

TERMS AhD COhD TlOhS OF SALE A h 0 .ICEhSE OF TAhDV COMPUTER
E0,IPMEhT AhD SOFTWARE PLRChASED FROM RADIO SHACK

COMPAhV-OWED COMP-TER CEhTERS RETAI. STORES AhD RAD 0
SHACK FRAhCHlSEES OR DEALERS AT ThE R AbThOR ZED LOCATlOhS

LIMITED WARRANTY
I. CUSTOMER OBLIGATIONS

A CUSTOMER assumes full responsibility that this computer hardware purchased (the Equipment) and any
copies of Software included with the Equipment or licensed se arately (the Software) meets the specilications
capacity capabilities versatility and other requirements 01 CUETOMER

B CUSTOMER assumes full responsibility for the condition and effectiveness of the operating environment in which
the Equipment and Software are to function and lor its installation

LIMITED WARRANTIES AND CONDITIONS OF SALE
A For a period of ninety (90) calendar days l rom the date of the Radio Shack sales document received upon

purchase of the Equipment RADIO SHACK warrants to the original CUSTOMER that the Equipment and the
medium upon which the Software is stored is lree from manufacturing delects This warranty is only applicable
to purchases of Tandy Equipment by the original customer lrom Radio Shack company-owned computer
centers, retail stores. and Radio Shack franchisees and dealers at their authorized locations The warranty is
void if the Equipment s case or cabinet has been opened or 11 the Equipment or Software has been subjected to
improper or abnormal use II a manulacturing defect is discovered during the stated warranty period the defective
Equipment must be returned to a Radio Shack Computer Center a Radio Shack retail store a participating Radio
Shack franchisee or a participating Radio Shack dealer for repair along with a copy 01 the sales document or
lease agreement The original CUSTOMERS Sole and exclusive remedy in the event of a defect is limited to the
correction of the delect by repair replacement or refund of the purchase price at RADIO SHACKS election and
sole expense RADIO SHACK has no obligation to replace or repair expendable items

B RADIO SHACK makes no warranty as to the design capability capacity or suitability for use of the Software
exce t as provided in this paragraph Software is licensed on an AS IS basis without warranty The original
CUSeOMER S exclusive remedy in the event of a Software manufacturing delect is its repair or replacement
within thirty (30) calendar days of the date of the Radio Shack sales document received upon license of the
Soltware The defective Software shall be returned to a Radio Shack Computer Center a Radio Shack retail store
a participating Radio Shack franchisee or Radio Shack dealer along with the sales document

C Except as provided herein no employee agent franchisee dealer or other person is authorized to give any
warranties of any nature on behalf 01 RADIO SHACK

D EXCEPT AS PROVIDED HEREIN, RADIO SHACK MAKES NO EXPRESS WARRANTIES, AND ANY IMPLIED
WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICUIAR PURPOSE IS LIMITED IN ITS DURATION
TO THE DURATION OF THE WRIlTEN LIMITED WARRANTIES SET FORTH HEREIN

E Some states do not allow limitations on how long an implied warranty lasts so the above Iimitation(s) may not
aoolv to CIISTOMER

II

LIM
A

B

.__, .. . ~

ITATION OF LIABILITY
EXCEPT AS PROVIOED HEREIN RADIO SHACK SHALL HAVE NO LIABILITY OR RESPONSIBILITY TO CUSTOMER

ALLEGED TO BE CAUSED DIRECTLY OR INDIRECTLY BY "EOUIPMENT" OR "SOFTWARE' SOLO, LEASED,
LICENSED OR FURNISHED BY RADIO SHACK, INCLUDING, BUT NOT LlMlTEO TO. ANY INTERRUPTION OF
SERVICE, LOSS OF BUSINESS OR ANTICIPATORY PROFITS OR CONSEOUENTIAL DAMAGES RESULTING FROM
THE USE OR OPERATION OF THE "EQUIPMENT" OR "SOFTWARE." IN NO EVENT SHALL RADIO SHACK BE
LIABLE FOR LOSS OF PROFITS OR ANY INDIRECT SPECIAL OR CONSEOUENTIAL DAMAGES ARISING OUT OF

LEASE LICENSE USE OR ANTICIPATED USE OF THE "EOUIPMENT" OR "SOFTWARE."
NOTWiTHSTANOiNG THE ABOVE LIMITATIONS AN0 WARRANTIES, RADIO SHACKS LIABILITY HEREUNDER FOR
DAMAGES INCURRED BY CUSTOMER OR OTHERS SHALL NOT EXCEED THE AMOUNT PAID BY CUSTOMER FOR
THE PARTICULAR "EOUIPMENT" OR "SOFTWARE" INVOLVED.
RADIO SHACK shall not be liable for any damaqes caused by delay in deliverinq or furnishinq Equipment andlor

OR ANY OTHER PERSON OR'ENTITY WITH RESPECT TO ANY LIABILITY, LOSS OR DAMAGE CAUSED OR

ANY BREACH OF THIS WARRANTY OR IN ANY MANNER ARISING OUT OF OR CONNECTED WITH THE SALE,

Software
No action arisin out 01 any claimed breach 01 this Warranty or transactions under this Warranty may be brought
more than two 92) years after the cause of action has accrued or more than four (4) years after the date of the
Radio Shack sales document lor the Equipment or Software whichever first occurs
Some states do not allow the limitation or exclusion 01 incidental or consequential damages so the above
Iimitation(s) or exclusion(s) may not apply to CUSTOMER

C

D

IV SOFTWARE LICENSE
RADIO SHACK grants to CUSTOMER a non exclusive paid up license to use the TANDY Software on one computer
sublect to the lollowing provisions
A Except as otherwise provided in this Software License applicable copyright laws shall apply to the Software
B Title to the medium on which the Software is recorded (cassette and/or diskette) or stored (ROM) is translerred to

CUSTOMER but not title to the Software
C CUSTOMER may use Software on one host computer and access that Software through one or more terminals 11

the Software permits this function
0 CUSTOMER shall not use make manulacture or reproduce copies 01 Soltware except for use on one computer

and as is specifically provided in this Software License Customer is expressly prohibited l rom disassembling the
Software

E CUSTOMER is permitted to make additional copies 01 the Soltware only for backup or archival purposes or 11
additional copies are required in the operation of one computer with the Software but only to the extent the
Software allows a backup copy to be made However lor TRSDOS Software CUSTOMER is permitted to make a
limited number of additional copies lor CUSTOMERS own use
CUSTOMER may resell or distribute unmodified copies of the Software provided CUSTOMER has purchased one
copy of the Software for each one sold or distributed The provisions 01 this Software License shall also be
applicable to third parties receiving copies 01 the Sonware from CUSTOMER
All copyright notices shall be retained on all copies of the Software

The terms and conditions of this Warranty are applicable as between RADIO SHACK and CUSTOMER to either a
Sale of the Equipment andlor Software License to CUSTOMER or to a transaction whereby Radio Shack sells or
conveys such Equipment to a third party for lease to CUSTOMER
The limitations of liability and Warranty provisions herein shall inure to the benelit of RADIO SHACK the author
owner and or licensor of the Software and any manufacturer of the Equipment sold by Radio Shack

F

G

A

B

V APPLICABILITY OF WARRANTY

VI STATE LAW RIGHTS
The warranties granted herein give the original CUSTOMER specilic legal rights and the original CUSTOMER may
have other rights which vary from State to state

8/84

Programmer's Reference Manual: Copyright 1984
Tandy Corporation and Microsoft Corporation.

Licensed to Tandy Corporation.
All Rights Reserved.

MS'"-DOS Software:
Copyright 1981, 1982, 1983 Microsoft Corporation.

Licensed to Tandy Corporation.
All Rights Reserved.

Tandy@ 1000 BIOS Software:
Copyright 1984 Tandy Corporation and

Phoenix Compatibility Corporation.
All Rights Reserved.

Tandy is a registered trademark of Tandy Corporation.

CPiM is a trademark of Digital Research.

IBM is a trademark of International Business Machines.

Reproduction or use without express written permission
from Tandy Corporation, of any portion of this manual is
prohibited. While reasonable efforts have been taken in
the preparation of this manual to assure its accuracy,
Tandy Corporation assumes no liability resulting from
any errors or omissions in this manual, or from the use of
the information contained herein.

10 9 8 7 6 5 4 3 2 1

Contents

Chapter 1. System Calls 9
Calling and Returning 9

Hierarchical Directories 10
System Call Descriptions 12

Interrupts 12
Function Calls 25

Categories of Calls 25
Error Codes 25
File Handles 26
ASCIIZ Strings 26
Calling MS-DOS Functions 27
CP/M® - Compatible Calling Sequence
Treatment of Registers 28

MS-DOS Function Calls in Numeric Order 28
MS-DOS Function Calls in Alphabetic Order
Function Call Reference 32
Macro Definitions for MS-DOS System
Call Examples 137

Interrupts 137

Extended Example of MS-DOS System Calls 143

Chapter 2. MS-DOS Control Blocks and Work Areas
151

File Control Block (FCB) 151
Extended File Control Block 153

Program Segment 153
Program Segment Prefix 157

Chapter 3. MS-DOS Initialization and
Command Processor 161

Chapter 4. MS-DOS Disk Allocation 165
MS-DOS Disk Directory 166
File Allocation Table (FAT) 168

Console. Printer. and Disk Input/Output Calls 10

27

30

Functions 137
General 142

How to Use the File Allocation Table 170

Chapter 5. Device Drivers 173
Types of Devices 173
Device Headers 174

Pointer to Next Device Header Field 174
Attribute Field 175
Strategy and Interrupt Routines 176
Name Field 176

Creating a Device Driver 176
Installation of Device Drivers 177
Request Header 177

Unit Code Field 177
Command Code Field 178
MEDIA CHECK and BUILD BPB 178
Status Field 179

Function Call Parameters 181
MEDIACHECK 182
BUILD BPB (BIOS Parameter Block) 183

Media Descriptor Byte 184

Chapter 6. BIOS Services 191
Device I/O Services 191

Introduction 191
Keyboard 193
Video Display 195
Serial Communications 204
Line Printer 207
System Clock 208
Disk I/O Support for the Floppy Only 210
Equipment 213
Memory Size 213

Appendix A Extended Screen and Keyboard Control 217
Cursor Control 218
Erasing 220
Modes of Operation 221
Keyboard Key Reassignment 223

Appendix B Keyboard ASCII and Scan Codes 225

Appendix C MS-DOS Memory Map 229
ROM BIOS Data Area 230
Keyboard Illustration 235

Chapter 1

SYSTEM CALLS

MS-DOS interrupt and function calls provide a convenient way to
perform certain primitive functions and make it easier for you to
write machine-independent programs. This chapter describes
how and when these routines can be called and the process per-
formed by each.

Calling and Returning

You invoke the system calls from Macro Assembler by moving re-
quired data into registers and issuing an interrupt. As some of
the calls destroy registers, you may have to save the register
contents before using a system call.

The system calls are also invoked from any high-level language
that has modules capable of linking with assembly language
modules.

Control is returned to MS-DOS in 4 ways:

0 Issue Function Call 4CH:
M U V A H , 4 C H
I N T 2 1 H

This is the preferred method.

Issue Interrupt 20H:
INT 20H

This method simulates system call OOH.

Prefix):
Jump to location 0 (the beginning of the Program Segment

JMP 0

As location 0 of the Program Segment Prefix contains an INT
20H instruction, this technique is 1 step removed from tech-
nique 2.

0 Issue Function Call OOH:
MOV AH,00H
I N T 21H

This transfers control to location 0 in the Program Segment
Prefix.

9

Chapter 1 I System Calls

Console, Printer, and Disk InputiOutput Calls
The console and printer system calls let you interface with the
console device and the printer without using machine-specific
codes. You will still be able to take advantage of specific capabil-
ities (such as clear the screen or position the cursor on your dis-
play or double-strike and underline on your printer). You do this
by using constants for the required codes and reassembling with
the correct constant values for the attributes.

Many system calls that perform disk input and output require
the placing of values into or the reading of values from 2 system
control blocks: the File Control Block (FCB) and the directory
entry. For a description of the FCB, see the section “File Control
Block’ in Chapter 2. For details on the directory entry, see
“Disk Directory” in Chapter 4.

Hierarchical Directories
MS-DOS supports hierarchical (tree-structured) directories, sim-
ilar to those found in the XENIX operating system. (For infor-
mation on tree-structured directories, refer to the MS-DOS
User’s Guide.)

The following system calls are compatible with the XENIX
system:

Function 39H
Function 3AH
Function 3BH
Function 3CH
Function 3DH
Function 3FH
Function 40H
Function 41H
Function 42H
Function 43H
Function 44H
Function 45H
Function 46H
Function 4BH
Function 4CH
Function 4DH

create a subdirectory
remove a directory entry
change the current directory
create a file
open a file
read from a file or device
write to a file or device
delete a directory entry
move a file pointer
change attributes
110 control for devices
duplicate a file handle
force a duplicate of a file handle
load and execute a program
terminate a process
retrieve the return code of a child
process

10

Chapter 1 I System Calls

There is no restriction in MS-DOS on the depth of a tree (the
length of the longest path from root to leaf) except in the number
of allocation units available. The root directory will have a fixed
number of entries. For non-root directories, the number of files
per directory is limited only by the number of allocation units
available.

Subdirectories of the root have a special attribute set indicating
that they are directories. The subdirectories themselves are files,
linked through the File Allocation Table (FAT). Their contents
are identical in character to the contents of the root directory.

Attributes apply to the tree-structured directories in the follow-
ing manner:

Attribute Meaning/Function MeaningIFunction
for files for directories

volume id Present a t the root. Meaningless.
Only 1 file may have
this set.

directory Meaningless. Indicates t h a t the
directory entry is a
directory. Cannot be
changed with Func-
tion Call 43H.

read only Old create, new cre- Meaningless.
a te , new open (for
write or readlwrite)
will fail.

archive S e t when fi le i s Meaningless.
wri t ten. Setireset
via Function 43H.

hidden/ Prevents file from Prevents directory
system system being found en t ry from be ing

i n sea rch f i r s t / found. Function 3BH
search next . Old will still work..
open will fail.

11

Chapter 1 I System Calls

System Call Descriptions
Many system calls require that parameters be loaded into 1 or
more registers before the call is issued; this information is given
under Entry Conditions in the individual system call descrip-
tions. Most calls return information in the registers, as given
under Exit Conditions and Error Returns.

For some of the system calls, a macro is defined and used in the
example for that call. All macro definitions are listed at the end
of the chapter, together with an extended example that illus-
trates the system calls.

The examples are not intended to represent good programming
practice. Error checking and user friendliness have been sacri-
ficed to conserve space. Many of the examples are not usable as
stand-alone programs but merely show you how to get started
with this command. You may, however, find the macros a conve-
nient way to include system calls in your assembly language
programs.

Interrupts
MS-DOS reserves Interrupts 20H through 3FH for its own use.
Memory locations 80H to FCH are reserved for the table of inter-
rupt routine addresses (vectors).

To set an interrupt vector, use Function Call 25H. To retrieve
the contents of a vector, use Function Call 35H. Do not write or
read vectors directly to or from the vector table.

List of MS-DOS Interrupts

Interrupt Description
Hex Dec

20H
2 1H
22H
23H
24H
25H
26H
27H

32 Program terminate
33 Function request
34 Terminate address
35 CONTROL-C exit address
36 Fatal error abort address
37 Absolute disk read
38 Absolute disk write
39 Terminate but stay resident

12

Chapter 1 I System Calls

Program Terminate

Interrupt 20H

Causes the current process to terminate and returns control to
its parent process. All open file handles are closed and the disk
buffer is written to disk. All files that have changed in length
should be closed before issuing this interrupt. (See Function
Calls 10H and 3EH for descriptions of the Close File function
calls.)

The following exit addresses are restored from the Program Seg-
ment Prefix:

Exit Address Offset
Program Terminate

Critical Error
CONTROL-C

OAH
OEH
12H

Note: Interrupt 20H is provided for compatibility with earlier
versions of MS-DOS. New programs should use Function Call
4CH, Terminate a Process.

Entry Conditions:

CS = segment address of Program Segment Prefix

Macro Definition:
t e r m i n a t e macro

i n t 2 0 H
endm

Example:
; C S must be e q u a l t o P S P v a l u e s g i v e n a t p r o g r a m s t a r t
; (E S a n d DS v a l u e s)

I N T 28H
; T h e r e 1 5 n o r e t u r n f r o m t h i s i n t e r r u p t

13

Chapter 1 I System Calls

Function Request
Interrupt 21H

See “Function Calls” later in this chapter for a description of the
MS-DOS system functions.

Entry Conditions:

AH = function call number
Other registers as specified in individual function.

Exit Conditions:

As specified in individual function.

Example:

To call the Get Time function:
m o v ah,ECH ;Get Time 1 5 Function 2CH
int 21 H ; T H I S INTERRUPT

14

Chapter 1 I System Calls

Terminate Address
Interrupt 22H

When a program terminates, control transfers to the ad-
dress at offset OAH of the Program Segment Prefix. This
address is copied into the Program Segment Prefix from
the Interrupt 22H vector when the segment is created.
You can set this address using Function Call 25H.

15

Chawter 1 I Svstem Calls

CONTROL-C Exit Address
Interrupt 23H

If the
display
tor in

user types CONTROL-C during keyboard input or
output, control transfers to the Interrupt 23H vec-

the interrupt table. This address is copied into the
Program Segment Prefix from the Interrupt 23H vector
when the segment is created. You can set this address us-
ing Function Call 25H.

If the CONTROL-C routine saves all registers, it can end
with an IRET instruction (return from interrupt) to con-
tinue program execution. When the interrupt occurs, all
registers are set to the value they had when the original
call to MS-DOS was made. There are no restrictions on
what a CONTROL-C handler can do (including MS-DOS
function calls) as long as the registers are unchanged if
IRET is used.

If Function 09H or OAH (Display String or Buffered Key-
board Input) is interrupted by CONTROL-C, the 3 byte
sequence 03H-0DH-0AH (ETX-CR-LF) is sent to the dis-
play and the function resumes at the beginning of the
next line.

If the program creates a new segment and loads a second
program that changes the CONTROL-C address, termina-
tion of the second program restores the CONTROL-C ad-
dress to the value it had before execution of the second
program.

16

Chapter 1 I System Calls

Fatal Error Abort Address
Interrupt 24H

If a fatal disk error occurs during execution of one of the
disk I/O function calls, control transfers to the Interrupt
24H vector in the vector table. This address is copied into
the Program Segment Prefix from the Interrupt 24H vec-
tor when the segment is created. You can set this address
using Function Call 25H.

BP:SI contains the address of a Device Header Control
Block from which additional information can be retrieved.

Interrupt 24H is not issued if the failure occurs during
execution of Interrupt 25H (Absolute Disk Read) or Inter-
rupt 26H (Absolute Disk Write). These errors are usually
handled by the MS-DOS error routine in COMMAND.COM
that retries the disk operation and then gives the user
the choice of aborting, retrying the operation, or ignoring
the error.

Entry Conditions:

BP:SI = Device Header Control Block address

Error Returns:

When an error handling program gains control from Inter-
rupt 24H, the AX and DI registers contains codes that
describe the error. If Bit 7 of AH is 1, either the error
is a bad image of the File Allocation Table or an error
occurred on a character device. The device header passed
in BP:SI can be examined to determine which case exists.
If the attribute byte high-order bit indicates a block de-
vice, then the error was a bad FAT. Otherwise, the error
is on a character device.

17

ChaDter 1 I System Calls

The following are error codes for Interrupt 24H:

Error Code Description

0
1 Unknown unit
2 Drive not ready
3 Unknown command
4 Data Error
5 Bad request structure length
6 Seek error
7 Unknown media type
8 Sector not found
9 Printer out of paper
A Write fault
B Read fault
C General failure

Attempt to write on write-protected disk

The user stack will be in effect and, from top to bottom,
will contain the following:

IP MS-DOS registers from
cs issuing INT 24H
FLAGS

AX
BX INT 21H request
cx
DX
SI
DI
BP
DS
ES
IP From the original INT 21H
cs from the user to MS-DOS
FLAGS

User registers at time of original

If an IRET is executed, the registers are set to cause
MS-DOS to respond according to the contents of AL as
follows:

AL =0 ignore the error
=1 retry the operation
= 2 terminate the program via 23H

18

Chawter 1 I System Calls

Notes:

This exit is taken only for disk errors occurring during
an Interrupt 21H. It is not used for errors during In-
terrupts 25H or 26H.

This routine is entered in a disabled state.

0 The SS, SP, DS, ES, BX, CX, and DX registers must
be reserved.

This interrupt handler should not use MS-DOS function
calls. If necessary, it can use calls OIH through OCH.
Use of any other call will destroy the MS-DOS stack
and will leave MS-DOS in an unpredictable state.

0 The interrupt handler must not change the contents of
the device header.

If the interrupt handler has its own error management
routine, rather than returning to MS-DOS, it should re-
store the application program’s registers from the stack,
remove all but the last 3 words on the stack, and then
issue an IRET. This will cause a return to the pro-
gram immediately after the INT 21H that experienced
the error. Note that if this is done, MS-DOS will be in
an unstable state until a function call higher than OCH
is issued.

19

Chapter 1 I System Calls

Absolute Disk Read

Interrupt 25H

Transfers control to MS-DOS. The number of sectors speci-
fied in CX is read from the disk to the Disk Transfer
Address.

This call destroys all registers except the segment regis-
ters. Be sure to save any registers your program uses be-
fore issuing the interrupt.

The system pushes the flags at the time of the call; they
are still on the stack upon return. This is necessary be-
cause data is passed back in the current flags. Be sure
to pop the stack upon return to prevent uncontrolled
growth.

Entry Conditions:

AL = drive number (0 = A, 1 = B, etc.)
DS:BX = Disk Transfer Address
CX = number of sectors to read
DX = beginning relative sector

Exit Conditions:

Carry set:

Carry not set:

Error Returns:

Error codes are the same as for Interrupt 24H.

Macro Definition:

AL = error code

Operation was successful.

a b s - d i 5 k - r e a d macro d ~ ~ k , b u f f e r , n u m _ s e c t o r ~ , f ~ r s t _ s e c t o r

mov a 1 , d i s k
mov b x , o f f s e t b u f f e r
mov c x , n u m _ s e c t o r 5
mov d x , f i r s t _ 5 e c t o r
int 25H

e n d m
POPf

20

Chapter 1 I System Calls

Example:

The following program copies the contents of a single sided
disk in Drive A to the disk in Drive B. It uses a buffer
of 32K bytes.
p r o m p t

s t a r t
b u f f e r

db " S o u r c e i n A , t a r g e t i n B",13,10
db "Any k e y t o s t a r t . 0 "
dw 0
db 64 dup (5 1 2 dup (7)) ;64 s e c t o r s

i n t -25H : d i s p l a y p r o m p t ; s e e F u n c t i o n 09H
r e a d - t b d ; s e e F u n c t i o n 08H

; c o p y 5 g r o u p s o f
;64 s e c t o r s

mov C X , ~

c o p y : p u s h c x ; s a v e t h e l o o p c o u n t e r
a b s - d i s k - r e a d 0 , b u f f e r , 6 4 , 5 t a r t ; T H I S INTERRUPT
a b s - d i s k - w r i t e l , b u f f e r , 6 4 , 5 t a r t ; s e e I N T 26H
a d d s t a r t , 6 4 ;do t h e n e x t 64 s e c t o r s
POP c x ; r e s t o r e t h e l o o p c o u n t e r
l o o p c o p y

21

Chapter 1 I System Calls

Absolute Disk Write

Interrupt 26H

Transfers control to the MS-DOS BIOS. The number of
sectors specified in CX is written from the Disk Transfer
Address to the disk.

This call destroys all registers except the segment regis-
ters. Be sure to save any registers your program uses be-
fore issuing the interrupt.

The system pushes the flags at the time of the call; they
are still on the stack upon return. This is necessary be-
cause data is passed back in the current flags. Be sure
to pop the stack upon return to prevent uncontrolled
growth.

Entry Conditions:

AL = drive number (0 = A, 1 = B, etc.)
DS:BX = Disk Transfer Address
CX = number of sectors to write
DX = beginning relative sector

E xi t Conditions:

Carry set:

Carry not set:

Error Returns:

Error codes are the same as for Interrupt 24H.

Macro Definition:

AL = error code

Operation was successful.

a b 5 - d i s k - w r i t e m a c r o d i s t , b u f f e r , n u m _ s e c t o r s , f i r s t _ s e c t o r
mov a1,disk
mov b x , o f f s e t b u f f e r
mov c x , n u m - s e c t o r s
mov d x , f i r s t - s e c t o r
int 26H

e n d m
P O P f

22

Chapter 1 I System Calls

Example:

The following program copies the contents of a single sided disk
in Drive A to the disk in Drive B, verifying each write. It uses a
buffer of 32K bytes.
off equ 0
on equ 1

prompt db "Source in A , t a r g e t in B",13,10
db "Any key t o start. $ "

start dw 0
buffer db 64 dup (512 dup(7));64 sectors

1nt-26H: display prompt ; s e e Function 09H
read-kbd ;see Function 08H
verify o n ; s e e Function 2EH
mov C X , ~ ;copy 5 groups of 64

; sec t or5
copy: push c x ;save the loop counter

a b s _ d i s k _ r e a d 0 , b u f f e r , 6 4 , s t a r t ; s e e I N T 2 5 H
abs-disk-write 1 , buffer,64,5tart ;THIS I N T E R R U P l
add start,64 ;do t h e next 64 sectors
POP c x ;restore the loop counter

verify off ; s e e Function ZEH
loop copy

23

Chapter 1 I System Calls

Terminate But Stay Resident

Interrupt 27H

Used to make a piece of code remain resident in the sys-
tem after its termination. This call is typically used in
.COM files to allow some device-specific interrupt handler
to remain resident to process asynchronous interrupts.

When Interrupt 27H is executed, the program terminates
but is treated as an extension of MS-DOS. It remains res-
ident and is not overlaid by other programs when it
terminates.

This interrupt provides compatibility with earlier versions
of MS-DOS. New programs should use the function 31H,
Keep Process.

Entry Conditions:

CS:DX = first byte following last byte of code in the

Macro Definition:

program

s t a y - r e s i d e n t m a c r o l a s t - i n s t r u c
m o v d x , o f f s e t l a s t - i n s t r u c
inc d x
int 27H
e n d m

Example:
; C S m u s t b e e q u a l t o P S P v a l u e 5 g i v e n a t p r o g r a m s t a r t
; (E S a n d D S v a l u e s)
rnov D X , L a s t A d d r e s s
int 2 7 H
; T h e r e is n o r e t u r n f r o m t h i s i n t e r r u p t

24

Chapter 1 I System Calls

Function Calls

Categories of Calls

The MS-DOS function calls are divided into 2 groups: old
and new. The old calls, Functions OOH through 2EH, are
included in this version of MS-DOS to provide compatibil-
ity with earlier versions. The new calls, Functions 2FH
through 57H, should be used in new programs instead of
the old calls wherever possible. Programs that use the new
calls cannot be run on earlier versions of MS-DOS.

The function
categories:

00H-12H
13H-24H
25H-26H
27H-29H
2AH-2EH
2FH-38H
39H-3BH
3CH-46H
47H

4CH-4FH
48H-4BH

54H-57H

calls can be divided into the following

Old character device I/O
Old file management
Old non-device functions
Old file management
Old non-device functions
New function group
Directory group
New file management group
Directory group
New memory management group
New function group
New function group

Error Codes
Many of the function calls in the new group (2FH-57H)
return with the carry flag reset if the operation was suc-
cessful. If the carry flag is set, then an error occurred
and register AX contains the binary error return code.
These codes are as follows:

25

Chapter 1 I System Calls

Code Error

1
2
3
4
5
6
7
8
9
10
11
12
13
15
16
17
18

Invalid function number
File not found
Path not found
Too many open files (no handles left)
Access denied
Invalid handle
Memory control blocks destroyed
Insufficient memory
Invalid memory block address
Invalid environment
Invalid format
Invalid access code
Invalid data
Invalid drive was specified
Attempted to remove the current directory
Not same device
No more files

File Handles
Some of the new calls use a “file handle” to identify a
file or device. A handle is a 16-bit binary value that is
returned in register AX when you create or open a file
or device using the new calls. This handle should be used
in subsequent references to the file.

ASCIIZ Strings
Some calls require an ASCIIZ string in one of the regis-
ters as an entry condition. An ASCIIZ string is an ASCII
string followed by a byte of binary zeroes. The string con-
sists of an optional drive specifier followed by a directory
path and (in some cases) a filename. The following string,
if followed by a byte of zeroes, is an example:

8 : \LEVEL1 \ L E V E L 2 \ F I L E

26

Chapter 1 I System Calls

Calling MS-DOS Functions

Most of the MS-DOS function calls require input to be
passed to them in registers. After setting the proper reg-
ister values, the function may be invoked in one of the
following ways:

1.

2.

3.

Place the function number in AH and execute a long
call to offset 50H in your Program Segment Prefix.
Note that programs using this method will not oper-
ate correctly on earlier versions of MS-DOS.

Place the function number in AH and issue Interrupt
21H. All of the examples in this chapter use this
method.

An additional method exists for programs that were
written with different calling conventions. This method
should be avoided for all new programs. The function
number is placed in the CL register and other regis-
ters are set according to the function specification.
Then an intrasegment call is made to location 5 in
the current code segment. That location contains a
long call to the MS-DOS function dispatcher. Register
AX is always destroyed if this method is used; other-
wise, it is the same as normal function calls. Note
that this method is valid only for Function Requests
OOH through 024H.

CP/M ”’ -Compatible Calling Sequence

A different sequence can be used for programs that must
conform to CPiM calling conventions:

1. Move any required data into the appropriate regis-
ters (just as in the standard sequence).

2. Move the function number into the CL register.

3. Execute an intrasegment call to location 5 in the
current code segment.

This method can be used only with the functions OOH
through 24H that do not pass a parameter in AL. Regis-
ter AX is always destroyed when a function is called in
this manner.

27

Chauter 1 I System Calls

Treatment Of Registers

When MS-DOS takes control, it switches to an internal
stack. All registers are saved except AX and those regis-
ters used to return information, The calling program’s
stack must be large enough t o accommodate the interrupt
system. It should be at least 80H bytes, in addition to
the program’s needs.

