TURBOPASCAL

The Ultimate Pascal Development Environmen

VERSION 3

Turbo Pascal

Borland’s No-Nonsense License Statement!
This software is protected by both United States copyright law and international treaty
provisions. Therefore, you must treat this software just like a book, with the following
single exception. Borland International authorizes you to make archival copies of the
software for the sole purpose of backing-up our software and protecting your
investment from loss.

By saying, “just like a book,” Borland means, for example, that this software may be used
by any number of people and may be freely moved from one computer location to
another, so long as there is no possibility of it being used at one location while it's being
used at another. Just like a book that can't be read by two different people in two
different places at the same time, neither can the software be used by two different
people in two different places at the same time. (Unless, of course, Borland's copyright
has been violated.)

Programs that you independently write and compile using the Turbo Pascal language
compiler may be used, given away, or sold without additional license or fees. You are not
required to indicate that your programs were developed using Turbo Pascal, or that
they contain source code provided with Borland language products (toolboxes).

The sample programs on the Turbo Pascal diskette provide a demonstration of the
various features of Turbo Pascal. They are intended for educational purposes only.
Borland International grants you (the registered owner of Turbo Pascal) the right to edit
or modify these sample programs for your own use, but you may not give them away or
sell them, alone or as part of any program, in object or source code form. You may,
however, incorporate miscellaneous routines from these programs into your own
programs, aslong as your resulting program does not substantially duplicate all or part of
the sample program in appearance or functionality.

WARRANTY

With respect to the physical diskette and physical documentation enclosed herein,
Borland International, Inc. (“Borland”) warrants the same to be free of defects in
materials and workmanship for a period of 60 days from the date of purchase. In the
event of notification within the warranty period of defects in material or workmanship,
Borland will replace the defective diskette or documentation. If you need to return a
product, call the Borland Customer Service Department to obtain a return
authorization number. The remedy for breach of this warranty shall be limited to
replacement and shall not encompass any other damages, including but not limited to
loss of profit, and special, incidental, consequential, or other similar claims.

Borland International, Inc. specifically disclaims all other warranties, expressed or
implied, including but not limited to implied warranties of merchantability and fitness for
a particular purpose with respect to defects in the diskette and documentation, and the
program license granted herein in particular, and without limiting operation of the
program license with respect to any particular application, use, or purpose. In no event
shall Borland be liable for any loss of profit or any other commercial damage, including
but not limited to special, incidental, consequential or other damages.

GOVERNING LAW

This statement shall be construed, interpreted, and governed by the laws of the state of
California.
First Edition

Printed in USA
987

Turbo Pascal

version 3.0
Reference Manual

Copyright ©1983

Copyright ©1984

Copyright ©1985

Copyright ©1986

by

BORLAND INTERNATIONAL Inc.
4585 Scotts Valley Drive

Scotts Valley, CA 95066

TABLE OF CONTENTS

INTRODUCGTION ...ttt cteceeeceesese s sisavasasssssseereressasesessnssssssnsessesensene
The Pascal Languagecccoieniniiiicnnniinic et sessseseesnesinns
TURBO PASCAI ..uceeenevieerereiiiiieeeiiecsieresseeeesssseessiesessseesaaesbsessnnesessnnesas
Structure of This ManUAlcccooveeiiiiiieiiec e aas

TYPOGIAPNY .eeiiiiiieieiieerre et crre et ee e s e s srareeesse s enanas e sbbe e e e nsaenenneas
Syntax Descriptions

Chapter 1. USING THE TURBO SYSTEMcccoooii e
COM and .CMD fil€Seeeeriiiicreeieei it s st e s sbabaeeseenes

Starting TURBO Pascal
Installation

...

TRE MENU ...ttt eeeer e s e s bassenne e s esesesessessanasessrnsssesnssses
Logged Drive Selection ...t
WOrK File SeleCONcoveeeiiieeeieie ittt baaraae e
Main File SEleCtONitieeerrrererr e e e e e e s
Edit COMMEANGcooiiiiiiiccccrinnreierrreer e e e eeeeee e e s esesssnsensnrrrreeeseesaseees
Compile COMMEANGccveeeereierrcie i srre et e e s e ees e e s sreesbeesbe e s rrnesnees
RUN COMMENG ...t ceieeeiee e cecerer e sebene e sasreesesnnneeeesesannenn
Save COMMANGc.ccoeveeeiciiiee et eceee et e e e s ree s e s s b e e e s e ennnes
Directory Commandcccooiiviecininiiincs
QUIt COMMANG ...t cccttree e ceitre e e s s ssnre e esebas e e s snbreeasesnnnens
COMPIIEr OPLIONS ...ceveireirreiiieirrrcree et e s sen e esnnes

The TURBO Editor
THE StAtUS LINE ...cocieeeeeiiiiceteee ettt ce s e s sbeae e e raneaeeeseans
Editing COMMANASooiiiieireeecee et rsne
A Note on Control Charactersceeeeevieeciiiece e e eae e
Before You Start: HOwW TO Get OULcoeveeeeieieeceeeieeeeeee e eeveeeeas
Basic Movement COMMANGSccceevevvreiieeneeeiiieeiereesreiesseeeesssaseesseens
Extended Movement CoOmmMandscccooeeeeceieeniiereneeeceieeecreeesnneens
Insert and Delete Commands
BIoCK COMMANAS ..cooeeeeiiiiiiiictt et ee e e s e e e s s st arannaneees
Miscellaneous Editing Commandscccoeviniiniinininenininnennienn

TABLE OF CONTENTS

The TURBO editor vs. WOrdStarcccccveeicvieeieiecineeeceesineeeseesaereneseeas 34

CUrSOT MOVEIMENL ...vvviirreirieeeiiieieresciinereensesersrereeesesesseseessasssseessessrarees 34
Mark Single WOrdccooreeeniiniiiinicnnnee s stesresesenssr e ssesenesaes 34
=1 Lo N o 1 OO OO RR 35
LiNE RESIOTE ...coiieiieeeeeccteet ettt e s e sraree e e s e e ennrreesesbsesessssnnnees 35
- Lo 101 o OO 35
AULO INAENALIONoiiiiiiiieiecccre e 35
Chapter 2. BASIC LANGUAGE ELEMENTSccooviiiiiiirerecnecreeene 37
BasiC SYMDOIScoooiieiiiiiiernrcrre et ees e sse e sen s sae e s rnanens 37
RESErVEd WOIASooeiiiiierrieccciiercrer e crer et ee s st s s ssrae s e e e ssensssnaees 37
Standard Identifierseeeee oo aaees 38
1= 12011 (T £ T U 39
Program LINEScccceicieretiniinietiniessternennaesee s cr s ssanesssnsesessessssnesssesssnsns 39
Chapter 3. STANDARD SCALAR TYPESocooviieieeeirerecercreresesrenens 41
INEEOEE .ttt e st s e s e s e st este e s s e s e atsaeesbe s e e snes 41
By ittt et s e 4
2= | TR 42
1= ToTo] (=T o SO RS SRR 42
CRAE et sbeesesbeesse e e s sns e s e e e s nsereebssseraseesraee s abaeenans 42
Chapter 4. USER DEFINED LANGUAGE ELEMENTScccoceevivennn. 43
o[- 01 (] =] £ RN 43
NUMDEIS .ttt eeeerees s e rsbeese s s banesesssssansasasssnnennesannas 43
1] (0o - TS OO RSSO ST 44
CONTOl CHATACIETS .vvvvvvreeiiieriiiieeerreeriinecssssesessseessseeessssesssssessssesonnsens 4
COMIMENTS ..cocveriiiirieccieeieiere e e re s e ersstaessseresesreessrssssessssesesnsesssssessassessans 46
Compiler DIr€CHVESc.coeiviveeiiiiiirtecrnece sttt 46
Chapter 5. PROGRAM HEADING AND PROGRAM BLOCK 47
Program Headingccceeverccimnimienciireesscssse e enssaae s 47
DeClaration Partccccccceericiiiieiienineeeeicinreeeeeecsssestneesisssssrasessssneessossnnnes 47
Label Declaration Partcccceevececiiveieinierieereesccceeresssesseeeeesssseneeesas 48
Constant Definition Partociveeeieeiiiiiieiiieiiceerrreeeeee s esseseesens 48
Type Definition Partccccveiiiiiniiiiecctinie e, 49
Variable Declaration Partccccccceveeiiieeeeeiieereeeccceveeeseessrnnee s e senanes 49
Procedure and Function Declaration Partcccccccverreervirrecnnneeenrenenes 50
StAEMENE PANooiciiieiciiieiireccerr et cerere e ressesssresesase e snesssnsssessaens 50

ii TURBO Pascal Reference Manual

Chapter 6. EXPRESSIONScccccoooimiiiicienieeersnteecee s 51

107 o115 (o] - T TP OPP PP 51
UNary MINUSoiiiiiiiiitiininen e s 51
NOt OPEIALOT ..eeeeiiiiiciei et s et eee e eae e srra e et sraaeseaeeesatae e seeeesaneenan 52
MUtiplying OPEratorscccoceerreriiieierciininen e 52
AddiNG OPEratorsccccooceeriiiriieriieesiee et eesre e e erresr e bae s saesaneas 53
Relational OPEratorscccocviiiiiercireeeniieeeceereseeeesersseieeessreesssresaesns 53

Function Designatorsccccvviiiieieiiiinieiiiire s 54

Chapter 7. STATEMENTSccciiiiriineerreeeeeeree s ee e e csesnene 55

Simple StAtEMENEScoveieeicreerrere et ree et e e e e ees 55
Assignment Statement ... 55
Procedure Statementcocooveiiieeieenniene s 56
GOto StatemeNtcoiiiiieieeir e e 56
Empty Statementccoooiviiiiiir e 56

Structured StAatEMENLSc.ccoveeriiiiieirireie e e 57
Compound StatemMentcccoooiieiiiiei e e 57
Conditional Statementscoo i 57

If STAEMENT ..ot e 57

Case StatemMENtcoccvviieiieetccee e e 58
Repetitive Statementscccoeceiiieciieniin et 59

FOr Statementcccoiviieccierteccneeeee et 60

While Statementcccooveiiiiiieeee s 61
Repeat StatemMentooooiiiieiee e e 61
Chapter 8. SCALAR AND SUBRANGE TYPEScccccovivnnvieinicirieneeens 63

SCAIAE TYPE .eeveeieceiieeitie e etecrrte e s e e s s te s e esressssaeas s st e seraaessnesssaraesnen 63

SUDFANGE TYPE «oieveeeeriiieicieereee ettt et tsreesen et s eanessassnssssaessessnsasssnnsnesen 64

TYPE CONVEISIONoiiieiireiieeititir et seteeerre e e e s e essnt e e essebee s e senesanns 65

Range ChecCKiNgcooviriiiiiiiiiecie ettt eneesr e 65

Chapter 9. STRING TYPEccooviiiiiiinerrti e eeercnece s s sre s s e nsnens 67

String Type Definitioncocccvriereiioieeiieccreee et e e 67

StrNG EXPrESSIONSceccuiieiiiieieiirticeeciestesste e ssseese e sseessae s sesessaaesneens 67

String ASSIGNMENEcoiiiiiiiiiitiie et 68

StrNG ProCeAUIEScociiiiiieciincientir et e e sae e 69
DEIBLE ..oeiciieeeiicctirtt ettt s r et e s e e a e e s an e neas 69
INSEI oottt et st e e rn e es 69
Ol ettt ettt st e s e e e s et e e n e e b e e s e b e e ae s beesareenneeas 70
Y72 O OO OSPR 70

TABLE OF CONTENTS iii

COPY ettt st e st e st n s aeesne e e 71
CONCAL ..ottt ettt st st e e e e e sese e s b e e e e e e eesaes s e neesanns 71
[T oo | (3 OO SOV 72

POS e e et ae s ene e s 72
Strings and Charactersccccccceeeieeieieiireecieeieeseeesaeseeeeeeseeeseeseseassnnans 73
Chapter 10. ARRAY TYPEcocoiiiiiieeceeeeiee et ee e 75
Array Definition ..o 75
Multidimensional Arrayscoceeeiiiieiiiiniieeenie e 76
CharaCter AITays ... s s 77
Predefined AITaYScccoieecicriee et e 77
Chapter 11. RECORD TYPEcccceiieiireeireeneensceneisrtseesesteiesseesesenens 79
Record DEfinitioncccccevvieeiviniiineiiecnti e e 79
WIth StatemMENTooceiiiiieeeeccree e et et see s nanes 81
Variant RECOTASoicvirieiiieiie ettt aae e 82
Chapter 12. SET TYPEccccivviiieeceneecnnre e 85
Set Type Definitionc.cocvieereeeierc ettt e 85
Set EXPrESSIONSicvvereerreenrerrererereeenieseenesseesseeeesissiestesees e seesesenenens 86
Set CONSITUCIOTS ...oooeeiieieeeeiiiee e cee e e s e e s e e e e e s mene e beaeas 86

St OPEratOrSuviiiieiciciiereeeiieeeeeeeeereee e s snre e s e eseee s s reeeeneeeannneens 87

Set ASSIGNMENESeoiiiiiiirercer ettt 88
Chapter 13. TYPED CONSTANTSccocvvirinmiininiinienccnieiecninns 89
Unstructured Typed Constantsccccoieiiiinniicnnienieeeecceeeseie 89
Structured Typed CONSLANTScccceveiiriieereereierierereeiree et e e seee e 90
Array COoNnStantscccccecciiriecriiii e e 90
Multi-dimensional Array Constantscceviivinienineciennnnnninesseneneene, 9
ReCord ConStantscccccerieineeniiniiiiicreteiie e 91

Set CONSIANESoccviviiiiiiiieiierrerce s 92
Chapter 14. FILE TYPESccco i eereeee et 93
File Type Definitionccccoiimnirniiiniiniiiccencre e 93
Operations ON FilEScoeecriieeieinie e e e s 94
ASSION <eeieiiieiiicciteee e srere et ee e e s s et e e s e s n s aaeee s aaese s nreee s aasnnereseeans 94
REWHIE ..ttt ste e e s ae st s e st e e men s smenens 94
RESEL e e e 94
REAA ...t et et e s 95
WIIE ettt et s e e e e st s ren s e smeeeane 95
SEEK oo ettt et see e sneae s 95
FIUSH oot e 96
ClOSE ...ttt srt et e st e st e e ae st p e b et e s e sreeaeen 96

iv TURBO Pascal Reference Manual

EFQSO ..ottt ettt e et sn et e et eabea b ae b e st e e eanenbennn
RBNAME ..ottt s ibe st bs e esesssas e be st e b esn b e e s sesennanan
File Standard Functions ...
BOF .ottt et r e et e en e b ben e e nnnaastes
FilePoOScccovvverievrenennee
FileSizeccoovrevvnn.
Using Filescccvueeuenee.
TOXEFUIES ...ttt et sbans e e ssasaensens
Operations on Text Files
ReadLn ...
WriteLncocovevveenenenee
EoIn ..o
SeekEolncnuu.....
SeekEofccoveerinnan,
Logical Devices
Standard Files
Text Input and Output
Read Procedure
Readin Procedure
Write Procedure
Write Parameters ..
Writeln Procedure
Untyped Filesccoeueuunee
BlockRead / BlockWrite ...
J/O CRECKING ..ottt ssessstssasseresssssseiasssssessssssesssasseses

Chapter 15. POINTER TYPESoiecnreenennneiesenisessssnsenns 119
Defining a Pointer Variableccceiniieneescnienreneneesieseesnessenns 119
Allocating Variables (New) ...
Mark and Release 121

FreeMem
MaxAvail

TABLE OF CONTENTS v

Chapter 16. PROCEDURES AND FUNCTIONScccocoviveicnncncncnennine 127

Parametersc.cccvviicrrererrierereeeierreeeees e iereressesress s sasnarearaaeneaaarsesssnesessessann 127
Relaxations on Parameter Type Checkingccccccvenivcinicecsencncnen. 129
Untyped Variable Parametersccccvvveiereerceeennenninnncnnrsennsessaseennnas 130

[(o To= o 1T (=Y USRS 131
Procedure Declarationcccccceveeeeeiiieeiieeeeeicieererecrnrsesnseseenseesesseeneans 131
Standard ProCedUIESccccccevivieerirereerieiernieeenssierreseasessssssesssesssnnes 133

CITEOL .ottt cestteeecreeerere s snaeeeseeesessseesssasesssstesssnsesonsnnsosasesnsas 133
(0317 SO ORI 133
[0 ¢ {1 GRS O SO TSRS 133
CHEXIE o.oneeeeecieeiiireriiieesieeesseeesstseesesiesessnnsesesaessssessesnssessssesssssseesas 134
DRIAY ...ttt e 134
[7] I = TR 134
T I T USRS 134
(€103 (o), "GO U R TTUURS 134
EXIt veeieiieeiiiiieiciiiieietesiitrereeseestereeeessanteesses e renae s e s sa s e reeeas e raneeesaasannnas 135
HAt oot ce e ee st e e s rar e s rn e s e e e st a e n e s e e e e e e s nanan 135
LOWVIAEO ...eervieiiieneeeeeeiiierereecsseeeeseeessnseaeseasasassrasssssasassensnnsassan 135
[\ [o] 0 41V o (1o RS U RO 135
RANAOMIZE ..oceieeiiieeeiececcecetrerrrerreereeeeer s e s e se s s e sessssesesssssnsnnnsaneenans 135
IMIOVE oeicitrreeitreree e ee e s e sr s e e e s s e s sanenasasatmranasaesesenssesensssnsnssnnnns 136
[5111107 4 - PP UU PSR PRUSUPSRPRN 136

FUNCHONS «.vvvveiiieiicerieeieceitiiee e ceierneeeeeeserreseessssameneeessesaeeeseenanesaasemnenseaanan 137
FUNCLION DECIArationceveeeeeeeiieererereeririeisrsincnvneserresseesessssesssssnnessnnee 137
Standard FUNCHIONScccovuiieiiiiiireicrceeieeee e s seannetereessseesassesnteessnsesnees 139

Arithmetic FUNCLONSccciiiviiiiieiiiiiiieririreenraessieessssneseissecsossnesnnnne 139
ADS ..ottt s et e e s reresae e e st e e s s e e e et n e nneannaeas 139
ATCTAN coeiecveeiiiereecreeee e eerreesreeesesanesssnaaeeseessmanstrnnessssnesssaressennes 139
C0S crniteiieieercireee i s et s s e e e e re e b as et ae e et t e e e s ae e et e s e en e e sneenraaaas 139
3 o PO ST PT 140
T AC ciiiiiieeicreir e rereeereee e et e e s s bt e e e e e e s sae s s eanee 140
[R ROPRPTRRt 140
I o OSSPSR 140
£ o TSR 140
S o | PO RRUNt 141
13T [QRO P TSRO POO T 141

SCalar FUNCHONScoviieiiiieeeeciereesrteeceeeecsrrese e ere s ees s s nesssnssssaneeases 141
[(= o R SPRRt 141
SUCC ciiiieieiccree e eeteeee e e e seresssee e e e e s s e ssae s reeasnteseaaeesnsaeeenneensnne 141
(0o [o [OOSR 141

vi TURBO Pascal Reference Manual

Trunc

Hi o e

Random(Num)
ParamCount
ParamStr

Chapter 17. INCLUDING FILES ... 147

Chapter 18. OVERLAY SYSTEM
Creating Overlaysccccoeveererenrerirecenennns
Nested OVerlaysccoeoeveveveveereeenseennenns
Automatic Overlay Management
Placing Overlay FileScccooeveeriecveiernnnne
Efficient Use of Overlayscccceurverrnnee
Restrictions Imposed on Overlays

Data Area ...
Forward Declarations
Recursioncceceveenen.
EXternalsccoeveeeiveerneeecrereve e

RUN-TIME EITOMS ...t sstsesssssesssassssssssssssssssosessssssesesssesses

Chapter 19. IBMPC GOODIEScccoooerimereteerreeetenereeresesretesssssanes 159
Screen Mode Controlcccovvveeeicriennnne
Text Modes ...

Color Modes
TextColor
TextBackgrouNndcoeevveirreeenereereeetere e senssssssesesssssesesnenens

CUISOT POSIHION ...ttt as sttt sn s snabes 162
WREIEX ...ttt bbb se bbb e sb b aan 162
WRETEY ...t s bbb e e b e s s b be e s 162

TABLE OF CONTENTS vil

GraphiCs MOGEScoccveiiieriiicirere ettt eer s rae e e e e e e e seneeeas 163

GraphColOrMOTEcc.ceevereeerieiecieree s see e s raeee e se e sne s saeseas 163
GraphMOdEccceivviiiireeterrrere ettt e ae st st see e erenreas 164

[[3 7= U PO RN 164
HIRESCOION .. .ciccrrererenerereeiietereesesssssssasssssssasnnesenstesaenenesssens 164

[2= 1 (=1 1 SRR 165
GraphBackgroundccccevevmniininiicinie e 166
WINAOWS ...ttt tscssses e s sbnsarerateeeeasesessessssessesssssssnsansasanes 168
TeXt WINAOWS ..covviiiiiiiiiiiiiiiiicciircrsssissnninestesseiniesssesessessenssnsssnnnsesssneens 168
Graphics WINdOWS ..o eerenes 169
Basic GraphiCsccccuuiiniiineiiiiiiicie e s 171
[Lo SRRSO 171
DIAW et cesecese e se s e senebe s e e e s eesesesasssas s s e s nnnnnratarnnaanaetae 171
Extended GraphiCscc.cocvvriiiieieriiniconiiniiie st e sessree e 172
(06)lo] g -1 o - TR R USRI 172
Y (TN 173
(031 vt L= T OO Ut 173
(L] (o U 173
(T PPNt 174
[CT=T D0 (@] o PP 174
FillSCIEEIN ...ovvveeiiireeeee ittt eeeveeereess e aae s s e seesess e neneeesessnnneesssennrnnes 175
FillShape ProCeaUIecoiecoioiiiiieieieiiieesneeerese e et e e s sseee s e seaneaeas 175
FillPArN ..ot 175
L 2t= 11 (= 0 OO UUUU PRt 176
TURHEGraphiCscccoeeeiiriiineriiei ettt et ses e e snne 177
[- oGP 178
ClEAISCIEENeeiveeieeeeeireeiceeeeeireeeereeeeecsieeeeesesnreseneeerssneesesaeasessasasnnes 179
[0 0T = o PP 179
HEAdING ...ooeeceiiiiiiiiiiciir ettt 179
L [T (] 10 g (=SSP 179
[[0 1= TP 179
NOWIBD ..eeeiiiieieiieietrectesereesresest e s et s ssresseessesassesseesasesstessssersenenseessesn 180
PONDOWN ...ttt et tte e e e eee e s ess e e teeesseeesessanssansre s saresenrees 180
PENUD ..ottt et e sne e 180
SetHEAAING ...covceeeriiiiir ettt e 180
SEIPENCOIONrtreeee ettt ccrreee e cccre e e e e ecabeae e s e essaneesesseraresaessnnnn 181
SEtPOSIHION ..coiiiiiiiiecreeccccrecrerirrcrrerneeree e s e s es e e s s b erar e e s e e nreenene 181
ST 1o 1T IV (=T 181
VL] TN 181
TUMNRIGAL <.t ettt et ae 181
TUPHEWINAOW ceeeiieeeeeeeeeeeeeeeeeeeee et et ee e s ssavarerereasssteeeseseeseeessssssnenannns 182
TUPIETREIEeeeeeeeeeeeeeeereereeteertree e et e st reseeeirnssbeserseerareesarseeesssersesesesnnnn 183
TUPIEDRIAYceeeeiiniitiicetr s 183
VWD oottt e e arae e e e e s baae e e e s e raanae s e rna e e e s s s naeessanannmraeessennnereean 184
D (o7 | ST 184

viii

TURBO Pascal Reference Manual

Editor Command Keys

Chapter 20. PC-DOS AND MS-DOScccoommimcreurernerecrnrinessseseeees
Tree-Structured DIr€CtONIEScooeevvvieeieeeecee ettt reaesnes
On the Main Menuc.cceuunneee.

Compiler Options
Memory / Com file / cHn-file
Minimum Code Segment Size
Minimum Data Segment Size
Minimum Free Dynamic Memory
Maximum Free Dynamic Memory
Command Line Parameter
Find Run-time Error ..o
Standard Identifierscccceeurneneee.
Chain and Executecccceeererieenene.
OVETIAYS ...ttt ss s st assssensasans
OvrPath Procedurecuu.......
FileS oot
File Namesccccoovveiieeevecveeeenne
Number of Open Files
Extended File Sizeccovvvvvrcrevenerecereceeeceenennen
File of Bytec.ccvcovimecncrrcnenn
UNtyped Fles ..ottt renes
Flush Procedureccccooouieinunnnn.
Truncate Procedureoeeveeenvernrenrereneneeenens
Text Filescccovevevecmnieceeieveenne
BUFEr SIZe ..ot
Append Procedure
Flush Procedure
Logical Devicesc.cccoeeunene
1/0 redirectioncccccovvevvneneee
Absolute Variablesccccevvunnene.
Absolute Address Functions
Addr

TABLE OF CONTENTS ix

Predefined AITAYS ... s st naan
MEM AITAY ...ttt b et e ne b as et aennes
POMYAITAY ..ottt tes s b e s s s sensenas

With Statements ..o

Pointer Related tems ...,

MEMANVAIL ...t e ers et ean st e e e e e e brne
Pointer Values
Assigning a Value t0 @ POINEETc.c.oveecreccncnninrnecnereeneneceenane
Obtaining The Value of a Pointer

DOS FUNCHON CallScoovivererireniercrereiieeete e seeeaese e s sssae e raesseaennas

User Written 1/0 Drivers

External SUDProgramscococrrreceresnercncnreienese st sesesessass

In-lin€ Maching Codecoouvieeiiererieeccceer et eae e sasnenns

Interrupt Handling ..ot ssesenns
INEr PrOCEAUIE ...ttt esaee e sesennas

Internal Data FOrMALSc.c.cocveiiiceieeeecceceete et snnnes
Basic Data Types

Scalars
REAIS ...ttt be s es
SHINGS oottt e aen
SBLS e e et s e s e resns
POINEIS ...ttt e et et nas e bns
Data SITUCIUIESouieeveiececeeeeeeecere et esesbe s e ssssesessesessanens
ATTAYS ..ottt ttes e eaess et ese e e st e bsas st sse e sestsassenesessessesens
RECOTAS ...ttt ss s v a et a st es
DiISK FlES ..ottt be s sssss e snes s sesressnsssenns
File Interface BIOCKScc.ovivieeeecnirceeerenceereeresseesssseseeesenasesns
Random ACCESS FilES ...ttt asees
TEXEFHIES ...ttt re st ereebe s s s s b esbesaetans

ParamMELEIScocooviveeiereticte et ess e se et e e e s b e ss s b seneananes
Variable Parametersivenieiieeeneseeseseensssenessnsssessssssssensnns
Value Parametersc.coveeiievreieriereineeseressressseessssesssessssssasssssesens

SCAIAIS ..ottt et e s naees

Reals
Strings
GBS e et re et e s be e eeaesreneane
POINIEIS ..ottt st s ettt tene
Arrays and RECOTAScccccoucvvieereecee st srneseses e ens
FUNRCHON RESUIScveieerieeeeecrreeee et ae s s anens
The Heap and The STACKScccccoovrevercenirirceiernnreceneresesssesesasesseaens
Memory Managementccocmneerrenrmnmrnenenesessisseseeseesssssessssssesasssssens

X TURBO Pascal Reference Manual

Chapter 21. CP/M-86cccooveiieecrneereee et be s ssessenens
Compiler Optionsccccceueeereneen.
Memory / Cmd file / cHn-file

Minimum Code Segment Size
Minimum Data Segment Size
Minimum Free Dynamic Memory
Maximum Free Dynamic Memory
Command Line Parameter
Find Runtime Error
Standard Identifiersccccu....
Chain and Executeccccouuuee.
OVerlaysccoeeevereeeeeecnereseesenes
OverDrive Procedureocoeceeveeeeenveneeneeeneereesenens
FIleS woovvivereveeeeeereeece st
File Names
Text Files

Predefined AITAYSc.ccoeecieeerinreerenicietrese et sessessssisssessesesesans
MEIM AITAY ..ottt ees sttt sttt ssessasrssane
PO AITAY ...t ease s tsss s nsss e ss e s aes s sasssnanssntsnans

With SEAEMENLS ...t ene

Pointer Related HEMScc.ocveineneeericinesinie et snsessisnans
MEMAVAIL ...t a et st ssrare s bensetene
Pointer Valuescocovvveveevnnneseecsereseesseennens

Assigning a Value to a Pointercc.cccevvveeceienne,

Obtaining The Value of a Pointer
FUNCHON CallS ..ottt bes st be b s bssetes
User Written 1/O DIIVETS ... neesstsnssense s
External SUbProgramsccooueeeeneveesinrercennneeseessssesens
In-line Machine Code
Interrupt Handling

INEE PIOCEAUNE ...ttt es s s s neaas

TABLE OF CONTENTS xi

Internal Data Formats
Basic Data Types
Scalars
Reals
SHINGS .ottt e n s s s s naas
SOES b a bbb b e re s
Pointersc.....
Data Structures
Arraysoceevenen.
Records
Disk Files
File Interface Blocks
Random Access Filescccceuveunene
TEXFIlES ..ot
Parametersccovvveiecierneerieenereneeerens
Variable Parameterscccocevvvivenennne
Value Parameterscoovvieceeveeeeneesece s
Scalars
Reals
Strings
Sets ...ccovverennene
Pointers
Arrays and RECOTAScccocrririmrureeereeeintneneren e sesesesecas
FUNCHON RESUIS ...ttt senas
The Heap and The Stacksc.ccceveveeveervevenevenerenenenenes
Memory Managementcovriirnienceriesieneiesssesesesesensesssnsesescanas

Chapter 22. CP/M-80
eXecute Command
COMPIIET OPHONSvciiteecceercecrce e e sr et ae s senesnsnne

Memory / Com file / CHN-filec.coevevere v
SEAME AQAIESS ..ot eree e s resess s s s s sensane 261
ENA AQArESScooveveeeieetccerterere e eee s s e e aseneenensrsressssssesesans 261
Find BUNHME EITOT ...ttt n s nsen 262
Standard IdENtIfIErs ..o 263
Chain and Execute ...
overlayscocveerrrens ... 265
OVIDIIVE PrOCEAUIE ...ttt sessbesenens
FileS oot
FIlE@ NAMES ...ttt s et st saen et bensan
TOXEFIIES ...ttt er et nrenenens
Absolute Variables
AAAN .ottt s re bbb bbbt b b e aa Rt enns

Xii TURBO Pascal Reference Manual

Predefined ATaySccccooicivecriiieeeeet ettt s s st ne e 268

MEM AITAY ..ottt ettt et s b et r e e e ennens 268
POt ATAY ..ottt e et 269
Array Subscript Optimizationcccvvceriiireeiee e csrereaeans 269
With STatementsccccveeiiiiiiccce e 269
Pointer Related IHEBMSoocoveeeee et s 270
MEMANVAIL ..o eae e st e e e e e e e e e e e e e nanabnanes 270
Pointers and INtEQErscccccivirveniiniinincciie et e s 270
CP/M FUNCHON CallSeoevivreeiiieneeeseeeceeerte et eee et sveeesrecsbesssneeneas 271
Bdos procedure and fUNCHONcooveeverniiniieniretreeece e s eee 271
BAOSHL fURCHONcoeieieeeeeeeeee ettt 271
Bios procedure and fUNCHIONcccoveeciiiieriniecicnie e 272
[S]1e1<1 | IR (1T 4T o RPNt 272
User Written 1/O DIVETSc.ooccvvieiiniinceeeienerecttnees et creesnnenee s 272
External SUDProgramscccccvverrmrecrnenineeeeccrren e e e 274
IN-line MAching COdeoooiceeuriieeeieceee ettt e e 274
Interrupt Handlingcccooeeieriiniicecircnccre s 277
Internal Data FOrmatscoooveiiiiiiiiciinereeeer e e ce e s s ee s st rsararseens 278
BasiC Data TYPES ..cccevecriiiiieiiiriientre et ssreeste e in e seessree s saesanesaeas 278
SCAIAIS ...ovieiiiieieciieeiree et e e e et s e s e s st sare s e e reneaaes 278
REAIScoviiiirrtrerirertrireree e ree et eeteeesesse e s sebaerraerraeanaeteeeranaenieaeas 278

£ (13 To - OSSP PRRRUP 279

LS T= (O UR R UPRRR PP 279

File Interface BIOCKScocveeiiiiiiiiciirireereeees s cees e s s e nnnrnenes 280
o101 =Y = RN 281
Data SEIUCLUIESeevvieiireeriirieiiiiirrreeeeesrreesseesereeeresrasesesesssrnsesesernsens 281
ATTAYS ereieieteteie e tere st et s see st et et et e e st see et e b e see e e s erneneeraseeemneneeneases 281
RECOTAS .ovvieiiiitiieeeeeccttre e cecee et eeecer e e e e csnereeeseebansessesbesereesesnssees 282
DUSK FlES ...vveeeeeitiieetttiteeeeeee e teee et e ee e e e ee e s bbb erereeeeseeesesaeessnneenen 282
Random ACCESS FlEScovvcvrirmrmriinieireneieierece s ceererrreraneeeeeees 282

L= S 1= RN 283
ParaMBLEISeiiivireiiiiieeiereeicsreeesree e e steeenraeesbrescssbressssasssbnsessansessanes 283
Variable Parameterscccccvccccviiiieececieicicccireescceinee s esareeesessssnnnes 283
Value Parametersccoovvvevvemrieeiecereiieeeceereeeeesierereeessasereeessennnens 283
SCAIAIS .eoeeiei et eeee et e s e et r e s e e e e e e s se s te e e e s e aabbaeesaans 283

REAIS ...uuuuirieiieirieiiriiiitrieeeiveereeee e e et e e e s see e eba e rnararrreseaesseneessennanen 284
SHINGS ceeeiriirie ittt et e e st e e sae e e sra e e s e araeenrae s 284

1= J USROS 284
POINLEIS ..eeeeieeeieieriieiiieiieieerieeereer e et eeeesiesesnresnsarsrareseesesssesssessessssnanen 285
Arrays and RECOIAScccievremiiecrirenrcrnerirrresenseeeeensesseessesseses 285
FUNCLION RESUILS ...ttt e 285
The Heap and The Stackscccceriiiircciniieeecccere e 286

TABLE OF CONTENTS Xiii

Memory Management ... sesseessessssesessessssesenns
Memory Mapsccccoeveueuene.
Compilation in Memory
Compilation To Disk
EXecution in MEMOTYccoceriecnreinrnnestseeesesseseesasesessesssesssenes
Execution of a Program File

Chapter 23. TURBO BCD PASCALcooeivcecrecneeneeseesnsesenes
Files On the TURBO BCD Pascal Distribution Diskette
BCD RANGEveeeeerrirerererenceeseneeeernesenssssessssssesse e sessessnsesessasesssnressaseses
Form functioncceceevvivmenens

Numeric Fieldscoocooevmeeviceecveercaeene.

String Fieldscoovieevireereeereeieicnceinirnenens
Writing BCD Realsccooveveeueieieerirececraenens

Formatted Writing
Internal Data Format

Chapter 24. TURBO-87c.ccoovnieriercnrerenissesesesssassesessssssssesssssssens
Files On the TURBO-87 Distribution Diskette
Writing 8087 Realsccccoevurencvcriencirenienens
Internal Data Format

Appendix A. SUMMARY OF STANDARD

PROCEDURES AND FUNCTIONScccocoiieinrcenneeescseeeeseeeneaeeaes
Input/Output Procedures and Functions
Arithmetic FURCHiONSccccovveevcerrinrrreinenes
File-Handling Routingsc.cccceevverrerencans
Heap Control Procedures and Functions
Miscellaneous Procedures and Functions
SCAlAr FUNCHONScooeiiieeeecie ettt seese e sesesesessn st sssassssseseseaesnnsnns
Directory-Related Procedures (PC/MS-DOS)ccccovmremerrensrernerrennrnns
Screen-Related Procedures and Functions
String Procedures and FUNCHONSccccemencenmnseniennesseesnsesseaseseeneaens
Transfer FUNCLONSccoeveerrereineencnecrerenens
IBM PC Procedures and Functions

Basic Graphics, Windows, and Sound

Extended Graphicscccocoeeueenecnrcsrnecnne

TURIEGIAPRICScovevrerecrieerenirecrseeae et esas bt seersnssessssnsesesssnssesssns

Appendix B. SUMMARY OF OPERATORScccccovumininniinininnsiines 311

Xiv TURBQ Pascal Reference Manual

Appendix C. SUMMARY OF COMPILER DIRECTIVESc.ccc..... 313

IMPORTANT NOTICE ...ttt nississsaressse s nesessnnas 313
Common Compiler DIFECHVEScoeeueireeeeerineeisinenreneeseesiseneessssncsees 314
B - 1/0 Mode Selectionc.coeieeeineveeninrrnesinnersecssinsessinssesssssesesanns 314
C-ControlCand S
I - 1/0 Error Handling
F-1INCIUAR FIES ...ttt seaan
R - Index Range ChecKccouiieieriercecesee et 315
V - Var-parameter Type Checkingc...ccccoccoeneniceinnevnneninnesceesienens 315
U - USEr iNTEITUDE ..ottt esscsns st nssseinens 315
PC-DOS, MS-DOS Compiler DIr€CtVESoeocerevireencrrenereecriineninsseennnns 316
G - INPUL File BUFFET ...t e 316
P - Output File BUFETcccooeiiteeeceeereer e 316
D - Device CheCKiNGcccouiveiiiencieenreiicnireie s rnses e ssssssassessssnens 316
F - Number of Open Filescovuevivccinncrtreeee e ssee e 317
PC-DOS, MS-DOS, and CP/M-86 Compiler Directive 317
K - Stack Checkingcceveveveeriieeeeernreenrennnnns ... 318
CP/M-80 Compiler DIreCtiVeScceeremmrireererneers e sessesssenas 318
A - ADSOIULE COAE ...ttt ettt 318
W - Nesting of With Statements ... 318
X - Array Optimizationccccveirureemncninemeerience e eseecesenns 318
Appendix D. TURBO VS. STANDARD PASCALccccoovnivinrveeinann. 319
RECUISION ...ttt ettt ettt en e nne
GEtANA PUL ...ttt e e
GOtO StAtEMENS ...
Page Procedureceeiiererceeereereere e
Packed Variablescccoooecrieeinnrecrrne e ssesnnens
Procedural Parameters
Appendix E. COMPILER ERROR MESSAGEScccccooeviririeerennnnen. 321
Appendix F. RUN-TIME ERROR MESSAGESc.ccocooninnnrinencnns 325
Appendix G. /O ERROR MESSAGESc.ccocooemnninncnieirienrsnenens 327
Appendix H. TRANSLATING ERROR MESSAGESccccoeoveunnne. 329
Error Message File LIStiNG ..o 330
Appendix 1. TURBO SYNTAX ..o vensssesns 330

TABLE OF CONTENTS xv

APPENdiX J. ASCH TABLEoooooooeeeeeeseeereeesseeeseeessseeessssssseesess e 339

Appendix K. KEYBOARD RETURN CODEScccccoovvrinvrirncienninen 341
Appendix L. INSTALLATION
Terminal installation
IBM PC Display Selection
Non-IBM PC Installation
Editing Command InStallationcccccoomiecereinieiineneinernescseeremesesens 350
Appendix M. CP/MPRIMER ...t sreeninene 355
How to use TURBO 0n a CP/M SyStemcccoevevueureninnecriecncmecreeirennene 355
Copying Your TURBO DiSKcccverevererireiireneeererniensieiennressrssenssesersneseseses 355
Using YOUr TURBO DiSKc.covueuerrccmmerirenieesiseinessesessssessssssssessssesessssens 356
Appendix N. HELPU! ..ottt enseesenees 357
INDEX ...ttt ettt ettt s e st b e 377

xvi TURBO Pascal Reference Manual

LIST OF FIGURES

1-1 LOG-0N MESSAGEcvevierereiicrensinireneesreieesrrsisnresst e saesbesnsesbessesssssnesens 10
1-2 MAIN MENU ..ot e s er e re e e seas 11
1-3 Installation Main MENUccccvviiveerierrenieneereeeeeereree e eee s eeenes 12
1-4 MaN MENU ...ttt ettt st e 14
1-5 EdItor Status LiNecoocceeeireieicie ettt 19
15-1 USING DISPOSE ...ccuviiieniricireciiie ettt scseiesnsre e sneesenserseesssnressnnsssnnanees 124
18-1 Principle of Overlay Systemcccocviiminnicneeinese i 149
18-2 Largest Overlay Subprogram Loadedcccceveevmiininnniiiininnncncnne, 150
18-3 Smaller Overlay Subprogram Loadedccccvveniniiiniiiniiniiiennenn. 151
18-4 Multiple Overlay FileScccevviivniiiniiiieeneec s 153
18-5 Nested Overlay FileScccoveviininiiiiiiiiiincinc s 154
19-1 TeXt WINAOWS .eeieiiiiciiiiieeceite et sve sttt s s 169
19-2 Graphics WINAOWSecciriiiiciiiiienite ettt see e e sresae e s 170
19-3 Turtle CoOrdinatescoccivieeriiiiirieer v 178
19-4 Turtle COOrdiNAtESccccoeiviiiircircii ettt 183
20-1 TURBO Main Menu under DOS 2.0ccoccoviieenicninieiieeciieniens 187
20-2 OptioNS MENU ...cccueiiiiiiiiiiiiccene et s 190
20-3 Memory Usage MenuUcccovviniiiiinicnicnncnnincnisncin s 191
20-4 Run-time Error MeSSageccceorreriiicnieneiensiniseee s eaenes 192
20-5 Find RUN-tIME EITOr ...ccuvvvieiiiiiiee e s 192
21-1 OPONS MENU ...eoiiiieeei ittt s sbecsae s 227
21-2 Memory Usage MenU ...t ciee e 228
21-3 Run-time Error MESSagec.cccvvverniecneiinennn et 230
21-4 Find RUN-tiMe EITOrcoovcviireciiieeicti et e 230
22-1 OPLONS MENU ..cooiiereiiiiieereneeee et essre e rene s sressesbe e 260
22-2 Start and End AdAreSSsesccervereveerinericnininnceneee e 261
22-3 Run-time Error MeSSagec.ccceeremreeeceinieeniiecercsiene et e esneessessnens 262
22-4 Find RUN-tIME EITOr ..c..oovviiiiitii et 262
22-5 Memory map during compilation in Memorycccecveinnicnininninne 288
22-6 Memory map during compilation to a filecccoiiiiiniii 289
22-7 Memory map during execution in direct modeccooiiiiinininns 290
22-8 Memory map during execution of a program fileccocooveeinnnn. 291
L-1 IBM PC Screen Installation Menuccccocvvvvmiiennniniciccniiieccen, 345
L-2 Terminal Installation MeNUccecvieicriiviniienee et 346

TABLE OF CONTENTS xvii

LIST OF TABLES

1-1 Editing Command OVEIVIEWc..ccooieerriinicierneenniesiieenensnsesaisonons 21
14-1 Operation of EOLN and EOfccocoviiiiiiiniiccccccerccee 105
19-1 Text Mode Color SCaleccocvuiemriiiiniieineicrce i 161
19-2 High Resolution Graphics Color Scaleccccvciiervrnnirnenncnncnsnenennns 165
19-3 Color Palettes in Color GraphiCsccceeersveseesersnienesssieseentrenssnene 165
19-4 Color Palettes in B/W GraphiCsc.ccoeceevuierenniiniernnnnenninissensuesennns 166
19-5 Graphics Background Color Scaleccccoviviiviiniiiiiiiiinniiinennnene, 167
19-6 IBM PC Keyboard Editing Keysccoeeeviiimienienimicennceniecnncneenes 186
K-1 Keyboard Return Codescccoirvinimrinineneiniennciieseercseeesnenes 343
L-1 Secondary Editing Commandsccecoccermmiiirnineiininnienissessnnnienns 353

Xviii TURBO Pascal Reference Manual

INTRODUCTION

This book is a reference manual for the TURBO Pascal system as imple-
mented for the PC-DOS, MS-DOS, CP/M-86, and CP/M-80 operating
systems. Although making thorough use of examples, it is not meant as
a Pascal tutorial or textbook, and at least a basic knowledge of Pascal is
assumed.

A TURBO Pascal Tutorial, called Turbo Pascal Tutor, is also available from
Borland. See the catalog of Borland products at the back of this book for
more information about Turbo Pascal Tutor.

The Pascal Language

Pascal is a general-purpose, high level programming language originally
designed by Professor Niklaus Wirth of the Technical University of Zur-
ich, Switzerland and named in honor of Blaise Pascal, the famous
French Seventeenth Century philosopher and mathematician.

Professor Wirth's definition of the Pascal language, published in 1971,
was intended to aid the teaching of a systematic approach to computer
programing, specifically introducing structured programming. Pascal has
since been used to program almost any task on almost any computer
and it is today established as one of the foremost high-level languages;
whether the application is education, hobby, or professional program-
ming.

TURBO Pascal

TURBO Pascal is designed to meet the requirements of all categories of
users: it offers the student a friendly interactive environment which
greatly aids the learning process; and in the hands of a programmer it
becomes an extremely effective development tool providing both compi-
lation and execution times second to none.

TURBO Pascal closely follows the definition of Standard Pascal as
defined by K. Jensen and N. Wirth in the Pascal User Manual and
Report. The few and minor differences are described in Appendix D. In
addition to the standard, a number of extensions are provided, such as:

INTRODUCTION 1

Absolute address variables

Bit/byte manipulation

Direct access to CPU memory and data ports
Dynamic strings

Free ordering of sections within declaration part
Full support of operating system facilities
In-line machine code generation

Include files

Logical operations on integers

Overlay system

Program chaining with common variables
Random access data files

Structured constants

Type conversion functions

IBM PC and compatibles only:

Colors
Graphics
Turtlegraphics
Windows
Sound

Furthermore, many extra standard procedures and functions are includ-
ed to increase the versatility of TURBO Pascal.

Structure of This Manual

As this manual describes slightly different TURBO Pascal implementa-
tions, namely PC-DOS, MS-DOS, CP/M-86, and CP/M-80, the reader
should keep the following structure in mind:

1: Chapter 1 describes the installation and use of TURBO Pascal, the
built-in editor, etc. This information applies to all implementations.

2: The main body of the manual, chapters 2 through 18, describe the com-
mon parts of TURBO Pascal, i.e. those parts of the language which are
identical in all three versions. These include Standard Pascal and many
extensions. As long as you use the language as described in these
chapters, your.programs will be fully portable between implementations.

2 TURBQO Pascal Reference Manual

3 Chapters 19, 20, 21, and 22 describe items which have not been
covered in previous chapters because they differ among implementa-
tions, for example special features, requirements, and limitations of each
implementation. In particular, you should notice that chapter 19 explains
all the IBM PC extensions such as colors, graphics, sound, windows,
etc. To avoid confusion, you need only read the chapter(s) pertaining to
your implementation.

Parts of chapters 20, 21, and 22 deal with technicalities such as internal
data formats, interrupts, direct memory and port accesses, in-line as-
sembly code, user written 1/O drivers, etc. It is assumed that the
reader has previous knowledge of such matters, and no attempt is
made to teach these things. Remember that these chapters are imple-
mentation dependent, so programs using techniques described there are
no longer directly portable between implementations.

In fact, you need not bother with these chapters at all if your aim is to
write plain Pascal code, or if portability between the different TURBO im-
plementations is important to you.

4: Chapter 23 describes TURBO-BCD. This is a special version of TURBO
Pascal for PC-DOS, MS-DOS, and CP/M-86 which uses binary coded
decimal (BCD) arithmetic for higher precision in real operations; especial-
ly useful for business applications.

5: Chapter 24 describes the special 16-bit TURBO-87 which uses the op-
tional 8087 co-processor for added speed and extended range in Real
arithmetic.

6: The appendices are common to all implementations and contain sum-
maries of language elements, syntax diagrams, error messages, details
on installation procedures, an alphabetical subject index, etc.

7: Appendix N contains answers to a number of the most common
questions—please read it if you have any problems.

INTRODUCTION 3

Typography

The body of this manual is printed in normal typeface. Special charac-
ters are used for the following special purposes:

Alternate
Characters in alternate typeface are used to illustrate program examples
and procedure and function declarations.

Italics
ltalics are used to emphasize certain concepts and terminology, such as
predefined standard identifiers, parameters, and other syntax elements.

Boldface
Boldface is used to mark reserved words in the text as well as in program
examples.

Syntax Descriptions
The entire syntax of the Pascal language expressed as Backus-Naur
Forms is collected in Appendix I, which also describes the typography and
special symbols used in these forms.

Where appropriate syntax descriptions are also used more specifically to
show the syntax of single language elements as in the following syntax
description of the function Concat:

Concat (St1, St2{, StN })

Reserved words are printed in boldface, identifiers use mixed upper
and lower case, and elements explained in the text are printed in italics.

4 TURBO Pascal Reference Manual

The text will explain that St7, St2, and StN must be string expressions.
The syntax description shows that the word Concat must be followed
by two or more string expressions, separated by commas and enclosed
in parentheses. In other words, the following examples are legal (assum-
ing that Name is a string variable):

Concat('TURBO', ' Pascal')

Concat('TU','RBO',' Pascal')
Concat('T','U','R','B','0',Name)

INTRODUCTION 5

Notes:

TURBO Pascal Reference Manual

Chapter 1
USING THE TURBO SYSTEM

This chapter describes the installation and use of the TURBO Pascal
system, specifically the built-in editor.

.COM and .CMD files

Files with the extension .COM mark the executable program files in
CP/M-80 and PC-DOS / MS-DOS. In CP/M-86 these will instead be
marked .CMD. Thus, whenever .COM-files are mentioned in the follow-
ing, it should be understood as .CMD if your operating system is CP/M-
86.

BEFORE USE

Before using the TURBO Pascal you should, for your own protection,
make a work-copy of the distribution diskette and store the original
safely away. Remember that the User’s License allows you to make as
many copies as you need for your own personal use and for backup
purposes only. Use a file-copy program to make the copy, and make
sure that all files are successfully transferred.

IMPORTANT NOTE !

TURBO Pascal provides a number of compiler directives to control
special runtime facilites such as index checking, recursion, etc.
PLEASE NOTICE that the defauit settings of these directives will op-
timize execution speed and minimize code size. Thus, a number of
runtime facilities (such as index checking and recursion) are de-
selected until explicitly selected by the programmer. All compiler
directives and their default values are described in Appendix C.
(De-selecting recursion applies to CP/M-80 only; in 16-bit versions
recursion is always possible.)

USING THE TURBO SYSTEM 7

Files On The Distribution Disk

Files On The Distribution Disk

The distribution disk contains the following files:

TURBO.COM
The TURBO Pascal program: compiler and editor. When you enter the
command TURBO on your terminal, this file will load, and TURBO will be up
and running.

TURBO.OVR
Overlay file for TURBO.COM (CP/M-80 version only). Needs to be present
on the run-time disk only if you want to execute .COM files from TURBO.

TURBO.MSG

Text file containing error messages. Needs not be present on your run-
time disk if you will accept the system without explanatory compile-time
error messages. Errors will in that case just print out an error number,
and the manual can be consulted to find the explanation. In any case, as
the system will automatically point out the error, you may find it an ad-
vantage to use TURBO without these error messages; it not only saves
space on the disk, but more importantly, it gives you approx. 1.5 Kbytes
extra memory for programs. This message file may be edited if you wish
to translate error messages into another language as described in
Appendix H.

TINST.COM
Installation program. Just type TINST at your terminal, and the pro-
gram takes you through a completely menu-driven installation pro-
cedure. This and the following files need not be present on your run-
time disk.

TINST.DTA
Terminal installation data (not present on IBM PC versions).

TINST.MSG
Messages for the installation program. Even this file may be translated
into any language desired.

PAS files
Sample Pascal programs.

8 TURBO Pascal Reference Manual

Files On The Distribution Disk

GRAPH.P
IBM PC versions only. Contains the external declarations necessary to
use the extended graphics and turtlegraphics routines contained in
GRAPH.BIN. Only necessary on the run-time disk if you want to do tur-
tlegraphics.

GRAPH.BIN
IBM PC versions only. This file contains the extended graphics and tur-
tlegraphics machine language routines. Only necessary on the run-time
disk if you want to do extended or turtle graphics.

READ.ME
If present, this file contains the latest corrections or suggestions on the
use of the system.

Only TURBO.COM must be on your run-time disk. A fully operative
TURBO Pascal thus requires only 30 K of disk space (37 K for 16-bit
systems). TURBO.OVR is required only if you want to be able to exe-
cute programs from the TURBO menu. TURBO.MSG is needed only if
you want on-line compile-time error messages. The TINST files are used
only for the installation procedure, and the GRAPH files are needed only
when you want to do extended graphics or turtlegraphics. The example
.PAS files, of course, may be included on the run-time disk if so desired,
but they are not necessary.

USING THE TURBO SYSTEM 9

Starting TURBO Pascal

Starting TURBO Pascal

10

When you have a copy of the system on your work-disk, enter the com-
mand

TURBO

at your terminal. The system will log on with the following message:

TURBO Pascal system Version N.NNX
[System]

Copyrighi (C) 1983,1984 by BORLAND Inc
No terminal selected

Include error messages (Y/N)? B

Figure 1-1: Log-on Message

N.NNX specifies your release number and [System] indicates the operating
environment (operating system and CPU), for example CP/M-86 on IBM
PC. The second-to-the-last line tells you which screen is installed. At the
moment none—but more about that later.

If you enter a Y in response to the error message question, the error
message file will be read into memory (if it is on the disk), briefly display-
ing the message Loading TURBO.MSG. You may instead answer N
and save about 1.5 Kbytes of memory. Then the TURBO main menu will
appear:

TURBO Pascal Reference Manual

Starting TURBO Pascal

Logged drive: A

Work file:

Main file:

Edit Compile Run Save
Dir Quit compiler Options
Text: 0 bytes

Free: 62903 bytes

Figure 1-2: Main Menu

The menu shows you the commands available, each of which will be
described in following sections. Each command is executed by entering
the associated capital letter (highlighted after terminal installation if your
terminal has that feature). Don’t press <RETURN > ; the command ex-
ecutes immediately. The values above for Logged drive and memory use
are for the sake of example only; the values shown will be the actual
values for your computer.

IBM PC users who are satisfied with the ‘Default display mode’ can use
TURBO as it comes and may skip the following and go to page 14. If
you're an non-IBM PC user, you may use TURBO without installation if
you don’t plan to use the built-in editor - but assuming that you do, type
Q now to leave TURBO for a minute to perform the installation.

USING THE TURBO SYSTEM 11

Installation

Installation

Type TINST to start the installation program. All TINST files and the
TURBO.COM file must be on the logged drive. This menu will appear:

TURBO Pascal installation menu.
Choose installation item from the following:

[S)creen installation | [Clommand installation | [Q]uit

Enter S, C, or Q: [M]essage

Figure 1-3: Installation Main Menu

IBM PC Screen Installation

When you hit S to perform Screen installation, a menu will appear which
lets you select the screen mode you want the TURBO environment to
use (see Appendix L for details). When you have made your choice, the
main menu re-appears, and you may now continue with the Command
installation described on pages 350 pp, or you may terminate the instal-
lation at this point by entering Q for Quit.

Non-IBM PC Screen Installation

Now hit S to select Screen installation. A menu containing the names of the
most commonly used terminals will appear, and you may choose the one
that suits you by entering the appropriate number. If your terminal is not on
the menu, nor compatible with any of these (note that a lot of terminals are
compatible with ADM-3A), then you must perform the installation yourself.
This is quite straightforward, but you will need to consult the manual that
came with your terminal to answer the questions asked by the installation
menu. See Appendix L for details.

12 TURBO Pascal Reference Manual

Installation

When you have chosen a terminal, you are asked if you want to modify it
before installation. Normally, you will answer No to this question, which
means that you are satisfied with the predefined terminal installation. If you
do wantto modify the terminal, answer Yes, and you will be taken through a
series of questions as described in Appendix L.

Now you will be asked the operating frequency of your microprocessor.
Enter the appropriate value (2, 4, 6, or 8, most probably 4).

After that, the main menu re-appears, and you may now continue with
the Command installation described in the next section or you may ter-
minate the installation at this point by entering Q for Quit.

Installation of Editing Commands

The built-in editor responds to a number of commands which are used
to move the cursor around on the screen, delete and insert text, move
text etc. Each of these functions may be activated by either a primary or
a secondary command. The secondary commands are installed by Bor-
land and comply with the ‘standard’ set by WordStar. The primary com-
mands are un-defined for most systems, and using the installation pro-
gram, they may easily be defined to suit your taste or your keyboard.
IBM PC systems are supplied with the arrows and dedicated function
keys installed as primary commands as described in chapter 19.

Please turn to appendix L for a full description of the editor command in-
stallation.

USING THE TURBO SYSTEM 13

The Menu

The Menu

After installation, you once again activate TURBO Pascal by typing the
command TURBO. Your screen should now clear and display the menu,
this time with the command letters highlighted. If not, check your instal-
lation data.

Logged drive: A

Work file:

Main file:

Edit Compile Run Save
Dir Quit compiler Options
Text: 0 bytes

Free: 62903 bytes

> |

Figure 1-4: Main Menu

By the way, whenever highlighting is mentioned here, it is assuming that
your screen has different video attributes to show text in different inten-
sities, inverse, underline or some other way. If not, just disregard any
mention of highlighting.

This menu shows you the commands available to you while working
with TURBO Pascal. A command is activated by pressing the associated
upper case (highlighted) letter. Don’t press <RETURN >, the com-
mand is executed immediately. The menu may very well disappear from
the screen when working with the system; it is easily restored by enter-
ing an ‘illegal command’, i.e. any key that does not activate a command.
<RETURN > or <SPACE > will do perfectly.

The following sections describe each command in detail.

14 TURBO Pascal Reference Manual

The Menu

Logged Drive Selection

The L command is used to change the currently logged drive. When you
press L, this prompt:

New drive: @

invites you to enter a new drive name, that is, a letter from A through P,
optionally followed by a colon and terminated with <RETURN > . If you
don't want to change the current value, just hit <RETURN>. The L
command performs a disk-reset, even when you don’t change the drive,
and should therefore be used whenever you change disks to avoid a fa-
tal disk write error.

The new drive is not immediately shown on the menu, as it is not au-
tomatically updated. Hit for example <SPACE> to display a fresh
menu which will show the new logged drive.

Work File Selection

The W command is used to select a work file which is the file to be used
to Edit, Compile, Run, eXecute, and Save. The W command will issue
this command:

Work file name: ®

and you may respond with any legal file name: a name of one through
eight characters, an optional period, and an optional file type of no more
than three characters:

FILENAME.TYP

If you enter a file name without period and file type, the file type PAS is
automatically assumed and appended to the name. You may explicitly
specify a file name with no file type by entering a period after the name,
but omitting the type.

Examples:
PROGRAM becomes PROGRAM. PAS
PROGRAM. is not changed

PROGRAM.FIL is not changed

USING THE TURBO SYSTEM 15

The Menu

File types .BAK, .CHN, and .COM/.CMD should be avoided, as TURBO
uses these names for special purposes.

When the Work file has been specified, the file is read from disk, if
present. If the file does not already exist, the message New File is is-
sued. If you have edited another file which you have not saved, the mes-
sage: 4

Workfile X:FILENAME.TYP not saved. Save (Y/N)? ®
warns you that you are about to load a new file into memory and
overwrite the one you have just worked on. Answer Y to save or N to
skip.

The new work file name will show on the menu the next time it is updat-
ed, like when you hit < SPACE > .

Main File Selection

16

The M command may be used to define a main file when working with
programs which use the compiler directive $I to include a file. The Main
file should be the file which which contains the include directives. You
can then define the Work file to be different from the Main file, and thus
edit different include files while leaving the name of the Main file un-
changed.

When a compilation is started, and the Work file is different from the
Main file, the current Work file is automatically saved , and the Main file
is loaded into memory. If an error is found during compilation, the file
containing the error (whether it is the Main file or an include file) au-
tomatically becomes the Work file which may then be edited. When the
error has been corrected and compilation is started again, the corrected
Work file is automatically saved, and the Main file is re-loaded.

The Main file name is specified as described for the Work file name in
the previous section.

TURBO Pascal Reference Manual

The Menu

Edit Command

The E command is used to invoke the built-in editor and edit the file
defined as the Work file. If no Work file is specified, you are first asked
to specify one. The menu disappears, and the editor is activated. More
about the use of the editor on pages 19 pp.

While you may use the TURBO system to compile and run programs
without installing a terminal, the use of the editor requires that your ter-
minal be installed. See page 12.

Compile Command

The C command is used to activate the compiler. If no Main file is
specified, the Work file will be compiled, otherwise the Main file will be
compiled. In the latter case, if the Work file has been edited, you will be
asked whether or not to save it before the Main file is loaded and com-
piled. The compilation may be interrupted at any moment by pressing a
key.

The compilation may result either in a program residing in memory, in a
.COM file, or in a .CHN file. The choice is made on the compiler Options
menu described on pages 190 (PC/MS-DOS systems), 227 (CP/M-86),
and 259 (CP/M-80). The default is to have the program residing in
memory.

Run Command

The R command is used to activate a program residing in memory or, if
the C-switch on the compiler Options menu is active, a TURBO object
code file ((COM or .CMD file). If a compiled program is already in
memory, it will be activated. If not, a compilation will automatically take
place as described above.

Save Command

The S command is used to save the current Work file on disk. The old
version of this file, if any, will be renamed to .BAK, and the new version
will be saved.

USING THE TURBO SYSTEM 17

The Menu

Directory Command

The D command gives you a directory listing and information about
remaining space on the logged drive. When hitting D, you are prompted
thus:

Dir mask: ®»
You may enter a drive designator or a drive designator followed by a file

name or a mask containing the usual wildcards * and ?. Or you may
just hit <RETURN > to get a full directory listing.

Quit Command

The Quit command is used to leave the TURBO system. If the Work file
has been edited since it was loaded, you are asked whether you want to
save it before quitting.

compiler Options

18

The O command selects a menu on which you may view and change
some default values of the compiler. It also provides a helpful function to
find run-time errors in programs compiled into object code files.

As these options vary between implementations, further discussion is
deferred to chapters 20, 21, and 22.

TURBOQ Pascal Reference Manual

The TURBO Editor

The TURBO Editor

The built-in editor is a full-screen editor specifically designed for the
creation of program source text. If you are familiar with MicroPro’s
WordStar, you need but little instruction in the use of the TURBO editor,
as all editor commands are exactly like the ones you know from
WordStar. There are a few minor differences, and the TURBO editor has
a few extensions; these are discussed on page 34. You may install your
own commands ‘on top’ of the WordStar commands, as described on
page 13; and IBM PC systems come with arrows and dedicated function
keys already installed. The WordStar commmands, however, may still
be used.

Using the TURBO editor is simple as can be: when you have defined a
Work file and hit E, the menu disappears, and the editor is activated. If
the Work file exists on the logged drive, it is loaded and the first page of
text is displayed. If it is a new file, the screen is blank except for the status
line at the top.

You leave the editor and return to the menu by pressing Ctrl-K-D; more
about that later.

Text is entered on the keyboard just as if you were using a typewriter.
To terminate a line, press the <RETURN > key (or CR or ENTER or
whatever it is called on your keyboard). When you have entered enough
lines to fill the screen, the top line will scroll off the screen, but don’t
worry, it is not lost, and you may page back and forth in your text with
the editing commands described later.

Let us first take a look at the meaning of the status line at the top of the
screen.

The Status Line

The top line on the screen is the status line containing the following in-
formation:

Line n Col n Insert Indent X:FILENAME.TYP

Figure 1-5: Editor Status Line

USING THE TURBO SYSTEM 19

The TURBO Editor

Line n
Shows the number of the line containing the cursor counted from the
start of the file.

Coln
Shows the number of the column containing the cursor counted from
the left of the line.

Insert
Indicates that characters entered on the keyboard will be inserted at the
cursor position. Existing text to the right of the cursor will move to the
right as you write new text. Using the insert mode on/off command
(Ctrl-V by default) will instead display the text Overwrite. Text entered
on the keyboard will then overwrite characters under the cursor instead
of inserting them.

Indent
Indicates that auto-indent is in effect. It may be switched off by the
auto-indent on/off command (Ctrl-Q-1 by default).

X:FILENAME.TYP
The drive, name, and type of the file being edited.

Editing Commands

As mentioned before, you use the editor almost as a typewriter, but as
this is a computerized text editor it offers you a number of editing facili-
ties which make text manipulation, and in this case specifically program
writing, much easier than on paper.

The TURBO editor accepts a total of 45 editing commands to move the
cursor around, page through the text, find and replace text strings, etc,
etc. These commands can be grouped into the following four categories:

Cursor movement commands,
Insert and delete commands,
Block commands, and
Miscellaneous commands

Each of these groups contain logically related commands which will be

described separately in following sections. The following table provides
an overview of the commands available:

20 TURBO Pascal Reference Manual

The TURBO Editor

CURSOR MOVEMENT COMMANDS:

Character left
Character right
Word left

Word right
Line up

Line down
Scroll up
Scroll down
Page up

Page down

INSERT & DELETE COMMANDS:

Insert mode on/off
Insert line

Delete line

Delete to end of line

BLOCK COMMANDS:
Mark block begin
Mark block end
Mark single word
Copy block
Move block
Delete block
Read block from disk
Write block to disk
Hide/display block

To top of screen

To top of file

To top of file

To end of file

To left on line

To right on line

To beginning of block
To end of block

To last cursor position

Delete right word
Delete character under cursor
Delete left character

MISC. EDITING COMMANDS:

End edit

Tab

Auto tab on/off

Restore line

Find

Find & replace

Repeat last find

Control character prefix

Table 1-1: Editing Command Overview

In a case like this, the best way of learning is by doing; so start TURBO,
specify one of the demo Pascal programs as your Work file, and enter E
to start Editing. Then use the commands as you read on.

Hang on, even if you find it a bit hard in the beginning. It is not just by
chance we have chosen to make the TURBO editor WordStar compati-
ble - the logic of these commands, once learned, quickly become so
much a part of you that the editor virtually turns into an extension of
your mind. Take it from one who has written megabytes worth of text

with that editor.

USING THE TURBO SYSTEM

21

The TURBO Editor

Each of the following descriptions consists of a heading defining the
command, followed by the default keystrokes used to activate the com-
mand, with room in between to note which keys to use on your terminal,
if you use other keys. If you have arrow keys and dedicated word pro-
cessing keys (insert, delete, etc.), it might be convenient to use these.
Please refer to pages 13 pp for installation details.

The following descriptions of the commands assume the use of the
default WordStar compatible keystrokes.

A Note on Control Characters

All commands are issued using control characters. A control character is
a special character generated by your keyboard when you hold down
the <CONTROL> (or <CTRL>) key on your keyboard and press
any key from A through Z (well, even the [, \,], °, and _ keys generate
control characters for that matter).

