtn)();
unsi gned | ong cxbcal | back_prm
unsi gned | ong reserved;

42



Chapter 5: Developing a Cross-bus Driver

} cxbreg t;

Parameters

cxbcallback rtn
Input. Specifies the pointer to the callback routine used by the OSS to deliver
control messages to the cross-bus driver. The callback function’s prototypeis
defined on page 31.

cxbcallback _prm
Input. Callback function parameter. This value isreturned unaltered when the
callback routine isinvoked. The content of thisvariableisdefined by how itis
used. It isprimarily intended as a pointer or index to aid the cross-busdriver in
locating instance-specific information. Its use is optional.

reserved  Input. Reserved field (must be 0).

Error Codes

ENOMEM Not enough RadiSys ARTIC960 adapter
memory available.

EMFILE Too many cross-bus drivers registered. The
maximum has been reached.
Remarks

If the operation is successful, the cxbhandle that is returned will be used in al other
operations to correlate which cross-bus driver initiated the request. All responses and
unsolicited indications will use this handle to retrieve the cross-bus driver’s callback
routine and parameters.

CXB_UNLINK_HEAD

Unlinks the cross-bus driver queues from the on-card stream segment’s head queues and
deall ocates them.
Functional Prototype

typedef struct cxbunlink

{

queue_t *Wg;

unsi gned | ong reserved;
} cxbunlink t;
Parameters

wqg Input. Pointer to the allocated cross-bus driver write queue. Thisisthe queue
pointer returned during a successful CXB_LINK_HEAD operation.

reserved  Input. Reserved field (must be 0).

Error Codes

EFAULT Thewq pointer isnot avalid cross-bus driver write
gueue pointer.

43



RadiSys ARTIC960 STREAMS Environment Reference

Macros

Remarks

The cross-bus driver should release any memory attached using the private q_ptr field
prior to issuing this operation because queues memory is freed by this operation.

The following macros are defined to ease the implementation of cross-bus drivers when
mani pulating data structures of element control blocks.

Macro Page
_SIZEOF_IPCB_EXTRA 44
_GET_OPEN_SSD 45
_IS_STE_OPEN 45
_IS_STE_CLOSE 45
_IS_IPCB_ERROR 45

_SIZEOF_IPCB_EXTRA

44

Returns the size of the extra bytesto allocate for the optional response’s control and
data areas.

To minimize cross-bus memory occupation, the cross-bus driver might not want to allocate
the extra bytes present at the tail of the elmblock union if these bytes are only used for the
response. In that case, this macro computes the amount of extra memory needed at the
bottom of the GenCXB structure to fulfill the response’s requirements. The resulting size
should be added to the size of the GenCXB structure before dynamically allocating the
memory block.

Functional Prototype
unsi gned | ong _SI ZEOF_1 PCB_EXTRA ( struct ipcb *i pcbp);

Parameters
ipcbp Input. Pointer to the beginning of the ipch request block.
Returns

Amount of bytes to append to the ipcb request block.



Chapter 5: Developing a Cross-bus Driver

_GET_OPEN_SSD

Extracts the descriptor vaue of the on-card stream’s segment from a STE_OPEN's ipcb
response block.

Functional Prototype
unsi gned | ong _GET_OPEN_SSD ( struct ipcb *i pcbp);

Parameters

ipcbp Input. Pointer to the beginning of the ipcb response block.

Returns

Descriptor value of on-card stream’s segment.

_IS_STE_OPEN
Checksif theipch control block carriesa STE_OPEN command.

Functional Prototype

unsi gned | ong IS STE OPEN ( struct ipch *i pcbp);
Parameters

ipcbp Input. Pointer to the beginning of the ipcb request/response block.
Returns

Thevalue 1isreturned if the control block isa STE_OPEN; otherwise, 0 is returned.

_IS_STE_CLOSE
Checksif the ipcb block carries a STE_CL OSE request.

Functional Prototype

unsi gned | ong IS STE CLOSE ( struct ipcb *i pcbp);
Parameters

ipcbp Input. Pointer to the beginning of the ipch request/response block.
Returns

Thevalue 1isreturned if the control block isa STE_CLOSE; otherwise, 0 isreturned.

_IS_IPCB_ERROR

Checksif theipch control block isin error.

Description

For ipcb blocks carrying an error code, this macro retrieves the value from the ipcb
response block.

45



RadiSys ARTIC960 STREAMS Environment Reference

Functional Prototype

unsi gned | ong IS IPCB_ERROR ( struct ipcb *i pcbp);
Parameters

ipcbp Input. Pointer to the beginning of the ipcb element control block.
Returns

The error number is returned; otherwise, O is returned.

cxb_canputnext

Tests the next driver’s write queue for availability

Returns the status of the next lower driver’'s write queue in the on-card stream’s segment
by checking its amount of bytes accumulated toward its configured high- and low-water
marks. If the queue is not flow controlled, the cross-bus driver uses the cxb_putnext
function to send data messages to the lower STREAM S-based module driver.
High-priority messages should not be subject to flow control.

Functional Prototype

i nt cxb_canput next (queue_t *wg) ;
Parameters
wqg Input. Pointer to the cross-bus driver allocated write queue. This queue has
been previously allocated by a successful CXB_LINK_HEAD operation.
returned value
Outpuit.
1 This driver can accept data messages if the next driver’swrite

gueueis not flow controlled.

0 The on-card stream’s segment is temporarily flow controlled.
When this condition occurs the cross-bus driver’ s write queue is
automatically marked as blocked, and thusit will be back-enabled
as soon asthe target lower driver queue’ s byte count drops below
itslow water mark.

-1 The on-card stream'’s segment is not able to process any data.
Thereis asevere permanent condition needing control commands
to clear.

Remarks

Although canput appearsto perform the same function, it should not be used to check a
downstream queue. The cxb_canputnext function must be used instead.

46



Chapter 5: Developing a Cross-bus Driver

cxb_putnext

Calls the put procedure associated with the next STREAM S-based modul e/driver below
the stream head, passing a message block into it. The message has to be formatted strictly
as astream message with no restriction from the standard UNIX SVR3/4 message format.

Functional Prototype

i nt cxb_put next (queue_t *Wg,
nbl k_t *1p) ;
Parameters
wqg Input. Pointer to the cross-bus driver-allocated write queue. This queue has
been previously allocated by a successful CXB_LINK_HEAD operation.
mp Input. Stream message pointer. On successful completion, ownership of the

message is transferred to the called STREAM S-based module/driver. The
cross-bus driver should not attempt to reuse the same message pointer after it
has successfully called the cxb_putnext function. (See returned value

for exceptions.)

returned value

Output.

1 Indicates that the message has been delivered.

-1 Indicates that the on-card stream’s segment is not able to process
any data. Thereis a severe permanent condition needing control
commandsto clear. In that case, and only in that case, ownership
of the message pointer remains to the cross-bus driver after
the call.

Remarks

Although putnext appears to perform the same function, it should not be used to send data
to adownstream queue. The cxb_putnext function must be used instead.

47



RadiSys ARTIC960 STREAMS Environment Reference

Element Control Blocks Format

The cross-bus driver communicates with the On-card STREAMS Subsystem using
element control blocks, either formatted as an ipch block for OSS requests/responses, or as
acbms_cb block for CBM S requests/responses..

% The current version of IBM’s OSS does not support cross-bus driver
CBMS elements.

When no value is specified for afield, the field is not significant and does not need to be
initialized (although setting avalue of O for these is a recommended coding practice). A
value specified in arequest block and not used for the response is not altered.

ipcb Blocks

Each ipcb control block has optional control and data parts at the tail of the structure. The
size of this area can be determined using the macro _SIZEOF IPCB_EXTRA.

STE_OPEN — Open Stream

48

Table 5-3. STE_OPEN

Field Request Response
mtype STE_OPEN
input 1
mseq
error Error number or O
slotid Device driver memo
ctltype cross-bus driver memo Descriptor of opened
stream
ctllen Device name length (with ASCII 0
termination)
datalen 0
Flags Stream’s flags
extl 0
ext2 devno (minor) devno (major/minor)
Control and Data parts
control part Device name (with ASCII termination)
data part

-% The devno is updated in the response field with the card major number of the
device name specified.

The cross-bus driver hasto intercept the STE_OPEN if it needs to set amemo value
associated with the opened stream. This memo valueis returned unaltered to the cross-bus
driver when its callback routine isinvoked for this particular stream.



Chapter 5: Developing a Cross-bus Driver

The device name to set in the request’s control section must be the name specified by the
STREAMS-based driver during itsinstallation using the s96_devinst function (name of
the configuration structure).

STE_CLOSE — Close Stream

Table 5-4. STE_CLOSE

Field Request Response

mtype STE_CLOSE

input 0

mseq

error Error number or 0
slotid Stream descriptor Device driver memo
ctltype

ctllen 0

datalen 0

flags

extl

ext2

Control and Data parts
control part
data part

STE_XSEND — Send Data

-% This is an immediate command. No further response is generated after the
request unless an error occurs during processing.

The OSS offers the possibility to convey some sensitive high-priority messagesinto an
ipcb block, thus ensuring more reliable delivery across the bus. The cross-bus driver can
choose not to use the feature and still carry these high priority messages like a regular
send. Note that the datalen field plays an important role in determining if a stream data
block pointer is present or not.

Table 5-5. STE_XSEND Data—Messages

Field Request

mtype STE_XSEND

input 0

mseq

error

slotid Stream descriptor

ctltype db_type field value from system unit's dblk_t block.
ctllen 0

datalen 0

flags

extl Stream data block pointer
ext2

49



RadiSys ARTIC960 STREAMS Environment Reference

50

Control and Data parts

control part

data part

The stream data block pointer is aflat RadiSys ARTIC960 adapter pointer value. Memory
for data blocks and data buffers should have been acquired through CBM S and all links
made with flat RadiSys ARTIC960 adapter pointer values.

1. Itisunnecessary to transport the message block between the system unit and the card.
It will be rebuilt by the OSS before the message is written downstream at the stream
head, and by the SAL before the message is delivered through the STE_XRECEIVE

response code.

2. Putting the db_type value in ctltype enables priority queueingin OSS's MPL.

M_FLUSH
Table 5-6. M_FLUSH—Message
Field Request
mtype STE_XSEND
input 1
mseq
error
slotid Stream descriptor
ctltype M_FLUSH
ctllen 1
datalen -1
flags
extl
ext2

Control and Data parts

control part

Flush mode (Read,Write,Read/Write)

data part




Chapter 5: Developing a Cross-bus Driver

M_READ
Table 5-7. M_READ—Message
Field Request
mtype STE_XSEND
input 0
mseq
error
slotid Stream descriptor
ctltype M_READ
ctllen 0
datalen -1
flags
extl Number of bytes to be read
ext2

Control and Data parts

control part

data part

M_START

Table 5-8. M_START—Message

Field

Request

mtype

STE_XSEND

input

0

mseq

error

slotid

Stream descriptor

ctltype

M_START

ctllen

0

datalen

-1

flags

extl

ext2

Control and Data parts

control part

data part

51



RadiSys ARTIC960 STREAMS Environment Reference

52

M_STOP
Table 5-9. M_STOP—Message
Field Request
mtype STE_XSEND
input 0
mseq
error
slotid Stream descriptor
ctltype M_STOP
ctllen 0
datalen -1
flags
extl
ext2

Control and Data parts

control part

data part
M_STARTI
Table 5-10. M_STARTI—Message
Field Request
mtype STE_XSEND
input 0
mseq
error
slotid Stream descriptor
ctltype M_STARTI
ctllen 0
datalen -1
flags
extl
ext2

Control and Data parts

control part

data part




Chapter 5: Developing a Cross-bus Driver

M_STOPI
Table 5-11. M_STOPI—Message
Field Request
mtype STE_XSEND
input 0
mseq
error
slotid Stream descriptor
ctltype M_STOPI
ctllen 0
datalen -1
flags
extl
ext2

Control and Data parts

control part

data part

STE_XPUSH ioctl — Push Module

Table 5-12. STE_XPUSH — ioctl

Field Request Response
mtype STE_XPUSH
input 1
mseq
error Error number or 0
slotid Stream descriptor Device driver memo
ctltype
ctllen 0
datalen Module name length (with 0
ASCII termination)
flags
extl
ext2
Control and Data
parts
control part
data part Module name (with ASCII

termination)

53



RadiSys ARTIC960 STREAMS Environment Reference

STE_XPOP ioctl — Pop Module
Table 5-13. STE_XPOP —ioctl

Field Request Response

mtype STE_XPOP

input 0

mseq

error Error number or 0
slotid Stream descriptor Device driver memo
ctltype

ctllen 0

datalen 0

flags

extl

ext2

Control and Data parts

control part

data part

54



Chapter 5: Developing a Cross-bus Driver

STE_XLINK ioctl — Link Driver
Table 5-14. STE_XLINK — ioctl

Field Request Response

mtype STE_XLINK

input 0

mseq

error Error number or 0

slotid Multiplexing driver's Stream Device driver memo for mux
Descriptor stream

ctltype Stream descriptor to connect ~ Multiplexor ID number
below the multiplexor

ctllen 0

datalen 0

flags

extl 0

ext2 Multiplexor ID number(l_index)

Control and Data parts
control part
data part

Notes

» If the request’s extl parameter value is zero, the ioctl is a LINK ioctl. If itis 1, it
is a PLINK ioctl.

* The request’'s ext 2 parameter value is used when the system unit needs to
assign the same link ID as the one it got from its own |_LINK system unit
request. This feature is used mostly by system units supporting streams and is
particularly useful so the application device driver does not have to keep a
correspondence between system unit and card link IDs.

55



RadiSys ARTIC960 STREAMS Environment Reference

ISTE_XLINK octl — Permanent Link Driver
Table 5-15. STE_XLINK — ioctl

Field Request Response

mtype STE_XLINK

input 0

mseq

error Error number or 0

slotid Multiplexing driver’s stream Device driver memo for mux
descriptor stream

ctltype Stream descriptor to connect ~ Multiplexor ID number
below the multiplexor

ctllen 0

datalen 0

flags

extl 1

ext2 Multiplexor ID number(l_index)

Control and Data parts

control part

data part

Notes

» Ifthe request’s ext 1 parameter value is zero, the ioctl is a LINK ioctl. If itis 1,
itis a PLINK ioctl.

