==== Personal Computer PCjr
— == Hardware Reference

Library

Technical
Reference






()

C

()

Personal Compater PCjr
Hardware Reference
Library

Technical

Reference



First Edition Revised (November 1983)

Changes are periodically made to the information herein; these
changes will be incorporated in new editions of this publication.

Products are not stocked at the address below. Requests for
copies of this product and for technical information about the
system should be made to your authorized IBM Personal
Computer dealer.

A Reader’s Comment Form is provided at the back of this
publication. If this form has been removed, address comments to
IBM Corporation, Personal Computer, P.O. Box 1328-C, Boca
Raton, Florida 33432. IBM may use or distribute any of the
information you supply in any way it believes appropriate without
incurring any obligations whatever.

© Copyright International Business Machines Corporation 1983



FEDERAL COMMUNICATIONS
COMMISSION RADIO FREQUENCY
INTERFERENCE STATEMENT

Warning: This equipment has been certified to
comply with the limits for a Class B computing
device, pursuant to Subpart J of Part 15 of FCC
rules. Only peripherals (computer input/output
devices, terminals, printers, etc.) certified to comply
with the Class B limits may be attached to this
computer. Operation with non-certified peripherals
is likely to result in interference to radio and TV
reception.

INSTRUCTIONS TO USER

This equipment generates and uses radio frequency
energy and if not installed and used properly, i.e., in
strict accordance with the operating instructions,
reference manuals, and the service manual, may cause
interference to radio or television reception. It has been
tested and found to comply with the limits for a Class B
computing device pursuant to Subpart J of Part 15 of
FCC Rules, which are designed to provide reasonable
protection against such interference when operated in a
residential installation.



If this equipment does cause interference to radio or
television reception, which can be determined by
turning the equipment off and on, the user is
encouraged to try to correct the interference by one or
more of the following measures:

« Reorient the receiving antenna.
« Relocate the equipment with respect to the receiver.
« Move the equipment away from the receiver.

e Plug the equipment into a different outlet so that
equipment and receiver are on different branch
circuits. ' :

« Ensure that side option mounting screws,
attachment connector screws, and ground wires are
tightly secured.

« If peripherals not offered by IBM are used with this
equipment, it is suggested that you use shielded,
grounded cables with in-line filters, if necessary.

If necessary, consult your dealer service representative
for additional suggestions.

The manufacturer is not responsible for any radio or
TV interference caused by unauthorized modifications
to this equipment. It is the responsibility of the user to
correct such interference.

CAUTION

This product is equipped with a UL listed and
CSA-certified plug for the user’s safety. It is to be
used in conjunction with a properly grounded 115
Vac receptacle to avoid electrical shock.



()

Preface

The IBM PCjr Technical Reference manual describes
the hardware design and provides interface information
for the IBM PCjr. This publication also has
information about the basic input/output system
(BIOS) and programming support.

The information in this publication is both descriptive
and reference oriented, and is intended for hardware

and software designers, programmers, engineers, and
interested persons who need to understand the design
and operation of the IBM PCjr computer.

You should be familiar with the use of the IBM PCjr,
and understand the concepts of computer architecture
and programming.

This manual has five sections:

Section 1: “Introduction” is an overview of the basic
system and available options.

Section 2: ‘“‘Base System’ describes each functional
part of the base system. This section also has
specifications for power, timing, and interfaces.
Programming considerations are supported by coding
tables, command codes, and registers.

Section 3: “System Options” describes each available

option using the same format as Section 2: “Base
System.”



iv

Section 4: “Compatibility with the IBM Personal
Computer Family” describes programming concerns for
maintaining compatibility between the IBM PCjr and
the other IBM Personal Computers.

Section 5: ‘““System BIOS and Usage” describes the
basic input/output system (BIOS) and its use. This
section also contains the software interrupt listing, a
system memory map, descriptions of vectors with

special meanings, and a set of low-storage maps. In
addition, keyboard encoding and usage is discussed.

This publication has four appendixes:

Appendix A: “ROM BIOS Listing”

Appendix B: ‘“Logic Diagrams”

Appendix C: “Characters, Keystrokes, and Color”
Appendix D: “Unit Specifications”

Prerequisite Publication:
Guide to Operations part number 1502291
Guide to Operations part number 1502292

Suggested Reading: _
IBM PCjr Hands on BASIC part number 1504702
IBM PCjr BASIC Reference Manual part number
6182371 '
Disk Operating System (DOS) part number 6024061
Hardware Maintenance and Service Manual part
number 1502294
Macro Assembler part number 6024002

Related publications are listed in “Bibliography.”



Contents

—_——

Q/.- - SECTION 1. INTRODUCTION ....... e 1-1
Introduction ......................... 1-3
SECTION 2. BASESYSTEM  ............... 2-1
Introduction ......................... 2-5
Processor and Support ................ 2-13
Performance .................... 2-13

8259A Interrupt Controller ............ 2-15
PCjr Hardware Interrupts ......... 2-15

8259A Programming Considerations . 2-16
64KRAM ... ...t 2-17
ROM Subsystem ..................... 2-19
Input/Output Channel ................ 2-21
System Board I/O Channel Description 2-23
Input/Output ................... 2-29

C_ 8255 Bit Assignments ............. 2-30
Cassette Interface .......... e 2-39
Video Color Graphics Subsystem ....... 2-43
Major Components Definitions ..... 2-47

Palette ................ e 2-50
AlphanumericModes ............. 2-54
GraphicsMode .................. 2-55

Video Gate Array ................ 2-63
LightPen ...................... 2-74
CRT/Processor Page Register ...... 2-79

Beeper .........ciiiiiiiiiii i, 2-85
Sound Subsystem .................... 2-87
Complex Sound Generator ......... 2-88

Audio Tone Generator ............ 2-89
Infra-Red Link . ..................... 2-97
C Infra-Red Receiver................ 2-97
IBM PCjr Cordless Keyboard . .......... 2-101

Transmitter ..............c.c0vou.. 2-103



Program Caitridge and Interface ....... 2-107

> = Program Cartridge Slots " .. ........ 2-107
- Cartridge Storage ‘Allocations . ..... 2-108
ROMModule ............... .. 2-114
Games Interface .............. e 2-119
Interface Description. ........ .. 2-119
Input from Address Hex 201........ 2-120
“Pushbuttons ................... 2-122
Joystick Positions ............... 2-122
" Serial Port (RS232) ................. 2-125
Modes of Operation. ............. 2-128
Interrupts ............cc.vun. 2-129
Interface Description ............ 2-129
‘Voltage Interchange Information ... 2-130
System Power Supply . ................ 2-135
Operating Characteristics ......... 2-136
Over-Voltage/Over-Current
Protection .................... 2-137
SECTION 3. SYSTEM OPTIONS ......... veo 3-1
IBM PCjr 64KB Memory and Display
Expansion .......................... 3-5
IBM PCjr Diskette Drive Adapter ...... 3-13
Functional Description ............ 3-15
System I/O Channel Interface ...... 3-19
Drive Interface .................. 3-22
.Voltage and Current Requirements .. 3-24
IBM PCjr Diskette Drive ............. 3-27
Functional Description ............ 3-27
DiSkette . ....viiiiiiiie 3-31
IBM PCjr Internal Modem ............ 3-33
Functional Description ............ 3-34
Modem Design Parameters ......... - 3-37
Programming Considerations ....... 340
- Status Conditions . ............... 3-60
Dialing and Loss of Carrier ......... 3-60
Default State .................... 3-63

‘Programming Examples ........... 3-63



()

Modes of Operation .............. 3-68

Interrupts .......oiiiiiiiiiant, 3-70
Data Format ..............cv0unes 3-70
Interfaces ...ooovvvveevinnn, 3-70
IBM PCjr Attachable Joystick .......... 3-77
Hardware Description +......c0vv.. 3-77
Functional Description ............ 3-77
IBM Color Display .......cvovvvvinnnn 3-81
Hardware Description ............. 3-81
Operating Characteristics .......... 3-82
IBM Connector for Television .......... 3-85
IBM PCjr Keyboard Cord ............. 3-87

IBM PCjr Adapter Cable for Serial Devices 3-89
IBM PCjr Adapter Cable for Cassette ... 3-91
IBM PCjr Adapter Cable for the IBM Color

Display . .cvviiiiiiiii i i i 3-93
IBM PC;jr Parallel Printer Attachment ... 3-95
Description ............oovunian.. 3-96
System Interface .................. 3-98
Programming Considerations ...... 3-99
IBM Graphics Printer ................ 3-107
Printer Specifications ............ 3-107
Additional Printer Specifications .. 3-109
DIP Switch Settings ............. 3-110
Parallel Interface Description ..... 3-112
Printer Modes .................. 3-115
Printer Control Codes ............ 3-116
IBM PC Compact Printer ............. 3-133
Printer Specifications ............ 3-135.
Serial Interface Description ....... 3-139
Print Mode Combinations for the PC
Compact Printer ............... 3-140

Printer Control Codes and Functions 3-140

SECTION 4. COMPATIBILITY WITH THE IBM

PERSONAL COMPUTER FAMILY ....... 4-1
Compatibility Overview ................. 4-3
Timing Dependencies ..........c.ovvunn. 4-5
Unequal Configurations ................ 4-7

vii



Hardware Differences ......cvvvvennnann 4-9

User Ready/ Write Memory ........ 4-12
Diskette Capacity/Operation ....... 4-13
IBM PCjr Cordless Keyboard ...... 4-14
Color Graphics Capability ......... 4-15

Black and White Monochrome Display 4-18
RS232 Serial Port and IBM PCjr

Internal Modem ................. 4-18
SUMMATY . ..ivtierieiinernansaecnness 4-19
SECTION 5. SYSTEM BIOS USAGE ........ 5-1
ROMBIOS ... ... it 5-3
BIOSUsage ......ooviviiiiiiniennnnns 5-5
Vectors with Special Means ......... 5-8
Other Read/ Write Memory Usage ....... 5-13
BIOS Programming Guidelines ..... 5-18
Adapter Cards with System-Accessible
ROM-Modules .................. 5-18
Keyboard Encoding and Usage ......... 5-21
Cordless keyboard Encoding ....... 5-21
Special Handling ................. 5-34
Non-Keyboard Scan-Code Architecture5-42
BIOS Cassette Logic ........ccvvun... 5-47
Software Algorithms - Interrupt
Hex 15 ..., 5-47
Cassette Write  ......ccvvenennnnn. 5-48
Cassette Read .................... 5-49
Data Record Architecture ......... 5-50
Error Detection ............cccuen. 5-51
Appendix A. ROM BIOS LISTING ......... A-1
Equates and Data Areas ............ A-3
Power-On Self-Test ................ A-7
Boot Strap Loader ................ A-26
Non-Keyboard Scan-Code Table ..., A-38
Time-of-Day ......covvvevvnenen.. A-42
Graphics-Character Generator
(Second 128 Characters) .......... A-54

vidi



a)

S

1/OSupport ... it A-97

System Configuration Analysis ..... A-97

Graphics-Character Generator
(First 128 Characters) ........... A-103
Print Screen .................... A-108
Appendix B. LOGIC DIAGRAMS .......... B-1
System Board ..................... B-3
Program Cartridge ................ B-20
Power Supply Board .............. B-23

64KB Memory and Display

Expansion ..........c.coviiinn.. B-25
Color Display ........c..coivvuian, B-29
Diskette Drive Adapter ............ B-30
Internal Modem ................. . B-36
Parallel Printer Attachment ........ B-37
Infra-Red Receiver Board .......... B-42
Graphics Printer .................. B-43
Compact Printer ................. B-47
"Appendix C. CHARACTERS, KEYSTROKES, and
COLOR .. ... i, C-1
Appendix D. UNIT SPECIFICATIONS ...... D-1
System Unit ............ccvuvun. D-1
Cordless Keyboard ................ D-2
Diskette Drive .......c..coiiiinn. D-3
Color Display ..........covviunnnn D-5
Graphics Printer .................. D-6
Internal Modem .................. D-7
Compact Printer .................. D-8
Glossary .......... ... .cciiiiiinan. Glossary-1
Bibliography .................... Bibliography-1
Index .......... ... . 0 iiiiiiiiiiiinnnn Index-1

ix



Notes:



TAB INDEX

Section 1: Introduction

Section 2: Base System

Section 3: System Options ............... e

| suondQ uRIsAg

Section 4: Compatibility With the IBM Personal
Computer Family

fAnmquedwo)

Section 5: System BIOS Usage ........................

Appendix A: ROMBIOS Listing ......................




Notes:



—

L

——

O

Appendix B: Logic Diagram

Appendix C: Characters, Keystrokes, and Color

Appendix D: Unit Specifications .................... ... :
Glossary . .....ciiiiiii i i i it e
Bibliography ........ et .




Notes:

Xiv



SECTION 1. INTRODUCTION

C Contents

Introduction .......ccceeeeeeceeseoncecene 1-3

1-1



Notes:



Introduction

The system unit, a desk top transformer, and a cordless
keyboard make up the hardware for the PCjr base
system.

The following options are available for the base system:
« IBM PC,r 64KB Memory and Display Expansion

— The 64KB Memory and Display Expansion
enables the user to work with the higher density
video modes while increasing the system’s
memory size by 64K Bytes to a total of 128K
Bytes.

« IBM PCjr Diskette Drive Adapter

— The IBM PCjr Diskette Drive Adapter permits
the attachment of the IBM PCjr Diskette Drive
to the IBM PCjr and resides in a dedicated
connector on the' IBM PCr system board.

« IBM PCjr Diskette Drive

— The IBM PCjr Diskette Drive is double-sided
with 40 tracks for each side, is fully
self-contained, and consists of a spindle drive
system, a read positioning system, and a
read/write/erase system.

o IBM PCjr Internal Modem

— The IBM PCjr Internal Modem is an adapter
that plugs into the PCjr system board modem
connector and allows communications over
standard telephone lines.

Introduction 1-3




« IBM PCjr Parallel Printer Attachment

- — The IBM PCjr Parallel Printer Attachment is
provided to attach various I/O devices that
accept eight bits of parallel data at standard TTL
logic levels. It attaches as a feature to.the right
side of the system unit. —

« IBM Personal Computer Graphics Printer

- — IBM Graphics.Printer is an 80 cps
(characters-per-second), self-powered,.
stand-alone, tabletop unit.

« IBM PCjr Joystick

— The IBM PCjr Joystick is an input device to
provide the user with two-dimensional -
positioning-control. Two pushbutton switches
on the joystick give the user additional input
capability.

« IBM Color Display
—~ The IBM Color Display is a Red/Green/Blue
/Intensity (RGBI) Direct-Drive display, that is
independently housed and powered.

o IBM Connector for Television

— The IBM Connector for Television allows a TV
to be connected to the IBM PC/r system.

« IBM PCjr Keyboard Cord
— The IBM PCjr Keyboard Cord option is used to

connect the IBM PCjr Cordless Keyboard to the -
system board.

1-4 Introduction



« IBM PCjr Adapter Cable for Serial Devices

— This option is an adapter cable that allows
connection of serial devices to the IBM PCjr
system board.

uondNponuf

k-/ « IBM PCjr Adapter Cable for Cassette
— This option is an adapter cable that allows a
cassette recorder to be connected to the IBM
PCjr.
« IBM PCjr Adapter Cable for. Color Display

— This adapter cable allows the IBM Color. Display
to be connected to the IBM PCjr.

The following is a block diagram of the IBM PCjr
system.

Introduction 1-5



0 14828 anz

-5

3%

ADG-AD?
L83rs
TR ,,"2?.(:__._> R L L
cioex [ 61X o wiA
£
INTR
wat | heser II I
L]
T —I
TR
MRO-7

BATA OUT

N

JR8

"1 Thest tompenesty W CoRtained va the SAKE momacy wad disphy
cxpansien card THEY a1 Inchided brve (ar compietoness. e,

System Block Diagram (Sheet 1 of 2)

1-6 Introduction



1ol )
— 170 conn

L8245 —
DATA BUFFER

N
v ) 82504 €4 | ps232 3 SERAL
s N W 7 ) s
—

L2m N5 > Y.

. ITAGH
) oot JorsTicks

NN———— 143 >\ &

Y
=
-
~
=]
(=9
=
)
=
=)
=

78498

SOUND

1/0 AVGID 1N
82535 ‘.1]
s [ TIRER SPEARER AUDH0 ALARM
Losic 3) o
D ! , 77 var [ $hEaxen
n l

CARSETTE >—{oo|asserne

KEYBOARD ; ll‘.l(x:?g'lnll
LR. LOGIC (( E KEYROARD

CONPESITE COMPeSITE
WOED LOGIC RTOR

=
CoNRLTOR L Jreiewsy
[
> T
L8758
-

wex

’ »D— LBaY PEN

“1 These componenis ars codtained on e B4KE mamery aad dlapizy
expinsion £3r0. Thoy are included hare lor complaleness.

TN
&_/ System Block Diagram (Sheet 2 of 2)

Introduction 1-7



Notes:

1-8 Introduction



SECTION 2. BASE SYSTEM

(\_/-" Contents
Introduction ........cococevnveececocncanns g
7]
(4]
Processor and Support .......... RERERRREERT e
Performance ......................... =
=
8259A Interrupt Controller .................
PCjr Hardware Interrupts ..............
8259A Programming Considerations
6dKRAM ........iiiiiererconsnsannnnes 2-17
ROM Subsystem .........cov0eevenvnennsn 2-19
C Input/Output Channel .............ccnvenn 2-21
System Board I/O Channel Description .... 2-23
Input/Output ..............cccnveuen.. 2-29
8255 Bit Assignments  ................. 2-30
8255 Bit Assignment Description ...... 2-31
Port AO Output Description ........... 2-35
Port AO Input Operation ........... .. 2-36
Cassette Interface ...... eeeesecnsnnossons 2-39
Video Color/Graphics Subsystem ............. 2-43
Major Components Definitions ........... 2-47
Motorola 6845 CRT Controller ........ 2-47
Storage Organization ................ 247
—~ Bandwidth ........................ 2-49
L Character Generator ................ 2-49
Video Gate Array .................. 2-49
Palette .............ciiiiiinninrenn.. 2-50

2-1



2-2

Alphanumeric Modes .................. 2-54
GraphicsMode ....................... 2-55
Low-Resolution 16-Color Graphics .. ... 2-56
Medium-Resolution 4-Color Graphics ... 2-57
Medium-Resolution 16-Color Graphics .. 2-58

High-Resolution 2-Color Graphics ..... 2-58
High-Resolution 4-Color Graphics ..... 2-59
Graphics Storage Organization ........ 2-60
Video Gate Array .............cccunn.. 2-63
Mode Control 1 Register ............. 2-64
Palette Mask Register ............... 2-65
Border Color Register ............... 2-66
Mode Control 2 Register ............. 2-66
ResetRegister ..................... 2-69
Palette Registers ............ PP 2-71
Status Register ..................... 2-73
LightPen ....................0vveun.. 2-74
Programming Considerations .......... 2-75
CRT/Processor Page Register ........... 2-79
Beeper ......ciiiiiiiiiietrttetccttinns 2-85
Sound Subsystem .........ccc00iiiiennaans 2-87
Complex Sound Generator .............. 2-88
Audio Tone Generator ................. 2-89
Features .......................... 2-89
Infra-Red LinK . . ... ..o ceviivanneennnnnns 2-97
Infra-Red Receiver .. ........ ... ... ... 2-97
Functional Description .............. 2-97
ApplicationNotes .................. 2-98
Programming Considerations .......... 2-99
Detectable Error Conditions .......... 2-99

Operational Parameters .............. 2-100

IBM PCjr Cordless Keyboard .............. 2-101

Transmitter .......................... 2-103



()

Program Cartridge and Interface ............ 2-107

Program Cartridge Slots ............... 2-107
Cartridge Storage Allocations ........... 2-108
ROMModule ....................... 2-114
GamesInterface .........o000ceeenvnncns
Interface Description ..................
Input from Address hex201 ............
Pushbuttons .........................
Joystick Positions ....................
Serial Port (RS232) .......citieneeennnns
Modes of Operation ..................
Interrupts .............. ... .. ......
Interface Description ............. e
Voltage Interchange Information
Output Signals ....................
Accessible Registers ...............
INS8250A Programmable Baud Rate
Generator ....................... 2-132
System Power Supply ...........c.c0000nen 2-135
Operating Characteristics .............. 2-136
Power Supply Input Requirements ..... 2-136
DCOutputs ..................... 2-136
Over-Voltage/Over-Current Protection ... 2-137
Input (Transformer) ............... 2-137
Output (Power Board) .............. 2-137

=
®
17
&
1921
>
1721
-
®
=




- Notes:



. unit. The system board fits horizontally in the base of -

- an internal-power/ground plane. Low voltage ac

Introduction

. The PCjrbase-system hardware consists of the system
. unit, a 62-key cordless-keyboard, and a power

transformer.
The PCjr system board is the center of the PCjr system -

the system unit and is approximately 255 mm by 350
mm (10 inches by 13.8 inches). Itis double-sided,-with

power enters.the power supply adapter, is converted to
dc voltage, and enters the system board through the:

power supply adapter edge-connector. Other system -

board connectors provide interfaces for a variety of
input/output (I/0) devices and are individually keyed
to prevent improper installation. The following is a list
of these connectors:

» 64KB Memory and Display Expansion Connector
Diskette Drive Adapter Connector

- Internal Modem Connector
Infra-Red (IR) Link -Receiver Board Connector
Program Cartridge Connectors (2)

-« 1I/0 Channel Expansion Connector

o Serial Port (RS232) Connector (with optional
-adapter cable)

o - Direct Drive (RGBI) Video Connector

¢ Composite Video Connector 7

« IBM: Connector for Television Connector (external
RF modulator) -

« Light Pen Connector

e External Audio Connector

« IBM PCjr Keyboard Cord Connector

« Cassette Connector (with optional adapter cable)
« IBM PCjr Attachable Joystick Connectors (2)

Introduction 2-5

) u)sAg aseg




The system board consists of seven functional
subsystems: the processor subsystem and its support
elements, the read-only (ROM) subsystem, the
read/write (R/W) subsystem, the audio subsystem, the
video subsystem, the games subsystem, and the I/O
channel. All are described in this section.

The nucleus of the system board is the Intel 8088
microprocessor. This processor is an 8-bit external bus
version of Intel’s 16-bit 8086 processor, and is
software-compatible with the 8086. The 8088 supports
16-bit operations, including multiplication and division,
and supports 20 bits of addressing (1 megabyte of
storage). It operates in the minimum mode at 4.77
MHz. This frequency, which is derived from a
14.31818-MHz crystal, is divided by 3 for the

~ processor clock, and by 4 to obtain the 3.58-MHz
‘color-burst signal required for color televisions.

For additional information about the 8088, refer to the
publications listed in “Bibliography”.

The processor is supported by a set of high-function
support-devices providing three 16-bit timer-counter
channels, and nine prioritized-interrupt levels.

The three programmable timer/counters are provided
by an Intel 8253-5 programmable interval-timer and are
used by the system in the following manner: Channel O
is used as a general-purpose timer providing a constant
time-base for implementing a time-of-day clock;
Channel 1 is used to deserialize the keyboard data and
for time-of-day overflow during diskette operations.
Channel 2 is used to support the tone generation for the
audio speaker and to write data to the cassette.

Of the nine prioritized levels of interrupt, three are

bused to the system’s I/ O channel for use by adapters.
Five levels are used on the system board. Level O, the

2-6 Introduction



highest priority, is attached to Channel 0 of the
timer/counter and provides a periodic interrupt for the
time-of-day clock; level 3 is the serial-port-access
interrupt; level 4 is the modem-access interrupt; level 5
is the vertical-retrace interrupt for the video; and level
six is the diskette drive adapter-access interrupt. The
non-maskable interrupt (NMI) of the 8088 is attached
to the keyboard-interface circuits and receives an
interrupt for each scan code sent by the keyboard.

The system board supports both read-only memory
(ROM) and R/W memory (RAM). It has space for
64K bytes by 8 bits of ROM. There are two module
sockets that accept a 32K byte by 8 bit ROM module.
ROM is aligned at the top of the 8088’s address space.
This ROM contains the Power-On Self-Test,
cassette-BASIC interpreter, cassette-operating system,
I/O drivers, dot patterns for 256 characters in graphics
mode, a diskette bootstrap-loader and user-selectable
diagnostic-routines.

=
)

174

o

w
e

122}

-
o)

3

Introduction 2-7



The system board contains the following major
functional components:

8088 Microprocessor

64K ROM

128K ROM Cartridge Interface
64K Dynamic RAM

64KB Memory and Display Expansion Interface
o Serial Port (RS232)

« Audio Alarm (Beeper)

Sound Subsystem

Cassette Interface

Joystick Interface

Keyboard Interface

Modem Interface

Diskette Interface
Video/Graphics Subsystem
Light Pen Interface

1/0 Expansion Bus

9-Level Interrupt

The following is a block diagram of the System Board.

2-8 Introduction



IR Link or Keyboard Cable

Connector
/», 2 Joysticks
\/ 4 Buttons
=
%
Power | Kev- 128K 1 g4k |ms232c sorial | I
board . ROM . " eria w
Supply Joystick RAM |Serial Printer | IB3
Conn Inter- Cart. Conn Interface inte P
' face Conn. onn. n o
s
64K 64K
oscC 170 Parallel
L
Clock 8088 |9 evel t ROM RAM Channel [ Printer
Control nterrupt! on on Conn. Attach.
Board Board
Audio Diskette
Modem Video and Drive Cassette _|Cassette
Adapter Audio Adapter | Interface Deck
Alarm Interface
C
_| RF Diskette Drive
Mod.
External Amplifier
and Speaker
Home
Television
Composite Video
RGBI
Monitor
C/’ - Light Pen
Telephone

System Board Block Diagram

Introduction 2-9



aononponay Qy-¢

Infra-Red Receiver
Connector

Right Side

System Board Connector Specifications (Part 1 of 3)

( {

Diskette Drive Adapter Connector
Internal Modem Connector
64KB Memory Expansion Connector

Power Board Connector

Power Adapter
Grounding Pins

i

Internal Modem
Grounding Pins




11-¢ uoponponuj

() | )

Front View

Left Cartridge Slot

.

Right Cartridge Slot

-

| -
A1
S —

1/0 Expansion Connector

A18 A1l

B18 B1

| \
A18

A1 / \ A30
B1 Right Side View B30

System Board Connector Specifications (Part 2 of 3)

wo)sAg Iseg



uoyonponu] 7i-7

Letter Letter

Designation Connector Use Designation Connector Use
J Left Joystick Vv Composite Video
J Right Joystick D Direct Drive Video
L Spare S Serial Device
K Keyboard C Cassette
LP Light Pen A Audio
T Television

D

S

m1|

Y

‘él

o000 000000
0009000009

escsc0000 esee| |A
xrxxx see

System Board Connector Specifications (Part 3 of 3)

(



C,

C

Processor and Support

The (R) Intel 8088 Microprocessor is used as the
system’s central processor. Some of its characteristics:
are:

4.77 MHz clock

20 bit address bus -

8-bit memory interface.

16-bit ALU (arithmatic/logic unit) and registers
Extensive instruction set

DMA and interrupt capabilities

« Hardware fixed-point multiply and divide

e o o @

The system clock is provided by one Intel 8284 A clock
chip. The 8088 is operated in the minimum mode.

Performance

The 8088 is operated at 4.77 MHz which results in a
clock cycle-time of 210 ns.

Normally four clock cycles are required for a bus cycle

so that an 840 ns ROM memory cycle time is achieved. .

RAM write and read cycles will incur an average of two
wait states because of sharing with video, leading to an
average of six clock cycles. I/ O reads and writes also
take six clock cycles leading to a bus cycle time of
1.260 us.

Processor and Supnort 2-13

wISAQ aselg




Notes:

2-14 Processor and Support



8259A Interrupt Controller

C_ PCjr Hardware Interrupts

Nine hardware levels of interrupts are available for the
PGCjr system. The highest-priority interrupt is the NMI
interrupt in the 8088. The NMI is followed by eight
prioritized interrupt-levels (0-7) in the 8259A
Programmable Interrupt Controller, with IRQ 0 as the
highest and IRQ 7 as the lowest. The interrupt level
assignments follow:

=
)
@
o
wn
>3
»
128
)
=)

Level Function

8088 NMI Keyboard Interrupt

Q 8259A IRQO | Timer Clock Interrupt
8259A IRQ 1 I/ O Channel (Reserved)
8259A IRQ2 | 1/0O Channel
8259A IRQ 3 | Asynchronous Port Interrupt (RS-232C)
8259A IRQ4 | Modem Interrupt
8259A IRQ S | Vertical Retrace Interrupt (Display)
8259A IRQ 6 | Diskette Interrupt
8259A IRQ 7 | 1/0O Channel (Parallel Printer)

Hardware Interrupts

()

Interrupt Controller 2-15



8259A Programming Considerations

The 8259A is set up with the following characteristics:

o Buffered Mode

e 8086 Mode

« [Edge Triggered Mode
e Single Mode Master (No Cascading is Allowed)

The 8259A 1/0 is located at I/O address hex 20 and
hex 21. The 8259A is set up to issue interrupt types hex
8 to hex F which use pointers to point to memory
address hex 20 to hex 3F.

The following figure is an example setup.

0263 BO 13| MOV AL, 13H ; ICWI - Reset edge
sense circuit set
single

; 8259  Chip and ICW4
read

0265 E6 20| OUT INTAO00,AL

0267 BO08 | MOV AL,8 ; ICW2 - Set interrupt
type 8 (8-F)

0269 E6 21| OUT INTAOI,AL

026B BO09 | MOV AL)9 ; ICW4 - Set buffered
mode/ master
and 8086 mode

026D E6 21 | OUT INTAOIL,AL

Example Set Up

2-16 Interrupt Controller




()

64K RAM

The 64K bytes of R/W memory reside on the system
board and require no user configuration.

Eight 64K byte by 1, 150 ns, dynamic memory modules
are used to provide 64K byte of storage. The RAM has
no parity. Sources of these memory modules include
the Motorola MCM6665AL 15 and the Texas
Instruments TMS4164-15 or equivalent.

=
&
w
o
w»
>
172}
—p
®
=

The system board 64K RAM is mapped at the bottom
of the 1 MEG address space. The system board 64K
RAM is mapped to the next 64K bytes of address space
if the 64KB Memory and Display Expansion option is
not installed. If read or written to, this higher block of
address space will look just like the low-order 64K-byte
block. This means the bottom 128K bytes of address
space is always reserved for RAM. If the 64KB
Memory and Display Expansion option is installed, it is
mapped to the 'ODD' memory space within the 128K
byte-reserved space while the system board memory is
mapped to the 'EVEN' space. Memory refresh is
provided by the 6845 CRT Controller and gate array.
The gate array cycles the RAM and resolves contention
between the CRT and processor cycles.

See “IBM PCjr 64KB Memory and Display Expansion”
in Section 3 for a detailed description.

64K RAM 2-17



Notes:

2-18 64K RAM



ROM Subsystem

The ROM subsystem is made up of 64K bytes.-of ROM
aligned at the top of the 1 MEG address space. The
ROM is built using 32K byte by 8 ROM-modules. The
ROM has no parity. The general memory specifications
for the ROM are:

()

Access Time - 250 ns
Cycle Time - 375ns

w
2
®
w
>
4
®
=

ROM modules Mk 38000 from Mostek, TMM23256P
or equivelent are used. Address A14 is wired to both
pin 1 and pin 27.

The following figure is a map of the sections of memory
allocated for use by the system:

()

ROM Subsvstem 2-19



BIOS/ Diagnostic/Cassette
Basic Program Area

Standard Application Cartridge

Standard Application Cartridge

Reserved For Future Cartridge

- D8000

-Reserved For Future Cartridge

Reserved for
1/0 ROM

Video RAM

Reserved
Future
Video

Reserved
Future User
RAM

Expansion RAM

Base RAM

Memory Map

2-20 ROM Subsvstem

FFFFF |

FO000

Cartridge

E8000 Chip

EQ000

D0000 |

C0000

B8000

A0000

20000

10000

00000

Selects



Input Output Channel

5

()

. The I/0 channel contains an 8-bit bidirectional bus, 20
. address lines, 3 levels of interrupt, control lines for

The Input/Out channel (I/0) is an extension of the
8088 microprocessor bus. It is however, demultiplexed,
repowered, and enhanced by the addition of interrupts.

memory and I/O read or write, clock and timing lines,
and power and ground for the adapters. Voltages of
+5 dc and +12 dc are provided for external adapters.
Any additional power needs will require a separate
power-module.

WRJSAS Iseg

All I/ O Channel functions are bused to the right-hand
side of the system unit and are provided by a
right-angle, 60-pin connector. Each external adapter
connects to the I/O bus and passes the bus along for
the next attachment.

A 'ready' line is available on the I/0O Channel to allow
operation with slow I/0 or memory devices. If the
channel’s 'ready' line is not activated by an addressed
device, all processor-generated memory-read and write
cycles take four 210-ns clocks or 840-ns/byte. All
processor-generated I/O-read or write cycles require

-six clocks for a cycle time of 1.26-us/byte.

The I/0 Channel also contains the capability to add
bus masters to the channel. These devices could be
DMA devices or alternate processors.

The 1/0 Channel signals have sufficient drive to
support five I/O Channel expansion-adapters and the
internal modem and diskette drive adapter, assuming
one standard TTL load per attachment. For
information on power available for external adapters,
see “System Power Supply”’, later in this Section.

1/0 Channel 2-21



Signal Name Signal Name

Pl — 1 B1 A1 ——— DO

p2 —— —— | ———— +12 Vdc
D4 — —— D3
Shield GND — ———— Db

D7 ———— B5 AS | ——— D6
A0 T —— +6 Vdc¢
A2 — f————— A1
Shield GND ——— - A3

A5 ——— ————— A4

AB —— 1 B10 A10 [——— GND
A8 —m™m™m ——— A7
-DACKO ———— ——— A9

A1l —— - ——— A10
A12 —m———— ——— DRQO
Shield GND — B15 A15 |— A13
A15 — ——— A14
Shield GND — ———— A16
A17 ——— | - ——— GND
A19 ——— ———— A18
Shield GND —— B20 A20 |— -IOR
-MEMR ——MM{ —— -IowW
-MEMW  —— ———— GND
ALE —mMM L HDLA
Shield GND — ————— CLK
to/-M  —— B25 A25 | —— RESET
READY —— | f——— +5 Vd¢
-CARD SLCTD — L -HRQ
Shield GND IRQ1
IRQ7 —— ——————— IRQ2
AUDIOIN. ——— B30 A30 |————  Reserved

1/0 Channel Expansion Connector Specifications

2222 1/0 Channel



System Board I/0O Channel Description
The following is a description of the I/O Channel. All

signals are TTL compatible.
K/ Signal I/0 Description
CLK O System Clock: Itisa

70 ns

Duty Cycle

C' RESET

A0-A19

()

140 ns

divide-by-three of the 14.31818
MHz oscillator and has a period
of 210 ns (4.77 MHz). The
clock has a 33% duty cycle.

Wwd)SAG aseq

70 ns 140 ns

I/0

This line is used to reset or
initialize system logic upon
power-up. This line is
synchronized to the falling edge
of the clock and is 'active high'.
Its duration upon power up is
26.5 ps.

Address Bits 0 to 19: These lines
are used to address memory and
I/0 devices within the system.
The 20 address lines allow access
of up to 1 megabyte of memory.
AQ is the least-significant- bit
(LSB) while A19 is the
most-significant-bit (MSB).
These lines are normally driven
by the 8088 microprocessor as

I/0 Channel 2-23



outputs, but can become inputs
from an external bus-master by
issuing an HRQ and receiving an
HLDA.

D0-D7 I/O Data Bits 0-7: These lines
provide data-bus bits 0 to 7 for . _-
the processor, memory, and 1/O
devices. DO is the
least-significant-bit (LSB) and
D7 is the most-significant-bit
(MSB). These lines can be
controlled by an external
bus-master by issuing an HRQ
and receiving an HLDA.

ALE (0 Address Latch Enable: This line
is provided to allow the addition
of wait states in memory and I/O
cycles.

READY I This line, normally 'high' —
('ready'), is pulled 'low' ('not
ready') by a memory or I/O
device to lengthen I/O or
memory cycles. It allows slower
devices to attach to the I/O
Channel with a minimum of
difficulty. Any slow device
requiring this line should drive it
'low' immediately upon
detecting a valid address and
IO/-M signal. Machine cycles
(I/O and memory) are extended
by an integral number of CLK
cycles (210 ns). Any bus master
on the I/O Channel should also
honor this 'ready' line. It is
pulled 'low' by the system board

J—

2-24 1/0 Channel



()

IRQ1, IRQ2,
IRQ7

-IOR

-IOW

-MEMR

I

I/0

I/0

I/0

on memory read and write cycles
and outputting to the sound
subsystem.

Interrupt Request 1, 2, and 7:
These lines are used to signal the
processor that an I/O device
requires attention. They are
prioritized with IRQ1 as the
highest priority and IRQ7 as the
lowest. An Interrupt Request is
generated by raising an IRQ line
('low' to 'high') and holding it
'high"' until it is acknowledged
by the processor
(interrupt-service routine).

WIISAG aseq

1/0 Read Command: This
command line instructs an I/0
device to drive its data onto the
data bus. This signal may be
driven by the 8088
microprocessor or by an external
bus-master after it has gained
control of the bus. This line is
active 'low'.

1/0O Write Command: This
command line instructs an I/O
device to read the data on the
data bus. This signal may be
driven by the 8088
microprocessor or by an external
bus-master after it has gained
control of the bus. This line is
active 'low'.

Memory Read Command: This
command line instructs the

1/0 Channel ?._9&



memory to drive its data onto the
data bus. This signal may be
driven by the 8088
microprocessor or by an external
bus-master after it has gained
control of the bus. This line is
active 'low'.

-MEMW I/O Memory Write Command: This
command line instructs the
memory to store the data present
on the data bus. This signal may
be driven by the 8088
microprocessor or by an external
bus-master after it has gained
control of the bus. This line is
active low.

10/-M I/0 1/0 or Memory Status: This
status line is used to distinguish a
memory access from an I/O
access. This line should be
driven by a bus master after it
has gained control of the bus. If
this line is 'high' it indicates an
I/O Address is on the Address
Bus; if this line is 'low’, it
indicates a memory address is on
the Address Bus.

-HRQ I Hold Request: This line indicates
that another bus master is
requesting the I/O Channel. To
gain bus-master status, a device
on the channel must assert -HRQ
(active 'low'). The 8088 will
respond to a -HRQ by asserting
an HLDA. After receiving an
HLDA, the new bus master may

2-26 1/0 Channel



—

DRQ 0

-DACK 0

HLDA

. -instruction to A0-A7. The

‘inhibited. Latched value = 0 —=>

control the bus, and must

.continue to assert the -HRQ until
it is ready to relinquish the bus. A

-HRQ is not an.asynchronous
signal and should be
synchronized to the system clock.
All channel devices with
bus-master capabilities must latch
data-bit D4 during any 'Out’

resulting signal should be used to
qualify -HRQ as follows:
Latched value = 1 --> -HRQ is

WA)SAQ Iseg

-HRQ is allowed. For more

. detail, see the explanation of the

A0 port.

This line comes from the floppy
disk controller (FDC) and can be
used by an external DMA to
indicate that a byte should be
transferred to the FDC.

This line should come from an
external DMA and should
indicate that a byte is being
transferred from memory to the
FDC.

Hold Acknowledge: This line
indicates to a bus master on the
channel that -HRQ has been
honored and that the 8088 has
floated its bus and control lines.

1/0 Channel 2-27



-CARD I This line should be pulled down

SLCTD - by any adapter when it is selected.
with address and I0/-M. This
line will be used for bus
expansion. It is pulled up with a
resistor and should be pulled
down with an open collector
device.

AUDIOIN 1 Channel devices may provide
sound sources to the
system-board sound-subsystem
through this line. Itis 1 volt
peak-to-peak, dc biased at 2.5
volts above ground.

2-28 1/0 Channel



Input/Output

Hex Range(9 8/7 6 543 2 1 0 Device
C’- 2027 |00f0010/0 X X A0 | PIC8259
40-47 |00[0 1000 0 Al A0 | Timer8253-5
60-67 [00/0110{0 X Al AO.|PPI8255-5 | g
A0-A7 [00[1010[0 X X X | NMIMaskReg |4
C0-C7 |00/1100{0 X X X |Sound | &
SN76496N
FO-FF [0 0[1 1 1 I|X A2 Al A0 | Diskette
200-207 |1 0/0000|0 X X X [ Joystick
2F8-2FF |1 0|1 1 1 1|1 A2 Al AO [ Serial Port
3D0-3DF [1 1|1 1 0 1|A3 A2 Al A0 |Video Subsystem
C‘ 3F8-3FF |1 1|1 11 1|1 A2 Al A0 | Modem

1/0 Map

X = Don’t care (that is, not in decode.)

e Any I/O which is not decoded on the system board
may be decoded on the I/O Channel.

e At Power-On time the NMI into the 8088 is masked
'off'. This mask bit can be set by system software
as follows:

Write to Port AO D7=ENA NMI D6=IR TEST ENA
D5=SELC CLK1 INPUT D4=+Disable HRQ

()

1/0 Channel 2220



8255 Bit Assignments

PA

Output

PAO Reserved for Keystroke Storage

" PA1
PA2
PA3
PA4
PAS
PAG6
PA7
PB
PBO
PB1
PB2
PB3
PB4

PB5
PB6
PB7
PC

PCO
PC1
PC2
PC3
PC4
PC5
PCo6
PC7

Reserved for Keystroke Storage
Reserved for Keystroke Storage
Reserved for Keystroke Storage
Reserved for Keystroke Storage
Reserved for Keystroke Storage
Reserved for Keystroke Storage
Reserved for Keystroke Storage
Output

+Timer2 Gate (Speaker)
+Speaker Data

+Alpha (-Graphics)

+ Cassette Motor Off

+Disable Internal Beeper and Cassette Motor
Relay

SPKR Switch 0

SPKR Switch 1

Reserved

Input

Keyboard Latched

-Internal MODEM Card Installed
-Diskette Drive Card Installed
-64KB Memory and Display Expansion Installed
Cassette Data In

Timer Channel 2 Qutput
+Keyboard Data

-Keyboard Cable Connected

2-30 I/0 Channel



2-28 8255 Bit Assignment Description

PAO thru (Output Port A is configured as an output.
7 PAT Lines) The output lines are not used by the
\— hardware, but are used to store

keystrokes. This is done to maintain
compatibility with the Personal
Computer, and Personal Computer
XT.

-]
2

®

72]
>

z
®

3

PBO (+Timer 2 This line is routed to the gate input
Gate) of timer 2 on the 8253-5. When this
bit is 'low', the counter operation is
halted. This bit and PBI1 (+Speaker
Data) controls the operation of the
8253-5 sound source.

C'. PB1 (+Speaker This bit ANDS 'off ' the output of
! Data) the 8253-5 timer 2. It can be used to
disable the 8253-5 sound source, or
modify its output. When this bit is a
1, it enables the output, a 0 forces
the output to zero.

PB2 (+Alpha This bit is used to steer data from the
-Graphics) memory into the Video Gate Array.
This bit should be a 1 for all alpha
modes, and a 0 for all graphics
modes.

1/0 Channel 2-31



PB3 (+Cassette
Motor Off)

PB4 (+Disable
internal
beeper and
cassette
motor relay)

PBS, (Speaker
PB6 switch 0,1)

PB7 (Open)

2-22 1/0 Channel

When this bit is a 1, the cassette
relay is 'open' and the cassette
motor is 'off'. When this bitis a 0,
and PB4 = 0, the cassette motor is

on .

When this bit is a 1, the internal
beeper is 'disabled’' and the 8253-5
timer 2 sound source can only be
heard if it is steered to the audio
output. This bit also disables the
cassette motor when itisa 1. To
‘enable’ the cassette motor, this bit
must be a 0. In this case, PB1
should be used to gate 'off' the
internal beeper and 8253-5 sound
source.

These bits steer one of 4 sound
sources. This is available to the RF
modulator or the external audio jack.
The sound sources selected are
shown below.

PB6 PBS Sound Source

0 0 8253-5 Timer 2

0 1 Cassette Audio Input
1 0 I/0 Channel Audio In
1 1 76496

Reserved for future use.



PCO (Keyboard
latched)

PC1 (-Modem
card
installed)

C " PC2  (-Diskette
’ card
installed)

PC3 (-64KB
Memory and
Display
Expansion
installed)

()

This input comes from a latch which
is set to a 1 on the first rising edge of
the Keyboard Data stream. The
output of this latch also causes the
NMI to occur. This latch is cleared
by doing a dummy 'Read' operation
to port AQ. This input is provided so
that a program can tell if a keystroke
occurred during a time when the
NMI was masked 'off’ and a
keystroke has been missed. The
program will then be able to give an
error indication of the missed
keystroke.

When this bit is a 0, it indicates that
the Internal Modem card is installed.

When this bit is a zero, it indicates
that the Diskette Drive Adapter is
installed.

When this bit is a 0, it indicates that
the 64KB Memory and Display
Expansion is installed.

I/0 Channel 2-33

=
0
7]
o
w
>
A
o
3




PC4 (Cassette
data in)

PC5 (Timer
channel 2
output)

PCé (+Keyboard
data)

PC7 (-Keyboard
cable
connected)

2-34 1/0 Channel

If the cassette-motor relay is
'closed’', and the cassette motor is
‘on', this pin will contain data
which has been wave shaped from
the cassette. If the cassette-motor
relay is 'off ', this pin will contain
the same data as the 8253-5 timer 2
output.

This input is wired to the timer
channel 2 output of the 8253-5.

This input contains keyboard data.
The keyboard data comes from the
cable if attached, or from the IR
Receiver if the cable is not attached.

If this bitis 'low', it indicates that
the keyboard cable is connected.



Port A0 Output Description

D7

-
(__ Ds

D5

()

D4

(Enable NMI)

(IR test ENA)

(Selc CIk1 input)

(+Disable HRQ)

When this bit is a 1, the NMI is
'enabled'. When'it is a 0, it is
'disabled’.

This bit enables the 8253-5 timer 2
output into an IR diode on the IR
Receiver board. This information is
then wrapped back to the keyboard
input. If the cable is not connected,
timer 2 should be set for 40 kHz -
which is the IR-modulation
frequency. This feature is used only
for a diagnostic test of the IR
Receiver board.

This bit selects one of two input Clks
to the 8253-5 timer 1. A O selects a
1.1925 MHz CIk input used to assist
the program in de-serializing the
keyboard data. A 1 selects the timer
0 output to be used as the CIk input
to timer 1. This is used to catch timer
0 overflows during diskette drive
operations when interrupts are
masked 'off'. This is then used to
update the time-of-day.

This bit is not actually implemented
on the system board, but is supported
by the programming: This bit is used
to disable -HRQs from external
bus-masters (DMA, Alternate
Processors, etc.) The logic for

this bit must exist on each
bus-master attachment. A 0

should 'enable' -HRQ, and a 1
should 'disable' -HRQ.

1/0 Channel 2-35

=
]
w
(o]
w
-
72}
-
o
=




+HRQ from external

bus master
| I—
LS74 LS03
—
D4 .
L—~—|-uac1 onl/0 —
AOCS v | «——Input should be an open

collector type device

Port AO Output Description

Port A0 Input Operation

A 'read’' to I/0 port A0 will clear the keyboard NMI

latch. This latch causes an NMI on the first rising edge

of the keyboard data if the enable NMI bit (port A0 bit

D7) is 'on'. This latch can also be read on the 8255

PCO. The program can determine if a keystroke

occurred while the NMI was 'disabled’ by reading the

status of this latch. This latch must be cleared before _
another NMI can be received.

The System board provides for selection of keyboard
data from either a cable or the IR-receiver board. The
IR-receiver board is mounted on the system board and
can receive data through an IR link. The source of the
keyboard’s data is determined by the -Cable Connected
signal at the keyboard cable connector. Keyboard
serial data is available to the 8088 at bit PC6 of the
8255 PPL

The system board is responsible for the de-serialization
of keyboard data. The start bit in the serial stream
causes an NMI to be generated. The 8088 then reads
the 8253 timer to determine when to interrogate the

—_

2-36 I/0 Channel



()

serial stream. After de-serialization the NMI
service-routine does a 'Read' from hex AQ to clear the
NMI latch.

During certain time-critical operations, such as diskette
I/0, the processor will mask 'off' the NMI interrupt.
Keyboard inputs during this time cannot be.serviced. A
keyboard latch is provided so that at the end of such
operations the processor will determine whether any
keys were pressed and take appropriate actions. The
keyboard latch is 'set’ by any key being pressed and is
‘reset' by 'Reading' the NMI port. (No data is
presented to the microprocessor during this 'Read"'.)
Keyboard latch data is available to the processor at bit
PCO of the 8255 PPL.

=]
-]

74

S

w
-

4
®

=

1/0 Channel 2-37



Notes:

2-38 1/0 Channel



()

Cassette Interface

The cassette interface is controlled through software.
An output from the 8253 timer controls the data to the
cassette recorder through the cassette connector at the
rear of the system board. The cassette-input data is
read by an input-port bit of the 8255A-5
programmable-peripheral-interface (PPI) (8255A-5
PC4). Software algorithms are used to generate and
read cassette-data. The cassette drive- motor is
controlled by Bit PB3 of the 8255. Bit PB4, which
‘enables’ the 7547 relay driver, must be 'low' when
the motor is to be turned on. The cassette interface has
a wrap feature which connects the output to the input
when the motor control is 'off'. See “BIOS Cassette
Logic” in Section 5 for information on data storage and
retrival.

A mechanism is provided that will direct the cassette
input to the audio subsystem. Please see ‘‘Sound
Subsection’ in Section 2.

Circuit block diagrams for the cassette-interface read,
write, and motor control are illustrated in the following

figures.

Cassette Interface 2-39

=
7
3
w
=
ﬁ
®
=




k
Cassette 18 Ohm 2)?1?‘?
GND Resistor Resistor
+5V
I Cassette
0.047 uF 18k Ohm A(:: 18K Ohm La22t2 "
Capacitor Resistor —T— LM3£F':8 Resistor
-6V
Audio
Subsystem
Data From 18k Ohm D Silicon J
Cassette Resistor GND— D_lode
Recorder Vir .4V | cathode
Earphone
Jack GND

Cassette-Interface Read-Hardware Block Diagram

7415125

8253 Timer #2 0——O|G

GND

D DRV

+5V
|
3.9k Ohm
Resistor
4.7k Ohm
Resistor
+ ﬂ
0.678V to
AUX Input
1.2k Ohm
Resistor
| 0.075V to
MIC I
150 Ohm C Input
Resistor
GND

Cassette-Interface Write-Hardware Block Diagram

2-40 Cassette Interface



+5V

+5V
2.7k SN75475 Relay
Ohm vee N/ O b——
P I Coil
+5
L/ Clamp Cassette
74LS04 Motor
Control =
PB3 In Out Coil 2
Motor o
s
on NOT wn
Com <§
PB4 vVSS ™y
Enable =
Beeper/
Cassette
Motor NOT
Relay GND
Cassette-Motor Control Block Diagram
—
Signal Name Pin Number
—— LOGIC GND AO1
" —CASS AUDIO IN A02 >
= MIKE AUDIO OUT AO03
Cassette p+— MOTOR CONTROL AO04 System
KEY PLUG BO1 Board
e— AUX DATA OUT B02
~e— MOTOR CONTROL SW B0O3
— SHIELD GND B0O4

Cassette Connector Specifications

C.

Caccotte Intorface 241



Notes:

7-42 Cassette Interface



()

Video Color/Graphics Subsystem

The video subsystem is designed so that the IBM Color
Display, composite monitors, and a home television set
can be attached. It is capable of operating in black-
and-white or color. It provides three video ports: a
composite-video, a direct-drive, and a connector for

an RF modulator to be used with - home televisions. In :

addition, it contains a light pen interface.

Note: The IBM Personal Computer Monochrome
Display cannot be used with the PCjr system.

Note: An IBM Connector for Television option
must be obtained to attach a home TV,

The subsystem has two basic modes of operation:
alphanumeric (A/N) and all points addressable
graphics (APA). Additional modes are available within
the A/N and APA modes.

In the A/N mode, the display can be operated in either
a 40-column by 25-row mode for a low-resolution
display home television, or.an 80-column by 25-row
mode for high-resolution monitors. In both modes,
characters are defined in an 8-wide by 8-high character
box and are 7-wide by 7-high, with one line of
descender. Both A/N modes can operate in either
color or black-and-white.

In the A/N black-and-white mode, the character
attributes of reverse video, blinking, highlighting and
gray shades are available.

In the A/N color mode, sixteen foreground-colors and

sixteen background-colors are available for each
character. In addition, blinking on a per-character basis

Video Subsvstem 2-43

WJSAS Iseq




is available. When blinking is used, only eight
background-colors are available. One of 16 colors, or
gray shades can be selected for the screen’s border in
all A/N modes.

In both A/N modes, characters are formed from a
ROM character-generator. The character generator
contains dot patterns for 256 different characters. The
character set contains the following major groupings of
characters: -

» 16 special characters for game support

o 15 characters for word-processing editing support

e 96 characters for the standard-ASCII-graphics set

« 48 characters for foreign-language support

« 48 characters for business block-graphics (allowing
drawing of charts, boxes, and tables using single or -
double lines)

e 16 selected Greek symbols

o 15 selected scientific-notation characters -

In the APA mode, there are three resolutions available:

a low-resolution mode (160 PELs [Picture ELements].

by 200 rows), a medium-resolution mode (320 PELs by

200 rows), and a high-resolution mode (640 PELs by

200 rows).

Different color modes exist within each of the APA

resolutions. Two, four, or sixteen colors are available in

APA color, and two, four, or sixteen gray shades are
available in APA black-and-white.

2-44 Video Subsvstem



O

)

One of sixteen colors, or grey shades can be selected -
for the screen’s border in all APA modes.

The direct drive, composite video and RF Modulator
connector are right-angle-mounted connectors
extending through the rear of the system unit.

The video color/graphics subsystem is implemented
using a Motorola 6845 CRT controller device and a
Video Gate Array (VGA) (LSI5220). The video
subsystem is highly programmable with respect to raster
and character parameters. Thus many additional modes
are possible with the proper programming.

uRIsSAS asegqg |

The following figure shows a block diagram of the .
video color/graphics subsystem.

Video Subsvstem 2-45



64K Expansion Card

[~ —————————-=
| . Processor
| 64K x 8 Data Latch [ |
1 RAM
} |DIN
| CRT Data |_|

Processor | Latch

Memory ek | =

Data Bus - ST

Processor

Address — ] Address - Processor

Multiplexer Data Latch

Processor 64K x 8

170 Address RAM

Data Bus 6845 Multiplexer -

CRT Character
Control 1 Data Latch
ISYNCS
™ Vid
cota | RAs.cas we {
Array Control Character
1 Generator
ROM
3
]
CRT
Data | CG Data
Latch Latch
y
RGBI Television Direct
Svn Drive
ynes Video
L Composite
Video C'composite
Logic Video
p——
|
| | RF . .
1 | Modulator : Television
1
| Extemal :

Video Color/Graphic Subsystem Block Diagram

2-46 Video Subsvstem



Major Components Definitions

O

Motorola 6845 CRT Controller

This device provides the necessary interface to drive a
raster-scan CRT. Additional information about this
component is provided in publications listed in
“Bibliography”.

Storage Organization

WAJSAS aseq

The base video-color/graphics-subsystem accesses 64K
bytes of read/write memory (RAM). A 64KB Memory
and Display Expansion can be added to increase the
amount of system RAM to 128K bytes. This
memory-storage area serves two functions; as the
video-display buffer and as the system processor is
(8088) main-RAM.

The RAM is located at address hex 0000 and is either
64K bytes or 128K bytes with the memory expansion
option. The 8088 can access the memory by reading
from and writing to address locations hex 00000 to
1FFFF or by reading from or writing to the 16K-byte
region starting at address hex B8000. The page
affected by a read or write operation is determined by
the processor’s page register. The processor can access
the RAM at any time in all modes with no adverse
effect to the video information. The page that the
video information is taken from is determined by the
CRT page register.

The processor and CRT page registers are write only
registers and can be changed at any time. These
registers allow the processor to work in one page while
the display is displaying another page. The processor
can switch pages at the vertical-retrace time. This will
aid animation on the video color/graphics subsystem.,

Video Subsystem 2-47



Also, since all 128K bytes of read/write memory are
available for display purposes, the application can use
as little or as much memory as needed for the display.

The following figure is a map of the video

color/ graphics subsystem.
Hex
Memory Map Address
Processor C0000
Read/Write - Video
Operations B8000
Processor .
Page D
Select 20000
Page 7 CRT Page
- Select
> Page 6
> Page &
Page 4 == CRT
10000
Page 3 =
P> Page 2
> Page 1 =
Page O
00000

Video Color/Graphics Subsystem Memory Map

2-48 Video Subsystem



Bandwidth

The video bandwidth is either 3.5, 7 or 14 MHz
depending on the mode of operation. The processor
bandwidth is the same for all modes. The processor is
allowed one cycle every 1.1 microseconds. An average
of two wait states will be inserted in a processor RAM
read cycle, because the average latency time for the
processor to get a cycle is 560 ns and the cycle time is
350 ns. There is no performance penalty for redirecting
processor reads and writes through the B8000 - BFFFF
address area.

URR)SAQ asegq

Character Generator

The ROM character-generator consists of 2K bytes of
storage which cannot be read from, or written to under
software control. It is implemented with a
MCM68A316E or equivalent. Its specifications are
350 ns access, 350 ns cycle static operation. The
device is pin compatible with 2716 and 2732 EPROMS.

Video Gate Array

A CMOS gate array is used to generate storage-timing
(RAS, CAS, WE), direct-drive, composite-color and
status signals. See “Video Gate Array” later in this
section.

Video Subsystem 2-49



Palette

The video color/graphics subsystem contains a
16-word by 4-bit palette in the Video Gate Array
which takes PEL (Picture ELement) information from
the read/write memory and uses it to select the color to
display. This palette is used in all A/N and APA
modes. Any input to the palette can be individually
masked 'off' if a mode does not support the full
complement of 16 colors. This masking allows the user
to select a unique palette of colors whenever any mode
does not support all 16 colors.

In two-color modes, the palette is defined by using one
bit (PAOQ), with the following logic:

Palette Address Bit

PAO Function
0 Palette Register 0
1 Palette Register 1

Palette Logic {1 of 3)

2-50 Video Subsystem



()

()

In four-color modes, the palette is defined by using two
bits (PA1 and PAQ), with the following logic:

Palette Address Bits

PALl PAO Function
0 0 Palette Register 0
0 1 Palette Register 1
1 0 Palette Register 2
1 1 Palette Register 3

Palette Logic (2 of 3)

Video Subsystem 2-51

=]
)
73
®
9}
=
“
)
=




In sixteen-color modes, the palette is defined by using
four bits (PA3, PA2, PA1, and PAO), with the

following logic:
Palette Address Bits
PA3 (PA2| PA1| PAO Function

0 0 0 0 ‘Palette.Register 0
0 0 0 1 Palette Register 1
0 0 | 0 Palette Register 2
0 0 1 1 Palette Register 3
0 | 0 0 - Palette Register 4
0 1 0 1 Palette Register 5
0 1 1 0 Palette Register 6
0 1 1 1 - Palette Register 7
1 0 0 0 Palette Register 8
1 0 0 1 Palette Register 9
1 0 1 0 Palette Register 10
1 0 1 1 Palette Register 11
1 1 0 0 Palette Register 12
1 1 0 1 Palette Register 13
1 1 1 0 Palette Register 14
1 1 1 1 Palette Register 15

Palette Logic (3 of 3)

2-52 Video Subsystem



()

()

C

The sixteen colors available to all A/N and APA
modes are selected through combinations of the I
(Intensity), R (Red), G (Green), and B (Blue) bits. These
colors are listed in the following figure:

I R G B Color
g

0 0 0 0 Black 4
0 0 0 1 Blue - K4
0 0 1 0 Green ) (‘”?
0 0 1 1 Cyan 3
0 | 0 0 Red

0 1 0 1 Magenta

0 1 1 0 Brown

0 1 1 1 Light Gray

1 0 0 0 Dark Gray

1 0 0 1 Light Blue

1 0 | 0 Light Green

1 0 | 1 Light Cyan

1 1 0 0 Pink

1 1 0 1 Light Magenta

1 1 1 0 Yellow

1 1 1 1 White
Note: The “I” bit provides extra luminance
(brightness) to each available shade. This results in the
light colors listed above, except for monitors that do
not recognize the “I” bit.

Summary of Available Colors

Video Subsystem 2-53



Alphanumeric Modes

Every display-character position in the alphanumeric
mode is defined by two bytes in the system read/write
memory, using the following format:

Display Character Code Byte Attribute Byte

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Display Format

2-54 Video Subsystem



The functions of the attribute byte are defined by the
following figure:

Attribute
—.] Function Attribute Byte Definition

7 6 5 4 3 2 1 0

Fore- PA2 PA1 PAQ PA3 PA2 PA1 PAO g
Ground o
Blink Background Foreground >
o
Normal B 0 o0 o I 1 1 1 3
Reverse B 1 1 1 I 0 0 0
Video
Nondisplay B 0 0 0 I 0 0 0
(Off)
Nondisplay B 1 1 1 I 1 1 1
(On)

I = Highlighted Foreground (Character)
2 \| B = Blinking Foreground (Character)

Attribute Functions

Graphics Mode

The Video Color/Graphics Subsystem can be
programmed for a wide variety of modes within the
graphics mode. Five graphics-modes are supported by
the system’s ROM BIOS. They are low-resolution
16-color graphics, medium-resolution 4-color graphics,
medium-resolution 16-color graphics, high-resolution
2-color graphics, and high-resolution 4-color graphics.
The table in the following figure summarizes the five
S modes:

Video Subsystem 2-55



Number of Colors

Graphics Horiz. | Vert. Available (Includes
Mode (PELs) | (Rows) | Background Color)
Low-Resolution 160 200 | 16 (Includes b-and-w)
16-Color
Medium-Resolution 320 200 | 4 Colors of 16
4-Color Available
Medium-Resolution 320 200 | 16 (Includes b-and-w)
16-Color
High-Resolution 640 200 | 2 Colors of 16
2-Color Available
High-Resolution 640 200 | 4 Colors of 16
4-Color Available

Note: The screen’s border color in all modes can be set to any
1 of the 16 possible colors. This border color is independent of
the screen’s work area colors. In Black and White each color

maps to a distinct gray shade.

Graphics Modes

Low-Resolution 16-Color Graphics

The low-resolution mode supports home-television sets,
low-resolution displays, and high-resolution displays. It
has the following characteristics:

« Contains a maximum of 200 rows of 160 PELs
« Specifies 1 of 16 colors for each PEL by the I, R, G,

and B bits

« Requires 16K bytes of read/write memory
o Formats 2 PELSs per byte for each byte in the

following manner:

2-56 Video Subsystem




()

()

()

7 6 5 4 3 2 1 0
PA3 PA2 PA1 PAO PA3 PA2 PA1 PAO
First Second
Display Display

PEL PEL

Low-Resolution 16-Color Graphics

Medium-Resolution 4-Color Graphics

The medium-resolution mode supports home-television
sets, low-resolution displays, and high-resolution
displays. It has the following characteristics:

¢ Contains a maximum of 200 rows of 320 PELs

« Selects one of four colors for each PEL

o Requires 16K bytes of read/write memory

o Supports 4 of 16 possible colors

» Formats 4 PELs per byte for each byte in the
following manner:

=
)

7]

o

wnn
>

4
)

=

7 6 5 4 3 2 1 0

PA1 PAO PA1 PAO PA1 PAO PA1 PAO
First Second Third Fourth
Display Display Display Display
PEL PEL PEL PEL

Medium-Resolution 4-Color Graphics

Video Subsvstem 2-57




Medium-Resolution 16-Color Graphics

The medium-resolution 16-color graphics mode
supports home television sets, low-resolution displays,
and high-resolution displays. It has the following
characteristics:

« Requires system configuration of 128K bytes of
read/write memory

« Requires 32K bytes of read/write memory

o Contains a maximum of 200 rows of 320 PELs.

» Specifies 1 of 16 colors for each PEL

» Formats 2 PELs per byte for each byte in the
following manner.

7 6 5 4 3 2 1 0
PA3 PA2 PA1 PAO PA3 PA2 PA1 PAO
First Second
Display Display

PEL PEL

Medium-Resolution 16-Color Graphics

High-Resolution 2-Color Graphics

The high-resolution 2-color mode supports
high-resolution monitors only. This mode has the
following characteristics:

« Contains a maximum of 200 rows of 640 PELs
o Supports 2 of 16 possible colors.

2-58 Video Subsystem



« Requires 16K bytes of read/write memory.
« Formats 8 PELs per byte for each byte in the
following manner:

7 6 5 -4 3 2 1 0

C
/ PAO| PAO | PAC | PAO | PAO| PACG| PAC | PAO

[_> Eighth Display PEL |

—- Seventh Display PEL -
> Sixth Display PEL

» Fitth Display PEL

> Fourth Display PEL ~
Third Display PEL
Second Display PEL:
» First Display PEL

3

=
-]
w
[4-]
w
!
172}
-
o
=]
-

High-Resolution 2-Color Graphics

F High-Resolution 4-Color Graphics
-

The high-resolution mode is used only with
high-resolution monitors. This mode has the following
characteristics:

« Requires system configuration of 128K Bytes
read/write memory

« Requires 32K bytes of read/write memory

« Contains a maximum of 200 rows of 640 PELs

+ Selects one of four colors for each PEL

+ Supports 4 out of 16 colors

« Formats 8 PELs per two bytes (consisting of one
even-byte and one odd-byte) in the following
manner:

()

Video Subsvstem 2-59



Even Bytes

7 6 5 4 3 2 1 o

PAO PAO PAO PAO PAO .| PAO PAO PAO
First Second Third Fourth  Fifth Sixth Seventh Eighth
Display Display Display Display Display Display Display Display
PEL PEL PEL PEL PEL PEL PEL PEL

S Y O N N N B

PA1 PA1 PA1 PA1 PA1 PA1 PA1 PA1

7 6 5 4 3 2 1 0

Odd Bytes
High-Resolution 4-Color Graphics
Graphics Storage Organization -

For the low-resolution 16-color graphics, the

medium-resolution 4-color graphics, and the high-

resolution 2-color graphics, storage is organized into
two banks of 8000 bytes each.

The following figure shows the organization of the

graphics storage.

2-60 Video Subsvstem



()

Memory Address

(Hex)  |e——go Bytes ——I

0000H Even Scans (0,2.4,...,190}
~ 8000 Bytes
1F3F
2000 0Odd Scans (1,3,5,...,199)
8000 Bytes
3F3F

Graphics Storage Organization (Part 1 of 2)

TEJTYAN asng .

Address 0000 contains PEL information for the
upper-left corner of the display area.

For the medium-resolution 16-color graphics, and the

high-resolution 4-color graphics modes, the graphics
storage is organized into four banks of 8000 bytes each.

Yideo Subsystem 2-61



Memory Address

(Hex) | 160 Bym-.l

- 0000 00 Scans
(0.4.8,...,196)
(8000 Bytes)
1F3F
2000 01 Scans
(1.5,9,....197)
i (8000 Bytes)
3F3F
4000 10 Scans
(2,6,10....,198)
(8000 Bytes)
5F3F
6000 11 Scans
(3.7,11,..., 199)
{8000 Bytes)
7F3F

Graphics Storage Organization (Part 2 of 2)

Address 0000 contains PEL information for the
upper-left corner of the display.

2-62 Video Subsvstem



C

Video Gate Array

The Video Gate Array is located at I/O address hex
3DA, and is programmed by first writing a register
address to port hex 3DA and then writing the data to
port hex 3DA.

Any I/0 'write'-operations to hex address 3DA
continuously toggle an internal address/data flip-flop.
This internal flip-flop can be set to the address state by
issuing an I/O 'read’' instruction to port hex 3DA. An
I/0O 'read’ instruction also 'reads' the status of the
Video Gate Array. A description of each of the
registers in the Video Gate Array follows.

wd)SAQ Iseg

Hex Address Register
00 Mode Control 1
01 Palette Mask
02 Border Color
03 Mode Control 2
04 Reset
10-1F Palette Registers

Video Gate Array Register Addresses

Video Subsystem 2-63



Mode Control 1 Register

This is a 5-bit 'write ' -only register, it cannot be
'‘read’'. Its address is O within the Video Gate Array.
A description of this register’s bit functions follows.

Bit 0
Bit 1
Bit 2
Bit 3
Bit 4

+HIBW/-LOBW
+Graphics/-Alpha
+B/W

+Video Enable

+16 Color Graphics

Mode Control 1 Register

Bit 0

Bit 1

Bit 2

2-64 Video Subsystem

This bit is 'high' (1) for all
high-bandwidth modes. These modes are
all modes which require the 64KB Memory
and Display Expansion for a system total
of 128K bytes of read/write memory. The
high bandwidth modes are the 80 by 25
alphanumeric mode, the 640 by 200
4-color graphics mode, and the 320 by 200
16-color graphics mode. This bitis 'low’
(0) for all low-bandwidth modes.

This bit is 'high' (1) for all graphics
modes and is 'low' (0) for all
alphanumeric modes.

When this bit is 'high' (1), the
composite-video color-burst and
chrominance are disabled, leaving only the
composite intensity-levels for gray shades.
When this bit is 'low' (0), the
composite-video color is 'enabled'. This



)

PN

S

bit should be set 'high' for high-
resolution black-and-white display
applications.

Note: This bit has no effect on direct-drive
colors.

Bit 3 When this bit is 'high' (1), the video
signal is 'enabled’. The video signal
should be 'disabled' when changing
modes. When the video signal is
'disabled’', the screen is forced to the
border color.

uRISAG aseg

Bit 4 This bit must be ' high' (1) for all
16-color graphics-modes. These modes
are the 160 by 200 16-color
graphics-mode and the 320 by 200
16-color graphics-mode.

Palette Mask Register

This is a 4-bit write-only register, it cannot be 'read’.
Its address in the Video Gate Array is hex 01. A
description of this register’s bit functions follows.

Bit 0 -Palette Mask 0
Bit 1 —Palette Mask 1
Bit 2 -Palette Mask 2
Bit 3 -Palette Mask 3

Palette Mask Register

When bits 0-3 are 0, they force the appropriate palette
address to be 0 regardless of the incoming color

Video Subsystem 2-65



information. This can be used to make some
information in memory a 'don’t care' condition until it
is requested.

In the 2-color and 4-color modes, the palette addresses
should be 'masked' because only 1 or 2 color-lines
contain valid information. For 4-color modes, the
palette mask register should contain a hex 03 and, for
2-color modes, it should contain a hex 01.

Border Color Register

This is a 4-bit 'write '-only register, it cannot be
‘read’'. Its address in the Video Gate Array is hex 02,
The following is a description of the register’s bit

functions:
Bit Number Function
0 + B (Blue) Border Color Select
1 + G (Green) Border Color Select
2 + R (Red) Border Color Select
3 + 1 (Intensity) Border Color Select

Border Color Register

A combination of bits 0-3 selects the screen-border
color as one of 16 colors, as listed in the “Summary of
Available Colors” table in this section.

Mode Control 2 Register

This is a 4-bit, 'write' -only register, it cannot be
‘read’'. Its address inside the Video Gate Array is hex

2-66 Video Subsystem



03. The following is a description of the register’s bit

functions:
Bit Number Function
ey
k/ 0 — Reserved = 0
1 + Enable Blink
2 - Reserved =0
3 + 2-Color Graphics

Mode Control 2 Register

Bit 0 This bit is reserved, but should always be
programmed as a 0.
Bit 1 When this bit is 'high' (1) in the
alphanumeric mode, the attribute byte has
C\ the following definition:
7 6 5 4 3 2 1 0

B PA2 PA1 PAO | PA3 PA2 PA1 PAO

—— Foreground Color

—p- Background Color

» Blinking

Where PAO to PA3 are palette addresses.
Attribute Byte Definition. {(Part 1 of 2)

-
\f .
N’

Video Subsvstem 2-67

o)
-]
n
®
w
-
4L
@
=




If the enable-blink bit is 'off' in the
alphanumeric mode, the attribute byte
takes on the following definition:

7 6 5 4 3 2 1 0

PA3 -PA2 PA1 PAO PA3 PA2 PA1 PAO

Foreground Color

>-Background Color

Attribute Byte Definition (Part 2 of 2)

If the enable-blink bit is on in a graphics
mode, the high-order address of the palette
(PA3) is replaced with the character-blink
rate. This causes displayed colors to
switch between two sets of colors.

If the colors in the lower half of the palette
are the same as in the upper half of the
palette, no color changes will occur. If the
colors in the upper half of the palette are
different from the lower half of the palette,
the colors will alternately change between
the 2 palette colors at the blink rate.

Only eight colors are available in the
16-color modes when using this feature.
Bit 3 of the palette mask has no effect on
this mode.

Bit 2 This bit is reserved, but should always be
programmed as a 0.

2-68 Video Subsvstem



()

()

Bit-3 This bit should be 'high' (1) when in the
640 by 200 2-color graphics-mode. It
should be 'low' (0) for all other modes.

Reset Register

This is a 2-bit 'write'-only register, it cannot be

‘read'. Its address inside the Video Gate Array is hex . g
04. The following is a description of the register’s bit ®
functions: ‘§
5
3
Bit 0 +Asynchronous Reset
Bit 1 +Synchronous Reset

Reset Register

Bit 0 When 'high' (1), this bit will issue an
'asynchronous reset' to the Video Gate
Array. This will cause all memory cycles
to stop and all output signals to be
tri-stated. The 'asynchronous reset'
should only be issued once at the system
power-on time. This bit should be 'high'
(1), the Video Gate Array and the 6845
programmed, and then it should be 'low'

(0).

The system read/write memory (RAM)
will not work until this power-on sequence
is finished. After this power-on sequence,
subsequent 'resets’ should be
'synchronous resets'.

Yideo Subsvstem 2-69



Bit 1

2-70 Video Subsystem

Note: Issuing an 'asynchronous reset'
can cause the contents of RAM to be
destroyed.

When ‘high' (1), this bit will issue a
'synchronous reset' to the Video Gate
Array. This will cause all memory cycles
to stop and all output signals to stop. Bit 1
should be 'low' (0) before changing
modes.

Before issuing a'* synchronous reset ', the
program should read 256 locations in
RAM as every other location in 512
locations. The program should then issue
the ‘synchronous reset' and change the
mode. This changes the Video Gate Array
mode-control registers and the 6845
registers.

Next, the 'synchronous reset' should be
removed and the 256 RAM locations
should be 'read' again as above. This
procedure will ensure system RAM
data-integrity during mode changes.
'Synchronous resets' need only be issued
when changing between high-bandwidth,
and low- bandwidth modes. (Bit O in
mode control 1 register)

Note: No accesses to RAM can be
made while the video gate.array isin a
‘reset' state. 'Resets' must be done
from code in ROM or EPROM’s.



Palette Registers

There are sixteen 4-bit-wide palette-registers. These
registers are 'write '-only, they cannot be 'read’.
Their addresses in the Video Gate Array are from hex
10 to 1F.

Palette address hex 10 is accessed whenever the color
code from memory is a hex 0, address hex 11 is
accessed whenever the color code from memory is a hex
1, and so forth. A description of the color codes is in
“Summary of Available Colors” in this section.

o]
o
7d
o
w
st
w
-
(27
E

Note: The palette address can be 'masked’ by
using the palette mask register.

The following is a description of the register’s bit
functions:

Bit Number Function
0 + Blue
1 + Green
2 + Red
3 + Intensity

Palette Register Format

When loading the palette, the video is 'disabled' and
the color viewed on the screen is the data contained in
the register being addressed by the processor.

When the program has completed loading the palette, it

must change the hex address to some address less than
hex 10 for video to be 'enabled 'again.

Viden Subevetem 2-71



If a programmer does not wish a user to see the adverse
effects of loading the palette, the palette should be
loaded during the vertical-retrace time. The program
must modify the palette and change the video gate array
address to less than hex 10 within the vertical-retrace
time. A vertical-retrace interrupt and a status bit are
provided to facilitate this procedure.

2-72 Video Subsystem



-

Status Register

This is a 5-bit 'read'-only register, it cannot be
‘written'. The internal address of the video gate array
is a 'don’t care' condition for the status-register
read-operation. A description of the register’s bit

functions follows:

Bit 0
Bit |
Bit 2
Bit 3

Bit 4

+Display Enable

+Light Pen Trigger Set
-Light Pen Switch Made
+Vertical Retrace

=
-]
7]
®
wn
(>4
!“
o
3

+Video Dots

Status Register

Bit 0

Bit 1

Bit 2

Bit 3

When 'high' (1), this bit indicates video is
being displayed.

When 'high' (1), this bit indicates that a
positive- going edge from the light pen
input has set the light pen trigger. This
trigger is 'low' (0) upon a system
power-on, and may also be cleared by
performing an I/O 'Out' command to
address hex 3DB. No specific data is
required, this action is address-activated.

This bit indicates the status of the light pen
switch. The switch is not latched or
debounced. When this bit is 'low’ (0), the
light pen switch is ‘on’.

When 'high' (1), this bit indicates the
vertical retrace is 'active'.

Video Subsvstem 2-73



Bit 4 When 'high' (1), this bit indicates that
video-dot information is available. The
two low-order bits of the address register
determine the video-dot informatjon
presented through the following logic:

Video Dot
Address Register | Address Register Information
Bit 1 Bit 0 Selected
0 0 Blue
0 1 Green
1 0 Red
1 1 Intensity

Address Register

This bit is provided for testing purposes. It verifies that
video is occurring properly, and that the palette
registers and all other 'write'-only registers are
operating correctly.

Light Pen

A light pen can be used on the PCjr by connecting it to
the six-pin connector for light pens on the back of the

system board.

2-74 Video Subsystem




)

()

2
\,

Signal Name Pin Number

+12v AO1
— _LIGHT PEN INPUT A02
Light |e= 15V A03 System
Pen | _ LocicGND BO1 Board
}— -LIGHT PEN SWITCH BO2 ——>
UNUSED BO3

Connector Specifications

| w)sAg asegqg |

Note: The light pen interface is set for RGBI
(Red, Green, Blue, Intensity). Due to timing
differences between different displays (Different
phosphors take longer to turn on, and different
circuits take longer to accomplish their task.) the
row, column value returned from the CRT can vary.
This difference must be compensated for through
software.

Programming Considerations

Programming the 6845 CRT Controller

The 6845 has 19 accessible, internal registers, which
are used to define and control a raster-scanned CRT
display. One of these registers, the Index Register, is
actually used as a pointer to the other 18 registers. It is
a 'write'-only register, which is loaded from the
processor by executing an 'Out’' instruction to I/O
address hex 3D4. The five least-significant-bits of the
I/0 bus are loaded into the Index Register.

In order to load any of the other 18 registers, the Index

Register is first loaded with the necessary pointer; then
the Data Register is loaded with the information to be

Video Subsvstem 2-=75



placed in the selected register. The Data Register is
loaded from the processor by executing an 'Out’
instruction to I/O address hex 3D5.

The following table defines the values that must be
loaded into the 6845-CRT-Controller registers to -

control the different modes of operation supported by —
the attachment:
Low/High
Register Alphanumeric | Band
Hex Width
Addr. | # Type Units | I/O | 40x25 | 80x25 | Graphics
0 |RO | Horizontal | Char.| Write| 38 71 38/71
Total Only
1 |R1 | Horizontal | Char.| Write| 28 50 28/50
Display Only
2 |R2 | Horizontal | Char. | Write| 2C 5A 2B/56
Sync Only o
Position
3 |R3 | Horizontal | Char. | Write| 06 0C 06/0C
Sync Only
Width
4 |R4 | Vertical Char. | Write| 1F 1F 7F/3F
Total Row | Only
5 |R5 | Vertical Scan | Write| 06 06 06/06
Total Line | Only
Adjustment

Note: All register values are given in hexadecimal.

6845 Register Table (Part 1 of 3)

2-76 Video Subsystem



Low/High
Register . Alphanumeric | Band

Hex - Width
‘Addr.| # Type Units | I/0 | 40x25 | 80x25 | Graphics

<\/ 6 |R6 | Vertical Char.| Write| 19 19 64/32
Displayed | Row | Only

7 |R7 | Vertical | Char.{ Write] 1C 1C - 70/38

Sync Row | Only
Position

8 |R8 [Interlace — | Write| 02 02 02/02
Mode Only

9 |R9 | Maximum| Scan | Write| 07 07 01/03
Scan Line | Line | Only
Address

A |R10 | Cursor. Scan | Write| 06 06 26/26
Start Line | Only

C B [RI11 | Cursor Scan | Write| 07 07 07/07
End Line | Only

Note: All register values are given in hexademical.

6845 Register Table {Part 2 of 3)

Video Subsystem 2-77



Low/High
- Register Alphanumeric | Band
| Hex Width
Addr.| # Type |[Units| I/0 |40x25 |80x25 | Graphics
C |RI2 |Start — | Write | 00 00 00/00
Addr. (H) Only
D [R13 |Start — | Write | 00 00 00/00
Addr. (L) Only
E |R14{Cursor — | Read/| 00 | 00 00/00
Addr. (H) Write
F |RI15 |Cursor — | Read/| 00 00 00/00
Addr. (L) Write
10 |R16 |Light — | Read NA NA NA/NA
Pen (H) Only
11 |R17 |Light — |Read | NA | NA | NA/NA
Pen (L) Only

Note: All register values are given in hexadecimal.

6845 Register Table {Part 3 of 3)

2-78 Video Subsystem




CRT/Processor Page Register

This register is an 8-bit 'write '-only register, that
cannot be read. Its address is hex 3DF. The following
is a description of the Register functions.

()

Bit Number Description
0 CRT Page 0 &
1 CRT Page | ®
2 CRT Page 2 2
3 Processor Page | 2
4 Processor Page 2 =
5 Processor Page 3
6 Video Address Mode 0
7 Video Address Mode |

CRT/Processor Page Register (Part 1 of 2)

CRT Page 0-2
~ e

Processor Page 0-2

()

These bits select which 16K
byte memory-page between
00000 to hex 1FFFF is being
displayed. If there is no
expansion RAM in the system,
the high- order bit is a 'don’t
care', and only 4 pages are
supported. For graphics modes
which require 32K bytes the
low-order bit is a 'don’t care’.

These bits select the 16K byte
memory-page region where
memory cycles to BE0O00 are
redirected. If there is no
expansion RAM installed in
the system, the high-order bit
isa 'don’t care' and only 4
pages are supported.

Video Subsystem 2-79



Video Adr Mode 0-1

These bits control whether the
row scan addresses are used as

part of the memory address.
These should be programmed
as follows:
| Video Address Mode
1 (Bit 7) 0 (Bit 6) Resulting Modes

0 0 All Alpha Modes

0 1 Low-Resolution-Graphics Modes

1 1 High-Resolution-Graphics Modes

1 0 Unused, Reserved

CRT/Processor Page Register (Part 2 of 2)

The following I/O devices are defined on the video
color/ graphics subsystem:

Hex Function of
Address | AYASATA6ASA4A3A2AL1 A0 Register
3DA 1 1 1 1 0 1 1 0 1 0 |GateArray Address
and Status Register
3DB 1 1 1T 1 0 1 1 0 1 1 |ClearLight
Pen Latch
3DC 1 1 1 1 0 1 1 1 0O O |PresetLight
Pen Latch
3D03D4 |1 1 1 1 1 0 1 0 x x O |6845Index Register
3DIL3ADS | I 1 1 1 0 I 0 x x 1 |6845 Data Register
3DF 1 1.1 1 01 1 1 1 1 |CRT,Processor
Page Register

x = “don’t care” condition

Video 1/0 Devices

2-80 Video Subsystem




()

Mode Selection Summary

Four registers of the Video Gate Array allow the user
to access all the alphanumeric and graphics modes
supported by the system ROM BIOS. The following
table summarizes the modes and their register settings:

Video Gate ES

Array Reg. 4

£

Mode 00 |01 (02 (03 %

=
40 by 25 Alphanumeric Black-and-White | 0C | OF | 00 | 02
40 by 25 Alphanumeric Color 08 |OF | 00 |02
80 by 25 Alphanumeric Black-and-White | 0D | OF | 00 | 02
80 by 25 Alphanumeric Color 09 [OF |00 |02
160 by 200 16-Color Graphics 1A [ OF |00 |00
320 by 200 4-Color Graphics 0A |03 |00 |00
320 by 200 4-Shade Black-and-White OE |03 |00 |00
1320 by 200 16-Color Graphics IB [OF |00 |00
640 by 200 2-Color Graphics OE (01 [00 |08
640 by 200 4-Color Graphics 0B |03 (00 |00

Note: All values are given in hexadecimal.

Mode Summary

Sequence of Events for Changing Modes

1. Determine the mode of operation.

2. Reset the ‘video enable’ bit in the Video Gate Array
to disable video.

3. Program the 6845 CRT Controller to select the
mode.
Read 256 bytes of memory
Reset gate array

4. Program the Video Gate Array registers.

Video Subsystem 2-81



Remove gate-array reset
Read 256 bytes of memory
5. Re-enable video.

Note: The gate array needs to be reset only when
changing the high-bandwidth/low-bandwidth

register.

Interrupt Information

The Video Gate Array uses interrupt level 5 of the Intel
8259 to provide the vertical retrace interrupt to the

system.
At Standard TTL Levels

-VERT SYNC == A1 B1
LOGIC GND =

-HORIZ SYNC = A3 B3
BLUE -

RED e

INTEN - A6 B6
GREEN —

COMP SYNC —

AUDIO - A9 B9

HELERERRRR

Connector Specifications

+VERT SYNC
LOGIC GND
+HORIZ SYNC
RESERVED
LOGIC GND
RESERVED
RESERVED
RESERVED
SHIELD GND

The direct-drive signals are standard TTL levels except
the audio output which is a 1V peak-to-peak signal
biased at OV which can drive a 10K ohm or greater

input-impedence.

2-82 Video Subsystem



()

()

Composite Video Signal

1 =

Video *
Monitor

Color/Graphics

Chassis Ground Composite Jack

2

Connector Specifications

The composite-video signal is 1V peak to peak biased
at .7V with a 75 ohm load.
Connector A01 — +12V RF
AO2 — Key >
for A03 — Composite Video mmmmp-| Modulator
BO1 — GND
B02 — Audio >
Television B03 — Shield GND ——»-|

Television Connector Specifications

The Connector for Television connector has the
composite-video signal at 1V peak to peak biased at
.7V with a 75 ohm load. The connector also-has the
audio output which is 1V peak-to-peak signal biased at
0V which can drive a 10K ohm or greater input
impedence.

Video Subsystem 2-83

&%
2
®
w»
e
!‘t
o
3




Notes:

2-84 Video Subsystem



)

Beeper

The system beeper is a small, piezoelectric- speaker,
which can be driven from one or both of two sources.
The two sources are:

« The 8255A-5 PPI output-bit PB1

« A timer clock out of an 8253-5 timer which has a
1.19 MHz-clock input. The timer gate is also
controlled by an 8255-5 outport bit PBO.

Note: The T176496 Sound Generator cannot be
directed through the beeper.

AND

8255A-5 Bit PB1, I/0 Address Hex 61
- Timer Clock Out 2 ™

Drive

WISAG asegq

Select
8255A-5 Bit PB4

30 Ohm Resistor [—® Beeper

Beeper Block Diagram

Beeper 2-85




Notes:

2-86 Beeper



®

Sound Subsystem

The nucleus of the sound subsystem is an analog
multiplexer (mpx) which allows 1 of 4 different sound
sources to be selected, amplified, and sent to the audio
outputs. The mpx and amplifier are configured so the
amplifier’s gain is unique to and consistent with each
sound source. This provides a consistent level of output
with any of the sound sources. The output of the
amplifier is supplied to the IBM Connector for
Television interface and external-amplifier interface. If
an external speaker is used, an external amplifier must
be used to drive it. The amplifier is configured as a
single-pole low pass filter with a 3 dB cut-off frequency
of 4.8 kHz. This filter is used to “round” off the
corners of the square-wave signals. BIOS Power-on will
initialize the sound subsystem to use the 8253
programmable-timer mode.

=%
©
73
o
9]
e
P
-
)
3

1 Audio
System External

Connector Specifications

The audio output is a 1V peak-to-peak signal biased at
OV. It can drive a 10k ohm or greater
input-impedence.

Sound Subsystem 2-87



Port Bits

Source PBe6 PBS

Complex Sound Generator (T1 76496) 1
Programmable Timer (8253) 0 0
Cassette Audio 0
1/0 Channel Audio

[

Port bits PB5 and PB6, of the 8255, control which source is
selected.

Sound Sources

Complex Sound Generator

The Complex Sound Generator chip (SN76496N) has 3
programmable frequencies which may be mixed to form
chords and a white noise generator which may also be
mixed for special effects. Each of the 3 channels as
well as the white noise generator can be independently
attenuated. The processor controls the sound chip by
writing to port hex CO.

The Sound Generator is described in greater detail later
in this section. More information can be obtained by
referring to Texas Instruments’ data sheets and
application notes.

2-88 Sound Subsystem



Sound

Mpx PB5
Select PB6
(8255) } 4
(1’—\ : Analog
| 8253 >
‘ =}
»
7]
1
X Direct Drive LZ)
Cassette Protection Mpx Monitor Audio B°4
Diodes g
Low
J R.F. Modulator
r P_ass Audio
Filter
External _ £3dB = |y External Audio
Channel 4.8 kHz Amp
T.1.
76496 >
/ ;
| N -
vbound Block Diagram

()

Audio Tone Generator

Features

¢ 3 Programmable Tone-Generators
¢ Programmable White Noise

e Programmable Attenuation

¢ Simultaneous Sounds

e TTL Compatible

« 3.579 MHz Clock Input

« Audio Mixer

Processor to Sound-Generator Interface

The system microprocessor communicates with the
SN76496N through the 8 data lines and 3 control lines

Sound Subsystem 2-89



(WE, CE and READY). Each tone generator requires
10 bits of information to select the frequency and 4 bits
of information to select the attenuation. A frequency
update requires a double-byte transfer, while an
attenuator update requires a single-byte transfer.

If no other control registers on the chip are accessed,a .__
tone generator may be rapidly updated by initially

sending both types of frequency and register data,

followed by just the second byte of data for succeeding
values. The register address is latched on the chip, so

the data will continue going into the same register. This
allows the 6 most-significant bits to be quickly

modified for frequency sweeps.

Control Registers

The sound generator has 8 internal registers which are
used to control the 3 tone generators and the noise
source. During all data transfers to the sound
generator, the first byte contains a 3-bit field which
determines the destination control register. The register
address codes are as follows:

. .

2-90 Sound Subsystem



Register Address Field

MSB LSB

RO R1 R2 Destination Control. Register
0 0 0 Tone 1 Frequency
0 0 1 Tone 1 ‘Attenuation
0 1 0 Tone 2 Frequency | =
0 1 1 Tone 2 Attenuation B
1 0 0 Tone 3 Frequency B4
1 0 | Tone 3 Attenuation A
1 1 0 Noise Control g
1 1 1 Noise Attenuation 1~

Register Address Field

~—~l

| Reg. Addr. Low-Data High Data
1 RO R1 R2 |F6 F7 F8 F9 0 X FO F1 F2 F3 F4 F5
| | | | [ 1 | | |
Bit First Byte Bit Bit Second Byte Bit
0 7 0 7
MSB ‘LSB MSB .LSB

()

Frequency (Double or Single Byte Transfer)

Frequency Generation

Each tone generator consists of a frequency-synthesis
section and an attenuation section. The frequency-
synthesis section requires 10 bits of information (hex
FO0-F9) to define half the period of the desired
frequency (n). Hex FO is the most-significant bit and
hex F9 is the least-significant bit. This information is

Sound Subsystem 2-91



loaded into a 10-stage tone-counter, which is
decremented at an N/ 16 rate where N is the input-clock
frequency. When the tone counter decrements to 0, a
borrow signal is produced. This borrow signal toggles
the frequency flip-flop and also reloads the tone
counter. Thus, the period of the desired frequency is
twice the value of the period register.

The frequency can be calculéted by the following:

f=_N
32n
where N = ref clock in Hz (3.579 MHz)
n = 10-bit binary-number
Attenuator

Reg. Addr. Data
1 |RO R1 R2 (A0 A1 A2 A3
I I I |
Bit O Second Bit 7
MSB Byte LSB

Update Attenuation (Single Byte Transfer)

The output of the frequency flip-flop feeds into a
four-stage attenuator. The attenuator values, along
with their bit position in the data word, are shown in
the following figure. Multiple-attenuation control-bits
may be 'true’ simultaneously. Thus, the maximum
theoretical attenuation is 28 dB typically.

2-92 Sound Subsystem



Bit Position
MSB LSB
A0 Al | A2 A3 Weight
0 0 0 1 2dB
0 0 1 0 4dB =
-]
0 1 0 0 8dB 4
w
1 0 0 0 16db =
1 1 1 1 OFF E
Attenuator Values -
Noise Generator -
Reg. Addr.
RO R1 R2 SHIFT
1 1 | 1 | 0 X | FB | NFO | NF1
MSB LSB

Update Noise Source {Single Byte Transfer)

The noise generator consists of a noise source and an -
attenuator. The noise source is a shift register with an
exclusive-OR feedback-network. The feedback
network has provisions to protect the shift register from
being locked in the zero state.

Sound Subsystem 2-93



FB Configuration

Periodic Noise
1 White Noise

- Noise Feedback Control

Whenever the noise-control register is changed, the

shift register is cleared. The shift register will shift at
_ one of four rates as determined by the two NF bits.

The fixed shift-rates are derived from the input clock.

Bits
NF0 | NF1 Shift Rate
0 0 N/512
0 1 N/1024
1 0 N/2048
1 1 Tone Generator #3 Output

Noise Generator Frequency Control

The output of the noise source is connected to a
programmable attenuator.

Audio Mixer/Output Buffer

The mixer is a conventional operational-amplifier
summing-circuit. It will sum the three tone-generator

2-94 Sound Subsystem



()

outputs, and the noise-generator output. The output
buffer will generate up to 10 mA.

Data Transfer

The sound generator requires approximately 32 clock
cycles to load the data into the register. The open
collector READY output is used to synchronize the
microprocessor to this transfer and is pulled to the false
state (low voltage) immediately following the leading
edge of CE. It is released to go to the true state
(external pull-up) when the data transfer is completed.

This will insert approximately 42 wait states (8.9 ps)
for each data transfer.

Warning: Do not attempt to issue an I/O read
operation to the TI76496 port (COH). Such an
operation will cause the system to hang indefinitely.

Note: If DMA is added to the system on the I/O

channel, I/O WRITES to the 76496 will increase
the latency time.

Sound Subsystem 2-95

=]
-]
7
o
2
st
v
-
o
3




Notes:

2-96 Sound Subsystem



//_“
-

()

Infra-Red Link

The infra-red link provides cordless communications
between the keyboard and the system unit. Two
infra-red-emitting diodes, mounted in the keyboard,
transmit coded information to the system unit. The
keyboard transmitter is fully discussed in “Cordless
Keyboard” in this section. The infra-red receiver,
which is located in the system unit, has an
infra-red-sensitive device that demodulates the signal
transmitted from the keyboard and sends it to the
system.

=
P

w

43

w»
~

z
47

=S

Infra-Red Receiver

The receiver card measures 57.15 mm wide by 63 mm
(2.25 in. by 2.50 in.) long. The infra-red receiver is
mounted on the system board, component-side down,
with two snap-in-type standoffs. Signal output and
power input is through an 8-pin connector, located at
the rear of the infra-red receiver. The
infra-red-sensitive device is located on the front of the
board and receives its input through an opening in the
front of the system unit’s cover. There is also an
infra-red transmitter mounted on the receiver board for
diagnostic purposes.

Functional Description

The following figure is the Infra-Red Receiver Block
Diagram. During keyboard operation, the emitted light
is modulated, transmitted, and received in the following

sequence:

1. A key is pushed.

Infra-Red Link 2-97



3,
4.

The data stream is sent using the infra-red-emitting

diodes.
The receiver amplifies and processes the signal.

The demodulated signal is sent to the system board.

The signal received consists of an infra-red-light
transmission modulated at 40 kHz.

An input is available (I/R Test Frequency) to the
system for receiver-circuit-operational verification.

Keyboard
with

Encoder

Infra-Red Receiver Block Diagram

Application Notes

Infra-
Red

Infra-Red Receiver Board

First Second
Amplifier Amplifier Demod-
Stage Stage ulator
Photo-Diode with AGC

Infra-

Red

Test

Circuit

Infra-Red Test Frequency
From System Board

The Infra-Red Receiver Board can serve as a
general-purpose infra-red-receiver, however, the

2-98 Infra-Red Link

Out



()

demodulator timings are tailored to the needs of the
system.

Programming Considerations

The serially-encoded word is software de-serialized by
the 8088 processor on the system unit. The leading
edge of the start bit will generate a non-maskable
interrupt (NMI). Once the processor enters the NMI
routine to handle the deserialization, the keyboard-data
line is sampled and the processor waits to sample the
trailing edge of the start bit. When the trailing edge of
the start bit is sampled, the processor will wait for 310
us and sample the first half of the first data bit. This
delay causes the processor to sample in the nominal
center of the first-half of the first data bit. The
processor then samples the keyboard data every half-
bit cell-time. The sampling interval is 220 us. The
processor samples each half-bit-sample 5 times and will
determine the logical level of the sample by majority
rule. This enables the: processor to discriminate against
transient glitches and to filter out.noise. The 8088
processor utilizes one 8255 PPI bit (PORT C BIT 6)
and.shares one 8253 timer channel (CHANNEL 1) to
do the software de-serialization of the keyboard data.
See the “Cordless Keyboard’ in this section for more
information on the data-transmission protocal.

=)
&

»

(4]

w
>

a
®

=

Detectable Error Conditions
Errors Cause

Phase Errors: The 1st half of the bit-cell sample is.
not equal to the inverse of the 2nd half
of the bit-cell sample.

Parity Errors  The received encoded word did not
maintain odd parity.

Infra-Red Link 2-99



Note: Errors will be signaled by the processor with
a short tone from the audio alarm or external
speaker.

Operational Parameters

The operational distance from infra-red devices to the
system should not exceed 6.1 meters (20 feet)
(line-of-sight). Operational efficiency can be impaired
by outside sources. These sources are,
excessively-bright lights, and high-voltage lines, which

. include some TV sets. High-energy sources will
generally cause an audible alarm within the system unit.
These sources may downgrade the operational distance
from the keyboard to the system. A keyboard cable is
recommended if the above interference conditions are
not controllable.

Pin Signal Input/Output
A0l +12 Volts Input
AQ2 Ground Input
A03 Ground-Shield Input
A04 I.LR. TEST FREQ. Input

BO1 GROUND Input

B02 +5 Volts Input

BO3 -I.LR. KBD DATA Output
B04 GROUND Input

Infra-Red Connector Specifications

2-100 Infra-Red Link




N
/

-

()

()

IBM PCjr Cordless Keyboard

The keyboard is a low-profile, 62-key, detached
keyboard with full-travel keys. The keys are arranged in
- a standard typewriter layout with the addition of a
function key and cursor-control keys. The keybuttons
are unmarked; however, an overlay is used to provide
the keys’ functional descriptions.

- The following figure shows the layout of the cordless
keyboard.

0 )

JEnter 4l

Qg@@@@@@g@ggﬁ;
s o o

shin_ 4

= @DDQQDDQQQ i f el

CapsLock Ins

pi=s CONN (1 [ ) OO0 o

The keyboard is battery powered and communicates to
the system unit with an infra-red (IR) link. The
infra-red link makes the remote keyboard a truly
portable hand-held device. An optional-cord
connection to the system unit is available. Power is
sent to the keyboard and serially-encoded data received
by the system unit through the optional cord. When
connected, the cord’s keyboard-connector removes the
battery power and the -CABLE CONNECT signal
disables the infra-red-receiver circuit. The disabling of
the circuit also allows other infrared devices to be used

Cordless Keyboard 2-101

wajs&g aseq




without interfering with the system. The data which is
received through the IR link or by the cord, have the
same format.

The keyboard interface is designed to maximize
system-software flexibility in defining keyboard
operations such as shift states of keys, and typematic
operation. This is accomplished by having the
keyboard return scan codes rather than American
National Standard Code for Information Interchange
(ASCII) codes. The scan codes are compatible with
Personal Computer and Personal Computer XT scan
codes at the BIOS interface level. All of the keys are
typematic and generate both a make and a break scan-
code. For example, key 1 produces scan code hex 01
on make and code hex 81 on break. Break codes are
formed by adding hex 80 to the make codes. The.
keyboard I/O driver can define keyboard keys as shift
keys or typematic, as required by the application.

The microprocessor in the keyboard performs keyboard
scanning, phantom-key detection, key debounce,
buffering of up to 16 key-scan-codes, and transfer of
serially-encoded data to the system unit. The keyboard
microprocessor is normally in a standby power-down
mode until a key is pressed. This causes the:
microprocessor to scan the keyboard. The
microprocessor. then transmits the scan code, and
re-enters the power-down mode if its buffer is empty -
and no keys are pressed.

The keyboard electronics is designed with low-power
CMOS integrated-circuitry for battery power operation,
Four AA-size batteries are required. Because the
keyboard is normally in the standby power-down mode,
which uses very little power, no on/off switch is
needed.

2-102 Cordless Keyboard



*

C

()

Unlike other keyboards in the IBM Personal Computer
family, the IBM PCjr Cordless Keyboard has
phantom-key detection. Phantom-key detection occurs
when invalid combinations of three or more keys are
pressed simultaneously, causing a hex 55 scan-code to
be sent to the keyboard’s processor. The phantom-key
scan-code instructs the keyboard’s processor to ignore
all of the keys that were pressed at that time. BIOS
ignores the resulting scan-code that is sent to it.

The keyboard-cord connector provides a battery-
disconnect function and also disables the infra-red-
transmission circuitry when the mating plug for the
modular jack is connected.

Note: See ‘“Keyboard Encoding and Usage” in
Section 5, for scan codes and further information,

Transmitter

Serially encoded words are transmitted to the system
unit using the Infra-Red Link or the cable link. Encoded
words are sent to the system unit with odd parity. Both
the Infra-Red Link and the cable link use biphase
serial-encoding and each is a simplex link.

The 80C48 microprocessor does the biphase serial
encoding with a bit cell of 440 us. A biphase
logically-encoded 1 is transmitted as logical 1 for the
first half of the bit cell time and as a logical O for the
second half of the bit cell. A biphase logically-encoded
0 is transmitted as a logical O for the first half of the bit
cell time and as a logical 1 for the second half of the bit
cell.

Each logical 1 transmission for the Infra-Red Link
consists of a 40 kHz carrier burst at a 509 duty cycle.

Cordless Keyboard 2-103

=]
)
Y4
™
W
>
72}
-
)
=




First Bit
Second Bit
Third Bit
Fourth Bit
Fifth Bit
Sixth Bit
Seventh Bit
Eight Bit
Ninth Bit
Tenth Bit
Eleventh Bit

Start Bit

Data Bit 0 (Least Significant Bit)
Data Bit 1

Data Bit 2

Data Bit 3

Data Bit 4

Data Bit 5

Data Bit 6

Data Bit 7 (Most Significant Bit)
Parity Bit

Stop Bit

Data Stream Sequence

Eleven stop bits are inserted after every scan-code
transmission. This is to allow some processor
bandwidth between keystrokes to honor other types of
interrupts, such as serial and time-of-day.

2-104 Cordless Keyboard




P

{
N’

—~

N’

()

Eleven Stop
Bit Cells I

))
«

| s |po[p1]p2|p3fp4|ps|pe (o7 P |

—| |e—sitcen

Example: DATA =‘"2EH" PARITY ="1’

| S IDO|D1|DZ|

Cable Data
|’1'|‘0’|‘1'| ’1’|‘1’|‘0'|‘1'| ‘0'| '0'| ‘17

Infra-Red Data

BLRLARARLEBAL

Cable | BI-Phase *1* | | Bl-Phase ‘0’ |
Bit Cell Bit Cell
— 220’us —>|220’us
— 440 us 440 us
Infra-
Red | Bl-Phase ‘1’ | I Bl-Phase ‘O’ |

I",l" 40 kHz @ 50% Duty Cycle

— L—62-5,us
R —— 440 us

Keyboard Transmission Timing

[ﬂﬂj 40 kHz @ 50%

Duty Cycle
— 220”3
62.5 us

—  440ys

Cordless Keyboard 2-105

e,

=
)
174
®
2
>
w
-
)
=




-CLB Data
AND
-I.R. Data Keyboard Data
AND NOR
-CBL Con J
Inverter +6 <1 D
Q
CLK Flip Flop
CLR
> NMI
AND
NMI Mask -10R From
Port AO Hex

Keyboard Interface Logic

2-106 Cordless Keyboard

> 8255 PC6

8255 PCO

—



()

C

Program Cartridge and Interface

The Program Cartridge allows the addition of ROM to
the system without removing the cover by plugging it ,
into either of two slots in the front of the:machine.

The 48 by 72 mm (2 by 3 inch) cartridge can hold one
or two 32K byte by:8 ROMS (64K bytes total) of
program storage. Smaller ROMS such as the 8K byte
by 8 modules can be used in the cartridge. When a
smaller module is used, the higher address lines are not .
used. To allow two smaller modules to be mapped to
adjacent memory segments, each module’s contents is
addressed to multiple adjacent-memory segments,
within the addressable range of the module’s socket
(32k).

walsﬁs aseq

Program Cartridge Slots

The Program Cartridge is designed to plug into either of
two identical slots in the front of the machine. Each
slot has 15 address signals, 8 data signals, 6 chip
selects, 2 control signals, and power. Cartridge
selection is accomplished by the chip selects, each of
which addresses one of the high 32K memory-blocks.
Each cartridge uses up to two of the six chip selects.
Selection is determined on the basis of the intended use
of the cartridge. This is done at the factory.

Two of the chip selects are used by the internal
system-ROM. These two signals can be used to allow
the internal ROM to be replaced by a Program
Cartridge. This allows the machine to assume a

different personality from the standard machine. To

use this option of mapping the internal-ROM space to a
cartridge, the Base-ROM-in-Cartridge function must be
inserted. This function is a factory-installed

Program Cartridge 2-107



signal-jumper manufactured into particular
program-cartridges that are intended to replace the
system ROM.

Note: When the cartridge is inserted or removed
with the system turned on, the system will 'reset'
and go through a warm power-up, Any data in the
system RAM will be lost.

—

Cartridge Storage Allocations

A. The following conventions will be followed for
“Initial Program Loadable’’ program cartridges:

Location Contents
0 055H
1 0AAH
2 Length
3,4,5 Jump to Initialize Code -
6 0
Last 2 Addresses CRC Bytes

Storage Conventions

Locations 0 and 1 contain the word hex S5AA.
This is used as a test for the presence of the
cartridge during the configuration- determination
portion of the power-on routines.

Location 2 contains a length indicator representing
the entire address space taken by the ROM on the
cartridge. The algorithm for determining the

2-108 Program Cartridge



contents of this byte is (length/512). The contents

of this byte is used by the CRC
(cyclic-redundancy-check) routine to determine
how much ROM to check.
o Location 3 contains the beginning of an
Q initialization routine that is reached by a 'Long'
call during the power-on sequence. For cartridges -

; that are 'IPL-able' (BASIC or assembler program)
this routine should set the INT hex 18 vector to
point to their entry points. Other types of
cartridges (BASIC or whatever) should merely
‘return’ to the caller. Setting the INT hex 18
vector will enable transfer of control to the cartridge
program by the IPL routine.

« . This location 6 should be 00.

o CRC bytes: The last two locations of the address.
space used by the cartridge must be blank. CRC
characters will be placed in these bytes when the
cartridge is built. See the routine at label “CRC
Check”, in the BIOS listing for the CRC algorithm.

[~ ]
&
72
o
9]
>
12}
-
e
=

C B. The following conventions will be followed for
cartridges that wish to be recognized by DOS 2.1 as
containing code associated with DOS command words:

)

Program Cartridge 2-109



Location Contents

0 055H
‘0AAH
Length

3-5 Jump to Initialize
Command Name Length (Offset Y-
Offset Z)

zZ First Chasacter in Command Name

Y Last Character in Command Name

w Word Pointing to Routine that is
Jumped to if “Name” is Typed

X Next Command Name Length or
“00” if No More Command Names

Last 2 Addresses CRC Bytes

DOS Conventions

» Locations 0 and 1 contain the word hex 55AA.
This is used as a test for the presence of the
. cartridge during the configuration- determination
portion of the power-on routines.

Location 2 contains a length indicator representing
the entire address space taken by the ROM on the
cartridge. The algorithm for determining the
contents of this byte is (length/512). The contents
of this byte is used by the CRC routine to determine
how much ROM to check.

Location 3 contains a 'jump' to the initialization
code for this ROM. (May just be a 'Far Return')
Starting at location 6 may be a sequence of
command name pointers consisting of 1: Count of
length name, 2: Name in ASCII, and 3: Word

2-110 Program Cartridge



@,

C

containing offset within this segment to the code
that is entered when this name is called. There can
be as many names as desired, providing that a hex
00 is placed in the count field following the last
name pointer. If a cartridge has a routine called
'"TEST' at location hex OFB5 (offset from start of
segment that the cartridge is in) that needs to be
executed when 'test' is entered as a DOS command
the entry at location 6 would be hex
04,54,45,53,54,B5,0F.

o« CRC bytes: The last two locations of the address
space used by the cartridge must be blank. CRC
characters will be placed in these bytes when the
cartridge is built. See the routine at label “CRC
Check”, in the BIOS listing for the CRC algorithm.

o]
)
14
o
w
s
!‘4‘
(4]
3

C. The following conventions will be followed for
cartridges that wish to be recognized by “Cartridge
BASIC” as containing interpretable-BASIC Code:

e The cartridge-chip selects must address hex DO000
since the BASIC cartridge addresses hex E0000.
When “Cartridge BASIC” is activated, it will check
for a second cartridge program at hex D0000. If the
second cartridge is present and formatted properly,
then the BASIC code is loaded into RAM and run.

« The format for this interpretable-BASIC code must
be as follows:

Program Cartridge 2-111



Location Contents

0 055H

1 0AAH

2 _ Length

3 0CBH

4 0AAH

5 055H

6 0

7 OFFH if unprotected Basic program
or OFEH if protected Basic program

8 Start of interpretable Basic code

n OFFH Padding to next 2048 byte
boundary

Last 2 Addresses CRC Bytes

Cartridge Format

1. Locations 0 and 1 contain the word hex 55AA.
This is used as a test for the presence of the
cartridge during the configuration-determination
portion of the power-on routines.

2. Location 2 contains a length indicator representing
the entire address space taken by the ROM on the
cartridge. The algorithm for determining the
contents of this byte is (length/512). The contents
of this byte is used by the CRC routine to determine
how much ROM to check.

3. Location 3 must be hex OCB for a 'far return’
instruction.

2-112 Program Cartridge



()

()

. Location 8 must be the start of the BASIC program.

. CRC bytes: The last two locations of the address

. Locations 4 and 5 contain the word hex AAS5S.

This is used as a test for the presence of the second
cartridge by “Cartridge Basic”.

. Location 6 must be a 0 to follow the DOS

conventions.

. Location 7 can be either hex FF to indicate an

unprotected BASIC program, or hex FE to indicate
a protected program.

It must be interpretable Basic and not compiled.
Also, at the end of the program PAD to the next
2048 byte boundary with hex OFF.

=
0o
@
®
192
-
&
[
@
.

space used by the cartridge must be blank. CRC
characters will be placed in these bytes when the
cartridge is built. See the routine at label “CRC
Check”, in the BIOS listing for the CRC algorithm.

Program Cartridge 2-113



ROM Module

The ROM modules used are 250 ns devices. Typical
modules are the Mostek MK37000 and MK38000, the
TMM 23256, the SY23128, and other compatible

devices.

ROM Hex

Chip Select | Address Space Typical Use
CSo X Not Used
CSl1 X Not Used
CS2 D0000-D7FFF Optional Cartridge ROM #2
CS3 D8000-DFFFF | Optional Cartridge ROM #1
Cs4 EQ000-E7FFF Standard Cartridge ROM #2
CS5 E8000-EFFFF Standard Cartridge ROM #1
CSe F0000-F7FFF System Board ROM #2
CS7 F8000-FFFFF System Board ROM #1

ROM Chip Select Table

Signal
AO-Al4

DO - D7

I/O Description

0 Processor Address lines AQO - A14

I Processor Data lines

2-114 Program Cartridge




()

()

-CS2 0
THRU
-CS7

-BASE 1 |
ROM IN
CARTRIDGE

-BASE 2ROM 1
IN
CARTRIDGE

These chip-select lines are used to
select ROM modules at different
addresses. The addresses for each
chip-select are shown in the ROM-chip
select-table. -CS6 and -CS7 are used
on the system board for BIOS,
Power-On-Self-Test (POST) and
cassette-basic ROMs. In order to use
these chip selects on a cartridge,
-BASE 1 ROM IN CARTRIDGE or
-BASE 2 ROM IN CARTRIDGE must
be pulled 'low’

]
7
®
w2
e
28
e
=

This line when pulled 'low' instructs
the system board to de-gate the ROM
module from hex F8000 - FFFFF on
the system board. This ROM module
can then be replaced by a ROM
module on the cartridge by using -CS7.

This line when pulled 'low' instructs
the system board to de-gate the ROM
moxdule from hex FO000 - F7FFF on
the system board. This ROM module
can then be replaced by a ROM
module on the cartridge by using -CS6.

Program Cartridge 2-115



Cartridge Reset
Tab

2-116 Program Cartridge

I

This input when 'low' causes a 'reset’
to the system. The system will remain
'reset’ until this line is brought back
'high'. This tab is usually wired with
an L shaped land pattern to the GND

at A02 which provides a momentary
‘reset' when a cartridge is inserted or—

. removed.



()

GND
-CS87
-Cs3

A14

A12

A7
A6
Ab
A4
A3
A2
A1
A0
DO
D1
D2

-CS6 —

A1A2A3 A4 A5 o o o

Top of Cartridge

Momentary Reset Land

BO1 AO1

BOS AOb

B10 A10

B15 A15

+6V —— B18 A18

Connector Specification

e A18

W)SAS Iseqg

— GND

— CARTRIDGE RESET TAB

— -CSb

— -BASE 1 ROM IN CARTRIDGE
— A13

— A8

— A9

— A11

— -BASE 2 ROM IN CARTRIDGE
— A10

— D7

— D6

— Db

— D4

— D3

— -CS2

— -CS4

— +5V

Program Cartridge 2-117



System ROM 1
Address

System ROM 2 B1 Opposite B18
Address Side

Foooe A1 [PTITTITTTITITA) 18

| «~—ROM Cartridge

ROM 1 '.——’ Address
E8000

. Address
ROM 2 } E0000

Cartridge ROM Locations

2-118 Program Cartridge



anterface Description

()

Games Interface

The Game Interface has two connectors located at the
rear of the System unit for four paddles (two per
connector) or two joysticks. Each connector has four
input lines: two digital inputs and two resistive inputs.
All the inputs are 'read' with one 'IN' from address
hex 201. The interface, plus system software, converts
the present resistive value to a relative paddle or
joystick-position. On receipt of an output signal, four
timing circuits are started. By determining the time
required for the circuit to time out (a function of the
resistance), the paddle or joystick position can be
determined.

WIdJsAg asegq

The four digital inputs each have a 1K ohm resistor to
pull the voltage up to +5V. With no drive on these
inputs, a 1 is read. For a 0 reading, the inputs must be
pulled to ground.

The four resistive inputs are converted to a digital pulse

with a duration proportional to the resistive load,
according to the following equation:

Time = 24.2 pus + 0.011 (r) ps
Where r is the resistance in ohms

Games Interface 2-119



2 Resistive Inputs

From Right
Joystick

2 Resistive Inputs

From Left
Joystick

170

Write™

AND
Games
CS B
170 - AND
Reads

Convert
Resistance
to Digital
Pulse

Data Bus 0-7

2 Button Inputs From Right Joystick

Data Bus
Buffer/
Driver

2 Button Inputs From Left Joystick

Games Interface Block Diagram

Any program application must first begin the

conversion by an 'OUT' to address hex 201. An 'IN'
from address hex 201 will show the digital pulse go
‘high' and remain 'high' for the duration according to
the resistance value. All four bits (Bit 3 through Bit 0)
function in the same manner. Each bits digital pulse
goes high simultaneously and resets independently

according to the input resistance value.

2-120 Games Interface




()

()

Input from Address Hex 201

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit O

Y

Digital Inputs

Input From Address Hex 201

Resistive Inputs

Joysticks typically have one or two buttons and two
variable resistances each. The variable resistances are
mechanically linked to have a range from 0 to 100k
ohms. One variable resistance indicates the X
coordinate and the other variable resistance indicates
the Y coordinate. The joysticks are attached to give the

following input data:

Joystick B Joystick A Joystick B Joystick A
Button | Button | Button | Button | Coord.| Coord. | Coord.| Coord.
#2 #1 #2 #1 Y X Y X
Bit7 Bit 6 Bit5 Bit4 Bit 3 Bit 2 Bit 1 Bit O

Joystick Input Data

Games Interface 2-121

WAISAS aseq



The game paddles have one button each and one

variable resistance each. The variable resistance is
mechanically linked to have a range from 0 to 100k
ohms. The paddles are attached to give the following

input data.
Buttons Coordinates
Paddle | Paddle | Paddle | Paddle | Paddle | Paddle | Paddle | Paddle
D (o] B A D C B A
Bit 7 Bit 6 Bit5 Bit4 Bit 3 Bit 2 Bit 1 Bit O

Paddle Input Data

Pushbuttons

The pushbutton inputs are 'read' by an 'IN' from
address hex 201. These values are seen on data bits 7
through 4. These buttons default to an 'open’ state
and are 'read’ as 1. When a button is pressed, it is
'read' as 0.

Note: Software should be aware that these buttons
are not debounced in hardware.

Joystick Positions

The joystick position is indicated by a potentiometer for
each coordinate. Each potentiometer has a range from
0 to 100k ohms that varies the time constant for each
of the four one-shots. As this time constant is set at
different values, the output of the one-shot will be of
varying durations.

All four one-shots are fired simultaneously by an

'OUT' to address hex 201. All four one-shot outputs

2-122 Games Interface




SRR

N—

Joystick

will go 'true' after the fire pulse and will remain
'high' for varying times depending on where each
potentiometer is set.

These four one-shot outputs are 'read’ by an 'IN'
from address hex 201 and are seen-on data bits 3

Connector Specification

through 0.
Signal Name Pin Number
Keyplug AO01
LOGIC GND AO02
<——Y-AXIS RESISTANCE A03
= +5V AO4 System
SHIELD GND BO1 Board
+—— X-AX1S RESISTANCE BO2
— SWITCH BO3
le—— SWITCH BO4

Games Interface 2-123

wé;s&s aseq




Notes:

2-124 Games Interface



()

Serial Port (RS232)

The PCjr serial port is fully programmable and supports -
asynchronous communications only. It will add and
remove start bits, stop bits, and parity bits. A
programmable baud-rate generator allows operation
from 50 baud to 4800 baud. Five, six, seven or eight
bit characters with 1, 1-1/2, or 2 stop bits are - _
supported. - A fully-prioritized interrupt-system controls
transmit, receive, line status and data-set interrupts.
Diagnostic capabilities provide loopback functions of
transmit/receive and input/output signals.

=
7
o
»
>
4
o
=

The nucleus of the adapter is a 8250A LSI chip or
functional equivalent. Features in addition to those -
previously listed are:

« Full double-buffering eliminates the need for precise
synchronization

« Independent receiver clock input.

+ Modem control functions: clear to send (CTS),

request to send (RTS), data set ready (DSR), data

terminal ready (DTR)

Even, odd, or no-parity-bit generation and detection

False start bit detection

Complete status reporting capabilities

Line-break generation and detection

Break, parity, overrun, and framing error simulation -

Full prioritized interrupt system controls

All communications protocol is a function of the system
ROM and must be loaded before the adapter is
operational. All pacing of the interface and control-
signal status must be handled by the system software.

It should be noted that Asynchronous (Async)

receive operations cannot overlap diskette operation
since all but the Diskette Interrupt are masked 'off"
during diskette operations. If Async receive

Serial Port 2-125



operations are going to be overlapped with keyboard
receive operations, the Async Receiver rate cannot
exceed 1200 baud. This is due to the processor
deserializatron of the keyboard. See IBM PCjr
Cordless Keyboard in this section for more information.

‘Programming Note: Due to the read/write cycle-time of
-the 8250A, it is recommended that back-to-back I/0
operations to the 8250A be avoided. A .good
Programming Technique would be to insert a short
'jump' between every consecutive 8250 I/0
instruction. This action will flush the queue and
provide 15 clock periods between I/0 operations.

—

Note: This note only applies to programmers using
the 8250A directly. It is STRONGLY suggested
that the user not communicate directly with the
physical hardware, but use the system BIOS instead.

Note: It is important to note that when the IBM
PCjr has the Internal Modem installed it is logically
COM1 and the RS232 serial port is logically COM2
in BIOS, DOS, and BASIC. Without the Internal
Modem installed the RS232 serial port is logically
addressed as COM1 in BIOS, DOS ,and BASIC
even though its address is still'hex 2F8 vsing
Interrupt level 3.

The following figure is a Serial Port Block Diagram:

2-126 Serial Port



Address AO Through A2

Data Bus

Y

Interrupt

~ -

C

Baud Clock
1.7895 >
MHz

Control Signals

EIA -
Receivers

3

AO Through A2
DO Through D7

8250A
Asynchronous
Communications
Element

EIA

16-Pin

~— Serial Port Block Diagram

Connector

Drivers

Serial Port 2-127

=
%
(42
2
]
<
(9]
3




Modes of Operation

The

different modes of operation are selected by

programming the 8250A asynchronous communications
element. This is done by selecting the I/O address (hex

2F8

to 2FF) and 'writing' data out to the card.

Address bits A0, A1, and A2 select the different
registers that define the modes of operation. Also, the
divisor-latch access-bit (bit 7) of the line-control
register is used to select certain registers.

I/0 Decode

(in Hex) Register Selected DLAB State
2F8 TX Buffer DLAB=0 (Write)
2F8 RX Buffer DLAB=0 (Read)
2F8 Divisor Latch LSB DLAB-=1
2F9 Divisor Latch MSB DLAB=I
2F9 Interrupt Enable Register DLAB=0
2FA Interrupt Identification (Don’t Care)

Registers
2FB Line Control Register (Don’t Care)
2FC Modem Control Register (Don’t Care)
2FD Line Status Register (Don’t Care)
2FE Modem Status Register (Don’t Care)
2FF Scratch Register (Don’t Care)
1/0 Decodes

Address Range hex 2F8 - 2FF

2-128 Serial

Note: The state of the divisor-latch access-bit
{(DLAB), which is the most-significant bit of the
line-control register, affects the selection of certain
8250A registers. The DLAB must be set 'high' by
the system software to access the
baud-rate-generator divisor latches.

Port




&
\

()

Interface Description

Interrupts

One interrupt line is provided to the system. This
interrupt is IRQ3 and is 'positive active'. To allow the
serial port to send interrupts to the system, bit 3 of the
modem control register must be set to 1 'high'. At
this point, any of the following interrupt types
'enabled ' by bits in the interrupt-enable register will
cause an interrupt: Receiver-line status, Received Data
available, Transmitter-Holding-Register empty, or
Modem Status.

=
7
4+
w
(>
4
o
=

The communications adapter provides an EIA RS-232C
electrically-compatible interface. One 2 by 8-pin Berg
connector is provided to attach to various peripheral
devices.

The voltage interface is a serial interface. It supports
data and control signals as follows:

Pin A04 Transmit Data

Pin A0S Receive Data

Pin A03 Request to Send

Pin A07 Clear to Send

Pin A06 Data Set Ready

Pin B02-B08 Signal Ground

Pin A05 Carrier Detect

Pin A02 Data Terminal Ready
Pin B01 Shield Ground

The adapter converts these signals to/from TTL levels
to EIA voltage levels. These signals are sampled or
generated by the communications-control chip. These

Serial Port 2-129



signals can then be sensed by the system software to
determine the state of the interface or peripheral
device.

Note: The above nomenclature describes the
communications adapter as a DTE (Data Terminal _
Equipment) device. Suitable adapters must be used
to attach other devices such as serial printers.

Note: Ring Indicate is not supported on the PCjr.

Voltage Interchange Information

Interface
Interchange Binary Signal Control
Voltage State Condition | Function
Positive Voltage = | Binary (0) [ = Spacing =On
Negative Voltage = | Binary (1) [ = Marking = Off

Voltage Interchange Information

Invalid Levels

+15 Vd¢ = =-=--ememmmmmmemccmcceeeeeeee-
On Function
+3 Vdc = --mmmmmmmmmmommemmemeeooe-
0 vdc Invalid Levels
B L L
0ff Function
-15 Vd¢ =~ =-----------mesceooooooooooooo

Invalid Levels
The signal will be considered in the 'marking'

condition when the voltage on the interchange circuit,
measured at the interface point, is more negative than

2-130 Serial Port



()

-3 Vdc with respect to signal ground. The signal will be
considered in the 'spacing' condition when the voltage
is more positive than +3 Vdc with respect to signal
ground. The region between +3 Vde and -3 Vdc is
defined as the transition region, and considered an
invalid level. The voltage which is more negative than
-15 Vdc or more positive than +15 Vdc will also be
considered an invalid level.

During the transmission of data, the 'marking'
condition will be used to denote the binary state 1, and
the 'spacing' condition will be used to denote the
binary state 0.

o)
®

7

o

92}
>

a
&

=

For interface control circuits, the functionis 'on'
when the voltage is more positive than +3 Vdc with
respect to signal ground and is 'off ' when the voltage
is more negative than -3 Vdc with respect to signal
ground.

For detailed information regarding the INS8250A

Communications Controller, refer to
“Bibliography”.

Output Signals

Output 1 (OUT 1), Pin 34: Output 1 of the 8250A is
not supported in PCjr hardware.

Output 2 (OUT 2), Pin 31: Output 2 of the 8250A is
not supported in PCjr hardware.

Accessible Registers

The INS8250A has a number of accessible registers.
The system programmer may access or control any of

Serial Port 2-131



the INS8250A registers through the processor.- These
registers are used to control INS8250A operations and
to transmit and receive data. For further information
regarding accessible registers, refer to

“Bibliography”.