The < CONTROL> key works like the <SHIFT> key: if you hold
down the <SHIFT > key and press A, you will get a capital A; if you
hold down the < CONTROL > key and press A, you will get a Control-
A (Ctrl-A for short).

Before You Start: How To Get Out

The command which takes you out of the editor is described on page
30, but you may find it useful to know already now that the Ctrl-K-D
command exits the editor and returns you to the menu environment.
This command does not automatically save the file; that must be done
with the Save command from the menu.

Basic Movement Commands

22

The most basic thing to learn about an editor is how to move the cursor
around on the screen. The TURBO editor uses a special group of con-
trol characters to do that, namely the control characters A, S, D, F, E, R,
X, and C.

TURBO Pascal Reference Manual

The TURBO Editor

Why these? Because they are conveniently located close to the control
key, so that your left little finger can rest on that while you use the mid-
dle and index fingers to activate the commands. Furthermore, the char-
acters are arranged in such a way on the keyboard as to logically indi-
cate their use. Let’s examine the basic movements: cursor up, down,
left, and right:

E
S D
X

These four characters are placed so that it is logical to assume that
Ctrl-E moves the cursor up, Ctrl-X down, Ctrl-S to the left, and Ctrl-D to
the right. And that is exactly what they do. Try to move the cursor
around on the screen with these four commands. If your keyboard has
repeating keys, you may just hold down the control key and one of
these four keys, and the cursor will move rapidly across the screen.

Now let us look at some extensions of those movements:

E R
A S D F
X C

The location of the Ctrl-R next to the Ctrl-E suggests that Ctrl-R moves
the cursor up, and so it does, only not one line at a time but a whole
page. Similarly, Ctrl-C moves the cursor down one page at a time.

Likewise with Ctrl-A and Ctrl-F: Ctrl-A moves to the left like Ctrl-S, but
a whole word at a time, and Ctrl-F moves one word to the right.

The two last basic movement commands do not move the cursor but
scrolls the entire screen upwards or downwards in the file:

W E R
A S D F
zZ X C

Ctrl-W scrolls upwards in the file (the lines on the screen move down),

and Ctrl-Z scrolis downwards in the file (the lines on the screen move
up).

USING THE TURBO SYSTEM 23

The TURBO Editor

Character left Ctrl-S
Moves the cursor one character to the left non-destructively, without
affecting the character there. <BACKSPACE > may be installed to
have the same effect. This command does not work across line breaks;
when the cursor reaches the left edge of the screen, it stops.

Character right Ctrl-D
Moves the cursor one character to the right non-destructively, without
affecting the character there. This command does not work across line
breaks, i.e. when the cursor reaches the right end of the screen, the
text starts scrolling horizontally until the cursor reaches the extreme
right of the line, in column 128, where it stops.

Word left Ctrl-A
Moves the cursor to the beginning of the word to the left. A word is
defined as a sequence of characters delimited by one of the following
characters: lspacel < > ,;.()[]1"'* + — [/$. This command works
across line breaks.

Word right Ctrl-F
Moves the cursor to the beginning of the word to the right. See the
definition of a word above. This command works across line breaks.

Line up Ctrl-E
Moves the cursor to the line above. If the cursor is on the top line, the
screen scrolls down one line.

Line down Ctrl-X
Moves the cursor to the line below. If the cursor is on the second-last
line, the screen scrolls up one line.

Scroll up Ctrl-w
Scrolls ‘up’ towards the beginning of the file, one line at a time (the en-
tire screen scrolls down). The cursor remains on its line until it reaches
the bottom of the screen.

Scroll down Ctrl-Z
Scrolls ‘down’ towards the end of the file, one line at a time (the entire
screen scrolls up). The cursor remains on its line until it reaches the top
of the screen.

24 TURBO Pascal Reference Manual

The TURBO Editor

Page up Ctrl-R
Moves the cursor one page up with an overlap of one line; the cursor
moves one screenful less one line backwards in the text.

Page down Ctrl-C
Moves the cursor one page down with an overlap of one line; the cursor
moves one screenful less one line forwards in the text.

Extended Movement Commands

The commands discussed above will let you move freely around in your
program text, and they are easy to learn and understand. Try to use
them all for a while and see how natural they feel.

Once you master them, you will probably sometimes want to move more
rapidly. The TURBO editor provides six commands to move rapidly to
the extreme ends of lines, to the beginning and end of the text, and to
the last cursor position.

These commands require two characters to be entered: first a Ctrl-Q
and then one of the following control characters: S, D, E, X, R, and C.
They repeat the pattern from before:

Ctrl-Q-S moves the cursor to the extreme left of the line, and Ctrl-Q-D
moves it to the extreme right of the line. Ctrl-Q-E moves the cursor to
the top of the screen, Ctrl-Q-X moves it to the bottom of the screen.
Ctrl-Q-R moves the cursor all the way ‘up’ to the start of the file, Ctrl-
Q-C moves it all the way ‘down’ to the end of the file.

To left on line Ctrl-Q-S
Moves the cursor all the way to the left edge of the screen, to column
one.

To right on line Ctrl-Q-D

Moves the cursor to the end of the line to the position following the last
printable character on the line. Trailing blanks are always removed from
all lines to preserve space.

USING THE TURBO SYSTEM 25

The TURBO Editor

To top of screen Ctrl-Q-E
Moves the cursor to the top of the screen.

To bottom of screen Ctrl-Q-X
Moves the cursor to the bottom of the screen.

To top of file Ctrl-Q-R
Moves to the first character of the text.

To end of file Ctri-Q-C
Moves to the last character of the text.

Finally the Ctrl-Q prefix with a B, K, or P control character allows you to
jump far within the file:

To beginning of block Ctrl-Q-B
Moves the cursor to the the position of the block begin marker set with
Ctrl-K-B (hence the Q-B). The command works even if the block is not
displayed (see hide/display block later), or the block end marker is not
set.

To end of block Ctrl-Q-K
Moves the cursor to the position of the block end marker set with Ctrl-
K-K (hence the Q-K). The command works even if the block is not
displayed (see hide/display block later), or the block begin marker is not
set.

To last cursor position Ctrl-Q-P
Moves to the last Position of the cursor. This command is particularly
useful to move back to the last position after a Save operation or after a
find or find/replace operation.

Insert and Delete Commands

These commands let you insert and delete characters, words, and lines.
They can be divided into three groups: one command which controls the
text entry mode (insert or overwrite), a number of simple commands,
and one extended command.

Notice that the TURBO editor provides a ‘regret’ facility which lets you

‘undo’ changes as long as you have not left the line. This command
(Ctrl-Q-L) is described on page 31.

26 TURBO Pascal Reference Manual

The TURBO Editor

Insert mode on/off Ctrl-v
When you enter text, you may choose between two entry modes: Insert
and Overwrite. Insert mode is the default value when the editor is in-
voked, and it lets you insert new text into an existing text. The existing
text to the right of the cursor simply moves to the right while you enter
the new text.

Overwrite mode may be chosen if you wish to replace old text with new
text. Characters entered then replace existing characters under the cur-
sor.

You switch between these modes with the insert mode on/off command
Ctrl-V, and the current mode is displayed in the status line at the top of
the screen.

Delete left character
Moves one character to the left and deletes the character there. Any
characters to the right of the cursor move one position to the left. The
<BACKSPACE > key which normally backspaces non-destructively
like Ctrl-S may be installed to perform this function if it is more con-
veniently located on your keyboard, or if your keyboard lacks a
<DELETE > key (sometimes labeled , <RUBOUT2>, or
< RUB >). This command works across line breaks, and can be used
to remove line breaks.

Delete character under cursor Ctrl-G
Deletes the character under the cursor and moves any characters to the
right of the cursor one position to the left. This command does not work
across line breaks.

Delete right word Ctrl-T
Deletes the word to the right of the cursor. A word is defined as a se-
quence of characters delimited by one of the following characters:
Ispacel < > ,;.()[]1"'* + — /$. This command works across line
breaks, and may be used to remove line breaks.

Insert line Ctrl-N
Inserts a line break at the cursor position. The cursor does not move.

Delete line Ctrl-Y
Deletes the line containing the cursor and moves any lines below one
line up. The cursor moves to the left edge of the screen. No provision
exists to restore a deleted line, so take care!

USING THE TURBO SYSTEM 27

The TURBO Editor

Delete to end of line Ctrl-Q-Y

Deletes all text from the cursor position to the end of the line.

Block Commands

All block commands are extended commands (two characters each in
the standard command definition), and you may ignore them at first if
you feel a bit dazzled at this point. Later on, when you feel the need to
move, delete, or copy whole chunks of text, you should return to this
section.

For the persevering, we’'ll go on and discuss the use of blocks.

A block of text is simply any amount of text, from a single character to
several pages of text. A block is marked by placing a Begin block mark-
er at the first character and an End block marker at the last character of
the desired portion of the text. Thus marked, the block may be copied,
moved, deleted, and written to a file. A command is available to read an
external file into the text as a block, and a special command convenient-
ly marks a single word as a block.

Mark block begin Ctrl-K-B

This command marks the beginning of a block. The marker itself is not
visible on the screen, and the block only becomes visibly marked when
the End block marker is set, and then only if the screen is installed to
show some sort of highlighting. But even if the block is not visibly
marked, it is internally marked and may be manipulated.

Mark block end Ctrl-K-K

This command marks the end of a block. As above, the marker itself is
not visible on the screen, and the block only becomes visibly marked
when the Begin block marker is also set.

Mark single word Ctrl-K-T

28

This command marks a single word as a block, and thus replaces the
Begin block - End block sequence which is a bit clumsy when marking
just one word. If the cursor is placed within a word, then this word will
be marked; if not then the word to the left of the cursor will be marked.
A word is defined as a sequence of characters delimited by one of the
foliowing characters: lspace < > ,;.()[]1"'*+ — /§.

TURBO Pascal Reference Manual

The TURBO Editor

Hide/display block Ctrl-K-H
This command causes the visual marking of a block (dim text) to be al-
ternately switched off and on. Block manipulation commands (copy,
move, delete, and write to a file) work only when the block is displayed.
Block related cursor movements (jump to beginning/end of block) work
whether the block is hidden or displayed.

Copy block Ctrl-K-C
This command places a copy of a previously marked block starting at
the cursor position. The original block is left unchanged, and the mark-
ers are placed around the new copy of the block. If no block is marked,
the command performs no operation, and no error message is issued.

Move block Ctrl-K-V
This command moves a previously marked block from its original posi-
tion to the cursor position. The block disappears from its original posi-
tion and the markers remain around the block at its new position. If no
block is marked, the command performs no operation, and no error
message is issued.

Delete block Ctrl-K-Y
This command deletes the previously marked block. No provision exists
to restore a deleted block, so be careful!

Read block from disk Ctrl-K-R
This command is used to read a file into the current text at the cursor
position, exactly as if it was a block that was moved or copied. The
block read in is marked as a block. When this command is issued, you
are prompted for the name of the file to read. The file specified may be
any legal filename. If no file type is specified, .PAS is automatically as-
sumed. A file without type is specified as a name followed by a period.

USING THE TURBO SYSTEM 29

The TURBO Editor

Write block to disk Ctrl-K-W

This command is used to write a previously marked block to a file. The
block is left unchanged, and the markers remain in place. When this
command is issued, you are prompted for the name of the file to write
to. If the file specified already exists, a warning is issued before the ex-
isting file is overwritten. If no block is marked, the command performs
no operation, and no error message is issued.The file specified may be
any legal filename. If no file type is specified, .PAS is automatically as-
sumed. A file without type is specified as a name followed by a period.
Avoid the use of file types .BAK, .CHN, and .COM/.CMD, as they are
used for special purposes by the TURBO system.

Miscellaneous Editing Commands

This section collects a number of commands which do not logically fall
into any of the above categories. They are nonetheless important, espe-
cially this first one:

End edit Ctrl-K-D

Tab

30

This command ends the edit and returns to the main menu. The editing
has been performed entirely in memory, and any associated disk file is
not affected. Saving the edited file on disk is done explicitly with the
Save command from the main menu or automatically in connection with
a compilation or definition of a new Work file.

TAB/Ctrl-]
There are no fixed tab positions in the TURBO editor. Instead, tab posi-
tions are automatically set to the beginning of each word on the line im-
mediately above the cursor. This provides a very convenient automatic
tabbing feature especially useful in program editing where you often
want to line up columns of related items, like variable declarations and
such. Remember that Pascal allows you to write extremely beautiful
source texts - do it, not for the sake of the purists, but more importantly
to keep the program easy to understand, especially when you return to
make changes after some time.

TURBO Pascal Reference Manual

The TURBO Editor

Auto indent on/off Ctrl-Q-1

The auto indent feature provides automatic indenting of successive
lines. When active, the indent of the current line is repeated on each fol-
lowing line, that is, when you hit <RETURN >, the cursor does not re-
turn to column one but to the starting column of the line you just ter-
minated. When you want to change the indent, use any of the cursor
right or left commands to select the new column. When auto indent is
active, the message Indent is displayed in the status line, and when
passive the message is removed. Auto indent is active by default.

Restore line Ctrl-Q-L

Find

This command lets you regret changes made to a line as long as you
have not left the line. The line is simply restored to its original contents
regardless of what changes you have made. But only as long as you
remain on the line; the moment you leave it, changes are there to stay.
For this reason, the Delete line (Ctrl-Y) command can regrettably only be
regretted, not restored. Some days you may find yourself continuously
falling asleep on the Ctrl-Y key, with vast consequences. A good long
break usually helps.

Ctrl-Q-F
The Find command lets you search for any string of up to 30 characters.
When you enter this command, the status line is cleared, and you are
prompted for a search string. Enter the string you are looking for and
terminate with <RETURN > . The search string may contain any char-
acters, also control characters. Control characters are entered into the
search string with the Ctrl-P prefix. Example: enter a Ctrl-A by holding
down the Control key while pressing first P, then A. You may thus in-
clude a line break in a search string by specifying Ctrl-M Ctrl-J. Notice
that Ctrl-A has a special meaning: it matches any character and may be
used as a wildcard in search strings.

Search strings may be edited with the Character Left, Character Right,
Word Left, and Word Right commands. Word Right recalls the previous
search string which may then be edited. The search operation may be
aborted with the Abort command (Ctrl-U).

When the search string is specified, you are asked for search options.
The following options are available:

USING THE TURBO SYSTEM 31

The TURBO Editor

BU
125

Search backwards. Search from the current cursor position towards the
beginning of the text.

Global search. Search the entire text, irrespective of the current cursor
position.

n = any number. Find the n’'th occurrence of the search string, counted
from the current cursor position.

Ignore upper/lower case. Regard upper and lower case alphabeticals as
equal.

Search for whole words only. Skip matching patterns which are embed-
ded in other words.

Examples:

search for whole words only. The search string ‘term’ will only match
the word ‘term’, not for example the word ‘terminal’.

search backwards and ignore upper/lower case. ‘Block’ will match both
‘blockhead’ and ‘BLOCKADE', etc.

Find the 125th occurrence of the search string.

Terminate the list of options (if any) with <RETURN >, and the search
starts. If the text contains a target matching the search string, the cur-
sor is positioned at the end of the target. The search operation may be
repeated by the Repeat last find command (Ctrl-L).

Find and replace Ctrl-Q-A

32

The Find and Replace command lets you search for any string of up to
30 characters and replace it with any other string of up to 30 characters.
When you enter this command, the status line is cleared, and you are
prompted for a search string. Enter the string you are looking for and
terminate with <RETURN > . The search string may contain any char-
acters, also control characters. Control characters are entered into the
search string with the Ctrl-P prefix. Example: enter a Ctri-A by holding
down the Control key while pressing first P, then A. You may thus in-
clude a line break in a search string by specitying Ctrl-M Ctri-J. Notice
that Ctrl-A has a special meaning: it matches any character and may be
used as a wildcard in search strings.

Search strings may be edited with the Character Left, Character Right,
Word Left, and Word Right commands. Word Right recalls the previous
search string which may then be edited. The search operation may be
aborted with the Abort command (Ctrl-U).

TURBO Pascal Reference Manual

o

=

s c =z

The TURBO Editor

When the search string is specified, you are asked to enter the string to
replace the search string. Enter up to 30 characters; control character
entry and editing is performed as above, but Ctrl-A has no special
meaning in the replace string. If you just press <RETURN >, the tar-
get will be replaced with nothing, in effect deleted.

Finally you are prompted for options. The search and replace options
are:

Search and replace backwards. Search and replace from the current
cursor position towards the beginning of the text.

Global search and replace. Search and replace in the entire text, ir-
respective of the current cursor position.

n = any number. Find and replace n occurrences of the search string,
counted from the current cursor position.

Replace without asking. Do not stop and ask Replace (Y/N) for each oc-
currences of the search string.

Ignore upper/lower case. Regard upper and lower case alphabeticals as
equal.

Search and replace whole words only. Skip matching patterns which are
embedded in other words.

Examples:

Find the next ten occurrences of the search string and replace without
asking.

Find and replace whole words in the entire text. Ignore upper/lower
case.

Terminate the list of options (if any) with <RETURN >, and the search
and replace starts. Depending on the options specified, the string may
be found. When found (and if the N option is not specified), the cursor is
positioned at the end of the target, and you are asked the
question: Replace (Y/N)? on the prompt line at the top of the
screen. You may abort the search and replace operation at this point
with the Abort command (Ctrl-U). The search and replace operation may
be repeated by the Repeat last find command (Ctrl-L).

Repeat last find Ctri-L

This command repeats the latest Find or Find and replace operation ex-
actly as if all information had been re-entered.

USING THE TURBO SYSTEM 33

The TURBO Editor

Control character prefix Ctrl-P
The TURBO editor allows you to enter control characters into the file by
prefixing the desired control character with a Ctrl-P, that is, first press
Ctrl-P, then press the desired control character. Control characters will
appear as low-lighted capital letters on the screen (or inverse, depending
on your terminal).

Abort operation Ctrl-U
The Ctrl-U command lets you abort any command in process whenever
it pauses for input, like when Search and Replace asks Replace Y/N?,
or during entry of a search string or a file name (block Read and Write).

The TURBO editor vs. WordStar

Someone used to WordStar will notice that a few TURBO commands
work slightly different, and although TURBO contains only a subset of
WordStar’s commands, a number of special features not found in
WordStar have been added to enhance the editing of program source
code. These differences are discussed in the following.

Cursor Movement

The cursor movement controls Ctrl-S, D, E, and X move freely around
on the screen and do not jump to column one on empty lines. This does
not mean that the screen is full of blanks; on the contrary, all trailing
blanks are automatically deleted. This way of moving the cursor is espe-
cially useful for example when matching indented begin - end pairs.

Ctrl-S and Ctrl-D do not work across line breaks. To move from one line
to another you must use Ctrl-E, Ctrl-X, Ctrl-A, or Ctrl-F.

Mark Single Word

Ctrl-K-T is used to mark a single word as a block which is more con-
venient than the two-step process of marking the beginning and the end
of the word separately.

34 TURBQ Pascal Reference Manual

The TURBO editor vs. WordStar

End Edit

The Ctrl-K-D command ends editing and returns you to the menu. As
editing in TURBO is done entirely in memory, this command does not
change the file on disk (as it does in WordStar). Updating the disk file
must be done explicitly with the Save command from the main menu or
automatically in connection with a compilation or definition of a new
Work file. TURBO's Ctrl-K-D does not resemble WordStar's Ctrl-K-Q
(quit edit) command either, as the changed text is not abandoned; it is
left in memory ready to be Compiled or Saved.

Line Restore

The Ctrl-Q-L command restores a line to its contents before edit as long
as the cursor has not left the line.

Tabulator

No fixed tab settings are provided. Instead, the automatic tab feature
sets tabs to the start of each word on the line immediately above the
cursor.

Auto Indentation

The Ctrl-Q-1 command switches the auto indent feature on and off.

USING THE TURBO SYSTEM 35

The TURBO editor vs. WordStar

Notes:

36 TURBO Pascal Reference Manual

Chapter 2
BASIC LANGUAGE ELEMENTS

Basic Symbols

The basic vocabulary of TURBO Pascal consists of basic symbols divid-
ed into letters, digits, and special symbols:

Letters
Ato Z, ato z,and _ (underscore)
Digits
01234567889
Special symbols
+ - *F/=r<<>()YLTLY o, v HS

No distinction is made between upper and lower case letters. Certain
operators and delimiters are formed using two special symbols:

Assignment operator: : =

Relational operators: <> <= >=

Subrange delimiter: . .

Brackets: (. and .) may be used instead of [and]
Comments: (* and *) may be used instead of { and }

Reserved Words

Reserved words are integral parts of TURBO Pascal. They cannot be
redefined and must therefore not be used as user defined identifiers.
Throughout this manual, reserved words are written in boldface.

* absolute * external nil * shl
and file not * ghr
array forward * overlay * string
begin for of then
case function or type
const goto packed to
div * jnline procedure until
do if program var
downto in record while
else label repeat with
end mod set * xor

*Not defined in standard Pascal.

BASIC LANGUAGE ELEMENTS 37

Reserved Words

Standard ldentifiers

38

TURBO Pascal defines a number standard identifiers of predefined
types, constants, variables, procedures, and functions. Any of these
identifiers may be redefined but it will mean the loss of the facility
offered by that particular identifier and may lead to confusion. The fol-
lowing standard identifiers are therefore best left to their special pur-

poses:

Addr
ArcTan
Assign
Aux
AuxInPtr
AuxQutPtr
BlockRead
BlockWrite
Boolean
BufLen
Byte
Chain
Char

Chr

Close
ClrEOL
ClrScr
Con
ConInPtr
ConOutPtr
Concat
ConstPtr
Copy

Cos
CrtExit
CrtInit
DelLine

Delay
Delete
EQOF

EQOLN
Erase
Execute
Exit

Exp
False
FilePos
FileSize
FillChar
Flush
Frac
GetMem
GotoXY
Halt
HeapPtr
Hi
IOresult
Input
InsLine
Insert
Int
Integer
Kbd
KeyPressed

Length

Ln

Lo
LowVideo
Lst
LstOutPtr
Mark
MaxInt
Mem
MemAvail
MemW

Move

New
NormVideo
0dd

Ord
Output

Pi

Port
Portw

Pos

Pred

Ptr
Random
Randomize
Read
ReadLn

Real
Release
Rename
Reset
Rewrite
Round
Seek

Sin
SizeOf
SeekEof
SeekEoln
Sar

Sagrt

Str

Succ
Swap
Text

Trm

True
Trunc
UpCase
Usr
UsrInPtr
UsrOutPtr
Val
Write
WriteLn

Each TURBO Pascal implementation further contains a number of dedi-
cated standard identifiers which are listed in chapters 20, 21, and 22.

TURBO Pascal Reference Manual

Standard Identifiers

Throughout this manual, all identifiers, including standard identifiers, are
written in a combination of upper and lower case letters (see page 43).
In the text (as opposed to program examples), they are furthermore
printed in jtalics.

Delimiters

Language elements must be separated by at least one of the following
delimiters: a blank, an end of line, or a comment.

Program Lines

The maximum length of a program line is 127 characters; any character
beyond the 127th is ignored by the compiler. For this reason the TURBO
editor allows only 127 characters on a line, but source code prepared
with other editors may use longer lines. If such a text is read into the
TURBO editor, line breaks will be automatically inserted, and a warning
is issued.

BASIC LANGUAGE ELEMENTS 39

Program Lines

Notes:

40 TURBO Pascal Reference Manual

Chapter 3
STANDARD SCALAR TYPES

A data type defines the set of values a variable may assume. Every vari-
able in a program must be associated with one and only one data type.
Although data types in TURBO Pascal can be quite sophisticated, they
are all built from simple (unstructured) types.

A simple type may either be defined by the programmer (it is then called
a declared scalar type), or be one of the standard scalar types: integer,
real, boolean, char, or byte. The following is a description of these five
standard scalar types.

Integer

Integers are whole numbers; in TURBO Pascal they are limited to a
range of — 32768 through 32767. Integers occupy two bytes in
memory.

Overflow of integer arithmetic operations is not detected. Notice in par-
ticular that partial results in integer expressions must be kept within the
integer range. For instance, the expression 1000 * 100 / 50 will not yield
2000, as the multiplication causes an overflow.

Byte

The type Byte is a subrange of the type Integer, of the range 0..255.
Bytes are therefore compatible with integers. Whenever a Byte value is
expected, an Integer value may be specified instead and vice versa, ex-
cept when passed as parameters. Furthermore, Bytes and Integers may
be mixed in expressions and Byte variables may be assigned integer
values. A variable of type Byte occupies one byte in memory.

STANDARD SCALAR TYPES 41

Real

Real

The range of real numbers is 1E — 38 through 1E + 38 with a mantissa
of up to 11 significant digits. Reals occupy 6 bytes in memory.

Overflow during an arithmetic operation involving reals causes the pro-
gram to halt, displaying an execution error. An underflow will cause a
result of zero.

Although the type real is included here as a standard scalar type, the
following differences between reals and other scalar types should be
noticed:

1) The functions Pred and Succ cannot take real arguments.

2) Reals cannot be used in array indexing.

3) Reals cannot be used to define the base type of a set.

4) Reals cannot be used in controlling for and case statements.
5) Subranges of reals are not allowed.

Boolean

A boolean value can assume either of the logical truth values denoted
by the standard identifiers True and False. These are defined such that
False < True. A Boolean variable occupies one byte in memory.

Char

A Char value is one character in the ASCII character set. Characters are
ordered according to their ASCII value, for example: 'A’ < 'B’. The or-
dinal (ASCII) values of characters range from 0 to 255. A Char variable
occupies one byte in memory.

42 TURBO Pascal Reference Manual

Chapter 4
USER DEFINED LANGUAGE
ELEMENTS

ldentifiers

Identifiers are used to denote labels, constants, types, variables, pro-
cedures, and functions. An identifier consists of a letter or underscore
followed by any combination of letters, digits, or underscores. An
identifier is limited in length only by the line length of 127 characters,
and all characters are significant.

Examples:

TURBO

square

persons_counted

BirthDate

3rdRoot illegal, starts with a digit

Two Words illegal, must not contain a space

As TURBO Pascal does not distinguish between upper and lower case
letters, the use of mixed upper and lower case as in BirthDate has no
functional meaning. It is nevertheless encouraged as it leads to more le-
gible identifiers. VeryLongldentifier is easier to read for the human
reader than VERYLONGIDENTIFIER. This mixed mode will be used for
all identifiers throughout this manual.

Numbers

Numbers are constants of integer type or of real type. Integer constants
are whole numbers expressed in either decimal or hexadecimal notation.
Hexadecimal constants are identified by being preceded by a dollar-
sign: $ABC is a hexadecimal constant. The decimal integer range is
— 32768 through 32767 and the hexadecimal integer range is $0000
through $FFFF.

USER DEFINED LANGUAGE ELEMENTS: 43

Numbers

Examples:

1

12345

-1

$123

$ABC

$123G ilegal, G is not a legal hexadecimal digit
1.2345 illegal as an integer, contains a decimal parts

The range of Real numbers is 1E-38 through 1E + 38 with a mantissa of
up to 11 significant digits. Exponential notation may be used, with the
letter E preceding the scale factor meaning ‘‘times ten to the power of".
An integer constant is allowed anywhere a real constant is allowed.
Separators are not allowed within numbers.

Examples:

1.0

1234.5678

-0.012

1E6

2E-5

-1.2345678901E+12

1 legal, but it is not a real, it is an integer

Strings

44

A string constant is a sequence of characters enclosed in single quotes:

'This is a string constant '

A single quote may be contained in a string by writing two successive
single quotes. Strings containing only a single character are of the stan-
dard type char. A string is compatible with an array of Char of the same
length. All string constants are compatible with all string types.

Examples:
'TURBO'

'You''ll see'
tree

A

TURBO Pascal Reference Manual

Strings

As shown in example 2 and 3, a single quote within a string is written as
two consecutive quotes. The four consecutive single quotes in example
3 thus constitute a string containing one quote.

The last example - the quotes enclosing no characters, denoting the
empty string - is compatible only with string types.

Control Characters

TURBO Pascal also allows control characters to be embedded in
strings. Two notations for control characters are supported:

1) The # symbol followed by an integer constant in the range 0..255
denotes a character of the corresponding ASCII value, and

2) the ~ symbol followed by a character, denotes the corresponding
control character.

Examples:

#10 ASCII 10 decimal (Line Feed).
#$1B ASCII 1B hex (Escape).

G Control-G (Bell).

~1 Control-L (Form Feed).

“ Control-[(Escape).

Sequences of control characters may be concatenated into strings by
writing them without separators between the individual characters:

#13#10
#27*U#20
AGI\ GA GI\G

The above strings contain two, three, and four characters, respectively.
Control characters may also be mixed with text strings:

'Waiting for input! '*G*G*G' Please wake up'
#27'U !
'This is another line of text '“*M"J

These three strings contain 37, 3, and 31 characters, respectively.

USER DEFINED LANGUAGE ELEMENTS 45

Comments

Comments

A comment may be inserted anywhere in the program where a delimiter
is legal. It is delimited by the curly braces { and }, which may be re-
placed by the symbols (* and *).

Examples:
{This is a comment}
(* and so is this *)

Curly braces may not be nested within curly braces, and (*..*) may not be
nested within (*..*). However, curly braces may be nested within (*..*) and
vice versa, thus allowing entire sections of source code to be commented
away, even if they contain comments.

Compiler Directives

46

A number of features of the TURBO Pascal compiler are controlled
through compiler directives. A compiler directive is introduced as a com-
ment with a special syntax which means that whenever a comment is al-
lowed in a program, a compiler directive is also allowed.

A compiler directive consists of an opening brace immediately followed
by a dollar-sign immediately followed by one compiler directive letter or a
list of compiler directive letters separated by commas. The syntax of the
directive or directive list depends upon the directive(s) selected. A full
description of each of the compiler directives follow in the relevant sec-
tions; and a summary of compiler directives is Iocated in Appendix C.
File inclusion is discussed in chapter 17.

Examples:

{$I-}

{$I INCLUDE.FIL}
{$R-,B+,V-}
(*$X-%)

Notice that no spaces are allowed before or after the dollar-sign.

TURBO Pascal Reference Manual

Chapter 5
PROGRAM HEADING AND
PROGRAM BLOCK

A Pascal program consists of a program heading followed by a program
block. The program block is further divided into a declaration part, in
which all objects local to the program are defined, and a statement part,
which specifies the actions to be executed upon these objects. Each is
described in detail in the following sections.

Program Heading

In TURBO Pascal, the program heading is purely optional and of no
significance to the program. If present, it gives the program a name, and
optionally lists the parameters through which the program communi-
cates with the environment. The list consists of a sequence of identifiers
enclosed in parentheses and separated by commas.

Examples:

program Circles;

program Accountant(Input,Output);
program Writer(Input,Printer);

Declaration Part

The declaration part of a block declares all identifiers to be used within
the statement part of that block (and possibly other blocks within it). The
declaration part is divided into five different sections:

1) Label declaration part

2) Constant definition part

3) Type definition part

4) Variable declaration part

5) Procedure and function declaration part

Whereas standard Pascal specifies that each section may only occur
zero or one time, and only in the above order, TURBO Pascal allows
each of these sections to occur any number of times in any order in the
declaration part.

PROGRAM HEADING AND PROGRAM BLOCK 47

Declaration Part

Label Declaration Part

Any statement in a program may be prefixed with a label, enabling
direct branching to that statement by a goto statement. A label consists
of a label name followed by a colon. Before use, the label must be de-
clared in a label declaration part. The reserved word label heads this
part, and it is followed by a list of label identifiers separated by commas
and terminated by a semi-colon.

Example:
label 10, error, 999, Quit;

Whereas standard Pascal limits labels to numbers of no more than 4 di-
gits, TURBO Pascal allows both numbers and identifiers to be used as
labels.

Constant Definition Part

48

The constant definition part introduces identifiers as synonyms for con-
stant values. The reserved word const heads the constant definition
part, and is followed by a list of constant assignments separated by
semi-colons. Each constant assignment consists of an identifier followed
by an equal sign and a constant. Constants are either strings or
numbers as defined on pages 43 and 44.

Example:

const
Limit = 255;
Max = 1024;

PassWord = 'SESAM';
CursHome = *['V';

The following constants are predefined in TURBO Pascal which may be
referenced without previous definition:

Name: Type and value:

Pi Real (3.1415926536E+00).

False Boolean (the truth value false).
True Boolean (the truth value true).
Maxint Integer (32767).

As described in chapter 13, a constant definition part may also define
typed constants.

TURBO Pascal Reference Manual

Declaration Part

Type Definition Part

A data type in Pascal may be either directly described in the variable de-
claration part or referenced by a type identifier. Several standard type
identifiers are provided, and the programmer may create his own types
through the use of the type definition. The reserved word type heads
the type definition part, and it is followed by one or more type assign-
ments separated by semi-colons. Each type assignment consists of a
type identifier followed by an equal sign and a type.

Example:
type
Number = Integer;
Day = (mon, tues,wed, thur, fri,sat,sun);

List = array[l..10] of Real;

More examples of type definitions are found in subsequent sections.

Variable Declaration Part

Every variable occurring in a program must be declared before use. The
declaration must textually precede any use of the variable so that the
variable is ‘known’ to the compiler when it is used.

A variable declaration consistsof the reserved word var followed by one
or more identifier(s), separated by commas, each followed by a colon
and a type. This creates a new variable of the specified type and associ-
ates it with the specified identifier.

Example:
var
Result, Intermediate, SubTotal: Real;
I, J, X, Y: Integer;
Accepted, Valid: Boolean;
Period: Day;
Buffer: array(0..127] of Byte;

The ‘scope’ of the identifiers shown above is the block in which they are
defined, and any block within that block. Note, however, that any such block
within another block may define another variable using the same identifier.
This variable is said to be local to the block in which it is declared (and any
blocks within that block), and the variable declared on the outer level (the
global variable) becomes inaccessible.

PROGRAM HEADING AND PROGRAM BLOCK 49

Declaration Part

Complex Variable Declaration

The following declaration, which clarifies a subtle point in Turbo Pascal's
type checking, creates two variables that Turbo Pascal considers the
same type:

var
rl, r2 =record
f1 : char;
end

However, this declaration creates two variables which Turbo Pascal
considers to be of different type:

var
rl =record
fl : char;
end
r2 =record
fl : char;
end

Procedure and Function Declaration Part

A procedure declaration serves to define a procedure within the current
procedure or program (see page 131). A procedure is activated from a
procedure statement (see page 56), and upon completion, program exe-
cution continues with the statement immediately following the calling
statement.

A function declaration serves to define a program part which computes
and returns a value (see page 137). A function is activated when its
designator is met as part of an expression (see page 54).

Statement Part

50

The statement part is the last part of a block. It specifies the actions to
be executed by the program. The statement part takes the form of a
compound statement followed by a period or a semi-colon. A compound
statement consists of the reserved word begin, followed by a list of
statements separated by semicolons, terminated by the reserved word
end.

TURBO Pascal Reference Manual

Chapter 6
EXPRESSIONS

Expressions are algorithmic constructs specifying rules for the computa-
tion of values. They consist of operands: variables, constants, and func-
tion designators combined by means of operators as defined in the fol-
lowing.

This section describes how to form expressions from the standard
scalar types Integer, Real, Boolean, and Char. Expressions containing
declared scalar types, string types, and set types are described on
pages 63, 67, and 86, respectively.

Operators
Operators fall into five categories, denoted by their order of precedence:

1) Unary minus (minus with one operand only).

2) Not operator.

3) Multiplying operators: *, /, div, mod, and, shl, and shr.

4) Adding operators: +, —, or, and xor.

5) Relational operators: =, < >,<,>,< =,> =, andin.

Sequences of operators of the same precedence are evaluated from left
to right. Expressions within parentheses are evaluated first and indepen-
dently of preceding or succeeding operators.
If both of the operands of the multiplying and adding operators are of
type Integer, then the result is of type Integer. If one (or both) of the
operands is of type Real, then the result is also of type Real.

Unary Minus

The unary minus denotes a negation of its operand which may be of
Real or Integer types.

EXPRESSIONS 51

Operators

Not Operator

The not operator negates (inverses) the logical value of its Boolean

operand:

not True
not False

= False
= True

TURBO Pascal also allows the not operator to be applied to an Integer
operand, in which case bitwise negation takes place.

Examples:
not O = -1
not -15 = 14
not $2345 = $DCBA

Multiplying Operators
Operator Operation Operand type Result type
* multiplication Real Real
* multiplication Integer Integer
* multiplication Real, Integer Real
/ division Real, Integer Real
/ division Integer Real
/ division Real Real
div Integer division Integer Integer
mod modulus Integer Integer
and arithmetic and Integer Integer
and logical and Boolean Boolean
shl shift left Integer Integer
shr shift right Integer Integer
Examples:
12 * 34 = 408
123 / 4 = 30.75
123 div 4 = 30
12 mod 5 = 2
True and False = False
12 and 22 = 4
2 shl1 7 = 256
256 shr 7 =2

52

TURBO Pascal Reference Manual

Operators

Adding Operators
Operator Operation Operand type Result type
+ addition Real Real
+ addition Integer Integer
+ addition Real, Integer Real
- subtraction Real Real
- subtraction Integer Integer
- subtraction Real, Integer Real
or arithmetic or Integer Integer
or logical or Boolean Boolean
xor arithmetic xor Integer Integer
xor logical xor Boolean Boolean
Examples:
123+456 =579
456-123.0 =333.0
True or False =True
12 or 22 =30
True xor False =True
12 xor 22 =26

Relational Operators

The relational operators work on all standard scalar types: Real, Integer,
Boolean, Char, and Byte. Operands of type Integer, Real, and Byte may
be mixed. The type of the result is always Boolean, i.e. True or False.

= equal to

<> notequalto
> greater than
< less than

>= greater than or equal to

<= less than or equal to

Expressions

53

Operators

a=>» true if a is equal to b.

a <> b trueif ais not equal to b.

a>b true if a is greater than b.

a<hb true if a is less than b.

a b trueif ais greater than or equal to b.
a b trueif ais less than or equal to b.

Function Designators

A function designator is a function identifier optionally followed by a
parameter list, which is one or more variables or expressions separated
by commas and enclosed in parentheses. The occurrence of a function
designator causes the function with that name to be activated. If the
function is not one of the pre-defined standard functions, it must be de-
clared before activation.

Examples:

Round(PlotPos)

Writeln(Pi * (Sqr(R)))

(Max(X,Y) < 25) and (Z > Sqrt(X * Y))
Volume(Radius,Height)

54 TURBO Pascal Reference Manual

Chapter 7
STATEMENTS

The statement part defines the action to be carried out by the program
(or subprogram) as a sequence of statements; each specifying one part
of the action. In this sense Pascal is a sequential programming
language: statements are executed sequentially in time; never simul-
taneously. The statement part is enclosed by the reserved words begin
and end and within it, statements are separated by semi-colons. State-
ments may be either simple or structured.

Simple Statements

Simple statements are statements which contain no other statements.
These are the assignment statement, procedure statement, goto state-
ment, and empty statement.

Assignment Statement

The most fundamental of all statements is the assignment statement. It
is used to specify that a certain value is to be assigned to a certain vari-
able. An assignment consists of a variable identifier followed by the as-
signment operator : = followed by an expression.

Assignment is possible to variables of any type (except files) as long as
the variable (or the function) and the expression are of the same type.
As an exception, if the variable is of type Real, the type of the expres-
sion may be Integer.

Examples:

Angle := Angle * Pi;
AccessOK := False;

Entry := Answer = PassWord;

SpherVol := 4 * Pi * R * R;

STATEMENTS 55

Simple Statements

Procedure Statement

A procedure statement serves to activate a previously defined user-
defined procedure or a pre-defined standard procedure. The statement
consists of a procedure identifier, optionally followed by a parameter list,
which is a list of variables or expressions separated by commas and en-
closed in parentheses. When the procedure statement is encountered
during program execution, control is transferred to the named pro-
cedure, and the value (or the address) of possible parameters are
transferred to the procedure. When the procedure finishes, program ex-
ecution continues from the statement following the procedure state-
ment.

Examples:

Find(Name, Address);
Sort(Address);
UpperCase(Text);
UpdateCustFile(CustRecord);

Goto Statement

A goto statement consists of the reserved word goto followed by a label
identifier. It serves to transfer further processing to that point in the pro-
gram text which is marked by the label. The following rules should be
observed when using goto statements:

1) Before use, labels must be declared. The declaration takes place in a la-
bel declaration in the declaration part of the block in which the label is
used.

2) The scope of a label is the block in which it is declared. It is thus not
possible to jump into or out of procedures and functions.

Empty Statement
An ‘empty’ statement is a statement which consists of no symbols, and
which has no effect. It may occur whenever the syntax of Pascal re-
quires a statement but no action is to take place.

Examples:
begin end.
while Answer <> '' do;
repeat until KeyPressed; {wait for any key to be hit}
56 TURBO Pascal Reference Manual

Structured Statements

Structured Statements

Structured statements are constructs composed of other statements
which are to be executed in sequence (compound statements), condi-
tionally (conditional statements), or repeatedly (repetitive statements).
The discussion of the with statement is deferred to pages 81 pp.

Compound Statement

A compound statement is used if more than one statement is to be exe-
cuted in a situation where the Pascal syntax allows only one statement
to be specified. It consists of any number of statements separated by
semi-colons and enclosed within the reserved words begin and end,
and specifies that the component statements are to be executed in the
sequence in which they are written.

Example:
if Small > Big then
begin
Tmp := Small;
Small := Big;
Big := Tmp;
end;

Conditional Statements

A conditional statement selects for execution a single one of its com-
ponent statements.

If Statement

The if statement specifies that a statement be executed only if a certain
condition (Boolean expression) is true. If it is false, then either no state-
ment or the statement following the reserved word else is to be execut-
ed. Notice that else must not be preceded by a semicolon.

STATEMENTS 57

Structured Statements

The syntactic ambiguity arising from the construct:

if expr1 then
if expr2 then
stmt1
else
stmt2

is resolved by interpreting the construct as follows:

if expr1 then
begin
it expr2 then
stmt1
else
stmt2
end

The else-clause part belongs generally to the last if statement which
has no else part.

Examples:

if Interest > 25 then
Usury := True

else
TakeLoan := OK;

if (Entry < 0) or (Entry > 100) then

begin
Write('Range is 1 to 100, please re-enter: ');
Read(Entry);

end;

Case Statement

58

The case statement consists of an expression (the selector) and a list of
statements, each preceded by a case label of the same type as the
selector. It specifies that the one statement be executed whose case la-
bel is equal to the current value of the selector. If none of the case la-
bels contain the value of the selector, then either no statement is exe-
cuted, or, optionally, the statements following the reserved word else
are executed. The else clause is an expansion of standard Pascal.

TURBO Pascal Reference Manual

Structured Statements

A case label consists of any number of constants or subranges separat-
ed by commas followed by a colon. A subrange is written as two con-
stants separated by the subrange delimiter ‘. .’. The type of the con-
stants must be the same as the type of the selector. The statement fol-
lowing the case label is executed if the value of the selector equals one
of the constants or if it lies within one of the subranges.

Valid selector types are all simple types, i.e. all scalar types except real.

Examples:

case Operator of
'+': Result := Answer + Result;
'-': Result := Answer - Result;
'*1: Result := Answer * Result;
'/': Result := Answer / Result;

end;

case Year of
Min..1939: begin
Time := PreWorldWar2;
Writeln('The world at peace...');
end;
1946. .Max: begin
Time := PostWorldWar?2
Writeln('Building a new world.');
end;
else begin
Time := WorldWar2;
Writeln('We are at war');
end;
end;

Repetitive Statements

Repetitive statements specify that certain statements are to be execut-
ed repeatedly. If the number of repetitions is known before the repeti-
tions are started, the for statement is the appropriate construct to ex-
press this situation. Otherwise the while or the repeat statement should
be used.

STATEMENTS 59

Structured Statements

For Statement

The for statement indicates that the component statement is to be re-
peatedly executed while a progression of values is assigned to a vari-
able which is called the control variable. The progression can be ascend-
ing: to or descending: downto the final value.

The control variable, the initial value, and the final value must all be of
the same type. Valid types are all simple types, i.e. all scalar types ex-
cept real.

If the initial value is greater than the final value when using the to
clause, or if the initial value is less than the final value when using the
downto clause, the component statement is not executed at all.

Examples:
for I := 2 to 100 do if A[I] > Max then Max := A[I]

for I := 1 to NoOfLines do

begin
Readln(Line);
if Length(Line) < Limit then
ShortLines := ShortLines + 1
else
LongLines := LongLines + 1
end;

Notice that the component statement of a for statement must not con-
tain assignments to the control variable. If the repetition is to be ter-
minated before the final value is reached, a goto statement must be
used, although such constructs are not recommended - it is better pro-
gramming practice use a while or a repeat statement instead.

Upon completion of a for statement, the control variable equals the final

value, unless the loop was not executed at all, in which case no assign-
ment is made to the control variable.

60 TURBO Pascal Reference Manual

Structured Statements

While statement

The expression controlling the repetition must be of type Boolean. The
statement is repeatedly executed as long as expression is True. If its
value is false at the beginning, the statement is not executed at all.

Examples:
while Size > 1 do Size := Sqrt(Size);

while ThisMonth do

begin

ThisMonth := CurMonth = SampleMonth;

Process;

{process this sample by the Process procedure}
end;

Repeat Statement

The expression controlling the repetition must be of type Boolean. The
sequence of statements between the reserved words repeat and until is
executed repeatedly until the expression becomes true. As opposed to
the while statement, the repeat statement is always executed at least
once, as evaluation of the condition takes place at the end of the loop.

Example:

repeat
Write("M, 'Delete this item? (Y/N)');
Read(Answer);

until UpCase(Answer) in ['Y',6'N'];

STATEMENTS 61

Structured Statements

Notes:

62 TURBO Pascal Reference Manual

SCALAR AND SUBRANGE TYPES

Chapter 8
SCALAR AND SUBRANGE TYPES

The basic data types of Pascal are the scalar types. Scalar types consti-
tute a finite and linear ordered set of values. Although the standard type
Real is included as a scalar type, it does not conform to this definition.
Therefore, Reals may not always be used in the same context as other
scalar types.

Scalar Type

Apart from the standard scalar types (Integer, Real, Boolean, Char, and
Byte), Pascal supports user defined scalar types, also called declared
scalar types. The definition of a scalar type specifies, in order, all of its
possible values. The values of the new type will be represented by
identifiers, which will be the constants of the new type.

Examples:
type
Operator = (Plus,Minus,Multi,Divide);
Day = (Mon,Tues,Wed, Thur,Fri,Sat,Sun);
Month = (Jan,Feb,Mar, Apr,May,Jun,Jul, Aug, Sep,0ct,Nov,Dec);
Card = (Club,Diamond,Heart,Spade);

Variables of the above type Card can assume one of four values, name-
ly Club, Diamond, Heart, or Spade. You are already acquainted with the
standard scalar type Boolean which is defined as:

type
Boolean = (False,True);

The relational operators =, < >, >, <, > =, and < = can be ap-
plied to all scalar types, as long as both operands are of the same type
(reals and integers may be mixed). The ordering of the scalar type is
used as the basis of the comparison, i.e. the order in which the values
are introduced in the type definition. For the above type card, the follow-
ing is true:

Club < Diamond < Heart < Spade

SCALAR AND SUBRANGE TYPES 63

Scalar Type

The following standard functions can be used with arguments of scalar
type:

Succ(Diamond) The successor of Diamond (Heart).
Pred(Diamond) The predecessor of Diamond (Club).
Ord(Diamond) The ordinal value of Diamond (1 [as the ordinal

value of the first value of a scalar type is 0]).

The result type of Succ and Pred is the same as the argument type. The
result type of Ord s Integer.

Subrange Type

64

A type may be defined as a subrange of another already defined scalar
type. Such types are called subranges. The definition of a subrange sim-
ply specifies the least and the largest value in the subrange. The first
constant specifies the lower bound and must not be greater than the
second constant, the upper bound. A subrange of type Real is not al-
lowed.

Examples:
type
HemiSphere = (North, South, East, West);
World = East . . West;
CompassRange = 0..360;
Upper = "A',.'Z";
Lower = 'a'..'z';
Degree = (Celc, Fahr, Ream, Kelv);
Wine = (Red, White, Rose, Sparkling);

The type World is a subrange of the scalar type HemiSphere (called the
associated scalar type). The associated scalar type of Compassrange is
Integer, and the associated scalar type of Upper and Lower is Char.

You already know the standard subrange type Byte, which is defined as:

type
Byte = 0..255;

A subrange type retains all the properties of its associated scalar type,
being restricted only in its range of values.

TURBO Pascal Reference Manual

Subrange Type

The use of defined scalar types and subrange types is strongly recom-
mended as it greatly improves the readability of programs. Furthermore,
run time checks may be included in the program code (see page 65) to
verify the values assigned to defined scalar variables and subrange vari-
ables. Another advantage of defined types and subrange types is that
they often save memory. TURBO Pascal allocates only one byte of
memory for variables of a defined scalar type or a subrange type with a
total number of elements less than 256. Similarly, integer subrange vari-
ables, where lower and upper bounds are both within the range 0
through 255, occupy only one byte of memory.

Type Conversion

The Ord function may be used to convert scalar types into values of
type integer. Standard Pascal does not provide a way to reverse this
process, i.e. a way of converting an integer into a scalar value.

In TURBO Pascal, a value of one scalar type may be converted into a
value of another scalar type, with the same ordinal value, by means of
the Retype facility. Retyping is achieved by using the type identifier of
the desired type as a function designator followed by one parameter en-
closed in parentheses. The parameter may be a value of any scalar type
except Real. Assuming the type definitions on pages 63 and 64 , then:

Integer(Heart) = 2
Month(10) = Nov
HemiSphere(2) = East
Upper(14) =0
Degree(3) = Kelv
Char(78) =N
Integer('7") = 55

Range Checking

The generation of code to perform run-time range checks on scalar and
subrange variables is controlled with the R compiler directive. The de-
fault setting is { $R-}, i.e. no checking is performed. When an assign-
ment is made to a scalar or a subrange variable while this directive is ac-
tive ({ $R + }), assignment values are checked to be within range. It is
recommended to use this setting as long as a program is not fully de-
bugged.

SCALAR AND SUBRANGE TYPES 65

Range Checking

Example:
program Rangecheck;
type
Digit = 0..9;
var
Digl,Dig2,Dig3: digit;
begin
Digl := 5; {valid}
Dig?2 := Digl + 3; {valid as Dig! + 3 < = 9}
Dig3 := 47; {invalid but causes no error)
{$R+} Dig3 := 55; {invalid and causes a run time error}
{$R-} Dig3 := 167; (invalid but causes no error}
end.

66 TURBO Pascal Reference Manual

Chapter 9
STRING TYPE

TURBO Pascal offers the convenience of string types for processing of
character strings, i.e. sequences of characters. String types are struc-
tured types, and are in many ways similar to array types (see chapter
10). There is, however, one major difference between these: the number
of characters in a string (i.e. the length of the string) may vary dynami-
cally between 0 and a specified upper limit, whereas the number of ele-
ments in an array is fixed.

String Type Definition

The definition of a string type must specify the maximum number of
characters it can contain, i.e. the maximum length of strings of that
type. The definition consists of the reserved word string followed by the
maximum length enclosed in square brackets. The length is specified by
an integer constant in the range 1 through 255. Notice that strings do
not have a default length; the length must always be specified.

Example:

type
FileName = string[l4];
ScreenLine = string[80];

String variables occupy the defined maximum length in memory plus one
byte which contains the current length of the variable. The individual
characters within a string are indexed from 1 through the length of the
string.

String Expressions
Strings are manipulated by the use of string expressions. String expres-

sions consist of string constants, string variables, function designators,
and operators.

STRING TYPE 67

String Expressions

The plus-sign may be used to concatenate strings. The Concat function
(see page 71) performs the same function, but the + operator is often
more convenient. If the length of the result is greater than 255, a run-
time error occurs.

Example:

'"TURBO ' + 'Pascal' = 'TURBO Pascal’

'123" + '.' + '456' = '123.456’

IAI + lB! + 1 C 1 + ID] ='ABCD’

The relational operators =, < >, >, <, > =,and < = are lower

in precedence than the concatenation operator. When applied to string
operands, the result is a Boolean value (True or False). When compar-
ing two strings, single characters are compared from the left to the right
according to their ASCII values. If the strings are of different length, but
equal up to and including the last character of the shortest string, then
the shortest string is considered the smaller. Strings are equal only if
their lengths as well as their contents are identical.

Examples:

'A' < 'B! is true
'A' > 'Db’ is false
2" < '12! is false
'TURBO' = 'TURBO' is true
'TURBO ' = 'TURBO' is false

'Pascal Compiler' < 'Pascal compiler' istrue

String Assignment

68

The assignment operator is used to assign the value of a string expres-
sion to a string variable.

Example:
Age := 'fiftieth';

Line := 'Many happy returns on your ' + Age + ' birthd:

If the maximum length of a string variable is exceeded (by assigning too
many characters to the variable), the exceeding characters are truncat-
ed. E.g., if the variable Age above was declared to be of type string[5],
then after the assignment, the variable will only contain the five leftmost
characters: ‘fifth’.

TURBQO Pascal Reference Manual

String Procedures

String Procedures

The following standard string procedures are available in TURBO Pas-
cal:

Delete
Syntax: Delete (St, Pos , Num);

Delete removes a substring containing Num characters from St starting
at position Pos. St is a string variable and both Pos and Num are integer
expressions. If Pos is greater than Length (St), no characters are re-
moved. If an attempt is made to delete characters beyond the end of the
string (i.e. Pos + Num exceeds the length of the string), only charac-
ters within the string are deleted. If Pos is outside the range 1..255, a
run time error occurs.

If St has the value "ABCDEFG' then:
Delete(St,2,4) will give St the value ‘AFG’.
Delete(St,2,10) will give St the value ‘A’.

Insert
Syntax: Insert (Obj, Target, Pos),

Insert inserts the string Obj into the string Target at the position Pos.
Obj is a string expression, Target is a string variable, and Pos is an in-
teger expression. If Pos is greater than Length(Target), then objis con-
catenated to Target. If the result is longer than the maximum length of
Target, then excess characters will be truncated and Target will only
contain the leftmost characters. If Pos is outside the range 1..255, a run
time error occurs.

If St has the value 'ABCDEFG’ then: Insert('XX',St,3) will give
St the value 'ABXXCDEFG'

STRING TYPE 69

String Procedures

Str

Val

70

Syntax: Str (Value:n, St);

The Str procedure converts the numeric value of Value into a string and
stores the result in St. Value is a write parameter of type integer or of
type real, and St is a string variable. Write parameters are expressions
with special formatting commands (see page 112). Note thatifthe field isn't
specified, the number will be left-justified.

If I has the value 1234 then: Str(I:5,St) gives St the value
' 1234".

If X has the value 2.5E4 then: Str(X:10:0,St) gives St the value
! 2500'.

8-bit systems only: a function using the Str procedure must never be
called by an expression in a Write or Writeln statement.

Syntax: Val (St, Var, Code);

Val converts the string expression St to an integer or a real value
(depending on the type of Var) and stores this value in Var. St must be
a string expressing a numeric value according to the rules applying to
numeric constants (see page 43). Neither leading nor trailing spaces are
allowed. Var must be an Integer or a Real variable and Code must be an
integer variable. If no errors are detected, the variable Code is set to 0.
Otherwise Code is set to the position of the first character in error, and
the value of Varis undefined.

If St has the value ‘234’ then:
Val(St,I,Result) gives /the value 234 and Result the value 0

If St has the value *12x’ then:
Val(St,I,Result) gives / an undefined value and Result the value
3

If St has the value '2.5E4’, and X is a Real variable, then:
Val(St,X,Result) gives X the value 2500 and Result the value 0

8-bit systems only: a function using the Var procedure must never be
called by an expression in a Write or Writeln statement.

TURBO Pascal Reference Manual

String Functions

String Functions

The following standard string functions are available in TURBO Pascal:

Copy

Syntax: Copy (St, Pos , Num);

Copy returns a substring containing Num characters from St starting at
position Pos. St is a string expression and both Pos and Num are in-
teger expressions. If Pos exceeds the length of the string, the empty
string is returned. |f an attempt is made to get characters beyond the
end of the string (i.e. Pos + Num exceeds the length of the string), only
the characters within the string are returned. If Pos is outside the range
1..255, a run time error occurs.

If St has the value ‘ABCDEFG’ then:
Copy(St,3,2) returns the value ‘CD’
Copy(St,4,10) returns the value ‘DEFG’
Copy(St,4.,2) returns the value '‘DE’

Concat

Syntax: Concat (St71, St2{, StN}),

The Concat function returns is a string which is the concatenation of its
arguments in the order in which they are specified. The arguments may
be any number of string expressions separated by commas (St1, St2 ..
StN). If the length of the result is greater than 255, a run-time error oc-
curs. As explained in page 68 , the + operator can be used to obtain
the same result, often more conveniently. Concat is included only to
maintain compatibility with other Pascal compilers.

If St1 has the value ‘TURBQO’ and St2 the value ‘is fastest’ then:
Concat(Stl,*' PASCAL ',6St2)

returns the value ‘TURBO PASCAL is fastest’

STRING TYPE 71

String Functions

Length
Syntax: Length (St);

Returns the length of the string expression St, i.e. the number of char-
acters in St. The type of the result is integer.

If St has the value ‘123456789’ then:
Length(St) returns the value 9

Pos
Syntax: Pos (Obj, Target);

The Pos function scans the string Target to find the first occurrence of
Obj within Target. Obj and Target are string expressions, and the type
of the result is integer. The result is an integer denoting the position
within Target of the first character of the matched pattern. The position
of the first character in a string is 1. If the pattern is not found, Pos re-
turns 0.

If St has the value ‘ABCDEFG’ then

Pos('DE',St) returns the value 4
Pos('H',St) returns the value O

72 TURBO Pascal Reference Manual

Strings and Characters

Strings and Characters

String types and the standard scalar type Char are compatible. Thus,
whenever a string value is expected, a char value may be specified in-
stead and vice versa. Furthermore, strings and characters may be mixed
in expressions. When a character is assigned a string value, the length
of the string must be exactly one; otherwise a run-time error occurs.

The characters of a string variable may be accessed individually through
string indexing. This is achieved by appending an index expression of
type integer, enclosed in square brackets, to the string variable.

Examples:

Buffer[5]
Line[Length(Line)-1]
Ord(Line[0])

As the first character of the string (at index 0) contains the length of the
string, Length(String) is the same as Ord(String(0]}). If as-
signment is made to the length indicator, it is the responsibility of the
programmer to check that it is less than the maximum length of the
string variable. When the range check compiler directive R is active ({
$R +}), code is generated which insures that the value of a string index
expression does not exceed the maximum length of the string variable.
It is, however, still possible to index a string beyond its current dynamic
length. The characters thus read are random, and assignments beyond
the current length will not affect the actual value of the string variable.

STRING TYPE 73

Strings and Characters

Notes:

74 TURBO Pascal Reference Manual

Chapter 10
ARRAY TYPE

An array is a structured type consisting of a fixed number of com-
ponents which are all of the same type, called the component type or
the base type. Each component can be explicitly accessed by indices
into the array. Indices are expressions of any scalar type placed in
square brackets suffixed to the array identifier, and their type is called
the index type.

Array Definition

The definition of an array consists of the reserved word array followed by
the index type, enclosed in square brackets, followed by the reserved word
of, followed by the component type.

Examples:
type
Day = (Mon, Tue,Wed, Thu,Fri,Sat,Sun)
var
WorkHour : array[l..8] of Integer;
Week : array([l..7] of Day;
type
Players = (Playerl,Player2,Player3,Player4);
Hand = (One,Two,Pair,TwoPair,Three,Straight,
Flush,FullHouse,Four, StraightFlush,RSF);
LegalBid = 1..200;
Bid = array[Players] of LegalBid;
var
Player . arrayf[Players] of Hand;
Pot . Bid;

An array component is accessed by suffixing an index enclosed in
square brackets to the array variable identifier:

Player[Player3] := FullHouse;
Pot[Player3] := 100;
Player[Player4] := Flush;
Pot[Player4] := 50;

ARRAY TYPE 75

Array Definition

As assignment is allowed between any two variables of identical type,
entire arrays can be copied with a single assignment statement.

The R compiler directive controls the generation of code which will per-
form range checks on array index expressions at run-time. The default
mode is passive, i.e. { $R-}, and the { $R + } setting causes all index ex-
pressions to be checked against the limits of their index type.

Multidimensional Arrays

The component type of an array may be any data type, i.e. the com-
ponent type may be another array. Such a structure is called a multidi-
mensional array.

Example:
type
Card

(Two, Three,Four,Five,Six, Seven,Eight,Nine,
Ten,Knight,Queen,King, Ace);

Suit = (Hearts,Spade,Clubs,Diamonds);
AllCards = array[Suit] of array[l..13] of Card;
var

Deck: AllCards;

A multi-dimensional array may be defined more conveniently by specify-
ing the muiltiple indices thus:

type
AllCards = array[Suit,l..13] of Card;

A similar abbreviation may be used when selecting an array component:
Deck[Hearts, 10] isequivalentto Deck[Hearts][10]

It is, of course, possible to define multi-dimensional arrays in terms of
previously defined array types.

76 TURBO Pascal Reference Manual

Multidimensional Arrays

Example:
type
Pupils = string[20];
Class = array[l..30] of Pupils;
School = array[l..100] of Class;
var
J,P,Vacant : Integer
ClassA,
ClassB : Class;

NewTownSchool; School;
After these definitions, all of the following assignments are legal:

ClassA[J]:="'Peter’';

NewTownSchool[5][21]:='Peter Brown';
NewTownSchool[8,J]:=NewTownSchool[7,J]; ({pupilno.Jchanged class)
ClassA[Vacant]:=ClassB[P]; (pupil no. P changes Class and number)

Character Arrays

Character arrays are arrays with one index and components of the stan-
dard scalar type Char. Character arrays may be thought of as strings
with a constant length.

In TURBO Pascal, character arrays may participate in string expres-
sions, in which case the array is converted into a string of the length of
the array. Thus, arrays may be compared and manipulated in the same
way as strings, and string constants may be assigned to character ar-
rays, as long as they are of the same length. String variables and values
computed from string expressions cannot be assigned to character ar-
rays.

Predefined Arrays
TURBO Pascal offers two predefined arrays of type Byte, called Mem

and Port, which are used to access CPU memory and data ports. These
are discussed in chapters 20, 21, and 22.

ARRAY TYPE 77

Predefined Arrays

Notes:

78 TURBO Pascal Reference Manual

Chapter 11
RECORD TYPE

A record is a structure consisting of a fixed number of components,
called fields. Fields may be of different type and each field is given a
name, the field identifier, which is used to select it.

Record Definition

The definition of a record type consists of the reserved word record
succeeded by a field list and terminated by the reserved word end. The
field list is a sequence of record sections separated by semi-colons,
each consisting of one or more identifiers separated by commas, fol-
lowed by a colon and either a type identifier or a a type descriptor. Each
record section thus specifies the identifier and type of one or more

fields.
Example:
type
DaysOfMonth = 1..31;
Date = record
Day: DaysOfMonth;
Month: (Jan,Feb,Mar,Apr,May,Jun,
July, Aug, Sep,0Oct,Nov,Dec);
Year: 1900..1999;
end;
var v
Birth: Date;

WorkDay: array[l..5] of date;

Day, Month, and Year are field identifiers. A field identifier must be
unique only within the record in which it is defined. A field is referenced
by the variable identifier and the field identifier separated by a period.

Examples:
Birth.Month := Jun;

Birth.Year := 1950;
WorkDay[Current] := WorkDay[Current-1];

RECORD TYPE 79

Record Definition

Note that, similar to array types, assignment is allowed between entire
records of identical types. As record components may be of any type,
constructs like the following record of records of records are possible:

type
Name = record
FamilyName: string[32];
ChristianNames: array[l..3)] of string(l6];
end;
Rate = record
NormalRate, OverTime,
NightTime, Weekend: Integer
end;
Date = record
Day: 1..31;
Month: (Jan,Feb,Mar,Apr,May,Jun,
July, Aug, Sep, Oct,Nov,Dec);
Year: 1900..1999;
end;
Person = record
ID: Name;
Time: Date;
end;
Wages = record
Individual: Person;
Cost: Rate;
end

var Salary, Fee: Wages;
Assuming these definitions, the following assignments are legal:
Salary := Fee;
Salary.Cost.Overtime := 950;

Salary.Individual.Time := Fee.Individual.Time;
Salary.Individual.ID.FamilyName := 'Smith’

80 TURBO Pascal Reference Manual

With Statement

With Statement

The use of records as described above does sometimes result in rather
lengthy statements; it would often be easier if we could access individu-
al fields in a record as if they were simple variables. This is the function
of the with statement: it ‘opens up’ a record so that field identifiers may
be used as variable identifiers.

A with statement consists of the reserved word with followed by a list
of record variables separated by commas followed by the reserved word
do and finally a statement.

Within a with statement, a field is designated only by its field identifier,
i.e. without the record variable identifier:

with Salary do
begin
Individual := NewEmployee;
Cost := StandardRates;
end;

Records may be nested within with statements, i.e. records of records
may be ‘opened’ as shown here:

with Salary, Individual, ID do

begin
FamilyName := 'Smith';
ChristianNames[1l] := 'James';
end

This is equivalent to:

with Salary do with Individual do with ID do

The maximum ‘depth’ of this nesting of with sentences, i.e. the max-
imum number of records which may be ‘opened’ within one block,

depends on your implementation and is discussed in chapters 20, 21,
and 22.

RECORD TYPE 81

Variant Records

Variant Records

The syntax of a record type also provides for a variant part, i.e. alterna-
tive record structures which allows fields of a record to consist of a
different number and different types of components, usually depending
on the value of a tag field.

A variant part consists of a tag-field of a previously defined type, whose
values determine the variant, followed by labels corresponding to each
possible value of the tag field. Each label heads a field list which defines
the type of the variant corresponding to the label.

Assuming the existence of the type:
Origin = (Citizen, Alien);

and of the types Name and Date, the following record allows the field
CitizenShip to have different structures depending on whether the value
of the field is Citizen or Alien:

type
Person = record
PersonName: Name;
BirthDate: Date;
case CitizenShip: Origin of
Citizen: (BirthPlace: Name);
Alien: (CountryOfOrigin: Name;
DateOfEntry: Date;
PermittedUntil: Date;
PortOfEntry: Name);
end;

In this variant record definition, the tag-field is an explicit field which may
be selected and updated like any other field. Thus, if Passenger is a
variable of type Person, statements like the following are perfectly legal:
Passenger.CitizenShip := Citizen;

with Passenger, PersonName do
if CitizenShip =Alien then writeln(FamilyName);

82 TURBO Pascal Reference Manual

Variant Records

The fixed part of a record, i.e. the part containing the common fields,
must always precede the variant part. In the above example, the fields
PersonName and BirthDate are the fixed fields. A record can only have
one variant part. In a variant, the parentheses must be present, even if
they will enclose nothing.