* The request’'s ext 2 parameter value is used when the system unit needs to
assign the same link ID as the one it got from its own |_PLINK system unit
request. This feature is mostly used by system units supporting streams and is
particularly useful so the application device driver does not have to keep a
correspondence between system unit and card link IDs.

56



Chapter 5: Developing a Cross-bus Driver

STE_XUNLINK ioctl — Unlink Driver

Table 5-16. STE_XUNLINK — ioctl

Field Request Response

mtype STE_XUNLINK

input 0

mseq

error Error number or 0

slotid Multiplexing driver’s stream Device driver memo for mux
descriptor stream

ctltype Multiplexor ID number (or —1)

ctllen 0

datalen 0

flags

extl 0

ext2

Control and Data parts
control part
data part

-% If the request’s extl parameter value is zero, the ioctl is a LINK ioctl. Ifitis 1, it
is a PLINK ioctl.

57



RadiSys ARTIC960 STREAMS Environment Reference

STE_XUNLINK ioctl — Permanent Unlink Driver
Table 5-17. STE_XUNLINK — ioctl

Field Request Response

mtype STE_XUNLINK

input 0

mseq

error Error number or 0

slotid Multiplexing driver's Stream Device driver memo for mux
Descriptor stream

ctltype Multiplexor ID number (or —1)

ctllen 0

datalen 0

flags

extl 1

ext2

Control and Data parts

control part

data part

-% If the request’s extl parameter value is zero, the ioctl is a LINK ioctl. Ifitis 1, it

is a PLINK ioctl.

58



Chapter 5: Developing a Cross-bus Driver

STE_XLOOK ioctl — Retrieve Top Module Name
Table 5-18. STE_XLOOK — ioctl

Field Request Response

mtype STE_XLOOK

input 0

mseq

error Error number or 0

slotid Stream descriptor Device driver memo

ctltype

ctllen 0

datalen FMNAMESZ + 1 Module name length (with
ASCII termination)

flags

extl

ext2

Control and Data parts

control part

data part

Module name (with ASCII
termination)

59



RadiSys ARTIC960 STREAMS Environment Reference

STE_XFIND ioctl — Find Module Name
Table 5-19. STE_XFIND — ioctl

60

Field Request Response
mtype STE_XFIND
input 1
mseq
error Error number or 0
slotid Stream descriptor Device driver memo
ctltype 1 if present; otherwise, O.
ctllen 0
datalen Module name length (with ASCII 0
termination)
flags
extl
ext2

Control and Data parts

control part

data part

Module name (with ASCII
termination)




Chapter 5: Developing a Cross-bus Driver

STE_XLIST ioctl — List Module Names
Table 5-20. STE_XLIST —ioctl

Field Request Response

mtype STE_XLIST

input 0

mseq

error Error number or 0
slotid Stream descriptor Device driver memo
ctltype Number of entries to list Number of entries listed
ctllen 0

datalen Maximum length of data part

flags

extl

ext2

Control and Data parts
control part

data part Modules list (str_mlist
structures)

In order to contain all modules names, the maximum length of data part specified in the
reguest should normally be equal to:

Nunber of entries to list * sizeof(str_mist)

61



RadiSys ARTIC960 STREAMS Environment Reference

STE_XSETCLTIME ioctl — Set Close Time

62

Table 5-21. STE_XSETCLTIME — ioctl

Field Request Response
mtype STE_XSETCLTIME
input 0
mseq
error Error number or 0
slotid Stream descriptor Device driver memo
ctltype Time delay value (in
milliseconds)
ctllen 0
datalen 0
flags
extl
ext2

Control and Data parts

control part

data part




Chapter 5: Developing a Cross-bus Driver

STE_XGETCLTIME ioctl — Get Close Time
Table 5-22. STE_XGETCLTIME — ioctl

Field Request Response

mtype STE_XGETCLTIME

input 0

mseq

error Error number or 0
slotid Stream descriptor Device driver memo
ctltype

ctllen 0

datalen 0

flags

extl Time delay value (in

milliseconds)

ext2

Control and Data parts
control part

data part

63



RadiSys ARTIC960 STREAMS Environment Reference

STE_XRECEIVE Response Code — Receive Messages

64

Table 5-23. STE_ XRECEIVE — Response Code

Field Response

mtype STE_XRECEIVE
input

mseq

error 0

slotid Device driver memo
ctltype

ctllen 0

datalen 0

flags

extl Stream message pointer
ext2

Control and Data parts

control part

data part

The stream message pointer is a flat RadiSys ARTIC960 pointer value. Memory for the
message and data blocks has been acquired through CBM S and should be deall ocated
using CBMS services. All internal links are made with flat RadiSys ARTIC960

pointer values.



STREAMSAccess Library

The STREAMS Access Library (SAL) isatool set enabling a system unit kernel-mode
driver to communicate with one (or many) RadiSys ARTIC960 adapters On-card
STREAMS Subsystems (OSSs). In this chapter, a kernel-mode driver is referred to as the
application device driver (ADD). RadiSys ARTIC960 Support for AlX also provides the
STREAMS960 Application Device Driver (called S960ADD), but SAL lets users
communicate STREAM S messages to the adapter while communicating to
non-STREAMS applications above from the AIX kernel space.

The provided API is designed to enable:

» Bridging anative UNIX SVR3/4 Stream environment from the system unit (for
example, AlX) with the RadiSys ARTIC960 STREAMS located in the
RadiSys ARTIC960 adapter. Thisis also called a transparent service (XPAR).

» Bridging a system unit not supporting the UNIX SVR3/4 Stream environment (for
example, 0S/2) with the RadiSys ARTIC960 STREAMS located in the
RadiSys ARTIC960. Thisis also called a non-transparent service (NON-XPAR).

SAL SER describes two kinds of servicesthat are both included as part of the SAL system
unit support:

o Stream services
* Memory services

The SAL underlying protocol to communicate with the adapter is not addressed in
this book.

C Language Support

The SAL C language support requires the operating system’s standard libraries for device
driver support. The SAL C language support consists of a header file, saluser.h, providing
prototypes to access the library routines and declares, and a definition of SAL command
codes and structures. The ADD should include this header file whenever it calls a stream
or memory service.

SAL commands available to ADDs are all prefixed with s96_.

AlIX Considerations

The SAL C language support provided for IBM AlX includes alibrary, libsal.a,
containing all SAL routines. This library should be linked with other ADD object
modules, along with the standard libraries of IBM AlX device drivers.,

65



RadiSys ARTIC960 STREAMS Environment Reference

OS/2 Considerations

The SAL C language support provided for IBM OS/2 includesalibrary, sal.lib, containing
all SAL routines. This library should be statically linked with other ADD object modules
along with the standard libraries of IBM OS/2 device drivers.

Windows NT Considerations

The following header files are needed by the Windows NT driver. They must be included
to provide the environment to access SAL functions by the Windows NT driver.

ric.h RadiSys ARTIC960 card-specific defines

salntstr.h STREAMS defines for the Windows NT environment

oerrno.h STREAMS error codes

saluser.h Common functions across the various platforms that are provided by
the SAL

salntusr.h Functions specifically provided for the Windows NT environment

saldefs.h Common SAL defines across the various platforms

salnt.h Defines specific to the Windows NT SAL

cbmuser.h Defines for card buffer management functions

Runtime Variables

66

The prototype definition of the following variablesisin the saluser.h user includefile. All
these variables have default values which you can change.

Table 6-1. SAL Runtime Variables

Variable Description

sal_pipe_timeout The SAL is monitoring the SCB (ric_scb.rel) pipe status and will
timeout if it cannot enqueue any SCB control element to be processed
by the RadiSys ARTIC960 adapter for more than a defined period of
time. By default, the timer value is set to 5 seconds. It can be changed
by the ADD using the externalized sal_pipe_timeout variable. (See
saluser.h include file.) If timeout occurs, the SAL issues an
STE_CONNECT response to the ADD, indicating that communication
with the card is broken.




Chapter 6: STREAMS Access Library

sal_deq_option

The SAL has two modes of operation: interrupt dequeueing and
service dequeueing.

interrupt dequeueing

In this mode, the ADD response handler is called at interrupt time,
running under the RadiSys ARTIC960 adapter device driver's
off-level interrupt handler’s time. Using this mode implies that the
ADD'’s response handler and routines must be permanently resident
in kernel space memory in order to function properly. Set the
variable to SAL_INTERRUPT_DEQ to select this mode.

service dequeueing

In this mode, the application device driver’s response handler is
called at STREAMS service queue time, running under the
operating system’s streams scheduler’s time. This is the default
mode of operation and the associated variable is
SAL_SERVICE_DEQUE.

sal_maxupstr_len

The SAL has a default message length for messages flowing
upstream, set into the sal_maxupstr_len variable. The default length is
SAL_MAX_ REC_BUFF (See the saluser.h include file for values.)
The ADD can select a smaller or larger value by changing the value of
the sal_maxupstr_len variable. Because downstream message length
is dictated by the size of the buffer pool registered, it is not necessary
to have a similar parameter for the downstream flow.

sal_ent_name

The SAL has a default SCB entity name when it registers its SCB
entity. Providing an alternate SCB entity name enables the ADD to
have two (or more) independent SCB communication pipes
established between the SAL and the RadiSys ARTIC960 adapter
device driver. The maximum length for the SCB entity name is fixed to
MAX_RES_USER (ASCII string).

sal_cardmask

The SAL has a default cardmask of OxFFFFFFFFE Each bit in this
32-bit unsigned long represents the status of cards numbered 0-31 in
the system. A value of 1 indicates a disabled STREAMS environment
on that card. You can use sni t to change the value of this variable.

AIX Configuration

Configuration is the process of establishing communication between the ADD and the
Radi Sys ARTIC960 adapter device driver. The SAL isthe component being directly
attached to the RadiSys ARTIC960 adapter device driver. Once this communication is
established successfully, SAL commands can be used and responses from the

Radi Sys ARTIC960 adapter’s device driver will be received by the ADD.

The SAL isalibrary statically linked with the ADD. Through this library, the ADD has
access to services described in SAL Functions on page 78. The SAL also has an interface
with the operating system’s streams subsystem after it isinstalled as a

STREAM S-based driver.

AlX can use a daemon to hold the controlling stream open.

67



RadiSys ARTIC960 STREAMS Environment Reference

| Link Dars

| Baplication Dewice |
| Driwer Logic

LS

o i fation slreae

| WETICEGE Strsam |
Irivar

ARTLC9ES  DEWLCE  DHIVER

Figure 6-1. AIX Application Device Driver Communication with RadiSys ARTIC960
Adapter Application Device Driver

0OS/2 Configuration

68

Thereis no native streams support for OS/2. The configuration for the ADD would be
specific to the environment within which the ADD operates. The configuration could be
read from configuration files and/or be set by way of specific commandsissued to

the ADD.

In the specific case of an OS/2 implementation, the Media Access Control Driver extracts
the port configuration from the file PROTOCOL.INI. Thisistypically done at boot time.
Thefileis updated within the Multiple Protocol Transport Services (MPTS) environment.
The Protocol Driver also binds, using the NDIS interface, with the MAC Driver at boot
time. The MAC driver talks with the Protocol Driver by way of the NDIS/ANDI S interface
on its upper layer and talks with the card components, on its lower layer, using the IDC
(OS2 Inter Driver Communication support) interface. The OS/2 SAL encapsulates the
streams interface within its APIs.



Chapter 6: STREAMS Access Library

*pplizatisn Device
Orfves [AOD)

SAL
*
| IDE Ealls
+

126 Interface |

AATITA6D Dovice Driver|

Figure 6-2. OS/2 ADD Communication with RadiSys ARTIC960 Device Driver

AOLSMAADES Fratocel

Oriver

SOIS/AMDLS Intarface

Madie hecess Contral |
:'-T"'

I [nterface |

BATLCA6S Dmvica Driver|

Figure 6-3. OS/2 ADD (Media Access Control Driver) (Example)

69



RadiSys ARTIC960 STREAMS Environment Reference

Installation of AIX SAL as a STREAMS-based Driver

Toinstall the SAL as a STREAM S-based driver within the operating system streams
subsystem, the ADD must explicitly call the stream installation (str_install) method
provided by the operating system. The installation process registers the SAL’s streamtab
structure within the operating system’s device table in order for user-level processesto
open astream with the SAL. The ADD has access to the SAL’s streamtab using the
externalized name salmuxinfo (see saluser.h include file). Other installation parameters,
such as the major node number, are directly provided to the ADD’s configuration routine.

Linking the AIX SAL and the ARTIC960 Adapter Stream Driver

The SAL communicates with the RadiSys ARTIC960 adapter stream driver using a
stream. To establish this stream, do the following:

1. Open aclone stream with the Radi Sys ARTIC960 adapter device driver.

* The RadiSys ARTIC960 adapter AlX Device Driver installsitself in the AIX
Streams Subsystem using the name se960dd. The application is responsible for
creating the device resource name corresponding to the major number assigned to
this driver by the operating system (usually in the UNIX dev directory).

2. Open aclone or specific stream with the SAL stream driver. The ADD is responsible
for giving a name to the stream extension installed and thus has total control over
retrieving the major number allocated by the system.

3. Link the two streams together, the Radi Sys ARTIC960 adapter stream driver being
linked below the SAL. Then alink daemon must keep the link established. After the
link is established, the link daemon cannot use system calls to communicate with the
SAL through the controlling stream. The controlling stream must not be used further.

Windows NT Configuration

70

The configuration for the ADD would be specific to the environment within which the
ADD operates. The configuration could be read from configuration files, the registry, and/
or be set by way of specific commands issued to the ADD. It is recommended that you do
not use native streams support for Windows NT.



STREAMS Access
Library Functions

This chapter describes two kinds of functions that are both included as part of the
STREAMS Access Library (SAL) system unit support:

»  Stream Functions — Used to open, monitor, transfer data, and close a stream with the
RadiSys ARTIC960 adapter.

