

01-0220 Computer Technical Services

• · · ·

.

* × * * * * NOTES AND JUMPERS * * * * * Complete list of logic board jumpers for * * the Model II, 16, 12, 16B, 1000 series, * * 1200. 2000, 3000 series, 4000 series, * * * 2500XL/XL2/SX, 4016SX, 4020SX, 5000MC, * * 6000 series computers, upgrade boards, * all Hard Drives and Floppy Drives, * * * Laptops, WP2, and WP100. * * * * PLUS the Model III, 4, 4D, and 4P * * computer main logic and related boards. ******

> COMPUTER TECHNICAL SERVICES November 1991

CONTENTS

MODEL II (26-4001/2)	1	íode l	II.1
Notes	1	4odel	II.2
CPU Board Rev. A/B/C			
CPU Board Rev. D			
Keyboard/Video Board (early style)			
Keyboard/Video Board (late style)			
FDC Board (early style)			
FDC Board (late style)			
First 32K ZBØ Memory Board			
Second 32K 2BØ Memory Board			
64K Z8Ø Memory Board			
MODEL III (26-1060/1/2/3/4/5/6)		10del	III.1
4K Main Logic Board			
16K/32K/48K Main Logic Board			
Model III/4 Early FDC Board			
MODEL 4 (26-1Ø67/B/9)		iodel	4.1
16K Main Logic Board (standard)	۱	1odel	4.2
64K Main Logic Board (standard)	ŀ	1odel	4.2
12BK Main Logic Board (standard)	Þ	iodel	4.2
64K Main Logic board (gate array)	M	íode l	4.3
12BK Main logic board (gate array)	M	lodel	4.3
MODEL 4D (26-1070)		10del	4D.1
64K Main Logic Board			
12BK Main Logic Board			
	_		
MODEL 4P (26-1ØBØ)			
Notes			
Standard Main Logic Board			
Gate Array Main Logic Board	· · · · · P	lodel	4P.2
MODEL 12 (26-4004/5)	M	fode1	12.1
Notes			
Main Logic Board			
Keyboard/Video Board			
Motorola Board			
MODEL 16 (26-6ØØ1/2)	1	(odol	16 1
Notes			
CPU Board Rev. D			
Keyboard/Video Board			
FDC Board			
Z8Ø Memory Board			
6BØØØ 6 MHz CPU Board			
6BØØØ 6 MHz CPU Board (reduced size)			
6BØØØ Memory Boards	•••• P	roae t	10+4

MODEL 16B (26-6ØØ4/5)	Model	16B.1
Notes		
Main Logic Board	Model	16B.3
Keyboard/Video Board		
Video Driver Board		
MODEL 6000 (a.k.a. TANDY 6000)(26-6021)	Mode1	6ØØØ.1
Notes	Model	6ØØØ.2
Main Logic Board	Model	6000.3
Keyboard/Video Board	Mode1	6ØØØ.3
8 MHz 68000 CPU Board	Model	6ØØØ.3
512K/1MEG 68000 RAM Board with 512K		
512K/1MEG 68000 RAM Board with 1MEG	Model	6ØØØ.3
68000 8 MHz CPU Board (used with MMU upgrade)		
68000 MMU Board		
512R/1MEG 68000 RAM Board with 512K		
512K/1MEG 68000 RAM Board with 1 MEG	Mode1	6ØØØ.4
TANDY 1000 (25-1000/A)		
Main Logic Board	TANDY	1000.2
1000A Main Logic Board	TANDY	1000.2
TEAC FD-54B Floppy Drive Logic Board	TANDY	1000.2
10 MEG thinline (TM-252) Hard Drive logic board	TANDY	1000.2
Tandy 1000 WD1002S-WX2 Controller board	TANDY	1000.2
TANDY 1000EX (25-1050)		
Main Logic Board		
TEAC FD-55BV Floppy Drive Logic Board	TANDY	1000EX.2
TANDY 1000HX (25-1053)		
Notes	TANDY	1000HX.2
Main Logic Board		
Sony 3 1/2" Floppy Drive Logic Board	TANDY	1000HX.2
TANDY 1000RL/HD (25-1450/1)		
Introduction/notes		
Main Logic Board		
Audio Interface Board		
Power Supply		
Teac 235F 3 1/2" 720K Floppy Drive		
Seagate ST-325X 20 Meg Hard Drive		
Upgrade Options	TANDY	1000RL/HD.4

TANDY 1000RLX/HD (25-1452/3)	TANDY	1000RLX/HD.1
Introduction		
Main Logic Board		
Audio Interface Board		
Teac 235HF-1Ø6U 3 1/2" 1.44M Floppy Drive	TANDY	1000RLX/HD.3
Seagate ST-351A/X 40 Meg IDE Hard Drive	TANDY	1000RLX/HD.3
Expansion Options	TANDY	1000RLX/HD.4
		······································
TANDY 1000SL (25-1401)	TANDY	1000SL.1
Notes		
Main Logic Board	TANDY	1000SL.2
HETH PORTE DOTE	*******	*P9P00+C
TANDY 1000SL/2 (25-1402)	TANDY	100051./2.1
Notes	TANDY	1000SL/2.2
Main Logic Board		
Hain Logic board	IANDI	TAPAORIC+C
TANDY 1000SX (25-1051)	TANDY	1000SX.1
Main Logic Board	TANDY	1000SX.2
TEAC FD-55BV Floppy Drive Logic Board	TANDY	1000SX 2
THAN THE SOLAR TOPPY DELVE LOGIC BOARD	4211124	
TANDY 1000TL (25-1601)	TANDY	1000TL.1
Notes		
Main Logic Board		
MAIN ROBIC DUGIN	7******	
TANDY 1000TL/2 (25-1602)	TANDY	1000TL/2.1
Notes		
Main Logic Board		
timin mogre board to the transference to the t	2 *******	
TANDY 1000TL/3 (25-1603)	TANDY	1000TL/3.1 -
Introduction		
Main Logic Board		
Satellite Board		
Sony MP-F11W-72D 720K Floppy Drive		
Upgrade Options	TANDY	1000TL/3.3
obgrade oberoma	********	******
TANDY 1000TX (25-1600)	TANDY	1000TX.1
Notes		
Main Logic Board		
Sony 3 1/2" 720K Floppy Drive Logic Board		
Main Logic Board "Cleburn version"		
main pogie pogia orebath version	1111111	10001A.J
Tandy 1100FD (25-3530)	TANDY	1100FD.1
Notes		
Main Logic Board		
Floppy Drive		
тоћћа пттае •••••••••••••••••••••••••••••••••••	TWINDI	TTAAED.2

•	TANDY 1200 (25-3000/A)	TANDY	1200 1
	Main Logic Board		
	Main Logic Board	TANDI	1246 2
	1200A Main Logic Board	TANDI	1244 2
	Floppy Drive Controller Board	TANDI	1200.3
	Hard Drive Controller Board		
•	Tandon TM100-2 Floppy Drive Logic Board	TANDY	1200.3
	Tandon Internal 10 MEG Hard Drive Logic Board	TANDY	1200.4
	Tandy 1200 WD1002S-WX2 Hard Drive Controller	TANDY	1200.4
	Tandon TM65-2L Floppy Drive Logic Board	TANDY	1200.4
	Tandy 1400FD/HD (25-3501/05)	TANDY	1400FD/HD.1
	Notes	TANDY	1400FD/HD.2
	Main Logic Board	TANDY	14ØØFD/HD.2
	Teac FD235-136U	TANDY	1400FD/HD.3
	20 MEG Hard Drive Kit	TANDY	14ØØFD/HD.3
	Tandy 1400LT/HD (25-3500/A/B)	TANDY	14ØØLT.1
	Notes	TANDY	1400LT.2
	Main Logic Board	TANDY	14ØØLT.3
	Citizen OPDB-12A 3 1/2" 72ØK Floppy Drive	TANDY	1400LT.3
	Citizen OSDC-95A 3 1/2" 72ØK Floppy Drive	TANDY	1400LT.3
	20 MEG CMS Lite Drive and Controller	TANDY	1400LT.3
	1200 Baud Internal Modem for 1400LT	TANDY	1400LT.4
	Lop bad internal notem for types		
	Tandy 1500HD (25-3506)	TANDY	15ØØHD.1
	Introduction	TANDY	15ØØHD.2
	Main Logic Board	TANDY	1500HD.2
	Conner CP-2024 20 Meg IDE Hard Drive	TANDY	15ØØHD.2
	Matsushita EME-263MG 3 1/2" 1.44M Floppy Drive .	TANDY	15ØØHD.3
	1 Meg EMS SIMM Memory Module	TANDY	15ØØHD.3
			15ØØHD.3
	MANDY 0444 (05 51401)	TANDA V	2000 I
	TANDY 2000 (25-5103/4)		
	Main Logic Board		2000.2
	Mitsubishi M4853 Floppy Drive Logic Board		2000.2
	Mitsubishi M4853-1 Floppy Drive Logic Board	TANDY	2000.2
	TANDY 2500SX (25-4076)	TANDY	25ØØSX.1
	Introduction		
	Main Logic Board	TANDY	25ØØSX.3
	Floppy Drive		
	Upgrade Options	TANDY	25ØØSX.4
	TANDY 2500XL (25-4074)	TANDY	2.5ØØXI1
	Notes		
	Main Logic Board		
	Floppy Drive		
	Hard Drives	TANDI	2JVVX1.4

,

TANDY 2500XL/2 (25-4075)		25ØØXL/2.1
Introduction	TANDY	25ØØXL/2.2
Main Logic 80ard	TANDY	25ØØXL/2.2
Floppy Drive		25ØØXL/2.3
Upgrade Options	TANDY	25ØØXL/2.3
Service Notes	TANDY	25ØØXL/2.4
Tandy 2800HD (25-3550)	TANDY	28ØØHD.1
Notes	TANDY	28ØØHD.2
Main Logic Board	TANDY	28ØØHD.2
Math Coprocessor	TANDY	28ØØHD.3
1 MEG Memory Upgrade Soard		
Panasonic JU-257A213P 1.44M Floppy Drive		
Conner CP-3024 20 MEG Hard Drive	TANDY	28ØØHD.3
Tandy 281ØHD (25-3551/2)		
Introduction		
Memory Configurations	TANDY	281ØHD.2
Power Supply	TANDY	281ØHD.3
Video Display	TANDY	281ØHD.3
Keyboard		
Main Logic 80ard	TANDY	281ØHD.3
Conner CP-2024 20 Meg IDE Hard Drive	TANDY	281ØHD.3
Conner CP-2064 60 Meg IDE Hard Drive	TANDY	281ØHD.4
Matsushita EME-263MG 3 1/2" 1.44M Floppy Drive .		
1 Meg EMS SIMM Memory Module		
2400 Saud Modem Board	TANDY	281ØHD.4
TANDY 3000 (25-4000/1)		
Notes		
Main Logic Soard (standard)	TANDY	3000.2
Main Logic Soard (gate array)	TANDY	3000.3
		3000.3
Floppy/Hard Drive WD1002-WA2 Controller 80ard		3000.3
Floppy/Hard Drive WD1003-WA2 Controller 80ard		3000.3
Mitsubishi M4854-35 Floppy Drive Logic 8oard		3000.4
Mitsubishi MF504A Floppy Drive Logic 80ard		3000.4
20 MEG Mitsubishi (MR522) Hard Drive Logic		
20 MEG Seagate (ST225) Hard Drive Logic 8oard		
40 MEG CDC (WREN II) Hard Drive Logic 80ard	TANDY	
Serial/Parallel 80ard Revision "A"		3000.5
Serial/Parallel 80ard Revision "8" and "C"	TANDY	3000.5

<pre>TANDY 3ØØØ (12 MH2) (25-4ØØ2) Notes Main Logic 8oard Mitsubishi MF4854-347 Floppy Drive Logic Board . WD1ØØ2-WA2 Floppy/Hard Drive Controller WD1ØØ3-WA2 Floppy/Hard Drive Controller Enhanced Keyboard</pre>	TANDY TANDY TANDY TANDY TANDY	3000/12.1 3000/12.2 3000/12.2 3000/12.3 3000/12.3 3000/12.4 3000/12.4
TANDY 3000HL (25-4070/1) Notes Main Logic 80ard Mitsubishi MF501A Floppy Drive Logic Board Main Logic 80ard with Keylock	TANDY TANDY TANDY	3ØØØHL.1 3ØØØHL.2 3ØØØHL.2 3ØØØHL.2 3ØØØHL.3
TANDY 3000NL (25-4072) Main Logic Board		3ØØØNL.1 3ØØØNL.2
<pre>Tandy 381ØHD (25-3571) Introduction Main Logic 80ard Memory Configurations Power Supply Keyboard Conner CP-2Ø64 6Ø Meg IDE Hard Drive Matsushita EME-263MG 3 1/2" 1.44M Floppy Drive 24ØØ 8aud Modem 80ard</pre>	TANDY TANDY TANDY TANDY TANDY TANDY TANDY	381ØHD.1 381ØHD.2 381ØHD.2 381ØHD.2 381ØHD.3 381ØHD.3 381ØHD.3 381ØHD.4 381ØHD.4
<pre>TANDY 4ØØØ/A (25-5ØØØ/A) Notes Main Logic Board Revision A Main Logic Board Revision A-1, C Sony 3 1/2" 1.44 MEG Floppy Drive Logic Board Enhanced Keyboard WD1ØØ2-WA2 Floppy/Hard Drive Controller WD1ØØ3-WA2 Floppy/Hard Drive Controller</pre>	TANDY TANDY TANDY TANDY TANDY TANDY	4000/A.1 4000/A.2 4000/A.2 4000/A.2 4000/A.2 4000/A.3 4000/A.3
<pre>TANDY 4ØØØLX (25-51ØØ) Main Logic 8oard Revision C, C-1 Sony MP-F73W-Ø1D 3 1/2" 1.44 MEG Floppy Drive WD1ØØ2-WA2 Floppy/Hard Drive Controller WD1ØØ3-WA2 Floppy/Hard Drive Controller</pre>	TANDY TANDY TANDY	4ØØØLX.2 4ØØØLX.2 4ØØØLX.3
TANDY 4000SX (25-4900) Notes Main Logic Board Memory Board Floppy Drive	TANDY TANDY TANDY	4ØØØSX.2 4ØØØSX.2 4ØØØSX.5

<pre>TANDY 4Ø16DX/2ØLX/25LX/33LX (25-5ØØ1/512Ø/25/33) Notes CPU Logic Board Main Logic Board Revisions A-C Main Logic Board 4Ø16DX Revision D Memory Board Parallel Port Configuration VGA Adapter Board (16 Bit) Super VGA Adapter Board (16 Bit) Floppy Drive Hard Drive</pre>	4Ø16DX/2Ø/25/33LX.2 4Ø16DX/2Ø/25/33LX.3 4Ø16DX/2Ø/25/33LX.3 4Ø16DX/2Ø/25/33LX.4 4Ø16DX/2Ø/25/33LX.5 4Ø16DX/2Ø/25/33LX.6 4Ø16DX/2Ø/25/33LX.7 4Ø16DX/2Ø/25/33LX.8
TANDY 4016SX (25-4901) Notes Main Logic Board Floppy Drive Hard Drive	TANDY 4Ø16SX.2 TANDY 4Ø16SX.2 TANDY 4Ø16SX.3
TANDY 4020SX (25-4903) Introduction Main Logic Board Floppy Drive	TANDY 4020SX.2 TANDY 4020SX.2
TANDY 5ØØØMC (25-6ØØØ)Main Logic BoardCPU BoardØK Memory Expansion Adapter	TANDY 5000MC.2 TANDY 5000MC.2
TANDY 6000 - See Model 6000 TANDY WP2 (26-3930) Notes 32K RAM Upgrade	TANDY WP2.1 TANDY WP2.2 TANDY WP2.2
32R Memory Card Tandy WP-1ØØ (26-395Ø) Notes Main Logic Board Quick Disk Drive	TANDY WP-1ØØ.1 TANDY WP-1ØØ.2 TANDY WP-1ØØ.2
3Server3 (26-555Ø) Power On Sequence Main Unit/Control Panel Thumbwheel Switch Settings Main Logic Connectors/Jumpers Hard Disk Controller Board Connectors/Jumpers Hard Disk Drive Board Tape Drive Controller Board Connectors/Jumpers Tape Drive Controller Board Connectors/Jumpers	3SERVER3.1 3SERVER3.2 3SERVER3.2 3SERVER3.2 3SERVER3.3 3SERVER3.3 3SERVER3.4 3SERVER3.4

CONTENTS (continued)

3Server386 (26-5552)	3SERVER386.1
Power On Sequence	3SERVER386.2
Control Panel Switches/Buttons	3SERVER386.2
800t Switch Settings	3SERVER386.3
Internal Cabling	3SERVER386.3
Main Logic Board Jumpers/Connectors	3SERVER386.4
Drive Controller 80ard	3SERVER386.5
Hard Drive	3SERVER386.5
Tape Drive	3SERVER386.5

FLOPPY DRIVE SECTION

FLOPPY DRIVES - 8"

Shugart 8"		Floppy Drive.2
CDC 8" Discrete		Floppy Drive.2
CDC 8" LSI		Floppy Drive.2
TPI 8*		Floppy Drive.2
Tandon 8" in Mod	lel 16	Floppy Drive.3
Tandon 8" in Mod	lel 12	Floppy Drive.3
Tandon 8" in Exp	ansion 8ay	Floppy Drive.3
	ve Tandon	

FLOPPY DRIVES - 5 1/4"

TEAC FD-548 5 1/4" (Tandy 1000)	Floppy Drive.4
TEAC FD-558V 5 1/4" (Tandy 1000EX/SX)	
Tandon TM1ØØ-2 5 1/4" (Tandy 12ØØ)	
Tandon TM65-2L (Tandy 1200A)	
Mitsubishi M4853 5 1/4" (Tandy 2000)	Floppy Drive.5
Mitsubishi M4853-1 5 1/4" (Tandy 2000)	
Mitsubishi M4851 5 1/4" (Tandy 3000)	
Mitsubishi MF501A 5 1/4" (Tandy 3000/HL)	
Mitsubishi M4854-347 5 1/4" (Tandy 3000)	
Mitsubishi MF504A 5 1/4" (Tandy 3000/HL)	
Teac FD558V-221 5 1/4" 360K Floppy Drive	
Teac FD558R-521 5 1/4" 360K Floppy Drive	
Teac FD558R-121 5 1/4" 360K Floppy Drive	
Mitsubishi MF5Ø48 5 1/4" 1.2M Floppy Drive	
Mitsubishi MF504C 5 1/4" 1.2M Floppy Drive	

CONTENTS (continued)

FLOPPY DRIVES - 3 1/2"

Teac FD-35-FN 3 1/2" 720K Floppy Drive Floppy Drive.6 Sony MP-F73W-Ø1D 3 1/2" 1.44M Floppy Drive Floppy Drive.6 Sony MP-F63-Ø1D 3 1/2" 72ØK Floppy Drive Floppy Drive.7 Sony MP-F17W-71 3 1/2" 1.44M Floppy Drive Floppy Drive.7 Sony MP-F73W-7ØD 3 1/2" 1.44M Floppy Drive Floppy Drive.7 Sony MP-F17W-7ØD 3 1/2" 1.44M Floppy Drive Floppy Drive.7 Citizen OPBD-12A 3 1/2" 720K Floppy Drive Floppy Drive.7 Citizen OSDC-95A 3 1/2" 72ØK Floppy Drive Floppy Drive.8 Teac FD235F-1Ø5U 3 1/2" 72ØK Floppy Drive Floppy Drive.8 Teac FD235-136U 3 1/2" 72ØK Floppy Drive Floppy Drive.8 Sony MP-F63W-70D 3 1/2" 720K Floppy Drive Floppy Drive.8 Sony MP-F11W-71 3 1/2" 720K Floppy Drive Floppy Drive.9 Sony MP-F11W-72 3 1/2" 72ØK Floppy Drive Floppy Drive.9 Matsushita EME-213AMC 3 1/2" 720K Floppy Drive . Floppy Drive.9 Panasonic JU-257A213P 3 1/2" 1.44M Floppy Drive Floppy Drive.9 Teac FD235HF-106U 3 1/2" 1.44M Floppy Drive Floppy Drive.10 Matsushita EME-263MG 3 1/2" 1.44M Floppy Drive . Floppy Drive.10 Sony MPD-17W-72 3 1/2" 1.44M Floppy Drive Floppy Drive.11

FLOPPY DRIVES - MISC.

2.8" Quick Disk Drive for WP100 Floppy Drive.9

HARD DRIVES SECTION

Notes Hard Drive.2

HARD DRIVES - INTERFACE BOARDS

(26-415Ø)	8 MEG Interface Board in MII/16/16B/6000	Hard Drive.3
(26-415Ø)	8 MEG Interface Board in M12	Hard Drive.3
(26-4152/5)	12 MEG Interface Board in MII/16/16B/6000	Hard Drive.3
(26-4152/5)	12 MEG Interface Board in M12	Hard Drive.4
(25-4121)	Smart Drive Interface/Controller Adapter	Hard Drive.49

CONTENTS (continued)

HARD DRIVES - CONTROLLER BOARDS

(26-415Ø) I	B MEC Controller Board	Hard	Drive.4
(26-4152/5) 5	5/12 MEC Controller Board (BX3ØØ)		
	15 MEC Internal Controller Board (WD1Ø1Ø)		Drive.4
	External WD1000-TB1 Controller Board	Hard	Drive.5
	Xebec Hard Drive Controller (Tandy 1000/1200)	Hard	Drive.6
	Tandy 1000 WD1002S-WX2 Controller Board		Drive.7
	Tandy 1200 WD1002S-WX2 Controller Board		Drive.B
	Floppy/Hard Drive WD1002-WA2 Controller Board		Drive.9
	Floppy/Hard Drive WD1ØØ3-WA2 Controller Board		Drive.9
	ST5Ø6 WD1ØØ3-WAH Hard Drive Only Controller		Drive.3Ø
	ST5Ø6-MC 5ØØØ HD Controller		Drive.32
	Lite Drive Controller Board		Drive.32
	Lite Drive Controller Board (for 1400FD/HD)		Drive.33
	Western Digital Hard Card Controller Board		Drive.33
(25-4121) §	Smart Drive Interface/Controller		Drive.49
	WD ESDI Controller for 5KMC		Drive.54
(25-4Ø5B) S	ST5Ø6 WD1ØØ3V-MM1 Hard Drive Only Controller		Drive.55
(9Ø-237Ø) V	WD AT ESDI Controller	Hard	Drive.55

HARD DRIVES - LOGIC BOARDS

(26-415Ø)	B MEG Shugart (SA1004) Drive Logic Board Hard	Drive.4
(26-4152/5)	12/15 MEC (TM6Ø3/TM5Ø3) Drive Logic Board Hard	Drive.5
(26-113Ø)	5 MEC Tandon (TM6Ø2) Drive Logic Board Hard	Drive.5
(25-3000)	10 MEG Tandon (TM502) Drive Logic Board Hard	Drive.5
(25-1Ø25)	10 MEC Tandon (TM-252) Drive Logic Board Hard	Drive.5
(26-4171)	35 MEC Quantum (Q54Ø) Drive Logic Board Hard	l Drive.6
(26-4173)	70 MEG Micropolis (1325) Drive Logic Board Hard	l Drive.6
(25-4Ø62)	20 MEG Mitsubishi (MR522) Hard Drive Logic PCB . Hard	l Drive.B
(25-4Ø62)	20 MEC Seagate (ST225) Hard Drive Logic Board Hard	l Drive.9
(25-4Ø61)	40 MEC CDC (WREN II) Hard Drive Logic Board Hard	Drive.9
(25-4Ø61)	40 MEG Microscience (HH1050) Drive Logic Board . Hard	Drive.9

HARD DRIVES - DRIVES

(25-4Ø57)	4Ø ME	C Seagate ST251 5 1/4" ST506 Hard Drive	Hard Drive.3Ø
(25-4Ø61A)	4Ø ME	C Rodime 3Ø55 3 1/2" ST5Ø6 Hard Drive	Hard Drive.31
(25-4Ø67)	7Ø ME	C Rodime 5090 5 1/4" ST506 Hard Drive	Hard Drive.31
(25-414Ø)	4Ø ME	C Seagate ST151 3 1/2" ST5Ø6 HD for 5KMC	Hard Drive.31
(25-4141)	BØ ME	G CDC 94355 3 1/2" ST5Ø6 HD for 5KMC	Hard Drive.31
(25-3515)	2Ø ME	C CMS (1400LT) 3 1/2" Hard Drive	Hard Drive.32
(25-3516)	2Ø ME	G 3 1/2" Hard Drive for 1400FD/HD	Hard Drive.33

,

CONTENTS (continued)

HARD DRIVES - DRIVES (CONTINUED)

(25-4119)	4Ø	MEG Miniscribe 8051A Smart Drive Hard Drive.50
(25-412Ø)	8Ø	MEG Miniscribe 7080A Smart Drive Hard Drive.50
(25-4151)	15Ø	MEG Half Height ESDI Hard Drive Hard Drive.53
(25-1Ø45)	2Ø	MEG WD 93028 Smart Drive Hard Drive.53
(25-1Ø46)	4Ø	MEG WD 93Ø44 Smart Drive Hard Drive.54
(25-4123)	4Ø	MEG Conner CP3Ø44 Smart Drive Hard Drive.54
(25-1Ø47)	2Ø	MEG Seagate ST-325X IDE Hard Drive Hard Drive.60
(25-1Ø48)	4Ø	MEG Seagate ST-351A/X IDE Hard Drive Hard Drive.60
(25-4124)	52	MEG Quantum LPS52 3 1/2" IDE Hard Drive Hard Drive.62
(25-413Ø)	1Ø5	MEG Quantum LPS1Ø5 3 1/2" IDE Hard Drive Hard Drive.63
(25-3506/35	551)	20 MEG Conner CP-2024 Hard Drive Hard Drive.66
(25-3552/3	571)	60 MEG Conner CP-2064 Hard Drive Hard Drive.66

HARD DRIVES - HARD CARDS

(25-1029/32))West	tern	Dig	ital	Hard	Card	Cont	rolle	er 80a	ard		Hard	Drive.33
(25-1029)	2Ø 1	MEG	Fuji	(FK3	Ø2-26	13Ø5	-26)	Hard	Card	Log	ic	Hard	Drive.35
(25-1Ø29A/8))2Ø N	MEG)	Hard	Card	• • • •							Hard	Drive.36
(25-1Ø32)	2Ø 1	MEG)	Hard	Card	• • • •							Hard	Drive.38
(25-1Ø32A)	2Ø 1	MEG I	Hard	Card		• • • •				• • • •		Hard	Drive.39
(25-1Ø328)													
(25-1Ø32C-E)													
(25-4Ø59/A)													
(25-4Ø598)	4Ø 1	MEG I	Hard	Card		• • • •	• • • •				• • • • •	Hard	Drive.59

HARD DRIVES - SCSI (Small Computer System Interface)

(25-4161/A/	8) General Notes for all SCSI controllers	Hard Drive.14
(25-4161/A)	16 Bit SCSI HD Controller	Hard Drive.14
(25-41618)	16 Bit SCSI HD Controller	Hard Drive.20
(25-4159)	4Ø MEG Quantum 3 1/2" SCSI Hard Drive	Hard Drive.25
(25-416Ø)	80 MEG Quantum 5 1/4" SCSI Hard Drive	Hard Drive.26
(25-416ØA)	80 MEG Quantum 3 1/2" SCSI Hard Drive	Hard Drive.27
(25-4162)	17Ø MEG CDC 5 1/4" SCSI Hard Drive	Hard Drive.28
(25-4163)	344 MEG CDC 5 1/4" SCSI Hard Drive	Hard Drive.29
(25-6Ø6Ø)	16 8it SCSI-MC 5000 HD Controller	Hard Drive.32
(25-4164)	202 MEG SCSI Hard Drive	Hard Drive.64
(25-4167)	44Ø MEG SCSI Hard Drive	Hard Drive.64

CONTENTS (continued)

HARD DRIVES - CARTRIDGE DRIVES

(26-1245)Disk Cartridge Controller BoardHard Drive.10(26-1245)10 MEG IOMEGA (Alpha-10H)Disk Cart. Drive Logic Hard Drive.10(25-4066)20 MEG IOMEGA (Alpha-20H)Disk Cart. Drive Logic Hard Drive.10(25-4064)20 MEG IOMEGA (Beta 20)Disk Cart. Controller... Hard Drive.10(25-4065)20 MEG IOMEGA (Beta 20)Primary Disk Cartridge.. Hard Drive.10(25-4065)20 MEG IOMEGA (Beta 20)Secondary Disk Cartridge Hard Drive.11(25-5147)Disk Cartridge Interface for Tandy 2000Hard Drive.11(25-3022)Disk Cartridge Interface for 1000/1200/3000Hard Drive.11(25-4064)20 MEG Internal Disk Cartridge System "A" Vers.. Hard Drive.45

HARD DRIVES - CD ROM DRIVES

(25-1Ø81)	Hitachi	CD ROM Player and Interface	Hard Drive.56
		CDR-1000 CD-ROM Player and Interface	
		Ext. CDR-1503S CD-ROM Player and I/F	
		Ext. CDR-1700S CD-ROM Player and I/F	

HARD DRIVES - TAPE CARTRIDGE

(25-3Ø2Ø)	TCS-100 Tape Cartridge Controller Board	Hard	Drive.12
(25-3Ø2Ø)	TCS-100 Tape Cartridge Drive Logic Board	Hard	Drive.12
(25-3Ø2Ø)	TCS-100 Tape Cartridge Drive Logic Board Rev. C2	Hard	Drive.12
(25-3Ø21)	TCS-100 Tape Cartridge I/F for 1000/1200/3000	Hard	Drive.13
(25-4169)	150 MEG 5 1/4" SCSI Tape Drive		
(25-4Ø69)	40 MEG Internal Tape Cartridge System	Hard	Drive.46
(25-4Ø69A)	4Ø MEG Internal Tape Cartridge System "A" Vers		
(25-4Ø79)	60 MEG Internal Tape Cartridge System		
(90-2060)	Scorpion 60 MEG Internal Tape Cartridge System		
(9Ø-2Ø6Ø)	Long Interface Board SC-499	Hard	Drive.48
(9Ø-2Ø6Ø)	Short Interface Board SC-499R	Hard	Drive.48
(25-4166)	160 MEG SCSI Tape Cassette System	Hard	Drive.65

UPGRADE BOARD SECTION

UPGRADE BOARDS - CONTROLLERS

(26-5127)	Tandy 2000 Hard Drive Controller Board	Upgrade 80	ard.5
(25-4Ø6Ø)	Floppy/Hard Drive WD1002-WA2 Controller Board	Upgrade Bo	ard.19
(25-4Ø6Ø)	Floppy/Hard Drive WD1003-WA2 Controller Board	Upgrade Bo	ard.19
(25-1Ø6Ø)	Tandy 1000EX/HX External Floppy Disk Interface	Upgrade Bo	ard.19

CONTENTS (continued)

UPGRADE BOARDS - CPU

	6BØØØ 6 MHz CPU Boa	rd Upgrade	Board.3
	68000 6 MHz CPU Boa	rd (reduced size) Upgrade	Board.3
(26-6Ø14)	B MHz 68000 CPU Boa	rd Upgrade	Board.3
	6BØØØ MMU Board (se	e Model 6000 chapter) Model 60	ØØØ.4

UPGRADE BOARDS - MEMORY

(26-41Ø5)	Visicalc 64K Memory Board	Upgrade	Board.2
(26-65Ø3)	144K board for Visicalc		
(26-6Ø11)	128K/256K 6BØØØ Memory Board (1st - 4th)		
(26-6Ø14)	512K/1MEG 6BØØØ RAM Board with 512K		
(25-6Ø14)	512K/1MEG 6BØØØ RAM Board with 1MEG	Upgrade	Board.4
(25-1004)	Tandy 1000 First External RAM Board	Upgrade	Board.4
(25-1ØØ9)	Tandy 1000 Second External RAM Board	Upgrade	Board.4
(26-5161)	Tandy 2000 First External RAM Board	Upgrade	Board.5
(26-5161)	Tandy 2000 Second External RAM Board	Upgrade	Board.5
(25-3Ø61)	Tandy 1200 Captain Multi-Function Board	Upgrade	Board.6
(25-1Ø11)	Tandy 1000 Memory Plus Board	Upgrade	Board.7
(25-4Ø3Ø)	Tandy 3000 2 MEG Memory Expansion Board	Upgrade	Board.7
(25-1Ø62)	Tandy 1000EX/HX Memory PLUS Expansion Adapter	Upgrade	Board.1B
(25-4Ø27)	ØK Mem. Exp. Adapter for 3000NL without jumper	Upgrade	Board.3Ø
(25-4Ø27)	ØK Mem. Exp. Adapter for 3000NL with jumper	Upgrade	Board.3Ø
(25-6Ø3Ø)	ØK Memory Expansion Adapter for the 5000MC	Upgrade	Board.31
(25-5Ø3Ø)	32 Bit Memory Board for the 4000/LX	Upgrade	Board.31
(25-5Ø29)	32 Bit Memory Board for the 4000/LX	Upgrade	Board.31
(25-3554)	1 MB Memory Upgrade Board for 2BØØHD	Upgrade	Board.31
(25-493Ø)	Memory Adapter for 4000SX		
(25-35Ø7)	1 MEG Memory Expansion SIMM (1500/2B10/3B10)		

UPGRADE BOARDS - MISCELLANEOUS

(25-1Ø35)	Tandy 286 Express Board	Upgrade	Board.4
(26-5144)	Tandy 2000 Digi-Mouse/Clock Board	Upgrade	Board.6
(25-1Ø3Ø)	Enhanced Keyboard Adapter	Upgrade	Board.22
(25-4Ø3B)	Enhanced Keyboard	Upgrade	Board.22
(25-1Ø2B)	Trackstar 12B Interface Board	Upgrade	Board.46
(25-1Ø3B)	Trackstar E Interface Board	Upgrade	Board.46
(90-2405)	CMS Tape Drive Mux Adapter	Upgrade	Board.47

CONTENTS (continued)

UPGRADE BOARDS - MODEMS

(25-1003)	Tandy 1000 300 Baud Modem Board	Upgrade	Board.19
(25 -1Ø 13)	Internal 1200 Baud Modem Revision A, B, & C	Upgrade	Board.19
(25-1Ø13D/E))Internal 1200 Baud Modem Revision D, E	Upgrade	Board.2Ø
(25-1Ø18)	PLUS 1200 Baud Modem	Upgrade	Board.2Ø
(25-1Ø1BA)	PLUS 1200 Baud Modem Revision A	Upgrade	Board.21
(25-1Ø37/A)	2400 Baud Half Card Modem Board	Upgrade	Board.21
(25-351Ø)	LT1400 Internal Modem Board	Upgrade	Board.22
(25-1Ø17)	Plus 300 Baud Modem	Upgrade	Board.23
(25-3Ø63)	Faxmate board	Upgrade	Board.32
(25-1Ø34)	2400-bps Error-Corrected Modem	Upgrade	Board.33
(25-353B)	2400-bps Internal Modem for 1100FD	Upgrade	Board.33
(25-3524)	2400-bps Internal Modem for 1400 FD/HD	Upgrade	Board.34
(25-1Ø37B)	2400-bps Half Card Modem Revision B	Upgrade	Board.39
(25-3525)	2400 Baud Modem for 1500/2B10/3B10 Laptops	Upgrade	Board.39
(25-3555)	2400 Baud Modem for 2B00HD Laptop	Upgrade	Board.39
(25-1Ø13F)		Upgrade	Board.39

UPGRADE BOARDS - NETWORK

(26-65Ø1)	Arcnet Board	Upgrade	Board.2
(26-65Ø3)	144K board for Arcnet	Upgrade	Board.2
(26-1221)	Vianet Board for the Tandy 1000/1200/3000/HL	Upgrade	Board.16
(26-122Ø)	Vianet Board for the Tandy 2000	Upgrade	Board.16
(25-1Ø19)	PLUS Network 4 Interface	Upgrade	Board.19
(26-5435)	Etherlink I Network Interface "Original Style" .	Upgrade	Board.24
(26-5435)	Etherlink I Network Interface "Late Style"	Upgrade	Board.25
(26-55Ø1)	Etherlink II Network Interface Board	Upgrade	Board.26
(26-55Ø2)	Etherlink Plus Network Interface Board	Upgrade	Board.27
(26-56Ø2/1)	Tandylink/PLUS Boards	Upgrade	Board.27
(26-65Ø5)	Tandy Arcnet Adapter Board	Upgrade	Board.34
(26-554Ø)	Tandy Token Ring Adapter Board	Upgrade	Board.36
(26-55Ø5)	Tandy Ethernet Adapter Board	Upgrade	Board.36
(26-55Ø5A/B)	Tandy Ethernet Adapter Board	Upgrade	Board.38
(26-55Ø6)		Upgrade	Board.37

UPGRADE BOARDS - SERIAL/PARALLEL

	Multi-Terminal Board - 1st board	Upgrade	Board.2
(26-6Ø13)	Multi-Terminal Board - 2nd board	Upgrade	Board.2
(25-1006)	Tandy 1000 RS-232C Board	Upgrade	Board.4
(25-3Ø61)	Tandy 1200 Captain Multi-Function Board	Upgrade	Board.6
(25-1Ø14)	RS-232 PLUS Interface Board	Upgrade	Board.14

CONTENTS (continued)

UPGRADE BOARDS - SERIAL/PARALLEL (CONTINUED)

(25-1Ø31)	RS-232 PLUS Interface Board (2nd Version)		
(26-5164)	Tandy 2000 Serial Expansion Board	Upgrade	Board.15
(25-4Ø31)	Multi-Terminal Board for the Tandy 3000	Upgrade	Board.17
(25-4Ø34)	Serial/Parallel Board Revision A	Upgrade	Board.17
(25-4Ø34)	Serial/Parallel Board Revisions B and C	Upgrade	Board.17
(25-4Ø39)	Dual Port Serial Board	Upgrade	Board.23
(9Ø-2185/6)	ARNET 4/8 Port Boards	Upgrade	Board.2B
(25-4Ø25)	Dual Serial/Parallel Board	Upgrade	Board.39
(25-4Ø25A)	Dual Serial/Parallel Board	Upgrade	Board.4Ø
(9Ø-24Ø3)	ARNET Smartport 16 Port Board	Upgrade	Board.42
(9Ø-2453)	ARNET Multiport 4 Port Board	Upgrade	Board.43
(90-2458)	ARNET Octaport 8 Port Board	Upgrade	Board.44
(26-2829)	Serial/Parallel Converter		

UPGRADE BOARDS - VIDEO

(26-41Ø4)	Graphics Board	Upgrade	Board.2
(26-514Ø)	Tandy 2000 Monochrome Graphics Board	Upgrade	Board.5
(26-514Ø)	Tandy 2000 Color Graphics Board	Upgrade	Board.5
(25-3Ø43)	Tandy 1200 Graphics Tender Board	Upgrade	Board.8
(25-3Ø44)	Tandy 1200 Graphics Master Board	Upgrade	Board.8
(25-3Ø45)	Dual Display Graphics Adapter Board	Upgrade	Board.9
(25-3Ø45A)	Dual Display Graphics Adapter Revision A	Upgrade	Board.9
(25-3Ø46)	Deluxe Text Display Adapter	Upgrade	Board.9
(25-3Ø46B)	Deluxe Text Display Adapter Revision B	Upgrade	Board.9
(25-3Ø46C)	Deluxe Text Display Adapter Revision C	Upgrade	Board.9
(25-3Ø47)	Deluxe Graphics Display Adapter	Upgrade	Board.1Ø
(25-3Ø48)	EGA/CGA Graphics Adapter	Upgrade	Board.1Ø
(25-3Ø4BA)	EGA/CGA Graphics Adapter Revision A	Upgrade	Board.11
(25-4Ø43)	VGA Adapter Board	Upgrade	Board.13
(25-4Ø37)	EGA Enhanced Graphics Adapter Board	Upgrade	Board.13
(25-3Ø49)	Monochrome/parallel Adapter board	Upgrade	Board.31
	16 Bit VGA Adapter board	Upgrade	Board.33
	16 Bit Super VGA Adapter Board	Upgrade	Board.46

APPENDIX		Annendiv 1
	TRS-DOS System Floppy Drive Usage (8")	
	TRS-DOS Upgrade Board Usage	
	TRS-DOS System Hard Drive Usage	
	TRS-DOS Hard Drives Used In MS-DOS CPUs .	
	MS-DOS System Floppy Drive Usage (5 1/4")	
	MS-DOS System Floppy Drive Usage (3 1/2")	
	Hard Card Heads and Cylinders	
	ST-506 Hard Drive Heads and Cylinders	Appendix.5
	IDE Hard Drive Heads and Cylinders	Appendix.6
	SCSI Hard Drive Heads and Cylinders	Appendix.6
	Hard Drive Types	Appendix.7
	TANDY 5000MC Hard Drive Type Table	
	MS-DOS Upgrade Board Usage	
	RAM Reference Guide	
	SIMM ID Table	
	Tandy/GRiD Catalog/Model # Cross Ref	
	Monitor Type Table	
	Video Monitor/Video Board	uppeness:
	Compatibility Chart	Appendix 16
	Diagnostic Beep Codes	
	Decimal-Binary-Hexadecimal Chart	
	ASCII Character Code Table	
	VGA Pin Outs	
	DB25 Parallel Port Pin Outs	
	DB9 Serial Port Pin Outs	Appendix.21

LIST OF FIGURES

Description

Figure

CPU Board Model II (Rev. A-C) 1
CPU Board Model II/16 (Rev. D) 2
Keyboard/Video Board (Early Style) 3
Keyboard/Video Board (Late Style) 4
Keyboard/Video Board (Model 12/16B) 5
FDC Board (Early Style) 6
FDC Board (Late Style for Model II) 7
FDC Board (Late Style for Model 16) 8
First 32K Memory Board 9
Second 32K Memory Board 10
First 64K Memory Board (26-41Ø5) 11
Visicalc 64K Memory Board (26-4105) 12
144K Memory Board for Arcnet (26-65Ø3) 13
144K Memory Board for Visicalc (26-65Ø3)14
Model 12 Main Logic Board 15
68000 6 MHz CPU board 16
Reduced Size 68000 6 MHz CPU board 17
128K/256K 68000 Memory Board (26-6011) 18

LIST OF FIGURES (cont.)

Description

Figure	F.	i	21	1	r	e
--------	----	---	----	---	---	---

B MEG Hard Disk Interface In Model II/16/16B	19
B MEG Hard Disk Interface In Model 12	2Ø
12 MEG Hard Disk Interface In Model II/16/16B	
12 MEG Hard Disk Interface In Model 12	22
B MEG Hard Disk Controller Board	
5/12/External 15 MEG Hard Disk Controller Board	24
B MEG Hard Disk Drive Logic Board	25
12/15 MEG Hard Disk Drive Logic Board	26
5 MEG Hard Disk Drive Logic Board	27
Arcnet Board (26-65Ø1)	2B
Hi-Res Graphics Board (26-41Ø4)	29
Tandon Thinline Floppy Disk Drive Logic Board	3Ø
Multi-Terminal Board (26-6013)	31
Shugart B" Floppy Disk Drive Logic Board (Discrete)	32
Shugart B* Floppy Disk Drive Logic Board (Early LSI)	33
Shugart B* Floppy Disk Drive Logic Board (Late LSI)	34
CDC B" Floppy Disk Drive Logic Board (Discrete)	35
CDC B" Floppy Disk Drive Logic Board (LSI)	36
TPI B" Floppy Disk Drive Logic Board	
15 MEG Hard Disk Internal Controller/Interface Board	
Model 16B Main Logic Board	
	4Ø
	41
Tandy 1000 Main Logic Board	
	43
	44
	45
	46
and the second	47
	48
	49
Mitsubishi M4853-1 5 1/4" Floppy Drive Logic (in Tandy 2000)	
	51
WD1010 External Hard Drive Controller Board	
Tandy 1000 300 Baud Modem Board (25-1003)	
Tandy 1000 RS-232 Board (25-1006)	
Tandy 1000 First External RAM Board (25-1004)	
Tandy 1000 Second External RAM Board (25-1009)	
Tandy 1200 Captain Multi-Function Board (25-3061)	
Tandy 1200 Graphics Tendor Board (25-3043)	
Tandy 1200 Graphics Master Board (25-3044)	
Tandy 2000 Internal Hard Drive Controller Board (26-5127)	
Tandy 2000 Monochrome Graphics Board (26-5140)	
Tandy 2000 Color Graphics Board (26-5140)	62

LIST OF FIGURES (cont.)

Description

Figure

Tandy 2000 First External RAM 80ard (26-5161)	63
Tandy 2000 Second External RAM Soard (26-5161)	
Tandy 2000 Digi-Mouse/Clock 80ard (26-5144)	
8 MHz 68000 CPU Soard (26-6014)	
512K/1MEG 68000 RAM board with 512K (26-6014)	67
512K/1MEG 68000 RAM board with 1MEG (26-6014)	68
Tandy 1000 Xebec Hard Drive Controller Soard (25-1007)	69
70 MEG Micropolis Hard Drive Logic Soard	7Ø
Vianet Soard for Tandy 1000 and Tandy 1200 (26-1221)	
Vianet 80ard for Tandy 2000 (26-1220)	
Disk Cartridge Controller 80ard	
Disk Cartridge Drive Logic Soard	74
Interface 80ard for Tandy 1000/1200 with Disk Cartridge	75
10 MEG Thinline (TM-252) Hard Drive Logic Soard	76
Tandy 1000 WD1010 Controller Soard	
Tape Cartridge Controller 80ard	
Tape Cartridge Drive Logic Soard	79
Tape Cartridge Interface 80ard to the Tandy 1000/1200	8Ø
Tandy 1000 Memory Plus Board (25-1011)	81
Tandy 1000 Internal 1200 Saud Modem (25-1013)	82
Tandy 1000A Main Logic Soard	83
Tandy 1200A Main Logic Soard	84
4K Model III Main Logic Soard	85
16K/32K/48K Model III Main Logic Board	86
Model III/4 Early FDC Soard	87
16K Model 4 Standard PC8	88
64K/128K Model 4 Standard PC8	
64K/128K Model 4 Gate Array PCB	9Ø
64K/128K Model 4D Main Logic Board	91
Tandy 2000 Serial Expansion Soard (SDLC) (26-5164)	92
Tandy 3000 Main Logic 80ard	93
Tandy 3000 Floppy Disk Controller Soard	94
Tandy 3000 Floppy/Hard Disk Controller 80ard (25-4036)	95
Mitsubishi M4851 Floppy Drive Logic Soard (25-4060)	96
Mitsubishi M4854-347 Floppy Drive Logic Board	97
Tandon TM65-2L Floppy Drive Logic Soard	98
Tandy 1200 WD1010 (short) Hard Drive Controller Soard	99
20 MEG Mitsubishi (MR522) Hard Drive Logic Board	
20 MEG Seagate (ST225) Hard Drive Logic 8oard	
Tandy 3000 Serial/Parallel 80ard (25-4034A)	
Tandy 3000 2 MEG Memory 80ard (25-4030)	
Deluxe Graphics Display Adapter (Tandy 1200/3000) (25-3047).	1Ø5
RS-232 Plus Interface 80ard (25-1014)	1Ø6

LIST OF FIGURES (cont.)

Description

TEAC FD-55BV Floppy Drive Logic Board	107
Mitsubishi MF50IA Floppy Drive Logic Board	
Mitsubishi MF504A Floppy Drive Logic Board	
40 MEG CDC (WREN II) Hard Drive Logic Board	
PC2B Disk Cartridge Interface Board	
Tandy 2000 Disk Cartridge Interface Board	
Tape Cartridge Drive Logic Board Revision C2	
Vianet (Arcnet-PC1ØØ) Board (1ØØØ/12ØØ/3ØØØ) (26-1221)	
Serial/Parallel Board Revision B/C (25-4034B/C)	115
Dual Display Graphics Adapter Video Board (25-3045)	116
Tandy 3000 Multi-Terminal Board (25-4031)	117
20 MEG IOMEGA (Alpha-20H) Disk Cartridge PCB	
Tandy 3000 Gate Array Main Logic Board	119
Tandy 1000EX Main Logic Board	
Tandy 1000SX Main Logic Board	
Tandy 3000HL Main Logic Board	122
Tandy 1000EX Memory PLUS Expansion Adapter (25-1062)	123
1000 External Floppy Disk Interface (25-1060)	125
Plus Network 4 Interface (25-1019)	126
Plus 1200 Baud Modem (25-101B)	
Enhanced Keyboard (25-403B) Dual Port Serial Board (25-4039)	
Plus 300 Baud Modem (25-1017)	
Teac FD-35-FN 3 1/2" 720K Floppy Drive	
	133
Tandy 1000HX Main Logic Board	
Tandy 1000TX Main Logic Board	
Tandy 3000 (12MHZ) Main Logic Board	
Tandy 4000 Main Logic Board	
Tandy 3000HL with Key Lock Main Logic Board	
Plus RS232 (25-1031)	14Ø
Sony MP-F73W-Ø1D 3 1/2" 1.44 Meg Floppy Drive	141
· · · · · ·	141
Sony MP-F17W-7ØD 3 1/2" 1.44 Meg Floppy Drive	141
Sony MP-F17W-71 3 1/2" 1.44 Meg Floppy Drive	
Sony MP-F17W-72 3 1/2" 1.44 Meg Floppy Drive	141
Teac FD55BV-221 5 1/4" 360K Floppy Drive	
Teac FD55BR-521 5 1/4" 360K Floppy Drive	143

(continued on next page)

Figure

LIST OF FIGURES (cont.)

Description

Sony MP-F63-Ø1D 3 1/2" 72ØK Floppy Drive	144
Sony MP-F63-70D 3 1/2* 720K Floppy Drive	144
Sony MP-F11W-7ØD 3 1/2" 72ØK Floppy Drive	144
Sony MP-F11W-71 3 1/2* 72ØK Floppy Drive	
Sony MP-F11W-72 3 1/2" 72ØK Floppy Drive	
Etherlink Network Interface Board (26-5435)	
Etherlink Plus Network Interface Board (26-5502)	
20 MEG Fuji (FK302-26/305-26) Hard Card Logic Board	
20 MEG Miniscribe (843B) Hard Card Logic Board	
Enhanced Graphics Adapter (25-4037)	
20 MEG IOMEGA (Beta 20) Disk Cartridge Controller	
20 MEG IOMEGA (Beta 20) Primary Disk Cartridge	
20 MEG IOMEGA (Beta 20) Secondary Disk Cartridge	
Dual Display Graphics Adapter (25-3045A)	
Mitsubishi MF5Ø4B 1.2 Meg Floppy Drive	
Model 4P Standard Main Logic Board	
Model 4P Gate Array Main Logic Board	
6BØØØ MMU board	
512K/1MEG 6BØØØ memory board with 512K	
512K/1MEG 6BØØØ memory board with 1 MEG	
Citizen OSDC-95A 3 1/2" Floppy Drive 72ØK	
16 Bit SCSI HD Controller (25-4161)	161
4Ø MEG Quantum 3 1/2" SCSI Hard Drive (25-4159)	
BØ MEG Quantum 3 1/2" SCSI Hard Drive (25-4160)	
BØ MEG Quantum 5 1/4" SCSI Hard Drive (25-416ØA)	
17Ø MEG 5 1/4" SCSI Hard Drive (25-4162)	
344 MEG 5 1/4" SCSI Hard Drive (25-4163)	
ST506 WD1003 WAH Hard Drive Only Controller (25-405B)	
40 MEG Seagate ST251 5 1/4* ST506 Hard Drive (25-4057)	
40 MEG Rodime 3055 3 1/2" ST506 Hard Drive (25-4061A)	
70 MEG Rodime 5090 5 1/4" ST506 Hard Drive (25-4067)	
40 MEG Seagate ST151 3 1/2" ST506 HD for 5KMC (25-4140)	
BØ MEG CDC 94355 3 1/2" ST5Ø6 HD for 5ØØØMC (25-4141)	
16 Bit SCSI-MC 5000 HD Controller (25-6060)	
ST5Ø6-MC 5ØØØ HD Controller (25-6Ø4Ø)	
20 MEG CMS (1400 LT) 3 1/2" Hard Drive (25-3515)	
Lite Drive Controller Board (25-3515)	175
20 MEG Mini Scribe 8438 Hard Card (25-1029A/B)	
20 MEG Tandon TM362 Hard Card (25-1032/A/B)	
20 MEG Western Digital WD362 Hard Card (25-1032/A/B)	
20 MEG Western Digital 9302B Hard Card (25-1032C)	
40 MEG Seagate 157 Hard Card Controller Board (25-4059)	
40 MEG Seagate 157 Hard Card (25-4059)	
150 MEG 5 1/4" SCSI Tape Drive (25-4169)	
20 MEG Internal DCS "A" Vers - BETA I (25-4064A)	1B2

(continued on next page)

.

LIST OF FIGURES (cont.)

Description

40 MEG Internal Tape Gartridge System (25-4069) 183 40 MEG Internal Tape Gartridge System "A" Vers. (25-4069A).. 183 Scorpion 60 MEG Internal Tape Gartridge System (90-2060) ... 184 Long Interface Board SG-499 (90-2060) 185 286 Express Board for Tandy 1000 family (25-1035) 187 Deluxe Text Display Adapter Rev. B (25-3046B AX-0189) 188 Deluxe Text Display Adapter Rev. G (25-3046G AX-0233) 188 EGA/GGA Video Board (25-3048) 189 1200 Baud Internal Modem Board Revision D/E (25-1013D/E) .. 192 1200 Baud PLUS Modem Board Revision A (25-1018A) 193 1200 Baud LT1400 Internal Modem Board (25-3510) 195 ARNET Smartport 4 Board (90-2185) 196 ARNET Smartport 8 Board (90-2186) 197 Tandylink Board (26-5601) 198 Tandylink PLUS Board (26-5602) 198 ØK Memory Exp. Adapter for Tandy 3ØØØNL W/jumper (25-4Ø27).. 199 ØK Memory Exp. Adapter for Tandy 3000NL without jumper 200 ØK Memory Exp. Adapter for Tandy 5000MC (25-6030) 201 32 Bit Memory Board for Tandy 4000/LX (25-5029/30) 202 Tandy 1000SL Main Logic Board (25-1401) 203 Tandy 1000TX Revision A (Cleburn Version) (25-1600) 205 Tandy 3000NL Main Logic Board (25-4072) 206 Tandy 5000MG Main Logic Board (25-6000) 208 Tandy 5000MG GPU Board (25-6000) 209 Teac FD55BR-121 Floppy Disk Drive (25-1063A) 211 16 Bit SGSI Hard Drive Gontroller "B" version (25-4161B) ... 212 Citizen OPBD-12A Floppy Disk Drive 213 Tandy 4000SX Main Logic Board (25-4900) 214 Teac FD235-105U 3 1/2" Floppy Drive 215 Mitsubishi MF5Ø4G-347UA 5 1/4" 216 EME-213 3 1/2" Floppy Drive 720K 217 Panasonic JU-257A213P 1.44 MEG Floppy Drive 219 WP2 Main Logic Board/32K Mem Upgrade/32K Mem Gard 220 16 Bit VGA Adapter Board 221 WD 1003V-MM1 Hard Drive Controller 222 Tandy 1000SL/2 Revision G Main Logic Board 223 Tandy 1000SL/2 Revision D Main Logic Board 224

(continued on next page)

Figure

LIST OF FIGURES (cont.)

Description

Figure

Tandy 1000TL/2 Main Logic Board	225
Tandy 1400LT/A Main Logic Board	
Tandy 1400LT "B" Version Main Logic Board	
Tandy 1400FD/HD Main Logic Board	
WP-100 Main Logic Board	
40 MEG Miniscribe 8051A 3 1/2" Smart Drive	23Ø
80 MEG Miniscribe 7080A 3 1/2" Smart Drive	
150 MEG Half Height ESDI Hard Drive Logic Board	232
20/40 MEG IDE Smart Drive	
Hard Drive and Controller for Tandy 1400FD/HD	234
Tandy 2500XL Main Logic Board	235
Tandy 4016DX/4020/25/33LX Main Logic Board	236
Tandy 4016DX CPU Board	237
Tandy 4020/25/33LX CPU Board	238
Tandy 4016SX Main Logic Board	239
Tandy 1100FD Main Logic Board - Solder Side	24Ø
Tandy 2BØØHD Main Logic Board	241
Conner CP-3024 (20 MEG) and CP-3044 (40 MEG) HD Logic Board.	242
60 MEG 5 1/4" Internal Tape Drive	243
Hitachi CD ROM player and Interface	
Monochrome/parallel Adapter Board (25-3049)	245
Smart Drive Interface Adapter Board	246
Trackstar 128/E Interface Board (25-1028/1038)	
Tandy Ethernet Adapter Board (26-5505)	248
Tandy Ethernet 1 New style (26-5435)	249
Tandy Token Ring Adapter Board (26-554Ø)	25Ø
Tandy Arcnet Adapter Board (26-6505)	251
Serial Parallel Converter Boards (26-2829)	252
Tandy 2400 Baud Error Correcting Modem Board (25-1034)	253
Tandy 1400LT/FD/HD 2400 Baud Internal Modem Board (25-3524).	254
Tandy 1100FD Internal Modem Board (25-353B)	255
2400 Baud Internal Modem for 2800HD (25-3555)	256
Tandy Faxmate Board (25-3063)	257
Western Digital ESDI Controller for AT style computers	25B
Western Digital ESDI Controller for Tandy 5000MC	259
Memory Adapter Board for Tandy 4000SX (25-4930)	26Ø
1 MEG Memory Upgrade Board for Tandy 2800HD	261
20 MEG MiniScribe 8438 Hard Card Version 3	262
2.8" Quick Drive for WP100	
WD344 40 Meg Hard Card Hard Drive	
Adaptec ST506 Hard Drive Controller for T5000MC	
20 MEG Internal DCS "A" Vers - BETA L (25-4064A)	
Tandy 1500 Main Logic Board	
Tandy 2810 Main Logic Board	

LIST OF FIGURES (cont.)

Description

Tandy 4020SX Main Logic Board	269
Tandy 2500XL/2 Main Logic Board	27Ø
Tandy 1000TL/3 Main Logic Board	
Tandy 1000RL/HD Main Logic Board and SSJ Board	
Tandy 1000RLX/HD Main Logic Soard and SSJ Board	
Tandy 3B1Ø Main Logic Soard	
Teac 235HF-1Ø6U 3 1/2" 1.44 Meg Floppy Drive	
Tandy 2500SX Main Logic Soard	276
CMS Tape Drive Mux Adapter	
1 Meg EMS Memory Expansion SIMM	
2400 Baud Modem Board for 2B00 (25-3555)	279
2400 Baud Modem Board for 1500/2810/3810 Laptops (25-3525) .	
Internal 1200 Baud Modem Board Revision F	
Tandy Ethernet Plus Adapter Board (25-5506)	
Conner CP-2064 60 Meg IDE Hard Drive	
Tandy 1000EX Revision D Main Logic Board	
Tandy Etherlink Board (25-5505A/B)	
Dual Serial/Parallel Board Revision 81ank (25-4025)	
Dual Serial/Parallel Board Revision A (25-4025A)	
Arnet Multiport 4 Board (90-2453)	
Arnet Octaport B Board (90-245B)	
Arnet Smartport 16 Board (90-2403)	
2400 Baud Half Card Modem Board Revision 8 (25-1037B)	
Seagate ST-325X 20 Meg IDE Hard Drive	
Seagate ST-351A/X 40 Meg IDE Hard Drive	
Quantum LPS52 52 Meg Smart Drive	
Quantum LPS1Ø5 1Ø5 Meg Smart Drive	
202 Meg SCSI Hard Drive	
440 Meg SCSI Hard Drive	
160 Meg SCSI Tape Drive	
16 Bit Super VGA Adapter Board	298
Conner CP-2024 20 Meg IDE Hard Drive	299
Matsushita EME-263MG 1.44M Floppy Drive	3ØØ
3SERVER3 Main Unit/Control Panel	
3SERVER3 Main Logic 8oard	3Ø2
3SERVER3 Disk Drive Controller Board	
3SERVER3 Priam Hard Disk Drive	
3SERVER3 Tape Drive Controller Board	
3SERVER3 Wangtek Tape Drive	
3S/401 Main Unit Control Panel	
3S/4Ø1 Main Logic Board	
3S/4Ø1 Hard/Tape Drive Controller Board	
3S/4Ø1 CDC Hard Drive	310
3S/401 Tandberg Tape Drive	311
Mitsumi CDR-1000 CD-ROM Drive and Interface	
Hitachi External CD-ROM Drive 1700S (90-2156) and I/F	
Hitachi External CD-ROM Drive 1503S (903-2376) and I/F	

Figure

Upgrade 8oards Quick Reference by Catalog Number

This list is NOT all inclusive but is provided as an aid when identifying boards that are similar in description.

Catalog			
Number	Description	Figure 🖡	Text
	······································		
25-1ØØ3	Tandy 1000 300 Baud Modem	53	Upgrade.19
25 -1ØØ 4	Tandy 1000 First External Ram Board	55	Upgrade.4
25 -1 ØØ6	Tandy 1000 RS-232 Board	54	Upgrade.4
25-1ØØ9	Tandy 1000 Second External Ram 80ard	56	Upgrade.4
25-1Ø11	Tandy 1000 Memory Plus Board	81	Upgrade.7
25-1Ø13	Tandy 1000 Internal 1200 Saud Modem	82	Upgrade.19
25-1Ø13D/E	Tandy 1000 Internal 1200 8d Modem Rev. D/E	192	Upgrade.2Ø
25-1Ø13F	Tandy 1000 Internal 1200 Saud Modem Rev. F	281	Upgrade.39
25-1Ø14	RS-232 Plus Interface Board	1Ø6	Upgrade.14
25-1Ø17	PLUS 300 Baud Modem	131	Upgrade.23
25-1Ø18	PLUS 1200 8aud Modem	127	Upgrade.2Ø
25 -1Ø18A	PLUS 1200 Baud Modem 80ard Rev. A	193	Upgrade.21
25-1Ø19	PLUS Network 4 Interface	126	Upgrade.19
25-1Ø28	Trackstar 128	247	Upgrade.46
25-1Ø3Ø	Enhanced Keyboard Adapter	128	Upgrade.22
25-1Ø31	Plus RS232	14Ø	Upgrade.15
25-1Ø34	2400 8aud Error Correcting Modem	253	Upgrade.33
25-1Ø35	Tandy 286 Express Soard	187	Upgrade.4
25-1Ø37/A	2400 Saud Modem Soard	194	Upgrade.21
25-1Ø378	2400 Saud Modem Soard	291	Upgrade.39
25-1Ø38	Trackstar E	247	Upgrade.46
25-1Ø62	Tandy 1000EX Memory Plus Expansion Adapter	123	Upgrade.18
25-3Ø43	Tandy 1200 Graphics Tendor 80ard	58	Upgrade.8
25-3Ø44	Tandy 1200 Graphics Master 8oard	59	Upgrade.8
25-3Ø45	Dual Display Graphics Adapter	116	Upgrade.9
25-3Ø45A	Dual Display Graphics Adapter Rev. A	153	Upgrade.9
25-3Ø46	Deluxe Text Display Adapter	1Ø4	Upgrade.9
25-3Ø468/C	Deluxe Text Display Adapter Vers. 8 & C	188	Upgrade.9
25-3Ø47	Deluxe Graphics Display Adapter	1Ø5	Upgrade.1Ø
25-3Ø48	EGA/CGA Graphics Adapter	189	Upgrade.1Ø
25-3Ø4 8A	EGA/CGA Graphics Adapter Vers. A	19Ø	Upgrade.11
25-3Ø49	Monochrome/Parallel Adapter 8oard	245	Upgrade.31
25-3Ø61	Captain Multifunction Board	57	Upgrade.6
25-3Ø63	Tandy FAXMATE Board	257	Upgrade.32
25-35Ø7	1 MEG Memory Exp. SIMM for 1500/2810/3810	278	Upgrade.45
25 -3 51Ø	LT1400 Internal Modem 80ard	195	Upgrade.22
25-3524	2400 8aud Internal Modem for 1400LT/FD/HD	254	Upgrade.34
25-3525	24ØØ 8d Internal Modem for 15ØØ/281Ø/381Ø	28Ø	Upgrade.39
25-3538	2400 8aud Internal Modem for 1100FD	255	Upgrade.33
25-3555	2400 Bd Internal Modem for 2800HD	279	Upgrade.39

UPGRADE 80ARDS SORTED BY CATALOG NUMBER (cont.)

Catalog			
Number	Description	Figure #	Text
25-4Ø25	Dual Serial/Parallel 80ard	286	Upgrade.39
25-4Ø25A	Dual Serial/Parallel 80ard Rev. A	287	Upgrade.4Ø
25-4Ø27	ØK Memory Exp. 8oard for Tandy 3000NL	199/200	Upgrade.30
25-4Ø3Ø	Tandy 3000 2 MEG Memory 80ard	1Ø3	Upgrade.7
25-4Ø31	Multi-Terminal 80ard for the Tandy 3000	117	Upgrade.17
25-4Ø34	Serial/Parallel 80ard Rev. A/8/C	1Ø2/115	Upgrade.17
25-4Ø37	Enhanced Graphics Adapter	149	Upgrade.13
25-4Ø38	Enhanced Keyboard	129	Upgrade.22
25-4Ø39	Dual Port Serial 80ard	13Ø	Upgrade.23
25-4Ø43	VGA Adapter 8oard	191	Upgrade.13
25-4Ø6Ø	Floppy/Hard Drive WD1ØØ2-WA2 Controller	95	Upgrade.19
25-4Ø6Ø	Ploppy/Hard Drive WD1003-WA3 Controller	124	Upgrade.19
25-493Ø	Tandy 4000SX Memory Upgrade 80ard	26Ø	Upgrade.31
25-5Ø29/3Ø	32 Bit Memory 80ard for Tandy 4000/LX	2Ø2	Upgrade.31
25-6Ø3Ø	ØK Memory Expansion Adapter for 5000MC	2Ø1	Upgrade.31
26-122Ø	Vianet for Tandy 2000	72	Upgrade.16
26-1221	Vianet for Tandy 1K/3K/4K Series	71/114	Upgrade.16
26-2829	Serial/Parallel Converter	252	Upgrade.45
26-41Ø4	Graphics Board	29	Upgrade.2
26-41Ø5	Visicalc 64K Memory 80ard	12	Upgrade.2
26-5127	Tandy 2000 Hard Drive Controller Board	6Ø	Upgrade.5
26-514Ø	Tandy 2000 Monochrome/Color 8oard	61/62	Upgrade.5
26-5144	Tandy 2000 Digi-Mouse/Clock Board	65	Dpgrade.6
26-5161	Tandy 2000 External RAM 80ard	63/64	Upgrade.5
26-5164	Tandy 2000 Serial Expansion 80ard	92	Upgrade.15
26-5435	Tandy Etherlink 1 Original Style	145	Upgrade.24
26-5435	Tandy Etherlink I Late Style	249	Upgrade.25
26-55Ø1	Tandy Etherlink 1I	21Ø	Upgrade.26
26-55Ø5	Tandy Ethernet	248	Upgrade.36
26-55Ø5A/8	Tandy Ethernet	285	Upgrade.38
26-5506	Tandy Ethernet PLUS Adapter	282	Upgrade.37
26-554Ø	Tandy Token Ring	25Ø	Upgrade.36
26-56Ø1/2	Tandylink/PLUS	198	Upgrade.27
26-6Ø13	Multi-Terminal Board for 68000 Computer	31	Upgrade.2
26-65Øl	Arcnet 8oard	28	Upgrade.2
26-65Ø3	144K RAM Board	13/14	Upgrade.2
26-65Ø5	Tandy Arcnet	251	Dpgrade.34
90-2185/6	ARNET Smartport 4/8 Boards	196/197	Upgrade.28
90-2403	ARNET Smartport 16 Port 80ard	29Ø	Upgrade.42
9Ø-2453	ARNET Multiport 4 Port 80ard	288	Upgrade.43
9Ø-2458	ARNET Octaport 8 Port 80ard	289	Upgrade.44

NOTES:

The recommended order for boards to be installed into the Model II card cage starting at the side nearest the power supply is:

Z-8Ø CPU board -- REQUIRED FDC board -- REQUIRED ARCNET board (if installed) Hard Disk interface board (if installed) Disk Cartridge interface board (if installed) Multi-terminal board (if installed) Z-8Ø memory board (s) Kb/video board (with the graphics board next to it if it is installed) 68ØØØ CPU and memory board(s) (if installed)

The Z-80 CPU board should be installed in the first slot (nearest the power supply). The other boards should be installed with no empty slots between them so that the interrupt system will work properly. The only exceptions are the 68000 boards, this is because they do not use Z-80 interrupts. To make installation easier the 68000 boards can be installed into the slots furthest from the Z-80 CPU but make sure that the foil side of the board does not short out against the side of the card cage.

When more than 5 Z-80 boards are installed into Model II the power supply will have to be upgraded to an AXX-6008 or an AXX-6009 type, and a new 5 volt supply wire must be routed to the mother board (AW-2841). With the AXX-6008 power supply, it will be necessary to adjust the power supply output voltage every time the number of boards is changed. Refer to Technical 8ulletin II:29 for the AXX-6008 power supply adjustment procedures. If any 68000 boards are used a AXX-6009 power supply must be installed.

Following is a list of all the jumpers for the four basic boards in the Model II. These jumpers may change with new boards and modifications.

CPU Board Rev. A/B/C (figure 1):

Since the pins are labeled differently on all revisions of the CPU board, we are going to use the labels on the Rev. D board. For Rev. A through C and those with no Rev. letter, the position refers to the seme place on a Rev. D board.

A-8 Found on Revision C boards only
EØ-E1 Generates waits only on an M1 cycle, install if missing
E3-E4 Generates waits only when ROM is addressed, install if missing
E14-E15 Connects a clock from the CTC to channel 8 of the SIO
E11-E12 Connects a CTC clock to the X-mit section of serial channel A
E7-E8 Connects a CTC clock to the receive section of channel A

Note the last two jumpers will change with the installation of BiSync. Refer to Technical 8ulletin II:17.

CPU board Rev. D (figure 2):

EØ-E1Generates waits only on an M1 cycle, install if missingE3-E4Generates waits only if ROM is addressed, install if missingE14-E15Connects a clock from the CTC to channel B of the SIOE11-E12Connects a clock from the CTC to the X-mit section of chan AE7-E8Connects a clock from the CTC to the REC section of chan A

Note again the last two will change with the installation of BiSync. Also, Rev. D boards already have the DMA and Interrupt mods (Technical Bulletin II:26) included as part of the PCB layout. These are the mods that are done for hard disks, graphics boards, and **B**iSync.

Keyboard/video board (early style figure 3):

1-2 This generates a 30 hz RTC signal (very early board-few made) On most boards these pins are labeled 14-16 and some versions will need a wire wrap jumper while others can use a push on jumper.

The other jumper connected to pin 21 has to be adjusted for each board and will vary from board to board.

Keyboard/video board (late style labeled LEIMV-1 1082 figure 4): 14-15 This generates a 30 hz RTC signal

The other jumper connected to pin 21 has to be adjusted for each board and will vary from board to board.

Keyboard/Video Soard (figure 5):

E1-E2 For Model II type operation E5-E6 For Model II type operation 14-15 This generates a 30 hz RTC signal The other jumper connected to pin 21 has to be adjusted for each board and will vary from board to board.

NOTE: This board is normally found in the Model 12 and 16B but may also be found in later Model IIs.

FDC board (early style all Rev's. Figure 6):

- 3-4 Enables precomp at track >436-7 Selects 250 ns precomp
- A-B Divides 4 MHZ CPU clock by 2 for 1791 FDC chip

FDC Board (late style with one internal drive - figure 7):
L-M Selects a positive XFERRQ (Without a Disk Cartridge Installed)
M-N Inverts XFERRQ (With a Disk Cartridge Installed)
P-Q Divides 4 MHZ CPU clock by 2 for 1791 FDC chip
B-C Selects 8" drive ready signal
T-U Drive Ø is the only internal drive
J-K FDC board will use ports EØ through EF
Y-X Enables bead load delay
Unlabeled boards do not have a W-X-Y jumper, Rev. A and later do

First 32k memory board (figure 9):

1-2 Pulls up an input to U27 that was floating, install if missing
5-6 Pulls up an input to U9 that was floating, install if missing
16-17 Selects the first 16k of the base page
15-18 Selects the second 16k of the base page

Second 32k memory board (figure 10):

1-2 Pulls up an input to U27 that was floating, install if missing
5-6 Pulls up an input to U9 that was floating, install if missing
26-27 Enables the next jumpers on page 1 of the memory map
9-11 Selects the first 16k of the page set by above (page 1)
1Ø-12 Selects the second 16k of the page set by above (page 1)

First 64k memory board (figure 11):

1-2 Pulls up an input to U27 that was floating, install if missing
5-6 Pulls up an input to U9 that was floating, install if missing
16-17 Selects the first 16k of the base page
15-18 Selects the second 16k of the base page
26-27 Enables the next jumpers on page 1 of the memory map
9-13 Selects the first 16k of the page set by above (page 1)
1Ø-14 Selects the second 16k of the page set by above (page 1)

Note: For jumpering a second 64K memory board refer to Upgrade Board.2 (see Visicalc Memory Board 26-4105).

-

~

4K Model III (figure 85):

GG-FF	Selects	4K RAM's
U-T	Selects	4K RAM's
B-C	Selects	60Hz video sync
D-E	Selects	timing of vertical sync
H-J	Selects	timing of vertical sync
K-L	Selects	timing of vertical sync
V-W	Selects	timing of horizontal sync
BB-CC	Selects	timing of horizontal sync

16K/32K/48K Model III (figure 86):

		-
EE-FF	Selects 1	5K RAM's
S-T	Selects 1	5K RAM's
B-C	Selects 6	ðHz video sync
D-E	Selects t	iming of vertical sync
H-J	Selects t	iming of vertical sync
K-L	Selects t	iming of vertical sync
V-W	Selects t	iming of horizontal sync
BB-CC	Selects t	iming of horizontal sync

Early Version FDC board (figure 87):

A-B	Selects 1 MHz clock	
E-G	Selects programmed precomp	
H-J	Selects read data from one-shot	
L-M	Selects write data from one-sho	t

-- Model III.2 --

-

16K Model 4, standard PCB (figure 88): 16K RAM's in locations U77-U84 E1-E2 Connects +12v to RAM's pin 8 E5-E6 Connects +5v to RAM's pin 9 E12-E13 Connects -5v to RAM's pin 1 E14-E15 Disables graphic board Note: E14-E15 is removed when Hi-Res board is installed. 4 pin Dip Shunt at U72: 1 -- -- 20 2 -- -- 19 3 -- -- 18 4 -- -- 17 5 -- -- 16 6 ----- 15 7 ----- 14 8 ----- 13 9 ----- 12 10 -- -- 11 64K Model 4, standard PCB (figure 89): 64K RAM's in locations U77-U84 E2-E3 Connects +5v to RAM's pin 8 E4-E5 Connects 'A7' to RAM's pin 9 E7-E8 Connects GND to U59 pin 11 (PAL) E11-E12 Connects +5v to RAM's pin 1 E14-E15 Disables graphic board Note: E14-E15 is removed when Hi-Res board is installed. 1 -- -- 20 4 pin Dip Shunt at U72: 2 -- -- 19 3 -- -- 18 4 -- -- 17 5 -- -- 16 6 ----- 15 7 ---- 14 8 ----- 13 9 ----- 12 10 -- -- 11 128K Model 4, atandard PCB (figure 89): 64K RAM's in locations U77-U84 64K RAM's in locations U85-U92 E2-E3 Connects +5v to RAM's pin 8 Connects 'A7' to RAM's pin 9 E4-E5 E7-E8 Connects GND to U59 pin 11 (PAL) E11-E12 Connects +5v to RAM's pin 1 E14-E15 Disables graphic board Note: E14-E15 is removed when Hi-Res board is installed. 128K upgrade PAL installed at U72
64K Model 4, gate array PCB (figure 90): JP1 Connects +5v to RAM's pin 1 JP4 Connects +5v to RAM's pin 8 JP6 Connects address line to RAM's JPB Connects 'All' to ROM B/C (U4) 64K Selects 16K (or larger) RAM chips JP12 Selects 'CHRADD' from video array (U17) JP13 Selects 'DOT*' for video data enable J12 pin 16 to J12 pin 18 - Disables graphic board Note: This jumper is removed when Hi-Res board is installed. Jumper wire from U5 pin 16 to ground - selects 64K RAM size The PAL that comes with the memory upgrade kit is not needed or used with the gate array PCB. 128K Model 4, gate array PCB (figure 90): JP1 Connects +5v to RAM's pin 1 JP4 Connects +5v to RAM's pin B JP6 Connects address line to RAM's JP8 Connects 'All' to ROM B/C (U4) 64K Selects 16K (or larger) RAM chips JP12 Selects 'CHRADD' from video array (U17) JP13 Selects 'DOT*' for video data enable

J12 pin 16 to J12 pin 1B - Disables graphic board Note: This jumper is removed when Hi-Res board is installed.

Jumper wire from U5 pin 16 to U33 pin 16 - selects 12BK RAM size

NOTE: The PAL that comes with the memory upgrade kit is not needed or used with the gate array PCB. When doing the 12BK upgrade to a gate array logic board, locate the jumper wire going from U5 pin 16 to ground. Remove the ground side of this jumper, and attach it to pin 16 of U33. Then install the 64K RAM ICs in positions U67 to U74. Refer to Technical Bulletin 4:21 for further details.

This page intentionally left blank.

.

NOTES :

The Model 4D main logic board is electrically identical to the Model 4's gate array logic board. There are however minor physical layout differences. The only change involving the jumpers is the location and function of JP13.

On the Model 4/4D gate array logic board (Rev. B or earlier) with 64K, there is a jumper wire connecting the ENPAGE signal at pin 16 of U5 to ground. In order to select 128K of RAM on this board, this jumper must be removed from ground and attached to pin 16 of U33.

On the Model 4D logic board (Rev. C), 64K or 128K RAM size is selected by JP13 which is now located between U33 and U34 and there isn't a jumper connecting pin 16 of U5 to ground.