The maintenance of tag field values is the responsibility of the program-
mer and not of TURBO Pascal. Thus, in the Person type above, the field
DateOfEntry can be accessed even if the value of the tag field
CitizenShip is not Alien. Actually, the tag field identifier may be omitted
altogether, leaving only the type identifier. Such record variants are
known as free unions, as opposed to record variants with tag fields
which are called discriminated unions. The use of free unions is infre-
quent and should only be practiced by experienced programmers.

RECORD TYPE 83

Variant Records

Notes:

84 TURBO Pascal Reference Manual

Chapter 12
SET TYPE

A set is a collection of related objects which may be thought of as a
whole. Each object in such a set is called a member or an element of
the set. Examples of sets could be:

1) Allintegers between 0 and 100
2) The letters of the alphabet
3) The consonants of the alphabet

Two sets are equal if and only if their elements are the same. There is
no ordering involved, so the sets [1,3,5], [5,3,1] and [3,5,1] are all equal.
If the members of one set are also members of another set, then the
first set is said to be included in the second. In the examples above, 3)
is included in 2).

There are three operations involving sets, similar to the operations addi-
tion, multiplication and subtraction operations on numbers:

The union (or sum) of two sets A and B (written A + B) is the set
whose members are members of either A or B. For instance, the un-
ion of [1,3,5,7] and [2,3,4] is [1,2,3,4,5,7].

The intersection (or product) of two sets A and B (written A*B) is the
set whose members are the members of both A and B. Thus, the in-
tersection of [1,3,4,5,7] and [2,3,4] is [3,4].

The relative complement of B with respect to A (written A-B) is the
set whose members are members of A but not of B. For instance,
[1,3,5,7)-[2,3,4]is [1,5,7].

Set Type Definition

Although in mathematics there are no restrictions on the objects which
may be members of a set, Pascal only offers a restricted form of sets.
The members of a set must all be of the same type, called the base
type, and the base type must be a simple type, i.e. any scalar type ex-
cept real. A set type is introduced by the reserved words set of followed
by a simple type.

SET TYPE 85

Set Type Definition

Examples:

type
DaysOfMonth = set of 0..31:;
WorkWeek = set of (Mon, Tues, Wed, Th, Fri);
Letter = set of 'A'..'Z';
AdditiveColors = set of (Red,Green,Blue);
Characters = set of Char;

In TURBO Pascal, the maximum number of elements in a set is 256,
and the ordinal values of the base type must be within the range 0
through 255.

Set Expressions

Set values may be computed from other set values through set expres-
sions. Set expressions consist of set constants, set variables, set con-
structors, and set operators.

Set Constructors

86

A set constructor consists of one or more element specifications,
separated by commas, and enclosed in square brackets. An element
specification is an expression of the same type as the base type of the
set, or a range expressed as two such expressions separated by two
consecutive periods (..).

Examples:
[!TI’IUI'IRI'IBI'IOIJ

[X,Y]

[X..Y]

[1..5]
[lA'..'Z','a'..'Z','0'..'9']
[1,3..10,12]

[1

The last example shows the empty set, which, as it contains no expres-
sions to indicate its base type, is compatible with all set types. The set
[1..5] is equivalent to the set [1,2,3,4,5]. If X > Y then [X..Y] denotes the
empty set.

TURBO Pascal Reference Manual

Set Expressions

Set Operators

The rules of composition specify set operator precedency according to
the following three classes of operators:

1) *

2) +

3) =
>=
<=
IN

Set intersection.

Set union.
- Set difference.

Test on equality.

<> Test on inequality.
True if all members of the second operand are included in the first
operand.
True if all members of the first operand are included in the second
operand.
Test on set membership. The second operand is of a set type, and
the first operand is an expression of the same type as the base
type of the set. The result is true if the first operand is a member of
the second operand, otherwise it is false.

Set disjunction (when two sets contain no common members) may be
expressed as:

A¥*¥B=1[]

that is, the intersection between the two sets is the empty set. Set ex-
pressions are often useful to clarify complicated tests. For instance, the

test:

if (Ch="T') or (Ch='U') or (Ch='R') or (Ch='B') or (Ch='0')

can be expressed much clearer as:

Ch

in [YTI,'Ul,‘R','B',lO']

And the test:

if (Ch>= ‘0’) and (Ch<= ‘9’) then . . .

is better expressed as:

if Ch in['0'..'9'] then ...

SET TYPE 87

Set Assignments

Set Assignments

88

Values resulting from set expressions are assigned to set variables us-

ing the assignment operator :=.

Examples:
type

ASCII = set of 0..127;
var

NoPrint,Print,AllChars: ASCII;
begin

AllChars := [0..127]:

NoPrint := [0..31,127];

Print := AllChars - NoPrint;
end.

TURBO Pascal Reference Manual

Chapter 13
TYPED CONSTANTS

Typed constants are a TURBO specialty. A typed constant may be used
exactly like a variable of the same type. Typed constants may thus be
used as 'initialized variables’, because the value of a typed constant is
defined, whereas the value of a variable is undefined until an assignment
is made. Care should be taken, of course, not to assign values to typed
constants whose values are actually meant to be constant.

The use of a typed constant saves code if the constant is used often in
a program, because a typed constant is included in the program code
only once, whereas an untyped constant is included every time it is
used.

Typed constants are defined like untyped constants (see page 48), ex-
cept that the definition specifies not only the value of the constant but
also the type. In the definition the typed constant identifier is succeeded
by a colon and a type identifier, which is then followed by an equal sign
and the actual constant.

Unstructured Typed Constants

An unstructured typed constant is a constant defined as one of the
scalar types:

const
NumberOfCars: Integer = 1267;
Interest: Real = 12.67;
Heading: string[7] = 'SECTION';
Xon: Char = *Q;

Contrary to untyped constants, a typed constant may be used in place
of a variable as a variable parameter to a procedure or a function. As a
typed constant is actually a variable with a constant value, it cannot be
used in the definition of other constants or types. Thus, as Min and Max
are typed constants, the following construct is illegal:

TYPED CONSTANTS 89

Unstructured Typed Constants

const
Min: Integer = O;
Max: Integer = 50;
type
Range: array(Min..Max] of integer

Structured Typed Constants

Structured constants comprise array constants, record constants, and
set constants. They are often used to provide initialized tables and sets
for tests, conversions, mapping functions, etc. The following sections
describe each type in detail.

Array Constants

The definition of an array constant consists of the constant identifier
succeeded by a colon, and either a type definition or the type identifier of a
previously defined array type followed by an equal sign, and the constant
value expressed as a set of constants separated by commas and
enclosed in parentheses.

Examples:
type
Status = (Active,Passive,Waiting);
StringRep = array[Status] of string[7];
const

Stat: StringRep = ('active', 'passive’', 'waiting');

The example defines the array constants Stat, which may be used to
convert values of the scalar type Status into their corresponding string
representations. The components of Stat are:

Stat[Active] = 'active'
Stat[Passive] = 'passive'
Stat[Waiting] = 'waiting'

The component type of an array constant may be any type except File
types and Pointer types. Character array constants may be specified
both as single characters and as strings. Thus, the definition:

a0 - TURBQO Pascal Reference Manual

Structured Typed Constants

const
Digits: array[0..9] of Char =
(|0l,'ll'l2|'|3l,l4|’15l,l611|7l’l8l'19l);

may be expressed more conveniently as:

const
Digits: array[0..9] of Char = '0123456789"';

Multi-dimensional Array Constants

Multi-dimensional array constants are defined by enclosing the con-
stants of each dimension in separate sets of parentheses, separated by
commas. The innermost constants correspond to the rightmost dimen-
sions.

Example:
type
Cube = array[0..1,0..1,0..1] of integer;
const
Maze: Cube = (((0,1),(2,3)),((4,5).,(6,7)));
begin
Writeln(Maze[0,0,0]
Writeln(Maze[0,0,1]
Writeln(Maze[0,1,0]
Writeln(Maze[O0,1,1],
Writeln(Maze(1,0,0]
1
1
]

’
»
>

Writeln(Maze[1,0,1

Writeln(Maze(1,1,0

Writeln(Maze[1l,1,1
end.

XD WO

[| B | N

’
’
’
’

.~ e

Record Constants

The declaration of a record constant consists of the constant identifier
succeeded by a colon, and either a type definition or the type identifier of a
previously defined record type followed by an equal sign, and the constant
value expressed as a list of field constants separated by semicolons and
enclosed in parentheses.

Typed Constants 91

Structured Typed Constants

Examples:
type
Point = record
X,Y, Z: integer;
end;
0s = (CPM80, CPM86,MSDOS,Unix);
uI = (CCP,SomethingElse,MenuMaster);

Computer = record
OperatingSystems: array([l..4] of 0S;
UserInterface: UI;
end;
const
Origo: Point = (X:0; Y:0; 2:0);
SuperComp: Computer =
(OperatingSystems: (CPM80,CPM86,MSDOS,Unix);
UserInterface: MenuMaster);
Planel: array([l..3] of Point =
((X:1;Y:4;2:5),(X:10;Y:-78;Z:45),(X:100;Y:10;Z:-7));

The field constants must be specified in the same order as they appear
in the definition of the record type. If a record contains fields of file types
or pointer types, then constants of that record type cannot be specified.
If a record constant contains a variant, then it is the responsibility of the
programmer to specify only the fields of the valid variant. If the variant
contains a tag field, then its value must be specified.

Set Constants

A set constant consists of one or more element specifications separated
by commas, and enclosed in square brackets. An element specification
must be a constant or a range expression consisting of two constants
separated by two consecutive periods (..).

Example:
type
Up = set of 'A'..'Z';
Low = set of 'a'..'z';
const
UpperCase: Up = ['A'..'Z2']; :
Vocals : Low = ['a','e','i','0o','u','y'];

Delimiter: set of Char =
[l '.‘l/l’l:l.‘l?l'l[l"lll,l{l"v l];

92 TURBO Pascal Reference Manual

Chapter 14
FILE TYPES

Files provide a program with channels through which it can pass data. A
file can either be a disk file, in which case data is written to and read
from a magnetic device of some type, or a logical device, such as the
pre-defined files Input and Output which refer to the computer’'s stan-
dard 1/O channels; the keyboard and the screen.

A file consists of a sequence of components of equal type. The number
of components in a file (the size of the file) is not determined by the
definition of the file; instead the Pascal system keeps track of file
accesses through a file pointer, and each time a component is written to
or read from a file, the file pointer of that file is advanced to the next
component. As all components of a file are of equal length, the position
of a specific component can be calculated. Thus, the file pointer can be
moved to any component in the file, providing random access to any ele-
ment of the file.

File Type Definition

A file type is defined by the reserved words file of followed by the type
of the components of the file, and a file identifier is declared by the
words file of, followed by the identifier of a previously defined file type.

Examples:
type
ProductName = string[80];
Product = file of record
Name: ProductName;
ItemNumber: Real;
InStock: Real;
MinStock: Real;
Supplier: Integer;
end;
varxr
ProductFile: Product;
ProductNames: file of ProductName;

FILE TYPES 93

File Type Definition

The component type of a file may be any type, except a file type. (that
is, with reference to the example above, file of Product is not allowed).

File variables may appear in neither assignments nor expressions.

Operations on Files

The following sections describe the procedures available for file han-

diing. The identifier FilVar used throughout denotes a file variable
identifier declared as described above.

Assign

Syntax: Assign(FilVar, Str);

Str is a string expression yielding any legal file name. This file name is
assigned to the file variable FilVar, and all further operation on FilVar will
operate on the disk file Str. Assign should never be used on a file which
is in use.

Rewrite

94

Syntax: Rewrite(FilVar);

A new disk file of the name assigned to the file variable FilVar is created
and prepared for processing, and the file pointer is set to the beginning
of the file, i.e. component no. 0. Any previously existing file with the
same name is erased. A disk file created by rewrite is initially empty, i.e.
it contains no elements. ’

The Reset and Rewrite procedures have a second optional parameter in
Turbo Pascal 3.0. This parameter may be used with untyped files and
allows you to specify the number of bytes per block. For example, you may
specify a block size of 1 byte and perform a BlockRead of 128 blocks and
achieve the same result as reading one block of 128 bytes.

The advantage of this second parameter is that your program no longer has
to deal with truncating or bloating a file because the file was not divisible by
128 bytes.

TURBO Pascal Reference Manual

Operations on Files

Reset
Syntax: Reset(FilVar);

The disk file of the name assigned to the file variable FilVar is prepared
for processing, and the file pointer is set to the beginning of the file, i.e.
component no. 0. FilVar must name an existing file, otherwise an 1/O er-
ror occurs.

This procedure also has a second, optional, parameter. See the Rewrite
procedure above for more information.

Read
Syntax: Read(FilVar, Van;

Var denotes one or more variables of the component type of FilVar,
separated by commas. Each variable is read from the disk file, and fol-
lowing each read operation, the file pointer is advanced to the next com-
ponent.

Write
Syntax: Write(FilVar, Var);

Var denotes one or more variables of the component type of FilVar,
separated by commas. Each variable is written to the disk file, and fol-
lowing each write operation, the file pointer is advanced to the next
component.

Seek
Syntax: Seek(FilVar, n);

Seek moves the file pointer is moved to the n’th component of the file
denoted by FilVar. n is an integer expression. The position of the first
component is 0. Note that in order to expand a file it is possible to seek
one component beyond the last component. The statement

Seek(FilVar, FileSize(FilVar));
thus places the file pointer at the end of the file (FileSize returns the
number of components in the file, and as the components are numbered

from zero, the returned number is one greater than the number of the
last component).

FILE TYPES 95

Operations on Files

Flush

Syntax: Flush(FilVar);

Flush empties the internal sector buffer of the disk file FilVar, and thus
assures that the sector buffer is written to the disk if any write opera-
tions have taken place since the last disk update. Flush also insures that
the next read operation will actually perform a physical read from the
disk file. Flush should never be used on a closed file.

Close

Syntax: Close(FilVan;

The disk file associated with FilVar is closed, and the disk directory is
updated to reflectthe new status ofthefile. It is always necessary to Close a
file, even ifit has only been read from—you would otherwise quickly run out
of file handles.

Erase

Syntax: Erase(FilVar);

The disk file associated with FilVar is erased. If the file is open, i.e. if the
file has been reset or rewritten but not closed, it is good programming
practice to close the file before erasing it.

Rename

96

Syntax: Rename(FilVar, Str);

The disk file associated with FilVar is renamed to a new name given by
the string expression Str. The disk directory is updated to show the new
name of the file, and further operations on FilVar will operate on the file
with the new name. Rename should never be used on an open file.

TURBO Pascal Reference Manual

Operations on Files

Notice that it is the programmer’'s responsibility to assure that the file
named by Str does not already exist. If it does, multiple occurrences of
the same name may result. The following function returns True if the file
name passed as a parameter exists, otherwise it returns False:

type
Name=string[66];

function Exist(FileName: Name): boolean;
Var

Fil: file;
begin

Assign(Fil, FileName);

{$1-)

Reset (Fil);

close(Fil);

{$I+)

Exist := (IOresult = 0)
end;

File Standard Functions

The following standard functions are applicable tq files:

EOF
Syntax: EOF(FilVan;
A Boolean function which returns True if the file pointer is positioned at

the end of the disk file, i.e. beyond the last component of the file. If not,
EOF returns False.

FilePos
Syntax: FilePos(FilVar);

An integer function which returns the current position of the file pointer.
The first component of a file is 0.

FILE TYPES 97

File Standard Functions

FileSize

Syntax: FileSize(FilVar);

An integer function which returns the size of the disk file expressed as
the number of components in the file. If FileSize(FilVar) is zero, the file is
empty.

Using Files

98

Before using a file, the Assign procedure must be called to assign the
file name to a file variable. Before input and/or output operations are
performed, the file must be opened with a call to Rewrite or Reset. This
call will set the file pointer to point to the first component of the disk file,
i.e. FilePos(FilVar) = 0. After Rewrite, FileSize(FilVar)is 0.

A disk file can be expanded only by adding components to the end of
the existing file. The file pointer can be moved to the end of the file by
executing the following sentence:

Seek(FilVar, FileSize(FilVar));

When a program has finished its input/output operations on a file, it
should always call the Close procedure. Failure to do so may result in
loss of data, as the disk directory is not properly updated.

The program below creates a disk file called PRODUCTS.DTA, and
writes 100 records of the type Product to the file. This initializes the file
for subsequent random access (i.e. records may be read and written
anywhere in the file).

TURBO Pascal Reference Manual

Using Files

program InitProductFile;
const
MaxNumberOfProducts = 100;
type
ProductName = string[20];
Product = record
Name: ProductName;
ItemNumber: Integer;
InStock: Real;
Supplier: Integer;
end;
var
ProductFile: file of Product;
ProductRec: Product;
I: Integer;
begin
Assign(ProductFile, 'PRODUCT.DTA');
Rewrite(ProductFile); {open the file and delete any data}
with ProductRec do

begin
Name := ''; InStock := 0; Supplier := O;
for I := 1 to MaxNumberOfProducts do
begin

ItemNumber := I;
Write(ProductFile,ProductRec);
end;
end;
Close(ProductFile);
end.

The following program demonstrates the use of Seek on random files.

The program is used to update the ProductFile created by the program
in the previous example.

FILE TYPES 99

Using Files

100

program UpDateProductFile;
const
MaxNumberOfProducts = 100;
type
ProductName = string[20];
Product = record
Name: ProductName;
ItemNumber: Integer;
InStock: Real;
Supplier: Integer;
end;
var
ProductFile: file of Product;
ProductRec: Product;
I, Pnr: Integer;
begin
Assign(ProductFile, 'PRODUCT.DTA'); Reset(ProductFile);
ClrScr;
Write('Enter product number (0= stop) '); Readln(Pnr);
while Pnr in [1l..MaxNumberOfProducts] do
begin
Seek(ProductFile,Pnr-1); Read(ProductFile,ProductRec);
with ProductRec do
begin
Write('Enter name of product (',Name:20,') ');
Readln(Name);
Write('Enter number in stock (',InStock:20:0,') '});
Readln(InStock);
Write('Enter supplier number (',Supplier:20,') ');
Readln(Supplier);
ItemNumber:=Pnr;
end;
Seek(ProductFile,Pnr-1);
Write(ProductFile, ProductRec);
ClrScr; Writeln;
Write('Enter product number (0= stop) '); Readln(Pnr);
end;
Close(ProductFile);
end.

TURBO Pascal Reference Manual

Text Files

Text Files

Unlike all other file types, text files are not simply sequences of values
of some type. Although the basic components of a text file are charac-
ters, they are structured into lines, each line being terminated by an
end-of-line marker (a CR/LF sequence). The file is further ended by an
end-of-file marker (a Ctrl-Z). As the length of lines may vary, the position
of a given line in a file cannot be calculated. Text files can therefore only
be processed sequentially. Furthermore, input and output cannot be per-
formed simultaneously to a text file.

Operations on Text Files

A text file variable is declared by referring to the standard type identifier
Text. Subsequent file operations must be preceded by a call to Assign
and a call to Reset or Rewrite must furthermore precede input or output
operations.

Rewrite is used to create a new text file, and the only operation then al-
lowed on the file is the appending of new components to the end of the
file. Reset is used to open an existing file for reading, and the only
operation allowed on the file is sequential reading. When a new textfile
is closed, an end-of-file mark is automatically appended to the file.
Character 'input and output on text files is made with the standard pro-

cedures Read and Write. Lines are processed with the special text file
operators Readln, Writeln, and Eoln.

ReadlLn
Syntax: ReadIn(Filvar);

Skips to the beginning of the next line, i.e. skips all characters up to and
including the next CR/LF sequence.

WriteLn
Syntax: WriteLn(Filvar);

Writes a line marker, i.e. a CR/LF sequence, to the textfile.

FILE TYPES 101

Text Files

Eoin

Syntax: Eoln(Filvan);

A Boolean function which returns True if the end of the current line has
been reached, i.e. if the file pointer is positioned at the CR character of
the CR/LF line marker. If EOF(Filvar) is true, Eoin(Filvar) is also true.

SeekEoln

Syntax: SeekEoln(FilVar);

Similar to Eoln, except that it skips blanks and TABs before it tests for
an end-of-line marker. The type of the result is boolean.

SeekEof

102

Syntax: SeekEof(FilVar);

Similar to EOF, except that it skips blanks, TABs, and end-of-line mark-
ers (CR/LF sequences) before it tests for an end-of-file marker. The type
of the result is boolean.

When applied to a text file, the EOF function returns the value True

if the file pointer is positioned at the end-of-file mark (the CTRL/Z char-
acter ending the file). The Seek and Flush procedures and the FilePos
and FileSize functions are not applicable to text files.

The following sample program reads a text file from disk and prints it on

the pre-defined device Lst which is the printer. Words surrounded by
Ctrl-S in the file are printed underlined:

TURBO Pascal Reference Manual

Text Files

program TextFileDemo;

var
FilVar: Text;
Line,
ExtralLine: string[255];
I: Integer;
UnderLine: Boolean;
FileName: string[14];
begin
UnderLine := False;

Write('Enter name of file to list: ');
Readln(FileName);
Assign(FilVar,FileName);
Reset(FilVar);
while not Eof(FilVar) do
begin
Readln(FilVar,Line);
I :=1; ExtraLine := '';
for I := 1 to Length(Line) do
begin
if Line[I]<>"S then
begin
Write(Lst,Line[I]);
if UnderLine then Extraline := ExtraLine+'_'

else Extraline := ExtraLine+' ';
end
else UnderLine := not UnderLine;
end;

Write(Lst,"M); Writeln(Lst,ExtralLine);
end; {while not Eof}
end.

Further extensions of the procedures Read and Write, which facilitate

convenient handling of formatted input and output, are described on pages
108 and 111, respectively.

FILE TYPES 103

Text Files

Logical Devices

In TURBO Pascal, external devices such as terminals, printers, and
modems are regarded as logical devices, and are treated like text files.
The following logical devices are available:

CON: The console device. Output is sent to the operating system’s console

output device, usually the CRT, and input is obtained from the console
input device, usually the keyboard. This means that each Read or Readin
from atextfile assigned to the CON: device will input an entire line into aline
buffer, and that the operator is provided with a set of editing facilities during
line input. For more details on console input, please refer to pages 105
and 108.

TRM: The terminal device. Output is sent to the operating system’s console

KBD:

LST:

AUX:

USR:

104

output device, usually the CRT, and input is obtained from the console
input device, usually the keyboard. Input characters are echoed, unless
they are control characters. The only control character echoed is a car-
riage return (CR), which is echoed as CR/LF.

The keyboard device (input only). Input is obtained from the operating
system’s console input device, usually the keyboard. Input is not
echoed.

The list device (output only). Output is sent to the operating system’s list
device, typically the line printer.

The auxiliary device. In PC/MS-DOS, this is COM1:; in CP/M it is RDR:
and PUN:.

The user device. Output is sent to the user output routine, and input is
obtained from the user input routine. For further details on user input
and output, please refer to pages 209 , 241 , and 272 .

These logical devices may be accessed through the pre-assigned files
discussed on page 105 or they may be assigned to file variables, exactly
like a disk file. There is no difference between Rewrite and Reset on a
file assigned to a logical device, Close performs no function, and an at-
tempt to Erase such a file will cause an 1/O error.

TURBO Pascal Reference Manual

Text Files

The standard functions Eof and Eoln operate differently on logical dev-
ices than on disk files. On a disk file, Eof returns True when the next
character in the file is a Ctrl-Z, or when physical EOF is encountered,
and Eoln returns True when the next character is a CR or a Ctrl-Z.
Thus, Eof and Eoln are in fact ‘look ahead’ routines.

As you cannot look ahead on a logical device, Eoln and Eof operate on
the last character read instead of on the next character. In effect, Eof
returns True when the last character read was a Ctrl-Z, and Eoln re-
turns True when the last character read was a CR or a Ctrl-Z. The fol-
lowing table provides an overview of the operation of Eoln and Eof:

On Files On Logical Devices
Eoln is true if is next character if current character
CR or Ctrl-Z or if is CR or Ctrl-Z
EOF is true
Eof is true if next character is if current character
Ctrl-Z or if physical is Ctrl-Z
EOF is met

Table 14-1: Operation of EOLN and Eof

Similarly, the Readln procedure works differently on logical devices than
on disk files. On a disk file, Readin reads all characters up to and includ-
ing the CR/LF sequence, whereas on a logical device it only reads up to
and including the first CR. The reason for this is again the inability to
‘look ahead’ on logical devices, which means that the system has no
way of knowing what character will follow the CR.

Standard Files

As an alternative to assigning text files to logical devices as described
above, TURBO Pascal offers a number of pre-declared text files which
have already been assigned to specific logical devices and prepared for
processing. Thus, the programmer is saved the reset/rewrite and close
processes, and the use of these standard files further saves code:

FILE TYPES 105

Text Files

Input
The primary input file. This file is assigned to either the CON: device or
to the TRM: device (see below for further detail).

Output
The primary output file. This file is assigned to either the CON: device or
to the TRM: device (see below for further detail).

Con Assigned to the console device (CON:).

Trm Assigned to the terminal device (TRM:).

'Kbd Assigned to the keyboard device (KBD:).

Lst Assigned to the list device (LST:).

Aux Assigned to the auxiliary device (AUX:).

Usr Assigned to the user device (USR:).

Notice that the use of Assign, Reset, Rewrite, and Close on these files
is illegal.

When the Read procedure is used without specifying a file identifier, it
always inputs a line, even if some characters still remain to be read from
the line buffer, and it ignores Ctrl-Z, forcing the operator to terminate the
line with RETURN. The terminating RETURN is not echoed, and internal-
ly the line is stored with a Ctrl-Z appended to the end of it. Thus, when
less values are specified on the input line than there are parameters in
the parameter list, any Char variables in excess will be set to Ctrl-Z,
strings will be empty, and numeric variables will remain unaltered.

The B compiler directive is used to control this ‘forced read’ feature
above. The default state is {$B + }, and in this state, read statements
without a file variable will always cause a line to be input from the con-
sole. If a {$B-} compiler directive is placed at the beginning of the pro-
gram (before the declaration part), the shortened version of read will act
as if the input standard file had been specified, i.e.:

Read(v1,v2,...,vn) equals Read(input,v1,v2,...,vn)
Inthis case, lines are only input when the line buffer has been emptied. The
{$B-} state follows the definition of Standard Pascal /O, whereas the

default {$B +} state, notconforming to the standard in all aspects, provides
better control of input operations.

If you don’t want input echoed to the screen, you should read from the
standard file Kbd:

Read(Kbd, Var)

106 TURBO Pascal Reference Manual

Text Files

As the standard files Input and Output are used very frequently, they
are chosen by default if no file identifier is stated. The following list
shows the abbreviated text file operations and their equivalents:

Write(Ch) Write(Output,Ch)
Read(Ch) Read(input,Ch)
Writeln Writeln(Output)
Readin Readin(input)
Eof Eof(input)

Eoln Eoin(input)

The following program shows the use of the standard file Lst to list the
file ProductFile (see page 99) on the printer:

program ListProductFile;
const
MaxNumberOfProducts = 100;
type
ProductName = string([20];
Product = record
Name: ProductName; ItemNumber: Integer;
InStock: Real;
Supplier: Integer;
end;
var
ProductFile: file of Product;
ProductRec: Product; I: Integer;
begin
Assign(ProductFile, 'PRODUCT.DTA'); Reset(ProductFile);
for I := 1 to MaxNumberOfProducts do
begin
Read(ProductFile,ProductRec);
with ProductRec do

begin .
if Name<>'' then
Writeln(Lst, 'Item: ', ItemNumber:5,' ', Name:20,
' From: ', Supplier:5,
' Now in stock: ',InStock:0:0);
end;
end;
Close(ProductFile);

end.

FILE TYPES 107

Text Input and Output

Text Input and Output

Input and output of data in readable form is done through text files as
described on page 101. A text file may be assigned to any device, i.e. a
disk file or one of the standard 1/O devices. Input and output on text
files is done with the standard procedures Read, Readin, Write, and Wri-
teln which use a special syntax for their parameter lists to facilitate max-
imum flexibility of input and output.

In particular, parameters may be of different types, in which case the 1/O
procedures provide automatic data conversion to and from the basic
Char type of text files.

If the first parameter of an I/O procedure is a variable identifier
representing a text file, then 1/O will act on that file. If not, 1/O will act on
the standard files Input and Output. See page 105 for more detail.

Read Procedure

The Read procedure provides input of characters, strings, and numeric
data. The syntax of the Read statement is:

Read(Varl,Var2,...,VarN)
or
Read(FilVar,Varl,Var2,...,VarN)

where Vari, Var2,...,VarN are variables of type Char, String, Integer or
Real. In the first case, the variables are input from the standard file
Input, usually the keyboard. In the second case, the variables are input
from the text file which is previously assigned to FilVar and prepared for
reading.

With a variable of type Char, Read reads one character from the file and
assigns that character to the variable. If the file is a disk file, Eoln is true
if the next character is a CR or a Ctrl-Z, and Eof is true if the next char-
acter is a Ctrl-Z, or physical end-of-file is met. If the file is a logical dev-
ice (including the standard files /Input and Outpuf), Eoln is true if the
character read was a CR or if Eofis True, and Eof is true if the charac-
ter read was a Ctrl-Z.

108 TURBO Pascal Reference Manual

Text Input and Output

With a variable of type string, Read reads as many characters as al-
lowed by the defined maximum length of the string, unless Eoln or Eof
is reached first. Eoln is true if the character read was a CR or if Eof is
True, and Eof is true if the last character read is a Ctrl-Z, or physical
end-of-file is met.

With a numeric variable (Integer or Real), Read expects a string of char-
acters which complies with the format of a numeric constant of the
relevant type as defined on page 43 . Any blanks, TABs, CRs, or LFs
preceding the string are skipped. The string must be no longer than 30
characters, and it must be followed by a blank, a TAB, a CR, or a Ctrl-Z.
If the string does not conform to the expected format, an 1/O error oc-
curs. Otherwise the numeric string is converted to a value of the ap-
propriate type and assigned to the variable. When reading from a disk
file, and the input string is ended with a blank or a TAB, the next Read
or Readln will read that blank or TAB. For both disk files and logical devices,

Eolnistrue ifthe string was ended with a CR or a Ctrl-Z, and Eofis true if the

string was ended with a Ctrl-Z.

A special case of numeric input is when Eoln or Eof is true at the be-
ginning of the Read (e.g. if input from the keyboard is only a CR). In that
case no new value is assigned to the variable, and the variable retains
its former value.

If the input file is assigned to the console device (CON:), or if the stan-
dard file Input is used in the { $B + } mode (default), special rules apply
to the reading of variables. On a call to Read or Readin, a line is input
from the console and stored into a buffer, and the reading of variables
then uses this buffer as the input source. This allows for editing during
entry. The following editing facilities are available:

BACKSPACE and DEL
Backspaces one character position and deletes the character there.
BACKSPACE is usually generated by pressing the key marked BS or
BACKSPACE or by pressing Ctrl-H. DEL is usually generated by the key
thus marked, or in some cases RUB or RUBOUT.

Esc and Ctrl-X
Backspaces to the beginning of the line and erases all characters input.

File Types 109

Text Input and Output

Ctrl-D

Recalls one character from the last input line.

Ctrl-R

Recalls the last input line.

RETURN and Ctrl-M

Terminates the input line and stores an end-of-line marker (a CR/LF se-
quence) in the line buffer. This code is generated by pressing the key
marked RETURN or ENTER. The CR/LF is not echoed to the screen.

Ctrl-Z

Terminates the input line and stores an end-of-file marker (a Ctrl-Z char-
acter) in the line buffer.

The input line is stored internally with a Ctrl-Z appended to the end of it.
Thus, if fewer values are specified on the input line than the number of
variables in Reads parameter list, any Char variables in excess will be
set to Ctrl-Z, Strings will be empty, and numeric variables will remain un-
changed.

The maximum number of characters that can be entered on an input line
from the console is 127 by default. However, you may lower this limit by
assigning an integer in the range 0 through 127 to the predefined vari-
able BufLen.

Example:

Write('File name (max. 14 chars): ');
BufLen:=14;

Read(FileName);

Notice that assignments to Bufl.en affect only the immediately following
Read. After that, BufLen is restored to 127.

ReadIn Procedure

110

The Readin procedure is identical to the Read procedure, except that
after the last variable has been read, the remainder of the line is
skipped. l.e., all characters up to and including the next CR/LF se-
quence (or the next CR on a logical device) are skipped. The syntax of
the procedure statement is:

TURBO Pascal Reference Manual

Text Input and QOutput

Readln(Varl,Var2, ...,VarN)
or
Readln(FilVar,Varl,Var2,...,VarN)

After a Readin, the following Read or Readin will read from the begin-
ning of the next line. Readin may also be called without parameters:

Readln
or
Readln(FilVar)

in which case the remaining of the line is skipped. When Readln is read-
ing from the console (standard file Input or a file assigned to CON:), the
terminating CR is echoed to the screen as a CR/LF sequence, as op-
posed to Read.

Write Procedure

The Write procedure provides output of characters, strings, boolean
values, and numeric values. The syntax of a Write statement is:

Write(Var1,Var2,...,VarN)
or
Write(FilVar,Var1,Var2,...,VarN)

where Var1, Var2,...,VarN (the write parameters) are variables of type
Char, String, Boolean, Integer or Real, optionally followed by a colon
and an integer expression defining the width of the output field. In the
first case, the variables are output to the standard file Output, usually the
screen. In the second case, the variables are output to the textfile which is
previously assigned to FilVar.

The format of a write parameter depends on the type of the variable. In
the following descriptions of the different formats and their effects, the

symbols:

I, mn denote Integer expressions,

R denotes a Real expression,

Ch denotes a Char expression,

) denotes a String expression, and
B denotes a Boolean expression.

File Types 111

Text Input and Output

Write Parameters

Ch

The character Ch is output.

Ch:n The character Ch is output right-adjusted in a field which is n characters

S

S:n

112

wide, i.e. Chis preceded by n — 1 blanks.

The string S is output. Arrays of characters may aiso be output, as they
are compatible with strings.

The string S is output right-adjusted in a field which is n characters
wide, i.e. Sis preceded by n — Length(S) blanks.

Depending on the value of B, either the word TRUE or the word FALSE
is output.

Depending on the value of B, either the word TRUE or the word FALSE
is output right-adjusted in a field which is n characters wide.

The decimal representation of the value of /is output.

The decimal representation of the value of / is output right-adjusted in a
field which is n characters wide.

The decimal representation of the value of R is output in a field 18 char-
acters wide, using floating point format. For R > = 0.0, the format is:

L | HHHRRH R RS HE R
For R < 0.0, the format is:
Li—# | HERHHR AR R

where L represents a blank, # represents a digit, and * represents ei-
ther plus or minus.

The decimal representation of the value of R is output, right adjusted in
a field n characters wide, using floating point format. For R > = 0.0:

blanks#.digitsE*##

TURBO Pascal Reference Manual

Text Input and Output

For R < 0.0:
blanks-#.digitsE*##

where blanks represents zero or more blanks, digits represents from
one to ten digits, # represents a digit, and * represents either plus or
minus. As at least one digit is output after the decimal point, the field
width is minimum 7 characters (8 for R < 0.0).

R:n:m The decimal representation of the value of R is output, right adjusted,
in a field n characters wide, using fixed point format with m digits after
the decimal point. No decimal part, and no decimal point, is output if m
is 0. m must be in the range O through 24; otherwise floating point for-
mat is used. The number is preceded by an appropriate number of
blanks to make the field width n.

Writeln Procedure
The Writeln procedure is identical to the Write procedure, except that a
CR/LF sequence is output after the last value. The syntax of the Writein
statement is:

Writeln(Var1,Vari,Var2,...,VarN) or Writeln(FilVar,Var1,Var2,...,VarN)

A Writeln with no write parameters outputs an empty line consisting of a
CR/LF sequence:

Writeln or Writeln(FilVar)

File Types 113

Untyped Files

Untyped Files

Untyped files are low-level I/O channels primarily used for direct access
to any disk file using a record size of 128 bytes.

In input and output operations to untyped files, data is transferred
directly between the disk file and the variable, thus saving the space re-
quired by the sector buffer required by typed files. An untyped file vari-
able therefore occupies less memory than other file variables. As an un-
typed file is furthermore compatible with any file, the use of an untyped
file is therefore to be preferred if a file variable is required only for Erase,
Rename or other non-input/output operations.

An untyped file is declared with the reserved word file:

var
DataFile: file;

BlockRead / BlockWrite

114

All standard file handling procedures and functions except Read, Write,
and Flush are allowed on untyped files. Read and Write are replaced by
two special high-speed transfer procedures: BlockRead and BlockWrite.
The syntax of a call to these procedures is:

BlockRead(FilVar, Var, Recs)
BlockWrite(FilVar, Var, Recs)

or

BlockRead(FilVar, Var, Recs, Result)
BlockWrite(FilVar, Var, Recs, Result)

where FilVar variable identifier of an untyped file, Var is any variable,
and Recs is an integer expression defining the number of 128-byte
records to be transferred between the disk file and the variable. The op-
tional parameter Result returns the number of records actually
transferred.

TURBO Pascal Reference Manual

Untyped Files

The transfer starts with the first byte occupied by the variable Var. The
programmer must insure that the variable Var occupies enough space to
accommodate the entire data transfer. A call to BlockRead or
BlockWrite also advances the file pointer Recs records.

A file to be operated on by BlockRead or BlockWrite must first be
prepared by Assign and Rewrite or Reset. Rewrite creates and opens a
new file, and Reset opens an existing file. After processing, Close
should be used to ensure proper termination.

The standard function EOF works as with typed files. So do standard
functions FilePos and FileSize and standard procedure Seek, using a
component size of 128 bytes (the record size used by BlockRead and
BlockWrite).

The following program uses untyped files to copy files of any type.
Notice the use of the optional fourth parameter on BlockRead to check
the number of records actually read from the source file.

program FileCopy;

const
RecSize = 128;
BufSize = 200;
var
Source, Dest: File;
SourceName,
DestName: string(14];
Buffer: array[l..RecSize,l..BufSize] of Byte;
RecsRead: Integer;
begin
Write('Copy from: ');

Readln(SourceName);

Assign(Source, SourceName);

Reset(Source);

Write(' To: ');

Readln(DestName);

Assign(Dest, DestName);

Rewrite(Dest);

repeat
BlockRead(Source,Buffer,BufSize,RecsRead);
BlockWrite(Dest,Buffer,RecsRead);

until RecsRead = O;

Close(Source); Close(Dest);

end.

File Types- 115

/O checking

1/O checking

116

The | compiler directive is used to control generation of runtime 1/O error
checking code. The default state is active, i.e. { $| + } which causes calls
to an 1/O check routine after each 1/O operation. I/O errors then cause
the program to terminate, and an error message indicating the type of
error is displayed.

If 1/O checking is passive, i.e. { $|—}, no run time checks are per-
formed. An I/O error thus does not cause the program to stop, but
suspends any further 1/O until the standard function /Oresuit is called.
When this is done, the error condition is reset and 1/O may be per-
formed again. It is now the programmer’'s responsibility to take proper
action according to the type of I/O error.' A zero returned by /Oresult in-
dicates a successful operation, anything else means that an error oc-
curred during the last1/0 operation. Appendix G lists all I/O error messages
and their Numbers. Notice that as the error condition is reset when I0result
is called, subsequent calls to IOresult will return zero until the next /O error
occurs.

The [Oresult function is very convenient in situations where a program
halt is an unacceptable result of an I/O error, like in the following exam-
ple which continues to ask for a file name until the attempt to reset the
file is successful (i.e. until an existing file name is entered):

procedure OpenInFile;
begin
repeat
Write('Enter name of input file ');
Readln(InFileName);
Assign(InFile, InFileName);
{$I-} Reset(InFile) {$I+} ;
OK := (IOresult = 0);
if not OK then
Writeln('Cannot find file ',InFileName);
until OK;
end;

TURBO Pascal Reference Manual

I/O checking

When the | directive is passive ({ $I-}), the following standard procedures
should be followed by a check of IOresult to ensure proper error han-

diing:

* Append Close Read Seek
Assign Erase ReadLn Write
BlockRead Execute Rename WriteL.n
BlockWrite Flush Reset
Chain * GetDir Rewrite

* ChDir * MkDir * RmDir

* PC-DOS/MS-DOS only.

File Types 117

/O checking

Notes:

118 TURBO Pascal Reference Manual

Chapter 15
POINTER TYPES

Variables discussed up to now have been static, i.e. their form and size
is pre-determined, and they exist throughout the entire execution of the
block in which they are declared. Programs, however, frequently need
the use of a data structure which varies in form and size during execu-
tion. Dynamic variables serve this purpose as they are generated as the
need arises and may be discarded after use.

Such dynamic variables are not declared in an explicit variable declara-
tion like static variables, and they cannot be referenced directly by
identifiers. Instead, a special variable containing the memory address of
the variable is used to point to the variable. This special variable is called
a’pointer variable.

Defining a Pointer Variable

A pointer type is defined by the pointer symbol * succeeded by the
type identifier of the dynamic variables which may be referenced by
pointer variables of this type.

The following shows how to declare a record with associated pointers.
The type PersonPointer is declared as a pointer to variables of type
PersonRecord:

type
PersonPointer = “PersonRecord;
PersonRecord = record
Name: string[50];
Job: string[50];
Next: PersonPointer;
end;
var
FirstPerson, LastPerson, NewPerson: PersonPointer;

POINTER TYPES 119

Allocating Variables (New)

As shown above, the type identifier in a pointer type definition may refer to
an identifier that is not yet defined. However, the identifier must be defined
somewhere within the same block of type declarations. In other words the
following is illegal:

type

PersonPointer ="PersonRecord;
var

Dummy : char;
type

PersonRecord = record

By removing the variable declaration between the two blocks of type
declarations the above would be correct.

The variables FirstPerson, LastPerson and NewPerson are thus pointer
variables which can point to records of type PersonRecord. As shown
above, the type identifier in a point type definition may refer to an identifier
which is not yet defined (as long as both are in the same type declaration
part).

Allocating Variables (New)

120

Before it makes any sense to use any of these pointer variables we
must, of course, have some variables to point at. New variables of any
type are allocated with the standard procedure New. The procedure has
one parameter which must be a pointer to variables of the type we want
to create.

A new variable of type PersonRecord can thus be created by the state-
ment:

New(FirstPerson);

which has the effect of having FirstPerson point at a dynamically allocat-
ed record of type PersonRecord.

TURBO Pascal Reference Manual

Mark and Release

Assignments between pointer variables can be made as long as both
pointers are of identical type. Pointers of identical type may also be
compared using the relational operators = and < >, returning a
Boolean result (True or False).

The pointer value nil is compatible with all pointer types. nil points to no
dynamic variable, and may be assigned to pointer variables to indicate
the absence of a usable pointer. nil may also be used in comparisons.

Variables created by the standard procedure New are stored in a stack-
like structure called the heap. The TURBO Pascal system controls the
heap by maintaining a heap pointer which at the beginning of a program
is initialized to the address of the first free byte in memory. On each call
to New, the heap pointer is moved towards the top of free memory the
number of bytes corresponding to the size of the new dynamic variable.

Mark and Release

When a dynamic variable is no longer required by the program, the stan-
dard procedures Mark and Release are used to reclaim the memory allo-
cated to these variables. The Mark procedure assigns the value of the
heap pointer to a variable. The syntax of a call to Mark is:

Mark(Var);

where Var is a pointer variable. The Release procedure sets the heap
pointer to the address contained in its argument. The syntax is:

Release(Var);

where Var is a pointer variable, previously set by Mark. Release thus
discards all dynamic variables above this address, and cannot release
the space used by variables in the middle of the heap. If you want to do
that, you should use Dispose (see page 124) instead of Mark/Release.

The standard function MemAvail is available to determine the available

space on the heap at any given time. Further discussion is deferred to
chapters 20, 21, and 22.

POINTER TYPES 121

Using Pointers

Using Pointers

122

Supposing we have used the New procecure to create a series of
records of type PersonRecord (as in the example on the following page)
and that the field Next in each record points at the next PersonRecord
created, then the following statements will go through the list and write
the contents of each record (FirstPerson points to the first person in the
list):

while FirstPerson <> nil do
with FirstPerson® do
begin
Writeln(Name,' is a ',Job);
FirstPerson := Next;
end;

FirstPerson”.Name may be read as FirstPerson’s.Name, i.e. the field
Name in the record pointed to by FirstPerson.

The following program example demonstrates the use of pointers to
maintain a list of names and related job descriptions. Names and job
desires will be read in until a blank name is entered. Then the entire list is
printed. Finally, the memory used by the list is released for other use. The
pointer variable HeapTop is used only for the purpose of recording and
storing the initial value of the heap pointer. Its definition as a “Integer
(pointer to integer) is thus totally arbitrary.

TURBO Pascal Reference Manual

Using Pointers

procedure Jobs;

type
PersonPointer = “PersonRecord;

PersonRecord = record
Name: string[50];
Job: string[50];
Next: PersonPointer;
end;
var
HeapTop: “Integer;
FirstPerson, LastPerson, NewPerson: PersonPointer;
Name: string[50};
begin
FirstPerson := nil;
Mark(HeapTop);
repeat
Write('Enter name: "),
Readln(Name);
if Name <> '' then
begin
New(NewPerson);
NewPerson” .Name := Name;
Write('Enter profession: ');
Readln(NewPerson*.Job);

Writeln;
if FirstPerson = nil then
FirstPerson := NewPerson
else
LastPerson” .Next := NewPerson;
LastPerson := NewPerson;
LastPerson .Next :=nil;
end;
until Name='";
Writeln;

while FirstPerson <> nil do
with FirstPerson” do

begin
Writeln(Name,' is a ',Job);
FirstPerson := Next;
end;
Release(HeapTop);
end.

POINTER TYPES 123

Dispose

Dispose

124

Instead of Mark and Release, standard Pascal’s Dispose procedure may
be used to reclaim space on the heap.

NOTICE that Dispose and Mark/Release use entirely different ap-
proaches to heap management - and never shall the twain meet! Any
one program must use either Dispose or Mark/Release to manage the
heap. Mixing them will produce unpredictable results.

The syntax is:

Dispose(Var);

where Var is a pointer variable.

Dispose allows dynamic memory used by a specific pointer variable to
be reclaimed for new use, as opposed to Mark and Release which
releases the entire heap from the specified pointer variable and upward.
Suppose you have a number of variables which have been allocated on

the heap. The following figure illustrates the contents of the heap and
the effect of Dispose(Var3) and Mark(Var3)/ Release(Var3) :

Heap After After
Dispose Mark/Release
--==-=--	e		-=====--	
Varl		Varl		Varl
===		--==-=-=		====-=n
Var2		Var2		Var2
--====-	i ! e			
var3			I I	
--=--=--		--==-=--	[
Var4d		Var4		
——	[--=-----	R !		
Vvard		Vvars		
e	[-==--=-	R		
Var6		Varé		
R [|--=---=- | | === |
HiMem | Var7 | | Var7 | |]

Figure 15-1: Using Dispose

TURBO Pascal Reference Manual

Dispose

After Disposing a pointer variable, the heap may thus consist of a
number of memory areas in use interspersed by a number of free areas.
Subsequent calls to New will use these if the new pointer variable fits
into the space.

GetMem

The standard procedure GetMem is used to allocate space on the heap.
Unlike New, which allocates as much space as required by the type
pointed to by its argument, GetMem allows the programmer to control
the amount of space allocated. GetMem is called with two parameters:
GetMem(PVar, I)

where PVar is any pointer variable, and / is an integer expression giving
the number of bytes to be allocated.

FreeMem
Syntax: FreeMem;
The FreeMem standard procedure is used to reclaim an entire block of
space on the heap. It is thus the counterpart of GetMem. FreeMem is
called with two parameters:
FreeMem(PVar, I);
where PVar is any pointer variable, and / is an integer expression giving

the number of bytes to be reclaimed, which must be exactly the number
of bytes previously allocated to that variable by GetMem.

Pointer Types- 125

MaxAvail

MaxAvail

Syntax: MaxAvail;

The MaxAvail standard function returns the size of the largest consecu-
tive block of free space on the heap. On 16-bit systems this space is in
in number of paragraphs (16 bytes each); on 8-bit systems it is in bytes.
The result is an Integer, and if more than 32767 paragraphs/bytes are
available, MaxAvail returns a negative number. The correct number of
free paragraphs/bytes is then calculated as 65536.0 + MaxAvail.
Notice the use of a real constant to generate a Real result, as the result
is greater than Maxint.

Hints

126

Note that no range checking is done on pointers. It is the responsibility
of the programmer to ensure that a pointer points to a legal address.

If you have difficulties using pointers, a drawing of what you are attempting
to do often clears up things.

TURBO Pascal Reference Manual

Chapter 16
PROCEDURES AND FUNCTIONS

A Pascal program consists of one or more blocks, each of which may
again consist of blocks, etc. One such block is a procedure, another is a
function (in common called subprograms). Thus, a procedure is a
separate part of a program, and it is activated from elsewhere in the
program by a procedure statement (see page 56). A function is rather
similar, but it computes and returns a value when its identifier, or desig-
nator, is encountered during execution (see page 54).

Parameters

Values may be passed to procedures and functions through parameters.
Parameters provide a substitution mechanism which allows the logic of
the subprogram to be used with different initial values, thus producing
different results.

The procedure statement or function designator which invokes the sub-
program may contain a list of parameters, called the actual parameters.
These are passed to the formal parameters specified in the subprogram
heading. The order of parameter passing is the order of appearance in
the parameter lists. Pascal supports two different methods of parameter
passing: by value and by reference. These two methods determine the

effectthat changes of the formal parameters have on the actual parameters.

When parameters are passed by value, the formal parameter represents
a local variable in the subprogram, and changes of the formal parameters
have no effect on the actual parameter. The actual parameter may be any
expression, including a variable, with the same type as the corresponding
formal parameter. Such parameters are called value parameters and are
declared in the subprogram heading as in the following example. This and
the following examples show procedure headings; see page 137 for a
description of function headings.

procedure Example(Numl,Num2: Number; Strl,Str2: Txt);

PROCEDURES AND FUNCTIONS 127

Parameters

128

Number and Txt are previously defined types (e.g. Integer and
string[255]), and Num1, Num2, Str1, and Str2 are the formal parame-
ters to which the value of the actual parameters are passed. The types
of the formal and the actual parameters must correspond.

Notice that the type of the parameters in the parameter part must be
specified as a previously defined type identifier. Thus, the construct:

procedure Select(Model: array([l..500] of Integer);

is not allowed. Instead, the desired type should be defined in the type
definition of the block, and the type identifier should then be used in the
parameter declaration:

type
Range = array[l..500] of Integer;

procedure Select(Model: Range);

When a parameter is passed by reference, the formal parameter in fact
represents the actual parameter throughout the execution of the sub-
program. Any changes made to the formal parameter is thus made to
the actual parameter, which must therefore be a variable. Parameters
passed by reference are called a variable parameters, and are declared
as follows:

prooedure Example (var Numl,Num2: Number)

Value parameters and variable parameters may be mixed in the same
procedure as in the following example:

procedure Example (var Numl,Num2: Number; Strl,Str2: Txt);

in which Num?1 and NumZ2 are variable parameters and Str7 and Str2
are value parameters.

All address calculations are done at the time of the procedure call. Thus,
if a variable is a component of an array, its index expression(s) are
evaluated when the subprogram is called.

Notice that file parameters must always be declared as variable parame-
ters.

TURBO Pascal Reference Manual

Parameters

When a large data structure, such as an array, is to be passed to a sub-
program as a parameter, the use of a variable parameter will save both
time and storage space, as the only information then passed on to the
subprogram is the address of the actual parameter. A value parameter
would require storage for an extra copy of the entire data structure, and
the time involved in copying it.

Relaxations on Parameter Type Checking

Normally, when using variable parameters, the formal and the actual
parameters must match exactly. This means that subprograms employ-
ing variable parameters of type String will accept only strings of the ex-
act length defined in the subprogram. This restriction may be overridden
by the V compiler directive. The default active state { $V + } indicates
strict type checking, whereas the passive state { $V-} relaxes the type
checking and allows actual parameters of any string length to be
passed, irrespective of the length of the formal parameters.

Example:
program Encoder;
{$V-}
type
WorkString = string(255];
var
Linel: string(80];
Line2: string[100];
procedure Encode (var LineToEncode: WorkString);
var I: Integer;
begin
for I := 1 to Length(LineToEncode) do
LinetoEncode[I] := Chr(Ord{(LineToEncode[I])-30);

end;
begin
Linel := 'This is a secret message';
Encode(Linel);
Line2 := 'Here is another (longer) secret message';
Encode(Line2);
end.

PROCEDURES AND FUNCTIONS 129

Parameters

Untyped Variable Parameters

130

If the type of a formal parameter is not defined, i.e. the type definition is
omitted from the parameter section of the subprogram heading, then
that parameter is said to be untyped. Thus, the corresponding actual
parameter may be any type.

The untyped formal parameter itself is incompatible with all types, and
may be used only in contexts where the data type is of no significance,
for example as a parameter to Addr, BlockRead/Write, FillChar, or
Move, or as the address specification of absolute variables.

The SwitchVar procedure in the following example demonstrates the
use of untyped parameters. It moves the contents of the variable A7 to
A2 and the contents of A2 to AT.

procedure SwitchVar (var Alp,A2p; Size: Integer);
type

A = array[l..MaxInt] of Byte;
var

Al: A absolute Alp;

A2: A absolute A2p;

Tmp: Byte;
Count: Integer;
begin
for Count := 1 to Size do
begin

Tmp := Al[Count];
Al[Count] := A2[Count}];
A2[Count] := Tmp;
end;
end;

Assuming the declarations:
type

Matrix = array[l..50,1..25] of Real;
var

TestMatrix,BestMatrix: Matrix;

then SwitchVar may be used to switch values between the two ma-
trices:

SwitchVar(TestMatrix,BestMatrix, SizeOf(Matrix));

TURBO Pascal Reference Manual

Procedures

Procedures

A procedure may be either pre-declared (or ‘standard’) or user-declared,
i.e. declared by the programmer. Pre-declared procedures are parts of
the TURBO Pascal system and may be called with no further declara-
tion. A user-declared procedure may be given the name of a standard
procedure; but that standard procedure then becomes inaccessible
within the scope of the user declared procedure.

Procedure Declaration

A procedure declaration consists of a procedure heading followed by a
block which consists of a declaration part and a statement part.

The procedure heading consists of the reserved word procedure fol-
lowed by an identifier which becomes the name of the procedure, op-
tionally followed by a formal parameter list as described on page 127 .

Examples:

procedure LogOn;

procedure Position(X,Y: Integer);

procedure Compute (var Data: Matrix; Scale: Real);

The declaration part of a procedure has the same form as that of a pro-
gram. All identifiers declared in the formal parameter list and the declara-
tion part are local to that procedure, and to any procedures within it.
This is called the scope of an identifier, outside which they are not
known. A procedure may reference any constant, type, variable, pro-
cedure, or function defined in an outer block.

The statement part specifies the action to be executed when the procedure is
invoked, and it takes the form of a compound statement (see page 57). If the
procedure indentifier is used within the statement part of the procedure itself,
the procedure will execute recursively. (CP/M-80 only: Notice that the A
compiler directive must be passive {$A-} when recursion is used; see
Appendix C.)

The next example shows a program which uses a procedure and
passes a parameter to this procedure. As the actual parameter passed
to the procedure is in some instances a constant (a simple expression),
the formal parameter must be a value parameter.

PROCEDURES AND FUNCTIONS 131

Procedures

132

program Box;
var
I. Integer;
procedure DrawBox(X1,Y1,X2,Y2: Integer);
var I: Integer;
begin
GotoXY(X1,Yl);
for I :=XltoX2dowrite(‘-’);
for T := Y1+l to Y2 do
begin
GotoXY(X1,I); Write('!');
GotoXY(X2,I); Write('!');
end;
GotoXY(X1,Y2);
for I := X1 to X2 do Write('-');
end; { of procedure DrawBox }
begin
ClrScr;
for I := 1 to 5 do DrawBox(I*4,I*2,10%I,4*I);
DrawBox(1,1,80,23);
end.

Often the changes made to the formal parameters in the procedure
should also affect the actual parameters. In such cases variable parame-
ters are used, as in the following example:

prooedureSwitch(varA,B:Integer);
Var Tmp: Integer;
begin

Tmp := A; A := B; B := Tmp;
end;
When this procedure is called by the statement:
Switch(I,J);

the values of | and J will be switched. If the procedure heading in
Switch was declared as:

procedure Switch(A,B: Integer);

i.e. with a value parameter, then the statement Switch(I,J) would
not change /and J.

TURBO Pascal Reference Manual

Procedures

Standard Procedures

TURBO Pascal contains a number of standard procedures. These are:

_string handling procedures (described on pages 71 pp),

file handling procedures (described on pages 94, 101, and 114).
procedures for allocation of dynamic variables (described on pages 120
and 125), and

input and output procedures (described on pages 108 pp).

In addition to these, the following standard procedures are available,
provided that the associated commands have been installed for your ter-
minal (see pages 12 pp):

Cireol

Syntax: CirEol;

Clears all characters from the cursor position to the end of the line
without moving the cursor.

CirScr

Syntax: CirScr;

Clears the screen and places the cursor in the upper left-hand corner. Be
aware that some screens also reset the video-attributes when clearing the
screen, possibly disturbing any user-set attributes.

Crtinit

Syntax: Crtinit;

Sends the Terminal Initialization String defined in the installation pro-
cedure to the screen.

PROCEDURES AND FUNCTIONS 133

Procedures

CriExit
Syntax: CrtExit;

Sends the Terminal Reset String defined in the installation procedure to
the screen.

Delay
Syntax: Delay(Time);
The Delay procedure creates a loop which runs for approx. as many mil-

liseconds as defined by its argument Time which must be an integer.
The exact time may vary somewhat in different operating environments.

DelLine
Syntax: DelLine;
Deletes the line containing the cursor and moves all lines below one line
up.
InsLine
Syntax: InsLine;

Inserts an empty line at the cursor position. All lines below are moved
one line down and the bottom line scrolls off the screen.

GotoXY
Syntax: GotoXY(Xpos, Ypos);
Moves the cursor to the position on the screen specified by the integer

expressions Xpos (horizontal value, or column) and Ypos (vertical value, or
row). The upper left comer (home position) is (1,1).

134 TURBO Pascal Reference Manual

Procedures

Exit
Syntax: Exit;
Exits the current block. When exit is executed in a subroutine, it causes
the subroutine to return. When it is executed in the statement part of a
program, it causes the program to terminate. A call to Exit may be com-

pared to a goto statement addressing a label just before the end of a
block.

Halt
Syntax: Halt;
Stops program execution and returns to the operating system.
in PC/MS-DOS, Halt may optionally pass a integer parameter specifying
the return code of the program. Halt without a parameter corresponds
to Halt(O). The return code may be examined by the parent process us-

ing an MS-DOS system function call or through an ERRORLEVEL test
in an MS-DOS batch file.

LowVideo
Syntax: LowVideo;

Sets the screen to the video attribute defined as ‘Start of Low Video’ in
the installation procedure, i.e. ‘dim’ characters.

NormVideo
Syntax: NormVideo;

Sets the screen to the video attribute defined as ‘Start of Normal Video’
in the installation procedure, i.e. the ‘normal’ screen mode.

Randomize
Syntax: Randomize;

Initializes the random number generator with a random value.

PROCEDURES AND FUNCTIONS 135

Procedures

Move
Syntax: Move(var1,var2,Num);

Does a mass copy directly in memory of a specified number of bytes.
var1 and var2 are two variables of any type, and Num is an integer ex-
pression. The procedure copies a block of Num bytes, starting at the
first byte occupied by var? to the block starting at the first byte occu-
pied by var2. You may notice the absence of explicit ‘moveright’ and
‘moveleft’ procedures. This is because Move automatically handles pos-
sible overlap during the move process.

FillChar
Syntax: FillChar(Var, Num, Value);
Fills a range of memory with a given value. Var is a variable of any type,
Num is an integer expression, and Value is an expression of type Byte

or Char. Num bytes, starting at the first byte occupied by Var, are filled
with the value Value.

136 TURBO Pascal Reference Manual

Functions

Functions

Like procedures, functions are either standard (pre-declared) or declared
by the programmer.

Function Declaration

A function declaration consists of a function heading and a block which
is a declaration part followed by a statement part.

The function heading is equivalent to the procedure heading, except that
the heading must define the type of the function result. This is done by
adding a colon and a type to the heading as shown here:

function KeyHit: Boolean;
function Compute (var Value: Sample): Real;
function Power(X,Y: Real): Real;

The result type of a function must be a scalar type (i.e. Integer, Real,
Boolean, Char, declared scalar or subrange), a string type, or a pointer
type.

The declaration part of a function is the same as that of a procedure.

The statement part of a function is a compound statement as described
on page 57 . Within the statement part at least one statement assigning
a value to the function identifier must occur. The last assignment exe-
cuted determines the result of the function. If the function designator
appears in the statement part of the function itself, the function will be
invoked recursively. (CP/M-80 only: Notice that the A compiler directive
must be passive { $A-} when recursion is used, see Appendix C.)

PROCEDURES AND FUNCTIONS 137

Functions

138

The following example shows the use of a function to compute the sum
of a row of integers from | to J.

function RowSum(I,J: Integer): Integer;
function SimpleRowSum(S: Integer): Integer;
begin
SimpleRowSum := S*(S+1l) div 2;
end;
begin
RowSum := SimpleRowSum(J)-SimpleRowSum(I-1);
end;

The function SimpleRowSum is nested within the function RowSum.
SimpleRowSum is therefore only available within the scope of RowSum.

The following program is the classical demonstration of the use of a re-
cursive function to calculate the factorial of an integer number:

{$A-} {A- directive allows recursion in CP/M-80 version}
program Factorial;
var Number: Integer;
function Factorial(Value: Integer): Real;
begin

if Value = 0 then Factorial :=1

else Factorial := Value * Factorial(Value-1);
end;
begin

Read(Number);

Writeln("M,Number,'! = ',6Factorial(Number));
end.

Note that the type used in the definition of a function type must be pre-
viously specified as a type identifier. Thus, the construct:

function LowCase(Line: UserLine): string([80];
is not allowed. Instead, a type identifier should be associated with the type
string[80], and that type identifier should then be used to define the function

result type, for example:

type
Str80 = string([80];

function LowCase(Line: UserLine): Str80;

TURBO Pascal Reference Manual

Functions

Because of the implementation of the standard procedures Write and
Writeln, a function using any of the standard procedures Read, Readin,
Write, or Writeln, must never be called by an expression within a Write
or Writeln statement. In 8-bit systems this is also true for the standard
procedures Str and Val.

Standard Functions

The following standard (pre-declared) functions are implemented in
TURBO Pascal:

1) string handling functions (described on pages 71 pp),
2) file handling functions (described on pages 94 and 101),
3) pointer related functions (described on pages 120 and 125).
Arithmetic Functions
Abs
Syntax: Abs(Num);
Returns the absolute value of Num. The argument Num must be either
Real or Integer, and the result is of the same type as the argument.
ArcTan
Syntax: ArcTan(Num);
Returns the angle, in radians, whose tangent is Num. The argument X
must be either Real or Integer, and the result is Real.
Cos

Syntax: Cos(Num);

Returns the cosine of Num. The argument Num is expressed in radians,
and its type must be either Real or Integer. The result is of type Real.

PROCEDURES AND FUNCTIONS 139

Functions

Exp

Frac

Int

Ln

Sin

140

Syntax: Exp(Num);

Returns the exponential of Num, i.e. enum. The argument Num must be
either Real or Integer, and the result is Real.

Syntax: Frac(Num);
Returns the fractional part of Num, i.e. Frac(Num) = Num - Int(Num).

The argument Num must be either Real or Integer, and the result is
Real.

Syntax: Int(Num);
Returns the integer part of Num, i.e. the greatest integer number less
than or equal to Num, if Num > = 0, or the smallest integer number

greater than or equal to Num, if Num < 0. The argument Num must be
either Real or Integer, and the result is Real.

Syntax: Ln(Num);

Returns the natural logarithm of Num. The argument Num must be ei-
ther Real or Integer, and the result is Real.

Syntax: Sin(Num);

Returns the sine of Num. The argument Num is expressed in radians,
and its type must be either Real or Integer. The result is of type Real.

TURBO Pascal Reference Manual

Functions

Sqr
Syntax: Sqr(Num);
Returns the square of Num, i.e. Num * Num. The argument Num must
be either Real or Integer, and the result is of the same type as the argu-
ment.
Sqrt
Syntax: Sqrt{(Num);
Returns the square root of Num. The argument Num must be either
Real or Integer, and the result is Real.
Scalar Functions
Pred
Syntax: Pred(Num);
Returns the predecessor of Num (if it exists). Num is of any scalar type.
Succ
Syntax: Succ(Num);
Returns the successor of Num (if it exists). Num is of any scalar type.
Odd

Syntax: Odd(Num);

Returns boolean True if Num is an odd number, and False if Num is even.
Num must be of type Integer.

PROCEDURES AND FUNCTIONS 141

Functions

Transfer Functions

The transfer functions are used to convert values of one scalar type to
that of another scalar type. In addition to the following functions, the re-
type facility described on page 65 serves this purpose.

Chr
Syntax: Chr(Num);
Returns the character with the ordinal value given by the integer expres-
sion Num. Example: Chr(65) returns the character ‘A’.

Ord
Syntax: Ord(Van);
Returns the ordinal number of the value Var in the set defined by the
type Var. Ord(Var) is equivalent to Integer(Var) (see Type Conversions
on page 65. Var may be of any scalar type, except Real, and the result
is of type Integer.

Round
Syntax: Round(Num);
Returns the value of Num rounded to the nearest integer as follows: if
Num > = 0, then Round(Num) = Trunc(Num + 0.5), and if Num <
0, then Round(Num) = Trunc(Num — 0.5).Num must be of type Real,
and the result is of type Integer.

Trunc
Syntax: Trunc(Num);
Returns the greatest integer less than or equal to Num, if Num > = 0,
or the smallest integer greater than or equal to Num, if Num < 0. Num
must be of type Real, and the result is of type Integer.

142 TURBO Pascal Reference Manual

Functions

Miscellaneous Standard Functions

Hi

Syntax: Hi(/);

The low order byte of the result contains the high order byte of the
value of the integer expression /. The high order byte of the result is
zero. The type of the result is Integer.

KeyPressed

Lo

Syntax: KeyPressed

Returns boolean True if a key has been pressed at the console, and
False if no key has been pressed. The result is obtained by calling the
operating system console status routine.

When using KeyPressed, both the C and U compiler directives should be
turned off {$C-,U-} (at the top of your program) or your program may “miss”
keystrokes. For more information on compiler directives, refer to Appendix C.

The predefined global variable CBREAK is a boolean flag that represents the
current value of the C compiler directive. By assigning this variable a boolean
value within your programs, you can control the user's ability to use CTRL-C
and CTRL-S during screen I/0. This can be used in conjunction with the C
compiler to easily control the program during runtime.