* Memory Functions — Used to allocate and free memory for streams data transfer with
the Radi Sys ARTIC960 adapter. The same functions are used by the
Radi Sys ARTIC960 adapter OSS but are sheltered from the STREAM S-based
modul e/driver through the On-card Standard Kernel Function’s (SKF) API.

Stream Functions

The following are the Stream functions:

Call Description

s96_canput Queries if the on-card stream is available to receive
non-high priority messages from upstream

s96_close Closes an on-card stream

s96_commestate

Queries the status of communication with an adapter

s96_couldput

Informs the SAL about a non-high priority message
transmission upstream (flow control)

s96_ioctl Performs an ioctl to the on-card stream
s96_open Opens an on-card stream
s96_send Sends a stream message to the on-card stream

Memory Functions are described beginning on page 92. Each command is described with

its prototype and restrictions.

Memory Functions

The following are the memory functions:

Call

Description

s96_bufcall

Registers a callback routine called when enough memory
is available in the pool

s96_deregister

Deregisters a memory pool

s96_expand Expands the available amount of memory in a pool
s96_free Frees a block of memory

s96_info Retrieves information about a pool

s96_register Registers a memory pool

s96_reorg Reorganizes a memory pool

s96_unbufcall

Cancels a pending s96_bufcall request

71



RadiSys ARTIC960 STREAMS Environment Reference

The application device driver (ADD) cannot allocate memory from a memory
\ pool because the SAL handles the data transfer to/from the system unit and
the RadiSys ARTIC960 adapter.

See the memory functions beginning on page Memory Functions on page 92 for a
description of each command with its prototype and restrictions.

Functions Synchronization

72

Responses can be either immediate or asynchronous.

Immediate

The application synchronization is automatically realized because the application resumes
execution following the call to the function subroutine only after the function has been
completely processed. The final error code is returned when the application resumes
execution. An immediate function does not sleep in the function subroutine.

Asynchronous

The application code continues execution after the call, parallel with the function
processing on the RadiSys ARTIC960 adapter. The process is notified when the function
operation completes by a call to aresponse handler, defined by the application. The final
error codeisreturned in the response handler.

The SAL isresponsible for the delivery of these responses and calls the application’s
response handler with parameters. These parameters are sufficient to correlate the
response with a previous outstanding request so that the application can mark the request
as completed with the accurate completion code value and any needed arguments.

The user must provide the response handler routine to handle responses from the
RadiSys ARTIC960 STREAMS. A response is typically an incoming stream message
flowing upstream and reaching the SAL. See Response Handler on page 74 for
information on the s96_resphandler function.

For all requests, memory for function parametersis available for reuse as soon as control
is returned to the application code after the SAL call.

Table 7-1 lists all SAL functions.

-% Immediate requests do not have an acronym defined because there is no
asynchronous response associated with them.

Table 7-1. SAL Functions

Function Response Code Synchronization Page
Stream Functions

s96_canput N/A immediate 79
s96_close STE_CLOSE asynchronous 80
s96_commstate N/A immediate 81
s96_couldput N/A immediate 82
s96_ioctl STE_PUSH asynchronous 84




Chapter 7: STREAMS Access Library Functions

Function Response Code Synchronization Page
s96_ioctl STE_POP asynchronous 84
s96 _ioctl STE_LINK asynchronous 84
s96 _ioctl STE_UNLINK asynchronous 85
s96_ioctl STE_LOOK asynchronous 85
s96 _ioctl STE_FIND asynchronous 86
s96 _ioctl STE_LIST asynchronous 86
s96_ioctl STE_SETCLTIME asynchronous 86
s96_ioctl STE_GETCLTIME asynchronous 86
s96_open STE_OPEN asynchronous 87
s96_send STE_XSEND? immediate 89
Memory Functions

s96_bufcall N/A immediate 92
s96_deregister STE_DEREG asynchronous 94
s96_expand STE_EXPAND asynchronous 96
s96_free N/A immediate 97
s96_info N/A immediate 98
s96_register STE_REGISTER asynchronous 100
s96_reorg STE_REORG asynchronous 101
s96_unbufcall N/A immediate 102

1 See s96_send for details on situations where a response can be provided on

error conditions.

Table 7-2. SAL Responses Received by the Response Handler

Function Response Code Description Page

N/A STE_XRECEIVE Stream message 103
received

N/A STE_STOPXMIT Stop sending messages 103
downstream

N/A STE_STARTXMIT Restart sending 103
messages downstream

N/A STE_CONNECT Informs on the status of 104

an adapter

73



RadiSys ARTIC960 STREAMS Environment Reference

Response Handler

The response handler must be provided by the ADD. The SAL definesthe
s96_resphandler function with the following prototype.

74

Functional Prototype

voi d

s96_resphandl er (unsigned | ong neno,

unsi gned | ong conmand,
unsi gned | ong errcode,
unsi gned | ong argil,

unsi gned | ong arg2,

unsi gned | ong reserved);

Parameters

memo

command

errcode

argl/arg2

reserved

Remarks

Memo valuerelated to the on-card stream. Thisisthe memo value given during
ans96_open function by the application device driver. Thememoidentifiesthe
on-card stream from where the response originates.

Function code. Each response recalls the function code (see Table 7-1) and
supported responses are listed in Table 7-2.

Error code number. Possible error codes are listed with each request and
indication commands. For aresponse, avalue of Qisreturned if the request has
been successfully processed. Otherwise, the error number qualifies the error.
For aresponse, avalue of 0 isalways returned in this parameter.

Response additional information. Thisinformation is needed by the device
driver to analyze the response. The data type of ar g1/ar g2 depends on the
particular response command code value, but it is either an integer (int) or a
pointer to a response-specific information block.

Reserved use by provider. Valueis always 0.

The response handler is executing under acritical section of code. The application’s
response handler must never sleep. Asfor other handlers, the receive handler routine
should be kept as short as possible. Otherwise, it may decrease device driver and/or system
performance. If an extensive processing of the response needs to be performed, it may be
necessary to queue the response data and service it at alower processing level.

All pointer parameters passed to the response handler are valid until the response handler
isreturned. A pointer parameter might be saved and reused after the response handler is
returned, unless otherwise instructed in the routine description.



Chapter 7: STREAMS Access Library Functions

Programming Notes

In order to separate SAL and ADD variables and functions, the SAL prefixes all its
variables and function names with sal_. The ADD should follow asimilar convention to
avoid using the SAL prefix and thereby prevent conflicts with the SAL variables.

Priority Messages

The following list of message types are high-priority messagesin the
RadiSys ARTIC960 STREAMS.

Table 7-3. High-priority Messages

Primitive Origin Direction of Flow Comments
M_COPYIN MD Upstream Not supported.
M_COPYOUT MD Upstream Not supported.
M_ERROR MD Upstream

M_FLUSH WSH / MD Upstream / downstream

M_HANGUP MD Upstream

M_IOCACK MD Upstream

M_IOCDATA WSH Downstream Not supported.
M_IOCNAK MD Upstream

M_PCPROTO WSH / MD Upstream / downstream See note following this
table for special
considerations.

M_PCRSE MD Upstream / downstream Message freed by SAL if
sent downstream; by OSS,
if sent upstream.

M_PCSIG MD Upstream
M_READ WSH Downstream
M_START / MD Downstream
M_STOP

M_STARTI/ MD Downstream
M_STOPI

Note: MD = module or driver; WSH = Write of the stream head.

Special Considerations: All supported high-priority messages types, except the
M_PCPROTO, aretransferred from the system unit to the Radi Sys ARTIC960 STREAMS
without using on-card memory. The SAL determines which message type is being sent
and extracts the message’s parameters to initialize an SCB's entity-to-entity field before
sending the SCB element to the Radi Sys ARTIC960 STREAMS.

The M_PCPROTO message type istreated differently becauseits potential length may not
fit the SCB element’s requirements. The SAL uses an internal high-priority on-card
memory pool to transfer the M_PCPROTO message from the system unit to the

RadiSys ARTIC960 STREAMS. Depending on the condition, the s96_send function
returns the following error codes.

75



RadiSys ARTIC960 STREAMS Environment Reference

AL_EAGAINS In the event that the SCB element carrying the
high-priority message cannot be transferred
successfully to the RadiSys ARTIC960 adapter.

ENOMEM If memory cannot be allocated from the high-priority
on-card memory pool.

If either condition occurs, the ADD must queue the high-priority message and retry it.
Queueing the high-priority message in a stream function queue forces the queue to be
serviced. Following this protocol avoids having to have an asynchronous indication trigger
the s96_send function retry.

For transfers of high-priority messages from the Radi Sys ARTIC960 STREAMS to the
system unit (including M_PCPROTO), the SAL receives the stream message asit is
originally built by the on-card STREAM S-based module/driver. The message is delivered
to the ADD through the asynchronous response handler, using the STE_XRECEIVE
response code, in the same manner as for other stream messages.

Flow Control

Flow control applies to downstream and upstream message flows.

»  Thedownstream flow is directed from the system unit to the
Radi Sys ARTIC960 adapter.

»  Theupstream flow is directed from the Radi Sys ARTIC960 adapter to the system unit.

Flow control is based on a certain number of outstanding |ow-priority data messages being
exchanged between the Radi Sys ARTIC960 adapter and the system unit per stream
opened, aswell as for the SCB channel established between those two peers and used to
carry information elements back and forth.

Downstream Flow

76

The on-card stream receives data messages from the system unit’s stream and uses the
stream’s flow control mechanism before forwarding messages to the next on-card
STREAM S-based module/driver by invoking the canput() SKF API. When the next
STREAM S-based module/driver reaches its high-water mark for its write service queue,
the on-card stream head begins queueing received data messages and servicing them when
it gets back-enabled after the next STREAM S-based module/driverwater mark goes below
itslow level. The system unit’s SAL increments the outstanding number of data messages
each time a successful s96_send function is performed by the ADD. This same number is
decremented by the OSS when it can successfully forward the data message to the next
STREAM S-based modul e/driver.

As OSS is queueing data messages when the next on-card STREAM S-based module/
driver isflow controlled, the number of outstanding data messages reaches its own
high-water mark. (See page 12 for information on the STRSCBQUEUED 0SS
parameter.) When this happens, the SAL callsthe ADD’s response handler with a
STE_STOPXMIT response code for the stream being flow controlled.

The ADD should stop sending data messages downstream until it isinstructed to do so by
receivingaSTE_STARTXMIT response code through its response handler for that stream.
Failure of the ADD to comply with this protocol provokes depletion of other resources. In



Chapter 7: STREAMS Access Library Functions

the event of an attempt to send other data messages downstream, and if the flow control
condition persists, the SAL issues another STE_STOPXMIT response code for each
attempt. However, the data message will be handled as long as other contributing
resources are available.

The STE_STARTXMIT response code comes from the OSS when, while decrementing
the outstanding number of data message, it finds that the count is now below its low-water
mark and the SAL hasissued a STE_STOPXMIT response code to the ADD.

Global Communication Channel Flow

The Global Communication Channel isthe SCB pipe established between the SAL and the
OSS. This channel can also get congested during transfer peaks. This channel is not under
control of the ADD, but its state will lead to control all datatraffic back and forth between
the Radi Sys ARTIC960 adapter and the system unit for all streams.

*  When the channel high-water mark is reached (see page 11 for information on the
MAXSCBQUEUED OSS parameter), the ADD getsa STE_STOPXMIT response
code through its response handler as it normally would for stream congestion, and
reactsin the same manner as described in Downstream Flow on page 76.

*  When the channel low-water mark is reached again, the SAL gives the ADD an event
indicating the Global Communication Channel is available again. An
STE_CONNECT response code, using subcode S96 COMM _XON, is delivered
through the ADD response handler. The ADD should retry all streams that have been
blocked through a STE_STOPXMIT response code because this S96_COMM_XON
isaglobal event for all streams.

Upstream Flow

The ADD receives data messages from the OSS through its response handler using the
STE_XRECEIVE response code. The expected STE_XRECEIV E response code
processing isto forward the data message to the next STREAM S-based module/driver or
gueueit for further processing. It is not possible for the ADD to refuse a data message
delivered through its response handler. On return from the response handler the SAL
considers the message is being handled by the ADD. The OSS increments the outstanding
number of data messages each time it can successfully send a data message upstream. This
same number is decremented by the ADD when it can successfully forward the data
message to the next STREAM S-based modul e/driver upstream. As ADD is queueing data
messages when the next STREAM S-based module/driver is flow controlled, the number
of outstanding data messages reach its own high-water mark. (See page 12 for information
on the STRSCBQUEUED parameter.) When this happens, the OSS begins queueing data
messages coming from the STREAM S-based module/driver attached below its stream
head, which in turn provokes this driver to be flow-controlled by the RadiSys ARTIC960
STREAMS flow control mechanism. This situation remains until the OSS receives a
STE_XSTARTXMIT response code.

When the ADD starts emptying its data message queue to forward the message upstream it
has to call the s96_couldput function. This function takes care of decrementing the
number of outstanding data messages for the stream.

The STE_XSTARTXMIT response code comes from the SAL during the s96_couldput
function processing (if, while) decrementing the outstanding number of data messages, it

77



RadiSys ARTIC960 STREAMS Environment Reference

finds that the count is now below its low-water mark and the OSS is currently flow
controlling the on-card stream.

SAL Functions

78

The SAL's functions provide the capability for a system unit’s device driver to open,
maintain and close RadiSys ARTIC960 adapter on-card streams.

All function names are prefixed with s96_, which identifies functions directed to the
RadiSys ARTIC960 STREAMS.

Unused bits in parameters should be cleared to O for future use.

The Functional Prototype section of each function description includes the type of each
parameter. The following types are defined.

int Signed 32 hits integer

dev t Unsigned 32 hits integer
mblk_t Stream message block structure
dblk t Stream data block structure

The Response Description section of each function description has the response code that
indicates which component is responsible for that function’s initialization. The following
naming convention is used.

Value Parameter Loaded By
input Application process/device driver
output SAL and/or OSS subroutines

Any output response code parameter should be saved by the application process/device
driver asit may be requested in other functions as input.

For asynchronous functions, the request’s return is relevant to the SAL's ability to
successfully handle and transmit the request to the RadiSys ARTIC960 adapter. Therefore
the final return code, delivered when the request has been completely handled by the
RadiSys ARTIC960 adapter, is known when the response handler is called.