64K Model 4D (figure 91): JP1 Connects +5v to RAM's pin 1 JP4 Connects +5v to RAM's pin 8 JP6 Connects address line to RAM's JP8 Connects 'All' to ROM B/C (U4) 64K Selects 16K (or larger) RAM chips JP12 Selects 'CHRADD' from video array (U17) JP13 lower pins Selects 64R RAM size J12 pin 16 to J12 pin 18 Disables graphic board Note: This jumper is removed when Hi-Res board is installed.

128K Model 4D (figure 91): JP1 Connects +5v to RAM's pin 1 JP4 Connects +5v to RAM's pin 8 JP6 Connects address line to RAM's JP8 Connects 'All' to ROM B/C (U4) 64K Selects 16K (or larger) RAM chips JP12 Selects 'CHRADD' from video array (U17) JP13 upper pins Selects 128K RAM size J12 pin 16 to J12 pin 18 Disables graphic board Note: This jumper is removed when Hi-Res board is installed.

NOTES:

There are two types of Model 4P main logic boards. The standard and gate array boards are electrically the same and have the same capabilities of performance. The gate array logic board takes advantage of chip array technology replacing many discrete components.

RAM Specification:

OrganizationAcceas Time64K X 12ØØnsec

Model 4P Standard (figure 155):

E1-E2	Provides 1.2672MHZ reference input to the PLL circuit (Standard)
E4-E5	On Graphics board not installed (Standard)
	Off Enables Graphics board when installed
E6-E7	Uses DCLK as qualifier for VOUT signal
E7-E8	Uses DOT* as qualifier for VOUT signal (Standard)
E9-E1Ø	Off (Standard)
	Used for PLL adjustment as outlined in Technical Bulletin 4P:2
E11-E12	128K RAM installed
E12-E13	64K RAM installed (Standard)
E14-E15	Enables use of DLYGRAPHIC* signal (Standard)

Model 4P Gate Array (figure 156):

E1-E2	128K	RAM	installed

E2-E3 64K RAM installed (S	tandard)
----------------------------	----------

E4-E5	On	Graphics	board	not	installed	(Standard)
				****		(

Off Enables Graphics board when installed

E6-E7 Uses DCLK as qualifier for VOUT signal

E7-E8 Uses DOT* as qualifier for VOUT signal (Standard)

- Reference Technical Bulletin 4P:14 when Graphics board is installed.
- E14-E15 Enables use of DLYCHAR signal (Standard)

NOTES:

The recommended order for boards to be installed into the Model 12 card cage starting at the bottom is:

ARCNET interface board (if installed) Hard Disk interface board (if installed) Multi-terminal board (if installed) Disk Cartridge interface board (if installed) Z-80 memory board(s) (if installed) Kb/video board (with the graphics board next to it if it is installed) 68000 CPU and memory board(s) (if installed CPU board on top)

The boards should be installed with no empty slots between them so that the interrupt system will work properly. The only exception are the $68\emptyset\emptyset\emptyset$ boards. This is because they do not use Z-80 interrupts. To make installation easier the $68\emptyset\emptyset\emptyset$ boards can be installed into the slots at the top of the card cage.

The Model 12 has an extra 16K of RAM installed at pages 14 & 15 of the memory map. You should note this when servicing or exchanging the main logic board. A Model 16B/6ØØØ main logic board should not bave this extra 16K of memory on it. Wire jumper E38-E39 qualifies this extra memory and should be present when there is an extra 16K of RAM installed and removed when there is not an extra 16K of RAM.

Because of this, the extra 16K RAM board used with ARCNET should not be installed in a Model 12. Also, the RAM on the Hard Disk interface board should be moved to another page of the memory map to avoid a memory map conflict with the Model 12 main logic board 16K RAM. The position labeled AG-AL (pages 8 & 9) is recommended.

Following is a list of all the jumpers for the main logic board and the Video/Keyboard used in the Model 12. These jumpers may change with new boards and modifications.

Model 12 Main logic board (figure 15): E1-E2 Inserts 1 wait state on every M1 cycle E4-E5 Connects the 8 megahertz oscillator to the divider logic E7-E8 Connects SIO channel B to the internal CTC clock E15-E16 Sets up U63-U7Ø for using 16K RAM chips E18-E19 Selects a 2K boot ROM E24-E25 No delay on head load E27-E28 FDC gets a READY signal from the disk drive E31-E49 FDC jumpered for normal operation E42-E43 -5vdc to pin 1 of U63-U7Ø E44-E45 +12vdc to pin 8 of U63-U7Ø E46-E47 +5vdc to pin 9 of U63-U7Ø E38-E39 Maps U63-U7Ø on pages 14 and 15 of the memory map E51-E52 Sets up U63-U7Ø for using 16K RAM chips E53-E54 Connects SIO channel A receive to the internal CTC clock E10-E11 Connects SIO channel A transmit to the internal CTC clock Note the last two jumpers will change with the installation of BiSync.

Model 12 Keyboard/video board (figure 5):

E1-E2 For Model II type operation E5-E6 For Model II type operation 14-15 This generates a 30 hz RTC signal The other jumper connected to pin 21 has to be adjusted for each board and will vary from board to board.

Model 12 Video PCB

The Motorola version of this board is the same as that for the Model 16, except for one cut and one jumper difference. Pin 2 is isolated from the rest of the circuit board by a cut. Pin 2 should be connected by a jumper to pin 5. This modification allows the video signal from the video/keyboard interface to be routed through the video driver board on its way to the brightness control.

This page intentionally left blank.

*								*
*								k
*	М	0	D	Е	L	1	6	ł
*								ł
*								*

NOTES:

The recommended order for boards to be installed into the Model 16 card cage starting at the side nearest the power supply is:

Z-8Ø CPU board -- REQUIRED FDC board -- REQUIRED ARCNET board (if installed) Hard Disk interface board (if installed) Disk Cartridge interface board (if installed) Multi-terminal board (if installed) Z-8Ø memory board(s) Kb/video board (with the graphics board next to it if it is installed) 68ØØØ CPU and memory board(s)

The Z-80 CPU board should be installed in the first slot (nearest the power supply). The other boards should be installed with no empty slots between them so that the interrupt system will work properly. The only exceptions are the 68000 boards, this is because they do not use Z-80 interrupts. To make installation easier the 68000 boards can be installed into the slots furthest from the Z-80 CPU but make sure that the foil side of the board does not short out against the side of the card cage.

The four basic 2-80 based boards of the Model 16 are functionally the same as the 4 boards of the Model II. For testing purposes the Model II boards can be used to substitute for their counter parts in the Model 16. An exception here is the Model 16 FDC board jumpers S-T and F-N, which deal with the number of internal floppy drives. Refer to the text for correct setting when using a Model II FDC board in a Model 16.

NOTE: These boards are not FCC approved (except for the REV. B RAM board) and cannot be left in a Model 16 when it is returned to tha customer.

While TRSDOS 2.0 and the diagnostic DOS do not need to have the 68000 CPU board or RAM board installed to be booted, the TRSDOS 4.x operating systems require that either a bard disk interface board, a 68000 board set or a 16k memory board be installed. If the 68000 boards are suspected of causing a problem they can be removed and the computer then tested with the diagnostic DOS to see if they are the cause. Also TRSDOS 1.2a will not work properly with the Model 16 at this time, due to the thinline drives.

Following is a list of all the jumpers for the six basic types of boards in the Modal 16. These jumpers may change with new boards and modifications.

CPU Board Rev. D (figure 2):

EØ-E1Generates waits only on an M1 cycle, install if missingE3-E4Generates waits only if ROM is addressed, install if missingE14-E15Connects a clock from the CTC to channel B of the SIOE11-E12Connects a clock from the CTC to the X-mit section of chan AE7-E8Connects a clock from the CTC to the REC section of chan A

Note the last two will change with the installation of BiSync (Technical Bulletin II:17). Also, Rev. D boards already have the DMA and interrupt mods (Technical Bulletin II:26) included as part of the PCB layout. These are the mods that are done for hard disks, graphics boards, and BiSync.

Keyboard/Video Board (late style labeled LEIMV-1 1082 figure 4): 14-15 This generates a 30 hz RTC signal The other jumper connected to pin 21 has to be adjusted for each board and will vary from board to board.

Keyboard/Video Board (figure 5): E1-E2 For Model II type operation E5-E6 For Model II type operation 14-15 This generates a 30 hz RTC signal The other jumper connected to pin 21 has to be adjusted for each board and will vary from board to board.

NOTE: This board is normally found in the Model 12 and 16B but may also be found in later Model 16s.

FDC Board (late style with two internal drives. Figure B): L-M Selects a positive XFERRQ (Without a Disk Cartridge installed) M-N Inverts XFERRQ (With a Disk Cartridge installed) P-Q Divides 4 MHZ CPU clock by 2 for 1791 FDC chip B-C Selects 8" drive ready signal S-T Allows more than 1 internal drive F-H Sets two internal drives J-K FDC board will use ports EØ through EF W-X Disables head load delay Unlabeled boards do not have a W-X-Y jumper, Rev. A and later do

First 64K Memory Board (figure 11): 1-2 Pulls up an input to U27 that was floating, install if missing 5-6 Pulls up an input to U9 that was floating, install if missing 16-17 Selects the first 16K of the base page 15-18 Selects the second 16K of the base page 26-27 Enables the next jumpers on page 1 of the memory map 9-13 Selects the first 16K of the page set by above (page 1) 1Ø-14 Selects the second 16K of the page set by above (page 1)

68000 CPU Soard (figure 16): E3-E10 Sets the interrupt acknowledge level (level should match E19) E16-E19 Sets the interrupt level at 5 E43-E44 Causes the refresh circuit to output a pulse every 31.5 us (Labeled E29-E30 on some boards) E47-E48 Selects a 6 MHZ clock for the 68000 (Labeled E33-E34 on some boards) Pin 11 of U34 pulled out of the socket & tied to ground

Reduced Size 68000 Board (figure 17): E1-E2 Causes the refresh circuit to output a pulse every 31.5 us E4-E7 Selects a 6 MHZ clock for the 68000 68000 first memory board (either 128K or 256K, figure 18): E13-E14 Connects A14 directly to the RAM E15-E16 Connects A16 directly to the RAM E17-E18 Connects A15 directly to the RAM E11-E12 Supplies A17 inverted to 1/2 the RAM Position 2 of S1 on. This maps the board at 000000 to 03FFFF

68000 second memory board (either 384K or 512K) (figure 18): Same as the first memory board except both 2 & 3 should be in the on position on S1 to map the RAM on this board between 040000 to 07FFFF

68000 third memory hoard (either 640K or 768K) (figure 18): Same as the first memory board except both 2 & 5 should be in the on position on S1 to map the RAM on this board between 080000 to 0BFFFF

68000 fourth memory board (either 896K or 1024K) (figure 18): Same as the first memory board except 2, 3, and 5 should be in the on position on S1 to map the RAM on this board between 0C0000 to 0FFFFF

-- Model 16.4 --

-

NOTES:

The recommended order for boards to be installed into the Model 16B card cage starting at the bottom is:

ARCNET interface board (if installed) Hard disk interface board (if installed) Multiterminal board (if installed) Kb/video board (with the graphics board next to it if it is installed) Z-80 memory board(s) (if installed) 68000 CPU and memory board(s) (if installed CPU board on top)

The boards should be installed with no empty slots between them so that the interrupt system will work properly. The only exceptions are the 68000 boards, this is because they do not use 2-80 interrupts. To make installation easier the 68000 boards can be installed into the slots at the top of the card cage.

The Model 16B should not have the extra 16k RAM as the Model 12 has. You should note this when servicing or exchanging the main logic board. Wire jumper E38-E39 qualifies this extra memory and should be present when there is an extra 16K of RAM installed (as in the Model 12) and removed when thera is not an extra 16K of RAM (as in the Model 16B/6ØØØ).

Because of this the RAM on the hard disk interface board should be mapped at pages 14 and 15 like the Modal II and 16. The position labeled AK-AP is the proper location.

While TRSDOS 2.0 and the diagnostic DOS do not need to have the 68000 CPU board or RAM board installed to be booted, the TRSDOS 4.x operating systems require that either a hard disk intarface board, a 68000 board set or a 16k memory board be installad. If the 68000 boards are suspected of causing a problem they can be removed and the computer then tested with the diagnostic DOS to sea if they are the cause. Also TRSDOS 1.2a will not work properly with the Model 16B at this time, due to the thinline drives.

Following is a list of all the jumpers for the main logic and the Video/Keyboard PCB's in the Model 16B. These jumpers may change with new boards and modifications.

Model 16B Main logic board (figure 39): Inserts 1 wait state on every M1 cycle E1-E2 E4-E5 Connects the 8 megahertz oscillator to the divider logic E7-E8 Connects SIO channel B to the internal CTC clock E15-E16 Sets up U63-U7Ø for using 16K RAM chips E18-E19 Selects a 2K boot ROM E24-E25 No delay on head load E27-E28 FDC gets a READY signal from the disk drive E31-E49 FDC jumpered for normal operation E4Ø-E41 On If one internal floppy drive installed Off If two internal floppy drives installed E42-E43 -5vdc to pin 1 of U63-U7Ø E44-E45 +12vdc to pin 8 of U63-U7Ø E46-E47 +5vdc to pin 9 of U63-U7Ø E51-E52 Sets up U63-U7Ø for using 16K RAM chips E53-E54 Connects SIO channel A receive to the internal CTC clock E1Ø-E11 Connects SIO channel A transmit to the internal CTC clock

Note the last two jumpers will change with the installation of BiSync.

Model 16B Keyboard/video board (figure 5): E1-E2 For Model II type operation E5-E6 For Model II type operation 14-15 This generates a 30 hz RTC signal The other jumper connected to pin 21 has to be adjusted for each board and will vary from board to board.

Model 16B Video PCB

The Motorola version of this board is the same as that for the Model 16, except for one cut and one jumper difference. Pin 2 is isolated from the rest of the circuit board by a cut. Pin 2 should be connected by a jumper to pin 5. This modification allows the video signal from the video/keyboard interface to be routed through the video driver board on its way to the brightness control.

.

This page intentionally left blank.

NOTES:

The recommended order for boards to be installed into the Tandy $6\emptyset\emptyset\emptyset$ card cage, starting at the bottom, is:

ARCNET board (if installed) Hard disk interface board (if installed) Multiterminal board (if installed) Disk Cartridge interface board (if installed) Keyboard/video interface (with the graphics board next to it if installed) 2-80 memory board(s) (if installed) 68000 CPU board 68000 Memory board(s)

The boards should be installed with no empty slots between them so that the interrupt system will work properly. The only exceptions are the 68000 boards, this is because they do not use Z-80 interrupts. To make installation easier the 68000 boards can be installed into the slots at the top of the card cage.

The Model 6000 should not have the extra 16k RAM as the Model 12 has. You should note this when servicing or exchanging the main logic board. Wire jumper E38-E39 qualifies this extra memory and should be present when there is an extra 16K of RAM installed (as in the Model 12) and removed when there is not an extra 16K of RAM (as in the Model 16B/6000).

Because of this the RAM on the hard disk interface board should be mapped at pages 14 and 15 like the Model II and 16. The position labeled AK-AP is the proper location.

Following is a list of all the jumpers for the main logic, Video/Keyboard and $68\emptyset\emptyset\emptyset$ boards in the Tandy $6\emptyset\emptyset\emptyset$. These jumpers may change with new boards and modifications.

— TANDY COMPUTER PROOUCTS[•]

Tandy 6000 Main logic board (identical to the Model 16B, figure 39): E1-E2 Inserts 1 wait state on every M1 cycle Connects the 8 megahertz oscillator to the divider logic E4-E5 E7-E8 Connects SIO channel B to the internal CTC clock E15-E16 Sets up U63-U7Ø for using 16k RAM chips E18-E19 Selects a 2k boot ROM E24-E25 No delay on head load E27-E28 FDC gets a READY signal from the disk drive E31-E49 FDC jumpered for normal operation If one internal floppy drive installed E4Ø-E41 On Off If two internal floppy drives installed. E42-E43 -5vdc to pin 1 of U63-U7Ø E44-E45 +12vdc to pin 8 of U63-U7Ø E46-E47 +5vdc to pin 9 of U63-U7Ø E51-E52 Sets up U63-U7Ø for using 16k RAM chips E53-E54 Connects SIO channel A receive to the internal CTC clock E10-E11 Connects SIO channel A transmit to the internal CTC clock Note the last two jumpers will change with the installation of BiSync. Tandy 6000 Key/video board (identical to the Model 16B, figure 5): E1-E2 For Model II type operation E5-E6 For Model II type operation This generates a 30 Hz RTC signal 14-15 The other jumper connected to pin 21 has to be adjusted for each board and will vary from board to board. 8 MHz 68000 CPU board (figure 66): E1-E2 Selects 15.5 usec refresh timing E6-E7 Sets "PCLOCK" to 8 MHz 512K/1MEG 68000 RAM board with 512K (figure 67): E1-E2 Select 512K RAM size E5-E6 Along with S1 and E1-E2 maps RAM at address ØØØØØØ to Ø7FFFF E7-E8 Configures Al9 to select RAS multiplexor E12-E14 Configures for 150 ns RAM (Normal configuration) E13-E14 Configures for 200 ns RAM S1 position 2 should be on all others should be off 512K/1MEG 68000 RAM board with 1MEG (figure 68): E2-E3 Select 1MEG RAM size E5-E6 Along with S1 and E2-E3 maps RAM at address ØØØØØØ to ØFFFFF Configures A19 to select RAS multiplexor E7-E8 E12-E14 Configures for 150 ns RAM (Normal configuration) E13-E14 Configures for 200 ns RAM S1 position 2 should be on all others should be off

8 MHz 68000 CPU board used with MMU upgrade (figure 66): This 68000 CPU board must be used with 1 MEG memory boards only. E1-E2 Selects 15.5 μsec refresh timing E6-E7 Sets "PCLOCK" to 8 MHz

6000 MMU (figure 157): No jumpers are present on this board. The memory management unit consists of satellite circuit board that plugs into the 68000 CPU socket. This MMU kit consists of a modified 68000 CPU board with the satellite MMU board installed. To complete this upgrade, the customer must provide a working 8 MHz 68000 CPU board (AX-9006) to exchange for the modified 68000 MMU CPU board. Refer to Technical Sulletin 6000:18 for installation instructions.

- TANDY COMPUTER PRODUCTS -

512K/1MEG 68000 RAM board with 512K (figure 158): E1-E2 Select 512K RAM size E5-E6 Along with S1 and E1-E2 maps RAM at address ØØØØØØh to Ø7FFFFh (board 1) or 100000h to 17FFFFh (board 2 -- used with MMU upgrade) E7-E8 Configures A19 to select RAS multiplexer E12-E14 Configures for 150 ns RAM (normal configuration) El3-El4 Configures for 200 ns RAM 80ard 1: S1, position 2 on, all others off. 80ard 2: S1, positions 2, 7 on, all others off. * 512K/1MEG 68000 RAM board with 1 MEG (figure 159): E2-E3 Select 1 MEG RAM size E5-E6 Along with S1 and E2-E3 maps RAM at address ØØØØØØh to ØFFFFFh (board 1) or 100000b to 1FFFFFh (board 2 -- used with MMU upgrade)

E7-E8 Configures Al9 to select RAS multiplexer E12-E14 Configures for 150 ns RAM (normal configuration) E13-E14 Configures for 200 ns RAM

80ard 1: S1, position 2 on, all others off. Board 2: S1, positions 2, 7 on, all others off. *

* Switch settings for use with the aecond 1 MEG board, only with the MMU kit.

-- Model 6000.4 --

Tandy 1000 Main logic board (figure 42): E5-E6 Connects clock to video logic E8-E9 Connects 8 MHZ clock to FDC clock divider E21-E22 Selects active drive ready signal constantly

Tandy 1000A Main logic board (figure 83):

- E1-E2 Connects clock crystal to circuit
- E3-E4 Selects continuous floppy drive ready (this is a wire jumper)
- E6-E7 Connects printer select to parallel port
- E8-E9 Indicates there is NO coprocessor installed (Remove E8-E9 when installing coprocessor chip)

NOTE: To enable use of some IBM software and/or our IBM compatible printers E6-E7 should be removed. This is equivalent to Technical Bulletin 1000:05.

TEAC FD-54B 5 1/4* Floppy drive logic board (figure 43): IU Selects active In-Use signal DSx Drive Select, $x = \emptyset - 3$ Termination (RA1) will be on all drives.

Internal 10 MEG drive logic board as in Tandy 1000HD (figure 76): W14 Disables backlash DSx Drive select (W12 = drive 1, W9 = drive 4) Last drive on cable should have terminating resistor at U19

NOTE: DS2 (W11) is used to configure for drive C.

Tandy 1000HD WD1002S-WX2 hard drive controller board (figure 77):

W1 pins 1-2 Connects 'DSELØ' (drive select) to bus
W2 pins 1-2 Connects 'RG' (read gate) into circuit
W3 pins 1-2 Connects 'ROMEN' (ROM enable) to ROM
W4 pins 2-3 Connects 'A2' (address line 2) for address select
W6 pins 2-3 Connects 'RWC' (reduced write current) to J1 (drive)
W7 pins 2-3 Selects IRQ2 (standard)
pins 1-2 Selects IRQ5

(continued on next page)

The following are eight (8) sets of jumpers labeled SW1 positions 1-8. Notice that they are numbered from the bottom 1 through 4 and then backwards 8 through 5.

Position	5	ON Selects address
Position	6	OFF Selects address
Position	7	OFF Selects address
Position	8	OFF Selects address
Position	4	With position 3 selects Drive D type
Position	3	(See below for drive types)
Position	2	With position 1 selects Drive C type
Position	1	(See below for drive types)

DRIVE	C:	1	2	DRIV	E D:	3	4
35 N	1EG	ON	ON	35	MEG	ON	ON
15 N	4EG	ON	OFF	15	MEG	ON	OFF
1Ø N	MEG	OFF	ON	1Ø	MEG	OFF	ON

For 20 MEG hard drive support, use the following table and refer to Technical Bulletin 1000:37 for more information.

DRIVE C:	1	2	DRIVE	D:	3	4
35 ME(g on	ON	35 1	1EG	ON	ON
2Ø ME(G ON	OFF	2Ø 1	ÆG	ON	OFF
1Ø ME(g off	ON	1Ø N	ÆG	OFF	ON

This page intentionally left blank.

Tandy 1000 EX Main Logic Board Revision A (figure 120): Tandy 1000 EX Main Logic Board Revision D (figure 284): Note: The jumpers are the same for both boards.

E1-E2 Connects printer select signal (SEL*) to the printer port (Remove E1-E2 to tie SEL* high and enable use of IBM software)

TEAC FD-55BV Floppy Drive Logic Board (figure 107): DSx Drive Select (DS0 = Drive A, DS1 = Drive B)

Termination (RA1) will be on all drives.

....

*												÷
*												×
*	Ť	A	N	D	Y	1	ø	ø	ø	H	X	×
*												×
*												×

Notes:

There is a SETUPHX file on the Tandy 1000HX DOS diskette and on the 1000HX diagnostics diskette. This program must be run when performing floppy drive upgrades. This program should also be run when exchanging a board received from parts.

RAM Specifications:

Organization	Access Time
64K X 4	15Ønsec

Tandy 1000 HX Main Logic Board (figure 135):

E1-E2 Off: Pulls up Printer Select Line to +5V (Standard) On: Connects Printer Select Line to Printer Port

SONY MP-F63-7ØD 3 1/2" 72ØK Floppy Disk Drive (figure 144):

DSØ Drive A Slide switch positioned all way to rear. DS1 Drive B Slide switch positioned second notch from the rear. Termination is internal to the drive.

Introduction:

The 1000RL uses a 10MHz 8086 microprocessor in the new 44-pin PLCC package, a 120-pin DMA/CPU control chip, and a Keyboard/Floppy support chip that supports a PS/2 mouse port. Other features include a slim-line case (3" high x 13 1/2" wide x 15" deep), MS-DOS and the Deskmate Desktop in ROM, speech and sound capabilities, Tandy Graphics Adapter (TGA) and Hercules compatible video, 2 joystick ports, a 9 pin RS-232 serial port, and a DB-25 PC compatible printer port. The standard 1000RL comes equipped with:

- * 10 MHz 8086-1 CPU, selectable at 9.54 MHz or 4.77 MHz.
- * 512K Base RAM in (2) 256K x 4 bit RAMs and (8) 64K x 4 RAMs
- * Expandable to 768K by installing (2) 256K x 4 bit RAMs (100nSec) in sockets U19 and U23)
- * MS-DOS version 3.30.22, Deskmate Desktop version 3.04
- * One 8-bit XT-style expansion slot allowing up to a 9.5 inch long card
- * One RS-232 serial port
- * One parallel printer port on the main logic board (LPT1 at port address Ø378 hexadecimal)
- * Speech/sound support with a microphone input and external sound output on a separate sound/serial/joystick satellite board
- * CGA/TGA/MGA/Hercules compatible RGB video port
- * Dual joystick controller
- * An on-board Floppy Disk Controller that can support (2) 720K drives.
- * One 72ØK 3.5 inch floppy disk drive
- * Enhanced 101-key, PS/2 style keyboard
- * PS/2 compatible mouse port
- * 25-Watt power supply

Notes:

There is a SETUPRL file on the Tandy 1000RL DOS diskette. This program must be run when performing floppy drive upgrades as well as changing other options of the computer. Also, running SETUPRL /A will give you additional setup screens which control options such as video memory size, control of certain chip selects, network options, etc.. Using the /A option with this program should be executed with great care!

One option in setup allows changing the video mode between monochrome and color. This can also be accomplished by depressing the key sequence given below. Each word within the <> refers to a single key, not to the letters of the keys themselves. Executing this key sequence will cause the computer to reboot!

<CTRL><ALT><SHIFT><V>

The 1000RL/HD comes standard with one of two versions of a SmartWatch cbip kit. The 25-1033 version SmartWatch operates without a battery and plugs into a 28 pin socket at U28. The 23-162 version SmartWatch contains a DS1215 clock chip at U29 and a crystal at Y4, and requires a battery. The 1000RL has the 28 pin socket for an optional 25-1033 version of the SmartWatch. Due to these differences, the main logic boards are not interchangeable.

Tandy 1000 RL and Main Logic Board 25-1450 (figure 272):

There are two sets of jumpers on the main logic board and one jumper group on the audio interface PCB. An asterisk (*) next to the jumper numbers denote factory default settings. The jumpers are as follows:

E12-E13 Connects IRQ5 to VSYNC which is used by some software originally designed for the Tandy 1000 or the IBM PC Jr. This jumper may cause your video to roll if some other device is using this interrupt. If this is the case, try to change the interrupt used by the other device or disable the VSYNC interrupt by removing the jumper.
E13-E14* Connects IRQ5 to the hard drive IRQ line on the IDE port.
E14-E15 Connects IRQ2 to the hard drive IRQ line on the IDE port.

The following option does not have staking pins, but is silk-screened on the board. This is used for compatibility with some non-Tandy printers:

E2-E3** Connects SLCTIN* to the printer E3-E4* Disconnects SLCTIN* from the printer port (permanently wired on the board)

**NOTE: Installing staking pins and a jumper from E2-E3 will enable the parallel port to be bidirectional for use with external devices designed to connect to a parallel port. Refer to Technical Bulletin 1000:59 for more information.

Early production units (on both the 1000RL and 1000RL/HD) will have an early version of the KMFIT. The early KMFIT (X07900300) will have a decoding PAL XU1, a resistor pack XRP1, and a buffer at XU2. The later version of the KMFIT (X07900300A) will contain these components internally.

Tandy 1000RL Sound/Serial/Joystick (SSJ) board (figure 272):

E7-E8 Connects a line level audio input device such as a stereo to AUDIOIN E6-E7* Connects a microphone input to AUDIOIN

Power Supply:

The 1000RL and RL/HD contain a 25-Watt power supply that connects to the main logic board via the 6-pin connector at J1. This supplies 5 Volts at 3.3 Amps, 12 Volts at 600 mA, and -12 Volts at 110 mA. A fan is not used in the power supply section. The power supply instead is cooled by strategically located vents. TEAC FD235F-105U 3 1/2 inch 720R Drive Logic Board (figure 215): D0 Drive select 0. D1 Drive select 1. Left pins of RY and DC should be jumped (Connects Ready input to pin 34 of ribbon cable signal. All other jumpers should be off. Power is derived from ribbon cable (no separate power connector). Termination is internal to the drive.

ST-325X 20 Meg IDE Hard Drive 25-1047 (figure 292):

The new low power 20 Megabyte Seagate ST-325X drive is used in the RL/HD version of the computer. The ST-325X utilizes the IDE-XT interface. The drive logically formats as 615 tracks, 4 heads, 17 sectors/track, and 512 bytes/sector for a total of 21.4 Megabytes. Technical Bulletin HD:48 is especially applicable with this drive. In addition the drive should not be tilted more than 5 degrees from horizontal or from vertical.

The jumpers are factory set and will not need to be changed for any standard configuration. The factory settings are:

J5	1-2	Reset	Active	High		
J5	3-4	Reset	Active	Low	(*Factory	Default)
J5	5-6	Life !	Test			

Upgrade Options:

The RAM may be upgraded in this computer from 512K to 768K by installing 2 256Kx4 100nS DRAMs (catalog $\frac{1}{2}25-1082$) in the two empty sockets (labeled U19, U23) provided; no jumpers are required. A numeric coprocessor (8087) is not supported in the 1000RL. The 1000RL also has a socket at U28 for the SmartWatch option (catslog $\frac{1}{2}25-1033$).

In the 1000RL there is a slot for either a secondary 3.5 inch internal floppy disk drive (catalog $\frac{1}{25-1075}$) or either a 20 MEG hard drive (catalog $\frac{1}{25-1047}$) or a 40 MEG hard drive (catalog $\frac{1}{25-1048}$). These two hard drives are the only ones supported due to power supply limitations. The second 3.5 inch floppy disk drive can be added using the supplied bracket (using the screw holes marked "FD"). For the SmartDrive, the mounting bracket can be rotated to mount the hard drive (using the screw holes marked "HD"). Always use the screws provided for this hard drive, as an incorrect pitch or length can cause irreparable damage to the drive.

NOTE: Only one hard drive and one floppy OR two floppy drives will function in this machine at one time. The computer should not be power cycled rapidly in the 1000RL/HD due to the startup power consumption of the ST-325X hard drive. Damage to the power supply may result.

*																4
*																4
*	T	A	N	D	Y	1	ø	ø	ø	R	L	X	1	H	D	4
*																4
*																4

Introduction:

The Tandy 1000RLX is an 80286 based XT-compatible computer system. The Tandy 1000RLX includes an IDE hard drive port, 1.44 Meg diskette drive, 512K RAM, built in serial, parallel, joystick, keyboard, and a PS/2 compatible mouse port. The 1000RLX also has MS-DOS Version 03.30.23 and the Deskmate Desktop Version 03.04.02 in ROM. The 1000RLX uses a VGA video port that is software compatible with CGA, EGA, VGA, and Hercules Monochrome. In the standard configuration, the 1000RLX comes with:

- 1Ø/5 Mhz 8ØL286-1Ø microprocessor.
- * 512K RAM on main board (8Øns).
- Expansion for an additional 512K RAM (8Øns).
- 1Ø1 key PS/2 style keyboard.
- * PS/2 compatible mouse port.
- * Built in VGA compatible video port.
- 256K of video memory.
- * On board XT IDE hard drive port.
- On board FDC that can support two floppy drives (1.44 Meg or 72Ø K).
- * 1.44 Meg internal 3 1/2" floppy drive.
- * One DB-25 parallel port.
- * One DB-9 RS-232 serial port.
- * Two joystick ports.
- * On board real time clock chip.
- A 1Ø inch XT compatible expansion slot.
- MS-DOS and Deskmate Desktop in ROM.
- * Enhanced speech and sound support.

Notes:

There is a SETUPRLX file on the Tandy 1000RL DOS diskette. This program must be run when performing floppy drive upgrades as well as changing other options of the computer. Also, running SETUPRLX/A will give you additional setup screens which control options such as video memory size, control of certain chip selects, network options, etc.. Using the /A option with this program should be executed with great care!

Tandy 1000RLX Main Logic Board 25-1452 (figure 273):

E1Ø-E11 E11-E12	* Dual map video BIOS at FØØØØ-F7FFF and CØØØØ-C7FFF Dual mapping of video BIOS disabled
E7-E8	Disable onboard VGA port
E8-E9	* Enable onboard VGA port
E2-E3	Video IRQ3 enabled (Jumpered)
	* Video IRQ3 disabled (Not jumpered)
E4-E5	* FDC primary address
E5-E6	FDC secondary address
Tandy 1000RLX SSJ Board (figure 273):

E7-E8 Connects a line level audio input device such as a stereo to AUDIOIN

E6-E7* Connects a microphone input to AUDIOIN

Note: the '*' denotes default settings.

Teac 235HF-106U 1.44 Meg 3 1/2 inch Drive Logic Board (figure 275):

The floppy drive is a Teac FD-235HF-1 \emptyset 6U 1.44 Meg 3 1/2 inch drive. There are two sets of jumper blocks located at the rear of the floppy drive. The following is a list of the jumpers and their functions:

FG: Frame ground. This jumper is permanently installed.
DØ: Drive select zero. (default)
D1: Drive select one.
HHI: Logic HI sets the drive in high density mode (not used).
LHI: Logic LOW sets the drive in high density mode (not used).
OP: High density switch enabled (jumpered).
HHO: High density output on high (not used).
D2: Drive select two. Jumper between D2 and center pin.

D3: Drive select three. Jumper between D3 and center pin.

Seagate ST-351A/X 40 Meg IDE Hard Drive 25-1048 (figure 293):

The Tandy 1000RLX/HD uses a 40 Meg IDE hard drive. This hard drive is a low power Seagate ST-351A/X. A jumper block on the hard drive is labeled J2 and the jumpers are numbered 1 to 18. Jumper pin 1 is located toward the center of the drive. For more information on the function of these jumpers refer to Technical Bulletin HD:61 or see Chapter Hard Drive.60. The default settings for these jumpers are:

JP1	1-2	Not Jumpered	JP6	11-12	Not Jumpered
JP2	3-4	Jumpered	JP7	13-14	Not Jumpered
JP3	5-6	Not Jumpered	JP8	15-16	Not Jumpered
JP4	7-8	Not Jumpered	JP9	17-18	Jumpered
JP5	9-1Ø	Jumpered			

Expanaion Options:

The 1000RLX is equipped with 512K RAM soldered onto the main logic board. An additional 512K RAM can be added to the main logic board using four 256K X 4 ZIP memories (KM44C256AZ-8, cat. # 25-1083) at locations U23, U24, U25, and U26.

Note: The 1000RLX/HD comes equipped with the expansion RAM on the main logic board.

Either a <u>low power</u> IDE XT hard drive can be added using the onboard XT IDE port or a second 3 1/2 inch floppy drive can be added. **Due to power supply limitations both devices cannot be inatalled in the 1000RLX at the same time.** The floppy drive interface can support either 720K 3 1/2 incb or 1.44 Meg 3 1/2 inch floppy drives. The hard drive must be a 25-1047, 20 Meg hard drive or a 25-1048, 40 Meg hard disk drive as these drives are low power consuming.

A single XT compatible expansion slot is provided. The slot can support boards up to 9.5 inches in length which allows for a variety of expansion capabilities.

Expansion ports for adding joysticks and a PS/2 mouse are provided. There are also ports for adding either headphones or amplified speakers and a microphone to enhance the sound capabilities of the 1000RLX.

- TANDY COMPUTER PRODUCTS-

*											*
*											*
*	Т	A	N	D	Y	1	ø	ø	ø	\$ L	*
*											*
*											*

Notes:

There is a SETUPSL file on the Tandy 1000SL DOS diskette and on the 1000SL diagnostics diskette. This program must be run when performing floppy drive upgrades. Also, running SETUPSL/A will give you additional setup screens which control options such as video memory size, control of certain chip selects, network options, etc. Using the /A option with this program should be executed with great care!

Tandy 1000SL Main Logic board 25-1401 (figure 203):

E2 - E3 connects IRQ5 to the bus (standard) E3 - E4 connects IRQ5 to VSYNC

E5 - E6 connects SLCTIN* to the printer E6 - E7 ties SLCTIN* high (standard = there can either be a jumper here or not; either way will tie SLCTIN* high)

Satellite Sound Board E1 - E2 connects line input to AUDIOIN E2 - E3 connects microphone input to AUDIOIN (standard)

- TANDY COMPUTER PRODUCTS-

Notes:

There is a SETUPSL/2 file on the Tandy 1000SL/2 DOS diskette and on the 1000SL/2 diagnostics diskette. This program must be run when performing floppy drive upgrades. Also, running SETUPSL2/A will give you additional setup screens which control options such as video memory size, control of certain chip selects, network options, etc.. Using the /A option with this program should be executed with great care!

Tandy 1000 SL/2 Main Logic board Revision C 25-1402 (figure 223):

E2 - E3 jumped connects IRQ5 to the Expansion Bus (default) E3 - E4 jumped connects VSYNC to IRQ5

E5 - E6 jumped connects SLCTIN* to the printer E6 - E7 jumped ties SLCTIN* hi (default)

Tandy 1000SL/2 Audio Interface board (refer to figure 203 Satellite Sound Board diagram)

E1 - E2 jumped connects a line audio input such as a stereo to AUDIOIN E2 - E3 jumped connects a microphone input to AUDIOIN (default)

Tandy 1000 SL/2 Main Logic Board Revision D 25-1402 (figure 224):

The Revision D Main Logic Board has the same jumpers as listed above as well as an additional jumper block labeled E901-E902-E903. Refer to Technical Bulletin 1000:49 for further details concerning this jumper setting.

E9Ø2-E9Ø3	For	the	following	SHARP	ROM	set	only	-	SU4 ROM	SU3 ROM
									8Ø79Ø47	8Ø79Ø48
									LH5321R7	LH5321R8

E901-E902 All other ROM sets, SHARP or HITACHI

RAM Specification:

Organi:	za (tion	Access Time
256K	Х	1	15Ønsec
64K	Х	1	15Ønsec

		un	Selects Color RGB Monitor
Position	2:	Off	Disables on board Interrupt 5 (See note 1)
		On	Enables on board Interrupt 5 (Standard)
Position	3:	Off	Disables on board Interrupt 6
		On	Enables on board Interrupt 6 (Standard)
Position	4:	Off	Disables on board Interrupt 7
		On	Enables on board Interrupt 7 (Standard)

Note:

1. IRQ5 is used by some Hard Drive Controllers

TEAC FD-55BV Floppy Drive Logic Board (figure 107): DSx Drive Select (DSØ = Drive A, DS1 = Drive B)

Termination (RA1) will be on all drives.

- TANDY COMPUTER PRODUCTS-

Notes:

There is a SETUPTL file on the Tandy 1000TL DOS diskette and on the 1000TL diagnostics diskette. This program must be run when performing floppy drive upgrades. Also, running SETUPTL/A will give you additional setup screens which control options such as video memory size, control of certain chip selects, network options, etc.. Using the /A option with this program should be executed with great care!

Tandy 1000 TL Main Logic Board 25-1601 (figure 204):

- E1 E2 connects IRQ5 to VSYNC
 E2 E3 connects IRQ5 to expansion bus (standard)
- E4 E5 on connects SLCTIN* to printer off ties SLCTIN* high (standard)
- E6 E7 connects microphone input to AUDIOIN (standard)
- E7 E8 connects line input to AUDIOIN
- E9 E1Ø present as solder pads on the board but not used or connected to anything.

- TANDY COMPUTER PRODUCTS-

Notes:

There is a SETUPTL2 file on the Tandy 1000TL/2 DOS diskette and on the 1000TL/2 diagnostics diskette. This program must be run when performing floppy drive upgrades. Also, running SETUPTL2/A will give you additional setup screens which control options such as video memory size, control of certain chip selects, network options, etc.. Using the /A option with this program should be executed with great care!

Tandy 1000TL/2 Main Logic Board 25-1602 (figure 225):

- E6 E7 open connects IRQ5 to the Expansion Bus E6 - E7 jumped connects VSYNC to IRQ5 (default)
- E7 E8 jumped connects IDE IRQ to IRQ5

E8 - E9 jumped connects IDE IRQ to IRQ2 (default) E8 - E9 open connects IRQ2 to the Expansion Bus

Tandy 1000TL/2 Audio Interface board (figure 225):

E11 - E12 jumped when a line audio input is connected to the microphone jack.

E12 - E13 jumped when a microphone input is connected to the microphone jack (default)

*														*
*														*
*	T	A	N	D	Y	1	ø	Ø	ø	Т	L	1	3	*
*								•				,		*
*														*

Introduction:

The Tandy 1000TL/3 utilizes the 80L286 microprocessor operating at a clock speed of 10 Mhz. Other features include 640KB of RAM upgradable to 768KB, one 720KB floppy disk drive with support for 1.2MB and 1.44MB floppy drives, MS-DOS and Deskmate® Desktop in ROM, speech and sound capabilities, Tandy graphics adapter and Hercules compatible video, 2 joystick ports, a PS/2 style mouse port, 9 pin serial port, DB-25 PC compatible parallel printer port and 101 key keyboard. The standard Tandy 1000TL/3 comes equipped with:

- * 10 Mhz 80L286
- * 640KB RAM consisting of four 256K x 4 bit, 100ns chips (512K) and four 64K x 4 bit 100 nS chips (128K video RAM)
- RAM expansion sockets (U4 U7) to increase RAM size to 768KB by adding four 64K x 4 bit, 100ns RAM chips
- * MS-DOS version 3.30.23 and Deskmate® version 3.05.00
- * Four XT-style expansion slots allowing up to 10 inch long cards to be installed
- * One RS-232C serial port
- * One parallel printer port
- * Speech and sound support with a microphone input and external sound output on a separate sound satellite board
- * CGA/TGA/MGA/Hercules compatible RGB video port
- * Dual joystick controller
- * On board floppy disk controller that can support three floppy drives. Diskette media supported includes 360KB, 720KB, 1.2MB and 1.44MB densities
- * One 3 1/2" 72ØKB floppy disk drive
- * Enhanced 101-key, PS/2 style keyboard
- * PS/2 compatible mouse port
- * Real time clock with battery
- IDE interface
- * Socket (U9) for 80287, 8 MHz math coprocessor

There is a SETUPTL3 file on the Tandy 1000TL/3 DOS diskette. This program must be run when performing floppy drive upgrades and altering certain system parameters. Also, running SETUPTL3/A will give you additional setup screens which control options such as video memory size, control of certain chip selects, network options, etc.. Using the /A option with this program should be executed with great care:

One option in setup allows changing the video mode between monochrome and color. This can also be accomplished by depressing the key sequence given below. Each word within the <> refers to a single key, not to the letters of the keys themselves. Executing this key sequence will cause the computer to reboot!

<CTRL><ALT><SHIFT><V>

- TANOY COMPUTER PRODUCTS

Tandy 1000TL/3 Main Logic Board 25-1603 (figure 271):

ROM Size Select Jumper	El E3		E2* E4*	installed installed	4MB ROM enabled
Diskette Drive Controller Address	E6	-	E7*	installed	Primary address (Ø3FØh – Ø3F7h)
Select	E7	-	E8		Secondary address (Ø37Øh – Ø377h)
Diskette Drive	E9	-	ElØ	installed	Disabled
Connector Enable	E1Ø	-	E11*	installed	Enabled
Interrupt	E16	-	E17	installed	HDIRQ=IRQ2
Jumpers				installed	HDIRQ=IRQ5
	E18	~	E19	installed	VSYNC=IRQ5

Tandy 1000TL/3 Satellite Board (figure 271):

Microphone/Line Audio Input Jumper	El	- E2	installed	Line level audio input enabled
// // // / / / / / /	E2	- E3*	installed	Microphone enabled
Earphone/Line	E4	- E5	installed	Line level audio output enabled
	E5	- E6*	installed	Earphone enabled

Sony MP-F11W-72D 72ØK Drive Logic Board (figure 144):

DSØ Drive A Slide switch all the way to the rear of the drive. DS1 Drive B Slide switch second notch from the rear of the drive. Power is derived from ribbon cable (no separate power connector). Termination is internal to the drive.

Upgrade Options

The RAM on the main logic board may be upgraded by adding a 128KB Memory Kit (25-1078) to the four empty sockets U4 - U7.

An 80287 math coprocessor rated at 8 MHz (90-2191) can be installed in the empty socket U9. Also, there is an 80287XL math coprocessor (catalog number 900-2585) which works in all Tandy 286-based desktop computers.

A total of three floppy disk drives are supported in the Tandy 1000TL/3. A 720KB, 3 1/2" floppy disk drive comes standard with the computer. There is one 3 1/2" drive bay and one 5 1/4" drive bay that can be used for expansion.

(continued on next page)

The 5 1/4" expansion bay can accept a 5 1/4" floppy disk drive (25-1063) or using the 3 1/2" to 5 1/4" Disk Drive Adapter (25-1076), a 3 1/2" floppy disk drive (25-1075) can be installed.

The 3 1/2" drive bay can accept a 3 1/2" floppy disk drive (25-1075) or 3 1/2" Smart drive (25-1045 or 25-1046). It is possible to install floppy drives into all the existing drive bays, giving a total of three floppy disk drives installed in the system. In this circumstance, a Smart drive can still be installed using a Smart Drive Mounting Bracket available from National Parts.

Notes:

The Tandy 1000TX comes standard with 512K Main Memory and 128K Video Memory. In this configuration the computer will display 640K memory at bootup. The TX may be upgraded to 640K main memory, by adding four 150 nanosecond 64K X 4 RAM chips at U54-U57 and removing the E9-E10 jumper. In this configuration the computer will display 768K at bootup.

Floppy Drive Cable:

The Floppy Drive cable in this computer is unique and can not be substituted with any other existing cable. Pins 3, 5, 7, 9, 11, 29, 31 and 33 have been punched out on the cable between the drive \emptyset and drive 1 connectors to prohibit +5Vand +12 volts supplied to Drive \emptyset to be routed to Drive 1. Failure to follow this procedure could result in damage to Drive 1 and/or the main logic board.

RAM Specification:

Organiz	zat	ion	Access Time
256K	Х	1	15Ønsec
64K	X	4	15Ønsec

Tandy 10	ØØTX Main Logic Board 25-16ØØ (figure 136):
E1-E2	Enables serial port (Standard)
E3-E4	On: Selects Com 1 (Standard)
	Off: Selects Com 2
E9-E1Ø	On: Selects 64ØK Main memory (Standard)
	Off: Selects 768K Main memory
E11-E12	Off: Printer select signal not used (Standard)
	On: Printer select signal enabled

Switch S2:

Position 1:	Off	Selects Composite Monochrome Monitor
	On	Selects Color RGB Monitor
Position 2:	Off	Disables on board Interrupt 5
	On	Enables on board Interrupt 5 (Standard)
Position 3:	Off	Disables on board Interrupt 6
	On	Enables on board Interrupt 6 (Standard)
Position 4:	Off	Disables on board Interrupt 7
	On	Enables on board Interrupt 7 (Standard)

Note: Jumper locations E5-E6 and E7-E8 shown on the drawing do not have staking pins in place and provide no user options.

Sony MP-F63-Ø1D 3 1/2 inch 72ØK Floppy Disk Drive (figure 144): DSØ Drive A Slide switch all way to rear of drive DS1 Drive B Slide switch second notch from rear of drive Termination is internal to the drive. - TANDY COMPUTER PRODUCTS

Tandy 1000TX *Cleburn* Version Main Logic Board 25-1600 (figure 205):

E1 - E2 on enables on board serial port (standard) off disables on board serial port E3 - E4 on selects COM1 (standard) off selects COM2 E9 - E1Ø on selects 64ØK memory size (standard) off selects 768K memory size E11 - E12 off ties SLCTIN* high (standard) on connects SLCTIN* to the printer

Note: Jumpers E7 - E8 are present on the board but provide no user option.

Switch S2

Position 1: off selects composite monochrome monitor
on selects color RGB monitor (standard)Position 2: off disables on board INT5
on enables on board INT5 (standard)Position 3: off disables on board INT6
on enables on board INT6 (standard)Position 4: off disables on board INT7
on enables on board INT7 (standard)

Switch S3

Position 1 & 2 toward the inside of the board for Tandy 1000 standard keyboard operation

Position 1 & 2 toward the outside of the board is not supported

This page intentionally left blank.

- TANDY COMPUTER PRODUCTS -

Tandy 1100FD 25-3530 (figure 240):

The Tandy 1100FD Laptop Computer is based on the 8088-equivalent CPU, the NEC V20 microprocessor, operating at 8MHz. It contains MS-DOS and the Deskmate Graphical User Interface Desktop in ROM. The 1100FD standard configuration is shown below:

.NEC V2Ø operating at 8 MHz .64ØK RAM on the main logic board .MS-DOS Version 3.3Ø.4Ø, Deskmate Desktop Version 3.Ø3.Ø1, and a spelling checker, all contained in ROM .One serial port on the main logic board .One parallel port on the main logic board .A dedicated modem port for an optional 24ØØ bps modem .A CGA reflective LCD video screen, with 64Ø x 2ØØ resolution .A Real Time Clock on the main logic board .An 84 key enhanced keyboard .One 72ØK 3.5" floppy drive

The 1100FD uses a rechargeable battery (25-3536) rated for 6 VDC, accessible through a cover on the back of the unit. It uses a 9.5 VDC AC adapter. The charge condition of the battery, or whether the AC adapter is being used for recharging, is indicated through an LED above the F2 key. A charged battery should last 3-5 hours, depending on level of drive and screen usage.

Main Logic Board Jumpers

The 1100FD main logic board has four jumper options to permit any of: an enhanced BIOS ROM (IC209), an enhanced Deskmate ROM (IC210), or a different Character Generator ROM (IC302). The jumpers are surface mount "chip jumpers" soldered on the back (bottom) of the main logic board (see Figure 240). The default setting of the jumpers is shown in the table below. No options are presently known that would necessitate any change in these jumper settings.

J2Ø1	on	+5VDC	\ to IC2Ø9.1,
J2Ø2	off	SA15	/ BIOS ROM
J2Ø3	on	MASK17	IC21Ø.3Ø \ on IC21Ø, the
J2Ø4	off	+5VDC	IC210.30 / Deskmate ROM
J2Ø5	on	SMEMR*	\ to IC21Ø.24, the
J2Ø6	off	MASK16	/ Deskmate ROM
J3Ø1	on	+5VDC	\ to IC3Ø2.2, the
J3Ø2	off	Gnd	/ Character Generator ROM (CGR)

- TANDY COMPUTER PRODUCTS

Matsushita EME-213AMC 3 1/2 inch 72ØK Floppy Drive 25-353Ø (figure 217):

This drive is for the 1100FD. There are NO jumpers on this drive. Test points are as follows:

Head amp	TP1							
Head amp	TP2							
GND	TP3							
Track ØØ	TP5							
Index	Pin	23	of	the	floppy	drive	connector	cable

Alignment is straight forward. Radial alignment is done by loosening the stepper motor screws and rotating the motor. Index timing is adjusted by loosening and adjusting a photo sensor that monitors holes in the rotating spindle. Track $\emptyset\emptyset$ is adjusted by loosening the track $\emptyset\emptyset$ sensor assembly and moving it as needed.

2400 Baud Internal Modem for Tandy 1100FD 25-3538 (figure 255):

This modem uses the standard Hayes command set. There are no jumpers on this board. Use SETUP_11.COM to set the communication port for internal modem operation.

- TANDY COMPUTER PRODUCTS -

This page intentionally left blank.

- TANDY COMPUTER PRODUCTS-

- TANDY COMPUTER PRODUCTS-

Tandy 1200 Main Logic Board (figure 44):

This Main Logic board has five 8 bit expansion slots. Switch 1 (S1) and switch 2 (S2) are both 8 position dip switches. They will be configured differently depending on the options added to the basic unit. If more than one setting is included after the switch position the first one is the standard setting as it comes from the manufacturer.

S1-1	OFF	Allows booting from floppy drive "A"
S1-2	ON	Indicates the co-processor (8087) is not installed
	OFF	Indicates the co-processor IS installed
S1-3	OFF	Selects 256k RAM on board
S1-4	OFF	Selects 256k RAM on board
<u>S1-5</u>	S1-6	
OFF	OFF	Selects monochrome monitor or more than one monitor
OFF	ON	Selects color monitor in 40 x 25 mode
ON	OFF	Selects color monitor in 80 x 25 mode
S1-7	ON	Indicates one floppy drive and one hard drive in system
S1-8	ON	Must be set ON at all times

Switch 2 determines the amount of RAM installed in the expansion slots. Note positions 6-8 are not used.

RAM	S2-1	<u>\$2-2</u>	S2-3	<u>\$2-4</u>	\$2- 5
None	OFF	OFF	OFF	OFF	OFF
64K	OFF	ON	ON	ON	ON
128K	ON	OFF	ON	ON	ON
192K	OFF	OFF	ON	ON	ON
256K	ON	ON	OFF	ON	ON
32ØK	OFF	ON	OFF	ON	ON
384K	ON	OFF	OFF	ON	ON

Tandy 1200A Main Logic Board (figure 84):

This main logic board has seven 8 bit expansion slots. Switch 1 (S1) is an 8 position dip switch. It will be configured differently depending on the options added to the basic unit. If more than one setting is included after the switch position the first one is the standard setting as it comes from the manufacturer.

S1-1	OFF	Allows booting	from floppy	drive	"A"	
S1-2	ON	Indicates the c	co-processor	(8Ø87)	is not	installed
	OFF	Indicates the c	Co-processor	IS ins	talled	

(continued on next page)

- TANOY COMPUTER PRODUCTS
- Note: The 1200A can be upgraded to 640K on the main logic board. S1-3, S1-4, and JF1 determine how much RAM and what type of RAM chips are installed. JP1 is located between U51 and U64 with pin 1 near U51. The following configurations are possible with S1-3 and S1-4:

CONFIGURATION	S1-3	S1 - 4	JP1	MEMORY
Internal 256K	OFF	OFF	2-3	64K RAM chips installed at U79-U87 and U100-U108
Internal 384K	OFF	ON	1-2	256K RAM chips installed at U79-U87
Internal 64ØK	OFF	OFF	1-2	256K RAM chips installed at U79-U87 and U100-U108
External 64ØK	OFF	OFF	2-3	64K RAM chips installed at U79-U87 and U100-U108 and Captain Multi- Function board installed.

<u>S1-5</u>	<u> 51-6</u>	
OFF	OFF	Selects monochrome monitor or more than one monitor
OFF	ON	Selects color monitor in 40 x 25 mode
ON	OFF	Selects color monitor in 80 x 25 mode

- S1-7 ON For 1200 HD; Indicates one floppy drive and one hard drive OFF For 1200 FD; Indicates two floppy drives
 S1-8 ON Must be set ON at all times
- NOTE: On some Gate Array logic boards there is an LPT1 jumper located on the left side between RF6 and U41. When installed, this jumper enables the on board printer port. Refer to Technical Sulletin 1200:6 for when this jumper should be removed.

Floppy Drive Controller Board (figure 45): J2 Connects 16 MHZ clock to FDC logic

Bard Drive Controller Board (figure 46): E17-E18 Connects VCO into circuit

NOTE: There are several jumpers labeled on the board that have no staking pins. These jumper positions use traces rather than plugs. To change these options the trace must be cut on the PC8. Radio Shack® has none of the traces cut at this time.

Tandon TM100-2 5 1/4* Floppy Drive Logic Board (figure 47): Dip Shunt (1E) All broken except 3-14 drive select 1 Terminating resistor pak (220/330 ohm) should be installed at location 2F

The following are wires not jumper plugs.

- W1 Selects double sided drive
- W2 Disables set/preset on write flip-flop
- W4 Enables write protect control
- W6 Activity LED is controlled with drive select signal
- W8 Allows drive to be selected via J1 pin 6

- TANDY COMPUTER PRODUCTS -

NOTES AND JUMPERS

Tandon TM-502 Internal 10 Meg Hard Drive Logic Board (figure 48): **S1** Drive select 1 (also labeled as W12) W7 Terminates the read data lines Terminates the write data lines **W8** Terminating resistor pak (220/330 ohm) should be installed at location U22 Tandy 1200 WD1002S-WX2 (short) Hard Drive Controller Board (figure 99): Connects 'OSELØ' (drive select) to bus W1 pins 1-2 W2 pins 1-2 Connects 'RG' (read gate) into circuit W3 pins 1-2 Connects 'ROMEN' (ROM enable) to ROM W4 pins 2-3 Connects 'A2' (address line 2) for address select Connects 'RWC' (reduced write current) to J1 (drive) W6 pins 2-3 W7 pins 1-2 Selects IRQ5 The following are eight (8) sets of jumpers labeled SW1 positions 1-8. Notice that they are numbered from the bottom 1 through 4 and then backwards 8 through 5. Position 5 OFF Selects IRO5 Position 6 OFF Selects address Position 7 OFF Selects address Position 8 OFF Selects address Position 4 With position 3 selects Orive O type Position 3 (See below for drive types) Position 2 With position 1 selects Orive C type Position 1 (See below for drive types) DRIVE C: 2 ORIVE D: 3 4 1 35 MEG ON OFF ON OFF 35 MEG 15 MEG OFF OFF OFF 15 MEG OFF ON 10 MEG OFF 10 MEG OFF ON Tandy ROM Tandon ROM 62-000040-03 62-000052-010 DRIVE C: 2 DRIVE C: 1 2 1 10 MEG OFF 10 MEG OFF OFF ON IMPORTANT NOTE: The Tandy 1000 WD1002S-WX2 controller and the Tandy 1200 WD1002S-WX2 (short) controller board appear identical but they ARE different and are not interchangeable. Refer to the Hard Drive chapter notes for help in identifying the two boards. Tandon TM65-2L Floppy Drive Logic Board (figure 98): This drive is used only in the dual floppy version of the Tandy 1200. DS1 Both floppy drives in system have OS1 as the cable selects the drive. J34 B-C Spindle motor controlled by drive select

- TANOY COMPUTER PROOUCTS-

Tandy 1400FD/HD 25-3501/05 (figure 228):

The Tandy 1400FD Laptop Computer is based on the 8088-equivalent CPU, the NEC V20 microprocessor, operating at a switchable 8.00/4.77 MHz. The 1400FD standard configuration is shown below:

.NEC V2Ø CPU operating at 8.00/4.77 MHz .768K RAM on the main logic board .One serial port on the main logic board .One parallel port on the main logic board .Optional 1200 or 2400 bps, Hayes-compatible modem in main case .Backlit "Supertwist" LCD video screen, 640 x 200 resolution. Can optionally use an external RGBI color monitor. .Real Time Clock on the main logic board .76 key full size keyboard, or optionally an external keyboard .2 720K 3.5" internal disk drives, a 3rd external drive optional .Optionally upgradable to the 1400HD configuration (see below)

The 1400FD (25-3501) has a rechargeable battery rated at 12 VDC, accessible through a cover on the back left side of the case. It uses a 12 VDC AC adapter rated at 1.2A for recharging. Battery condition or recharge status is indicated by an LED.

The Tandy 1400HD (25-3505) is identical to the Tandy 1400FD (25-3501) except that a 20M 3.5" 1" form-factor Hard Drive is substituted for one of the 720K 3.5" Floppy Drives and that the 12 VDC adapter used is rated at 2.2A. Jumpers are identical to those of the Tandy 1400FD.

Note that the 1400FD main logic board is made by Sanyo, and is not the same as that of the 1400LT.

Main Logic Board Jumpers and Switchea

The 1400FD/HD has two staking pin jumpers on the main logic board: the default setting is both jumpers off. The description of the jumpers is noted below, corresponding to Figure 228:

JPØØ1	*off on	+5VDC Gnd	Ì	to UØØ7.2	A12
JPØØ2	*off on	+5VDC Gnd	\ /	to UØØ7.23	A11

* denotes standard settings

There is a user accessible switch which permits switching the boot device from. an internal drive to the external drive.

There is a Setup menu which allows the user to change some of the functions of the $14\emptyset$ /HD. To enter this setup mode, press the CTRL, ALT, and INS keys at the same time.

- TANDY COMPUTER PRODUCTS -

A math coprocessor can be installed by simply inserting it into location U27. It must be an 8087-2 device. No jumpers are needed for this installation.

TEAC FD235-136U 3 1/2 inch 72ØK Drive Logic Board (figure 21B): DØ Drive select Ø. D1 Drive select 1. All other jumpers should be off. Power is derived from ribbon cable (no separate power connector). Termination is internal to the drive.

20 Meg (1400FD) 3 1/2" Hard Drive Kit 25-3516 (figure 234):

This drive has one set of three jumpers for factory testing on the left hand side of the drive (facing the drive indicator light). The three jumpers are set from the factory as follows and should not be changed:

DMW	Jumped	Wait Mode 1 Enabled	
WM2	Jumped	Wait Mode 2 Enabled (Spindle Motor	OFF)
AG	Not jumped	Aging Test (Factory test mode)	

There are no jumpers or switches on the controller board. Installation is straight forward. It should be used with DOS $\emptyset 3.3 \emptyset. \emptyset \emptyset$. Detailed instructions are in the hard drive installation guide.

The adapter that comes with this kit must be used once the hard drive is installed, as the original AC adapter does not supply enough current to the hard drive. Also, due to a manufacturing difference between the 1400LT and 1400FD the power supplies used are NOT compatible between machines. For more information on adapters see Technical Bulletin PORTABLES:4.

Parts that come in the kit:

Hard Disk Controller Connector
 Hard Disk Controller Card
 Hard Disk Drive
 HDD Mounting Bracket
 RF shield
 Hard Disk Controller Cable
 Plastic Spacer
 Screws
 Fan
 AC Adapter
 Bad Sector Label

.

This page intentionally left blank.

Tandy 1400LT 25-3500/A (figure 226): Tandy 1400LT 25-3500B (figure 227):

The Tandy 1400LT Laptop Computer is based on the 8088-equivalent CPU, the NEC V20 microprocessor, operating at a switchable 7.14/4.77 MHz. The 1400LT standard configuration is shown below:

.NEC V2Ø CPU operating at 7.14/4.77 MHz .768K RAM on the main logic board .One serial port on the main logic board .One parallel port on the main logic board .Optional 1200 or 2400 bps, Hayes-compatible modem in main case .Backlit "Supertwist" LCD video screen, 640 x 200 resolution. Can optionally use an external RGBI color monitor, or composite video .Real Time Clock on the main logic board .76 key full size keyboard .2 720K 3.5" internal disk drives, a 3rd external drive optional

The difference between the 1400LT 25-3500/A version and the 1400LT 25-3500B version is that the original 25-3500/A version had 512K of expansion memory on a separate memory board which occupied a card slot below the hard drive controller slot. With the 25-3500B version, the memory that was on this separate memory board was incorporated on the main logic board. Jumpers and switches are the same for both versions of main logic board.

The 1400LT has a rechargeable battery rated at 12 VDC, accessible through a cover on the back left side of the case. It uses a 15 VDC AC adapter for recharging. Battery condition or recharge status is indicated by an LED.

Note that the 1400LT main logic board is made by Citizens, and is not the same as that of the 1400FD/HD.

There is a Setup menu which allows the user to change some of the functions of the 1400LT. To enter this setup mode, press the CTRL, ALT, and INS keys at the same time.

A math coprocessor can be installed by simply inserting it into location U9. It must be an 8087-2 device. No jumpers are necessary.

Main Logic Board Jumpers and Switches

The Tandy 1400LT has no jumpers on the main logic board. There is a two position DIP switch on the main logic board, noted in Figure 226 and 227 as Dip Switch 1. The default setting for both DS1-1 and DS1-2 is off. The description of the switch settings is shown below:

DS1-1	*off on	Internal Use External Use	}	address	4000:0-9000:FFFF
DS1-2	*off on	Internal Use External Use	}	address	DCØØ:Ø-ECØØ:FFFF

* denotes standard position

User accessible switches permit switching between the LCD and an external monitor (SW2), and switching the boot drive from an internal drive to the external drive (SW3).

Citizen OPBD-12A 3 1/2 inch 72ØK Floppy Drive (figure 213):

DSØ Drive A - Slide switch all the way to the rear of the drive. DS1 Drive B - Slide switch second notch from the rear of the drive. Termination is internal to the drive.

Citizen OSDC-95A 3 1/2 inch 72ØK Floppy Drive (figure 16Ø):

DSØ Drive A - Slide switch all the way to the rear of the drive. DS1 Drive B - Slide switch second notch from the rear of the drive. Termination is internal to the drive.

20 MEG CMS (1400 LT) 3 1/2" Hard Drive 25-3515 (figure 174): 20 MEG CMS (1400 LT) 3 1/2" Hard Drive Controller 25-3515 (figure 175):

This drive has no jumpers or drive select. There are also no jumpers or switches on the controller board. Installation is straight forward. It should be used with MS-DOS version $\emptyset 3.2 \emptyset. \emptyset 4$. Refer to Technical Bulletin PORTABLES:2 for detailed installation instructions. Be SURE that the hard drive controller power cable has a fuse in series with a current limiting resistor paralleled with a diode in line between the power supply and the battery. Without these components, extensive battery damage WILL occur.

The adapter that comes with this kit must be used once the hard drive is installed, as the original AC adapter does not supply enough current to the hard drive. Also, due to a manufacturing difference between the 1400LT and 1400FD the power supplies used are NOT compatible between machines. For more information on adapters see Technical Bulletin PORTABLES:4.

(continued on next page)

DOS version Ø3.20.04 comes with a RAMDISK option installing as a C: drive. This will interfere with the PREP.EXE program which performs a low level format. Make sure to rename the CONFIG.SYS and AUTOEXEC.BAT files temporarily in order to allow PREP.EXE to format properly. If you do not allow for this, an "Invalid Partition" message will occur after the low level formatting.

Parts that come in the kit:

- (1) Hard Disk Drive
- (1) Controller Card
- (1) LiteDrive Utilities Disk
- (3) Plastic Hex nuts (usually on the drive)
- (1) AC Adapter (15V @ 1600 mAH)

*The control and power cables will be attached to the controller card.

1400LT Internal Modem Board 25-3510 (figure 195):

The 25-3510 modem has one jumper. It is labeled as W1. It is only set when an older 1A2 multi-line phone system is in use. It connects the A and A1 leads of the station wire together to enable the busy lamp for the CO line it is connected to.

To self test the modem type in the command: AT S16=1 Cl D<CR> The modem will respond: CONNECT Each key pressed will be echoed back to the screen. To exit the test enter: +++ Do NOT enter <CR> after +++.
*												*
*												*
*	T	A	N	D	Y	1	5	ø	ø	H	D	*
*												*
*												*

Tandy 1500HD Laptop Computer 25-3506 (figure 267):

The Tandy 1500HD laptop computer is based on an 8088 compatible 10MHz NEC V20 microprocessor. The unit comes standard with a 2.5" 20 MB hard drive preconfigured with MS-DOS and DeskMate and a 1/4 height 3.5" 1.44 MB floppy disk drive. The 1500HD standard configuration includes:

- * NEC 10 MHz V20 microprocessor
- * 640K RAM, expandable to 1.64 MB
- * One Conner CP-2024 2.5" 20MB hard drive
- * One Matsushita EME-263MG 3.5* 1.44 MB floppy drive
- * CGA compatible LCD display panel with fluorescent backlight (64Ø x 2ØØ resolution)
- * One standard DB-25 parallel printer port
- * One standard DB-9 serial port
- * Dedicated modem port for optional 2400 bps modem
- * 84 key keyboard (full 101 key compatibility)
- * Battery backed up Real Time Clock

The unit may be powered by either 12V, 1.4Ah rechargeable nicad battery (25-3526) or 9.5V DC input supplied from an A.C. adapter. The A.C. adapter is rated for 2.1A.

Main Logic Board Jumpera and Switches

SW1

1	*OFF	Normal operation
	ON	Swaps the functions of the Ctrl and Caps Lock keys
2	*OFF	No function
	TC1	Adjusts Real Time Clock

VR1 Adjusts LCD contrast

Hardware Setup command is SETUP 15.COM

Conner CP-2024 2 1/2 inch 20MB Hard Drive 25-3506 (figure 299):

The hard disk drive is a 20MB 2.5" Conner CP-2024. The jumper settings are:

Drives in System	E1	E2
* Single Drive System	Not Installed	Installed
Master of Two Drive System	Installed	Installed
Slave of Two Drive System	Not Installed	Not Installed

* = Indicates Factory Setting

Matauabita EME-263MG 3 1/2 incb 1.44M Floppy Drive 25-3506 (figure 300):

This drive is for the 1500HD/2810/3810HD. There are no jumpers on this drive. The test points are as follows:

Head AmpTP1Track ØØ CheckTP5Track ØØ BiasTP6 (Shorting it to ground enables Track ØØ check)IndexPin 2 of the floppy drive connector cableRead DataPin 24 of the floppy drive connector cableHead Ø ConnectCN1Head 1 ConnectCN2VCC (+5V)CN8 Pins 1,3,5,7GroundCN8 Pins 13,15,17,19,21,23,25

This drive is interfaced through a soldered on flat conductor cable instead of the conventional ribbon cable.

1 MB EMS SIMM Memory Module 25-3507 (figure 278):

The SIMM module plugs into a single SIMM socket located underneath the access panel above the kayboard. It has 1 MB of mamory, rated at 80 nsec. There are no jumpers or switches to change. However, a line must be in the CONFIG.SYS file to use the extra memory, as follows:

DEVICE-C:\DOS\TEMM1500.SYS

2400 Baud Modem for the 1500HD/2810HD/3810HD 25-3525 (figure 280):

The are no jumpers for this modem. It is installed beneath the two inch wide access panel adjacent to the battery. The modem is connected to the main logic board via a single flat cable and securad in position upside down with two screws.

This page intentionally left blank.

Tandy 2000 Main logic board (figure 49): E4-E5 Connects count pulse to video PLL chip E7-E8 Selects 250nS precomp E9-E12 Connects DS0 from FDC to drive select latch (U30.15) E10-E16 Connects DS0 from drive select latch to J11.10 E11-E15 Connects DS1 from drive select latch to J11.12 E13-E14 Connects DS1 from FDC to drive select latch (U30.14) Note: The above are jumper wires not plugs.

Mitsubisbi M4853 5 1/4" (figure 40): 3, 4, 5, 6, 7, 8, and 9 are for termination and should only be installed on the last drive on the cable.

- DSx Drive Select $(x = \emptyset 3)$
- HC Causes a constant head load condition
- MM Causes motor on when drive is selected
- H1 Routes ready signal R3 to the bead load circuitry
- R3 Establishes a ready signal when a diskette is inserted in the drive and the door is closed.

Mitsubisbi M4853-1 (Mark II) 5 1/4* (figure 5Ø):

HC Selects constant head load after door closed

- 2S Selects constant drive ready
- MM Selects active low motor on
- DSx Drive select $(x = \emptyset 3)$

The terminating resistor pak should be installed at location B6 on the last drive on the cable.

~

*												*
*												*
*	T	A	N	D	¥	2	5	ø	ø	S	х	*
*												*
*												*

Tandy 2500SX 25-4076 (figure 276):

Introduction:

The Tandy 2500SX is another low profile computer similar to the 2500XL/2. The major difference between the 2500SX and the 2500XL/2 is that the processor has been changed from an 80C286 to an 80386SX. The HT21 bus controller, or "AT on a chip" from Headland is still the main support component of the 80386SX processor. The familiar FDC controller, 16-bit SVGA controller, AT-style IDE hard drive interface, keyboard/mouse controller, RAM and PSSJ (printer, serial, sound {no joystick support}) round out the rest of the features packed onto the main logic board. MS-DOS version 5.0 and Deskmate version 3.5 are included with the 2500SX. Standard equipment includes:

- * 16 MHz 80386SX CPU.
- * Socket for an optional 16MHz 8Ø387SX coprocessor.
- * 1 Meg. of on-board RAM (eight 256Kx4 80nS SMT RAMs).
- * Capable of up to 5 Meg. of total RAM on the main logic board.
- * Three 16 bit ISA compatible expansion slots.
- * 16 bit Super VGA graphics adapter built in.
- * 256K Video RAM expandable to 512K RAM.
- * One 1.44 Meg 3.5 inch diskette drive.
- * Expansion slots for one more 3.5" drive and one half height 5.25" drive.
- * On board dual speed floppy controller that supports 2 drives.
- * On board AT-style IDE Hard Drive interface.
- * On board 9-pin serial port.
- * On board 25-pin bidirectional parallel printer port located at I/O port 378H or 278H.
- * PS/2 style mouse/keyboard interfaces.
- * Enhanced PS/2 style 101-key keyboard.
- * 70 watt power supply.
- * Music and sound capability.
- * Chassis design allows easy subassembly access.

Setup:

The SETUPSX.COM utility is located on the first MS-DOS diskette. The setup screen is similar to the $4\emptyset 2\emptyset/25/33$ LX setup screen.

Jumpers:

The following list describes the possible jumper settings for the $25\emptyset \emptyset SX$. An asterisk (*) next to the jumper numbers denotes factory default settings.

E4,E5	Clear CMOS RAM	*Not Jumpered (no staking pins)
E14,E15	Video interrupt	*Not Jumpered, No Video Interrupt Jumpered = IRQ9 (See Note 1)
E11,E12,E13	On Board Video Enable	*E11-E12 enabled E12-E13 disabled
E16,E17,E18	VGA BIOS	*E17-E18 PS/2 mode E16-E17 AT mode
E22,E23	Power/IDE Activity LED	*Not Jumpered = Standard Power LED Jumpered = Power/IDE activity LED (Power LED blinks with IDE activity)
E19,E2Ø,E21	Monitor Type	*E19-E2Ø standard VGA monitor or standard Multi-sync E2Ø-E21 non-standard Multi-sync monitor
E24,E25,E26	Audio Input Source	*E24-E25 Microphone E25-E26 Line audio
E28,E29,E3Ø	Audio Output Source	*E28-E29 Headphone E29-E3Ø Line audio

NOTE 1: IRQ9 is software mapped to IRQ2 per the AT standard.

Floppy Drive (figure 141):

The floppy drive is a Sony MFD-17W-72 1.44 Meg 3.5 inch drive. The following is a list of the test points and their functions:

Differential read amps	RFA, RFB
Direction	CN1Ø1, pin 18
Step	CN1Ø1, pin 2Ø
Track Ø	CN1Ø1, pin 26
Index	CN1Ø1, pin 8
Read Data	CN1Ø1, pin 3Ø
Ground	CN1Ø1, pin 13
Write Protect	CN1Ø1, pin 28
Motor On	CN1Ø1, pin 16

The drive is internally terminated. There is a single drive select switch on the side. Drive A: should be set for DSØ, Drive B: should be set for DS1, etc. If a $5 \ 1/4^{"}$ drive is added to the system, it must also be terminated.

Upgrade Optiona:

RAM expansion is accomplished by adding either 256K or 1 Meg SIMM's to sockets J1, J5, J6, and J9. The supported memory configurations are: 1 Meg (empty), 1.5 Meg (2, 256K x 9), 2 Meg (4, 256K x 9), 3 Meg (2, 1 Meg x 9), and 5 Meg (4, 1 Meg x 9). Bank A (which may be labeled Bank 4 and is at connectors J6, J9) is to be used for the configurations that use only two SIMM modules. Using 16 bit memory expansion boards (Catalog number 900-2400), the system could be brought up to a maximum of 16 Meg of RAM.

IDE, SCSI, ESDI or MFM hard drives can be used with the 2500SX, but Hard Cards of any type are NOT supported. The physical size of the hard drive is limited to a 5.25" half height device or smaller. The 5.25" drive bay or the 3.5" bays can be used. When using the 5.25" mount, a standard half height hard drive is allowed. When using a 3.5" drive in the 3.5" bays, use a 1" tall hard drive. Remember, IDE drives are already low level formatted. Do NOT run HSECT on IDE drives.

The 2500SX has 256K of video memory soldered to the main logic board at U58, and U54. To access the Super VGA modes an additional 256K of video memory must be installed at U48 and U50. This kit can be ordered under part number MX-3750 under catalog number 25-4075.

Service Notes:

The expansion backplane has three 16-bit ISA slots and plugs into the main logic board. These slots can support a variety of expansion cards up to 13 inches in length. Be aware that there are some older 8-bit expansion cards that will not fit because they extend into the 16-bit connector.

When reassembling the unit, take care to dress your cables properly. Due to the position of the IDE and power connectors used, and the amount of cabling, the carriage could easily crimp cables or trap unused connectors against the main logic board (warping it).

CAUTION: When closing the carriage KEEP YOUR FINGERS OUT OF THE WAY!

As the drive carriage moves into it's resting place, the end closest to the expansion backplane passes by the front grill with a shearing action. The edges are SHARP! Exercise caution when closing the drive carriage.

Tandy 2500XL 25-4074 (figure 235):

The Tandy 2500XL is one of a series of low profile computers. This is an AT class machine utilizing an 80286 microprocessor, Headland G2 support LSIs, an FDC controller, a 16 bit VGA controller, an AT-style IDE hard drive interface, a mouse port, a serial port, and a parallel port, all on the main logic board. This unit, though similar to the Tandy 3000 line, has MSDOS 3.3 and Deskmate in ROM like the current Tandy 1000 family. The unit stands only 4.5 inches high. Standard equipment includes:

- * 10 MHz 80286 CPU.
- Full Speed Bus option (10MHz) makes the unit faster than a 12MHz 3000 (6MHz Bus).
- * Socket for an optional 80287 coprocessor.
- * 1 Meg. of RAM (four 256Kx9 100nS SIMMs).
- * Capable of up to 4 Meg. of RAM on board total
- * Three 16 bit AT compatible expansion slots.
- * 16 bit VGA graphics adapter built in.
- * One 1.44 Meg. 3.5 inch diskette drive.
- * Expansion slots for one more 3.5" drive and one half height 5.25" drive.
- On board dual speed floppy controller supports 3 drives.
- * On board AT-style IDE hard drive interface.
- On board serial port.
- * On board parallel printer port.
- Enhanced PS/2 style 101-key keyboard.
- * PS/2 style mouse interface.
- 7Ø watt power supply.
- * Full music and sound capability.
- Carriage style chassis for easy subassembly access.

