Mwave

Device Driver Developer’'s Guide

Version 1.0

Mwave Device Driver Developer’s Guide

NOTICE:

The information contained in this document is subject to change without notice. The products described
in this document are NOT intended for use in implantation or other life support applications where
malfunction may result in injury or death to persons. The information contained in this document does
not effect or change IBM’s product specifications or warranties. Nothing in this document shall operate
as an express or implied license or indemnity under the intellectual property rights of IBM or third
parties. All the information contained in this document was obtained in specific environments, and is
presented as an illustration. The results obtained in other operating environments may vary.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN “AS IS”
BASIS. In no event will IBM be liable for any damages arising directly or indirectly from
any use of the information contained in this document.

First Edition (July 1996)

This edition is prepared and maintained by IBM Microelectronics. For further information, see
IBM Microelectronics’ Homepage at http://www.chips.ibm.com.

© Copyright International Business Machines Corporation 1996. All rights reserved.

11 This document contains information that
is subject to change without notice.

Table of Contents

Chapter 1 -- Introduction to the Mwave Device Driver Developer's Guideccooeeeeieeeieeeeenn. 1
Chapter 2 -- Mwave Client/Server SUPPOITcooiiiiiei e 3
Mwave Agent/Client/Server Relationshipscooiiiiiiiiiii e 3
Server Registration FIOWS..........coo i a e e 4
Client Connect, Send, DISCONNECE FIOWSuiiiiiiiiiiiiiie e 5
F o g I TS T ey o) o) o SRR 6
API Calls for Mwave Client/Server SUPPOITuuuuuiuuuuiiiiiiiiririirrerreerrrrrrrerrr——.. 7
Chapter 3 -- Mwave Notification SErver ..o 15
Messages Supported by Notification Server............ccooiiiiiii e 16
NS_REQNOTIFICATION ...ttt 16
NS_EVENTNOTIFICATION ...ttt 19
Chapter 4 -- Mwave Contention SEIVET........cccoiiiiii e 21
Contention SEIVEN OVEIVIEWccovvviiiiiiiiiiiiieieeee ettt 21
Contention Server Nameoooviiiii 21
Understanding Contention Management ... 22
Understanding Relative Priority Valuescoooii oo 23
Y (= LS TeT=T g T (o PR TR 23
Development Environment for Contention Server Clientscccccccvviiiiiccccc 31
DIAGNOSTICS . ettt 31
Using the Diagnostics Tool (MWCONFGR.EXE)cccuuuiiiiiiiiiiiiie e 31
T AN o] o [T o] o [T 32
Using the Test Application (MWTEST.EXE)covviiiiiiiiiiieeee e 33
Using the Test Application (MWTEST) with the Diagnostics Tool (MWCONFGR)............... 34
Messages Supported by Contention SErVErcooi it 35
Messages That Must Be Supported by A Client...........ooouiiiiiiiiiii e 41
Appendix A — ServerProc and ClientProc Protocol ... 45
ST V=T 4 o o o PP 45
L0711 01 L o TP 48
This document contains information that 1i1

is subject to change without notice.

Chapter 1

Chapter 1 -- Introduction to the Mwave Device Driver
Developer’s Guide

The Mwave Client/Server architecture provides a flexible method of communication among
device drivers (clients) in the Mwave System. The Mwave Agent is the Operating System-
independent interface that device drivers use to access Client/Server capabilities. Chapter 2
provides an overview of the Client/Server architecture and describes the messages used
between clients, servers, and the Mwave Agent.

One implementation of the Mwave Client/Server architecture is the Mwave Notification Server.
The Notification Server, in conjunction with the Mwave Agent, allows client device drivers to
request notification of power management events and PCMCIA events such as card insertion
and removal. Chapter 3 describes the Notification Server and the messages sent and received
by the Server.

A recent implementation of the Mwave Client/Server architecture is the Mwave Contention
Server. Prior to the integration of the Contention Server in the Mwave System, device drivers
were not loaded until they were needed and were then unloaded as soon as the task had
completed. This driver behavior resulted in performance problems in the following scenarios:

A first task is loaded in the system and a second task needs to load but is constrained by resource
limitations. There is no way for the first task to unload and free resources until the task has
completed. As a result, the second task fails to load.

Every task has to unload as soon as it completes to avoid the previous scenario. Continuous
loading and unloading of tasks consumes host processor cycles and causes delays for needed
tasks.

The Contention Server provides the framework in which Mwave device drivers contending for
resources can cooperatively use Mwave resources. Each client device driver in the system has
an assigned priority establishing a hierarchy in which higher priority drivers can request lower
priority drivers to remove themselves from the system to free resources. This ensures that the
critical tasks can load. Because drivers can receive requests to remove themselves from the
system, this framework also allows lower priority device drivers to remain loaded until other
drivers request that they unload.

For applications developed by independent software vendors to run compatibly in the Mwave
System, application developers must use the Contention Server when developing device drivers.
Chapter 4 describes the Mwave Contention Server.

The API calls for the ServerProcand ClientProc are defined in Appendix A.

This document contains information that 1
is subject to change without notice.

Mwave Device Driver Developer’s Guide

2 This document contains information that
is subject to change without notice.

Chapter 2

Chapter 2 -- Mwave Client/Server Support
Mwave Agent/Client/Server Relationships

Mwave Client/Server

. Support
Client 1 pp Server A
Send Send
Proc 1 Proc A
< Notify CONNECTION Notify | _»
\\ LIST | —
ﬁ_\ /
1 /<
Client 2 3V ~\ Server B
Send Send
Proc 2 / \Proc B
e Notify Notify \\
Client 3 erver C
Se Send
Proc 3 / roc C
/ Notify Notify \4
Client 4
/ Send
Proc 4
/ Notify
This document contains information that 3

is subject to change without notice.

Mwave Device Driver Developer’s Guide

Server Registration Flows

Server Mwave Client
audio.drv audioproc controlproc control.drv
| mwOpenMwave
hmwave
| mwRegisterServer
Serverld
hmserver
f—— |
| mwNotifyClient
Notify
f——
4 This document contains information that

is subject to change without notice.

Chapter 2

Client Connect, Send, Disconnect Flows

Server Mwave Client
audio.drv audioproc controlproc control.drv
I

mwOpenMwave

hmwave

[——

mwConnectToServer |]

Connect
Conversationld

hmconv

Connect

Conversationld

mwSendToServer |]
wMessa

mwDisconnect From Server /

Disconnect

Disconnect

This document contains information that 5
is subject to change without notice.

Mwave Device Driver Developer’s Guide

API Description

This section describes the set of API calls for Mwave Client/Server support.
Mwave Agent Error Reporting

All API calls have identical error return protocol. Every API function returns some type that is
32 bits in length. If the Mwave Agent needs to return an error code, it is returned in the 32 bit
type. Error return values can be distinguished from normal return values by the range of the
value. Error return values, and conversely, no normal return values, fall within the range of
0xFF000000to OxFFFF0000. A macro in MWAGENT.H provides a simple test to determine if a
returned value is an Mwave Agent error code. The macro is mwAGErrChk(c), where rc is the
value returned by the API function. The macro has a non-zero (TRUE) value if the returned
value is an error code.

Error code values are listed below.

Mwave Agent Error Codes

Error Name Error Value Description

MWAGERR INVALIDPARMS OxFFFF0000 invalid parameters
MWAGERR NAMEINUSE OxFFFEO00O Object Name already in use
MWAGERR SERVERNOTREGISTERED | OxFFFD000O unknown server
MWAGERR INVALIDHANDLE OxFFFCO000 invalid handle

MWAGERR_UNSUPPORTEDMESSAGE | OxFFFB000O unsupported message to client
OF Server proc

MWAGERR INVALIDPROC OxFFFAQ000 invalid procedure address
MWAGERR SYSTEMERROR OxFFF90000 operating system error
MWAGERR NOMORERESOURCES OxFFF80000 out of resources

6 This document contains information that

is subject to change without notice.