‘% If a non-zero error code is returned at the time of the request, it is assumed
that the request has failed and that no further asynchronous response is
delivered for this particular request.



Chapter 7: STREAMS Access Library Functions

Stream Functions

The following sections describe each stream function with its prototype and restrictions.

s96_canput

Queriesif an on-card stream is available for messages to be received.

Functional Prototype

unsi gned | ong s96_canput (unsi gned I ong sd,

unsi gned | ong reserved);
Parameters
« Input. On-card stream’ s descriptor. Thisis the descriptor obtained from a

successful s96_open function.

reserved  Input. Reserved use by provider. Value must be 0.

Returns

Output. If the stream is available, avalue of 1 isreturned. Otherwise, avalue of 0
is returned.

Remarks

The s96_canput function determinesif the on-card stream is available to receive more
non-high-priority messages.

79



RadiSys ARTIC960 STREAMS Environment Reference

s96 close

80

Closes an on-card stream access if other accesses remain after this close.

The last close for the on-card stream causes the stream associated with sd to be
dismantled. If there are data on the modules’ write queue, the close operation waits up to
15 seconds per modul e/driver for any output to drain before dismantling the stream. The
time delay can be changed using a STE_SETCLTIME s96_ioctl function.

Functional Prototype

unsi gned | ong s96_cl ose (unsigned | ong sd,

unsi gned | ong reserved);
Parameters
sd Input. On-card stream’ s descriptor. This is the descriptor obtained from a

successful s96_open function.

reserved  Input. Reserved use by provider. Value must be 0.

Returns

Output. On successful handling of the request, avalue of O isreturned. An error code other
than O indicates the error.

Error Codes

The stream access associated with the descriptor is closed unless one or more of the
following error codes are true.

SAL_EBADF The on-card stream’ s descriptor (sd) isnot avalid
open stream descriptor.

SAL_EINTR A signal was caught during the close operation.

SAL_EAGAIN Temporarily unable to send the request to the
RadiSys ARTIC960 adapter.

SAL_ENOCONNECT Unable to communicate with the RadiSys ARTIC960
STREAMS.

Response Description

The command parameter is set to STE_CLOSE. Both arguments, ar g1 and ar g2, are 0.



Chapter 7: STREAMS Access Library Functions

s96 _commstate
Queries or changes the status of communication with an RadiSys ARTIC960 STREAMS.

Functional Prototype

unsi gned | ong s96_comst at e (int car dnum
unsi gned | ong *comst at e) ;
Parameters
cardnum  Input. Thelogical RadiSys ARTIC960 adapter number. Valid adapter numbers
range from 0-15.
commstate

Input/output. Pointer to the adapter communication status returned or new
communication state to set. The following value can be used.

S96_COMM_QUERY

Input. Queries the status of the Radi Sys ARTIC960 adapter
number specified by cardnum regarding communication with the
RadiSys ARTIC960 STREAMS. On return, the conmst at e
parameter is being updated by the current status. See page 73
(STE_CONNECT) for detailson S96_COMM_UP and
S96_COMM_DOWN states. No asynchronous response is
provided after the call is returned.

Returns

Output. On successful handling of the request, avalue of O isreturned. An error code other

than O indicates the error.

Error Codes

The function succeeds unless the following error codeis true.

SAL_EINVAL Invalid parameter specified.

Remarks

None

81



RadiSys ARTIC960 STREAMS Environment Reference

s96_couldput

Informs the SAL about a successful non-high-priority message transmission upstream.

Functional Prototype

unsi gned | ong s96_coul dput (unsi gned | ong sd,

unsi gned | ong reserved);
Parameters
« Input. On-card stream’ s descriptor. Thisisthe descriptor obtained from a

successful s96_open function.

reserved  Input. Reserved use by provider. Value must be 0.

Returns

Output. If the stream is available to receive messages, then on successful handling of the
request, avalue of 0 is returned. An error code other than O indicates the error.

Error Codes

The function succeeds unless one or more of the following error codes are true:

SAL_EINVAL Invalid parameter specified.

SAL_EBADF The on-card stream'’ s descriptor (sd) isnot avalid
open stream descriptor.

SAL_ENOCONNECT Unable to communicate with the
RadiSys ARTIC960 STREAMS.

SAL_ENXIO 1/O error.

Remarks

The s96_couldput function must be called by the ADD when it can successfully forward a
stream message received from its s96_resphandler function with the STE_XRECEIVE
response code.

‘% Only non-high-priority data messages are considered for flow control. Thus,
the ADD should check the first data block’s db_type field to make sure itis a
low-priority data message (value lower than QPCTL). It should then call the
s96_couldput function, giving the on-card stream descriptor (sd) for the
appropriate stream.

Only non-high-priority data messages are considered by flow control. The
s96_couldput function should be called only once for those non-high-priority
data messages.

For maximum flow control efficiency, the ADD should call the s96_couldput function at
the same time it passes the stream message to the next STREAM S-based modul e/driver
upstream, especialy if the ADD has some means of internally queueing stream messages.

82



Chapter 7: STREAMS Access Library Functions

s96 ioctl

Performs an ioctl on an on-card stream.

Functional Prototype

unsi gned | ong s96_ioctl (unsi gned | ong sd,
unsi gned | ong i ocnd,
unsi gned | ong arg,
unsi gned | ong reserved);
Parameters
« Input. On-card stream’ s descriptor. Thisisthe descriptor obtained from a
successful s96_open function.
iocmd Input. loctl request value. Currently supported ioctls are :
STE PUSH Pushes amodul e to the top of the on-card stream. See
page 84 for more information.
STE_POP Removes a module from the top of the on-card
stream. See page 84 for more information.
STE_LINK Linkstwo on-card streams. See page 84 for
more information.
STE_UNLINK Unlinks two on-card streams. See page 84 for
more information.
STE _LOOK Retrieves the name of the topmost modul e present on
the on-card stream. See page 84 for more information.
STE_FIND Checksif a specific module name is present on the
on-card stream. See page 84 for more information.
STE _LIST Lists al module names on the on-card stream. See

STE_SETCLTIME

STE_GETCLTIME

page 84 for more information.

Sets the closing time delay allowing write queues to
drain. See page 84 for more information.

Returns the closing time delay.

arg Input. loctl additional information. Thisinformation isneeded by the deviceto
perform the requested function. The datatype of ar g depends on the particular
request value, but it is either an integer or a pointer to arequest-specific

information block.

reserved  Input. Reserved use by provider. Value must be 0.

Returns

Output. On successful handling of the request, avalue of 0 isreturned. An error code other

than O indicates the error.

83



RadiSys ARTIC960 STREAMS Environment Reference

Error Codes

Theioctl succeeds unless one or more of the following error codes are true or one or more
of the request-specific error codes are true.

SAL_EBADF The on-card stream’ s descriptor is not avalid open
stream descriptor.

SAL_EINTR A signal was caught during the ioctl operation.

SAL_ENXIO Hangup received from the on-card stream.

SAL_EAGAIN Temporarily unable to send the request to the
Radi Sys ARTIC960 adapter.

SAL_ENOCONNECT Unable to communicate with the

RadiSys ARTIC960 STREAMS.

Remarks

All incoming ioctls already formatted as messages (M_IOCTL), and not trapped by the
ADD, can be forwarded to the on-card stream using the s96_send function. They are then
transported transparently to the target on-card STREAM S-based modul e/driver without
being interpreted by the RadiSys ARTIC960 STREAMS.

The following sections describe each supported ioctl. Request-specific error codes are
valid for both the request and response phases.

Table 7-4. Descriptions of Supported s96_ioctl Commands

Description Response Description Error Codes

STE_PUSH ioctl

Pushes a STREAMS-based module, The command parameter is setto SAL_EINVAL
whose name is pointed to by the arg  STE_PUSH. Both arguments, argl  |ncorrect module name.
parameter, onto the top of the on-card and arg2, are 0. SAL EFAULT
stream. It then calls the queue open —

routine of the newly-pushed module. The ar g parameter points

_ outside the allocated address
The maximum length for a module space.

name (ASCII termination excluded) is SAL_ENXIO

set to FMNAMESZ. _
The open routine of the new
module failed.

STE_POP ioctl

Removes a STREAMS-based module The command parameter is setto  SAL_EINVAL

previously pushed from the top of the STE_POP. Both arguments, argl No module is present in the
on-card stream. The value of the ar g and arg2, are 0. on-card stream.

parameter should be 0.

STE_LINK ioctl

84



Chapter 7: STREAMS Access Library Functions

Description Response Description Error Codes

The _stelink structure contains the  The command parameter is setto SAL_ETIME

following parameters. STE_LINK. Time-out before

unsi gned | ong | _sdbot; The argl parameter contains the acknowledgment message
i nt | _i ndex; multiplexer ID number (an identifier  received.

| sdbot used to disconnect the multiplexer). ga| EAGAIN

(See the following STE_UNLINK

The on-card stream descriptor (sd) ioctl.) The arg2 parameter is 0. Temporarily unable to

of the stream connected to another allocate storage to perform
on-card STREAMS-based driver. the operation.

The stream designated in this SAL ENOSR

parameter gets connected below -

2 i . Unable to allocate storage to
the multiplexing driver.

perform the operation

|_index because of insufficient 0SS
The link index to assign to this link. memory resources.
If a link index value of O is passed, a SAL_EBADF

link index is assigned by the OSS
and propagated to the on-card
STREAMS multiplexer driver.

The ar g on-card stream'’s
descriptor (sd) is not a valid
open stream descriptor.

SAL_EINVAL

The specified link operation
would cause a cycle in the
resulting configuration.

STE_UNLINK

Unlinks two on-card streams, where The command parameter is setto SAL_ETIME

sd is the on-card stream descriptor of STE_UNLINK. Both arguments, Time-out before

the stream connected to the argl and arg2, are O. acknowledgment message
multiplexing driver, and the arg received.

parameter is the multiplexer 1D SAL ENOSR
number that was returned by the -
STE_LINK operation. If the value of Unable to allocate storage to
the arg parameter is —1, all on-card Eerform th?_ope;fgu.on 0SS
streams that were linked to the sd ecause of insutiicient

. memory resources.
on-card stream are disconnected.

STE_UNLINK must be used to break SAL_EINVAL _
links established using the STE_LINK One of the following:
ioctl. » The arg parameter is an

invalid multiplexer ID humber

e The sd descriptor is not the
on-card stream on which the
STE_LINK operation that
returned the arg value was
performed.

STE_LOOK

85



RadiSys ARTIC960 STREAMS Environment Reference

Description Response Description Error Codes

Retrieves the name of the module The command parameter is setto SAL_EINVAL

located at the top of the on-card STE_LOOK. No module is present in the
stream. The arg parameter should be The arg1 parameter is a pointertoa  on-card stream.

setto 0. null-terminated string containing the

module name retrieved. The arg2
parameter is 0.

STE_FIND

Checks if a specific module name is The command parameter is setto SAL_EFAULT

present on the on-card stream. STE_FIND. The arg parameter points
Checks the names of all modules Depending on whether the named outside the allocated address
currently present on the on-card module is present in the on-card space.

stream against the name pointed to by stream, the arg1 parameter is setas SAL_EINVAL

the arg parameter. The name pointed follows: The arg parameter does not
to by arg should be an * 1—if present contain a valid module name.

ASCII-terminated string. « 0—if not present

The arg2 parameter is 0.

STE_LIST
Lists all the module names present in The command parameter is setto SAL_EAGAIN
the on-card stream. If the value of the STE_LIST. Unable to allocate buffers.

arg parameter is null, only the number |f the request contained a null ar g,
of modules present in the on-card the argl parameter is a value
stream are returned. If the arg indicating the number of modules
parameter contains the number of  present on the on-card stream and
entries to list, the list of modulesis  the arg2 parameter is set to null.
returned. Otherwise, the argl parameter
indicates the number of modules
listed and arg2 points to an area
containing argl number of str_mlist
structures contiguous in memory.

The str_mlist structure contains the
following parameter.

char
nodnane[ FMNAMVESZ+1] ;

STE_SETCLTIME

Sets the closing time delay allowing The command parameter is setto SAL_EINVAL

write queues to drain. Before closing STE_SETCLTIME. Both arguments,  The time value in the arg
each module and driver, the OSS argl and arg2, are 0. parameter is invalid.
delays closing for the specified length

of time to allow the data to drain

normally. Any data left after the delay

is flushed.

The arg parameter contains the
number of milliseconds to delay. The
value is rounded up to the next
multiple of 10 milliseconds. By default,
the time delay is set to 15 seconds.

STE_GETCLTIME

86



Chapter 7: STREAMS Access Library Functions

Description Response Description Error Codes

Returns the closing time delay, in The command parameter is setto  No specific error code defined.
milliseconds, when an on-card stream STE_GETCLTIME.

is closing. The argl parameter contains the

returned time delay in milliseconds.
The arg2 parameter is 0.

s96_open
Opens an on-card stream access.

Opens a stream to a device (devhame) located on the RadiSys ARTIC960 adapter number
(cardnum). If a cloned stream is requested, the stream flag is set to CLONEOPEN.
Otherwise, the minor portion of the device number (devno) specifies the specific device
resource to open.

Functional Prototype

unsi gned | ong s96_open (int cardnum
char *devnane,
dev _t *devno,
i nt sfl ag,
unsi gned | ong neno,
unsi gned | ong reserved);
Parameters

cardnum  Input. Thelogical RadiSys ARTIC960 adapter number where the deviceis
defined. Valid adapter numbers range from 0-15.

devname Input. Pointer to the device nameto open (ASCII string). Thisisadevice name
defined by the device resource configuration process, for whom the system
unit device resource configuration process has assigned a major node number.
The RadiSys ARTIC960 adapter also needs to have this specific device name
configured in its device table. The function failsif the specified device name
cannot be found in the target Radi Sys ARTIC960 adapter’ s number.

-% The maximum length for a device name (ASCII termination excluded)
is set to FMNAMESZ (defined in the C language support include file).

devno Input. Pointer to the major/minor node number.