- INS8250A Programmable Baud Rate
Generator

The INS8250A contains a programmable baud rate
generator that is capable of taking the clock input
(1.7895 MHz) and dividing it by any divisor from 1 to
(65535). The output frequency of the Baud Rate
Generator is 16 x the baud rate [divisor number =
(frequency input) / (baud rate x 16)]. Two 8-bit
latches store the divisor in a 16-bit binary- format.
These divisor latches must be loaded during
initialization in order to ensure desired operation of the
baud rate generator. Upon loading either of the divisor
latches, a 16-bit baud-counter is immediately loaded.
This prevents long counts on initial load.

The following figure illustrates the use of the baud rate
generator with a frequency of 1.7895 MHz. For baud
rates of 4800 and below, the error obtained is minimal.

Note: The maximum operating frequency of the

baud generator is 3.1 MHz. In no case should the
data rate be greater than 4800 baud.

2-132 Serial Port



()

Desired | Divisor Used to Percent Error Per Bit
Baud Generate 16x Clock Difference Between
Rate (Decimal) (Hex) Desired and Actual
50 2237 8BD .006
75 1491 5D3 017
110 1017 -1A1 .023 _
134.5 832 167 .054 o
150 746 12C .050 B
300 373 175 .050 ;’n
600 186 BA 218 =
1200 93 5D 218 =
1800 62 3E 218 =
2000 56 38 .140
2400 47 2F .855
3600 31 IF 218
4800 23 17 1.291

Baud Rate at 1.7895 MHz

Note: These divisions are different than that used
in the IBM Personal Computer. For portability, all
initialization should be done through the system

BIOS.

Note: Receive rates should not exceed 1200 baud if
the receive operation is overlapped with keyboard

keystrokes.

The following Assembly language sample program
initializes the 8250. The baud rate is set to 1200 baud.
It’s data word is defined: 8 bits long with 1 stop bit odd
parity.

Serial Port 2-133



BEGIN PROC
MoV
MoV
ouT
JMP
MoV
MoV
ouT
JMP
MoV
Mov
ouT
JMP
Mov
Mov

ouTt
JMP
MoV
IN

ENDP
BEGIN

NEAR
AL,80H
DX,2FBH
DX.AL
$+2
DX,2F8H
AL.5DH
DX,AL
$+2
DX,2F9H
AL,0
DX.AL
$+2
DX.2FBH
AL,0BH

DX,AL
$+2
DX,2F8H
AL,DX

’

SETDLAB =1
To Line Control Register

1/0 DELAY

Point to LSB of Divisor Latch

This is LSB of Divisor

1/0 DELAY

Point to MSB of Divisor Latch

This is MSB of Divisor

170 DELAY

Line Control Register
8 Bits/Word, 1 Stop Bit,

0dd Parity, DLAB = 0

1/0 DELAY

In Case Writing to Port LCR Caused

Data Ready to go high

Assembly Language Sample Program

UNUSED

DTR
RTS

TRANSMIT DATA
CARRIER DETECT

DSR
CTs

RECEIVE DATA

A1l

A4

A8

B1

B4

B8

[

Connector Specifications

2-134 Serial Port

SHIELD GND
LOGIC GND
LOGIC GND
LOGIC.GND
LOGIC GND
LOGIC GND
LOGIC GND
LOGIC GND



()

®

System Power Supply

The system power supply is a 33 Watt, three
voltage-level, two-stage supply. The first stage is an
external power transformer that provides a single-fuse
protected, extra low, ac-voltage output. The power
cord is 3.08 meters (10.16 feet) long. The second stage
is an internal, printed-circuit board, which is vertically
mounted into the system board. The second stage
converts the transformer’s ac-output into three
dc-output levels.

o]
£
»
o
wn
>
172}
-t
&
=i

The amount of power available on the I/O connector
for a machine that is fully configured with internal
features is 400 mA of +5 Vdc, 0 mA of +12 Vdcand 0
mA of -6 Vdc.

Power is supplied to the system board through a
printed-circuit-board edge-connector. The diskette
drive is powered through a separate four-pin connector
mounted on the front edge of the Power Board. The
power for the diskette drive fan is provided by a
three-pin Berg-type connector mounted directly below
the diskette-drive connector. Power is removed from
the system board and diskette drive by a switch
mounted on the rear of the Power Board. Both the
switch and the transformer connector are accessible
from the rear of the system.

Power Supply 2-135



Operating Characteristics
Power Supply Input Requirements

Voltage (Vac) Frequency | Current (Amps)
Nominal| Minimum |Maximum | .5 Hz Maximum
120 104 127 60 Hz .65 at 104 Vac
Voltage ac
D.C Outputs
Vdc Regulation
Voltage Current (Amps) Tolerance
Nominal Minimum Maximum %
+5 *1.5 3.6 5
+12 .04 1.2 5
-6 0.0 .025 16
Voltage dc

* There must be a minimum of a 1.5 Amp load on the
+5 Vdc output for the -6 Vdc to be present.

2-136 Power Supply




Over-Voltage/Over-Current Protection

Input (Transformer)

The following table describes the transformer input

protection:

Voltage (Nominal)

Type Protection

Rating (Amps)

120 Vac Non-resettable Fuse
Thermal/Over-Current

SA Slo Blow

=
2
o
w
e
a
o
3

Input Protection

Output (Power Board)
The following table describes the Power Board’s output
protection:
Protection Condition
Output
Yoltages Over-Voltage Over-Current
+5 Vdc *6.3 .7 Vdc **3.9 1 .25 Amps
12 Vdc *14.4+ 1.4Vdc 2.2+ .9 Amps

* QOver-Voltage protection is provided by fuse F1.
**Resettable by removing the fault condition and removing
power for at least 5 seconds and then applying power.

Output Protection

Power Supply 2-137



Power Board (Component Side)

; Supply to
3 Diskette
4 Drive
; Fan Plug
Input From 1 3
Transformer 3
Grounding Pin
Connector
Connector Specifications
1 +12 ————>]
—2 GND
—3 GND
— 4 45 —
Power — 5 +5 > System
Board — +5 —»| Board
—7 +5 —
—8 GND
—29 GND
—10 +12 —
Connector Specifications
p [t 1 17 Vac
w
Bga :; GND Transformer
<3 17 Vac
Connector Specifications
1 +12 Vdec 1
Diskette 2 GND 2 Power
Drive 3 GND 3 Board
4 +5 Vdc 4

Connector Specifications

2-138 Power Supply




()

Fan

1
2
3

1 Power

GND
+12 Vdc 2 Board
GND { 3

Fan Connector Specifications

WI)SAG Iseg

Power Supply 2-139



Notes:

2-140 Power Supply



5

()

SECTION 3. SYSTEM OPTIONS

Contents
IBM PCjr 64KB Memory and Display Expansion - 3-5
IBM PCjr Diskette Drive Adapter ........... 313
Functional Description ................. 3-15
Digital Output Register .............. 3-15
WatchDog Timer ................... 3-16
Floppy Disk Controller (FDC) ........ 3-16
Programming Summary .............. 3-17 |
Comments ...........oiieivenenannnn 3-16
System I/O Channel Interface ........... 3-19
Drive Interface ....................... 322
AdapterOutputs ................... 3-22
AdapterInputs ..................... 3-24
Voltage and Current Requirements ........ 3-24
IBM PCjr Diskette Drive ................. 3-27
Functional Description ................. 3-27
Diskette ......ccvvveverencecnaccnssoaans 331
IBM PCjr InternalModem ............00.. 3-33
Functional Description ................. 3-34
Modem Design Parameters .............. 3-37
Programming Considerations ............ 3-40
Command Format .................. 340
Commands ..............cocvvunn.. 342
Responses ................ccou.... 3-59
Editing/Changing Command Lines .. ... 3-59
Status Conditions ..................... 3-60
Dialing and Loss of Carrier .............. 3-60

suondQ uscg




Default State .......... B 3-63

. Programming Examples ................. 363
Modes of Operation ................... 3-68
Interrupts ........ ..., 3-70
DataFormat ......................... 3-70
Interfaces .................. ... ..., 3-70

-8250A to Modem Interface ........... 3-70
Telephone Company Interface ......... 3-74
System I/O Channel ................. 3-74

IBM PCjr Attachable Joystick .............. 377
Hardware Description ........ e 3-77
Functional Description ................. 3-77
IBMColorDisplay .........ciiiiniieennns 3-81
‘Hardware Description .................. 3-81
Operating Characteristics ............... 3-82
IBM Connector for Television ............... 3-85
IBM PCjr Keyboard Cord ................. 3-87

IBM PCjr Adapter Cable for Serial Devices ... 3-89

IBM PCjr Adapter Cable for Cassette ........ 391
IBM PCjr Adapter Cable for the IBM Color
Display ......ccciiiiiiiniiinrinrnnnans 3-93
IBM PCjr Parallel Printer Attachment ........ 3-95
Description .......................... 3-96
System Interface ...................... 3-98
Programming Considerations ............ 3-99
Command Definition ................ 3-99
IBM Graphics Printer ...........c000c00ns 3-107
Printer Specifications ................. 3-107



()

DIP Switch Settings ........................... 3-101

Parallel Interface Description ................... 3-103
Data Transfer Sequence ..................... 3-103
Interface Signals .......................... 3-104

PrinterModes ........................ ..., 3-106

Printer Control Codes . ........................ 3-107

IBM PC Compact Printer . ............covveonn 3-133

Printer Specifications ............ ... .00 ... 3-135
Serial Interface Description ................ 3-139
Print Mode Combinations for the PC

Compact Printer ............ ..o, 3-140
Printer Control Codes and Functions ....... 3-140

w»
e
2
1)
=
(=}
=
=
=}
=}
7




Notes:

3-4



/-\
k/.

()

IBM PCjr 64KB Memory and Display
Expansion

The 64KB Memory and Display Expansion option
enables the user to work with the higher density video
modes while increasing the system’s memory size by
64K bytes to a total of 128K bytes. The memory
expansion option plugs into the 44-pin memory
expansion connector on the system board. Only one
memory expansion is supported.

The Memory Expansion Option does not require the
user to reconfigure the system to recognize the
additional memory.

Eight 64K-by-1, 150 ns, dynamic memory modules
provide 64K bytes of storage. The memory modules
are Motorola’s MCM6665AL.15, and Texas
Instrument’s TMS4164-15, or equivalent.

w
(>
4
(22
3
=)
=
=
=)
=
7]

When inserted, the memory expansion option uses the
ODD memory space, while the system memory is
decoded as the EVEN memory. Thus, when used as
video memory, the memory expansion option has the
video attributes while the on-board system memory has
the video characters. This arrangement provides a
higher bandwidth of video characters.

In addition to the eight memory modules, the expansion
card has logic to do the EVEN/ODD address decoding,
video data multiplexing, and a CARD PRESENT wrap.

Dynamic-refresh timing and address generation are

done on the system board and used by the memory
expansion option.

64KB Memory Expansion 3-5



The following is a block diagram of the IBM PCjr
64KB Memory and Display Expansion.

Do-D7 1 Din Doyt >
MEM A0-A7 ——————»|ADR Latch
CNTL B

A
CPU LATCH r

! ATR LATCH

L-» MDO-MD7
ATR »{ Latch
LATCH %
0dd/Even

RAS, CAS, -WE, ——|Gating —» —DISABLE E DATA
AO, CPU DLY, -DISABLE CASO
VIDEO MEMR -LCG

_L—-> -ATR CD IN

Memory Expansion Block Diagram

3-6 64KB Memorv Expansion



()

()

()

Signal

+RAS

+A0

-DISABLE EDATA

ATR LATCH

MDO thru MD7

DO thru D7

MEM A0 thru A7

I/O Description

I +Row Address Strobe.
This line is inverted and
then becomes the -RAS
for the RAM modules.

I Microprocessor Address
0. This is used to
determine whether the
miCroprocessor access is
from the system board
RAM (Low) or from the.
expansion RAM (High).

O When the expansion
RAM card is in and the-
microprocessor is reading
an ODD byte of data the
expansion card tri-states
the latch for EVEN data
on the system board
using this line.

I This signal indicates that
the expansion RAM card
should 'latch’ up data
from the expansion RAM
into the attribute latch.

0 These data lines contain
CRT information from
the attribute latch and go
to the Video Gate Array.

I/O These data lines are from
the microprocessor and
are bidirectional.

1 These are the multiplexed
address lines for the
dynamic-RAM modules.
These lines are
multiplexed between row
address and column

64KB Memory Expansion 3-7

W

e
Z
[9°]
E
=

=
(=5
S
3
w




VIDEO MEMR

CPUDLY

-DISABLE CAS 0

+CAS

3-8 64KB Memory Expansion

I

o

address, and. also
between microprocessor
and CRT addresses.
When this signal is

'high" it indicates a
MEMR is accessing the
system board or
expansion RAM is being
accessed. This line along
with AO determines if the
expansion RAM
microprocessor latch
should 'gate’ its data
onto the DO thru D7 Bus.
This line when ‘high'
indicates that a
microprocessor RAM
cycle is occurring. It is
used to gate 'off' the
expansion RAM CAS or
used with AQ to generate
the -DISABLE CAS 0
signal.

This line is used to
disable the system board
CASO when a system
microprocessor 'write' is
occurring to the
expansion RAM. This
line keeps the 'write'
from occurring to the
system board RAM.
Column Address Strobe.
This line instructs the
expansion RAM to
'latch' up the address on
the MEM AOQ thru A7
address lines.

—



GATE

-WE

CPU LATCH

~-ATR CD IN

This line is used to
instruct the system board
that attributes or ODD
graphics data should be
‘read' from the
expansion RAM card for
use by the Video Gate
Array.

This line is 'wrapped'
and becomes the -LCG
output.

This line instructs the
memory that the cycle is
a microprocessor 'write'
cycle.

w
This line instructs the P
expansion RAM card to g
'latch’' the data from o
the expansion RAM into =4
the microprocessor latch. =}
This line is a wrap of the |4
ground line on the

expansion RAM card. It
pulls 'down' an 8255
input so that the
microprocessor can tell if
this card is installed or
not.

-64KB Memory Expansion 3-9



The following is the connector specifications for the
IBM PCjr 64KB Memory and Display Expansion.

/BI]1I]I DU Q0DR0DBORORLD

Connector A1 A22

64KB Memory and Display Expansion

3-10 64KB Memory Expansion



()

Connector Connector
Pin Signal Name Signal Name Pin
A0l +RAS VIDEO MEMR B0l
AQ2 A0 CPU DLY B02
A03 -DISABLE -DISABLE B03
EDATA CAS O
A04 ATR LATCH | +CAS B04
A05 MD4 -L.CG BOS5
A06 MDS5 GATE B06
A07 MDé6 Ground B07
A08 MD7 Ground B08
A09 MDO Ground B09
Al0 MD1I -WE B10
All MD2 CPU LATCH Bil
Al2 MD3 -ATR CD IN Bi12
Al3 GND GND B13
Al4 vVCC VCC Bl14
Als D7 D6 Bl15
Alé6 D5 D4 Bl6
Al7 D3 D2 B17
Alg D1 DO B18
Al9 MEM A6 MEM A7 B19
A20 MEM A4 MEM AS B20
A2l MEM A2 MEM A3 B21
A22 MEM A0 MEM Al B22

Connector Specifications

64KB Memorv Expansion 3-11

w»
-
z
[4°]
=
o
<
=
S
5
w




Notes:

3-12 64KB Memorv Expansion



@

()

IBM PCjr Diskette Drive Adapter

The diskette drive adapter resides in a dedicated
connector on the IBM PCjr system board. Itis
attached to the single diskette drive through a flat,
internal, 60-conductor, signal cable.

The general purpose adapter is designed for a
double-density , Modified Frequency Modulation
(MFM)-coded, diskette drive and uses write
precompensation with an analog phase-lock loop for
clock and data recovery. The adapter uses the NEC
#PD765 or compatible controller, so the uPD765
characteristics of the diskette drive can be programmed.
In addition, the attachment supports the diskette drive’s
write-protect feature. The adapter is buffered on the
1/O bus and uses the system ROM BIOS for
transferring record data. An interrupt level is also used
to indicate an error status condition that requires
processor attention.

92
(>3
z
(2]
3
=)
=
=,
=]
=
73

A block diagram of the diskette drive adapter follows.

Diskette Drive Adapter 3-13



1)depy dAu(] 3PIYSIA PI-¢

:> Buffer

Clock
and
Timing
Circuit

| Write "

Write
Precompensate
Circuit

Write Data

—>o

|

L

Data Read Data
vCOoSYNC | D@ - —<]
Separator
[<STD DATA S
~Data Window y ‘r r Ar
':IEC Step
o __| >°
Disrl)(py D Direction
Controller N Write Enable
L [l> Head Select
» :} Index
P OG Write Protect
:—-Oq Track O
1‘ Drive A Motor On
Reset Watch _%
atc
Digital Dog
Control Timer Drive A Select
Port | (3 Sec) ﬁ'>“g

]

Diskette Drive Adapter Block Diagram .

(




()

Functional Description

From a programming point of view, the diskette drive
adapter consists of a 4-bit digital output register (DOR)
- in parallel with a NEC uPD765 or equivalent floppy

disk controller (FDC).

Digital Output Register

The digital output register (DOR) is an output-only
register used to control the drive motor and selection.
All bits are cleared by the I/0 interface reset line. The

bits have the following functions:

Bit 7 6

w
Lo
4
1/0 -Address Hex F2 o
2 1 0 2
L. E
2
-
Drive Enable e
Reserved 7
Reserved
> Reserved
» Reserved

—» Watch Dog Timer Enable

» Watch Dog Timer Trigger

Note: All bits are cleared with channel reset.

» FDC Reset

Digital Output Register

Bit 0

Bits 1-4

This bit controls the motor and enable
lines to the drive. When 'high' (1), this
bit will turn 'on' the drive motor and
‘enable' the drive. When 'low' (0), this
bit will turn 'off' the drive motor and
'disable ' the drive.

These bits are reserved.

Diskette Drive Adanter 3-18



Bit 5 When 'high' (1), this bit 'enables’ the
WatchDog Timer function and interrupt.
When 'low' (0), this bit 'disables' the
WatchDog Timer and interrupt.

Bit 6 This bit controls the start of a watchdog
timer cycle. Two-output commands are
required to operate the trigger. A1 and —
then a O must be written in succession to -
'strobe’ the trigger.

Bit 7 This bit is the hardware 'reset' for the
floppy diskette controller chip. When
'low' (0), this bit holds the FDC in its
'reset' state. When 'high' (1), this bit
releases the 'reset’' state on the FDC.

WatchDog Timer

The WatchDog Timer (WDT) is a one to three-second

timer connected to interrupt request line 6 (IRQ6) of

the 8259. This timer breaks the program out of data

transfer loops in the event of a hardware malfunction. —
The WatchDog Timer starts its cycle when 'triggered.'

Floppy Disk Controller (FDC)

The floppy disk controller (FDC) contains two registers
that can be accessed by the system microprocessor: a
status register and a data register. The 8-bit
main-status register contains the status information of
the FDC and can be accessed at any time. The 8-bit
data register consists of several registers in a stack with
only one register presented to the data bus at a time.
The data register stores data, commands, parameters,
and provides floppy disk drive (FDD) status
information. Data bytes are read from or written to the —
data register in order to program or obtain results after

3-16 Diskette Drive Adanter



a particular command. The main status register can
only be read and is used to facilitate the transfer of data
between the system microprocessor and FDC.

o FDC Register I/0 Address
L_ Data Register hex F5
! Main Status Register =~ hex F4
Programming Summary
The FDC is set up with the following Parameters during
system power up:
4
Parameter Power-up Condition Y
[1°]
Sector Size hex 02 for 512 Byte Sectors g
=
Sector Count 9 g'
=
7]
C/ Head Unload hex OF - Has no effect on system
operation.
Head Step Rate hex D - This gives a step rate of
6 milliseconds.
Head Load Time hex 1 Minimum head load time.
Format Gap hex 50
Write Gap hex 2A
Non-DMA Mode hex 1
Fill byte for Format hex F6

C” FDC Power-up Parameters Settings

Nk atta Diriva Adanfar .17



' The IBM PCjr Diskette Drive Adapter and BIOS use
and support the following FDC commands:

« Specify

+ Recalibrate

¢ Seek

« Sense interrupt status
+ Sense Drive status

+« Read data

+ Write data

+« Format a track

Nofte: Please refer to the Diskette section of the
" BIOS listing for details of how these commands are
used.

The following FDC hardware functions are not
implemented or supported by the IBM PCjr Diskette
Drive Adapter.

« DMA data transfer

« FDC interrupt

« Drive polling and overlapped seek
« . FM data incoding

« Unit select status bits

2 Heads (1 per side)

40 Cylinders (Tracks)/Side

9 Sectors/Track

512 Bytes/Sector

Modified Frequency Modulation (MFM)

Diskette Format

3-18 Diskette Drive Adanter



Constant Value

Head Load Not Applicable
— Head Settle 21 Milliseconds
it Motor Start 500 Milliseconds

Drive Constants

Comments

S

Head loads when diskette is clamped.
2. Following access, wait Head Settle time before
RD/WR.
3. Drive motor should be 'off' when not in use. Wait
Motor Start time before RD/WR.
4. All system interrupts except IRQ6 must be
'disabled’ during diskette data transfer in order to
(/‘ . prevent data under-run or over-run conditions from
N occurring.

w
el
128
[1°]
3
Q
=]
=
3
=
17 ]

System I/0O Channel Interface
All signals are TTL-compatible:

Most-Positive Up-Level + 5.5 Vde
Least-Positive Up-Level + 2.7 Vde
Most-Positive Down-Level + 0.5 Vdc
Least-Positive Down-Level -0.5 Vdc

The following lines are used by this adapter:

+DO0 thru 7 (Bidirectional, Load: 1 74LS,

./— ) Driver: 74LS 3-state)
N

Diskette Drive Adapter 3-19



+AO0 thru 3

-IOW

-IOR

-RESET

+IRQ6

-DISKETTE
CARD
INSTALLED

3-20 Diskette Drive Adapter

These eight lines form a bus through
which all commands, status, and data
are transferred. Bit O is the

low-order bit.
(Adapter Input, Load: 1 74LS)

These four lines form an address bus
by which a register is selected to
receive or supply the byte
transferred through lines DO-7. Bit 0
is the low-order bit.

(Adapter Input, Load: 1 74LS)

The content of lines D0-7 is stored
in the register addressed by lines
AO0-3 at the trailing edge of this
signal.

(Adapter Input, Load: 1 74LS)

The content of the register addressed
by lines AQ-3 is 'gated’ onto lines
DO-7 when this line is 'active.'
(Adapter Input, Load: 1 74LS)

A down level 'aborts’ any operation
in process and 'clears' the digital
output register (DOR).

(Adapter Output, Driver: 74LS
3-state)

This line is made 'active' when the
WatchDog timer times out.
(Adapter Output, Driver: Gnd.)
This line is pulled 'up’ on the

System Board and is wired to input
port bit PC2 on port hex 62 of the



()

-Diskette CS

A9

DRQ 0

DACK 0

8255. This line is used by the
program to determine if the diskette
drive adapter is installed.

(Adapter Input, Load: 1 74LS)

This line is shared with the modem
CS line and is 'low' whenever the
microprocessor is doing IOR or IOW
to either the diskette adapter or the
modem. This line should be
conditioned with A9 being 'low' to
generate a DISKETTE CS.
(Adapter Input, Load: 1 74LS)

This line is the microprocessor
address line 9. When this line is
'low' and -DISKETTE CS is 'low’,
IOR and IOW are used by the
diskette adapter.

(adapter Output, Driver: NEC upd
765)

w
>3
&
-
(9]
=
=)
=
=,
=
=]
@

This output would indicate to a
DMA device on the external I/O
Channel that the diskette controller
wants to 'receive' or 'transmit' a
byte of data to or from memory.
(Adapter input, Load: NEC upd
765)

This line should come from an
external DMA and should indicate
that a byte is being transferred
from/to the Floppy Disk Controller
to/from memory.

Diskette Drive Adapnter 3-21



Drive Interface

All signals are TTL-compatible:

Most Positive Up Level + 5.5 Vdce
Least Positive Up Level + 2.4 Vdc
Most Positive Down Level + 0.4 Vdc
Least Positive Down Level -0.5 Vdc

All adapter outputs are driven by active collector gates.
The drive should not provide termination networks to
Vcce (except Drive Select which has a 2,000 ohm

resistor to Vcc).

Each attachment input is terminated with a 2,000 ohm

resistor to Vcc.

Adapter Outputs

-Drive Select

~-Motor Enable

-Step

3-22 Diskette Drive Adapter

(Driver: MC3487)

This line is used to 'degate’ all
drivers to the adapter and receivers
from the adapter (except Motor
Enable) when the line is not
'active, '

(Driver: 741.S04)

The drive must control its spindle
motor to 'start' when the line
becomes 'active' and 'stop' when

the line becomes 'inactive.'
(Driver: MC3487)

The selected drive must move the
read/write head one cylinder in or



()

()

()

=Direction

-Write Data

-Write Enable

-HEAD
SELECT 1

out as instructed by the Direction
line for each pulse present on this
line.

(Driver: MC3487)

For each recognized pulse of the
step line the read/write head should
move one cylinder toward the
spindle if this line is active, and
away from the spindle if not-active.
(Driver: 74L.S04)

For each 'inactive' to 'active'
transition of this line while Write
Enable is 'active', the selected
drive must cause a flux change to be
stored on the diskette.

(Driver: MC3487)

The drive must 'disable’ write
current in the head unless this line
is 'active.'

w
e
24
o
3
=)
=]
=
(=]
=
*

(Driver: MC3487)

This interface signal defines which
side of a two-sided diskette is used
for data recording or retrieval. A
'high' level on this line selects the
R/W head on the side 1 surface of
the diskette. When switching from
side 0 to side 1 and conversely, a
100 us delay is required before any
‘read' or 'write' operation can be .
initiated.

Diskette Drive Adapter 3-23



Adapter Inputs

-Index The selected drive must supply
one pulse per diskette
revolution on this line.

-Write Protect The selected drive must make

this line 'active' if a
write-protected diskette is
mounted in the drive.

-Track 0 The selected drive must make
this line 'active’' if the
read/write head is over track

- 0.

-Read Data The selected drive must supply
a pulse on this line for each
flux change encountered on the
diskette.

Voltage and Current Requirements

The diskette drive adapter requires a voltage supply of
+5 Vdc +/- 5% and draws a nominal current of 525
mA and a maximum current of 700 mA.

3-24 Diskette Drive Adapter



e

Signal Cable
Connector [~ Keyed (Pin 5 Missing)

33 1
34..':2::.::2.2112.2: 2 )

COC I O
CJ C a0l 11 ] [ ] C 1 C_ 10
ol 10 —

A15 A1l
Opposite Side

System Board

Connector
B15 B1
Diskette Drive Adapter
Z
Pin 2
At Standard TTL Levels Number =
Ground - Odd Numbers — 1 Through 33 'E‘o:
5 (See o
Unused 2,4,6 Note) 2
-INDEX. 8 >
le—— Unused 10
l«—— -DRIVE SELECT 12
Diskette |«—— Unused 14 Diskette
Drive l«—— -MOTOR ENABLE 16 Drive
| «——— -DIRECTION (Stepper Motor) 18 Adapter
l—— -STEP PULSE 20
le—— -WRITE DATA 22
le——— -WRITE ENABLE 24
-TRACK O 26 ==
-WRITE PROTECT —mm ————— 28—
-READ DATA 30 >
l¢———-SELECT HEAD 1 32
Unused 34

Note: Pin 5 is missing to match the key plug on the signal cable.

Connector Specifications (Part 1 of 2)

Diskette Drive Adapter 3-25



Signal Name

Diskette Drive Adapter

Signal Name

D7 ~—>r—

D6 ~—p»—

DB ~—p—
GND

D4 <P

D3 «—»—

D2 ¢+——

AO01

AO05

A10

A15

BO1

BO5

B10

B15

[—— +5V
<——— -DISKETTE CS
——————— A9

e——-|OR
[¢———— -IOW

GND
—> ~-CARD INSTL
~—— -RESET
- +HV

System Board

System Board

Note: All-levels are TTL compatible.

Connector Specifications (Part 2 of 2)

3-26 Diskette Drive Adapter




()

C

IBM PCjr Diskette Drive

The system unit has space and power for one diskette
drive. The drive is double-sided with 40 tracks for each
side, is fully self-contained, and consists of a
spindle-drive system, a read- positioning system, and a
read/write/erase system.

Functional Description

The diskette drive uses modified frequency modulation
(MFM) to read and write digital-data, with a
track-to-track access time of 6 milliseconds.

To load a diskette, the operator rotates the load lever at
the front of the diskette drive clockwise and inserts the
diskette into the slot. Plastic guides in the slot ensure
the diskette is in the correct position. Closing the load
lever centers the diskette and clamps it to the drive hub.
This same action also loads the Read/Write heads
against the surfaces of the diskette. The load lever is
mechanically interlocked to prevent closing of the lever
if a diskette is not installed.

The head-positioning system moves the magnetic head
to come in contact with the desired track of the
diskette. Operator intervention is not required during
normal operation. If the diskette is write-protected, a
write-protect sensor 'disables' the drive’s circuitry,
and an appropriate signal is sent to the interface.

Data is read from the diskette by the data-recovery
circuitry, which consists of a low-level read-amplifier,
differentiator, zero-crossing detector, and digitizing
circuits. All data decoding is done by the adapter card.

Diskette Drive 3-27



The IBM PCjr Diskette Drive is equipped with a media
cooling fan, which gets its power from the power supply
board.

The diskette drive also has the following sensor
systems:

o The track 00 sensor, senses when the head/carriage
assembly is at track 00.

o The index sensor, which consists of an LED light
source and phototransistor. This sensor is
positioned so that when an index hole is detected, a
digital signal is generated.

« The write-protect sensor 'disables' the diskette
drive’s electronics whenever it senses a
write-protect tab on the diskette.

The drive requires power within the following

specifications:
Specification +5 Vdc Input | +12 Vdc Input

Nominal Supply +5 Vdc +12 Vdc
Ripple (0 to 50 kHz) 100 mV 100 mV
Tolerance (Including Ripple) 5% +5%

Standby Current (Nominal) 600 mA 400 mA
Standby Current (Worst Case) 700 mA 500 mA
Operating Current (Nominal) 600 mA 900 mA
Operating Current (Worst Case) 700 mA 2400 mA

Diskette Drive Power Specifications

For interface information refer to “Diskette Drive
Adapter” in this section.

For mechanical and electrical specifications see
Appendix D.

3-28 Diskette Drive



()

Key Signal Cable Power
Slot Connector Connector

~_—
T

2
(o) ite Side
; pposi 33

Fan Connector

N

4

wn
Diskette Drive Connectors =
I~
5
=)
=
=2
)
1 ,+12 Vdc 1 2
Diskette 2 GND 2 Power
Drive 3 GND 3 Board
4 +5 Vdc 4
Connector Specifications (Part 1 of 2)
Diskette 1 GND 1
Drive +12 Vde ————— 2 Power
Board
Fan 3 GND 3

Connector Specifications (Part 2 of 2)

Diskette Drive 3-29



Notes:

3-30 Diskette Drive



Diskette

‘The IBM PCjr Diskette Drive uses a standard 133.4

mm (5.25 in.) diskette. For programming
considerations, single-sided, double-density,
soft-sectored diskettes are used for single-sided drives.
Double-sided drives use double-sided, double-density,
soft-sectored diskettes. The figure below is a simplified
drawing of the diskette used with the diskette drive.
This recording medium is a flexible magnetic disk
enclosed in a protective jacket. The protected disk, free
to rotate within the jacket, is continuously cleaned by
the soft fabric lining of the jacket during normal
operation. Read/write/erase head access is through an

opening in the jacket. Openings for the drive hub and
diskette index hole are also provided.
0.140 Inch 0.25 £ 0.01 Inch i ‘
(3.56 mm) —s|}«= — (6.30 £ 0.25 mm) ;’n‘“de Coated
— ylar Disk
\ - l —_— Sealed
S ] J \ Protective
I prmg Jacket
S1€E
c|E
e 5.25 Inch
T o[~ {133.4 mm)
o|©
© H|+H .
ol|w Liner
@l o
mvg
5.25 Inch ~ Spindle
{133.4 mm) Access Head
Hole Aperture Index Hole

Recording Medium

Nickeatte 3111

| suondQ mal's‘(s




Notes:

3-32 Diskette



C

()

()

-the system ROM BIOS, and is discussed later in this

IBM PCjr Internal Modem

The IBM PC,r Internal Modem is a 65 mm (2.5 inch) -
by 190 mm (7.5 inch) adapter that plugs into.the PCjr
system board modem connector. The modem
connector is an extension of the system I/O bus. All
system control signals and voltage requirements are
provided through a 2 by 15 position card-edge tab with
0.254 cm (0.100-inch) spacing on the modem adapter.:

Functional Description

The Internal Modem. consists of two major parts: (1) -
the INS8250A Asynchronous Communication Element,
and (2) the Smart 103 Modem. Therefore, the
programming must be considered in two parts. The :
INS8250A communications protocol is a function of .

suondQ wasAyg

section. All 'pacing' of the interface and control-signal
status must be handled by the system software. After
the INS8250A is initialized, the modem is controlled by
ASCII characters transmitted by the INS8250A.

Key features of the INS8250A used in the modem'
adapter are:

o Adds or deletes start bits, stop bits, and parity bits
to or from the serial data stream

o Full double-buffering eliminates the need for precise
synchronization

o Independently-controlled transmit, receive, line
status, and data-set interrupts

« Programmable baud-rate-generator allows division
of the baud clock by 373 (hex 175) for a 300-bps
transmission-speed or 1017 (hex 3F9) for a 110-bps
transmission-speed to generate the internal 16 x
clock.

Internal Modem 3-33



¢« Modem-control functions: Clear to Send (CTS),
Data Set Ready (DSR), Data Terminal Ready
(DTR), Ring Indicator (RI), and Data Carrier
Detect (DCD)

¢ Fully-programmable serial-interface

characteristics: —_—
— 17, or 8-bit characters
— Even, odd, or no-parity bit generation and
-detection
— 1 stop-bit generation
— Baud-rate generation
o False-start bit detection
« Complete status reporting capabilities
« Line-break generation and detection
» Internal-diagnostic capabilities
— Loopback controls for communications-link
fault-isolation
— Break, parity, overrun, framing-error simulation
o Fully prioritized-interrupt system-controls

Key features of the Smart 103 Modem used on the IBM _ vv
PCjr Internal Modem are:

« Direct connection to a telephone company line
through an FCC Part-68-approved permissive
connection

« Compatible to Bell Series 100 originate/answer for
modulation and handshaking

« All functions controlled by ASCII characters and
INS8250A modem-control lines

o Uses modular phone-jack (USOC RJ11)

» Data rate is either 300 or 110 bits-per-second

« Auto/manual originate

o Auto/manual answer

« Communication mode is full duplex on two-wire,
switched-network channels _

3-34 Intermal Modem



N

()

()

Auto dialer; either DTMF ([dual-tone
modulated-frequency] touch-tone) or pulse-dialing
(rotary dial) by software command

Tandem dialing

Call-progress reporting

Dial-tone, ring-back tone, and busy-tone detection

Internal Modem 3-35

w
=
z
(2]
=
=)
.=
=,
S
S
w




Chip Select

Data Bus

Interrupt

Clock (1.7 MHz)

8250A
Asychronous
Communications
Element

103
Demodulator

RJ11
Phone
Jack

Data
3870
Control Micro-
o controller
\
Interface
Circuit

IBM PCjr Internal Modem Block Diagram

3-36 Internal Modem




Modem Design Parameters

The following tables describe the design parameters of
the Smart 103 Modem.

N
C/ Dialer Type: Two modes
1. Forced Touch-Tone (DTMF) dialing

2. Forced pulse dialing

Tandem Dialing: The ASCII character P (hex 50 or 70) in
the dial string causes a delay of up to 10
seconds while the modem is searching
for another dial tone. A time out will
cause the modem to hang up and post
status. The ASCII character W (hex 57
or 77) in the dial string causes a
5-second dead wait before continuing to
dial. Multiple ASCII W’s will cause
multiple waits.

Pulse Dialing; Rate: 10 + 1, -0 pulses per second
7 \ Duty Cycle: 60% make, 409% break
N Interdigit Delay: 800 ms £ 50 ms

DTMF Dialing: Tone Duration: 85 ms + 10 ms
Intertone Duration: 80 ms £ 10 ms

Dialer Parameters (Part 1 of 2)

Internal Modem 3-37

9]
s
v
-
[1°]
2
Q
=]
=
=)
=]
w




Tone Pair Frequencies:
ASCII Digit Code Frequency (Hz)
0 941 1336
1 697 1209
2 697 1336
3 697 1477
4 770 1209
5 770 1336
6 770 1477
7 852 1209
8 852 1336
9 852 1477
* 941 1209
# 941 1477

Dialer Parameters (Part 2 of 2)

Time Out Duration: A data call will time out if an answer
tone is not detected within 45 seconds of
the last digit dialed.

Failed Call Time Out Parameter

Modulation: Conforms to Bell 103/113 specification using
binary phase-coherent frequency shift keying
(FSK).

Modulation Parameter

3-38 Internal Modem



Mode

Originating End

Answering End

Transmit 1070 Space 2025 Space
1270 Mark 2225 Mark
1/-_-\ %
b'! Receive 2025 Hz Space

2225 Hz Mark

1070 Hz Space
1270 Hz Mark

Transmitter/Receiver Frequency Parameters

Receive Sensitivity

More negative or equal to 42 dBm.

Receive Sensitivity Parameters

Transmitter Level

Fixed at -10 dBm as per FCC Part 68
Permissive connection.

C' Transmitter Level Parameter

()

Internal Modem 3-39

2
[
wn
-
o
2
=)
=
2.
=}
=]
7




Programming Considerations

" The modem and the IBM PCjr system can communicate
.commands or data between each other. Any commands
sent to the modem from the IBM PCjr are stripped
from the data stream and executed but are not
transmitted to the receiving station. The data is —
transparent to the modem. The modem is capable of
. causing hardware interrupts as the result of certain
conditions, and in response to queries for its status.

Commands to the modem are.a sequence of characters
preceded by a single command character. The
command-character tells the madem that the following
character sequence, until a carriage return, is a
command. The carriage return completes.the command
sequence and causes the modem to execute the
commands. The command character (represented by
[ec] in the following text) is programmable (with the
NEW command) to any ASCII character (hex 00 thru
7F). The default for the command character is Ctrl N
(ASCI hex OE). S
Commands can occur anywhere in the data stream if

properly formatted but are not to be executed by the

modem until a carriage returnis received.

Multiple commands are allowed if separated by commas
and preceded by a single command character.

Command Format

The following is the command format that all
commands must follow.
[ce][command word][delimiter][arguments] [,more][CR]

—

where:

3-40 Internal Modem



()

[cel

is the single ASCII command
character.

[command word]  is the command word or the first

letter of the command word.

[delimiter] . is always a space when separating

an argument and command word.

Any spaces thereafter are ignored
- until the modem sees a comma, an
- argument or a carriage return.

[arguments] is a variable that is replaced by any
character allowed by the command
definition.

[,more] is any additional commands

[CR] is a carriage return that completes

The following are two examples of command format. -

preceded by a comma. .

the command sequence and causes
the modem to execute the
commands.

suondQ waIsAg '

[ec] COUNT 5 [CR]
sample test [ec] VOICE, D (408)
555-1234,QUERY [CR]

Format Guidelines

1.

Commands can occur anywhere in the data stream if
properly formatted but are not be executed by the
modem until a carriage return is received.

Multiple commands are allowed if separated by
commas and preceded by a single
command-character.

Only the first character of the command word is
significant. All remaining characters are ignored up
to the first space following the command word. In
other words, the DIAL command and DUMMY are
treated identically.

Internal Modem 3-41



4. The modem does not discriminate between
upper-case and lower-case characters.

5. There are three ways to send the current
command-character as data to a receiving station:

a. Consecutively sending it twice:.

[ee][ec]
This would send the character a single time.

b. Change the command character (with the NEW
command) to another ASCII character and then
transmit the previous command-character.

c. Place the modem in the Transparent mode and
then transmit the character.

Commands
The commands that are used with the integrated
modem are listed on the following pages in alphabetical

order:

Each of the commands has its syntax described
according to the following conventions:

1. Words in capital letters are keywords. Only the first
letter of the keyword is required, the others are
optional.

2. You must supply any arguments which are in
lower-case letters. Valid characters for arguments
are defined as:
¢« m - ASCII decimal digits 0to 9, *, #,1, P, and W
« n - ASCH hexadecimal digits 0 to F
e 0 - ASCII hexadecimal digits O to 9

o p-any ASCII character

3-42 Internal Modem

—



()

r—

3. All arguments are examined for validity. If extra
characters are used in an argument, the extra
characters are ignored. If the argument is invalid,
the command is ignored.

4. An ellipsis (...) indicates an item may be repeated as

many times as you wish.

5. All command lines must begin with a command
character. The default command-character is
(CONTROL N).

6. Multiple commands separated by commas can
follow a single command-character.

An example of the DIAL command is given below:
Command format - DIAL m...m
Command line - DIAL 1 800 555 1234
If an invalid argument or no argument is given, the
command is not executed. Also, a question mark (?) is

given as the error response and the command line is

aborted.
The commands are as follows:

Internal Modem 3-43

w
t
W
~—
(a°]
=
=)
=]
.55
S
=
w




Format: = ANSWER
A
Purpose: To logically take the phone off the hook and force

ANSWER mode. This is logically like a manual
answer.

Format: Break n

Purpose: To send a space or break character for a duration
equal to a muitiple of 100 ms (n x 100 ms).

3-44 Internal Modem



()

Format:

Purpose:

Default:

COUNT n
Cn

Where n is the number of complete rings in the range
of hex 0 to hex F.

When answering an incoming call, the modem
answers the phone after n complete incoming rings,
where n is any value from hex 0 to F.

A value of zero specifies that the modem not answer
an incoming call, but still carry out any instructions
from the host.

When dialing, the modem waits n + 3 complete
ringbacks before cancelling the call.

2
B
4
o
=
=)
©
=
S
=
@

If n exceeds 4, the 45-second abort timer cancels an
outgoing call with an "UNSUCCESSFUL" response,
as more than seven ringbacks exceeds 45 seconds.

Sets the ring count when the modem is answering an
incoming call or dialing a call.

Internal Modem 3-45



Format:

Purpose:

Default:

DIAL m...m

D m..m

Where m...m is a dial string of ASCII decimal digits 0 ;
through 9, *, #, I, P, and W. A maximum of 33 —
characters are allowed in the dial string. The first
character of the string defaults to P (a 10-second

delay while searching for the dial tone). W causes

the modem to delay five seconds, then continue

dialing.

W or P must start a string, can also occur anywhere
within a string, and causes the digits to be tone
dialed.

The characters * and # represent the two extra
buttons on a push-button phone, but may be used for
other things.

I causes the next digits to be pulse dialed. The I —
stays in effect until a (P,), (W,),or end of command.

The modem then searches for line busy, ringing, or
incoming carriers while posting the status.

To cause the modem to dial.
P (10-second timeout). (If this command is used

without an argument, the last number dialed is
redialed once.)

3-46 Internal Modem



()

/\
.\_/.

Format:

Purpose:

Default:

FORMAT n
Fn

Where n is one of the following:

n Parity Data Length Stop Bit
0 Mark 7 1

1 Space 7 1

2 Odd 7 1

3 Even 7 1

4 None 8 1

5-7 Reserved

The 8250A line control register (LCR) must specify
the same format as defined in the FORMAT n
command to 'enable' data/command
communication.

n
D
&%
—
o
=
=
=
=
=]
=]
N

Do not combine this command with any other
commands except the SPEED command on a single
command line.

Note: If programming in BASIC, this command
must be used in addition to specifying the same
parity and data length in the BASIC 'open'
statement.

To change the parity and number of stop-bits being
transmitted at either end, to a new format.

3

Internal Modem 3-47



Format:

Purpose:

.HANGUP

To perform a clean disconnect and go on-hook.
Logically the same as manually hanging up.-

Format:

INITIALIZE
I
This command is executed in 10 seconds and is the

same as a cold start. An ""OK" response is not
returned after execution and the integrity test code in

- the QUERY command is set..

Places the modem in the power-up. default-state.

3-48 Internal Modem



Format: LONG RESPONSE o

Lo
'L_/ Where o is one of the following:

o Mode -Responses

0 Verbose
"BUSYI_l
"CONNECTED" -
"NO ANSWER" -
"NO DIAL TONE" -.
IIOKH {C<IJ
"RING” ) %
"UNSUCCESSFUL" E
"2" (Question _S
Mark) =t

1 Terse (Hex code) %

C 30
| 31
32
33
34
35
36
37

Note: The dial string is not echoed in the terse
mode.

Purpose: Modifies message feedback. Information is posted in -
the status area.

—

/
\—  Default: 0 (Verbose mode)

Internal Modem 3-49



Format:

MODEM
M

Forces the modem into the data state where the

- carrier is placed on the telephone line and proper

connection-protocols are followed.

This command is equivalent to ANSWER if the data
state started as autoanswer.

Format:

Purpose:

Default:

‘NEW p

Np
where p is any ASCII character.(hex OE)

Changes the command character to an ASCII
character.

Ctrl N (ASCII hex OE)

Format:

ORIGINATE
(o)
Logically takes the phone off-hook and forces the

ORIGINATE mode. Logically equivalent to manual
originate.

3-50 Internal Modem



Format: PICKUP
P

(. Purpose: Logically takes the phone off-hook and puts the

N modem in the voice state.
w
A
@
o
3
o
=
=2

N

Internal Modem 3-51



Format:

QUERY

Q

To query the modem for its status information.

Possible characters returned by the modem are as
follows:

Responses Meaning

HO or H1 Hook status: HO = on-hook, H1 =
off-hook.
S0 to SF Current ringcount setting in hex.

Line busy.

Line dead: no dial-tone found or no
ring/no busy timeout after dialing.
Successful dial and handshake.

Dial not recorded: dial tone present
after dialing.

No answer: ringcount plus 3
exceeded.

w$ Zr OWw

TO Integrity test passed.
T1 Integrity test failed.

The first group of characters is always returned for a
QUERY command. The second group of characters
is returned only after a dialing sequence has been
started or a change has occurred in the dialing status.
The third group of characters is returned when a
TEST command has occurred. All characters except
the first group are erased by being read and do not
appear in response to the next QUERY unless the

3-52 Internal Modem



condition has recurred in the interim. The QUERY
response overrides any incoming data from the
telephone line.

/ . Format: RETRY
N
R

Purpose: When placed after a DIAL command, it causes the
modem to execute up to 10 redials at a rate of one
per 40 seconds. The redials are triggered by a busy
detection after dialing.

w
>
23
o
=
=)
-]
=
=]
=
£ 2}

()

()

Internal Modem 3-53



Format:

SPEED o
So

Where o is one of the following:

o bps
0- 110
1- 300
2- Reserved

Note: Do not combine this command with other
commands except the FORMAT command on a
single command line.

The SPEED command must be issued before the
8250A baud rate is changed.

Note: If programming in BASIC, this command

must be used in addition to specifying the same

bps rate in the BASIC ‘open’ statement.
Purpose: Sets the baud rate.

Default: 1 (300 bps)

3-54 Internal Modem



()

)

——

(

Format:

TRANSPARENT n...n
Tn...n:

Where n...n is the number of bytes to transmit in the
range of hex 0 to hex FFFF.

Places the modem in the transparent mode for the
next n...n bytes.

The modem does not look for command sequences
but instead transmits every character it receives.

The argument can be up to four ASCII-coded hex
digits long. This provides a range of 65,536 bytes.

If an argument is not included with the
TRANSPARENT command, the command is ignored
because it has no default.

2
e
172}
-,
0o
=
o
]
=
S
=
w

The transparent mode is terminated when:

1.  n...ncharacters have been transmitted.

2.  Loss of carrier timeout.

3. INS8250A OUT 1 pin goes ‘active.' (The
INS8250A -OUT 1 signal should remain
'active' until the transparent mode is
requested again.)

The modem exits the transparent mode before

processing the next complete character from the

host.

To re-enter the transparent mode, the sequence is:

Internal Modem 3-55



1. The INS8250A -OUT 1 pin changes to, or
= remains in the 'inactive' state.

2. The command string containing the
- TRANSPARENT ¢ommand is issued.

An argument of 0 causes a permanent
transparent mode which can be exited by the
INS8250A -OUT 1 pin going 'active.'

JFormat:

VOICE

\4

Forces the modem to the voice state where no tones
or carriers are placed or searched for on the

. telephone line.

This state is used for voice communication, when the
modem is an autodialer or answering device only. It
is also necessary to be in the voice state to transmit
DTMF tone-pairs.

This command 'disables' the autoanswer function.
The status responses are:

1. If a busy signal is detected '"'BUSY OK'".

2. Any other condition "OK...(16
dots)....CONNECTED".

3-56. Internal Modem



Format:  WAIT

w
/\/ ‘Purpose: . Causes the modem to take no action, including
' -autoanswer, until the next command is received from

the host. All commands following the WAIT
command in a single command-line are ignored.

Format: XMIT m...m
X m...m

-Purpose: Instructs the modem to transmit the DTMF

()

tone-pairs found in the argument string m...m. This
is only valid in the voice state. Delays between digits
can be caused by inserting W’s in the string.

-suopd() Lua;s&g

Each W causes a five-second delay.

Internal Modem 3-57



Format:

ZTEST o

Zo

Where o is one of the following:
o Test

0 - Hardware Integrity Test
1-  Analog Loop Back Test

Places the modem in the test mode specified by the
argument.

For modes other than the integrity test, the modem
stays in the test mode until any other command is
received.

For the integrity test, the test is performed, status
posted, and then the modem returns to service
immediately. The integrity test takes eight to 10
seconds to execute and its completion is signaled. by
an ""OK'" message.

All commands following the ZTEST command in a
single command-line are ignored.

3-58 Internal Modem



Responses

Autoanswer

If -DTR is 'active', the modem goes off-hook and
proper connection protocols including the two-second
billing delay are followed. If connection is made, the
modem sends "CONNECTED" to the host and posts
the status in the status area.

Editing/Changing Command Lines

Corrections to the command line can be performed by
aborting current-command lines and typing a new line
or by entering the correct command later on in the
current-command line.

The last command entered on a single command-line
supersedes any previously entered command that
performs an opposite function.

7
e
4
(23
=
=
!
=.
3
=
v

A Control X or backspace received by the modem
immediately aborts the entire command line.

Internal Modem 3-59



Opposite Commands

The command line is scanned after its completion (after
[CR] is entered). Commands which cause an action
during the scan (for example, DIAL) are not candidates
for opposite treatment. Only commands which

'preset' a static condition can be opposites.

They include:

Count (n) two entries, latest are used
Format (n) : two entries, latest are used
New (p) two entries, latest are used
Speed (n) two entries, latest are used
Transparent n..n two entries, latest are used
Modem - Voice these are opposites only when

on-hook

Note: Answer and originate are not opposites; each
of these causes an action when scanned.

Status Conditions

The modem sends the host messages as defined in the
LONG RESPONSE command for dialing success or
failure. Hardware interrupts for carrier loss and
detecting incoming rings are provided on the 8250A.

Dialing and Loss of Carrier

The dialing process begins with the modem searching
for a dial tone if it is not in the blind dialing mode. If a
dial tone is not detected, the modem hangs up, the
appropriate status characters are posted, and the '"NO
DIAL TONE" message is returned to the host.

If a dial tone is found, the modem continues to dial.
When a P is encountered in the dial string, the modem

3-60 Internal Modem



)

()

delays for up to 10 seconds to search for another dial
tone and returns the '"NO DIAL TONE' message to
the host if a dial tone is not detected. When a W is
encountered in the dial string, the modem delays for
five seconds before continuing to dial. Consecutive
W’s are allowed in a dial string.

Anytime a P or W is not followed with an I in a dial
string, the next digits are tone-dialed. When an I
follows a P or W, all following digits are pulse-dialed
until a P, W, or end of command ([CR]) is detected.

The modem ignores any character except 0 through 9,
* #,1, P, or W while dialing. This allows the user to
place parentheses and dashes in the dial string for
greater legibility.

The modem checks the telephone line again after it has
dialed the digits in the dial string. If a dial tone is found
immediately, the dialed digits are not recorded and the
modem posts this to the status characters, hangs up,
and sends the "UNSUCCESSFUL'" message to the
host. If the line is busy, this is also posted to the status
characters and the modem hangs up and returns the
"BUSY" message to the host. If the line is ringing, the
modem begins counting the number of rings. If this
count exceeds the value of COUNT + 3, the modem
hangs up and takes the same actions as above. If no
answer tone is detected within 45 seconds after
completion of dialing, the modem hangs up and takes
the same actions as above.

v
i
Py
o
=
=
=
=
=
=]
73

Finally, if the call is answered, the modem either looks
for a carrier and begins the handshake sequence (if it is
in the data or modem state) or remains silent (if it is in
the voice state). In the voice state, the modem looks
for busy, and transmits a response (1) when the line is

Internal Modem 3-61



found not busy, or (2) if it is found busy, in which case
it also hangs up and possibly dials again. In voice state,
ringback count and abort time out are not used.

If, during the process of establishing the data link after
dialing, the modem receives any character from the host

or - DTR goes 'inactive ', the modem aborts the call —_
with a clean disconnect, clears the balance of the

command line, and sends an "OK'' message. Also, the
modem does not carry out the instruction sent from the

host, even if the character is a command character.

In the data state, the modem transmits a message after
successful completion of the handshake, or after it has
determined that the handshake failed. An unsuccessful
handshake is evidenced by absence of carrier at the
proper time.

If a carrier drops out for more than two seconds in the

data state, the modem begins a timeout lasting

approximately 17 seconds. At the end of the timeout,

the modem hangs up. Any command received during _
the 17 seconds resets the timer.

The modem does not automatically reestablish the
connection if the carrier returns after this dropout
interval. This allows the user or software to intercede
by commanding the modem to go into the voice state,
to hang up immediately, or to take some other action.
The data connection may also be terminated by a
HANGUP command while carriers are still present. A
voice connection is always terminated by a HANGUP
command.

3-62 Internal Modem



)

Default State

Upon power up or after an INITIALIZE command is
given, the modem returns to the default state as
follows:

« A verification of hardware integrity is performed
and the result posted to the status characters.

e The remaining status characters cleared.

o The modem is placed in the data state awaiting a
dialing request or incoming ring.

e The Transparent mode is cleared.

« All loopback modes are cleared.

e The wait mode is cleared.

e The command character is set to Control-N.

« The data format is set to 7 data bits, even parity,
and one stop bit.

« Rimgcount is set to 0 (auto answer 'disabled')

o The modem is set to on-hook.

« The message mode is set to verbose.

suondQ luéls.ig

Programming Examples

Call progress reporting is done in two modes, verbose
messages or terse messages as defined in LONG
RESPONSE command to the Serial In (SIN) pin of the
8250A. The power-up default is the verbose messages
mode, and these messages from the modem are in
capital letters. Also, in call progress reporting, the
status area is updated.

The following examples are representative of real-time

call-progress reporting. The italicized entries are user
entries.

Internal Modem 3-63



Example 1:

OK [cc]Dial 555-1234 [CR]
NO DIAL TONE
OK

In this example, no dial tone is detected within -

the time out period.

Example 2:
OK
[cc]Dial 555-1234 [CR]

RING ..o, CONNECTED OK

In this example, a modem answer tone is detected.
Example 3:

OK

[cc]Dial 1(301)555-1234 [CR]

‘13015551234..... BUSY.

OK .

In this example, busy is detected. .

3-64 Internal Modem



Example 4:

- OK
N [cc]Dial 555-1234 [CR]
5551234........

In this example, ring count is exceeded
- before ringing stops.

Example 5:
OK
‘[ec]Dial 555-1234 [CR]
5551234.........

suond () wajsig

In this example, a failed-call time-out occurred because an
answer tone was not detected within the allotted time.

Internal Modem 3-65



Example 6:

OK , '

[cc]Dial 99P555-1234 [CR] —
99t

Cseeeeenens NO DIAL TONE

OK

In this example, the second dial-tone is not detected within the
time out period.

Example 7:
OK
[cc]Dial 99P421-7229 [CR]

In this example, busy is detected within the time-out period. .-

3-66 Internal Modem



__ Example 8:

e

__

//\ .
N

OK
[cc]Dial 99WW555-1234 [CR]
00t a e s s senes
4217229....
RING....cccovrrrrierrennes CONNECTED OK
In this example, the access code is dialed and two dead waits are <
performed. Then, the second number is dialed and a modem %
answers. =
=)
=
Example 9: =
0K ’
[cc]Dial 555-1234, Retry [CR]
5551234.......cuuueueee... BUSY
5551234................. BUSY
5551234.............. CONNECTED OK

In this example, the modem dials a number with auto redial.
The first two times, the number is busy.
The third time, a modem answers.

Internal Modem 3-67



Modes of Operation

The different modes of operation are selected by
programming the 8250A Asynchronous
Communication Element. This is done by selecting the
I/O address (hex 3F8 to 3FF) and writing data out to
the card.

The 8250A is externally programmed to provide
asynchronous, ASCII, 10 bit character length including
start, stop, and parity on the serial-output pin (SOUT,
pin 11). The data rate is 110 or 300 bits-per-second.
The commands can be either upper-case or lower-case
characters. See the command, Format [n], earlier in this
section for additional information.

For further information refer to “Bibliography.”

3-68 Internal Modem



//\\

Hex Input/ Mode
Address | Register Selected Output | 1 | 2 | Notes
3F8 Transmit Buffer Write | XX | XX *
3F8 Receive Buffer Read | XX]|XX *
3F8 Divisor Latch LSB Write | 75 | F9 **
3F9 Divisor Latch MSB Write | 01 | 03 **
3F9 Interrupt Enable Write | OF | OF *
3FA Interrupt Read |XX|XX
Identification
3FB Line Control Write | 1A | 03
3FC Modem Control Write | 01 | Ol
3FD Line Status Read |XX|[XX
3FE Modem Status Read |XX|[XX
3FF Scratch Pad Write | XX [XX
*DLAB = 0 (Bit 7 in line control Register). .
**DLAB =1 (Bit 7 in line control Register).
Mode 1 - 300 BPS - 7 Data Bits, 1 Stop Bit, Even Parity.
Mode 2 - 110 BPS - 8 Data Bits, 1 Stop Bit, No Parity.

\_~ 8250A Register Description

()

Internal Modem 3-69

2
D
&
-
o
=
=
=
=1
=}
=
@




Interrupts

One interrupt line is provided to the system. This
interrupt is IRQ4 and is 'positive active.' The interrupt
enable register must be properly programmed to allow
interrupts.

Data Format

The data format is as follows:

DO D1 D2 D3 D4 D5 D6 D7

BEBREEE.

Transmit Start Parity Stop
Data Bit Bit Bit

Marking

Transmitter Output and Receiver Input Data Format

Data bit 0 is the first bit to be transmitted or received.
The attachment automatically inserts the start bit, the
correct parity-bit if programmed to do so, and the stop

bit.
Interfaces
8250A to Modem Interface
The following describes the 8250A to 103 modem
interface:
Signal Description

3-70 Internal Modem



()

()

INS8250A -OUT 1

-OUT 2

SouT

-RTS

-DTR

SIN

-R1

-CTS

The 'inactive' state enables
entry into the transparent
mode using the UNLISTEN
command. The 'active' state
'disables’' the transparent
mode.
No connection.
Serial output from the 8250A.
-Request To Send

No connection.

-Data Terminal Ready

1. To accept a command,
-DTR must be 'active.'

7
e
172}
&
(4]
=
=
=
=
S
=
wn

2. If -DTR goes 'inactive ',
the modem does a clean
disconnect sequence.

3. In auto-answer mode, the
modem does not go
off-hook, but RI on the
8250A will be toggled if
the ringing signal is
present.

Serial input to the 8250A.

The ring indicator pulses with
an incoming ring voltage.

~Clear To Send

Internal Modem 3-71



-DSR

- =RLSD

-RESET, +XRESET

AO,A1,A2,A9

-MODEM CS
DISKETTE CS

3-72 Internal Modem

This line is wired 'active' on

‘the modem adapter.

-Data Set Ready

"This line is wired 'active' on

the modem adapter.

-Received Line Signal Detect -

When 'low’, this line
indicates the data carrier has
been detected. If the carrier

drops out for longer than two

seconds, this line goes
'inactive' and starts the
timeout timer.

These lines are used to reset

- or initialize the modem logic

upon power-up. These lines
are synchronized to the falling
edge of the clock. Its
duration upon power up is
26.5 ms -RESET is 'active
low'. +XRESET is "active

high.*

Address bits 0to-3 and bit 9.
These bits are used with
-MODEM CS to select a
register on the modem card.

This line is 'active' for
addresses hex OF0 thru OFF
and 3F8 thru 3FF. It is gated
with A9 in the 8250A to
exclusively decode hex 3F8
thru 3FF.

,
—



()

)

DO thru D7

-IOR

-JOW

BAUDCLK

+MODEM INTR

~-CARD INSTALL

.The content of lines DO .thru - -

- addressed by AO thru A2 at

Data bits 0 thru 7:

These eight lines form a bus
through which all data is
transferred. Bit 0 is the least
significant bit (L.SB).

The content of the register
addresses by line AQ-thru A2
is. gated onto lines DO thru D7
when this line is 'active’,
-MODEM CS is 'active', and
A9 is 'high.'

S7 is stored in the register
the leading edge of this signal

when -MODEM CS is
'active', and A9 is 'high.'

2
(]
23
(a3
=
=
=
=%
=}
=
@

" This-is a 1.7895 MHz clock

signal used to drive the Baud-
Rate Generator.

This line is connected to-the
+IQRP4 on the 8259A
Interrupt Controller.

This line indicates to the
system BIOS that an IBM
PCjr Internal Modem is
installed in the feature
location.

Internal Modem 3-73



Telephone Company Interface

The telephone company interface is a 600 Ohm,
balanced, two-wire telephone-interface design that
meets the FCC Part 68 rules. A 2.13 meter (7 foot)
modular telephone cord is included with the modem

adapter.

Line-status detection of dial tone, ringback tone, busy,
and incoming ring is provided along with automated
routines which react to detected conditions.

The modem card has one USOC RJ11 jack.

System I/0 Channel

The following shows pin assignments for the system
board modem connector. Pins Al to Al5 are on the
component side.

3-74 Internal Modem



T |
O M’ﬂ}@‘

Telephone Cable
Connector

'3 —

6
3 | \000amuonomonom; g
g -
\ / A15 A1 e
Grounding Pin System Board Opposite Side S
Connect
ctor Connector B15 B1 _8
=5
(=]
Internal Modem Connectors 2
'-\v
Signal Name Pin Number
UNUSED 1
UNUSED 2
Telephone [«¢ RING 3 » Modem
Cable le——— TIP 4 ———
UNUSED 5
UNUSED 6
Connector Specifications (Part 1 of 2)
s
L/

Internal Modem 3-75



Signal Name

+5 Vdce
-MODEM CS/DISKETTE CS
A9

~RESET

GND

A2

A1l

AO

GND

-IOR

-lIow

GND

-CARD INSTALL
+XRESET

+5 Vdce

Internal Modem

Signal Name

PEifeefeetlttts

BO1

BO5

B10

B15

AOD1

AO5

A10

A15

[ D7

" f=— D6

<— D5

—— GND
<— D4

l— D3

lt— D2

— GND
l— D1

- DO

— MODEM INTERRUPT
GND
<—— BAUDCLK
<— +5 Vdc

[ +12 Vde

All levels are LSTLL compatible.

_Connector Specifications (Part 2 of 2)

3-76 Internal Modem




IBM PCjr Attachable Joystick

The Attachable Joystick is an input device intended to
provide the user with two-dimensional _
- positioning-control. Two pushbutton switches on the
L joystick give the user additional input capability.

Hardware Description

Two modes of operation of the joystick are available.
In the “Spring Return” mode the control stick returns
to the center position when released. The “Free
Floating” mode allows smooth, force free operation
with the control stick remaining in position when
released. Selection of these modes can be made for
each axis independently. Two controls are provided for
individual adjustment to the electrical center of each
axis.

92
(]
4
(5]
=
=)
=
=
(=}
=
»n

—
‘- Functional Description

Positional information is derived from two
potentiometers Rx and Ry. The resistance of these
potentiometers will vary from 0 to 100K ohms
nominally as the position of the control stick moves
from left to right (X-axis) and from top to bottom
(Y-axis). A linear taper is used on the potentiometers
so that a linear relationship exists between angular
displacement of the stick and the resulting resistance.
Electrical centering for each axis is accomplished with
the controls by mechanically rotating the body of the
potentiometer. Adjustment in this manner has the
effect of varying the minimum and maximum resistance
relative to the extremes of the angular displacement.
The two pushbuttons provided on the joystick are
single-pole, single-throw, normally-open pushbuttons.

()

Attachable Joystick 3-77



The following are the logic diagram and specifications
for the two Attachable Joystick connectors.

A4-+5V O—
X - Position
B2 - Rx Potentiometer —
A3-R O )
yO ~ Y - Position
Potentiometer
B4-S10 O Oo—

Switch 1

Switch 2 —

A2 -GND O

Attachable Joystick Logic Diagram

3-78 Attachable Joystick



A4 A1l
B4 B1

Attachable Joystick Connector

Joystick

Signal Name

Pin Number

Connector Specifications

Keyplug AO1

LOGIC GND A02

Y-AXIS RESISTANCE A03

[ — +5 V AO4 System

SHIELD GND BO1 Board
X-AXIS RESISTANCE BO2 >
SWITCH BO3 >

SWITCH BO4 ——>

Attachable Joystick 3-79

suoudol uiaxs&s




Notes:

3-80 Attachable Joystick



/-\\
—

()

IBM Color Display

The IBM Color Display is a Red/Green/Blue/Intensity
(RGBI)-Direct-Drive display, that is independently
housed. and powered.

Hardware Description
The IBM Color Display’s signal cable is approximately

1.5 meters (5 feet) in length. This signal cable must be -

- attached to the IBM PCjr with the IBM PCjr Adapter
Cable for the IBM Color Display which provides a
direct-drive connection from the IBM PCjr

A second cable provides ac power to the display from a
standard wall outlet. The display has its own power
control and indicator. The display will accept either
120-volt 60-Hz power or 220-volt 50-Hz power. The -

- power supply in the display automatically switches to
match the applied power.

The display has a 340 mm (13 in.) CRT. The CRT and
analog circuits are packaged in an enclosure so the
display may be placed separately from the system unit.
Front panel controls and indicators include: Power-On
control, Power-On indicator, Brightness and Contrast
controls. Two additional rear-panel controls are the
Vertical Hold and Vertical-Size controls.

Color Display 3-81

suondQ wa;s,(gl




Operating Characteristics

Screen

» High contrast (black) screen.
« Displays up to 16 colors.
o Characters defined in an 8-high by 8-wide matrix.

Video Signal

e Maximum video bandwidth of 14 MHz.

« Red, green, and blue video-signals, vertical sync,
horizontial sync, and intensity are all independent.
All input signals are TTL compatible.

Vertical Drive

o Screen refreshed at 60 Hz with 200 vertical lines of
resolution.

Horizontal Drive

——’

« The horizontal drive frequency is 15.75 kHz.

3-82 Color Display



Color-Display Connector

IBM Color
Display

Signai Name

Color Direct-
Drive 9-Pin

D-Shell
Connector

p
5

Ground

Ground

Red

9-Pin

lt— Green

Connector

- Blue

le—— Intensity

Not Used
l<¢— Horizontal Drive

W oONOOO H_HWN-

lee— Vertical Drive

Connector Specifications

Color Display 3-83

suond () wAIsAg




Notes:

3-84 Color Display



()

IBM Connector for Television

The Connector for Television is a sealed Radio
Frequency (RF) Modulator that imposes the composite
video and audio signals onto the RF carrier-wave
supplied by the modulator. The connector unit has two
two-position switches. One switch selects between the
computer’s signal or the standard-TV signal from an
antenna as the input to the TV. The other switch
selects either channel 3’s or channel 4’s carrier-wave
frequency for input to the TV. This allows users to
select the weaker TV channel for their area reducing
the amount of interference with the computer’s input
signal. Signal input from the computer is provided by a
five-conductor cable with a six-pin IBM PCjr-dedicated
connector. Two spade-lug terminals provide for
TV-antenna-cable connection. One twin-lead flat-type
TV-cable provides input to the TV.

7
]
o
o
[2°]
=
=
=
=
e
5
7]

The following is the connector specifications for the
IBM Connector for Television.

Connector for Television 3-85



Connector for TV Connector

System Unit
Connector

+12 Volts «——| A1 B1 Logic GND
No Pin A2 B2 |——» Audio
Video <«——— A3 B3 p—— Shield GND

Connector Specifications

3-86 Connector for Television



()

()

IBM PCjr Keyboard Cord

The IBM PCjr Cordless Keyboard can be attached to
the PCjr using the optional Keyboard Cord. The
Keyboard Cord is a 1.8 meter (6 foot), two twisted-pair
cable, with a six-position RJ11-type connector for the
keyboard and a six-position Berg-type connector for
the system unit.

The Keyboard Cord option should be used in an
environment that is unfavorable for use of the infra-red
link. For instance, brightly lit high-intensity light areas,
or multiple IBM PCjr areas where keyboards can
conflict with one another.

Insertion of the cord’s keyboard connector into the
keyboard actuates switches internal to the keyboard.
The switches 'deactivate' the IR transmitter by
removing the power supplied by the keyboard’s
batteries. The system unit’s infra-red (IR) receiver
circuit is 'disabled’ by the -CABLE CONNECT
signal, supplied when the system-unit end of the cord is
connected.

w

=
2
[2°]
=
=

©
=,
S
5
w

The following figures show the connector specifications
for the Keyboard Cord.

Keyboard Cord 3-87



Keyboard Cord Connectors

Keyboard

3

Signal Name

— -CBLKEYBD DATA

Pin-Number

A01

—+5 V

A02

_|: -CABLE.CONNECT
LOGIC GND

A03
BO1

BO2

Connector Specifications

3-88 Keyboard Cord

BO3

Keyplug

System
Board



IBM PCjr Adapter Cable for Serial
Devices

. The Adapter Cable for Serial Devices is a 72 mm
/K, (3-inch) long, nine~conductor cable terminated with a
' 16-position Berg-type connector and a 25-pin -
“D”-shell connector. This cable allows serial devices
- that terminate with a standard EIA-RS232C 25-pin
“D”-shell connector to be connected to the IBM PCjr.

The following figures show the connector specifications
for the Adapter Cable for Serial Devices.

-
5
4
| o
E
K=
=
=5
S
3
122}

25-Pin D-Shell
Connector

)

{ Adapter Cable for Serial Devices
\/

Serial Devices Cable 3-89



System
Connector

Al —

A2 —
A3 —
A4 ——
A5 =
A6 —
A7 —
A8 —
B1 —
B2 —

B3 - B8 —

25-Pin D-Shell
Cable Connector
Not Used
DATA TERMINAL READY |—— 20
REQUEST TO SEND — 4
TRANSMIT DATA — 2
CARRIER DETECT —— 8
DATA SET READY —— 6
CLEAR TO SEND ——5
RECEIVE DATA 3
SHIELD GND —1
SIGNAL GND —7
Not Used

Connector Specifications

3-90 Serial Devices Cable



IBM PCjr Adapter Cable for Cassette

This option is an adapter cable that allows connection
of a cassette recorder to the IBM PCjr cassette
connector.

.

The cassette recorder to be connected must use the
following type connectors:

« Belden Style-51 miniture phone-plug (Auxiliary)
« Belden Style-51 miniture phone-plug (Earphone)
« Belden Style-56 subminiture phone-plug (Remote)

The following figures show the connector specifications
for the Adapter Cable for Cassette.

suondQ waIskg

IHHIHHHHH H

gmlﬂ

e

&/ Adapter Cable for Cassette Connectors

Cassette Adapter Cable 3-91



GND—— A1 B1 p————Keyplug
EARPHONE———— A2 B2 p———AUX.
MIC—— A3 B3 ————REMOTE GND
REMOTE — ‘A4 B4 SHIELD
Connector Specifications (System End)
(Part 1 of 2)
System
Cassette Connector Connector Pin
Signal B2
Aux. (Red)
Gnd A1
Signal A2
Ear (Black)
Gnd A1
Signal A4
' Remote (Gray)
Gnd B3

Connector Specifications (Recorder End)
(Part 2 of 2)

3-92 Cassette Adapter Cable



—

C

)

IBM PCjr Adapter Cable for the IBM
Color Display

This adapter cable allows the IBM Color Display to be
connected to the IBM PCjr.

The following figures show the connector specifications
for the adapter cable for the IBM Color Display.

7

f

]
, il g,

cl
i e

J
L]

Color Direct-
Drive 9-Pin
D-Shell
Connector

Adapter Cable for IBM Color Display Connectors

Color Display Connector 3-93

W
L
4
o
=
=
©
=
S
5
w




System
Connector

A1
A2
A3
A4
A5
A6
A7
A8
A9
B1
B2
B3
B4
BS
B6
B7
B8
B9

Cable

9-Pin Color
Display Connector

Not Used
Not Used
Not Used

I Red

Green
Blue
Intensity

- Not Used

Not Used
Vertical

| Not Used

Horizontal
Not Used
Ground
Not Used

| Not Used

Not Used
Ground

O WG

|

Connector Specifications

3-94 Color Display Connector



IBM PCjr Parallel Printer Attachment

The Parallel Printer Attachment is provided to attach
various I/O devices that accept eight bits of parallel
data at standard TTL-logic levels. The card measures
76mm (3 inches) high by 244mm (9.6 inches) long.

The Parallel Printer Attachment attaches as a feature to
the right-hand side of the system unit. It connects to
the 60-pin Input/Output (I/O) connector where power
and system-input signals are received. A parallel
printer attaches to the Parallel Printer Attachment
through a 25-pin female “D”-shell conmector located
on the rear edge of the attachment, where a cable and
shield can be attached. The logic design is compatible
with the IBM Personal Computer printer adapter.

The attachment card has 12 TTL buffer-output points
which are latched and can be 'written' and 'read’
under program control using the processor 'IN' or
'Out’ instructions. The attachment card also has five
steady-state input-points that may be 'read’ using the
processors’ 'IN' instructions.

In addition, one input can also be used to create a
processor interrupt. This interrupt can be 'enabled’
and 'disabled' under program control. ‘Reset’ from
the power-on circuit is also ORed with a
program-output point allowing a device to receive a
power-on 'reset' when the processor is 'reset.’

When the Parallel Printer Attachment is used to attach
a printer, data or printer commands are loaded into an
8-bit latched output-port, then the strobe line is
'activated' to 'write' data to the printer. The
program can then 'read’' the input ports for printer

Parallel Printer Attachment 3-95

W

-
!A‘
(2°]
3
=

©
=
S
=
w




status indicating when the next character can be written.
or it may use the interrupt line to indicate not busy to
the software.

The output ports can also be 'read’ at the card’s
interface for diagnostic-loop functions. This allows
fault-isolation determination between the printer
attachment and the attached printer. .

Description

During a system I/O 'read’ or 'write', with the proper.
address selection, data may be 'written' to or 'read’
from the Parallel -Printer Attachment. The data and
Control Registers must be manipulated by the system

- software to be consistent with the attaching hardware.
The following is a block diagram of the Parallel Printer
Attachment card..

3-96 Parallel Printer Attachment



25-Pin -

3 Connector-
Bus Buffer Data Latch
R 18
™1 Enable CLK [g
- Trans- [
ceiver
ADRS’ - |DIR
READ
DATA 9]
e
z.‘
_ WRITE DATA | =
-
- XI0/-M 5
— WRITE CONTROL =]
READ STATUS §
FREAD
CONTROL
. Command Bus Control
Decoder ' Buffers Latch Drivers . | gLCTIN
: " | STROBE
: K
-»1 Enable 5 : CL.  AUTO
31 , > FD XT'
: INIT
+1 Enable.
— ERROR
> ‘ CLR SLCT
PE
| ACK
BUSY
Reset

Parallel Printer Interface Block Diagram

()

 Parabllel Printer Attachment 3-97



System Interface

The Parallel Printer Attachment reserves addresses hex
378, through hex 37F. 10/-M must also be 'active
high' when addressing the Parallel Printer Attachment.

A card selected signal (-CARD SLCTD) is provided to
the system I/O when the above addresses are used, and
the I0/-M bit is 'active high.'

Specific commands are decoded from AQ, Al, RD, and
WR per the following table. Input A2 is not used.

Addresses (hex) Operation Comments

378 'Read’ Read Data Latch

379 'Read’ Read Status

37A 'Read’ Read Control
Latch

37B 'Read’ Unused

37B 'Write' Write Data Latch

379 "Write ' Unused

37A "Write ' Write Control
Latch

37B "Write ' Unused

All data transfers take place over the 8-bit I/O
data-bus with timing provided by the 8088
microprocessor. (IOR, IOW, I0/-M)

An interrupt is provided to the system through the I/O
connector of the Parallel Printer Attachment. This

3-98 Parallel Printer Attachment



()

/l ~

()

interrupt is 'positive active ', Interrupt Level 7
(+IRQ7). Bit 4 of the control latch must be 'written
high' to allow interrupts. When the -ACKnowledge
signal ('low active' signal goes 'high') the I/O device
causes a level 7 interrupt. See the following figure.

3-State +IRQ7
-ACK Buffer
I._A G
Control Bit 4 INV

+IQR7/-ACK Logic Diagram

Programming Considerations

The Parallel Printer Attachment can serve as a general
purpose peripherial driver. This section describes a
configuration which supports attachment to the IBM

Graphics Printer.

Command Definition

For the parallel-printer application, the following bit

definitions apply.

Data Latch - Address hex 378

A 'write' to this address causes data to be latched onto
the printer data bits. A 'read’' from this address
presents the contents of the data latch to the processor.

Parallel Printer Attachment 3-99

e
z}‘
(2
2
=

=i
=
=
=
9




MSB 7 6 5 4 3 2 1 0 LSB
Data Data Data Data Data Data Data Data

Bit Bit Bit Bit Bit Bit Bit Bit
7 6 5 49 3 2 1 0

Data Latch Format

Printer Status - Address hex 379, hex 7D, Input Only

This port provides real-time feedback and status to the
system from the printer.

3-100 Parallel Printer Attachment



Signal

Bit Name Description
S MSB 7 -BUSY When this signal is at a low level,
{ the printer is busy and cannot
— accept data. It can become low

during data entry, off-line printing,
head translation, or error state.

6 -ACK When port B is read, this bit will
represent the current state of the
printer ACK signal. A low level
means that a character has been
received and the printer is ready to
accept another. Normally, this

signal will be low for approximately ;
5 microseconds before BUSY goes =
away. =
5 -PE A low level indicates that the printer -g
has detected an end of form. s
2 . . 2
’\\—/ 4 +SLCT A high level indicates that the i
g printer is selected.
3 -ERROR | A low level indicates that the printer
has encounted an error condition.
2 Unused.
Through
0LSB

Printer Status

Printer Control - Address hex 37A

This port contains printer control signals. A 'write'
latches control bits to the printer; a 'read' presents the
contents of the latches to the processor. See the
following timing diagram:

()

Parallel Printer Attachment 3-101



‘BUSY

1
— ACKNLG :
)
{ 0.5 us Minimum _
Approximately |
6 us H
H I
1 1
1 1
DATA f ! |
—_— 1 \ 1
— STROBE 7
|

Parallel Interface Timing Diagram

The following figure describes the printer control
signals.

3-102 Parallel Printer Attachment



)

s

Description

C

Signal
Bit Name
{ MSB7
Through
5
4 +INTERRUPT
ENABLE
3 SLCT IN
2 INIT
1 AUTO FD XT
LSBO STROBE

Unused.

A high level in this bit position
will allow an interrupt to
occur when —~ACK goes high.

A low level in this bit position
selects the printer.

A low level will initialize the
printer (50 microseconds
minimumy). '

A low level will cause the
printer to line feed anytime a
line is printed.

A 5 microsecond (minimum)
low active pulse clocks data
into the printer. Valid data
must be present for §
microseconds (minimum)
before and after the STROBE

pulse.

Printer Control Signal

‘The following are the connector specifications for the
IBM PC;jr Parallel Printer Attachment.

Paraliel Printer Attachment 3-103




25-Pin D-Shell
Connector

Parallel Printer Attachment Connectors

——

7
g

25-Pin “D”-Shell'Connector
Pin Signal Iy, Max Iog Max | Source
| -STROBE 14 ma -6 ma Attachment
Card

2 DATA BIT 0| 24 ma -2.6 ma Attachment

Through | Through Card.

9 DATA BIT 7

10 -ACK 74LS Input| 74LS Input | Printer

11 BUSY 74LS Input| 74LS Input | Printer

12 PE 74LS Input| 74LS Input | Printer

13 SLCT | 74LS Input| 74LS Input| Printer -

14 -AUTO 14 ma .6 ma Attachment
FD XT Card

15 -ERROR 74LS Input| 74LS Input |. Printer

16 -INIT 14 ma. 6 ma Printer
PRINTER

17 -SELECT 14 ma .6 ma | Attachment
INPUT Card

18 GND N/A N/A

Through

25

Connector Specifications (Part 1 of 2)

3-104 Parallel Printer Attachment




()

()

()

Parallel Printer
Attachment to 1/0

Signal Name

Expansion Connector

D1
D2.
D4
GND
D7
A0
A2
GND -
Ab
A6-
A8
-DACKO
A11
A12
GND
A15
GND
A17
A19
GND
-MEMR
-MEMW
ALE
GND
10/-M
READY
-CARD SLCTD
GND
IRQ7
AUDIO IN

B1

B85

B15

B20

B25

B30

810

A1l

A5

A10

A15

A20

A25

A30

T T TTTTT T

Connector Specifications (Part 2 of 2)

Parallel Printer Attachment 3-105

Signal Name

DO
+12 Vdc
D3

D5

D6

+5 Vde
A1

A3

A4
GND
A7

A9
A10
DRQO
A13
Al14
A16
GND
A18
-1OR
~-lIOW
GND
HDLA
CLK
RESET
+5 Vde
-HRQ
IRQ1
IRQ2

Reserved

suopdo uia;s&s




Notes:

3-106 Parallel Printer Attachment



C

()

IBM Graphics Printer

The IBM Graphics Printer is a self-powered,
stand-alone, tabletop unit which attaches to the system
unit through a 6-foot parallel-signal cable, and obtains
120 Vac power from a standard wall outlet through a
seperate cable. It is an 80 CPS (characters per second),
bidirectional, wire-matrix device that can print in a
compressed mode of 132 characters per line, in a
standard mode of 80 characters per line, in a double
width-compressed mode of 66 characters per line, and
in a double width mode of 40 characters per line. It can
also print double-size and double-strike characters. It
prints the standard ASCII, 96-character, uppercase and
lowercase character sets and also has a set of 64 special
block characters. It has an extended character set for
international languages, subscript, superscript, an
underline mode, and programmable graphics. The
Graphics printer accepts commands that set the
line-feed control desired for the application.

w

e
<&
—t
(2]
=
=)

<
=
S
=
w

It attaches to the system unit through the IBM PCjr
Parallel Printer Attachment. The cable is a
25-conducter, shielded cable with a 25-pin “D”’-shell
connector at the system unit end, and a 36-pin
connector at the printer end.

Printer Specifications

Print Method: Serial-impact dot matrix
Print Speed: 80 CPS
Print Direction: Bidirectional with logic seeking

Number of Pins in Head: 9

Printers 3-107



Line Spacing: 1/16 inch (4.23 mm) or programmable
Matrix Characteristics: 9 by 9

Character Set: Full 96-character ASCII with
descenders plus 9 international characters/symbols

Graphic Characters: See ‘“Additional Printer
Specifications”

Printing Sizes:

Normal 10 characters-per-inch with a
' maximum of 80 characters-per-line
Double Width 5 characters-per-inch with a
maximum of 40 characters per line
Compressed 16.5 characters-per-inch with a
maximum of 132 characters per line
Double Width-Compressed
8.25 characters-per-inch with a
maximum of 66 characters per line

Subscript 10 characters-per-inch with a
maximum of 80 characters per line
Superscript 10 characters-per-inch with a

maximum of 80 characters per line

Media Handling: Adjustable sprocket-pin-feed with
4-inch (101.6 mm) to 10-inch (254 mm) width paper,
one original plus two carbon copies (total thickness not
to exceed 0.012 inch (0.3 mm)), minimum paper
thickness of 0.0025 inch (0.064 mm)

Interface: Parallel 8-bit data and control lines

Inked Ribbon: Black, cartridge type with a life
expectancy of 3 million characters

3-108 Printers



Environmental Conditions: Operating temperature is
5 to 35 degrees centigrade (41 to 95 degrees
Fahrenheit), operating humidity is 10 to 80%

non-condensing

Power Requirements: 120 Vac, 60 Hz, 1 A maximum
with a power consumption of 100 VA maximum

Physical Characteristics:
Height 107 mm (4.2 inches)
Width 374 mm (14.7 inches

Depth 305 mm (12 inches)
Weight 5.5 kg (12 pounds)
Z
Additional Printer Specifications ]
Printing Characteristics =
=]
- Extra Character Set 7
-
Set 1 Additional ASCII numbers 160
to 175 contain European
characters. Numbers 176 to
223 contain graphic characters.
Numbers 224 to 239 contain
selected Greek-characters.
Numbers 240 to 255 contain
math and extra symbols.
Set 2 The differences in Set 2 are
ASCII numbers 3,4,5,6, and 21.
ASCII numbers 128 to 175
contain European characters.
Graphics There are 20 block characters and
T programmable graphics.

Printers 3-109



DIP Switch Settings

There are two Dual-Inline-Package (DIP) switches on
the control circuit-board. In order to satisfy the user’s
specific requirements, desired control modes are
selected by the DIP switches. The functions of these
switches and their preset conditions at the time of
shipment are shown in the following figures.

DIP Switch2  DIP Switch 1
/ /

M= &Il 5o
01

I:I: DOCO>O
DDDLH 0 [ o

o

\DD[]O I]o[l .

Location of DIP Switches

3-110 Printers




()

()

Switch Factory
Number Function On Ooff Position
1-1 Not Applicable | — — On
1-2 CR Print Print and On
Only Line Feed |
1-3 Buffer Full Print Print and Off
Only Line Feed
1-4 Cancel Code Invalid Valid Off
1-5 Not Applicable | — — On
1-6 Error Buzzer Sound No Sound On
1-7 Character Set 2 Set 1 Off
Generator
1-8 SLCT IN Signal| Fixed Not Fixed On
Internally | Internally
Functions and Conditions of DIP Switch 1
Switch Factory
Number Function On Off Position
2-1 Form Length 12 Inches |11 Inches Off
2-2 Line Spacing 1/8 Inch 1/6 Inch Off
2-3 Auto Feed XT Fixed Not Fixed Off
Signal Internally |Internally
2-4 1 Inch Skip Over | Valid Invalid Off
Perforation

Functions and Conditions of DIP Switch 2

Printers 3-111

w
e
4
=
=
=
.=
=
=
-
7




‘Parallel Interface Description

Specifications
Data Transfer Rate
- Synchronization

Signal Exchange
Logic level

Connector

1000 cycles-per-second
(cps)-(maximum)

- By externally-supplied

STROBE pulses
-ACKNLG or BUSY signals.

Input data and all

interface-control signals are
compatible with the
Transistor-Transistor Logic
(TTL) level.

Plug 57-30360:(Amphenol).

Connector-pin assignments:and descriptions of
respective interface-signals are provided in the

. following figures.

Data Transfer Sequence

-The following figure shows the Parallel Interface

Timing.

3-112 Printers



BUSY

1
P — 1
C ACKNLG N
: 1
. : 0.5 psec (Minimum)

-Approximately
5 pus ’ , :

DATA )
— STROBE :
|
et
!}‘
Parallel Interface Timing Diagram : 5
=
=
L] . 5.
I - Interface Signals 2
_ <
- =Strobe STROBE pulse to read-data in. Pulse

width must be more than 0.5 ps at the
receiving terminal. The signal is
normally 'high'; however read-in of
-data is performed at the 'Low' level
of this signal.

- Data 1-8 These signals are the first to eight bits
-of parallel data. Each signal is at a
'high' level when data is a logical 1
and 'low' when data is a logical 0.

- =ACKNLG Approximately 0.5 us:pulse (low)
indicates that data has been received
and the printer is ready to accept data.

BUSY A 'high' signal indicates that the -
printer cannot receive data. The
. signal is 'high' in the following cases:
« During data entry

()

Printers 3-113



¢ During printing operation
o In the “off-line” state
e During printer-error status

PE A 'high' signal indicates that the
printer is out of paper.
SLCT This signal indicates that the printer is

in the selected state.

Auto Feed XT  When this signal is 'low' paper is fed
one line after printing. This signal
level can be fixed 'low" by DIP
switch pin 2-3.

INT When this signal is 'low' the printer
controller is reset to its initial state
and the print buffer is cleared. This
signal is normally 'high' and its pulse
width must be more than 50 us at the
receiving terminal.

Error This signal is 'low' when the printer
is in the “Paper End,” “Off Line,”
and “Error” state.

-SLCTIN Data entry to the printer is possible
only when this signal is 'low'. This
signal can be fixed 'low' by DIP
switch 1-8.

Notes:

1. All interface conditions are based on TTL level.
Both the rise and fall times of each signal must be
less than 0.2 pus.

2. Data transfer must not be carried out by ignoring
the -~ACKNLG or BUSY signal. Data transfer can
only occur after confirming the -ACKNLG signal or
when the BUSY signal is 'low'.

The following figure shows the pin assignment and
direction of each signal.

3-114 Printers



Signal Return
Signal Pin # Pin # Direction
o -STROBE 1 19 In
( } DATA 1 2 20 In
~— DATA 2 3 21 In
DATA 3 4 22 In
DATA 4 5 23 In
DATA S 6 24 In
DATA 6 7 25 In
DATA 7 8 26 In
DATA 8 9 27 In
-ACKNLG 10 28 Out
BUSY 11 29 Out
PE 12 30 Out o
SLCT 13 — Out Z
AUTO FEED XT 14 — In z
NC 15 — — =
oV 16 — — =
.=
CHASSIS GND 17 — — =
r\_ NC 18 - — Z
. GND 19-30 — —
g INT 31 — In
ERROR 32 — Out
GND 33 — =
NC 34 — —
35 — —
-SLCT IN 36 — In
Pin Assignments
Printer Modes
The IBM Graphics Printer can use any of the
combinations listed in the following table and the print -
mode can be changed at any place within the line.
K_/- Modes can be selected and combined if they are in the

same vertical column.

Printers 3-1158



Printer Modes

Normal XXX
Compressed XXX
Emphasized
Double Strike X
Subscript X X
Superscript

Double Width
Underline

> X

>
>
3 3¢
>
<
3 < ¢
<
B
> 4 ¢

Printer Modes

| Printer Control Codes

On the following pages are complete codes for printer
characters, controls, and graphics. You may want to
keep them handy for future reference. The printer
codes are listed in ASCII-decimal numeric-order (from
NUL which is O to DEL, which is 127). The examples
given in the Printer-Function descriptions are written in
the BASIC language. The “input” description is given
when more information is needed for programming
considerations.

ASCII decimal values for the printer control codes can
be found under “Printer Character Sets.”

The Descriptions that follow assume that the printer
DIP switches have not been changed from their factory
settings.

Printer code Printer Function
NUL Null:

Used with ESC B and ESC D as a list
terminator. NUL is also used with
other printer.

3-116 Printers



CR

()

control codes to select options (for example, ESC S).
Example:

LPRINT CHRS$ (0);

Bell:

Sounds the printer buzzer for 1 second.
Example:

LPRINT CHR$(7);

Horizontal Tab:

Tabs to the next horizontal tab stop. Tab
stops are set with ESC D. Tab stops are set
every 8 columns when the printer is powered
on.

Example:

LPRINT CHR$(9);

Line Feed:

Spaces the paper up one line. Line spacing
is 1/16-inch unless reset by ESC A, ESC 0,
ESC 1, ESC 2, or ESC 3.

Example:

LPRINT CHR$(10);

Form Feed:

Advances the paper to the top of the next page.

7
-
Z
(5]
3
=

<
=
=)
3
¥ 2

Note: The location of the paper, when the
printer is powered on, determines the top of
the page. The next top of page is 11 inches
from that position. ESC C can be used to
change the page length.

Example:

LPRINT CHR$(12);

Carriage Return:

Ends the line that the printer is on and
prints the data remaining in the printer
buffer. (No Line Feed operation takes
place.)

Printers 3-117



Note: IBM Personal Computer BASIC adds a Line
Feed unless 128 is added [for example
CHR$(141)].

Example:
LPRINT CHR$(13);

SO Shift Out (Double Width): —
Changes the printer to the Double-Width print-mode.

Note: A Carriage Return, Line Feed or DC4
cancels Double-Width print-mode.

Example:
LPRINT CHR$(14);
SI Shift In (Compressed):
Changes the printer to the Compressed-Character
print-mode. Example:
LPRINT CHR$(15);
DC2 ~ Device Control 1 (Compressed Off):
Stops printing in the Compressed print-mode.
Example:
LPRINT CHR$(18); —
DC4 Device Control 4 (Double Width
Off): ;
Stops printing in the Double-Width print-mode. i
Example: !
LPRINT CHR$(20);
CAN Cancel:
Clears the printer buffer. Control codes,
except SO, remain in effect.
Example:
LPRINT CHR$(24);
ESC Escape:
Lets the printer know that the next data sent
is a printer command.
Example:
LPRINT CHR$(27); - —
ESC - Escape Minus (Underline)

3-118 Printers



: o

- ESCO

ESC1

ESC2

ESC3

ESC 6

ESC7

LPRINT CHR$(27); CHR$(49);

Format: ESC -;n;

ESC - followed by a 1, prints all of the following
data with an underline.

ESC - followed by a 0 (zero), cancels the Underline

_print-mode.

Example:
LPRINT CHR$(27);CHR$(45);CHR$(1);
Escape Zero (1/8-Inch Line Feeding)

‘Changes paper feeding to 1/8-inch.

Example:

LPRINT CHR$(27);CHR$(48);
Escape One (7/72-Inch Line
Feeding)

Changes paper feeding to 7/72-inch.
Example:

Escape Two (Starts Variable

Line-Feeding)

ESC 2 is an execution command for ESC A. If
no ESC A command has been given, line feeding
returns to 1/6-inch.

Example:

LPRINT CHR$(27);CHRS$(50);

Escape Three (Variable

Line-Feeding)

Format: ESC 3;n;

Changes the paper feeding to n/216-inch. The
example that follows sets the paper feeding

to 54/216 (1/4)-inch. The value of n must be

suond( washg

between 1 and 255.

Example:

LPRINT CHR$(27); CHR$(51);CHR$(54);
Escape Six (Select Character Set 2)

Selects Character Set 2. (See “Printer
Character set 2°%)

Example:

LPRINT CHR$(27);CHRS$(54);

Escape Seven (Select Character Set 1)

Printers 3-119



Selects character set 1. (See “Printer
Character Set 1”’) .
Character set 1 is selected when the printer -
is powered on or reset.
‘Example:
LPRINT CHR$(27);CHR$(55);

ESCS8 Escape Eight (Ignore Paper End)
Allows the printer to print to the end of the
paper. The printer ignores the Paper End
switch.
Example:
'LPRINT CHR$(27);CHR$(56);

ESC9 Escape Nine (Cancel Ignore Paper
End)
Cancels the Ignore Paper End command. ESC 9
is selected when the printer is powered on or
reset.
Example:
LPRINT CHR$(27);CHR$(57);

. ESC <L ‘Escape Less Than (Home Head)

The printer head returns to the ieft
margin to print the line following ESC <.
This occurs for one line only.
Example:
LPRINT CHR$(27);CHR$(60);

'ESCA Escape A (Sets Variable Line
Feeding)
Format: ESC A;n;
Escape A sets the line-feed to n/72-inch.
The example that follows tells the printer to
set line feeding to 24/72-inch. ESC 2 must
be sent to the printer before the line
feeding changes. For example, ESC A;24
(text) ESC 2 (text). The text following ESC
A;24 spaces at the previously set
line-feed increments. The text following ESC
2 prints with new line-feed
increments of 24/72-inch. Any increment
between 1/72.and 85/72-inch may be used.

3-120 Printers



@
O
O

()

()

ESCD

Example:

LPRINT

CHR$(27); CHR$(65);CHR$(24);.
CHR$(27);CHR$(50); '

Escape C (Set Lines-per-Page)

Format: ESC C;n;

Sets the page length. The ESC C command must
have a value following it to specify the

length of page desired. (Maximum form length
for the printer is 127 lines.) The example
below sets the page length to 55 lines. The .
printer defaults to 66 lines-per-page when
powered on or reset.

Example:

LPRINT CHR$(27);CHR$(67);CHR$(55);

Escape C (Set Inches-per-Page)

Format: ESC C;n;m;

Escape C sets the length of the page in
inches. This commmand requires a value of 0
(zero) for n, and a value between 1 and 22
for m.

Example: -

LPRINT CHR$(27);CHR$(67); CHR$(0);CHR$(12);
Escape D (Sets Horizontal Tab Stops)

Format: ESC D;nl;n2;...nk;NUL;.

Sets the horizontal-tab stop-positions. The

example that follows shows the horizontal-tab
stop-positions set at printer column

positions of 10, 20, and 40. They are

followed by CHR$(0), the NUL code. They must.
also be in ascending numeric order as shown.

Tab stops can be set between 1 and 80. When

in the Compressed-print mode, tab stops can

be set up to 132.

The Graphics Printer can have a maximum of 28

tab stops. The HT (CHR$(9)) isused to -

suond( wassg

-execute a tab operation.

Example:

Printers 3-121



ESCE

ESCF

ESCG

ESCH

ESCJ

ESCK

=122 Printers

LPRINT

CHR$(27);CHR$(68); CHR$(10)
;CHR$(20);CHR$(40);

CHR$(0);

Escape E (Emphasized)

Changes the printer to the Emphasized-print
mode. The speed of the printer is reduced to
half speed during the Emphasized-print mode.
Example:

LPRINT CHR$(27);CHR$(69);

Escape F (Emphasized Off)

Stops printing in the Emphasized-print mode.
Example:

LPRINT CHR$(27);CHR$(70);

Escape G (Double Strike)

Changes the printer to the Double-Strike
print-mode. The paper is spaced 1/216 of an
inch before the second pass of the print
head.

Example:

LPRINT CHR$(27);CHR$(71);

Escape H (Double Strike Off)

Stops printing in the Double-Strike mode.
Example:

LPRINT CHR$(27);CHR$(72);

Escape J (Sets Variable Line Feeding)
Format: ESC J;n;

When ESC J is sent to the printer, the paper
feeds in increments of n/216 of an inch.

The value of n must be between 1 and 255.
The example that follows gives a line feed of
50/216-inch. ESC J is canceled after the
line feed takes place.

Example:

LPRINT CHR$(27);CHR$(74); CHR$(50);
Escape K (480 Bit-Image Graphics

Mode)

Format ESC K;n1;n2;v1;v2;...vk;

Changes from the Text mode to the Bit-Image



Graphics mode. nl and n2 are one byte, which
specify the number of bit-image data bytes to

be transferred. v1 through vk are the bytes

of the bit-image data. The number of

bit-image data bytes (k) is equal to nl

+256n2 and cannot exceed 480 bytes. At every
horizontal position, each byte can print up

to 8 vertical dots. Bit-image data may be

mixed with text data on the same line.

()

Note: Assign values to n1 and n2 as follows:
nl represents values from 0 - 255.
n2 represents values from 0 - 1 x 256.

MSB is most-significant bit and LSB is least
-significant bit.

The following figures show the format.

n

-t
;{‘.‘
2]
3
O

=]
=
)
=
<>

()

Data sent to the printer.

-
—

Text (20 characters) ESC K n=360 Bit-image data Nextdata—l

Printere 3-1273



In text mode, 20 characters in text
mode correspond to 120 bit-image
positions (20 x 6 = 120). The
printable portion left in Bit-Image
mode is 360 dot positions (480 - 120
= 360).

Data sent to the printer.

M Ny NNy
[pataA]Esck| n, | n, [ DataB | Datac [ESC |K [ ny]n,| DataD |
Bit-
image
data

Bit-
image
data

Text
data

Length of
data

Text
data

Length of
data

= 480 bit-image dot positions o |

Example: 1 'OPEN PRINTER IN RANDOM MODE
WITH LENGTH OF 255

2 OPEN “LPT1:”AS #1

3 WIDTH “LPT1:”,255

4 PRINT #1,CHR$(13)+CHR$(10);

5 SLASH$=CHR$(1)+CHR$(02)
+CHR$(04)+ CHR$(08)

6 SLASH$=SLASH$+CHR$(16)+CHR$(32)
+CHR&(64)+$CHR$(128)+CHR$(0)

7 GAP$=CHR$(0)+CHR$(0)+CHRS$(0)

8 NDOTS=480

9 ’ESC K N1 N2

10 PRINT #1,CHR$(27);“K”;CHR$(NDOTS
MOD 256);CHRS$ (FIX(NDOTS/256));

11 ’SEND NDOTS NUMBER OF BIT

IMAGE BYTES

12 FOR I=1 TO NDOTS/12 "NUMBER

OF SLASHES TO

PRINT USING GRAPHICS

13 PRINT #1,SLASH$;GAPS;

2174 Printore



("

()

ESCL

ESCN

ESCO

ESCS

14 NEXT I
15 CLOSE
16 END

This example gives you a row of slashes
printed in the Bit-Image mode.

Escape L (960-Bit-Image

Graphics-Mode)

Format: ESC L;n1;n2;v1;v2;...vk;

Changes from the Text mode to the Bit-Image
Graphics mode. The input is similar to ESC
K. The 960 Bit-Image mode prints at half the
speed of the 480 Bit-Image Graphics mode, but
can produce a denser graphic image. The
number of bytes of bit-image Data (k) is n1
+256n2 but cannot exceed 960. nl is in the
range of 0 to 255.

Escape N (Set Skip Perforation)

Format ESC N;n;

Sets the Skip Perforation function. The
number following ESC N sets the value for the
number of lines of Skip Perforation. The
example shows a 12-line skip perforation.

This prints 54 lines and feeds the paper

12 lines. The value of n must be between 1
and 127. ESC N must be reset anytime the
page length (ESC C) is changed.

Example:

LPRINT CHR$(27);CHR$(78); CHR$(12);
Escape O (Cancel Skip Perforation)

Cancels the Skip Perforation function.
Example:

LPRINT CHR$(27); CHR$(79);

Escape S (Subscript/Superscript)

Format: ESC S;n;

Changes the printer to the Subscript print
mode when ESC § is followed by a 1, as in the
example that follows. When ESC S is followed
by a 0 (zero), the printer prints in the

.
-
oS
—
3
<
=
-
5.
-
1 A

Printore 21278



Superscript print mode.

Example:

LPRINT CHR$(27);CHR$(83);CHRS$(1);
ESCT Escape T (Subscript/Superscript Off)

The printer stops printing in the Subscript

or Superscript print mode.

Example: —

LPRINT CHR$(27);CHR$(84);
ESCU Escape U (Unidirectional Printing)

Format: ESC U;n;

The printer prints from left to right

following the input of ESC U;1. When ESC U

is followed by a O (zero), the left to right

printing operation is canceled. The

Unidirectional print-mode (ESC U) ensures a

more accurate print-start position for better

print quality.

Example:

LPRINT CHR$(27);CHRS$(85);CHR$(1);
ESCW Escape W (Double Width)

Format: ESC W;n;

Changes the printer to the Double-Width print —~

mode when ESC W is followed by a 1. This

mode is not canceled by a line-feed operation

and must be canceled with ESC W followed by a

0 (zero).

Example:

LPRINT CHR$(27);CHR$(87);CHR$(1);
ESCY Escape Y (960 Bit-Image Graphics

Mode Normal Speed)

Format: ESC Y nl;n2;v1;v2;...vk;

Changes from the Text mode to the 960

Bit-Image Graphics mode. The printer prints

at normal speed during this operation and

cannot print dots on consecutive dot

position. The input of data is similar to

ESCL. —
ESCZ Escape Z (1920 Bit-Image Graphics

Mode)

=126 Printere



)

()

Format: ESC Z;nl;n2;v1;v2;...vk;

Changes from the Text mode to the 1920
Bit-Image Graphics mode. The input is
similar to the other Bit-Image Graphics
modes. ESC Z can print only every third dot
position.

Printers 3-127

9
[
£
o
=
=
=
=
=
&>



12128 Printers

0 1 2 3 4 5 6 7 8 ]
o BEL| | HT
10 11 12 13 14 15 16 17 18 19
LF FF | CR | SO | SI DC2
20 21 22 23 .24 25 26 27 - 28 29
|oca CAN ESC
30 31 32 33 34 35 36 37 38 39
SPIL | #[S|%|&|’
.. 40 41 42 43 44 45 46 47 48 49
C[Y[* |+, |- /1011
50 51 52 53 54 55 56 57 58 59
23|14/ 5/6(7/8|9 ;
60 61 62 63 64 65 66 67 68 69
<|=|>|?||A|B|C|D|E
70 71 72 73 74 75 76 77 78 79
FIGH|I| J/ KILIM[N|O
80 81 82 83 84 85 86 87 88 89
PQIR SIT/UVWX|Y
90 91 92 93 94 95 96 87 98 99
Z/I[I\]1 "~ _| |a|bl|c
100 101 102 103 104 105 106 107 1 1
dielflglhliljlk I m
110 111 112 113 114 115 116 117 118 119
nolpiqlr|is|tiulviw|
120 121 122 123 124 125 126 127 128 129
x\ylz[{|I[} 7| [w

. Printer Character Set 1 {Part 1 of 2}




()

130 131 132 133 134 135 136 137 138 138
BEL HT | LF
140 141 142 143 144 145 146 147 148 149
FF | CR|[ SO | SI 1[4 0c4
150 151 152 153 154 155 156 157 158 159
CAN ESC
160 161 162 163 164 165 166 167 168 169
2z I4 £4 LA = N »
aji|é6|a|n|Nja|o|é|m
170 171 172 173 174 178 179
ARG
180 181 182 183 184 188 189
11dhh
190 181 192 193 194 198 199
200 201 202 203 204 205 206 207 208 209
(L —
210 .211 212 213 214 215 216 217 218 219
T
220 221 222 223 224 225 226 227 228 229
a|B|T|TT 2|0
230 231 232 233 234 235 236 237 238 239
uiT|0|6|0|s |0 Sle N
240 241 242 243 244 245 246 247 248 249
=+ =< J || o | N
250 251 252 253 254 255
=[N 2 M| sp

Printer Character Set 1 (Part 2 of 2)

Printers 3-129

w
tet
z
(12}
=
=)
=]
=
S
=
w




0 1 2 3 4 5 6 7 8 ]
NUL L AR R AR YL HT
10 1) 12 13 14 15 16 17 18 19
LF FF | CR| SO | SI DC2
20 21 22 23 24 25 26 27 28 29
Dc4 %2 CAN ESC
30 31 32 33 34 35 36 37 38 39
SP ! rs # $ % & ’
40 41 42 43 44 45 46 47 48 49
(1) 1+, |- /1011
50 51 52 53 54 55 56 57 58 59
2 3|4/5/6/7 8|9 ;
60 61 62 63 64 65 66 67 68 69
<|=|>?|9|A|B|C|D|E
70 71 72 73 74 75 76 77 78 79
FIGH|I|J/K|ILIMN|O
80 81 82 83 84 85 86 a7 88 89
PIQR|S|TIUVWX|Y
90 o1 92 93 94 95 96 97 98 99
Z [|\|]1~_|']la|bjc
100 101 102 103 104 105 106 107 108 109
dielf/ gh|i|j k] m
10 ARA 112 113 114 115 116 117 118 119
nolpqristiuvw
120 121 122 123 124 125 126 127 128 129
l ~ (L
x\ylz/{|!]] Clu

Printer Character Set 2 {Part 1 of 2)

3-130 Printers




()

()

130 131 132 133 134 135 136 137 138 139
r 4 ~ aw b Y [} ~ na »a
élalalalalcléele éli
140 141 142 143 144 145 146 147 148 149
~ - N 2 ~ L1}
R A E & A 06|6|0
150 151 152 153 154 155 156 157 158 159
~ - L} as [T}
aluly|o|i|¢|E|¥ R|fF
160 161 162 163 164 165 166 167 168 169
r r Y 4 r ~ ~_ [
ali|é|lun|Nla|o|¢i|m
170 171 172 173 174

Vol V| 1<
180 181 182 183 184
180 191 192 193 194

L1l T -
200 201 202 203 204 205 206 207 208 209
210 211 212 213 214 215 216 217 218 219_‘
220 221 222 223 224 225 226 227 228 229
L a|B|TC|TT2|C

230 231 232 233 234 235 236 237 238 239
wiT (0|00 6 |0|Se N
240 241 242 243 244 245 246 247 248 249
=|+|=|<|[|d]|=|°|n
250 251 252 253 254 255
(N2 M se

Printer Character Set 2 (Part 2 of 2)

Printers 3-131

]
(3]
4
1]
3
Q
=
=.
=}
=]
72}




Notes:

3-132 Printers



IBM PC Compact Printer

The PC Compact Printer is a stand-alone, tabletop unit
that plugs into a standard wall outlet. Using an
eight-wire print head, the printer can print characters
from the standard ASCI, 96-character, uppercase and
lowercase character sets, and prints the characters in a
5-by-7 dot matrix at 56 characters-per-second (cps). It
prints in one direction (left-to-right) and has four print
modes. In the standard mode, the printer prints 80
characters-per-line; in the compressed mode, 136
characters; in the double-width mode, 40 characters,
and in the compressed double-width mode, 68
characters-per-line. The PC Compact Printer can also
underline characters, has an extended character-set for
international languages, and can accept special
characters programmed by the user.

The printer has a 1.89 meter (6-foot), 16-lead, printer
cable that connects, through an Amphenol connector,
to the serial port (RS-232-C) at the rear of the system
unit.

W
4
a
o
3
=)
o=
=
=]
=
w

Printers 3-133



+vy —P

3-134 Printers

VOLTASE
REG. AND ’
SAFETY
P17 p Lo8iC
THERMAL
HEAD
. DATA LATCH HEAD DRIVER
P30-37 < : AUR/DATA BUS : > SN74L5273 :.> ULN2803A $ J
:|'> PULSE
IdAn!IdP/MDTDII MOTOR
. VER
P10-13 ULN2013
P16
MPU )
HDB8O1 TO LED
V5
P46 ¢ FROM LF KEY
FROM HOME
P47 ¢ POSITION SWITCH
—
ADDRESS
1 LATCH
SN7415373
S STATICRAM
_T“" iz HM6116
P40-24 HIGH ORDER ADDRESS >
P23 (§— 4— RO
DRIVER/
AL 10 1BM PCIr
P15 — —P cTS
+12y 129



Printer Specifications

Print Method:

Print Speed:
Print Direction:

Number of Pins in
Print Head:

Line Spacing:

Matrix Pattern:

C Character Set:

Graphics:

(-

Thermal, non-impact,
Dot-matrix

56 cps
Left to right only

8

4.23 mm (1/6 in)

5 by 7 Dots

Full 96-character ASCII
with descenders, plus
international

characters/symbols

None

Printers 3-135

suondQ uia;s&g




Print Modes:

Standard
Double Width
Compressed

Compressed/

Double Width

Paper Feed:
Paper Width:
Copies:

Paper Path:
System Interface:

Print Color:

3-136 Printers

Characters
per Inch
10

5

17.5

8.75

Friction Feed

Maximum
Characters
per Line
80

40 -

136

68

216 mm (8.5 in)

Single sheet only

Top

Serial Data and Control Lines

Black only



()

Environmental
Conditions

Temperature:

Humidity:

Power Requirement
Voltage:

Current:

Power Consumption: -

Heat Output:

Physical
Characteristics

Height:

Width:

Depth:

Weight:

Power Cable Length:

Size; .

Printer Cable Length:

Size:

5°C (+41°F) to 40°C
(104°F)

10 to 80% non-condensing

110 Vac 60 Hz

245 mA

36 watts

57.6 kJ (54.6 BTU)/hr

(maximum)

88.9 mm (3.5 in)
312.4 mm (12.3 in)
221 mm (8.7 in)
2.99 kg (6.6 1b)
1.98 m (6.5 ft) -
28 AWG

1.83 m (6 ft)

3 by 18 AWG

Printers

3-137

suondQ wa;s.f‘s




Character Set;:

3-138 Printers

ASCII numbers 0 to 31 contain
control codes and special
characters. ASCII numbers 32 to
127 contain the standard printable
characters. ASCII numbers 128 to
175 contain European characters.
ASCII numbers 224 to 255
contain math and extra symbols.



Serial Interface Description

Specifications:
Data Transfer Rate: 1200 bps (maximum)
7 Synchronization: internal clocking
N
Handshaking: CTS (Clear to Send) Pacing
Logic Level: Input data and all interface
control- signals are EIA
Levels
Connector Plug: 9804 (Amphenol)

The following figure shows the timing of the Serial
Interface.

I-d— Character Period —-b-l

w

et
28
o
=
o

=
=
S
=
w

Received Stop
Data L1 . — . O D D e e e = = Bits

One

Start

Bit

|« Ti -
High (Ready)
CTS

RDY Low (Busy)

Serial Interface Timing Diagram

Printers 3-139



Print Mode Combinations for the PC Compact
Printer

The following figure shows the print-mode
combinations possible with the PC Compact Printer.
Modes shown in the same column can be combined. A
print mode can be changed at any time within a line:
however, the double-width mode effects the entire line.

Modes
Standard XXX
Compressed XXX XXX | XXX
Double-Width XXX | XXX [ XXX
Underline XXX | XXX | XXX XXX

Printer Control Codes and Functions

On the following pages you will find a detailed list of
the printer control codes and functions. This list also
includes descriptions of the functions and examples
of the printer control codes.

The examples (LPRINT statements) given in the
detailed descriptions of the printer control codes and
functions list, are written in BASIC. Some knowledge
of BASIC programming is needed to understand
these codes. Some of the printer control codes also
show a “Format” description when more
information is needed for programming
considerations.

3-140 Printers



()

()

()

CODE

CAN

DC2

DC4

ESC

PRINTER FUNCTION

Cancel

Clears the printer buffer. Control codes,
except SO, remain in effect. Reinitializes
the printer to the power on defaults.
LPRINT CHR$(24);

Carriage Return

Ends the line the printer is on and prints
any data remaining in the printer buffer.
The logical character position is moved to
the left margin. (No Line Feed operation
takes place.) Note: IBM Personal
Computer BASIC adds a Line Feed unless
128 is added.

LPRINT CHR$(13);

Device Control 2 (Compressed Off)
Stops printing in the Compressed mode.
LPRINT CHR$(18);

Device Control 4 (Double Width Off)
Stops printing in the Double Width mode.
LPRINT CHR$(20);

Escape

Informs the printer that the following data
is a printer command. (See the following
ESC commands.)

LPRINT CHR$(27);

Printers

3-141

192}
[
1721
-~
(93
=)
=
=
=,
=}
-
N




ESCB

ESCC

3-142 Printers

Escape B (Set Vertical Tabs)

Sets vertical tab stop positions. Up to 64
vertical tab stop positions are recognized by
the printer. Tab stop positions must be
received in ascending numeric order. The
tab stop numbers do not become valid until
you type the NUL code. Once vertical tab
stops are established, they are valid until
new tab stops are specified. (If the printer
is reset or switched Off, set tab stops are
cleared.) If no tab stop is set, the Vertical
Tab command acts as a Line Feed
command. ESC B followed only by NUL
cancels tab stops. The form length must be
set by the ESC C command prior to setting
tabs.

LPRINT

CHR$(27);CHR$(66); CHR$(10); CHR$(20);
CHR$(40); CHR$(0);

Escape C (Set lines per page)

Format: ESC C;n; Sets the page length.
The ESC C command must be followed by
a value to specify the length of page desired.
(Maximum form length for the printer is
127 lines.) The following example sets the
page length to 55 lines. The printer default
is 66 lines per page when switched On or
reset.

LPRINT CHR$(27);CHR$(67);CHR$(55);

—_

vy



ESCD

ESCK

Escape D (Set Horizontal Tab Stops)

Sets the horizontal tab stop positions. The
following example shows the horizontal tab
stop positions set at printer column
positions of 10, 20 and 40. The horizontal
tab stops are followed by CHR$(0), the
NUL code. They must also be in ascending
numeric order as shown. You can set tab
stops between 1 and 80. When in the
Compressed print mode, you can set tabs up
to column 136. The maximum number of
tabs that can be set is 112. HT (CHR$(9))
is used to execute a tab operation.

LPRINT
CHR$(27);CHR$(68);CHR$(10)CHR$(20)
CHR$(40);CHR$(0);

Escape K (480 Bit-Image Graphics Mode)
Format: ESC K;n1;n2; vl; v2;.....vk;
Changes the printer to the Bit-Image
Graphics mode. Dot density is 82.5 by 82.5
dots per inch. If the graphics data exceeds
the space remaining on the line, the printer
ignores the excess data. Only the excess
data is lost.

The numbers n1 and n2 specify, in binary
form, the number of bit image data bytes to
be transferred. Assign values to nl to
represent values from zero to 255 and
assign values to n2 to represent values from
0-1 x 256. The total number of bit image
data bytes cannot exceed 480. (nl1 + (n2 X
256)).

Printers 3-143

N
7
4
o
=
=
=
=.
=
=4
7]




"ESCN

3-144 Printers

The bit-image data bytes are v1 through vk.

All eight of the print head wires are used to
print Bit-image graphics.. Each bit of a
bit-image data byte represents a dot
position within a vertical line. The least

- significant bit (LSB) represents the bottom

dot position, and the most significant bit
(MSB) represents the. top dot position. For
example, if:vX is hex 80, the top dot will
print only in that vertical position; if vX is
hex 01, the bottom dot will print; and if vX
is hex FF, all eight dots will print.

Dot Bit Number

Top O---8
O0---7
O---6
O---5
O0---4
O0---3
O0---2

Bottom O---1

LPRINT CHR$(27);CHR$(75);n1;n2

"Escape N (Set Skip Perforation)

Format: ESC N;n; Sets the Skip Perforation
function. The number following ESC N
sets the number of lines to be skipped. The

. example shows a 12-line skip perforation.

This command will print 54 lines and feed
the paper 12 lines. The value of n must.-be
between 1 and 127. ESC N must be reset
anytime the page length (ESC C) is
changed. The default for skip perforation is
25.4 mm (1 inch).

LPRINT CHR$(27);CHR$(78);CHR$(12);

—_



()

ESCO ..

ESCR

Escape O (Cancel Skip Perforation)
Cancels the Skip Perforation function.
LPRINT CHR$(27);CHR$(79);

- Escape R (Clear Tabs)

Resets all tab stops,both horizontal and

_vertical to the powered-on defaults.

ESCW

' LPRINT CHR$(27); CHR$(87); CHR$(1); -

ESCO0

‘ESC1

"ESC2

LPRINT CHR$(27);CHR$(82);

Escape W' (Double Width)

Format: ESC W;n; Changes the printer to
the Double Width- mode when ESC W is -
followed by 1. This mode is not canceled
by a line feed-operation. It is canceled
when ESC ‘W is followed by 0-(zero).

Escape Zero (1/9-Inch Line Feed)
Changes the line feed to 2.82 mm (1/9
inch).

LPRINT CHR$(27);CHR$(48);

suondQ wskg

Escape One (1/9-inch Line Feed)
Changes the line feed to 2.82 mm (1/9
inch). ESC 1 functions the same as ESC 0.
LPRINT CHR$(27);CHR$(49);

Escape Two (Start Variable Line Feeding)
Resets line spacing to 4.23 mm (1/6 inch).
This is the powered-on default for vertical

- line spacing.

ESCS

LPRINT CHR$(27);CHR$(50);

Escape Five (Sets Automatic Line Feed)
With automatic:line feed on, when a CR
code is received, a line feed automatically
follows after.the carriage return. ESC 5 (1)
sets auto line feed; ESC 5 (0) resets it.

- LPRINT CHR$(27);CHR$(53);

Printers 3-145



ESC -

ESC <

3-146 Printers

Escape Minus (Underline)

Format: ESC -;n; ESC - followed by 1,
prints all of the following data with an
underline. ESC - followed-by 0 (zero),
cancels the Underline print mode.

LPRINT CHR$(27);CHR(45);CHR$(1); [or
CHR$(0);]

Escape Less Than (Home Head)

The print head returns to the left margin to
print the line following ESC <. This occurs
for one line only.

LPRINT CHR$(27);CHR$(60);

Form Feed

Advances the paper to the top of the next
page. Note: The location of the paper,
when the printer power switch is set to the
On position, determines the top of the page.
The next top-of-page is 279 mm (11 inches)
from that position. ESC C can be used to
change the page length. Always separate
multiple Form Feed commands with spaces.
LPRINT CHR$(12);

Horizental Tab

Tabs to the next horizontal tab stop. Tab
stops are set with ESC D. (Tab stops are
automatically set at every 8 columns when
the printer power switch is set to the On
position.)

LPRINT CHR$(9);

Line Feed

Advances the paper one line. Line spacing
is 4.23 mm (1/6 inch) unless reset by ESC
0, ESC 1, ESC 2.

LPRINT CHR$(10);



NUL

SI

SO

()

Null

Used with ESC B and ESC D as terminator
for the tab set and clear commands.
LPRINT CHR$(0);

Shift In (Compressed On)

Changes the printer to the Compressed
Character mode. This command is canceled
by a DC2 code (Compressed Off).
LPRINT CHR$(15);

Shift Out (Double Width)

Changes the printer to the Double Width
mode. Note: A Carriage Return, Line Feed
or DC4 code cancels Double Width mode.
LPRINT CHR$(14);

Vertical Tab

Spaces the paper to the next vertical tab
position. VT are set by the ESC B
sequence. The VT command is the same as
the LF command, if no tabs are set. The
paper is advanced one line after printing or
advanced to the next vertical tab stop.
LPRINT CHR$(11);

The following charts list the printer control codes
and characters in ASCII decimal numeric order, (for
example, NUL is 0 and ESC W is 87).

()

Printers 3-147

w
>
&
[1°]
=5
=)
s
:.
S
=1
w




[o] 1 2 3 4 5 6 7 8 9
NUL Vé&HAoe u HT
10 11 12 13 14 15 16 17 18 19
LF|VT|FF [CR|s0| S ‘><ncz "
20 21 22 23 24 25 26 27 28 29
nmé;-_i_cm | |—|ese|L [«
30 31 32 33 34 35 36 37 38 39
i | V| RS % &
40 41 42 43 44 45 46 47 48 49
()| *(+.|— /101
50 51 52 53 54 55 56 57 58 59
2, 34/5/6/7|8 9 ;
60 61 62 83 64 65 66 67 68 69
<|=> ?|9/A|B|C DE
70 71 72 73 74 75 76 77 78 79
FGH I|(JIKILIMN O
80 81 82 83 84 85 86 87 88 89
PQR S T/UVWX|Y
90 91 92 93 94 95 96 97 98 99
ZI[INI]|*_| |a|lb|c
100 101 102 103 104 105 106 107 108 109
die/flgh|i jl k|l m
110 111 112 113 114 115 116 117 118 119
nhjo/p/lq|r|s;tjiujviw
120 121 122 123 124 125 126 127 128 129
x ylz {[|[Il]} ~lelCcli

Character Set (Part 1 of 2)

3-148 Printers




()

130 131 132 133 134 135 1386 137 138 139
” ~ ov - (-3 ~ . . =
élajlalala|c|é el
140 141 142 143 144 145 146 147 148 149
~ LN N A = ~ = N
i VA A E|a Ald o
150 151 152 153 154 156 156 157 158 169
~ A Y Lh ) .o (K]
ujuylo CIEI¥R|fF
180 161 162 163 164 165 166 167 168 169
Y 4 r'd ' d r 4 ~ f -
ajtjola/nlNjajo|¢ |
170 171 172 173 174 175 176 177 178 179
S T ATRED
2|7a
180 181 182 183 184 185 186 187 188 189
190 19i 192 193 194 195 196 197 198 199
200 201 202 203 204 205 206 207 208 209
210 211 212 213 214 215 216 217 218 219
220 221 222 223 224 225 226 227 228 229
a|B|ITITT2|0
230 231 232 233 234 2356 238 237 237 239
w7000 |s|0|Dle|N
240 241 242 243 244 245 248 247 248 249
=|t(=|< J —|=|°%|=
250 251 252 253 254 256
.
-IJ|n[2|m|s

Character Set (Part 2 of 2)

Printers 3-149

w

et
4
("]
=
Q

<
=
S
3
w»




Compact
Printer

L )
"A08 ’ AO1
B08 BO1
16 Pin Connector

Signal Name - Description Pin
Not Used A01
Data Terminal Ready A02
Request To Send A03
Transmit Data J J A04
N T Carrier Detect A05

—
Data Set Ready A06

—

Clear To Send A047.
Not Used A08
Not Used BO1
Not Used B02
Not Used B03
Ground B04
Not Used B0S
Not Used B06
Ground B07
Not Used BO8

Connector Specifications

3-150 Printers

Compact Printer
Signal Cable

Serial Port
(RS-232-C)

Data Terminal Ready Looped in Cable to Data Set Ready
Request to Send Looped in Cable to Carrier Detect



SECTION 4. COMPATIBILITY
WITH THE IBM PERSONAL
COMPUTER FAMILY

o

\_//'

Contents

Compatibility Overview ..................... 4-3
Timing Dependencies .........cc00eeeeeeeen. 4-5
Unequal Configurations .........cc000v000ea. 4-7

Hardware Differences ......................
User Read/Write Memory  ..............
Diskette Capacity/Operation ............
IBM PCjr Cordless Keyboard ...........
Color Graphics Capability ...............
Black and White Monochrome Display .....

RS232 Serial Port and IBM PCjr Internal
Modem

()

4-1

®)
=}
S
=
]
=,
=
:T.
-




Notes:

4=2



-

()

()

Compatibility Overview

The IBM PCjr is a different Computer than the IBM
Personal Computer and IBM Personal Computer XT.
Even though it is different, the IBM PCjr has a high
level of programming compatibility with the IBM
Personal Computers. It is possible to create PCjir
software applications that can run without modification
on other IBM Personal Computers. In order to create
such programs or to assess if a current program is
compatible, you must understand the differences
between the Personal Computers in the IBM family and
know the proper way to communicate with them.

Normally, it would be impossible for a program written
for one computer to run on a different computer since
the microprocessors would be different; and the
language of the application could not be executed by
different processors. In this case, the application would
have to be re-written entirely in the language of the -
other processor. Since the IBM PCjr and the other
IBM Personal Computers use exactly the same
microprocessors (Intel 8088), most assembler language
programs need not be modified.

