=== Personal Computer
= Hardware Reference
Library

BASIC

Second Edition (May 1982)
Version 1.10

Changes are periodically made to the information herein; these
changes will be incorporated in new editions of this
publication.

Products are not stocked at the address below. Requests for
copies of this product and for technical information about the
system should be made to your authorized IBM Personal
Computer Dealer.

A Product Comment Form is provided at the back of this
publication. If this form has been removed, address comment
to: IBM Corp., Personal Computer, P.O. Box 1328-C, Boca Raton,
Florida 33432. IBM may use or distribute any of the information you
supply in any way it believes appropriate without incurring any
obligations whatever.

© Copyright International Business Machines Corporation 1981

Preface

The IBM Personal Computer BASIC interpreter
consists of three upward compatible versions:
Cassette, Disk, and Advanced. This manual is a
reference for all three versions of BASIC release
1.10. We shall use the general term “BASIC” in this
book to refer to any of the versions of BASIC —
Cassette, Disk, or Advanced.

The IBM Personal Computer BASIC Compiler is an
optional software package available from IBM. If
you have the BASIC Compiler, the IBM Personal
Computer Basic Compiler manual is used in conjunction
with this book for reference.

iii

iv

How to Use This Manual

In order to use this manual, you should have some
knowledge of general programming concepts; we
are not trying to teach you how to program in this
manual.

The manual is divided into four chapters plus a
number of appendices.

Chapter 1 is a brief overview of the three
versions of IBM Personal Computer BASIC.

Chapter 2 tells you what you need to know to
start using BASIC on your IBM Personal
Computer. It tells you how to operate your
computer using BASIC.

Chapter 3 covers a vatiety of topics which you
will need to know before you actually start
programming. Much of the information
pertains to data representation when using
BASIC. We discuss filenames here, along with
many of the special input and output features
available in IBM Personal Computer BASIC.

Chapter 4 is the reference section. It contains
the syntax and semantics of every command,
statement, and function in BASIC, ordered
alphabetically.

The appendices contain other useful
information, such as lists of error messages,
ASCII codes, and math functions; and helpful
information on machine language subroutines,
diskette input and output, and
communications. You can also find detailed
information on more advanced subjects for the
more experienced programmer.

We suggest you read through all of chapters2 and 3
to become familiar with BASIC. Then you can refer
to chapter 4 while you are actually programming to
get information you need about each command or
statement that you use.

Syntax Diagrams

Each of the commands, statements, and functions
described in this book has its syntax described
according to the following conventions:

® Words in capital letters are keywords and must
be entered as shown. They may be entered in
any combination of uppercase and lowercase.
BASIC always converts words to uppercase
(unless they are part of a quoted string, remark,
or DATA statement).

® You must supply any items in lowercase italic
letters.

® Items in square brackets ([]) are optional.

® An ellipsis (. . .) indicates an item may be
repeated as many times as you wish.

® Allpunctuation exceptsquare brackets (suchas
commas, parentheses, semicolons, hyphens, or
equal signs) must be included where shown.

Let’s look at an example:
INPUTLI[“prompt”;) variable| variable]...

This says that for an INPUT statement to be valid,
you must first have the keyword INPUT, followed
optionally by a semicolon. Then, if you wish, you
may include a promps within quotation marks. If you
do include the prompt, it must be followed by a
semicolon. At least one variable is required for an
INPUT statement. You may have more than one
variable if you separate them with commas.

More detailed information on each of the
parameters is included with the text accompanying
the diagram. The information for this example is in
Chapter 4, under “INPUT Statement.”

vi

Related Publications

The following manuals contain related information
that you may find useful:

® The IBM Personal Computer Guide to Operations
manual.

® The IBM Personal Computer Disk Operating System
manual.

® The IBM Personal Computer Technical Reference

manual.

Summary of Changes

The following changes have been made in BASIC
release 1.10:

Any list to the screen or printer can be
terminated by pressing Ctrl-Break.

Printers (LPT1:, LPT2:, and LPT3:) may be
opened in random mode. In release 1.00, these
devices were always opened for sequential
output, which would cause BASIC to add a line
feed character after each carriage return
character.

Opening a printer in random mode with a width
of 255 suppresses the line feed after the carriage
return, so that all characters may be sent to the
printer without change. This mode can be used
to support various types of graphics printers.

the OPEN “COM... statement has the
following new options:

RS suppresses RTS (Request To Send)
CS[n] controls CTS (Clear To Send)
DS[n] controls DSR (Data Set Ready)
CD[n] controls CD (Carrier Detect)

LF sends a line feed following each
carriage return

Also, a LEN=number option has been added to
the OPEN “COM... statement to specify the
maximum number of bytes which can be read
from the file buffer when using GET or PUT.
This option is included for compatibility with
the BASIC Compiler.

vii

viii

The STRIG function in Advanced BASIC now
reads four joystick buttons. This is useful if you
have four one-dimensional paddles.

The VARPTRS$ function has been added. This
keeps compatibility with the compiler, which
needs this function for DRAW and PLAY.

CONTENTS

CHAPTER 1. THE VERSIONS OF BASIC... 1-1
The Versions of BASIC 1-3
Cassette BASIC ..ot 1-4
Disk BASICcoiiiiiiiiiiiiiiiiiiien, 1-5
Advanced BASICccoiiiiinane... 1-6
CHAPTER 2. HOW TO START AND USE
BASIC ..o 2-1
Getting BASIC Started 2-3
Options on the BASIC Command 2-4
Modes of Operationcovvvuuunenn. 2-7
The Keyboardcccoviiiiinn.. 2-8
Function Keys ool 2-9
Typewriter Keyboard 2-10
Numeric Keypad 2-16
Special Key Combinations 2-18
The BASIC Program Editor 2-20
Special Program Editor Keys 2-20
How to Make Corrections on the
CurrentLine 2-33
Entering or Changing a BASIC
Programcooiiiiiiiiia, 2-37
Changing Lines Anywhere on the
Screen il 2-39
Syntax Errors i 2-41

CHAPTER 3. GENERAL INFORMATION
ABOUT PROGRAMMING IN BASIC 3-1

Line Formatviiiiiiniiiininrnnnnnn. 3-3
Character Set ..ovvviiiiiiiieenennnenenens 3-4
Reserved Words ...vvviviiiiiiennennnnnn. 3-6
CoNStantsvviierinreneenrnnenennennnns 3-9
Numeric Precision 3-11
Variablescciiiiiiiiiiiiiin i, 3-12
How to Name a Variable 3-12
How to Declare Variable Types 3-13
Arrays ... 3-15
How BASIC Converts Numbers from One
Precision to Anothercovvtn.. 3-18

ix

Numeric Expressions and Operators 3-21

Arithmetic Operators 3-21
Relational Operators 3-23
Logical Operators 3-25
Numeric Functions 3-29
Order of Execution 3-29
String Expressions and Operators 3-31
Concatenationoooviiiiinannn 3-31
String Functionst 3-32
Input and Outputooevviiineen, 3-33
Files ..o 3-33
Using the Screen 3-38
Other I/O Features 3-44

CHAPTER 4. BASIC COMMANDS,
STATEMENTS, FUNCTIONS, AND

VARIABLES it iiie i 4-1
How to Use This Chapter 4-3
Commandsvviiiiiieenirnnenrnasonenns 4-6
Statementsvveriernrenennennenscananns 4-8

Non-I/O Statementsooevveeunennnn. 4-8

J/O Statementsvvvnneenennnenn. 4-13
Functions and Variables 4-17

Numeric Functionsc.c.o. .. 4-17

String Functionsooit. 4-21
ABS Functioncoivevieieeecnecnncnnns 4-23
ASC FUNCLiON ..iiiiiiiieiieienneasnsnsnes 4-24
ATN FUnNctionoovveeieinricaronsonnnns 4-25
AUTO Commandcovvrivernriranenns 4-26
BEEP Statementovevevneeninsnnnnness 4-28
BLOAD Commandccvveevnvennenns 4-29
BSAVE Commandccoviieenveeennns 4-32
CALL Statementovvveeeeenacannenenses 4-34
CDBLFunctionc.cevevveenencncnnns 4-35
CHAIN Statementveveeeresraccenenes 4-36
CHR$ Functionccevereirinnvennnns 4-38
CINT Functioncoeeeeveecnrasnsenenes 4-40
CIRCLE Statementccoevievnvseennnes 4-41
CLEAR Commandoviiiinerrneannns 4-44
CLOSE Statementeveveeeerocnonoenss 4-46
CLS Statementcvveeeeenrioannsonnnss 4-48
COLOR Statementeeveeeeesssseasens 4-49

The COLOR Statementin TextMode ... 4-49

The COLOR Statement in Graphics
Mode ...vviiiiiiiiii e 4-54
COM(n) Statementovvvvvvnneeeanss 4-56

COMMON Statementveeerrveennnnnns 4-57

CONT Commandcovvivrriernnrennns 4-58
COSTFUNCHION vtiittrriiineiinerernnnnenns 4-60
CSNG Functioncoeeieeeneenrenennns 4-61
CSRLIN Variablecciiiiiiiiiiiinnnn. 4-62
CVI, CVS, CVD Functions 4-63
DATA Statementovevieininrennnennn. 4-64
DATE$ Variable and Statement 4-66
DEF FN Statementccoviiieinnnnnnn.. 4-68
DEF SEG Statementcovuvviveneennn. 4-71
DEFtype Statementsccoevununn. 4-73
DEF USR Statementcevivviernennnn. 4-75
DELETE Commandcovvvnnn.. 4-76
DIM Statementccovviiiiinenennnenns 4-77
DRAW Statementcoeiveiveneneennn. 4-79
EDIT Commandcoviviiiiininennns 4-84
END Statementccvvvuieernniieeennsns 4-85
EOF Functioncooiiiiiiniinnnnn 4-86
ERASE Statementoevvveeeeeenennn 4-87
ERR and ERL Variables 4-89
ERROR Statementcciveiviernennnns 4-91
EXPFunctionccceviviniiineannennss 4-93
FIELD Statementvveeeineneneenennns 4-94
FILESCommandccovvvivennvennn. 4-97
FIX Functionccoviiiiiniiriennnnnns 4-99
FOR and NEXT Statements 4-100
FRE Functioncoeiviiiienennnnnnns 4-104
GET Statement (Files) 4-106
GET Statement (Graphics) 4-108
GOSUB and RETURN Statements 4-111
GOTO Statement ...ovveerernreneernnnn 4-113
HEX$ Functionccveivvinn... 4-115
IF Statementcieiiinininnnnnnnn. 4-116
INKEY$ Variableooviviiniinennnnn. 4-119
INP Functionccoveevinviennrnnenes 4-121
INPUT Statement ...ovveerinnrrnneennens 4-122
INPUT # Statementooveevveneennnenn 4-125
INPUTS Functioncvevivrinvennennn 4-127
INSTR Functioncovvvivervrennnnnn 4-129
INT Function ...eeeveiiieneneenneennnens 4-130
KEY Statementccvviieneienneenes 4-131
KEY(n) Statementceevvvinnnnn. 4-134
KILLCommandcciviiiieiennennn. 4-136
LEFTS Functioncvvviiiinnennrens 4-137
LEN Functionccieieeeeenennennnnn 4-138

xi

xii

LET Statementvverinreienenenenannnns 4-139

LINE Statementcoviviiieenrnrnraons 4-141
LINE INPUT Statementc.coeeeeenenns 4-144
LINE INPUT # Statement 4-145
LIST Commandcvviiviinrneennnnnn 4-147
LLIST Commandccoivivenennnnnns 4-149
LOAD Commandevviinnnrenranenns 4-150
LOCEFunctionvvveneirinrnnnenenennes 4-153
LOCATE Statementcvivevenenennns 4-155
LOF Functioncvoviiienrnaneenenanans 4-158
LOGFunctionveeeiiiennenecnaenns 4-159
LPOS Function ...covviriineenenenennnnss 4-160
LPRINT and LPRINT USING

Statementsoviiieverennennierannes 4-161
LSET and RSET Statements 4-163
MERGE Commandccovvivvnnnnn. 4-165
MID$ Function and Statement 4-167
MKI1$, MKS$, MKD$ Functions 4-170
MOTOR Statementcoevveeneenenns 4-172
NAME Commandcciviiiiiiennnn. 4-173
NEW Commandcovviiiiniinennenns 4-174
OCT$ Functionccveveiiinnnnnn. 4-175
ON COM(n) Statementovuuunn 4-176
ON ERROR Statementceeevenen.. 4-178
ON...GOSUB and ON...GOTO

Statementsvevveniiierieenrraaenoan 4-180
ON KEY(n) Statementc..ovvnunnn. 4-182
ON PEN Statementceveeveeeennnns 4-185
ON STRIG(n) Statementuu.. 4-187
OPEN Statementcoovivreeeenracnnans 4-189
OPEN “COM... Statementc..v.... 4-194
OPTION BASE Statement 4-200
OUT Statement ...veieeieeierneeneceaneas 4-201
PAINT Statementc.evviviencocennnns 4-203
PEEK Functionc.cievevneeenenennne 4-205
PEN Statement and Function 4-206
PLAY Statementcccciiivecnnnnenns 4-209
POINT Functionnveveenvnerneenaenas 4-213
POKE Statementveeeeernerenenannss 4-214
POSFunNctioncvvvieviernnraaensenns 4-215
PRINT Statementcoeevevveeeennns 4-216
PRINT USING Statementceeeeeuee 4-219
PRINT # and PRINT # USING

Statementsveveerriieeernrerenannas 4-225

PSET and PRESET Statements 4-228

PUT Statement (Files) 4-230
PUT Statement (Graphics) 4-232
RANDOMIZE Statementcevvun. 4-236
READ Statementveeniierneneennenns 4-238
REM Statementcevvtiiiennennnnnenns 4-240
RENUM Commandciviivinnnnnnn. 4-241
RESET Commandcovviiivinvnnnnn. 4-243
RESTORE Statementcoveieenennnnns 4-244
RESUME Statementccovveivvenenn. 4-245
RETURN Statementcevvveveeneenn. 4-247
RIGHTS$ Functioncviviiiiennnnnn. 4-248
RND Functionncoviiininenennnenenns 4-249
RUN Commandcovvvriinernenennnnn 4-251
SAVE Commandccoiviiiinvnn... 4-253
SCREEN Functioncccveeeeeenn.. 4-255
SCREEN Statementccvevevenenenn. 4-257
SGN Functionc.veiiiiireneenennans 4-260
SIN Functionceveeivenennenranenns 4-261
SOUND Statementc.oveeeeneenraeenns 4-262
SPACES Functioncoveeeveenneennens 4-265
SPCFUNctionvviiivineinerennennnens 4-266
SQR Functioncovvviiiiiinnnenn, 4-267
STICK Functioncciiviivenennennn. 4-268
STOP Statement ...ovveeverenernneeneens 4-270
STR$ Functionovvevvrenrrnneennnnn 4-272
STRIG Statement and Function 4-273
STRIG(n) Statementccvevvvvvvnns 4-275
STRINGS$ Functioncveevevennnnn 4-276
SWAP Statementcooirinnnnenenn, 4-277
SYSTEM Commandcccevven.n. 4-278
TABFunctionooveivieienennennnenns 4-279
TAN Functionccovviivvineennnenn. 4-280
TIME$ Variable and Statement 4-281
TRON and TROFF Commands 4-283
USR Functioncoviiiirininnenennnns 4-284
VAL Functionc.ciiiiiieienecnens 4-285
VARPTR Functioncoveevnvennnns 4-286
VARPTRS$ Functionnciviviivivnnenn. 4-288
WAIT Statementvveveennerenrnnnrenn 4-290
WHILE and WEND Statements 4-292
WIDTH Statementovvieeienneenenns 4-294
WRITE Statementveveveenvennnnn 4-298
WRITE # Statementcevevevernnnns 4-299

xiii

xiv

APPENDIX A. MESSAGESoovvnnn.. A-5
APPENDIX B. BASIC DISKETTE INPUT

AND OUTPUTiiiiiiiiiiiiiinnnns B-1
Specifying Filenamesccooevit B-2
Commands for Program Files B-2
Diskette Data Files - Sequential and

Random I/Ocoiiiiiiiiiiiiiinnnn., B-4

Sequential Files B4
Random Filesot B-8
Performance Hintsoooiiiveiennn B-15

APPENDIX C MACHINE LANGUAGE

SUBROUTINEScovviiiiiiinneennn. C1
Setting Memory Aside for Your

Subroutineso.... e C-2
Getting the Subroutine Code into

MeEmMOLY +evvvvrieriiinineeeeeennnnnnnnns C-3

Poking a Subroutine into Memory C4
Loading the Subroutine from a File ... GC-5
Calling the Subroutine from Your

BASIC Programccoovviiininnnnnnns C-8
Common Featuresof CALLandUSR ... (-8
CALL Statementcovvuvvenn C-10
USR Function Calls C-14

APPENDIX D. CONVERTING PROGRAMS TO
IBM PERSONAL COMPUTER BASIC ... D-1

FileI/O ..o D-1
Graphics ... D-1
IF.THEN ..ot D-2
Line Feedscoooiiiiiiiin, D-3
Logical Operations D-3
MAT Functionsoovnn D-4
Multiple Assignments D-4
Multiple Statements D-4
PEEKS and POKEs D-4
Relational Expressions D-5
Remarksoovvviviiinin s, D-5
Rounding of Numbers D-5
Sounding the Bell D-5
String Handling D-6
Use of Blankst D-7
Other ... D-7

APPENDIX E. MATHEMATICAL

FUNCTIONSiiiiiiiiiiiiiiiinnnns E-1
APPENDIX F. COMMUNICATIONS F-1
Opening a Communications File F-1
Communication I/O F-1
An Example Program F-4
Operation of Control Signals F-6
Controlof OutputSignalswithOPEN ... F-6
Use of Input Control Signals E-7
Testing for Modem Control Signals ... F-7
Direct Control of Output Control
Signalsoo i il .. Es8
Communication Errors F-10

APPENDIX G. ASCII CHARACTER

CODES ..ttt iiiiiii i G-1
Extended Codesccovvivinnnn. G-6
APPENDIX H. HEXADECIMAL

CONVERSION TABLEccuu.... H-1
APPENDIX I. TECHNICAL INFORMATION

AND TIPS ...ttt I-1

MemoryMapo, I-2
How Variables Are Stored -3
BASIC File Control Block I-4
Keyboard Buffer I-7
Search Order for Adapters I-7
Switching Displays I-8
Some Techniques with Color I-9
Tips and Techniques I-10
APPENDIX J. GLOSSARY J1
INDEX tiiiiiiiiiiiiiiinieennnnnens X-1

XV

NOTES

xvi

CHAPTER 1. THE VERSIONS OF

BASIC -

o |

Contents g |
The Vetsions of BASIC 1-3
Cassette BASICoiiiiiiiiiiin e, 1-4
Disk BASIC ...ovviiiiiiiiiiiiiiiiiinenns, 1-5
Advanced BASICcccviiiiiiinnn, 1-6

1-1

1-2

NOTES

The Versions of BASIC

Versions;

The IBM Personal Computer offers three different
versions of the BASIC interpreter:

® Cassette
® Disk
® Advanced

The three versions of BASIC are upward compatible;
that is, Disk BASIC does everything Cassette BASIC
does, plus a little more, and Advanced BASIC does
everything Disk BASIC does, plus a little more. The
differences between the versions are discussed in
more detail below.

The BASIC commands, statements, and functions
for all three versions of the BASIC interpreter are
described in detail in “Chapter 4. BASIC Commands,
Statements, Functions, and Variables.” Included in
each description is a section called Versions:, where
we tell you which versions of BASIC support the
command, statement, or function.

Forexample, ifyoulook under “CHAIN Statement”
in Chapter 4, you will note that it says:

Cassette Disk Advanced Compiler

The asterisks indicate which versions of BASIC
support the statement. This example shows that you
can use the CHAIN statement for programs written
in the Disk and Advanced versions of BASIC.

In this example you will notice that the asterisks
under the word “Compiler” are in parentheses. This
means that there are differences between the way the
statement works under the BASIC interpreter and
the way it works under the IBM Personal Computer
BASIC Compiler. The IBM Personal Computer
BASIC Compiler is an optional software package
available from IBM. If you have the BASIC
Compiler, the IBM Personal Computer BASIC Compiler
manual explains these differences.

1-3

< |
m
<
£
C |
wn

Cassette BASIC

1-4

The nucleus of BASIC is the Cassette version, which
is built into your IBM Personal Computer in
32K-bytes of read-only storage. You can use
Cassette BASIC on an IBM Personal Computer with
any amount of random access memory. The amount
of storage you can use for such things as programs
and data depends on how much memory you have in
your IBM Personal Computer. The number of
“bytes free” will be displayed after you switch on the
computer.

The only storage device you can use to save
information in Cassette BASIC is a cassette tape
recorder. You cannot use diskettes with Cassette
BASIC.

Some special features you will find in this and the
other two versions of BASIC are:

® An extended character set of 256 different
characters which can be displayed. In addition
to the usual letters, numbers, and special
symbols, you also have international characters
like n, a, and ¢. You will also find symbols which
are commonly used in scientific and
mathematical applications, such as Greek
letters. There are also a variety of other
symbols.

® Graphics capability. If you have the
Colot/Graphics Monitor Adapter, you can draw
points, lines, and even entire pictures. The
screen can be a4/l points addressable in either
medium or high resolution. More information
on this can be found in Chapter 3.

® Special input/output devices. The IBM
Personal Computer hasa speaker which you can
use to make sound. Also, BASICsupportsalight
pen and joysticks which help make your
programs more interesting as well as more fun.

Disk BASIC

This version of BASIC comes as a program on the
IBM Personal Computer Disk Operating System
(DOS) diskette. DOS is a separate product available
from IBM. You have to load Disk BASIC into
memory before you can use it. Disk BASIC requiresa
diskette-based machine with at least 32K-bytes of
random access memory. The amount of storage you
can use for such things as programs and data is
displayed on the screen when you start BASIC.

<
o
el
<z
O
Z
7

Special features of Disk BASIC are:

® Input/outputto diskette in addition to cassette.
See “Appendix B. BASIC Diskette Input and
Output” for special considerations when using
diskette files.

® An internal “clock,” which keeps track of the
date and time.

® Asynchronous communications (RS232)
support, which you can use if you have an
Asynchronous Communications Adapter.
Refer to “Appendix F. Communications” for
details.

® Support for two additional printers.

1-5

Advanced BASIC

1-6

Advanced BASIC, the most extensive form of BASIC
available on the IBM Personal Computer, does
everything that Cassette and Disk BASIC do, and
more. Like Disk BASIC, it is a program on the IBM
DOS diskette which you must load into memory to
use. Advanced BASIC requires a diskette-based
machine with at least 48K-bytes of random access
memory. As with the other versions, the number of
free bytes you will have for programs and data is
displayed on the screen when you start BASIC.

Key features found only in Advanced BASIC are the
following:

® Event trapping. A program can respond to the
occurrence of a specific event by “trapping”
(automatically branching) to a specific program
line. Events include: communications activity,
a function key being pressed, the button being
pressed on a joystick, and the light pen being
activated.

® Advanced graphics. Additional statements are
CIRCLE, PUT, GET, PAINT, and DRAW.
These operations make it easier to create more
complex graphics with the Color/Graphics
Monitor Adapter.

® Advanced music support. The PLAY statement
allows easy usage of the built-in speaker to
create musical tones.

CHAPTER 2. HOW TO START AND
USE BASIC

Contents
Getting BASIC Started 2-3
Options on the BASIC Command 2-4
Modes of Operation 2-7
The Keyboardcccivviiinn.n. 2-8
Function Keys......................... 2-9
Typewriter Keyboard.................. 2-10
Special Symbols 2-11
Uppercaseccooiinnnn... 2-12
Backspace, 2-12
PrtSc ... o 2-13
Other Shifts 2-13
Numeric Keypad 2-15
Keypad Shift 2-16
Special Key Combinations 2-17
The BASIC Program Editor 2-19
Special Program Editor Keys 2-19
How to Make Corrections on the
CurrentLinec...... 2-32
Changing Characters 2-32
Erasing Characters 2-33
Adding Characters 2-34
Erasing Part of a Line 2-35
Cancellinga Line 2-35
Entering or Changing a BASIC
Program 2-36
Adding a New Line to the
Program, 2-36
Replacing or Changing an Existing
Program Line 2-37
Deleting Program Lines 2-37
Deleting an Entire Program 2-38
Changing Lines Anywhere on the
Screen ... 2-38
Syntax Errors 2-40

c
&
Z
G.
w
>
&
O

2-2

NOTES

Getting BASIC Started

It's easy to start BASIC on the IBM Personal
Computer:

To Start Cassette BASIC:

Just switch the computer on. If your system has
diskette drives, you should make sure you don’t have
a diskette in drive A, or leave the drive door open.