Oninput, only the minor portion of the device number is significant and holds
the minor node number of the device resource to open. The minor number
valueisnot significant if a CLONEOPEN is requested. (See the sflag
parameter description.) The minor number, if not CLONEOPEN, is
transparently forwarded by the Radi Sys ARTIC960 STREAM S to the on-card
STREAM S-based driver’s gueue open routine during the driver open
sequence.

-% Macros like makedev, major, and minor ease the manipulation and
construction of the device number.

sflag Input. Stream’ s flags. The following flags are supported.

87



RadiSys ARTIC960 STREAMS Environment Reference

88

0x00
Normal driver open. The minor node number specified in the
devno field is significant.

0x2 (CLONEOPEN)
Clonedriver open. The minor node number specified in the devno
field is not significant on input. However, it isinitialized before
returning to the caller with the device resource’ s card minor node
number assigned by the On-card STREAM S-based driver.

memo Input. Correlation value. Thisvalue is provided during asynchronous
notification of events. The content of this variable isimplementation defined,
but is primarily intended as a pointer or an index that would aid the device
driver in locating instance-specific information.

reserved  Input. Reserved use by provider. Value must be 0.

Returns

Output. On successful handling of the request, avalue of O isreturned. An error code other
than O indicates the error.

Error Codes

The device resource specified is opened unless one or more of the following error codes
istrue.

SAL_EINVAL Invalid RadiSys ARTIC960 adapter
number specified.
SAL_ENAMETOOLONG The length of the device name argument exceeds
(FMNAMESZ) bytes.
SAL_EAGAIN Temporarily unable to send the request to the
RadiSys ARTIC960 adapter.
SAL_EMFILE The process has too many open files.
SAL_ENXIO An on-card STREAMS-based module or driver open
routine failed.
SAL_ENXIO The specified stream resource is already opened.
SAL_ENOSR Unable to allocate a stream.
SAL_ENOCONNECT Unable to communicate with the
RadiSys ARTIC960 STREAMS.
SAL_ENOMEM Not enough RadiSys ARTIC960 adapter
memory available.
SAL_ENOENT Device name not found.
SAL_EBUSY Device is in the closing state.
Remarks

The usual open flags O_NDELAY, O_NONBLOCK, O_RDONLY, O_WRONLY,
O_RDWR are not applicable in the open operation. However, by default, the on-card
stream is opened with O_NDELAY reset and O_RDWR set.

The effective user ID (uid) and group ID (gid) are both set to (0,0) when passed to the
RadiSys ARTIC960 STREAMS driver's queue open routine.



Chapter 7: STREAMS Access Library Functions

s96_send

Response Description
The command parameter is set to STE_OPEN.

On successful completion, the argl parameter is the on-card stream’s descriptor (sd) value
for the opened on-card stream. This stream descriptor must be used whenever a
subsequent command applies to this on-card stream.

The arg2 parameter is a pointer to the adapter device number (major/minor node number)
corresponding to the device resource opened. The device number isadev_t structure,
where the major portion holds the adapter major node number corresponding to the device
name specified in the request, and the minor portion holds the card minor node number
assigned by the on-card STREAM S-based driver if the request specified a clone open.

Sends a stream message to an on-card stream’s segment.

Sends a message, pointed to by mp, to an on-card stream. The message must be formatted
according to the system unit’s operating system stream environment version. The
application is responsible for freeing any of the memory pointed to by mp. On successful
completion of the send request, the message is considered sent, giving the application the
opportunity to free the memory associated with the message as soon as the function

is returned..

-% This is an immediate function; no further response is generated after the call
is returned.

Functional Prototype

unsi gned | ong s96_send (unsigned | ong sd,
unsi gned | ong ehandl e,
nmbl k_t *nm,
voi d **adp,
unsi gned | ong reserved);
Parameters
« Input. On-card stream’ s descriptor. Thisisthe descriptor obtained from a

successful s96_open function.

ehandle  Input. Entity’s on-card memory pool handle. Thisisthe handle obtained from
asuccessful s96_register function.

mp Input. Pointer to the operating system’ s stream message block structure. This
isapointer to the stream message block structure (mblk_t), which contains a
pointer to the data block structure (dblk_t).

adp Input/output. Address of an additional data parameter returned, depending on
the return code value.

»  Whenthe SAL_EAGAIN return code is returned, on output, the adp
pointer value isinitialized with the address of the on-card message. The
ADD should save the adp pointer value to provide it as input when the
send operation isretried later. Using this feature optimizes performance
by not reallocating on-card memory each time a send operation is retried

89



RadiSys ARTIC960 STREAMS Environment Reference

90

because of a SCB-pipe-full condition. Instead, the on-card memory isheld
as long as the ADD does not perform a specific s96_free function on the
on-card memory held, using this pointer value. (The valueisaflat

Radi Sys ARTIC960 adapter address.)

*  Whenthe SAL_ENOMEM return code is returned, on output, the adp
pointer valueisinitialized with the amount of data (in bytes) required to
perform the on-card memory allocation. This value serves asinput to the
s96_bufcall function.

e Oninput, if the adp pointer valueisnot NULL, it is used as the on-card
memory location where the data block and buffer reside. The value
provided as input should be the one previously returned from a send
operation regarding the same message. (See s96 free for more
information.)

reserved  Input. Reserved use by provider. Value must be 0.

Returns

Output. On successful handling of the request, avalue of O isreturned. An error code other
than O indicates the error.

Error Codes

The stream message is sent unless one or more of the following error codes are true.

SAL_EBADF The on-card stream’s descriptor (sd) is not a valid open stream
descriptor.

SAL_EINVAL The entity’s on-card memory pool handle is invalid.

SAL_EFAULT Invalid message pointer (mp).

SAL_ENOMEM Not enough memory in the entity’s on-card memory pool
specified.

SAL_EAGAIN Temporarily unable to send the request to the

RadiSys ARTIC960 adapter.

SAL_ENOCONNECT Unable to communicate with the
RadiSys ARTIC960 STREAMS.

SAL_ENXIO The total message’s length exceeds the maximum on-card
memory buffer capacity. (See s96_register for more
information.)

Remarks

The mblk_t and dblk_t structures are UNIX SVR3/4 streams structures. However, each
operating system stream environment has its own set of internal reserved fields in these
structures. The SAL is built to correspond with the system unit’'s operating system type
and version. Any change (upgrade) to the system unit’s operating system type and/or
version that would result in a change to the mblk_t or dblk_t structures format, may
require a change (upgrade) to the SAL version handling these new formats.

The RadiSys ARTIC960 STREAMS does not support queue banding. Only normal- and
high-priority messages are handled. If a message with a priority band greater than 0 is sent
to the RadiSys ARTIC960 STREAMS, the message priority isforced to O (normal) before



Chapter 7: STREAMS Access Library Functions

it is processed by the RadiSys ARTIC960 adapter STREAM S-based module/driver.
Therefore, upstream messages originating from the RadiSys ARTIC960 STREAMS are
either normal or high-priority messages only, and the db_band field valueisset to 0 in
both cases.

The ADD can alter the message priority before it forwards the message to the next
upstream module/driver by changing the db_band field value if desired..

-% If the message type (db_type field) is an ioctl (M_IOCTL), the ioctl command
(ioc_cmd field) values ranging from 0x5300 to Ox53FF are
RadiSys ARTIC960 adapter reserved values that should not be used by the
ADD logic.
Response Description
The command parameter is set to STE_XSEND.
A response is generated only if the send operation fails in the RadiSys ARTIC960 adapter.

If the SAL_EBADF error code is returned, the meno is set to the invalid on-card stream’s
descriptor (sd) passed during the s96_send() function call. Both arguments (argl and
arg2) are0..

-% ADF stands for Adapter Description File.

91



RadiSys ARTIC960 STREAMS Environment Reference

Memory Functions

The following sections describe each memory function with its prototype and restrictions.

s96 bufcall

92

Registers afunction to be called when a certain amount of bytesis available in the on-card
memory paol.

Thefunction cf unc isregistered and called back when at least csi ze bytes are available
for allocation in the pool. The function is called with cpar mas the argument.

Functional Prototype

unsi gned | ong s96_ buf cal | (unsigned | ong handl e,

unsi gned | ong csi ze,

b _cal |l func cfunc,

unsi gned | ong cparm

unsi gned | ong reserved);
Parameters
handle Input. On-card memory pool handle. The on-card memory pool handle

returned during an STE_REGISTER successful response. (See s96_register)

csize Input. Number of bytesto be available in the on-card memory pool for the

bufcall to mature (that is, the callback function is called). The number of bytes
cannot exceed the size of the registered maximum data buffer size for the pool.

cfunc Input. User callback function called when the bufcall matures (that is, the
callback function is called). The routine pointer must be a system unit address.

cparm Input. Parameter to pass to the c¢f unc user callback function when called.

reserved  Input. Reserved use by provider. Value must be 0.

Returns

Output. On successful handling of the request, avalue of O isreturned. An error code other
than O indicates the error.

Error Codes

The bufcall isregistered and pending, unless one or more of the following error codes



Chapter 7: STREAMS Access Library Functions

istrue:

SMI_INVHANDLE
SAL_ENOCONNECT

SAL_EINVAL
SMI_INVPARM

SMI_TRYLATER

SMI_TRYALLOC

Remarks

Invalid on-card memory pool handle.

Unable to communicate with the
RadiSys ARTIC960 STREAMS.

Invalid reserved parameter value.

Invalid csize specified.
Invalid cfunc pointer specified.

Temporarily unable to send the request to the
RadiSys ARTIC960 adapter.

This return code is an information code indicating that the
RadiSys ARTIC960 STREAMS user should retry allocating
a buffer from the pool because the RadiSys ARTIC960
STREAMS has detected some additional free memory.
The bufcall request was not registered. s96_bufcall
function must be called again.

Only one outstanding bufcall SKF API can be pending at atime for the same on-card
memory pool. If the s96_bufcall function is performed before a previous bufcall SKF API
reguest is completed, the information from the new request is used to override the pending

bufcall SKF API request.

To cancel an existing bufcall request, use the s96_unbufcall function.

The SMI_TRYALLOC is generated to account for the asynchronous nature of frees and
allocations because the two are done concurrently from different units. Consider the

following situation.

When auser memory alocation fails, perhaps because of the pool’s memory shortage,
the user callsthe s96_bufcall function to wait until memory is available again. But
during the time the failed allocation was tried and the s96_bufcall function call was
made, the other unit could have freed some buffers. There is the possibility that the
alocation would succeed now. In that case, the SMI_TRYALLOC code s returned
and the user is expected to retry its allocation. The RadiSys ARTIC960 STREAMS
keeps track of frees between each attempt at setting a bufcall and returns this error
code every time. So the loop of allocate-fail-bufcall is broken when either the
allocation succeeds, or the s96_bufcall succeeds. The scenario is depicted in Figure

7-1.

93



RadiSys ARTIC960 STREAMS Environment Reference

ARTIC96E COMPONENTS SYSTEM UNIT COMPONMENTS

STREAM | |
DRIVER | 055 | | cams snL| 400

. 96 bufcall
y

, freemsg {)
—
| %96 free ()

———————= 5(B -~ call ADOD, .
buf routine
1 bur_ " (l

- J5BE_send ]

. Treemsg () . . | )
— . ENCMEM s
. | =96 free () . Toop ?1

=. . 596 _bufeall

SMI_TRYALLOC
v N

- J5BE_send ]

. Treemsg () . . | )
— . EROMEM .
. | =96 free () . Toop ?1

=. . 596 _bufeall

= [}
| SMI TRYALLOC
W - =

J5BE_send ]

0
EROMEM
=]

. 596 _bufeall

ar  pe————a
SMI_SUCCESS
-

. SUCCESS .

—_— "

Figure 7-1. Downstream Flow — SMI_TRYALLOC Situations

Response Description

There is no response associated with this request.

s96_deregister

Deregisters a previously registered on-card memory pool located on the
Radi Sys ARTIC960 adapter.

Functional Prototype

unsi gned | ong s96_deregi ster (unsi gned | ong handl e,
unsi gned | ong reserved);

Parameters

handle Input. On-card memory pool handle. The memory pool handle returned during

an STE_REGISTER successful response. (See s96_register)

reserved  Input. Reserved use by provider. Value must be 0.

94



Chapter 7: STREAMS Access Library Functions

Returns

Output. On successful handling of the request, avalue of 0 isreturned. An error code other
than O indicates the error.

Error Codes
The memory pool is deregistered unless one or more of the following error codes are true:

SMI_INVHANDLE Invalid on-card memory pool handle.
SAL_ENOCONNECT Unable to communicate with the

RadiSys ARTIC960 STREAMS.
SAL_EINVAL Invalid reserved parameter value.
Remarks

The s96_deregister function schedul es the deallocation of the on-card memory pool when
none of the memory from that pool isin use. The caller can then use only the s96_free
function to release the memory in use. (See s96_free for more information.)

Response Description

The command parameter is set to STE_DEREG.

The argl and arg2 parameters are set to 0.

95



RadiSys ARTIC960 STREAMS Environment Reference

s96_expand

96

Expands the size of an on-card memory pool.

Expands the available amount of bytesin an on-card memory pool with the amount of
bytes specified in rsize, or up to the maximum pool size, whichever isreached first.

Functional Prototype

unsi gned | ong s96_expand (unsigned I ong handl e,
unsi gned | ong rsize,
unsi gned | ong reserved);

Parameters

handle Input. The on-card memory pool handle returned during an STE_REGISTER
successful response. (See s96_register.)

rsize Input. Amount of bytesto add in the pool.

reserved  Input. Reserved use by provider. Value must be 0.

Returns

Output. On successful handling of the request, avalue of O isreturned. An error code other
than O indicates the error.

Error Codes

The on-card memory pool is expanded unless one or more of the following error codes
aretrue:

SMI_INVHANDLE Invalid on-card memory pool handle.
SAL_ENOCONNECT Unable to communicate with the
RadiSys ARTIC960 STREAMS.
SAL_EINVAL Invalid reserved parameter value.
SMI_MAXSIZE The pool has reached its maximum size; it cannot expand.

SMI_OUTOFRESOURCE  Not enough Radi Sys ARTIC960 adapter
memory available.
Remarks

The s96_expand function checks that the pool did not reach its programmed maximum
size before expanding it.