Main Logic Board

The main logic board contains all the circuitry necessary for system operation. All system memory is installed on the main logic board. There are four SIMM sockets for this purpose. Using 1 Meg SIMMs limits system memory to 4 Meg on board. The actual supported steps are: 1 Meg (4, 256Kx9), 2 Meg (2, 1Mx9), and 4 Meg (4, 1Mx9). Using 16 bit expansion boards the system could be brought up to a maximum of 15 Meg of RAM.

Jumpers:

E1-E3	CMOS RAM clear	Shorting these pins clears the CMOS RAM contents for reprogramming.
E2,4,8	Expansion Bus Speed	E2-E4 Full speed bus. (default) The CPU and Bus speeds are locked together and change with the speed setting in SETUP.
		E4-E8 Half speed bus. Only the CPU speed changes with SETUP. The bus is locked at low speed.
E5,6,7	Memory Parity Check	E6-E7 Enabled (default)** E5-E6 Disabled
E9,1Ø,11	BIOS ROM Type	E9-E1Ø Two 32Kx8 EPROMS E1Ø-E11 4 or 8Meg ROM (default)
E12,13	Video interrupt	No Jumper Installed (default) E12-E13 IRQ9*
E14,15,16	On Board Video Enable	E15-E16 enabled (default) E14-E15 disabled
E17,18,19	Audio Input Source (from MIC jack)	E18-E19 Microphone (default) E17-E18 Line audio
* NOTE: IRQ9 is	software mapped to IRQ2	per the AT standard.

** NOTE: The early version of the user's manual is wrong with respect to the memory parity check jumpers. This document and the schematic are correct.

FLOPPY DRIVE (figure 141):

The floppy drive is a new Sony MP-17W-72. It is a relative of the 1.44 Meg MP-17W-7 \emptyset D found in the 4 \emptyset 16SX. Here are the drive's test points:

Differential read amps:	RFA, RFB
Direction:	CN1Ø1, pin 18
Step:	CN1Ø1, pin 2Ø
Track Ø:	TRKØ
Index:	CN1Ø1, pin 8
Raw data:	CN1Ø1, pin 3Ø
Ground:	AGND
Write protect:	WPRT
Motor on:	CN1Ø1, pin 16

The drive is internally terminated. There is a single drive select switch on the side. Drive A: should be set for DSØ, a second drive (B:) DS1, etc.. If a 5.25" drive is added it should be terminated. This unit will support up to 3 floppy disk drives.

Hard drives:

Use AT style IDE drives with the 2500XL. Hard cards are NOT supported. The physical size of the hard drive can be a limitation. Two sizes of hard drives can be mounted. The 5.25" drive bay or the 3.5" bays can be used. When using the 5.25" mount, a standard half height hard drive is allowed. When using a 3.5" drive in the 3.5" bays, use a 1" tall hard drive. Remember, IDE drives are already low level formatted. Do not run HSECT on IDE drives.

The SETUP utility:

The SETUPXL.COM utility is located on the DOS diskette and is very similar to those used in the Tandy 1000TLs. A setup screen appears listing the various options.

Service Notes: The expansion backplane can be removed by removing two screws holding the backplane bracket to the chassis. One of these screws is at the rear, just above the keyboard connector. The other screw is at the front of the chassis.

There is no -5 Volts circuit on the main logic board. The -5 Volts is derived from the -12 Volts with the help of a -5 Volt regulator mounted on the expansion backplane. This means that a 2400 Baud modem plugged directly into the main logic board would not work (no -5V). The modem would have to be inserted into the expansion backplane (which has -5V).

When reassembling the unit, watch your cable dress! The carriage could easily crimp cables or trap unused connectors against the main logic (warping it).

When closing the carriage KEEP YOUR FINGERS OUT OF THE WAY. As the drive carriage moves into its resting place, the end closest to the expansion backplane passes by the front grill with a shearing action. The edges are SHARP! Later models will have dulled edges but still be careful.

*									×
*									*
*	2	5	ø	ø	X	L	1	2	*
*							-		*
*									×

Tandy 2500XL/2 25-4075 (figure 270):

Introduction:

The Tandy 2500XL/2 is an AT class machine which utilizes "AT on a chip" technology from Headland. The improvements to the support of the 80C286 microprocessor are the Headland HT21 bus controller, and a clock generator called GESUALDO. The familiar FDC controller, 16-bit SVGA controller, AT-style IDE hard drive interface, keyboard/mouse controller, RAM and PSSJ IC (printer, serial, sound {no joystick ports}) round out the rest of the features packed onto the main logic board. MS-DOS and Deskmate in ROM have been carried forward from the 2500XL. Standard equipment includes:

- * 16 MHz 80C286 CPU.
- * Socket for an optional 10MHz 80287 coprocessor.
- * 1 Meg. of on-board RAM (eight 256Kx4 80nS SMT RAMs).
- * Capable of up to 5 Meg. of total RAM on the main logic board.
- * Three 16 bit ISA compatible expansion slots.
- * 16 bit Super VGA graphics adapter built in.
- * 256K Video RAM expandable to 512K RAM.
- * One 1.44 Meg 3.5 inch diskette drive.
- * Expansion slots for one more 3.5" drive and one half height 5.25" drive.
- * On board dual speed floppy controller that supports 2 drives.
- * On board AT-style IDE hard drive interface.
- * On board 9-pin serial port.
- * On board 25-pin bidirectional parallel printer port located at I/O port 378H or 278H.
- * PS/2 style mouse/keyboard interfaces.
- * Enhanced PS/2 style 101-key keyboard.
- * 70 watt power supply.
- * Music and sound capability.
- * Chassis design allows easy subassembly access.

Main Logic Board Jumpers:

The following list describes the possible jumper settings for the $25\phi\phi XL/2$. An asterisk (*) next to the jumper numbers denote the factory default settings.

E9,E1Ø,E11	BIOS ROM Type	E9-E1Ø Two 32Kx8 EPROMS *E1Ø-E11 4 or 8 Meg. ROM
E17,E18	Video interrupt	*Not Jumpered, No Video Interrupt E17-E18 IRQ9 (See Note 1)
E14,E15,E16	On Board Video Enable	*E14-E15 enabled E15-E16 disabled

(Continued on next page)

E19,E2Ø,E21 VGA BIOS *E20-E21 PS/2 mode E19-E2Ø AT mode E22,E23,E24 Monitor Type *E22-E23 standard VGA monitor or standard Multi-sync E23-E24 non-standard Multi-sync monitor E25,E26,E27 Audio Input Source *E25-E26 Microphone E26-E27 Line audio E28,E29,E3Ø *E28-E29 Headphone Audio Output Source E29-E3Ø Line audio E31,E32,E33 Front Panel LED *E31-E32 Power LED Only E32-E33 Power LED/IDE Activity LED (it blinks when there is IDE activity)

- TANDY COMPUTER PRODUCTS-

* NOTE 1: IRQ9 is software mapped to IRQ2 per the AT standard.

Teac FD-235HF-1Ø6U 1.44 Meg 3.5 inch floppy drive (figure 275):

The floppy drive is a Teac FD-235HF-106U 1.44 Meg 3.5 inch drive. There are two sets of jumper blocks located at the rear of the floppy drive. The following is a list of the jumpers and their functions:

FG: Frame ground. This is permanently jumpered.
DØ: Drive select zero. (default)
D1: Drive select one.
HHI: Logic HI sets the drive in high density mode (not used).
LHI: Logic LOW sets the drive in high density mode (not used).
OP: High density switch enabled (jumpered).
HHO: High density output on high (not used).

D2: Drive select two. Connect the middle pin to the D2 pin.D3: Drive select three. Connect the middle pin to the D3 pin.

Upgrade Options:

RAM expansion is accomplished by adding either 256K or 1 Meg. SIMM's to sockets J1, J5, J6, and J9. The supported memory configurations are: 1 Meg (empty), 1.5 Meg (2,256K x 9), 2 Meg (4,256K x 9), and 3 Meg (2,1 Meg x 9), and 5 Meg (4, 1 Meg x 9). Bank 3 (J1,J5) is to be used for the configurations that use only two SIMM modules. Using 16 bit memory expansion boards, the system could be brought up to a maximum of 16 Meg of RAM.

(continued on next page)

IDE, SCSI, ESDI or MFM hard drives can be used with the 2500XL/2, but Hard Cards of any type are NOT supported. The physical size of the hard drive is limited to a 5.25" half height device or smaller. The 5.25" drive bay or the 3.5" bays can be used. When using the 5.25" mount, a standard half height hard drive is allowed. When using a 3.5" drive in the 3.5" bays, use a 1" tall hard drive. Remember, IDE drives are already low level formatted. Do NOT run HSECT on IDE drives.

The 2500XL/2 currently has 256K of video memory soldered to the main logic board at U50, and U54. To access the Super VGA modes an additional 256K of video memory must be installed at U44 and U46. This kit can be ordered under part number MX-3750 under catalog number 25-4075.

Three AT compatible expansion slots are provided. These slots can support a variety of expansion cards up to 13 inches in length.

Service Notes:

The expansion backplane has three 16-bit ISA slots and plugs into the main logic board. This board can be removed by unscrewing the two screws holding the backplane bracket to the chassis. One of these screws is at the rear, just above the keyboard connector. The other screw is on the front of the chassis.

When reassembling the unit, take care to dress your cables properly. Due to the position of the IDE and power connectors used, and the amount of cabling, the carriage could easily crimp cables or trap unused connectors against the main logic board (warping it).

CAUTION: When closing the carriage KEEP YOUR FINGERS OUT OF THE WAY!

As the drive carriage moves into its resting place, the end closest to the expansion backplane passes by the front grill with a shearing action. The edges are SHARP!

Tandy 2800HD 25-3550 (figure 241):

The Tandy 2800HD Laptop Computer is based on the Intel 80C286-12 (low current version) operating at 12 or 6 MHz. Its basic configuration is shown below:

.80C286-12 operating at a switchable 12/6 MHz .MSDOS 3.30.30 and the Deskmate Desktop in ROM .1 Meg of RAM on main logic board .One serial port on the main logic board .One parallel port on the main logic board .Expansion slot for an internal 2400 bps modem .8uilt-in EGA compatible backlit "Supertwist" LCD display with 640 x 400 resolution. Optional on-board external EGA/CGA video port. .Real Time Clock on the main logic board .84 key full sized keyboard. Optional use of external keyboard. .0ptional 80C287A-12 Co-processor expansion .1 1.44M 3.5" Floppy Drive, and 1 20M IDE AT Hard Drive

The Tandy 2800HD uses a rechargeable 6VDC battery and a 9.5 VDC AC adapter charging unit. The battery is accessible at the back of the top case.

Tandy 2800HD Jumpers and Switches

There is a user accessible 4-position DIP switch on the right side of the 2800HD, hidden by a latched door. It is located on a satellite to the main logic board. The following table describes the functions of these switches (see Figure 241):

SW1	down (on, closed) up (off, open)	internal LCD display external monitor display
SW2	down (on, closed) up (off, open)	EGA display CGA display

SW3, SW4 are reserved (not used, default down position)

There are three sets of jumpers on the main logic board (see Figure 241), with the following functions:

E1 E2	Not jumpered	for	clearing the CMOS RAM
E4 E5 E6	E4-E5 jumpered (default)		512K 8IOS ROM
E7 E8 E9	E7-E8 jumpered (default)		size select
	E4-E5-E6 not jumpered)	1 Meg 8IOS ROM
	E7-E8 jumpered	/	size select
	E5-E6 jumpered	\	2 Meg 8IOS ROM
	E7-E8 jumpered	/	size select

At this writing, no options are available requiring movement of jumpers.

There are five variable resistors located on the power supply, used at the factory to adjust threshold voltages for various stages of battery low detection. These resistors should not be adjusted in the field.

Math Coprocessor

An 80C287A, or a 287XLT, PLCC math coprocessor can be installed into IC socket Ull. No jumpers are necessary.

1 MB Memory Upgrade Board for 2800HD 25-3554 (figure 261):

There are no jumpers for this upgrade. This will increase the total memory to 2 MEG. The memory is LIM 4.0 Expanded Memory compatible.

Panasonic JU-257A213P 1.44 MEG Floppy Drive for 2800HD (figure 219):

SW1(RY/DC): Ready/Disk Change. Default is "DC". SW2(MO/MS): Motor ON/Motor on Drive Select(MS). Default is "MO". SW3(Ø321) : Drive Select. Default is Drive "Ø". SW4(BCD) : Selects head assembly rank. This switch is used to match the logic board to the head. Set to letter marked on head assembly. SW5(PS2/AT): Selects either PS2 polarity or AT polarity. Default is PS2.

Power supplied by I/O cable.

Conner CP-3024 20MEG Hard Drive for 2800HD (figure 242): There are three connectors on this drive, the outside two are the power connectors (J3, which is the standard power connector, and J5 a 3-pin power connector) and the inner 40-pin header is the IDE port (J2). The configuration jumpers are located just behind the 3-pin power connector on the bottom of the drive (see figure 242).

ACT Provides signal to drive external LED DSP/CD Determines # of drives and primary/secondary status HSP Reserved for future use

Since only one hard drive is supported, only the settings for a single drive system are given.

Single IDE Drive System

ACT Jumped DSP Not jumped C/D Jumped HSP Not jumped This page intentionally left blank.

-

.

INTRODUCTION: 25-3551 281ØHD with 20 MEC hard drive 25-3552 281ØHD with 60 MEC hard drive

The 281ØHD contains a 8ØC286 microprocessor running at 16MHz. The computer comes standard with 1MB of RAM, expandable to 5MB on the main logic board. The video is a VCA compatible LCD display with a fluorescent backlight. A special "resume" function allows you to turn off your computer in the middle of an application without losing your place within the program. The standard configuration is:

- * 16MHz 8ØC286 CPU
- * Optional 80C287A or XLT Co-processor Socket
- * One Conner CP-2024 2.5 Inch 20MB Hard Disk Drive
- * One Matsushita EME-263MC 3.5 Inch 1.44MB Floppy Disk Drive
- * MSDOS Version 4.01 Operating System
- Deskmate Version 3.5
- * 8IOS ROM Version 3.10.01
- * Advanced Video 8IOS ROM Version 1.10.00
- * VGA Compatible LCD Display with Fluorescent backlight
- * One DB-15 External VGA Port
- * One D8-25 Parallel Port / External Floppy Drive Port
- * One D8-9 RS-232 Serial Port
- * 84 Key Keyboard (101 Key Emulation)
- * External PS/2 Keyboard Port
- * Resume Function
- * One 12VDC 1.4AH Ni-Cad Rechargeable Sattery
- * 1MB Onboard Memory
- * Maximum Memory Expansion 5MB
- * One 16VDC 1.25A AC Adapter

The setup for the 2810HD is run from the "SETUP281" program which lies on the 2810 MS-DOS operating disk.

MEMORY CONFIGURATIONS:

The 281ØHD comes standard with 1MB of RAM on the main logic board. Supported RAM configurations are 1MB, 3MB, or 5MB. Upgrades are done by adding double-sided 1MB 8Øns SIMM modules (25-35Ø7, figure 278). Two 25-35Ø7 memory kits are needed for the upgrade to 3MB and four are needed for the upgrade to 5MB. SIMM modules are located under a cover between the LCD display and the keyboard. Sockets CN1 and CN2 are used for the 3MB upgrade and sockets CN1, CN2, CN3, and CN4 are used for the 5MB upgrade. There are NO jumpers to set when memory is added.

POWER SUPPLY:

Power for the unit can be obtained from either a 12VDC 1.4AH Ni-Cad rechargeable battery (25-3526) or a 16VDC 1.25A AC adapter (WF-Ø334).

The Ni-Cad battery (25-3526) has a 2 to 4 hour charge time. The battery can run up to 3.5 hours under optimal conditions of continuous computing power. The battery pack must be fully charged before using the computer. Failure to fully charge the battery before use could greatly reduce the battery life and efficiency.

The AC adapter (WF-Ø334) has a 16VDC output and uses a positive center conductor and a negative outer conductor jack.

VIDEO DISPLAY:

The video display is a VGA compatible LCD display with a fluorescent backlight. The display uses blue characters and a white background. The backlight has 3 brightness settings; low, medium, and high which is controlled by a switch on the left side of the case.

The external video port is a fully compatible color VGA port.

KEYBOARD:

The keyboard is an 84 key keyboard that supports a 101 key emulation. The "CTRL" and "CAPS LOCK" keys have the ability to have their functions reversed. This is done by changing the position of a dip switch (SW2) that lies in a compartment under the battery. The switch settings are:

On - to reverse the "CTRL" and "CAPS LOCK" keys Default > Off - to restore the standard "CTRL" and "CAPS LOCK" keys.

The external keyboard port supports a PS/2 style enhanced keyboard.

Tandy 2810HD Main Logic Board (figure 268):

This unit contains 1 jumper (JP 33) that comes jumpered Pin 2 (CLK) to Pin 3 (16Mhz). The (CLK) signal is the co-processor clock. Do NOT move this jumper.

Conner CP-2024 20 MEG IDE Hard Drive (figure 299):

The hard disk drive is a 20MB 2.5" Conner CP-2024. The jumper settings are:

<u>Drives in System</u>	El	E2
* Single Drive System	Not Installed	Installed
Master of Two Drive System	Installed	Installed
Slave of Two Drive System	Not Installed	Not Installed

* = Indicates Factory Setting

Conner CP-2064 60 Meg IDE Hard Drive (figure 283):

The 60 MEG version of the 2810HD contains a 60MB 2.8" Conner CP-2064 hard disk drive. The 2810 hard drive is preinitialized at the factory with MS-DOS and DeskMate, reinitalization if needed is done in three steps:

- HSECT Run HSECT.COM to low level format the drive. The hard disk type is 19, the drive's translation mode circuitry will emulate a drive with 566 cylinders and 13 heads.
- 2. PDISK Run FDISK.COM to partition the drive.
- 3. PORMAT Run PORMAT.COM with the /s option to high level format the drive and install the operating system.

The jumper settings are:

	Drives in System	E1	E2
*	Master Drive	Installed	Not Used
	Slave Drive	Not Installed	Not Used

* = Indicates Factory Setting

Matsushita EME-263MG 3 1/2 inch 1.44M Floppy Drive 25-3506 (figure 300):

This drive is for the 1500HD/2810HD/3810HD. There are no jumpers on this drive. The test points are as follows:

Head AmpTP1Track ØØ CheckTP5Track ØØ BiasTP6 (Shorting it to ground enables Track ØØ check)IndexPin 2 of the floppy drive connector cableRead DataPin 24 of the floppy drive connector cableHead Ø ConnectCN1Head 1 ConnectCN2VCC (+5V)CN8 Pins 1,3,5,7GroundCN8 Pins 13,15,17,19,21,23,25

This drive is interfaced through a soldered on flat conductor cable instead of the conventional ribbon cable.

2400 Baud Modem for the 1500HD/2810HD/3810HD 25-3525 (figure 280):

There are no jumpers for this modem. It is installed beneath the two inch wide access panel adjacent to the battery. The modem is connected to the main logic board via a single flat cable and secured in position upside down with two screws.

Notes:

The Tandy 3000 comes in a variety of configurations.

- Tandy 3000 FD One 1.2 MEG floppy drive, either the 34854-347 or the MF504A. May have the standard main logic or the gate array version.
- Tandy 3000 20 MEG HD One 1.2 MEG floppy drive, either the M4854-347 or the MF504A. One internal 20 MEG hard drive, either the MR522 or the ST225. May have the standard main logic or the gate array version.
- Tandy 3000 40 MEG HD One ME504A 1.2 MEG floppy drive, one internal 40 MEG hard drive, and the gate array version of the main logic board.

Following are the jumpers for each of the possible combinations:

Tandy 3000 Standard Main Logic Board (figure 93):

Jumper positions on the Tandy 3000 main logic board vary depending on the configuration of the machine. The positions labeled "(standard)" are the default positions from the factory.

Monitor Type E2-E3 Selects monochrome video board (standard) E3-E4 Selects color video board Memory Size None Selects 512K onboard memory (standard) E13-E14 Selects 640K onboard memory ROM Size E5-E9 Selects 27128 type ROMs (standard) E7-E11 Selects 27128 type ROMs (standard) E6-E10 Selects 27256 type ROMs E8-E12 Selects 27256 type ROMs

Tandy 3000 Gate Array Main Logic Board (figure 119): E4-E5 Selects color video board E5-E6 Selects monochrome video board

On board RAM is selected with E7 through ElØ as follows:

E7-E8	E9-E1Ø	RAM Size
Off	On	512K
On	Off	64ØK
Off	Off	1 MEG

El1-El5 & El3-El7 Selects 16K ROMs (standard) El2-El6 & El4-El8 Selects 32K ROMs

Floppy Disk Controller Board (figure 94): The standard configurations are also valid if there is no jumper installed. E1-E2 Selects primary address 3Fx (standard) E2-E3 Selects secondary address 37x E4-E5 Enables board (standard) E5-E6 Disables board E7-E8 Selects single speed drive M4851 (standard) E8-E9 Selects dual speed drive M4854 E14-E15 Indicates 24 MHz crystal is being used (standard) E13-E14 Indicates 24 MHz oscillator is being used

Floppy/Bard Drive WD1002-WA2 Controller Board (figure 95):

E2-E3 Selects primary address for floppy (standard)

- E1-E2 Selects secondary address for floppy
- E5-E6 Selects primary address for hard drive (standard)
- E4-E5 Selects secondary address for hard drive
- E7-E8 Connects floppy read data into VCO

Floppy/Bard Drive WD1003-WA2 Controller Board (figure 124):

- E2-E3 Selects primary address for floppy (standard)
- E1-E2 Selects secondary address for floppy
- E5-E6 Selects primary address for hard drive (standard)
- E4-E5 Selects secondary address for hard drive
- E7-E8 Supports 36Ø RPM floppy disk drives (standard)
- E8-E9 Supports 300 RPM floppy disk drives

Mitsubisbi M4854-347 1.2 MEG Floppy Drive Logic Board (figure 97):

- Both floppy drives in system use DS1 as the cable selects the drive DS1 TD Termination select
- HC Selects constant head load
- UD Disables head unload delay
- DC Selects active low diskette change
- MM
- Spindle motor power controlled by 'MOTOR ON' signal RR
- Output selected by 'DRIVE SELECT' signal
- SB Selects 360 rpm for both high and low density modes
- 1IH LED will light with the 'DRIVE SELECT' signal

Mitsubisbi MF504A 1.2 MEG Floppy Drive Logic Board (figure 109):

- DS1 Both floppy drives in sysem use DS1 as the cable selects the drive
- TD Connect drive select terminator
- DC Diskette change, connects active signal when drive door opened
- Spindle motor power controlled by 'MOTOR ON' signal MM
- RR Output selected by 'DRIVE SELECT' signal
- SB Selects 360 rpm for both high and low density modes

20 MEG Mitsubiahi (MR522) Hard Drive Logic Board (figure 100): First Second

		0000110	
Switch	Drive	Drive	Description
SW1-1	On	On	Selects daisy chain operation
SW1-2	Off	Off	Disables diagnostic operation
SW1-3	Off	Off	Drive select 4
SW1-4	Off	Off	Drive select 3
SW1-5	Off	On	Drive select 2
SW1-6	On	Off	Drive select 1
SW2-1	On	Off	Termination
SW2-2	On	Off	Termination
SW2-3	On	Off	Termination
SW2-4	On	Off	Termination
SW2-5	On	Off	Termination
SW2-6	On	Off	Termination

20 MEG Seagate (ST225) Hard Drive Logic Board (figure 101): Only one jumper should be on. 15-16 Drive select 1 13-14 Drive select 2 11-12 Drive select 3 9-10 Drive select 4 Termination resistor pak (220/330 ohm) should be installed on the last drive on the cable.

40 MEG CDC (WREN II) Hard Drive Logic Board (figure 110): Drive select (DS1 = C, DS2 = D) DSx Termination resistor pak $(22\emptyset/33\emptyset$ ohm SIP) should be installed on the last drive on the cable.

Serial/Parallel Board Revision *A* 25-4Ø34 (figure 1Ø2): There are new ways of configuring LPT port addresses and assignments which will affect the jumpering configurations of boards related to parallel ports. REFER TO TECHNICAL BULLETIN INFO:26 FOR FURTHER DETAILS ON CONFIGURING THIS BOARD WITH THE 25-3049 MONOCHROME PARALLEL BOARD TOGETHER OR THE NEWER COMPUTERS (i.e., 4020/25/33LX series).

E1-E3	Selects	USA Standard baud-rate generator (standard)	
E1-E2 &	Selects	International baud-rate	
E3-E4	Selects	International baud-rate	

- Selects International baud-rate
- E6-E7 Selects parallel port 1 (LPT1) address 378-37F (standard) E5-E6 Selects parallel port 2 (LPT2) address 278-27F
- E9-E1Ø Selects serial port 1 (COM1) address 3F8-3FF (standard) E8-E9 Selects serial port 2 (COM2) address 2F8-2FF

Serial/Parallel Board Revision *B* and *C* 25-4034 (figure 115): There are new ways of configuring LPT port addresses and assignments which will affect the jumpering configurations of boards related to parallel ports. REFER TO TECHNICAL BULLETIN INFO: 26 FOR FURTHER DETAILS ON CONFIGURING THIS BOARD WITH THE 25-3049 MONOCHROME PARALLEL BOARD TOGETHER OR THE NEWER COMPUTERS (i.e., 4020/25/33LX series).

E1-E3 Selects USA Standard baud-rate generator (standard) E1-E2 & Selects International baud-rate E3-E4 Selects International baud-rate

PORT SELECTION

	LPT1				COM1		
E6-E7	Selects	address	378-37F	E9-E1Ø	Selects	address	3F8-3FP
E11-E12	Enables	IRQ7		E15-E16	Enables	IRQ4	
	LPT2				COM2		
E5-E6	Selects	address	278-27F	E8-E9	Selects	address	2F8-2FF
E13-E14	Enables	IRQ5		E17-E18	Enables	IRQ3	

This page intentionally left blank.

.

 RAM Specifications:

Organization			Accesa	Time
256K	х	1	12Øns	sec
64K	х	4	12Øns	sec
64K	х	1	12Øns	ec

Tandy 3000 12MHZ Main Logic Board (figure 137):

Monitor TypeE1-E2Selects Color Video BoardE2-E3Selects Monochrome Video Board

Processor Clock SpeedE9-E1ØSelects 6MHZ Processor Clock SpeedE1Ø-E11Selects 12MHZ Processor Clock SpeedE9-E1Ø-E11Off: Allows Processor Clock Speed to be software selectable.
Default Clock Speed is 12MHZ (Standard)

Co-processor Clock Speed E43-E44 and E47-E48 6MHZ (5.3MHZ effective operation) E44-E45 and E48-E49 8MHZ E44-E46 and E47-E48 1ØMHZ (8MHZ effective operation) E44-E45 and E48-E49 1ØMHZ with 1Ø MHZ crystal in Y2A. (1ØMHZ effective operation)

On board RAM is selected with E12 through E15 as follows:

<u>E12-E13</u>	E14-E15	RAM Size	
On	On	256K	-
On	Off	512K	(Standard)
Off	On	64ØK	

Rom Size E31-E32 and E4Ø-E41 512K E31-E32 and E41-E42 256K E32-E33 and E41-E42 128K (Standard)

8 bit Wait States E28-E29 On: 2 Wait States E29-E3Ø On: 3 Wait States (Standard) E28-E29-E3Ø Off: 4 Wait States

(continued on next page)

-

Serial Port	
E2Ø-E21	Enables on board Serial Port
E26-E27	On: Selects COM1 (Standard)
	Off: Selects COM2
E34-E35	On: IRQ4 selected (Standard)
E35-E36	On: IRQ3 selected
E34-E35-E36	
Parallel Port	
E18-E19	Enables on board Parallel Printer Port
E24-E25	On: Selects LPT1 (Standard)
	Off: Selects LPT2
E38-E39	On: IRQ7 selected (Standard)
E37-E38	On: IRQ5 selected
E37-E38-E39	Off: Disables on board interrupt for Parallel Port
FDC/DMA	
	elects 6MHZ DMA clock
	ff: Sets Precomp to 12Ønsec (Standard)
-	n: Sets Precomp to 187nsec
	nables on board FDC (Standard)
	m: Selects on board FDC as primary address. (Standard)
U	ff: Selects on board FDC as secondary address.
Mitenhichi MA	854-347 1.2 MEG Drive Logic Board (figure 97):
	oppy drives in system use DS1 as the cable selects the drive
	tion select
	constant head load
	s head unload delay
	active low diskette change
	motor power controlled by 'MOTOR ON' signal
	selected by 'DRIVE SELECT' signal
S8 Selects	360 RPM for both high and low density modes
1IH LED wil	l light with the 'DRIVE SELECT' signal
	ng resistor pak should be installed in the last drive on the
cable.	
	oppy/Bard Drive Controller Board (figure 95):
	elects primary address for floppy (standard)
	elects secondary address for floppy
	elects primary address for hard drive (standard)
	elects secondary address for hard drive
E7-E8 C	onnects floppy read data into VCO
NOTE: Proper	system configuration when this board is installed in the Tandy
	2MHZ computer.
	2-E23 jumper on the main logic board removed, which puts the
	board floppy drive controller at the secondary address.
	nnect the floppy drive to the Floppy/Hard Drive Controller
	T the main logic board.

WD1003-WA2 Floppy/Hard Drive Controller Board (figure 124):

- E2-E3 Selects primary address for floppy (standard)
- E1-E2 Selects secondary address for floppy
- E5-E6 Selects primary address for hard drive (standard)
- E4-E5 Selects secondary address for hard drive
- E7-E8 Supports 36Ø RPM floppy disk drives (standard)
- E8-E9 Supports 300 RPM floppy disk drives
- NOTE: Proper system configuration when this board is installed in the Tandy 3000 12MHZ computer.
 - 1. E22-E23 jumper on the main logic board removed, which puts the onboard floppy drive controller at the secondary address.
 - 2. Connect the floppy drive to the board NOT the main logic board.

Enhanced Keyboard 25-4038 (figure 129):

4 position dip switch

Computer	Position 1	Position 2	Position 3	Position 4
Tandy 3000 (AT types)	On	On	XX	XX
XX=Don't Care				
- TANDY COMPUTER PRODUCTS-

NOTES:

The Tandy 3000HL may use any of the expansion boards for the Tandy 3000.

If an expansion board contains an FDC circuit, such as the Hard Drive/Floppy Drive controller, the main logic's on board FDC circuit should be disabled and the floppy drive cables should be routed to the expansion board.

If an expansion board contains a printer port it must be configured as LPT2 or the main logic's on board printer port must be disabled.

RAM Specifications:

Organia	zai	tion	Access	Time
256K	X	1	15øns	ec
64K	Х	4	15Øns	ec
64K	X	1	15Øns	ec

Tandy 3000HL Main Logic Board (figure 122): E1-E2 Selects color video board

- E2-E3 Selects monochrome video board
- E4-E5 Enable on board parallel port (standard) Remove E4-E5 to disable on board parallel port.
- E6-E7 Enable on board FDC port (standard) Remove E6-E7 to disable on board FDC port.

RAM Size	E8-E9	E1Ø-E11	
512K	On	Off	(standard)
64ØK	Off	On	
E12-E13	Selects 2	7128 (16Kx	8) type ROMs (standard)
E13-E14	Selects 2	7256 (32Kx	(8) type ROMs
E16-E17			for 92C32 type data separator
			jumper wire from U8Ø pin 3 to U81 pin 13)
E15-E16			for 92Cl6 type data separator
			jumper wire from U8Ø pin 3 to U81 pin 9)
Important			r may come with either the 92C16 or the 92C32.
			type, at location U8Ø, to select the correct
			tion. On Rev A PC8, confirm the type at location
	បរ	80, and in	sure the jumper wire connections are correct.

Mitsubishi MF501A Floppy Drive Logic Board (figure 108):

DS1	Soth floppy drives in system use DS1 as the cable selects the drive	
MM	Spindle motor power controlled by 'MOTOR ON' signal	

Tandy 3000HL Main Logic Board with Keylock (figure 139): This logic board is the same as the original 3000HL for jumpering considerations. The only difference between the two logic boards is the addition of S2 for Keyboard Inhibit.

- E1-E2 Selects color video board
- E2-E3 Selects monochrome video board
- E4-E5 Enable on board parallel port (standard) Remove E4-E5 to disable on board parallel port.
- E6-E7 Enable on board FDC port (standard) Remove E6-E7 to disable on board FDC port.

RAM Size E8-E9 E1Ø-E11 512K Off On (standard) 64ØK Off 0n E12-E13 Selects 27128 (16Kx8) type ROMs (standard) El3-E14 Selects 27256 (32Kx8) type ROMs E16-E17 Selects 8 MHz clock for 92C32 type data separator (for Rev. A PC8, a jumper wire from U80 pin 3 to U81 pin 13) E15-E16 Selects 4 MHz clock for 92C16 type data separator (for Rev. A PC8, a jumper wire from U80 pin 3 to U81 pin 9) Important Note: The computer may come with either the 92C16 or the 92C32. Confirm the type, at location U80, to select the correct jumper position. On Rev A PC8, confirm the type at location U8Ø, and insure the jumper wire connections are correct.

,

- TANDY COMPUTER PRODUCTS -

This page intentionally left blank.

.

•

- TANDY COMPUTER PRODUCTS -

*												4
*												÷
*	T	A	N	D	Y	3	ø	ø	ø	N	L	×
*								-	-			k
*												*

RAM specifications	:
Organization Access T 256K x 1 SIMM 150 nS 64K x 4 DIP 150 nS 64K x 1 DIP 150 nS	
	c Board 25-4072 (figure 206):
E1-E2,E6-E7	Optional 80287-8 using on board clock for effective operation at 6.7 Mhz.
E2-E3,E4-E6	Optional 80287-10 and optional 332 duty cycle 10 Mhz oscillator for effective operation at 10 Mhz.
NOTE: When using the Re Mhz.	v. A MLB and a Co-processor the bus speed must be 10
E8-E9 *	an source occure hore and
SW3 - ON	Enabled
SW4 = ON	COM1 (3F8-3FF)
E9-E1Ø	On-board Serial port = IRQ3
SW3 - ON	Enabled
SW4 = OFF	COM2 (2F8-2FF)
E12-E13 *	On-board Parallel port = IRQ7
SW1 = ON	Enabled
SW2 = ON	LPT1 (378-37F)
E11-E12	On-board Parallel port = IRQ5
SW1 = ON	Enabled
SW2 = OFF	LPT2 (278-27F)
E14-E15 *	Monochrome Monitor
E15-E16	Color Monitor

(Continued on next page)

Memory	8anl	-	8anl		Ban	k2	8an		8ase	Ext.
Jumpers	MBd	EXBd	MBd	EX8d	MBd	EX8d	MBd	EX8d	Memory	Memory
E21-E22,E23-E24	* 512K								512K	ØK
E21-E22,E23-E24	512K		128K						64ØK	ØK
E2Ø-E21,E24-E25		512K	44 m	512K					64ØK	384K
E21-E22,E24-E25		512K	128K			512K		512K	64ØK	1Ø24K
E2Ø-E21,E24-E25		512K		512K		512K		512K	64ØK	1Ø24K
E21-E22,E24-E25		512K	128K			2M		2M	64ØK	4Ø96K
E2Ø-E21,E24-E25		512K		512K		2M		2M	64ØK	4ø96K
<u>E2Ø-E21,E24-E25</u>	÷	2M		2M		2M		2M	64ØK	7168K

- TANDY COMPUTER PRODUCTS-

A bank marked with -- in the above table will not be accessed even if it contains memory.

E26-E27,E29-E31*128K 8IOS ROMs (16K x 8)E26-E27,E28-E29256K 8IOS ROMs (32K x 8)E27-E3Ø,E28-E29512K 8IOS ROMs (64K x 8)
SW1 - * On = On-board Parallel port enabled Off = On-board Parallel port disabled
SW2 - * On = On-board Parallel port = LPT1 = 378H Off = On-board Parallel port = LPT2 = 278H
SW3 - * On = On-board Serial port enabled Off = On-board Serial port disabled
SW4 - * On = On-board Serial port = COM1 Off = On-board Serial port = COM2
SW5 - * On = On-board Floppy = Primary FDC Off = On-board Floppy = Secondary FDC
SW6 - Reserved for future options
SW7 - Reserved for future options
SW8 - Reserved for future options
Note: * denotes factory setting

.

*** NOTE ***

There are new ways of configuring LPT port addresses and assignments which will affect the jumpering configurations of boards related to parallel ports. REFER TO TECHNICAL BULLETIN INFO:26 FOR FURTHER DETAILS ON CONFIGURING THE 3000NL TOGETHER WITH THE MONOCHROME PARALLEL BOARD (25-3049), OR OTHER BOARDS RELATED TO PARALLEL PORTS.

- TANDY COMPUTER PRODUCTS -

*												*
*												*
*	Т	А	N	D	Y	3	8	1	ø	H	D	*
*												*
*												*

INTRODUCTION:

25-3571 Tandy 381ØHD

The 381ØHD contains an 8Ø386SX microprocessor running at 2ØMHz. The computer comes standard with 1MB of RAM, expandable to 5MB on the main logic board. The video is a VGA compatible LCD display with a fluorescent backlight. A special "resume" function allows you to turn off your computer in the middle of an application without losing your place within the program. The standard configuration is:

- * 20MHz 80386SX CPU
- * Optional 80387SX Co-processor Socket
- * One Conner CP-2064 2.8 Inch 60MB Hard Disk Drive
- * One Matsushita EME-263MG 3.5 Inch 1.44MB Floppy Disk Drive
- * MSDOS Version 5.00 Operating System
- * Deskmate Version 3.05.02
- * BIOS ROM Version 3.10.01
- * Advanced Video 8IOS ROM Version 1.10.00
- * VGA Compatible LCD Display with Fluorescent backlight
- * One D8-15 External VGA Port
- * One D8-25 Parallel Port / External Floppy Drive Port
- * One D8-9 RS-232 Serial Port
- * 84 Key Keyboard (Full 101 Key Emulation)
- * External PS/2 Keyboard Port
- * Resume Punction
- * One 12VDC 1.4AH Ni-Cad Rechargeable 8attery
- * 1MB Onboard Memory
- * Maximum Memory Expansion 5MB
- * One 16VDC 1.25A AC Adapter

Setup for the 381Ø is run from the program SETUP381.COM.

MAIN LOGIC BOARD (figure 274):

This unit contains 1 jumper (JP31) that comes unjumpered. This jumper is a factory test jumper and should not be installed.

MEMORY CONFIGURATIONS:

The 381ØHD comes standard with 1MB of RAM on the main logic board. Supported RAM configurations are 1MB, 3MB, or 5MB. Upgrades are done by adding double-sided 1MB 8Øns SIMM modules (25-35Ø7 figure 278). Two 25-35Ø7 memory kits are needed for the upgrade to 3M8 and four are needed for the upgrade to 5MB. The SIMM module sockets are located under a cover between the LCD display and the keyboard. Sockets CN1 and CN2 are used for the 3MB upgrade and sockets CN1, CN2, CN3, and CN4 are used for the 5MB upgrade. There are NO jumpers to set when memory is added.

POWER SUPPLY:

Power for the unit can be obtained from either a 12VDC 1.4AH Ni-Cad rechargeable battery (25-3526) or a 16VDC 1.25A AC adapter (WE-Ø157, 25-3571).

The Ni-Cad battery (25-3526) has a 2 to 4 hour charge time. The battery can run up to 3.1 hours under optimal conditions of continuous computing power. The battery pack must be fully charged before using the computer. Failure to fully charge the battery before use could greatly reduce the battery life and efficiency.

The AC adapter (WE- \emptyset 157) has a 16VDC output and uses a positive center conductor and a negative outer conductor jack.

KEYBOARD:

The keyboard is an 84 key keyboard that supports a 101 key emulation. The "CTRL" and "CAPS LOCK" keys have the ability to have their functions reversed and the keycaps may be swapped to reflect their new functions. This is done by changing the position of a dip switch (SW2) that lies in a compartment under the battery. The switch settings are:

On - to reverse the "CTRL" and "CAPS LOCK" keys Default > Off - to restore the standard "CTRL" and "CAPS LOCK" keys.

The external keyboard port supports a PS/2 style enhanced keyboard.

Conner CP-2064 60 Meg IDE Hard Drive (figure 283):

The 3810 contains a 60MB 2.8" Conner CP-2064 hard disk drive. The 3810 hard drive is preinitialized at the factory with MS-DOS and DeskMate, reinitialization if needed is done in three steps:

- HSECT Run HSECT.COM to low level format the drive. The hard disk type is 19, the drive's translation mode circuitry will emulate a drive with 566 cylinders and 13 heads.
- 2. FDISK Run FDISK.COM to partition the drive.
- 3. FORMAT Run FORMAT.COM with the /s option to high level format the drive and install the operating system.

The jumper settings are:

	Drives in System	El	E2
*	Master Drive	Installed	Not Used
	Slave Drive	Not Installed	Not Used

* = Indicates Factory Setting

- TANDY COMPUTER PRODUCTS -

Matsushita EME-263MG 3 1/2 inch 1.44M Floppy Drive 25-3506 (figure 300):

This drive is for the 1500HD/2810/3810HD. There are no jumpers on this drive. The test points are as follows:

Head AmpTP1Track ØØ CheckTP5Track ØØ BiasTP6 (Shorting it to ground enables Track ØØ check)IndexPin 2 of the floppy drive connector cableRead DataPin 24 of the floppy drive connector cableHead Ø ConnectCN1Head 1 ConnectCN2VCC (+5V)CN8 Pins 1,3,5,7GroundCN8 Pins 13,15,17,19,21,23,25

This drive is interfaced through a soldered on flat conductor cable instead of the conventional ribbon cable.

2400 Baud Modem for the 1500HD/2810/3810HD 25-3525 (figure 280):

There are no jumpers for this modem. It is installed beneath the two inch wide access panel adjacent to the battery. The modem is connected to the main logic board via a single flat cable and secured in position upside down with two screws.

Note: Xenix and Unix are not supported on this unit.

- TANDY COMPUTER PRODUCTS-

~

*												*
*												*
*	T	A	N	D	Y	4	ø	ø	ø	1	A	*
*							-		-			*
*												*

RAM Specifications:

Orgai	11:	28	tion	Access Time
256K	х	9	SIMM	1ØØnsec
1M	Х	9	SIMM	løønsec

Tandy 4000 Main Logic Board (figure 138):
E1-E2 On: Selects color video board Off: Selects monochrome video board
E3-E4 Connects AF32* to 82C306. NOT USED.
E5-E6 Enables primary address for onboard FDC (Standard)
E6-E7 Enables secondary address for onboard FDC
E8-E9 On: Coprocessor installed
Off: No coprocessor installed

Tandy 4000A Main Logic Board (figure 207**): **Same as Tandy 4000LX

The main difference between TANDY 4000 and the TANDY 4000A is that support of the 80387 was added to the TANDY 4000A, and the 40 pin 80287 coprocessor socket was removed. Also, the jumper to enable/disable the coprocessor is different. Refer to the notes for each individual board for correct jumper settings. The 80387 math coprocessor (Catalog # 900-2131) is available through Express Order Hardware. It is not supported in a TANDY 4000 but is supported in a TANDY 4000A. It will work in the Tandy 4000 Revision C (or later) board ONLY and is installed in an 84 pin Weitec PGA socket at location U15. Some Revision A-1 boards will have this PGA socket as well as a 40 pin socket at location U25 for the 80287 math coprocessor. If the board has this 40 pin 80287 math coprocessor socket, then the 80387 will not function at all. All Tandy 4000As should not have this 80287 math coprocessor socket.

Jumpers are as follows:

- El E2 OFF for monochrome mode ON for color mode
- E3 E4 OFF for coprocessor when 80/387 not installed or Wytec installed ON for 80/387 coprocessor installed
- E5 E6 ON sets primary address for on board floppy controller E6 - E7 ON sets secondary address for on board floppy controller

Sony MP-F73W-Ø1D 3 1/2 inch 1.44 Meg Floppy Drive (figure 141): DS1 ALL Drives Slide Switch on back right corner set to second closest position to the rear of the drive. Termination is internal to the drive.

Enhanced Keyboard 25-4038 (figure 129):

4 position dip switch

Computer	Position 1	Position 2	Position 3	Position 4
Tandy 4000 (AT Types)	On	On	XX	XX
XX=Don't Care				

WD1002-WA2 Floppy/Hard Drive Controller Board (figure 95):

E2-E3	Selects	primary	address	for	floppy	(standard)

- E1-E2 Selects secondary address for floppy
- E5-E6 Selects primary address for hard drive (standard)
- E4-E5 Selects secondary address for hard drive
- E7-E8 Connects floppy read data into VCO
- NOTE: Proper system configuration when this board is installed in the Tandy 4000 computer.
 - E5-E6 jumper on the main logic board moved to E6-E7 jumper position which puts the onboard floppy drive controller at the secondary address.
 - 2. Connect the floppy drive to the floppy/hard drive controller NOT the main logic board.

WD1ØØ3-WA2 Floppy/Hard Drive Controller Board (figure 124):

- E2-E3 Selects primary address for floppy (standard)
- E1-E2 Selects secondary address for floppy
- E5-E6 Selects primary address for hard drive (standard)
- E4-E5 Selects secondary address for hard drive
- E7-E8 Supports 36Ø RPM floppy disk drives (standard)
- E8-E9 Supports 300 RPM floppy disk drives
- NOTE: Proper system configuration when this board is installed in the Tandy 4000 computer.
 - E5-E6 jumper on the main logic board moved to E6-E7 jumper position which puts the onboard floppy drive controller at the secondary address.
 - 2. Connect the floppy drive to the floppy/hard drive controller, NOT the main logic board.

- TANDY COMPUTER PRODUCTS-

This page intentionally left blank.

- TANDY COMPUTER PROOUCTS-

- TANOY COMPUTER PROOUCTS-

Tandy 4000LX Main Logic Board 25-5100 Revision C, C-1 (figure 207):

The Tandy 4000LX comes equipped with 2 MB of RAM consisting of eight 256K x 9 80nS SIMM memory modules. These SIMMs must be rated at 80nS access time to prevent the need for wait states when accessing memory. Expansion to 8 MB of RAM is possible on the main logic board by replacing the 256K x 9 80nS SIMMs with 1 MB x 9 80nS SIMMs.

The BIOS ROM consists of two 128K ROMs. The capability exists for the use of 256K ROMs. 8IOS is organized as even and odd addresses with even address information contained in U26 and odd address information contained in U32.

RAM Specifications

Orga	ni	2 8 (tion	Access time
256K	х	9	SIMM	8Ø nS
1M	x	9	SIMM	8Ø nS

Tandy 4000LX Main Logic Board Jumpers E1 - E2 OFF for monochrome mode ON for color mode (standard)

E3 - E4 OFF for coprocessor when 80387 not installed or Weitec installed (standard)

ON for 80387 coprocessor installed

E5 - E6 ON sets primary address for on board floppy controller (standard) E6 - E7 ON sets secondary address for on board floppy controller

Sony MP-F73W-Ø1D 3 1/2 inch 1.44 Meg Floppy Drive (figure 141): DS1 ALL Drives Slide Switch on back right corner set to second closest position to the rear of the drive. Termination is internal to the drive. WD1002-WA2 Floppy/Hard Drive Controller Boerd (figure 95):

- E2-E3 Selects primary address for floppy (standard)
- E1-E2 Selects secondary address for floppy
- E5-E6 Selects primary address for hard drive (standard)
- E4-E5 Selects secondary address for hard drive
- E7-E8 Connects floppy read data into VCO
- NOTE: Proper system configuration when this board is installed in the Tandy 4000LX computer.
 - E5-E6 jumper on the main logic board moved to E6-E7 jumper position puts the onboard floppy drive controller at the secondary address.
 - 2. Connect the floppy drive to the floppy/hard drive controller NOT the main logic board.

WD1003-WA2 Floppy/Herd Drive Controller Board (figure 124):

- E2-E3 Selects primary address for floppy (standard)
- E1-E2 Selects secondary address for floppy
- E5-E6 Selects primary address for hard drive (standard)
- E4-E5 Selects secondary address for hard drive
- E7-E8 Supports 36Ø RPM floppy disk drives (standard)
- E8-E9 Supports 300 RPM floppy disk drives
- NOTE: Proper system configuration when this board is installed in the Tandy 4000LX computer.
 - E5-E6 jumper on the main logic board moved to E6-E7 jumper position puts the onboard floppy drive controller at the secondary address.
 - Connect the floppy drive to the floppy/hard drive controller NOT the main logic board.

.

- TANOY COMPUTER PRODUCTS -

This page intentionally left blank.

-

- TANDY COMPUTER PRODUCTS-

Tandy 4000SX 25-4900 (figure 214):

The Tandy 4000SX is an AT compatible desktop computer, based on the Intel 80386SX microprocessor, several Chips and Technologies support LSI's, an Intel FDC capable of supporting the 1.44 MEG, 720K, 1.2 MEG, and 360K floppy drives, and an AT-style IDE (Intelligent Drive Electronics) hard drive interface. Additionally, there is on-board support for serial and parallel I/O. In the standard configuration, the machine comes equipped with:

> 16 MHz 8Ø386SX CPU 0 0 socket for optional 16 MHz 8Ø3875X numeric coprocessor two proprietary local memory expansion slots, allowing 0 expansion up to 16 MEG 1 MEG of 256K x 9 bit, 100 nsec SIMM memory on a local 0 memory adapter board (installed in one of the above proprietary memory expansion slots) five 16-bit AT-style expansion card slots (expansion bus 0 runs at 8 MHz) one serial port (on main logic board) 0 one bidirectional parallel port (on main logic board) 0 enhanced AT-style 101-key keyboard ο ο one 1.44 MEG floppy drive three drive expansion slots, one for 3.5 inch drives, two 0 for 5.25 inch drives (half-height devices) on board floppy drive controller ο on board real time clock and CMOS RAM with battery backup 0 ο on board AT-style IDE hard drive interface ο 200 watt power supply

No system memory is installed on the main logic board; instead, all system RAM is installed on memory boards which are installed in the special memory expansion slots, leaving the AT-style expansion slots available for other options.

Main Logic Board:

The main logic board contains everything necessary for system operation save for system RAM and video display. The 80386SX CPU, optional 80387SX numeric coprocessor, serial interface, parallel interface, floppy drive controller, keyboard control, IDE hard drive interface, and clock logic is resident on this board.

Main Logic Board Jumpers and Switch Settings:

Note that the standard or default system settings are noted with two bold asterisks (*i.e.* ******).

Video Monitor Type:

Monochrome video:	E8-E9	
Color vídeo:	E9-E1Ø	**

BIOS ROM Type:

128K	(16K	х	8):	E17-E18,	E21-E22	**
256K	(32K	x	8):	E17-E18,	E22-E23	
512K	(64K	x	8):	E18-E19,	E22-E23	

Second Memory Expansion Adapter Access:

Second	adapter	enabled:	E29-E3Ø,	E31-E32	
Second	adapter	disabled:	E3Ø-E31,	E32-E33	**

On-board Parallel Port:

Parallel port enabled:	SW1 on **
Parallel port disabled:	SW1 off
Address port as LPT1:	SW2 on **
Address port as LPT2:	SW2 off
Parallel port uses IRQ7:	E12-E13 **
Parallel port uses IRQ5:	E11-E12

On-board Serial Port:

Serial port enabled:	SW3 on	**
Serial port disabled:	SW3 off	
Address port as COM1:	SW4 on	**
Address port as COM2:	SW4 off	
Serial port uses IRQ4:	E15-E16	**
Serial port uses IRQ3:	E14-E15	

(continued on next page)

- TANDY COMPUTER PRODUCTS -

On-board FDC:

FDC	enabled:	SW5	on	**
FDC	disabled:	SW5	off	

NOTE: As per Technical Bulletin 4000SX:3 SW5 is redefined. The new definitions for SW5 are as follows:

Uni-directional on board parallel port SW5 on (OS/2 and Xenix compatible) Fully bi-directional on board parallel port SW5 off ** (MS/DOS applications which require such operation)

Addressed at primary port: SW6 on ** Addressed at secondary port: SW6 off

On-board IDE Hard Drive Interface:

IDE interface enabled:	SW7 on	**
IDE interface disabled:	SW7 off	
Addressed at primary port:	SW8 on	**
Addressed at secondary port:	SW8 off	
Standard IRQ14:	E6-E7	**
Non-standard IRQ14:	E5-E6	
Standard IOCHRDY:	E3-E4	**
Non-standard IOCHRDY:	E1-E2	

8Ø387SX Numeric Coprocessor Option:

8Ø387SX	installed:	E27-E28	
8Ø387SX	not installed:	E26-E27	**

Optional Dual Oscillator Option

16.Ø MHz Standard Oscillator	E2Ø-E24	** (hard wired on the board)
32.Ø MHz Oscillator Option	E24-E25	(must cut trace at E2Ø-E24)

Memory Configurations:

Allowable memory configurations for the 4000SX are somewhat different than those allowed for the 4000 and the 4000LX. Allowable configurations in this machine are:

With one memory adapter in the system:

The main logic board should be jumpered E3Ø-E31 and E32-E33 (for one memory adapter in the system). The memory adapter should be jumpered E1-E2. Memory may be installed as follows, where the numbers under the banks indicate the type of SIMMs to be installed in the bank. Two SIMMs are required for a bank.

- TANDY COMPUTER PRODUCTS -

Bank Ø	Bank 1	Bank 2	Bank 3	Total <u>Memory</u>
256K	256K	none	none	1 MEG (standard)
256K	256K	256K	256K	2 MEG
256K	256K	1 MEG	1 MEG	5 MEG
1 MEG	1 MEG	1 MEG	1 MEG	8 MEG

NOTE: 100nS speeds are standard for these SIMMs

With two memory adapters in the system:

The main logic board should be jumpered E29-E3Ø and E31-E32 (two memory adapters in the system). The memory adapters should be jumpered E1-E2. Memory on the first adapter should be configured at the 8 MEG configuration; memory on the second adapter should be installed as:

<u>Bank Ø</u>	Bank 1	Bank 2	Bank 3	Total Memory
1 MEG	1 MEG	none	none	12 MEG
1 MEG	1 MEG	1 MEG	1 MEG	16 MEG

Memory Board 25-493Ø (figure 26Ø):

The memory board is very similar to that which is used in the 3000NL. However, there is now a jumper on the board which determines whether the board is being used in a system with one or two memory board slots. Jumpering for this board is:

E1-E2 on: for use in two memory board system (Tandy 4000SX)

The board is organized into four banks (Banks \emptyset , 1, 2, and 3) of two SIMMs each. The default configuration is Banks \emptyset and 1 filled with four 256K x 9 bit, 100 nsec SIMMS, giving a system default configuration of 1 MEG.

Floppy Drive (figure 141):

The floppy drive is a Sony 3.5 inch micro floppy drive, the MP-F17W-7 \emptyset D, capable of handling both 1.44 MEG and 72 \emptyset K disks, with 2 heads, 8 \emptyset tracks and spinning at 3 \emptyset Ø RPM. The drive test points are:

Differential read amps:	RFA, RFB
Direction:	CN1Ø1, pin 18
Step:	CN1Ø1, pin 2Ø
Track Ø:	CN1Ø4, pin 3
Index:	CN1Ø1, pin 8
Read Data (Raw Data):	CN1Ø1, pin 3Ø

(continued on next page)

Ground:	AGND		
Write Protect:	WPRT		
Motor On:	CN1Ø1,	pin	16

The drive is internally terminated, and has only one switch, SlØ1, used for drive selection. The DSØ position is used for the first drive, and is rearmost on the switch. The second floppy, whether 3.5 inch or 5.25 inch, is selected as DS1. Upgrade 5.25 inch floppy drives should be terminated when installed.

- TANDY COMPUTER PRODUCTS -

Tandy4Ø16DX25-5ØØ1Tandy4Ø2ØLX25-512ØTandy4Ø25LX25-5125Tandy4Ø33LX25-5133

Introduction:

The Tandy 4016DX, 4020LX, 4025LX, and 4033LX are Tandy's newest entries into the high-speed, AT compatible market. Sesides the obvious speed advantages obtained from the faster clock speeds utilized, there is also a memory cache controller incorporated into the design of the 4020/25/33LX to execute frequently used code and data. The 4016DX does not have the memory cache controller. When the cached accesses are averaged with the non-cached accesses, the net result is virtually 0 wait states. The basic system consists of four logic boards: the CPU board, main logic board, primary memory board and VGA adapter board. The standard configuration consists of:

CPU Logic 8oard

- * 16, 20, 25 or 33 MHz Intel 80386 processor
- * 2Ø, 25 or 33 MHz Intel 82385 memory cache controller with 32k of 25nS access static RAM
- * socket for optional Intel 80387 or Weitek W3167 coprocessor

Main Logic 8oard

- * two proprietary local memory expansion slots, allowing expansion up to 16 meg
- * 1 meg (early 4Ø25LX/33LXs came with 2 meg) of 256k x 9, 1ØØns SIMM memory on a local memory adapter (installed in one of the two proprietary memory slots mentioned above)
- * six AT-style, 16-bit interface slots running at 8MHz (two of the six slots are for half length cards only)
- * 16-bit VGA adapter card (installed in one of the two half-length 16-bit interface slots) (some units are coming with a new 16 bit super VGA board capable of super VGA resolutions)
- * one 1.44 meg floppy drive
- * three expansion drive slots, one for 3.5 inch drives, two for half-height 5.25 inch drives
- * on board dual-speed floppy drive controller
- * on board AT-style IDE hard drive interface
- * one on board serial port
- * one on board bi-directional parallel port (bi-directional feature may be disabled through setup for OS/2 and Xenix compatibility)
- * enhanced AT-style 101-key keyboard with software password protection (uses PS/2 style connector)
- * real time clock with battery backup
- * on board PS/2 style mouse port (COMM port is not used)
- * 200 watt power supply
- * keylock on front face locks the top case to the frame and does not affect the keyboard.

CPU Logic Board (figures 237 and 238):

The CPU logic board plugs into the main logic board at connector J2. The $4\emptyset 2\emptyset/25/33LX$ CPU logic boards (figure 23B) use memory caching which allows the CPU quick access to frequently used code and data. The 4 \emptyset 16DX CPU logic board (figure 237) does not use memory cache control. The areas of memory that are not to be cached are selectable through the MEMCACHE.COM program on the Utilities diskette. The default areas not to be cached are from 64 \emptyset k - start of BIOS (A $\emptyset \emptyset \emptyset \emptyset \emptyset - F7FFF$), and from 15meg to the end of 16meg (E $\emptyset \emptyset \emptyset \emptyset \emptyset \emptyset \emptyset - FFFFFF$).

Main Logic Board Revisions A-C (figure 236):

The main logic board is very similar in architecture to the $4\emptyset\emptyset\emptyset LX$. It uses the Chips and Technologies seven-piece CHIPset and 82C2 \emptyset 6, which is used in the $4\emptyset\emptyset\emptyset LX$. The major difference is that the $4\emptyset\emptyset\emptyset LX$ has a place for up to 8-lmeg SIMM modules on the main logic board and the $4\emptyset16DX/4\emptyset2\emptyset/25/33LX$ series have all the system RAM located on separate 32-bit memory boards plugged into the main logic board. The floppy drive controller, IDE hard drive interface, serial interface, parallel interface, PS/2 mouse interface, and clock logic are resident on this board.

Main Logic Board Jumpers: Note: * denotes default settings

Primary Monitor Type:

Input per setup: Color monitor: Monochrome:	ElØ-Ell
BIOS ROM Type:	
128k (16k x 8): 256k (32k x 8): 512k (64k x 8): 1meg (128k x 8):	E24-E25 * E22-E23 E24-E25
On-Board Hard Disk (IDE)	Interface:
IOCHRDY enabled: IOCHRDY disabled:	
Diag. mode disabled: Diag. mode enabled:	
I/O Recovery:	
Enabled: Disabled:	E8-E9 jumpered * E8-E9 removed
	(continued on next page)

Operating Mode:

4Ø16DX/4Ø2ØLX/25LX:	E14-E15,	E17-E18,	E2Ø-E21	*
4Ø33LX Only:	E14-E15,	E17-E18,	E19-E2Ø	*

Tandy 4016DX Rev D Main Logic Board 25-5001 The Revision D Main Logic Soard is for the 4016DX only. It is quite different from Revisions A-C in that there are alot more jumpers on the board. Below are the jumpers.

Note: * denotes default settings

Jumpers:

IOCHRDY to IDE interface IOCHRDY disabled	E1-E2 jumpered * E1-E2 removed
IDE diagnostic mode enabled IDE diagnostic mode disabled	E3-E4 jumpered E3-E4 removed *
Delayed ADS for 486	E5-E7 jumpered
Regular ADS from CPU	E6-E7 jumpered *
Sync CPUADS to SCLK	E7-E8 jumpered
HRQ2 always enabled	E9-E1Ø jumpered *
Video mode set through setup	Ell-El2 jumpered *
Enable color mode only	E12-E13 jumpered
Latch interrupt for 486	E14-E15 jumpered
Interrupt unaltered	E15-E16 jumpered *
8uffered M/IO	E17-E18 jumpered *
M/IO unbuffered	E17-E18 removed
L8A/AF32 signal always in	E19-E2Ø jumpered *
Enable buffers for 486 clock	E21-E22 jumpered
Disable buffers for 486 clock	E21-E22 removed *
Enable write FO	E23-E24 jumpered
Enable generation of 486 clock	E25-E27 jumpered
Disable generation of 486 clock	

(continued on next page)

TANDY COMPUT	ER PI	RODI	JCTS
--------------	-------	------	------

Enable terminating network	E26-E28	jumpered *
Disable terminating network	E26-E28	removed
486 CLKB		jumpered
Enable terminating network	E3Ø-E39	jumpered *
Clock B-A for 386	E29-E38	jumpered
Enable terminating network	E38-E39	jumpered
CPU8USY for 386	E31-E4Ø	jumpered *
CLKD for 485	E31-E4Ø	removed
NPBUSY for 386	E32-E41	jumpered *
CLKE for 486		removed
386 CLK2	E33-E34	jumpered *
Enable terminating network		jumpered
486 CLK1		jumpered
Enable terminating network		jumpered *
		J
SYSCLK2 always in	E35-E36	jumpered *
Enable terminating network		jumpered
SYSCLK2/2 always out		jumpered
Enable termination network		jumpered *
		→ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
CPU READY always in	E37-E46	jumpered *
· · · · · · · · · · · · · · · · · · ·	/ _ / +	
27128 (16k x 8) ROM	E47-E48	removed, E49-E5Ø removed
27256 (32k x 8) ROM		removed, E49-E50 jumpered *
•		jumpered, E49-E50 jumpered
27Ø1Ø (128k x 8) ROM		jumpered, E49-E50 jumpered
	······································	Truck

Memory Board (figure 201):

The (25-6030) memory boards used are the revision C version of the memory board used in the 5000MC. Revision C provides support for 4meg SIMM modules, but use of the 4meg SIMM module will not be supported on the 4016DX/4020/25/33 LX series. The two 32-bit memory board slots are located at the front of the computer and allow places for two half-length interface boards on the backside of the computer. The front of the memory boards are secured by a bracket that screws into the bottom of the computer (the bracket to secure the secondary memory board is also included in the computer). As with the rest of the $4\emptyset\emptyset\emptyset$ line, 16meg (2 memory boards loaded with 8-1meg SIMMs) will be the maximum supported configuration. 100 nsec SIMM modulea are uaed. There are no jumpers or switches on this board. Supported configurations include:

(continued on next page)

lmeg	Primary memory board stuffed with 4-256k SIMMs
2meg	Primary memory board stuffed with 8-256k SIMMs
4meg	Primary memory board stuffed with 4-1meg SIMMs
	or 2 memory adapters each stuffed with 8-256k SIMMs
8me g	Primary memory adapter stuffed with 8-1meg SIMMs
lØmeg	Primary memory adapter stuffed with 8-lmeg SIMMs
	and secondary adapter stuffed with 8-256k SIMMs
16meg	2 memory adapters each stuffed with 8-1meg SIMMs

Parallel port configuration:

In setup, the parallel port number does not represent the LPT#. This is a brief overview of the parallel port addressing scheme: Reference Technical Bulletin INPO:26 for more information.

Parallel port	I/O Address	IRQ	Description
1	3B8-3BP	7	Mono/parallel board port
2	378-37P	7	Conventional LPT1 port
3	278-27P	5	Conventional LPT2 port

The default parallel port in setup is 2, which denotes LPT1 according to the chart. Xenix 2.3.x does not recognize the ports in the same way. It sees them like this:

Parallel port	Unix/Xenix
1	/dev/1p1
2	/dev/lpØ
3	/dev/lp2

16 Bit VGA Adapter Board (figure 221):

The VGA adapter board is a half-card, 16-bit adapter and is fully IBM PS/2 VGA compatible. It is software compatible with programs written for VGA, MCGA, EGA, CGA, MDA, and Hercules graphics. The different modes may be entered using the VGA.EXE program from the Utilities diskette. Following are the switches and jumpers available:

SW1	1	on * off	for special multi-frequency displays conventional VGA
	2	* on	enables all VGA modes on all monitors - this allows monochrome-mapped text modes to be used on color monitors, and color "shades of grey" modes to be used on monochrome monitors
		off	monochrome-mapped modes are not available on color monitors, and color-mapped modes are not available on monochrome monitors
	3	* off	not used
	4	* on off	16-bit operation with AutoSense enabled 8-bit operation with AutoSense disabled
	W1	* on	jumped always
	W2	* 1-2 2-3	enables 132 column text mode supports all signals on the Video Feature Connector

Note: * denotes default setting

If a secondary adapter is to be added, it must be configured as the second adapter, for only the VGA adapter can be the primary display device. You are allowed only one color and one monochrome adapter in the computer at one time in accordance with IBM PS/2 VGA compatibility (EX. if you add a CGA adapter and a CM-11, you must configure the VGA adapter for monochrome operation). The MODE.EXE command is used to select between the two adapters.

16 Bit Super VGA Adapter Board (figure 298):

The VGA adapter board is a half-card, 16 bit adapter and is fully IBM PS/2 VGA compatible. It supports Super VGA modes with 132 column text and both 800×600 and 1024×768 resolution graphics. It comes with 512K of memory on board, and is capable of supporting both fixed frequency and multi-frequency monitors. Support for the Super VGA modes is accomplished by executing the VGA1024.EXE program from the Utilities diskette. Following are the switches and jumpers available:

SW1	1	on * off	for special multi-frequency displays conventional fixed frequency displays	
	2	* on	enables all VGA modes on all monitors - this allows monochrome-mapped text modes to be use on color monitors, and color "shades of grey" modes to be used on monochrome monitors	
		off	monochrome-mapped modes are not available on color monitors, and color-mapped modes are not available on monochrome monitors	
	3	* off	not used	
	4	* on off	16-bit operation with AutoSense enabled 8-bit operation with AutoSense disabled	
	W1	* on	enables normal operation using AutoSense Jumped always	

Note: * denotes default setting

Sony MP-17W-7ØD 3.5* 1.44 Meg Floppy Drive (figure 141):

The floppy drive is a Sony 3.5 inch unit, the MP-17W-7 \emptyset D, which is the same unit used in the 4000SX. It has a formatted capacity of 1.44 megabytes on an 80 track, double sided, 3.5" diskette. The drive test points are:

Differential read amps:	RFA, RF8
Direction:	CN1Ø1, pin 18
Step:	CN1Ø1, pin 2Ø
Track Ø:	TRKØ
Index:	CN1Ø1, pin 8
Read data:	CN1Ø1, pin 3Ø
Ground:	AGND
Write protect:	WPRT
Motor on:	CN1Ø1, pin 16

The drive is internally terminated, and has only one switch, S1Ø1, used for drive selection. The DSØ position is used for the first drive, and is rearmost on the switch. The second floppy, whether 3.5" or 5.25", is selected as DS1. Upgrade 5.25" floppy drives should be terminated when installed.

Hard Drive:

Several options for hard disk storage exist. Support for AT-style IDE drives is available through connector J8 of the main logic board. Other possible options include optional SCSI, ESDI, ST-506 type (AT-style), and Hard Card hard drives. All hard drive types except the hard cards must be defined in the setup. The possible combinations of hard drives that can co-exist together are SCSI and either ESDI, IDE, or ST-506. Tandy no longer markets conventional AT-style ST-506 type hard drives but they are supported. A secondary IDE drive may be mounted in one of the 5.25" slots by using an adapter available as AXX-7004, 25-4159.

Note: The IDE drives, like the SCSI drives, are already low-level formatted. Do not HSECT these drives!

Further Notes:

- * The PS/2 mouse functions properly under the Tandy version of OS/2 but not with the IBM version of OS/2.
- * The parallel ports are specified differently than previous units, please read parallel port section carefully.
- * SCO version 2.3.2 or greater must be used since it supports VGA; SCO Xenix 2.2.4 does not support VGA video.
- * The network password mentioned in user's manual was not implemented.
- * 25-4069 40M internal tape drive is not supported on these units.

- TANDY COMPUTER PRODUCTS-

This page intentionally left blank.
Tandy 4016SX 25-4901 (figure 239):

The Tandy 4016SX is the replacement for the Tandy 4000SX. It is one of a series of low profile computers. This machine utilizes an 80386SX microprocessor, Chips and Technologies support LSIs, a FDC controller, a 16 bit VGA controller, and an AT-style IDE hard drive interface all on the main logic board. The unit stands only 4.5 inches high. Standard equipment includes:

- * 16 MHz 8Ø386SX CPU.
- Socket for an optional 8Ø387SX coprocessor.
- * 1 Meg. of RAM (four 256Kx9 100nS SIMMs).
- Capable of up to 4 Meg. of RAM on board total.
- * Three 16 bit AT compatible expansion slots.
- * 16 bit VGA graphics adapter built in.
- * One 1.44 Meg. 3.5 inch diskette drive.
- * Expansion slots for one more 3.5" drive and one half height 5.25" drive.
- On board dual speed floppy controller supports 2 drives.
- * On board AT-style IDE hard drive interface.
- * On board serial port.
- * On board parallel printer port.
- Enhanced PS/2 style 101-key keyboard.
- * PS/2 style mouse interface.
- 100 watt power supply.
- * Carriage style chassis for easy subassembly access.

Main Logic Board

The main logic board contains all the circuitry necessary for system operation. System memory is installed on the main logic board. There are four SIMM sockets for this purpose. Using 1 Meg. SIMMs limits system memory to 4 Meg. on board. The actual supported steps are: 1 Meg. (4, 256Kx9), 2 Meg. (2, 1Mx9), and 4 Meg. (4, 1Mx9). Using 16 bit expansion boards the system could be brought up to a maximum of 16 Meg. The video adapter, FDC, keyboard interface, mouse interface, serial port, printer port, AT-style IDE interface, and clock logic are all on this PCB.

Switche	<u>is:</u>	Factory Setting:			
S1-1	Parallel Port Enable	On = enabled	Off = disabled		
S1-2	Parallel Port Address	On = LPT1 = 3BCH	Off = LPT2 = 378H		
S1-3	Serial Port Enable	On = enabled	Off = disabled		
S1-4	Serial Port Address	On = COM1	Off = COM2		
\$1-5	Parallel Port Bidirectional	On = no	Off = yes		
S1-6	FDC Address	On = primary	Off = secondary		
S1-7	IDE Enable	On = enabled	Off = disabled		
S1-8	IDE Port Address	On = primary	Off = secondary		

Jumpers:

E1,2,3,4,5,6	BIOS ROM SIZE	E2-E3 and E5-E6, 27C128 (2) E1-E2 and E5-E6, 27C256 (2) (default) E1-E2 and E4-E5, 27C512 (2)
E7,8,9	Color/Monochrome	E7-E8 Color (default) E8-E9 Monochrome
E14,16,18	Serial Port Int.**	E14-E16 COM1 IRQ4 (default) E16-E18 COM2 IRQ3
E19,2Ø,21	Parallel Port Int.	E2Ø-E21 LPT1 IRQ7 (default) E19-E2Ø LPT2 IRQ5
E25,26,27	On Board Video Int.*	E25-E26 disabled (default) E26-E27 enabled
E3Ø,31,32	Coprocessor	E3Ø-E31 installed E31-E32 not installed (default)
E33,34,35	On Board Video Enable	E33-E34 enabled (default) E34-E35 disabled

* NOTE: The video interrupt should normally be disabled when using the on board video capability. This is IRQ9 which has been software mapped to IRQ2 per the AT standard.

** NOTE: The silk screened legends on Rev. B1 PCBs for these jumpers are WRONG. Those listed here and in the users manual are correct.

FLOPPY DRIVES (figure 141):

The floppy drive is a Sony MP-17W-7 \emptyset D. This is the same 3.5 inch, 1.44 Meg. drive found in the 4 $\emptyset\emptyset\emptyset$ SX, 4 $\emptyset2\emptyset$ LX, and 4 $\emptyset25$ LX. Here are the drive's test points:

Differential read amps:	RFA, RFB
Step:	CN1Ø1, pin 2Ø
Track Ø:	ŤRKØ
Index:	CN1Ø1, pin 8
Raw data:	CN1Ø1, pin 8
Ground:	AGND
Write protect:	WPRT

The drive is internally terminated. There is a single drive select switch on the side. Drive A: should be set for DSØ, a second drive (B:) DS1, etc. If a 5.25" drive is added it should be terminated.

Hard drives:

There are several hard drive options available for the 4016SX. Hard Cards are NOT supported. SCSI, ST-506, ESDI, and AT-style IDE drives will work with the unit. The physical size of the hard drive can be a limitation. Two types of hard drives can be mounted. The 5.25" drive bay or the 3.5" bays can be used. When using the 5.25" mount, a standard half height hard drive is allowed. When using a 3.5" drive in the 3.5" bays, use 1" tall hard drives. Remember, SCSI and IDE drives are already low level formatted. Do not run HSECT on these drives.

The Utility Diskette

The 4016SX has its own utilities diskette similar to that used by the 4020LX and 4025LX. TEMMS16.EXE is the expanded memory manager driver included with this unit. TEMMS16.EXE allows you to use up to 4 Meg. of RAM as LIM 4.0 expanded memory. Be careful, however, when setting up the TEMMS16 parameters "I" and "M". The "I" parameter identifies the port address used by TEMMS16. It should not be set to an address currently used by an adapter card. The "M" parameter sets the frame address in memory. Do not set the frame address such that it would overlap memory used on adapter cards (like a SCSI controller).

Service Notes:

The expansion backplane can be removed by removing two screws holding the backplane bracket to the chassis. One of these screws is at the rear, just above the keyboard connector. The other screw is at the front of the chassis.

There is no -5 Volts circuit on the main logic board. The -5 Volts is derived from the -12 Volts with the help of a -5 Volt regulator mounted on the expansion backplane. This means that a 2400 Baud modem plugged directly into the main logic board would not work (no -5V). The modem would have to be inserted into the expansion backplane (which has -5V).

When reassembling the unit, watch your cable dress! The carriage could easily crimp cables or trap unused connectors against the main logic (warping it).

When closing the carriage KEEP YOUR FINGERS OUT OF THE WAY. As the drive carriage moves into its resting place, the end closest to the expansion backplane passes by the front grill with a shearing action. The edges are SHARP! Later models will have dulled edges, but still be careful.

.

INTRODUCTION:

The 4020SX utilizes an 80386SX 32-bit microprocessor running at 20Mhz. The computer comes with 2MB of RAM (25-4902) or . MB of RAM (25-4903), both expandable to 5MB on the main logic board. One Megabyte of this RAM is soldered to the main logic board, the other Megabyte is installed on four 256K 80ns SIMM sockets. The video circuit is one of the biggest advantages of this computer. Contained on the main logic board is 256K of video RAM, that can be expanded to 512K. This extra RAM for the video circuit allows the use of multi-frequency monitors and additional VGA graphic modes. The 4020SX comes standard with:

- * 20Mhz 80386SX CPU
- * Socket for optional 80387SX co-processor
- * BIOS ROM version Ø1.10.00
- * 2MB of RAM expandable up to 5MB on the main logic board using 1MB 80ns SIMMs
- * On-board VGA compatible video circuitry
- * Sockets for optional 256K video RAM upgrade (MX-375Ø)
- * 101-key enhanced PS/2 style keyboard
- * Three 16-bit expansion slots
- * Three drive bays: Two 3.5 inch and One 5.25 inch
- * On-board high-density diskette drive controller
- * One 1.44MB 3.5 inch Panasonic JU-257A213P floppy drive
- * 16-bit SmartDrive connector
- * PS/2 compatible mouse port
- * One on-board serial port
- * One on-board parallel port
- * 100-Watt power supply

Tandy 4020SX Main Logic Board 25-4902/4903 (figure 269):

NOTES:

The setup for the 4020SX is run from the "SETUPS20.COM" program which lies on the 4020SX utilities disk.

MEMORY CONFIGURATIONS:

1MB of RAM soldered on the main logic board.