Chapter 2

API Calls for Mwave Client/Server Support

mwOpenMwave

HMWAVE mwOpenMwave (IpszUserName, [Param1, |Param?2)

LPSTR IpszUserName

LPARAM [Paraml

LPARAM [Param2
Opens an Mwave context. Allows a single calmwCloseM waveto clean up all
resources allocated in this context.

Parameters

Return Value

IpszUserName
Allows a text string name to be attached to the user of Mwave resources.

[Paraml
Reserved for future use. Must be zero.

[Param2
Reserved for future use. Must be zero.

The return value is the Mwave context handle if successful. A NULL context handle
is returned if the function is unable to allocate storage for the Mwave context.
Function returns error code:MWAGERR _INVALIDPARMSIf |[Param! or

[Param? is not 0.

Note:

MWAGERCHK INVALIDPARMS is necessarput not sufficient for this API. It
does not check for null.

mwCloseMwave

LRESULT mwCloseMwave hmwave,reserved

HMWAVE hmwave

LPARAM reserved
Close an Mwave context previously opened bmwOpenMwave. All resources
allocated are freed.

Parameters

Return Value

hmwave
Mwave context handle.

reserved
must be 0

The return value is 0 if successful. Function returns error code
MWAGERR _INVALIDHANDLEif the HMWAVE handle is invalid.

This document contains information that 7
is subject to change without notice.

Mwave Device Driver Developer’s Guide

mwRegisterServer

HMSERVER
HMWAVE
LPSTR
SRVPROC
LPARAM
LPARAM

Parameters

Return Value

mwRegister Server (hmwave, IpszServerName, serverprc, [Param. reserve)l
hmwave

IpszServerName

serverprc

[Param

reserved

Registers a server with the Mwave Agent. Client establishes conversations with the
server by issuing amwConnectToSer verspecifying the name provided by the
IpszServerNameargument. This function sends the SRV_REGISTER message to
the ServerProc (see Appendix A).

hmwave
Mwave system handle that was returned bmwOpenMwave

IpszServerName
The name clients use to connect to the server. This name must be unique.

serverprc
Specifies the address of the procedure that is called when messages are sent to the
server. (See Appendix A for theServerProc function prototype on page45.

[Param
User data that is passed as thelParamargument to Server Proc with the
SRV_REGISTER message. This may be used by thServerProcto create
server instance specific data. The use of this parameter is entirely up to the
implementer of the server.

reserved
Must be 0

The return value is the handle of the registered server if successful. The function
returns the error code MWAGERR _INVALIDHANDLEif the HMWAVE is
invalid, or MWAGERR NAMEINUSEiIf the IpszServerName is in use, or
MWAGERR _INVALIDPARMSIif reserved is non-zero.

This document contains information that
is subject to change without notice.

Chapter 2

mwUnregisterServer

LRESULT

mwUnregister Server himserver, reserved)

HMSERVER hmserver

LPARAM

Parameters

Return Value

reserved

Unregisters the specified server. For each conversation of this server, Mwave Agent
first sends the SRV_DISCONNECT to the server followed by the

CLI DISCONNECT message to client. Then the SRV_UNREGISTER message is
sent to the server.

hmserver
The handle of the server.

reserved
Must be 0

The return value is 0 if successful. Possible error return values are
MWAGERR _INVALIDPARMSIf the reserved value is non-zero or
MWAGERR_INVALIDHANDLEf the HMSERVER handle is invalid.

This document contains information that 9
is subject to change without notice.

Mwave Device Driver Developer’s Guide

mwConnectToServer
HMCONV mwConnectToServer imwave, IpszServerName, lpszClientName, clientprc,
lInitialData)

HMWAVE hmwave

LPSTR IpszServerName

LPSTR IpszClientName,

CLTPROC clientproc

LPARAM lInitialData
Connects a client to the specified server. The server must have been previously
registered with amwRegister Server call. mwConnectToServer()sends a
CLI_CONNECT message to the specifiedClientProc passing lInitialData, in
dwConversationld,as the initial instance data and the lpszServerNamein wSize and
pBuffer. It also sends a SRV_CONNECT message to thServerProc for the
specified Server passing thelpszClientNamein wSize and pBuffer. The HMCONV
value is passed to bothClientProc and ServerProcin their respective IParam
parameters.

Parameters
hmwave

Return Value

Mwave system handle that was returned bmwOpenMwave

IpszServerName
Used to specify the server to be connected to this client. The string is also
passed to theClientProc in wSize/pBuffer.

IpszClientName
Used to tell server name of connected client. Passed to th8erverProcin
wSize/pBuffer.

clientprc
Specifies the address of the procedure that is called when messages are sent to the
client. The ClientProcis called by the Mwave Agent during
mwConnectToServerand mwDisconnectFromServercalls and also may be
called by the connected server vianwNotifyClientcalls. See the ClientProc
function prototype in Appendix A on pagd5.

IInitialData
User data that is passed as thedwConversationldargument to ClientProc with
the CLI CONNECT message. This is typically used as initial instance data by
the ClientProc. Note that the ClientProc's dwConversationldis replaced, on all
subsequent calls, with the value returned by th€lientProc after processing the
CLI CONNECT message.

The return value is the conversation handle, if successful. The function returns the
error code MWAGERR INVALIDHANDLEif the HMWAVE is invalid, or
MWAGERR _SERVERNOTREGISTERED(the server has not registered with
the Mwave Agent.

10

This document contains information that
is subject to change without notice.

Chapter 2

mwDisconnectFromServer

LRESULT mwDisconnectFromServer hconversation, reserved
HMCONV hconversation
LPARAM reserved

Disconnects the client from server. This call sends the SRV_DISCONNECT to the
ServerProc followed by the CLI DISCONNECT message t€lientProc.

Parameters
hconversation
Client/Server conversation handle returned froommwConnectToServer()

reserved
Must be 0

Return Value
The return value is 0 if successful. The function returns the error code
MWAGERR _INVALIDHANDLEIf the hconversationis invalid, or
MWAGERR _INVALIDPARMSif reserved is non-zero.

This document contains information that 11
is subject to change without notice.

Mwave Device Driver Developer’s Guide

mwSendToServer

LRESULT
HMCONV
USHORT
LPARAM
USHORT
PVOID

Parameters

Return Value

Comments

mwSendToServer hconversation, wMessage, [Param, wSize, pBuffer)
hconversation

wMessage

[Param

wSize

pBuffer

Sends the message specified bywMessageand optionally a value, IParam,and a
buffer length, wSize, and address, pBuffer, to the server.

hconversation
The conversation handle returned bymwConnectToSer ver ()

wMessage
This may be any message, greater than or equal to SRV_USERBASE, to which
the server responds.

I[Param
The meaning of this parameter is dependent on thewMessagevalue. This
parameter may be used to pass any 32 bit (or shorter) data value to the server. It
is not recommended that this be used as a pointer, however, since some addresses
may be invalid in the server context on some operating systems.

wSize
Specifies the length in bytes of the buffer pointed to byBuffer.

pBuffer
If wSize does not equal zero, pBuffer specifies a pointer to a buffer containing
wSize bytes. If wSize=0, this parameter is ignored.

The meaning of this parameter is dependent on thewMessagevalue. This
parameter may be used to pass a block of data to the server. The size of the
block must be less than or equal to 65535 bytes. The data block should not
contain pointers, however, since some addresses may be invalid in the server
context on some operating systems.