MS-DOS Function Calls in Numeric Order

Function
Number

OOH
01H
02H
03H
04H
05H
06H
07H
08H
09H
OAH
0BH
OCH
ODH
OEH
0FH
10H
11H
12H
13H
14H
15H
16H
17H
19H
1AH
21H
22H
23H
24H

Function Name

Terminate Program
Read Keyboard and Echo
Display Character
Auxiliary Input
Auxiliary Output
Print Character
Direct Console 110
Direct Console Input
Read Keyboard
Display String
Buffered Keyboard Input
Check Keyboard Status
Flush Buffer, Read Keyboard
Reset Disk
Select Disk
Open File
Close File
Search for First Entry
Search for Next Entry
Delete File
Sequential Read
Sequential Write
Create File
Rename File
Current Disk
Set Disk Transfer Address
Random Read
Random Write
File Size
Set Relative Record

28

Chapter 1 I System Calls

25H
27H
28H
29H
2AH
2BH
2CH
2DH
2EH
2FH
30H
31H
33H
35H
36H
38H
39H
3AH
3BH
3CH
3DH
3EH
3FH
40H
41H
42H
43H
44H
45H
46H
47H
48H
49H
4AH
4BH
4CH
4DH
4EH
4FH
54H
56H
57H

Set Interrupt Vector
Random Block Read
Random Block Write
Parse File Name
Get Date
Set Date
Get Time
Set Time
SetiReset Verify Flag
Get Disk Transfer Address
Get Version Number
Keep Process
CONTROL-C Check
Get Interrupt Vector
Get Disk Free Space
Return Country-Dependent Information
Create Subdirectory
Remove a Directory Entry
Change the Current Directory
Create a File
Open a File
Close a File Handle
Read From a File or Device
Write to a File or Device
Delete a Directory Entry
Move a File Pointer
Change Attributes
I/O Control for Devices
Duplicate a File Handle
Force a Duplicate of a File Handle
Return Text of Current Directory
Allocate Memory
Free Allocated Memory
Modify Allocated Memory Blocks
Load and Execute a Program
Terminate a Process
Retrieve the Return Code of a Child
Find Matching File
Find Next Matching File
Return Current Setting of Verify
Move a Directory Entry
Get or Set a File’s Date and Time

29

Chapter 1 I System Calls

MS-DOS Function Calls in Alphabetic Order

Function Name

Allocate Memory
Auxiliary Input
Auxiliary Output
Buffered Keyboard Input
Change Attributes
Change the Current Directory
Check Keyboard Status
Close a File Handle
Close File
CONTROL-C Check
Create a File
Create File
Create Subdirectory
Current Disk
Delete a Directory Entry
Delete File
Direct Console Input
Direct Console IiO
Display Character
Display String
Duplicate a File Handle
File Size
Find Matching File
Flush Buffer, Read Keyboard
Force a Duplicate cf a File Handle
Free Allocated Memory
Get Date
Get Disk Free Space
Get Disk Transfer Address
Get Version Number
Get Interrupt Vector
Get Time
Get or Set a File’s Date or Time
IiO Control for Devices
Keep Process
Load and Execute a Program
Modify Allocated Memory Blocks
Move a Directory Entry
Move a File Pointer

Number

48H
03H
04H
QAH
43H
3BH
0BH
3EH
10H
33H
3CH
16H
39H
19H
41H
13H
07H
Q6H
02H
09H
45H
23H
4EH
OCH
46H
49H
2AH
36H
2FH
3QH
35H
2CH
57H
44H
31H
4BH
4AH
56H
42H

30

ChaDter 1 I Svstem Calls

Open a File
Open File
Parse File Name
Print Character
Random Block Read
Random Block Write
Random Read
Random Write
Read From a File or Device
Read Keyboard
Read Keyboard and Echo
Remove a Directory Entry
Rename File
Reset Disk
Retrieve the Return Code of a Child
Return Current Setting of Verify
Return Country-Dependent Information
Return Text of Current Directory
Search for First Entry
Search for Next Entry
Select Disk
Sequential Read
Sequential Write
Set Date
Set Disk Transfer Address
Set Relative Record
Set Time
Set Interrupt Vector
SetiReset Verify Flag
Find Next Matching File
Terminate a Process
Terminate Program
Write to a File or Device

3DH
OFH
29H
05H
27H
28H
21H
22H
3FH
08H
OIH
3AH
17H
0DH
4DH
54H
38H
47H
11H
12H
OEH
14H
15H
2BH
1AH
24H
2DH
25H
2EH
4FH
4CH
OOH
40H

-
31

Chapter 1 I System Calls

Abort

Terminate Program Function Call OOH

Terminates a program. This function is called by Interrupt
20H, and performs the same processing.

The following exit addresses are restored from the specified
offsets in the Program Segment Prefix:

Program terminate

Critical error
CONTROL-C

OAH
OEH
12H

All file buffers are written to disk. Be sure to close all
files that have been changed in length before calling this
function. If a changed file is not closed, its length will
not be recorded correctly in the disk directory. See Func-
tion Call 10H for a description of the Close File call.

Entry Conditions:

AH = OOH
CS = segment address of the Program Segment Prefix

Macro Definition:
t e r m i n a t e - p r o g r a m m a c r o

x o r a h , a h
int 21 H
e n d m

Example:
; C S must be e q u a l t o P S P v a l u e s g i v e n at p r o g r a m s t a r t
; (E 5 a n d DS v a l u e s)

mov a h , 0
int 21H

; T h e r e a r e n o r e t u r n s f r o m t h i s i n t e r r u p t

32

Chapter 1 I System Calls

StdC onInput

Keyboard Input Function Call OIH

Waits for a character to be typed at the keyboard, then
echoes the character to the display and returns it in AL.
If the character is CONTROL-C, Interrupt 23H is
executed.

Entry Conditions:

AH = OIH

E xi t Conditions :

AL = character typed

Macro Definition:
read-kbd-and-echo m a c r o

mov a h , O I H
int 2 1 H
e n d m

Example:

The following program displays and prints characters as
they are typed. If [ENTER] is pressed, the program sends a
Line-FeedKarriage-Return to both the display and the
printer.
func-OIH: read-kbd-and-echo ; T H I S F U N C T I O N

p r i n t - c h a r a 1 ; 5 e e F u n c t i o n 0 5 H
C m P a l , 0 D H ; 1 5 i t a C R ?
1 n e f u n c - O I H ; n o , p r i n t i t

p rint-char 1 0 ; 5 e e F u n c t i o n 0 5 H
d i s p l a y - c h a r 1 0 ; 5 e e F u n c t i o n 0 2 H
I m p f u n c - 0 l H ;get a n o t h e r c h a r a c t e r

33

Chapter 1 I System Calls

StdConOutput

Display Character Function Call 02H

Displays a character on the video screen. If a CONTROL-
C is typed, Interrupt 23H is executed.

Entry Conditions:

AH = 02H
DL = character to display

Macro Definition:
d i s p l a y - c h r macro

mov
mov
i n t
endm

c h a r a c t e r
d 1 , c h a r a c t e r
ah,02H
21 H

Example:

The following program converts lowercase characters to up-
percase before displaying them.
f unc -02H: read -k b d ; s e e F u n c t i o n 08H

C m P a I , "a"
1 1 u p p e r c a s e ; d o n ' t c o n v e r t
CmP a 1 , " 2 "

1 9 u p p e r c a s e ; d o n ' t c o n v e r t
5ub a l , 2 0 H ; c o n v e r t t o F l S C l I code

; f o r u p p e r c a s e
u p p e r c a s e : d i s p l a y - c h a r a 1 ;THIS FUNCTION

J mP func -02H ;get a n o t h e r c h a r a c t e r

34

Chapter 1 I System Calls

AuxInput

Auxiliary Input Function Call 03H

Waits for a character from the auxiliary input device, and
then returns the character in AL. No status or error code
is returned.

If CONTROL-C is typed at console input, Interrupt 23H is
executed.

Entry Conditions:

AH = 03H

E xi t Conditions:

AL = character returned

Macro Definition:
a u x - i n p u t m a c r o

mov a h , 8 3 H
int 2 1 H
e n d m

Example:

The following program prints characters as they are re-
ceived from the auxiliary device. It stops printing when
an end of file character (ASCII 26, or CONTROL-Z) is
received.
f unc-03H: a u x - i n p u t ; T H I S F U N C T I O N

c m p a l , l A H ; e n d o f f i l e 7
l e c o n t i n u e ; y e s , a l l d o n e
p r i n t - c h a r a 1 ; s e e F u n c t i o n 8 5 H
I m p f u n c - 8 3 H ; g e t a n o t h e r c h a r a c t e r

c o n t i n u e ret

35

Chapter 1 I System Calls

AuxOutput

Auxiliary Output Function Call 04H

Outputs a character to the auxiliary device. No status or
error code is returned.

If CONTROL-C is typed at console input, Interrupt 23H is
executed.

Entry Conditions:

AH = 04H
DL = character to output

Macro Definition:
aux-output macro character

mov d1,character
mov ah,04H
i n t 21 H
endm

Example:

The following program gets a maximum of 80 bytes from
the keyboard, sending each to the auxiliary device. It
stops when a null string (CR only) is typed.

string db 81 dup(7) ; s e e Function 0AH

func-04H: get-string 80,string
cmp string[lI,E
]e continue
mov c x , word ptr string[ll
mov bx,0

sent-it: aux-output string[bx+El
inc bx
loop send-it
imp func-04H

continue:

;see Function 0 A H
;null string?
;yes, all done
; g e t string length
;set index t o 0
; T H I S F U N C T I O N
;bump index
;send another character
; g e t another string

36

Chapter 1 I System Calls

Printeroutput

Print Character Function Call 05H

Outputs a character to the printer. If CONTROL-C is
typed a t console input, Interrupt 23H is executed.

Entry Conditions:

AH = 05H
DL = character for printer

Macro Definition:
print-char macro character

nov d l , character
mov ah,05H
int 21 H
endm

Example:

The following program prints a walking test pattern on the
printer. It stops if CONTROL-C is pressed.
line-num db 0

f unc-05H: mov
start-line: mov

add
push
mov

inc
CmP

print-i t : print-char bl

11
mov

no-reset: l o o p

i nc
P O P
loop

cx ,60
bl,33

b1,line-num

cx,80
cx

bl
b1,126

no-re5et
bl,33
pr i n t - i t
print-char 13
print-char 1 0
I ine-num

start-line
cx

;print 66 line5
;first printable ASCII
;character(')
; t o offset 1 character
;save number-of-line5 counter
;loop counter for line
;THIS FUNCTION
;move t o next ASCII character
;last printable ASCII
;character (3/4)
;not there yet
;start over with (1)

;print another character
;carriage return
;line feed
; t o offset 1 s t char. o f line
;restore #-of-lines counter
;print another line

37

Chapter 1 I System Calls

Conio

Direct Console I/O Function Call 06H

Returns a keyboard input character if one is ready, or
outputs a character to the video display. No check for
CONTROL-C is made on the character.

Entry Conditions:

AH = 06H
DL = FFH: return character typed at the keyboard; if

avai 1 able
DL # FFH: display character in DL

Exit Conditions:

If DL = FFH on entry:
Zero flag set and AL = OOH if no key was pressed
Zero flag not set and AL = keyboard input charac-
ter, if available

If DL # FFH on entry:
Character in DL is on screen

Macro Definition:
d i r - c o n s o l e - i o m a c r o s w i t c h

mov d l dwitch
mov ah , 0 6 H
int 21 H
endm

38

Chapter 1 I System Calls

Example:

The following program sets the system clock to 0 and
continuously displays the time. When any character is
typed, the display stops changing;
typed again, the clock is reset
starts again.
time

t e n d b 1 8

d b " E E : 0 E : E E , E 0" , 1 3 ,
1 0 , " $ "

f u n c - E 6 H : 5 e t - t i m e E , E , E , E
r e a d - c l o c k : g e t - t i m e

c o n v e r t c h , t e n , t i m e
c o n v e r t c l , t e n , t i m e [3 1
c o n v e r t d h , t e n , t i m e [6 1
d i s p l a y t i m e
d i r - c o n s o l e - i o EFFH

J mP read-clock
] n e 5 t O P

read-kbd
I m p f unc-06H

when any character is
to 0 and the display

; s e e F u n c t i o n E9H
; f o r e x p l a n a t i o n o f 4

; s e e F u n c t i o n ZDH
;see F u n c t i o n ZCH
; s e e e n d o f c h a p t e r
; s e e e n d o f c h a p t e r
; s e e e n d o f c h a p t e r
; s e e F u n c t i o n E9H
;THIS FUNCTION
; y e 5 , 5 t o p t i m e r
; n o , keep timer
; r u n n i n g
; s e e F u n c t i o n 08H
; s t a r t o v e r

39

Chapter 1 I System Calls

ConInput

Direct Console Input Function Call 87H

Waits for a character to be typed at the keyboard, and
then returns the character. This call does not echo the
character or check for CONTROL-C. (For a keyboard input
function that echoes or checks for CONTROL-C, see Func-
tion Call OIH or 08H.)

Entry Conditions:

AH = 07H

Exit Conditions:

AL = character from keyboard

Macro Definition:
Dir-console-input macro

mov ah,07H
int 21 H
endm

Example:

The following program prompts for a password (8 charac-
ters maximum) and places the characters into a string
without echoing them.
pa 5 5 word
prompt db "Password: $ " ;5ee Function 09H for an

db 8 dup(7)

;explanation o f 0

func-07H: display prompt
mov C Y , 8

xor bx,bx

ge t-pass : dir-console-input
cmp al,0DH
]e continue
mov password[bxl,al

inc bx
l o o p get-pass

continue:

;5ee Function 09H
;maximum length o f
;password
; s o BL can be used a s
;index
;THIS F U N C T I O N
;wa5 i t a C R ?
;yes, a l l done
;no, p u t character in
; 5 tr ing
;bump index
;get another character
;EX ha5 length o f
;password + 1

40

Chapter 1 I System Calls

ConInputNoEcho

Read Keyboard Function Call 08H

Waits for a character to be typed at the keyboard, and
then returns it in AL. If CONTROL-C is pressed, Inter-
rupt 23H is executed. This call does not echo the charac-
ter. (For a keyboard input function that echoes the
character and checks for CONTROL-C, see Function Call
01H.)

Entry Conditions:

AH = rD8H

E xi t Conditions:
AL = character from keyboard

Macro Iiefinition:
read- k bd macro

mov ah,08H
int 2 1 H
endm

Example:

The following program prompts for a password (8 charac-
ters maximum) and places the characters into a string
without echoing them.
pa 5 5 word
prompt db "Password: 5 " ;see Function 09H

db 8 dup(7)

;for explanation o f $

f unc-08H : display prompt
mov C X , ~

xor bx,bx
read-k bd
cmp a1,ODH
]e continue
mov password[bxl,al
inc bx
loop get-pass

ge t-pa5 5 :

continue:

;see Function 09H
;maximum length o f
;password
;BL can be an index
;THIS FUNCTION
;was i t a CR7
;yes, all done
;no, p u t char. in string
;bump index
;get another character
;BX ha5 length o f
;password + 1

41

Chapter 1 I System Calls

ConStringOutput

Display String Function Call 09H

Displays a string of characters. Each character is checked
for CONTROL-C. If a CONTROL-C is detected, an inter-
rupt 23H is executed.

Entry Conditions:

AH = 09H
DS:DX = pointer to a string to be displayed terminated by

Macro Definition:
a $ (24H)

display macro string
mov dx,offset string
mov ah,09H
i n t 21 H
endm

Example:

The following program displays the hexadecimal code of the
key that is typed.
table
9 ixt een db 16

crlf db 13,10, " 0 "

db "0 1 2 3 4 5 6 7 8 9 AB C D E F "

result db 8 8 - 00H"

func-09H : r e a d - k b d - a n d - e cho
convert al,sixteen,re5ult[31
display result
J m P f unc-09H

see text for
explanatior o f $

see Function 01H
3ee end of chapter
THIS F U N C T I O N
do i t again

42

Chapter 1 I System Calls

ConStringInput

Buffered Keyboard Input Function Call OAH

Waits for characters to be typed, reads characters from the
keyboard, and places them in an input buffer until [ENTER]
is pressed. Characters are placed in the buffer beginning
a t the third byte. If the buffer fills to 1 less than the
maximum specified, then additional keyboard input is ig-
nored and ASCII 7 (BEL) is sent to the display until
[ENTER] is pressed.

The string can be edited as it is being entered. If CON-
TROL-C is typed, Interrupt 23H is executed.

The input buffer pointed to by DS:DX must be in this
form:

byte 1 - Maximum number of characters in buffer,
including the carriage return (1-255; you set
this value).

byte 2 - Actual number of characters typed, not in-
cluding the carriage return (the function
sets this value).

bytes 3-n - Buffer; must be at least as long as the
number in byte 1.

Entry Conditions:

AH = OAH
DS:DX = pointer to an input buffer (see above)

E xi t Conditions :

DS:[DS + 11 = number of characters receiued, exchding
the carriage return

M a w o Definition:
g e t - 5 t r i n g m a c r o l i m i t , ~ t r i n g

mov d x , o f f j e t s t r i n g
mov s t r i n g , l i m i t

m0v ah,OAH
int 21 H
e n d m

43

Chapter 1 I System Calls

Example:

The following program gets a 16-byte (maximum) string
from the keyboard and fills a 24 line by 80 character
screen with it.

buffer label byte
max-length db 1 ;maximum length
chars-entered db 7 ;number of chars
string db 17 dup (7) ;16 chars + CR
strings-per-line dw 0 ;how many strings

crlf db 1 3,l 0 , ' I$ ' '

;fit on line

f unc-OAH: get-stringl6,buffer
xor bx.bx

mov b1,chars-entered
mov buff e r L bx + 2 1 , " S "
mov al,50H
cbw
div chars-entered

xor ah,ah
mov strings-per-line,ax
mov cx,24

mov cx,strings-per-line

loop display-line
display crlf
POP cx
loop display-screen

display-screen: push cx

display-line: display string

;THIS FUNCTION
; s o byte can be
;used a s index
;get string length
;see Function 09H
;columns per line

; t i m e s string fits
;on line
;clear remainder
;save col. counter
;row counter
;save i t

;get col. counter
; s e e Function 09H

; s e e Function 09H
;get line counter
;display 1 more line

44

Chapter 1 I System Calls

C onInput Status

Check Keyboard Status Function Call OBH

Checks to see if a character is available in the type-
ahead buffer. If CONTROL-C is in the buffer, Interrupt
23H is executed.

Entry Conditions:

AH = 0BH

Exit Conditions:

If AL = FFH, there are characters in the type-ahead
buffer.

If AL = 00H, there are no characters in the type-ahead
buffer.

Macro Definition:
check-kbd-5tatu5 macro

mov ah, 0BH
int 21 H
endm

Example:

The following program continuously displays the time until
any key is pressed.
time db "00: 00: 00. EO", 13 , l 0 ,"$ ' I

ten db 10

f unc-0BH: get-time
convert ch,ten, time
convert cl,ten, time[31
convert dh,ten, t l m e [6 1
convert dl,ten, time[91
display time
check-kbd-status
cmp a1,OFFH
le all-done
Imp func-OBH

all-done: ret

;5ee Function 2CH
;see end o f chapter
;see end o f chapter
; 5 e e end o f chapter
;5ee end o f chapter
;see Function 09H
;THIS FUNCTION
; ha5 a key been typed?
;yes, go home
;no, keep displaying
; t ime

45

Chapter 1 I System Calls

C onInputFlush

Flush Buffer, Read Keyboard Function Call OCH

Empties the keyboard type-ahead buffer. Further processing
depends on the value in AL when the function is called:

OlH, 06H, 07H, 08H, or OAH - The corresponding input system

Any other value -

Entry Conditions:

AH = 0CH
AL = function code
OlH, 06H, 07H, 08H, or OAH = call corresponding function
Any other value = perform no further processing

Exit C onditionsr

If AL = 00H, type-ahead buffer was flushed; no other
processing was performed.

Macro Definition:

call is executed.
No further processing is done.

flujh-and-read- kbd macro witch
mov a 1 , ~ w i t c h
m0v ah,ECH
int 21 H
endm

Example:

The following program both displays and prints characters
as they are typed. If (ENTER] is pressed, the program
sends a Carriage-ReturniLine-Feed t o both the display and
the printer. (The example assumes that a CONTROL-C
processing routine has been set up before the loop is
entered.)
func-ECH: flush-and-read-kbd 1 ;THIS FUNCTION

pr in t-c har a I ; s e e Function E 5 H
CmP a1 ,EDH ; i 5 i t a CR?
]ne func- 0CH ;no, print i t

print- char l E ; 5 e e Function E 5 H
display- char 1 8 ; 5 e e FunLtion E2H
I m p func- ECH ;get another character

46

ChaDter 1 I System Calls

ResetDisk

Reset Disk Function Call ODH

Ensures that the internal buffer cache matches the disks
in the drives. This call flushes all file buffers. All buffers
that have been modified are written to disk and all buff-
ers in the internal cache are marked as free. Directory
entries are not updated; you must close files that have
changed in order to update their directory entries (see
Function Call 10H, Close File).

This function need not be called before a disk change if
all files that were written to have been closed. It is gen-
erally used to force a known state of the system; CON-
TROL-C interrupt handlers should call this function.

Entry Conditions:

AH - ODH

Macro Definition:
r e s e t - d i s k m a c r o d i s k

mov ah, 0DH
int 21 H
e n d m

Example:
mov ah , 0DH
int 21 H
;There a r e no e r r o r s r e t u r n e d b y t h i s c a l l .

47

Chapter 1 I System Calls

SelectDisk

Select Disk Function Call OEH

Selects the specified drive as the default drive.

Entry Conditions:

AH = 0EH
DL = new default drive number ('0 = A, 1 = B, etc.)

E xi t Conditions :

AL = number of logical drives

Macro Definition:
s e l e c t - d i s k m a c r o d i s k

m a v d l , d l s k [- 6 4 1
m o v a h , 0 E H
int 21 H
e n d m

Example:

The following program selects the drive not currently se-
lected in a 2-drive system.
f u n c - 0 E H : c u r r e n t - d i s k ; s e e F u n c t i o n 19H

c m p a l , 0 0 H ; d r i v e A s e l e c t e d ?
l e s e l e c t - b ; y e s , s e l e c t B
s e l e c t - d i s k " R " ;THIS FUNCTION
I m p c o n t i n u e

s e l e c t - b : s e l e c t - d i s k "E" ; T H I S F U N C T I O N
c o n t i n u e :

48

Chapter 1 I System Calls

OpenFile

Open File Function Call OFH

Opens a File Control Block (FCB) for the named file, if
the file is found in the disk directory. The FCB is filled
in as follows:

0 If the drive code in the file specification is 0 (default
drive), it is changed to the number of the actual disk
used (1 = A, 2 = B, etc.). This lets you change the
default drive without interfering with subsequent opera-
tions on this file.

The current block field (offset 0CH) is set to zero.

0 The record size (offset OEH) is set to the system de-

0 The file size (offset 10H), date of last write (offset
14H), and time of last write (offset 16H) are set from
the directory entry.

Before performing a sequential disk operation on the
file, you must set the current record field (offset 20H).
Before performing a random disk operation on the file,
you must set the relative record field (offset 21H). If
the default record size (128 bytes) is not correct, set it
to the correct length.

fault of 128.

Entry Conditions:

AH = OFH
DS:DX = pointer to an unopened FCB for the file

E xi t Conditions :

If AL = 00H, the directory entry was found.
If AL = FFH, the directory entry was not found.

Macro Definition:
open macro f c b

mov d x , o f f 5 e t f c b
mov ah,OFH
i n t 21 H
endm

49

Chapter 1 I System Calls

Example:

The following program prints the file names TEXTEILE.ASC
that is on the disk in Drive B. If a partial record is in the buffer
at end of file, the routine that prints the partial record prints
characters until it encounters an end of file mark (ASCII 26, or
CONTROL-Z).

f c b

b u f f e r

f u n c - 0 F H :

r e a d - l i n e :

p r i n t - i t :

c h e c k - m o r e :

f i n d - e o f :
a l l - d o n e :

d b 2 , " T E X T F I L E A S C "
d b 25 d u p (7)
d b 128 d u p (7)

s e t - d t a b u f f e r
o p e n f c b
r e a d - 5 e q f c b
C m P
le
C m P
1 9

a l , 0 2 H
a l l - d o n e
ai , 0 0 H
c h e c k - m o r e

mov
x o r
p r i n t -
i nc
l o o p
J m P
C m P
J n e
mov
x o r
C m P
c l o s e

c x , 1 2 8

c h a r b u f f e r [51 1
5 1 , 5 1

51
p r i n t - i t
read-1 i n e
a l , 0 3 H
a l l - d o n e
c x , 1 2 8

b u f f e r l 5 i l , 2 6
f c b

5 1 , 5 1

; s e e F u n c t i o n I A H
; T H I S F U N C T I O N
; 5 e e F u n c t i o n 14H
; e n d o f f i l e ?
!yes, o home
, m o r e 9 0 c o m e ?
; n o , c h e c k f o r p a r t i a l
; R e c o r d
!yes, p r i n t t h e b u f f e r
,set i n d e x t o 0
; s e e F u n c t i o n 0 5 H
; b u m p i n d e x
; p r i n t n e x t c h a r a c t e r
; r e a d a n o t h e r r e c o r d
! p a r t . r e c o r d t o p r i n t ?
,no
;ye5, p r i n t i t
;set i n d e x t o 0
; e n d o f f i l e m a r k ?
; 5 e e F u n c t i o n 1 0 H

50

Chawter 1 I System Calls

Close File

Close File Function Call 10H

Closes an open file and updates the directory information
on that file. This function must be called after a file is
changed to update the directory entry.

If a directory entry for the file is found, the location of
the file is compared with the corresponding entries in the
File Control Block (FCB). The directory is updated, if nec-
essary, to match the FCB.

Entry Conditions:

AH = 10H
DS:DX = pointer to the open FCB of the file to close

Exit Conditions:

If AL = 00H, the directory entry was found.
If AL = FFH, no directory entry was found.

Macro Definition:
clo5e macro fcb

mov dx,offset fcb
mov ah,l0H
int 2 1 H
endm

Example:

The following program checks the first byte of the file
named MOD1.BAS in Drive B to see if it is FFH, and
prints a message if i t is.
message db "Not s a v e d in ASCII format",13,10,"$"
fcb db 2 , " M O D l BAS"

buffer db 128 dup (7)

db 2 5 dup (1)

func-l0H: set-dta buffer ;see Function 1AH
open fcb ;see Function 0FH
read- 5eq fcb ;5ee Function 14H
C m P buffer,OFFH ;is first byte F F H ?
1ne a l l - done ;no
display m e s s a g e ;5ee Function 09H

all- d o n e : Close fcb ;THIS FUNCTION

51

Chapter 1 I System Calls

DirSearchFirst

Search for First Entry Function Call 1lH

Searches the disk directory for the first name that matches the
filename in the FCB. The name can have the ? wildcard charac-
ter to match any character. To search for hidden or system files,
DS:DX must point to the first byte of the extended FCB prefix.

If a directory entry for the filename in the FCB is found, an un-
opened FCB of the same type (normal or extended) is created at
the Disk Transfer Address.

If an extended FCB is pointed to by DS:DX, the following search
pattern is used:

0 If the attribute byte (offset FCB-1) is zero, only normal file
entries are found. Entries for the volume label, subdirectories,
hidden files, and system files will not be returned.

If the attribute field is set for hidden or system files, or direc-
tory entries, it is considered an inclusive search. All normal
file entries plus all entries matching the specified attributes
are returned. To look at all directory entries except the vol-
ume label, the attribute byte can be set to hidden + system
+ directory (all 3 bits set).

0 If the attribute field is set for the volume label, it is consid-
ered an exclusive search, and only the volume label entry is
returned.

Entry Conditions:

AH = 11H
DS:DX = pointer to the unopened FCB of the file for which to
search

E xi t Conditions :

If AL = OOH, a directory entry was found.
If AL = FFH, no directory entry was found.

52

Chapter 1 I System Calls

Macro Definition:
s e a r c h - f i r s t mac ro f c b

mov d x , o f f s e t f c b
mov a h , l l H
i n t 21 H
endm

Example:

The following program verifies the existence of a file named RE-
PORT.ASM on the disk in Drive B.

Yes
no
f c b

b u f f e r
c r l f

f u n c - 1 1 H :

n o t - t h e r e :
c o n t i n u e :

db " F I L E EXISTS. 0 "
db "FILEDOESNOTEX1ST.O"
db 2,"REPORT A S M "
db 25 dup (7)

db 1 2 8 dup (7)

db 1 3 ,I 0 , " S "

s e t - d t a b u f f e r
s e a r c h - f i r s t f c b
cmp a l , 0 F F H
l e n o t - t h e r e
d i s p l a y y e s
J m P c o n t i n u e
d i s p l a y no
d i s p l a y c r l f

; s e e F u n c t i o n 1 A H
;THIS F U N C T I O N
; d i r e c t o r y e n t r y f o u n d ?
;no
; s e e F u n c t i o n E 9 H

; s e e F u n c t i o n 09H
; s e e F u n c t i o n 09H

53

Chapter 1 I System Calls

SearchNext

Search for Next Entry Function Call 12H

Used after Function Call 1lH (Search for First Entry) to find
additional directory entries that match a filename that contains
wildcard characters. The ? wildcard character in the filename
matches any character. This call searches the disk directory for
the next matching name. To search for hidden or system files,
DS:DX must point to the first byte of the extended FCB prefix.

If a directory entry for the filename in the FCB is found, an un-
opened FCB of the same type (normal or extended) is created at
the Disk Transfer Address.

Entry Conditions:

AH = 12H
DS:DX = pointer to the unopened FCB of the file for which to

search

Exit Conditions:

If AL = BBH, a directory entry was found.
If AL = FFH, no directory entry was found.

Macro Definition:
s e a r c h - n e x t macro f c b

mov d x , o f f s e t f c b
mOV a h , l 2 H
i n t 21 H
endm

54

Chapter 1 I System Calls

Example:

The following program displays the number of files on the disk
in Drive B.
message
f i l e s
t e n
t e n
f c b

b u f f e r

f unc -12H:

s e a r c h - d i r :

done :
a 1 1-done:

db
db 0
db 1 0
db 1 0

"No f I I es" , 1 0 , 1 3, "$'I

db 2 , " 7 7 7 7 7 7 7 7 7 7 7 "

db
db

s e t - d t a b u f f e r
search-first fcb
CmP a1,BFFH
le a l l - d o n e
i nc f i l e s

s e a r c h - n e x t f c b
CmP a1,EFFH
le done
i n c f i l e 5

Imp s e a r c h - d i r
c o n v e r t f i l e s , t e n , m e 5 5 a g e
d i s p l a y message

;see F u n c t i o n 1AH
; 5 e e F u n c t i o n 1 1 H
; d i r e c t o r y e n t r y f o u n d ?
; n o , n o f i l e 5 o n d i s k
; y e s , i n c r e m e n t f i l e
; c o u n t e r
;THISFUNCTION
; d i r e c t o r y e n t r y f o u n d 7
;no
; y e s , i n c r e m e n t f i l e
; c o u n t e r
; check a g a i n
; s e e e n d o f c h a p t e r
: s e e F u n c t i o n 09H

55

Chapter 1 I System Calls

DeleteFile

Delete File Function Call 13H

Deletes all directory entries that match the filename given in
the specified unopened FCB. The filename can contain the ?
wildcard character to match any character.

Entry Conditions:
AH = 13H
DS:DX = pointer to an unopened FCB

Exit Conditions:

If A1 = 00H, a directory entry was found.
If AL = FFH, no directory entry was found.

Macro Definition:
d e l e t e m a c r o f c b

mov d x , o f f s e t f c b
m Q V a h , l 3 H
i n t 21 H
endm

56

Chapter 1 I System Calls

Example:

The following program deletes each file on the disk in Drive B
that was last written before December 31, 1982.
y e a r
mon th

f i l e s
t e n
message

day

f c b

b u f f e r

f u n c - 1 3 H :

compare :

n e x t :

a 1 1-done :

dw
db
db
db
db
db

db
db
db

1982
12
31
0
1 0
"NO FILES DELETED.

2 , " 7 7 7 7 7 7 7 7 7 7 7 "

2 5 dup (7)

128 dup (7)

s e t - d t a b u f f e r
s e a r c h - f i r s t f c b
CmP a1 ,FFH
le a l l - d o n e
c o n v e r t - d a t e b u f f e r
CmP c x , y e a r
19 n e x t
CmP d l ,mon th
1 9 n e x t
CmP dh , d a y
19e n e x t
d e l e t e b u f f e r
i n c f i l e 5

search-next fcb
C m P a l , 0 0 H
le compare
C m P f I le5,B
l e a l l - d o n e

c o n v e r t f i l e s , t e n , m e 5 5 a g e
d i s p l a y message

" , 1 3 , l 0 , " 0 "
; s e e F u n c t i o n 0 9 H f o r
; e x p l a n a t i o n o f $

; 5 e e F u n c t i o n 1 A H
; 5 e e F u n c t i o n l l H
; d i r e c t o r y e n t r y f o u n d 7
; n o , n o f i l e 5 o n d i s k
; s e e e n d o f c h a p t e r
; n e x t s e v e r a l l i n e s
; check d a t e i n d i r e c t o r y
; e n t r y a g a i n s t d a t e
;above b c h e c k n e x t f i l e
; i f d a t e i n d i r e c t o r y
; e n t r y i s n ' t e a r l i e r .
;THISFUNCTION
;bump d e l e t e d - f i l e s
; c o u n t e r
; s e e F u n c t i o n l Z H
; d i r e c t o r y e n t r y f o u n d ?
; y e s , check d a t e
; a n y f i l e s d e l e t e d ?
; n o , d i s p l a y N O F I L E S
; m e s s a g e .
; s e e e n d o f c h a p t e r
; s e e F u n c t i o n 09H

57

Chapter 1 I System Calls

SeqRead

Sequential Read Function Call 14H

Reads a record sequentially. The record pointed to by the current
block (offset 0CH) and the current record (offset 20H) fields of
the FCB is loaded at the Disk Transfer Address. The current
block and current record fields are then incremented.