TOTAL	NUMBER	TYPE OF	BANKS	SOCKETS		
MEMORY	OF SIMMS	SIMMS	USED	USED	_	
2MB	4	256KB 8Øns	2,3	J4,J8,J9,J1Ø	Factory	Configuration
3MB	2	1MB 8Øns	2	J9,J1Ø		
5MB	4	1MB 8Øns	2,3	J4,J8,J9,J1Ø		

(continued on next page)

JUMPER SETTINGS: BIOS ROM Jumpers E1-E2-E3 and E4-E5-E6 * El and E2 - 32Kx8 ROMs E2 and E3 - Reserved E4 and E5 - Reserved * E5 and E6 - 32Kx8 ROMs Video Mode Jumpers E7-E8-E9 * E7 and E8 - Color E8 and E9 - Monochrome Parallel Port Interrupt Jumpers E13-E14-E15 E13 and E14 - IRQ 5 * E14 and E15 - IRQ 7 Serial Port Interrupt Jumpers E16-E17-E18 * E16 and E17 - IRQ 4 (COM1) E17 and E18 - IRQ 3 (COM2) Multiple Frequency Monitor Jumpers E25-E26-E27 E25 and E26 - Non-Standard Multiple Frequency Monitor * E26 and E27 - VGA Analog or Standard Multiple Frequency Monitor Video Interrupt Jumpers (IRQ 9) E22-E23-E24 * E22 and E23 - Disabled E23 and E24 - Enabled Video Enable Jumpers E19-E2Ø-E21 * E19 and E2Ø - Enabled E2Ø and E21 - Disabled Serial Port ID Jumpers E28-E29-E3Ø E28 and E29 - Serial Port Enabled as COM3 or COM4 * E29 and E3Ø - Serial Port Enabled as COM1 or COM2 Power Switch LED Jumpers ElØ-El1-El2 Elø and Ell - Ties Power Switch LED to IDE Port Drive Active Signal * Ell and El2 - Ties Power Switch LED to 5V (Turns ON at Power Up) * = Indicates Factory Settings

DIP SWITCH SETTINGS:

SWITCH	FUNCTION		POSITION
1	Parallel Port Enable	*	ON - Enable OFF - Disable
2	Parallel Port Address	*	ON - 378-37F hex (LPT1) OFF - 278-27F hex (LPT2)
3	Serial Port Enable	*	ON - Enable OFF - Disable
4	Serial Port Address For COM1 or COM2	*	ON - 3F8-3FF hex (COM1) OFF - 2P8-2FF hex (COM2)
4	Serial Port Address For COM3 or COM4	**	ON - 3E8-3EF hex (COM3) OFF - 2E8-2EF hex (COM4)
5	Extended Parallel Port (Bidirectional)	*	ON - Disable OFF - Enable
6	Diskette Drive Port Address	*	ON - 3FØ-3F7 hex (Primary) OFF - 37Ø-377 hex (Secondary)
7	Smartdrive Port Enable	*	ON - Enable OFF - Disable
8	Smartdrive Port Address	*	ON - (Primary) 1FØ-1F7 for CSØ 3F6-3F7 for CS1
			OFF - (Secondary) 17Ø-177 for CSØ 376-377 for CS1

* = Indicates Factory Setting
** = See Serial Port ID Jumper Setting

Panasonic JU-257A213P 3 1/2" 1.44 Meg Floppy Disk Drive (figure 219):

SW1 (RY/DC) : Ready/Disk Change. Default is "DC".
SW2 (MO/MS) : Motor ON/Motor ON Drive Select(MS). Default is "MO".
SW3 (0123) : Drive select. Default is "Ø".
SW4 (BCD) : Selects head assembly rank. This switch is used to match the logic board to the head. Set to letter marked on head assembly.
SW5 (PS2/AT) : Selects either PS2 polarity or AT polarity. Default is "PS2".
Power is supplied by the I/O cable.

TECHNICIAN S	
	TANDY COMPUTER PRODUCTS
Tandy 5000MC Ma E1-E2	in logic board (figure 208): off (Normal configuration). This jumper is used to clear the CMOS RAM. Short E1-E2 with the power off to clear the memory, and replace the supplied jumper on the single pin it was stored on.
E3-E4	off (Normal configuration). Routes RTCINT to data bus when on.
E5-E6-E7-E8	no jumpers installed (Normal configuration). Changes operation of FDC port.
RAM Specificati	ons
Organization 256K x 9 SIMM 1M x 9 SIMM	Access Time 100 nS 100 nS
Memory configur	ations:
2 MEG:	SW1, position 4 on, all others off. SW2, positions 1, 4, 8 on, all others off. Jumpers installed on E9-E1Ø, E11-E12, E14-E15, E16-E17.
4 MEG:	SW1, positions 3, 4 on, all others off. SW2, positions 4, 8 on, all others off. Jumpers installed on E9-E10, E11-E12, E14-E15, E16-E17.
8 MEG:	SW1, positions 4, 6 on, all others off. SW2, positions 1, 4 on, all others off. Jumpers installed on E9-E11, E10-E12, E14-E16, E15-E17.
16 MEG:	SW1, positions 3, 4, 6 on, all others off. SW2, position 4 on, all others off. Jumpers installed on E9-E10, E11-E12, E14-E15, E16-E17.

Tandy 5000MC CPU board (figure 209):

There are no switches or jumpers on this board.

First and Second Tandy 5000MC Memory board (figure 201):

There are no switches or jumpers on this board. The board must be fully populated with SIMMs, all of one type (either 256k by 9 bit or 1 MEG by 9 bit page mode 100 ns SIMMS).

Permitted memory configurations in the Tandy 5000MC are:

2 MEG: one memory adapter with 8 100 ns 256k SIMMS
4 MEG: two memory adapters, each filled with 8 100 ns 256k SIMMS
8 MEG: one memory adapter with 8 100 ns 1 MEG SIMMS
16 MEG: two memory adapters, each filled with 8 100 ns 1 MEG SIMMS

The only difference between the first and second memory board in the Tandy 5000MC is the mounting bracket. The first board uses a mounting bracket secured with a screw concealed underneath the rear case bezel; the second board uses a microchannel bracket.

This page intentionally left blank.

.

.

WP-2 Portable Word Processor 26-393Ø (figure 22Ø):

Jumpers: There are no jumpers on this unit.

Notes: The unit comes standard with 256K of ROM and 32K of battery backed up RAM.

The internal RAM can be expanded to 64K by adding a 32R RAM chip (26-3932) to a socket inside the unit. Note: some of this RAM may be used by the system. See the text below for further details.

A 32K memory card may be added (26-3931) by inserting it into the expansion card slot on the side. The additional RAM will act as a diskette or a cassette tape to store files. See the text below for further details.

WP2 32K RAM Upgrade 26-3932 (figure 220):

There are no jumper changes required when installing the memory chip into the WP2. The memory chip is an M5M5256BP-10L, 28 pin IC and will be inserted into a 32 pin socket on the logic board. See figure 220 for proper installation. Once the memory chip is installed, it is necessary to 'format' it. To do this, you must be within an active document and not in the opening screen. Once in an active document, press $\langle F2 \rangle \langle = \rangle$ to enter the files menu. Select "RAM DISK" from the menu with the arrow keys. Press $\langle F1 \rangle \langle F2 \rangle$ and a warning message of "Are you sure (Yes/No)" will appear. Press $\langle Y2 \rangle$ and the message "Now formatting" will appear for a few seconds. After the format is completed, the RAM DISK is ready for use. Note: the RAM DISR is treated as a separate block of memory and does not expand the main memory.

WP2 32K Memory Card 26-3931 (figure 22Ø):

There are no jumper changes required when using this device. This is a credit card sized device that will store an additional 32K of data for the WP2. The Memory Card is a non-volatile memory device and will store the information even when removed from the WP2. A backup battery holds the information in the Memory Card when not powered up or installed. To install the Memory Card simply slide it into the slot on the left hand side of the WP2. When the Memory Card is installed for the first time, it is necessary to 'format' it. To do this, you must be within an active document and not in the opening screen. Once in an active document, press $\langle F2 \rangle \langle = \rangle$ to enter the files menu. Select "MEMORY CARD" from the menu with the arrow keys. Press $\langle F1 \rangle \langle F \rangle$, a warning message of "Are you sure (Yes/No)" will appear. Press $\langle Y \rangle$, the message "Now formatting" will appear for a few seconds. After the format is completed, the MEMORY CARD is ready for use. Note: the MEMORY CARD is treated as a separate block of memory and does not expand the main memory.

.

 Tandy WP-100 26-3950 (figure 229):

The Tandy WP-100 Portable Word Processor is based on the HD64180 CPU, which is an 8-bit CPU with an integrated Memory Management Unit capable of addressing 1 Meg of physical memory space. It comes in one standard configuration as shown below: currently there are no upgrade options known:

.HD6418Ø CPU.
.32K of Text/Display SRAM plus 8K of Back-up Memory SRAM
.Word Processing Software in Main ROM
.A 5Ø,ØØØ word spelling dictionary in a second ROM
.A beeper to indicate spell check errors, and other warnings
.An 8Ø character x 8 row LCD display.
.7Ø key Matsushita membrane keyboard with 3Ø character buffer
.1 1ØØK character 2.8" internal disk drive, 1ØØ-512 byte sectors per side in one spiral track in MFM format.

The WP-100 is AC powered, but has a non-rechargeable Lithium battery rated at 3 VDC to hold data in a user dictionary word list. All other contents or margin setting/mode changes made while power is on will be lost when power is turned off.

Main Logic Board Jumpers and Switchea

The Tandy WP-100 has no switches on any of the logic boards. As noted in Figure 229, there are 6 soldered wire jumpers in place on the Control PCB, and open positions for 3 others not installed. The functions of the wired jumpers that are installed are shown below:

JP3Ø1	Memory Size Select
JP3Ø2	Gnd to CN3Ø6.14, to the LCD
JP3Ø3	Enable DMA Reg
JP3Ø4	Not installed
JP3Ø5	Main ROM Size Select
JP3Ø6	Main ROM Output Enable
JP3Ø7	Not installed
JP3Ø8	Not installed
JP3Ø9	Back-up SRAM Chip Enable

There are no known options that would require changing any of these jumper settings.

2.8" Quick Disk Drive (figure 263):

The 2.8" Quick Disk Drive uses a single track spiral disk (26-3951). Unlike the disks ordinarily used with computers, the single track spiral disk is not formatted with a number of concentric circular tracks. Instead, the surface of the disk is magnetically inscribed with a single track that spirals inward toward the center, much like the track on a phonograph record. There are no test points or jumpers with this drive.

.

- TANDY COMPUTER PRODUCTS-

*****	**:	**:	**:	**	**:	**:	**:	***	*****
*									*
*									*
*	3	S	E	R	V	Е	R	3	*
*									*
*									*
*****	***	**:	**:	**:	**:	***	***	***	****

26-555Ø 3SERVER3 9Ø-166Ø 3S2ØØ SERVER 9Ø-1661 3S2Ø1 SERVER 9Ø-1662 3S2Ø2 SERVER

POWER ON SEQUENCE:

When powered on, the 3Server3 automatically runs a brief initialization procedure and then goes on to run the unit self test, which takes about $6\emptyset$ seconds.

When powered on for normal operation with application software on its disk, the server signals the end of the entire boot sequence by displaying the current date and time on the LCD.

When powered on for maintenance at thumbwheel setting 4, the server displays its network address when it completes the self test.

MAIN UNIT/CONTROL PANEL (figure 301):

The THUMBWHEEL SWITCH settings determine the 3Server3's startup and operating status.

The OPERATE/TEST toggle switch should be in the OPERATE position for all normal operations. When in the OPERATE position, this switch disables the STROBE and RESET buttons. The TEST position is used to enable the RESET button, which is done when installing software, performing routine maintenance, or running diagnostic tests.

The RESET button resets the 3Server3 when the OPERATE/TEST toggle is set to TEST. Do not press the RESET button (or power off the server) during the CMOS RAM diagnostic test that runs at startup time.

The STROBE Button is for service and diagnostic purposes only.

THUMBWHEEL SWITCH SETTINGS:

Setting	State	Console
ø	Normal operation	None; printer or modem on Serial 1 port
1	Normal operation	Local console on Serial 1 port (output)
2	Factory use	
3	Installation/Maint.	Local MS-DOS console on Serial 1 port
4	Installation/Maint.	Network MS-DOS Ethernet console
5	Factory use	
6	Installation/Maint.	Network MS-DOS Apple Talk console
7	Factory use	

(continued on next page)

Proprietary Information Tandy® Corporation

8	Installation/Maint. Network MS	-DOS Token	Ring console
9	Factory use		_
1Ø	Front panel test	None	
11	Extended unit self-test	π	
12	Diagnostic use; TDR test	5	
13	Extended unit self-test	π	
14	Special services	5	
15	Factory use; internal ROM debugge	er "	

NOTE: Extended unit self-test requires external loopback on serial port, Ethernet port, and Apple Talk port. Setting 11 does not stop on errors.

MAIN LOGIC CONNECTORS/JUMPERS (figure 302):

P1,	Ethernet BNC Connector	J8, External Tape Drive Connector
P2,	Parallel Connector	J9, Internal Tape Drive Connector
P3,	Serial Connector	J11, Internal Disk Drive Connector
J1,	RAM Expansion Connector	J12, Power Connector (Not used)
J2,	Expansion Option Connector	J16, Optional DIX Interface Connector
J5,	LCD Connector	J19, Led Connector
J6,	Apple Bus Connector	J20, DIX/BNC Jumper
	External Disk Drive Connector	
7	APRA MAAT NA Jumpar	

Jumpers:	WØØ7	No Jumper
	WØØ8	No Jumper
	WØØ9	No Jumper
	DIX/BNC	BNC Jumpered

NOTE: When replacing the main logic board, be aure to remove the original Ethernet address ROM located at U19 and install it into the new replacement board.

Hard Disk Controller Board Connectors/Jumpers (figure 3Ø3):

JØ	(2Ø pins)	Data cable to disk drive Ø
J1	(20 pins)	Data cable to disk drive 1 (if present)
J2	(34 pins)	Control cable to disk drive(s)
J3	(4 pins)	DC power to controller board
J4	(50 pins)	SCSI bus to Main Logic board
J5		No Jumpers (SCSI ID=Ø)

PU-R-S-T PU-R Jumpered No others jumpered.

Hard Disk Drive Controller: RP3 and RP4 are to be installed only if the controller is the last device on the SCSI cable.

Hard Diak Drive Board (figure 304):

Disk Drive (Priam V-185) J6, pin-pair 1 jumpered = drive select 1 for a single hard drive. J6, pin-pair 2 jumpered = drive select 2 for a second of two hard drives.

RP1 is the terminator. It should be installed in the last drive of the cable.

Tape Drive Controller Board Connectora/Jumpera (figure 305):

J1 (50 pins) Interface cable to tape drive
J2 (4 pins) DC power to controller board
J3 (50 pins) SCSI bus to Main Logic board
J6 Jumpered (SCSI ID=7)
J7 Jumpered (SCSI ID=7)
J8 Jumpered (SCSI ID=7)
J9 Jumpered
J10 No Jumper

Tape Drive Controller: RN1, RN2, and RN3 are to be installed only if the controller is the last device on the SCSI cable.

Tape Drive (Wangtek 5099EN24) (figure 306):

El Jumpered HDR 2,6 Jumpered TNG Jumpered IHC Jumpered HDR3 3,11 Jumpered 7,15 Jumpered

NOTE: All others are not jumpered.

SCSI ID JUMPERS

The jumper for the base unit's internal diak should be set at SCSI ID \emptyset . Expansion disk SCSI ID jumpers should be set at unique numbers in the range of 1 to 6.

The jumper for the tape drive controller abould be set at SCSI ID 7.

-- 3SERVER3.4 --

,

.

.

****	***	**	**:	**	**:	řή:	**	**	**	***	*****
*											*
*											*
*	3	S	Ε	R	v	Ε	R	3	8	6	*
*											*
*											×
****	***	**	**:	***	**	**:	**:	**:	**:	***	*****

26-5552 3S/4Ø1 386 SERVER 3SERVER386 Control Panel (figure 3Ø7):

POWER ON SEQUENCE

When powered on, the 3Server386 automatically runs a brief initialization procedure and then goes on to run the unit self-test, which takes about $6\emptyset$ seconds. If the 3Server386 encounters any error, the test stops and an error message appears on the LCD.

When powered on for normal operation with application software on its disk, the server signals the end of the entire boot sequence by displaying its name and the current date and time on the LCD. The server is then ready for operation.

When powered on for maintenance BOOT switch setting 1 or 2, the server displays its network address when it completes the self-test.

CONTROL PANEL SWITCHES/BUTTONS

The RESET button restarts the 3Server386 when the MODE switch is set for maintenance or diagnostics, as if the power had just been turned on.

The MODE switch selects 3Server386 operation and test conditions. Maintenance mode allows you to run utility programs, when you want only DOS to be active. Diagnostics mode allows you to test various components of the 3Server386. Server mode is used for normal operation.

The BOOT switch settings, together with the MODE setting determine how the 3Server386 operates. These settings range from normal operation, which handles everyday use and installation needs, to maintenance and service settings, which enable server-based utility programs and various self-tests to operate.

The CONT button is used to display a second message on the LCD when the first message ends in a plus sign (+). It is also used in extended self-tests and other diagnostic operations.

The ATTN button is reserved. DO NOT USE THIS BUTTON during system power up, normal operation, maintenance, or diagnostics unless specifically directed to do so. Indiscriminate use of this button can cause the system to halt and lock up, or damage to the contents of CMOS RAM.

(continued on next page)

-- 3SERVER386.2 --

BOOT SWITCH SETTINGS:

Setting	Server State							
	(MODE = MAINTENANCE)	(MODE=DIAGNOSTICS)						
*Ø	Local boot	Front panel test						
1.	Ethernet boot	All diagnostics						
2	Token ring boot	Reserved						
3	Reserved	Serial port external loopback						
		test (asynchronous)						
4		Ethernet external loopback test						
5		Parallel port extended test						
6		Reserved						
7		Extended memory setup						
8		RS-232C synchronous port external						
		loopback test (not implemented)						
9		Service use; view/clear error log						
1Ø		Reserved						
11		Reserved						
12		Service use; CMOS test						
13		Reserved						
14		Reserved						
15		Continuous POST						

* denotes normal server operation

NOTE: When the MODE switch is in the server position (left), the BOOT switch has no effect.

INTERNAL CABLING

Hard Drive to Controller:

The 2Ø-pin ribbon cable must be plugged into the rightmost connector on the disk controller board (labeled J3). Also, the darker striped edge of the cable must be matched with the side of the connector that is labeled "1". The 34-pin ribbon cable can be plugged to only one connector so, unless it is twisted, it is unlikely to present a connection problem. The hard drive must have the terminator installed.

SCSI Connector to DISK Controller:

The 50-pin SCSI cable is attached to the disk controller board. Make sure the colored edge of the ribbon cable connects to pin 1 of position $J\emptyset$ on the disk controller board. The disk controller must have terminators installed.

SCSI Connector to TAPE drive:

The 50-pin SCSI cable is plugged into the connector on the back of the tape drive. Make sure the colored edge of the ribbon cable connects to pin 1 of the SCSI connector.

Main Logic Board Jumpers/Connectors (figure 308):

NOTE: When replacing the main logic board, be sure to remove the original Ethernet address ROM located at U378 and install it into the new replacement board.

JP2ØØ *Not Jumpered = Server configuration
 Jumpered = Workstation configuration, allows for keyboard and
 monitor attachment

- JP2Ø1 *Not Jumpered = External transceiver Jumpered = Internal transceiver
- JP202 Serves as a spare jumper holder only

JP275 *Jumpered = Connects chassis to logic ground

JP526 1.8 pin pair jumpered (This is the pin pair closest to the expansion bus) = SCC (8530) interrupt to IRQ15

JP600 No jumpers are installed on JP600. The functions of the jumpers are:

 A - Reserved
 B - Jumpered allows diagnostic test loop Not jumpered = no test loop
 C - Not jumpered = LCD display Jumpered = monitor display
 D - Jumpered = disabling of keylock Not jumpered = bypassing of keylock

* denotes standard server configuration

MAIN LOGIC CONNECTORS:

J1, J2, J3, J4 AT Type Expansion Connectors J5Ø Internal SCSI Connector J51 External SCSI Connector J58 ASYNC Serial/Parallel Connector J57 Apple Talk Connector J55 Serial A, Serial B Connectors (Sync) J6Ø Service Only, Enhanced Keyboard Connector J200 LCD Panel Connector J25Ø BNC Ethernet Connector J225 **DIX Connector** J275 Power Connector J276 Power Connector (Not Used) J500, J501 Memory Expansion Connectors

Drive Controller Board (figure 309):

CD and MN pin pairs jumpered. CD and MN set the Drive to SCSI ID=2

Hard Drive (figure 31Ø):

Drive Select 1 jumpered on rear of drive. (This is the first set of jumpers from the left).

Tape Drive Unit Jumpers (figure 311):

The 4th jumper from the power connector enables parity and is the only jumper installed.

SCSI ID JUMPERS

The jumper for the base unit's internal disk should be set at SCSI ID 2. Expansion disk SCSI ID jumpers should be set at unique numbers in the range of 3 to 6.

The jumpers for the tape drive (SELØ, SEL1 & SEL2) should be set at SCSI ID Ø (no jumpers installed), whether the tape is installed in the 3Server386 or in the Expansion Unit.

If the 3Server386 has a maximum configuration of six disk drives, the jumper for the last physical expansion drive attached to the system should be set at SCSI ID 1. .

- TANDY COMPUTER PRODUCTS -

This page intentionally left blank.

.

******	*****	**	**:	**:	**	***	***	**	**	**	**	***	******
*													t
*													÷
*	F	L	0	P	P	Y	D	R	I	v	Е	S	t
*													÷
*													÷
******	*****	***	**:	**:	**:	***	***	**	**	**	**:	***	******

Shugart SA800 8* (Discrete and LSI. Figures 32, 33, and 34): Push On --- A, B, C, DC, DS, DS1, T1, T2, Z, 800 L (Present on discrete boards only, jumpered vertically) Wire Wrap - FROM TO J1-4 T6 (On row furthest from conn.) J1-6 Т5 J1-8 Ħ T4 J1-1Ø Т3 Wire wrap jumpers are used only with early (AXX-Ø5Ø5) style FDC board. CDC 8* (Diacrete figure 35): Remove pin 14 of the resistor pak. Dip Switch 1 (8 position): Positions 1-4 Drive select (only one on) Position 5 Ready (always on) Positions 6-8 Spares (always off) Dip Switch 3 (7 position): Positions 1-3 Off Position 4 On Positions 5-7 Off SW3 may not be installed. If not, position 4 should have a jumper wire. CDC 8* (LSI figure 36): Remove pin 9 of the resistor pak. Drive Select 8 pin dipshunt numbered 1-4 on the PCB but Radio Shack numbers their drives \emptyset -3. Short only the jumper for the desired drive. **TPI 8* (figure 37):** Drive Ø Only: T1, T8 (these should be installed with early style FDC and removed with the late style FDC board.) On Rev. B and later boards, install a wire jumper across the pads of 1S, SYS4, SYS5, and SYS6. This will allow for proper termination when either a terminator or an expansion bay is used. Drive 1 Only: T3, T4, T5, T6, T7, and T8 All Drives : E1-E2 E3-E4 DSx (x = appropriate drive select number)

- TANOY COMPUTER PRODUCTS-

Tandon in Model 16's (figure 3Ø):

M1 Enables 20 second wait before the motor shuts off M3 Starts the spindle motor on drive select There should be one DSx jumper located just above the stepper motor. Drive 0 would be jumpered DS1 and drive 3 would be jumpered DS4. There should be <u>NO M2 jumper installed</u>. If M2 is installed, the motor will run continuously, which would conflict with the design of the system.

In Model 16's one and only one internal drive should have a resistor pack installed in RP1 with pins 1,2,4,6,7,8 and the pins across from them removed. The resistor pack should be installed in the drive furthest from the FDC board in the computer. This terminates the head load and side select lines.

The dip shunt labeled U3 or HLL should have the connection between pins 2 and 15 broken or have one of those pins removed from the IC socket. This enables the stepper motor at all times.

Tandon in Model 12's (figure 3Ø):

M1 Enables 20 second wait before the motor shuts off M3 Starts the spindle motor on drive select There should be one DSx jumper located just above the stepper motor. Drive 0 would be jumpered DS1 and drive 3 would be jumpered DS4. There should be <u>NO M2 jumper installed</u>. If M2 is installed, the motor will run continuously, which would conflict with the design of the system.

In Model 12's one and only one internal drive should have a resistor pack installed in RP1 with all the pins plugged into the socket. The resistor pack should be installed in the drive furthest from the FDC board on the drive cable, usually drive \emptyset .

The dip shunt labeled U3 or HLL should have the connection between pins 2 and 15 broken or have one of those pins removed from the IC socket. This enables the stepper motor at all times.

Tandon in Expansion Bays (figure 3Ø):
M1 Enables 2Ø second wait before the motor shuts off
M3 Starts the spindle motor on drive select
There should be one DSx jumper located just above the stepper motor.
Drive Ø would be jumpered DS1 and drive 3 would be jumpered DS4.
There should be <u>NO M2 jumper installed</u>. If M2 is installed, the motor will run continuously, which would conflict with the design of the system.

(continued on next page)

In expansion bays one and only one drive in the bay should have a resistor pack installed in RPl with pins 1 and/or 16 removed. The resistor pack should be installed in the drive furthest from the FDC board on the drive cable. This leaves the head load signal unterminated.

The dip shunt labeled U3 or HLL should have the connection between pins 2 and 15 broken or have one of those pins removed from the IC socket. This enables the stepper motor at all times.

Tandon TM848-2E Direct Drive Logic Board (figure 41): DSx Drive Select (DS1 = Drive \emptyset) DC Disk Change signal available Two-Sided diskette signal available 2S TR True Ready XC External Write current switch MOH Motor control signals are active high M3 Motor control using Drive Select M1 Enables 5 second motor off delay DM Enables diagnostics mode

NOTE: The MOH jumper may vary from machine to machine. This jumper will either be on or off. For example; with the jumper on: if after the drive has been selected the motor never turns off the jumper should be removed.

In Model 16s one and only one internal drive should have a resistor pack installed in RP1 with pins 1,2,4,6,7,8 and the pins across from them removed. The resistor pack should be installed in the drive furthest from the FDC board in the computer. This terminates the head load and side select lines.

In Model 12s one and only one internal drive should have a resistor pack installed in RP1 with all the pins plugged into the socket. The resistor pack should be installed in the drive furthest from the FDC board on the drive cable, usually drive \emptyset .

TEAC FD-54B Drive Logic Board (figure 43): IU Selects active in use signal DSx Drive Select, $x = \emptyset-3$ (DS \emptyset = Drive A, DS1 = Drive B) Termination (RA1) will be on all drives.

TEAC FD-55BV Drive Logic Board (figure 107): DSx Drive Select x = 0-3 (DS0 = Drive A, DS1 = Drive B) Termination (RA1) will be on all drives.

Tandon TM100-2 Drive Logic Board (figure 47): Dip Shunt (1E) All broken except 3-14 drive select 1 Terminating resistor pak should be installed at location 2F

The following are jumper wires not plugs.

- W1 Selects double sided drive
- W2 Disables set/preset on write flip-flop
- W4 Enables write protect control
- W6 Activity LED is controlled with drive select signal
- W8 Allows drive to be selected via J1 pin 6

Tandon TM65-2L Floppy Drive Logic Board (figure 9B):

This drive is used only in the dual floppy version of the Tandy 1200. DS1 Both floppy drives in system have DS1 as the cable selects the drive. J34 B-C Spindle motor controlled by drive select

Mitsubishi M4853, Mark I (figure 40):

3, 4, 5, 6, 7, 8, and 9 are for termination and should only be installed on the last drive on the cable.

DSx Drive Select $(x = \emptyset - 3)$

- HC Causes a constant head load condition
- MM Causes motor on when drive is selected
- H1 Routes ready signal R3 to the head load circuitry
- R3 Establishes a ready signal when a diskette is inserted in the drive and the door is closed.

Mitsubisbi M4B53-1, Mark II (figure 5Ø):

HC Selects constant head load after door closed

- 2S Selects constant drive ready
- MM Selects active low motor on
- DSx Drive select $(x = \emptyset 3)$

The terminating resistor pak should be installed at location B6 on the last drive on the cable.

Mitsubishi M4851 36ØK Drive Logic Board (figure 96):

DS1 Both floppy drives in system use DS1 as the cable selects the drive
HC Causes head load with door closed
DC Resets status on falling edge of step pulse
MM Selects active low motor on
The terminating resistor pak should be installed in the last drive on the cable.

Mitsubisbi MF5Ø1A 36ØK Drive Logic Board (figure 1ØB):

DS1 Both floppy drives in system use DS1 as the cable selects the drive MM Spindle motor power controlled by 'MOTOR ON' signal The terminating resistor pak should be installed in the last drive on the cable.

Mitsubishi M4854-347 1.2 MEG Drive Logic Board (figure 97): DS1 Both floppy drives in system use DS1 as the cable selects the drive TD Termination select HC Selects constant head load UD Disables head unload delay DC Selects active low diskette change MM Spindle motor power controlled by 'MOTOR ON' signal RR Output selected by 'DRIVE SELECT' signal SB Selects 36Ø RPM for both high and low density modes 11H LED will light with the 'DRIVE SELECT' signal The terminating resistor pak should be installed in the last drive on the cable. Mitsuhishi MP5Ø4A 1.2 MEG Drive Logic Board (figure 1Ø9): DS1 Both floppy drives in system use DS1 as the cable selects the drive TD Connect drive select terminator DC Diskette Change, activates signal when drive latch opened MM Spindle motor power controlled by 'MOTOR ON' signal RR Output selected by 'DRIVE SELECT' signal Selects 360 rpm for both high and low density modes SB The terminating resistor pak should be installed in the last drive on the cable. Teac FD-35-FN 3 1/2 inch 72ØK Floppy Drive (figure 132): DSx Drive Select, $x = \emptyset - 3$ (DS \emptyset = Drive A, DS1 = Drive B) MO Enables use of motor on signal FG Connects frame ground to logic OV Termination is internal to the drive. Sony MP-F73W-Ø1D 3 1/2 inch 1.44 Meg Floppy Drive (figure 141): DS1 ALL Drives Slide Switch on back right corner set to second closest position to the rear of the drive. Termination is internal to the drive. Teac FD55BV-221 5 1/4 inch 36ØK Floppy Drive (figure 142): DSx Drive Select, $x = \emptyset - 3$ (DS \emptyset = Drive A, DS1 = Drive B) Termination is internal to the drive.

- TANDY COMPUTER PRODUCTS-

Teac FD55BR-521 5 1/4 inch 36 \emptyset K Floppy Drive (figure 143): DSx Drive Select, x = \emptyset -3 (DS \emptyset = Drive A, DS1 = Drive B) Termination is internal to the drive.

Proprietary Information Tandy® Corporation -- Floppy Drive.6 --

Sony MP-F63-Ø1D 3 1/2 inch 72ØK Floppy Drive (figure 144): DSØ Drive A Slide switch all way to rear of drive DS1 Drive B Slide switch second notch from rear of drive Termination is internal to the drive. Mitsubishi MF504B 5 1/4 inch 1.2 MEG Drive Logic Board (figure 154): DSØ Used in non-standard setups when cable is straight (no twists) where two 5 1/4" floppy drives are used. The second drive would be DS1. DS1 Both floppy drives in system use DS1 if the cable has a twist between the drive connectors TD Connect drive select terminator. DC Diskette change. IR LED lit when drive selected (Jumper IU must be off). MM Spindle motor power controlled by 'MOTOR ON' signal. RI Index pulse is issued only when spindle completes one rotation. SB Selects 36Ørpm for both high and low density modes. The terminating resistor pack should be installed in the last drive on the cable. Teac FD-55BR121 5 1/4 inch 360K Floppy Drive (figure 211): Dх Drive Select, $x = \emptyset - 3$ (D \emptyset = Drive A, D1 = Drive B) NOTE: Figure 211 shows DØ selected. Termination is internal to the drive. FG Jumped Frame Ground IU Jumped In Use All other jumpers should be off. Sony MP-F17W-71 3 1/2 inch 1.44M Floppy Drive (figure 141): DSØ Drive A Slide switch all the way to the rear of the drive. Drive B Slide switch second notch from the rear of the drive. DS1 Termination is internal to the drive. Sony MP-F73W-7ØD 3 1/2 inch 1.44 MEG Floppy Drive (figure 141): Drive Select, $x = \emptyset - 3$ (DS \emptyset = Drive A, DS1 = Drive B) DSx Termination is internal to the drive. Sony MP-F17W-70D 3 1/2 inch 1.44 MEG Floppy Drive (figure 141): Drive Select, $x = \emptyset - 3$ (DS \emptyset = Drive A, DS1 = Drive B) DSx Termination is internal to the drive. Citizen OPBD-12A 3 1/2 inch 72ØK Floppy Drive (figure 213): DSØ

- TANDY COMPUTER PRODUCTS

DSØ Drive A - Slide switch all the way to the rear of the drive. DS1 Drive B - Slide switch second notch from the rear of the drive. Termination is internal to the drive.

Citizen OSDC-95A 3 1/2 inch 72ØK Floppy Drive (figure 16Ø):

DSØ Drive A - Slide switch all the way to the rear of the drive. DS1 Drive B - Slide switch second notch from the rear of the drive. Termination is internal to the drive.

Mitsuhishi MF5Ø4C 5 1/4 inch 1.2 MEG Drive Logic Board (figure 216): DSØ Used in non-standard setups when cable is straight (no twists) where two 5 1/4" floppy drives are used. The second drive would be DS1.

DS1 Both floppy drives in system use DS1 if the cable has a twist between the drive connectors

TD Connect drive select terminator.

DC Diskette change.

IR LED lit when drive selected (Jumper IU must be off).

MM Spindle motor power controlled by 'MOTOR ON' signal.

RI Index pulse is issued only when spindle completes one rotation.

SB Selects 360rpm for both high and low density modes.

The terminating resistor pack should be installed in the last drive on the cable.

TEAC FD235F-105U 3 1/2 inch 720K Drive Logic Board (figure 215): D0 Drive select 0. D1 Drive select 1. Left pins of RY and DC should be jumped (Connects Ready input to pin 34 of ribbon cable signal. All other jumpers should be off. Power is derived from ribbon cable (no separate power connector). Termination is internal to the drive.

TEAC FD235F-136U 3 1/2 inch 72ØK Drive Logic Board (figure 21B): This drive is used in the 14ØØFD/HD laptop computer. DØ Drive select Ø. D1 Drive select 1. All other jumpers should be off. Power is derived from ribbon cable (no separate power connector). Termination is internal to the drive.

Sony MP-F63W-7ØD 3 1/2 inch 72ØK Drive Logic Board (figure 144): DSØ Drive A Slide switch all the way to the rear of the drive. DS1 Drive B Slide switch second notch from the rear of the drive. Power is derived from ribbon cable (no separate power connector). Termination is internal to the drive.

Sony MP-F11W-71 720K Drive Logic Board (figure 144): DSØ Drive A Slide switch all the way to the rear of the drive. DS1 Drive B Slide switch second notch from the rear of the drive. Power is derived from ribbon cable (no separate power connector). Termination is internal to the drive.

Sony MP-F11W-72 720K Drive Logic Board (figure 144): DSØ Drive A Slide switch all the way to the rear of the drive. DS1 Drive B Slide switch second notch from the rear of the drive. Power is derived from ribbon cable (no separate power connector). Termination is internal to the drive.

Matsushita EME-213AMC 3 1/2 inch 720K Floppy Drive 25-3530 (figure 217):

This drive is for the 1100FD. There are NO jumpers on this drive. Test points are as follows:

Index	Pin	23	of	the	floppy	drive	connector	cable
Track ØØ	TP5							
GND	TP3							
Head amp	TP2							
Head amp	TP1							

Panasonic JU-257A213P 1.44 MEG Floppy Drive for 2800HD (figure 219):

SW1(RY/DC): Ready/Disk Change. Default is "DC". SW2(MO/MS): Motor ON/Motor on Drive Select(MS). Default is "MO". SW3(Ø321) : Drive Select. Default is Drive "Ø". SW4(BCD) : Selects head assembly rank. This switch is used to match the logic board to the head. Set to letter marked on head assembly. SW5(PS2/AT): Selects either PS2 polarity or AT polarity. Default is PS2.

Power supplied by I/O cable.

2.8* Quick Disk Drive for WP100 (figure 263):

The 2.8" Quick Disk Drive uses a single track spiral disk (26-3951). Unlike the disks ordinarily used with computers, the single track spiral disk is not formatted with a number of concentric circular tracks. Instead, the surface of the disk is magnetically inscribed with a single track that spirals inward toward the center, much like the track on a phonograph record. There are no test points or jumpers with this drive.

Teac FD235HF-106U 1.44 Meg 3 1/2 inch Floppy Drive (figure 275):

There are two sets of jumper blocks located at the rear of the floppy drive. The following is a list of the jumpers and their functions:

FG: Frame ground. This jumper is permanently installed.
DØ: Drive select zero.
D1: Drive select one.
HHI: Logic HI sets the drive in high density mode (not used).
LHI: Logic LOW sets the drive in high density mode (not used).
OP: High density switch enabled (jumpered).
HHO: High density output on high (not used).
D2: Drive select two. Jumper between D2 and center pin.
D3: Drive select three. Jumper between D1 and center pin.

Termination is internal to the drive.

Matsushita EME-263MG 3 1/2 inch 1.44M Floppy Drive 25-3506 (figure 300):

This drive is for the 1500HD/2810HD/3810HD. There are no jumpers on this drive. The test points are as follows:

Head AmpTP1Track ØØ CheckTP5Track ØØ BiasTP6 (Shorting it to ground enables Track ØØ check)IndexPin 2 of the floppy drive connector cableRead DataPin 24 of the floppy drive connector cableHead Ø ConnectCN1Head 1 ConnectCN2VCC (+5V)CN8 Pins 1,3,5,7GroundCN8 Pins 13,15,17,19,21,23,25

This drive is interfaced through a soldered on flat conductor cable instead of the conventional ribbon cable.
- TANDY COMPUTER PRODUCTS -

Sony MFD-17W-72 3 1/2" 1.44M Floppy Drive (figure 141):

The floppy drive is a Sony MFD-17W-72 1.44 Meg 3.5 inch drive. The following is a list of the test points and their functions:

RFA, RFB
CN1Ø1, pin 18
CN1Ø1, pin 2Ø
CN1Ø1, pin 26
CN1Ø1, pin 8
CN1Ø1, pin 3Ø
CN1Ø1, pin 13
CN1Ø1, pin 28
CN1Ø1, pin 16

The drive is internally terminated. There is a single drive select switch on the side. Drive A: should be set for DSØ, Drive B: should be set for DS1, etc. If a 5 1/4" drive is added to the system, it must also be terminated.

This page intentionally left blank.

TANDY COMPUTER PRODUCTS-

- TANDY COMPUTER PRODUCTS -

TRS-80 HARD DRIVE NOTES:

The 5, 12, 35, 70 and external 15 MEG controller boards are interchangeable as are the 12, 35, 70 and external 15 MEG interface boards. However, the controller boards should be replaced with like boards. So if the controller is the later WD1010 you should not replace it with the earlier Bx300. The B MEG interface or controller boards are NOT interchangeable with the 5, 12, 35, 70 or external 15 MEG.

For troubleshooting and diagnostic purposes the 5 MEG hard drive can be placed on a Model II/12/16/16B computer provided the 12 MEG interface board is used. Likewise the 12, 15, 35, and 70 MEG hard drives can be placed on a Model I/III/4 computer; however, 15 MEG is the maximum size these systems will recognize. So the 35 and 70 MEG drives will not be fully checked out.

The 5, 10, 12, and 15 MEG full height hard drives all use the same drive logic board. However, the 10 and 15 MEGs have a different ROM code in the processor chip. The chip can be identified by the version number on the IC package. The 10 and 15 MEGs use a Ver. 3.x ROM code. The 5 and 12 MEGs use a Ver. 2.x.

There are also two types of media (plated and oxide) for the 10 and 15 MEG full height hubbles. Each type requires a different logic board. Refer to Technical Bulletin HD:29 for a more detailed description. Refer to Technical Bulletin HD:32 for the procedure to convert one type of logic board to the other.

Refer to the Appendix for a list of hard drives with their respective head and cylinder counts.

In the Model II and 16 the hard disk interface board must be placed after the FDC board while in the 12, 16B and 6000 it must be in the bottom slot. The exception here would be ARCNET interface board which would be installed before the hard disk interface board. The disk cartridge interface board for the Tandy 6000 is terminated. Because of this, it MUST be the LAST interrupt driven board in the card cage.

TANDY 1000/1200 HARD DRIVE NOTES:

The Tandy 1000 WD1002/S-WA2 hard drive controller and the Tandy 1200 WD1010 (short) hard drive controller appear identical but they ARE different and are NOT interchangeable. For identification purposes refer to the following:

Tandy 1000 25-1001 AX-9009
PC board vendor number = 61000007-13 (on adhesive label)
ROM at U14, number suffix will be -01 or -010
R13, R14, and C1B are on the board

Tandy 1200 25-3000 AX-9010 PC board vendor number = 61000007-11 (on adhesive label)

ROM at U14, number suffix will be $-\emptyset3$ R13, R14. and C1B are NOT on the board - TANDY COMPUTER PRODUCTS

8 MEG Hard Disk Interface Board in a Model II/16/16B/6000 (figure 19): AP-AK Sets the RAM as pages 14 & 15 (the manual is incorrect)

In the Model II/16/16B/6000 there should be 64K standard main board memory which does not have memory mapped out at pages 14 & 15, so the AP-AK setting on the hard drive interface board presents no addressing conflict. If, for some reason a Model 16B/6000 should have an additional 16K of memory installed as main board memory, and the AK-AP jumper selected, an addressing conflict would result. The computer should be checked to insure that it has the correct amount of memory.

S1 1,3,5, and 7 on 2,4,6, and 8 off Configures drives 4 & 5
S2 1,3,5, and 7 on 2,4,6, and 8 off Configures drives 6 & 7
S3 3 & 4 on 1,2,5,6,7, and 8 off defines the port address as CØ-CF
W-V Pulls up an input of U26
A-B Pulls up an input of U1

8 MEG Bard Disk Interface Board in a Model 12 (figure 20): AG-AL Sets the RAM as pages 8 & 9 (the manual is incorrect)

In the Model 12 there should be 80K standard main board memory, which is qualified by a wire jumper from E38-E39. This additional memory is mapped out to pages 14 & 15, therefore the AK-AP option for the hard disk interface board would cause an addressing conflict, and must be moved to the suggested AG-AL option.

S1 1,3,5, and 7 on 2,4,6, and 8 off Configures drives 4 & 5 S2 1,3,5, and 7 on 2,4,6, and 8 off Configures drives 6 & 7 S3 3 & 4 on 1,2,5,6,7, and 8 off defines the port address as CØ-CF W-V Pulls up an input of U26 A-B Pulls up an input of U1

12 MEG Bard Disk Interface Board in a Model II/16/16B/6000 (figure 21): AP-AK Sets the RAM on this board as pages 14 & 15 W-V Pulls up an input of U26 A-B-C Set to A-B which pulls up an input of U1 A-B-C-D-E Set to A-B which defines the port address of the board as CO-CF

In the Model II/16/16B/6000 there should be 64K standard main board memory which does not have memory mapped out at pages 14 & 15, so the AP-AK setting on the hard drive interface board presents no addressing conflict. If, for some reason a Model 16B/6000 should have an additional 16K of memory installed as main board memory, and the AK-AP jumper selected, an addressing conflict would result. The computer should be checked to insure that it has the correct amount of memory.

12 MEG Hard Diak Interface Board in a Model 12 (figure 22): AG-AL Sets the RAM on this board as pages 8 & 9 W-V Pulls up an input of U26 A-B-C Set to A-B which pulls up an input of U1 A-B-C-D-E Set to A-H which defines the port address of the board as CØ-CF In the Model 12 there should be 80K standard main board memory, which is qualified by a wire jumper from E38-E39. This additional memory is mapped out to pages 14 & 15, therefore the AK-AP option for the hard disk interface board would cause an addressing conflict, and must be moved to the suggested AG-AL option. 8 MEG Hard Disk Controller Hoard (figure 23): Q-R When using a WD1100-02 for U4 S-R When using a WD1100-12 for U4 U-V Selects on board RAM using the RB* signal J-K Allows CS* only to enable waits back to the interface board. 12 & 5 MEG 8X300 Hard Disk Controller Board (figure 24):

- TANDY COMPUTER PRODUCTS -

1-2 When using a WD-1100-12 for U5
2-3 When using a WD-1100-02 for U5
5-6 Allows DCRCS* only to enable waits back to the computer
17-19 Defines the port address of the board as CO-CF

15 MEG Internal Hard Drive Controller/Interface (figure 3B): E1-E2 Selects port address CØ to CF E6-E7 Connects DRD1 to U27 (WD11ØØ-11)

B MEG Shugart (SA1004) Hard Drive Logic Board (figure 25): DSx Selects which drive number this board is (drive 4 is DS1)

Any board can have either an IC installed at location 3C or a stepper board connected to J9 (NOT BOTH). Stepper boards are being discontinued and replaced by the ROM that plugs into the socket at 3C. Also, replacement boards may come without either the stepper PCB or the ROM, so it would be a good idea to stock a spare ROM (AMX-5136). Last drive in chain should have a resistor pak (220/330 ohm) installed at 8C.

-- Hard Drive.4 --

- TANDY COMPUTER PRDDUCTS-

12 (TM6Ø3) and 15 (TM5Ø3) MEG Tandon Hard Drive Logic Board (figure 26): Sx Selects which drive number this board is (drive 4 is S1) W13 Allows the use of 6 heads W7 Terminates the read data lines

W8 Terminates the write data lines

NOTE: In the 5, 12, and 15 Meg hard drives, the last drive on the chain (the drive furthest from the computer on the drive cable) must have a terminator $(22\emptyset/33\emptyset$ ohm) installed at location U22.

U4 Processor2.XX Version 12 MegU4 Processor3.XX Version or ALL Masked 15 Meg

5 MEG Tandon (TM6Ø2) Hard Drive Logic Board (figure 27):
Sx Selects which drive number this board is (drive 4 is S1)
W5 Selects a maximum of 153 cylinders
W7 Terminates the read data lines
W8 Terminates the write data lines

NOTE: In the 5, 12, and 15 Meg hard drives, the last drive on the chain (the drive furthest from the computer on the drive cable) must have a terminator (220/330 ohm) installed at location U22.

10 MEG Tandon (TM502) Hard Drive Logic Board (figure 48): Sx Drive select (1-4) also labeled as W12-W9 W7 Terminates the read data lines W8 Terminates the write data lines Terminating resistor pak (220/330 ohm) should be installed at location U22.

10 MEG Tandon (TM-252) Hard Drive Logic Board (figure 76): W14 Motor backlash option - set by the factory - do not change. DSx Drive select (W12=DS1, W11=DS2, W10=DS3, W9=DS4) Last drive on cable should have terminating resistor (220/330) at U19.

On the external hard drive, the orange wire connects to feedthrough connected to J2 pin 7 which routes +12V from the data cable to the relay which switches AC on to the power supply.

NOTE: DS2 (W11) is used to configure for drive C:. DS3 (W1Ø) is used to configure for drive D:.

External WD1000-TB1 Controller Hoard (figure 52): E1-E2 Enables software reset of WD1010 chip E3-E4 Selects port address C0-CF E11-E12 Connects oscillator to write clock circuit E13-E14 Adds pull-ups to write protect lines of drive - TANDY COMPUTER PRODUCTS -

35 MEG Quantum (Q54Ø) Hard Drive Logic Board (figure 51): DSx Drive select (x = 1-4) Terminating resistor pak (220/330 ohm) should be installed at RN3 for the last drive on the cable.

7Ø MEG Micropolis (1325) Hard Drive Logic Board (figure 7Ø): DSx Drive Select (1-4) W1 Fault status latch W2 Selects daisy chain operation W8 Selects radial data operation RN1 Termination resistor pak (220/330 ohm) should be installed in the last drive on the cable.

Xebec Hard Drive Controller Board for Tandy 1000/1200 (figure 69): The Xebec controller board is used for external hard drives only.

	Tandy 1000	Tandy 1200
IRQ2	Selects interrupt request 2	IRQ5 Selects interrupt request 5
INT2	Selects interrupt request 2	INT5 Selects interrupt request 5

The following jumpers are valid for both computers. PD Enables processor data buffers I/OADD1 Along with I/OADD2 selects base I/O address (320H) of board I/OADD2 Along with I/OADD1 selects base I/O address (320H) of board

DRIVE C:	1	2	DRIVE	D:	3	4
35 MEG	ON	OFF	35 1	MEG	ON	OFF
15 MEG	OFF	OFF	15 1	MEG	OFF	OFF
10 MEG	OFF	ON	1Ø 1	MEG	OFF	ON

To support 20 MEG hard drives remove the ROM at U33 and replace it with the revised ROM, then set the jumpers according to the bubble type as follows:

_DI	RIVE C:	1	2	DRIVE D:	3	4
	35 MEG	ON	OFF	35 MEG	ON	OFF
	20 MEG	OFF	OFF	20 MEG	OFF	OFF
	1Ø MEG	OFF	ON	10 MEG	OFF	ON
Original Revised		MXP-Ø359 MXP-Ø358	Checksum = A8ØØH Checksum = A9ØØH	(supports 10, (supports 10,		

Refer to Technical Bulletin HD:46 for more information.

- TANOY COMPUTER PROOUCTS-

Tandy 1000 WD1002S-WX2 Controller Board (figure 77):

Wl pir	ıs 1-2	Connects 'DSELØ' (drive select) to bus
W2 pir	ns 1-2	Connects 'RG' (read gate) into circuit
W3 pir	ns 1-2	Connects 'ROMEN' (ROM enable) to ROM
W4 pir	15 2-3	Connects 'A2' (address line 2) for address select
W6 pir	is 2-3	Connects 'RWC' (reduced write current) to J1 (drive)
W7 pir	1s 2-3	Selects IRQ2

The following are eight (8) sets of jumpers labeled SW1 positions 1-8. Notice that they are numbered from the bottom 1 through 4 and then backwards 8 through 5.

Position	5	ON Selects address
Position	6	OFP Selects address
Position	7	OFP Selects address
Position	8	OFF Selects address
Position	4	With position 3 selects Drive D type
Position	3	(See below for drive types)
Position	2	With position 1 selects Drive C type
Position	1	(See below for drive types)

DRIVE C): 1	2	DRIVE D	: 3	4
35 MI	EG ON	ON	35 ME	g on	ON
15 MI	EG ON	OFF	15 ME	G ON	OFP
1Ø MI	EG OFI	F ON	1Ø ME	G OPF	ON

For 20 MEG hard drive support, use the following table and refer to Technical Bulletin 1000:37 for more information.

DRIVE	C:	1	2	DRIV	E D:	3	4
35 M		ON	ON	35	MEG	ON	ON
2Ø M	ÆG	ON	OFF	2Ø	MEG	ON	OFF
1Ø M	ÆG	OFF	ON	1Ø	MEG	OFF	ON

The Tandy 1000 WD1002S-WX2 hard drive controller and the Tandy 1200 WD1002S-WX2 (short) hard drive controller appear identical but they ARE different and are NOT interchangeable. For identification purposes refer to the following:

Tandy 1000 25-1001 AX-9009 PC board vendor number = $61\phi\phi\phi\phi^{7}$ -13 (on adhesive label) ROM at U14. number suffix will be $-\emptyset 1$ or $-\emptyset 1\emptyset$ R13, R14, and C18 are on the board

Tandy 1200 25-3000 AX-9010 PC board vendor number = $61\phi\phi\phi\phi$ 7-11 (on adhesive label) ROM at U14, number suffix will be -Ø3 R13, R14, and C18 are NOT on the board

Tandy 1200 WD1002S-WX2	Hard Drive Controller Board (figure 99):
	s 'DSELØ' (drive select) to bus
W2 pins 1-2 Connect	s 'RG' (read gate) into circuit
W3 pins 1-2 Connect	s 'ROMEN' (ROM enable) to ROM
W4 pins 2-3 Connect	s 'A2' (address line 2) for address select
Mich manage of the Comments	- Introl (and and and a second to be The Advisor)

W6 pins 2-3 Connects 'RWC' (reduced write current) to J1 (drive)

W7 pins 1-2 Selects IRQ5

The following are eight (8) sets of jumpers labeled SW1 positions 1-8. Notice that they are numbered from the bottom 1 through 4 and then backwards 8 through 5.

- TANDY COMPUTER PRODUCTS -

Position	5	OFF Selects IRQ5
Position	6	OFF Selects address
Position	7	OFF Selects address
Position	8	OFF Selects address
Position	4	Not Used
Position	3	Not Used
Position	2	With position 1 selects Drive C type
Position	1	(See below for drive types)

Tand	dy ROM		Tando	on ROM	1
62-ØØ	ØØ52-Ø1	Ø	62-ØØ	ðØ4Ø-Ø	53
DRIVE C:	1	2	DRIVE C:	1	2
10 MEG	OFF	ON	10 MEG	OFF	OFF

The Tandy 1000 WD1000S-WX2 hard drive controller and the Tandy 1200 WD1002S-WX2 (short) hard drive controller appear identical but they ARE different and are NOT interchangeable. For identification purposes refer to the table listed under the note for Tandy 1000 WD1002S-WX2 controller board.

20 MEG Mitsubishi (MR522) Hard Drive Logic Board 25-4062 (figure 100):

Switch	<u>Drive C</u>	Drive D	Description
SW1-1	On	On	Selects daisy chain operation
SW1-2	Off	Off	Disables diagnostic operation
SW1-3	Off	Off	Drive select 4
SW1-4	Off	Off	Drive select 3
SW1-5	Off	On	Drive select 2
SW1-6	On	Off	Drive select 1

Termination is accomplished with SW2. On=Termination. Off=Not Terminated. Last Drive First Drive

	Last Drive	First Drive
Switch	On Cable	On Cable
SW2-1	On	Off
SW2-2	On	Off
SW2-3	On	Off
SW2-4	On	Off
SW2-5	On	Off
SW2-6	On	Off

- TANDY COMPUTER PROOUCTS-

2Ø MEG Seagate (ST225) Hard Drive Logic Hoard 25-4Ø62 (figure 1Ø1): Only one jumper should be on. 15-16 Drive select 1 13-14 Drive select 2 11-12 Drive select 3 9-1Ø Drive select 4 Terminating resistor pack (22Ø/33Ø ohm) should be installed

40 MEG CDC (WREN II) Hard Drive Logic Board 25-4061 (figure 110): DSx Drive select (DS1 = C, DS2 = D) Termination resistor pack (220/330 ohm SIP) should be installed in the last drive on the cable.

Floppy/Hard Drive WD1002-WA2 Controller Hoard 25-4060 (figure 95):

- E2-E3 Selects primary address for floppy (standard)
- E1-E2 Selects secondary address for floppy
- E5-E6 Selects primary address for hard drive (standard)
- E4-E5 Selects secondary address for hard drive
- E7-E8 Connects floppy read data into VCO

Floppy/Hard Drive WD1003-WA2 Controller Board 25-4060 (figure 124):

E2-E3 Selects primary address for floppy (standard)

E1-E2 Selects secondary address for floppy

E5-E6 Selects primary address for hard drive (standard)

- E4-E5 Selects secondary address for hard drive
- E7-E8 Supports 36Ø RPM floppy disk drives (standard)
- E8-E9 Supports 300 RPM floppy disk drives

Microscience 40 Meg (HH1050) Hard Drive Logic 25-4061 (figure 133): SW1 positions 1-4: Drive Select

Drive	POS1	POS2	POS3	POS4		
C/Ø	On	Off	Off	Off		
D/1	Off	On	Off	Off		
E/2	Off	Off	On	Off	Not	Supported
F/3	Off	Off	Off	On	Not	Supported

SW1 positions 5-10: Termination POS 5-10 On for the last drive on the control cable Off for all other drives

```
TECHNICIAN SERIES
                                                        NOTES AND JUMPERS

    TANOY COMPUTER PRODUCTS

Disk Cartridge Controller board (figure 73):
             Manual Power-on reset
SW1-1 Off
SW1-2 Off
              Parity checking
SW1-3 Off
             Retries enabled without startup diagnostics
SW1-4 Off
             Retries enabled without startup diagnostics
SW1-5 Off
             10.0 Code enabled
JP16 PinØ
             Selects address
JP2 All On
10 MEG IOMEGA (Alpha-10H) Diak Cartridge Drive Logic Board (figure 74):
There are 3 rows (J2, J3, J4) of seven pins. Jumper together all seven pins
between rows:
J2 & J3
            Selects Drive Ø
J3 & J4
            Selects Drive 1
20 MEG IOMEGA (Alpha-20B) Disk Cartridge Drive Logic Board (figure 118):
There are 3 rows of seven pins used for drive select as follows:
Top Two Rows
                  Selects Drive Ø
Bottom Two Rows Selects Drive 1
IOMega Disk Cartridge Controller 5 1/4 20Meg 25-4064 (Beta 20) (figure 150):
S1 Dip Switch
Position 1
            Off
                  Manual Power-on Reset
Position 2
            Off
                  Normal Operation
Position 3
            Off
                  No parity checking
            On
                   Parity checking (Standard)
Position 4 Position 5
                           Position 6
                                          SCSI Bus Address
  Off
                Off
                               Off
                                                 Ø
   Off
                 Off
                                                 1
                               On
   Off
                0n
                                                  2
                               Off
   Off
                On
                               On
                                                 3
                                                     (Standard)
   On
                Off
                               Off
                                                  4
   On
                Off
                                                 5
                               On
   On
                On
                               Off
                                                  6
   0n
                0n
                                                  7
                               On
IOMega Disk Cartridge Drive Logic 5 1/4 20 Meg (Beta 20) Primary (figure 151):
JB2
      Two pins closest to the rear of the drive jumpered.
JB3
      Jumpered
JB4
      Two pins closest to the center of the drive jumpered.
JB1
     Drive Select Ø
                       Jumper the two rows of pins closest to LUNØ (the front
                       of the drive) at all four positions.
```

Note: There is a radical difference between the Primary and Secondary 5 1/4 Disk Cartridge units. Installing two primary drives will not work.

- TANOY COMPUTER PRODUCTS-

IOMega Disk Cartridge Drive Logic 5 1/4 20 Meg (Beta 20) Secondary 25-4065 (figure 152): JB1 Drive Select 1 Jumper the two rows of pins closest to LUN1 (the rea

JB1 Drive Select 1 Jumper the two rows of pins closest to LUN1 (the rear of the drive at all four positions.

Note: There is a radical difference between the Primary and Secondary 5 1/4 Disk Cartridge units. Installing two secondary drives will not work.

Disk Cartridge Interface Board for Tandy 2000 26-5147 (figure 112): El On = 1 Cartridge Drive in system Off = 2 Cartridge Drives in system

Disk Cartridge Interface Board for Tandy 1000/1200/3000 25-3022 (figure 75): SW1 position 1 ON selects 1 drive OFF selects 2 drives SW1 positions 2 and 5 ON 3, 4, 6-8 OFF selects address

PC2B Disk Cartridge Interface Board for 1000/1200/3000 25-4064 (figure 111):

Port Address:	SWT	SW2	Address	
	On	On	34ØH-345H	(standard)
	Off	On	35ØH-355H	
	On	Off	36ØH-365H	
	Off	Off	37ØH-375H	
DMA Channel:	SW3	Channel	. #	
	On	1		
	Off	3	(standard)	
DMA/PIO Select:	SW4	Functio	'n	
	On	PIO ena	bled	
	Off	DMA ena	bled (stan	dard)**

** NOTE: This switch should be set to the ON position, to enable PIO mode, when used in a 80386 based CPU or a Tandy 3000NL in fast mode (i.e., a clock speed of 10 MHz and above). If a SCSI hard drive controller is used, then PIO mode should also be set to the ON position. Set this switch to the OFF position for all other MS-DOS computer systems.

Reserved:	SW5	SW6	SW7	
	Off	Off	Off	(standard)
Number of Drives:	SW8	Drive	s	
	Off	2 Driv	ves in	system
	On	1 Driv	ve in s	ystem (standard)

- TANDY COMPUTER PRODUCTS -

The ROM/RAM address option jumpers consist of 4 sets (labeled 1 through 4) with three staking pins to a set. The following table will describe the jumpers as JP1 - upper, meaning the top two pins of JP1, and JP1 - lower meaning the lower two pins of JP1.

JP1	JP2	JP3	JP4	Address Range	
Upper	Upper	Upper	Upper	C800:0000 to C800:1FFF	
Upper	Upper	Upper	Lower	CAØØ:ØØØØ to CAØØ:1FFF	
Upper	Upper	Lower	Upper	CCØØ:ØØØØ to CCØØ:1FFF	
Upper	Upper	Lower	Lower	CEØØ:ØØØØ to CEØØ:1FFF	(st a ndard)
Upper	Lower	Upper	Upper	DØØØ:ØØØØ to DØØØ:1FFF	(Xenix Operation)
Upper	Lower	Upper	Lower	D200:0000 to D200:1FFF	
Upper	Lower	Lower	Upper	D400:0000 to D400:1FFF	
Upper	Lower	Lower	Lower	D600:0000 to D600:1FFF	
Lower	Upper	Upper	Upper	D8ØØ:ØØØØ to D8ØØ:1FFF	
Lower	Upper	Upper	Lower	DAØØ:ØØØØ to DAØØ:1FFF	
Lower	Upper	Lower	Upper	DCØØ:ØØØØ to DCØØ:1FFF	
Lower	Upper	Lower	Lower	DEØØ:ØØØØ to DEØØ:1FFF	
Lower	Lower	Upper	Upper	EØØØ:ØØØØ to EØØØ:1FFF	
Lower	Lower	Upper	Lower	E2ØØ:ØØØØ to E2ØØ:1FFF	
Lower	Lower	Lower	Upper	E4ØØ:ØØØØ to E4ØØ:1FFF	
Lower	Lower	Lower	Lower	ROM/RAM Disabled	(for use with SCSI)

TCS-100 Tape Cartridge Controller Board 25-3020 (figure 78): E3-E4 Along with E8-E9 selects on board RAM size to 2K E8-E9 Selects on board RAM size to 2K E11-E12 Test jumper (on for normal operation)

```
TCS-100 Tape Cartridge Drive Logic Board 25-3020 (figure 79):
HDR1-5 Selects tape drive Ø
HDR3-4 Selects phase 4
HDR3-8 Selects phase 4
9/12 Selects 9 tracks
IHC
```

```
TCS-100 Tape Cartridge Drive Logic Board Revision C2 25-3020 (figure 113):
HDR1-2
HDR3-1
HDR3-5
IHC
TNG
E1
```

TCS-100 Tape Cartridge Interface Board for the 1000/1200/3000 25-3021 (figure 80):

ADDR SEL B Selects address range of 338-33B hex ADDR SEL D Selects address range of 338-33B hex Selects address range of 338-33B hex ADDR SEL E ADDR SEL G Selects address range of 338-33B hex DRQ1 (MS-DOS Operation) DRQ3 (Xenix Operation) DACK1 (MS-DOS Operation) DACK3 (Xenix Operation) Selects interrupt used. Use ONLY ONE from the table below: IRQn

l		Tandy 1000	*	Tandy 1200	1	Tandy <u>3000/HL</u>
IRQ7 I	I	Default LPT1	ŧ	Default LPT1	ł	Default LPT1
IRQ5	ł	Vertical Sync	ł	Default Hard Drive		Default LPT2
IRQ4 (1	Default COM1	*	Default COM1	1	Default COM1
IRQ3		Default COM2	1	Default COM2	1	Default COM2
IRQ2 :		Default Hard Drive	Ι	Tape Standard	ł	Tape Standard

Important Note: Only ONE of IRQ2 through IRQ7 should be on.

IRQ2 through IRQ7 select the interrupt request line the tape cartridge interface board will use. The above table shows the default uses of these interrupt lines on each machine. When selecting which interrupt to use the entire system must be taken into account. For example; on the Tandy 1000 if there is no hard drive installed then IRQ2 would be the logical choice for the tape cartridge interface board. However if the computer has a hard drive then IRQ3 or IRQ4 must be used. This means of course that the associated COM port can not be used for a serial or modem board. For use with Xenix, IRQ3 should be used. Also for use with Xenix, the correct PAL chip must be installed. Refer to Technical Bulletin I/0:108 for further information.

- TANDY COMPUTER PRODUCTS-

16 Bit SCSI Host Adapter 2S-4161/A (figure 161): 2S-4161B (figure 212):

<u>General Notes:</u>

There are three different versions of this board currently in use. The 25-4161 and the 25-4161A look essentially the same; the major differences are that the 25-4161 board is capable of asynchronous operation only (J1, pin pair 1 off), and has a U2Ø IC labeled AIC-625Ø. The 25-4161A board is capable of both synchronous and asynchronous operation, and is defaulted to synchronous (J1, pin pair 1 on); the U2Ø IC has moved up to a D-step (or revision D) part and is now labeled AIC-625ØDL. The "DL" indicates that the IC is a D-step part.

The 25-4161B board is quite different from the 25-4161 and the 25-4161A. The board makes heavy use of surface mount technology, the jumpering is somewhat different, and there is an external connector to allow connection of additional external SCSI devices. This board is also capable of both synchronous and asynchronous operation, and is defaulted to synchronous (J1, pin pair 1 on).

Use of any of these boards requires that the computer have at least a BIOS version of $\emptyset 1.\emptyset 3.\emptyset 1$ or later. If the board is being used in an MS-DOS environment, the MS-DOS version must be 3.3 or later. If the board is being used in an 80386 Xenix environment, the Xenix version must be SCO Xenix/386 version 2.2.4 or later.

There are several different versions of BIOS and firmware for these adapters. For the most current information, refer to Technical Bulletin HD:S1. Two items to be aware of are:

- (1) For a SCSI hard drive of size greater than 255 megs to be used in an MS-DOS environment, a SCSI BIOS and firmware of version 5.xx must be used. (The "x" indicates that there may be more than one version available.
- (2) To use SCO Xenix/386 version 2.2.4, a SCSI BIOS version of 2.x or 4.xx must be used. SCO Xenix/386 version 2.2.4 will not work with a SCSI BIOS and firmware of S.xx.

NOTE: In the following jumper listings, R-->L refers to the counting of that jumper block starting from the right and going to the left. Conversely, L-->R would indicate counting starts from the left and goes to the right. Also, T-->B indicates that the counting of that jumper block starts from the top and counts towards the bottom of the board.

(continued on next page)

-- Hard Drive.14 --

.

Jumpers for the 25-4161 and 25-4161A:

For use in Tandy 4000/4000LX:

J1,	pin	pair	1	L>R	25-4161 off (normal configuration). Turns off synchronous negotiation initiation. 25-4161A on (normal configuration). Turns on
71			2		synchronous negotiation initiation.
	-	pair			off (normal configuration). Reserved.
		pair			off (normal configuration). Parity checking enabled.
		pair			off \
		pair			off : SCSI address 7 (normal configuration).
		pair			off /
		pair			off \
		pair			on / DMA channel 5 (normal configuration).
		pair			off \
		pair			on Interrupt channel 11 (normal configuration).
J1,	pin	pair	11		off /
RN6 F1	, RN:	7			installed (normal configuration). SCSI terminators. installed (normal configuration). Host adapter provides terminator power.
J4					off (normal configuration) No wait states on BIOS access.
J5					off (normal configuration for 4000/4000LX). Computer type jumper.
J6.	nin	раіг	1	R>L	off \
	-	pair			on ! DMA Request 5 (normal configuration).
	-	pair			off
		pair			off /
••,	P	P** 2 *			
J7,	pin	pair	1	R>L	off \
		pair			on DMA ACKnowledge 5 (normal configuration).
		pair			off
		pair			off /
				R>L	
J8,	pin	pair	2		off
	-	pair			on Interrupt channel 11 (normal configuration).
J8,	pin	pair	4		off 1
J8,	pin	pair	5		off i
J8,	pin	pair	6		off /

J9, pin pair 1 L>R J9, pin pair 2 J9, pin pair 3 J9, pin pair 4 J9, pin pair 5 J9, pin pair 6 J9, pin pair 7 J9, pin pair 8	on \ on off off Port address Ø33Øh (normal configuration). on on off off						
J1Ø, pin pair 1 J1Ø, pin pair 2 J1Ø, pin pair 3	off \ off ! BIOS address ØDCØØØh (normal configuration). off /						
For use in Tandy 3000/3	ØØØ-12/3ØØØNL/4ØØØSX:						
The jumpers are the sam	e as those for the Tandy 4000/4000LX <u>except for</u> :						
J5	on (normal configuration for non-4000/4000LX installation). Computer type jumper.						
For use in Tandy 3000HL	For use in Tandy 3000HL:						
The jumpers are the sam	e as those for the Tandy 4000/4000LX <u>except for</u> :						
Jl, pin pair 7 L>R Jl, pin pair 8	on \ DMA channel Ø (normal 3000HL configuration).						
art have have a	on /						
J5	on / on (normal configuration for non-4000/4000LX installation). Computer type jumper.						
	on (normal configuration for non-4000/4000LX						

Complete Jumper Information:

Normal configurations for installation have been given in the above listings. Complete jumper information is as follows:

SCSI Address:

Set by jumper set J1, pin pairs 4, 5, and 6.

Jump	er Pa	ir	SCSI
4	5	6	Address
on	on	on	Ø
off	on	on	1
on	off	on	2
off	off	on	3
on	on	off	4
off	on	off	5
on	off	off	6
off	off	off	7

SCSI Parity:

Set by jumper set Jl, pin pair 3. A jumper installed on this position disables parity; no jumper enables parity.

SCSI Terminators and Terminator Power:

RN6 and RN7 are the SCSI terminators. If the host adapter is not the first or the last SCSI device in a string of SCSI devices, or if inline terminators are used, then RN6 and RN7 must be removed. Otherwise, they must be installed.

F1 controls the terminator power. If another SCSI device is supplying terminator power, then F1 may optionally be removed. No more than 5 SCSI devices should be configured to supply terminator power to a single SCSI bus.

SCSI Synchronous Negotiation:

Jumper set J1, pin pair 1, is the synchronous negotiation enable jumper. The host adapter will initiate SCSI synchronous negotiation during initialization or after a SCSI reset if this jumper is installed. If the jumper is not installed, the host adapter will still support synchronous SCSI transfers, but the target must initiate the negotiation. (Synchronous operation is not supported on the 25-4161, and is supported on the 25-4161A).

DMA Channel Selection:

Three jumper blocks (J1, pin pairs 7 and 8, J6, and J7) are used in DMA channel selection. Configuration is as follows:

Jl:	Jumper	r Pair	DMA
	7	8	Channe1
	on	on	ø
	off	on	5
	on	off	6
	off	off	7

J6:	Jump	er Pa	DMA		
	1	2	3	4	Request
	on	off	off	off	ø
	off	on	off	off	5
	off	off	on	off	б
	off	off	off	on	7

J7:	Jump	er Pa	DMA		
	1	2	3	4	Acknowledge
	On	off	off	off	Ø
	off	on	off	off	5
	off	off	on	off	6
	off	off	off	on	7

Interrupt Channel:

Two jumper blocks (J1, pin pairs 9, 10, and 11, and J8) are used in determining interrupt selection.

J1:	Jump	er Pa	ir	Inte	erruț	ot	
	9	1Ø	11	Char	nnel		
	on	on	on	not	defi	Ined	
	off	on	on	not	defi	Ined	
	on	off	on	15			
	off	off	on	14			
	on	on	off	12			
	off	on	off	11			
	on	off	off	1Ø			
	off	off	off	9			
J8:	Jump	er Pa	ir				Interrupt
	1	2	3	4	5	6	Channel
	-			4 off	5 off	6 off	Channel 9
	1	2	3				
	$\frac{1}{\text{on}}$	2 off	3 off	off	off	off	9
	1 on off	2 off on off	3 off off	off off	off off	off off	9 1Ø
	1 on off off	2 off on off	3 off off on	off off off	off off off	off off off	9 1Ø 11
	1 on off off off	2 off on off off	3 off off on off	off off off on	off off off off	off off off off	9 1Ø 11 12

Port Address:

The starting port address of the block of four I/O ports required by the host adapter is set by jumper block J9.

J9:	Jumper Pair	Port I/O Address Bit
LSB	1	øø4h
	2	ØØBh
	3	Øløh
	4	Ø2Øh
	5	Ø4Øh
	6	ØBØh
	7	løøh
MSB	В	2ØØh

The bits set by these jumpers are additive. For example, to arrive at a port address of $\emptyset 33\emptyset$ h, one should have jumpers installed on J9, pin pairs 3, 4, 7, and B ($\emptyset 1\emptyset$ h + $\emptyset 2\emptyset$ h + $1\emptyset$ gh + $2\emptyset$ gh = $33\emptyset$ h).

BIOS Address:

The starting address of the block of address space reserved for the BIOS is selected by jumper block J10. The address chosen must not conflict with any other BIOS in the system.

J1Ø:	Jump	er Pa	BIOS	
	1	2	3	Address
	on	on	on	øCøøøøh
	off	on	on	ØDØØØØh
	on	off	on	ØCBØØØh
	off	off	on	ØDBØØØh
	on	on	off	ØC4ØØØh
	off	on	off	ØD4ØØØh
	on	off	off	ØCCØØØh
	off	off	off	ØDCØØØh

BIOS Wait State:

The J4 jumper determines whether or not one wait state will be added during BIOS access. No jumper installed sets \emptyset wait states; installation of the jumper sets one wait state for BIOS access.

Reserved Jumper:

J1, pin pair 2 is a reserved jumper and should never be installed.

Computer Configuration Jumper:

J5 should be off for use in a Tandy 4000/4000LX system. It should be on for use in a Tandy 3000/3000-12/3000HL/3000NL/4000SX system.

Jumpers for the 25-4161B:

For use in Tandy 4000/4000LX/3000/3000-12/3000NL/4000SX:

on (normal configuration). Turns on synchronous Jl, pin pair 1 T-->B negotiation initiation. Jl, pin pair 2 off (normal configuration). Reserved. off (normal configuration). Parity checking enabled. J1, pin pair 3 Jl. pin pair 4 off \ off |-- SCSI address 7 (normal configuration). Jl, pin pair 5 Jl, pin pair 6 off / Jl, pin pair 7 off \ DMA channel 5 (normal configuration). J1, pin pair 8 on / Jl, pin pair 9 off \ on :-- Interrupt channel 11 (normal configuration). Jl, pin pair 10 Jl, pin pair 11 off / DMA transfer speed default 5.0 Mbyte/sec Jl, pin pair 12 off \ Jl. pin pair 13 off / installed (normal configuration). SCSI terminators. RN3, RN4, RN5 Host adapter F1 installed (normal configuration). provides terminator power. J6, pin pair 1 R-->L on \ J6, pin pair 2 off |-- Port address Ø33Øh (normal configuration). J6, pin pair 3 off / J7, pin pair 1 R-->L on \ J7, pin pair 2 off !-- (normal configuration) Ho wait states on BIOS J7, pin pair 3 off ! access. off / J7, pin pair 4 J9, pin pair 1 off Auto request sense enabled (normal configuration) J9, pin pair 2 off reserved J9, pin pair 3 off reserved J9, pin pair 4 off reserved off \ BIOS address ØDCØØØh (normal configuration). J1Ø, pin pair 1 off / J1Ø, pin pair 2 J11 BIOS enabled (normal configuration). on (continued on next page)

TECHNICIAN SERIES

TANDY COMPUTER PRODUCTS

```
J14, pin pair 1 R-->L off \
J14, pin pair 2
                       on !-- DMA Request 5 (normal configuration).
                       off (
J14, pin pair 3
J14, pin pair 4
                       off /
J15, pin pair 1 \mathbb{R}-->L off \
J15, pin pair 2
                       on !-- DMA ACKnowledge 5 (normal configuration).
J15, pin pair 3
                       off |
J15, pin pair 4
                       off /
J16, pin pair 1 R-->L off \
J16, pin pair 2
                       off !
                       on |-- Interrupt channel 11 (normal configuration).
J16, pin pair 3
J16, pin pair 4
                       off |
J16, pin pair 5
                       off |
J16, pin pair 6
                     off /
```

For use in Tandy 3000HL:

The jumpers are the same as those for the Tandy 4000/4000LX/3000/3000-12/3000NL/4000SX except for:

T-->B on \setminus DMA channel Ø (normal 3ØØØHL configuration). Jl, pin pair 7 J1. pin pair 8 on / J14, pin pair 1 R-->L on \setminus off |-- DMA Request Ø (normal 3ØØØHL configuration). Jl4, pin pair 2 J14, pin pair 3 off : J14, pin pair 4 off / J15, pin pair 1 R-->L on \setminus J15, pin pair 2 off !-- DMA ACKnowledge Ø (normal 3000HL J15, pin pair 3 off | configuration). J15, pin pair 4 off /

Complete Jumper Information:

Normal configurations for installation have been given in the above listings. Complete jumper information is as follows:

SCSI Address:

Set by jumper set J1, pin pairs 4, 5, and 6.

Jump	er Pa	SCSI	
4	5	6	Address
on	on	on	ø
off	on	on	1
on	off	on	2
off	off	on	3
on	on	off	4
off	on	off	5
on	off	off	6
off	off	off	7

SCSI Parity:

Set by jumper set J1, pin pair 3. A jumper installed on this position disables parity; no jumper enables parity.

SCSI Terminators and Terminator Power:

RN3, RN4, and RN5 are the SCSI terminators. If the bost adapter is not the first or the last SCSI device in a string of SCSI devices, or if inline terminators are used, then RN3, RN4 and RN5 must be removed. Otherwise, they must be installed.

F1 controls the terminator power. If another SCSI device is supplying terminator power, then F1 may optionally be removed. No more than 5 SCSI devices should be configured to supply terminator power to a single SCSI bus.

SCSI Synchronous Negotiation:

Jumper set Jl, pin pair 1, is the synchronous negotiation enable jumper. The host adapter will initiate SCSI synchronous negotiation during initialization or after a SCSI reset if this jumper is installed. If the jumper is not installed, the host adapter will still support synchronous SCSI transfers, but the target must initiate the negotiation.

DMA Channel Selection:

Three jumper blocks (J1, pin pairs 7 and 8, J14, and J15) are used in DMA channel selection. Configuration is as follows:

J1:	Jump	oer Pa	ir	DMA	
	7	8	1	Channe	Ĺ
	on	c	n	ø	
	off	с	n	5	
	on	С	ff	6	
	off	c	ff	7	
J14:	Jum	oer Pa	ir		DMA
* - 1 -	1	2	3	4	Request
	on	off	off	off	Ø
	off	on	off	off	5
	off	off	on	off	6
	off	off	off	on	7
J15:	ไมซา	er Pa	ir		DMA
040.	1	2	3	4	Acknowledge
	on	off	off	off	Ø
	off	on	off	off	5
	off	off			6
		- · ·	on	off	
	off	off	off	on	7

Interrupt Channel:

Two jumper blocks (J1, pin pairs 9, 10, and 11, and J16) are used in determining interrupt selection.