This alone is not enough, since applications normally
take advantage of a computers device services (BIOS)
and operating system (IBM DOS 2.1). In order to
allow for maximum program compatibility, the IBM
PCjr has maintained all BIOS system interrupts and
utilizes the same IBM DOS. This means that

]
)
E
°
)
=,
g
=
]

applications which use the BIOS and the IBM DOS

interrupts on the IBM Persénal Computers operate the
same on the IBM PCjr.

Note: The BIOS micro-code of the IBM PCjr is not

identical to that of the IBM Personal Computers. If
an application bypasses the BIOS interrupt calls and

Nvorviaw 4.



directly accesses routines and/or storage locations in
- one system, it may not run in the other system. Some
routines may be similar and some BIOS storage-
locations may be the same. It is strongly
recommended that applications use only the BIOS and -
DOS interrupt interfaces in order to achieve
compatibility in the IBM Personal Computer family.

Using the same language and the BIOS and DOS
interfaces go a long way in achieving application
compatibility. However, there are still several factors
-‘which need to be taken into consideration: -

« Timing Dependencies

+ Unequal Configurations

» Hardware Differences



()

Timing Dependencies

‘Programs running in user read/write memory normally
run slower on the PCjr than on the IBM Personal
Computers. Programs running in read-only memory
(ROM) normally run a little faster on the PCjr than.on
the IBM Personal Computers. This may or may not
cause a difference depending upon the application.

- Most applications are very I/O dependent in which

case the execution time is not the critical factor and
may not be noticeable. In other cases, the application
runs the same but merely take a different. amount of
time.

If an application has very critical timing dependencies,

-any timing differences (faster or slower) may adversely

affect its usability.  Using an application’s program
execution speed to achieve a desired timing can effect
the application. In these cases, the application may
need to be modified.

Note: It is strongly recommended not to depend on
instruction execution speed to achieve specific
application timing. The system timer can provide -
short interval timing for assembly language
programs. Similar timing functions are available in
BASIC.

| &uuqundwbo

Performance of specific I/O devices (such as diskette

or printer) may also differ between the PCjr and the
other IBM Personal Computers. You should also avoid
using timing of any I/O device as a dependency for the
application.




Notes:

4-6 Timine Denendencies



Unequal Configurations

In designing an application to run on both the IBM
PCjr and the IBM Personal Computers, you need to
C make sure that the required hardware configuration is
' available on all machines. This means the application’s
minimum requirements are met by all IBM Personal
Computers.

®)
©
=

g =]

o

=.
g
E.
e

I Ineanal Confionratione 4-7



Notes:

4-8 Uneaual Conficurations



Hardware Differences

To be able to run on either computer without change,

an application utilizing a specific I/O device must have

7 access to identical devices (or devices with identical

k./' operating characteristics and interfaces). The IBM
PCjr and the IBM Personal Computers have very
compatible I/O device capabilities.

The following table lists the hardware features and 1/O
devices supported by the IBM PCjr and the IBM
Personal Computers and summarizes the differences:

I

Hardware Differences 4-9

@]
=}
=
.=
]
=,
=
E
>




Device PC | PCXT | PCjr | PCjr Comments
Maximum 640KB | 640KB | 128KB | Shares user RAM
User Memory with Video Buffer
Cordless No No Yes Scan codes
Keyboard compatible and full
83 key capability

83 Key Yes Yes No Compatible, but

Keyboard Hardware interface
differences

Diskette Yes Yes Yes Compatible, but

Drive different address and
no DMA support

Hard Disk No Yes No )

File

Parallel Yes Yes Yes Compatible

Printer

RS 232 Yes Yes Yes Compatible, hex 2F8

Serial Port address, Interrupt
Level 3, Baud-Rate-
Frequency divisor
difference

Game Yes Yes Yes Compatible interface

Control with potential timing
differences

Cassette Yes No Yes Compatible

Internal No No Yes Compatible to PC

Modem Serial Port hex 3F8
address, Interrupt
Level 4, frequency
divisor difference

IBM Yes Yes No

Monochrome

Display

Color Yes Yes Yes Compatible, with

Graphics and some register

Display differences and
enchancements

Light Pen Yes Yes Yes Compatible

PCjr and Personal Computers Comparison (Part 1 of 2)
4-10 Hardware Differences




TN

3

_

Device PC PCXT | PCjr PCjr Comments
Attachable Yes Yes Yes Compatible
Joystick
8253 Timer Yes Yes Yes Compatible
(time of day)

8259 Interrupt | Yes Yes Yes Some difference in
interrupt levels

Internal Yes Yes Yes Compatible but less

Sound frequency response

T1 76496 No No Yes

Sound

ROM No No Yes

Cartridge

Interface

Future I/O Yes Yes Yes Compatible

ROM

Architecture

PCjr and Personal Computers Comparison (Part 2 of 2)

The hardware differences between the IBM PCjr and
the IBM Personal Computers may lead to
incompatibilities depending upon the specific
application. Once again; if your application maintains
an interface to the Personal Computer Family at the
BIOS and DOS interrupt levels, then all hardware
differences are handled transparently to your
application. If your application goes below the BIOS
level and directly addresses the hardware, then there
could be an incompatibility.

Hardware Differences 4-11

@
=)
3
=
-]
=
=
:'-:.
<




User Read/Write Memory

Memory difference can be a problem even with
programs written for the same computer, if the
available memory is not the same from one machine to
~ the next. Thus, the deciding factor is to state what the
minimum memory requirement is for the application,
and require that amount on the computer in question.

It is important to understand the memory aspects of the
IBM PCjr in relationship to that of the IBM Personal
Computers. The IBM PCjr can be configured for 64K
bytes or 128K bytes (with memory expansion).
However, this user memory is not all available to the
application. The IBM PCjr video architecture utilizes a

- minimum of 16K bytes (in graphic mode) and 2K bytes
(in alpha numeric mode) for the screen buffer.
Therefore (in graphics mode), the IBM PCjr really has
48K bytes or 112K bytes (with memory expansion)
available for system software. This is not the case with
the IBM Personal Computers, since the color graphics
adapter contains a separate 16K byte screen buffer.
Thus, a 64K bytes Personal Computer with color
graphics (extra 16K bytes) is an 80K byte system
compared to a 64K byte IBM PCjr. The IBM PCjr also
has graphic enhancements which allow more than the
16K bytes to be utilized for video screen buffers. If
these enhanced features are used in an application, then
even less is available for user memory.

Another aspect of available memory is the amount
taken away by operating systems and language:
interpreters. In the case of the IBM DOS, both the
IBM PCjr and the IBM Personal Computers support
the same DOS. If your application requires the BASIC
interpreter, then there may be a difference. The IBM
Personal Computer Cassette BASIC resides entirely in
the system ROM; taking no user memory. However,
Disk BASIC or Advanced BASIC utilizes

4-12 Hardware Differences



approximately 10K bytes and 14K bytes respectively
from user memory. In the IBM PCjr, Advanced BASIC

- capabilities (cartridge BASIC) reside in ROM, taking
no user memory.

As you can see, many items factor into user available
memory requirements. The most frequent comparison
is for the assembler language or compiled application
using a 16K-byte screen buffer operating under DOS
2.1. In this case, an application requiring 64K bytes of
user memory on an IBM Personal Computer cannot run
on the IBM PCjr without its expansion memory (128K
byte capability). This is because of the IBM PCjr video
usage of 16K bytes. Also, any application requiring
more than 112K bytes of user memory with DOS 2.1
on the IBM Personal Computers cannot run on an IBM
PCjr.

()

Diskette Capacity/Operation

" Since the IBM PCjr maximum stand-alone

configuration is one diskette drive with a maximum
capacity of 360K bytes diskette storage , an IBM PCjr -
application is either limited by this diskette capacity or
is impacted by the user having to change diskettes more
frequently. The IBM Personal Computers can have

. multiple diskette drives with a capacity of 360K bytes
diskette storage each or even possess hard files with a

+« much larger disk storage capacity. This capacity
difference may or may not be a concern depending
upon the specific application.

@]
=]
3
=]
]
=,
=
E
<

In terms of diskette interfacing, the IBM PCjr and the
IBM Personal Computers both utilize the NEC uPD765
- floppy diskette controller, but with different hardware
C addresses, and the IBM PCjr does not operate through
direct memory access (DMA). Since the IBM PCjr
does not have DMA capability, application programs

"Hardware Differences 4-13



cannot overlap diskette I/O operations. When diskette
I/O takes place, the entire system is masked (operator
keystrokes and asynchronous communications cannot
take place). Therefore, the application must insure that
asynchronous operations do not take place while
diskette I/O is active.

IBM PCjr Cordless Keyboard

The Cordless Keyboard is unique to the IBM PCjr.
Even though it does not possess all 83 keys of the IBM
Personal Computers’ keyboards, it does have the
capability to generate all of the scan codes of the
83-key keyboard.

The following shows the additional functions available
on the PCjr.

PCjr Special Functions

Required Key Combinations

Shift screen to the left

Shift screen to the right
Audio Feedback (System
clicks when a key is pressed.
-| Customer Diagnostics

Alt + Ctrl + cursor left
Alt + Ctrl + cursor right
Alt + Ctrl + Caps Lock

Alt + Ctrl + Ins

PCjr Special Functions

For more detail see ‘“Keyboard Encoding and Usage” in

Section 5.

Since all scan codes can be generated, any special
application requirements can be met on the Cordless

Keyboard.

4-14 Hardware Differences




C

The highest level of compatibility to interface to
keyboards is through BIOS Interrupt hex 16 (read
keystroke). Below that level is risky since there are
hardware differences between the PCjr keyboard and
the IBM Personal Computers’ keyboards. The PCjr
system utilizes the non-maskable (NMI) Interrupt to
deserialize the scan codes and pass it to Interrupt hex
48 for compatible mapping to 83-key format. Interrupt
level 9 remains a compatible interface for 83-key
scan-code handling. It is not recommended to replace
Interrupt level 9 even though a high degree of
compatibility is maintained. If necessary, analyze this
architecture carefully.

Color Graphics Capability

The IBM PC;jr color graphic architecture is quite
different from that of the IBM Personal Computers.
The main difference (as previously discussed) is that
the video buffer is taken from main user memory rather
than having separate memory for video (as in the IBM
Personal Computers). Normally, this would be an
incompatibility since applications directly address the
color graphics buffer at hex B8000. However, the IBM
PC;jr has special hardware to redirect hex B800O
addressing to any specific 16K-byte block of its user
memory. The IBM PCjr defaults the video buffer to
the high end 16K-byte block of user memory and
applications can continue to address the video buffer at
hex B8000. In addition all IBM Personal Computers’
color graphics adapter modes are BIOS compatible and
memory structure (bit map) compatible. These modes
are:

@)
)
3
o
e
=
g
:':-.".
A

Hardware Differences 4-15



Modes Requirements
Alphanumeric:
40x25 BW None
40x25 Color None
80x25 Color Note —
80x25 BW None
Graphics:
320x200 4 Color None
320x200 BW None
640x200 BW None
Note: PCjr requires the 64KB Memory and Display Expansion.

Modes Available on the IBM Personal Computers and PCjr

In addition the IBM PC;jr provides some new enhanced
graphic modes which are not available to the IBM
Personal Computers.

Modes Requirements
Graphics:
320x200 16 Color Note
640x200 4 Color Note
160x200 16 Color None
Note: PCjr requires the 64KB Memory and Display Expansion.

Modes Available Only on PCjr

The IBM PCjr and IBM Personal Computers utilize the
6845 controller, but the hardware interface is not
completely the same. Hardware addresses hex 3D8 and ___

4-16 Hardware Differences ' i



()

hex 3D9 are not supported by the IBM PCjr video
interface. Requests using these two addresses are not
honored.

Also there are differences in the actual video used by
the hardware. BIOS maintains compatibility by using
the appropriate PCjr video parameters (addressed
through Interrupt hex 1D) and maintains all video calls
(through Interrupt hex 10). Application can still
specify video parameter overrides by modifying
Interrupt hex 1D to address their own parameters;
however, since there are hardware differences the
recommended approach is as follows:

1. Copy the original parameters from the BIOS of the
system.

2. Change only those parameters desired.

3. Consider the specific video differences between
systems.

Other differences to be aware of are:

o The IBM PCjr defaults the colorburst mode to be
off, whereas the IBM Personal Computers default
colorburst to on. Thus applications should not
assume either default but set colorburst mode -
(through BIOS call) to the desired setting.

« The IBM PCjr video supports a full gray scale
capability which the IBM Personal Computers do
not.

o There can be some color differences between the
IBM Personal Computers and the IBM PCjr;
especially when color mixing techniques are used.

@)
=
=
=
-]
=
=
=
]

Hardware NDiffoarancae 417



Black and White Monochrome Display

The IBM PCjr does not support the IBM Personal
Computers black and white monochrome display.
Programs which directly address the IBM Personal
Computers monochrome display are not compatible.
For example, any direct addressing of the B&W video
buffer at hex B80O0O is not redirected by the IBM PCjr.
Applications should support Personal Computer video
capabilities through BIOS, and the video buffer address
is either transparent to the application or the address is
provided indirectly in the BIOS data area.

RS232 Serial Port and IBM PCjr Internal
Modem

The IBM PCjr serial port address is hex 2F8 and is
associated with hardware Interrupt level 3. This is
compatible with a second Asynchronous
Communications Adapter on the IBM Personal
Computers. The Internal Modem address is hex 3F8
and is associated with Interrupt level 4. This is
compatible with the first Asynchronous
Communications Adapter on the IBM Personal
Computers. It is important to note that when the IBM
PC;jr has the Internal Modem installed it is logically
COM1 and the RS232 serial port is logically COM2 in
BIOS, DOS, and BASIC. Without the Internal Modem
installed the RS232 serial port is logically addressed as
COM1 in BIOS, DOS, and BASIC even though its
address is still hex 2F8 using Interrupt level 3. Other
hardware differences on the PCjr serial devices are:

« A different frequency divisor is needed to generate
baud rate. This is transparent to applications using
BIOS to initialize the devices (Interrupt Hex 14).

« No ring indicate capability on the RS232 serial port.

A 1R Hardwars Difforencac



()

()

« Asynchronous communications input cannot be
overlapped with IBM PC;jr diskette I/O. Since
diskette 1/0 operates in a non-DMA mode any
asynchronous data received during diskette activity
may be overrun (and lost). Thus, applications must
insure that no diskette activity is active while
receiving asynchronous communication data, This
can be done by pacing the asynchronous device (tell
it to hold from sending ). The ASCII characters
XOFF and XON are frequently used by some host
computers for this purpose.

Summary

In summary, the IBM PCjr is a member of the IBM
Personal Computer family by way of its strong
architecture compatibility. The highest degree of
application compatibility can be achieved by using a
common high level language, and/ or accessing the
system only through BIOS and DOS interrupts. It’s not
recommended to go below the BIOS level even though
there are other hardware compatibilities. When it is
necessary to design for particular computer differences,
the application should determine at execution time
which particular computer it is running on. This can be -
done by inspecting the ROM memory location at
segment address hex FO0O0 and offset hex FFFE for the
following values

@)
=)
3
S
15}
=,
=
=
-

hex FF = the IBM Personal Computer
hex FE = the IBM Personal Computer XT
hex FD = the IBM PCjr

Once determined, dual paths would handle any
differences.

Hardware Difforoncoe 410



Notes:

A Y0 Hordwora T EFFfarancsnc



SECTION 5. SYSTEM BIOS USAGE

(-
N~ ‘Contents
"ROMBIOS ...ttt ienreceoncnaanans 5-3
BIOSUsage  ...c.ccvvvrevncenceccnnnnnnnse- 5-5
Vectors with Special Meanings ............. 58
Interrupt Hex 1B - Keyboard Break Address 5-8
Interrupt Hex 1C - Timer Tick ......... 58
Interrupt Hex 1D - Video Parameters .... 59
Interrupt Hex 1E - Diskette Parameters .. 59
Interrupt Hex 1F and hex 44 - Graphics -
Character Pointers ................... ‘59
Interrupt Hex 48 - Cordless Keyboard
Translation ......................... 5-10
C Interrupt Hex 49 - Non-Keyboard
Scan-Code Translation-Table Address ... 5-10
Other Read Write Memory Usage ........... 513
BIOS Programming Guidelines ........... 5-18
Adapter Cards with System-Accessible :
ROM-Modules ....................... 5-18
Keyboard Encodingand Usage ............... 521
- Cordless Keyboard Encoding ............ 5-21
Character Codes ................... 5-26 =
ExtendedCodes . ................... 5-30 8
Shift States . ...............c. .. 5-31 -
Special Handling ...................... '5-34 ¥4
SystemReset ...................... 5-34 K3
o Break .........o.oveeeniieaniiiaann. 5-34
N Pause .............iiiiiiiiiinan 5-34
PrintScreen ....................... 5-34
ScrollLock ........coviiiiii.. 5-35



Functions 1 thru10 ............. <... 535

FunctionLock ..................... 5-35
Screen Adjustment .................. 5-35
Enable/Disable Keyboard Click ....... 5-36
Run Diagnostics .................... 5-36
Phantom-Key Scan-Code (Hex 55) ..... 5-36
Other Characteristics ................ 5-36
Non-Keyboard Scan-code Architecture .... 542
BIOS Cassette Logic .........cco00evnveass 5-47
Software Algorithms - Interrupt Hex 15 .... 547
Cassette Write .............00irueernn 548
Cassette Read ........................ 549
Data Record Architecture ............... 5-50
ErrorDetection ....................... 5-51



—

ROM BIOS

The basic input/output system (BIOS) resides in ROM
on the system board and provides device-level control
for the major I/O devices in the system. Additional
ROM modules may be located on option adapters to
provide device level control for that option adapter.
BIOS routines enable the assembly-language
programmer to perform block (diskette) or
character-level 1/ O-operations without concern for
device address and operating characteristics. System
services, such as time-of-day and memory-size
determination, are provided by the BIOS.

The goal is to provide an operational interface to the
system and relieve the programmer of the concern
about the characteristics of hardware devices. The
BIOS interface insulates the user from the hardware,
allowing new devices to be added to the system, yet
retaining the BIOS-level interface to the device. In this
manner, user programs become transparent to hardware
modifications and enhancements.

The IBM Personal Computer Macro Assembler manual
and the IBM Personal Computer Disk Operating System
(DOS) manual provide useful programming information
related to this section.

=
S
wn
=
@n
0
(4]
®

POM RIOS &_12



Notes:

BE_.4 ROM RIOSK



i
k/'.

()

()

BIOS Usage

Access to BIOS is through the software interrupts.
Each BIOS entry-point is available through its own
interrupt, which can be found in “Personal Computer
BIOS Interrupt Vectors”, later in this section.

- The software interrupts, hex. 10 through hex 1A, each

access a different BIOS-routine. For example, to
determine the amount of memory available in the
system,

INT hex 12

invokes the BIOS routine for determining memory size
and returns the value to the caller.

All parameters passed to and from the BIOS routines go -
through the 8088 registers. The prologue of each BIOS
function indicates the registers used on the call and the
return. For the memory size example, no parameters

are passed. The memory size, in 1K byte increments, is
returned in the AX register.

If a BIOS function has several possible operations, the
AH register is used at input to indicate the desired
operation. For example, to set the time-of-day, the
following code is required:

MOV AH,1 ;function is to set time-of-day.

MOV CX,HIGH__COUNT ;establish the current [

MOV DX,LOW_COUNT S

INT 1AH ;set the time. g
%0

To read time-of-day: ®

MOV AH,0 ;function is to read time of day.

INT 1AH ;read the timer.

BIOS USAGE 5-5§



Generally, the BIOS routines save all registers except
for AX and the flags. Other registers are modified on
return, only if they are returning a value to the caller.
The exact register usage can be seen in the prologue of
each BIOS function.

5-6 BIOS USAGE



Address | Interrupt
(Hex) Number Name BIOS Entry
0-3 0 Divide by Zero D_EOl
r—\_ 4-7 1 Single Step D_EOI
\\/i 8-B 2 Keyboard NMI KBDNMI
C-F 3 Breakpoint D_EOI
10-13 4 Overflow D_EOI
14-17 5 Print Screen PRINT_SCREEN
18-1B 6 Reserved D_EOI
I1D-1F 7 Reserved D_EOI
20-23 8 Time of Day TIMER_INT
24-27 9 Keyboard KB_INT
28-2B A Reserved D_EOI
2C-2F B Communications | D_EOI
30-33 C Communications | D_EOI
34-37 D Vertical retrace D_EOI
38-3B E Diskette Error DISK_INT
Handler
3C-3F F Printer D_EOQOI
40-43 10 Video VIDEO_IO
C: 44-47 11 Equipment Check | EQUIPMENT
48-4B 12 Memory MEMORY_SIZE_
DETERMINE
4C-4F 13 Diskette DISKETTE_IO
50-53 14 Communications | R§232_10
54-57 15 Cassette CASSETTE_IO
58-5B 16 Keyboard KEYBOARD_IO
5C-5F 17 Printer PRINTER_IO
60-63 18 Resident BASIC | F600:0000
64-67 19 Bootstrap BOOT_STRAP
68-6B 1A Time of Day TIME_OF_DAY
6C-6F IB Keyboard Break | DUMMY_RETURN
70-73 1C Timer Tick DUMMY_RETURN
74-77 1D Video VIDEO_PARMS
Initialization
78-7B 1E Diskette DISK_BASE
. Parameters
{ | 7C-TF 1F Video Graphics CRT_CHARH
N~ Chars

Personal Computer BIOS Interrupt Vectors

BIOS USAGE 5-7

ades) SOI4d



Vectors with Special Meanings

The following are vectors with special meanings.

- Interrupt Hex 1B - Keyboard Break Address

This vector points to the code to be executed when
Break is pressed on the keyboard. The vector is
invoked while responding to the keyboard interrupt,
and control should be returned through an IRET
instruction. The POWER-ON routines initialize this
vector to an IRET instruction, so that nothing occurs
when Break is pressed unless the application program
sets a different value.

Control may be retained by this routine, with the
following problem. The 'Break' may have occurred
during interrupt processing, so that one or more 'End
of Interrupt' commands must be issued in case an
operation was underway at that time.

Interrupt Hex 1C - Timer Tick

This vector points to the code to be executed on every
system-clock tick. This vector is invoked while
responding to the 'timer' interrupt, and control should
be returned through an IRET instruction. The

. POWER-ON routines initialize this vector to point to
an IRET instruction, so that nothing occurs unless the
application modifies the pointer. It is the responsibility
of the application to save and restore all registers that
are modified.

5-8 BIOS USAGE



T

' Interrupt Hex 1D - Video Parameters

* This vector points to a data region containing the

parameters required for the initialization of the 6845
CRT Controller. Note that there are four separate
tables, and all four must be reproduced if all modes of
operation are to be supported. The POWER-ON

_ routines initialize this vector to point to the parameters

contained in the ROM video-routines. It is
recommended that if a programmer wishes to use a
different parameter table, that the table contained in
ROM be copied to RAM and just modify the values
needed for the application.

Interrupt Hex 1E - Diskette Parameters

This vector points to a data region containing the
parameters required for the diskette drive. The

. POWER-ON routines initialize the vector to point to
- the parameters contained in the ROM

DISKETTE-routine. These default parameters
represent the specified values for any IBM drives
attached to the machine. Changing this parameter
block may be necessary to reflect the specifications of
the other drives attached. It is recommended that if a
programmer wishes to use a different parameter table,
that the table contained in ROM be copied to RAM
and just modify the values needed for the application.
The motor start-up-time parameter (parameter 10) is
overridden by BIOS to force a 500-ms delay (value 04)
if the parameter value is less than 04.

Interrupt Hex 1F and hex 44 - Graphics

- Character Pointers

When operating in the graphics modes, the

-BIOS USAGE. 5-9

aﬁvsn soId




read/write-character interface forms the character from
the ASCII code-point, using a table of dot patterns
where each code point is comprised of 8 bytes of
graphics information. The table of dot patterns for the
first 128 code-points contained in ROM is pointed to
by Interrupt Hex 44 and the second table of 128
code-points contained in ROM is pointed to by
Interrupt Hex 1F. The user can change this vector to
point to his own table of dot patterns. It is the
responsibility of the user to restore these vectors to
point to the default code-point-tables at the termination
of the program.

Interrupt Hex 48 - Cordless Keyboard
Translation

This vector points.to the code responsible for
translating keyboard scan-codes that are specific to the
Cordless Keyboard. The translated scan-codes are then
passed to the code pointed to by Interrupt Hex 9 which
then handles the 83-key Keyboard scan codes.

Interrupt Hex 49 - Non-Keyboard Scan-Code
Translation-Table Address

This interrupt contains the address of a table used to
translate non-keyboard scan-codes (scan codes greater
than 85 excluding 255.) If Interrupt hex 48 detects a
scan code greater than 85 (excluding 255) it translates
it using the table pointed to by Interrupt Hex 49. The
address that Interrupt Hex 49 points to can be changed
by users to point to their own table if different
translations are required.

5-10 BIOS USAGE



Note: It is recommended that a programmer save
default pointers and restore them to their original
values when the program has terminated.

=]
I
o
wn
(e
wn
0
[+ -]
(4

BIOS USAGE 5-11



Notes:

5-12 BIOS USAGE



()

Other Read Write Memory Usage

The IBM BIOS routines use 256 bytes of memory
starting at absolute hex 400 to hex 4FF. Locations hex
400 to 407 contain the base addresses of any RS-232C
attachments to the system. This includes the optional
IBM PC;jr Internal Modem and the standard RS232
serial-port, Locations hex 408 to 40F contain the base
addresses of any parallel printer attachments.

Memory locations hex 300 to 3FF are used as a stack
area during the power-on initialization, and bootstrap,
when control is passed to it from power-on. If the user
desires the stack in a different area, the area must be
set by the application.

The following is a list of the interrupts reserved for
BIOS, DOS, and BASIC.

Nethaw Marmanrw Ilcasa E 172

=
o
=
»
c
1724
8
(1))
()




Address Interrupt

(Hex) (Hex) Function

80-83 20 DOS Program Terminate

84-87 21 DOS Function Call

88-8B 22 DOS Terminate Address

8C-8F 23 DOS Ctrl Break Exit Address

90-93 24 DOS Fatal Error Vector

94-97 25 DOS Absolute Disk Read

98-9B 26 DOS Absolute Disk Write

9C-9F 27 DOS Terminate, Fix in Storage

AO-FF 28-3F Reserved for DOS

100-115 40-43 Reserved for BIOS

116-119 44 First 128 Graphics Characters

120-131 45-47 Reserves for BIOS

132-135 48 Cordless-Keyboard Translation

136-139 49 Non-keyboard Scan-code
Translation Table

140-17F 50-5F Reserved for BIOS

100-17F 40-5F Reserved for BIOS

180-19F 60-67 Reserved for User Software
Interrupts

1A0-1FF 68-7F Reserved

200-217 80-85 Reserved for Basic

218-3C3 86-F0 Used by Basic Interpreter while
BASIC is running

3C4-3FF F1-FF Reserved

BIOS, BASIC, and DOS Reserved Interrupts

The following is a list of reserved memory locations.

& 14 Oyhor Momanrwv I lcaoa



| Address

(Hex) Mode Function

400-48F | ROM BIOS | See BIOS Listing

490-4EF Reserved for System Usage

500-5FF Communication Area for any
application

500 DOS Reserved for DOS and BASIC,

Print.Screen Status Flag Store,
O-Print Screen Not Active or
Successful

Print Screen Operation,
-1-Print Screen In Progress,
255-Error Encountered During

.Print
Screen Operation,
504 DOS Single Drive Mode Status Byte
510-511 | BASIC BASIC’s segment Address Store
512-515 | BASIC Clock Interrupt Vector Segment:
Offset Store
516-519 | BASIC Break key Interrupt Vector
Segment: Offset Store
51A-51D | BASIC Disk Error Interrupt Vector

Segment: Offset Store

Reserved Memory Locations

The folowing is a list of the BASIC workspace
variables.

NDthor Momanryv ITlcace £ _ 18

ades) SOId




If you.do DEF SEG (Default workspace -

Offset

Length

segment): . (Hex)
Line number of current line being executed 2E 2
Line number of last error 347 2
Offset into segment of start of program text. | 30 2
Offset into segment of start of variables - 358 2
(end of program text 1-1)
Keyboard buffer contents . 6A 1
if 0-no characters in buffer
if 1-characters in buffer
Character color in graphics mode 4E 1

Set to 1, 2, or 3 to get text in colors
1to3.

Do not set to 0.

(Default = 3)

Example

100 Print Peek (&H2E) + 256*Peek (&H2F)
) L H
(

100 hex 64 | hex 00

BASIC Workspace Variables

The following shows the mapping of the BIOS memory

8.16 Other Memeorv I Ieagce



()

()

Starting Address in Hex

00000

BIOS
Interrupt
Vectors

00400

BIOS
Data
Area

00500

User
Read/Write
Memory

A0000

Reserved
for Future
Video

B8000

Reserved
for Video

C0000

Reserved
for Future
170 ROM

D0000

Reserved
for
Cartridges

E0000

Reserved
for
Cartridges

FO000

BIOS/
Diagnostics/
Cassette and
BASIC
Program
Area

BIOS System Map

Other Memorv Ileaoce 8-.17

=
)
wn
-
\n
&
1))
44




BIOS Programming Guidelines

The BIOS code is invoked through software interrupts.
The programmer should not "hard code' BIOS
addresses into applications. The internal workings and
absolute addresses within BIOS are subject to change
without notice.

If an error is reported by the diskette code, you should
'reset’ the drive adapter and retry the operation. A
specified number of retries should be required on
diskette 'reads' to insure the problem is not due to
motor start-up,

-When altering I/O-port bit-values, the programmer
should change only those bits which are necessary to
the current task. Upon completion, the programmer
should restore the original environment. "Failure to
adhere to this practice may be incompatible with
present and future systems.

Adapter Cards with System-Accessible
ROM-Modules

The ROM BIOS provides a facility to integrate adapter
cards with on-board ROM-code into the system.
During the Power-On Self-Test {(POST), interrupt
vectors are established for the BIOS calls. After the
default vectors are in place, a scan for additional ROM
modules takes place. At this point, a ROM routine on
the adapter card may gain control. The routine may
establish or intercept interrupt vectors to hook
themselves into the system.

The absolute addresses hex CO000 through hex D0000

are scanned in 2K-byte blocks in search of a valid
adapter card ROM. A valid ROM is defined as follows:

5-.18 Other Memorv Usage



()

()

Byte 0: hex 55
Byte 1: hex AA

Byte 2: length (multiple of 2K bytes) - A length
indicator representing the number of
512-byte blocks in the ROM
(length/512). A checksum is also done to
test the integrity of the ROM module.
Each byte in the defined ROM is summed
modulo hex 100. This sum must be 0 for
the module to be deemed valid.

When the POST identifies a valid ROM, it does a 'far
call' to byte 3 of the ROM (which should be
executable code). The adapter card may now perform
its power-on initialization-tasks. The feature ROM
should return control to the BIOS routines by executing
a 'far return’.

Néhor RMMomansesr Ilcacnan E 10

=
Iy
o
7))
(o
v
n
[1)2]
(4]




Notes:

B_70 Other Memaorv I Jlecace



Keyboard Encoding and Usage

The following explains how the keyboard interacts with
BIOS and how 83-key-keyboard functions are
C accomplished on the Cordless Keyboard.

Cordless Keyboard Encoding

The KEYBOARD routine provided by IBM in the
ROM BIOS is responsible for converting the keyboard
scan-codes into what is termed "Extended ASCIL"

Extended ASCII encompasses one-byte
character-codes with possible values of 0 to 255, an
extended code for certain extended keyboard-functions,
and functions handled within the KEYBOARD routine
or through interrupts.

The following is the physical layout of the IBM PCjr
Cordless Keyboard.

()

()

Keyboard Encoding 5-21

=
Dy
=]
wn
ot
w
£
[
&




=
)

[ Home]
2
[End ]

—
|55| 8
[Pa Up]

Fn

t

} Enter «J
2

—
+ Backspace

C—

]
5]
Shift
54
|59||su||51|

[Fo ]

= {

K B .
FFHEFEEEFEE F

CapsLock Ins

S

/

MEHREDEEEDEEE

>

<

<t
o~
! =
® o
Y] -
o3 = 4
(-] 4
~ 8
o
o I
< >E
~
© —
o o~ o
ES I._
[7=] >
o 2
S| uw
@ !I —
w o
- p—
2|

Y4

(%]
L]

s
Ctrl IZEI’
| 30 I

shitt

| 43 |

Esc

L]

L 1

Tab™® Q

IBM PCjr Cordless Keyboard Diagram

5-22 Keyboard Encoding



The following are charts of the scan codes for the IBM
PCjr Cordless Keyboard.

Make Break
Key Keyboard Code Code
Position Characters (Hex) (Hex)
1 ESC 1 81
2 /! 2 82
3 2/d 3 83
4 3/# 4 84
5 4/ 5 85
6 5/% 6 86
7 6/& 7 87
8 7/& 8 88
9 8/* 9 89
10 9/( A 8A
11 0/) B 8B
12 -/— C 8C
13 =/+ D 8D
14 BS<__ E 8E
15 FN 54 D4
16 TAB F 8F
17 q/Q 10 90
18 w/W 11 : 91
19 e/E 12 92
20 r/R 13 93
21 t/T 14 94
22 y/Y 15 95
23 u/U 16 96
24 i/1 17 97
25 o/O 18 98 =)
26 p/P 19 99 o
27 [/{ 1A 9A 7]
28 1/} 1B 9B c
29 ENTER 1C 9C 2
30 CTRL 1D 9D ®
31 a/A 1E 9E

Cordless Keyboard Maxtrix Scan Codes (Part 1 of 2)

Keyboard Encoding 5-23



Make Break
Key Keyboard Code Code
Position Characters (Hex) (Hex)
32 s/S IF 9F
33 d/D 20 A0
34 f/F 21 Al
35 g/G 22 A2
36 h/H 23 A3
37 Al 24 A4
38 k/K 25 A5
39 I/L 26 A6
40 NE 27 A7
41 N 28 A8
42 CUR.UP 48 C8
43 LF.SHIFT 2A AA
44 z/Z 2C AC
- 45 x/X 2D AD
46 c/C 2E AE
47 v/V 2F AF
48 b/B 30 BO
49 n/N 31 Bl
50 m/M 32 B2
51 < 33 B3
52 > 34 B4
53 /17 35 B5
54 RT.SHIFT 36 - B6
55 CUR.LF. ‘4B CB
56 CUR.RT. 4D CD
57 ALT. 38 B8
58 SP.BAR 39 B9
59 CAPSLOCK | 3A BA
60 INSERT 52 D2
61 DELETE 53 D3
62 "CUR.DWN. 50 DO
Phantom-Key Scan Code 55

Cordless Keyboard Matrix Scan Codes (Part 2 of 2)

5-24  Keyboard Encoding




®

The Cordless Keyboard is unique to the PCjr. Even
though it does not possess all 83 keys of the IBM
Personal Computer keyboard, it does have a way in
which you can cause all of the scan codes of the 83-key
. keyboard. ' The following chart shows the mapping of
- functions between both keyboards:

' IBM Personal Computers

83-key Keybhoard Function

IBM PCjr
Cordless Keyboard Mapping

FI1-F10

Ctrl Break

Ctrl PrtSc (Echo Print)
Shift PrtSc (Print Screen)
Ctrl NumLotck (Pause)
Scroll Lock

Numeric keypad region:
Num Lock (Number
keypad 1 through 10
becomes key scan codes.)
PgUp key

PgDn key
Home key
End key

Numeric keypad - sign
Numeric keypad + sign
\ key

* key

! key

~ key

* with PrtSc

Numeric keypad .

All 256 extended codes:
Alt + numeric value
from numeric keypad

Function key + 1-0 (F1-F10)
Function key + B (Break)
Function key + E (Echo)
Function key + P (PrtSc)
Function key + Q (Pause)
Function key + S (ScLock)

Alt + Function key + N (1
through 0 becomes numeric-key
scan-codes)

Function key + cursor left
(PgUp)

Function key + cursor right
(PgDn)

Function key + cursor up
(Home)

Function key + cursor down
(End)

Function key plus the - sign
Function key + = sign

Alt +/

Alt +°

Alt +|

Alt +]

Alt +.

Shift + Del

NumLock then Alt + numeric
value (1 through 0)

83-key-Keyboard Function to Cordless-Keyboard Mapping

Keyboard Encoding 5-25

ades] SOIg




Character Codes

The following character codes are passed through the
BIOS KEYBOARD-routine to the system or
application program. A -1 means the combination is
suppressed in the KEYBOARD routine. The codes are -
returned in AL. See Appendix C, “Characters, '
Keystrokes,and Color’* for the exact codes.

5-26 Keyboard Encoding



Key Base Upper
Number Case Case Ctrl Alt Fn
1 Esc Esc Esc -1 **

//_J 2 1 ! —1 * kKK (F1) * ***
1 3 2 G| Nul (000) | * ***x** | (F2) * *%*
4 3 # _1 * kkxkx | (F3)

5 4 $ -1 *,***** (F4) *,***
6 5 % _1 * kxxkx | (F5) o kxk
7 6 A RSO (030) | *, ****x* | (F6) * ***
8 7 & -1 * kkokkd (F7) * #**
9 8 * _1 *,***** (F8) *’***
10 9 ( -1 * dkdkk (F9) * #**
11 0 ) -1 * ok ok (F10) *, ***
12 — - UsS (031) |* Ak
13 = + _1 * %k k
14 Backspace | Backspace | DEL (127) | -1 -1
(008) (008)
15 Fn -1 -1 -1 -1 -1
16 —>| (009) {|<— * -1 -1 -1
17 q Q DCI (017) | * ok kkk
;“/—\ ' (Pause)
~—118 w w ETB (023) | * -1
19 e E ENQ (005) | * ok Kok
(Echo)
20 r R DC2 (0i8) | * -1
21 t T DC4 (020) | * -1
* - Refer to “Extended Codes” in this section.
**  _ Refer to “Special Handling” in this section.
**x*  _ Refer to “83-Key Keyboard functions to Cordless Keyboard
Mapping Chart.”
**** _ {Uppercase for cursor keys can be selected by pressing left or
right shift or entering the Numlock state (Alt + Fn + N).
kokokokk _

When Alt is pressed and the keyboard is in the Numlock
state, the upper row of digits is used to enter ASCII codes
for generating any character from the extended ASCII

character set.

Cordless-Keyboard Character Codes (Part 1 of 4)

Keyboard Encoding 5-27

adesn) SOId



Key Base | Upper

Number | Case | Case Ctrl Alt Fn

22 y Y EM (025) * -1

23 u U NAK (021) |* -1

24 i I HT (009) * -1

25 o 0] SI(015) * -1

26 p P DLE (0l6) |* *ok ok

(PrtScreen)

27 [ Esc (027) | (])*** |-1

28 1 } GS (029) () *** | -1

29 CR CR | LF (010) -1 -1

30 Curl -1 -1 -1 -1 -1

31 a A SOH (001) | * -1

32 s S DC3(019) |* *ok ok

(Scroll Lock)

33 d D EOT (004) | * -1

34 f F ACK (006) |* -1

35 g G BELL (007) | * -1

36 h H BS (008) * -1

37 ] J LF (010) * -1

38 k K VT (011) * -1

39 | L FF (012) * -1

40 ; : -1 -1 -1

41 ’ ” -1 () *** | -1

* - Refer to “Extended Codes” in this section.

** . Refer to “Special Handling” in this section.

**x  _ Refer to “83-Key Keyboard functions to Cordless
Keyboard Mapping Chart.”

*x#x% _ Uppercase for cursor keys can be selected by pressing
left or right shift or entering the Numlock state (Alt +
Fn + N).

**x*+* _ When Alt is pressed and the keyboard is in the
Numlock state, the upper row of digits is used to enter
ASCII codes for generating any character from the
extended ASCII character set.

Cordless-Keyboard Character Codes (Part 2 of 4)

5-28 Keyboard Encoding




Key Base Upper Alt +
Number [ Case Case | Ctrl Alt Fn Ctrl
— 42 Cur.Up* 8'**** _1 * **,***
( (Home)
143 Left | -1 -1 -1 = O
Shift
44 z Z SUB (026) | * -1
45 X X CAN (024) | * -1
46 c C EXT (003) | * -1
47 v \ SYN (022) | * -1
48 b B STX (002) | * *ok Ak
(Break)
49 n N SO (014) | * Fx* | kkk
50 m M CR (013) |* -1
51 , < -1 -1 -1
52 . > -1 ™ * |-l
53 / ? -1 \ -1
54 Right | -1 -1 -1 -1
Shift
) 55 Cur.L * 4 %k %k %k * * **’*** * ok
Q Reverse (PgUp)
Word
56 Cur.R * 6 o5 3 3k ok * * **,*** * %k
Advance (PgDn)
Word **
* - Refer to “Extended Codes” in this section.
*k - Refer to “Special Handling” in this section.
*** - Refer to “83-Key Keyboard functions to Cordless
Keyboard Mapping Chart.”
**x* _ Uppercase for cursor keys can be selected by pressing =
left or right shift or entering the Numlock state (Alt + =)
Fn + N). @
***** . When Alt is pressed and the keyboard is in the %
Numlock state, the upper row of digits is used to enter a2
— ASCII codes for generating any character from the
/\_/": extended ASCII character set.

Cordless-Keyboard Character Codes (Part 3 of 4)

¥ aoavhoord Fnooading £.90



Key Base Upper Alt +

Number | Case Case | Ctrl Alt Fn Ctrl

57 Alt -1 -1 -1 -1 -1

58 Space Space | Space | Space | Space

59 Caps | -1 -1 -1 -1 -1 *ok

Lock

60 Ins. 0 *x%x | ] * -1 *k

61 Del. * R B * -1 *x

62 Cur.Dn * 2 % ok % k —1 * **’***

End

* - Refer to “Extended Codes” in this section.

*ok - Refer to “Special Handling” in this section.

**x* . Refer to “83-Key Keyboard functions to Cordless
Keyboard Mapping Chart.”

**xx . Uppercase for cursor keys can be selected by pressing
left or right shift or entering the Numlock state (Alt +
Fn + N).

*****% - When Alt is pressed and the keyboard is in the
Numlock state, the upper row of digits is used to enter
ASCII codes for generating any character from the
extended ASCII character set.

Cordless-Keyboard Character Codes (Part 4 of 4)

Extended Codes

An extended code is used for certain functions that
cannot be represented in the standard ASCII code. A
character code of 000 (Nul) is returned in AL. This
indicates that the system or application program should
examine a second code that indicates the actual
function. This code is returned in AH. This is the same
for both the Cordless Keyboard and 83-key keyboard.

&_12MN ¥ avhanard Enoeading




Second Code Function

3 ‘Null Character
15 ~—
(—\ 16 through 25 At Q,W,E, R, T,Y,U,I,O, P
] 30 through 38 AltA,S,D,F,G,H,J,K, L
“—" 44 through 50 AltZ, X,C, V,B,N,M
| 59 through 68 Fn+1,2,3,4,56,7,8,9,0 (Functions 1
through 10)
71 | Home
172 Up Arrow
73 Page Up
75 M (Cursor Left)
77 —n (Cursor Right)
79 End
80 Down Arrow
81 Page Down
82 Ins (Insert)
83 Del (Delete)
84 through 93 | Fl1! through F20 (Upper Case F1

through F10)
(\; 94 through 103 F21 through F30 (Ctrl F1 through F10)
| 104 through 113 F31 through F40 (Alt F1 through F10)

114 ‘Fn/E or Ctrl/Fn/P (Start/Stop Echo to
Printer)

115 Ctr] <= (Reverse Word)

116 Ctrl —= (Advance Word)

117 Ctrl/End [Erase End of Line (EOL)]

118 Ctrl/PgDn [Erase to End of Screen (EOS)]

119 Ctrl/ Home (Clear Screen and Home)

120 through 131 Alt/1,2,3,4,5,6,7,8,9,0, -, =(Keys 2
through 13)

132 Ctrl/PgUp (Top 25 Lines of Text and
Home Cur.)

133 through 149 Reserved

150 through 190 Reserved for Non-Keyboard Scan Codes

ades)) SOId

o Cordless Keyboard Extended Functions
|
N

Shift States

Most shift states are handled within the KEYBOARD
routine, transparent to the system or application

Kaoavhnard Fnendinag 5.1



program. The current set of active shift states is
available by 'calling' an entry point.in the ROM
KEYBOARD-routine. The following keys result in
altered shift-states:

Shift

This key temporarily shifts keys 2 thru 13, 16 thru 28,
31 thru 41, and 44 thru 53 to upper case (base case if
in Caps Lock state). The Shift key temporarily reverses
the '"Num Lock' or 'non-Num-Lock' state of keys 42,
55, 56, and 60 thru 62.

Crl

This key temporarily shifts keys 3, 7, 12, 14, 16 thru
28, 30 thru 38, 42, 44 thru 50, 55, and 56 to the Ctrl
state. The Ctrl key is used with the Alt and Del keys to
cause the 'System Reset' function, with the Scroll
Lock key to cause the 'Break' function, with the Num -
Lock key to cause the 'Pause’ function, with the Alt:
and Cursor Left or Right for 'screen adjustment’, with
Alt and Ins to 'activate diagnostics', and with Alt-and
CapsLock to 'activate keyboard clicking'. These
functions are described in ‘“‘Special Handling” on the
following pages.

Alt

The Alt key temporarily-shifts keys 2 thru 13, 17 thru
26, 31 thru 39, and 44 thru 50 to the ' Alternate state'.
The Alt key is used with the Cirl and Del keys to cause
the 'System Reset' function described in ‘‘Special
Handling” on the following pages. The Alt key is also
used with keys 27, 28,41, and 53 to produce the
characters under the key.

8.7 Kevhoard Fneodino



()

‘The Alt key has another use. This key allows the user

to enter any character code from O to 255 into the-
system from the keyboard.. The user must first put the -
keyboard in the 'Num Lock' state (concurrently press,
first Alt then Fn + n). Then while holding down the Alt
key type the decimal value of the character desired:
using keys 2 thru 11. The Alt key is then released.  If
more than three digits are typed, a modulo-256 result is -
created. These three digits are interpreted as a.
character code and are transmitted through the
KEYBOARD routine to the system or application
program. Alt is-handled internal to the KEYBOARD
routine.

Caps Lock
This key shifts keys 17 thru 25, 31 thru 39, and 44 thru
50 to 'upper case'. A second press of the Caps Lock

key reverses the action.- Caps Lock is handled internal
to the KEYBOARD routine.

Shift-Key Priorities and Combinations

The following keys are listed in descending priority for -

" translation in Interrupt Hex 48 and Interrupt hex 9 .

respectively:

1. Interrupt Hex 48
a. Alt key
b. Ctrl key
c. Shift key

2. Interrupt Hex 9
a. Ctrl
b. Alt
c. Shift

ages() SOId

K avhoard Fneodineg 5.1



Of the three keys listed, only Alt and Ctrl are a valid
combination. If any other combination of the three
keys is used, only the key with the higher priority is
recognized by the system.

Special Handling
- System Reset

The combination of the Alt, Ctrl, and Del keys causes
the KEYBOARD routine to initiate the equivalent of a
'System Reset'.

Break

The combination of the Fn and B keys results in the
KEYBOARD routine signaling Interrupt Hex 1A. The
extended characters (AL = hex 00, AH = hex 00) are
returned,

Pause

The combination of the Fn and Q keys causes the
KEYBOARD-interrupt routine to loop, waiting for any
key to be pressed. This provides a system or
application-transparent method of temporarily
suspending an operation such as list or print and then
‘resuming the operation by pressing any other key. The
key pressed to exit the "Pause’ mode is unused
otherwise.

Print Screen

The combination of the Fn and P keys results in an
interrupt, invoking the PRINT SCREEN routine. This

8_.34 Kevhoard Fncodino



()

routine works in the alphanumeric or graphics mode,
with unrecognizable characters printing as blanks.

Scroll Lock

The combination of the Fn and S key is interpreted by
appropriate application programs to indicate that the
cursor-control keys should cause 'windowing' over the
text rather than cursor movement. Pressing the 'Scroll
Lock' combination a second time reverses the action.
The KEYBOARD routine simply records the current
shift state of 'Scroll Lock'. It is the responsibility of
the system or application program to perform the
function.

Functions 1 thru 10

The combination of the Fn key (15) and one of keys 2
thru 11 results in the corresponding 'Function' with
key 2 being 'F1' up to key 11 being 'F10°'.

Function Lock

Concurrently pressing first the Fn key and Shift key,
and then pressing the Esc key causes keys 2 thru 11 to
shift to their 'Function' states and remain there until
the same combination is pressed again.

Screen Adjustment

ades) SOI9

The combination of the Alt key, Ctrl key, and either the
Left or Right cursor movement key causes the screen to
shift one character in the corresponding direction, up to
a maximum of four.

¥ ovhaord Rnaondinag & 18



Enable/Disable Keyboard Click

The combination of the Alt, Ctrl, and Caps Lock keys
causes the keyboard audio feedback (click) to shift
between 'on' and 'off'. The Power-On default is
'off'.

Run Diagnostics

The combination of the Alt, Ctrl, and Ins keys causes .
the system diagnostics stored in ROM to be initiated. :

Phantom-Key Scan-Code (Hex 55)

The Phantom-Key scan-code is generated by the

keyboard when an invalid combination of three or more

keys is pressed. The keys pressed that caused the
Phantom-Key scan-code are not put into the keyboard

buffer, and are ignored by the keyboard _
microprocessor. The Phantom-Key scan-code is -
transmitted to BIOS where it is ignored.

Other Characteristics :

The keyboard buffer is large enough to support a fast
typist. If a key is pressed when the buffer is full, the
character generated is ignored and the 'bell’ is
sounded. A larger buffer can be specified by modifying
words at labels 'Buffer-Start' (hex 480) and
'Buffer-End' (hex 482) to point to another offset
within segment hex 40.

The KEYBOARD routine suppresses the typematic

action of the following keys: Ctrl, Shift, Alt, Caps —
Lock, Insert, and Function.

R_1L Y ovhnard Fncadinog



()

Function

Key
Combinations

Description

System Reset

Break

Pause

Print Screen

Function Lock

Screen
Adjustment

Keyboard Click

Run Diagnostics

Keyboard
Adventure
Game

Cassette
Autoload

Alt + Ctr]l + Del

Fn+B
Fn+Q

Fn+P

Fn and Shift
then Esc (Held)
concurrently)

Alt + Ctrl +
cursor right or
cursor left

Alt + Ctrl +
CapsLock
Alt + Ctrl + Ins

Esc

Ctrl + Esc

Unconditional system
reset

Breaks program execution

Resumable pause in
program execution

Locks the number keys as
Function keys (F1-F10)
and B, Q, P, E, S, and the
cursor control keys to
their function states

Allows the user to adjust
the display’s image left or
right

Enables or disables the
keyboard audio feedback
click

Initiates system ROM
diagnostics

If the first key pressed
after the system comes up
in Cassette BASIC is Esc
(key #1) then the
Keyboard Adventure
Game will be activated.

If this is the first key
sequence after the system
comes up in Cassette
BASIC then the screen
will display ‘Load
“CASI:”,R followed by a
Carriage Return. This
allows a cassette program
to be automatically
loaded.

Cordless Keyboard Special Handling

Keyboard Encoding 5-37

=
[~
=)
7]
(o
[/}
N
{1 \-]
©®




Keyboard Usage

“Keyboard Usage” is a set of guidelines of key-usage
when performing commonly-used functions.

place cursor at end
of line

Function Keys Comment
Home Cursor Fn Home Editors; word processors
Return to Fn Home Menu driven applications
outermost menu
Move cursor up Up Arrow Full screen editor, word

processor

Page up, scroll Fn PgUp Editors; word processors
backwards 25 lines
Move cursor left - Text, command entry
Move cursor right — Text, command entry
Scroll to end of text | Fn End Editors; word processors

Move cursor down

Down Arrow

Full screen editor, word
processor

text at cursor, shift
text right in buffer

Page down, scroll Fn PgDn Editors; word processors
forwards 25 lines

and home

Start/Stop insert Ins Text, command entry

Keyboard - Commonly Used Functions (Part 1 of 3)

5-38 Keyboard Encoding




&
-

Function

Keys Comment
Delete character at. Del Text, command entry
cursor
Destructive 4—— Key 14 | Text, command entry
backspace
Tab forward — Text entry
Tab reverse ~N— Text entry
Clear screen and Ctrl Fn
home Home )
Scroll up Up Arrow In scroll lock mode

Scroll down

Down Arrow

In scroll lock mode

Scroll left PR In scroll lock mode
Scroll right  — In seroll lock mode
Delete from cursor | Ctrl Fn Text, command entry
to EOL (end of line) | End
4 Exit/Escape Esc Editor, 1 level of menu
’ and so on
Start/Stop Echo Fn PrtSc Any time
screen to printer.
Delete from cursor | Ctrl Fn Text, command entry
to EOS (end of PgDn
- screen)
Advance word Ctrl] —2 Text entry
Reverse word Ctrl a— Text entry
Window Right Ctrl] —=—n When text is too wide to

fit the screen

Keyboard - Commonly Used Functions (Part 2 of 3)

Keyboard Encoding 5-39

ages} SOIM



Function Keys Comment
Window Left Ctr] When text is too wide to
fit the screen
Enter insert mode | Ins Line Editor
Exit insert mode Ins Line Editor
Cancel current - Esc Command entry, text
line entry
Suspend system Ctrl Fn Stop list, stop program,
(Pause) Pause and so on.
Resumes on any key.
Break interrupt Fn Break Interrupt current process
System reset Alt Ctrl Del | Reboot
Top of document Ctrl Fn .Editors, word processors
and home cursor PgUp
Standard function | Shift Fn/F1 | Primary function keys
keys through
Fn/FI10 -
Secondary - Shift F1-F10 | Extra function keys if 10
function keys - Ctrl FI-F10 | are not sufficient.
Alt F1-F10
Extra function Alt keys. | Line Editor
keys 2 through 13
(1 through
9,0)
(_, :)
Extra function Alt A Used when function starts
keys through Z with the same letter as one

of the alpha keys.-

Keyboard - Commonly Used Functions (Part 3 of 3)

5-40 Keyboard Encoding



Function Key
Carriage return al (Enter)
——_ | Line feed Ctrl al (Enter)
V| Bell Ctrl G
“—" | Home -| Fn Home
Cursor up Up Arrow
Cursor down Down Arrow
Cursor left P -
Cursor right : —
Advance one word Ctr] M
Reverse one word - Ctrl e—i
Insert Ins
Delete Del
Clear screen Ctrl Fn Home
Freeze output . Fn:Pause
Tab advance B —
‘Stop Execution (break) Fn Break
Delete current line Esc
Delete to end of line Ctrl Fn End
C Position cursor.to end of line Fn End

- BASIC Screen Editor Special Functions

ades(] SOId

Kevhoard Encodine §5-41



Function Key
Suspend Fn Pause
Echo to printer Fn Echo
Stop echo to printer Fn Echo
Exit current function (break) Fn Break
Backspace 4— Key 14
Line feed Ctrl al (Enter)
Cancel line Esc
Copy character Fn Fl or —
Copy until match Fn F2
Copy remaining Fn F3
Skip character Del
Skip until match Fn F4
Enter insert mode Ins
Exit insert mode Ins
Make new line the template Fn F5
String separator in REPLACE Fn F6:
End of file in keyboard input Fn F6

DOS Special Functions

Non-Keyboard Scan-code Architecture

The architecture of the IBM PCjr BIOS is designed to
also receive scan codes above those generated by the
keyboard to accommodate any future device.

The keyboard generates scan codes from hex 1 to 55
and FF. Any scan codes above hex 55 (56 thru 7E for
'make' codes and D6 thru FE for 'break' codes) are
processed by BIOS in the following manner:

1. If the incoming 'make' scan code falls within the
range of the translate table, whose address is
pointed to by BIOS Interrupt Hex 49, it is translated
into the corresponding scan code. Any incoming
'‘break' codes above hex D5 are ignored.

§5-42 Kevboard Encoding



()

2. If the new translated scan code is less than hex 56,
it is processed by BIOS as a keyboard scan-code
and the same data is placed in the BIOS keyboard
buffer.

3. If the translated scan-code is greater than hex 55 or
the incoming scan-code is outside the range of the
translate table, hex 40 is added, creating a new
extended-scan-code. The new extended-scan-code
is then placed in the BIOS keyboard buffer with the
character code of 00(null). This utilizes the range
hex 96 thru BE for scan codes hex 56 thru 7E
respectively.

The default translate-table maps scan codes hex 56 thru
6A to existing keyboard-values. Scan codes hex 6B
thru BE are mapped (by adding hex 40) to extended
codes of hex AB thru FE, since these are out side the
range of the default translate-table.

Users can modify Interrupt Hex 49 to address their own
translate table if mapping differences are desired.

The translate table format is:
Description

0 Length - The number of non-keyboard
scan-codes that are mapped within the table
(from 1 to n).

1ton Word with low-order byte representing the
scan-code-mapped values relative to the input
values in the range of hex 56 thru 7E.

=]
o
=)
w
<
14
0
ae
®

Kevboard Fncodine 85-43



—8-Bits

l— Length=1 ton

High Byte - 0 (NUL)

Low Byte - Scan Code

High Byte - 0 (NUL)

Low Byte - Scan Code

High Byte - 0 (NUL)

Low Byte - Scan Code

High Byte - 0 (NUL)

Low Byte - Scan Code

Translate Table Format

With this architecture, all keyboard scan-codes can be
intercepted thru Interrupt Hex 9 and all non-keyboard
scan-codes can be intercepted thru Interrupt Hex 48.

The following is a chart showing the default values of
the translate table in BIOS.

5-44 Kevboard Encoding



()

()

Length = 20 mapped values
Input Mapped Keyboard
Scan Code Value Character
86 72 (cursor up)
87 73 PgUp
88 77 (cursor right)
89 81 PgDn
90 80 (cursor down)
91 79 End
92 75 (cursor left)
93 71 Home
94 57 Space
95 28 Enter
96 17 w
97 18 E
98 31 S
99 45 X
100 44 4
101 43 \
102 30 A
103 16 Q
104 15 Tab
105 1 Esc

Translate Table Default Values

Scan Codes
(Hex) Type of Scan Code
1-55 Normal Keyboard Scan Code (Make)
56 -7E Non-Keyboard Scan Code (Make)
81 - D5 Normal Keyboard Scan Code (Break)
D6 - FE Non-Keyboard Scan Code (Break)
FF Keyboard Buffer Full

Scan-Code Map

Kevhoard Encodine §-4858

=
)
=)
wn
c
w
0
¥
()




Notes:

5-46 Keyboﬁrd Encoding



BIOS Cassette Logic

I
)
/

C/ Software Algorithms - Interrupt Hex 15

The CASSETTE routine is called by the request type in
AH. The address of the bytes to be 'read' from or
'written' to the tape is specified by DS:BX and the
number of bytes to be 'read’' or 'written' is specified
by CX. The actual number of bytes 'read ' is returned
in DX. The read block and write block automatically
turn the cassette motor on at the start and off at the
end. The request types in AH and the cassette status
-descriptions follow:

Request
Type Function
C,' AH=0 Turn Cassette Motor On

AH =1 Turn Cassette Motor Off

AH=2 | Read Tape Block
Read CX bytes into memory starting at
Address DS:BX
Return actual number of bytes read in DX
Return-Cassette Status in AH

AH=3 Write Tape Block
Write CX bytes onto cassette starting at
Address DS:BX
Return Cassette Status in AH

AH Request Types

ades) SOIH

~
N

RIOS Caceette |.ocie 847



Cassette

Status Description

AH =00 No Errors

AH =01 Cyclic Redundancy Check (CRC) Error in
Read Block

AH =02 No Data Transitions

AH =04 No Leader

AH =80 Invalid Command.

Note: The carry flag will be set on any error.

AH Cassette Status

Cassette Write

The WRITE-BLOCK routine 'writes' a tape block
onto the cassette tape. The tape block is described in
“Data Record Architecture” later in this section.

The WRITE-BLOCK routine 'turns on' the cassette -
drive motor and 'writes' the leader (256 bytes of all
1’s) to the tape, 'writes' a synchronization bit (0), and
then 'writes' a synchronization byte (ASCII character
hex 16). Next, the routine 'writes' the number of data
bytes specified by CX. After each data block of 256
bytes, a 2-byte cyclic redundancy check (CRC) is
'written'. The data bytes are taken from the memory
location 'pointed’ at by DS:BX.

The WRITE-BLOCK routine 'disassembles' and
'writes' the byte a bit-at-a-time to the cassette. The
method used is to 'set’' Timer 2 to the period of the
desired data bit. The timer is 'set' to a period of 1.0
millisecond for a 1 bit and 0.5 millisecond for a O bit.

5_48 BIOS Cassette Logic



()

I<—— 250 pus —

The timer is 'set' to mode 3, which means the timer
outputs a square wave with a period given by its count
register.” The timer’s period is changed on the fly for

each data byte 'written' to the cassette. If the number -

of data bytes to be 'written' is not an integral multiple
of 256, then, after the last desired data byte from
memory has been 'written', the data block is extended.
to 256 bytes of writing multiples of the last data byte.
The last block is closed with two CRC bytes as usual.
After the last data-block, a trailer consisting of four
bytes of all 1 bits is 'written'. Finally, the cassette
motor is 'turned off', if there are no errors reported by
the routine. All 8259 interrupts are 'disabled' during
cassette-write operations.

l—————— 500 us ———————»

Zero Bit

'—One Bit

1000 us ‘I

Cassette-Write Timing Chart -

Cassette Read

The READ-BLOCK routine 'turns on' the cassette
drive motor and then delays for approximately 0.5
second to allow the motor to come up to speed.

The READ-BLOCK routine then searches for the
leader and must detect all 1 bits for approximately 1/4
of the leader length before it can look for the sync (0)
bit. After the sync bit is detected, the sync byte

RIOS Cassette I.ooic §-49

ades)) SOId




(ASCII character hex 16) is ‘'read'. If the sync byte is

‘read’ correctly, the data portion can be 'read’. If a
correct sync byte is not found, the routine goes back
.and searches for the leader again. The datais 'read’' a
bit-at-a-time and "assembled’ into bytes. After each
byte is 'assembled’, it is 'written' into memory at
location DS:BX and BX is incremented by 1.

After each multiple of 256 data bytes is ‘read', the
CRC s 'read' and 'compared' to the CRC generated.
If a CRC error is detected, the routine exits with the
carry flag 'set' to indicate an error and the status of
AH 'set' to hex 01. DX contains the number of bytes
'written' into memory.

All 8259 interrupts are 'disabled’ during the

cassette-'read' operations.

Data Record Architecture

The WRITE-BLOCK routine uses the following format
to record a tape block onto a cassette tape:

(CASSETTE TAPE BLOCK)

Leader | Sync | Sync | Data | CRC | Data | CRC
Bit Byte | Block Block

Motor Motor

On Off

Cassette Write-Block Format

'5-50 BIOS Cassette Logic




Component Description

Leader 256 Bytes (of All 1’s)

Sync Bit One 0 bit

Sync Byte ASCII Character hex 16
Data Blocks 256 Bytes in Length

CRC 2 Bytes for each Data Block

Data Record Components

Error Detection

Error detection is handled through software. A CRC is-
used to detect errors. The polynomial used is G(X) =
X16 4 X12 4 X5 + 1, which is the polynomial used by
the synchronous data link control interface.
Essentially, as bits are 'written' to or 'read’' from the
cassette tape they are passed through the CRC register
in software. After a block of data is 'written', the
complemented value of the calculated CRC register is
'written' on the tape. Upon reading the cassette data,
the CRC bytes are 'read’ and 'compared’ to the
generated CRC value. If the read CRC does not equal
the generated CRC, the processor’s carry flag is 'set’
and the status of AH is 'set’ to hex 01, which indicates
a CRC error has occurred. Also, the routine is exited
on a CRC error.

=
()
7
e
741
0
[ ]
®

BIOS Cassette Logic 5§=51



Notes:

§5_.52 BIOS Cassette Logic



()

()

Appendixes

Contents
Appendix A. ROM BIOS LISTING.......... A-3
Appendix B. LOGIC DIAGRAMS........... B-1
Appendix C. CHARACTERS, KEYSTROKES, and
COLOR ... i ittt iiiiaanann C-1
Appendix D. UNIT SPECIFICATIONS ........ D-1
System Unit ................. ... ...... D-1
Size: ... e D-1
Weight: ............. .. D-1
Transformer: ....................... D-1
Environment: ............... .00 ... D-1
Cordless Keyboard ..................... D-2
Size: ... D-2
Weight: ........ ... ... iiiiian. D-2
Optional Cable: ..................... D-2
Diskette Drive ....................... D-3
Size: ... e D-3
Weight: . ....... ... i, D-3
Power: ........... .. i, D-3
Mechanical and Electrical ............. D-4
ColorDisplay ...............ccienu.n. D-5
Size: .. e D-5
Weight: ............. ... ........... D-5
HeatOutput: ....................... D-5
PowerCables: ...................... D-5
Graphics Printer ....................... D-6
SiZE: o e D-6
Weight: ............ ... .. ... ... D-6

>
=
=
o
3
=
E
>




HeatOutput: .................c00.... D-6

PowerCable: ............ccivivvn... D-6
SignalCable: ....................... D-6
Electrical: ......................... D-6
IntermalModem ..................c...... D-7
Power: ...... ... ... ... D-7
Interface ........... ... D-7
Compact Printer ..............c00unnn .. D-8
Sz vt e i e s D-8
Weight ... ... it D-8
Heat Output ................coo. .. D-8
PowerCable .............cccc0v. .. D-8
Signal Cable " .......... e e D-8
Electrical. ......ccvviiiiiinninnen o D-8



CCAVEAT EMPTOR):

H

i

i

i

i THE BIOS ROUTINES ARE MEANT TO BE ACCESSED THROUGH -
B SOFTWARE INTERRUPTS ONLY. ANY ADDRESSES PRESENT IN
; THE LISTINGS: ARE INCLUDED ONLY FOR COMPLETENESS,
H NOT FOR REFERENCE. APPLICATIONS WHICH REFERENCE
H ABSOLUTE ADDRESSES - WITHIN THIE CODE VIOLATE THE
i STRUCTURE AND DESIGN OF BIOS.

H

H

i

EQUATES
= 0060 PORT_A EQU SCH ; 8255 PORT A ADDR
0038 CPUREG ECU 38H ; NAEK FOR CPU REG BITS
0007 CRTREG EQu 7 ; NASK FOR CRT REG BITS
0061 PORT_B EQu 61H ; 82885 PORT B ADDR
0062 PORT_C EQU 82H ; 8286 PORT C ADDR
0063 CND_PORT EQuU. 63H
0089 MODE_8288 EQU 100010018,
0020 INTAOO EQU 20H ; 8289 PORT
0021 INTAOL EQU 21H ; B269 PORT
0020 EOL EQU 20H
0040 TIMER EQU 40H
0043 TIM_CTL EQU 43H ; B253 TIMER CONTROL PORT ADDR
0040 TIMERO EQU 40H ; 8253 TIMER/CNTER O PORT ADDR
0061 KB_CTL EQU 61H ; CONTROL BITS FOR KEYBOARD
03DA VGA_CTL EQU 3DAH ; VIDEO GATE ARRAY CONTROL PORT
00A0 NNI_PORT EQU OAOH ; NNI.CONTROL PORT
00BO PORT_BO EQU OBOH
030F PAGREG EQU O03DFH ; CRT/CPU PAGE REGISTER
0060 KBPORT EQu 060H ; KEYBOARD PORT
4000 DIAG_TABLE_PTR EQU 4000H
= 2000 MINI EQU. 2000H
H
H DIBKETTE EQUATES
= 00F2 NEC_CTL EQU OF2H ; CONTROL PORT FOR THE DISKETTE
= 0080 FDC_RESET EQU B80H ; RESETS THE NEC (FLOPPY DISX
; CONTROLLER). O RESETS,
; 1 RELEASES THE .RESET
0020 WD_ENABLE EQU 20H ; ENABLES WATCH DOG TINER IN NEC
0040 W0_STROBE EQU 40H ; STROBES WATCHDOG TIMER
0001 DRIVE_ENABLE EQU O1H ; BELECTS AND ENABLES ORIVE
= O0F4 NEC_STAT EQuU OF4H ; STATUS REGISTER FOR THE MEC
0020 BUSY_BIT EQU 20H ; BIT = 0 AT END OF EXECUTION PHASE
0040 IO EQU 40H ; INDICATES DIRECTION OF TRANSFER
0060 RAN EQU BOH ; REQUEST FOR -MASTER
—_— = 0OFS NEC_DATA EQU OFSH ; DATA PORT FOR THE NEC
H
i 8088 INTERRUPT LOCATIONS
H
0000 ABSO SEGNENT AT- 0
0008 ORG 244
0008 NM!_PTR LABEL WORD
000C ORG 3%a
800C INT3_PTR LABEL WORD
0014 ORG Gxd
0014 INTS_PTR LABEL WORD -
0020 ORG Bwd’
0020 INT_PTR LABEL DWORD
0040 - ORG 10H®4
0040 VIDEO_INT" LABEL WORD
0070 ORG 1CH¥4
0070 INTIC_PTR LABEL WORD
0074 ORG 10H%4
0074 PARM_PTR LABEL DWORD ; PDINTER TO VIDEO. PARMS
0060 ORG 18H%4
0060 BASIC_PTR LABEL WORO ; ENTRY POINT FOR CASSETTE BASIC
0078 ORG O1EHN4 ; INTERRUPT 1EH
0078 DISK_POINTER LABEL DWORD
007C ORG O1FHRA ; LOCATION OF POINTER
007C EXT_PTR LABEL DWORD ; POINTER TO EXTENSION
0110 ORG 044H4
0110 CSET_PTR LABEL DWORD ; POINTER TO DOT PATTERNS
0120 ORG 048K 4
0120 KEY62_PTR LABEL WORD ; POINTER TO 82 KEY KEYBOARD CODE
0124 ORG 049H% 4
0124 EXST LABEL WORD ; POINTER TO EXT. SCAN TABLE
0204 ORG- 0B 1HN4
0204 INT81 LABEL WORD
0208 ORG 082Hx4
0208 INTB2 LABEL WORD
0224 ORG 08BHN4
0224 INTB9 LABEL WORD
0400 ORG 400H-
- 0400 DATA_AREA LABEL BYTE ; ABSOLUTE LOCATION OF DATA SEGMENT
0400 DATA_WORD. LABEL WORD
7€C00 ORG 7CO0H
7€00 BOOT_LOCN LABEL FAR
7€00 AB30 ENDS

3>
=
o
@
=
>

ROM BIOS A-3




0000
0000

0100
0100

0000
- 0000

0008

0010
-0012 7?7
0013
0018

RN - TR TR O]
-3
-
o
~
~

I
o
-3
-3
]

0019 1?7

001A
001C
001E

0045
0046
0038
Dpo1D
003a
002A
0036
0082
0083

[ I T TR T T
-3 o
o o
o N
b (-]

onn
-3
re
N

0020
012C

0QAF

0003
-0019
0004

A-4

Bo {
777

04 (
???7?

04 r
2?77

??7?

?7??7?
77?7

2??7?
7?7

2?7?

07 ¢

ROM BIOS

; STACK —-- USED DURING INITIALIZATION ONLY

STACK  SEGMENT AT 30H

bW 128 DUP(?)
108 LABEL  WORD
STACK  ENDS
; ROM B10S DATA AREAS
DATA  SEGMENT AT d4OH
RS232_BASE ow 4 DUP(?)
PRINTER_BASE ° OW a DUP(?)
EQUIP_FLAG ow 2 ;
KBD_ERR - o8 ? :
MENORY_S1ZE oW 2 :
TRUE_MEM oW 2 :

; ADORESSES OF RS232 ADAPTERS

; ADDRESSES OF PRINTERS

INSTALLED  HAROWARE

COUNT OF KEYBOARD TRANSMIT ERRORS
USABLE MEMORY SIZE IN K BYTES
REAL MENORY SI12E IN K BYTES

; KEYBOARD DATA AREAS

i
KB_FLAG 0B ?
------ SHIFTY FLAG seunss HlTHlN
CAPS_STATE ;
NUM_STATE :eu 2ou ;
ALT_SHIFT EQU 0BH ;
CTL_SHIFT €Qu 04H- i
LEFT_SHIFT EQu 02H :
RIGHT_SHIFT EQU O1H ;
* KB_FLAG_1 08 ? ;
INS_SHIFT EQU ° BOH ;
CAPS_SHIFT EQU 40H :
NUN_SHIFT EQU 20H ;
SCROLL_SHIFT EQU 10H :
HOLO_STATE EQU 08H ;
CLICK_ON EQu 04H ;
CLICK_SEQUENCE EQU 02H ;
5
ALT_INPUT L] ? I
BUFFER_HEAD - DW ? ;
BUFFER_TAIL oW ? I
* KBZBUFFER oW 15 DUP(%)
= TAIL
_} EQU ;
SCROLL_KEY - EQU 70 ;
ALT_KEY EQU 86 ;
CTL_KEY EQU 29 H
CAPS_KEY - EQU 88 ;
LEFT_KEY EQU 42 ;
RIGHT_KEY EQU 84 ;
INS_KEY EQU 82 :
OEL_KEY EQU 83 ;

KB_FLAG

CaPS LOCK STATE HAS BEEN TOGGLED
NUM LOCK STATE HAS BEEN TOGGLED
ALTERNATE SHIFT KEY DEPRESSED
CONTROL SHIFT KEY DEPRESSED

LEFT SHIFT KEY DEPRESSED

RIGHT SHIFT KEY DEPRESSED
SECOND BYTE Of KEYBOARD STATUS
INSERT KEY 1S DEPRESSED

CAPS LOCK KEY IS DEPRESSED

NUM LOCK KEY 1S DEPRESSED
SCROLL LOCK KEY 15 DEPRESSED
SUSPEND KEY HAS BEEN TOGGLED
INDICATES THAT AUDIO FEEDBACK IS
ENABLED

OCURRNCE OF ALT-CTRL-CAPSLOCK HAS -

OCCURED

STORAGE FOR ALTERNATE KEYPAD
ENTRY

POINTER TO HEAD OF KEYBOARD BUFF
"POINTER TO TAIL OF KEYBOARD BUFF
; ROOM FOR 15 ENTRTES

INDICATES THAT THE BUFFER 1S ENPTY
[:1:]

SCAN CODE FOR NUNBER LOCK
SCROLL LOCK KEY

ALTERNATE BHIFT KEY SCAN CODE
SCAN CODE FOR.CONTROL KEY
SCAN CODE FOR SHIFT LOCK
SCAN CODE FOR LEFT SHIFT
SCAN CODE FOR' RIGHT SHIFT
SCAN CODE FOR. INSERT KEY
SCAN CODE FOR DELETE KEY

DISKETTE DATA AREAS

H

SEEK_STATUS o8 2 ;

i

i
MOTOR_STATUS 08B 2 :

i
MOTOR_COUNT 08 ? :
MOTOR_MAIT EQu 37
DISKETTE_STATUS DB ? :
TIME_OUT EQU BOH :
BAD_SEEK €au 40H :
BAD_NEC €au 20H :
B8AO_CRC Eau 10H :
DMA_BOUNDARY  EQU 09H :
BAD_DNA Eau 08H :
RECORD_NOT_FNO EQU - 04H .
WRITE_PROTECT  EQU 03H :
BAD_ADDR_NARK  EQU ozH :
BAD_CMD EQu o1H :
NEC_STATUS o8 7 DUP(?)
SEEK_END EQu 20H
THRESHOLD EQu 300 ;
PARMO EQu OAFH
PARM1 EQU 3 ;
PARMS EQU 25 :
PARM10 EQu a

i« PARAMETER

DRIVE RECALISRATION STATUS

B1T 0 = DRIVE NEEDS RECAL BEFORE
NEXT SEEK IF BIT I§ =

MOTOR STATUS

81T 0 = I)RIVE O IS CURRENTLY
RUNN

TINE OUT COUNTER FOR' DRIVE

TURN OFF

-2 SECS OF COUNTS FOR MOTOR

TURN OFF

RETURN CODE STATUS BYTE

ATTACHNENT FAILED TO RESPOND

SEEK OPERATION FAILED

NEC CONTROLLER HAS FAILED

BAD CRC ON DISKETTE READ

ATTEMPT TO DNA ACROSS 64K

BOUND ARY

DMA OVERRUN ON OPERATION

REQUESTED SECTOR NOT FOUND

WRITE ATTEMPTED ON WRITE

PROTECTED DISK

ADDRESS NARK- NOT FOUND

BAD COMMAND GIVEN TO DISKETTE 1/0
STATUS BYTES FROM NEC

NUMBER OF
ENABLE
PARAMETER
TABLE
PARAMETER 1
PARAMETER 9
IS

TIKMER-O0 TICKS TILL

0 IN THE DISK_PARN

o



; VIDED DISPLAY DATA AREA

()

0043 77 CRT_MODE o8 2 ; CURRENT CRT MODE
004A 7777 CRT_COLS oW 2 ; NUMBER OF COLUMNS ON SCREEN
00ac 7772 CRT_LEN ou 2 ! LENGTH OF REGEN IN BYTES
004E 7277 CRT_START - oW 2 | STARTING ADDRESS IN REGEN- BUFFER
0080 08 € CURSOR_POSN oM B DUP(?) ; CURSOR FOR EACH OF UP TO B PAGES
2277
1
0060 2772 CURSOR_NODE oW 2 ; CURRENT' CURSOR NODE SETTING
0082 77 ACTIVE_PAGE o8 2 ! CURRENT PAGE BEING 01SPLAYED
0063 7727 ADDR_6B48 oW 2 ! BASE ADDRESS FOR ACTIVE DISPLAY
0068 72 CRT_MODE_SET DB 2 ! CURRENT SETTING OF THE
! CRT MOOE REGISTER
00e6 77 CRT_PALLETTE DB 2 ! CURRENT PALETTE MASK SETTING
H
: CASSETTE DATA AREA
0067 2777 EDGE_CNT oW 7 TIME COUNT AT DATA EDGE
0069 2772 CRC_REG oM 2 CRC REGISTER
o068 27 LaBT_vaL o8 2 LAST IMPUT VALUE
i
: TIMER DATA AREA
ooec 2772 TINER_LOW oM ? ; LOW WORD OF TIMER COUNT
006E 7777 TIMER_HIGH oW 2 { HIGH WORD OF TIMER COUNT
0070 77 TIMEROFL 08 2 ! TIMER HAS ROLLEO OVER SINCE LABT
: READ
i
; SYSTEM DATA AREA
0071 772 B10S_BREAK 08 2 ; BIT 7=1 IF BREAK KEY HAS BEEN HIT
0072 2777 RESET_FLAG oM 2 WORD=1234H IF KEVBOARD RESET
UNDERWAY
: . EXTRA DIBKETTE DATA AREAS
0074 22 TRACKO o8 2
0078 77 TRACK 1 08 ”
0076 77 TRACK2 o8 ”
0077 27 o8 2
; PRINTER AND RS232 TIME-OUT VARIABLES
i
0070 04 I PRINT_TIN_OUT 0B 4 DUP(?)
»
3
007¢ 04 € RB232_TIN_OUT 0B 4 0UP(D)
27
)
i
i ADDITIONAL KEVBOARD DATA AREA
0080 2777 BUFFER_START  DW ?
0082 7777 BUFFER_END oW 2
00sa 77 INTR_FLAG b8 2 ; FLAG TO INDICATE AN INTERRUPT
i HAPPENEO
i~ 62 KEY KEYBOARD DATA AREA
ooBs 77 CUR_GHAR o8 2 ; CURRENT CHARACTER FOR TYPANATIC
ooge 77 VARDELAY 8 ” | DETERMINES WHEN INITIAL DELAY IS
i OVER
= 000F DELAY:RATE Eau OFH i INCREASES INITIAL DELAY
0087 727 CUR_FUNC 08 2 ; CURRENT FUNCTION
oose 77 KB_FLAG_2 o8 2 i 3RD BYTE OF KEYBOARD FLAGS
= 0004 RANGE Eau a NUNBER OF POSITIONS TO SHIFT
DISPLAY
! BIT ASSIGNNETS FOR KB_FLAG 2
H
0080 FN_FLAG Eeu BOH
0040 FN_BREAK Eau 40H
0020 FN_PENDING EQU"  20H
0010 FN_LOCK Eou 10H
0008 TYPE_OFF Eeu  oaH
0004 HALF_RATE - £au 04H
0002 INIT_DELAY £au o2H
= 0001 PUTCHAR au O1H
0089 27 HORZ_POS - 0B 2 ; CURRENT VALUE OF HORIZONTAL
: START PARM
co8A 27 PAGDAT o8 2 i IMAGE OF DATA WRITTEN TO PAGREG
0oae DATA  ENDS
EXTRA DATA AREA
0000 XXDATA. SEGMENT AT SOH
0000 72 GTATUS_BYTE b8 2
;, THE FOLLOWING AREA 18 USED ONLY DURING D}AGNOSTICS
i (POST AND RON RESIDENT)
0001 ?? DCP_MENU_PAGE DB ; TO CURRENT PAGE FOR DIAG. MENU
0002 2777 DCPROW_COL bW K i CURRENT ROW/COLUNN COORDINATES
i FOR DIAG MENU
0004 27 WRAP_FLAG oa 2 i INTERNAL/EXTERNAL 8250 WRAP
H

INDICATOR

ROM BIOS A-5




0006
0006

0008
000A
000C

000E
0010

0011

0012

0014

0016
0018

0019

0022
0024

0026
0026

0029
0028
0020~

0031

0033

0038
0037
0039
0038
0030

0000
0000
0001

0003
0004

0008
0007
0008

0009

= 0200
0029

0229

0428
0424
0428
042C
042E

0430
0432

0434 .

0436
0430
043A
043C
043E
0440
0442

A-6 ROM BIOS

7
?77?
7777
77?7
27?7
2?27
27

??

77?7

27?7

727?

08 €

ddad
2?77

27?7
7

77?7
7?7
72?7
2?77
ddad
27?77
dads
27?77
dadd
iddad

08

0200 {

0100 T

??
??
27?7
7?77
27?77
72?7
27?7
7727
2?7?77
2?7?27
M7
27?77
2?7?77
2?7?77

??

33

08

MFG_TST 1] ? ; INITIALIZATION FLAG
MEN_TOT oW ? ; WORO EQUIV. TO HIGHEST SEGMENT IN
; MEMORY
MEM_OONES ow ? ; CURRENT SEGMENT VALUE FOR
; BACKGROUNO MEM TEST
MEM_DONEO ow ? ; CURRENT OFFSET VALUE FOR
; BACKGROUND MEM TEST
INT1CO ow ? i SAVE AREA FOR INTERRUPT 1C
; ROUTINE
INT1CS oW ?
MENU_UR o8 ? ; FLAG TO INDICATE WHETHER MENU 15
; ON SCREEN (FF=YES, 0=NO)
DONE 128 08 ? . COUNTER TO KEEP TRACK OF 128 BYTE
; BLOCKS TESTED BY BGMEM
KBOONE oW ? ; TOTAL K OF MENORY THAT HAS BEEN
; TESTEO BY BACKGROUND MEM TEST
i
i POST DATA AREA
10_ROM_INLT ow ? ; PDINTR TO OPTIONAL /0 RON INIT
. ; RDUTINE
10_ROM_SEG DM 3 ; POIMTER TO-10 ROM SEGMENT
POBT_ERR - o8 2 ; FLAG TO INDICATE ERROR DCCURRED
; DURING POST
MOOEM_BUFFER 13 9 ; MOOEM RESPONSE BUFFER
(MAX 9 CHARS)
WFG_RTN bw ? POINTER TD' MFG. OUTPUT ROUTINE
bW ?
i
; SERIAL PRINTER DATA
;
8P_FLAG ow ?
SP_CHAR 13 ?
; THE FOLLOWING SIX ENTRIES ARE
; DATA PERTAINING TO NEW STICK
NEW_STICK_DATA DOW ? ; RIGAT ST{CK. DELAY
oW ? ; RIGHT SBUTTON A DELAY
oW ? . RIGHT BUTTON 8 DELAY
oW ? ; LEFT STICK DELAY
oW ? ; LEFT BUTTON A DELAY
oW ? ; LEFT BUTTON 8 DELAY
bW ? ; RIGHT STICK LOCATION
oM ? ; UNUSED
bw. ? i UNUSED
oW ? ; LEFT STICK POSTITON
XXDATA ENDS
i
; DISKETTE DATA AREA.
i
DKDATA SEGMENT AT 6OH
NUM_DRIVE 08 ?
DUAL 0B ?
OPERATION o8 2
ORIVE 0B ?
FRACK 0B ?
HEAD 08 ?
SECTOR 0B ?
NUM_SECTOR 08 ?
SEC b8 ?
: FORMAT 1D
TK_HD_SC B B DUP{0,0,0,0) ; TRACK, HEAD, SEGTOR, NUM OF
; SBECTOR
; BUFFER ‘FOR READ AND WRITE OPERATION
DK_8UF_LEN EQU 512 ; 512 BYTES/SECTOR
READ_BUF o8 DK_BUF_LEN DUF(0)
WRITE_BUF 0B (DX_BUF_LEN/2) "DUP(&DH, OBH)
; INFO FLAGS
REQUEST_IN 08 ? ;SELECT1ON CHARACTER
DK_EXISTED o8 ?
DK_FLAG 08 ?
RAN_NUM oW ?
SEED oW ?
; SPEED TEST VARIABLES
DK_SPEED oW ?
TIM_L oW ?
TIM_L_1 oW ?
TIM_2 oW ?
TIM_L_2 oW ?
FRACT_H bW ?
FRACT_L oW ?
PART_CYCLE oW ?
WHOLE_CYCLE oW 2
HALF_CYCLE oW ?



0444
0445
0446
0447

0448
0449

0000
0000

" 4000

0000

0000

0018
001D
00JF
0021
©023
0028
0028
0024
002C
002E

0030
0035
0038
0037
0038
0039
0034
0038

. 003C

/0030
003D

0041
0041

0041
0042

0043
0043
0048
0047
0049
0048
0040

004E

0051
0054
0087
0059
00BA
005D
005F

0061
0063
0068
., 0067
. 0068
. 006A
006C

4000 [
?”?

31 35 30 34 30 33
36 20 43 4F 50 52
2E 20 49 42 4D 20
31 39 3B 31 2C 31
39 38 33

0378
0278

EF
F7

B0 00
E6 A0

E6 10
E4 A0
FA

BB 10BF
BA 00CO
89 0004
oA C4
60 C4 20
BO A0

E6 F2
BA 030A

B0 04

80 01

ERROR PARAMETERS
[1]:]

DK_ER_OCCURED
DK_ER_L1L
DK_ER_L2

NN

ER_STATUS_BYTE DB
; LANGUAGE TABLE
LANG_BYTE [1:}

~

DKDATA ENDS

; ERROR HAS OCCURRED

; CUSTOMER ERROR LEVEL

; SERVICE ERROR LEVEL

; STATUS BYTE RETURN FROM INT 13K

; PORT BO TO DEVERMINE WHICH
LANGAGE TO USE

VIDEO DISPLAY BUFFER

;

H

VIDEO_RAM
oe

SEGMENT AT 08800H
16384 DUF(7)
VIDEO_RAM ENDS
: ROM RESIDENT CODE
CODE  SEGMENT PAGE
ASSUME  CS: CODE, DS: ABSO, ES: NOTHING, S§: STACK
oe +1504036 COPR. 1BM 19B1,1983‘ ; COPYRIGHT NOTICE
21 oW Li2 RETURN POINTERS FOR RTNS CALLED
oW Lia BEFORE STACK INITIALIZED
o Li6
DN L9
oW L2a
Fap oe KB
EX_0 DW OFFSET EBO
oy OFFSET EBO
oK OFFSET TOTLTRO
oW OFFSET MO1
MESSAGE AREA FOR POST
ERROR_ERR oe ‘ERROR‘ ; GENERAL ERROR PROMPT
MEM_ERR o8 ‘ar {MEMORY ERROR
KEY_ERR o8 '8 {KEVBOARD ERROR MSG
CASS_ERR o8 cr {CASSETTE ERROR NESSAGE
CON1_ERR o8 b’ {ON-BOARD SERIAL PORT ERR. MSG
COM2_ERR o8 €’ {SERIAL PORTION OF MODEM ERROR
ROM_ERR o8 Fe {OPTIONAL GENERIC BIOS RON ERROR
CART_ERR oa G {CARTRIDGE ERROR
01SK_ERR o M {DISKETTE ERR
Fa LABEL  WORD ; PRINTER SOURCE TABLE
oW 376m
DW 278H
FaE LABEL  WORD
IMASKS LABEL BYTE ; INTERRUPT NASKS FOR 8259
i INTERRUPT CONTROLLER
o8 OEFH i MODEM INTR MASK
oe OF 7H ! BERIAL PRINTER INTR MASK
SETUP
DISABLE NMI, MASKABLE INTS.

SOUND CHIP, AND VIOEO.
TURN DRIVE O MOTOR OFF

ASSUME C5:CODE, D5: ABSO, ES: NOTHING, 58: STACK

RESET  LABEL  FAR
START: MOV L,0
ouT 0AOH, AL 01SABLES NMI
DEC AL SEND FF TO MFG_TESTER
ouT 10H, AL
It AL, 0AOH ; RESET NMI F/F
cLt ; DISABLES MASKABLE INTERRUPTS
; DISABLE ATTENUATION IN SOUND CHIP
MoV AX, 108FH ; REG ADDRESS IN AH, ATTENUATOR OFF
i
MoV DX, 00COH ; ADDRESS OF SOUND CHIP
MoV cx, 4 ; 4 ATTENUATORS TO OISABLE
L1 OR AL, AH ; COMBINE REG ADDRESS AND DATA
out DX, AL
ADD AH, 20H ; POINT TO NEXT REG
LOOP L1
NoV AL, WO_ENABLE+FDC_RESET TURN DRIVE O MOTOR OFF,
;7 ENABLE TIMER
out OF2H, AL
MoV DX, VGA_CTL ; VIDEO GATE ARRAY CONTROL
IN AL, DX ; SYNC VGA TO ACCEPT REG
MOV AL, 4 ; SET VGA RESET REG
ouT 0X, AL ; BELECT 1T
MOV AL, 1 ; SET ASYNC RESET
out OX, AL ; RESET VIDEO GATE ARRAY
TEST 1

8088 PROCESSOR TEST
DESCRIPTION

VERIFY 8088 FLAGS, REGISTERS

AND CONDITIONAL JUMPS

MFG. ERROR CODE 0001H

H
H
:
’

>
=
o
o
=
o
P
>

ROM BIOS A-7




006D
006F
0070
0072
0074
0076
0078
0079
0078
0070
Q07F
[+1]- B
0083
0085
0087
oos8s

0084
[+1+]:194
Q0BE
008F
0091
0093
0095
0097

0099
009¢C

Q09F
Q0AL
00A3
00AS
00A7
00AS8
00AB
00AD

0081
00B3
0085
0087
00B8

ooac
00BE
00C1L
00C3
00C4
00CS
00CE
oocs
00C9
00CA

00CA
ooce
00CE
0000
0002
o004
00D6
ooDB
00DA
oopcC
OODE
Q0EO
Q0E2
0OE4
O00E6
00E8
OOEA
OOED
OOEF
OOF 1
OOF3
OOF5
OOF7
OOF9
OOF8
OOFE
OOFF
0101

1] MOV AH, ODEH ; SET SF, CF, 2F, AND AF FLAGS ON
SAHF
4c JNC L4 ; GO TO ERR ROUTINE IF CF MOT SET
4qa INZ L4 ; G0 TO ERR ROUTINE IF ZF NOT SET
48 JINP L4 ; GO TO ERR ROUTINE IF PF NOT SET
46 JNS L4 ; GO TO ERR ROUTINE IF SF NOT SET
LAHF ; LOAO FLAG IMAGE TO AH
05 MoV cL,§ ; LOAO CNT REG WITH SHIFT CNT
EC SHR AH, CL ; SHIFT AF INTO CARRY BIT POS
3F JINC L4 ; GO TO ERR ROUTINE IF AF NOT SET
20 MOV AL, 40H ; SET THE OF FLAG ON
] SHL AL, 1 ; SETUP FOR TESTING
39 JNO L4 ; GO TO ERR ROUTINE IF OF NOT SET
£4 XOR AH, AH ; SET AH = 0
SAHF ; CLEAR SF, CF, 2F, AND PF .
34 JBE La ; GO TO ERR ROUTINE IF CF ON N
; GO TO ERR ROUTINE IF 2F ON 4
32 Js L4 ; GO TO ERR ROUTINE IF SF ON
30 JP L4 ; GO TO ERR ROUTINE IF PF ON
LAHF ; LOAD FLAG IMAGE TO AH
05 MoV cL,5 ; LOAD CNT REG WITH SHIFT CNT
EC SHR AH, CL ; SHIFT ‘AF’ INTO CARRY BIT POS
29 Je L4 ; GO TO ERR ROUTINE IF ON
E4 SHL AH 1 ; CHECK THAT “OF‘ IS CLEAR
25 GO TO ERR ROUTINE IF ON
s READ/HRITE THE 8088 GENERAL AND SEGMEMTATION REGISTERS
; WITH ALL ONE’S AND ZEROES‘S.
FFFF MOV AX, OFFFFH ; SETUP ONE’S PATTERN IN AX
STC
o8 L2 MoV DS, AX ; WRITE PATTERN TO ALL REGS
o8 MOV BX, DS
c3 MoV ES, 8X
ci MOV cx,ES
D1 MOV §S, CX
02 MOV DX, SS
E2 MoV SP, DX
EC MoV 8P, 5P
F8 MOV s1,8P
FE MOV o1,st
07 JINC L3
c7 XOR AX, 01 ; PATTERN MAKE IT THRU ALL REGS
07 JINZ L4 ; NO - GO TO ERR ROUTINE
cLe
E3 JMP L2
c7 L3: OR AX,DI ; ZERO PATTERN MAKE 1T THRU?
oc J2 L5 ; YEB - GO TO NEXT TEST
0010 La: Mov 0X, 0010H ; HANDLE ERROR
00 MOV AL, 0
ouT DX, AL ; ERROR 0001
INC oX
ouT DX, AL
co INC AL
ouT OX, AL
HLT ; HALT
L5: ~—t
; TEST 2
; 8256 INITIALIZATION AND TEST
; DESCRIPT1ON
; FIRST INITIALIZE B255 PROG.
; PERIPHERAL INTERFACE. PORTS AMB
; ARE LATCHED OUTPUT
; BUFFERS. C 1S INPUT.
; WFG. ERR. CODE =0002H '
i
FE MoV AL, OFEH ; SENO FE TO MFG
10 ouT 10H, AL
88 MOV AL, NODE_B285
63 out CMD_PORT, AL ; CONFIGURES 1/0 PORTS
co suB AX, AX ; TEST PATTERN SEED = 0000
ca L6: MoV AL, AH
60 ouT PORT_A, AL ; WRITE PATTERN TO PORT A
60 IN AL, PORT_A ; READ PATTERN FROM PORT A
61 ouT PORT_8, AL ; WRITE PATTERN TO PORT B
61 N AL, PORT_B ; READ OUTPUT PORT
ca cHP AL, AH ; DATA AS EXPECTED?
06 JNE L7 ; IF NOT, SOMETHING 16 WRONG
cq INC AH ; MAKE NEW DATA PATTERN
EE JINZ Le ; LOOP TILL 285 PATTERNS DONE
05 JHP SHORT L8 ; CONTINVE IF DONE
02 L7: MOV 8L, 02H ; SET ERROR FLAG (BH=00 NOW)
08BC R JHP E_MSG ; G0 ERROR ROUTINE
co LB: XOR AL, AL : 4
60 ouT K8PORT, AL ; CLEAR KB PORT
62 N AL, PORT_C ;
08 AND AL, 000010008 , 64K CARD PRESENT?
1B MOV AL, 1BH ; PORT SETTING FOR 64K SYS
02 INZ L9 ;
3F MOV AL, 3FH ; PORT SETTING FOR 128K SYS
03DF Le: MOV DX, PAGREG ;
ouT DX, AL ;
oo MoV AL, 000011018 P INITIALIZE OUTPUT PORTS S
61 ouT PORT_B, AL ;

ROM BIOS



PART 3
SET UP VIDEQO GATE ARRAY AND 6845 TO GET MEMORY WORKING

0103 80 FD MOV, AL, OFDH
0105 E6 10 ouT 10H, AL i
0107 BA 0304 MoV DX, 0304H ; SET ADDRESS OF 6845
010A BB FOAA R MoV 8X, OFFSET VIDEO_PARMS ; POINT TO 6845 PARMS
0100 B3 0010 90 MoV CX, M0040 ; SET PARM LEN
0111 32 E4 XOR AH, AH AH 1S REG %
0113 8A Ca L10: MoV AL, AH ; GET 6B4% REG #
0115 EE ouT DX, AL
L0116 42 INC DX ; POINT TO DATA PORT
0117 FE C4 INC AH ; NEXT REG VALUE
D119 2E: BA 07 MOV AL, CS: [8X1 ; GET TABLE VALUE
011C EE out DX, AL ; OUT TO CHIP
0110 43 INC BX ; NEXT IN TABLE
O11E 4A DEC DX ; BACK TO POINTER REG
01IF E2 F2 LOOP  L10
; START VGA WITHOUT VIDEO ENABLED
0121 BA 03DA Hov DX, VGA_CTL ; SET ADDRESS OF VGA
0124 EC IN AL, DX ; BE SURE ADDR/DATA FLAG IS
; IN THE PROPER STATE
0126 BS 0005 MoV cx,5 ; % OF REGISTERS
0128 32 E4 XOR AH, AH ; AH I8 REG COUNTER
012A 8A C4 L11: MoV AL, AH ; GET REG %
012C EE ouT DX, AL ; SELECT IT
0120 32 CO XOR AL, AL ; SET ZERO FOR DATA
012F EE out DX, AL
0130 FE C4 INC aH ; NEXT REG
0132 E2 FE LOOP L1
;
; TEST 4
; PLANAR BOARD ROS CHECKSUN TEST
; DESCRIPTION

A CHECKSUM TEST 1S DONE FOR EACH ROS

MODULE ON THE PLANAR BOARD TO. B

NFG ERROR CODE =0003H NDDULE AT ADDRESS :
F000: 0000 ERROR :
0004H MODULE AT ADDRESS :

F800: 0000 ERROR ;
0134 BO FC MOV AL, OFCH
0136 E6 10 ouT 10H, AL ; MFG OQUT=FC
; CHECK MODULE AT F000:0 (LENGTH 32K)
0138 33 Fé XOR st,sI ; INDEX OFFSET WITHIN SEGMENT OF
; FIRST BYTE
013A 8C Cs8 MOV AX,CS ; SET UP STACK SEGMENT
013C 8E DO MOV S§, AX
013E BE D8 MoV DS, AX ; LDAD DS WITH SEGMENT OF ADDRESS
N ; SPACE OF B10S/BASIC
10140 B89 8000 MoV CX, 8000H ; NUMBER OF BYTES TO BE TESTED, 32K
;0143 BC 001B R mov SP, OFFBET 21 ; SET UP STACK POINTER SO THAT
; RETURM WILL COME HERE
0146 E9 FEEB R JMP ROS_CHECKSUM ; JUMP TO ROUTINE WHICK PERFORMS
; CRC CHECK
0149 74 06 Li2: Jz L13 ; MODULE AT F000:0 OK, GO CHECK
; OTHER MODULE AT F000:8000
0148 BB 0003 HOV BX, 0003H ; SET ERROR CODE
014E E9 09BC R JMP E_MSG ; INDICATE ERROR
0151 BS 8000 L13: MoV CX, BOOOH ; LOAD COUNT (81 POINTING TO START
0154 ES FEEB R JMP ROS_CHECKSUM ; OF NEXT MODULE AT THIS POINT)
0187 74 06 Li4: Jz L1S ; PROCEED IF NO ERROR
01%9 BB 0004 HOV BX, 0004H ; TNDICATE ERROR
015C ES 09BC R JHP E_MSG i

01SF L16:

;

; TEST &

; BABE 2K READ/WRITE STDRAGE TEST

; DESCRIPTION

; WRITE/READ/VERIFY DATA PATTERNS

; AA, 55, AND 00 TO 1ST 2K OF STORAGE

; AND THE 2K JUST BELOW 84K (CRT BUFFER)

VERIFY STORAGE ADDRESSABILITY.
ON EXIT SET CRT PAGE TO 3. SET
TEMPORARY STACK ALSO.

MFG. ERROR CODE 04XX FOR SYSTEM BOARD MEM.
05XX FOR 64K ATTRIB. CD. MEM
08Xx FOR ERRORS IN BOTH
(XX= ERROR BITS)

016F BO FB MoV AL, OFBH
0161 E6 10 ouT 10H, AL ; SET MFG FLAG=FB
0163 89 0400 MOV Cx, 0400H ; SET FOR 1K WORDS, 2K BYTES
0166 33 CO XOR AX, AX
0168 8E CO MoV ES, AX ; LOAD ES WITH 0000 SEGMENT
016A E9 0859 R JNP PODSTG

_ 0160 75 19 L16: INZ L20 ; BAD STORAGE FOUND

~ 016F BO FA Mov AL, OFAH ; MFG OUT=FA

0171 E6 10 out 10H, AL

- 0173 B9 0400 MoV €X, 400H ; 1024 WORDS TO BE TESTED IN THE

; REGEN BUFFER
0176 E4 60 IN AL, PORT_A ; WHERE 1S THE REGEN BUFFER?
0178 3C 1B P AL, 1BH ; TDP OF 64K? 2>
017A B8 OF80 MOV AX, OFBOH ; SET POINTER TO THERE IF IT IS
0170 74 02 JE L18 =)
017F B4 IF MoV AH, 1FH ; OR SET POINTER TO TOP OF 128K =
0181 BE CO L18: MoV ES, AX o
0183 E9 0BS9 R JMP PODSTG ; =
0186 74 22 L19: Jz L23 (=%
Fed

ROM BIOS A-9




0188 87 04 L20: MoV BH, 04H ; ERROR 04....

O1PA E4 62 IN AL,PORT_C GET CONFIG BITS
oi8C 24 0B AND AL, 000010008 ; TEST FOR ATTRIB CARD PRESENT
OISE 74 06 yZ L21 ; WORRY ABOUT ODD/EVEN IF 1T I8
0190 8A 09 MoV aL,cL
0192 OA DD OR aL,CH ; COMBINE ERROR BITS IF IT ISN'T
0194 EB 12 JHP SHORT L22 H
0186 80 FC 02 L21: CHP AH, 02 ; EVEN BYTE ERROR? ERR 04XX
0199 &aA D9 Hov BL,CL
0188 74 08 vE L22
0180 FE €7 INC SH ; MWAKE INTO O5XX ERR
019F OA DD OR 8L, CH ; MOVE AND POSSIBLY COMBINE
; ERROR BITS
01A1 80 FC 01 CHP AH, 1 ; ODD BYTE ERROR
01A4 74 02 JE L22
01A6 FE C7 INC aH ; MUST HAVE 8EEN BOTH
i ~ MAKE INTO 06XX v
01AB EB® 09BC R L22: JHP E_MSG JUMP TO ERROR OUTPUT ROUTINE ]
H RETEST HIGH 2K USING BB0OO ADDRESS PATH
01AB BO FB3 L2 MHov AL, OF9H ; MFG OUT =F8
01AD E6 10 out 10H, AL
OlAF BB 0400 MOV €X, 0400H ; 1K WORDS
0182 B8 B8BO MoV AX, 0BBBOH ; POINT TO AREA JUST TESTED WITH
DIRECT ADDRESSING
0185 B8E CO MoV ES, AX
0187 E9 0889 R JHP PODSTG
01BA 74 06 L24: vz L25
0IBC BB 0008 MoV BX, 0005H ; ERROR 0005
01BF EB 09BC R JHP E_MSG
;——=== SETUP STACK SEG AND SP

01C2 BB 0030 L25: MOV AX, 0030H ; GET STACK VALUE
01C5 8E DO nov S§, AX ; SET THE STACK UP
01C7 @C 0100 R Lo SP,OFFSET T0S ; STACK 1S READY TO GO
o1cA 33 €O XOR AX A)( ; GET UP DATA SEG
0icC 8E D8 MoV

- jm———— SEYUF CRT FAGE
O1CE C7 06 0462 R 0007 DATA_WORDCACTIVE_PAGE-DATA], 07

jm——— SEY FREL!H!NARV MEMORY SIZE WORD
0104 B8 0040

0107 E4 62 w AL, PORT_C ;
0109 24 08 AND AL, 08H i 64K CARD PRESENT?
0109 80 18 MoV AL, 18H ; PORT SETTING FOR 64K SYSTEM
0100 75 05 INZ L26 i SET TO 64K IF NOT
0IDF 93 C3 40 ADD BX, 64 i ELSE SET FOR 128K
0lE2 BO 3F Wov AL, 3FH ; PORT SETTING FOR 128K SYSTEM
0iE4 88 IE 0415 R L26: MOV DATA_WORDI TRUE_MEM-DATA1, BX
OLEB A2 0484 R Hov DATA_AREACPAGDAT-DATAD, AL
i PART &
; INTERRUPTS
; DESCRIPTION
; 32 INTERRUPTS ARE INITIALIZED TO POINT TO A
; DUMMY HANDLER. THE BIOS INTERRUPTS ARE LOADED.
; DIAGNOSTIC INTERRUPTS ARE LOADED
; SYSTEM CONFIGURATION WORD IS PUT IN MEMORY. —
: THE DUMMY INTERRUPT HANDLER RESIDES HERE.
; :
ASSUME  D8:XXDATA
018 88 --—- R Hov AX, XXDATA
OLEE 8E 08 MoV 0s, AX
OIF0 C6 08 0005 R F§ MoV WFG_TST,OF8H  ; SET UP WFG CHECKPOINT FROM THIS
i POINT
01F5 E6 EEDE R CALL  MFG_UP UPDATE MFG CHECKPOINT
OIF® C7 06 0022 R OAGL R MoV HFG_RTN, OFFSET MFG_OUT
OIFE BC CB WOV Ax,Cs
0200 A3 0024 R MoV WFG_RTN+2,AX  ; SET DOUBLEWORD POINTER TO MFG.

ERROR OUTPUT ROUTINE 850 D]AGS.
; DON’'T HAVE TO DUPLICATE CODE
ASSUME CS:CODE, DS: ABSO A
0203 BB 0000 MoV AX, 0
0206 8E 0O Mov DS, AX
jmm—— SET UP TRE IHTERRUPT VECTORS TO TEMP INTERRUPT

0208 B8 OOFF cx, 2855 FILL ALL INTERRUPTS
0208 28 FF sus D1,D1 FIRST IMTERRUPT LOCATION 18 0000
0200 BE C7 MoV ES,DI SET ES=0000 ALS0
020F BB FB1S R 03: MoV AX,OFFSET D11 ; MOVE ADDR OF INTR PROC TO TBL
0212 4B STOSW
0213 BC CB MoV AX,CS ; GET ADDR OF INTR PROC SEG
0215 A8 STOSHW
0216 E2 F7 LooP 03 ; VECTBLO
0218 C7 06 0124 R 1090 R Hov EXST,OFFSET EXTAB ; SET UP EKT. SCAN TABLE
; SET UP BI0S IMTERRUPTS
021E BF 0040 R MoV DI,DFFSET VIDEO_INT ; SET UP VIDEO INT
0221 OF PUSH cs
0222 IF POP ; PLACE C5 IN DS
0223 BE FFO3 R Nov sx OFFSET VECTOR TABLE+16
0226 B9 0010 Hov cX, 16
0229 AS oa: MOVSW ; MOVE INTERRUPT VECTOR TO LOW
; MEMORY
0224 47 INC D1
0228 47 INC D1 ; POINT TO NEXT VECTOR ENTRY
022¢ E2 FB LooP D4 ; REPEAT FOR ALL 16 BIOS INTERRUPTS .
; BET UP oucnos‘rlc INTERRUPTS ~r
022E BF 0200 MoV DI, 0200H START WITH INT. BOM
0231 BE 4000 WOV SI,D1AG_TABLE_ PTR ; POINT T ENTRY POINT TABLE
0234 BB 0010 Nov cX, 16 16 ENTRIES
0237 AS D5: HOVSY ; MOVE INTERRUPT VECTOR TO LOW

MEMORY

A-10 ROM BIOS



()

0298
0238
0234
023C
023E
0244
024A

0263
0268
0267
0268
025¢C

0260
0263
0268
0267
0269
0268

<0260

Bo
E6

-EB

8o
E6

FB8
89

E2 F

BA

‘0A

74
87
E9

FB
2]
08 0204 R 1B63 R
08 0208 R 1A2A R
06 0224 R 1BAS R

0050
E
IE 0484 R

(-]
05
o7
098C R

INC or

INC o1 ; POINT TO NEXT VECTOR ENTRY

LoOP 13 ; REPEAT FOR ALL I8 BIOS INTERRUPTS
MOV DS, CX ; SET 0S TO ZERO

MOV INT81, OFFSET LOCATE]

MOV INTB2, OFFSET PRNT3

WOV INTB9, OFFSET JOYSTICK

------ "SET UP DEFAULT EQUIPMENT QETERMINATION. WORD
BIT 15,14 = NUMBER OF PRINTERS ATTACHED
BIT 13 = 1 = SERIAL PRINTER PRESENT
BIT 12 = GAME [/0 ATTACHED
BIT 11,10,9 = NUMBER OF RE232 CARDS ATTACHED
BIT B = DMA (0=DMA PRESENT, 1=NO DMA ON SYSTEM
BIT 7,8 = NUMBER OF DISKETTE DRIVES
- 00=1, 01=2, 10=3, 11=4 ONLY IF BIT 0 = 1
BI1T 5,4 = INITIAL VIDEO MOOE
00 - UNVSED
01 - 40X26 BW USING COLOR CARD
10 - BOX25 8W USING COLOR CARD
41 - BOX25 BW -USING BW CARD

BIT 3,2 = PLANAR RAM SIZE (10=48K, 11=64K)
BIT 1 NOT USED
BIT O = 1 (IPL DISKETTE INSTALLED)
ASSUHE CS: CODE, DS: ABSO
BX, 11180 ;DEFAULT GAMEIO, 40X25, NO DMA, 48K ON
; PLANAR
IN AL, PORT_C
AND AL, 08H ;" 64K CARD "PRESENT
INZ D56 i No, Jume
OR BL,4 SET 64K ON- PLANAR
[LIN MOV DATA_WORDLEQUIP_FLAG-DATA], BX

TEST 7
INITIALIZE AND TEST THE B259 INTERRUPT CONTROLLER CHIP
NFG ERR. CODE O7XX (XX=00, DATA' PATH OR INERNAL FAILURE,
XX=ANY OTHER BITS ON=UNEPECTED INTERRUPTS

CALL NFG_UP ; MFG CODE=F7
-ABSUME D8:ABS0,CS8: CODE
MOV AL, 13H ; ICW1 - RESET EDGE SENSE CIRCUIT,
;SET SINGLE 8269 CHIP AND "1CW4 READ
-ouT INTAQQ, AL
MoV AL, B ; 1CW2 - SET INTERRUPT TYPE B8 (B8-F)
ouT INTAOL,.AL
MOV AL, 9 ; 1CWd - SET BUFFERED MODE/SLAVE
; AND ‘8086 MODE
ouT INTAOL, AL

TEST ABILITY TO WRITE/READ THE MASK REGISTER

NOV aL,0 ; WRITE ZEROES TO IMR
HOV BL, AL PRESET ERROR INDICATOR
our INTAOL, AL DEVICE INTERRUPTS ENABLED
N AL, INTAO1L READ 1MR
oR AL, AL IMR = 07
INZ GERROR NO - GO TO ERROR ROUTINE
WOV aL, OFFH DISABLE DEVICE INTERRUPTS
ouT INTAO1, AL WRITE ONES TO MR
IN AL, INTAO READ IMR
ADD Yt ALL IMR BITS ON?

(ADD SHOULD PRODUCE 0)
INZ GERROR i NO - GO TO ERROR ROUTINE

CHECK FOR HOT INTERRUPTS

INTERRUPTE ARE MASKED OFF. NO INTERRUPTS SHOULD OCCUR.
sTI ; ENABLE EXTERNAL INTERRUPTS

‘NOV CX, 50H
HOT1: LOOP HOTl ; WAIT FOR ANY INTERRUPTS
MOV BL,DATA AREA[INTR FLAG-DATA] ; DID .ANY INTERRUPTS
OR BL, BL
Jz END_TESTG ; NO - GO TO NEXT TEST
GERROR: MOV BH, 07 ; SET 07 SECTION 6F ERROR MSG
\JNP “E_MSG
END__
B FIRE THE DISKETTE WATCHDOG TIMER
MoV AL, WD_ENABLE+WD_STROBE+FDC_RESET
ouT OFIH,AL
MOV AL, WD_ENABLE+FDC_RESET
ouTt OF2H, AL

ASSUME CS:CODE,DS: ABSO

8253 TIMER CHECKOUT
DESCRIPT10N
VERIFY THAT THE TIMERE (0, 1, AND 2) FUNCTION PROPERLY.
THIS JNCLUDES CHECKING FOR STUCK BITS IN ALL THE TIMERS,
THAT TINER 1 RESPONDS TO TIMER O OUTPUTS, THAT TINER O
INTERRUPTS WHEN 1T SHOULD, AND THAT TIMER 2‘S OUTPUT WORKS
AS 1T SHOULD.
THERE ARE 7 POSSIBLE ERRORS DURING THIS CHECKOUT.
BL VALUES FOR THE CALL TO E_MSG INCLUDE:
©0) STUCK SITS IN TIMER O
1) 'TINER | DOES NOT RESPOND TO TIMER O OUTPUT
2) TINER O INTERRUPT DOES -NOT.DCCUR
3) STUCK BITS IN TIMER 1
4) TIMER 2 OUTPUT INITIAL VALUE 1S NOT LOW
6} STUCK BITS IN TIMER 2
6) TIMER 2 OUTPUT DOES NOT GO HIGH ON TERMINAL COUNT

ROM BIOS A-11

>

=
~d
@
o

Vv




0240
02A3
0246
0249
02AC

0282
0284

0286
0288
0288
0280
02BF

02C2
02C2
02C4
02C8
o2ce
02¢8
02C0
02CF

0202
0202
0203
0205
0207
o208
0200
02€0
02E0
02ES
02€7
02€9
02E8

0300
030F

0311
0313
0318
0318
031A

031C
031¢
03 (F
0322

0328
0327
0329

A-12 ROMBIOS

EB
Be
ee
EB
ee

E8

[:[d
EB

80
E6

[:]:}
88
€8

E4
E6

EG08 R
0176
FFFF
FFEO R
0038

FFEO R

20
AO

o
Q
-3
o
B

21

FE

06 0484 R
21

FFFF

06 04B4 R 01

06 0020 R 1880 R
06 0070 R 1BBD R

0286
FFFF
FFEO R

61

61

; INITIALIZE TIMER 1 AND TIMER O FOR TEST
! CALL  WFG_UP ; MFG CKPOINT=F6
MoV X, 0176H ; SET TIMER L TO MOOE 3 BINARY
Mov BX, OFFFFH : INITIAL COUNT OF FFFF
CALL  INIT_TINER  INITIALIZE TIMER 1
Mov AX, 0036H ; SET TIMER O TO MOOE 3 BINARY
; INITIAL COUNT OF FFFF
CALL  INIT_TIMER . IMITIALIZE TIMER 0
SET BIT 5 OF PORT A0 SO TIMER 1 CLOCK WILL BE PULSED BY THE
: TINER O DUTPUT RATHER THAN-THE.SYSTEM CLOCK.
’ MoV AL, 001000008
out 0A0H, AL
CHECK IF ALL BITS GO ON AND OFF IN TIMER O (CHECK FOR STUCK
BITS)
‘ wov AH, 0 ; TIMER 0
CALL  BITS_OM_OFF i LET SUBROUTINE CHECK'IT
INE TIMER1_NZ INO STUCK BITS (CARRY FLAG NOT SET)
MoV L, 0 ; BTUCK BITS IN TIMER ©
NP TIMER_ERROR
SIMCE TIMER O HAS COMPLETED AT LEAST ONE COMPLETE CYCLE,
; TIMER 1 SHOULD BE MON-ZERO. CHECK THAT THIS IS THE CASE.
TIMERI_NZ:
N AL, TINER+1 , READ LSB OF TIMER 1
MoV AH, AL : SAVE LSB
™ AL, TIMER+ 1 ; REAO M5§ OF TIMER 1
cue AX, OFFFFH . STILL FFFF?
INE TIMERO_INTR ; NO - TIMER 1 HAS BEEN BUMPED
Movy. BL,1 ; TIMER 1 WAS NOT BUMPED BY TIMER-0
NP TIMER_ERROR
CHECK FOR TIMER O INTERRUPT
TIMERO_INTR:
sTI ; ENABLE MASKABLE. EXT INTERRUPTS
N AL, INTAOL
AND AL, OFEM ; MASK ALL INTRS EXCEPT LVL 0
AND DATA_AREALIMTR_FLAG-DATAI, AL ; CLEAR INT RECEIVED
out INTADL, AL ., WRITE THE 8258 IMR
CX, OFFFFH i SET LOOP COUNT

MoV
WAIT_INTR_LOOP:

TEST DATA_AREALINTR_FLAG-DATAl,1 ; TIMER O INT DCCUR?
JNE RESET_INTRS ; YES - CONTINUE
LoOP WAIT_INTR_LOOP ; WAIT FOR INTR FOR SPECIFIED TIME-
Hov eL, ; TIMER.O INTR DIDN'T OCCUR
N SHORT TIMER_ERROR

; HOUSEXEEPING FOR TIMER O INTERRUPTS

RESET_INTRS:

CcL!
; BET TIMER INT.

TO POINT TO MFG. HEARTBEAT RDUTINE IF IN MFG MDDE

nov DX, 2D 1H
IN AL, DX ; GET MFG. BITS
AND AL, OFOH
cHp AL, 10H ; SYS TEST MODE?
JE e
oR AL, AL ; OR BURN~IM MODE
INZ TIME_1
06: MoV INT_PTR, OFFSET MFG_TICK ; SET TO POINT TO MFG.
; ROUTINE
nov INT1C_PTR, OFFSET MFG_TICK ; ALSO SET USER TIMER INT
; FOR DIAGS. USE
Mov AL, OFEM
ouT INTAOL, AL
sTI
: RESET D5 OF PORT AO SO THAT THE TIMER 1 CLOCK WILL BE
: PULSED BY THE SYSTEM' CLOCK.
TIME_L: MoV AL,0 ;. MAKE AL = 00
our 0AOH, AL
; CHECK FOR STUCK BITS IN TIMER 1
! MoV AH, 1 , TIMER 1
CALL  BITS_OM_OFF
N TIMERZ_TNIT ; NO STUCK BITS
MoV BL,3 . STUCK BITS IN TIMER 1
JMP SHORT TIMER_ERROR
INITIALIZE TIMER 2
TIMERZ_INIT: .
MoV AX, 0286H ; SET TIMER 2 TO MODE 3 BINARY
MoV BX, OFFFFH : INITIAL COUNT
CALL  INIT_TIMER
SET PBO OF PORT_B OF 8255 (TIMER 2 GATE)
' N AL, PORT_B ; CURRENT STATUS
orR AL.000000018  ; SET BIT 0 - LEAVE OTHERS ALONE
out PORT_B, AL



(

; CHECK FOR STUCK BITS IN TIMER 2

0328 B4 02 MoV aH, 2 ; TIMER 2

0320 EB 036C R cALL BITS_ON_OFF

0330 73 04 JNB REINTT_T2 ; NO STUCK BITS

0332 B3 05 MOV BL,S5 ; STUCK BITS.IN TIMER 2
0334 €8 2C JHP SHORT TIMER_ERROR

; RE_INITIALIZE TIMER 2 WITH MODE O AND A SHORT COUNT

0336 REINIT_T2:

DROP GATE TO TIMER 2
0336 E4 61 ) AL, PORT_B ; CURRENT STATUS
0338 24 FE AND AL, 111171108 ; RESET BIT O = LEAVE OTHERS ALONE
033 E6 61 ouT PORT_B, AL
033C BB 0280 MoV AX, 02BOK ; SET TIMER 2 TO MODE O BINARY
033F BB 000A MoV BX, 000AH : INITIAL COUNT OF 10
0342 EB FFEO R caLL INIT_TIMER
i CHECK PCS OF PORT_C OF B255 TO SEE IF THE OUTPUT OF TIMER 2
; 15 Lo
i
0345 E4 62 IN ‘AL, PORT_C ; CURRENT STATUS
. 0347 24 20 AND AL, 001000008 . MASK OFF OTHER BITS.
0349 74 04 9z CK2_ON ; 1T'S Low
0348 B3 04 MOV 6L, 4 ; PCS OF PORT_C WAS WIGH WHEN IT
0340 EB 13 NP SHORT TIMER_ERROR ; SHOULD HAVE BEEN LOW
; TURN GATE BACK ON
034F E4 61 CK2_ON: IN AL, PORT_B ; CURRENT STATUS
0381 oC 01 OR AL, 000000018 ; SET BIT O - LEAVE OTHERS ALONE
0383 E6 61 ouT PORT_B, AL
;
i CHECK PCE OF PORT_C TO SEE IF THE OUTPUT OF TIMER 2 GOES
; HIGH
i
0356 BS 000A Mov CX, 000AH ; WAIT FOR OUTPUT GO HIGH, SHOULD
0388 E2 FE CK2_LO: LOOP  CK2_LO i BE LONGER THAN INITIAL COUNT
035A E4 62 N AL, PORT_C ; CURRENT STATUS
03sC 24 20 AND AL, 001000008  ; MASK OFF ALL OTHER BITS
03BE 76 57 Nz POD 13_END ; I1T'S HIGH - WE’RE DONE!
0360 B3 06 Hov BL,6 ; TIMER 2 OUTPUT DID NOT GO HIGH

8253 TIMER ERROR OCCURRED. SET BH .WITH MAJOR ERROR
INDICATOR AND CALL E_MSG TO INFORM THE SYSTEM OF THE ERROR.
{BL ALREADY CONTAINS THE MINOR ERROR INDICATOR TO TELL
WHICH PART OF THE TEST FAILED. }

JE T

0362 IMER_ERROR:
0362 B7 0B MoV BH,B ; TIMER ERROR INDICATOR
0384 EB 09BC R CALL E_MSG
0387 EB 4E JHP- SHORT POD 13_EMD
;
; B1TS ON/OFF SUBROUTINE - USED FOR DETERMINING IF A
; PARTICULAR TIMER’S BITS GO ON AND OFF AS THEY SHOULD. -
; TH1S ROUTIME ASSUMES THAT THE TIMER IS USING BOTH THE LSO
; AND THE MSB.
;  CALLING PARAMETER:
; (AH) = TIMER NUMBER (0, 1, OR 2)
;  RETURNS
; (CF) = 1 IF FAILED
i ¢CF) = 0 IF PASSED
; REGISTERS AX, BX, CX, DX, DI, AND SI ARE ALTERED.
03869 LATCHES LABEL  BYTE
0369 00 [1:] 00H ; LATCH MASK FOR TIMER O
036A 40 [+]:] 40H ; LATCH MASK FOR TIMER 1
036B 8O pe SOH ; LATCH MASK FOR TIMER 2
i
036C BITS_ON_OFF PROC NEAR
036C 33 DB XOR BX, BX ; INITIALIZE 8X REGISTER
036E 33 F8 XOR §1,81 ; 1ST PASS = SI = 0
0370 BA 0040 MoV DX, TIMER ; BASE PORT ADDRESS FOR TIMERS
0373 02 D4 ADD DL, AH
0376 BF 0369 R MOV D1,0FFSET LATCHES ; SELECT LATCH MASK
0378 32 CO XOR AL, AL ; CLEAR AL
0374 86 C4 XCHG AL, AH ; AH - AL
037C 03 FB AOD DI, AX ; TIMER LATCH MASK INDEX
; 1ST PASS - CHECXS FOR ALL BITS TO COME ON
; 2ND PASS - CHECXS FOR ALL BITS TO GO OFF
037E OUTER_LOOP:
037E B9 0008 MOV CX,8 ; OUTER LOOP COUNTER
0381 INNER_LOOP:
03B1 51 PUSH cx ; SAVE OUTER LOOP COUNTER
0382 ©9 FFFF MoV CX, OFFFFH ; INNER LOOP COUNTER
0385 TST_BITS:
0385 2€: 8A 05 MoV AL, CS:[01) ; TIMER LATCH MASK
0388 E6 43 ouT TIM_CTL, AL ; LATCH TIMER
03BA &O PUSH AX ; PAUSE
0388 58 POP AxX
03BC EC N AL, DX ; READ TIMER LS8
038D OB F6 oR s1,51
038F 76 0D JNE _SECOND ; SECOMD PASS
0391 0C 01 OR AL, O1H ; TURN LS B1T ON
0393 0A D8 OR BL, AL ; TURN ‘ON‘ BITS ON
0396 EC IN AL, DX ; READ TIMER MSB
0396 0A F8 OR BH, AL ; TURN ‘ON‘ B1TS ON
0390 B1 FO FFFF cHP BX, OFFFFH ; ARE ALL TIMER BITS ON?
03BC EB 07 JMP SHORT TST_CMP  ; DON‘T CHANGE FLAGS

. ROM BIOS




03BE
039E
03A0
03A1
03A3
03A5
© 0345
03A7
034A9
03AA
03AC
03AD
V3IAE
034AE
DIAF
0380
0383
0386
0366
0387
© 0387

© 0403
0405

0409
0408

0400
040F
0410
0412
0414
0416
0418

041A
0418
0410

044F

A-14 ROM BIOS

FB

07
bc

FE 02
[+:}

BECOND :

TST_CHP:

R
CHK_END :

BITS_ON_OFF
POD 13_END :

BL, AL
aL,px
BH, AL
BX, BX

CHK_END
TST_BITS

cX
INKER_LOOP

[
s1

81,2
OUTER_LOOP

ENDP

-

CHECK FOR ‘ALL.BITS OFF
READ MSB

TURN OFF BITS

‘ALL OFF?

YES - SEE IF DOKE

KEEP TRYING

RESTORE QUTER LOOP COUNTER

TRY AGAIN

ALL TRIES EXHAUSTED -~ FAILED TEST

POP FORMER OUTER LOOP COUNTER

CHECK FOR ALL .BITS TO GO OFF
TIMER BITS ARE WORKING PROPERLY

CHECK RED,

CRT ATTACHMENT TEST

1. INIT.CRT TO 40%X25 - Bw

2. CHECK FOR VERTICAL AND VIDEO ENABLES, AND CHECK
TIMING OF SAME

3. CHEGK VERTICAL INTERRUPT

4.