The record size is set to the value at offset OEH in the FCB.

Entry Conditions:

AH = 14H
DS:DX = pointer to the opened FCB of the file to read

Exit Conditions:
If AL = 00H, the read was completed successfully.
If AL = 01H, end of file was encountered; there was no data in

If AL = 02H, there was not enough room at the Disk Transfer

If AL = 03H, end of file was encountered; a partial record was

Macro Definition:

the record.

Address to read 1 record; the read was canceled.

read and padded to the record length with zeroes.

r e a d - s e q macro f c b
mov d x , o f f s e t f c b
mov a h , l 4 H
i n t 21 H
endm

58

Chapter 1 I System Calls

Example:

The following program displays the file named TEXTFILE.ASC
that is on the disk in Drive B; its function is similar to the MS-
DOS TYPE command. If a partial record is in the buffer at end
of file, the routine that displays the partial record displays char-
acters until it encounters an end of file mark (ASCII 26, or
CONTROL-Z).
f c b

b u f f e r

f u n c - 1 4 H :

r e a d - l i n e :

check -more :

f i n d - e o f :

a 1 1-done :

db
db 25 dup (7)

db 1 2 8 d u p (7),"$"

2 , "T E X T F I LE A S C "

s e t - d t a b u f f e r
open f c b
r e a d - s e q f c b
CmP a l , 0 Z H
Je a l l - d o n e
CmP a l , 0 2 H

1 9 check -more
d i s p l a y b u f f e r
J m P r e a d - I i ne
CmP a l , 0 3 H
1 ne a l l - d o n e

C m P b u f f e r L s i l 2 6
l e a1 1-done
d i s p l a y - c h a r b u f f e r [s i 1

x o r 5 1 , 5 1

i n c 5 1

Imp f i n d - e o f
c l o s e f c b

; s e e F u n c t i o n I A H
; s e e F u n c t i o n 0 F H
;THIS FUNCTION
; e n d o f f i l e ?

; e n d o f f i l e w i t h
; p a r t i a l r e c o r d ?

; s e e F u n c t i o n 09H
; g e t a n o t h e r r e c o r d
; p a r t i a l r e c o r d i n b u f f e r ?
; n o , g o h o m e
; s e t i n d e x t o 0
; i s c h a r a c t e r E O F ?
; y e s , n o m o r e t o d i s p l a y
;see F u n c t i o n 02H
;bump i n d e x t o n e x t
; c h a r a c t e r
; check n e x t c h a r a c t e r
; s e e F u n c t i o n l B H

; ye5

; ye5

59

Chapter 1 I System Calls

SeqWrite

Sequential Write Function Call 15H

Writes a record sequentially. The record pointed to by the cur-
rent block (offset OCH) and the current record (offset 20H) fields
of the FCB is written from the Disk Transfer Address. The cur-
rent block and current record fields are then incremented.
The record size is set to the value at offset OEH in the FCB. If
the record size is less than a sector, the data a t the Disk Trans-
fer Address is written to a buffer. The buffer is written to disk
when it contains a full sector of data, when the file is closed, or
when Function Call ODH (Reset Disk) is issued.

Entry Conditions:

AH = 15H
DS:DX = pointer to the opened FCB of the file to write

Exit Conditions:

If AL = 00H, the write was completed successfully.
If AL = 01H, the disk was full; the write was canceled.
If AL = 02H, there was not enough room in the disk transfer

Macro Definition:

segment to write 1 record; the write was canceled.

w r i t e - 5 e q macro f c b
mow d x , o f f s e t f c b
m o w a h , l S H
i n t 21 H
endm

60

Chapter 1 I System Calls

Example:

The following program creates a file named DIR.TMP on the
disk in Drive B that contains the disk number (0 = A, 1 = B,
etc.) and filename from each directory entry on the disk.
r e c o r d - s i z e equ

f c b l

f c b 2

b u f f e r

f unc -15H:

w r i t e - i t :

a l l - d o n e :

db
db
db
db
db

s e t - d t a
s e a r c h - f i r s t

C m P

Je
c r e a t e
mov

w r i t e - 5 e q
s e a r c h - n e x t

C m P

l e
J mP
c l o s e

14

2, "DIR TMP"
2 5 dup (7)

25 dup (7)

l 2 8 d u p (7)

2 , " 7 7 7 7 7 7 7 7 7 7 7 "

; o f f s e t o f R e c o r d s i z e
: f i e l d i n F C B

b u f f e r ; see F u n c t i o n 1 A H
f c b 2 ;see F u n c t i o n 1 1 H
a1 ,BFFH ; d i r e c t o r y e n t r y f o u n d ?
a l l - d o n e ; n o , no f i l e s o n d i s k
f c b l ; 5 e e F u n c t i o n 16H
f c b l [r e c o r d _ s i z e l , l 2

f c b l ;THISFUNCTION
f c b 2 5ee F u n c t i o n 12H
a1 ,EFFH d i r e c t o r y e n t r y f o u n d ?
a1 I - d o n e no, g o home
w r i t e - i t
f c b l 5ee F u n c t i o n 1 E H

; s e t r e c o r d s i z e t o 1 2

y e 5 , w r i t e t h e r e c o r d

61

Chapter 1 I System Calls

Create

Create File Function Call 16H

Searches the directory for an empty entry or an existing entry
for the filename in the specified FCB.

If an empty directory entry is found, it is initialized to a zero-
length file and the Open File function call (0FH) is called. You
can create a hidden file by using an extended FCB with the at-
tribute byte (offset FCB-1) set to 2.

If an entry is found for the specified filename, all data in the file
is released, making a zero-length file, and the Open File function
call (0FH) is issued for the filename. If you try to create a file
that already exists, the existing file is erased and a new, empty
file is created.

En try Conditions:

AH = 16H
DS:DX = pointer to an unopened FCB for the file

Exit Conditions:

If AL = 00H, an empty directory entry was found.
If AL = FFH, no empty directory entry was available

Macro Definition:
c r e a t e m a c r o f c b

mow d r , o f f s e t f c b
mow ah , lGH
i n t 21 H
endm

62

Chapter 1 I System Calls

Example:

The following program creates a file named DIR.TMP on the
disk in Drive B that contains the disk number (0 = A, 1 = B,
etc.) and filename from each directory entry on the disk.
r e c o r d - 5 i z e

f c b l

f c b 2

b u f f e r

f unc -16H:

w r i t e - i t :

a l l - d o n e :

db
db
db
db
db

s e t - d t a
s e a r c h - f i r s t

CmP
l e
c r e a t e
mow

w r i t e - s e q
s e a r c h - n e x t

CmP
l e
I m p
c l o s e

14

2,"DIR TMP"
25 dup(7)

25 dup (7)
1 2 8 d u p (7)

2 , " 7 7 7 7 7 7 7 7 7 7 7 "

; o f f s e t o f R e c o r d s i z e
; f i e l d o f FCB

b u f f e r ; s e e F u n c t i o n l A H
f c b 2 ; s e e F u n c t i o n l l H
a1,BFFH ; d i r e c t o r y e n t r y f o u n d ?
a 1 I - d o n e ; n o , n o f i l e s o n d i s k
f c b l ;THIS FUNCTION
f c b l [r e c o r d - s i z e l , l 2

f c b l ; s e e F u n c t i o n l S H
f c b 2 ; s e e F u n c t i o n l 2 H
a1,EFFH ; d i r e c t o r y e n t r y f o u n d 7
a 1 I - d o n e ; n o , g o home
wr i t e - i t
f c b l : s e e F u n c t i o n 1 0 H

; s e t r e c o r d s i z e t o 1 2

; y e s , w r i t e t h e r e c o r d

63

Chapter 1 I System Calls

Rename

Rename File Function Call 17H

Changes the name of a file. The current drive code and filename
occupy the usual position in the file’s FCB, and are followed by a
second filename at offset 11H. (The 2 filenames cannot be the
same name.) The disk directory is searched for an entry that
matches the first filename, which can contain the ? wildcard
character .
If a matching directory entry is found, the filename in the direc-
tory entry is changed to match the second filename in the modi-
fied FCB. If the ? wildcard character is used in the second
filename, the corresponding characters in the filename of the di-
rectory entry are not changed.

Entry Conditions:

AH = 17H
DS:DX = pointer to the FCB containing the current and new

Exit Conditions:

If AL = BBH, a directory entry was found.
If AL = FFH, no directory entry was found or no match exists.

Macro Definition:

filenames

r e n a m e m a c r o f c b , n e w n a m e
mow d x , o f f s e t f c b
mov a h , l 7 H
int 21 H
e n d m

64

Chapter 1 I System Calls

Example:

The following program prompts for the name of a file and a new
name, then renames the file.
f c b db
p r o m p t 1 db
p r o m p t 2 db
r e p l y db
c r l f db

37 dup (7)

" F i l e n a m e : $ "
"New name: $ "

1 7 d u p (7)
1 3 , 1 0 , : " $ "

f unc -17H: d i s p l a y p r o m p t 1
g e t - s t r i n g 1 5 , r e p l y
d i s p l a y c r l f
p a r s e r e p l y [2 1 , f c b
d i s p l a y p r o m p t 2
g e t - s t r i n g 1 5 , r e p l y
d i s p l a y c r l f
p a r s e r e p l y [2 l , f c b [l 6 1
rename f c b

; s e e F u n c t i o n 09H
; s e e F u n c t i o n E R H
; s e e F u n c t i o n 09H
; 5 e e F u n c t i o n 2 9 H
i s e e F u n c t 1 o n 09H
; s e e F u n c t i o n 0 R H
; s e e F u n c t i o n 89H
; s e e F u n c t i o n 2 9 H
;THISFUNCTION

65

Chapter 1 I System Calls

Curdsk

Current Disk Function Call 19H

Returns the code of the currently selected drive.

En try Conditions:

AH = 19H

E xi t Conditions:

AL = currently selected drive (0 = A , 1 = B, etc.)

Macro Definition:
c u r r e n t - d i s k macro

m o v a h , l 9 H
i n t 21 H
endm

Example:

The following program displays the currently selected (default)
drive in a 2-drive system.
message db

c r l f db

" C u r r e n t d i s k 1 5 0 " ; s e e F u n c t i o n 09H

1 3 , l 0 , " 0 "
; f o r e x p l a n a t i o n o f $

f unc -19H: d i s p l a y message ;see F u n c t i o n 09H
c u r r e n t - d i s k ;THIS FUNCTION

1 "e d i s k - b ;no , i t ' s d i s k B
d i s p l a y - c h a r " A " ; s e e F u n c t i o n 02H
J m P a l l - d o n e

d i s k - b : d i s p 1 ay -c h a r "E" ; s e e F u n c t i o n 02H
a l l - d o n e : d i s p l a y c r l f ; 5 e e F u n c t i o n 09H

C m P a l , 0 0 H ; I 5 i t d i s k A 7

66

Chapter 1 I System Culls

Set Disk Transfer Address Function Call 1AH

Sets the Disk Transfer Address to the specified address. Disk
transfers cannot wrap around from the end of the segment to the
beginning, nor can they overflow into the next segment.

If you do not set the Disk Transfer Address, it defaults to offset
80H in the Program Segment Prefix.

Entry Conditions:

AH = 1AH
DS:DX = address to set as Disk Transfer Address

Macro Definition:
5 e t - d t a m a c r o b u f f e r

mov d x , o f f s e t b u f f e r
mov a h , l A H
i n t 21 H
endm

67

Chapter 1 I System Calls

Example:

The following program prompts for a letter, converts the letter to
its alphabetic sequence (A = 1, B = 2, etc.), and then reads and
displays the corresponding record from a file named ALPHA-
BET.DAT on the disk in Drive B. The file contains 26 records;
each record is 28 bytes long.

r e c o r d - s i z e

r e l a t i v e - r e c o r d

f c b db
db

b u f f e r db
p r o m p t db
c r l f db

equ 1 4 ; o f f s e t o f R e c o r d S i z e

equ 33 ; o f f s e t o f R e l a t i v e R e c o r d
; f i e l d o f F C B

; f i e l d o f FCB

2 ,"ALPHABETDFIT"
25 dup (7)

34 d u p (7) , " $ "
" E n t e r l e t t e r : t "
1 3 ,10 , " $ "

f u n c - 1 AH: s e t - d t a b u f f e r ; T H I S F U N C T I O N
open f c b ; s e e F u n c t i o n 0 F H
mov f c b [r e c o r d - s i z e l , 2 8 ; s e t r e c o r d 5 i z e

ge t - c h a r : d i s p l a y p r o m p t ; 5 e e F u n c t i o n 0 9 H
read -kbd -and-echo ; s e e F u n c t i o n 0 1 H
CmP a1 ,ODH ; J u 5 t aCR7
l e a1 I - d o n e ; y e s , gohome
sub a 1 , 4 1 H ; c o n v e r t A S C I I

; code t o r e c o r d #

mov f c b [r e l a t i v e _ r e c o r d l , a l ; 5 e t r e l a t i v e r e c o r d
d i s p l a y c r l f ; s e e F u n c t i o n 0 9 H
r e a d - r a n f c b 5 e e F u n c t i o n 2 1 H
d i s p l a y b u f f e r 5 e e F u n c t i o n 09H
d i s p l a y c r l f 5 e e F u n c t i o n 0 9 H
J mP ge t - c h a r g e t a n o t h e r c h a r a c t e r

a l l - d o n e : c l o s e f c b s e e F u n c t i o n 1 0 H

68

Chapter 1 I System Calls

RandomRead

Random Read Function Call 21H

Performs a random read of a record. The current block (offset
0CH) and current record (offset 20H) fields in the FCB are set to
agree with the relative record field (offset 21H). The record ad-
dressed by these fields is then loaded at the Disk Transfer
Address.

Entry Conditions:

AH = 21H
DS:DX = pointer to the opened FCB of the file to read

Exit Conditions:

If AL =
IfAL =

If AL =

If AL =

Macro Definition:
r e a d - r a n m a c r o f c b

00H, the read was completed successfully.
01H, end of file was encountered; no data is in the
record.
02H, there was not enough room at the Disk Transfer
Address to read 1 record; the read was canceled.
03H, end of file was encountered; a partial record was
read and padded to the record length with zeroes.

mQV d x , o f f s e t f c b
mov ah ,21H
I n t 21 H
endm

69

Chapter 1 I System Calls

Example:

The following program prompts for a letter, converts the letter to
its alphabetic sequence (A = 1, B = 2, etc.), and then reads and
displays the corresponding record from a file named ALPHA-
BET.DAT on the disk in Drive B. The file contains 26 records;
each record is 28 bytes long.
r e c o r d - s i z e

r e l a t i v e - r e c o r d

f c b db
db

b u f f e r db
p r o m p t db
c r l f db

equ 14 ; o f f s e t o f R e c o r d s i z e

equ 33 ; o f f s e t o f R e l a t i v e R e c o r d
; f i e l d o f FCB

; f i e l d o f FCB

2, "ALPHABETDAT"
2 5 dup (7)
3 4 d u p (?) , " $ "
" E n t e r L e t t e r : $ "
1 3 , 1 0 , " $ "

func -21H: s e t -d t a b u f f e r ; s e e F u n c t i o n 1 A H
open f c b ; s e e F u n c t i o n B F H
mov f c b [r e c o r d _ s i z e 1 , 2 8 ; s e t r e c o r d s i z e

g e t - c h a r : d i s p l a y p r o m p t ; s e e F u n c t i o n 09H
read-kbd-and-echo ; s e e F u n c t i o n 0 1 H
CmP a1,BDH ; j u s t a C R 7
l e a1 1-done ; y e s , gohome
sub a1 ,41H ; c o n v e r t A S C I I code

mov f c b [r e l a t i v e - r e c o r d 1 , a l ; s e t r e l a t i v e

d i s p l a y c r l f ; s e e F u n c t i o n 09H
r e a d - r a n f c b ;THISFUNCTION
d i s p l a y b u f f e r ; s e e F u n c t i o n 09H
d i s p l a y c r l f ; s e e F u n c t i o n 09H
I m p g e t - c h a r ; g e t a n o t h e r c h a r

a l l - d o n e : c l o s e f c b ; s e e F u n c t i o n l B H

; t o r e c o r d a

; r e c o r d

70

Chapter 1 I System Calls

Randomwrite

Random Write Function Call 22H

Performs a random write of a record. The current block (offset
0CH) and current record (offset 20H) fields in the FCB are set to
agree with the relative record field (offset 21H). The record ad-
dressed by these fields is then written from the Disk Transfer
Address. If the record size is smaller than a sector (512 bytes),
the records are buffered until a full sector is ready to write.

Entry Conditions:

AH = 22H
DS:DX = pointer to the opened FCB of the file to write

Exit Conditions:
If AL = 00H, the write was completed successfully.
If AL = 01H, the disk is full.
If AL = 02H, there was not enough room at the Disk Transfer

Macro Definition:

Address to write 1 record; the write was canceled.

wr I t e - r a n macro f c b
mov d x , o f f s e t f c b
mov ah,22H
i n t 21 H
endm

Example:

The following program prompts for a letter, converts the letter to
its alphabetic sequence (A = 1, B = 2, etc.), and then reads and
displays the corresponding record from a file named ALPHA-
BET.DAT on the disk in Drive B. After displaying the record, it
prompts the user to enter a changed record. If the user types a
new record, it is written to the file; if the user presses [ENTER],
the record is not replaced. The file contains 26 records; each re-
cord is 28 bytes long.

7 1

Chapter 1 I System Calls

r e c o r d - s i z e

r e l a t i v e - r e c o r d

f c b db
db

b u f f e r db
p r o m p t 1 db
p romp t 2 db
c r l f db
r e p l y db
b l a n k s db

equ 1 4 ; o f f s e t o f R e c o r d S i z e

equ 33 ; o f f s e t o f R e l a t i v e R e c o r d
; f i e l d o f FCB

; f i e l d o f FCB

2 , "ALPHABETDAT"
25 dup (7)

26 dup(7) , 1 3 , l 0 , " 0 "
" E n t e r l e t t e r : 0 "
"New r e c o r d (RETURN f o r no c h a n g e) : $ "
1 3 , 1 0 , " $ "

28 dup (3 2)
26 dup (32)

f unc -22H: s e t - d t a b u f f e r ; see F u n c t i o n 1 A H
open f c b i 5 e e F u n c t i o n 0FH
m Q V f c b [r e c o r d _ s i z e l , 3 2 ; s e t r e c o r d s i z e

g e t - c h a r : d i s p l a y p r o m p t 1 ; s e e F u n c t i o n 09H
read-kbd-and-echo ; s e e F u n c t i o n 0 1 H
C m P al,0DH ; j u s t aCR7
l e a 1 I - d o n e ; y e s , gohome
sub a l , 4 1 H ; c o n v e r t A S C I I

mov f c b [r e l a t i v e - r e c o r d 1 , a l

d i s p l a y c r l f ; s e e F u n c t i o n 09H
r e a d - r a n f c b ;THIS FUNCTION
d i s p l a y b u f f e r ; s e e F u n c t i o n 09H
d i s p l a y c r l f i 5 e e F u n c t i o n 09H
d i s p l a y p r o m p t 2 ; s e e F u n c t i o n 09H
g e t - s t r i n g 2 7 , r e p l y ;see F u n c t i o n 0 A H
d i s p l a y c r l f ; s e e F u n c t i o n 09H
C m P r e p l y [l I , B ; w a s a n y t h i n g t y p e d

l e ge t - c h a r ;no

x o r b x , bx ; t o l o a d a b y t e
mov b l , r e p l y [l 1 ; u s e r e p l y l e n g t h a s

m o v e - s t r i n g b l a n k s , b u f f e r , 2 6 ; s e e c h a p t e r end
m o v e - s t r i n g r e p l y [Z l , b u f f e r , b x ; s e e c h a p t e r end
w r i t e - r a n f c b ; s e e F u n c t i o n 2 1 H
J mP g e t -c h a r ; g e t a n o t h e r c h a r a c t e r

a1 I - d o n e : c l o s e f c b ; s e e F u n c t i o n 1 0 H

; code t o r e c o r d #

; s e t r e l a t i v e r e c o r d

; b e s i d e s C R ?

; g e t a n o t h e r c h a r .

; c o u n t e r

72

Chapter 1 I System Calls

FileSize

File Size Function Call 23H

Searches the disk directory for the first matching entry for a
specified FCB. If a matching directory entry is found, the rela-
tive record field (offset 21H) is set to the number of records in
the file, calculated from the total file size in the directory entry
(offset 1CH) and the record size field (offset 0EH) of the FCB.

If the value of the record size field of the FCB does not match
the actual number of characters in a record, this function does
not return the correct file size. If the default record size (128) is
not correct, you must set the record size field to the correct value
before using this function.

Entry Conditions:

AH = 23H
DS:DX = pointer to the file's unopened FCB
Exit Conditions:

If AL = 00H, a directory entry was found.
If AL = FFH, no directory entry was found.

Macro Definition:
f 1le-51ze m a c r o f c b

mov d x , o f f s e t f c b
mov ah,23H
I n t 21 H
endm

__
73

Chapter 1 I System Calls

Example:

The following program prompts for the name of a file, opens the
file to fill in the Record Size field of the FCB, issues a File Size
function call, and displays the file size and number of records in
hexadecimal format.
f c b
p r o m p t
m5gl
msg2
c r l f

s i x t een
r e p l y

f u n c - 2 3 H :

g e t - l e n g t h :

c o n v e r t - i t :

ShOW-l t :

a l l - d o n e :

db
db
db
db
db
db
db

37 dup (7)

" F i l e name: 0"
" R e c o r d I eng t h :
"Rec o r ds :
1 3 , l 0 , " $ "
17 d u p (7)
1 6

" , 1 3 , l 0 , " t "
' I , 1 3 , l 0 , " $ "

open
f i l e - s i z e
mov

mov

CmP
l e
c o n v e r t
i n c
i nc

f c b
f c b
5 1 , 3 3

d i , 9
f c b [5 i

f c b [s i

d i

5hOW-1

5 1

d i s p l a y p r o m p t ; s e e F u n c t i o n 09H
g e t - s t r i n g 1 7 , r e p l y ; s e e F u n c t i o n 0FIH
CmP r e p l y [l 1 , O ; J u s t aCR7
1ne g e t - l e n g t h ; n o , k e e p g o i n g
1"P a 1 I - d o n e ; y e s , gohome
d i s p l a y c r l f ; s e e F u n c t i o n 09H
p a r s e r e p l y [2 1 , f c b ; s e e F u n c t i o n 2 9 H

; s e e F u n c t i o n 0FH
;THIS F U N C T I O N
; o f f s e t t o R e l a t i v e
; R e c o r d f i e l d
; r e p l y i n m s g - 2

;no, p r e p a r e m e 5 5 a g e

; b u m p n - o - r i n d e x
;bumpme55age i n d e x

t ; check f o r a d i g i t
i x t e e n , m s g - 1 [1 5 1

; s e e F u n c t i o n 09H
; 5 e e F u n c t i o n 09H
; g e t a f i l e n a m e
; s e e F u n c t i o n 10H

, o ; d i g i t t o c o n v e r t ?

. s i x t e e n , m s g - 2 [d i l

I m p c o n v e r t -
c o n v e r t f c b i l 4 1 ,
d i 5 p l a y m5g-l
d i s p l a y m5g-2
J m P f unc-23H
C l o s e i c b

74

Chuwter 1 I System Calls

SetRelRec

Set Relative Record Function Call 24H

Sets the relative record field (offset 21H) in a specified FCB to
the same file address that is indicated by the current block (off-
set 0CH) and current record (offset 20H) fields.

Entry Conditions:

AH = 24H
DS:DX = pointer to a n opened FCB

Macro Definition:
5 e t - r e l a t i v e - r e c o r d macro f c b

mov d x , o f f s e t f c b
mov ah,24H
i n t 21 H
endm

Example:

The following program copies a file using the Random Block
Read and Random Block Write function calls. It speeds the copy
by setting the record length equal to the file size and the record
count to 1, and using a buffer of 32K bytes. It positions the file
pointer by setting the current record field (offset 20H) to 1 and
using the Set Relative Record function call to make the relative
record field (offset 21H) point to the same record as the combina-
tion of the current block (offset 0CH) and current record (offset
20H) fields.

75

Chapter 1 I System Calls

c u r r e n t - r e c o r d equ 32 ; o f f s e t o f C u r r e n t R e c o r d

f ile-5ize

f c b
f i l ename
p r o m p t 1
p r o m p t 2
c r l f
f i l e - l e n g t h
b u f f e r

f u n c - 2 4 H :

db
db
db
db
db
dw
db

1 6
; f i e l d o f FCB
; o f f s e t o f F i l e S i z e
; f i e l d o f FCB

37 dup (7)
17 dup(7)
" F i l e t o c o p y : $ " ; s e e F u n c t i o n 0 9 H f o r
"Name o f c o p y : $ "

1 3 , l 0 , "$ ' I

7

3 2 7 6 7 d u p (7)

; e x p l a n a t i o n o f 0

s e t - d t a b u f f e r ;see F u n c t i o n 1RH
d i s p l a y p r o m p t 1 ; s e e F u n c t i o n 09H
g e t - s t r i n g 1 5 , f I l ename ; 5 e e F u n c t i o n 0 A H
d i s p l a y c r l f ; s e e F u n c t i o n 09H
p a r s e f i l e n a r n e [P l , f c b ; s e e F u n c t i o n 2 9 H
open f c b ; s e e F u n c t i o n B F H
mov f c b [c u r r e n t - r e c o r d l , B ; 5 e t C u r r e n t R e c o r d

s e t - r e l a t i v e - r e c o r d f c b ;THISFUNCTION
mov a x , w o r d p t r f c b I f i l e - s i z e 1 ; g e t f i l e 5 i z e
mov f i l e - l e n g t h , a x ; s a v e i t f o r
r a n - b l o o t - r e a d f c b , l , a x ; r a n - b l o c k - w r i t e

; 5 e e F u n c t i o n 2 7 H
d i s p l a y p r o m p t 2 ; s e e F u n c t i o n 09H
g e t - 5 t r i n g 1 5 , f i l e n a m e ; s e e F u n c t i o n 0 A H
d i s p l a y c r l f ; s e e F u n c t i o n 09H
p a r s e f i l e n a m e [2 l , f c b ;see F u n c t i o n 29H
c r e a t e f c b ;see F u n c t i o n 16H
mov f c b [c u r r e n t - r e c o r d l , B ; s e t C u r r e n t R e c o r d

s e t - r e l a t i v e - r e c o r d f c b ;THISFUNCTION
mov a x , f i l e - l e n g t h ; g e t o r i g i n a l f i l e

r a n - b l o c k - w r i t e f c b , l , a x ; 5 e e F u n c t i o n 2 8 H
c l o s e f c b ;see F u n c t i o n 10H

; f i e l d

; f i e l d

; l e n g t h

76

Chapter 1 I System Calls

Setvector

Set Interrupt Vector Function Call 25H

Sets a particular interrupt vector. The operating system can
then manage the interrupts on a per-process basis. This call sets
the address in the vector table for the specified interrupt to the
address of the interrupt handling routine in AL.

Note that programs should never set interrupt vectors by writing
them directly in the low memory vector table.

Entry Conditions:

AH = 25H
AL = number of the interrupt to set
DS:DX = address of the interrupt handling routine

Macro Definition:
s e t - v e c t o r macro

p u s h
mov
mov

mov
mov
i n t

P O P
endm

m Q V

Example:
I d 5 d x , i n t v e c t o r
mov ah,ZSH
mov a 1 , i n t n u m b e r
i n t 21 H
: T h e r e a r e n o e r r o r s r e t u r n e d

interrupt,seg-addr,off-addr
d5
a x , s e g - a d d r
d5 , a x
d x , o f f - a d d r
a 1 , i n t e r r u p t
ah,25H
21 H
d5

77

Chapter 1 I System Calls

RBRead

Random Block Read Function Call 27H

Reads the specified number of records (calculated from the re-
cord size field at offset 0EH of the FCB), starting at the record
specified by the relative record field (offset 21H). The records are
placed at the Disk Transfer Address. The current block (offset
BCH), current record (offset 20H), and relative record (offset
21H) fields are set to address the next record.

If the number of records to read is specified as zero, the call re-
turns without reading any records (no operation).

Entry Conditions:

AH = 27H
CX = number of records to read
DS:DX = pointer to the opened FCB of the file to read

E xi t Conditions :

CX = actual number of records read
If AL = 00H, all records were read successfully.
IfAL = 01H, end of file was encountered before all records were

read; the last record is complete.
IfAL = 02H, wrap-around above address FFFFH in the disk

transfer segment would occur if all records were read;
therefore, only as many records were read as was possi-
ble without wrap-around.

If AL = 03H, end of file was encountered before all records were
read; the last record is partial.

Macro Definition:
r a n - b l o c k - r e a d macro f c b , c o u n t , r e c _ 5 i z e

mov d x , o f f s e t f c b
mov c x , c o u n t
mov w o r d p t r f c b [l 4 1 , r e c _ 5 i z e
mov ah,27H
i n t 21 H
e n d m

78

Chapter 1 I System Calls

Example:

The following program copies a file using the Random Block
Read function call. It speeds the copy by specifying a record
count of 1 and a record length equal to the file size, and using a
buffer of 32K bytes; the file is read as a single record. (Compare
this example with the sample program for Function 28H, that
specifies a record length of 1 and a record count equal to the file
size.)

c u r r e n t - r e c o r d

f I l e - s i z e

f c b
f i l e n a m e
p r o m p t l

p r o m p t 2
c r l f
f i l e - l e n g t h
b u f f e r

f u n c - 2 7 H :

db
db
db

db
db
dw
db

s e t -d t a
d i s p l a y
g e t - s t r i n g
d i s p l a y
p a r s e
open
mov

eou 3 2

equ 1 6

37 dup (7)

17 d u p (7)
" F i l e t o c o p y : t "

"Name o f c o p y : S "
1 3 , l 0 , " 0 "
7

3 2 7 6 7 d u p (? I

b u f f e r
p r o m p t l
1 5 , f i l e n a m e
c r l f
f i l e n a m e l 2 1 , f c b
f c b
f c b [c u r r e n t - r e c o r d

r a n - b l o c k - r e a d f c b , l , a x

d i s p l a y p r o m p t 2
g e t - 5 t r i n g 1 5 , f i l e n a m e
d i s p l a y c r l f
p a r s e f 1 l e n a m e [2 1 1
c r e a t e f c b
mov f c b [c u r r e n t _

s e t - r e l a t i v e r e c o r d f c b

o f f s e t o f C u r r e n t R e c o r d
f i e l d
o f f s e t o f F i l e S i z e f i e l d

s e e F u n c t i o n E9H
f o r e x p l a n a t i o n
o f t

see F u n c t i o n 1AH
5 e e F u n c t i o n E9H
s e e F u n c t i o n E A H
s e e F u n c t i o n 8 3 H
5 e e F u n c t i o n 2 9 H
s e e F u n c t i o n 0FH
. 0 :set C u r r e n t . .

;Record f i e l d
s e t - r e l a t i v e - r e c o r d f c b ; s e e F u n c t i o n 24H
mov a x , w o r d p t r ; f c b [f i l e - s i z e l

mov f i l e - l e n q t h , a x ; save i t f o r
; g e t f i l e s i z e

; r a n - b l o c k - w r i t e
;THIS FUNCTION
; s e e F u n c t i o n 0 9 H
; s e e F u n c t i o n EhH
; s e e F u n c t i o n E9H

c b ; s e e F u n c t i o n 29H
; s e e F u n c t i o n 16H

e c o r d l , E
; s e t C u r r e n t R e c o r d
; f i e l d

- ; s e e F u n c t i o n 2 4 H
mov a x , f i l e - l e n g t h ; g e t o r i g i n a l f i l e

r a n - b l o c k - w r i t e f c b , l , a x ; s e e F u n c t i o n 2 8 H
c l o s e f c b ; s e e F u n c t i o n 1 E H

; s i z e

79

Chapter 1 I System Calls

RB Wr i t e

Random Block Write Function Call 28H

Writes the specified number of records (calculated from the re-
cord size field a t offset 0EH of the FCB) from the Disk Transfer
Address. The records are written to the file starting at the re-
cord specified in the relative record field (offset 21H). The cur-
rent block (offset 0CH), current record (offset 20H), and relative
record (offset 21H) are then set to address the next record.