Syntax: Lo(/);

Returns the low order byte of the value of the integer expression / with
the high order byte forced to zero. The type of the result is Integer.

Random

Syntax: Random;

Returns a random number greater than or equal to zero and less than one.
The type is Real. This function should not be passed a parameter less than 1
because it will return a run-time error if anything less than 1 is passed to it.

PROCEDURES AND FUNCTIONS 143

Functions

Random(Num)
Syntax: Random(Num);

Returns a random number greater than or equal to zero and less than
Num. Num and the random number are both Integers.

ParamCount
Syntax: ParamCount;
This integer function returns the number of parameters passed to the

program in the command line buffer. Space and tab characters serve as
separators.

ParamStr
Syntax: ParamStr(N);

This string function returns the N'th parameter from the command line
buffer.

SizeOf
Syntax: SizeOf(Name);

Returns the number of bytes occupied in memory by the variable or type
Name. The result is of type Integer.

Swap
Syntax: Swap(Num);

The Swap function exchanges the high and low order bytes of its in-
teger argument Num and returns the resulting value as an integer.

Example:
Swap($1234) returns $3412 (values in hex for clarity).

144 TURBO Pascal Reference Manual

Forward References

UpCase
Syntax: UpCase(ch);

Returns the uppercase equivalent of its argument ch which must be of
type Char. If no uppercase equivalent exists, the argument is returned
unchanged.

Forward References

A subprogramis forward declared by specifying its heading separately from
the block. This separate subprogram heading is exactly the same as the
normal heading, except that it is terminated by the reserved word forward.
The block follows later within the same declaration part. Notice that the
block is initiated by a copy of the heading, specifying only the name and
no parameters, types, etc.

Example:
program Catch22;
var
X: Integer;
function Up(Var I: Integer): Integer; forward;
function Down(Var I: Integer): Integer;
begin
I := 1 div 2; Writeln(I);
if I <> 1 then I := Up(I);

end;
function Up;
begin
while I mod 2 <> 0 do
begin
I := I*3+1; Writeln(I);
end;
I := Down(I);
end;
begin
Write('Enter any integer: ');
Readln(X);
X := Up(X);
Write('Ok. Program stopped again.');
end.

When the program is executed and you enter, for example, a 6, it outputs:

Procedures and Functions:- 145

Forward References

Ok. Program stopped again.

The above program is actually a more complicated version of the follow-
ing program:

program Catch222;
Var
X: Integer;
begin
Write('Enter any integer: ');
Readln(X);
while X <> 1 do
begin
if Xmod 2 = 0 then X := X div 2 else X := X*3+1;
Writeln(X);
end;
Write('Ok. Program stopped again.');
end.

It may interest you to know that it cannot be proved if this small and
very simple program actually will stop for any integer!

146 TURBO Pascal Reference Manual

Chapter 17
INCLUDING FILES

The fact that the TURBO editor performs editing only within memory lim-
its the size of source code handled by the editor. The | compiler direc-
tive can be used to circumvent this restriction, as it provides the ability
to split the source code into smaller ‘lumps’ and put it back together at
compile-time. The include facility also aids program clarity, as commonly
used subprograms, once tested and debugged, may be kept as a ‘li-
brary’ of files from which the necessary files can be included in any oth-
er program.

The syntax for the | compiler directive is:
{$I filename}

where filename is any legal file name. Leading spaces are ignored and
lower case letters are translated to upper case. If no file type is
specified, the default type .PAS is assumed. This directive must be
specified on a line by itself.

Examples:
{$Ifirst.pas}
{$I COMPUTE.MOD}
{$iStdProc }

Notice that a space must be left between the file name and the closing
brace if the file does not have a three-letter extension; otherwise the
brace will be taken as part of the name.

To demonstrate the use of the include facility, let us assume that in your
‘library’ of commonly used procedures and functions you have a file
called STUPCASE.FUN. It contains the function StUpCase which is
called with a character or a string as parameter and returns the value of
this parameter with any lower case letters set to upper case.

INCLUDING FILES 147

148

INCLUDING FILES

File STUPCASE.FUN:

function StUpCase(St: AnyString): AnyString;
Var I: Integer;
begin
for I := 1 to Length(St) do
St[I] := UpCase(St[I]);
StUpCase := St
end;

In any future program you write which requires this function to convert
strings to upper case letters, you need only include the file at compile-
time instead of duplicating it into the source code:

program Include Demo;
type
InData= string[80];
AnyString= string[255];
Var
Answer: InData;
{$I STUPCASE.FUN}
begin
ReadLn(Answer);
Writeln(StUpCase(Answer));
end.

This method not only is easier and saves space; it also makes program
updating quicker and safer, as any change to a ‘library’ routine will au-
tomatically affect all programs including this routine.

Notice that TURBO Pascal allows free ordering, and even multiple oc-
currences, of the individual sections of the declaration part. You may
thus e.g. have a number of files containing various commonly used type
definitions in your ‘library’ and include the ones required by different pro-
grams.

All compiler directives except B and C are local to the file in which they
appear, i.e. if a compiler directive is set to a different value in an included
file, it is reset to its original value upon return to the including file. B and
C directives are always global. Compiler directives are described in
Appendix C.

Include files cannot be nested, i.e. one include file cannot include yet
another file and then continue processing.

TURBO Pascal Reference Manual

Chapter 18
OVERLAY SYSTEM

The overlay system lets you create programs much larger than can be
accommodated by the computer’'s memory. The technique is to collect a
number of subprograms (procedures and functions) in one or more files
separate from the main program file, which will then be loaded automati-
cally one at a time into the same area in memory.

The following drawing shows a program using one overlay file with five
overlay subprograms collected into one overlay group, thus sharing the
same memory space in the main program:

Main program Overlay file
Main program code Overlay procedure 1
Overlay area Overlay procedure 2

Overlay procedure 3

Overlay procedure 4
Main program code

Overlay procedure 5

Figure 18-1 Principle of Overlay System

OVERLAY SYSTEM 149

OVERLAY SYSTEM

150

When an overlay procedure is called, it is automatically loaded into the
overlay area reserved in the main program. This ‘gap’ is large enough to
accommodate the largest of the overlays in the group. The space re-
quired by the main program is thus reduced by roughly the sum of all
subprograms in the group less the largest of them.

In the example above, overlay procedure 2 is the largest of the five pro-
cedures and thus determines the size of the overlay area in the main
code. When it is loaded into memory, it occupies the entire overlay area:

Main program Overlay file

Main program code Overlay procedure 1

Overlay procedure 3

Overlay procedure 4
Main program code

Overlay procedure 5

Figure 18-2: Largest Overlay Subprogram Loaded

TURBO Pascal Reference Manual

OVERLAY SYSTEM

The smaller subprograms are loaded into the same area of memory,
each starting at the first address of the overlay area. Obviously they oc-
cupy only part of the overlay area; the remainder is unused:

Main program Overlay file

Main program code Overlay procedure 1

Overlay procedure 2

Overlay procedure 4

Main program code

Overlay procedure 5

Figure 18-3: Smaller Overlay Subprogram Loaded

As procedures 1, 3, 4, and 5 execute in the same space as used by pro-
cedure 2, it is clear that they require no additional space in the main pro-
gram. It is also clear that none of these procedures must ever call each
other, as they are never present in memory simultaneously.

There could be many more overlay procedures in this group of overlays;
in fact the total size of the overlay procedures could substantially
exceed the size of the main program. And they would still require only
the space occupied by the largest of them.

The tradeoff for this extra room for program code is the addition of disk

access time each time a procedure is read in from the disk. With good
planning, as discussed on page 155, this time is negligible.

OVERLAY SYSTEM 151

Creating Overlays

Creating Overlays

152

Overlay subprograms are created automatically, simply by adding the
reserved word overlay to the declaration of any procedure or function:

overlay procedure Initialize;
and
overlay function TimeOfDay: Time;

When the compiler meets such a declaration, code is no longer output
to the main program file, but to a separate overlay file. The name of this
file will be the same as that of the main program, and the type will be a
number designating the overlay group, ranging from 000 through 099.

Consecutive overlay subprograms will be grouped together. l.e. as long
as overlay subprograms are not separated by any other declaration,
they belong to the same group and are placed in the same overlay file.

Example 1:

overlay procedure One;
begin

end;

overlay procedure Two;
begin

end;

overlay procedure Three;
begin

end;

These three overlay procedures will be grouped together and placed in

the same overlay file. If they are the first group of overlay subprograms
in a program, the overlay file will be no. 000.

The three overlay procedures in the following example will be placed in
consecutive overlay files, .000 and .001, because of the declaration of a
non-overlay procedure Count separating overlay procedures Two and
Three.

TURBO Pascal Reference Manual

Creating Overlays
The separating declaration may be any declaration, for example a dum-
my type declaration, if you want to force a separation of overlay areas.
Example 2:
overlay procedure One;
begin
end;

overlay procedure Two;
begin

end;

procedure Count;
begin

end

overlay procedure Three;
begin

end;

A separate overlay area is reserved in the main program code for each
overlay group, and the following files will be created:

Main program Overlay files

file .000
Main program code

overlay procedure One
Overlay area 0 <

overlay procedure Two

procedure Count file .001

Overlay area l - overlay procedure Three

Main program code

Figure 18-4: Multiple Overlay Files

OVERLAY SYSTEM 153

Nested Overlays

Nested Overlays

Overlay subprograms may be nested, i.e. an overlay subprogram may it-
self contain overlay subprograms which may contain overlay subpro-
grams, etc.

Example 3:
program OverlayDemo;

overlay procedure One;
begin

end;

overlay procedure Two;
overlay procedure Three;
begin

end;
begin

end;

In this example, two overlay files will be created. File .000 contains over-
lay procedures One and Two, and an overlay area is reserved in the
main program to accommodate the largest of these. Overlay file .007
contains overlay procedure Three which is local to overlay procedure
Two, and an overlay area is created in the code of overlay procedure

Two:.
Main program Overlay files Overlay files
Main program code file .000

overlay procedure One

Overlay area overlay procedure Two file .001
\ 0 1 l«—Joverlay procedur
verlay area Three

Main program code Procedure code

Figure 18-5: Nested Overlay Files

154 TURBO Pascal Reference Manual

Automatic Overlay Management

Automatic Overlay Management

An overlay subprogram is loaded into memory only when called. On
each call to an overlay subprogram, a check is first made to see if that
subprogram is already present in the overlay area. If not, it will automati-
cally be read in from the appropriate overlay file.

Placing Overlay Files

During compilation, overlay files will be placed on the logged drive, i.e.
on the same drive as the main program file ((COM or .CMD file).

During execution, the system normally expects to find its overlay files on
the logged drive. This may be changed as described on pages 196
(PC/MS-DOS), 233 (CP/M-86), and 265 (CP/M-80).

Efficient Use of Overlays

The overlay technique, of course, adds overhead to a program by ad-
ding some extra code to manage the overlays, and by requiring disk
accesses during execution. Overlays, therefore, should be carefully
planned.

In order not to slow down execution excessively, an overlay subprogram
should not be called too often, or - if one is called often - it should at
least be called without intervening calls to other subprograms in the
same overlay file in order to keep disk accesses at a minimum. The ad-
ded time will of course vary greatly, depending on the actual disk
configuration. A 5 1/4” floppy will add much to the run-time, a hard disk
much less, and a RAM-disk will add very little time.

To save as much space as possible in the main program, one group of
overlays should contain as many individual subprograms as possible.
From a pure space-saving point of view, the more subprograms you can
put into a single overlay file, the better. The overlay space used in the
main program needs only to accommodate the largest of these subprograms—
the rest of the subprograms have a free ride in the same area of memory. This
fact must be weighed against the time considerations discussed above.

OVERLAY SYSTEM 155

Restrictions Imposed on Overlays
Restrictions Imposed on Overilays

Data Area

Overlay subprograms in the same group share the same area in memory
and thus cannot be present simultaneously. They must therefore not call
each other. Consequently, they may share the same data area which
further adds to the space saved when using overlays (CP/M-80 version
only).

In example 1 on page 152, none of the procedures may therefore call
each other. In example 2, however, overlay procedures One and Two
may call overlay procedure Three, and overlay procedure Three may call
each of the other two, because they are in separate files and conse-
quently in separate overlay areas in the main program.

Forward Declarations
Overlay subprograms may not be forward declared. This restriction is
easily circumvented, however, by forward declaring an ordinary subpro-
gram which then in turn calls the overlay subprogram.

Recursion
Overlay subprograms cannot be recursive. Also this restriction may be

circumvented by declaring an ordinary recursive subprogram which then
in turn calls the overlay subprogram.

Externals

Overlay subprograms may not be external procedures or functions.

Run-Time Errors

Run-time errors occurring in overlays are found as usual, and an ad-
dress is issued by the error handling system. This address, however, is
an address within the overlay area, and there is no way of knowing
which overlay subprogram was actually active when the error occurred.

156 TURBO Pascal Reference Manual

Restrictions Imposed on Overlays

Run-time errors in overlays, therefore, cannot always be readily found
with the Options menu’s ‘Find run-time error’ facility. What ‘Find run-
time error’ will point out is the first occurrence of code at the specified
address. This, of course, may be the place of the error, but the error
may as well occur in a subsequent subprogram within the same overlay

group.

This it not a serious limitation, however, as the type of error and the way

it occurs generally indicates in which subprogram the error happened. The
way to locate the error precisely is to place the suspected subprogram as
the first subprogram of the overlay group. “Find run-time error” will then work.

The best thing to do is not to place subprograms in overlays until
they have been fully debugged!

OVERLAY SYSTEM 157

Restrictions Imposed on Overlays

Notes:

158 TURBOQ Pascal Reference Manual

Chapter 19
IBM PC GOODIES

This chapter applies to the IBM PC-versions only, and the functions
described can be expected to work on IBM PC and compatibles
only! If you have problems on a compatible, it's not as compatible as
you thought.

Screen Mode Control
TURBO provides a number of procedures to control the PC's various
screen modes.

Windows
The window routines let you declare a smaller part of the screen to be
your actual work area, protecting the rest of the screen from being
overwritten.

Basic graphics
These built-in graphics routines let you plot points and draw lines in
different colors.

Extended graphics
A set of external graphics routines allow for more advanced graphics.
One simple statement includes these routines in your programs.

Turtlegraphics
The same external machine language file also provides you with turtle-
graphics routines.

Sound
Standard procedures are provided which let you use the PC's sound
capabilities in an easy way.

Keyboard
A number of the special keys of the IBM keyboard are installed as pri-
mary commands for the editor. These commands are listed on page
186, and you may add more if you wish. The secondary WordStar com-
mands are still available.

IBM PC GOODIES 159

Screen Mode Control

Screen Mode Control

The IBM PC gives you a choice of screen modes, each with its own
characteristics. Some display characters, some display graphics, and
they all have different capabilities of showing colors. TURBO Pascal sup-
ports all these screen formats and provides an easy way of using them.

The following screen modes are available:

TextMode 25 lines of 40 or 80 characters
GraphColorMode 320x200 dots color graphics
GraphMode 320x200 dots black & white graphics (color on
an RGB monitor)
HiRes 640x200 dots black + one color graphics
Text Modes

In text mode, the PC will display 25 lines of either 40 or 80 characters.
The procedure to invoke this mode is named TextMode and is
called as follows:

TextMode;

TextMode (BW40) ; BWA40 is an integer constant with the value 0
TextMode (BW80) ; BWB80 is an integer constant with the value 2
TextMode(C40) ; C40 is an integer constant with the value 1
TextMode(C80); C80 is an integer constant with the value 3

The first example with no parameters invokes the text mode which was
active last, or the one that is currently active. The next two examples
activate black and white text modes with 40 and 80 characters on each
line. The final two examples activate color text modes with 40 and 80
characters on each line. Calling TextMode wil ciear the screen.

TextMode should be called before exiting a graphics program in order to
return the system to text mode.

160 TURBO Pascal Reference Manual

Screen Mode Control

Color Modes

In the color text modes, each character may be chosen to be one of 16
colors, and the background may be one of 8 colors. The colors are re-
ferred to by the numbers O through 15. To make things easier, TURBO
Pascal includes 16 pre-defined integer constants which may be used to
identify colors by names:

Dark colors Light colors

0: Black 8: DarkGray

1: Blue 9: LightBlue

2: Green 10: LightGreen
3: Cyan 11: LightCyan

4: Red 12: LightRed

5: Magenta 13: LightMagenta
6: Brown 14: Yellow

7: LightGray 15: White

Table 19-1: Text Mode Color Scale

Characters and background may be any of these colors. Notice that some
monitors do not recognize the intensity signal used to create the eight light
colors. On such monitors, the light colors will be displayed as their
dark equivalents.

TextColor
Syntax: TextColor(Colon);
This procedure selects color of the characters. Color is an integer ex-

pression in the range 0 through 15, selecting character colors from the
table given above.

Examples:
TextColor(1l); selects blue characters
TextColor(Yellow); selects yellow characters

The characters may be made to blink by adding 16 to the color number.
There is a pre-defined constant Blink for this purpose:

TextColor(Red + Blink); selects red, blinking characters

IBM PC GOODIES 161

Screen Mode Control

TextBackground
Syntax: TextBackground(Color);

This procedure selects color of the background, that is, the cell immedi-
ately surrounding each character; the entire screen consists of 40 or 80
by 25 such cells. Color is an integer expression in the range 0 through
7, selecting character colors from the table given above.

Examples:

TextBackground(4); selects red background

TextBackground(Magenta); selects magenta background
Cursor Position

In text mode, two functions will tell you where the cursor is positioned
on the screen:

WhereX
Syntax: WhereX;

This integer function returns the X-coordinate of the current cursor posi-
tion.

WhereY
Syntax: WhereY;

This integer function returns the Y-coordinate of the current cursor posi-
tion.

162 TURBO Pascal Reference Manual

Screen Mode Control

Graphics Modes

With a standard IBM graphics video board, or one that is compatible,
TURBO will do graphics. Three modes are supported:

GraphColorMode 320x200 dots color graphics
GraphMode 320x200 dots black & white graphics
HiRes 640x200 dots black + one color graphics

The upper, left corner of the screen is coordinate 0,0. X coordinates
stretch to the right, Y coordinates downward. All drawing is “clipped,”
that is, anything displayed outside the screen will be ignored (except
when the turtlegraphics’ Wrap is in effect).

Activating one of the graphics modes will clear the screen. The stan-
dard procedure CirScr works only in text mode, so the way to clear a
graphics screen is to activate a graphics mode, possibly the one that's
already active. With extended graphics and turtlegraphics, however,
there is a ClearScreen procedure which clears the active window.

Graphics can be mixed with text. In 320 x 200 modes, the screen can
display 40 x 25 characters and in 640 x 200 mode, it can display 80 x
25 characters.

The TextMode procedure should be called before exiting a graphics pro-
gram in order to return the system to text mode, see page 160).

GraphColorMode
Syntax: GraphColorMode;
This standard procedure activates the 320x200 dots color graphics
screen giving you X-coordinates between 0 and 319 and Y-coordinates

between 0 and 199. Drawings may use colors selected from the palette
described on page 165.

IBM PC GOODIES 163

Screen Mode Control

GraphMode

Syntax: GraphMode;

This standard procedure activates the 320x200 dots black and white
graphics screen giving you X-coordinates between 0 and 319 and Y-
coordinates between 0 and 199. On a RGB monitor like the IBM
Color/Graphics Display, however, even this mode displays colors from a
limited palette as shown on page 166.

HiRes

Syntax: HiRes;

This standard procedure activates the 640x200 dots high resolution
graphics screen giving you X-coordinates between 0 and 639 and Y-
coordinates between 0 and 199. In high resolutions graphics, the back-
ground (screen) is always black, and you draw in one color set by the
HiResColor standard procedure.

HiResColor

164

Syntax: HiResColor(Colon);

This standard procedure selects the color used for drawing in high reso-
lution graphics. Color is an integer expression in the range 0 through 15.
The background (screen) is always black. Changing HiResColor causes
anything already on the screen to change to the new color.

Examples:
HiResColor(7); selects light gray
HiResColor(Blue); selects blue

The new color may be chosen from the following 16 colors:

TURBO Pascal Reference Manual

Screen Mode Control

Dark colors Light colors

0: Black 8: DarkGray

1: Blue 9: LightBlue

2: Green 10: LightGreen

3: Cyan 11: LightCyan

4: Red 12: LightRed

5: Magenta 13: LightMagenta
6: Brown 14: Yellow

7: LightGray 15: White

Table 19-2: High Resolution Graphics Color Scale

Some monitors do not recognize the intensity signal used to create the
eight light colors. On such monitors, the light colors will be dis-played as
their dark equivalents.

Palette
Syntax: Palette(N);

This procedure activates the color palette indicated by the integer expres-
sion N, which is a parameter that specifies the number of the palette. Four
color palettes exist, each containing three colors (1-3) and a fourth color
(0) which is always equal to the background color (see later):

Color number: 0 1 2 3
Palette O Background Green Red Brown
Palette 1 Background Cyan Magenta LightGray

Palette 2 Background LightGreen LightRed Yellow
Palette 3 Background LightCyan LightMagenta White

Table 19-3: Color Palettes in Color Graphics

IBM PC GOODIES- 165

Screen Mode Control

The graphics routines will use colors from this palette. They are called
with a parameter in the range 0 through 3, and the color actually used is
selected from the active palette:

Plot(X,Y,2) will plot a red point when palette 0 is active.
Plot(X,Y,3) will plot a yellow point when palette 2 is active.
Plot(X,Y,0) will plot a point in the active background color,

in effect erasing that point.

Once a drawing is on the screen, a change of palette will cause all
colors on the screen to change to the colors of the new palette. Only
three colors plus the color of the background may thus be displayed
simultaneously.

The GraphMode supposedly displays only black and white graphics, but
on an RGB monitor, like the IBM Color/Graphics Display, even this mode
displays the following limited palette:

Color number: 0 1 2 3
Palette 0 Background Blue Red LightGray
Palette 1 Background LightBlue LightRed White

Table 19-4: Color Palettes in B/W Graphics

GraphBackground

166

Syntax: GraphBackground(Color);

This standard procedure sets the the background color, that is the en-
tire screen, to any of 16 colors. Color is an integer expression in the
range O through 1

GraphBackground(0); sets the screen to black
GraphBackground(11); sets the screen to light cyan

The following color numbers and pre-defined constants are available:

TURBO Pascal Reference Manual

Screen Mode Control

Dark colors Light colors

0: Black 8: DarkGray

1: Blue 9: LightBlue

2: Green 10: LightGreen

3: Cyan 11: LightCyan

4: Red 12: LightRed

5: Magenta 13: LightMagenta
6: Brown 14: Yellow

7: LightGray 15: White

Table 19-5: Graphics Background Color Scale

Some monitors do not recognize the intensity signal used to create the
eight light colors. On such monitors, the light colors will be displayed as

their dark equivalents.

IBM PC GOODIES

167

Windows

Windows

TURBO Pascal lets you declare windows anywhere on the screen.
When you write in such a window, the window behaves exactly as if you
were using the entire screen, leaving the rest of the screen untouched.

Text Windows

168

The Window procedure allows you to define any area on the screen as
the active window in text mode:

Window(X1,Y1,X2,Y2);
where X1 and Y1 are the absolute coordinates of the upper left corner of the

window, and X2 and Y2 are the absolute coordinates of the lower right
corner. The minimum size of the text window is 1 column by 1 line.

The default window is 7,7,80,25 in 80-column modes and 7,7,40,25 in
40-column modes, that is, the entire screen.

All screen coordinates (except the window coordinates themselves) are
relative to the active window. This means that after the statement:

Window(20,8,60,17);
which defines the center portion of the physical screen to be your active

window, screen coordinates 1,1 (upper left corner) are now the upper
left corner of the window, not of the physical screen:

TURBO Pascal Reference Manual

Windows

Figure 19-1: Text Windows

The screen outside the window is simply not accessible, and the window
behaves as it were the entire screen. You may insert, delete, and scroll
lines, and lines will wrap around if too long.

Graphics Windows

The GraphWindow procedure allows you to define an area of the screen
as the active window in any of the graphics modes:

GraphWindow(X1,Y1,X2,Y2);

where X1 and Y1 are the absolute coordinates of the upper left corner of the
window, and X2 and Y2 are the absolute coordinates of the lower right
corner.

The default graphics window is 0,0,379,799 in 320x200-dot modes and
0,0,639,199 in 640x200-dot mode, that is, the entire screen.

ALL screen coordinates are relative to the active window—not to the
physical screen. For example, after:

GraphWindow(50, 100,200, 180);
coordinate 0,0 is in the upper left corner of the window.
Windows cause graphics to be ‘clipped’, that is, if you for example Draw

between two coordinates outside the window, only the part of the line
that falls within the window will be shown:

IBM PC GOODIES 169

Windows

Figure 19-2: Graphics Windows

170 TURBO Pascal Reference Manual

Basic Graphics

Basic Graphics
In each of the graphics modes, TURBO Pascal provides standard pro-

cedures which will plot points at specified coordinates and draw lines
between two coordinates:

Plot
Syntax: Plot(X, Y,Colon);

Plots a point at the screen coordinates specified by X and Y in the color
specified by Color. X, Y, and Color are integer expressions.

Draw
Syntax: Draw(X1,Y1,X2,Y2,Color);
Draws a line between the screen coordinates specified by X71,Y7 and

X2,Y2in the color specified by Color. All parameters are integer expres-
sions.

IBM PC GOODIES 171

Extended Graphics

Extended Graphics

TURBO Pascal comes with a set of external machine language routines
that can be included in TURBO programs during compilation. They pro-
vide extended graphics commands as described in the following.

The external graphics routines are contained in the file GRAPH.BIN. The
file GRAPH.P contains the necessary external declarations, and the ex-
tended graphics routines are included in a TURBO program simply by
using this statement to include the GRAPH.P file in the program:

{$1 GRAPH.P }

ColorTable

172

Syntax: ColorTable(C1,C2,C3,C4);

ColorTable supplements Palette by defining a color ’'translation table’
which lets the current color of any given point determine the new color
of that point when it is written again. The default color table value is
(0,1,2,3), which means that when a point is written on the screen, it
does not change the color that's already there:

color 0 becomes color 0
color 1 becomes color 1
color 2 becomes color 2
color 3 becomes color 3

The table (3,2,1,0) would cause

color 0 to become color 3

color 1 to become color 2

color 2 to become color 1

color 3 to become color 0

that is, all colors would be reversed. The PutPic procedure always uses
the color table; all other draw procedures use the table if a color of — 1
is specified, for example:

Plot(X,Y,-1);

TURBO Pascal Reference Manual

Extended Graphics

Arc
Syntax: Arc(X, Y,Angle,Radius,Colon);

Draws an arc of Angle degrees, starting at the position given by XY,
with a radius given by Radius. If Angle is positive, the arc turns clock-
wise; if it is negative, the arc turns counterclockwise. If Color is from 0
through 3, the pen color is selected from the color palette (see page
165); if it is — 1, the color is selected from the color translation table
defined by the ColorTable procedure (page 172).

Circle

Syntax: Circle(X,Y,Radius,Color),

Draws a circle in the color given by Color with its center at X,Y and a ra-
dius as specified by Radius.

The radius of the circle is the same in the horizontal and vertical axes. In
320 x 200 mode this draws a perfect circle, as the display is almost
linear. In 640 x 200 mode, however, circles appear as ellipses.

If Color is from O through 3, the pen color is selected from the color

palette (see page 165); if it is — 1, the color is selected from the color
translation table defined by the ColorTable procedure (page 172).

GetPic
Syntax: GetPic(Buffer,X1,Y1,X2,Y2);
Copies the contents of a rectangular area defined by the integer expres-
sions X1,Y1,X2,Y2 into the variable Buffer, which may be of any type.

X1, Y1 represent the upper left corner and X2,Y2 represent the lower right
corner of the area to be stored in Buffer.

The minimum buffer size in bytes required to store the image is calculat-
ed as:

320 x 200 modes:
Size = ((Width + 3) div 4)*Height*2 + 6

640 x 200 modes:
Size = ((Width + 7) div 8)*Height + 6

IBM PC GOODIES: 173

Extended Graphics

where:
Width = abs(x1-x2) + 1 and Height = abs(y1-y2) + 1

Note that it the responsibility of the programmer to ensure that the
buffer is large enough to accommodate the entire transfer.

The first 6 bytes of the buffer constitute a three word header (three in-
tegers). After the transfer, the first word contains 2 in 320 x 200 mode
or 1 in 640 x 200 mode. The second word contains the width of the im-
age and third contains the height. The remaining bytes contain the data.
Data is stored with the leftmost pixels in the most significant bits of the
bytes. At the end of each row, the remaining bits of the last byte are
skipped.

PutPic

Syntax: PutPic(Buffer,X,Y);

Capies the contents of the variable Buffer onto a rectangular area on
the screen. The integer expressions X and Y define the lower left-hand
corner of the picture area. Buffer is a variable of any type, in which a
picture has previously been stored by GetPic. Each bit in the buffer is
converted to a color according to the color map before it is written to
the screen.

GetDotColor

174

Syntax: GetDotColor(X, Y);

This integer function returns the color value of the dot located at coordi-
nate X,Y. Values of 0 through 3 may be returned in 320 x 200 dot
graphics, and 0 or 1 in 640 x 200 dot graphics. If X,Y is outside the win-
dow, GetDotColor returns — 1.

TURBO Pascal Reference Manual

Extended Graphics

FillScreen
Syntax: FillScreen(Colon);

Fills the entire active window with the color specified by the integer ex-
pression Color. If Color is in the range 0 through 3, the color will be
selected from the color palette, if it is — 1, the color table will be used.
This allows for dramatic effects; with a color table of 3,2,1,0, for exam-
ple, FillScreen(— 1) will invert the entire image within the active window.

FillShape
Syntax: FiliShape(X, Y,FillColor,BorderColor),

Fills an area of any shape with the color specified by the integer expres-
sion FillColor which must be in the range 0 through 3. The color transla-
tion table is not supported. The shape must be entirely enclosed by the
color specified by BorderColor; if not, FillShape will ‘spil’ onto the area
outside the shape. X and Y are the coordinates of a point within the im-
age to be filled.

FillPattern
Syntax: FillPattern(X1,Y1,X2,Y2,Color),

Fills a rectangular area defined by the coordinates X7,Y7,X2,Y2 with the
pattern defined by the Pattern procedure. The pattern is replicated both
horizontally and vertically to fill the entire area. Bits of value 0 cause no
change to the display, whereas bits of value 1 cause a dot to be written
using the color selected by Color.

IBM PC GOODIES 175

Extended Graphics

Pattern
Syntax: Pattern(P);

Defines the pattern used by the FillPattern precedure. The pattern is an
8 x 8 matrix defined by the P parameter which must be of type ar-
ray[0..7] of Byte. Each byte corresponds to a horizontal line in the pat-
tern, and each bit corresponds to a pixel. The foliowing shows some
sample patterns and the hexadecimal value of each line in the matrix. A
hyphen represents a binary 0, and an asterisk represents a binary 1.

- % o L % _ O $44 LI S N $AA
L S . $88 N FE B $55
I $11 LIS R S $AA
- - ¥ L o ¥ $22 - % o % ¥ _ ¥ $55
- ® o - % o $44 LI R S $AA
¥ - - - *%_ _ - 388 - % - % _x _x §55
- - - % o o % $11 * % ok o _ $AA
- - % - - - x - §22 - % - % _ % _x §55

To use the first pattern, the slanted lines, the following typed constant
could be declared and passed as a parameter to Pattern:

const
Lines: array[0..7] of Byte =
($44,$88,811,8$22,%44,%$88,$11,822);

When the pattern is used by the FillPattern procedure, low bits cause no
change to the display, high bits cause a dot to be written.

176 TURBO Pascal Reference Manual

Turtlegraphics

Turtlegraphics

The external file GRAPH.BIN that contains the extended graphics rou-
tines mentioned in the previous section also contains the TURBO Turtle-
graphics routines, so whenever you include the graphics declaration file
GRAPH.P:

{$I GRAPH.P }
you also have access to the turtlegraphics described in the following.

TURBO Turtlegraphics is based on the 'turtle’ concept devised by S.
Papert and his co-workers at MIT. To make graphics easy for those of
us who might have difficulty understanding cartesian coordinates, Papert
et al. invented the idea of a 'turtle’ that could 'walk’ a given distance and
turn through a specified angle, drawing a line as it went along. Very sim-
ple algorithms in this system can create more interesting images than an
algorithm of the same length in cartesian coordinates.

Like the other graphics routines, turtlegraphics operate within a window.
This window is set to the entire screen by default but the Window or
TurtleWindow procedures can be used to define only part of the screen
as the active graphics area, safeguarding the rest from being overwrit-
ten. Turtlegraphics and ordinary graphics can be used simultaneously,
and they share a common window.

The TURBO Turtlegraphics routines operate on turtle coordinates. The
turtle’s home position (0,0) in this coordinate system is always in the
middle of the active window, with positive values stretching to the right
(X) and upwards (Y), and negative values stretching to the left (X) and
downwards (Y):

IBM PC GOODIES 177

Turtlegraphics

Figure 19-3: Turtle Coordinates

The range of coordinates on a full screen is:

—99..0..100
—99..0..100

320 x 200 modes: X
640 x 200 mode: X

—159..0..160, Y
—319..0..320, Y

nll

but the actual range will be limited to the size of the active window.
Coordinates outside the active window are legal, but will be ignored.
This means that drawings are ‘clipped’ to the limits of the active win-
dow.

Back
Syntax: Back(Dist);
Moves the turtle backwards the distance given by the integer expres-
sion Dist from its current position in the direction opposite to the

turtle’s current heading while drawing a line in the current pen color (if
Dist is is negative, the turtle moves forwards).

178 TURBO Pascal Reference Manual

Turtlegraphics

ClearScreen
Syntax: ClearScreen;

This procedure clears the active window and homes the turtle.

Forwd
Syntax: Forwd(Dist);
Moves the turtle forwards the distance given by the integer expression
Dist from its current position in the direction the turtle is currently facing,

while drawing a line in the current pen color (if Dist is negative, the turtle
moves backwards).

Heading
Syntax: Heading;
The Heading function returns an integer in the range 0..359 giving the

direction in which the turtle is currently pointing. 0 is upwards, and in-
creasing angles represent headings in clockwise direction.

HideTurtle
Syntax: HideTurtle;
Hides the turtle, so that it is not shown on the screen. This is the initial

state of the turtle, so to see the turtle, you must first call the ShowTurtle
procedure.

Home
Syntax: Home;
This procedure puts the turtle to its home position at turtle coordinates

0,0 (the middle of the active window), and points it in heading 0 (up-
wards).

IBM PC GOODIES 179

Turtlegraphics

NoWrap
Syntax: NoWrap;
This procedure disables the turtle from “wrapping,” that is, reappearing
at the opposite side of the active window if it exceeds the window boun-
dary. NoWrap is the system’s initial value.
PenDown
Syntax: PenDown;
This procedure ‘puts the pen down’ so that when the turtle moves, it
draws a line. This is the initial status of the pen.
PenUp
Syntax: PenUp;

This procedure ‘lifts the pen’ so the turtle moves without drawing a line.

SetHeading
Syntax: SetHeading(Angle);
Turns the turtle to the angle specified by the integer expression Angle. 0
is upwards, and increasing angles represent clockwise rotation. If Angle
is not in the range 0..359, it is converted into a number in that range.
Four integer constants are pre-defined to easily turn the turtle in the four

main directions: North = 0 (up), East = 90 (right), South = 180, and
West = 270 (left).

180 TURBQO Pascal Reference Manual

Turtlegraphics

SetPenColor
Syntax: SetPenColor(Colon);
Selects the color of the ‘pen’, that is, the color that will be used for
drawing when the turtle moves. Color is an integer expression yielding a
value between — 1 and 3. If Color is from 0 through 3, the pen color is
selected from the color palette (see page 165); if it is — 1, the color is
selected from the color translation table defined by the ColorTable pro-
cedure (page 172).

SetPosition
Syntax: SetPosition(X, Y);

Moves the turtle to the location with coordinates given by the integer ex-
pressions X and Y without drawing a line.

ShowTurtle
Syntax: ShowTurtle;

Displays the turtle as a small triangle. The turtle is initially hidden, so to
see the turtle, you must first call this procedure.

TurnLeft
Syntax: TurnLeft(Angle);

Turns the turtle Angle degrees from its current direction. Positive angles
turn the turtle to the left, negative angles turn it to the right.

TurnRight
Syntax: Tuthight(Angle);

Turns the turtle Angle degrees from its current direction. Positive angles
turn the turtle to the right, negative angles turn it to the left.

IBM PC GOODIES 181

Turtlegraphics

TurtleWindow

182

Syntax: TurtleWindow(X, Y, W,H);

The TurtleWindow procedure defines an area of the screen as the active
graphics area in any of the graphics modes, exactly as does the Win-
dow procedure. TurtleWindow, however, lets you define the window in
terms of turtle coordinates, which are more natural to use in turtiegraph-
ics. X and Y are the screen coordinates of the center of the window; W
is its width, and H is its height.

The default TurtleWindow is 159,99,320,200 in 320x200-dot modes and
319,99,640,200 in 640x200-dot mode, that is, the entire screen. If the
turtlewindow is defined to fall partly outside the physical screen, it is
clipped at the edges of the physical screen.

Turtlegraphics are ‘clipped’ to the active window, that is, if you move
the turtle outside the active window, it will not be shown and it will not
draw.

When the window is set (whether by TurtleWindow or by Window, the
turtle is initialized to its Home position and heading. Changing screen
mode resets the window to the entire screen.

Turtlegraphics operate in turtle coordinates. The turtle’s home position
(0,0) in this coordinate system is always in the middle of the active win-
dow, with positive values stretching to the right (X) and upwards (Y), and
negative values stretching to the left (X) and downwards (Y):

TURBO Pascal Reference Manual

Turtlegraphics

Figure 19-4: Turtle Coordinates

The range of coordinates on a full screen is:

-99..0..100
-99..0..100

320 x 200 modes: X
640 x 200 mode: X

-159..0..160, Y
-319..0..320, Y

but the actual range will be limited to the size of the active window.
Coordinates outside the active window are legal, but will be ignored.

This means that drawings are ‘clipped’ to the limits of the active
window, and anything drawn outside of the active window is lost.

TurtleThere
Syntax: TurtleThere;

This boolean function returns True if the turtle is visible in the
active window (after a ShowTurtle), otherwise it returns False.

TurtleDelay
Syntax: TurtleDelay(Ms);

This procedure sets a delay in milliseconds between each step of the
turtle. Normally, there is no delay.

IBM PC GOODIES 183

Turtlegraphics

Wrap
Syntax: Wrap;
After a call to this procedure, the turtle will re-appear at the opposite

side of the active window when it exceeds the window boundary. Use
NoWrap to return to normal.

Xcor
Syntax: Xcor;

This function returns the integer value of the turtle’s current X-
coordinate.

Ycor
Syntax: Ycor;

This function returns the integer value of the turtle’s current Y-
coordinate.

184 TURBO Pascal Reference Manual

Sound

Sound
The PC'’s speaker is accessed through the standard procedure Sound:
Sound(I);
where [is an integer expression specifying the frequency in Hertz. The
specified frequency will be emitted until the speaker is turned off with a
call to the NoSound standard procedure:

NoSound

The following example program will emit a 440-Hertz beep for half a
second:

begin
Sound (440);
Delay(500);
NoSound;
end.

IBM PC GOODIES 185

Editor Command Keys

Editor Command Keys

In addition to the WordStar commands, the editing keys of IBM PC key-
board have been implemented as primary commands. This means that
while e.g. Ctrl-E, Ctrl-X, Ctrl-S, and Ctrl-D stil move the cursor up,
down, left, and right, you may also use the arrows on the numeric
keypad. The following table provides an overview of available editing
keys, their functions, and their WordStar-command equivalents:

ACTION PC-KEY COMMAND
Character left Left arrow Ctrl-S
Character right Right arrow Ctrl-D
Word left Ctrl-left arrow Ctrl-A
Word right Ctrl-right arrow Ctrl-F
Line up Up arrow Ctrl-E
Line down : Down arrow Ctrl-X
Page up PgUp Ctrl-R
Page down PgDn Ctrl-C
To left on line Home Ctrl-Q-S
To right on line End Ctrl-Q-D
To top of page Ctrl-Home Ctrl-Q-E
To bottom of page Ctrl-End Ctrl-Q-X
To top of file Ctrl-PgUp Ctrl-Q-R
To end of file Ctrl-PgDn Ctrl-Q-C
Insert mode on/off 1Ins Ctrl-Vv
Mark block begin F7 Ctrl-K-B
Mark block end F8 Ctrl-K-K
Tab <TAB> Ctrl-I

Table 19-6: IBM PC Keyboard Editing Keys

Note that while maintaining WordStar compatibility in the commands,
some function keys have different meanings in WordStar and TURBO.

186 TURBO Pascal Reference Manual

Chapter 20
PC-DOS AND MS-DOS

This chapter describes features of TURBO Pascal specific to the PC-DOS
and MS-DOS implementations. The information presented on pages 187-
209 will help you use Turbo Pascal efficiently. The remainder of the chapter
will be of interest to experienced programmers; it describes such things as
machine language routines, technical aspects of the compiler, etc.

Tree-Structured Directories

On the Main Menu

The DOS structured directories are supported by TURBO’s main menu:

Logged drive: A
Active directory: \

Work file:

Main file:

Edit Compile Run Save
Dir Quit compiler Options
Text: 0 bytes

Free: 62903 bytes

> B

Figure 20-1: TURBO Main Menu

PC-DOS AND MS-DOS 187

Tree-Structured Directories

188

Notice the addition of the A command which lets you change the Active
directory using the same path description as with the CHDIR command
of DOS. The currently active directory is shown after the colon.

DOS uses a backslash: \ to refer to the ROOT directory, as shown in
the example. The rest of directories have names just like files, that is a
1-8 letter name optionally followed by a period and a 1-3 letter type.
Each directory can contain ordinary files or other directories.

Files in this system of directories are referenced by a path name in addi-
tion to the file name. A path name consists of the names of the direc-
tories leading to the file, separated by backslashes. The complete refer-
ence to a file called INVADERS.PAS in the directory TURBO is thus:

\TURBO\INVADERS. PAS

The first backslash indicates that the path starts from the root directory.
If you were logged on some other directory, and you wanted to move to
the TURBO directory, you would press A and enter:

\TURBO

In every sub-directory you will see two special entries in a DIR
listing: . and .. The one period serves to identify this directory
as a sub-directory. The two periods is a reference to the directory’s
‘parent’ directory. These two periods may be used in a directory path; if,
for example, you are logged on a sub-directory of TURBO, you may re-
turn to TURBO by pressing A and then entering the two periods.

TURBO Pascal Reference Manual

Tree-Structured Directories

Directory-related procedures

TURBO Pascal provides the following procedures to manipulate the
tree-structured directories of MS-DOS.

ChDir
Syntax: ChDir(St);
Changes the current directory to the path specified by the string expres-
sion St. Also changes the logged drive if St contains a file name. For

example:

ChDir('B:\PROG');

MkDir
Syntax: MkDir(St);

Creates a new sub-directory as specified by the path given by the string
expression St. The last item in the path must be a non-existing filename.

RmDir
Syntax: RmDir(St);

Removes the sub-directory specified by the path given by the string ex-
pression St.

GetDir
Syntax: GetDir(Dr,St);

Returns the current directory of the drive indicated by Dr in the string
variable St. Dr is an integer expression where 0= logged drive, 1 =A,
etc.

Please note that you canuse I/O error trapping to determine whether any of
the directory-related procedures were executed successfully (see 1/O
checking in Chapter 14).

PC-DOS AND MS-DOS 189

Compiler Options

Compiler Options

The O command selects the following menu from which you may view
and change some default values of the compiler. It also provides a help-
ful function to find runtime errors in programs compiled into object code
files.

compile -> Memory
Com-file
cHn-file

command line Parameter:

Find run-time error Quit

Figure 20-2: Options Menu

Memory / Com file / cHn-file

190

The three commands M, C, and H select the compiler mode, i.e. where
to put the code which results from the compilation. Memory is the de-
fault mode. When active, code is produced in memory and resides there
ready to be activated by a Run command.)

Com-file is selected by pressing C. The arrow moves to point to this line.
The compiler writes code to a file with the same name as the Work file
(or Main file, if specified) and the file type .COM. This file contains the
program code and Pascal runtime library, and may be activated by typ-
ing its name at the console.

cHain-file is selected by pressing H. The arrow moves to point to this
line. The compiler writes code to a file with the same name as the Work
file (or Main file, if specified) and the file type .CHN. This file contains the
program code but no Pascal library and must be activated from another
TURBO Pascal program with the Chain procedure (see page 193).

When the Com mode is selected, four additional lines will appear on the
screen:

TURBO Pascal Reference Manual

Compiler Options

minimum cOde segment size: XXXX paragraphs (max.YYYY)
minimum Data segment size: XXXX paragraphs (max.YYYY)
mInimum free dynamic memory: XXXX paragraphs
mAximum free dynamic memory: XXXX paragraphs

Figure 20-3: Memory Usage Menu

The use of these commands is described in the following sections.

Minimum Code Segment Size

The O-command is used to set the minimum size of the code segment
for a .COM using Chain or Execute. As discussed on page 193 , Chain
and Execute do not change the base addresses of the code, data, and
stack segments, and a ‘root’ program using Chain or Execute must
therefore allocate segments of sufficient size to accommodate the larg-
est segments in any Chained or Executed program.

Consequently, when compiling a ‘root’ program, you must set the value
of the Minimum Code Segment Size to at least the same value as the
largest code segment size of the programs to be chained/executed from
that root. The required values are obtained from the status printout ter-
minating any compilation. The values are in hexadecimal and specify
number of paragraphs, a paragraph being 16 bytes.

Minimum Data Segment Size

The D-command is used to set the minimum size of the data segment
for a .COM using Chain or Execute. As discussed above, a ‘root’ pro-
gram using these commands must allocate segments of sufficient size
to accommodate the largest data of any Chained or Executed program.

Consequently, when compiling a ‘root’ program, you must set the value
of the Minimum Data Segment Size to at least the same value as the
largest data segment size of the programs to be chained/executed from
that root. The required values are obtained from the status printout ter-
minating any compilation. The values are in hexadecimal and specify
number of paragraphs, a paragraph being 16 bytes.

PC-DOS AND MS-DOS 191

Compiler Options

Minimum Free Dynamic Memory

This value specifies the minimum memory size required for stack and
heap. The value is in hexadecimal and specifies a number of paragraphs, a
paragraph being 16 bytes.

Maximum Free Dynamic Memory

This value specifies the maximum memory size allocated for stack and
heap. It must be used in programs which operate in a multi-user environ-
ment to assure that the program does not allocate the entire free memory.
The value is in hexadecimal and specifies a number of paragraphs, a para-
graph being 16 bytes.

Command Line Parameters

The P-command lets you enter one or more parameters which are passed
to your program when running it in Memory mode, just as if they had been
entered on the DOS command line. These parameters may be accessed
through the ParamCount and ParamStr functions.

Find Run-time Error

192

When you run a program compiled in memory, and a run-time error oc-
curs, the editor is invoked, and the error is automatically pointed out. This,
of course, is not possible if the program is in a .COM file or an .CHN file.
Run time errors then print out the error code and the value of the program
counter at the time of the error:

Run-time error 01, PC=1B56
Program aborted

Figure 20-4: Run-time Error Message

To find the place in the source text where the error occurred, enter the
F command. When prompted for the address, enter the address given
by the error message:

Enter PC: 1B56

Figure 20-5: Find Run-time Error
TURBO Pascal Reference Manual

Compiler Options

The place in the source text is now found and pointed out exactly as if
the error had occurred while running the program in memory.

Notice that locating errors in programs using overlays can be a bit more
tricky, as explained on page 156.

Standard ldentifiers

The following standard identifiers are unique to the DOS implementa-

tions:

CSeg LongFilePos MemW PortW
DSeg LongFileSize MsDos SSeg
Intr LongSeek Ofs Seg

Chain and Execute

TURBO Pascal provides two procedures Chain and Execute which allow
TURBO programs to activate other TURBO programs. The syntax of the
procedure calls are:

Chain(FilVar)
Execute(FilVan

where FilVar is a file variable of any type, previously assigned to a disk
file with the standard procedure Assign. If the file exists, it is loaded into
memory and executed.

The Chain procedure is used only to activate special TURBO Pascal
.CHN files, i.e. files compiled with the cHn-file option selected on the
Options menu (see page 190). Such a file contains only program code;
no Pascal library, it uses the Pascal library already present in memory.
Chain files must have the same compiler directives as the main module.

The Execute procedure is used to activate any TURBO Pascal .COM
file.

If the disk file does not exist, an I/O error occurs. This error is treated as
described on page 116. When the | compiler directive is passive ({$I-}),
program execution continues with the statement following the failed
Chain or Execute statement, and the /Oresult function must be called
prior to further 1/O.

PC-DOS AND MS-DOS 193

Chain and Execute

194

Data can be transferred from the current program to the chained pro-
gram either by shared global variables or by absolute address variables.

To ensure overlapping, shared global variables should be declared as
the very first variables in both programs, and they must be listed in the
same order in both declarations. Furthermore, both programs must be
compiled to the same size of code and data segments (see page 191).
When these conditions are satisfied, the variables will be placed at the
same address in memory by both programs, and as TURBO Pascal
does not automatically initialize its variables, they may be shared.

Example:
Program MAIN.COM:
program Main;
var
Txt: string[80];
CntPrg: file;

begin
Write('Enter any text: '); Readln(Txt);
Assign(CntPrg, 'ChrCount.chn');
Chain(CntPrg);

end.

Program CHRCOUNT.CHN:
program ChrCount;
var
Txt: string[80];
NoOfChar,
NoOfUpc,
I: Integer;

begin
NoOfUpc := O;
NoOfChar := Length(Txt);
for I := 1 to length(Txt) do

1 Txt[I]in[“A’. .¢2’] then NoOfUpc := Succ(NoOfUpec);
Write('No of characters in entry: ',6NoOfChar);
Writeln('. No of upper case characters: ', NoOfUpc,'.');
end.

TURBO Pascal Reference Manual

Chain and Execute

The safest way to ensure that chain and execute files share data correctly is
to place all global constant, type and variable declarations in a single
include file. Then, include this “declaration module” in all the chain and
execute programs:

program MainModule;
{$I DECLARE. INC All constant, type & variable

declarations}
begin

Chain(. . .); {chain to ChainModule}
end.

program ChainModule;
{$1 DECLARE. INC All constant, type & variable

declarations}
begin

Execute(. . .); {re-load MainModule}
end.

If you want a TURBO program to determine whether it was invoked by
eXecute or directly from the DOS command line, you should use an ab-
solute variable at address Cseg:$80. This is the command line length
byte, and when a program is called from DOS, it contains a value
between 0 and 127. When eXecuting a program, therefore, the calling
program should set this variable to something higher than 127. When
you then check the variable in the called program, a value between 0
and 127 indicates that the program was called from DOS, a higher value
that it was called from another TURBO program.

Chaining and eXecuting TURBO programs does not alter the memory al-
location state. The base addresses and sizes of the code, data and
stack segments are not changed; Chain and Execute only replace the
program code in the code segment. ‘Alien’ programs, therefore, cannot
be initiated from a TURBO program.

It is important that the first program which executes a Chain statement
allocates enough memory for the code, data, and stack segments to
accommodate the largest .CHN program. This is done by using the Options
menu to change the minimum code, data and free memory sizes (see
page 190).

PC-DOS AND MS-DOS 195

Overlays

Note: Refer to Appendix N (general question section) for a “cookbook”
method of compiling to .CHN files.

Note that neither Chain nor Execute can be used in direct mode, that is,
from a program run with the compiler options switch in position Memory
(page 190).

Overlays

During execution, the system normally expects to find its overlay files on
the logged drive and current directory. The OvrPath procedure may be
used to change this default value.

OvrPath Procedure
Syntax: OvrPath(Path);

where Path is a string expression specifying a subdirectory path (see
page 188 for an explanation of DOS directory paths). On subsequent
calls to overlay files, the files will be expected in the specified directory.
Once an overlay file has been opened in one directory, future calls to the
same file will look in the same directory. The path may optionally specify
a drive (A:, B, etc.).

The current directory is identified by a single period. OvrPath(’.’) thus
causes overlay files to be sought on the current directory.

Example :
program OvrTest;

overlay procedure ProcAi;
begin

Writeln('Overlay A');
end;

overlay procedure ProcB;
begin

Writeln('Overlay B');
end;

196 TURBO Pascal Reference Manual

Overlays

procedure Dummy;

begin
{Dummy procedure to separate the overlays
into two groups}

end;

overlay procedure ProcC;
begin
Writeln('Overlay C');
end;
begin
OvrPath('\subl');
ProcA;
OvrPath('.');
ProcC;
OvrPath('\subl');
ProcB;
end.

The first call to OvrPath specifies overlays to be sought on the subdirec-
tory \sub1. The call to ProcA therefore causes the first overlay file (con-
taining the two overlay procedures ProcA and ProcB) to be opened on
this directory.

Next, the OvrPath(’.’) statement specifies that following overlays are to
be found on the current directory. The call to ProcC opens the second
overlay file here.

The following ProcB statement calls an overlay procedure in the first

overlay file; to ensure that it is sought on the \sub? directory, the
OvrPath{"\sub1’) statement must be executed before the call.

PC-DOS AND MS-DOS 197

Files

Files

File Names

A file name in DOS consists of a path of directory names, separated by
backslashes, leading up to the desired directory, and followed by the actual
file name:

Drive:\ Dirname\...\ Dirname\ Filename

If the path begins with a backslash, it starts in the root directory; other-
wise, it starts in the logged drive.

The Drive and path specification is optional. If omitted, the file is as-
sumed to reside on the logged drive.

The FileName consists of a name of one through eight letters or digits,
optionally followed by a period and a file type of one through three
letters or digits.

Number of Open Files

198

The maximum number of files that may be open at any given time can be
specified using the F compiler directive. The directive, {$F10}, sets a
maximum limit of 10 files that can be opened simultaneously. Two important
notes about file handles:

When your computer is booted, DOS sets the maximum number of files that
can be opened by an application program. It reads the CONFIG.SYSfilein
the root directory of the booted drive and looks for the “FILES =" statement.
The maximum number of files that can be opened is 20. However, DOS
uses 5 of these file handles itself, thus leaving a maximum of 15 for your
program. To claim all available handles, your CONFIG.SYS file must have
the statement: FILES = 20. If you do not specify the files statement, a default
of 8 will be allowed (5 of which are used by DOS) and your program will be
limited to 3 files open at any given time.

A file handle is allocated by a Reset, Rewrite or Append statement. If no
handle is available, an I/0 error F3 will occur (“TOO MANY FILES”). A file

TURBO Pascal Reference Manual

Files

handle is released (and thus made available to your program again) by a
Close statement:

Assign(f, ‘TEST’); {Open the file: }
Reset(f); {allocates a file handle]
Close(f); {releases file handle]}

Please note that even afile used only for reading must be closed in order to
again make its handle available to the program.

Note that even though the F compiler directive has been used to allo-
cate sufficient file space, you may still experience a ‘too many open files’
error condition, if the operating system runs out of file buffers. If that
happens, you should supply a higher value for the ‘files = xx’ parameter
in the CONFIG.SYS file. The default value is usually 8. For further detail,
please refer to your MS-DOS documentation.

Extended File Size

The following three additional file routines exist to accommodate the ex-
tended range of records in DOS. These are:

LongFileSize function,
LongFilePos function, and
LongSeek procedure

They correspond to their Integer equivalents FileSize, FilePosition, and
Position but operate with Reals. The functions thus return results of
type Real, and the second parameter of the LongSeek procedure must
be an expression of type Real.

File of Byte

In the CP/M implementations, access to non-TURBO files (except text
files) must be done through untyped files because the two first bytes of
typed TURBO files always contain the number of components in the file.
This is not the case in the DOS versions, however, and a non-turbo file
may therefore be declared as a file of byte and accessed randomly with
Seek, Read, and Write.

PC-DOS AND MS-DOS 199

Files

Untyped Files

An optional second parameter on Reset and ReWrite may be used to
specify the block size to be used by BlockRead and BlockWrite. For ex-
ample:

Assign(InFile, 'INDATA');
Reset(InFile,BlockSize);

where BlockSize is an integer expression.

Flush Procedure

The Flush procedure has no effect with typed files in DOS, as DOS
typed file variables do not employ a sector buffer.

Truncate Procedure

Syntax: Truncate(FilVan);

This procedure truncates the file identified by FilVar at the current posi-
tion of the file pointer, that is, records beyond the file pointer are cut
away. Truncate also prepares the file for subsequent output.

Text Files

Buffer Size

200

The text file buffer size is 128 bytes by default. This is adequate for
most applications, but heavily 1/O-bound programs, as for example a
copy program, will benefit from a larger buffer, as it will reduce disk
head movement.

You are therefore given the option to specify the buffer size when de-
claring a text file:

VAR TextFile: Text[$800];

declares a text file variable with a buffer size of 2K bytes.

TURBO Pascal Reference Manual

Files

Append Procedure
Syntax: Append(FilVan);

The disk file assigned to the file variable FilVar is opened, and the file
pointer is moved to the end of the file. The only operation allowed after
Append is appending of new components.

Flush Procedure

The Flush procedure causes the file buffer to be flushed when used with
text files.

Logical Devices

The following additional logical devices are provided:
INP: Refers to the MS-DOS standard input file (standard handle number 0).
OUT: Refers to the MS-DOS standard output file (standard handle number 1).

ERR: Refers to the MS-DOS standard error output file (standard handle
number 2).

These devices may also be used with typed and untyped files.

The MS-DOS operating system itself also provides a number of logical
devices, for instance ‘CON’, ‘LST’ and ‘AUX’. TURBO Pascal will treat
these devices as if they were disk files, with one exception: when a text
file is opened, using Reset, Rewrite or Append, TURBO Pascal asks
MS-DOS for the status of the file. If MS-DOS reports that the file is a
device, TURBO Pascal disables the buffering that normally occurs on
textfiles, and all I/O operations on the file are done on a character by
character basis.

The D compiler option may be used to disable this check. The default
state of the D option is {$D +}, and in this state, device checks are
made. In the ($D —)} state, no checks are made and all device 1/O
operations are buffered. In this case, a call to the flush standard pro-
cedure will ensure that the characters you have written to a file have ac-
tually been sent to it.

PC-DOS AND MS-DOS 201

Files

/O redirection

202

PC/MS-DOS TURBO Pascal supports the 1/O redirection feature provid-
ed by the MS-DOS operating system. In short, I/O redirection allows you
to use disk files as the standard input source and/or standard output
destination. Furthermore, a program supporting |I/O redirection can be
used as a filter in a pipe. Details on |/O redirection, filters, and pipes, are
found in the MS-DOS documentation.

I/O redirection is enabled through the G (get) and P (put) compiler direc-
tives. The G directive controls the input file and the P directive controls
the output file. The G and P directives both require an integer argument,
which defines the size of the input or output buffer. The default buffer
sizes are zero, and with these, Input and Output will refer to the CON:
or the TRM: device.

If a non-zero input buffer is defined, for instance {$G256}, the standard
Input file will refer to the MS-DOS standard input handle. Likewise, if a
non-zero output buffer is defined, for instance {$P1024}, the standard
Output file will refer to the MS-DOS standard output handle. The D com-
piler directive (see page 201) applies to such non-zero-buffer /nput and
Output files. The P and G compiler directives must be placed at the be-
ginning of a program to have any effect, i.e. before the declaration part.

The following program demonstrates re-directed 1/O. It will read charac-
ters from the standard input file, keep a count of each alphabetical char-
acter (A through Z), and output a frequency distribution graph to the
standard output file:

{$G512,P512,D-}
program CharacterFrequencyCounter;

const
Bar = #223;
var
Count: array[65 . . 90] of Real;
Ch: Char;
I,Graph: Integer;
Max,
Total: Real;
begin

Max := 0; Total := O;
for I := 65 to 90 do Count[I] := O;
while not EOF do

TURBO Pascal Reference Manual

Files

begin
Read(Ch);
if Ord{(Ch) > 127 then Ch := Chr(Ord(Ch)-128);
Ch := UpCase(Ch);
ifChin[‘A’ .. ‘Z2’] then
begin
Count[Ord(Ch)] := Count[Ord(Ch)] +1;
if Count[Ord(Ch)] > Max then Max := Count[Ord(Ch)};
Total := Total +1;
end;
end;
Writeln(' Count 2');
for I :=65t090 do
begin
Write(Chr(I),': ',Count[I]:5:0,
Count[I]*100/Total:5:0,' ');
for Graph := 1 to Round(Count[I]*63/Max) do
Write(Bar);
Writeln;
end;
Writeln('Total', Total:5:0);
end.

If the program is compiled into a file called COUNT.COM, then the MS-
DOS command:

COUNT < TEXT.DOC > CHAR.CNT
will read the file TEXT.DOC and output the graph to the file CHAR.CNT.

Absolute Variables

Variables may be declared to reside at specific memory addresses, and
are then called absolute. This is done by adding to the variable declara-
tion the reserved word absolute followed by two Integer constants
specifying a segment and an offset at which the variable is to be locat-
ed:

var

Abc: Integer absolute $0000:$00EE;
Def: Integer absolute $0000:$00F0;

PC-DOS AND MS-DOS 203

Absolute Variables

The first constant specifies the segment base address, and the second
constant specifies the offset within that segment. The standard
identifiers CSeg and DSeg may be used to place variables at absolute
addresses within the code segment (CSeg) or the data segment (DSeg):

Special: array[1. .CodeSize]ofbyteabsolute CSeg:$05F3;

Absolute may also be used to declare a variable “on top” of another
variable, i.e. to deciare that a variable should start at the same address as
another variable. When absolute is followed by the identifier of a variable
or parameter, the new variable will start at the address of that variable
parameter.

Example:
var
Str: string([32];
StrLen: Byte absolute Str;

This declaration specifies that the variable StrLen should start at the
same address as the variable Str, and as the first byte of a string vari-
able contains the length of the string, StrLen will contain the length of
Str. Notice that an absolute variable declaration may only specify one
identifier.

Further details on space allocation for variables are found on page 216.

Absolute Address Functions

The following functions provide information about program variable ad-
dresses and system pointers.

Addr

204

Syntax: Addr(Name);

Returns the address in memory of the first byte of the variable with the
identifier Name. If Name is an array, it may be subscribed, and if Name
is a record, specific fields may be selected. The value returned is a 32
bit pointer consisting of a segment address and an offset.

TURBO Pascal Reference Manual

Absolute Address Functions

Ofs
Syntax: Ofs(Name);
Returns the offset in the segment of memory occupied by the first byte
of the variable, procedure or function with the identifier Name. If Name
is an array, it may be subscribed, and if Name is a record, specific fields
may be selected. The value returned is an Integer.

Seg
Synfax: Seg(Name);
Returns the address of the segment containing the first byte of the vari-
able with the identifier Name. If Name is an array, it may be subscribed,

and if Name is a record, specific fields may be selected. The value re-
turned is an Integer.

Cseg
Syntax: Cseg;
Returns the base address of the Code segment. The value returned is
an Integer.
Dseg
Syntax: Dseg;
Returns the base address of the Data segment. The value returned is an
Integer.
Sseg
Syntax: Sseg;

Returns the base address of the Stack segment. The value returned is
an Integer.

PC-DOS AND MS-DOS 205

Predefined Arrays

Predefined Arrays

TURBO Pascal offers four predefined arrays of type Byte, called Mem,
MemW, Port and PortW which are used to access CPU memory and
data ports.

Mem Array

The predefined arrays Mem and MemW are used to access memory.
Each component of the array Mem is a byte, and each component of
the array

MemW is a word (two bytes, LSB first). The index must be an address
specified as the segment base address and an offset separated by a
colon and both of type Integer.

The following statement assigns the value of the byte located in seg-
ment 0000 at offset $0081 to the variable Value

Value:=Mem[0000:$00811];
Mem[0000:$0081] := Value;

While the following statement:
Value :=MemW[Seg(Var) : Ofs(Var)];

places the value of the Integer variable Value in the memory location oc-
cupied by the two first bytes of the variable Var.

Port Array

206

The Port and PortW array are used to access the data ports of the
8086/88 CPU. Each element of the array represents a data port, with
the index corresponding to port numbers. As data ports are selected by
16-bit addresses the index type is Integer. When a value is assigned to
a component of Port or PortW it is output to the port specified. When a
component of port is referenced in an expression, its value is input from
the port specified. The components of the Port array are of type Byte
and the components of PortW are of type Integer.

Example:
Port[56]:=10;

TURBOQO Pascal Reference Manual

Pointer Related Items

The use of the port array is restricted to assignment and reference in
expressions only, i.e. components of Port and PortW cannot be used as
variable parameters to procedures and functions. Furthermore, opera-
tions referring to the entire port array (reference without index) are not
allowed.

With Statements

With statements may be nested to a maximum of 9 levels.
Pointer Related Items

MemAvail

The standard function MemAuvail is available to determine the available
space on the heap at any given time. The result is an Integer specifying
the number of available paragraphs on the heap (a paragraph is 16
bytes).

Pointer Values

In very special circumstances it can be of interest to assign a specific
value to a pointer variable without using another pointer variable or it
can be of interest to obtain the actual value of a pointer variable.

Assigning a Value to a Pointer

The standard function Ptr can be used to assign specific values to a
pointer variable. The function returns a 32 bit pointer consisting of a
segment address and an offset.

Example:
Pointer:=Ptr(Cseg, $80);

Obtaining The Value of a Pointer

A pointer value is represented as a 32 bit entity and the standard func-
tion Ord can therefore not be used to obtain its value. Instead the func-
tions Ofs and Seg must be used.

The following statement obtains the value of the pointer P (which is a
segment address and an offset):

SegmentPart:=Seg(P");
OffsetPart:=0fs(P*);

PC-DOS AND MS-DOS 207

DOS Function Calls

DOS Function Calls

208

For the purpose of making DOS system calls, TURBO Pascal introduces
a procedure MsDos, which has a record as parameter:

MsDos(Record) ;

Details on DOS system calls and BIOS routines are found in the IBM
DOS Technical Reference Manual.

The parameter to MsDos must be of the type:

record .
AX,BX,CX,DX,BP,SI,DI,DS,ES,Flags: Integer;
end;

or, alternatively:

record case Integer of
1: (AX,BX,CX,DX,BP,SI,DI,DS,ES,Flags: Integer);
2: (AL, AH,BL,BH,CL,CH,DL,DH : Byte);
end;

Before TURBO makes the DOS system call, the registers AX, BX, CX,
DX, BP, SI, DI, DS, and ES are loaded with the values specified in the
record parameter. When DOS has finished operation the MsDos pro-
cedure will restore the registers to the record thus making any results
from DOS available.