The extraalocated size is aways rounded up to the next maximum data buffer size
specified during as96_register function.

Response Description

The command parameter is set to STE_EXPAND.

On successful completion, the argl parameter is set to the actual amount of bytes added to
the pool. Usually this should be the same amount as specified in the rsize request
parameter, but the following exceptions may apply.



Chapter 7: STREAMS Access Library Functions

s96 free

* Anargl value of 0, with the return code SMI_MAXSIZE, signifies that the pool has
reached its maximum size and cannot be further expanded.

» If rsize specified a size that makes the total pool size greater than its maximum size,
the amount of bytes added is reduced to fit the maximum pool size and the argl
parameter gives the reduced amount added..

-% Because the rsize is rounded up to the maximum data buffer size, the amount
may have increased the total pool size beyond its maximum size.

» If therequest specified a size less than the maximum data buffer size, the size
alocated isrounded up to the next maximum data buffer size value.

The arg2 parameter is set to 0.

Frees an allocated on-card memory pool area.

The SAL users usually do not need to free memory from messages allocated out of the
on-card memory pool handle they specify during as96_send function because the SAL is
managing it during the send operation. However, when the s96_send function fails with
error code SAL_EAGAIN, the SAL might have allocated the stream message memory out
of the on-card memory pool and given the flat Radi Sys ARTIC960 adapter memory
pointer back to the user. The s96_free function can be used to specifically free the on-card
stream message if the user does not want to keep the allocation in between retries.
Functional Prototype
unsi gned | ong s96 _free (unsi gned I ong handl e,

void *ptr);
Parameters

handle Input. On-card memory pool handle. The memory pool handle returned during
an STE_REGISTER successful response (see s96_register ).

ptr Input. Flat RadiSys ARTIC960 adapter pointer onto the memory areato free.

Returns
Output. On successful handling of the request, avalue of 0 isreturned. An error code other
than O indicates the error.
Error Codes
The memory isfreed unless one or more of the following error codes are true:
SMI_INVHANDLE Invalid on-card memory pool handle.
SAL_ENOCONNECT Unable to communicate with the

RadiSys ARTIC960 STREAMS.
Remarks

Thereisno control on memory ownership in order to free the on-card memory area. If the
ptr isNULL or the handle addresses an adapter that has been reset since the on-card

97



RadiSys ARTIC960 STREAMS Environment Reference

s96_info

98

memory pool was created, the function returns SMI_SUCCESS but no action
is performed..

% Unpredictable results may occur in certain circumstances while freeing the
same location twice.

Response Description

There is no response associated with this request.

Queries information about an on-card memory pool.

Functional Prototype

unsi gned | ong s96_info (unsi gned | ong handl e,
struct CBMS_ info *bptr,
unsi gned | ong reserved);
Parameters
handle Input. On-card memory pool handle. The on-card memory pool handle
returned during an STE_REGISTER successful response (see s96_register).
bptr Input. Information Data Buffer pointer. Thisisthe pointer on the first byte of

information data copied. The information data buffer is structured as:

struct CBMS_info {
unsi gned | ong nsi ze;
unsi gned | ong csi ze;
unsi gned | ong cfree;
i

where:

msize Output. Maximum size, in bytes, of the on-card memory pool.
Thisis the maximum amount to which the pool may expand. See
s96_register for more details. This number may not be exactly the
same as the one on the s96_register function because the
RadiSys ARTIC960 STREAMS may do some rounding to
facilitateinternal processing. Regardless, it will never belessthan
the msize set in s96_register function.

csize Output. Current size, in bytes, of the on-card memory pool. This
value gets updated as the pool gets expanded or reorganized. This
value can never exceed the msize. The difference between these
numbers (msize — csize) is the amount the pool may be expanded.
(See rsize parameter description at s96_expand.)

cfree Output. Current number of bytes currently free in the on-card
memory pool. This value gets updated as the pool gets expanded
or reorganized. It is also updated whenever allocations and frees
are done from the pool. Thereisno guarantee that an allocation of
thiscfree size will succeed asfree memory might be scattered. The
success of any allocation depends on these key factors:



Chapter 7: STREAMS Access Library Functions

» Fragmentation of the on-card memory pool.

* Inany case the maximum size of an allocation never exceeds
the size of the maximum data buffer lengths. But this number
may be greater than the flblen size requested in s96_register
function call.

* Aswith any memory management scheme, there is asmall
fixed overhead per allocation (8 bytes). Even if only one byte
isrequested, alarger amount of memory gets subtracted from
this amount.

reserved  Input. Reserved use by provider. Value must be 0.

Returns

Output. On successful handling of the request, avalue of 0 isreturned. An error code other
than O indicates the error.

Error Codes

Theinformation is returned regarding the memory pool unless one or more of the
following error codes are true:

SMI_INVHANDLE Invalid on-card memory pool handle.

SAL_ENOCONNECT Unable to communicate with the
RadiSys ARTIC960 STREAMS.

SAL_EINVAL Invalid reserved parameter value.

SAL_EFAULT The bptr pointer isinvalid.

Remarks

None.

Response Description

There is no response associated with this request.

99



RadiSys ARTIC960 STREAMS Environment Reference

S96_register

100

Registers a shared memory pool on the RadiSys ARTIC960 adapter.

M essages sent by the s96_send are stored in the memory pool. Before s96_send is called,

the shared memory must be expanded using the s96_expand function call.

Functional Prototype

unsi gned | ong s96_regi ster (int
unsi gned | ong
unsi gned | ong
unsi gned | ong
unsi gned | ong

Parameters

cardnum
nsi ze,
flblen,
nMeno,
reserved);

cardnum  Input. Thelogical RadiSys ARTIC960 adapter number where to register the

shared memory pool. Valid adapter numbers range from 0-15.

msize Input. Maximum pool size (in bytes). The pool can expand to the size specified

by this parameter.

flblen Input. Maximum data buffer size (in bytes). This parameter:

»  Determines the maximum length a buffer can have for downstream

data transmission.

* May be rounded upward to facilitate its internal processing.

» Determines the multiple by which the pool will grow while performing a
$96_expand function call. If avalue of O is passed, a default value, equal
to the OSS's MAXBLOCKLEN parameter value, is set for the pool. (See
page 10 for a description of the MAXBLOCKLEN parameter.)

memo Input. Correlation value. This value is provided during asynchronous
notification of memory responses’ events. The content of thisvariableis
implementation defined, but is primarily intended as a pointer or an index that
would aid the device driver in locating instance-specific information.

reserved  Input. Reserved use by provider. Value must be 0.

Returns

Output. On successful handling of the request, avalue of O isreturned. An error code other

than 0 indicates the error.

Error Codes

The shared memory pool is registered unless one or more of the following error codes

aretrue:
SMI_INVPARM Invalid parameters.
SMI_OUTOFRESOURCE Not enough RadiSys ARTIC960 adapter

memory available.

SAL_ENOCONNECT Unable to communicate with the
RadiSys ARTIC960 STREAMS.



Chapter 7: STREAMS Access Library Functions

s96_reorg

SMI_TRYLATER Temporarily unable to send the request to the
RadiSys ARTIC960 adapter.
Remarks

The shared memory pool must be registered before any other memory function can
be performed.

More than one shared memory pool is allowed.

Response Description
The command parameter is set to STE_REGISTER.

On successful completion, the argl parameter is the shared memory pool handle for the
new pool registered. Thishandle must be used whenever a subsequent command appliesto
this memory pool. The arg2 parameter is 0.

Reorganizes the on-card memory pool.

When the on-card memory pool has been extensively used, especially performing small
allocations and frees, the Radi Sys ARTIC960 STREAMS's scan for a suited data buffer
within the maximum data buffer pool may take longer. Reorganizing the pool speeds up
the process.

Functional Prototype

unsi gned | ong s96 _reorg (unsi gned | ong handl e,
unsi gned | ong action,
unsi gned | ong reserved);
Parameters
handle Input. On-card memory pool handle. The memory pool handle returned during
an STE_REGISTER successful response (see s96_deregister).
action Input. Optional selective actions performed by the RadiSys ARTIC960
STREAMS if requested by the caller.
« RET_AVAIL

Instructs the Radi Sys ARTIC960 STREAMS to deallocate any on-card
memory pool eigible for deallocation. An eligible on-card memory pool
is one with no outstanding suballocation. The remaining on-card memory
pool isthen re-ordered to increase chances for a successful allocation.

reserved  Input. Reserved use by provider. Value must be 0.

Returns

Output. On successful handling of the request, avalue of 0 isreturned. An error code other
than O indicates the error.

101



RadiSys ARTIC960 STREAMS Environment Reference

Error Codes

The on-card memory pool is expanded unless one or more of the following error codes

aretrue:

SMI_INVHANDLE Invalid on-card memory pool handle.

SAL_ENOCONNECT Unable to communicate with the
RadiSys ARTIC960 STREAMS.

SAL_EINVAL Invalid reserved parameter value.

SMI_INVPARAM Invalid action bits specified.

Remarks

None.

Response Description
The command parameter is set to STE_REORG.
The argl and arg2 parameters are set to 0.

s96 unbufcall

Deactivates a previous bufcall request.
The last successful s96_bufcall request is canceled.

Functional Prototype

unsi gned | ong s96_unbuf cal | (unsigned | ong handl e
unsi gned | ong reserved);

Parameters

handle Input. The on-card memory pool handle returned during an STE_REGISTER
successful response. (See s96_register.)

reserved  Input. Reserved use by provider. Value must be 0.

Returns

Output. On successful handling of the request, avalue of O isreturned. An error code other
than O indicates the error.

Error Codes

The bufcall is deregistered and pending unless one or more of the following error codes

aretrue:
SMI_INVHANDLE Invalid on-card memory pool handle.
SAL_ENOCONNECT Unable to communicate with the

RadiSys ARTIC960 STREAMS.

102



Chapter 7: STREAMS Access Library Functions

SAL_EINVAL Invalid reserved parameter value.

SMI_TRYLATER Temporarily unable to send the request to the
Radi Sys ARTIC960 adapter.

Remarks

An s96_unbufcall function isignored when there is no bufcall request in progress.
Because there can be only one outstanding bufcall request at atime per entity, the
unbufcall request cancels the current active bufcall request.

Response Description

There is no response associated with this function.

Response Codes

Response codes are command blocks sent by the OSS that are not responses to a previous
request triggered by the ADD. Response codes are delivered through the s96_resphandler
asynchronous response handler function. See Response Handler on page 74 for
information on the SAL's use of the s96_resphandler function.

For all response codes, the meno parameter is the value passed during the s96_open
function for the stream unless otherwise specified.

The following are the response codes and their descriptions. There are no specific error
codes defined.

STE_XRECEIVE
Indicates the reception of a stream message from the
RadiSys ARTIC960 STREAMS.

The command parameter is set to STE_XRECEIVE.

Theargl parameter isapointer to the first message block structure (mblk_t) of
the message. The message block structure contains a pointer to one or more
datablock structure(s) dblk_t. The message blocks and data block memory are
allocated using the system unit’s operating system stream environment. Itis
the application’s (or, at least, the stream head’ s) responsibility to free the
memory associated with the stream message received.

The arg2 parameter is 0.

STE_STOPXMIT
Instructs the ADD to stop sending messages downstream.

The command parameter is set to STE_STOPXMIT.

The on-card stream head write service queue becomes full when it receives
messages from the system unit and cannot deliver them successfully to the next
STREAM S-based module/driver, causing its predefined high water mark level
to be exceeded.

Both parameters, argl and arg2 are zero (0).

STE_STARTXMIT
Instructs the ADD to restart sending messages downstream.

103



RadiSys ARTIC960 STREAMS Environment Reference

The command parameter is set to STE_STARTXMIT.

The on-card stream head write service queue becomes available to process
messages from the system unit after its predefined low watermark level
is reached.

Both parameters, argl and arg2, are 0.

STE_CONNECT
Informs the ADD about the status of communication with an
RadiSys ARTIC960 STREAMS.

The command parameter is set to STE_CONNECT.

Each time the status of one of the Radi Sys ARTIC960 adapters hosting the
RadiSys ARTIC960 STREAMS changes, the new state of the

Radi Sys ARTIC960 adapter is reported to the ADD. The following states
are defined.

S96_COMM_UP
The state reported when SCB Pipesare configured and contact has
been established successfully between the SAL and the
RadiSys ARTIC960 STREAMS. In this state, the ADD can
communicate with the RadiSys ARTIC960 adapter using all verbs
from the SAL API.

S96_COMM_DOWN
The state reported whenever communication between the SAL
and an RadiSys ARTIC960 STREAMS is broken. Reasons
might be:

* Thecardisreset

e A terminal error was reported
» SCB pipes get unconfigured
» SCB pipes access timed out

* Any other error occurred in the
RadiSys ARTIC960 STREAMS.

S96_COMM_XON
The state reported whenever the Global Communication Channel
between the SAL and the RadiSys ARTIC960 STREAMS alows
non-high-priority messages to be sent downstream again (flow
control situation ends). The ADD should retry sending data
downstream for any of its opened streams that have previously
been flow controlled (STE_STOPXMIT received for the stream).

The argl parameter contains the logical card number for which statusis
being reported.

The arg2 parameter contains the card status..

*% The memo parameter is set to O.

104



Chapter 7: STREAMS Access Library Functions

Log Device Driver

Thelog driver is an RadiSys ARTIC960 STREAMS software device driver that provides
aninterfacefor the RadiSys ARTIC960 STREAMS error and event-tracing processes. The
log driver presents the following separate interfaces.

o drlog() SKF API from within a STREAM S-based module/driver in the
Radi Sys ARTIC960 adapter. The strlog() SKF API isdescribed in the UNIX SVR4
STREAMS documentation.

» A subset of ioctl operations and Radi Sys ARTIC960 STREAM S messages for
interaction with a user-level error logger and/or tracer.

.,.
]

Figure 7-2. Error and Trace Loggers

User-Level Access.

Programming Note

‘% All references to C defines and structures can be found in the sys/Ostrlog.h
file. This file is shared by both the system unit’s user-level process and the
RadiSys ARTIC960 adapter STREAMS-based module/driver, with either the
RIC_AIX_RS6000 or RIC_KERNEL define to be enabled.