If the number of records is specified as zero, no records are writ-
ten, but the file size field of the directory entry (offset 1CH) is
set to the number of records specified by the relative record field
of the FCB (offset 21H). Allocation units are allocated or re-
leased, as required.

Entry Conditions:

AH = 28H
DS: DX = pointer to the opened FCB of the file to write
CX = number of records to write (non zero)

CX = 0 (sets the file size field; see above)

Exit Conditions:

CX = actual number of records written
If AL = 00H, all records were written successfully.
If AL = 01H, no records were written because there is insuffi-

Macro Definition:

or

cient space on the disk.

r a n - b l o c k - w r i t e m a c r o f c b , c o u n t , r e c - s i z e
m o v d x , o f f s e t f c b
m o v c x , c o u n t
m o v w o r d p t r f c b [l 4 l , r e c - 5 1 z e
mov ah,28H
int 21 H
e n d m

80

Chawter 1 I System Calls

Example:

The following program copies a file using the Random
Block Read and Random Block Write function calls. It
speeds the copy by specifying a record count equal to the
file size and a record length of 1. With a buffer of 32K
bytes the file is copied quickly, requiring 1 disk access
each to read and write. (Compare this example with the
sample program for Function 27H, that specifies a record
count of 1 and a record length equal to file size.)
current-record
f ile-size

equ 32 ;offset - Current Rec field
equ 16 ;offset - File Size field

fcb db 37 dup (7)
f i lename db 17 dup(7)
prompt1 db "File t o copy: $ " ; 5 e e Function E9H for
prompt 2 db "Name of copy: $ " ;explanation of $
crlf db 1 3,l 0 , " $ "
num-recs dw 7
buffer db 32767 dup(7)

func-28H: set-dta buffer ; 5 e e Function 1 A H
display prompt 1 ; s e e Function E9H
get-string 15,filename ; 5 e e Function ERH
display crlf ;see Function E9H
parse filename[21,fcb ;see Function 29H
open fcb ;see Function EFH
mov fcb[current-record1,E

;set Current Record
;field

set-relative-record fcb ;see Function 24H
mov a x , word ptr fcb [file-size1

mov num-recs,ax ;5ave i t for

ran-block-read fcb,num-rec5,l ; T H I S FUNCTION
display prompt2 ; s e e Function E9H
get-string 15,filename ; s e e Function %RH
display crlf : s e e Function 89H
parse filenameI21,fcb ; s e e Function 29h
create fcb ; s e e Function 16H
mov fcb[current- ;5et Current

set-relative-record fcb ; 5 e e Function 24H
mov a x , file-length ;get size of

ran-block-write fcb,num-recs,l ; 5 e e Function 28H
close fcb :5ee Function 18H

;get file size

;ran-block-write

record1 , E ;Record field

;or i g ina I

81

Chapter 1 I System Calls

Fname

Parse Filename Function Call 29H

Parses a string for a filename of the form d:filename.ext.
If one is found, a corresponding unopened FCB is created
at a specified location.

Bits 0-3 of AL control the parsing and processing (bits 4-
7 are ignored):

Bit Value Meaning

0 0 All parsing stops if a file separator is

1 Leading separators are ignored.

1 0 The drive number in the FCB is set
to 0 (default drive) if the string does
not contain a drive number.

1 The drive number in the FCB is not,
changed if the string does not contain
a drive number.

2 0 The filename in the FCB is set to 8
blanks if the string does not contain a
filename.

1 The filename in the FCB is not
changed if the string does not contain
a filename.

3 0 The extension in the FCB is set to 3
blanks if the string does not contain
an extension.

1 The extension in the FCB is not
changed if the string does not contain
an extension.

If the filename or extension includes an asterisk (*I, all
remaining characters in the name or extension are set to
question mark (?I.

encountered.

82

Chapter 1 I System Calls

The filename separators are:

: . ; , = + [1 / < > 1 space tab

Filename terminators include all the filename separators
plus all control characters. A filename cannot contain a
filename terminator; if one is encountered, parsing stops.

Entry Conditions:

AH = 29H
DS:SI = pointer to string to parse
ES:DI = pointer to a portion of memory to fill in with an

unopened FCB
AL = controls parsing (see above)

Exit Conditions:

IfAL = 00H, then no wildcard characters appeared in the

IfAL = 01H, then wildcard characters appeared in the file-

DS:SI = pointer to the first byte after the string that was

ES:DI = unopened FCB

Macro Definition:

filename or extension.

name or extension.

parsed

p a r s e macro
mov
mov
p u s h
p u s h

POP
mov
mov
i n t

POP
endm

j t r i n g , f c b
5 1 , o f f ~ e t s t r i n g
d i , o f f s e t f c b
e5
d5
e5
a1,BFH ; b i t 5 0 , 1 , 2 , 3 o n
a h ,29H
21 H
e5

83

Chapter 1 I System Calls

Example:

The following program verifies the existence of the file
named in reply to the prompt.
fcb db
prompt db
reply db
Ye5 db
no db

f unc-29H : display
get-string
parse
search-first 1

CmP
Je
display
J mP

not-there: display
continue:

37 dup (7)
"Filename: 0"
1 7 dup(7)
"F I LE EX I STS" , 1 3 , l E , " 0 "
"F I LE DOES NOT EX I ST" , 1 3 , l B , "0"

prompt ;see Function E9H
15 ,reply ;see Function E A H
reply[2l ,fcb ;THIS FUNCTION

'cb ;see Function 1 1 H
a1,BFFH ;dir. entry found?
not-there ;no
Ye5 ;see Function E9H
continue
no

84

Chapter 1 I System Calls

GetDate

Get Date Function Call 2AH

Returns the current date set in the operating system. The
date is returned as binary numbers.

En try Conditions:

AH = 2AH

Exit Conditions:

CX = year (1980-2099)
DH = month (1 = January, 2 = February, etc.)
DL = day of the month (1-31)
AL =day of the week (0 = Sunday, 1 = Monday,

etc.)

Macro Definition:
get-date macro

mov ah,2AH
int 21 H
endm

Example:

The following program gets the date, increments the day,
increments the month or year, if necessary, and sets the
new date.
month db 31 ,28,31 ,38,31 ,38,31 ,31 ,30,31 ,30,31

func-2AH: get-date
inc
xor

mov

d e c
CmP
1'e
mov
inc
CmP

mov
inc

J'e

month-ok: set-date

dl
bx, bx

b l .dh

bx
dl,month[bxl
mont h-o k
dl,l
dh
dh,l2
mon t h-o k
d h , 1

cx,dh,dl
cx

;see above
;increment day
; s o EL can be used as
;index
;move month t o index
:register
;month t a b l e 5 t a r t s w i t h 0
; p a s t end o f month?
;no, set the new date
;ye5, 5et day t o 1
;and increment month
; p a 5 t end o f year?
;no, 5et the new date
;yes, set the month to 1
;increment year
;see Function 2BH

85

Chapter 1 I System Calls

SetDate

Set Date Function Call 2BH

Sets the date to a valid date in binary given in CX and DX.

Entry Conditions:
AH = 2BH
CX = year (1980-2099)
DH = month (1 = January, 2 = February, etc.)
DL = day of the month (1 -31)

Exit Conditions:

If AL = 00H, the date was valid.
If AL = FFH, the date was not valid and the function was

canceled.

Macro Definition:
s e t - d a t e macro y e a r ,mon th , d a y

mov c x , y e a r
mov d h ,mon th
mov d l , d a y
m Q V a h ,ZBH
I n t 21 H
endm

86

Chapter 1 I System Calls

Example:

The following program gets the date, increments the day,
increments the month or year, if necessary, and sets the
new date.
m o n t h db 31,28,31 ,30,31 ,30,31 ,31 ,3% ,31 ,30,31

func -2BH: g e t - d a t e
i nc
x o r

mov

dec

CmP
1 l e
mov
i n c

CmP
J'e
mov

i nc
mon th -ok : s e t - d a t e

d l
b x , b x

b l ,dh

b x
d l , m o n t h [b x l
mon th -ok
d l , 1
d h
d h , l 2
mon t h-o k
d h , l

c x
c x , d h , d l

; s e e F u n c t i o n 2AH
; i n c r e m e n t d a y
; s o EL c a n be u s e d a s
; i n d e x
;move mon th t o i n d e x
; r e g 1 s t e r
;mon th t a b l e s t a r t s w i t h 0
; p a s t end o f m o n t h ?
; n o , s e t t h e new d a t e
; yes , s e t day t o 1
; and i n c r e m e n t m o n t h
; p a s t end o f y e a r ?
;no , s e t t h e new d a t e
; ye5 , s e t t h e m o n t h
; t o 1
; i n c r e m e n t y e a r
;THIS F U N C T I O N

87

Chapter 1 I System Calls

GetTime

Get Time Function Call 2CH

Returns the current time set in the operating system as
binary numbers.

Entry Conditions:

AH = 2CH

Exit Conditions:

CH = hour (0-23)
CL = minutes (0-59)
DH = seconds (0-59)
DL = hundredths of a second (0-99)

Macro Definition:
get-time macro

mov ah ,2CH
int 21H
endm

Example:

The following program continuously displays the time until
any key is pressed.
time db
ten db 10

"00 : 0 0 : 00. OB", 1 3 , l 0 , " $ "

func-2CH: get-time
convert ch,ten,time
convert cl,ten,time[31
convert dh,ten,time[61
convert dl,ten,time[91
display time
check-tbd-status
CmP a1,BFFH
le all-done
Imp func-2CH

all-done: ret

;THIS F U N C T I O N
;5ee end of chapter
;5ee end of chapter
;5ee end of chapter
;5ee end of chapter
; 5 e e Function 09H
;5ee Function 0BH
;ha5 a key been pressed?
;yes, terminate
;no, display time

88

Chapter 1 I System Calls

SetTime

Set Time Function Call 2DH

Sets the time to a valid time in binary given in CX and
DX.

Entry Conditions:
AH = 2DH
CH = hour (0-23)
CL = minutes (0-59)
DH = seconds (0-59)
DL = hundredths of a second (0-99)

E xi t Conditions :

If AL = 00H, the time specified on entry is valid.
If AL = FFH, the time was not valid; the function was

canceled.

Macro Definition:
s e t - t ime macro h o u r , m ~ n u t e s , s e c o n d s , h u n d r e d t h s

mov c h , h o u r
mov c l , m i n u t e 5
mov d h , s e c o n d s
mov d 1 , h u n d r e d t h s
mov ah,2DH
I n t 21 H
endm

89

Chapter 1 I System Calls

Example:

The following program sets the system clock to 0 and
continuously displays the time. When a character is typed,
the display freezes; when another character is typed, the
clock is reset to 0 and the display starts again.
time db " 0 0 : 0 0 : 00 I 0 0 " , 13,10 , " $ "
ten db 1 0

f unc-2DH : 5et-time 0,0,0,0
read-clock: get-time

convert ch,ten,time
convert cl,ten,time[31
convert dh,ten,time[61
convert dl,ten,time[91
display time

TH15 FUNCTION
5ee Function 2CH
5 e e end o f chapter
5 e e end o f chapter
5ee end o f chapter
5 e e end o f chapter
5ee Function 09H

dir-console-io EFFH ; s e e Function 06H
CmP al,00H ; w a 5 a char. typed?
1ne 5tOP ;yes, 5top the timer
Imp read-clock ;no keep timer on

stop: read-k bd ; 5 e e Function 08H
Imp f unc-2DH ;keep displaying time

90

ChaDter 1 I System Calls

SetVerify

Set/Reset Verify Flag Function Call 2EH

Specifies whether each disk write is to be verified or not.
MS-DOS checks this flag each time it writes to a disk.
The verify flag is normally off.

Entry Conditions:

AH = 2 E H
AL = verify Flag
OOH = do not verify
01H = verify

Macro Definition:
v e r i f y macro s w i t c h

mov a 1 , s w i t c h
mov ah,2EH
int 21 H
e n d m

91

Chapter 1 I System Calls

Example:

The following program copies the contents of a single sided
disk in Drive A to the disk in Drive B, verifying each
write. It uses a buffer of 32K bytes.

on
o f f

1
0

p r o m p t db " S o u r c e i n A , t a r g e t i n B " ,13 ,10

s t a r t dw 0
b u f f e r db 64 dup (5 1 2 d u p (7)) ;64 ~ i e c t o r s

db "Any key t o start. $ "

f unc-2DH: d i s p l a y p r o m p t
r e a d - k b d
v e r i f y o n
mov C X , ~

c o p y : p u s h C X

a b 5 - d i 5 k - r e a d 0,bu
a b s - d i s k - w r i t e 1 ,bu
a d d s t a r
POP c x

l o o p C O P Y
v e r i f y o f f
d i s k - r e a d 0 , b u
a b s - d i s k - w r i t e

a d d s t a r
POP c x

l o o p COPY
v e r i f y o f f

f e r , 6 4 , s t a r t
f e r , 6 4 , s t a r t
,64

f e r , 6 4 , s t a r t

; s e e F u n c t i o n 09H
see F u n c t i o n 08H
T H I S FUNCTION
c o p y 64 s e c t o r s
5 times
save c o u n t e r
5ee I n t e r r u p t 25H
see I n t e r r u p t 26H
do n e x t 64 5 e c t o r s
r e s t o r e c o u n t e r
do i t a g a i n
T H I S FUNCTION
5ee I n t e r r u p t 25H
, b u f f e r , 6 4 , s t a r t
see I n t e r r u p t 26H
do n e x t 64 s e c t o r s
r e s t o r e c o u n t e r

;do i t a g a i n

92

Chapter 1 I System Calls

GetDTA

Get Disk Transfer Address Function Call 2FH

Returns the Disk Transfer Address.

Entry Conditions:

AH = 2FH

Exit Conditions:

ES:BX = pointer to current Disk Transfer Address

Error Returns: None.

Example:
G e t DTA e q " 2FH

mov ah , Ge t DTA
i n t 21 H

93

Chawter 1 I System Calls

Ge tVer sion

Get Version Number Section Call 30H

Returns the MS-DOS version number. AL:AH contains the
2 part version designation on return. For example, for MS-
DOS 2.0, AL would contain 2 and AH would contain 0.

Entry Conditions:

AH = 30H

Exit Conditions:

AL = major version number
AH = minor version number
BH = OEM (original equipment manufacturer) number
BL:CX = 24-bit user number.

Error Returns: None.

Example:
G e t V e r s l o n e q u 30H

mow a h , G e t V e r s i o n
i n t 21 H

94

Chawter 1 I System Calls

Keepprocess

Keep Process Function Call 31H

Terminates the current process and attempts to set the in-
itial allocation block to the specified size in paragraphs.
No other allocation blocks belonging to that process are
freed. The exit code passed in AX is retrievable by the
parent via function call 4DH.

This method is preferred over Interrupt 27H and has the
advantage of allowing more than 64K to be kept.

Entry Conditions:

AH = 31H
AL = exit code
D X = memory size in paragraphs

Error Returns: None.

Example:
KeepProce55 eq" 31 H

mov a 1 , e x i t c o d e
mov d x , p a r a s i z e
mov ah ,KeepProce55
i n t 21 H

95

Chapter 1 I System Calls

SetCtrlCTrapping

CONTROL-C Check Function Call 33H

MS-DOS only checks for a CONTROL-C on the controlling
device when performing function call operations 01H-0CH
to that device. Function Call 33H lets you expand this
checking to include any system call. For example, with the
CONTROL-C trapping off, all disk I/O proceeds without
interruption. With CONTROL-C trapping on, the CON-
TROL-C interrupt is given at the system call that initi-
ates the disk operation.

Note that programs using Function Calls 06H or 07H to
read CONTROL-Cs as data must ensure that the CON-
TROL-C check is off.

Entry Conditions:

AH = 33H
AL = function

00H = Return current state
OIH = Set state

OOH = Off
OIH = On

DL = switch (i f setting state)

Exit Conditions:

DL = current state
OOH = Off
OIH = On

Error Return:

AL = FFH
The function passed in AL was not in the range 00H-
OIH.

Example:
S e t C t r l C T r a p p i n g equ 33H

m o v dl , V a l
m o v a 1 , f u n c
mow a 1 , S e t C t r l C T r a p p i n g

96

Chapter 1 I System Calls

Getvector

Get Interrupt Vector Function Call 35H

Returns the interrupt vector associated with a specified
interrupt. Note that programs should never get an inter-
rupt vector by reading the low memory vector table
directly.

Entry Conditions:

AH = 35H
AL = interrupt number

E xi t Conditions :

ES:BX = pointer to interrupt routine

Error Returns: None.

Example:
Get Vec tor equ 35H

mov a1,interrupt
mov ah,GetVector
int 21 H

97

Chapter 1 I System Calls

Get Free Space

Get Disk Free Space Function Call 36H

Returns the amount of free space on the disk along with
additional information about the disk.

Entry Conditions:

AH = 36H
DL = drive (0 = default, 1 = A, etc.)

Exit Conditions:
BX = number of free allocation units on drive
DX = total number of allocation units on drive
CX = bytes per sector
AX = sectors per allocation unit or
AX = FFFFH (if drive number is invalid)

Error Returns:

AX = FFFFH
The drive number given in DL was invalid.

Example:
G e t F r e e s p a c e e q u 36H

m o v dl , d r i v e
m o v a h , G e t F r e e s p a c e
int 21 H

98

Chupter 1 I System Calls

International

Return Country-Dependent Function Call 38H
Information

Returns information pertinent to international applications
in a buffer pointed to by DS:DX. The information is spe-
cific to the country indicated in AL. The value passed in
AL is either 0 (for current country) or a country code.
Country codes are typically the international telephone pre-
fix code for the country.

If DX = -1, this call sets the current country to the
country code in AL. If the country code is not found, the
current country is not changed.

This function is fully supported only in MS-DOS versions
2.01 and higher. It exists in MS-DOS 2.0, but is not
fully implemented.

99

Chapter 1 I System Calls

This function returns the following information in the
block of memory pointed to by DS:DX:

WORD Datehime format

5-BYTE ASCIIZ string
Currency symbol

2-BYTE ASCIIZ string
Thousands separator

2-BYTE ASCIIZ string
Decimal separator

2-BYTE ASCIIZ string
Date separator

2-BYTE ASCIIZ string
Time separator

[1-BYTE Bit field I
I Currency l-BYTE places

1-BYTE I Time format

DWORD
Case Mapping call

Data list separator

The format for most entries is ASCIIZ (a NUL-terminated
ASCII string), but a fixed size is allocated for each field
for easy indexing into the table.

100

Chapter 1 I System Calls

The dateitime format has the following values:

0 - USA standard h:m:s midiy
1 - Europe standard h:m:s dimly
2 - Japan standard yimid h:m:s

The bit field contains 8 bit values. Any bit not currently
defined can be assumed to have a random value.

Bit 0 = 0 If currency symbol precedes the currency
amount.

= 1 If currency symbol comes after the cur-
rency amount.

Bit 1 = 0 If the currency symbol immediately pre-
cedes the currency amount.

= 1 If there is a space between the currency
symbol and the amount.

The currency places field indicates the number of places
which appear after the decimal point on currency amounts.

The time format has the following values:

0 = 12-hour time
1 = 24-hour time

The Case Mapping call is a FAR procedure which per-
forms country-specific lower- to uppercase mapping on char-
acter values 80H-FFH. It is called with the character to
be mapped in AL. It returns the correct uppercase code
for that character, if any, in AL. AL and the FLAGS are
the only registers altered. It is allowable to pass codes be-
low 80H to this routine but nothing is done to characters
in this range. In the case where there is no mapping,
AL is not altered.

Entry Conditions:

AH = 38H
DS:DX = pointer to 32-byte memory area
AL = country code (In MS-DOS 2.0, this must be 0.)

101

Chawter 1 I System Calls

Exit Conditions:

Carry set:

Carry not set:

Error returns:

AX = 2

AX = error code

DS:DX = country datu

File not found. The country passed in AL was not
found (no table exists for the specified country).

Example:
I d 5 d x , b l k
mov ah , 38H
mov a l , c o u n t r y - c o d e
i n t 21 H

; A X : c o u n t r y c o d e o f c o u n t r y r e t u r n e d

102

Chapter 1 I System Calls

MkDir

Create Subdirectory Function Call 39H

Creates a new directory entry at the end of a specified
pathname.

Entry Conditions:

AH = 39H
DSDX = pointer to ASCIIZ pathname

Exit Conditions:

Carry set:
AX = error code

Carry not set:
No error.

Error Returns:

AX = 3
Path not found. The path specified was invalid or not
found.

Access denied. The directory could not be created (no
room in the parent directory), the directory/file al-
ready existed, or a device name was specified.

AX = 5

Example:
M k D i r eq" 39H

I d 5 dx,pathname
mov a h , M k D i r
i n t 21 H

103

ChaDter 1 I Svstem Calls

RrnDir

Remove a Directory Function Call 3AH
Entry

Removes a specified directory from its parent directory.

Entry Conditions:

AH = 3AH
DS:DX = pointer to ASCIIZ pathnume

Exit Conditions:

Carry set:
AX = error code

Carry not set:
No error.

Error Returns:

AX = 3
Path not found. The path specified was invalid or not
found.

Access denied. The path specified was not empty, was
not a directory, was the root directory, or contained
invalid information.

Current directory. The path specified was the current
directory on a drive.

AX = 5

AX = 16

Example:
R m D i r equ 3AH

I d 5 d x , p a t h n a m e
m Q V ah , R m D i r
int 21 H

104

Chapter 1 I System Calls

ChDir

Change the Current
Directory

Function Call 3BH

Sets the current directory to the directory specified. If
any member of the specified pathname does not exist, then
the current directory is unchanged.

Entry Conditions:

AH = 3BH
DS:DX = pointer to ASCZIZ pathname

Exit Conditions:

Carry set:
AX = error code

Carry not set:
No error.

Error Returns:

A = 3
Path not found. The path specified either indicated a
file or the path was invalid.

Example:
C h D i r eq" 38H

Ids d x , p a t h n a m e
mov a h , C h D i r
i n t 21 H

105

Chapter 1 I System Calls

Create

Create a File Function Call 3CH

Creates a new file or truncates an old file to zero length
in preparation for writing. If the file did not exist, then
the file is created in the appropriate directory and the
file is given the attributeb) found in CX. (See the section
“Disk Directory” in Chapter 4 for a discussion of file at-
tributes.) The file handle returned has been opened for
readlwrite access.

Entry Conditions:

AH = 3CH
DS:DX = pointer to ASCZZZ pathnume
CX = file attribute(s)

Exit Conditions:

Carry set:

Carry not set:

Error Returns:

AX = error code

AX = file handle number

AX

AX

AX

= 5
Access denied: (1) the attributes specified in CX in-
cluded one that could not be created (directory, vol-
ume ID) (2) file already existed with a more
inclusive set of attributes, or (3) a directory existed
with the same name.
= 3
Path not found. The path specified was invalid.
= 4
Too many open files. The file was created with the
specified attributes but, either there were no free
handles available for the process, or the internal sys-
tem tables were full.

106

Chawter 1 I System Calls

Example:
C r e a t equ 3 C H

I d 5 d x , p a t h n a m e
m o v c x , a t t r i b u t e
m o v ah,Creat
int 21 H

107

Chapter 1 I System Calls

Open

Open a File Function Call 3DH

Opens a file. The following values are allowed for the ac-
cess code:

0 - The file is opened for reading.
1 - The file is opened for writing.
2 - The file is opened for both reading and writing.

The readiwrite pointer is set at the first byte of the file
and the record size of the file is 1 byte. The returned
file handle must be used for subsequent IiO to the file.

Entry Conditions:

AH = 3DH
DS:DX = pointer to ASCIIZ pathname for file to open
AL = access code (0 = read, 1 = write, 2 = read and

Exit Conditions:

Carry set:

Carry not set:

Error Returns:

AX = 12

write)

AX = error code

AX = file handle number

Invalid access. The access specified in AL was not in
the range 0-2.

File not found. The path specified was invalid or not
found.

Access denied. The user attempted to open a directory
or volume ID, or open a read-only file for writing.

Too many open files. There were no free handles
available in the current process or the internal sys-
tem tables were full.

AX = 2

AX = 5

AX = 4

108

Chapter 1 I System Calls

Example:
O p e n e q u 3DH

I d s dx ,pa thname
mov a1,access
mov ah,Open
int 21 H

109

Chawter 1 I Svstem Calls

Close a File Handle Function Call 3EH

Closes the file associated with a specified file handle. Internal
buffers are flushed.

Entry Conditions:

AH = 3EH
BX = file handle for file to close

Exit Conditions:

Carry set:
AX = error code

Carry not set:
No error.

Error Return:

AX = 6
Invalid handle, The handle passed in BX was not currently
open.

Example:
Close eq" 3EH

rnov b x , h a n d l e
mov ah,Close
i n t 21 H

110

Chapter 1 I System Calls

Read

Read from a
File or Device Function Call 3FH

Transfers a specified number of bytes from a file into a buffer lo-
cation. It is not guaranteed that all bytes will be read. At most 1
line of text will be read from the keyboard. If the returned value
for number of bytes read is zero, then the program tried to read
from the end of file.

All I/O is done using normalized pointers; no segment wrap-
around will occur. MS-DOS takes the pointer you specify in
DS:DX and modifies it so that DX is OOOFH or smaller.

Entry Conditions:
AH = 3FH
DS:DX = pointer to buffer
CX = number of bytes to read
BX = file handle for the file to read

Exit Conditions:

Carry set:

Carry not set:

Error Returns:

AX = 6

AX = error code

AX = number of bytes read

Invalid handle. The handle passed in BX is not currently
open.

Access denied. The handle passed in BX was opened in a
mode that did not allow reading.

AX = 5

Example:
R e a d e q u 3FH

I d s d x , b u f f e r
mov c x , c o u n t
mov b x , h a n d I e
mov a h , R e a d
i n t 21 H

111

Chapter 1 I System Calls

Write to a File or Device Function Call 40H

Transfers a specified number of bytes from a buffer into a file. If
the number of bytes written is not the same as the number re-
quested, then an error has occurred.

If the number of bytes to be written is zero, the file size
is set to the current position. Allocation units are allo-
cated or released as required.

All I/O is done using normalized pointers; no segment
wrap-around will occur. MS-DOS takes the pointer you
specify in DS:DX and modifies it so that DX is OOOFH
or smaller.

Entry Conditions:

AH = 40H
DS:DX = pointer to buffer
CX = number of bytes to write
BX = file handle for file to write

Exit Conditions:

Carry set:

Carry not set:

Error Returns:

AX = 6

AX = error code

AX = number of bytes written

Invalid handle. The handle passed
rently open.

AX = 5

in BX is not cur-

Access denied. The handle passed in BX was opened
in a mode that did not allow writing.

Example:
W r i t e e q u 4 0 H

I d 5 d x , b u f f e r
mov c x , c o u n t
mov b x , h a n d l e
mov ah, W r I t e
int 21 H

112

Chapter 1 I System Calls

Unlink

Delete a Directry Entry Function Call 41H

Removes a directory entry associated with a specified
filename.

Entry Conditions:

AH = 41H
DS:DX = pointer to p a t h n a m

Exit Conditions:

Carry set:
AX = error code

Carry not set:
No error.

Error Returns:

AX = 2
File not found. The path was invalid or not found.

AX = 5
Access denied. The path was a directory or was read
only.

Example:
U n l i n k eq" 41 H

Ids d r , p a t h n a m e
mov ah , U n l i n k
i n t 21 H

113

Chapter 1 I System Calls

Move a File Pointer Function Call 42H

Moves the readlwrite pointer a specified number of bytes accord-
ing to the following methods:

0 - The pointer is moved to the specified offset from

1 - The pointer is moved to the current location plus

2 - The pointer is moved to the end of file plus the

the beginning of the file.

the offset.

offset.

Entry Conditions:

AH = 42H
CX:DX = distance to move the pointer, offset in bytes (CX

contains the most significant part)
AL = method of moving (0, 1 , or 2; see above)
BX = file handle

Exit Conditions:

Carry set:

Carry not set:

Error Returns:

AX = 6

AX = error code

DX:AX = new file pointer position

Invalid handle. The handle passed in BX is not cur-
rently open.

Invalid function. The function passed in AL was not
in the range 0-2.

AX = 1

Example:
LSeek eq" 4 2 H

mov d x , o f f s e t l o w
mov c x , o f f s e t h i g h
mov a1 , m e t h o d
mQV b x , h a n d l e
m Q v ah ,LSeek
I n t 21 H

114

Chawter 1 I Svstem Calls

ChMod

Change Attributes Function Call 43H

Gets the attributes of a file, or sets the attributes of a file to
those specified. (See the section “Disk Directory” in Chapter 4
for a description of file attributes.)

Entry Conditions:

AH = 43H
DS:DX = pointer to ASCII2 pathname of file
AL = function number

01H = set file’s attributes to those in CX
OOH = return file’s attributes in CX

CX = attribute(s) to be set

Exit Conditions:

Carry set:

Carry not set:

Error Returns:

AX = 3

AX = 5

AX = error code

CX = current attribute(s) (if AL = OOH on entry)

Path not found. The path specified was invalid.

Access denied. The attributes specified in CX included
one that could not be changed (directory, volume ID).

Invalid function. The function passed in AL was not
in the range 0-1.

AX = 1

Example:
C h M o d equ 4 3 H

I d 5 d x , p a t h n a m e
mov d x , a t t r i b u t e
mov a 1 , f u n c t i o n
mov a h , 4 3 H
int 21 H

115

Chapter 1 I System Calls

R C I E R S I I 1 I
e T S O A P S S S S
s R Reserved D F W E C N C C

L E C L U O I
V L K L T N

Ioctl

110 Control for Devices Function Call 44H

Performs the following functions: (1) gets or sets device informa-
tion associated with an open handle, (2) sends a control string to
a device handle or device, or (3) receives a control string from a
device handle or device.

The following values are allowed for the function code
passed in AL:

0 - Get device information (returned in DX).
1 - Set device information (as determined by DX).
2 - Read the number of bytes indicated in CX from

the device control channel into buffer pointed to
by DS:DX. (BX = file handle.)

3 - Write the number of bytes indicated in CX to
the device control channel from the buffer
pointed to by DS:DX. (BX = file handle.)

4 - Same as 2, but use the drive number in BL.
5 - Same as 3, but use the drive number in BL.
6 - Get input status.
7 - Get output status.

You can use this system call to get information about de-
vice channels. In addition, you can make calls on regular
files using function values 0, 6, and 7. Function values
other than these return an “Invalid function” error.

Calls AL = 0 and AL = 1:

The bits of DX are defined as follows. Note that the up-
per byte must be zero on a set call (A = 1).

1 5 1 4 1 3 1 2 1 1 1 0 9 8 7 6 5 4 3 2 1 0

116

Chapter 1 I System Calls

ISDEV = 1 if this channel is a device.
= 0 if this channel is a disk file (bits 8-15

= 0 in this case)

If ISDEV = 1:
EOF = 0 if end of file on input.
RAW = 1 if this device is in Raw mode (literal

mode with no interpretation given to
characters).

= 0 if this device is cooked (normal mode
where the device interprets the characters).

SPECL = 1 if this device is special.
ISCLK = 1 if this device is the clock device.
ISNUL = 1 if this device is the null device.
ISCOT = 1 if this device is the console output.
ISCIN = 1 if this device is the console input.
CTRL = 0 if this device cannot process control

strings via calls AL = 2 and AL = 3.
CTRL = 1 if this device can process control strings

via calls AL = 2 and AL = 3. Note that
the CTRL bit cannot be set by the Ioctl
system call.