The return value is serverivMessagedependent. Refer to Server documentation for a
description of return values. Mwave Agent returns the error code

MWAGERR _INVALIDHANDLEIf the hconversationis invalid, or

MWAGERR _UNSUPPORTEDMESSAGHf the server does not support the
wMessagevalue.

The values forIParamand pBuffer are entirely dependent on the
ServerProcmwMessagecombination. Refer to individual server documentation for
descriptions of messages and their corresponding parameters. Note thawMessage
values below SRV_USERBASE are reserved by the Mwave Agent and their
corresponding parameters are described in Appendix AServerProc and ClientProc
Protocol on page45.

12

This document contains information that
is subject to change without notice.

Chapter 2

mwNotifyClient

LRESULT mwNotifyClient GConversation, wMessage, |Param, wSize, pBuffor
HCONV hconversation

USHORT wMessage
LPARAM IParam
USHORT wSize
PVOID pBuffer

Sends the message specified bywMessageand optionally a value, IParam,and a
buffer length, wSize, and address, pBuffer, to the Client.

Parameters
hconversation
The conversation handle passed to the server by way of thServerProcin
[Paramwith the SRV_CONNECT message.

wMessage
This may be any message, greater than or equal to CLI USERBASE, to which
the client responds.

I[Param
The meaning of this parameter is dependent on thewMessagevalue. This
parameter may be used to pass any 32 bit (or shorter) data value to the client.
You should not use this parameter as a pointer, however, since some addresses
may be invalid in the client context on some operating systems.

wSize
Specifies the length in bytes of the buffer pointed to byBuffer.

pBuffer
If wSize does not equal zero, pBuffer specifies a pointer to a buffer containing
wSize bytes. If wSize=0, this parameter is ignored.

The meaning of this parameter is dependent on thewMessagevalue. This
parameter may be used to pass a block of data to the client. The size of the block
must be less than or equal to 65535 bytes. The data block should not contain
pointers, however, since some addresses may be invalid in the client context on
some operating systems.

Return Value
The return value is clientivMessagedependent. Refer to Client documentation for
description of return values. Mwave Agent returns the error code
MWAGERR _INVALIDHANDLEIf the hconversationis invalid, or
MWAGERR _UNSUPPORTEDMESSAGHf the client does not support the
wMessagevalue.

Comments
The values forIParamand pBuffer are entirely dependent on the
ClientProc/wMessagecombination. Refer to individual server documentation for
descriptions of messages and their corresponding parameters. Note thawMessage
values below CLI USERBASE are reserved by the Mwave Agent and their
corresponding parameters are described in Appendix AServerProc and ClientProc
Protocol on page45.

This document contains information that 13
is subject to change without notice.

Mwave Device Driver Developer’s Guide

Clients must be prepared to handle any notifications that a connected-to server are
likely to generate. Refer to server documentation relating to notifications and what,
if any, events may cause a server to send notifications to the ClientProc.

14 This document contains information that
is subject to change without notice.

Chapter 3

Chapter 3 -- Mwave Notification Server

This chapter describes the messages and functions provided by the Mwave Notification Server.
This server, used in conjunction with the Mwave Agent, (see Mwave Agent/Client/Server
Relationships on page 3), provides Mwave Clients with notifications for events such as DSP
INIT, DSP FAIL, and Power Management Events.

This Server is implemented for Windows, 0S/2, WIN-OS2, and DOS. The bulk of the Server is
OS independent and the Server could, therefore, be easily implemented for any operating
systems supported by the Mwave Agent.

Notification Server Name

The Mwave Notification Server registers itself with the name MWNOTIFY.

This document contains information that 15
is subject to change without notice.

Mwave Device Driver Developer’s Guide

Messages Supported by Notification Server
NS _REQNOTIFICATION

Notification Events

A client sends this message to request or update a previous request for notification
services. A client can request notification of any combination of the following
events:

EVENT TYPE EVENT DESCRIPTION
DSP INIT DSP Initiation Notify client when a DSP INIT has occurred.
DSP FAIL DSP Failure Notify client when one of the specific DSP failure

events occur.

PCMCIA Events

PCMCIA card events Notify client when an Mwave PCMCIA card has been
added or removed from the system.

Power
Management

Power Suspend Notify client when a power management event has

occurred.
Power Resume

Note: If the client processes any of the events, the
client should process all of the power management
events.

Power Critical Resume

Note: This event can only be generated on machines
and operating systems providing Power Management
capability.

If any of the requested events occur, mwNotifyClient() sends an

NS _EVENTNOTIFICATION message to the client. ThdParamparameter sent to
the ClientProc contains bits indicating the cause of the event. The Event Filters
table lists the masks that may be used to determine the exact events. While it is
unlikely, it is possible for more than one event to be posted within a single
notification. TheClientProcshould check for all events that it processes. See
ClientProc on page 48 for additional information.

The client may optionally specify a DSP handle with the request. If a DSP handle is
included with the request, the client is only notified of the relevant events for that
DSP. If no DSP handle is included, the client is notified of relevant events for any
DSP. The pBuffer parameters pass the DSP handle to the Notification Server. The
caller must setwSize to sizeof(HDSP)and the pBuffer parameter to the address of
a valid HDSP variable containing the DSP handle. If a DSP handle is not being
passed to the Notification Server then the caller merely setsvSize to 0. A client
may specify a maximum of one DSP handle. If multiple requests are issued by a
client, the last DSP handle value (including none) used. If a client wants to receive
events for more than one DSP, the client must request notifications of the events
composite for all DSPs and filter the notifications within itClientProd().

16

This document contains information that
is subject to change without notice.

Chapter 3

Event Filters

NS_DSPINIT

DSP is initialized. This may be due to a dsplnit() call to the Mwave
Manager or the result of some internal exception processing of the
Manager. All DSP data is lost. A DSP FAIL event is usually
followed by a DSP INIT event.

NS_DSPFAIL

The DSP has failed in some way. This mask is the Boolean sum of
the next set of individual failure filters. This event indicates that the
DSP stopped processing but the DSP data may still be valid. Check
individual failure events for likelihood of valid data.

NS_DSPMIPO

The DSP stopped processing due to a task overrunning its allocated
cycle count. This indicates that the DSP was overloaded with too
much real-time processing. This error should only occur in a
development environment where Instruction Cycle Counter error
trapping is disabled for debug purposes. This is a critical error which
would cause unpredictable results if not detected and reported.

NS_DSPICC

The insturction cycle counter is a 16 bit counter which decrements
each time a DSP instruction is executed. The insturction cycle counter
interrupt occurs whenever the insturction cycle determines whether
the current task has exceeded its allocated number of insturction
cycles by checking the upper 16 bits of the task’s instruction cycle
allocation. If the upper 16 bits is not zero, then it is decremented and
control is returned to the interrupted task. If the upper 16 bits is zero,
then the task has exceeded its allocated instruction cycles. The
Mwave Manager can identify the task which violated its cycle count
by reading SYSDSPTR. This is a critial error which indicates a
serious system error or a flaw in the task code.

NS_PCMCIA_CARDEVENT

This mask is the Boolean sum of the twc PCMCIA Event Filters. It
can be used to set the value for the notification request and as a
general filter for PCMCIA events.

NS_PCMCIA_CARDUNPLUGGED

The DSP is removed from the system and no longer available for use.
The Mwave Manager returns DSP NOTAVAILABLE on all calls
related to this DSP after this event is processed by the Manager. The
Notification Server generates an NS PWRSUSPEND event for this
DSP after the PCMCIA event is sent.

NS_PCMCIA_CARDREPLUGGED

The DSP is reinserted into the system. This event is sent and the
Notification Server generates an NS PWRCRITICALRESUME event
for this DSP.

This document contains information that 17
is subject to change without notice.