The following example shows how to use an MsDos function call to get
the time from DOS:

procedure Timer(var Hour,Min,Sec,Frac:Integer);
type

RegPack = record
AX,BX,CX,DX,BP,SI,DI,DS,ES,Flags: Integer;
end;
var
Regs: Regpack;

TURBQO Pascal Reference Manual

DOS Function Calls

begin
with Regs do
begin
AX := $2C00;
MsDos(Regs);
Hour := hi(CX);
Min = 1lo(CX);
Sec = hi(DX);
Frac := 1lo(DX);
end;
end; { procedure Timer }

User Written 1/O Drivers

For some applications it is practical for a programmer to define his own
input and output drivers, i.e. routines which perform input and output of
characters to and from an external device. The following drivers are part
of the TURBO environment, and used by the standard |/O drivers
(although they are not available as standard procedures or functions):

function ConSt: boolean; { 11}
function Conin: Char; { 8 }
procedure ConOut (Ch: Char); { 2)
procedure LstOut (Ch: Char); { 5}
procedure AuxOut (Ch: Char); { 4)
function Auxin: Char; { 3}
procedure UsrQut (Ch: Char); (2)
function Usrin: Char; { 8 }

The ConSt routine is called by the function KeyPressed, the Conin and
ConQOut routines are used by the CON:, TRM:, and KBD: devices, the
LstOut routine is used by the LST: device, the AuxOut and Auxin rou-
tines are used by the AUX: device, and the UsrOut and Usrin routines
are used by the USR: device.

By default, these drivers are assigned to the DOS system calls as shown in
curly brackets in the above listing of drivers.

PC-DOS AND MS-DOS 209

User Written I/O Drivers

This, however, may be changed by the programmer by assigning the
address of a self-defined procedure or driver function to one of the following

standard variables:

Variable Contains the address of the
ConStPtr ConSt function

ConinPtr Conin function

ConOutPtr ConOut procedure
LstOutPtr LstOut procedure
AuxOutPtr AuxOut procedure

AuxinPtr AuxIn function

UsrOutPtr UsrQOut procedure

UsrinPtr Usrin function

A user defined driver procedure or driver function must match the
definitions given above, i.e. a ConSt driver must be a boolean function, a
Conln driver must be a char function, etc.

External Subprograms

The reserved word external is used to declare external procedures and
functions, typically procedures and functions written in machine code.
External must be followed by a string constant specifying the name of afile
in which executable machine code for the external procedure or function
must reside. The default file type is .COM.

During compilation of a program containing external functions or pro-
cedures, the associated files are loaded and placed in the object code.
As it is impossible to know in advance exactly where in the object code
the external code will be placed this code must be relocatable, and no
references must be made to the data segment. Furthermore the exter-
nal code must save the registers BP, CS, DS and SS and restore these
before executing the RET instruction.

An external subprogram has no block, i.e. no declaration part and no
statement part. Only the subprogram heading is specified, immediately
followed by the reserved word external and a filename specifying where
to find the executable code for the subprogram.

210 TURBO Pascal Reference Manual

External Subprograms

Example:
procedure DiskReset; external 'DSKRESET';
function I0status: boolean; external 'IOSTAT';

An external file may contain code for more than one subprogram. The
first subprogram is declared as described above, and the following are
declared by specifying the identifier of the first subprogram followed by
an integer constant specifying an offset, enclosed in square brackets. The

entry point of each subprogram is the address of the first subprogram plus

the offset.

Example:

procedure Coml; external 'SERIAL.BIN';
function ComlStat: Boolean; external Coml[3];
procedure ComlIn: Char; external Coml[6];
procedure ComlOut: Char; external Coml[9];

The above example loads the file SERIAL.BIN into the program code,
and defines four procedures called Com1, Com1Stat, Com1in, and
Com10ut with entry points at the base address of the external code
plus 0, 3, 6 and 9, respectively. When an external file contains several
subprograms, the first part of the code is typically a jump table, as as-
sumed in the example. in that way, the entry points of the subprograms
remain unchanged if the external file is modified.

Parameters may be passed to external subprograms, and the syntax is
exactly the same as that of calls to ordinary procedures and functions:

procedure Plot(X,Y: Integer); extermnal 'PLOT';
procedure QuickSort(var List: PartNo); extermal 'QS';

External subprograms and parameter passing is discussed further on
page 221.

In-line Machine Code
TURBO Pascal features the inline statements as a very convenient way
of inserting machine code instructions directly into the program text. An

inline statement consists of the reserved word inline followed by one or
more code elements separated by slashes and enclosed in parentheses.

PC-DOS AND MS-DOS- 211

In-line Machine Code

212

A code element is built from one or more data elements, separated by
plus (+) or minus (—) signs. A data element is either an integer con-
stant, a variable identifier, a procedure identifier, a function identifier, or
a location counter reference. A location counter reference is written as
an asterisk (*).

Example:
inline (10/$2345/count+1/sort-*+2);

Each code element generates one byte or one word (two bytes) of code.
The value of the byte or the word is calculated by adding or subtracting
the values of the data elements according to the signs that separate
them. The value of a variable identifier is the address (or offset) of the
variable. The value of a procedure or function identifier is the address
(or offset) of the procedure or function. The value of a location counter
reference is the address (or offset) of the location counter, i.e. the ad-
dress at which to generate the next byte of code.

A code element will generate one byte of code if it consists of integer
constants only, and if its value is within the 8-bit range (0..255). If the
value is outside the 8-bit range, or if the code element refers to variable,
procedure, or function identifiers, or if the code element contains a loca-
tion counter reference, one word of code is generated (least significant
byte first).

The ‘<’ and ‘>’ characters may be used to override the automatic
size selection described above. If a code element starts with a ‘' <’
character, only the least significant byte of the value is coded, even if it
is a 16-bit value. If a code element starts with a * > ' character, a word
is always coded, even though the most significant byte is zero.

Example:
inline (<$1234/>$44);

This inline statement generates three bytes of code: $34, $44, $00.

The value of a variable identifier use in a inline statement is the offset
address of the variable within its base segment. The base segment of
global variables (i.e. variables declared in the main program block) is the
data segment, which is accessible through the DS register. The base
segment of local variables (i.e. variables declared within the current sub-
program) is the stack segment, and in this case the variable offset is re-

TURBQO Pascal Reference Manual

In-line Machine Code

lative to the BP (base page) register, the use of which automatically causes
the stack segment to be selected. The base segment of typed constants is
the code segment, which is accessible through the CS register. Inline
statements should not attempt to access variables that are not declared in
the main program or in the current subprogram.

The following example of an inline statement generates machine code
that will convert all characters in its string argument to upper case.

procedure UpperCase(var Strg: Str);
{Str is type String[255]}

begin
inline
($C4/8BE/Strg/ { LES DI,Strg[BP] }
$26/%$8A/30D/ { MOV CL,ES:[DI] }
$FE/$C1/ { INC CL }
$FE/$CS/ { L1l: DEC CL }
$74/813/ { Jz L2 }
$47/ { INC DI }
$26/880/83D/361/ { CMP ES:BYTE PTR [DI],'a'}
$72/8F5/ { JB L1 }
$26/380/%3D/%7A/ { CMP ES:BYTE PTR [DI],'z'}
$77/38EF/ { JA L1 }
$26/$80/$2D/820/ { SUB ES:BYTE PTR [DI]),20H}
$EB/$E9); { JMP SHORT L1 }
{ L2: }
end;

Inline statements may be freely mixed with other statements throughout the
statement part of a block, and may use all CPU registers. Note, however,
that the contents of the registers BP, SP, DS, and SS must be the same on
exit as on entry.

PC-DOS AND MS-DOS- 213

Interrupt Handlling

Interrupt Handling

214

Upon entry to an interrupt routine, a couple of precautions should be taken.
First, all of the hardware registers should be preserved upon entry to the
routine. Also, in order to enable the interrupt routine to access the
program’s globa!l Data segment, the DS register must be saved and
initialized to the correct value. The following inline statement performs
these tasks correctly:

Inline($50/$53/$51/$52/$57/$56/$06/$1E/$FB/$2E/$Al/
Data_Segment /$8E/$D8);

In addition to this inline statement at the beginning of the interrupthandler, a
global typed constant must be declared:

const
Data_Segment : integer =0;

and the typed constant must be initialized at run time:

begin
Data_Segment :=Dseg;
end;

Upon exit from an interrupt handling routine, some bookkeeping is also
necessary. The hardware registers must be restored, DS must be restored,
and because Turbo Pascal pushed some registers onto the stack at the
beginning of the interrupt handier:

Push BP

Mov BP, SP
Push SP

The stack must be properly set up before the IRET is executed. The
following inline statement performs all these operations:

Inline($1F/$07/$5E/$5F /$5A/$59/$5B/$58/$8B/$ES/
$5D/$CF) ;

Note that the variable Data_Segment is a global variable equal to Turbo
Pascal's variable DSEG.

TURBO Pascal Reference Manual

Interrupt Handling

An interrupt service procedure must not employ any I/O operations us-
ing the standard procedures and functions of TURBO Pascal, as the
BDOS is not re-entrant. The programmer must initialize the interrupt
vector used to activate the interrupt service routine.

Intr procedure

Syntax: Intr(InterruptNo, Resulfy

This procedure initializes the registers and flags as specified in the
parameter Result which must be of type:

Result = record
AX,BX,CX,DX,BP,SI,DI,DS,ES,Flags: Integer;
end;

It then makes the software interrupt given by the parameter interruptNo
which must be an Integer constant. When the interrupt service routine
returns control to your program, Result will contain any values returned
from the service routine.

PC-DOS AND MS-DOS 215

Internal Data Formats

Internal Data Formats

In the following descriptions, the symbol @ denotes the offset of the
first byte occupied by a variable of the given type within its segment.
The segment base address can be determined by using the standard
function Seg.

Global and local variables, and typed constants occupy different seg-
ments as follows:

Global variables reside in the data segment and the offset is relative to
the DS register.

Local variables reside in the stack segment and the offset is relative to
the BP register.

Typed constants reside in the code segment and the offset is relative to
the CS register.

All variables are contained within their base segment.

Basic Data Types

The basic data types may be grouped into structures (arrays, records,
and disk files), but this structuring will not affect their internal formats.

Scalars

216

The following scalars are all stored in a single byte: Integer subranges
with both bounds in the range 0..255, booleans, chars, and declared
scalars with less than 256 possible values. This byte contains the ordinal
value of the variable.

The following scalars are all stored in two bytes: Integers, Integer
subranges with one or both bounds not within the range 0..255, and de-
clared scalars with more than 256 possible values. These bytes contain
a 2's complement 16-bit value with the least significant byte stored first.

TURBO Pascal Reference Manual

Internal Data Formats

Reals

Reals occupy 6 bytes, giving a floating point value with a 40-bit mantissa
and an 8-bit 2's exponent. The exponent is stored in the first byte and
the mantissa in the next five bytes with the least significant byte first:

@ Exponent
@ +1 LSB of mantissa
@ +5 MSB of mantissa

The exponent uses binary format with an offset of $80. Hence, an ex-
ponent of $84 indicates that the value of the mantissa is to be multiplied
by 2 "($84-$80) = 2 "4 = 16. If the exponent is zero, the floating point
value is considered to be zero.

The value of the mantissa is obtained by dividing the 40-bit unsigned in-
teger by 2°40. The mantissa is always normalized, i.e. the most
significant bit (bit 7 of the fifth byte) should be interpreted as a 1. The
sign of the mantissa is stored in this bit, however, a 1 indicating that the
number is negative, and a 0 indicating that the number is positive.

Strings

A string occupies as many bytes as its maximum length plus one. The
first byte contains the current length of the string. The following bytes
contain the string with the first character stored atthe lowest address. Inthe
table shown below, L denotes the current length of the string, and Max
denotes the maximum length:

©@ Current length (L)
@ +1 First character

@ +2 Second character
@ +L Last character
@ +L+1 Unused

@ + Max Unused

PC-DOS AND MS-DOS- 217

Internal Data Formats

Sets

An element in a Set occupies one bit, and as the maximum number of
elements in a set is 256, a set variable will never occupy more than 32
bytes (256/8).

If a set contains less than 256 elements, some of the bits are bound to
be zero at all times and need therefore not be stored. In terms of
memory efficiency, the best way to store a set variable of a given type
would then be to “cut off” all insignificant bits, and rotate the remaining
bits so that the first element of the set would occupy the first bit of the
first byte. Such rotate operations, however, are quite slow, and TURBO
therefore employs a compromise: Only bytes which are statically zero
(i.e. bytes of which no bits are used) are not stored. This method of
compression is very fast and in most cases as memory efficient as the
rotation method.

The number of bytes occupied by a set variable is calculated as (Max
div 8) — (Min div 8) + 1, where Max and Min are the upper and lower
bounds of the base type of that set. The memory address of a specific
element E is:

MemAddress = @ + (E div 8) — (Min div 8)

and the bit address within the byte at MemAddress is:

BitAddress = E mod 8

where E denotes the ordinal value of the element.

Pointers

218

A pointer consists of four bytes containing a segment base address and
an offset. The two least significant bytes contains the offset and the two
most significant bytes the base address. Both are stored in memory us-
ing byte reversed format, i.e. the least significant byte is stored first. The
value nil corresponds to two zero words.

TURBQO Pascal Reference Manual

Internal Data Formats

Data Structures

Data structures are built from the basic data types using various struc-
turing methods. Three different structuring methods exist: Arrays,
records, and disk files. The structuring of data does not in any way
affect the internal formats of the basic data types.

Arrays
The components with the lowest index values are stored at the lowest
memory address. A multi-dimensional array is stored with the rightmost
dimension increasing first, e.g. given the array
Board: array[l..8,1..8] of Square
you have the following memory layout of its components:

lowest address: Board[1l,1]
Board[1,2]

éoard[l,B]
Board(2,1]
Board([2,2]

Highest address: Board[8,8]

Records

The first field of a record is stored at the lowest memory address. If the
record contains no variant parts, the length is given by the sum of the
lengths of the individual fields. If a record contains a variant, the total
number of bytes occupied by the record is given by the length of the
fixed part plus the length of the largest of its variant parts. Each variant starts
at the same memory address.

PC-DOS AND MS-DOS- 219

Internal Data Formats

Disk Files

Disk files are different from other data structures in that data is not
stored in internal memory but in a file on an external device. A disk file is
controlled through a file interface block (FIB).

File Interface Blocks

220

The following table shows the format of an FIB:

©@+12
@+75

File handle (LSB).

File handle (MSB).

Record length (LSB) or flags byte.
Record length (MSB) or character buffer.
Bulffer offset (LSB).

Bulffer offset (MSB).

Buffer size (LSB).

Buffer size (MSB).

Buffer pointer (LSB).

Buffer pointer (MSB).

Buffer end (LSB).

Buffer end (MSB).

First byte of file path.

Last byte of file path.

The word at @ + 0 and @ + 1 contains the 16-bit file handle returned
by MS-DOS when the file was opened (or OFFFFH when the file is
closed). For typed and untyped files, the word at @ + 2 and @ + 3 con-
tains the record length in bytes (zero if the file is closed), and bytes
@ + 4 to @ + 11 are unused.

For text files, the format of the flags byte at @ + 2 is:

Bit 0..3
Bit 5
Bit 6
Bit 7

File type.

Pre-read character flag.
Output flag.

Input flag. .

File type 0 denotes a disk file, and 1 through 5 denote the TURBO Pas-
cal logical I/O devices (CON:, KBD:, LST:, AUX:, and USR:). Bit 5 is set
if the character buffer contains a pre-read character, bit 6 is set if output
is allowed, and bit 7 is set if input is allowed.

TURBO Pascal Reference Manual

Internal Data Formats

The four words from @ +4 to @ + 11 store the offset address of the
buffer, its size, the offset of the next character to read or write, and the
offset of the first byte after the buffer. The buffer always resides in the
same segment as the FIB, usually starting at @ + 76. When a textfile is
assigned to a logical device, only the flags byte and the character buffer
are used.

The file path is an ASCII string (a string terminated by a zero byte) of up
to 63 characters.

Random Access Files

A random access file consists of a sequence of records, all of the same
length and same internal format. To optimize file storage capacity, the
records of a file are totally contiguous.

TURBO saves no information about the record length. The programmer
must therefore see to it that a random access file is accessed with the
correct record length.

The size returned by the standard function Filesize is obtained from the
DOS directory.

Text Files

The basic components of a text file are characters, but a text file is
furthermore divided into /ines. Each line consists of any number of char-
acters ended by a CR/LF sequence (ASCIl $0D/ $0A). The file is ter-
minated by a Ctrl-Z (ASCIl $1B).

Parameters

Parameters are transferred to procedures and functions via the stack
which is addressed through SS:SP.

On entry to an external subroutine, the top of the stack always contains
the return address within the code segment (a word). The parameters, if
any, are located below the return address, i.e. at higher addresses on
the stack.

PC-DOS AND MS-DOS- 221

Internal Data Formats

222

If an external function has the following subprogram header:
function Magic(var R: Real; S: stringd): Integer;

then the stack upon entry to Magic would have the following contents:

< Function result >
< Segment base address of R >
< Offset address of R >
< First character of S >
< Last character of S >
< Length of S >
< Return address > SP

An external subroutine should save the Base Page register (BP) and
then copy the Stack Pointer SP into the Base Page register in order to
be able to refer to parameters. Furthermore the subroutine should
reserve space on the stack for local workarea. This can be obtained by
the following instructions:

PUSH BP
MOV BP,SP
SUB SP, WORKAREA

The last instruction will have the effect of adding the following to the
stack:

< Return address > BP
< The saved BP register >

< First byte of local workarea >

< Last byte of 1local work area > SP
Parameters are accessed via the BP register.

The following instruction will load the length of the string into the AL register:

MOV AL, [BP+4]

TURBO Pascal Reference Manual

Internal Data Formats

Before executing a RET instruction the subprogram must reset the
Stack Pointer and Base Page register to their original values. When exe-
cuting the RET the parameters may be removed by giving RET a param-
eter specifying how many bytes to remove. The following instructions
should therefore be used when exiting from a subprogram:

MOV SP,BP
POP BP
RET NoOfBytesToRemove

Variable Parameters

With a variable (var) parameter, two words are transferred on the stack
giving the base address and offset of the first byte occupied by the actu-
al parameter.

Value Parameters

With value parameters, the data transferred on the stack depends upon
the type of the parameter as described in the following sections.

Scalars

Integers, Booleans, Chars and declared scalars (i.e. all scalars except
Reals) are transferred on the stack as a word. If the variable occupies
only one byte when it is stored, the most significant byte of the parame-
ter is zero.

Reals

A real is transferred on the stack using six bytes.

Strings

When a string is at the top of the stack, the topmost byte contains the
length of the string followed by the characters of the string.

PC-DOS AND MS-DOS- 223

Internal Data Formats

Sets

A set always occupies 32 bytes on the stack (set compression only ap-
plies to the loading and storing of sets).

Pointers

A pointer value is transferred on the stack as two words containing the
base address and offset of a dynamic variable. The value NIL
corresponds to two zero words.

Arrays and Records

Even when used as value parameters, Array and Record parameters are
not actually transferred on the stack. Instead, two words containing the
base address and offset of the first byte of the parameter are
transferred. It is then the responsibility of the subroutine to use this in-
formation to make a local copy of the variable.

Function Results

224

User written external functions must remove all parameters and the
function result from the stack when they return. Additionally, such functions
must return their results exactly as specified in the following:

Values of scalar types, except Reals, must be returned in the AX regis-
ter. If the result is only one byte then AH should be set to zero. Boolean
functions must return the function value by setting the Z flag (Z =
False, NZ = True). If NZ = True, the AX register must be set to $01.

Reals must be returned on the stack with the exponent at the lowest
address. This is done by not removing the function result variable when
returning.

Sets must be returned on the top of the stack according to the format
described above. On exit SP must point at the byte containing the string
length.

Pointer values must be returned in DX:AX.

TURBO Pascal Reference Manual

Internal Data Formats

The Heap and The Stacks

During execution of TURBO Pascal program the following segments are
allocated for the program:

a Code Segment,
a Data Segment, and
a Stack Segment

Two stack-like structures are maintained during execution of a program:
the heap and the stack.

The heap is used to store dynamic variables, and is controlled with the
standard procedures New, Mark, and Release. At the beginning of a
program, the heap pointer HeapPtr is set to low memory in the stack
segment and the heap grows upwards towards the stack. The pre-
defined variable HeapPtr contains the value of the heap pointer and al-
lows the programmer to control the position of the heap.

The stack is used to store local variables, intermediate results during
evaluation of expressions and to transfer parameters to procedures and
functions. At the beginning of a program, the stack pointer is set to the
address of the top of the stack segment.

On each call to the procedure New and on entering a procedure or func-
tion, the system checks for collision between the heap and the recursion
stack. If a collision has occurred, an execution error results, unless the
K compiler directive is passive ({ $K-}).

PC-DOS AND MS-DOS- 225

Memory Management

Memory Management

226

When a TURBO program is executed, three segments are allocated for
the program: A code segment, a data segment, and a stack segment.

Code segment (CS is the code segment register):

€CS:0000 - CS:00FF HS-DOS base page
(5:0100 ~ CS5:Endof run-time library Run-time library code
CS:End of run-time 1ib. - CS:End of program code Progran code
(S:Endof programcode - C5:End of code segment Unused

Data segment (DS is the data segment register):

D§:0000 ~ DS:Endof run-time 1ibrary work space
DS:End of run-time lib. work space - DS:End of main programvariables
DS:End of main program variables - DS:Endof data segment

The unused areas between (CS:EOFP-CS:EOFC and DS:EOFM-
DS:EOFD) are allocated only if a minimum cOde segment size larger
than the required size is specified at compilation. The sizes of the code
and data segments never exceed 64K bytes each.

The stack segment is slightly more complicated, as it may be larger than
64K bytes. On entry to the program the stack segment register (SS) and
the stack pointer (SP) is loaded so that SS:SP points at the very last
byte available in the entire segment. During execution of the program
SS is never changed but SP may move downwards until it reaches the
bottom of the segment, or 0 (corresponding to 64K bytes of stack) if the
stack segment is larger than 64K bytes.

The heap grows from low memory in the stack segment towards the ac-
tual stack residing in high memory. Each time a variable is allocated on
the heap, the heap pointer (which is a double word variable maintained
by the TURBO run-time system) is moved upwards, and then normal-
ized, so that the offset address is always between $0000 and $000F.

‘Therefore, the maximum size of a single variable that can be allocated

on the heap is 65521 bytes (corresponding to $10000 less $000F). The
total size of all variables allocated on the heap is however only limited by
the amount of memory available. The heap pointer is available to the
programmer through the HeapPtr standard identifier. HeapPtr is a type-
less pointer which is compatible with all pointer types. Assignments to
HeapPtr should be exercised only with extreme care.

TURBO Pascal Reference Manual

Chapter 21
CP/M-86

This chapter describes features of TURBO Pascal specific tothe CP/M-86
implementation. The information presented on pages 227 through 240 will
help you use Turbo Pascal efficiently. The remainder of the chapter will be
of interest to experienced programmers; it describes such things as
machine language routines, technical aspects of the compiler, etc.

Compiler Options

The O command selects the following menu from which you may view
and change some default values of the compiler. It also provides a help-

ful function to find runtime errors in programs compiled into object code
files.

compile -> Memory
Cmd-file
cHn-file

command line Parameter:

Find run-time error Quit

Figure 21-1: Options Menu

Memory / Cmd file / cHn-file

The three commands M, C, and H select the compiler mode, i.e. where
to put the code which results from the compilation. Memory is the de-
fault mode. When active, code is produced in memory and resides there
ready to be activated by a Run command.

CP/M-86 227

Compiler Options

Cmd-file is selected by pressing C. The arrow moves to point to this line.
The compiler writes code to a file with the same name as the Work file
(or Main file, if specified) and the file type .CMD. This file contains the
program code and Pascal runtime library, and may be activated by typ-
ing its name at the console.

cHain-file is selected by pressing H. The arrow moves to point to this
line. The compiler writes code to a file with the same name as the Work
file (or Main file, if specified) and the file type .CHN. This file contains the
program code but no Pascal library and must be activated from another
TURBO Pascal program with the Chain procedure (see page 231).

When the Cmd or cHn mode is selected, four additional lines will appear
on the screen:

minimum cOde segment size: XXXX paragraphs (max.YYYY)
minimum Data segment size: XXXX paragraphs (max.YYYY)
mInimum free dynamic memory: XXXX paragraphs
mAximum free dynamic memory: XXXX paragraphs

Figure 21-2: Memory Usage Menu

The use of these commands are described in the following sections.

Minimum Code Segment Size

228

The O-command is used to set the minimum size of the code segment
for a .CMD using Chain or Execute. As discussed on page 231, Chain
and Execute do not change the base addresses of the code, data, and
stack segments, and a ‘root’ program using Chain or Execute must
therefore allocate segments of sufficient size to accommodate the larg-
est segments in any Chained or Executed program.

Consequently, when compiling a ‘root’ program, you must set the value
of the Minimum Code Segment Size to at least the same value as the
largest code segment size of the programs to be chained/executed from
that root. The required values are obtained from the status printout ter-
minating any compilation. The values are in hexadecimal and specify
number of paragraphs, a paragraph being 16 bytes.

TURBO Pascal Reference Manual

Compiler Options

Minimum Data Segment Size

The D-command is used to set the minimum size of the data segment for a
.CMD using Chain or Execute. As discussed above, a ‘root’ program us-
ing these commands must allocate segments of sufficient size to accom-
modate the largest data of any Chained or Executed program.

Consequently, when compiling a ‘root’ program, you must set the value of
the Minimum Data Segment Size to at least the same value as the largest
data segment size of the programs to be chained/executed from that root.
The required values are obtained from the status printout terminating any
compilation. The values are in hexadecimal and specify the number of
paragraphs, a paragraph being 16 bytes.

Minimum Free Dynamic Memory

This value specifies the minimum memory size required for stack and
heap. The value is in hexadecimal and specifies a number of paragraphs, a
paragraph being 16 bytes.

Maximum Free Dynamic Memory

This value specifies the maximum memory size allocated for stack and
heap. It must be used in programs which operate in a multi-user environ-
ment like Concurrent CP/M-86 to assure that the program does not allo-
cate the entire free memory. The value is in hexadecimal and specifies a
number of paragraphs, a paragraph being 16 bytes.

Command Line Parameters

The P-command lets you enter one or more parameters which are passed
to your program when running it in Memory mode, just as if they had been
entered on the DOS command line. These parameters may be accessed
through the ParamCount and ParamStr functions.

Find Runtime Error

When you run a program compiled in memory, and a runtime error occurs,
the editor is invoked, and the error is automatically pointed out. This, of
course, is not possible if the program is in a .CMD file or an .CHN file. Run
time errors then print out the error code and the value of the program
counter at the time of the error:

CP/M-86 229

Compiler Options

Run-time error 01, PC=1B56
Program aborted

Figure 21-3: Run-time Error Message

To find the place in the source text where the error occurred, enter the
F command. When prompted for the address, enter the address given
by the error message:

Enter PC: 1B56

Figure 21-4: Find Run-time Error

The place in the source text is now found and pointed out exactly as if
the error had occurred while running the program in memory.

Notice that locating errors in programs using overlays can be a bit more
tricky, as explained on page 156.

Standard Identifiers

The following standard identifiers are unique to the 16-bit implementa-

tions:

Bdos intr Ofs Seg
CSeg MemW PontW SSeg
DSeg

230 TURBO Pascal Reference Manual

Chain and Execute

Chain and Execute

TURBO Pascal provides two procedures Chain and Execute which allow
TURBO programs to activate other TURBO programs. The syntax of the
procedure calls are:

Chain(FilVar)
Execute(FilVar)

where FilVar is a file variable of any type, previously assigned to a disk
file with the standard procedure Assign. If the file exists, it is loaded into
memory and executed.

The Chain procedure is used only to activate speciai TURBO Pascal
.CHN files, i.e. files compiled with the cHn-file option selected on the
Options menu (see page 190). Such a file contains only program code;
no Pascal library, it uses the Pascal library already present in memory.
Chain files must have the same compiler directives as the main module.

The Execute procedure is used to activate any TURBO Pascal .CMD
file.

If the disk file does not exist, an I/O error occurs. This error is treated as
described on page 116. When the | compiler directive is passive ({($I-}),
program execution continues with the statement following the failed
Chain or Execute statement, and the /Oresult function must be called
prior to further I/O.

Data can be transferred from the current program to the chained pro-
gram either by shared global variables or by absolute address variables.

To ensure overlapping, shared global variables should be declared as
the very first variables in both programs, and they must be listed in the
same order in both declarations. Furthermore, both programs must be
compiled to the same size of code and data segments (see pages 228
and 229). When these conditions are satisfied, the variables will be
placed at the same address in memory by both programs, and as
TURBO Pascal does not automatically initialize its variables, they may
be shared.

CP/M-86 231

Chain and Execute

Example:
Program MAIN.CMD:

program Main;

var
Txt: string[80];
CntPrg: file;

begin
Write('Enter any text: '); Readln(Txt);
Assign(CntPrg, 'ChrCount.chn');
Chain(CntPrg);

end.

Program CHRCOUNT.CHN:

program ChrCount;
var
Txt: string(80];
NoOfChar,
NoOfUpc,
I: Integer;

begin
NoOfUpc := O;
NoOfChar := Length(Txt);
for I := 1 to length(Txt) do

12 Txt[I]in[“‘A’. .‘Z’] then NoOfUpc := Succ(NoOfUpc);
Write('No of characters in entry: ',NoOfChar);
Writeln('. No of upper case characters: ', NoOfUpc,'.');

end.

If you want a TURBO program to determine whether it was invoked by
eXecute or directly from the CP/M command line, you should use an ab-
solute variable at address Dseg:$80. This is the command line length
byte, and when a program is called from CP/M, it contains a value
between 0 and 127. When eXecuting a program, therefore, the calling
program should set this variable to something higher than 127. When
you then check the variable in the called program, a value between 0
and 127 indicates that the program was called from CP/M, a higher
value that it was called from another TURBO program.

232 TURBO Pascal Reference Manual

Chain and Execute

Chaining and eXecuting TURBO programs does not alter the memory al-
location state. The base addresses and sizes of the code, data and
stack segments are not changed; Chain and Execute only replace the
program code in the code segment. ‘Alien’ programs, therefore, cannot
be initiated from a TURBO program.

It is important that the first program which executes a Chain statement
allocates enough memory for the code, data, and stack segments to ac-
commodate largest .CHN program. This is done by using the Options
menu to change the minimum code, data and free memory sizes (see
page 190).

Note that neither Chain nor Execute can be used in direct mode, that is,
from a program run with the compiler options switch in position Memory
(page 190).

Overlays

During execution, the system normally expects to find its overlay files on
the logged drive. The OvrDrive procedure may be used to change this
default value.

OvrDrive Procedure
Syntax: OvrDrive(Drive);

where Drive is an integer expression specifying a drive (0=logged
drive, 1= A:, 2=B:, etc.). On subsequent calls to overlay files, the files
will be expected on the specified drive. Once an overlay file has been
opened on one drive, future calls to the same file will look on the same
drive.

Example:
program OvrTest;

overlay procedure ProcA;
begin

Writeln('Overlay A');
end;

CP/M-86 233

Overlays

overlay procedure ProcB;
begin

Writeln('Overlay B');
end;

procedure Dummy;

begin
{Dummy procedure to separate the overlays
into two groups}

end;

overlay procedure ProcC;
begin

Writeln('Overlay C');
end;

begin
OvrDrive(2);
ProcA;
OvrDrive(0);
ProcC;
OvrDrive(2);
ProcB;

end.

The first call to OvrDrive specifies overlays to be sought on the B: drive.
The call to ProcA therefore causes the first overlay file (containing the
two overlay procedures ProcA and ProcB to be opened here.

Next, the OvrDrive(0) statement specifies that following overlays are to
be found on the logged drive. The call to ProcC opens the second over-
lay file here.

The following ProcB statement calls an overlay procedure in the first

overlay file; and to ensure that it is sought on the B: drive, the
OvrDrive(2) statement must be executed before the call.

234 TURBO Pascal Reference Manual

Files

Files

File Names
A file name in CP/M consists of one through eight letters or digits, op-
tionally followed by a period and a file type of one through three letters
or digits:

Drive:Name. Type

Text Files
The Seek and Flush procedures and the FilePos and FileSize functions
are not applicable to CP/M text files.

Buffer Size
The text file buffer size is 128 bytes by default. This is adequate for
most applications, but heavily 1/O-bound programs, as for example a
copy program, will benefit from a larger buffer, as it will reduce disk
head movement.

You are therefore given the option to specify the buffer size when de-
claring a text file:

VAR
TextFile: Text[$1000];

declares a text file variable with a buffer size of 4K bytes.

CP/M-86 235

Absolute Variables

Absolute Variables

236

Variables may be declared to reside at specific memory addresses, and
are then called absolute. This is done by adding to the variable declaration
the reserved word absolute followed by two Integer constants spec-
ifying a segment and an offset at which the variable is to be located:

var
Abc: Integer absolute $0000:$00EE;
Def: Integer absolute $0000:$00F0;

The first constant specifies the segment base address, and the second
constant specifies the offset within that segment. The standard
identifiers CSeg and DSeg may be used to place variables at absolute
addresses within the code segment (CSeg) or the data segment (DSeg):

Patch: array(l..PatchSize] of byte absolute CSeg:$05F3;

Absolute may also be used to declare a variable “on top” of another
variable, i.e. that a variable should start at the same address as another
variable. When absolute is followed by the identifier of a variable or
parameter, the new variable will start at the address of that variable
parameter.

Example:
var
Str: string[32];
StrLen: Byte absolute Str;

This declaration specifies that the variable StrLen should start at the
same address as the variable Str, and as the first byte of a string vari-
able contains the length of the string, StrLen will contain the length of
Str. Notice that an absolute variable declaration may only specify one
identifier.

Further details on space allocation for variables are found on page 246.

TURBO Pascal Reference Manual

Absolute Address Functions

Absolute Address Functions

The following functions are provided for obtaining information about pro-
gram variable addresses and system pointers.

Addr
Syntax: Addr(Name)
Returns the address in memory of the first byte of the variable with the
identifier Name. If Name is an array, it may be subscribed, and if Name

is a record, specific fields may be selected. The value returned is a 32
bit pointer consisting of a segment address and an offset.

Ofs
Syntax: Ofs(Name)
Returns the offset in the segment of memory occupied by the first byte
of the variable, procedure or function with the identifier Name. If Name

is an array, it may be subscribed, and if Name is a record, specific fields
may be selected. The value returned is an Integer.

Seg
Syntax: Seg(Name)
Returns the address of the segment containing the first byte of the vari-
able with the identifier Name. If Name is an array, it may be subscribed,
and if Name is a record, specific fields may be selected. The value re-
turned is an Integer. To obtain the segment address of a procedure or
function, use the CSEG function.

Cseg
Syntax: Cseg

Returns the base address of the Code segment. The value returned is
an Integer.

CP/M-86 237

Absolute Address Functions

Dseg
Syntax: Dseg
Returns the base address of the Data segment. The value returned is an
Integer.

Sseg
Syntax: Sseg
Returns the base address of the Stack segment. The value returned is
an Integer.

Predefined Arrays
TURBO Pascal offers four predefined arrays of type Byte, called Mem,
MemW, Port and PortW which are used to access CPU memory and
data ports.

Mem Array
The predefined arrays Mem and MemW are used to access memory.
Each component of the array Mem is a byte, and each component of
the array MemW is a word (two bytes, LSB first). The index must be an
address specified as the segmentbase address and an offset separated by

a colon; both must be of type Integer.

The following statement assigns the value of the byte located in seg-
ment 0000 at offset $0081 to the variable Value

Value:=Mem[0000:$0081];
While the following statement:
MemW[Seg(Var):0fs(Var)]:=Value;

places the value of the Integer variable Value in the memory location oc-
cupied by the two first bytes of the variable Var.

238 TURBO Pascal Reference Manual

Predefined Arrays

Port Array

The Port and PortW array are used to access the data ports of the
8086/88 CPU. Each element of the array represents a data port, with
the index corresponding to port numbers. As data ports are selected by
16-bit addresses the index type is Integer. When a value is assigned to
a component of Port or PortW it is output to the port specified. When a
component of port is referenced in an expression, its value is input from
the port specified. The components of the Port array are of type Byte
and the components of PortW are of type Integer.

Example:
Port[56]:=10;

The use of the port array is restricted to assignment and reference in
expressions only, i.e. components of Port and PortW cannot be used as
variable parameters to procedures and functions. Furthermore, opera-

tions referring to the entire port array (reference without index) are not
allowed.

With Statements

With statements may be nested to a maximum of 9 levels.
Pointer Related Items

MemAvail

The standard function MemAvail is available to determine the available
space on the heap at any given time. The result is an Integer specifying
the number of available paragraphs on the heap (a paragraph is 16
bytes).

Pointer Values

In very special circumstances it can be of interest to assign a specific
value to a pointer variable without using another pointer variable or it
can be of interest to obtain the actual value of a pointer variable.

CP/M-86 239

Pointer Related Items

Assigning a Value to a Pointer

The standard function Ptr can be used to assign specific values to a
pointer variable. The function returns a 32 bit pointer consisting of a
segment address and an offset.

Example:
Pointer:=Ptr(Cseg,$80);

Obtaining The Value of a Pointer

A pointer value is represented as a 32 bit entity and the standard func-
tion Ord can therefore not be used to obtain its value. Instead the func-
tions Ofs and Seg must be used.

The following statement obtains the value of the pointer P (which is a
segment address and an offset):

SegmentPart:=Seg(P");
OffsetPart:=0fs(P*);

Function Calls

240

For the purpose of calling the CP/M-86 BDOS, TURBO Pascal intro-
duces a procedure Bdos, which has a record as parameter.

Details on BDOS and BIOS routines are found in the CP/M-86 Operat-
ing System Manual published by Digital Research.

The parameter to Bdos must be of the type:

record
AX,BX,CX,DX,BP,SI,DI,DS,ES,Flags: Integer;
end;

Before TURBO calls the BDOS, the registers AX, BX, CX, DX, BP, SI,
DI, DS, and ES are loaded with the values specified in the record param-
eter. When the BDOS has finished operation the Bdos procedure will re-
store the registers to the record thus making any resulits from the BDOS
available.

TURBO Pascal Reference Manual

User Written I/O Drivers

User Written 1/O Drivers

For some applications it is practical for a programmer to define his own
input and output drivers, i.e. routines which perform input and output of
characters to and from an external device. The following drivers are part
of the TURBO environment, and used by the standard I/O drivers
(although they are not available as standard procedures or functions):

function ConSt boolean; { 6)
function Conin: Char; { 6 }
procedure ConOut{Ch: Char); { 6 }
procedure LstOut(Ch: Char); { 5}
procedure AuxOut(Ch: Char); (4 }
function Aux/n: Char; { 3}
procedure UsrOut(Ch: Char); { 6)
function Usrin: Char; { 6)

The ConSt routine is called by the function KeyPressed, the Conin and
ConOut routines are used by the CON:, TRM:, and KBD: devices, the
LstOut routine is used by the LST: device, the AuxOut and Auxin rou-
tines are used by the AUX: device, and the UsrOut and Usrin routines
are used by the USR: device.

By default, these drivers are assigned to the BDOS functions as showed
in curly braces in the above listing of drivers.

This, however, may be changed by the programmer by assigning the ad-
dress of a self-defined driver procedure or a driver function to one of the
following standard variables:

Variable Contains the address of the
ConStPtr ConSt function

ConinPtr Conin function

ConOutPtr ConOut procedure

LstOutPtr LstOut procedure
AuxOutPtr AuxQut procedure

AuxinPtr AuxiIn function

UsrOutPtr UsrOut procedure

UsrinPtr Usrin function

CP/M-86 241

User Written I/O Drivers

A user defined driver procedure or driver function must match the
definitions given above, i.e. a ConSt driver must be a boolean function, a
Conin driver must be a char function, etc.

External Subprograms

242

The reserved word external is used to declare external procedures and
functions, typically procedures and functions written in machine code.

The reserved word external must be followed by a string constant
specifying the name of a file in which executable machine code for the
external procedure or function must reside.

During compilation of a program containing external functions or pro-
cedures the associated files are loaded and placed in the object code.
Since it is impossible to know beforehand exactly where in the-object
code the external code will be placed this code must be relocatable, and
no references must be made to the data segment. Furthermore the
external code must save the registers BP, CS, DS and SS and restore
these before executing the RET instruction.

An external subprogram has no block, i.e. no declaration part and no
statement part. Only the subprogram heading is specified, immediately
followed by the reserved word external and a filename specifying where
to find the executable code for the subprogram.

The type of the filename is .CMD. Only the code segment of a .CMD file
is loaded.

Example:
procedure DiskReset; external 'DSKRESET';
function IOstatus: boolean; external 'IOSTAT';

Parameters may be passed to external subprograms, and the syntax is
exactly the same as that of calls to ordinary procedures and functions:

procedure Plot(X,Y: Integer); external 'PLOT';
procedure QuickSort(var List: PartNo); external 'QS‘';

External subprograms and parameter passing is discussed further on
page 252.

TURBO Pascal Reference Manual

In-line Machine Code

In-line Machine Code

TURBO Pascal features the inline statements as a very convenient way
of inserting machine code instructions directly into the program text. An
inline statement consists of the reserved word inline followed by one or
more code elements separated by slashes and enclosed in parentheses.

A code element is built from one or more data elements, separated by
plus (+) or minus (—) signs. A data element is either an integer con-
stant, a variable identifier, a procedure identifier, a function identifier, or
a location counter reference. A location counter reference is written as
an asterisk (*).

Example:
inline (10/$2345/count+l/sort-*+2);

Each code element generates one byte or one word (two bytes) of code.
The value of the byte or the word is calculated by adding or subtracting
the values of the data elements according to the signs that separate
them. The value of a variable identifier is the address (or offset) of the
variable. The value of a procedure or function identifier is the address
(or offset) of the procedure or function. The value of a location counter
reference is the address (or offset) of the location counter, i.e. the ad-
dress at which to generate the next byte of code.

A code element will generate one byte of code if it consists of integer
constants only, and if its value is within the 8-bit range (0..255). If the
value is outside the 8-bit range, or if the code element refers to variable,
procedure, or function identifiers, or if the code element contains a loca-
tion counter reference, one word of code is generated (least significant
byte first).

The ‘<’ and ‘>’ characters may be used to override the automatic
size selection described above. If a code element starts with a ‘ <’
character, only the least significant byte of the value is coded, even if it
is a 16-bit value. If a code element starts with a ‘* >’ character, a word
is always coded, even though the most significant byte is zero.

Example:
inline (<$1234/>%44);

This inline statement generates three bytes of code: $34, $44, $00.

CP/M-86 ' 243

In-line Machine Code

244

The value of a variable identifier use in a inline statement is the offset
address of the variable within its base segment. The base segment of
global variables (i.e. variables declared in the main program block) is the
data segment, which is accessible through the DS register. The base
segment of local variables (i.e. variables declared within the current sub-
program) is the stack segment, and in this case the variable offset is re-
lative to the BP (base page) register, the use of which automatically
causes the stack segment to be selected. The base segment of typed
constants is the code segment, which is accessible through the CS re-
gister. inline statements should not attempt to access variables that are
not declared in the main program nor in the current subprogram.

The following example of an inline statement generates machine code
that will convert all characters in its string argument to upper case.

procedure UpperCase(var Strg: Str);
{Str is type String[255]}

begin
inline
($C4/8$BE/Strg/ { LES DI,Strg[BP] }
$26/38A/80D/ { MOV CL,ES:[DI] 3}
$FE/$C1/ { INC CL }
$FE/$C9/ { L1: DEC CL }
$74/%13/ { Jz L2 }
$47/ { INC DI }
$26/$80/83D/%61/ { CMP ES:BYTE PTR [DI],'a'}
$72/$F5/ { JB L1 }
$26/%$80/$3D/87A/ { CMP ES:BYTE PTR [DI],'z'}
$77/8EF/ { JA L1 }
$26/$80/82D/820/ { SUB ES:BYTE PTR [DI],20H}
$EB/$E9) ; { JMP SHORT L1 3}
{ L2: }
end;

Inline statements may be freely mixed with other statements throughout
the statement part of a block, and inline statements may use all CPU
registers. Note, however, that the contents of the registers BP, SP, DS,
and SS must be the same on exit as on entry.

TURBO Pascal Reference Manual

Interrupt Handling

Interrupt Handling

A TURBO Pascal interrupt routine must manually preserve registers AX,
BX, CX, DX, S|, DI, DS and ES. This is done by placing the following in-
line statement as the first statement of the procedure:

inline ($50/$53/$51/852/856/857/$1E/$06/$FB);

The last byte ($FB) is an STl instruction which enables further interrupts
- it may or may not be required. The following inline statement must be
the last statement in the procedure:

inline ($07/$1F/$5F/$5E/$5A/$59/$5B/$58/$8B/$E5/$5D/$CF);

This restores the registers and reloads the stack pointer (SP) and the
base page register (BP). The last byte ($CF) is an IRET instruction which
overrides the RET instruction generated by the compiler.

An interrupt service procedure must not employ any 1/O operations us-
ing the standard procedures and functions of TURBO Pascal, as the
BDOS is not re-entrant. The programmer must initialize the interrupt
vector used to activate the interrupt service routine.

Note that the data segment register DS, used to access global variables,
will not have the correct value when the interrupt service routine is en-
tered. Therefore, global variables cannot be directly accessed. Typed
constants, however, are available, as they are stored in the code seg-
ment. The way to access global variables in the interrupt service routine
is therefore to store the value of Dseg in a typed constant in the main
program. This typed constant can then be accessed by the interrupt
handler and used to set its DS register.

Intr procedure

Syntax: Intr(InterruptNo, Resulf)

This procedure initializes the registers and flags as specified in the
parameter Result which must be of type:

Result = record

AX, BX, CX,DX,BP,SI,DI,DS,ES,Flags: Integer;
end;

CP/M-86 245

Interrupt Handling

It then makes the software interrupt given by the parameter interruptNo
which must be an Integer constant. When the interrupt service routine
returns control to your program, Result will contain any values returned
from the service routine.

Internal Data Formats

In the following descriptions, the symbol @ denotes the offset of the
first byte occupied by a variable of the given type within its segment.
The segment base address can be determined by using the standard
function Seg.

Global and local variables, and typed constants occupy different seg-
ments as follows:

Global variables reside in the data segment and the offset is relative to
the DS register.

Local variables reside in the stack segment and the offset is relative to
the BP register.

Typed constants reside in the code segment and the offset is relative to
the CS register.

All variables are contained within their base segment.

Basic Data Types

246

The basic data types may be grouped into structures (arrays, records,
and disk files), but this structuring will not affect their internal formats.

TURBO Pascal Reference Manual

Internal Data Formats

Scalars

The following scalars are all stored in a single byte: Integer subranges
with both bounds in the range 0..255, booleans, chars, and declared
scalars with less than 256 possible values. This byte contains the ordinal
value of the variable.

The following scalars are all stored in two bytes: Integers, Integer
subranges with one or both bounds not within the range 0..255, and de-
clared scalars with more than 256 possible values. These bytes contain
a 2's complement 16-bit value with the least significant byte stored first.

Reals

Reals occupy 6 bytes, giving a floating point value with a 40-bit mantissa
and an 8-bit 2's exponent. The exponent is stored in the first byte and
the mantissa in the next five bytes with the least significant byte first:

Exponent
@+1 LSB of mantissa

@+5 MSB of mantissa

The exponent uses binary format with an offset of $80. Hence, an ex-
ponent of $84 indicates that the value of the mantissa is to be multiplied
by 2 ($84-$80) = 2 "4 = 16. If the exponent is zero, the floating point
value is considered to be zero.

The value of the mantissa is obtained by dividing the 40-bit unsigned in-
teger by 2°40. The mantissa is always normalized, i.e. the most
significant bit (bit 7 of the fifth byte) should be interpreted as a 1. The
sign of the mantissa is stored in this bit, however, a 1 indicating that the
number is negative, and a 0 indicating that the number is positive.

CP/M-86 247

Internal Data Formats

Strings

A string occupies as many bytes as its maximum length plus one. The
first byte contains the current length of the string. The following bytes
contains the string with the first character stored at the lowest address.
In the table shown below, L denotes the current length of the string, and
Max denotes the maximum length:

Current length (L)

@+1 First character
@+2 Second character
@ +L Last character

@+L+1 Unused
@ + Max Unused

Sets

248

An element in a Set occupies one bit, and as the maximum number of
elements in a set is 256, a set variable will never occupy more than 32
bytes (256/8).

If a set contains less than 256 elements, some of the bits are bound to
be zero at all times and need therefore not be stored. In terms of
memory efficiency, the best way to store a set variable of a given type
would then be to “‘cut off” all insignificant bits, and rotate the remaining
bits so that the first element of the set would occupy the first bit of the
first byte. Such rotate operations, however, are quite slow, and TURBO
therefore employs a compromise: Only bytes which are statically zero
(i.e. bytes of which no bits are used) are not stored. This method of
compression is very fast and in most cases as memory efficient as the
rotation method.

The number of bytes occupied by a set variable is calculated as (Max
div 8) — (Min div 8) + 1, where Max and Min are the upper and lower
bounds of the base type of that set. The memory address of a specific
element E is:

MemAddress = @ + (E div 8) — (Min div 8)

and the bit address within the byte at MemAddress is:

TURBO Pascal Reference Manual

Internal Data Formats

BitAddress = E mod 8

where E denotes the ordinal value of the element.

Pointers

A pointer consists of four bytes containing a segment base address and
an offset. The two least significant bytes contains the offset and the two
most significant bytes the base address. Both are stored in memory us-
ing byte reversed format, i.e. the least significant byte is stored first. The
value nil corresponds to two zero words.

Data Structures
Data structures are built from the basic data types using various struc-
turing methods. Three different structuring methods exist: Arrays,
records, and disk files. The structuring of data does not in any way
affect the internal formats of the basic data types.

Arrays
The components with the lowest index values are stored at the lowest
memory address. A multi-dimensional array is stored with the rightmost
dimension increasing first, e.g. given the array
Board: array[l..8,1..8] of Square

you have the following memory layout of its components:

lowest address: Board[l,1]
Board[1,2]

Board[1,8]
Board[2,1]
Board[2,2]

Highest address: Board[8,8]

CP/M-86 249

Internal Data Formats

Records

The first field of a record is stored at the lowest memory address. If the
record contains no variant parts, the length is given by the sum of the
lengths of the individual fields. If a record contains a variant, the total
number of bytes occupied by the record is given by the length of the
fixed part plus the length of the largest of its variant parts. Each variant starts
at the same memory address.

Disk Files

Disk files are different from other data structures in that data is not
stored in internal memory but in a file on an external device. A disk file is
controlled through a file interface block (FIB).

File Interface Blocks

250

The table below shows the format of a FIB:

Flags byte.

Character buffer.

Number of records (LSB) or buffer offset (LSB).
Number of records (MSB) or buffer offset (MSB).
Record length (LSB) or buffer size (LSB).
Record length (MSB) or buffer size (MSB).
Buffer pointer (LSB).

Buffer pointer (MSB).

Current record (LSB) or buffer end (LSB).
Current record (MSB) or buffer end (LSB).
Unused.

Unused.

First byte of CP/M FCB.

Last byte of CP/M FCB.
First byte of sector buffer.

Last byte of sector buffer.

TURBO Pascal Reference Manual

Internal Data Formats

sector 0, byte 0: Number of records (LSB)

sector 0, byte 1: Number of records (MSB)

sector 0, byte 2: Record length (LSB)

sector 0, byte 3: Record length (MSB)
Text Files

The basic components of a text file are characters, but a text file is
furthermore divided into lines. Each line consists of any number of char-
acters ended by a CR/LF sequence (ASCIl $0D/ $0A). The file is ter-
minated by a Ctrl-Z (ASCII $1B).

Parameters

252

Parameters are transferred to procedures and functions via the stack
which is addressed through SS:SP.

On entry to an external subroutine, the top of the stack always contains
the return address within the code segment (a word). The parameters, if
any, are located below the return address, i.e. at higher addresses on
the stack.

If an external function has the following subprogram header:

function Magic(var R: Real; S: stringb): Integer;

then the stack upon entry to Magic would have the following contents:

< Function result >
< Segment base address of R >
< Offset address of R >
< First character of S >
< Last character of S >
< Length of S >
< Return address > SP

An external subroutine should save the Base Page register (BP) and
then copy the Stack Pointer SP into the Base Page register in order to
be able to refer to parameters. Furthermore the subroutine should
reserve space on the stack for local workarea. This can be obtained by
the following instructions:

TURBO Pascal Reference Manual

Internal Data Formats

The format of the flags byte at @ + O is:

Bit 0..3 File type.

Bit 4 Read semaphore.

Bit 5 Write semaphore or pre-read character flag.
Bit 6 Output flag.

Bit 7 Input flag.

File type 0 denotes a disk file, and 1 through 5 denote the TURBO Pas-
cal logical I/O devices (CON:, KBD:, LST:, AUX:, and USR:). For typed
files, bit 4 is set if the contents of the sector buffer is undefined, and bit
5 is set if data has been written to the sector buffer. For textfiles, bit 5 is
set if the character buffer contains a pre-read character. Bit 6 is set if
output is allowed, and bit 7 is set if input is allowed.

For typed and untyped files, the four words from @ + 2 to @ -+ 9 store
the number of records in the file, the record length in bytes, the sector
buffer pointer, and the current record number. For typed files, the sector
buffer pointer stores an offset (0..127) in the sector buffer at @ + 48.
The FIB of an untyped file has no sector buffer, and so the sector buffer
pointer is not used.

For text files, the four words from @ +2 to @ + 9 store the offset ad-
dress of the buffer, its size, the offset of the next character to read or
write, and the offset of the first byte after the buffer. The buffer always
resides in the same segment as the FiB, usually starting at @ + 48. The
size of a textfile FIB may be larger than indicated, depending on the size
of the buffer. When a textfile is assigned to a logical device, only the
flags byte and the character buffer are used.

Random Access Files

A random access file consists of a sequence of records, all of the same
length and same internal format. To optimize file storage capacity, the
records of a file are totally contiguous. The first four bytes of the first
sector of a file contains the number of records in the file and the length
of each record in bytes. The first record of the file is stored starting at
the fourth byte.

CP/M-86 251

Internal Data Formats

PUSH BP
MOV BP,SP
SUB SP,WORKAREA

The last instruction will have the effect of adding the following to the
stack:

< Return address > BP
< The saved BP register >
<First byte of local workarea >

<Last byte of local work area > SP
Parameters are accessed via the BP register.

The following instruction will load length of the string into the AL regis-
ter:

MOV AL, [BP+4]

Before executing a RET instruction the subprogram must reset the
Stack Pointer and Base Page register to their original values. When exe-
cuting the RET the parameters may be removed by giving RET a param-
eter specifying how many bytes to remove. The following instructions
should therefore be used when exiting from a subprogram:

MOV SP,BP
POP BP
RET NoOfBytesToRemove

Variable Parameters
With a variable (var) parameter, two words are transferred on the stack
giving the base address and offset of the first byte occupied by the actu-
al parameter.

Value Parameters

With value parameters, the data transferred on the stack depends upon
the type of the parameter as described in the following sections.

CP/M-86 253

Internal Data Formats

Scalars
Integers, Booleans, Chars and declared scalars (i.e. all scalars except
Reals) are transferred on the stack as a word. If the variable occupies
only one byte when it is stored, the most significant byte of the parame-
ter is zero.

Reals

A real is transferred on the stack using six bytes.

Strings
When a string is at the top of the stack, the topmost byte contains the
length of the string followed by the characters of the string.

Sets
A set always occupies 32 bytes on the stack (set compression only ap-
plies to the loading and storing of sets).

Pointers
A pointer value is transferred on the stack as two words containing the
base address and offset of a dynamic variable. The value NIL cor-
responds to two zero words.

Arrays and Records
Even when used as value parameters, Array and Record parameters are
not actually transferred on the stack. Instead, two words containing the
base address and offset of the first byte of the parameter are

transferred. It is then the responsibility of the subroutine to use this in-
formation to make a local copy of the variable.

254 TURBO Pascal Reference Manual

Internal Data Formats

Function Results

User written external functions must remove all parameters and the
function result from the stack when they return.

User written external functions must return their results exactly as
specified in the following:

Values of scalar types, except Reals, must be returned in the AX regis-
ter. If the result is only one byte then AH should be set to zero. Boolean
functions must return the function value by setting the Z flag (Z =
False, NZ = True).

Reals must be returned on the stack with the exponent at the lowest
address. This is done by not removing the function result variable when
returning.

Sets must be returned on the top of the stack according to the format
described on page 254. On exit SP must point at the byte containing the
string length.

Pointer values must be returned in the DX:AX.

The Heap and The Stacks

During execution of TURBO Pascal program the following segments are
allocated for the program:

a Code Segment,
a Data Segment, and
a Stack Segment

Two stack-like structures are maintained during execution of a program:
the heap and the stack.

The heap is used to store dynamic variables, and is controlled with the
standard procedures New, Mark, and Release. At the beginning of a
program, the heap pointer HeapPtr is set to low memory in the stack
segment and the heap grows upwards towards the stack. The pre-
defined variable HeapPtr contains the value of the heap pointer and al-
lows the programmer to control the position of the heap.

CP/M-86 255

Internal Data Formats

The stack is used to store local variables, intermediate results during
evaluation of expressions and to transfer parameters to procedures and
functions. At the beginning of a program, the stack pointer is set to the
address of the top of the stack segment.

On each call to the procedure New and on entering a procedure or func-
tion, the system checks for collision between the heap and the recursion
stack. If a collision has occurred, an execution error results, unless the
K compiler directive is passive ({ $K-}).

Memory Management

256

When a TURBO program is executed, three segments are allocated for
the program: A code segment, a data segment, and a stack segment.

Code segment (CS is the code segment register):

CS:0000 - CS:EOFR Run-time library code.
CS:EOFR - CS:EQOFP Program code.

CS:EOFP - CS:EOFC Unused.

Data segment (DS is the data segment register):

DS:0000 - DS:00FF CP/M-86 base page.
DS:0100 - DS:EOQOFW Run-time library workspace.
DS:EOFW - DS:EOFM Main program block variables.

DS:EQOFM -~ DS:EOFD Unused.

The unused areas between (CS:EOFP-CS:EOFC and DS:EOFM-
DS:EOFD) are allocated only if a minimum cOde segment size larger
than the required size is specified at compilation. The sizes of the code
and data segments never exceed 64K bytes eacn.

The stack segment is slightly more complicated, as it may be larger than
64K bytes. On entry to the program the stack segment register (SS) and
the stack pointer (SP) is loaded so that SS:SP points at the very last
byte available in the entire segment. During execution of the program
SS is never changed but SP may move downwards until it reaches the
bottom of the segment, or 0 (corresponding to 64K bytes of stack) if the
stack segment is larger than 64K bytes.

TURBO Pascal Reference Manual

Memory Management

The heap grows from low memory in the stack segment towards the ac-
tual stack residing in high memory. Each time a variable is allocated on
the heap, the heap pointer (which is a double word variable maintained
by the TURBO run-time system) is moved upwards, and then normal-
ized, so that the offset address is always between $0000 and $000F.
Therefore, the maximum size of a single variable that can be allocated
on the heap is 65521 bytes (corresponding to $10000 less $000F). The
total size of all variables allocated on the heap is however only limited by
the amount of memory available.

The heap pointer is available to the programmer through the HeapPtr
standard identifier. HeapPtr is a typeless pointer which is compatible
with all pointer types. Assignments to HeapPtr should be exercised only
with extreme care.

CP/M-86 257

Memory Management

Notes:

258 TURBO Pascal Reference Manual

Chapter 22
CP/M-80

1)

2

This chapter describes features of TURBO Pascal specific to the 8-bit
CP/M-80 implementation. It presents two kinds of information:

Things you should know to make efficient use of TURBO Pascal. Pages
259 through 272.

The rest of the chapter describes things which are only of interest to ex-
perienced programmers, such as machine language routines, technical
aspects of the compiler, etc.

eXecute Command

You will find an additional command on the main TURBO menu in the
CP/M-80 version: eXecute. It lets you run other programs from within
TURBO Pascal, for example copying programs, word processors - in
fact anything that you can run from your operating system. When enter-
ing X, you are prompted:

Command: ®

You may now enter the name of any program which will then load and
run normally. Upon exit from the program, control is re-transferred to
TURBO Pascal, and you return to the TURBO prompt > (command line
parameters are allowed).

compiler Options

The O command selects the following menu on which you may view and
change some default values of the compiler. It also provides a helpful
function to find runtime errors in programs compiled into object code
files.

CP/M-80 259

compiler Options

compile -> Memory
Com-file
cHn-file

Find run-time error Quit

Figure 22-1: Options Menu

Memory / Com file / cHn-file

260

The three commands M, C, and H select the compiler mode, i.e. where
to put the code which results from the compilation.

Memory is the default mode. When active, code is produced in memory
and resides there ready to be activated by a Run command.

Com-file is selected by pressing C. The arrow moves to point to this line.
When active, code is written to a file with the same name as the Work
file (or Main file, if specified) and the file type .COM. This file contains
the program code and Pascal runtime library, and may be activated by
typing its name at the console. Programs compiled this way may be
larger than programs compiled in memory, as the program code itself
does not take up memory during compilation, and as program code
starts at a lower address.

cHain-file is selected by pressing H. The arrow moves to point to this
line. When active, code is written to a file with the same name as the
Work file (or Main file, if specified) and the file type .CHN. This file con-
tains the program code but no Pascal library and must be activated from
another TURBO Pascal program with the Chain procedure (see page
263).

When Com or cHn mode is selected, the menu is expanded with the fol-
lowing two lines:

TURBO Pascal Reference Manual

compiler Options

Start address: XXXX (min YYYY)
End address: XXXX (max YYYY)

Figure 22-2: Start and End Addresses
Start Address

The Start address specifies the address (in hexadecimal) of the first byte
of the code. This is normally the end address of the Pascal library plus
one, but may be changed to a higher address if you want to set space
aside e.g. for absolute variables to be shared by a series of chained pro-
grams.

When you enter an S, you are prompted to enter a new Start address. If
you just hit <RETURN>, the minimum value is assumed. Don't set
the Start address to anything less than the minimum value, as the code
will then overwrite part of the Pascal library.

End Address

The End address specifies the highest address available to the program
(in hexadecimal). The value in parentheses indicate the top of the TPA
on your computer, i.e. BDOS minus one. The default setting is 700 to
1000 bytes less to allow space for the loader which resides just below
BDOS when executing programs from TURBO.

If compiled programs are to run in a different environment, the End ad-
dress may be changed to suit the TPA size of that system. If you antici-
pate your programs to run on a range of different computers, it will be
wise to set this value relatively low, e.g. C100 (48K), or even A100 (40K)
if the program is to run under MP/M.

CP/M-80 261

compiler Options

When you enter an E, you are prompted to enter a End address. If you just
hit <RETURN >, the default value is assumed (i.e. top of TPA less 700
to 1000 bytes). If you set the End address higher than this, the resulting
programs cannot be executed from TURBO, as they will overwrite the
TURBO loader; and if you set it higher than the TPA top, the resulting pro-
grams will overwrite part of BDOS if run on your machine.

Find Runtime Error

262

When you run a program compiled in memory, and a runtime error occurs,
the editor is invoked, and the error is automatically pointed out. This, of
course, is not possible if the program is in a .COM file or an .CHN file. Run
time errors then print out the error code and the value of the program
counter at the time of the error, e.g.:

Run-time error 01, PC=1B56
Program aborted

Figure 22-3: Run-time Error Message

To find the place in the source text where the error occurred, enter the
F command on the Options menu. When prompted for the address,
enter the address given by the error message:

Enter PC: 1B56

Figure 22-4: Find Run-time Error

The place in the source text is now found and pointed out exactly as if
the error had occurred while running the program in memory.

TURBO Pascal Reference Manual

Standard Identifiers

Standard ldentifiers

The following standard identifiers are unique to the CP/M-80 implemen-
tation:

Bios Bdos RecurPtr
BiosHL BdosHL StackPtr

Chain and Execute

TURBO Pascal provides two standard procedures: Chain and Execute
which allow you to activate other programs from a TURBO program.
The syntax of these procedure calls is:

Chain(FilVar)
Execute(FilVar)

where FilVar is a file variable of any type, previously assigned to a disk
file with the standard procedure Assign. If the file exists, it is loaded into
memory and executed.

The Chain procedure is used only to activate special TURBO Pascal
.CHN files, i.e. files compiled with the cHn-file option selected on the
Options menu (see page 260). Such a file contains only program code;
no Pascal library. It is loaded into memory and executed at the start ad-
dress of the current program, i.e. the address specified when the
current program was compiled. It then uses the Pascal library already
present in memory. Thus, the current program and the chained program
must use the same start address.

The Execute procedure is used to execute any .COM file that was created
using Turbo Pascal (see page 260). The file is loaded and executed at
address $100, as specified by the CP/M standard.

If the disk file does not exist, an /O error occurs. This error is treated as
described on page 116. If the | compiler. directive is passive ({ $I-}), pro-
gram execution continues with the statement following the failed Chain
or Execute statement, and the /Oresuit function must be called prior to
further 1/0O.

CP/M-80 263

Chain and Execute

264

Data can be transferred from the current program to the chained pro-
gram either by shared global variables or by absolute address variables.

To ensure overlapping, shared global variables should be declared as
the very first variables in both programs, and they must be listed in the
same order in both declarations. Furthermore, both programs must be
compiled to the same memory size (see page 261). When these condi-
tions are satisfied, the variables will be placed at the same address in
memory by both programs, and as TURBO Pascal does not automatical-
ly initialize its variables, they may be shared.

Example:
Program MAIN.COM:

program Main;

var
Txt: string[80];
CntPrg: file;
begin
Write('Enter any text: '); Readln(Txt);

Assign(CntPrg, 'ChrCount.chn');
Chain(CntPrg);
end.

Program CHRCOUNT.CHN:

program ChrCount;
var
Txt: string[80];
NoOfChar,
NoOfUpc,
I: Integer;
begin
NoOfUpc := O;
NoOfChar := Length(Txt);
for I := 1 to length(Txt) do
if Txt[I] in ['A'..'Z'] then NoOfUpc := Succ(NoOfUpc);

Write('No of characters in entry: ',NoOfChar);
Writeln('. No of upper case characters: ', NoOfUpc,'.');
end.

TURBO Pascal Reference Manual

Chain and Execute

If you want a TURBO program to determine whether it was invoked by
eXecute or directly from the DOS command line, you should use an ab-
solute variable at address $80. This is the command line length byte,
and when a program is called from CP/M, it contains a value between 0
and 127. When eXecuting a program, therefore, the calling program
should set this variable to something higher than 127. When you then
check the variable in the called program, a value between 0 and 127 in-
dicates that the program was called from CP/M, a higher value that it
was called from another TURBO program.

Note that neither Chain nor Execute can be used in direct mode, i.e.
from a program run with the compiler options switch in position Memory
(page 260).