If ISDEV = 0:
EOF = 0 if channel has been written.

Bits 0-5 are the block device number for
the channel (0 = A, 1 = B, etc.).

Bits 4, 8-13, and 15 are reserved and should not be
altered.

Calls AL = 2, AL = 3, AL = 4, and AL = 5:

These 4 calls allow arbitrary control strings to be sent or
received from a device. The call syntax is the same as
for the read and write calls, except for calls AL = 4 and
AL = 5 that pass a drive number in BL instead of a
handle in BX.

An “Invalid function” error is returned if the CTRL bit is
zero. An “Access denied” error is returned by calls AL =
4 and AL = 5 if the drive number is invalid.

117

Chapter 1 I System Calls

Calls AL = 6 and AL = 7:

These calls allow you to check if a file handle is ready
for input or output. Checking the status of handles open
to a device is the intended use of these calls. Checking
the status of a handle open to a disk file is also allowed,
and is defined as follows:
Input: Always ready (AL = FFH) until end of file is

reached, then always not ready (AL = 00H) un-
less the current position is changed via the Move
a File Pointer function call (42H).

Output: Always ready (even if disk is full).

Note: The status is defined at the time the system is
called. In future versions of MS-DOS, by the time control
is returned to the user from the system, the status re-
turned may not correctly reflect the true current state of
the device or file.

Entry Conditions:

AH = 44H
BX = handle
BL = drive (0=default, 1 =A, etc.) (for calls AL=4, 5)
DS:DX = pointer to data or buffer
CX = number of bytes to read or write
AL = function code (0-7; see below)

Exit Conditions:

Carry set:

Carry not set:
AX = error code

For calls AL = 2, 3, 4, 5:

For calls AL = 6, 7:

or

AX = number of bytes transferred

AX = OOH (not ready)

AX = FFH (ready)

118

Chapter I / System Calls

Error Returns:

AX = 6
Invalid handle. The handle passed in BX is not cur-
rently open.

Invalid Function. The function passed in AL was not
in the range 0-7.

Invalid data.

Access denied (for calls AL = 4, 5, 6, 7).

AX = 1

AX = 13

AX = 5

Example:

loct I equ
m o v

(or m a v
m o v

(or I d s
m o v

m o v
m o v
I n t

4 4 H
b x , h a n d l e
b l , d r i v e f o r c a l l 5 fiL = 4 , s)
d x , d a t a
d x , b u f f e r a n d
d x , c o u n t f o r c a l l s (IL = 2 ,

al, f u n c t i o n
a h , loctl
21 H

3 , 4 , 5)

119

Chapter 1 I System Calls

Duplicate a File Handle Function Call 45H

Takes an already opened file handle and returns a new handle
that refers to the same file a t the same position.

Entry Conditions:

AH = 45H
BX = file handle to duplicate

E xi t Conditions :

Carry set:

Carry not set:

Error Returns:

AX = 6

AX = error code

AX = new file handle

Invalid Handle. The handle passed in BX is not cur-
rently open.

Too many open files. There were no free handles
available in the current process or the internal system
tables were full.

AX = 4

Example:

DUP e q u 4 5 H
mov b x , h a n d l e
mov ah , D u p
i n t 21 H

120

Chapter 1 I System Calls

DupZ

Force a Duplicate
of a File Handle

Function Call 46H

Takes a file handle that is already open and returns a new han-
dle that refers to the same file at the same position. If there al-
ready is a file open on the handle specified in CX, it is closed
first.

Entry Conditions:

AH = 46H
BX = existing file handle
CX = new file handle

Exit Conditions:

Carry set:
AX = error code

Carry not set:
No error.

Error Returns:

AX = 6
Invalid handle. The handle passed in BX is not currently
open.

Too many open files. There were no free handles available in
the current process or the internal system tables were full.

AX = 4

Example:
D u p 2 equ 46H

mov b x , h a n d l e
mov c x , newhandle
mov a h , D u p e
int 21 H

121

Chapter 1 I System Calls

CurrentDir

Return Text of
Current Directory

Function Call 47H

Returns the current directory for a particular drive. The direc-
tory is root-relative and does not contain the drive specifier or
leading path separator.

Entry Conditions:

AH = 47H
DS:SI = pointer to 64-byte memory area to receive directory
DL = drive (0 = default, 1 = A, 2 = B, etc.)

Exit Conditions:

Carry set:

Carry not set:

Error Returns:

AX = 15

AX = error code

DS:DI = pointer to 64-byte area containing directory

Invalid drive. The drive specified in DL was invalid.

Example:
C u r r e n t D i r equ 47H

Ids 5 1 , a r e a
mov d l , d r i v e
mow ah, C u r r e n t D i r
i n t 21 H

122

Chapter 1 I System Calls

Alloc

Allocate Memory Function Call 48H

Returns a pointer to a free block of memory that has the re-
quested size in paragraphs,

Entry Conditions:

AH = 48H
BX = size of memory to be allocated, in paragraphs

Exit Conditions:

Carry set:
BX = maximum size that could be allocated, in paragraphs
(if the requested size was not available)

AX10 = pointer to the allocated memory
Carry not set:

Error Returns:

AX = 8
Not enough memory. The largest available free block is
smaller than that requested or there is no free block.

Arena trashed. The internal consistency of the memory
arena has been destroyed. This is due to a user program
changing memory that does not belong to it.

AX = 7

Example:
A l l o c e q u 48H

m o v bx, 5 1 z e
mov ah, Fll loc
I n t 21 H

123

Chapter 1 I System Calls

Dealloc

Free Allocated Memory Function Call 49H

Returns to the system pool a piece of memory that was allocated
by the Allocate Memory function call (48H).

Entry Conditions:

AH = 49H
ES = segment address of memory area to be freed

Exit Conditions:

Carry set:
AX = error code

Carry not set:
No error.

Error Returns:

AX = 9
Invalid block. The block passed in ES is not one allo-
cated via the Allocate Memory function call (48H).

Arena trashed. The internal consistency of the memory
arena has been destroyed. This is due to a user pro-
gram changing memory that does not belong to it.

AX = 7

Example:
D e a l l o c e q " 49H

mov e s , b l o c k
m o v ah, D e a l l o c
i n t 21 H

124

Chapter 1 I System Calls

SetBlock

Modify Allocated
Memory Blocks Function Call 4AH

Attempts to “grow” or “shrink” an allocated block of memory.

En try Conditions:

AH = 4AH
ES = segment address of memory area
BX = requested memory area size, in paragraphs

Exit Conditions:

Carry set:
BX = maximum size possible, in paragraphs (i f the

requested size was not available on a grow
request)

Carry not set:
No error.

Error Returns:

AX = 9
Invalid block. The block specified in ES is not one
allocated via this call.

Arena trashed. The internal consistency of the
memory arena has been destroyed. This is due to
a user program changing memory that does not
belong to it.

Not enough memory. There was not enough free
memory after the specified block to satisfy the
grow request.

AX = 7

AX = 8

Example:
S e t B l o c k eq” 40H

mov e 5 , b l o c k
mov b x , newsize
mow ah , S e t B l o c k
int 21 H

125

Chapter 1 I System Calls

Exec

Load and Execute a Program Function Call 4BH

Lets a program load another program into memory and option-
ally begin execution of the second program.

A function code is passed in AL:

0 - Load and execute the program. A Program Seg-
ment Prefix is established for the program and
the terminate and CONTROL-C addresses are set
to the instruction after the Exec function call.

3 - Load the program, do not create the program
segment prefix, and do not begin execution. This
is useful in loading program overlays.

For each value of AL, the parameter block pointed to by
ES:BX has the following format:

AL = 0 Load and execute program

WORD segment address of environment string

DWORD pointer to command line to be placed at
PSP + 80H

DWORD pointer to default FCB to be passed at
PSP + 5CH

DWORD pointer to default FCB to be passed at
PSP + 6CH

AL = 3 Load overlay

WORD segment address where file will be loaded

I WORD relocation factor to be applied to the image

For function AL = 0, there must be enough free memory
for MS-DOS to load the program. For function AL = 3,
it is assumed that the program doing the loading will
load the overlay into its own memory space, so no free
memory is needed.

126

Chapter 1 I System Calls

Note that all open files of a process are duplicated in the
child process after an Exec call. This is extremely power-
ful; the parent process has control over the meanings of
stdin, stdout, stderr, stdaux, and stdprn. The parent could,
for example, write a series of records to a file, open the
file as standard input, open a listing file as standard out-
put, and then Exec a sort program that takes its input
from stdin and writes to stdout.

Also inherited (or passed from the parent) is an “environ-
ment.” This is a block of text strings (less than 32K
bytes total) that convey various configuration parameters.
The format of the environment is as follows:

(paragraph boundary)

BYTE ASCIIZ string 2

I ...
BYTE ASCIIZ string n

BYTE of zero

Typically the environment strings have the form:

parameter = value

For example, COMMAND.COM might pass its execution
search path as:

PATH = A: B1N;B: BASIC LIB

A zero value of the environment address causes the child
process to inherit a copy of the parent’s environment
unchanged.

Entry Conditions:

AH = 4BH
DS:DX = pointer to ASCIIZ pathname
ES:BX = pointer to parameter block
AL = function code

OOH = load and execute program
03H = load program

~

127

http://COMMAND.COM

Chapter 1 I System Calls

Exit Conditions:

Carry set:
AX = error code

Carry not set:
No error.

Error Returns:

AX = 1
Invalid function. The function passed in AL was not
0, 1, or 3.

Bad environment. The environment was larger than
32K bytes .

Bad format. The file pointed to by DS:DX was an
EXE format file and contained information that was
internally inconsistent.

Not enough memory. There was not enough memory
for the process to be created.

File not found. The path specified was invalid or not
found.

Example:

AX = 10

AX = 11

AX = 8

AX = 2

E x e c 9" 4BH
I d s d x , p a t h n a m e
l e5 b r , b l a c k
m o v a l , f u n c t i o n
m o v a h , E x e c
Int 21 H

128

Chapter 1 I System Calls

Exit

Terminate a Process Function Call 4CH

Terminates the current process and transfers control to the in-
voking process. In addition, a return code may be sent. All files
open at the time are closed.

This method is preferred over all others (Interrupt 20H,
JMP 0).

Entry Conditions:

AH = 4CH
AL = return code

Error Returns: None.