The words “Version C’ and the release number will

o
Z |
o)
W
>
w»
=
o

be displayed along with the number of free bytes you
have available.

To Start Disk BASIC:

1.

Start DOS. To do this, you can:
a. Insert the IBM DOS diskette in drive A:.
b. Switch on the computer.

Enter the command BASIC when DOS prompts
you for a command.

The words “Version D” and the release number
will be displayed along with the number of free
bytes.

To Start Advanced BASIC:

1.

2.

Start DOS as described above.

Enter the command BASICA in response to the
DOS prompt.

The words “Version A” and the release number
will be displayed along with the number of free
bytes.

2-3

Options on the BASIC Command

2-4

You can include options on the BASIC or BASICA
command when you start Disk or Advanced BASIC,
These options specify the amount of storage BASIC
uses to hold programs and data, and for buffer areas.
You can also ask BASIC to immediately load and run
a program.

These options are not required—BASIC will work
just fine without them. So if you’re new to BASIC,
you may wish to skip over this section and go on to
the next section, “Modes of Operation.” Then you
can refer back to this section when you become
more familiar with BASIC and its capabilities.

The complete format of the BASIC command is:

BASICI[A] [filespec) [/F:files] [/S:bsize]
[/ C:combuffer] [/M:max workspace]

filespec is the file specification of a program to be
loaded and executed immediately. It must be a
character string constant, but it should #of be
enclosed in quotation marks. It should conform to
the rules for specifying files described under
“Naming Files” in “Chapter 3. General Information
about Programming in BASIC.” A default extension
of .BAS is used if none is supplied and the length of
the filename is eight characters or less. If you include
felespec, BASIC proceedsasif a RUN f#lespec command
were the first thing you entered once BASICis ready.
Note that when you specify filespec, the BASIC
heading with the copyright notices is not displayed.

/F:files sets the maximum number of files that may
be open at any one time during the execution of a
BASIC program. Each file requires 188 bytes of
memory for the file control block, plus the buffer
size specified in the /S: option. If the /F: option is
omitted, the number of files defaults to three. The
maximum value is 15.

/S:bsize sets the buffer size for use with random files.
The record length parameter on the OPEN
statement may not exceed this value. The default
buffer size is 128 bytes. The maximum value you
may enter is 32767. We suggest you use /S:512 for
improved performance when using random files:

/C:combuffer sets the size of the buffer for receiving
data when using the Asynchronous
Communications Adapter. This option has no effect
unless you have an Asynchronous Communications
Adapter on your system. The buffer for transmitting
data with communications is always allocated to 128
bytes. The maximum value you may enter for the/C:
option is 32767. If the /C: option is omitted, 256
bytes are allocated for the receive buffer. If you have
a high-speed line, we suggest you use /C:1024. If you
have two Asynchronous Communications Adapters
on your system, both receive buffers are set to the
size specified by this option. You may disable RS§232
support by using a value of zero (/C:0), in which case
no buffer space will be reserved for
communications, and communications support will
not be included when BASIC is loaded.

[M:max workspace sets the maximum number of bytes
that may be used as BASIC workspace. BASICis only
able to use a maximum of 64K-bytes of memory, so
the highest value you may set is 64K (hex FFFF).
You can use this option in order to reserve space for
machine language subroutines or for special data
storage. You may wish to refer to “Memory Map” in
Appendix I for more detailed information on how
BASIC uses memory. If the /M: option is omitted, all
available memory up to a maximum of 64K-bytes is
used.

Note: files, max workspace, bsize, and combuffer
are all numbers that may be either decimal,
octal (preceded by &0O) or hexadecimal
(preceded by &H).

2-5

c
Z
Z
o
oy
5>
@
O

2-6

Some examples of using the BASIC command:

BASIC PAYROLL.BAS

This will start Disk BASIC so that it will use the
defaults as just described — all memory and
three files. The program PAYROLL.BAS will
be loaded and executed.

BASICA INVEN/F:6

Here we start Advanced BASIC to use all

memory and six files, and load and execute
INVEN.BAS. Remember, .BAS is the default
extension.

BASIC /M:32768

This command starts Disk BASIC so the
maximum workspace size is 32768. That is,
BASIC will use only 32K-bytes of memory. No
more than three files will be used at one time.

BASICA B:CHKWRR.TST/F:2/M:8HS0GY

This command sets the maximum workspace
size to hex 9000. This means Advanced BASIC
will be able to use up to 36K-bytes of memory.
Also, file control blocks are set up for two files,
and the program CHKWRR.TST on the
diskette in drive B is loaded and executed.

Modes of Operation

Once BASIC is started, it displays the prompt Ok.
Ok means BASICis ready for you to tell it what to do.
Sometimes this state is known as command level. At
this point, you may talk to BASIC in either of two
modes: the direct mode or the indirect mode.

Indirect Mode

You enter programs using indirect mode. To tell
BASIC the line you are entering is part of a program,
you begin the line with a /ine number. The line is then
stored as part of the program in memory. The
program in storage can be executed by entering the
RUN command. For example:

0k
T PRINT 20+2
RUN
22
Ok

Direct Mode

Direct mode meansyouare telling BASIC to perform
your request immediately after the request is
entered. You tell BASIC to do this by »o# preceding
the statement or command with a line number. You
can display results of arithmetic and logical
operations immediately or store them for later use,
but the instructions themselves are not saved after
they are executed. This mode is useful for debugging
as well as for quick computations that do not require
a complete program. For example:

0k
PRINT 20+2
22
Ok

The Keyboard

pedAsy sAay
IBEIVIIN| paeoqAad JarlamadA | uonouny
" "
1°q su) 207
. 0 ,m..._s ny
ughy| 4] pu3 * / ‘ \
+)
£ 4 L A\ 951y 4 4 > W N g A 2 X z i 4
-« -> . : {1n9
9 g v " : i r H) 4 a S v
—.' N
-] | [dntd ¥] [oon L] e
6 8 L A } 0 1 n A 1 d 3 M 0 —f
yeaig
ad oo = 6 8 L 9] 14 € Z l as
1pouag wn g +) *) ~ % $ # [i 1

‘2-8

The keyboard is divided into three general areas:

® Ten function keys, labeled F1 through F10, are
on the left side of the keyboard.

® The “typewriter” area is in the middle. This is
where you find the regular letter and number
keys.

® The numeric keypad, similar to a calculator
keyboard, is on the right side.

All the keys, in all three areas of the keyboard, are
typematic. That means they repeat as long as you
hold them down. Each of the keyboard areas are
explained in more detail below:

c
Z
Z
O
w
>
z
O

Function Keys

Function
Keys

The function keys can be used:

® As “soft keys.” That is, you can set each key to
automatically type any sequence of characters.
In fact, some frequently-used commands have
already been assigned to these keys. You may
change these if you wish. Refer to “KEY
Statement” in Chapter 4 for details.

® As program interrupts in Advanced BASIC,
through use of the ON KEY statement. See
“ON KEY(n) Statement” in Chapter 4.

2-9

Typewriter Keyboard

2-10

Typewriter Keyboard

The typewriter area of the keyboard behaves much
like a standard typewriter. All the letters are there, in
their usual places. The numbers O through 9 are on
the top row, along with some special characters.

Capital letters and the special characters shown
above the numbers on the number keys are
displayed by holding down either of the Shift keys
and pressing the desired key.

The key with the + symbol on it is the carriage
return key. You usually have to press this key to
enter information into the computer. We will refer
to it as the Enter key from now on.

c
Z
Z
Q
w B
-
&
=

There are several important differences between this
keyboard and a regular typewriter, however.

Special Symbols:

This keyboard has some special symbols that you
won’tfind ona regular typewriter, like ™, [, and]; and
some characters are not where you might expect
them to be if you’re used to using a typewriter. For
example, the uppershift period (.) is not a period,
but the > symbol.

2-11

2-12

Uppercase:

This keyboard does not have a normal Shift Lock
key. The Caps Lock key is similar to a Shift Lock key,
but it only gives you capital letters, and will not give
you the uppershift characters on the numeric or
other keys. After you press this key, you will
continue to get capital letters until you pressitagain.
You can get lowercase letters when in Caps Lock
state by pressing and holding one of the Shift keys.
When you release the Shift key, you’ll go back to
Caps Lock state. :

Backspace:

The Backspace key behaves somewhat differently
from the Backspace key on a typewriter. It not only
backspaces, it erases what you've typed as well. You
should use the Cursor Left key to avoid erasing what
you've typed. Refer to “The BASICProgram Editor”
later in this chapter.

Below the Enter key isakeylabeled PrtSc on top and
* on the bottom. “PrtSc” stands for “Print screen.”
When the keyboard is in lowershift, pressing this key
causes an asterisk to be typed. In uppershift,
however, this is a special key that causes a copy of
what is on the screen to be printed on the printer
(LPT1:). So, if you ever need a hard (printed) copy of
what is currently being displayed, just press and hold
one of the Shift keys, and press the PrtSckey. (Note:
Characters which are unrecognizable by the printer
are printed as blanks.)

Other Shifts: In addition to the Shift keys which
change the keyboard from lowershift to uppershift,
there are two other “shift” keys on the typewriter
keyboard. They are the Alt (Alternate) and the Ctrl
(Control) keys. You use both of these keys like the
Shift keys; thatis, you press and hold the Alt (or Ctrl)
key, then press the desired key. Then you can release
both keys. However, Alt and Ctrl cause different
things to happen.

2-13

-
&
Z
o
os]
>
Z
@)

2-14

The Alt key enables easy entry of BASIC statement
keywords. This key allows you to type an entire
BASIC keyword with a single keystroke.

The BASIC keyword is typed when the Altkey is held
down while one of the alphabetic keys A-Z is
pressed. Keywords associated with each letter are
summarized below. Letters not having reserved
words are noted by “(no word)”.

A AUTO N NEXT
B BSAVE O OPEN
C COLOR P PRINT
D DELETE Q (no word)
E ELSE R RUN

F FOR S SCREEN
G GOTO T THEN
H HEX$ U USING
I INPUT V VAL

J (no word) W WIDTH
K KEY X XOR

L LOCATE Y (no word)
M MOTOR Z (no word)

The Altkey is also used with the keys on the numeric
keypad to enter characters not found on the keys.
This is done by holding down the Alt key and typing
the three-digit ASCII code for the character. (See
“Appendix G. ASCII Character Codes” for a
complete list of ASCII codes.)

The Ctrl key is also used to enter certain codes and
characters not otherwise available from the

keyboard.

c
%
Z
o
o
>
£
O

For example, Ctrl-G is the be// character. When this
character is printed, the speaker beeps. Note how

the notation “Ctrl-G”” means you press and hold the
Ctrl key, then press the G key. Then you can release
both keys.

You also use the Ctrl key together with other keys
when you edit programs with the program editor.

Numeric Keypad

Num! ‘Scroll
Lock iLock

Break

3
End | ||+ PyDn

Del

-

Numeric Keypad

2-15

2-16

Usually you will be using the numeric keypad keys
for their functions with the program editor. These
keys allow you to move the cursor up, down, right,
and left. You can insert and delete characters using
these keys. Refer to the following section, ‘“The

BASIC Program Editor,” for complete information.

Note: The Scroll Lock, Pg Up, and Pg Dn keys
are not used by BASIC, but they may be given
meaning within a program.

Keypad Shift: You can use the Num Lock key to set
the numeric keypad so it works more like a
calculator keypad. Pressing the Num Lock key shifts
the numeric keypad into its own uppershift mode, so
that you get the numbers 0 through 9 and the
decimal point, as indicated on the keytops. Pressing
Num Lock again will return the keypad to its normal
cursor control mode. As with Caps Lock, you can
temporarily reverse the Num Lock state by pressing
one of the Shift Keys.

Special Key Combinations

You should be aware of the special functions of the
following combinations of keys:

Ctrl-Break

JISvd ONISN

Ctrl-Break interrupts program
execution at the next BASIC
instruction and returns to BASIC
command level. It is also used to
exit AUTO line numbering mode.

Ctr]-Num Lock

Ctrl-Num Lock sends the
computer into a pause state. This
can be used to temporarily halt
printing or program listing. The
pause continues until any key
other than the “‘shift” keys, the
Break key, and the Ins key, is
pressed. (See “Uppercase,”
“Other Shifts,” and “Keypad
Shift” earlier in this section.)

2-17

2-18

Alt-Ctrl-Del

If the computer power is on,
Alt-Cttl-Del performs a System
Reset. In other words, it’s similar to
switching the computer from off
to on. You must press the Ctrland
Alt keys (in either order) and hold
them down, then press the Del
key. Then you can release all three
keys. Doing a System Reset with
these keys is preferable to flipping
the power switch off and on again,
because the system will start
faster.

The BASIC Program Editor

Any line of text typed while BASIC is at command
level is processed by the BASIC program editor. The
program editor isa “screen line editor.” That s, you
can change a line anywhere on the screen, but you
can only change one line at a time. The change will
only take effect if you press Enter on that line.

Use of the program editor can save a lot of time
during program development. To become familiar
with its features, we suggest you enter a sample
program and practice all the editing capabilities. The
best way for you to get a “feel” for the editing
processis to try editing a few lines while studying the
information that follows.

iz
Z |
0
o
>
C£
O

Asyou type things on your computer, you'll notice a
blinking underline or box appearing just to the right
of the last character you typed. This line or box is
called the cursor. It marks the next position at whicha
character is to be typed, inserted, or deleted.

Special Program Editor Keys

You use the keys on the numeric keypad, the
Backspace key, and the Ctrl key to move the cursor
to a location on the screen, insert characters, or
delete characters. The keys and their functions are
listed on the next pages.

2-19

Key(s)

Function

Home

Moves the cursor to the upper left-hand
corner of the screen.

Ctrl-Home

Clears the screen and positions the cursor
in the upper left-hand corner of the screen.

2-20

Key(s) Function

T

(Cursor Up)

_OISvd ONISO)]

v

(Cursor Down)

Moves the cursor one position down.

2-21

Key(s)

Function

—

(Cursor Left)

Moves the cursor one position left. If the
cursor advances beyond the left edge of the
screen, the cursor will move to the right
side of the screen on the preceding line.

—>

(Cursor Right)

Moves the cursor one position right. If the
cursor advances beyond the right edge of
the screen, the cursor will move to the left
side of the screen on the next line down.

2-22

Key(s)

Function

Ctrl- —»

(Next Word)

Moves the cursor right to the nextword. A
word is defined as a character or group of
characters which begins with a letter or
number. Wotds are separated by blanks or
special characters. So, the next word will
be the next letter or number to the right of
the cursor which follows a blank or special
character.

For example, suppose we have the
following line:

LINE (L1,LOW2)-(MAX,48) ,3 , BF

As you can see, the cursor is presently in
the middle of the word LOW?2. If we press
Next Word (Ctrl-Cursor Right), the cursor
will move to the beginning of the next
word, which is MAX:

LINE (L1,LOW2)~-(MAX,48) ,3 , BF
If we press Next Wozrd again, the cursor
will move to the next word, which is the

number 48:

LINE (L1,LOW2)-(MAX,48) ,3 , BF

2-23

C |
W
=
Z |
o
0.
»
m,
—i
I~

Key(s)

Function

Ctrl- «—

(Previous Word)

Moves the cursor left to the previous wozrd.
The previous word will be the letter or

number to the left of the cursor which is
preceded by a blank or special character.

For example, suppose we have:

LINE (LT,L0W2)-(MAX,48) ,3 , BF
If we press Previous Word (Ctrl-Cursor

Left), the cursor moves to the beginning
of the word BF:

LINE (LT,LOW2)-(MAX,48) ,3 , BF
When we press Previous Word again, the
cursor moves to the previous word, which
is the number 3:

LINE (L1,LOW2)-(MAX,48) ,3 , BF

And if we press it twice more, the cursor
will back up first to the number48, then to
the word MAX:

LINE (L1,LOW2)-(MAX,48) ,3 , BF

2-24

Key(s) Function
End
e,
Moves the cursor to the end of the logical
line. Characters typed from this position
are added to the end of the line.
Cttl-End

Erases to the end of logical line from the
current cursor position. All physical screen
lines are erased until the terminating Enter
is found.

2-25

-
&
Z
Q
&
>
4
O

Key(s)

Function

Ins

-Setsinsert mode. If insert mode is off, then

pressing this key will turn it on. If insert

mode is already on, then you will turn it off
when you press this key. When you’re in

insert mode, the cursor covers the lower

half of the character position.

When insert mode is on, characters above
and following the cursor move to the right
as typed characters are inserted at the
current cursor position. After each
keystroke, the cursor moves one position
to the right. Line folding occurs; that is, as
characters advance off the right side of the
screen they return on the left on a
subsequent line.

When insert mode is off, any characters
typed replace existing characters on the
line.

Besides pressing the Ins key again, insert
mode will also be turned off when you
press any of the cursor movement keys or
the Enter key.

2-26

Key(s)

Function

Del

Deletes the character at the current cursor
position. All characters to the right of the
deleted character move one position left to
fill in the empty space. Line folding occurs;
that is, if a logical line extends beyond one
physical line, characters on subsequent
lines move left one position to fill in the
previous space, and the character in the
first column of each subsequent line moves
up to the end of the preceding line.

2-27

o
i
:
i
< |
ol

Key(s) Function

<

(Backspace)
Deletes the last character typed. That s, it
deletes the character to the left of the
cursor. All characters to the right of the
deleted character move left one position to
fill in the space. Subsequent charactersand
lines within the current logical line move
up as with the Del key.

Esc

When pressed anywhere in the line, erases
the entire logical line from the screen. The
line is not passed to BASIC for processing.
If it is a program line, it is not erased from
the program in memory.

2-28

Key(s)

Function

Ctrl-Break

‘FETTETT T

.»w:r:z;fs*-

Returns to command level, without saving
any changes that were made to the current
line being edited. It does not erase the line
from the screen like Esc does.

2-29

Z
©)
&
>
:

Key(s)

Function

—»l

(Tab)

Moves the cursor to the next tab stop. Tab
stops occur every eight character
positions; that is, at positions 1,9, 17, etc.

When insert mode is off, pressing the Tab
key moves the cursor over characters until
it reaches the next tab stop.

For example, suppose we have the
following line:

10 REM this is a remark

If we press the Tab key, the cursor will
move to the ninth position as shown:

16 REM this is a remark

If we press the Tab key again, the cursor
moves to the 17th position on the line:

19 REM this is a remark

2-30

Key(s) Function
—pl (continued)
(Tab) When insert mode is on, pressing the Tab

key inserts blanks from the current cursor
position to the next tab stop. Line folding
occurs as explained under Ins.

For example, suppose we have this line:

190 REM this is a remark

If we press the Ins key and then the Tab
key, blanks are inserted up to position 17:

1% REM th is a remark

2-31

c
Z
Z
o
o
5>
4
O

How to Make Corrections on the Current

Line

2-32

Since any line of text typed while BASIC is at
command level is processed by the program editor,
you can use any of the keys described in the previous
section under “Special Program Editor Keys.”
BASIC is always at command level after the prompt
Ok and until a RUN command is given.

Alogical line is a string of text which BASIC treatsasa
unit. It is possible to extend a logical line over more
than one physical screen line by simply typing
beyond the edge of the screen. The cursor will wrap
to the next screen line. You can also use a line feed
(Ctrl-Enter). Typing a line feed causes subsequent
text to be printed on the next screen line without
your having to enter all the blanks to move the
cursor there. The line is not processed; this only
happens when you press Enter.

Note that the line feed actually causes the remainder
of the physical screen line to be filled with blank
characters. A line feed character is not added to the
text. These blanks are included in the 255 characters
allowed for a BASIC line.

When the Enter key is finally pressed, the entire
logical line is passed to BASIC for processing.

Changing Characters: If you are typing a line and
discover you typed something incorrectly, you can
correct it. Use the Cursor Left or other cursor
movement keys to move the cursor to the position
where the mistake occurred, and type the correct
letters on top of the wrong ones. Then you can move
the cursor back to the end of the line using the
Cursor Right or End keys, and continue typing.

For example, suppose we have typed the following:
LOAD "V;PROG_
We accidently typed V; instead of B:. We fix the
problem by pressing Previous Word (Ctrl-Cursor
Left) twice, until the cursor is under the V:
LOAD "V;PROG
Then we type B::

LOAD''B:PROG

c
<
Z
o
o
5>
4
O

Then we press the End key:

LOAD "'B:PROG

The error is fixed and we can continue typing:

LOAD "'B:PROGRAMI"

Erasing Characters: If you notice you've typed an
extra character in the line you’re typing, you can
erase (delete) it using the Del key. Use the Cursor
Left or other cursor movement keys to move the
cursor to the character you want to erase. Press the
Del key, and it is deleted. Then use the Cursor Right
or End keys to move the cursor back to the end of the
line, and continue typing.

For example, suppose we typed the following:
DEELETE

To erase the extra E, we press Cursor Left until the
cursor is under the extra E:

DEELETE

2-33

2-34

Then we press the Del key:

DELETE
Then we press the End key:
DELETE_

and continue typing:

DELETE 20

If the incorrect character was the character you just
typed, use the Backspace key to delete it. Then you
can simply continue typing the line as desired.

For example, suppose we've typed the following:
DELETT

We can simply press the Backspace key:
DELET

Then we can continue typing:

DELETE 20

Adding Characters: If yousee thatyou've omitted
characters in the line you're typing, move the cursor
to the position where you want to put the new
characters. Press the Inskey to getinto Insert Mode.
Type the characters you want to add. The characters
you type will be inserted at the cursor and the
characters above and following it will be pushed to
the right. As before, when you're ready to continue
typing at the end of the line, use the Cursor Right or
End keys to move the cursor there and just continue
typing. Insert Mode will automatically be turned off
when you use either of these keys.

For example, suppose we've typed the following:

LIS 10

We forgot the T in LIST. So we press Cursor Left
until the cursor is under the space:

LIS 10
Then we press the Ins key and type the letter T:

LISTg!?

c
&
Z
o
o
»
4
O

Erasing Part of a Line: To truncate a line at the
current cursor position, press Ctrl-End.

For example, suppose we have the following:

19 REM %% garbage garbage garbage

We have the cursor positioned under the g in the
first word garbage, so all we have to do to erase the
garbage is press Ctrl-End:

19 REM i
Cancelling a Line: To cancel a line that is in the
process of being typed, press the Esc key anywhere
in the line. You do not have to press Enter. This
causes the entire logical line to be erased.
For example, suppose we had this line:

THIS IS A LINE THAT HAS NO MEANING

Even though the cursor is at the end of the line, the
entire line is erased when we press Esc:

2-35

Entering or Changing a BASIC Program

2-36

Any line of text that you type that begins with a
number is considered to be a program line.

A BASIC program line always begins with a line
number, ends with an Enter, and may contain a
maximum of 255 characters, including the Enter. Ifa
line contains more than 255 characters, the extra
characters will be truncated when the Enter is
pressed. Even though the extra characters still
appear on the screen, they are not processed by
BASIC.

BASIC keywords and variable names must be in
uppercase. However, you may enter them in any
combination of uppercase and lowercase. The
program editor will convert everything to
uppercase, except for remarks, DATA statements,
and strings enclosed in quotation marks.

BASIC will sometimes change the way you enter
something in other ways. For example, suppose you
use the question mark (?) instead of the word PRINT
inaprogramline. Whenyoulater LIST theline, the ?
will be changed to PRINT with a space after it,
since ? is a shorthand way of entering PRINT. This
expansion may cause the end of a line to be
truncated if the line length is close to 255 characters.

Warning:
If your line reaches maximum length, the 255th
character must be Enter.

Adding a New Line to the Program: Enter a valid
line number (range is 0 through 65529) followed by
at least one non-blank character, followed by Enter.
The line will be saved as part of the BASIC program
in storage.