Mwave Device Driver Developer’s Guide

Event Filters (continued)

NS_ PWRMGMT

This mask is the Boolean sum of the three Power Management Event
Filters. It can be used to set the value for the notification request and
as a general filter for Power Management events.

NS_PWRSUSPEND

This event is generated when the host system is suspending all activity
in order to save power. The client should stop its DSP processing and
save any pertinent state information. Clients are guaranteed that the
Manager's services are available at the time of this notification but
should assume that the DSP is halted and reset after return.

NS_PWRRESUME

This event is generated when the host system resumes processing aftet
it had suspended operations. The client should reload all DSP tasks,
reconnect all GPCs and ITCBs, and restore its DSP state in
preparation for normal activity. Clients are guaranteed that the
Manager's services are available at the time of this notification and the
DSP has been initialized with MwaveOS.

NS_PWRCRITICALRESUME This event is generated when the host system resumes processing aftet

it has shutdown abnormally without having previously sent an

NS PWRSUSPEND notification. Consequently, no state information|
was saved during the last shutdown. The client should recover by
reloading all DSP tasks, reconnecting all GPCs and ITCBs, and
restoring its DSP state in preparation for normal activity. Clients are
guaranteed that the Manager's services are available at the time of this
notification and the DSP has been initialized with MwaveOS.

Parameters

Return Value

dwServerld
Server Instance data returned fromSRV_REGISTERprocessing.

dwConversationld
Conversation Instance data returned fromSRV_CONNECTmessage

wMessage
NS REQNOTIFICATION

IParam
Requested event filter using bits as defined in the above table. A zero value in a
bit position resets a previous request for the corresponding event.

wSize
Should be 0 if no DSP handle is passed to the Notification Server, and should be
set to sizeof(HDSP) if a DSP handle is passed.

pBuffer
Not valid if wSize = 0. pBuffer contains the address of a DSP handle if wSize =
sizeof(HDSP).

18

This document contains information that
is subject to change without notice.

Chapter 3

NS EVENTNOTIFICATION

This message is sent by the Server to a client when an event occurs matching the
client's requested event notification filter. SedNS REQNOTIFICATIONon page
16 for additional information.

Parameters
dwConversationld
Conversation Instance data returned fromCLI_CONNECTmessage

wMessage
NS _EVENTNOTIFICATION

[Param
Event filter using bits as defined in the table Event Filters, on page 17.

wSize
Will be 0 if no DSP handle is passed to the Notification Server. Sets to
sizeof(HDSP) if a DSP handle is passed.

pBuffer
Not valid if wSize = 0. pBuffer contains the address of a DSP handle if wSize =
sizeof(HDSP).

Return Value
Returns any bits for events that are NOT processed by the client. Normally, a client
would process the one (and only) event causing the notification and would,
consequently, return 0.

This document contains information that 19
is subject to change without notice.

Mwave Device Driver Developer’s Guide

20 This document contains information that
is subject to change without notice.

Chapter 4

Chapter 4 -- Mwave Contention Server

This chapter describes the messages used and functions provided by the Mwave Contention
Server and includes:

an overview of the Contention Server

an in-depth explanation of how the Server manages contention among clients
descriptions of the messages supported

information about the development and testing environment for client writers

Contention Server Overview

The Contention Server, used in conjunction with the Mwave Agent (See Chapter 2 —Mwave
Client/Server Support on page 3), provides its clients (drivers) with a mechanism to contend for
limited Mwave resources. Resources include:

. data store

- instruction store

- MEIO connections to other hardware components
- DMA channels

- IPCs

- MIPS

The Contention Server is implemented for Windows 3.1, Windows 95, 0OS/2, and WIN-OS2.
However, the bulk of the Server is OS-independent and could, therefore, be easily implemented
for any operating systems supported by the Mwave Agent.

Contention Server Name
The Mwave Contention Server registers itself with the name MWCONTEND.

This document contains information that 21
is subject to change without notice.

Mwave Device Driver Developer’s Guide

Understanding Contention Management

The Contention Server is implemented to provide clients (drivers) with a mechanism to contend
for limited system resources. This server does not enforce contention management activities
such as loading and unloading tasks; that function is the handled by the Mwave Manager.
Instead, when clients (drivers) register with the Contention Server, it keeps a list of the client
names, the priority at which they register, and their state (active or stopped). When a client
attempts to use Mwave resources and resource constraints prevent it from successfully loading,
the client notifies the Server. The Server then requests that all clients, whose priority is lower
than or equal to that of the client whose load failed, unload to free resources for the higher
priority client.

The Contention Server only operates as a notification mechanism and has no enforcement
capability. Therefore, the Contention Server uses a buddy system to maintain a reasonable
balance of concurrent function in the Mwave system. Each client is a buddy who agrees to
operate within the established policy constraints and to allow optimum concurrency in the
system.

The priorities of each client are established based on a projection of the customer's personal
preferences. Different markets call for different sets of priority relationships. For example, in
the small office/lhome office (SOHO) market and in general, telephony functions are higher
priority than audio functions. In the home market, however, the priorities might be a little more
balanced to give priority to games and audio functions.

Client developers should not consider their client the most important in the system. Instead,
they should consider that the customer can best be served by all the clients working
cooperatively with the Contention Server to provide the greatest concurrency and most seamless
service to the end user.

The Contention Server is accessible to clients when they register with the Mwave Agent. The
following diagram illustrates how clients communicate with the Contention Server via the Mwave
Agent.

e Coi
Client 1
Client 2 mwSendToServer MWAGENT serverproc MWCONTEND
< ClientProc MmwNotifyClient
Clientn

Figure 4-1. Mwave Client-Server Environment

As shown in Figure 4- 1. Mwave Client-Server Environment, the clients use the
mwSendToServer()call to communicate with the Contention Server via the Mwave Agent. The
Mwave Agent calls the Contention Server’s serverproc to pass the information contained in the
mwSendToServer() Conversely, the Contention Server uses the mwNotifyClient()call to
send information to the Agent, which calls the client’s ClientProc to pass that information on to
the client.

22 This document contains information that
is subject to change without notice.

Chapter 4

For more information about how clients and servers communicate via the Mwave Agent, see
Mwave Client/Server Support on page 3.

Understanding Relative Priority Values

The Contention Server uses the priority of a client (relative to the priority of other clients in the
system) to determine which clients should load and in what order. The priority is always passed
in the IParam of the messages sent between the client and the Contention Server.

Priorities are defined in the MWAVE.INI file. However, client writers shouldNOT get priorities
directly from the MWAVE.INI or hardcode the priorities in the client code.Instead, client writers
should include the MWHELPER.DLL or MWHLPOS2.DLL, which includes the
mwHelpGetLOSPriorities()function. (See the description of the mwHelpGetLOSPriorities
function on page 44 for more information about the function.)

Because the priorities may change in different implementations of the Mwave product, client
writers should write clients to work at any priority level. Clients can register with the Contention
Server multiple times at different priorities to provide granular levels of service. For example,
the Mwave Synth driver registers its 32-voice driver at a low level of priority because it

consumes the greatest amount of resources. Mwave Synth also registers its 24, 16, and 8-voice
drivers at higher levels of priority. When an application requests the Synth driver by an MCI

call, the Mwave Synth can attempt to load its 32-voice driver at a median priority. If that

attempt fails, the Mwave Synth can keep trying until one of its higher priority drivers successfully
loads. As resources become available, the higher priority Synth drivers get an opportunity to
load and increase the level of service and the quality of sound.

Typical Scenarios

This section includes scenarios that illustrate how the Contention Server and clients
communicate in a dynamic system environment. These examples show the role of the Server
and how it manages contention among several clients.

This document contains information that 23
is subject to change without notice.