Example:
Exec e q u 4CH

mov a l , c o d e
mov ah , E x i t
I n t 21 H

~~~ 

129 



Chapter 1 I System Calls 

Wait 

Retrieve the Function Call 4DH 
Return Code of a Child 

Returns the Exit code specified by a child process. It returns 
this Exit code only once. The low byte of this code is sent by the 
Keep Process function call (31H). The high byte indicates the 
circumstances that caused the child to  terminate, and is one of 
the following: 

0 -  Terminate/abort 

2 -  Hard error 
3 -  Terminate and stay resident 

1 -  CONTROL-C 

Entry Conditions: 

AH = 4DH 

Exit Conditions: 

AH = exit code 

Error Returns: None. 

Example: 
W a i t  =qu 4DH 

mov ah, W a i t  
i n t  21 H 

130 



Chapter 1 I System Calls 

FindFir s t 

Find Matching File Function Call 4EH 

Takes a pathname, with wildcard characters in the filename por- 
tion and a set of attributes, and attempts to  find a file that 
matches the pathname and has a subset of the required attri- 
butes. If one is found, a data block at the current Disk Transfer 
Address is written. The block contains information in the follow- 
ing form: 

21 bytes - 

1 byte - Attribute found 
2 bytes - Time of file 
2 bytes - Date of file 
2 bytes - Least significant word of file size 
2 bytes - Most significant word of file size 
13 bytes - 
To obtain the subsequent matches of the pathname, see 
the description of the FindNext function call (4FH). 

Entry Conditions: 
AH = 4EH 
DS:DX = pointer to ASCII2 pathname 
CS = search attributes 

Exit Conditions: 

Carry set: 
AX = error code 

Carry not set: 
No error. 

Error Returns: 

AX = 2 

Reserved for MS-DOS use on subsequent 
FindNext function calls (4FH) 

Packed filename and extension 

File not found. The path specified in DS:DX was an 
invalid path. 

No more files. There were no files matching this 
specification. 

AX = 18 

131 



Chapter 1 I System Calls 

Example: 
F i n d F i r s t  eq" 4EH 

Ids d x ,  pa thname 
mov C Y ,  a t t r i b u t e  
mov ah ,  F i n d F i r 5 t  
i n t  21 H 

132 



Chapter 1 I System Calls 

FindNext 

Find Next Matching File Function Call 4FH 

Finds the next matching entry in a directory. The current Disk 
Transfer Address must contain the block returned by the Find- 
First function call (4EH). 

Entry Conditions: 

AH = 4FH 

E xi t Conditions: 

Carry set: 
AX = error code 

Carry not set: 
No error. 

Error Returns: 

AX = 18 
No more files. There are no more files matching this 
pattern. 

Example: 
F i n d N e x t  eq" 4 F H  

;DTA c o n t a i n s  b l o c k  r e t u r n e d  b y  
; F i n d F i r s t  

mov ah, F i n d N e x t  
int 21 H 

133 



Chapter 1 I System Calls 

Getverify Flag 

Return Current Setting 
of Verify 

Function Call 54H 

Returns the current setting of the verify flag. 

Entry Conditions: 

AH = 54H 

Exit Conditions: 

AL = current verify flag value 
OOH = off 
OIH = on 

Error Returns: None. 

Example: 
G e t V e r i f y F l a g  e q "  5 4 H  

mov a h ,  G e t V e r i f y F l a g  
int 21 H 

134 



Chapter 1 I System Calls 

Rename 

Move a Directory Entry Function Call 56H 

Renames a file andlor moves it to  another directory. This is done 
by giving the file a new filename, path, or both. The drive for 
both paths must be the same. 

Entry Conditions: 

AH = 56H 
DS:DX = pointer to ASCIIZ pathname of existing file 
ES:DI = pointer to new ASCIIZ pathname 

Exit Conditions: 

Carry set: 
AX = error code 

Carry not set: 
No error. 

Error Returns: 

AX = 2 
File not found. The filename specified by DS:DX was not 
found. 

AX = 17 
Not same device. The source and destination are on different 
drives. 

Access denied: (1) the path specified in DS:DX was a direc- 
tory, (2) the file specified by ES:DI already exists or,@) the 
destination directory entry could not be created. 

AX = 5 

Example: 
Rename equ  56H 

I d s  d x ,  s o u r c e  
l e 5  d i ,  d e s t i n a t i o n  
mov ah ,  Rename 
I n t  21 H 

135 



Chapter 1 I System Calls 

FileTimes 

Get or Set a File’s Date 
and Time 

Function Call 57H 

Returns or sets the date and time of last write for a file 
handle. The date and time are not recorded until the file 
is closed. 

Entry Conditions: 

AH = 57H 
AL = function code 

QQH = get date and time 
Q1H = set date and time 

BX = file handle 
CX = time to be set ( i f  AL = 01H) 
DX = date to be set ( i f  AL = 01H) 

E xi t Conditions: 

Carry set: 

Carry not set: 
AX = error code 

If AL = 00 H on entry: 
CX = time of last write 
DX = date of last write 

Error Returns: 

AX = 1 

AX = 6 
Invalid function. The function passed in AL was not 0 or 1. 

Invalid handle. The handle passed in BX was not currently 
open. 

Example: 
F i l e T i m e s  equ 5 7 H  

m o v  a l ,  f u n c t i o n  
m o v  

m o v  c x ,  t i m e  
m o v  d x ,  d a t e  
m o v  a h ,  F i l e T i m e s  
i n t  21 H 

b x , h a n d l e  i f a l  = 1 t h e n t h e n e x t 2 a r e  
; m a n d a t o r y  

136 



Chapter 1 I System Calls 

Macro Definitions for MS-DOS System Call 

Examples 
Interrupts 
t e r m i n a t e m a c r o  

i n t  20H 
endm 

;PROGRAM-TERMINATE 
; i n t e r r u p t 2 0 H  
;ABS-DISK-READ 

a b s - d i s k - r e a d  macro  d i 5 k , b u f f e r , n u m - s e c t o r s , f i r 5 t - 5 e c t o r  
mov a 1 , d i s k m o v  b x , o f f s e t b u f f e r  
mov c x , n u m - s e c t o r s  
mov d x , f i r 5 t _ s e c t o r  
i n t  25H ; i n t e r r u p t 2 5 H  

endm 
POP f 

;ABS-DISK-WRITE 
a b s - d i 5 k - w r i t e  macro  d i s k , b u f f e r , n u m - s e c t o r s , f i r s t - s e c t o r  

mov a 1 , d i s k  
mov c x , n u m _ s e c t o r 5  
mov d x , f i r s t - s e c t o r  
i n t  26H 

endm 
POPf 

stay-resident macro l a s t - i n s t r u c  
mov d x , o f f 5 e t  l a s t - i n s t r u c  
i n c  dx 
i n t  27H 
endm 

Functions 
t e r m i n a t e - p r o g r a m  m a c r o  

x o r  ah ,ah  
i n t  21 H 
endm 

r e a d - k b d - a n d - e c h o  macro  
mov a h ,  1 
i n t  21 H 
endm 

display-char macrocharacter 
mov d 1 , c h a r a c t e r  
mov a h , 2  
i n t  21 H 
endm 

; i n t e r r u p t 2 6 G H  

;STAY-RESIDENT 

; i n t e r r u p t 2 7 H  

TERMINATE PROGRAM 
f u n c t i o n  E E H  

READ-KED-AND-ECHO 
f u n c t i o n 0 l H  

;DISPLAY-CHAR 

; f u n c t i o n  E2H 

137 



Chapter 1 I System Calls 

aux-input m a c r o  
mov ah,3 
int 21 H 
endm 

aux-output macro character 
mov d1,character 
m o v  ah,4 
int 21 H 
endm 

print-char macro character 
mov d1,character 
mov ah,5 
int 21 H 
endm 

dir-console-iomacro switch 
mov d l  ,switch 
mov ah,6 
int 21 H 
endm 

dir-console-input m a c r o  
mov ah,7 
int 21 H 
endm 

read-kbdmacro 
mov ah,8 
int 21 H 
endm 

displaymacro string 
mov dx,offiet string 
mov ah ,9 
int 21 H 
endm 

get-string macro limit,string 
mov dx,offsetstring 
mov 5tring,limit 
mov ah,0AH 
int 21H 
endm 

check-kbd-status m a c r o  
mov ah,0BH 
int 21 H 
endm 

flush-and-read-kbd macro switch 
mov a1,switch 
mov ah,0CH 
int 21 H 
endm 

;AUX-INPUT 
;function03H 

;AUX-OUTPUT 

:function 04H 

;PRINT-CHAR 

;function 05H 

;DIR-CONSOLE-IO 

; f u n c t i o n K H  

;DIR-CONSOLE-INPUT 
;function 07H 

;READ-KED 
;function 08H 

;DISPLAY 

:function 09H 

;GET-STRING 

;function 0AH 

;CHECK-KED-STATUS 
:functionBBH 

;FLUSH-AND-READ-KBD 

;function 0 C H  

138 



Chapter 1 I System Calls 

r e s e t - d i 5 t  m a c r o d i s k  
mov a h ,  EDH 
i n t  21 H 
endm 

s e l e c t - d i 5 k m a c r o d i s k  
mov d l , d l s k [ - 6 5 1  
mov ah,EEH 
i n t  21 H 
endm 

o p e n m a c r o f c b  
mov d x , o f f s e t f c b  
mow ah,EFH 
i n t  21 H 
endm 

c l o s e m a c r o f c b  
mov d x , o f f s e t  f c b  
mov a h , l l H  
i n t  21 H 
endm 

s e a r c h - f i r s t  m a c r o f c b  
mov d x , o f f s e t f c b  
mov a h , l l H  
i n t  21 H 
endm 

s e a r c h - n e x t m a c r o f c b  
mow d x , o f f s e t f c b  
mov a h , l 2 H  
i n t  21 H 
endm 

d e l e t e m a c r o f c b  
mov d x , o f f s e t f c b  
mov a h , l 3 H  
i n t  21 H 
endm 

r e a d - s e q  macro  f c b  
mov d x , o f f s e t f c b  
mov a h , l 4 H  
i n t  21 H 
endm 

w r i t e - s e q m a c r o f c b  
m o v  d x , o f f s e t f c b  
mov a h , l 5 H  
i n t  21 H 
endm 

;RESETDISK 
; f u n c t i o n  EDH 

;SELECT-DISK 

; f u n c t i o n E E H  

;OPEN 

; f u n c t i o n E F H  

;CLOSE 

; f u n c t i o n  I E H  

;SEARCH-FIRST 

; F u n c t i o n  11H 

;SEARCH-NEXT 

: f u n c t i o n  12H 

;DELETE 

: f u n c t i o n  13H 

;READ-SEQ 

; f u n c t i o n  14H 

;WRITE-SEQ 

: f u n c t i o n  15H 

139 



Chapter 1 I System Calls 

c r e a t e m a c r o f c b  
mov d x , o f f s e t  f c b  
mov a h , l 6 H  
i n t  21 H 
endm 

rename m a c r a  fcb,newname 
mov d x , o f f s e t f c b  
mov a h , l 7 H  
i n t  21 H 
endm 

c u r r e n t - d i s k  m a c r o  
mov a h , l S H  
i n t  21 H 
endm 

s e t - d t a m a c r o b u f f e r  
mov d x , o f f s e t b u f f e r  
mov a h , l A H  
i n t  21 H 
endm 

r e a d - r a n m a c r o  f c b  
mov d x , o f f s e t f c b  
mov a h , 2 l H  
i n t  21 H 
endm 

w r i t e - r a n m a c r o f c b  
mov d x , o f f s e t f c b  
mov ah,22H 
i n t  21 H 
endm 

f i l e - s i z e m a c r o f c b  
mov d x , o f f s e t f c b  
mov ah,23H 
i n t  21 H 
endm 

5 e t - r e l a t i v e - r e c o r d  macro  f c b  
mov d x , o f f s e t f c b  
mov a h  ,24H 
i n t  21 H 
endm 

; C R E A T E  

; f u n c t i o n  16H 

;RENAME 

; f u n c t i o n  17H 

; C U R R E N T - D I S K  
; f u n c t i o n  19H 

; S E T - D T A  

; f u n c t i o n  1 A H  

; R E A D - R A N  

; f u n c t i o n  21 H 

; W R I T E - R A N  

; f u n c t i o n 2 2 H  

; F I L E - S I Z E  

; f u n c t i o n  23H 

; S E T - R E L A T I V E - R E C O R D  

; f u n c t i o n 2 4 H  

140 



Chapter 1 I System Calls 

s e t - v e c t o r  macro  i n t e r r u p t  , s e g - a d d r , o f f - a d d r  
p u s h  d5 
mov a x , s e g - a d d r  
mov d5 , a x  
mov d x , o f f - a d d r  
mov a 1 , i n t e r r u p t  
mov ah ,25H 
int 21 H 
P O P  d5 
endm 

r a n - b l o c k - r e a d  m a c r o  f c b , c o u n t , r e c - s i z e  
mov d x , o f f s e t f c b  
mov c x  , c o u n t  
mov w o r d p t r  f c b [ E E H l , r e c - s i z e  
mov ah ,27H 
i n t  21 H 
endm 

r a n - b l o c k - w r i t e m a c r o  f c b , c o u n t , r e c _ 5 i z e  
mov d x , o f f s e t f c b  
moc c x  , c o u n t  
mov w o r d p t r  f c b [ E E H I , r e c - 5 i z e  
mov a h ,  28H 
i n t  21 H 
endm 

p a r s e m a c r o  s t r i n g , f c b  
mov 5 i , o f f s e t  s t r i n g  
mov d i , o f f s e t f c b  
pu5h  e5 
p u s h  d5 
P O P  e5 
mov a l ,EFH 
mov ah,29H 
int 21 H 
POP e5 
endm 

g e t - d a t e m a c r o  
mov a h  ,2AH 
int 21 H 
endm 

5 e t _ d a t e m a c r o y e a r , m o n t h , d a y  
mov c x , y e a r  
mov dh ,mon th  
mov d l  , day  
rnov ah,2BH 
i n t  21 H 
endm 

;SET-VECTOR 

; f u n c t i o n 2 5 H  

;RAN-BLOCK-READ 

; f u n c t i o n 2 7 H  

;RAN-BLOCK-WRITE 

; f u n c t i o n  28H 

;PARSE 

; f u n c t i o n  29H 

;GET-DATE 
; f u n c t i o n 2 A H  

;SET-DATE 

; f u n c t i o n 2 B H  

141 



Chapter 1 I System Calls 

get-timemacro 
mov ah,2CH 
int 21 H 
endm 

;GET-T IME 
;function 2CH 

;SET-TIME 

set-time macro h o u r , m i n u t e 5 , 5 e c o n d s , h u n d r e d t h s  
mov ch,hour 
mov c1,minutes 
mov dh,seconds 
mov d1,hundredths 
mov ah,2DH ;function2DH 
int 21 H 
endm 

verifymacro switch 
mov allswitch 
mov ah ,2EH 
int 21 H 
endm 

General 

;VERIFY 

:functionPEH 

mov-string macro s o u r c e , d e s t i n a t i o n , n u m _ b y t e s  

push 
mov 
mov 
assume 
mov 
mov 
mov 

assume 
POP 
endm 

rep movs 

convert macro 
local 
imp 

table db 
start: mov 

xor 
xor 
div 
mov 
mov 
mov 
mov 
mov 
mov 
endm 

;MOV-STRING 
e5 
ax,ds 
es,ax 
es:data 
si,offset source 
di,offset destination 
cx,num-bytes 
es:destination,source 
es:nothing 
e5 

value,base,destination ;CONVERT 
table,start 
start 
" 0  123456789ABCDEF" 
a1 ,value 
ah,ah 
bx, bx 
base 
bl,al 
al,cs:table[bxl 
destination,al 
bl ,ah 
al,cs:tableIbxl 
destinationIl1,al 

142 



Chapter 1 I System Calls 

- c o n v e r t - t o - b i n a r y  macro  s t r l n q , n u m b e r , v a l u e  

l o c a l  

I m p  
t e n  db 
s t a r t :  mov 

x o r  
mov 
x o r  

c a l c :  x o r  
mov 
sub  

C m P  

p u s h  
dec 

m u l t :  mu1 
l o o p  

P O P  
no-mu1 t : a d d  

1 nc 

endm 

11 

l o o p  

c o n v e r t - d a t e  macro  
mov 
mov 
s h r  
mov 
a n d  
x o r  
mov 
s h r  
a d d  
endm 

;CONVERT-TO-BINRRY 
ten,start,calc,mult,no-mult 
s t a r t  
1 0  
v a l u e ,  0 
c x , c x  
c1,number 

a x  , a x  
a l , s t r i n g [ s i l  
a1,48 
c x , 2  
n o - m u l t  

5 1 , 5 1  

c x  
c x  
c s : t e n  
m u l t  

v a l u e ,  a x  

c a l c  

c x  

5 1  

d i r - e n t r y  ;CONVERTDATE 
d x , w o r d p t r  d i r _ e n t r y [ 2 5 1  
c1 ,5  
d l  , c l  
d h , d i r _ e n t r y [ 2 5 1  
d h , l f h  
c x , c x  
c l , d l r _ e n t r y [ 2 6 1  
c l , l  
c x , 1 9 8 0  

Extended Example of MS-DOS System Calls 
t i t l e D l S K D U M P  
z e r o  
d i s k - B  
s e c t o r s - p e r - r e a d  
c r  
b l a n k  
p e r i o d  
t i l d e  

INCLUDE 

143 



Chapter 1 I System Calls 

s u b t t l  DATASEGMENT 

page  + 
d a t a  

i n p u t - b u f f e r  
o u t p u t - b u f f e r  

s t a r t - p r o m p t  
s e c t o r s - p r o m p t  
c o n t i n u e - p r o m p t  
h e a d e r  
e n d - s t r i n g  

c r l f  
t a b l e  

t e n  
s i x t e e n  

s t a r t - s e c t o r  
s e c t o r - n u m  
s e c t o r - n u m b e r  
s e c t o r s - t o - d u m p  
s e c t o r s - r e a d  

b u f f e r  
m a r - l e n g t h  
c u r r e n t - l e n g t h  
d i g l t 5  

d a t a  

segment  

db  
db  
db 
db  
db  
db  
db 
db 

db 
db  

db 
db 

dw 
l a b e l  
dw 
dw 
dw 

l a b e l  
db  
l b  
db 

ends 

s u b t t l  STACKSEGMENT 

s t a c k  segment  

s t a c  k-t op l a b e l  
s t a c k  ends  

s u b t t l  M A C R O S  
page  + 

page  + 

dw 

INCLUDE 8:CALLS.MAC 
;BLANK L INE 
b l a n k - l i n e  macro  

l o c a l  
p u s h  
c a l l  
mov 

p r i n t - i  t :  d i  s p l a y  
l o o p  

POP 
endm 

9 dup ( 5 1 2  dup(7) )  
77 dup( "  "1  
BDH,BAH,"$" 
" S t a r t  at s e c t o r :  S "  
"Number o f  s e c t o r s :  t"  
"RETURN to c o n t i n u e  t"  
" R e l a t i v e  s e c t o r  S "  
BDH, 0 A H  , B A H ,  07H ,"ALL DONE$" 
;DELETETHIS 
0DH,0AH,"$" 
" 8 1  23456789ABCDEFt" 

10  
1 6  

1 
b y t e  
0 
s e c t o r s - p e r - r e a d  
0 

b y t e  
0 
0 
5 d u p ( 7 )  

s t a c k  
100 d u p ( 7 )  
w o r d  

number 
p r i n t - i t  

c l e a r - l i n e  
C Y  ,number 
o u t p u t - b u f f e r  
p r i n t - i t  

c x  

c x  

144 



Chapter 1 I System Calls 

s u b t t l  ADDRESSABILITY 

Page + 
c o d e  segment  

s t a r t :  

s u b t t l  PROCEDURES 

Page + 

; PROCEDURES 
;READ-DISK 
r e a d - d i s  k 

g e t - s e c t o r :  

d o n e :  
r e a d - d i s k  
;CLEARLINE 
c l e a r - l i n e  

m o v e - b l a n k :  

c l e a r - l i n e  

;PUT-BLANK 
p u t - b l a n k  

assume 
mov 
mov 
mov 
mov 
mov 

Imp  

p r o c ;  

C m P  

J l e  
mov 
mov 
mov 
mov 

C m P  

]'e 
mov 
p u s h  
i n t  

POPf 
POP 
sub  
a d d  
mov 
x o r  
r e t  
endp  

p r o c ;  
p u s h  
mov 
x o r  
mov 
i nc 

POP 
r e t  
endp  

l o o p  

p r o c ;  
mov 
i n c  
r e t  

c s : c o d e , d s : d a t a , s s : s t a c k  
a x  , d a t a  
ds , a x  
a x ,  5 t a c k  
5 5 , a x  
s p , o f  f s e t  s t a c k - t o p  

m a i n - p r o c e d u r e  

5 e c t o r s _ t o _ d u m p , z e r o  
done 
b x , o f f s e t  i n p u t - b u f f e r  
d x , s t a r t - s e c t o r  
a 1 , d i s k - b  
c x , s e c t o r s - p e r - r e a d  
c x , s e c t o r s - t o - d u m p  
g e t - s e c t o r  
c x , s e c t o r s - t o - d u m p  

d i  s k - r e a d  
c x  

c x  
s e c t o r s - t o - d u m p , c x  
s t a r t - s e c t o r , c x  
s e c t o r s - r e a d , c x  
5 1 , 5 1  

c x  
cxJ7  
bx ,bx  
o u t p u t - b u f f e r [ b x l , "  " 

bx  
mov-b I a n  k 
c x  

o u t p u t  b u f f e r [ d i l , "  " 

d i  

145 



Chapter 1 I System Calls 

put-blank 

setup 

setup 

;CONVERT-LINE 
convert-line 

convert-it: 

display-ascii: 

printable: 

non-printable: 

convert-line 

;DISPLAY-SCREEN 

endp 

proc ; 
display start-prompt 
get-5 t r ing 
di5play crlf 
c o n v e r t - t o - b i n a r y d i g i t s ,  
current-length,start-5ector 
mov ax,start-sector 
mov sector-number,ax 
di splay sectors-prompt 
get-string 4,buffer 
convert-to-binary digits, 
current-length, sec tors-to-dump 

4 ,  buffer 

ret 
endp 

proc; 
push 
mov 
mov 
convert 

inc 
add 
call 

sub 
mov 
add 
mov 
CmP 

CmP 
19 
mov 
mov 
inc 
inc 

POP 
ret 
endp 

loop 

11 

loop 

proc; 
push 
call 

mov 

cx 
di ,9 
cx,16 
i n p u t - b u f f e r [ s i l , s i x t e e n ,  
output-buffer[dil 

di , 2  
put-blank 
convert-it 
5 1 ,  16 
cx, 16 
dl , 4  
output-buffer[dil,period 
input-buffer[sil,blank 
non-printable 
input-buffer[5il,tilde 
non-printable 
dl,input-buffer[sil 
output-buffer[dil,dl 

di 
display-a5cii 

51 

51 

cx 

cx 
clear-line 

cx, 17 

146 



Chapter 1 I System Calls 

; I  WANTlength header 

;minus 1 in cx 
dec cx 

xor di,di 

mov output-buffer[dil,al 
inc di 
loop move-header ; F I X  THIS' 

convert sector-num[ll,sixteen, 

add di , Z  
convert sector num,sixteen, 

display output-buf fer 
blank-line 2 
mov cx, 16 

call convert-line 
display output-buffer 
loop dump-it 
blank-line 3 
display continue-prompt 
get-char-no-echo 
display crlf 
POP cx 
r e t  

mov-header: mov al,header[dil 

output-buffertdil 

output-buffer[dil 

dump-it : call clear-line 

display-screen endp 

; ENDPROCEDURES 
subttlMA1N PROCEDURES 
Page + 
main-procedure: call setup 
check-done: CmP sectors-to-dump,zero 

1 n9 a1 I-done 
call read-disk 
mov cx,sectors-read 

display-it: call display-screen 
call display-screen 
i nc sector-number 
loop display-it 
Imp check-done 

all-done: display end-st r ing 
get-char-no-echo 

code ends 
end start 

~ 

147 









Chapter 2 

MS-DOS CONTROL BLOCKS 
AND WORK AREAS 

File Control Block (FCB) 
The Program Segment Prefix includes room for two FCBs at off- 
sets 5CH and 6CH. The system call descriptions refer to uno- 
pened and opened FCBs. An unopened FCB is one that contains 
only a drive specifier and filename, which can contain wild card 
characters (* and ?). An opened FCB contains all fields filled by 
the Open File function call (Function OFH) or the Create File 
function call (16H). 

The user program must set bytes 00H-0FH and 20H-24H. The 
operating system sets bytes 10H-1FH; they must not be altered 
by the user program. 

The fields of the FCB are as follows: 

Offset Function 
OOH Drive number. 1 means Drive A, 2 means Drive 

B, etc. If the FCB is to  be used to create or open 
a file, this field can be set to  0 to  specify the de- 
fault drive; the Open File function call (Function 
0FH) sets the field to the number of the default 
drive. 

Filename. Consists of eight characters, left-justi- 
fied and padded (if necessary) with blanks. If you 
specify a reserved device name (such as LST), do 
not include the optional colon. 

Filename extension. Consists of three characters, 
left-justified and padded (if necessary) with 
b l anks .  Th i s  field can  be a l l  b lanks  (no 
extension). 

Current block. This is the number of the block 
(group of 128 records) that contains the current 
record. This field and the current record field (off- 
se t  20H) a re  used for sequential reads and 
writes. This field is set to  0 by the Open File 
function call. 

01H-08H 

09H-OBH 

0CH-ODH 

151 



Chapter 2 I MS-DOS Control Blocks and Work Areas 

OEH-OFH Logical record size in bytes. Set to 128 by the 
Open File Function call. If the record size is not 
128 bytes, you must set this field after opening 
the file. 

File size in bytes. The first word of this field is 
the low-order part of the size. 

Date of last write. The date the file was created 
or last updated. The year, month, and day are 
mapped into two bytes as follows: 

10H-13H 

14H- 15H 

Offset 15H 

Offset 14H 
M M D D D D D  

Time of last write. The time the file was created 
or last updated. The hour, minutes, and seconds 
are mapped into two bytes as follows: 

lFr7p 15 14 13 1 H  12 I H  11 (I 10 / M  9 1; 

1: 1 6  1 5  14 1 3  1 2  11 1 0  I 
16H- 17H 

Offset 16H 
M M M S S S S S  

1 7  1 6  1 5  1 4  1 3  1 2  1 1  1 0  I 
18H-1FH Reserved for system use. 

20H Current record number. This is one of 128 rec- 
ords (0-127) in the current block. This field and 
the current block field (offset 0CH) are used for 
sequential reads and writes. It is not initialized 
by the Open File function call. You must set it 
before doing a sequential read or write to the 
file. 

152 



Chapter 2 I MS-DOS Control Blocks and Work Areas 

21H-24H Relative record number. This is the number of 
currently selected record relative to  the begin- 
ning of the file (starting with 0). This field is not 
initialized by the Open File function call. You 
must set it before doing a random read or write 
to  the file. 

If the record size is less than 64 bytes, both 
words of this field are used. If the record size is 
64 bytes or more, only the first three bytes are 
used. Note that if you use the FCB at offset 5CH 
of the Program Segment Prefix, the last bytes of 
the relative record field is also the first byte of 
the unformatted parameter area that starts at  
offset 80H (the default Disk Transfer Address). 

Extended File Control Block 
The Extended File Control Block is used to  create or search for 
files in the disk directory that have special attributes. It adds 
the following 7-byte prefix to  the FCB: 

Byte Function 

-7 

-6 to -2 Reserved. 

Flag byte. Contains FFH to indicate this is an 
extended FCB. 

-1 Attribute byte. See the section on the disk direc- 
tory under “MS-DOS Disk Allocation’’ for the 
meaning of this byte. 

If an extended FCB is referenced by a function call, the register 
containing the reference should point to the first byte of the 
prefix. 

Program Segment 
When you enter an external command or execute a program 
through the EXEC function call, MS-DOS determines the lowest 
available free memory address to use as the start of the pro- 
gram. This area is called the Program Segment. 

153 



Chapter 2 I MS-DOS Control Blocks and Work Areas 

At offset 0 within the Program Segment, MS-DOS builds the 
256-byte Program Segment Prefix control block. At offset 200H, 
EXEC loads the program. An .EXEfile with minalloc and max- 
alloc both set to  zero is loaded as high as possible. 

The program returns from EXEC by one of four methods: 

0 By a long jump to offset 0 in the Program Segment Prefix. 

0 By issuing an INT 20H with CS:O pointing at the PSP 

0 By issuing an INT 21H with AH = 0 and with CS:0 pointing 

0 By a long call to  location 50H in the Program Segment Prefix 

All programs must ensure the CS register contains the segment 
address of the Program Segment Prefix when using any of these 
methods except function call 4CH. For this reason, function call 
4CH is the preferred method. 

All four methods result in transferring control to  the program 
that issued the EXEC. During this returning process, interrupt 
vectors 22H, 23H, and 24H (Terminate Address, CONTROL-C 
Exit Address, and Fatal Error Abort Address) are restored from 
the values saved in the Program Segment Prefix of the terminat- 
ing program. Control is then given to the terminate address. If 
this is a program returning to COMMAND.COM, control trans- 
fers to its resident portion. If a batch file was in process, it is 
continued. Otherwise, COMMAND.COM performs a checksum 
on the transient portion, reloads it if necessary, issues the sys- 
tem prompt, and waits for you to type the next command. 

When a program receive control, the following conditions are in 
effect: 

For all programs: 

The segment address of the passed environment is contained 

The environment is a series of ASCII strings (totaling less 

at the PSP, or with AH = 4CH 

with AH = 0 or 4CH 

at offset 2CH in the Program Segment Prefix. 

than 32K) in the form: 

NAME = parameter 

154 

http://COMMAND.COM
http://COMMAND.COM


Chapter 2 I MS-DOS Control Blocks and Work Areas 

Each string is terminated by a byte of zeroes, and the set of 
strings is terminated by another byte of zeroes. The environ- 
ment built by the command processor contains at least a 
COMSPEC = string. (The parameters on COMSPEC define 
the path used by MS-DOS to locate COMMAND.COM on 
disk.) The last PATH and PROMPT commands issued will 
also be in the environment, along with any environment 
strings defined with the MS-DOS SET command. 

The environment that is passed is a copy of the invoking pro- 
cess environment. If your application uses a “keep process” 
concept, you should be aware that the copy of the environment 
passed to you is static. It will not change even if subsequent 
SET, PATH, or PROMPT commands are issued. 

0 Offset 50H in the Program Segment Prefix contains code to 
call the MS-DOS function dispatcher. By placing the desired 
function call number in AH, a program can issue a far call to 
offset 50H to invoke an MS-DOS function, rather than issuing 
an Interrupt 21H. Since this is a call and not an interrupt, 
MS-DOS may place any code appropriate to  making a system 
call a t  this position. This makes the process of calling the 
system portable. 

0 The Disk Transfer Address (DTA) is set to  80H (the default 
DTA in the Program Segment Prefix). 

0 File control blocks at 5CH and 6CH are formatted from the 
first two parameters typed when the command was entered. If 
either parameter contained a pathname, then the correspond- 
ing FCB contains only a valid drive number. The filename 
field will not be valid. 

An unformatted parameter area at 81H contains all the char- 
acters typed after the command (including leading and 
embedded delimiters). The byte a t  80H is set to  the number of 
characters. If the <, >, or parameters are typed on the com- 
mand line, they (and the filenames associated with them) do 
not appear in this area. Redirection of standard input and 
output is transparent to applications. 

Offset 6 (one word) contains the number of bytes available in 
the segment. 

155 

http://COMMAND.COM


Chapter 2 I MS-DOS Control Blocks and Work Areas 

Register AX indicates whether or not the drive specifiers (en- 
tered with the first two parameters) are valid, as follows: 

AL = FFH if the first parameter contained an invalid 
drive specifier (otherwise, AL = 00H). 

AH = FFH if the second parameter contained an invalid 
drive specifier (otherwise, AH = 00H). 

Offset 2 (one word) contains the segment address of the first 
byte of unavailable memory. Programs must not modify ad- 
dresses beyond this point unless the addresses were obtained 
by allocating memory via the Allocate Memory function call 
(48H). 

For executable (.EXE) programs: 

0 Registers DS and ES are set to  point to  the Program Segment 

0 Registers CS, IP, SS, and SP are set to  the values passed by 

For executable (.COM) programs: 

0 All four segment registers contain the segment address of the 
initial allocation block that starts with the Program Segment 
Prefix control block. 

0 All of user memory is allocated to the program. If the pro- 
gram invokes another program through the EXEC function 
call (4BH), it must first free some memory through the Set 
Block function call (4AH) to provide space for the program 
being executed. 

0 The Instruction Pointer (IP) is set to 100H. 

The Stack Pointer register is set to  the end of the program’s 
segment. The segment size at  offset 6 is reduced by lOOH to 
allow for a stack of that size. 

0 A word of zeroes is placed on top of the stack. This is to allow 
a user program to exit to  COMMAND.COM by doing a RET 
instruction last. This assumes the user has maintained stack 
and code segments for the program. 

Prefix. 

MS-LINK. 

156 

http://COMMAND.COM


Chapter 2 I MS-DOS Control Blocks and Work Areas 

Program Segment Prefix 
Following is an illustration of the Program Segment Prefix. Pro- 
grams must not alter any part of the PSP below offset 5CH. 

OOH 

08H 

10H 

2CH 

5CH 

6CH 

80H 

Environmental pointer 

Used by MS-DOS 

Formatted Parameter Area 1 
formatted as standard unopened FCB 

Formatted Parameter Area 2 
formatted as standard unopened FCB 
(overlaid if FCB at 5CH is opened) 

Unformatted Parameter Area 
(default Disk Transfer Area) 

157 

INT 20 H 
End of Long call to 
allocation Reserved MS-DOS functior 
block dispatcher ( 5  

Terminate address CONTROL-C exi 
(IP,CS) address (IP) 

bytes) 

CONTROL-C 
Exit address 
(CS) 

Hard error exit address 
(IP,CS) 









Chapter 3 

MS-DOS INITIALIZATION AND 
COMMAND PROCESSOR 

When the system is reset or started with an MS-DOS disk in 
Drive A, the ROM (Read Only Memory) bootstrap gains control. 
The boot sector is read from the disk into memory and given 
control. The IOSYS and MSDOS.SYS files are then read into 
memory, and the boot process begins. 

The Command Processor 
The command processor supplied with MS-DOS (file COM- 
MAND.COM) consists of three parts: 

0 A resident portion resides in memory immediately following 
MSDOS.SYS and its data area. This portion contains routines 
to  process Interrupts 23H (CONTROL-C Exit Address) and 
24H (Fatal Error Abort Address), as well as a routine to re- 
load the transient portion, if needed. All standard MS-DOS er- 
ror handling is done within this portion of COMMAND.COM, 
including the display of error messages and processing the 
Abort, Retry, or Ignore message replies. 

An initialization portion follows the resident portion. During 
start-up, the initialization portion is given control. It contains 
the AUTOEXEC file processor setup routine. The initializa- 
tion portion determines the segment address at  which pro- 
grams can be loaded. It i s  overlaid by the first program 
COMMAND.COM loads because it is no longer needed. 

e A transient portion is loaded at  the high end of memory. This 
part contains all of the internal command processors and the 
batch file processor. The transient part of the command pro- 
cessor produces the system prompt (such as A>), reads the 
command from the keyboard (or batch file), and causes the 
command to be executed. For external commands, it builds a 
command line and issues the EXEC function call (function 
call 4BH) to load and transfer control to  the program. 

161 









Chapter 4 

MS-DOS DISK ALLOCATION 

The MS-DOS area on a diskette is formatted as follows: 

First copy of File Allocation 
Table - variable size 

Second copy of File Allocation 
Table - variable size (optional) 

Additional copies of File Allocation 
Table - variable size (optional) 

I File data area I 
Space for a file in the data area is not pre-allocated. The space is 
allocated one cluster a t  a time, as needed. A cluster consists of 
one or more consecutive sectors. All of the clusters for a file are 
“chained” together in the File Allocation Table (FAT). 

A second copy of the FAT is usually kept for consistency. If the 
disk should develop a bad sector in the first FAT, the second can 
be used. This prevents loss of data due to  an unusable disk. 

The clusters are arranged on disk to  minimize head movement 
for multi-sided media. All of the space on a track (or cylinder) is 
allocated before moving on to the next track. This is done by al- 
locating all the sectors sequentially on the lowest-numbered 
head, then all the sectors on the next head, and so on until all 
sectors on all heads of the track are used. The next sector to  use 
will be sector 1 on head 0 of the next track. 

For diskettes, the following table can be used: 

Number Sectors FAT size Directory Directory Sectors 
of Per in Sectors Entries per 

1 8 1 4 64 1 
2 8 1 7 112 2 
1 9 2 4 64 1 
2 9 2 7 112 2 

Sides Track Sectors Cluster 

165 



Chapter 4 I MS-DOS Disk Allocation 

MS-DOS Disk Directory 
FORMAT builds the root directory for all disks. Its location on 
disk and the maximum number of entries are dependent on the 
media. 

Since directories other than the root directory are regarded as 
files by MS-DOS, there is no limit to the number of entries they 
may contain. 

All directory entries are 32 bytes in length, and are in the fol- 
lowing format: 

OOH-07H Filename. 8 characters, left-aligned and padded, if 
necessary, with blanks. The first byte of this field 
indicates the file status as follows: 

OOH 

E5H 

2EH 

The directory entry has never been used. 
This is used to limit the length of directory 
searches, for performance reasons. 

The directory entry has been used, but the 
file has been erased. 

The entry is for a directory. If the second 
byte is also 2EH, then the cluster field con- 
tains the cluster number of this directory’s 
parent directory (0000H if the parent direc- 
tory is the root directory). Otherwise, bytes 
OIH through OAH are all spaces, and the 
cluster field contains the cluster number of 
this directory. 

Any other character is the first character of a filename. 

08H-0AH Filename extension. 

OB File Attribute. The attribute byte is mapped as 
follows: 

OIH File is marked read only. An attempt to 
open the file for writing using the Open 
File function call (function call 3DH) re- 
sults in an error code returned. This value 
can be used along with other values below. 
Attempts to delete the file with the Delete 
File (13H) or Delete a Directory Entry 
(41H) function call will also fail. 

166 



Chapter 4 I MS-DOS Disk Allocation 

02H Hidden file. The file is excluded from nor- 
mal directory searches. 

System file, The file is excluded from nor- 
mal directory searches. 

The entry contains the volume label in the 
first 11 bytes. The entry contains no other 
usable information (except date and time of 
creation) and may exist only in the root 
directory. 

10H The entry defines a sub-directory, and is 
excluded from normal directory searches. 

20H Archive bit. The bit is set to  1 whenever the 
file has been written to and closed. 

Note: The system files (I0.SYS and MSDOS.SYS) 
are marked as read only, hidden, and system files. 
Files can be marked hidden when they are created. 
Also, the read only, hidden, system, and archive at- 
tributes may be changed through the Change Attri- 
butes function call (43H). 

04H 

08H 

OCH-15H Reserved. 

16H-17H Time the file was created or last updated. The 
hour. minutes. and seconds are mapped into two 
ytes as followS: 

Offset 17H 

Offset 16H 
M M M  
7 1 6  1 5  

H M M M  
4 1: 1 2  I 1  I 0  I 

where: 

HHHHH 
MMMMMM 
59) 
SSSSS 
increments 

is the binary number of hours (0-23) 
is the binary number of minutes (0- 

is  the  b inary  number of two-second 

167 



Chapter 4 I MS-DOS Disk Allocation 

18H-19H Date the file was created or last updated. The year, 
month, and day are  mapped into two bytes as 
follows: 

Offset 19H 
Y Y Y Y Y M  1; 1; 1 5  1 4  1 3  1 2  11 1 0  1 

1 7  1 6  1 5  1 4  1; 1; 1: 1: 1 
Offset 18H 
M M M D  

where: 

YYYYYYY is 0-119 (1980-2099) 
MMMM is 1-12 
DDDDD is 1-31 

Starting cluster; the cluster number of the first 
cluster in the file. 

Note that the first cluster for data space on all 
disks is cluster 002. 

The cluster number is stored with the least signifi- 
cant byte first. 

Note: Refer to  the section “How to Use the File Al- 
location Table” for details about converting cluster 
numbers to  logical sector numbers. 

File size in bytes. The first word is the low-order 
part of the size. 

1AH-1BH 

1CH-1FH 

File Allocation Table (FAT) 
This section is included for system programmers who wish to  
write installable device drivers. It explains how MS-DOS uses 
the File Allocation Table to  convert the cluster numbers of a file 
to  logical sector numbers. The driver is then responsible for lo- 
cating the logical sector on disk. Programs must use the MS- 
DOS file management function calls for accessing files. Pro- 
grams that access the FAT are not guaranteed to be upwardly 
compatible with future releases of MS-DOS. 

168 



Chapter 4 I MS-DOS Disk Allocation 

The File Allocation Table contains a 12-bit entry (1.5 bytes) for 
each cluster on the disk. The first two FAT entries map a portion 
of the directory; these FAT entries indicate the size and format of 
the disk. 

The second and third bytes always contain FFH. 

The third FAT entry, which starts at offset 04H, begins the 
mapping of the data area (cluster 002). Files in the data area 