For example, if you enter the following:

1@ hello Dori

This will save the line as line number 10 in the
program. Note that hello Dori is not a valid BASIC
statement; however, you will not get an error if you
enter this line. Program lines are »ot checked for
proper syntax before being added to the program.
That only happens when the program line is actually
executed.

If a line already exists with the same line number,
then the old line is erased and replaced with the new
one.

-
&
Z
®
o
5
4
O

If you try to add a line to a program when there is no
more room in storage, an ‘Out of memory” error
occurs and the line is not added.

Replacing or Changing an Existing Program Line:
An existing line is changed, as indicated above, when
the line number of the line you enter matches the
line number of aline already in the program. The old
line is replaced with the text of the new one.

For example, if you enter:
19 this is a new line 18
The previous line 10 (hello Dori) would be

replaced with this new line 10.

Deleting Program Lines: To delete an existing
program line, type the line number alone followed
by Enter. For example, if you enter:

10

This would delete line 10 from the program.

2-37

Or you may use the DELETE command to delete a
group of program lines. Refer to “DELETE
Command” in Chapter 4 for details.

Note that if you try to delete a non-existent line, an
“Undefined line number” error will occur.

Do not use the Esc key to delete program lines. Esc
will cause the line to be erased from the screen only.
If the line exists in the BASIC program, it will remain
there.

Deleting an Entire Program: To delete the entire
program that is currently residing in memory, enter
the NEW command (see “NEW Command” in
Chapter 4). NEW is usually used to clear memory
prior to entering a new program.

Changing Lines Anywhere on the Screen

2-38

You can edit any line on the screen simply by using
the cursor movement keys (described under
“Special Program Editor Keys”) to move the cursor
on the screen to the place requiring the change.
Then you can use any or all of the techniques
described previously to change, delete, or add
characters to the line.

If you want to modify program lines that do not
happen to be displayed at the moment, you can use
the LIST command to display them. List the line or
range of lines to be edited (see “LIST Command” in
Chapter 4). Position the cursor to a line to be edited
and change the line using the techniques already
described. Press Enter to store the modified line in
the program. You can also use the EDIT command
to display the line you want. Refer to “EDIT
Command” in Chapter 4.

For example, you could duplicate a line in the
program this way: Move the cursor to the line to be
duplicated. Change the line number to the new line
number by just typing over the numbers. When you
press Enter, both the old line and the new line will be
in the program.

Or, you could change the line number of a program
line by duplicating the line as described above, then
deleting the old line.

A program line is never actually changed within the
BASIC program until Enter is pressed. Therefore,
when several lines need alteration, it may be easier to
move around the screen making corrections to
several lines at once, and then go back to the firstline
changed and press Enter at the beginning of each
line. By so doing, you store each modified line in the
program.

You do not have to move the cursor to the end of the
logical line before pressing Enter. The program
editor knows where each logical line ends and it
processes the whole line even if the Enter is pressed
at the beginning of the line.

Note: Use of the AUTO command canbevery
helpful when you are entering your program.
However, you should exit AUTO mode by
pressing Ctrl-Break before changing any lines
other than the current one.

Remember, changes made using these techniques
only change the program in memory. To save the
program with the new changes permanently, you
should use the SAVE command (see “SAVE
Command” in Chapter 4) before entering a NEW
command or leaving BASIC.

2-39

c
&
Z
o
o
5>
£
O

Syntax Errors

2-40

When a syntax error is discovered while a program is
running, BASIC automatically displays the line that
caused the error so you may correct it. For example:

Ok

18 A= 2812

RUN

Syntax error in 10
Ok

18 A = 2812

The program editor has displayed the line in error
and positioned the cursor right under the digit 1.
You can move the cursor right to the dollar sign (§)
and change it to a plus sign (+), then press Enter. The
corrected line is now stored back in the program.

When youeditalineand storeitbackin the program
while the program is interrupted (as in this example)
certain things happen, primarily:

® Allvariablesand arraysare lost. Thatis, theyare
reset to zero or null.

® Any files that were open are closed.

® You cannot use CONT to continue the
program.

If you want to examine the contents of some variable
before making the change, you should press
Ctrl-Break to return to command level. The
variables will be preserved since no program line is
changed. After you check everything you need to,
you can edit the line and rerun the program.

CHAPTER 3. GENERAL
INFORMATION
ABOUT
PROGRAMMING IN
BASIC

Contents

Line Formatcovviiiiiiinirinennnn. 3-3
Line Numbers 3-3
BASIC Statements 3-3
Commentscooveveenneenenn. 3-4
Character Setovvviiinnnieennseenennss 3-4
Reserved Wordscovvviviiiiinnnennnn 3-6
CoNStaNnts ...vevvvnnvveereeeosannsneeeenns 3-9
Numeric Precisionccovint. 3-11
Variablesoiiiiiiiiiiiiiiiiennees 3-12
How to Name a Variable 3-12
How to Declare Variable Types 3-13
Af1ays v e 3-15

How BASIC Converts Numbers from One
Precision to Another, 3-18
Numeric Expressions and Operators 3-21
Arithmetic Operators 3-21
Integer Division 3-22
Modulo Arithmetic 3-22
Relational Operators 3-23
Numeric Comparisons 3-23
String Comparisons 3-24
Logical Operators 3-25
How Logical Operators Work 3-27
Numeric Functions 3-29
Order of Executioncovvnunn.. 3-29

?
Z
-
>
-
Z |
=
o |

String Expressions and Operators 3-31

Concatenationo, 3-31
String Functionsot 3-32
Input and OQutputcovvvunneeiinnn. 3-33
Files ..o 3-33
Naming Files 3-34
Using the Screen 3-38
Display Adapters 3-38
TextModec.ocoiiiiiiitt. 3-39
Graphics Modes 3-41
Other I/O Features 3-44
Clock .o 3-44
Sound and Music 3-44
Light Pent 3-45
Joysticks ... 3-45

Line Format

Program lines in a BASIC program have the
following format: :

nnnnn BASIC statement[:BASIC statement...][’ comment]

and they end with Enter. This format is explained in
more detail below.

Line Numbers: “nnnnn’ indicates the line
number, which can be from one to five digits. Every
BASIC program line begins with a line number. Line
numbers are used to show the order in which the
program lines are stored in memory and also as
reference points for branching and editing. Line
numbers must be in the range 0 to 65529. A period
(.) may be used in LIST, AUTO, DELETE, and EDIT
commands to refer to the current line.

2}
Z |
[e9]
o |
>
=
Z
s
o

BASIC Statements: A BASIC statement is either
executable or non-executable. Executable statementsare
program instructions that tell BASIC what to do
next while running a program. For example, PRINT
X is an executable statement. Non-executable
statements, such as DATA or REM, do not cause any
program action when BASIC sees them. All the
BASIC statements are explained in detail in the next
chapter.

3-3

You may, if you wish, have more than one BASIC
statement on a line, but each statement on a line

must be separated from the last one by a colon, and
the total number of characters must not exceed 255.

For example:

0k

1@ FOR 1=1 TO 5: PRINT |: NEXT
RUN

XUl Fwh—

Comments: Comments may beadded to theend
of a line using the ’ (single quote) to separate the
comment from the rest of the line.

Character Set

The BASIC character set consists of alphabetic
characters, numeric characters and special
characters. These are the characters which BASIC
recognizes.

The alphabetic characters in BASIC are the

uppercase and lowercase letters of the alphabet. The
numeric characters are the digits O through 9.

3-4

The following special characters have specific
meanings in BASIC:

Character ~ Name

blank

equal sign or assignment symbol

plus sign or concatenation symbol

minus sign

asterisk or multiplication symbol

slash or division symbol

backslash or integer division symbol

caret or exponentiation symbol

left parenthesis

right parenthesis

percentsign orinteger type declaration

character

number (or pound) sign, or

double-precision type declaration

character

$ dollar sign or string type declaration
character

! exclamation point or single-precision
type declaration character

& ampersand

, comma

period or decimal point

single quotation mark (apostrophe), or

remark delimiter

; semicolon

: colon or statement separator

? question mark (PRINT abbreviation)

less than

greater than

double quotation mark or string

delimiter

underline

s w1+ |

E:S oﬁvz\

o
=
>
5 |
Loy
o

TV A

Many characters can be printed or displayed even
though they have no particular meaning to BASIC.
See “Appendix G. ASCII Character Codes” for a
complete list of these characters.

3-5

Reserved Words

Certain words have special meaning to BASIC. These
words are called reserved words. Reserved words
include all BASIC commands, statements, function
names, and operator names. Reserved words cannot
be used as variable names.

You should always separate reserved words from
data or other parts of a BASIC statement by using
spaces or other special characters as allowed by the
syntax. That is, the reserved words must be
appropriately delimited so that BASIC will recognize
them.

The following is a list of all the reserved words in
BASIC.

ABS CvD
AND CVi
ASC CVsS
ATN DATA
AUTO DATES
BEEP DEF
BLOAD DEFDBL
BSAVE DEFINT
CALL DEFSNG
CDBL DEFSTR
CHAIN DELETE
CHRS DIM
CINT DRAW
CIRCLE EDIT
CLEAR ELSE
CLOSE END
CLS EQOF
COLOR EQV
COM ERASE
COMMON ERL
CONT ERR
(0N ERROR
CSNG EXP
CSRLIN FIELD

FILES
FiX
FNXXXXXXXX
FOR
FRE
GET
GOSUB
GOTO
HEXS
IF

[MP
INKEYS
INP
INPUT
INPUT#
INPUTS
INSTR
INT
KEY
KILL
LEFTS
LEN
LET
LINE
LIST
LLIST
LOAD
LOC
LOCATE
LOF
LOG
LPOS
LPRINT
LSET
MERGE
M1DS
MKD$
MKIS
MKSS
MOD
MOTOR
NAME
NEW
NEXT

NOT
0CT$
OFF

ON
OPEN
OPTION
OR

ouT
PAINT
PEEK
PEN
PLAY
POINT
POKE
POS
PRESET
PRINT
PRINT#
PSET
PUT
RANDOMI ZE
READ
REM
RENUM
RESET
RESTORE
RESUME
RETURN
RIGHTS
RND
RSET
RUN
SAVE
SCREEN
SGN
SIN
SQUND
SPACES
SPC(
SQR
STEP
STICK
STOP
STRS

(op)
[e9]
Z
e
=
>
e
Z
el
@]

STRIG
STRINGS
SWAP
SYSTEM
TAB (
TAN
THEN
TIMES
TO
TROFF
TRON
USING

USR
VAL
VARPTR
VARPTRS
WAILT
WEND
WHILE
WIDTH
WRITE
WRITE#
XOR

Constants

Constants are the actual values BASIC uses during
execution. There are two types of constants: string
(or character) constants, and numeric constants.

A string constant is a sequence of up to 255
characters enclosed in double quotation marks.
Examples of string constants:

"HELLO'

11§25 000.00"
“Number of Employees'

Numeric constants are positive or negative
numbers. A plus sign (+) is optional on a positive
number. Numeric constants in BASIC cannot
contain commas. There are five ways to indicate
numeric constants:

Integer

Fixed point

Floating point

o
M
Z
to
)
>
=
E
g3]
O

Whole numbers between -32768
and +32767, inclusive. Integer
constants do not have decimal
points.

Positive or negative real
numbers, that is, numbers that
contain decimal points.

Positive or negative numbers
represented in exponential form
(similar to scientific notation). A
floating point constant consists
of an optionally signed integer or
fixed point number (the
mantissa) followed by the letter E
and an optionally signed integer
(the exponent). Double-precision
floating point constants use the
letter D instead of E. For more
information, see the next
section, “Numeric Precision.”

3-9

3-10

Hex

Octal

The E (or D) means “times ten to
the power of.”

For example,
23E-2

Here, 23 is the mantissa, and -2 is
the exponent. This number
could be read as “twenty-three
times ten to the negative two
power.” You could write it as
0.23 in regular fixed point
notation. More examples:

235.988E-7

is equivalent to: .0000235988
235906

is equivalent to: 2359000000

You can represent any number
from 2.9E-39 to 1.7E+38
(positive or negative) asa floating
point constant.

Hexadecimal numbers with up to
four digits, with a prefix of &H.
Hexadecimal digits are the
numbers 0 through 9, A, B, C, D,
E, and F. Examples:

&H76
EH32F

Octal numbers with up to 6
digits, with the prefix &O or just
&. Octal digits are O through 7.
Examples:

0349
1234

Numeric Precision

Numbers may be stored internally as either integer,
single-precision, or double-precision numbers.
Constants entered in integer, hex, or octal format
are stored in two bytes of memory and are
interpreted as integers or whole numbers. With
double-precision, the numbers are stored with 17
digits of precision and printed with up to 16 digits.
With single-precision, seven digits are stored and up
to seven digits are printed, although only six digits
will be accurate.

A single-precision constant is any numeric constant
that doesn’t fit in the znfeger category and is written
with:

® seven or fewer digits, or

® exponential form using E, or

® a trailing exclamation point (!)

=
tm
Z
t
=
>
-
E
i
o

A double-precision constant is any numeric constant
that is written with:

® cight or more digits, or
® cxponential form using D, or
® a trailing number sign (#)

Examples of single- and double-precision constants:

Single-Precision Double-Precision
46.8 345692811
-1.09E-06 -1.09432D-06
3489.0 3489.0#

22.5! 7654321.1234

3-11

Variables

Variablesare names used to represent values thatare
used in a BASIC program. As with constants, there
are two types of variables: numeric and string. A
numeric variable always has a value thatisa number.
A string variable may only have a character string
value.

The length of a string variable is not fixed, but may
be anywhere from 0 (zero) to 255 characters. The
length of the string value you assign to it will
determine the length of the variable.

You may set the value of a variable to a constant, or
you can set its value as the result of calculations or
various data input statements in the program. In
either case, the variable type (string or numeric)
must match the type of data that is being assigned to
it.

If you use a numeric variable before you assign a
value to it, its value is assumed to be zero. String
variables are initially assumed to be null; thatis, they
have no charactersin them and have a length of zero.

How to Name a Variable

3-12

BASIC variable names may be any length. If the
name is longer than 40 characters, however, only the
first 40 characters are significant.

The characters allowed in a variable name are letters
and numbers, and the decimal point. The first
character must be a letter. Special characters which
identify the type of variable are also allowed as the
last character of the name. For more information
about types, see the next section, “How to Declare
Variable Types.”

A variable name may not be a reserved word, but
may contain imbedded reserved words. (Refer to
“Reserved Words,” eatlier in this chapter, for a
complete list of the reserved words.) Also, a variable
name may not be a reserved word with one of the
type declaration characters($, %, !, #) at the end. For
example,

180 EXP = 5
is invalid, because EXP is a reserved word. However,
10 EXPONENT = 5

is okay, because EXP is only a part of the variable
name.

A variable beginning with FN is assumed to be a call
to a user-defined function (see “DEF FN Statement”
in Chapter 4).

Q
T3
Z
5
=
>
=
Z
e
o

How to Declare Variable Types

A variable’s name determines its type (string or
numeric, and if numeric, what its precision is).

String variable names are written with a dollar sign
($) as the last character. For example:

AS = '"'SALES REPORT"

The dollar sign is a variable type declaration
character. It “declares” that the variable will
represent a string.

Numeric variable names may declare integer,
single-, or double-precision values. Although you
may get less accuracy doing computations with
integer and single-precision variables, there are

3-13

3-14

reasons you might want to declare a variable as a
particular precision.

® Variables of higher precisions take up more
room in storage. This is important if space is a
consideration.

® It takes more time for the computer to do
arithmetic with the higher precision numbers.
A program with repeated calculations will run
faster with integer variables.

The type declaration characters for numeric

variables and the number of bytes required to store

each type of value are as follows:

% Integer variable (2 bytes)

! Single-precision variable (4 bytes)

Double-precision variable (8 bytes)

If the variable type is not explicitly declared, then it
will default to single-precision.

Examples of BASIC variable names follow.

PI# declares a double-precision value
MINIMUM! declares a single-precision value
LIMIT% declares an integer value

N$ declares a string value

ABC represents a single-precision value

Variable types may also be declared in another way.
The BASIC statements DEFINT, DEESNG,
DEFDBL and DEFSTR may be included in a
program to declare the types for certain variable
names. These statements are described in detail
under “DEFtype Statements” in Chapter 4. All the
examples which follow in this book assume that
none of these types of declarations have been made,
unless the statements are explicitly shown in the
example.

Arrays

Anarrayisagroup or table of values thatare referred
to with one name. Each individual value in the array
is called an element. Array elements are variables and
can be used in expressions and in any BASIC
statement or function which uses variables.

Declaring the name and type of an array and setting
the number of elements and their arrangement in
the array is known as defining, or dimensioning, the
array. Usually this is done using the DIM statement.
For example,

19 DIM BS(5)

This creates a one dimensional array named B$. All
its elements are variable length strings, and the
elements have an initial null value.

20 DIM A(2,3)

This creates a two-dimensional array named A. Since
the name does not have a type declaration character,
the array consists of single-precision values. All the
array elements are initially set to 0.

Each array element is named with the array name
subscripted with a number or numbers. An array
variable name has as many subscripts as there are
dimensions in the array.

The subscript indicates the position of the element
in the array. Zero is the lowest position unless you
explicitly change it (see “OPTION BASE
Statement” in Chapter 4). The maximum number of
dimensions for an array is 255. The maximum
number of elements per dimension is 32767.

3-15

Py
Z |
o
=
los e
ol

3-16

To continue the preceding examples, array B$ could
be thought of as a list of character strings, like this:

B$(0)

B3(1)

BS(2)

B3$(3)

BS(4)

BS(5)

The first string in the list is named B$(0).

Thearray A could be thoughtofasa table of rowsand
columns, like this:

columns

A(0,0) [A0, 1) | A(0,2) | A(0,3)

A(1,0) | A(L,1) | A(L,2 A(1,3)

rows

AC2,0) | AC2,1) | A(2,2) | A(2,3)

The element in the second row, first column, is

called A(1,0).

If you use an array element before you define the
array, it is assumed to be dimensioned with a
maximum subscript of 10.

For example, if BASIC encounters the statement:

50 $1S(3)=500

and the array SIS has not already been defined, the
array is set to a one-dimensional array with 11
elements, numbered SIS(0) through SIS(10). You
may only use this method of implicit declaration for
one-dimensional arrays.

One final example:

ok

10 DIM YEARS(3,4)

20 YEARS(2,3)=1982

3¢ FOR ROW=g TO 3

Ly FOR COLUMN=@ TO 4

5@ PRINT YEARS(ROW,COLUMN) ;
60 NEXT COLUMN

78 PRINT ;
8¢ NEXT ROW Q j
RUN Z |
900 0 0 =
¢ 7 9 0 S
g 9 9 1982 ¢ a
g ¢ ¢ ¢ @ ;% ‘
Ok 3

3-17

How BASIC Converts Numbers from
One Precision to Another

3-18

When necessary, BASIC will convert a number from
one precision to another. The following rules and
examples should be kept in mind.

1. Ifanumericvalue of one precision isassigned to
a numeric variable of a different precision, the
number will be stored as the precision declared
in the target variable name.

Example:

Ok

10 A% = 23.42
20 PRINT A%
RUN

23

Ok

2. Rounding, as opposed to truncation, occurs

when assigning any higher precision value to a
lower precision variable (for example, changing
from double- to single-precision).

Example:

ok

10 C = 55.88345674#
2¢0 PRINT C

RUN

55.88346

Ok

This affects not only assignment statements
(e.g., I%=2.5 results in 1%=3), but also affects
function and statement evaluations

(e.g., TAB(4.5) goes to the fifth position, A(1.5)
is the same as A(2), and X=11.5 MOD 4 will
result in a value of 0 for X).

If you convertfromalower precision toa higher
precision number, the resulting higher
precision number cannot be any more accurate
than the lower precision number. For example,
if you assign a single-precision value (A) to a
double-precision variable (B#), only the firstsix
digits of B# will be accurate because only six
digits of accuracy were supplied with A. The
error can be bounded using the following
formula:

ABS (B#-A) < 6.3E-8 * A

That is, the absolute value of the difference
between the printed double-precision number
and the original single-precision value is less
than 6.3E-8 times the original single-precision
value.

Example:

Ok

10 A= 2.04

2¢ B# = A

30 PRINT A;B#

RUN

2.0k 2.039999961853027
Ok

3-19

O |
x
Z
Jes]
o
>
—
Z |
z |
S |

3-20

When an expression is evaluated, all of the
operands in an arithmetic or relational
operation are converted to the same degree of
precision, namely that of the most precise
operand. Also, the result of an arithmetic
operation is returned to this degree of
precision.

Examples:
Ok
10 D# = 6#/7
20 PRINT D#
RUN
.8571428571428571
Ok

The arithmetic was performed in
double-precision and the result was returned in
D# as a double-precision value.

Ok

19 D = 6#/7

2¢ PRINT D
RUN
.8571429
Ok

The arithmetic was performed in
double-precision and the result was returned to
D (single-precision variable), rounded, and
printed as a single-precision value.

Logical operators (see “‘Logical Operators” in
this chapter) convert their operands to integers
and return an integer result. Operands mustbe
in the range -32768 to 32767 or an “Overflow”
error occurs. ,

Numeric Expressions and Operators

A numeric expression may be simply a numeric
constant or variable. It may also be used to combine
constants and variables using operators to produce a

single numeric value.

Numeric operators perform mathematical or logical
operations mostly on numeric values, and
sometimes on string values. We refer to them as
“numeric” operators because they produce a value
thatisa number. The BASIC numeric operators may
be divided into categories as follows:

® Arithmetic
® Relational
® Logical

® Functions

Arithmetic Operators

o
82
Z
i
=
»
-
Z
e
o

The arithmetic operators perform the usual
operations of arithmetic, such as addition and
subtraction. In order of precedence, they are:

Operator Operation

Exponentiation

- Negation

*/ Multiplication,
Floating Point
Division

\ Integer Division

MOD Modulo Arithmetic

+, - Addition,
Subtraction

Sample Expression

X Y
X

X*Y

X/Y

X\Y

X MOD Y
X+Y

XY

3-21

3-22

(If you have a mathematical background, you will
notice that this is the standard order of precedence.)
Although most of these operations probably look
familiar to you, two of them may seem a bit
unfamiliar — integer division and modulo
arithmetic.

Integer Division: Integer division is denoted by
the backslash (\). The operands are rounded to
integers (in the range -32768 to 32767) before the
division is performed; the quotientis truncated toan
integer.

For example:

ok

18 A = 10\4

20 B = 25.68.6.99
3% PRINT A;B

RUN

2 3

0k

([

Modulo Arithmetic: Modulo arithmetic is
denoted by the operator MOD. It gives the integer
value that is the remainder of an integer division.

For example:

0k
10 A =7 MOD &4
20 PRINT A
RUN
3
Ok

This result occurs because 7/4 is 1, with remainder 3.

Ok
PRINT 25.68 MOD 6.99
5
0k

The resultis 5 because 26/7 is 3, with the remainder
5. (Remember, BASIC rounds when converting to
integers.)

Relational Operators

Relational operators compare two values. The
values may be either both numeric, or both string.
The result of the comparison is either “true” (-1) or
“false” (0). This result is usually then used to make a
decision regarding program flow. (See “IF
Statement” in Chapter 4.)

Operator Relation Tested Sample Expressions

= Equality X=Y
<> or >< Inequality X<>Y
X><Y
< Less than X<Y g
> Greater than X>Y Q
>
<= or =< Less than or X<=Y » :
equal to X=<Y %
o
>= or => Greater than or X>=Y
equal to X=>Y

(The equal sign is also used to assign a value to a
variable. See “LET Statement” in Chapter 4.)

Numeric Comparisons: When arithmetic and
relational operators are combined in one
expression, the arithmetic is always performed first.
For example, the expression:

X+Y < (T-1)/2

will be true (-1) if the value of X plus Y is less than the
value of T-1 divided by Z.

3-23

3-24

More examples:

ok

10 X=108

20 IF X <> 200 THEN PRINT ''NOT EQUAL"
ELSE PRINT "EQUAL"

RUN

NOT EQUAL

ok

Here, the relation is true (100 is not equal to 200).
The true result causes the THEN part of the IF
statement to be executed.

Ok

PRINT 5<2; 5<18¢
0 -1

Ok

Here the first result is false (zero) because 5 is not
less than 2. The second result is -1 because the
expression 5<10 is true.