5.

BLUE, GREEN, AND

INIT TO 40X25 - COLOR
MFG. ERROR CODE 09XX {(XX-BEE

INTENSIFY DOTS

COMMENETS IN CODE)

MAVT EQU "OAOACH
MIVT  EQU 0C460H
; -NOMINAL TIME 1S B2B6H FOR 60
EPF EQU 200
caLL MFG_UP
cLI
MOV AL, 011100008
ouT TIM_CTL, AL
MoV CX, B00OH
e1: LOOP QL
MOV AL, 00H
ouT TINER+1, AL
sup AX, AX
INT 104
NOV AX, 0507H
INT 104
MoV DX, 03DAH
suB cX, cX
; LOOK FOR VERTICAL
02: ,DX
1:51 AL 000010008
JME Q3
LooP a2
MOV BL, 00
_SHORT Q116
; GOT VERTICAL - START TIMER
Q3: XOR AL, AL
out nnznu AL
SUB X, BX
5 WAIT FOR VERTlCAL TO GO AWAY
cx cx
a4: 1 ,DX
TEST AL, 0000 £0008
Jz 05
LOOP Q4
MOV BL,O1H
SHORT Q115

[,
"~

H
H
H
i

HMAXIMUM TIME FOR VERT/VERT
(NOMINAL + 10%)

MINIMUM TIME FOR VERT/VERT
(NDMINAL - 107}

ilUHBER OF ENABLES PER FRAME
MFG CHECKPOINT= F8S

SET TIMER 1 TO MODE ©

WAIT FOR MODE SET TO "TaKE"

SEND FIRST BYTE TO TIMER
SET MODE 40X25 - BW

SET TO.VIDEO PAGE 7

SET ADDRESSING TO VIDEO ARRAY
GET STATUS

VERTICAL THERE YET?

CONTINUE IF IT IS

‘KEEP LOOKING TILL COUNT EXHAUSTED
NO VERTICAL = ERROR 0900

SEND 2ND BYTE TO TIMER TO START
JNIT. ENABLE COUNTER

GET STATUS

VERTICAL STILL THERE?

CONTINUE IF IT’S GONE

KEEP LOOKING TILL COUNT EXHAUSTED

VERTICAL STUCK ON = ERROR 0801

; NOW START LOOKING FOR ENABLE TRANS1TIONS
s

a8:

CX CX

GET STATUS

ENABLE ON YET?

GO ON .IF IT 1§
NVERTICAL DN AGAIN?
CONTINVE IF T 1S
KEEP LOOKING 1F NOT

ENABLE STUCK OFF = ERROR 0802

H ENABLE GOING ON

VERTICAL OFF?
GO ON IF IT 18

VERTICAL STOCK ON = ERROR 0803
GET STATUS

ENABLE OFF YET?

PROCEED IF IT IS

KEEP LOOKIMG IF NOT YET LOW

ENABLE STUCK -ON = ERROR 0804

; ENABLE HAS TOGGLED BUHP COUNTER AND TEST FOR NEXT VERTICAL

TEST AL,DOOOOOOIB
JNE a7
TEST AL, 000010008
JNE Q11
LooP 96
nov BL, OZH
SHORT @115
i MaKE suaz vsuncu. WENT OFF Wl
a7 AL, 0000 10008
JZ a8
MoV 8L, 03H
P SHORT Q115
ighow WAIT FOR ENABLE TO GO OFF
suB cx, cx
09. IN aL,
TEST AL, ooooooom
JE
LooP  as
nov BL, oau
a1 INC ax
9z Q11
TEST AL, 000010008
Jz o5

i

BUMP ‘ENABLE COUNTER

1F COUNTER WRAPS, ERROR

OID ENABLE GO LOW BECAUSE OF

VERTICAL?

IF MOT, LOOK FOR ANOTHER ENABLE
TOGGLE



()

/

0421
0423
0428

0429
0428
0420
042F
0431
0433
0434
0436
0438
0438
0434
0430
043F
0441

0443
0446
0448
0daa

044C
044E
0430
0452
0484
0488
0489

04SE

0462
0464

0466
048A

046C
046F

0472
0475
0477
0479
0478

047C
0470

0481
0483
0485
0497

0489
0488
04BC
04BE
0480

0492
0486

0498
0484
0480
049F
04A1

04AS5

28
74
E2
B3
EB

40
43
FB ooc8

06 0484 R 20
o8

F7
08

10

F9
10

1A

3E 0072 R 1234
03

0C21 R

; HAVE HAD COMPLETE VERTICAL-VERTICAL CYCLE, NOW TEST RESULTS
MOV

Q11 AL, 40H ; LATCH TIMERI
ouT TIM_CTL, AL ;
cHP BX, EPF ; NUMBER OF ENABLES BETWEEN
; VERTICALS 0.X.?
JE Q12 i
MoV BL, OSH ;
Q115:  JWP SHORT @22 ; WRONG 8 ENABLES = ERROR 0905
Q12: IN AL, TIMER+ 1 ; GET TIMER VALUE LOW
MOV AH, AL ; SAVE IT
NOP ;
IN AL, TIMER#1 ; GET TIMER HIGH
XCHG AH, AL i
871 ; INTERRUPTS BACK ON
NOP
cmp AX, MAVT ;
JGE Q13 ;
MOV BL, 06H i
NP SHORT @22 ; VERTICALS TOO FAR APART
; = ERROR 0906
Q13: cHp AX, MIVT ;
JLE Q14 i
nov BL,O7H ;
JNP SHORT @22 ; VERTICALS TOO CLOSE TOGETHER
= ERROR 0907
; TININGS SEEM 0.X., NOW CHECK VERTICAL INTERRUPT (LEVEL 8
e14: sue oX, €x ; SET TINEOUT REG
IN AL, INTAOL
ANO AL, 110111118 i UNNASK INT. LEVEL &
out INTAOL, AL
ANO DATA_AREAL INTR_! FLAG-DATA) AL
STl NABLE INTS.
Q1s: TEST DATA_AREAL INTR_] FLAG-DATA) 001000008 ; SEE IF INTR.
; 5 HAPPENED YET
JNZ Q16 ; GO ON IF IT DID
LOOP @18 ; KEEP LOOKING IF IT DION‘T
MoV 8L, 0SH i
JHP SHORT 022 ; NO VERTLCAL INTERRUPT
; = ERROR 0808
ale: IN AL, INTAOL ; DISABLE INTERRUPTS FOR LEVEL 5
OR AL, 001000008 i
ouT INTAOL, AL
SEE IF RED, GREEN, BLUE AND INTENSIFY DOTS WORK
FIRST, SET A LINE OF REVERSE VIDEO, INTENSIFIED BLANKS INTO VIDEO
BUFFER
NOV AX, 0BDBH ; WRLTE CHARS, BLOCKS
nov 8X, 077FH ; PAGE 7, REVERSE VIDEO,
i HIGH INTENSITY
MOV cx, 40 ; 40 CHARACTERS
INT 10H i
XOR AX, AX ; START WITH BLUE DOTS
@17: sua cx cx :
; SET VIDEO ARRAY ADDRESS FOR DOTS
i SEE IF DOT con:s on
(3] IN AL, DX ; GET STATUS
TEST AL, 000100008 ; DOT THERE?
JNZ Q19 ; GO LOOK FOR DOT TO TURN OFF
LooP Q18 ; CONTINUE TESTING FOR DOT ON
MOV BL, 10H ;
OR 8L, AH ; OR IN DOT BEING TESTED
JHP SHORT 022 ; DOT NOT COMING ON = ERROR 091X
; ¢ %=0, BLUE; X=1, GREEN;
i X=2, RED; X=3, INTENSITY)
; SEE IF DOT GOES OFF
a19: ] cx, X
@20: IN AL, DX ; GET STATUS
TEST AL, 000100008 ; 1S DOT STILL ON?
JE 021 ; GO ON IF DOT OFF
LooP 020 ; ELSE, KEEP WAITING FOR DOT
; TO GO OFF
MOV BL, 20H 5
OR 8L, AH ; OR IN DOT BEING TESTED
JNP SHORT @22 ; DOT STUCK ON = ERROR 092X
; (X=0, BLUE; X=1, GREEN;
; X=2, RED; X=3, INTENSITY)
Awus'r TO POINT TO NEXT DOT
INC AH ;
cnp AH, 4 ; ALL 4 DOTS DONE?
JE 023 ; GO END
OV AL, AH
JMP Q17 ; GO LOOK FOR ANOTHER DOT
022; Nov BH, 0BH ; SET M58 OF ERROR CODE
JNP E_MSG
; DONE WITH TEST RESET TO 40X25 ~ COLOR
ASSUNE DS:DATA
Q23: CALL DDS
MOV AX, 000 1H ; INIT TO 40X28 - COLOR
INT 10H
MOV AX, 0507H ; SET TO VIDEO PAGE 7
INT 10H
P RESET_FLAG, 12344 ; WARM START?
JE @24 ; BYPASS PUTTING UP POWER-ON SCREEN
caLL PUT_LOGO ; PUT LOGO ON SCREEN

ROM BIOS A-15




0861
0864
0B66
0667
036A
066D
056F
0571

A-16 ROM BIOS

0€ 0008 R OF78 R
0€ 0120 R FOEB R

0122 R

1388 R
001E R
36 001A
36 001C
36 0080

36 0082 R

c2 1000
c3a 40

FE A0

1E 0016 R
0004

06BC R
0080

7800
c2

OBS9 R
03
0603 R

CALL
MoV
ouT
MOV
ouT
NOP
NOP
out
ASSUME
CALL
XOR
MOV
MOV
MOV

PUSH
POP
MoV
ASSUME
CALL
MOV
HOV
MOV
MOV
ADD
MOV
IN
MoV

PUT_LOGO
AL,011101108
TIM_CTL, AL

AL, OOH
TIMER+1, AL

TIMER+1, AL
DS: ARSO
MFG_UP

AX, AX

PUT LOGO ON SCREEN
RE-INLT TIMER 1

MFG CHECKPOINT=F4

0S5, AX
NHMI_PTR, OFFSET KBDNMI ; SET INTERRUPT VECTOR
KEYE2_PTR, OFFSET KEY_SCAN_SAVE ; SET VECTOR FOR

[4:3

AX
KEY62_PTR+2, AX
DS:DATA

oDS

POD INT HANDLER

SET DATA SEGMENT

SI,OFFSET KB_BUFFER ; SET KEYBOARD PARMS

BUFFER_HEAD, 51
BUFFER_TAIL, SI
BUFFER_START, S1

s1,32
BUFFER_ENO, S1
AL, 0AOH

AL, 80H

OAOH, AL

SET DEFAULT BUFFER OF 32 BYTES

CLEAR NMI F/F
ENABLE NM1

IF A KEY I8 STUCK, THE BUFFER‘SHOULD FILL WITH THAT KEY’S CODE

THIS WILL BE

CHECKED LATER

MEMORY SIZE DETERMINE AND TEST
THIS ROUTINE WILL DETERMINE HOW MUCH MEM
1S ATTACHED TO THE SYSTEM (UP TO 640KB)
AND SET "MEMORY_SIZE" AND "REAL_MEMORY"

WORDS N THE

DATA AREA.

AFTER THIS, MEMORY WILL BE EITHER TESTED

OR CLEARED,
PRESET_FLAG",

MFG. ERROR CODES

DEPENDING ON THE CONTENTS OF

—0AXX PLANAR BD ERROR

~0BXX 84K CD ERROR
—0CXX ERRORS IN BOTH

00D AND EVEN BYTES

IN A 128K SYS
=1¥XX MEMORY ABOVE 128K
Y=SEGMENT HAVING TROUBLE
XX= ERROR BITS

Q27
;8

Q28:

@30:

ADD
ADO
CHMP
JNE

: MOV

1ZE HAS 8EEN
MOV
CALL
Hov

MOV
MOV
PUSH
PUSH
PUSH
CALL
Jz
JHP

DS:DATA
MFG_UP

ax, 64

aL, PORT_C
AL, 000010008
Q25

BX, 64

BX

BX, 16
[MEMORY_SIZEJ, BX
8X
DX, 2000H

,
CX, OAABSH
ES, DX

ES:(D11,€X
AL, OFH
AX,ES: (D1
AX, CX

@27

DX, 1000H
ax, 64
DH, OAOH
Q26

LTRUE_MEM), BX
DETERMINED, NOW
ax, 4

Qas

DX, 0080H

CX, 7800H

e e e b e e e A v e e b

HFG CHECKPOINT=F3

START WITH BASE 64K

GET CONFIG BYTE

SEE IF 64K CARD INSTALLED

(BIT 4 WILL BE 0 IF CARD PLUGGED}

ADD 64K

SAVE K COUNT

SUBTRACT 18K CRT REFRESH SPACE
LOAD "CONT1GUOUS MEMORY'" WORD

SET POINTER TO JUST ABOVE 128K
SET DI TO POINT TO BEGINNING
LOAD OATA PATTERN

SET SEGMENT TO POINT TO MEMORY
SPACE

SET DATA PATTERN TO MEMORY

SET AL TO ODD VALUVE

GET DATA PATTERN BACK FROM MEM
SEE IF DATA MADE IT BACK

NO? THEN END OF MEM HAS BEEN
REACHED

POINT TO BEGINNING OF NEXT 64K
ADJUST TOTAL MEM. COUNTER

PAST 640K YET?

CHECKX FOR ANOTHER BLOCK IF NOT
LOAD "TOTAL NEMORY" WORD

EST OR CLEAR ALL OF MENORY

4 KB KNOWN OK AT THIS POINT
SET POINTER TO JUST ABOVE

LOWER 2K
TEST 30K WOR0S (60KB)

TEST OR FILL MEM
JUMP 1F ERROR
RECOVER

WAS THIS A 60 K PASS

BUMP GOOD STORAGE BY &0 K8

;ADD 2 FOR A 62K PASS

ARE WE DONE YET?

ALL DONE, IF SO



()

0374 3D 00BO Q31: CMP AX, 128 ; DONE WITH 1ST 128K?

0877 74 1E JE Q32 ; GO FINISH REST OF MEM.
05879 BA OFBO Mov DX, OFBOH ; SET POINTER TO FINISH 1ST 64 KB
087C B9 0400 MoV CX, 0400H

087F BE C2 Mov ES, DX

o581 50 PUSH AX

08B2 53 PUSH BX

0583 52 PUSH DX

0584 E8 0859 R CALL PODSTG ; 60 TEST/FILL

0GB7 75 7A JNZ Q38 ;

0588 5A POP DX

0858A 58 POP Bx

08g8 BA POP AX

068C 05 0002 ADD AX, 2 ; UPDATE GOOD COUNT

O0G88F BA 1000 Mov DX, 1000H ; SET POINTER TO 2ND 64K 8LOCK
0392 B9 7C00 Nov CX, 7CO0H ; 62K WORTH

0595 EB B6 JMP Q29 ; GO TEST IT

0597 BA 2000 Q32: MoV DX, 2000H ; POINT TO BLOCK ABOVE 128K
Q89A 3B DA Qa3 cue 8x, aAx ; COMPARE GOOD MEM TO TOTAL MWEM
083C 75 03 JNE Q34

O059E E9 0640 R JMP Q43 ; EXIT IF ALL DOME

O5A1 B9 4000 Q3a: Nov CX, 4000H ; SET FOR 32KB BLOCK

065A4 BE C2 MOV ES, DX

05A8 50 PUSH AK

05A7 53 PUSH BX

05A8 652 PUSH DX

05A9 EB 0BS9 R CALL POOSTG ; GO TEST/FILL

O0BAC 78 65 JNZ Q39 ;

0BAE 5A POP DX

OGAF 58 POP BX

0580 58 POP AX

05B1 0% 0020 ADO AX, 32 ; BUMP GOOD MEMORY COUNT
06B4 EB 058C R CALL Q35 ; DISPLAY CURRENT GOOD MEM
05B7 80 C6 06 ADD DH, 0BH ; SET POINTER TO NEXT 32K
058A EB OF JMP Q33 ; AND MAKE ANOTHER PASS

SUBROUTINE FOR PRINTIMG TESTED
MEMORY OX MSG ON THE CRT
CALL PARMS: AX = X OF GOOD MEMORY

(IN HEX)
058C 35 PROC NEAR
058C E8 1388 R CALL bDS ; ESTABLISH ADDRESSING
OG8BF B1 3E 0072 R 1234 CMP RESET_FLAG, 1234H ; WARM START?
05C5 74 3B JE Q35E ; NO PRINT ON WARM START
08C7 63 PUSH Bx
065CB 51 PUSH Ccx
08C9 B2 PUSH DX
08CA 50 PUSH AX ; SAVE WORK REGS
0GCB 84 02 MoV AH, 2 ; SET CURSOR TOWARD THE END OF
05CD BA 1421 MoV DX, 1421H ; ROW 20 (ROW 20, COL. 3
0500 B7 07 Hoy 8K, 7 ; PAGE 7
05D2 CD 10 INT 10H
o5D4 &8 POP AX ;
068D5 50 PUSH AX
05D6 BB 000A Moy BX, 10 ; SET UP FOR DEC1MAL CONVERT
0509 BS 0003 MoV cX, 3 ; OF 3 NISBLES
08pC 33 D2 Q36: XOR DX, DX ;
OSDE F7? F3 DIV B8X ; DEVIDE BY 10
0SE0 80 CA 30 OR DL, 30H ; MAKE INTO ASCI1
O5E3 52 PUSH DX ; SAVE
05E4 E2 F6 LooP Q36 H
0GE6E 89 0003 Mov cXx, 3 ;
0SE9 58 Q37: POP AX ; RECOVER A NUMBER
OSEA E8 18BA R CALL PRT_HEX
OBED E2 FA LOOP Q37
OSEF B9 0003 MoV CX, 3
05F2 BE 0025 R MoV S1, OFFSET F3B ; PRINT " KB"
0SF5 2E: 8A 04 Q38: MOV AL, CS: [S])
08F8 46 INC st
OGF9 E8 18BA R CALL PRT_HEX
O5FC E2 F? LOOP Q38
O5FE 88 POP AX
OSFF SA POP DX
0600 59 POP (24
0601 5B POP ax
0602 (€3 Q3BE: RET
0603 Q35 ENDP

ON ENTRY TO MENORY ERROR ROUTINE, CX HAS ERROR BITS
; AH HAS ODD/EVEN INFO, OTHER USEFUL INFO ON THE STACK
0603 SA a39: POP DX POP SEGMENT POINTER TO DX
(HEADING DOWNHILL, DON‘T CARE
ABOUT STACK)

0804 B1 FA 2000 CHP DX, 2000H ABOVE 12BK (THE SIMPLE CASE)
0608 7C OE JL Q40 GO DO ODD/EVEN-LESS THAN 128K
060A 8A D9 MoV BL, CL FORM ERROR 81TS ("XX")
060C 0A DD OR 8L, CH
O60E B1 04 Mov CcL,4 ; ROTATE MOST SIGNIFIGANT

; NIBBLE OF SEGMET
0610 D2 EE SHR DH, CL ; TO LOW NIBBLE OF DH
0612 B7 10 MOV BH, 10H ;
0614 O0OA FE OR BH, DH ; FORM "1Y" VALUE
0616 EB 20 JNP SHORT Q42
0618 87 0A Q40: HOV BH, 0AH ; ERROR OA.... >
061A E4 62 IN AL,PORT_C ; GET CONFIG BITS
061C 24 08 AND AL, 000010008 ; TEST FOR ATTRIB CARD PRESENT o]
O061E 74 06 vz a4l ; WORRY A80UT ODD/EVEN IF IT IS ho]
0620 BA D9 MoV 8L, cL le)
0622 O0A DD OR 8L, CH ; COMBINE ERROR BITS IF IT ISN'T =
0624 EB 12 JHP SHORT Q42 ; o

>

Vv

ROM BIOS A-17



0626 B0 FC 02 Qa1: CHP AH, 02 EVEN BYTE ERROR? ERR OAXX

0628 BA 09 MoV BL,CL
0628 74 OB JE @42
0620 FE C7 INC ] ; MAKE INTO OBXX ERR
062F O0A DD oR BL,CH ; MOVE ANO COMBINE ERROR BITS
0631 80 FC 01 CHP. AH, L ; 0DD BYTE ERROR
0834 74 02 JE Qa2
0636 FE C7 INC 8H ; MUST HAVE BEEN BOTH
; - MAKE INTO OCXX
0638 BE 0035 R Q42: MoV S1,0FFSET MEM_ERR
0638 E3 088C R caLL E_MSG ; LET ERROR ROUTINE FIGURE OUT
; WHAT TO DO
063E FA oLt ;
063F F4 HLT
0640 Q43
i
; KEYBOARD TEST
; DESCRIPTION
; NM! HAS BEEM ENABLED FOR QUITE A FEW
; SECONDS NOW. CHECK THAT NO SCAN CODES
; HAVE SHOWN UP IN THE BUFFER. (STUCK
; KEY) IF THEY HAVE, DISPLAY THEM AND
; POST ERROR.
i MFG ERR CODE
i 2000 STRAY NMI INTERRUPTS OR KEYBOARD
i RECEIVE ERRORS
; 21XX CARO FAILURE
; XX=01, K@ DATA STUCK HIGH
; XX=02, KB DATA BTUCK LOW
; XX=03, NO NMI INTERRUPT
i 22XX STUCK KEY (XX=SCAN CODE)
H
ASSUME  0S:DATA
j=--=~ CHECK FOR STUCK KEYS
0640 EB E60B R cALL MFG_UP ; WFG CODE=F2
0643 EB 1388 R caLL  DOS ; ESTABLISH ADORESSING
0646 BB 001E R WOV BX, OFFSET KB_BUFFER
0648 BA 07 Hov AL, [BX1 ; CHECK FOR STUCK KEYS
0648 0A €O oR AL, AL ; SCAN CODE = 07
064D 74 06 JE F6_Y ; YES - CONTINUE TESTIMG
064F B7 22 Hov BH, 22H ; 22XX ERROR CODE
0661 @A DB MOV BL, AL :
0663 EB OA JmP SHORT F6
0686 BO 3E 0012 R 00 F6_Y: CHP KBD_ERR, 00H ; DID NMI‘'S HAPPEM WITH NO SCAN
; CODE PASSED?
066A 74 1C JE F7 ; (STRAYS) - CONTIMUE IF NONE
065C 8B 2000 nov BX, 2000H ; SET ERROR CODE 2000
065F BE 0036 R F6: MOV S1,0FFSET KEY_ERR ; GET MSG ADDR
0662 B1 3E 0072 R 4321 cme RESET_FLAG, 4321H ; WARM START TO DIAGS
0868 74 OB JE F6_2 ; DO NOT PUT UP MESSAGE
066A B1 3E 0072 R 1234 cHp RESET_FLAG, 1234H ; WARM SYSTEM START
0670 74 03 JE F&_2 ; DO NOT PUT UP MESSAGE
0672 EB 088C R CALL  E_MSG ; PRINT MSG ON SCREEN
0676 E9 O6FF R F6_2:  JMP F6_X .
; CHECK LINK CARD, 1F PRESENT
0678 BA 0201 F7: MoV DX, 020 1H
0678 EC IN AL,DX ; CHECK FOR BURN-IN MODE
067C 24 FO AND AL, OFOH
0B7E 74 7F Jz F6_X ; BYPASS CHECK IN BURN-IN MODE
06B0 E4 62 IN AL, PORT_C ; GET CONFIG. PORT DATA
0682 24 BO AND AL, 100000008 ; KEYBOARD CABLE ATTACHED?
0684 74 79 Jz F6_X ; BYPASS TEST IF IT IS
0686 E4 61 IT] AL, PORT_B ;
0688 24 FC : AND AL, 111111008 ; DROP SPEAKER DATA
06BA E6 61 ouT PORT_B, AL :
06BC BO B6 HOV AL, 0BEH ; MODE SET TIMER 2
06BE E5 43 ouT TIM_CTL, AL ;
0690 BO 40 MoV AL, 040H ; DISABLE NMI
0682 E6 A0 ouT OAOH, AL ;
0694 BO 20 MOV AL, 32 ; LSB TO TIMER 2
; (APPROX. 40KNhZ VALUE}
0696 BA 0042 Hov DX, TIMER+2
0699 EE out DX, AL
068A 2B CO sus AX, AX
069C BB €8 MOV CX, AX
089E EE out DX, AL ; MSB TO TIMER 2 (START TIMER)
069F E4 61 IN AL, PORT_B ;
06A1 OC 0% OR AL, 1
06A3 E6 61 out PORT_B, AL ; ENABLE TIMER 2
06A5 E4 62 F7_0: IM AL, PORT_C ; SEE IF KEYBDARD DATA ACTIVE
0BA7 24 40 AND AL, 010000008 ;
06A9 76 06 JNZ F7_1 ; EXIT LOOP IF DATA SHOWED UP
06AB E2 FB LOOP  F7_0
06AD B3 02 MoV BL, 02H ; SET MO KEYBOARD DATA ERROR
06AF EB 49 JHP SHORT F6_1
06B1 06 F7_1: PUSH  ES ; SAVE ES
0682 28 CO suB AX, AX ; SET UP SEGMENT REG
0684 BE CO MOV ES, AX I
0686 26: C7 06 000B R FB16 R MOV ES: [NMI_PTR), OFFSET Dii ; SET UP NEW NMI VECTOR
068D A2 0084 R MOV INTR_FLAG, AL ; RESET INTR FLAG
06CO E4 61 IN AL, PORYT_B ; DISABLE INTERNAL BEEPER TO
06C2 OC 30 OR AL, 001100008 ; PREVENT ERROR BEEP
06C4 E6 61 out PORT_B, AL
06C6 BO CO MoV AL, OCOH
06CB E6 AO ouT 0AOH, AL ; ENABLE NMI
06CA B89 0100 MOV €X, 0100H ;

A-18 ROM BIOS



()

08CD E2 FE F6_0: LooP F6_0 ; WAIT A BIT

O06CF E4 61 IN AL,PORT_B ; RE-ENABLE BEEPER

06D1 24 CF AND AL, 110071118

06D3 E6 61 . ouT PORT _B,AL

06D5 AQ 0084 R MoV AL, INTR  _FLAG ; GET INTR FLAG

08DB 0A CO OR AL, AL ; WILL BE NON-2ERO 1F NM1 HAPPENED
08DA B3.03 MOV BL,03H ; SET POSSIBLE ERROR CODE
06DC 26: C7 06 0008 R OF78 R MoV ES: [(NMI_PTR]1, OFFSET KBONMI ; RESET NMI VECTOR
06E3. 07 POP ES ; RESTORE ES-

06E4 74 14 Jz F6_1 ; JUMP [F NO NMI

06E6 BO 00 MOV AL, OOH ; DISABLE- FEEDBACK CKT

06E8 E6 ‘A0 ouT 0AOH, AL H

06EA E4q 61 IN AL, PORT . B

0BEC 24 FE AND AL, 111111108 ; DROP GATE TO TIMER 2.

O6EE E6 61 ouTt PORT .8, AL i

O06F0 E4- 62 F6_2: IN AL, PORT .C ; SEE IF KEYBOARD DATA ACTIVE
06F2 24 40 AND AL, 010000008 ;

06F4 74 08 vz FS_X ; EXIT LOOP IF OATA WENT LOW-
OeFe E2 FB& LOOR Fe_2

06F8 B3 01 MoV BL,O1H ; SET KEYBOARD DATA 5TUCK HIGH ERR
06FA B7 21 F6_1: MOV BH, 21H ; POST ERROR "21XX"

O6FC EB 065F R JHP Fé ;

O06FF BO 00 Fé_X: MoV AL, 0O0OH ; DISABLE FEEDBACK CKT

0701 E6 AO out OAOH, AL ;

CASSETTE INTERFACE TEST
DESCRIPTION.
TURN CASSETTE MOTOR OFF. WRITE A BIT OUT TO THE
CASSETTE DATA BUS. VERIFY THAT CASSETTE DATA
READ IS WITHIN A VALID RANGE.
MFG. ERROR CODE=2300H  (DATA PATH ERROR)
23FF (RELAY FAILEO TO PICK}

i
H
i
H
H
H
H

0A9A MAX_PER100 Eau OA9AH  ; NOM. +10%

= 08AD MIN_PERIOD EQU OBADH ;NOM -10%
Fihdaiuid . TURN THE CASSETTE MOTOR OFF

0703 EB E6DB R CALL MFG_UP ; MFG CODE=F1.

0706 E4 61 IN AL, PORT_B-

0708 0C 09 OR AL, 000010018 ; SET TIMER 2 SPK OUT, AND CASGETTE

070A. E€ 81 PORT _B,AL ; OUT BITS-ON, CASSETTE MOT OFF
il HRlTE A BIT

070C Eq 21 IN AL, INTAOL

070E 0C 01 oR AL,.01H ; DISABLE TIMER INTERRUPTS

0710 E6 21 ouT lNTAO.l., AL

0712 BO B6 NOV AL, OB6H ; SEL TIM 2, LSB, MSB, MD 3

0714 E6 43 ouT TIMER+3, AL ; WRITE 8283 CMD/MODE REG

0716 BB 04D2 MoV AX, 1234 ; SET TIMER 2 CNT -FOR.1000 USEC

0713 E6 42 ouT TIMER+2, AL ; WRITE TIMER 2 COUNTER REG

071B B8A C4 MoV AL, AH ; WRITE MsB

071D E6 42 out TIMER+Z, AL .

O071F 2B C9 SuB CX, CX ; CLEAR COURTER FOR LOMG DELAY

0721 E2 FE LOOP * ; WAIT. FOR. COUNTER TO INIT
Fiatalainind REAI) CASSETTE INPUT

0723 E4q 62 AL, PORT_C ; READ VALUE OF CASS IN'BIT

0725 24 10 AND AL, 10H ; 1SOLATE FROM OTHER BITS

0727 A2 0068 R. MoV LAST _VAL, Ak

072A EBO F96F R CALL READ HALF _BIT ; TO SET UP CONDITIONS FOR CHECK

0720 EB F96F R CALL READ_HALF_BIT

0730 £3 3E JCX2Z F8 ; CAS_ERR

0732 63 PUSH BX. ; SAVE HALF BIT TIME VALUE

0733 EB F96F R CcAaLL READ_HALF_BIT

0738 59 POP AX ; GET TOTAL TIME

0737 E3 37 JCX2. F8 ; CAS_ERR

0733 03 C3 ADD A%, BX

0738 3D 0APA CHP - AX, MAX_PER10D

073E 73 30 INC F8 ; CAS_ERR

0740 3D 0BAD CNP AX, HIN_PERIOD

0743 72 28 JC F8

0748 BA 0201 MoV DX, 201K

0748 EC IN AL, DX

0749 24 FO AND AL, OFOH ; DETERMINE MODE

0748 3C 10 CHP AL, 000100008 ; MFG?

074D 74 04 JE F:

074F 3C 40 CNP AL, 010000008 ; SERVICE?

0781 78 26 JNE 713 END GO ‘TO NEXT TEST 1F NOT

CHECK THAT CASSETTE RELAY 1S PlCKlNG {CAN'T DO TEST IN NORMAL
MOOE BECAUSE OF POSS1BILITY OF WRITING ON CASSETTE IF “RECORO"
BUTTON IS DEPRESSED. )

0753 E4 61 F9: IN AL, PORT_B
0765 8A DO NOV DL, AL ; SAVE PORT B CONTENTS
0767 24 ES& AND AL, 111001018 i SET CASSETTE MOTOR ON
0753 E6 61 out PORT_B, AL ;
0758 33 C9 XOR CX, CX
078D E2 FE F91: LooP F91 ; WAIT FOR RELAY TO SETTLE
O78F EB F96F R CALL . READ_HALF_BIT
0762 EB F96F R CALL READ_HALF_BI1T .
0765 BA C2 MoV AL, DL ; DROP RELAY
0767 E6 61 ouTt PORT_B, AL
0768 E3 OE JCX2. T13_END ; READ_HALF_BIT SHOULD TIME OUT IN

; THIS SITUATION
0768 9B 23FF MOV. BX, 23FFH ; ERROR 23FF
076E EB 03 JKP SHORT F81
0770 F8: ; CAS_ERR
0770 BB 2300 NOV B8X, 2300H ERR. CODE 2300H >
0773 B8E 0037 R F8l: MOV S1,0FFSET CASS_| ERR i CASSETTE WRAP FAILED
0776 EB 088BC R CALL 586G ; GO PRINT ERROR NSG o
0779 E4 21 T13_END: IN AL, INTAGL =
0778 24 FE AND AL, OFEH ; ENABLE TINER INTS o
Q770 €6 21 ouT INTAOL, AL =
077F E4- A0 IN AL, NMI_PORT" ; CLEAR NMI' FLIP/FLOP o
0781 BO 80 MOV AL, 80H ; ENABLE NMI 'INTERUPTS’ -
0783 E6. A0 out NMI_PORT, AL e

>

ROM BIOS A-19




0785
0788
0788
07BE
0780
0793

0796
0798
0798
0790
079F
074a2
0748
07A7
07AA
07AD

07EQ
07E2
07E4
07€E7
07EA
07EA
T 07€EC
O7EE
O7F0
O7F L

07F2°

O7F5
07IF7
O7FA
07FC
07FC
0800
0800
0804

EGDB R
02F8
E631

0038
098C

m
o
W
-
n

o
3
o
o
o x

co
0008

FEF3
0020

F8

09
06 0014 R FF54 R
06 0120 R 10C6 R

06 0110 R FAGE R
06 0060 R FFCB R

0062 R

01

13
E608 R
€000

0a
o8
07

AABS
05
EBSL R
04

C2 o0BO

FaA F00O
E4

H
H
i
i
i
i
i
i
i
i
H

SERIAL PRINTER AND MODEM POWER ON.DIAGNOSTIC

DESCRIPTIOM: M

VERIFIES THAT THE SERIAL PRINTER UART FUNCTIONS PROPERLY.

CHECKS IF THE MODEM CARD IS ATTACHED. 1IF IT’S NOT, EXITS.

VERIFIES THAT THE MODEM UART FUNCTIONS PROPERLY.

ERROR CODES RETURNED BY ‘UART’ RANGE FROM 1 TO IFH AND ARE

REPORTED VIA REGISTER BL. SEE LISTING OF ‘VART’ (PQD27)

FOR POSSIBLE ERRORS.

MFG., ERR. CODES 23XX FOR SERIAL PRINTER |
24XX FOR MODEM

ASSUME CS:CODE,DS:DATA

TEST SERIAL PRINTER INSB250 VART

CALL MFG_UP ; MFG ROUTINE INDICATOR=FOQ —
WOV OX, 02FgH ; ADDRESS OF SERIAL PRINTER CARD

CALL VART ; ASYNCH. COMM. ADAPTER POD

JNC ™ ; PASSED

MOV S1,0FFSET COM1_ERR ; CODE FOR DISPLAY

CALL E_MSG ; REPORT ERROR

TEST MODEM INS62%0 UART

< CALL E_MSG

CALL MFG_UP

,_\ MFG ROUTINE INDICATOR = EF
N AL, FORT_C

TEST FOR MOOEM CARD PRESENT

H
B
AND AL ; 000000108 ; ONLY CONCERNED WITH BIT 1
JNE THL ; IT’S NOT THERE - DONE WITH TEST
MoV DX, 03FBH ; ADDRESS OF MODEM CARD
CALL VART ; ASYNCH. COMM. ADAPTER POD
JNC ™1 ; PASSEO
RR ; MODEM ERROR

MOV S1,0FFSET COM2_ERR
3 REPORT ERROR

SETUP HAROWARE INT. VECTOR TABLE

F7A:

ASSUME CS:CODE,0S: ABSO
sva -

AX, AX

MOV . ES,AX

MOV cx, 08 ; GET VECTOR GNT
PUSH cs ; SETUP DS SEG REG
POP oS

HOV SI,O0FFSET VECTOR_TABLE

MOV D1,0FFSET INT_PTR

MOVSH

INC oI ; SKIP OQVER SEGMENT
INC DI

LOOP F7A

SET UP OTHER INTERRUPTS.AS NECESSARY

ASSUME DS:ABBO

MoV DS, CX

Hov -INTS_PTR, OFFSET PRINT_SCREEN-; PRINT SCREEN g

MoV KEY62_PTR, OFFSET KEY6Z_INT-; 62. KEY CONVERSION T
ROUTINE

Nov CSET_PTR, OFFSET CRT_CHAR_GEN ; 0OT TABLE

NOV BASIC_PTR, DFFSET BAS_ENT ; CASSETTE BASIC ENTRY

PUSH €5

POP AX

MoV WORD PTR BASIC_PTR+2,AX ; CODE SEGMENT FOR CASSETTE

CHECK

FOR OPTIONAL ROM FROM CO000 TO FOO0O IN 2K BLOCKS

{A VALID: MODULE HAS °‘56AA” IN THE FIRST 2 LOCATIONS,
LENGTH. INDICATOR (LENGTH/512) IN THE 30 LOCATIDN AND
TEST/INIT. CODE STARTING IN THE 4TH LOCATION.)

MFG ERR CODE 25XX (XX=MS8& OF SEGMENT THAT HAS CRC CHECK)

MOV
ROM_SCAN_1:

JHP
NEXT_RON:

ADD
ARE_ME_DONE:
CHP

A-20  ROM BIOS

MoV AL, O1H
out 13H, AL
CALL MFG_UP ; MFG ROUTINE = EE
DX, 0CO00H ; SET BEGINNING ADDRESS
Wov DS, DX
suB BX, BX ;. SET BX=0000
[ AX, [BX] . ; GET 15T WORD FROM MODULE
PUSH  BX
POP 8x BUS BETTLING
CHP AX, 0AASSH = TO 1D WOR0?
JNZ NEXT_ROM PROCEED TO NEXT ROM 1F NOT

H
CALL RON_CHECK : GO CHECK OUT MODULE
SHORT ARE_MWE_DONE ; CHECK FOR END OF ROM SPACE

DX, 0080H ; POINT TO NEXT 2K ADDRESS
DX, OFO0OH ; AT FO000.YET?
JL ROM_SCAN_1 ; GO CHECK ANOTHER ADD. IF MOT



()

0806
oBoa
0BOC
0BOE
0811
0814
0817
0818
0818
0810
0820

0825
0824
082C
O0B2E
0830
0832

E6D8 R
13BB R
FF
0074 R
0075 R
0076 R
62

04

03

08A3 R

OE 0010 R 01

3E 0072 R 00

ca FF

26 0010 R

a0

F2

05 0084 R 00
0078 R

1414
0101

21
FE
21

-——- R
1]

DESCR

DISKETTE
IPTION

ATTACHMENT TEST

CHECK IF [PL DISKETTE DRJVE 1S ATTACHEO TO SYSTEM. I[F

ATTACHED,.

VERIFY-STATUS OF NEC FDC AFTER A RESET. ISSUE

A RECAL AND SEEK CMD TO FDC AND CHECK STATUS. COMPLETE
SYSTEM INITIALIZATION THEN PASS CONTROL TO THE BOOT

LOADER P

ROGRAM.

ERR CODES: 2601 RESET TO DISKETTE CONTROLLER CD. FAILED
2602 RECALIBRATE TO DISKETTE DRIVE FAILED
2603 WATCHDOG TIMER FAILED

F10_0:

Flo0:

Fl1:
F12:

F13:

Fia:

MFG ROUTINE = ED
POINT TO DATA AREA
INIT DISKETTE SCRATCHFPADS

- DISKETTE PRESENT?

NO - BYPASS DISKETTE TEST

BYTE PTR EQUIP_f FLAG O1H ; SET IPL DISKETTE

INDICATOR IN EQUIF. FLAG
RUNNING FROM POWER-ON STATE?
BYPASS WATCHDOG TEST

READ INT. REQUEST REGISTER CMD

HAS WATCHDOG GONE OFF?
PROCEED IF IT HAS
SET ERROR CODE

DISABLE WATCHDOG TIMER
RESET NEC FDC

SET FOR DRIVE ©

VERIFY STATUS AFTER RESET
STATUS OK?

SET UP POSSIBLE ERROR CODE
NO - FDC: FAILED

N
AL, DRIVE ENABLEOFDC RESET ; TURN MOTOR ON,DRIVE O

WRITE FDC CONTROL REG
WAIT FOR 1 SECOND

SELECT DRIVE 0
SELECT TRACK. 1

RECALIBRATE DISKETTE

ERROR CODE

GO TO ERR SUBROUTINE IF ERR
SELECT TRACK 34

SEEK TO TRACK 34

OK, TURN MOTOR OFF

DSK_ERR: (26XX)

SI OFFSET DISK I ERR ; GET AODR OF MSG

ASSUME CS:CODE,DS:DATA
CALL  MFG_UP
CALL  DDS
MoV AL, OFFH
MoV TRACKO, AL
MoV TRACK 1, AL
Mov TRACK2, AL
IN AL, PORT_C
ANO AL, ooooo 1008
Jz
JMP F 15
oR
cHP RESET_FLAG, 0
JNE F10
MoV AL, 000010108
out INTAOO, AL
N AL, INTAOO
ANO AL, 010000008
JNZ F10
MoV BL, 03H
Jmp SHORT F13
MoV AL, FDC_RESET
ouT OF2H, AL
MOV AH, 0
MoV DL, AH
INT 134
TEST  AM, OFFH
uov aL, 01H
F13
'I'URN DRIVE 0 MOTOR Ol
HoV
out OF 2H, AL
su8 cx, Cx
Loor  F1l
LOOP  F12
XOR DX, DX
MoV CH, L
MoV SEEK_STATUS, DL
CALL SEEK
MoV BL, 02H
JC F13
MOV CH, 34
- CALL SEEK
JNC F14
Nov - BL,O02H
MoV aH, 26H
MoV
CALL ;
MoV AL, Fo_c_REssnozu
ouT OF 2M, AL
IN AL, OE2H
AMO AL, 000001108
cHP AL, 000000 108
JNE F14_1
Nov AL, FDC_RESET+04H
ouT OF 2H, AL
IN AL, OE2H
AL, 000001 108
AL, 000001008
AL, OE2H
AL, 001100008
Fla_1
AL, 000100008
AN, 010000008
F14

_2
AH, 100000008

GO PRINT ERROR MSG

BYTE PTR EQUIP_FLAG, AH

DRIVE O MOTOR OFF

AL, FDC_RESET
OF2H, AL
INTR_FLAG, 00H

i

i

TURN DRIVE O MOTOR OFF
SET STRAY IMTERRUPT FLAG = 00

D1,0FFSET PRINT_TIM_OUT ;SET. DEFAULT PRT TIMEOUT

(13
ES
AX, 1414H

AX,0101H

AL, INTAOL
AL, OFEH
IMTAO1L, AL
DS: XXDATA
[1:]

AX, XXDATA
D8, AX

’

DEFAULT=20

;RS232 DEFAULT=01

ENABLE TIMER INT. {LYL O)

ROM BIOS A-21




08C3

0BCB
08BCH
oBCB
[o]: [ 4
0BDO
0800
0802
0oBD4
0BD7
0oBD8
oBDB
0800

OBEQ
0BE3

0926
0928
0928
092€E
0930
0931
0933
0938
0936
0938
093A
093¢
0930
093F
0941
0942
0944
0946

0948
0944
094C
094E
094F
0951
0953
0954
0956

0958
0958
098E

0960
0863

0969
0960
096F
0972
0974
0974
097C
0970
0580
0982
0988
0987
098A

3E 001B R 00 cHP POST_ERR, 00H ; CHECK FOR "POST_ERR" NON-ZERO
ASSUME DS:DATA
POP DS
10 JE F15A_0 ; CONTINVE IF NO ERROR
02 MOV oL, 2 ; 2 SHORT BEEPS (ERROR)
1A0C R cALL ERR_BEEP
ERR_WAIT:
00 MoV AH, 00
16 INT 164 ; WAIT FOR “ENTER" KEY
FC IC cHP AH, 1CH-
F7 JNE ERR_WAIT
05 JMP SHORT F186C
o1 FISA_O: MOV oL, 1 ; 1 SHORT BEEP (NO ERRORS)
1A0C R CALL ERR_BEEP
jm———— SETUP PRINTER AND RS232 BASE ADDRESSES IF DEVICE- ATTACHED
003D R F18C: MOV 8P, OFFSET F4 ; PRT_SRG:.TBL
F6 XOR sl, 81
F16: ; PRT_BASE:
aB 66 00 MOV DX, CS: [BP1 ; GET PRINTER BASE ADDR
AN MOV AL, OAKH ; WRITE DATA TO PORT A
out DX, AL
PUSH 0S ; BUS BETTLING
IN AL, DX ; READ PORT A
POP oS
AA cHp AL, OAAH i DATA PATTERM SAME
06 JNE F17 NO ~ CHECK NEXT PRT CD
94 0008 R MoV PRINTER_BASETS13,DX ; YES - STORE PRT BASE ADOR
INC s1 ; INCREMENT TO NEXT WORD
INC sI
F17: INC BP ; POINT TO NEXT BASE ADDR
INC BP
FD 41 cHp BP,OFFSET F4E ; ALL POSSIBLE ADDRS CHECKED?
ES JINE FI6 ; PRT_BASE
DB XOR BX, BX ; SET ADDRESS BASE
03FA MoV DX, 03FAH ; POINT TO INT ID REGISTER
IN AL, DX ; READ PORT
F8 TEST AL, OFBH ; SEEM TO BE AN B250
08 JNZ F18
87 0000 R O3F8 MOV RS232_BASEL[8X],3FOH ; SETUP RS232 CD #1 ADDR
INC BX
INC ax
87 0000 R O2FB F18: NoV RS232_BASEIBX],2FBH ; SETUP RS232 #2
INC BX ; (ALWAYS PRESENT)
INC Bx
;==—-=- SET UP EQUIP FLAG TO INDICATE NUMBER OF PRINTERS AND RS$232
CARDS
ce MoV AX, 1 ; SI HAS 2% NUMBER .OF PRINTERS
03 MoV cL,3 ; SHIFT COUNT
ca ROR aL, CL i ROTATE RIGHT 3. POSITIONS
c3 OR aL, OR IN THE RS5232 COUNT
068 0011 R oR BVTE PTR EQUIP_FLAG+1,AL ; STORE AS SECOND BYTE
- SET EQUIP, FLAG TO INDICATE PRESENCE OF SERIAL PRINTER
ATTACHEO TO ON BOARD RS232 PORT. ~--ASSUMPTI1ON--"RTS" 1S TIED %0
"CARRIER DETECT" IN THE CABLE PLUG FOR THIS SPECIFIC PRINTER.
c8 MoV cx, Ax ; SAVE PRINTER COUNT IN CX
02FE MOV 8X, 2FEH- ; SET POINTER TO MODEM STATUS REG
02FC MoV DX, 2FCH ; POINT TO MODEM CONTROL REG
co suB AL, AL
ouT 0X, AL ; CLEAR IT
00 JMP 42 ; DELAY
03 XCHG 0X, BX ; POINT TO MODEM STATUS REG
M AL, DX ; CLEAR IT
00 P 2 ; DELAY
02 MOV AL, 02H ; 8RING UP RTS
03 XCHG DX, BX ; POINT TO MODEM CONTROL REG
ouT DX, AL ;
00 JHP- 842 ; DELAY
03 HCHG DX, BX ; POINT TO NODEM STATUS REG
IN AL, DX ; GET CONTENTS
o8 TEST AL, 000010008 ; HAS- CARRIER DETEGT CHANGED?
23 J2 F19_A ; NO, THEN NO PRINTER .
o1 TEST AL, 000000018 ; DID CTS CHANGE? (A9 WITH WRAP
; CONNECTOR INSTALLED)
1F JNZ F19_A i WRAP-CONNECTOR ON IF 1T DID
co sua AL, AL ; SET RTS. OFF
03 XCHG DX, 8X ; POINT TO MODEM CONTROL REG
out DX, AL ; DROP RTS
00 JHP 42 ; DELAY
03 XCHG DX, 8X ; MODEM STATUS REG
IN AL, DX ; GET STATU
og AND AL, 000010008 ; HAS CARRIER DETECT CHANGED?
11 Jz F19_A ; THEN NO PRINTER
; cmm:n DETECT 15 FOLLOWING RTS-INDICATE SERIAL PRINTER ATTACHED
c9 20 CL, 001000008 ;
c1 co TEST CL, 110000008 ; CHECK FOR NO PARALLEL PRINTERS
09 JNZ F19_a ; DO NOTHING IF PARALLEL PRINTER
; ATTACHED
c9 40 OR cL, 010000008 ; INDICATE 1 PRINTER ATTACHED.
06 0008 R 02F8 NoV PRINTER_BASE,2F9H ; STORE ON-BOARD RS232 BASE IN
PRINTER BASE
OE 0011 R F19_A: OR BYTE PTR EQUIP FLAGH CL ; STORE AS SECOND BYTE
02 XOR- DX, DX ; POINT TO FIRST SERIAL PORT
c1 40 TEST CL, 04OH ; SERIAL PRINTER ATTACHED?
18 Jz F19_C i NO, SKIP INIT
3€- 0000 R 02F8 cHP RS232_BASE, 02F8H ; PRINTER IN FIRST SERIAL PORT
oL JE F19_B 5 YES,
INC DX ; NO POINT TO SECOND SERIAL PORT
0087 F19_8: MOV AX, 87H ; INIT SERIAL PRINTER
14 INT 14H
€4 1E TEST AH, 1EH ; ERROR?
o5 JNZ F18_C ; YES, JUMP
0118 MoV ax, 0118H ; SEND CANCEL COMMAND TO
14 INT 14H i ..SERTAL PRIMTER

A-22. ROM BIOS



-

09BC
09BF
0990
0992
0994
0997
0999
0998
09al
09A3
09AE
09A7

09AD

09AF
08B0
0982
0584
09BA

088C

098F
08co
06C2
08ca
09C7
09C9
08CB
08CE
0900

08D3
0905
0906
0907
0906
09DA
090D
089DF
09E1L
09E4
09E7
09EA
09ES
09EE

09FO0
09F2
09F4

09F6
09FB
09FA
O9FC
O9FE
0AQ0
0AO1
0A02
0A03
0A0B
0A0B
0A0R
0A0D
0ALO
0A13
0AlLE
0ALS

OALB
0AlLC
0A LD
0A20
0A22
0A28
0A27

0a28

BA 0201 F18_C: MOV DX, 0201H
EC IN AL, DX ; GET MFG./ SERVICE MODE INFO
24 FO AND AL, OFOH ; 1S HIGH ORDER NIBBLE = 07
75 03 JNZ Fl19_1 (BURM-IN MODE)
E9 0043 R F19_0: JMP START ELSE GO TO BEGINNING OF POST
ac 20 F19_1: CMP AL, 001000008 ; SERVICE MODE LOOP?
74 F9 JE F19_0 ; BRANCH TO START
B1 3E 0072 R 4321 CHP RESET_FLAG, a3z21n’ ; DIAG. CONTROL PROGRAM RESTART?
74 0oC JE F19 3 ; NO, GO BOOT
3C 10 CHp AL 000100009 MFG DCP RUN REQUEST
74 08 JE
C7 068 0072 R 1234 MOV RESET _FLAG, 12344 ; SET WARM START INDICATOR IN CASE
; OF CARTRIDGE RESET
CD 19 INT 19H GD TO THE BOOT LOADER
ASSUME DS:ABSO
FA F19_3: CLI
28 co sus AX, AX
8E D8 MOV D§, AX ; RESET TIMER INT.
€7 06 0020 R FEAS R MOV INT PTR, OFFSET TIHER INT
cD 80 INT 80H ; ENTER DCP THROUGH [NT. 80H
i
i THIS SUBROUTINE IS5 THE GENERAL ERROR HANDLER FOR THE POST
ENTRY REQUIREMENTS:
51 = OFFSET(ADDRESS) OF MESSAGE BUFFER
BX= ERROR CODE FOR MANUFACTURING OR SERVICE MODE
REGISTERS ARE NOT PRESERVED
LOCATION "POST_ERR" IS SET MON-ZERO IF AN ERROR OCCURS IN
CUSTOMER MODE
SERVICE/MANUFACTURING FLAGS AS FOLLOWS: (HIGH NIBBLE OF
; PORT 201)
H 0000 = MANUFACTURING (BURN-IM) MODE
i 0001 MANUFACTURING (SYSTEM TEST) MODE
H 0010 SERVICE MODE (LOOP POST)
0100 = SERVICE MODE (SYSTEM TEST)
E_MSG PROC NEAR
BA 0201 MOV DX, 201H
EC 1IN AL, DX ; GET MODE BITS
24 fFo AND AL, OFOH ; ISOLATE BITS OF INTEREST
76 03 JNZ ENO
E9 0A61 R JMpP MFG_OUT ; MANUFACTURIMG MODE (BURN-IN)
ac 10 EMO: CMP AL, 000100008 H
75 03 JNE EML
E9 OA6L R JHP MFG_OULT ; MFG. MODE (SYSTEM TEST)
8A FO EML: MOV DH, AL ;i SAVE MODE
80 FF 0A CHpP BH, 0AH ; ERROR CODE ABOVE 0AH (CRT STARTED
; DISPLAY POSSIBLE)?
7C 63 JL BEEPS ; DO BEEP OUTPUT IF BELOW 10H
63 PUSH BX ; SAVE ERROR AND MODE FLAGS
66 PUSH s1
62 PUSH DX
B84 02 MoV AH, ; SET CURSOR
BA 1521 MoV DX, 1821H ; ROW 21, COL.33
B7 07 nov BH,7 ; PAGE 7
cb 10 INT 10H
BE 0030 R MOV S§1, OFFSET ERROR_ERR
89 0005 MOV CcX,5 ; PRINT WORD "ERROR"
2E: 8A 04 EM_O: MOV AL,CS:(S[)
46 INC 1
E8 18BA R CALL PRT_HEX
E2 F7 LOOP M_0
LOOK FOR A BLANK SPACE TO POSSIBLY PUT CUSTOMER LEVEL ERRORS (IN
CASE OF MULTI ERROR)
B6 16 MOV DH, 16H
B4 02 EM_1: MoV AH, 2 ; SET CURSOR
Cb 10 INT 10H ; ROW 22, COL33 (OR ABOVE, IF
; MULTIPLE ERRS)
B4 0B MOV AH, B ; READ CHARACTER THIS POSITION
cD 10 INT 108
FE C2 INC oL ; POINT TO NEXT POSTION
3c 20 CHP AL, ; BLANK?
76 F2 JNE EM_1L ; GO CHECK NEXT POSITION, If NOT
54 POP DX ; RECOVER ERROR POINTERS
BE POP s1
-1:3 poP 8x
80 FE 20 CwpP DH, 001000008 ; SERVICE MODE?
74 21 JE SERV_OUT H
80 FE 40 CHP DH, 010000008 H
74 1C JE SERV_OUT
2E: BA 04 MOV AL,CS: (SI) ; GET ERROR CHARACTER
EB 1B8A R CALL PRT_HEX ; DISPLAY IT
80 FF 20 CHP 8H, 20H ERROR BELOW 207 (MEM TROUBLE?)
7D 03 JNL EM_2
E9 0AB8 R JMP TOTLTPO ; HALT SYSTEM [F SO
ASSUME DS: XXDATA B
1E EM_2: PUSH s
50 PUSH AX
BB ---- R MOV AX, XXDATA
BE DB MoV DS, AX
88 3E 0018 R MoV POST_ERR, BH ; SET ERROR FLAG NON-ZERO
58 POP AX
1F POP DS
ASSUME DS:NOTHING
c3 RET ; RETURN TO CALLER

ROM BIOS A-23

>
o
o
o
=
o

X1

Vv




0A29 SERV_OUT:

0A29 BA C7 MOV AL, BH ; PRINT MSB

0A28 53 PUSH BX

0A2C EB 18A9 R CALL XPC_BYTE ; DISPLAY IT

0A2F 58 POP BX

0A30 BA C3 MOV AL, BL ; PRINT LS8

0A32 E8 18A9 R CALL XPC_BYTE

0A35 E9 0ABB R JMP TOTLTPO

0A38 FA BEEPS: CLI

0A38 BC CB MOV AX, CS ; SET COOE SEG= STACK SEG

0A38 8E DO MoV S5, AX ; (STACK 1S LOST, 8UT THINGS ARE
;i OVER, ANYWAY)

0A3D B2 02 MoV oL, 2 ; 2 BEEPS

OA3F 8C 0028 R MOV 6P, OFFSET EX_O ; SET DUMMY RETURN

0A42 83 01 EB: MOV BL, 1 ; SHORT BEEP

0A44 E9 FF31 R JMP BEEP i

0A47 E2 FE EBO: LOOP EBO ; WAIT (BEEPER OFF)

0A49 FE CA DEC pL ; DONE YET?

0AdB 75 FB JNZ EB ; LOOP IF NOT

OA4AD 80 FF 05 CMP BH, 05H ; 64K CARD ERROR?

OAB50 75 89 JNE TOTLTPO ; END IF NOT

0AB2 80 FE 20 CMP DH, 001000008 ; SERVICE MODE?

0ASS 74 05 JE EBL

0A57 BO FE 40 CMP OH, 010000008 ;

OA5A 75 SF JNE TOTLTPO ; END IF NOT

0ASC B3 01 E€B1: MoV BL, 1 ; ONE MORE BEEP FOR 64K ERROR IF IN
; SERVICE MODE

OAGE EB® FF31 R JNP BEEP

0A61 MFG_OUT:

0A61 FA cL1

0A62 E4 81 IN AL, PORT_B

0A64 24 FC AND AL, OFCH

0A86 EG 81 ouT PORT_B, AL

0A6B BA 0011 MOV DX, L1H ; SEND DATA TO ADDRESSES 11,12

0A6B BA C7 MOV AL, BH ;

0A6D EE ouT DX, AL ; SEND HIGH 8YTE

OA6E 42 INC DX

OA6F BA C3 MOV AL, BL

OA71 EE SEND LOW BYTE

ouT N i
; INIT. ON-B0ARD RS232 PORT FOR éOHHUNlCATIONS W/MFG MONITOR
ASSUME DS:XXDATA

0A72 ~ R MoV AX, XXDATA

OA75 MoV bs, AX ; POINT TO DATA SEGMENT CONTAINING
; CHECKPOINT #

0A77 BC CB MOV AX, CS

0A78 BE DO MOV 5§, AX ; SET STACK FOR RTN

0A78 BC 002E R MoV 8P, OFFSET EX1

OA7E BA 02FB MOV DX, 02FBH ; LINE CONTROL REG. ADDRESS

0AB1 EB FO85 R JMP 58250 ; GO SET UP FOR 9600, ODD, 2 STOP
; BITS, B BITS

OAB4 BB CA MOL: MOV CX, DX ; DX CAME BACK WITH XMIT REG
; ADDRESS IN IT

0AB6 BA 02FC MOV DX, 02FCH ; MODEM CONTROL REG

0AB9 2A CO sue AL, AL i SET DTR AND RTS LOW SO POSSIBLE
; WRAP PLUG WON’T CONFUSE THINGS

0ABB EE out DX, AL

0ABC BA 02FE MoV DX, 02FEH ; MODEM STATUS REG

OABF EC MO2: IN AL, DX

0A30 24 10 AND AL, 000100008 ; CTS UP YET?

0A92 74 FB Jz M02 ; LOOP TILL 17 IS

0A94 4a DEC bX ; BET DX=2FD (LINE 9TATUS REG)

0A95 87 D1 XCHG bX, CX ; POINT TO XMIT. DATA REG

0A37 A0 0005 R “ov AL, MFG_TST ; GET MFG ROUTINE ERROR INDICATOR

OASA EE ouT DX, AL ; (MAY BE WRONG FOR EARLY ERRORS)

0AS8 EB 00 JMP 42 ; DELAY

0A9D 87 D1 XCHG DX, CX ; POINT DX=2FD

OASF EC MO3: IN AL, DX ; TRANSMIT EMPTY?

0AAOD 24 20 AND AL, 001000008

0AA2 EB 00 JHP 42 ; DELAY

0AAA 74 F9 JyzZ MO3 ; LOOP TILL 1T 1S

0AA6 87 D1 XCHG DX, CX

OAA8 BA C7 MOV AL, BH ; GET MSB OF ERROR WORD

OAAA  EE out DX, AL

0AAB EB 00 JMP 42 ; DELAY

0AAD 87 D1 XCHG bX, CX

OAAF EC No4: IN AL, DX ; WAIT FOR XMIT EMPTY

0ABO 24 20 AND AL, 001000008

0AB2 EB 00 JMP 42 ; DELAY

0AB4 74 F9 J2 MO4

0AB8 BA C3 MOV AL, BL i GET LSB OF ERROR WORD

0AB8 B7 D1 XCHG DX, CX

0ABA EE out DX, AL

[o2:1:] TOTLTPO:

0ABB FA cLI ; DISABLE INTS.

0ABC 2A CO suf AL, AL i

OABE E6 F2 ouT OF 2H, AL i STOP DISKETTE MOTOR

0ACO E€ A0 out OAOH, AL ; D1SABLE NMI

0AC2 F4 HLT ; HALT

OAC3 (3 RET

0AC4A E_MSG ENDP

A-24 ROM BIOS



OAC4
0ACA

0ACS
0ACT7
OACA
OACC
OACE
OAD 1
0AD3
OADS
0ADE
0ADS
0ADB
0ADD
OAEO
OAE2
QAE4
OQAES
QAE7
OAE®
OAEA
OAEC
OAED

OAFO
OAF3

OAF4
OAFS
0AF6
OAF7
0AFD

co
FEAO R
EA 06

SUBROUTINE TO INITIALIZE INS8250 PORTS TO THE MASTER RESET
STATUS. THIS ROUTINE ALSO TESTS THE PORTS’ PERMANENT
ZERQ BITS.
EXPECTS TO BE PASSED:
{bX) = ADDRESS OF THE 8250 TRANSMIT/RECEIVE BUFFER
UPON RETURN:
(CF) = 1 [IF ONE OF THE PORTS‘’ PERMANENT ZERO BITS WAS NOT
ZERO (ERR)
(DX) = PORT ADDRESS THAT FAILED TEST
(AL} = MEANINGLESS
(BL)> = 2 [INTR ENBL REG 8ITS NOT O
3 INTR (D REG BITS NOT O
4 MODEM CTRL REG BITS NOT O
6 LINE STAT REG BITS NOT O
O IF ALL PORTS’ PERMANENT ZERQO BJTS WERE ZERO
(DX) = TRANSMIT/RECEIVE BUFFER ADDRESS
(AL) = LAST VALUE READ FROM RECEIVER BUFFER
{BL) = 5 (MEANINGLESS)
PORTS SET UP AS FOLLOWS ON ERROR-FREE RETURN:
XF8 - INTR ENBL REG o ALL INTERRUPTS DISABLED
XFA - INTR ID REG 000000018 NO INTERRUPTS PENDING
XFB - LINE CTRL REG o ALL BITS LOW
XFC - MODEM CTRL REG
XFD - LINE STAT REG

] ALL BITS LOW
011000008 TRANSMITTER HOLDING
REGISTER AND TRANSMITTER EMPTY ON
XFE - MODEM STAT REG = XXXX00008 WHERE X ‘S REPRESENT
INPUT SIGNALS
REGISTERS DX, AL, AND BL ARE ALTERED. NO OTHER REGISTERS USED.

8250 PROC NEAR
IN

READ RECVR BUFFER 8UT IGNORE
CONTENTS

AL, DX

i
Wov BL,2 ; ERROR INDICATOR
CALL RR2 ; READ INTR ENBL REG
AND AL, 111100008 ; BITS 4-7 OFF?
JNE AT20 ; NO - ERROR
caLL RR1 ; READ INTR ID REG
AND AL, 111110008 ; BITS 3-7 OFF?
JNE AT20 ; NO
INC DX ; LINE CTRL REG
cALL RR1 ; READ MODEN CTRL REG
AND AL, 111000008 ; BITS B-7 OFF?
JNE AT20 i NO
caLL RR1 ; READ LINE STAT REG
AND AL, 100000008 ; BIT 7 OFF?
JNE AT20 ; NO
MOV AL, 6OH
oyt DX, AL
JNP $+2 ; 1/0 DELAY
INC DX i MODEM STAT REG
XOR AL, AL
out DX, AL ; WIRED BITS WILL BE HIGH
caLL RR3 ; CLEAR BITS 0-3 IN CASE THEY'RE ON
; AFTER WRITING TO STATUS REG
suB DX, 6 ; RECEIVER BUFFER
IN AL, DX ; IN CASE WRITING TO PORTS CAUSED
; DATA READY TO GO HIGH!
cLe
RET
AT20:  STC ; ERROR RETURN

RE
18260 ENOP

SUBROUTINE TO TEST A PARTICULAR 8250 IMTERRUPT. PASS IT THE
(81T & + 1) OF THE STATUS REGISTER THAT 1S TO HE TESTED.
THIS ROUTINE SETS THAT BIT AND CHECKS TO SEE IF THE CORRECT
8280 INTERRUPT IS GENERATED.

IT EXPECTS TQO BE PASSED:

{AH) = 81T & TO BE TESTED
{BL) = INTERRUPT IDENTIFIER
{0) = RECEIVED DATA AVAILABLE OR TRANSMITTER HOLD NG
REGISTER EMPTY INTERRUPT TEST
{1) = RECEIVER LINE STATUS OR MODEW STATUS INTERRUPT
TES

(BH) = BITS WHICH DETERMINE WHICH INTERRUPT IS TO BE
CHECKED
(0) = MODEN STATUS
2 TRANSMITTER HOLDING REGISTER EMPTY
t4) = RECEIVED DATA AVAILABLE
(8) = RECEIVER LINE STATUS
{CX) = VALUE TD SUBTRACT AND ADD IN ORDER TO REFERENCE THE
INTERRUPT IDENTIFICATION REGISTER
(3) = RECEIVED DATA AVAILABLE, TRANSWITTER HOLDING
REGISTER AND RECEIVER LINE STATUS INTERRUPTS
(4) = MODEM STATUS INTERRUPT
{DX) = ADDRESS OF THE LINE STATUS OR MODEM STATUS REGISTER
IT RETURNS:
(ALY = OFFH IF TEST FAILS ~ EITHER NO INTERRUPT OCCURRED OR
THE WRONG INTERRUPT OCCURRED

OR
(AL) = CONTENTS OF THE INTERRUPT 10 REGISTER FOR RECEIVED
DATA AVAILABLE AND TRANSMITTER HOLDING REGISTER
EMPTY INTERRUPTS
—-OR-
CONTENTS OF THE LINE STATUS OR MODEM STATUS REGISTER
OEPENDING ON WHICH ONE WAS TESTED.

(DX) = ADDRESS OF INTERRUPT ID REGISTER FOR RECEIVED DATA
AVAILABLE OR TRANSMITTER HOLDING REGISTER EMPTY
INTERRUPTS

OR

(0X) = ADDRESS OF THE LINE STATUS OR DATA SET STATUS

REGISTER (DEPENDING ON WHICH INTERRUPT WAS TESTED)
NO OTHER REGISTERS ARE ALTERED.

ROM BIOS A-25

>
=
o
g
&
>




0AFB

0AFB EC
0AF9 EB 00
OAFB 0A C4
OAFD EE
OAFE 2B D1
0800 51
0BOS 2B CB
0B03 EC
0B04 AB 01
0B08 74 02
0BOB E2 F9
0BOA 69
0B0B 3A C7
0BOD 75 09
OBOF 0OA 0B
oBi11 74 07
0P13 03 04
0B15 EC
opis E8 02
0Bi8 80 FF
0B1A C2
oBi8

0818

018 FB
oBl1C 2B CO
OBIE CD 10
0820 28 CO
0822 BE DB

0B24 Eq 82
08268 24 04
0828 75 2B

0B2A C7 08 007B R EFC7 R
0830 BC OE 007A R

0834 B9 0004
0837 61

0B38 84 00
0B3A CD 13
083C 72 OF
0B3E B8 0201
0841 2B D2
0B43 BE C2
0845 BB 7C00 R

0848 89 0001
0848 CD 13
oB4aD B9
0B4E 73 04
0B60 E2 ES

0852 CD 18

0854 EA 7C00 ---- R
0859

A-26 ROM BIOS

1cT PROC NEAR
IN AL, DX ; READ STATUS REGISTER
JHP 92 ; 1/0 DELAY
OR AL, AH ; SET TEST BIT
ouT DX, AL ; WRITE 1T TO THE STATUS REGISTER
8UB DX, CX ; POINT TO INTERRUPT ID REGISTER
PUSH (4
suB CX, CX ; WAIT FOR B250 INTERRUPT TO OCCUR
AT21: IN AL, DX ; READ INTR ID REG
TEST AL, 1 ; INTERRUPT PENDING?
JE AT22 ;i YES -RETURN W/ INTERRUPT ID IN AL
LGOP AT21 ; NO - TRY AGAIN
AT22: POP (1 5 AL = 1 IF NO INTERRUPT OCCURRED
CHP AL, BH i INTERRUPT WE’RE LOOKING FOR?
JNE AT23 ;i NO
OR 8L, BL ; DONE WITH TEST FOR THIS INTERRUPT
JE AT24 ; RETURN W/ CONTENTS OF INTR ID REG
ADD DX, CX ; READ STATUS REGISTER TO CLEAR THE
IN AL, DX ; INTERRUPT (WHEN BL=1)
JNP SHORT AT24 ; RETURN CONTENTS OF STATUS REG
AT23: MOV AL, OFFH ; SET ERROR INDICATOR
AT24: RET
1cT ENDP
-—— INT 18

800T STRAP LOADER
TRACK 0, SECTOR 1 IS READ INTO THE
BOOT LOCATION (SEGMENT O, OFFSET 7C00)
AND CONTROL 19 TRANSFERRED THERE.

IF THE DISKETTE IS NOT PRESENT OR HA9 A
PROBLEN LOADING (E.G., NOT READY), AN INT.
1BH 1S EXECVUITED. 1F A CARTRIDGE HAS VECTORED
INT. 1BH TO 1TSELF, CONTROL WILL 8E PASSED TO
THE CARTRIDGE.

ASSUME CS:CODE, DS: ABSO
BOOT_STRAP PROC NEAR
8Tl ; ENABLE INTERRUPTS
BUB AX, AX ; SET 40X25 BBW MODE ON CRT
INT 10H i
suB AX, AX ; ESTABLISH ADDRESSING
MOV 0S, AX
;e==== SEE IF DISKETTE PRESENT
IN AL, PORT_C ; GET CONFIG BITS
AND AL, 000001008 ; 1S DISKETTE PRESENT?
JNZ H3 ; NO, THEN ATTEMPT TO GO TO CART
; - RESET THE DISK PARAMETER TASLE VECTOR
MoV WORD PTR DISK_POINTER, OFFSET DISK_BASE
Nov WORD PTR DISK_POINTER+2, CS
jm———- LOAD SYSTEM FROM DISKETTE ~- CX HAS RETRY COUNT
NOV cx, 4 ; SET RETRY COUNT
H1: PUSH cx i SAVE RETRY COUNT
MoV AH, 0 ; RESET THE DISKETTE SYSTEN
INT 13H ; DISKETTE_IO
Jc H2 ; IF ERROR, TRY AGAIN
MOV AX, 201H ; READ IN THE SINGLE SECTOR
sue DX, DX ; TO THE BOOT LOCATION
NOV ES,DX
MoV BX, OFFSET BOOT_LOCN
; DRIVE O, HEAD 0
MoV cx, 1 ; SECTOR 1, TRACK O
INT 13H ; DISKETTE_IO
H2: POP X i RECOVER RETRY COUNT
JNC H3A ; CF SET BY UNSUCCESSFUL READ
LOOP H1 ; DO IT FOR RETRY TIMES
UNABLE TO IPL FROM THE DISKETTE
INT 18H ; GO TO BASIC OR CARTRIDGE
IPL WAS SUCCESSFUL
H3A: JNP B00T_L OCN
BOOT_STRAP ENDP

TMIS ROUTINE PERFORMS A READ/WRITE TEST ON A BLOCK OF
STORAGE (NAX. SIZE = 32KB). [F "WARM START", FILL
BLOCK WITH 0000 AND RETURN
DATA PATTERNS USED:
0->FF ON ONE BYTE TO TEST DATA BUS
AAAA, 5555, 00FF, FFOO FOR ALL WORDS
FILL WITH 0000 BEFORE EXIT
ON ENTRY:
ES = ADDRESS OF STORAGE TO BE TESTED
ADDRESS OF STORAGE TO BE TESTED
CX = WORD COUNT OF STORAGE BLOCK TO BE TESTED
(MAX. = BOOOH (32K WORDS))
ON EXIT:
ZERO FLAG = OFF IF STORAGE ERROR
IF ZERO FLAG = OFF, THEN CX = XOR’ED BIT PATTERN
OF THE EXPECTED DATA PATTERN VS. THE ACTUAL DATA
READ. (I.E., A BIT "ON" IN AL 1S THE BIT IN ERROR)
AH=03 [F BOTH BYTES OF WORD HAVE ERRORS
AH=02 IF LOW (EVEN) BYTE HAS ERROR
AH=O1 IF HI (0DD) BYTE HAS ERROR
AX,BX,CX,DX,DI,SI ARE ALL DESTROYED

H
H
i
i
H
i
H
H
i
i
i
i
B
i
H
i
i




(O

()

o869

0859
08%A
088C

0BBE
oBeo
0B64
0866
oB6A
oBscC
0BEBE
oB70

" 0876

oB78
0879
087D
0a7F
o881
ope3

o887
088A

-088C

oBBE

- 0880
o882 -
- 0888

0Bd7
0B9A

0BdC
089D
08BE
08BF
0BAlL
0BA3
0BA3

- 0BA4

o8a8

- 08AA
‘o8a8

OBAF
oeao
oBe!
osB2
0BB4
oBB6
opes
088A
oBaec
0BBE
08Co
0BCl1

08CS
0BCE
0BC7
oece
oBCA
oaccC
OBCE

. 0BDO

0602
0803
0BD6
oBD8
0BDA
0BDC
0BDC
0BDD
OBDF
OBEL

OBE2
09E4
OBES
OBES

OBE7
OBEA
OBEB
OBED
OBEF
0BF 1
OBF3
OBFS
OBF7
0BF9

F7
£0

<3
c2

‘F6

(]

FE
OOFF
c3
c2

F6
co

PODSTG °PROC NEAR
ASSUME DS:ABSO
cLD ; -SET DIRECTION TO INCREMENT
suB 01,01 ; SET D1=0000 REL. TO START OF SEG
sue AX, AX ; INITIAL DATA PATTERN FOR 00-FF
i TEST
MOV DS, AX SET DS TO ABSO
MoV BX, DATA. WORD[RESET_FLAG-DATA] ; WARM START?
CHP BX, 1234H
Mov DX, ES
MoV DS, bX ; RESTORE DS
JNE PI
P12: REP srosu ; SIMPLE FILL WITH O ON WARM-START
MoV D5, A
MOV DATA uoRo:nzszT_FLac-nATaJ [:13
MOV DS, 0X f "TORE DS
RET ; Aum EXIT
PL: cmp BX, 4321H ; DIAG. RESTART?
JE P12 ;D0 FILL WITH ZEROS
P2: MoV 013, AL ; WRITE TEST DATA
“‘NOV AL, CD12 ;. GET IT BACK
XOR AL, AH ; COMPARE TO EXPECTED
Jz PY
JHP P8 ; ERROR EXIT IF MISCOMPARE
-PY: INC AH ; FORM ‘NEW DATA PATTERN
oV AL, AH ;
JNZ 2 ; LOOP TILL ALL 288 DATA PATTERNS
; DONE
MoV cx ; “SAVE WORD COUNT
MOV AX, OAAAAH ; LOAD BATA-PATTERN
MoV ax, ax
MOV DX, 0S665H ; LOAD OTHER DATA PATTERN
REP STOSW ;-FILL WORDS FROR LOW TO HIGH
; WITH AAAA
DEC DI ; POINT TO LAST WORD WRITTEN
DEC ‘ol
sTO ; SET DIRECTION FLAG TO GO DOWN
MOV 81,01 ; 'SET. INOEX REGS. EQUAL
MoV cx, 8P ; RECOVER WORD COUNT
P3: ; -GO FROM HIGH TO -LOW
LODSW ; GET WORD FRON MEMORY
XQR AX, BX ; EQUAL- WHAT S/B THERE?
JNZ Pa ;GO ERROR EXIT IF MOT
NOV AX, DX ; GET &S5 DATA PATTERN
sTOSW ; STORE IT IN LOCATION JUST READ
LooP  P3 ; LOOP -TILL ALL BYTES DONE
MOV cX,BP ;- REGOVER WORD COUNT
cLo ; BACK TO INCREMENT
INC st ; ADJUST PTRS
INC st
MOV i, SI
nov DX ; 5/8 DATA PATTERN TO BX
MOV DX, 00FFH ; DATA FOR CHECKERBOARD PATTERN
PX: LOOSW ; GET WORD FROM MEMORY
XOR AX, BX ; EQUAL WHAT /8B THERE?
JNZ L] ; GO ERROR EXIT IF NOT
MOV AX,0X ; “GET .OTHER PATTERN
6T0SW ; STORE IT IN LOCATION JUST REAO
LOOP PX ; LOOP TILL ALL BYTES DONE
MoV cx, 8P ; RECOVER WORD COUNT
sTD ; DECREHENT
DEC s1 ; ADJUST PTRS
DEC 1
MOV ot, sl
MOV ax, DX ; §/8 DATA PATTERN TO BX
NOT DX ; -MAKE PATTERN FFOO
OR DL,OL ; FIRST PASS?
Jz PX
cLo ;- INCREMENT
ADD §1,4
NOT Dx
MOV I, SI
MoV cx, 8P
Pa: ; LOW TO HIGH
LoDSW ; GET A WORD
XOR aX, DX ; SHOULD COMPARE TO DX
JNZ P8 ; 60 ERROR IF NOT
6TOSW ; WRITE .0000 BACK TO LOCATION
; JUST READ
LOOP Pa ; LOOP TILL DONE
87D ; BACK TO DECREMENT
DEC §1 ; ADJUST POINTER DOWN TO LAST WORD
DEC s1 ; WRITTEN
; CHECK IF IN SERVICE/MFG MODES, IF 50, PERFORM REFRESH CHECK
MOV DX, Z0IH 5
IN AL, DX ; GET OPTION BITS
AND AL, OFOH ;
CMP AL, OFOH ; ALL BITS HIGH=NORMAL MODE
JE P6
NOV cx,cs
HoV BX, SS
CMP cx, BX ; SEE IF IN PRE-STACK MODE
JE Ps ; BYPASS RETENTION TEST IF SO

SET OUTER LOOP COUNT

WAIT ABOUT 6- 8 SECONDS WITHOUT ACCESSING MEMORY

IF REFRESH 1S NOT WORKING PROPERLY, FHIS SHOULD
BE" ENOUGH TINE FOR SOME DATA TO GO SOUR.

ROM BIOS A-27

>
=]
=]
(9°]
E S
| &
>
>




08F8 E2
OBFD FE
OBFF 78
0Co1 88
0C03° AD
0Cco4 OB
ocoe 75
ocos E2
0CoA EB
ocoC B8
0COE 32
0C10 - OA
oc12 74
0C14 FE
0C16 OA
ocie 74
0CiA 80
0CiD 0A
OCIF FC
0C20 C3
0c21

ocz21 -

ocz21 1E
oc22 &3
0c23 50
0C24 53
0C26 61
oc2e 52
0Cc27 8D
0C2A BA
oc2p 83

oca7 04
OCBF 04
0Ccs? 04
OC9F - 04

0CA9 04

oce7 - 02
0CCa ‘02
OCCF 02

oCcD9 28
-0CDB 2B
ocop 02
OCDE D8

= OCDF .
OCDF 02
02

A-28

FE

FA
cD

co
04
F9
13
[=:}
E4
ED

02

c4
€9
03
c4
E4

0C4A R

02

8000

1F

82
00
00
94

ocoD. R

62
<3
FA

F2

77
77

20

[:1}

08
03

o1

02
02

77
FC

03

o1

03
03
03
03
04

03

03
o1

o1
02

o1
03

oz

77

P5:
P6:
P7:

PB:

P9:

P10:
P1l:

PODSTG

LooP

CLD

ENDP .

1]
AL
PS5
cX,BP ; RECOVER WORD COUNT
; GET WORD
ax, ax ;= TO 0000
PB ; ERROR IF NOT
P7 ; LOOP TILL DONE
SHORT P11 ; THEN EXIT
CX, AX ; SAVE BITS IN ERROR .
AH, AH
CH, CH ; HIGH BYTE ERROR? i
P9
AH ; SET HIGH BYTE ERROR
cL,cL ; LOW BYTE ERROR?
P10
AH, 2 v
AH,.AH ; SET ZERO FLAG=0 (ERROR INDICATION

SET DIR FLAG BACK TO INCREMENT
RETURN TO CALLER

H
H
H

PUT_LOGO PROCEDURE
THIS PROC SETS UP POINTERS AND CALLS THE SCREEN
OUTPUT ROUTINE SO THAT THE [BM LOGO, A NESSAGE,

AND A COLOR BAR ARE PUT UP ON THE SCREEN.

AX,BX, AND DX ARE DESTROYED. ALL OTHERS ARE SAVED

PUT_LOGO PROC

AGAIN:

PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
MOV
MOV
MoV

INT
MOV
MOV
MOV
MoV
INT
INC
CHP

JL
POP
POP
POP
POP
POP
POP

RET
PUT_LOGO ENDP

LOGO
LOGO_E

COLOR

COLOR_E

ROM BIOS

NEAR
S
8P
ax
BX
cx
DX
BP, OFFSET LOGO
DX, BOOOH ;POINT DH DL AT.ROW,COLUMN 0,0
BL, 000111118 ;ATTRIBUTE OF CHARACTERS TO-BE
; WRITTEN
82H ;CALL GUTPUT ROUTINE
BL, 000000008 INITIALIZE ATTRIBUTE
oL, 0 ; INITIALIZE COLUMN
OH, 94H ; SET LINE
BP, OFFSET COLOR ; OUTPUT GIVEN COLOR BAR
B2H ; CALL OUTPUT ROUTINE
BL i INCREMENT ATTRIBUTE
oL, 32 ; 1S THE COLUMN COUNTER POINTING
. PasT 407
AGAIN ; 1F NOT, DO IT AGAIN
DX
cx
Bx
ax
ap ; RESTORE BP ,
0s ; RESTORE DS —

LOGO_E - LOGO
21

.,
40,~8

40,-8
2,7,1,9,3,4,9,4,1,-5
2,7,1,10,2,5,7,5,1,-5
2,7,1,11,1,6,5,6,1,-5
4,3,5,3,3,3,3,5,3,5,3,-6
4,3,5,3,3,3,3,6,1,6,3,-6
4,3,5,8,4,13,3,-5
4,3,5,7,5,13,3,-5
4,3,5,8,4,13,3,~5
4,3,5,3,3,3,3,13,3,-5

4,3,5,3,3,3,3,3,1,5,1,3,3,-5

2,7,1,11,1,5,2,3,2,5,1,-8
2,7,1,10,2,5,3,1,3,5,1,-5
2,7,1,9,3,5,7,5,1,-5
40,-5

40, -4

COLOR_E - COLOR

219 '

s
2,121-2;2, 121-2, 2, 121-2, 2, 121-2,2, -4

ASSUME DS:DATA



INT 10

VIDEO_I10

THESE ROUTINES PROVIDE THE CRT INTERFACE

THE FOLLOWING FUNCTIONS ARE-PROVIDED:

(AH)=0 SET MODE (AL) CONTAINS MOOE VALUE
(AL)=0 40X25 8W (POWER ON DEFAULT)

(AL)=3 80X25 COLOR
GRAPH1CS MOQOES
320X200 4° COLOR
320X200° BW 4 SHADES
. 640X200 BW 2 SHADES
{AL)=7 NOT VALID
uaMn EXTENDED MODES w#w
160%X200 18 COLOR
320X200 16 COLOR
640X200 4 COLOR -
#%# NOTE BW MODES OPERATE SAME AS COLOR MODES, BUT
COLOR 8URST IS NOT ENASLED
##% NOTE IF HIGH ORDER BIT IN AL 1S SET, THE REGEN
BUFFER IS NOT CLEARED.
(4H)=1 SET CURSOR TYPE
(CHY = BITS 4-0 = START LINE FOR CURSOR
## HARDWARE WILL ALWAYS CAUSE BLINK
## SETTING BIT 5 OR 6 WILL CAUSE ERRATIC
BLINKING OR NO CURSOR AT ALL
#t IN GRAPHICS MODES, BIT 5 IS5 FORCED ON TO
DJSABLE THE CURSOR
(CL> = BITS 4-0 = END LINE FOR CURSOR
(AH)=2 SET CURSOR POSITION
(OH,DL) = ROW,COLUMN (0,0) IS UPPER LEFT
(BH) = PAGE NUMBER (MUST BE O FOR GRAPHLCS MODES)
(AH}=3 READ CURSOR POSITION
(BH) = PAGE NUMBER {MUST BE 0 FOR GRAPHICS MODES)
ON EXIT (DH,DL) = ROW,COLUMN OF CURRENT CURSOR
(CH,CL) = CURSOR MODE CURRENTLY SET
(AH)=4 READ LIGHT PEN POSITION
ON EXIT:
(AH}) = 0 -- LIGHT PEN SWITCH NOT DOWN/NOT TRIGGEREO
(AH) = 1 -- VALID LIGHT PEN VALUE IN REGISTERS
(DH,DL} = ROW, 6 COLUMN OF CHARACTER LP POSN
{CH)» = RASTER LINE (0-199)
{BX) = PIXEL COLUMN (0-319,6639)
{AH)=5 SELECT ACTIVE DISPLAY PAGE (VALIO ONLY FOR
ALPHA MODES)
{AL)=NEW PAGE VALUE (0-7 FOR MODES 01, 0-3 FOR
MODES 2%3)
IF BIT 7 (80H) OF AL=1
REAOQ/WRITE CRT/CPU PAGE REGISTERS
(AL) = 60H READ CRT/CPU PAGE REGISTERS
(AL) = BIH SET CPU PAGE REGISTER
(BL) = VALUE TO SET
(AL) = 82H SET CRT PAGE REGISTER
(8H) = VALUE TO SET
(AL) = 83H SET BOTH CRT AND CPU  PAGE REGISTERS
{BL) = VALUE TO SET IN CPU PAGE REGISTER
{BH)> = VALUE TO SET IN CRT PAGE REGISTER
IF BIT 7 (BOH) OF AL=1
ALWAYS RETURNS (BH)-= CONTENTS OF CRT PAGE REG
(BL) = CONTENTS OF CPU PAGE REG
{AH)=6 SCROLL ACTIVE PAGE UP
(AL) = NUMBER OF LINES, INPUT LINES BLANKED AT
BOTTOM OF WINDOW, AL = O MEANS BLANK
ENTIRE WINOOW
(CH,CL) = ROW,éCOLUMN OF UFPER LEFT CORNER OF
SCROLL
(DH,DL) = ROW,COLUMN OF LOWER RIGHT CORNER OF
SCROLL
(BH) = ATTRIBUTE TO BE USEO ON BLANK LINE
(AH)}=7 SCROLL ACTIVE PAGE DOWN
{AL) = NUMBER OF LINES, I[NPUT LINES BLANKED AT TOP
OF WINDOW, AL=0 MEANS BLANK ENTIRE WINDOW
{CH,CL) = ROW,COLUMN OF UPFER LEFT CORNER OF

SCROLL

(DH,DL) = ROW,COLUMN OF LOWER RIGHT CORNER OF
SCROLL

(BH) = ATTRIBUTE TO BE USED ON BLANK LINE

CHARACTER HANDLING ROUTINES
(AH) = B READ ATTRIBUTE/CHARACTER AT CURRENT CURSOR PQSITION
{BH) = DISPLAY PAGE {(VALID FOR ALPHA MODES ONLY)
ON EX1T:
{AL) = CHAR REA
(AH) = ATTRIBUTE OF CHARACTER REAQ (ALPHA MODES

ONLY)
(AH) = 9 WRITE ATTRIBUTE/CHARACTER AT CURRENT CURSOR
POSITION
{BH) = DISPFLAY PAGE (VALID FOR ALPHA NODES ONLY)
{CX) = COUNT OF CHARACTERS TO 'WRITE
{AL) = CHAR TO WRITE
(BL) = ATTRIBUTE OF CHARACTER (ALPHAY/COLOR OF

" CHARACTER {(GRAPHICS). SEE NOTE ON WRITE
DOT FOR BIT 7 OF BL = 1.
(AH) = 10 t0AH) WRITE CHARACTER ONLY AT CURRENT CURSOR
POSITION

(BH) = DISPLAY PAGE (VALID FOR ALPHA MODES ONLY)
(CX)- = COUNT OF CHARACTERS 'TO WRITE

(AL) = CHAR TO WRITE

(BL) = COLOR OF CHAR (GRAPHICS)

SEE NOTE ON WRITE DOT FOR BIT 7 OF BL = 1.

ROM BIOS A-29




A-30 ROM BIOS

FOR READ/WRITE CHARACTER INTERFACE WHILE IN GRAPHICS MODE,
THE CHARACTERS ARE FORMED FRON A CHARACTER
GENERATOR IMAGE MAINTAINED IN THE SYSTEN RON.
INTERRUPT 44H (LOCATION '00110H) IS USED TO
POINT TO THE 1K BYTE TABLE CONTAIMING THE
FIRST 128 CHARS (0-127).

INTERRUPT 1FH {LOCATION 0007CH} 15 USED TO
POINT TO THE 1K BYTE TABLE CONTAINING THE SECONO
128 CHARS '{128-285).

FOR WRITE CHARACTER INTERFACE TN GRAPHICS MODE, THE
REPLICATION FACTOR CONTAINED [N (CX) ON ENTRY WILL
PRODUCE VALLID RESULTS ONLY FOR CHARACTERS
CONTAINED ON THE SAME ROW. CONTINUATION TO
SUCCEEDPING LINES WILL NOT PRODUCE CORRECTLY.

GRAPHICS [INTERFACE

(AH) = 11 (OBH) SET COLOR PALETTE -
(BH} = PALETTE COLOR ID BEING SET (0-127) |
¢BL) = COLOR VALUE TO.BE USED WITH THAT COLOR ID
COLOR 1D = O SELECTS THE BACKGROUND
COLOR (0-15)
COLOR ID = 1 BELECTS THE -PALETTE TO SE
USED:
2 COLOR MODE:
0 = WHITE FOR COLOR 1
1 = BLACK FOR COLOR 1
4 COLOR MODES:
0 = GREEN, RED, BROWN FOR
COLORS 1,2,3
1 = CYAN, MAGENTA, WHLITE FOR
COLORS 1,2,3
16 COLOR MODES:
ALWAYS SETS UP RALETTE AS:
BLUE FOR COLOR 1
GREEN FOR COLOR 2
CYAN FOR COLOR 3
\RED -FOR" COLOR 4
MAGENTA FOR COLOR 5
BROWN FOR COLOR 6
LIGHT GRAY FOR COLOR 7
‘DARK GRAY FOR COLOR 8
LIGHT BLUE FOR COLOR 8
LIGHT GREEN FOR COLOR 10
LIGHT CYAN FOR COLOR 11
LIGHT ‘RED FOR COLOR 12
LIGHT MAGENTA FOR COLOR 13
YELLOW FQR COLOR 14
WHITE FOR COLOR 18
IN 40X28 OR BOX2S ALPHA MODES, THE VALUE SET
FOR PALETTE COLOR Q INDI1CATES THE BORDER
COLOR TO BE USED. IN GRAPHIC MODES, 1T
INDICATES THE BORDER COLOR AND THE
BACKGROUND COLOR.
(AHY = 12 (OCH)-WRITE DOT
(DX) = ROW NUMBER —_—
(CX) = COLUMN NUMBER
{AL) = COLOR VALUE
IF BIT 7 OF AL = i, THEN THE COLOR VALUE IS
[EXCLUSIVE OR’D WITH THE CURREMT CONTENTS OF
THE DOT
(AH) = 13 (ODH) READ DOT
{DX) = ROW NUMBER
(CX) = COLUMN NUMBER
(AL} RETURNS THE DOT READ
ABCI1 TELETYPE ROUTHNE FOR OUTPUT
tAH) = 14 (OEH) WRITE TELETYPE TO ACTIVE PAGE
(AL) = CHAR TO WRITE
(BL) = FOREGROUND COLOR LN GRAFHICS MODE
NOTE -- SCREEN WIDTH IS CONTROLLED BY PREVIOUS
MODE SET
(AH) = 15 (OFH) CURRENT VIDEO STATE
RETURNS THE CURRENT VIDEO STATE
(AL) = MODE CURRENTLY SET (SEE AH=0 FOR
EXPLANATION)
(AH) = NUMBER -OF CHARACTER COLUMNS ON SCREEN
(BH) = CURRENT ACTIVE DISPLAY PAGE
(AH) = 16 (10M) SET PALETTE REG]ISTERS
(AL) = O SET PALETTE REGLSTER
(BL) = PALETTE REGISTER TO EET (OOH ~ OFH)
(BH) = VALUE TO SET
(AL) = | SET-BORDER COLOR REGISTER
(SH} = VALUE TO SET
(AL) = 2 SET ALL PALETTE REGISTERS ANO BORDER
REGISTER :
ES:DX POINTS TO A 17 8YTE LIST
BYTES 0 THRU 15 ARE VALUES FOR PALETTE
REGISTERS 0 THRU 15
8YTE 16 IS THE VALUE FOR THE BORDER
REGLSTER
NOTE:
IN MODES USING A 32K REGEN (9 AND A), ACCESS YHROUGH YHE CPU
REGISTER BY USE OF BEOOH SEGMENT VALUE ONLY REACHES THE ~1

FIRST 16K. BIOS USES THE CONTENTS OF THE CPU PAGE REG
{BITS 3,4, & 5 OF PAGDAT IN BiOS DATA AREA} TO DERIVE THE
PROPER SEGMENT VALUE.

Cs, S8, 05, ES, BX, CX, DX PRESERVED DURING CALL
ALL OTHERS DESTROYED



()

VIDEO GATE ARRAY REGISTERS

PORT 3DA OUTFUT
REG 0 MODE CONTROL I REGISTER

VIDEO GATE ARRAY STATUS
PORT 3DA INPUT

H
H
H
i
H
H 01H +H1 BANDWIDTH/-LOW BANDWIDTH
; 02H +GRAPHICS/-ALPHA
; 04H +BaW
H 08H +VIDEO ENABLE
H 10H +16 COLOR GRAPHICS
H
; REG 1 PALETTE MASK REISTER
B O1H FALETTE MASK 0
; 02H FALETTE MASK 1
; 04H FALETTE MASK 2
; 08H PALETTE MASK 3
H
; REG 2 BOROER COLOR REGISTER
H 01H BLUE
; 02H GREEN
H O4H RED
; 08H INTENSITY
i
H REG 3 MODE CONTROL 2 REGISTER
; 01H RESERVED -- MUST BE 2ERO
; 02H +ENABLE BLINK
H 04H RESERVED -- MUST 8E ZERO
H OBH +2 COLOR GRAPHICS (640K200 2 COLOR ONLY)
; REG 4 RESET REGISTER
H O1H +ASYNCHRONOUS RESET
H 02H +SYNCHRONOUS RESET
H
; REGS 10 TO IF PALETTE REGISTERS
H [ 311 BLVUE
; 02H GREEN
; 04H RED
H 0BH INTENSL1TY
H
i
i O1H +DISPLAY ENABLE
H 02H +L1GHT PEN TRIGGER SET
H 04H -LIGHT PEN SWITCH MADE
i 08H +VERTICAL RETRACE
H 10H +VIDEO DOTS
ASSUME CS:CODE,DS:DATA,ES: VIDEO_RAM
OCE® MO0 10 LABEL WORD ; TABLE OF ROUTINES WITHIN VIDEO 1/0
OCES O0DAG R oW OFFSET SET_MODE
OCEB EA4BE R oW OFFSET SET_CTYPE
OCED EJ88 R oW OFFSET SET_CPOS
OCEF EB20 R bW OFFSET READ_CURSOR
OCF1 F781 R Dw OFFSET READ_LPEN
OCF3 E4BI R (L] OFFSET ACT_DISP_PAGE
OCFB EEDI R oW OFFSET SCROLL_UP
OCF7 EB3F R oW OFFSET SCROLL_DOWN
OCF® FOE4 R 1] OFFSET READ_AC_CURRENT
OCFB F113 R oW OFFSET WRITE_AC_CURRENT
OCFD F1l2C R DwW OFFSET WRITE_C_CURRENT
OCFF EB43 R oW OFFSET SET_COLOR
oD01 F187 R DwW OFFSET WRITE_DOT
0003 Fl46 R DW OFFSET READ_DOT
0D05 1892 R DwW OFFSET WRITE_TTY
0007 EBBL R (1] OFFSET VIDEO_STATE
0D08 EGBE R DwW OFFSET SET_PALLETTE
= 0022 MODLOL EQU $-M0O010
oboe VIDEO_I0 PROC NEAR
opoB FB 8TI ; TNTERRUPTS BACK ON
op0C FC CLD ; BET DIRECTION FORWARD
opoD 06 PUSH ES
ODOE 1E PUSH 13 ; SAVE SEGMENT REGISTERS
ODOF B2 PUSH DX
o010 61 PUSH CX
op11 53 PUSH ax
oDi2 496 FUSH 81
opi3 87 PUSH DI
ob14 5O PUSH AX ; SAVE AX VALUE
0D1E BA C4 MoV AL, AH ; GET INTO LOW BYTE
0D17 32 E4 XOR AH, AH ; ZERO TO HIGH BYTE
o019 DL EO SAL AX, 1 ; %2 FOR TABLE LOOKUP
oD1B 8B FO MOV S1,4a% ; PUT INTO SI FOR BRANCH
oD1D 3D 0022 CHP AX, MOO 10L ; TEST FOR WITHIN RANGE
0020 72 04 JB ci ; BRANCH AROUND BRANCH
oD22 68 POP A% ; THROW AWAY THE PARANETER
0D23 ES OF70 R JMP VIDEO_RETURN ; DO NOTHING IF NOT IN RANGE
0D26 EO 138B R Cl: cALL oDS
0D29 88 BBOO Moy AX, 0B8OOH ; SEGMENT FOR COLOR CARD
op2C B0 3E 0049 R 09 CHP CRT_MODE, 9 ; IN MODE USING 32K REGEN
oD31 72 09 Je c2 ; ND, JUMP
0D33 B8A 26 00BA R MOV AH, PAGDAT ; GET COPY OF PAGE REGS
0D37 80 E4 38 AND AH, CPUREG ; 1SOLATE CPU REG
0D3A DO EC SHR AH, 1 ; SHIFT TO MAKE INTO SEGHMENT VALUE
0D3C BE CO c2: MOV €S, AX ; SET UP TO POINT AT VIDEO RAM AREA
OD3IE B8 POP AX ; RECOVER VALUE
ODAF 8A 26 0049 R MoV AH, CRT_MODE ; GET CURRENT MODE INTO AH
0D43 2E: FF A4 OCE9 R JHP WORD PTR CS:[SI+OFFSET M00101
oD4B VIDEO_IO ENDP

>
L=
o
(4
=
=
B
>

ROM BIOS A-31




onasg

opag 0800

oDaA 0800

opac 1000

OD4E 1000

0050 4000

0052 4000

0054 4000

0056 00DO

0088 4000

oDSA 8000

0D5C 8000

oD5E

ODBE 28 28 5O 50 28 28
50 00 14 28 50

onae

0069 OC OF 00 02

= 0004

oD6D 08 OF 00 02

0D71 0D OF 00 02

0D75 08 OF 00 02

0079 0A 03 00 00

007D OE 03 00 00

0081 OE 01 00 08

0085 00 00 00 00

0082 1A OF 00 00

008D 18 OF 00 00

0091 08 03 00 00

0085

0085 00 OF 00 00

= 0004

0099 OF 00 00 00

009D

008D 00 02 04 06

opat

oDAL 00 03 05 OF

0DAB

0DAS 50

00a6 24 7F

oDA8  3C 07

opaA 74 04

opaC  3C 0B

0DAE 72 02

00B0 BO 00

0DB2 3C 02

o0B4 74 08

opBE 3C 03

opea 74 04

obeA 3C 09

o0BC 72 0A

ODBE 81 3E 001S R 0080

obca 73 02

0DCé 80 00

onca B8A 0304

onC8  Ba EO

00CO A2 0049 R

0000 BS 16 0063 R

o0p4 8B FB

0DDE BA 03DA

o009 EC

obpa 32 CO

00DC EE

00DD  AO 0068 R

0DEO 24 F7

oDE2 EE

A-32

;
; SET_MODE
; THIS ROUTINE INITIALIZES THE ATTACHMENT TO
; THE SELECTED MODE. THE SCREEN IS BLANKED
; INPUT
; CAL) = MODE SELECTED (RANGE 0-8?
; OUTPUT
; OME
MOOBO  LABEL  WORD ; TABLE OF REGEN LENGTHS
oy 2048 ; MODE 0 40x2
oy 2048 ; MODE 1 4oxzs COLOR
oy 4096 ; MODE 2 BOX25 B8
oM 4096 ; MODE 3 @OX28 COLOR
oy 16384 ; MODE 4 320X200 4 COLOR
oy 16384 ; MODE 5§ 320X200 4 COLOR
oy 16384 ; MODE 6 640X200 BW
oW 0 ; MODE 7 INVALID
oW 16384 ; MODE @ 160X200 16 COLOR
oW 32768 ; MODE 9 320X200 16 COLOR
ow 32768 ; MODE A €40X200 4 COLOR
——---— COLUMNS
MOOBO LABEL  BYTE
o8 40, 40, 80, B0, 40, 40, 80, 0, 20, 40, BO
-------- TABLE OF GATE ARRAY PARAMATERS FOR MODE SETTING
MOO70  LABEL  BYTE
m———- SET UP FOR 40X25 8W MODE ©
0B OCH, OFH, 0, 2 ; GATE ARRAY PARMS
MOO7OL EQU $-M0070
j~==--- SET UP FOR 40X25 COLOR MODE 1
08 08H, OFH, 0, 2 ; GATE ARRAY PARNS
At SET UP FOR B0X28 BW MODE 2
o8 ODH, OFH, 0, 2 ; GATE ARRAY PARNS
jm————- szr UP FOR BOX25 COLOR HODE 3
08H, OFH, 0, GATE ARRAY PARMS
jm———— szr UP FOR 3zoxzoo 4 coior MODE 4
08 0AH, 03H, 0, 0 ; GATE ARRAY PARMS
jmm———— SET UP FOR 320X200 BW MODE §
08 OEH, 03H, 0, 0 ; GATE ARRAY PARMS
jm—m——m SET UP FOR 640X200 8W MODE 6
08 OEH, 01H, 0,8 ; GATE ARRAY PARNS
FOR INVALID MODE 7
Y] OOH, 00H ; GATE ARRAY PARMS
jm———— SET UP FOR 1soxzoo 16 COLOR MODE 8
08 1aH, OFH, 0, 0 ; GATE ARRAY PARMS
FOR 320X200 16 COLOR MODE 9
] 1BH, OFH, 0, 0 ; GATE ARRAY PARHS
jm-m——— SET UP FOR eaoxzoo a COLOR MODE
[:] OBH, 03H TE ARRAY PARHS

2 COLOR, SET ©
LABEL  BYTE
o8 0,0FH,0,0
EQu $-M0072
2 coLon SET 1
H,0,0,0
------ 4 COLOR, SET 0
MO074  LABEL  BYTE
08 0,2,4,6
;=---- 4 COLOR, SET 1
MO075 LABEL  BYTE
1] 0,3,5,0FH
SET_MODE PROC NEAR
PUSH ax
AND AL, 7FH
CHP AL, ?
JE c3
CHP AL, 08H
Jc ca
c3: MOV AL, 0
ca: CHP AL, 2
JE cs
cHP aL,3
JE cs
CHP AL, 09H
Je
c5: CHP TRUE_MEM, 128
JNC cé
HOV aL, 0
c6: MOV DX, 03D4H
MOV AL
MOV CRT_MODE, AL
MoV ADDR_BBAS, DX
MoV DI, AX
MoV DX, VGA_CTL
IN AL, DX
XOR AL, AL
ouT DX, AL
MOV AL, CRT_MODE_SET
AND AL, OF7H
ouT DX, AL

ROM BIOS

, 0,
TABLES OF PALETTE COLORS FDR

2 AND 4 COLOR MODES

; ENTRY LENGTH

; SAVE INPUT MODE ON STACK
; REMOVE CLEAR REGEN SWI1TCH
;CHECK FOR VALJD MODES
;MODE 7 1S INVALID

; GREATER THAN A IS INVALID
;DEFAULT TD MODE O
; CHECK FOR MODES NEEDING 128K

;DO WE HAVE 128K?

; YES,

JUNP

NO DEFAULT TO MODE O
ADDRESS OF COLOR CARD

SAVE MODE [N AH

IN GLOBAL VARLABLE
SAVE ADDRESS OF BASE

SAVE MODE IN DI

POINT TO CONTROL REGISTER
SYNC CONTROL REG TO ADDRESS
SET VGA REG ©

SAVE

SELE!

CT 1T

GET LAST MODE SET
TURN OFF VIDEO
SET [N GATE ARRAY



()

ODE3
ODES
ODE7
ODEA
ODEC
ODEE
ODF 1
ODF3
ODFS
ODF7
ODFB
ODFB
ODFD
OEQO

OEO03
0EO06

OEBS

oE87
OEBA
OEBD
OE8F

OES1
OES3
OESB

O0ES7
0EBD
OESF

0010

ce
E4
co
EO
04

co

-1

F7

E675 R

07
ca

8A 07

ca
F4

0aDF
008A R

g
80
3F
3E

1B

0015 R 0080

C7:
CcB:

ci1:

WHILE

€13:

MoV ax,D1
MoV AH, 10H
MOV BX, OFFSET M0072
cHP AL, 6
JE c7
MOV BX, OFFSET MOO75
CHP AL,S
JE c7
CHP AL, 4
JE c7
cHP AL, OAH
JNE co
MOV cx, 4
MOV AL, AH
ouT X, AL
MOV AL, CS5: [BX1]
ouTt DX, AL
INC AH
INC BX
LOOP c8
JHP SHORT C11
SET PALETVES FOR DEFAULT
MoV cX, 16
MoV AL, AH
out DX, AL
ouT DX, AL
INC AH
LOOP c1o
—=-— SET UP MO & M1 IN PAGREG
MoV axX, D1 ;
XOR BL,BL
cHP AL, 4
JC c12
MOV BL, 40H
cHP AL, DBH
Je c12
MOV BL, OCOH
MOV DX, PAGREG
MOV AL, PAGDAT
AND AL, 3FH
OR AL, BL
ouT DX, AL
MoV PAGOAT, AL
ENABLE VIDEO AND CORRECT
MOV AX,01
XOR AH, AH
MoV CX, MOO70L
MUL X
MoV BX, AX
ADD 8X, OFFSET M00O70
MoV AH, CS: [BX1
MOV AL,CS: [8X + 2]
nov S1, AX
cL1
cALL MODE_ALIVE
MoV AL, 10H
out NMI_PORT, AL
MOV DX, VGA_CTL
HoV AL, 4
ouT DX, AL
MOV AL, 2
out 0X, AL
THE GATE ARRAY IS5 IN RES
MoV AX, 51
AMD AH, OF TH
XOR AL, AL
ouT DX, AL
XCHG AH, AL
ouT DX, AL
MOV AL, 4
ouT DX, AL
XOR AL, AL
DX, AL
; NOW OKAY TO ACCESS RAM AGAIN
MOV AL, BOH
out NM1_PORT, AL
CALL MODE_ALIVE
STI
JMP SHORT Cl4
NOV AL, AH
ouT X, AL
NOV AL, CS5: [BX1
ouT DX, AL
INC ax
INC AH
LOOP c13
SET UP CRT ANO CPU PAGE RE.
Hov 0X, PAGREG
MOV AL, PAGDAT
AND AL, OCOH
MoV 8L, 36H
TEST AL, BOH
INZ c15
MoV BL, 3FH
cMp TRUE_MEM, 128
INC c1s
MOV BL, 1BH

SET D

EFAULT PALETTES

GET MODE
SET PALETTE REG 0
POINT TO TABLE ENTRY

2 COLOR MODE?

YES, JUMP

POINT TO TABLE ENTRY
CHECK FOR 4 COLOR MODE
YES, JUMP

CHECK FOR 4 COLOR MODE
YES JUNP

CHECK FOR 4 COLOR MODE
NO, JUMP

NUMBER OF REGS TO SET
GET REG MUMBER

SELECT 1T

GET DATA

SET IT

NEXT REG

NEXT TABLE VALUE

16 COLOR

NUMBER OF PALETTES, AH 1S REG
COUNTER

GET REG NUMBER

SELECT IT

SET PALETTE VALUE

NEXT REG

; GET CURRENT MODE
; SET UP FOR ALPHA MODE

; IN ALPHA MODE

; YES, JUMP

; SET UP FOR 16K REGEN

; MODE USE 16K

; YES, JumMP

; SET UP FOR 32K REGEN

; SET PORT ADDRESS OF PAGREG

; GET LAST DATA OUTPUT

; CLEAR MO & Ml BITS

; SET NEW BITS

; STUFF BACK IN PORT

; SAVE COPY IN RAM

PORT SETTING

; GET CURRENT MODE

H INTO AX REG

; SET TABLE ENTRY LENGTH

; TIMES MODE FOR OFFSET INTO TASLE
; TABLE OFFSET IN BX

; ADD TABLE START T0 OFFSET

; SAVE MODE SET AND PALETTE

B TILL WE CAN PUT THEM IN RAM

DISABLE INTERRUPTS
KEEP MEMORY DATA VALIO
DISABLE NMI AND HOLD REQUEST

POINT TO RESET REG

SEND TO GATE ARRAY

SET SYNCHRONOUS RESET

; DO IT

ET STATE, WE CANNOT ACCESS RAN
RESTORE NEW NQOE SET

TURN OFF VIDEQ ENABLE

SET UP TO SELECT VGA REG O
SELECT IT

AH 15 VGA REG COUNTER

SET MOOE

SET UP TO SELECT VGA REG 4
SELECT 1T

RENOVE RESET FROM VGA
ENABLE NNI AGAIN

XEEP MEMORY DATA VALID
ENABLE INTERRUPTS

GET VGA REG NUMBER
SELECT REG

GET TABLE VALUE

PUT IN VGA REG

NEXT IN TABLE

NEXT REG

DO ENTIRE ENTRY
S ACCORDING TO MODE & MEMORY S1ZE
SET 10 ADDRESS OF PAGREG

GET LAST DATA OUTPUT

CLEAR REG BITS

SET UP FOR GRAPHICS MODE WITH 32K
REGEN

IN THIS MOOE?

YES, JUMP

SET UP FOR 16K REGEN AND 128K
MEMORY

DO WE HAVE 128K?

YES, JUMP

SET UP FOR 16K REGEN AND 64K
MEMORY

;
G

ROM BIOS A-33

>
=]
he]
«
=
=
>
>




OEAL
OEA3
OEA4
OEA?
OEAS
OEAD
0EBO
OEB2
OEB4
0EB7
0EBS
oEsB

OEBD
OEBE
OECO

O0EC2

OECE
OECO
OECC
OECF
OED 1
OED3
OED6
OEDE

OEDA
OEDD
OEDF

OEE 1
OEE2
OEES
OEE®
OEES

OEEC
OEEF
OEF3
OEF4
OEF7
OEF9
OEFC

OEFD
OEFE

OF 00

OF03
OF 05
OF 06
oFo07
OF09
OF0B
OF0C
QOF0D
OFOE
OF 10
OF11

OF 12
OF 14
OF 18
OF 1D
OF 1E
OF21
OF23
OF 26
OF29
OF2B
OF2D
OF 2F
OF32
OF34
OF36
OF39
OF38B
OF3D

OF 3F
oF42
OF 44
OF 45
oras

0F 49
OF 48
OF 4F
OF54
OF56

COMBINE MODE BITS AND REG VALUES

SAVE COPY IN RAM
PUT MODE SET & PALETTE IN RAM

GET CURRENT VALUE OF 8255 PORT B
SET UP GRAPHICS MODE
JUST SET ALPHA MODE IN VGA?

SET UP ALPHA MODE
STUFF BACK IM 8255

SAVE DATA SEGMENT VALUE
SET UP FOR ABSO SEGMENT
ESTABLISH VECTOR TASLE ADDRESSING

GET POINTER TO VIDEO PARMS

GET CURRENT MODE IN AX

LENGTH OF EACH ROW OF TABLE
DETERMINE WHICH TO USE

MODE 18 0 OR

MOVE TO NEXT ROW OF INIT TABLE

MODE IS 2 OR 3
MOVE TO GRAPHICS ROW OF

; MODE IS 4, 5, B8, 8, OR 9
; MOVE TO NEXT GRAPHICS ROW OF

OF INITTALIZATION TABLE

; SAVE MODE IN AH

SYNC POSITION
GET CURSOR TYPE

H SYNC POSITION VARIABLE
; SAVE CURSOR MODE

; SET DEFAULT OFFSET

; AH WILL SERVE AS REGISTER NUMBER

; PDINT TO &845
REG ADDRESS, THEN VALUE FRON TABLE
; GET €845 REGISTER NUMBER

POINT TO DATA PORT
MEXT REGISTER VALVE
GET TABLE VALUE

NEXT IN TABLE

BACK TO POINTER REGISTER
DO THE WHOLE TABLE

GET MODE BACX

RECOVER SEGMENT VALUE

SET UP POINTER FOR REGEN

START ADDRESS SAVED IN GLOBAL

SET PAGE VALUE

GET ORIGINAL INPUT BACK

NO CLEAR OF REGEN 7

SKIP CLEARING REGEN

SET UP SEGMENT FOR 16K REGEN AREA
NUNBER OF WORDS TO CLEAR

REQUIRE 32K BYTE REGEN 7

SET 18K WORDS TO CLEAR

SET UP SEGMENT FOR 32K REGEN AREA
SET REGEN SEGMENT

TEST FOR GRAPRICS

FILL CHAR FOR ALPHA
NO_GRAPHICS_INIT

FILL FOR GRAPHICS MODE

FILL THE REGEN BUFFER WITH BLANKS

6ET PORT ADDRESS OF VGA

H
; SELECT VGA REG O
; GET MODE SET VALUE

0A c3 c1s: OR AL, BL ;
EE out DX, AL ; SET PORT
A2 00BA R Mov PAGDAT, AL ;
88 C6 MoV ax, 51 ;
88 26 0065 R MoV CRT_MODE_SET, AH
A2 0066 R MoV CRT_PALLETTE, AL
E4 61 IN AL, PORT_B ;
24 FB AND AL, OFBH ;
F6 €4 02 TEST AH, 2 i
75 02 JNZ c16 ; YES, JUMP
oc 04 OR aL, 4 ;
E6 61 c16 ouT PORT_B, AL i
= SET UP 6645
1E PUSH DS ;
33 co XOR AX, AX i
8E D8 Moy DS, AX ;
ASSUME DS: ABSO
€5 1E 0074 R LDS BX, PARM_PTR ;
ASSUME DS CODE
88 C7 MoV AX,D1 i
88 0010 90 MoV CX, M0040 i
BO FC 02 cHp AH, 2 i
72 10 Jc c17 i
03 08 ADD BX, CX i
80 FC 04 cMP AH, 4
72 09 Je c17 i
03 09 A00 8x, X ;
; INIT_TABLE
80 FC 09 P AH,9
72 02 Je c17
03 09 ADD BX, CX
INIT_TABLE
----- BX POINTS TO CORRECT ROW
50 c17: PUSH AX
BA 47 02 MOV AL, DS: [BX+2] ; GET MORZ
88 7F 0A MoV DI, WORD PTR DS:({BX+103 ;
1E PUSH oS
E8 1388 R CALL D0S
ASSUNE  DS:DATA
A2 0089 R MOV HORZ_POS, AL SAVE HORZ.
83 3E 0060 R MOV CURSOR_MODE, D1
50 PUSH ax
A0 0086 R MOV AL, VAR_DELAY
24 OF AND AL, OFH
A2 0086 R MOV VAR_DELAY, AL
58 POP X
ASSUME DS:CODE
1F POP -]
32 €4 XOR AH, AH
DURING LOOP
BA 0304 DX, 03D4H
; LOOP THROUGN TABLE, OUTPUTTING
BA C4 cia: MOV AL, AH
EE ouT DX, AL
42 INC DX B
FE C4 INC AH ;
BA 07 MOV AL, [BX] ;
EE ouT DX, AL ; OUT TO CHIP
43 INC ax i
4A DEC DX ;
€2 F3 LOOP cis i
58 POP aX ;
IF POP S ;
ASSUME DS:DATA
;=——-=- FILL REGEN AREA WITH BLANK
33 FF XOR 01,01 ;
89 3E 004E R MoV CRT_START, DI ;
C6 06 0062 R 00 Hov ACTIVE_PAGE, 0 ;
54 POP DX i
80 E2 BO AND oL, 80H ;
75 1C INZ cal1 :
8a 8800 MOV DX, 08B00H ;
89 2000 MOV CX, B182 :
3c 08 cHp AL, OSH i
72 05 Jc c18 ; NO, JuMP
Dl EL SHL cx, 1 i
84 1800 MOV DX, 1800H ;
BE C2 c1s: MOV ES,DX i
ac o4 cHP AL, 4 ;
B8 OF20 MOV AX, © /+15w266
72 02 Jc c20 ;
33 co XOR AX, AX ;
F3/ AB c20: STOSH i
jm—- ENABLE VIDEO
BA 03DA ca1: DX, VGA_CTL
32 Co xon AL, AL
EE ouT DX, AL
A0 0065 R MoV AL, CRT_MODE_SET
EE DX, AL SET MODE
-~ DETERMINE NUMBER OF COLUMNS BOTH FOR ENTIRE D1SPLAY
{--== AND THE NUMBER TO BE USED FOR TTY INTERFACE
32 FF XOR \
8A 1E 0049 R NOV BL, CRT_MODE
2E: BA 87 ODSE R MoV AL,CS:TBX + OFFSET M00603
32 E4 XOR , AH
A3 004 R MOV CRT_COLS, AX

A-34 ROM BIOS

; NUMBER OF COLUMNS IN THIS SCREEN



()

OF59

OF5B
0oF80
OF64
OF67
OF8A
OFeB
OF6C
OF6E.

OF70
OF70
OF71
OF72
OF73
OF74
OF75
OF76
OF77
OF78

OFCa
OFC6

OFC2
OFCC
OFCF
OFpO
OFD3
OFDB
QFD6
oFD8

D1

E3

BB BF 0D48 R
0€ 004C R
0008°
0050 R

0008

- SET CURSOR POSITIONS
SHL

BX, 1 ; WORD OFFSET INTO CLEAR LENGTH
i TABLE
MOV CX,CS: €8X + OFFSET M0050) ; LENGTH TO CLEAR
MOV CRT_LEN, CX ; SAVE LENGTH OF CRT
MOV CX, b ; CLEAR ALL CURSOR POSI.TIONS
MoV DI, OFFSET CURSOR _POSN
PUSH DS ; ESTABLISH SEGMENT
POP ES ; ADDRESSING
XOR AX, AX
REP STOSW ; FILL WITH ZEROES

—————— NORMAL RETURN FROM ALL VIOEO RETURNS
VIDEG _RETURN:
POP

ot
POP’ sl
POP BX
c22: POP cx
POP DX
POP BS
POP ES ; RECOVER SEGMENTS

IRET ; ALL DONE
SET_MODE ENDP

KBDONM]I - KEYBOARD NMI INTERRUPT ROUTINE

THIS ROUTINE OBTAINS CONTROL. UPON AN NMI INTERRUPT, WHICH
OCCURS UPON A KEYSTROKE FROM THE KEYBOARD.

THIS ROUTINE WILL DE~SERIALIZE THE BIT STREAM IN ORDER TO
GET THE KEYBOARC SCAN CODE ENTERED. [T THEN I1SSUES INT 41
PASSING THE SCAN CODE IN AL TO THE KEY PROCESSOR. UPON RETURN
IT RE-ENABLES NMI AND RETURNS TO SYSTEM (IRET).

ASSUME CS:CODE, DS:DATA
KBDNM1  PROC FAR
------------ DISABLE INTERRUPTS
cLt

-SAVE REGS & DISABLE NMJ
sl

PUSH
PUSH bl
PUSH ax ; SAVE REGS
PUSH 8x
PUSH cX
PUSH oX
PUSH bsS
PUSH
MoV s1,8 ; SET UP & OF DATA BITS
XOR BL, 0L ; INIT. PARITY COUNTER
jmmmmmmm—— o SAMPLE B TIMES TO VALIDATE START BIT
XOR AH, AH
MoV cX,5 ; SET COUNTER
11: 1) AL,PORT_C i GET SAMPLE.
TEST AL, 40H TEST IF 1
Jz 12 ; JHP IF O
INC AH ; KEEP COUNT OF 1°S
12: LOOP 11 ; KEEP SAMPLING
cHP AH, 3 ; VALID START BIT 7
JNB 125 ; JUMP IF OK
NP 18 ; INVALIO (SYNC ERROR) NO AUDIO
i OUTPUT
K

VALID START BIT, LOOK FOR TRALLIMG EDGE

SYNC ERROR (STUCK ON 1°S)
READ CLOCK TO SET START OF BIT TIME

CX,50 ; SET UP WATCHDOG TIMEOUT

AL, PORT_C ;i GET SAMPLE

AL, A0H ; TEST IF 0

16 ; JMP IF TRAILING EOGE FOUND

13 i KEEP LOOKING FOR TRAILING EDGE

AL, 40H ; READ CLOCK
TIM_CTL, AL ;.
;.
)
AL, TIMER* 1 ;.
AH, AL Po.
AL, TIMER* 1 P o.
AH; AL I
DI, AX ; SAVE CLOCK TIME IN OI
jmmm— e VERIFY VALID TRANSITION
MoV cx, 4 ; SET COUNTER
16: IN AL, PORT_C ; GET SAMPLE
TEST AL, dOH ; TEST IF 0
INZ 18 i JMP IF INVALIO TRANSITION (SYNC)
Loop 16 KEEP LOOKING FOR VALID TRANSITION
jmmmmmmm—— SET UP DISTANCE TO' mom_z OF 1ST DATA BIT
MOV 0X, 544 310 USEC AWAY (.838 US / CT
jmmmm——— START LooKlNG FOR TIME TO READ DATA BITS AND ASSEMBLE sv-r:
17: caLL 130
MOV DX, 526 ; SET NEW DISTANCE TO NEXT WALF BIT
PUSH AX ; SAVE 1ST HALF BIT
cALL 130
MoV L, AL ; PUT 2ND HALF BIT IN CL
POP AX ; RESTORE 1ST HALF BIT
cmp cL, AL ; ARE THEY OPPOSITES ?
JE 19 i NO, PHASE ERROR

ROM BIOS A-35




1050
1052
1084
1056
1058
1054
108C
108F
1061
1063

1066

1068
1062

A-36

jmmmm————— VALID DATA BIT, PLACE IN SCAN BYTE

ROM BIOS

EF SHR BH, I ; SHIFT PREVIOUS B8ITS
FB8 OR BH, AL ; OR IN NEW DATA BIT
DEC sI ; DECREMENT DATA BIT COUNTER
EB JINZ 17 CONTINUE FOR MORE DATA BITS
; --WAIT FOR TIME TO SAMPLE PARITY BIT
I031 R CALL 130
PUSH AX ; SAVE IST HALF BIT
1031 R CALL 130
cs MoV CL, AL ; PUT 2ND HALF BIT IN CL
POP AX ; RESTORE IST HALF BIT
cs CHP CL, AL ; ARE THEY OPPOSITES 7
15 Is NO, PHASE ERROR
VALID PARITY BIT, CHECK FAR!TY
E3 01 BL, 1 ; CHECK IF ODD PARITY
10 18 ; JMP IF PARITY ERROR
VALID CHARACTER, SEND TO CHARACTER PROCESSING
; ENABLE INTERRUPTS
c7 AL, BH ; PLACE SCAN CODE IN AL
48 CHARACTER PROCESSING
RESTORE REGS AND RE- ENABEL NMI
; RESTORE REGS
DS
bX
(2.4
ax
AQ AL, CAOH ; ENABLE NMI
AX
12}
st
; RETURN TO SYSTEM
SYNCH OR FHASE ERROR. OUTPUT MISSED KEY BEEP
1388 R 0S ; SETUP ADDRESSING
FE 08 ; ARE WE ON THE FIRST DATA BIT?
E0 ; NO AUQIO FEEDBACK ¢(MIGHT BE A
i ..GLITCH}
06 0018 R 01 TEST KB_FLAG_1,01H ; CHECK IF TRANSMISSION ERRORS
; ..ARE TO BE REPORTED
18 JNZ 110 ; 1=D0 NOT BEEP, O=BEEP
0080 MOV BX, 080H ; DURATION OF ERROR BEEP
0048 MoV CX, 048H ; FREQUENCY OF ERROR BEEP
EO3% R CALL KB_NOISE ; AUDIO FEEDBACK
26 0017 R FO AND KB_FLAG, OFOH ; CLEAR ALT,CLRL,LEFT AND RIGHT
; SHIFTS
26 0018 R OF AND KB_FLAG_1, OFH ; CLEAR POTENTIAL BREAK OF INS,CAPS
; NUM AND SCROLL SHIFT
26 0088 R 1IF AND ‘KB_FLAG_2, IFH ; CLEAR FUMCTION STATES
- 06 0012 R 110: INC K@D_ERR ; KEEP TRACK OF KEYBOARD ERRORS
ce JHe SHORT I8 ; RETURN FROM INTERRUPT
KBDONMI ENDP
130 PROC NEAR
40 131: nov AL, 40H ; READ CLOCK
43 ouT TIM_CTL, AL ;»
NOP ; »
NOP ;o
41 IN AL, TIMER+1 oom
EQ MOV N ;N
41 IN AL, TIMER+1 ;R
EO XCHG AH, AL Lo
CF MOV CX,01 ; GET LAST CLOCK TIME
cs suB CX, AX ; SUB CURRENT TIME
ca CHP CX, DX ; 1S IT TIME 'TO SAMPLE ?
EA JC 131 ; NO, KEEP LOGKING AT TIME
CA sus -CX,DX ; UPDATE # OF CDUNTS OFF
FB MOV Dl AX ; SAVE CURRENT TIME AS LAST TIME
F9 ADD ; ADD.DIFFERENCE FOR NEXT TIME
;-----------STMT SAHFL]NG DATA.BIT. (5 SAMPLES)
0005 MoV cX,s ; SET COUNTER
SAMPLE LINE
PORT_C IS SAMPLED CX TIMES AND IF THER ARE 3 OR MORE 1"S
THEN B0OH 15 RETURNED IN AL, EL9E  QOH 19 RETURNED I[N AL.
PARITY COUNTER 1§ MAINTAINED IN ES.
i
E4 XOR AH, AH ; CLEAR COUMTER
62 132: IN AL, PORT_C ; GET SAMPLE
40 TEST AL, 40H ; TEST IF 1
oz vz 133 ; ~JMP IF O
c4 INC AH ; KEEP COUNT OF 1'S
F6 133: LOOP 132 ; KEEP SAMPLING
FC 03 CHP AH, 3 ; VALID 1 7
08 - Je 134 ; JMP IF NOT VALID 1
ao MOV AL, 080H ; RETURN BOH IN AL (1}
c3 INC aL ; INCREMENT PARITY COUNTER
RET ; RETURN TO CALLER
co 134: XOR AL, AL ; RETURN O IN AL (O)
RET ; RETURN TO CALLER
130 ENDP



()

i KEY62_INT

THE PURPOSE OF THIS ROUTINE 18 TO TRANSLATE SCAN CODES AND
GCAN CODE COMBINATIONS FROM THE 62 KEY KEYBOARD TO THEIR
EQUIVILENTS ON THE B3 KEY KEYBOARD. THE SCAN CODE 1S
PASSED IN AL. EACH SCAN CODE PASSED EITHER TRIGGERS ONE.OR
MORE CALLS TO INTERRUPT 9 OR SETS FLAGS TO RETAIN KEYBOARD
STATUS. WHEN INTERRUPT 9 1S CALLED THE TRANSLATED SCAN
CODES ARE PASSED TO IT IN AL. THE INTENT OF THIS CODE WAS
TO KEEP INTERRUPT 9 INTACT FROM ITS ORIGIN IN THE PC FAMILY
THIS ROUTINE IS IN THE FRONT END OF INTERRUPT 9 AND

- TRANSFORMS A 62 KEY KEYBOARD TD.LOOK AS IF IT WERE AN B3
KEY VERSION.