are not always written sequentially on the disk. The data area is 
allocated one cluster at a time, skipping over clusters already al- 
located. The first free cluster found will be the next cluster allo- 
cated, regardless of i ts  physical location on the disk. This 
permits the most efficient utilization of disk space because clus- 
ters made available by the erasing of files can be allocated for 
new files. 

Each FAT entry contains three hexadecimal characters. Any of 
the following combinations is possible: 

000 

FF7 

The cluster is unused and available. 

The cluster has a bad sector in it. MS-DOS will not 
allocate such a cluster. CHKDSK counts the num- 
ber of bad clusters for its report. These bad clusters 
are not part of any allocation chain. 

Indicates the last cluster of a file. 

Any other characters that are the cluster number of 
the next cluster in the file. The cluster number of 
the first cluster in the file is kept in the file’s direc- 
tory entry. 

The File Allocation Table always begins on the first sector after 
the reserved sectors. If the FAT is larger than one sector, the 
sectors are contiguous. Two copies of the FAT are usually written 
for data integrity. The FAT is read into one of the MS-DOS buff- 
ers whenever needed (open, read, write, etc.). For performance 
reasons, this buffer is given a high priority to  keep it in memory 
as long as possible. 

FF8-FFF 

xxx 

169 



Chapter 4 I MS-DOS Disk Albcation 

How to Use the File Allocation Table 

To find the starting cluster of the file, use the directory entry. 
Next, to  locate each subsequent cluster of the file: 

1. 

2. 

3. 

4. 

5. 

Multiply the cluster number just used by 1.5 (each FAT en- 
try is 1.5 bytes long). 
The whole part of the product is an offset into the FAT, 
pointing to the entry that maps the cluster just used. That 
entry contains the cluster number of the next cluster of the 
file. 

Use a MOV instruction to  move the word at the calculated 
FAT offset into a register. 

If the last cluster used was an even number, keep the low- 
order 12 bits of the register by ANDing it with FFF; other- 
wise, keep the high-order 12 bits by shifting the register 
right 4 bits with a SHR instruction. 

If the resultant 12 bits are FF8H-FFFH, the file contains 
no more clusters. Otherwise, the 12 bits contain the cluster 
number of the next cluster in the file. 

To convert the cluster number to  a logical sector number (rela- 
tive sector, such as that used by Interrupts 25H and 26H and by 
DEBUG): 

1. 

2. 

3. 

Subtract 2 from the cluster number. 

Multiply the result by the number of sectors per cluster. 

Add to this result the logical sector number of the begin- 
ning of the data area. 

170 







Chapter 5 

DEVICE DRIVERS 

A device driver is a binary file containing code to manipulate 
hardware devices and provide consistent interfacing to MS-DOS. 
The driver has a special header that identifies the device, defines 
the strategy and interrupt entry points, and describes various 
attributes of the device. 

The .COM file must not use 100H as the driver ORG. Because it 
does not use the Program Segment Prefix, the device driver file 
must have an origin of zero (ORG 0 or no ORG statement). 

Types of Devices 
There are two kinds of devices: character devices and block 
devices. 

Character devices are designed to perform serial character I/O. 
They have names such as CON, AUX, and CLOCK. You open 
channels (handles or FCBs) for I/O operations to  them. 

Block devices are system disk drives. They perform random 110 
in pieces called blocks (usually the physical sector size). These 
devices are not named as the character devices are, and therefore 
cannot be opened directly. They are identified instead by the 
drive letters (A, B, C, etc.). 

Block devices can consist of one or more units with a single 
driver responsible for one or more disk drives. For example, block 
device driver ALPHA may be responsible for Drives A, B, C, and 
D (four units (0-3) are defined and are identified by four drive 
letters). The position of the driver in the list of all drivers deter- 
mines which units correspond to which drive letters. If driver 
ALPHA is the first first block driver in the device list, and it de- 
fines 4 units (0-3), then they will be A, B, C, and D. If BETA is 
the second block driver and defines three units (0-2), then they 
will be E, F, and G, and so on. The theoretical limit is 63 block 
devices, but after 26 the drive letters are unconventional (such 
as I, /, and 7. 

173 



Chapter 5 I Device Drivers 

Device Headers 
A Device Header is required at the beginning of a device driver 
and looks like this: 

WORD Pointer to next Device Header 
(Must be set to -1) 

WORD Attributes 
Bit 15 = 0 if block device 
Bit 15 = 1 if character device 
If bit 15 is 1: 

Bit 0 = 1 if current sti device 
Bit 1 = 1 if current sto device 
Bit 2 = 1 if current NUL device 
Bit 3 = 1 if current CLOCK device 
Bit 4 = 1 if special 
Bit 5-12 Reserved; must be set to 0 

Bit 14 is the IOCTL bit 
Bit 13 is the NON IBM FORMAT bit 

WORD 

WORD 

Pointer to device strategy entry point 

Pointer to device interrupt entry point 

3 BYTES Character device name field. Character devices 
set a device name. For block devices the first byte 
is the number of units. 

Vote that the device entry points are words. They must be offsets 
from the same segment number used to point to this table. For 
example, if XXX:YYY points to the start of this table, then 
XXX:strategy and XXX:interrupt are the entry points. 

Pointer To Next Device Header Field 

The pointer to the next Device Header field is a double word field 
(offset followed by segment) that is set by MS-DOS to point at 
the next driver in the system list a t  the time the device driver is 
loaded. It is important that this field be set to -1 prior to load 
(when it is on the disk as a file) unless there is more than one 
device driver in the file. If there is more than one driver in the 
file, the first word of the double word pointer should be the offset 
of the next driver’s Device Header. 

174 



Chapter 5 I Device Drivers 

If there is more than one device driver in the .COM file, the last 
driver in the file must have the pointer to the next Device 
Header field set to -1. 

Attribute Field 
The attribute field tells the system whether this device is a block 
or character device (bit 15). Most other bits are used to give se- 
lected character devices certain special treatment. (Note that 
these bits mean nothing on a block device.) For example, suppose 
you have a new device driver that you want to  be the standard 
input and output. Besides installing the driver, you must tell 
MS-DOS that you want your new driver to  override the current 
standard input and standard output (the CON device). You do 
this by setting bits 0 and 1 to 1. You could also install a new 
CLOCK device by setting that attribute bit. 

Although there is a NUL device attribute, the NUL device can- 
not be reassigned. This attribute exists so that MS-DOS can de- 
termine if the NUL device is being used. 

The NON IBM FORMAT bit applies only t o  block devices and af- 
fects the operation of the BUILD BPB (Bios Parameter Block) de- 
vice call. (Refer to  “MEDIA CHECK and BUILD BPB” later in 
this chapter for further information on this call.) 

The IOCTL bit has meaning on both character and block devices. 
This bit tells MS-DOS whether the device can handle control 
strings (via the IOCTL function call, Function 44H). 

If a driver cannot process control strings, it should initially set 
the IOCTL bit to 0. This tells MS-DOS to return an error if an 
attempt is made (via Function 44H) to send or receive control 
strings to this device. A device which can process control strings 
should initialize the IOCTL bit to 1. For drivers of this type, 
MS-DOS will make calls to  the IOCTL input and output device 
functions to  send and receive IOCTL strings. 

The IOCTL functions allow data to  be sent and received by he 
device for its own use (for example, to  set baud rate, stop bits, 
and form length), instead of passing data over the device channel 
as does a normal read or write. It is up to the device to  interpret 
the passed information, but it must not be treated as a normal I/ 
0 request. 

175 



Chapter 5 I Device Drivers 

Strategy and Interrupt Routines 
These two fields are the pointers to  the entry points of the strat- 
egy and interrupt routines. They are word values, so they must 
be in the same segment as the Device Header. 

Name Field 

This 8-byte field contains the name of a character device or the 
number of units of a block device. If it is a block device, the 
number of units can be put in the first byte. This is optional, be- 
cause MS-DOS will fill in this location with the value returned 
by the driver’s INIT code. Refer to  “Installation of Device Driv- 
ers” in this chapter for more information. 

Creating a Device Driver 
In order to  create a device driver that MS-DOS can install, you 
must write a binary file with a Device Header at the beginning 
of the file. Note that for device drivers, the code should not be 
originated at 100H, but rather at 0. The link field (pointer to  
the next Device Header) should be -1, unless there is more than 
one device driver in the file. The attribute field and entry points 
must be set correctly. 

If it is a character device, the name field should be filled in with 
the name of that character device. The name can be any legal 8- 
character filename. 

MS-DOS always processes installable device drivers before han- 
dling the default devices, so to install a new CON device, simply 
name the device CON and set the standard input device and 
standard output device bits in the attribute word on a new CON 
device. The scan of the device list stops on the first match, so the 
installable device driver takes precedence. 

Because MS-DOS can install the driver anywhere in memory, 
care must be taken in any far memory references. You should not 
expect that your driver will always be loaded in the same place 
every time. 

176 



Chapter 5 I Device Drivers 

Installation of Device Drivers 

MS-DOS allows new device drivers to  be installed dynamically at  
boot time. This is accomplished by INIT code in the BIOS, which 
reads and processes the CONFIG.SYS file. 

MS-DOS calls a device driver by making a far call to  its strat- 
egy entry point, and passes the information describing the func- 
tions of the device driver in a Request Header. 

This structure allows you to program an interrupt-driven device 
driver. For example, you may want to  perform local buffering in a 
printer. 

MS-DOS passes a pointer to the Request Header in ES:BX. This 
is a fixed-length header, followed by data pertinent to  the opera- 
tion being performed. Note that it is the device driver’s responsi- 
bility t o  preserve the machine s ta te  (for example, save all  
registers on entry and restore them on exit). There is enough 
room on the stack to  do about 20 pushes. If more stack space is 
needed, the driver should set up its own stack. 

Request Header 
BYTE Length of record 

BYTE Unit code 

Length in bytes of this Request Header 

The subunit the operation is for (minor device) 
(no meaning on character devices) 

I BYTE Command code I 
I WORD Status I 
18 bytes RESERVED I 
Unit Code Field 

The unit code field identifies which unit in your device driver the 
request is for. For example, if your device driver has 3 units de- 
fined, then the possible values of the unit code field would be 0, 
1, and 2. 

177 



Chapter 5 I Device Drivers 

Command Code Field 

The command code field in the Request header can have the fol- 
lowing values: 

Command Function 

Code 

0 
1 
2 
3 
4 
5 

6 
7 
8 
9 

10 
11 
1.2 

INIT 
MEDIA CHECK (block only, NOP for character) 
BUILD BPB (block only, NOP for character) 
IOCTL input (called only if IOCTL bit is 1) 
INPUT (read) 
NON-DESTRUCTIVE INPUT NO WAIT (character 
devices only) 
INPUT STATUS (character devices only) 
INPUT FLUSH (character devices only) 
OUTPUT (write) 
OUTPUT (write) with verify 
OUTPUT STATUS (character devices only) 
OUTPUT FLUSH (character devices only) 
IOCTL output (called only if IOCTL bit is 1) 

MEDIA CHECK and BUILD BPB 

MEDIA CHECK and BUILD BPB are used with block devices 
only. 

MS-DOS calls MEDIA CHECK first for a drive unit. MS-DOS 
passes its current media descriptor byte (refer to the section 
“Media Descriptor Byte” later in this chapter). MEDIA CHECK 
returns one of the following results: 

0 Media Not Changed - current DBP (Disk Parameter Block) 
and media byte are OK. 

0 Media Changed - Current DPB and media are wrong. MS- 
DOS invalidates any buffers for this unit and calls the device 
driver to build the DPB with media byte and buffer. 

0 Not Sure - If there are dirty buffers (buffers with changed 
data, not yet written to disk) for this unit, MS-DOS assumes 
the DBP and media byte are OK (media not changed). If noth- 
ing is dirty, MS-DOS assumes the media has changed. It in- 
validates any buffers for the unit and calls the device driver to 
build the BPB with media byte and buffer. 

178 



ChaDter 5 I Device Drivers 

E 
R RESERVED U 
R 

0 Error - If an error occurs, MS-DOS sets the error code 

MS-DOS will call BUILD BPB under the following conditions: 

0 If “Media Changed” is returned 

0 If “Not Sure” is returned and there are no dirty buffers 

The BUILD BPB call also gets a pointer to a one-sector buffer. 
What this buffer contains is determined by the NON IBM FOR- 
MAT bit in the attribute field. If the bit is zero (device is IBM 
format-compatible), then the buffer contains the first sector of 
the first FAT. The FAT ID byte is the first byte of this buffer. 

Note: The BPB must be the same, as far as location of the FAT is 
concerned, for all possible media because this first FAT sector 
must be read before the actual BPB is returned. If the NON 
IBM FORMAT bit is set, then the pointer points to one sector of 
scratch space (which may be used for anything). 

accordingly. 

B D  
0 ERROR CODE (bit 15 on) 

S N  

179 



Chapter 5 I Device Drivers 

07H Unknown Media 
08H Sector Not Found 
09H Printer Out of Paper 
OAH Write Fault 
OBH Read Fault 
OCH General Failure 

Bit 9 is the busy bit, which is set only by status calls. 

For output on character devices: If bit 9 is 1 on return, a 
write request (if made) would wait for completion of a current re- 
quest. If it is 0, there is no current request, and a write request 
(if made) would start immediately. 

For input on character devices with a buffer: If bit 9 is 1 on 
return, a read request (if made) would go to the physical device. 
If it is 0 on return, then there are characters in the device buffer 
and a read would return quickly. It also indicates that the user 
has typed something. MS-DOS assumes that all character de- 
vices have an input type-ahead buffer. Devices that do not have a 
type-ahead buffer should always return busy = 0 so that MS- 
DOS will not continuously wait for something to get into a buffer 
that does not exist. 

One of the functions defined for each device is INIT. This routine 
is called only once, when the device is installed. The INIT rou- 
tine returns a location (DS:DX), which is a pointer to the first 
free byte of memory after the device driver (similar to “Keep 
Process”). This pointer method can be used to  delete initializa- 
tion code after i t  has been used in order to save space. 

Block devices are installed the same way and also return a first 
free byte pointer as described above. Additional information is 
also returned, such as the number of units. 

The number of units determines logical device names. For exam- 
ple, if the current maximum logical device letter is F at  the time 
of the install call and the INIT routine returns 4 as the number 
of units, then the units will have logical names G, H, I and J. 
This mapping is determined by the position of the driver in the 
device list and the number of un.its on the device (stored in the 
first byte of the device name field). 

180 



Chapter 5 I Device Drivers 

A pointer to a BPB (BIOS Parameter Block) pointer array is also 
returned. There is one table for each unit defined. These blocks 
will be used to build an internal DOS data structure for each of 
the units. The pointer passed to the DOS from the driver points 
to  an array ofnword pointers to BPBs, where n is the number of 
units defined. In this way, if all units are the same, all of the 
pointers can point to  the same BPB, in order to save space. 

Note that this array must be protected (below the free pointer 
set by the return), since an internal DOS structure will be built 
starting at the byte pointed to  by the free pointer. The sector 
size defined must be less than or equal to  the maximum sector 
size defined at default BIOS INIT time. If it is not, the install 
will fail. 

The last thing that INIT of a block device must pass back is the 
media descriptor byte. This byte means nothing to MS-DOS, but 
is passed to devices so that they know what parameters MS-DOS 
is currently using for a particular drive unit. 

Block devices may take several approaches; they may be dumb or 
smart. A dumb device defines a unit (and therefore an internal 
DOS structure) for each possible media drive combination. For 
example, unit 0 = drive 0 single side, unit 1 = drive 0 double 
side. For this approach, media descriptor bytes mean nothing. A 
smart device allows multiple media per unit. In this case, the 
BPB table returned at INIT must define space large enough to 
accommodate the largest possible media supported. Smart driv- 
ers will use the media descriptor byte to  pass information about 
what media is currently in a unit. 

Function Call Parameters 
All strategy routines are called with ES:BX pointing to  the Re- 
quest Header. The interrupt routines get the pointers to  the Re- 
quest Header from the queue in which they are stored by the 
strategy routines. The command code in the Request Header 
tells the driver which function to  perform. 

All DWORD pointers are stored offset first, then segment. 

181 



Chapter 5 I Device Drivers 

INIT 
Command code = 0 

ES:BX 

1 13-BYTE Request Header I 
I BYTE Number of units I 

DWORD Break address 
DWORD Pointer to BPB array 

(Not set by character devices) 

The number of units, break address, and BPB pointer are set by 
the driver. On entry, the DWORD to be set to the BPB array (on 
block devices) points to  the character following ‘ = ’ on the line in 
CONFIGSYS that loaded this device. This allows drivers to  scan 
CONFIGSYS invocation line for arguments. 

If there are multiple device drivers in a single .COM file, the 
ending address returned by the last INIT called will be used by 
MS-DOS. It is recommended that all device drivsrs in a single 
.COM file return the same ending address. 

MEDIA CHECK 
CommandCode = 1 

ES:BX 

1 13-BYTE Request Header I 
I T E  Media descriptor from DPB I 

BYTE Returned 

In addition to  setting the status word, the driver must set the 
return byte to one of the following: 

-1 Media has been changed 
0 Don’t know if media has been changed 
1 Media has not been changed 

If the driver can return -1 or 1 (by having a door-lock or other 
interlock mechanism), MS-DOS performance is enhanced be- 
cause MS-DOS does not need to re-read the FAT for each direc- 
tory access. 

182 



Chapter 5 I Device Drivers 

BUILD BPB (BIOS Parameter Block) 
Command code = 2 

ES:BX 

13-BYTE Request Header 

BYTE Media descriptor from DPB 

DWORD transfer address 
(Points to one sector worth of scratch space or first sector of 
FAT depending on the value of the NON IBM FORMAT bit) 

DWORD pointer to  BPB 

If the NON IBM FORMAT bit of the device is set, then the 
DWORD transfer address points to a one-sector buffer, which can 
be used for any purpose. If the NON IBM FORMAT bit is 0, 
then this buffer contains the first sector of the first FAT and the 
driver must not alter this buffer. 

If IBM compatible format is used (NON IBM FORMAT BIT = 
0), the first sector of the first FAT must be located at  the same 
sector on all possible media. This is because the FAT sector will 
be read before the media is actually determined. Use this mode 
if all you want is to  read the FAT ID byte. 

In addition t o  sett ing s ta tus  word, the driver must set the 
pointer to the BPB on return. 

The information relating to  the BPB for a particular piece of me- 
dia is kept in the boot sector for the media. The following chart 
illustrates the format of the boot sector: 

183 



Chapter 5 I Device Drivers 

I 3-BYTE Near JUMP to boot code 

I 8 BYTES OEM name and version I 
WORD Bytes per sector 

BYTE Sectors per allocation unit 

I WORD Reserved sectors I 
BYTE Number of FATS 

P 
B WORD Number of root directory entries 

WORD 

BYTE Media descriptor 

WORD Number of FAT sectors 

Number of sectors in logical image 

~~ ~ 7 WORD Sectors per-track 

WORD Number of heads 

WORD Number of hidden sectors 

The three words at the end (sectors per track, number of heads, 
and number of hidden sectors) are intended to help the BIOS un- 
derstand the media. Sectors per track may be redundant (could 
be calculated from total size of the disk). Number of heads is 
useful for supporting different multi-head drives which have the 
same storage capacity but different numbers of surfaces. Number 
of hidden sectors may be used to  support drive-partitioning 
schemes. 

Media Descriptor Byte 
The last two digits of the FAT ID are called the media descriptor 
byte. Currently, the media descriptor byte has been defined for a 
few media types, including 5-114" and 8" standard disks. 

Although these media bytes map directly to  FAT ID bytes (which 
are constrained to the 8 values F8H-FFH), media bytes can, in 
general, be any value in the range OOH-FFH. 

184 



Chapter 5 I Device Drivers 

READ or WRITE 
Command codes = 3,4,8,9, and 12 

ES:BX (Including IOCTL) 

13-BYTE Request Header 

BYTE Media descriptor from DPB 

I DWORD Transfer address I 
1 WORD Bytehector count I 
WORD Starting sector number ~ 

(Ignored on character devices) 

In addition to setting the status word, the driver must set the 
sector count to the actual number of sectors (or bytes) trans- 
ferred. No error check is performed on an IOCTL I/O call. The 
driver must correctly set the return sector (byte) count to  the ac- 
tual number of bytes transferred. 

The following applies to Hock device drivers: 

Under certain circumstances the BIOS may be asked to perform 
a write operation of 64K bytes that seems to be a “wrap-around” 
of the transfer address in the BIOS I/O packet. This request 
arises because of an optimization added to the write code in MS- 
DOS. It occurs only on user writes that are within a sector size 
of 64K bytes on files “growing” past the current end of file. It is 
allowable for the BIOS to ignore the balance of the write that 
wraps around, if i t  so chooses. For example, a write of 1000OH 
bytes’ worth of sectors with a transfer address of XXXX:l could 
ignore the last two bytes. A user program can never request I/O 
of more than FFFFH bytes and cannot wrap around (even to 0) 
in the transfer segment. Therefore, in this case, the last two 
bytes can be ignored. 

185 



ChaQter 5 I Device Drivers 

NON-DESTRUCTIVE READ NO WAIT 
Commandcode = 5 

ES:BX 

13-BYTE Request Header 

BYTE Read from device 

If the character device returns busy bit = 0 (characters in 
buffer), then the next character that would be read is returned. 
This character is not removed from the input buffer (hence the 
term non-destructive read). This call allows MS-DOS to look 
ahead one input character. 

STATUS 
Command codes = 6 and 10 

ES:BX 

13-BYTE Request Header 

All the driver must do is set the status word and the busy bit. 

FLUSH 
Command codes = 7 and 11 

ES:BX 

13-BYTE Request Header 

The FLUSH call tells the driver to  flush (terminate) all pending 
requests. This call is used to flush the input queue on character 
devices. 

186 



Chapter 5 I Device Drivers 

The CLOCK Device 
To allow for a real time clock board to be integrated into the 
system for TIME and DATE, there is a special device (deter- 
mined by the attribute word) called the CLOCK device. The 
CLOCK device defines and performs functions like any other 
character device. Most functions will be: “set done bit, reset er- 
ror bit, return.” 

When a read or write to this device occurs, exactly 6 bytes are 
transferred. The first two bytes are a word, which is the count of 
days since 1-1-80. The third byte is minutes, the fourth hours, 
the fifth 1/100 seconds, and the sixth seconds. Reading the 
CLOCK device gets the date and time; writing to it sets the 
date and time. 

187 









Chapter 6 

BIOS SERVICES 

Device I/O Services 
Introduction 
The BIOS (Basic Input/Output System) is the lowest-level inter- 
face between other software (application programs and the oper- 
a t ing system itself) and the hardware. The BIOS routines 
provide various device input/output services, as well as boot strap 
and print screen and other services. Some of the services that 
BIOS provides are not available through the operating system, 
such as the graphics routines. 

All calls to  the BIOS are made through software interrupts (that 
is, by means of assembly language “INT x” instructions). Each I/ 
0 device is provided with a software interrupt, which transfers 
execution to the routine. 

Entry parameters to  BIOS routines are normally passed in CPU 
registers. Similarly, exit parameters are generally returned from 
these routines to  the caller in CPU registers. To insure BIOS 
compatibility with other machines, the register usage and con- 
ventions are, for the most part, identical. 

The following pages describe the entry and exit requirements for 
each BIOS routine. To execute a BIOS call, load the registers as 
indicated under the “Entry Conditions.” (Register AH will con- 
tain the function number in cases where a single interrupt can 
perform more than one operation.) Then issue the interrupt 
given for the call. The example, the following can be used to read 
a character from the keyboard: 

MOV A H ,  0 
I N T  1 6 H  

Upon return, AL contains the ASCII character and AH the key- 
board scan code. 

Note: All registers except those used to return parameters to  
the caller are saved and restored by the BIOS routines. 

191 



Chawter 6 I BIOS Services 

Below is a quick reference list of software interrupts for all de- 
vice IiO and system status services. 

Service 

Keyboard 

Video Display 

Serial Communications 

Line Printer 

System Clock 

Floppy Disk 

Equipment 

Memory Size 

Software Interrupts 

16 hex (22 dec) 

10 hex (16 dec) 

14 hex (20 dec) 

17 hex (23 dec) 

1A hex (26 dec) 

13 hex (19 dec) 

11 hex (17 dec) 

12 hex (18 dec) 

192 



Chapter 6 I BIOS Services 

Keyboard 
16 hex (22 dec) 

Function Summary: 

AH = 0: Read Keyboard (destructive with wait) 
AH = 1: Scan Keyboard (nondestructive, no wait) 
AH = 2: Get Current Shift Status 

Function Descriptions: 

Read Keyboard 

Read the next character typed at the keyboard. Return the AS- 
CII value of the character and the keyboard scan code, removing 
the entry from the keyboard buffer (destructive read). 

Entry Conditions: 
AH = 0 

Exit Conditions: 

AL = ASCII value of character 
AH = keyboard scan code 

Scan Keyboard 

Set up the zero flag (Z flag) to  indicate whether a character is 
available to  be read from the keyboard or not. If a character is 
available, return the ASCII value of the character and the key- 
board scan code. The entry remains in the keyboard buffer (non- 
destructive read). 

Entry Conditions: 

AH = 1 

Exit Conditions: 

Z = no character is available 
NZ = a character is available, in which case: 

AL = ASCII value of character 
AH = keyboard scan code 

193 



Chapter 6 I BIOS Services 

Get Shift Status 

Return the current shift status. 

Entry Conditions: 

AH = 2 

Exit Conditions: 

AL = current shift status (bit settings: set = true, reset = false) 
bit 0 = RIGHT SHIFT key depressed 
bit 1 = LEFT SHIFT key depressed 
bit 2 = CTRL (control) key depressed 
bit 3 = ALT (alternate mode) key depressed 
bit 4 = SCROLL state active 
bit 5 = NUMBER lock engaged 
bit 6 = CAPS lock engaged 
bit 7 = INSERT state active 

194 



Chapter 6 I BIOS Services 

Video Display 
These routines provide an interface to the video display, which is 
the output half of the console (CON) device. MS-DOS considers 
the video display to  be the default standard output (STDOUT) 
device. 

Software Interrupts: 

10 hex (16 dec) 

Function Summary: 

Control Routines: 
AH = 0: Set CRT Mode 
AH = 1: Set Cursor Type 
AH = 2: Set Cursor Position 
AH = 3: Get Cursor Position 
AH = 4: Read Light Pen Position 
AH = 5: Select Active Page 
AH = 6: Scroll Up 
AH = 7: Scroll Down 

AH = 8: Read AttributeKharacter 
AH = 9: Write AttributeICharacter 
AH = 10: Write Character Only' 

AH = 11: Set Color Palette 
AH = 12: Write Dot 
AH = 13: Read Dot 

Other Routines: 
AH = 14: Write TTY'" 
AH = 15: Get CRT Mode 
AH = 16: Set Palette Registers 

Text Routines: 

Graphics Routines: 

"Screen width is determined by the mode previously set. Some 
"control" characters (ASCII 00H-1FH) perform the usual spe- 
cial terminal function. These include (but are not limited to) 
BEL (07H), BS (08H), LF (0AH), and CR (0DH). 

195 



Chawter 6 I BIOS Services 

Function Descriptions: 

Set CRT Mode 
Entry Conditions: 
AH = 0 
AL = mode value, as follows: 

Alpha Modes 
AL = 0: 40x25 black and white 
AL = 1: 40x25 color 
AL = 2: 80x25 black and white 
AL = 3: 80x25 color 

AL = 4: 320x200 color graphics 
AL = 5: 320x200 black and white graphics with 4 

AL = 6: 640x200 black and white graphics with 2 

AL = 7: Reserved 

AL = 8: 160x200 color graphics with 16 colors 
AL = 9: 320x200 color graphics with 16 colors 
AL = A: 640x200 color graphics with 4 colors 

Note: If the high order bit of the AL register is 1 

Graphics Modes 

shades 

shades 

Additional Modes 

then the video buffer is not cleared. 

196 



Chapter 6 I BIOS Services 

Set Cursor Type 

Set the cursor type and attribute. 

Entry Conditions: 

AH = 1 
CH = bit values: 

bits 5-6: 
bits 4-0 = start line for cursor within character cell 

bits 4-0 = end line for cursor within character cell 
CL = bit values: 

Set Cursor Position 

Write (set) cursor position. 

Entry Conditions: 

AH = 2 
BH = page number (must be 0 for graphics modes) 
DH = row (0 = top row) 
.DL = column (0 = leftmost column) 

Get Cursor Position 

Read (get) cursor position. 

Entry Conditions: 

AH = 3 
BH = page number (must 

Exit Conditions: 

0 for gral; ics modes) 

DH = row of current cursor position (0 = top row) 
DL = column of current cursor position (0 = leftmost column) 
CH = cursor type currently set [ l ] :  

bits 5-6: 

Setting bits 5 and 6 to  00, produces a visible, blinking cur- 
sor. Any other values result in an invisible cursor. 

bits 4-0 = start line for cursor within character cell 

CL = bit values: 
bits 4-0 = end line for cursor within character cell 

See Set Cursor Type (AH = 1) above. 

197 



Chapter 6 I BIOS Services 

Read Light Pen Position 

Reads light pen position. 

Entry Conditions: 

AH = 4 
Exit Conditions: 

AH = 0: light pen switch not activated 
AH = 1: light pen values in registers 

DH = row of current light pen position 
DL = column of current light pen position 
CH = raster line (0-199) 
BX = pixel column (0-319 or 0-639) 

Select Active Page 

Select active display page (valid in alpha mode only). 

Entry Conditions: 

A H = 5  
AL = 0 through 7: new page value for modes 0, 1 
AL = 0 through 3: new page value for modes 2 ,3  
AL = 80H: read CRTICPU page registers 
AL = 81H: set CPU page register to value in BL 
AL = 82H: set CRT page register to value in BH 
AL = 83H: set both CRT and CPU page registers in CL and BH 

Exit Conditions: 

bit 7 of AL = 1: BH = contents of CRT page register 

Scroll Up 
Scroll active page up. 

Entry Conditions: 

AH = 6 
AL = number of lines to scroll (0 means blank entire window) 
CH = row of upper left corner of scroll window 
CL = column of upper left corner of scroll window 
DH = row of lower right corner of scroll window 
DL = column of lower right corner of scroll window 
BH = attribute (alpha modes) or color (graphics modes) to be 

BL = contents of CPU page register 

used on blank line 

198 



ChaDter 6 I BIOS Services 

Attributes: 

Color modes: 

for e gr ound color : 

bit 0 = blue 
bit 1 = green 
bit 2 = red 

bit 3 = intensity 
All bits off = black 

background color: 

bit 4 = blue 
bit 5 = green 
bit 6 = red 

bit 7 = blink 
All bits off = white 

Scroll Down 
Scroll active page down. 

Entry Conditions: 

AH = 7 
AL = number of lines to scroll (0 means blank entire window) 
CH = row of upper left corner of scroll window 
CL = column of upper left corner of scroll window 
DH = row of lower right corner of scroll window 
DL = column of lower right corner of scroll window 
BH = attribute (alpha modes) or color (graphics modes) to be 

used on blank line. See Scroll. Up (AH =6) for attribute 
values and Set Color Palette (AH = 11) for color values. 

Read Attribute or Color/Character 

Read a character and its attribute or color at the current cursor 
position. 

Entry Conditions: 

AH = 8 
BH = display page number (not used in graphics modes) 

~ 

199 



Chapter 6 i BIOS Services 

Exit Conditions: 

AL = character read 
AH = attribute of character (alpha modes only) 

Write Attribute or ColoriCharacter 

Write a character and its attribute or color at  the current cursor 
position. 

Entry Conditions: 

AH = 9 
BH = display page number (not used in graphics modes) 
CX = number of characters to write 
AL = character to write 
BL = attribute of character (for alpha modes) or color of character 

(for graphics modes; if bit 7 of BL is set, the color of the 
character is XOR’ed with the color value). See Scroll Up 
(AH = 6) for attribute values and Set Color Palette (AH = 
11) for color values. 

Write Character Only 
Write character only at  current cursor position. 

Entry Conditions: 

AH = 10 
BH = display page number (valld for alpha modes only 
CX = number of characters to write 
AL = character to write 
BL = color of character (graphics mode) 

Set Color Palette [31 
Select the color palette. 

200 



Chapter 6 I BIOS Services 

Entry Conditions: 

AH = 11 
BH = 0 Set background color (0-15) to  color value in BL. 

BL = color value (0 = black I 1 = blue 1 2  = green 1 3  = 
cyan I 4 = red I 5 = magenta I 6 = yellow 1 7  = gray I 8  = 
dark gray I 9 = light blue I 10 = light green I 11 = light 
cyan I 12 = light red I 13 = light magenta I 14 = light yel- 
low 115 = white) 

or 
BH = 1 Set default palette ot the number (0 or 1) in BL. 

In black and white modes: 

BL = 0: 1 for white 
BL = 1: 1 for black 

In 4 color graphics modes: 

BL = 0 (1 = green I 2 = red I 3 = yellow) 
BL = 1 (1 = cyan 1 2  = magenta 1 3  = white) 

In 16 color graphics modes: 

(1 = blue I 2 = green I 3 = cyan I 4 = red I 5 = magenta 
I 6 = yellow I 7 = light gray I 8 = dark gray I 9  = light 
blue I 10 = light green I 11 = light cyan I 12 = light red I 
13 = light magenta 114 = yellow 115 = white) 

Note: For alpha modes palette entry 0 indicates the border color. 
For graphics mode palette entry 0 indicates the border and the 
background color. 

Write Dot 
Write a pixel (dot). 

Entry Conditions: 
AH = 12 
DX = row number 
CX = column number 
AL = color value (When bit 7 of AL is set, the resultant color 

value of thz dot is the exclusive OR of the current dot color 
value and the value in AL.) 

201 



Chawter 6 I BIOS Services 

Read Dot 
Read a pixel (dot). 

Entry Conditions: 

AH = 13 
DX = row number 
CX = column number 

Exit Conditions: 

AL = color value of dot read 

Write TTY 
Write a character in teletype fashion. (Control characters are in- 
terpreted in the normal manner.) 

Entry Conditions: 

AH = 14 
AL = character to write 
BL = foreground color (graphics mode) 

Get CRT Mode 

Get the current video mode. 

Entry Conditions: 

AH = 15 

Exit Conditions: 

AL = current video mode; see Set CRT Mode (AH = 0) above for 
values 

AH = number f columns on screen 
BH = current active display page 

Set Palette Registers 

Sets palette registers. 

202 



Chapter 6 I BIOS Services 

Entry Conditions: 

AH = 16 
AL = 0 Set palette register 

BL = number of the palette register (0-15) to set 
BH = color value to store 

AL = 1 Set border color register 