J1:	Jump	er Pa	ir	Inte	erruj	pt	
	9	1Ø	11	Char	nnel		
	on	on	on	not	def	ined	
	off	on	on	not	def:	ined	
	on	off	on	15			
	off	off	on	14			
	on	on	off	12			
	off	on	off	11			
	on	off	off	ıø			
	off	off	off	9			
J16:	Jump	er Pa	ir				Interrupt
	1	2	3	4	5	6	Channel
	on	off	off	off	off	off	9
	off	on	off	off	off	off	lØ
	off	off	on	off	off	off	11
	off	off	off	on	off	off	12
	off	off	off	off	on	off	14
	off	off	off	off	off	on	15
			(con	tinue	i on	next	page)

Port Address:

The starting port address of the block of four I/O ports required by the host adapter is set by jumper block J6. The port address is coded in the BIOS ROM and must match it; therefore the port address cannot be changed unless a new BIOS ROM is installed.

	Jump	er Pa	ir	
J6:	1	2	3	Port I/O Address
	off	off	off	334h
	on	off	off	33Øh
	off	on	off	234h
	on	on	off	23Øh
	off	off	on	134h
	on	off	on	13Øh

BIOS Address:

The starting address of the block of address space reserved for the BIOS is selected by jumper block J1Ø. The address chosen must not conflict with any other BIOS in the system.

J1Ø:	Jump	er Pair	BIOS
	1	2	Address
	on	on	ØCBØØØh
	off	on	ØDBØØØh
	on	off	ØCCØØØh
	off	off	ØDCØØØh

BIOS Wait State:

The J7 jumper block determines whether or not wait states will be added during BIOS access.

J7:	Jump	er Pa	ir		
	1	2	3	4	Wait State
	on	off	off	off	disabled
	off	on	off	off	100 nsec
	off	off	on	off	200 nsec
	off	off	off	on	3ØØ nsec

Reserved Jumpers:

J1, pin pair 2 is a reserved jumper and should never be installed. J9, pin pairs 2, 3, and 4 are reserved jumpers and should never be installed.

(continued on next page)

-- Hard Drive.24 --

DMA Transfer Speed Default:

Pin-pairs 12 and 13 of jumper block J1 set the default DMA transfer speed. The default speed is selected after power on or after a hard reset occurs.

:	Jumpe	r Pair		
	12	13	DMA	Speed
	off	off	5.Ø	Mbyte/sec
	on	off	5.7	Mbyte/sec
	off	on	6.7	Mbyte/sec
	on	on	8.Ø	Mbyte/sec
		ì		-

Auto Request Sense:

J1

J9, pin pair 1 determines whether auto request sense is enabled or disabled. If a jumper is installed, auto request sense is disabled. If no jumper is installed, auto request sense is enabled.

BIOS Enable/Disable:

J11 determines whether the SCSI BIOS is enabled or disabled. If a jumper is installed, the BIOS is enabled. If no jumper is installed, the BIOS is disabled.

4Ø MEG SCSI Hard Drive 25-4159 (figure 162):

This drive is a 3.5 inch Quantum ProDrive 40S. Jumpering is as follows:

<u>Primary Drive:</u> A jumper should be installed on EP, and the drive should be installed at the end of the SCSI cable. Termination resistor packs $(22\emptyset/33\emptyset$ 8 pin SIP) should be installed at RN2Ø1, RN2Ø2, and RN2Ø3.

Secondary Drive: Jumpers should be installed on AØ and EP, and the drive should be installed on the middle connector of the SCSI cable. Termination resistor packs (220/330 8 pin SIP) at RN201, RN202, and RN203 should not be installed.

TANOY COMPUTER PRODUCTS —

Detailed information on the jumpers is:

AØ off (normal configuration for primary) \ on (normal configuration for secondary) !-- SCSI Bus ID Al off (normal configuration) / A2 off (normal configuration)

Of the A2, A1, and AØ jumpers, A2 is the most significant bit, and AØ the least. Jumper installation represents a 1, meaning that with all three jumpers off, the device is identified as SCSI ID Ø. All three jumpers on yields a SCSI ID of 7.

- WS off (normal configuration). Wait Spin jumper determines whether the drive will immediately apply power to the motor at power-up. If the jumper is installed, the motor in the drive will not start spinning until the host sends a start/stop command across the SCSI bus.
- EP on (normal configuration). Enable Parity jumper when installed enables parity checking.
- SS off (normal configuration). Self Seek when installed causes the drive to perform random seeks for test purposes.

80 MEG SCSI Hard Drive 25-4160 (figure 163):

This drive is a half-height 5.25 inch Quantum Q280 drive. Jumpering is as follows:

<u>Primary Drive</u>: Jumpers installed at EP and Pl, with drive installed at the end of the SCSI cable and terminators installed at U31, U32, and U33.

<u>Secondary Drive:</u> Jumpers installed at EP, P1, and AØ, with drive installed at the middle of the SCSI cable and terminators removed from positions U31, U32, and U33.

Detailed information on the jumpers are:

AØ off (normal configuration for primary) \ on (normal configuration for secondary) !-- SCSI Bus ID A1 off (normal configuration) / A2 off (normal configuration)

Of the A2, A1, and AØ jumpers, A2 is the most significant bit, and AØ the least. Jumper installation represents a 1, meaning that with all three jumpers off, the device is identified as SCSI ID Ø. All three jumpers on yields a SCSI ID of 7.

- WS off (normal configuration). Wait Spin jumper determines whether the drive will immediately apply power to the motor at power-up. If the jumper is installed, the motor in the drive will not start spinning until the host sends a start/stop command across the SCSI bus.
- EP on (normal configuration). Enable Parity jumper when installed enables parity checking.
- SS off (normal configuration). Self Seek when installed causes the drive to perform random seeks for test purposes.
- RO off (normal configuration). Reset Option determines behavior of the drive upon receipt of a SCSI RST command.
- Pl on (normal configuration). Spare Jumper is a spare which affects nothing on the board.

8Ø MEG SCSI Hard Drive 25-416ØA (figure 162):

This drive is a 3.5 inch Quantum ProDrive 805. Jumpering is as follows:

<u>Primary Drive:</u> A jumper should be installed on EP, and the drive should be installed at the end of the SCSI cable. Termination resistor packs should be installed at RN2Ø1, RN2Ø2, and RN2Ø3.

<u>Secondary Drive</u>: Jumpers should be installed on AØ and EP, and the drive should be installed on the middle connector of the SCSI cable. The termination resistor packs at RN2Ø1, RN2Ø2, and RN2Ø3 should not be installed.

Detailed information on the jumpers is:

```
    AØ off (normal configuration for primary) \
        on (normal configuration for secondary) !-- SCSI Bus ID
    A1 off (normal configuration) /
    A2 off (normal configuration)
```

Of the A2, A1, and AØ jumpers, A2 is the most significant bit, and AØ the least. Jumper installation represents a 1, meaning that with all three jumpers off, the device is identified as SCSI ID Ø. All three jumpers on yields a SCSI ID of 7.

- WS off (normal configuration). Wait Spin jumper determines whether the drive will immediately apply power to the motor at power-up. If the jumper is installed, the motor in the drive will not start spinning until the host sends a start/stop command across the SCSI bus.
- EP on (normal configuration). Enable Parity jumper when installed enables parity checking.
- SS off (normal configuration). Self Seek when installed causes the drive to perform random seeks for test purposes.

17Ø MEG SCSI Hard Drive 25-4162 (figure 164):

This is a 5.25 inch half height drive. Jumpering is:

<u>Primary drive:</u> Parity Check jumper installed, Termination Power jumper in position B, no drive select bit jumpers installed, three termination resistors installed on small termination PCB near power connector.

Secondary drive: Parity Check jumper installed, Termination Power jumper in position B, drive select jumper bit 1 installed, termination resistors removed from small termination PCB near power connector.

Detailed jumpering information is:

Drive Selects:					
Bit 1	off	(normal	configuration	for	primary) \
	on	(normal	configuration	for	secondary) ! SCSI Bus ID
Bit 2	off	(normal	configuration)	ŧ	1
Bit 4	off	(normal	configuration)	ŧ	

Of the Bit 4, Bit 2, and Bit 1 jumpers, Bit 4 is the most significant bit, and Bit 1 the least. Jumper installation represents a 1, meaning that with all three jumpers off, the device is identified as SCSI ID \emptyset . All three jumpers on yields a SCSI ID of 7.

Motor Start	off (normal configuration). Motor Start jumper determines whether the drive will immediately apply power to the motor at power-up. If the jumper is installed, the motor in the drive will not start spinning until the host sends a start/stop command across the SCSI bus.
Parity Check	on (normal configuration). Parity Check jumper when installed enables parity checking.
Test Seek	off (normal configuration). Test Seek when installed causes the drive to perform random seeks for test purposes.
Terminator PWR	Position B (normal configuration). This jumper selects the source of terminator power. Position A causes terminator power to be supplied from the drive power connector; Position B causes terminator power to be provided by the interface; Position C the drive will provide terminator power to pin 26 of the SCSI cable. If Position C is used, Position A should also be jumpered.

-- Hard Drive.28 ---

344 MEG SCSI Hard Drive 25-4163 (figure 165):

This is a 5.25 inch full height drive. Jumpering is:

<u>Primary drive</u>: Parity Check jumper installed, termination power jumper in horizontal position, no drive select bit jumpers installed, two termination resistors installed at U53 and U54. Jumpers installed at J3, pins 1-2, and pins 3-4.

Secondary drive: Parity Check jumper installed, Termination Power jumper in horizontal position, drive select jumper bit 1 installed, termination resistors removed from U53 and U54. Jumpers installed at J3, pins 1-2, and pins 3-4.

Detailed jumpering information is:

Drive Selects:							
Bit 1	off	(normal	configuration	for	primary) \		
	on	(normal	configuration	for	secondary) !	SCSI Bus	s ID
Bit 2	off	(normal	configuration)		1		
Bit 4	off	(normal	configuration)				

Of the Bit 4, Bit 2, and Bit 1 jumpers, Bit 4 is the most significant bit, and Bit 1 the least. Jumper installation represents a 1, meaning that with all three jumpers off, the device is identified as SCSI ID \emptyset . All three jumpers on yields a SCSI ID of 7.

Motor Start	off (normal configuration). Motor Start jumper determines whether the drive will immediately apply power to the motor at power-up. If the jumper is installed, the motor in the drive will not start spinning until the host sends a start/stop command across the SCSI bus.
Parity Check	on (normal configuration). Parity Check jumper when installed enables parity checking.
Terminator PWR	horizontal position (normal configuration). The horizontal position causes terminator power to be supplied by the interface; the vertical position causes the drive to supply terminator power.
Ground Select	J3, jumpers installed on pins 1-2, and 3-4 (normal configuration). This ties AC and DC grounds together and connects them to chassis ground.

ST506 WD1003-WAH Hard Drive Only Controller Board 25-4058 (figure 166):

For Tandy 3000/4000 families.

Jumper	Position
--------	----------

W1	No Jump
W2	No Jump
W3	No Jump
W4	Jump 2 [°] to 3
W5	Jump 2 to 3
W6	Jump 2 to 3

Detailed jumpering is as follows;

- W1 NO JUMPER Standard factory setting. Status Read is non-latched. Dynamic drive select; i.e., SELECT = DRIVE BUSY. JUMPER - Status read is latched. Static drive select; i.e., SELECT asserted except during RESET.
- W2 NO JUMPER Standard factory setting. Primary addresses selected. JUMPER - Secondary addresses selected.
- W3 NO JUMPER This configuration used with WD11CØØA-22 or when W5, pins 2 and 3 are jumpered. JUMPER - Required on early units with WD11CØØ-22 and W5, pins 1 and 2 are jumpered.
- W4 JUMPER 2-3 Standard factory setting ties FIRMWARE sense bit input high JUMPER 1-2 Supports 2 head, 612 cylinder second drive with standard system setup for 4 head, 306 cylinder drive.
- W5 JUMPER 2-3 Standard factory setting JUMPER 1-2 Internal signal of power-up circuit controls WG* enable.
- W6 JUMPER 2-3 Standard factory setting. Ties input high. JUMPER 1-2 Ties input low. The 35 usec step rate cannot be selected with W6 in this position. Instead, the 16 usec step rate is selected.

Seagate ST-251 40MEG 5 1/4" ST-506 Hard Drive 25-4057 (figure 167):

DSx Jumper: The first four pins are used for drive select. Starting from the left, they are DS1, DS2, DS3, DS4. Jumper only one. The last three pairs of pins are left unjumpered.

Termination resistor pack $(22\emptyset/33\emptyset$ ohm 9-pin SIP) should be installed in the last drive on the cable.

NOTES AND JUMPERS

- TANDY COMPUTER PRODUCTS

40 MEG Rodime RO-3055 3 1/2* ST506 Hard Drive 25-4061A (figure 168):

DSx Jumper: Starting from the left, the drive select pins are DS1, DS2, DS3, DS4. Jumper only one.

Termination resistor pack $(22\emptyset/33\emptyset$ ohm 8-pin SIP) should be installed in the last drive on the cable.

70 MEG Rodime RO-5090 5 1/4* ST506 Hard Drive 25-4067 (figure 169):

DSx Jumper: Starting from the left, the drive select pins are DS1, DS2, DS3, DS4. Jumper only one.

Termination resistor pack $(22\emptyset/33\emptyset$ ohm 8-pin SIP) should be installed in the last drive on the cable.

40 MEG 3 1/2" Seagate ST-151 ST506 Hard Drive 25-4140 (figure 170):

Jumper JP7	Note:	Terminator	installed c	n last drive.
15-16				
13-14				
11-12				
9-1Ø				
7-8 (not	used)			
1-2 (not	used)			
3-4 (not	used)			
5-6 (not	used)			
	15-16 13-14 11-12 9-10 7-8 (not 1-2 (not 3-4 (not	15-16 13-14 11-12	15-16 13-14 11-12 9-10 7-8 (not used) 1-2 (not used) 3-4 (not used)	15-16 13-14 11-12 9-10 7-8 (not used) 1-2 (not used) 3-4 (not used)

8ø MEG CDC 94355 3 1/2* ST5ø6 Hard Drive for 5øøøMC 25-4141 (figure 171):

DSx	Jumper-J7	Note:	Terminator installed on last drive.
1	1-2		This drive is a Swift 94355-100, and
2	3-4		is rated at 16.5 mS, MFM, and 17 sectors.
3	5-6		
4	7-8		
RADIAL	9-1Ø (not used))	
SPINDLE CLK.	11-12 (not used))	

- TANDY COMPUTER PRODUCTS-

16 Bit SCSI-MC5000 Hard Drive Controller 25-6060 (figure 172):

RN2 and RN3 are the SCSI terminators. If the host adapter is not the first or the last SCSI device in a string of SCSI devices, or if inline terminators are used, then RN2 and RN3 must be removed. Otherwise, they must be installed. Fuse F1 should be installed. There are no jumpers for this board.

ST506-MC5000 Hard Drive Controller 25-6040 (figure 173 and 265):

There are two versions of this board. The first version is a Western Digital WD1006V-MC1. It has no jumpers. The control cable connects to J1. The primary drive data cable connects to J3. The secondary drive data cable connects to J2. Refer to owners manual for installation instructions and figure 173 for visual reference.

The second version is made by Adaptec. While there are several connectors on this board, the only ones used are J1 for the control cable, J3, and J2; J3 for the primary drive data cable and J2 for the secondary drive data cable. Test point 1 is used for factory testing. Refer to figure 265 for visual reference.

20 MEG CMS (1400 LT) 3 1/2* Hard Drive 25-3515 (figure 174): 20 MEG CMS (1400 LT) 3 1/2* Hard Drive Controller 25-3515 (figure 175):

This drive has no jumpers or drive select. There are also no jumpers or switches on the controller board. Installation is straight forward. It should be used with MS-DOS version $\emptyset 3.2 \emptyset. \emptyset 4$. Refer to Technical Bulletin PORTABLES:2 for detailed installation instructions. Be SURE that the hard drive controller power cable has a fuse in series with a current limiting resistor paralleled with a diode in line between the power supply and the battery. Without these components, extensive battery damage WILL occur.

The adapter that comes with this kit must be used once the hard drive is installed, as the original AC adapter does not supply enough current to the hard drive. Also, due to a manufacturing difference between the 1400LT and 1400FD the power supplies used are NOT compatible between machines. For more information on adapters see Technical Bulletin PORTABLES:4.

DOS version Ø3.20.04 comes with a RAMDISK option installing as a C: drive. This will interfere with the PREP.EXE program which performs a low level format. Make sure to rename the CONFIG.SYS and AUTOEXEC.BAT files temporarily in order to allow PREP.EXE to format properly. If you do not allow for this, an "Invalid Partition" message will occur after the low level formatting.

Parts that come in the kit:

- (1) hard disk drive
- (1) controller card

(1) LiteDrive utilities disk

- (3) plastic hex nuts (usually on the drive)
- (1) AC adapter (15V @ 1600 mAH)

*The control and power cables will be attached to the controller card.

20 Meg (1400FD) 3 1/2" Hard Drive Kit 25-3516 (figure 234):

This drive has one set of three jumpers for factory testing on the left hand side of the drive (facing the drive indicator light). The three jumpers are set from the factory as follows and should not be changed:

TANDY COMPUTER PRODUCTS.

DMW	Jumped	Wait Mode 1 Enabled	
WM2	Jumped	Wait Mode 2 Enabled (Spindle Motor OFF)
AG	Not jumped	Aging Test (Factory test mode)	

There are no jumpers or switches on the controller board. Installation is straight forward. It should be used with MS-DOS Ø3.30.00. Detailed instructions are in the hard drive installation guide.

The adapter that comes with this kit must be used once the hard drive is installed, as the original AC adapter does not supply enough current to the hard drive. Also, due to a manufacturing difference between the 1400LT and 1400FD the power supplies used are NOT compatible between machines. For more information on adapters see Technical Bulletin PORTABLES:4.

Parts that come in the kit:

(1)	Hard Disk Controller	Connector	(1)	Plastic Spacer
(1)	Hard Disk Controller	Card	(3)	Screws
(1)	Hard Disk Drive		(1)	Fan
(2)	HDD Mounting Bracket		(1)	AC Adapter
(1)	RF shield		(1)	Bad Sector Label
(1)	Hard Disk Controller	Cable		

Western Digital Hard Card Controller WD1002A-WX1 (figure 134):

The controller card is a WD1002A-WX1 type from Western Digital. It comes jumpered for a Tandy 1000/A/SX/TX. Jumpering of this board needs to be checked and jumpered according to the computer it is to be installed into.

WЗ	jumped	Enable 64k BIOS ROM
W4	2-3	I/O port 320
W5	not used	Trace between 1 and 2 is installed
W6	1-2*	RWC Disable
W7	2-3	IRQ 2, S1-7 must be on
W8	2-3	BIOS address C8ØØØHex.

\$1-1**	Jumper	installed	
S1-2**	Jumper	installed	
\$1-7	IRQ 2,	W7 must be	jumped 2-3

For a 3000 series or 4000 series computer the correct setting is given below.

For a 1200 or 1000SL/TL series the jumpers are the same as the 3000/4000 series except that S1-8 should be open (not jumped).

W3 jumped	Enable 64k BIOS ROM
W4 2-3	I/O port 32Ø
W5 not used	Trace between 1 and 2 is installed
W6 1-2*	RWC Disable
W7 1-2	IRQ 5, S1-7 must be off
W8 2-3	BIOS address C8ØØØHex.

S1-1**	Jumper installed
S1-2**	Jumper installed
S1-8	$3\phi\phi\phi/4\phi\phi\phi$ host computer (On = AT BUS Off = XT BUS).

In the 3000/4000 series computers only, when a second hard card is to be installed, jumper the second controller card according to the text above with the following exceptions:

W4	1-2	On	I/O port 324
W8	1-2	On	BIOS address CAØØØHex

* The W6 jumper should be set 1-2. Some of the hard card controller boards will not have W6 jumper staking pins on the board. On these boards W6 was not necessary. DO NOT add a jumper to these boards.

** NOTE: The settings for S1-1 and S1-2 are as follows (CLOSED refers to the jumper installed and OPEN refers to the jumper removed):

<u> 51-1</u>	<u>\$1-2</u>	HEADS	CYLINDERS
CLOSED	CLOSED	4	612
OPEN	CLOSED	4	3Ø6
CLOSED	OPEN	2	615
OPEN	OPEN	4	615
20 MEG Hard Card 25-1029 Fuji 3 1/2 inch 20 Meg Hard Drive FK 302-26/305-26 (figure 147): The Fuji Drive has 612 cylinders, 4 heads and will have one of two different style logic boards. Both styles will be discussed under this heading. Style One: Four Position Dip Switch (Drive Select) Positions 1-3 Off Position 4 On (DS1) Eight Position Dip Switch (Termination) Positions 1-8 On Style Two: Row of 4 pins located on same side of drive as the stepper motor and J2. DS1 1 On 2-4 Off Termination Resistor pack must be installed. The controller card is a WD1ØØ2A-WX1 type from Western Digital. It comes jumpered for a Tandy 1000/A/SX/TX. Jumpering of this board needs to be checked and jumpered according to the computer it is to be installed into. W3 jumped Enable 64k BIOS ROM W4 2-3 I/O port 32Ø Trace between 1 and 2 is installed W5 not used W6 1-2* RWC Disable W7 2-3 IRQ 2, S1-7 must be on W8 2-3 BIOS address C8000Hex. S1-1** Jumper installed S1-2** Jumper installed S1-7 IRQ 2, W7 must be jumped 2-3 For a 3000 series or 4000 series computer the correct setting is given below. For a 1200 or 1000SL/TL series the jumpers are the same except that S1-8 should be open (not jumped). W3 jumped Enable 64k BIOS ROM W4 2-3 I/O port 32Ø W5 not used Trace between 1 and 2 is installed W6 1-2* RWC Disable W7 1-2 IRQ 5, S1-7 must be off W8 2-3 BIOS address C8000Hex. (Continued on next page)

.

S1-1**	Jumper installed
S1-2**	Jumper installed
S1-8	3000/4000 host computer (On = AT BUS Off = XT BUS).

In the 1000 series computers, two hard cards are not supported.

.

In the 3000/4000 series computers only, when a second hard card is to be installed, jumper the second controller card according to the text above with the following exceptions:

W4 1-2 On I/O port 324 W8 1-2 On BIOS address CAØØØHex

* The W6 jumper should be set 1-2. Some of the hard card controller boards will not have W6 jumper staking pins on the board. On these boards W6 was not necessary. DO NOT add a jumper to these boards.

** NOTE: The settings for S1-1 and S1-2 are as follows (CLOSED refers to the jumper installed and OPEN refers to the jumper removed):

<u>S1-1</u>	S1-2	HEADS	CYLINDERS
CLOSED	CLOSED	4	612
OPEN	CLOSED	4	3Ø6
CLOSED	OPEN	2	615
OPEN	OPEN	4	615

20 MEG Hard Card 25-1029A/B (figures 148, 176, and 262):

The 25-1029B hard card has the same bubble as the 25-1029A hard card. It is a MiniScribe 8438 and has 615 cylinders and 4 heads. The bubble came with a shipping bracket that is taped to the stepper arm to prevent it from moving from the parked position. The correct BIOS ROM is 62-000094-030 or 62-000094-060.

The terminator is an 8 pin sip 220/330 ohms right behind the 34 pin control cable connector on the drive logic board. Drive select jumpers on the drive logic board are behind the 20 pin data cable. The one closest to the center and marked "1" is correct. There are 3 different versions of the logic board, given as follows (these jumpers should not be changed):

VERSION 1 (figure 176)	VERSION 2 (figure 148)	VERSION 3 (figure 262)
J12 all open	J12 all open	J12 all open
J13 CB jumpered	J13 CB jumpered	J13 open
J15 jumpered	J15 jumpered	J15 closed
J17 jumpered	J19 jumpered	
J18 1-2 jumpered	J17 jumpered	
J19 open	J21 1-2 jumpered	
	(continued on next page)	

The controller card is a WD1002A-WX1 type from Western Digital. It comes jumpered for a Tandy 1000/A/SX/TX. Jumpering of this board needs to be checked and jumpered according to the computer it is to be installed into.

W3 jumped W4 2-3	Enable 64k BIOS ROM I/O port 32Ø
W5 not used	Trace between 1 and 2 is installed
W6 1-2*	RWC Disable
W7 2-3	IRQ 2, S1-7 must be on
W8 2-3	BIOS address C8000Hex.
S1-1**	Jumper installed
S1-2**	Jumper installed
S1-7	IRQ 2, W7 must be jumped 2-3

For a 3000 series or 4000 series computer the correct setting is given below.

For a 1200 or 1000SL/TL series the jumpers are the same except that S1-8 should be open (not jumped).

W3 jumped	Enable 64k BIOS ROM
W4 2-3	I/O port 32Ø
W5 not used	Trace between 1 and 2 is installed
W6 1-2*	RWC Disable
W7 1-2	IRQ 5, S1-7 must be off
W8 2-3	BIOS address C8ØØØHex.
S1-1**	Jumper installed
S1-2**	Jumper installed
S1-8	$3\phi\phi\phi/4\phi\phi\phi$ host computer (On = AT BUS Off = XT BUS).

In the 1000 series computers, two hard cards are not supported.

In the 3000/4000 series computers only, when a second hard card is to be installed, jumper the second controller card according to the text above with the following exceptions:

W4 1-2 On I/O port 324 W8 1-2 On BIOS address CAØØØHex

* The W6 jumper should be set 1-2. Some of the hard card controller boards will not have W6 jumper staking pins on the board. On these boards W6 was not necessary. **DO NOT** add a jumper to these boards.

** NOTE: The settings for S1-1 and S1-2 are as follows (CLOSED refers to the jumper installed and OPEN refers to the jumper removed):

<u>S1-1</u>	S1-2	HEADS	CYLINDERS
CLOSED	CLOSED	4	612
OPEN	CLOSED	4	3Ø6
CLOSED	OPEN	2	615
OPEN	OPEN	4	615

20 MEG Hard Card 25-1032 (figure 177): The 25-1032 hard card has a new bubble. It is a Tandon TM362 and has 615 cylinders and 4 heads. The correct BIOS ROM is 62-000094-030 or 62-000094-060.

The terminator is an 8 pin sip $22\emptyset/33\emptyset$ ohms right behind the 34 pin control cable connector on the drive logic board. Pin 1 is toward the outside. Drive select jumpers on the drive logic board are behind the 20 pin data cable. The one closest to the center is W1.

The controller card is a WD1002A-WX1 type from Western Digital. It comes jumpered for a Tandy 1000/A/SX/TX. Jumpering of this board needs to be checked and jumpered according to the computer it is to be installed into.

W3 jumped	Enable 64k BIOS ROM
W4 2-3	I/O port 32Ø
W5 not used	Trace between 1 and 2 is installed
W6 1-2*	RWC Disable
W7 2-3	IRQ 2, S1-7 must be on
W8 2-3	BIOS address C8000Hex.
S1-1**	Jumper installed
S1-2**	Jumper installed

IRQ 2. W7 must be jumped 2-3

For a 3000 series or 4000 series computer the correct setting is given below.

For a 1200 or 1000SL/TL series the jumpers are the same except that S1-8 should be open (not jumped).

W3	jumped	Enable 64k BIOS ROM
W4	2-3	I/O port 32Ø
W5	not used	Trace between 1 and 2 is installed
Wб	1-2*	RWC Disable
W7	1-2	IRQ 5, S1-7 must be off
W8	2-3	BIOS address C8ØØØHex.

(continued on next page)

S1-7

S1-1**	Jumper	ins	stalled

S1-2** Jumper installed

S1-8 $3\emptyset\emptyset\emptyset/4\emptyset\emptyset\emptyset$ host computer (On = AT BUS Off = XT BUS).

In the 1000 series computers, two hard cards are not supported.

In the $3\emptyset\emptyset\emptyset/4\emptyset\emptyset\emptyset$ series computers only, when a second hard card is to be installed, jumper the second controller card according to the text above with the following exceptions:

W4 1-2 On I/O port 324 W8 1-2 On BIOS address CAØØØHex

* The W6 jumper should be set 1-2. Some of the hard card controller boards will not have W6 jumper staking pins on the board. On these boards W6 was not necessary. DO NOT add a jumper to these boards.

** NOTE: The settings for S1-1 and S1-2 are as follows (CLOSED refers to the jumper installed and OPEN refers to the jumper removed):

S1-1	S1-2	HEADS	CYLINDERS
CLOSED	CLOSED	4	612
OPEN	CLOSED	4	3Ø6
CLOSED	OPEN	2	615
OPEN	OPEN	4	615

The owner's manual shows these two jumpers installed. A later addendum states that they are no longer necessary and should be removed.

20 MEG Hard Card 25-1032A (figure 177):

The 25-1032A hard card has a new bubble. It is a Western Digital WD362 and has 615 cylinders and 4 heads. The correct BIOS ROM is 62-000096-033 or 62-000096-063.

The terminator is an 8 pin sip 220/330 ohms right behind the 34 pin control cable connector on the drive logic board. Pin 1 is toward the outside. Drive select jumpers on the drive logic board are behind the 20 pin data cable. The one closest to the center is W1.

The controller card is a WD1002A-WX1 type from Western Digital. It comes jumpered for a Tandy 1000/A/SX/TX. Jumpering of this board needs to be checked and jumpered according to the computer it is to be installed into.

W5	not used	Trace between 1 and 2 is installed
W4	2-3	I/O port 32Ø
W3	jumped	Enable 64k BIOS ROM

- W7 2-3 IRQ 2, S1-7 must be on
- W8 2-3 BIOS address C8ØØØHex.
- S1-1** Jumper installed

S1-2**	Jumper	r in	stalle	d		
S1-7	IRQ 2	, W7	must	be	jumped	2-3

For a 3000 series or 4000 series computer the correct setting is given below.

For a 1200 or 1000SL/TL series the jumpers are the same except that S1-8 should be open (not jumped).

W3 jumped	Enable 64k BIOS ROM
₩4 2-3	I/O port 32Ø
W5 not used	Trace between 1 and 2 is installed
W6 1-2*	RWC Disable
W7 1-2	IRQ 5, S1-7 must be off
W8 2-3	BIOS address C8ØØØHex.
S1-1**	Jumper installed
S1-2**	Jumper installed
S1-8	$3\phi\phi\phi/4\phi\phi\phi$ host computer (On = AT BUS Off = XT BUS).

In the 1000 series computers, two hard cards are not supported.

In the 3000/4000 series computers only, when a second hard card is to be installed, jumper the second controller card according to the text above with the following exceptions:

W4 1-2 On I/O port 324 W8 1-2 On BIOS address CAØØØHex

* The W6 jumper should be set 1-2. Some of the hard card controller boards will not have W6 jumper staking pins on the board. On these boards W6 was not necessary. DO NOT add a jumper to these boards.

** NOTE: The settings for S1-1 and S1-2 are as follows (CLOSED refers to the jumper installed and OPEN refers to the jumper removed):

<u>S1-1</u>	S1-2	HEADS	CYLINDERS
CLOSED	CLOSED	4	612
OPEN	CLOSED	4	3Ø6
CLOSED	OPEN	2	615
OPEN	OPEN	4	615

The owner's manual shows these two jumpers installed. A later addendum states that they are no longer necessary and should he removed.

....

S1-7

20 MEG Hard Card 25-1032B (figure 177)

The 25-1032B hard card is the same as the 25-1032A. It has a Western Digital WD362 bubble and has 615 cylinders and 4 heads. The correct BIOS ROM is 62-000274-030.

The terminator is an 8 pin sip 220/330 ohms right behind the 34 pin control cable connector on the drive logic board. Pin 1 is toward the outside. Drive select jumpers on the drive logic board are behind the 20 pin data cable. The one closest to the center is W1.

The controller card is a WD1 \emptyset @2A-WX1 type from Western Digital. It comes jumpered for a Tandy $1\emptyset$ @A/SX/TX. Jumpering of this board needs to be checked and jumpered according to the computer it is to be installed into.

W3 jumped	Enable 64k BIOS ROM
W4 2-3	I/O port 32Ø
W5 not used	Trace between 1 and 2 is installed
W6 1-2*	RWC Disable
W7 2-3	IRQ 2, S1-7 must be on
W8 2-3	BIOS address C8ØØØHex.
S1-1**	Jumper installed
S1-2**	Jumper installed

IRQ 2, W7 must be jumped 2-3

For a 3000 series or 4000 series computer the correct setting is given below.

For a 1200 or 1000SL/TL series the jumpers are the same except that S1-8 should be open (not jumped).

W3 jumped	Enable 64k BIOS ROM
₩4 2-3	I/O port 32Ø
W5 not used	Trace between 1 and 2 is installed
W6 1-2*	RWC Disable
W7 1-2	IRQ 5, S1-7 must be off
W8 2-3	BIOS address C8ØØØHex.
S1-1**	Jumper installed
S1-2**	Jumper installed
S1-8	$3\phi\phi\phi/4\phi\phi\phi$ host computer (On = AT BUS Off = XT BUS).

In the 1000 series computers, two hard cards are not supported.

In the 3000/4000 series computers only, when a second hard card is to be installed, jumper the second controller card according to the text above with the following exceptions:

W4 1-2 On I/O port 324 W8 1-2 On BIOS address CAØØØHex

* The W6 jumper should be set 1-2. Some of the hard card controller boards will not have W6 jumper staking pins on the board. On these boards W6 was not necessary. DO NOT add a jumper to these boards.

** NOTE: The settings for S1-1 and S1-2 are as follows (CLOSED refers to the jumper installed and OPEN refers to the jumper removed):

S1-1	S1-2	HEADS	CYLINDERS
CLOSED	CLOSED	4	612
OPEN	CLOSED	4	3Ø6
CLOSED	OPEN	2	615
OPEN	OPEN	4	615

The owner's manual shows these two jumpers installed. A later addendum atates that they are no longer necessary and should be removed.

20 MEG Hard Card 25-1032C, D, E and F (figure 178):

The 25-1032C, D and E's utilize a type of interface called IDE or Integrated Drive Electronics. The controller has been moved to a "smart" drive logic board which has a 40 pin connector to a "dumb" interface board (also known as a "paddle" board, see figure 178). The bubble is a WD93028 and looks like the TM362 bubble with a 46 pin header connector, as in figure 233. The header on the bubble has 46 pins, but the six pins closest to the DC power connector are option jumpers. The two pins closest to the DC connector are jumped, the other four are open; these are set by the factory and MUST NOT be changed (see figure 233). The 20 Megabyte drive has 782 cylinders, 2 heads, and 26 sectors per track. The "paddle" board only has a few buffer chips and a BIOS ROM.

Reference Technical Bulletins HD:50 and HD:52 for more information on using these hard cards in various computers.

Jumpers are as follows: Wl 1-2 BIOS address CAØØØ hex Wl 2-3 BIOS addresa C8ØØØ hex (default)

W2 1-2 I/O port 320 hex (default) W2 2-3 I/Ø port 324 hex

W3 1-2 IRQ5 (default)* W3 2-3 IRQ2 *Note: This is the default according to various softwa

*Note: This is the default setting for this jumper. It may need to be changed according to various software programs and hardware configurations, depending on the system you are dealing with.

For a 1000/A/SX/TX computer: W1 2-3 W2 1-2 W3 2-3 For a 1200/3000 series/4000 series/1000SL/TL series computer W1 2-3

W2 1-2 W3 1-2

More than one hard card is not permitted in the 1000 series. If you have a 3000/4000 series computer and want to use two 1032C hard cards, the second hard card is jumpered as follows:

W1 1-2 W2 2-3 W3 1-2

40 MEG Hard Card 25-4059 and 25-4059A (For 25-4059B see page Hard Drive.59) Figure 179 = Hard Card Controller Figure 1B0 = Seagate ST-157 40 MEG Hard Drive Logic Board Figure 264 = Western Digital WD344 40 MEG Hard Drive Logic Board

This is an RLL controlled hard drive. It has a faster transfer rate (7.5 Megabits/sec) and a faster access time (40 ms avg.) than previous hard cards. If the drive is partitioned as two 20 Megabytes, the average access time is about 28 milliseconds.

This hard card should be formatted using the "autoinstall" program which already comes on the hard card. Do not use any other low level formatting program such as HSECT. If you do, this will not work and it will erase the autoinstallation program that comes with the drive. An alternate formatting procedure using DEBUG will have to be used. Refer to the owner's manual for further instructions.

The 4059 drive is a Seagate ST-157R. The drive select jumper is the two pins of J7 closest to the terminator pak. The terminator is a 10 pin 220/330 ohm SIP. Pin 1 is the square pad closest to the power connector. Refer to figure 180.

The 25-4059A drive is a Western Digital WD-344R. The drive 0 select jumper is the two pins closest to the terminator pak. The terminator is a 8 pin 220/330 ohm SIP. Pin 1 is the square pad closest to the power connector. Refer to figure 264 which shows the component side of the logic board which is facing towards the bubble.

The controller card is a WD1002-27X type from Western Digital. It looks a lot like the 20 Meg hard card controller board, but it is RLL instead of MFM. It is not a legitimate substitute for the 25-1032 drive controller. The jumpers are in the same places but do different things. It is shipped set up for a Tandy 3000.

Tandy 3000/4000 series - Note: These jumpera will be the same for the 1200 or 1000SL/TL series except for S1-8 which should be off (not jumped).

W3 jumped	Enable 64k BIOS ROM
W4 2-3	I/O port 32Ø
W5 not used	Trace between 1 and 2 is installed
W6 1-2*	RWC Disable
W7 1-2	IRQ 5, S1-7 must be off
W8 2-3	BIOS address C8ØØØHex.
W9 off	No translate mode
S1-6	Jumped ALWAYS!!!
S1-8	AT class computer
All other jumpe:	rs on Sl are open.

Tandy 1000/A/SX/TX

W3 jumpe	i Enable 64k BIOS ROM
W4 2-3	I/O port 32Ø
W5 not us	sed Trace between 1 and 2 is installed
W6 1-2*	RWC Disable
W7 2-3	IRQ 2, S1-7 must be on
W8 2-3	BIOS address C8ØØØHex.
W9 off	No translate mode
S1-6	Jumped ALWAYS111
S1-7	IRQ 2, W7 must be jumped 2-3
All other	t jumpers on S1 are open.

15Ø MEG SCSI tape drive 25-4169 (figure 181):

There are three terminators which may or may not be installed depending on the location of the drive on the cable chain. Terminators should be installed in the last drive on the cable.

J4,	pin pair	1	off	(standard) Terminator power not supplied by
				tape drive.
			on	Terminator power supplied by the tape drive.
J4,	pin pair	2		Parity checking disabled.
			on	(standard) Parity checking enabled.

NOTES AND JUMPERS

	T,	A	N	D	Y	С	O	М	P	U	T	E	R	F	۲F	۲C	Ð	Ð	IC:	T	S	
--	----	---	---	---	---	---	---	---	---	---	---	---	---	---	----	----	---	---	-----	---	---	--

J4, pin pairs 3, 4, 5	SCSI ID Ø 1 2 (standard)* 3 4 5	Pin Pair 3 off off off off off on on	Pin Pair 4 off off on on off off	Pin Pair 5 off on off on off on
	6 7	on on	on on	off on
J5, pin pair 1 J5, pin pair 2	off (standa inserte	d.	tomatically	loads tape when loading tape.

* When using Xenix, SCSI ID #2 MUST be used.

20 MEG Internal Disk Cartridge Drive Version "A" 25-4064A (figures 1B2,266):

There are two versions of this board; a BETA I version (figure 182) and a BETA L version (figure 266). The cable is a 50 pin ribbon and connects to the vertical header pins. The horizontal header pins connect to the secondary DCS drive.

The BETA I version (figure 182) switches and jumpers are as follows:

SW1 ON SCSI ADDRESS LSB\ SW2 ON SCSI ADDRESS ->(SCSI ADDRESS 3) SW3 OFF SCSI ADDRESS MSB/ SW4 ON PARITY CHECKING ON SCSI BUS SW5 OFF NORMAL OPERATION SW6 OFF MANUAL POWER-ON-RESET

The jumpers on the drive logic board are set this way:

JP1 LUNØ (for drive Ø) JP23 jumped JP1Ø jumped J12 1-2 jumped J11 1-2 jumped J25 2-3 jumped The BETA L version (figure 266) jumpers are as follows: SW1 (which is actually jumpers) SW1-Ø Jumped SW1-1 Jumped SW1-2 Not jumped (continued on next page)

SW1-P Jumped - parity enabled SW1-D Not jumped - Diagnostic Operation Disabled SW1-S Not jumped - Not used

J12 Jumped J14 Jumped

The rest of the jumpers are used by the factory and should not be jumped or changed.

The interface board is the same one used on the 25-4064. The switches and jumpers are the same but the ROM is new. See Hard Drive.11 for jumper information on the interface board. The ROM is a version 4.48 and must be used with the 4.48 DCS utilities! The 4.48 utilities disk comes with the drive from TEW and, of course, the ROM is installed as well. National Parts kit number is AXX-7145 catalog number 25-4064A.

This drive cannot be used in the Tandy 1000 series. It can be installed in either slot of a Tandy 3000, 3000 fast, 4000, or a 3000HL. If installed in an early 3000HL and another hard drive is in the tower, the cooling fan in Technical Bulletin 3000HL:5 is mandatory.

40 MEG Internal Tape Cartridge System 25-4069/A (figure 183):

The 40 MEG internal tape cartridge installs into a 1200/3000/4000 series computer without a separate interface board. Instead, it plugs directly into the second floppy drive cable edge connector, and uses the host's FDC circuitry. It cannot be used in computer that supplies power on the floppy drive ribbon cable. It also cannot be used in a computer that does NOT have a twist in the ribbon cable. A longer ribbon cable with keyed connectors is included with the TCS kit and must be used. Lastly, the DC power cable normally used for the second floppy plugs to the tape drive.

Mini 3.8" x 2.1" factory pre-formatted cartridges plug into the front of the TCS, sort of like an "8-track" tape. Unlike our DCS's the cartridge may be reformatted using the "tape" utility (beware! - it takes in excess of an hour to format these tapes!).

There are no jumpers to set, but there is a terminator included with the TCS. It should be installed at RP1 ONLY if adding the TCS to a dual floppy drive system. This special setup can be accomplished by the use of the CMS Tape Drive Mux Adapter (90-2405) discussed in the Upgrade Board chapter on page 47. It also requires the use of a special CK80 cable (90-2406).

In a single floppy drive system, the terminator should be removed, which disables the termination. You must tell SETUP that there is no Drive B:, as the TCS is not accessed through the DOS's drive B:.

To run the TCS you must have a hard drive in the system, BIOS 1.03.01 or later and DOS 3.2.2 or later. As a note, BIOS version 1.03.01 for the Tandy 4000may give a SETUP error when booting that does not affect TCS operation. BIOS version 1.03.02 does not exhibit the error. Utility disks included with the TCS contain drivers to be installed onto drive C:, and also contain menu driven programs to access the tape drive through the utility "tape".

The difference between the 25-4069 and the 25-4069A is that the 25-4069 came with Version 1.71 utilities and the 25-4069A came with Version 2.04 utilities.

One final note: In the utilities menu there is an option for Concurrent Disk/Tape operation. This should be set to the off position ALWAYS. Refer to the installation manual for further details on running the TCS utilities.

60 MEG Internal Tape Cartridge System 25-4079 (figure 243):

The 60 MEG internal tape cartridge installs into a 1200/3000/4000 series computer without a separate interface board. Instead, it plugs directly into the second floppy drive cable edge connector, and uses the host's FDC circuitry. A longer ribbon cable with keyed connectors is included with the TCS kit and may be used. Lastly, the DC power cable normally used for the second floppy plugs to the tape drive.

Mini 3.8" x 2.1" factory pre-formatted cartridges plug into the front of the TCS, sort of like an "8-track" tape. Unlike our DCS's the cartridge may be reformatted using the "tape" utility (beware! - it takes in excess of an hour to format these tapes!). Catalog number for the 60 MEG tape cartride is 26-246.

There is only one set of 3 jumpers which are located on the side of the TCS. These jumpers determine if termination is enabled or disabled. **Termination should be enabled ONLY** if adding the TCS to a dual floppy drive system. This special setup can be accomplished by the use of the CMS Tape Drive Mux Adapter $(9\emptyset-24\emptyset5)$ discussed in the Upgrade Board chapter on page 47. It also requires the use of a special CK80 cable $(9\emptyset-24\emptyset6)$.

In a single floppy drive system, the 3 jumpers should NOT be jumpered, which disables the termination. You must tell SETUP that there is no Drive B:, as the TCS is not accessed through the DOS's drive B:.

To run the TCS you must have a hard drive in the system, BIOS 1.03.01 or later and DOS 3.2.2 or later. As a note, BIOS version 1.03.01 for the Tandy 4000may give a SETUP error when booting that does not affect TCS operation. BIOS version 1.03.02 does not exhibit the error. Utility disks included with the TCS contain drivers to be installed onto drive C:, and also contain menu driven programs to access the tape drive through the utility "tape".

One final note: In the utilities menu there is an option for Concurrent Disk/Tape operation. This should be set to the off position ALWAYS. Refer to the installation manual for further details on running the TCS utilities.

60 MEG Internal SCORPION TAPE DRIVE CARTRIDGE System 90-2060 (figures 184, 185 & 186)

This device has two different interface board styles -- one being a "long", or full-length card, and the other being a "short" card. The jumper settings for these boards are similar to one another, but not identical, and this goes for the software initialization procedures you will follow as well.

The jumpers on the tape drive mechanism itself (figure 184) are not to be changed. They are to be left as they are set from the factory.

Hardware Considerations:

"Long" board (SC499 interface) figure 185:

Jumpers for this board in an MS-DOS environment are:

CC, Y, KK, A9, A5, IRQ3, DRQ1*, DACK1*

* NOTE: The jumper settings for the DMA channels are the recommended settings. They may have to be changed depending on the configuration of the computer you are working on. Be sure to reconfigure the installation software for any change in jumpering.

This will set this board up for operation at port address Ø22ØH, interrupt request 3, DMA request 1 and DACK (data acknowledge) 1.

Jumpers for this board in a Xenix environment are:

CC, Y, KK, A9, A5, IRQ3, DRQ3, DACK3

This will set this board up for operation at port address Ø22ØH, interrupt request 3, DMA request 3 and DACK (data acknowledge) 3.

"Short" board (SC499R interface) figure 186:

Jumpers for this board in an MS-DOS environment are: KK, 45MB, Q24, ADDR CMP 3, ADDR CMP 4, ADDR CMP 6, ADDR CMP 7, ADDR CMP 8, ADDR CMP 10, IRQ3, DRQ1*, DACK1*.

* NOTE: The jumper settings for the DMA channels are the recommended settings. They may have to be changed depending on the configuration of the computer you are working on. Be sure to reconfigure the installation software for any change in jumpering.

This will set this board up for operation at port address Ø22ØH, interrupt request 3, DMA request 1 and DACK (data acknowledge) 1.

Jumpers for this board in a Xenix environment are:

KK, 45MB, Q24, ADDR CMP 3, ADDR CMP 4, ADDR CMP 6, ADDR CMP 7, ADDR CMP 8, ADDR CMP 10, IRQ3, DRQ3, DACK3.

This will set this board up for operation at port address $\emptyset 22\emptyset H$, interrupt request 3, and DMA request and acknowledge 3.

Additional information on Xenix software use can be found in the Xenix information manuals published and distributed by Technical Support Information Series.

AT SmartDrive Interface Adapter Board 25-4121 (figure 246):

This interface board allows the addition of an IDE AT SmartDrive to an AT class computer. There are six jumpers located on the interface board. These jumpers do not need to be changed for normal installations.

The SmartDrive Interface Board is designed for computers with a bus speed running up to 8 MHz. If the computer bus runs at a faster speed, then you must use the Reference Disk or setup program to change it to 8 MHz.

When installing a 40 Meg or 80 Meg SmartDrive in a 3000 series, 4000 or a 4000LX computer, you must use a SmartDrive interface (Catalog# 25-4121). The jumper settings for the IDE interface are as follows:

Jumper	Function		Assignment	(> = default)
JPl	Address Select	>	Removed	
				Secondary address 17Ø through
				rough 377 decoded (for systems
			having this	capability).
JP2	T/O Channel Beader	~	Twetellod	Caton I/O channel ready to the
JEL	1/0 onemier Ready		TUSCATTER -	Gates I/O channel ready to the system bus. (DO NOT REMOVE)
JP3		>	Removed -	Normal Operation.
		-	Kentoved	volumn obergement.
JP4		>	Installed -	Normal Operation.
				•
JP5		>	Removed -	Normal Operation.
JP6	Active	>	Installed -	Normal operation. Enables
				activity LED on interface board
			Removed -	Disables interface board activity LED

* Run the fdisk program to partition the SmartDrive.

* Run the format program to format the SmartDrive.

* NOTE: The AT style, IDE SmartDrives will not work with the ST506 Hard drives in the same machine. Both the ST506 and the IDE interfaces sit at the same ports and addresses. This conflict will not be tolerated by the system.

40 Megabyte Miniscribe 8051A 3.5 inch Smart Drive 25-4119 (figure 230):

Requires MS-DOS 3.30.00 or greater. Use drive type 17 - 5 heads, 977 cylinders

When only "1" drive is installed.

J4 1-2 OFF Used for SLAVE drive selection. When 2 drives are used this jumper should be OFF for the MASTER drive and ON for the SLAVE drive.

J4 3-4 OFF Selects 2:1 or 1:1 interleaving. (OFF is 1:1)

J4 5-6 OFF Used for MASTER select when only 1 drive is used. When 2 drives are used this jumper should be on for a MASTER drive and off for a SLAVE drive.

J4 7-8 OFF Is NOT used and should never be installed.

J4 9-1Ø OFF Disables or Enables I/O Channel Ready Signal (OFF is Disabled).

When 2 drives* are used as a master and slave.

MASTER		SLAVE	
J4 1-2	OFF	J4 1-2 01	N
J4 3-4	OFF	J4 3-4 01	FF
J4 5-6	ON	J4 5-6 0	FF
J4 7-8	OFF	J4 7-8 0	FF
J4 9-1Ø	OFF	J4 9-1Ø O	FF

* Some versions of this drive sold by other companies cannot be daisy chained (have more than one drive). Refer to Technical Bulletin HD:54 for a detailed description of this information.

NOTE: The AT style, IDE SmartDrives will not work with the ST506 hard drives in the same machine. Both the ST506 and the IDE interfaces sit at the same ports and addresses. This conflict will not be tolerated by the system.

80 Megabyte Miniacribe 7080A 19ms 3.5 inch Smart Drive 25-4120 (figure 231):

When only "1" Drive is installed.

J11 OFF Factory Setting OFF Factory Setting J13 J14 SEE NOTE "A" J15 OFF Factory Setting J16 OFF Factory Setting J17 ON Selects 80 MB or 40 MB (ON is 80 MB) J18 ON Selects 4 or 7 bytes ECC used (ON is 4 bytes) J19 ON Drive Select ON Drive Select J2Ø

When 2 drives are used as a master and slave.

MASTE	R.		SLAVE			
J11	OFF		J11	OFF		
J13	OFF		J13	OFF		
J14	SEE NOTE	"A"	J14	SEE	NOTE	"A"
J15	OFF		J15	OFF		
J16	OFF		J16	OFF		
J17	ON		J17	ON		
J18	ON		J18	ON		
J19	OFF		J19	ON		
J2Ø	ON		J2Ø	OFF		

NOTE A Install J14 if DRIVE TYFE "35" is going to be used. Remove J14 if DRIVE TYFE "28" is going to be used.

* To install the 80 Meg Drive: (Cat# 25-4120)

- Use MSDOS version 3.30.00 or greater.
- The 2500XL, 4016DX, 4016SX, 4000SX, and 4020/25/33LX ROM's are configured for Drive type 28.
- With Drive type 28, (977 cylinders, 10 heads), selected the drive has a configuration of about 81 megabytes. (Some of the newer ROM's have 981 cylinders, 10 heads listed for Drive type 28. This will not affect the operation of the drive.)
- * On the MS-DOS machines that do not have drive type 28 or 35 in BIOS, it will give you a "Hard Drive Failure" error after each power up or reboot. If the system boots from the floppy drive, the IDE drive can be accessed as normal.
- * If you have a 3000NL with a BIOS ROM version that is earlier than 1.04.02, the following applies:
 - Use Drive type 28, (8 heads, 1024 cylinders). Use SETUFNL1. The IDE drive capacity is about 68 Megabytes. However, the 3000NL will give you a "Hard Drive Failure" error after each power up or reboot. If the system boots from the floppy drive, the IDE drive can be accessed as normal.
 - The recommended method is to upgrade the BIOS ROM to 1.04.02, and use SETUPNL2. Now you can select Drive type 35 (not in earlier versions of ROMS). The IDE drive capacity is about 76 Megabytes.

- TANDY COMPUTER PRODUCTS-
- * When using Drive type 35 (9 heads, 1023 cyl.) you MUST put a jumper on J14 of the IDE drive. The location of J14 is shown in figure 231. By placing the jumper at J14 you change the head count from 10 heads to 9. The cylinder count from 977 cylinders to 1023 cylinders.
- * There is an error in the 80 Meg IDE drive installation manual. The first line of the chart on page 25 is incorrect. Here is the correct chart. > = default setting:

<u>J2Ø</u> ON OFF OFF	J19 ON OFF ON OFF	<u>Description</u> > Normal Mode, only drive on system. Master drive on two drive system. Slave drive on two drive system. Not used.
J18 ON OFF		Description > 4 bytes ECC used. NOTE: J11, J13, J15, and J16 are 7 bytes ECC used. factory settings and should be left alone.
J17 ON OFF		Description > Model 7080A 80 MB. Model 7040A 40 MB.
J14 ON OFF		Description Drive Type 35. > Drive Type 28.

* The Smartdrive jumper pins J11, J13-J2Ø, use micro-jumpers. Normal size jumpers will NOT work, though they appear to fit properly. If you do not have any micro-jumpers, you can wire wrap the correct jumper pins. You can get micro-jumpers from:

National Parts, Catalog# 25-1061, Part# JD-0007.

* NOTE: The AT style, IDE Smartdrives will not work with the ST506 Hard drives in the same machine. Both the ST506 and the IDE interfaces sit at the same ports and addresses. This conflict will not be tolerated by the system.

TANOY COMPUTER PRODUCTS

150 Megabyte Internal ESDI Hard Drive 25-4151 (figure 232):

				PRIMARY	SECOND	ARY		
J4				OFF	OFF			
J9				OFF	OFF			
JIØ				OFF	OFF			
J11				off	OFF			
J12				OFF	OFF			
J13				OFF	OFF			
J14				ON	ON			
J15	Jumper	Set	#1	ON	OFF	Drive	Select	1
J15	Jumper	Set	# 2	OFF	ON	Drive	Select	2
J15	Jumper	Set	#3	OFF	OFF	Drive	Select	3
J19				OFF	OFF			
J2Ø				ON	ON			
J21				ON	ON			
J23				OFF	OFF			
J24				ON	ON			
J25				OFF	OFF			
J27				ON	ON			
J29				ON	ON			
J3Ø				ON	ON			
J51Ø				ON	ON			
Termi	nation			Primary			Secor	ldary
1 Dri				Installed		•		
2 Dri	ves			Removed			Insta	alled

20 Megabyte SmartDrive 25-1045 (figure 233): The 20 Meg SmartDrive is a WD93028 bubble. It uses an IDE interface and has 782 cylinders and 2 heads.

J8 1-2 *ON RLL OFF MFM Translate

J8 3-4 Reserved

Δ.

- J8 5-6 ON Enables short-term burn-in loop tests *OFF Disables short-term burn-in loop tests
- J8 3-5 Some drives come jumpered like this from the factory. This setting in the on position will disable retries. It should not be jumped.

* = Default Settings

4Ø Megabyte SmartDrive 25-1Ø46 (figure 233):

The 4 \emptyset Meg SmartDrive is a WD93 \emptyset 44 bubble. It uses an IDE interface and has 782 cylinders and 4 heads.

- J8 1-2 *ON RLL OFF MFM Translate
- J8 3-4 Reserved
- J8 5-6 ON Enables short-term burn-in loop tests *OFF Disables short-term burn-in loop tests
- J8 3-5 Some drives come jumpered like this from the factory. This setting in the on position will disable retries. It should not be jumped.

* = Default Settings

40 MEG AT IDE Hard Drive, 25-4123 (figure 242):

The 40 MEG AT IDE hard drive utilizes a new type of interface, called IDE or Integrated Drive Electronics. This particular drive has an AT interface, which means that it cannot be used on the 1000 series computers. The majority of the controller has been moved to a "smart" drive logic board which has a 40 pin connector to a "dumb" interface. The bubble is a Conner CP3044 and has a 42.8 megabyte formatted capacity in 977 cylinders, 5 heads, and 17 sectors per track. It is a 1" high hard drive which installs into a standard 3 1/2" drive slot.

There are three connectors on this drive, the outside two are the power connectors (J3, which is the standard power connector, and J5 a 3-pin power connector) and the inner 40-pin header is the IDE port (J2). The configuration jumpers are located just behind the 3-pin power connector on the bottom of the drive (see figure 242).

ACT Provides signal to drive external LED and slave drive status DSP/CD Determines # of drives and primary/secondary status HSP Reserved for future use

Single IDE	Dual IDE Drive System	Dual IDE Drive System		
Drive System	Primary Drive	Secondary Drive		
ACT Not jumped	ACT Not Jumped	ACT Jumped		
DSP Not jumped	DSP Jumped	DSP Not jumped		
C/D Jumped	C/D Jumped	C/D Not jumped		
HSP Not jumped	HSP Not jumped	HSP Not jumped		

Western Digital WD1007V-MC1 ESDI Controller for Tandy 5000MC 900-2450 (figure 259):

There are no jumpers for this board. The setup is autoconfigured using the 5000MC reference disk.

Western Digital WD1007-SE1 AT ESDI Controller 90-2370 (figure 258):

This is a WD1007V-SE1 Winchester Hard Disk Controller interface. It is capable of controlling two ESDI compatible hard disk drives (such as the 25-4151 150 Meg).

The ROM format routine for this drive sets up your BIOS hard drive table for you, so it is not necessary to select a drive in SETUP. To run the ROM routine, run DEBUG and then type at the "-" prompt: G=CCØØ:5 (or G=C8ØØ:5 if W8 1-2 is ON). At this juncture it is recommended to run (in the following order) Low Level Format, Mark Defect List Auto, Verify Drive, Surface Analysis, Set Drive Type and Exit. Jumpers are as follows:

Pins	Default	Description (in default state)
W1:		
1-2	OFF	Enables look-ahead cacheing
3-4	OFF	Four byte ECC mode
5-6	OFF	Enables disk translation
7-8	OFF	Reserved
9-1Ø	OFF	Sectors per track determined by drive jumpers
11-12	OFF	Alternate sector disable
W7	1-2	IRQ 14 (IRQ 15 if 2-3 is jumpered)
W8	2-3	BIOS address is $CCØØ: ØØ$ (1-2 jumped = $C8ØØ: ØØ$)
W3	OFF	BIOS ROM enabled
W5	OFF	Single speed floppy drive
W6	OFF	Primary floppy address (3F2-3F7 Hex)
W12	OFF	Primary hard disk address (1FØ-1F7)

Western Digital WD1003V-MM1 16-bit Hard Drive Controller 25-4058 (figure 222):

All jumpers are off for factory defaults.

- W1: 1-2 Off Winchester(s) in latched mode. On Winchester(s) in non-latched mode.
 - 3-4 Off Four byte ECC. On Reserved.
 - 5-6 Off Cacheing enabled. On Cacheing disabled.
 - 7-8 Off Format incompatible with WD1ØØ3-WAH(WD1ØØ3-WA2). On Format compatible with WD1ØØ3-WAH(WD1ØØ3-WA2).

- W3: 1-2 Off Primary Winchester I/O address. On Secondary Winchester I/O address.
- W4: NOT USED. Floppy version only.
- W5: NOT USED. Floppy version only.
- W6: 1-2 OFF Bracket ground option, NOT USED. ON Connects bracket to board ground.

Hitachi CD ROM Player and Interface 25-1081 (figure 244):

Jumpers located on the interface card:

I/O address select

Connected	Switch	Address	
SØ		2ØØ-2ØF	
S1		22Ø-22F	
S2		24Ø-24f	
S3		26Ø-26F	
S4		3ØØ-3ØF	(Default)
S5		32Ø-32F	
S6		34Ø-34F	
S7		36Ø-36F	

DIP switches on the CD ROM Player

Notes:
1. All other switches not mentioned should be off.
2. S6 is for latched DREQ mode (set to ON) or edged DREQ mode (DEFAULT mode which is set to OFF)
3. Only one of switches S1 through S4 can be on at one time on one drive
S1 on and S5 on = DSØ S1 on and S5 off = DS4
S2 on and S5 on = DS1 S2 on and S5 off = DS5
S3 on and S5 on = DS2 S3 on and S5 off = DS6
S4 on and S5 on = DS3 S4 on and S5 off = DS7

-- Hard Drive.56 --

Mitsumi CDR-1000 Internal CD-ROM Drive 25-1077 (figure 312): Jumpers and Settings:

The port address, DMA channel, and IRQ channel, must be set on the interface adapter before installation and operation.

The port address is set using an 8 position dip switch (SW1). Positions 7 and 8 are not used and are always set to the OFF position. There are only "5" port addresses used. The default is 300 - 302 hex.

					2MT	TOUR	5				
Add	res	sses		1	2	3	4	5	6	7	8
3ØØ	-	3Ø2	hex	ON	ON	ON	ON	ON	ON	OFF	OFF
31Ø	-	312	hex	ON	ON	OFF	ON	ON	ON	OFF	OFF
34Ø		342	hex	ON	ON	ON	ON	OFF	ON	OFF	OFF
36Ø		362	hex	ON	ON	ON	OFF	OFF	ON	OFF	OFF
39Ø		392	hex	ON	ON	OFF	ON	ON	OFF	OFF	OFF

or the other

The DMA channel is set using JP1. Only DMA channel 3 or 1 can be used. The default is DMA 3.

DMA "3"	DMA "1"
1002	1 0-0 2
3004	3 0-0 4
5 0-0 6	5006
7 0-0 8	7008
JP1	JP1

The IRQ channel is set using JP2. Only IRQ 2, 3, or 5 can be used. The default is IRQ 3.

1 0 0 2 IRQ2 JP2 3 0-0 4 IRQ3 5 0 0 8 IRQ5

Hitachi External CDR-1503S CD-ROM Drive 90-2156 (figure 314):

The interface board is a CD-IFI4-A. $S\emptyset-S7$ jumper pin pairs set the I/O address.

PINS	ADDRESS (HEX)
0 0 \$ 7	36Ø-36F
0 O \$6	34Ø-34F
o o \$5	32Ø-32F
0-0 S4	(Factory Setting, 300-30F)
0 O \$3	26Ø-26F
0 0 S2	24Ø-24F
0 0 Sl	22Ø-22F
o o SØ	200-20F
	(continued on next meas)

On the rear of the drive is a rotary switch. Position Ø. Sets drive No. to Drive Ø. Position 1, Sets drive No. to Drive 1. Position 2. Sets drive No. to Drive 2. Position 3, Sets drive No. to Drive 3. Position NDS, Sets Single Operation Mode (No other drive attached to cable). Hitachi External CD-ROM Drive CDR-1700S 903-2376 (figure 313): The interface board is a CD-IFI4-A. SØ-S7 jumper pin pairs set the I/O address. PINs ADDRESS (HEX) 0 0 S7 36Ø-36F 0 0 S6 34Ø-34F 0 0 S5 32Ø-32F 0-0 \$4 (Factory Setting, 300-30F) o o \$3 26Ø-26F

o o \$2 24Ø-24F o o \$1 22Ø-22F o o SØ 200-20F On the rear of the Drive exists a dip switch. Switches 1 to 6 set the drive ID. DRIVE ID=Ø, SW 1 and 5 on (up) SW 2,3,4,6 off (down) SW1, Sets drive No. to Drive $\emptyset/4$ SW2, Sets drive No. to Drive 1/5 SW3, Sets drive No. to Drive 2/6 SW4, Sets drive No. to Drive 3/7 SW5, Drive No. selector (If on, you are selecting Drives \emptyset -3) (If off, you are selecting Drives 4-7)

SW6, Reserved (Not used)

40 Meg IDE Hard Card 25-4059B (figure 17B and 233):

The 25-4059B utilizes an IDE or Integrated Drive Electronics interface. The controller has been moved to a "smart" drive logic board which has a 40 pin connector to a "dumb" interface board (also known as a "paddle" board, see figure 178). The bubble is a WD93044 and looks like the TM362 bubble with a 46 pin header connector, as in figure 233. The header on the bubble has 46 pins, but the six pins closest to the DC power connector are option jumpers. The two pins closest to the DC connector are jumped, the other four are open; these are set by the factory and MUST NOT be changed (see figure 233). The 40 Megabyte drive has 782 cylinders, 4 heads, and 26 sectors per track. The "paddle" board only has a few buffer chips and a BIOS ROM.

Jumpers for the "paddle" board (figure 17B) are as follows:

W1 1-2 BIOS address CAØØØ hex W1 2-3 BIOS address C8ØØØ hex (default)

W2 1-2 I/O port 320 hex (default) W2 2-3 I/O port 324 hex

W3 1-2 IRQ5 (default)* W3 2-3 IRQ2

*Note: This is the default setting for this jumper. It may need to be changed according to various software programs and hardware configurations, depending on the system you are dealing with.

For a 1000/A/SX/TX computer: W1 2-3 W2 1-2 W3 2-3

For a 1200/3000 series/4000 series/1000SL/TL series computers W1 2-3 W2 1-2 W3 1-2

More than one hard card is not permitted in the 1000 series. If you have a 3000/4000 series computer and want to use two 4059B hard cards, the second hard card is jumpered as follows:

W1 1-2 W2 2-3 W3 1-2

Jumpers for the 25-4059B 40 Meg IDE Hard Drive (figure 233) are as follows:

The 40 Meg IDE hard drive uses a WD93044 bubble. It also uses an IDE interface and has 782 cylinders and 4 heads.

- J8 1-2 *ON RLL OFF MFM Translate
- J8 3-4 Reserved
- J8 5-6 ON Enables short-term burn-in loop tests *OFF Disables short-term burn-in loop tests
- J8 3-5 Some drives come jumpered like this from the factory. This setting in the on position will disable retries. It should not he jumped.

* = Default Settings

Seagate ST-325X 20 Meg IDE Hard Drive 25-1047 (figure 292):

The ST-325X utilizes the IDE-XT interface. The drive logically formats as 615 tracks, 4 heads, 17 sectors/track, and 512 bytes/sector for a total of 21.4 Megabytes. Technical Bulletin HD:48 is especially applicable with this drive. In addition the drive should not be tilted more than 5 degrees from horizontal or from vertical.

The jumpers are factory set and will not need to be changed for any standard configuration. The factory settings are:

J5	1-2	Reset Active High		
J5	3-4	Reset Active Low	(*Factory	Default)
J5	5-6	Life Test	-	

Seagate ST-351A/X 40 Meg IDE Hard Drive 25-1048 (figure 293):

The Seagate ST-351A/X IDE hard drive is jumper selectable for use in either a PC/XT compatible computer (such as a Tandy 1000RL) or a PC/AT compatible computer (such as a Tandy 2500XL or Tandy 4020SX). It has 5 heads, 980 cylinders, and 17 sectors per track. Figure 293 is a view of the hard drive, showing the location and numbering of the jumper pin pairs (shown jumpered for a single IDE hard drive in a PC/XT compatible computer).

(continued on next page)

-- Hard Drive.60 --

Jumper pin pair 1 is reserved for factory use. Default for this jumper is not installed.

Jumper pin pairs 2 and 3 define master or slave status. A jumper installed on pin pair 2 indicates that the hard drive is a master hard drive in a PC/AT compatible computer. A jumper not installed on pin pair 2 indicates that the hard drive is a slave hard drive in a PC/AT compatible computer.

A jumper installed on pin pair 3 of the MASTER HARD DRIVE ONLY, indicates that a slave drive is present in a PC/AT compatible computer. On the slave hard drive, jumper pin pair 3 must not be installed.

In a PC/XT compatible computer, two IDE hard drives are not supported. Jumper pin pair 2 must be installed on a single hard drive. Jumper pin pair 3 must not be installed.

Jumper pin pair 4 is reserved for factory use. Default for this jumper is not installed.

Jumper pin pair 5 and 6 define the type of computer the hard drive is installed in. In a PC/AT compatible computer, jumper pin pair 5 must not be installed and jumper pin pair 6 must be installed. In a PC/XT compatible computer jumper pin pair 5 must be installed and jumper pin pair 6 must not be installed.

Jumper pin pair 7 enables or disables a remote hard drive activity LED. If a jumper is installed, a remote hard drive activity LED is active (only if supported by the particular computer). If a jumper is not installed, a remote hard drive activity LED is not active. Default for this jumper is not installed.

Jumper pin pair 8 is reserved for factory use. Default for this jumper is not installed.

Jumper pin pair 9 is reserved for factory use. Default for this jumper is installed.

The following table summarizes the jumper settings for various configurations of master and slave hard drives.

			1	PC/AT Master	ł	PC/AT Master	ł	
<u>Pin Pair</u>	1	PC/XT Single	ł	Without Slave	ł	With Slave	ł	PC/AT Slave
1	1	Not Installed	ł	Not Installed	ł	Not Installed	1	Not Installed
2	ł	Installed	ł	Installed	1	Installed	ł	Not Installed
3	ł	Not Installed	ļ	Not Installed	1	Installed	1	Not Installed
4	1	Not Installed	ł	Not Installed	ł	Not Installed	ł	Not Installed
5	ł	Installed	ł	Not Installed	1	Not Installed	ł	Not Installed
6	1	Not Installed	ł	Installed	1	Installed	1	Installed
7	Ł	Not Installed	1	Not Installed	1	Not Installed	ł	Not Installed
8	ł	Not Installed	I	Not Installed	Ŧ	Not Installed	ļ	Not Installed
9	ļ	Installed	ļ	Installed	ł	Installed	ŧ	Installed

52 Megabyte Quantum LPS52 3.5 inch IDE Hard Drive 25-4124 (figure 294):

Requires MSDOS 3.30.00 or greater. Use drive type "Non-standard" and enter the following specifications:

Cylinders751Heads8Landing Zone750Sectors17PrecompØ

Other combinations of heads and cylinders can be used as long as the total drive size is less then 52 MEG, according to the formula given below based on the following notes:

* = multiply
 # of heads must be 16 or less
 # of cylinders must be 10/24 or less

(512 bytes/sector) * (# of sectors/cylinder) * (# of heads) * (# of cylinders)

For Novell use, you MUST use drive type 12 (49.6 Meg.). On machines that do not have the "Non-standard" option, use the drive type that comes closest to the 52 Meg capacity without exceeding 16 heads and 1024 cylinders and 52 Meg.

NEVER LOW LEVEL FORMAT (HSECT) THIS DRIVE!

The following are the jumper settings when only 1 drive is installed.

- DS installed Indicates that this drive is the "master" drive. When removed, this jumper indicates that this device is a slave drive.
- DM removed Indicates that no ProDrive P4ØAT or P8ØAT is installed on the bus. When installed, this jumper indicates that a ProDrive is on the bus.
- SP removed Disables self seek mode. When installed, indicates that the self seek mode is enabled.

The following are the jumper settings when two drives are installed. One will be designated "master" and the other will be the "slave".

	Master	Slave
DS	installed	removed
DM	removed	removed
SP	installed	removed

105 Megabyte Quantum LPS105 3.5 inch IDE Hard Drive 25-4130 (figure 294):

Requires MSDOS 3.30.00 or greater. On those machines that have the option, use drive type "Non-standard" and enter the following specifications:

Cylinders	755
Heads	16
Landing Zone	754
Sectors	17
Precomp	ø

Other combinations of heads and cylinders can be used as long as the total drive size is less then 105 MEG, according to the formula given below based on the following notes:

1. * = multiply
2. # of heads must be 16 or less
3. # of cylinders must be 1024 or less
(512 bytes/sector) * (# of sectors/cylinder) * (# of heads) * (# of cylinders)

For Novell use, you MUST use drive type 36 (84.9 Meg.). On machines that do not have the "Non-standard" option, use the drive type that comes closest to the 105 Meg capacity without exceeding 16 heads and 1024 cylinders or 105 Meg.

NEVER LOW LEVEL FORMAT (HSECT) THIS DRIVE!

The following are the jumper settings when only 1 drive is installed.

- DS installed Indicates that this drive is the "master" drive. When removed, this jumper indicates that this device is a slave drive.
- DM removed Indicates that no ProDrive P4ØAT or P8ØAT is installed on the bus. When installed, this jumper indicates that a ProDrive is on the bus.
- SP removed Disables self seek mode. When installed, indicates that the self seek mode is enabled.

The following are the jumper settings when two drives are installed. One will be designated "master" and the other will be the "slave".

	Master	<u>Slave</u>
DS	installed	removed
DM	removed	removed
SP	installed	removed

J5 Jumper Pins

202 MEG SCSI Hard Drive 25-4164 (figure 295): This is a 3.5 inch Seagate ST-1239N hard drive. Jumpering is:

> 2 6 4 5 3 1 * OFF OFF OFF SCSI IDØ OFF OFF ON SCSI ID1 OFF ON OFF SCSI ID2 OFF ON ON SCSI ID3 ON OFF OFF SCSI ID4 ON OFF ON SCSI ID5 ON ON OFF SCSI ID6 ON ON ON SCSI ID7 Jumper Pins 7,8 *ON Enables Parity **OFF Disables Parity** *OFF Drive motor spins up when power is applied Jumper Pins 9,10 ON Drive motor spins up on the first access to the drive *OFF Spindle motor sync provided internally Jumper Fins 11,12 ON Motor uses external spindle sync source

J6 Terminator power source

Jumper A,B	*Terminator power supplied by power connector
Jumper A,C	Terminator power supplied by SCSI interface
Jumper A,C and B,D	Terminator power supplied by power connector
	and provided to SCSI bus.

* denotes default settings

44Ø MEG SCSI Hard Drive 25-4167 (figure 296):

This is a 5.25 inch half height Seagate ST-2502N

The jumper block is located adjacent to the SCSI interface connector. Pin 1 is the lower pin closest to the SCSI interface connector. Fin 2 is directly above it.

Jumper pins 1,2	*ON Terminator power from power connector
Jumper pins 3,4	ON Terminator power from SCSI interface cable
	through a diode-fuse network
Jumper pins 2,4	ON Terminator power from SCSI interface cable
	through a fuse

(continued on next page)

-- Hard Drive.64 --

Jumper Pair	5*	4*	3*				pair pair							
Jumper	/ 9	7	5				pair							
Pins	\ 1Ø	8	6			•	•		-	-	-			
	OFF	OFF	OFF		SCSI	IDØ								
	OFF	OFF	ON		SCSI	ID1								
	OFF	ON	OFF		SCSI	ID2								
,	OFF	ON	ON		SCSI	ID3								
	ON	OFF	OFF		SCSI	ID4								
	ON	OFF	ON		SCSI	ID5								
	ON	ON	OFF		SCSI	ID6								
	ON	ON	ON		SCSI	ID7								
Jumper pair = Jur	nper p	oins												
6	11,12			ON Dr.	ive m		-	u	p or	h the	first	a	cces	S

6	11,12	ON Drive motor spins up on the first access
		to the drive
		*OFF Drive motor spins up when power is applied
7	13,14	ON Parity checking is enabled
		*OFF Parity checking is disabled
8	15,16	*OFF Reserved for factory use
9	17,18	*OFF Reserved for factory use
lØ	19,2Ø	*OFF Reserved for factory use

160 MB SCSI Tape Cassette System 25-4166/A (figure 297):

The 160 MB SCSI tape cassette system is a true half-height tape drive. The 25-4166 (non "A" version) connects to a 25-4161B SCSI interface board (it will not work with the 25-4161/A versions of the SCSI interface board). The 25-4166A will work with all versions of the SCSI interface board.

This drive has four sets of configuration jumpers located on the bottom of the drive near the back (see figure 297). The jumpers labeled S \emptyset , S1, and S2 represent the SCSI ID number and S3 represents parity enable.

	SCSI	ID	S2	S1	SØ
	Ø		on	on	on
	1		on	on	off
Factory default:	*2		on	off	on
	3		on	off	off
	4		off	on	on
	5		off	on	off
	6		off	off	on
Reserved for SCSI - interface board	> **7		off	off	off

S3 is the enable parity option. When jumpered (factory default), parity is enabled.

Conner 2 1/2* CP-2024 20 Meg IDE Hard Drive 25-3506/3551 (figure 299):

The hard disk drive is a 2-1/2" 20MB Conner CP-2024. It is interfaced to the main logic board via a removable flat flexible cable.

	Drives in System	E1	E2
*	Single Drive System	Not Installed	Installed
	Master of Two Drive System	Installed	Installed
	Slave of Two Drive System	Not Installed	Not Installed

* = Indicates Factory Setting

Conner CP-2064 60 Meg IDE Hard Drive 25-3552/3571 (figure 283):

The 3810 contains a 60MB 2.8" Conner CP-2064 hard disk drive. The 3810 hard drive is preinitialized at the factory with MS-DOS and DeskMate.

The jumper settings are:

	Drives in System	E1	E2
*	Master Drive	Installed	Not Used
	Slave Drive	Not Installed	Not Used

* = Indicates Factory Setting

Arcnet board 26-65\$ (figure 28):
E2-E3 Sets the port address to x\$
E4-E5 Sets the port address to 8x
The above two jumpers set the board address to 8\$
E7-E8 Used when 221 is installed
E8-E9 Used when 221 is not installed

Visicalc 64k memory board 26-4105 (figure 12):

1-2 Pulls up an input to U27 that was floating, install if missing
5-6 Pulls up an input to U9 that was floating, install if missing
25-28 Enables the first 32k on page 2 of the memory map
7-11 Selects the first 16k of the page set by above (page 1)
8-12 Selects the second 16k of the page set by above (page 1)
9-13 Selects the first 16k of the page + 1 set by above (page 1)
1Ø-14 Selects the second 16k of the page + 1 set by above (page 1)

144k RAM board setup with 16k of RAM for ARCNET 26-65Ø3 (figure 13): E24-E25 Required for proper function E28-E29 Not used with 16k RAMs (NOT required) E8-E9 Maps the RAM on page 15 of the memory map

144k RAM board setup with 64k of RAM for Visicalc 26-6503 (figure 14): E24-E25 Enables PAL output only in the upper 32k of the Z80 memory map E28-E29 Addresses the RAM on 2 pages of the memory map E2-E11 Maps the RAM on pages 2 & 3 of the memory map

Graphica Board 26-4104 (figure 29): S1 1 is off and 2,3, and 4 are on (Defines the port address as 80-8F)

This board requires the same modifications to the CPU board as the Hard Disk except the boot ROM should not be changed. Refer to Technical Sulletin II:26 for the modification procedure.