Overlays

During execution, the system normally expects to find its overlay files on
the logged drive. The OvrDrive procedure may be used to change this
default value.

OvrDrive Procedure
Syntax: OvrDrive(Drive)

where Drive is an integer expression specifying a drive (0= logged
drive, 1= A:, 2=B:, etc.). On subsequent calls to overlay files, the files
will be expected on the specified drive. Once an overlay file has been
opened on one drive, future calls to the same file will look on the same
drive.

Example :
program OvrTest;

overlay procedure Proci;
begin

Writeln('Overlay A');
end;

overlay procedure ProcB;
begin

Writeln('Overlay B');
end;

CP/M-80 265

Overlays

procedure Dummy;

begin
{Dummy procedure to separate the overlays
into two groups}

end;

overlay procedure ProcC;
begin

Writeln('Overlay C'});
end;

begin
OvrDrive(2);
ProcA;
OvrDrive(0);
ProcC;
OvrDrive(2);
ProcB;

end.

The first call to OvrDrive specifies overlays to be sought on the B: drive.
The call to ProcA therefore causes the first overlay file (containing the
two overlay procedures ProcA and ProcB to be opened here.

Next, the OvrDrive(0) statement specifies that following overlays are to
be found on the logged drive. The call to ProcC opens the second over-
lay file here.

The following ProcB statement calls an overlay procedure in the first

overlay file; and to ensure that it is sought on the B: drive, the
OvrDrive(2) statement must be executed before the call.

266 TURBO Pascal Reference Manual

Files

Files
File Names

A file name in CP/M consists of one through eight letters or digits, op-
tionally followed by a period and a file type of one through three letters
or digits:

Drive:Name. Type

Text Files

The Seek and Flush procedures and the FilePos and FileSize functions
are not applicable to CP/M text files.

Absolute Variables

Variables may be declared to reside at specific memory addresses, and
are then called absolute. This is done by adding the reserved word ab-
solute and an address expressed by an integer constant to the variable
declaration.

Example:

var

I0byte: Byte absolute $0003;
CmdLine: string[127] absolute $80;

Absolute may also be used to declare a variable “‘on top” of another
variable, i.e. that a variable should start at the same address as another
variable. When absolute is followed by the variable (or parameter)
identifier, the new variable will start at the address of that variable (or
parameter).

Example:

var

Str: string[32];

StrLen: Byte absolute Str;

The above declaration specifies that the variable StrLen should start at
the same address as the variable Str, and since the first byte of a string
variable gives the length of the string, StrLen will contain the length of
Str. Notice that only one identifier may be specified in an absolute de-
claration, i.e. the construct:

CP/M-80 267

Absolute Variables

Identl, Ident2: Integer absolute $8000

is illegal. Further details on space allocation for variables are given on
pages 278 and 288.

Addr
Syntax: Addr(name);

Returns the address in memory of the first byte of the type, variable,
procedure, or function with the identifier name. If name is an array, it
may be subscribed, and if name is a record, specific fields may be
selected. The value returned is-of type Integer.

Predefined Arrays

TURBO Pascal offers two predefined arrays of type Byte, called Mem
and Port, which are used to directly access CPU memory and data
ports.

Mem Array

The predeclared array Mem is used to access memory. Each com-
ponent of the array is a Byte, and indexes correspond to addresses in
memory. The index type is Integer. When a value is assigned to a com-
ponent of Mem, it is stored at the address given by the index expres-
sion. When the Mem array is used in an expression, the byte at the ad-
dress specified by the index is used.

Examples:

Mem[WsCursor] := 2;
Mem[WsCursor+1l] := $1B;
Mem[WsCursor+2] := Ord(' ');

IObyte := Mem[3];
Mem[Addr+0Offset] := Mem[Addr];

268 TURBQO Pascal Reference Manual

- — - - - - —-—- - -

Predefined Arrays

Port Array

The Port array is used to access the data ports of the Z80 CPU. Each
element of the array represents a data port with indexes corresponding
to port numbers. As data ports are selected by 8-bit addresses, the in-
dex type is Byte. When a value is assigned to a component of Port, it is
output to the port specified. When a component of Port is referenced in
an expression, its value is input from the port specified.

The use of the port array is restricted to assignment and reference in
expressions only, i.e. components of Port cannot function as variable
parameters to procedures and functions. Furthermore, operations refer-
ring to the entire Port array (reference without index) are not allowed.

Array Subscript Optimization

The X compiler directive allows the programmer to select whether array
subscription should be optimized with regard to execution speed or to
code size. The default mode is active, i.e. { $X + }, which causes execu-
tion speed optimization. When passive, i.e. { $X-), the code size is
minimized.

With Statements

The default ‘depth’ of nesting of With statements is 2, but the W direc-
tive may be used to change this value to between 0 and 9. For each
block, With statements require two bytes of storage for each nesting
level allowed. Keeping the nesting to a minimum may thus greatly affect
the size of the data area in programs with many subprograms.

CP/M-80 269

Pointer Related Items

Pointer Related Items

MemAvail

The standard function MemAvail is available to determine the available
space on the heap at any given time. The result is an Integer, and if
more than 32767 bytes is available, MemAvail returns a negative
number. The correct number of free bytes is then calculated as 65536.0
+ MemAuvail. Notice the use of a real constant to generate a Real
result, as the result is greater than Max/nt. Memory management is
discussed in further detail on page 288.

Pointers and Integers

270

The standard functions Ord and Ptr provide direct control of the address
contained in a pointer. Ord returns the address contained in its pointer
argument as an Integer, and Ptr converts its Integer argument into a
pointer which is compatible with all pointer types.

These functions are extremely valuable in the hands of an experienced
programmer as they allow a pointer to point to anywhere in memory. If
used carelessly, however, they are very dangerous, as a dynamic vari-
able may be made to overwrite other variables, or even program code.

TURBO Pascal Reference Manual

CP/M Function Calls

CP/M Function Calls
For the purpose of calling CP/M BDOS and BIOS routines, TURBO Pas-
cal introduces two standard procedures: Bdos and Bios, and four stan-
dard functions: Bdos, BdosHL, Bios, and BiosHL.
Details on BDOS and BIOS routines are found in the CP/M Operating
System Manual published by Digital Research.

Bdos procedure and function
Syntax: Bdos(Func {, Param });
The Bdos procedure is used to invoke CP/M BDOS routines. Func and
Param are integer expressions. Func denotes the number of the called
routine and is loaded into the C register. Param is optional and denotes
a parameter which is loaded into the DE register pair. A call to address 5
then invokes the BDOS.

The Bdos function is called like the procedure and returns an Integer
result which is the value returned by the BDOS in the A register.

BdosHL function
Syntax: BdosHL(Func {, Param });

This function is exactly similar to the Bdos function above, except that
the result is the value returned in the HL register pair.

CP/M-80 271

CP/M Function Calls

Bios procedure and function

Syntax: Bios(Func {, Param)});

The Bios procedure is used to invoke BIOS routines. Func and Param
are integer expressions. Func denotes the number of the called routine,
with 0 meaning the WBOOT routine, 1 the CONST routine, etc. l.e. the
address of the called routine is Func * 3 plus the WBOOT address con-
tained in addresses 1 and 2. Param is optional and denotes a parameter
which is loaded into the BC register pair prior to the call.

The Bios function is called like the procedure and returns an integer
result which is the value returned by the BIOS in the A register.

BiosHL function

Syntax: BiosHL(Func {, Param });

This function is exactly similar to the Bios function above, except that
the result is the value returned in the HL register pair.

User Written 1/O Drivers

272

For some applications it is practical for a programmer to define his own
input and output drivers, i.e. routines which perform input and output of
characters to and from external devices. The following drivers are part
of the TURBO environment, and used by the standard 1/O drivers
(although they are not available as standard procedures or functions):

function ConSt: boolean;
function Conin: Char;
procedure ConOut (Ch: Char);
procedure LstOut (Ch: Char);
procedure AuxOut (Ch: Char);
function Aux/n: Char;
procedure UsrOut (Ch: Char);
function Usrin:. Char,;

TURBO Pascal Reference Manual

User Written I/O Drivers

The ConSt routine is called by the function KeyPressed, the Conin and
ConQOut routines are used by the CON:, TRM:, and KBD: devices, the
LstOut routine is used by the LST: device, the AuxOut and Auxin rou-
tines are used by the AUX: device, and the UsrOut and Usrin routines
are used by the USR: device.

By default, these drivers use the corresponding BIOS entry points of the
CP/M operating system, i.e. ConSt uses CONST, Conin uses CONIN,
ConOut uses CONOUT, LstOut uses LIST, AuxOut uses PUNCH, Auxin
uses READER, UsrOut uses CONOUT, and Usrin uses CONIN. This,
however, may be changed by the programmer by assigning the address
of a self-defined driver procedure or a driver function to one of the fol-
lowing standard variables:

Variable Contains the address of the
ConStPtr ConSt function

ConinPtr Conin function

ConOutPtr ConOut procedure

LstOutPtr LstOut procedure

AuxOutPtr AuxQut procedure

AuxiInPtr Auxin function

UsrOutPtr UsrOut procedure

UsrinPtr Usrln function

A user defined driver procedure or driver function must match the
definitions given above, i.e. a ConSt driver must be a Boolean function,
a Conin driver must be a Char function, etc.

CP/M-80 273

External Subprograms

External Subprograms

" The reserved word external is used to declare external procedures and

functions, typically procedures and functions written in machine code.

An external subprogram has no block, i.e. no declaration part and no
statement part. Only the subprogram heading is specified, immediately
followed by the reserved word external and an integer constant defining
the memory address of the subprogram:

procedure DiskReset; external $ECO0O0;
function IOstatus: boolean; external $D123

Parameters may be passed to external subprograms, and the syntax is
exactly the same as that of calls to ordinary procedures and functions:

procedure Plot(X,Y: Integer); external $F003;
procedure QuickSort(var List: PartNo); external $1C00;

Parameter passing to external subprograms is discussed further on
page 283.

In-line Machine Code

274

TURBO Pascal features the inline statements as a very convenient way
of inserting machine code instructions directly into the program text. An
inline statement consists of the reserved word inline followed by one or
more code elements separated by slashes and enclosed in parentheses.

A code element is built from one or more data elements, separated by
plus (+) or minus (—) signs. A data element is either an integer con-
stant, a variable identifier, a procedure identifier, a function identifier, or
a location counter reference. A location counter reference is written as
an asterisk (*).

Example:
inline (10/$2345/count+l/sort-*+2);

TURBO Pascal Reference Manual

In-line Machine Code

Each code element generates one byte or one word (two bytes) of code.
The value of the byte or the word is calculated by adding or subtracting
the values of the data elements according to the signs that separate
them. The value of a variable identifier is the address (or offset) of the
variable. The value of a procedure or function identifier is the address
(or offset) of the procedure or function. The value of a location counter
reference is the address (or offset) of the location counter, i.e. the ad-
dress at which to generate the next byte of code.

A code element will generate one byte of code if it consists of integer
constants only, and if its value is within the 8-bit range (0..255). If the
value is outside the 8-bit range, or if the code element refers to variable,
procedure, or function identifiers, or if the code element contains a loca-
tion counter reference, one word of code is generated (least significant
byte first).

The ‘<’ and '>" characters may be used to override the automatic
size selection described above. If a code element starts with a * <’
character, only the least significant byte of the value is coded, even if it
is a 16-bit value. If a code element starts with a * >’ character, a word
is always coded, even though the most significant byte is zero.

Example:
inline (<$1234/>$44);

This inline statement generates three bytes of code: $34, $44, $00.

The following example of an inline statement generates machine code
that will convert all characters in its string argument to upper case.

CP/M-80 275

In-line Machine Code

procedure UpperCase(var Strg: Str); {Str is type String[255]}

{$A+}
begin
inline ($2A/Strg/ { LD HL, (Strg) }
$46/ { LD B, (HL) }
$04/ { INC B }
$05/ { L1: DEC B }
$CA/*+20/ { JP Z,L2 }
$23/ { INC HL }
$7E/ { LD A, (HL) }
$FE/$61/ { (93 'a' }
$DA/*-9/ { JP C,L1 }
$FE/$7B/ { CP 'z'+1l }
$D2/%-14/ { JP NC,L1 }
$D6/$20/ { SUB 20H }
$77/ { LD (HL),A }
$C3/*-20); { JP L1 }
{L2: EQU % }
end;

Inline statements may be freely mixed with other statements throughout
the statement part of a block, and inline statements may use all CPU
registers. Note, however, that the contents of the stack pointer register
(SP) must be the same on exit as on entry.

276 TURBO Pascal Reference Manual

Interrupt Handling

Interrupt Handling

The TURBO Pascal run time package and the code generated by the
compiler are both fully interruptable. Interrupt service routines must
preserve all registers used.

If required, interrupt service procedures may be written in Pascal. Such
procedures should always be compiled with the A compiler directive ac-
tive ({$A +)), they must not have parameters, and they must them-
selves insure that all registers used are preserved. This is done by plac-
ing an inline statement with the necessary PUSH instructions at the
very beginning of the procedure, and another inline statement with the
corresponding POP instructions at the very end of the procedure. The
last instruction of the ending inline statement should be an El instruction
($FB) to enable further interrupts. If daisy chained interrupts are used,
the inline statement may also specify a RET! instruction ($ED, $4D),
which will override the RET instruction generated by the compiler.

The general rules for register usage are that integer operations use only
the AF, BC, DE, and HL registers, other operations may use X and lY,
and real operations use the alternate registers.

An interrupt service procedure should not employ any /O operations us-
ing the standard procedures and functions of TURBO Pascal, as these
routines are not re-entrant. Also note that BDOS calls (and in some in-
stances BIOS calls, depending on the specific CP/M implementation)
should not be performed from interrupt handlers, as these routines are
not re-entrant.

The programmer may disable and enable interrupts throughout a pro-
gram using DI and El instructions generated by inline statements.

If mode 0 (IM 0) or mode 1 (IM 1) interrupts are employed, it is the
responsibility of the programmer to initialize the restart locations in the
base page (note that RST 0 cannot be used, as CP/M uses locations 0
through 7).

If mode 2 (IM 2) interrupts are employed, the programmer should gen-
erate an initialized jump table (an array of integers) at an
absolute address, and initialize the | register through a inline statement
at the beginning of the program.

CP/M-80 277

Internal Data Formats

Internal Data Formats

In the following descriptions, the symbol (@ denotes the address of the
first byte occupied by a variable of the given type. The standard function
Addr may be used to obtain this value for any variable.

Basic Data Types

The basic data types may be grouped into structures (arrays, records,
and disk files), but this structuring will not affect their internal formats.

Scalars

The following scalars are all stored in a single byte: Integer subranges
with both bounds in the range 0..255, Booleans, Chars, and declared
scalars with less than 256 possible values. This byte contains the ordinal
value of the variable.

The following scalars are all stored in two bytes: Integers, Integer
subranges with one or both bounds not within the range 0..255, and de-
clared scalars with more than 256 possible values. These bytes contain
a 2's complement 16-bit value with the least significant byte stored first.

Reals

278

Reals occupy 6 bytes, giving a floating point value with a 40-bit mantissa
and an 8-bit 2's exponent. The exponent is stored in the first byte and
the mantissa in the next five bytes which the least significant byte first:

@ Exponent
@ +1 LSB of mantissa
@ +5 MSB of mantissa

The exponent uses binary format with an offset of $80. Hence, an ex-
ponent of $84 indicates that the value of the mantissa is to be multiplied
by 2 "($84-$80) = 2 "4 = 16. If the exponent is zero, the floating point
value is considered to be zero.

TURBO Pascal Reference Manual

Internal Data Formats

The value of the mantissa is obtained by dividing the 40-bit unsigned in-
teger by 2 “40. The mantissa is always normalized, i.e. the most
significant bit (bit 7 of the fifth byte) should be interpreted as a 1. The
sign of the mantissa is stored in this bit, a 1 indicating that the number is
negative, and a 0 indicating that the number is positive.

Strings

A string occupies the number of bytes corresponding to one plus the
maximum length of the string. The first byte contains the current length
of the string. The following bytes contain the actual characters, with the
first character stored at the lowest address. In the table shown below, L
denotes the current length of the string, and Max denotes the maximum

length:

@ Current length (L)
@ +1 First character
@ +2 Second character
@ +L Last character
@ +L+1 Unused

@ + Max Unused

Sets

An element in a set occupies one bit, and as the maximum number of
elements in a set is 256, a set variable will never occupy more than 32
bytes (256/8).

If a set contains less than 256 elements, some of the bits are bound to
be zero at ali times and need therefore not be stored. In terms of
memory efficiency, the best way to store a set variable of a given type
would then be to *‘cut off” all insignificant bits, and rotate the remaining
bits so that the first element of the set would occupy the first bit of the
first byte. Such rotate operations, however, are quite slow, and TURBO
therefore employs a compromise: Only bytes which are statically zero
(i.e. bytes of which no bits are used) are not stored. This method of
compression is very fast and in most cases as memory efficient as the
rotation method.

CP/M-80 279

Internal Data Formats

The number of bytes occupied by a set variable is calculated as (Max
div 8) — (Min div 8) + 1, where Max and Min are the upper and lower
bounds of the base type of that set. The memory address of a specific
element E is:

MemAddress = @ + (E div 8) — (Min div 8)

and the bit address within the byte at MemAddress is:

BitAddress = E mod 8

where E denotes the ordinal value of the element.

File Interface Blocks

280

The table below shows the format of a FIB in TURBO Pascal-80:

@+0 Flags byte.

@+1 Character buffer.

@+2 Sector buffer pointer (LSB).
@+3 Sector buffer pointer (MSB).
@+4 Number of records (LSB).
@+5 Number of records (MSB).
@+6 Record length (LSB).
@+7 Record length (MSB).
@+8 Current record (LSB).
@+9 Current record (MSB).
@+10 Unused.

@+ 1 Unused.

@-+12 First byte of CP/M FCB.

@ +47 Last byte of CP/M FCB.

@ +48 First byte of sector buffer.

@ +175 Last byte of sector buffer.

The format of the flags byte at @ + 0 is:

Bit 0..3 File type.

Bit 4 Read semaphore.
Bit 5 Write semaphore.
Bit 6 Output flag.

Bit 7 Input flag.

TURBO Pascal Reference Manual

Internal Data Formats

File type O denotes a disk file, and 1 through 5 denote the TURBO Pas-
cal logical 1/O devices (CON:, KBD:, LST:, AUX:, and USR:). For typed
files, bit 4 is set if the contents of the sector buffer is undefined, and bit
5 is set if data has been written to the sector buffer. For textfiles, bit 5 is
set if the character buffer contains a pre-read character. Bit 6 is set if
output is allowed, and bit 7 is set if input is allowed.

The sector buffer pointer stores an offset (0..127) in the sector buffer at
@ +48. For typed and untyped files, the three words from @ + 4 to
@ + 9 store the number of records in the file, the record length in bytes,
and the current record number. The FIB of an untyped file has no sector
buffer, and so the sector buffer pointer is not used.

When a text file is assigned to a logical device, only the flags byte and
the character buffer are used.

Pointers
A pointer consists of two bytes containing a 16-bit memory address, and
it is stored in memory using byte reversed format, i.e. the least
significant byte is stored first. The value nil corresponds to a zero word.

Data Structures
Data structures are built from the basic data types using various struc-
turing methods. Three different structuring methods exist: arrays,
records, and disk files. The structuring of data does not in any way
affect the internal formats of the basic data types.

Arrays
The components with the lowest index values are stored at the lowest
memory address. A multi-dimensional array is stored with the rightmost
dimension increasing first, e.g. given the array

Board: array[l..8,1..8] of Square

you have the following memory layout of its components:

CP/M-80 281

Internal Data Formats

lowest address: Board[1,1]
Board[1,2]

Board[1,8)

Board[2,1]
Board[2,2]

Highest address: éoard[8,8]

Records

The first field of a record is stored at the lowest memory address. If the
record contains no variant parts, the length is given by the sum of the
lengths of the individual fields. If a record contains a variant, the total
number of bytes occupied by the record is given by the length of the
fixed part plus the length of largest of its variant parts. Each variant
starts at the same memory address.

Disk Files

Disk files are different from other data structures in that data is not
stored in internal memory but in a file on an external device. A disk file is
controlled through a file interface block (FIB) as described on page 280.
In general there are two different types of disk files: random access files
and text files.

Random Access Files

282

A random access file consists of a sequence of records, all of the same
length and same internal format. To optimize file storage capacity, the
records of a file are totally contiguous. The first four bytes of the first
sector of a file contains the number of records in the file and the length
of each record in bytes. The first record of the file is stored starting at
the fourth byte.

sector 0, byte 0: Number of records (LSB)
sector 0, byte 1: Number of records (MSB)
sector 0, byte 2: Record length (LSB)
sector 0, byte 3: Record length (MSB)

TURBOQ Pascal Reference Manual

Internal Data Formats

Text Files

The basic components of a text file are characters, but a text file is sub-
divided into f/ines. Each line consists of any number of characters ended
by a CR/LF sequence (ASCIHl $0D/ $0A). The file is terminated by a
Ctrl-Z (ASCII $1A).

Parameters

Parameters are transferred to procedures and functions via the Z-80
stack. Normally, this is of no interest to the programmer, as the machine
code generated by TURBO Pascal will automatically PUSH parameters
onto the stack before a call, and POP them at the beginning of the sub-
program. However, if the programmer wishes to use external subpro-
grams, these must POP the parameters from the stack themselves.

On entry to an external subroutine, the top of the stack always contains
the return address (a word). The parameters, if any, are located below
the return address, i.e. at higher addresses on the stack. Therefore, to
access the parameters, the subroutine must first POP off the return ad-
dress, then all the parameters, and finally it must restore the return ad-
dress by PUSHing it back onto the stack.

Variable Parameters
With a variable (VAR) parameter, a word is transferred on the stack giv-
ing the absolute memory address of the first byte occupied by the actual
parameter.

Value Parameters
With value parameters, the data transferred on the stack depends upon
the type of the parameter as described in the following sections.

Scalars
Integers, Booleans, Chars and declared scalars are transferred on the
stack as a word. If the variable occupies only one byte when it is stored,

the most significant byte of the parameter is zero. Normally, a word is
POPped off the stack using an instruction like POP HL.

CP/M-80 283

Internal Data Formats

Reals

A real is transferred on the stack using six bytes. If these bytes are
POPped using the instruction sequence:

POP HL
POP DE
POP BC

then L will contain the exponent, H the fifth (least significant) byte of the
mantissa, E the fourth byte, D the third byte, C the second byte, and B
the first (most significant) byte.

Strings

When a string is at the top of the stack, the byte pointed to by SP con-
tains the length of the string. The bytes at addresses SP + 1 through
SP +n (where n is the length of the string) contain the string with the
first character stored at the lowest address. The following machine code
instructions may be used to POP the string at the top of the stack and
store it in StrBuf:

LD DE, StrBuf
LD HL,O
LD B,H
ADD HL, SP
LD C, (HL)
INC BC
LDIR
LD SP,HL
Sets

A set always occupies 32 bytes on the stack (set compression only ap-
plies to the loading and storing of sets). The following machine code in-
structions may be used to POP the set at the top of the stack and store
it in SetBuf:

284 TURBO Pascal Reference Manual

Internal Data Formats

LD DE, SetBuf
LD HL,O
ADD HL, SP
LD BC, 32
LDIR
LD SP, HL
This will store the least significant byte of the set at the lowest address
in SetBuf.
Pointers

A pointer value is transferred on the stack as a word containing the
memory address of a dynamic variable. The value NIL corresponds to a
zero word.

Arrays and Records

Even when used as value parameters, Array and Record parameters are
not actually PUSHed onto the stack. Instead, a word containing the ad-
dress of the first byte of the parameter is transferred. It is then the
responsibility of the subroutine to POP this word, and use it as the
source address in a block copy operation.

Function Results

User written external functions must return their results exactly as
specified in the following:

Values of scalar types, must be returned in the HL register pair. If the
type of the result is expressed in one byte, then it must be returned in L
and H must by zero.

Reals must be returned in the BC, DE, and HL register pairs. B, C, D, E,
and H must contain the mantissa (most significant byte in B), and L
must contain the exponent.

Strings and sets must be returned on the top of the stack on the for-
mats described on page 284.

Pointer values must be returned in the HL register pair.

CP/M-80 285

Internal Data Formats

The Heap and The Stacks

286

As indicated by the memory maps in previous sections, three stack-like
structures are maintained during execution of a program: The heap, the
CPU stack, and the recursion stack.

The heap is used to store dynamic variables, and is controlled with the
standard procedures New, Mark, and Release. At the beginning of a
program, the heap pointer HeapPtr is set to the address of the bottom
of free memory, i.e the first free byte after the object code.

The CPU stack is used to store intermediate results during evaluation of
expressions and to transfer parameters to procedures and functions. An
active for statement also uses the CPU stack, and occupies one word.
At the beginning of a program, the CPU stack pointer StackPtr is set to
the address of the top of free memory.

The recursion stack is used only by recursive procedures and functions,
i.e. procedures and functions compiled with the A compiler directive pas-
sive ({$A-}). On entry to a recursive subprogram it copies its workspace
onto the recursion stack, and on exit the entire workspace is restored to
its original state. The default initial value of RecurPtr at the beginning of
a program, is 1K ($400) bytes below the CPU stack pointer.

Because of this technique, variables local to a subprogram must not be
used as var parameters in recursive calls.

The pre-defined variables:

HeapPtr: The heap pointer,
RecurPtr: The recursion stack pointer, and
StackPtr: The CPU stack pointer

allow the programmer to control the position of the heap and the stacks.
The type of these variables is Integer. Notice that HeapPtr and RecurPtr
may be used in the same context as any olner Integer variable, whereas
StackPtr may only be used in assignments and expressions.

When these variables are manipulated, always make sure that they point
to addresses within free memory, and that:

HeapPtr < RecurPtr < StackPtr

TURBO Pascal Reference Manual

Internal Data Formats

Failure to adhere to these rules will cause unpredictable, perhaps fatal,
results.

Needless to say, assignments to the heap and stack pointers must nev-
er occur once the stacks or the heap are in use.

On each call to the procedure New and on entering a recursive pro-
cedure or function, the system checks for collision between the heap
and the recursion stack, i.e. checks if HeapPtr is less than RecurPtr. If
not, a collision has occurred, which results in an execution error.

Note that no checks are made at any time to insure that the CPU stack
does not overflow into the bottom of the recursion stack. For this to
happen, a recursive subroutine must call itself some 300-400 times,
which must be considered a rare situation. If, however, a program re-
quires such nesting, the following statement executed at the beginning
of the program block will move the recursion stack pointer downwards
to create a larger CPU stack:

RecurPtr := StackPtr -2 *MaxDepth -512;
where MaxDepth is the maximum required depth of calls to the recur-
sive subprogram(s). The extra approx. 512 bytes are needed as a

margin to make room for parameter transfers and intermediate results
during the evaluation of expressions.

CP/M-80 287

Memory Management

Memory Management

Memory Maps

The following diagrams illustrate the contents of memory at different
stages of working with the TURBO system. Solid lines indicate fixed
boundaries (i.e. determined by amount of memory, size of your CP/M,
version of TURBO, etc.), whereas dotted lines indicate boundaries which
are determined at run-time (e.g. by the size of the source text, and by
possible user manipulation of various pointers, etc.). The sizes of the
segments in the diagrams do not necessarily reflect the amounts of
memory actually consumed.

Compilation in Memory

288

During compilation of a program in memory (Memory-mode on compiler
Options menu, see page 259), the memory is mapped as follows:

0000
CP/M and run-time workspace
Pascal Library

Turbo interface, editor, and compiler

_ 1 _ _ _ Error messages, optional

Source text

———————————— i _l_ ~ Object code growing upward

T Symbol table growing downward

T CPU stack growing downward

CP/M

HighMem

Figure 22-5: Memory map during compilation in memory

TURBO Pascal Reference Manual

Memory Management

If the error message file is not loaded when starting TURBO, the source
text starts that much lower in memory. When the compiler is invoked, it
generates object code working upwards from the end of the source
text. The CPU stack works downwards from the logical top of memory,
and the compiler’'s symbol table works downwards from an address 1K
($400 bytes) below the logical top of memory.

Compilation To Disk

During compilation to a .COM or .CHN file (Com-mode or cHn-mode on
compiler Options menu, see page 259), the memory looks much as dur-
ing compilation in memory (see preceding section) except that generated
object code does not reside in memory but is written to a disk file. Also,
the code starts at a higher address (right after the Pascal library instead
of after the source text). Compilation of much larger programs is thus
possible in this mode.

0000
CP/M and run-time workspace
Pascal Library

Turbo interface, editor, and compiler

____________ — — . Error messages, optional

Source text

T Symbol table growing downward

T CPU stack growing downward

CP/M
HighMem

Figure 22-6: Memory map during compilation to a file

CP/M-80 289

Memory Management

Execution in Memory

When a program is executed in direct - or memory - mode (i.e. the
Memory-mode on compiler Options menu is selected, see page 259), the
memory is mapped as follows:

-
I
nE

0000
CP/M and run-time workspace
Pascal Library

Turbo interface, editor, and compiler

Error messages, optional

Source text

Object code

Default initial value of HeapPtr
Heap growing upward

Recursion stack growing downward
Default initial value of RecurPtr
CPU stack growing downward
Default initial state of StackPtr

Program variables growing downward
CP/M
HighMem

Figure 22-7: Memory map during execution in direct mode

When a program is compiled, the end of the object code is known. The
heap pointer HeapPltr is set to this value by default, and the heap grows
from here and upwards in memory towards the recursion stack. The
maximum memory size is BDOS minus one (indicated on the compiler
Options menu). Program variables are stored from this address and
downwards. The end of the variables is the ‘top of free memory’ which
is the initial value of the CPU stack pointer StackPtr. The CPU stack
grows downwards from here towards the position of the recursion stack
pointer RecurPtr, $400 bytes lower than StackPtr. The recursion stack
grows from here downward towards the heap.

290

TURBO Pascal Reference Manual

Memory Management

Execution of A Program File

When a program file is executed (either by the Run command with the
Memory-mode on the compiler Options menu selected, by an eXecute
command, or directly from CP/M), the memory is mapped as follows:

0000

CP/M and run-time workspace
Pascal Library

Default program start address

Object code

___________ . — — Default initial value of HeapPtr
Heap growing upward

—T Recursion stack growing downward
| 1 — Default initial value of RecurPtr

1 CPU stack growing downward
| _L __ Default initial state of StackPtr

Program variables growing downward
__________ . — — Default end address

Loader Maximum memory size

CP/M

HighMem

Figure 22-8: Memory map during execution of a program file

This map resembles the previous, except for the absence of the TURBO
interface, editor, and compiler (and possible error messages) and of the
source text. The default program start address (shown on the compiler
Options menu) is the first free byte after the Pascal runtime library. This
value may be manipulated with the Start address command of the com-
piler Options menu, e.g. to create space for absolute variables and/or
external procedures between the library and the code. The maximum
memory size is BDOS minus one, and the default value is determined by
the BDOS location on the computer in use.

CP/M-80 291

Memory Management

If programs are to be translated for other systems, care should be taken
to avoid collision with the BDOS. The maximum memory may be mani-
pulated with the End address command of the compiler Options menu.
Notice that the default end address setting is approx. 700 to 1000 bytes
lower than maximum memory. This is to allow space for the loader
which resides just below BDOS when .COM files are Run or eXecuted
from the TURBO system. This loader restores the TURBO editor, com-
piler, and possible error messages when the program finishes and thus
returns control to the TURBO system.

292 TURBO Pascal Reference Manual

TURBO-BCD

Chapter 23
TURBO-BCD

TURBO-BCD is a special version of TURBO Pascal which is not included
in the standard TURBO Pascal package. It employs binary coded de-
cimal (BCD) Real numbers to obtain higher accuracy, especially needed
in programs for business applications.

If you are interested in purchasing TURBO-BCD, please see page 3 for
ordering information.

TURBO-BCD will compile and run any program written for standard
TURBO or TURBO-87 Pascal that does not use these procedures or
functions: Sin, Cos, ArcTan, Ln, Exp, Sqrt, and the pre-declared constant Pi,
the only difference being in real number processing and real number
format.

Files On the TURBO-BCD Distribution Diskette

In addition to the files listed on page 8, the TURBO-BCD distribution
diskette contains the file

TURBOBCD.COM
(TURBOBCD.CMD for CP/M-86). This file contains the special TURBO-

BCD system. If you want to install it with TINST, you must first tem-
porarily rename it to TURBO.COM (or .CMD).

BCD Range

TURBO-BCD’s BCD Reals have a range of 1E-63 through 1E + 63 with
18 significant digits.

TURBO-BCD 293

Form function
Form function

Syntax: Form(St,Var1,Var2,..,VarN)
The Form function provides advanced numeric and string formatting. St
is a string expression giving an image of the format string, as detailed in
the following, and Var1,Var2,..,VarN are Real, Integer, or String expres-
sions. The result is a String of the same length as St.
St is made up of a number of field specifiers, each of which corresponds
to one parameter in the parameter list. Blanks and characters other than
the ones defined in the following serve to separate fields and will also
appear in the formatted result, viz:
Form('Total: $#,### ##',61234.56) = 'Total: $1,234.56'

The arguments in the argument list use the field specifiers in the order
of appearance:

Form('Please @@@AAA® us at (###) ### #u###',K 'phone',408,438,8400) =
'Please phone us at (408) 438 8400 '

If there are more arguments in the argument list than there are field
specifiers in the format string, the arguments in excess are ignored. If
there are less arguments than field specifiers, the field specifiers in ex-
cess are returned unchanged:

Form("###.##',12.34,43.21) = ' 12.34'
Form('### ## -## ##',123.4) = '123.40 -## ##'

There are two types of field specifiers: numeric and string.

Numeric Fields
A numeric field is a sequence of one or more of the following characters:

@ * & - +

294 TURBO Pascal Reference Manual

Form function

Any other character terminates the numeric field. The number is re-
turned right-justified within the field, decimals are rounded if they exceed
the number of decimals specified by the format, and if the number is too
large to be returned in the field, all digit positions are filled with aster-
isks.

A digit position. If the numeric field contains no @ or * characters,
unused digits are returned as blanks. If the numeric field contains no
sign positions (-’ or ‘ +’ characters) and the number is negative, a float-
ing minus is returned in front of the number.

Examples:

Form('####',34.567) ="' 35'
Form("### . ##',12.345') = ' 12.35"
Form("#### ##',-12.3) = ' -12.30'

Form('### ##',1234.5) TRER XX

@ A digit position. Unused digits are forced to be returned as zeros instead
of blanks. The @ character needs only occur once in the numeric field
to activate this effect. The sign of the number will not be returned unless
the field contains a sign position (-’ or ‘ + ' character).

Examples:
Form('@##',9) = '009'
Form('@@®@.@@',12.345) = '012.35"

A digit position. Unused digits are forced to be returned as asterisks in-
stead of blanks. The * character needs only occur once in the numeric
field to activate this effect. The sign of the number will not be returned
unless the field contains a sign position (‘-" or ‘ 4+’ character).

Examples:
Form('*##.#',4.567) = '*¥4 57
Form('****x' 123) = '%]123"

TURBO-BCD 295

Form function

$ A digit position. A floating $-sign is returned in front of the number. The
‘$’ character need only occur once in the numeric field to activate this

effect.

Examples:

Form('$u##u# ##',123.45) = ' §$123.45"'
Form("###### #$',-12.345) = ' -$12.35"
Form('*$#### ##',12.34) = '*%%§12 . 34"

- A sign position. If the number is negative, a minus will be returned in
that position; if it is positive, a blank is returned.

Examples:

Form('-###. ##',-1.2) = '- 1.20°
Form('-###.##',612) = ' 12.00'
Form(' *##### ##-"',-123.45) = '***]123 .45-"

+ A sign position. If the number is positive, a plus will be returned in that
position; if it is negative, a minus is returned.

Examples:

Form('+### ##',-1.2) = '- 1.20°'
Form('+### ##',612) = '+ 12.00'
Form('*$#### ##+',12.34) = "*¥¥*§12 34+

, A decimal comma or a separator comma. The last period or comma in
the numeric image is considered the decimal delimiter.

A decimal period or a separator period. The last period or comma in the
numeric image is considered the decimal delimiter.

Examples:

Form("##, ### ### ##',12345.6) ! 12,345.60'
Form('$#.### ### ##',-12345.6) ' -$12.345,60'
Form('*$, ###, ### ##+',12345.6) '*¥x$12,345.60+"
Form('##,### ##',6123456.0) TEXE kX AR

296 TURBO Pascal Reference Manual

Form function

String Fields

A string field is a sequence of # or @ characters. If the string parameter
is longer than the string field, only the first characters of the string are
returned.

|If the field contains only # characters, the string will be returned left
justified.

@ If one or more ‘@’ characters are present in the field, the string will be
returned right justified within the length of the field.

Examples:

Form('##########"' , 'Pascal') = 'Pascal '
Form('@#########"' , 'Pascal') = ' Pascal'
Form('####','TURBO Pascal') = 'TURBO '
Form('@@@@', 'TURBO Pascal') = 'TURBO '

Writing BCD Reals

BCD Reals are written on a format slightly different from the standard
format, as described below.

R The decimal representation of the value of R is output in a field 25 char-
acters wide, using floating point format. For R > = 0.0, the format is:

LIL# | RS R TR SRR R ##
For R < 0.0, the format is:
Li—# | #HHHHSH AR B R SR BB BB #8

where L represents a blank, # represents a digit, and * represents ei-
ther plus or minus.

TURBO-BCD 297

Writing BCD Reals
R:n The decimal representation of the value of R is output, right adjusted in
a field n characters wide, using floating point format. For R > = 0.0:
blanks#.digitsE*##
For R < 0.0:
blanks-#.digitsE*##

where blanks represents zero or more blanks, digits represents from 1
to 17 digits, # represents a digit, and * represents either plus or minus.

Formatted Writing

The Form standard function can be used as a write parameter to pro-
duce formatted output:

Write(Form('The price is $###, ### ### ##' ,Price));

Internal Data Format

The BCD Real variable occupies 10 bytes, and consists of a floating
point value with an 18 digit binary coded decimal mantissa, a 7-bit 10’s
exponent, and a 1-bit sign. The exponent and the sign are stored in the
first byte and the mantissa in the next nine bytes with the least
significant byte first:

@+0 Exponent and sign.
@+1 LSB of mantissa.
@+9 MSB of mantissa.

298 TURBO Pascal Reference Manual

Internal Data Format

The most significant bit of the first byte contains the sign. 0 means posi-
tive and 1 means negative. The remaining seven bits contain the ex-
ponent in binary format with an offset of $3F. Thus, an exponent of $41
indicates that the value of the mantissa is to be multiplied by 107($41-
$3F) = 10"2 = 100. If the first byte is zero, the floating point value is
considered to be zero. Starting with the tenth byte, each byte of the
mantissa contains two digits in BCD format, with the most significant di-
git in the upper four bits. The first digit contains the 1/10’s, the second
contains the 1/100’s, etc. The mantissa is always normalized, i.e. the
first digit is never O unless the entire number is 0.

This 10-byte Real is not compatible with TURBO standard or 8087
Reals. This, however, should only be a problem if you develop programs
in different versions of TURBO which must interchange data. The trick
then is simply to provide an interchange-format between the programs
in which you transfer Reals on ASCIl format, for instance.

TURBO-BCD 299

Internal Data Format

Notes:

300 TURBO Pascal Reference Manual

TURBO-87

Chapter 24
TURBO-87

TURBO-87
TURBO-87 is a special version of TURBO Pascal which is not included
in the standard TURBO Pascal package. It uses the Intel 8087 math-
processor for real number arithmetic, providing a significant gain in
speed. TURBO-87 does not include the 8087 chip.

If you are interested in purchasing TURBO-87, please see page 3 for
ordering information.

TURBO-87 will compile and run any program written for standard
TURBO Pascal; the only difference being in real number processing and
real number format.

TURBO-87 programs will not run on a computer without the 8087-chip
installed, whereas the opposite will work.

Files On the TURBO-87 Distribution Diskette

In addition to the files listed on page 8, the TURBO-87 distribution
diskette contains the file

TURBO-87.COM
(TURBO-87.CMD for CP/M-86). This file contains the special TURBO-87

system. If you want to install it with TINST, you must first temporarily
rename it to TURBO.COM (or .CMD).

TURBO-87 301

Writing 8087 Reals

Writing 8087 Reals

8087 Reals are written on a format slightly different from the standard
format, as described below.

The decimal representation of the value of R is output in a field 23 char-
acters wide, using floating point format. For R > = 0.0, the format is:

L | R H R R AR B HHE $#
For R < 0.0, the format is:
U-#. SRR IR X

where L represents a blank, # represents a digit, and * represents ei-
ther plus or minus.

The decimal representation of the value of R is output, right adjusted in
a field n characters wide, using floating point format. For R > = 0.0:

blanks#.digitsE*###
For R < 0.0:
blanks-#.digitsEx###

where blanks represents zero or more blanks, digits represents from 1
to 14 digits, # represents a digit, and * represents either plus or minus.

Internal Data Format

302

The 8087 chip supports a range of data types. The one used by
TURBO-87 is the long real, its 64-bits yielding 16 digits accuracy and a
range of 4.19E-307 to 1.67E + 308.

This 8-byte Real is not compatible with TURBO standard or BCD Reals.
This, however, should only be a problem if you develop programs in
different versions of TURBO which must interchange data. The trick
then is simply to provide an interchange-format between the programs
in which you transfer Reals on ASCII format, for instance.

TURBO Pascal Reference Manual

Appendix A

A SUMM

ARY OF STANDARD

PROCEDURES AND FUNCTIONS

This appendix lists all standard procedures and functions available in Turbo

Pascal and
ing symbols

string
type
file
scalar
pointer

describes their use, syntax, parameters, and type. The follow-
are used to denote elements of various types:

Any string type
Any type

Any file type
Any scalar type
Any pointer type

When a parameter-type specification is not present, it means that the
procedure or function accepts variable parameters of any type.

INPUT/OUTPUT PROCEDURES AND FUNCTIONS

The following procedures use a non-standard syntax in their parameter

lists:

Read;

Read(var V: type);

Read(var F: file of type; var V: type);

Read(var F: text; var I: integer);

Read(var F: text; var R: real);

Read(var F: text; var C: char);

Read(var F: text; var S: string);

Readln;

Readln(var V: type);

Readln(var F: text);

Readln(var F: text; var I: integer);

Readln(var F: text; var R: real);

Readln(var F: text; var C: char);

Readln(var F: text; var S: string);

Write(var V: type);

Write(var F: file of type; var V: type);

Write(var F: Text; I: integer);

Write(var F: Text; R: real);

Write(var F: Text; B: boolean);

Write(var F: Text; C: char);

Write(var F: Text; S: string);

Writeln;

Writeln(var V: type);

Writeln(var F: Text);

Writeln(var F: Text; I: integer);
TURBO-87 303

Arithmetic Functions

Writeln(var F: Text;

Writeln(var F: Text;
Writeln(var F: Text;

real);
boolean);
: char);
: string);

(L NeN--N--]

Writeln(var F: Text;

ARITHMETIC FUNCTIONS

BAbs(I: integer): integer;
Abs(R: real): real;
ArcTan(R: real): real;
Cos(R: real): real;
Exp(R: real): real;
Frac(R: real): real;
Int(R: real): real;

Ln(R: real): real;

Sin(R: real): real;
Sqr(I: integer): integer;
Sqr(R: real): real;
Sqrt(R: real): real;

FILE-HANDLING ROUTINES

304

Procedures

Append(var F: text; Name: string); {PC/MS-DOS, CP/M-8L}

Assign(var F: file; Name: string);

BlockRead(var F: file; var Dest: Type; Num: integer);
{untyped files} :

BlockRead(var F: file; var Dest: Type; Num: integer;

var RecsRead: integer); {untyped files PC/MS-DOS}

BlockWrite(var F: file; var Dest: Type; Num: integer);
{untyped files}
BlockWrite(var F: file; var Dest: Type; Num: integer;
var RecsWritten: integer);
{untyped files PC/MS-DOS}
Chain(var F: file);
Close(var F: file);
Erase(var F: file);
Execute(var F: file);
Renane(var F: file; Name: string);
Reset(var F: file);
Reset(var F: file; BlockSize : integer);
{untyped files PC/MS-DOS}
Rewrite(var F: file);
Rewrite(F: file; BlockSize : integer);
{untyped files PC/MS-DOS}
Seek(var F: file Pos: integer); {except text files}
LongSeek(var F: file; Pos: real);
{except text files, PC/MS-DOS only}

TURBO Pascal Reference Manual

Heap Control Procedures and Functions

Functions

Eof(var F: file): boolean;
Eoln(var F: Text): boolean;
FilePos(var F: file of type): integer;
FilePos(var F: file): integer;
LongFilePos(var F: file): real;
{except text files, PC/MS-DOS only}
FileSize(var F: file): integer; {except text files}
LongFileSize(var F: file): real;
{except text files, PC/MS-DOS only}
SeekEof(var F: file): boolean;
SeekEoln(var F: Text): boolean;

HEAP CONTROL PROCEDURES AND FUNCTIONS

Procedures

Dispose(var P: pointer);

Freellem(var P: pointer, I: integer);
GetMem(var P: pointer; I: integer);
Mark(var P: pointer);

New(var P: pointer);

Release(var P: pointer);

Functions

MaxAvail: integer;

MemAvail: integer;

O0rd(P: pointer): integer; {CP/M-80}

Ptr(segnent, offset: integer): Pointer; {PC/MS-D0OS, CP/M-8L}

MISCELLANEOUS PROCEDURES AND FUNCTIONS

Procedures

Bdos(Func {,Param }: integer); {CP/M-80}
Bdos(Func: integer; Param: record); {CP/M-8&}
Bios(Func {,Param }: integer); {CP/M}

Delay(MS: integer);

Exit;

FillChar(var Dest, Length: integer; Data: char);
FillChar(var Dest, Length: integer; Data: byte);
Halt;

Intr(Func : integer; Param : record); {PC/MS-D0OS}
MsDos(Func: integer; Param: record); {PC/MS-DOS}
Move(var Source,Dest; Length: integer);
Randomize;

Functions

Addr(var Variable): Pointer; {PC/MS-DOS, CP/M-8L}
Addr(var Variable): integer; {CP/M-80}
Addr(<function identifier>): integer; {CP/M-80}
Addr(<procedure identifier>): integer; (CP/M-80}

SUMMARY OF STANDARD PROCEDURES AND FUNCTIONS 305

Miscellaneous Procedures and Functions

Bdos(Func, Param: integer): byte; {CP/M-a0}

BdosHL(Func, Param: integer): integer; {CP/M-80}
Bios(Func, Param: integer): byte; {CP/M}

BiosHL(Func, Param: integer): integer; {CP/M}

Hi(I: integer): byte;

IOresult: integer;

KeyPressed : boolean;

Lo(I: integer): byte;

Ofs(var Variable): integer; {PC/MS-DOS, CP/M-8k}
Ofs(<function identifier»>): integer; {PC/MS-DOS, CP/M-B8L}
Ofs(<procedure identifier>): integer; {PC/MS-DOS, CP/M-8G}
ParamCount: integer;

ParanStr(N: integer): string;

Random(Range: integer): integer;

Random : real;

Seg(var Variable): integer; {PC/MS-DOS, CP/M-8b}
SizeOf(var Variable): integer;

SizeOf(<type identifier>): integer;

Swap(I: integer): integer;

UpCase(Ch: char): char;

SCALAR FUNCTIONS

Functions

0dd(I: integer): boolean;
Pred(X: scalar): scalar;
Succ(X: scalar): scalar;

DIRECTORY-RELATED PROCEDURES (PC/MS-DOS)

Procedures

ChDir(Path: string);
GetDir(Drv: integer; var Path: string);
MkDir(Path: string);
RmDir(Path: string);

SCREEN-RELATED PROCEDURES AND FUNCTIONS

Procedures

CrtExit;

Crtlnit;

ClrEol;

ClrScr;

DellLine;

GotoXY(X, Y: integer);
InsLine;

LowVideo;

HighVideo;

NormVideo;

306 TURBO Pascal Reference Manual

String Procedures and Functions

STRING PROCEDURES AND FUNCTIONS

The Str procedure uses a non-standard syntax for its numeric parameter.

Procedures

Delete(var S: string; Pos, Len: integer);
Insert(S: string; var D: string; Pos: integer);
Str(I: integer; var S: string);

Str(R: real; var S: string);

Val(S: string; var R: real; var p: integer);
Val(S: string; var I, p: integer);

Functions

Concat(S1,S2,...,5n: string): string;
Copy(S: string; Pos, Len: integer): string;
Length(S: string): integer;

Pos(Pattern, Source: string): integer;

TRANSFER FUNCTIONS

Chr(I: integer): char;

Ord(X: scalar): integer;
Round(R: real): integer;
Trunc(R: real): integer;

IBM PC PROCEDURES AND FUNCTIONS

The following procedures and functions apply to IBM implementations only.

Basic Graphics, Windows, and Sound

Procedures

Draw(X1,Yl,X2,Y2,Color: integer);
GraphBackground(Color: integer);
GraphColorMode;

Graphlode;
GraphWindow(X1,Y1,X2,Y2: integer);
HiRes;

HiResColor(Color: integer);
NoSound;

Palette(Color: integer);
Plot(X,Y,Color: integer);
Sound(I: integer);
TextBackground(Color: integer);
TextColor(Color: integer);
TextMode(Color: integer);
Window(X1,Y1,X2,Y2: integer);

SUMMARY OF STANDARD PROCEDURES AND FUNCTIONS

307

IBM PC Procedures and Functions

Functions

WhereX: integer;
WhereY: integer;

Constants

BW40: integer; = 0

C40: integer; =1

BWA0: integer; = 2

Cad0: integer; = 3

Black: integer; = 0

Blue: integer; = 1

Green: integer; = ¢

Cyan: integer; = 3

Red: integer; = 4

Magenta: integer; = §
Brown: integer; = &
LightGray: integer; = 7
DarkGray: integer; = 8
LightBlue: integer; = 8
LightGreen: integer; = 10
LightCyan: integer; = 11
LightRed: integer; = 12
LightMagenta: integer; = 13
Yellow: integer; = 14
White: integer; = 15
Blink: integer; = 1b

Extended Graphics

Procedures

Arc(X,Y,Angle,Radius,Color: integer);
Circle(X,Y,Radius,Color: integer);
ColorTable(C1,C2,C3,C4: integer);
FillScreen(Color: integer);
FillShape(X,Y,FillColor,BorderColor: integer);
FillPattern(X1,Y1,X2,Y2,Color: integer);
GetPic(var Buffer: AnyType; X1,Y1,X2,Y2: integer);
Pattern(P: Array(D..?] of Byte);

PutPic(var Buffer: type; X,Y: integer);

function GetDotColor(X,Y¥: integer): integer;

Turtlegraphics

308

Procedures

Back(Dist: integer);
ClearScreen;
Forward(Dist: integer);
HideTurtle;

Home;

NoWrap;

PenDown;

TURBO Pascal Reference Manual

IBM PC Procedures and Functions

PenlUp;

SetHeading(Angle: integer);
SetPenColor(Color: integer);
SetPosition(X,Y: integer);
ShowTurtle;

TurnLeft(Angle: integer);
TurnRight(Angle: integer);
TurtleDelay(Ms: integer);
TurtleWindow(X,Y,W,H: integer);
Wrap;

Functions

Heading: integer;

Xcor: integer;

Ycor: integer;

TurtleThere: boolean;

Constants
North = 0O;
East = 90;
South = 140;
HWest = 270;

SUMMARY OF STANDARD PROCEDURES AND FUNCTIONS 309

Standard Procedures and Functions

Notes:

310 TURBO Pascal Reference Manual

SUMMARY OF OPERATORS
Appendix B
SUMMARY OF OPERATORS

The following table summarizes all operators of TURBO Pascal. The
operators are grouped in order of descending precedence. Where Type
of operand is indicated as Integer, Real, the result is as follows:

Operand Result

Integer, Integer Integer

Real, Real Real

Real, Integer Real

Operator Operation Type of operand(s) Type of result

+ unary sign identity Integer, Real as operand

- unary sign inversion Integer, Real as operand

not negation Integer, Boolean as operand

* multiplication Integer, Real Integer, Real
set intersection any set type as operand

/ division Integer, Real Real

div Integer division Integer Integer

mod modulus Integer Integer

and arithmetical and Integer Integer
logical and Boolean Boolean

shl shift left Integer Integer

shr shift right Integer Integer

+ addition Integer, Real Integer, Real
concatenation string string
set union any set type as operand

- subtraction Integer, Real Integer, Real
set difference any set type as operand

or arithmetical or Integer integer
logical or Boolean Boolean

xor arithmetical xor Integer Integer
logical xor Boolean Boolean

SUMMARY OF OPERATORS 311

312

Operator Operation Type of operand(s) Type of result
= equality any scalar type Boolean
equality string Boolean
equality any set type Boolean
equality any pointer type Boolean
<> inequality any scalar type Boolean
inequality string Boolean
inequality any set type Boolean
inequality any pointer type Boolean
> = greater or equal any scalar type Boolean
greater or equal string Boolean
set inclusion any set type Boolean
<= less or equal any scalar type Boolean
less or equal string Boolean
set inclusion any set type Boolean
> greater than any scalar type Boolean
greater than string Boolean
< less than any scalar type Boolean
less than string Boolean
in set membership see below Boolean

The first operand of the in operator may be of any scalar type, and the
second operand must be a set of that type.

TURBO Pascal Reference Manual

SUMMARY OF COMPILER DIRECTIVES
Appendix C
SUMMARY OF COMPILER
DIRECTIVES

A number of features of the TURBO Pascal compiler are controlled
through compiler directives. A compiler directive is introduced as a com-
ment with a special syntax which means that whenever a comment is al-
lowed in a program, a compiler directive is also allowed.

A compiler directive consists of an opening bracket immediately followed
by a dollar-sign immediately followed by one compiler directive letter or a
list of compiler directive letters separated by commas, ultimately ter-
minated by a closing bracket.

Examples:

{$1-}

{$I INCLUDE.FIL}
{$B-,R+,V-}
(*$U+*)

Notice that no spaces are allowed before or after the dollar-sign. A +
sign after a directive indicates that the associated compiler feature is en-
abled (active), and a minus sign indicates that is disabled (passive).

IMPORTANT NOTICE

All compiler directives have default values. These have been chosen
to optimize execution speed and minimize code size. This means
that e.g. code generation for recursive procedures (CP/M-80 only)
and index checking has been disabled. Check below to make sure
that your programs include the required compiler directive settings!

SUMMARY OF COMPILER DIRECTIVES 313

Common Compiler Directives

Common Compiler Directives

B - I/O Mode Selection
Default: B +

The B directive controls input/output mode selection. When active,
{$B + }, the CON: device is assigned to the standard files Input and Out-
put, i.e. the default input/output channel. When passive, {$B-}, the TRM:
device is used. This directive is global to an entire program block and
cannot be re-defined throughout the program. See pages 105 and 108
for further details.

C -Control Cand S
Default: C +

The C directive controls control character interpretation during console
I/O. When active, {$C + }, a Ctrl-C entered in response to a Read or
Readin statement will interrupt program execution, and a Ctrl-S will tog-
gle screen output off and on. When passive, ($C-}, control characters
are not interpreted. The active state slows screen output somewhat, so
if screen output speed is imperative, you should switch off this directive.
This directive is global to an entire program block and cannot be re-
defined throughout the program.

Note that when using the function on KeyPressed, the C directive must be
set to {$C-}.

| - I/O Error Handling
Default: 1 +
The | directive controls I/O error handling. When active, {$1+), all I/O
operations are checked for errors. When passive, {$l-}, it is the respon-

sibility of the programmer to check I/O errors through the standard func-
tion /Oresult. See page 116 for further details.

I - Include Files

The | directive succeeded by a file name instructs the compiler to in-
clude the file with the specified name in the compilation. Include files are
discussed in detail in chapter 17.

314 TURBO Pascal Reference Manual

Common Compiler Directives

R - Index Range Check
Default: R-

The R directive controls run-time index checks. When active, {$R -}, all
array indexing operations are checked to be within the defined bounds,
and all assignments to scalar and subrange variables are checked to be
within range. When passive, {$R-}, no checks are performed, and index
errors may well cause a program to go haywire. It is a good idea to ac-
tivate this directive while developing a program. Once debugged, execu-
tion will be speeded up by setting it passive (the default state).

V - Var-parameter Type Checking
Default: V +

The V compiler directive controls type checking on strings passed as
var-parameters. When active, {$V + }, strict type checking is performed,
i.e. the lengths of actual and formal parameters must match. When pas-
sive, {$V-}, the compiler allows passing of actual parameters which do
not match the length of the formal parameter. See pages 203, 236, and
267 for further details.

U - User Interrupt
Default: U-
The U directive controls user interrupts. When active, {$U + }, the user
may interrupt the program anytime during execution by entering a Ctrl-

C. When passive, {$U-}, this has no effect. Activating this directive will
significantly slow down execution speed.

SUMMARY OF COMPILER DIRECTIVES 315

PC-DOS and MS-DOS Compiler Directives

PC-DOS and MS-DOS Compiler Directives

The following directives are unique to the PC/MS-DOS implementations:

G - Input File Buffer

Default: GO

The G (get) directive enables I/O re-direction by defining the standard
Input file buffer. When the buffer size is zero (default), the Input file
refers to the CON: or TRM: device. When non-zero (e.g. {$G256)), it
refers to the MS-DOS standard input handle.

The D compiler directive applies to such non-zero-buffer input and out-
put files. The G compiler directive must be placed before the declaration
part.

Note that when using Chain or Execute you set all compiler directives to be
the same across Chained or Executed modules. This includes the buffer
sizes used for the G and P compiler directives.

P - Output File Buffer

Default: PO

The P (put} directive enables 1/0 re-direction by defining the standard
Output file buffer. When the buffer size is zero (default), the Output file
refers to the CON: or TRM: device. When non-zero (e.g. {$G512}), it
refers to the MS-DOS standard output handle.

The D compiler directive applies to such non-zero-buffer input and out-
put files. The P compiler directive must be placed before the declaration
part.

Note that when using Chain or Execute you set all directives to be the same
across Chained or Executed modules. This includes the buffer sizes
used for the G and P compiler directives.

D - Device Checking

316

Default: D +

When a text file is opened by Reset, Rewrite or Append, TURBO Pascal
asks MS-DOS for the status of the file. If MS-DOS reports that the file is a

TURBO Pascal Reference Manual

PC-DOS and MS-DOS Compiler Directives

device, TURBO Pascal disables the buffering that normally occurs on
text files, and all I/O operations on the file are done on a character by
character basis.

The D directive may be used to disable this check. In the default state
{$D+}, device checks are made. In the {$D-} state, no checks are made
and all device 1/O operations are buffered. In this case, a call to the
standard procedure Flush will ensure that the characters you have
written to a file have actually been sent to it.

F - Number of Open Files
Default: F15

The F directive controls the number of files that may be open simultane-
ously. The default setting is {$F15}, which means that up to 16 files
may be open at any one time. This directive is global to a program and
must be placed before the declaration part. The F compiler directive
does not limit the number of files that may be declared in a program; it
only sets a limit to the number of files that may be open at the same
time.

The F compiler directives’s maximum effective value is 15. Also, the
maximum value for the statement

files = XX

in your CONFIG.SYS file is 20. Therefore, the maximum number of files
available in a Turbo Pascal program running under MS-DOS/PC-DOS is
15.

Note that even if the F compiler directive has been used to allocate
sufficient file space, you may still experience a 'too many open files' er-
ror condition if the operating system runs out of file buffers. If that hap-
pens, you should supply a higher value for the files =xx parameter in
the CONFIG.SYS file. The default value is usually 8. For further detail,
please refer to your MS-DOS documentation.

PC-DOS, MS-DOS, and CP/M-86 Compiler Directive

The following directive is unique to the 16-bit implementations:

SUMMARY OF COMPILER DIRECTIVES 317

CP/M-80 Compiler Directives

K - Stack Checking

Default: K +

The K directive controls the generation of stack check code. When ac-
tive, {$K + }, a check is made to insure that space is available for local
variables on the stack before each call to a subprogram. When passive,
{$K-}, no checks are made.

CP/M-80 Compiler Directives

The following directives are unique to the 8-bit implementation:

A - Absolute Code

W -

Default: A+

The A directive controls generation of absolute, i.e. non-recursive, code.
When active, {$A + }, absolute code is generated. When passive, {$A-},
the compiler generates code which allows recursive calls. This code re-
quires more memory and executes slower.

Nesting of With Statements
Default: W2

The W directive controls the level of nesting of With statements, i.e. the
number of records which may be 'opened’ within one block. The W
must be immediately followed by a digit between 1 and 9. For further
details, please refer to page 81.)

X - Array Optimization

318

Default: X +

The X directive controls array optimization. When active, {$X +), code
generation for arrays is optimized for maximum speed. When passive,
{$X-}, the compiler minimizes the code size instead. This is discussed
further on page 75.

TURBO Pascal Reference Manual

TURBO VS. STANDARD PASCAL
Appendix D
TURBO VS. STANDARD PASCAL

The TURBO Pascal language follows the Standard Pascal defined by
Jensen & Wirth in their User Manual and Report, with only minor
differences introduced for the sheer purpose of efficiency. These
differences are described in the following. Notice that the extensions
offered by TURBO Pascal are not discussed.

Recursion

CP/M-80 version only: Because of the way local variables are handled
during recursion, a variable local to a subprogram must not be passed
as a var-parameter in recursive calls.

Get and Put

The standard procedures Get and Put are not implemented. Instead,
the Read and Write procedures have been extended to handle all 1/O
needs. The reason for this is threefold: Firstly, Read and Write give
much faster 1/O; secondly, variable space overhead is reduced, as file
buffer variables are not required, and thirdly, the Read and Write pro-
cedures are far more versatile and easier to understand that Get and
Put.

Goto Statements

A goto statement must not leave the current block.
Page Procedure

The standard procedure Page is not implemented, as the CP/M operat-
ing system does not define a form-feed character.

TURBO VS. STANDARD PASCAL 319

Page Procedure

Packed Variables

The reserved word packed has no effect in TURBO Pascal, but it is stil
allowed. This is because packing occurs automatically whenever possi-

ble. For the same reason, standard procedures Pack and Unpack are
not implemented.

Procedural Parameters

Procedures and functions cannot be passed as parameters.

320 TURBO Pascal Reference Manual

COMPILER ERROR MESSAGES

Appendix E

COMPILER ERROR MESSAGES

The following is a listing of error messages you may get from the com-
piler. When encountering an error, the compiler will always print the er-
ror number on the screen. Explanatory texts will only be issued if you
have included error messages (answer Y to the first question when you

start TURBO).

Many error messages are totally self-explanatory, but some need a little

elaboration as provided in the following.

' expected

'’ expected

', expected

’(’ expected

'y expected

' =" expected

;=" expected

I’ expected

'T expected

'’ expected

’.." expected

BEGIN expected

DO expected

END expected

OF expected

PROCEDURE or FUNCTION expected
THEN expected

TO or DOWNTO expected
Boolean expression expected
File variable expected

Integer constant expected
Integer expression expected
Integer variable expected

Integer or real constant expected
Integer or real expression expected
Integer or real variable expected
Pointer variable expected
Record variable expected

COMPILER ERROR MESSAGES

321

COMPILER ERROR MESSAGES

30
31
32
33
34
35
36
37
40

41

42

43
44

45
47
48
49

50
51

52

53
54

322

Simple type expected
Simple types are all scalar types, except real.
Simple expression expected
String constant expected
String expression expected
String variable expected
Textfile expected
Type identifier expected
Untyped file expected
Undefined label
A statement references an undefined label.
Unknown identifier or syntax error
Unknown label, constant, type, variable, or field identifier, or syntax
error in statement.
Undefined pointer type in preceding type definitions
A preceding pointer type definition contains a reference to an un-
- known type identifier.
Duplicate identifier or label
This identifier or label has already been used within the current block.
Type mismatch
1) Incompatible types of the variable and the expression in an assign-
ment statement 2) Incompatible types of the actual and the formal
parameter in a call to a subprogram. 3) Expression type incompatible
with index type in array assignment. 4) Types of operands in an ex-
pression are not compatible.
Constant out of range
Constant and CASE selector type does not match
Operand type(s) does not match operator
Example: 'A’ div '2’
Invalid result type
Valid types are all scalar types, string types, and pointer types.
Invalid string length
The length of a string must be in the range 1..255.
String constant length does not match type
Invalid subrange base type
Valid base types are all scalar types, except real.
Lower bound > upper bound ,
‘The ordinal value of the upper bound must be greater than or equal
to the ordinal value of the lower bound.
Reserved word
These may not be used as identifiers.
lllegal assignment

TURBO Pascal Reference Manual

55
56

71

72

73

74
75

76

77

COMPILER ERROR MESSAGES

String constant exceeds line
String constants must not span lines.

Error in integer constant
An Integer constant does not conform to the syntax described in
page 43, or it is not within the Integer range -32768..32767. Whole
Real numbers should be followed by a decimal point and a zero, e.g.
123456789.0.

Error in real constant
The syntax of Real constants is defined on page 43.

lilegal character in identifier

Constants are not allowed here

Files and pointers are not allowed here

Structured variables are not allowed here

Textfiles are not allowed here

Textfiles and untyped files are not allowed here

Untyped files are not allowed here

I/O not allowed here
Variables of this type cannot be input or output.

Files must be VAR parameters

File components may not be files
file of file constructs are not allowed.

Invalid ordering of fields

Set base type out of range
The base type of a set must be a scalar with no more than 256 pos-
sible values or a subrange with bounds in the range 0..255.

Invalid GOTO
A GOTO cannot reference a label within a FOR loop from outside
that FOR loop.

Label not within current block
A GOTO statement cannot reference a label outside the current
block.

Undefined FORWARD procedure(s)
A subprogram has been forward declared, but the body never oc-
curred.

INLINE error

lllegal use of ABSOLUTE
1) Only one identifier may appear before the colon in an absolute
variable declaration. 2) The absolute clause may not be used in a
record.

Overlays can not be forwarded
The FORWARD specification cannot not be used in connection with
overlays.

Overlays not allowed in direct mode
Overlays can only be used from programs compiled to a file. (Starting
with version 3.0, this applies only to CP/M-80 Turbo.)

COMPILER ERROR MESSAGES 323

COMPILER ERROR MESSAGES

90
91
92
93

96
97

98
99

324

File not found
The specified include file does not exist.

Unexpected end of source
Your program cannot end the way it does. The program probably has
more begins than ends.

Unable to create overlay file

Invalid compiler directive

Cannot nest include files

Too many nested WITHs
Use the W compiler directive to increase the maximum number of
nested WITH statements. Default is 2. (CP/M-80 only).

Memory overflow
You are trying to allocate more storage for variables than is available.

Compiler overflow
There is not enough memory to compile the program. This error may
occur even if free memory seems to exist; it is, however, used by the
stack and the symbol table during compilation. Break your source
text into smaller segments and use include files.