IT IS ASSUNED THAT THIS ROUTINE IS CALLED FROM THE NMI
DESERIALIZATION ROUTINE AND THAT ALL REGISTERS WERE SAVED
IN THE CALLING ROUTINE. AS A CONSEQUENCE ALL REGISTERS ARE

DESTROYED.
;EQUATES
= 0080 BREAK_BIT EQU 80K
= 0084 FN_KEY EQU 54H
= 0038 PHK EQU FN_KEY+1
= 0056 EXT_SCAN EQU PHK+1 ; BASE CODE FOR SCAN CODES
; EXTENDING BEYOND 83
= 0OFF AND_MASK EQU OFFH . ; USED ‘TO SELECTIVELY REMOVE BITS
= 001F CLEAR_FLAGS EQU AND_MASK - (FN_FLAG+FN_BREAK+FN_PENDING)
; SCAN CODES
= 0030 B_KEY EQU 48
= 0010 Q_KEY " EQU 16
= 0019 P_KEY EQU 25
= 0012 E_KEY EQU 18
= 001F S_KEY EQU a1
= 0031 © N_KEY EQU 43
= 0048 UF_ARROW £QU 72
= 0050 DOWN_ARROW EQU 80
= 0048 LEF T_ARROW EQU 78
= 004D RIGHT_ARROW EQU 77
= 000C MINYS EQU 12
= 000D EQUALS EQU 13
= 000B NUM_O EQU 11
;NEN TRANSLATED SCAN CODES
i
; NOTE:
i BREAK, PAUSE, ECHO, AND PRT_SCREEN ARE USED AS DFFSETS
i INTO THE TABLE ‘SCAN‘. OFFSET = TABLE POSITION + 1.
= 0001 © ECHO EQu 01
= 0002 BREAK EQU 02
= 0003 PAUSE EQU 03
= 0004 PRT_SCREEN EQU 04
=. 0046 SCROLL_LOCK EQU 70
= 0048 NUM_L OCK EQU 69
= 0047 HOME EQU 71
= 004F END_KEY EQU 79
= 0049 PAGE_UP EQU 73
= 0061 PAGE_DOWN EQU 81
= 004A KEYPAO_MINUS EQU 74
= 004E KEYPAD_PLUS EQU 78
ASSUME CS:CODE,DS:DATA
;==~-TABLE OF VALID SCAN CODES
1069 KBO LABEL BYTE
1069 30 10 12 19 1F 31 DB B_KEY, Q_KEY, E_KEY, P_KEY, S_KEY, N_KEY
106F 48 50 48 4D OC DB UP_ARROW, DOWN_ARROW, LEFT_ARROW, RIGHT_ARROMW, MINUS
1074 00 DB EQUALS
= o00oC KBOLEN EQU $ - KBO
;--~-TABLE OF NEW SCAN CODES
1076 KB1 LABEL BYTE
1076 02 03.01 04 46 45 DB BREAK, PAUSE, ECHO, PRT_SCREEN, SCROLL_LOCK, NUM_LOCK
107B 47 4F 49 51 4A 4E DB HOME, END_KEY, PAGE_UP; PAGE_DOWN, KEYPAD_MINUS, KEYPAD_FLUS

';NOTE: THERE 15 A ONE TO ONE CORRESPONDENCE BETWEEN
THE SIZE OF KBO AND KB1

;»TABLE OF NUMERIC KEYPAD SCAN CODES
- THESE SCAM CODES WERE NUMERIC KEYPAD CODES ON
THE B3 KEY- KEYBOARD.

i

1081 NUM_CODES LABEL BYTE
10B1 4F B0 51 4B 4C 40 b8 79, 80,81,75,76,77,71,72,73,82
47 4B 49 B2

H
; TABLE OF SIMULATED XEYSTROKES
; THIS TABLE REPRESENTS A 4#2 ARRAY. EACH ROW
CONS1STS OF A SEQUENCE OF SCAN CODES WHICH
WOULD' HAVE BEEN GENERATED QN AN B3 KEY KEYBOARD
TO CAUSE THE FOLLOWING FUMCTIONS:
ROW 1=ECHO CRT OQUTPUT TO THE PRINTER
ROW 2=BREAK
THE TABLE HAS BOTH MAKE AND BREAK SCAN' CODES.

i
H
i
H
B
H
i

8

CAN LABEL BYTE

1088
1088 1D 37 B7 90 0B 29; 66, 183, 157 ; CTRL +: PRTSC
108F 1D 46 C6 9D : DB 29, 70, 18B, 157 ; CTRL + SCROLL-LOCK

>
=]
=]
I
=
v
»
>

ROM BIOS A-37.




1093

1083 35 28 34 1A 18

= 0008

1088

1098 28 29 37 20 29

1080

1080 14

108E° 0048 0049 .0040 0051
0060 OCAF 004B 0047
0038 001C

1082 0011 0012 QOIF 0020
002C 0028 O01E 0010
Q00F 0001

10C6

10Cé F8°

10C7 FC

10C8 EB 1388 R

10CB  8A EQ

10CD EB 13LE R

1000 73 01

1002 CF

1003 3C FF

1008 74 6C

1007 24 7F

1009 3C 56

100B  7C S5F

100D 1E

100E 133 F6

10E0 BE DE

10E2 C4 3E 0124 R

10E6 26: BA OD

10E8 IF

10EA 2C 56

10EC FE C3

10EE  3A C1

10FO  7F 10

A-38

ROM BIOS

;TABLE OF VALID ALT SHIFT SCAN CODES

H
i

THIS TABLE CONTAINS SCAN CODES FOR KEYS ON THE

62 KEY KEYBOARD. THESE CODES ARE USED IN
COMBINATION WITH THE ALT KEY TO PRODUCE SCAN CODES
FOR KEYS NOT FOUND ON TRE €2 KEY KEYBOARD.

ALT_TABLE LABEL  BYTE

DB 53, 40, 52, 26, 27

ALT_LEN EQU $ - ALT_TABLE

’;TABLE OF TRANSLATED SCAN CODES WITH ALT SHIFT

THIS TABLE CONTAINS THE SCAN CODES FOR THE
KEYS WHICH ARE NOT ON THE 62 KEY KEYBOARD AND
WILL BE TRANBLATED WITH ALT SHIFT. THERE IS A
ONE TO ONE CORRESPONDENCE BETWEEN THE 81ZES
OF ALT_TASLE AND NEW_ALT.
THE FOLLOWING TRANSLATIONS ARE. MADE:
ALT+ /7 =\
ALT+
ALT+ [
ALT+ ]
ALT+ .

i
B
P
i
H
i
i
N

EW_ALT

LABEL BYTE
DB 43,41,56,43,41

LEXTAB

TABLE OF SCAN CODES FOR MAPPING EXTENDED SET

OF SCAN CODES (SCAN CODES » BS). THIS TABLE
ALLOWS OTHER DEVJCES TO USE THE KEYBOARD INTERFACE.
IF THE DEVICE GENERATES A SCAN CODE > 85 THIS TABLE
CAN BE USED TO MAP THE DEVICE TO THE KEYBOARD. THE
DEVICE ALSO HAS THE OPTION OF HAVING A UNIQUE SCAN
CODE PUT IN THE KEYBOARD BUFFER (INSTEAD OF MAPPING
TO THE KEYBOARD). THE EXTENDED SCAN CODE PUT IN THE
BUFFER WILL BE CONTINUQUS BEGINNING AT 150. A ZERO
WILL BE USED IN PLACE OFf AN ASCII CODE: (E.G. A
DEVICE GENERATING SCAN CODE 8S AND NOT MAPPING 86
TO THE KEYBOARD WILL HAVE A [150,0] PUT IN THE
KEYBOARD BUFFER)

TABLE FORMAT:

THE FIRST BYTE IS A LENGTH INDICATING THE NUMBER
OF SCAN CODES MAPPED TO THE KEYBOARD. THE REMAINING
ENTRIES ARE WORDS. THE FIRST BYTE (LOW-BYTE) I8 A
SCAN CODE AND THE SECOND BYTE (HIGH BYTE) IS ZERO.

A DEVICE GENERATING N SCAN CODES 1S ASSUMED TO GENERATE THE-

FOLLOWING STREAN 88,87,88,...,B6+(N-1). THE SCAN CODE BYTES
IN THE TABLE CDRRESPOND TO THIS SET WITH THE FIRST DATA
BYTE MATCHING B6, THE SECOND MATCHING 87 ETC.

NOTES:

(1) IF A DEVICE GENERATES A BREAK CODE, NOTHING IS
PUT IN THE BUFFER.

{2) A LENGTH OF O INDICATES THAT ZERO SCAN CODES HAVE BEEN
MAPPED TO THE KEYBOARD AND ALL EXTENDED SCAN CODES WILL
B8E USED.

¢(3) A DEVICE CAN MAP SOME OF ITS SCAN CODES TO THE KEYBOARD
AND HAVE SOME ITS SCAN CODES IN THE EXTENDED SET.

XTAB

LABEL BYTE
0 20 ; LENGTH OF TABLE
oW 72,73,77,81,80,79,75,71,67,28

oW 17, 18,31, 48, 44, 43, 30, 16, 15, 1

KEY62_INT PROC FAR
8T1

CLD ; FORWARD DIRECTION
CALL oDs SET UP ADDRESSING

i
MOV AH, AL ; SAVE SCAN CODE
CALL  TPM ; ADJUST OUTPUT FOR. USER
; MODIFICATION
JNC KBXO i JUMP IF OK TO CONTINUE
IRET. ; RETURN FROM INTERRUPT.
EXTENDED SCAN CODE CHECK
cup AL, OFFH ; 1S THIS AN OVERRUN CHAR?:
JE KBO_1 ; PASS IT TO INTERRUPT 9
AND AL, AND_MASK-BREAK_BIT ; TURN OFF BREAK BIT
cHp AL, EXT_SCAN 16 THIS A SCAN CODE > 83
g Kaxa ; REPLACE BREAK BIT
SCAN CODE 1S IN EXTENDED SET
PUSH 0s
XOR s1,81
NOV DS, S1

ASSUME DS:ABSO
LES DI,DWORD PTR EXST ; GET THE POINTER TO THE EXTENDED

; SET
CL,BYTE PTR ES:[DIJ] ; GET LENGTH BYTE
[:1:3

05:DATA

CODE GET MAPPED TO KEYBOARD OR TO NEW EXTENDED SCAN
AL, EXT_SCAN ; CONVERT TO BASE OF NEW SET

cL ; LENGTH - 1

AL, CL 1S CODE IN TABLE?

KBX1 ; JUMP IF SCAN CODE IS NOT IN TABLE

4



11B4
1186
1188
-11B8
*11BD

11c2
11¢7

11cB
11CD
LICF
1104
1105
11DA

BA
24
F6

74 3

OE
07

[]:]
FF

E3

JA

cq
oL

Fi
BA 06

0017

0017

12EB R
126C R

37
11
06

F2
06
EB

0017

0017

1301 R

EO
7F
06

B

0017

BF 1093 R
B9 0008
F2/ AE
75 20

B9 1084 R
20 FB

2E:

8A BS 1

1E
36
c4
02
[:14]

FF
05
OF
60
09

1€

06
06
26

OE

0017
0017
eo

03
0017

0017

8o
0088
0088

0088
0088
0068

Q98 R

Fo
oF

1F

04

oB

03

04

oB

oe

02

A0

20
1F

40

;===—GET SCAN CODE FROM TABLE

INC (3} ; POINT D1 PAST LENGTH BYTE

MoV BX, AX

XOR 8H, BH PREPARE FOR ADDING TQ 16 BIT
REGISTER

SHL B8x, 1

ADD DI,BX OFFSET TO CORRECT TABLE ENTRY

MOV AL,BYTE PTR ES: 011 ; TRANSLATED SCAN CODE IN AL

CHP AL, EXT_SCAN 1S CODE IN KEYBOARD SET?

JL KBX4 ; IN KEYBOARD SET, CHECK FOR BREAK
;--—-SCAN CODE GETS MAPPED TO EXTENDED SCAN CODES
KBX1

TE AH, BREAK_BIT ; 15 THIS A BREAK CODE?
JZ KBX2 ; MAKE CODE, PUT [N BUFFER
IRET ; BREAK CODE, RETURN FROM INTERRUPT
KBX2: ADD AH, 84 ; EXTENDED SET CODES BEGIN AT 160
XOR AL, AL ; ZERO OUT ASCII VALUE ¢(NUL)
MOV BX,BUFFER_TAIL ; GET TAIL POINTER
MoV S1,8X ; SAVE POINTER TO TAIL
CALL K4 ; INCREMENT TAIL VALUVE
CHP BX,BUFFER_HEAD ; IS BUFFER FULL?
KBX3 ; PUT CONTENTS OF AX IN BUFFER
E.

;—=——BUFFER IS FULL, BEEP AND CLEAR FLAGS
BX, 80H FREQUENCY OF BEEP

H
MoV CX, 48H ; DURATION OF BEEP
CALL K8_NOISE ; BUFFER FULL BEEP
AND K8_FLAG, OFOH ; CLEAR ALT, CTRL, LEFT AND RIGHT
; SHIFTS
AND KB_FLAG_1,0FH ; CLEAR MAKE OF INS,CAPS_LOCK, NUM
; AND SCROLL
AND KB_FLAG_2, IFH  ; CLEAR FUNCTION STATES
IRET ; DONE WLTH INTERRUPT
KBX3: MOV £s11, AX ; PUT CONTENTS OF AX IN BUFFER
MoV BUFFER_TAIL,BX ; ADVANCE BUFFER TAIL
IRET ; RETURN FROM INTERRUPT
KBX4:  AND AH, BREAK_BIT ; MASK BREAK BIT ON ORIGINAL SCAN
oR AL, AH ; UPDATE NEW SCAN CODE
MoV AH, AL ; BAVE AL IN AH AGAIN
;=---B3 KEY KEYBOARD FUNCTIONS SHIFT+PRTSC AND CTRL+NUMLOCK
KBO_1: CHP AL, NUM_KEY 18 THIS A NUMLOCK?
JNE KBO_3 ; CHECK FOR PRTSC
TEST KB_FLAG,CTL_SHIFT ; 1S CTRL KEY BEING HELD DOWN?
9z KBO_2 NUMLOCK WITHOUT CTRL, CONTINUE
TEST KB_FLAG, ALT, SHlFT ; 1S ALT KEY HELD CONCURRENTLY?
INZ KBO_2 ; PASS IT ON
JMP KB16_1 ; PUT KEYBOARD IN HOLD STATE
; CONTINUE WITH INTERRUPT 4BH

KBO_2: JMP CONT_I NT

; 1S THIS A PRTSC KEY?

JNZ KB1_1 NOT A PRTSC KEY

TEST KB_FLAG, LEFT 5HlFT+RlGHT SHIFT ; EITHER SHIFT
ACTIVE?

JZ KBO_2 ; PROCESS SCAN IN INT9
TEST KB FLAG CcTL, SHlFT ; 1S THE CTRL KEY PRESSED?
JNZ KBO, ; NOT A VALID PRTSC (PC COMPATIBLE)
JHP PRTSC ; HANDLE THE PRINT SCREEN FUNCTION
ALTERNATE SHIFT TRANSLAT10ONS
KB]. 1. MoV AH, AL ; SAVE CHARACTER
AND AL, AND_MASK - BREAK _BIT ; MASK BREAK BIT
TEIT KB_FLAG, ALT_SHIFT ; IS THIS A POTENTIAL TRANSLATION
Jz K82
;===—TABLE LOOK UP
PUSH [}
POP ES i INITIALIZE SEGMENT FOR TABLE LOOK
; UP
MoV D1,O0FFSET ALT_TABLE
NOV CX,ALT_LEN GET READY FOR TABLE LOOK UP
REPNE SCASB ; SERACH TABLE
JNE KB2 ; JUMP IF MATCH IS NOT FOUND
MOV CX,OFFSET ALT_! TABLE + 1
suB D1,CX ; UPDATE DI TO INDEX SCAN CODE
MOV AL, CS: NEW ALT[D!J ; TRANSLATE SCAM CODE
;-—-—CHECK FOR BREAK CODE
BL,KB_FLAG ; SAVE KB_FLAG STATUS
XOR KB_FLAG, ALT_SHIFT ; MASK OFF ALT SHIFT

TEST AH, BREAK_BIT ; 15 THIS A BREAK CHARACTER?
JZ KBl_2 JUMP IF SCAN IS A MAKE
OR AL,BREAK_BIT SET BREAK BIT
----- MAKE CODE, CHECK FOR SHIFT SEQUENCE
1.2 CHP [S THIS A SHIFT SEQUENCE

JL KB1_3 ; JUNP IF NOT SHIFT SEQUENCE
OR KB_FLAG, LEFT_SHIFT ; TURN ON SHIFT FLAG
K81_3: OUT KBPORT, AL
INT 9H ; ISSUE INT TO PROCEES SCAN CODE
oV KB_FLAG, BL ; RESTORE ORIGINAL FLAG STATES
IRET
;=-=-FUNCTION KEY HANDLER
KB2: CHP AL, FN_KEY ; CHECK FOR FUNCTION KEY
INZ KB4 ; JUMP IF NOT FUNCTION KEY
TEST AH, BREAK_BIT ; IS THIS A FUNCTION BREAK
INZ K83 ; JUMP IF FUNCTION BREAK
AND KB_FLAG_2, CLEAR_FLAGS ; CLEAR ALL PREVIOUS
; FUNCTIONS
OR KB_FLAG_2, FN_FLAG + FN_PENDING
IRET ; RETURN FROM INTERRUPT
;----FUNCTION BREAK
KB3: TEST KB_FLAG_2, FN_PENDING
JNZ K83_1 ; JUMP IF FUNCTION IS PENDING
AND KB_FLAG_2, CLEAR_FLAGS ; CLEAR ALL FLAGS
IRET
KB3_1: OR KB_FLAG_2,FN_BREAK ; SET BREAK FLAG
KB3_2: 1RET ; RETURN FROM INTERRUPT

ROM BIOS A-39

Vv Xipuaddy




;----CHECK IF FUNCTION FLAG ALREADY SET

1108 3C 85 KBa: c AL PHK ; 15 THIS A PHANTOM KEY?
1100 74 FB JUMP 1F PHANTOM SEQUENCE
11DF  F6 06 0088 R 90 ¥84_0: TEST Ka FLAG 2,FN_FLAGHFN_LOCK ; ARE WE IN FUNCTION
; GTATE?
11€4 75 21 JNZ KBS
; ===-CHECK IF NUM_STATE IS ACTIVE
11E6 F6 06 D017 R 20 TEST KB_FLAG, NUN_STATE .
11EB 74 16 Jz KBa_1 ; JUMP IF NOT IN NUM_STATE
11ED  3C 0B cHP AL, NUM_O ARE WE IN NUMERIC KEYPAD REGION?
11EF 77 12 JA KB4_1 ; JUMP IF NOT IN KEYPAD
11F1 FE C8 DEC AL ; CHECK LOWER BOUND OF RANGE
11F3 74 OE KBA_1 JUMP 1F NOT IN RANGE (ESC XEY)
;----TRANSLATE SCAN CODE TO NUMERIC KEYPAD
11F8  FE C8 DEC AL ; AL IS OFFSET INTO TABLE
11F7 BB 1081 R MOV 8X, OFFSET NUM_CODES
11FA  2E: D7 XLAT  CS:NUM_CODES NEW SCAN CODE IS IN AL
11FC 80 E4 BO aND AH, BREAK_BIT ISOLATE BREAK BIT ON ORIGINAL
SCAN CODE
11FF  0A C4 OR AL, AH UPDATE KEYPAD SCAN CODE
1201 EB 59 JNP SHORT CONT_INT CONTINUE WITH INTERRUPT
1203 BA C4 KB4_1: MOV AL, AH GET BACK 8REAK BIT IF SET
1205 EB 5% NP SHORT CONT_INT
;----cnzcx FOR VALID FUNCTTON KEY
1207 3C 08 KBS: AL, ; CHECK FOR RANGE OF INTEGERS
1208 77 20 JA KB7 ; JUMP IF NOT IN RANGE
1208 FE C8 DEC AL ; CHECK FOR ESC KEY (=1)
1200 75 25 JNZ KB6 ; NOT ESCAPE KEY, RANGE OF INTEGERS
;--~-ESCAPE KEY, LOCK KEYBOARD IN FUNCTION LOCK
120F F6 C4 80 TEST AM, BREAK_BIT ; 18 THIS A BREAK CODE?
1212 75 30 JNZ K88 ; NO PROCESSING FOR ESCAPE BREAK
1214 F6 06 0088 R B8O TEST KB_FLAG_2,FN_FLAG ; TOGGLES ONLY WHEN FN HELD
; CONCURRENTLY
1219 74 29 Jz x88 NOT HELD CONCURRENTLY
1218 F6 06 0088 R 40 TEST KB_FLAG_2, FN_BREAK ; HAS THE FUNCTION KEY BEEN
RELEASED?
1220 78 22 JNZ xB88 CONTINUE IF RELEASED. PROCESS AS
1222 F6 06 0017 R 03 TEST xa FLAG, LEFT_! snmmcm _SHIFT ; EITHER SHIFT?
1227 74 1B Jz NOT HELD DOWN
1229 80 36 0088 R 10 XOR KB FLAG _2,FN, LOCK ; TOGGLE STATE
122€ 80 26 008B R IF AND KB_FLAG_2, CLEAR_FLAGS ; TURN OFF OTHER STATES
1233 CF°~ IRET ; RETURN FROM INTERUPT
;=-=-5CAN CODE IN RANGE 1 -> 0
1234 04 3aA K86: ADD AL, S8 ; GENERATE CORRECT SCAN CODE
1236 EB 3E SHORT KB 12 CLEAN-UP BEFORE RETURN TO KB_INT
-----ancx TABLE FOR OTHER VALIO SCAN CODES
1238 OF K87: PUSH cs
1239 07 POP ES ; ESTABLISH ADDRESS OF TABLE
1234 BF 1069 R nov 01, OFFSET KBO ; BASE OF TABLE
1230 B9 000C MOV CX, KBOLEN ; LENGTH OF TABLE
1240 F2/ AE REPNE SCASB ; SEARCH TABLE FOR A MATCH
1242 74 10 KB 10 ; JUMP IF MATCH
;----lLLEGAL CHARACTER
1244 F6 06 0088 R 40 KB8: TEST KB_FLAG_2, FN_BREAK ; HAS BREAK OCCURED?
1249 74 OF Jz K89 ; FUNCTION KEY HAS NOT BEEN
; RELEASED
1248 F6 CA B0 TEST AH, BREAK_BIT ; 1S THIS A BREAK OF AN ILLEGAL
124E 7S 0A JINZ xB9 ; DON’T RESET FLAGS ON ILLEGAL
; BREAK
1280 BO 26 0088 R 1F KB85 AND KB_FLAG_2, CLEAR_FLAGS ; NORMAL STATE
1258 €6 06 0087 R 00 CUR_FUNC, 0 ; RETRIEVE ORTGINAL SCAN COOE
;=---FUNCTION BREAK 1S NOT SET
126A 8A c4 KB9: MOV AL, AH ; RETRIEVE ORIGINAL SCAN CODE
125C CONT_INT
125C E6 60 ouT KBPORT, AL
128€ D 09 INT 9H ; 1SSUE KEYBOARD INTERRUPT
1260 RET_INT:
1260 CF ET
;----BEFORE TRANSLATION CHECK FOR ALT+FN+N_KEY AS NUM LOCK
1261 3C 31 KB10:  CMP AL, N_KEY ; 15 THIS A POTENTIAL NUMLOCK?
1283 76 07 JNE K810_1 NOT A NUMKEY, TRANSLATE IT
1266 F6 06 0017 R 08 TEST KB_FLAG, ALT sum ; ALT HELD DOWN ALS0?
126A 74 DB Jz K98 TREAT AS ILLEGAL COMBINATION
126C B9 106A R KB10_1: MOV CX, OFFSET KBO + 1 ; GET OFF9ET TO TABLE
126F 28 F9 suB DI, CX UPDATE INDEX TO NEW SCAN CODE
; TABLE
1271 2E: BA BE 1075 R MOV AL, CS:KBLLDI1 ; MOV NEW SCAN CODE INTO REGISTER
; -——~TRANSLATED CODE IN AL OR AN’ OFFSET TO THE TABLE "“9CAN®
1276 F6 CA BO KB12 TEST AH, BREAK_B1T ; 15 THIS A BREAK CHAR?
1279 74 3as Jz KB13 ; JUMP IF MAKE CODE
; =-=-CHECK FOR TOGGLE KEY
1278 3C 45 AL, NUM_LOCK ; 16 THIS A NUM LOCK?
1270 74 04 Jz KB12_1 ; JUMP 1F TOGGLE KEY
127F 3C 46 cup AL,SCROLL_LOCK ; 1S THIS A SCROLL LOCK?
1281 75 08 INZ K812_2 ; JUMP IF NOT A TOGGLE KEY
1283 0OC BO K812_1: OR AL, BOH ; TURN ON BREAK BIT
1285 E6 60 ouTt KBPORT, AL
1287 CD 09 INT 9H TOGGLE STATE
1289 24 7F AND AL, AND_MASK~ aREAK BIT ; TURN OFF BREAK BIT
1288 F6 06 0088 R 40 kB12_2: TEST KB FLAG_2, FN_BREAK ; HAS FUNCTION BREAK OCCURED?
1290 74 11 Jz Ke12_3 ; JUMP IF BREAK HAS NOT OCCURED
1292 3A 06 00B7 R cHP AL, CUR_FUNC ; 1S THIS A 8REAK OF OLD VALID
; FUNCTION
1296 75 CB . JNE RET_INT ; ALLOW FURTHER CURRENT FUNCTIONS
1298 BO 26 00BB R IF AND KB_FLAG_2, CLEAR_FLAGS
1290 K812_20:
1290 Cé 06 00B7 R 00 NOV CUR_FUNC, 0 ; CLEAR CURRENT FUNCTION
1242 CF IRET RETURN FROM INTERRUPT

A-40

ROM BIOS



12A3 3A 06 00B7 R KB12_3: CHMP AL, CUR_FUNC ; 18 THIS BREAK OF FIRST FUNCTION?

1247 75 87 JNE RET_INT : 1GNORE
1249 BO 26 0088 R DF AND KB_FLAG_2, AND_MASK~- FN_PENDING ; TURN OFF PENDING
124 €B ED JHP KB12_20 ; CLEAR CORRENT FUNCTION aND RETURN
;~=-=YALID MAKE KEY HAS BEEN PRESSED
1280 F8 08 0088 R 40 KB13: TEST  KB_FLAG_2, FN_BREAK ; CHECK IF FUNCTION KEY HAS BEEN
PRESSED
1285 74 o0 Jz KB14_1 . JUMP IF NOT SET
;~---FUNCTION BREAK HAS ALREADY OCCURED
1287 80 3E 0087 R 00 cHP CUR_FUNC, 0 ; IS THIS A NEW FUNCTION?
128C 74 06 Jz KB14_1 : INITIALIZE NEW FUNCTION
128E 38 06 0087 R cHP CUR_FUNC, AL ! 1S THIS NON-CURRENT FUNCTION
—Jaez 75 ac INZ KB85 iJUMP IF NO FUNCTION [S PENDING
N .TO RETRIEVE ORIGINAL SCAN CODE
: o7 CHECK FOR SCAN CODE GENERATION SEQUENCE
i2c4 A2 0087 R CUR_FUNC, AL ; IMITIALIZE CURRENT FN
12c7 3¢ 04 AL,PRT_SCREEN . IS THIS A SIMULATED SEQUENCE?
12¢9 7F 91 CONT_INT ; JUMP IF THIS IS A SIMPLE
: TRANSLATION
12c8 74 34 Jz PRTSC ; DO THE PRINT SCREEN FUNCTION
12¢0 3¢ 03 e AL, PAUSE 1S THIS THE HOLD FUNCTION?
12CF 74 1a KB16_1 . DO THE PAUSE FUNCTION
;—--—BREAK OR ECHO
1201 FE ca DEC aL ; POINT AT BASE
1203 DO EO SHL aL, 1
1205 DO EO SHL aL. 1 ; MULTIPLY BY 4
1207 98 CBW
1208 2E: 8D 36 1088 R LEA S1,SCAN ; AODRESS SEQUENCE OF 6IMULATED
; KEYSTROKES
1200 03 Fo 40D SI, AX ! UPDATE TO POINT AT CORRECT SET
120F B3 0004 MOV cx.a } LOOP COUNTER
1262 GENERATE:
12E2 2E: AC LoDs  SCaN ; GET SCAN CODE FROM TABLE
12E4 E6 60 ouT KBPORT, AL
1268 €D 09 INT 9H ; PROCESS IT
12EB E2 FB8 LOOP GENERATE ; GET NEXT
12EA CF 1IRET
----- PUT KEYBOARD IN HOLD STATE
12EB FB 0§ 0018 R 0B KB16_1: TEST  KB_FLAG_L,HOLD_STATE ; CANNOT GO IN HOLD STATE IF
; 1TS ACTIVE
12F0 75 OE INZ KB18_2 . DONE WITH INTERRUPT
12F2 80 OE 0018 R 08 oR KB_FLAG_1, HOLD_STATE ; TURN ON HOLD FLAG
12F7 E4 a0 IN AL NMI_PORT ; RESET KEYBOARD LATCH
12F9 F6 08 0018 R 0B HOLD: TEST  KB_FLAG_1,HOLD_STATE ; STILL IN HOLD STATE?
12FE 75 F9 INZ HOLD ; CONTINUE LOOPING UNTIL KEY IS
PRESSED
1300 CF KB16_2: IRET : RETUAN FROM INTERRUPT 4BH
;--—-FR[NT SCREEN FUNCTIDN
1301 F8 06 0018 R 08 PRTSC: TEST  KB_FLAG_1,HOLD_STATE ; 1S HOLD STATE IN PROGRESS?
1306 74 06 i KB16_3 ; OK TO CONTINUE WITH PRTSC
/‘\uos 80 26 0018 R F7 aND KB_FLAG_1, OFFH-HOLD_STATE ; TURN OFF FLAG
4300 CF IRET
\ 130E 83 C4 06 KB16_3: AOD SP,au2 ; GET RID OF CALL TO INTERRUPT 4BH
1311 07 POP ES . POP REGLSTERS THAT AREN'T
~ MODIFIED IN INTS
1312 JF PoOP s
1313 54 POP DX
1314 59 POP cX
1315 58 POP ax
1316 E4 A0 IN AL, NMI_PORT ; RESET KEYBOARD LATCH
1319 €D 05 INT sH . ISSUE INTERRUPT
1314 58 POP ax
1318 5F POP D1
131C 5E POP 81 ; POP THE REST
1310 CF IRET
131E KEY62_INT ENDP
;
ITYPAMATIC
; THIS ROUTINE WILL CHECK KEYBOARD STATUS BITS IN K8_FLAG_2
; AMD DETERMINE WHAT STATE THE KEYBOARD 1S IN. APPROPRIATE
; ACTION WILL BE TAKEN.
; INPUT
: AL= SCAN CODE OF KEY WHICH TRIGGERED NON-MASKABLE INTERRUPT
‘ouTPUT
: CARRY BIT = 1 IF NO ACTION IS TO BE TAKEN.
: CARRY BIT = O MEANS SCAN COOE IN AL SHOULG BE PROCESSED
: FURTHER.
; MODIFICATIONS TO THE VARIABLES CUR_CHAR AND VAR_DELAY ARE
: MADE. ALSO THE PUTCHAR BIT IN KB_FLAG_2 IS TOGGLED WHEN
: THE KEYBOARD 1S IN HALF RATE MODE.
;
131€ TPM PROC  NEAR
131E 53 PUSH  BX
131F 38 06 0088 R cHP CUR_CHAR, AL ; 1S THIS A NEW CHARACTER?
1323 74 31 Jz P2 ! JUMP IF SAME CHARACTER
;--—-NEW CHARACTER CHECK FOR BREAK SEQUENCES
1325 a8 BO TEST  AL,BREAK_BIT  ; [S THE NEW KEY A BREAK KEY?
1327 74 12 Jz TPO : JUMP IF NOT A BREAK
\1329 24 7F AND AL, 07FH ! CLEAR BREAK BIT
1328 38 06 0085 R cHP CUR_CHAR, AL i IS NEW CHARACTER THE BREAK OF
L ! LAST MAKE?
“132F 8A ca MoV AL, AH : RETRIEVE ORIGINAL CHARACTER
1331 75 0§ INZ TR ! GUNP 1F NOT THE SAME CHARACTER
1333 C6 D6 00BS R 00 MoV CUR_CHAR, 00 i CLEAR CURRENT CHARACTER 3>
1338 F8 . cLc i CLEAR CARRY BIT
12319 BB POP BX =
1338 c3 RET ; RETURN =
=
o,

v

ROM BIOS A-41




1338
133
1343
1348

1340
134F
1354

1356
1358
1380
1361
1364
1366
1368

136A
136F
1373

1376
137A
137¢C

1386
1388
13e8
1389
13gA
13e8

1388
13p8
138C
136F
1391
1382
1383

1393
1383
1384
1395

1398
1380
139F
13A1
13A3
13A5
13A6
1347
1348
1349
13AC
1381
1388
1388
1388
138C
13co
13c4a
13¢co

5O
88
BE

o]

A-42

0088 R T™PO MoV CUR_CHAR, AL ; SAVE NEW CHARACTER
26 0086 R FO AND VAR_DELAY, OFOH CLEAR VARIASLE DELAY
26 0088 R FE AND KB_FLAG_2,0FEH ; INITIAL PUTCHAR BIT AS ZERO
06 0068 R 02 TEST KB_FLAG_2, INIT_DELAY ; ARE WE INCREASING THE
; INITIAL DELAY?
E9 Jz ™ ; DEFAULT DELAY
OE 0086 R OF oR VAR_DELAY,DELAY_RATE ; INCREASE DELAY BY 2X
E2 JNP SHORT TP
;=-—-CHECK IF WE ARE IN TYPAMATIC MODE AND IF DELAY I5 OVER
06 0088 R 08 TP2: TEST KB FLAG _2,TYPE_OFF ; IS TYPAMATIC TURNED OFF?
28 INZ ; JUMP 1F TYPAMATIC RATE 1S OFF
1IE 0086 R MoV al. vaa DELAY . GET VAR_DEALY
E3 OF AND 8L, OFH ; MASK OFF HIGH ORDER(SCREEN RANGE)
o8 oR BL, 8L ; IS INITIAL DELAY OVER?
oD 4z TP3 ; JUMP IF DELAY 15 OVER
c8 DEC BL ; DECREASE DELAY WAIT BY ANOTHER
; CHARACTER
26 0088 R FO AND VAR_DELAY, OFOH
1E 0086 R oR VAR_DELAY, BL
13 JHP SHORT TP4
;---—ancx IF TIME TO OUTPUT CHAR
06 0088 R 04 TP3: EST xa _FLAG_2, HALF_RATE ; ARE WE IN HALF RATE NODE
BC JZ ; JUMP IF NE ARE IN NORMAL MODE
36 0088 R 01 XOR KE_FLAG_Z,FUTCHAR ; TOGGLE BIT
06 0088 R 01 TEST XB_FLAG_2, PUTCHAR ; 1S IT TIME TO PUT OUT A CHAR
80 JNZ TP ; NOT TIME TO OUTPUT CHARACTER
TP4: SKIP THI§ CHARACTER
sTC SET CARRY FLAG
POP ax
RET
TPN ENDP
i
; THIS SUBROUTINE SETS DS TO POINT TO THE BI10S DATA AREA
; INPUT: NONE
; OUTPUT: DS IS SET
i
[LE] PROC NEAR
PUSH  AX
0040 HOV AX, 40H
08 nov 0S, AX
POP AX
RET
005 ENDP
;=== INT 1A
; TIME_OF_DAY/SOUND SOURCE SELECT
i THIS ROUTINE ALLOWS THE CLOCK TO 6E SET/READ.
; AM INTERFACE FOR SETTING THE MULTIPLEXER FOR
i AUDIO SOURCE IS ALSO PROVIDED
i
; INPUT
;. taH) = 0 READ THE CURRENT CLOCK SETTING
: RETURNS CX = HIGH PORTION OF COUNT
: DX = LOW PORTION OF COUNT
: L = 0 IF TIMER HAS NOT PASSED 24 HOURS
: SINCE LAST READ. <> O IF ON ANOTHER DAY
i taH) = 1 SET THE CURRENT CLOCK
; CX = HIGH PORTION OF COUNT
i DX = LOW PORTION OF COUNT
i (AH) = BOH SET UP SOUND MULTIPLEXER
; AL =(SOURCE OF SOUND) --> "AUDIO OUT" OR RF MODULATOR
i 00 = 8253 CHANNEL 2
; 01 = CASSETTE INPUT
; 02 = "AUDIO IN" LINE ON 1/0 CHANNEL
; 03 = COMPLEX SOUND GENERATOR CHIP
i
; NOTE: COUNTS OCCUR AT THE RATE OF 1193180/65636 COUNTS/SEC
i (OR ABOUT 18.2 PER SECOND -— SEE EQUATES BELOW)
ASSUME  CS:CODE, ns DATA
TIME_OF_DAY PROC FAR
ST1 ; INTERRUPTS 8ACK ON
PUSH 0s ; SAVE SEGMENT
1388 R caLL 00S
FC 80 cHP AH, BOH ; AH=BO
2E JE TaA ; MUX_SET-UP
E4 OR AH, AH ; AH=0
07 Jz T2 ; READ_TIME
cc DEC AH ; AHS1
16 Jz T3 ; SET_TIME
Ti: STI ; INTERRUPTS BACK ON
POP 0s ; RECOVER SEGMENT
[RET ; RETURN TO CALLER
T2: cL1 ; NO TIMER INTERRUPTS WHILE READING
0070 R MOV AL, TIMER_OFL
06 0070 R DO MOV TIMER_OFL, 0 ; GET OVERFLOW, AND RESET THE FLAG
OE 006E R nov €X, TIMER_H!GH
16 006C R ®ovV 0X, TIMER_LOW
EA JHP T1 ; TOD_RETURN
T3: CLI ; NO INTERRUPTS WHILE WRITING
16 006C R HoV TIMER_LOW, DX
OE 006E R MOV TIMER_HIGH,CX ; SET THE TIME
06 0070 R 00 MoV TIMER_OFL, 0 ; REBET OVERFLOW
oA JHP T1 ; TOD_RETURN

==-INITIALIZE A NEW CHARACTER

ROM BIOS

—t



13C8
13CC

13CE
-1300

C

1302
1304
1308
1308
13DA
1308
1300

()

1300

1300
130E
13DF
13E0

C13E8

N

13E6

13€9
13eB
13E0
F3EF

13F1
13F1
13F2
13F3
13F4
13F8
13FC
13FE
1400
1403
1407

1409
140A
140E

1412
1414

1418
1416
1417

1414
141D

iE 001A
iE 001C
F3
07
144F R
1E 001A
43

1E 001A
1E 001C
07

0002

0017 R
20

Taa:

TIME_OF

INPUT

H
i
H
H
i
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
i
H
H
H
H
H
H
H
H
B
H
H

PUSH
MOV
SAL
XCHG
IN
AND
oR
ouT
POP
JHP
OAV

cx
CL,5

AL, CL SHIFT PARM BITS LEFT 8 POSITIONS
AL, AH SAVE PARM

AL, PORT_B GET CURRENT PORT SETTINGS

AL, 100111118 1SOLATE MUX BITS

+ AH COMBINE PORT BITS/PARN BITS
PORT_8, AL SET PORT TO NEW VALUE
[+ 3
T1 ; TOD_RETURN
ENDP

KEVBOARD ] /0

-THESE ROUTINES PROVIDE KEYBOARD SUPPORT

(AH)=0

(AH)=1

tAHY=2

(AH)=3

(AH)=4

OUTPUT

READ THE NEXT ASCI1 CHARACTER STRUCK FROM THE
KEYBOARD, RETURN THE RESULT IN (AL), SCAN CODE IN
(AH)

SET YHE Z FLAG TO INDICATE If AN ASCII CHARACTER I9
AVAILABLE TO BE READ.

(ZF)=1 -- NO CODE ‘AVAILABLE

(ZF)x0 =-- CODE IS AVAILABLE

IF ZF = 0, THE NEXT .CHARACTER IN THE BUFFER TO BE
REAO IS IN.AX, .AND THE ENTRY REMAINS IN THE BUFFER
RETURN THE CURRENT SHIFT STATUS IN AL REGISTER

THE BIT SETTINGS FOR TH1S. CODE ARE INDICATED IN THE
THE EQUATES FOR KB_FLAG

- SET TYPAMATIC RATES. THE TYPAMATIC RATE CAN BE

CHANGED USING THE FOLLOWING FUNCTIONS:

(AL)=O RETURN TO DEFAULT. RESTORES ORIGINAL
STATE. .1.E. TYPAMATIC ON, NORMAL INITIAL
DELAY, ANO NORMAL TYPAMATIC RATE.

{AL)=1L INCREASE INITIAL 'DELAY. THIS 1§ THE
DELAY BETWEEN THE FIRST CHARACTER AND
THE BURST OF TYPANATIC CHARS.

{ALI=2 HALF_RATE. SLOWS TYPAMATIC CHARACTERS
BY .ONE HALF.
aL)=3 COMBINES AL=1 AND 'AL=2. INCREASES

INITIAL DELAY AND SLOWS TYPAMATIC
CHARACTERS BY ONE-HALF.

{AL)=4 TURN OFF TYPANATIC CHARACTERS. ONLY THE
FIRST CHARACTER JS HONORED. ALL OTHERS
ARE 1GNORED.

AL IS RANGE CHECKED. IF AL<O OR AL>4 THE STATE
REMAINS THE -SAME.

A#ANOTE#®® EACH TIME THE TYPAMATIC RATES ARE
CHANGED ALL PREVIDUS STATES 'ARE -REMOVED. I.E. IF
THE ‘KEYBOARD 15. IN THE HALF. RATE MODE AND YOU WANT
TO ADO AN INCREASE IN TYPAMATIC DELAY, YOU MUST
CALL THIS ROUTINE WITH AH=3 AND AL=3.

ADJUST KEYBOARD BY THE 'VALUE IN AL AS FOLLOWS:
(aL)=0 TURN OFF KEYBOARD CLICK.

aLI=L TURN ON KEYBOARD CLICK.

AL 1S RANGE CHECKED. - THE STATE 1S UNALTERED IF
AL < 1,0.

AS NOTED ABOVE, ONLY AX AND FLAGS .CHANGED
ALL REGISTERS RETAINED

XEVBOARO 10

ASSUME

Kl:

FAR
€s: CODE, 05 DATA
STI ;i INTERRUPTS BACK ON
PUSH 4] ; SAVE CURRENT DS
PUSH BX ;i SAVE BX TEMPORARILY
CALL DDsS ; POINT DS AT BIOS DATA SEGNENT
~OR AH, AH i AH=D
Jz K1 ; ASCI1_READ
DEC AH i AH=1
vz K2 i ASCll _STATUS
DEC AH H
UZ K3 H SH!FT STATUS
SHORT K3_1
READ THE KEY TO FIGURE OUT WHAT TO 00
;i ASCI1 READ

8T1
NOP
cLl
MoV
CHMP
Jz
MoV
CALL
Nov
JNP

ASCI1 STATUS
cL!

MoV
CMP
Nov
STI
POP
POP

RET 2
SHIFT STATUS

MoV
JHP

INTERRUPTS BACK ON DURING LOOP
ALLOW AN INTERRUPT TO OCCUR
INTERRUPTS BACK OFF

GET POINTER TO HEAD OF BUFFER
TEST END OF -BUFFER

LOOP UNTIL SOMETHING IN BUFFER
GET SCAN CODE AND ASCII CODE

8X, BUFFER_HEAD  ;
;
;
! MOVE POINTER TO MEXT POSITION
&

BX, BUFFER_TAIL
K1

AX, [8X]

K4

STORE VALUE IN VARIABLE

BUFFER_HEAD, BX
SHORT  RET_INTL

INTERRUPTS OFF

8%, BUFFER_HEAD GET MEAD POINTER

BX,BUFFER_TAIL ; IF EQUAL (2Z=1) THEM NOTHING THERE
AX, [BX]

INTERRUPTS BACK ON
RECOVER REGISTER
RECOVER SEGNENT
‘THROW AWAY FLAGS

Bx
']

AL, KB_FLAG GET THE SHIFT STATUS FLAGS

SHORT RET_INT16

A-ROM BIOS A-43




141F FE
1421 74
1423 FE
1425 75
1427 0A
1429 75
1428 80
1430 EB
1432 3C
1434 78
1438 B8O
1438 €8
1430 3C
143F  7F
1441 80
1446 00
1448 08
144c
144c 58
1440 1F
144E CF
144F
144F
144F 43
1450 43
1451 238
1485 75
1457 B8
1458 €3
148¢C
148¢C
148¢ 52
1450 3A
1462 2A
= 0008
1464
1464 BO
1465 40
146a 02
146C 18
1€
1474 FF
FF
147¢ 17
09
1484 10
13
1488 04
oc
1494 FF
18
149C  OE
FF
1444 20
14A6
14A6 BE
84
14AE 66
B84
1486 73
76
148 FF
148F
148F 1B
36
£
14CE 71
75
ob
a7
27
14E7 60
76
2F
14F8  FF
14r9
14F9 1B
BE
28
1808 51
55
op
a7
22
1821 7€
56
aF

A-44

1E
1E

a5
6

31
37
oB
77
69

FF
62
FF

21
26
08
57
as
FF
a8

FF
a2
FF

0018

0018

0088

ooBB

0082

0080

a6

10

FF
12
1n
07
1

FF

60
FF

ROM BIOS

38

61
FF

FF

10

24
29

54
78

ac
58

3C
20

7F
15
o1
0B
02

== ADJUST KEY CLICK

K3_1 DEC AH
Jz X3_3 ; AH=3, ADJUST TYPAMATIC
DEC AH ; RANGE CHECK FOR AH=4
JINZ RET_INT16 ; ILLEGAL FUNCTION CALL
OR aL, AL ; TURN OFF KEYBOARD CLICK?
JNZ K3_2 JUMP FOR RANGE CHECK
AND KB_FLAG_L, AND_MASK-CLICK_ON ; TURN OFF CLICK
Jnp SHORT RET_INT16

K3_2: CHP AL, 1 ; RANGE CHECK
JNE RET_INT16 NOT IN RANGE, RETURN
OR KB_FLAG_1, CLICK_ON ; TURN ON KEYBOARO CLICK
JNP SHORT RET_INTT6

'rvwmnnc
. ; CHECK FOR CORRECT RANGE
RET_INT16 ; IF ILLEGAL VALUE IN AL IGNORE

AND KB_FLAG_2,OF IH ; MASK OFF ANY OLD TYPAMATIC STATES
SHL AL, ; SHIFT TQ PROPER POSITION
OR KB_FLAG_2, AL

RET_INT16:
POP BX ; RECOVER REGISTER
PoOP 0s ; RECOVER REGISTER

RETURN TO CALLER

IRET
KEYBOARD_IO ENDP
;o INCREMENT A BUFFER POINTER

Ka PROC  NEAR
INC BX ; MOVE TO NEXT WORD IN LIST
INC BX
cHp BX,BUFFER_END  ; AT END OF BUFFER?
JNE K8 . NO, CONTIMUE
MoV BX, BUFFER_BTART ; YES, RESET TO BUFFER BEGINNING
KS: RET
Ka ENDP
e TABLE OF SHIFT KEYS ANO MASK VALUES
K6 LABEL  BYTE
08 INS_KEY ; INSERT KEY
08 CAPS_KEY, NUM_KEY, SCROLL_KEY, ALT_KEY, CTL_KEY
0B LEFT_KEY, RIGHT_KEY -
KéL EQU $-K6
; - SHIFT_MASK_TABLE
K7 LABEL™ BYTE
0B INS_SHIFT INSERT MODE SHIFT

DB CAPS_SHIFT, MUM SHIFT SCROLL_SHIFT, ALT_SHIFT,CTL_SHIFT
LEFT SHIFT RIGHT SH(FT
ataiiiaied SCAN CODE TABLES

Ka DB 27,~1,0,-1,-1,-1,30, -
oB -1,~1,-1,31,-1,127,-1,17
o8 23,5, 18,20,25,21,9, 15
08 16,27,29,10,-1,1, 19
DB 4,6,7,8,10,11,12,-1,-1
L] -1,~1,2B,26,24,3,22, 2
0B 14,13, - 1,-1,-1,~1,-1
0B -1
jemmm——— CTL TABLE SCAN
K9 LABEL BYTE
[1:} 94, 95, 86, 97, 96, 99, 100, 101
[]:] 102, 103,-1,-1, 119,~1,132,-1
0B 118,-1, 116,-1,117,~1, 118, -1
0B -1
mm———— LC TABLE
K10 LABEL BYTE
o8 01BH, ‘' 1234567890-=", 0BH, 09H
oa ‘qwertyulopll’,ODH, -1, ‘asdfgh}kl; ’, 027H
DB 60H, -1,5CH, ‘zxcvbnm, . /*, -1, '#‘,-1,* ¢
0B -1
jm——— UC TABLE
K11 LABEL BYTE
[]:] 27, :1@8%,37,05€EH, ‘&%{)_+',0BH, 0
bB ‘QWERTYUIOP{}’,0DH, -1, ‘ASDFGHJKL: "’
[ 1] O7EH, -1, “:ZXCVBNM(>?’,~1,0,-1,°* *, -1



1533
1533

163A
153D
183D
1542

1847
1547

|
7 1584

1554
1858

1561
1861
1662
1563
1864
1565
1566
1867
1560
1569
1564
1868
186E

1670
1872
1874
1577
157A
157D

1582

1587
158¢C

168F
168F
1591
1592
1893

. 1896

1599

16598
1990
158F

15A2
15A6
1548
18A0

16AF
1582

1584
1588

1688
1588
15C0
18C2
15¢€4
15C6
15CB

-18C0

1602
1504
1609
1508
15pB
180E
16E1

S18E1

16E6
15E8
1GEB
15EC

" ABEE

18F2
16F6
15F8
15FA
15FD

F2/ AE

8C

38
2B

48

aF

BD

6A
6F

39
aL

49

-1+]

57

70

20
32

FF

61

1388 R

EO-

FF
18

0080
0048
E03E R
26 0017 R FO

6C
7L

34
33

4B

52

26 0018 R OF

26 008B R IF
164A R

TF

145C R
000B

ca
03

163A R

EF 1450 R
8A A5 1464 R

80
51

FC
o7

10

26 0017
164A R

06 0017

0017

0017

0017

5230
17EC R

06 0017

F3

26 001B

6C
26 001B

26 0017

36
0

FF

53

K12 LABEL

K13 LABEL

K14 LABEL

K15 LABEL

bB
ALT TABLE SCAN

DB
NUM STATE TABLE

------- UC .TABLE SCAN

BYTE

0B B4, 85, 86,87, 88, 89, 90
91,92,93

BYTE .

0B 104, 108, 106, 107, 108
109, 110, 111, 112, 113

BYTE

0B 789-456+1230. *

BASE CASE TABLE

BYTE
oB 71,72,73,-1,78,=1,77

-1,79,80,81,B2,63

------- KEVBOARD INTERRUPT ROUTINE

KB_INT PROC
TI
PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
CLD
CALL
MOV

ALLOW FURTHER INTERRUPTS

FORWARD DIRECTION
DDS
SAVE SCAN CODE IN AH

, AL H
------- TEST FOR OVERRUN SCAN CODE FROM KEYBOARD

CMP AL, OFFH ; 1S THIS AN OVERRUN CHAR?

JNZ K16 ; NO, TEST FOR SHIFT KEY

MoV B8X, 80H B DURATION OF ERROR BEEP

Hov CX, 48H ; FREQUENCY OF TONE

CALL KB_NO1SE ; BUFFER FULL BEEP

AND KB_FLAG, OFOH ; CLEAR ALT,CLRL,LEFT AND RIGHT
; SHIFTS

AND KB_FLAG_1,0FH - ; CLEAR PFOTENTIAL BREAK OF INS,CAPS
; +NUM AND SCROLL SHIFT

AND K8_FLAG_2, IFH ; CLEAR FUNCTION STATES

JMP ; END OF INTERRUPT

jmm———— TEST FOR SHIFT KEYS
K16: ; TEST_BHIFT

AND AL, O7FH ; TURN OFF THE BREAK BIT

PUSH [+

POP ES ; ESTABLISH ADDRESS OF SHIFT TABLE

MOV D1, OFFSET K& ; SHIFT KEY TABLE

MOV CX, K6L ; LENGTH

REPNE SCASB ; LOOK THROUGH THE TABLE FOR A
; MATCH

MOV AL, AH ; RECOVER SCAN CODE

JE K17 ; JUMP IF MATCH FOUND

JNP ; 1F NO MATCH, THEN SHIFT NOT FOUND

OR
JHP
------- TOGGLED

K20:
MOV
JMP

TEST
Jz

TEST
JNZ
OR

XOR
CHP
JNE
MOV
JNP

25
SHIFT KEY FOUND

DI,OFFSET K6+1 ; ADJUST PTR TO SCAN CODE MATCH

AH, C5:K7LDI] ; GET MASK INTO AH
AL, 80H ; TEST FOR BREAK KEY
K23 BREAK_SHIFT_FOUND

------- SHIFT MAKE.FOQUND, DETERMINE SET OR TOGGLE

AH, SCROLL_SGHIFT
K18 ; IF GCROLL SHIFT OR ABOVE, TOGGLE

PLAIN SHIFT KEY, SET SHIFT ON

KB_FLAG, AH ; TURN ON SHIFT BIT
K26 ; INTERRUPT_RETURN
SHIFT KEY, TEST FOR 15T MAKE OR NOT
; SHIFT-TOGGLE
KB_FLAG, CTL_SHIFT ; CHECK CTL SHIFT STATE

2| ; JUMP IF CTL STATE

AL, INS_KEY ; CHECK FOR INSERT KEY

K22 . ; JUMP IF NOT [NSERT KEY
KB_FLAG, ALT SHlFT ; CHECK FOR ALTERNATE SHIFT
K25 ; JUNP IF ALTERNATE SHIFT

KB FLAG NUN, STATE ; CHECK FOR BASE 9TATE

JUNP IF ‘NUM LOCK IS ON
KB FLAG LEFT EH[FT+ RIGHT_SHIFT
K22 ; JUMP IF - BASE STATE'
; NUMERIC 2ERO, NOT INSERT KEY
; PUT OUT AN ASCII 2ZERO
; BUFFER_FILL
; MIGHT BE NUMERIC
KB_FLAG, LEFT, SHIFT+ RIGHT_SHIFT
K20 JUMP NUMERIC, NOT INSERT
SHIFT TOGGLE KEY HIT, PROCESS IT
1S KEY ALREADY DEPRESSED
JUMP IF KEY ALREADY DEPRESSED
INDICATE THAT THE KEY IS
DEPRESSED

AX, B5230H
K67

AH, KB_FLAG_1
K26

KB_FLAG_1, AH

KB_FLAG, AH TOGGLE THE SHIFT .STATE
AL, INS_KEY TEST FOR 1ST NAKE DF INSERT KEY
K26 JUMP IF NOT INSBERT KEY

SET SCAN CODE INTO AH, O INTO AL
PUT INTO OUTPUT.BUFFER

AX, INS_KEY®*256
KE7

ROM BIOS A-45

>
=]
=]
o
=
o

\4




1600
1800
1603
1606
1607
1608
1600

160F
-1612
1614
1a18
1614
161C
161F
181F
1821
1623
1628
1624

T 182F

1632
1634
638

1634
163C

163E
1643
1648

1644
164A
1648
164C
164D
184E
164F
1850
1651
1652

1653
1653
1658
1684

164D

168D .

1682
1664
1668

1688
166E
1671
1673

1678
1678
187E
1680

16082
1687

1689

168E
1693
- 1685
1697
1699

169C

169E
1640
16A4
16A8
16A9
15a8
16a0
16AF

1682
1684
1686
168A

16BC

A-46 ROM BIOS

3C

n
L3
o
o
-
~
£l

06 0018 R 02
26 0018 R FD
18 90

D4

26 0018 R
10

80
oc
06 00168 R 08

26 0018 R F7

06 0017 R 08
03

1749 R

06 0017 R 04
69

53
Lo}

"06 0072 R 1234

0043 R
52
09

068 0072 R 4321
0043 R

3A

13

06 001B R 02
c1

36 0018 R 04
OE 0018 R 02
5

7F 24

FE
FE

EB

06 0089 R
co

187A R

K24:

i
K24_1:

K26:

K29_3:

K29_4.

BREAK SHTFT FOUND
BREAK~SHIFT-FOUND

i
CHP AH, SCROLL_SHIFT ; IS THIS§ A TOGGLE KEY

JAE ; YES, HANDLE BREAK TOGGLE

NOT AH ; INVERT MASK

AND KB_FLAG, AH ; TURN OFF SHIFT BIT

CHP AL, ALT| KEY+80H ; 1S THIS ALTERNATE SHIFT RELEASE
JNE KZS INTERRUPT_RETURN

ALTERNATE SHIFT KEY RELEASED GET THE VALUE INTO BUFFER
MoV AL, ALT_INPUT

XOR AH, AH ; SCAN CODE OF O
MOV ALT_INPUT, AH ; ZERO QUT THE FIELD
OR AL, AL ; WAS THE INPUT=0?
JE K26 ; INTERRUPT_RETURN
JHP K58 ; 1T WASN’T, SO PUT 1N BUFFER
; BREAK-TOGGLE
cHp AL, CAPS_KEY+BREAK_B1T ; SPECIAL CAGE OF TOGGLE KEY
JNE K24_1 ; JUMP AROUND POTENTIAL UPDATE
TEST KB_FLAG_1, CLICK_SEQUENCE
Jz K24_1 ; JUMP IF NOT SPECIAL CASE
AND KB_FLAG_1, AND_MASX-CL1CK_SEQUENCE ; MASK OFF MAKE
; OF cLiCK
JNP K2 ; INTERRUPT IS OVER
BREAK OF NORNAL TOGGLE
NOT AH ; INVERT MASK
AND KB_FLAG_1, AH ; INDICATE NO LONGER DEPREGGED
JHP SHORT K26 ; INTERRUPT_RETURN

TEST FOR HOLD STATE
i NO-BHIFT-FOUND

cup AL, 60H ; TEST FOR BREAK KEY

JAE K26 ; NOTHING FOR BREAK CHARG FROM HERE
; ON

TEST K8_FLAG_1,HOLD_STATE ; ARE WE IN HOLD STATE?

Jz K28 BRANCH AROUND TEST IF NOT

ANO KB_FLAG_1, NOT HOLO_STATE ; TURN OFF THE HOLO STATE
i
; INTERRUPT-RETURN

POP Es

POP DS

PoP o1

POP SI

POP DX

POP cx

POP ax

POP Ax ; RESTORE STATE

IRET ; RETURN, INTERRUPTS BACK ON WITH

; FLAG CHANGE
NOT IN HOLD STATE, TEST FOR SPECIAL CHARS

; NO-HOLD-STATE
TEST KB_FLAG, ALT. SH]FT .ARE WE IN ALTERMATE SHIFT
INZ K28 ; JUMP IF ALTERNATE SHIFT
NP K38 . JUMP 1F NOT ALTERNATE
TEST FOR ALT+CTRL KEY SEQUENCES

; TEST-RESET

TEST KB_FLAG,TTL_SHIFT ; ARE WE IN CONTROL SHIFT ALSO
9z K31 ; NO_RESET

CHP AL, oEL _Key ; SHIFT STATE I8 THERE, TEST KEY
JNE K29 ; NO_RESET

CTL-ALT-DEL™ HAS BEEN FOUND, DO [/0 CLEANUP

MoV RESET_FLAG, 1234H ; SET FLAG FOR RESET FUNCTION
JNP .NEAR PTR RESET ; JUNP TO POWER ON DIAGNOSTICS
cHP AL, INS_KEY ; CHECK FOR RESET WITH DIAGNOSTICS
JNE K29_2 ; CHECK FOR DTHER

; ALT-CTRL-SEQUENCES
ALT-CTRL-~INS HAS -BEEN FOUND

MoV RESET_FLAG,4321H ; 5ET FLAG FOR DIAGNOSTICS

JHP NEAR -PTR RESET ; LEVEL 1 DIAGNOSTICS

CHP AL CAFS _KEY ; CHECK FOR "KEYBORAD CLICK TOGGLE
JNE K2: ; CHECK FOR SCREEN ADJUSTMENT

ALTOCTRL-’CAFSLOCK HAS BEEN FOUND
TEST KB_FLAG_1, CLICK_SEQUENCE

INZ ®26 ; JUMP IF SEQUENCE HAS ALREADY
; OCCURED

XOR K8_FLAG_1,CLICK_ON ; TOGGLE BIT FOR AUDIO KEYSTROKE

FEEDBACK

OR KB_FLAG_1, CLICK sEﬁusNCE ; SET TLICK_SEQUENCE STATE

JHP SHORT K26 ; INTERRUPT IS OVER

cHpP AL,RIGHT_ARROW ; -ADJUST SCREEN TO THE RIGHT?

JNE K29_4 ; LOOK FOR RIGHT ADJUSTMENT

CALL GET_POS ; GET TME #.0OF POSITIONS SCREEN 1§
; SHEIFTED

cHp AL, 0-RANGE ; 15 SCREEN SHIFTED AS FAR AS
; POSSIBLE?

JL K26 ; OUT OF RANGE

DEC HORZ_POS ; SHIFT VALUE TO THE RIGHT

DEC aL ; DECREASE RANGE VALUE

caLL RYT_POS ; RESTORE ‘STORAGE LOCATION

JHP SHORT K29_B ; ADJUST

cHuP aL,LEFT_ARROW ; ADJUST SREEN T0 THE LEFT?

JINE K31 ; NOT AN ALT_CTRL SEQUENCE

caLL GET_POS ; GET NUMBER OF POSITi1ONS SCREEN IS
; SHIFTED

cup AL, RANGE ; 18 SCREEN SHIFTED AS FAR AS
; POSSIBLE?

J6 K26

INC HORZ_POS ; SHIFT SCREEN TO THE LEFT

INC AL INCREASE NUMBER OF POSITI1ONS

SCREEN IS SHIFTED
PUT POSTION BACK IN STORAGE

CALL PUT_POS



—

168F

18C4
16C5
16C8
16C9
16CA

16CP
16CD
16CF
1601
16p3

1606
11606
,

" 1600
16E0
16E8
16F0
16F8

16FA
16FA
16FD
1700
1702
1704
1708
1708
1700
170F
1711
1714

1717
1717

171C
174F
1721
1723
1725

1728
1728
1724
~172C
J172E
. 1730

1733
1738

1738
1738
173A
173C
173C
173F
173F
1741
1743
1746

1749
1749
174

1760
1762
1784
1768
1750
176F
1761
1763
1766
176A
1760

176D
176F
1771
1774

8F
a9

02
03b4

0089 R

164A R

4F 50 51 4B 4C
48 49

13 14 18
1F 20 21

2C 20 28

1606 R
000A

F2/ AE

ce

13
EF 1607 R

06 0019 R 00

001A

F2/ AE

75
32
E9

13
co
17EC R

Ca 76
co
A7EC R
38

03
164a R
a7

F9

1830 R
1863 R

06 0017 R 04
34

1E 001A R
06 0071 R 80

K29_5:

MoV AL, 2 ;
nov DX, 304H ;
out DX, AL

MoV AL, HORZ_POG ;
INC DX ;
out DX, AL i
JHP K26

IN ALTERNATE SHIFT, RESET
cHP AL, 57 ;
JNE K32

MOV AL, " ¢

Jue K87
ALT=INPUT=TABLE

LABEL  BYTE

P8 82,79,80,81, 75, 76,
X 71,72,73 ;
SUPER-SHIFT-TABLE

0B 16, 17, 18, 19, 20,21,
[J:] 24,25, 30, 31, 32,33,
o8 36,37,38, 44, 45, 46,

MOV
MOV
REPNE
JNE
sue
MOV
MoV

ADD
MOV

1] 49,60
LOOK FOR KEY PAD ENTRY

D1, OFFSET K30
cX, 10

SCASB

K33 i
OI,0FFSET K30+1
AL, ALT_INPUT
AH, 10

AH

ax, D1
ALT_INPUT, AL

JMP K26 ;
LOOK FOR BUPERSHIFT ENTRY

ADJUST
ADDRESS TO CRT CONTROLLER

COLUMN POSITION
POINT AT DATA REGISTER
MOV POSITION

NOT FOUND

NO-RESET

TEST FOR SPACE KEY
NOT THERE

SET SPACE CHAR
BUFFER_FILL

77
10 NUMBERS ON KEYPAD

22,23 ; A-2Z TYPEWRITER CHARS

34,35

a7,48

ALT-KEY-PAD

ALT~INPUT-TABLE

LOOK FOR ENTRY USING KEYPAD
LOOK FOR MATCH
NO_ALT_KEYPAD

DI NDW HAS ENTRY VALUE

GET THE CURRENT BYTE
MULTIPLY 8Y 10

ADD IN THE LATEST ENTRY
STORE 1T AWAY
THROW AWAY THAT KEYSTROKE

NO-ALT~KEYPAD

Z2ERQO ANY PREVIOUS ENTRY INTO
TNPUT

DI,ES ALREADY POINTING

LOOK FOR MATCH IN ALPHASET

MOT FOUND, FUNCTION KEY OR OTHER
ASCI1 CODE OF ZERO

PUT IT IN THE BUFFER

ALT-TOP-ROW
KEY WITH “1° ON IT
NOT ONE OF IMTERESTING KEYS
IS IT IN THE REGION?
ALT-FUNCTION
CONVERT PSUEDO SCAN CODE TO
RANGE
INDICATE AS SUCH
BUFFER_FILL
PSEUDO SCAN CODES
ALT-FUNCTION
TEST FOR IN TABLE
ALT-CONTINUE
CLOSE-RETURN
I1GNORE THE KEY
ALT-CONTINVE
IN KEYPAD REGION
IF S0, IGNORE
ALT SHIFT PSEUDO SCAN TABLE
TRANSLATE THAT

NOT-ALT-SHIFT
; ARE WE IN CONTROL 6HIFT?

MOV ALT_INPUT, 0 :
Hov cx, 26 :
REPNE  SCASS ;
INE K3a :
XOR aL, AL H
P K57 :
LOOK FOR TOP ROW OF ALTERNATE SHIFT
cHp aL,2 H
J8 K38
cup AL, 14 :
JAE K38 :
ADD AH, 118 i
H
XOR aL, AL ;
Jmp K87 ;
TRAMSLATE ALTERNATE SHIFT
cup AL, 89 ;
JAE K37 :
JuP K26 :
cHp aL, 71 :
Jag K36 ;
MOV 8X,0FFSET K13 H
JNP Ke3 :
NOT IN ALTERNATE SHIFT
TEST  KB_FLAG,CTL_SHIFT
Jz Ka4 ;

NOT-CTL=-SHIFT

CONTROL SHIFT, TEST SPECIAL CHARACTERS

TEST FOR BREAK AND PAUSE KEYS

CHP
JNE
MOV
nov
INT

AL, SCROLL_KEY
[N R
BX, BUFFER_HEAD
B10S_BREAK, 80H
1BH

AX, AX

[BX1, AX

Ka
BUFFER_TALL, BX
K26

TEST SPECIAL CASE KEY &8
CMHP AL, 55

JNE
MOV
JHP

Ka2 ;
AX, 11a%256
KE?

TEST FOR BREAK

NO-BREAK

GET CURRENT BUFFER HEAD
TURN ON BIOS_8REAK BIT
BREAK INTERRUPT VECTOR
PUT OUT DUMMY CHARACTER
PUT DUMMY CHAR AT BUFFER HEAD
UPDATE BUFFER POINTER
UPDATE TAIL

DONE WITH INTERUPT
NO-PAUSE

NOT-KEY-55
START/STOP PRINTING SW1TCH
BUFFER_FILL

ROM BIOS A-47

>
o
=
@
=
=
>
>




jm———— SET UP TO TRANSLATE CONTROL SHIFT

1777 Kaz: ; NOT-KEY-55

1777 BB 146C R MOV BX, OFFSET K8 ; SET UP TO TRANSLATE CTL

1774 3C 3B CNP AL, 59 ; IS IT IN TABLE?

177C 72 6A Je K66 ;i YES, GO TRANSLATE CHAR
; CTL-TABLE-TRANSLATE

177E BB 14A6 R MOV BX, OFFSET K9 ; CTL TABLE SCAN

1781 E9 1863 R JMP ; TRANSLATE_SCAN

K&3
j——==~= NOT LN CONTROL SHIFT

17084 Ka4: ; NOT-CTL-SHIFT
1784 3¢ 47 cHP aL,71 i TEST FOR KEYPAD REGION
1786 73 IF JAE Ka@ HANDLE KEYPAO REGION
1789 F§ 06 0017 R 03 TEST KB_FLAG, LEFT_SHIFT+RIGHT_SHIFT
1780 74 4E Jz K54 ; TEST FOR SHIFT STATE
; UPPER CASE, HANDLE SPECIAL CASES
176F 3¢ OF cue AL, 15 ; BACK TAB KEY
1791 75 06 JINE K46 ; NOT-BACK-TAB
1783 88 OF00 MOV AX, 154266 ; SET PSEUDO SCAN CODE
1796 EB 64 JNP SHORT K67 ; BUFFER_FILL
1798 K46: ; NOT-PRTNT-SCREEN
1788 3¢ 3B cMP aL,59 ; FUNCTION KEYS
1794 72 06 J8 K47 ; NOT-UPPER-FUNCTION
179C B8 1533 R MOV BX,OFFSET K12 ; UPPER CASE PSEUDO SCAN COOES
179F ES 1863 R JMP ; TRANSLATE_SCAN
17a2 Ka7: ; NOT-UPPER~FUNCTION
1742 BB 14F9 R MOV BX,OFFSET K11 ; POINT TO UPPER CASE TABLE
1746 EB 41 NP SHORT K56 OK, TRANSLATE THE CHAR
j—————— KEYPAD KEYS, MUST TEST NUM LOCK FOR OETERMINATION
1747 K48: ; KEYPAD-REGION
1747 F6 06 0017 R 20 TEST KB_FLAG, NUN_STATE ; ARE WE IN MUM_LOCK?
17AC 75 21 INZ K52 ; TEST FOR SURE
17AE  F6 06 0017 R 03 TEST KB_FLAG, LEFT_SHIFT+RIGHT_SHIFT ; ARE WE IN SHIFT
i STATE
1703 75 21 JNZ K83 ; IF SHIFTED, REALLY NUN STATE
jmmm——- BASE CASE FOR KEYPAD
1786 K49: ; BASE-CASE
1786 3C 4A cMP aL,74 ; SPECIAL CASE FOR A COUPLE OF KEYS
1787 74 0C JE K50 ; MINUS
1789 3C 4E . CNP AL, 78
1768 74 0D JE K51
1780 2¢ 47 sue aL, 71 ; CONVERT DRIGIN
176F BB 1864 R MOV BX, OFFSET K15 ; BASE CASE TABLE
17¢2 €9 1865 R JMP ; CONVERT TO PSEUDO SCAN
17C6 BB 4a20 K50: MoV AX, 74K266+'=’ . MINUS
17¢c8 €8 22 JNP SHORT K57 : BUFFER_F!LL
17CA B8 4E28 KS1: NOV AX, TON256+ /47
17¢0 EB 1D JNP SHORT K57 BUFFER FILL
;mm——— MEGHT BE NUM LOCK, TEST SHIFT STATUS
17¢F K52: ; ALMOST-NUM-STATE
17CF FB 06 0017 R 03 TEST KB_FLAG, LEFT_SHIFT+RIGHT_SHIFT
1704 75 OF JNZ K49 ; SHIFTED TEMP OUT OF NUM STATE
1706 K53: : REALLY_NUM_STATE
17D6 2C 46 sua AL, 70 . CONVERT ORIGIN
1708 BB 1547 R MOV BX,OFFGET K14 ; NUM STATE TABLE
1708 EB 08 JHP SHORT K56 ; TRANSLATE_CHAR
jmm———— PLAIN OLD LOWER CASE
170D K54: ; NOT-SHIFT
1700 3c 38 cup AL, 59 ; TEST FOR FUNCTION KEYS
170F 72 04 J8 K55 ; NOT-LOWER-FUNCTION
17€1 32 €O XOR AL, AL . SCAN CODE IN AH ALREADY
1763 EB 07 JMP SHORT K&7 ; BUFFER_FILL
17€5 K55: i NOT-LOWER-FUNCTION
17€6 BB 148F R BX,OFFSET K10 ; LC TABLE
TRANSLATE THE CHARACTER
178 H ; TRANSLATE-CHAR
1768 FE ¢8 DEC aL ; CONVERT ORIGIN
17EA  2E: D7 XLAT €5:K11 ; CONVERT THE SCAN COOE TO ASCII
jmm———— PUT CHARACTER INTO BUFFER
17€C K67: ; BUFFER-FILL
17EC  3C FF cMP AL, -1 i IS THIS AN [GNORE CHAR?
17€E 74 IF JE K59 . YES, DO NOTHING WITH IT
17F0 80 FC FF cup AH,-J. i LOOK FOR -1 PSEUDO SCAN
17F3 74 1A JE NEAR_INTERRUPT_RETURN
jmm——— HANDLE THE CAPS LOCK PROBLEM
17FS K5B: ; BUFFER-FILL-NOTEST
17F5 F6 06 0017 R 40 TEST KB_FLAG, CAPS_STATE ; ARE WE IN CAPS LOCK STATE?
17FA 74 20 Jz K61 ; SKIP IF NOT
; LOCK STATE
17FC F8& 06 0017 R 03 TEST KB_FLAG, LEFT_SHIFT+RIGHT_SHIFT ; TEST FOR SHIFT
; STATE
1801 74 OF Jz K&0 ; IF NOT SHIFT, CONVERT LOWER TO
; UPPER
jmm—— CONVERT ANY UPPER CASE TO LOWER CASE
1803 3cC 41 cup AL, ‘A’ ; FIND OUT IF ALPHABETIC
1805 72 15 J8 K61 : NOT_CAPS_STATE
1807 3C %A cup aL, ‘'z
1809 77 11 JA K61 ; NOT_CAPS_STATE
180B 04 20 ADD AL, ‘a’-’A’ ; CONVERT TO LOWER CASE
1800 EB 0D JMP SHORT K61 . NOT_CAPS_STATE
180F K59: ; NEAR-1NTERRUPT-RETURN
180F E9 164A R Jmp K26 ; INTERRUPT_RETURN
jmm———— CONVERT ANY LOWER CASE TO UPPER CASE
1812 K60: ; LOWER-TO-UPPER
1812 3¢ 61 cMP aL, ‘a . FIND OUT IF ALPHABETIC
1814 72 06 J8 K61 ; NOT_CAPS_STATE
1816 3C 7A cup AL, ‘2
1818 77 02 JA K61 ; NOT_CAPS_STATE
1814 2C 20 suB AL, ra’=’A’ ; CONVERT TO UPPER CASE

A-48 ROM BIOS



()

181C KE1: NOT-CAPS-STATE

181C 88 1E 001C R MOV BX,BUFFER_TAIL ; GET THE END POINTER TO THE BUFFER
1820 88 F3 MOV SI, 8% ; SAVE THE VALUE
1822 E@ 144F R CALL Ka ; ADVANCE THE TAIL
1825 38 1E 001A R cHP BX, BUFFER_HEAD ; HAS THE BUFFER WRAPPED AROUND?
1829 75 1D JNE KE1_1 ; BUFFER_FULL_BEEP
1828 53 PUSH BX ; SAVE BUFFER_TAIL
182C 88 0080 MOV BX, 080H ; DURATION OF ERROR BEEP
182F BB 0048 Mov CX, 48H ; FREQUENCY OF ERROR BEEP HALF TONE
1832 EB E035 R CALL Ka_NO1SE ; OUTPUT NOISE
1835 80 26 00L7 R FO AND KB_FLAG, OF OH ; CLEAR ALT,CLRL,LEFT AND RIGHT
i BHIFTS
163A BO 28 0018 R OF AND K8_FLAG_1,0FH ; CLEAR POTENTIAL BREAK OF INS,CAPS
; +NUM AND SCROLL SHIFT
83F BO 26 0088 R IF AND KB_FLAG_2, IFH ; CLEAR FUNCTION STATES
844 68 POP ax ; RETRIEVE BUFFER TAIL
1848 E9 164A R JMP K26 ; RETURN FROM INTERRUPT
1848 F@ O 0018 R 04 Ké1_l: TEST KB_FLAG_1,CLICK_ON ; 1S AUDIO FEEDBACK ENABLED?
184D 74 08 Jz KeI_2 ; NO, JUST PUT IN GUFFER
184F 83 PUSH BX ; SAVE BUFFER_TAIL VALUE
1850 88 0001 MoV BX, 1H ; DURATION OF CLICK
1853 B9 0010 MoV CX, 10H ; FREQUENCY OF CLICK
1856 E@ E035 R cALL KB_NOISE ; OUTPUT AUDIO FEEDBACK OF KEY
; STROKE
1859 58 POP BX ; RETRIEVE BUFFER_TAIL VALUE
185A 89 04 K61_2: MOV [513, AX ; STORE THE VALUE
185C 89 1E 00LC R MOV BUFFER_TAIL,BX ; MOVE THE POINTER UP
1860 E9 184A R JMP K26 ; INTERRUPT_RETURN
j=mm—- TRANSLATE SCAN FOR PSEUDO SCAN CODES
1863 K63: ; TRANSLATE~SCAN
1863 2cC 38 sue AL, B9 ; CONVERT ORIGIN TO FUNCTION KEYS
1865 Kea: i TRANSLATE-SCAN-ORGD
1865 2E: D7 XLAT €s: k9 ; CTL TABLE SCAN
1867 8A EO MOV AH, AL ; PUT VALUE INTO AH
1869 32 CO XOR AL, AL ; ZERO ASCI1 CODE
1868 E9 L7EC R JMP K57 ; PUT IT INTO THE BUFFER
1B6E KB_INT ENDP
; GET_POS
; THIS ROUTINE WILL SHIFT THE VALUE STORED IN THE HIGH NIBBLE
H OF THE VARIABLE VAR_DELAY TO THE LOW NIBBLE.
§ INPUT
i NONE. IT 1S ASSUMED THAT 0S POINTS AT THE BIOS DATA AREA
; OUTPUT
; AL CONTAINS THE SHIFTED VALUE.
186€ GET_POS PROC NEAR
186E Bl PUSH cx ; BAVE SHIFT REGISTER
L86F A0 0086 R MoV AL,BYTE PTR VAR_DELAY ; GET STORAGE LOCATION
1872 24 Fo AND AL, OFOH ; MASK OFF LOW NIBSLE
1874 BL 04 MoV cL, 4 ; SHIFT OF FOUR BIT POSIT)ONS
\1B76 D2 FB SAR AL, CL ; SHIFT THE VALUE SIGN EXTENDED
1878 59 POP cx ; RESTORE THE VALUE
/1879 €3 RET
LB7A GET_POS ENDP
i
; PUT_POS
i THIS ROUTINE WILL TAKE THE VALUE IN LOW ORDER NIBBLE IN
H AL AND STORE IT IN THE HIGH ORDER OF VAR_DELAY
; INPUT
; AL CONTAINS THE VALUE FOR STORAGE
; QUTPUT
: NONE.
;
1874 PUT_POS PROC NEAR
187A 61 PUSH cx ; SAVE REGISTER
1878 BL 04 MoV cL, 4 ; SHIFT COUNT
1870 D2 EO SHL AL, CL ; PUT IN HIGH ORDER NIBBLE
LB7F BA OE 0086 R MoV CL,BYTE PTR VAR_DELAY ; GET DATA BYTE
1883 80 E1 OF AND CL,OFH ; CLEAR OLD VALUE IN HIGH MIBBLE
1888 OA Cl OR AL, CL ; COMBINE HIGH AND LOW NIBBLES
1888 A2 0086 R MoV BYTE PTR VAR_DELAY,AL ; PUT IN POSITION
1868 59 POP cx ; RESTORE REGISTER
188C €3 RET
188D PUT_POS ENDP
f
; MANUFACTURING ACTIVITY SIGNAL ROUTINE - INVOKED THROUGH THE TIMER
; TICK ROUTINE DURING MANUFACTRUING ACTIVITIES . (ACCESSED THROUGH
; INT 1CH)
189D MFG_TICK PROC FAR
1880 50 PUSH Ax
LBBE 2B CO suB AX, AX ; SEND A 00 TO PORT 13 AS A
; ACTIVITY SIGNAL
1880 E6 13 ouT 13H, AL
1892 E4 61 IN AL,PORT_B ; FLIP SPEAKER DATA T0 OPPOSITE
; SENSE
1994 8A EO MoV aH, AL ; SAVE ORIG SETTING
. 1898 80 E4 9D AND AH, 100111018 ; MAKE SURE MUX IS -> RIGHT AND
- ; ISOLATE SPEAKER BIT
1899 FE& DO NOT AL ; FLIP ALL 8ITS
/1898 24 02 AND AL, 000000 LOB ; ISOLATE SPEAKER DATA BIT (NOW IN
; OPPOSITE SENSE)
1890 ©0A €4 OR AL, AH ; COMBINE WITH ORIG. DATA FROM
; PORT B >
189F 0C 10 OR AL, 000100008 ; AND DISABLE INTERNAL SPEAKER ho]
1BA1l E6 61 ouT PORT_8, AL o]
1843 BO 20 MoV AL, 20H ; EOl TO INTR. CHIP &
18A5 E6 20 ouT 20H, AL —
18a7 58 POP AX 5..
LBAB CF IRET =
1849 MFG_TICK ENDP S

ROM BIOS A-49




1849
1848
18AA
18AC
18AE

18682

1804
1884
1888

1807

1889
18B8A
188A
1888
1880
188F
18C1
18c2
18¢3
18C3
18C3

18¢3
18C3
18C8
18ce
18CA

18c8
18co
18CF
1801
1803
18086

1007
1808
18DA
1epc

18DF
18€0
18€2
18€4
1BES
18E9
18E8

18€ED

18F0
18F2
18F5
18F7
18FB
18FC

18FE
1800
1802

1808
1906
1808

190A
180C
190E

2A

E8

58

0A

74

E8

04

€0
18B4 R

90

40

0E
10

D2
Cc5 04
01

F2

0078 R
oA

84 007C R

87

Eq

1825 R

E6
E4

EL

CONVERT AND PRINT ASCll CODE

AL MUST CONTAIN NUMBER TO BE CONVERTEO.
AX AND BX DESTROYED.

PC _BYTE
PUSH
HOV
SHR
CALL
POP
AND

XLAT_PR PROC
ADD
DAA

ADC

DAA
PRT_HEX PROC
PUSH
MOV
NOV
INT
POP
RET
PRT_HEX ENDP
XLAT_PR ENDP
XPC_BYTE

PROC NEAR

NEAR
AL, 090H

AL, 040H

NEAR

SAVE FOR LOW NIBBLE DISPLAY
SHIFT COUNT

NIBBLE SWAP

DO THE HIGH NIBBLE DISPLAY
RECOVER THE NIBBLE

ISOLATE TO LOW NIBBLE

FALL INTO LOW NIBBLE CONVERSION
CONVERT 00-OF TO ASCI! CHARACTER
ADD FIRST CONVERSION FACTOR
ADJUST FOR NUMERIC AND ALPHA
RANGE

ADD CONVERSION AND ADJUST LOW
N1BBLE

ADJUST HIGH NISOBLE TO ASCI1 RANGE

DISPLAY CHARACTER IN AL

CALL VIDEO_IO

; CONTROL IS PASSED HERE WHEN THERE ARE NO PARALLEL PRINTERS
ATTACHED CX HAS EQUIPMENT FLAG,DS POINTE AT DATA {40H)
;DETERHINE WHICH RS232 CARD (0,1) TO USE

REPRINT PROC NEAR

Bl_A:  5U8
TEST
JE

oX, DX
CH 000001008
BI.O 1

; ASSUME TO USE CARD 0
;UNLESS THERE ARE TWO CARDS
; IN WHICH CASE,

USE CARD 1

INC
DETERH!NE HHlCH FUNCTION 1S BEING CALLED

Blo
JZ
DEC
JZ
DEC
JNZ

AH, AH
812
AH
a1l

AH
SHORT 810_3

;GET STATUS FROM RS5232 PDRT
PUSH AX

MOV
INT
CALL

B10_2: MOV

B10_3: JMP

= Bl
; INIT COMMO PORT

AH, 03H
014H
FAKE

ax
DH,DH

010_2

AH, BH

AH, OFEH
SHORT 810_3
AH, 090H

;TEST FOR AH = 0

;GO PRINT CHAR

; TEST FOR AH = 1

;GO DO INIT

; TEST FOR AH = 2

; IF NOT VALID, RETURN
;ELSE. ..

; SAVE AL

;USE THE GET COMMO PORT
;STATUS FUNCTION OF INT14
;FAKE WILL MAP ERROR BITS FROM
;RS232 TO CORRESPONDING ONES
;FOR THE PRINTER

;RESTORE AL

; CHECK IF ANY FLAGS WERE SET

; HOVE FAKED ERROR CONDITION TO AH

; THEN RETURN
;HMOVE IN STATUS FOR ’CORRECT’

H

RETURN

—-- DX HAS WHICH CARD TO IN1T

;MOVE TIME OUT VALUE FROM PRINTER TO RS5232 TIME OUT VALUE
;51 GETS OFFSET INTO THE TABLE

a11: MOV
MOV
ADD
HOY
PUSH
MOV

sva
INT
CALL

PopP
HOV
oR

JE
MoV
JMP

A-50 ROM BIOS

SI,0X

AL, PRINT_TIM_OUT

AL, 0AH

INCREASE DELAY

RS232_TIM_OUTCS11, AL
;BAVE AL
JSET INIT FOR: 1200 BAUD

ax
AL, 087H

AH, AH
014K
FAKE

ax
AH, DH
AH, AH

810_3
AH, DABH
SHORT B10_3

8 BIT WRD LNG

NO PARITY

2 STOP BITS
AH 0 1S COMMO INIT FUNCTION
;00 INIT

;FAKE WILL MAP ERROR BITS FROM
;RS232 TO CORRESPONDING ONES

; FOR THE PRINTER

;RESTORE AL

;IF DH 1S RETURNEO ZERO, MEANING
;NO ERRORS RETURN IT FOR THAT’S THE
; ‘CORRECT’ RETURN FROM AN ERROR

FREE INIT

; THEN RETURN

—t



1925
1925
1927

1824

192C
192E
192F
1932
1934
1936
1937

1837
1937
1939
*538

1930
183F

1942
1944
1945
1945
194A
1948
1948
1960

1952
1957
1858
1959
195A
1958
195C

1962
1966
1987
1968
196A

1968
1971

1977
/\\wn

‘1978
1978

197E
1981

1983
1983

1991
= 000F
1992

[: 4]
€F

Fé&
74

E8.

€F
E8

FF

4c
43

o1

14
1925 R

Fé&
Ca 1E

03
os
€4 80
08

OE 0017 R 04

06 0017 R 04
29

06 0017 R 00

1383 R
001E R
000F 90

FC

06 001A R OOLE R
06 001C R 003C R

EO1B R

EO1B R
2000
El

4F 41 44 20 22
41 63 31 3A 22
52

; PRINT CHAR TO SERIAL PORT
;DX = RS232 CARD TO BE USED: AL HAS CHAR TO BE PRINTED

B12: PUSH AX ; SAVE AL
MOV AH,01 ;L 1S SEND A CHAR DOWN COMMO LINE
INT 014H ; SEND THE CHAR
CALL FAKE ;FAKE WILL MAP ERROR BITS FROM

;RE232 TO CORRESPOND1MG ONES
;FOR THE PRINTER

POP ax ;RESTORE AL
OR DH,DH iSEE IF NO ERRORS WERE RETURNED
N3 812_1
MoV AH, DH ;IF THERE WERE ERRORS, RETURN THEM
JNP SHORT B10_3 ; AND RETURN

B12_1: MOV AH, 010H ;PUT ‘CORRECT‘ RETURN STATUS- IN AH
JMP SHORT B10_3 ;AND RETURN

REPRINT ENDP

; THIS PROC MAPS THE ERRORS RETURNEO FROM A BIOS INT14 CALL
;TO THOSE ‘LIKE THAT’ OF AN INT17 CALL

; BREAK, FRAMING, PARITY, OVERRUN ERRORS ARE LOGGED AS 1/0
;ERRORS AND A TIME OUT IS MOVED TO THE APPROPIATE BIT

FAKE PROC NEAR
XOR DH, DH ;CLEAR FAKED STATUS FLAGS
TEST AH, 0111108 ; CHECK FOR BREAK, FRAMING, PARITY
; OVERRUN
9z B13_1 ;ERRORS. IF NOT THEN. CHECK FOR
; TIME OUT.
MOV DH, 010008 ;SET BIT 3 TO INDICATE ’I1/0 ERROR’
RET ; AND RETURN
B13_1: TEST AH, 0BOH ;TEST FOR TIME OUT ERROR RETURNED-
9z B13_2 ;IF NOT TIME OUT, RETURN
MoV DH, 09H ;IF TIME OUT

813_2: RET
FAKE ENDP

i
i NEW_INT9
; THIS ROUTINE 18 THE INTERRUPT 9 HANDLER WHEN THE MACHINE IS
5 FIRST POWERED ON ANO CASGETTE BASIC IS5 GIVEN CONTROL. IT

; HANDLES THE FIRST KEYSTROKES ENTERED FROM THE KEYBOARD AND
; PERFORMS "SPECIAL" ACTIONS AS FOLLOWS:

; IF ESC 1S THE FIRST KEY ENETERED MIMI-WELCOME 1S

; EXECUTED

; IF CTRL-ESC IS THE FIRST SEQUENCE "LOAD CAS1:,R" IS
; EXECUTED GIVING THE USER THE ABILITY TO BOOT

; FROM CASSETTE

; AFTER THESE KEYSTROKES OR AFTER ANY OTHER KEYSTROKES THE

: INTERRUPT 9 VECTOR IS CHANGED. TO POINT AT THE REAL

i INTERRUPT 9 ROUTINE.

;

N

EW_INT_8 PROC FAR
H

AL, 1 15 THIS AN ESCAPE KEY?

H
£sC _KEY ; JUMP IF AL=ESCAPE KEY

CNP AL, 29 ; ELSE, IS TH1IS A CONTROL KEY?

JE CTRL_KEY ; JUMP IF AL=CONTROL KEY

CALL . REAL_VECTOR_SETUP ; OTHERWISE, INITIALIZE REAL

; INT 9 VECTOR

INT 9H ; PASS THE SCAN CODE IN'AL
IRET ; RETURN TO INTERRUPT 48M
CTRL_KEY:
[ KB_FLAG, 04H ; TURN ON CTRL SHIFT IN KB_FLAG
IRET. ; RETURN TO INTERRUPT
ESC_KEY:
TEST KB_FLAG, 04H ; WAS CONTROL SHIFT OCCURED?
JE ESC_ONLY NO. ESCAPE.ONLY
; CONTROL ESCAPE HAS OCCURED, PUT MESSAGE IN BUFFER FOR CASSETTE
; LOAD
MoV KB_FLAG, 0 ; ZERO OUT CONTROL STATE
PUSH DS’
POP ES ; INITIALIZE ES FOR B10S DATA
PUSH 0S ; SAVE OLD DS
PUSH cs ; POINT DS AT CODE SEGMENT
POP DS.
nov SI,0FFSET CAS_LOAD ; GET MESSAGE
nov DI,OFFSET KB_BUFFER ; POINT AT KEVBOARD BUFFER
MoV CX, CAS_LENGTH ; LENGTH OF CASSETTE MESSAGE
T_LOOP: LODSB ; GET ASCIIT CHARACTER FROM MESSAGE
STOSW ; PUT IN KEYBOARD BUFFER

LOOP T LOOP
. ; RETRIEVE BI10S DATA SEGMENT
jmm———- lNITlALlZE QUEUE SO MESSAGE WILL BE REMOVED FROM BUFFER

NOT THE CASE THE BUFFER WILL EVENTYALLY CONSUME MEMORY.

MoV BUFFER_HEAD, OFFSET KB_BUFFER

MoV BUFFER_TAIL, OFFSET KB_BUFFER+(CAS_LENGTH®2)
:uunnoTEnnn
i IT 1S ASSUMED THAT THE LENGTH OF THE CASSETTE MESSAGE IS
; LESS. THAN OR EQUAL TO THE LENGTH OF THE BUFFER. IF THIS IS
i
i

CALL REAL_VECTOR_SETUP

IRET
ESC_ONLY:
CALL REAL_VECTOR_SETUP
nov €X, MINI

; ENTER THE WORLD OF KEYBOARD CAPER
§mm——— HESSAGE FOR OUTPUT WHEN CONTROL-ESCAPE 1S ENTERED AS FIRST
; KEY SEQUENCE
CAS_LOAD LABEL BYTE

0B ‘LOAD "CAS1:",R’

o8 13
CAS_LENGTH EQU & - CAS_LOAD
NEW_INT_9 ENDP

>
=
=
o
=
=
P
>

ROM BIOS A-51




1992
1982
1993

1994

1898
1999
1898
1890

199F

19a3
1944

19A8
19A7
1948

1840
19AF
1981
1983

1985
1987
1984

188C
198E
18¢c2
.19c4

19c8
18Ccé
19¢9

19¢8
193¢0

19¢cF
1902
1904
1906
18098
190A
190¢C
18DE
190

19ES
19€7
198
19€ED
19EF
19F0
1BF3
18F8
19F7

19F9
19F8
19FD
19FF

1A01-

1A03

1A05
1407
1A0A
1a0C

3JE 0062 R

97 0050 R

A
. 0001

10

c2
16 004A R

b2

WRITE_TTY
THIS INTERFACE PROVIDES A TELETYPE.LIKE INTERFACE TO THE

VIDEO CARD. THE INPUT CHARACTER IS WRITTEN TO THE CURRE
CURSOR POSITION, ANO THE CURSOR IS MOVED TO THE NEXT POS
IF THE CURSOR LEAVES THE LAST COLUMN OF THE FIELD, THE C
IS SET TO ZERO, AND THE ROW VALUE IS INCREMENTED. IF THI
ROW VALUE LEAVES THE FIELD, THE CURSOR IS PLACED ON THE
ROW, FIRST COLUMN, AND THE ENTIRE SCREEN IS SCROLLED UP
LINE. WHEN THBE SCREEN 1S SCROLLED UP, THE ATTRIBUTE FOR
THE NEWLY BLANKED LINE IS READ FROM THE CURSOR POSITION
PREVIOUS LINE BEFORE THE SCROLL, IN CHARACTER MODE. 1IN
GRAPHICS MODE, THE © COLOR IS USED

ENTRY --

(AH) = CURRENT CRT MODE

(AL) = CHARACTER TO BE WRITTEN

NOTE THAT BACK SPACE, CAR RET, BELL AND LINE FEED
HANDLED AS COMMANDS RATHER THAN AS DISPLAYABLE GR
FOREGROUND COLOR FOR CHAR WRITE IF CURRENTLY IN A
GRAPHICS MNODE

8Ly

EXIT --

ALL REGISTERS SAVED

ASSUME CS:CODE,DS:DATA

WRITE_TTY PROC NEAR
PUSH AX ; SAVE REGISTERS
PUSH  aX ; SAVE CHAR TO WRITE
MOV BM,ACTIVE_PAGE ; GET CURRENT PAGE SETTING
PUSH  BX ; SAVE IT
Hov BL, BH ; IN BL
XOR su au
SAL CONVERT TO WORD OFFSET
nov ox [Bx+OFFSET CURSOR _POSN] ; GET CURSOR POSI
POP ; RECOVER CURRENT PAGE
POP ; RECOVER CHAR
; - DX NOW HAS THE CURRENT CURSOR POSITION
cup AL, ; 158 IT A BACKSPACE?
JE vs ; BACK_SPACE
cHp AL, ODH } 15 IT A CARRIAGE RETURN?
JE us ; CAR_RET
cHP AL, 0AH ; I5 1T A LINE FEED
JE vio i LINE_FEED
cup AL, om D18 1T A BELL
JE m BELL
; - WRITE THE CHAR TO THE SCREEN
HOV aH, 10 ; WRITE CHAR ONLY
MOV CX 1 ; ONLY ONE CHAR
INT ; WRITE THE CHAR
; - POSITION THE CURSOR FOR NEXT CHAR
INC oL
cHP OL,BYTE PTR CRT_COLS ; TEST FOR COLUMN OVERF
INZ u7 ; SET_CURSOR
XOR oL, DL ; COLUMN FOR CURSOR
; LINE FEED
v10:
cup DH, 24
INZ [ ; SET_CURSOR_INC
;= SCROLL REQUIRED
H, 2
mr 10H ; SET THE CURSOR
j=———— o:r:numz VALUE TO FILL unn DURING SCROLL
AL, CRT_MODE GET THE CURRENT MODE
cnp AL, 4
Je v2 ; READ-CURSOR
XOR BH,BH i FILL WITH BACKGROUND
NP SHORT U3 . SCROLL-uP
v2: Hov AH, B
INT 10H ; READ CHAR/ATTR AT CURRENT
MOV BH, AH ; STORE IN BH
va: MOV - AX,601H ; SCROLL ONE LINE
SUB. €X, €X ; UPPER LEFT CORNER
MOV DH, 24 ;. LOWER R1GHT ROW
MoV DL,BYTE PTR CRT_COLS % LOMWER RIGHT COLUMN
DEC bL
v4: INT 10H , SCROLL UP THE SCREEM
us: POP ax ; RESTORE THE CHARACTER
JNP VIDEO_RETURN ; RETURN TO CALLER
DH { NEXT ROW
aH, 2
P u4 ; ESTABLISH THE NEW CURSOR
SPACE FOUND
oL, DL - ; ALREADY AT END OF LINE
u7 | SET_CURSOR
L » NO == JUST MOVE [T BACK
f

JMP u7 SET_CURSOR
—— CARRIAGE RETURN FOUND

us XOR oL,0L ; MOVE TO FIRST COLUMN
JHP u7 ; SET_CURSOR

j————— BELL FOUND

U1l BL,2 ; SET UP COUNT FOR BEEP
CALL BEEP ; SOUND THE POD BELL
JHP us ; TTY_RETURK

WRITE_TTY ENDP

A-52 ROM BIOS

NT
ITION.
OLUMN
E ROW
LAST
ONE
FILLING
ON THE

ARE
APHICS

TION

LoW

CURSOR



O

()

1A0C
1A0C
1A0D
1A0E
1A0F
1A0F
1A11
1A14
1A16
1A18
1A1A
1A1C
1A1E
1ALF
1A20
1A21

EO000
E000

EO1B
E01B
EOLIC
EO1D
EOLE

E020
E022
E028

EO2A
EO28
E02C

E020
EO2€E
E031
E032
E033
E034
E035

E035
E035
E036
E037
E038
E039
EO3B
E03C
EO3C

EO3E
E040
E041
E043
EO045
E047
E048
E048
E04B
E04C
E04D
E04F
EOBO
EO0B2
EOB3
EOB4
EO058
EO58
EosB
Eos8

36 30 34 30 33
20 43 4F 50 52
20 49 42 40 20
39 38 31 2C 31
38 33

co
0024
€7 07 1661 R

89 07

61
FE

81

FE

61

0043 R

THIS PROCEDURE WILL ISSUE SHORT TONES TO INDICATE FAILURES
THAT 1: OCCUR BEFORE THE CRT IS STARTED, 2: TO CALL THE
OPERATORS ATTENTION TO AN ERROR AT THE END' OF POST, OR
: TO SIGNAL THE SUCCESSFUL COMPLETION OF POST
ENTRY PARANETERS:
DL = NUNBER OF APPROX. L1/2 SEC TONES TO SOQUND

RR_BEEP PROC NEAR

PUSHF ; SAVE FLAGS
PUSH Bx
cLi ; DISABLE SYSTEM INTERRUPTS
63: ; SHORT_BEEP:
MoV BL, 1 ; COUNTER FOR A SHORT BEEP
CALL BEEP ; DO THE SOUND
Ga: LoOP G4 : DELAY BETWEEN BEEPS
DEC oL ; OONE WITH SHORTS
JNZ G3 ; DO SOME MORE
G5: LooP G5 ; LONG- DELAY BEFORE RETURN
G8: LoOP G6
POP BX ; RESTORE ORIG CONTENTS OF BX
POPF ; RESTORE FLAGS TO ORIG SETTINGS
RET ; RETURN TO CALLER
ERR_BEEP ENOP
LIST
ASSUME CS:CODE, DS:DATA
ORG OE00OH
pB /1504037 COPR. [BM 1981,1983’ ; COPYRIGHT NOTICE

REAL_VECTOR_SETUP
: THIS ROUTINE WILL INITIALIZE THE INTERRUPT 9 VECTOR TO
POINT AT THE REAL INTERRUPT ROUTINE.

i
REAL_VECTOR_SETUP PROC NEAR
AX ; SBAVE THE SCAN CODE
PUSH  BX
PUSH  ES
XOR AX, AX ; IMITIALIZE TO POINT AT VECTOR
SECTOR(0)
MoV ES, AX
MoV BX, SHNAH - ; POINT AT INTERRUPT 9
MoV WORD PTR ES:[BX1,OFFSET KB_INT ; MOVE IN OFFSET OF
; ROUTINE
INC BX ; ADD 2 TO BX
INC BX
PUSH €S ; GET CODE SEGMENT OF 810S (SEGMENT
; RELOCATEABLE)
POP AX
MoV WORD PTR ES:[BX],AX ; MOVE IN SEGMENT OF ROUTINE
POP ES
POP BX
POP ax
RET
REAL_VECTOR_SETUP ENDP
;
KB_NO1SE
i THIS ROUTINE IS CALLED WHEN GENERAL BEEPS ARE REQUIRED FROM
; THE SYSTEM.
; INPUT -
; @X=LENGH OF THE TONE
; CX=CONTAINS THE FREQUENCY
; OUTPUT
i ALL REGISTERS ARE MAINTAINED.
{HINTS
; AS CX GETS LARGER THE TONE PRODUCED GETS LOWER.IN PITCH.
B
KB_NOISE PROC  NEAR
§T1
PUSH  AX
PUSH  BX
PUSH X
IN AL, 061H ; GET CONTROL INFO
PUSH  AX  SAVE
LOOPO1:
AND AL, OFCH ; TURN-OFF TIMER GATE AND SPEAKER
; DATA
OUT  061H, AL ; OUTPUT -TO CONTROL :
PUSH  CX i HALF CYCLE TIME FOR TONE
LOOPO2: LOOP  LOOPO2 ;. SPEAKER OFF
OR aL, 2 . TURN ON SPEAKER BIT
OUT  OGIH, AL . OUTPUT TO CONTROL
POP cx
PUSH  CX ; RETRIEVE FREQUENCY
LOOPO3: LOOP  LOOPO3 ; ANOTHER HALF CYCLE
DEC  BX ; TOTAL TIME COUNT
POP cx ; RETRIEVE FREQ.
JUNZ  LOOPOL ; DO ANOTHER CYCLE
POP  AX ; RECOVER CONTROL
OUT  O0B1H,AL . OUTPUT THE CONTROL
POP cx
POP  BX
POP  AX
RET
KB_NOISE ENDP
ORG OEOSBH
Jmp NEAR PTR RESET

ROM BIOS A-53

>
=}
o
o
=
&
-
>




EOSE
EOSE

E066
EOGE
EO78

EO7E

EOBE
EO98
EOBE
EOAG
EOAE
EOB6
EOBE
EOCE
EOCE

EOD6

EODE
EOE6
EQEE
EOF8
EOFE
El08
E10E
Elie
EL1E
E126
E12E
E136
E13E
Elae
El4E

El156

E1SE
El66
E16E
El76
EL7E
E1B6
ElgE
El96
EIBE
Elaé
E1AE
El1B6
EIBE
ElC6
ELCE

ElDE

A-54 ROM BIOS

78
70

38

o0

FC
7F
cc
00
00

00
00

00

-1+
&C
0
00

00

78

60
ocC
FE
78

cc
cc
cc
1)
cc
co
Fo
FC

3c

ocC
30

cec
FB
EC
3E

[-1M]
FC
FC
DE
[:1:]
18
cc

a3

78

cc

3E
7c
7C

00
00
co

66
cc
cc

78
60

<o

1B

cc
0
cc
cc
cc

33

cc

CHARACTER GEMERATOR GRAPHICS FOR 320X200 AND 640X200

i
; GRAPHICS FOR CHARACTERS 80H THROUGH FFH
i

CRT_CHARH
pe

1]
pe
pB
0B
DB
pe
1]
1]
[1:3
pe
08
o8
[:1:3
pe
pe

[1:}
[1:3
Do
[+]:]
1]
]
[1:3
[1:3
1]
1]
1]
1]
1]
1]
pe

DB

DB
0B
DB
1]
1]
0B
[+]:]
1]
1]
DB
[+]:]
DB
[+]-]
[+]:]
]:3
[ 1]

LABEL BYTE
076H, OCCH, 0COH, OCCH, 078H, 018H, 0OCH, 078H

000H, 0CCH, 000H, OCCH, 0CCH, OCCH, 07EM, 000H
01CH, 000H, 078H, OCCH, OFCH, 0COH, 078H, 000H
07EH, OC3H, 03CH, 006H, 03EH, 0GEH, 03FH, 000H
0CCH, 000H, 078H, 0OCH, 07CH, 0CCH, 07EH, 000H
OEOH, 000H, 078H, 00CH, 07CH, OCCH, 07EM, 000H
030H, 030H, 078H, 00CH, 07CH, OCCH, 07EH, 000H
000H, 000H, 078H, 0COH, OCOH, 07BH, 0OCH, 038H
O7EH, 0C3H, 03CH, 066H, OTEH, 0BOH, 03CH, 000H
OCCH, 000H, 078H, OCCH, OFCH, 0COM, 078MH, 00OH
OEOH, 000H, 078H, OCCH, OFCH, 0COH, 078H, 000H
0CCH, 000H, 070H, 030H, 030H, 030H, 078H, 000H
O7CH, OCGH, 038H, 0 18H, 0 18H, 0 18H, 03CH, 000H
OEOM, 000H, 070H, 030H, 030H, 030H, 078H, 000H
OCEH, 038H, 06CH, OCEH, OFEH, 0CBH, 0CEH, 000H

030H, 030H, 000H, 078H, OCCH, OFCH, OCCH, 000H

01LCH, 000H, OFCH, 060H, 078H, 060H, OFCH, 000H
000H, 000H, O7FH, 0OCH, 07FH, OCCH, 07FH, 000H
03EH, 06CH, OCCH, OFEH, OCCH, OCCH, OCEH, 000H
078H, OCCH, 000H, 078H, OCCH, 0CCH, 078H, 000H
000H, OCCH, 000H, 078H, OCCH, OCCH, 078H, 000H
000H, OEOH, 000H, 078H, OCCH, 0CCH, 078H, 000H
078H, OCCH, 000H, OCCH, OCCH, 0CCH, 07EH, 000H
00OH, OEOH, 000H, OCCH, 0CCH, 0CCH, 07EH, 000H
000H, 0CCH, 000H, 0CCH, 0CCH, 07CH, 00CH, OF BH
0C3H, 018H, 03CH, 066H, 06EH, 03CH, 0 18H, 000H
OCCH, 000H, OCCH, OCCH, OCCH, 0CCH, 078H, 000H
018H, 018H, 07EH, OCOH, OCOH, O7EH, 0 18H, 0 18H
03BH, 06CH, 064H, OF OH, 060H, OE6H, OF CH, 000H
OCCH, 0CCH, 07BH, OFCH, 030H, OFCH, 030H, 030H
OFBH, OCCH, 0CCH, OF AH, OCEH, OCFH, 0CEH, 0C7H

QOEH, 01BH, 01BH, 03CH, 01BH, 0184, OD8H, 070H

0LCH, 000H, 07BH, 0OCH, 07CH, OCCH, O7EH, 000K
038H, 000H, 070H, 030H, 030H, 030H, 078H, 000K
000H, 01CH, 000H, 078H, OCCH, 0CCH, 078K, 000H
000H, 01CH, 000H, OCCH, OCCH, OCCH, 07EH, 000H
000H, OFBH, 000H, OF BH, 0CCH, 0CCH, 0CCH, 000H
OFCH, 000H, OCCH, OECH, OFCH, ODCH, 0CCH, 000H
03CH, 06CH, 06CH, 03EH, 000H, O7EH, 000H, 000K
038H, 08CH, 06CH, 03BH, 000K, 07CH, 000H, 000K
030H, 000H, 030H, 060H, OCOH, OCCH, 078H, 000K
000H, 000H, 000H, OF CH, 0COH, OCOH, 000H, 000K
000H, 000H, 000H, OF CH, 00CH, 0OCH, 000H, 000K
0C3H, 0CEH, OCCH, ODEH, 033H, 06EMH, OCCH, 00FH
0C3H, OCEH, OCCH, ODBH, 037H, 06FH, 0CFH, 003H
01BH, 018H, 00CH, 018H, C 18H, 0 18H, 0 J8H, 000H
000H, 033H, 066H, OCCH, 066H, 033H, 000H, 000K

000H, OCCH, 066H, 033H, 066H, OCCH, OOOH, 000H

p_80
p_81
p_82
p_e3
b_84
p_85
p_8e
p_87
p_es
p_89
p_sA
p_BB
b_8c
b_6p
b_8E

D_BF

0_90

b_81

b_95

D_96

D_9E



()

()

EIDE
ELE6
ELlEE
EIF6
EIFE
E206
E20E
E216
E21E
E226
E22E
E236
E23E
E246
E24€
E256

E25E
E266
E26€
E276
E27E
E286
E2BE
E296
E23E
E2A8
E2AE
E286
E28E
E2C6
E2CE

E206

E20E
E2E6
E2EE
E2F6
E2FE
E306
E30E
E316
EJLE
E326
E32E
E336
E33E
E3486
E34E

E356

22
65

oB

36
00
F8
Fé
Je
FE

36
37
IF

FF

37

F7

FF

36
FF
00

36

AA

18
18

36

00

18
36
30
a0

00
30

oo
00

36
00
00

36

00
FF

00

22
&5

F6
FE
Fe
F&

36

FE
FE

FB

37
3F
37
FF
F7

37

F7

FF

FF
FF
FF
IF
1F
1F

3F

1F
FF
FF
Fo

OF

AA

00

18

18

36

00

]
-]
oe
[+]:]
0B
oe
-]
pe
o8
[+]:]
1]
1]
-]
]
[1:3
[1:3

0B
o8B
B
-]
0B
oe
oe
-]
oe
o8
e
oe
e
[+]:]
o8
-]

-]
oe
1]
11:]
[]:]
-]
oe
-]
De
0B
0B
[1}:]
1]
1]
-]

[]:]

022H, 0BBH, 022H, 0BBH, 022H, 0BBH, 022H, 0BBH
055H, 0AAH, 058H, 0AAH, O55H, OAAH, 0%5H, 0AAH
ODBH, 077H, DDBH, OEEH, OD8H, 077H, ODBM, OEEH
01BH, 018H, 0 1BH, 018H, 018H, 018H, 018H, D 18H
01BH, 018H, 018H, 016H, OFBH, 0 18H, 0 18H, 0 18H
01BH, 018H, OFBH, 0 18H, OFBH, 01BH, 0 18H, 0 18H
036H, 036H, 036H, 03GH, OF6H, 036H, 036H, 036H
000H, 000H, 000H, 000H, OFEH, 036M, 036H, 036H
000H, 000H, OF8H, 0 18H, OF8H, 018H, 0 18H, 0 18H
036H, 036H, OFGH, 006H, OFGH, 036H, 03EH, 036H
036H, 036H, 03EH, 036H, 036H, 036H, 0IEH, 0I6H
000H, 000H, OFEH, 006H, OF6H, 036H, 036H, 036H
036H, 036H, OFGH, 006H, OFEH, 000H, 000H, 000H
036H, 036H, DIGH, 036H, OFEH, 000H, 000H, 00OH
©018H, 018H, OF8H, 018H, OF8H, 000H, 000H, 000H

000H, 000H, 000H, 000H, OFBH, 018H, 018H, 016H

018H, 016H, 016H, 0 18H, 0 1FH, 000H, 000H, 000H
018H, 018H, 016H, 018H, OFFH, 000H, 000H, 000H
000H, 000H, 000H, 000H, OFFH, 018H, 018H, 0 18H
018H, 018H, 0 18H, 018H, 01FH, 018H, 018H, 018H
000H, 000H, 000H, 000H, OFFH, 000H, 000H, 000H
018H, 016H, 0 18H, 018H, OFFH, 0 18H, 018H, 0 18H
018H, 018H, 0 1FH, 0 18H, 0 1FH, 018H, 018H, 0 18H
036H, 036H, 036H, 036H, 037H, 03EH, 036H, 0IEH
036H, 036H, 037H, 030H, 03FH, 00OH, 000H, 000H
000H, 000H, 03FH, 030H, 037H, 036H, 036H, 0IEH
036H, 036H, OF7H, 000H, OFFH, 000H, 000H, 000H
000H, 000H, OFFH, 000H, OF7H, 036H, 036H, 036H
036H, 036H, 037H, 030H, 037H, 03EH, 036H, 036H
000H, 000H, OFFH, 000H, OFFH, 000H, 000H, 000H
036H, 036H, OF 7H, 000H, OF 7H, 03EH, 036H, 0IEH

018H, 018H, OFFH, 000H, OFFH, 000H, 000H, 000H

036H, 036H, 036H, 036H, OFFH, 000H, 000H, 000H
000H, 000H, OFFH, 000H, OFFH, 01BH, 018H, 0 18H
000H, 000H, 000H, 000H, OFFH, 036H, 036H, 036H
036H, 036H, 036H, 036H, 03FH, 000H, 000H, 000H
018H, 018H, 0 1FH, 018H, 0 1FH, 000H, 000H, 000H
000H, 000H, O 1FH, 0 18H, 0 1FH, 018H, 0 18H, 0 18H
©000H, 000H, 000H, 000H, 03FH, 036H, 0I6H, 03EH
036H, 036H, 036H, 036H, OFFH, 036H, 036H, 036H
018H, 018H, OFFH, 018H, OFFH, 018H, 018H, 01BH
018H, 0 1BH, 0 18H, 018H, OF8H, 000H, 000H, 000H
000H, 000H, 000H, 000H, 0 1FH, 0 18H, 018H, 0 18H
OFFH, OFFH, OFFH, OFFH, OFFH, OFFH, OFFH, OFFH
000H, 000H, 000H, 000H, OFFH, OFFH, OF FH, OFFH
OFOH, OFOH, OFOH, OF OH, OFOH, OF OH, OF OH, OF OH
OOFH, 0OFH, OOFH, OOFH, 0OFH, 0OFH, 00FH, 00FH

OFFH, OFFH, OFFH, OFFH, 000H, 000H, 00OH, 000H

ROM BIOS A-55

D_B9

0_8aA

0_8C
0_8D
D_BE

0_BF

o_c1
b_c2
0_c3

D_c4

b_co
D_CA

o_ce

b_co

D_CE

p_bo
DOt
p_D2
0_b4

0_DS

b_07
0_08
0_09
0_o8
D_DC
0_DD

D_OE

>
=]
°
@
-
S
>
P




E3EE 00 00 76 DC CB DC Y 000H, 000H, 076H, ODCH, OCBH, ODCH, 076H, 0004 ; D_EO
76 00
E368 00 78 CC F8 CC FB 0B 000H, 078H, OCCH, OF 8H, 0CCH, OFBH, OCOH, 0COH  ; D_E
co co
E36E 00 FC CC CO CO CO 0B 000H, OFCH, OCCH, 0COH, OCOH, 0COH, OCOH, 000H ; D_E2
co 00
E376 00 FE 6C 6C 8C 6C o8 000H, OFEH, OECH, 06CH, 06CH, 06CH, 06CH, 000H ; D_E3
8C 00
E37E FC CC 60 30 €0 CC 0B OFCH, OCCH, 060H, 030H, 060H, 0GCH, OFCH, 000H ; D_E4
FC 00
E388 00 00 7E D8 DB DB B 000H, 000H, O7EH, ODEH, OD8H, 0DBH, 070H, 000K ; D_ES
70 00
E38E 00 66 €6 66 66 7C 0B 000H, 066H, 06EH, 06EH, 06EH, 07CH, 06OH, OCOH  ; D_E6
60 CO
E386 00 76 DC 18 18 18 DB 00OH, 076H, ODCH, 0 418H, 01BH, 018H,018H, 000H ; D_E7
18 00
E38E FC 30 78 CC CC 78 o8 OFCH, 030H, 078H, OCCH, OCCH, 07BH, 030H, OFCH ; D_EB
30 FC
E3A6 38 6C C6 FE C6 6C 0B 038H, 06CH, 0CEH, OFEH, OCEH, 06CH, 038H, 000H ; D_E9
38 00
E3AE 38 6C C6 C6 6C 6C 0B 038H, O6CH, OC6H, OCEH, 06CH, 06CH, OEEH, 000H ; D_EA
EE 00
E3B6 1C 30 18 7C CC CC 0B 01CH, 030H, 016M, 07CH, 0CCH, OCCH, 076H,000H ; D_EB
78 00
E38E 00 00 7E DB DB 7E 0B 000H, 000H, O7EH, ODBH, ODBH, O7EH, 000H, 000H ; D_EC
00 00
E3C6 06 OC 7E D@ DB 7E o8 006H, 00CH, O7EH, ODBH, ODBH, O07EH, 060H, OCOH ; D_ED
60 CO
E3CE 38 60 CO FB CO 60 e 038H, O60H, OCOM, OFBH, OCOH, 060H, 038H, 000H ; D_EE
38 00
E3D6 78 CC CC CC CC CC 0B 078H, OCCH, OCCH, 0CCH, OCCH, OCCH, OCCH, 000H ; D_EF
cc 00
E3DE 00 FC 00 FC 00 FC Y 000H, OF CH, 000H, OFCH, 000H, OFCH, 000H, 000H ; D_FO
00 00
E3E6 30 30 FC 30 30 00 Y3 030H, 030H, OFCH, 030H, 030H, 000H, OFCH, 0004 ; D_F1
FC 00
E3EE 60 30 18 30 €0 00 B 060H, 030H, 01BM, 030H, 060H, 000H, OFCH, 000H ; D_F2
FC 00
E3F6 18 30 60 30 18 00 B 016H, 030H, OEOH, 030K, 0 18H, 000H, OFCH, 000H ; D_F3
FC 00
E3FE OE 1B 18 18 18 18 Y OOEH, 018H, 018H, 01BH, 018H, 016H, 018H,018H4 ; D_F4
1e 18
E406 18 18 18 18 18 D6 b8 018H, 01BH, 016H, 0 18H, 0 18H, ODBH, ODBH, 070H ; D_FS5
08 70
E40E 30 30 00 FC 00 30 Y 030H, 030H, 000H, OFCH, 000H, 030H, 030H, 000H ; D_F6
30 00
E416 00 76 0C 00 76 DC 0B 0OOH, 076#H, ODCH, 00OH, 076H, ODCH, 000H, 000H ; D_F7
00 00
E41E 38 6C 6C 38 00 00 08 038H, 06CH, 06CH, 038H, 000H, 000H, 000H, 000H ; D_F8
00 00
E426 00 00 00 18 18 00 113 000H, 000H, 000H, 0 18H, 0 18H, 000H, 000H, 000H ; D_F9
00 00
E42E 00 00 00 00 18 00 -] 00O0H, 000H, 000H, 000H, 018H, 000H, 000OH, 000H ; D_FA
00 00
E436 OF OC 0C OC EC 6C 08 O0OFH, 0OCH, 00CH, 00CH, OECH, 06CH, 03CH, 01CH ; D_FB
3¢ 1
E43E 78 6C 6C 6C 6C 00 0B 078H, 06CH, 06CH, O6CH, O6CH, 000H, 000H, 000H ; D_FC
00 00
E446 70 18 30 60 78 00 Y] 070H, 01BH, 030H, 060H, 078H, 000H, 000H, 000H ; D_FD
00 00 |
E44E 00 00 3C 3C 3C 3C 08 000H, 000H, 03CH, 03CH, 03CH, 03CH, 000H, 000H ; D_FE
00 00
E456 00 00 00 00 00 00 o8 00OH, 000H, 00OH, 00OH, 000H, 000H, 000H, 000H ; D_FF
00 00
ASSUME  CS:CODE,DS:DATA
. SET_CTYPE
H THIS ROUTINE SETS THE CURSOR VALUE
TN
: (CX) HAS CURSOR VALUE CH-START LINE, CL-STOP LINE
; ouTPUT
; NO
E4BE SET_CTYPE PROC  NEAR
E45E 80 FC 04 cup AH, 4 ; IN GRAPHICS MODE?
E461 72 03 JC c2ax ! No, JuMp
E463 80 CD 20 oR CH, 20H i YES, 01SABLE CURSOR
E466 84 0a c2ax:  mov aH, 10 ! 6848 REGISTER FOR CURSOR SET
E468 89 OE 0060 R MoV CURSOR_MODE,CX , SAVE IN DATA AREA
E46C EB E472 R cALL  c23 ! OUTPUT CX REG
E46F E9 OF70 R NP VIDEO_RETURN
;THIS ROUTINE OUTPUTS THE CX REGISTER TO THE 6845 REGS NAMED IN AH
E472 88 16 0063 R c23: MoV DX,ADDR_6846  ; ADDRESS REGISTER
E476 @A C4 Mov AL, AH | GET vaLVE
E478 EE out DX, AL ! REGISTER BET
£479 42 INC DX . DATA REGISTER
E47A 8A C5 WOV AL, CH } paTa
E47C EE ouT DX, AL
E470 4A DEC DX
EA7E B8A C4 Mov AL, aH
E480 FE CO INC AL ; POINT TO OTHER DATA REGISTER
£482 EE ouT DX, AL ! SET FOR SECOND REGISTER
£483 42 INC ox
E484 BA CI MoV AL, cL . SECOND DATA VALUE
£486 EE outT DX, AL
£487 C3 RET ; ALL DONE
E488 SET_CTYPE ENDP

A-56 ROM BIOS



SET_CPOS
THIS ROUTINE SETS THE CURRENT CURSOR POSITION TO THE
NEW X-Y VALUES PASSED

DX - ROW,COLUMN OF NEW CURSOR
BH - DISPLAY PAGE OF CURSOR
QUTPUT
CURSOR 1S SET AT 6845 IF DISPLAY PAGE IS CURRENT DISPLAY

i
i
i
H
H
i
H
H
i
i
S

£488 ET_CPOS PROC NEAR
E4BE 8A CF MOV cL,BH
E4BA 32 ED XOR CH, CH ; ESTABLISH LOOP COUNT
E4BC 01 El SAL cx, 1 ; WORD OFFSET
E4BE BB F1 MoV SI,CX ; USE INDEX REGISTER
E490 B8 84 0050 R Moy [SI+OFFSET CURSOR_POSN],DX ; SAVE THE POINTER
E494 3B 3E 0082 R cHP ACTIVE_PAGE, BH
E498 78 OB JINZ c24 ; SET_CPOS_RETURN
E49A 9B C2 MOV AX, DX ; GET ROW/COLUMN TO AX
E49C EB E4A2 R CALL c28 ; CURSOR_SET
E49F E9 OF70 R ca4: JuP VIDEO_RETURN
EdA2 SET_CPOS ENDP
jmm———- SET CURSOR POSITION, AX HAS ROW/COLUMN FOR CURSOR
€442 czs PROC NEAR
EdA2 EB EBC2 R CALL POSITION ; DETERMINE LOCATION [N REGEN
; BUFFER
E4AE BB CB MOV CX, AX
E4A7 03 OE 004E R ADD CX, CRT_START ; ADD IN THE START ADDRESS FOR THIS
; PAGE
E4AB D1 F9 SAR cx, 1 ; DIVIDE BY 2 FOR CHAR ONLY COUNT
E4AD B4 OE MOV AH, 14 ; REGISTER NUMBER FOR CURSOR
E4AF EB E472 R cALL c23 ; OUTPUT THE VALUE TO THE 5845
E4B2 C3 RET
E4B3 ca2s ENOP
; ACT_D1SP_PAGE
; THIS ROUTINE SETS THE ACTIVE DISPLAY PAGE, ALLOWING
; THE FULL USE OF THE RAM SET ASIOE FOR THE VIDEO ATTACHMENT
; INPUT
; AL HAS THE NEW ACTIVE DISPLAY PAGE
; OUTPUT
; THE 5845 1S RESET TO DISPLAY THAT PAGE
i
E4B3 ACT_DISP_FAGE  PROC NEAR
E4B3 A8 BO JEST AL, 0BOH ©; CRT/CPU PAGE REG FUNCTION
E4BE 75 24 JINZ SET_CRTCPU ; YES, GO HANDLE IT
E4B7 A2 0082 R MoV ACTTVE_PAGE, AL ; SAVE ACTIVE PAGE VALUE
E4BA BB OE 004C R MoV CX, CRT_LEN , GET SAVED LENGTH OF REGEN BUFFER
E4BE 9B cBW ; CONVERT AL TO WORD
E4BF 30 PUSH AX ; SAVE PAGE VALUE
E4CO F7 E1 MUL cx ; DISPLAY PAGE TIMES REGEN LENGTH
EAC2 A3 004E R . MoV CRT_START, AX ; SAVE START ADORESS FOR LATER USE
/‘\'. E4CE 68 CB MOV CX, AX ; START ADORESS TO CX
EACT ©1 F9 SAR cx, 1 ; DIVIDE BY 2 FOR 6845 HANDLING
k/,' E4C9 B4 OC MoV AH, 12 ; 6845 REGISTER FOR START ADDRESS
EAC8 EB E472 R CALL c23
EACE B8 POP BX *; RECOVER PAGE VALUE
EACF D1 E3 SAL BX, 1 ; #2 FOR WORD OFFSET
E4DL 8B 87 0050 R MoV AX, IBX + OFFSET CURSOR_POSN] ; GET CURSOR FOR THIS
; PAGE
E4DE EB E4A2 R CALL c28 ; SET THE CURSOR POSITION
E4DB ES OF70 R JHP VIDEO_RETURN
H
; SET_CRTCPU
; THIS ROUTINE READS OR WRITES THE CRT/CPU PAGE REGISTERS
;
; INPUT
; (AL) = B3H SET BOTH CRT AND CPU PAGE REGS
; (BH) = VALUE TO SET IN CRT PAGE REG
; (BL) = VALUE TO SET IN CPU PAGE REG
; (AL) = 82H SET CRT PAGE RE
; (BH) = VALUE TO SET IN CRT PAGE REG
; (AL) = 81H SET CPU PAGE REG
i (BL) = VALUE TO SET IN CPU PAGE REG
; (AL) = BOH READ CURRENT VALUE OF CRT/CPU PAGE REGS
; OUTPUT
i ALL FUNCTIONS RETURN
; (8H) = CURRENT CONTENTS OF CRT PAGE REG
; {BL) = CURRENT CONTENTS OF CPU PAGE REG
;
E4DB SET_CRTCPU:
E4DB  BA EO MoV AH, AL ; SAVE REQUEST IN AH
E4DD 8A 03DA Moy 0X,VGA_CTL ; SET ADDRESS OF GATE ARRAY
E4E0 EC c26: IN AL, DX ; GET STATUS
E4EL 24 08 AND AL, 0BH ; VERTICAL RETRACE?
E4E3 74 FB J2 ; NO, WAIT FOR IT
E4ES 8A 03DF MOV DX, PAGREG ; SET 10 ADDRESS OF PAGE REG
E4EB  AO 008A R Moy AL, PAGDAT ; GET DATA LAST OUTPUT TO REG
E4EB 80 FC 80 CHP AH, BOH ; READ FUNCTION REQUESTED?
E4EE 74 27 Jz c29 ; YES, DON’T SET ANYTHING
E4F0 80 FC 84 CHP AH, B4H ; VALID REQUEST?
N\ E4F3 73 22 JINC c29 ; NO, PRETEND IT WAS A READ REQUEST
E4F5 F8 C4 01 TEST AH, 1 ; SET CPVU REG?
E4FB 74 0D Jz c27 ; NO, GO SEE ABOUT CRT REG 2>
E4FA DO E3 SHL 8L, 1 ; SHIFT VALUE TO RIGHT BIT POSITION
E4FC DO E3 SHL BL, 1 hel
E4FE DO E3 SHL eL, 1 -
€500 24 C7 AND AL,NOT CPUREG ; CLEAR OLD CPU VALUE Ped
€502 80 E3 38 AND 8L, CPUREG ; BE SURE UNRELATED BITS ARE ZERO =
EBOB  0A C3 OR AL, BL ; OR IN NEW VALUE o
A

ROM BIOS A-57




EB07 F6 C4 02 c27: TEST
EBOA 74 07 Jz
EBOC 24 F8B AND
ESOE BO E7 07 AND
ES511 0OA C7 OR
E513 EE Cc28: ouT
ES14 A2 00BA R MOV
E517 BA DB €29: MoV
E518 80 E3 38 AND
£51C DO F8 SAR
ESIE 00 FB SAR
ES20 DO FB SAR
E522 BA F8 MoV
ES524 BO E7 07 AND
EB27 5F POP
EG28 BE POP
E528 6B POP
E52A ES OF73 R JHP
EB2D ACT_DI15SP_PAGE

AH, 2 ; SET CRT REG?

c28 © NO, GO RETURN CURRENT SETTINGS
AL,NOT CRTREG ; CLEAR OLD CRT VALUE

BH, CRTREG ; BE SURE UNRELATED BITS ARE ZERQ
AL, BH ; OR IN NEW VALUE

DX, AL ; SET NEW VALUES

PAGDAT, AL ; SAVE COPY IN RAM

8L, AL . GET CPU REG VALUE

BL, CPUREG ; CLEAR EXTRA BITS

BL, 1 ; RIGHT JUSTIFY IN 8L

BL, 1

BL, 1

BH, AL ; GET CRT REG VALUE

BH, CRTREG ; CLEAR EXTRA BITS

01 ; RESTORE SOME REGS

s1

ax ; DISCARD SAVED BX

c22 ; RETURN

ENDP

INPUT

READ_CURSOR

THIS ROUTINE READS THE CURRENT CURSOR VALUE FROM THE
6845, FORMATS [T, AND SENDS IT BACK TQO THE CALLER

BH - PAGE OF CURSOR

OUTPUT

DX - ROW, COLUMN OF THE CURRENT CURSOR POSITION
CX = CURRENT CURSOR MODE

H
i
i
i
;
i
i
H
R

PROC NEAR
BL, BH

BH, BH

BX, 1 , WORD OFFSET
DX, [BX+OF FSET CURSOR_POSN)
CX, CURSOR_MODE

AX ; DISCARD SAVED CX AND DX

ENDP

THIS ROUTINE WILL ESTABLISH THE BACKGROUND COLOR, THE
OVERSCAN COLOR, AND THE FOREGROUND COLOR SET FOR GRAPHICS

(8H) HAS COLOR D
1

F BH=0, THE BACKGROUND COLOR VALVUE IS5 SET
FROM THE LOW BITS OF BL (0-31)
IN GRAPHIC MODES, B80TH THE BACKGROUND AND
BORDER ARE SET. IN ALPHA MODES, ONLY THE
BORDER IS5 SET.
IF BH=1, THE PALETTE SELECTION 1S5 MADE
BASED ON THE LOW BIT OF BL:
2 COLOR MODE:
0 = WHITE FOR COLOR 1
L = BLACK FOR COLOR 1
4 COLOR MODES:
© = GREEN, REO, YELLOW FOR
COLORS 1,2,3
1 = BLUE, CYAN, MAGENTA FOR
COLORS 1,2,3
16 COLOR MODES:
ALWAYS SETS UP PALETTE AS:
BLUE FOR COLOR 1
GREEN FOR COLOR 2
CYAN FOR COLOR 3
RED FOR COLOR 4
MAGENTA FOR COLOR §
BROWN FOR COLOR 6
LIGHT GRAY FOR COLOR 7
OARK GRAY FOR COLOR 8
LIGHT BLUE FOR COLOR 9
LIGHT GREEN FOR COLOR 10
LIGHT CYAN FOR COLOR 11
LIGHT RED FOR COLOR 12
LIGHT MAGENTA FOR COLOR 13
YELLOW FOR COLOR 14
WHITE FOR COLOR 15

(BL) HAS YHE COLOR VALUE Y0 BE USED

THE COLOR SELECTION IS UPDATED

£52D0 EAD_CURSOR
E52D 8A DF MoV
EG2F 32 FF XOR
EE31 D1 E3 SAL
EG33 8B 97 0050 R MOV
ES37 BB OE 0060 R MoV
ES3B 5F POP
E53C 5E POP
£53D0 6B POP
£53E 6B POP
EB3F 5B POP
ES40 IF POP
ES41 07 POP
EB4A2 CF IRET
E543 READ_CURSOR

; SET COLOR

H

; INPUT

H

H

H

H

H

; OUTPUT

H

i
E543 SET_COLOR
ES43 BA 03DA MOV
ES46 EC C30: IN
EG47 AB 08 TEST
ES4D 74 FB Jz
ES4B  0A FF OR
E54D 75 19 JNZ

A-58 ROM BIOS

PROC NEAR

DX,VGA_CTL ; 170 PORT FOR PALEYTE

AL, DX ; BYNC UP VGA FOR REG ADDRESS
AL, B 1S VERTICAL RETRACE ON?7
c3o NO, WAIT UNTIL IT IS

BH, BH ; IS THIS COLOR 07

ca1 ; QUTPUT COLOR 1



.