Mwave Device Driver Developer’s Guide

Scenario 1: Simple Transaction Without Contention

Figure 4- 2. Simple Transaction Without Contention, illustrates a simple transaction that occurs
when clients request resources, obtain them without contention, and later release the resources.
Figure 4- 2 also shows how the client uses the mwConnectToServer()call to register with the
Contention Server. All subsequent communications use the mwSendToServer()call to
communicate with the Contention Server. The messages (such as mwCfgServiceReques) and
the priority are passed as parameters.

Note: For the sake of brevity, subsequent illustrations omit the mwConnectToServer()and
mwDisconnectFromServer(xalls. Also, the mwSendToServer()call is assumed; only the
message and priority that are passed are shown in the format (messagename, priority).

< cion >

< MWCONTEND >

»

mwConnectToServer

mw
SendToServer(mefg ServiceRequest priority

LoadModule
OK

Function
Complete

FreeModule

<

mw
SendToServer(mefg ServiceRemoved priority

mwDisconnectE romServer

A

End Client

Figure 4-2. Simple Transaction Without Contention

24

This document contains information that
is subject to change without notice.

Chapter 4

Scenario 2: Contention Between Two Clients

When two clients that must contend for resources attempt to connect, the scenario is more
involved. In the example shown in Figure 4- 3. Contention Between Two Clients, the high
priority client loads first. Then the low priority client attempts to load and is unable to do so; that
client sends a mwCfgServiceFailuremessage to the Server. The Server then checks the list
for any active clients whose priority is lower than that of the client who failed to load. Finding
none, the Server marks the low priority client as stopped, which indicates that the Server will
notify the client when resources are available. When the high priority client releases the
resources, the Server removes it from the list, checks the list for clients that are stopped, and
sends a mwCfgReinstateServicemessage to the low priority client, who then loads
successfully. The low priority client then sends a return code (RC=1) to the Server to indicate
that it successfully loaded. The Server then marks the client as active.

Note: In Figure 4- 3, the mwSendToServer()calls are not shown. Only the message and
priority that are passed are shown in the format (messagename,priority).

This document contains information that 25
is subject to change without notice.

Mwave Device Driver Developer’s Guide

MWCONTEND

(mefgServiceRequest, 500)

LoadModule OK

Function Complete ‘

FreeModule ‘

(mefgServiceRemoved, 500)

_—]

(mefgServiceRequest 100

)

LoadModule FAILS

(me
fQServiceFaiIUre 1
10

_RC=0 (resources not freed)

LoadModule OK ‘

RC=1 (f

unction reinstated)

End Client

Figure 4-3. Contention Between Two Clients

26

This document contains information that
is subject to change without notice.

Chapter 4

Scenario 3: Contention Among Three Clients

A more complicated scenario involves three clients contending for resources. As illustrated in
Figure 4- 4. Contention Among Three Clients, the high priority client loads first; the Server marks
it active in the list. The low priority client then loads successfully and is marked active in the list.
When the medium priority client attempts to load and fails, it sends a mwCfgServiceFailure
message to the Server. The Server checks the list and sends a mwCfgReleaseService
message to the low priority client. The low priority client unloads and sends
ReleaseServiceCanReinstateaeturn code to indicate to the Server that the client released and
should be notified when resources are available. The Server returns a return code of 1 to the
medium priority client, who tries again, loads successfully and returns a
mwCfgServiceAvailablemessage. After marking the medium priority client active, the Server
sends a mwCfgReinstateServicemessage to the low priority client, who does not load
successfully and returns a zero return code.

Note: In Figure 4- 4, the mwSendToServer()calls are not shown. Only the message and
priority that are passed are shown in the format (messagename, priority)

This document contains information that 27
is subject to change without notice.

Mwave Device Driver Developer’s Guide

Client H | Client M >< Client L) MWCONTEND

(mwCfg ServiceRequ
L rIgeerviceRequ

>

est, 500)

-_—

LoadModule OK

(mWCfQServiceF
\

-l
hl

\]

(mefgServiceRequest, 100)

»l
-

\4

LoadModule OK

Xequest, 200)

LoadModule FAILS

ailure, 200)

(mefg ReleaseService

FreeModule

LoadModule OK

R

C=Relea :
seSerwceCanReinstate
RC=1 (function can attempt to load)
/

mwCfg ServiceAvaiIabIe(ZOO)

mengeinstateService 1

LoadModule Fails

RC=0 (function not reinstated)

4

Figure 4-4. Contention Among Three Clients

28

This document contains information that
is subject to change without notice.

Chapter 4

Scenario 4: Client Removed Rather Than Reinstated

This scenario illustrates a complex example in which the Server’s request to release causes the
low priority client to terminate and exit the system rather than wait to be reinstated.

As shown in Figure 4- 5. Client Removed Rather Than Reinstated, the following events occur:

1.

2.

11.

A medium priority client sends a mwCfgServiceRequestmessage to the Server and
successfully loads.

Next, a high priority client sends a mwCfgServiceRequestmessage to the Server, attempts
to load, and fails. This client sends a mwCfgServiceFailuremessage to the Server, which
starts a contention cycle.

The Server sends a mwCfgReleaseServicemessage to the medium priority client, which
frees the module and sends a ReleaseServiceCanReinstatereturn code to indicate that the
Server should notify this client when resources are available.

To indicate that a lower priority task has been removed and resources freed, the Server
sends a return code of 1 to the a mwCfgServiceFailuremessage sent by the high priority
client.

The high priority client then attempts to load.

While the high priority client is loading, the low priority client sends a
mwCfgServiceRequestmessage to the Server and loads.

When the high priority service finishes loading, it sends a mwCfgServiceAvailablemessage
to the Server.

The Server then sends a mwCfgReinstateServicemessage to the medium priority client,
which attempts to load, and fails.

The Server then requests the low priority task to unload.

. When the low priority client unloads, it also terminates and sends a

ReleaseServiceTerminatedreturn code to the Server to indicate that the client has left the
system and should be taken out of the list.

The Server then sends a mwCfgReinstateServicemessage to the medium priority client,
which successfully loads and returns a mwCfgServiceAvailablemessage.

Note: In Figure 4- 5, the mwSendToServer()calls are not shown. Only the message and
priority that are passed are shown in the format (messagename, priority)

This document contains information that 29
is subject to change without notice.

Mwave Device Driver Developer’s Guide

< Client H >< Client M > [MWCONTEND
(mwCfgServiceRequest, 200)

o .

LoadModule OK
(mwCfgServiceRe uest, 500)

LoadModule FAILS ‘

A 4

_ (mwCtgServiceFailure, 500)

(mengeleaseService, 2000)
<f/
FreeModule

RC=1 ReleaseServiceCanR
e
RC=1 (function can attempt to load) e

mwC i
LoadModule OK \ (mwCfgServiceRequest, 100)

<

LoadModule OK

(mwCfgServiceAvailable, 500)

eService, 200

‘(mﬁgﬁe/“@
LoadModule FAILS

RC=0 (reinstate fails

4

mw
FreeModule

RC=2 ReleaseServiceTerminated
rvice, 200)

gRe\nS’ia‘ese

e
LoadModule OK

RC=1| (Service reinstated)

ol -

‘ Function Complete ‘

‘ FreeModule ‘

—(mwCfgServiceRemoved, 500)

ol -

End Client

Figure 4-5. Client Removed Rather Than Reinstated

30 This document contains information that
is subject to change without notice.

Chapter 4

Development Environment for Contention Server Clients

Diagnostics

A diagnostics program (MWCONFGR.EXE) is included to help client writers debug their client
implementations. When invoked, the diagnostic program uses the client name MWCONTEND
to register with Mwave Agent. The Contention Server recognizes MWCONTEND as a special
client. Using the MwNotifyClient()call, the Contention Server forwards a record of every action
it performs to the MWCONTEND client. Developers can use the log kept by MWCONFGR as
an audit trail when debugging their client implementations.