First Multi-Terminal board 26-6013 (figure 31):

E7-E8 Disables '8reak Detect' of USART for channel 4 E1Ø-E11 Disables 'Break Detect' of USART for channel 5 E13-E14 Disables '8reak Detect' of USART for channel 6

S1 is ON S2-S8 are OFF (Defines port address as 70H-7EH)

Second Multi-Terminal board:

E7-E8 Disables '8reak Detect' of USART for channel 4 E1Ø-E11 Disables '8reak Detect' of USART for channel 5 E13-E14 Disables '8reak Detect' of USART for channel 6

S2 is ON S1,S3-S8 are OFF (Defines port address as 60H-6EH)

68000 6 MHz CPU board (figure 16): E3-E10 Sets the interrupt acknowledge level (level should match E19) E16-E19 Sets the interrupt level at 5 E43-E44 Causes the refresh circuit to output a pulse every 31.5 us E47-E48 Selects a 6 MHZ clock for the 68000Pin 11 of U34 pulled out of the socket & tied to ground

- TANDY COMPUTER PRODUCTS

Reduced size 68000 6 MHz CPU board (figure 17): E1-E2 Causes the refresh circuit to output a pulse every 31.5 us E4-E7 Selects a 6 MHZ clock for the 68000

68000 first memory board 26-6011 (either 128K or 256K, figure 18): E13-E14 Connects A14 directly to the RAM E15-E16 Connects A16 directly to the RAM E17-E18 Connects A15 directly to the RAM E11-E12 Supplies A17 inverted to 1/2 the RAM Position 2 of S1 on. This maps the board at 000000 to 03FFFF

68000 second memory board 26-6011 (either 384K or 512K): Same as the first memory board except both 2 & 3 should be in the on position on S1 to map the RAM on this board between 040000 to 07FFFF.

68000 third memory board 26-6011 (either 640K or 768K): Same as the first memory board except both 2 & 5 should be in the on position on S1 to map the RAM on this board between 080000 to 08FFFF.

68000 fourth memory board 26-6011 (either 896K or 1024K): Same as the first memory board except 2, 3, and 5 should be in the on position on S1 to map the RAM on this board between 0C0000 to 0FFFFF.

8 MHz 68000 CPU board 26-6014 (figure 66): E1-E2 Selects 15.5 usec refresh timing E6-E7 Sets "PCLOCK" to 8 MHz

512K/IMEG 68000 RAM board witb 512K 26-6014 (figure 67): E1-E2 Select 512K RAM size E5-E6 Along with S1 and E1-E2 maps RAM at address 000000 to 07FFFF E7-E8 Configures A19 to select RAS multiplexor E12-E14 Configures for 150 ns RAM (Normal configuration) E13-E14 Configures for 200 ns RAM S1 position 2 should be on all others should be off

512K/1MEG 68000 RAM board with 1MEG 26-6014 (figure 68): E2-E3 Select 1MEG RAM size E5-E6 Along with S1 and E2-E3 maps RAM at address ØØØØØØ to ØFFFFF E7-E8 Configures A19 to select RAS multiplexor E12-E14 Configures for 150 ns RAM (Normal configuration) E13-E14 Configures for 200 ns RAM S1 position 2 should be ON. all others should be OFF

Tandy 1000 RS-232C board 25-1006 (figure 54): Selects primary UART address (3F8-3FF) E2-E3 Note: E2-E3 is equivalent to no jumper at all. E1-E2 would select secondary UART address (2F8-2FF)

Tandy 1000 First external RAM board 25-1004 (figure 55): No jumpers Indicates board has 128K of RAM with DMA installed E1-E2 Indicates board has 256K of RAM with DMA installed

Tandy 1000 Second external RAM board 25-1009 (figure 56): E3-E4 only Indicates board has 128K of RAM with no DMA. E1-E2 and E3-E4 Indicates board has 256K of RAM with no DMA.

Tandy 286 Express 80ard 25-1035 (figure 187):

The 286 Express 80 ard uses a main interface board and a small adapter board called a "daughter board". The daughter board that came with the kit worked with a Tandy 1000A or 1000SX. To use this product in a Tandy 1000, a special daughter board was needed. The original part # for this special daughter board is AXX-713Ø, however it is no longer available. The entire assembly, main interface board and daughter board, must be exchanged as a complete unit. Note that there are two separate exchange part numbers, which include the main interface board and the appropriate daughter board needed.

Switch S1-1, S1-2 and S1-1Ø are used to set the clock speed for math coprocessor option

<u> S1-1</u>	S1-2	S1-1Ø	
ON	ON	ON	Invalid setting
ON	OFF	OFF	8 MHz clock speed (80/287)
OFF	ON	ON	5 MHz clock speed (80287-3)
OFF	OFF	OFF	No numeric coprocessor (standard)

SW1-3 is used for the computer model

S1-3 ON Tandy 1000SX (standard) Tandy 1000 or Tandy 1000A OFF
S1-4	S1-5	S1-6	S1-7		
OFF	OFF	OFF	OFF	64K	
OFF	OFF	OFF	ON	128K	
OFF	OFF	ON	OFF	192K	
OFF	OFF	ON	ON	256K (standar	d)
OFF	ON	OFF	OFF	32ØK	
OFF	ON	OFF	ON	384K	
OFF	ON	ON	OFF	448K	
OFF	ON	ON	ON	512K	
ON	OFF	OFF	OFF	576K	
ON	OFF	OFF	ON	64ØK	

S1-4 through S1-7 are used for memory limits for caching

Switch S1-8 must always be OFF

Switch S1-9 sets the IO address

<u>S1-9</u>

ON for I/O address Ø3EØh OFF for I/O address Ø1ØØh (standard)

The jumper on the board must always be on the top two pins.

Tandy 2000 Hard Drive controller board 26-5127 (figure 60):E2-E3Connects read data from drive to data in of WDll00 chip

Tandy 2000 Monochrome graphics hoard 26-5140 (figure 61): The following are trace jumpers on the board. The combination of these traces set the board configuration port to C0. E0. E1, E2, E3. E4, and E5

Tandy 2000 Color graphics board 26-5140 (figure 62): The following are trace jumpers on the board. The combination of these traces set the board configuration port to C2. E0, E2, E3, E4, and E5

Tandy 2000 First external Ram board 26-5161 (figure 63): B2-S Selects board address range from 40000 to 7FFFF (384K or 512K)

Tandy 2000 Second external RAM board 26-5161 (figure 64):B3-SSelects board address range from 80000 to BFFFF (640K or 768K)E-FEnables BUSD2* and BUSD3* for access to second RAM board

Tandy 2000 Digi-Mouse/Clock board 26-5144 (figure 65): For the 8741 processor chip (U6): E1-E2 Selects 4 Mhz clock E4-E5 Connects 5 vdc to U6.26

For all other processor chips (U6): E2-E3 Selects 8 Mhz clock On PCBs with no staking pins you will need to cut the trace from E1-E2 and use jumper wire to connect E2-E3 to select the faster clock speed.

Tandy 1200 Captain multi-function board 25-3061 (figure 57): The Captain board adds three functions to the Tandy 1200. RAM upgrade to 384K, a parallel port and a serial port. The switches and jumpers will have different positions depending on the way the board is configured. Multiple descriptions for the same jumper or switch will indicate the possible configurations.

Switch 1 positions 1-3 indicate the amount of RAM on the board as follows:

RAM	SW1-1	SW1-2	SW1-3
ØK	ON	ON	ON
64K	OFF	ON	ON
128K	ON	OFF	ON
192K	OFF	OFF	ON
256K	ON	ON	OFF
32ØK	OFF	ON	OFF
384K	ON	OFF	OFF (standard)

SW1-4 OFFAddresses memory after the 256K on main logic boardSW1-5 ONConfigures serial port as COM1 (standard)OFFConfigures serial port as COM2SW1-6 ONConfigures parallel port as LPT1

OFF Configures parallel port as LPT2 (standard)

SW1-7 ONEnables serial port(standard)OFFDisables serial portSW1-8 ONSelects TIME1 for LPT1 or TIME2 for LPT2(standard)

OFF Disables parallel port

RAM Specification: 64K X 1 150nsec OR 200nsec BUT not both.

Note: These boards may come configured with 150 or 200 nsec RAMs installed. Both combinations will work, however care should be taken not to mix RAM. The board should contain ALL 150 or 200 nsec RAM.

JPR1 is a 15 pin block used to configure the serial port. The two standard configurations are for a modem or a serial printer.

Modem ---- 1-2, 3-4, 6-7, 8-9, 11-12, and 13-14 (standard) Printer -- 2-3, 4-5, 7-8, 9-10, 12-13, and 14-15

- JPR2 2-3 Selects RS-232 type serial input (standard) 1-2 Selects current loop type serial input
- JPR3 1-2 Selects IRQ3 line for serial port COM2 2-3 Selects IRQ4 line for serial port COM1 4-5 Selects IRQ5 line for clock/calendar 5-6 Selects IRQ7 line for clock/calendar

Standard configuration for JPR3 is 2-3 and all others off.

Tandy 1000 memory plus board 25-1011 (figure 81): E1-E2 ON Selects one bank, or row, of RAM

OFF Selects two banks, or rows, of RAM E3-E4 ON Selects 64K RAM chips OFF Selects 256K RAM chips

Tandy 3000 2 MEG Memory Board 25-4030 (figure 103):

This memory board can range from 512K (.5 MEG) to 2 MEG in 512K increments. S1 is configured depending on which board position and amount of RAM on the board.

Set the start address of memory bank \emptyset by setting Sl positions 1-4. The dip switches are to be set on 1 megabyte boundaries depending upon whether the memory board is the 1st, 2nd, 3rd... or last (7th), memory board in the computer.

						Start	Address	
Doord Dee	61 1	03 0	0	61 (D = = 1= - A			Banle 3
Board Pos.	<u>\$1-1</u>	<u></u>	<u></u>	<u>\$1-4</u>	Bank Ø	Bank 1	Bank 2	Bank 3
First board	OFF	ON	ON	ON	100000	18øøøø	200000	28ØØØØ
	ON	OFF	ON	ON	2øøøøø	28ØØØØ	3øøøøø	38øøøø
Second board	OFF	OFF	ON	ON	3øøøøø	38øøøø	4ØØØØØ	48ØØØØ
	ON	ON	OFF	ON	4ØØØØØ	48ØØØØ	5øøøøø	58øøøø
Third board	OFF	ON	OFF	ON	5øøøøø	58ØØØØ	6øøøøø	68ØØØØ
	ON	OFF	OFF	ON	6øøøøø	68ØØØØ	7øøøøø	78ØØØØ
Fourth board	OFF	OFF	OFF	ON	7ØØØØØ	78ØØØØ	8øøøøø	88ØØØØ
	ON	ON	ON	OFF	8øøøøø	88ØØØØ	9øøøøø	98øøøø
Fifth board	OFF	ON	ON	OFF	90000	98øøøø	AØØØØØ	A8ØØØØ
	ON	OFF	ON	OFF	AØØØØØ	ABØØØØ	вøøøø	B8ØØØØ
Sixth board	OFF	OFF	ON	OFF	Bøøøøø	B8ØØØØ	CØØØØØ	C8ØØØØ
	ON	ON	OFF	OFF	CØØØØØ	свøøøø	Døøøøø	D8ØØØØ
Seventh board	OFF	ON	OFF	OFF	Døøøøø	D8ØØØØ	EØØØØØ	E8ØØØØ
	ON	OFF	OFF	OFF	EØØØØØ	E8ØØØØ	FØØØØØ	F8ØØØØ

S1 positions 5 and 6 select which banks contain memory chips. Set as follows:

S1-5 S1-6 ON ON If only Bank Ø contains memory chips.
OFF ON If Bank Ø and Bank 1 contain memory chips.
ON OFF If Bank Ø, Bank 1, and Bank 2 contain memory chips.
OFF OFF If Bank Ø, Bank 1, Bank 2, and Bank 3 contain memory chips.
S1-7 Not used

S1-8 Off Main logic board of computer has 512K or 64ØK main memory On Main logic board of computer has 1Meg

Tandy 1200 Graphics Tender board 25-3043 (figure 5B): Jumper blocks JPR1, JPR3, and JPR6 are factory defaults. JPR8 is the only user selectable option jumper.

JPR1 pins 1-2 jumpered JPR3 pins 1-2 jumpered JPR6 jumpered JPR8 pins 1-2 selects color monitor pins 2-3 selects monochrome monitor

Tandy 1200 Graphica Master board 25-3044 (figure 59):

There are several different ways of jumpering the Graphics Master board depending on the type of monitor attached. The board is able to drive a color (RGB) monitor and a monochrome (composite) monitor. However only one can be the primary, or boot monitor, while the other will be the secondary monitor. Following are three most common combinations and the jumper configuration for them:

Color primary with optional monochrome secondary: JPRIA, JPRIE, JPRIC, JPR4, JPR5 (middle two pins), JPR6 and SW1 (switch on back of board) in the down position.

Monochrome primary with optional color secondary: JPRIA, JPRIB, JPRIC, JPR4, JPR5 (middle two pins), JPR6, JPR7, and SW1 (switch on back of board) in the up position.

Color attached to Graphics Master and monochrome attached to monochrome board: JPRIA, JPRIC, JPR4, JPR5 (middle two pins), JPR6 and SW1 (switch on back of board) in the down position.

Dual Display Graphics Adapter Video Board 25-3045 (figure 116):

Default Display Mode	SW1	SW2	Monitor Type	SW3	SW4
Monochrome	On	Off	Composite	Off	On
Color	Off	On	Monochrome or RGB	On	Off
Emulation	Off	Off	IBM Enhanced	Off	Off
Composite Monitor	SW5		SW6 is ALWAYS Off		
Color	On				
Monochrome	Off				

Several examp	les are listed	below to be	used with switch	explanations above:
Monitors	Mode	Туре	Switches On	Switches Off
CM-2/4/10	Color	RGB	2,3	1,4,5,6
VM-2/4	Color	Composite	2,4	1,3,5,6
VM-3	Monochrome	Monochrome	1,3	2,4,5,6
VM-3	Emulation	Monochrome	3	1,2,4,5,6
Color TV	Color	Composite	2,4,5	1,3,6
RAM Specifica	tion: 256KX1	15ønsec		

Dual Display Graphics Adapter Revision A 25-3045A (figure 153):

Monochrome Mode E1-E2 Off	Monitors VM-3/5		
E4-E5 On			
E6-E7 On			
Color Mode	Monitors		
El-E2 On	CM-2/4/10/11	Color TV Monitor	VM-2/4
E4-E5 On			
E6-E7 Off			

Deluxe Text Display adapter 25-3046 (figure 104):

This board is designed to be used with the CM-1 and VM-1 monitors. There are no jumpers on the display board. However the computer must be configured for this board as follows:

Tandy 1200: S1-5 OFF and S1-6 OFF Tandy 3000 Standard: E2-E3 and Setup program configured as Monochrome. Tandy 3000 Gate Array: E5-E6 and Setup program configured as Monochrome.

Deluxe Text Display Adapter Boards Revision B/C 25-3046B/C (figure 1BB):

These boards are identical except for the crystal at location U41. The Revision B board works with CM-1 and VM-1 and has a 22.285 MHz crystal at location U41. The Revision C board works with VM-5 and has a 14.31818 MHz crystal at location U41.

Deluxe Graphics Display Adapter 25-3047 (figure 105): This board is designed to be used with the CM-1 and VM-1 monitors. However it can be configured for other high resolution monitors. When more then one switch setting is given, the setting marked (standard) is for use with the CM-1 and VM-1 monitor.

S1	OFF	Board responds as both monochrome and color (standard)
	ON	Board responds color adapter only
S2	OFF	Along with S3 selects 25 KHz horizontal sync. (standard)
53	OFF	Along with S2 selects 25 KHz horizontal sync. (standard)
S 4	OFF	Vertical sync negative (standard)
	ON	Vertical sync positive
S 5	OFF	Horizontal sync negative (standard)
	ON	Horizontal sync positive
S6	ON	Enables RED to be sent to display (standard)
	OFF	Disables RED
S7	ON	Enables GREEN to be sent to display (standard)
	OFF	Disables GREEN
S8	ON	Enables BLUE to be sent to display (standard)
	OFF	Disables BLUE

W7 Between lower two horizontal pins for all configurations.

EGA/CGA Graphics Adapter 25-3048 (figure 189):

Monitor type	Switch 1	1 Switch 2	Switch 3	Switch 4
VM-5 monochrome	Off	Off	On	Off
CM-5, CM-11	Off	Off	Off	On
(standard RGB)				
EGM1 (enhanced RGB)	Off	On	On	Off
Default Mode at Fowe EGA Operation Compatible Operation	•	Switch 5 Off On		

There are two jumpers on this board. The first jumper is labeled 2XX/3XX and should be jumpered as such on the two pins closest to the back of the board, where the video connectors are. This is the only supported setting for this jumper.

The second jumper is a normal/enhanced jumper. Place the jumper over the two upper pins (the Normal setting) when monochrome and standard RGB monitors are used, and the two lower pins (the Enhanced setting) when enhanced RGB monitors (EGA) are used.

Note: To use the Tandy 1000's on board color graphics adapter (which may be necessary for some unique software programs) without removing the EGA/CGA adapter, it is necessary to change the switch setting as follows:

Switch 1	Switch 2	Switch 3	Switch 4	Switch 5
Off	On	Off	On	Off

Be sure to connect the video signal cable to the Tandy 1000 RGB video output when operating in this mode. To resume use of the EGA/CGA adapter, simply reset the switches to their original settings, and reconnect the monitor to the EGA/CGA adapter board.

EGA/CGA Graphics Adapter Board Revision A 25-3048A (figure 190): The EGA/CGA Graphics Adapter Board will support a VM5, CM5, CM11, and an EGM1. Below is a compatibility Specification Chart:

	Monochrome	Color Display	Enhanced Color
	Display	(RGB/CGA)	Display (ECD/EGA)
Horizontal Scan Rate	1B.432 KHz	15.75Ø KHz	21.B5Ø KHz
Vertical Scan Rate	50 Hz	6Ø Hz	60 Hz
Video Band Width	16.275 MHz	14.318 MHz	16.257 MHz
Maximum Resolution	72Ø x 35Ø	64Ø x 2ØØ	64Ø x 35Ø

Switch settings if EGA/CGA Adapter is the only video board in the system: SW1-1 SW1-2 SW1-3 SW1-4 On Off Off On RGB 40 x 25 Off Off Off Ön RGB BØ x 25 Off On Off Ön EGA Hi Resolution On On On Off EGA Low Resolution Off Off On Off Monochrome

Switch settings for EGA/CGA Adapter as the primary video board and a color or monochrome video board as the secondary video board:

SW1-1	SW1-2	SW1-3	SW1-4	Primary Monitor	Secondary Monitor
Off	Off	Off	On	RGB BØ x 25	Monochrome
On	Off	Off	On	RGB 4Ø x 25	Monochrome
Off	On	On	Off	EGA Hi Resolution	Monochrome
On	On	On	Off	EGA Low Resolution	Monochrome
Off	Off	On	Off	Monochrome	RGB BØ x 25
On	Off	On	Off	Monochrome	RGB 4Ø 🗙 25

Switch settings for EGA/CGA Adapter as the secondary video board and a color or monochrome video board as the primary video board:

SW1-1	SW1-2	SW1-3	SW1-4	Primary Monitor	Secondary Monitor
Off	On	Off	On	RGB 80 x 25	Monochrome
On	On	Off	On	RGB 4Ø x 25	Monochrome
Off	Off	On	On	Monochrome	EGA Hi Resolution
On	Off	On	On	Monochrome	EGA Low Resolution
Off	On	On	On	Monochrome	RGB 8Ø x 25
On	On	On	On	Monochrome	RGB 4Ø x 25

Switch settings for SW1-5 and SW1-6 determine the power on mode for the EGA/CGA Adapter board. SW1-7 and SW1-8 are reserved for future use and are both in the OFF position:

		Switch	Setting
Power On Mode	Monitor Type	SW1-5	SW1-6
EGA	A11	On	On
MDA/HERC	EGA/Monochrome	Off	On
CGA	EGA/RGB	On	Off

Jumper settings

Jumper	Jumper Pins	Setting environment
P1	1 and 2*	EGA monitor attached
P1	2 and 3	RGB or monochrome monitor attached
P3	1 and 2*	Normal operation
P3	2 and 3	Select port #2
P3	4 and 5	When not using Automode
P3	5 and 6*	When using Automode
P3	7 and 8	When using SLOT 8 (IBM PC)
P3	8 and 9*	When not using SLOT 8
P3	1Ø and 11*	When using Automode
P3	11 and 12	When not using Automode

* Denotes factory settings

VGA Adapter Board 25-4043 (figure 191): Dip Switches 1-4 set to the off position. W1 pins 1-2

No other modes or switch and jumper configurations are supported at this time.

EGA-Enhanced Graphics Adapter Board 25-4037 (figure 149):

There is an eight-bit switch box on the Enhanced Graphics Adapter. Switches 1-4 determine the type of displays and display adapters installed in the system. Switches 5 and 6 serve no function. Switches 7 and 8 determine the type of monitor you have attached to the system.

There are two jumpers, J2 and J4. J4 will always be set on the right two horizontal pins, looking at the video board component side, right side up. J2 will be set to the right two horizontal pins for CGA, Monochrome or 400 line Tandy monitors, and set to the left two horizontal pins for EGA, again looking at the video board component side, right side up.

Standard switch and jumper settings for an EGM1 monitor are: SW1-1 SW1-2 SW1-3 SW1-4 SW1-5 SW1-6 SW1-7 SW1-8 J2 left two pins Off 0n 0n Off 0n Off J4 right two pins On On Standard switch and jumper settings for a CM-1 monitor are: SW1-1 SW1-2 SW1-3 SW1-4 SW1-5 SW1-6 SW1-7 SW1-8 J2 right two pins Off On On Off J4 right two pins On Off On 0n

Further information for additional setups are given below.

Switch	settin	gs if E	GA Adap	ter is the only video board in the system:
SW1-1	SW1-2	SW1-3	SW1-4	
Off	Off	On	Off	Monochrome monitor
On	Off	Off	On	Color Monitor (40 x 25)
Off	Off	Off	On	Color Monitor (80 x 25)
On	On	On	Off	Enhanced Color Monitor (Normal 8 x 8 Text)
Off	On	On	Off	Enhanced Color Monitor (HiRes 8 x 14 Text)

Switch settings for EGA Adapter as the primary video board and a Monochrome Adapter as the secondary video board: SW1-1 SW1-2 SW1-3 SW1-4 EGA Adapter Monochrome Adapter On Off Off On Color Monitor (40 x 25) Monochrome Monitor Off Off Monochrome Monitor Off Color Monitor (80 x 25) On On On Enhanced Color Monitor Monochrome Monitor On Off with normal 8 x 8 text Off On On Off Enhanced Color Monitor Monochrome Monitor with HiRes 8 x 14 text

TECHNICIAN SERIES

- TANDY COMPUTER PRODUCTS -

NOTES AND JUMPERS

Switch Adapte	n settin er as th	igs for le prima	EGA Ada rv vide	apter as the aecondary vide to board:	eo board and a Monochrome
	SW1-2				Monocbrome Adapter
On	On	On	On	Color Monitor (40 x 25)	Monochrome Monitor
Off	On	On	On		Monochrome Monitor
On	Off	On	On	Enhanced Color Monitor	Monochrome Monitor
				with normal 8 x 8 text	
Off	Off	On	On	Enhanced Color Monitor	Monochrome Monitor
	~	***		with HiRes 8 x 14 text	Elotiocite onto anothe Cor
				WITH HIVES O X 14 CEAL	
Switch	. settin	as for	FCA Ada	pter as the primary video	board and a
				he secondary video board:	boatu and a
SW1-1				EGA Adapter	Color/graphics Adapter
On			Off	Monochrome Monitor	Color Monitor (40 x 25)
Off	Off	On	Off	Monochrome Monitor	Color Monitor (80 x 25)
Switch	settin	gs for	EGA Ada	pter as the secondary vide	o board and a
Color/	graphic	s Adapt	er as t	he primary video board:	
SW1-1	SW1-2	SW1-3	SW1-4	EGA Adapter	Color/Graphics Adapter
On	On	Off	On	Monochrome Monitor	Color Monitor (40 x 25)
Off	On	Off	On	Monochrome Monitor	Color Monitor (8Ø x 25)
Switch	es 7 an	d 8 are	as fol	lows:	
SW1-7	SW1-8				
On	Off	For	EGA. C	GA or Monochrome Monitor	
Off	On			ne, 25KHz Monitor (CM-1, V	በ/ 1 እ
	~11	1.01		ne, come nonitor (on-1, v	f1=1/

RS-232 Plus Interface Board for Tandy MS-DOS computera 25-1014 (figure 106): There are two versions of this board. One board is a domestic version which cannot be altered and is used for domestic operations only. Domestic operations means that the board transmits and receives at the same baud rate. The other board is an international version which can be used as either a domestic board or easily modified to accommodate international operations. International operations means that the board can be programmed to transmit at one baud rate while receiving at another baud rate.

Domestic	operation:
E2-E3	Selects primary address (Ø3F8-Ø3FF)
E1-E2	Selects secondary address (Ø2F8-Ø2FF)
E4-E6	Connects 'OUT1*' to 'RATE' (DB-25 pin 23)
E7-E9	Connects 'BAUDOUT' to 'RCLK'
Internat:	ional operation:
E2-E3	Selects primary address (Ø3F8-Ø3FF)
E1-E2	Selects secondary address (Ø2F8-Ø2FF)
E4-E5	Connects 'OUT1*' to second baud rate generator logic
E7-E8	Connects 'BAUDOUT' to second baud rate generator logic
E9-E1Ø	Connects second baud rate clock to receiver clock input

Proprietary Information Tandy® Corporation -- Upgrade Board.14 --

Plus RS232 25-1Ø31 (figure 14Ø):

Dip Switch SW1

		Address	Position 1	Position 2	Position 3	Position 4
COM1	IRQ4	3F8-3FF	Off	Off	Off	On
COM2	IRQ3	2F8-2FF	Off	On	Off	On
COM3	IRQ4	3E8-3EF	On	Off	Off	On
	IRQ2		On	Off	On	On
COM4	IRQ3	2E8-2EF	On	On	Off	On
	IRQ5		On	On	On	On

Setting all the switches to Off will disable interrupt signal.

Domestic	Operation
E9-E11	Jumpered
E5-E7	Jumpered

International Operation E8-E1Ø Jumpered E4-E6 Jumpered E1-E3 Jumpered

E1-E2 Enables DMA t E3-E4 Enables DMA r E5-E6 Selects board	nsion Board 26-5164 (figure 92): ransmit requests eceive requests as first board in system as second board in system	
E8-E1Ø Selects activ	e low 'BUSINTØ3'	
J29 1-2		
J3Ø 1-2		
J5 through J1Ø 1-2	Selects Port D for DTE operation	(See Table Below)
2-3	Selects Port D for DCE operation	tt.
J11 through J16 1-2	Selects Port C for DTE operation	π
2-3	Selects Port C for DCE operation	π
J17 through J22 1-2	Selects Port B for DTE operation	π
2-3	Selects Port B for DCE operation	*
J23 through J28 1-2	Selects Port A for DTE operation	Π
2-3	Selects Port A for DCE operation	Ħ

Following are the DB-25 signal changes for DTE and DCE operation:

DB-25 Pin	DTE signal	DCE signal
2	TXD	RXD
3	RXD	TXD
4	RTS	CTS
5	CTS	RTS
8	DCD	DTR
2Ø	DTR	DCD

Vianet (figure 71 and figure 114):

There are currently two versions of the Vianet (Arcnet) board for the 1000/1200/3000 machines. Figure 71 shows the Arcnet-PC and figure 114 shows the Arcnet-PC100. The jumpers and switches used are labeled identically on both boards. Only the location of the jumpers are changed. For this reason only one description is given for both boards. Please refer to the appropriate figure for the physical location of the jumpers.

<u>1</u>	Tandy 1000	1	Tandy 1200	1	Tandy 3000/HL
JP1 = IRQ7	Default LPT1	1	Default LPT1	1	Default LPT1
JP2 = IRQ5	Vertical Sync	1	Default Hard Drive	ł	Default LPT2
JP3 = IRQ4	Default COM1	1	Default COM1	1	Default COM1
JP4 = IRQ3	Default COM2	1	Default COM2	1	Default COM2
JP5 = IRQ2	Default Hard Drive	ł	Vianet Standard	1	Vianet Standard

Important Note: Only ONE of JP1 through JP5 should be on.

JP1 through JP5 select the interrupt request line the Vianet board will use. The above table shows the default uses of these interrupt lines on each machine. When selecting which interrupt to use the entire system must be taken into account. For example; on the Tandy 1000 if there is no hard drive installed then JP5 would be the logical choice for the Vianet board. However if the computer has a hard drive then JP4 or JP3 must be used. This means of course that the associated COM port can not be used for a serial or modem board. Switches SW1-6 set the Base I/O Port address. SW7-10 set the Memory Segment Address.

	SW1-1	SW1-2	SW1-3	SW1-4	SW1-5	SW1-6	
Tandy 1000/ALL	Off	Off	On	Off	Off	On	= I/O port 360H
Tandy 1200	Off	Off	On	Off	Off	On	= I/O port 36ØH
Tandy 3000/ALL	Off	Off	On	Off	Off	On	= 1/0 port 360H
Tandy 4000/ALL	Off	Off	On	Off	Off	On	= 1/0 port 36ØH
	SW1-7	SW1-8	SW1-9	SW1-1Ø			
Tandy 1000	SW1-7 Off	SW1-8 Off	SW1-9 Off	SW1-1Ø On	= base	address	з ЕØØØН
Tandy 1000 Tandy 1200						address address	
•	Off Off	Off	Off	On	= base		5 ЕØØØН
Tandy 1200	Off Off Off	Off Off	Off Off	On On	= base = base	address	5 еøøøн 5 дøøøн

NOTE: The Vianet software (VIANET.BAT) must be modified for use with the Tandy 3000 & 3000HL to properly point to the different base address (D000H).

SW2 sets the ID or node number for the machine, which must be different for each computer attached to the Vianet system.

Vianet for Tandy 2000 26-1220 (figure 72):

S1 sets the ID number for the unit, which must be different for each machine in the system. NOTE: All switches set to \emptyset is an illegal condition.

Serial/Parallel Board Revision "A" 25-4034 (figure 102): There are new ways of configuring LPT port addresses and assignments which will affect the jumpering configurations of boards related to parallel ports. REFER TO TECHNICAL BULLETIN INFO:26 FOR FURTHER DETAILS ON CONFIGURING THIS BOARD WITH THE 25-3049 MONOCBROME PARALLEL BOARD TOGETHER OR THE NEWER COMPUTERS (i.e., 4020/25/33LX series).

- TANDY COMPUTER PRODUCTS

E1-E3 Selects USA Standard baud-rate generator (standard)
E1-E2 & Selects International baud-rate
E3-E4 Selects International baud-rate
E6-E7 Selects parallel port 1 (LPT1) address 378-37F (standard)
E5-E6 Selects parallel port 2 (LPT2) address 278-27F
E9-E1Ø Selects serial port 1 (COM1) address 3F8-3FF (standard)
E8-E9 Selects serial port 2 (COM2) address 2F8-2FF

Serial/Farallel Board Revision "B" and "C" 25-4034 (figure 115): There are new ways of configuring LPT port addresses and assignments which will affect the jumpering configurations of boards related to parallel ports. REFER TO TECHNICAL BULLETIN INFO:26 FOR FURTHER DETAILS ON CONFIGURING THIS BOARD WITH THE 25-3049 MONOCHROME FARALLEL BOARD TOGETHER OR THE NEWER COMPUTERS (i.e., 4020/25/33LX series).

E1-E3 Selects USA Standard baud-rate generator (standard) E1-E2 & Selects International baud-rate E3-E4 Selects International baud-rate

PORT SELECTION

	LPT1			COM1	
E6-E7 E11-E12		378-37F	E9-E1Ø E15-E16	Selects Enables	3F8-3FF
DE NC	LPT2	 		COM2	 000 000

E5-E6Selects address 278-27FE8-E9Selects address 2F8-2FFE13-E14Enables IRQ5E17-E18Enables IRQ3

Multi-Terminal Board for the Tandy 3000 25-4031 (figure 117): SW1 selects the Base I/O address as follows:

	SW1-1	SW1-2	SW1-3	SW1-4	I/O Address
lst Board	Off	Off	Off	On	1ØØH
2nd Board	Off	Off	On	Off	1Ø4H
3rd Board	Off	On	Off	Off	1Ø8H

SW2 selects the Interrupt Request line as follows:

NOTES AND JUMPERS

	SW2-1	SW2-2	SW2-3	SW2-4	SW2-5	SW2-6	SW2-7	SW2-8	Interrupt
lst Board	Off	Off	0ff	Off	On	Off	Off	Off	IRQ1Ø
2nd Board	Off	Off	Off	Off	Off	On	Off	Off	IRQ11
3rd Board	Off	Off	Off	Off	Off	Off	On	Off	IRQ12
B1-B2 C	hannel hannel	l uses 2 uses	on boar on boar	th the d clock d clock d clock d clock		ng jump	ers:		

M1-M2 Channel 4 uses on board clock

Each of the four channels can be configured for either Data Communications Equipment (DCE) mode or Data Terminal Emulation (DTE) mode. When connecting to Tandy computers or terminals the DCE mode should be selected. When connecting to Tandy modems the DTE mode should be selected. For non Tandy equipment consult the individual equipment's owner manual for proper mode selection. The jumpering for each mode is as follows:

Data Communications Equipment (DCE)

<u>Channel 1</u>	<u>Channel 2</u>	Channel 3	<u>Channel 4</u>
D2-D3	G2-G3	P2-P3	W2-W3
D5-D6	G5-G6	P5-P6	W5-W6
E1-E3	H1-H3	T1-T3	X1-X3
E2-E4	H2-H4	T2-T4	X2-X4
F1-F2	K1-K2	V1-V2	Z1-Z2
F3-F4	K3-K4	V3-V4	Z3-Z4
F5-F6	K5-K6	V5-V6	Z5-Z6
F7-F8	K7-K8	V7-V8	Z7-Z8

Data Terminal Emulation (DTE)

Channel 1	Channel 2	Channel 3	Channel 4
D1-D2	G1-G2	P1-P2	W1-W2
D4-D5	G4-G5	P4-P5	W4 - W5
E3-E4	H3-H4	T3-T4	X3-X4
E5-E6	H5-H6	T5-T6	X5-X6
F1-F5	K1-K5	V1-V5	Z1-Z5
F3-F7	K3-K7	V3-V7	Z3-Z7
F4-F8	K4-K8	V4-V8	Z4-Z8

Tandy 1000EX/HX Memory PLUS Expansion Adapter 25-1062 (figure 123):E1-E2Selects 128K RAM installed onlyE2-E3Selects 256K RAM installed also for total of 384K RAMRAM Specification:U9-U1264K X 4150nsecU1-U8256K X 1150nsec

NOTES AND JUMPERS

- TANOY COMPUTER PRODUCTS -

Floppy/Hard Drive WD1002-WA2 Controller Board 25-4060 (figure 95):

E2-E3 Selects primary address for floppy (standard)

E1-E2 Selects secondary address for floppy

E5-E6 Selects primary address for hard drive (standard)

E4-E5 Selects secondary address for hard drive

E7-E8 Connects floppy read data into VCO

Floppy/Bard Drive WD1003-WA2 Controller Board 25-4060 (figure 124):

E2-E3 Selects primary address for floppy (standard)

E1-E2 Selects secondary address for floppy

E5-E6 Selects primary address for hard drive (standard)

E4-E5 Selects secondary address for hard drive

E8-E9 Supports 300 RPM floppy disk drives

E7-E8 Connects floppy read data into VCO

1000EX/HX External Floppy Disk Interface in 25-1060/1 External Disk Drives 25-1060 (figure 125): E1 +5 Volt Line E2 +12 Volt Line

E3-E4 Ground Return Line

Plus Network 4 Interface 25-1019 (figure 126):

- J1 Off IR5, IR4, IR2
 - On IR3

SW1 Sets station number of the unit. Treat the switch as a binary counter with position 1 being the LSB and position 6 being the MS8. Off = "1" On = "Ø" Example: 1 Off 2-6 on station number is 1 6 Off 1-5 on station number is 32

Each computer in the system must have its own unique station number with number 63 being reserved for the primary disk server station.

Tandy 1000 300 Baud Modem board 25-1003 (figure 53):

El pins 2-3 Selects hook relay for single line phone E2 pins 1-2 Selects primary UART address (3F8-3FF) Note: E2 pins 2-3 would select secondary UART address (2F8-2FF)

1200 Baud Internal Modem Board 25-1013/A/B/C (figure 82): SW1-1 OPEN Disables forced carrier detect (standard)

CLOSED Enables forced carrier detect (standard SW1-2 OPEN Enables auto answer CLOSED Disables auto answer (standard) SW1-3 OPEN Selects address COM2 CLOSED Selects address COM1 (standard) SW1-4 OPEN Disables Tandy 1000 speaker (standard) CLOSED Enables Tandy 1000 speaker

1200 Baud Internal Modem 25-1013D/E (figure 192): Interrupt Settings IRQ 4 (Com 1) - CN5 closed CN4 open IRQ 3 (Com 2) - CN4 closed CN5 open **Port Selection Settings** Com 1 - CN6 open Com 2 - CN6 closed Multi-line phone system jumper CN3 open - default setting CN3 closed - for use with older 1A2 multi-line phone systems. Dip Switch Settings & Self Test SW5 off - Numeric result codes SW1 off - True carrier detect SW5 on - Verbal result codes SW1 on - Forced carrier detect SW2 off - True DTR SW6 off - Command recognition on SW6 on - Command recognition off SW2 on - Forced DTR SW7 off - Send result codes SW3 off - Auto answer disabled SW7 on - Send no result codes SW3 on - Auto answer enabled Self Test - AT S16=1 D <ENTER> SW4 off - Command echo on SW4 on - Command echo off Causes local loop back of characters

PLUS 1200 Baud Modem 25-101B (figure 127): Dip Switch Position:

1	On COM1 port; I/O address range 3F8-3FF
	Off COM2 port; I/O address range 2F8-2FF
2	Not used.
3	On Uses carrier detect signal from remote modem.
	Off Sets carrier detect signal set to logic 1.
4	On DTR bit ignored.
	Off Uses DTR to hang up modem when on line and return to command mode.
NOTE:	On=Down Off=Up

1200 Baud Balf Card Modem 25-1018A (figure 193): Interrupt Settings IRQ 4 (Com 1) - CN6 closed CN5 open IRQ 3 (Com 2) - CN5 closed CN6 open Port Selection Settings Com 1 - CN 4 Open Com 2 - CN 4 closed Multi-line phone system jumper CN3 open - default setting CN3 closed - for use with older 1A2 multi-line phone systems. Dip Switch Settings & Self Test SW5 off - Numeric result codes SW1 off - True carrier detect SW1 on - Forced carrier detect SW5 on - Verbal result codes SW2 off - True DTR SW6 off - Command recognition on SW6 on - Command recognition off SW2 on - Forced DTR SW3 off - Auto answer disabled SW7 off - Send result codes -SW7 on - Send no result codes SW3 on - Auto answer enabled SW4 off - Command echo on Self Test - AT S16=1 D <ENTER> SW4 on - Command echo off Causes local loop back of characters 2400 Baud Half Card Modem Board 25-1037/A (figure 194): Com Port Settings CN4 open - Com 1 CN4 closed - Com 2 Interrupt Settings IRQ4 (Com 1) - CN5 closed CN6 open IRQ3 (Com 2) - CN5 open CN6 closed Auto-Answer Operation CN7 open - Auto answer enabled CN7 closed - Auto answer disabled Multi-line Phone Settings CN3 open - Standard phone line CN3 closed - 1A2 multi-line operation

Self-Test Mode Load and run a terminal program. AT&T1 <ENTER> When ready type: Modem responds with: OK All characters typed will be locally echoed. To exit the test type: +++ Do not hit <ENTER>. Wait one second. The modem will respond with: OK Type: AT&Ø The modem again responds with OK. Normal operation may ensue.

1400LT Internal Modem Board 25-3510 (figure 195):

The 25-351Ø modem has one jumper. It is labeled as W1. It is only set when an older 1A2 multi-line phone system is in use. It connects the A and Al leads of the station wire together to enable the busy lamp for the CO line it is connected to.

To self test the modem type in the command: AT S16=1 C1 D<CR> The modem will respond: CONNECT Each key pressed will be echoed back to the screen. To exit the test enter: +++ Do NOT enter <CR> after +++.

Enhanced Keyboard Adapter 25-1030 (figure 128): On When connecting an IBM PC/XT compatible keyboard Off When connecting an IBM AT compatible keyboard

Enhanced Keyboard 25-4Ø38 (figure 129): 4 position dip switch

Computer		Position 1	Position 2	Position 3	Position 4
Tandy 3000 (Al	Types)	On	On	XX	XX
Tandy 1200 (X1	'Types)*	On	Off	XX	XX
Tandy 1000 (AT	Mode)	On	On	XX	XX
Tandy 1000 (X1	Mode)	On	Off	XX	XX

XX-Don't Care * Not officially supported

Dual Port Seria SW1 settings	l Board	25-4Ø39	(figure 13Ø):		
v					
Serial Port 1	Pos 1	Pos 2	Serial Port 2	Pos 3	Pos 4
COM 1	On	On	COM 1	On	On
COM 2	On	Off	COM 2	On	Off
COM 3	Off	On	COM 3	Off	On
COM 4	Off	Off	COM 4	Off	Off

The "X"s below represent jumper pins. The jumper would go up and down and correspond to the appropriate IRQ setting labeled below. Refer to figure $13\emptyset$ for further clarification.

Х	Х	Х	X	
х	X	х	Х	Serial Port 1
х	х	x	x	
X	X	x	x	Serial Port 2
I	I	I	I	
R	R	R	R	
	Q	Q		
Q 2	3	4	Q 5	
Wl	Soria	1 Port 2	,	
Rin				modem or computer communication
+5V	-			use with mouse
		*******		WOW WICH MOUDE
W2	Seria	l Port 1	L	

Ring Jumpered for modem or computer communication +5V Jumpered for use with mouse

Note: When using this board in a Tandy 1000SL/SL2/TL/TL2, COM 3 will not work. Three "COM" channels are not supported with these machines, but will work provided that COM 3 is not used. Two combinations have been known to function. One would be to disable the on board serial chip select using the appropriate SETUP program and jumper the dual port serial board for COM 1 and COM 2. The other would be to leave the main board set up as COM 1 and jumper the dual port serial board as COM 2 and COM 4.

Plus 300 Baud Modem 25-1017 (figure 131):

CN2 1-2 Single line (Standard) 2-3 Multi line

Dip Switch SWl settings when using Tandy Communications Software. Note: * denotes default settings Tandy mode

1		Ön	Forced DTR
	*	Off	True DTR
2		On	Forced Carrier
	*	Off	True Carrier
3		Not	used
4		Not	used
5		Not	used
6		On	Auto Answer Enable
	×	Off	Auto Answer Disable
7	*	On	Selects Tandy Protocol
		Off	÷
8		On	COM 2
	*	Off	COM 1

Dip Switch SW1 settings when using Hayes Communications Software. Note: * denotes default settings for Hayes mode

1		On	Forced DTR
	*	Off	True DTR
2		On	Forced Carrier
	*	Off	True Carrier
3	*	On	Verbal Result Codes
		Off	Numeric Result Codes
4		On	No Result Codes
	*	Off	Send Result Codes
5		On	Command Echo Off
	*	Off	Command Echo On
6	*	On	Auto Answer Disable
		Off	Auto Answer Enable
7		On	Selects Tandy Protocol
	*	Off	Selects Hayes Protocol
8		On	COM 2
	*	Off	COM 1

Etherlink I Original Style 26-5435 (figure 145):

Note: Whenever a standard or default configuration is changed the system MUST be reconfigured for the new jumper arrangement.

Interrupt jumpers 2 Selects interrupt 2 3 Selects interrupt 3 (Standard) 4 Selects interrupt 4 5 Selects interrupt 5 6 Selects interrupt 6 7 Selects interrupt 7

DMA ACK Jumpers 1 Selects DMA Channel 1 (Standard) 2 Selects DMA Channel 2 3 Selects DMA Channel 3 DMA REQ Jumpers Selects DMA Channel 1 (Standard) 1 2 Selects DMA Channel 2 3 Selects DMA Channel 3 DMA ACK and REQ must be jumpered for the same DMA Channel. The text below deals with jumper locations with 3 vertical pins per location. Only two of the pins should be jumpered. To aid in jumper configuration we will define: Down=Two pins towards edge card connector (towards bottom of PCB) Up = Two pins away from edge card connector (towards top of PCB) Memory Address Jumpers for address of ECØØH 12 13 14 15 16 17 18 19 Down Down Uσ Up Down Up Up Up This address can apply to any machine as long as there is no other address conflict in the system. I/O Address Jumpers for address of 300H 4 5 7 8 Ö, MEM EN 6 Down Down Down Down Up Up Up Ø Ø Address of 300H 1 ø ø 1 The I/O Address Jumpers 4-9 may be configured for address range from \emptyset to Ø3FØH. Up=1 Down=Ø 9=MSB Etherlink I "Late Style" 26-5435 (figure 249): Note: Whenever a standard or default configuration is changed the system MUST be reconfigured for the new jumper arrangement. Interrupt jumpers 2 Selects interrupt 2 3 Selects interrupt 3 (Standard) 4 Selects interrupt 4 5 Selects interrupt 5 6 Selects interrupt 6

7 Selects interrupt 7

Note: There are 2 sets of pins for each DMA channel, both MUST be jumpered.

DMA Jumpers
1 Selects DMA Channel 1 (Standard)
2 Selects DMA Channel 2
3 Selects DMA Channel 3

The text below deals with jumper locations with 3 pins per location. Only two of the pins should be jumpered. To aid in jumper configuration the boards are silk screened \emptyset and 1

Memory	Address	Jumpers	for	address	of ECØØH	(Defa	ult)
12	13	14	15	16	17	18	19
ø	ø	1	1	ø	1	1	1

This address can apply to any machine as long as there is no other address conflict in the system.

I/O	Address	Jumpers	for	add	iress of	3øøh	(Default)
4	5	6		7	8	9	MEM EN
Ø	Ø	ø		ø	1	1	DIS

BNC/DIX should be set to BNC (Default)

The I/O Address Jumpers 4-9 may be configured for address range from Ø to Ø3FØH. Left=1 Right=Ø 9=MSB

best 2 hight p 5 hop

Etherlink II 26-5501 (figure 210):

There are two sets of jumpers detailed below:

Jumper Set 1 is a 5 position jumper block and sets the memory base address. Options are Disable, DCØØØH, D8ØØØH, CCØØØH and C8ØØØH. Standard setting is the Disable option.

Set 2 is a 8 position jumper block and sets the I/O base address. Options are 300H, 310H, 330H, 350H, 250H, 280H, 2A0H and 2E0H. Standard setting is 300H.

Note: To change the interrupt or DMA channel, a software change must also be made using a network software utility program.

Etherlink Plus 26-5502 (figure 146):

The default jumper settings are for DMA channel 1, Interrupt 3, and I/O Base Address $\emptyset 3 \emptyset \emptyset H$. Note that the symbols on the board itself are upside down compared to our figure 146.

- TANDY COMPUTER PRODUCTS-

DMA Channel Jumpers - Jumpers are attached vertically (two per channel under the appropriate number) for the desired DMA channel.

Interrupt Jumpers - Jumper is attached vertically above the jumper blocks marked INT below the appropriate number for the interrupt number desired.

I/O Base Address - For these jumpers, placing the jumper on the left two pins represents a logic "1" while placing the jumpers on the right two jumpers represents a logic " \emptyset ". To change the address, decode into binary the address bits of the address you wish to use, to determine where a logic "1" will be needed (placing the jumper on the left two jumper pins) and where a logic " \emptyset " will be needed (placing the jumper on the right two jumper pins). \emptyset 3 \emptyset \emptyset H and \emptyset 33 \emptyset H are shown below as examples. Bits 3, 2, 1, and \emptyset are set to " \emptyset " by default.

Jumper Settings	igs I/O Address Bits									
	9	8	7	6	5	4	3	2	1	ø
Possible Values	1/Ø	1/Ø	1/Ø	1/Ø	1/Ø	1/Ø	Ø	Ø	Ø	Ø
Factory Settings	1	I	ø	ø	ø	ø	Ø	ø	ø	Ø
Equivalent HEX Value	3			Ø					ø	
Jumper Settings	I/O Address Bits									
	9	8	7	6	5	4	3	2	1	ø
Possible Values	1/Ø	1/Ø	1/Ø	1/Ø	1/Ø	1/Ø	Ø	Ø	Ø	Ø
Ø33ØH Settings	1	1	ø	ø	1	1	ø	ø	ø	ø
Equivalent HEX Value	3			3					ø	

The memory address jumpers, configuration jumpers, A15 and A16 jumpers along with the test jumper, are set as shown in figure 146 and should not be changed.

The DIX-BNC jumper should be set on the lower group of pins for a BNC (also known as CO-AXIAL) cable, and on the upper group of pins for DIX cable.

Tandylink/PLUS boards 26-5601/2 (figure 198):

Factory settings for the TandyLink board are as follows: Base address 398 DRQ setting 1 DACK setting 1 Interrupt request 2

The following table illustrates jumper settings for available 8ase Addresses:

Address	Settings	Settings	Settings	
31Ø	E4 & E5	E1 & E2	E7 & E8	
318	E4 & E5	El & E2	E8 & E9	
35Ø	E4 & E5	E2 & E3	E7 & E8	
358	E4 & E5	E2 & E3	E8 & E9	
39Ø	E5 & E6	El & E2	E7 & E8	
398	E5 & E6	E1 & E2	E8 & E9	(default setting)
3DØ	E5 & E6	E2 & E3	E7 & E8	
3D8	E5 & E6	E2 & E3	E8 & E9	

- DRQ is originally set to DRQ1 (E1Ø-E11). To change to DRQ3 move the jumper to E11-E12.
- DACK is originally set to DACK1 (E14-E15). To change to DACK3 move the jumper to E13-E14
- IRQ is originally set to IRQ2 (E17-E18). To change to IRQ3 move the jumper to E16-E17.

ARNET Smartport 4/8 Port Board 90-2185/6 (figure 196 and figure 197):

Arnet boards are in that group of multiterminal boards which are addressed as COM devices. Usually, they are installed with the first board located at COM3, the second board at COM4, and so forth. The software drivers available for this board type in this system will recognize Arnet boards installed as COM1, COM2, COM3, COM4, COM5, and COM6 - however, you generally should not install them at COM1 or COM2!

If you install an Arnet board at COM1 or COM2, you will be unable to use the serial port on the serial/parallel board at that location.

Even if you configure the first Arnet board at COM3, you will still have room for 4 boards total... which is as much expansion as you would possibly want on a computer. So, the switch settings for standard installations will be:

First 8oard:

Switch 1: I/O Address COM3 (Ø1ØØh -	Ø1ØFh) positions 1-4, 6 on
	position 5 off
Switch 2: Memory address EØØØØA	positions 1-5 on
	positions 6-8 off
Switch 3: IRQ selection (none used)	positions 1-10 off
-	-

Second Board:

Switch 1: I/O Address COM4 (Ø18Øh - Ø18Fh)	 positions	1-3, 6 on
	positions	4-5 off
Switch 2: Memory address E2ØØØØh	 positions	1, 3-5 on
	positions	2, 6-8 off
Switch 3: IRQ selection (none used)	 positions	1-1Ø off

If you should need to install a third or fourth board, and there is not more than 8 meg of memory installed in the AT series computer, you may use these settings:

Third Board:

Switch 1: I/O Addr	ess COM5 (Ø1AØh – Ø1AFh	ı) posit	ions 1, 3, 6 on
		posit	ions 2, 4-5 off
Switch 2: Memory a	ddress 80000h	posit	ions 1-7 on
		posit	ion 8 off
Switch 3: IRQ sele	ction (none used)	posit	ions 1-10 off
•		-	

Fourth Board:

Switch 1: I/O Address COM6 (Ø1BØh - Ø1BFh)	 positions 3, 6 on
	positions 1-2, 4-5 off
Switch 2: Memory address CØØØØØh	 positions 1-6 on
	positions 7-8 off
Switch 3: IRQ selection (none used)	 positions 1-10 off

On all boards, the JP1 jumper should be in the "B" position.

Connector Boards:

Aside from the board which is installed inside an AT series computer, each Arnet board will also have a connector box, housing either one or two four-connector boards. This connector box is cabled to the internal board via shielded ribbon cable, and has jumpers which allow each port to be configured individually as DTE (Data Terminal Emulation, normally used to talk to modems) or DCE (Data Communications Equipment, normally used to talk to direct-connect terminals.

Each port has a group of staking pins which looks like this:

T/R	RTS/CTS	DTR/DSR	RI_DCD
121	131	31	2
0 0	0 0 0 0	0 0 0 0	000
0 0	0 0 0 0	0 0 0 0	0 0 0
	1 2	1 2	1

For DTE use (or for a port which will be talking to a modem), your jumpers should look like this:

T/R	RTS/CTS	DTR/DSR	RI_DCD
121	131	131	2
0-0	0-0 0 0	0-0 0 0	0-0 0
0-0	0-0 0 0	0-0 0 0	0-0 0
<u> </u>	1 2	1 2	

The dashes connecting the "o" symbols (i.e. "o-o") indicate where the jumper is to be installed.

For DCE use (or for a port which will be talking to a terminal), your jumpers should look like this:

T/R	RTS/CTS	DTR/DSR	RI_DCD
121	131	31	2
0 0 	0 0 0-0	0 0 0-0	0 0-0
0 0	0 0 0-0	0 0 0-0	0 0-0
1	1 2	12	<u> </u>

ØK Memory Expansion Adapter for the 3000NL 25-4027 (figures 199 and 200):

There are two versions of this board. One with jumpers and one without. The board without jumpers looks very similar to the 5000MC 0K memory expansion adapter board. The board/subassembly numbers are different as well as slight layout differences. Refer to the appropriate figures for the differences.

A \emptyset K memory expansion adapter with E1-E2 jumpered will work in a computer with 2 memory expansion adapter slots present (since the $3\emptyset\emptyset\emptyset$ NL only has one slot available for this type of memory board, this option (E1-E2) will not work with a $3\emptyset\emptyset\emptyset$ NL).

E1-E2 2 memory expansion adapter slots present E2-E3 1 memory expansion adapter slot present (standard)

ØR Memory Expansion Adapter for the 5000MC 25-6030 (figure 201):

There are no switches or jumpers on this board. The board must be fully populated with SIMMs, all of one type (either 256k by 9 bit or 1 MEG by 9 bit page mode 100 ns SIMMS).

Permitted memory configurations in the Tandy 5000MC are:

2 MEG: one memory adapter with 8 100 ns 256k SIMMS
4 MEG: two memory adapters, each filled with 8 100 ns 256k SIMMS
8 MEG: one memory adapter with 8 100 ns 1 MEG SIMMS
16 MEG: two memory adapters, each filled with 8 100 ns 1 MEG SIMMS

The only difference between the first and second memory board in the Tandy 5000MC is the mounting bracket. The first board uses a mounting bracket secured with a screw concealed underneath the rear case bezel; the second board uses a microchannel bracket.

32 Bit Memory Board for the 4000/LX 25-5029 and 25-5030 (figure 202):

This board has no jumpers on it. It comes in two versions. Catalog number 25-5029 which comes with no RAM installed in it, and 25-5030 which is stuffed with 8 256K SIMMs making it a 2 MEG memory board. 1 MEG SIMMs may also be used which makes this board an 8 MEG memory board.

1 MB Memory Upgrade Board for 2800HD 25-3554 (figure 261):

There are no jumpers for this upgrade. This will increase the total memory to 2 MEG. The memory is LIM 4.0 Expanded Memory compatible.

Memory Adapter for Tandy 4000SX 25-4930 (figure 260):

See the chapter for the Tandy 4000SX for correct jumpering and memory configurations for this memory upgrade board. Since this board is used in the 4000SX which has two slots available either one or two boards should both be jumpered E1-E2.

E1-E2 2 Memory Expansion slots present E2-E3 1 Memory Expansion slot present

Monochrome/Parallel Adapter Board 25-3049 (figure 245):

There are new ways of configuring LPT port addresses and assignments which will affect the jumpering configurations of boards related to parallel ports. REFER TO TECHNICAL BULLETIN INFO:26 FOR FURTHER DETAILS ON CONFIGURING THIS BOARD TOGETHER WITH THE NEWER COMPUTERS (i.e., 4020/25/33LX series) OR OTHER BOARDS RELATED TO PARALLEL PORTS.

This board is designed to work with the VM-3 and VM-5 monochrome monitors. A parallel port is also present on this board. Remember to set the computer to monochrome prior to using this board. The only jumpers that are present are for the parallel port. The parallel port can be either LPT1 or LPT2. To make discussion of the jumpers easier, arbitrary jumper numbers have been assigned.

LPT1	(3BC)	JUMPER :	2	to	4	(Default)
LPT2	(378)	JUMPER	1	to	3	and 2 to 4
LPT3	(278)	JUMPER	1	to	3	(XT machines only)
DISABL	ED	JUMPER	1	to	2	

This is a brief overview of the parallel port addressing scheme used by this board and the newer computers (i.e. $4\emptyset 2\emptyset/25/33LX$):

Parallel port	I/O Address	IRQ	Description
1	388-38F	7	Mono/parallel board port
2	378-37F	7	Conventional LPT1 port
3	278-27F	5	Conventional LPT2 port

Xenix 2.3.x does not recognize the ports in the same way. It sees them like this:

Parallel port	Unix/Xenix
1	/dev/lpl
2	/dev/1pØ
3	/dev/1p2

Tandy Farmate board 25-3063 (figure 257):

The Tandy Faxmate allows your PC to communicate with any Group - III facsimile (fax) machine. It allows you to send, receive, schedule, print, and display faxes. It operates at 4800 bps. There are three switches for I/O Port Addressing. All other parameters are software configured.

Switch	Switch	Switch	Paxmate	
1	2	3	I/O Address	
UP	UP	UP	220-227	-
UP	UP	DN	26Ø-267	
UP	DN	UP	2AØ-2A7	
UP	DN	DN	2EØ-2E7 (standard))
DN	UP	UP	320-327	
DN	UP	DN	36Ø-367	
DN	DN	UP	3AØ-3A7	
DN	DN	DN	3EØ-3E7	

NOTE: Switches 4 and 5, if they are present must be DN

16 Bit VGA Adapter Board (figure 221):

The VGA adapter board is a half-card, 16-bit adapter and is fully IBM PS/2 VGA compatible. It is software compatible with programs written for VGA, MCGA, EGA, CGA, MDA, and Hercules graphics. The different modes may be entered using the VGA.EXE program from the Utilities diskette. Following are the switches and jumpers available:

SW1	1	on * off	for special multi-frequency displays conventional VGA
	2	* on	enables all VGA modes on all monitors - this allows monochrome-mapped text modes to be used on color monitors, and color "shades of grey" modes to be used on monochrome monitors
		off	monochrome-mapped modes are not available on color monitors, and color-mapped modes are not available on monochrome monitors
	3	* off	not used
	4	* on off	16-bit operation with AutoSense enabled 8-bit operation with AutoSense disabled
	W1	* on	jumped always
	W2	* 1-2 2-3	enables 132 column text mode supports all signals on the Video Feature Connector

Note: * denotes default setting

If a secondary adapter is to be added, it must be configured as the second adapter, for only the VGA adapter can be the primary display device. You are allowed only one color and one monochrome adapter in the computer at one time in accordance with IBM PS/2 VGA compatibility (EX. if you add a CGA adapter and a CM-11, you must configure the VGA adapter for monochrome operation). The MODE.EXE command is used to select between the two adapters.

Error-Correcting 2400 baud Internal Modem 25-1034 (figure 253):

This modem uses the standard Hayes command set and has only one jumper set for communication port selection.

Upper pin pair - COM 2 Lower pin pair - COM 1 (default)

2400 baud Internal Modem for Tandy 1100FD 25-3538 (figure 255):

This modem uses the standard Hayes command set. There are no jumpers on this board. Use SETUP_11.COM to set the communication port for internal modem operation.

2400 baud Internal Modem for Tandy 1400 LT/FD/HD 25-3524 (figure 254):

This modem uses the standard Hayes command set. There are no jumpers on this board. The modem can be used in any of the Tandy 1400 laptop computers. The Tandy 1400 must be configured for modem operation. Press <Ctrl><Alt><Ins> to access the configuration menu.

Tandy Arcnet Adapter Board 26-6505 (figure 251):

S1	Positions	1-8 select	t the	Node ID of	Ø-256	Hex		
Switch	8	7	6	5	4	3	2	1
Binary E	quiv 128	64	32	16	8	4	2	1

S2	Positions	1-3	select	the	I/0	base	address	

Switch	1	2	3	I/O address in HEX
	On	On	On	26Ø
	On	On	Off	29Ø
	* On	Off	On	2EØ
	On	Off	Off	2FØ
	Off	On	On	3ØØ
	Off	On	Off	35Ø
	Off	Off	On	38Ø
	Off	Off	Off	ЗЕØ

S2 Positions 4-8 select the RAM buffer base address

Switch	4	5	6	7	8	RAM addreaa in HEX
	On	On	On	On	On	CØØØØ
	On	On	On	On	Off	СØ8ØØ
	On	On	On	Off	On	C1ØØØ
	On	On	On	Off	Off	C18ØØ
	On	On	Off	On	On	C4ØØØ
	On	On	Off	On	Off	C48ØØ
	On	On	Off	Off	On	C5ØØØ
	On	On	Off	Off	Off	C58ØØ
	On	Off	On	On	On	CCØØØ
	On	Off	On	On	Off	CC8ØØ
	On	Off	On	Off	On	CDØØØ
	On	Off	On	Off	Off	CD8ØØ
	* On	Off	Off	On	On	DØØØØ
	On	Off	Off	On	Off	DØ8ØØ

 	—— ТА	NOY CO	MPUTER	R PRODU	CTS
On	Off	Off	Off	On	D1ØØØ
On	Off	Off	Off	Off	D18ØØ
Off	On	On	On	On	D4ØØØ
Off	On	On	On	Off	D48ØØ
Off	On	On	Off	On	D5ØØØ
Off	On	On	Off	Off	D58ØØ
Off	On	Off	On	On	D8ØØØ
Off	On	Off	On	Off	D88ØØ
Off	On	Off	Off	On	D9øøø
Off	On	Off	Off	Off	D98ØØ
Off	Off	On	On	On	dcøøø
Off	Off	On	On	Off	DC8ØØ
Off	Off	On	Off	On	DDØØØ
Off	Off	On	Off	Off	DD8ØØ
Off	Off	Off	On	On	Eøøøø
Off	Off	Off	On	Off	EØ8ØØ
Off	Off	Off	Off	On	Eløøø
Off	Off	Off	Off	Off	E18ØØ

EXT 1,2	*	Off On	No extended timeout Selects extended timeout
ROM	*	Off On	No autoboot ROM installed Autoboot ROM installed
IRQ	*	7 5 4 3 2	Selects interrupt 7 Selects interrupt 5 Selects interrupt 4 Selects interrupt 3 Selects interrupt 2

Note: * denotes default settings for Novell's Netware.

Tandy Ethernet Adapter Board 26-5505 (figure 248):

To help identify this board, on the solder side there are several stickers. One of these stickers will have a Western Digital ID number. The ID number for this board is WD8ØØ3EB. Refer to Technical Bulletin NETWORK:3 for more information on this and other Western Digital network adapter boards.

NOTE: The Superdisk that comea with the 26-5505 adapter is used for aetting the configuration of the 26-5505 version adapter only. It must not he used with any other version of adapter.

Wl	Off On	Normal operation * Clear configuration
W3	AUI to	center pin Selects BNC connection * center pin Selects AUI interface connection revision boards have a double jumper for W3)
W9 L	16K	\ Selects 27128 ROM type *
W9 R	16K/321	
W9 L	32K/64I	
W9 R	16K/321	Selects 27256 ROM type K /
W9 L	32K/641	1
W9 R	64K	Selects 27512 ROM type /
Tandy To	ken Ring	g Adapter 26-554Ø (Figure 25Ø):

J1	1-2	ROM enabled
	2-3	ROM disabled *
J2	1-2	Defines adapter as primary adapter *
	2-3	Defines adapter as secondary adapter in two adapter system
J3	1-2	Selects a 32K byte, 27256 type boot ROM *
	2-3	Selects a 64K byte, 27512 type boot ROM
J4	6~7	Selects IRQ2 *
	5-8	Selects IRQ3
	4-9	Selects IRQ4
	3-1Ø	Selects IRQ5
	2-11	Selects IRQ6
	1-12	Selects IRQ7

J1Ø Jumper pack installed on J1ØA/1ØB \ --Selects RJ11-type port * Jumper pack removed from J1ØC / Jumper pack installed on J1ØC \ --Selects D-type port Jumper pack removed from J1ØA/1ØB /

Note: * denotes default settings

Tandy Ethernet Plus Adapter 26-5506 (figure 282):

This board is packaged with a Superdisk software diskette. The diskette contains the Setup program, EZSETUP.EXE used to configure the various option settings of the board. The jumpers on the board only affect the options they are listed for. This Superdisk software diskette also contains software drivers for various operating systems and a diagnostic program, DIAGNOSE.EXE.

NOTE: The Superdisk software diskette (version 2.1 or later) that is packaged with this hoard will have the 26-5506 catalog number on the label. It is to be used with this hoard only.

To help identify this board, on the solder side there are several stickers. One of these stickers will have a Western Digital ID number. The ID number for this board is WD8Ø13EP. Refer to Technical Bulletin NETWORK:3 for more information on this and other Western Digital network adapter boards.

Wl	300.10.CC000	Sets the board to Base I/O address of 300h, IRQ 10, and RAM Base address CC000h.
	* 28Ø.3.DØØØØ	Sets the board to Base I/O address of 280h, IRQ 3, and RAM Base address D0000h.
	Soft	Settings for the board are determined by the EZSETUP.EXE program. I/O address = 240h.
W2	D8ØØØ	Selects 16K ROM Base address D8ØØØh - DBFFFh.
	* None/Soft	Selected if no ROM installed.
W3	* BNC to center pin	Selects BNC interface connector.
	AUI to center pin	Selects AUI interface connector.
NOTE:	W3 is a double jumpe	er option and both jumpers must be set for the same

* = Indicates Factory Setting

option.

Tandy Ethernet Adapter Board 26-5505A/B (figure 285)

This board is packaged with a Superdisk software diskette. The diskette contains a Setup program, EZSETUP.EXE used to configure the various option settings of the board. The jumpers on the board only sffect the options they are listed for. This Superdisk software diskette also contains software drivers for various operating systems and a diagnostic program, DIAGNOSE.EXE.

NOTE: The Superdisk software diakette that is packaged with the 26-5505A adapter can be used for aetting the configuration of the 26-5505A version or the 26-5505 version adapter hoard. It must he Version 2.0 or greater.

NOTE: The Superdiak aoftware diskette that is packaged with the 26-5505B can he used for setting the configuration of the 26-5505, 26-5505A, and 26-5505B

NOTE: Some Superdisks for the 26-5505B were labeled 2.0, but the correct version of 2.1B is actually on the disk. To verify that the disk you have is version 2.1B, read the README.DOC file located in the root directory for the disk. The version number 2.1B should he diaplayed at the beginning of the text. If no version number appears or any version less than 2.1B, do not use the disk to setup the 26-5505B board.

To help identify this board, on the solder side there are several stickers. One of these stickers will have a Western Digital ID number. The ID number for this board is WD8ØØ3EP. Refer to Technical Bulletin NETWORK:3 for more information on this and other Western Digital network adapter boards.

Wl	28Ø,3,DØØØØ *	Sets the board to Base I/O address of Ø28Øh, IRQ3, and RAM Base sddress of DØØØØh.
	300,5,CA000	Sets the bosrd to Base I/O address of Ø3ØØh, IRQ5, and RAM Base Address of CAØØØh.
	Soft	Settings of bosrd determined by EZSETUP program.
W2	D8ØØØ	Selects 16K ROM at Base Address D8000 - DBFF0h.
	None/Soft *	Selected if no ROM is installed or allows the ROM size and Base Addresa to be set by EZSETUP program.
W3	* .	Selects BNC connector. Selects AUI connector.
	Note: W3 is a double for the same	e jumper option snd both jumpers must be set option.

* indicates default settings

Tandy 2400-BPS Half Card Modem 25-1037B (figure 291):

The available settings for the 2400 BPS Half Card Modem are controlled by a slide switch at the rear of the card. This switch is accessible for operation while the card is installed in the computer.

SW-1 Down Sets the modem for COM1.

SW-1 Up Sets the modem for COM2.

1200 Baud Internal Modem 25-1013F (figure 281):

- J3 Jumper on the center and right pins selects the Auto-Answer mode.
 * Jumper on the center and left pins disables Auto-Answer mode.
- SW1 COM1 position selects COM channel 1 COM2 position selects COM channel 2

All other modem parameters are software selectable.

2400 Baud Modem for the 1500HD/2810HD/3810HD laptop 25-3525 (figure 280):

There are no jumpers for this modem. It is installed beneath the two inch wide access panel adjacent to the battery. The modem is connected to the main logic board via a single flat cable and secured in position upside down with two screws.

2400 BAUD Internal Modem Board for 2800HD 25-3555 (figure 279):

There are no jumpers for this upgrade. Note however that you must run SETUP_28 to verify that the serial devices are enabled.

Dual Serial/Parallel Board 25-4025 (figure 286):

This board has two serial ports and one parallel port. Serial port 1 can be configured for COM 1, COM 2, COM 3, or disabled. Serial port 2 can be configured for COM 2, COM 3, COM 4, or disabled. The parallel port may be configured for LPT 2, LPT 3, or disabled.

There are new ways of configuring LPT port addresses and assignments which will affect the jumpering configurations of the boards related to parallel ports. <u>REFER TO TECHNICAL BULLETIN INFO:26 FOR FURTHER DETAILS ON CONFIGURING</u> <u>THIS BOARD IN A MULTI-PARALLEL PORT CONFIGURATION.</u> Jumper settings are given below. An asterisk (*) indicates factory settings.

TECHNICIAN SERIES

TANDY COMPUTER PRODUCTS-

Configuring serial port 1					
		<u>J6</u>	J5	J3	-
COM 1 (3F8h, IRQ4):	*	up	up	up	
COM 2 (2F8h, IRQ3):		up	down	down	
COM 3 (3E8h, IRQ3 or 4):		down	up	down=IRQ3	•
				up=IRQ4	
Disabled		down	down	no effect	:
Ring indicator power source	*			pins: ring pins: +5 vol	
Configuring serial port 2		J8	J7	J2	
COM 2 (2F8h, IRQ3):	*	up	up	up	-
COM 3 (3E8h, IRQ6):		up	down	.	
COM 4 (2E8h, IRQ3 or 6):		down	up	down=IRQ6 up=IRQ3	•
Disabled		down	down	no effect	
Ring indicator power source	*			o pins: rin o pins: +5 v	
Configuring the parallel port		JIØ	9 L	Jl	
LPT 2 (378h, IRQ7):	*	up	up	up	-
LPT 3 (278h, IRQ5):		down	-	down	
Disabled		down	down	no effect	
<u> 8i-directional select</u>	*	J4 =	up: di	sabled	

Dual Serial/Parallel Board Revision "A" 25-4025A (figure 287):

This board has two serial ports and one parallel port. Serial port 1 can be configured for COM 1, COM 2, COM 3, or disabled. Serial port 2 can be configured for COM 2, COM 3, COM 4, or disabled. The parallel port may be configured for LPT 2, LPT 3, or disabled.

J4 = down: enabled

There are new ways of configuring LPT port addresses and assignments which will affect the jumpering configurations of the boards related to parallel ports. <u>REFER TO TECHNICAL BULLETIN INFO:26 FOR FURTHER DETAILS ON CONFIGURING</u> <u>THIS 80ARD IN A MULTI-PARALLEL PORT CONFIGURATION.</u> Jumper settings are given below. An asterisk (*) indicates factory settings. Up = the upper two pins are jumped. Down = the lower two pins are jumped. Off = the jumper is parked on one pin only, or removed completely.
- TANDY COMPUTER PRODUCTS

Configuring serial port 1

4. 3. 3	*0	- **	
Address	<u>J8</u>	<u>J7</u>	
COM 1 (3F8h):	up	up	
COM 2 (2F8h):	up	down *	
COM 3 (3E8h):	down	up	
Disabled	down	down (J2 and J3	settings have no effect)
-			
Interrupt	<u>J2</u>	<u></u>	
IRQ2	off	up	
IRQ3	up	off *	
IRQ4	down	off	
IRQ5	off	down	
			
Ring indicator			
		ing indicator *	
W1 = lower two	pins: +5	volts	
Configuring ser	ial port	2	
Address	J1Ø	<u>J9</u>	
COM 2 (2F8h):	up	up	
COM 3 (3E8h):	up	down *	
COM 4 (2E8h):	down	up	
Disabled	down	down (J4 and J5	settings have no effect)
Interrupt	J4	<u>J5</u>	
IRQ2	off	up	
IRQ3	up	off	
IRQ4	down	off	
IRQ5	off	down *	
Ring indicator	power so	urce	
W2 = upper two	pins: r	ing indicator *	
W2 = lower two	pins: +5	volts	
Configuring the	paralle	1 port	
Address	J12	J11	
LPT 2 (378h):	up	up *	
LPT 3 (278h):	down	up	
Disabled	down	down	
		· · · · · ·	
Interrupt	J1		Bi-directional select
IRQ5	down		J6 = up: enabled
IRQ7	off *		J6 = down: disabled *
······································			

- TANDY COMPUTER PROOUCTS-

ARNET Smartport 16 Port Board 90-2403 (figure 290):

Arnet boards are in that group of multiterminal boards which are addressed as COM devices. Usually, they are installed with the first board located at COM3, the second board at COM4, and so forth. The software drivers available for this board type in this system will recognize Arnet boards installed as COM1, COM2, COM3, COM4, COM5, and COM6 -- however, you generally should not install them at COM1 or COM2!

If you install an Arnet board at COM1 or COM2, you will be unable to use the serial port on the serial/parallel board at that location.

Even if you configure the first Arnet board at COM3, you will still have room for 4 boards total... which is as much expansion as you would possibly want on this machine. So, the switch settings for standard installations will be:

First Board:

 positions 1-4, 6 on position 5 off positions 1-2, 4-5 on positions 3, 6-8 off positions 1-10 off
positions 1-4 off
positions 1-3, 6 on positions 4-5 off
positions 1, 4-5 on positions 2-3, 6-8 off
positions 1-10 off

Switch 4: Memory size/location (64K, Ø offset) -- positions 1-4 off

If you should need to install a third or fourth board, and there is not more than 8 meg of memory installed in the Tandy $4\emptyset\emptyset\emptyset$, you may use these settings:

Third Board:

Switch	1:	I/O Address COM5 (Ø1AØh)		1, 3, 6 on
Switch	2:	Memory address E80000h	 positions	2, 4-5 off 1-3, 5 on
Switch	3:	IRQ selection (none used)	 positions positions	4, 6-8 off 1-1Ø off
Switch	4:	Memory size/location (64K, Ø offset)	 positions	1-4 off

(continued on next page)

- TANDY COMPUTER PRODUCTS -

Fourth Board:

Switch 1: I/O Address COM6 (Ø1BØh)	positions 3, 6 on positions 1-2, 4-5 off
Switch 2: Memory address EAØØØØh	positions 1, 3, 5 on
Switch 3: IRQ selection (none used)	positions 2, 4, 6-8 off positions 1-10 off
Switch 4: Memory size/location (64K, Ø offset) positions 1-4 off

ARNET Multiport 4 Port Board 90-2453 (figure 288):

Arnet boards are in that group of multiterminal boards which are addressed as COM devices. In this case they are installed with the first board located at COM1, the second board at COM2.

If you install an Arnet board at COM1 or COM2, you will be unable to use the serial port on the serial/parallel board at that location.

First Board:

Switch 1: I/O Address COM1 (Ø1ØØh)	positions 1-3, 5 on
	position 4 off
Switch 2: Option I/O address (140h)	positions 1-3, 5, 7 on
	positions 4, 6 off
Switch 3: IRQ selection (IRQ 4)	position 3 on
	positions 1-2, 4-6 off

Second Board:

Switch 1: I/O Address COM2 (Ø18Øh)	positions 1-2, 5 on
	positions 3-4 off
Switch 2: Option I/O address (1CØh)	positions 1-3, 7 on
• · · · · · ·	positions 4-6 off
Switch 3: IRQ selection (IRQ 3)	position 2 on
	positions 1, 3-6 off

A maximum of two Multiport boards may be used in a computer at one time.

- TANDY COMPUTER PRODUCTS-

ARNET Octaport 8 Port Board 90-2458 (figure 289):

Arnet boards are in that group of multiterminal boards which are addressed as COM devices. Usually, they are installed with the first board located at COM3, the second board at COM4, and so forth. The software drivers available for this board type in this system will recognize Arnet boards installed as COM1, COM2, COM3, COM4, COM5, and COM6 -- however, you generally should not install them at COM1 or COM21

If you install an Arnet board at COM1 or COM2, you will be unable to use the serial port on the serial/parallel board at that location.