-

-

EB4F
E554
ES88
ES58
E3E9
ESEB
EBSC
ESSE
EGSF
EG81
ES682

1ES68
" EE6B

ESEE
EG70
EB72
EG74
E576
ES78
E57A
EB7C
EG7E
EGB1
EB83
E5BS
E5B8
ESBA
ESBB
ESBE
ES90
EG92
EG93
EEBE
ES97
EG99
EGSA
EGSC
EB9E
E5A0
EBA3
EBAE
ESA6
EJA7
EBAS
EGAB

ESAD
EBAE

© EGB1

EGB1
EGB1
E5SBE
EGBB
ESBC
ESBD
EGBE
ESBF
EGC2

EGC2
EGC2
E5C3
EGCS
EGC7
ESCE
EBCD
EBCF
ESD1
ESD2
ESD3

3E 0049 R 04
08
10

c3

000F
ca

c4
co

OF70 R

26 004A R
0048 R
3E 0062 R

OF73 R

[
26 004A R

C305:

C3z:
C33:

Ccaa:

C36:

C36:

C37:

c€as:

SET_COLOl

HANOLE COLOR 0 BY SETTING

CHP
Je

MOV
ouT
MOV
ouT
Mov
ouT
MOV
ouT
MOV
JMP

AND BORDER COLOR

THE BACKGROUND COLOR

CRT_MODE, 4 ; IN ALPHA MODE?
€303 ; YES, JUST SET BORDER REG
AL, 10H ; SET PALETTE REG 0
ox, AL ; SELECT VGA REG
AL, BL ; GET COLOR
0x, AL ; SET IT
AL, 2 ; SET BORDER REG
DX, AL ; SELECT VGA BORDER REG
AL, BL ; GET COLOR
DX, AL ; SET
i

CRT_PALLETYE, AL
VIDEO_RETURN

1T
SAVE THE COLOR VALUE

HANDLE COLOR 1 BY CHANG!NG PALETTE REGISTERS

MOV

MOV
CHP
JE

CHP
JE

CHP
JE

CHP
JNE
MOV
ROR
JNC
ADD
MOV
INC
MOV
MOV
MOV
ouT
MOV
ouT
INC
INC
Lool
JHP
MoV
MOV
MOV
ouT
out
INC
LOO!
XOR

ouT

JHP
R

P

P

AL, CRT_MODE
CX OFFSET M0072

L6

GET CURRENT MODE
POINT TO 2 COLOR TABLE ENTRY
2 COLOR MODE?

ca3 YES, JUMP

AL, 4 4 COLOR MODE?

Cc32 YES, JUMP

AL,S 4 COLOR MODE?

€32 YES, JUMP

AL, OAH 4 COLOR MODE?

C36 NO, GO TO 16 COLOR SET UP
CX, OFFSET M0074 POINT TO 4 COLOR TABLE ENTRY
BL, SELECT ALTERNATE SET?

C34 NO, JUMP

Cx, M0072L POINT TO NEXT ENTRY

B8x, CX TABLE ADDRESS IN BX

BXx SKIP OVER BACKGROUND COLOR

Cx,M0072L-1

SET NUMSER OF REGS TO FILL

AH, 11H AH 18 REGISTER COUNTER

AL, AH GET REG NUMBER

X, AL SELECT IT

AL, CS: [BX]1 GET DATA

DX, AL SET IT

AH NEXT REG

8X NEXT TABLE VALUE

c3s

SHORT €38

AH, 11H ; AH IS REGISTER COUNTER

cx, 18 ; NUMBER OF PALETTES

AL, AH ; GET REG NUMBER

DX, AL ; SELECT IT

DX, AL ; SET PALETTE VALUE

AH ; NEXT REG

€37

AL, AL ; SELECT LOW REG TO ENASBLE VIDEO
; AGAIN

DX, AL

VIDEO_RETURN
ENDP

AH =

VIDEO STATE
RETURNS THE CURRENT VIDEO STATE IN AX

NUMBER OF COLUMNS ON THE SCREEN
CURRENT VIDEQ MODE
CURRENT ACTIVE PAGE

H
i
v

IDEO_STATE PROC NEAR
MoV AH,BYTE PTR CRT_COLS ; GET NUMBER OF COLUMNS
MoV AL, CRT_MODE ; CURRENT MODE
MOV BH, ACTIVE_PAGE ; GET CURRENT ACTIVE PAGE
POP DI ; RECOVER REGISTERS
POP 51 ;
POP cx ; DISCARD SAVED 8X
JHP c22 ; RETURN TO CALLER
VIDEO_STATE ENDP
; POSITION
; THIS SERVICE ROUTINE CALCULATES THE REGEN BUFFER ADDRESS
i OF A CHARACTER IN THE ALPHA MODE
; INPUT
; AX = ROW, COLUMN POSITION
; OUTPUT
; AX = OFFSET OF CHAR POSITION IN REGEN BUFFER
POSITION PROC NEAR
PUSH BX ; SAVE REGISTER
MoV BX, AX
Hov AL, AH ; ROWS TO AL
HUL BYTE PTR CRT_COLS ; DETERMINE BYTES TO ROW
XOR BH, BH
ADD AX, BX ; ADD IN COLUMN VALUE
SAL AX, 1 ; % 2 FOR ATTRIBUTE BYTES
POP BX
RET
POSITION ENOP
SCROLL UP

INPUT

OUTPUT
N

THIS ROUTLINE MOVES A BLOCK OF CHARACTERS UP
ON THE SCREEN

(AH
(AL
{cx
(DX
(BH
{DS
(ES

)
)
H
)
)
)
)

CURRENT CRT MODE

NUMBER OF ROWS TO SCROLL

ROW/COLUMN OF UPPER LEFT CORNER
ROW/COLUMN OF LOWER RIGHT CORNER
ATTRIBUTE TO BE USED ON BLANKED LINE

DATA SEGMENT
REGEN BUFFER SEGMENT

ONE -- THE REGEN BUFFER IS MODIFIED

H
H
H
i
B
i
i
H

ROM BIOS A-59

A% xgpusddv




004A R

004A R

ESD3
ESD3 B8aA
E505 @0
E5D8 72
ESDA E9
E5DD
ESDD &3
ESDE @B
ESEQ EB
ESE3 74
ESES 03
ESE7 BA
EBES 2A
EGEB EB
ESEE 03
ESFO 03
ESF2 FE
ESF4 78
ESF6 5B
ESF7 BO
ESF9 EB
EBFC 03
ESFE FE
E600 75
E602 E9
E605 BA
E607 EB
EE0S
EB09
E609 EB
EBOC 03
E610 BB
E612 BB
E614 2B
E616 FE
E61B FE
E6l1A 232
E61C BB
E620 03
E622 B8A
E624 F6
E628 03
EB2A 06
E628 IF
E62C O0A
E62E C3
E62F
E62F
E62F 8A
E631 56
E632 57
E633 F3/ AB
E635 G&F
E636 S5E
E637 €3
E63B
E638
€638 BA
E63A 57
EE38 F3/ AB
E63D SF
E63E €3
E63F
E63F
E63F FD
E640 BA
E€42 BO
E645 72
EG47 E9
E64A 53
E€48 . 8B
E64D EB
E650 74
€652 28
EE54 BA
E656 2A

A-60

ROM BIOS

ASSUME

SCROLL_UP

Cc39:

Cai:

caz:

Ca3:
Caaq;

MOV
CHP
JC

JHP

SCROLL _UP
HANDLE COMMON SCROLL SET
SCROLL POSITION PROC NE,

Ccae

CALL
ADD
Hov
MOV
sus
INC
INC
XOR
MOV
ADD
HOV
HUL

AOD
PUSH

POP
OR

PROC
MOV
PUSH
PUSH
REP
POP
POP
RET

PROC NEAR
BL, AL
AH, 4

c39
GRAPHICS_UP
BX

AX, CX
SCROLL_POSITION
cad

C5:COOE, DS: DATA,ES: DATA

SAVE LINE COUNT IN BL
TEST FOR GRAPHICS MODE
HANDLE SEPARATELY

UP_CONT INVE

SAVE FILL ATTRIBUTE IN BH
UPPER LEFT POSITION

DO SETUP FOR SCROLL
BLANK_FIELD

51, AX FROM ADDRESS

AH, DH % ROWS IN BLOCK

AH, BL % ROWS TO BE MOVED

cas MOVE ONE ROW

S1,8P

DI,BP ; POINT TO NEXT LINE IN BLOCK
au ; COUNT OF LINES TO MOVE
c40 ; ROW_LOOP

ax ; RECOVER ATTRIBUTE IN AH
AL’ ! ; FILL WITH BLANKS

ca6 ; CLEAR THE ROW

ol,BP ; POINT TO NEXT LINE

BL ; COUNTER OF LINES TO SCROLL
caz i CLEAR_LOOP

VIDEO_RETURN

BL,DH ; GET ROW COUNT

cal ; 60 CLEAR THAT AREA

ENOP

UP HERE

POSITION ; CONVERT TO REGEN POINTER
AX, CRT_START ; OFFSET OF ACTIVE PAGE

D1, AXx ; TO ADDRESS FOR SCROLL

51, AX ; FROM ADDRESS FOR SCROLL
bX, CX ; DX = SROWS, 8COLS I[N BLOCK
[:13]

oL INCREMENT FOR 0 ORIGIN

CH, CH
8P, CRT_COLS
BF, BP
AL, BL

BVTE PTR CRT_COL

SET HIGH BYTE OF COUNT TO ZERO
GET NUMBER OF COLUMNS IN DISPLAY
TIMES 2 FOR ATTRIBUTE BYTE

GET LINE COUNT

; DETERMINE OFFSET TO FROM
ADDRESS

;
ax, ax ; %2 FOR ATTRIBUTE BYTE
ES ; ESTABLISH ADORESSING TO REGEN
; BUFFER
oS ; FOR BOTH POINTERS
BL,BL ; 0 SCROLL MEANS BLANK FIELD
i

RET
SCROLL, POSITION ENDP
MOVE_ROW

RETURN WITH FLAGS SET

NEAR

CL,DL ; GET ® OF COLS TO MOVE

s1

Dl ; SAVE START AOORESS
MOVSW ; HOVE THAT LINE ON SCREEN
DI

s1 ;i RECOVER ADDRESSES

ENDP
CLEAR_ROW

ENDP

NEAR

CL,DL ; GET % COLUMNS TO CLEAR
D1

STOSW ; STORE THE FILL CHARACTER
b1

i
i

SCROLL_DOWN

THIS ROUTINE MOVES THE CHARACTERS WITHIN A DEFINED
BLOCK DOWN ON THE SCREEN, FILLING THE TOP LINES

WITH A DEFINED CHARACTER
TNPUT

H (AH) = CURRENT CRT MODE

H (AL) = NUMBER OF LINES TO SCROLL

i (CX) = UPPER LEFT CORNER OF REGION

H {DX) = LOWER RIGHT CORNER OF REGION
(8H) = FILL CHARACTER

H (DS) = DATA SEGMENT

i (ES) = REGEN SEGHMENT

i OUPUT

H NONE -- SCREEN IS SCROLLED

i

SCROLL_DOWN PROC NEAR
STD ; DIRECTION FOR SCROLL DOWN
Hov BL, AL ; LINE COUNT TO BL
CHP AH, 4 ; TEST FOR GRAPHICS
JC ca7
JHP GRAPHICS_DOWN

ca7: PUSH B8X ; SAVE ATTRIBUTE IN BH
Mov AX, DX ; LOWER RIGHT CORNER-
CALL SCROLL_POSITION ; GET REGEN LOCATION
Jz [=-31
suB SI,AX ; SI IS FROM ADDRESS
HOV AH, DH ; GET TOTAL 8 ROWS
sus AH, BL ; COUNT TO MOVE IN SCROLL



E668 EB E62F R cas. CaLL cas ; MOVE ONE ROW
E6EB 28 FB sue s1,BP
E6ED 28 FD suB DI, 8P
E65F FE CC DEC AH
E661 76 F5 JNZ cas
E662 &8 cas: PoP ax ; RECOVER ATTRIBUTE IN aH
E684 BO 20 MoV aL, ¢ v
EB@6 E8 E63B R €50 CaLL caé ; CLEAR ONE ROW
E669 2B FD 5UB ot, 8P . GO TO NEXT ROW
E66B FE C8 DEC BL
E66D 76 F7 INZ €50
E66F EB 91 JMP caa ; SCROLL_END
E871 8A DE c51: MoV BL,DH
E673 EB EE JHP cas
E676 SCROLL_DOWN ENDP
MODE_AL1VE

THUS ROUTINE READS 256 LOCATIONS IN MEMORY AS EVERY OTHER
LOCATION IN 512 LOCATIONS. THIS 1S TO INSURE THE DATA
INTEGRITY OF MEMORY DURING MODE CHANGES.

i
;
+
M

E675 ODE_ALIVE PROC NEAR
EE75 50 PUSH AX ; SAVE USED REGS
EE76 66 PUSH s1
EE77 81 PUSH cx
E678 33 F6 XOR s1,81
E67A B9 0100 MOV CX, 256
EB70 AC CB2: Loose
EG7E 46 INC SI
E67F E2 FC LooP Cc62
E6B1 69 POP cx
E682 BE POP sI
E6B83 68 POP AX
E€B4a C3 RET
E685 MODE_ALIVE ENDP
i
;i SET_PALLETTE
; THIS ROUTINE WRITES THE PALETTE REGISTERS
i INPUT
i (AL) = 0 SET PALETTE REG
H (BH) = VALUE TO SET
H (BL) = PALETTE REG TO SET
i (AL) = 1 SET BORDER COLOR REG
H {BHY = VALUE TO SET
H tAL) = 2 SET ALL PALETTE REGS AND BORDER REG
B NOTE: REGISTERS ARE WRITE ONLY.
E686 SET_PALLETTE PROC NEAR
E685 60 PUSH AX
E6BE 88 F4 MOV sI,sP
E688 36: 8B 44 0OC MOV AX,8S:[S1+12) ; GET 9EG FROM STACK
. EEBC BE CO MoV ES, AX
i EGBE 88 F2 MOV S1,0X ; OFFSET IN SI
E690 BA 03DA MoV DX, VGA_CTL ; SET VGA CONTROL PORT
E€93 EC C53: IN AL, 0X ; GET VGA STATUS
E694 24 08 b AND AL, 08H ; IN VERTICAL RETRACE?
E698 75 FB JNZ €83 ; YES, WAIT FOR IT TO GO AWAY
EG98 EC C6a: IN AL, DX ; GET VGA STATUS
E699 24 08 AND AL, OBH ; IN VERITCAL RETRACE?
E69B 74 FB Jz C54 ; NO, WAIT FOR IT
E690 68 POP AX
E69E 0A CO OR AL, AL ; SET PALETTE REG?
E6A0 74 0OC Jz C65 ; YES, GO DO IT
E6A2 3C 02 CHP AL, 2 ; SET ALL REGS?
Ecad 74 17 JE c67 ;
E8AE 3C Ol cHP AL, 1 ; SET BORDER COLOR REG?
E6AB 75 28 JNE C63 ; NO, DON'T DO ANYTHING
E6AA 80 02 MoV AL, 2 ; SET BORDER COLOR REG NUMBER
E6AC EB 08 JHP SHORT C66
E6AE BA C3 CB5: MOV AL, BL ; GET DESTRED REG NUMBER IN AL
E6BO 24 OF AND AL, OFH ; STRIP UNUSED BITS
E6B2 0C 10 OR AL, 10H ; MAKE INTO REAL REG NUMBER
E6B4 EE C56: ouT K, AL — ; SELECT REG
E6B5 8A C7 MoV AL,BH ;i GET DATA IN AL
E6B7 EE ouT DX, AL ; SET NEW DATA
EeBB 32 CO XOR AL, AL ; SET REG O 50 DISPLAY WORKS AGAIN
E68A EE ouT DX, AL
E6BB EB 18 JMP SHORT €59
E6BD B4 10 €37: MoV AH, 10H ; AH IS REG COUNTER
E6BF BA C4 C€58: MOV AL, AH ; REG ADDRESS IN AL
E6CL EE ouT DX, AL ; SELECT IT
EBC2 26: 8A 04 Mov AL,BYTE PTR ES5:[SI) ; GET DATA
EGCS EE out bX, AL ; PUT IN YGA REG
EEC6 46 INC 81 ; NEXT DATA BYTE
EGC7 FE Ca INC AR ; NEXT REG
E6CS 80 FC 20 CHP AH, 20H ; LAST PALETTE REG?
EBCC 72 F1 va (o] ; NO, DO NEXT ONE
EGCE 80 02 MOV AL, 2 ; SET BORDER REG
E6DO EE ouT DX, AL ; BELECT IT
E6D1 26: 8A 04 Mov AL,BYTE PTR ES:([S1] ; GET DATA
E6D4 EE ouT OX, AL ; PUT IN VGA REG

>
o
o
o
=
o

A4

ROM BIOS A-61




E6DA EE ouT DX, AL PUT IN VGA REG

EEDS ES OF70 R cE9: JHP VIDEQ_RETURN ; ALL OONE
EEDB SET_PALLETTE NDP
E6D8 MFG_UP PROC NEAR
EGDB 50 PUSH ax
EED9 IE PUSH oS
ASGUME DS:XXDATA
EEDA MoV AX, XXDATA
E6DD MoV DS, AX
EGDF MoV AL, NFG_TST ; GET MFG CHECXPOINT
EGE2 ouT LOH, AL ; OUTPUT IT TO TESTER
E6E4 DEC AL ; DROP 1T BY 1 FOR THE NEXT TEST
EGE6 MOV MFG_TST, AL
ASSUME DS:ABSO
EGES IF POP s
EGEA 58 PoP AX
EGEB C3 RET
EGEC MFG_UP ENOP
ASSUME  CS:CODE, DS:DATA
EEF2 ORG OEEF2H
EGF2 E9 OBIB R JHP NEAR PTR BOOT_STRAP
i
SUBROUTINE TQ SET UP CONDITIONS FOR THE TESTING OF B250 AND
B259 IMTERRUPTS. ENABLES MASXABLE EXTERNAL INTERRUPTS,
CLEARS THE 8289 INTR RECEIVED FLAG BIT, AND ENABLES THE
i DEVICE’S B259 INTR (WHICHEVER IS BEING TESTED).
; 1T EXPECTS TO BE PASSED:
; (DS) = ADDRESS OF SEGMENT WHERE INTR_FLAG IS DEFINED
; (D1} = OFFSET OF THE INTERRUPT BIT MASK
;  UPON RETURN:
; INTR_FLAG BIT FOR THE DEVICE = 0
;  NO REGISTERS ARE ALTERED.
EEFB sut PROC NEAR
EGFB 5O PUSH ax
E6FE FB ST1 ; ENABLE MASXABLE EXTERNAL
; INTERRUPTS
E6F7 2E: BA 25 Moy AH,CS: (D11 ; GET INTERRUPT BIT MASK
EGFA 20 26 0084 R AND INTR_FLAG, AH ; CLEAR B269 INTERRUPT REC‘'D FLAG
;
EGFE E4 21 IN AL, INTAO1 ; CURRENT INTERRUPTS
E700 22 Ca AND AL, AH ; ENABLE THIS INTERRUPT, T0O
E702 E6 21 ouT INTAO1, AL ; WRITE TO 9269 (INTERRUPT
; CONTROLLER)
E704 88 PoP ax
E705 C3 RET
E706 sul ENDP
SUBROUTINE WHICH CHECKS IF A 8259 INTERRUPT IS5 GENERATED BY THE
B250 INTERRUPT.
1T EXPECTS TO BE PASSED:
(DI) = OFFSET OF INTERRUPT BIT MASK
(06) = ADDRESS OF SEGMENT WHERE INTR_FLAG 1S DEFINED.
1T RETURNS:
(CF) = 1 IF NO INTERRUPT IS GENERATED
0 IF THE INTERRUPT OCCURRED
L) = COMPLEMENT OF THE INTERRUPT MASK
NO OTHER REGISTERS ARE ALTERED.
E706 5059  PROC NEAR
E706 51 PUSH cX
E707 2B C9 sus cx,cx ; SET PROGRAM LOOP COUNT
E709 2E: 8A 05 HOV AL, CS5: (D11 ; GET INTERRUPT MASK
E70C 34 FF XOR AL, OFFH ; COMPLEMENT MASK SO ONLY THE INTR
; TEST BIT IS ON
E70E B4 06 0084 R AT25:  TEST INTR_FLAG, AL ; B259 INTERRUPT OCCUR?
E712 75 03 JINE AT27 ; YES - CONTINUE
E714 E2 FB LODP AT2S ; WAIT SOME MORE
E716 F9 sTC ; TIME’S UP - FAILED
E717 &9 AT27:  POP cx
E718 €3 RET
E719 €5059  ENDP
SUBROUTINE TO WAIT FOR ALL ENABLED B250 INTERRUPTS TO CLEAR (50
NO INTRS WILL BE PENDING}. EACH INTERRUPT COULD TAKE UP TO
1 MILLISECOND TO CLEAR. THE INTERRUPT IDENTIFICATION
REGISTER WILL BE CHECKED UNTIL THE INTERRUPT(S) IS CLEARED
OR A TIMEOUT OCCURS.
EXPECTS TO BE PASSED:
(0X) = ADDRESS OF THE INTERRUPT 1D REGISTER
RETURNS:
(AL) = CONTENTS OF THE INTR 1D REGISTER
(CF) = 1 IF INTERRUPTS ARE STILL PENDING
0 IF NO INTERRUPTS ARE PENDING {ALL CLEAR)
i NO OTHER REGISTERS ARE ALTERED.
i
E719 W8250C PROC NEAR
E719 51 PUSH cx
E71A 2B C9 SuB CX, X
E71C EC AT28:  IN AL, DX ; READ INTR ID REG
E710 3C 01 CHP AL, 1 ; INTERRUPTS STILL PENDING?
E7IF 74 06 JE AT29 ; NO - GOOD FINISH
E721 E2 F9 LOOP AT26 ; KEEP TRYING
E723 F9 sTC ; TINE’S UP - ERROR
E724 EB 01 . JHP SHORT AT30
€726 FB AT28:  CLC
E727 S9 AT30:  POP cx
€728 C3 RET
E729 WB260C ENDP

A-62 ROM BIOS



(0

;RS232_10
THIS ROUTINE PROVIDES BYTE STREAM 1/0 TO THE COMKUNICATIONS
PORT ACCORDING TO THE PARAMETERS:
(AH)=0 INITIALIZE THE COMMUNICATIONS PORT
(AL) HAS PARMS FOR INITIALIZATION

6 5 4 3 2 1 0
-=--- BAUD RATE ---::----PARITY-~--::-STOPBIT-::--WORD LENGTH--

000 - 110 X0 - NONE o-~1 10 - 7 BITS
001 - 150 01 - 00D 1 -2 11 - B BITS
010 - 300 11 - EVEN
011 = 600
100 - 1200
101 - 2400
110 - 4860
111 - 4B00O

ON RETURN, THE RS232 INTERRUPTS ARE DISABLED AND
CONDITIONS ARE SET AS IN CALL TO COMMO
STATUS (AH=3)
(AH)=1 SEND THE CHARACTER IN (AL} OVER THE COMMO LINE
(AL) REGISTER 1S PRESERVED
ON EXIT, BIT 7 OF AH IS SET IF THE ROUTINE WAS
UNABLE TO TRANSMIT THE BYTE OF DATA OVER
THE LINE. IF BIT 7 OF AH 1S NOT SET, THE
REMAINDER OF AH IS SET AS IN A STATUS
REQUEST, REFELECTING THE CURRENT STATUS OF
THE LINE.
(AH)=2 RECEIVE A CHARACTER IN (AL) FROM COMMO LINE BEFORE
RETURNING TO CALLER
ON EXIT, AH HAS THE CURRENT LINE STATUS, AS SET BY
THE STATUS ROUTINE, EXCEPT THAT THE ONLY
BITS LEFT ON, ARE THE ERROR BITS
(7,4,3,2,1). IN THIS CASE, THE TIME OUT BIT
INDICATES DATA SET READY WAS NOT RECEIVED.
THUS, AH IS NON ZERO ONLY WHEN AN ERROR
OCCURRED. (NOTE: IF THE TIME-OUT BIT IS SET,
OTHER BITS IN AH MAY NOT BE RELIABLE.)
(AH)=3 RETURN THE COMMO PORT STATUS IN {(AX)
AH CONTAINS THE LINE CONTROL STATUS

BIT 7 TIME OUT

BIT 6 TRANS SHIFT REGISTER EMPTY
BIT S TRAN HOLDING REGISTER EMPTY
BIT 4 BREAK DETECT

BIT 3 FRAMING ERROR

BIT 2 PARITY ERROR

BIT 1 OVERRUN ERROR

BIT O = DATA READY
AL CONTAINS THE MODEM STATUS
BIT 7 = RECIEVED LINE SIGNAL DETECT

BIT & RING INDICATOR

BIT 5 DATA SET READY

BIT 4 CLEAR TO SEND

BIT 3 DELTA RECEIVE LINE SIGNAL DETECT
BIT 2 TRAJLING EDGE RING DETECTOR

BIT 1 DELTA DATA SET READY

BIT 0 = DELTA CLEAR TO SEND
(DX} = PARAMETER INDICATING WHICH RS232 CARD (0,1 ALLOWED)
DATA AREA RS232_BASE CONTAINS THE BASE ADDRESS OF THE B250 ON THE
CARD. LOCATION 400H CONTAINS UP TO 4 RS232 AODRESSES POSSIBLE
DATA AREA RS232_TIM_OUT (BYTE) CONTAINS OUTER LOOP COUNT
VALUE FOR TIMEOUT (DEFAULT=1)

AX MOOIFIED ACCORDING TO PARMS OF CALL
ALL OTHERS UNCHANGEO

ASSUME CS:CODE,DS:DATA

E729 ORG OE729H

E729 Al LABEL WORD

E729 O3F9 DuW 1017 ; 110 BAUD ; TABLE OF INIT VALUE
E72B O02EA DuW 746 ; 180
E72D 0176 oW 373 ; 300
E72F QOBA oW 186 ; 600
E731 005D bW 93 ; 1200
E733 002F ow 47 ; 2400
E736 0017 DuW 23 ; 4B00
E737 0017 bW 23 ; 4800
E739 PROC FAR

VECTOR TO APPROPRIATE ROUTINE
sT1 i

E739 FB INTERRUPTS BACK ON
E73A 1E PUSH 0s ; SAVE SEGMENT

E73B B2 PUSH ox

E73C 56 PUSH s1

E73D 67 PUSH DI

E73E 51 PUSH Cx

E73F 53 PUSH ax

E740 88 F2 MOV SI,0% ; RS232 VALUE TO SI

E742 88 FA MoV DI,OX ; AND TO DI (FOR TIMEOUTS)
E744 01 E6 SHL s1,1 ; WORD OFFSET

E746 EB 138B R CALL 0DS ; POINT TO BIOS DATA SEGMENT
E749 88 94 0000 R nov DX,RS232_BASELSI1 ; GET BASE ADDRESS

E74D0 0B D2 OoR DX, DX ; TEST FOR O BASE ADDRESS
E74F 74 13 Jz A3 ; RETURN

E751 OA E4 OR AH, AH ; TEST FOR (AH)=0

E753 74 16 Jz A4 COMMUN TNIT

E765 FE CC DEC AH TEST FOR (AH)=1

E767 74 47 Jz AS SEND AL

E769 FE CC DEC AH TEST FOR (AH)=2

E758 74 6C Jz Al2 RECEIVE JNTO AL

E750 FE CC DEC AH ; TEST FOR (AH)=3

E75F 78 03 JNZ A3

E761 ES E7F3 R JuP AlB ; COMMUNICATIOM STATUS

A-ROM BIOS A-63




ax
cx
DI
s1
DX
DS
AN, AL
0X,3
AL, 80H
DX, AL
DETERMINE BAUO RATE DIVIEOR
MOV DL, AH
MOV cL,a
ROL oL, CL
ANG 0X, OER
MoV Dl,0FFSET Al
ADD DI,DX
MoV nx RS232_BASELS!
INC
MoV AL,cs.mnu
ouT DX, AL
DEC ox
MoV AL, CS: £D1)
ouT DX, AL
ADD DX, 3
MoV AL, AH
AND AL, O1FH
ouT DX, AL
DEC DX
DEC DX
MOV AL, O
ou'r DX,
HORT A1B

>

;

H
i
H
b)

RETURN FROM RS232

RETURN TO CALLER, NO ACTION

INITIALIZE THE COHHUN[CATIONS PORT

SAVE INIT PARMS IN AH
POINT TO 8250 CONTROL REGISTER

SET DLAB=1

GET PARMS TO DL

I150LATE THEM

BASE OF TABLE

PUT INTO INDEX REGISTER

POIMT TO HIGH ORDER OF DIVISOR

GET
SET

HIGH OROER OF DIVISOR
MS OF DIV TO O

GET
SET

LOW ORDER OF DIV1SOR
LOW OF DIVISOR

GET PARMS BACK
STRIP OFF THE BAUD 81TS
LINE CONTROL TO 8 BITS

INTERRUPT ENABLES ALL OFF
COM_STATUS

SEND CHARACTER IN (AL) OVER COMMO LINE

PUSH AX ; SAVE CHAR TO SEND

ADD DX, 4 ; MODEM CONTROL REGISTER

MOV AL, 3 ; DTR AND RTS

ouT DX, AL ; DATA YERNINAL READY, REQUEST TO
; SEND

INC bx ; MODEM STATUS REGISTER

INC ox

MOV BN, 30H ; DATA SET READY & CLEAR TO SEND

caLL WAIT_FOR_SYATUS ; ARE BOTH TRUE?

JE A9 ; YES, READY TO TRANSMIT CHAR

POP cx

MOV AL, CL ; RELOAD DATA BYTE

OR AH, BOH : INDICATE TIME OUT

JHP a3 ; RETURN
; CLEAR_TO_SEND

DEC ox ; LINE STATUS.REGISTER

MOV 8, 20H ; 15 TRANSMITTER READY

CALL WAIT_FOR_STATUS ; TEST FOR TRANSMITTER READY

JNZ A7 ; RETURN WITH TIME OUT SET

suB DX,§ ; DATA PORT

POP cx ; RECOVER IN CX TEMPORARILY

MOV AL, CL ; MOVE CHAR TO AL FOR OUT, STATUS
; IN AH

ouT 0X, AL i OUTRUT CHARACTER

JNP RETURN

RECEIVE CHARACTER FROM COMMO LINE

ADD DX, 4 ; MODEM CONTROL REGLSTER

novV AL 1 DATA TERMINAL READY

ouT DX, AL

INC DX ; MODEM STATUS REGISTER

INC bX

MOV BH, 204 ; DATA SET READY

CALL  WAIT_FOR_STATUS ; TEST FOR DSR

JNZ AB ; RETURN WITH ERROR

DEC DX ; LINE STATUS REGISTER

IN AL, DX

TEST AL, 1 ; RECEIVE BUFFER FULL

JNZ AL7 ; TEST FOR REC. 8UFF, FULL

TEST B10S_BREAK, 80M ; TEST FOR BREAK KEY

Jz a6 ; LOOP IF NO BREAK KEY

JMP A8 ; SET TIME OUT ERROR

AND AL, 000111108 ; TEST FOR ERROR CONDITIONS ON RECV
; CHAR

MOV

MoV ox nsz:z _BASECSI] ; DATA PORT

N AL DX ; GET CHARACTER FROM LINE

JNP RETURN

COMMO PORT STATUS ROUTINE

Mov OX, R§232_BASELS]
ADD 0x,8

N AL, DX

MOV AH, AL

INC DX

IN AL, DX

JMP a3

b

CONTROL PORT

GET LINE CONTROL STATUS

PUT 1IN AH FOR RETURN

POINT TO MODEM STATUS REGISTER
GET MODEM CONTROL STATUS
RETURN

E764 A3:

E764 58

E766 69

€766 SF

E767 BE

E766 ©6A

E769 IF

E76A CF

E76B 8A EO Ad:

E780 83 C2 03

E770 80 80

E772 EE
H

E773 8A D4

E773 81 04

E777 D2 C2

€779 8! E2 000E

E?77D BOF E729 R

E780 03 F

E782 88 94 0000 R

E786 42

E787 2E: BA 45 01

E788 EE

E7BC 4A

E78D 2E: BA 06

E790 EE

E791 B3 €2 03

E794 BA C4

E798 24 IF

E798 EE

E799 4A

E79A 4A

E798 BO 00

E790 EE

E79E ER 33
H

E7A0 AS:

E7A0 %0

E7A1 B3 C2 04

E7A4 80 03

E748 EE

E7A7 42

E7AB 42

E748 B7 30

E7AB EB EBO2 R

E7AE 74 08

E7B80 &9 AT7:

E781 BA C)

E783 80 CC 80 AB:

E7B6 EB AC

E708 A9

E780 4A

E789 87 20

E7BB E® EBO2 R

E7BE 75 FO

E7C0 B3 EA 05

E7C3 59

E7C4 BA C1

E7C6 EE

E7C7 EB 8B

E7C9 83 C2 04 Al2:

E7¢C BO 01

E7CE EE

E7CF 42

E700 42

E701 87 20

E703 E8 EB02 R

E7D06 75 DB

E7D8 4A

€709 EC Al6:

E70A A8 01

E7DC 78 09

E7DE F6 06 0071 R 80

E7E3 74 F4

E7E3 EB CC

E7E7 24 1E AL7:

E7E9 BA EO

E7EB 88 94 0000 R

E7EF EC

E7F0O EY E764 R

E7F3 88 94 0060 R ALB:

E7F7 83 C2 05

E7FA EC

E7FB BA EO

E7FD 42

E7FE EC

E7FF E9 E764 R
P
;ERTRY:
H
GEXIT:

A-64

WAIT FOR STATUS ROUTINE

BH=STATUS BIT(S) TO LOOK FOR,

DX=ADDR. OF STATUS REG
ZERO FLAG ON =
ZERO FLAG OFF = TIMEOUT.
AH=LAST STATUS READ

STATUS FOUND

ROM BIOS



B

£802
E802
E808
ES08
E809
EBOB
E8OD
EBOF
EB1L
EBL13
EBLS
EdL7
EB19
E819

; EB1A
- EB1A

90 007C R
c9

40
a3

a1
EO

al

1300 R

WAIT_FOR_STATUS PROC NEAR
HOV

L, RS232_TIM_OUTID]] ;LOAD OUTER LOOP COUNT

WFSO:  SUB cx, cx
WFSL:  IN AL, DX ;GET STATUS

MOV AH, AL ; MOVE TO AH

AND AL, BH ; 1SOLATE BITS TO TEST

cwP AL, BH ;EXACTLY = TO MASK

JE WFS_END ETURN WITH ZERO FLAG ON

LOOP WFS1 ; TRY AGAIN

DEC 8L

INZ WFS0

orR BH, BH ;SET ZERD FLAG OFF
WFS_END:

RET
WAIT_FOR_STATUS ENDP

ENDP

RS232_10

HIS ROUTINE WILL READ TIMER1. THE VALUE READ IS RETURNED IN AX

i
READ_TIME PROC NEAR
NOV AL, 40H ; LATCH TIMER1
out TIM_CTL, AL
PUSH IS ; WAIT FOR 8253 TO INIT ITSELF
POP ax
IN AL, TIMER+1 ; READ LS8
MOV AH, AL ; SAVE IT IN WIGH BYTE
PUSH axX ; WAIT FOR 8253 TO INIT ITSELF
POP AX
IN AL, TINER+1 ; READ MSB
XCHG AL, AH ; PUT BYTES IN PROPER ORDER
RET
READ_TIME ENDP
ORG OEB2EH
NP NEAR PTR KEYBOARD_I0
SYNCHRONOUS COMMUNICATIONS ADAPTER POWER ON DIAGNOSTIC TEST
ESCRIPTION:

CHIP.

A)
a)
<)

IT RETURN
(CF) =

(BH)

(8L}

TESTIN

THIS SUBROUTINE PERFORMS A THOROUGH CHECK OUT OF AN INSB280 LSI

THE TEST INCLUDES:

1y INITIALIZATION OF THE CHIP TO ASSUME IT5 MASTER RESET STATE

2) READING REGISTERE FOR KNOWN PERMANENT ZERO BITS.

3) TESTING THE INSB250 INTERRUPT SYSTEM AND THAT THE 8250
INTERRUPTS TRIGGER AN 82589 (INTERRUPT CONTROLLER) INTERRUPT.

4) PERFORMING THE LOOP BACK TEST:

G WHAT WAS WRITTEN/READ AND THAT THE TRANSMITTER

HOLDING REG EMPTY BIT AND THE RECEIVER INTERRUPT WORK
PROPERLY

TESTIN
ARE ‘L
REGIST!
TESTIN
TEST I

- L
S

= 23H
24H
=2

17H
B-B

1B-18

G IF CERTAIN BITS OF THE DATA SET CONTROL REGISTER
OOPED BACK’ TO THOSE IN THE DATA SET STATUS

ER.

G THAT THE TRANSHITTER 1S [DLE WHEN TRANSMISSION

S FINISHED.

THIS SUBROUTINE EXPECTS TO HAVE THE FOLLOWING PARAMETER PASSED:
{DX)= ADDRESS OF THE INSB250 CARD TO TEST
NOTE: THE ASSUMPTION HAS BEEN MADE THAT THE MODEM ADAPTER IS

OCATED AT 03FBH; THE SERIAL PRINTER AT O2F8H

1 IF ANY PORTION OF THE TEST FAILED
O 1F TEST PASSED
(BX) = FAILURE KEY FOR ERROR MESSAGE (ONLY VALID IF TEST FAILED}

SERIAL PRINTER ADAPTER TEST FAILURE

MODEM ADAPTER TEST FAILURE
PERMANENT ZERO BI1TS IN INTERRUPY ENABLE REGISTER
WERE INCORRECT
PERMANENT ZERQ B1TS IN INTERRUPT IDENTIF1CATION
REGI9TER WERE INCORRECT
PERMANENT ZERO B1TS IN DATA SET CONTROL REGISTER
WERE INCORRECT
PERMANENT ZERO 8175 IN THE LINE STATUS REGISTER
WERE INCORRECT
RECEIVED DATA AVAILABLE JNTERRUPT TEST FAILED
(THE INTERRUPT WAS NOT GENERATED)

RECEIVED DATA AVAILABLE INTERRUPT FAILED TO CLEAR
RESERVED FOR REPORTING THE TRANSMITTER HOLDING
REGISTER EMPTY INTERRUPT TEST FAILED

{NOT UBED AT THIS TIME BECAUSE OF THE D1FFERENCES
BETWEEN THE 8250‘S WHICH WILL BE USED)
TRANSMITTER HOLDING REG EMPTY INTR FAILED TO CLEAR
RECEIVER LINE STATUS INTERRUPT TEST FAILED

{THE INTERRUPT WAS NOT GENERATED)

8 - OVERRUN ERROR

9 - PARITY ERROR

A - FRAMING ERROR

B - BREAK INTERRUFT ERROR

RECEIVER LINE STATUS INTERRUPT FALLED TQ CLEAR
MODEM STATUS INTERRUPT TEST FAILED

(THE INTERRUPT WAS NOT GENERATED)

€ - DELTA CLEAR TO SEND ERROR

0 - DELTA DATA SET READY ERROR

E - TRAILING EDGE RING INDICATOR ERROR

F - DELTA RECEIVE LINE SIGNAL DETECT ERROR

ROM BIOS A-65

>
A=
g=
(¢]
=
o

X1

A4




1C-1F MODEM STATUS [NTERRUPT FAILED TO CLEAR

10H AN 8250 INTERRUPT OCCURRED AS EXPECTED, BUT NO
0259 (INTR CONTROLLER) INTERRUPT WAS GENERATED

11H DURING THE TRANSMISSION TEST, THE TRANSHITTER
HOLDING REGISTER WAS NOT EMPTY WHEN 1T SHOULD
HAVE BEEN.

12H DURING THE TRANSMISSION TEST, THE RECEIVED DATA
AVAILABLE INTERRUPT DIDN’'T OCCUR.

13H TRANSHISSION ERROR - THE CHARACTER RECEIVED
DURING LOOP MODE WAS NOT THE SAME AS THE ONE
TRANSM1 TTED

14H DURING TRANSMISSION TEST, THE 4 DATA SET CONTROL
OUTPUTS WERE NOT THE SAME AS THE 4 DATA SET
CONTROL INPUTS.

15H THE TRANSMITTER WAB NOT IDLE AFTER THE TRANS-
M1SS5I0N TEST COMPLETED.

ON EXIT:
— THE HMODEM OR SERIAL PRINTER’S B259 INTERRUPT (WHICHEVER
DEVICE WAS TESTED) IS D1SABLED.
- THE 8250 IS IN THE MASTER RESET STATE.
ONLY THE DS REGISTER IS PRESERVED - ALL OTHERS ARE ALTERED.

= 0084 RAP EQu 84H ; LOOP BACK TRANSMISSION TEST
; INTERRUPT VECTOR ADDRESS
; (IN DIAGNOSTICS)
ASSUME  CS:CODE, DS:DATA
£831 UART PROC NEAR
E931 IE PUSH DS
E832 E4 21 IN AL, INTAOL ; CURRENT ENABLED INTERRUPTS
£834 S0 PUSH ax ; SAVE FOR EXIT
EA35 0OC Ol OR AL, 000000018 ; DISABLE TIMER INTR DURING THIS
; TEST
EB37 E6 21 out INTAOL, AL
€838 9C PUSHF ; SAVE CALLER’S FLAGS (SAVE INTR
; FLAG)
E83A 52 PUSH ox ; SAVE BASE ADDRESS OF ADAPTER CARD
EB3B EB 1388 R caALL 00S ; SET UP 'DATA’ AS DATA SEGMENT
; ADDRESS
i INITIALIZE PORTS FOR MASTER RESET STATES AND TEST PERMANENT
i ZERO DATA 81TS FOR CERTAIN PORTS.
EB3E EB OAC4 R cALL 18250
E841 73 03 JNC aT1 ; ALL oK
E843 EB E948 R JMP AT14 ; A PORT’S ZERO BITS WERE NOT ZERO!
i
i INS9250 INTERRUPT SYSTEM TEST
i ONLY THE INTERRUPT BEING TESTED WILL BE ENABLED.
i
; SET DI AND SI FOR CALLS TO °SUl”’
£848 8F 0041 R ATL: MoV DI, OFFSET IMASKS ; BASE ADDRESS OF INTERRUPT MASKS
E@48 33 F6 XOR s1,S1 ; MODEM INDEX
EB4B 80 FE 02 cnp DH, 2 ; OR SERIAL?
EB4E 75 02 INE AT2 ; NO - IT‘S MODEM
EBS0 46 INC s1 ; 1T’S SERIAL PRINTER
EBE1 47 INC 1 ; SERIAL PRINTER 8259 MASK ADDRESS
i RECEIVED DATA AVAILABLE INTERRUPT TEST
E852 EB E6F5 R AT2: caLL su1 ; SET UP FOR INTERRUPTS
EBSS FE C3 INC aL ; ERROR REPORTER (INIT. IN 18260)
EBG67 42 INC oX ; POINT TO INTERRUPT ENABLE
; REGISTER
EBS8 B0 0L MOV AL, 1 ; ENABLE RECEIVED DATA AVAILABLE
; INTR
E86A EE out DX, AL
E858 53 PUSH X ; SAVE ERROR REPORTER
EASC B3 C2 04 ADD DX, 4 ; POINT TO LINE STATUS REGLSTER
EABF B4 01 MOV AH, 1 ; SET RECEIVER DATA READY BIT
EBGL BB 0400 MOV 8X, 0400H ; INTR TO CHECK, INTR IDENTIFIER
EBE4 BS 0003 MoV cx, 3 ; INTERRUPT 1D REG ’INDEX’
EB67 EB OAFB R CALL et ; PERFORM TEST FOR INTERRUPT
EBGA 5B POP BX ; RESTORE ERROR INDICATOR
EBEB 3C FF CHP AL, OFFH ; INTERRUPT ERROR OCCUR?
EBED 74 36 JE AT4 i
EB6F EB E706 R CALL C5069 ; GENERATE 8259 INTERRUPT?
€B72 72 33 Jc ATS i NO
EA74 4A DEC oX
EB75 4A DEC oX ; RESET INTR BY READING RECR BUFR
€976 EC IN AL, DX ; DON'T CARE ABQUT THE CONTENTS!
EB77 42 INC DX
EB78 42 INC DX ; INTR 10 REG
EB73 EA E719 R cALL WB250C ; WAIT FOR INTR TO CLEAR
EB7C 73 03 INC AT3 ; oK
EB7E E9 E94B R JHP AT13 ; OIDN’T CLEAR

; TRANSMITTER HOLDING REGISTER EWMPTY [NTERRUPT TEST

; THIS TEST HAS BEEN MODIFIED 8ECAUSE THE DIFFERENT B250°‘S

; THAT MAY BE USED 1M PRODUCING THIS PRODUCT DO MOT FUNCTION
; THE SAME DURING THE STANDARD TEST OF THIS INTERRUPT

H {STANDARD BEING THE SAME METHOD FOR TESTING THE OTHER

H POSSIBLE B250 INTERRUPTS). IT 18 STILL VALID FOR TESTING
H IF AN 8259 INTERRUPT 1§ GENERATED IN RESPONSE TO THE 8250
H INTERRUPT AND THAT THE B250 INTERRUPT CLEARS AS IT SHOULD.
H

H

H

i

i

IF THE TRANSMITTER HOLOING REGISTER EMPTY IMTERRUPT IS NOT
GENERATED WHEN THAT INTERRUPT IS ENABLED, 1T IS NOT TREATED
AS AN ERROR. HOWEVER, IF THE INTERRUPT I8 GENERATED, IT
MUST GENERATE AN 8259 INTERRUPT AND CLEAR PROPERLY TO PASS
THIS TEST.

A-66 ROM BIOS



()

()

()

EQa1
E884
EB86

E887

E889
EB8A
EB8C
3:1:1)
E88F
E890
Eg82
E894

E898
E838
EB9B
E89D

EBAQ
EBA2
EBAS
EBA7

EBAB

EBAA
EBAC
EBAD
E8BO
EBB3
EBB6
E8BO
E888
EBBD
EBBE
EBC1
E8Ca
EBCS
EBC7
EBCH
EBCB
ESCE
EBDO
EBD3
EBD6
EBD8
EBD9
EgDB
EBDD
EBEO

EBE2
EBES

EBEE
EGES
EBES
EBED
EBEE
E8F 1
EBF4
EBF7
E6F9
EBFC
ESFE
EBFF
EBO2
E905
E906
E908B
E90A
E90C
E9OF
E911

73
ES

EBF5 R AT3:
€3

02

AT31:

AT32:

o7

EBa8 R

7E AT4:
7A ATS:

cALL sut ; SET UP FOR INTERRUPTS

INC BL ; BUMP ERROR REPORTER

DEC ox ; POINT TO INTERRUPT ENABLE
; REGISTER

MoV AL, 2 ; ENABLE XMITTER HOLDING REG EMPTY
; INTR

out OX, AL

JMP $+2 ; 1/0 OELAY

INC 0X ; INTR IDENTIFICATION REG

suB €X, X

IN AL, DX ; READ IT

cMP AL, 2 ; XMITTER HOLDING REG EMPTY INTR?

JE AT32 ;. YES

LOOP AT3)

JNP SHORT AT6 THE INTR DIDN’T OCCUR - TRY NEXT

TEST

THE INTR DID OCCUR
CALL C5089 GENERATE 8258 INTERRUPT?
Jc ATS NO

CALL we250C WAIT FOR THE INTERRUPT TO CLEAR
(IT SHOULD ALREADY BE CLEAR

BECAUSE ‘ICT’ READ THE INTR ID

REG)
JNC ATB IT CLEARED
JMP AT13 ERROR
JMP SHORT AT11 AVOID OUT OF RANGE JUMPS
JNP SHORT AT10

RECEIVER LINE STATUS INTERRUPT TEST

THERE ARE 4 BITS WHICH COULD GENERATE THIS INTERRUPT
EACH ONE 1S TESTED INDIVIOUALLY

i
i
i
A WHEN: AH TESTING
i 2 OVERRUN
; 4 PARITY
i 8 FRAMING
i 10H 8REAK INTR
;
ATE: DEC DX ; POINT TO INTERRUPT ENABLE
; REGISTER
04 MoV AL, 4 ; ENABLE RECEIVER LINE STATUS INTR
ouT DX, AL
c2 04 ADD DX, 4 ; POINT TO LINE STATUS REGISTER
0003 MoV cx, 3 ; INTR ID REG ‘INDEX’
0004 MoV BP, 4 ; LOOP COUNTER
02 MOV AH, 2 ; INITIAL BIT TO BE TESTED
EBF5 R AT7: CALL sVl ; SET UP FOR INTERRUPTS
c3 INC 8L ; BUMP ERROR REPORTER
PUSH BX ; SAVE IT
0801 NOV BX, 060 1H ; TNTR TO CHECK, INTR IDENTIFIER
0AFB R CALL 1cT ; PERFORM TEST FOR INTERRUPT
POP Bx
1E AND AL, 000111108 ; MASK OUT BITS THAT DON’T MATTER
ca CHP AL, AH ; TEST BIT ON?
5A JNE AT1L 5 NO
E706 R CALL €5059 ; GENERATE @258 INTERRUPT?
B3 Je AT10 ; NO
EA 03 suB oX, 3 ; INTR 1D REG
E719 R CALL we250C i WAIT FOR THE INTR TO CLEAR
70 Je AT13 ; 1T DIDNT
DEC 8P ; ALL FOUR 81TS TESTED?
07 JE aTa i YES - GO ON TO NEXT TEST
E4 SHL AH, 1 ; GET READY FOR NEXT 81T
c2 03 ADD 0X, 3 ; LINE STATUS REGISTER
08 JMP ATT ; TEST NEXT BIT
i
; NODEM STATUS INTERRUPT TEST
i THERE ARE 4 BITS WHICH COULD GENERATE THIS INTERRUPT.
; THEY ARE TESTED INDIVIDUALLY.
i WHEN:  AH TESTING
i
; 1 DELTA CLEAR TO SEND
; 2 DELTA DATA SET READY
i 4 TRAILING EDGE RING 1NDICATOR
; 8 DELTA RECEIVE LINE SIGNAL DETECT
;
c2 04 ATS: ADD DX, 4 ; MODEM STATUS REGISTER
IN aL, DX ; CLEAR DELTA BITS THAT MAY BE ON
; BECAUBE OF DIFFERENCES AMONG
; B8250'S,
00 JHP $+2 ; 1/0 DELAY
EA 05 suB DX, 5 ; INTERRUPT ENABLE REGISTER
o8 MoV aL,8 ; ENABLE MODEN STATUS INTERRUPT
out DX, AL
c2 05 apD OX, 5 ; POINT TO MODEM STATUS REGISTER
0004 MOV cx, 4 ; INTR 1D REG ‘INDEX’
0004 MOV BP,4 ; LOOP COUNTER
01 MOV AH, 1 ; INITIAL BIT TO BE TESTED
EGFE R AT9: cALL sul ; SET UP FOR INTERRUPTS
c3 INC oL ; BUMP ERROR INDICATOR
PUSH BX i SAVE IT
0001 nov 8X, 0001+ ; INTR TO CHECK, INTR IDENTIFIER
0AFB R CALL 1cT ; PERFORM TEST FOR INTERRUPT
POP ax
OF AND aL, 000011118 ; MASK OUT BITS THAT DON‘T MATTER
ca cHP AL, AH ; TEST BIY ON?
19 JNE AT11 i NO
E706 R CALL €5059 ; GENERATE 8268 INTERRUPT?
12 9 AT10 ; NO
EA 04 sus DX, 4 ; INTR 10 REG

ROM BIOS A-67




EPl4 EB E719 R CALL we250Cc WAIT FOR INTERRUPT TO CLEAR

E9L7 72 2F Jc AT13 ; 1T DIDN'T

E9L19 4D DEC, [: 14

E91A -74 0B JE AT 12 ; ALL FOUR BITS TESTED - GO ON
E9IC DO E4a SHL AH, 1 ; GET READY FOR NEXT 61T

E9IE B3 C2 04 ADD ox,4 ; MODEM STATUS REGISTER

E921 EB 08 JHP AT ; TEST NEXT 61T

H PQSSIBLE 6259 INTERRUPT CONTROLLER PROBLEM

E923 83 10 AT10: MoV 8L, 10H ; SET ERROR REPORTER

B1T IF IT WENT HIGH ON WRITE TO
MCR

E925 EB 24 AT11: JuP SHORT AT14
H
; SET 9600 BAUD RATE AND DEFINE DATA WORD AS HAVING B
i BITS/WORD, 2 STOP BITS, AND ODD PARITY,
EP27 42 AT12: INC bX ; LINE CONTROL REGISTER
E928 EB F085 R caLL 58250
i
; SET DATA SET CONTROL WORD TO BE IN LOOP MODE
E920 B3 C2 04 ADD bX, 4
EB2E EC IN AL, DX ; CURRENT STATE
E92F EB 00 JHP $+2 ; 1/0 OELAY
EB31 0OC 10 OR AL, 000100008 ; SET BIT 4 OF DATA SET CONTROL REG
EO33 EE out 0X, AL
E934 EB 00 JHP $+2 ; 1/0 DELAY
E938 42 INC oX
E937 42 INC oX ; MODEN STATUS REG
E938 EC IN AL, DX ; CLEAR POSSIBLE MODEM STATUS
; INTERRUPT WHICH COULD BE CAUSED
; 8Y THE QUTPUT BITS BEING LOOPED
; TO THE INPUT BITS
E939 EB 00 JHP $+2 ; 170 OELAY
E938 83 EA 06 sue bX, 8 ; RECEIVER BUFFER
E93E EC IN AL, DX ; DUMMY READ TO CLEAR DATA READY
;

B PERFORM THE LOOP BACK TEST

E93F "42 INC [:24 ; INTR ENBL REG

E940 B0 00 MoV AL, O ; SET FOR INTERNAL WRAP TEST
E942 CD B4 INT WRAP ; DO LOOP BACK TRANSMISSION TEST
EP44a 81 00 MOV cL, 0 ; "ASSUME NO ERRORS

EB4e 73 08 JNC AT15 ; WRAP TEST PASSED

E948 80 C3 10 AT13: ADD BL, 10H ; ERROR INDICATOR

AN ERROR WAS ENCOUNTERED SOMEWHERE DURING THE TEST

1F A FAILURE HAS DCCURRED, THE RETURN 1S MADE ONE
LEVEL HIGHER THAN THE CALLER OF NEC_OUTRUT
TH1S RENOVES THE REQUIREMENT OF TESTING AFTER EVERY
CALL OF NEC_OUTPUT

¢AL) DESTROYED

i
i
E948 81 01 AT14: MOV cL, 1 ; SET FAIL' INDICATOR
i
; HOUSEKEEPING: RE-INITIALIZE THE 8250 PORTS (THE LOOP BIT
i WILL BE RESET), DISABLE THI9 DEVICE INTERRUPT, SET UP
; REGISTER BH IF AN ERROR OCCURRED, AND SET OR RESET THE
i CARRY FLAG.
i
E94D 5A AT1S:  POP ox ; GET BASE ADDRESS OF. 8250 ADAPTER
€94E 53 PUSH . BX ; SAVE ERROR CODE
EBAF- E8 0ACA R caLL 16250 ; RE=INITIALIZE 8250 PORTS
€952 BB POP BX
E9S3 2E: BA 25. MoV AH,CS: (D13 ; GET DEVICE INTERRUPT MASK
ESEE 20 26 0084 R AND INTR_FLAG, AH ; CLEAR DEVICE’S INTERRUPT FLAG 8IT
E95A 80 F4 FF XOR AH; OF! ; FLIP 8ITS
E98D E4 21 N AL, INTAOL ; GET CURRENT INTERRUPT PORT
E9EF OA C4 oR AL, AH ; DISASLE THIS DEVICE INTERRUPT
€961 E§ 21 out INTAO 1, AL
ESB3 8D POPF ; RE-ESTABLISH CALLER’S INTERRUPT
; FLAG
€964 O0A C9 OR cL,cL i ANY ERRORS?
ES86 74 OC JE AT17 ; NO
€988 87 24 MOV B8H, 24H ; ABSUME MODEM ERROR
ES6A 80 FE 02 cup DH, 2 ; OR IS 1T SERIAL?
ESBD 75 02 JNE | AT16 ; 1T'S MODEM
ESEF 87 23 NOV BH, 23H ; 1T'S SERIAL PRINTER
E971 F9 AT18:  STC ; SET CARRY FLAG TO INOICATE ERROR
E972 EB 01 : NP SHORT AT18
E974 F8 AT17:  CLC ; RESET CARRY FLAG - NO ERRORS
EB75 B8 AT18: POP AX ; RESTORE ENTRY ENABLED - INTERRUPTS
EB76 ES 21 out INTAOL, AL ; DEVICE INTRS RE-ESTABLISHED
E978 IF poOP oS ; RESTORE REGISTER
E979 C3 RET
E97A UART ENDP
E987 ORG OE9B7H
E98B7 ES 1661 R JNP NEAR PTR KB_INT
; -
; NEC_OUTPUT
; THIS ROUTINE SENDS A BYTE TD THE NEC CONTROLLER
; AFTER TESTING FOR CORRECT DIRECTION AND CONTROLLER READY
; THIS ROUTINE WILL TINE OUT IF THE BYTE IS NOT ACCEPTED
i WITHIN A REASONABLE ANOUNT OF TIME, SETTING THE DISKETTE
; STATUS ON COMPLETION
; INPUT
; BYTE TO BE OUTPUT
; OUTPUT
; cy = SUCCESS
; CY = 1 FAILURE -- DISKETTE STATUS UPDATED
i
i
i
i

-A-68 ROM BIOS



E98A NEC_OUTPUT PROC NEAR
DX

-E9BA 62 PUSH ; SAVE REGISTERS
ESg8 51 PUSH CX
E9BC BA 00F4 MOV DX, NEC_STAT ; STATUS PORT
E®BF 33 C9 XOR <X, X ; COUNT FOR TIME OUT
E991 EC J23: IN - AL,DX ; GET STATUS
E992 A8 40 TEST AL,DIO ; TEST DIRECTION 9IT
E994 74 OC Jz J25 ; OIRECTION OK
E996 E2 F9 LOOP J23
E998 J24: TIME_ERROR
ES98 80 OE 0041 R 80 OR DISKETTE_STATUS, TlHE _ouT
E9SD 59 POP X
E99E 5A POP DX ; SET ERROR CODE ANO RESTORE REGS
= E95F 58 POP AX ; DISCARD THE RETURN ADDRESS
E9AO0 F9 aTC ; INDICATE ERROR TO CALLER
9a1 €3 RET .
N E9A2 33 C9 J25: XOR CX,CX ; RESET THE COUNT
E9A4 EC J26: IN AL, OX ; GET THE STATUS
E9AB A8 80 - TEST AL, RQM ; 18 1T READY?
E9A7 75 04 JNZ J27 ; YES, GO OUTPUT
€949 E2 F9 LOOP . J26 ; COUNT DOWN AND TRY AGAIN
E9AB EB EB JMP J24 ; ERROR CONDITION
ESAD J27: ; OUTPUT
EJAD BA C4 MOV AL, AH ; GET BYTE TO QUTPUT
EQAF a2 INC DX ; OATA PORT IS 1 GREATER THAN
; STATUS PORT
E980 EE out DX, AL ; OUTPUT THE BYTE
€981 59 POP cx ; RECOVER REGISTERS
E9B2 5A POP DX
€993 C3 RET ; CY = O FROM TEST INSTRUCTION
€984 NEC_OUTPUT ENDP

GET_PARM
; THIS ROUTINE FETCHES THE INDEXED POINTER FROM
; THE DISK_BASE BLOCK POINTED AT BY THE DATA
{ VARJIABLE DISK_POINTER
i

A BYTE FROM THAT TABLE 1S THEN MOVED INTO AH,
THE INDEX OF THAT BYTE BEING THE PARM [N BX
ENTRY --
BL = INDEX OF BYTE TO BE FETCHED # 2
1F THE LOW BIT OF BL IS ON, THE BYTE IS IMMEDIATELY
OQUTPUT TOQ THE NEC CONTROLLER

THAT BYTE FROM BLOCK
BX = DESTROYED

ET_PARM PROC NEAR

€984
E984 IE PUSH oS ; SAVE SEGMENT
£985 56 PUSH s1 ; SAVE REGISTER
£986 2B CO suB AX, AX ; ZERO TO AX
E9BB 32 FF XOR BH, BH i ZERO BH
.~ N E9BA BE D® MoV DS, AX
i : ASSUME DS:ABSO
;E9BC CE 36 0079 R LoS S1,D1SK_POINTER ; POINT TO BLOCK
© E9CO D1 EB SHR BX, 1 ; OIVIDE BX BY 2, AND SET FLAG FOR
i EXIT
E9C2 9C PUSHF ; SAVE OUTPUT BIT
ESC3 BA 20 WOV AH, [S1+BX) ; GET THE 8YTE
ESC5 B3 FB Ol cHP BX, 1 ; 1S THIS THE PARM WITH DMA
; INDICATOR
ESC8 76 05 Jnz J27_1
ESCA 80 CC 01 oR AW, 1 *; TURN ON NO DMA BIT
EBCD EB OC JNP SHORT J27_2 :
'ESCF B3 FB OA J27_1: CMP BX, 10 ; MOTOR STARTUP DELAY?
E9D2 75 07 JNE J27_2
E9D4 B0 FC 04 cMP AH,a ; GREATER THAN' OR EQUAL TO 1/2 SEC?
E9D7 7D 02 JGE 927_2 ; YES, OKAY
E9DS B4 04 MoV AH,a ; NO, FORCE 1/2 SECOND DELAY
E9DB 9D J27_2: POPF ; GET OUTPUT BIT
E9DC SE POP s1 ; RESTORE REGISTER
ESDD IF © POP 09 ; RESTORE SEGMENT
ASSUME DS:DATA
ESDE 72 AA Jc NEC_OUTPUT ; IF. FLAG SET, OQUTPUT TO CONTROLLER
E9E0 C3 RET ; RETURN TO CALLER

E9EL GET_PARM ENDP

BOUND_SETUP
THIS ROUTINE SETS UP BUFFER ADDRESSING FOR- READ/WRITE/VERIFY
OPERATIONS.
INPUT
ES HAS ORIGINAL BUFFER SEGMENT VALUE
BP POINTS AT BASE OF SAVED PARMETERS ON STACK

OUTPUT
E9 HAS SEGMENT WHICH WILL ALLOW 64K ACCESS. THE
COMBINATION ES:D1 AND DS:S1 POINT TO THE BUFFER. THIS
CALCULATED ADDRESS WILL ALWAYS ACCESS 64K OF MEMORY.
8X DESTOYED

H
H
H
i
H
H
;
i

>
=]
&
=
[oN

{|

Vv

ROM BIOS A-69




EBEL BOUND_SETUP PROC NEAR

ESEL 51 PUSH €x ; SAVE REGISTERS
ESE2 88 S5E OC MOV 8X, [BP+121 ; GET OFFSET OF BUFFER FROM BTACK
ESES 83 PUSH 8X ; SAVE OFFSET TEMPORARILY
E9EE B1 04 Hov cL, 4 ; BHIFT COUNT
ESES D3 EB SHR BX, CL ; SHIFT OFFSET FOR NEW SEGMENT
; VALUE
ESEA BC C1 Hov cx, ES ; PUT ES IN REGISTER SUITABLE FOR
; ADDING TO
ESEC 03 CB ADD cx, BX ; GET NEW VALUE FOR ES
E9EE BE C1 MOV ES,CX ; UPDATE THE ES REGISTER
ESFO 58 PoP 8x ; RECOVER ORIGINAL OFFSET
E9FL B1 E3 O0OF AND 9X, 0000FH ; NEW OFFSET
ESFB 86 F3 OV €1, 8% ; DS:SI POINT AT BUFFER
ESF7 88 FB MoV o1, Bx ; ES:01 POINT AT BUFFER
ESF8 &9 POP cx
ESFA C3 RET
E9FB BOUND _SETUP ENDP
;
; SEEX
; THIS ROUTINE WILL MOVE THE HEAO ON THE NAMED DRIVE
i TO THE NAMED TRACK. IF THE DRIVE HAS NOT BEEN ACCESSED
i SINCE THE DRIVE RESET COMMAND WAS ISSUED, THE DRIVE WILL BE
; RECALIBRATED.
; INPUT
; (DL) = DRIVE TO SEEK OR
: (CH) = TRACK TO SEEK TO
; OUTPUT

CY = 0 SUCCESS
= 1 FATLURE -- DISKETTE_STATUS SET ACCORDINGLY
; {AX) DESTROYED

EoFB SEEK  PROC  NEAR

ESFB B8 PUSH s1 ; SAVE REGISTER

ESFC 53 PUSH BX ; SAVE REGISTER

ESFD 61 PUSH (=3

E9FE BE 0074 R MOV SI,OFFSET TRACKO ; BASE OF CURRENT HEAD POSITIONS
EAO01 BO Ot MoV AL, 1 ; ESTABLISH MASK FOR RECAL

EAO03 BA CA MOV CL,DL ; USE DRIVE AS A SHIFT COUNT
EAOS 61 E1 OOFF AND €X, OFFH ; MASK OFF HIGH BYTE

EA09 03 F1 ADD S1,CX ; POINT SI AT CORRECT DRIVE

EAOB D2 CO ROL AL, CL ; GET MASK FOR DRIVE

jmmm— S1 CONTAINS OFFSET FOR CORRECT DRIVE, AL CONTALNS B1T MASK
B TN POSITION 0,1 OR 2

EAOO 58 POP cx ; RESTORE PARAMETER REGISTER
EAOE BB EAGE R MoV BX,OFFSET 32 ; SET UP ERROR RECOVERY ADDRESS
EALL 83 PUSH  BX ; NEEGED FOR ROUTINE NEC_OUTPUT
EA1Z 84 06 003E R TEST  SEEK_STATUS,AL ; TEST DRIVE FOR RECAL
EA1E 75 18 INZ J28 ; NO_RECAL
EA18 08 06 O03E R OR SEEK_STATUS,AL ; TURN ON THE NO RECAL BIT IN FLAG
EAIC 80 3C 00 cHp BYTE PTRLS11,0 ; LAST REFERENCED TRACK=07?
EAIF 74 12 2z J28 ; YES 1GNORE RECAL
EA21 B4 07 nov AH, O7TH ; RECALIBRATE COMMAND
EA23 EB E£58A R CALL  NEC_OUTPUT
EA26 B8A E2 MoV X ; RECAL REQUIRED ON DRIVE IN DL
EA20 EB E98A R CALL  NEC_OUTPUT i OUTPUT THE DRIVE NUMBER

; HEAD 1S MOVING TO CORRECT TRACK
EA28 EB EABF R CALL  CHK_STAT_2 ; GET THE STATUS OF RECALIBRATE
EAZE 72 39 Je Jaz_2 ; SEEK_ERROR
EA30 C8 04 00 Bov BYTE PTRCSI31,0

jmmmm- DRIVE 1S IN SYNCH WITH CONTROLLER, SEEK TO TRACK
EA33 8A 04 J28: Hov AL,BYTE PTRESI) ; GET THE PCN
EA35 2A CB® sue AL, CH ; GET SEEK_WAIT VALUE
EA37 74 2C Jz J31_1 ; ALREADY ON CORRECT TRACK
£A39 B4 OF uov AH, OFH ; SEEX COMMAND TO NEC
EA3B E8 £98A R CALL  NEC_OUTPUT
EA3E 8A E2 MOV AH, DL ; DRIVE NUMBER
EA40 EO EBBA R CALL  NEC_OUTPUT
EA43 B8A ES MOV AH, CH ; TRACK NUMBER
EA45 ES E98A R CALL  NEC_OUTPUT
EA48 EB EA6F R CALL  CHK_STAT_2 ; GET ENDING INTERRUPT AND SENSE

STATUS

jm——— WAIT FOR HEAD SETTLE
EA49 8C PUSHF ; SAVE STATUS FLAGS
EA4C 51 PUSH  CX ; SAVE REGISTER
EA4D B3 12 MoV BL, 1B i HEAD SETTLE PARAMETER
EA4F EB E984 R CALL GET_PARM
EAS2 J29: ; HEAO_SETTLE
EAS2 89 0226 Wov cX, 650 i 1 MS LOOP
EASS OA E4 oR AH, AH i TEST FOR TIME EXPIRED
EAS7 74 06 9z 931
EAS9 E2 FE J3o: LooP  J30 ; DELAY FOR 1 MS
EA5B FE CC DEC AH i DECREMENT THE COUNT
EASD EB F3 JMP J29 ; DO IT SOME WORE
EASF 59 J31: PoP cx ; RESTORE REGISTER
EAGO 9D POPF
EA61 72 06 Jc J3z_2
EA63 88 2C Moy BYTE PTRISII, CH
EAGS 58 Jai_t:  POP BX ; GET RID OF DUMMY RETURN
EABE J32" i SEEK_ERROR
EAGE 5B pOP Bx ; RESTORE REGISTER
EAGT 6E POP s1 i UPDATE CORRECT
£A6D C3 RET ; RETURN TO CALLER
EA63 CB 04 FF J3z_2: MOV BYTE PTRESI11,0FFH ; UNKNOWN STATUS ABOUT SEEK

; OPERATION

EABC 5B PoP BX ; GET R1D OF DUMMY RETURN
EABD E8 F7 JHP SHORT J32
EAGF SEEK  ENDP

A-70 ROM BIOS



EAEF

h EAGF
\/,5471

EA73

EA76
EA77
EA79
EA7C
EA7F

EA81
EAB4
EABE

EA88
EABD
EABB
EASO

EA91
EA92
€AB93
EAB4

EA9S
€EA97
EABD
EA9E
EAAQ

()

EAAD

mmm
>> P>
ana
oao

48

-1
80
F9
S5E
[oxc)
24

80
EB

oe
EABS R
oB
E98A R
EAAD R
10
0042 R

oD

EC
OE 0041 R B8O

co
F8
OE 0041 R 40
FoO

0042 R

o7

[}
OOF4

80

OE 0041 R BO

40
07

OE 0041 R 20
EF

0s

000A
FE

CHK_ST

INPUT

AT_2

THIS ROUTINE HANDLES THE INTERRUPT RECEIVED AFTER

A RECALIBRATE, SEEK, OR RESET TQ THE ADAPTER

THE INTERRUPT IS WAITED FOR, THE INTERRUPT STATUS SENSED,
AND THE RESULT RETURNED TO THE CALLER.

NONE
OUTPUT

CY = 0 SUCCESS

B
i
i
i
i
i
i
i
B
B
;

CY = 1 FAILURE -- ERROR IS IN DISKETTE_STATUS
(AX) DESTROYED
HK_STAT_2 PROC NEAR
PUSH BX ; SAVE REGISTERS
PUSH sI
XOR BX, BX ; NUMBER OF SENSE INTERRUPTS TO
; ISSUE
KoV 51,0FFSET J33_3 ; SET UP DUMMY RETURN FROM
; NEC_OUTPUT
PUSH 3 ; PUT ON STACK
J33_2: MoV AH, 08H ; SENSE INTERUPT STATUS
CALL NEC_OUTPUT ; ISSUE SENSE INTERUPT STATUS
CALL RESULTS ;
Jc J3s i NEC TIME OUT, FLAGS SET IN
; RESULTS
MoV AL,NEC_STATUS ; GET STATUS
TEST AL, SEEK_END ; IS SEEK OR RECAL OPERATION DONE?
JNZ J3s_1 ; JUMP IF EXECUTION OF SEEK OR
; RECAL DONE
J33_3: DEC 8x ; DEC LOOP COUNTER
JNZ J33_2 ; DO ANOTHER LOOP
OR DISKETTE_STATUS, TINE_OUT
J34; sTC ; RETURN ERROR INDICATION FOR
; CALLER
J35: POP s1 ; RESTORE REGISTERS
POP s1
POP BX
RET
; —--~-SEEK END HAS OCCURED, CHECK FOR NORMAL TERMINATION
J35_1: AND AL, OCOH ; MASK NORMAL TERMINATION BITS
Jz J36 ; JUMP IF NORMAL TERMINATION
OR DISKETTE_STATUS, BAD_SEEK
JMP J34
CHK_STAT_2 ENDP
i
; RESULTS
; THIS ROUTINE WILL READ ANYTHING THAT THE NEC CONTROLLER
; HAS TO SAY FOLLOWING AN INTERRUPT,
; IT 1S ASSUMED THAT THE NEC DATA PORT = NEC STATUS PORT + 1.
; INPUT
; NO|
; OUTPUT
i cv = 0 SUCCESSFUL TRANSFER
; = 1 FAILURE ~- TIME OUT IN WAITING FOR STATUS
: NEC _STATUS AREA HAS STATUS BYTE LOADED INTO IT
; (AH) DESTROYED
;
RESULTS PROC NEAR
cLD
HoV m OFFSET NEC_STATUS ; POINTER TO DATA AREA
PUSH ; SAVE COUNTER
PUSH ox
PUSH 8x
nov BL, ; MAX STATUS BYTES
jmm———— WAIT FOR REOUEST FOR MASTER
J38: ; INPUT_LOOP
XOR cX, cX ; COUNTER
MOV DX, NEC_STAT ; STATUS PORT
J39: ; WAIT FOR MASTER
IN AL,DX ; GET STATUS
TEST AL, 080H ; MASTER READY
INZ J40A ; TEST_DIR
LooP J39 ; WAIT_MASTER
OR DISKETTE_STATUS, TIME_OUT
J40: ; RESULTS_ERROR
sTC ; SET ERROR RETURN
;===--— RESULT OPERATIDN IS DONE
J44: POP
POP DX
POP cx

J43:

RET

TEST THE DIRECTION BIT

IN AL,DX ; GET STATUS REG AGAIN

TEST AL, 040H TEST DIRECTION BIT
42 OK TO READ STATUS

NEC_FAIL
oR DISKETTE_STATUS, BAD_NEC
JMP J40 ; RESULTS_ERROR

READ TN THE STATUS

GO BACK FOR MORE
CHIP HAS FAILED

JNZ J3s
JMP val

; INPUT_STAT
INC [} ; POINT AT DATA FORT
N AL, DX ; GET THE DATA
HOV tol1,AL ; STORE THE BYTE
ANC DI ; TNCREMENT THE POINTER >
MoV cx, 10 ; LOOP TO KILL TIME FOR NEC -
LOOP  J43
DEC pX ; POINT AT STATUS FORT 2
IN AL, DX ; GET STATUS o
TEST  AL,O10H ; TEST FOR NEC STILL BUSY =
Jz 4 ; RESULTS DONE o
DEC BL ; DECREMENT THE STATUS COUNTER =i

ROM BIOS A-71



46
BF
21

10

EBE1 R

76
43

FF
ai
ay
46
62
o1
A0
A0

46
21

EAEL
EAEL AO
EAE4 3A
EAE7 A0
EAEA 74
EAEC B3
EAEE EB
EAFL BA
EAF3 FE
EAF5 2A
EAFB B8
EAFB (3
EAFC
EAFC
EAFC
EAFC 50
EAFD E4 21
EAFF B89
EBO2 80
EBOA E6
EBO6 EB
EBO® 58
EBOA C3
EBOB
EBOB
EBOB 52
EBOC BO
EBOE E6
EB10 S0
EB11 ®©6
EB12 BO
EB14 E6
EB1E6 SO
EB17 6B
EB1B E6
EBlA BE
EBID EA4
EBIF 24
EB21 S50
EB22 EA4
EB24 B8O
EB26 E6
EB28 BB
EB2B E8
EB2D 5B
EBQE 5A
EB2F FB
EB30 C3
EB3L

A-72

10

ROM BIOS

NUM_TR

ANS
THIS ROUTINE CALCULATES THE NUMBER OF SECTORS THAT
WERE ACTUALLY TRANSFERRED TO/FROM THE DISKETTE

i
i
; INPUT
; (CH) = CYLINOER OF OPERATION
; (CL) = START SECTOR OF OPERATION
; OUTPUT
i (AL) = NUMBER ACTUALLY TRANSFERRED
; NO OTHER REGISTERS MOD1FIED
NUM_TRANS PROC NEAR
MOV AL,NEC_STATUS+3 ; GET CYLINDER ENDED UP ON
cHpP AL, [BP+11] ; SAME AS WE STARTED
MOV AL, NEC_STATUS+5 ; GET ENDING SECTOR
JzZ J45 ; IF ON SAME CYL, THEN NO ADJUST
MoV BL,B
cALL GET_PARM ; GET EOT VALUE
MOV AL, AH ; INTO AL
J4s; INC AL ; USE EOT+1 FOR CALCULATION
SUB AL, [BP1+10 ; SUBTRACT START FROM END
MoV [8P+14), AL
RET -
NUM_TRANS ENDP
RESULTS ENDP
i
; DISABLE
i THIS ROUTINE WILL DISABLE ALL INTERRUPTS EXCEPT FOR
; INTERRUPT @ SO WATCH DOG TIME OUT CAN OCCUR IN ERROR
; CONDITIONS.
; INPUT
i OUTPUT
; NONE
; ALL REGISTERS REMAIN [NTACT
i
DISABLE PROC NEAR
AX
jmm—— DISABLE ALL INTERRUPTS AT THE B268 LEVEL EXCEPT DISKETTE
N AL, INTAOL ; READ CURRENT MASK
MoV [BP+161, AX ; BAVE MASK ON THE SPACE ALLOCATED
i ON THE STACK
MOV AL, 0BFR MASK OFF ALL INTERRUPTS EXCEPT
DISKETTE
out INTAO L, AL OUTPUT MASK TO THE B258
cALL BOUNO_SETUP ; SETUP REGISTERS TO ACCESS BUFFER
POP ax
RET
01SABLE ENDP

ENABLE

THIS PROC ENABLES ALL INTERRUPTS. IT ALSO SETS THE 8263 TO
THE MOOE REQUIRED FOR KEYBOARD DATA OESERIALIZATION.

BEFORE THE LATCH FOR KEYBOARO DATA 1S5 RESET, BIT 0 OF THE
6285 IS READ TO DETERMINE WHETHER ANY KEYSTROKES OCCURED
WHILE THE SYSTEM WAS MASKED OFF.

B
i
H
i
i
;
H
E

INPUT
ouTRUT
AL=1 MEANS A KEY WAS STRUCK DURING DISKETTE /0. {OR NOISE
ON THE LINE)
AL=0 MEANS THAT NO KEY WAS PRESSED.
AX 1S DESTROYED. ALL OTHER REGISTERS REMAIN INTACT.
NABLE PROC NEAR
PUSH ox
;==w=== RETURN TIMER1 TO STATE NEEDED FOR KEYBOARD 1/0
MOV AL, 011101408 ;
out TIM_CTL, AL
PUSH axX
PoP aX ; WAIT FOR B253 TO INITIALIZE
; ITSELF
Hov AL, OFFH INITIAL VALUE FOR B253
out TIMER® §, AL ; LS8
PUSH ax
POP AX i walT
out TIMER+ §, AL Hse
;-=-——— CHECK IF ANY KEYSTROKES OCCURED DURING DISKETTE TRANSFER
MOV ES, [BP+161 ; GET ORIGINAL ES VALUE FROM THE
; STACK
IN AL, 62H ; READ PORT C OF 8266
AND AL O1H ; 81T=1 MEANS KESTROKE HAS OCCURED
PUSH ; SAVE IT ON THE STACK
jm———— ENABLE mu INTERRUPTS
IN AL, NMI_PORT ; RESET LATCH
MoV AL, BOH i MASK TO ENABLE NMI
out NMI_PORT, AL ENABLE NMI
jmm——— ENABLE ALL TNTERRUPTS WHICH WERE ENABLED BEFORE TRANSFER
MOV AX, [BP+16) ; GET MABK FROM THE STACK
ouT INTAOL, AL
POP ax ; PASS BACK KEY STROKE FLAG
POP oX
sT1
RET
ENABLE ENDP



EB31
EB31
EB33
835
36

EB37
EB39
EB3B
EB3D
EB3F
EB42
EBa4
EB4G

EB45
EB45
EB46
EB49

EB4B
EB4D
EB4F
EBSO
EBS1

()

N

EB51
EBG1

[3: 1]
EBBS
EBSB
EBBA
EBBB
EBSF
EB60
EB62
EB64
EB66

EB67
EB6B
EB69

EB6B
€B6E
EB70
EB72
EB7S
EB77
EB7A
EB?C
EB7E
EBBO
EB82
EB94
EBB7
EBBY
EBBB
JEBBE
EBS1
EB923
EB96
EB96
€899
EB9B
EB9B
EBSE
EBAO
EBA7
EBAC

51
BA
BO
b2
24

59
ca

co
43

4E 00
o1

o7

F8

co
67 02
EO

FA D000

04
po

-—- R
co

€7 06 0014 R 0003
8C IE 0016 R

FF 1E 0014 R

} CLOCK_WAIT

THIS PROCEDURE 1S CALLED WHEN THE TIME OF DAY

i
; 1S BEING UPDATED. IT WAIT:
; READY TO WRAP UNTIL IT IS
i TIMERL.

; INPUT

H NONE.

; OUTPUT

; NONE. AX 1S DESTROYED.

S IF TIMERO 1§ ALMOST
SAFE TO READ AN ACCURATE

CLOCK_WAIT PROC  NEAR

AL, AL ;
TIM_CTL, AL ;

ouT

PUSH  AX

rOP ax ;
IN AL, TIMERO i
XCHG AL, AH i
IN AL, TIMERO ;
XCHG AL, AH i
cHp AX, THRESHOLD i
Jc CLOCK_WAIT ;
RET i

CLOCK_WAIT ENDP

READ MOOE TIMERO FOR 8253
OUTPUT TO THE 8253

WAIT FOR 8253 TO INITIALIZE
1TSELF

READ LEAST SIGNIFICANT BYTE

SAVE 1T

READ MOST SIGNIFICANT BYTE
REARRANGE FOR PROPER ORDER

I8 TIMERO CLOSE TO WRAPPING?
JUMP IF CLOCK IS WITHIN THRESHOLD
OK TO READ TIMERI

H

; GET_DRIVE

THIS ROUTINE WILL CALCULATI
1§ SELECTED BY THE CURRENT
CORRESPONDS TO THE BIT IN
CORRESPONDS TO BIT 2ERO AN
CALCULATED BY ACCESSING TH
WHICH WERE SAVED ON THE BT,

E A BIT MASK FOR THE DRIVE WHICH
INT 13 CALL. THE DRIVE SELECTED

THE MASX, [.E. DRIVE ZERO

0 A OIH [S RETURNED. THE BIT IS5

E PARAMETERS PASSED TO INT 13

ACK

; INPUT
BYTE PTRCBP1 MUST POINT TO DRIVE FOR SELECTION.
;OUPTUT
; AL CONTAINS THE BIT MASK. ALL OTHER REGISTERS ARE INTACT
i
GET_ORIVE PROC NEAR
PYSH cx ; SAVE REGISTER.
Mov CL,BYTE PTRCBP] ; GET DRIVE NUMBER
MoV AL, 1 ; INITIALIZE AL WITH VALUE FOR
; SHIFTING
SHL AL, CL ; SHIFT BIT POSITION BY ORIVE
; NUMBER (DRIVE IN RANGE 0-2)
AND AL,O07H ; ONLY THREE DRIVES ARE SUPPORTEO.
; RANGE CHECK
POP cx ; RESTORE REGISTERS
RET
GET_ORIVE ENDP

THIS ROUTINE CHECKS OPTIONAL RO

FOR MODULES FROM C0000->D0000, C

(D0000~>F0000) .

IF CHECK IS OK, CALLS INIT/TEST
MFG ERROR CODE= 25XX (XX=MSB

M MODULES (CHECKSUM
RC CHECK FOR CARTRIDGES

CODE IN MODULE
OF SEGMENT IN ERROR)

H
i
;
1
R

OM_CHECK PROC NEAR
sul s1,S1
suB AL, AL
MoV AH, [BX+21
SHL AX, 1
PUSH AxX
CHP DX, 0000OH
PUSHF
MoV cL, 4
SHR AX, CL
ADD DX, AX
POPF
POP ex 5
PUSH ox ;
JL ROM_1 :
i
cALL CRC_CHECK i
Jyz ROM_CHECK_1 i
JMHP SHORT ROM_2 i
ROM_1: CaLL ROS_CHECKSUM i
Jz ROM_CHECK_1 :
ROM_2: MOV DX, 1626H ;
MOV AH, 2
Hov BH, 7
INT 10H
MoV DX, DS i
MoV AL, DH ;
CALL XPC_BYTE :
MoV BL, DH ;
Nov BH, 26H i
CHP DH, 0DOH
MoV §1,0FFSET CART, ERR
JGE ROM_CHECK_O

MoV SI,0FFSET ROM_| ERR
RON_CHECK_0:

CALL E_MSG ;
JHP SHORT ROM_CHECK_EN
ROM_CHECK_1:

AX, XXDATA i
MoV ES, AX ;
MoV ES: 10_ROM_INIT, 000:
MOV ES: 10_ROM_SEG, DS
cALL DWORD PTR ES: 10_RO

SET S TO POINT TO SEGINNING
{REL. TO DS)

ZERO OUT AL

GET LENGTH INDICATOR

FORM COUNT

SAVE COUNT

SEE IF POINTER 15 BELOW D000
SAVE REBULTS

ADJUST

SET POINTER TO MEXT MOOULE
RECOVER FLAGS FROM POINTER RANGE
CHECK

RECOVER COUNT IN CX REGISTER
SAVE POINTER

DO ARITHMETIC CHECKSUM IF BELOW
00000

00 CRC CHECK

PROCEED IF 0K

ELSE POST ERROR

00 ARITHMETIC CHECKSUM

PROCEED IF 0K

POSITION CURSOR, ROW 22, cOL 3B

RECOVER DATA SEG

DISPLAY MSB OF OATA SEG
FORM XX VALUE OF ERROR CODE
FORM 28 PORTION

IN CARTRIDGE SPACE?

G0 ERROR ROUTINE
] ; AND EXIT

SET ES TO POINT TO XXDATA AREA

3AH  ; LOAD OFFSET

; LOAD SEGMENT
M_ INIT ; CALL INIT./TEST ROUTINE

ROM BIOS A-73

>
S
(=]
@
=i
=
>
>




EBB1

EBBL 5A
EBB2 C3
EBe3

EC59

EC59

EC59 FB
ECZA 06
EC58 50
EC5C 80
ECBO 50
ECSBE 53
ECGF 51
EC60 1E
EC61 68
EC62 57
ECE3 55
EC84 B2
EC6S 88
EC67 EB
EC8A EB
ECGD 83
EC6F E8
EC72 €8
EC76 BA
EC7A 88
EC70 BA
EC7E 5D
EC7F 5F
ECBO S5E
ECBl IF
ECB2 89
EC83 68
EC84 88
EC85 83
Ecge 07
£C82 8o
ECBC FS
ECB0 CA

A-74

EC
1388 R
EC90 R

04
E9B4 R
26 0040 R

26 0041 R
66 OF

C4 04
FC 01
0002

ROM BIOS

ROM_CHECK_END :

RET
RON_CHECK
;== INT

DX

ENDP

RECOVER POLNTER
RETURN TO CALLER

INPUT

OUTPUT
AH =

(34

{AH) =

DISKETTE 1/0
THIS INTERFACE PROVIDES ACCESS TO THE 5 1/4" DISKETTE DRIVES

0

tAH)=1

STATUS OF OPERATION

[}
1

RESET DI1SKETTE SYSTEM
HARD RESET TO NEC, PREPARE COMMAND, RECAL REQD ON

ALL DRIVES

READ THE STATUS OF THE SYSTEM INTO (AL)
DISKETTE_STATUS FROM LAST OP‘N 15 USED

REGISTERS FOR READ/WRITE/VERIFY/FORMAT

HEAD NUMBER (0-1 ALLOWED, NOT VALUE CHECKED)

SECTOR NUMBER (1-8, NOT VALUE CHECKED, NOT USED FOR

NUMBER OF SECTORS ( MAX = B, NOT VALUE CHECKED, NOT
HOWEVER, CANNOT BE ZERO!!!)

(DL) - ORIVE NUMBER (0-3 ALLOWED, VALUE CHECKED)
(DH} -
(CH) - TRACK NUMBER (0-39, NOT VALUE CHECKED)
{cLy ~

FORMAT)
tAL) -

USEO FOR FORMAT,
{ES: BX)

- ADDRESS OF BUFFER ( NOT REQUIRED FOR VERIFY)

READ THE DESIRED SECTORS INTO MEMORY

WRITE THE DESIRED SECTORS FROM MEMORY

VERIFY THE DESIRED SECTORS

FORMAT THE DESIRED TRACK

FOR THE FORMAT OPERATION, THE BUFFER POINTER
(ES,BX) MUST POINT TO THE COLLECTION OF DESIRED
ADDRESS FIELDS FOR THE TRACK. EACH FIELD IS
COMPOSED OF 4 BYTES, (C,H,R,N), WHERE

C = TRACK NUMBER,
N= NUMBER OF BYTES PER SECTOR (00=128, 01=256,

02=512, 03=1024,).

H=HEAD NUMBER, R = SECTOR NUMBER,

THERE MUST BE ONE ENTRY FOR

EVERY SECTOR ON THE TRACK. THIS INFORMATION IS USED
TO FIND THE REQUESTED SECTOR DURING READ/WRITE

ACCESS.

DATA VARIABLE -- DISK_POINTER
DOUBLE WORD POINTER TO THE CURRENT SET OF DISKETTE PARAMETERS

STATUS BITS ARE DEFINED IN THE EQUATES FOR
DISKETTE_STATUS VARIABLE IN THE DATA SEGMENT OF

THIS MODULE

SUCCESSFUL OPERATION {AH=0 ON RETURN)
FAILED OPERATION (AH HAS ERROR REASON)

FOR READ/WR1TE/VERIFY

DS, BX, DX, CH, CL PRESERVED
AL = NUMBER OF SECTORS ACTUALLY READ
wuan AL MAY NOT BE CORRECT IF TIME OUT ERROR OCCURS

NOTE: IF AN ERROR IS REPORTED BY THE DISKETTE CODE,
APPROPRIATE ACTION IS TO RESET THE DISKETTE, THEN
; RETRY THE OPERATLION. ON READ ACCESSES, NO MOTOR
; START DELAY IS TAKEN, SO THAT THREE RETRIES ARE
i REQUIRED ON READS TO ENSURE THAT THE PROBLEM IS NOT
; DUE TO MOTOR START-UP.
i
ASSUME  CS:CODE, DS:DATA, ES: DATA
ORG OECS9H
DISKETTE_IO PROC FAR
T1 ; INTERRUPTS BACK ON
PUSH ES ; SAVE ES
PUSH AX ; ALLOCATE ONE WORD OF STORAGE FOR
; TINERL INITIAL VALUE
PUSH AX i ALLOCATE ONE WORD ON STACK FOR
; USE IN PROCS ENABLE AND D1SABLE.
;  WILL HOLD B259 MASK.
PUSH AX ; SAVE COMMAND AND N_SECTORS
PUSH BX ; SAVE ADDRESS
PUSH cx
PUSH DS ; SAVE SEGMENT REGISTER VALUE
PUSH s1 ; SAVE ALL REGISTERS DURING
; OPERATION
PUSH DI
PUSH 8P
PUSH DX
MOV BP, 8P ; SET UP POINTER TO HEAD PARM
caLL DDS ; SET DB=DATA
CALL J1 ; CALL THE REST TO ENSURE DS
; RESTORED
MOV aL,4 ; GET THE MOTOR WAIT PARAMEYER
CALL GET_PARM
MOV MOTDR_COUNT, AH SET THE TIMER COUNT FOR THE MOTOR
MOV AH, DISKETTE_STATUS ; GET STATUS OF OPERATION
MOV [BP+163, AH RETURN STATUS IN AL
POP DX RESTORE ALL REGISTERS
POP BP
POP DI
POP s1
POP DS
POP cx
POP BX ; RECOVER OFFSET
POP AX
ADD sP,4 ; DISCARD DUMMY SPACE FOR 8289 MASK
POP ES ; RECOVER GEGMENT
cHP AH, 1 ; SET THE CARRY FLAG TO INDICATE
CNC ; SUCCESS OR FAILURE
RET 2 ; THROW AWAY SAVED FLAGS

—t



EDIC
/ W 1E

\\\-’/;DIE
ED IE
ED23
ED28

B4
EB

AO
es

c3

84
E8

80
EB

Fo
26 003F R 7F
E4
27
o1+

4
06 0041 R 00

06 0041 R 01

00F2
003F R
7
06 003JE R 00

06 0041 R 00
-1

ECFA R

o010
oB
ESBA R
EAAO R
0042 R

co
12

EF
0E 0041 R 20

1B
ECFA R

El
Fo

03

E98A R
1

E9B84 R

03
E9B4 R

0041 R
46 OE

46
26

OE 003F R 80
ap
10

DISKETTE_IO ENOP
J1 PROC NEAR
MOV DH, AL
AND MOTOR_STATUS, O7F|
OR AH, AH
J2 DISK_RESET
DEC AH
JzZ D1SK_STATUS
MOV DISKETTE_STATUS,
CMP DL, 2
JA J3
DEC aH
N D1SK_READ
DEC AH
JINZ J2
JHP DISK_WRITE
v2:
DEC AH
N DISK_VERF
DEC AH
Jz DISK_FORMAT
J3
Moy DISKETTE_STATUS,
RET
J1 ENOP
;- - RESET THE DISKETTE SYSTE|
OISK_RESET PROC NEAR
MoV DK, NEC_CTL
cL1
MoV AL, MOTOR_STATUS
AND AL, O7H
ouT DX, AL
MOV SEEK_STATUS, 0
MoV DISKETTE_STATUS,
OR AL, FDC_RESET
out DX, AL
STI
MoV S1,0FFSET J4_2
PUSH s1
MoV CX, toH
J4_0: WOV AH, 08H
cALL NEC_OUTPUT
caLL RESULTS
MoV AL, NEC_STATUS
cMP AL, OCOH
9z J7
LOOP V4_0
Ja_1:  OR DISKETTE_STATUS,
POP s1
JHP SHORT u8
Va_2: MoV S1,0FFSET J4_2
PUSH s1
LoOP va_o
JHP SHORT J4_1
jmm———— SEND SPECIFY COMMAND TO
J7: POP s1
MOV H, 03H
CALL NEC_OUTPUT
MoV 8L, 1
CALL GET_PARM
MOV ,
CALL GET_PARM
J8
RET
D18K_RESET ENDP

;——=--— DISKETTE STATUS ROUTINE
DISK_STATUS PROC NEAR

MOV AL, DISKETTE_STAT
HOV BYTE PTRIBP+ 1431,
RET
DISK_STATUS ENDP
= OISKETTE VERIFY
D1SK_VERF LABEL NEAR
jmm——— DISKETTE READ
D1SK_READ PROC NEAR
49
Moy AH, 046H
JHP SHORT RW_OPN
OI1SK_READ ENDP
;=====- DISKETTE FORMAT
O1SK_FORMAT PROC NEAR
OR MOTOR_STATUS, 80H ;
MOV AH, 04DH
JHP SHORT RW_OPN

; SAVE % SECTORS IN DH
H ; INDICATE A READ OPERATION
; AH=0

AH=1

0 ; RESET THE STATUS INDICATOR
TEST FOR DRIVE IN 0-2 RANGE
ERROR [F ABOVE

AH=2

AH=3
TEST_DISK_VERF

TEST_DISK_VERF
AH=4

AH=5

; BAO_COMMAND
BAD_CHD ; ERROR COOE, NO SECTORS
; TRANSFERRED

UNOEFINED OPERATION

ADAPTER CONTROL PORT

NO INTERRUPTS

FIND OUT IF MOTOR 1S RUNNING
DRIVE 8ITS

RESET THE ADAPTER

SET RECAL REQUIRED ON ALL DRIVES
; SET OK STATUS FOR DISKETTE
TURN OFF RESET

TURN OFF THE RESET

REENABLE THE INTERRUPTS

DUMMY RETURN FOR

PUSH RETURN IF ERROR

IN NEC_OUTPUT

NUMBER OF SENSE INTERRUPTS TO
155UE

COMMAND FOR SENSE INTERRUPT
STATUS

OUTPUT THE SENSE INTERRUPT
STATUS

GET STATUS FOLLOWING COMPLETION
OF RESET

IGNORE ERROR RETURN AND DO OWN
TEST

TEST FOR DRIVE READY TRANSITION
EVERYTHING OK

RETRY THE COMMANO
AD_NEC ; SET ERROR CODE

NEC_OUTPUT FAILEO, RETRY THE
SENSE INTERRUPT

OFFSET OF 8AD RETURN IN
NEC_OUTPUT

RETRY

NEC

GET RID OF DUMMY ARGUMENT
SPECIFY COMMAND

OQUTPUT THE COMMANRD

STEP RATE TIME AND HEAD UNLOAD
OUTPUT TO THE NEC CONTROLLER
PARM1 HEAD LOAD AND NO DMA

TO THE NEC CONTROLLER
RESET_RET

RETURN TO CALLER

us
AL ; PUT STATUS ON STACK
; POP IN AL

IT WILL

D1SK_READ_CONT
SET UP READ COMMAND FOR NEC
CONTROLLER

GO DO THE.<OPERATION

i

INDICATE A WRITE OPERATION
ESTABLISH THE FORMAT COMMAND
DO THE OPERATION

ROM BIOS A-75




ED27
ED27
ED29
ED2C
ED2E
ED31
ED33
ED36
ED39
ED3A
ED3D

ED3D
ED30
EDa2
EDa4

ED44
ED44

ED4ab
ED46

ED47
ED4C

EDAF
EDSB3
EDS5
EDBA
EOSE
EDBF
ED61

ED63
ED6ES
ED&8
EDGA
ED6A
EDEC
EDGE
ED70
ED72
ED74
ED74

ED78

ED76
ED79
ED7A
ED7C

ED7E

EDBO
EDB3

ED86

EDB7
EDBA
E08D
EDSF
EDI1
E£094
EDB6

ED99
EDSC
ED9E
EDAO
EDA2
EDAS
EDAS
EDAB
EDAD
ED8O
ED82
EDBS
EDB7
EDBA

EDBD
ED8F

EDC1
EDCA4
EDC6
EDCS®
EDCC

-1}
B4

73

ES
BE

L1}

A-76

m
w0
@
s
E

m
0
[
s
n

OE 003F R BO
a5

06 0040 R FF
EBA5 R

06 003F R

1F

26 003F R FO
06 003F R

80
F2

14

E984 R
Ea

E9FB R

FC
Q0

o3

EED7 R
EED7 R

ROM BIOS

J10 CONTINUATION OF RW_OPN FOR FMT
Hov BL,7 GET THE
CALL GET_PARM BYTES/SECTOR VALUE TO NEC
nov BL,9 GET THE
CcALL GET_PARM SECTORS/TRACK VALUE TO NEC
HoV 8L, 15 GET THE
CALL  "GET_PARM GAP LENGTH VALUE TO NEC
MoV BX, 17 GET THE FILLER BYTE
PUSH BX SAVE PARAMETER INDEX ON STACK
JMP J16 ; TO THE CONTROLLER
DISK_FORMAT ENDP
- DISKETTE WRITE ROUTINE
DlSK_HRlTE PROC NEAR
OR MOTOR_STATUS, BOH ; INDICATE A WRITE OPERATION
MoV AH, 04BH ; NEC COMMANO TO WRITE TO OI1SKETTE
DISK_WRITE ENDP
p-—== ALLOW WRITE ROUTINE TO FALL INTO RW_OPN
i
i RW_OPN
i THIS ROUTINE PERFORMS THE REAO/WRITE/VERIFY OPERATION
RW_OPN PROC NEAR
PUSH ax ; SAVE YHE COMMAND
jmmmm TURN ON THE MOTOR AND SELECT THE DRIV
PUSH cx ; SAVE THE T/S PARMS
cLI NO INTERRUPTS WHILE DETERMINING
MOTOR STATUS
Kov MOTOR_COUNT, OFFH ; SET LARGE COUNT OURING OPERATION
CcALL GET_DRIVE GET THE DRIVE PARAMETER FROM THE
STACK
TEST MOTOR_STATUS,AL ; TEST MOTOR FOR OPERATING
INZ J14 ; IF RUNNING, SKIP THE WAIT
AND MOTOR_STATUS, OFOH ; TURN OFF RUNNING DRIVE
oR MOTOR_STATUS, AL ; TURN ON THE CURRENT MOTOR
STt ; INTERRUPTS 8ACK ON
oR AL, FDC_RESET ; NO RESET. TURN ON MOTOR
out NEC_CTL, AL
jmmm—— WAIT FOR MOTOR BOTH READ AND WRITE
MoV BL, 20 ; GET MOTOR START TIME
CcALL GET_PARM
OR AH, AH TEST FOR NO WAIT
Ji2: TEST_WAIT_TIME
Jz J1a EXIT WITH TIME EXPIRED
sug cX, CX SET UP 1/8 SECOND LOOP TIME
J13: LoOP J13 WAIT FOR THE REQUIRED TIME
bEC AH DECREMENT TINE VALUE
JMP J12 ARE WE DONE YET
J1a MOTOR_RUNNING
sT1 INTERRUPTS BACK ON FOR BYPASS
WALT
POP cx
DO THE SEEK OPERATION
CALL EEK ; MOVE TO CORRECT TRACK
POP AX ; RECOVER COMMAND
MoV 8H, AH i SAVE COMMAND LN BH
MoV DH, 0 ; SET NO SECTORS READ IN CASE OF
; ERROR
JNC J14_1 ; IF NO ERROR CONTINUE, JUMP AROUND
;P
JMP J17 ; CARRY SET JUMP TO MOTOR WAIT
J1a_1: MoV S1,O0FFSET J17 ; DUMMY RETURN ON STACK FOR
; NEC_OUTPUT
PUSH s1 S0 THAT IT WILL RETURN TO MOTOR
OFF LOCATION
PEEEEE SEND OUT THE PARAMETERS TO THE CONTROLLER
CALL NEC_OUTPUT ; OUTPUT THE OPERAT1ON COMMAND
MoV AH, TBP+11 ; GET THE CURRENT HEAD NUMBER
SAL AH, 1 ; MOVE (T TO 8IT 2
SAL AH, 1
AND AH, 4 ; 1SOLATE THAT BIT
OR AH, DL ; OR IN THE DRIVE NUMBER
CALL NEC_OUTPUT
PR et TEST FOR FORMAT COMMAND
cHP BH, 04DH ; 18 THIS A FORMAT OPERATION?
JNE J15 i NO. CONTINUE WITH R/W/V
NP J10 ; 1F 50, HANDLE SPECIAL
J18: HOV AH, CH ; CYLINDER NUMBER
CALL NEC_OUTPUT
MOV AH, TBP+11 ; HEAD NUMBER FROM STACK
CALL NEC_OUTPUT
Hov AH, CL ; SECTOR NUMBER
CALL NEC_OUTPUT
MoV aL,7 ; BYTES/SECTOR PARM FROM BLOCK
CALL GET_PARM H TO THE NEC
MOV oL, 8 ; EOT PARM FROM BLOCK
caLL GET_PARM ; RETURNED IN AH
ADD CL,TBP+14] ; ADD CURRENT SECTOR TO NUMBER IN
; TRANSFER
0EC cL ; CURRENT_SECTOR + N_SECTORS - 1
NOV AH, CL ; EOT PARAMETER IS THE CALCULATED
; ONE
CALL NEC_QOUTPUT
NOY BL, 11 ; GAP. LENGTH PARM FROM BLOCK
CALL GET_PARM i TO THE NEC
NoV BX, 13 DTL PARM FROM BLOCK
PUSH BX SAVE INDEX TO DISK PARANETER ON

i STACK



()

EDCD FC J16: CcLD FORWARD DIRECTION
j——=-—— START TIMERL WITH lHlTlAL VALUE OF FFFF

EDCE BO 70 MOV AL, 011100008 ; SELECT TIMERL,LS8-MSB, MODE O,
; BINARY COUNTER
EDDO E6 43 ouT TIM_CTL, AL ; INITIALIZE THE COUNTER
EDD2 50 PUSH AX
EDD3 58 POP AX ; ALLOW ENOUGH TIME FOR THE 8253 TO

INITIALIZE ITSELF

EDD4 BO FF MoV AL, OFFH INITIAL COUNT VALUE FOR THE 8253

EDD6 E6 41 ouT TIMER+1, AL OUTPUT LEAST SIGNIFICAMT BYTE

EDDB 50 PUSH AX

EDDB 58 POP AX ; WAIT

EDDA E6 41 ouTt TIMER+ 1, AL ; OUTPUT MOST SIGNIFACNT BYTE
jmmm— INITIAL!ZE CX FOR JUMP AFTER LAST PARAMETER 1S PASSED TO NEC

EDDC BA 46 OF AL, [BP+15] ; RETRIEVE COMMAND PARAMETER

EDDF A8 01 TEST AL, O1H ; 18 THIS AN ODO NUMBERED FUNCTION?

EDE1 74 05 JzZ JlG_l ; JUNP LF MOT 00D NUMBERED

EDE3 B9 EE4E R Hov CX,OFFSET WRITE_LOOP

EDEE EB 0C JHP SHORT J16_3

EDEB 3C 02 Jie_1: CHP AL,2 ; 1S THIS A READ?

EDEA 75 06 JNZ Ji ; JUMP IF VERIFY

EDEC B9 EE3A R MOV CX, OFFSET READ. LOOP

EDEF E@ 03 JHP SHORT Ji6_3
EOF1 BY EE20 R : MOV CX, OFFSET VERIFY_LOOP
FINISH INITIALIZATION

EDF4 J16_3:

H

; RENNOTEMNN

;ALL INTERRUPTS ARE ABOUT TO BE DISABLED. THERE IS A POTENTIAL
THAT THIS TIME PERJOD WILL BE LONG ENOUGH TO M1SS TIME OF
DAY INTERRUPTS. FOR THIS REASON, TIMER1 WILL BE USED TO
KEEP TRACK OF THE NUMBER OF TIME OF DAY INTERRUPTS WHICH
WILL BE MISSED. THIS INFORMATION .1§ USED AFTER THE DISKETTE
OPERATION TO UPOATE THE TIME OF OAY.

EDF4 BO 10 MOV AL, 10H ; DISABLE NMI
EDF6 E& A0 ouTt NHI_PORT, AL ; NO KEYBOARD INTERRURT
EDFB EB EB31 R CALL CLOCK_WAIT ; WAIT IF TIMERO IS ABOUT TO

INTERRUPT
------- ENABLE WATCHDOG TIMER

unnNoTEnnn
GIVEN THE CURRENT SYSTEM CONFIGURATION A METHOD IS NEEDED
TO PULL THE NEC OUT OF "FATAL ERROR" SITUATIONS. A TIMER
ON THE ADAPTER CARD IS PROVIDED WHICH WILL PERFORM THIS
FUNCTION. THE WATCHDOG TIMER ON THE ADAPTER CARO IS ENABLED
AND STROBED BEFORE THE 8259 INTERRUPT € LINE IS ENABLED.
THIS 15§ BECAUSE OF A GLITCH ON THE LINE LARGE ENOUGH TO
TRIGGER AN INTERRUPT.

EDFB EB EB45 R CALL GET_DRIVE ; GET BIT MASK FOR DRIVE
EDFE BA 00F2 MoV DX, NEC_CTL ; CONTROL PORT TO NEC
EEQL 0OC EO OR AL, FDC_RESET+WD_ENABLE+WD_STROBE
EEQ3 EE ouT DX, AL ; OUTPUT CONTROL IMFO FOR
; WATCHDOG(WD) ENABLE
EEQ4 24 A7 AND AL, FDC_RESET+WD ENABLE+7H
EEO6 EE ouT DX, AL ; OUTPUT CONTROL INFO TO STROBE
; WATCHDOG
EEO7 BA OOF4 MOV - DX, NEC_STAT ; PORT TO NEC STATUS
EEOA 80 20 MOV AL, 20H ; SELECT TIMERL INPUT FROM TIMERO
; OUTPUT
EEOC E6 A0 out NMI_PORT, AL
jmm———— READ TIMER1 NOW AND SAVE THE INITIAL VALUE
EEOE EB EB1A R CALL READ_TIME ; GET TIMER1 VALVE
EE1l 89 46 12 HOV (BP+18B1, AX ; SAVE TNITIAL VALUE FOR CLOCK
; UPDATE IN TEMPORAY STORAGE
EE14 EB EAFC R CaLL DIBABLE ; DIGABLE ALL [NTERRUPTS
mm———— NEC BEGINS OPERATION WHEN NEC RECEIVES LAST PARAMETER
EE17 6B POP BX ; GET PARAMTER FROM STACK
EE1B EB E9B4 R CALL GET_PARM ; OUTPUT LAST PARAMETER TO THE NEC
EE1® 5% POP AX ; CAN NOW DISCARD THAT DUMMY RETURN
; AODRESS
EEIC 06 PUSH ES
EE1D IF POP DS ; INITIALIZE DS FOR WRI
EEIE FF El JHP cx ; JUMP TO APPROPRIATE R/H/V LOOP
:nnnNoTElln
; DATA IS TRANSFERRED USING POLLING ALGORITHMS. THESE LOOPS
; TRANSFER A DATA BYTE AT A TIME WHILE POLLING THE NEC FOR
; NEXT DATA BYTE ANO COMPLETION STATUS.
H
Pttt VERIFY OPERATION
EE20 VERIFY_LOOP:
EE20 EC IN AL, DX ; READ STATUS
EE21 AB 20 TEST AL, BUSY_BIT ; HAS NEC ENTERED EXECUTION PHASE
; YET?
EE23 74 FB B r4 VERIFY_LOOP ; NO, CONTINUE SAMPLING
EE25 J22_2:
EE28 A8 BO TEST AL, RGM ; 18 DATA READY?
EE27 78 07 JNZ J22_4 ; JUMP IF DATA TRANSFER 1S REAQY
EE29 EC IN AL, DX ; READ STATUS PORT
EE2A AB 20 TEST AL,BUSY_BIT ; ARE WE DONE?
EE2C 75 F7 JNZ J22_2 ; JUMP IF MORE TRANSFERS °
EE2E E8 35 JMP SHORT OF_END ; TRANSFER DONE
EE30 42 J22_4: INC DX ; POINT AT NEC DATA REGIGTER
EE31 EC IN AL, DX ; READ DATA
EE32 4daA DEC DX ; POINT AT NEC STATUS REGISTER
EE33 EC IN L, DX ; READ STATUS PORT
EE34 AP 20 TEST AL, BUSY_BIT ; ARE WE DONE?
EE36 75 ED JNZ J22_2 ; CONTINUVE
EE3B EB 28 JHP SHORT OP_END ; WE ARE DONE

ROM BIOS A-77




EE3A

EE3A EC

EE3B AB 20

EE3D 74 FB

EE3F EC

EE40 A8 20

EE42 74 21

EE44 AB 80

EE46 74 F7

EE48 42

EE49 EC

EE4A AA

EE4B  4A

EE4C EB F1

EE4E

EE4E EC

EE4F AB 20

EE51 74 FB

EE53 B9 2080

EEG6

EE56 EC

EES7 B4 C5

EESE9 74 0A

EEGB B84 C1

EESD 74 F7

EESF 42

EE60 AC

EES1 EE

EE62 4A

EE63 EB F1

EEES 9C

EE66 EB EBMS R
EEE9 0C B0

EEGB BA 00F2

EE6GE EE

EE6F E9 1388 R
EE72 E8 EB3L1 R
EE75 EB EB1A R
EE78 8B BE 12
EE7B 2B C3

EE7D F7 0B

EE7F 50

EEBO0 O1 06 006C R
EEB4 73 04

EE96 FF 06 006E R
EEBA 83 3E 006E R 1B
EEBF 75 19

EE91 81 JE ODEC R 0080
EES7 7C 11

EE99 C7 06 006E R 0000
EESF B1 2E 006C R 0080
EEAS C6 D6 0070 R 01
EEAA EB EB0B R
EEAD §9

EEAE EJ 26

EEBO 1E

EEB1l 6O

EEB2 62

EEB3

EEB3 CD 1IC

EEBE E2 FC

EEB7 6A

EEBB 58

EEBY IF

EEBA 0A CO

EEBC 74 18

EEBE B8 0080

EECL B9 0048

EEC4 E8 EO35 R

A-78 ROM BIOS

------ READ OPERATION

READ _LO

J22_5:

;===

WRITE_L

J22_7:

J16_4:

J16_5:

J16_6:

READ STATUS REGISTER

HAS NEC STARTED THE EXECUTION
PHASE?

HAS NOT STATRED YET

READ STATUS PORT

HAS NEC COMPLETED EXECUTION
PHABE?

JUMP IF EXECUTION PHASE 1S OVER
15 DATA READY?

READ THE OATA

POINT AT NEC_DATA

READ DATA

TRANSFER DATA

POINT AT NEC_STATUS

CONTINUE WITH READ OPERATION

READ NEC STATUS PORT

HAS THE NEC ENTERED EXECUTION
PHASE YET?

NO, CONTINUE LOOPING

READ STATUS PORT

1S THE FEC 5STILL IN THE EXECUTION
PHASE?

JUMP IF EXECUTION PHASE 1S DONE
IS THE DATA PORT READY FOR THE
TRANSFER?

JUMP TO WRITE DATA

POINT AT DATA REGISTER

TRANSFER BYTE

WRITE THE BYTE ON THE DISKETTE
POINT AT THE STATUS REGISTER
CONTINUE WITH WRITE OR FORMAT

SAVE THE CARRY BIT SET IN
DISK_INT

GET BIT MASK FOR DRIVE SELECTION
NO RESET, KEEP DRIVE SPINNING

DISABLE WATCHDOG

POINT DS AT B10S DATA SEGMENT
WAIT IF TIMERO IS CLOSE TO
WRAPPING

GET THE INITIAL VALUE OF TIMERL
UPDATE NUMBER OF INTERRUPTS
MISSED

PUT IT IN AX

SAVE IT FOR REUSE IN 1S8SUING USER
TIMER INTERRUPTS

ADD NUMBER OF TIMER INTERRUPTS TO

TIME

JUMP 1F TIMER_LOW DID NOT SPILL
OVER TO TIMER_MI

TEST FOR COUNT TOTALING 24 HOURS
JUMP [F NOT 24 HQURS

OP:

IN AL, DX

TEST AL,BUSY_BIT

9z READ_LOOP

IN AL, DX

TEST AL,BUSY_BIT

Jz OP_END

TEST AL RGM

gz J22_5

INC px

IN aL,0x

8T0S8

DEC oX

JMP J22_8

RITE AND FORMAT OPERATION
00P:

IN AL, DX

TEST AL, BUSY_BIT
Jz WRITE_LOOP

MOV CX, BUSY, an-zssmon
IN AL, OX

TEST AL, CH

N4 OP_END

TEST AL, CL

Jz J22_7

INC DX

Lopse

ouT DX, AL

DEC oX

JNP J22_7

TRANSFER PROCESS 1S OVER
PUSHF

CALL GET_DRIVE

OR AL, FDC_RESET
nov ox NEC _CTL
UPDATE nn: OF DAY
CALL oD

CALL CLOCK_UA T
CALL READ_TIME

MoV BX, (BP+1B)

sug AX, BX

NEG AX

PUSH AX

ADD TINMER_LOW, AX
INC J16_4

INC TIMER_HIGH

cMP TIMER_HIGH, 018H
INZ J16_5

cup TIMER_LOW, 0BOH

JL J16_5
TIMER HAS GONE 24 HOURS

Y TIMER_HIGH, O
suB TIMER_LOW, 0BOH
MoV TIMER_OFL, 1
cALL ENABLE

POP cx

Jexz J16_7

PUSH 0s

PUSH AX

PUSH 0X

INT (CH

LOOP J16_6

POP ox

POP AX

PoOP DS

LOW VALUE 24 HOUR VALUE?
NOT 24 HOUR VALUE?