Client 1
ClientProc ServerProc
B MWAGENT > MWCONTEND
Client 2 SendToServer <« NotifyClient
Client n
MWCONFGR

Figure 4-6. MWCONFGR Registers With the Contention Server via MWAGENT

Using the Diagnostics Tool MW CONFGR.EXE)

The diagnostics tool (MWCONFGR.EXE) enables you to view a list of the clients registered with
the Contention Server, the states of each of those clients, and the transactions. The Mwave
Contention Control main window is shown in Figure 4- 7.

This document contains information that 31
is subject to change without notice.

Mwave Device Driver Developer’s Guide

='| Mwave Contention Control ¥1.01

Print Heset Diagnose

Ewvent hst

ClientiMwave_GM] +
Client{Mwave_ALLX]]
Client[Mwave_MWCM]

Chent[Mwave MWwWCH]

Client[Mwave_MWCM]

Diagnostics: Allocations are

Chent[DISCRIM Mwave Agent] Prionty[20000) State[0]
Client[Mwave_Modem] Prioritp[5300] State[0]
Client{Mwave SYHNTH] Priority[4950] State[0]
ClientiMwave_ALLX] Priority[4000] State[0]
Client[Mwave_Modem] Prioritp[3900] 5tate[0]
Chent{Mwave_SYNTH] Prionty[2000] State[0]
Client[Mwave_S5YNTH] Priornty[1700]) State[0]
ClientiMwave_SYHNTH] Prionty[1600] State[0]
ClientfMwave_SYNTH] Prionty[700] State[0] —
ClientfMwave_GM] Priority[198] State[0] |
Chent[DISCRIM Mwave Agent] Prnonty[0] State[0] +

Hotes: |

Annotate Cloze

Figure 4-7. Mwave Contention Control Main Window

As shown in Figure 4- 7, you can select the following menu bar items:

Print Writes the log to a printable text file.
Reset Clears the log.
Diagnose Displays current client assignments and resource allocations.

To add notes to the log, type text in the Notes entry field and click the Annotatebutton. To
close the diagnostics tool, click Close.

Test Application

A test application (MWTEST.EXE) is included to enable developers to simulate a dynamic
environment for testing purposes. Multiple instances of MWTEST can be invoked to simulate
multiple clients attempting to load at various priorities. All instances of MWTEST use one
client, MWCFGCLI.DLL. This client includes the ClientProc through which messages are
returned from the Contention Server.

MWTEST [* SendToServer|
MWTEST <« MWCFGCLI.DLL MWAGENT [* MWCONTEND
MWTEST < ClientProc «

Figure 4-8. Test Environment Using MWTEST

Figure 4- 8. Test Environment Using MWTEST, shows a sample client that uses
MWCFGCLI.DLL to communicate with the Contention Server (MWCONTND) via the Mwave
Agent (MWAGENT). MWTEST.C, the source for the test application, is also included as sample

32 This document contains information that
is subject to change without notice.

Chapter 4

code for developer reference. This test application is written in C and compiled using Borland
C.

Using the Test Application MWTEST.EXE)

The test application (MWTEST.EXE) enables you to simulate a client that registers with the
Contention Server and attempts to load in the system. The MWTEST main window is shown in
Figure 4- 9.

= | [~

© Copyright 1993-1996 IBM

Priority:
Virt DS:
Virt 1IS:
CPF:
DSP:

Release type: | Reinstate

Last Mgr. RC:

|| Request ||

|| Remove ||

Close

Figure 4-9. MWTEST Main Window

As shown in Figure 4- 9, you can set the following parameters on the MWTEST main window:

Priority Sets the priority of the test client.

Virt DS Sets the virtual DSP data store to be used by the test client.

Virt IS Sets the virtual DSP instruction store to be used by the client.

CPF Cycles per frame is used to compute client consumed MIPS.

Release Type Return code formwCfgReleaseService(Reinstate, Ignore,
Terminate).

Click the Request button to attempt to load the test client. Click Remove to unload the test
client. Click Close to close the test client.

This document contains information that 33
is subject to change without notice.

Mwave Device Driver Developer’s Guide

Using the Test Application (MW TEST) with the Diagnostics Tool MW CONFGR)
The test application (MWTEST.EXE) used with the diagnostics tool (MWCONFGR.EXE) assists
you in understanding the transactions that occur between the clients and the Contention Server.
They are also used for testing purposes during client development. The log produced by
MWCONFGR is particularly helpful when doing problem determination.

To better understand how the clients and the Contention Server interact, perform the following
test scenario.

Note: This scenario assumes that you have an Mwave Reference Adapter installed in your
personal computer and that the corresponding system software and test applications are installed
and running under Windows 3.1, Windows 95, or Win-OS/2.

Open the diagnostics tool MWCONFGR.EXE). Presbiagnoseto view the list of clients
and the current resource allocations.

Open the first instance of MWTEST.EXE as MWTEST1. On the Run menu, type:
C:\fully qualified pathhMWTEST.EXE MWTEST1 1000 20000 20000

On the Mwave Contention Control window, cliclDiagnoseagain to view the updated list of
clients and resource assignments. Notice that MWTEST]1 is in the list.

Open a second instance of MWTEST.EXE as MWTEST2. On the Run menu, type:
C:\Mully_qualified pathMWTEST.EXE MWTEST2 800 20000 20000

Open a third instance as MWTEST3. On the Run menu, type:
C:\Mully_qualified pathMWTEST.EXE MWTEST3 500 20000 20000

On the MWTEST2 window, clickRequest to attempt to load the client. On the Mwave
Contention Control window, clickDiagnoseto view the updated list of allocations.

Whether or not MWTEST?2 loads is dependend on what else is running in your Mwave
system. In many cases, MWTEST2 loads successfully and the following entry is written to
the log: Clientt(MWTEST2) Priority(800) State(0)

On the MWTEST3 window, clickRequest to attempt to load the client. On the Mwave
Contention Control window, clickDiagnoseto view the updated list of allocations. In most
cases, MWTESTS3 is not able to load and the following entry is written to the log:
Client(MWTEST?3) Priority(500) State(1)

On the MWTEST1 window, clickRequest to attempt to load the client. On the Mwave
Contention Control window, clickDiagnoseto view the updated list of allocations. In most
cases, MWTEST?2 releases resources and goes to a stopped state. MWTEST1 loads
successfully, and MWTEST3, still unable to load, is in a stopped state.

The log entries are:

Client(MWTEST1) Priority(1000) State(0)
Client(MWTEST?2) Priority(800) State(1)
Client(MWTEST?3) Priority(500) State(1)

Continue to attempt to load and unload the three test clients and notice the Contention
Server actions that are documented in the diagnostics tool log.

34

This document contains information that
is subject to change without notice.

Chapter 4

Messages Supported by Contention Server
The Contention Server supports the following messages:

mwCfgServiceRequest
mwCfgServiceRemoved
mwCfgServiceAvailable
mwCfgServiceFailure
mwCfgServiceStopped

The client sends these messages to notify the Contention Server when the client requests
services, removes services, successfully loads services, and fails to load services. These
messages are sent through the mwSendToServer()call, which is supported by the Mwave
Agent. For more information, see Mwave Client/Server Support on page 3.