Even if you configure the first Arnet board at COM3, you will still have room for 4 boards total... which is as much expansion as you would possibly want on this machine. So, the switch settings for standard installations will be:

First Board:

Switch 1:	I/O Address COM3 (Ø1ØØh)	 positions	1-4, 6 on
		position	5 off
Switch 2:	Memory address Eøøøøh	 positions	1-2, 4-5 on
	•	positions	3, 6-8 off
Switch 3:	IRQ selection (none used)	 positions	
· · · · · · · · ·			···· ··· ·

Second Board:

Switch 1: I/O Address COM4 (Ø18Øh)	positions 1-3, 6 on
	positions 4-5 off
Switch 2: Memory address E20000h	positions 1, 4-5 on
•	positions 2-3, 6-8 off
Switch 3: IRQ selection (none used)	positions 1-10 off
•	-

If you should need to install a third or fourth board, and there is not more than 8 meg of memory installed in the Tandy 4000, you may use these settings:

Third Board:

Switch 1:	I/O Address COM5 (Ø1AØh)	positions 1, 3, 6 on
		positions 2, 4-5 off
Switch 2:	Memory address E4ØØØØh	positions 1-3, 5 on
		positions 4, 6-8 off
Switch 3:	IRQ selection (none used)	positions 1-10 off
		-

(continued on next page)

Fourth Board:

Switch 1: I/O Address COM6 (Ø1BØh)	positions 3, 6 on
	positions 1-2, 4-5 off
Switch 2: Memory address E6ØØØh	positions 1, 3, 5 on
	positions 2, 4, 6-8 off
Switch 3: IRQ selection (none used)	positions 1-10 off

1 MB Memory Expansion SIMM 25-3507 (figure 278):

There are no jumpers on this board. It is for the 1500/2810/3810 laptop computers. These SIMM modules are 1MB 80ns double-sided.

Serial/Parallel Converter 26-2829 (Figure 252):

Switch positions 1-3 select the baud rate

Switch		1	2	3		Baud Rat	te
		On	On	0	n	384ØØ	
		Off	On	Ot	1	162ØØ	
		On	Off	Or	1	96ØØ	
		Off	Off	01	1	48ØØ	
		On	On	05	ff	2400	
		Off	On	05	ff	12ØØ	
		On	Off	01	ff	6ØØ	
		Off	Off	01	££	300	
Switch	4	Off On				character character	-

Switch positions 5 and 6 select the parity

Switch		5	6	Parity
		Off	Off	None
		On	Off	Odđ
		Off	On	Even
		On	On	Not used
Switch	7	Off	XON/XOF	'F Mode
		On	DTR Mod	e
Switch	8	Off On		on is from serial to parallel on is from parallel to serial

- TANDY COMPUTER PRODUCTS -

Trackstar and Trackstar E Interface Board 25-1028/38 (figure 247):

The Trackstar interface board allows the 1000 family of computers to read or write to Apple compatible diskettes using specially modified Tandy 360K 5-1/4" disk drives. The Trackstar interface is able to coexist with 3-1/2" disk drives, but is not able to read or write 3-1/2" Apple diskettes. The modification procedure for the disk drives and the installation procedure for the Trackstar interface are outlined in Technical Bulletin I/0:114.

There are no switches or jumpers on this board.

- NOTES: o When used in the 1000SL, a special drive cable must be used (WF-0116).
 - o The 1000TX and 1000TL must be run in their 4MHz slow modes for the 80 character video mode to function properly.

16 Bit Super VGA Adapter Board (figure 298):

The VGA adapter board is a half-card, 16 bit adapter and is fully IBM PS/2 VGA compatible. It supports Super VGA modes with 132 column text and both 800 x 600 and 1024 x 768 resolution graphics. It comes with 512K of memory on board, and is capable of supporting both fixed frequency and multi-frequency monitors. Support for the Super VGA modes is accomplished by executing the VGA1024.EXE program from the Utilities diskette. Following are the switch and jumper options:

SW1	1	on * off	for special multi-frequency displays conventional fixed frequency displays
	2	* on	enables all VGA modes on all monitors - this allows monochrome-mapped text modes to be used on color monitors, and color "shades of grey" modes to be used on monochrome monitors
		off	monochrome-mapped modes are not available on color monitors, and color-mapped modes are not available on monochrome monitors
	3	* off	not used
	4	* on off	16-bit operation with AutoSense enabled 8-bit operation with AutoSense disabled
	Wl	* on	enables normal operation using AutoSense jumped always

Note: * denotes default setting

CMS Tape Drive Mux Adapter 90-2405 (figure 277):

This board interfaces either an internal or an external jumbo tape drive (6 \emptyset Meg TCS, 25-4 \emptyset 79) to PC, XT and AT class computers. It may solve incompatibility problems between a floppy controller and a tape drive. With a CK8 \emptyset cable (9 \emptyset -24 \emptyset 6), it makes it possible to use two floppy drives and a 6 \emptyset Meg tape drive. The tape drive can be installed internally if there is enough space in the computer, or externally. The adapter board has an extra connector on it for external tape drives.

All configuration information needed is handled through software: the board has no jumpers. Connectors are:

J1 Connector from floppy controller

- J2 Connector to floppy drive
- J3 External tape drive connector
- J4 Internal tape drive connector

The recommended configuration is given below:

- 1> Use the CK80 cable (900-2406) to connect the main logic board and the first floppy drive (A:) to the J1 connector on the adapter board. The holes punched in the cable go between the a: drive and the adapter board.
- 2> Connect the internal tape drive cable to the J4 connector on the adapter board using the cable that comes with the tape drive.
- 3> Connect the second floppy drive to the J2 connector on the adapter board using the floppy drive cable that came with the machine.
- 4> Connect the power cables to the tape drive and the second floppy.

•

.

- TANOY COMPUTER PROOUCTS -

This page intentionally left blank.

*									*
*									*
*	A	₽	₽	E	N	D	I	X	*
*									*
*									*

Proprietary Information Tandy® Corporation

.

- TANDY COMPUTER PRDDUCTS -

Drive Model	ţ	Capacity	1	II	ł	Exp.	Bay	ł	12/16/16B	ł	Thin	Bay	1 6ØØ	Ø I
Shugart SA8ØØ		5ØØX	ł	Yes				1		1				ł
CDC Discrete	ł	5øøk	ł		ł	Yes	3	ł		I				ł
CDC LSI	ł	5øøk	1		T	Yes	;			ł				
TPI 8"	ŧ	5øøk	ł	Yes	ŧ	Yes	;	ł		ł				1
Tandon 8"	I	5ØØK/1M	ł		ł			ł	Yes	ł	Yes	5	Yes	ł
Tandon TM848-2E	ł	500K/1M	ł		ł			ł	Yes	ł	Yes	3	Yes	- 1

TRS-DOS SYSTEM FLOPPY DRIVE USAGE (8*)

TRS-DOS UPGRADE BOARD USAGE

Upgrade Board	ŧ	Figure(s)	1	II	;	16	ł	12/16B	1	6000	1
Arcnet	I	28	Ī	Yes	ł	Yes	1	Yes	ł	Yes	ł
Visicalc	ł	12	ł	Yes	I	Yes	**	Yes	ł	Yes	I
144K RAM	ł	13, 14	*	Yes	ł	Yes	ł	Yes	ł	Yes	ł
Hi-Res Graphics	ł	29	ļ	Yes	ł	Yes	ł	Yes	ł	Yes	I
Multi-Terminal	ł	31	ł	Yes	ł	Yes	ł	Yes	ł	Yes	I
68ØØØ 6 MHz CPU	I	16	ł	Yes	ł	Yes	ł	Yes	ł		I
Reduced 68000 CPU	ł	17	ł	Yes	ł	Yes	ł	Yes	ł		ł
68000 Memory	ł	18	Į	Yes	I	Yes	I	Yes	ł		ł
8 MHz 68000 CPU	I	66	ł	Yes	ł	Yes	ł	Yes	ł	Yes	l
512K/1MEG 68000 RAM	ł	67, 68	ł	Yes	ł	Yes	ł	Yes	ł	Yes	ł
68000 MMU *	ł	157,158/9	ł	Yes	ł	Yes	I	Yes	ł	Yes	I.

* Memory Management Unit - must have 8 MHz 68000 CPU to exchange for 68000 CPU with MMU modification installed.

TRS-DOS SYSTEM HARD DRIVE USAGE

		INT =	Ī1	nternal		EXT = 2	Ex	ternal				
Bard Drive	!	Model	ł	II	ŧ	12	1	16	ł	16B	1	6000 1
5 MEG Tandon	1	TM6Ø2	1	EXT	ł	EXT	ł	EXT	ł	EXT	Ī	EXT
8 MEG Shugart	ł	SA1004	¥	EXT *1	I	EXT *1	ł	EXT *1	ł	EXT *1	ł	EXT *1
10 MEG Tandon	ł	TM5Ø2	ł		ł		ł		ł		ł	EXT
10 MEG Tandon	ł	TM252	ł		ł		ł		ł		ł	EXT I
12 MEG Tandon	ł	TM6Ø3	ł	EXT	ł	EXT	ł	EXT	***	EXT	ł	EXT I
15 MEG Tandon	l I	TM5Ø3	T	EXT	ł	EXT	ł	EXT	ł	INT/EXT	ł	INT/EXT:
35 MEG Quantum	*21	Q54Ø	ł	EXT	١	EXT	ł	EXT	ł	EXT	ł	EXT \
70 MEG Micropolis	*21	1325	ł	EXT	ł	EXT	ł	EXT	ł	EXT	ł	EXT

- NOTE: *1. A special 8 MEG interface board is required which is not compatible with the other hard drives.
 - *2. Maximum TRSDOS 4.2.5 and 4.2.6 is 16.6 Megabytes.
 - 3. TRSDOS Version 4.2.5 is for the WD1010 controller. TRSDOS Version 4.2.6 is for the 8x300 controller.

- TANDY COMPUTER PRODUCTS -

TRSDOS HARD DRIVES USED IN MS-DOS COMPUTERS

CATALOG	1)	DES	CRIP	TION	ŧ	MODEL #	Į	HEADS	ł	CYL	ł	SETUP	TYF	E
26-51Ø3	ļ	1ø	MEG	Tandon	ļ	TM5Ø2	ļ	4	ł	3Ø6	ł	1		ł
25-1Ø25	ł	1Ø	MEG	Tandon	ł	TM252	1	4	ł	3Ø6	ł	1		ł
26-4155	ł	15	MEG	Tandon	ł	TM5Ø3	1	6	ł	3Ø6	1	41	*1	1
26-4171	ł	35	MEG	Quantum	ł	Q54Ø	1	8	ļ	512	1	36	*2	1
26-4173	ł	7Ø	MEG	Micropolis	1	1325	ļ	8	ļ	1Ø24	ł	4Ø -	*3	1

NOTES:

In older ROM versions that do not have a drive type 41, use drive type 1.
 In older ROM versions that do not have a drive type 36, use drive type 7.
 In older ROM versions that do not have a drive type 40, use drive type 4.

MS-DOS SYSTEM FLOPPY DRIVE USAGE (5 1/4")

					løøøex 1øøøsx	•							1000	rl3	:
						•		12øøfd	1		3øøø				31
Drive Model	10	apacity	7 : 1000	11:	1øøøti.	/TL	21:	12 ØØ HD	200	51	4ØØØ	SERIES	4016	5 X/2Ø SI	<u>[]</u>
Tandon TM100-2	ł	36ØK	1 1	;			‡ ‡	Yes	ł	ł			ł		ł
Tandon TM65-2L	I.	36ØK	ļ	ł			ļ	Yes*3	1	ł			i i		ł
TEAC FD-54B	ł	36ØK	Yes	ł			ł		I	ł			1		ł
TEAC FD55BV-75	ł	36ØK	Yes	ł	Yes	*1	ł		ļ	ł			1		ł
TEAC FD55BV-221	I	36ØK	Yes	ł	Yes	*1	ł		1	ł					ł
TEAC FD55BR-521	ļ	36ØK	iYes	ł	Yes	*1	ł		1	ł	Yes		1	Yes	ł
TEAC FD55BR-121	I	36ØK	lYes	L	Yes	*1	ł		ł	ł	Yes			Yes	I
Mitsu. M4853	ł	72ØK	ł	ł			ł		lYes	ł			l		ļ
Mitsu. M4853-1	ł	72ØK	ł	ł			I		lYes	ł			1		ł
Mitsu. M4851	ł	36ØK	I	ł			1		ł –	ł	Yes		1 1	Yes	ł
Mitsu. MF5Ø1A	ł	36ØK	ł	ł			1		1	ł	Yes		•	Yes	ł
Mitsu. M4854-3S	ł	1.2M	ł	ł			ł		I	1	Yes	*2	; ;	Yes	ł
Mitsu. MF5Ø4A/B	ł	1.2M	ļ	I			ļ		1	ł	Yes	*2		Yes	ł
Mitsu. MF5Ø4C	ļ	1.2M	1	1			ł		I	ł	Yes	*2	1	Yes	ł

Note: *1. Can only be used as external drive with Tandy 1000HX.

*2. When installed into a Tandy 3000HL a Dual Speed Floppy Drive Controller or Floppy/Hard Drive Controller is required.

*3. Used in 1200A only.

.....

- TANDY COMPUTER PRODUCTS -

					* • ······					3000NL	1
				:1000	Ø/SX/TX	1000F	XLX	1 3Ø		4ØØØSX	1
				11000	ØRL	:1øøø1	rL3	: 3Ø	øøhl	4Ø16DX/2ØL	ζ1
			11000	EX:1000	ØSL/SL2	2500	SERIES	: 4Ø	ØØ	4Ø25LX/33LI	C i
Drive	e Model	Capacity	1000	HX:1000	STL/TL2	40165	X/2ØSX	1 4Ø	ØØLX	5000MC	\$
Teac	FD-35-FN	I 72ØK	lYes	*2		1		į			I
Teac	235F-1Ø5U	I 72ØK	1	/Yes	*6	1		l	l		ł
Sony	MP-F63W-Ø1D	I 72ØK	lYes	*7/Yes	*5	I		lYes	*5	1	1
Sony	MP-F63W-7ØD	1 72ØK	lYes	*7!Yes	*5	ł		lYes	*5 I		1
Sony	MP-F11W-7ØD	1 72ØK	ł	lYes	*3	Yes		Yes	*3 1	Yes	ł
Sony	MP-F11W-71	1 72ØK		!Yes	*3	Yes		Yes	*3 1	Yes	ł
Sony	MP-F11W-72	I 72ØK	1	lYes	*3	Yes		Yes	*3 ;	Yes	I
Teac	235HF-1Ø6U	1.44M	1	1		Yes		Yes	*1 *3	Yes	1
Sony	MP-F73W-Ø1D	1.44M	1	t 1	ł	ļ		Yes	*1 *4/		1
Sony	MP-F73W-7ØD	1.44M	1	ł	ļ			Yes	*1 *4¦		1
Sony	MP-F17W-7ØD	1.44M	ł	ł	Ĩ	Yes		Yes	*1 *31	Yes	1
Sony	MP-F17W-71	1.44M	1	ł	i	Yes		Yes	*1 *3;	Yes	I
Sony	MP-F17W-72	1.44M	1	I	i	Yes		Yes	*1 *3;	Yes	I .

MS-DOS SYSTEM FLOPPY DRIVE USAGE (3 1/2*)

- Note: *1. When installed into a Tandy 3000HL a dual speed floppy drive controller or floppy/hard drive controller is required.
 - *2. Used only as an external drive with Tandy 1000EX/HX.
 - *3. Requires 3 1/2" to 5 1/4" drive adapter board (25-1076) for 720K drives in 1000/SX/TX, 1000SL/SL2 and 1.44M drives in 3000/HL and 4000/4000LX. All others do not require the adapter.
 - *4. Used as 25-4052 upgrade kit in these computers as well as internal drive A: on Tandy 4000.
 - *5. Used only in 1000/SX/TX, 3000/HL or 4000/4000LX. Requires 3 1/2" to 5 1/4" drive adapter board (25-1066).
 - *6. Used only in 1000RL and 1000SL2.
 - *7. Used internally in 1000HX. Not supported in 1000EX.

HARD DRIVES - HARD CARDS

Hard cards come as a hard drive with a controller board attached. When installing them in an AT style machine, the SETUP program should show no hard drives installed.

CAPACITY! CATALOG	1	SIZE	ł	MANUFACTURER	ł	Mode1	1 I/F 1	HEADS	ł	CYLS.	ł
20 MEG : 25-1029	ł	3.5*	ļ	Fuji	1	FK3Ø2-26	1ST5Ø61	4	ł	612	1
20 MEG 25-1029	ł	3.5*	ļ	Fuji	ļ	FK3Ø5-26	ST5Ø61	4	ł	612	ļ
20 MEG /25-1029A/8	1	3.5"	1	Miniscribe	1	8438	ST5Ø61	4	1	612	1
20 MEG 25-1032	ł	3.5"	ł	Tandon	ł	TM362	IST5Ø61	4	ł	615	ł.
20 MEG 25-1032A/8	1	3.5*	ļ	Western Dig.	ł	WD362	1 ST5Ø6 1	4	I	615	1
20 MEG 25-1032CDE	1	3.5"	ł	Western Dig.	ł	WD93Ø28	IDE !	2	ł	782	f
4Ø MEG 25-4Ø59	ł	3.5"	ł	Seagate	T	ST157R	ST5Ø6	6	ł	522	ł
40 MEG 25-4059A	ł	3.5*	ļ	Western Dig.	1	WD344R	ST5Ø6	4	ł	782	1
40 MEG 25-40598	ţ	3.5"	ļ	Western Dig.	I	WD93Ø44	IDE \	4	ł	782	1

-- Appendix.4 --

- TANDY COMPUTER PRODUCTS -

HARD DRIVES - ST-506 HARD DRIVES

Early BIOS ROMs contained hard drive lookup tables designed to match up to hard drives of the time period. These ROM lookup tables did not have as many choices as later BIOS ROM lookup tables. With later versions of BIOS ROMs, the drive type lookup tables were expanded to include an expanding list of drives as well as more specific drive types for earlier hard drives.

The EARLY ROM type number listed below refers specifically to Tandy 3000/HL computers with 1.00.00 and 1.01.00 BIOS ROMS.

The LATER ROM type number listed below refers to Tandy 3000/2500/4000 series computers with 1.02.00 BIOS ROMS or later installed. MS-DOS 3.20.02 or later must be used with 1.02.00 BIOS ROMS.

CA	PACIT	¥!	CATALOG	ł	MANUFACTURER	H	Mode1	ł	HEADS	ł	CYLS.		EARLY RO T <u>ype</u> #	 LATER		11
2ø	MEG		25-4062	ł	Mitsubishi	ł	MR522	l	4	1	612	I	6	 6		I
2Ø	MEG	ł	25-4Ø62	ŧ	Seagate	;	ST225	1	4	ł	615	ł	2	1 2		ł
4Ø	MEG	ł	25-4Ø61A	ł	Rodime	ł	RO3Ø55	ł	6	ļ	82Ø	ł	3	39		1
4Ø	MEG	ł	25-414Ø	ł	Seagate	ł	ST-151	ł	5	ł	977	ž	N/A *3	I N/A	*3	ł
4Ø	MEG	Į	25-4Ø61	ł	CDC	ł	WREN II	ł	5	ł	989	Į	11	37		ł
4Ø	MEG	1	25-4Ø61	ł	Microscience	ł	HH-1Ø5Ø	ł	5	ł	1Ø24	ł	11	: 38		1
4Ø	MEG	ł	25-4ø57	ł	Seagate	ł	ST251	ł	6	ł	82Ø	ł	3	39		ł
7ø	MEG	ł	25-4Ø67	ł	Rodime *1	ł	RØ5Ø9Ø	1	7	ł	1224	ł	14	19		ł
8Ø	MEG	;	25-4141	ł	CDC	ŧ	94355	1	9	ł	1Ø72	ł	N/A *2	N/A *	2	ł

Notes:

- *1. The floppy/hard drive controller WD1002-WA2 will only support 1024 cylinders. To format the complete drive, a WD1003-WA2 floppy/hard drive controller or a 25-4058 hard drive only controller must be used.
- *2. Used in the Tandy 5000MC only. Refer to the 5000MC hard drive type table for the correct setup type.
- *3. Used only in the 5000MC. Use drive type 43 in the 5000MC hard drive type table. To do this, BIOS ROM version 1.02.02 or greater is needed.

- TANDY COMPUTER PRODUCTS-

HARD DRIVES - IDE HARD DRIVES

The table below shows the head and cylinder counts that are derived from a translate table within the intelligence of the IDE ROM/Controller. The actual number of heads and cylinders is different.

CAPACITY	(1	CATALOG	ł	MANUFACTURER	1	Model	ł	I/F	- 1	HEADS	ł	CYLS.	15	ETUP	TYP	E!
2Ø MEG	1	25-1Ø45	ł	Western Dig.	1	WD93Ø28	ł	XT	ł	2	1	782	I	Note	5	I
4Ø MEG	T	25-1Ø46	l	Western Dig.	I I	93Ø44	ł	ХT	1	4	ł	782	1	Note	5	I.
2Ø MEG	Į	25-1Ø47	ł	Seagate	I.	ST-325X	ł	XT		4	ł	615	ł	Note	5	I.
4Ø MEG	ł	25-1Ø48	ł	Seagate	18	ST-351A/X	(1)	lote	41	5	ł	98Ø	1	17		ł
4Ø MEG	ł	25-4119	I	Miniscribe	I	8Ø51A	I	AT	1	5	****	977	1	17		I
4Ø MEG	ł	25-4119	ł	Miniscribe	l	7Ø4ØA	1	AT	ł	5	I	977	ł	17		ł
4Ø MEG	ł	25-4123	I	Conner	I.	CP3Ø44	ł	AT	1	5	ł	977	I	17		1
52 MEG	ł	25-4124	I	Quantum	I	LPS52	ł	ΑT	ł	8	I	751	ł	Note	1	I
8Ø MEG	ł	25-412Ø	I	Miniscribe	I I	7Ø8ØA	ł	ΑŤ	ł	1Ø	L	981	1	Note	2	I
1Ø5 MEG	ł	25-413Ø	ł	Quantum	۱	LPS1Ø5	1	AT	ł	16	I.	755	ļ	Note	3	ł

Notes:

1. Refer to the Hard Drive chapter, page 62 for SETUP type information.

- 2. Refer to the Hard Drive chapter, page 51 for SETUP type information.
- 3. Refer to the Hard Drive chapter, page 63 for SETUP type information.
- 4. Can be set to either interface type, depending on jumper settings. Refer to Hard Drive chapter, page 61 for jumper information. Drive type given is for AT jumper setup.
- 5. Setup drive types are not applicable to XT style computers.

SCSI HARD DRIVE HEAD AND CYLINDERS

SCSI hard drive head and cylinder counts will be different depending on the version of SCSI BIOS ROM. Some are based on 16 heads and some are based on 64 heads. Refer to Technical Bulletin HD:51 for further details. Below are the heads and cylinders count for the SCSI hard drives based on either number of heads, along with other important information. This information will be useful when using DISKREL and figuring out partition information. Select "NO HARD DRIVE INSTALLED" for a SCSI hard drive, unless there is a "SCSI" selection available.

					SCSI	Drive	et:	16 HEAD	BIOS	1+	64 HEAD	BIOS	\$ I
Catalog	MANUFACTURER	1	Model #	ł	S	ize	ł	HEADS	CYL.	ł	HEADS	CYL	. 1
25-4159	¦ Quantum	ł	P4ØS	1	4Ø	Meg	1	16	16Ø	1	64	4Ø	1
25-416Ø	Quantum	1	Q28Ø	I	8Ø	Meg	I	16	3Ø5	1	64	77	1
25-416ØA	Quantum	ł	P8ØS	ł	8Ø	Meg	ł	16	3Ø5	ł	64	77	I
25-4162	Seagate/CDC	1	94221	Į	17Ø	Meg	ł	16	684	Ŧ	64	171	1
25-4164	Seagate	ł	ST1239N	ł	22Ø	Meg*	ł	16	778	ł	64	194	I.
25-4163	Seagate/CDC	ł	94171	ł	344	Meg	ł	16	1251	ł	64	313	I.
25-4167	Seagate	ł	ST25Ø2N	T	44Ø	Meg*	ł	16	1661	ł	64	415	1

(continued on next page)

Proprietary Information Tandy® Corporation - TANDY COMPUTER PRODUCTS

***NOTE:** As of the date of this printing, DISKREL only supports SCSI hard drive head/cylinder counts for the 40, 80, 170, and 344 Megs.

For the 202 MEG SCSI hard drive use the 170 MEG selection. For the 440 MEG SCSI hard drive use the 344 MEG selection.

HARD DRIVE TYPE TABLE

To determine your drive type, compare the number of cylinders and the number of heads for your drive with the numbers in the following table. If you can not find an exact match, use a type with the correct number of heads but fewer cylinders. Types 1-15 are available with 1.00.00 and 1.01.00 8IOS ROMS installed in a Tandy 3000/HL. Drive types 16-24 and 36-41 were added in later 8IOS ROM versions. Drive types 25-29 and 35 are even newer additions and may not be found in all 8IOS ROM versions. Consult your setup table specific to your computer for correct drive types.

HARD DRIVE TYPES

pe	ł	Cylinders	ŧ	Heads	1	1	Type	ŧ	Cylinders	1	H
	ł	3Ø6	1	4	1	ł	19	ł	1024	ł	
1		615	ł	4	1	1	2Ø	ł	733	ł	
1		615	1	6	ł	1	21	ŧ	733	ł	
ł		94Ø	ł	8	1	ł	22	ł	733	1	
ł		94Ø	ł	6	1	1	23	ł	3Ø6	ł	
ł	1	615	1	4	ł	ł	24	ŧ	** Reserv	zed	Ĩ
	ŧ	462	1	8	ł	ł	25	ŧ	615	ł	
	ł	733	ł	5	ł	1	26	1	1Ø24	ł	
	ŧ	900	ł	15	ł	1	27	ł	1Ø24	ł	
	1	82Ø	ł	3	ł	1	28*	1	981	ł	
	ŧ	855	ł	5	1	1	29	ł	512	ł	
	1	855	1	7	1	ł	35	ŧ	1Ø23	1	
	ł	3Ø6	ł	8	1	1	36	1	512	ł	
	ł	733	ł	7	ł	1	37	ł	989	ł	
	ł	** Reserv	ec	1 **	1	1	38	1	1Ø24	1	
	ł	612	ł	4	ł	1	39	ł	82Ø	ł	
	ŧ	977	ł	5	ł	ł	4Ø	ł	1Ø24	ł	
ŧ		977	1	7	1	1	41	ł	3Ø6	ł	

* Drive type 28 will be different depending on the particular ROM version of the computer. Some have 8 heads and 1024 cylinders; others have 10 heads and either 977 cylinders or 981 cylinders. Refer to the hard drive type table in the appropriate setup program for the computer to determine which drive type 28 is available. Then refer to the hard drive note entry in the chapter on hard drives to determine the correct drive type for that hard drive.

- TANDY COMPUTER PROOUCTS-

				_ *	1#			
	ا ا		start write			inumber of	1	
			precomp.	1	landing	sectors	-	deluca tama
	1091.11	105.1	cylinder	1	cylinder	lper track	i	drive type
HDPARM	3Ø6	4	128		3Ø5	17		1
HDPARM	615	4	300		615	17		2
HDPARM	615	6	300		615	17		3
HDPARM	94ø	8	512		94Ø	17		4
HDPARM	94Ø	6	512		94Ø	17		5
HDPARM	615	4	-1		615	17		6
HDPARM	462	8	256		511	17		7
HDPARM	733	5	-1		733	17		8
HDPARM	900	15	-1		9Ø1	17		9
HDPARM	82Ø	3	-1		82Ø	17		1Ø
HDPARM	855	5	-1		855	17		11
HDPARM	855	7	-1		855	17		12
HDPARM	3Ø6	8	128		319	17		13
HDPARM	733	7	-1		733	17		14
HDPARM	ØØØ	ø	ØØØ		ØØØ	ØØ		15
HDPARM	612	4	ø		633	17		16
HDPARM	977	5	300		977	17		17
HDPARM	977	7	-1		977	17		18
HDPARM	1Ø24	7	512		1Ø23	17		19
HDPARM	733	5	300		732	17		2Ø
HDPARM	733	7	3ØØ		732	17		21
HDPARM	733	5	3ØØ		733	17		22
HDPARM	3Ø6	4	ø		336	17		23
HDPARM	612	4	3Ø5		633	ØØ		24
HDPARM	3Ø6	4	-1		34Ø	17		25
HDPARM	612	4	-1		67Ø	17		26
HDPARM	698	7	3ØØ		732	17		27
HDPARM	976	5	488		977	17		28
HDPARM	3Ø6	4	ø		34Ø	17		29
HDPARM	611	4	3Ø6		663	17		3Ø
HDPARM	732	7	3ØØ		732	17		31
HDPARM	1Ø23	5	-1		1Ø23	17		32
HDPARM	ØØØ	ø	ØØØ		ØØØ	ØØ		33
HDPARM	ØØØ	ø	ØØØ		ØØØ	ØØ		34
HDPARM	1023	9	1Ø23		1Ø23	17		35
HDPARM	1023	5	512		1023	17		36
HDPARM	83Ø	10	-1		83Ø	17		37
HDPARM	823	1Ø	256		824	17		38
HDPARM	615	4	128		664	17		39
HDPARM	615	8	128		664	17		4Ø

TANDY 5000MC Hard Drive Type Table

(continued on next page)

-- Appendix.8 ---

:

- TANDY COMPUTER PRODUCTS-

		I# of!	start write: precomp. : cylinder :	landing	Inumber of Sectors Sper track	 drive type
HDPARM	917	15	-1	918	17	41
HDPARM	1023	15	~1	1023	17	42
HDPARM	823	1Ø	512	823	17	43
HDPARM	82Ø	6	-1	82Ø	17	44
HDPARM	1023	8	-1	1023	17	45
HDPARM	925	9	-1	925	17	46
HDPARM	699	7	256	7ØØ	17	47

TANDY 5000MC Hard Drive Type Table (continued)

.

								1000			-		12500			
		ŧ		1		100				11000		1	13000			
<u></u>	UPGRADE BOARD		IGURE (S)	~~~			<u>/ TX</u>						14000		LES	
25-1003	300 Baud Modem	1		lYes		Yes		lYes				1	1	Yes		1
25-1ØØ6	RS-232C		54	lYes	ł	Yes		lYes	*5	1	Yes		1	Yes		1
25-1004/9	External RAM	1	55, 56	lYes	1			1		1	lYes*2	1	1			ł
25-1Ø11	Memory Plus		81	;Yes	1			1		1	1	1	1			1
25-1Ø13	1200 Baud Modem	1 :	82	lYes	1	Yes		lYes		1	lYes	1	1	Yes		ł
25–1Ø13F	1200 Baud Modem	1	281	lYes	1	Yes		lYes		1	lYes	1	•	Yes		1
25–1Ø14	RS-232C Plus	1	1Ø6	lYes	*4	Yes	*4	lYes	*4	Yes	Yes*3	1	ł	Yes	*3	1
25-1Ø17	Plus 300 Modem	1	131	lYes	*31	Yes	*3	lYes	*4	lYes	iYes*3	1	-	Yes		-
25-1Ø18/A	Plus 1200 Modem	1	127, 193	lYes	*3¦	Yes	*3	lYes	*3	Yes	¦Yes*3	1	l	Yes	*3	ł
25-1019	Plus Network 4	1	126	lYes	*3¦	Yes	*3	lYes	*3	!Yes	¦Yes*3	ł	ł	Yes	*3	ł
25-1028	Trackstar 128		247	Yes	ţ	Yes		lYes		ł	1	1	1			1
25-1030	E. KYBD Adapter	1	128	/Yes	1	Yes		ł		ł	1	1	1			1
25-1Ø31	Plus RS232		140	Yes	*31	Yes	*3	lYes	*4	lYes	Yes*3	}	1	Yes	*3	1
25-1Ø34	2400 Baud ECR	1	253	†Yes	1	Yes		¦Yes		;	lYes	1	1	Yes		1
25-1Ø37	2400 Baud Modem		194	lYes	1	Yes		lYes	*5	ł	lYes	:	1	Yes		1
25-1Ø37A/B	2400 Baud Modem	1	291	lYes	Ľ	Yes		Yes	*5	ł	Yes	:	1	Yes		1
25-1038	Trackstar E		247	lYes	1	Yes		lYes		ł	1	1	\$			1
25-3043	Graphic Tendor	1	58	1	ŧ			1		1	lYes	1	ł	Yes		ţ.
25-3044	Graphic Master	1	59	1	1			1		1	lYes	1	ł	Yes		ł
25-3045	Dual Display	1	116	1	1			lYes		1	lYes	1	ł	Yes		1
25-3Ø45A	Dual Display "A	"1 :	153	1	1			lYes		1	lYes	1	ł	Yes		1
25-3046	Deluxe Text		1Ø4	:	1			1		ł	lYes	1	1	Yes		ł
25-3047	Deluxe Graphics	1	1Ø5	1	1			1		ł	lYes	1	1	Yes		ţ
25-3048	EGA/CGA Adapter		189,190	1	1	Yes		lYes		ł	lYes	1	1	Yes		1
25-3049	Mono/Parallel		245	1	1	Yes		!Yes		1	lYes	1	1	Yes		1
25-3061	Captain Multi,	1	57	1	;			1		1	lYes	1	1			1
25-3Ø63	Faxmate		257	lYes	1	Yes		lYes		1	lYes	1	1	Yes		1
25-4Ø25/A	Dual Serial/Par		286,287	Yes	1	Yes		lYes	*5	1	lYes	1	1	Yes		1
25-4Ø3Ø	2 MEG Memory		1ø3	1	1			1		:	1	:	1	Yes		1

NOTES: *1. Requires Enhanced Keyboard Adapter.

*2. Can only use the second memory board, figure 56.

*3, Must have Plus adapter board installed (25-1016).

*4. Must have Memory Plus for the 1000, or Plus adapter for 1000 SX/TX.

*5. SL/TL have on board serial ports which can be disabled with SETUP programs These boards will work in the SL/TL series provided there are no COM or IRQ conflicts.

(continued on next page)

		M	s-dos ui	GRADE BO	DARD USAG	E (cont.)			
					11000SL	11		12509	SERIES:
		1	1	1 1000	I TL/RL	11000 :	ł	13009	Ø SERIES!
	UPGRADE BOARD	FIGURE(S): 1000	; SX/TX	ISERIES	EX/HX:1200	12000	:4009	Ø SERIES!
25-4Ø31	Multi-Terminal	117	l	1		1 1	;	1	Yes :
25-4Ø34	Serial/Parallel	102, 11	5!Yes	lYes	Yes *5	t tYes	1	1	Yes i
25-4Ø37	EGA Board	1 149	1	1	1	1 1	;	1	Yes I
25-4Ø38	Enhanced Keyboad	129	Yes *1	liYes *1	Yes	1 1	ł	1	Yes l
25-4Ø39	Dual Port Serial	13Ø	lYes	lYes	Yes *5	l lYes	1	l	Yes l
25-4Ø43	VGA adapter	191	1	lYes	lYes	l lYes	1	ŧ	Yes l
25-4Ø6Ø	FD/HD Controller	95,124	1	1	1	1 1	ŧ	1	Yes I
25-5435	Etherlink I Orig	145	lYes	lYes	lYes	1 1	;	1	Yes l
25-5435	Etherlink I New	249	lYes	iYes	lYes	1 1	;	;	Yes l
26-1221	Vianet PC	1 71, 114	lYes	lYes	lYes	l lYes	1	t	Yes l
26-122Ø	Vianet 2000	172	1	1	1	1 1	Yes	1	I
26-5127	HD Controller	1 6Ø	l	1	1	1	lYes	1	l
26-514Ø	Hi-Res Mono.	61	1	1	1	1	Yes	;	1
26-514Ø	Hi-Res Color	62	1	I	1	1 1	lYes	ł	l
26-5144	Mouse/Clock/Cal	1 65	1	;	l	1 1	Yes	1	l
26-5161	External RAM	63, 64	1	1	1	1 1	Yes	1	1
26-5164	Multi Terminal	92	1	1	1	1	Yes	ł	1
26-55Ø1	Etherlink II	21Ø	lYes	lYes	lYes	1 1	1	1	Yes ;
26-55Ø2	Etherlink Plus	146	Į	1	1	1 1	;	1	Yes i
26-55Ø5	Ethernet	248	lYes	lYes	lYes	1 1	1	1	Yes i
26-55Ø5A	Ethernet Adapter	1 284	lYes	Yes	lYes	1 :	1	1	Yes l
26-55058	Ethernet Adapter	285	lYes	lYes	Yes	1 1	1	;	Yes l
26-5506	Ethernet Plus	282	1	l	1	1 1	1	ŧ	Yes I
26-65Ø5	Tandy Arcnet	251	lYes	lYes	¦Yes	1 1	ł	ł	Yes I

NOTES: *1. Requires Enhanced Keyboard Adapter.

- *2. Can only use the second memory board, figure 56.
- *3. Must have Plus adapter board installed (25-1016).
- *4. Must have Memory Plus for the 1000, or Plus adapter for 1000 SX/TX.
- *5. SL/TL have on board serial ports which can be disabled with SETUP programs These boards will work in the SL/TL series provided there are no COM or IRQ conflicts.

- TANDY COMPUTER PROOUCTS-

RAM REFERENCE GUIDE

This guide is NOT all inclusive of RAM chips that may be encountered, but was assembled from actual Tandy Corporation products in the interest of trying to make the list as comprehensive as possible. Most of these RAM chips are DIPs (Dual In-line Package).

Nomenclature	Organization	Access Time
MT 1256-15	256K X 1	15Ø nsec
MT 1257-15	256K X 1	150 nsec
MT 1259-12	256K X 1	12Ø nsec
MT 1259-15	256K X 1	150 nsec
P 2164A-2Ø	64K X 1	200 nsec
MSM 3764-15RS		150 nsec
MSM 3764-2ØRS	64K X 1	200 nsec
MT 4Ø65-12	64K X 4	12Ø nsec
MT 4Ø67-12	64K X 4	12Ø nsec
MT 4Ø67-15	64K X 4	150 nsec
TMS 4116D2ØNL	16K X 1	200 nsec
MCM 4116BP2Ø	16K X 1	200 nsec
TMS 4164-15NL	64K X 1	150 nsec
TMS 4164-215NI		150 nsec
TMM 4164AP-15	64K X 1	150 nsec
KM 4164A-15	64K X 1	15Ø nsec
KM 4164A-2Ø	64K X 1	200 nsec
KM 41256P-12		12Ø nsec
KM 41256-12	256K X 1	12Ø nsec
KM 41256-15		15Ø nsec
uPD 41256C-15	256K X 1	15Ø nsec
KM 41257-15	256K X 1	15Ø nsec
TMM 41464P-12	64K X 4	12Ø nsec
TMM 41464-12	64K X 4	12Ø nsec
M5M 4256J-1Ø	256K X 1	100 nsec RAM on Tandy 4000 256K X 9 SIMM
MT 4264-15	64K X 1	15Ø nsec
TMS 4256-15NL	256K X 1	15Ø nsec
TMS 4416-15NL	16K X 1	15Ø nsec
MK 4564N-2Ø	64K X 1	200 nsec
HM 4864P-2	64K X 1	15Ø nsec
HM 5Ø256P-15	256K X 1	15Ø nsec
P 51C256L-15	5 256K X 1	15Ø nsec
MCM 6665AL2Ø	64K X 1	200 nsec
MCM 66658P2Ø	64K X 1	200 nsec
TC 8Ø4ØØ16	16K X 1	200 nsec
TC 8Ø4Ø116	2K X 8	200 nsec
TC 8Ø4Ø416	16K X 4	15Ø nsec
TC 8Ø4Ø446	2K X 8	35Ø nsec
TC 8Ø4Ø464	64K X 4	15Ø nsec
TC 8Ø4Ø6Ø9	256K X 9	100 nsec 256K SIMM for Tandy 4000
TC 8Ø4Ø665	64K X 1	200 nsec

(continued on next page)

-- Appendix.12 --

- TANDY COMPUTER PRODUCTS -

RAM REFERENCE GUIDE (Cont.)

TC	8Ø41Ø16	16K X 1	45Ø nsec	Model III
TC	8Ø41116	2K X 8	200 nsec	********
TC	8Ø41254	64K X 4	150 nsec	
TC	8Ø41464	64K X 4	120 nsec	
TC	8Ø415Ø9	1M X 9	100 nsec	1MEG SIMM for Tandy 4000
TC	8Ø41665	64K X 1	15Ø nsec	
тс	8Ø42665	64K X 1	200 nsec	Use In CC II ONLY
TC	8Ø43665	64K X 1	15Ø nsec	Use In Tandy 1000 ONLY
TC	8Ø44256	256K X 1	12Ø nsec	•
тс	8Ø45164	64K X 4	12Ø nsec	
тс	8Ø46116	2K X 8	15Ø nsec	
TC	8Ø46164	64K X 1	12Ø nsec	
TC	8Ø49ØØ8	256K X 1	15Ø nsec	
TC	8Ø49164	64K X 1	15Ø nsec	
MB	8264A-15	64K X 1	15Ø nsec	
SCM	9Ø4ØØ16	16K X 1	2ØØ nsec	Model II
TC	8Ø416Ø9	256K X 9	8Ø nsec	256K SIMM for 4000LX/5000MC
TC	8Ø49Ø1Ø	1M X 9	8Ø nsec	1MEG SIMM for 4000LX/5000MC

SIMM (Single In-Line Memory Module) Identification Table

This table is intended to be a helpful reference guide to determine the type and size of SIMMs you are using. Some of these numbers may be date code information which will vary from one module to the next. Most of the numbers should match though, especially the numbers on the component side which for the most part are taken off the memory chips themselves.

This table includes as many manufacturers' types of SIMMs as possible at the present time. New types may be introduced in the future, therefore this list will be updated as time goes on.

	Org	anization	Access Time	Markings (component side)	Markings (solder side)	<u>Vendor#</u>
1)	9	256K x 1	løø nS	MT1259EJ-1Ø	MT9259 M-1Ø Micron Technology	8Ø4Ø6Ø9
2)	9	256K x 1	100 nS	M5M4256AJ-1Ø	MH256Ø9J-1Ø	8Ø4Ø6Ø9
3)	9	256K x 1	100 nS	OKI Japan M41256A 732353 1Ø1	OKI	8Ø4Ø6Ø9

(continued on next page)

-- Appendix.13 --

TECHNICIAN SERIES

- TANDY COMPUTER PRODUCTS -

NOTES AND JUMPERS

Organization	Access Time	Markings (Component side)	Markings (solder side)	<u>Vendor</u> #
4) 2 256K x 4	100 nS	OKI Japan M514256-1Ø 932Ø48	MSC2329-1ØYS3	8Ø4Ø6Ø9
1 256K x 1	100 nS	OKI Japan M41256A 9322271Ø2		
5) 9 256K x 1	8Ø nS	AAA2891H9S-Ø8	NMBS MM28Ø1J95-Ø8	8Ø416Ø9
6) 2 256K x 4	8Ø nS	Panasonic MN1Ø4256-8Ø	No markings	8Ø416Ø9
1 256K x 1	8Ø nS	Japan 8902HAK TC1256P-80		
7) 9 1M x 1	100 nS	MALAYSIA 88395ØØ15K HM511ØØØJP1ØS	GED1ØØ59PØ95	8Ø415Ø9
8) 9 1M x 1	8Ø nS	NEC Japan 421000-80 8840RY010	GED1ØØ59PØ95	8ø49ø1ø
9) 9 1M x 1	8Ø nS	JAPAN 89Ø2HCK TC511ØØØAJ-8Ø	тоуосом Тнзс1øøø9-т8ø	8Ø49Ø1Ø
1Ø) 2 256K x 4	8Ø nS	PANASONIC MN41C4256SJ-Ø8 JAPAN 9Ø5B4	1988 TANDY CORP S/A 8899Ø74	8Ø416Ø9
1 256K x 1	8Ø nS	AAA28Ø1J-Ø8 NMBS 8931		
11) 9 256K x 1	8Ø nS	AAA28Ø1J-Ø8 NMBS 882Ø	NMBS SNK NST4 MM28Ø1J9S-Ø8 MADE IN JAPAN	8Ø416Ø9
12) 2 256K x 4	8Ø nS	MCM514256AJ8Ø UIQAA8914	1988 TANDY CORP S/A 8899Ø74	8Ø416Ø9
1 256K x 1	8Ø nS	AAA28Ø1J-Ø8 NMBS 8911		
13) 2 256K x 4	100 nS	KM44C256AJ-1Ø 925 KOREA	1988 TANDY CORP S/A 8899Ø74	8ø4ø6ø9
1 256K x 1	100 nS	MT1259EJ-1Ø 894Ø D USA		

-- Appendix.14 --

- TANDY COMPUTER PRODUCTS-

TANDY/GRID GATALOG/MODEL NUMBER GROSS REFERENCE LIST

Note: Although the main logic boards may appear similar, most are NOT interchangeable. Gonsult the exchange lists for proper main logic board part numbers and DO NOT SUBSTITUTE one manufacturer's board for another.

TANDY	TANDY	GRID	GRID
Catalog 🖡	Model 🖡	Catalog #	Model #
25-3505	14ØØHD	G2Ø-1Ø1Ø	14Øxt
25-3551	281ØHD	G2Ø-172Ø	1720
25-4Ø74	25ØØXL	G51-1616	2B6mfp
25-4Ø75	25ØØXL/2	G51-1617	286mfp svga
25-4Ø72	3ØØØNL	G51-161Ø	286is
		G51-1611	2B6is M4Ø (with 4Ø MEG HD)
		G51-1612	2B6is MBØ (with BØ MEG HD)
25-49ØØ	4ØØØSX	G52-164Ø	3B6isx
		G52-1641	3B6isx M4Ø (with 4Ø MEG HD)
		G52-1642	386isx M8Ø (with 8Ø MEG HD)
		G52-1644	3B6isx (with 2 MEG memory)
25-49Ø1	4Ø16SX	G52-1643	3B6sxmfp
25-49Ø3	4ø2øsx	G52-18Ø1	386sxmfp2Ø
25-5ØØ1	4Ø16DX	G53-1634	386is-16
25-51ØØ	4ØØØLX	G53-163Ø	3B6is
25-512Ø	4ø2ølx	G53-1631	386is-20 (with 1 MEG memory)
		G53-1636	386is-20 (with 2 MEG memory)
25-5125	4Ø25LX	G53-1632	386is-25 (with 2 MEG memory)
		G53-1638	386is-25 (with 4 MEG memory)
25-5133	4Ø33LX	G53-1633	386is-33 (with 4 MEG memory)
		G53-1637	3B6is-33 (with B MEG memory)
25-6ØØØ	5ØØØMC	G54-162Ø	3B6mc
		G54-1621	3B6mc M4Ø (with 4Ø MEG HD)
		G54-1622	3B6mc MBØ (with 80 MEG HD)

MONITOR TYPE TABLE

_

_

Monochrome	Monochrome			
Composite	Direct Drive	CGA	EGA	VGA
VM-2	VM-1	CM-1	EGM-1	VGM-1ØØ
26-3211	26-5111	25-5112	25-4Ø35	25-4Ø4Ø
VM-4	VM-3	CM-2		VGM-2ØØ/3
25-1020	25-3Ø1Ø	26-3212		25-4041/
	VM-5	CM-4/1Ø		VGM-3ØØ/
	25-3Ø11	25-1021		25-4Ø42/
		25-1Ø22		
	VM-5			VGM-22Ø
	25-3012	CM-5		25-4Ø44
		25-1Ø23/A/B/C		
		25-1Ø43/A		VGM-44Ø
				25-4Ø46
		CM-11		
		25-1Ø24/A		

ł	C	P
1		
1		

	VM-1	: VM-2	I VM-3	1 VM-4	VM-5	CM-1	CM-2	CM-4	1 CM-5	I CM-1Ø	: CM-11	EGM	VGM
Monochrome Display Adapt. 25-3040	F	1 1 1 1	 Yes 	‡ •	 Yes 	 	1	1 1 1	1	 	 	1	l l 1
Graphics Tendor 25-3Ø43	1 1 	l I Yes I	I IYes I	Yes	 Yes 	1 !	Yes	'Yes	l IYes I	I I Yes	 Yes 	Yes	
Graphics Master 25-3Ø44	 	 Yes 	I Yes	 Yes 	 Yes 	} } 	 Yes 	Yes	Yes	ľ Yes I	 Yes 	Yes	
Dual Display Graphics Adapt. 25-3045		Yes	; ! Yes ! !	1 1 Yes 1 1	' Yes 	F 1 1 1	' Yes ! !	Yes	'Yes ' !	Yes 	Yes	Yes	
Dual Display Graphics Adapt. 25-3045A		Yes	 Yes 	Yes 	Yes		Yes	Yes	; Yes 	Yes	Yes	Yes	
Deluxe Text Display Adapt. 25-3046	l Yes l	1 1 1	T B T F T	* * *	 	IYes I	\$ \$ {	1 F F	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	F F F 			

VIDEO MONITOR/VIDEO BOARD COMPATIBILITY CHART

(continued on next page)

TECHNICIAN SERIES

	VM-1	1 VM-2	1 VM_3	1 VM-4	! VM_5	I CM-1	1 CM-2	I CM-A	1 CM-5	1 CM-10	CM-11	ECM	I VCM
	<u>· · · · · · · · · · · · · · · · · · · </u>	 	• •111-5 	1 111-4	1 111-3	1	1 011=2	1 001-4	<u> 011</u>	1 011-10	1 ON-11	1 1.011	1 100
Deluxe Text	Yes	i i	1	ł	ł	Yes		1	1	1	1	1 1	1
Display Adapt.	1	1	*	1	ł	ł	1	1	1	1	1	1	ł
25-3Ø46B		!	l	! 	ŧ	i	l	l	l	l	l	l	l
Deluxe Text	1	t t	l tYes	1	 Yes	1	 1	1	1	1 1	1	1	1
Display Adapt.	1	1	1 103	!	1 200	1	1	1	• •	ţ	1		!
25-3Ø46C	1	!	t	ŧ ŧ	' !	1 	1 1 	t	1 1 	!	1 1		، ۱
Deluxe Graphics		1	1	1	•	l I Yes	1	1	1	1	1 1		1
Display Adapt.	1 162	t t	1 i	1	£ 1	1 155	1	t t	i :	1 [1 [1	 	1 1
25-3Ø47	1	1	l	I	1 	1 [1	1 1 	1 	1 [1	I	1 1
EGA/CGA Adapt.	1	‡ †	l Yes	1	l IYes	ŧ	 Yes	 Yes	l Yes	l I Yes	l Yes I	Yes	‡ •
25-3048	1	!	I	I	/ 100 /	, ,	I	I	1	I	، ۱۰۰۵ ا	I	ŧ
EGA/CGA Adapt.	‡ 1	1 1	 Yes		 Yes	1	l Yes	 Yes	l Yes	l Yes	Yes	Yes	! !
25-3Ø48A	1	!	I	I	l	1	I	1	I	1	ا۱	l	I
Monochrome/	1	1 1	 Yes	 	l Yes	1		‡ }	1	1		1	
Parallel Adapt.	!	!	1 203		1	1	1	1	1		· ,		
25-3049	1	I	1	!	I	, I	1 	I	I	l	۱۱		I
EGA/CM1 Display	 ! Yoe	1	l Yes	•	 Yes	 Yes	 Yes	 Yes	l Yes	l IYes	l Yes I	Yes	ł
Adapter	1	•	1 10		1	100	1	1	1 100	1		100	•
25-4Ø37	1	1	1	1	I	1	1	1	1	* *	1		1
	!	1	!		1	1	ł	1		1	1		1
/GA Graphics	1	1	1	1	1	:	i 1	1	1	} 1	1		l Yes
Adapter	i 1	1	i i	i 1	i *	i	i 1	1	i • •	i t			i
25-4043	ŧ	i	I	i t	ŧ	۱	t	1 <u></u>	ii	+ 	i l	·_·	i
3/16 Bit	1	1	E E	1 1	1	1	1	‡	1	- 1	1		I Yes
VGA Graphics	1	1	ł	1	1	1	ł	1	1	1	1		1
Adapters	1	1	1	\$	1	1	ł	1	1	1	1		1

-

TECHNICIAN SERIES

- TANDY COMPUTER PROOUCTS-

DIAGNOSTIC BEEP CODES

The "DIAG OUTPUT" codes are placed at the diagnostic status port 80h to indicate tests in progress and failed tests on an installed diagnostic display board. The "BEEP CODES" are announced on the speaker if and only if a fatal failure is detected. For instance: "2-1-4" (A burst of two beeps, a single beep, and a burst of 4 beeps) indicates a failure of bit 3 in the first 64K of RAM. Both sets of codes are only used prior to screen initialization and screen retrace verification. Once the screen has been verified, messages are written directly to the Video Memory at 80000 & B8000 hex.

PORTBEEPOUTPUTCODESDESCRIPTION OF TEST OR FAILUREØlhnone80286 register test in progress or failureØlh1-1-3CMOS write/read test in progress or failureØlh1-1-4BIOS ROM checksum in progress or failureØsh1-2-1Programmable Interval Timer test in progress or failureØsh1-2-2DMA initialization in progress or failureØsh1-2-2DMA initialization in progress or failureØsh1-2-3DMA page register write/read test in progress or failureØshnone1st 64K RAM test in progressØshnone1st 64K RAM odd/even logic failureØsh1-3-11st 64K RAM odd/even logic failureØsh1-4-21st 64K RAM odd/even logic failureØsh1-4-21st 64K RAM odd/even logic failureØsh1-4-21st 64K RAM segment or data line failure, bit 011h2-1-11st 64K RAM segment or data line failure, bit 112h2-1-11st 64K RAM segment or data line failure, bit 213h2-1-41st 64K RAM segment or data line failure, bit 314h2-2-11st 64K RAM segment or data line failure, bit 415h2-2-21st 64K RAM segment or data line failure, bit 516h2-2-31st 64K RAM segment or data line failure, bit 617h2-2-41st 64K RAM segment or data line failure, bit 617h2-2-41st 64K RAM segment or data line failure, bit 819h2-3-21st 64K RAM segment or data line failure, bit 81	DIAG		
Ølhnome8Ø286 register test in progress or failureØlh1-1-3CMOS write/read test in progress or failureØlh1-1-4BIOS ROM checksum in progress or failureØlh1-2-1Programmable Interval Timer test in progress or failureØbh1-2-2DMA initialization in progress or failureØbh1-2-3DMA page register write/read test in progress or failureØbh1-2-1RAM refresh verification in progress or failureØbhnome1st 64K RAM test in progress or failureØbhnome1st 64K RAM segment or data line failure, multi-bitØbh1-3-11st 64K RAM address line failureØch1-4-11st 64K RAM segment or data line failure, bit Ø11h2-1-21st 64K RAM segment or data line failure, bit 112h2-1-31st 64K RAM segment or data line failure, bit 213h2-1-41st 64K RAM segment or data line failure, bit 314h2-2-11st 64K RAM segment or data line failure, bit 415h2-2-21st 64K RAM segment or data line failure, bit 516h2-2-31st 64K RAM segment or data line failure, bit 516h2-2-11st 64K RAM segment or data line failure, bit 718h2-3-11st 64K RAM segment or data line failure, bit 718h2-3-11st 64K RAM segment or data line failure, bit 819h2-3-21st 64K RAM segment or data line failure, bit 718h2-3-11st 64K RAM segment or data line failure, bit 819h2-3-21st 64K RAM segment or data l	PORT	BEEP	
 42h 1-1-3 CMOS write/read test in progress or failure 63h 1-1-4 BIOS ROM checksum in progress or failure 64h 1-2-1 Programmable Interval Timer test in progress or failure 65h 1-2-2 DMA initialization in progress or failure 66h 1-2-3 DMA page register write/read test in progress or failure 66h 1-2-3 DMA page register write/read test in progress or failure 66h 1-2-3 DMA page register write/read test in progress or failure 66h 1-2-3 DMA page register write/read test in progress or failure 66h 1-2-3 DMA page register write/read test in progress or failure 66h 1-3-1 RAM refresh verification in progress or failure 69h none 1st 64K RAM test in progress 60h 1-3-1 Ist 64K RAM segment or data line failure, multi-bit 60h 1-4-1 Ist 64K RAM address line failure 60h 1-4-2 Ist 64K RAM segment or data line failure, bit Ø 71h 2-1-2 Ist 64K RAM segment or data line failure, bit 1 72h 1 Ist 64K RAM segment or data line failure, bit 2 73h 2-1-4 Ist 64K RAM segment or data line failure, bit 3 74h 2-2-1 Ist 64K RAM segment or data line failure, bit 4 75h 2-2-2 Ist 64K RAM segment or data line failure, bit 5 75h 2-2-2 Ist 64K RAM segment or data line failure, bit 6 77h 2-2-4 Ist 64K RAM segment or data line failure, bit 7 78h 2-3-1 Ist 64K RAM segment or data line failure, bit 8 79h 2-3-2 Ist 64K RAM segment or data line failure, bit 8 79h 2-3-4 Ist 64K RAM segment or data line failure, bit 6 77h 2-3-4 Ist 64K RAM segment or data line failure, bit 6 78h 2-3-4 Ist 64K RAM segment or data line failure, bit 7 78h 2-3-4 Ist 64K RAM segment or data line failure, bit 8 79h 2-3-4 Ist 64K RAM segment or data line failure, bit 7 79h 2-3-5 Ist 64K RAM segment or data line failure, bit 8 70h 2-4-1 Ist 64K RAM segment or data line failure, bit 7 70h 2-4-1 Ist 64K RAM segm	OUTPUT	CODES	DESCRIPTION OF TEST OR FAILURE
Ø3h1-1-4BIOS ROM checksum in progress or failureØ4h1-2-1Programmable Interval Timer test in progress or failureØ5h1-2-2DMA initialization in progress or failureØ5h1-2-2DMA page register write/read test in progress or failureØ6h1-2-3DMA page register write/read test in progress or failureØ8h1-3-1RAM refresh verification in progress or failure,Ø8h1-3-31st 64K RAM test in progressØ4h1-3-31st 64K RAM segment or data line failure, multi-bitØ5h1-4-11st 64K RAM address line failureØ6h1-4-11st 64K RAM segment or data line failure, bit ØØ1h2-1-21st 64K RAM segment or data line failure, bit 112h2-1-21st 64K RAM segment or data line failure, bit 213h2-1-41st 64K RAM segment or data line failure, bit 314h2-2-11st 64K RAM segment or data line failure, bit 516h2-2-21st 64K RAM segment or data line failure, bit 617h2-2-41st 64K RAM segment or data line failure, bit 617h2-2-41st 64K RAM segment or data line failure, bit 819h2-3-11st 64K RAM segment or data line failure, bit 819h2-3-21st 64K RAM segment or data line failure, bit 819h2-3-21st 64K RAM segment or data line failure, bit 819h2-3-21st 64K RAM segment or data line failure, bit 819h2-3-21st 64K RAM segment or data line failure, bit 819h2-3-21st 64K RAM segmen	Ølh	none	8Ø286 register test in progress or failure
 Ø4h 1-2-1 Programmable Interval Timer test in progress or failure Ø5h 1-2-2 DMA initialization in progress or failure Ø6h 1-2-3 DMA page register write/read test in progress or failure Ø6h 1-3-1 RAM refresh verification in progress or failure Ø9h none 1st 64K RAM test in progress ØAh 1-3-3 1st 64K RAM segment or data line failure, multi-bit ØBh 1-3-4 1st 64K RAM address line failure ØCh 1-4-1 1st 64K RAM segment or data line failure, bit Ø 11h 2-1-2 1st 64K RAM segment or data line failure, bit 1 12h 2-1-3 1st 64K RAM segment or data line failure, bit 1 12h 2-1-3 1st 64K RAM segment or data line failure, bit 1 12h 2-1-3 1st 64K RAM segment or data line failure, bit 3 14h 2-2-1 1st 64K RAM segment or data line failure, bit 4 15h 2-2-2 1st 64K RAM segment or data line failure, bit 5 16h 2-2-3 1st 64K RAM segment or data line failure, bit 5 16h 2-2-3 1st 64K RAM segment or data line failure, bit 6 17h 2-2-4 1st 64K RAM segment or data line failure, bit 7 18h 2-3-1 1st 64K RAM segment or data line failure, bit 7 18h 2-3-2 1st 64K RAM segment or data line failure, bit 8 19h 2-3-2 1st 64K RAM segment or data line failure, bit 7 18h 2-3-3 1st 64K RAM segment or data line failure, bit 8 19h 2-3-4 1st 64K RAM segment or data line failure, bit 8 19h 2-3-3 1st 64K RAM segment or data line failure, bit 8 10h 2-4-2 1st 64K RAM segment or data line failure, bit 1 18h 2-3-4 1st 64K RAM segment or data line failure, bit 8 19h 2-3-4 1st 64K RAM segment or data line failure, bit 9 14h 2-3-3 1st 64K RAM segment or data line failure, bit 1 15h 2-4-4 1st 64K RAM segment or data line failure, bit 1 16h 2-4-2 1st 64K RAM segment or data line failure, bit 1 17h 2-4-4 1st 64K RAM segment or data line failure, bit 1 18h 2-3-4 1st 64K RAM segment or data line fail	Ø2h	1-1-3	
<pre>Ø5h 1-2-2 DMA initialization in progress or failure Ø6h 1-2-3 DMA page register write/read test in progress or failure Ø8h 1-3-1 RAM refresh verification in progress or failure Ø8h 1-3-1 RAM refresh verification in progress or failure Ø8h 1-3-1 lst 64K RAM test in progress ØAh 1-3-3 lst 64K RAM segment or data line failure, multi-bit ØBh 1-3-4 lst 64K RAM segment or data line failure ØCh 1-4-1 lst 64K RAM segment or data line failure. Dit Ø 11h 2-1-2 lst 64K RAM segment or data line failure, bit 1 12h 2-1-3 lst 64K RAM segment or data line failure, bit 2 13h 2-1-4 lst 64K RAM segment or data line failure, bit 3 14h 2-2-1 lst 64K RAM segment or data line failure, bit 3 15h 2-2-2 lst 64K RAM segment or data line failure, bit 5 16h 2-2-3 lst 64K RAM segment or data line failure, bit 5 16h 2-2-3 lst 64K RAM segment or data line failure, bit 5 16h 2-2-3 lst 64K RAM segment or data line failure, bit 7 18h 2-3-1 lst 64K RAM segment or data line failure, bit 7 18h 2-3-2 lst 64K RAM segment or data line failure, bit 8 19h 2-3-2 lst 64K RAM segment or data line failure, bit 8 19h 2-3-2 lst 64K RAM segment or data line failure, bit 8 19h 2-3-2 lst 64K RAM segment or data line failure, bit 8 19h 2-3-3 lst 64K RAM segment or data line failure, bit 6 17h 2-4-4 lst 64K RAM segment or data line failure, bit 7 18h 2-3-4 lst 64K RAM segment or data line failure, bit 8 19h 2-3-2 lst 64K RAM segment or data line failure, bit 8 19h 2-3-4 lst 64K RAM segment or data line failure, bit 7 18h 2-4-4 lst 64K RAM segment or data line failure, bit 7 18h 2-4-4 lst 64K RAM segment or data line failure, bit 7 18h 2-4-4 lst 64K RAM segment or data line failure, bit 7 18h 2-4-4 lst 64K RAM segment or data line failure, bit 7 18h 2-4-4 lst 64K RAM segment or data line failure, bit 7 18h 2-4-4 lst 64K RAM segment or data line failure, bit 7 18h 2-4-4 lst 64K RAM segment or data line failure, bit 7 18h 2-4-4 lst 64K RAM segment or data line failure, bit 7 18h 3-1-2 master DMA register test in progress or failure 28h 3-1-4 slave interrupt mask</pre>	Ø3h	1-1-4	BIOS ROM checksum in progress or failure
Ø6h1-2-3DMA page register write/read test in progress or failureØ8h1-3-1RAM refresh verification in progress or failureØ9hnome1st 64K RAM test in progressØAh1-3-31st 64K RAM segment or data line failure, multi-bitØBh1-3-41st 64K RAM odd/even logic failureØCh1-4-11st 64K RAM address line failureØDh1-4-21st 64K RAM segment or data line failure, bit Ø11h2-1-11st 64K RAM segment or data line failure, bit 112h2-1-11st 64K RAM segment or data line failure, bit 213h2-1-41st 64K RAM segment or data line failure, bit 314h2-2-11st 64K RAM segment or data line failure, bit 415h2-2-21st 64K RAM segment or data line failure, bit 516h2-2-31st 64K RAM segment or data line failure, bit 617h2-2-41st 64K RAM segment or data line failure, bit 718h2-3-11st 64K RAM segment or data line failure, bit 819h2-3-21st 64K RAM segment or data line failure, bit 91Ah2-3-11st 64K RAM segment or data line failure, bit 819h2-3-21st 64K RAM segment or data line failure, bit 91Ah2-3-31st 64K RAM segment or data line failure, bit 718h2-3-41st 64K RAM segment or data line failure, bit 819h2-3-21st 64K RAM segment or data line failure, bit 718h2-3-41st 64K RAM segment or data line failure, bit 718h2-3-11st 64K RAM segment or data line fail	Ø4h	1-2-1	Programmable Interval Timer test in progress or failure
Ø8h1-3-1RAM refresh verification in progress or failureØ9hnome1st 64K RAM test in progressØAh1-3-31st 64K RAM segment or data line failure, multi-bitØBh1-3-41st 64K RAM odd/even logic failureØCh1-4-11st 64K RAM address line failureØDh1-4-21st 64K RAM segment or data line failure, bit Ø11h2-1-11st 64K RAM segment or data line failure, bit 112h2-1-11st 64K RAM segment or data line failure, bit 213h2-1-41st 64K RAM segment or data line failure, bit 314h2-2-11st 64K RAM segment or data line failure, bit 516h2-2-21st 64K RAM segment or data line failure, bit 617h2-2-21st 64K RAM segment or data line failure, bit 716h2-3-11st 64K RAM segment or data line failure, bit 819h2-3-21st 64K RAM segment or data line failure, bit 819h2-3-21st 64K RAM segment or data line failure, bit 91Ah2-3-11st 64K RAM segment or data line failure, bit 91Ah2-3-21st 64K RAM segment or data line failure, bit 91Ah2-3-31st 64K RAM segment or data line failure, bit 819h2-3-21st 64K RAM segment or data line failure, bit 718h2-3-41st 64K RAM segment or data line failure, bit 819h2-3-21st 64K RAM segment or data line failure, bit 718h2-3-41st 64K RAM segment or data line failure, bit 718h2-3-11st 64K RAM segment or data line failure, bit	Ø5h	1-2-2	DMA initialization in progress or failure
<pre>Ø9h none 1st 64K RAM test in progress ØAh 1-3-3 1st 64K RAM segment or data line failure, multi-bit ØBh 1-3-4 1st 64K RAM odd/even logic failure ØCh 1-4-1 1st 64K RAM address line failure ØDh 1-4-2 1st 64K RAM segment or data line failure, bit Ø 11h 2-1-1 1st 64K RAM segment or data line failure, bit 1 12h 2-1-3 1st 64K RAM segment or data line failure, bit 2 13h 2-1-4 1st 64K RAM segment or data line failure, bit 3 14h 2-2-1 1st 64K RAM segment or data line failure, bit 3 14h 2-2-2 1st 64K RAM segment or data line failure, bit 5 16h 2-2-3 1st 64K RAM segment or data line failure, bit 5 16h 2-2-3 1st 64K RAM segment or data line failure, bit 5 16h 2-2-4 1st 64K RAM segment or data line failure, bit 6 17h 2-2-4 1st 64K RAM segment or data line failure, bit 7 18h 2-3-1 1st 64K RAM segment or data line failure, bit 8 19h 2-3-2 1st 64K RAM segment or data line failure, bit 8 19h 2-3-2 1st 64K RAM segment or data line failure, bit 8 19h 2-3-2 1st 64K RAM segment or data line failure, bit 8 19h 2-3-2 1st 64K RAM segment or data line failure, bit 7 18h 2-3-4 1st 64K RAM segment or data line failure, bit A 18h 2-3-4 1st 64K RAM segment or data line failure, bit C 10h 2-4-2 1st 64K RAM segment or data line failure, bit C 10h 2-4-2 1st 64K RAM segment or data line failure, bit D 18h 2-3-4 1st 64K RAM segment or data line failure, bit F 20h 3-1-1 slave DMA register test in progress or failure 21h 3-1-2 master DMA register test in progress or failure 22h 3-1-3 master interrupt mask register test in progress or failure 23h 3-1-4 keyboard controller test in progress or failure</pre>	Ø6h	1-2-3	DMA page register write/read test in progress or failure
 ØAh 1-3-3 1st 64K RAM segment or data line failure, multi-bit ØBh 1-3-4 1st 64K RAM odd/even logic failure ØCh 1-4-1 1st 64K RAM address line failure ØDh 1-4-2 1st 64K RAM segment or data line failure, bit Ø 11h 2-1-1 1st 64K RAM segment or data line failure, bit 1 12h 2-1-3 1st 64K RAM segment or data line failure, bit 2 13h 2-1-4 1st 64K RAM segment or data line failure, bit 3 14h 2-2-1 1st 64K RAM segment or data line failure, bit 4 15h 2-2-2 1st 64K RAM segment or data line failure, bit 5 16h 2-2-3 1st 64K RAM segment or data line failure, bit 5 16h 2-2-3 1st 64K RAM segment or data line failure, bit 6 17h 2-2-4 1st 64K RAM segment or data line failure, bit 7 18h 2-3-1 1st 64K RAM segment or data line failure, bit 8 19h 2-3-2 1st 64K RAM segment or data line failure, bit 4 18h 2-3-1 1st 64K RAM segment or data line failure, bit 6 17h 2-2-4 1st 64K RAM segment or data line failure, bit 7 18h 2-3-1 1st 64K RAM segment or data line failure, bit 7 18h 2-3-2 1st 64K RAM segment or data line failure, bit 8 19h 2-3-2 1st 64K RAM segment or data line failure, bit 7 18h 2-3-4 1st 64K RAM segment or data line failure, bit 6 17b 2-4-1 1st 64K RAM segment or data line failure, bit 7 18h 2-3-4 1st 64K RAM segment or data line failure, bit 7 19h 2-4-2 1st 64K RAM segment or data line failure, bit 7 19h 2-4-2 1st 64K RAM segment or data line failure, bit 7 19h 2-4-3 1st 64K RAM segment or data line failure, bit 7 19h 2-4-4 1st 64K RAM segment or data line failure, bit 7 19h 3-1-1 slave DMA register test in progress or failure 20h 3-1-1 slave DMA register test in progress or failure 21h 3-1-2 master DMA register test in progress or failure 23h 3-1-4 slave interrupt mask register test in progress or failure 23h 3-1-4 keyboard controller test in progr	Ø8h	1-3-1	RAM refresh verification in progress or failure
ØBh1-3-41st 64K RAM odd/even logic failureØCh1-4-11st 64K RAM address line failureØDh1-4-21st 64K RAM segment or data line failure, bit Ø11h2-1-11st 64K RAM segment or data line failure, bit 112h2-1-31st 64K RAM segment or data line failure, bit 213h2-1-41st 64K RAM segment or data line failure, bit 314h2-2-11st 64K RAM segment or data line failure, bit 415h2-2-21st 64K RAM segment or data line failure, bit 516h2-2-31st 64K RAM segment or data line failure, bit 718h2-3-11st 64K RAM segment or data line failure, bit 819h2-3-21st 64K RAM segment or data line failure, bit 819h2-3-21st 64K RAM segment or data line failure, bit 718h2-3-11st 64K RAM segment or data line failure, bit 819h2-3-21st 64K RAM segment or data line failure, bit 91Ah2-3-31st 64K RAM segment or data line failure, bit 617h2-2-41st 64K RAM segment or data line failure, bit 718h2-3-31st 64K RAM segment or data line failure, bit 819h2-3-21st 64K RAM segment or data line failure, bit 718h2-4-11st 64K RAM segment or data line failure, bit 718h2-4-21st 64K RAM segment or data line failure, bit 819h2-3-31st 64K RAM segment or data line failure, bit 719h2-4-21st 64K RAM segment or data line failure, bit 719h2-4-21st 64K RAM segment or data li	Ø9h	none	1st 64K RAM test in progress
ØCh1-4-11st 64K RAM address line failureØDh1-4-21st 64K RAM address line failureIMh2-1-11st 64K RAM segment or data line failure, bit 011h2-1-21st 64K RAM segment or data line failure, bit 112h2-1-31st 64K RAM segment or data line failure, bit 213h2-1-41st 64K RAM segment or data line failure, bit 314h2-2-11st 64K RAM segment or data line failure, bit 415h2-2-21st 64K RAM segment or data line failure, bit 516h2-2-31st 64K RAM segment or data line failure, bit 617h2-2-41st 64K RAM segment or data line failure, bit 718h2-3-11st 64K RAM segment or data line failure, bit 819h2-3-21st 64K RAM segment or data line failure, bit 91Ah2-3-31st 64K RAM segment or data line failure, bit 11Bh2-3-11st 64K RAM segment or data line failure, bit 11Bh2-3-21st 64K RAM segment or data line failure, bit 21Ch2-4-11st 64K RAM segment or data line failure, bit 51Dh2-4-21st 64K RAM segment or data line failure, bit 11Dh2-4-21st 64K RAM segment or data line failure, bit 51Dh2-4-31st 64K RAM segment or data line failure, bit 51Dh2-4-21st 64K RAM segment or data line failure, bit 51Dh2-4-21st 64K RAM segment or data line failure, bit 51Dh2-4-21st 64K RAM segment or data line failure, bit 71Dh2-4-21st 64K RAM segment or data line	ØAh	1-3-3	1st 64K RAM segment or data line failure, multi-bit
ØDh1-4-21st 64K parity failure1Øh2-1-11st 64K RAM segment or data line failure, bit Ø11h2-1-21st 64K RAM segment or data line failure, bit 112h2-1-31st 64K RAM segment or data line failure, bit 213h2-1-41st 64K RAM segment or data line failure, bit 314h2-2-11st 64K RAM segment or data line failure, bit 415h2-2-21st 64K RAM segment or data line failure, bit 516h2-2-31st 64K RAM segment or data line failure, bit 718h2-3-11st 64K RAM segment or data line failure, bit 718h2-3-11st 64K RAM segment or data line failure, bit 819h2-3-21st 64K RAM segment or data line failure, bit 819h2-3-21st 64K RAM segment or data line failure, bit 819h2-3-31st 64K RAM segment or data line failure, bit 91Ah2-3-31st 64K RAM segment or data line failure, bit 11Dh2-4-21st 64K RAM segment or data line failure, bit 11Dh2-4-21st 64K RAM segment or data line failure, bit 11Dh2-4-21st 64K RAM segment or data line failure, bit 11Eh2-4-31st 64K RAM segment or data line failure, bit 11Eh2-4-41st 64K RAM segment or data line failure, bit 11Dh2-4-21st 64K RAM segment or data line failure, bit 11Eh2-4-41st 64K RAM segment or data line failure, bit 11Eh2-4-31st 64K RAM segment or data line failure, bit 11Eh2-4-41st 64K RAM segment or data	•	1-3-4	lst 64K RAM odd/even logic failure
10h2-1-11st 64K RAM segment or data line failure, bit Ø11h2-1-21st 64K RAM segment or data line failure, bit 112h2-1-31st 64K RAM segment or data line failure, bit 213h2-1-41st 64K RAM segment or data line failure, bit 314h2-2-11st 64K RAM segment or data line failure, bit 415h2-2-21st 64K RAM segment or data line failure, bit 516h2-2-31st 64K RAM segment or data line failure, bit 617h2-2-41st 64K RAM segment or data line failure, bit 718h2-3-11st 64K RAM segment or data line failure, bit 819h2-3-21st 64K RAM segment or data line failure, bit 91Ah2-3-31st 64K RAM segment or data line failure, bit 101Bh2-3-41st 64K RAM segment or data line failure, bit 819h2-3-21st 64K RAM segment or data line failure, bit 91Ah2-3-31st 64K RAM segment or data line failure, bit 101Bh2-3-41st 64K RAM segment or data line failure, bit 101Bh2-4-11st 64K RAM segment or data line failure, bit 101Bh2-4-21st 64K RAM segment or data line failure, bit 101Bh2-4-31st 64K RAM segment or data line failure, bit 101Bh2-4-31st 64K RAM segment or data line failure, bit 101Bh2-4-41st 64K RAM segment or data line failure, bit 101Bh2-4-31st 64K RAM segment or data line failure, bit 101Bh2-4-41st 64K RAM segment or data line failure, bit 101Bh2-4-4<	-	1-4-1	lst 64K RAM address line failure
11h2-1-21st 64K RAM segment or data line failure, bit 112h2-1-31st 64K RAM segment or data line failure, bit 213h2-1-41st 64K RAM segment or data line failure, bit 314h2-2-11st 64K RAM segment or data line failure, bit 415h2-2-21st 64K RAM segment or data line failure, bit 516h2-2-31st 64K RAM segment or data line failure, bit 617h2-2-41st 64K RAM segment or data line failure, bit 718h2-3-11st 64K RAM segment or data line failure, bit 819h2-3-21st 64K RAM segment or data line failure, bit 91Ah2-3-31st 64K RAM segment or data line failure, bit 71Bh2-3-41st 64K RAM segment or data line failure, bit 71Bh2-3-41st 64K RAM segment or data line failure, bit 81Ch2-4-11st 64K RAM segment or data line failure, bit 71Bh2-3-41st 64K RAM segment or data line failure, bit 71Bh2-4-21st 64K RAM segment or data line failure, bit 71Ch2-4-11st 64K RAM segment or data line failure, bit 71Dh2-4-21st 64K RAM segment or data line failure, bit 71Dh2-4-21st 64K RAM segment or data line failure, bit 71Eh2-4-31st 64K RAM segment or data line failure, bit 71Fh2-4-41st 64K RAM segment or data line failure, bit 720h3-1-1slave DMA register test in progress or failure21h3-1-2master DMA register test in progress or failure21h3-1-3mas		1-4-2	lst 64K parity failure
12h2-1-31st 64K RAM segment or data line failure, bit 213h2-1-41st 64K RAM segment or data line failure, bit 314h2-2-11st 64K RAM segment or data line failure, bit 415h2-2-21st 64K RAM segment or data line failure, bit 516h2-2-31st 64K RAM segment or data line failure, bit 617h2-2-41st 64K RAM segment or data line failure, bit 718h2-3-11st 64K RAM segment or data line failure, bit 819h2-3-21st 64K RAM segment or data line failure, bit 91Ah2-3-31st 64K RAM segment or data line failure, bit 41Bh2-3-41st 64K RAM segment or data line failure, bit 61Ch2-4-11st 64K RAM segment or data line failure, bit 718h2-3-41st 64K RAM segment or data line failure, bit 718h2-3-11st 64K RAM segment or data line failure, bit 718h2-3-21st 64K RAM segment or data line failure, bit 718h2-3-41st 64K RAM segment or data line failure, bit 810h2-4-21st 64K RAM segment or data line failure, bit 718h2-4-11st 64K RAM segment or data line failure, bit 718h2-4-21st 64K RAM segment or data line failure, bit 718h2-4-31st 64K RAM segment or data line failure, bit 718h2-4-41st 64K RAM segment or data line failure, bit 718h2-4-41st 64K RAM segment or data line failure, bit 718h2-4-41st 64K RAM segment or data line failure, bit 718h2-4-41s	•		lst 64K RAM segment or data line failure, bit Ø
13h2-1-41st 64K RAM segment or data line failure, bit 314h2-2-11st 64K RAM segment or data line failure, bit 415h2-2-21st 64K RAM segment or data line failure, bit 516h2-2-31st 64K RAM segment or data line failure, bit 617h2-2-41st 64K RAM segment or data line failure, bit 718h2-3-11st 64K RAM segment or data line failure, bit 819h2-3-21st 64K RAM segment or data line failure, bit 91Ah2-3-31st 64K RAM segment or data line failure, bit 41Bh2-3-41st 64K RAM segment or data line failure, bit 71Bh2-3-41st 64K RAM segment or data line failure, bit 81Dh2-4-21st 64K RAM segment or data line failure, bit 101Eh2-4-21st 64K RAM segment or data line failure, bit 1101Eh2-4-31st 64K RAM segment or data line failure, bit 11012h2-4-41st 64K RAM segment or data line failure, bit 11012h2-4-51st 64K RAM segment or data line failure, bit 11012h2-4-11st 64K RAM segment or data line failure, bit 11012h2-4-21st 64K RAM segment or data line failure, bit 11012h2-4-31st 64K RAM segment or data line failure, bit 11012h2-4-41st 64K RAM segment or data line failure, bit 11012h2-4-41st 64K RAM segment or data line failure, bit 11012h3-1-1slave DMA register test in progress or failure21h3-1-2master interrupt mask register test in progress or failure <td< td=""><td></td><td></td><td>lst 64K RAM segment or data line failure, bit l</td></td<>			lst 64K RAM segment or data line failure, bit l
14h2-2-11st 64K RAM segment or data line failure, bit 415h2-2-21st 64K RAM segment or data line failure, bit 516h2-2-31st 64K RAM segment or data line failure, bit 617h2-2-41st 64K RAM segment or data line failure, bit 718h2-3-11st 64K RAM segment or data line failure, bit 819h2-3-21st 64K RAM segment or data line failure, bit 91Ah2-3-31st 64K RAM segment or data line failure, bit A1Bh2-3-41st 64K RAM segment or data line failure, bit B1Ch2-4-11st 64K RAM segment or data line failure, bit C1Dh2-4-21st 64K RAM segment or data line failure, bit D1Eh2-4-31st 64K RAM segment or data line failure, bit E1Fh2-4-41st 64K RAM segment or data line failure, bit F2Øh3-1-1slave DMA register test in progress or failure21h3-1-2master interrupt mask register test in progress or failure23h3-1-4slave interrupt mask register test in progress or failure25hnoneinterrupt vector loading in progress27h3-2-4keyboard controller test in progress or failure	12h		lst 64K RAM segment or data line failure, bit 2
 15h 2-2-2 1st 64K RAM segment or data line failure, bit 5 16h 2-2-3 1st 64K RAM segment or data line failure, bit 6 17h 2-2-4 1st 64K RAM segment or data line failure, bit 7 18h 2-3-1 1st 64K RAM segment or data line failure, bit 8 19h 2-3-2 1st 64K RAM segment or data line failure, bit 9 1Ah 2-3-3 1st 64K RAM segment or data line failure, bit A 1Bh 2-3-4 1st 64K RAM segment or data line failure, bit B 1Ch 2-4-1 1st 64K RAM segment or data line failure, bit C 1Dh 2-4-2 1st 64K RAM segment or data line failure, bit D 1Eh 2-4-3 1st 64K RAM segment or data line failure, bit E 1Fh 2-4-4 1st 64K RAM segment or data line failure, bit F 2Øh 3-1-1 slave DMA register test in progress or failure 21h 3-1-2 master interrupt mask register test in progress or failure 23h 3-1-4 slave interrupt mask register test in progress or failure 25h none interrupt vector loading in progress 27h 3-2-4 keyboard controller test in progress or failure 	13h		lst 64K RAM segment or data line failure, bit 3
 16h 2-2-3 1st 64K RAM segment or data line failure, bit 6 17h 2-2-4 1st 64K RAM segment or data line failure, bit 7 18h 2-3-1 1st 64K RAM segment or data line failure, bit 8 19h 2-3-2 1st 64K RAM segment or data line failure, bit 9 1Ah 2-3-3 1st 64K RAM segment or data line failure, bit A 1Bh 2-3-4 1st 64K RAM segment or data line failure, bit B 1Ch 2-4-1 1st 64K RAM segment or data line failure, bit C 1Dh 2-4-2 1st 64K RAM segment or data line failure, bit D 1Eh 2-4-3 1st 64K RAM segment or data line failure, bit E 1Fh 2-4-4 1st 64K RAM segment or data line failure, bit F 2Øh 3-1-1 slave DMA register test in progress or failure 21h 3-1-2 master interrupt mask register test in progress or failure 23h 3-1-4 slave interrupt mask register test in progress or failure 25h none interrupt vector loading in progress 27h 3-2-4 keyboard controller test in progress or failure 	14h	2-2-1	lst 64K RAM segment or data line failure, bit 4
17h 2-2-4 1st 64K RAM segment or data line failure, bit 7 18h 2-3-1 1st 64K RAM segment or data line failure, bit 8 19h 2-3-2 1st 64K RAM segment or data line failure, bit 9 1Ah 2-3-3 1st 64K RAM segment or data line failure, bit A 1Bh 2-3-4 1st 64K RAM segment or data line failure, bit B 1Ch 2-4-1 1st 64K RAM segment or data line failure, bit C 1Dh 2-4-2 1st 64K RAM segment or data line failure, bit D 1Eh 2-4-3 1st 64K RAM segment or data line failure, bit D 1Fh 2-4-4 1st 64K RAM segment or data line failure, bit E 1Fh 2-4-4 1st 64K RAM segment or data line failure, bit F 20h 3-1-1 slave DMA register test in progress or failure 21h 3-1-2 master DMA register test in progress or failure 23h 3-1-4 slave interrupt mask register test in progress or failure 25h none interrupt vector loading in progress 27h 3-2-4 keyboard controller test in progress or failure			lst 64K RAM segment or data line failure, bit 5
 18h 2-3-1 1st 64K RAM segment or data line failure, bit 8 19h 2-3-2 1st 64K RAM segment or data line failure, bit 9 1Ah 2-3-3 1st 64K RAM segment or data line failure, bit A 1Bh 2-3-4 1st 64K RAM segment or data line failure, bit B 1Ch 2-4-1 1st 64K RAM segment or data line failure, bit C 1Dh 2-4-2 1st 64K RAM segment or data line failure, bit D 1Eh 2-4-3 1st 64K RAM segment or data line failure, bit E 1Fh 2-4-4 1st 64K RAM segment or data line failure, bit F 2Øh 3-1-1 slave DMA register test in progress or failure 21h 3-1-2 master DMA register test in progress or failure 22h 3-1-3 master interrupt mask register test in progress or failure 23h 3-1-4 slave interrupt mask register test in progress or failure 25h none interrupt vector loading in progress 27h 3-2-4 keyboard controller test in progress or failure 		2-2-3	lst 64K RAM segment or data line failure, bit 6
19h2-3-21st 64K RAM segment or data line failure, bit 91Ah2-3-31st 64K RAM segment or data line failure, bit A1Bh2-3-41st 64K RAM segment or data line failure, bit B1Ch2-4-11st 64K RAM segment or data line failure, bit C1Dh2-4-21st 64K RAM segment or data line failure, bit D1Eh2-4-31st 64K RAM segment or data line failure, bit E1Fh2-4-41st 64K RAM segment or data line failure, bit F2Øh3-1-1slave DMA register test in progress or failure21h3-1-2master DMA register test in progress or failure23h3-1-4slave interrupt mask register test in progress or failure25hnoneinterrupt vector loading in progress27h3-2-4keyboard controller test in progress or failure			lst 64K RAM segment or data line failure, bit 7
1Ah2-3-31st 64K RAM segment or data line failure, bit A1Bh2-3-41st 64K RAM segment or data line failure, bit B1Ch2-4-11st 64K RAM segment or data line failure, bit C1Dh2-4-21st 64K RAM segment or data line failure, bit D1Eh2-4-31st 64K RAM segment or data line failure, bit E1Fh2-4-41st 64K RAM segment or data line failure, bit F2Øh3-1-1slave DMA register test in progress or failure21h3-1-2master DMA register test in progress or failure23h3-1-4slave interrupt mask register test in progress or failure25hnoneinterrupt vector loading in progress27h3-2-4keyboard controller test in progress or failure			lst 64K RAM segment or data line failure, bit 8
1Bh2-3-41st 64K RAM segment or data line failure, bit B1Ch2-4-11st 64K RAM segment or data line failure, bit C1Dh2-4-21st 64K RAM segment or data line failure, bit D1Eh2-4-31st 64K RAM segment or data line failure, bit E1Fh2-4-41st 64K RAM segment or data line failure, bit F2Øh3-1-1slave DMA register test in progress or failure21h3-1-2master DMA register test in progress or failure23h3-1-3master interrupt mask register test in progress or failure23h3-1-4slave interrupt mask register test in progress or failure25hnoneinterrupt vector loading in progress27h3-2-4keyboard controller test in progress or failure			
1Ch2-4-11st 64K RAM segment or data line failure, bit C1Dh2-4-21st 64K RAM segment or data line failure, bit D1Eh2-4-31st 64K RAM segment or data line failure, bit E1Fh2-4-41st 64K RAM segment or data line failure, bit F2Øh3-1-1slave DMA register test in progress or failure21h3-1-2master DMA register test in progress or failure22h3-1-3master interrupt mask register test in progress or failure23h3-1-4slave interrupt mask register test in progress or failure25hnoneinterrupt vector loading in progress27h3-2-4keyboard controller test in progress or failure			
1Dh2-4-21st 64K RAM segment or data line failure, bit D1Eh2-4-31st 64K RAM segment or data line failure, bit E1Fh2-4-41st 64K RAM segment or data line failure, bit F2Øh3-1-1slave DMA register test in progress or failure21h3-1-2master DMA register test in progress or failure22h3-1-3master interrupt mask register test in progress or failure23h3-1-4slave interrupt mask register test in progress or failure25hnoneinterrupt vector loading in progress27h3-2-4keyboard controller test in progress or failure			•
1Eh 2-4-3 1st 64K RAM segment or data line failure, bit E 1Fh 2-4-4 1st 64K RAM segment or data line failure, bit F 2Øh 3-1-1 slave DMA register test in progress or failure 21h 3-1-2 master DMA register test in progress or failure 22h 3-1-3 master interrupt mask register test in progress or failure 23h 3-1-4 slave interrupt mask register test in progress or failure 25h none interrupt vector loading in progress 27h 3-2-4 keyboard controller test in progress or failure			
1Fh 2-4-4 1st 64K RAM segment or data line failure, bit F 2Øh 3-1-1 slave DMA register test in progress or failure 21h 3-1-2 master DMA register test in progress or failure 22h 3-1-3 master interrupt mask register test in progress or failure 23h 3-1-4 slave interrupt mask register test in progress or failure 25h none interrupt vector loading in progress 27h 3-2-4 keyboard controller test in progress or failure			
2Øh3-1-1slave DMA register test in progress or failure21h3-1-2master DMA register test in progress or failure22h3-1-3master interrupt mask register test in progress or failure23h3-1-4slave interrupt mask register test in progress or failure25hnoneinterrupt vector loading in progress27h3-2-4keyboard controller test in progress or failure			
21h3-1-2master DMA register test in progress or failure22h3-1-3master interrupt mask register test in progress or failure23h3-1-4slave interrupt mask register test in progress or failure25hnoneinterrupt vector loading in progress27h3-2-4keyboard controller test in progress or failure			
 22h 3-1-3 master interrupt mask register test in progress or failure 23h 3-1-4 slave interrupt mask register test in progress or failure 25h none interrupt vector loading in progress 27h 3-2-4 keyboard controller test in progress or failure 			
 23h 3-1-4 slave interrupt mask register test in progress or failure 25h none interrupt vector loading in progress 27h 3-2-4 keyboard controller test in progress or failure 			
25h none interrupt vector loading in progress 27h 3-2-4 keyboard controller test in progress or failure			
27h 3-2-4 keyboard controller test in progress or failure		3-1-4	slave interrupt mask register test in progress or failure
			interrupt vector loading in progress
28h none CMOS power-fail and checksum checks in progress or failure		3-2-4	
	28h	none	CMOS power-fail and checksum checks in progress or failure