ZERO OUT TIMER_HIGH VALUE

VALUE REFLECTS CORRECT TICKS PAST
00BOH

INDICATES 24 HOUR THRESHOLD
ENABLE ALL INTERRUPTS

CX:=AX, COUNT FOR NUMBER OF USER
TIME INTERRUPTS

IF 2ERQ DO NOT ISSUE ANY
INTERRUPTS

SAVE ALL REGISTERS SAVED PRIOR TO
INT L(C CALL FROM TIMERINT

THIS PROVIDES A COMPATIBLE
INTERFACE TO 1C

TRANSFER CONTROL TO USER
INTERRUPT
DO ALL USER TIMER INTERRUPTS

RESTORE REGISTERS

i
CLOCK IS UPDATED AND USER INTERRUPTS 1C HAVE BEEN ISSUED

CHECK IF KEYSTROKE OCCURED

OR
yz

MOV
MoV
CALL

BX, 080H
CX, 048H
KB_NOISE

AL WAS SET DURING CALL TO ENABLE
NO KEY WAS PRESSED WHILE SYSTEN
WAS MASKED

DURATION OF TONE

FREQUNCY OF TONE

NOTIFY USER OF MISSED KEYBORAD
INPUT



()

EEC7
EECC

EED1
EEDE
EED7
EED7
EED®
EEDC

-, EEDE

. EEDF
/EEE2
EEE3
EEES
EEE7
EEES

EEEB
EEEC
EEEE
EEFO
EEF2
EEF4
EEF6
EEF8
EEFA
EEFC
EEFE
EFO0
EF02
EF04
EF06
EF08
EFOA
EFOC

" EFOE

EF10
EF10
EF12
EF12
EF16
EF19
EF19

EF 1A
EF 1A

EF1D
EF20

EF22

EF24
EF29
EF2E
EF2F
EF30
EF32
EF34
EF38
EF39
EF3D
EF3F
EF42
EF44
EFaS

B84

08
E8

[}

8A

E8

3A

74

26 0017 R FO
26 0018 R OF
26 0088 R IF
40

EAAO R
3B

0042 R

26 0041 R
EAELl R

BE OE
EAEL R
%]

oc

OE 0041 R 04
06 0043 R 80

co
Fé
B4 0042 R

84 0042 R

3
EAELl R
E4

J16_7:
J17:

CLEAR SHIFT STATES DONT LEAVE POSSIBILTY OF DANGLING STATES
OF MISSED BREAKS

AND KB_FLAG, OFOH ; CLEAR ALT, CLRL,LEFT AND RIGHT
SHIFTS
AND KB_FLAG_L, OFH CLEAR POTENTIAL BREAK OF INS, CAPS

NUM ANO SCROLL SHIFT

AND KB_FLAG_2, IFH CLEAR FUNCTION STATES
POPF GET THE FLAGS
Jc J20

GET THE NEC STATUS
LOOK FOR ERROR
CHECK THE RESULTS RETURNED BY THE CONTROLLER
CLD SET THE CORRECT DIRECTION

CALL RESULTS

MOV SI,0FFSET NEC STATUS ; POINT TO STATUS FIELD

LoDS NEC _STATUS ; sTO

AND AL, OCOH ; TEST FOR NORMAL TERMINATION

Jz J22 ; OPN_OK

CHP AL, 040H ; TEST FOR ABNORMAL TERMINATION

JNZ Ji8 ; NOT ABNORMAL, BAD NEC
nnnNoTElun

THE CURRENT SYSTEM CONFIGURATION HAS NO OMA. IN ORDER TO
STOP THE NEC AN EOT MUST BE PASSEO TO FORCE THE NEC TO HALT
THEREFORE, THE STATUS RETURNED BY THE NEC WILL ALWAYS SHOW
AN EOT ERROR. IF THIS 15 THE ONLY ERROR RETURNEO AND THE
NUMBER OF SECTORS TRANSFERRED EQUALS THE NUMBER SECTORS
REQUESTEQ IN THIS INTERRUPT CALL THEN THE OPERATION HAS
COMPLETED SUCCESSFULLY. IF AN EOT ERROR IS RETURNED AND THE
REQUESTED NUMBER OF SECTORS 15 NOT THE NUMBER OF SECTORS
TRANSFERRED THEN THE ERROR 1S LEGITIMATE. WHEN THE EOT
ERROR IS INVALID THE STATUS BYTES RETURNED ARE UPDATED TO
REFLECT THE STATUS OF THE OPERATION IF OMA HAD BEEN PRESENT

i
i
H
i
H
i
H

LoDS NEC_STATUS ; GET ST1
cHP AL, 80H ; IS THIS THE ONLY ERROR?

JE J21_1 ; NORMAL TERMINATION, NO ERROR

saL AL, L ; NOT EOT ERROR, BYPASS ERROR BITS
SAL AL, L

SAL aL, L ; TEST FOR CRC ERROR

Moy AH, 8AD_CRC

Jc J19 ; RW_FAIL

SAL aL, 1 ; TEST FOR DMA OVERRUN

MoV AH, BAO_DMA

Jc J18 ; RW_FAIL

SAL aL, 1

SAL aL, 1 ; TEST FOR RECORO NOT FOUND

MOV AH, RECORD_NOT_FND

Je J18 ; RW_FAIL

SAL AL, 1

SAL AL, L ; TEST MISSING ADDRESS MARK

MoV AH, BAD_ADDR_MARK

Jc J18 ; RW_FAIL

NEC MUST HAVE FAILED
RW-NEC-FAIL

MOV AH, 8AD_NEC
; RW-FAIL

OR DISKETTE_STATUS, AH

CALL NUM_TRANS ; HOW MANY WERE REALLY TRANSFERRED
; RW_ERR

RET RETURN TO CALLER

OPERATION WAS SUCCESSFUL

GET NUMBER OF SECTORS PASSED
FROM STACK
HOW NANY GOT MOVED, AL CONTAINS
NUM OF SECTORS
NUMBER REQUESTED=NUMBER ACTUALLY
TRANSFERRED?

J21 TRANSFER SUCCESSFUL
DPERAT!ON ATTEHPTED T0 ACCESS DATA PAST REAL EOT. THIS IS
A REAL ERROR

MoV 8L, (BP+14]
CALL NUM_TRAMS

CHP BL, AL

NONE. DS POINTS AT BIOS DATA AREA. CARRY FLAG IS SET SO
THAT ERROR WILL BE CAUGHT IN THE ENVIRONMEMT RETURNED TO

OR DISKETTE_STATUS , RECORD_NOT_FND
MoV NEC_STATUS+1,80H ; ST1 GETS CORRECT VALUE
STC
RET
J21_2:  XOR axX, AX ; CLEAR AX FOR NEC_STATUS UPDATE
XOR s1, 81 ; INDEX TO NEC_STATUS ARRAY
MoV NEC _STATUS(S1], AL ; ZERO OUT BYTE, 5TO
INC POINT INDEX AT SECOND 8YTE
MoV NEC_ﬁTATUS(SIJ,AL ; ZERO OUT BUYE, ST1
JMP SHORT J21_3 ; OPN_OK
J22: CALL NUN_TRANS
J21_3:  XOR AH, AH ; NO ERRORS
RET
RW_OPM  ENDP
; DISK_INT
i THIS ROUTINE HANDLES THE DISKETTE INTERRUPT. AN INTERRUPT
; WILL OCCUR ONLY WHEN THE ONE-SHOT TIMER IS FIRED. THIS
; OCCURS IN AN ERROR SITUATION. THIS ROUTINE SETS ERRORS IN
; THE DISKETTE STATUS BYTE AND DISABLES THE ONE-SHOT TINER.
; THEN THE RETURN ADDRESS ON THE STACK IS CHANGED TO RETURN
; TO THE OF_END LABEL.
i INPUT
i
; OUTPUT
i

ROM BIOS A-79

>
o
o
o
=]
=
>
>




EF57
EF57
EF57
EF58
EF59
EFBA
EF58

EF5E
EF60
EF61
EF62
EF65
EF87
EF6A

EF6D
EF6F
EF72

EF74
EF79

EF7E
EFB1
EF82
EF84
EFB6
EF88
EFB6

EF8E
EF91
EF93
EF95
EFBA

EFBC
EFAL

EFAG
EFAS

EFAA
EFAD
EFAE
EFAF
EF81
EFB3
EFB4
EF85
EF86
EFB7
EF88

ORG OEFS7H
DISK_INT PROC FAR
PUSH (3
PUSH AX
PUSH 0X SAVE REGISTER
PUSH BP ; SAVE THE BP REGISTER
1388 R cALL ; SETUP DS TO POINT AT BIOS DATA
jmm———— CHECK IF [NTERRUPT OCCURED IN INT13 OR WHETHER IT IS A
; SPURIOUS [NTERRUPT
EC MOV BP, SP ; POINT BP AT STACK
PUSH cs WAS IT IN THE BIOS AREA
POP ax
46 0A cHP AX,WORD PTRCBP+101 ; GET INTERRUPTED SEGMENT
a8 JNE ; NOT IN B1OS, ERROR CONDITION
46 06 MOV AX,WORD PTREBP+8) ; GET IP ON THE STACK
EE20 R CHP AX, OFFSET VERIFY_LOOP ; RANGE CHECK 1P FOR DISK
; TRANSFER
40 JL 013 ; BELOW TRANSFER CODE
EEBE R cHP AX,OFFSET OP_END+1 ; UPPER RANGE OF TRANSFER CODE
ap JGE 013 ; ABOVE RANGE OF WATCHDOG TERRAIN
j e VALID DISKETTE INTERRUPT CHANGE RETURN ADDRESS ON STACK TO
i PULL OUT OF LOOP
46 08 EEES R MOV WORD PTRCBP+B1,0FFSET OP_END
4E 0C 0001 OR WORD PTRCBP+12),1 ; TURN ON CARRY FLAG IN FLAGS ON
; STACK
i
S MNMNOTE MMM
; A WRITE PROTECTED DISKETTE WILL ALWAYS GET STUCK IN WRITE LOOP
; WAITING FOR BEGINNING OF EXECUTION PHASE. WHEN THE WATCHDOG
; FIRES AND THE STATUS IN PORT NEC_STAT = DXH (X MEANS DON'T CARE)
; BTATUS FROM THE RESULT PHASE [S AVAILABLE. THE STATUS 15 READ
; AMD WRITE PROTECT IS CHECKED FOR.
i
00F4 MoV DX, NEC_STAT
IN AL, DX ; GET NEC STATUS BYTE
FO AND AL, OFOH i MASK HIGH NIBBLE
DO cHP AL, ODOH ; 1S EXECUTION PHASE DONE
14 JNE 11 ; STUCK IN LOOP
EAAO R cALL RESULTS ; GET STATUS OF OPERATION
0042 R MOV 51, 0FFSET NEC_STATUS ; ADDRESS OF BYTES RETURNED BY
i
44 01 MOV AL, [S1+1) i GET ST1
02 TEST AL, 02H ; WRITE PROTECT SIGNAL ACTIVE?
07 Jz oIl ; TIME OUT ERROR
OE 0041 R 03 oRr DISKETTE_STATUS, WRTTE_PROTECT
13 JMP SHORT D3
jom———- TIME OUT ERROR
OE 0041 R 80 DIL: OR DISKETTE_STATUS, TIME_OUT
06 003E R 00 SEEK_STATUS,0 ; SET RECAL ON DRIVES
------- sts'r THE NEC AND DISABLE WATCHDOG
00F2 D12: MOV DX, NEC_CTL ; ADDRESS TO NEC CONTROL PORT
POP 8P ; POINT BP AT BASE OF STACKED
; PARAMETERS
EB45 R CcALL GET_ORIVE ; RESET ADAPTER AND 01SABLE WD
PUSH BP ; RESTORE FOR RETURNED CALL
- out DX, AL
20 DI3: MOV ) ; GIVE EOI TO 8259
20 ouT INTA0O, AL
POP ap
POP DX
POP ax
PoOP (13
IRET ; RETURN FROH INTERRUPT
DISK_INT ENOP
i
; DISK_B8ASE
; THIS IS THE SET OF PARAMETERS REQUIRED FOR
; DISKETTE OPERATION. THEY ARE POINTED AT BY THE
; DATA VARIABLE DISK_POINTER. TO MODIFY THE PARAMETERS,
; BUILD ANOTHER PARAMETER BLOCK AND POINT AT 1T
i
ORG OEFC7H
D1SK_BASE LABEL  BYTE
Y] 110011418 ; BRTSC, HD UNLOAD=OF - 1ST SPECIFY
; BYTE
08 3 ; HD LOAD=1, MODE=NO DMA - 2ND
; SPECIFY BYTE
o8 MOTOR_WAIT ; WAIT AFTER OPN TIL MOTOR OFF
08 2 ; 512 BYTES/SECTOR
0B B ; EOT { LAST SECTOR ON TRACK)
08 02AH ; GAP LENGTH
08 OFFH i DTL
08 050H ; GAP LENGTH FOR FORMAT
(L] OF6H ; FILL BYTE FOR FORMAT
0B 25 ; HEAD SETTLE TIME (MILLISECONDS)
08 4 ; MOTOR START TIME (1/8 SECONDS)

A-80 ROM BIOS



()

EFD2
EFD2
EFD2
EFD3
EFD4
EFDS
EFDE
EFD7
EFD8

EFDB
EFDF
EFE2
EFEA4
EFEB
EFEC
EFEE

FO16
F018
F018
F018
FO1D
FOIF
Fo021
F023
F025

. F028

Fo28
Fo020
F020
FO2F
FO30
FO31
F033
F034

es
BA

Dl E

B8
o8

138B R

OE 0010
Cc5 20

1E 0008
FB 02F8

18C3 R

F2
9c 0078

6
94 0008

cc o1
E4 F9

- INT 17
PRINTER_IO
THIS ROUTINE PROVIDES COMMUNICATION WITH THE PRINTER

(AH)=0 PRINT THE CHARACTER IN (AL)
H ON RETURN, AH=1 IF CHARACTER COULD NOT BE PRINTED
; (TIME OUT), OTHER BITS SET AS ON NORMAL STATUS CALL
(AH)=1 INITIALIZE THE PRINTER PORT
RETURNS WITH (AH) SET WITH PRINTER STATUS
(AH)=2 READ THE PRINTER STATUS INTO (AH)
7 6 q 3 2-

[}
i_ TIME OUT
_ UNUSED
t_ 1= 1/0 ERROR
_ 1 = SELECTED
.. 1 = OUT OF PAPER
!_ 1 = ACKNOWLEDGE
1 = NOT BuUSY

{DX) = PRINTER TO BE USED (0, 1,2) CORRESPONDING TO ACTUAL
VALUES IN PRINTER_BASE AREA
DATA AREA PRINTER_BASE CONTAINS THE BASE ADDRESS OF THE PRINTER
CARO(S) AVAILABLE (LOCATED AT BEGINNING OF DATA SEGMENT, 408H
ABSOLUTE, 3 WORDS), UNLESS THERE 1S ONLY A SERIAL PRINTER
ATTACHED, IN WHICH CASE THE WORD AT 40:B WILL CONTAIN A O2FBH.
REGISTERS AH 1S MODIFIED
ALL OTHERS UNCHANGED

H
i
i
i
i
i

AGSUNME CS:CODE,DS: DATA

ORG QEFD2H
PRINTER_10 PROC FAR
STI ; INTERRUPTS BACK ON
PUSH oS ; SAVE SEGMENT
PUSH bXx
PUSH SI
PUSH CX
PUSH 8x
CALL 00Ss

;REDIRECT TO SERIAL ONLY IF:

1> SERIAL PRINTER IS ATTACHED, ANO. ..

2> WORD AT PRINTER BASE = O2FBH.

POWER ONS WILL ONLY PUT A O2FBH IN THE PRINTER BASE IF THERE'’S
; NO PARALLEL PRINTER ATTACHED.

MoV CX,EQUIP_FLAG ;GET FLAG IN CX
TEET CH, 001000008 ; SERTAL ATTACHED?
Jz BO ; NO —HANDLE NORMALLY
MOV BX, PRINTER_BASE ;SEE IF THERE'S AN RS5232
CHP 8X, 02F8H ;BASE IN THE PRINTER BASE.
JNE BO

800: JHP B1_A ;IF THERE 1S REDIRECT

ELSE... HANDLE AS PARALLEL
; CONTROL 18 PASSED TO THIS POINT IF THERE IS A PARALLEL OR
;THERE‘S NO SERIAL PRINTER ATTACHED.

80: HOV S81,bX ; GET PRINTER PARM
MoV BL,PRINT_TIM_OUTLSIY ; LOAD TIMEQUT VALUE
SHL 81,1 ; WORD OFFSET INTO TABLE
MoV DX, PRINTER BASE(SH ; GET BASE ADDRESS FOR PRINTER
CARD
OR DX, DX TEST DX FOR ZERO, INDICATING NO

PRINTER

i
N Bl ; IF NO PARALLEL, RETURN
OR AH, AH ; TEST FOR (AH)=0
Jz B2 ; PRINT_AL
DEC AH ; TEST FOR (AH)=1
Jz BB ; INLT_PRT
DEC AH ; TEST FOR (AH)=2
Jz 85 ; PRINTER STATUS
Bl: ; RETURN
POP Bx
POP cx
POP sl ; RECOVER REGISTERS
POP DX ; RECOVER REGISTERS
POP 0s
IRET
; —=—=~= PRINT THE CHARACTER IN (AL)
B2: PUSH ax ; SAVE VALUE TO PRINT
ouTt DX, AL ; OUTPUT CHAR TO PORT
INC oX ; POINT TO STATUS PORT
i
i =====-HALT BUSY
B3: suB cx, cx ; INNER LOOP (64K)
B3_1: IN AL, DX ; GET STATUS
MOV AH, AL ; STATU9 TO AH ALSO
TEST AL, 80H ; 1S THE PRINTER CURRENTLY BUSY
INZ B4 ; OUT_STROBE
LooP B3_1 ; LOOP IF NOT
DEC BL ; DROP OUTER LOOP COUNT
JNZ B3 ; MAKE ANOTHER PASS IF NOT ZERO
OR AH, 1 ; BET ERROR FLAG
AND AH, OFBH ; TURN OFF THE UNUSED BITS
JMP SHORT B7 ; RETURN WITH ERROR FLAG SET
8a: ; OUT_STROBE
Hov AL, ODH ; SET THE STROBE HIGH
INC DX
out DX, AL
MOV AL, OCH ; SET THE STROBE LOW
ouT DX, AL
POP AX ; RECOVER THE OUTPUT CHAR

ROM BIOS A-81




F03s8 8o
FO03s 88
FO3A 42
F03B EC
FO3C BA
FO3E 80
Foal
Foai 8A
Foa2 BaA
FO4aa 80
F047 EB
F043 50
FO4A 42
Fo48 42
Fo4C BO
FO4E EE
FO04F BB
FO52
FOG52 48
FO53 78
FOS5 BO
FO57 EE
FOGB EB
FOBA
FO85
Foes E9
Fo68
Foc8 EB
FO068 8E
FOBE B8
FO070 BB
F072 80
FO78 74
FO77 32
FO79 E6
Fo78 88
FO7E 8E
FOB1 EB
FoB4 CF
FOB5
FOB8S
FO85 80
FoB7 EE
FoBe8 EB
FoBA B3
Fos80 BO
FOBF EE
F090 EB
F092 a2
F093 B0
F096 EE
F096 EB
F098 a2
F099 42
F03A BO
F09C EE
F090 EB
FO9F 83
FOA2 EC
FOoA3 €3
FoAqd
FoA4
FoA4
Foad 38
i9
FOAB 1C
Foao 00

A-82

94

EO
£4

c2
Fa
c4

oB

0008 R

FB

a8

[oki:]

FD
oc

bC

o008 R

80
00
ocC

oo

1]

OF

00
EA

2B

02
00

03

2C 06 IF 06

07 06 07
00 00

ROM BIOS

; ———=—— PRINTER STATUS

B5: PUSH  AX SAVE AL REG
86: MoV ox PRINTER_BASECS1]
INC
IN AL,DX ; GET PRINTER STATUS
MOV AH, AL
AND AH, OFBH ; TURN OFF UNUSED BITS
87:  STATUS_SET
PoP pX ; RECOVER AL REG
MoV aL, DL : GET CHARACTER INTO AL
XOR AH, 4BH i FLIP A COUPLE OF BITS
JHP 81 RETURN FROM ROUTINE
jmmm——- [NITIALIZE THE PRINTER PORT
Ba: PUSH  AX ; SAVE AL
INC DX POINT TO QUTFUT PORT )
INC DX ! .
nov aL, B ; SET INIT LINE LOW :
out 0X, AL ~—t
MoV AX, 1000
B9: ; INIT_LOOP
DEC ax : LOOP FOR RESET TO TAKE
JNZ 89 : INIT_LOOP
MoV AL, OCH i NO INTERRUPTS, NON AUTO LF, INIT
i HIGH
ouT X, AL
JMP B6 ; PRT_STATUS_1
PRINTER_IO ENOP
ORG OF0BEH
JMP NEAR PTR VIDEO_I10
SUBROUTINE TO SAVE ANY SCAN CODE RECEIVED

8Y THE NM! ROUTINE (PASSED IN AL)
DURING POST IN THE KEYBOARD BUFFER

CALLED THROUGH INT. 48H
i
KEY_SCAN_SAVE PROC FAR
ASSUME 0S:DATA
CALL o0s ; POINT DS TO DATA AREA
Nov §1,0FFSET KB_BUFFER ; POINT TO FIRST LOC. IN BUFFER
MoV !Sl] AL ; SAVE SCAN COOE
MoV AX,SP ; CHECX FOR STACK UNOERFLOW
ANO AH, 111000008 ; (THESE BITS WILL BE 111 IF
; UNOERFLOW HAPPEND)
Nr4 KS_1
XOR AL, AL
ouT OAOH, AL ; SRUT OFF NM1
MoV ax, 2000H ERROR CODE 2000H
MoV S1,0FFSET KEY ERR ; POST MESSAGE
CaLL E_HSG ; AND HALT SYSTEM
IRET RETURN TO CALLER
KEV SCAN _SAVE ENOP

000 PARITY.

EXPECTS TO BE PASSED:

ALS0, ALTERS REGISTER AL.

SUBROUTINE TO SET AN INSB2%0 CHIP’'S BAUD RATE TO 9600 BFS ANO
DEFINE IT’'S DATA WORD AS HAVING 8 BITS/WORD,

2 STOP BITS, ANO

_

{DX) = LINE CONTROL REGISTER
UPON RETURN
(oxX) = TRANSH!T/RECElVE BUFFER ADDRESS

ALL OTHERS REMAIN INTACT.

H
i
H
H
H
i
H
i
;

8250

PROC NEAR
Nov AL, BOH ; SET DLAB = 1
out DX, AL
IHP 842 ; 1/0 DELAY
sua ox,3 ; LEB OF DIVISOR LATCH
MOV AL, 12 ; DIVISOR = 12 PROOUCES B600 BFS
ouT DX, AL ; SET LSB
JNP 842 ; 1/0 DELAY
INC ox ; MSB OF DIVISOR LATCH
MOV AL, O ; HIGR ORDER OF DIVISORS
ouT 0X, AL ; SET MSB
JKP 842 ; 1/0 OELAY
INC DX
INC BX ; LINE CONTROL REGISTER
Hov AL, 000011118 ; B BITS/WORD, 2 STOP BITS, 0DO
; PARITY
out oX, AL
JKP 842 ; 170 DELAY
sua bX, 3 ; RECEIVER BUFFER
IN AL, DX ; IN CASE WRITING TO PORT LCR
; CAUSED DATA READY TO GO HIGH!
RET
$B250  ENDP
jmm———— TABLES FOR USE IN SETTING OF CRT MDDE
RG OFDA4H
VIDEO, PARHS LABEL  BYTE
; ~ INIT_TABLE
o8 3BH, 28H, 2CH, 06H, IFH, 6, 19H ; SETUP FOR 40X29 ;
-
o8 1CH, 2,7,6,7
0B 0,0,0,0



()

= 0010 M0040 EQU $-VIDEO_PARMS

FOB4 71 5O 5A OC IF 06 1] 71H, 50H, 8AH, OCH, 1FH, 6, 19H ; SETUP FOR BOX2S
18

FOBB 1C 02 07 06 07 o8 I1CH,2,7,6,7

FOCO 00 00 00 00 0B 0,0,0,0

FOC4 38 2B 2B 06 7F 06 ]} 3BH, 26H, 2BH, 06H, 7FH, 6, 64H ; SET UP FOR GRAPHICS
64

FOCB 70 02 01 26 07 b8 70H,2, 1,26H,7

FODO 00 00 00 00 0B 0,0,0,0

FOD4 71 50 56 OC 3F 06 bB 71H, 60H, 56H, OCH, 3FH, 6, 32H ; SET UP FOR GRAPHICS
az

FODB 38 02 03 26 07 13 38H,2,3,26H,7 ; -USING 32K OF MEMORY

FOEO 00 00 00 00 0B 0,0,0,0 (MODES 9 & A)

READ_AC_CURRENT
THIS ROUTINE READS THE ATTRIBUTE AND CHARACTER AT THE
CURRENT CURSOR POSITION AND RETURNS THEM TO THE CALLER

INPUT
(AH) = CURRENT CRT MODE

i
‘
H
;
+
i
i
+
i
i

(BH) = DISPLAY PAGE { ALPHA MODES ONLY )
(DS) = DATA SEGMENT
(ES) = REGEN SEGMENT
OUTPUT
(AL) = CHAR READ
(AH) = ATTRIBUTE READ
ASBUME  CS:CODE, DS:DATA, ES:DATA
FOE4 READ_AC_CURRENT PROC NEAR
FOE4 80 FC 04 cHP AH, 4 ; 15 THIS GRAPHICS?
FOE? 72 03 Jc €60
FOE9 E9 FB31 R N GRAPHI CS_REAO
FOEC c60: ; READ_AC_CONTINUE
FOEC EB FOF7 R cALL FIND_POSITION
FOEF 88 F3 MOV s1,8% ; ESTABLISH ADDRESSING IN SI
FOFL 06 PUSH ES ;
FOF2 IF POP DS ; GET SEGMENT FOR QUICK ACCESS
FOF3 AD LODSW ; GET THE CHAR/ATTR
FOF4 ES OF70 R JMP VIDEO_RETURN
FOF7 READ_AC_CURRENT ENDP
FOF7 FIND_POSITION  PROC NEAR
FOF7 BA CF MOV CL,BH ; DISPLAY PAGE TO CX
FOF9 32 ED XOR CH, CH
FOFB 88 F1 MOV SI1,CX ; MOVE TO SI FOR INDEX
FOFD D1 E6 SAL s1,1 ; ® 2 FOR WORD OFFSET
FOFF 8B 84 0060 R MOV AX, [S1+ OFFSET CURSOR_POSN] ; GET ROW/COLUMN OF
; THAT PAGE
F103 33 D8 XOR BX, BX ; BET START ADDRESS TO ZERO
F106 E3 06 JCXZ c62 i NO_PAGE
F107 ce1: ; PAGE_LOOP
F107 03 IE 004C R ADD 8X, CRT_LEN ; LENGTH OF BUFFER
F10B E2 FA LOOP c6l
F 10D ce2: ; NO_PAGE
F10D EB E5C2 R cALL POSITION ; DETERMINE LOCATIOM IN REGEN
Fil0 03 DB ADD BX, AX ; ADD TO START OF REGEN
Fi12 €3 RET
F113 FIND_POSITION ENDP
i
; WRITE_AC_CURRENT
; THTS ROUTINE WRITES THE ATTRIBUTE AND CHARACTER AT
; THE CURRENT CURSOR POSITION
: INPUT
; (AH) = CURRENT CRT NODE
; (BH) = DISPLAY PAGE
: (CX) = COUNT OF CHARACTERS T0 WRITE
; (AL) = CHAR TO WRITE
; (BL) = ATTRIBUTE OF CHAR TO WRITE
H (DS) DATA SEGMENT
: (ES) = REGEN SEGMENT
; OUTPUT
: NOM
i
F113 WRITE_AC_CURRENT PROC NEAR
F113 80 FC 04 cHP AH, 4 ; I8 THIS GRAPHICS?
F1168 72 03 Jc ce’
F1i8 ES F3FL R JHP GRAPHICS_WRITE
F118 €63: ; WRITE_AC_CONTINUE
Fi118 BA E3 MoV AH, BL ; GET ATTRIBUTE TO AH
FllD &0 PUSH AX ; SAVE ON STACK
FLlE 61 PUSH cx ; SAVE WRITE COUNT
FLiF EB FOF7 R CALL FIND_POSITION
Fi22 @8 F8 MOV o1,8X ; ADDRESS TD DI REGISTER
Fi24 &9 POP X ; WRITE COUNT
F125 SB POP AX ; CHARACTER IN AX REG
F126 cea: ; WRITE_LOOP
F126 AB STOSW ; PUT THE CHAR/ATTR
F127 E2 FD LDOP c64 ;  AS MANY TIMES AS REQUESTED
F129 E9 OF70 R JNP VIDEO_RETURN
Fl12C WRITE_AC_CURRENT ENOP

ROM BIOS A-83



FC 0a
03
F3F1 R

FOF7 R
F8

FA
OF70 R

F 146
Flaé
F 148
F1ab
F 150
F163

3E 0049 R 0OA
11

Fi08 R

BA 04

ca

F 185
F157
F 159
F188

F1BE
F18E
Fi61
Fi62
Fi183
F184
F168
F 16A
F16C
F16E
F170
Fi72
Fi74
F178
F176
F177
F174A
F17C
F17E
F 180
F182
Fle4

F1D9 R

A-84 ROM BIOS

WRITE_C_CURRENT
THIS ROUTINE WRITES THE CHARACTER AT
THE CURRENT CURSOR POSITION, ATTRIBUTE UNCHANGED

INPUT
C(AH) CURRENT CRT MODE
(BH} O1SPLAY PAGE
(CX) COUNT- OF CHARACTERS TO WRITE
(ALY CHAR TO WRITE
(DS) OATA SEGMENT
(ES) = REGEN SEGMENT
OUTPUT
NOI

R1TE_C_CURRENT PROC NEAR
CHP AH, 4 ; 16 THIS GRAPHICS?
Jc ces
JNP GRAPHICS_WRITE
ces: PUSH Ax ; SAVE ON STACK
PUSH cx ; GAVE WRITE COUNT
CALL FIND_POSITION
MOV D1, ; ADDRESS TO DI
POP cx ; WRITE COUNT
POP ax ; 8L HAS CHAR TO WRITE
cee: ; WRITE_LOOP
KoV AL, BL ; RECOVER CHAR
ST0SB ; PUT THE CHAR/ATTR
INC DI ; BUMP POINTER PAST ATTRIBUTE
(R cee ; AS MANY TIMES AS REQUESTED
VIDEO_RETURN

JNP
WR1TE_C_CURRENT

ENDP

READ DOT
THESE ROUTINES WILL WRITE A DOT,
DOT AT THE INDICATED LOCATION

-- WRITE DOT
OR READ THE

i
i
i
; ENTRY ==
i DX = ROW (Q-189) (THE ACTUAL VALUE DEPENDS ON THE MOQE)
;  CX = COLUMN ( 0-639) ( THE VALUES ARE NOT RANGE CHECKED )
;AL = DOT VALUE TO WRITE (1,2 OR 4 BITS DEPENDING ON MQDE,
i REQ’D FOR WRITE DOT ONLY, RIGHT JUSTIFIED)
i BIT 7-OF AL = 1 INDICATES XOR THE VALUE INTO THE LOCATION
; DB = DATA BEGMENT
; ES = REGEN SEGMENT
i
; EXIT
; AL = DOT VALUE READ, RIGHT JUSTIFIED, READ ONLY
i
ASSUME  CS:CODE, DS:DATA, ES: DATA
READ_DOT PROC NEAR
CMP .. CRT_MODE, OAH ; 640X200 4 COLOR?
JE READ_0DD ; YES, HANDLE SEPARATELY
CALL c72 ; DETERMIME BYTE POSITIOM OF 0OT
oV AL,ES: (811 ; GET THE BYTE
AND AL, AH ; MASK OFF THE OTHER BITS IN THE
; BYT
SHL AL, CL ; LEFT JUSTIFY THE VALUE
MoV CL,OH ; GET NUMBER OF BITS IN RESULT
ROL . ; RIGHT JUSTIFY THE RESULT
JHP VIDEO_RETURN ; RETURN FROM VIDEO 10

IN 640X200 4 COLOR MODE, THE.2 COLOR B1TS (C1,C0) ARE DIFFERENT

THAN OTHER MODES. CO IS IN THE EVEN BYTE, C1 1S IN THE FOLLOWING
0DD BYTE - BOTH.AT THE SAME BIT POSITION WITHIN THEIR RESPECTIVE
BYTES.

EAD_0DD:

CALL c72 ; DETERMINE POSITION OF DOT
PUSH DX 7 SAVE INFO

PUSH cx

PUSH Ax

MOV AL,ES: L6141 GET C1 COLOR BIT FROM 0DD S8YTE
AND AL, AH MASK OFF OTHER BITS

“SHL AL, CL LEFT JUSTIFY THE VALUE

Hov CL,DH ; GET NUMBER OF BITS IN RESULT
INC cL

ROL AL, CL RIGHT JUSTIFY THE RESULT

MoV BX, AX SAVE IN BX REG

POP ax RESTORE POSITION INFO

POP cx :

POP oX

MOV AL, ES: (S1] GET CO COLOR BIT FROM EVEN BYTE
AND AL, AH MASK OFF OTHER 81TS

SHL AL, CL ; LEFT JUSTIFY THE VALUE

oV L, DH ; GET 'NUMBER OF BITS IN RESULT
ROL AL, CL ; RIGHT JUSTIFY THE RESULT

oR AL, BL ; COMBINE C1 B CO

Jue VIDEO_RETURN



()

F187
F187
F187
F 188
F 189
F18A
F188

F1BE

F180
F182
F 198
F 196
F199
F198

F18D
F19F
Flal
Flal
Fla4d
F LAB
F 1A6
F1A7
F 1AC
F 1AE
F 1AF
F 180
Fle2

F 185

F187
F 189
F 180
F 1BE
FiC1
F1C3

FI1CE
F1C7
Fico
F1Co
F1CD
FICE
FiD1
Fi01
F103
F 105
F1D5
F1D7
F1D9

F1D9
F1D%
F1DA

F10B
F 1DD
F1DE
FLEL

F1E6 ~

F 1E®
F1lEB

F 1ED
F LEE
FIF1

FIF3"

F1F6
FI1F6
FI1FB
FIFD
F200
F202
F208
F207
F208

READ_DOT
WRITE_DOT
51 PUSH
52 PUSH
50 PUSH
50 PUSH
EB F1D9 R caLL
02 E8 SHR
22 c4 AND
26: 8A OC MOV
5B POP
F6 C3 80 TEST
75 36 JINZ
F6 D4 NOT
22 CC AND
0A C1 OR
c67:
26: 688 04 MOV
89 POP
BA POP
59 POP
60 3E 0049 R 0A CMP
78 20 JNE
50 PUSH
50 PUSH
00 E8 SHR
E8 F109 R CALL
0z E8 SHR
22 ¢4 AND
26: 8A 4C O1 MOV
1] POP
F& €3 80 TEST
75 12 JNZ
F6 D4 NOT
22 cC ANO
0a €1 13
Cés:
26: 88 44 01 MOV
58 PoP
E3 OF70 R C69: JMP
c70:
3z c1 XOR
EB CC JMP
c71:
32 C1 XOR
E8 FO JMP
WRITE_0OT
ENTRY --
X =
EXIT --
; SsI =
; AH =
; €L =
; DH =
;
c72 FROC
53 PUSH
50 PUSH
j o
i
80 28
52 PUSH
80 E2 FE AND
BO 3E 0049 R 09 CMP
72 03 Jec
80 E2 FC AND
F6 E2 c73: MUL
BA POP
F6 €2 01 TEST
74 03 Jz
05 2000 ADD
c74:
80 3E 0043 R 09 CcMP
72 08 Je
F6 €2 02 TEST
74 03 Jz
05 4000 ADD
BB FO c75: "ov
58 POP
eB D1 MOV

ENDP
PROC
[#]
DX
AX

NEAR

AX
c72

AL, CL

AL, AH
CL,ES: [8IT
BX

BL, BOH

c70

AH

CL, AH
AL, CL

ES: (911, AL
AX

DX
cx
CRT_MOOE, 0AH
ce9

ax

AX

AL, 1

c72

AL, CL

AL, AH
CL,ES: [SI+1]
BX

BL, BOH
c71
aH

CL, AH
AL, CL

ES: [SI+1],AL
AX
VIDEO_RETURN

AL, cL
ce7

AL, CL
c68
ENDP

SAVE COL
SAVE ROW
SAVE DOT VALUE
TWICE
OETERMINE BYTE POSITION OF THE
DoT
SHIFT TO SET UP THE BITS FOR
OUTPUT
STRIP OFF THE OTHER BITS
GET THE CURRENT BYTE
RECOVER XOR FLAG
15 1T ON
YES, XOR THE 00T
SET THE MASK TO REMOVE THE
INDICATED BITS

OR IN THE NEW VALUE OF THOSE BITS
FIN1SH_DOT
RESTORE THE BYTE -1N MEMORY

RECOVER Rou
RECOVER CO
540X200 4 COLOR’
NO, JUMP
SAVE DOT VALUE
TWICE
SHIFT €1 BIT INTO cO POSITION
DETERMINE BYTE POSITION OF THE

Dot

SHIFT TO SET UP THE BITS FOR
QUTPUT

STRIP OFF THE OTHER BITS

GET THE CURRENT BYTE

RECOVER XOR FLAG

IS IT ON

YES, XOR THE DOT

SET THE MASK TO REMOVE THE
INDICATED BITS

OR IN THE NEW VALUE OF THOSE BITS
FINISH_DOT
RESTORE THE BYTE IN MEMORY

RETURN FROM VIDEO 10
XOR_DOT

EXCLUSIVE OR THE DOTS
FINISH UP THE WRITING
XOR_DOT

EXCLUSIVE OR THE DOTS
FINISH UP THE WRITING

THIS SUBROUTINE DETERMINES

COLUMN VALUE

INDICATED ROW COLUMN VALUE

DX = ROW VALUE (0-199)

(0-639)

THE REGEN BYTE LOCATION OFf THE
IN GRAPHICS MODE.

OFFSET INTO REGEN BUFFER FOR BYTE OF INTEREST
MASK TOSTRIP OFF THE BI1TS OF INTEREST

BITS TO EHIFT TO RIGHT JUSTIFY THE MASK IN AH
# BITS IN RESULT

NEAR
BX
AX

AL, 40
oX

DL, OFEH
CRT_MODE, 09H

c73
DL, OFCH
DL

DX
DL, 1

c74

AX, 20004

“CRT_MODE, 09H

c76
DL, 2
c78

7AX, 4000H

s1, A%
AX
DX, €%

BY 40¢ LOW 81T OF ROW DETERMINES EVEN/0OD,

SAVE 8X DURING OPERATION
WILL SAVE AL DURING OPERATION

OETERMINE 15T BYTE IN 101CATED ROW BY MULTIPLYING ROW VALUE

80 BYTES/ROW

‘SAVE ROW VALUE

STRIP OFF ODD/EVEN BIT
MODE USING 32K REGEN?

NO, JUMP

STRIP OFF LOW 2 BITS

AX HAS AODRESS OF 15T BYTE OF
INDICATED ROW

RECOVER 1T

TEST FOR EVEN/ODD

JUMP [F EVEN ROW

OFFSET TO LOCATION OF ODD ROWS
EVEN_ROW

MODE USING 32K REGEN?

NO,

TEST FOR ROW 2 OR ROW 3

JUMP IF ROW 0 OR 1

OFFSET TO LOCATION OF ROW 2 OR 3
MOVE POINTER TO SI

RECOVER AL VALUE

COLUMN VALUE TO DX

ROM BIOS A-85

>
=
=]
o
=
o

X1

Vv




F20A
F20D.
F210
F215
F217
F21C
F21E
F221
F224
F229
F228
F230
F232
F238

F238

F23A
F23C
F23E
F243
F245
F247

F249
F248

F24D
F24F
F281

F253
F255

F257
F258
F259

F259
F2B69
F258

F25D
F260

F262
F264
F268B

F28A

F28C
F27]

F273
F276
F277
F27C
F27E
F283
F285
F2BA

F28C
F28E

BA
1]

EB
[:1:]

D8
Cc1

0049 R 0A

F72C R

FB

0101

0048 R 06:

0049 R 04
0049 R 05
0049 R 04

------- DETERMINE GRAPHICS MODE CURRENTLY IN EFFECT
SET UP THE REGISTERS ACCORDING TO THE MODE

ICH = MASK FOR LOW OF COLUMN ADDRESS ( 7/3/1 FOR HIGH/MED/LOW RES)
JCL = % OF ADDRESS BITS IN COLUMN VALUE ¢ 3/2/1 FOR H/M/L)
;8L = MASK TO SELECT BITS FROM POINTED BYTE (BOH/COH/FOH FOR H/N/L)
;BH = NUMBER OF VALID BITS IN POINTED BYTE ( 1/2/4 FOR H/M/L)

MoV BX, 2COH

MOV CX, 302H ; SET PARMS FOR MED RES

cHP CRT_MODE, 4

JE c77 ; HANDLE IF MED RES

cHP CRT_MODE, 5

JE €77 ; HANDLE IF MED RES.

MOV BX, 4FOH

MoV CX, 101H ;SET PARMS FOR LOW RES

cup CRT_MODE, 0AH

JE c76 ; HANDLE MODE .A AS HIGH RES

cup CRT_MODE, &

JNE c77 ; HANDLE IF LOW RES
c7e: MoV BX, 1eon

MoV CX, 703H SET PARMS FOR HIGH RES

DETERH[NE BlT OFFSET IN BVTE FROW COLUMN MASK

ADDRESS OF PEL WITHIN BYTE TO CH
DETERHKNE 8YTE OFFSET FOR THIS LOCATION IN COLUMWN
SHR X, CL SHIFT 8Y CORRECT AMOUNT

ADD S1,DX ; INCREMENT THE POINTER-
CMP cn'r MODE, 0AH ; 640X200 4 COLOR?
JNE ; NO, JUMP
ADD sx,ox ; INCREMENT THE POINTER
c78: MoV DH, BH ; GET THE & OF BITS IN RESULT TO DH
P MULTIPLY BH (VALID BITS IN BYTE) BY CH (BIT OFFSET)
sue cL,cL ; ZERO INTO STORAGE LOCATION
c79: ROR AL, 1 ; LEFT JUSTIFY THE VALUE IN AL
; {FOR WRITE)
ADD cL, CH ; ADD IN THE BIT QFFSET VALUE
DEC BH ; LOOP CONTROL
JINZ c79 . ON EXIT, CL HAS SHIFT COUNT TO
; RESTORE BITS
MoV AH, BL ; GET MASK TO AH
SHR AH, CL ; MOVE THE MASK TO CORRECT
; LOCATION
POP ax ; RECOVER REG
RET i RETURN WITH EVERYTHING SET UP
c72 ENDP
SCROLL UP

THIS ROUTINE SCROLLS UP THE INFORMATION ON THE CRT
ENTRY --
CH,CL = UPPER LEFT CORNER OF REGION TO SCROLL
DH,DL = LOWER RIGHT CORNER OF REGION TO SCROLL

BO0TH OF THE ABOVE ARE IN CHARACTER POSITIONS

H
H
H
i
H
i
B
B
i

BH = FILL VALUE FOR BLANKED LINES
AL = % LINES TO. SCROLL (AL=0 MEANS BLANK THE ENTIRE FIELD)
DS = DATA- SEGMENT
ES = REGEN SEGHMENT
EXIT --
NOTHING, THE SCREEN IS SCROLLED
RAPHICS_UP PROC NEAR
WOV BL, AL ;- SAVE LINE COUNT IN BL
HOV AX, CX ; GET UPPER LEFT POSITION INTO AX REG

USE CHARACTER SUBROUTFNE FOR POSITLONING
ADDRESS. RETURNED TS MULTIPLIED BY 2 FROM CORRECT VALVE
CALL GRAPH_POSN

MOV DI, AX ; SAVE RESULT AS DESTINATION
; ADDRESS
;==---- DETERMINE §1ZE OF WINDOW
sue ,
ADD DX, 101H ; ADJUST VALUES
SAL DH, 1 ; MULTIPLY % ROWS BY 4 SINCE 8 VERT
. DOTS/CHAR
SAL DH, 1 . AND EVEN/ODD ROWS
e DETERMINE CRT MODE
cMP CRT_MODE, 6 ; TEST FOR HIGH RES
JE c60 ; FIND_SOURCE
MEDIUM RES UP
SAL DL, 1 ; % COLUMNS % 2, SINCE 2 BYTES/CHAR
SAL oI, ; OFFSET %2 SINCE 2 BYTES/CHAR
cHP CRT_MODE, 4 ; TEST FOR MEDIUM RES
JE €90
CMP CRT_MODE, 5 ; TEST FOR MEDIUM RBS
JE c8o
CHP CRT_MODE, 0AH ; TEST FOR MEDIUM RES
JE c80
jm————- LOW RES UP
sAL DL, 1 ; 8 COLUMNS # 2 AGAIN, SINCE 4
; BYTES/CHAR
SAL oI, 1 ; OFFSET %2 AGAIN, SINCE 4
; BYTES/CHAR

A-86 ROM BIOS



()

()

F290
F230

F291
F292
F294
F296
F298
F294
F29C
F29E
F2A0
F2A2
F2A4
F2A6

F2A8
F2A8
F248
F2AC
F2AF
F284
F285
F287
F2ee
F28F
F2c2
F2cée
F2CA
F2cc
F2p0
F2p4
F2pe

F2D0
F208
F2DA
F2pD
F2DE
F2E1
F2E6
F2E7
F2E9
F2ED
F2F0
F2F4
F2F6
F2FA
F2FC
F2FE
F301
F301

F303
F308

F308
F3056
F306
F3o08

F30A
F300

F30F
F311
F315

F317

F319
F31E

28 D

oo
oo

8o

F3C7 R

138B R
3E 0049 R 09

15

€6 2000
€7 2000
F3C7 R
EE 3F80
EF 3FBO
cc

EE 1FBO
EF IFa0
cc

bo

c7
F3E0 R

1368 R
3E 0043 R 09

oD
€7 2000

F3EO R
EF 3FBO

o8
c2

F72C R
Fa

1
€2 o101
E6

E6

3E 0049 R 06

74 22

Fialntatalaind DETERMINE THE SOURCE ADDRESS IN THE BUFFER

€80: FIND_SOURCE
PUSH ES . GET SEGMENTS BOTH POINTING TO
; REGEN
pop DS
sus CH, CH ; ZERO TO HIGH OF COUNT REG
SAL BL, 1 ; MULTIPLY NUMBER OF LINES BY 4
SAL BL, 1
gz =] ; IF 2ERO, THEN B8LANK ENTIRE FIELD
MoV AL, 8L ; GET NUMBER OF LINES [N AL
MoV AH, 80 ; 80 8YTES/ROW
MUL AH ; DETERMINE OFFSET TO SOURCE
Hov s1,D1 ; SET UP SOURCE
ADD SI,AX ; ADD IN OFFSET TO IT
nov AH nu ; NUMBER OF ROWS IN FIELD
sU! ; DETERMINE NUMBER TO MOVE
- LOOP THROUGH MOVING ONE ROW AT A TIME, BOTH EVEN AND 0DD
; FIELDS
cel: ROW_LOOP
CALL €95 MOVE ONE ROW
PUSH DS SAVE DATA SEG
CALL DDS POINT TO BIOG DATA AREA
CHP CRT_MODE, 8 ; MODE USES 32K REGEN?
POP DS ; RESTORE DATA SEG
JC i NO, JuM
ADD 61,2000H . ADJUST FOlNTERs
ADD DI, 2000H
caLL €95 ; MOVE 2 MORE ROWS
SuB S1, 4000H-80 ; BACK UP POINTERS
sUB D1, d4000H-80 ;
DEC AH ADJUST COUNT
ce2: SUB SI,2000H-80 i MOVE TO NEXT ROW
SuB DI, 2000H-80
DEC AH ; NUMBER OF ROWS TO MOVE
JNZ cBl CONTINUE TILL ALL MOVED
;== FILL IN THE VACATED LINE(S)
ce3. ; CLEAR_ENTRY
Hov AL, BH ; ATTRIBUTE TO FILL WITH
cea: caLL C96 ; CLEAR THAT ROMW
PUSH DS ; SAVE DATA SEG
cALL DDS ; POINT TO BIOS DATA AREA
cHP CRT_NODE, 9 NODE USES 32K REGEN?
POP 08 ; RESTORE DATA SEG
Jc cBs ; NO, JUNP
ADD D1, 2000H
CALL c96 ; CLEAR 2 MORE ROWS
suB DI, 4000H-80 ; BACK UP POINTERS
DEC BL ; ADJUST COUNT
ces: sug DI, 2000H-80 ; POINT TO NEXT LINE
DEC 8L ; NUMBER OF LINES TO FILL
JNZ cea ; CLEAR_LOOP
Jnp VIDEO_RETURN ; EVERYTHING DONE
cB6: ; BLANK_F1ELD
MoV BL,DH ; SET BLANK COUNT TO EVERYTHING IN
; FIELD
JKP ce3 ; CLEAR THE FIELD
GRAPHICS_uf ENDP

SCROLL DOWN
THIS ROUTINE SCROLLS DOWN THE INFORMATION ON THE CRT
ENTRY
CH,CL UPPER LEFT CORNER OF REGION TO SCROLL
DH,DL = LOWER RIGHT CORNER OF REGION TO SCROLL
BOTH OF THE ABOVE ARE IN CHARACTER POSITIONS
BH = FILL VALUE FOR BLANKED LINES
= 8 LINES TO SCROLL (AL=0 MEANS BLANK THE ENTIRE FIELD)
DS = DATA SEGMENT
= REGEN SEGNENT
EXIT ——
NOTHING, THE SCREEN 1S SCROLLED

i
H
B
H
H
i
H
H
;
H

RAPHICS_DOWN PROC NEAR
sTD ; SET DIRECTION

HOV BL, AL ; SAVE LINE COUNT IN BL

HOV AX, DX ; GET LOWER RIGHT POSITION INTO AX REG

USE CHARACTER SUBROUTINE FOR POSITIONING

ADDRESS RETURNED IS MULTIPLIED BY 2 FROM CORRECT VALUE

CALL GRAPH_POSN

MoV DI, AX ; GAVE RESULT AS DESTINATION
; ADDRESS
jomm——— DETERMINE S1ZE OF WINDOW
suB bX, CX
ADD DX, 101H ; ADJUST VALUES
sAL DH, 1 ; MULTIPLY % ROWS BY 4 SINCE 8 VERT
; DOTS/CHAR
sAL DH, 1 ; AND EVEN/ODD ROWS
j - DETERMINE CRT MODE
cHP CRT_MODE, 6 ; TEST FOR HIGH RES
9z ca7 i FIND_SOURCE_DOWN

>
)
S
o
=4

ROM BIOS A-87




F320

F322
F324
F328
F32A
F32C
F331
F333
F338
F33A
F338

F33D
F33F

F342
F342
F344

F347
F34C
F34€

F361
F383
F355
F357
F359
FasB
F380
F35F
F361
F363
F366
F367
F3é8

F369
F368
F36C
F36D
Fazo
F376
F376
F378
F37C
F380
F383
F387
F388
F3BD
F391

F395~

Fas7

F389
F399
F398B
Fase
F39E
F38F
F3A2
Faa7
F3AB
F3AA
F3AE
F381
F385
F3B7
F3B8
F380
F3BF
F3Co
F3C3
F3C3

F3C6
F3C7

F3c7
F3c7
F3cs
F3CA
F3ce
F3CD
F3CE

Do

D1
a7
80
74
B8O
74
80
74
aF
0o

"B
83

2A
88

80
72
8B

03
[T}
[1}
74
BA
B84
Fe
a8
28
BA
2A
06
1F

[3:]
1E
EB
80
1F
72
el
81
EB
81
81
FE
81
81
FE
78

BA

ES
1E
EB
80
IF
72
B1
EB
81
FE
81
FE
75
FC
E2

BA

EB

BA
68
67

E2
E7
3E 0048 R 04
16

3E 0043 R 0B
OF
3E 0048 R 0A
0B

C7 03

ED
00F0

3E 0049 R 09
03
00A0

FB
E3
E3
6A
c3
60
E4
F7
FoO
E6
E3

F3C7 R

1388 R
3E 0049 R 09

15
€6 2000
€7 2000
F3C7 R
EE 4050
EF 4060
[+
EE 2050
EF 2030
cc
oo

c7

F3E0 R

1388 R
3E 0048 R 09

oD

Ca

F3/ A4

6F
SE

F3CF 91 Cé 2000
F303 81 C7 2000

F3D7 66
F30B &7
F3D0D BA CA
F3DB F3/ A4
FaDD BF
F3DE GE
F3DF C3
F3E0

A-88 ROM BIOS

C€80:

;
col:

c92

€53:

MEDIUM RES DOWN

SAL oL, 1 ; % COLUMNS % 2, SINCE 2 BYTES/CHAR
; (OFFSET OK)

SAL 01,1 ; OFFSET W2 SINCE 2 BYTES/CHAR

INC Dl ; POINT TO LAST BYTE

cHP CRT_MODE, 4 ; TEST FOR MEDIUM RES

Jz ca7 ; FIND_SOURCE_DOWN

CHP CRT_MODE, 5 ; TEST FOR MEDIUM RES

Jz c87 ; FIND_SOURCE_DOWN

cup CRT_MODE, 0AH ; TEST FOR MEDIUM RES

Jz ca7 ; FIND_SOURCE_DOWN

DEC D1

SAL oL, 1 % COLUMNS % 2 AGAIN, SINCE 4

BYTE9/CHAR (OFFSET 0K)
SAL 01,1 OFFSET %2 AGAIN, SINCE 4

BYTES/CHAR

POINT TO LAST BYTE
ESS IN THE BUFFER
FIND_SOURCE_DOWN

ADO 01,3
DETERMINE THE SOURCE ADD

H
’
Ri

sve CH, CH ; ZERO TO HIGH OF COUNT REG

MoV AX, 240 ; OFFSET TO LAST ROW OF PIXELS IF
; 16K REGEN

cHP CRT_MODE, 9 ; USING 32K REGEN?

Jc (<1 ; NO, JUMP

MoV AX, 160 ; OFFSET To LAST ROW OF PIXELS IF
; 32K REGEN

ADD DI, AX ; POINT TO LAST ROW OF PIXELS

SAL 8L, 1 ; MULTIPLY NUMBER OF LINES BY 4

SAL BL, 1

Jz caq ; IF ZERO, THEN BLANK ENTIRE FIELD

MoV AL, BL ; GET NUMBER OF L1NES IN AL

MOV AH, BO ; B0 BYTES/ROW

MUL AH ; DETERMINE OFFSET TO SOURCE

MOV s1,01 ; SET UP SOURCE

sUB S, AX ; SUBTRACT THE OFFSET

MOV AH, DH ; NUMBER OF ROWS IN FIELD

sue AH, BL ; DETERMINE NUMBER TO MOVE

PUSH ES ; BOTH SEGMENTS TO REGEN

POP DS

LOOP THROUGH, MOVING ONE ROW AT A TIME, BOTH EVEN AND 0DD
F1ELDS

ROW_LOOP_DOWN

CALL [+:1-1 MOVE ONE ROW

PUSH DS SAVE OATA SEG

cALL 00S POINT TO BIOS DATA AREA
CMP CRT_MODE, 8 MODE USES 32K REGEN?
POP bS RESTORE DATA SEG

Je cso NO, JUMP

apo SI, 2000H ADJUST POINTERS

ADD D1, 2000H

cALL €95 ; MOVE 2 MORE ROWS

SUB S1,4000H+80 ; BACK UP POINTERS

5UB DI, 4000H+80 ;

DEC AH ; ADJUST COUNT

SUB S, 2000H+80 ; MOVE TO NEXT ROW

sue DI, 2000H+80

0EC AH ; NUMBER OF ROWS TO MOVE

JNZ ceg ; CONTINUE TILL ALL MOVED
FILL IN THE VACATED LINE(S)
; CLEAR_ENTRY_DDWN

Mov AL, BH ; ATTRIBUTE TO FILL WITH
; CLEAR_LOOP_DOWN

CALL c9g ; CLEAR A ROW

PUSH DS ; SAVE OATA SEG"

cALL DDS ; POINT TO BIOS DATA AREA

cHP CRT_MODE, 8 ; MODE USES 32K REGEN?

POP DS ; RESTORE DATA SEG

Jc co3 i NO, JUMP

ADD D1, 2000H

cALL C96 ; CLEAR 2 MORE ROWS

suB D1, 4000H+BO ; BACK UP POINTERS

DEC BL ; ADJUST COUNT

sue DI[,2000H+BO ; POINT TO NEXT LINE

DEC BL ; NUMBER OF LINES TD FILL

JNZ c82 ; CLEAR_LOOP_DOWN

cLo ; RESET THE DIRECTION FLAG

JHP VIDEO_RETURN ; EVERYTHING DONE
; BLANK_FIELO_DOWN

MoV 8L, DH ; SET BLANK COUNT TO EVERYTHING IN
; FIELD

ca1 ; CLEAR THE FIELD

GRAPH1CS_DOWN ENDP

ROUTINE TO MOVE ONE ROW OF INFORMATION
NEAR

PROC

MOV CL,DL ; NUMBER OF BYTES IN THE ROW
PUSH st

PUSH D1 ; SAVE POINTERS

REP Movse ; MOVE THE EVEN FIELD
POP D1

POP s

ADD S1, 2000H

ADD DI, 2000H ; POINT TO THE ODD FIELD
PUSH sl

PUSH DI ; SAVE THE POINTERS

MOV cL, oL ; COUNT BACK

REP MOVSB ; MOVE THE 00D FIELD
POP DI

POP Ell ; POINTERS BACK

RET ; RETURN TO CALLER

ENDP



~
J

C

F3EOQ
F3EOQ
F3E2
F3E3
F3IES
F3E6
F3EA
F3EB
F3ED
F3EF
F3F0
F3F1

F3F1
F3F1
F3F3

F3F4
F3F7

F3F9
F3FA
F3FD
F3FF
Fa01
Fa04q
Fa06
Fa06
Fao7
Fa0s

Faoe
FaoD

FAOF
Fa10

Fa11
Fa413
F418
Fa17
Fa18
FAlE
Fa420
Fa2s
F427
Faz2c
FA2E
Fa31
Fa3e

Fa38
Fa38
Fa3A
F438
F430
F43E
Fdal
Fa43
Fa44
F445
Fa4a
F44D
Fa4F
F451
Fa52
F453
F454

81 C7 2000
57

BA CA

F3/7 AA

BF
€3

EB F729 R
ae Fg

8E 0110 R

BE 007¢C R
2C 80

BE DA

Cc5 34
8C DA

60 3E 0049 R 04
as

80 3E 0049 R 05

80 3E 0049 R 0A
03

E9 FaD4A R
80 3E 0049 R 06
53

iF

87

86

a6 04

AC

F8 c3 80
756 16

AA

AC

26: 88 BY IFFF
83 C7 4F
FE CE

78 EC

8E

&F

47

E2 E3

mm—m—— CLEAR A SINGLE ROW

cs8 PROC NEAR
MoV cL,oL ; NUMBER OF BYTES IN FIELD
PUSH DI ; SAVE POINTER
REP STOSB ; STORE THE NEW VALUE
PoP o1 ; POINTER BACK
ADD DI, 2000H ; POINT TO ODD FIELD
PUSH 01
MoV cL,oL
REP STOSB ; FILL THE 00D FILELD
POP D1
RET ; RETURN TO CALLER

Ccss ENDP

GRAPHICS WRITE
TH1S ROUTINE WRITES THE ASCI! CHARACTER TO THE CURRENT
POSITION ON THE SCREEN.
ENTRY --
= CHARACTER TO WRITE
BL = COLOR ATTRIBUTE TO BE USED FOR FOREGROUND COLOR
IF 8IT 7 IS SET, THE CHAR 1S XOR‘D INTO THE REGEN BUFFER
(0 16 USED FOR THE BACKGROUND COLOR)

H
H
H
H
i
;
H
H
H

CX = NUMBER OF CHARS TO WRITE
DS = DATA SEGMENT

ES = REGEN SEGHMENT

EXIT --

NOTHING 16 RETURNED

GRAPHICS READ
THIS RQUTINE READS THE ASCI1 CHARACTER AT THE CURRENT CURSOR
POSITIOM ON THE SCREEN BY MATCHING THE DOTS ON THE SCREEN TO
THE CHARACTER GENERATOR CODE POINTS

ENTRY —--

NONE (0 IS ASSUMED AS THE BACKGROUND COLOR)

T
AL = CHARACTER READ AT THAT POSITION (0 RETURNED {F NONE FOUNO)

FOR BOTH ROUTINES, THE IMAGES USED TO FORM CHARS ARE CONTAINED IN
ROM. INTERRUPT 44H IS USEO TO POINT TQ THE TABLE FOR THE FIRST
128 CHARS. INTERRUPT 17H IS USED TO POINT TO THE TABLE FOR THE
SECOND 128 CHARS

ASSUME CS:CODE,DS: DATA ES: DATA
GRAPHICS_MWRITE PROC NE

XOR AH, AH ; ZERO TO HIGH OF CODE POINT
PUSH AX ; SAVE CODE POINT VALUE
DETERMINE POSITION IN REGEN BUFFER TO PUT CODE POINTS
CALL RE9 ; FIND LOCATION IN REGEN BUFFER
D1, AX ; REGEN POINTER IN DI
jmm——— nnznmns REGION TO GET cons POINTS FROM
POP RECOVER CODE POINT
MOV Sl OFFSET CSET_ PTR ; ASSUME FIRST HALF
cHp AL, 80| i 15 IT IN FIRST HALF?
8 R1 JUMP [F 1T IS
MoV S1,0FFSET EXT_PTR ; SET POINTER FOR SECOND HALF
suB AL, BOH ; ZERO ORIGIN FOR BECONO HALF
R1: ; EXTEND_CHAR
PUSH DS . SAVE DATA POINTER
XOR DX, DX
MoV DS, DX ; ESTABLISH VECTOR AODRESSING
ASSUME DS:ABSO
LoS &1,0MORD PTR [SI1 ; GET THE OFFSET OF THE TABLE
MOV DX,DS ; GET THE SEGMENT OF THE TABLE
ASSUME DS:0ATA
POP DS ; RECOVER DATA SEGHENT
PUSH DX SAVE TABLE SEGMENT ON STACK
- DETERMINE GRAPHICS MODE IN OPERATION
SAL ax, 1 ; MULTIPLY CODE POINT
saL ax, ;  VALUE @Y
SAL AX, 1
ADD sI, AX ; §1 HAS OFFSET OF DESIRED CODES
cMP CRT_MODE, 4
JE RS ; TEST FOR MEDIUM RESOLUTION NODE
CNP CRT_MODE, §
JE RS ; TEST FOR MEDIUM RESOLUTION MODE
CHMP CRT_MODE, 0AH
JNE R3 ; TEST FOR MEDIUM RESOLUTION MODE
JMP R16
R3: CNP CRT_MODE, 6 ; TEST FOR HIGH RESOLUTION MODE

JNE R1 GOTO LOW RESOLUTION IF NOT
====== HIGH RESOLUTION MOOE
POP bs ; RECOVER TABLE POINTER SEGMENT

RG: PUSH DI ; SAVE REGEN POINTER
PUSH st ; SAVE CODE POINTER
HOY DH, 4 ; NUMBER OF TIMES THROUGH LOOP
RE: Loose ; GET BYTE FROM CODE PQINTS
TEST BL, 80H ; SHOULD WE USE THE FUNCTION
JNZ RB ;  TO PUT CHAR IN?
5TOS8 ; STORE TN REGEN BUFFER
Lobs8
R7: MoV ES: [D1+2000H-1],AL ; STORE IN SECOND HALF
ADD 01,79 ; MOVE TO NEXT ROW IN REGEN
DEC 0H ; DONE WITH LOOP
JNZ R6
POP s1
POP o1 ; RECOVER REGEN POINTER
INC DI ; POINT TO NEXT CHAR POSITION
LooOP RE ; MORE CHARS TO WRITE

ROM BIOS A-89

>
]
=
<
oy
#
>




F456
F459
FaB8C
F45D
FA45E
Fa83

Fa65
FA465
FA66
FA468
FA6A
F460
FA46D
FA6E
FA6F
Fa71
Fa74
Fa78
Fa7B
FATF
FaB1
Fa83
Fag4
F4Bs
Fa48e
Fae7
Fag9

FaBB
FaB8
FaBC
F48E
F480
F4g2
F4es
Fa49s
F4p6
F497
Fa438
F43C
F4Aa0
F4A3
F4A4
F4A7
FaAC
FA4AD
FAAF
F483
Fa4B6
F4BA
F48D
Facl
F4c3
Fac?
Faco
FacB
Facc
FAacD
Fa00
Fap2

FaD4q
F4Ds
Fap7

F4p9
FapB
F4DE
F4EO
FAE2
F4ES
F4E7
F4ED
F4EB
F4E®
F4geC
F4ED
FAEF
F4F2
F4F&
F4F9
F4FD
FS00
F504
F507
F80B
F500
FSOF
F810
F511
F512
F513
FS15

A-90

0F70 R R706:  JNP VIDEO_RETURN
32 05 R8: XOR AL,ES: DI ; EXCLUSIVE OR WITH CURRENT DATA
STOSB ; STORE THE CODE POINT
LODSB ; AGAIN FOR 00D FIELD
32 85 IFFF XOR AL, ES: [D1+2000H-1]
EO JMP R7 ; BACK TO MAINSTREAM
jmm———— MEDIUM RESOLUTION WRITE
R9: ; MED_RES_WRITE
POP 0s ; RECOVER TABLE POINTER SEGMENT
03 MOV oL,BL ; SAVE HIGH COLOR BIT
€7 6AL oI, ; OFFSETw2 SINCE 2 BYTES/CHAR
F859 R caLL R40 ; EXPAND BL TO FULL WORD OF COLOR
R10: ; MED_CHAR
PUSH 01 ; SAVE REGEN POINTER
PUSH s1 ; SAVE THE CODE POINTER
04 MoV DH, 4 ; NUMBER OF LOOPS
F626 R R11: CALL R35 ; DO FIRST 2 BYTES
€7 2000 ADO DI, 2000H ; NEXT 8POT IN REGEN
F626 R CALL R3S ; DO NEXT 2 BYTES
EF 1FBO suB D1, 2000H-80
CE DEC DH
EE JNZ R11 ; KEEP GOING
POP 81 ; RECOVER CODE PONTER
PoP o1 ; RECOVER REGEN POINTER
INC o1 ; POINT TO NEXT CHAR POSITION
INC ol
E4 LOoOP R10 ; NORE TO WRITE
c8 Jnp R70
——————— LOW RESOLUTION WRITE
R12: ; LOW_RES_WRITE
POP 0S ; RECOVER TABLE POINTER SEGNENT
03 oV DL, 8L ; SAVE HIGH COLOR BIT
E7 SAL oI, 1 ; OFFSETw4 SINCE 4 BYTES/CHAR
E7 SAL oI, 1 i
FBEE R CALL R42 ; EXPAND BL TO FULL WORD OF COLOR
R13: ; MED_CHAR
PUSH 01 ; SAVE REGEN POINTER
PUSH st ; SAVE THE CODE POINTER
04 NOV DH, 4 ; NUMBER OF LOOPS
F645 R R14: CALL R39 ; EXPAND DOT ROW IN REGEN
€7 2000 ADD DI, 2000H ; POINT TO NEXT REGEN ROW
F645 R CALL R39 ; EXPAND DOT ROM IN REGEN
PUSH  0S ; SAVE 0§
1388 R CALL D0S ; POINT TO B10S DATA AREA
3E 0049 R 09 cne CRT_MODE, 09H ; USING 32K REGEN AREA?
POP oS ; RECOVER DS
14 JNE R16 ; JUMP IF 16K REGEN
c7 2000 ADD D1, 2000H ; POINT TO NEXT REGEN ROW
FE45 R CALL R39 ; EXPAND DOT ROW IN REGEN
€7 2000 ADD DI, 20004 ; POINT TO NEXT REGEN ROW
FG48 R cALL R38 ; EXPAND DOT ROW IN REGEN
EF 3FBO sua D1, 4000H~BO ; ADJUST REGEN POINTER
CE DEC DH
EF 1FBO R16: sus D1, 2000H-80 ; ADJUST REGEN POINTER TO NEXT ROW
CE DEC DH
CE JNZ R14 ; KEEP GOING
POP 81 : RECOVER CODE PONTER
POP o1 ; RECOVER REGEM POINTER
c7 04 ADD 01,4 ; POINT TO NEXT CHAR POSITION
c3 LOOP R13 ; MORE TO WRITE
82 NP R706
5 - 840X200 4 COLOR GRAPHICS WRITE
RI6: POP s ; RECOVER TABLE SEGMENT POINTER
n3 MoV DL, 8L ; SAVE HIGH COLOR BIT
E7 s ; OFFSET®2 SINCE 2 BYTES/CHAR
; EXPAND LOW 2 COLOR 81TS IN BL (clcO)
INTO BX (c0c0OcOcOcocOcOcOcicicicicleiclcl)
co XOR AX, AX
€3 01 TEST BL, 1 ; €O COLOR BIT ON?
02 Jz R17 i NO, JUMP
FF MOV AH, OFFH ; YES, SET ALL ¢O BITS ON
€3 02 R17: TEST BL,2 ; c1 COLOR BIT ON?
02 Jz R18 ; NO, JuMP
FF MOV AL, OFFH ; YES, SET ALL cl BITS ON
0@ R18: MoV BX, AX ; COLOR NASK IN BX
R19:
PUSH D1 ; SAVE REGEN POINTER
PUSH sl ; SAVE CODE POINT POINTER
2 MOV DH, 2 ; SET LOOP COUNTER
F518 R R20: cALL R21 ; DO FIRST DOT ROMW
€7 2000 ADD D1, 2000H ; ADJUST REGEN POINTER
FE1B R cALL R21 ; DO NEXT DOT ROW
€7 2000 ADD D1, 2000H ; ADJUST REGEN POINTER
F518 R CALL R21 ; DO NEXT DOT ROW
€7 2000 ADD D1, 2000H ; ADJUST REGEN POINTER
F518 R CALL R21 ; DO NEXT DOT ROW
EF S5F60 suB D1, 6000H- 160 ; ADJUST REGEN POINTER TO NEXT ROW
CE DEC DH
€0 JNZ R20 ; KEEP GOING
POP sI ; RECOVER CODE POINT POINTER
POR D1 ; RECOVER REGEN POINTER
INC D1 ; PDINT TO NEXT CHARACTER
INC DI
06 LOOP R19 ; NORE TD WRITE
OF70 R IHP VIDEO_RETURN

ROM BIOS



O

(>

()

FG618
F518
F519
F51B
F510
F520
F522
F525
F529
F52C
F530
F531
FB631

"~ F531

F531
F534
F536

F539
FS38
FS3C
FG3E

F548
FG54A

F561

F553
F558
F85A

F56C
F55D
FB6F
FS62
F&63
FB67
FS6A
FS68
FG6E
F570

‘F572

- F674

FB75
F577
F879

F57C
FSB0

FS82
F384
F587
F58C
FGBD
F5BF
FS592

FS98
F584

FE9D
-FBAL
FSA3

‘F8A7

F5A8
F5A8

FEAD
FBAD
F5AE
¥580

F583
F8B7
FSBA
FSBB
F8BE
FBCA
FBCd
F5C8

F5CA

FSCO
FBD1I

FBDA4
FSDB
FBDA
FBDA
FSDE
FSEO

81l
FE

Bl

75

88 45 01

F729 R

EC
EC

04
46

84
48

cé
CE
EB
6E

E6

‘E6

oa

0049
0049
00489
00489

FEFC R

<6

2000

FaFC R

1388 R

3E

14
ce

0049

2000

FEFC R

<3

2000

F6FC R

EE
CE
EE
CE

CE
as

aFBo

iFeo

(:]
F6C3 R

Té

2000

F6C3I R

1388 R

3E

14
cs

0049

2000

FBCA R

cé

2000

F8C3 R

EE
CE

EE
CE
CE

aFgo

1FBO

R 06
R 04
R 05

R 0A

R21 PROC NEAR
LoDS8 ; GET CODE POINT
MoV AH, AL ; COPY INTO AM
AND AX,.8X ; SET COLOR
TEST DL, BOH ; XOR FUNCTION?
9z R22 ;i NO, JUMP
XOR AH,ES: [D1] ; EXCLUSIVE OR WITH CURRENT DATA
XOR AL,ES: [DI+1]
R22: Hov ES: (D11, AH ; STORE IN REGEN BUFFER
MoV ES: {DI+17, AL
RET
R21
GRAFHICS HRITE ENDP
.; GRAPHICS READ
P
GRAPHICS_READ  PROC NEAR
cALL RS9 ; -CONVERTED TO OFFSET IN REGEN
wov S1, AX ; SAVE IN 8I
suB 9P, 8 ; ALLOCATE SPACE TO SAVE THE READ
; CODE POINT
MOV 8P ; POINTER' TO SAVE AREA
jmm———— DETE‘RHINE GRAFHKCS MODES
ES
nov DH, 4 ; NUMBER OF PASSES
CHP CRT_MODE, 6
Jz r23 ; HIGH RESOLUTIOM
CHP CRT_MODE, 4
Jz R28 ; MEDIUM RESOLUTION
CMP .CRT_MODE, §
Jz “R28 ; MEDIUM RESOLUTION
cMP CRT_MODE, OAH
JZ R28 ; MEDIUM .RESOLUTION
SHORT R2S ; LOW RESOLUTION
uxcu RESOLUTION READ
GET VALUES FROM REGEN BUFFER AND CONVERT TO 'CODE POINT
PopP DS ;- POINT TO 'REGEN SEGMENT
R24: MOV AL, (811 ; GET FIRST BYTE
MoV terd, AL ; SAVE -IN STORAGE AREA
‘INC BP i NEXT LOCATION
MOV AL, [S1+2000H3 ; GET LOWER REGION BYTE
MOV (B8P3, AL ; ADUUST AND STORE
INC 8P
ADD SI1,80 ; POINTER INTO REGEN
DEC DH ; LDOP CONTROL
R24 ; DO IT _SOME MORE
SHORT R31 ; GO MATCH THE SAVED CODE POINTS
RESOLUTION READ
DS ; POINT TO REGEN SEGMENT
s, 1 ; DFFSET®A SINCE -4 BYTES/CHAR
81,1
R26: CALL  RSS ; GET 4 BYTES FROM REGEN INTO
; SINGLE SAVE
ADD §1,:2000H ; GOTO LOWER REGION
CALL RSS ; GET ‘4 BYTES FROM REGEN 1NTO
; SINGLE SAVE
PUSH pS ; ‘SAVE DS
caLL 00S ; POINT TO B10S. OATA AREA
cHP CRT_MODE, 9 ; DO WE HAVE A 32K REGEN AREA?
POP DS
JNE R27 ; "NO, JURP
ADD §1,2000H ; GOTO LOWER REGION
CALL R&E ; GET 4 BYTES RROM REGEN INTO
i SINGLE SAVE
ADD 81, 2000H ; GOTO LOWER REGION
CALL RE5 ; GET 4 BYTES FROW REGEN INTO
; SINGLE SAVE
suB S1, 4000H-80 ; ADJUST POINTER
DEC OH
R27: sus 81, 2000H-80 ; ADJUST POINTER BACK TO UPPER
OEC DH
an R26 ;DO IT SOME MORE
SHORT Ra1 GO MATCH THE SAVED CODE POINTS
j nzown RESOLUTION READ
R28: ; MEB_RES_READ
POP pS ; POINT TO REGEN SEGMENT
9AL s1,1 ; OFFSET#2 SINCE 2 BYTES/CHAR
R29: caLL REO ; GET PAIR BYTES FROM REGEN INTO
; SINGLE SAVE
ADD 81, 20004 ; GO TO LOWER REGION
CALL RE0 ; GET THIS PAIR INTO SAVE
PUSH oS ; SAVE 0§
cALL DOS ; POIRT TO BIOS OATA AREA
CMP CRT_MODE, 0AH ; DO WE HAVE A 32K REGEN AREA?
POP 0§
JNE ‘R30 ; NO, JUMP
ADD 51, 2000H ; GOTO LOWER REGION
CALL R50 ; GET PAIR BYTES FROM REGEN INTO
; SINGLE SAVE
ADD s1,2000H ; GOTO LOWER. REGION
caLL RSO ; GET PAIR'BYTES FROM REGEN ‘INTO
; SINGLE SAVE
sue S1, 4000H-80 ; ADJUST POINTER
DEC DH
R30:
sug 51,2000H-80 ; ADJUST PGINTER BACK [NTO UPPER
DEC DH
JNZ R29 ; KEEP GOING UNTIL ALL 8 DONE

ROM BIOS A-91

>
o
=
(27
=
o
=
>




FBE2
FSE2
FBE4

FBE6
FSEA

FSED
FBEF
FSFO
F&F2
FGF3
F&F4
F&F7
FSF8
F5F9
F5FC
FSFE
FBFF
FE&00

F602
F604
F&07
FE0B

F60A
FBoC
FEOE
FE10

F612
‘F616
F618
F61A
F61C
FE1E

F620

F823
FB26

F626
F626
F627
F624A

F62C
F62F
F631
F634
F638
FE&38
F63F
F640

F640
FB840
F843
FB45

Feas
F645
F646
Fea7
FB48
Feaa
Feac
F&ap
F650
F651
F652
F653
F656
FB57
F&58
F659

AC
EB
23

Fé

26:
26:
26:
26:

c3

11:3
EB

co
[:1:]

3E 0110 R

ED 08
F5

co

0080

Cc7 o8

3E 007C R

€a 08

OF70 R

04
EB

F640 R

F640 R

ol

SAVE AREA HAS CHARACTER

XOR AX, AX
MOV DS, AX H
ASSUME DS:ABSO
S 01,CSET_PTR i
SuB BP,8 ;
;
MOV s1,BP
cLp i
XOR AL, AL ;
R32: PUSH ss ;
POP DS ;
MoV 0X, 128 ;
R33 PUSH SI i
PUSH DI i
MOV cx,8 ;
REPE CMPSB ;
POP ot ;
POP SI
Jz R34 ;
INC AL ;
AOD p1,8 ;
DEC DX f
JINZ R33 i
jm—— CHAR NOT MATCHED, MIGHT 8
OR AL, AL i
JE R34 ;
sue AX, AX
MOV 0s, AX H
ASSUME 0S: ABSO
LES 01,EXT_PTR ;
MOV AX,ES H
OR AX, D1 ;
Jz R34 i
MoV AL, 128 5
JHP R32 H
ASSUME DS:DATA
;===-—-- CHARACTER .IS FOUND ( AL=0
R34: ADD SP, B ;
JHP VIDEO_RETURN ;
GRAPHICS_READ  ENDP
R3S PROC NEAR
LODSB i
cALL R43 ;
R36: AND AX, 8X i
TEST DL, BOH i
Jz R37 i
XOR AH,ES: (D11 ;
XOR AL,ES: [DT+1] ;
R37 MOV ES: DI, AH :
MOV ES: EDI+131,AL ;
RET
R36 ENDP
R38 PROC NEAR
cALL R45 i
JHP R36

Loose s
PUSH AX ;
PUSH cx
MOV cL,a ;
SHR AL, CL
POP cx
cALL R38 ;
POP AX ;
INC o1 i
INC o1
CALL /38 i
DEC DI ;
DEC DI
RET

R39 ENDP

IN IT7, MATCH IT
FINO_CHAR

ESTABLISH ADORESSING TO VECTOR

GET POINTER TO FIRST HALF
ADJUST POINTER TO BEGINNING OF
SAVE AREA

ENSURE DIRECTION

CURRENT CODE POINT BEING MATCHED
ESTABLISH ADDRESSING TO STACK
FOR THE STRING COMPARE

NUMBER TO TEST AGAINST °

SAVE AREA POINTER

SAVE CODE POINTER

NUMBER OF BYTES TO MATCH
COMPARE THE B BYTES

RECOVER THE POJNTERS

IF ZERO FLAG SET, THEN MATCH
OCCURRED

NO MATCH, MOVE ON TO NEXT
NEXT CQOE ROINT

LOOP CONTROL

DO ALL OF THEM

E IN SECOND HALF

AL<> O IF ONLY 18T HALF SCANNED
I{F = 0, THEN ALL HAS BEEN SCANNED

ESTABLISH AOORESSING TO VECTOR

GET POINTER

SEE LF THE POINTER REALLY EXISTS
IF ALL O, THEN DOESN'T EXIST

NO SENSE LOOKING

ORIGIN FOR SECOND HALF

GO BACK AND TRY FOR IT

IF NOT FOUND )

READJUST THE STACK, THROW AWAY
WORK AREA

ALL DONE

GET CODE POINT
DOUBLE UP ALL THE BITS
CONVERT THEM TO FOREGROUND COLOR
{ 0 BACK )
1S THIS XOR FUNCTION?
NO, STORE IT IN AS IT 1S
DO FUNCTION WITH HALF
AND WITH OTHER HALF
STORE FIRST 8YTE
STORE SECOND BYTE

QUAD UP THE LOW NIBBLE

4 BYTES IN THE REGEN BUFFER

GET COOE POINT

SAVE

MOV HIGH NIBBLE TO LOW

EXPAND TO 2 BYTES & PUT IN REGEN
RECOVER CODE POINT

ADJUST REGEN POINTER

EXPAND LOW MIBBLE & PUT IN. REGEN
RESTORE REGEN POINTER

EXPAND_MED_COLOR

THIS ROUTINE EXPANDS THE LOW 2
FILL THE ENTIRE 8X REGISTER
ENTRY ——

BITS IN BL TO

BL = COLOR TO BE USED ( LOW 2 B1TS )
X -

BX = COLOR TO BE USED ¢ B8 REPLICATIONS OF THE 2 COLOR BITS )

A-92 ROM BIOS



)

()

F659
Fes9
Fe5C
FG5E
FEBF
FE62
F664
F666
FG68
FE6A
F66C
F66D
FE66E

FGEE
FG6E
F66F
F672
F674
FE676
F678

FE67A
Fg7C
Fe870
FE67E

FB7E
F67E
F67F
Fé&BO
F6B1
FE6B3
F6B6
:1:1]
FG6BA
FE8C
FE8E
F690

' F692

F694
F696

F&sa

F69A
FG9C
FG69D
F69E
FB69F
F6a0

F6AO
F6AO
F8Al
FE6A3
FEAS
FE6A7
FBAA
FEBAC
FBAE
F6B1
F6B3
F6BS
F6BB
FeBA
F6BC
F68F
FGCI!
Fec2
F6C3

R40 PROC NEAR

AND BL,3
MOV AL, BL
PUSH cx
MoV cx,3

RAIL: SAL AL, 4
SAL AL, 4
oR BL, AL
LOOP R4l
MOV BH, BL
POP cx
RET

R40 ENDP

ISOLATE THE COLOR BITS
COPY TO AL

SAVE REGISTER

NUMBER' OF TIMES TO DO THIS

LEFT SHIFT BY 2

ANOTHER COLOR VERSION INTO BL
FILL ALL OF BL

FILL UPPER PORTION

REGISTER BACK

ALL DONE

EXPAND_L OW_COLOR

THIS ROUTINE EXPANDS THE LOW 4 BITS IN BL TO
FILL THE ENTIRE 8X REGISTER

i
i
i
i
; ENTRY ==
; BL = COLOR TO BE USED ( LOW 4 BITS )
i EXIT --
; BX = COLOR TO BE USED ( 4 REPLICATIONS -OF THE 4 COLOR BITS )
RA2 PROC NEAR
PUSH cx
AND BL, OFH ; ISOLATE THE COLOR BITS®
MoV BH, BL ; COPY TO BH
MOV cL,4 ; MOVE TO HIGH NIBBLE
SHL BH, CL ;
oR BH, BL ; MAKE BYTE FROM HIGH AND LOW
; NIBBLES
MOV BL,BH ;
POP cx
RET ; ALL DONE
RA2 ENDP
i
; EXPAND_BYTE
i THIS ROUTINE TAKES THE BYTE IN AL AND DOUBLES ALL
; OF THE BITS, TURNING YHE B BITS INTO 16 BITS.
; THE RESULT IS LEFT IN AX
i
R43 PROC NEAR
PUSH DX ; BAVE REGISTERS
PUSH cx
PUSH Bx
SUB DX, DX ; RESULT REGISTER
MOV - CX, 1 ; MASK REGISTER
R44; MoV BX, AX ; BASE INTO TEMP
AND BX, CX ; USE MASK TO EXTRACT A BIT
OR DX, BX ; PUT INTO RESULT REGISTER
SHL ax; i
SHL cx, i ; SHIFT BASE AND MASK BY i
HovV BX, AX ; BASE TO TEMP
aND BX, €X ; EXTRACT THE SAME BIT
oR DX, BX ; PUT INTO RESULT
SHL cx, 1 ; SHIFT ONLY MASK NOW, MOVING TO
; NEXT BASE
JNC R44 ; USE MASX BIT COMING OUT TO
; TERMINATE
MoV AX,0X ; RESULT TO PARM REGISTER
POP BX
POP cx ; RECOVER REGISTERS
PoP DX
RET ; ALL DONE
R43 ENDP
; EXPAND_NIBBLE
; THIS ROUTINE TAKES THE LOW NIBBLE IN AL AND QUADS ALL
; OF THE BITS, TURNING THE 4 BITS INTO i§ BITS.
; THE RESULT IS LEFT IN AX
i
R4S PROC NEAR
PUSH DX ; SAVE REGISTERS
XOR DX, DX RESULT REGISTER
YEST AL, 8
Jz R46
oR DH, OFOH
RAG: TEST aL, 4
Jz RA47
oR DH, OFH
RA7: TEST AL, 2
Jz R4B
OR DL, OFOH
R4B: TEST AL, 4
Jz R49
OR DL, OFH
R49: MOV AX, DX RESULT TO PARM REGISTER
POP DX RECOVER REGISTERS
RET ALL DONE
R4B ENDP

ROM BIOS A-93




FeC3
F6C3
F&cs
‘F6Co
Fecs
F&cC
FBD 1
FB8D2

ca

24
44 01

1388 R
3E 0049 .R 0A

11

56 00

6A 24

- 1.3
€9

‘8A

84
E8
a8

ca

44 01

F7i4 R
64 02
44 03
F714 R
&6 00

MED_READ_BYTE

THIS ROUTINE WILL TAKE 2 BYTES FROM THE REGEN BUFFER,
COMPARE AGAINST THE CURRENT FOREGROUND COLOR, AND PLACE
"THE CORRESPONDING ON/OFF BIT PATTERN INTO THE CURRENT

POSITION IN THE SAVE AREA
ENTRY -—-

§1,DS = POINTER TO REGEN AREA OF INTEREST

BP = POINTER TO SAVE AREA
EXIT --

BP IS5 [NCREMENT AFTER SAVE

50 PROC  NEAR
MOV AH, [S11
MoV AL, [S1+1)
PUSH DS
cALL  DDS

 CHP CRT_MODE, OAH

POP oS
INE RE2

;
;
i
i
B
i
; BX = EXPANDED FOREGROUND COLOR
i
H
H
i
R

GET FIRST BYTE
GET SECOND BYTE
SAVE DS
POINT TO 8105 DATA AREA
IN 640X200 4 COLOR MODE?
"RESTORE REGEN SEG

JUNP

; IN 640X200 4 COLOR MODE, ALL THE ¢O BITS ARE IN ONE BYTE, AND ALL
THE £i BITS ARE IN THE NEXT BYTE.. HERE WE CHANGE THEM BACK TO

; -NORNAL c100 ADJACENT PAIRS.
X

MOV cx, 8

\RS1: SAR - AH, 1
RCR 8x, 1
SAR . AL, 1
RCR BX, 1
LooP R51
MoV AX, BX
POP ax

R52: Nov €X, 0CO00H
XOR DL, DL

R83 TEST AX, CX
Jz RS4
STC

RE4: RCL DL, 1
SHR cx, 1
SHR €x, 1
JHC R83
MOV £BP1,DL
‘INC BP
RET

RS0 ENDP

SAVE REG
SET LOOP COUNTER
¢0 'BIT INTO CARRY
AND INTO BX
e¢1-BIT INTO CARRY
AND INTO BX
REPEAT
RESULT INTO AX
RESTORE BX
2 BIT MASK TO TEST THE ENTRIES
RESULT REGISTER
1§ THIS SECTION BACKGROUND7
IF ZERQ, IT 1S BACKGROUND
WASN‘T, SO SET CARRY
-MOVE THAT BIT INTO THE RESULT

O

i
H

MOVE THE MASK ‘TO THE RIGHT 8Y 2

BITS

D0 IT AGAIN 1F MASK DIDN’T FALL
ouT

STORE -RESULT 1N SAVE AREA
ADJUST POINTER

ALL DONE

LOW_READ_BYTE

" POSITION IN THE SAVE AREA
ENTRY ==

8P = POINTER TO SAVE AREA
EXIT --

8P IS INCREMENT AFTER SAVE

THIS ROUTINE WILL TAKE 4 8YTES FROM THE REGEN BUFFER,
COMPARE FOR BACKGROUND 'COLOR, AND PLACE
THE CORRESPONDIMG ON/OFF BIT FATTERN ENTO THE CURRENT

S1,DS = POINTER TO REGEN AREA OF INTEREST

55 - PROC NEAR
MOV -AH, (S1]
MOV AL, [51+13
' XOR DL, DL
cALL RS6
MOV AH, [S1+2]
WOV AL, [51+3)
CALL R56
MOV £8P, DL
INC apP
RET
RES ENDP
RS6 PROC NEAR
NOV CX, OFO00H
R57 TEST AX, CX
Jz R58
8TC
RS8: RCL oL, 1
SHR €x, 1
SHR €x, 1
SHR €x, 1
SHR cx, 1
JNC RE7
RET
RS6 ENDP

A-94 ROM BIOS

;GET FIRST 2 - BYTES

;BUILD HIGH NISBLE
;GET SBECOND 2 BYTES

8UILD LOW NIBBLE

;STORE RESULT IN SAVE AREA
; ADJUST POINTER

; 4 BIT MASK TO TEST THE ERTRIES

; 15 TH1S SECTION BACKGROUND?

; IF ZERO, IT 1S BACXGROUND
WASN’T, S0 SET CARRY

;MOVE TFHAT BIT INTO RESULT

;MOVE MASK RIGH 4 BITS

;DO IT AGAIN IF MASK DID’T FALL OUT



;
i Va4_POSITION

; THIS ROUTINE TAKES THE CURSOR POSITION CONTAINED IN
; THE NEMORY LOCATION, AND CONVERTS IT INTO AN OFFSET
; INTO THE REGEN BUFFER, ASSUMING ONE BYTE/CHAR.

; FOR MEDIUM RESOLUTION GRAPHICS, THE NUMBER MUST
i

i

;

i

BE DOUBLED.
ENTRY -- NO REGISTERS, MEMORY LOCATION CURSOR_POSN IS5 USED
EXIT--
AX CONTAINS OFFSET INTO REGEN BUFFER
i
F729 R59 PROC NEAR
F729 Al 0050 R Mov AX, CURSOR_POSN ; GET CURRENT CURSOR
. F72C GRAPH_POSN LABEL NEAR
-F72C &3 PUSH BX ; SAVE REGISTER
;F720 88 D8 MOV 8x, AX ; SAVE A COPY OF CURRENT CURSOR
F72F 8A C4 MOV AL, AH ; GET ROWS TO AL
F731 FS5 20 004A R MUL 8YTE PTR CRT COLS ; MULTIPLY BY BYTES/COLUMN
F735 80 3E 0049 R 09 CcMP CRT_MODE, B ; MOOE USING 32K REGEN?
F73A 73 02 JNC R60 ; YES, JUMP
F73C D1 EO SHL AX, 1 ; MULTIPLY # 4 SINCE 4 ROWS/BYTE
F73E DI EO RE0: SHL AX, 1
F740 2A FF aus BH, BH ; 1SOLATE COLUMN VALUE
F742 03 C3 ADD AX, BX ; DETERMINE OFFSET
F744 5B POP Bx ; RECOVER POINTER
F745 C3 RET i ALL DONE
F748 R59 ENDP
LIGHT PEN

THIS ROUTINE TESTS THE LIGHT PEN SWITCH AND THE LIGHT
PEN TRIGGER. IF BOTH ARE SET, THE LOCATION OF THE LIGHT
PEN 1S DETERMINED. OTHERWISE, A RETURN WITH NO INFORMATION

= 0 IF NO LIGHT PEN INFORMATION IS AVAILABLE
8X,CX,DX ARE DESTROYED
(AH) = 1 IF LIGHT PEN IS AVAILABLE
{DH,DL) = ROW,COLUMN OF CURRENT LIGHT PEM POSITION
(CH) = RASTER POSITION
(BX) = BEST GUESS AT PIXEL HORIZONTAL POSITION

ASSUKE CS:CODE, DS: DATA

j————— SUBTRACT_TABLE
F746 vt LABEL  BYTE
F746 03 03 05 08 03 03 08 3,3,5,5,3,3,2,0,2,3,4 ;

03 00 02 03 04

F751 READ_LPEN PROC NEAR

;==—=- WAIT FOR LL1GHT PEN TO BE DEPRESSED
F751 32 E4 XOR AH, AH ; SET NO LIGHT PEN RETURN CODE
F753 B8A 03DA MOV DX, VGA_CTL ;GET ADDRESS OF VGA CONTROL REG
F786 EC IN AL, OX ; GET STATUS REGISTER
F757 A8 04 TEST AL, 4 ; TEST LIGHT PEN SWITCH
F789 74 03 Jz v78
F788 E9 F803 R JMP v6 ; NOT SET, RETURN

jmm——— NOW TEST FOR LIGHT PEN TRIGGER
F78E AB 02 v78: TEST AL, 2 ; TEST LIGHT PEN TRIGGER
F760 75 03 JNZ V74 ; RETURN WITHOUT RESETTING TRIGGER
F762 E9 F8OD R JHP v?

TRIGGER HAS BEEN SET, READ THE VALUE IN
F765 B4 10 nov AH, 16 ; LIGHT PEN REGISTERS ON 6845
INPUT REGS POINTED TO BY AH, AND CONVERT TO ROW COLUMN IN DX

F767 88 16 0063 R MoV DX, ADDR_6845 ; ADDRESS REGISTER FOR 6845
F76B 8A C4 nov AL, AH REGISTER TO READ
F76D EE out DX AL i BET IT UP
F76E 42 INC DX ; DATA REGISTER
F76F EC IN AL, 0X i GET THE VALUE
F770 8A E8 MOV CH, AL ; SAVE IN CX
F772 4A DEC oX ; ADDRESS REGISTER
F773 FE €4 INC AH
F775 6A C4 MOV AL, AH ; SECOND DATA REGISTER
F777 EE out DX, AL
F778 42 INC X ; POINT TO DATA REGISTER
F779 EC N AL, DX i GET GECOND DATA VALUE
F77A 8A ES “ov AH, CH AX HAS INPUT VALUE

jm———— AX HAS THE VALUE READ IN FROM THE 6845
F77C ©A 1E 0049 R MOV BL, CRT_MODE
F780 2A FF SUB 8H, BH ; MODE VALUE TO BX
F782 2E: BA 9F F746 R MoV BL, C5: V1L8X1 ; DETERMINE AMOUNT TO SUBTRACT
F787 2B C3 sua AX,BX i TAKE 1T AWAY
F789 30 OFAO cMP AX, 4000 ; IN TOP OR BOTTOM BORDER?
F78C 72 02 Ja V15 ; NO, OKAY
F78E 33 CO XOR AX, AX ; YES, SET TO ZERO
F790 88 LE 004E R ViSs: nov BX, CRT_START
F784 D1 EB SHR BX, 1
F786 28 C3 suB AX, BX ; CONVERT TO CORRECT PAGE ORIGIN
F798 79 02 JNS v2 ; IF POSITIVE, DETERMINE MODE
F79A4 2B CO sus AX, AX ; <0 PLAYS AS 0

jmm——— DETERMINE MODE OF OPERATION
F78C v2: ; DETERMINE_MODE
F79C 81 03 MoV cL,a ; SET w8 SHIFT COUNT
F79€ 80 3E 0049 R 04 CMP CRT_MODE, 4 ; OETERMIME IF GRAPHICS OR ALPHA
F7A3 72 4A JB va ; ALPHA_PEN

jm——— GRAPHICS MODE
F7A8 B2 28 "oV DL, 40 ; DIVISOR FOR GRAPHICS
F7A7 80 3E 0049 R 09 cHP CRT_MODE, 9 ; USING 32K REGEN?
F7AC 72 02 8 v20 ; NO, JUMP
F7AE B2 80 MoV DL, 80 ; YES, SET RIGHT DIVSOR
F7B0 F6 F2 v20: DIV bL : DETERMINE ROW(AL) AND COLUMN{AH)

AL RANGE 0-99, AH RANGE 0-39

ROM BIOS A-95




F782 B8A
F784 02
F7B6 80
F788 72
F780 DO
F78F DO
F7C1 02
F7€C3 8a
F7C5 24
F7C7 80
F7¢cc 72
F7CE 77
F700 81
F702 DO
F704 EB
F706 80
F708 77
F70D 74
F70F 81
F7E1 00
F7€3

F7E3 03
F7ES BA
F7E7 BA
F7E9 DO
F7E@ 0O
F7E0 EB
FTEF

F7EF F8
F7F3 8A
F7F8 BA
F7F7 D2
F7F9 8A
F7FB BA
F7FO0 32
F7FF D3
Feol

FBO1 B4
Feo3

FB03 82
F80a 88
F8oe 83
FBo8 EE
FBOC b5A
FB8oD

FBO0 BF
FBOE 5E
FBOF IF
F810 1IF
FBll IF
FB12 IF
FB13 07
F8l14 CF
F81§5

FB1S

FB15 1E
FBl6 80
FB17 E8
Fe1a 80
FB1C E6
FBLIE 90
F8IF E4
Fe21 8a
FB23 0A
FB25 78
FB27 B84
FB29 EB
FB2B Eq
FB20 0A
FB2F E6
F831 80
FB833 Eé
Fa3s

Fe83s a8
FB839 &8
Fa83a IF
FB3B FB
Fe3c

F83C CF
FB830

A-96

jmm——= DETERMINE GRAPHIC ROW POSITION
MOV ;

E8 A ; SAVE ROW VALUE IN CH
E0 ADD CH,CH ; %2 FOR EVEN/ODD FIELD
3E 0043 R 09 CMP CRT_MODE, 9 ; USING 32K REGEN?
411 Je v21 ; NO, JUMP
EC SHR AH, 1 ; ADJUST ROW & COLUMN
EO SHL AL, 1
ED ADD CH,CH ; %4 FOR 4 SCAN LINES
oc vai1: MOV BL, AH ; COLUMN VALUE T0 BX
FF suve BH, BH ; MULTIPLY BY 8 FOR MED1UM RES
3E 0049 R 08 CHP CRT_MODE, 6 ; DETERMINE MEDIUM OR HIGH RES
15 JB v3 ; MODE 4 OR &
06 oA v23 ; MODE 8, 9, OR A
04 va22: MOV CL,4 ; SHIFT VALUE FOR HIGH RES
E4 SAL AH, 1 ; COLUMN VALUE TIMES 2 FOR HIGH RES
00 JHP 5HORT V3
3E 0049 R 09 va23: CHP CRT_NODE, 9 ; CHECK MODE
F3 98 v22 ; MODE A
04 JE v3 ; MODE 9
02 R MOV cL,2 ; MODE B SHIFT VALUE
EC SHR AH, 1
v3: ; NOT_HIGH_RES
E3 BHL BxX, CL ; MULTIPLY #16 FOR HIGH RES
Fintabainded DETERMINE ALPHA CHAR POSITION
b4 MoV oL, AH ; COLUMN VALUE FOR RETURN
FO MOV DH, AL ; ROW VALUE
EE SHR DH, 1 ; DIVIDE BY 4
EE SHR OH, 1 ; FOR VALUE IN 0-24 RANGE
12 JHP SHORT VS ; LIGHT_PEN_RETURN_SET
j - ALPHA MODE ON LIGHT PEN
V4. ; ALPHA_PEN
36 004A R o1v BYTE PTR CRT_COLS ; DETERMINE ROW, COLUMN VALVUE
Fo MOV OH, AL ; ROWS TO DH
p4 MOV oL, AH , COLS TO DL
EO BAL AL, CL ; MULTIPLY ROWS » 8
EB MoV CH, AL ; GET RASTER VALUE TO RETURN REG
1 MoV 8L, AH ; COLUMN VALUE
FF KOR BH, BH ; To BX
E3 SAL ax,cL
vs: ; LIGHT_PEN_RETURN_SET
o1 MOV AH, 1 ; INDICATE EVERYTHING S8ET
VE: ; LIGHT_PEN_RETURN
PUSH oxX ; SAVE RETURN VALUE (IN CASE»
16 0083 R MOV DX, ADDR_6B4S ; GET BASE ADDRESS
c2 o7 ADD 0X,7 ; POINT TO RESET PARM
ouT 0X, AL ; ADDRESS, NOT DATA, 1S IMPORTANT
POP ox ; RECOVER VALUE
v7: ; RETURN_NO_RESET
POP [:2]
POP 81
POR oS ; DISCARD SAVED BX,CX,DX
POP 0s
POP 0s
POP 5]
POP ES
TRET
READ_LPEN ENOP
; TEMPORARY INTERRUPT SERVICE ROUTINE B
; 1. THIS ROVUTINE 1S ALSO LEFT I[N PLACE AFTER THE
; POWER ON DIAGNOSTICS TO SERVICE UNUSED
H INTERRUPT VECTORS. LOCATION ‘INTR_FLAG’ WILL
H CONTAIN EITHER: 1. LEVEL OF HARDWARE INT. THAT
H CAUSED CODE TO 8E EXEC.
H 2. ’FF’ FOR NON-HARDWARE INTERRUPTS THAT WERE
; EXECUTED ACCIDENTLY.
i
D11 PROC NEAR
ASSUME DS:DATA
PUSH oS
PUSH ax ; SAVE REG AX CONTENTS
1388 R CALL ops
oe MoV AL, OBH ; READ IN-SERVICE REG
20 ouT INTAOO, AL ; (FIND QUT WHAT LEVEL BEING
NOP ; SERVICED)
20 IN AL, INTAOD ; GET LEVEL
EQ MOV AH, AL ; SAVE 1T
Cc4 OR AL, AH ; DD? (NO HARDWARE ISR ACTIVE)
04 JINZ RW_INT
FF MOV AH, OFFH
oA JMP SHORT SET_INTR_FLAG ; SET FLAG TO FF [F NON-HDWARE
21 HW_INT: IN AL, INTAOQ1L ; GET MASK VALUE
ca OR AL, AH ; MASK OFF LVL BEING BERVICED
21 ouT INTAOL, AL
20 MOV AL,EOQI
20 ouT INTAOO, AL
SET_INTR_FLAG:
26 0084 R Mov INTR_FLAG, AH ; SET FLAG
POP AX ; RESTDRE REG AX CONTENTS
POP [:2]
STI ; INTERRUPTS BACK ON
DUMMY_RETURN: ; NEED IRET FOR VECTOR TABLE
IRET
o1l ENDP

ROM BIOS



()