String Comparisons: String comparisons can be
thought of as “alphabetical.” That is, one string is
“less than” another if the first string comes before
the other one alphabetically. Lowercase letters are
“greater than” their uppercase counterparts.
Numbers are “less than” letters.

The way two strings are actually compared is by
taking one character at a time from each string and
comparing the ASCII codes. (See “Appendix G.
ASCII Character Codes” for a complete list of ASCII
codes.) If all the ASCII codes are the same, the
surings are equal. Otherwise, as soon as the ASCII
codes differ, the string with the lower code number is
less.than the string with the higher code number. If,
during string comparison, the end of one string is
reached, the shorter string is said to be smaller.

Leading and trailing blanks are significant. For
example, all the following relational expressions are
true (thatis, the result of the relational operation is

-1).
IIAAll < ||AB||
"EFTLENAME' = '"'F|ILENAME"
||X8[| > ||X#||
||wR ii > ||WR|‘
||kg|| > IIKGII
"SMYTH'' < "'SMYTHE"
BS < 718" (where BS = 't1254311)

All string constants used in comparison expressions
must be enclosed in quotation marks.

Logical Operatots

Logical operators perform logical, or Boolean,
operations on numeric values. Just as the relational
operators are usually used to make decisions
regarding program flow, logical operators are
usually used to connect two or more relations and
return a true or false value to be used in a decision
(see “IF Statement” in Chapter 4).

o
™
Z,
t
=
>
=
Z,
s
o

A logical operator takes a combination of true-false
values and returns a true or false result. An operand
of alogical operator is considered to be “true” if it is
not equal to zero (like the -1 returned by a relational
operator), or “false” if it is equal to zero. The result
of the logical operation is a number which is, again,
“true” if itis not equal to zero, or “false” if it is equal
to zero. The number is calculated by performing the
operation bit by bit. This is explained in detail
shortly.

The logical operators are NOT (logical
complement), AND (conjunction), OR

3-25

3-26

(disjunction), XOR (exclusive or), IMP
(implication), and EQV (equivalence). Each
operator returns results as indicated in the following
table. (““T” indicates a true, or non-zero value. “F”’
indicates a false, or zero value.) The operators are
listed in order of precedence.

NOT

X NOT X

T F

F T
AND

X Y XANDY

T T T

T F F

F T F

F F F
OR

X Y XORY

T T T

T F T

F T T

F F F
XOR

X Y XXORY

T T F

T F T

F T T

F F F
EQV

X Y XEQVY

T T T

T F F

F T F

F F T
IMP

X Y XIMPY

T T T

T F F

F T T

F F 1

Some examples of ways to use logical operators in
decisions:

IF HE>60 AND SHE<2@ THEN 1800

Here, the result will be true if the value of the
variable HE is more than 60 and also the value of
SHE is less than 20.

IF I>10 OR K<@ THEN 5@

The result will be true if [is greater than 10, or K is
less than 0, or both.

5@ |F NOT (P=-1) THEN 108

Here, the program will branch to line 100 if P is not
equal to-1. Note that NOT (P=-1) does not produce
the same result as NOT P. Refer to the next section,
“How Logical Operators Work,” foran explanation.

168 FLAG%Z = NOT FLAGY%

This example switches a value back and forth from
true to false.

How Logical Operators Work: Operands are
converted to integers in the range-32768 to +32767.
(If the operands are not in this range, an “Overflow”
error results.) If the operand is negative, the two’s
complement form is used. This turns each operand
into a sequence of 16 bits. The operation is
performed on these sequences. That is, each bit of
the result is determined by the corresponding bitsin
the two operands, according to the tables for the
operator listed previously. A 1 bit is considered
“true”, and a 0 bit is “false.”

3-27

OANI TVHINIO

3-28

Thus, you can use logical operators to test for a
particular bit pattern. For instance, the AND
operator may be used to “mask’ all but one of the
bits of a status byte at a machine I/O port.

The following examples will help demonstrate how
the logical operators work.

A = 63 AND 16

Here, Aissetto 16. Since 63 isbinary111111 and 16
is binary 10000, 63 AND 16 equals 010000 in binary,
which is equal to 16.

B=-1AND 8

B is set to 8. Since -1 is binary 11111111 11111111
and 8 is binary 1000, -1 AND 8 equals binary
00000000 00001000, or 8.

C=140R 2

Here, Cequals 6. Since 4 is binary 100 and 2 isbinary
010, 4 OR 2 is binary 110, which is equal to 6.

X = 2
TWOSCOMP = (NOT X) + 1

This example shows how to form the two’s
complement of a number. X is 2, which is 10 binary.
NOT X isthen binary 11111111 11111101, whichis
-3 in decimal; -3 plus 1 is -2, the complement of 2.
That is, the two’s complement of any integer is the
bit complement plus one.

Note thatif both operandsare equal to either 0 or-1,
a logical operator will return either 0 or -1.

Numeric Functions

A function is used like a variable in an expression to
call a predetermined operation that is to be
performed on one or more operands. BASIC has
“built-in” functions that reside in the system, such as
SQR (square root) or SIN (sine). All of BASIC's
built-in functions are listed under “Functions and
Variables” in the beginning of Chapter 4. Detailed
descriptions are also included in the alphabetical
section of Chapter 4.

You can also define your own functions using the
DEF FN statement. See “DEF FN Statement” in
Chapter 4.

Order of Execution

The categories of numeric operations were
discussed in their order of precedence, and the
precedence of each operation within a category was
indicated in the discussion of the category. In
summary:

L 0ANI TVHINTD

1. Function calls are evaluated first

2. Arithmetic operations are performed next, in

this order:
a.

b. unary -
c. *,/

d \

e. MOD
f. + -

3. Relational operations are done next

3-29

3-30

4. Logical operations are done last, in this order:

NOT
AND
OR
XOR
EQV
IMP

Mo oo T

Operationsat the same levelin the listare performed
in left-to-right order. To change the order in which
the operations are performed, use parentheses.
Operations within parentheses are performed first.
Inside parentheses, the usual order of operations is
maintained.

Here are some sample algebraic expressions and
their BASIC counterparts.

Algebraic Expression BASIC Expression

X+2Y X+Y*2
X-Y X-Y/Z
Z
XY X*Y/Z
Z
X+Y (X+Y)/Z
Z
2 Y
(X) (X*2)"Y
Z ~ v a
<Y X~(Y"Z)
X(-Y) X*(-Y)

Note: Two consecutive operators must be
separated by parentheses, as shown in the
X*(-Y) example.

String Expressions and Operators

A string expression may be simply a string constant
or variable, or it may combine constants and
variables by using operators to produce a single
string value.

String operators are used to arrange character
strings in different ways. The two categories of string
operators are:

® Concatenation
® TFunctions

Note that although you can use the relational
operators =, <>, <, >, <=, and >= to compare two
strings, these are not considered to be “string
operators” because they produce a numeric result,
not a string result. Read through “Relational
Operators” earlier in this chapter for an explanation
of how you can compare strings using relational
operators.

9
tT
Z,
b
=
>
rﬂ
Z
]
o

Concatenation

Joining two strings together is called concatenation.
Strings are concatenated using the plus symbol (+).
For example:

Ok
10 COMPANYS = ''|BM"
2% TYPES = " Personal"

3¢ FULLNAMES = TYPES + '' Computer’
L@ PRINT COMPANYS+FULLNAMES

RUN

IBM Personal Computer

Ok

3-31

String Functions

3-32

A string function is like a numeric function except
thatitreturnsastring result. A string function canbe
used in an expression to call a predetermined
operation that is to be performed on one or more
operands. BASIChas “built-in” functions that reside
in the system, such as MID$, which returns a string
from the middle of another string, or CHR$, which
returns the character with the specified ASCII code.
All of BASIC’s built-in functions are listed under
“Functions and Variables” in the beginning of
Chapter 4. Detailed descriptions are also included in
the alphabetical section of Chapter 4.

You can also define your own functions using the
DEF FN statement. See “DEF FN Statement” in
Chapter 4.

Input and Output

Files

The remainder of this chapter contains information
on input and output (I/O) in BASIC. The following
topics are addressed:

® Files— how BASIC uses files, how to name files,
and device names

® The screen — ways to display things on the
screen, with emphasis on graphics

® Other features — clock, sound, light pen, and
joysticks

A file is a collection of information which is kept

somewhere other than in the random access memory
of the IBM Personal Computer. For example, your
information may be stored in a file on diskette or

cassette. In order to use the information, you must
open the file to tell BASIC where the information is.
Then you may use the file for input and/or output.

BASIC supports the concept of general device I/O
files. This means that any type of input/output may
be treated like I/O to a file, whether you are actually
using a cassette or diskette file, or are
communicating with another computer.

File Number: BASIC performs I/O operations
using a file number. The file number is a unique
number thatisassociated with the actual physical file
when it is opened. It identifies the path for the
collection of data. A file number may be any
number, variable, or expression ranging from 1 toz,
where 7 is the maximum number of files allowed. 7 is
4 in Cassette BASIC, and defaults to 3 in Disk and
Advanced BASIC. It may be changed, up to a
maximum of 15, by using the /F: option on the
BASIC command for Disk and Advanced BASIC.

3-33

o
m
4
e
=
>
=
E
o
o

3-34

Naming Files

The physical file is described by its file specification, ox
filespec for short.

The file specification is a string expression of the
form:

device:filename

The device name tells BASIC where to look for the
file, and the filename tells BASIC which file to look
for on that particular device. Sometimes you do not
need both device name and filename, so
specification of device and filename is optional.
Note the colon (:) indicated above. Whenever you
specify a device, you must use the colon even though
a filename is not necessarily specified. From now on
we will include the colon as part of the device name.

Note: File specification for communications
devices is slightly different. The filename is
replaced with a list of options specifying such
things as line speed. Refer to “OPEN “COM...
Statement” in Chapter 4 for details.

Remember that if you use a string constant for the
flespec, you must enclose it in quotation marks. For
example,

LOAD '"'B:ROTHERM.ARK"

Device Name: The device name consists of up to
four characters followed bya colon (:). The following
isa complete list of device names, telling what device
the name applies to, what the device can be used for
(input or output), and which versions of BASIC
support the device.

Device Name Chart

KYBD:
SCRN:
LPT1:
LPT2:
LPT3:

Keyboard. Input only, all versions of
BASIC.

Screen. Output only, all versions of
BASIC.

First printer. Output, all versions; or
random, Disk and Advanced BASIC.
Second printer. Output or random, Disk
and Advanced BASIC.

Third printer. Output or random, Disk
and Advanced BASIC.

COMMUNICATIONS DEVICES

COM1:

COM2:

First Asynchronous Communications
Adapter. Input and output, Disk and
Advanced BASIC.

Second Asynchronous Communications
Adapter. Input and output, Disk and
Advanced BASIC.

Q|
>
=
Z |
oo
o

STORAGE DEVICES

CAS1:
A:
B:

Cassette tape player. Input and output,
all versions.

First diskette drive. Input and output,
Disk and Advanced BASIC.

Second diskette drive. Inputand output,
Disk and Advanced BASIC.

Refer to “Search Order for Adapters” in “Appendix
I. Technical Information and Tips” for information
on which adapters are referred to by the printer and
communications device names.

3-35

3-36

Filename: The filename must conform to the
following rules.

For cassette files:

The name may not be more than eight
characters long.

The name may not contain colons, hex ‘00’s or
hex ‘FF’s (decimal 2555).

For diskette files, the name should conform to DOS
conventions:

The name may consist of two parts separated by
a period (.):

name. extension

The name may be from one to eight characters
long. The extension may be no more than three
characters long.

If extension is longer than three characters, the
extra characters are truncated. If name is longer
than eight characters and extension is not
included, then BASIC inserts a period after the
eighth character and uses the extra characters
(up to three) for the extension. If name is longer
than eight characters and an extension is
included, then an error occurs.

Only the following characters are allowed in
name and extension:

A through Z
0 through 9
<> ()

LI B LN

Some examples of filenames for Disk and Advanced
BASIC are:

27HAL.DAD

VDL

PROGRAM1.BAS

$$@(1).123
The following examples show how BASIC truncates
names and extensions when they are too long, as
explained above.

A23456789JKLMN becomes: A2345678.9JK

@HOME.TRUMI0 becomes: @HOME.TRU

SHERRYLYNN .BAS causes an error

OANI TVHINTD

3-37

Using the Screen

3-38

BASIC can display text, special characters, points,

lines, or more complex shapes in color or in black
and white. How much of this you can do depends on
which display adapter you have in your IBM Personal
Computer.

Display Adapters

The IBM Personal Computer has two display
adapters: the IBM Monochrome Display and Parallel
Printer Adapter, and the Colot/Graphics Monitor
Adapter.

With the IBM Monochrome Display and Parallel
Printer Adapter, you can display text in black and
white. Text refers to letters, numbers, and all the
special characters in the regular character set. You
have some capability to draw pictures with the
special line and block characters. You can also create
blinking, reverse image, invisible, highlighted, and
underscored characters by setting parameters on the
COLOR statement.

The Colot/Graphics Monitor Adapter also operates
in text mode, but it allows you to display text in 16
different colots. (You can also display in just black
and white by setting parameters on the SCREEN or
COLOR statements.) You also get complete
graphics capability to draw complex pictures. This
graphics capability makes the screen a// points
addressable in medium and high resolution. This is
more versatile than the ability to draw with the
special line and block characters which you have in
text mode. From now on, the term graphics will refer
only to this special capability of the Colot/Graphics
Monitor Adapter. The use of the extended character
set with special line and block characters will not be
considered graphics.

Text Mode

The screen can be pictured like this:

Character
- r—
position 1, 1 g

1
Border
screen

Characters are shown in 25 horizontal lines across
the screen. These lines are numbered 1 through 25,
from top to bottom. Each line has 40 character
positions (or 80, depending on how you set the
width). These are numbered 1 to 40 (or 80) from left
to right. The position numbers are used by the
LOCATE statement, and are the values returned by
the POS(0) and CSRLIN functions. For example, the
character in the upper left corner of the screen is on
line 1, position 1.

0
g9l
Z
I
=
&
-
Z
)
o

Characters are normally placed on the screen using
the PRINT statement. The characters are displayed
at the position of the cursor. Characters are
displayed from left to right on each line, from line 1
to line 24. When the cursor would normally go to
line 25 on the screen, lines 1 through 24 are scrolled
up one line, so that what was line 1 disappears from
the screen. Line 24 is then blank, and the cursor
remains on line 24 to continue printing.

3-39

3-40

Line 25 is usually used for “soft key” display (see
“KEY Statement” in Chapter4), butitis possible to
write over thisarea of the screen if you turn the “soft
key” display off. The 25th line is never scrolled by
BASIC.

Each character on the screen is composed of two
parts: foreground and background. The foreground
is the character itself. The background is the “box”
around the character. You can'set the foreground
and the background color for each character using
the COLOR statement. You canalso choose to make
characters blink.

You can use a total of 16 different colors if you have
the Colot/Graphics Monitor Adapter:

0 Black 8 Gray

1 Blue 9 Light Blue

2 Green 10 Light Green

3 Cyan 11 Light Cyan

4 Red 12 Light Red

5 Magenta 13 Light Magenta

6 Brown 14 Yellow

7 White 15 High-intensity White

The colors may vary depending on your particular
display device. Adjusting the color tuning of the
display may help get the colors to match this chart
better.

Most television sets or monitors have an area of
X3 2 . . .

overscan’ which is outside the area used for
characters. This overscan area is known as the border
screen. You can also use the COLOR statement to set
the color of the border screen.

The statements you can use to display informationin
text mode are:

CLS SCREEN
COLOR WIDTH
LOCATE WRITE
PRINT

The following functions and system variables may be
used in text mode:

CSRLIN SPC
POS TAB
SCREEN

Another special feature you get in text mode if you
have the Color/Graphics Monitor Adapter is
multiple display pages. The Colot/Graphics Monitor
Adapter hasa 16K-byte screen buffer, but text mode
needs only 2K of that (or 4K for 80 column width).
So the buffer is divided into different pages, which
can be written on and/or displayed individually.
There are 8 pages, numbered O to 7, in 40 column
width; and 4 pages, numbered 0 to 3, in 80 column
width. Refer to “SCREEN Statement” in Chapter 4
for details.

Graphics Modes

The graphics modesare available only if you have the
Color/Graphics Monitor Adapter.

You can use BASIC statements to draw in two
graphic resolutions:

® medium resolution: 320 by 200 points and 4
colors

® high resolution: 640 by 200 pointsand 2 colors

You can select which resolution you want to use with
the SCREEN statement.

3-41

o
1
Z
I3
=
>
.
E
T
o

3-42

The statements used for graphics in BASIC are:

CIRCLE PAINT
COLOR PRESET
DRAW PSET
GET PUT
LINE SCREEN

The only graphics function is:

POINT

Medium Resolution: There are 320 horizontal
pointsand 200 vertical points in medium resolution.
These points are numbered from left to right and
from top to bottom, starting with zero. That makes
the upper left corner of the screen point (0,0), and
the lower right corner point (319,199). (If you are
familiar with the usual mathematical method for
numbering coordinates, this may seem upside-down
to you.)

Medium resolution is unusual because of its color
features. When you put something on the screen in
medium resolution, you can specify a color number
of 0, 1, 2, or 3. These colors are not fixed, as are the
16 colors in text mode. You select the actual color
for color number 0 and select one of two “palettes”
for the other three colors by using the COLOR
statement. A palette is a set of three actual colors to
be associated with the color numbers 1, 2 and 3. If
you change the palette with a COLOR statement, all
the colors on the screen change to match the new
palette.

You can still display text characters on the screen
when you are in graphics mode. The size of the
characters will be the same as in text mode; thatis, 25
lines of 40 characters. In medium resolution, the
foreground will be color number 3, and the
background will be color number 0.

High Resolution: Inhigh resolution there are 640
horizontal points and 200 vertical points. As in
medium resolution, these points are numbered
starting with zero so that the lower right corner
point is (639,199).

High resolution is a little easier to describe than
medium resolution since there are only two colozs:
black and white. Black is always 0 (zero), and white is
always 1 (one).

When you display text characters in high resolution,
youget80 charactersonaline. The foreground color
is 1 (one) and the background color is O (zero). So
characters will always be white on black.

Specifying Coordinates: The graphic statements
require information about where on the screen you
want to draw. You give this information in the form
of coordinates. Coordinates are generally in the
form (%, y), wherex is the horizontal position, and y is
the vertical position. This form is known as absolute
form, and refers to the actual coordinates of the point
on the screen, without regard to the last point
referenced.

There isanother way to indicate coordinates, known
as relative form. Using this form you tell BASIC where
the pointis relative to the last point referenced. This
form looks like:

STEP (xoffset, yoffset)

You indicate inside the parentheses the gffset in the
horizontal and vertical directions from the last point
referenced.

The “last point referenced” is set by each graphics
statement. When we discuss these statements in

3-43

9)
1
Z
tm
=
>
A
E
T
O

“Chapter 4. BASIC Commands, Statements,
Functions, and Variables,” we will indicate what
each statement sets as the last point referenced.

Note: Be careful about drawing beyond the
limits of the screen with any graphics
statement; it may confuse the last point
referenced.

This example shows the use of both forms of
coordinates:

168 SCREEN 1
110 PSET (200,100) ‘absolute form
120 PSET STEP (18,-20) 'relative form

This sets two points on the screen. Their actual
coordinates are (200,100) and (210,80).

Other I/O Features

Clock

You may set and read the following system variables:

DATE$ Ten-character string which is the
system date, in the form mm-dd-yyyy.

TIME$ Eight-character string which indicates
the time as Ah:mm.:ss.
Sound and Music

You can use the following statements to create
sound on the IBM Personal Computer:

BEEP Beeps the speaker.

SOUND Makes a single sound of given
frequency and duration.

PLAY Plays music as indicated by a character
string.

Light Pen

BASIChas the following statements and functions to
allow input from a light pen.

PEN Function which tells whether or not
the pen was triggered and gives its
coordinates.

PEN Statement which enables/disables

light pen function.

ON PEN Statement to trap light pen activity.

Joysticks

Joysticks can be useful in an interactive
environment. BASIC supports two 2-dimensional
(x and y coordinate) joysticks, or four
one-dimensional paddles, each of which has a
button. (Four buttons are supported only in
Advanced BASIC.) The following statements and
functions are used for joysticks:

O
o]
Z
tr
I
>
=
Z
e
@)

STICK Function which gives the coordinates
of the joystick.

STRIG Function which gives the status of the
joystick button (up or down).

STRIG Statement which enables/disables
STRIG function.

ON STRIG Statement used to trap the button
being pressed.

STRIG(n) Statement which enables/disables the
joystick button interrupt.

Note: The light pen may only be used if you
have a Color/Graphics Monitor Adapter.
Joysticks may only be used if you have a Game
Control Adapter.

3-45

NOTES

3-46

CHAPTER 4. BASIC COMMANDS,
STATEMENTS,
FUNCTIONS, AND
VARIABLES

Contents

How to Use This Chapter 4-3
Commands et eeseneretene e 4-6
StatemMeENtS .ovvvvenernreeernnaacansaononss 4-8
Non-I/O Statementsoovveeeenenns 4-8
I/O Statementsovvieiinenenense 4-13
Functions and Variables 4-17
Numeric Functionsc.ccceveevn.. 4-17
Arithmeticcoviiiiiiiannnn. 4-17

String-Related 4-18

I/O and Miscellaneous 4-19 g

String Functions 4-21 _::

Generalcoooiiiiiiiian, 4-21 E=R

I/O and Miscellaneous 4-21 E

Z |

Alphabetical Listing of Commands, — |

Statements, Functions and Variables: <
A ittt i e 4-23
) - A 4-28
C ittt ittt e teersneesnnsssneeasossnonnes 4-34
) G 4-64
E oorttie ittt reanreneneanananaans 4-84
F oottt eetittitnenesasesassonnsennoonaasens 4-94

4-1

4-2

oo

..

..

.......................................

..

--

.......................................

.......................................

How to Use This Chapter

Purpose:

Versions:

Descriptions of all the BASIC commands,
statements, functions, and variables are included in
this chapter. BASIC’s built-in functions and
variables may be used in any program without
further definition.

The first several pages contain lists of all the
commands, statements, functions, and variables.
These lists may be useful as a quick reference. The
rest of the chapter, arranged alphabetically,
describes each command, statement, function, and
variable in more detail.

The distinctionbetweena command and a statement
is largely a matter of tradition. Commands, because
they generally operate on programs, are usually
entered in direct mode. Statements generally direct
program flow from within a program, and so are
usually entered in indirect mode as part of a program
line. Actually, most BASIC commands and
statements can be entered in either direct or indirect
mode.

The description of each command, statement,
function, or variable in this chapter is formatted as
follows:

;-]
s
;_]
e
o«

Tells what the command, statement, function, or
variable does.

Indicates which versions of BASIC allow the
command, statement, function, or variable. For
example, if you look under “CHAIN Statement” in
this chapter, you will note that after Versions: it
says:

Cassette Disk Advanced Compiler

The asterisks indicate which versions of BASIC
support the statement. This example shows that you

4-3

Format:

Remarks:

Example:

4-4

can use the CHAIN statement for programs written
in the Disk and Advanced versions of BASIC.

In this example you will notice that the asterisks
under the word “Compiler’” are in parentheses. This
means that there are differencesbetween the way the
statement works under the BASIC interpreter and
the way it works under the IBM Personal Computer
BASIC Compiler. The IBM Personal Computer
BASIC Compiler is an optional software package
available from IBM. If you have the BASIC
Compiler, the IBM Personal Computer BASIC Compiler

manual explains these differences.

Shows the correct format for the command,
statement, function, or variable. A complete
explanation of the syntax formatis presented in
the Preface. Remember to keep these rules in
mind.

® Words in capital letters are keywords and must
be entered as shown. They may be entered in
any combination of uppercase and lowercase
letters. BASIC always converts words to
uppercase (unless they are part of a quoted
string, remark, or DATA statement).

® You are to supply any items in lowercase italic
letters.

® Items in square brackets ([]) are optional.

® An ellipsis (...) indicates an item may be
repeated as many times as you wish.

® Allpunctuation exceptsquare brackets(suchas
commas, parentheses, semicolons, hyphens, or
equal signs) must be included where shown.