AL = 2 Set palette color value to  store and border registers 
BH = color value to store 

ES:DX :points to  a 17 byte list. 
bytes 0-15 = values for palette registers 0-15 
byte 16 = value for the border register 

Note: CS,SS,DS,ES,BX,CX,DX are preserved. 

203 



Chawter 6 I BIOS Services 

I BaudRate I Parity I Stop Bits I Word Length I 
000 = 110 baud x0 = none 0 = 1 sb 10 = 7 bits 
001 = 150 baud 01 = odd 1 = 2 sb 11 = 8 bits 
010 = 300 baud 11 = even 
011 = 600 baud 
100 = 1200 baud 
101 = 2400 baud 
110 = 4800 baud 
111 = 9600 baud 
Exit Conditions: 

AX = RS-232 status; see Get Current Comm Status (AH = 3) 
following 

204 



Chapter 6 I BIOS Services 

Transmit Character 

Transmit (output) the character in AL (which is preserved). 

Entry Conditions: 

AH = 1 
AL = character to transmit 
DX = port number (0 or 1) 

Exit Conditions: 

AH = RS-232 status; see Get Current Comm Status (AH = 3) 
below (If bit 7 is set, the routine was unable to  transmit 
the character because of a timeout error.) 

Receive Character 

Receive (input) a character in AL (wait for a character, if neces- 
sary). On exit, AH will contain the RS-232 status, except that 
only the error bits (1,2,3,4,7) may be set; the timeout bit (7), if 
set, indicates that data set ready was not received. Thus, AH is 
non-zero only when an error occurred. 

Entry Conditions: 

AH = 2 
DX = port number (0 or 1) 

Exit Conditions: 

AL = character received 
AH = RS-232 status; see Get Current Comm Status (AH =3) 

Get Current Comm Status 

Read the communication status into AX. 

Entry Conditions: 

AH = 3 
DX = port number (0 or 1) 

hP1nii) 

205 



Chapter 6 I BIOS Services 

Exit Conditions: 

AH = RS-232 status, as follows (set = true): 
bit 0 = data ready 
bit 1 = overrun error 
bit 2 = parity error 
bit 3 = framing error 
bit 4 = break detect 
bit 5 = transmitter holding register empty 
bit 6 = transmitter shift register empty 
bit 7 = timeout occurred 

bit 0 = delta clear to  send 
bit 1 = delta data set ready 
bit 2 = trailing edge ring detector 
bit 3 = delta receive line signal detect 
bit 4 = clear to  send 
bit 5 = data set ready 
bit 6 = ring indicator 
bit '7 = receive line signal detect 

AL = modem status, as follows (set = true): 

206 



Chapter 6 I BIOS Services 

Line Printer 
These routines provide an interface to  the parallel line printer. 
This device is labeled “PRN’ in the device list maintained by the 
operating system. 

Software Interrupts: 

17 hex (23 dec) 

Function Summary: 

AH = 0: Print Character 
AH = 1: Reset Printer Port 
AH = 2: Get Current Printer Status 

Function Descriptions: 

Print Character 
Print a character. 

Entry Conditions: 

AH = 0 
AL = character to print 
DX = printer to be used (0-2) 

Exit Conditions: 

OAH = printer status; see Get Current Printer Status (AH = 2) 
below 
(If bit 0 is set, the character could not be printed be- 
cause of a timeout error.) 

Reset Printer Port 
Reset (or initialize) the printer port. 

Entry Conditions: 
AH = 1 
DX = printer to be used (0-2) 

Exit Conditions: 

AH = printer status/ see Get Current Printer Status (AH = 2) 
below 

207 



Chapter 6 I BIOS Services 

Get Current Printer Status 

Read the printer status into AH. 

Entry Conditions: 

AH = 2 
Exit Conditions: 

DX = printer to be used (0-2) 
AH = printer status, as follows (set = true): 

bit 0 = timeout occurred 
bit 1 = [unused] 
bit 2 = [unused] 
bit 3 = I/O error 
bit 4 = selected 
bit 5 = out of paper 
bit 6 = acknowledge 
bit 7 = not busy 

System Clock 
These routines provide methods of reading and setting the clock 
maintained by the system. This device is labeled CLOCK in the 
device list of the operating system. An interface for setting the 
multiplexer for audio source is also provided. 

Software Interrupts: 

1A hex (26 dec) 

Function Summary: 

AH = 0: Get Time Of Day 
AH = 1: Set Time Of Day 
AH = 80H: Set Up Sound Multiplexer 

Function Descriptions: 

Get Time Of Day 

Get (read) the time of day in binary format. 

Entry Conditions: 

AH = 0 

208 



Chawter 6 I BIOS Services 

E xi t Conditions: 

CX = high (most significant) portion of clock count 
DX = low (least significant) portion of clock count 
AL = 0 of the clock was read or written (via AH = 0,l) within 

Set Time Of Day 
Set (write) the time of day using binary format. 

Entry Conditions: 

AH = 1 
CX = high (most significant) portion of clock count 
DX = low (least significant) portion of clock count 

Sound Multiplexer 

Sets the multiplexer for audio source. 

Entry Conditions: 
AH = 80 
AL = source of sound 

the current 24-hour period; otherwise, AL > 0 

00 = 8253 channel 2 
02 = audio in 
03 = complex sound generator chip 

209 



Chapter 6 I BIOS Services 

Disk I/O Support for the Floppy Only 
System Configuration 
Software Interrupt: 

13 hex (19 dec) 

Function Summary: 

AH = 0: Reset Floppy Disk 
AH = 1: Return Status of Last Floppy Disk Operation 
AH = 2: Read Sectorb) from Floppy Disk 
AH = 3: Write Sector(s). to Floppy Disk 
AH = 4: Verify Sector(s) on Floppy Disk 
AH = 5: Format Track on Floppy Disk 

Function Descriptions: 

Reset Floppy Disk 

Reset the diskette system. Resets associated hardware and re- 
calibrates all diskette drives. 

Entry Conditions: 

AH = 0 

Exit Conditions: 

See “Exits From All Calls” below. 

Return Status of Last Floppy Disk Operation 

Return the diskette status of the last operation in AL. 

En try Conditions : 

AH = 1 

Exit Conditions: 

AL = status of the last operation; see “Exits Fkom All  Calls” be- 

Read Sectorb) from Floppy Disk 

Read the desired sectorb) from disk into RAM. 

low for values 

210 



Chawter 6 I BIOS Services 

Entry Conditions: 

AH = 2 
DL = drive number (0-1) 
DH = head number (0-1) 
CH = track number (0-39) 
CL = sector number (1 to 9)  
AL = sector count (1 to 9)  

ES:BX = pointer to disk buffer 

Exit Conditions: 

See “Exits From All Calls” below. 
AL = number of sectors read 

Write Sector(s) to Floppy Disk 
Write the desired sector(s) from RAM to disk. 

Entry Conditions: 

AH = 3 
DL = drive number (0-1) 
DH = head number (0-1) 
CH = track number (0-39) 
CL = sector number (1 to 9)  
AL = sector count (1 to 9) 
ES:BX = pointer to disk buffer 

Exit Conditions: 

See “Exits From All Calls” below. 
AL = number of sectors written 

Verify Sector(s) on Floppy Disk 
Verify the desired sectorb). 

En try Conditions: 

A H = 4  
DL = drive number (0-1) 
DH = head number (0-1) 
CH = track number (0-39) 
CH = sector number (1 to 9) 
AL = sector count (1 to 9) 

211 



Chapter 6 I BIOS Services 

Exit Conditions: 

See “Exits From All Calls” below. 
AL = number of sectors verified 

Format on Floppy Disk 
Format the desired track. 

Entry Conditions: 

AH = 5 
DL = drive number (0-1) 
DH = had number (0-1) 
CH = track number (0-39) 
CL = sector number (1 -9) 
ES:BX 5 pointer to a group of address fields for each track. Each 

address field is made up of 4 bytes. These are C, H, R, 
and N, where: 
C = track number 
H = head number 
R = sector number 
N = the number of bytes per sector (00 = 128, 01 = 

There is one entry for every sector on a given track. 
256,02 = 512,03 = 1024) 

E xi t Conditions : 

See “Exits From All Calls” below. 

Exits From All Calls: 
AH = Status of operation, where set = true: 

Error Code Condition 
01H Illegal Function 
02H Address Mark Not Found 
03H Write Protect Error 
04H Sector Not Found 
08H DMA Overrun 
09H 
10H 
20H Controller Failure 
40H Seek Failure 
80H 

[NC] = operation successful (AH = 0) 
[C] = operation failed (AH = error status) 

Attempt To DMA Across A 64K Boundary 
Bad CRC on Disk Read 

Device Timeout, Device Failed To Respond 

212 



Chmter 6 I BIOS Services 

Equipment 
This service returns the “equipment flag” (hardware configura- 
tion of the computer system) in the AX register. 

Software Interrupts: 

11 hex (17 dec) 

The “equipment flag” returned in the AX register has the mean- 
ings listed below for each bit: 

Reset = the indicated equipment is not in the system 
Set = the indicated equipment is in the system 

bit 0 diskette installed 
bit 1 not used 
bit 2,3 always = 11 
bit 4,5 initial video mode 

01 = 4 0 ~ 2 5 B W  
10 = 80x25BW 
number of diskette drives (only if bit 0 = 1) 
00 = 1 
01 = 2 
0 = dma present 
1 = no dma on system 

bit 6,7 

bit 8 

bit 9, 10, 11 number of RS 232 cards 
bit 12 game I/O attached 
bit 13 not used 
bit 14, 15 number of printers 

Memory Size 
This service returns the totai number of kilobytes of RAM in the 
computer system (contiguous starting from address 0) in the AX 
register. 

Software Interrupts: 

12 hex (18 dec) 

213 









Appendix A 

EXTENDED SCREEN AND 
KEYBOARD CONTROL 

This appendix describes how you can change graphics functions, 
move the cursor, and reassign the meaning of any key on the 
keyboard by issuing special character sequences from within 
your program. These sequences a re  valid only when issued 
through MS-DOS function calls 1, 2, 6, and 9. 

Before these special functions can be used, the extended screen 
and keyboard control device driver must be installed. To do this, 
place the following command in your CONFIG.SYS file (see Ap- 
pendix C in the MS-DOS Commands Reference Manual for infor- 
mation on the configuration file): 

DEVICE = ANSI.SYS 

In the control sequences described below, the following apply: 

The symbol “ * ” represents a decimal number that you 
provide, specified with ASCII characters. 

The default value is used when no explicit value. or a value 
of zero is specified. 

ESC represents the 1-byte code for ESC (1BH). For exam- 
ple, you could create ESC[5;9H under DEBUG as follows: 

E100 1B “[5;9H” 

Any ESC sequences not recognized by this driver will be 
passed on to the screen intact. 

217 



Appendix A I Extended Screen and Keyboard Control 

Cursor Control 

Cursor Position (CUP) 

ESC [* ; *H 

Moves the cursor to  the position specified by the parameters. 
The first parameter specifies the line number and the second pa- 
rameter specifies the column number. The default value for * is 
1. If no parameter is given, the cursor is moved to the home po- 
sition (upper left corner). 

Horizontal and Vertical Position (HVP) 

ESC [* ; *f 

Moves the cursor in the same way as Cursor Position (CUP), de- 
scribed above. 

Cursor Up (CUU) 

ESC [*A 

Moves the cursor up one or more lines without changing col- 
umns. The value of * determines the number of lines moved. The 
default value for * is 1. This sequence is ignored if the cursor is 
already on the top line. 

Cursor Down (CUD) 

ESC [*B 
Moves the cursor down one or more lines without changing col- 
umns. The value of * determines the number of lines moved. The 
default value for * is 1. This sequence is ignored if the cursor is 
already on the bottom line. 

Cursor Forward (CUF) 

ESC [*C 

Moves the cursor forward one or more columns without changing 
lines. The value of * determines the number of columns moved. 
The default value for * is 1. This sequence is ignored if the cur- 
sor is already in the rightmost column. 

218 



Appendix A I Extended Screen and Keyboard Control 

Cursor Backward (CUB) 

ESC [“D 

Moves the cursor back one or more columns without changing 
lines. The value of * determines the number of columns moved. 
The default value for * is 1. This sequence is ignored if the cur- 
sor is already in the leftmost column. 

Device Status Report (DSR) 

ESC [6n 

The console driver outputs a Cursor Position Report (CPR) se- 
quence on receipt of DSR (see below). 

Cursor Position Report (CPR) 

ESC [* ; *R 

Reports current cursor position through the standard input de- 
vice. The first parameter specifies the current line and the sec- 
ond parameter specifies the current column. 

Save Cursor Position (SCP) 

ESC [s 

Saves the current cursor position. You can restore this position 
with the Restore Cursor Position (RCP) sequence (see below). 

Restore Cursor Position (RCP) 

ESC [u 

Restores the cursor position to the value it had when the console 
driver received the SCP sequence. 

219 



Appendix A I Extended Screen and Ke-yboard Control 

Erasing 
Erase Display (ED) 

ESC [2J 

Erases the screen and sends the cursor to  the home position (up- 
per left corner). 

Erase Line (EL) 

ESC [K 

Erases from the cursor to the end of the line (including the cur- 
sor position). 

Erase To End Of Screen 

ESC [0J 

Erases the screen from the cursor position to the end of the 
screen. 

Erase From Top Of Screen 

ESC [lJ 

Erases screen from the top of the screen to the cursor position. 

220 



Appendix A I Extended Screen and Ke.yboard Control 

Modes of Operation 
Set Graphics Rendition (SGR) 
ESC [* ;...; *m 

Sets the character attributeb) specified by the parameterb) de- 
scribed below. The attributes remain in effect until the next oc- 
currence of an SGR escape sequence. 

Parameter 

0 
1 
5 
7 
8 

30 
31 
32 
33 
34 
35 
36 
37 
40 
41 
42 
43 
44 
45 
46 
47 

Meaning 

All attributes off (normal white on black) 
Highlight on (high intensity) 
Blink on 
Reverse video on 
Concealed on (invisible) 
Black foreground 
Red foreground 
Green foreground 
Yellow foreground 
Blue foreground 
Magenta foreground 
Cyan foreground 
White foreground 
Black background 
Red background 
Green background 
Yellow background 
Blue background 
Magenta background 
Cyan background 
Whit e background 

221 



Appendix A I Extended Screen and Ke.yboard Control 

Set Mode (SM) 

ESC [ = *h 
or ESC [ = h 
or ESC = Oh 
or ESC [?7h 

Sets the screen width or type specified by the parameter. 

Parameter Meaning 

8 
9 

10 

40 x 25 black and white 
40 x 25 color 
80 x 25 black and white 
80 x 25 color 
320 x 200 color 
320 x 200 black and white 
640 x 200 black and white 
Wrap around at  end of line 
(new line starts when old line filled) 
160 x 200 16 color 
320 x 200 16 color 
640 x 200 4 color 

Reset Mode (RM) 

ESC [ = *1 
or ESC [ = 1 
or ESC [ =01 
or ESC [?71 

Parameters are the same as for Set Mode (SM) except that pa- 
rameter 7 resets the wrap-around mode (characters past end-of- 
line are thrown away). 

222 



Appendix A I Extended Screen and Keyboard Control 

Keyboard Key Reassignment 
ESC [* ; * ;... * p 

or ESC [“string” * p 
or ESC [* ;“string”; * ; * ;“string”; * p 
or any other combination of strings and decimal numbers 

Changes the meaning of a key on the keyboard. The first ASCII 
code in the control sequence defines which code is being mapped. 
The remaining numbers define the sequence of ASCII codes gen- 
erated when this key is intercepted. However, if the first code in 
the sequence is zero (NUL), then the first and second codes 
make up an extended ASCII redefinition. (See Appendix B for a 
list of ASCII and extended ASCII codes.) 

Examples: 

1. 

2. 

Reassign the Q and q key to the A and a key (and vice 
versa): 

ESC [65;81p A becomes Q 
ESC [97;113p a becomes q 
ESC[81;65p Q becomes A 
ESC [113;97p q becomes a 

Reassign the F1O key to a DIR command followed by a car- 
riage return: 

ESC [0;68;“dir”;13p 

The 0;68 is the extended ASCII code for the F10 key. 13 decimal 
is a carriage return. 

223 





Appendix B 

KEYBOARD ASCII AND SCAN CODES 

The table in this appendix lists the keys on the Tandy 1000 key- 
board in scan code order, along with the ASCII codes they gener- 
ate. For each key, the following entries are given: 

Scan Code - A value in the range OIH-5AH which uniquely 
identifies the physical key on the keyboard that is pressed. 

Keyboard Legend - The physical marking(s) on the key. If 
there is more than one marking, the upper one is listed first. 

ASCII Code - The ASCII codes associated with the key. The 
four modes are: 

Normal - The normal ASCII value (returned when only the 
indicated key is depressed). 

SHIFT - The shifted ASCII value (returned when SHIFT is 
also depressed). 
CTRL - the control ASCII value (returned when CTRL is 
also depressed). 

ALT - The alternate ASCII value (returned when ALT is 
also depressed). 

Remarks - Any remarks or special functions. 

The following special symbols appear in the table: 

Values preceded by “x” are extended ASCII codes (codes 
preceded by an ASCII NUL, 00). 

No ASCII code is generated. 

No ASCII code is generated, but the special function de- 
scribed in the Remarks column is performed. If no com- 
ment is included, the key does not generate a code and 
no function is performed. 

Note: All numeric values i n  the  table a r e  expressed in  
hexadecimal. 

x 

- 
* 

225 



Appendix B I Ke.yboard ASCII and Scan Codes 

QWERTY (USA) - Model 1000 

ASCII Codes As of Oct. 22 1984 
Scan Keyboard SHIFT CTRL 
Code Legend Normal ALT Remarks 

01 ESC 
02 1 ! 
03 2 (2 
04 3 # 
05 4 $ 
06 5 % 
07 6 
08 7 & 
09 8 
0A 9 ( 
OB 0 1 
0 c  - - 
0D = + 
BE BACKSPACE 
OF TAB 
10 Q 
11 w 
12 E 
13 R 
14 T 
15 Y 
16 U 
17 I 
18 0 
19 P 

* 

1A [ { 
1B 1 1 
1C ENTER 
1D CTRL 
1E A 
1F S 
20 D 
21 F 
22 G 
23 H 
24 J 
25 K 
26 L 
27 ; 
28 ’ 
29 UPARROW 
2A SHIFT 
2B LEFTARROW 
2 c  z 
2D X 
2E C 
2F V 

1B 
31 
32 
33 
34 
35 
36 
37 
38 
39 
30 
2D 
3D 
08 
09 
71 
77 
65 
72 
74 
79 
75 
69 
6F  
70 
5B 
5D 
OD 

61 
73 
64 
66 
67 
68 
6A 
6B 
6C 
3B 
27 

x48 

x4B 
7A 
78 
63 
76 

* 

* 

1B 
21 
40 
23 
24 
25 
5E 
26 
2A 
28 
29 
5F 
2B 
08 

x0F 
51 
57 
45 
52 
54 
59 
55 
49 
4F 
50 
7B 
7D 
OD 

41 
53 
44 
46 
47 
48 
4A 
4B 
4 c  
3A 
22 

x85 

x87 
5A 
58 
43 
56 

* 

* 

1B x8B 
x E l  x78 
x03 x79 
xE3 x7A 
xE4 x7B 
xE5 x7C 

1E x7D 
xE7 x7E 
xE8 x7F 
xE9 x80 
xE0 x81 

1F x82 
xF5 x83 

7F x8C 
x8D x8E 
11 xl0 
17 x l l  
05 x12 
12 x13 
14 x14 
19 x15 
15 x16 
09 x17 
OF x18 
10 x19 
1B xEB 
1D xF0 
OA x8F 

01 x l E  
13 x l F  
04 x20 
06 x21 
07 x22 
08 x23 
OA x24 
OB x25 
0C x26 

xF6 xF8 
xF7 xF1 
x90 x91 

* * tin Keyboarl 
ntrol Mode 

* * Left SHIFT 
x73 x92 
1A x2C 
18 x2D 
03 x2E 
16 x2F 

226 



Appendix B I Keyboard ASCII and Scan Codes 

ASCII Codes As of Oct. 22 1984 
Scan Keyboard SHIFT CTRL 
Code Legend Normal ALT Remarks 

30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
3A 
3B 
3c 
3D 
3E 
3F 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
4A 
4B 
4 c  
4D 
4E 
4F 
50 
51 
52 
53 
54 

B 
N 
M 

< 
> 

I ? 
SHIFT 
PRINT 
ALT 
space bar 
CAPS 
F1 
F2 
F3 
F4 
F5 
F6 
F7 
F8 
F9 
F1O 
NUM LOCK 
HOLD 
7 \ 
8 
9 PG U P  
DOWN ARROW 

5 
6 
RIGHT ARROW 
1 END 
2 
3 PG DN 
0 

BREAK 

4 I 

DELETE 

55 + INSERT 
56 
57 ENTER 
58 HOME 
59 F11 
5A F12 

62 
6E 
6D 
2 c  
2E 
2F 

10 

20 

x3B 
x3c 
x3D 
x3E 
x3F 
x40 
x41 
x42 
x43 
x44 

* 

* 

* 

* 
* 

37 
38 
39 

x50 
34 
35 
36 

x4D 
31 
32 
33 
30 
2D 

xOO 

2B 
2E 
0D 

x47 
x98 
x99 

42 
4E 
4D 
3c 
3E 
3F  * 
* 
* 

20 

x54 
x55 
x56 
x57 
x58 
x59 
x5A 
x5B 
x5c 
x5D 

* 

* 
* 

5 c  
7E 

x49 
x86 
7 c  

xF3 
xF4 
x88 
x4F 

60 
x5 1 
x9B 
x53 
xOO 

x52 
xAl 

OD 
x4A 
xA2 
xA3 

02 
OE 
OD 

xF9 
xFA 
xFB 

x72 

20 

x5E 
x5F 
x60 
x61 
x62 
x63 
x64 
x65 
x66 
x67 

* 
* 
* 

* 
* 

x93 
x94 
x84 
x96 
x95 
xFC 
xFD 
x74 
x75 
x9A 
x76 
x9c  
x9D * 

x9F 
xA4 

0A 
x77 
xAC 
xAD 

x30 
x3 1 
x32 
x89 
x8A 
xF2 

x46 

20 

x68 
x69 
x6A 
x6B 
x6C 
x6D 
x6E 
x6F 
x70 
x71 

* 
* 
* 

* 
* 
* 
* 
* 

x97 * 
* 
* 

xEA * 
* 
* 
* 

x9E * 

xA0 
xA5 
x8F 
xA6 
xB6 
xB7 

Right SHIFT 
SCR Print Toggle 
Alternate Mode 

Caps lock 

number lock 
Freeze display 

scroll lock bit 
toggle control 
brk routine 
(INT 1BH) 

Numeric keypad 
Numeric keypad 

227 



Appendix B I Keyboard ASCII and Scan Codes 

* Indicates special functions performed 
- means this key combination is suppressed in the keyboard 

driver 

values preceded by “X” are extended ASCII codes (codes 
preceded by an ASCII NUL) 

The (ALT) key provides a way to generate the ASCII codes of 
decimal numbers between 1 and 255. Hold down the (ALT) 
key while you type on the numeric keypad any decimal 
number between 1 and 255. When you release ALT, the AS- 
CII code of the number typed is generated and displayed. 

Note: When the NUM LOCK light is off, the Normal and 
SHIFT columns for these keys should be reversed. 

X 

t 

228 



Appendix C 

MS-DOS Memory Map 

HEXADECIMAL 
STARTING ADDRESS 
(SEGMENT:OFFSET) 

000:00 
000:80 
0040:00l 
0050:00 
0070:00 
0190:002 
05B0:002 
X800:003 

B800:004 
F000:00 
FC00:00 
Notes: 

xc00:003 

DESCRIPTION 

BIOS Interrupt Vectors 
Available Interrupt vectors 
ROM BIOS Data Area 
MSDOS and BASIC Data Area 
I/O.SYS Drivers 

Available to user 
Video RAM in 32K video modes 
Video RAM in 16K video modes 
Video RAM Window (32K) 
Reserved for system ROM 
System BIOS ROM 

MS-DOS 

1. Detailed description in following pages. 
2. Approximate address; subject to change. 
3. “X” is defined as follows: 

Memory Size X Value 
128K 
256K 
384K 
512K 
640K 
768K 

4. Video memory accessed through the B800:0 window for all 
video modes. 

229 



Appendix C I MS-DOS Memory Map 

ROM BIOS Data Area 

The following table gives the starting offset, and length of each 
BIOS device driver. This area is located at  segment 40:00. 

Comm card addresses 0000 8 (1 word per card) 
Printer addresses 0008 8 (1 word per printer) 
Devices installed 0010 2 (16 bits) 
Not used 0012 1 
Memory size 0013 2 (1 word) 
I/O channel RAM size 0015 2 (1 word) 
KBD data area 0017 39 
Disk data area 0033 11 
Video data area 0049 30 
Not used 0067 5 
Clock data area 006C 5 
KBD Break & Reset flags0071 3 
Not used 0074 4 
Printer Timeout counter 0078 4 (1 byte per printer) 
Comm Timeout counter 007C 4 (1 byte per card) 
KBD extra data area 0080 4 (2 words) 

The structure and usage of the Video driver RAM data area is 
as follows: 

HEX Offset From Length and 
Segment 0040:000 Intended Use 

49H 
4AH 
4CH 
4EH 

50H 

1 byte - current CRT mode (0-7) 
1 word - screen column width 
1 word - byte length of screen 
1 word - addressloffset of beginning of 

current display page 
8 words - row/col coordinates of the 

cursor for each of up to  8 
display pages 

60H 1 word - current cursor type (See “set 
cursor type” for correct 
encoding) 

62H 
63H 

65H 

66H 

1 byte - current display page 
1 word - base address + 4 of the CRT 

1 byte - copy of value written to  the 

1 byte - current color palette setting 

controller card 

’ Mode Select Register 

230 



Appendix C I MS-DOS Memory Map 

The equipment check BIOS call (INT 11H) and memory size 
BIOS call (INT 12H) return information from the following data 
areas: 

HEX Offset From Length and 
Segment 0040000 Intended Use 

10H Devices installed word 
13H Memory installed word 

The structure and usage of the 
area is as follows: 

HEX Offset From 
Segment 00400000 

3EH 1 byte - 

3FH 1 byte - 

40H 1 byte - 

41H 1 byte - 

42H 

Value 

OIH 
02H 
03H 
04H 
08H 
09H 
10H 
20H 
40H 
80H 

floppy disk driver RAM data 

Length and 
Intended Use 

drive recalibration status - bit 
3-0, if 0 then drive 3-0 needs 
recal before next seek bit 7 
indicates interrupt occurrence 
motor status - bit 3-0 drive 3- 
0 motor is ordoff, bit 7 - 
current operation is write, 
requires delay 
motor turn off time out 
counter (see Timer ISR) 
disk status - codes defined 
below 

7 bytes - 7 bytes of status returned by 
the controller during result phase of 
operation 

Error Condition 

Illegal Function 
Address Mark Not Found 
Write Protect Error 
Sector Not Found 
DMA Overrun 
Attempt to DMA Across a 64K Boundary 
Bad CRC on Disk Read 
Controller Failure 
Seek Failure 
Device Timeout, Device Failed to  Respond 

231 



Appendix C I MS-DOS Memory Map 

The structure and usage of the RS232 driver RAM data area is 
as follows: 

HEX Offset From 
Segment 004000 

Length and 
Intended Use 

OOH 

7CH 

4 words - Base address of each one of 4 
possible comm cards 

4 words - 1 word timeout count for 
each of 4 possible comm 
cards 

The structure and usage of the Keyboard driver RAM data area 
is as follows: 

HEX Offset From Length and 
Segment 0040:0010 Intended Use 

17 1 byte - Keyboard shift state flag 
returned by function 02 

6 - CAPS LOCK on/off, 
5 - NUM LOCK ordoff, 
4 - SCROLL LOCK d o f f ,  
3 - ALT key depressed, 
2 - CTRL key depressed, 
1 - Left SHIFT key 

0 - Right SHIFT key 

bits 7 - INSERT state active, 

depressed, 

depressed 
18 1 byte - Secondary shift state flag 

bits INSERT key depressed, 
6 - CAPS LOCK depressed, 
5 - NUM LOCK depressed, 
4 - SCROLL LOCK NUM 

LOCK depressed, 
4 - SCROLL depressed, 
4 - SCROLL LOCK 

depressed, 
3 - Pause ordoff, depressed, 
3 - Pause on/off, 
2,1,0 - not used 

232 



Appendix C I MS-DOS Memory Map 

19 1 byte - used to store ALT keypad 

1A 

1c 
1E 16 - keyboard buffer (enough for 

entry 

keyboard buffer 

keyboard buffer 

words) 

1 word - pointer to beginning of the 

1 word - pointer to  end of the 

15 - typeahead entries 

The structure and usage of the clock service routine is as 
follows: 

HEX Offset From Length and 
Segment 00400000 Intended Use 

6CH 

6EH 

70H 1 byte - Twenty four hour rollover 

1 word - Lease significant 16 bits of 

1 word - Most significant 16 bits of 
clock count 

clock count 

flag 

233 









INDEX 

abort 32 
absolute disk write 22-23 
absolute disk read 20 
active display page 198 
active page select 195 
alloc 123 
allocate memory 123 
allocation 

disk 165 
memory 123-25 

alpha modes 196 
palette 201 

ASCII codes, keyboard 225-228 
ASCllZ strings 26 
attribute 

retrieving 115 
field 175 
in FCB 167 
of a file 11 
setting 115 

device 35-36 
input 35 
output 36 

auxinput 35 
auxoutput 36 

background color 199 
basic input/output system 191 
baud rate, com port 204 
BIOS services 

call 191 
compatibility 191 
equipment 192, 213 
floppy disk 192, 210-213 
line printer 192, 207-208 
memory size 192 
parameter block (BPB) 178-181 
quick reference 192 
routines 191 
serial communications 192, 204-206 

auxiliary 

237 



Index 

BIOS services (cont.) 
services, keyboard 192, 193-194 
system clock 192, 208-209 
video display 192, 195-203 

boot sector 183-184 
bootstrap 191 
buffer 

input 43 
type-ahead 46 

buffered keyboard input 43-44 
build BPB 178-183 

change attributes 115 
change the current directory 105 
character 

displaying 34 
inputting 33 
receive 205 
transmit 205 
printing 37 
attribute 195 

chdir 105 
check keyboard status 45 
child process 127-130 
chmod 115 
clock device 187 
clock, system 208-209 
close 110 
close a file handle 110 
close file 51 
color 

graphics 196 
palette 195-201 
write attribute 200 

column-light pen position 195-198 
column, cursor position 197 
com port 204-206 

reset 204 
com status, current 205 
command code field 178 
command processor 161 
communications, serial 204 
con device 195 
coninput 40 

238 



Index 

coninputflush 46 
coninputnoecho 41 
coninputstatus 45 
conio 38 
constringinput 43-44 
constringoutput 42 
control-c 

check 96 
exit address 12 
routine 12 

create a file 106-107 
create file 62-63 
create subdirectory 103 
crt mode 195-202 
crt/cpu page registers 198 
curdsk 66 
current block (FCB) 151 
current com status 205-206 
current disk 66 
current printer status 208 
current record number (FCB) 152 
current shift status, keyboard 193 
currentdir 122 
cursor 197 
cursor control (esc) 218-219 

date 
returning 85-136 
setting 86-136 

date of last write 
in disk directory 168 
in FCB 152 

dealloc 124 
default, palette 210 
delete a directory entry 112 
delete file 56-57 
device 

block 173-176 
channels 116-118 
character 173 
clock 187 
creating 176 
dumb and smart 181 
header 174-175 

239 



Index 

device (cont.) 
installing 177 
nul 175 
reading from 111 
types 173 
writing to 112 
request header 177 
I/O control 116-119 

direct console 

input 40 
directory 10-11 

changing the current 105 
creating a sub 103 
disk 166-168 
format 166-168 
returning the current 105 

directory entry 
moving 134 
removing 104 
search for first 52 
search for next 54 

dirsearchfirst 52-53 
disk 

allocation 165 
BIOS format 212 
directory 166-168 
free space on 98 

disk I/O support 210-212 
disk transfer address 

returning 93 
setting 67 

display character 34 
display string 42 
dot 

read 202 
read/write 195 

drive 
as block device 173 
current selected 66 
letter 173 
number (in FCB) 151 
selecting 48 

I/O 38-39 

drivers, device 173-187 

240 



Index 

dup 120 
dup2 121 
duplicate a file handle 120 

entry conditions, BIOS 191 
environment 127-128 
equipment flag, BIOS 213 
erasing (esc) 220 
error codes - for function calls 25-26 
esc 217 
exec 126-128 
exit code 95-130 
exit conditions, BIOS 191 
exits from BIOS calls 212 
extended file control block 153 
extended screen and keyboard control 17-23 

fatal error abort address 17-19 

file 

FAT 168-170 

FCB 151-153 

attribute 11 
closing 51-110 
creating 62-106 
deleting 56 
moving 134 
opening 49-108 
renaming 64-134 
size 73 
size in FCB 152 

extended 153 

duplicating 120-121 

in disk directory 168 

in disk directory 166 
in FCB 151 
parsing 82-84 
separators 82 
terminators 82 

file allocation table (FAT) 168-170 
file control block (FCB) 151-153 

file handle 26 

file size 73-74 

filename 

filetimes 136 

241 



Index 

find matching file 131-132 
find next matching file 133 
findfirst 131-132 
findnext 133 
flag 

carry 25 
verify 91-134 
equipment 213 

floppy disk 
format (BIOS) 212 
I/O 192 
reset 210 
write sectors 211 

flush 186 
flush buffer, read keyboard 46 
fname 82-84 
force a duplicate of a file handle 121 
format floppy disk (BIOS) 212 
free allocated memory 124 
function call parameters 181 
function calls 25-147 

alphabetical list of 30-31 
calling 27 
categories 25 
CPM/M compatible 27 
descriptions of 32-136 
error codes 25-26 
numeric list of 28-321 
register treatment 28 

function request 14 

get 
crt mode 195 
cursor position 195-197 

get date 85 
get disk free space 98 
get disk transfer address 93 
get interrupt vector 97 
get or set a file’s date and time 136 
get time 88 
get version number 94-95 
getdta 93 
getfreespace 98 
getvector 97 

242 



Index 

getverifyflag 134-135 
graphic modes 196-201 

I/O control for devices 116-118 
I/O device 191 
init 182 
initialization 161 
input 

auxiliary 35 
direct console 38 
keyboard 33 

input/output services 191 
interface, hardware and software 191 
international 99-102 
interrupt 

list of 12 
vector, retrieving 97 
vector, setting 77 

interrupts 12-24 
ioctl 116-118 

keep process 95 
keyboard 

ASCII and scan codes 225-228 
BIOS services 193-194 
I/O 192 
input 33 
read 41 
status 45 

light pen 
position 198 
read position 195 

line printer 
I/O 192 
interface 207-208 

load and execute a program 126-128 
logical record size (FCB) 152 
lseek 114 

macro 12 

media check 178-182 
media descriptor byte 184 

definitions, list of 137-147 

243 



Index 

memory 
allocating 123 
deallocating 124 
modifying allocated block of 125 
size 192 
size (BIOS) 213 
map 229-233 

mkdir 103 
mode, crt 195-202 
modify allocated memory blocks 125 
move 

a directory entry 134 
a file pointer 114 

command processor 161 
control blocks 151 
disk allocation 165 
disk directory 166-168 
memory map 229 
initialization 161 
work areas 151-157 

multiplexer, sound 209 

name field 176 
nondestructive read no wait 186 

open 108-109 
open a file 108-109 
open file 49-50 
output-auxiliary 36 
output 

direct console 38 
output-printer 37 

active 198 
registers crt/cpu 198 

palette color 195 
palette set color 200 
parent process 127 
parity, com port 204 
parse filename 82-84 
pen, light 195-198 
pixel, column 198 

MS-DOS 

page 

244 



Index 

port, com 104 
position 

light pen, cursor 195 
cursor 197 

print character 37, 207 
printer 

port reset 207 
status 207-208 

printeroutput 37 
printing a character 37 
program segment 153-156 
program segment prefix 157 
program terminate 13 

quick reference 192 

random block write 80-81 
random block read 78-79 
random read 69-70 
random write 71-72 
raster line 198 
rbread 78-79 
read 

device I/O interrupts 192 

attribute/character 205 

from file or device 111 
keyboard 41-46 
keyboard (BIOS) 193 
light pen position 195-198 
random 69 
random block 78 
sector, floppy disk 210-198 
sequential 58 

read or write 185 
receive character 205 
registers 

dot 195-202 

function call, treatment of 27 
page 198 
palette 195 

relative record number (FCB) 152 
remove a directory entry 104 
rename 134 
rename file 64 

245 



Index 

request header 177 
reset 207 

com port 204 
reset disk 47 
retrieve the return code of a child 130 
return code 95-130 
return country-dependent information 99-102 
return current setting of verify 134-135 
return status of last floppy disk operation 210 
return text of current directory 122 
rmdir 104 
row 

cursor position 197 
light pen position 198 

scan codes, keyboard 225-228 
scan keyboard (BIOS) 193 
screen and keyboard control, extended 217-223 
screen width 195 
scroll 195-198 
search for first entry 52-53 
search for next entry 54 
searchnext 54-55 
sectors 

read, floppy disk 210-211 
verify 211-212 
write to floppy disk 211 

active page 195 
disk 48 
color palette 200 

seqread 58-59 
sequential read 58-59 
sequential write 60-61 
seqwrite 60-61 
serial communications 192-204 
setblock 125 
set 

select 

crt mode 195-196 
cursor position 195-197 
cursor type 195-197 
date 86-87 
disk transfer address 67-68 

246 



Index 

set (cont.) 
graphics rendition (esc) 221 
interrupt vector 77 
palette registers 195 
relative record 75-76 
time 89-90; 208-209 

set/reset 
modes 21 
verify flag 91-92 

setctrlctrapping 96 
setdta 67-68 
setrelrec 75-76 
setvector 77 
setverify 91-92 
sgr 221 
shift status, keyboard 193-194 
software interrupts 191-192 
sound multiplexer 209 
starting cluster 168-170 
status 186 
status, printer 208 
stdconinput 33 
stdconoutput 34 
stop bits, com port 204 
string displaying 42 
system 192 
system calk 9-147 

calling 9-12 
extended example 143-147 
returning from 9-12 
XENIX compatible 10 

system clock 208-209 
system status service 192 

terminate 
a process 129 
address 15 
but stay resident 24 
program 32 

in FCB 152 
of day 208-209 
of last write in disk directory 167 

terminating a program 13, 32 
time 

247 



Index 

time (cont.) 
returning 88-136 
set 208-209 
setting 89-136 

transmit character 205 

type, cursor 195 

unit code field 177 
unlink 113 

verify 

TTY 195-202 

flag, setting and resetting 91 
returning 134 
sectors, floppy disk 211-212 

version-returning 94 
video display (BIOS) 192-195 

wait 130 
width, screen 195 
write 

character 200 
cursor position 197 

random 71 
random block 80 
sectors to floppy disk 211 
sequential 60 
to a file or device 112 

write attribute/character 195 

XENlX 10 

dot 195-201 

TTY 195-202 

248 



RADIO SHACK 

A Division of Tandy Corporation 
U.S.A.: Fort Worth, Texas 76102 
CANADA: Barrie, Ontario L4M 4W5 

TANDY CORPORATION 
A USTRALJA 
91 Kurrajong Road 
Mount Druitt, N.S.W. 2770 

BELGIUM 
Pare Industriel De Naninne 
5140 Naninne 

U. K. 
Bilston Road Wednesbury 
West Midlands WSlO 7JN 

12/84 - TMG Printed in U S A .  


	Contents
	Chapter 1 - System Calls

	Calling and Returning
	Console Printer and Disk Input/Output Calls
	Hierarchical Directories
	System Call Descriptions
	Interrupts
	Function Calls
	Categories of Calls
	Error Codes
	File Handles
	ASCIIZ Strings
	Calling MS-DOS Functions
	CP/M - Compatible Calling Sequence

	Treatment of Registers

	MS-DOS Function Calls in Numeric Order
	MS-DOS Function Calls in Alphabetic Order
	Function Call Reference
	Macro Definitions for MS-DOS System Call Examples
	Interrupts
	Functions
	General

	Extended Example of MS-DOS System Calls

	Chapter 2 -
 MS-DOS Control Blocks and Work Areas 
	File Control Block (FCB)
	Extended File Control Block

	Program Segment

	Program Segment Prefix

	Chapter 3 - MS-DOS Initialization and Command Processor

	Chapter 4 - MS-DOS Disk Allocation

	MS-DOS Disk Directory
	File Allocation Table (FAT)
	How to Use the File Allocation Table


	Chapter 5 - Device Drivers

	Types of Devices
	Device Headers
	Pointer to Next Device Header Field
	Attribute Field
	Strategy and Interrupt Routines
	Name Field

	Creating a Device Driver
	Installation of Device Drivers
	Request Header

	Unit Code Field
	Command Code Field
	MEDIA CHECK and BUILD BPB
	Status Field

	Function Call Parameters
	MEDIA CHECK

	BUILD BPB (BIOS Parameter Block)
	Media Descriptor Byte


	Chapter 6 - BIOS Services

	Device I/O Services
	Introduction
	Keyboard
	Video Display
	Serial Communications
	Line Printer
	System Clock
	Disk I/O Support for the Floppy Only
	Equipment
	Memory Size


	Appendix A - Extended Screen and Keyboard Control

	Cursor Control
	Erasing
	Modes of Operation
	Keyboard Key Reassignment

	Appendix B - Keyboard ASCII and Scan Codes

	Appendix C - MS-DOS Memory Map

	ROM BIOS Data Area