TURBQO Pascal Reference Manual

Appendix F.
RUN-TIME ERROR MESSAGES

01

03

04

10

1

90
91

92

FO

Fatal errors at run-time result in a program halt and the display of the
message:

Run-time error NN, PC=addr
Program aborted

where NN is the run-time error number, and addr is the address in the
program code where the error occurred. The following contains explana-
tions of all run-time error numbers. Notice that the numbers are hexade-
cimal!

Floating point overflow.
Division by zero attempted.
Sqrt argument error.
The argument passed to the Sqrt function was negative.

.Ln argument error.

The argument passed to the Ln function was zero or negative.

String length error.
1) A string concatenation resulted in a string of more than 255
characters. 2) Only strings of length 1 can be converted to a charac-
ter.

Invalid string index.
Index expression is not within 1..255 with Copy, Delete or Insert pro-
cedure calls.

Index out of range.
The index expression of an array subscript was out of range.

Scalar or subrange out of range.
The value assigned to a scalar or a subrange variable was out of
range.

Out of integer range.
The real value passed to Trunc or Round was not within the Integer
range — 32768..32767.

Overlay file not found.

Heap/stack collision.
A call was made to the standard procedure New or to a recursive
subprogram, and there is insufficient free memory between the heap
pointer (HeapPtr) and the recursion stack pointer (RecurPtr).

RUN-TIME ERROR MESSAGES 325

RUN-TIME ERROR MESSAGES

Notes:

326 TURBO Pascal Reference Manual

//O ERROR MESSAGES

Appendix G
1/O0 ERROR MESSAGES

01

02

03

An error in an input or output operation at run-time results in /O error. If I/O
checking is active (I compiler directive active), an 1/0 error causes the
program to halt and the following error message is displayed:

displayed:

I/0 error NN, PC=addr
Program aborted

Where NN is the I/O error number, and addr is the address in the pro-
gram code where the error occurred.

If 1/O error checking is passive ({$l-)), an I/O error will not cause the pro-
gram to halt. Instead, all further 1/O is suspended until the result of the
1/O operation has been examined with the standard function /Oresult. If
1/0O is attempted before /Oresuit is called after en error, a new error oc-
curs, possibly hanging the program.

The following contains explanations of all run-time error numbers. Notice
that the numbers are hexadecimal!

File does not exist.
The file name used with Reset, Erase, Rename, Execute, or Chain
does not specify an existing file.

File not open for input.
1) You are trying to read (with Read or Readln) from a file without a
previous Reset or Rewrite. 2) You are trying to read from a text file
which was prepared with Rewrite (and thus is empty). 3) You are try-
ing to read from the logical device LST:, which is an output-only dev-
ice.

File not open for output.
1) You are trying to write (with Write or Writeln) to a file without a
previous Reset or Rewrite. 2) You are trying to write to a textfile which was
prepared with Reset. 3) You are trying to write to the logical device KBD:,
which is an input-only device.

[/O ERROR MESSAGES 327

I/O ERROR MESSAGES

04

10

20

21

22
90

91
99

FO

F1

F2
F3

328

File not open.
You are trying to access (with BlockRead or BlockWrite) a file
without a previous Reset or Rewrite.

Error in numeric format.
The string read from a text file into a numeric variable does not con-
form to the proper numeric format (see page 43).

Operation not allowed on a logical device.
You are trying to Erase, Rename, Execute, or Chain a file assigned
to a logical device.

Not allowed in direct mode.
Programs cannot be Executed or Chained from a program running in
direct mode (i.e. a program activated with a Run command while the
Memory compiler option is set).

Assign to std files not allowed.

Record length mismatch.
The record length of a file variable does not match the file you are
trying to associate it with.

Seek beyond end-of-file.

Unexpected end-of-file.
1) Physical end-of-file encountered before EOF-character (Ctrl-Z)
when reading from a text file. 2) An attempt was made to read
beyond end-of-file on a defined file. 3) A Read or BlockRead is un-
able to read the next sector of a defined file. Something may be
wrong with the file, or (in the case of BlockRead) you may be trying
to read past physical EOF.

Disk write error.
Disk full while attempting to expand a file. This may occur with the
output operations Write, WriteLn, BlockWrite, and Flush, but also
Read, ReadlLn, and Close may cause this error, as they cause the
write buffer to be flushed.

Directory is full.
You are trying to Rewrite a file, and there is no more room in the disk
directory.

File size overflow.
You are trying to Write a record beyond 65535 to a defined file.

Too many open files.

File disappeared.
An attempt was made to Close a file which was no longer present in
the disk directory, e.g. because of an unexpected disk change.

TURBO Pascal Reference Manual

TRANSLATING
Appendix H
TRANSLATING ERROR MESSAGES

The compiler error messages are collected in the file TURBO.MSG.
These messages are in English but may easily be translated into any
other language as described in the following.

The first 24 lines of this file define a number of text constants for subse-
quent inclusion in the error message lines; a technique which drastically
reduces the disk and memory requirements of the error messages. Each
constant is identified by a control character, denoted by a * character
in the following listing. The value of each constant is anything that fol-
lows on the same line. All characters are significant, also leading and
trailing blanks.

The remaining lines each contain one error message, starting with the
error number and immediately followed by the message text. The mes-
sage text may consist of any characters and may include previously
defined constant identifiers (control characters). Appendix E lists the
resulting messages in full.

When you translate the error messages, the relation between constants
and error messages will probably be quite different from the English ver-
sion listed here. Start therefore with writing each error message in full,
disregarding the use of constants. You may use these error messages,
but they will require excessive space. When all messages are translated,
you should find as many common denominators as possible. Then
define these as constants at the top of the file and include only the con-
stant identifiers in subsequent message texts. You may define as few or
as many constants as you need, the restriction being only the number of
control characters.

As a good example of the use of constants, consider errors 25, 26, and
27. These are defined exclusively by constant identifiers, 15 in total, but
would require 101 characters if written in clear text.

The TURBO editor may be used to edit the TURBOMSG.OVR file. Con-
trol characters are entered with the Ctrl-P prefix, i.e. to enter a Ctrl-A
(*A) into the file, hold down the < CONTROL > key and press first P,
then A. Control characters appear dim on the screen (if it has any video
attributes).

TRANSLATING ERROR MESSAGES 329

TRANSLATING ERROR MESSAGES

Error Message File Listing

330

Notice that the TURBO editor deletes all trailing blanks. The original
message therefore does not use trailing blanks in any messages.

“A
"B
~C
"D
“E
*F
"G
“H

are not allowed

can not be
constant
does not
expression
identifier
file

here

“KInteger
"LFile
“NIllegal

"0

or

*PUndefined

"Q
*R

match
real

~SString
*TTextfile

U
v
W
"X

out of range

variable
overflow
expected

*Y type
*[Invalid
] pointer
Olv;l/«x
02':'*X
03','"X
04!('Ax
OS')IAX
06'=|Ax
o7':="7X
08'["\X
Ogl]ll\x
10'.'*X
11, .'*X
12BEGIN"X
13D0"X
14END"X

TURBO Pascal Reference Manual

Error Message File Listing

150F*X

17THEN*X

18T0*0 DOWNTO*X
20Boolean*E*X

21°L"V*X

22*K"C*X

R23*K*"E*X

24"K*V*X

25*K*0*R*C*"X

26"K*0*R*E*X

27*K*0*R*"V*X

28Pointer~v+X
29Record*V*X

30Simple*Y*X

31Simple*E*X

32*5*C*X

33"S*"E*X

34+S*V*X

35°T*"X

36Type*F*X

37Untyped*G*X

40*P label

41Unknown“F~0 syntax error
42"P*]*Y in preceding*Y definitions
43Duplicate*F*0 label
44Type mismatch

45~C*U

46"C and CASE selector*Y*D*Q
470perand*Y(s)*D*Q operator
48*[result*Y

49+ *S length

507S*C length*D*Q*"Y

51*[subrange base’Y
52Lower bound > upper bound
53Reserved word

54”N assignment

557S*C exceeds line
56Error in integer*C
57TError in*R*C

58”N character in*F
60"Cs*A*H

61"Ls and”]s"“A*H
62Structured*Vs*A*H
63"Ts"A*H

TRANSLATING ERROR MESSAGES 331

Error Message File Listing

64"Ts and untyped"Gs*A*H
65Untyped*Gs"*A*H

661/0"A

67"Ls must be*V parameters
68"L components"B*Gs
69"["Ordering of fields
70Set base*Y*U

71~ GOTO

72Label not within current block
73"P FORWARD procedure(s)
T4INLINE error

75N use of ABSOLUTE

90*L not found
91lUnexpected end of source
93 Illegal compiler directive
97Too many nested WITH's
98Memory*W

99Compiler*W

332 TURBO Pascal Reference Manual

TURBO SYNTAX
Appendix |
TURBO SYNTAX

The syntax of the TURBO Pascal language is presented here using the
formalism known as the Backus-Naur Form. The following symbols are
meta-symbols belonging to the BNF formalism, and not symbols of the
TURBO Pascal language:

= Means "is defined as”’.
! Means “or”.
{} Enclose items which may be repeated zero or more times.

All other symbols are part of the language. Each syntactic construct is
printed in italics, e.g.: block and case-element. reserved words are
printed in boldface, e.g.: array and for.

actual-parameter :: = expression | variable
adding-operator ::= + |-lorlxor
array-constant :: = (structured-constant { , structured-constant })

array-type :: = array [index-type { , index-type }] of component-type

array-variable :: = variable

assignment-statement :: = variable : = expression |

function-identifier :: = expression

base-type :: = simple-type

block :: = declaration-part statement-part

case-element :: = case-list : statement

case-label .: = constant

case-label-list :: = case-label { , case-label)

case-list :: = case-list-element { , case-list-element}

case-list-element :: = constant| constant .. constant

case-statement :: = case expression of case-element { ; case-element } end |
case expression of case-element { ;case-element }
else statement { ; statement} end

complemented-factor :: = signed-factor | not signed-factor

component-type :: = type
component-variable :: = indexed-variable | field-designator
compound-statement :: = begin statement { ; statement } end

conditional-statement :: = if-statement | case-statement

TURBO SYNTAX 333

TURBO SYNTAX

constant :: = unsigned-number | sign unsigned-number | constant-identifier
| sign constant-identifier | string
constant-definition-part :: = const constant-definition
{ ; constant-definition } ;

constant-definition :: = untyped-constant-definition |
typed-constant-definition

constant-identifier :: = identifier

control-character :: = # unsigned-integer|” character

control-variable :: = variable-identifier
declaration-part :: = { declaration-section }
declaration-section :: = label-declaration-part | constant-definition-part |
type-definition-part | variable-declaration-part |
procedure-and-function-declaration-part

digit::= 0111213141516171819
digit-sequence :: = digit { digit }
empty :: =
empty-statement :: = empty
entire-variable :: = variable-identifier | typed-constant-identifier
expression :: = simple-expression { relational-operator simple-expression }
factor :: = variable | unsigned-constant | (expression)|

function-designator | set
field-designator :: = record-variable . field-identifier
field-identifier :: = identifier
field-list :: = fixed-part| fixed-part ; variant-part | variant-part
file-identifier :: = identifier
file-identifier-list := empty | (file-identifier { , file-identifier})
file-type :: = file of type
final-value :: = expression
fixed-part :: = record-section { ; record-section }
for-list :: = initial-value to final-value | initial-value downto final-value
for-statement :: = for control-variable : = for-list do statement
formal-parameter-section :: = parameter-group | var parameter-group
function-declaration :: = function-heading block ;
function-designator :: = function-identifier | function-identifier

(actual-parameter { , actual-parameter })
function-heading :: = function identifier : result-type ; |
function identifier (formal-parameter-section
{ , formal-parameter-section }) : result-type ;

function-identifier :: = identifier
goto-statement :: = goto label
hexdigit ::= digit|AIBICIDIEIF
hexdigit-sequence :: = hexdigit { hexdigit }
identifier :: = letter { letter-or-digit }
identifier-list :: = identifier { , identifier }

334 TURBO Pascal Reference Manual

TURBO SYNTAX

if-statement = if expression then statement else statement
| if expression then statement |
index-type :: = simple-type
indexed-variable :: = array-variable [expression { , expression }]
initial-value :: = expression
inline-list-element :: = unsigned-integer | constant-identifier |
variable-identifier | location-counter-reference
inline-statement :: = inline inline-list-element { , inline-list-element }
label :: = letter-or-digit { letter-or-digit }
label-declaration-part :: = label label { , label } ;
letter::= AIBICIDIEIFIGIHIINJIKILIM!
NIOIPIQIRISITIUIVIWIXIYIZI
alblcldlelfliglhliljlkllim!
nlfolplqlirisitiulviwlixlylzl_
letter-or-digit :: = letter | digit
location-counter-reference :: = *1* sign constant
multiplying-operator ::= *| /| divImod | and | shl | shr
parameter-group :: = identifier-list : type-identifier
pointer-type :: = " type-identifier
pointer-variable :: = variable
procedure-and-function-declaration-part :: =
{ procedure-or-function-declaration)
procedure-declaration :: = procedure-heading block ;
procedure-heading :: = procedure identifier ; | procedure identifier
(formal-parameter-section
{ , formal-parameter-section }) ;
procedure-or-function-declaration :: = procedure-declaration |
function-declaration
procedure-statement :: = procedure-identifier | procedure-identifier
(actual-parameter { , actual-parameter })
program-heading := <empty>
= program program-identifier file-identifier-list;
program :: = program-heading block
program-identifier :: = identifier

record-constant :: = (record-constant-element
{; record-constant-element })
record-constant-element :: = field-identifier : structured-constant

record-section :: = empty | field-identifier { , field-identifier } : type
record-type :: = record field-list end

record-variable :: = variable

record-variable-list :: = record-variable { , record-variable }
referenced-variable :: = pointer-variable

relational-operator .= =< > 1< =1>=1<1I|>lin
repeat-statement :: = repeat statement { ; statement } until expression
repetitive-statement :: = while-statement | repeat-statement | for-statement

TURBO SYNTAX 335

TURBO SYNTAX

result-type :: = type-identifier
scalar-type :: = (identifier { , identifier })
scale-factor :: = djgit-sequence | sign digit-sequence
set = [set-element }, set-element}]
[1]
set-constant ::= [set-constant-element { , set-constant-element } |

1]

set-constant-element :: = constant| constant .. constant
set-element :: = expression| expression .. expression

set-type :: = set of base-type

sign:= +I-

signed-factor :: = factor| sign factor

simple-expression :: = term { adding-operator term }
simple-statement :: = assignment-statement | procedure-statement |

goto-statement | inline-statement | empty-statement
simple-type :: = scalar-type | subrange-type | type-identifier
statement :: = simple-statement | structured-statement
statement-part :: = compound-statement
string :: = { string-element }

string-element :: = text-string | control-character

string-type :: = string [constant]

structured-constant :: = constant| array-constant | record-constant |
set-constant

structured-constant-definition :: = identifier : type = structured-constant

structured-statement :: = compound-statement | conditional-statement |

repetitive-statement | with-statement
structured-type :: = unpacked-structured-type |
packed unpacked-structured-type
subrange-type :: = constant .. constant
tag-field :: = empty| field-identifier :
term :: = complemented-factor { multiplying-operator complemented-factor }
text-string :: = ’ { character)’
type-definition :: = identifier = type
type-definition-part :: = type type-definition { ; type-definition } ;
type-identifier :: = identifier
type :: = simple-type | structured-type | pointer-type
typed-constant-identifier :: = identifier
unpacked-structured-type :: = string-type | array-type | record-type |
set-type | file-type
unsigned-constant :: = unsigned-number | string | constant-identifier | nil
unsigned-integer :: = digit-sequence | $ hexdigit-sequence
unsigned-number :: = unsigned-integer | unsigned-real
unsigned-real :: = digit-sequence . digit-sequence |
digit-sequence . digit-sequence E scale-factor|
digit-sequence E scale-factor

336 TURBO Pascal Reference Manual

TURBO SYNTAX

untyped-constant-definition :: = identifier = constant
variable :: = entire-variable | component-variable | referenced-variable
variable-declaration :: = identifier-list : type
identifier-list : type absolute constant

variable-declaration-part :: = var variable-declaration

{ ; variable-declaration } ;
variable-identifier :: = identifier
variant :: = empty| case-label list : (field-list)
variant-part :: = case tag-field type-identifier of variant { ; variant }
while-statement :: = while expression do statement
with-statement :: = with record-variable-list do statement

TURBO SYNTAX 337

TURBO SYNTAX

Notes:

338 TURBO Pascal Reference Manual

ASCIl TABLE
Appendix J
ASCII TABLE

DEC HEX CHAR DEC HEX CHAR DEC HEX CHAR DEC HEX CHAR
0 00 *@ NUL 32 20 SPC 64 40 @ 96 60 '
1 0l "A SOH 33 21 ! 65 41 A 97 61 a
2 02 *B STX 34 22 " 66 42 B 98 62 b
3 03 *C ETX 35 23 # 67 43 C 99 63 ¢
4 04 *D EOT 36 24 % 68 44 D 100 64 d
5 05 *E ENQ 37 25 9 69 45 E 101 65 o
6 06 *F ACK 38 26 & 70 46 F 102 66 f
7 07 *G BEL 39 27 71 47 G 103 67 ¢
8 08 *H BS 40 28 72 48 H 104 68 h
9 09 I HT 41 29) 73 49 1 105 69 i

10 0A *J LF 42 2A * T4 4A J 106 6A j

11 0B “K VT 43 2B + 75 4B K 107 6B k

12 0C L FF 44 2¢ 76 4C L 108 6C 1

13 0D "M CR 45 2D - 77T 4D M 109 6D m

14 OE *N SO 46 2E . 78 4E N 110 6E n

15 OF *0 SI 47 2F / 79 4F 0 111 6F o

16 10 *P DLE 48 30 0 80 50 P 112 70 p

17 11 *Q DCl 49 31 1 81 51 Q 113 71 q

18 12 “R DC2 50 32 2 82 52 R 114 72 r

19 13 *S DC3 51 33 3 83 53 S 115 73 s

20 14 T DC4 52 34 4 84 54 T 116 74 t

21 15 “U NAK 53 35 5 85 55 U 117 75 u

22 16 *V SYN 54 36 6 86 56 V 118 76 v

23 17 *W ETB 55 37 7 87 57 W 119 77 w

24 18 “X CAN 56 38 8 88 58 X 120 78 «x

25 19 ‘Y EM 57 39 9 89 59 Y 121 79 vy

26 1A *Z SUB 58 3A 90 54 Z 122 7A z

27 1B [ESC 59 3B ; 91 5B [123 7B ¢

28 1C *\ FS 60 3C < 92 5C \ 124 7C |

29 1D *] GS 61 3D = 93 5D] 125 7D)

30 1E ** RS 62 3E > 94 5E 126 7E -

31 1F *_US 63 3F 7 95 5F _ 127 7F DEL

ASCIl TABLE 339

ASCIl TABLE

Notes:

340 TURBO Pascal Reference Manual

KEYBOARD RETURN CODES
Appendix K
KEYBOARD RETURN CODES

This appendix lists the codes returned from all combinations of keys on
the entire IBM PC keyboard, as they are seen by TURBO Pascal. Actu-
ally, function keys and ‘Alt-ed’ keys generate ‘extended scan codes’,
but these are turned into ‘escape sequences’ by TURBO.

To read the escape sequences, you let your read routine check for ESC,
and if detected see if there is another character in the keyboard buffer.
If there is, an escape code was received, so you read the next character
and set a flag to signal that what you got is not a normal character, but
the second part of an ‘escape sequence’

if KeyPressed then
begin
Read(Kbd, Ch) { ch is char }
if (ch = #27) and KeyPressed then { one more char? }
begin
Read(Kbd, Ch)
FuncKey := True; { FuncKey is boolean }
end
end;

The following table lists the return codes as decimal ASCII values. Nor-
mal keys only return a single code; extended codes return an ESC (27)
followed by one more character.

Key Unshifted Shift Ctrl Alt

Fl 27 59 27 84 27 94 27 104
F2 27 60 27 85 27 95 27 105
F3 27 61 27 86 27 96 27 106
F4 27 62 27 87 27 97 27 107
F5 27 63 27 88 27 98 27 108
Fé 27 64 27 89 27 99 27 109
F7 27 65 27 90 27 100 27 110
F8 27 66 27 91 27 101 27 111
FO 27 67 27 92 27 102 27 112
Fl0 27 68 27 93 27 103 27 113

KEYBOARD RETURN CODES 341

KEYBOARD RETURN CODES

Key Unshifted Shift Ctrl Alt
LArr 27 75 52
RArr 27T T7 54
UArr 27 72 56
DArr 27 80 50
Home 27 71 55
End 27 79 49
PgUp 27 73 57
PgDn 27 81 51
Ins 27 82 48
Del 27 83 46
Esc 27 27
BackSp 8 8
Tab 9 27 15
RETURN 13 13
A 97 65
B 98 66
C 99 67
D 100 68
E 101 69
F 102 70
G 103 71
H 104 72
I 105 73
J 106 74
K 107 75
L 108 76
M 109 77
N 110 78
0 111 79
P 112 80
Q 113 81
R 114 82
S 115 83
T 116 84
U 117 85
\' 118 86
W 119 87
X 120 88
Y 121 89
Z 122 90

(Shaded area indicates return codes that require SuperKey.)

342 TURBO Pascal Reference Manual

KEYBOARD RETURN CODES

Key Unshifted Shift Ctrl Alt

[91 123 27

\ 92 124 28

] 93 125 29

' 96 126

0 48 41 27 129
1 49 33 27 120
2 50 64 27 3 27 121
3 51 35 27 122
4 52 36 27 123
5 53 37 27 124
6 54 94 30 27 125
7 55 38 27 126
8 56 42 27 127
9 57 40 27 128
* 42 27 114

+ 43 43

- 45 95 31 27 130
= 61 43 27 131
, 44 60

/ 47 63

; 59 58

- 96 126

Table K-1: Keyboard Return Codes

KEYBOARD RETURN CODES 343

KEYBOARD RETURN CODES

Notes:

344 TURBO Pascal Reference Manual

INSTALLATION
Appendix L
INSTALLATION

Terminal Installation

Before you use TURBO Pascal, it must be installed to your particular
terminal, i.e. provided with information regarding control characters re-
quired for certain functions. This installation is easily performed using
the program TINST which is described in this chapter.

After having made a work-copy, please store your distribution diskette
safely away and work only on the copy.

Now start the installation by typing TINST at your terminal. Select
Screen installation from the main menu. Depending on your version of
TURBO Pascal, the installation proceeds as described in the following
two sections.

IBM PC Display Selection

If you use TURBO Pascal without installation, the default screen set-up
will be used. You may override this default by selecting another screen
mode from this menu:

Choose one of the following displays:

0) Default display mode
1) Monochrome display

2) Color display 80x25
3) Color display 40x25
4) b/w display 80x25
5) b/w display 40x25

Which display (enter no. or *X to exit) B

Figure L-1: IBM PC Screen Installation Menu

INSTALLATION 345

Terminal Installation

Each time TURBO Pascal runs, the selected mode will be used, and you
will return to the default mode on exit.

Non-IBM PC Installation

A menu listing a number of popular terminals will appear, inviting you to
choose one by entering its number:

Choose one of the following terminals:
1) ADDS 20/25/30 15) Lear-Siegler ADM-31
2) ADDS 40/60 16) Liberty
3) ADDS Viewpoint-1lA 17) Morrow MDT-20
4) ADM 3A 18) Otrona Attache
5) Ampex D80 19) Qume
6) ANSI 20) Soroc IQ-120
7) Apple/graphics 21) Soroc new models
8) Hazeltine 1500 22) Teletext 3000
9) Hazeltine Esprit 23) Televideo 912/920/925
10) IBM PC CCP/M b/w 24) Visual 200
11) IBM PC CCP/M color 25) Wyse WY-100/200/300
12) Kaypro 10 26) Zenith
13) Kaypro II and 4 27) None of the above
14) Lear-Siegler ADM-20 28) Delete a definition
Which terminal? (Enter no. or *X to exit):

Figure L-2: Terminal Installation Menu

If your terminal is mentioned, just enter the corresponding number, and
the installation is complete. Before installation is actually performed, you
are asked the question:

Do you want to modify the definition before installation?
This allows you to modify one or more of the values being installed as
described in the following. If you do not want to modify the terminal

definition, just type N, and the installation completes by asking you the
operating frequency of your CPU (see last item in this appendix).

346 TURBO Pascal Reference Manual

Terminal Installation

If your terminal is not on the menu, however, you must define the re-
quired values yourself. The values can most probably be found in the
manual supplied with your terminal.

Enter the number corresponding to None of the above and answer the
questions one by one as they appear on the screen.

In the following, each command you may install is described in detail.
Your terminal may not support all the commands that can be installed. If
so, just pass the command not needed by typing RETURN in response
to the prompt. If Delete line, Insert line, or Erase to end of line is not in-
stalled, these functions will be emutated in software, slowing screen per-
formance somewhat.

Commands may be entered either simply by pressing the appropriate
keys or by entering the decimal or hexadecimal ASCII value of the com-

mand. If a command requires the two characters ‘ESCAPE’ and ‘=",
may:

either: press first the Esc key, then the =. The entry will be echoed
with appropriate labels, i.e. <ESC> =.

or: enter the decimal or hexadecimal values separated by spaces. Hexa-
decimal values must be preceded by a dollar-sign. Enter e.g. 27 61
or $1B 61 or $1B $3D which are all equivalent.

The two methods cannot be mixed, i.e. once you have entered a non-
numeric character, the rest of that command must be defined in that
mode, and vice versa.

A hyphen entered as the very first character is used to delete a com-
mand, and echoes the text Nothing.

Terminal type:
Enter the name of the terminal you are about to install. When you com-
plete TINST , the values will be stored, and the terminal name will ap-
pear on the initial list of terminals. If you later need to reinstall TURBO
Pascal to this terminal, you can do that by choosing it from the list.

INSTALLATION 347

Terminal Installation

Send an initialization string to the terminal?
If you want to initialize your terminal when TURBO Pascal starts (e.g. to
download commands to programmable function keys), you answer Y for
yes to this question. If not, just hit RETURN.

Send a reset string to the terminal?
Define a string to be sent to the terminal when TURBO Pascal ter-
minates. The description of the initialization command above applies
here.

CURSOR LEAD-IN command:
Cursor Lead-in is a special sequence of characters which tells your ter-
minal that the following characters are an.address on the screen on
which the cursor should be placed.

When you define this command, you are asked the following supplemen-
tary questions:

CURSOR POSITIONING COMMAND to send between line and
column:
Some terminals need a command between the two numbers defining
the row- and column cursor address.

CURSOR POSITIONING COMMAND to send after line and column:
Some terminals need a command after the two numbers defining the
row- and column cursor address.

Column first?
Most terminals require the address on the format: first ROW, then
COLUMN. If this is the case on your terminal, answer N. If your ter-
minal wants COLUMN first, then ROW, then answer Y.

OFFSET to add to LINE
Enter the number to add to the LINE (ROW) address.

OFFSET to add to COLUMN
Enter the number to add to the COLUMN address.

Binary address?
Most terminals need the cursor address sent on binary form. If that is
true for your terminal, enter Y. If your terminal expects the cursot ad-
dress as ASCII digits, enter N. If so, you are asked the supplementa-
ry question:

348 TURBO Pascal Reference Manual

Terminal Installation

2 or 3 ASCIlI digits?
Enter the number of digits in the cursor address for your terminal.

CLEAR SCREEN command:
Enter the command that will clear the entire contents of your screen,
both foreground and background, if applicable.

Does CLEAR SCREEN also HOME cursor?
This is normally the case; if it is not so on your terminal, enter N, and
define the cursor HOME command.

DELETE LINE command:
Enter the command that deletes the entire line at the cursor position.

INSERT LINE command:
Enter the command that inserts a line at the cursor position.

ERASE TO END OF LINE command:
Enter the command that erases the line at the cursor position from the
cursor position through the right end of the line.

START OF ‘LOW VIDEO’ command:
If your terminal supports different video intensities, then define the com-
mand that initiates the dim video here. If this command is defined, the
following question is asked:

START OF ‘NORMAL VIDEO’ command:
Define the command that sets the screen to show characters in ‘normal’
video.

Number of rows (lines) on your screen:
Enter the number of horizontal lines on your screen.

Number of columns on your screen:
Enter the number of vertical column positions on your screen.

Delay after CURSOR ADDRESS (0-255 ms):

Delay after CLEAR, DELETE, and INSERT (0-255 ms):

Delay after ERASE TO END OF LINE and HIGHLIGHT On/Off (0-255 ms):
Enter the delay in miliseconds required after the functions specified.
RETURN means 0 (no delay).

INSTALLATION 349

Terminal Installation

Is this definition correct?

If you have made any errors in the definitions, enter N. You will then re-
turn to the terminal selection menu. The installation data you have just
entered will be included in the installation data file and appear on the ter-
minal selection menu, but installation will not be performed. When you
enter Y in response to this question, you are asked:

Operating frequency of your microprocessor in MHz (for delays):

As the delays specified earlier are depending on the operating frequency
of your CPU, you must define this value.

The installation is finished, installation data is written to TURBO Pascal,
and you return to the outer menu (see section 12). Installation data is
also saved in the installation data file and the new terminal will appear
on the terminal selection list when you run TINST in future.

Editing Command Installation

350

The built-in editor responds to a number of commands which are used
to move the cursor around on the screen, delete and insert text, move
text etc. Each of these functions may be activated by either of two com-
mands: a primary command and a secondary command. The secondary
commands are installed by Borland and comply with the ‘standard’ set
by WordStar. The primary commands are un-defined for most systems,
and using the installation program, they may easily be defined to fit your
taste or your keyboard. IBM PC systems are supplied with the arrows
and dedicated function keys installed as primary commands as
described in chapter 19.

When you hit C for Command installation, the first command appears:

CURSOR MOVEMENTS:

1: Character left Nothing -> B

TURBO Pascal Reference Manual

1)

2)

Editing Command Installation

This means that no primary command has been installed to move the
cursor one character left. If you want to install a primary command (in
addition to the secondary WordStar-like Ctrl-S, which is not shown
here), you may enter the desired command following the -> prompt in
either of two ways:

Simply press the key you want to use. It could be a function key (for ex-
ample a left-arrow-key, if you have it) or any other key or sequence of
keys that you choose (max. 4). The installation program responds with a
mnemonic of each character it receives. If you have a left-arrow-key that
transmits an <ESCAPE > character followed by a lower case a, and
you press this key in the situation above, your screen will look like this:

CURSOR MOVEMENTS:

1l: Character left Nothing -> <ESC> a O

Instead of pressing the actual key you want to use, you may enter the
ASCII value(s) of the character(s) in the command. The values of multi-
ple characters are entered separated by spaces. Decimal values are just
entered: 27; hexadecimal values are prefixed by a dollar-sign: $1B. This
may be useful to install commands which are not presently available on
your keyboard, for example if you want to install the values of a new
terminal while still using the old one. This facility has just been provided
for very few and rare instances, because there is really no idea in
defining a command that cannot be generated by pressing a key. But
it's there for those who wish to use it.

In both cases terminate your input by pressing <RETURN > .Notice
that the two methods cannot be mixed within one command. If you have
started defining a command sequence by pressing keys, you must
define all characters in that command by pressing keys and vise versa.

You may enter a - (minus) to remove a command from the list, or a B to
back through the list one item at a time.

INSTALLATION 351

Editing Command Installation

352

The editor accepts a total of 45 commands, and they may all be installed
to your specification. If you make an error in the installation, like defining
the same command for two different purposes, an self-explanatory error
message is issued, and you must correct the error before terminating
the installation. A primary command, however, may conflict with one of
the WordStar-like secondary commands; that will just render the secon-

dary command inaccessible.

The following table lists the secondary commands, and allows you to
mark any primary commands installed by yourself:

CURSOR MOVEMENTS:

Ctrl-S
Ctrl-D
Ctrl-E
Ctrl-X
Ctrl-R
Ctrl-C
Ctrl-Q Ctrl-B

Ctrl-QCtrl-K

1: Character left Ctrl-S
2: Alternative Ctrl-H
3: Character right Ctrl-D
4: Word left Ctrl-A
5: Word right Ctrl-F
6: Line up Ctrl-E
7: Line down Ctrl-X
8: Scroll up Ctrl-w
9: Scroll down Ctrl-Z
10: Page up Ctrl-R
11: Page down Ctrl-C
12: To left on line Ctrl-Q
13: To right on line Ctrl-Q
14: To top of page Ctrl-Q
15: To bottom of page Ctrl-Q
16: To top of file Ctrl-Q
17: To end of file Ctrl-Q
18: To beginning of block
19: To end of block
20:

To last cursor position Ctrl-Q Ctrl-P

TURBO Pascal Reference Manual

INSERT & DELETE:

Editing Command Installation

21: Insert mode on/off Ctrl-v
22: 1Insert line Ctrl-N
23: Delete line Ctrl-Y
24: Delete to end of line Ctrl-Q Ctrl-Y
25: Delete right word Ctrl-T
26: Delete character under cursor Ctrl-G
27: Delete left character
28: Alternative: Nothing
BLOCK COMMANDS:

29: Mark block begin Ctrl-K Ctrl-B

30: Mark block end Ctrl-K Ctrl-K

31: Mark single word Ctrl-K Ctrl-T

32: Hide/display block Ctrk-K Ctrl-H

33: Copy block Ctrl-K Ctrl-C

34: Move block Ctrl-K Ctrl-Vv

35: Delete block Ctrl-K Ctril-Y

36: Read block from disk Ctrl-K Ctrl-R

37: Write block to disk Ctrl-K Ctrl-w
MISC. EDITING COMMANDS:

38: End edit Ctrl-K Ctrl-D
39: Tab Ctrl-I

40: Auto tab on/off Ctrl-Q Ctrl-I
41: Restore line Ctrl-Q Ctrl-L
42: Find Ctrl-Q Ctrl-F
43: Find & replace Ctrl-Q Ctrl-A
44: Repeat last find Ctrl-L

45: Control character prefix Ctrl-P

Table L-1: Secondary Editing Commands

ltems 2 and 28 let you define alternative commands to Character Left
and Delete left Character commands. Normally <BS> is the alterna-
tive to Ctrl-S, and there is no defined alternative to . You may
install primary commands to suit your keyboard, for example to use the
<BS> as an alternative to if the <BS > key is more con-
veniently located. Of course, the two alternative commands must be
unambiguous like all other commands.

INSTALLATION

353

Editing Command Installation

Notes:

354 TURBO Pascal Reference Manual

CP/M PRIMER
Appendix M
CP/MPRIMER

How to use TURBO on a CP/M system

When you turn on your computer, it reads the first couple of tracks on
your CP/M diskette and loads a copy of the CP/M operating system into
memory. Each time you re-boot your computer, CP/M also creates a list
of the disk space available for each disk drive. Whenever you try to save
a file to the disk, CP/M checks to make sure that the diskettes have not
been changed. If you have changed the diskette in Drive A without re-
booting, for example, CP/M will generate the following error message
when a disk-write is attempted:

BDOS ERROR ON A: R/O

Control will return to the operating system and your work was NOT
saved! This can make copying diskette a little confusing for the be-
ginner. If you are new to CP/M, follow these instructions:

Copying Your TURBO Disk

To make a working copy of your TURBO MASTER DISK, do the follow-
ing:

1. Make a blank diskette and put a copy of CP/M on it (see your CP/M
manual for details). This will be is your TURBO work disk.

2. Place this disk in Drive A:. Place a CP/M diskette with a copy of
PIP.COM in Drive B (PIP.COM is CP/M's file copy program that should
be on your CP/M diskette. See your CP/M manual for details).

3. Re-boot the computer. Type B: PIP and then press <RETURN >

4. Remove the diskette from Drive B: and insert your TURBO MASTER
DISK.

5. Now type: A:=B:* . *[V] and then press <RETURN >
You have instructed PIP it to copy all the files from the diskette in Drive

B: onto the diskette in Drive A:. Consult your CP/M manual if any errors
occur.

CP/M PRIMER 355

Copying Your TURBO Disk

The last few lines on your screen should look like this:

A> B:PIP
A:=B: *[V]
COPYING -
FIRSTFILE

LASTFILE
*

6. Press <RETURN >, and the PIP program will end.

Using Your TURBO Disk
Store your TURBO MASTER DISK in a safe place. To use TURBO
PASCAL, place your new TURBO work disk in drive A: and re-boot the
system. Unless your TURBO came pre-installed for your computer and
terminal, you should install TURBO (see 12). When done, type
TURBO
and TURBO Pascal will start.

If you have trouble copying your diskette, please consult your CP/M
user manual or contact your hardware vendor for CP/M support.

356 TURBO Pascal Reference Manual

APPENDIX N—HELP!!!

Common Questions and Answers
About Turbo Pascal

This appendix lists a number of the most commonly asked questions and
their answers. If you don'’t find the answer to your question here, you can
either call Borland's Technical Support staff, or you can access Com-
puServe's Consumer Information 24 hours a day and ‘talk’ to the Borland
Special Interest Group. See insert in the front of this manual for details.

GENERAL

Q: How do | use the system?

A: Please read the manual, specifically Chapter 1. If you must get started
immediately do the following:

1. Boot up your operating system.

2. If you have a computer other than an IBM PC, run Tinst to install
Turbo for your equipment.

3. Run Turbo.

4. Start programming!

Q: | am having disk problems. How do | copy my disks?

A: Most disk problems do not mean you have a defective disk. Specifically,
if you are on a CP/M-80 system, you may want to look up the brief
CP/M primer on page 355. If you can get a directory of your distribution
disk, then chances are that it is a good disk.
To make a backup copy of Turbo, you should use a file-by-file copy
program like COPY for PC/MS-DOS or PIP for CP/M-80/86. The rea-
son is that for those of you who have quad density disk drives, you may
have trouble using a DISKCOPY type program. These programs are
expecting the exact same format for the Source diskette as well as the
Destination diskette.

Q: Do | need Turbo to run programs | developed in Turbo?

A: No, Turbo can make .COM or .CMD files.

HELPII!

357

358

: How do | make .COM or .CMD files?
: Type O from the main menu for Compiler Options and then select “C”

for .COM or .CMD file.

: What are the limits on the compiler as far as code and data?
: The compiler can handle up to 64K of code, 64K of data, 64K of stack,

and unlimited heap. The object code, however, cannot exceed 64K.

: Can DOS interrupt calls $25 (Absolute disk read) and $26 (Absolute

disk write) be made from Turbo Pascal?

: Yes. DOS did not implement these DOS services the same as all other

calls provided. Therefore, you cannot use the procedures MS-DOS or
INTR provided by Turbo Pascal. You can contact Turbo Pascal Techni-
cal Support for a handout demonstrating how to perform these opera-
tions, or you can download the information from our Special Interest
Group on CompuServe.

: I don't get the results | think | should when using Reals and Integers in

the same expression.

: When assigning an Integer expression to a Real variable, the expres-

sion is converted to Real. However, the expression itself is calculated
as an integer, and you should therefore be aware of possible integer
overflow in the expression. This can lead to surprising results. Take for
instance:

RealVar := 40 » 1000;
First, the compiler multiplies integers 40 and 1000, resulting in 40,000
which gives integer overflow. It will actually come out to —25536 as

Integers wrap around. Now it will be assigned to the RealVar as
—25536. To prevent this, use either:

RealVar := 40.0 *1000;

or

RealVar := 1.0 * IntVarl » IntVargd;

to ensure that the expression is calculated as a Real.

: How do | get a disk directory from my Turbo program?
: Sample procedures for accessing the directory are included in the

Turbo Tutor package (see how to order the Turbo Tutor on page 3).

TURBO Pascal Reference Manual

2

Q2

How much RAM do | need to run Turbo Pascal?

You'll need at least 48K on a CP/M-80 machine and 128K on a 16-bit or
PC-compatible machine.

Are variables initialized automatically in Turbo Pascal?

Turbo doesn't initialize user-defined variables at runtime. The program-
mer must initialize a variable before it can be used.

: My program runs correctly in memory, but crashes or performs differ-

ently when | run the .COM file. What's wrong?
There are several possibilities:

You are using a variable or data structure that has not been initial-
ized.

You are going out of bounds on an array or a string and conse-
quently overwriting something in memory. Set the R compiler direc-
tiveto {$R+}.

You are using a pointer that has not been properly allocated, which
can cause a program to overwrite something in memory.

You are using assembly language externals and Turbo Pascal ver-
sion 2.0 on MS-DOS, PC-DOS, or CP/M-86. Under these condi-
tions, external assembly code is not always transferred properly
during a compile to disk. It is necessary to compile first in memory,
then, without running the program, select the .COM option using the
compiler Options menu and recompile.

You may be overwriting memory somehow. Suspect any code that
uses

1. MEM or MEMW arrays or pointers
2. absolute variables

3. INLINE, externals, or interrupt calls
4. FillChar or Move statements

Q: How do | assign an integer variable a value of —327687?

A: By assigning the integer a value of $8000.

HELPH

359

360

: When | change my program into a .CHN/Execute file, the program

either hangs, gives a memory allocation error, or gives erroneous
results. What am | doing wrong?

. For Chain and Execute to work, you must set the minimum code and

data segment to the size of the code and data of the largest program in
the Chained or Executed series (on CP/M-80 systems, you must adjust
the end address). These settings can be changed using the compiler
Options menu.

: How do | get a real number printed in non-exponential notation?
: You must use real formatting:

Writeln(R:14:3)

This means write the value of R, use a field width of 14 characters, 3 of
which should be to the right of the decimal point.

: When | use FilChar on a string, the string gets messed up. Why?
: Remember that the zero'th byte of a string is used to hold the current

length of the string. Immediately after using the FillChar routine, you
must be sure to set the length byte of your string to the appropriate
value.

: I have a for loop that writes to the string position using index (str1[i]).

However, when | write out the string, it has its old length. Why?

: When updating the value of a particular index of a string, you must

update the length byte. We recommend using the Insert procedure to
change the value of a particular character in a string, since all the string
manipulation routines in Turbo Pascal automatically change the length
of the string.

: What is the maximum length of a string in Turbo Pascal?
: 255 characters.

TURBO Pascal Reference Manual

HELPIH

How do you declare an enumerated type and use it in a for loop?

Try using this code:
type
Num = (one,two,three);
var
Count : Num;
begin
for count := one to three do
Hrite (*.”);
end.

How can | access command-line parameters?

Use the ParamStr and ParamCount functions described in Chapter
16. These functions allow complete access to the command line from
your Turbo Pascal program.

When | write my linked list data structure to a disk file, why doesn't it
store properly?

Linked lists are dynamic data structures that can only be properly
allocated/represented in memory. In order to store the information in a
dynamic data structure to a disk file, you must write a routine that
traverses the entire linked list and writes each piece of data to your file.
When you read the information back from the file, you must reconstruct
your linked list.

: I made a file with a text editor, and now I'm trying to read it as a record

file and it doesn't work. What's wrong?

Record files use a different data format from text files. You'll need to
write a program to convert your data from text to record files.

: How do | get typeahead in a Turbo Pascal program?

First set the C and U compiler directives to { $C-1} and { $U-1}. This
will prevent Turbo Pascal from clearing the keyboard buffer during
screen 1/0. From now on, whenever you do any reads, you can read
one character at a time from the logical device KBD: Read(KBD,ch).

361

362

: Why can't | read more than one integer/character/real on a line using a

repeat loop and a read(ch)?

: The following routine reads an input line of characters, requiring the

user to press only once.

var
ch : char;
begin
repeat
read (TRM,ch); { read from the logical device TRM }
write(ch);
until Ch = #13;
end

You can read from the TRM device, read(TRM,var 1), for version 3.0
for standard input, or use the compiler directive { $B-} for version 2.0.

: Why can't | read/write from the logical device AUX?
: Turbo Pascal treats the logical device AUX exactly like a text file.

Because of the BIOS design, most users find that they have great
difficulty trying to write serial communication routines using reads and
writes from AUX. We recommend writing your own interrupt service
routines to check the status of the serial port before you try doing a read
or write.

: Why does my program behave differently when | run it several times in

arow?

. If you are running programs in Memory mode and use typed constants

as initialized variables, these constants will only be initialized right after
a compilation, not each time you Run the program because they reside
in the code segment. With .COM files, this problem does not exist, but if
you still experience different results when using arrays and sets, turn on
range checking { $R+1}.

: How can | use more than 64K of variables?
: You can expand the amount of data space available to your program by

using pointer variables.

: How do | compile my program to a .CHN file?
: This cookbook-style recipe shows how to compile MAIN.COM and

CHRCOUNT.CHN:

1. Load Turbo Pascal and specify CHRCOUNT as the work file. Enter
the program using the editor and return to the main menu. Set the

TURBO Pascal Reference Manual

mode to CHN file and compile to disk (type OHCQ). Write down the
code and data sizes (on CP/M-80 systems, write down the end
address).

2. Specify MAIN as the work file, enter the program using the editor
and return to the main menu. Set the mode to COM file and compile
to disk (type OCQC). Write down the code and data sizes (on
CP/M-80 systems, write down the end address).

3. Type “O” to display the options menu and specify the largest code
and the largest data values (on CP/M-80 systems, specify the
highest end address). Recompile MAIN (type C), exit Turbo and run
MAIN.COM from the operating system command line.

Note that you must always set the code and data values when
compiling the main module {unless it uses the most code and data).

For more information about CP/M compiler options, refer to chapters
21 (for CP/M-86) and 22 (for CP/M-80).

INSTALLATION

Q: | am having trouble installing my terminal!

A: If your terminal is not one that is on the installation menu, you must
create your own. All terminals come with a manual containing informa-
tion on codes that control video 1/0. You must answer the questions in
the installation program according to the information in your hardware
manual. The terminology we use is the closest we could find to a
standard.

Note: most terminals do not require an initialization string or reset
string. These are usually used to access enhanced features of a
particular terminal; for example, on some terminals you can send an
initialization string to make the keypad act as a cursor pad. You can put
up to 13 characters into the initialization or reset string.

8087 IMPLEMENTATION

Q: Do | need an 8087 chip to use Turbo-877?

A: Yes, if you want to compile programs for the 8087 chip, that chip must
bein your machine. The standard Turbo compiler, however, is included
on the Turbo-87 disk, so you can have it both ways!

Q: Is the 8087 version of Turbo Pascal compatible with the 80287 co-
processor?

A: Yes.

HELPI! 363

1 have the 8087 version of the compiler. The program compiles but it
doesn’t run. Why not?

For version 2.0 users: Turbo Pascal does not check for the 8087 at
compile time; instead, it tries to use it at runtime. If it is not there, Turbo
Pascal will wait until you respond.

For version 3.0 owners: Turbo Pascal will not allow compilation on a
machine without an 8087. If the program is compiled and taken to a
machine without an 8087, it will crash.

How fast is the 80877

The 8087 version of Turbo performs real-number calculations approxi-
mately 10 times faster than a non-8087 compiler.

BCD IMPLEMENTATION

Q:

Do | need any special equipment to use Turbo-BCD?

A: No, but the BCD reals package works on 16-bit implementations of
Turbo only.

Q: Is Turbo Pascal with BCD support as fast as the regular Turbo com-
piler?

A: If you are using real numbers, Turbo-BCD will run more slowly than
regular Turbo Pascal. Also note that Sin, Cos, Exp, and Ln are not
implemented in Turbo-BCD.

Q: Is there a switch in the BCD or 8087 compilers that lets you use regular
real number arithmetic?

A: No, they are separate compilers.

EDITOR
Q: What are the space limitations of the editor?
A: The editor can edit as much as 64K at a time. If this is not enough, you

364

can split your source into more than one file using the $1 compiler
directive.

TURBO Pascal Reference Manual

Q: When | am in the Turbo Pascal Editor and | press carriage return, the

A:

cursor returns to column 1 instead of going to the next line.

In order to create new lines at the end of a file, you must be in Insert
mode. So type and try it again.

COMPILE/RUN-TIME/I/0 ERRORS

Q:
A:

Q

Q:
A:

HELPH!

What do | do when | get error 99 (Compiler overflow)?

You can do two things: break your code into smaller segments and use
the $1 compiler directive or compile to a .COM or .CMD file.

What do | do if my object code is going to be larger than 64K?
Either use the chain facility or use overlays.

My program works well with Turbo 2.0, but now it keeps getting 1/0
Error F3 (or Turbo Access error 243).

Turbo 3.0 uses DOS file handles. When booting your computer, you
should have a CONFIG.SYS file in the root directory of your boot drive.
Place the statement:

FILES=1k

in this file and re-boot your system. For more information about file
handles, please refer to your DOS reference manual.

NOTE: If you distribute your programs, you should include similar
instructions in the documentation that you provide.

What causes the runtime error FO?
There are four possible causes:

1. a recursive routine that is overlaid
2. a procedure that calls another procedure in the same overlay group

3. calling for an overlay inside a read or write statement, which is not
allowed

4. insufficient file handles when calling for an overlay, a .CHN, or an
Execute (MS/PC-DOS only).

365

366

: Why do | get an I/O error FO when | try to Append to a text file?
: You cannot use the Append procedure on an empty file. The existing

file must have text in it in order to successfully append.

: Why am [getting a compile-time error in my type declaration for a

large data structure?

. It may be over 64K in size (Turbo’s upper limit for the size of a data

structure).

: Why do | keep getting a type mismatch with the labels I'm using in my

case statement?

. You may be trying to use strings as labels in your case statement.

Pascal only allows simple types to be used as case statement labels.
In addition, the labels must be constants, not variables or typed con-
stants.

: What does compiler error #99 mean, and how can | fix it?
: This compile time error indicates that you do not have enough memory

to compile your program. You should take the following steps to correct
the problem:

1. Separate your code into several include files that are included in a
very small main program file.

2. Compile the program to a .COM file.

: Why would | get the I/O error F3?
: Because you are trying to use too many file handles. MS-DOS and

PC-DOS limit a program to a maximum number of file handles You can
raise the number to 20 using this line in your CONFIG.SYS file:

FILES = 20
This will allow you to use up to 16 files in your program (DOS uses 5).

When all handles have been used, you must close some files before
opening any new ones.

: | get a Type Mismatch error when passing a string to a function or

procedure as a parameter.

: Turn off type checking of variable parameters: {$V-}.

TURBO Pascal Reference Manual

GRAPHICS

Q

A:

After including GRAPH.P in my program, the commands Plot and
Draw no longer work as expected.

When using GRAPH.P, you must set the Palette before using these
routines.

Any idea why | can't get the sample graphics programs on the Turbo
Pascal disk to run on my system?

You must have an IBM Color Graphics Adapter (CGA) card or compati-
ble in order to use the built-in graphics abilities of Turbo Pascal.

What resolution setting does the Hires graphics mode on the IBM PC
version of Turbo Pascal require?

Hires is set at (640x200).

Will Turbo Pascal’s graphics run on the Hercules Graphics card?

Turbo Pascal’s built-in graphics will only run on the IBM Color Graphics
Adapter card, or something compatible with this card. To write graphics
programs using Turbo with the Hercules card, you can use the Turbo
Graphix Toolbox.

Why doesn't my graphics program run on my Paradise Modular
Graphics card?

: The graphics routines built into Turbo Pascal and included in the

extended graphics (GRAPH.P) will only run on an IBM Color Graphics
Adapter card (or compatible).

PRINTING

Q:

A:

HELPI

How can | get a listing of my program’s input and output to go to the
printer?

To do this, declare the following compiler directive at the top of your
program:

{$Plea}

before running your .COM file, type ~P at the DOS command line.
From now until you type *P again, everything that goes to the screen
will be echoed to the printer.

367

Q: How do I send something to the printer from my program?

A: By specifying the logical device LST in your writeln statements, you can
send something to the printer:

writeln(LST, ‘This text is going to the printer.’);

Q: How can | write to a printer other than PRN?

A: In order to support multiple printers from a Turbo Pascal program, you
need to treat them as text files. In other words, declare a file variable of
type text and assign it to the logical device you wish it to represent.

Q: How do I print my program to the printer?

A: We have given you a listing program called LISTER.PAS on the Turbo
Pascal diskette. In order to use it do the following:

1. Compile the program to a .COM file using Turbo Pascal.
2. Exit from Turbo Pascal and run the program LISTER.

3. When it prompts you for the file name you wish to print, enter the
correct file.

Q: How can | check if my printer is on-line?

A: The following routine will return the printer status. See an IBM Technical
Reference Manual or equivalent for detailed information on the Error
codes returned.

type
Registers = record
case Byte of
1 : (AX,BX,CX,DX,BP,SI,DI,DS,ES,Flags : Integer);
¢ : (AL,ARH,BL,BH,CL,CH,DL,DH : Byte);
end

var
Reg : Registers;

begin
Reg.RAH := 2;
Intr($1?, Regq);
PrinterError :
end;

(Reg.RH and $29) <> D;

368 TURBO Pascal Reference Manual

Q: How can | use one Write statement to access any of several printers?
A: On the IBM PC and compatibles (only), do the following:
First, include the following code in your program:

const
CurrentPrinter : Byte = 1 { The printer number to
print on }
procedure WritePrinter(Ch : Char); ‘
{ Replaces Turbo’s LstOut procedure }
type
Registers = record
case Byte of
1 : (AX,BX,CX,DX,BP,SI,DI,DS,ES,Flags : Integer);
2 : (ALIAH[BLIBHICLICHIDLIDH . Byte);
end;
var
Reg : Registers;
begin
with Reg do
begin
AH := 0;
AL := Ord(Ch);
DX := Pred(CurrentPrinter);
Intr($17?, Regq);
end; { with }
end; { WritePrinter }

At the start of your program, insert the statement:
LstOutPtr := Ofs(WritePrinter);

Now, whenever you write to the Lst device in your program, it will print
on the printer specified by CurrentPrinter. To change the printer that the
text will print on, simply change the value of CurrentPrinter.

Q

How can | tell if my printer is ready to print?
A: You can check for the printer's status by polling DOS interrupt 17.

Q: How do | get output to go to the printer?
A: Try:Writeln(Lst, ...).

HELP!! 369

Q: How can | get a listing of my source code to my printer?

A: You can use the following program. If you wish to have a listing that
underlines or highlights reserved words, puts in page breaks, and lists
all Include files, there is one included free (including source) on the
Turbo Tutor diskette.

program TextFileDenmo;

var
TextFile : Text;
Scratch : Stringl1281;

begin
Write(‘’File to print: ’); { Get file name }
Readln(Scratch);
Assign(TextFile, Scratch); { Open the file }
{$I-}
Reset(TextFile);
{$I+}
if IOresult <> D then
Writeln(’Cannot find ‘, Scratch) { File not found }
else { Print the file.. }
begin
while not Eof(TextFile) do
begin
Readln(TextFile, Scratch); { Read a line }
Writeln(Lst, Scratch) { Print a line }
end; { while }
Writeln(Lst) { Flush printer buffer }
end { else }
end.

IBM IMPLEMENTATION

Q: How can | get my output to display in inverse video?

A: By executing the following statements:

begin
TextColor(Black);
Textbackground(White);
end;

Q: When | change the currently active display page, why doesn't Turbo
write to the current page?

A Turbo writes directly to video RAM and always assumes that page 0
is the active display page, If you want to display text in different display
pages, you will have to either write directly to video RAM (the Turbo
Pascal Editor Toolbox and Lightning Word Wizard both have routines to
do this), or use DOS’s display services.

370 TURBO Pascal Reference Manual

HELPI!

Is it possible to execute DOS commands; i.e., do a shell, from Turbo?

Yes. You can contact Turbo Pascal Technical Support for a handout
demonstrating how to perform these operations, or you can download
the information from our Special Interest Group on CompuServe.

Is it possible to perform Serial Communications from Turbo?

Yes. You can contact Turbo Pascal Technical Support for a handout
demonstrating how to perform these operations, or you can download
the information from our Special Interest Group on CompuServe.

GotoXY isn't working in my program. What am | doing wrong?

The most common mistake is reversing the row and column coordi-
nates. They should read as:

GotoXY(Column,Row);

where 1 (= column (= 80 (on most machines) and 1 (= row (= 25 (or
24 lines on most generic machines)

How do | get the time/date in Turbo Pascal?

The files DOSFCALL.DOC and INTRPTCL.DOC on your Turbo Pascal
disk demonstrate how to get the date and time.

| wrote an interrupt handler, but it doesn’t work. Do you mask interrupts
during 1/0?

No. You are probably using global variables, but DS has the wrong
value after you enter the interrupt procedure. Save the value of DS in
the code segment (that is, in a typed constant) and restore it within the
interrupt handler.

: What interrupt is used by the MS-DOS and PC-DOS implementations

of Turbo Pascal to handle the keyboard?
Turbo Pascal uses interrupt 16 to check the keyboard status.

: Does Turbo Pascal 3.0 for the IBM PC use direct screen writes in its

editor?

Yes.

371

Q: How can | change the border color on a CGA?

A: The following program will let you change the border color to blue
(substitute any color you wish):

begin
Port($3D9] := Blue;
end;

Q: How can | hide the cursor in Turbo Pascal?

A: The following routine turns the cursor on and off in Turbo Pascal:

procedure SetCursor(On:Boolean);
var
reg : record
ax,bx,cx,dx,bp,si,di,ds,es,flags:integer;
end;
begin
with reg do
begin
if On then { turn cursor on }
cx := $COB { $706 if on color monitor }
else { turn cursor off }
cx := $20;
bx := 0;
ax := $0100;
end; { with }
intr($10,req);
end; { procedure SetCursor }

Q: How can | find out if the (Z&)/ (EZ) keys are on?
A: The status of these keys is kept in RAM at address $40:$17.

Q: How do | get the key on an IBM PC to work with a Turbo Pascal
program?

A: To re-enable DOS'’s standard I/O redirection capabilities, the G and P
compiler directives must be set in your program:

{$P128,6128}

COMPATIBILITY

Q: | can't get Turbo Pascal to load on my DEC Rainbow. Why?
A: Make sure you are using the DEC format, not the MS-DOS format.

372 TURBO Pascal Reference Manual

2

I'm having trouble running Turbo Pascal on Concurrent PC-DOS. Why?

We recommend using the MS-DOS generic implementation of Turbo
Pascal under Concurrent PC-DOS.

Why can't | get Turbo Pascal to run under Topview?
You must have Turbo Pascal version 3.01 to use under Topview, and
you must install Topview with the following parameters:

Does it read directly from the keyboard? Yes.
Does it access video RAM directly? Ves.

MS-DOS/PC-DOS

Q:

A:

How can | use Turbo Pascal to write to DOS’s null device?

Use the following code:

var
T : text;

begin
Assign(T, ‘Nul’);
Rewrite(T);
Writeln(T, ‘help’);
Close(T);

end.

CP/M-80

Q:
A:

HELPH!

Can | use the program | developed under CP/M-80 on my IBM PC?

Yes, you can, provided there are no machine-specific calls in your
code, and that you recompile the source code on an IBM PC implemen-
tation of Turbo Pascal.

What software do | need to get Turbo Pascal up and running on my
Osborne executive computer?

You need the Osborne version of Turbo Pascal and BIOS revision 1.21
or greater.

How can | get Turbo Pascal 3.0 to run on my Bondwell CP/M-80
computer?

To run 3.0 on your Bondwell, you will have to contact Bondwell to get a
patch to their BIOS.

373

Q

: Why do my recursive procedures not work?
A:

Set the A compiler directive off:{ $ A —} (CP/M-80 only).

KEYBOARD

374

Q

A:

Q: How do | disable CTRL-C?

A:

: Why doesn't the function KeyPressed work properly?

Any strange behavior you are experiencing concerning the function
KeyPressed will be remedied by setting the C compiler directive to C-.

How do | read from the keyboard without having to hit return (duplicate
BASIC's INKEY$ function)?

Like this: read (Kbd,Ch) where Ch:Char.

How do | read a function key?

Function keys generate 'extended scan codes’ which are turned into
‘escape sequences’ by Turbo; that is, two characters are sent from the
keyboard: first an Esc (decimal ASCII value 27), then some other
character.

To read these extended codes, you check for Esc and, if detected, see
if there is another character in the keyboard buffer. If there is, a function
key was pressed, so you read the next character and set a flag to signal
that what you got is not a normal character, but the second part of an
‘escape sequence.
if KeyPressed then
begin
Read(Kbd,Ch) {ch is char}
if (ch = #27) and KeyPressed then {one more char?}
begin
Read (Kbd,Ch)
FuncKey := True; {FuncKey is Boolean}
end
end;

Set compiler directive: { $C—-}.

TURBO Pascal Reference Manual

FILE I/O

Q:
A:

HELPI

How do | find out if a file exists on the disk?

Use {$I-} and {I+}. The following function returns True if the file name
passed as a parameter exists, otherwise it returns False:

type
Name=stringlEEl;

function Exist(FileName: Name): Boolean;
var
Fil: file;
begin
Assign(Fil, FileNane);
{$1-}
Reset(Fil);
{$I+}
Exist := (IOresult = 0)
end;

Is there any way to get around the File Handle limitations imposed by
DOS?

Yes. You can contact Turbo Pascal Technical Support for a handout
demonstrating how to perform these operations, or you can download
the information from our Special Interest Group on CompuServe.

How can | expand my data files to use more than 64K of records?
See the extended file size section on page 199.

I am having trouble with file handling. What is the correct order of
instructions to open a file?

The correct manner to handle files is as follows:
To create a new file:

Assign(FileVar, ‘NameOf.Fil’);
Rewrite(FileVar);

élose(FileVar);

To.open an existing file:

Assign(FileVar, ‘NameOf.Fil’);
Reset(FileVar);

élose(FileVar) H

375

376

. When using the functions EOF and EOLN on a file, my program seems

to hang. What's the cause?

. Turbo Pascal adds an extension to the functions EOF and EOLN. This

extension lets you pass to the two functions a parameter specifying
which file you are checking (for example, EOF(FileVariable)). If you do
not specify this optional parameter, then set the B compiler directive.

: How do you access a file on another disk drive?
: When assigning the drive, make your file name ‘B:filename’ or use

Chdir(B:") (MS/PC-DOS only).

: How can | use EOF and EOLN without a file variable as a parameter?
. Turn off buffered input:{$B-}.