Describes in detail how the command, statement,
function, or variable is used.

Shows direct mode statements, sample programs, or
program segments that demonstrate the use of the
command, statement, function, or variable.

In the formats given in this chapter, some of the
parameters have been abbreviated as follows:

b VA 4 represent any numeric expressions

% j, k m, nrepresent integer expressions

%8, v$ represent string expressions
v, vf represent numeric and string variables,
respectively

If a single- or double-precision value is supplied
where an integer is required, BASIC rounds the
fractional portion and uses the resulting integer.

Functions and Variables: In the format
description, most of the functions and variables are
shown on the right side of an assighment statement.
This is to remind you that they are not used like
statements and commands. Itisnot meant to suggest
that you are limited to using them in assighment
statements. You can use them anywhere you would
use a regular variable, except on the left side of an
assignment statement. Any exceptions are noted in
the particular section describing the function or
variable. A few of the functions are limited to being
used in PRINT statements; these are shown as part
of a PRINT statement.

»
<
>
—
t
=
52
Z
~
w

Note: Only integer and single-precision
results are returned by the numeric functions,
except where indicated otherwise.

4-5

Commands

The following is a list of all the commands used in
BASIC. The syntax of each command is shown, but
not always in its entirety. You can find detailed
information about each command in the
alphabetical part of this chapter. You may also want
to check the next section in this chapter,
“Statements,” for a list of the BASIC statements.

Command Action

AUTO number, increment
Generates line numbers
automatically.

BLOAD filespec,offset
Loads binary data (such as a
machine language program)
into memory.

BSAVE filespec,offset,length
Saves binary data.

CLEAR ,n,m Clears program variables, and
optionally sets memory area.

CONT Continues program
execution.

DELETE linel-line2 Deletes specified program
lines.

EDIT line Displays a program line for
changing.

FILES filespec Lists files in the diskette
directory that match a file
specification.

KILL filespec Erases a diskette file.

Command Action

LIST linel-line2,filespec
Lists program lines on the
screen or to the specified file.

LLIST linel-line2 Lists program lines on the
printer.

LOAD filespec Loads a program file. Can
include the R option to runit.

MERGE filespec Merges a saved program with
the program in memory.

NAME filespec AS filename
Renames a diskette file.

NEW Erases the current program
and variables.

RENUM newnum,oldnum,increment
Renumbers program lines.

RESET Reinitializes diskette
information. Similar to

CLOSE.

RUN filespec Executes a program. The R
option may be used to keep
files open.

RUN line Runs the program in memory
starting at the specified line.

SAVE filespec Saves the program in memory
under the given filename. A
or P option saves in ASCII or
protected format.

SYSTEM Ends BASIC. Closes all files
and returns to DOS.

TRON, TROFF Turns trace on or off.

4-7

»
e
>
=
e2!
=
tm
Z
—
wn

Statements

This section lists all the BASIC statements
alphabetically in two categories: I/O (Input/Output)
Statements and Non-I/O Statements. The list tells
what each statement does and shows the syntax. For
the more complex statements the syntax shown may
not be complete. You can find detailed information
about each statement in the alphabetical portion of
this chapter, later on.

You may also want to look at the previous section,
“Commands,” for a list of the BASIC commands.

Non-I/O Statements

4-8

Statement Action

CALL numvar(variable list)
Calls a machine language
program.

CHAIN filespec Calls a program and passes
variables to it. Other options
allow you to use overlays,
begin running at a line other
than the first line, pass all
variables, or delete an
overlay.

COM(n) ON/OFF/STOP
Enables and disables trapping
of communications activity.

COMMON list of variables
Passes variables to a chained
program.

DATE$ = x$§ Sets the date.

DEF FNname(arg list)=expression
Defines a numeric or string
function.

Statement Action

DEFtype ranges of letters
Defines default variable
types, where #ype is INT,
SNG, DBL, or STR.

DEF SEG=address Defines current segment of
memory.

DEF USRn=offset Defines starting address for
machine language subroutine
n.

DIM list of subscripted variables
Declares maximum subscript
values for arrays and allocates
space for them.

END Stops the program, closes all
files, and returns to command
level.

ERASE arraynames Eliminates arrays from a
program.

ERROR n Simulates error number n.

FOR variable=x TO y STEP z
Repeats program lines a
number of times. The NEXT
statement closes the loop.

n
!
>
—
m
=
i
Z,
—
»

GOSUB line Calls a subroutine by
branching to the specified
line. The RETURN
statement returns from the
subroutine.

GOTO line Branches to the specified

line.

4-9

4-10

Statement

Action

IF expression THEN clause ELSE clause

KEY ON/OFF/LIST

KEY n, x$

Performs the statement(s) in
the THEN clause if
expression is true (nonzero).
Otherwise, performs the
ELSE clause or goes to the
next line.

Displays soft keys or turns
display off.

Sets soft key n to the value of
the string x$.

KEY(n) ON/OFF/STOP

Enables/disables trapping of
function keys or cursor
control keys.

LET variable=exptession

MID$(v$,n,m)=y$

MOTOR state

NEXT variable

Assigns the value of the
expression to the variable.

Replaces part of the variable
v$ with the string y$, starting
at position n and replacing m
characters.

Turns cassette motor on if
state is nonzero, off if state is
zero.

Closes a FOR...NEXT loop
(see FOR).

ON COM(n) GOSUB line

Enables trap routine for
communications activity.

ON ERROR GOTO line

Enables error trap routine
beginning at line specified.

Statement Action

ON n GOSUB line list
Branches to subroutine
specified by n.

ON n GOTO line list
Branches to statement
specified by n.

ON KEY(n) GOSUB line
Enables trap routine for the
specified function key or
cursor control key.

ON PEN GOSUB line
Enables trap routine for light
pen.

ON STRIG(n) GOSUB line
Enables trap routine for
joystick button.

OPTION BASE n Specifies the minimum value

for array subscripts. @

>

PEN ON/OFF/STOP Enables/disables the light pen gl
function. E

&

POKE n,m Puts byte m into memory at 5
w

the location specified by n.

RANDOMIZE n Reseeds the random number

generator.
REM remark Includes remark in program.
RESTORE line Resets DATA pointer so
DATA statements may be
reread.

RESUME line/NEXT/0
Returns from error trap
routine.

4-11

4-12

Statement
RETURN line
STOP

STRIG ON/OFF

Action

Returns from subroutine.
Stops program execution,
prints a break message, and

returns to command level.

Enables/disables joystick
button function.

STRIG(n) ON/OFF/STOP

SWAP variablel,vari

TIME$ = x$

WAIT port,n,m

WEND

WHILE expression

Enables/disables joystick
button trapping.

able2

Exchanges values of two
variables.

Sets the time.

Suspends program execution
until the specified port
develops the specitied bit
pattern.

Closes a WHILE... WEND
loop (see WHILE).

Begins a loop which executes
as long as the expression is
true.

I/O Statements

Statement Action
BEEP Beeps the speaker.
CIRCLE (x,y),r Draws a circle with center

(x,y) and radius r. Other
options allow you to specify a
part of the circle to be drawn,
or to change the aspect ratio
to draw an ellipse.

CLOSE #f Closes a file.
CLS Clears the screen.

COLOR foreground,background,border
In text mode, sets colors for
foreground, background, and
the border screen.

COLOR background,palette
In graphics mode, sets
background color and palette
of foreground colors.

DATA list of constants
Creates a data table to be used
by READ statements.

w
—
>
—
es]
=
|ws]
Z
=
%)

DRAW string Draws a figure as specified by
string.

FIELD #f,width AS stringvat...
Defines fields ina random file

buffer.

GET #f,number Readsarecord fromarandom
file.

GET (x1,y1)-(x2,y2),arrayname

Reads graphic information
from screen.

4-13

4-14

Statement Action

INPUT “prompt”;variable list
Reads data from the keyboard.

INPUT #f,variable list
Reads data from file f.

LINE (x1,y1)-(x2,y2) Draws a line on the screen.
Other parameters allow you
to draw a box, and fill the box
in.

LINE INPUT “prompt”;stringvar
Reads an entire line from the
keyboard, ignoring commas
or other delimiters.

LINE INPUT #f,stringvar
Reads an entire line from a

file.

LOCATE row,col Positions the cursor. Other
parameters allow you to
define the size of the cursor
and whether it is visible or
not.

LPRINT list of expressions
Prints data on the printer.

LPRINT USING v$;list of expressions
Prints data on the printer
using the format specified by

v$.
LSET stringvar=x$ Left-justifies a string in a field.

OPEN filespec FOR mode AS #f
Opens the file for the mode
specified. Another option
sets the record length for
random files.

Statement Action

OPEN mode,#{,filespec,recl
Alternative form of preceding
OPEN.

OPEN “COMn:options” AS #f
Opens file for

communications.

OUT n,m Outputs the byte m to the
machine port n.

PAINT (x,y),paint,boundary
Fills in an area on the screen
defined by boundary with the
paint color.

PLAY string Plays music as specified by
string.

PRINT list of expressions
Displays data on the screen.

PRINT USING v$,list of expressions
Displays data using the
format specified by v$.

PRINT #f, list of exps
' Writes the list of expressions
to file f.

»
~
-
=
m
=
™
Z
o
w

PRINT #f, USING v$;list of exps
Writes data to file f using the
format specified by v§.

PRESET (x,y) Drawsapointonthescreenin
background color. See PSET:

PSET (x,y),color Draws a point on the screen,
in the foreground color if
color is not specified.

PUT #f,number Writes data from a random
file buffer to the file.

4-15

4-16

Statement Action

PUT (x,y),array,action
' Writes graphic information
to the screen.

READ variable list Retrieves information from
the data table created by
DATA statements.

RSET stringvar=x$ Right-justifies a string in a
field. See LSET.

SCREEN mode,burst,apage,vpage
Sets screen mode, color on or
off, display page, and active
page.

SOUND freq,duration
Generates sound through the
speaker.

WIDTH size Sets screen width. Other
options allow you to specify
the width of a printer or a
communications file.

WRITE list of expressions
Outputs data on the screen.

WRITE #f, list of expressions
Outputs data to a file.

Functions and Variables

The built-in functions and variables available in
BASIC are listed below, grouped into two general
categories: numeric functions, or those which
return a numeric result; and string functions, or
those which return a string result.

Each category is further subdivided according to the
usage of the functions. The numeric functions are
divided into general arithmetic (ot algebraic)
functions; string-related functions, which operate
on strings; and input/output and miscellaneous
functions. The string functions are separated into
general string functions, and input/output and
miscellaneous string functions.

Note: Only integer and single-precision
results are returned by the numeric functions,
except where indicated otherwise.

Numeric Functions (return a numeric
value)

%
=~
ARITHMETIC 5
=k
Function Result E
Z,
ABS(x) Returns the absolute value of 7.
X. :
ATN(x) Returns the arctangent (in
radians) of x.
CDBL(x) Converts x to a
double-precision number.
CINT(x) Converts x to an integer by
rounding.
COS(x) Returns the cosine of angle x,
where x is in radians.
CSNG(x) Converts x to a

single-precision numbert.

4-17

4-18

Function
EXP(x)
FIX(x)
INT(x)

LOG(x)

RND(x)
SGN(x)
SIN(x)

SQR(x)
TAN(x)

Result
Raises ¢ to the x power.
Truncates x to an integer.

Returns the largestinteger less
than or equal to x.

Returns the natural logorithm
of x.

Returns a random number.
Returns the sign of x.

Returns the sine of angle x,
where x is in radians.

Returns the square root of x.

Returns the tangent of angle x,
where x is in radians.

For information on how to calculate mathematical
functions which are not included in this list, refer to
“Appendix E. Mathematical Functions.”

STRING-RELATED

Function

ASC(x$)

Result

Returns the ASCII code for the
first character in x$.

CVI(x$), CVS(x$), CVD(x$)

INSTR(n,x$,y$)

LEN(x$)
VAL(x$)

Converts x$ toanumber of the
indicated precision.

Returns the position of first
occurrence of y$ in x$ starting
at position n.

Returns the length of x$.

Returns the numeric value of

x$.

I/O and MISCELLANEOUS

Function

CSRLIN

EOF(f)

ERL

ERR

FRE(x$)

INP(n)
LOC(f)

LOF(f)

LPOS(n)

Result

Returns the vertical line
position of the cursor.

Indicates an end of file
condition on file f.

Returns the line number
where the last error occurred
(see ERR).

Returns the error code
number of the last error.

Returns the amount of free
space in memory not currently

in use by BASIC.
Reads a byte from port n.
Returns the “location” of file f:

® next record number of
random file

® number of sectors read or
written for sequential file

® number of characters in
communications input

buffer

n
—
>
=
o
=
S
Z
—
»

Returns the length of file f:

® number of bytes (in
multiples of 128) in
sequential or random file

® number of bytes free in
communications input

buffer

Returns the carriage position
of the printer.

4-19

4-20

Function

PEEK(n)

PEN(n)
POINT(x,y)

POS(n)

Result

Reads the byte in memory
location n.

Reads the light pen.

Returns the color of point (x,y)
(graphics mode).

Returns the cursor column
position.

SCREEN(row,col,z) Returns the character or color

STICK(n)

STRIG(n)

USRn(x)

VARPTR(variable)

VARPTR(#1)

at position (row,col).

Returns the coordinates of a
joystick.

Returns the state of a joystick
button.

Calls a machine language
subroutine with argument x.

Returns the address of the
variable in memory.

Returns the address of the file
control block for file f.

String Functions (return a string value)

GENERAL
Function

CHR$(n)

LEFT$(x$,n)

MID$(x$,n,m)

RIGHT$(x$,n)

SPACE$(n)

STRING#$(n,m)

STRINGS$(n,x$)

I/O and MISCELLANEOUS

Function
DATE$
HEX$(n)

INKEY$

INPUTS$(n,#f)

Result

Returns the character with
ASCII code n.

Returns the leftmost n
characters of x$.

Returns m charactets from x$
starting at position n.

Returns the rightmost n
characters of x$.

Returns a string of n spaces.
Returns the character with
ASCII value m, repeated n

times.

Returns the first character of
x$ repeated n times.

Result

W
.
o
~
2

=
2
Z
=1
92]

Returns the system date.

Converts n to a hexadecimal
string.

Reads a character from the
keyboard.

Reads n characters from file f.

4-21

4-22

Function Result

MKI$(x), MKS$(x), MKD$(x)
Converts x in indicated
precision to proper length

string.
OCT$(n) Converts n to an octal string.
SPC(n) Prints n spaces in a PRINT or
LPRINT statement.
STR$(x) Converts x to a string value.
TAB(n) Tabs to position n in a PRINT
or LPRINT statement.
TIME$ Returns the system time.
VARPTR$(v) Returns a three-byte string

containing the type of
variable, and the address of the
variable in memory.

ABS
Function

Purpose:

Versions:

Format:

Remarks:

Example:

Returns the absolute value of the expression x.

Cassette Disk Advanced Compiler

Hkok ek kK ok ok

» = ABS(x)

x¥ may be any numeric expression.

The absolute value of a number is always positive or
Zero.

0k
PRINT ABS(7%(-5))

35
Ok

The absolute value of -35 is positive 35.

72
—
>
=
tT!
=
oo
Z
=
»

4-23

ASC

Function

Purpose:

Versions:

Format:

Remarks:

Example:

4-24

Returns the ASCII code for the first character of the
string xf.

Cassette Disk Advanced Compiler

&k ok dokok Fokk Hkk

v = ASC(xf)

x%§ may be any string expression.

The result of the ASC function is a numerical value
that is the ASCII code of the first character of the
string x§. (See “Appendix G. ASCII Character
Codes” for ASCII codes.) If xf is null, an “Illegal
function call” error is returned.

The CHR$ function is the inverse of the ASC
function, and it converts the ASCII code to a
character.

Ok

10 X$ = "TEST"
2 PRINT ASC(XS)
RUN

84

Ok

This example shows that the ASCII code for a capital
T is 84. Print ASC(“TEST”) would work just as well.

ATN
Function

Purpose:

Versions:

Format:

Remarks:

Example:

Returns the arctangent of x.

Cassette Disk Advanced Compiler

ok Hkk Hk K &k

v = ATN(x)

¥ may be a numeric expression of any numeric
type, but the evaluation of ATN is always
performed in single precision.

The ATN function returns the angle whose tangent
isx. The result is a value in radians in the range -PI/2
to PI/2, where PI=3.141593.

If you want to convert radians to degrees, g

multiply by 180/PL =

=

=

Ok %

PRINT ATN(3) =

1.249¢L6 ¥
Ok

10 P1=3.141593
20 RADIANS=ATN(1)
30 DEGREES=RADIANS*18(/P |
L@ PRINT RADIANS,DEGREES
RUN

.7853983 45
Ok

The first example shows the use of the ATN function
to calculate the arctangent of 3. The second example
tinds the angle whose tangent is 1. It is .7853983
radians, or 45 degrees.

4-25

AUTO

Command

Purpose:

Versions:

Format:

Remarks:

4-26

Generates a line number automatically each time
you press Enter.

Cassette Disk Advanced Compiler

Hkk L X k3

AUTO [rumber] [, [increment] |

number is the number which will be used to start
numbering lines. A period (.) may be
used in place of the line number to
indicate the current line.

increment is the value thatwillbe added to each line
number to get the next line number.

Numbering begins at number and increments each
subsequent line number by sncrement. 1f both values
are omitted, the defaultis 10,10. If namber isfollowed
by a comma but zncrement is not specified, the last
increment specified in an AUTO command is
assumed. If zumber is omitted but Zncrement is
included, then line numbering begins with 0.

AUTO is usually used for entering programs. It
releases you from having to type each line number.

Example:

AUTO
Command

If AUTO generates a line number that already exists
in the program, an asterisk (*) is printed after the
number to warn you that any input will replace the
existing line. However, if you press Enter |
immediately after the asterisk, the existing line will
not-be replaced and AUTO will generate the next
line number.

AUTO ends when you press Ctrl-Break. The line in

which Ctrl-Break is typed is not saved. After a

Ctrl-Break, BASIC returns to command level.
Note: When in AUTO mode, you may make
changes only to the current line. If you want to

change another line on the screen, be sure to
exit AUTO by first pressing Ctrl-Break.

AUTO

This command generates line numbers 10, 20, 30,
40, ...

AUTO 100,50

This generates line numbers 100, 150, 200, ...

AUTO 568,
This generates line numbers 500, 550, 600, 650, ...

The increment is 50 since 50 was the increment in
the previous AUTO command.

AUTO ,20

This generates line numbers 0, 20, 40, 60, ...

4-27

w
=~
>
-
tr1
=
™
Z
~
»

BEEP

Statement

Purpose:

Vetrsions:

Format:

Remarks:

Example:

4-28

Beeps the speaker.

Cassette Disk Advanced Compiler

sekk dedkook ek dekook

BEEP
The BEEP statement sounds the speaker at 800 Hz
for 1/4 second. BEEP has the same effect as:

PRINT CHRS(7);

2430 IF X < 2@ THEN BEEP

In this example, the program checks to see if X is out
of range. If it is, the computer “complains” by
beeping.

BLOAD
Command

Purpose: Loads a memory image file into memory.

Versions: Cassette Disk Advanced Compiler

Format:

Hkk ek *ksieok Hokk

BLOAD filespec [,offset]

Remarks: filespec s a string expression for the file

specification. It must conform to the rules
outlined under “Naming Files” in Chapter
3, otherwise a “‘Bad file name” error occurs
and the load is cancelled.

offset is 2 numeric expression in the range 0 to
65535. This is the address at which loading
is to start, specified as an offset into the
segment declared by the last DEF SEG

statement.

If offset is omitted, the offset specified at BSAVE is
assumed. That is, the file is loaded into the same
location it was saved from.

2]
]
>
=
o)
=
tm
Z
~
w

When a BLOAD command is executed, the named
file is loaded into memory starting at the specified
location. If the file is to be loaded from the device
CAS1:, the cassette motor is turned on
automatically.

If you are using Cassette BASIC and the device
named is omitted, CAS1: is assumed. CAS1: is the
only allowable device for BLOAD in Cassette
BASIC. If you are using Disk or Advanced BASIC
and the device name is omitted, the DOS default
diskette drive is used.

4-29

BLOAD
Command

4-30

BLOAD and BSAVE are useful for loading and
saving machine language programs. (You may
perform machine language programs from within a
BASIC program by using the CALL statement.)
However, BLOAD and BSAVE are not restricted to
machine language programs. Any segment may be
specified as the target or source for these statements
via the DEF SEG statement. You have a useful way of
saving and displaying screen images: save from or
load to the screen buffer.

Warning:

BASIC does not do any checking on the address.
That is, it is possible to BLOAD anywhere in
memory. You should not BLOAD over BASIC’s
stack, BASIC’s variable area, or your BASIC
program.

Notes when using CAS1:

1. If you enter the BLOAD command in direct
mode, the file names on the tape will be
displayed on the screen followed by a period (.)
and a single letter indicating the type of file.
This is followed by the message “Skipped.” for
the files not matching the named file, and
“Found.” when the named file is found. Types
of files and the associated letter are:

.B for BASIC programs in internal format
(created with SAVE command)

P for protected BASIC programs in internal
format (created with SAVE ,P command)

.A for BASIC programs in ASCII format
(created with SAVE ,A command)

.M for memory image files (created with
BSAVE command)

.D fordatafiles(created by OPEN followed by
output statements)

Example:

BLOAD
Command

If the BLOAD command is executed ina BASIC
program, the file names skipped and found are
not displayed on the screen.

2. You may press Ctrl-Break any time during
BLOAD. This will cause BASIC to exit the
search and return to direct mode between files
or after a time-out period. Previous memory
contents do not change.

3. If CAS1: is specified as the device and the
filename is omitted, the next memory image
(.M) file on the tape is loaded.

10 'load the screen buffer

20 'point SEG at screen buffer

3¢ DEF SEG= &HBB@®

L '"load PiCTURE into screen buffer
50 BLOAD ''PICTURE'",(

This example loads the screen buffer for the
Colot/Graphics Monitor Adapter, which is at
absolute address hex B8000. If you were loading the
screen buffer for the IBM Monochrome Display and
Parallel Printer Adapter, you would have to change
line 30 to read &HBOOO (the actual address is hex
B0000). Note that the DEF SEG statement in 30 and
the offset of 0 in 50 is wise. This assures that the
correct address is used.

»
~
o
2 |
oo
Z 3
=
Zh

The example for BSAVE in the next section
illustrates how PICTURE was saved.

4-31

BSAVE
Command

Purpose:

Versions:

Format:

Saves portions of the computer’s memory on the
specified device.

Cassette Disk Advanced Compiler

desksk Hkk sHeskok ok ok

BSAVE filespec, offset, length

Remarks: filespec is a string expression for the file

4-32

specification. It must conform to the rules
outlined under “Naming Files” in Chapter
3; otherwise, a “‘Bad file name” error
occurs and the save is cancelled.

offset is a numeric expression in the range 0 to
65535. This is the offset into the segment
declared by the last DEF SEG. Saving will
start from this position.

length is a numeric expression in the range 1 to
65535. This is the length of the memory
image to be saved.

If offset or length is omitted, a “Syntax error” will
occur and the save will be cancelled.

If the device name is omitted in Cassette BASIC,
CAS1: isassumed. CAS1: is the only allowable device
for BSAVE in Cassette BASIC. In Disk and Advanced
BASIC, if the device name is omitted, the DOS
default diskette drive is used.

If you are saving the CAS1:, the cassette motor will
be turned on and the memory image file will be
immediately written to the tape.

Example:

BSAVE
Command

BLOAD and BSAVE are useful for loading and
saving machine language programs (which can be
called using the CALL statement). However,
BLOAD and BSAVE are not restricted to machine
language programs. By using the DEF SEG
statement, any segment may be specified as the
target or source for these statements. For example,
you can save an image of the screen by doing a
BSAVE of the screen buffer.

19 'Save the color screen buffer
15 'point segment at screen buffer
2¢) DEF SEG= &HBS8@@

25 'save buffer in file PICTURE

3¢ BSAVE "'PICTURE",@,sHLBET

As explained under “BLOAD Command” in the
previous section, the address of the 16K screen
buffer for the Colot/Graphics Monitor Adapter is
hex B8000. The address of the 4K screen buffer for
the IBM Monochrome Display and Parallel Printer
Adapter is hex B0000.