(continued on next page)

Proprietary Information Tandy® Corporation

-- Appendix.18 --

29h	none	CMOS configuration information validation in progress
28h	3-3-4	screen memory test in progress or failure
2Ch	3-4-1	screen initialization in progress or failure
2Dh	3-4-2	screen retrace tests in progress or failure
2Eh	none	search for video ROM in progress
3øh	none	screen believed operable
31h	none	monochrome screen believed operable
32h	none	4Ø column color screen believed operable
33h	none	80 column color screen believed operable

DECIMAL-BINARY-HEXADECIMAL CHART

- TANOY COMPUTER PRODUCTS-

Dec bia Dec bia Dec bia Dec bia Dec bia Dec bia Dec Diad Diad <thdiad< th=""> Diad <thdiad< th=""> <thdiad< th=""> <thdiad< th=""></thdiad<></thdiad<></thdiad<></thdiad<>	DECIMAL-BINARI-BEARDECIMAL CHART											
1 10000001 11 129 1000001 11 129 1000001 11 11000010 12 11000010 13 11000010 13 11000010 13 11000010 13 11000010 13 11000010 13 11000010 13 11000010 13 11000110 13 11000110 13 11000110 13 11000110 13 11000110 13 11000100 13 11000100 13 11000100 13 11000100 13 11000100 13 11000100 13 11000100 13 11001010 13 10001010 14 130 10001010 14 130 10001010 14 130 10001010 14 10001010 14 10001010 100 1000100 100 1000100 100 1000100 100 1000100 100 1000100 100 1000000 100 1000000 100 1000000 100 1000000 100 10000000 10000000 10000000							Dec					<u>dex</u>
2 00000010 02 194 1000010 02 3 0000100 04 68 0100010 44 132 1000010 83 195 11000101 C5 6 0000110 05 69 0100110 45 133 1000110 85 197 11000110 C5 7 0000100 06 70 0100110 44 135 1000100 85 200 11001000 C6 9 00001010 07 71 0100101 44 137 1000101 82 201 11001001 C6 9 0000101 08 70 1000101 42 142 1000101 82 201 11001010 C7 11001101 C8 100110 C8 1000110 C8 1001101 C8 100110 C8 1001101 C8 1001010 C8 1000101 C8 10010101 C8 10001010 C8 10000101 C8		•••										
1 0000011 63 195 11000101 C3 4 0000010 64 1000100 44 195 11000101 C5 6 00000110 05 69 01000101 45 133 10000110 85 197 11000110 C5 6 0000100 08 72 0100100 48 136 1000100 84 200 11000100 C6 9 0000100 08 72 1000100 44 138 1000101 88 201 11001010 C6 9 0000100 00 73 0100101 44 138 10001010 88 201 11001010 C6 10 0001010 00 73 0100111 44 136 1000101 82 11001101 C6 10 00010000 10 80 1001010 12 11001010 C6 1001010 12 11001010 12 11001010												
4 00000100 0.4 68 01000101 45 133 10000101 85 197 11000101 C5 6 0000110 0.6 70 01000110 45 133 10000110 85 197 11000101 C5 7 0000110 0.7 71 0100111 47 135 10001010 88 201 11001000 C6 9 00001010 0.7 71 0100101 44 131 10001010 C8 201 11001010 C8 10 00001010 0.7 70 0100110 44 139 10001010 C8 1000110 C8 1000110 C8 1000110 C8 1000110 C8 1000110 C8 1000110 C8 1001100 C8 1001100 C8 10001010 C8 1001100 C8 1000100 100 1000000 100 1000000 100 1000100 1000000 11000101 C8 100												
5 00000101 05 49 0100010 46 133 10000110 85 197 11000110 CS 6 00000110 07 71 01000111 47 135 10000110 85 199 11000100 CS 8 00001000 08 72 0100100 44 135 1000101 84 201 11001100 CS 9 0000101 0A 74 0100101 44 135 10001010 88 201 11001010 CS 11 0000101 0A 74 0100110 44 135 10001010 82 201 11001101 CC 11 0000101 0C 76 0100111 44 10010000 82 201 11001010 CC 10001010 CC 1000101 12 11001010 CC 10001010 12 10001010 12 110010010 100 100 10001010 12 1001010 <												
6 00000110 06 70 01000111 67 10000111 67 8 00001000 08 72 01001001 48 135 10001010 83 200 11001001 63 9 00001010 04 73 01001001 44 135 1000101 83 200 11001001 CA 10 0000101 04 74 0100101 44 135 10001011 84 201 1100100 CC 11001010 CC 11001010 CC 1100110 CC 1100100 1100100 CC 1100100 CC 1100100 CC 1100100 1100100 1100100 1100100 1100100 1100100 1100100 1100100 1100100 11000100 1100100 11000100										-		
7 00000111 07 71 010000 18 135 1000001 18 200 11001000 CS 0 0000101 09 73 0100100 44 135 1000100 83 201 1100100 CS 10 0000101 08 75 0100110 44 135 1000101 83 201 1100101 CS 11 00001101 00 75 01001101 44 10001101 85 201 1100101 CS 11001010 CS 11001010 CS 11001010 CS 11001010 CS 11001010 CS 11001010 CS 11001001												
8 00001000 97 1001001 49 136 10001010 89 200 11001001 CS 10 00001010 0A 74 0100101 44 138 1000101 83 201 1100101 CS 11 00001010 0C 76 0100110 42 140 1000101 85 205 11001101 CS 11001100 CC 1001100 CC 1001101 42 140 1000110 82 11001101 CC 1001101 42 142 1000110 82 11001001 CC 1001001 120 11001001 110 1100010 1100001 1100100 1100001 1100100 120 11001001 120 11001001 120 11001001 120 11001001 120 11001001 120 11001001 120 11001001 120 11001001 120 11001001 120 11001010 120 11001010 120 11001010 120 110010					•							
9 00001001 09 73 01001010 44 137 1000101 83 201 1100101 CA 11 0000101 08 75 0100101 48 139 1000101 83 203 11000101 CA 12 0000110 00 77 0100110 42 141 1000110 85 203 1100110 CC 14 00001110 00 77 0100111 42 142 1000110 85 205 1100110 CC 1100110 CC 1100110 CC 100110 CC 100110 CC 100110 CC 100110 CC 11001010 CC 1100100 1100101 CC 11001010 CC 11001000 1100100 1100100 1100100 1100100 11001000 11001000 1100100 11001000 11001000 11001000 11001000 11001000 11001000 11001000 11001000 11001000 11001000 1100000 <td< td=""><td>8</td><td></td><td>08</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	8		08									
11 0000101 0B 75 0100100 42 140 100100 85 205 11001100 CC 13 00001101 0D 77 01001101 40 141 10001100 85 205 11001101 CC 14 00001111 0D 77 01001111 42 142 10001100 85 205 11001101 CC 15 00001111 0D 77 0100100 50 144 10010001 91 209 11010001 D1010000 50 144 1001001 92 210 1101001 D20 D1010001 D1010000 D20 D1010001 D20 D20 D1010001 D3 D20 D00101001 D3 D30 D1001001 S3 L46 100101001 P3 Z11 11010010 D3 D20 D0010101 D3 D30 D101000 D3 D101000 D3 D101010 D3 D101010 D3 D101010 D3 D1010100 D3 D101010 D3 D1010100 D3 D100100		00001001	09	73	01001001	49	137	10001001	89	201		
12 00001100 0C 76 01001101 4C 141 10001101 8C 205 11001101 CD 14 00001110 0E 78 01001110 4E 142 10001110 8E 205 11001111 CC 15 00001110 0E 78 01001111 4F 143 1000100 90 208 11001001 DC 16 00010001 11 8F 10100000 91 209 11010001 DD DC DD			0A		01001010	4A.		10001010	8A	202		
13 00001101 0E 77 01001101 4E 141 10001101 8E 205 11001101 CC 14 00001110 0E 78 01001110 4E 142 10001110 8E 206 11001110 CC 15 00001111 0E 144 10010000 90 208 1100000 D01 16 00010001 12 82 0101001 52 146 1001001 92 210 1100001 D1 18 00010011 13 83 0101001 52 146 1001001 94 212 1101001 D5 20 0001011 13 85 0101010 54 146 1001010 94 212 1101010 D5 22 00010101 14 86 0101000 58 152 1001010 94 214 1100101 D6 22 00010101 14 90 0101010									85		11001011	CB
14 00001110 0E 78 01001110 4E 142 10001110 8E 206 11001111 CF 15 00001000 10 60 0100000 50 144 10010000 91 209 11010000 D0 17 00010010 11 81 01010000 51 144 10010010 91 209 11010000 D0 18 00010100 14 82 0101001 53 144 1001001 93 211 1101001 D2 100010100 14 84 0101010 54 146 1001010 94 212 11010101 D4 200010100 14 85 0101010 56 152 1001001 94 214 1100101 D4 213 11010101 D7 213 1100101 D7 213 1101010 D4 20011010 17 1101010 D4 D4 D101010 S2 213 101												
15 00001111 0F 79 01001111 4F 143 10001111 8F 207 11001111 CF 16 00010000 10 80 01010000 50 144 10010000 90 208 1101000 D0 17 00010001 12 82 0101001 52 144 1001001 92 210 1101001 D0 18 00010011 13 83 0101001 54 144 1001010 94 212 1101010 DD 20 00010101 15 85 010100 54 145 1001000 94 213 1100101 DD 21 00010101 17 86 0101000 59 153 1001000 99 217 1100101 DD 216 1100100 DD 220 1101101 DD 220 1101101 DD 220 1101101 DD 220 11010101 DD 220												
16 00010000 10 80 01010000 50 144 10010001 91 208 11010001 D1 18 00010010 11 81 0101001 51 145 1001001 92 210 11010010 D1 18 0001001 13 83 0101001 53 147 1001001 92 210 1101001 D3 20 00010100 15 84 010100 55 149 1001001 92 213 1101010 D5 22 00010111 17 87 0101011 57 151 10010101 92 215 1101001 D5 23 00010101 18 0101001 53 153 1001101 94 214 1101100 D8 215 1101101 D8 216 110110 D8 210 110110 D8 210 110110 D8 210 110110 D8 210 11010 <												
17 00010001 11 81 01010001 51 145 10010001 92 210 11010010 02 19 00010011 13 83 01010011 51 147 1001001 92 210 11010010 02 19 00010101 15 84 010101 55 144 1001010 94 212 1101010 04 21 00010101 15 85 010101 55 144 1001011 97 213 1101011 05 24 00010100 148 80 0101000 55 150 1001010 94 214 1101101 D4 24 00011001 18 88 0101000 55 15011001 94 218 1101101 D4 11010 D4 110101 D4 1101101 D6 1001100 S2 1001101 D4 110100 D6 1001100 S2 11010100 D4 11010000<												
18 0001001 12 82 0101001 52 146 1001001 92 211 11010011 D3 19 0001001 13 83 0101001 53 147 1001001 93 211 11010011 D3 20 0001010 15 84 010100 55 149 1001010 95 213 1101010 D5 21 0001010 15 66 010100 55 1101011 D7 215 1101010 D6 214 1101000 D8 215 1101000 D8 216 1101000 D8 217 11011010 D9 217 11011010 D8 219 11011010 D8 219 1101101 D8 219 1101101 D8 219 1101101 D8 219 1101110 D8 219 1101110 D8 221 1101101 D8 210 1100100 221 1101100 D8 210 100000												
19 00010011 13 83 01010011 53 147 1001001 93 211 11010011 93 20 00010100 14 84 0101010 55 148 1001010 95 213 11010101 95 21 00010101 15 85 0101011 57 151 1001011 97 215 11010101 157 23 00011001 18 88 0101000 58 152 10011001 98 216 1101001 D9 24 00011001 18 88 0101001 58 153 10011001 98 217 1101101 D0 26 0001100 16 90 0101101 58 153 1001101 98 219 1101101 D0 221 1101100 D0 221 1101100 D0 221 1101100 D0 221 1101100 D0 221 11001110 D0 221												
20 00010100 14 84 0010100 54 148 10010100 94 212 1010100 D4 21 0001010 15 85 0101010 55 149 1001010 95 213 1101010 D5 22 0001010 16 86 0101010 56 150 1001011 97 215 1101010 D6 23 0001000 18 88 0101000 58 152 1001000 98 216 1101000 D8 24 0001100 14 90 010101 58 154 1001100 94 218 1101010 D8 25 0001110 14 90 010101 58 155 1001101 95 221 1101100 D6 26 00011101 15 156 1001101 95 223 1100101 D6 223 1101100 D6 224 1100000 E2 1101100												
21 00010101 15 85 149 10010101 95 213 1001010 05 22 0001011 17 87 0101011 55 150 10010110 96 214 11010110 D6 23 00011001 19 88 0101000 58 152 10011001 97 215 1101011 D7 24 00011001 19 89 0101001 53 10011001 94 218 1101101 D7 25 0001100 1A 90 0101101 55 155 1001101 95 217 1101101 D7 26 00011101 1A 90 0101101 55 155 1001110 95 221 1101101 D7 27 00011101 1E 93 0101111 55 156 1001110 92 221 1101111 D7 222 1101111 D7 222 1101111 D7 222 1101111 D7 221 1100001 51 55 1001111 57 </td <td></td>												
22 00010110 16 86 0101010 56 150 10010110 96 214 1010110 56 23 0001011 17 87 0101000 18 88 0101000 58 151 10011001 99 215 11010101 D7 24 00011000 1A 89 01011001 59 153 10011001 94 215 1101101 D7 26 0001100 1A 90 0101101 55 150 1001101 95 219 1101101 D8 27 0001101 1B 91 0101101 55 150 1001111 97 221 1101101 DD 29 00011101 1F 95 0101111 SF 159 1001111 SF 222 1101110 DE 221 1101100 DE 221 1101000 E2 1100000 E2 1100000 E2 11000000 E2 11000000												
23 0001011 17 87 010101 57 151 1001011 97 215 11010111 D7 24 00011000 18 88 0101000 58 152 10011001 99 217 1101100 D8 25 00011001 1A 90 0101101 5A 154 1001101 98 218 1101100 DA 26 0001101 1E 91 0101101 5C 156 1001100 90 221 1101101 DB 26 0001110 1C 92 0101110 5C 157 1001110 9E 221 1101101 DD 30 000100111 1F 95 0101111 5F 159 1001111 9F 223 1101111 DE 238 1001000 60 160 1000000 A21 1100000 60 160 1000001 A1 225 1100000 60 160 1000001 A1 225 1100000 80 1000001 224 1100000 60 16												
24 00011000 18 88 01011000 58 152 10011000 98 216 11011000 D8 25 00011010 1A 90 01011001 59 153 10011001 94 218 1101100 DA 26 00011010 1A 90 0101101 58 155 1001101 94 219 1101100 DC 27 0001101 1D 93 0101101 55 156 1001110 90 220 1101110 DC 29 00011101 1E 94 0101101 55 156 1001110 90 221 1101110 DC 30 0010000 20 96 0110000 60 160 10100001 A2 223 1101011 E3 30 0100001 21 97 01100001 61 161 10100001 A2 225 1100001 E3 237 11000011 E3												
26 00011010 1A 90 01011010 5A 154 10011010 9A 218 11011010 DA 27 0001100 1 18 91 0101101 5B 155 1001100 9C 220 1101101 DB 28 00011100 1E 94 0101110 5D 157 1001110 9D 221 1101101 DD 29 0001110 1E 94 0101110 SE 156 1001110 9D 221 1101110 DE 221 1101111 DE 221 1101111 DE 221 1101111 DE 221 1101111 DE 221 1101010 E2 1100000 E0 133 00100001 21 97 01100001 E2 1100010 E2 11100011 E3 140 1000000 A0 224 1100001 E1 - 340 0100010 24 1100011 E3 1110011 E3		00011000	18	88	01011000		152			216		06
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		00011001	19		01011001	59	153	10011001	99	217	11011001	D9
28 00011100 1C 92 01011101 5C 156 10011100 9C 220 11011101 DD 39 00011101 1D 33 0101110 5E 156 10011110 9D 221 11011101 DD 30 00011101 1F 93 0101111 SF 158 10011111 SF 222 1101111 DE 31 0010000 20 96 0100000 60 160 10100001 AU 224 1100001 EC 32 00100010 22 98 01100010 62 162 1010001 AU 223 1100001 E2 35 0010010 22 98 0110010 64 161 1010010 AU 223 11100011 E3 36 0010010 24 100 010010 AU 233 11100101 E4 37 0100111 25 101 0110010 <		00011010	18		01011010	5A	154	10011010	9A	218	11011010	DA
29 00011101 1D 93 01011101 5D 157 10011101 9D 221 11011101 DD 30 00011110 1E 94 0101110 SE 158 10011110 9E 222 1101110 DD 31 0010000 20 96 0110000 60 160 1010000 A0 224 11100000 E0 32 0010000 20 96 01100010 62 162 10100010 A1 225 11100011 E1 34 00100010 22 98 01100010 62 163 10100011 A3 227 1100011 E2 35 00100101 24 100 01100106 64 164 10100101 A5 229 1100101 E5 36 0010100 26 102 0100101 A6 103 1100101 E5 1010101 A5 229 1100101 E5 37 00100101 25 101 0100101 64 1010100 A4					01011011							
30 00011110 1E 94 0101111 5E 158 10011111 9F 222 1101111 DF 31 00011111 1F 95 0110111 5F 159 10011111 9F 223 1101111 DF 32 00100001 21 97 01100001 61 161 1010001 A1 225 11100001 E1 34 00100010 22 98 01100010 62 162 1010001 A2 226 11100010 E2 35 00100110 23 99 01100100 64 164 1010010 A4 228 11100101 E3 36 00100110 26 102 01100100 64 164 1010010 A5 229 11100101 E5 38 00100110 26 102 01100100 68 163 1010001 A5 231 1100101 E5 30 0101010												
31 00011111 1F 95 0101111 3F 159 10011111 9F 223 11011111 DF 32 00100000 20 96 01100000 60 160 10100000 A0 224 11100000 E0 33 00100010 21 97 01100001 62 162 1010010 A1 225 11100101 E1 34 00100010 22 98 01100010 62 162 1010010 A1 225 11100101 E2 35 0010010 24 100 01100101 63 163 1010010 A4 228 11100100 E4 37 0010010 26 102 01100101 65 165 10100101 A5 229 1110011 E7 38 0010010 28 104 0110100 68 168 1010100 A8 232 11100101 E8 41 0010100 2A 106 0110100 6A 170 1010101 A8 233 <												
32 00100000 20 96 01100000 60 160 10100000 A0 224 11100000 E0 33 00100001 21 97 01100001 61 161 10100001 A1 225 111000010 E1 34 00100010 22 98 01100011 63 163 10100010 A2 226 11100010 E2 35 0010010 24 100 0110010 64 164 1010010 A2 228 1110010 E4 36 0010010 25 101 0110010 65 165 1010010 A3 227 1110010 E4 37 0010010 25 102 0110010 65 165 1010010 A3 233 1110010 E4 39 0010010 28 105 0110100 68 168 1010100 A3 233 11100101 E4 40 0010100												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
34 00100010 22 98 01100010 62 162 10100010 A2 226 11100010 E2 35 00100011 23 99 01100010 63 163 10100011 A3 227 11100010 E4 36 0010010 24 100 01100100 64 164 10100101 A5 229 11100101 E5 38 00100110 25 101 0110010 66 166 10100110 A6 230 11100110 E6 39 00100111 27 103 01100116 66 166 1010011 A7 231 11100111 E7 40 0010100 28 104 01101016 6A 170 1010101 A8 232 11101001 E8 41 0010100 24 105 0110101 6A 170 1010101 A8 232 11101001 E8 42 00101010 <td></td>												
35 00100011 23 99 011000011 63 163 10100011 A3 227 11100011 E3 36 00100100 24 100 01100100 64 164 10100100 A4 228 11100101 E4 37 00100101 25 101 01100101 65 165 10100101 A5 229 11100101 E5 38 00100110 26 120 0110010 66 166 1010011 A7 231 11100111 E7 40 00101000 28 104 01101001 69 169 1010101 A8 232 1110101 E8 41 0010101 24 106 0110101 64 170 1010101 A8 235 1110101 E4 43 0010110 24 106 0110106 6C 172 1010101 A8 235 1110101 E8 44 0010110 25 109 0110106 6C 172 1010110 AC 236												
36 00100100 24 100 01100100 64 164 10100100 A4 223 11100100 E4 37 00100101 25 101 01100101 65 165 10100101 A5 229 11100101 E5 38 00100110 26 102 0110010 66 166 1010010 A6 230 11100111 E7 40 00101000 28 104 0110100 66 168 1010100 A8 232 11100101 E8 41 0010100 24 106 0110100 6A 170 1010101 A8 232 1110100 E8 41 0010100 2A 106 0110101 6A 170 1010101 A8 234 1110101 E8 42 00101100 2C 108 0110100 6C 172 10101101 AE 235 1110101 E8 43 00101010												
37 00100101 25 101 01100101 65 165 10100101 A5 229 11100101 E5 38 00100110 26 102 01100110 66 166 10100110 A5 230 11100110 E6 39 00100111 27 103 01100111 67 167 10100101 A6 230 11100111 E7 40 00101000 28 104 01101000 68 168 10101000 A8 232 11100101 E8 41 0010100 2A 106 0110101 6A 170 1010101 AA 234 1110101 E9 42 0010101 2A 106 0110101 6A 170 1010101 AA 234 1110101 E8 44 00101100 2C 108 0110100 6C 172 10101101 AD 237 11101101 E0 45 00101101 2E 110 0110110 6E 174 10101110 AE 238												
39 00100111 27 103 01100111 67 167 10100111 A7 231 11100111 E7 40 00101000 28 104 01101000 68 168 10101001 A7 231 11100111 E7 40 00101001 29 105 01101001 69 169 10101001 A8 232 11101001 E8 41 0010101 2A 106 0110101 6A 170 1010101 AA 234 1101010 EA 43 0010101 2B 107 0110110 6C 172 1010100 AC 235 1100101 EA 44 0010110 2D 109 0110110 6E 174 1010110 AC 236 110101 EC 45 0010100 30 112 0110100 6E 174 1010111 AF 239 1110101 EE 47 0010111	37	00100101	25	101	01100101		165					ES
40 00101000 28 104 01101000 68 168 10101000 A8 232 11101000 E8 41 00101001 29 105 01101001 69 169 10101001 A9 233 11101001 E9 42 0010101 2A 106 0110101 6A 170 10101010 AA 234 1110100 EA 43 0010100 2C 108 0110100 6C 172 1010101 AB 235 1110100 EC 44 00101100 2C 108 0110100 6C 172 1010101 AB 235 1110100 EC 45 0010110 2D 109 0110110 6E 174 1010111 AE 238 11101101 ED 46 0010110 2E 110 01101110 6E 174 1010111 AE 238 1110101 EE 47 0010000 30 112 0110000 70 176 1010000 B0 240 <td< td=""><td>38</td><td>00100110</td><td>26</td><td>102</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	38	00100110	26	102								
41 00101001 29 105 01101001 69 169 10101001 A9 233 11101001 E9 42 00101010 2A 106 01101010 6A 170 10101010 AA 233 11101001 EA 43 00101011 2B 107 01101011 68 171 10101011 AS 235 1110101 EA 44 00101100 2C 108 0110100 6C 172 10101101 AS 236 11101101 ED 45 00101101 2D 109 01101101 6D 173 10101101 AS 237 11101101 ED 46 00101101 2E 110 01101101 6E 174 1010111 AF 239 1101111 EF 47 00101011 2E 110 0110110 6E 174 1010011 AF 239 1101111 EF 48 00110000 30 112 0110000 70 176 10110000 B0 240 <td></td> <td>00100111</td> <td>27</td> <td>103</td> <td>01100111</td> <td>67</td> <td>167</td> <td>10100111</td> <td>A7</td> <td>231</td> <td>11100111</td> <td>£7</td>		00100111	27	103	01100111	67	167	10100111	A7	231	11100111	£7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
43 00101011 28 107 01101011 68 171 10101011 AB 235 11101011 E8 44 00101100 2C 108 0110100 6C 172 1010100 AC 236 1110100 EC 45 00101101 2D 109 0101101 6D 173 10101101 AD 237 11101101 ED 46 0010110 2E 110 0110110 6E 174 10101110 AE 238 11101101 EE 47 00101110 2E 110 0110110 6E 174 10101110 AE 238 1110110 EE 48 00110000 30 112 0110000 70 176 1010000 B0 240 1110000 F1 50 00110010 31 113 0110001 71 177 1010010 B2 242 1110001 F2 51 00110010 34 116 0110100 74 180 1010011 B3 243												
44 00101100 2C 108 01101100 6C 172 10101100 AC 236 11101100 EC 45 00101101 2D 109 01101101 6D 173 10101101 AD 237 11101101 ED 46 06101110 2E 110 01101110 6E 174 10101110 AE 238 11101101 ED 46 06101110 2E 110 01101111 6F 175 10101111 AF 239 11101111 EE 47 0010000 30 112 0110000 70 176 1010000 BO 240 1110000 FF 48 00110000 31 113 0110001 71 177 1010001 B2 242 1110000 F1 50 00110010 32 114 0110010 72 178 1010010 B2 242 1110001 F2 51 00110010 32 114 0110010 74 180 1010101 B3 243												
45 00101101 2D 109 01101101 6D 173 10101101 AD 237 11101101 ED 46 00101110 2E 110 01101110 6E 174 10101110 AE 238 11101101 ED 47 00101111 2F 111 01101111 6F 175 10101111 AF 239 11101111 EF 48 0010000 30 112 0110000 70 176 1010000 B0 240 1110000 FF 49 0010001 31 113 0110001 71 177 1010001 B1 241 1110001 F2 50 0010010 32 114 0110011 73 179 1010010 B2 242 1110001 F2 51 0010010 32 114 0110100 74 180 1010101 B3 243 1110011 F3 52 0010010 35 117 0110010 75 181 1010101 B5 245 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>												
46 00101110 2E 110 01101110 6E 174 10101110 AE 238 11101110 EE 47 00101111 2F 111 01101111 6F 175 10101111 AF 239 11101111 EF 48 00110000 30 112 01110000 70 176 10110000 B0 240 11110000 FF 49 00110001 31 113 0110001 71 177 1011001 B1 241 1110001 F1 50 00110010 32 114 01110017 71 177 1011001 B2 242 1110001 F2 51 0011001 32 114 0110010 72 178 1011001 B3 243 1110001 F2 51 0011010 34 116 0110100 74 180 1010101 B3 243 1110011 F3 52 0011010 36 118 0110101 75 181 1011010 B5 245												
47 00101111 2F 111 01101111 6F 175 10101111 AF 239 11101111 EF 48 00110000 30 112 01110000 70 176 1011000 B0 240 11110000 FF 49 00110001 31 113 01110010 71 177 10110001 B1 241 11110001 F1 50 00110010 32 114 01110010 72 178 10110010 B2 242 1110010 F2 51 0011001 33 115 01110017 73 179 1011001 B3 243 1110010 F3 52 0011010 34 116 0110100 74 180 1011010 B3 243 1110010 F4 53 0011010 35 117 0111010 75 181 1011010 B5 245 1110101 F5 54 0011010 36 118 0111010 76 182 1011010 B5 245							-					
48 00110000 30 112 01110000 70 176 10110000 80 240 11110000 FF 49 00110001 31 113 01110001 71 177 10110001 81 241 11110000 FF 50 00110010 32 114 01110010 72 178 10110010 B1 241 11110001 F1 50 00110010 32 114 01110010 72 178 10110010 B2 242 11110010 F2 51 0011001 33 115 0111010 74 180 1011010 B3 243 1111010 F4 52 0011010 34 116 0111010 74 180 1011010 B4 244 1110101 F4 53 0011010 35 117 0111010 75 181 1011010 B5 245 1110101 F5 54 0011010 36 118 0111010 76 182 1011010 B6 246												
49 00110001 31 113 0110001 71 177 1010001 81 241 11110001 F1 50 0010010 32 114 0110010 72 178 1010010 82 242 11110010 F2 51 0010011 33 115 0110011 73 179 1010011 B3 243 1110010 F2 51 0010010 34 116 0110011 73 179 1010011 B3 243 1110010 F4 52 0011010 34 116 01110101 75 181 10110101 B5 245 1110101 F4 53 0011010 36 118 0110101 F5 181 10110101 B5 245 1110101 F6 54 0011010 36 118 0111010 76 182 1011010 B6 246 1110101 F6 55 0011000 38 120 0111000 78 184 1011000 B8 248 11110												
50 00110010 32 114 01110010 72 178 10110010 B2 242 11110010 F2 51 00110011 33 115 01110011 73 179 10110011 B3 243 11110010 F2 52 00110100 34 116 01110100 74 180 10110100 B4 244 11110100 F4 53 00110101 35 117 01110101 75 181 10110101 B5 245 11110101 F5 54 0011010 36 118 0110100 76 182 1011010 B5 246 1110101 F5 54 0011010 36 118 011010 76 182 1011010 B6 246 1110101 F6 55 0011010 38 120 0111100 76 184 1011000 B8 248 1111001 F7 56 00111000 38 120 0111000 78 184 1011100 B8 249												
51 00110011 33 115 01110011 73 179 10110011 B3 243 11110011 F3 52 00110100 34 116 01110100 74 180 10110100 B4 243 11110011 F3 53 00110101 35 117 01110101 75 181 10110101 B5 245 11110101 F4 54 0011010 36 118 0110101 75 181 10110101 B5 246 1110101 F5 54 0011011 37 119 01110101 76 182 1011011 B6 246 1110101 F6 55 0011010 38 120 01111000 76 182 1011000 B8 248 111001 F6 56 0011000 38 120 0111000 76 184 1011000 B8 248 1111001 F9 58 0011001 34 122 0111001 7A 186 1011001 BA 250 <												
52 00110100 34 116 0110100 74 180 10110100 84 244 11110100 F4 53 00110101 35 117 01110101 75 181 10110101 85 245 11110101 F5 54 00110101 36 118 0111010 76 182 1011010 86 246 1110101 F6 55 0011010 36 118 0111010 76 182 1011010 86 246 1110101 F6 55 0011011 37 119 0111010 76 182 1011010 86 246 111010 F6 56 0011000 38 120 0111000 78 184 1011000 B8 248 1111001 F9 58 0011000 3A 122 0111010 7A 186 1011010 BA 250 1111010 F8 59 0011010 3A 122 0111010 7A 186 1011010 BA 250 1111												
53 00110101 35 117 01110101 75 181 10110101 B5 245 11110101 F5 54 00110110 36 118 0111010 76 182 10110110 B6 246 11110110 F6 55 00110111 37 119 01110110 76 182 10110110 B6 246 11110110 F6 55 0011001 37 119 01110101 77 183 10110101 B6 246 11110111 F7 56 00111001 39 120 01111000 78 184 10111000 B9 249 1111000 F8 57 00111001 34 122 01111001 74 186 10111010 B9 249 1111000 F8 59 00111010 34 122 0111101 78 187 1011010 B4 250 1111010 F4 50 00111001 30 122 0111100 70 188 10111101 B5 251 <td></td>												
54 00110110 36 118 01110110 76 182 10110110 B6 246 1110110 F6 55 00110111 37 119 01110111 77 183 10110111 87 247 11110111 F7 56 00111000 38 120 01111000 76 184 1011000 B8 248 11110111 F7 56 00111001 39 121 0111001 79 185 1011001 B9 249 1111001 F9 57 00111001 3A 122 01111001 74 186 1011001 BA 250 1111010 FA 59 0011010 3A 122 0111101 7A 186 1011011 BA 250 1111010 FA 59 0011011 38 123 0111100 7C 188 1011011 BB 251 1111001 FB 60 0011100 3C 125 0111100 7C 188 10111101 BD 253 <												
55 00110111 37 119 01110111 77 183 10110111 87 247 11110111 F7 56 00111000 38 120 01111000 78 184 1011000 B8 248 11110011 F7 56 00111000 38 120 01111001 79 185 10111001 B9 249 1111001 F9 57 00111010 3A 122 01111001 74 186 10111010 BA 250 1111010 FA 59 00111010 3A 122 0111101 78 187 1011010 BA 250 1111010 FA 59 00111010 3C 124 0111101 76 186 1011101 BB 251 1111001 FB 60 0011100 3C 124 0111100 7C 188 1011100 BC 252 1111100 FC 61 00111101 3D 125 0111101 7D 189 1011110 BD 253							- • +	****				
56 00111000 38 120 01111000 76 184 10111000 B8 248 11111000 F8 57 00111001 39 121 01111001 79 185 10111001 B9 249 11111001 F9 58 00111010 3A 122 01111010 7A 186 10111010 BA 250 11111010 FA 59 00111011 38 123 0111101 7B 187 10111010 BA 251 11111010 FA 60 0011100 3C 124 0111100 7C 188 10111010 BC 252 1111100 FC 60 00111101 3C 125 0111100 7C 188 1011101 BD 252 1111100 FC 61 00111101 3C 125 0111101 7D 189 10111101 BD 253 1111100 FC 62 00111110 </td <td></td>												
57 00111001 39 121 01111001 79 185 10111001 89 249 11111001 F9 58 00111010 3A 122 01111010 7A 186 10111010 BA 250 11111010 FA 59 00111011 38 123 0111010 7A 186 10111011 BB 251 11111010 FA 60 0011100 3C 124 0111100 7C 188 1011101 BC 252 1111100 FC 61 0011101 30 125 0111101 7D 189 1011101 BD 253 1111101 FD 62 0011110 3E 126 0111110 7E 190 1011110 BE 254 1111110 FE												
58 00111010 3A 122 0111010 7A 186 10111010 BA 250 11111010 FA 59 00111011 38 123 01111011 7B 187 10111011 BB 251 11111011 FB 60 0011100 3C 124 0111100 7C 188 1011100 BC 252 1111100 FC 61 00111101 30 125 0111101 7D 189 10111101 BD 253 1111101 FD 62 0011110 3E 126 0111110 7E 190 1011110 BE 254 1111110 FE								10111001				
60 00111100 3C 124 0111100 7C 188 10111100 BC 252 1111100 FC 61 00111101 30 125 0111101 7D 189 10111101 BD 253 1111101 FD 62 0011110 3E 126 0111110 7E 190 10111110 BE 254 1111110 FE		00111010	38	122	01111010	78	186	10111010	BA			
61 00111101 30 125 0111101 7D 189 10111101 BD 253 11111101 FD 62 00111110 3E 126 0111110 7E 190 10111110 BE 254 11111110 FE											11111011	
62 00111110 3E 126 01111110 7E 190 10111110 BE 254 11111110 FE												
			-									
♥3 00111111 3F 127 0111111 7F 191 10111111 BF 255 11111111 FF								• • • • • • • •				
	03	00111111	38	127	01111111	7¥	191	10111111	BF	255	111111111	FF

Proprietary Information Tandy® Corporation

- TANDY COMPUTER PRODUCTS -

ASCII CHARACTER CODE CHART

CC	DDE	CHARACTER	CODE		CHARACTER	co	DE	CHARACTER	
Dec	Hex		Dec	Hex		Dec	Hex		
		-	. .		_				
32	2Ø	Space	64	4Ø	e	96	6Ø		
33	21	1	65	41	A	97	61	8.	
34	22	=	66	42	В	98	62	Ъ	
35	23	#	67	43	С	99	63	c	
36	24	\$	68	44	D	100	64	d	
37	25	z	69	45	E	1Ø1	65	е	
38	26	£	7ø	46	F	1Ø2	66	f	
39	27	,	71	47	G	1Ø3	67	g	
4Ø	28	(72	48	H	1Ø4	68	h	
41	29)	73	49	I	1Ø5	69	i	
42	2A	*	74	4 A	J	1Ø6	6A	j	
43	28	÷	75	48	K	1Ø7	68	k	
44	2C	,	76	4C	L	1Ø8	6C	1	
45	2D	-	77	4D	М	1Ø9	6D	m	
46	2E	•	78	4E	N	11Ø	6E	n	
47	2F	1	79	4F	0	111	6F	0	
48	3Ø	ø	8ø	5Ø	P	112	7Ø	р	
49	31	1	81	51	Q	113	71	q	
5Ø	32	2	82	52	R	114	72	r	
51	33	3	83	53	S	115	73	5	
52	34	4	84	54	T	116	74	t	
53	35	5	85	55	U	117	75	u	
54	36	6	86	56	v	118	76	v	
55	37	7	87	57	W	119	77	W	
56	38	8	88	58	x	12Ø	78	x	
57	39	9	89	59	Y	121	79	у	
58	3 A	:	9Ø	5A	Z	122	7A	Z	
59	38	;	91	58	ſ	123	78	{	
6Ø	3C	<	92	5C	Ň	124	7C	**	
61	3D		93	5D	ì	125	7D)	
62	3E	>	94	5E		126	7 E	-	
63	3F	?	95	5F		127	7 F	<u>+</u>	
		÷					-		

Codes \emptyset -31₁₀ are used as control codes, and are not part of the ASCII character set.

Codes $128-255_{10}$ are defined by each operating system, and are not part of the ASCII character set. They may represent graphics characters, space compression codes or special control codes that can be imbedded in programs, etc.

NOTE: ASCII stands for American Standard Code for Information Interchange

VGA PORT CONNECTOR PINOUT

The following table indicates the pin functions of the video connector.

Pin Function

- 1 Red Video
- 2 Green Video
- 3 Blue Video
- 4 Monitor ID Bit 2 (not used)
- 5 Ground
- 6 Red Return (ground)
- 7 Green Return (ground)
- 8 Blue Return (ground)
- 9 Key (no pin)
- 10 Sync Return (ground)
- 11 Monitor ID Bit 0 (not used)
- 12 Monitor ID Bit 1 (ground)
- 13 Horizontal Sync
- 14 Vertical Sync
- 15 Not Used

Monochrome-type monitors use Green Video for all video input and ignore Red Video and Blue Video.

Monitor 1D Bits are not used. The monitor type is determined when your system is turned on.

PERIPHERAL INTERFACES PINOUTS

Parallel I/O printer port (25 pin connector) (* denotes "Active Low signals)

- l Strobe* 2 - Data Bit Ø 3 - Data Bit 1 4 - Data Bit 2 5 - Data Bit 3
 - 6 Data Bit 4
 7 Data Bit 5
 8 Data Bit 6
 9 Data Bit 7
 10 Acknowledge*
 11 Busy
 12 Paper End
 13 Select
 - 12 Paper End 13 - Select 14 - Auto Feed* 15 - Error* 16 - Initialize* 17 - Select In*

18-25 - Ground

RS-232C serial port

Pin Assignments:

- 1 Carrier Detect
- 2 Receive Data
- 3 Transmit Data
- 4 Data Terminal Ready
- 5 Signal Ground
- 6 Data Set Ready
- 7 Request To Send
- 8 Clear To Send
- 9 Ring Indicator

- TANDY COMPUTER PRODUCTS-

This page intentionally left blank.

.

Figure 1. 280 CPU Board (Rev. A through C).

Figure 2. Z80 CPU Board (Rev. D),

Figure 4. Keyboard/Video Board (Late Style Labeled LEIMV-1 1082).

.

Figure 5. Keyboard/Video Board (Model 12/16B).

Figure 6. FDC Board (Early Style).

Figure 7. FDC Board (Late Style for Model II).

Figure B. FDC Board (Late Style for Model 16).

Figure 9. First 32K Memory Board.

Figure 10. Second 32K Memory Board.

Figure 11. First 64K Memory Board.

Figure 12. Visicalc 64K Memory Board.

Figure 13. 144K Board Jumpered for Arcnet.

Figure 14. 144K Board Jumpered for Visicalc.

Figure 15. Model 12 Main Logic Board.

Figure 16. 68000 CPU Board.

Figure 17. Reduced Size 68000 CPU Board.

Figure 18. 68000 Memory Board.

Figure 19. 8 MEG Hard Disk Interface In Model 11/16/16B.

Figure 20. 8 MEG Hard Disk Interface In Model 12.

Figure 21. 12 MEG Hard Disk Interface In Model II/16/16B.

Figure 22. 12 MEG Hard Disk Interface In Model 12.

Figure 23. 8 MEG Hard Disk Controller Board.

Figure 24. 5/12/External 15 MEG Hard Disk Controller Board.

Figure 25. 8 MEG Hard Disk Drive Logic Board.

Figure 26. 12/15 MEG Hard Disk Drive Logic Board.

Figure 27. 5 MEG Hard Disk Drive Logic Board.

Figure 28. Arcnet Board.

Figure 29. Hi-Res Graphics Board.

Figure 30. Tandon Thinline Floppy Drive Logic Board.

.

Figure 31. Multi-Terminal Board.

Figure 32. Shugart Floppy Drive Logic Board (Discrete).

Figure 33. Shugart Floppy Drive Logic Board (Early Style LSI).

* ***

Figure 34. Shugart Floppy Drive Logic Board (Late Style LSI).

Figure 35. CDC Floppy Drive Logic Board (Discrete)

Figure 36. CDC Floppy Drive Logic Board (LSI).

Figure 37. TPI Drive Logic Board

Figure 38. 15 MEG Internal Hard Disk Controller/Interface Board.

Figure 39. Model 16B Main Logic Board.

Figure 40. Mitsubishi Floppy Drive Logic Board

Figure 41. TM848 Direct Drive Floppy Drive Logic Board.

.

Figure 42. Tandy 1000 Main Logic Board.

Figure 43. TEAC FD-54B 5 1/4" Floppy Drive Logic Board.

Figure 44. Tandy 1200 Main Logic Board.

Figure 45. Tandy 1200 Floppy Disk Controller Board.

Figure 46. Tandy 1200 Hard Disk Controller Board.

PROGRAMMABLE SHUNT SOCKET 1E

Figure 47. Tandon TM100-2 5 1/4" Floppy Drive Logic Board.

Figure 48. 10 MEG Hard Disk Drive Logic Board.

Figure 49. Tandy 2000 Main Logic Board.

Figure 50. Mitsubishi M4853-1 Floppy Drive Logic Board.

Figure 51. 35 MEG Hard Disk Drive Logic Board.

Figure 52. WD1010 External Controller Board.

. .

Figure 53. Tandy 1000 Modem Board.

Figure 54. Tandy 1000 RS-232 Board.

Figure 55. Tandy 1000 First External RAM Board.

Figure 56. Tandy 1999 Second External RAM Board.

Figure 57. Captain Multi-Function Board.

Figure 58. Tandy 1200 Graphics Tender Board

Figure 59. Tandy 1200 Graphics Master Board.

Figure 60. Tandy 2000 Hard Disk Controller Board.

Figure 61. Tandy 2000 Monochrome Graphics Board.

Figure 62. Tandy 2000 Color Graphics Board.

Figure 63. Tandy 2000 First External RAM Board.

Figure 64. Tandy 2000 Second External RAM Board.

Figure 65. Tandy 2000 Mouse/Clock Board.

Figure 66. 8 MHz 68000 CPU board.

Figure 67. 512K/1MEG 68000 RAM Board with 512K

Figure 68. 512K/1MEG 68000 RAM Board with 1MEG

Figure 69. Xebec Hard Drive Controller Board for Tandy 1000/1200.

Figure 70. 70 MEG Hard Drive Logic Board

Figure 71. Vianet Board for Tandy 1000/1200

Figure 72. Vianet Board for Tandy 2000

Figure 73. Disk Cartridge Controller Board

Figure 74. Disk Cartridge Drive Logic Board

Figure 75. Tandy 1000/1200 Interface Soard for the 8" Disk Cartridge

Figure 76. 10 MEG Thinline (TM-252) Hard Drive Logic Board.

Figure 77. Tandy 1000 WD1010 Hard Drive Controller Board.

Figure 78. Tape Cartridge Controller Board (TCS-1 \emptyset Ø)

Figure 79. Tape Cartridge Drive Logic Board.

Figure 80. Tape Cartridge Interface Board to the Tandy 1000/1200.

Figure 81. Tandy 1000 Memory Plus Board.

Figure 82. Tandy 1000 Internal 1200 Baud Modem.

Figure 83. Tandy 1000A Main Logic Board.

Ţ

Figure 84. Tandy 1200A Main Logic Board.

Figure 85. 4K Model III Main Logic Board.

Figure 86. 16K/32K/48K Model III Main Logic Board.

Figure 87. Model III/4 Early FDC Board.

Figure 88. 16K Model 4 Standard PCB

Figure 89. 64K/128K Model 4 Standard PCB.

Figure 90. 64K/128K Model 4 Gate Array PCB

Figure 91. 64K/128K Model 4D Main Logic Board.

Figure 92. Tandy 2000 Serial Expansion Board

Figure 93. Tandy 3000 Main Logic Board.

Figure 94. Tandy 3000 Floppy Disk Controller Board.

Figure 95. Tandy 3000 Floppy/Hard Disk Controller Board.

Figure 96. Mitsubishi M4851 Floppy Drive Logic Board.

٠

Figure 97. Mitsubishi M4854-347 Floppy Disk Drive Logic Board.

Figure 98. Tandon TM65-2L Floppy Drive Logic Board.

•

Figure 99. Tandy 1200 WD1010 (short) Hard Drive Controller Board.

Figure 100. 20 MEG Mitsubishi (MR522) Hard Drive Logic Board.

Figure 102. Tandy 3000 Serial/Parallel Board.

Figure 103. Tandy 3000 2 MEG Memory Board.

Figure 104. Deluxe Text Display Adapter (Tandy 1200/3000).

Figure 105. Deluxe Graphics Display Adapter (Tandy 1200/3000).

•

· • •

Figure 106. RS-232 Plus Board.

Figure 107. TEAC FD-55BV Floppy Drive Logic Board.

Figure 108. Mitsubishi MF501A Floppy Drive Logic Board.

Figure 109. Mitsubishi MF504A Floppy Drive Logic Board.

Figure 110. 40 MEG CDC (WREN II) Hard Drive Logic Board.

Figure 111. PC2B Disk Cartridge Interface Board.

Figure 112. Tandy 2000 Disk Cartridge Interface board

Figure 114. Vianet (Arcnet-PC100) Board (1000/1200/3000).

Figure 115. Serial/Parallel Board Revisions B/C

Figure 117. Tandy 3000 Multi-Terminal Board.

Figure 118. 20 MEG IOMEGA (Alpha-20H) Disk Cartridge Drive Logic.

Figure 119. Tandy 3000 Gate Array Main Logic Board.

Figure 120. Tandy 1000 EX Main Logic Board.

Figure 121. Tandy 1000 SX Main Logic Board.

Figure 122. Tandy 3000 HL Main Logic Board.

Figure 123. Tandy 1000 EX Memory PLUS Expansion Adapter.

Figure 125. 1000 External Floppy Disk Interface.

Figure 126. Plus Network 4 Interface.

See Text for proper switch settings.

Figure 127. Plus 1200 Baud Modem.

Figure 128. Enhanced Keyboard Adapter.

.

ч.

Figure 130. Dual Port Serial Board

Figure 131. Plus 300 Baud Modem.

Figure 132. Teac FD-35-FN 3 1/2 Floppy Drive 720K.

Figure 133. 40 Meg Microscience (HH-1050) Hard Drive Logic.

Note: Jumper configuration shown is for the Tandy 1000 series computer. See text for proper jumper configurations for other computers.

Figure 134. 20 Meg Hard Card Controller.

Figure 135. Tandy 1000HX Main Logic.

Figure 136. Tandy 1000TX Main Logic.

Figure 137. Tandy 3000 12MHZ Main Logic Board (Rev A).

Figure 138. Tandy 4000 Main Logic.

Figure 139. Tandy 3000HL with Key Lock.

Figure 140. Plus RS232.

Figure 141. Sony MP-F73W-Ø1D 1.44M 3 1/2" Floppy Drive Sony MP-F73W-7ØD 1.44M 3 1/2" Floppy Drive Sony MP-F17W-7ØD 1.44M 3 1/2" Floppy Drive Sony MP-F17W-71 1.44M 3 1/2" Floppy Drive Sony MP-F17W-72 1.44M 3 1/2" Floppy Drive

.

Figure 142. Teac 5 1/4 Floppy FD55BV-221.

Figure 143. Teac 5 1/4 Floppy FD55BR-521

Figure	144.	Sony	MP-F63W-Ø1D	72ØK	3	1/2"	Floppy	Drive
-		Sony	MP-F63W-7ØD	72ØK	3	1/2"	Floppy	Drive
		Sony	MP-F11W-7ØD	72ØK	3	1/2"	Floppy	Drive
		Sony	MP-F11W-71	72ØK	3	1/2"	Floppy	Drive
		Sony	MP-F11W-72	72ØK	3	1/2"	Floppy	Drive

Note: See text for proper jumper configurations.

Figure 145. Original Style Etherlink I Adapter Board

Figure 146. Etherlink PLUS Adapter Board

Figure 147. 20 Meg Fuji (FK 302-26/305-26) HD Logic.

* Earlier versions of PCBA do not contain these jumpers.

Figure 148. 20 MEG MiniScribe 8438 Hard Card

Version 2

Figure 149. EGA Monitor Board.

.

Figure 150. Controller for I/O Mega Beta 20.

Figure 151. 20 Meg IO Mega (Beta 20) Primary.

Drawing of Secondary Drive Logic Board not avaliable.

Figure 152. 20 Meg IO Mega (Beta 20) Secondary.

.

Figure 153. Dual Display Graphics Adapter.

Figure 154. Mitsubishi MF504B Floppy Drive Logic Board

Figure 155. Model 4P Standard Main Logic Board.

Figure 156. : .el 4P Gate Array Main Logic Board .

Figure 157. 68000 MMU Board

Figure 158. 512K/1MEG 68000 Memory Board With 512K

Figure 159. 512K/1MEG 6BØØØ Memory Board With 1MEG

DRIVE No I

.

Drive Select Con.

Figure 160. Citizen OSDC-95A 3 1/2" Floppy Drive 720K

Figure 161. 16 bit SCSI Hard Drive Interface

Figure 162. 4Ø MEG Quantum 3 1/2" SCSI Hard Drive 8Ø MEG Quantum 3 1/2" SCSI Hard Drive

Figure 163. 80 MEG Quantum 5 1/4" SCSI Hard Drive

Figure 164. 170 MEG Quantum 5 1/4" SCSI Hard Drive

344 MB FULL HEIGHT RIGID DISK DRIVE

344 MB FULL HEIGHT SCSI DRIVE ID AND OPTION SELECT HEADER

Figure 165. 344 MEG Quantum 5 1/4" SCSI Hard Drive

Figure 166. ST506 WD1003-WAH Hard Drive Controller

Figure 167. 40 MEG Seagate ST251 5 1/4" ST506 Hard Drive

Figure 168. 40 MEG Rodime 3055 3 1/2* ST506 Hard Drive

Figure 169. 70 MEG Rodime 5090 5 1/4" ST506 Hard Drive

Figure 17Ø. 4Ø MEG Seagate ST151 3 1/2" ST5Ø6 Hard Drive for 5ØØØMC

Figure 172. 16 Bit SCSI HD Controller for Tandy 5000MC

Figure 173. ST5Ø6-MC 5ØØØ HD Controller

-

Figure 174. 20 MEG CMS (1400 LT) 3 1/2" Hard Drive

Figure 175. Lite Drive Controller Board

* Earlier versions of PCBA do not contain these jumpers.

Figure 176. 20 MEG MiniScribe 8438 Hard Card Version 1

TABLE 3-3 SHUNT PLUG PROGRAMMING GUIDE	
Shunt	Signal
W4	Drive Select 3
W3	Drive Select 2
W2	Drive Select 1
WI	Drive Select 0
W5	Radial Configuration

Figure 177. 20 MEG Tandon TM362 Hard Card 20 MEG Western Digital WD362 Hard Card

Figure 178. 20 MEG Western Digital 93028 IDE Hard Card Controller Board 40 MEG Western Digital 93044 IDE Hard Card Controller Board

Figure 180. 40 MEG Seagate 157 Hard Card

Figure 181. 150 MEG 5 1/4" SCSI Tape Drive

Figure 182. 20 MEG Internal Disk Cartridge System "A" Version

Figure 183. 40 MEG Internal Tape Cartridge System 40 MEG Internal Tape Cartridge System "A" Version

Archive Tape Drive Mechanism - Rear view

Figure 184. Archive Tape Drive Mechanism - Bottom view

REAR

Figure 185. Long Interface Board SC-499

Figure 186. Short Interface Board SC-499R

Figure 187. 286 Express Board For Tandy 1000/A/SX series computers.

Figure 188.	Deluxe Text	Display	Adapter	Revision B	AX-Ø189	Short version
	Deluxe Text	Display	Adapter	Revision C	AX-Ø233	Short version

Figure 189. EGA/CGA Video Board

Figure 190. EGA/CGA Video Board "A" Version

Figure 191. VGA Graphics Adapter Board

Figure 193. 1200 Baud PLUS Modem Board Revision A

Figure 194. 2400 Baud Internal Modem Board Revision Plain, A

Figure 195. 1200 Baud LT1400 Internal Modem Board

Figure 196. ARNET Smartport 4 Board

P3 PLUGS ONTO SMARTPORT 4 INTERFACE BOARD CONNECTOR J3

•

J1 CONNECTOR FOR RIBBON CABLE WHICH CONNECTS TO D-SUB ADAPTER BOX

.

Figure 197. ARNET Smartport 8 Adapter Board

Figure 198. Tandylink Board Tandylink PLUS Board

Figure 199. ØK Memory Expansion Adapter for Tandy 3000NL with jumper

Figure 200. ØK Memory Expansion Adapter for Tandy 3000NL without jumper

Figure 201. ØK Memory Expansion Adapter for Tandy 5000MC

Figure 202. 32 Bit Memory Board for Tandy 4000/LX

Keyboard/Joystick Satellite Board

E1 - E2 connects line input to AUDIOIN E2 - E3 connects mike input to AUDIOIN Satellite Sound Board

Figure 203. Tandy 1000SL Main Logic Board

E1 - E2 connects IRQ5 to VSYNC
E2 - E3 connects IRQ5 to expansion bus

E6 - E7 connects microphone input to AUDIOIN E7 - E8 connects line input to AUDIOIN

Figure 204. Tandy 1000TL Main Logic Board

Figure 205. Tandy 1000TX Revision A (Cleburn Version)

Figure 206. Tandy 3000NL Main Logic Board

.

E14-E15, E16-E17

S1, S2 (memory configuration DIP switches)

Figure 208. Tandy 5000MC Main Logic Board

Figure 209. Tandy 5000MC CPU Board

Figure 210. ETHERLINK II Interface Board

Figure 211. Teac 5 1/4" Floppy Drive FD55BR-121

EXTERNAL SCSI CONNECTOR

Figure 212. 16 Bit SCSI Hard Drive Adapter Board 25-4161B

BOTTOM VIEW

Figure 213. Citizen OPBD-12A 3 1/2" Floppy Drive 720K

Figure 214. Tandy 4000SX Main Logic Board

Figure 215. Teac FD235-105U 3 1/2* Floppy Drive 720K

Figure 216. Mitsubishi MF5Ø4C-347UA 5 1/4" Floppy Drive 1.2M

Figure 217. EME-213 3 1/2" Floppy Drive 72ØK

Figure 218. Teac FD235-136U 3 1/2" Floppy Drive 720K

NDTE: SW4 and SW5 are not visible. PCB must be removed.

WP-2 Main Logic Board

.

Figure 22Ø. WP-2 Main Logic Board 32K Memory Card Upgrade 32K Memory IC Upgrade

Figure 221. 16 Bit VGA Adapter Board

Figure 222. Western Digital WD1003V-MM1 16-bit Hard Drive Controller

Figure 223. Tandy 1000SL/2 Revision C Main Logic Board

Figure 224. Tandy 1000SL/2 Revision D Main Logic Board

Figure 225. Tandy 1000TL/2 Main Logic Board

Figure 226. Tandy 1400LT/A Main Logic Board

Figure 227. Tandy 1400LT "B" Version Main Logic Board

Figure 228. Tandy 1400FD/HD Main Logic Board

Figure 229. WP-100 Main Logic Board

Figure 230. 40 MEG Miniscribe 8051A Smart Drive

Figure 231. 80 MEG Miniscribe 7080A Smart Drive

Figure 232. 150 MEG Half Height ESDI Hard Drive

Figure 234. Hard Drive and Controller for Tandy 1400FD/HD

E9-E1Ø-E11 See Text ŝ INDE DN LESA FREZ Pressen 2 ____\$ <u>اً ۽</u> <u>B</u> 1 8 œ EVEN **₽**] E Ę 5 5 保養 2 E5-E6-E7 **⊐**`≨ ិទ្ឋ 🗂 See Text -BL2 218-0 ٦۲ ş 5 г**л** ::# ļ ı£ _____ مەر Ē 2 C19 a. 뵗늰 ÷, ŝ AL A Ş# 61130 Z F845 -11× E2-E4-E8 Ê Ê 35 9 See Text 8 ġ ₽ 5 0 ٦Ľ -5 **اللہ** 10 ال E12-E13 ٣ ****# 来 チ See Text _ Şć Martin Contraction 9į 120 120 **−**1≸ E14-E15-E16 ⊐s 000 سنا است _ s See Text 」ἔ \$\$\$°===€ E1-E3 ₽Ŀ £ **.**.... See Text iş Partie Service 5 ۳G 6 = i comi e c ≡ia <u>[]</u>= 18. 2 T ***،** à 28 Į. tt. Ŷ COULA UP PARATU 90 C. E17-E18-E19 See Text

Figure 235. Tandy 2500XL Main Logic Board

Figure 236. Tandy 4016DX/4020/25/33LX Main Logic Board

Figure 237. Tandy 4016DX CPU Board

Figure 238. Tandy 4020LX CPU Board Tandy 4025LX CPU Board Tandy 4033LX CPU Board

Figure 239. Main Logic Board for Tandy 4016SX

Figure 240. Tandy 1100FD Main Logic Board - Solder Side

Figure 241. Tandy 2800HD Main Logic Board Brightness/Contrast/Switch Board

•

Figure 242. Conner CP-3044 40 MEG 1" Hard Drive Conner CP-3024 20 MEG 1" Hard Drive

Detoil B - Side view of tope drive showing jumper settings

Figure 243. 60 MEG 5 1/4" Internal Tape Drive

CD-ROM Drive Mechanism

CD-ROM Interface Board

Figure 245. Monochrome/parallel Adapter Board

Figure 246. Smart Drive Interface Adapter Board

Figure 247. Trackstar 128 Interface Board Trackstar E Interface Board

Figure 248. Tandy Ethernet Adapter Board

Figure 249. Late Style Etherlink I Adapter Board

Figure 250. Tandy Token Ring Adapter Board

Legend:

SMC 90C63 ARCNET Controller / Transceiver / Support Logic

- S1 1-8: Node ID Select
- S2 1-3: I/O Base Address Select
 - 4-8: Memory Base Address Select
- 7-8: RAM Offset Select
- EXT Extended Timeout Select
- IRO Interrupt Select
- ROM ROM Enable Select
- J1 BNC RG-62/U Connector

Figure 251. Tandy Arcnet Adapter Board

Figure 252. Serial Parallel Converter

Figure 253. Tandy 2400 Baud Error Correcting Modem Board

Figure 254. Tandy 1400LT/FD/HD 2400 Baud Internal Modem Board

Figure 255. Tandy 1100FD Internal Modem Board

Figure 256. 2400 Baud Internal Modem for Tandy 2800HD

Figure 257. Tandy Faxmate Board

Figure 258. Western Digital ESDI Controller for AT style computers

Figure 259. Western Digital ESDI Controller for Tandy 5000MC

Figure 260. Memory Adapter Board for Tandy 4000SX

Figure 261. 1 MEG Memory Upgrade Board For $28 \emptyset \emptyset HD$

Figure 262. 20 MEG MiniScribe 8438 Hard Card Version 3

TOP VIEW

Back Side View

Figure 263. 2.8" Quick Disk Drive for WP100

Figure 264. Western Digital WD344 40 Meg Hard Card Hard Drive Logic Board Note: Component side shown. On the bubble it will be facing down with the solder side facing up.

Figure 265. Adaptec ST506 Hard Drive Controller For Tandy 5000MC

Figure 266. 20 MEG Internal DCS "A" Version - BETA L

Figure 267. Tandy 1500HD Main Logic Board

Figure 268. Tandy 2810HD Main Logic Board

Figure 269. Tandy 4020SX Main Logic Board

Slots and Connectors

Jumpers

Figure 270. Tandy 2500XL/2 Main Logic Board

Figure 271. Tandy 1000TL/3 Main Logic Board

Figure 272. Tandy 1000RL/HD Main Logic Board Sound/Serial/Joystick Board (SSJ Board)

Figure 273. Tandy 1000RLX/HD Main Logic Board Sound/Serial/Joystick Board (SSJ Board)

Figure 274. Tandy 3810 Main Logic Board

Figure 275. Teac FD-235HF-1Ø6U 3 1/2" 1.44MEG Floppy Drive

Figure 276. 2500SX Main Logic Board

Figure 277. CMS Tape Drive Mux Adapter

Figure 278. 1 Meg Memory Expansion SIMM for Tandy 1500/2810

Figure 279. 2400 Baud Modem for Tandy 2800

Figure 280. 2400 Baud Modem for Tandy 1500/2810/3810

Figure 2B1. 1200 Baud Internal Modem Board Revision F

Figure 282. Tandy Ethernet Plus Adapter Board

Figure 283. Conner CP-2064 60 Meg IDE Hard Drive

Figure 284. Tandy 1000 EX Main Logic Board Revision D

Figure 285. Tandy Etherlink Board (25-5505A/B)

٠

,

,

Figure 286. Dual Serial/Parallel Board (25-4025)

Figure 287. Dual Serial/Parallel 80ard (25-4025A) Shown set to Factory Defaults (See Text)

Figure 288. ARNET Multiport 4 Port Board

Figure 289. ARNET Octaport 8 Port Board

Figure 290. ARNET Smartport 16 Port Board

Figure 291. 2400 Baud Internal Modem Board Revision B

Figure 292. Seagate ST-325X 20 Meg XT IDE Hard Drive

Figure 293. Seagate ST-351A/X 40 Meg XT/AT IDE Hard Drive

Figure 294. Quantum LPS52 52 Meg Smart Drive Quantum LPS105 105 Meg Smart Drive

Figure 295. 202 Meg SCSI Hard Drive

Figure 296. 44Ø Meg SCSI Hard Drive

Figure 297. 160 Meg SCSI Tape Drive

Explanations of the factory settings are listed in the following table:

Jumper/ Switch	Factory Setting	Explanation
w1	Jumper installed	Enables normal operation using AutoSense
Switch 1	OFF	Enables standard PS/2- compatible fixed-frequen- cy display timing
Switch 2	ON	Selects PS/2-style as the manner of mode switch- ing; makes all VGA modes available on any monitor
Switch 3	OFF	Not used
Switch 4	ON .	Enables 16-bit video memory data path and uses AutoSense for 16-bit BIOS

Figure 298. 16 Bit Super VGA Video Adapter Board

Figure 299. Conner CP-2024 20 Meg IDE Hard Drive

Figure 300. Matsushita EME-263MG 3 1/2 inch 1.44MEG Floppy Drive

Figure 301. 3SERVER3 Main Unit/Control Panel

3SERVER3

Figure 302. 3SERVER3 Main Logic Board

,

Figure 3Ø3. 3SERVER3 Disk Drive Controller Board

Figure 304. 3SERVER3 Priam Hard Disk Drive

;

Figure 305. 3SERVER3 Tape Drive Controller Board

WANGTEK 5099EN24

Figure 306. 3SERVER3 Wangtek Tape Drive

Figure 307. 35/401 Main Unit Control Panel

Figure 308. 35/401 Main Logic Board

,

Figure 309. 35/401 Hard/Tape Drive Controller Board

Figure 310. 35/401 CDC Hard Drive

Figure 311. 35/401 Tandberg Tape Drive

FRONT VIEW

REAR VIEW

CD-ROM Drive

Interface Board

Figure 312. Mitsumi CDR-1000 CD-ROM Drive and Interface

FRONT VIEW

Interface Board

Figure 313. Hitachi External CD-ROM Drive 1700S (90-2156) Hitachi External CD-ROM Drive Interface Board

FRONT VIEW

|--|

Interface Board

Figure 314. Hitachi External CD-ROM Drive 1503S (903-2376) Hitachi External CD-ROM Drive Interface Board

.

,

.

SERVICE POLICY

1.10

Radio Sheck's nationwida natwork of servica facilities provides quick, conveniant, and reliable rapair services for all of its computar products, in most instances. Warranty servica will be performed in accordance with Radio Sheck's Limited Warranty. Non-warranty service will ba providad et reasonabla parts and labor costs.

RADIO SHACK A Division of Tandy Corporation Fort Worth, Taxas 76102