The following code sample illustrates how the MWTEST client implements these messages:

ClientProc(..)
{/switch(message)

{

case mwCfgReleaseService:
FreeAllModules:
break;

case mwCfgReinstateService:

if (service i1s restored)
return true.
else return false.

hMwave mwOpenMwave ("MiWContend User" ,0,0);
hConv = mwConnectToServer (hMwave, "mwContend", "MWContend
User",ClientProc,0);

mwSendToServer (hConv, mwCfgServiceRequest, Priority, 0,0);

ModulelLoadedOK = LoadDriverModules();
if (!ModulesLoadedOK)
{mwSendToServer (hConv, mwCfgServiceFailed, Priority,0,0);
ModulelLoadedOK = LoadDriverModules();
mwSendToServer (hConv,
(ModulesLoadedOK ? mwCfgServiceAvailable
mwCfgServiceStopped),
Priority,0,0);
}

(when all done)
mwSendToServer (hConv, mwCfgServiceRemoved, Priority, 0,0);

For more information about the MWTEST implementation, refer to the source files included with
this document.

This document contains information that 35
is subject to change without notice.

Mwave Device Driver Developer’s Guide

mwCfgServiceRequest

This message is sent to the Contention Server by a client to register a function at a
given priority. When the Contention Server receives thenwCfgServiceRequest
message, it adds the client’s name and priority to the list, and marks the client’s
status as active—unless it receives anwCfgServiceF ailure message.

mwSendToServer Parameters
dwConversationld
Conversation Instance data returned fromSRV_CONNECTmessage

wMessage
mwCfgServiceRequest

[Param
Requested priority obtainedusing the mwHelpGetLOSPrioritiesfunction on page
44,

wSize
Either 0 or sizeof(HDSP).

pBuffer
If wSize=0, pBuffer=0. If wSize=sizeof(HDSP), pBuffer=address of an HDSP.

Return Value
The return code is 1.

36 This document contains information that
is subject to change without notice.

Chapter 4

mwCfgServiceRemoved

A client sends this message to the Contention Server when the client has removed a
function from the system.

mwSendToServer Parameters
dwConversationld
Conversation Instance data returned fromSRV_CONNECTmessage

wMessage
mwCfgServiceRemoved

[Param
Requested priority as obtained usinghe mwHelpGetLOSPrioritiesfunction on
page 44.

wSize
Either 0 or sizeof(HDSP).

pBuffer
If wSize=0, pBuffer=0. If wSize=sizeof(HDSP), pBuffer=address of an HDSP.

Return Value
The return code is 1.

This document contains information that 37
is subject to change without notice.

Mwave Device Driver Developer’s Guide

mwCfgServiceFailure

This message is sent to the Contention Server by a client when the client fails to
load.

mwSendToServer Parameters
dwConversationld
Conversation Instance data returned fromSRV_CONNECTmessage

wMessage
mwCfgServiceFailure

[Param
Requested priority as obtained using thanwHelpGetLOSPrioritiesfunction on
page 44.

wSize
Either 0 or sizeof(HDSP).

pBuffer
If wSize=0, pBuffer=0. If wSize=sizeof(HDSP), pBuffer=address of an HDSP.

Return Value

A non-zero return code indicates that a lower priority task has been removed; the
driver can attempt LoadModule()again. A return code of 0 indicates that the
driver should not attempt to load.

38 This document contains information that
is subject to change without notice.

Chapter 4

mwCfgServiceAvailable

This messageis sent to the Contention Server by the client when the client loads
successfully after a contention cycle.

mwSendToServer Parameters
dwConversationld
Conversation Instance data returned fromSRV_CONNECTmessage

wMessage
mwCfgServiceAvailable

[Param
Requested priority as obtained using thanwHelpGetLOSPrioritiesfunction on
page 44.

wSize
Either 0 or sizeof(HDSP).

pBuffer
If wSize=0, pBuffer=0. If wSize=sizeof(HDSP), pBuffer=address of an HDSP.

Return Value
The return code is 1.

This document contains information that 39
is subject to change without notice.

Mwave Device Driver Developer’s Guide

mwCfgServiceStopped

This messageis sent to the Contention Server by the client when a function still fails
to load after a contention cycle.

mwSendToServer Parameters
dwConversationld
Conversation Instance data returned fromSRV_CONNECTmessage

wMessage
mwCfgServiceStopped

[Param
Requested priority as obtained using thanwHelpGetLOSPrioritiesfunction on
page 44.

wSize
Either 0 or sizeof(HDSP).

pBuffer
If wSize=0, pBuffer=0. If wSize=sizeof(HDSP), pBuffer=address of an HDSP.

Return Value

The return code is 1.

40 This document contains information that
is subject to change without notice.

Chapter 4

Messages That Must Be Supported by A Client

The following messages must be supported by a client:

mwCfgReleaseService
mwCfgReinstateService

These messages are sent by the Contention Server to request a client to release services or

notify a client to reinstate services. These messages are sent via the mwNotifyClient()call
supported by the Mwave Agent. For more information, see Mwave Client/Server Support on
page 3.

Additionally, client writers should use the mwHelpGetLOSPriorities function to obtain priorities for
their clients.

This document contains information that 41
is subject to change without notice.

Mwave Device Driver Developer’s Guide

mwCfgReleaseService

This message is sent by the Contention Server to a client during a contention cycle to
request that the client release resources. When the Contention Server sends a
mwCfgReleaseService message to a client at a given priority, the Contention Server
expects the client to release all resources less than or equal to that priority.

mwNotifyClient Parameters
dwConversationld
Conversation Instance data returned fromSRV_CONNECTmessage

wMessage
mwCfgReleaseService

[Param
Client's priority as passed in themwCfgServiceRequest message.

wSize
Either 0 or sizeof(HDSP).

pBuffer
If wSize=0, pBuffer=0. If wSize=sizeof(HDSP), pBuffer=address of an HDSP.

Return Value
Return value of 0 ReleaseServicelgnored) indicates that the driver ignored the
mwCfgReleaseService message.

NOTE: Clients should not use the return value of 0 except in extreme
circumstances. Misuse of this return code seriously disrupts Mwave system
performance.

A return value of 1 ReleaseServiceCanReinstate indicates that the driver released
the resources and can be reinstated when resources become available.

A return value of 2 ReleaseServiceTerminated indicates that the driver released the
resources and removed itself from the system.

42 This document contains information that
is subject to change without notice.

Chapter 4

mwCfgReinstateService

Contention Server send this message to the client to allow the client to again attempt
to load.

mwNotifyClient Parameters
dwConversationld
Conversation Instance data returned fromSRV_CONNECTmessage

wMessage
mwCfgReinstateService

[Param
Client's priority as passed in themwCfgServiceRequest message.

wSize
Either 0 or sizeof(HDSP).

pBuffer
If wSize=0, pBuffer=0. If wSize=sizeof(HDSP), pBuffer=address of an HDSP.

Return Value

Return value of 0 indicates that the driver could not reinstate in the system. A
return value of | indicates that the driver was reinstated.

This document contains information that 43
is subject to change without notice.

Mwave Device Driver Developer’s Guide

mwHelpGetLOSPriorities

The client uses this function to obtain the correct priority for use when
communicating with the Contention Server. This function is provided in the
MWHELPER.DLL (Windows) or the MWHLPOS2.DLL (OS/2).

Parameters
ServiceName
Pointer to a string that contains the name of the client

LoadPriority
Pointer to an integer that represents the priority the client uses when it loads into
the system.

RunPriority
Pointer to an integer that represents the priority the client uses when it runs in
the system.

Return Value
A return code of 0 is returned when the name of the client is not found.
A return code of 1 is used when the Contention Server sets the load priority.

A return code of 2 is used when the Contention Server sets the run and load priorities.