The DEF SEG statement must be used to set up the
segment address to the start of the screen buffer.
Offset of 0 and length & H4000 specifies that the
entire 16K screen buffer is to be saved.

»

~
>

—
m
=

m 4
Z

p—] i
%

4-33

CALL

Statement

Purpose:

Versions:

Format:

Remarks:

Example:

4-34

Calls a machine language subroutine.

Cassette Disk Advanced Compiler

CALL numvar | (variable |variable]...)]

numvar is the name of a numeric variable. The
value of the variable indicates the starting
memory address of the subroutine being
called as an offset into the current segment

of memory (asdefined by the last DEF SEG
statement).

variable is the name of a variable which is to be
passed as an argument to the machine
language subroutine.

The CALL statement is one way of interfacing
machine language programs with BASIC. The other
way is by using the USR function. Refer to
“Appendix C. Machine Language Subroutines” for
specific considerations about using machine
language subroutines.

10¢ DEF SEG=&H8@FQ
11¢ 0Z=¢
12¢ CALL 0Z(A,BS,C)

Line 100 sets the segment tolocation hex80000. OZ
is set to zero so that the call to OZ will execute the
subroutine at location hex 80000. The variables A,
B$, and C are passed as arguments to the machine
language subroutine.

CDBL
Function

Purpose:

Vetsions:

Format:

Remarks:

Example:

Converts x to a double-precision number.

Cassette Disk Advanced Compiler

Hk % ET T ok LT

» = CDBL(x)

x may be any numeric expression.

Rules for converting from one numeric precision to
another are followed as explained in “How BASIC
Converts Numbers from One Precision to Another”
in Chapter 3. Refer also to the CINT and CSNG
functions for converting numbers to integer and
single-precision.

B
Ok >
19 A = 45k 67 =
20 PRINT A;CDBL(A) =
RUN o

Z
Lsh 67 L454.6699829101563 -
ok @

The value of CDBL(A) is only accurate to the second
decimal place after rounding. The extra digits have
no meaning. This is because only two decimal places
of accuracy were supplied with A.

4-35

CHAIN
Statement

Purpose:

Versions:

Format:

Transfers control to another program, and passes
variables to it from the current program.

Cassette Disk Advanced Compiler

CHAIN [MERGE] filespec [,[/ine] [,|ALL]
[, DELETE range]]]

Remarks: filespec follows the rules for file specifications

4-36

outlined in “Naming Files” in Chapter 3. The
filename is the name of the program that is
transferred to. Example:

CHAIN "A:PROGT"

line is a line number or an expression that evaluates
to a line number in the chained-to program. It
specifies the line at which the chained-to program is
to begin running. If itis omitted, execution beginsat
the first line in the chained-to program. Example:

CHAIN "A:PROG1'', 1000

line (1000 in this example) is not affected by a
RENUM command. If PROGI1 is renumbered, this
example CHAIN statement should be changed to
point to the new line number.

ALL specifies that every variable in the current
program is to be passed to the chained-to program. If
the ALL option is omitted, you must include a
COMMON statement in the chaining program to
pass variables to the chained-to program. See
“COMMON Statement” in this chapter. Example:

CHAIN "A:PROG1',1008,ALL

CHAIN

Statement

MERGE brings a section of code into the BASIC
program as an overlay. That is, a MERGE operation
is performed with the chaining program and the
chained-to program. The chained-to program must
be an ASCII file if it is to be merged. Example:

CHAIN MERGE "A:OVRLAY'', 1000

After using an overlay, you will usually want to
delete it so that a new overlay may be broughtin. To
do this, use the DELETE option, which behaves like
the DELETE command. As in the DELETE
command, the line numbers specified as the firstand
last line of the range must exist, or an “Illegal
function call” error occurs. Example:

CHAIN MERGE '"'A:OVRLAY2'', 1000 ,DELETE 100@-5800

This example will delete lines 1000 through 5000 of
the chaining program before loading in the overlay
(chained-to program). The line numbers in range are
affected by the RENUM command.

Notes:
1. The CHAIN statement leaves files open.

2. The CHAIN statement with MERGE option
preserves the current OPTION BASE setting.

3. If the MERGE option is omitted, the OPTION
BASE setting is not preserved in the chained-to
program. Also, without MERGE, CHAIN does
not preserve variable types or user-defined
functions for use by the chained-to program.
That is, any DEFINT, DEFSNG, DEFDBL,
DEFSTR, or DEF EN statements containing
shared variables must be restated in the chained
program.

4-37

«]
=
>
=
g
=
m
Z
-
&

CHR$

Function

Purpose:

Versions:

Format:

Remarks:

Example:

4-38

Converts an ASCII code to its character equivalent.

Cassette Disk Advanced Compiler

ok ok kK shskok Rk ok

4§ = CHR$(n)

must be in the range 0 to 255.

The CHRS$ function returns the one-character string
with ASCII code #. (ASCII codes are listed in
“Appendix G. ASCII Character Codes.”) CHR$ is
commonly used to send a special character to the
screen or printer. For instance, the BEL character,
which beeps the speaker, might be included as
CHR$(7) as a preface to an error message (instead of
using BEEP). Look under “ASC Function,” earlierin
this chapter, to see how to convert a character back
to its ASCII code.

Ok

PRINT CHRS(66)
B

0k

The next example sets function key F1 to the string
“AUTO” joined with Enter. This isa good way to set
the function keys so the Enter is automatically done
for you when you press the function key.

Ok
KEY 1,"AUTO"+CHRS{13)
0k

CHR$
Function

The following example is a program which shows all
the displayable characters, along with their ASCII
codes, on the screen in 80-column width. it can be
used with either the IBM Monochrome Display and
Parallel Printer Adapter or the Color/Graphics
Monitor Adapter.

19 CLS

2¢ FOR I1=1 TO 255

3¢ ' ignore nondisplayable characters

Lg 1F (1>6 AND I<14) OR (1>27 AND [<32) THEN 100
5@ COLOR @,7 ' black on white

60 PRINT USING *“'###"; | ; ' 3-digit ASCII code
78 COLOR 7,8 ' white on black

80 PRINT ' 's CHRS(1); '

9% IF POS(@)>75 THEN PRINT ' go to next line

100 NEXT |

»
=]
>
=
=
=
gl
Z,
~
%

4-39

CINT

Function

Purpose:

Versions:

Format:

Remarks:

Example:

4-40

Converts x to an integer.

Cassette Disk Advanced Compiler

Rk sk ok k okk skkok
v = CINT(x)
x may be any numeric expression. If x is not in

the range -32768 to 32767, an “Overflow”
error occurs.

x is converted to an integer by rounding the
fractional portion.

See the FIX and INT functions, both of which also
return integers. See also the CDBL and CSNG
functions for converting numbers to single- or
double-precision.

ok
PRINT CINT(45.67)
46
0k
PRINT CINT(-2.89)
-3
Ok

Observe in both examples how rounding occurs.

CIRCLE
Statement

Purpose:

Versions:

Format:

Remarks:

To draw an ellipse on the screen with center (x, y) and
radius 7.

Cassette Disk Advanced Compiler

Heksk sk

Graphics mode only.
CIRCLE (%9),r [,color |,start,end [aspect]]]

(%) are the coordinates of the center of the
ellipse. The coordinates may be given in
either absolute or relative form. See
“Specifying Coordinates” under
“Graphics Modes” in Chapter 3.

r is the radius (major axis) of the ellipse in
points.

color isa number which specifies the color of the |
ellipse, in the range 0 to 3. In medium
resolution, color selects the color from the
current palette as defined by the COLOR
statement. O is the background color. The
default is the foreground color, color
number 3. In high resolution, a color of 0
(zero) indicates black, and the default of 1
(one) indicates white.

n
—
>
=
i
=
5
Z
.
»

Start, are angles in radians and may range from
end -2*PI to 2*PI, where PI=3.141593.

aspect is a numeric expression.

4-41

CIRCLE
Statement

4-42

start and end specify where the drawing of the ellipse
will begin and end. The angles ate positioned in the
standard mathematical way, with O to the right and
going counterclockwise:

P1/2
Pl 0,2%P1

3*Pi/2

If the start or end angle is negative (-0 is notallowed),
the ellipse will be connected to the center point with
a line, and the angles will be treated as if they were
positive (note that this is not the same as adding

2*PI). The start angle may be greater or less than the
end angle. For example,

18 P1=3.141593
20 SCREEN 1

3¢ CIRCLE (160,10¢),60,,-P1,-P1/2

will draw a part of a circle similar to the following:

aspect affects the ratio of the x-radius to the y-radius.
The default foraspect is 5/6 in medium resolutionand
5/12 in high resolution. These values give a visual

circle assuming the standard screen aspect ratio of
4/3.

Example:

CIRCLE
Statement

Ifaspect is less than one, thenr is the x-radius. That s,
the radius is measured in points in the horizontal
direction. If aspect is greater than one, then r is the
y-radius. For example,

10 SCREEN 1
20 CIRCLE (16@,100),60,,,,5/18

will draw an ellipse like this:

In many cases, an aspect of 1 (one) will give nicer
looking circles in medium resolution. This will also
cause the circle to be drawn somewhat faster.

The last point referenced after a circle is drawn is the
center of the circle.

Points that are off the screen are not drawn by
CIRCLE.

72]
=
>
=
i
=
]
Z
~
w

The following example draws a face.

10 P1=3.141593

20 SCREEN 1 ' medium res. graphics

3¢ COLOR @,1 ' black background, palette 1
Ly 'two circles in color 1 (cyan)

50 CIRCLE (120,50),10, 1

60 CIRCLE (200,50),18,1

78 'two horizontal ellipses

8¢ CIRCLE (12¢,58),30,,,,5/18

9¢ CIRCLE (2¢¢,59),30,,,,5/18

18¢ ‘'arc in color 2 (magenta)

110 CIRCLE (16¢,0),158,2, 1.3%P|, 1.7%P|
12¢ 'arc, one side connected to center

130 CIRCLE (160,52),5@,, 1.4*PI, -1.6%P|
4-43

CLEAR
Command

Purpose:

Versions:

Format:

Remarks:

Sets all numeric variables to zero and all string
variables to null. Options set the end of memory and
the amount of stack space.

Cassette Disk Advanced Compiler

CLEAR [,[#] [,m]]

n is a byte count which, if specified, sets the
maximum number of bytes for the BASIC
workspace (where your program and data are
stored, along with the interpreter workarea).
You would probably include 7 if you need to
reserve space in storage for machine language
programs.

m sets aside stack space for BASIC. The defaultis
512 bytes, or one-eighth of the available
memory (whichever is smaller). You may want
to include 7 if you use a lot of nested GOSUB
statements or FOR...NEXT loops in your
program, or if you use PAINT to do complex
scenes.

CLEAR frees all memory used for data without
erasing the program which is currently in memory.
After a CLEAR, arrays are undefined; numeric
variables have a value of zero; string variables havea
null value; and any information set with any DEF
statement is lost. (This includes DEF FN, DEF SEG,
and DEF USR, as well as DEFINT, DEFDBL,
DEFSNG, and DEFSTR.)

Example:

CLEAR
Command

Executing a CLEAR command turns off any sound
that is running and resets to Music Foreground.
Also, PEN and STRIG are reset to OFF.

The ERASE statement may be useful to free some
memory without erasing all the data in the program.
It erases only specified arrays from the work area.

Refer to “ERASE Statement” in this chapter for
details.

This example clears all data from memory (without
erasing the program):
CLEAR

The next example clears the data and sets the
maximum workspace size to 32K-bytes:

CLEAR ,32768

The next example clears the data and sets the size of
the stack to 2000 bytes:

CLEAR ,,200¢

n
]
>
—
r
=
m
Z
—
»

The last example clears data, sets the maximum
workspace for BASIC to 32K-bytes, and sets the
stack size to 2000 bytes:

CLEAR ,32768,2000

4-45

CLOSE
Statement

Purpose:

Vetrsions:

Format:

Concludes I/O to a device or file.

Cassette Disk Advanced Compiler

*okok &%k Hesk dokk

CLOSE [[#] félenum [,[#] filenum]...]

Remarks: filenum is the number used on the OPEN

4-46

statement.

The association between a particular file or device
and its file number stops when CLOSE is executed.
Subsequent I/O operations specifying that file
number will be invalid. The file or device may be
opened again using the same or a different file
number; or the file number may be reused to open
any device or file.

A CLOSE to a file or device opened for sequential
output causes the final buffer to be written to the file
or device.

A CLOSE with no file numbers specified causes all
devices and files that have been opened to be closed.

Executing an END, NEW, RESET, SYSTEM or
RUN without the R option causes all open files and
devices to be automatically closed. STOP does not
close any files or devices.

Refer also to “OPEN Statement” in this chapter for
information about opening files.

CLOSE

Statement

Example: 100 CLOSE 1,#2,#3

Causes the files and devices associated with file
numbers 1, 2, and 3 to be closed. '

20¢ CLOSE

Causes all open devices and files to be closed.

7
=
>
~
5

=
g2
Z
~
»

4-47

CLS

Statement

Purpose:

Versions:

Format:

Remarks:

Example:

4-48

Clears the screen.

Cassette Disk Advanced Compiler

ddksk Hokk Rk okok

CLS

If the screen is in text mode, the active page (see
“SCREEN Statement” in this chapter) is cleared to
the background color (see “COLOR Statement,”
also in this chapter).

If the screen is in graphics mode (medium or high
resolution), the entire screen buffer is cleared to the
background color.

The CLS statement also returns the cursor to the
home position. In text mode, this means the cursor
islocated in the upperleft-hand corner of the screen.
In graphics mode, this means the “last referenced
point” for future graphics statements is the point in
the center of the screen ((160,100) in medium
resolution, (320,100) in high resolution).

Changing the screen mode or width by using the
SCREEN or WIDTH statements also clears the
screen. The screen may also be cleared by pressing
Ctrl-Home.

1@ COLOR 14,1
20 CLS

With the Color/Graphics Monitor Adapter, this
example clears the screen to Blue.

COLOR
Statement

Purpose: Sets the colors for the foreground, background, and
border screen. Refer to “Text Mode” in Chapter 3
for an explanation of these terms.

The syntax of the COLOR statement depends on
whether you are in text mode or graphics mode, as
set by the SCREEN statement.

In text mode, you can set the following:

Foreground- 1 of 16 colors

Character blink, if desired
Background- 1 of 8 colors
Border- 1 of 16 colors

You can set the following in medium resolution
graphics mode:

Background- 1 of 16 colors

Palette- 1 of 2 palettes with 3 colors each
The border is the same as the background color.

The COLOR Statement in Text Mode

Versions: Cassette Disk Advanced Compiler
kg% X EX 23 * %k

7
!
>
=
m
=
m
Z
~
%

Text mode only.

Format: COLOR [foreground) |,[background) [,bom’er]]

4-49

COLOR
Statement (Text)

Remarks: foreground

4-50

is a numeric expression in the range 0 to

31, representing the character color.

background is a numeric expression in the range 0 to
' 7 for the background color.

border is a numeric expression in the range 0 to
15. It is the color for the border screen.

If you have the Colot/Graphics Monitor Adapter,
the following colors are allowed for foreground:

0 Black 8
1 Blue 9
2 Green 10
3 Cyan 11
4 Red 12
5 Magenta 13
6 Brown 14
7 White 15

Gray

Light Blue

Light Green

Light Cyan

Light Red

Light Magenta
Yellow
High-intensity White

Colors and intensity may vary depending on your

display device.

You might like to think of colors 8 to 15 as “light” or
“high-intensity” values of colors 0 to 7.

You can make the characters blink by setting
foreground equal to 16 plus the number of the desired
color. That is, a value of 16 to 31 causes blinking

characters.

You may select only colors 0 through 7 for

background.

COLOR
Statement (Text)

If you have the IBM Monochrome Display and
Parallel Printer Adapter, the following values can
be used for foreground:

0 Black

1 Underlined character with white foreground
2-7 White

In a manner similar to the Colot/Graphics Monitor
Adapter, adding 8 to the number of the desired color
gives you the color in high-intensity. For example, a
value of 15 gives you high-intensity white. A value of
9 gives you high-intensity white, underlined. You
can’t make high-intensity black.

As with the Colot/Graphics Monitor Adapter, you
can make the character blink by adding 16 to the
number of the desired color. Thus, 16 gives you
black blinking characters, and 31 gives you
high-intensity white blinking characters.

For background with the IBM Monochrome Display [
and Parallel Printer Adapter, you may select the ’;
following values: g
0-6 Black 5—1
7 White Z
~

w

Note: White (color 7) as a background color
shows up as white on the IBM Monochrome
Display only when it is used with a foreground
color of 0, 8, 16, or 24 (black). This creates
reverse image characters.

Black (color 0, 8, 16, or 24) as a foreground
color shows up as black only when used with a
background color of 0 (which makes the
characters invisible) or 7 (which creates reverse
image characters).

Other combinations of foreground and
background colors produce standard (white on
black) results on the IBM Monochrome
Display.

4-51

COLOR

Statement (Text)

Example:

4-52

Notes for either adapter:

1.

Foreground color may equal background color.
This has the effect of making any character
displayed invisible. Changing the foreground or
background color will make subsequent
characters visible again.

Any parameter may be omitted. Omitted
parameters assume the old value.

If the COLOR statement ends in a comma (,),
you will get a “Missing operand” error, but the
color will change. For example,

COLOR ,7,
is invalid.
Any values entered outside the range 0 to 255

will result in an “Illegal function call” error.
Previous values are retained.

10 COLOR 14,1,

This sets a yellow foreground, a blue background,
and a black border screen.

COLOR
Statement (Text)

The following example can be used with either the
Colot/Graphics Monitor Adapter or the IBM
Monochrome Display and Parallel Printer Adapter:

18 PRINT "Enter your '';
2@ COLOR 15,8 'highlight next word
3% PRINT ''password';

Lg COLOR 7 "return to default (white on black)
5¢ PRINT '* here: 'f;
6@ COLOR ¢ Tinvisible (black on black)

78 INPUT PASSWORDS

8¢ IF PASSWORDS='"'secret’ THEN 128

98 ' blink and highlight error message

1@ COLOR 31: PRINT '"Wrong Password'': COLOR 7

11¢ GOTO 14

120 COLOR @,7 'reverse image (black on white)

13@ PRINT "Program continues...';

14@ COLOR 7,8 ‘'return to default {(white on black)

»
=
>
=
5
=
s
Z
—
»

4-53

COLOR
Statement (Graphics)

The COLOR Statement in Graphics Mode

Versions:

Format:

Remarks:

4-54

Cassette Disk Advanced Compiler

L2 2] Hekk dekok sksk ok

Graphics mode, medium resolution only.

COLOR [background) [,|[palette]]

background is a numeric expression specifying the
background color. The colors allowed
for background are O through 15, as
described previously under “The
COLOR Statement in Text Mode.”

palette isa numeric expression which selects the
palette of colors.

The colors selected when you choose each palette
are as follows:

Color Palette O Palette 1
1 Green Cyan
2 Red Magenta
3 Brown White

If palette is an even number, palette 0 is selected. This
associates the colors Green, Red, and Brown to the
color numbers 1, 2, and 3. Palette 1
(Cyan/Magenta/White) is selected when palette is an
odd number.

The color selected for background may be the same as
any of the palette colors.

Example:

COLOR
Statement (Graphics)

Any parameter may be omitted from the COLOR
statement. Omitted parameters assume the old
value.

In graphics mode, the COLOR statement sets a
background color and a palette of three colors. You
may select any one of these four colors for display
with the PSET, PRESET, LINE, CIRCLE, PAINT,
and DRAW statements. It has meaning in medium
resolution only (set by SCREEN 1 statement). Using
COLOR in high resolution will result in an “Illegal
function call” error.

Any values entered outside the range 0 to 255 will

result in an “Illegal function call” error. Previous
values will be retained.

5 SCREEN 1
1§ COLOR 9,0

Sets the background to 11ght blue, and selects
palette 0.

20 COLOR , 1

The background stays light blue, and palette 1 is
selected.

4-55

w
-]
> 7
—
m
Z 4
23!
Z
~
w

COM(n)
Statement

Purpose:

Versions:

Format:

Remarks:

4-56

Enables or disables trapping of communications
activity to the specified communications adapter.

Cassette Disk Advanced Compiler

COM(») ON

COM(») OFF

COM(») STOP

n is the number of the communications adapter

(1 or 2).

A COM(r) ON statement must be executed to allow
trapping by the ON COM() statement. After
COM(z) ON, if a non-zero line number is specified in
the ON COM(#) statement, BASIC checks to see if
any characters have come in to the communications
adapter every time a new statement is executed.

If COM(z) is OFF, no trapping takes place and any
communication activity is not remembered even if it
does take place.

If a COM(z) STOP statement has been executed, no
trapping can take place. However, any
communications activity that does take place is
remembered so that an immediate trap occurs when

COM(r) ON is executed.

COMMON
Statement

Purpose:

Versions:

Format:

Remarks:

Example:

Passes variables to a chained program.

Cassette Disk Advanced Compiler

COMMON varzable| ,variable]...

variable is the name of a variable thatis to be passed
to the chained-to program. Array variables
are specified by appending “()” to the
variable name.

The COMMON statement is used in conjunction
with the CHAIN statement. COMMON statements
may appear anywhere in a program, although it is
recommended that they appear at the beginning.
Anynumber of COMMON statements may appearin
a program, but the same variable cannot appear in
more than one COMMON statement. If all variables
are to be passed, use CHAIN with the ALL option
and omit the COMMON statement.

Any arrays that are passed do not need to be
dimensioned in the chained-to program.

100 COMMON A,BEE1,C,D(),GS
119 CHAIN "'A:PROG3"

This example chains to program PROG?3 on the

diskette in drive A:, and passes thearray D along with
the variables A, BEE1, C, and G$.

4-57

_SLNIWALV.LS |

CONT
Comm

and

Purpose:

Versions:

Format:

Remarks:

4-58

Resumes program execution after a break.

Cassette Disk Advanced Compiler

&% % ok &k ok

CONT

The CONT command may be used to resume
program execution after Ctrl-Break has been
pressed, a STOP or END statement has been
executed, or an error has occurred. Execution
continues at the point where the break happened. If
the break occurred after a prompt from an INPUT
statement, execution continues with the reprinting
of the prompt.

CONT is usually used in conjunction with STOP for
debugging. When execution is stopped, you can
examine or change the values of variables using
direct mode statements. You may then use CONT to
resume execution, or you may use a direct mode
GOTO, which resumes execution ata particular line
number. '

CONT is invalid if the program has been edited
during the break. '

CONT
Command

Example: In the following example, we create a long loop.

Ok

10 FOR A=1 TO 50

20 PRINT A;

30 NEXT A

RUN

1 2 3 4L 5 6 7 8 9 15 11 12
13 14 15 16 17 18 19 28 21 22
23 24 25 26 27 28 29

(At this point we interrupt the loop by pressing
Ctrl-Break.)

@
@
@

Break in 20

Ok

CONT

3¢ 31 32 33 34 35 36 37 38 39
Lg 41 L2 43 44 L5 L6 L7 L§ L9
5¢
Ok

n
=~
>
=
T
=
rT
Z,
~
%

4-59

COS

Function

Purpose:

Versions:

Format:

Remarks:

Example:

4-60

Returns the trigonometric cosine function.

Cassette Disk Advanced Compiler

X 23 skok ok Hkk $ok sk

» = COS(x)

x is the angle whose cosine is to be calculated. The
value of x must be in radians. To convert from
degrees to radians, multiply the degrees by
PI1/180, where PI=3.141593.

The calculation of COS(x) is performed in single
precision.

Ok

10 P1=3.141593

20 PRINT cos(pt)

3¢ DEGREES=18¢

Lp RADIANS=DEGREES*PI/180
5@ PRINT COS(RADIANS)

RUN

-1

-1

Ok

This example shows, first, that the cosine of PI
radians is equal to-1. Then it calculates the cosine of
180 degrees by first converting the degrees to
radians (180 degrees happens to be the same as PI
radians).

CSNG

Function

Purpose:

Versions:

Format:

Remarks:

Example:

Converts x to a single-precision number.

Cassette Disk Advanced Compiler

*ok ok *kok ek HkE

v = CSNG(x)

¥ is a numeric expression which will be converted
to single-precision.