FBAl
FBal
FB4l
FB42
FB43
FBas
FB48
/FBa8

- FBAC

FBeap

. FB4D
' Fe4D
- FB40

FBAE
FB4F
FB52
FB64
FB57
FB&8
FBS9

FBG9
FB59
FBs9
FBSA
FB58
FBSE
FB63
FB86
FB67
FB6A
FBBA

]
0010 R

1388 R
26 0071 R 7F
FBE6A R

0002

~~~ INT 12
MEMORY_S1ZE_DETERMINE
INPUT

NO REGISTERS

THE MEMORY_SIZE VARIABLE [S SET DURING POWER ON DIAGNOSTICS
QUTPUT

(AX) = NUMBER OF CONTIGUOUS 1K BLOCKS OF MEMORY

ASSUME C5:CODE,DS:DATA
ORG OFB841H
MEMORY_SIZE_DETERMINE PROC FAR
INTERRUPTS BACK DN

PUSH DS ; SAVE SEGMENT

MOV AX,DATA ; ESTABLISH ADDRESSING

MOV DS, AX

MOV AX,MEMORY_SIZE ; GET VALUE

POP Y3 ; RECOVER SEGMENT

IRET ; RETURN TO CALLER
MEMORY_S1ZE_DETERMINE  ENDP
;~== INT 11

EQUIPMENT DETERMINATION
THIS ROUTINE ATTEMPTS TO DETERMINE WHAT DPTIONAL
DEVICES ARE ATTACHED TD THE SYSTEM.

NO REGISTERS
THE EQUIP_FLAG VARIABLE 15 SET DURING THE POWER ON
DIAGNOSTICS USING THE FOLLOWING HARDWARE ASSUMPTIONS:
PORT 62 (0->3) = LOW ORDER BYTE OF EQUIPMENT
PORT 3FA = INTERRUPT ID REGISTER OF 8250
BITS 7-3 ARE ALWAYS O
PORT 378 = OUTPUT PORT OF PRINTER -- 8255 PORT THAT
CAN BE READ AS WELL AS WRITTEN
OUTPUT
(AX) 18 SET, BIT SIGNIFICANT, TO INDICATE ATTACHED 1/0
BIT L5, 14 = NUMBER OF PRINTERS ATTACHED
BIT 13 = 1 = SERIAL PRINTER ATTACHEO
BIT 12 = GAME 1/0 ATTACHED
BIT 11, 10,9 = NUMBER OF RS232 CARDS ATTACHED
BIT 8 0 = DMA CHIP PRESENT ON SYSTEM, 1 = NO DMA ON SYSTEM
BIT 7,6 = NUMBER OF DISKETTE DRIVES
00=1, 01=2, 10=3, 11=4 ONLY IF BIT 0 = |
BIT 5,4 = INITIAL VIDEO MODE
00 - UNUSED
01 - 40X25 BW USING COLOR CARD
10 - BOX25 BW USING COLOR CARD
11 - 80X25 BW USING BW CARD
BIT 3,2 = PLANAR RAM SIZE (10=48K, 11=64K)
BIT 1 NOT USED
BIT 0 = 1 (IPL DISKETTE INSTALLED)
NO OTHER REGISTERS AFFECTEO

i
H

ASSUME CS5:CODE,DS:DATA

OFB4DH
EQUIPMENT PROC FAR
sT1 ; INTERRUPTS 8ACK ON
PUSH os ; SAVE SEGMENT REGISTER
MOV AX,DATA ; ESTABLISH AODRESSING
MOV DS, AX
novV AX,EQUIP_FLAG ; GET THE CURRENT SETTINGS
POP -3 ; RECOVER SEGMENT
1RET ; RETURN TO CALLER
EQUIPMENT ENDP
;=-— INT 1B
CASSETTE 1/0
tAH) = 0 TURN CASSETTE MOTOR ON

(AH) = 1 TURN CASSETTE MOTDR OFF

tAH) 2 READ 1 OR MORE 256 BYTE 8LOCKS FROM CASSETTE
{E5, BX) = POINTER TO DATA BUFFER
(CX) = COUNT OF BYTES TO READ
ON EXIT

(ES,BX) = POINTER TO LAST BYTE REA0 + 1

H t0X) = COUNT OF BYTES ACTUALLY REAQ
; (CY) = 0 IF NO ERROR OCCURRED
= 1 IF ERROR OCCURRED
{AH) = ERROR RETURN IF (CY)= 1

01 IF CRC ERROR WAS DETECTED

02 IF DATA TRANSITIONS ARE LOST

04 IF NO DATA WAS FOUND

(AH) = 3 WRITE 1 OR MORE 256 BYTE BLOCKS TO CASSETTE
{ES, BX) = POINTER TO DATA BUFFER
{CX) = COUNT OF BYTES TO WRITE

ON EXIT
{EX,BX) = POINTER TO LAST BYTE WRITTEN + 1
(CX) =0
(AH) = ANY OTHER THAN ABOVE VALUES CAUSES (CY)= 1}
AND (AH)= 80 TO BE RETURNED (INVALID COMMAND).

ASSUME DS:DATA, ES:NOTHING, 55:NOTHING, CS: CODE

OFB59H
CASSETTE_IO PROC FAR
8TI ; INTERRUPTS BACK ON
PUSH DS ; ESTABLISH ADDRESSING TO DATA
CALL DDS
AND B8105_BREAK, 7FH ; MAKE SURE BREAK FLAG 15 OFF
CALL Wi ; CASSETTE_ID_CONT
POP 33
RET 2 ; INTERRURT RETURN
CASSETTE_l10 ENDP
Wl PROC NEAR

ROM BIOS A-97

>
k=
=]
&
=1
=8
>
>




FB6A
FB6C
F86E
F870
F872
F874
F876
Fa78
F87a
F870
F870D
FB7F
F880
F8e1l
Fegl

Fee1
F883
F885
F887
F8e9
FB88A
FB8A

F88a
Fesc
FB8E
FB9O
FB3o

FB80

FB892
Fge3
FB86
FB89
F839
Fegs
F830
FBAQ
FBA3
F8a3
FBA8

FBAA
FBAB
FBAD
F880
Fee3
F885
Fees

F888
F88C
Feec
FBcCl
F8C3
F8cd
F8C7
Face
FBCA
FBCC
FBCE

FBDO
F8D2

FBD4
Fep4

A-98 ROM BIOS

E4
€8

72

-3}

F3

0007
FAG0 R

82

10
0068 R
IF7A

06 0071 R 80
o3

03
F92F R
F96F R
EE
0378
0200

06 0071 R 80
6eC

F96F R
€9

<D
03
04
c?

E6

PURPOSE :
TO CALL APPROPRIATE ROUTINE DEPENOING ON REG AH

i
i
i AH ROUTINE
i
;0 MOTOR ON
i1 MOTOR OFF
;2 READ CASSETTE BLDCK
;3 WRITE CASSETTE BLOCK
i
OR AH, AH ; TURN ON MOTOR?
Jz MOTOR_ON ; YES, DO IT
DEC AH i TURN OFF MOTOR?
9z MOTOR_OFF ; YES, DO IT
DEC AH ; READ CASSETTE BLOCK?
Jz READ_BLOCK ; YES, DO IT
DEC AH ; WRITE CASSETTE BLOCK?
JNZ w2 ; NOT_DEFINEO
JNP WRITE_BLOCK ; YES, DO IT
wz: ; COMMAND WOT DEFINED
MOV AH, 0BOH ; ERROR, UMDEFINED OPERATION
sTC ; ERROR FLAG
RET
Wi EMDP
MOTOR_ON PROC NEAR
; PURPOSE:
; TO TURN ON CASSETTE MOTOR
i
IN AL, PORT_8 ; READ CASSETTE OUTPUT
AND AL, NOT 0BH ; CLEAR BIT TO TURN ON MOTOR
w3: out PORT_B, AL i WRITE 1T OUT
sug AH, AH ; CLEAR AH
RET
MOTOR_ON ENOP
MOTOR_OFF PROC NEAR
i
; PURPOSE:
: TO TURN CASSETTE MOTOR OFF
i
N AL,PORT_B ; READ CASSETTE OUTPUT
oRr AL, 0BH ; SET BIT TO TURN OFF
JNP w3 ; WRITE 1T, CLEAR ERROR, RETURN
HOTOR_OFF ENDP
READ_BLOCK PROC NEAR
PURPOSE :
TD READ L OR MORE 256 BYTE BLOCKS FROM CASSETTE
ON ENTRY:

H
i
H
H
i
i
i
i
H
H

ES IS SEGMENT FOR MEMORY BUFFER (FOR COMPACT COOE)
8X POINTS TC START OF MEMORY BUFFER
CX CONTAINS NUMBER OF BYTES TO READ

X POINTS 1 BYTE PAST LAST BYTE PUT IN MEM
CX CONTAINS OECRENENTEC BYTE COUNT
DX CONTAINS NUMBER OF BYTES ACTUALLY READ

CARRY FLAG IS CLEAR IF NO ERROR DETECTEO
CARRY FLAG 1S SET IF CRC ERROR DETECTED

wWa:

e

W6,

w7

W9:

PUSH ax ; SAVE 8X
PUSH cx SAVE CX
PUSH s1 SAVE SI
MOV sI, 7 SET UP RETRY COUNT FOR LEAOER

CALL BE&IN_OP BEGIN BY STARTING MOTOR

;

;
‘
; SEARCH FOR LEADER

IN AL, PORT_C ; GET INITIAL VALUE

AND AL, 010H ; MASK OFF EXTRANEOUS BITS

MOV LAST_VAL, AL ; SAVE IN LOC LAST_VAL

MOV bX, 16250 ; % OF TRANSITIONS TO LOOK FOR
; WAIT_FOR_EOGE

TEST  8106_BREAK, 80H ; CHECK FOR BREAK KEY

JNZ © WeA ; JUMP IF NO BREAK KEY
; JUMP 1F BREAK KEY HIT

DEC [

JNZ w7 ; JUMP 1F BEGINNING OF LEADER

A JNP w17 . JUMP IF NO LEADER FOUND

CALL  READ_HALF_BIT ; IGNORE FIRST EDGE

JCXZ ws ; JUMP IF NO EDGE DETECTED

Mov DX, 0378H ; CHECK FOR HALF BITS

MOV CX, 200H ; MUST HAVE AT LEAST THIS MANY ONE
i SIZE PULSES BEFORE CHCKNG FOR
; SYNC BIT (0)

cL1 ; DISABLE INTERRUPTS
; SEARCH-LDR

TEST  B106_BREAK, BOH ; CHECK FOR BREAK KEY

JINZ w17 ; JUMP |F BREAK KEY HIT

PUSH  CX ; SAVE REG CX

caLL READ_HALF_BIT ; GET PULSE WIDTH

oRr cx, K ; CHECK FOR TRANSITION

POP cx ; RESTORE ONE BIT COUNTER

Jz wa ; JUMP IF NO TRANSITION

cup DX, 8X ; CHECK PULSE WIDTH

JeXZ  Wo ; IF €X=0 THEN WE CAN LOOK
; FOR SYNC B1T (0)

INC wa ; JUMP IF ZERO BIT {NOT GOOD
; LEADER)

LOOP L1} ; DEC CX AND READ ANOTHER HALF ONE
;81T
. FIND-SYNC

Jc ws ; JUMP IF ONE BIT (STILL LEADER)



Fapée
Fap9
FBDC
FBDE

FBEO
FBE1
F8E2

F8E3
FBE4

F8E4
FBEA
FBED
F8ED
F8F2
F8Fd
FBF7

F8F9

F8FB
F8FE
F&FF
F900
F300
F901

F908
F909
F908
F911
F913

F918
F917

F917

F819
F919

F918
F918
F31C

F91E
F91F
F922
F924
F927
F929
F929
F92A
F92C
F92F

F92F
F930.
F931
F932
F934
F936
F937
F937
F93B
F938
F93C
F93F
F940
F941

51
c7
BA
F6

5
[}
72
E3

eq

FE

F96F R
F941 R

CALL
cALL
cHP
JNE
i 600D
POP
POP
POP

49

CRC

READ_HALF_B1T

READ_BYTE
AL, 1eH

Wi6 '

SO READ DATA BLOCK(S)
s1

cx

Bx

A SYNCH BIT HAS BEEN FOUND.

READ SYN CHARACTER:
SKIP OTHER HALF OF SYNC BIT (0}
READ SYNC BYTE
SYNCHRONIZATION CHARACTER
JUMP IF BAD LEADER FOUND.

RESTORE REGS

ON ENTRY:
ES
BX
cx
ON EXIT:
B,

READ 1 OR MORE 266 BYTE BLOCKS FROM CASSETTE

1S SEGMENT FOR MEMORY BUFFER (FOR COMPACT CODE)}
POINTS TO START OF MENORY BUFFER

CONTAINS NUMBER OF BYTES TO READ

X POINTS 1 BYTE PAST LAST BYTE PUT IN MEM

SAVE BYTE COUNT

COME HERE BEFORE EACH

256 BYTE BLOCK IS READ
INIT CRC REG

SET DX TO DATA BLOCK SIZE
RD_BLK

CHECK FOR BREAK KEY

JUMP IF ‘BREAK KEY HIT
READ BYTE FROM CASSETTE
CY SET INDICATES NO DATA
TRANSITIONS

IF WE'VE ALREAOY REACHED
END OF MEMORY BUFFER

SKIP REST OF BLOCK

STORE DATA BYTE AT BYTE PTR
INC BUFFER PTR

DEC BYTE COUNTER

cX
LOOP UNTIL DATA BLOCK HAS BEEN READ FROM CASSETTE

DEC 8LOCK CNT
RD_BLK
NOW. READ TWO CRC BYTES

CLEAR AH
IS THE CRC CORRECT?
1f NOT EQUAL CRC IS BAD
IF BYTE COUNT IS ZERO
THEN WE HAVE REAP ENOUGH
S0 WE WILL EXLT
STILL MORE, S50 READ ANOTHER BLOCK
MISSING-DATA
NO DATA TRANSITIONS. SO
SET AH=02 TO IND1CATE
DATA TIMEOUT
B8AD-CRC
EXIT EARLY ON ERROR
SET AH=01 TO INDICATE CRC ERROR
RD-BLK-EX
CALCULATE COUNT OF
DATA BYTES ACTUALLY READ.
RETURN COUNT IN REG DX
SAVE AX (RET CODE)
CHECK 'FOR ERRORS
JUMP IF ERROR DETECTED
READ TRAILER
SKIP TO TURN OFF MOTOR
BAD-LEADER
CHECK RETRIES
JUMP IF TOO MANY RETRIES
JUMP IF NOT TOO MANY RETRIES
NO VALID DATA FOUND

1.E. TIMEOUT
RESTORE REGS
RESTORE REGS

ZERO NUMBER OF«8YTES READ
TIME OUTs ERROR (NO LEADER)

MOT-OFF

REENABLE INTERRUPTS

TURN OFF MOTOR

RESTORE RETURN CODE

SET CARRY IF ERRGR (AR>0)

FIN1SHED

CX CONTAINS DECREMENTED BYTE COUNT
DX CONTAINS NUMBER OF BYTES ACTUALLY READ
PUSH [ 1 H
Wio:- i
H
06 0069 R FFFF nov CRC_REG, OFFFFH ;
0100 MoV DX, 256 H
Wil: H
08 0071 R BO TEST 810s_BREAK, BOH ;
23 JNZ W13 R
FBd1 R CALL READ_BYTE H
1E Jc wi3 i
i
(] JCXZ Wi2 H
H
i
88 07 Moy ES: {8X],AL H
INC ex ,-
DEC
Wi2: i
DEC bX H
EA JG Wii ;
F941 R CALL READ_BYTE B
F941 R CALL READ_BYTE
E4 sue AH, AH H
3E 0069 R 1DOF CHP CRC_REG, 100FH ;
- 06 JNE . Wi4 H
oe JCXZ W16 H
H
i
co JMp W10 H
Wi3: H
01 MOV AH, 01H H
H
Wi4: H
c4a INC AH ;
Wi5: i
POP DX i
D1 suB DX, CX H
PUSH AxX H
€4 90 TEST AH, 90H H
13 JNZ wie H
F941 R CALL READ_BYTE i
QE JHMP SHORT W18 H
Wie: H
DEC SI H
03 Jz Wi7 - H
Fe9s% R JMP Wa ;
L2} H
;=—=== NO DATA FROM CASSETTE ERROR,
POP 81 H
POP CcX
POP ax
D2 suB DX, DX B
04 MoV AH, 04H H
PUSH AX
WiB: H
STI i
FBBA R caLL MOTOR_OFF ;
POP AX H
FC 01 CHP AH, 0 1H ;
CHMC
i
READ_BLOCK ENDP

>
o
o
D
=4
>

ROM BIOS A-99




F941
F941
F842
F943
F945
F945

F946
F949

F948

FBA4C
F94F
F950

F962
F964
F958
F959
FoBA

F9EB

F98D
F95E
F961

F963
F965
F967
‘FB68
F968
Fo89
F96A
F968
Fo6B
F36C
F960
F96F

F96F
F9é6F
F972
F976
F976
F978
F974a
F97¢C
F97E
F9B1
F983
F985
Fe88
F9se
© F98D
F98F
F991
F993
F936
F997

PURPOSE :
ON EXIT

TO READ A BYTE FROM CASSETTE

REG AL CONTAINS READ DATA BYTE

EAD_BYTE PROC NEAR
53 PUSH BX ; SAVE REGS BX,CX
51 PUSH cx
81 08 MoV CL,8H ; SET BIT COUNTER FOR 8 BITS
wis: ; BYTE-ASM
51 PUSH cx ; SAVE CX
;
; READ DATA BIT FROM CASSETTE
EB F96F R CALL READ_HALF_BIT ; READ ONE PULSE
E3 20 JCXZ w21 ; IF CX=0 THEN TIWEOUT
; BECAUSE OF NO DATA TRANSITIONS
63 PUSH BX ; SAVE IST HALF BIT'S
; PULSE WIDTH ¢(IN BX)
EB F96F R caLL READ_HALF_BIT ; READ COMPLEMENTARY PULSE
&8 POP AX ; COMPUTE DATA BIT
E3 19 JCXZ w21 ; IF CX=0 THEN TIMEOUT DVE TO
; NO DATA TRANSITIONS
03 08 ADD BX, AX ; PERIOD
81 FB O6F0 CMP 8X, O06FOH ; CHECK FOR ZERO BIT
F& cHe ; CARRY 158 SET IF ONE 81T
9F LAHF ; SAVE CARRY IN AH
59 POP cx ; RESTORE CX
; NOTE:
; MS BIT OF BYTE IS READ FIRST
; REG CH 1§ SHIFTED LEFT WITH
; CARRY BEING INSERTED INTO LS
; BIT OF CH.
; AFTER ALL B B1TS HAVE BEEN
; READ, THE MS BIT OF THE DATA
; BYTE WILL BE IN THE MS BIT OF
; REG CH
Do DB RCL CH, 1 ; ROTATE REG CH LEFT WITH CARRY TO
; LS BIT OF REG CH
9E SAHF ; "RESTORE CARRY FOR CRC ROUTINE
EB FAIC R caLL CRC_GEN ; GENERATE CRC FOR BIT
FE C8 DEC cL ; LOOP TILL ALL 8 BITS OF DATA
; ASSEMBLED IN REG CH
75 EO JNZ wig ; BYTE_ASM
84 CB MoV AL, CH ; RETURN DATA BYTE IN REG AL
FB cLe
w20: ; RD-BYT-EX
59 POP cx ; RESTORE REGS CX,B8X
58 POP 8x
c3 RET ; FINISHED
wal1: ; NO~OATA
69 POP cx ; RESTORE CX
F9 8TC ; INDICATE ERROR
E8 F9 JMP w20 ; RO_BYT_EX
READ_BYTE ENDP
i
; PURPOSE:
; . TO COMPUTE TIME TILL NEXT DATA
; TRANSITION (EDGE)
; ON ENTRY:
H EDGE_CNT CONTAINS LAST EDGE COUNT
; ON EXIT
H AX CONTAINS OLD LAST EDGE COUNT
: BX CONTAIMS PULGE WIDTH (HALF B1T)
;
REAO_HALF_BIT ' PROC NEAR
89 0064 MOV cx, 100 ; SET TIME TO WAIT FOR BIT
8A 26 0068 R nov - AH, LAST_VAL ; GET PRESENT INPUT VALUE
w2z2: ; RO-H-BIT
E4 62 IN AL, PORT_C : INPUT .DATA BIT
24 10 AND AL, 010H ; MASK OFF EXTRAMEOUS BITS
3A €4 cmP AL, AH ; SAME AS BEFORE?
EL FB LOOPE W22 ; LOOP TILL IT CHANGES
A2 0068 R MOV LAST_VAL, AL ; UPDATE LAST_VAL W1TH NEW VALVE
80 40 NOV AL, 40H ; READ TIMER'S COUNTER COMMANO
E6 43 out TIM_CTL, AL ; LATCH COUNTER
8B 1E 0067 R MoV 8X, EDGE_CNT ; BX GETS LAST EDGE COUNT
E4 41 IN AL, TINER+1 i GET LS BYTE
8A EO - MOV AH, AL ; SAVE IN AH
E4 41 IN AL, TIMER+1 ; GET MS BYTE
B6 C4 XCHG AL, AH i XCHG AL, AH
28 08 suB BX, AX ; SET BX EQUAL TO HALF BIT PER10D
A3 0067 R MOV EOGE._CNT, AX ; UPDATE EDGE COUNT;
c3

REAO_HALF_BIT

A-100 ROM BIOS

ENDP



PURFPOSE

WRITE 1 OR MORE 256 BYTE BLOCKS TO CASSETTE.

THE DATA IS PADDED TO FILL OUT THE LAST 256 BYTE BLOCK.
ON ENTRY:

BX POINTS TO MEMORY BUFFER ADDRESS

»
H
H
i
H
B
i
L]

CX CONTAINB NUMBER OF BYTES TO WRITE
ON EXIT:
BX POINTS L BYTE PAST LAST BYTE WRITTEN TO CASEETTE
CX 1S ZERO
F997 RITE_BLOCK PROC NEAR
F897 &3 PUSH BX
F998 61 PUSH cx
..F899 E4 61 IN AL, PORT_B ; DISABLE SPEAKER
988 24 FD AND AL, NOT 02H
990 0C 01 OR AL, OIH ; ENABLE TIMER
99F E6 61 ouT PORT_B, AL
F9A1 BO B6 MoV AL, 0BEH ; SET UP TIMER - MODE 3 SQUARE WAVE
F9A3 E6 43 out TIM_CTL, AL
F9AS EB FASO R cALL BEGIN_OP ; START MOTOR AND DELAY
F9AB BB 04A0 MoV A%, 11B4 ; SET NORMAL BIT SIZE
F9AB EB FA35 R CALL w31 ; SET_TIMER
F9AE B89 0800 MoV CX, 0800H ; SETCX FOR LEADER BYTE COUNT
F9B1 w23: ; WRITE LEADER
F9B1 F9 sTC ; WRITE ONE BITS
F982 EB FAIF R caLL WRITE_BIT
F985 E2 FA LOOP w23 ; LODP ‘TIL LEADER 1S WRITTEN
F987 FA cLi ; DISABLE INTS.
F98e FB cLe ; WRITE SYNC BIT (0)
F989 EB FAIF R CALL WRITE_BIT
F9BC 89 POP cx ; RESTORE REGS CX,BX
F9BD 58 POP Bx
F9RE BO 16 MOV AL, I16H ; WRITE SYNC CHARACTER
FICO E8 FAO8 R CALL WRITE_BYYE
; PURPOSE
; WRITE 1 OR MORE 256 BYTE BLOCKS TO CASSETTE
; ON ENTRY:
: BX POINTS TO MEMORY BUFFER ADDRESS
: CONTAINS NUMBER OF BYTES TO WRITE
; ON EXIT:
: @X FOINTS 1 BYTE PAST LAST BYTE WRITTEN TO CASSETTE
; cx 15 ZERO
;
Fac3 WR_BLOCK:
FBC3" C7- 06 0069 R FFFF NoV CRC_REG,OFFFFH ; INIT CRC
F9C9 BA 0100 nov DX, 256 ; FOR 256 BYTES
F8CC w2a; i WR-BLK
F9CC 26: BA 07 Mov aL, ES: (BX] ; READ 8YTE FROM MEM
FSCF EB FAOB R CALL WRITE_BYTE ; WRITE IT TO CASSETTE
F902 E3 02 Jexz w28 ; UNLESS CX=0, ADVANCE PTRS & DEC
; COUNT
FIp4 43 INC BX ; INC BUFFER POINTER
FI05 49 DEC cx ; DEC BYTE COUNTER
7 F906 W25: ; SKIP-ADV
FI06 4A DEC [} ; DEC BLOCK CNT
"FOD7 TF F3 JG w24 ; LOOP TILL 256 BYTE 8LOCK
; 1S WRITTEN TO TAPE
: WRITE CRC
; WRITE 1’S COMPLEMENT OF CRC REG TO CASSETTE
; ‘WHICH 1S CHECKED FOR CORRECTNESS WHEN THE BLOCK IS READ
; REG AX 15 MODIFIED
i
F8D9 Al 0069 R Hov AX, CRC_REG ; WRITE THE ONE‘S COMPLEMENT OF THE
; TWO BYTE CRC TO TAPE
FI0C F7 0O NOT ax ; FOR 1'G COMPLEMENT
F9DE 5O PUSH ax ; SAVE 1T
F9DF 86 EO XCHG AH, AL ; NRITE M8 BYTE FIRST
F9EL' EB FAOB R cALL WRITE_BYTE i WRITE IT
FSEA &8 POP Ax ; GET IT BACK
FBE5 E8 FAOB R caLL WRITE_BYTE ; NOW WRITE LS BYTE
F9E8 08 €9 OR [ ; 1S BYTE COUNT EXHAUSTED?
FI9EA 78 D7 JNZ WR_BLOCK ; JUMP IF NOT DONE YET
FOEC 81 PUSH  CX ; SAVE REG CX
F9EO FB ST1 ; RE-ENABLE INTERUPTS
F9EE. B9 0020 Y cx, 32 ; WRITE OUT TRAILER BITS
F9F1 w26: i TRAIL-LOOP
FIF1 F3 sTC
F9F2 E8 FAIF R cALL WRITE_BIT
F9F5 E2 FA LOOP w26 ; WRITE UNTIL TRAILER WRITTEN
F9F7 59 POP cx ; RESTORE REG CX
F9F8 BO BO MoV AL, OBOH ; TURN TIMER2 OFF
F9FA E6 43 out TIM_CTL, AL
F9FC B8 0001 MoV ax, 1
FIFF €8 FA35 R cALL w3l SET_TIMER
FAO2 E8 F8BA R cALL MOTOR_OFF TURN MOTOR OFF
FAO5 28 CO sua AX, AX NO ERRORS REPORTED ON WRITE OP
FAO7 €3 RET ; FINISHED
_FAOB WRITE_BLOCK ENDP

>
=
=
(2]
=]
o
~
>

ROM BIOS A-101




Faog
FAO0®
FAO09
FAQA

FAQC

FAQE
FAQE
FAl0

FALL
FAl4
FALS
FA1B
FALA
FALC
FAID
FALE
FALF

FALF

FALF
FAZ2
FA24
FA27
FA27

Fa28
Fa2a
FA2C.
FA2E

FA30
FA32

FA34
FA3S
FA3B
FA37
FA39
FA38
FA3C

FAJC

FA3C

FA3F
FA41
FA43
FA44

FAd6

FA49
FadA

FA4C
FA4F
FAS0

Al

35

F9
D1

A3
[ ]

og
1]

FALF R
FA3C R
[}

F2

0440

0250

42
42

0069 R

o8
Do

04

0810

bo

0069 R

WRITE A BYTE TO CASSETTE.
BYTE TO MRITE 1S IN REG AL.

H
;
WRITE_BYTE FROC  NEAR

PUSH cx ; SAVE REGS CX, AX
PUSH AX
MOV CH, AL ; AL=BYTE TO WRITE.
(MS B!T WRITTEN FIRST)
Hov CL,8 FOR 8 DATA B178 IN BYTE.
NOTE: TWO EDGES PER 8IT
w27: DISASSEMBLE THE DATA BIT
RCL CH, 1 ROTATE MS BIT INTO CARRY
PUSHF SAVE FLAGS.

NOTE: DATA BIT IS IN CARRY

CALL WRITE_BIT WRITE DATA 8IT

POPF RESTORE CARRY FOR CRC CALC
CALL CRC_GEN COMPUTE CRC ON DATA BIT
DEC cL LOOP TILL ALL B BITS DONE
JNZ w27 JUMP IF NOT DONE YET
POP AX RESTORE REGS AX,CX
POP CcX
RET ; WE ARE FIN!SHED

WRITE_BYTE ENDP

;

WRITE_BIT FROC NEAR

PURPOSE :

TO WRITE A DATA BIT TO CASSETTE

CARRY FLAG CONTAINS DATA BIT

1.E. IF SET DATA BIT 1S A ONE
IF CLEAR DATA BIT 1S A ZERO

NOTE: TWO EDGES ARE WRITTEN PER BIT
E BIT HAS 500 USEC BETWEEN EDGES
FOR A 1000 USEC PERTOD (1 MILLISEC)

ZERO BIT HAS 250 USEC BETWEEN EDGES
FOR A 500 USEC PERIOD ¢.5 MILLISEC)
CARRY FLAG 1S DATA BIT

;ASSUME 1T‘S A ‘1’

MOV AX, 1184 ; SET AX TO NOMINAL ONE SIZE
Jc w28 i JUNP IF ONE BIT
NOV AX, 592 ; NO, SET TO NOMINAL ZERO S1ZE
was: ; WRITE-BIT-AX
PUSH AX JWRITE BIT WITH PERIOO EQ@ TO VALUE
i
was: N AL, PORT_C ; INPUT TIMER_O OUTPUT
AND AL, 020H
Jz wz9 ;LOOP TILL HIGH
wao: N AL, PORT_C ;NOW WAIT TILL TIMER’S OUTPUT IS
; Low
AND AL, 020H
INZ w30
;RELOAO TIMER WITH PERIOD
;FOR NEXT DATA BIT
POP AX ;RESTORE PERIOD COUNT
way: ; SET TIMER
out 042H, AL ; SET LOW BYTE OF TIMER 2
MoV AL, AH
ouT 042H, AL ; SET HIGH. BYTE OF TIMER 2
RET
WRITE_BIT ENDP
CRC_GEN PROC NEAR

; UPDATE CRC REGISTER WITH NEXT DAYA BIT
; CRC IS5 USED TO DETECT READ ERRORS

i ASSUMES DATA BIT IS IN CARRY

; REG AX 15 MODIFIED

; FLAGS ARE MODIFIED

i

MoV AX, CRC_REG
; THE FOLLOWING INSTUCTIONS
;WILL SET THE OVERFLOW FLAG
; IF CARRY AND MS BIT OF CRC
; ARE UNEQUAL
RCR ax, 1
RCL Ax, 1
cLe ;CLEAR CARRY
JNO W32 ;SKIP JF NO OVERFLOW
;IF DATA 'BIT XORED WITH
CRC REG BIT 15 1S ONE
XOR AX,0810H ; THEN XOR CRC REG WITH
; 0B1OH
sTC i SET CARRY
waz: RCL AxX, 3 ;ROTATE CARRY (DATA BIT)
; INTO CRC REG
NOV CRC_REG, AX ;UPDATE CRC_REG
RET ; FENISHED
CRC_GEN . ENDP

A-102 ROM BIOS



i
FABO BEGIN_OP PROC NEAR ; START TAPE AND DELAY

FABO EB FBBI1 R CALL MOTOR_ON ;i TURN ON MOTOR
FAS3 B3 42 L[ BL, 42H ;DELAY FOR TAPE DRIVE
;TO GET UP TO SPEED (1/2 SEC)
FASS B9 0700 W33: MOV CX, 700H ; INNER LOOP= APPROX. 10 MILLISEC
FABB E2 FE Waa. LOOP w34
FABA FE CB DEC BL
FABC 76 F7 JNZ w33
FASE €3 RET
FASF BEGIN_OP ENDP
;—==—=—-— CARRIAGE RETURN, LINE FEED SUBROUTEINE
FASF CRLF PROC NEAR
FASF 33 D2 XOR DX, DX ; PRINTER ©
—_FAB1 32 E4 XOR AH, AH ; WILL NOW SEND INITIAL LF,CR TO
i ;i PRINTER
FAB3 BO OD MOV AL, ODH ; CR
FA65 CD 17 INT 174 ; SEND THE LINE FEED
FA67 32 E4 XOR AH, AH ; NOW FOR THE CR
FAE9 BO 0A L AL, 0AH ; LF
FA6B CD 17 INT 17H ; SEND THE CARRIAGE RETURN
FAGD (€3 RET

FAGE CRLF ENDP

CHARACTER GENERATOR GRAPHICS FOR 320X200 AND 640X200
GRAPHICS FOR CHARACTERS O0H THRU 7FH

FABE ORG OFAGEH
FAGE CRT_CHAR_GEN LABEL  BYTE
FAGE 00 00 00 00 00 00 e ©0OOH, 00OH, 000H, 00OH, DOOH, OOOH, 000H, 000H ; D_00
FA7G gg g? A5 81 8D 99 1] 07EH, 08 1H, OAGH, OB 1H, 0BDH, 099H, OB1H, 07EH ; D_01
FATE gé ;:-E' DB FF C3 E7 [J:] O7EH, OFFH, ODBH, OFFH, 0C3H, OE7H, OFFH, 0TEH ; D_02
FASS :f: ;E FE FE 7C 38 1] 0GCH, OFEH, OFEH, OFEH, 07CH, 03BH, 010H, 000H ; D_03
FABE ig gg 7¢ FE 7C 38 1] 010H, 038H, 07CH, OFEH, 07CH, 038H, 010H, 000H ; D_04
FA96 ;g gg 38 FE FE 7¢C [T 038H, 07CH, 038H, OFEH, OFEH, 07CH, 038H, 07CH ; D_0%
FASE 33 Ig 38 7C FE 7C 1] 010H, 010H, 038H, 0TCH, OFEH, O7CH, 038H, 07CH ; D_06
FAAG gg ;g 19 3c ac 18 e 000H, 000H, 0 18H, 03CH, 03CH, 0 18H, 000H, 000H ; D_07
FAAE gg gg E7 €3 €3 E7 1] OFFH, OFFH, OE7H, OC3H, OC3H, 0E7H, OFFH, OFFH ; D_OB
FABG ;; SZ 66 42 42 66 o8 00OH, 03CH, 06EH, 042H, 042H, 06EH, 03CH, 000H ; D_09
FASE :‘F: gg 99 BD BD 99 e OFFH, OC3H, 099H, 0BDH, 08DH, 099H, OCIH, OFFH ; D_OA
FACE gg Z; OF 7D €C €C 1] OOFH, 007H, 0OFH, 07DH, OCCH, 0CCH, OCCH, 07BH ; D_08
“FacE gg 22 66 66 3C 1B e 03CH, 066H, OEEH, OBEH, 03CH, O 1BH, OTEH, 018H ; D_OC
- FADG ;§ ;g 3F 30 30 70 e 03FH, 033H, 03FH, 030H, 030H, 070H, OFOH, OEOH ; D_OD
FADE ;g §g 7F 63 63 67 0B O7FH, 083H, 07FH, 063H, 063H, O67H, OEEH, OCOH ; D_OE
FAES gg g: ac E7 E7 aC 0B 099H, 05AH, 03CH, OE7H, OE7H, 03CH, 06AH, 098H ; D_OF
8a 99
FAEE 80 EO F8 FE F8 EO e 0BOH, OEOH, OF8H, OFEH, OFBH, OEDH, 0BOH, 000H ; D_10
FAFG gg gg 3E FE 3E OE 0B 002H, 00EH, 03EH, OFEH, O3EH, 00EH, 002H, 000H ; D_11
FAFE 2: gg 7E 18 18 TE 0B 01BH, 03CH, O7EH, 01BH, 01BH, 07EH, 03CH, 01BH ; D_12
FE06 :g ég B8 66 86 00 0B 066H, 066H, OBEH, 06EH, 066H, 000H, OBEH, 000H ; D_13
FAOE gﬁ gg b8 78 18 1B b8 O7FH, ODBH, ODBH, 07BH, 01BH, 018H, 018H, 000H ; D_14
FB16 ;: gg 38 ec 8C 3B e 03EH, 063H, 03BH, 0BCH, 06CH, 03BH, OCCH, 078H ; D_18
FBIE gg gg 00 00 7E 7E b8 00OH, DOOH, 0OOH, 000H, O7EH, O7EH, 0TEH, 000H ; D_16
FB26 I: gg 7E 18 7€ 3C oa 018H, 03CH, 0TEH, 018H, 07EH, 03CH, 018H, OFFH ; D_17
Fa2E ig ;: 7E 1B 18 18 o8 018H, 03CH, O7EH, 018H, 018H, 0 1BH, 01BH, 000H ; D_18
F836 ;: ?g 18 19 7E 3C o8 018H, 018H, 018H, 0 18H, 0TEH, 03CH, 018H, 000H ; D_19
FB3E ;g 23 oc FE ocC 18 1] 00OH, 018H, 00CH, OFEH, 0OCH, 0 18H, 000H, 000H ; D_1A
FB4G gg gg 60 FE 60 30 e 000H, 030H, 060H, OFEH, O60H, 030H, 000H, 000H ; D_18
FBAE gg gg €O CO CO FE 0B 0OOH, 000H, OCOH, OCOH, OCOH, OFEH, 000H, 000H ; D_1C
Fass gg gg 88 FF 66 24 0B 00OH, 024H, 066H, OFFH, O66H, 024H, 000H, 000H ; D_10
e 00 00
F98E 00 18 3C 7E FF FF o8 00OH, 018H, 03CH, OTEH, OFFH, OFFH, 000H, 000H ; D_IE
L F866 §§ EE FF 7E 3C 18 0B 00OH, OFFH, OFFH, 07EH, 03CH, 0 18H, 000H, 000H ; D_IF

>
=]
°
e
s
>
>

ROM BIOS A-103




FBBE 00 00 00 00 00 00 oB 00O0H, 000H, 000H, 000H, 00OH, 000H, 000H, 000H ; SP D_20
FB78 gg gg 78 30 30 00 oe 030H, 078H, 07BH, 030H, 0IOH, 000H, 030H, 000H ; ! D_21
FB7E :g gg 6C 00 00 00 08 06CH, 06CH, 06CH, 000H, 000H, 000H, 000H, 000H ; “ D_22
FBB6 gg gg FE 6C FE 6C b8 06CH, 06CH, OFEH, 06CH, OFEH, 06CH, 06CH, 000H ; 8 D_23
FBBE :g gg co 78 oOC FB 1] 030H, 07CH, 0COH, 078H, 0OCH, OFBH, 030H, 000H ; % D_24
FB96 gg gg CC 1B 30 66 08 0O00H, 0CEH, OCCH, 018H, 030H, 066H, OCBH, 000H ;
€8 0 ; PER CENT D_25
FB9E 368 6C 38 76 DC CC b8 036H, 06CH, 038H, 076H, ODCH, OCCH, 076H, 000H ; & D_26
FBAG Zg gg €o 00 00 00 0B 060H, 060H, 0COH, 000H, 000H, 00OH, 000H, 000H ; * D_27
FBAE gg gg 60 60 60 30 (L] 018H, 030H, 060H, 060H, O60H, 030H, 0 1BH, 000K ; ¢ D_26
FBBE ég gg 18 18 18 30 (1] 060H, 030H, 0 18H, 018H, 018H, 030H, 060H, 00DH ; ) D_29
FBBE gg gg ac FF 3C 66 o8 000H, 066H, 03CH, OFFH, 03CH, 066H, 000H, 000H ; # D_2A
FBCE 88 gg 30 FC 30 30 0B 000H, 030H, 030H, OFCH, 030H, 030H, 000H, 000H ; + D_28
FBCE gg gg 00 00 00 30 08 000H, 000H, 000H, 000H, 00DH, 030H, 030H, 060H ; , D_2C
FBD6 gg gg 00 FC 00 00 08 000H, 000H, 000H, OFCH, 000H, 000H, 00DH, 000H ; - D_2D
FBDE gg gg 00 00 00 30 o8 000H, 000H, 000H, 000H, 000H, 030H, 030H, 000H ; . D_2E
FBEG gg gg 18 30 60 CO o8 008H, 00CH, 0 18H, 030H, 060H, OCOH, 08DH, 000H ;, / D_2F
80 00
FBEE 7C C6 CE DE F6 E6 08 07CH, OCEH, OCEH, ODEH, OF 6H, OEGH, 07CH, 000H ; 0 D_30
FBF6 ;g gg 30 30 30 30 1] 030H, 070H, 030K, 030H, 030H, 030H, OFCH, 000H ; 1 D_31
FBFE ;g gg 0C 38 60 CC 08 078H, OCCH, 0OCH, 038H, 060H, OCCH, OFCH, 000H ; 2 D_32
FCO6 ;: gg oc 38 oC cC 0B 078H, OCCH, 00CH, 038H, 00CH, OCCH, 078H, 000H ; 3 D_33
FCOE Ig gg 6C CC FE 0C 0B 01CH, 03CH, 06CH, OCCH, OFEH, 00CH, 01EH, 000H ; 4 D_34
FC16 éﬁ gg F8 oc oc CC 08 OFCH, 0COH, OFBH, 00CH, 00CH, 0CCH, 078H, 000H ; § D_35
FCI1E ;: gg co FB cC cC o8 038H, 060H, OCOH, OF8H, OCCH, OCCH, 078H, 000H ; 6 D_36
FC26 ;g gg oc 18 30 30 1] OFCH, 0CCH, 00CH, 0 18H, 030H, 030H, 030H, 000H ; 7 D_37
FC2€ :;g gg cc 78 cc cC 08 078H, 0OCCH, OCCH, 078H, OCCH, 0CCH, 078H, 000H ; 8 D_38
FCa6 ;: gg cc 7¢ oc 1B 1] 078H, OCCH, OCCH, 07CH, 00CH, 0 18H, 070H, 000H ; 8 D_38
FC3E <7>g gg 30 00 00 30 o8 000H, 030H, 030H, 000H, 000H, 030H, 030H, 00DH ; : D_3A
Fc46 gg gg 30 00 00 30 08 000H, 030H, 030H, 000H, 000H, 030H, 030H, 060H ; ; D_3B
FC4E :Ig gg 60 CO 60 30 o8 01BH, 030H, 060H, OCOH, 060H, 030H, 018H, 000H ; < D_3C
FC56 ég gg FC 00 00 FC 1] 000H, 000H, OFCH, 000H, 000H, OFCH, 000H, 000H ; = D_3D
FCSE gg gg 18 0C 18 30 08 060H, 030H, 018H, 00CH, 018H, 030H, 060H, 000H ; > D_3E
FCE6 9,3 gg oc 1B 30 00 o8 078H, OCCH, 00CH, 018H, 030H, 000H, 030H, 000H ; 7 D_aF
30 00
FC6E 7C C6& DE DE DE CO 08 07CH, 0CEH, ODEH, ODEH, ODEH, OCOH, 078H, 000H ; @ D_d40
FC76 ;g 33 €c cc Fc cc (1] 030H, 078H, OCCH, OCCH, OFCH, OCCH, OCCH, 000K ; A 0_d41
FC7E gg gg 66 7C 66 66 0B OFCH, 066H, 066H, 07CH, O66H, 0GEH, OFCH, 000H ; B D_42
Fce6 ;g gg €O CO CO €6 o8 03CH, 066H, 0COH, OCOH, 0COH, 066H, 03ICH, 000H ;, C D_43
FCBE gg gg 66 66 66 6C 08 OFBH, 0ECH, 066H, 066H, 06BH, 0ECH, OFBH, 000H ; D D_44
FC86 ;g gg 68 78 6B 62 0B OFEH, 062H, 068H, 076H, 088H, 062H, OFEH, 000H ; E D_48
FC9E :E gg €8 78 68 60 1] OFEH, 062H, 06BH, 078H, 06BH, 060K, OFOH, 000H ; F D_46
FCAS ;g gg €O CO CE 66 (1] 03CH, 066H, OCOH, OCOH, OCEH, 066H, DIEH, 000H ; G D_d7
FCAE 25 gg €c Fc cc cc 08 OCCH, 0CCH, 0CCH, OFCH, 0CCH, DCCH, OCCH, 000H ; H D_48
FCBE $§ gg 30 30 30 30 o8 078K, 030K, 030H, 030K, 030H, 030H, 078BH, 000K ; [ D_48
FCBE Z: gg 0C oC cc cC o8 01EH, 00CH, 00CH, 00CH, OCCH, OCCH, 078H, 000H ; J D_4A
Fcce Z:: gg 6C 78 6C 66 08 OEEH, 066H, 06CH, 078BH, 0GCH, 06EH, OEEH, 000H ; K D_48
FCCE 53 gg 60 60 62 6@ (1] OFOH, 060H, 060H, 060H, 062H, 068H, OFEH, 0DOH ; L D_d4C
FCO6 55 gg FE FE D6 C6 0B OCEH, OEEH, OFEH, DFEH, ODH, OCEH, OCEH, 000H ; M D_d4D
FCDE g: gg F6 DE CE C6 08 0C6H, OEEH, OFGH, DDEH, OCEH, OCEH, OCEH, 000H ; N D_4E
FCE@ gg gg €6 C6 C6 6C 1] 038H, 06CH, OCBH, OCEH, OCEH, 0ECH, 03BH, 000H ; O D_d4F
38 00

A-104 ROM BIOS



FCEE FC 66 66 7C 60 60 1] OFCH, 066H, 066H, 07CH, 060H, 06OH, OFOH, 000H ; P D_50
FCF6 ;g gg cc cc pc 78 1] 078H, 0CCH, 0CCH, 0CCH, ODCH, 078H, 01CH, 000H ; @ D_51
FCFE ;g 22 66 7C 6C 66 pe OFCH, 066H, 066H, 07CH, 06CH, 0BGH, OEGH, 000H ; R D_52
FDOG 53 gg EO 70 IC CC b8 078H, 0CCH, OEOH, 070H, O1CH, OCCH, 078H, 000H ; S D_53
FDOE Zg gg 30 30 30 30 bB OFCH, 0B4H, 030H, 030H, 030H, 030H, 078H, 000H ; T D_54
FD16 Zg gg cc cc cc cc b8 OCCH, OCCH, 0CCH, OCCH, OCCH, OCCH, OFCH, 000H ; U D_58
//_—\_FDIE 53 gg cc cc cc 78 08 0CCH, 0CCH, OCCH, 0CCH, OCCH, 078H, 030H, 000H ; V D_S6
( 'szs gg gg C6 D6 FE EE be OCEH, OCEH, OCEH, ODEH, OFEM, OEEH, 0C6H, 000H ; W D_87
e FD2E g: gg 6C 38 38 6C b8 OCEH, OCGH, 06CH, 03BH, 038H, 06CH, OCGH, 000H ; X D_58
FD36 gg gg cc 78 30 30 pe 0CCH, 0CCH, 0CCH, 078H, 030H, 030H, 078H, 000H ; Y D_5%
FD3E Z: gg BC 18 32 66 08 OFEH, 0CGH, 08CH, 018H, 032H, 066H, OFEH, 000H ; Z D_5A
FDag ;: gg 60 80 80 60 ]} 078H, 060H, 060H, OBOH, OBOH, OBOH, 078H, 000H ; L D_BB
FDAE 33 gg 30 18 oC 06 1] 0COH, 060H, 030H, 018H, 00CH, 006H, 002H, 000H ;
oz 00 BACKSLASH D_8C
FD56 78 18 18 18 18 18 08 078H, 018H, 0 18H, 018H, 018H, 0 18H, 078H, 000H ; 1 D_5D
FDSE Ig gg 6C C6 00 00 (1] 010H, 03BH, 06CH, OCEH, 000H, 000H, 000H, 000H ;
00 00 ; CIRCUMFLEX D_BE
FDE6 gg gg 00 00 00 00 0B 0OOH, 000H, 0ODH, 000H, 000H, 000H, D0OH, OFFH ; _ D_BF
FDGE 30 30 18 00 00 00 08 030H, 030H, 0 18H, 000H, O0OH, 000H, 000H, 000H ; * D_60
FD76 gg gg 78 0C 7C CC 0B 000H, 000H, 078H, 00CH, 07CH, OCCH, 076H, 000H
76 o0 ; LDWER CASE A D_61
FD7E EO 60 60 7C 66 66 0B OEOH, 060H, 060H, 07CH, 066H, 066H, ODCH, 000H ; LC B D_82
FDB6 gg gg 78 €C €O cC 08 000H, 000H, 078H, OCCH, OCOH, OCCH, 076H, 000H ; LC C 0_63
FDBE Ig gg oc 7C cC cC o8 01CH, DOCH, 00CH, 07CH, OCCH, OCCH, 076H,000H ; LC D D_64
FD96 ;g gg 78 CC FC CO 1} 000H, 000H, 078H, 0CCH, OFCH, 0COH, 0784, 000H ; LC E 0_65
FDYE ;: 28 60 FO 60 6O 08 038H, 06CH, 060H, OFOH, 060H, 060H, OFOH, 000H ; LC F D_66
. FDAG ;g gg 76 cC cc 7¢ 08 000H, 000H, 076H, OCCH, 0CCH, 07CH, 00CH, OFBH ; LC G 0_67
EFDAE gg :g 6C 76 66 66 o8 OEOH, 080H, 06CH, 076H, 066H, 066H, OEGH, 000H ; LC H 0_68
" Fose gg gg 70 30 30 30 D8 030H, 000H, 070H, 030H, 030H, 030H, 078H, 000H ; LC 1 0_69
FDBE ;2 gg oc oc oc cC 08 00CH, 000H, 0OCH, 0OCH, DOCH, OCCH, OCCH, 078H ; LC J D_6A
FOC6 gg ;g 66 6C 78 6C o8 OEOH, 060H, 066H, DGCH, 078H, 06CH, OEGH, 000H ; LC X D_68
FDCE gg gg 30 30 30 30 o8 070H, 030H, 030H, 030H, 030H, 030H, 078H, 000H ; LC L D_6C
FDDE ;g gg CC FE FE D6 o8 000H, 000H, OCCH, OFEH, OFEH, 006H, 0CGH, 000H ; LC M D_6D
FDDE gg gg F8 CC CC cC o8 000H, 000H, OFBH, OCCH, 0CCH, 0CCH, 0CCH, 000H ; LC N D_6E
FOEB gg gg 78 C€C cC C€C 08 000H, 000H, 078H, OCCH, 0CCH, 0CCH, 078H, 000H ; LC O D_6F
78 00
FDEE 00 00 DC 66 66 7C 08 000H, 000H, 00CH, 066H, 0BBH, 07CH, 060H, OFOH ; LC P D_70
FOF6 gg ;g 76 €C cC 7C o8 00OH, 000H, 076H, OCCH, OCCH, 07CH, 00CH, 01EH ; LC @ 0_71
FDFE gg ég 0C 76 66 60 08 00OH, 000H, 0DCH, 076H, 066H, 060H, OFOH, 000H ; LC R 0_72
FEOG ;g gg 7¢ co 78 oC o8 0O00H, 000H, 07CH, OCOH, 078H, 0OCH, OFBH, 000H ; LC § 0_73
FEOE ig gg 7C 30 30 34 08 010H, 030H, 07CH, 030H, 030H, 034H, 01BH, 000H ; LC T D_74
FE16 ég gg €c cC cc cC 08 000H, 000H, OCCH, 0CCH, 0CCH, OCCH, 076H, 000H ; LC U 0_75
FEIE 3@ gg cc cc cC 78 08 0DOH, 000H, DCCH, OCCH, OCCH, 078H, 030H,000H ; LC V D_76
FE26 gg gg C6 06 FE FE o8 000H, 000H, OCGH, DDEH, OFEH, OFEH, 06CH, DOOH ; LC W 0_77
FE2E gg gg C6 6C 38 6C 08 000H, 000H, 0CEH, 06CH, 03BH, 06CH, 0C6H, 000H ; LC X 0_78
—_ FE36 gg gg €c cc cc 7¢ 08 00OH, 000H, 0CCH, OCCH, OCCH, 07CH, 00CH, OFBH ; LC Y D_79
’ FE3E gg ;g FC 98 30 64 08 00OH, 000H, OF CH, 098H, 030H, 0E4H, OFCH, 000H ; LC Z D_7A
k\\_,/ FE46 :g gg 30 EO 30 30 08 01CH, 030H, 030H, OEOH, 030H, 030H, 01CH, 000H ; { D_7B
FE4E ig 28 18 00 18 18 Y] 018H, 018H, 018H, DOOH, O18H, 0 18H, 018H, 000H ; : D_7C
FES6 ég gg 30 1C 30 30 1] OEOH, 030H, 030H, 0 1CH, 030H, 030H, OEOH, 000H ; } 0_70
FESE 52 38 00 00 00 00 o8 076H, ODCH, 000H, 00OH, 00OH, 000H, 000H, 000H ; ~ D_7E
FEGB §§ Eg 38 6C C6 C6 1] 000H, 010H, 03BH, 06CH, OCBH, 0CEH, OFEH, 000H ;

; DELTA D_7F

ROM BIOS A-105



FEGE
FEGE E9 1393 R

ORG
JHP

OFEBEH
NEAR PTR TIME_OF_pAY

CRC CHECK/GENERATION ROUTINE
ROUTINE TO CHECK A ROM MODULE USING THE POLYNOMIMAL:
X168 + X12 + XB + 1
CALLING PARAMETERS:
DS = DATA SEGMENT OF ROM SPACE TO BE CHECKED
s1 INDEX OFFSET INTO DS POINTING TO 1ST BYTE
CX = LEMGTH OF SPACE TO BE CHECKED (INCLUDING CRC BYTES)

i
i
i
i
i
i ON EXIT:
; 2ERO FLAG = SET = CRC CHECKED OK
i AH = 00
i ??
i 0000
i 04
; 0000 1F CRC CHECKED OK, ELSE, ACCUMULATED CRC
i (S1{ENTRY)+BX (ENTRY)
i NOTE: ROUTINE WILL RETURN IMNEDIATLY IF "RESET_FLAG
; 1S EQUAL TO "1234H" (WARM START)
i
FE71 CRC_CHECK PROC NEAR
ASSUME  DS:NOTHING
FE71 €8 D9 MoV 8X, CX ; SAVE COUNT
FE73 BA FFFF MoV DX, OFFFFH ; INIT, ENCODE REGISTER
FE78 FC cLD ; SET DIR FLAG TO INCREMENT
FE77 32 E4 XOR AH, AH ; INIT. WORK REG HIGH
FE79 81 04 KoV cL, 4 i SET ROTATE COUNT
FE7B  AC CRC_1: LODSB ; GET A BYTE
FE7C 32 FO XOR DH, AL ; FORM AJ + CJ] + 1
FEJE 8A C6 Hov AL,DH
FEBO D03 CO ROL AX, CL ; SHIFY WORK REG BACK 4
FEB2 33 DO XOR DX, AX ; ADD INTO RESULT REG
FEB4 D1 CO ROL AxX, 1 ; SHIFT WORK REG BACK 1
FEBE 86 F2 XCHG DH,DL ; SWAP PARTIAL SUM INTO RESULT REG
FESB 33 DO XOR 0X, AX ; ADD WORK REG INTO RESULTS
FEBA D3 CB ROR ax, CL ; SHIFT WORK REG OVER 4
FEBC 24 EO AND AL, 111000008 ; CLEAR OFF (EFGH)
FEBE 33 DO XOR DX, AX ; ADD (ABCD) INTO RESULTS
FES0 D1 CB ROR ax, 1 ; SHIFT WORK REG ON OVER (AH=0 FOR
; NEXT PASS)
FES2 32 FO XOR DH, AL ; ADD (ABCD [NTO RESULTS LOW)
FE94 4B DEC ax ; DECREMENT COUNT
FESS 76 E4 INZ CRC_1 ; LOOP TILL COUNT = 0000
FES7 OB 02 OR DX, DX ; DX §/B = 0000 IF O.K.
FES9 C3 RET ; RETURN TO CALLER
FE9A CRC_CHECK ENOP
i
;  SUBROUTINE TO READ AN 8280 REGISTER. MAY ALSO BUMP ERROR
; REPORTER (BL) AND/OR REG DX (PORT ADDRESS) DEPENDING ON
; WHICH ENTRY POINT IS CHOSEN,
;  THIS SUBROUTINE WAS WRITTEN TO AVOID NULTIPLE USE OF 1/0 TIME
3 DELAYS FOR THE B260. [T WAS THE MOST EFFICIENT WAY TO
; INCLUDE THE DELAYS.
;  IN EVERY CASE, UPON RETURN, REG AL WILL CONTAIN THE CONTENTS OF
; PORT{0X)
i
FE9A RR1 PROC NEAR
FESA 32 CO XOR AL, AL
FESC EE ouT DX, AL ; DISABLE ALL INTERRUPTS
FESD FE €3 INC BL ; BUMP ERROR REPORTER
FESF 42 RR2: INC DX ; INCR PORT ADOR
FEAO EC RR3: N AL, DX ; READ REGISTER
FEAL C3 RET
FEA2 RR1 ENDP
i
; THIS ROUTINE HANDLES THE TIMER INTERRUPT FROM
; CHANNEL O OF THE 8263 TIMER. 1NPUT FREQUENCY IS 1.19318 NHZ
; AND THE DIVISOR 1S 65536, RESULTING IN APPROX. 18.2 INTERRUPTS
; EVERY SECOND,
i
; THE INTERRUPT HANDLER MAINTAINS A COUNT OF INTERRUPTS SINCE POWER
; ON TIME, WHICH MAY BE USED TO ESTABLISH TIME OF DAY.
; INTERRUPTS MISSED WHILE INYS. WERE DISABLED ARE TAKEN CARE OF
; BY THE USE OF TIMER 1 AS A OVERFLOW COUNTER
; THE INTERRUPT HANDLER ALSO DECRENENTS THE NOTOR CONTROL COUNT
; OF THE DIGKETTE, AND WHEN IT EXPIRES, WILL TURN OFF THE OISKETTE
5 NOTOR, AND RESET THE MOTOR RUNNING FLAGS
; THE INTERRUPT HANDLER WILL ALSQ INVOKE A USER ROUTINE THROUGH
; INTERRUPT 1CH AT EVERY TIME TICK. THE USER MUST CODE A ROUTINE
i AND PLACE THE CORRECT ADDRESS IN THE VECTOR TABLE.
i
FEAS ORG OF EABH
ASSUME DS:DATA
FEAB TIMER_INT PROC FAR
FEAS FB STL ; INTERRUPTS BACK ON
FEAE 1E PUSH oS
FEA7 60 PUSH ax
FEAS &2 PUSH DX ; SAVE MACHINE STATE
FEAS EB 1388 R CALL DOS
FEAC FF 06 006C R INC TIMER_LOW ; INCREMENT TIME
FEBO 75 04 JNZ . TEST_DAY
FEB2 FF 06 0O0GE R INC TIMER_HIGH ; INCREMENT HIGH WORD OF TIME
FEBE Ta: ; TEST_DAY
FEB6 83 3E 006E R 1B cHp TIMER_HI1GH,018H ; TEST FOR COUNT EQUALLING 24 HOURS
FEBB 76 15 INZ 5 . DISKETTE_CTL
FEBO 81 3E 006C R 00BO cHp TIMER_LOMW, OBOH
FEC3 76 00 JNZ 5 ; DISKETTE_CTL

A-106 ROM BIOS

i’



------- TIMER HAS GONE 24 HOURS
sus

FECS 28 €O
FEC7 A3 O06E R MOV TIMER_HIGH, AX
FECA -A3 006C R MOV TIMER_LOW, AX
FECD C6 06 0070 R 01 MoV TIMER_OFL, 1
;==—=== TEST FOR DISKETTE TIME OUT
FED2 T8: ; LOOP TILL ALL OVERFLOWS TAKEN
; CARE OF
FED2 FE OE 0040 R DEC MOTOR_COUNT
FEDE 75 09 INZ T6 ; 'RETURN IF COUNT NOT OUT
FED8 ~ 80 26 003F R FO AND MOTOR_STATUS,0FOH ; TURN OFF MOTOR RUNNING BITS
FEDD B0 80 MOV AL, FOC_RESET ; TURN OFF MOTOR, 00 NOT RESET FOC
FEDF E6 F2 ouT NEC_CTL, AL i TURN OFF THE MOTOR
. FEE1 ¢cD 1C T6: INT ; TRANSFER CONTROL TO A USER
" ; ROUTINE
EE3 BO 20 MOV AL, EO1
/EE5 E6 20 ouT * 020H, AL ; END OF INTERRUPT TO B2%9
EE7 5A POP DX
FEE8 B8 POP AX
FEE9 IF POP DS ; RESET MACHINE STATE
FEEA CF 1RET ; RETURN FROM INTERRUPT
FEEB TIMER_INT ENDP
i
;. ARITHMETIC -CHECKSUM -ROUTINE
; ENTRY:
; DS = DATA SEGMENT OF RON SPACE TO BE CHECKED
i SI = INDEX OFFSET INTO 0S POINTING TO 1ST BYTE
i CX = LENGTH OF SPACE TO BE CHECKED
i EXIT: 2ERO FLAG OFF=ERROR, ON= SPACE CHECKED OK
FEEB ROS_ CHECKSUM PROC NEAR
FEEB 02 04 RC_0:  ADD AL, DS: £S11
FEED -46 INC §1
FEEE E2 FB LoOP RC_O
FEFO 0A CO OR aL, AL
FEF2 €3
FEF3 ROS_CHECKSUM ENDP
;
; THESE ARE THE VECTORS -WHICH ARE MOVED INTO
; THE BOB6 -INTERRUPT AREA DURING POWER ON.
; ONLY THE OFFSETS ARE DISPLAYED HERE, CODE
; SEGMENT WILL BE ADOED FOR ALL OF THEM, EXCEPT
; WHERE NOTED.
ASSUME  CS:COOE
FEF3 ORG OFEF3H
FEF3 VECTOR_TABLE LABEL  WORD ; VECTOR TABLE FOR MOVE TO I'NTERRUPTS
FEF3 FEAB R oW OFFSET TIMER_INT ; INTERRUPT 8
FEFS 1561 R bW OFFSET “KB_INT INTERRUPT 9
FEF7 FBI5 R bW OFFSET D11 INTERRUPT A
FEF9 F@I% R bW 'OFFSET Dl INTERRUPT B
FEF8 FBI5 R oW OFFSET D11 ; INTERRUPT ¢
“YEFD Fo18 R oW OFFSEY D11 ; INTERRUPT D
*EFF  EFB7 R bW OFFSET DISK_INT ; INTERRUPT E
FFO1 Feis R ‘DW .OFFSET D11 INTERRUPT F
FFO3 0DOB R oW OFFSET VIDEO_10 ; INTERRUPT 10H
FFOS FB4D R bW OFFSET EQUIPMENT ; INTERRUPT 1iH
FFO7 FB41 R oW OFFSET MEMORY_SIZE_DETERMINE ; INTERRUPT 12H
FFO8 ECB9 R oW OFFSET DISKETTE_10 ;- IMTERRUPT i3H
FFOe E739 R oW OFFSET -RS232_10 ; INTERRUPT 14H
FFOD FBS9 R bW CABSETTE_I0 ; INTERRUPT 15H
FFOF 1300 R [T OFFSET.KEYBOARD_10 ; INTERRUPT 16H
FFi1 EFD2 R oW OFFSET PRINTER_10 ; INTERRUPT i7H
FF13 0000 bW 00000H ; INTERRUPT 1BH
DW 0F600H ; MUST-BE INSERTED INTO TABLE LATER
FF15 -08iB R oW OFFSET BOOT_STRAP ; INTERRUPT 18H
FF17 1393 R oW TIME_OF_DAY ; INTERRUPT 1AH -- TIME OF DAY
FF19 .FRIC R DW DUMMY_RETURN ; INTERRUPT 1BH -- KEVED BREAK ADDR
FF18 FB3C R DW DUMMY_RETURN ; INTERRUPT 1€ TIMER BREAK AODR
FF1D FOA4 R oW VIDEO_PARMS ; 'INTERRUPT 1D VIDEO PARAMETERS
FFIF EFC7 R 1] OFFSET DISK_BASE ; INTERRUPT 1E -- DISK PARMS
FF21 EOSE R oW CRT_CHARH ; INTERRUPY IF == VIOEO EXT
FF23 ‘P_MEG " PROC NEAR
FF23 2E: BA 04 Gl2a: MOV AL, CS: TSI ; "PUT- CHAR IN AL
FF26 46 INC s1 ; POINT TO NEXT CHAR
FF27 B0 PUSH AX ; SAVE PRINT CHAR
FF28 E8 18BA R CALL  -PRY_HEX ; CALL VIDEO_10
FF2B 58 POP ax ; RECOVER PRINT CHAR
FF2C 3C 0D cHP aL, 13 ;' WAS 1T CARRAGE RETURN?
FF2E 78 F3 JNE G124 ; MO,KEEP PRINTING STRING
FF30 €3 RET
FFaL P_NSG  ENOP
; ROUTINE TO SOUND BEEPER
FF31 BEEP PROC NEAR
FF3l B0 86 MOV AL, 101101108 ; SEL Tim 2,LS9,MSB, BINARY
FF33 E6 43 ouT TIMER+3, AL ; WRITE THE TIMER MODE REG
FF35 BB 0533 MOV AX, B3FH ; DIVISOR FOR 1000 HZ
FF38 E6 42 ouT TIMER+2, AL ; WRITE TIMER 2 CNT - LSB
FF3A BA C4 MOV AL, AH
FF3C E6 42 ouT TIMER+2, AL ; WRITE TIMER 2 CNT - MSB
FF3E E4 61 IN AL,PORT_B ; GET CURRENT SETTING OF PORT
FF40 .BA EO MoV AH, AL ; SAYE THAT SETTING
k/' FF42 0C 03 OR AL, 03 ; TURN SPEAKER ON
FF44 E6 61 T -PORT_B, AL
FF4a6 28 C9 suB cx, cX ; SET CNT TO WAIT 500 MS
FF4B E2 FE G7: LOOP G7 ; DELAY BEFORE TURNING OFF
FFAaA FE €8 DEC BL ; DELAY CNT EXPIRED?
FFAC 75 FA JINZ G7 ; NO - CONTINUE BEEPIMG SPX
FFAE BA C4 MOV AL, AH ; RECOVER VALUE OF PORT
FFS0 E6 61 ouT PORT_B, AL
FF52 €3 RET ; RETURN TO CALLER
FF53 BEEP ENDP

‘ROM BIOS A-107




FF53
FFS3

FF5d
FF54
FFS4
FFE5

FFB6
FF57
FF58

FFS9
FF5A
FF5D
FFSF
FF64
FFE6
FFEB

FF &0

FF&F
FF71
FF73
FF76
FF77
FF79
FF78
FF7C
FF70

FF7F
FFB1
FFB3
FFa5
FFB7
FFa9
FFEB
FFBD
FFBE
FF90
FF92

FF98
FF98
FFOA
FF9C
FF9E
FFAO
FFA2
FFA4
FFAS
FFAB
FFA9
FFAB
FFAD
FFAF
FFBO
FFB2
FFB4
FFBS
FFB8
FFBC
FFBE
FFCO
FFCE
FFC6
FFC7
FFCB
FFC9
FFCA
FFCB

CF

. DUMMY

RETURN FOR ADDRESS COMPATIBILITY

ORG OFF53H
IRET
;=— INT B
; THIS LOGIC WILL BE INVOKED BY INTERRUPT O5H TO PRINT -
; THE SCREEN. THE CURSOR POSITION AT THE TIME THIS ROUTINE
; IS INVOKED WILL BE SAVED AND RESTORED UPON COMPLETION. THE
; ROUTINE IS INTENDED TO RUN WITH INTERRUPTS ENABLED
; IF. A SUBSEQUENT ‘PRINT SCREEN KEY [S-DEPRESSED DURING THE
; TIME THIS ROUTINE.1S PRINTING. 1T WILL BE IGNORED
; ADDRESS 30:0 CONTAINS THE STATUS OF THE PRINT SCREEN
H
; 50:0 =0 EITHER PRINT SCREEN HAS NOT BEEN CALLED
; OR UPON RETURN FROM A CALL THIS INOTCATES
i A SUCCESSFUL OPERATION
B =1 PRINT SCREEN IS IN PROGRESS
;
; =OFFH  ERROR ENCOUNTERED OURING PRINTING
;
ASSUME CS:CODE,DS: XXDATA
ORG OFFB4H
PRINT_SCREEN PROC FAR
MUST RUN WITH INTERRUPTS ENABLED
PUSH [X] ; MUST USE 50:0 FOR DATA AREA
STORAGE
PUSH AX
PUSH BX
PUSH (= ; WILL USE THIS LATER FOR CURSOR
; LIMITS
PUSH DX ; WILL HOLD .CURRENT CURSOR FOSITION
--— R HOV AX, XXDATA ; HEX 50
oe Hov DS, AX
3E 0000 R O1 CMP STATUS_BYTE,1 ; SEE IF PRINT ALREADY IN PROGRESS
F JzZ EXIT ; JUMP IF PRINT ALREADY IN PROGRESS
06 0000 R 01 Nov STATUS_BYTE, 1  ; INOICATE PRINT NOW IN PROGRESS
oF MoV AH, 15 ; WILL REQUEST THE CURRENT SCREEN
; MOOE
10 INT 10H ; [AL1=MODE
; [AHI=NUMBER COLUMNS/LINE
H [BHI=VISUAL PAGE
; AT THIS POINT WE KNOW THE COLUMNS/LINE ARE IN
; [AX) ANO THE PAGE IF APPLICABLE IS IN CBH). THE STACK
; HAS DS, AX, BX, CX, DX PUSHED. [AL1 HAS VIDEO MODE
cc Nov CL, AH WILL MAKE USE OF [CX) REGISTER TO
19 MoV CH, 25 CONTROL ROW & COLUMNS
FASF R CALL CRLF CARRIAGE RETURN LINE FEED ROUTINE
PUSH cx SAVE SCREEN BOUNDS
03 NOV AH, 3 WILL NOW READ THE CURSOR
10 INT 10H AND PRESERVE THE POSITION
POP cx RECALL SCREEN BOUNOS
PUSH DX ; RECALL [BHI=VISUAL PAGE
02 XOR DX, DX ; WILL SET CURSOR POSITION TO (0,03
;
; THE LOOP FROM PRI10 TO THE INSTRUCTION PRIOR -TO PRI20
; IS THE LOOP TO READ EACH CURSOR POSITION FROM THE SCREEN
; AND PRINT.
;
02 PRI10: MOV AH, 2 TO INDICATE CURSOR SET REQUEST
10 INT 10H NEW CURSOR POSITION ESTABLISHED
o8 KoV AH, 8 TO INDICATE READ CHARACTER
10 INT 10H CHARACTER NOW IN [AL]
co OR AL, AL SEE IF VALID CHAR
02 JNZ PRI 16 JUMP IF VALID CHAR
20 MoV AL, ¢t MAKE A BLANK
PRILS: PUSH DX SAVE CURSOR POSITION
02 XOR DX, DX INDICATE PRINTER 1
€4 XOR AH, AH TQ INDICATE PRINT CHAR [N [AL
17 INT 17H ; PRINT THE CHARACTER
POP DX ; RECALL CURSOR POSITION
c4 29 TEST AH, 029H ; TEST FOR PRINTER ERROR
21 JNZ ERR10 ; JUMP IF ERROR OETECTED
c2 INC DL ; ADVANCE TO NEXT COLUMN
cA CHP cL,oL ; SEE IF AT ENO OF LINE
OF JNZ PRI 10 ; IF NOT PRQCEED
D2 XOR oL, DL ; BACK TO COLUMN O
E2 MoV AH, DL ; [AHI=0
PUSH DX ; SAVE NEW CURSOR FQSITION
FASF R CALL CRLF ; LINE FEED CARRIAGE RETURN
POP DX ; RECALL CURSOR POSITION
c6 INC OH ; ADVANCE TO NEXT LINE
EE cMp CH,DH ; FINISHED?
DO JINZ PRI 10 ; IF NOT CONTINUE
POP DX ; RECALL CURSOR POSITION
02 MoV AH, 2 ; TO INDICATE CURSOR SET REQUEST
10 INT 10H ; CURSOR POSITION RESTORED
06 0000 R 00 1Y STATUS_BYTE,O ; INOICATE FINISHEOD.
oA JMP SHORT EXIT ; EXIT THE ROUTINE
ERR10: POP DX ; GET CURSOR POSITION
02 MOV AH, 2 ; TO REQUEST CURSOR SET
10 INT 10H ; CURSOR POSITION RESTORED
06 0000 R FF MoV STATUS_BYTE, OFFH - ; INDICATE ERROR
EXIT:  POP DX ; RESTORE ALL THE REGISTERS USED
POP cx
POP BX
FOP AX
FOP bS
IRET

A-108

PRINT_SCREEN ENDP

ROM BIOS



()

EASE OF USE REVECYOR ROUTINE - CALLED TYHROUGH

[NT 1BH WHEN CASSETTE BASIC [S INVOKED (NO DISKETTE
NO CARTRIDGES)

KEYBOARD VECTOR IS RESET TO POINT TO "NEW_INT_g"
BASIC VECTOR 1S SET TO POINT TO FE00:0

’
i
i
;
8.

FFCB AS_ENT PROC FAR
ASSUME DS ABSO
FFCB 28 CO sUB ax, AX
FFCD BE DB MoV DS, AX ;SET ADDRESSING
FFCF C7 06 0024 .R 1937 R MoV WORD PTR INT_PTR+4, OFFSET NEW_[INT_9
FFD5 A3 0060 R MoV BASIC_PTR, AX ; SET INT 18=F600:0
FFDB C7 06 0062 R FE00 MoV BASIC_PTR+2; OF600H
FFDE €D 18 INT 18H ; GO TO BASIC
FFEO BAS_ENT ENDP
i
i INITIALIZE TIMER SUBROUTINE - ASSUMES BOTH THE LSB ANO MSB
; OF THE TIMER WILL BE USED.
i  CALLING PARAMETERS:
i (AH) = TIMER #
i (AL) = BIT PATTERN OF INITIALIZATION WORD
i (BX) = INITIAL COUNT
; (BH) = MSB COUNT
i (BL) = LSB COUNT
;  ALTERS REGISTERS DX AND AL.
FFEO INIT_TIMER PROC NEAR
FFEO E6 43 out TIM_CTL, AL ; OUTPUT INITIAL CONTROL WORD.
FFE2 BA 0040 MOV DX, TIMER ; BASE PORT ADDR FOR TIMERS
FFES 02 D4 ADD oL, AH ; ADD IN THE TIMER %
FFE7 BA C3 MOV AL, BL ; Loap LS8
FFES EE ouT OX, AL
FFEA B2 PUSH oX ; PAUSE
FFEB 54 POP DX
FFEC 8A C7 MoV AL, BH ; LoAD MSB
FFEE EE ouT DX, AL
FFEF €3 RET
FFFO INIT_TIMER ENDP
i
; POWER ON RESET VECTOR
i
FFFO ORG OFFFOH
i
jmm——— POWER ON RESET
FFFO EA 1] OEAH ; JUMP FAR
FFF1 0043 R ow OFFSET RESET
FFFA FO00 "=+ ow OF000H
FFFS 30 36 2F 30 31 2F 1] ‘06/01/83" ; RELEASE MARKER
38 33
FFFD FF 0B OFFH ; FILLER
FFFE FD [}]] OFDH ; SYSTEM IDENTIFIER
i 0B OFFH ; CHECKSUM
FFFF CODE ENDS
END

ROM BIOS A-109




Notes:

A-110 ROM BIOS



()

Appendix B. LOGIC DIAGRAMS

Contents

SystemBoard .............c i,
Program Cartridge ........................

- PowerSupplyBoard .............. .. ...,
64K B Memory and Display Expansxon ........
ColorDisplay ......ovviiiiiiinnnnnnnnens '
Diskette Drive Adapter .....................
Internal Modem ............ .. ... ...

- Parallel Printer Attachment .................
Infra-Red Receiver Board ................... '
Graphics Printer ..................covun,
Compact Printer .............oiiviiienn.

"Logic Diagrams B-1

>
=
=
o
=
| =
=
-]




Notes:

B-2 Logic Diagrams



APPENDIX C: CHARACTERS,
KEYSTROKES, AND COLOR

r-]\ Color/Graphics
) Value As Characters Text Attributes
Hex | Dec| Symbol Keystrokes | Modes | Background | Foreground
00 | O Blank. Ctrl 2 Black Black -g
(Null) =
o1 |1 &) Ctrl A Black Blue =
02 2 e Ctrl B Black Green =3
03 |3 v ctriC Black Cyan o
04 | 4 L Ctrl D Black Red
05 | 5 o Ctrl € Black Magenta
06 | 6 Q Ctrl F Black Brown
07 a ° Ctrl G Black Light Grey
08 8 - Ctrl H, Black Dark Grey
- Backspace,
| Shift
e Backspace
C, AE O ctrl | Black Light Blue.
O0A | 10 Cctrl J, Black Light Green
Ctrl ¢
oB | 11 d | cuik Black Light Green
oc | 12 Q ctrl L Black Light Red
ob | 13 J’ Ctrl M, ¢/ Black Light Magenta
Shift ¢
OE | 14 ) Ctrl N Black Yellow
OF | 15 It Ctrl O Black White
10 16 » Ctrl P Blue Black
11 |17 - ctrlQ Blue | Blue
12 | 18 { Ctrl R Blue Green
13 | 19 " ctrl s Blue Cyan
14 | 20 qT7 ctrl T Blue Red
O 15 | 21 § ctrl U Magenta:
‘16 | 22 -= Ctrt vV Blue Brown
17 | 23 I Ctrl W Blue Light Grey

Characters, Keystrokes, and Color C-1



Color/Graphics
Value As Characters Text Attributes
Hex | Dec | Symbol Keystrokes | Modes | Background | Foreground
18 24 t Ctrl X Blue Dark Grey
19 25 | CtrlY Blue Light Blue
1A | 26 - Ctrl Z Blue Light Green
1B | 27 Ctrl [, Blue Light Cyan
_ Esc, Shift

Esc, Ctrl

Esc
1C | 28 S Ctrl \ Blue Light Red
1D | 29 — Ctrl ] Blue Light Magenta
1E | 30 A Ctrl 6 . Blue Yellow

“1F 31 v Ctrl — Blue White
20 | 32 Blank Space Bar, " Green Black
Space Shift,
Space,
Ctrl Space,
- Alt Space
21 33 ! | Shift Green Blue
.22 | 34 Shift Green Green

23 35 # Shift Green Cyan
24 | 36 $ Shift Green Red
256 | 37 % % Shift Green | Magenta
26 |.38 & & Shift Green Brown
27 39 Green Light Grey
28 40 ( { Shift Green Dark Grey
29 41 ) ) Shift Green Light Blue
2A | 42 * * Note 1 Green Light Green
28 | 43 + + Shift Green Light Cyan
2C | 44 Green Light Red
2D | 45 — — Green Light Magenta
2E | 46 Note 2 | Green Yellow
2F | 47 / / Green White
30 48. 0 0 ‘Note 3 Cyan Black
31 49 1 1 Note 3 Cyan Blue
32 50 2 2 Note 3 | Cyan Green
33 51 3 3 Note 3 | Cyan Cyan

C-2 Characters, Keystrokes, and Color




Color/Graphics
Value As Characters Text Attributes
Hex | Dec |.Symbol Keystrokes | Modes | Background | Foreground
L 34 52 4 4 Note 3 | Cyan Red
(_/) 35 | 53 5 5 Note 3 | Cyan Magenta
36 54 6 6 Note 3 [ Cyan Brown
37 55 7 7 Note 3 | Cyan Light Grey
38 | 66 8 8 Note 3 | Cyan | Dark Grey .g
39 | 57 9 9 Note 3 | Cyan Light Blue =
3A | 58 : : Shift Cyan Light Green E.
3B | 59 ; Cyan Light Cyan F
3C | 60 < < Shift Cyan Light Red : i
3D | 61 = = Cyan Light. Magenta
3E 62 > > Shift -Cyan Yellow
3F 63 ? ? Shift Cyan White
40 64 @ @ Shift Red Black
41 65 A A Note 4 | Red Blue
42 | 66 B B Note 4 | Red Green
(T |43 |67 c c Note 4 | Red Cyan
\— [ [es D D Note 4 | Red Red
45 69 - E E Note4 | Red Magenta
46 | 70 F F Note 4 | Red Brown
47 |71 G G Note 4 | Red Light Grey
48 72 H H Note 4 | Red Dark Grey
49 73 | I Note 4 | Red Light Blue
4A | 74 J d - Note 4-| Red Light Green
4B | 75 K K Note 4 | Red Light Cyan
4C | 76 L L Note 4 | Red ‘Light Red
4D | 77 M- M Note 4 | Red. Light Magenta
4E | 78 N N ‘Note 4 | Red Yellow
.4F | 79 0 ‘0 Note 4 | Red White
50 | 80 P P Note 4 | Magenta Black
: 51 81 Q Q. Note 4 | Magenta - Blue
C" .52 | 82 R R Note 4 | Magenta Green
|53 |83 .8 S Note 4 | Magenta Cyan
54 | 84 T T Note 4 | Magenta Red

Characters, Keystrokes, and Color C-3



Color/Graphics

Value As Characters Text Attributes
Hex | Dec Symbol. | Keystrokes | Modes Background | Foreground
55 86 U U Note 4 Magenta Magenta
56 86 \ \ Note 4 Magenta Brown
57 | 57° w w | Note 4 Magenta Light Grey
58 | 88 X X Note 4 Magenta. Dark Grey
59 [ 89 Y Y Note 4 Magenta- Light Blue
5A | 90. z z Note 4 Magenta Light Green
5B | 91 [ [ Magenta Light Cyan
5C | 92 \ A\ Magenta Light Red
5D | 93 ] ] Magenta - Light Magenta
BE | 94 A A Shift Magenta Yellow
5F 95 — — Shift Magenta White
60 96" N N Yellow Black.
61 97 a a Note 5 Yellow Blue
62 |98 b b Note 5 Yeliow Green
63 99 c- c Note 5 Yellow Cyan
64 | 100 d d Note 5 Yeltow- Red
65 101 e e Note 5 Yellow: Magenta
66 102 f f -Nate 5 Yellow Brown
67 103 g g Note 5§ Yellow Light Grey
68 .| 104 h h Note 5 Yellow. Dark Grey
69 105 i i Note 5 Yellow Light Blue -
6A 106 j j Note 5 Yellow Light Green
68 | 107 k k Note 5 Yelliow Light Cyan
6C 108 | 1 Note 5 Yellow Light Red
6D | 109 m m. Note 5 Yellow .  Light Magenta
6E 110 n n Note 5 Yellow Yellow
6F 11 o o Note 5 Yellow: White
70 112 p p Note 5 White Black
71 113 q q Note 5. White Blue
72 |1 114 r r Note 5 White Green
73 115 s. s Note 5 White Cyan
74 | 116 f f Note 5 White Red
75 117 u u Note 5 White Magenta
76 118 v v Note 6 White Brown

C-4 Characters, Keystrokes, and Color




N,

Color/Graphics

Value As Characters Text Attributes
Hex | Dec Symbol | Keystrokes| Modes Background | Foreground
77 119 w w Note 5 White Light Grey
78 120 X X Note 5 White Dark Grey
79 121 y y Note 5 White Light Blue
7A | 122 z z Note 5 White Light Green
78 | 123 { { Shift White Light Cyan
7C | 124 ', [ Shift White Light Red
7D | 1256 } } Shift White Light Magenta
7E | 126 ~ ~ Shift White Yellow
7F | 127 A Ctrl — White White
Por e 80 to FF Hex are Flashing if Blink is Enabled e
80 | 128 C Alt 128 | Note 6 Black Black
81 129 U Alt 129 | Note 6 Black Blue
82 130 é Alt 130 | Note 6 Black Green
83 131 a Alt 131 Note 6 Black Cyan
84 | 132 a Alt 132 | Note 6 Black Red
85 133 a Alt 133 | Note 6 Black Magenta
86 | 134 a Alt134 | Note 6 Black Brown
87 135 c Alt 135 Note 6 Black Light Grey
88 136 é Alt 136 Note 6 Black Dark Grey
89 137 é Alt 137 Note 6 Black Light Blue
8A | 138 -] Alt 138 | Note 6 Black Light Green
8B | 139 i Alt 139 | Note 6 Black Light Cyan
8C | 140 i Alt 140 | Note 6 Black Light Red
8D | 141 i Alt 141 Note 6 Black Light Magenta
8E 142 A Alt 142 | Note 6 Black Yellow
8F 143 A Alt 143 | Note 6 Black White
90 | 144 E Alt 144 | Note 6 Blue Black
91 145 F Alt 145 | Note 6 Blue Blue
92 146 A Alt 146 | Note 6 Blue Green
93 147 [¢} Alt 147 Note 6 Blue Cyan
94 148 [ Alt 148 | Note 6 Blue Red
95 149 [ Alt 149 | Note 6 Blue Magenta

Characters, Keystrokes, and Color C-5

>
k=]
8=

@

-

=
we

@]




Color/Graphics
Value As Characters Text Attributes
Hex | Dec Symbol | Keystrokes| Modes Background | Foreground
96 150 U Alt 150 | Note 6 Blue Brown
97 1561 u Alt 151 Note 6 Blue Light Grey
98 162 y Alt 162 Note 6 Blue Dark Grey
99 153 6 Alt 163 Note 6 Blue Light Blue
9A (154 i Alt 154 | Note 6 Blue Light Green
9B 156 ¢ Alt 165 Note 6 Blue Light Cyan
9C | 156 £ Alt 156 | Note 6 Blue Light Red
aD 157 ¥ Alt 157 Note 6 Blue Light Magenta
| 9€ [ 158 Pt Alt168 [Note6 | Blue Yellow
9F [159 f Alt 169 | Note 6 Blue White
A0 | 160 a Ait 160 | Note 6 Green Black
A1 161 f Alt 161 Note 6 Green Blue
A2 | 162 6 Alt 162 | Note 6 Green Green
A3 163 ] Alt 163 Note 6 Green Cyan
A4 | 164 fi Alt 164 | Note 6 Green Red
A5 | 165 N Alt 165 | Note 6 Green Magenta
A6 | 166 a Alt 166 | Note 6 Green Brown
A7 167 o Alt 167 Note 6 Green Light Grey
A8 168 ¢ Ait 168 Note 6 Green Dark Grey
A9 |169 — Alt 169 Note 6 Green Light Blue
AA 170 — Alt 170 Note 6 Green Light Green
AB | 171 Yo Alt 171 Note 6 Green Light Cyan
AC 172 Ya Alt 172 Note 6 Green Light Red
AD |173 i Alt 173 | Note 6 Green Light Magenta
AE |174 << Alt174 | Note 6 Green Yellow
AF |175 >> Alt 175 Note 6 Green White
BO |176 Alt176 |Note6 | Cyan Black
B1 [177 g Alt177 [Note6 | Cyan Blue
B2 |178 ] Alt178 |[Note6 | Cyan Green
B3 179 Alt 179 Note 6 Cyan Cyan
B4 180 Alt180 |Note 6 Cyan Red
B5 181 Alt 181 Note 6 Cyan Magenta
B6 [182 —] Alt182 [Note6 | Cyan Brown

C-6 Characters, Keystrokes, and Color




Color/Graphics

Value As Characters Text Attributes
Hex | Dec Symbol | Keystrokes | Modes Background | Foreground
B7 183 —m Alt 183 Note 6 Cyan Light Grey
B8 184 — Alt 184 Note 6 Cyan Dark Grey
B9 |185 — Ait185 |Note6 | Cyan Light Blue
BA | 186 Alt 186 | Note 6 Cyan Light Green
BB 187 1 Alt 187 Note 6 Cyan Light Cyan ..g
BC |188 = Ai1188 |Note6 | Cyan Light Red =
BD | 189 |—1] Alt189 |[Note6 | Cyan Light Magenta 5..
BE | 190 |— AIt190 |Note6 | Cyan Yellow =
BF 191 — Alt 191 Note 6 Cyan White o
co | 192 L1 Ait192 |[Note6 | Red Black
c1 | 193 ' Alt193 [Note6 | Red Blue
c2 194 Alt 194 Note 6 Red Green
Cc3 1956 Alt 195 Note 6 Red Cyan
c4 196 Alt 196 Note 6 Red Red
Cc5 197 Alt 197 Note 6 Red Magenta
Cc6 | 198 Alt 198 Note 6 Red Brown
C7 | 199 Ait 199 Note 6 Red Light Grey
c8 | 200 Alt 200 Note 6 Red Dark Grey
co | 201 — Alt 201 Note 6 Red Light Blue
CA | 202 E==—o AIt202 |Note6 | Red Light Green
CB | 203 ————— Alt 203 Note 6 Red Light Cyan
cc | 204 | == A1t204 [Note6 | Red Light Red
cD | 205 Alt 205 Note 6 Red Light Magenta
CE |206 = —— AIt206 |Note6 | Red Yellow
cF | 207 : Alt207 [Note6 | Red White
DO | 208 L Alt 208 Note 6 Magenta Biack
D1 209 : Alt 209 |Note 6 Magenta Biue
D2 | 210 I Alt210 [Note 6 Magenta Green
D3 | 211 L1 Ai211 [Note6 | Magenta Cyan
D4 | 212 E=—— Art212 |Note6 | Magenta Red
D5 | 213 —— Alt213 Note 6 Magenta Magenta
D6 | 214 Alt 214 Note 6 Magenta Brown
D7 | 215 Alt 215 Note 6 Magenta Light Grey

Characters, Keystrokes, and Color C-7



Color/Graphics

Value As Characters Text Attributes
Hex | Dec Symbol | Keystrokes | Modes Background | Foreground
D8 216 Alt 216 Note 6 Magenta Dark Grey
D9 | 217 Alt 217 Note 6 Magenta Light Blue
DA | 218 Alt 218 Note 6 Magenta Light Green
DB | 219 Alt219 Note 6 Magenta Light Cyan
DC | 220 Alt 220 | Note 6 Magenta Light Red
DD | 221 Alt 221 Note 6 Magenta Light Magenta
DE | 222 Alt 222 | Note 6 Magenta Yellow
DF 223 Alt 223 Note 6 Magenta White
EO | 224 a Alt 224 | Note 6 Yellow Black
E1 225 B Alt 225 Note 6 Yellow Blue
E2 | 226 r Alt 226 | Note 6 Yellow Green
E3 227 T Alt 227 Note 6 Yellow Cyan
E4 | 228 b Alt 228 | Note 6 Yellow Red
E5 229 o Alt 229 Note 6 Yellow Magenta
E6 230 I3 Alt 230 Note 6 Yellow Brown
E7 231 T Alt 231 Note 6 Yellow Light Grey
E8 232 [+ Alt 232 Note 6 Yellow Dark Grey
ES | 233 [/ Ait 233 Note 6 Yellow Light Blue
EA | 234 Q Alt 234 | Note 6 Yellow Light Green
EB | 235 ) Alt 235 Note 6 Yellow Light Cyan
EC | 236 % Alt 236 Note 6 Yellow Light Red
ED | 237 ¢ Alt 237 Note 6 Yellow Light Magenta
EE | 238 € Alt 238 Note 6 Yellow Yellow
EF 239 n Alt 239 Note 6 Yellow White
FO | 240 = Alt 240 | Note 6 White Black
F1 241 * Alt 241 Note 6 White Blue
F2 242 = Alt 242 | Note 6 White Green
F3 | 243 = Alt 243 | Note 6 White Cyan
F4 | 244 [ Alt 244 | Note 6 White Red
F5 | 245 J Alt245 [Note6 | White Magenta
F6 | 246 - Alt 246 | Note 6 White Brown
F7 247 Alt 247 Note 6 White Light Grey
F8 | 248 0 Alt 248 | Note 6 White Dark Grey

C-8 Characters, Keystrokes, and Color




()

Color/Graphics

Value As Characters Text Attributes
Hex | Dec Symbol | Keystrokes | Modes Background | Foreground
F9 249 o Alt 249 | Note 6 White Light Blue
FA | 250 . -Alt 250 | Note 6 White Light Green
FB | 251 v~ Alt 251 Note 6 White Light Cyan
FC .| 262 n Alt 262 Note 6 White Light Red ‘
FD | 253 2 Alt 263 Note 6 White Light Magenta -
FE 254 ‘A Alt 254 | Note 6 White Yellow
FF 2565 -BLANK Alt 255 | Note 6 White White

Characters, Keystrokes, and Color C-9

3 ijpuaddv




NOTE 1

NOTE 2

NOTE 3

NOTE 4

NOTES5 .

NOTE 6

On the 62-key keyboard the Asterisk (*) can be keyed using two methods:
1) in the shift mode hit the key or 2) hold Alt key and press the

key.

On the 83-key keyboard the Asterisk (*) can be keyed using two methods:

1) hit the key or 2) in the shift mode hit the | - | key.
Period (.) can easily be keyed using two methods: 1) hit the key or 2) in

shift or Num Lock mode hit the key.

Numeric characters (0—9) can easily be keyed using two methods: 1) hit
the numeric keys on the top row of the typewriter portion of the keyboard
or 2) on the 83-key keyboard in shift or Num Lock mode hit the numeric
keys in the 10—key pad portion of the keyboard.

Upper case alphabetic characters (A—Z) can easily be keyed in two modes:
1) in shift- mode the appropriate alphabetic key or 2) In Caps Lock mode hit
the appropriate alphabetic key.

Lower case alphabetic characters (a—z) can easily be keyed in two modes:
1) in “normal” mode hit the appropriate key or 2) In Caps Lock combined
with shift mode hit the appropriate alphabetic key.

On the 62-key keyboard set Num Lock state using Alt/Fn/N then 3 digits
after the Alt key must be typed from the numeric keys on the top row of
the typematic portion of the keyboard. Character codes 000 through 255
can be entered in this fashion. (With Caps Lock activated, character codes
97 through 122 will display upper case rather than lower case alphabetic
characters.)

On the 83-key keyboard the 3 digits after the Alt key must be typed from
the numeric key pad (keys 71—73, 75—77, 79—82).

C-10 Characters, Keystrokes, and Colors



Appendix C

g | S o+ 3|53 x| > N|—|--|~ 2 |«
m Slo|s |m|a|o|T| 0olw| ooje|=|=|x|—| E| |0
S [g]w|a|oje|n|-o[>[2 x> |N[= |—<]]
2 2]+ [8|«|m|o[ow|u|o|x[-|>[x|[<S|Z|0
O 2o O |N|MFI0ONO || V]I[A]~
2 s~ [lel=lal [~ [+] 1] ]S
S ool c|h| V|||l B || ||t T]]>
2 lo|oliilo@|o]e |4/« « MO0 o= =[x
m’mo123456789ABCDEF
£ [B]o]e]-[a]o[<]o]e][~[=][2]c][e]2]z]e

C
)

P

5

Characters, Keystrokes, and Colors C-11



Character Set (80-FF) Quick Reference

J.l S ,f
| w | HANVI S fo @[« bla o] =]k
S| w|8 || k| o] 3|~

S oH [ I

mc| T : C |
S| o N T T R e
mA,a,l,o,u~n~Na_O_.c._|_|1/21/4.I«»
3| oWl 8| o003 > OID| |« ¥ o
m o [OQr|:3 ,ena"a ‘aoa O« |:0 ‘.eul (o | g | 2 o
'mmm0‘,12_345_6 Now|o| <fojo]o|w|ue
[ h|o| || of<|o|o|~no|oc|a]e|z]e

C-12 :Characters, Keystrokes, and Colors



Appendix D. UNIT SPECIFICATIONS

System Unit
Size:
Length 354 mm (13.9 in.)

Depth 290 mm (11.4 in.)
Height 97 mm (3.8 in.)

Weight:

d xipuaddy

C- 3.71 Kg (8Ib 40z2) With Diskette Drive
2.61 Kg (5Ib 80z) Without Diskette Drive

Transformer:
Electrical:
Input 110 Vac 60 Hz
Output to System Pin1-17 Vac, Pin 2 - GND, Pin 3 -
17 Vac

Power Cords:
Input Length  1.86 meters (6.14 feet)
Type 18 AWG

I Output Length 1.22 meters (4.02 feet)

\__ Type 18 AWG

Unit Specifications D-1



Environment:

Air Temperature

System ON  15.6 to 32.2 degrees C (60 to 90 degrees F)
System Off 10 to 43 degrees C (50 to 110 degrees F)
Humidity -
System On 8% to 80%

System Off 8% to 80%

Noise Level 45dB

Cordless Keyboard

Size:

Length 341.5 mm (13.45in.)
Depth 168 mm (6.61 in.)
Height 26 mm (1.02in.)

Weight:

With Batteries 616 grams (22 ounces)
Without Batteries 700 grams (25 ounces)

Optional Cable:

6 feet, flat

Diskette Drive

D=2 Unit Specifications



Size:

Height 41.6 mm (1.6 in.)

— Depth 146 mm (5.8 in.)

\_/" Width 208 mm (8.3 in.)
Weight:

1.1 kilograms (2.2 pounds)

Diskette Drive

Power: >
=}
o
[
2,

Supply =3
o)

C Voltage +5 Vdc Input +12 Vdc Input
Nominal +5 Vdc +12 Vdc
Ripple
+5 Vdc Input +12 Vdc Input
0 to 50 kHz 100 mV 100 mV
Tolerance
+5 Vdc Input +12 Vdc Input
Including Ripple +/-5% +/-5%

Unit Soecifications D-3



Standby Current

+5 Vdc Input +12 Vdc Input

Nominal 600 mA 400 mA
Worst Case 700 mA 500 mA
Operating Current
+5 Vdc Input +12 Vdc Input
Nominal 600 mA 900 mA
Worst Case 700 mA 2400 mA
Mechanical and Electrical
Media Industry-compatible 5 1/4 inch

diskette

Media Life (Head Loaded)

Media Life (Insertions)

Tracks Density
Number of Tracks
Motor Start Time

3,000,000 revolutions/track

30,000

48 tracks/inch
40

500 ms

Instantaneous Speed Variation

Rotational Speed

+/-3.0%
300 rpm +/- 1.5% (long term)

Nominal Transfer Rate (MFM)

MTBF (25% Operating)
Read Bit Shift

Seek Time

Head Life

Head Load Time

Head Settling Time
Error Rate

D=4 Unit Specifications

250,000 pulses/second

8,000 POH

+/- 800 ns maximum

6 ms track-to-track maximum

20,000 hours (normal use)

Not Applicable

21 ms maximum (from last step pulse)



Soft Error 1 per 1,030,000,000
bits maximum
(recoverable within

10 retries)
- Hard Error 1 per
¢ 1,000,000,000,000
N— bits maximum-
(nonrecoverable
within 10 retries).
Access Error 1 per 3,000,000
seeks maximum
Temperature (Exclusive of media)
Operating 50 to 122 degrees F
(10 to 44 degrees
C) >
Non-operating  -40 to 140 degrees: E
F (-40 to 60 degrees =
) =5
Relative Humidity (Exclusive of media) tw)
Cl Operating 20 to:80%
(noncondensing)
Non-operating. 5to95%
(noncondensing)
Operating Altitude 7,000 feet above sea level

Operating Vibration 5toS00Hz 11G

Color Display

Size:

Height 297 mm (11.7 in.)
Depth 407 mm (15.6 in.)

(/\ Width 392 mm (15.4 in.) .
N

1 Init Snacificatione NS



Weight:

11.8 kilograms (26 pounds)

Heat Output:

240 BTU/hour
Power Cables:

Length  1.83 meters (6 feet)

Size 22 AWG

- Graphics Printer
Size:
Height 110 mm (4.3 in.)
.Depth 370 mm (14.5 in.)
Width 400 mm (15.7 in.)
‘Weight:

5.9 kilograms (12.9 pounds)

Heat Output:

341 BTU/hour

D=6 Unit Soecifications



()

Power Cable:

Length  1.83 meters (6 feet)
Size 18 AWG
- Signal Cable:

Length

Size

1.83 meters (6 feet)
22 AWG

Electrical:

Minimum 104 Vac
Nominal 120 Vac
Maximum 127 Vac

Internal Modem

Power:

Parameter + 5 Vdc Voltage
Tolerance +/-5%

Ripple 50 mV, P-P
Maximum Current 300 mA
Current Nominal 150 mA

Interface

RS232C

+ 12 Vdc Voltage
+/- 10%

50 mV, P-P

50 mA

25 mA

Unit Specifications D-7

>
<
<
(a7}
3
=
™
=)




Compact Printer

Size:

Height 88.9 mm (3.5 in)
Depth 221 mm (8.7 in)
Width  312.4 mm (12.3 in)
Weight:

2.99 kg (6.6 1b)

Heat Output:

54.6 Btu/hr

Power Cable:

Length 1.89 mm (6 ft)
Size 28 AWG

Signal Cable:

Length 1.89 m (6 ft)
Size 3 by 18 AWG

Electrical:

Voltage 110 Vac 60 Hz

D-8 Unit Specifications



Glossary

- us Microsecond.

adapter. An auxiliary system or
unit used to extend the
operation of another system.

address bus. One or more
conductors used to carry the
binary-coded address from the
microprocessor throughout the
rest of the system.

all points addressable (APA). A
mode in which all points on a
displayable image can be
controlled by the user.

alphanumeric

(A/N). Pertaining to a
character set that contains
letters, digits, and usually other
characters, such as punctuation
marks. Synonymous with
alphameric.

American Standard Code for
Information

Interchange. (ASCII) The
standard code, using a coded
character set consisting of 7-bit
coded characters (8 bits

including parity check), used
for information interchange
among data processing systems,
data communication systems
and associated equipment. The
ASCII set consists of control
characters and graphic
characters.

A/N. Alphanumeric.

analog. (1) pertaining to data
in the form of continuously
variable physical quantities.
(2) Contrast with digital.

AND. A logic operator having
the property thatif Pis a
statement, Q is a statement, R
is a statement,..., then the AND
of P, Q, R,...is true if all
statements are true, false if any
statement is false.

5
=3
@
@
1=
ﬂ
s

APA. All points addressable.
ASCIL. American Standard

Code for Information
Interchange.

Glossarv-1



assembler. A computer
program used to assemble.
Synonymous with assembly
program.

asynchronous

communications. A
communication mode in which
each single byte of data is
synchronized, usually by the
addition of start/stop bits.

BASIC. Beginner’s all-purpose
symbolic instruction code.

basic input/output system
(BIOS). Provides the device
level control of the major I/O
devices in a computer system,
which provides an operational
interface to the system and
relieves the programmer from
concern over hardware device
characteristics.

baud. (1) A unit of signaling
speed equal to the number of
discrete conditions or signal
events per second. For
example, one baud equals
one-half dot cycle per second
in Morse code, one bit per
second in a train of binary
signals, and one 3-bit value per
second in a train of signals each
of which can assume one of
eight different states. (2) In

Glossarv-2

asynchronous transmission, the
unit of modulation rate
corresponding to one unit of
interval per second; that is , if
the duration of the unit interval
is 20 milliseconds, the
modulation rate is 50 baud.

BCC. Block-check character.

beginner’s all-purpose symbolic
instruction. code (BASIC) A
programming language with a
small repertoire of commands
and a simple syntax, primarily
designed for numerical
application.

binary. (1) Pertaining to a
selection, choice, or condition
that has two possible values or
states. (2) Pertaining to a fixed
radix numeration system having
a radix of two.

binary digit. (1) In binary
notation, either of the
characters O or 1. (2)
Synonymous with bit. binary
notation: Any notation that
uses two different characters,
usually the binary digits 0 and
1.

BIOS. Basic input/output
system.

—



()

bit. In binary notation, either
of the characters 0 or 1.

bits per second (bps). A unit of
measurement representing the

. number of discrete binary digits

which can be transmitted by a
device in one second.

block-check character

(BCC). In cyclic redundancy
checking, a character that is
transmitted by the sender after
each message block and is
compared with a block-check
character computed by the
receiver to determine if the
transmission was successful.

- Boolean operation. (1) Any

operation in which each of the
operands and the result take
one of two values. (2) An
operation that follows the rules
of Boolean algebra.

bootstrap. A technique or
device designed to bring itself
into a desired state by means of
its own action; that is, a
machine routine whose first
few instructions are sufficient
to bring the rest of itself into
the computer from an input
device.

bps. Bits per second.

buffer. (1) An area of storage
that is temporarily reserved for
use in performing an
input/output operation, into
which data is read or from
which data is written.
Synonymous with I/O area.
(2) A portion of storage for
temporarily holding input or
output data.

bus. One or more conductors
used for transmitting signals or
power.

byte. (1) A binary character
operated upon as a unit and
usually shorter than a computer
word. (2) The representation of
a character.

CAS. Column address strobe.

cathode ray tube (CRT). A
vacuum tube display in which a
beam of electrons can be
controlled to form
alphanumeric characters or
symbols on a luminescent

=
Q

&

&

0

-
]

- screen, for example by use of a

dot matrix.

cathode ray tube display (CRT
display). (1) A device that
presents data in visual form by
means of controlled electron

Glossarv-=3



beams. (2) The data display
produced by the device as in

1).

CCITT. Comite Consultatif
International Telegrafique et
Telephonique.

central processing unit

(CPU). A functional unit that
consists of one or more
processors and all or part of
internal storage.

channel. A path along which
signals can be sent; for
example, data channel or I/O
channel.

characters per second (cps). A
standard unit of measurement
for printer output.

code. (1) A set of unambiguous

rules specifying the manner in
which data may be represented
in a discrete form.
Synonymous with coding
scheme. (2) A set of items,
such as abbreviations,
representing the members of

another set. (3) Loosely, one or

more computer programs, or
part of a computer program.
(4) To represent data or a

Glossarv-4

computer program in a
symbolic form that can be
accepted by a data processor.

column address strobe(CAS). A
signal that latches the column
addresses in a memory chip.

Comite Consultatif
International. Telegrafique et
Teleponique (CCITT)
Consultative Committee on
International Telegraphy and
Telephone.

computer. A functional unit
that can perform substantial
computation, including
numerous arithmetic
operations, or logic operations,
without intervention by a
human operator during the run.

configuration. (1) The
arrangement of a computer
system or network as defined
by the nature, number, and the
chief characteristics of its
functional units. More
specifically, the term
configuration may refer to a
hardware configuration or a
software configuration. (2) The
devices and programs that
make up a system, subsystem,
or network.



conjunction. (1) The Boolean
operation whose result has the
Boolean value 1 if, and only if,
each operand has the Boolean
_value 1. (2) Synonymous with
CAND operation.

contiguous. (1) Touching or
joining at the edge or
boundary. (2) Adjacent.
CPS. Characters per second.

CPU. Central processing unit.

CRC. Cyclic redundancy
check.

CRT display. Cathode ray tube
“display.

()

CTS. Clear to send.
-Associated with modem
control.

cyclic redundancy check
(CRCQ). (1) A redundancy
check in which the check key is

generated by a cyclic algorithm.

(2) A system of error checking
performed at both the sending
and receiving station after a
‘block-check character has been
accumulated.

cylinder. (1) The set of all
tracks with the same nominal

-or might be assigned.

relative power. The number of

distance from the axis about
which the disk rotates. (2) The
tracks of a disk storage device
that can be accessed without
repositioning the access
mechanism.

-daisy-chained cable. A type of

cable that has two or more
connectors attached in series.

-data. (1) A representation of

facts, concepts, or instructions
in a formalized manner suitable
for communication,
interpretation, or processing by
humans or automatic means.
(2) Any representations, such
as characters or analog
quantities, to which meaning is,

decibel (dB). (1) A unit that
expresses the ratio of two
power levels on a logarithmic
scale. (2) A unit for measuring

decibels is ten times the
logarithm (base 10) of the ratio
of the measured power levels;
if the measured levels are
voltages (across the same or
equal resistance), the number
of decibels is.20 times the log
of the ratio.

decoupling capacitor. A
capacitor that provides a

Glossarv-5



low-impedance path to ground
to prevent common coupling
between states of a circuit.

Deutsche Industrie Norm
(DIN). (1) German Industrial
Norm. (2) The committee that
sets German dimension
standards.

digit. (1) A graphic character
that represents an integer, for
example, one of the characters
0t09. (2) A symbol that
represents one of the
non-negative integers smaller
than the radix. For example, in
decimal notation, a digit is one
of the characters from 0 to 9.

digital. (1) Pertaining to data in
the form of digits. (2) Contrast
with analog,

DIN. Deutsche Industrie
Norm.

DIN Connector. One of the
connectors specified by the
DIN standardization
committee.

DIP. Dual in-line package.

direct memory access
(DMA). A method of

transferring data between main -

storage and 1/0 devices that
does not require processor

intervention,

disk. Loosely, a magnetic disk
unit.

diskette. A thin, flexible
magnetic disk and a semi-rigid
protective. jacket, in which the
disk is permanently enclosed.
Synonymous with flexible disk.

DMA. Direct memory access.

DSR. Data set ready.
Associated with modem
control.

DTR. Data terminal ready.
Associated with modem
control.

dual in-line package (DIP). A
widely used container for an
integrated circuit. DIPs are
pins usually in two parallel
rows. These pins are spaced
1/10 inch apart and come in
different configurations ranging
from 14-pin to 40-pin
configurations.



EBCDIC. Extended
binary-coded decimal
interchange code.

ECC. Error checking and
correction.

edge connector. A terminal
block with a number of
contacts attached to the edge
of a printed circuit board to
facilitate plugging into a
foundation circuit.

EIA. Electronic Industries
Association.

EIA/CCITT. Electronic

* Industries

Association/ Consultative
Committee on International
Telegraphy and Telephone.

end-of-text character

(ETX). A transmission control

character used to terminate
text.

end-of -transmission character

(EOT). A transmission control

character used to indicate the
conclusion of a transmission;
which may have included one
or more texts and any
assoceated message headings.

EOT. end-of-transmission

‘character.

EPROM. Erasable
programmable read-only
memory

erasable programmable

read-only. memory (EPROM)

A storage device whose
contents can be erased by
ultraviolet means and new
contents stored by electrical

means. EPROM information is

not destroyed when power is
removed.

error checking and correction
(ECC). The detection and
correction of all single-bit,
double-bit, and some
multiple-bit errors.

ETX. End-of-text character.

extended binary-coded decimal
interchange code. (EBCDIC)
A set of 256 characters, each
represented by eight bits.

flexible disk. Synonym for
diskette.

o
=
j 72}
@
]
—y
-




firmware. Memory chips with
integrated programs already
incorporated on the chip.

gate. (1) A device or circuit
that has no output until it is
triggered into operation by one
or more enable signals, or until
an input signal exceeds a
predetermined threshold
amplitude. (2) A signal that
triggers the passage of other
signals through a circuit.

_graphic. A symbol produced by
a process such as handwriting,
- drawing, or printing.

hertz (Hz). A unit of frequency
-equal to one cycle per second.

hex. Abbreviation for
hexadecimal.

hexadecimal (Hex). Pertaining
to a selection, choice, or
condition that has 16 possible
values or states. These values
or states usually contain 10
digits and 6 letters, A through
F/ Hexadecimal digits are
equivalent to a power of 16.

high-order position. The

leftmost position in a string of
characters.

Glossary-8

Hz. Hertz.

interface. A device that alters
or converts actual electrical
signals. between distinct
devices, programs, or systems.

k. . An abbreviation for the
prefix kilo;that is, 1,000

-decimal notation.

K. When referring to storage
capacity, 2 to the tenth power;
1,024 in decimal notation.

KB (Kilobyte). 1,024 bytes.

k byte. 1,024 bytes.

-kHz. A wunit of frequency equal

to 1,000 hertz.

‘kilo(k). One thousand.

latch. (1) A feedback loop in
symmetrical digital circuits
used to maintain a state. (2) A
simple logic-circuit storage
element comprising two gates
as a unit.

LED. Light-emitting diode.



light-emitting diode (LED). A
semi-conductor chip that gives
off visible or infrared light
when activated.

Jow-order position. The

N\
C’ rightmost position in a string of

characters.

m. (1) Milli; one thousand or
thousandth part. (2) Meter.

M (Mega). 1,000,000 in
decimal notation. When
referring to storage capacity, 2
to the twentieth power;
1,048,576 in decimal notation.

“mA. Milliampere.

machine language. (1) A
language that is used directly
by a machine. (2) Another
term for computer instruction
code.

main storage. A storage device
in which the access time is
effectively independent of the
location of the data.

MB. Megabyte, 1,048,576

- bytes.

mega (M). 10 to the sixth
power, 1,000,000 in decimal
notation. When referring to
storage capacity, 2 to the
twentieth power. 1,048,576 in
decimal notation.

megabyte (MB). 1,048,576
bytes.

megahertz (MHz). A unit of
measure of frequency. One
megahertz equals 1,000,000
hertz.

MFM. Modified frequency
modulation.

MHz. Megahertz.

microprocessor. An integrated
circuit that accepts coded
instructions for execution; the
instructions may be entered,
integrated, or stored internally.

microsecond. (us) One-mil-
lionth of a second.

milli(m). One thousand or one
thousandth.

milliampere(mA). One
thousandth of an ampere.

millisecond(ms). One
thousandth of a second.

Glossary-9



mnemonic. A symbol chosen to
assist the human memory; for
example, an abbreviation such
as “mpy”’ for “multiply.”

mode. (1) A method of
operation; for example, the
binary mode, the interpretive
mode, the alphanumeric mode.
(2) The most frequent value in
the statistical sense.

modem
(Modulator~Demodulator). A
device that converts serial (bit
by bit) digital signals from a
business machine (or data
terminal equipment) to analog
signals which are suitable for
transmission in a telephone
network. The inverse function
is also performed by the
modem on reception of analog
signals.

modified frequency modulation
(MFM). The process of
varying the amplitude and
frequency of the “write”
signal. MFM pertains to the
number of bytes of storage that
can be stored on the recording
media. The number of bytes is
twice the number contained in
the same unit area of recording
media at single density.

Glossarv=10

modulo check. A calculation
performed on values entered
into a system. This calculation
is designed to detect errors.

monitor. (1) A device that
observes and verifies the
operation of a data processing
system and indicates any
specific departure from the
norm. (2) A television type
display, such as the IBM
Monochrome Display.

(3) Software or hardware that
observes, supervises, controls,
or verifies the operations of a
system.

ms. Millisecond; one
thousandth of a second.

multiplexer. A device capable
of distributing the events of an
interleaved sequence to the
respective activities.

NAND. A logic operator
having the property that if P is
a statement, Q is a statement,
R is a statement, ... , then the
NAND of P,Q,R,...is true if at
least one statement is false,
false if all statements are true.

nanosecond. (ns) One-billionth —~

of a second.



nonconjunction. (1) The dyadic
Boolean operation the result of
which has the Boolean value 0
if, and only if, each operand

\ has the Boolean value 1.
§
‘non-return-to-zero inverted
(NRZI). A transmission
encoding method in which the
data terminal equipment
changes the signal to the
opposite state to send a binary
0 and leaves it in the same state
to send a binary 1.

NOR. A logic operator having
the property that if P is a
statement, Q is a statement, R
is a statement, ...,then the NOR
“of P,Q,R,...is true if all
statements are false, false if at
least one statement is true.

NOT. A logical operator
having the property that if P is
a statement, then the NOT of P
is true if P is false, false if P is
true.

NRZI. Noan-return-to-zero

inverted.

ns. Nanosecond; one-billionth

C‘\ of a second.

operating system. Software that
controls the execution of
programs; an operating system
may provide services such as
resource allocation, scheduling,
input/output control, and data
management.

OR. (1) A logic operator
having the property that if P is
a statement, Q is a statement,
R is a statement, ...,then the
OR of P,Q,R,...is true if at least

- one statement is true, false if all

statements are false.

output. Pertaining to a device,
process, or channel involved in
an output process, or to the
data or states involved in an
output process.

output process. (1) The process
that consists of the delivery of
data from a data processing
system, or from any part of it.
(2) The return of information
from a data processing system
to an end user, including the
translation of data from a
machine language to a language
that the end user can
understand.

K1esso|o)

overcurrent. A current of
higher than specified strength.



overvoltage. A voltage of
higher than specified value.

parallel. (1) Pertaining to the
concurrent or simultaneous
operation of two or more
devices, or to the concurrent
performance of two or more
activities. (2) Pertaining to the
concurrent or simultaneous
occurrence of two or more
related activities in multiple
devices or channels.

(3) Pertaining to the
simultaneity of two or more
processes. (4) Pertaining to the
simultaneous processing of the
individual parts of a whole,
such as the bits of a character
and the characters of a word,
using separate facilities for the
various parts. (5) Contrast with
serial.

PEL. Picture element.

personal computer. A small
home or business computer
that has a processor and
keyboard and that can be
connected to a television or
some other monitor. An
optional printer is usually
available.

picture element (PEL). (1) The
smallest displayable unit on a
display. (2) Synonymous with
pixel, PEL.

pinout. A diagram of
functioning pins on a pinboard.

pixel. Picture element.

polling. (1) Interrogation of
devices for purposes such as to
avoid contention, to determine
operational status, or to
determine readiness to send or
receive data. (2) The process
whereby stations are invited,
one at a time, to transmit.

port. An access point for data
entry or exit.

printed circuit board. A piece
of material, usually fiberglass,
that contains a layer of
conductive material, usually
metal. Miniature electronic
components on the fiberglass
transmit electronic signals
through the board by way of
the metal layers.

program. (1) A series of actions
designed to achieve a certain
result. (2) A series of
instructions telling the
computer how to handle a



problem or task. (3) To design,
write, and test computer
programs.

____programable read-only memory
(PROM). Non-erasable
programable memory. PROM
information is not destroyed
when power is removed.

programming language. (1) An
artificial language established
for expressing computer
programs. (2) A set of
characters and rules, with
meanings assigned prior to their
use, for writing computer
programs.

f\-, PROM. Programmable
“—"read-only memory.

propagation delay. The time
necessary for a signal to travel
from one point on a circuit to
another.

radix. (1) In a radix numeration
system, the positive integer by
which the weight of the digit
place is multiplied to obtain the -
weight of the. digit place with
the next higher weight; for
example, in the decimal

C

numeration system, the radix of
each digit place is 1.0.
(2) Another term for base. -

radix numeration system. A
positional representation
system in which the ratio of the
weight of any one digit place to
the weight of the digit place
with the next lower weight is a
positive integer. The
permissible values of the
character in any digit place
range from zero to one less
than the radix of the digit
place.

RAS. Row address strobe.

RGBI. Red-green-blue-intensity.

read-only memory (ROM).- A
storage device whose contents
cannot be modified, except by
a particular user; or when
operating under particular
conditions; for example, a
storage device in which writing
is prevented by a lockout.

o
=3
&P
173
b
-
>

[3

read/write memory. A storage
device whose contents can be
modified.

red-green-blue-intensity (RGBI).
The description of a direct-drive

Qlossarv=-13



color monitor which accepts
red, green, blue, and intensity
signal inputs.

register. (1) A storage device,
having a specified storage
capacity such as a bit, a byte,
or a computer word, and
usually intended for a special
purpose. (2) On a calculator, a
storage device in which specific
data is stored.

RF modulator. The device used
to convert the composite video
signal to the antenna level input
of a home TV.

ROM. Read-only memory.

ROMY/BIOS. The basic
input/output system resident in
- 'ROM, which provides the -
device level control of the
major I/O devices in the
computer system.

- row address strobe (RAS). A
signal that latches the row
addresses in a memory chip.

RS-232C. The standards set
by the EIA for communications
between computers and
external equipment.

RTS. Request to send.
Associated with modem
control.

run. A single continuous
performance of a computer
program or routine.

scan line. The use of a cathode
beam to test the cathode ray
tube of a display used with a
personal computer.

schematic. The description,

-usually in diagram form, of the

logical and physical structure of
an entire data base according to
a conceptual model.

sector. That part of a track or
band on a magnetic drum, a
magnetic disk, or a disk pack
that can be accessed by the
magnetic heads in the course of

- a predetermined rotational

displacement of the particular
device.

- .serdes. Serializer/deserializer.

serial. (1) Pertaining to the
sequential performance of two
or more activities in a single
device. In English, the
modifiers serial and parallel
usually refer to devices, as
opposed to sequential and

—

—

—



consecutive, which refer to
processes. (2) Pertaining to the
sequential or consecutive
occurrence of two or more
related activities in a single
device or channel.

(3) Pertaining to the sequential

- processing of the individual

-parts of a whole, such as the

. bits of a character or the

--characters of a word, using the

same facilities for successive

%2 parts. (4)Contrast with

- parallel. .

. _sink. "A device or circuit into
.. which current drains.

()

- software. (1) Computer
. programs, procedures, rules,

and pessible associated.
documentation concerned with
the operation of a data
processing system. (2) Contrast:
with hardware.

source. The origin of a signal
or electrical energy.

source circuit. (1) Generator
circuit. (2) Control with sink.

SS. Start-stop transmission.

start bit. Synonym for start
signal.

‘start-of-text character

(STX). A transmission control
character that precedes a test
and may be used to terminate
the message heading.

start signal. (1) A signal to a
receiving mechanism to get
ready to receive data or
perform a function. (2)In a.
start-stop system, a signal
preceding a character or block
that prepares the receiving
device for the reception of the
code elements. Synonymous
with start bit.

start-stop (SS) -

transmission. (1) A synchronous
transmission such that a group
of signals representing a
character is preceded by a start
signal and followed by a stop
signal. (2) Asynchronous
transmission in which a group.
of bits is preceded by a start bit
that prepares the receiving
mechanism for the reception
and registration of a character
and is followed by at least one
stop bit that enables the
receiving mechanism for the
reception and registration of a
character and is followed by at
least one stop bit that enables
the receiving mechanism to

Q
=}
172}
wn
15
oy |
]

. come to an idle condition

pending the reception of the
next character.

Olnccoarva18



stop bit. Synonym for stop
signal.

stop signal. (1) A signalto a
receiving mechanism to wait
for the next signal. (2)Ina
start-stop system, a signal
following a character or block
that prepares the receiving
device for the reception of a
subsequent character or block.
Synonymous with stop bit.

strobe. (1) An instrument used

to determine the exact speed of
circular or cyclic movement.

(2) A flashing signal displaying
an exact event.

STX. Start-of-text character.

synchronous transmission. Data
transmission in which the
sending and receiving devices
are operating continuously at
the same frequency and are
maintained, by means of
correction, in a desired phase
relationship.

text. In ASCII and data

communication, a sequence of
characters treated as an entity
if preceded and terminated by

Glossarv-16

one STX and one ETX
transmission control,
respectively.

track. The path or one of

the set of paths, parallel to the I
reference edge on a data
medium, associated with a
single reading or writing
component as the data medium
moves past the component. -
(2) The portion of a moving |
data medium such as a drum, !
tape, or disk, that is accessible !
to a given reading head

position.

transistor-transistor logic
(TTL). A circuit in which the
multiple-diode cluster of the
diode-transistor logic circuit
has been replaced by a
multiple-emitter transistor.

TTL. Transistor-transistor
logic.

TX Data. Transmit data.

Associated with modem [
control. External connections :
of the RS-232C asynchronous :
communications adapter !
interface. ;

video. Computer data or
displayed on a cathode ray tube
monitor or display.



write precompensation. The
varying of the timing of the
head current from the outer

tracks to the inner tracks of the
diskette to keep a constant

write signal.

fVaccar 177

B
o
@
»
]
-
-




Notes:

accarve1R



Bibliography

Y
&/.-" Intel Corporation. The 8086

Family User’s Manual This
manual introduces the 8086
family of microcomputing
components and serves as a
reference in system design and
implementation.

Intel Corporation.
8086/8087/8088 Macro
Assembly Reference Manual for

8088/8085 Based Development

System This manual describes
the 8086/8087/8088 Macro
Assembly Language, and is
intended for use by persons
who are familiar with assenbly
language.

Intel Corporation. Component
Data Catalog This book
describes Intel components and
their technecal specifications.

Motorola, Inc. The Complete
Microcomputer Data Library.
This book describes Motorola
components and their technical
specifications.

National Semiconductor
Corporation. INS 8250
Asynchronous Communications
Element. This book documents
Physical and operating
characteristics of the INS 8250.

Bibliography-1

=
=
=
R
-
e
=)
=2
e




Notes:

Bibliography-2



Index

CA
+AQ0 3-7, 3-72
+AQ thru A3 3-20 7
AQ thru A07, memory signal 3-7
A0 thru A19, I/0 signal 2-23
A0 thru Al4, program cartridge signal 2-114
Al 3-72
A2 3-72
A9 3-21,3-72
-ACKNLG, graphics printer signal 3-113
adapter
See diskette drive adapter
adapter ROM module addresses, valid 5-18
adapter cable
for serial devices 3-89
connector specifications 3-90
Q_/ signal cable 3-89
for cassette
connector specifications 3-91
for IBM color display
connector specifications 3-93
addresses
FDC (data register) 3-17
FDC (status register) 3-17
parallel printer attachments 5-13
ROM modules, valid 5-18
RS232-C attachments 5-13
advanced BASIC, system ROM 4-13
ALE, 1/O signal 2-24
ANSWER, modem command 3-44
ASCII, extended 5-21
~ -ATRCDIN 39
C ATR LATCH 3-7

Index-1



attachable joystick
block diagram 3-78
connector specifications 3-79
electrical centering control 3-77
free floating mode 3-77
spring return mode 3-77
x-axis 3-77
y-axis 3-77
AUDIO IN, I/O signal 2-28
AUTO FEED XT 3-114
available options 1-3

B

-BASE 1 ROM IN CARTRIDGE, program cartridge signal 2-115
-BASE 2 ROM IN CARTRIDGE, program cartridge signal 2-115
BASIC, cartridge 4-13
BASIC screen editor special functions 541
BASIC workspace variables 5-16
BAUDCLK 3-73
beeper
block diagram 2-85
input sources 2-85
BEL, graphics printer control code 3-117
BIOS
example, interrupt usage 5-5
interrupt hex 10 4-17
interrupt hex 14 4-18
interrupt hex 16 4-15
interrupt hex 1D 4-17
memory map 5-17
power-on initialization stack-area memory location 5-13
vectors list, interrupt  5-7
vectors with special meanings
interrupt hex 1B - keyboard break address 5-8
interrupt hex 1C - timer tick 5-8
interrupt hex 1D - video parameters 5-9
interrupt hex 1E - diskette parameters 59
interrupt hex 1F - graphics character pointers (2nd 128) 5-9
interrupt hex 44 - graphics character pointers (1st 128) 5-9

Index-2



interrupt hex 48 - cordless keyboard translation 5-10
interrupt hex 49 - non-keyboard scan-code translation-table
address 5-10
BIOS cassette logic
cassette read 549
o cassette write 548
\_/ tape block components 5-50
tape block format 5-50
timing chart 549
data record architecture 5-50
error detection 5-51
software algorithms - interrupt hex 15 5-47
cassette status in AH 548
request types in register AH 547
block diagrams
attachable joystick 3-78
beeper 2-85
cassette motor control 2-41
compact printer 3-134
diskette drive adapter 3-14
infra-red receiver 2-98
keyboard interface 2-106
-~~~  memory and display expansion 3-6
\__  modem 3-36
parallel printer attachment 3-97
read hardware 2-40
serial port (RS232) 2-127
sound subsystem 2-89
system 1-6
system board 29
video color/ graphics subsystem 2-46
write hardware 240
bootstrap stack-area memory location 5-13
break, cordless keyboard 5-34
BREAK, modem command 3-44
buffer, cordless keyboard 5-36
bus cycle time 2-13
BUSY, graphics printer signal 3-113

Index-3



C

cable, adapter
See adapter cable
cable, keyboard
See keyboard cord -
cable, power
See power cable
cable, signal
See signal cable :
-CABLE CONNECT 2-101, 3-87
CAN, compact printer control code 3-141
CAN, graphics printer control code 3-118
-CARD INSTALL 3-73
-CARD SLCTD, I/O signal 2-28
cartridge BASIC 4-13
cartridge, program
See program cartridge
CARTRIDGE RESET TAB, program cartridge signal 2-116
+CAS 3-8
cassette BASIC, system ROM 4-12
cassette interface
block diagram, cassette motor control 2-41 -
block diagram, read hardware - 240
block diagram, write hardware 2-40
connector specifications 241
motor control 241
output to audio subsystem 2-39
cassette logic, BIOS
See BIOS cassette logic
character codes, cordless keyboard 5-27
character set, compact printer 3-148, 3-149 -
character set 1 = 3-128
description 3-109
character set 2 3-130
description -3-109
CLK, I/O signal 2-23
clock crystal frequency, system 2-6
color burst signal frequency 2-6
color display
connector specifications 3-83
electrical requirements 3-81
horizontal drive frequency 3-82
operating characteristics 3-82.

4-Index



screen characteristics 3-82
video bandwidth 3-82

color/ graphics

C

TN
(

()

all points addressable graphics (APA) mode
high-resolution 2-color 2-58
high-resolution 4-color 2-59
low-resolution 16-color 2-56
‘medium-resolution 4-color 2-57
medium-resolution 16-color 2-58
modes available 2-56
screen border colors 2-45
storage organization memory map 2-61
alphanumeric (A/N) mode
attribute byte definition 2-55
attributes 2-43
display character format 2-54
block diagram 246

- character size and description 2-43

characters available 2-44
composite connector specifications 2-83
CRT page register 247
CRT/processor page register .
CRT page 0 thru2 2-79
processor page 0 thru2. 2-79 -
video adr mode 0 and'1  2-80
direct drive connector specifications 2-82

- four-color mode palette. 2-50
- light pen connector specifications: 2-75

memory map 2-48
mode selection summary 2-81
sequence for changing modes 2-81

- page register 2-47

programming considerations
6845 CRT controller 2-75
register table 2-76
RF connector specifications 2-83

. ROM character generator 2-44, 2-49

sixteen-color mode. palette 2-52
storage organization
accessing the RAM 247
RAM address 247
summary of available colors 2-53
two-color mode palette - 2-50
video bandwidth 2-49

Index-5




video gate array
address register 2-74
border color register bit functions 2-66
mode control 1 register bit functions 2-64
mode control 2 register bit functions 2-66
attribute byte definition 2-67
mode selection summary 2-81
palette mask register bit functions 2-65
palette registers 2-71
format 2-71
register addresses 2-63
reset register bit functions 2-69
sequence for changing modes 2-81
status register bit functions 2-73
vertical retrace interrupt 2-82
video I/ O devices and addresses
6845 CRT 245, 247, 2-75
register table 2-76
command character, modem 3-40
commonly used functions, cordless keyboard 5-38
compact printer
block diagram 3-134
character set 3-148, 3-149
connector specifications  3-150
control codes 3-140 thru 3-141 thru 3-147
description  3-133
print mode combinations, allowable 3-140
serial interface
description  3-139
timing diagram 3-139
signal cable 3-133
specifications, general 3-135 thru 3-138
compatibility to Personal Computers
black and white monochrome display 4-18
color graphics capability differences 4-15
color modes available only on PCjr 4-16
comparison, PCjr to Personal Computers hardware 4-10
non-DMA operation considerations 4-19
screen buffer differences 4-12
software determination of the computer 4-19
timing dependencies 4-5
unequal configurations 4-7
user available read/write memory 4-12
video hardware address difference 4-16

6-Index



()

()

N—

complex sound generator
See SN76496N
See sound subsystem
connector for television
channel selector switch  3-85
computer/television selector switch 3-85
connector specifications 3-86
signal cable 3-85
connector locations, system board 2-10
connector specifications
adapter cable for cassette 3-91
adapter cable for color display 3-93
adapter cable for serial devices 3-89
attachable joystick 3-79
audio 2-87
cassette (system board) 2-41
color display 3-83
compact printer 3-150
composite video (system board) 2-83
connector for television 3-85
direct drive (system board) 2-82
diskette drive 3-29
diskette drive adapter 3-25
games interface (system board) 2-123
graphics printer 3-115
infra-red receiver (system board) 2-100
I/O expansion 2-22
keyboard cord 3-88
light pen (system board) 2-75
memory and display expansion 3-10
modem 3-75
parallel printer attachment 3-104
power board 2-136
program cartridge 2-117
RF modulator (system board) 2-83
system board 2-10
control codes, compact printer 3-140 thru 3-147
control codes, graphics printer 3-116 thru 3-122
control latch, parallel printer attachment 3-101
controller, floppy disk (FDC) 3-16
cordless keyboard
BASIC screen editor special functions 5-41
battery power 2-102
buffer 5-36

Index-7




-CABLE CONNECT signal 2-101
character codes 5-27
commonly used functions 5-38
data format 2-104
data path 2-102
disabling the infra-red circuits 2-101, 2-103
DOS special functions 5-42
extended codes 5-30
function map, 83-key keyboard to cordless keyboard 5-25
interface block diagram 2-106
layout and keybutton numbering 5-22
parity bit 2-104
phantom-key detection 2-103
scan-codes, matrix 5-23
shift keys combinations, allowable
shift keys priorities 5-33
shift states description 5-31
alt key 5-32
caps lock 5-33
ctrl key 5-32
shift key 5-32
special handling description
break 5-34
enable/disable keyboard click 5-36
function lock 5-35
functions 1 thru 10 5-35
other characteristics 5-36
pause 5-34
phantom-key scan-code (hex 55) 5-36
print screen 5-34
run diagnostics 5-36
screen adjustment 5-35
scroll lock 5-35
system reset 5-34
typematic suppression 5-36
start bit 2-104
stop bit 2-104
transmission timing  2-105
transmitter, infra-red 2-103
80C48, keyboard microprocessor 2-103
COUNT, modem command 4-45
CPUDLY 3-8
CPU LATCH 3-9
CR, compact printer control code 3-141

8-Index



CR, graphics printer control code 3-117
~CS2 thru ~CS7, program cartridge signal 2-115
-CTS, modem 3-71

D

D0 thru D7 3-7, 3-73
DO thru D7, program cartridge signal 2-114
~-DACK 0, I/O signal 2-27
DACK 0 3-21
DATA 1 thru DATA 8, graphics printer signal 3-113
data latch, parallel printer attachment 3-99
DC2, compact printer control code 3-141
DC2, graphics printer control code 3-118
DC4, compact printer control code 3-141
DCA4, graphics printer control code 3-118
DIAL, modem command 3-46
differences, PCjr to Personal Computer
addressing of internal modem 4-18
addressing of serial port 4-18
black and white monochrome display 4-18
color graphics capability differences 4-15
color modes available only on PCjr 4-16
compatibility of hardware 4-10
compatibility of configurations 4-7
non-DMA operation considerations 4-19
screen buffer 4-12
software determination of the computer 4-19
timing dependencies -4-5
user available read/ write memory 4-12
video hardware address difference 4-17
~-DIRECTION 3-23
~-DISABLE CASO 3-8
~DISABLE EDATA 3-7
diskette 3-31
~-DISKETTE CARD INSTALLED 3-20
~-DISKETTE CS 3-21
diskette drive differences, PCjr to Personal Computer 4-13
diskette drive
connector specifications 3-29
electrical requirements  3-28
load lever 3-27

Index-9



media cooling fan 3-28
sensors 3-28
diskette drive adapter
additional comments 3-19
block diagram 3-14
connector specifications  3-25
digital output register (DOR) 3-15
diskette drive constants 3-19
diskette drive interface signals 3-22
diskette format 3-18
electrical requirements  3-24
floppy disk controller (FDC) 3-16
I/0 channel interface signals 3-19
location 2-10
signal cable 3-13
watchdog timer (WDT) 3-16
0 thru D7, IO signal 2-24
DOS special functions 5-42
-DRIVE SELECT 3-22
DRQO 3-21
DRQ 0, I/O signal 2-27
-DSR modem 3-72
DTMF (dial-tone modulated-frequency) 3-35
-DTR, modem 3-71

E

electrical centering control, joystick 3-77
electrical requirements
color display 3-82
compact printer 3-137
diskette drive  3-28
diskette drive adapter 3-24
graphics printer  3-109
enable/disable keyboard click 5-36
ESC control codes, compact printer 3-141 thru 3-146
ESC control codes, graphics printer 3-118 thru 3-127
extended ASCII 5-21
extended codes, cordless keyboard 5-31

10-Index



()

F

FF, compact printer control code 3-146
FF, graphics printer control code 3-117
FDC (floppy disk controller)

See floppy disk controller
floppy disk  3-31
floppy disk controller (FDC) 3-16

commands 3-18

functions not supported 3-18

I/O addresses 3-17

power-up parameters settings 3-17
floppy disk drive (FDD) 3-16
FORMAT, modem command 3-47
function lock, cordless keyboard 5-35
functions 1 thru 10, cordless keyboard 5-35

G

games interface
block diagram 2-120
connector specifications 2-123
digital input format 2-121
joystick input data 2-119
paddle input data 2-122
pushbutton inputs 2-122
resistance range 2-121
resistive input format 2-121
resistive to digital input equation 2-119

GATE 39

graphics
See color/graphics

graphics printer
characterset I 3-128

description  3-109
character set 2 3-130
description  3-109

control codes 3-116 thru 3-127
DIP switch settings 3-111
electrical requirements  3-109
environmental conditions 3-109

Index-11



interface timing diagram 3-113
signal cable 3-107

signal pin assignments 3-115
signals, interface 3-113 thru 3-114
specifications  3-107

H

HANGUP, modem command 3-48

hardware differences, PCjr to Personal Computer
-HEAD SELECT 1 3-23

HLDA, I/O signal 2-27

‘horizontal drive frequency, color display 3-82
-HRQ, I/O signal 2-26

HT, compact printer control code 3-146

HT, graphics printer control code 3-117

IBM Connector for Television
See connector for television
IBM PC Compact Printer
-See compact printer
IBM PCjr Adapter Cable for Cassette
See adapter cable for cassette
IBM PCjr Adapter Cable for IBM Color Display
See adapter cable for IBM color display
IBM PCjr Adapter Cable for Serial Devices
See adapter cable for serial devices
IBM PCjr Attachable Joystick
See attachable joystick
- IBM PGjr Diskette Drive
- See diskette drive
IBM PCjr Diskette Drive Adapter
See diskette drive adapter
IBM PCjr Internal Modem
‘See internal modem
. IBM PC;jr Parallel Printer Attachment
-See parallel printer attachment

12-Index

4-10



C

IBM PCjr 64KB Memory and Display Expansion
See. memory and display expansion
1BM Personal Computer Graphics Printer
See graphics printer.
-INDEX 3-24
infra-red link
block diagram, receiver 2-98
connector specifications 2-100
functional description” 2-97
programming considerations
parity errors  2-99
phase errors  2-99
receiver 2-97
transmitter 2-103
test frequency 2-98

" INITIALIZE, modem command 348

10/-M, 1/O signal 2-26
1/0 channel
expansion connector specifications 2-22
I/O read/write cycle times 2-21
map 2-29
- memory read/ write cycle times 2-21
port A0 input description 2-36.
port AQ. output description -2-35
signals 2-23 thru 2-28
diskette drive adapter 3-19
memory and display expansion 3-7
modem 3-70, 3-73
integrated circuits
See 6845 CRT controller
See 80C48
See 8088
See INS8250A
See MCM6665AL15
-See MK38000
See TMM23256P
-See TMS4164-15
- See 8253-5 programmable timer/ counter
See 8255A
See 8259A
See 8284 A clock chip
See SN76496N

Index-13




internal modem

address, memory location of 5-13
asynchronous communications element 3-68
block diagram 3-36
command

arguments 341

command character 340

delimiter 341

format 3-40

format guidelines 340
commands 3-44 thru 3-58
connector specifications  3-75
dialing 3-60

status  3-60
default state 3-63
editing/changing commands 3-59
location 2-10
loss of carrier 3-60
modes of operation  3-68
opposite commands 3-60
programming examples 3-63
signals 3-70
smart 103 modem  3-37
telephone company interface 3-74

transmitter/ receiver data format 3-70 —
8250A 3-68 '
description of registers 3-69
-IOR 3-73

INS8250A 3-68 ﬁ
INS8250A -OUT 1, modem 3-71 !
INT, graphics printer signal 3-114 i
interrupt controller, programmable ;

See 8259A !
interrupt setup example 2-16 :
interrupt usage example 5-5
interrupt vector list 5-7
interrupts, hardware .

IRQ3 2-129

+IRQ4 3-70

+IRQ6 3-20

+IRQ7 3-99

priority 2-15 —

used by system board 2-6

used by I/O channel 2-6

14-Index



()

interrupts reserved for BIOS, DOS, and BASIC 5-14
-IOR, I/O signal 2-25

-IOW 3-73

-IOW, 1/Osignal 2-25

IRQI, I/O signal 2-25

IRQ2, I/O signal 2-25

IRQ7,1/0O signal 2-25

J

joystick, attachable
See attachable joystick

K

keyboard

See cordless keyboard »
keyboard click, enable/disable 5-36
keyboard cord

-CABLE CONNECT 2-101, 3-81

connector specifications 3-88
keyboard microprocessor

See 80C48

L

-LCG 39
LF, compact printer control code 3-146
LF, graphics printer control code 3-117
light pen 2-74
line spacing, graphics printer 3-108
load lever, diskette drive 3-27
location

DIP switches, graphics printer

diskette drive adapter 2-10

internal modem 2-10

memory and display expansion 2-10, 3-5
LONG RESPONSE, modem command 3-49

Index-15




M

maps
See BIOS, memory map
See cordless keyboard, function map
See memory maps
See scan-code map
See system memory map
matrix scan-codes, cordless keyboard 5-23
MCM6665AL1S 2-17, 3-5
MD0 thru MD7 3-7
media cooling fan 3-28
MEM A0 thru A7 3-7
memory and display expansion
block diagram 3-6
configuration
requirements  3-5
connector specifications  3-10
EVEN memory space 3-5
location 2-10
modules used, type 3-5
ODD memory space 3-5
signals 3-7
memory maps
BIOS 5-17
BIOS, BASIC, and DOS reserved interrupts  5-14
graphics storage 2-61
memory address map 2-20
reserved memory locations 5-15
system, memory allocated for 2-20
video color/graphics subsystem 2-46
memory, 64K RAM
See memory and display expansion
See RAM
memory refresh  2-17
memory requirements 4-12
memory, user available 4-12
-MEMR, I/0 signal 2-25
~-MEMW, 1/0 signal 2-26
microprocessor, keyboard
See 80C48
Microprocessor, system
See 8088
minimum mode, 8088 2-6

16-Index



MK38000 2-19
-MODEM CS/DISKETTE CS 3-72
MODEM, modem command 3-50
modem

See internal modem
+MODEM INTR 3-73
modified frequency modulation MFM) 3-13
‘modules

See integrated circuits
motor control, cassette 2-39
-MOTOR ENABLE 3-22

N

NUL, compact printer control code 3-147

NEC fPDP765 3-13

NEW, modem command 3-50

NMI (Non-Maskable Interrupt) 2-7

Noise Generator 2-93

Non-Keyboard Scan-code Architecture 542 -
—  scan-code map 5-45
&/' translate table format 5-44

translate table default values 5-44

0

ORIGINATE, modem command 3-50
-OUT 2, modem 3-71
options, available 1-3

P

/- PAO thru PA7 2-31
\_ pause, cordless keyboard 5-34
parallel printer attachment
address, memory location of 5-13
block diagram 3-97

Index-17




connector specifications 3-104
control latch
reading from 3-101
writing to  3-101
data latch
format 3-100
reading from 3-99
writing to  3-99
printer control 3-101
+IRQ7 logic diagram 3-99
printer status signals descriptions 3-101
PB0 thru PB7 2-31 thru 2-32
PCO0 thru PC7 2-33 thru 2-34
PE, graphics printer signal 3-114
phantom-key detection 2-103
phantom-key scan-code (hex 55), cordless keyboard 5-36
PICKUP, modem command 3-51
port AQ input description 2-36
port A0 output description 2-35
power-on initialization stack-area memory location 5-13
power cable
color diaplay 3-81
power supply
connector specifications 2-138
power available 2-135
power board
over-voltage over-current protection 2-137
Vdc outputs 2-136
transformer 2-134
over-voltage over-current protection 2-137
Vacinput 2-135
Vac output 2-135
pulse dialing 3-35
print method, graphics printer 3-107
print modes, graphics printer 3-116
print screen, cordless keyboard 5-34
print sizes, graphics printer 3-108
print speed, graphics printer 3-107
printer
See compact printer
See graphics printer
printer status 3-101

18-Index



program cartridge
connector specification 2-117
description 2-107
momentary reset land 2-116
ROM chip select table 2-114
ROM locations, cartridge 2-118
C ROM mapping 2-107
signals 2-114
slot description 2-107
storage conventions
initial program loadable 2-108
DOS conventions 2-110
cartridge BASIC 2-111
type ROM modules used 2-107
programmable interrupt controller
See 8259A
programmable timer/counter, 8253-5 2-6

Q

7~ QUERY, modem command 3-52

N\
R

RAM, 64K
address space mapped to  2-17
EVEN memory 2-17
memory refresh 2-17
ODD memory 2-17
parity 2-17
read/ write cycle times 2-21
speed 2-17
type modules used 2-17
6845 CRT controller 2-17
+RAS 3-7
-READ DATA 3-24
READY, I/O signal 2-24
reserved interrupts, BIOS, DOS , and BASIC 5-14
reserved memory locations 5-15

()

Index-19



RESET, 1/O signal 2-23.

-RESET 3-20

-RESET, modem" 3-72

RETRY, modem command - 3-53

-RI, modem 3-71

-RLSD, modem 3-72

ROM subsystem ‘
address space mapped to  2-19 ny
memory map 2-20 :
read/write cycle times 2-21
type modules used 2-19

ROM module code accessed by system 5-18

"ROM module addresses, valid 5-19

-RTS, modem 3-71

run diagnostics, cordless keyboard 5-36

S

scan-code map 5-45
.scan-codes
cordless keyboard matrix -5-23
default - non-keyboard 5-43
screen adjustment, cordless keyboard 5-35
scroll lock, cordless keyboard 5-35
serial port
address, memory location of 5-13
block diagram 2-127
connector specifications 2-134
control signals 2-129
diskette operations conflict 2-125
interface 2-129
interrupt IRQ3 2-129
modes of operation 2-128
1/O decodes 2-128
output signals 2-131
ring indicate 2-130
use of the divisor-latch access-bit 2-128
voltage interchange levels 2-130
8250A -
accessible registers 2-131
features 2-125
initialization program, sample 2-134

20-Index



programmable baud rate generator 2-132
baud rate at 1.7895 MHz 2-132
maximum operating frequency 2-132
output frequency equation . 2-132

SI, compact printer control code 3-147
SI, graphics printer control code 3-118

signal cable
. adapter cable for cassette 3-91

adapter cable for serial devices 3-89
diskette drive 3-13 .
color display 3-81
connector for television 3-85
graphics printer 3-107
SIN, modem 3-71
SLCT, graphics printer signal* 3-114 -
smart 103 modem
See internal modem.
SO, compact printer control code 3-147
SO, graphics printer control code 3-112
sound subsystem ,
block diagram 2-89
complex sound generator (SN76496N) 2-88
‘ -audio tone generator features 2-89
C audio tone generator register address field 2-91 -
audio tone generator frequency 2-91
frequency generation 2-91
audio tone generator attenuator 2-92
audio tone generator noise generator. 2-93
audio tone generator noise feedback control 2-93 -
control registers  2-90
interface 2-89
connector specifications 2-87
mpXx (analog multiplexer) 2-87, 2-94
data transfer 2-95-
output buffer amperage - 2-95
. signal description 2-87
signal destinations 2-87
sound sources 2-88
use of an external speaker - 2-87
~SOUT, modem 3-71
special-functions, cordless keyboard specific 4-14
. special functions, cordless keyboard
BASIC screen editor 5-41
special functions, DOS 542

‘Index-21



SPEED, modem command 3-54
-STEP 3-22
-STROBE, graphics printer signal 3-113
system-accessible ROM-modules 5-18
system block diagram 1-6
system board
block diagram 2-9
clock crystal frequency 2-6
connectors specifications and locations 2-10
interrupts used by system board 2-6
major components list 2-8
RAM, 64K 2-17
size 2-5
subsystems list 2-6
8253-5 programmable timer/counter 2-6
system memory map 5-17
system microprocessor
See 8088
system reset 5-34

T

timers

watchdog timer (WDT) 3-16
timing dependencies, compatibility 4-5
timing diagrams

parallel printer interface 3-113
timing, keyboard transmission 2-105
timing using 1/0O devices 4-5
timing using program execution speed 4-5
TMM23256P 2-19
TMS4164-15 2-17, 3-5
-TRACK (0 3-24
track 00 sensor 3-28
translate table format, non-keyboard scan-code 543
transmitter, infra-red 2-103
TRANSPARENT, modem command 3-55
typematic suppression 5-36

22-Index



U

usage of BIOS 5-5
usage of keyboard 5-21

—

-V

vectors list, interrupt  5-7
vertical refresh, color display 3-82
video bandwidth, color display 3-82
video color/ graphics subsystem
See color/graphics
video gate array
register addresses 2-63
VIDEO MEMR 3-8
VOICE, modem command 3-56
VT, compact printer control code 3-147

W
—

WAIT, modem command 3-57
-WE 39

work space variables, BASIC 5-16
-WRITE DATA 3-23

-WRITE ENABLE 3-23

write precompensation 3-13
-WRITE PROTECT 3-24

write protect sensor 3-28

X

~— X-coordinate 2-121, 3-77
Q— XMIT, modem command 3-57
~ +XRESET, modem 3-72

Index-23




Y

y-coordinate 2-121, 3-77

Y/

ZTEST, modem command 3-58

Numerals

64KB memory and display expansion
See memory and display expansion
6845 CRT 2445, 247, 2-75
register table 2-76
80C48 2-103
8088
addressable range 2-6
clock frequency 2-6, 2-13
clock cycle time 2-13
minimum mode 2-6
NMI interrupt  2-15
operating frequency 2-13

8253-5 programmable timer/counter 2-6, 2-85

cassette data to cassette control 2-39
8255A-5 2-85
audio input 2-85
bit assignments 2-31
cassette data from cassette control 2-39
cassette motor control 2-39
8259A (programmable interrupt controller)
characteristics as set up  2-16
hex types of interrupts issued 2-16
interrupt assignments 2-15
I/O addresses 2-16 ,
priority of interrupts 2-15
setup example 2-16
8284A clock chip 2-13
SN76496N 2-88

24-Index



()

()

()






——
,

~






()

The Personal Computer
Hardware Library

Reader’s Comment Form
TECHNICAL REFERENCE 6322963

Your comments assist us in improving the usefulness of
our publication; they are an important part of the input
used for revisions.

IBM may use and distribute any of the information you
supply in any way it believes appropriate without
incurring any obligation whatever. You may, of course,
continue to use the information you supply.

Please do not use this form for technical questions
regarding the IBM Personal Computer or programs for
the IBM Personal Computer, or for requests for
additional publications; this only delays the response.
Instead, direct your inquiries or request to your
authorized IBM Personal Computer dealer.

Comments:



NO POSTAGE
: NECESSARY
: . IF MAILED

IN THE
UNITED STATES

[BUSINESS REPLY MAIL |

’ | "CLASS PERMIT NQ. 321 BOCA RATON, FLORIDA 33432

POSTAGE WILL BE PAID BY ADDRESSEE

IBM PERSONAL COMPUTER
SALES & SERVICE

P.O. BOX 1328-C

BOCA RATON, FLORIDA 33432

a8y pio4

ajdejs jou op asea|d ade]






International Business Machines Corporation

P.O. Box 1328-W
Boac Raton, Florida 33432

6322963

Printed in United States of America



	1
	2
	3
	4
	5