TURBO Pascal Reference Manual

INDEX

A
A command, 188
A compiler directive, 131, 137,
277,286, 318
Abs function, 139
Absolute address functions,
204-205, 237
Absolute variables, 203-204,
236, 261, 267, 291
Adding operators, 51, 53
Addr function, 204, 237, 268
Allocating variables, 120
And operator, 52
Append procedure, 117, 200
Arc, 173
ArcTan, 139
Arithmetic functions, 139-141,
304
Array(s), 75-77, 254, 281, 285
character, 77
component, 75
constants, 90-91
internal data formats, 219,
224
multidimensional, 76
of characters, 112
predefined, 77
subscript optimization, 269
ASCII table, 339
Assign procedure, 94, 98, 101,
106, 117
Assignment operator, 37, 55
Auto indentation, 31, 35
AUX:, 104, 220, 241, 251, 273,
280
AuxinPtr, 210, 241
AuxOut, 209
AuxOutPtr, 210, 241

INDEX

B

B compiler directive, 106, 148,
314

Back routine, 178

Backslash, 188

BAK file, 17

Base type, 85

BCD, 293-299

BDOS, 240, 271

BIOS, 272

Block commands, 28-30

BlockRead procedure, 114

Blocks, 127

BlockWrite procedure, 114

Boolean scalar type, 42

Brackets, 37

Buffer, 220, 235, 250-251,
280-281

Byte scalar type, 41

C
C command, 17, 190, 227, 260
C compiler directive, 148, 314
Case statement, 58-59
Chain, 193-194, 231-233
Char scalar type, 42
Character arrays, 77
Characters

blinking, 161

color of, 161

of string variable, 73
ChDir procedure, 189
Chr function, 142
Circle routine, 173
Clear screen, in graphics mode,

163

Clearscreen routine, 179

377

Clipped graphics, 163, 183
Close procedure, 96, 98
CirScr procedure, 133
Code segment size, 191, 228
Color modes, 161-162
ColorTable routine, 172
Column indicator, editor, 20
Command keys, editor, 186
Command line length byte, 265
Command line parameters, 192,
229, 262
Comments, 37, 46
Compilation, 288-289
Compile command, 17
Compiler directives, 7, 46,
313-318
Compiler error messages,
321-324
Compiler options, 18, 190, 227,
259-260
Compound statement, 57
COM1: logical device, 104
Concat, 71
Concatenation, 68
Concurrent CP/M, 229
Conditional statement, 57
Control characters, 22, 24-29,
34,45, 341-343
Conversion type, 65
CON: logical device, 104
Coordinates, turtle, 177
Copy function, 71
Cos, 139
CP/M
command line, 232
FCB, 250, 280
function calls, 271
primer, 355-356
CP/M-80, 259-292, 318
CrExit, 134
Crtinit, 133
Cseg, 205, 237
Cursor movement, 22-25, 34
Cursor position, 162

378

D

D command, 18, 191, 229

D compiler directive, 201,
316-317

Data conversion, 108

Data segment size, 191, 229

Data structures, 219-221,
249-252, 281-283

Data transfer between programs,
194, 231, 264

Data types, basic, 216-218,
246-249, 278-281

Declaration part, 47-48

Declared scalar type, 41

DEL, 109

Delay, 134

Delete commands, 27-28

Delete procedure, 69

Delimiters, 39

DelLine, 134

Digits, 37

Direct memory access, 205-206,
238, 268

Directories, 187-188

Directory command, 18

Directory-related procedures,
189

Discriminated unions, 83

Disjunction, set, 87

Disk file, 220, 250, 282-283

Disk reset, 15

Disk write error, 15

Dispose procedure, 124-125

Distribution disk, 8

Div, 52

DOS command line, 265

DOS function calls, 208-209

Downto, 60

Draw procedure, 171

Dseg, 205

Dynamic variables, 119, 319

E
E (Edit) command, 17

TURBO Pascal Reference Manual

Editor, Turbo, 19-35
block commands, 28-30
command keys, 186
compared to WordStar, 34-35
cursor movement commands,
22-26
exiting, 22, 30
insert/delete commands,
26-28
installation, 350
miscellaneous commands,
30-34
status line, 19-20
Element, of set, 85
Else statement, 57-58
Empty set, 86
Empty statement, 56
End address, 261, 292
EOF function, 97, 107, 115
Eoln, 102, 109
Erase procedure, 96, 104, 114,
ERR;, 200
ERRORLEVEL test, 135
Error messages
compiler, 321-324
110, 327-328
run-time, 325
translating, 329-332
Esc, 109
EXecute command, 259
Execute procedure, 193-194,
231-233, 263-265
Execution
error messages, 325
in memory, 290
of a program file, 291-292
Exist function, 361
Exit, 135
Exiting the editor, 22, 30
Exp, 140
Exponents, 278
Expressions, 51-54
Extended file size, 199
Extended graphics, 172-176, 308
External, 210-211, 242, 255, 274,
83, 285
External subroutines, 221-222,
252-253, 283

INDEX

F
F command, 192, 230, 262
F compiler directive, 198-199,
317
False, standard identifier, 42
Field constants, 91-92
Field list, 79
Fields, 79
File(s)
extended file size, 199
identifier, 93
handle, 220
handling routines, 304-305
names, 15, 20, 198, 235, 267
number open, 198-199
of byte, 199
parameters, 128
path, 188
pointer, 93
standard functions, 97-98
text, 101, 235, 267
types, 93-117
untyped, 114
FilePos function, 97, 102, 235
FileSize function, 98, 102, 235
Files on distribution disk, 8-9,
293, 301
FillChar procedure, 136
FillPattern procedure, 175
FillScreen procedure, 175
FillShape procedure, 175
Find and replace command,
32-33
Find command, 31
Flags byte, 251, 281
Flush procedure, 96, 102, 235,
267
For statement, 60
Form function, 294
Formatted writing, 298
Forward, reserved word, 145
Forward declarations, 156
Forward references, 145
Forwd procedure, 179
Frac function, 140
Free dynamic memory, 192, 229
Free union, 83
Freemem procedure, 125

379

Function

calls, 208-209, 240
declarations, 137
designators, 54
results, 224, 255, 285

Functions

CP/M-80 implementation-
specific
Bdos, 271
Bios, 272
Bioshl, 272
Graphics
GetDotColor, 174
Heading, 179
TurtleThere, 183
Xcor, 184
Ycor, 184
IBM PC implementation-
specific
WhereX, 162
WhereY, 162
MS-DOS specific
FilePos, 97, 115, 235, 267
FileSize, 98, 115, 235, 267
SeekEof, 102
SeekEoln, 102
standard
Abs, 139
Addr, 204, 237, 268
Arctan, 139
Concat, 71
Copy, 71
Cos, 139
Eof, 97, 115
Eoln, 102
Exp, 140
Frac, 140
Hi, 143
Int, 140
loresult, 116
Keypressed, 143
Length, 72
Ln, 140
Lo, 143
Maxavail, 126
Memavail, 121, 207, 239,
270
Odd, 141

380

Ord, 142, 207, 240, 270

Pos, 72

Pred, 141

Ptr, 207, 240, 270

Random, 143

Round, 142

Sin, 140

Sizeof, 144

Sqr, 141

Sqrt, 141

Sucg, 141

Swap, 144

Trunc, 142

Upcase, 145
16-bit specific

Cseg, 205, 237

Dseg, 205, 238

Ofs, 205, 237

Seg, 205, 237

SSeg, 205, 238

G
G compiler directive, 202, 316
Get procedure, 319
GetDir procedure, 189
GetMem procedure, 125
GetPic procedure, 173
Global variables, 216, 246
Goto statement, 56, 319
GotoXY, 134
GraphBackground procedure,
166
GraphColorMode procedure, 163
Graphics, 163-184
basic, 171
extended, 172-176
functions, see Functions
modes, 163-167
procedures, see Procedures
Turtlegraphics, 177-184
windows, 168-170
GraphMode, 164
GraphWindow procedure, 169

H
H command, 190, 227-228, 260

TURBO Pascal Reference Manual

Halt procedure, 135

Heading function, 179

Heap, 121, 225, 229, 255, 286,
305

Heap control procedures and
functions, 305

HeapPtr, 225, 226, 255, 257,
286, 290

Hexadecimal numbers, 43

Hi function, 143

HideTurtle procedure, 179

Highlighting screen, 14

HiRes procedure, 164

Home position, 134

Home procedure, 179

|
1 compiler directive
include file, 16, 147-148, 314
IBM PC
functions, 308 see also
Functions
installation, 12, 345
procedures, 308, see also
Procedures
Identifiers, standard, 38, 43
If statement, 57-58
Include compiler directives, 16
Include files, 147-148
Indent, 20, 31
Initialized variable, 89
In-line machine code, 211-213,
243-244, 274-276
Inline procedure, 134
Insert commands, 26-27
Insert indicator in editor, 20
Insert procedure, 69
Installation, 12-13
of editing commands, 13,
350-353
of terminal, 345-350
Int function, 140
Integer overfiow, 41
Integer scalar type, 41
Internal data formats, 216-225,
246-256, 278-287
Intersection, of sets, 85

INDEX

Intr procedure, 215, 245
IOResult, 116
1/0, 108
checking, 116-117
drivers, 209-210
error handling, 116-117, 263,
314
error messages, 327-328
mode selection, 106-108
redirection, 202-203

K
K compiler directive, 225, 256,

318
Kbd, 106
KBD: logical device, 104
Keyboard return codes,

341-343
KeyPressed function, 143

L
L command, 15
Label declaration part, 47-48
Labels, 56
Language elements,
user-defined, 43-46

Large programs, 147-148
Ln function, 140
Lo function, 143
Local variables

as var parameters, 319

in internal formats, 216
Logged drive selection, 15
Logical devices, 104, 200
Log-on message, 10
LongFilePos function, 193, 199
LongFileSize function, 193, 199
LongSeek procedure, 193, 199
LowVideo procedure, 135
Lst, 106
LST: logical device, 104
LstOut, 209
LstOutPtr, 210, 241

M
M command, 16, 190, 227, 260

381

Main file selection, 16

Main menu, 11

Mantissa, 278

Mark, 120-124

MaxAvail function, 126

Mem, 77

Mem Array, 204, 238, 268

Members, of sets, 85

Memory access, 206

Memory management, 226,
256-257, 288-292

Memory / com file / cHn file, 227

Memory / cmd file / cHn file, 227

MemW array, 206

Menu, 11, 14-18

MkDir procedure, 189

Mod, 52

Move procedure, 136

MsDos procedure, 208

Multidimensional arrays, 76, 91

Multiplying operator, 51

N

Nested overlays, 154
Nesting, of with statements, 81
New procedure, 120

Nil pointer value, 120
NormVideo procedure, 135
NoSound, 185

Not operator, 51-52
NoWrap procedure, 180
Numbers, 43-44

Numeric fields, 294-296
Numeric input, 109

(o)

O command, 18, 190-191,
227-228, 259

Odd function, 141

Ofs function, 205

Operators, 51, 311-312

Options, compiler, 18, 190-193,
227-230, 259-262

382

Or Operator, 53

Ord func, 142

Ordinal values, 142

OUT: logical device, 200
Output, 106

Overflow, 41-42

Overlays, 149-157

Overwrite mode, 27

OvrDrive procedure, 233, 265
OvrPath procedure, 196-197

P
P command, 192, 229, 262
P compiler directive, 202, 316
Packed variables, 320
Page procedure, 319
Palette procedure, 165
Paragraphs, 191
ParamCount function, 144
Parameter passing
by reference, 128
by value, 127
Parameters, 127-131, 221-224,
252-254, 283-285
ParamStr function, 144
Path, director, 188
Pattern procedure, 176
Pendown procedure, 180
Penup procedure, 180
Plot, 171
Pointer types, 92, 119-126
Pointer values, 207, 239
Port, 77
Port access, 206, 239, 269
Port array, 193, 206, 238
Pos function, 72
Pred function, 141
Predefined arrays, 77, 206, 238,
268
Predefined identifiers, 193
Printing, 367-370
Procedure and function
declaration part, 47, 50
Procedure statement, 56, 127

TURBO Pascal Reference Manual

Procedure(s), 127-136
CP/M-specific
OvrDrive, 233, 265
CP/M-80 implementation-
specific
Bdos, 271
Bios, 272
Graphics
Arc, 173
Back, 178
Circle, 173
ClearScreen, 179
ColorTable, 172
Draw, 171
FillPattern, 175
FillScreen, 175
FillShape, 175
Forwd, 179
GetPic, 173
GraphBackground, 166
GraphColorMode, 163
GraphMode, 164
GraphWindow, 169
HideTurtle, 179
HiRes, 164
HiResColor, 164
Home, 179
NoWrap, 180
Palette, 165
Pendown, 180
Plot, 171
PutPic, 174
SetHeading, 180
SetPenColor, 181
SetPosition, 181
ShowTurtle, 181
Turnleft, 181
Turnright, 181
Turtlewindow, 182
Wrap, 184
IBM PC implementation-
specific
NoSound, 185
Pattern, 176
Sound, 185
TextBackground, 162
TextColor, 161
TextMode, 160
Window, 168

INDEX

MS-DOS

Append, 201

Erase, 96

Flush, 96, 200-201
OvrPath, 196
Rename, 96

Seek, 115, 235, 267
Truncate, 200

standard

Assign, 94
Chain, 193, 231, 263
Close, 96
CirEol, 133
CirScer, 133
CrExit, 134
Crtinit, 133
Delay, 134
Delete, 69
Delline, 134
Dispose, 124
Execute, 193, 231, 263
Exit, 135
FillChar, 136
FreeMem, 125
GetMem, 125
GotoXY, 134
Halt, 135

Insert, 69
InsLine, 134
LowVideo, 135
Move, 136

New, 120
NormVideo, 135
Randomize, 135
Read, 95, 108
Readin, 101
Reset, 94
Rewrite, 94
Seek, 95

Str, 70

val, 70

Write, 95
Writeln, 101

16-bit

intr, 215, 245

Procedural parameters, 320

Program, Turbo, contents of,
47-50

Program lines, 39

383

Ptr, 207, 240, 270
Put procedure, 319
PutPic, 174

Q
Q (Quit) command, 18

R
R (Run) command, 17
R compiler directive, 65, 73, 76,
315
Random access files, 221,
251-252, 282
Random function, 143
Randomize procedure, 135
Range checking, 65
ReadLn, 101, 110-111
Read procedure, 95, 108-109
Real scalar type, 42, 217, 223,
247,254
Record
constant, 90-92
definition, 79-80
length, 220, 250, 280
type, 79-83
Records, 219, 224, 250, 254,
282, 285
RecurPtr, 286
Recursion, 156, 286
Relational operators, 51, 53
Relative complement, of sets, 85
Release procedure, 120-121,
124, 225, 255
Rename procedure, 96, 124,
225, 255
Repeat statement, 61
Repetitive statements, 59
Reset procedure, 95
Restore line command, 31
Retype facility, 65
Rewrite, 94
RmDir procedure, 189
Root directory, 188
Root program, 191, 228
Round function, 142
Run (R) command, 17

384

Run-time
error messages, 325
errors, 156-157
range checking, 65

S
S (Save) command, 17, 261
Scalar functions, 141, 306
Scalar types, 41-42, 63-64
Scalars, 216, 223, 247, 254, 278,
283
Scope
of identifiers, 49, 131
of labels, 56
Screen
intensity, 161
modes, 160-167
procedures and functions, 306
Sector buffer, 250-251, 280-281
SeekEof, 102
SeekEoln, 102
Seek procedure, 95, 115, 235,
267
Seg, 204, 237
Set(s), 218, 224, 241, 248, 251,
254,273, 279, 280, 284
assignments, 88
constants, 90, 92
constructors, 86
expressions, 86
types, 85-88, 218, 224
SetHeading procedure, 180
SetPenColor procedure, 181
SetPositinn, 181
Shared data, 194, 231, 264
Shl operator, 52
ShowTurtle procedure, 181
Shr operator, 52
Simple statements, 55
Sin function, 140
Sine, of Num, 140
SizeOf function, 144
Sound, 307-308
Special symbols, 37
Square root, 141
Sqr, 141
Sqrt, 141

TURBO Pascal Reference Manual

Stack, 225, 255-256, 286-287
StackPtr, 263, 286, 290
Standard files, 105-107
Standard identifiers, 38, 193,
230, 263
Standard Pascal, compared to
Turbo Pascal, 319-320
Standard scalar type, 41
Start address, 261
Statement part, 50, 55
Statement separator, 55
Statements, 55-61
Static variable, 119
Status line, 19-20
Str, 70
String
fields, 297
input, 109
length, 67
Structured statements, 57
Structured typed constants, 90
Subprograms, 127
consecutive, 152
data area, 156
Subrange type, 64
Succ fune, 141
Successor, of Num, 141
Swap func, 144
Syntax, Turbo, 333-337

T
Tabulator, 35
Tag field, 82
Terminal installation, 12, 345
Text
files, 101, 160, 200, 221, 235,
252, 267, 283
input and output, 108
mode, 160
window, 168
TextBackground, 162
TextColor procedure, 161
TextMode procedure, 160
TINST, 12
TPA, 261
Transfer function, 142, 307

INDEX

Translation of error messages,
329

Tree-structured directories, 187

TRM: logical device, 104

True, 42

Trunc function, 142

Truncate procedure, 200

TurnLeft procedure, 181

TurnRight procedure, 181

TurtleDelay procedure, 183

Turtlegraphics, 177-184,
308-309

TurtleThere function, 183

Turtle window, 177-178

Turtlewindow procedure,
182-183

Type checking, 129

Type conversion, 65

Type definition part, 49

Typed constants, 89-92, 216

U

U compiler directive, 315
Unary minus, 51
Union, 85
discriminated, 83
free, 83
Unstructured typed constants,
89-90
Untyped files, 114
Untyped variable parameters,
130
Upcase, 145
User-written 1/O drivers, 241,
272-273
Usr, 106
USR: logical device, 104
UsrinPtr, 210, 241
UsrOutPtr, 210, 241
Usrin, 209
UsrOut, 209

\'

V compiler directive, 129, 315
Val procedure, 70

Value, of pointers, 240

385

Value parameters, 127, 223-224,
253-254, 283-285

Variable declarations, 49-50

Variable parameter, 129-130,
223, 253

Variant part, 83

Variant records, 82

Variables, 49, 119

absolute, 203, 236, 267

w

W compiler directive, 269, 318

W command, 15

WhereX, 162

WhereY, 162

While statement, 61

Windows, 168, 307-308

With statement, 81, 206, 239, 269

WordStar compatibility, 13,
350-353

Work file selection, 15-16

Wrap procedure, 184

Write parameters, 112

Write procedure, 95,111, 139

WriteLn procedure, 113

Wiriting 8087 reals, 302

Writing BCD reals, 297-298

X

X command, 259

X compiler directive, 269, 318
X-coordinate, 163

Xcor, 184

Y

Y-coordinate, 163
Ycor, 184

16-bit compiler directives, 317
8087, 301-302

386

TURBO Pascal Reference Manual

Borland
Software

=

INTERNATIONAL 4585 Scotts Valley Drive, Scotts Valley, CA 95066

Awvallable at better dealers nationwide.
To order by credit card, call (800) R55-8008; CA (800) 742-1133;
CANADA (800) 237-1138.

Whether you're running WordStar,” Lotus,® dBASE,®
or any other program, SideKick puts all these desktop
accessories at your fingertips—Instantly!

A full-screen WordStar-like Editor to jot
down notes and edit files up to 25 pages
long.

A Phone Directory for names, addresses,
and telephone numbers. Finding a name or a
number is a snap.

An Autodialer for all your phone calls. It will
look up and dial telephone numbers for you.
(A modem is required to use this function.)

All the SideKick windows stacked up over Lotus 1-2-3°
From bottom to top: SideKick's “Menu Window,” ASCII
Table, Notepad, Calculator, Appointment Calendar, Monthly
Calendar, and Phone Dialer.

A Monthly Calendar from 1901 through
2099.

Appointment Calendar to remind you
of important meetings and appointments.

A full-featured Calculator ideal for
business use. It also performs decimal
to hexadecimal to binary conversions.

An ASCII Table for easy reference.

Here's SideKick running over Lotus 1-2-3. In the
SideKick Notepad you'll notice data that's been imported
directly from the Lotus screen. in the upper right you can
see the Calculator.

The Critics’ Choice

“In a simple, beautiful implementation of WordStar’s
block copy commands, SideKick can transport all
or any part of the display screen (even an area
overlaid by the notepad display} to the notepad.”
—Charles Petzold, PC MAGAZINE

“SideKick deserves a place in every PC.”
—Gary Ray, PC WEEK

“SideKick is by far the best we've seen. It is also
the least expensive.”
—Ron Mansfield, ENTREPRENEUR

“If you use a I?C, get SideKick. You'll soon become
dependen on it —Jerry Pournelle, BYTE

Suggested Retail Price: $84.95 (not copy protected)

Minimum system configuration: IBM PC, XT, AT, PCjr and true compatibles. The IBM PCjr will only accept the SideKick not copy-
protected versions. PC-DOS (MS-D0OS) 2.0 or greater. 128K RAM. One disk drive. A Hayes-compatible modem, IBM PCjr internal
modem, or AT&T Modem 4000 is required for the autodialer function.

SideKick is a registered trademark of Borland International, Inc. dBASE is a registered trademark of

EX R Ashton-Tate. IBM, XT, AT, and PCir are registered trademarks of International Business Machines Corp.
= AT&T is a registered tracemark of American Telephone & Telegraph Company. Lotus and 1-2-3 are

INTERNATIONA L registered trademarks of Lotus Development Corp. WordStar is a registered trademark of MicroPro

International Corp. Hayes is a trademark of Hayes Microcomputer Products, Inc.

BOR 0060B

SIDEKICK: iz

Macintosh™

The most complete and comprehensive collection of
desk accessories available for your Macintosh!

Thousands of users already know that SideKick is the best collection of desk accessories available
for the Macintosh. With our new Release 2.0, the best just got better.

We've just added two powerfu! high-performance tools to SideKick—Outlook™ The Qutliner
and MacPlan™ The Spreadsheet. They work in perfect harmony with each other and while you
run other programs!

Outlook: The Qutliner
= |t's the desk accessory with more power than a stand-alone outliner
a A great desktop publishing tool, Qutlook lets you incorporate both text and graphics
into your outlines
a Works hand-in-hand with MacPlan
a Allows you to work on several outlines at the same time

MacPlan: The Spreadsheet
= [ntegrates spreadsheets and graphs
= Does both formulas and straight numbers
= Graph types include bar charts, stacked bar charts, pie charts and line graphs
a Includes 12 example templates free!
= Pastes graphics and data right into Outlook creating professional memos and reports, complete
with headers and footers.

% File Edit Diew Specio) Worksheet

SideKick: The Desktop Organizer,
Release 2.0 now includes

Outlook: The Qutliner

MacPlan: The Spreadsheet

Mini word processor

Calendar

PhoneLog

Analog clock

Alarm system

Calculator

Report generator

Telecommunications (new version now
supports XModem file transfer protocol)

RARRRRRRERE

Forecast

0 I
INCOME FOREC AS T

B 13678 Saesh

O 1594% Saws®

B 561% Total Revenves
B8 ox

B 0% tgeses

O 031% Labor

O 46ex Mawnuu

B 61 ovress

O 1188 Totalbxpeoses [
g o

B 1843% Het Prodt

©}

MacPlan does both spreadsheets and business
graphs. Paste them into your Outlook files and
generale professional reports.

Suggested Retail Price: $99.95 (not copy protected)

Minlmum system requirements: Macintosh 512K or Macintosh Plus with one disk drive.

255) BORLAND
%INTEHNATIONAI

SideKick 15 a registered trademark and Outhook and MacPlan are trademarks of Borland
International, Inc. Macintosh is a trademark of Mcintosh Laboratory, Inc. licensed to Apple
Computer, Inc. Copyright 1987 Borland International

BOR 0264

SIDEKICK

The Organizer For The Computer Age!

Traveling SideKick is BinderWare,” both a hinder you take with you when you travel
and a software program—which includes a Report Generator—that generates and
prints out all the information you'll need to take with you.

Information like your phone list, your client list,
your address book, your calendar, and your
appointments. The appointment or calendar files
you're already using in your SideKick® can auto-
matically be used by your Traveling SideKick. You
don't waste time and effort reentering information
that's already there.

One keystroke prints out a form like your address
book. No need to change printer paper;

What’s inside Traveling SideKick

TABLET OF EXTRA FORMS
INPOCKET ON BACK FLAP, FOR USE IN ANY OF THE
‘ORGANIZER SECTIONS
ADDRESS BOOK SECTION
PREPRINTED ADDRESS FORMS WITH TABBED
DVIDERS FOR EASY REFERENCE
MISCELLANEOUS SECTION
TO STORE ALL EXTRA PREPRINTED FORMS AND
COMMONLY-USED RECORDS.
ROLLER BALLPOINT PEN
BLACK PEN THAT TS IN FLAP FOR EASY ACCESS.
REFERENCE SECTION

CONTAINS MAPS THAT SHOW AREA CODES. AND
TIME ZONES, TOLL-FREE NUMBERS FOR TRA\
ACCOMODATIONS. METRIC CONVERSION CNARTS
FINANCE SECTION
MULTI-USE LEDGER FORMS, RECEIPT LOG AND
STORAGE ENVELOPE. CREDIT CARD INFORMATION,
CALENDAR SECTION
YEARLY, MONTHLY, WEEKLY, AND DAY
ENGAGEMENT CALENDARS SUF"LEMENY THOSE
YOU PRINT OUT WITH TRAVELING SIDEKICK.
PENDING SECTION
A “TO BE CONTINUED" SECTION FOR CURRENT
PROJECTS, MEETING NOTES, ETC.
CALCULATOR
IN ONE OF TWO DUSINESS-CARD-SIZE STORAGE

S

TRAVELING SIDEKICK SOFTWARE
GENERATES, UPDATES, AND PRINTS YOUR
ADDRESS ANO CALENDAR FILES.

*Suggested Retail Price: $69.95

you simply punch three holes, fold and clip

the form into your Traveling SideKick binder, and
you're on your way. Because Traveling SideKick is
CAD (Computer-Age Designed), you don’t fool
around with low-tech tools like scissors, tape, or
staples. And because Traveling SideKick is
electronic, it works this year, next year, and all the
“next years™ after that. Old-fashioned daytime
organizers are history in 365 days.

What the software program and its
Report Generator do for you before
you go—and when you get back

Before you go:

o Prints out your calendar,
appointments, addresses, phone
directory, and whatever other
information you need from your
data files

When you return:

o Lets you quickly and easily enter all
the new names you obtained while
you were away into your
SideKick data files

It can also:

e Sort your address book by contact,
Zip code or company name

o Print mailing labels

o Print information selectively

e Search files for existing addresses
or calendar engagements

Minimum system configuration: IBM PC, XT, AT, Portable, PCjr, 3270 and true compatibles. PC-DOS (MS-DO0S) 2.0 or later.

256K RAM mimimum.

*Special introductory offer

BORLAND

INTERNATIONAL

SideKick and Travefing SideKick are registered trademarks and BinderWare is a trademark of
Borland International, Inc. IBM, AT, XT, and PCir are registered trademarks of International
Business Machines Corp. MS-DOS is a registered trademark of Microsoft Corp.

BOR 0083

olperkey

Increased Productivity for Anyone
Using IBM°PCs or Compatibles

SuperKey turns 1,000 keystrokes into 1!

Yes, SuperKey can record lengthy keystroke sequences and play them back at the touch of
a single key. Instantly. Like magic.

Say, for example, you want to add a column of figures in 1-2-3.° Without SuperKey, you'd
have to type 5 keystrokes just to get started: @ s v m (. With SuperKey, you can turn
those 5 keystrokes into 1.

SuperKey keeps your confidential files—CONFIDENTIAL!

Time after time you've experienced it: anyone can walk up to your PC and read your
confidential files (tax returns, business plans, customer lists, personal letters, etc.).

With SuperKey you can encrypt any file, even while running another program. As long as
you keep the password secret, only YOU can decode your file correctly. SuperKey also
implements the U.S. government Data Encryption Standard (DES).

SuperKey helps protect your capital investment

SuperKey, at your convenience, will make your screen go blank after a predetermined time
of screen/keyboard inactivity. You've paid hard-earned money for your PC. SuperKey will
protect your monitor's precious phosphor and your investment.

SuperKey protects your work from intruders while you take a break

Now you can lock your keyboard at any time. Prevent anyone from changing hours of
work. Type in your secret password and everything comes back to life—just as you left it.

Suggested Retail Price: $69.95 (not copy protected)

Minimum system configuration: 1BM PC, XT, AT, PCjr, and true compatibles. PC-DOS (MS-DOS) 2.0 or greater. 128K RAM.
One disk drive.

N

——¥
E——— %
BV
—_———
— ==
— =
===
s

=== — INTERNATIONAL

—
s —

all

SuperKey and SideKick are registered trademarks of Borland International, Inc. 1BM, XT, AT,

and PCr are registered trademarks of Intemational Business Machines Corp. 1-2-3 is a

registered trademark of Lotus Development Corp. MS-DOS is a registered rademark of

Microsoft Corp. BOR 00628

If you use an IBM® PC, you need

Turbo Lightning teams up
with the Random House®
Concise Dictionary to
check your spelling as
you type!

Turbo Lightning, using the
83,000-word Random House
Dictionary, checks your spelling
as you type. If you misspell a
word, it alerts you with a beep.
At the touch of a key, Turbo
Lightning opens a window on
top of your application pro-
gram and suggests the correct
spelling. Just press one key
and the misspelled word is
instantly replaced with the
correct word. It's that easy!

Turbo Lightning works
hand-in-hand with the
Random House Thesaurus
to give you instant access
to synonyms

Turbo Lightning lets you choose
just the right word from a list of
alternates, so you don't say the
same thing the same way every
time. Once Turbo Lightning
opens the Thesaurus window,
you see a list of alternate
words, organized by parts of
speech. You just select the
word you want, press ENTER
and your new word will in-
stantly replace the original
word. Pure magic!

If you ever write a
word, think a word, or
say a word, you need
Turbo Lightning

“AIPIY QN ROE T CINE L COL 45
4.

$o smuxiliary dlotlonasy

or Mgds For nore words -

The Turbo Lightning Thesaurus

Suggested Retail Price: $99.95 (not copy protected)

Lightning

Turbo Lightning’s
intelligence lets you teacl
it new words. The more
you use Turbo Lightning,
the smarter it gets

You can also teach your new
Turbo Lightning your name,
business associates’ names,
street names, addresses,
correct capitalizations, and any
specialized words you use
frequently. Teach Turbo
Lightning once, and it

knows forever.

Turbo Lightning

is the engine that
powers Borland’s Turbo
Lightning Library”

Turbo Lightning brings
electronic power to the Random
House Dictionary and Random
House Thesaurus. They're at
your fingertips—even while
you're running other programs.
Turbo Lightning will also
“drive” soon-to-be-released
encyclopedias, extended
thesauruses, specialized
dictionaries, and many other
popular reference works.

You get a head start with this
first volume in the Turbo
Lightning Library.

And because Turbo Lightning is
a Borland product, you know
you can rely on our quality, our
60-day money-back guarantee,
and our eminently fair prices.

Minimum system configuration: IBM PC, XT, AT, PCjr, and true compatibles with 2 floppy disk drives. PC-DOS (MS-DO0S) 2.0 or greater.

256K RAM. Hard disk recommended.

233 BORLAND

INTERNATIONAL

IBM, XT, AT, and PCir are registered trademarks of Internationa! Business Machines Corp. Turbo
Lightning is a registered trademark and Turbo Lightning Library is a trademark of Borland
International, Inc. Random House is a registered trademark of Random House Inc. BOR 0070A

Your Development Toolbox and Technical Reference Manual for Turbo Lightning®

L / 6 H T N | N &6

Lightning Word Wizard includes complete, commented Turbo
Pascal® source code and all the technical information you’ll
need to understand and work with Turbo Lightning’s “engine.”
More than 20 fully documented Turbo Pascal procedures
reveal powerful Turbo Lightning engine calls. Harness the full power
of the complete and authoritative Random House® Concise
Word List and Random House Thesaurus.

Turbo Lightning’s “Reference The ultimate collection of word
Manual” games and crossword solvers!

Developers can use the versatile on-line The excitement, challenge, competition,
examples to harness Turbo Lightning's and education of four games and three

power to do rapid word searches. Lightning solver utilities—puzzles, scrambles, spell-

Word Wizard is the forerunner of the data- searches, synonym-seekings, hidden words,

base access systems that will incorporate crossword solutions, and more. You and

and engineer the Turbo Lightning Library™ your friends (up to four people total) can

of electronic reference works. set the difficulty level and contest the high-
speed smarts of Lightning Word Wizard!

Turbo Lightning—Critics’ Choice
“Lightning’s good enough to make programmers and users cheer, executives of other

software companies weep.” Jim Seymour, PC Week
“The real future of Lightning clearly lies not with the spelling checker and thesaurus currently
included, but with other uses of its powerful look-up engine.” Ted Silveira, Profiles
“This newest product from Borland has it all.” Don Roy, Computing Now!

Minimum system configuration: IBM PC, XT, AT, PCir, Portable, and trus compatibles. 256X RAM minimum. PC-DOS (MS-DO0S) 2.0
or greater. Turbo Lightning software required. Optional—Turbo Pascal 3.0 or greater to edit and compile Turbo Pascal source code.

% BORLAND Suggested Retail Price: $69.95

INTERNATIONAL (not copy protected)

Turbo Pascal and Turbo Lightning are registered trademarks and Lightning Word Wizard and Turbo Lightning Library are trademarks of Borland International, Inc. Random
House is a registered trademark of Random House, Inc. IBM, XT, AT, and PCr are registered trademarks of International Business Machines Corp. MS-DOS is a
registered trademark of Microsoft Corp. BOR00STA

REFLEN. B

The high-performance database manager
that’s so advanced it’s easy to use!

Lets you organize, analyze and report information faster than ever before! If you manage mailing lists,
customer files, or even your company's budgets—Reflex is the database manager for you!

Reflex is the acclaimed, high-performance database manager you've been waiting for. Reflex extends
database management with business graphics. Because a picture is often worth a 1000 words, Reflex
lets you extract critical information buried in mountains of data. With Reflex, when you look, you see.

The REPORT VIEW allows you to generate everything from mailing labels to sophisticated reports.
You can use database files created with Reflex or transferred from Lotus 1-2-32 dBASE® PFS: Filee
and other applications.

Reflex: the ctitics’ choice

“.. . if you use a PC, you should know about Reflex . . . may be the best bargain in software today.”
Jerry Pournelle, BYTE

“Everyone agrees that Reflex is the best-looking database they've ever seen.”
Adam B. Green, InfoWorld

“The next generation of software has officially arrived.” Peter Norton, PC Week

Reflex: don’t use your PC without it!
Join hundreds of thousands of enthusiastic Reflex users and experience the power and ease of use of
Borland's award-winning Reflex.

Suggested Retail Price $149.95 (not copy protected)

Minimum system configuration: IBM PC, XT, AT, and true compatibles. 384K RAM minimum. 1BM Color Graphics Adapter, Hercules
Monochrome Graphlcs CArd, or equivalent. PC-DOS (MS-DOS) 2.0 or greater. Hard disk and mouse optional. Lotus 1-2-3, dBASE,
or PFS: File optional.
Reflex is a trademark of Borland/Analytica inc. Lotus 1-2-3 is a registered trademark of Lotus
Development Corporation. dBASE is a registered trademark of Ashton-Tate. PFS: File is a
a registered trademark of Software Publishing Corporation. IBM, XT, AT, and IBM Color Graphics
=== BORLAND Adapter are registered trademarks of Interrational Business Machines Corporation. Hercules
= Graphics Card is a trademark of Hercules Computer Technology. MS-DOS is a registered
INTERNATIONAL Irademark of Microsoft Corp. BOR 00668
Copyright 1986 Borland International

REFLEX
FOR THE MAC

The easy-to-use relational database that thinks like a spreadsheet.
Reflex for the Mac lets you crunch numbers by entering formulas
and link databases by drawing on-screen lines.

§ free ready-to-use templates are included on the examples disk:

® A checkbook application.

@ A client billing application set up for
a law office, but easily customized
by any professional who bills time.

@ A parts explosion application that

breaks down an object into its

component parts for cost analysis.

& A sample 1040 tax application
with Schedule A, Schedule B, and
Schedule D, each contained in a
separate report document.

® A portfolio analysis application with
linked databases of stock purchases,
sales, and dividend payments.

Reflex for the Mac accomplishes all of these tasks without programming—using
spreadsheet-like formulas. Some other Reflex for the Mac features are:

® Visual database design. | Data types which include variable length tex!,
= "What you see is what you get” report number, integer, automatically incremented
and form layout with pictures. sequence number, date, time, and logical.
®m Automatic restructuring of database files when m Up to 255 fields per record.
data types are changed, or fields = Up to 16 files simultaneously open.
are added and deleted. w Up to 16 Mac fonts and styles are selectable
® Display formats which include General, Decimal, for individual fields and labels.

Scientific, Dollars, Percent.

After opening the “Overview” window, you The link lines you draw establish both visual You can have multiple windows open
draw link lines between databases directly and electronic relationships between your simulianeously to view all members of a
onto your Macintosh screen. databases. linked set—which are interactive and truly
refational.
‘Critic’s Choice

“. .. a powerful relational database . . . uses a visual approach to information management.” /nfoWorld

“... gives you a lot of freedom in report design; you can even import graphics.” A+ Magazine
“, .. bridges the gap between the pretty programs and the power programs.” Stewart Alsop, PC Leller

BORLAND Suggested Retail Price:
INTERNATIONAL $99.95

*Introductory Offer Through 1/15/87

=

Minimum system requirements: 512K

Reflex for the Mac is a trademark of Borland/Analytica, Inc. Macintosh is a trademark of Mclntosh Laboratory, Inc. and is used with express permission of its owner.
BOR 0149

REFLEX

WorKSHOP

Includes 22 “instant templates” covering a broad range of
business applications (listed below). Also shows you how to
customize databases, graphs, crosstabs, and reports. It’s an invaluable
analytical tool and an important addition to another one of
our best sellers, Reflex: The Analyst 1.1.

Fast-start tutorial examples:

Learn Reflex® as you work with practical business applications. The Reflex Workshop Disk supplies
databases and reports large enough to illustrate the power and variety of Reflex features. Instructions in eac
Reflex Workshop chapter take you through a step-by-step anaIysns of sample data. You then follow simple
steps to adapt the files to your own needs.

22 practical business applications:
Workshop's 22 “instant templates” give you a wide range of analytical tools:

Administration « Tracking Manufacturing Quality Assurance
* Scheduling Appointments * Analyzing Product Costs

: :’1!ggglgr:gg(::rg?(;e:&e Facillies Accounting and Financial Planning
Cront 0} « Tracking Petty Cash
* Crealing a Mailing System * Entering Purchase Orders

* Managing Employment Applications * (Qrganizing Outgoing Purchase Orders

Sales and Marketing * Analyzing Accounts Receivable
* Researching Store Check Inventory ¢ Maintaining Letters of Credit
* Tracking Sales Leads Reporting Business Expenses
 Summarizing Sales Trends ¢ Managing Debits and Credits
* Analyzing Trends » Examining Leased Inventory Trends
. . * Tracking Fixed Assets
Production and Operations * Planning Commercial Real Estate Investment

* Summarizing Repair Turnaround

Whether you're a newcomer learning Reflex basics or an experienced “power user” looking for tips, Reflex
Workshop will help you quickly become an expert database analyst.

Minimum system configuration: 18M PC, AT, and XT, and true compatibles. PC-DOS (MS-D0S) 2.0 or greater. 384K RAM minimum. Requires Reflex: The
Analyst, and IBM Color Graphics Adapter, Hercules Monochrome Graphics Card or equivalent.

BORLAND Suggested Retail Price: $69.95

INTERNATIONAL (not copy protected)

Reflex is a registered trademark and Reflex Workshop is a trademark of Borland/Analytica, Inc. IBM, AT, and XT are registered trademarks of International Business
Machines Corp. Hercules is a trademark of Hercules Computer Technology. MS-DOS is a registered trademark of Microsoft Corp.

BOR 0088A

VERSION 3.0 with 8087 support and BCD reals
Free MicroCalc Spreadsheet With Commented Source Code!

FEATURES:

One-Step Compile: No hunting & fishing
expeditions! Turbo finds the errors, takes you
to them, lets you correct them, and instantly
recompiles. You're off and running in

record time.

Built-in Interactive Editor: WordStar>like
easy editing lets you debug quickly.

Automatic Overlays: Fits big programs into
small amounts of memory.

MicroCalc: A sample spreadsheet on your disk
with ready-to-compile source code.

IBM® PC Version: Supports Turtle Graphics,
color, sound, full tree directories, window
routines, input/output redirection, and

much more.

THE CRITICS’ CHOICE:

“Language deal of the century . . . Turbo Pascal:
it introduces a new programming environment
and runs like magic.”

—Jeff Duntemann, PC Magazine

“Most Pascal compilers barely fit on a disk, but
Turbo Pascal packs an editor, compiler, linker,
and run-time library into just 39K bytes of
random access memory.”

—~Dave Garland, Popular Computing

“What | think the computer industry is headed
for: well-documented, standard, plenty of
good features, and a reasonable price."

—Jerry Pournelle, BYTE

LOOK AT TURBO NOW!

[More than 500,000 users worldwide.

[Turbo Pascal is the de facto industry
standard.

M Turbo Pascal wins PC MAGAZINE'S
award for technical excellence.

™ Turbo Pascal named “Most
Significant Product of the Year” by
PC WEEK.

¥ Turbo Pascal 3.0—the fastest Pascal
development environment on the
planet, period.

Suggested Retail Price; $99.95; CPIM°-80 version without 8087 and BCD: $69.95

Features for 16-bit Systems: 8087 math co-processor support for intensive calculations.
Binary Coded Decimals (BCD): eliminates round-off error! A must for any serious business application.

Minimum system configuration: 128K RAM minimum. Includes 8087 & BCD features for 16-bit MS-DOS 2.0 or later and
CP/M-86 1.1 or later. CP/M-80 version 2.2 or later 48K RAM minimum (8087 and BCD features not available). 8087

version requires 8087 or 80287 co-processor.

=75-) BORLAND

Turbo Pascal is a registered trademark of Borand Intermational, Inc. CP/M is a registered ¥ademark
of Digital Research Inc. I1BM s a registered trademark of Intemational Business Machines Corp. MS-

INTERNATIONAL E“O:‘:;;Lc'ows!eredwademkom»aosoﬂmnWordswlsaremsteredhadermdmoﬁo

BOR 0061A

TURBO

P ‘sc‘l ;MGIIIMSII

The ultimate Pascal development environment

Borland’s new Turbo Pascal for the Mac~ is so incredibly fast that it can
compile 1,420 lines of source code in the 7.1 seconds it took you to read this!

And reading the rest of this takes about 5 minutes, which is plenty of time for Turbo Pascal for the Mac
to compile at least 60,000 more lines of source code!

Turbo Pascal for the Mac does both Windows and “Units”’

The separate compilation of routines offered by Turbo Pascal for the Mac creates modules called “Units,”
which can be linked to any Turbo Pascal® program. This “modular pathway” gives you “pieces” which can
then be integrated into larger programs. You get a more efficient use of memory and a reduction in the
time it takes to develop large programs.

Turbo Pascal for the Mac is so compatible with Lisa® that they should be living together
Routines from Macintosh Programmer’s Workshop Pascal and Inside Macintosh can be compiled and run
with only the subtlest changes. Turbo Pascal for the Mac is also compatible with the Hierarchical File
System of the Macintosh.”

The 27-second Guide to Turbo Pascal for the Mac
® Compilation speed of more than 12,000 lines Workshop Pascal (with minimal changes)
per minute ® Compatibility with Hierarchical File System of
® “Unit" structure lets you create programs in your Mac
modular form o Ability to define default volume and folder names
® Multiple editing windows—up to 8 at once used in compiler directives
® Compilation options include compiling to disk or ® Search and change features in the editor speed up
memory, or compile and run and simplify alteration of routines
® No need to switch between programs to compile ® Ability to use all available Macintosh memory
Of fun a program without limit
® Streamlined development and debugging ® “Units" included to call all the routines provided by
® Compatibility with Macintosh Programmer’s Macintosh Toolbox

Suggested Retail Price: $99.95 (not copy protected)

Minimum :Ftum configuration:
256K. One 400K drive.

a Turbo Pascal is a registered trademark and Turbo Pascal lfor the Mac, SideKick for the Mac, and Reflex for the Mac
= = mu"p are trademarks of Borland International, Inc. Macintosh is a trademark of Mcintosh Laboratories, inc. and licensed to
= Apple Computer with its express permission. Lisa is a registered trademark of Apple Computer, Inc. Inside

E INTERNATIONAL Macintosh is a copynght of Apple Computer, Inc.
BOR 0167

TURBO TUTOR

VERSION 2.0
Learn Pascal From The Folks Who Created
The Turbo Pascal® Family

Borland International proudly presents Turbo Tutor, the perfect complement
to your Turbo Pascal compiler. Turbo Tutor is really for everyone—
even if you've never programmed before.

And if you're already proficient, Turbo Tutor can sharpen up the fine points.
The manual and program disk focus on the whole spectrum of Turbo
Pascal programming techniques.

® For the Novice: It gives you a concise history of Pascal, tells you how to write a
simple program, and defines the basic programming terms you need to know.

© Programmer’s Guide: The heart of Turbo Pascal. The manual covers the fine points
of every aspect of Turbo Pascal programming: program structure, data types, control
structures, procedures and functions, scalar types, arrays, strings, pointers, sets, files,
and records.

e Advanced Concepts: If you're an expert, you'll love the sections detailing such topics as

Iinéed gsts, trees, and graphs. You'll also find sample program examples for PC-DOS and
MS-D0S®

10,000 lines of commented source code, demonstrations of 20 Turbo Pascal features, multiple-
choice quizzes, an interactive on-line tutor, and more!

Turbo Tutor may be the only reference work about Pascal and programming you'll ever need!
Suggested Retail Price: $39.95 (not copy protected)

Minimum system configuration: Turbo Pascal 3.0. PC-DOS (MS-DO0S) 2.0 or later. 192K RAM minimum (CP/M-80
version 2.2 or later: 64K RAM minimum).

=) BORLAND
% Turbo Pascal and Turbo Tutor are r’agsiigted trademarks of Borland Intenational Inc. CP/M is a registered

INTERNATIONAL trademark of Digital Research Inc. 0S is a registered trademark of Microsot Corp. BOR 00648

TURBO PASCAL .
DATABASE TOOLBOX
Is The Perfect Complement To Turbo Pascal’

It contains a complete library of Pascal procedures that
allows you to sort and search your data and build powerful database
applications. It’s another set of tools from Borland that will give
even the beginning programmer the expert’s edge.

THE TOOLS YOU NEED!

TURBO ACCESS Using B+ trees: The best way to organize and search your data. Makes it
possible to access records in a file using key words instead of numbers. Now available with
complete source code on disk, ready to be included in your programs.

TURBO SORT: The fastest way to sort data using the QUICKSORT algorithm—the method
preferred by knowledgeable professionals. Includes source code.

GINST (General Installation Program): Gets your programs up and running on other
terminals. This feature alone will save hours of work and research. Adds tremendous valug
to all your programs.

GET STARTED RIGHT AWAY—FREE DATABASE!

Included on every Toolbox diskette is the source code to a working database which
demonstrates the power and simplicity of our Turbo Access search system. Modify it to suit
your individual needs or just compile it and run.

THE CRITICS’ CHOICE!

“The tools include a B+ tree search and a sorting system. I've seen stuff like this, but not as
well thought out, sell for hundreds of dollars.” —Jerry Pournell, BYTE MAGAZINE

“The Turbo Database Toolbox is solid enough and useful enough to come recommended.”
—Jeff Duntemann, PC TECH JOURNAL

Suggested Retail Price: $69.95 (not copy protected)

Minimum system configuration: 128K RAM and one disk drive (CP/M-80: 48K). 16-bit systems: Turbo
Pascal 2.0 or greater for MS-DOS or PC-DOS 2.0 or greater. Turbo Pascal 2.1 or greater for CP/M-86
1.0 or greater. 8-bit systems: Turbo Pascal 2.0 or greater for CP/M-80 2.2 or greater.

=2 mu“p Turbo Pascal and Turbo Database Toolbox are registered trademarks of Boriand Intemational
= Inc. CP/M Is a registered trademark of Digita! Research, Inc. MS-DOS is a registered

INTERNATIONAL trademark of Microsoft Corp. BOR 00638

GRAPHIX TOOLBOX'

A Library of Graphics Routines for Use with Turbo Pascal®

High-resolution graphics for your IBM” PC, AT,® XT,® PCjr®, true PC compatibles, and the Heath
Zenith Z-100." Comes complete with graphics window management.

Even if you're new to Turbo Pascal programming, the Turbo Pascal Graphix Toolbox will get you slarled
right away. It's a collection of tools that will get you right into the fascinating world of high-resolution
business graphics, including graphics window management. You get immediate, satisfying results. And
we keep Royalty out of American business because you don't pay any—even if you distribute your own
compiled programs that include all or part of the Turbo Pascal Graphix Toolbox procedures.

What you get includes:
o Complete commented source code on disk. o Full graphics window management.
o Tools for drawing simple graphics. o Two different font styles for graphic labeling.
o Tools for drawing complex graphics, including o Choice of line-drawing styles.
curves with optional smoothing. o Routines that will let you quickly plot functions
 Routines that let you store and restore graphic and model experimental data.

images to and from disk. And much, much more . . .
« Tools allowing you to send screen images to

Epson®-compatible printers.

“While most people only talk about low-cost personal computer software, Borland has been doing
something about it. And Borland provides good technical support as part of the price.”
John Markov & Paul Freiberger, syndicated columnists.

If you ever plan to create Turbo Pascal programs that make use of business graphics or scientific
graphics, you need the Turbo Pascal Graphix Toolbox.

Suggested Retail Price: $69.95 (not copy protected)

Minimum system configuration: 1BM PC, XT, AT, PCjr, true compatibles and the Heath Zenith Z-100. Turbo Pascal 3.0 or later. 192K
RAM minimum. Two disk drives and an IBM Color Graphics Adapter (CGA), IBM Enhanced Graphics Adapter (EGA), Hercules Graphics
Card or compatible.

Turbo Pascal and Turbo Graphix Toolbox are registered trademarks of Borland International,
Inc. IBM, XT, AT, and PCjr are registered trademarks of International Business Machines
Corporation. Hercules Graphics Card is a trademark of Hercules Computer Technology. Heath

L Zenith 2-100 is a trademark of Zenith Data Systems. Epson is a registered trademark of
Epson Corp.

BOR 00688

E TOOL
It’s All You Need To Build Your Own Text Editor
Or Word Processor

Build your own lightning-fast editor and incor- Create your own word processor. We provide all
porate it into your Turbo Pascal® programs. the editing routines. You plug in the features you want.
Turbo Editor Toolbox gives you easy-to-install You could build a WordStar®-like editor with pull-down
modules. Now you can integrate a fast and powerful menus like Microsoft’s® Word, and make it work as fast
editor into your own programs. You get the source as WordPerfect.®

code, the manual, and the know-how.

To demonstrate the tremendous power of Turbo Editor Toolbox, we give you the source code for
two sample editors:

Simple Editor A complete editor ready to include in your programs. With windows, block commands, and
memory-mapped screen routines.

MicroStar A full-blown text editor with a complete pull-down menu user interface, plus a lot more.
Modify MicroStar's pull-down menu system and include it in your Turbo Pascal programs.

The Turbo Editor Toolbox gives you all the
standard features you would expect to find
in any word processor:

» Wordwrap

¢ UN-delete last line

¢ Auto-indent

* Find and Find/Replace with options
* Sel left and right margin

 Block mark, move, and copy

¢ Tab, insert and oversirike modes,

centering, etc. MicroStar's pull-down menus.

And Turbo Editor Toolbox has features that word processors selling for several hundred dollars can't begin to match.
Just to name a few:

[3’ RAM-based editor. You can edit very large [2’ Multiple windows. See and edit up to eight
files and yet editing is lightning fast. documents—aor up to eight parts of the same
Memory-mapped screen routines. In- document—all at the same time.
stant paging, scrolling, and text display. [z’ Multitasking. Automatically save your
Keyboard installation. Change control text. Plug in a digital clock, an appointment
keys from WordStar-like commands to any that alarm—see how it's done with MicroStar's
you prefer. “background” printing.

Best of all, source code is included for everything in the Editor Toolbox.
Suggested Retail Price: $69.95 (not copy protected)

Minimum system configuration: IBM PC, XT, AT, 3270, PCjr, and true compatibles. PC-DOS (MS-D0S) 2.0 or greater. 192K RAM. You must be
using Turbo Pascal 3.0 for IBM and compatibles.

Turbo Pascal s a registered trademark and Turbo Editor Toolbox 1s a trademark of Borland
BORLA"D International, Inc. WoraStar is a registered trademark of MicroPro International Corp. Word and
MS-DOS are reqgistered trademarks of Microsoft Corp. WordPerfect is a trademark of Satellite

INTERNATIONAL Software Internationa! IBM, XT, AT, and PCyr are registered trademarks of International Business
Machines Corp BOR 0067A

GAMEWORKS
Secrets And Strategies Of The Masters Are

Revealed For The First Time

Explore the world of state-of-the-art computer games with Turbo GameWorks. Using
easy-to-understand examples, Turbo GameWorks teaches you techniques to quickly create
your own computer games using Turbo Pascal® Or, for instant excitement, play the three
great computer games we’ve included on disk—compiled and ready to run.

TURBO CHESS

Test your chess-playing skills against your computer challenger. With Turbo GameWorks, you're on your way to
becoming a master chess player. Explore the complete Turbo Pascal source code and discover the secrets of
Turbo Chess.

“What impressed me the most was the fact that with this program you can become a computer chess analyst.
You can add new variations to the program at any time and make the program play stronger and stronger chess.
There's no limit to the fun and enjoyment of playing Turbo GameWorks Chess, and most important of all, with this
chess program there’s no limit to how it can help you improve your game.”

—George Koltanowskl, Dean of American Chess, former President of
the United Chess Federation, and syndicated chess columnist.

TURBO BRIDGE

Now play the world's most popular card game—bridge. Play one-on-ane with your computer or against up to
three other opponents. With Turbo Pascal source code, you can even program your own bidding or scoring
conventions.

“There has never been a bridge program written which plays at the expert level, and the ambitious user will
enjoy tackling that challenge, with the format already structured in the program. And for the inexperienced player,
the bridge program provides an easy-to-follow format that allows the user to start right out playing. The user can
‘play bridge’ against real competition without having to gather three other people.”

—Kit Woolsey, writer of several articles and books on bridge,
and twice champion of the Blue Ribbon Palirs.

TURBO GO-MOKU

Prepare for battle when you challenge your computer to a game of Go-Moku—the exciting strategy game also
known as Pente In this battle of wits, you and the computer take turns placing X's and O's on a grid of 19XX19
squares until five pieces are lined up in a row. Vary the game if you like, using the source code available on your
disk.

Suggested Retail Price: $69.95 (not copy protected)

Minimum system configuration: IBM PC, XT, AT, Portable, 3270, PC|r, and true compatibles. PC-DOS (MS-DOS) 2.0 or later. 192K
RAM minimum. To edit and compile the Turbo Pascal source code, you must be using Turbo Pascal 3.0 for IBM PCg and
compatibles.

D = Turbo Pascal and Turbo GameWorks are registered trademarks of Borland International, Inc.
= Pente is a registered trademark of Parker Brothers. IBM, XT, AT, and PCir are registered
INTERNATIONA/L lrademuksof International Business Machines Corporation. MS-DOS is a registered trademark
of Microsoft Corporation.

BOR 00658

TURBO PASCAL

NUMERICAL METHODS TOOLBOX

New from Borland’s Scientific & Engineering Division!

A complete collection of Turbo Pascal’ routines and programs

New from Borland's Scientific & Engineering Division, Turbo Pascal Numerical Methods Toolbox
implements the latest high-level mathematical methods to solve common scientific and engineering
problems. Fast.

So every time you need to calculate an integral, work with Fourier Transforms or incorporate any of the
classical numerical analysis tools into your programs, you don't have to reinvent the wheel. Because
the Numerical Metheds Toolbox is @ complete collection of Turbo Pascal routines and programs that
gives you applied state-of-the-art math tools. It also includes two graphics demo programs, Least
Squares Fit and Fast Fourier Transforms, to give you the picture along with the numbers.

The Numerical Methods Toolbox is a must for you if you're involved with any type of scientific or
engineering computing. Because it comes with complete source code, you have total control of
your application.

What Numerical Methods Toolbox will do for you now:

® Find solutions to equations ® Matrix operations: inversions, determinants
® nterpolations and eigenvalues
® Calculus: numerical derivatives and m Differential equations

integrals m |east squares approximations

®m Fourier transforms

§ free ways to look at “Least Squares Fit"!

As well as a free demo “Fast Fourier Transforms,” you also get “Least Squares Fit” in 5
different forms—which gives you 5 different methods of fitting curves to a collection of data points.
You instantly get the picture! The 5 different forms are:

1. Power 4. 5-term Fourier
2. Exponential 5. 5-term
3. Logarithm Polynomial

They're all ready to compile and run “as is.” To modify or add graphics to your own programs,
you simply add Turbo Graphix Toolbox® to your software library. Our Numerical Methods Toolbox is
designed to work hand-in-hand with our Turbo Graphix Toolbox to make professional graphics in
your own programs an instant part of the picture!

Suggested retail price: $99.95

Minimum system configuration: IBM PC, XT, AT and true compatibles. PC-D0S (MS-DOS) 2.0 or later. 256K. Turbo Pascal 2.0 or later.
The graphics modules require a graphics monitor with an IBM CGA, IBM EGA, or Hercules compatible adapter card, and require the Turbo
Graphix Toolbox. MS-DOS generic version will not support Turbo Graphix Toolbox routines. An 8087 or 80287 numeric co-processor is
not required, but recommended for optimal performance.

=y Turbo Pascal Numerical Methods Toolbox is a trademark and Turbo Pascal and Turbo Graphix
=v— BORLAND Toolbox are registered trademarks of Borland International, Inc. IBM, XT, and AT are
gistered trademarks of ional Business Machines Corp. MS-DOS is a registered
INTERNATIONAL trademark of Microsoft Corp. Hercules is a trademark of Hercules Computer Technology.
Apple is registered trademark of Apple Computer, Inc. Macintosh is a trademark of Mclntosh
Laboratory, Inc. licensed 10 Apple Computer. Copyright 1986 Borland International BOR 0219

the natural language of Artificial Intelligence
Turbo Prolog brings fifth-generation supercomputer

power to your IBM°PC!

Turbo Prolog takes
programming into a new,
natural, and logical
environment

With Turbo Prolog,

because of its natural,
logical approach, both
people new to programming |
and professional programmers |
can build poweriul applica-
tions such as expert systems, |
customized knowledge
bases, natural language
interfaces, and smart

information management systems

Turbo Prolog is a declarative language
which uses deductive reasoning to solve
programming problems.

Turbo Prolog’s development system
includes:

O A complete Prolog compiler that is a variation of the
Clocksin and Mellish Edinburgh standard Prolog.

O A full-screen interactive editor.

O Support for both graphic and text windows.

[All the tools that let you build your own
expert systems and Al applications with
unprecedented ease.

== BORLAND

INTERNATIONAL

Ill

Turbo Prolog provides
a fully integrated pro-
gramming environment
like Borland's Turbo
Pascal,® the de facto
worldwide standard.

You get the complete
Turbo Prolog program-
ming system

software that includes
the Iightning -fast Turbo
Prolog six-pass
compller and interactive editor, and the
free GeoBase natural query language
database, which includes commented
source code on disk, ready to compile.
(GeoBase is a complete database
designed and developed around U.S.
geography. You can modify it or use
it “as is.”)

Minimum system configuration: IBM PC, XT, AT,

Portable, 3270, PCjr, and true compatibles. PC-D0S
(MS-DOS) 2.0 or later. 384K RAM minimum.

Suggested Retail Price $99.95
(Not Copy Protected)

Turbo Prolog is a trademark and Turbo Pascal is a registered Irademark of
Borland International, Inc. IBM AT, XT, and PCir are registered tradgmarks of
International Business Machines Corp. MS-DOS is a registered
\rademark of Microsoft Corp.

BOR 0016C

TURBD BASIC

The high-speed BASIC you’ve been waiting for!

You probably know us for our Turbo Pascal® and Turbo Prolog.” Well, we've done
it again! We've created Turbo Basic, because BASIC doesn’t have to be slow.

If BASIC taught you how to walk, Turbo Basic will teach you how to run!

With Turbo Basic, your only speed is “Full Speed Ahead™! Turbo Basic is a complete development
environment with a lightning fast compiler, an interactive editor and a trace debugging system. And
because Turbo Basic is also compatible with BASICA, chances are that you already know how to use
Turbo Basic.

Turbo Basic ends the basic confusion

There’s now one standard: Turbo Basic. And because Turbo Basic is a Borland product, the price is
right, the quality is there, and the power is at your fingertips. Turbo Basic is part of the fast-growing
Borland family of programming languages we call the “Turbo Family.” And hundreds of thousands of
users are already using Borland’s languages. So, welcome to a whole new generation of smart PC
users!

Free spreadsheet included with source code!
Yes, we've included MicroCalc, our sample spreadsheet, complete with source code. So you can get
started right away with a “real program.” You can compile and run it “as is,” or modify it.

A technical look at Turbo Basic

™ Full recursion supported executable program, with separate windows
= Standard IEEE floating-point format for editing, messages, tracing, and execution
™ Floating-point support, with full 8087 © Compile and run-time errors place you in

coprocessor integration. Software emulation source code where error occurred

if no 8087 present & Access to local, static and global variables
[~ Program size limited only by available & New long integer (32-bit) data type

memory (no 64K limitation) ® Full 80-bit precision
™ EGA and CGA support ™ Pull-down menus
™ Full integration of the compiler, editor, and = Full window management

Suggested retail price: $99.95 (not copy protected)

Minimum system configuration: 1B\ PC, AT, XT or true compatibles. 256K. One loppy drive. PC-DOS (MS-DOS) 2.0 or later.

Turbo Basic and Turbo Pascal are registered trademarks and Turbo Prolog is a trademark of
B@RMND Borland International, Inc. IBM, AT, and XT are registered trademarks of International Business

Machines Corp. MS-DOS is a registered trademark of Microsoft Corp.
INTERNATIONAL Copyright 1986 Borland International BOR 0265

EURERA: v souren

The solution to your most complex
equations—in seconds!

If you're a scientist, engineer, financial analyst, student, teacher, or any other professional working with
equations, Eureka: The Solver can do your Algebra, Trigonometry and Calculus problems in a snap.

Eureka also handles maximization and minimization problems, plots functions, generates reports, and
saves an incredible amount of time. Even if you're not a computer specialist, Eureka can help you
solve your real-world mathematical problems fast, without having to learn numerical approximation
techniques. Using Borland’s famous pull-down menu design and context-sensitive help screens, Eureka
_is easy to learn and easy to use—as simple as a hand-held calculator.

X + exp(X) = 10 solved instantly instead of eventually!

Imagine you have to “solve for X,” where X + exp(X) = 10, and you don't have Eureka: The Solver.
What you do have is a prablem, because it's going lo take a lot of time guessing at "X.” With Eureka,
there’s no quessing, no dancing in the dark—you get the right answer, right now. (PS: X = 2.0705799,
and Eureka solved that one in .4 of a second!)

How to use Eureka: The Solver

*Introductory price expires July 1, 1987

It's easy. o You can then tell Eureka to
1. Enter your equation into the ® Evaluate your solution
full-screen editor m Plot a graph
2. Select the “Solve” command ®m Generate a report, then send the output
3. Look at the answer to your printer, disk file or screen
4. You're done m Or all of the above
Some of Eureka’s key features Eureka: The Solver includes
You can key in: ™ A full-screen editor
™ A formula or formulas ™ Pull-down menus
™ A series of equations—and solve for & Context-sensitive Help
all variables ™ On-screen calculator
™ Constraints (like X has to be ™ Automatic 8087 math co-processor
<or=2) chip support
& A function to plot ™ Powerful financial functions
™ Unit conversions ™ Built-in and user-defined math and
™ Maximization and minimization problems financial functions
™ Interest Rate/Present Value calculations ™ Ability to generate reports complete with
™ Variables we call “What happens?,” like plots and lists
“What happens if | change this variable to & Polynomial finder
21 and that variable to 277" ™ Inequality solutions
Minimum system requirements: IBM PC, AT, XT, Portable, Suggested retail price: $99.95*
I3;;0 ;gg Kl‘rue compatibles. PC-DOS (MS-D0S) 2.0 and (wa copy prolecled)
2D Eurcka' The Solver is a trademark of Borland International, Inc. IBM, AT, and XT are registered
LY BORLAND ot i iy

=

== BORLAND

INTERNATIONAL

. 3 35 1 1 1
4585 Scotts Valley Drive Scotts Valley, California 95066 l

In

BT; gfgﬁ,’, l’ ~\ California

]
Card, J ¢
call wme® _(800)

(800) . 742-1133

- In Canada call
2 8008 (800) 237-1136

EDITOR QUICK REFEREINCE

.
(@oye)
LINE UP

EDEEDE SED) EET

WORD CHARACTER CHARACTER WORD
RIGHT RIGHT

LEFT LEFT

Gﬂ)(_b_, +— (Ctrl ,
FIND & CHANGE] MMARK BEGINNING MARK END
REPERT LAST FIND | Serrl sk Jor J TIARK WORD
OPTIONS: U =UPPER/LOWER CASE QJ'A COPY BLOCK
W=WHOLE WORDS ONLY Gﬂ)g‘ GVE BLOCK

B =BACKWARDS e
G =GLOBAL QJQJ DELETE BLOCK

N =NO QUESTION

END EDIT |

VERSION 3.0

TURBOPASCAL

Free KieroCale™ Spreadsheet With Commentcd Seurce Code

FENTURES:

One-Step Compile: No hunting & fishing
expeditions! Turbo finds the errors, takes you
to them, lets you correct them, and instantly
recompiles. You're off and running in record
time.

Built-in Interactive Editor: WordStar®like
easy editing lets you debug quickly.

Automatic Overlays: Fits big programs into
small amounts of memory.

MicraCalc: A sample spreadsheet on your
disk with ready-to-compile source code.

IBM ® PC Version: Supports Turtle Graphics,
color, sound, full tree directories, window
routines, input/output redirection, and

much more.

THE CRITICS’ CHOICE:

“Language deal of the century . . . Turbo
Pascal: it introduces a new programming
environment and runs like magic.”

—Jeff Duntemann, PC Magazine

“Most Pascal compilers barely fit on a disk,
but Turbo Pascal packs an editor, compiler,
linker, and run-time library into just 39K bytes
of random access memory.”

—Dave Garland, Popular Computing

“What | think the computer industry is
headed for: well-documented, standard,
plenty of good features, and a reasonable
price.”
—dJerry Pournelle, BYTE

LOOIC AT TURBO riovs!

& More than 500,000 users worldwide.

M Turbo Pascal is the de facto industry
standard.

[Turbo Pascal won PC MAGAZINE'S
award for technical excellence.

[Turbo Pascal named “Most
Significant Product of the Year” by
PC WEEK.

[Turbo Pascal 3.0—the fastest Pascal
development environment on the
planet, period.

Options for 16-Bit Systems: 8087 math co-processor support for intensive calculations.
Binary Coded Decimals (BCD): eliminates round-off error! A must for any serious business

application. (No additional hardware required.)

Minimum System Configuration: Turbo Pascal 3.0 requires 64K RAM, one disk drive, 280, 8088/86, 80186, or 80286
microprocessor running either CP/M-80 2.2 or greater, CP/M-86 1.1 or greater, MS-DOS 2.0 or greater, or PC-D0S 2.0

or greater.

oI

Y O INTERNATIONAL
~

4585 SCOTTS VALLEY DRIVE
SCOTTS VALLEY, CALIFORNIA 95066

Turbo Pascal is a registered trademark and MicroCalc is a trademark of Borland International, Inc. CP/M is a
registered rademark of Digital Research Inc. IBM is a registered trademark of International Business Machines

Corp. MS-DOS is a registered trademark of Microsoft Corp. Z80 is a registered trademark of Zilog Corp.

WordStar is a registered trademark of MicroPro International.
BOR 0017

ISBN 0-487524-003-8

EDITOR QUICK REFEREINCE

{Ctrl [R)
PAGE UP

(ctr @ Ctrl %: % Ctri Y D) % F
WORD CHARACTER CHARACTER WORD
LEFT LEFT RIGHT RIGHT

Ctrl X x)
LINE

S — 0 O

FIND & CHANGE] MARK BEGINNING MARK END

\V4
QX Ly RepeaT AST FIND | ’?/g/ MARK WORD
OPTIONS: U =UPPER/LOWER CASE !_3/“_/ COPY BLOCK
W=WHOLE WORDS ONLY G!Dgg MOVE BLOCK

B =BACKWARDS
G =GLOBAL @4._)» 4 DELETE BLOCK

N =NO QUESTION

END EDIT |

VERSION 3.0

TURBOPASCAL

Free hlieroCale™ Spreadshieet ith Commentcd Source Code

FEATURES:

One-Step Compile: No hunting & fishing
expeditions! Turbo finds the errors, takes you
to them, lets you correct them, and instantly
recompiles. You're off and running in record
time.

Built-in Interactive Editor: WordStar®like
easy editing lets you debug quickly.

Automatic Overlays: Fits big programs into
small amounts of memory.

MicroCale: A sample spreadsheet on your
disk with ready-to-compile source code.

IBM® PC Version: Supports Turtle Graphics,
color, sound, full tree directories, window
routines, input/output redirection, and

much more.

THE CRITICS’ CHOICE:

“Language deal of the century . . . Turbo
Pascal: it introduces a new programming
environment and runs like magic.”

—Jeff Duntemann, PC Magazine

“Most Pascal compilers barely fit on a disk,
but Turbo Pascal packs an editor, compiler,
flinker, and run-time library into just 39K bytes
of random access memory.”

—Dave Garland, Popular Computing

“What | think the computer industry is
headed for: well-documented, standard,
plenty of good features, and a reasonable
price.”

—Jerry Pournelle, BYTE

LOOI AT TURDO 1I0VY!

M More than 500,000 users worldwide.

M Turbo Pascal is the de facto industry
standard.

M Turbo Pascal won PC MAGAZINE'S
award for technical excellence.

[Turbo Pascal named “Most
Significant Product of the Year” by
PC WEEK.

M Turbo Pascal 3.0—the fastest Pascal
development environment on the
planet, period.

Options for 16-Bit Systems: 8087 math co-processor support for intensive calculations.
Binary Coded Decimals (BCD): eliminates round-off error! A must for any serious business

application. (No additional hardware required.)

Minimum System Configuration: Turbo Pascal 3.0 requires 64K RAM, one disk drive, Z80, 8088/86, 80186, or 80286
microprocessor running either CP/M-80 2.2 or greater, CP/M-86 1.1 or greater, MS-DOS 2.0 or greater, or PC-D0S 2.0

or greater.

7 INTERNATIONAL

/ S LRCRLAND

~

4585 SCOTTS VALLEY DRIVE
SCOTTS VALLEY, CALIFORNIA 95066

Turbo Pascal is a registered trademark and MicroCalc is a trademark of Borland International, Inc. CP/M is a
registered trademark of Digital Research Inc. IBM is a registered trademark of International Business Machines

Corp. MS-DOS is a registered trademark of Microsoft Corp. 280 is a registered trademark of Zilog Corp.

WordStar is a registered trademark of MicroPro International.
BOR 0017

ISBN 0-87524-003-8