The rules outlined under “How BASIC Converts
Numbers from One Precision to Another” in
Chapter 3 are used for the conversion.

See the CINT and CDBL functions for converting
numbers to the integer and double-precision data

types.

Ok
18 A# = 975.34212224
20 PRINT A#; CSNG(A#)
RUN

975.3421222 975.3421
0k

w
)—I
>
—
t
=2
wol
Z
—
7

The value of the double-precision number A# is
rounded at the seventh digit and returned as
CSNG(A#).

4-61

CSRLIN
Variable

Purpose:

Vetsions:

Format:

Remarks:

Example:

4-62

Returns the vertical coordinate of the cursor.

Cassette Disk Advanced Compiler

E 2] HR K kK ® ko

v = CSRLIN

The CSRLIN variable returns the current line (row)
position of the cursor on the active page. (Theactive
page is explained under “SCREEN Statement” in
this chapter.) The value returned will be in the range
1 to 25.

The POS function returns the column location of
the cursor. Refer to “POS Function” in this chapter.

Refer to “LOCATE Statement’” to see how to set the
cursor line.

19 Y CSRLIN 'record current line
20 X = P0OS(#) ‘record current column
29 ‘print HI MOM on line 24

3¢ LOCATE 24,1: PRINT "HI MOM"

L LOCATE Y,X 'restore position

1l

This example saves the cursor coordinates in the
variables X and Y, then moves the cursor to line 24
to put the words “HI MOM” on that line. Then the
cursor is moved back to its old position.

CVI, CVS, CVD

Functions

Purpose:

Versions:

Format:

Remarks:

Example:

Converts string variable types to numeric variable
types.

Cassette Disk Advanced Compiler

Fok ok kR Bk sk

v = CVI(2-byte string)
v = CVS4-byte string)
v = CVD(8-byte string)

Numeric values that are read from a random file
must be converted from strings into numbers. CVI
converts a two-byte string to an integer. CVS
converts a four-byte string to a single-precision
number. CVD converts an eight-byte string to a
double-precision number.

The CVI, CVS, and CVD functions do ot change the
bytes of the actual data. They only change the way
BASIC interprets those bytes.

»
e
-
!
3!
=
3
Z
~
©n

See also “MKI$, MKS$, MKD$ Functions” in this
chapter, and “Appendix B. BASIC Diskette Input
and Output.”

70 FIELD #1,4 AS NS, 12 AS BS
80 GET #1
90 Y=CVS(NS)

This example uses a random file (#1) which has fields
defined as in line 70. Line 80 reads a record from the
file. Line 90 uses the CVS function to interpret the
tirst four bytes (N$) of the record as a
single-precision number. N$ was probably originally
a number which was written to the file using the
MKS$ function.

4-63

DATA
Statement

Purpose: Stores the numeric and string constants that are
accessed by the program’s READ statement(s).

Versions: Cassette Disk Advanced Compiler
ok ok dkeock Hkok EE E 3

Format: DATA constant| constant]...

Remarks: constant may be a numeric or string constant. No
expressions are allowed in the list. The
numeric constants may be in any format —
integer, fixed point, floating point, hex, or
octal. String constants in DATA
statements do not need to be surrounded
by quotation marks, unless the string
contains commas, colons, or significant
leading or trailing blanks.

DATA statements are nonexecutable and may be
placed anywhere in the program. A DATA statement
may contain as many constants as will fit on a line,
and any number of DATA statements may be used in
aprogram. The information contained in the DATA
statements may be thought of as one continuous list
of items, regardless of how many items are on a line
or where the lines are placed in the program. The
READ statements access the DATA statements in
line number order.

4-64

Example:

DATA
Statement

The variable type (numeric or string) given in the
READ statement must agree with the corresponding
constant in the DATA statement ora “‘Syntax error”
occurs.

You can use the RESTORE statement to reread
information from any line in the list of DATA
statements. (See “RESTORE Statement” in this
chapter.)

See examples under “READ Statement” in this
chapter.

i
5
[es S
;

4-65

DATE$
Variable and Statement

Purpose:

Versions:

Format:

Remarks:

4-66

Sets or retrieves the date.

Cassette Disk Advanced Compiler

Kk ok ek

As a variable:
v = DATE$
As a statement:

DATES$ = x§

For the variable (v = DATE$):

A 10-character string of the form mm-dd-yyyy is
returned. Here, mm represents two digits for the
month, 44 is the day of the month (also 2 digits), and
yyyy is the year. The date may have been set by DOS
prior to entering BASIC.

For the statement (DATE$ = x$):

%8 is a string expression which is used to set the
current date. You may enter x§ in any one of the
following forms:

mm-dd-yy
mm/dd/yy

mm-dd-yyyy
mm/dd/yyyy

The year must be in the range 1980 to 2099. If you
use only one digit for the month or day, a 0 (zero) is
assumed in front of it. If you give only one digit for
the year, a zero is appended to make it two digits. If
you give only two digits for the year, the year is
assumed to be 19yy.

DATES$
Variable and Statement

Example: 0k
1¢ DATES= ''8/29/82"
2 PRINT DATES
RUN
¢8-29-1982
Ok

In the example we set the date to August29th, 1982.
Notice how, when we read the date back using the
DATES$ function, a zero was included in front of the
month to make it two digits, and the year became
1982. Also, the month, day, and year are separated
by hyphens even though we entered them as slashes.

3
‘
>
sl
[eo I
Z |
‘
w»

4-67

DEF FN
Statement

Purpose:

Versions:

Format:

Remarks:

4-68

Defines and names a function that you write.

Cassette
koK

Disk Advanced Compiler

*kx Hkok %tkock

DEF FNnrame[(arg [,arg]...)] =expression

name

arg

expression

is a valid variable name. This name,
preceded by FN, becomes the name of the
function.

is an argument. It is a variable name in the
function definition that will be replaced
with a value when the function is called.
The arguments in the list represent, on a
one-to-one basis, the values that are given
when the function is called.

defines the returned value of the function.
The type of the expression (numeric or
string) must match the type declared by
name.

The definition of the function is limited to one
statement. Arguments (4rg) that appear in the
function definition serve only to define the function;
they do not affect program variables that have the
same name. A variable name used in the expression
does not have to appear in the list of arguments. If it
does, the value of the argument is supplied when the
function is called. Otherwise, the current value of
the variable is used.

Example:

DEF FN
Statement

The function type determines whether the function
returns a numeric or string value. The type of the
function is declared by name, in the same way as
variables are declared (see “How to Declare Variable
Types” in Chapter 3). If the type of expression (string
or numeric) does not match the function type, a
“Type mismatch” error occurs. If the function is
numeric, the value of the expression is converted to
the precision specified by name before it is returned
to the calling statement.

A DEF EN statement must be executed to define a
function before you may call that function. If a
function is called before it has been defined, an
“Undefined user function” error occurs. On the
other hand, a function may be defined more than
once. The most recently executed definition is used.

Note: You may have a recursive function, that
is, one which calls itself. However, if you don’t
provide a way to stop the recursion, an “Out of
memory’ error OCCurs.

DEF FEN is invalid in direct mode.

0k
19 P1=3.141593

20 DEF FNAREA(R)=PI[R"2

3¢ INPUT '"'Radius? '',RADIUS

L PRINT "Area is' FNAREA(RADIUS)
RUN

Radius?

(Suppose you respond with 2.)

Radius? 2
Area is 12.56637
Ok

4-69

n
—
>
!
53
=
I
Z
=~
%

DEF FN
Statement

Line 20 defines the function FNAREA, which
calculates the area of a circle with radius R. The
function is called in line 40.

Here is an example with two arguments:

0k
10 DEF FNMUD(X ,)
20 A = FNMUD(7.4,
3¢ PRINT A

RUN

3.4
Ok

=X-(INT(X/Y)*Y)
L,h)

4-70

DEF SEG
Statement

Purpose:

Versions:

Format:

Defines the current “segment” of storage. A
subsequent BLOAD, BSAVE, CALL, PEEK, POKE,
or USR definition will define the actual physical
address of its operation as an offset into this
segment.

Cassette Disk Advanced Compiler

Sk Hkok koK *okok

DEF SEG [=address]

Remarks: address is a numeric expression in the range 0 to

65535.

The initial setting for the segment when BASIC is
started is BASIC’s Data Segment (DS). BASIC’s Data
Segment is the beginning of your user workspace in
memory. If youexecute a DEF SEG statement which
changes the segment, the value does no# get reset to
BASIC’s DS when you issue 2a RUN command.

»
~
>
—
tTi
=
eyl
Z
!
%

If address is omitted from the DEF SEG statement,
the segment is set to BASIC’s Data Segment.

If address is given, it should be a value based upona 16
byte boundary. The value is shifted left 4 bits
(multiplied by 16) to form the segment address for
the subsequent operation. That is, if address is in
hexadecimal, a 0 (zero) is added to get the actual
segment address. BASIC does not perform any
checking to assure that the segment value is valid.

4-71

DEF SEG
Statement

Example:

4-72

DEF and SEG must be separated by a space.
Otherwise, BASIC will interpret the statement
DEFSEG=100 to mean: “assign the value 100 to the
variable DEFSEG.”

Any value entered outside the range indicated will
result in an “Illegal function call” error. The
previous value will be retained.

Refer to “Appendix C. Machine Language
Subroutines” for more information on using
DEF SEG.

18 DEF SEG ' restore segment to BASIC DS

200 ' set segment to color screen buffer
210 DEF SEG=¢HB8PY

In the second example, the screen buffer for the
Color/Graphics Monitor adapter is at absolute
address B8000 hex. Since segments are specified on
16 byte boundaries, the last hex digit is dropped on
the DEF SEG specification.

DEFtype
Statements

Purpose:

Versions:

Format:

Remarks:

Declares variable types as integer, single-precision,
double-precision, or string.

Cassette Disk Advanced Compiler

DEFzype letter|[-letter] [letter [-letter]]...

type is INT, SNG, DBL, or STR.
letter is a letter of the alphabet (A-Z).

A DEFsy)pe statement declares that the variable
names beginning with the letter or letters specified
will be that type of variable. However, a type
declaration character (%, !, #, or $) always takes
precedence over a DEFsype statement in the typing
of a variable. Refer to “How to Declare Variable
Types” in Chapter 3.

If no type declaration statements are encountered,
BASICassumes thatall variables withoutdeclaration
characters are single-precision variables.

o |
—
>
~]
o
Z |
~
.

If type declaration statements are used, they should
be at the beginning of the program. The DEFfype
statement must be executed before you use any
variables which it declares.

4-73

DEFtype
Statements

Example: Ok

4-74

1¢ DEFDBL L-P
20 DEFSTR A
3¢ DEFINT X,D-H
Lg ORDER = 1#/3: PRINT ORDER
5 ANIMAL = ''CAT'"': PRINT ANIMAL
6¢ X=10/3: PRINT X
RUN
.3333333333333333
CAT

3
Ok

Line 10 declares that all variables beginning with the
letter L, M, N, O, or P will be double-precision
variables.

Line 20 causes all variables beginning with the letter
A to be string variables.

Line 30 declares that all variables beginning with the
letter X, D, E, F, G, or H will be integer variables.

DEF USR
Statement

Purpose:

Versions:

Format:

Remarks:

Example:

Specifies the starting address of a machine language
subroutine, which is later called by the USR
function.

Cassette Disk Advanced Compiler

Hkok e sk sk eskek sk

DEF USR|[z]=offset

” may be any digit from 0 to 9. It identifies
the number of the USR routine whose
address is being specified. If # is omitted,
DEF USRO is assumed.

offset is an integer expression in the range 0 to
65535. The value of offset is added to the
current segment value to obtain the actual
starting address of the USR routine. See
“DEF SEG Statement” in this chapter.

It is possible to redefine the address for a USR
routine. Any number of DEF USR statements may
appear ina program, thus allowing access to as many
subroutines as necessary. The most recently
executed value is used for the offset.

o
—
>
3
M
=
g]
Z
~
%

Refer to “Appendix C. Machine Language
Subroutines” for complete information.

20¢ DEF SEG = @
21¢ DEF USR@=24000
500 X=USR@ (Y+2)

This example calls a routine at absolute location
24000 in memory.

4-75

DELETE
Command

Purpose:

Versions:

Format:

Remarks:

Example:

4-76

Deletes program lines.

Cassette Disk Advanced Compiler

Hok ok Hokk E2 E 3

DELETE [/inel] [-line2]

linel is the line number of the first line to be
deleted.

line2 is the line number of the last line to be
deleted.

The DELETE command erases the specified range of
lines from the program. BASIC always returns to
command level after a DELETE is executed.

A period (.)may be used in place of the line number
to indicate the current line. If you specify a line

number which does not exist in the program, an
“Illegal function call” error occurs.

This example deletes line 40:

DELETE 4@

The next example deletes line 40 through 100,
inclusive:

DELETE 4@-108

The last example deletes all lines up to and including
line 40:

DELETE -4@

DIM
Statement

Purpose:

Versions:

Format:

Remarks:

Specifies the maximum values for array variable
subscripts and allocates storage accordingly.

Cassette Disk Advanced Compiler

DIM variable(subscripts) [,variable(subscripts)]...

variable is the name to be used for the array.

subscripts is a list of numeric expressions, separated
by commas, which define the dimensions
of the array.

When executed, the DIM statement sets all the
elements of the specified numeric arrays to an initial
value of zero. String array elements are all variable
length, with an initial null value (zero length).

If an array variable name is used without a DIM
statement, the maximum value of its subscript is
assumed to be 10. If a subscriptisused thatis greater
than the maximum specified, a “Subscript out of
range’ errot occufts.

>
=8
o
I

The minimum value for a subscript is always 0,
unless otherwise specified with the OPTION BASE
statement (see “OPTION BASE Statement” in this
chapter). The maximum number of dimensions for
an array is 255. The maximum number of elements
per dimension is 32767. Both of these numbers are
also limited by the size of memory and by the length
of statements.

4-77

DIM

Statement

Example:

4-78

If you try to dimension an array more than once, a

“Duplicate Definition” error occurs. You may,

however, use the ERASE statement to erase an array

so you can dimension itagain. For more information
(X3 23 .

about arrays, see “Arrays” in Chapter 3.

Ok
10
20
3¢
Lo
50
60
79
89
9@
109
110
120
130
140
RUN
29
Ok

WRRMAX=2

DIM S1S(12), WRRS(WRRMAX,2)

DATA 26.5, 37, 8,29,80, 9.9, &H8¢Q

DATA 7, 18, 55, 12, 5, 43

FOR I=¢ TO 12

READ S1S(1)

NEXT |

DATA SHERRY, ROBERT, "A:'

DATA "HI, SCOTT", HELLO, GOOD-BYE
DATA BOCA RATON, DELRAY, MIAMI
FOR =@ TO 2: FOR J=@ TO 2
READ WRRS(1,J)

NEXT J, I
PRINT S1S(3); WRR$(2,0)

BOCA RATON

This example creates two arrays: a one-dimensional
numeric array named SIS with 13 elements, SIS(0)
through SIS(12); and a two-dimensional string array
named WRR$, with three rows and three columns.

DRAW
Statement

Purpose:

Versions: Cassette

Format:

Remarks:

Draws an object as specified by string.

Graphics mode only.

DRAW string

Disk Advanced Compiler

You use the DRAW statement to draw using a
graphics definition language. The language commands
are contained in the string expression string. The
string defines an object, which is dfawn when BASIC
executes the DRAW statement. During execution,
BASIC examines the value of string and interprets

single letter commands from the contents of the
string. These commands are detailed below:

The following movement commands begin
movementfrom the last point referenced. After each
command, the last point referenced is the last point
the command draws.

Un
Dn
Ln
Rn
En
Fn
Gn
Hn

© |
>
2
i
.
m
Z |
—~

» |

Move up.

Move down.

Move left.

Move right.

Move diagonally up and right.
Move diagonally down and right.
Move diagonally down and left.

Move diagonally up and left.
' 4-79

DRAW
Statement

4-80

7 in each of the preceding commands indicates the
distance to move. The number of points moved is #
times the scaling factor (set by the S command).

M x,y Move absolute or relative. If x has a plus
sign (+) ora minus sign (-) in front of it, itis
relative. Otherwise, it is absolute.

The aspect ratio of your screen determines the
spacing of the horizontal, vertical, and diagonal
points. For example, the standard aspect ratio of4/3
indicates that the horizontal axis of the screen is 4/3
as long as the vertical axis. You can use this
information to determine how many vertical points
are equal in length to how many horizontal points.

For example, in medium resolution there are 320
horizontal points and 200 vertical points. That
means 8 horizontal points are equal in length to 5
vertical points if the screen aspect ratio is 1/1. If the
aspect ratio is different, you multiply the number of
vertical points by the aspect ratio. For example,
using the standard aspect ratio of 4/3, in medium
resolution 8 horizontal points are equal in length to
20/3 vertical points, or 24 horizontal equal 20
vertical. That is:

DRAW "'U8@ R96 D8F L96"

produces a square in medium resolution. Following
similar reasoning, again with the standard screen
aspect ratio of 4/3, in high resolution 48 horizontal
points are equal in length to 20 vertical points.

DRAW
Statement

The following two prefix commands may precede
any of the above movement commands.

B Move, but don’t plot any points.

N Move, but return to the original position
when finished.

The following commands are also available:

An Setanglen » may range fromO to 3, where
0is0 degrees, 1is90,2 is180,and 3 is270.
Figures rotated 90 or 270 degrees are
scaled so that they appear the same size-as
with 0 or 180 degrees on a display screen
with standard aspect ratio 4/3.

Cn Set color #. » may range from O to 3 in
medium resolution, and 0 to 1 in high
resolution. In medium resolution, 7
selects the color from the current palette
as defined by the COLOR statement. O is
the background color. The default is the
foreground colot, color number 3. In
high resolution, » equal to O (zero)
indicates black, and the default of 1 (one)
indicates white.

W
—
»>
!
5
=
5
Z,
~
»

Sn Set scale factor. » may range from 1 to
255. z divided by 4 is the scale factor. For
example, if »=1, then the scale factor is
1/4. The scale factor multiplied by the
distances given with the U, D, L, R, E, F,
G, H, and relative M commands gives the
actual distance moved. The default value
is 4, so the scale factor is 1.

X variable; Execute substring. This allows you to

execute a second string from within a
string.

4-81

DRAW
Statement

4-82

In all of these commands, the#, x, ory argument can
be a constant like 123 or it can be =variable; where
variable is the name of a numeric variable. The
semicolon (;) is required when you use a variable
this way, or in the X command. Otherwise, a
semicolon is optional between commands. Spaces
are ignored in string. For example, you could use
variables in a move command this way:

M+=X1;,-=X2;

You can also specify variables in the form
VARPTRS$(variable), instead of =variable;. This is
useful in programs that will later be compiled. For
example:

One Method Alternative Method
DRAW ''XAS;" DRAW ''X'+VARPTRS (AS)
DRAW '"'S=SCALE;" DRAW ''S=""+yARPTRS (SCALE)

The X command can be a very useful part of DRAW,
because you can define a part of an object separate
from the entire object. For example, aleg could be
part of a man. You can also use X to draw a string of
commands more than 255 characters long.

When coordinates which are out of range are given
to DRAW, the coordinate which is out of range is
given the closest valid value. In other words, the
negative values become zero and Y values greater
than 199 become 199. X values greater than 639
become 639. X values greater than 319 in medium
resolution wrap to the next horizontal line.

DRAW
Statement

Example: To draw a box:

5 SCREEN 1
10 A=20
20 DRAW “U=A§R:A;D=A;L=A;”

To draw a triangle:

1@ SCREEN 1
2 DRAW 'E15 F15 L3g"

To create a “shooting star:”

19 SCREEN 1,@: COLOR @,8: CLS

20 DRAW "BM3@¢, 25" ' initial point

3¢ STARS='M+7,17 M-17,-12 M+20,0 M-17,12 M+7,-17"
Lp FOR SCALE=1 TO 4@ STEP 2

50 DRAW '"'CT1:;S=SCALE; BM-2,0;XSTARS;"

60 NEXT

W
~
>
=
o2}
=
eyl
Z
=
%

4-83

EDIT
Command

Purpose: Displays a line for editing.

Versions: Cassette Disk Advanced Compiler
skok sk B kS kK

Format: EDIT /lne

Remarks: /ine is the line number of a line existing in the
program. If there is no such line, an
“Undefined line number” error occurs. A
period (.) can be used for the line number
to refer to the current line.

The EDIT statement simply displays the line
specified and positions the cursor under the first
digit of the line number. The line may then be
modified as described under “The BASIC Program
Editor” in Chapter 2.

A period (.) canbe used for the line number to refer
to the current line. For example, if you have just

entered a line and wish to go back and change it, the
command EDIT . will redisplay the line for editing.

LIST may also be used to display program lines for

changing. Refer to “LIST Command” in this
chapter.

4-84

END
Statement

Purpose:

Versions:

Format:

Remarks:

Example:

Terminates program execution, closes all files, and
returns to command level.

Cassette Disk Advanced Compiler
END

END statements may be placed anywhere in the
program to terminate execution. END is different
from STOP in two ways:

® END does not cause a “Break’ message to be

printed.
® END closes all files.

An END statement at the end of a program is

optional. BASIC always returns to command level
after an END is executed.

520 IF K>100@ THEN END ELSE GOTO 20

<l
>
»—]_
m
Z
t
Z
~
.

This example ends the program if K is greater than
1000; otherwise, the program branches to line
number 20.

4-85

EOF

Function

Purpose:

Versions:

Format:

Indicates an end of file condition.

Cassette Disk Advanced Compiler

Hkk F %k Hk K kK

v = EOF(félenum)

Remarks: filenum is the number specified on the OPEN

Example:

4-86

statement.

The EOF function is useful for avoiding an “Input
past end” error. EOF returns -1 (true) if end of file
has been reached on the specified file. A 0 (zero) is
returned if end of file has not been reached.

EOF is meaningful only for a file opened for
sequential input from diskette or cassette, or for a
communications file. A -1 for a communications file
means that the buffer is empty.

1¢ OPEN "'DATA' FOR INPUT AS #1
28 C=0

3¢ |F EOF(1) THEN END

Lg INPUT #1,M(C)

56 C=C+1: GOTO 30

This example reads information from the sequential
file named “DATA”. Valuesare read into thearray M
until end of file is reached.

ERASE
Statement

Purpose: Eliminates arrays from a program.

Versions: Cassette Disk Advanced Compiler
ok &kk Hdesk

Format: ERASE arrayname(arraynamel)...

Remarks: arrayname is the name of an array you want to
' erase.

You might want to use the ERASE statement if you
are running short of storage space while running
your program. After arrays are erased, the space in
memory whichhad been allocated for the arrays may
be used for other purposes. '

ERASE can also be used when you want to
redimension arrays in your program. If you try to
redimension an array without first erasing it, a
“Duplicate Definition” error occurs.

The CLEAR command is used to erase 4// variables
from the work area.

77
<!
>
=
I
=
22!
Z
.
%

4-87

ERASE
Statement

Example:

4-88

Ok
1¢ START=FRE (')
20 DIM BIG(100,100)
3% MIDDLE=FRE (')
Ly ERASE BIG
50 DIM BIG(10,10)
6@ FINAL=FRE (')
78 PRINT START, MIDDLE, FINAL
RUN
62808 21980 62289
Ok

This example uses the FRE function to illustrate
how ERASE can be used to free memory. The array
BIG used up about 40K-bytes of memory
(62808-21980) when it was dimensioned as
BIG(100,100). After it was erased, it could be
redimensioned to BIG(10,10), and it only took up a
little more than 500 bytes (62808-62289).

The actual values returned by the FRE function may
be different on your computer.

ERR and ERL
Variables

Purpose:

Versions:

Format:

Remarks:

Return the etror code and line number associated
with an error.

Cassette Disk Advanced Compiler

ke sk Hkk sk ek

v=ERR
v = ERL

The variable ERR contains the error code for the last
error, and the variable ERL contains the line number
of the line in which the error was detected. The ERR
and ERL variables are usually used in IF... THEN
statements to direct program flow in the error
handling routine (refer to “ON ERROR Statement”
in this chapter).

If you do test ERL in an IF...THEN statement, be
sure to put the line number on the right side of the
relational operator, like this:

<
=
»
o
Z |
,_]
o]

IF ERL = /fne number THEN ...