Thelog device driver gets automatically installed as a STREAM S-based driver when the
OSSisloaded in the Radi Sys ARTIC960 adapter.

105



RadiSys ARTIC960 STREAMS Environment Reference

106

The log device driver is opened using the clone interface for the device namericlg. See
s96_open for details on open parameters. Each open of the riclg driver obtains a separate
stream to this driver, which is capable of acting as an error or trace logger. To select which
it will be, the user-level process uses adefined |_STR ioctl immediately after the stream
has been opened with the log driver.

error logger
Thel_STR operation hasanic_cmd field value of I|_ERRLOG with no
additional data.

trace logger
Thel_STR operation hasanic_cmdfield value of |_ TRCLOG with additional
data specifying selected criteria the log record should meet in order to be
reported to the trace logger.

» Thedatabuffer isan array of one or more card_trace ids t structures.
Each cell specifies mid, sid and level fields from which messages
are accepted.

» Thestrlog() SKF APl accepts records whose values in the mid, sid and
level fields match the sel ection made through the
card_trace ids t structures.

e Avaueof —1inany of the fields of the card_trace ids _t structure
indicates that any value is accepted for that field.

At most, one error logger and one trace logger can be active at a time. Once the logger
process has identified itself using the ioctl operation described previously, the log driver
begins sending messages, subject to the restrictions previously selected. The user-level
process receives those log messages through the getmsg() system call. The control part of
the message contains a card_log_ctl_t structure that specifies:

mid Module ID

sid Subsystem ID

level Log level

flags Log flags

ttime Timein ticks since RadiSys ARTIC960 adapter’ s reset when the log message
was submitted (with HZ = 200 for the RadiSys ARTIC960 adapter).

Itime Timein seconds since January 1, 1970, when the log message was submitted..

-% In order for the time to be reported accurately by the
RadiSys ARTIC960 adapter, the time-of-day timer must be enabled.
Refer to the RadiSys ARTIC960 Programmer’s Reference for
information on the ricload utility.

seq_ho Seguence number for the log message

The data part of the message contains the formatted, null-terminated string with its
accompanied arguments passed by the strlog() SKF API.



Chapter 7: STREAMS Access Library Functions

The following error codes are returned on compl etion of the ioctl operation by the

log driver.

ENXIO A logging process of the given operation type (I_ERRLOG/
|_ TRCLOG) already exists.

ENXIO Thel _TRCLOG operation does not contain any card_trace ids t
structures.

ENOSR Maximum number of specific sids per mid reached (64 sids maximum).

EINVAL Invalid operation code.

EINVAL Unsupported message type.

Kernel-Level Access

Refer to the sys/Ostrlog.h file for valuesto use for level and flags fields of the strlog()
SKF API.

SL_HEXA Addition

A flag, SL_HEXA, has been added to existing standard UNIX SVR3/4 flags. This new
flag gives the ability to report hexadecimal strings of bytes through the same interface,
thus enabling communication’s frames to be reported to the trace logger. SL_ HEXA can
only be specified in conjunction with SL_ TRACE and must have the strlog()'s argl
parameter set to the actual hexadecimal string's length. fmt then contains the pointer on
that string.

ONLOGARGS defines the maximum number of variable arguments during astrlog() SKF
API cal. The default is 6.

OLOGMSGSZ defines the maximum length (in bytes) for the log data portion (formatted
string). The default is 128.

Log messages received by the user-level logger through the getmsg() system call are
little-endian encoded. It isthe responsibility of the user-level logger to transform them into
big-endian format for AlX.

107



RadiSys ARTIC960 STREAMS Environment Reference

Error Codes

Error code values returned by SAL stream and memory function commands and response
handler are derived from UNIX System V errno values. For an ADD running under a
UNIX-type operating system, these error codes can be masked to clear the high order bit
(0x80000000) and used asif they were UNIX System V errno values.

The ANSI conformance defines errno’s by name and not by value, which indicates that
different operating systems might have the same name defined with two different values.
For the SAL, applicable values are the ones listed in the error code tables following each
function description.

Table 7-5. Error Codes

Name Value

SAL_EINVAL 0x80000016
SAL_ENAMETOOLONG 0x80000056
SAL_EAGAIN 0x8000000b
SAL_EMFILE 0x80000018
SAL_ENXIO 0x80000006
SAL_ENOSR 0x80000076
SAL_EBADF 0x80000009
SAL _EINTR 0x80000004
SAL_EFAULT 0x8000000e
SAL_ENOMEM 0x8000000c
SAL_ETIME 0x80000077
SAL_ENOCONNECT 0x80000032
SAL_ENOENT 0x80000002
SMI_INVPARM 0x80000016
SMI_OUTOFRESOURCE 0x8000000c
SMI_TRYALLOC 0x80000055
SMI_TRYLATER 0x8000000b
SMI_INVHANDLE 0x80000009
SMI_MAXSIZE 0x80000022

Table 7-6. Additional Error Codes Returned by OS/2 APIs

Name Value

SAL_ERR_NO_CARD 0x80001001
SAL_ ERR _ALLOC _GDT 0x80001002
SAL ERR _SETTIMER 0x80001003
SAL_ ERR_MEMPOOL_INIT 0x80001004
SAL ERR_COMMON_INIT 0x80001005

108



Chapter 7: STREAMS Access Library Functions

Table 7-7. Additional Error Codes Returned by Windows NT APIs

Name Value

SAL ERR_MEMSPINLOCK 0x80001001
SAL_ERR_NONPAGED_MEM 0x8000100d
SAL ERR DEV_OBJ PTR x8000100f
SAL ERR _ALLOCIRP 0x80001010
SAL_ERR_IOCALLDRIVER 0x80001011
SAL ERR _IDCEVENT 0x80001012
SAL _ERR_INITOSS 0x80001015
SAL_ERR_INITMEM 0x80001016
SAL ERR_NULLPTR 0x80001007
SAL_ERR_MSGLINKED 0x80001008

OS/2-Specific Functions

The following list of functions have been developed for the OS/2 SAL, in addition to the
Streams Functions and memory functions described in Stream Functions on page 79 and
Memory Functions on page 92.

Function Description

s96_freemsg This function frees a streams message
s96_idc_init Initializes the SAL OS/2 interface with the OSS
s96_0s2_init Initializes the SAL OS/2 interface

s96_freemsg

Thisfunction frees a streams message and returns it to the internal SAL memory pool.

Functional Prototype

unsi gned |l ong s96 freensg (nbl k_t *np)

Parameters

mp Input. Pointer to streams message block.

Remarks

Other than the b_rptr and b_wptr, no other internal field of the mblk_t structure must be
modified by the user of this function. If theb_next field of the structure is changed, it
should be made NULL before calling this function.

Error Codes

Any return code other than 0 is an error. The function could fail with the following

error codes.
3 The message pointer (parameter mp) isNULL.
5 Theinternal data structure of the message being freed iscorrupted. The b_next

field of the message should be NULL.

109



RadiSys ARTIC960 STREAMS Environment Reference

s96_idc_init

Initializes the SAL OS/2 interface with the OSS by issuing interdevice driver
communications (IDC) callsto the RadiSys ARTIC960 device driver.
Functional Prototype

unsi gned long s96_idc_init ();

Parameters

None.

Remarks

The s96_idc init function must be called during the INITIALIZATION COMPLETE
event, during which the OS/2 kernel callsthe driver’s strategy routine with this function
code. The kernel alows the device driversto set up any IDC interfaces at this point.

Error Codes

Any return code other than O isan error. The function could fail with the following
error codes.

SAL_ERR_MEMPOOL _INIT The SAL internal memory pool could not be allocated
and/or formatted.

SAL_ERR_COMMON_INIT The SAL failed to set up initial communication with
the card.

s96_0s2 init

110

Initializesthe SAL OS/2 interface by taking up appropriate resources that are required in
the KERNEL operating mode of the driver.
Functional Prototype

unsi gned long s96 _0s2 init ()

Parameters

None.

Remarks

The s96_0s2_init function must be called during the INIT mode of the OS/2 driver. It
should be noted that the call to this function is synchronous and the return code is
available immediately.

Error Codes

Any return code other than 0 is an error. The function could fail with the following
error codes.

SAL_ERR_NO_CARD No RadiSys ARTIC960 card is detected in
the system.



Chapter 7: STREAMS Access Library Functions

SAL_ERR _ALLOC GDT Global Descriptor Table entries for memory
management could not be allocated.

SAL_ERR _SETTIMER Thetimer for the SAL internal timer functions could
not be started.

Windows NT-Specific Functions

Thefollowing list of functions have been developed for the Windows NT SAL, in addition
to the streams functions and memory functions described in Stream Functions on page 79
and Memory Functions on page 92.

Call Description

s96_freemsg Frees up a streams message block and all its
related structures.

s96_nt_getcard Returns the logical card number for each of the card
installed in the system.

s96_nt_haltsys Does the cleanup and resource allocation for the SAL.

s96_nt_initsys Does the global initialization and allocation of resources
required by the SAL.

s96_nt_timeout Registers a timer handler.

s96_nt_untimeout Cancels a previously registered timeout.

s96_freemsg

Frees a streams message block and all itsrelated structures.

Thisfunction must be called by the driver for all the messages that it gets upstream by way
of the SAL response handler. This function frees up the memory in the SAL pool and
makes it available for other messages being delivered by the Radi Sys ARTIC960 driver to
the SAL.

Functional Prototype

unsi gned long s96_freensg (bl k_t *np)

Parameters

mp Input. Pointer to streams message block.

Remarks

None.

Error Codes

Any return code other than O isan error. The function could fail with the following

error codes.
SAL_ERR_NULLPTR The message pointer passed isNULL.
SAL_ERR_MSGLINKED This message has alink to another message and,

therefore, cannot be freed.

111



RadiSys ARTIC960 STREAMS Environment Reference

s96_nt_getcard
Returns the logical card number for each of the cards installed in the system.

Functional Prototype
int s96_nt_getcard (int PrevCardNunber);

Parameters

PrevCardNumber
Input. Thisisthe card number returned by the function in the previous
invocation. For the first invocation, it should be GET_FIRST _CARD.

Returns

Returns the logical card number, starting from 0, onward. ReturnsNO_MORE_CARD
when all cards have been enumerated.

Remarks

This call must be made from the DriverEntry() of the Windows NT kernel driver after it
has made the call to s96_nt_initsys().

Error Codes

None.
s96_nt_haltsys
Does the cleanup and resource deallocation for the SAL.

Functional Prototype
void s96_nt _haltsys ()

Parameters

None.

Remarks
Thisfunction must be called by the Windows NT kernel driver at the time of driver unload.

Error Codes

None.

s96_nt_initsys

Does the global initialization and allocation of resources required by the SAL for al the
Radi Sys ARTIC960 adapters in the system.

112



Chapter 7: STREAMS Access Library Functions

Functional Prototype

unsi gned long s96_nt _initsys ()

Parameters

None.

Remarks

This function must be called by the Windows NT kernel driver when it gets called at its
DriverEntry() entry point.

Error Codes

Any return code other than 0 is an error. The function could fail with the following
error codes.

SAL_ERR_MEMSPINLOCK Failure to get memory for spin locks.
SAL_ERR_NONPAGED_MEM Failure to allocate non-paged memory pool.

SAL_ERR DEV_OBJ PTR Failure to get the device object pointer to the
RadiSys ARTIC960 driver.
SAL_ERR_ALLOCIRP Failure to allocate the 1/0O Request Packet (IRP) for

getting Radi Sys ARTIC960 function pointers.

SAL_ERR_IOCALLDRIVER Failure to issue loCallDriver() to the
RadiSys ARTICO960 driver.

SAL_ERR_IDCEVENT Error waiting for event to get interdevice driver
communications (IDC) function pointers.

SAL_ERR_INITOSS Failureto initiaize and bind with the On-card
STREAMS Subsystem (OSS).

SAL_ERR_INITMEM Failureto initialize memory for received messages.

s96_nt_timeout

Registers atimer handler to be called after the expiration of the specified timeout period.

Functional Prototype
int s96 _nt _tineout ( PFNRV func, ULONG arg, ULONG nsecs)

Parameters

func Input. Pointer to the function to be called at timeout.

arg Input. Argument to be passed to the function called at timeout.
Msecs Input. Timeout period expressed in 1000-millisecond interval.
Remarks

None.

113



RadiSys ARTIC960 STREAMS Environment Reference

Error Codes

Any return code other than 0 is the correlation value, which is used to cancel the timeout
using the s96_nt_untimeout() function. Failure is indicated by returning a—1.

>0 Timeout correlation value.

-1 Failure to issue atimeout.
s96_nt_untimeout
Cancels a previously registered timeout.

Functional Prototype

void s96_nt _untineout ( unsigned long corr)

Parameters

corr Input. Correlation value returned previously by s96 _nt_timeout().

Remarks

None.

Error Codes

None.

114



Notices

Thisinformation was developed for products and services offered in the U.S.A.

Radi Sys Corporation may not offer the products, services, or features discussed in this
document in other countries. Consult your local Radi Sys representative for information on
the products and services currently available in your area. Any reference to a RadiSys
product, program, or service may be used. Any functionally equivalent product, program,
or service that does not infringe any RadiSys intellectual property right may be used
instead. However, it isthe user’s responsibility to evaluate and verify the operation of any
non-Radi Sys product, program, or service.