44 This document contains information that
is subject to change without notice.

Appendix A

Appendix A — ServerProc and ClientProc Protocol

ServerProc
LRESULT APIENTRY ServerProc dwServerld, dwConversationld, wMessage, |Param, wSize,
pBuffer)
DWORD dwServerld
DWORD dwConversationld
USHORT wMessage
LPARAM IParam
USHORT wSize
PVOID pBuffer
Parameters
dwServerld
Server instance specific data. This is the value that was returned when the server
processed the SRV_REGISTER message. This value is NULL when
wMessage=SRV_REGISTER.
dwConversationld
Conversation specific data. This is the value that was returned when the server
processed the SRV_CONNECT message. This value is NULL when
wMessage=SRV_REGISTER, SRV_UNREGISTER, or SRV_CONNECT.
wMessage
Identifies the message that the server must process.
This document contains information that 45

is subject to change without notice.

Mwave Device Driver Developer’s Guide

Message

Description

Return Value

SRV_REGISTER

Sent to ServerProc when Server
makes an mwRegisterServer()
call. The ServerProc should
create any instance data it
needs to support this instance
of the server. The instance (or
reference to it) is returned and
is passed on subsequent calls
to ServerProc as dwServerld.

[Param—ocontains the IParam
passed in the
mwRegisterServer call. This
may be used by the ServerProc
in the creation of its server
instance data.

WSize/pBuffer— contains the
name of the Server being
registered (IpszServerName).

Server instance
data to be passed as
dwServerld on all
subsequent calls to
this server
instance.

SRV_UNREGISTER

Sent to ServerProc when the
Server makes an
mwUnregisterServer() call or
as a result of a fatal error in the
Mwave Agent. ServerProc
deallocates any resources
allocated on the
SRV_REGISTER message.

SRV_CONNECT

Sent when a client executes an
mwConnectToServer call. The
ServerProc should create any
instance data it needs to
support this client connection.
The instance (or its reference)
is returned and passed on
subsequent calls to ServerProc
as dwConversationld.

[Param—contains the
conversation handle HMCONV
created by the agent. This
handle is required by the server
to send, by way of
mwNotifyClient(), notifications
to the corresponding client.

wSize/pBuffer— contains the
unique Client name
IpszClientName.

Conversation
instance data is
passed as
dwConversationld
on all subsequent
calls to this
instance of the
client/server
conversation.

46

This document contains information that
is subject to change without notice.

Appendix A

Return Value

SRV_DISCONNECT | Sent when a client issues 0
mwDisconnectFromServer call
or when a fatal error causing
the connection to break occurs.
ServerProc should deallocate
any resources allocated while
processing the
SRV_CONNECT message.

[Param
The meaning of this parameter is dependent on thewMessagevalue. This
parameter may be used to pass any 32 bit (or shorter) data value to the server.
This should not be used as a pointer, however, since some addresses may be
invalid in the server context on some operating systems.

wSize
Specifies the length in bytes of the buffer pointed to byBuffer.

pBuffer
If wSize not equal zero, specifies a pointer to a buffer containing/Size bytes. If
wSize=0 this parameter is ignored.

The meaning of this parameter is dependent on thewMessagevalue. This
parameter may be used to pass a block of data to the server. The size of the
block must be less than or equal to 65535 bytes. The data block should not
contain pointers, however, since some addresses may be invalid in the server
context on some operating systems.

The return value is serverivMessagedependent. Refer to Server documentation for a
description of return values. mwDefServerProc()returns the error code
MWAGERR _UNSUPPORTEDMESSAGHf the server does not support the
wMessagevalue.

See wMessagetable on page45 for values returned on standard Mwave Agent
messages.

Comments
The values forlParamand pBuffer are dependent on the Server ProcswwMessage
combination. Refer to individual server documentation for descriptions of messages
and their corresponding parameters. Note thatwMessagevalues below
SRV_USERBASE are reserved by the Mwave Agent.
Server Proc defined message values must start at SRV_USERBASE.
ServerProcis shown here for prototype purposes. The actual name oferverProc
is at the discretion of the user. TheServerProcname is, in general, not exported.
The Mwave Agent uses the registered name (by way afiiwRegister Server () to
associate a connection to a specificServerProc.
Unsupported messages must be passed to
LRESULT mwDefServer ProddwServerld,
dwClientld,
wMessage,
1Param,
This document contains information that 47

is subject to change without notice.

Mwave Device Driver Developer’s Guide

wSize,
pBuffer);

ClientProc
LRESULT ClientProc (dwConversationld, wMessage, |Param, wSize, pBuffgr
DWORD dwConversationld

USHORT wMessage
LPARAM IParam
USHORT wSize
PVOID pBuffer
Parameters
dwConversationld

Conversation specific data. This is the value that was returned when the
ClientProc processed the CLI_ CONNECT message. It is set téParam from
mwConnectToServercall when wMessage=CLI CONNECT.

wMessage
Identifies the message that the client must process.

Message Description Returned value
CLI_CONNECT Sent when the client is connected Conversation
with mwConnectToServer call. instance data
passed back in

The ClientProc creates any instance
data it needs to support this server
connection. The instance (or
reference to it) is returned and is
passed on subsequent calls to
ClientProc as dwConversationID.

dwConversationld
on all subsequent
calls on this
client/server
conversation.

dwConversationld —set to value of
IParam in the mwConnectToServer
call. This is used as a means of
passing initial conversation instance
data from the client to the
ClientProc.

[Param — contains HMCONYV for
the established client/server
connection.

wSize/pBuffer—contains the unique
Server name lpszServerName.

CLI DISCONNECT | Sent when a client executes a 0
mwDisconnectFromServer call or
when a fatal error causing the
connection to break occurs.

IParam
The meaning of this parameter is dependent on thewMessagevalue and may be
used to pass any 32 bit (or shorter) data value to the client. This parameter
should not be used as a pointer, however, since some addresses may be invalid in
the client context on some operating systems.

48 This document contains information that
is subject to change without notice.

Appendix A

Return Value

Comments

wSize
Specifies the length in bytes of the buffer pointed to byBuffer.

pBuffer
If wSize not equal zero, specifies a pointer to a buffer containing/Size bytes. If
wSize=0 this parameter is ignored.

The meaning of this parameter is dependent on thewMessagevalue and may be
used to pass a block of data to the client. The size of the block must be less than
or equal to 65535 bytes. The data block should not contain pointers, however,
since some addresses may be invalid in the client context on some operating
systems.

The return value is clientivMessagedependent. Refer to Client documentation for
description of return values. mwDefClientProc()returns the error code
MWAGERR_UNSUPPORTEDMESSAGHf the client does not support the
wMessagevalue.

The values forlParamand pBuffer are dependent on theClientProcAvMessage
combination. Refer to individual server documentation for descriptions of messages
and their corresponding parameters. Note thatwMessagevalues below
CLI_USERBASE are reserved by the Mwave Agent and their corresponding
parameters are described in thewMessagetable above.

Clients must be prepared to handle any notifications that a connected-to server is
likely to generate. Refer to server documentation relating to notifications and what,
if any, events may cause a server to send notifications to th€lientProc.

Unsupported messages must be passed to
LRESULT mwDefClientProc(dwConversationld,

wMessage,

1Param,

wSize,
pBuffer);

This document contains information that 49
is subject to change without notice.

	TITLE PAGE
	Table of Contents
	Chapter 1 -- Introduction to the Mwave Device Driver Developer’s Guide
	Chapter 2 -- Mwave Client/Server Support
	Mwave Agent/Client/Server Relationships
	Server Registration Flows
	Client Connect, Send, Disconnect Flows
	API Description
	API Calls for Mwave Client/Server Support

	Chapter 3 -- Mwave Notification Server
	Messages Supported by Notification Server
	NS_REQNOTIFICATION
	NS_EVENTNOTIFICATION

	Chapter 4 -- Mwave Contention Server
	Contention Server Overview
	Understanding Contention Management
	Development Environment for Contention Server Clients
	Messages Supported by Contention Server
	Messages That Must Be Supported by A Client

	Appendix A — ServerProc and ClientProc Protocol
	ServerProc
	ClientProc