Radi Sys may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any license
to these patents. You can send license inquiries, in writing, to:

Radi Sys Corporation

5445 NE Dawson Creek Drive
Hillsboro, OR 97124

(561) 454-3200

115



RadiSys ARTIC960 STREAMS Environment Reference

116



| ndex

A

adapter memory size 5
ADD (application device driver) 65
ADF (Adapter Description File) 91
AIX application device driver communication 67
allocate memory 71
APIs

close 8

getmsg 8

ioctl 8

open 8

putmsg 8

supported S960ADD 8
application device driver (ADD) 65
ARTIC960 process 24
assign link address 85
asynchronous responses 72

B

banding parameters 17

big endian format 10

books, reference 6

buffer size 5

buffers allocated, number of 5

BUFREGION, load-time parameter 10

build On-card STREAM S-based module/driver 24

C

C language support 37
call put procedure 47
callback routine 27, 31
CardPacketSize parameter 5
CardPool Size parameter 5
change
communication status 81
S960ADD parameters 5
time delay 80
channel flow, global communication 77
close API 8
close on-card stream access 80
closing time delay 83
commands

0S/2-specific 109
SAL functions 78
Windows NT-specific 111
compile command 24
configuration
between ADD and RadiSys ARTIC960 adapter driver
67
change s960ADD parameters 5
cycle 85
device resource 87
On-card STREAMS Subsystem 9
0S/2 68
Windows NT 70
connect protocol stack drivers 1
control blocks
Seeipcb control blocks
control operations
CXB_LINK_HEAD 40
CXB_0SS REQ 41
CXB_REG_DRIVER 42
CXB_UNLINK HEAD 43
conventions, notational 4
create independent modules 1
cross-bus driver
building 24
described 27
structure definitions 24
cxb_control function 38
CXB_LINK_HEAD control operation 40
CXB_0OSS_REQ control operation 41
CXB_REG_DRIVER control operation 42
CXB_UNLINK_HEAD control operation 43

D

device profiles 32
download protocol stacks 1
downstream message flow 76

E

element control blocks 30, 48
elmblock 30

encode parameters 9
ENOCONNECT error 8

117



RadiSys ARTIC960 STREAMS Environment Reference

error classification 14

errors, initialization 14

ESS (cross-bus driver) 9

exception codes 13

exceptions, format of 15
EXPFACTOR, load-time parameter 10

F

fatal errors 15
find module name control block 60
flags, open 88
flags, STREAMS 87
flow charts 32
flow control, message 76
format, little/big endian 10
function types 72
functions
memory-specific
s96_bufcall 92
s96_deregister 94
s96_expand 96
s96 free 97
s96_info 98
s96_register 100
s96_reorg 101
s96_unbufcall 102
0S/2-gpecific
s96 freemsg 109
s96_idc_init 110
$96_o0s2_init 110
STREAM S-specific
s96_canput 79
s96 close 80
s96_commstate 81
s96_couldput 82
s96 ioctl 83
s96_open 87
s96_send 89
Windows NT-specific
s96_freemsg 111
s96 nt_getcard 112
s96 _nt_haltsys 112
s96 nt_initsys 112
s96 nt_timeout 113
s96_nt_untimeout 114
functions synchronization 72

G

get close time control block 63
getmsg API 5, 8
global communication channel flow 77

118

H

hangup from on-card stream 84
high water mark (HiWat) 6
high-priority messages 75
high-priority requests 12

IDC (interdevice driver communications) 110

immediate requests 72
immediate responses 72
initialization error codes 13
initialization errors 14

install AIX SAL (STREAMS) 70

install STREAM S-based modul e/driver into switch

tables 23

ioctl API 8

ipcb control blocks
STE_CLOSE 49
STE_OPEN 48
STE_XFIND 60
STE_XGETCLTIME 63
STE_XLINK 55
STE_XLINK, permanent 56
STE XLIST 61
STE_XLOOK 59
STE_XPOP 54
STE_XPUSH 53
STE_XRECEIVE 64
STE_XSEND 49
STE_XSETCLTIME 62
STE_XUNLINK 57
STE_XUNLINK, permanent 58

IRP (1/0 Request Packet) 113

K

kernel functions, OSS 20
kernel-level access 107
keywords, form of 9

L

length, device name 87
link
AlX SAL to stream driver 70
driver control block 55
two on-card streams 83
linkedit commands 25
Linking an On-card Stream Segmen 34
list module names 86
list module names control block 61
little endian format 10
load On-card STREAMS Subsystem 9
|oad-time parameters 9



Index

log device driver 105
low water mark (LoWat) 6
LOWSCALE, load-time parameter 10

M

M_FLUSH, message 50
M_READ, message 51
M_START, message 51
M_STARTI, message 52
M_STOP, message 52
M_STOPI, message 53
macros

_GET_OPEN_SSD 45

_IS IPCB_ERROR 45

_IS STE_CLOSE 45

_IS STE_OPEN 45

_SIZEOF _IPCB_EXTRA 44
MAXBLOCKLEN, load-time parameter 10
MAXDATAB, load-time parameter 10
MAXEXTB, load-time parameter 11
MAXHIGHB, load-time parameter 11
MAXSCBQUEUED, load-time parameter 11
MEDSCALE, load-time parameter 12
memo value, ADD 74
memory

addresses, formatting 10

allocate 71

functions 71, 92

reuse 72

user-data-buffer allocation 10
message

flows 76

handling services 17

size5
messages

high-priority 75

M_FLUSH 50

M_READ 51

M_START 51

M_STARTI 52

M_STOP 52

M_STOPI 53
MINMSGLEN, load-time parameter 12
module names, list 86
modules, create independent 1

N

non-transparent service (NON-XPAR) 65
NON-XPAR (non-transparent service) 65
non-zero code 78

notational conventions 4

notices 115

null arg parameter 86

null condition, using 13

O

OKFs (OSS Kernel Functions) 20
On-card STREAMS Subsystem (OSS)
configuration 9
kernel functions 20
overview 9
runtime exceptions 15
open aclone 70
open APl 8
open on-card stream 87
origin, response 31
0S/2 configuration 68
0S/2 considerations, SAL 66
0S/2-specific commands 109
0SS Kernel Functions (OKFs) 20

P

parameter, watermark 10

parameters (keywords) 9

permanent link driver control block 56
permanent unlink driver control block 58
pop module control block 54

priority messages 75

profile, device 32

programming notes 75

protocol stacks, download 1
publications, reference 6

push module control block 53

push module to stream top 83

putmsg API 5, 8

Q
queries, STREAM 7
guery communication status 71
queue
banding 91
high water mark 6
high-priority message 76
low water mark 6
response data 74
set high/low priority 21

R

reference publications 6

response codes, OSS
STE_COMM_DOWN 104
STE_COMM_XON 104
STE_CONNECT 104
STE_STARTXMIT 103
STE_STOPXMIT 103

119



RadiSys ARTIC960 STREAMS Environment Reference

STE_XRECEIVE 103
response handler 74
response origin 31
responses, immediate/asynchronous 72
retrieve module name 86
retrieve top module name 59
ric_sch.rel, SCB pipe status 66
runtime
environment, ARTIC960 1
exceptions, OSS 15
variables, SAL 66

S

s96_bufcall function 92
s96_canput function 79
s96_close function 80
s96_commstate function 81
s96_couldput 82
s96_deregister function 94
s96_expand function 96
s96_freefunction 97
s96_freemsg, OS/2-specific function 109
s96_freemsg, Windows NT-specific function 111
s96_idc_init, OS/2-specific function 110
s96_info function 98
s96_ioctl function 83
s96_nt_getcard, Windows NT-specific function 112
s96_nt_haltsys, Windows NT-specific function 112
s96_nt_initsys, Windows NT-specific function 112
s96_nt_timeout, Windows NT-specific function 113
s96_nt_untimeout, Windows NT-specific function 114
s96_open function 87
s96_0s2 init, OS/2-specific function 110
s96_register function 100
s96_reorg function 101
s96_send function 89
s96_unbufcall 102
S960ADD (STREAMS application device driver) 65
S960ADD devices 6
SAL (STREAMS Access Library)
AlX considerations 65
C language support 65
functions 78
installation as STREAM S-based driver 70
OS/2 considerations 66
overview 1
runtime variables 66
Windows NT considerations 66
SalMaxUpstrLen parameter 5
SalPipe Timeout parameter 5
saluser.h header file 65
send data control block 49
send stream message 89

120

set close time control block 62

size, message 5

SKFs (Standard Kernel Functions) 17, 71
SRV SLICE, load-time parameter 13
Standard Kernel Functions (SKFs) 17, 71
STE_CLOSE, control block 49
STE_COMM_DOWN, response code 104
STE_COMM_XON, response code 104
STE_CONNECT, response code 104
STE_FIND, ioctl 86

STE_GETCLTIME, ioctl 86

STE_LINK, ioctl 83

STE_LIST, ioctl 86

STE_LOOK, ioctl 85

STE_OPEN, control block 48

STE_POP, ioctl 83

STE_PUSH, ioctl 83

STE_SETCLTIME, ioctl 86
STE_STARTXMIT, response code 103
STE_STOPXMIT, response code 103
STE_UNLINK, ioctl 85

STE_XFIND, control block 60
STE_XGETCLTIME, control block 63
STE_XLINK (permanent), control block 56
STE_XLINK, control block 55
STE_XLIST, control block 61
STE_XLOOK, control block 59
STE_XPOP, control block 54
STE_XPUSH, control block 53
STE_XRECEIVE, control block 64
STE_XRECEIVE, response code 103
STE_XSEND, control block 49
STE_XSETCLTIME, control block 62

STE_XUNLINK (permanent), control block 58

STE_XUNLINK, control block 57
stream functions 79
STREAMS
Access Library (SAL) 1
application device driver (S960ADD) 5
build module/driver 24
change S96ADD parameters 5
described 1
flags 87
functions 71
memory 71
module/driver 17
On-card Subsystem 9
queries 7
S960ADD Devices 6
streamtab structure 23
STRMS_PER_TASK, load-time parameter 12
STRSCBQUEUED, load-time parameter 12
supported S960ADD APIs 8
systemcalls 17



Index

T

time delay, change 80
timeout value 5
transfers, high-priority message 76
transparent loctl 17
transparent service (XPAR) 65
types

exception 15

function 72

message 75

parameter 78

U

unlink
driver control block 57
On-card Stream segment 36
two on-card streams 83, 85
upstream flow 77

Vv

vaid adapter numbers 81
value

correlation 88

link index 85

memo 74
variable, makefile 24

wW

watermark parameter 10

Windows NT configuration 70
Windows NT considerations, SAL 66
Windows NT-specific commands 111
write service procedure 32

X
XPAR (transparent service) 65

121



RadiSys ARTIC960 STREAMS Environment Reference

122



	RadiSys�ARTIC960 STREAMS
	Environment�Reference
	About this�Guide
	Guide contents
	Appendices

	Conventions
	Notations
	Terms
	Symbols

	RadiSys�ARTIC960 Developer’s Kit—Contents
	Developer’s Assistance Program
	Where to Get More Information

	Contents
	Figures
	Tables

	Chapter 1: RadiSys ARTIC960 STREAMS Overview
	Chapter 2: AIX STREAMS960 Application Device Driver
	Configuration
	STREAMS S960ADD
	Using the Command Line
	Using the SMIT Menu

	STREAMS S960ADD Devices
	Enabling/Disabling STREAMS
	Using the Command Line
	Using the SMIT Menu

	Supported S96ADD APIs

	Chapter 3: On card STREAMS Subsystem and Cross Bus Driver
	Loading On�card STREAMS Subsystem
	Loading On�card STREAMS Cross�Bus Driver (ESS)
	Configuring On�card STREAMS Subsystem
	Configuring On�card STREAMS Cross�Bus Driver
	Initialization Error and Exception Codes
	Initialization Errors
	Runtime Exceptions


	Chapter 4: STREAMS-based Module/ Driver Information
	SKF Functions
	OSS Kernel Functions
	qhipri
	qlopri
	s96_devinst

	Building a STREAMS-based Driver
	Using the Compile Command
	Using the Linkedit commands


	Chapter 5: Developing a Cross bus Driver
	Flow Charts
	Registering a Cross�Bus Driver
	Linking an On�card Stream Segment
	Unlinking an On�card Stream Segment

	C Language Support
	cxb_control
	CXB_LINK_HEAD
	CXB_OSS_REQ
	CXB_REG_DRIVER
	CXB_UNLINK_HEAD

	Macros
	_SIZEOF_IPCB_EXTRA
	_GET_OPEN_SSD
	_IS_STE_OPEN
	_IS_STE_CLOSE
	_IS_IPCB_ERROR

	cxb_canputnext
	cxb_putnext
	Element Control Blocks Format
	ipcb Blocks
	STE_OPEN — Open Stream
	STE_CLOSE — Close Stream
	STE_XSEND — Send Data
	STE_XPUSH ioctl — Push Module
	STE_XPOP ioctl — Pop Module
	STE_XLINK ioctl — Link Driver
	iSTE_XLINK octl — Permanent Link Driver
	STE_XUNLINK ioctl — Unlink Driver
	STE_XUNLINK ioctl — Permanent Unlink Driver
	STE_XLOOK ioctl — Retrieve Top Module Name
	STE_XFIND ioctl — Find Module Name
	STE_XLIST ioctl — List Module Names
	STE_XSETCLTIME ioctl — Set Close Time
	STE_XGETCLTIME ioctl — Get Close Time
	STE_XRECEIVE Response Code — Receive Messages


	Chapter 6: STREAMS Access Library
	C Language Support
	AIX Considerations
	OS/2 Considerations
	Windows NT Considerations

	Runtime Variables
	AIX Configuration
	OS/2 Configuration
	Installation of AIX SAL as a STREAMS�based Driver
	Linking the AIX SAL and the ARTIC960 Adapter Stream Driver
	Windows NT Configuration

	Chapter 7: STREAMS Access Library Functions
	Functions Synchronization
	Response Handler
	Programming Notes
	Priority Messages
	Flow Control
	Downstream Flow
	Upstream Flow

	SAL Functions
	Stream Functions
	s96_canput
	s96_close
	s96_commstate
	s96_couldput
	s96_ioctl
	s96_open
	s96_send

	Memory Functions
	s96_bufcall
	s96_deregister
	s96_expand
	s96_free
	s96_info
	s96_register
	s96_reorg
	s96_unbufcall

	Response Codes
	Log Device Driver
	User�Level Access.
	Kernel�Level Access

	Error Codes
	OS/2�Specific Functions
	s96_freemsg
	s96_idc_init
	s96_os2_init

	Windows NT�Specific Functions
	s96_freemsg
	s96_nt_getcard
	s96_nt_haltsys
	s96_nt_initsys
	s96_nt_timeout
	s96_nt_untimeout


	Appendix A: Notices
	Index