The number must be on the right side of the
operator for it to be renumbered by RENUM.

If the statement that caused the error was a direct
mode statement, ERL will contain 65535. Since you
do not want this number to be changed during a
RENUM, if you want to test whether an error
occurred in a direct mode statement you should use
the form:

IF 65535 = ERL THEN ...

4-89

ERR and ERL
Variables

Example:

4-90

ERR and ERL can be set using the ERROR
statement (see next section).

BASIC error codes are listed in “Appendix A.
Messages.”

190 ON ERROR GOTO 10¢

2 LPRINT "This goes to the printer!

3@ END

10¢ IF ERR=27 THEN LOCATE 23,1:
PRINT '"Check printer': RESUME

This example tests for a common problem:
forgetting to put paper in the printer, or forgetting
to switch it on. ' '

ERROR
Statement

Purpose: ® Simulates the occurrence of a BASIC error; or

® Allows you to define your own error codes.

Versions: Cassette Disk Advanced Compiler
Hkk 2] Rk skkk

Format: ERROR#

Remarks: # must be an integer expression between 0 and
255.

If the value of 7 is the same as an error code used by
BASIC (see “Appendix A. Messages”), the ERROR
statement simulates the occurrence of that error. If
an error handling routine has been defined by the
ON ERROR statement, the error routine is entered.
Otherwise the error message corresponding to the
code is displayed, and execution halts. (See first
example below.)

To define your own error code, use a value that is
different from any used by BASIC. (We suggest you
use the highest available values; for example, values
greater than 200.) This new error code may then be
tested in an error handling routine, just like any
other error. (See second example below.)

»
~
>
—
tm
=
52!
4
—
»

If you define your own code in this way, and you
don’t handle it in an error handling routine, BASIC
displays the message “Unprintable error,” and
execution halts.

4-91

ERROR
Statement

Example: The first example simulates a “String too long”
error.

Ok

10 T = 15

20 ERROR T

RUN

String too long in line 2¢
Ok

The next example is a part of a game program that
allows you to make bets. By using an error code of
210, which BASIC doesn’t use, the program traps the
error if you exceed the house limit.

118 ON ERROR GOTO 4gg
12¢ INPUT "WHAT IS YOUR BET'';B
13¢ IF B > 5@@@ THEN ERROR 219
e
®
e
L@ |F ERR
hig IF ERL

218 THEN PRINT "HOUSE LIMIT IS S5¢@g@"
13@ THEN RESUME 120

o

4-92

EXP
Function

Purpose:

Versions:

Format:

Remarks:

Example:

Calculates the exponential function.

Cassette Disk Advanced Compiler

Hkok Hokk sk sk s sk

v = EXP(x)

X may be any numeric expression.

This function returns the mathematical number ¢
raised to the x power. ¢ is the base for natural

logarithms. An overflow occurs if x is greater than
88.02969.

w

-
Ok ?_;
16 X =2 g3]
20 PRINT EXP(X-1) E
RUN Z,
2.718282 !
ok

This example calculates ¢ raised to the (2-1) powert,
which is simply e.

4-93

FIELD

Statement

Purpose:

Versions:

Format:

Remarks:

4-94

Allocates space for variables in a random file buffer.

Cassette Disk Advanced Compiler

L 3] * kK Hkk

FIELD [#fdlenum, width AS stringvar |,width
AS stringvar]...

filenum is the number under which the file was
opened.

width is a numeric expression specifying the
number of character positions to be
allocated to stringvar.

stringvar is a string variable which will be used for
random file access.

A FIELD statement defines variables thatare used to
get data out of a random buffer after a GET or to
enter data into the buffer for a PUT.

The statement:
FIELD 1, 20 AS N$, 10 AS ID$, 4@ AS ADDS

allocates the first 20 positions (bytes) in the random
file buffer to the string variable N§, the next 10
positions to ID$, and the next 40 positions to
ADD$. FIELD does 7ot actually place any data into
the random file buffer. This is done by the LSET and
RSET statements (see “LSET and RSET
Statements” in this chapter).

FIELD
Statement

FIELD does not “remove” data from the file either.
Information is read from the file into the random file
buffer with the GET (file) statement. Information is
read from the buffer by simply referring to the
variables defined in the FIELD statement.

The total number of bytes allocated in a FIELD,
statement must not exceed the record length that
was specified when the file was opened. Otherwise, a
“Field overflow” error occurs.

Any number of FIELD statements may be executed
for the same file number, and all FIELD statements
that have been executed are in effect at the same
time. Each new FIELD statement redefines the
buffer from the first character position, so this has
the effect of having multiple field definitions for the
same data.

Note: Be careful about using a fielded variable name
in an input or assignment statement. Once a variable
name is defined in a FIELD statement, it points
to the correct place in the random file buffer. If
asubsequentinputstatement or LET statement
with that variable name on the left side of the
equal sign is executed, the variable is moved to
string space and is no longer in the file buffer.

7
-
>
=
x|
=
tr
Z
s
»

See “Appendix B. BASIC Diskette Input and
Output” for a complete explanation of how to use
random files.

4-95

FIELD

Statement
Example: 1¢ OPEN ""A:CUST" AS #1
2¢) FIELD 1, 2 AS CUSTNOS, 3@ AS CUSTNAMES,
35 AS ADDRS
3¢ LSET CUSTNAMES+"O'NEIL INC"
Lp LSET ADDRS+''5@ SE 12TH ST, NY, NY"
50 LSET CUSTNOS=MKI$(7850)
60 PUT 1,1
70 GET 1,1
8¢ CNUM%Z= CVI1 (CUSTNOS): NS = CUSTNAMES
9¢ PRINT CNUM%, NS, ADDRS

4-96

This example opens a file named “CUST” as a

random file. The variable CUSTNO#$ is assigned to

the first 2 positions in each record, CUSTNAMES$ is
assigned to the next 30 positions, and ADDRS$ is
assigned to the next 35 positions. Lines 30 through
50 put information into the buffer, and the PUT

statement in line 60 writes the buffer to the file. Line
70 reads back that same record, and line 90 displays
the three fields. Note in line 80 thatitis okay to usea

variable name which was defined in a FIELD
statement on the right side of an assignment
statement.

FILES
Command

Purpose: Displays the names of files residing on a diskette.
The FILES command in BASIC is similar to the
DIR command in DOS.

Versions: Cassette Disk Advanced Compiler
Hkk L3 EE T]

Format: FILES [felespec

Remarks: filespec is a string expression for the file
specification as explained under “Naming
Files” in Chapter 3. If filespec is omitted,
all the files on the DOS default drive will
be listed.

All files matching the filename are displayed. The
filename may contain question marks(?). A question
mark matches any character in the name or
extension. An asterisk (*) as the first character of the
name or extension will match any name or any
extension.

»
=
-
=
g!
=
Res!
Z
-
»

If a drive is specified as part of filespec, then files
which match the specified filename on the diskette
in that drive are listed. Otherwise, the DOS default
drive is used.

4-97

FILES |
Command

Example: FILES

This displays all files on the DOS default diskette
drive.

FILES ' BASH

This displays all files with an extension of .BAS on
the DOS default diskette drive.

FILES 'B:w. 0
This displays all files on drive B:.

FILES YTEST?77.BAS"

This lists all files on the DOS default drive which
have a filename beginning with TEST followed by
two or less other characters, and an extension of

.BAS.

4-98

FIX
Function

Purpose:

Versions:

Format:

Remarks:

Example:

Truncates x to an integer.

Cassette Disk Advanced Compiler

Hek sk &%k Edk

v = FIX(x)

x may be any numeric expression.

FIX strips all digits to the right of the decimal point
and returns the value of the digits to the left of the
decimal point.

The difference between FIX and INT is that FIX
does not return the next lower number when x is
negative.

See the INT and CINT functions, which also
return integers.

0k
PRINT FIX(45.67)
45
Ok
PRINT FIX(-2.89)
-2
Ok

n
~
>
=
b
=
tr1
Z
~
192]

Note in the examples how FIX does 7ot round the
decimal part when it converts to an integer.

4-99

FOR and NEXT
Statements

Purpose:

Versions:

Format:

Remarks:

4-100

Performs a series of instructions in a loop a given
number of times.

Cassette Disk Advanced Compiler

FOR variable=x TO y [STEP z]

NEXT [variable][,variable]...

variable is an integer or single-precision variable to
be used as a counter.

x is a numeric expression which is the initial

value of the counter.

y is a numeric expression which is the final

value of the counter.

z is a numeric expression to be used as an

increment.

The program lines following the FOR statement are
executed until the NEXT statement is encountered.
Then the counter is incremented by the amount
specified by the STEP value (2). If you do not specify
avalue for z, the increment is assumed to be 1 (one).
A check is performed to see if the value of the
counter is now greater than the final value y. If it is
not greater, BASIC branches back to the statement
after the FOR statement and the process is repeated.
If it is greater, execution continues with the
statement following the NEXT statement. Thisisa
FOR...NEXT loop.

FOR and NEXT
Statements

If the value of z is negative, the test is reversed. The
counter is decremented each time through the loop,
and the loop is executed until the counter is less than
the final value.

The body of the loop is skipped if x is already greater
than y when the STEP value is positive, or if x is less
than y when the STEP value is negative. If z is zero,
an infinite loop will be created unless you provide
some way to set the counter greater than the final
value.

Program performance will be improved if you use
integer counters whenever possible.

Nested Loops

FOR...NEXT loops may be nested; that is, one
FOR...NEXT loop may be placed inside another
FOR...NEXT loop. When loops are nested, each
loop must have a unique variable name as its
counter. The NEXT statement for the inside loop
must appear before that for the outside loop. If
nested loops have the same end point, asingle NEXT
statement may be used for all of them.

A NEXT statement of the form:
NEXT varl, var2, var3 ...

is equivalent to the sequence of statements:
NEXT var1

NEXT var2
NEXT var3

4-101

7
~
>
=~
t
=
!
Z
i
»

FOR and NEXT
Statements

Example:

4-102

The variable(s) in the NEXT stdatement may be
omitted, in which case the NEXT statement matches
the most recent FOR statement. If you are using
nested FOR...NEXT loops, you should include the
variable(s) on all the NEXT statements. It is a good
idea to include the variables in order to avoid
confusion; but it can be necessary if you do any
branching out of nested loops. (However, using
variable names on the NEXT statements will cause
your program to execute somewhat slower.)

If a NEXT statement is encountered before its
corresponding FOR statement, a “NEXT without
FOR” error occuts.

The first example shows a FOR...NEXT loop with a
STEP value of 2.

Ok

10 J=10: K=30
20 FOR I1=1 TO J STEP 2
3¢ PRINT I
L K=K+18

5¢ PRINT K

60 NEXT

RUN

Ly

50

60

79

80

K WO~ Ulw —

FOR and NEXT
Statements

In the next example, the loop does not execute
because the initial value of the loop is more than the
final value:

Ok

10 J=¢

20 FOR 1+1 T0O J
3% PRINT |

L@ NEXT |

RUN

Ok

In the last example, the loop executes ten times. The
final value for the loop variable is always set before
the initial value is set. (This is different from some
other versions of BASIC, which set the initial value
of the counter before setting the final value. In
another BASIC the loop in this example might
execute six times.)

Ok 4
1% 1=5 >
26 FOR 1=1 TO I+5 !
3¢ PRINT I; =
4p NEXT 2
RUN -
1 2 3 4L 5 6 7 8 9 1p e
0k

4-103

FRE

Function

Purpose:

Versions:

Format:

Remarks:

4-104

Returns the number of bytes in memory thatare not
being used by BASIC. This number does not include
the size of the reserved portion of the interpreter
workarea (normally 2.5K to 4K-bytes).

Cassette Disk Advanced Compiler

v = FRE(x)
v = FRE(xf)

x and xf are dummy arguments.

Since strings in BASIC can have variable lengths
(each time you do an assignment to a string its length
may change), strings are manipulated dynamically.
For this reason, string space may become
fragmented.

FRE with any string value causes a housecleaning
before returning the number of free bytes.
Housecleaning is when BASIC collects all of its useful
data and frees up unused areas of memory that were
once used for strings. The data is compressed so you
can continue until you really run out of space.

BASIC automatically doesa housecleaning when it is
running out of usable workarea. You might want to
use FRE(*”) periodically to get shorter delays for
each housecleaning. Be patient: housecleaning may
take a while.

Example:

FRE
Function

CLEAR ,7 sets the maximum number of bytes for
the BASIC workspace. FRE returns the amount of
free storage in the BASIC workspace. If nothing is in
the workspace, then the value returned by FRE will
be 2.5K to 4K-bytes (the size of the reserved
interpreter workarea) smaller than the number of
bytes set by CLEAR.

0k

PRINT FRE(@)
14542

Ok

The actual value returned by FRE on your computer
may differ from this example.

»
~
>
e
g3
=
!
Z
—
72

4-105

GET

Statement (Files)

Purpose:

Vetrsions:

Format:

Reads a record from a random file into a random

buffer.

Cassette Disk Advanced Compiler

Hokok Hkok sk ok

GET [#] filenum [, number)

Remarks: filenum is the number under which the file was

4-106

opened.

number is the number of the record to be read, in
the range 1 to 32767. If number is omitted,
the next record (after the last GET) is read
into the buffer.

After a GET statement, INPUT #, LINE INPUT #,
or references to variables defined in the FIELD
statement may be used to read characters from the
random file buffer. Refer to “Appendix B. BASIC
Diskette Input and Output” for more complete
information on using GET.

Because BASIC and DOS block as many records as
possiblein 512 byte sectors, the GET statement does
not necessarily perform a physical read from the
diskette.

GET may also be used for communications files. In
this case number is the number of bytes to read from
the communications buffer. This number cannot
exceed the value set by the LEN option on the
OPEN “COM... statement.

Example:

GET
Statement (Files)

10 OPEN “'A:CUST'' AS #1

2 FIELD 1, 30 AS CUSTNAMES, 38 AS ADDRS,
35 AS CITYS

30 GET 1

L@ PRINT CUSTNAMES, ADDRS, CITYS

This example opens the file “CUST” for random
access, with fields defined in line 20. The GET
statement on line 30 reads a record into the file
buffer. Line 40 displays the information from the
record that was read.

w
~
>
~
tm
=
tr
Z
—
w

4-107

GET

Statement (Graphics)

Purpose:

Vetsions:

Format:

Remarks:

4-108

Reads points from an area of the screen.

Cassette Disk Advanced Compiler

EE 33 sk ok

Graphics mode only.
GET (v1,y1)-(x2,y2),arrayname

(x1,y1), (x2,y2)
are coordinates in either absolute or
relative form. Refer to “Specifying
Coordinates” under “Graphics Modes” in
Chapter 3 for information on coordinates.

arrayname is the name of the array you want to hold
the information.

GET reads the colors of the points within the
specified rectangle into the array. The specified
rectangle has points (xZ,y7) and (x2,y2) as opposite
corners. (This is the same as the rectangle drawn by
the LINE statement using the B option.)

GET and PUT can be used for high speed object

motion in graphics mode. You might think of GET
and PUT as “bit pump” operations which move bits
onto (PUT) and off of (GET) the screen. Remember
that PUT and GET are also used for random access
files, but the syntax of these statements is different.

GET
Statement (Graphics)

The array is used simply as a place to hold the image
and must be numeric; it may be any precision,
however. The required size of the array, in bytes, is:

4+INT((x*bitsperpixel+7)/8)*y

where x and y are the lengths of the horizontal and
vertical sides of the rectangle, respectively. The
value of bitsperpixel is 2 in medium resolution, and 1
in high resolution.

For example, suppose we want to use the GET
statement to get a 10 by 12 image in medium
resolution. The number of bytes required is
4+INT((10%2+7)/8)*12, or 40 bytes. The bytes per
element of an array are:

® 2 for integer
® 4 for single-precision
® 8 for double-precision

Therefore, we could use an integer array with at least
20 elements.

The information from the screen is stored in the
array as follows:

o0
1
>
q
1
=
5
4
—
»

1. two bytes giving the x dimension in bits
2. two bytes giving the y dimension in bits
3. the data itself

It is possible to examine the x and y dimensions and
even the data itself if an integer array is used. The x
dimension is in element 0 of the array, and the y
dimension is in element 1. Keep in mind, however,
thatintegersare stored low byte first, then high byte;
but the data is actually transferred high byte first,
then low byte.

4-109

GET

Statement (Graphics)

4-110

The data for each row of pointsin the rectangle is left
justified onabyte boundary, so if therearelessthana
multiple of eight bits stored, the rest of the byte will
be filled with zeros.

PUT and GET work significantly faster in medium
resolution when x7 MOD 4 is equal to zero, and in
high resolution when 7 MOD 8 is equal to zero. This
is a special case where the rectangle boundaries fall
on the byte boundaries.

GOSUB and RETURN

Statements

Purpose: Branches to and returns from a subroutine.

Versions: Cassette Disk Advanced Compiler
Hskock Rk g L EX 33

Format: GOSUB /Zize

RETURN

Remarks: /ne is the line number of the first line of the
subroutine.

A subroutine may be called any number of timesina
program, and a subroutine may be called from within
another subroutine. Such nesting of subroutines is
limited only by available memory.

The RETURN statement causes BASIC to branch
back to the statement following the most recent
GOSUB statement. A subroutine may contain more
than one RETURN statement, if you want to return
from different pointsin the subroutine. Subroutmes
may appear anywhere in the program.

72
|
-
=
9!
=
™
Z
-
»

To preventyour program from accidentally entering
a subroutine, you may want to puta STOP, END, or
GOTO statementin front of the subroutine to direct
program control around it.

Use ON...GOSUB to branch to different
subroutines based on the result of an expression.

4-111

GOSUB and RETURN
Statements

Example:

4-112

Ok
10
20
30
Lo
50
60
79

RUN

GOSUB 4¢

PRINT ""BACK FROM SUBROUTINE"
END

PRINT '"'SUBROUTINE';

PRINT ' IN';

PRINT '' PROGRESS"

RETURN

SUBROUTINE IN PROGRESS
BACK FROM SUBROUTINE

Ok

This example shows how a subroutine works. The
GOSUB in line 10 calls the subroutine in line 40. So
the program branches to line 40 and starts executing
statements there until it sees the RETURN
statement in line 70. At that point the program goes
back to the statement after the subroutine call; that
is, it returns to line 20. The END statement in line 30
prevents the subroutine from being performed a

second time.

GOTO
Statement

Purpose:

Versions:

Format:

Remarks:

Branches unconditionally out of the normal
program sequence to a specified line number.

Cassette Disk Advanced Compiler
%k % Hkk kkk ok ok
GOTO /line

line is the line number of a line in the program.

If /ine is the line number of an executable statement,
that statement and those following are executed. If
line refers to a non-executable statement (such as
REM or DATA), the program continues at the first
executable statement encountered after /ize.

The GOTO statement can be used in direct mode to
re-enter a program at a desired point. This can be
useful in debugging.

Use ON...GOTO to branch to different 11nes based

on the result of an expression.

SINIWHLV.LS

4-113

GOTO
Statement

Example: Ok

4-114

5 DATA 5,7,12

190 READ R

2¢0 PRINT 'R ='";R,
30 A = 3.14%R"2

L@ PRINT "AREA ='";A

5@ GOTO 5§

RUN

R=25 AREA = 78.5
R=17 AREA = 153.86
R =12 AREA = L452.16
Qut of data in 1¢

Ok

The GOTO statement in line 50 puts the program
into an infinite loop, which is stopped when the

program runs out of data in the DATA statement.
(Notice how branching to the DATA statement did
not add additional values to the internal data table.)

HEX$
Function

Purpose:

Versions:

Format:

Remarks:

Example:

Returns a string which represents the hexadecimal
value of the decimal argument.

Cassette Disk Advanced Compiler

Hokesk dakk k¥ ddkk

¢ = HEX$(r)

7n is a numeric expression in the range -32768 to
65535.

If 7 is negative, the two’s complement form is used.
That is, HEX$(-») is the same as HEX$(65536-7).

See the OCT$ function for octal conversion.

92]

The following example uses the HEX$ function ;
tofigure the hexadecimal representation for the ;11
two decimal values which are entered. =2
lesl

Z

Ok 5
19 INPUT X »

20 AS = HEXS(X)
3@ PRINT X '"'DECIMAL IS ' A$ ' HEXADECIMAL"
RUN

7 32
32 DECIMAL IS 20 HEXADECIMAL
Ok
RUN
7 1923
1923 DECIMAL IS 3FF HEXADECIMAL
Ok

4-115

IF

Statement

Purpose:

Versions:

Format:

Remarks:

4-116

Makes a decision regarding program flow based on
the result of an expression.

Cassette Disk Advanced Compiler
sk ok sk sk sk ok

IF expression [, THEN clause [ELSE clause]
IF expression [,\JGOTO /line [[,)ELSE clause]

expression may be any numeric expression.

clause maybeaBASICstatement or asequence of
statements (separated by colons); or it may
be simply the number of aline to branch to.

line is the line number of a line existing in the
program.

If the expression is true (not zero), the THEN or
GOTO clause is executed. THEN may be followed
by either aline number for branching or one or more
statements to be executed. GOTO is always
followed by a line number.

If the result of expression is false (zero), the THEN or
GOTO clause is ignored and the ELSE clause, if
present, is executed. Execution continues with the
next executable statement.

If you enter an IF... THEN statement in direct mode,
and it directs control to a line number, then an
“Undefined line number’ error results unless you

IF
Statement

previously entered a line with the specified line
number.

Note: When using IF to test equality for a
value that is the result of a single- or
double-precision computation, remember that
the internal representation of the value may not
be exact. (This is because single- and
double-precision values are stored internally in
tfloating point binary format.) Therefore, the
test should be against the range over which the
accuracy of the value may vary. For example, to
testa computed variable A against the value 1.0,
use:

|F ABS (A-1.0)<1.0E-6 THEN

This test returns a true result if the value of A is
1.0 with a relative error of less than 1.0E-G.

Also note that IF... THEN...ELSE is just one
statement. That is, the ELSE clause cannot be a
separate program line. For example:

19 IF A=B THEN X=h
20 ELSE P=Q

v
<3y
5
—
m.
=
.
Z
~
77

is invalid. Instead, it should be:

10 |F A=B THEN X=4 ELSE P=Q

4-117

IF

Statement

Example:

4-118

Nesting of IF Statements: IF.. THEN...ELSE
statements may be nested. Nesting is limited only by
the length of the line. For example,

[F X>Y THEN PRINT "'GREATER'" ELSE IF Y=X
THEN PRINT "LESS THAN'" ELSE PRINT "EQUAL"

is a valid statement. If the statement does not
contain the same number of ELSE and THEN
clauses, each ELSE is matched with the closest
unmatched THEN. For example,

|F A=B THEN [F B=C THEN PRINT ''A=C"
ELSE PRINT "'A<=C"

will not print “A<>C” when A<>B.

This statement gets record I if I is not zero:
209 1F | THEN GET #1, |

In the next example, if I is between 10 and 20, DB is
calculated and execution branches to line 300. If I'is
not in this range, the message “OUT OF RANGE” is
printed. Note the use of two statements in the
THEN clause.

166 1F (1-18) AND {(I1<2@) THEN
DB=1982-1: GOTO 380
ELSE PRINT "OUT OF RANGE"

This next statement causes printed output to go to
either the screen or the printer, depending on the
value of a variable (IOFLAG). If IOFLAG is false
(zero), output goes to the printer; otherwise, output
goes to the screen:

210 |F 1OFLAG THEN PRINT AS ELSE LPRINT AS

INKEY$
Variable

Purpose:

Versions:

Format:

Remarks:

Reads a character from the keyboard.

Cassette Disk Advanced Compiler

seskock Hkok Hekosk ook ok

v§ = INKEY$

INKEY$ only reads a single character, even if there
are several characters waiting in the keyboard buffer.
The returned value is a zero-, one-, or two-character
string.

® A null string (length zero) indicates that no
character is pending at the keyboard.

® A one-character string contains the actual
character read from the keyboard. '

® A two-character string indicates a special
extended code. The first character will be hex
00. For a complete list of these codes, see
“Appendix G. ASCII Character Codes.”

n
—
o=
=~
s
=
m
Z
~
%

You must assign the result of INKEY$ to a string ™
variable before using the character with any BASIC
statement or function.

While INKEY$ is being used, no characters are
displayed on the screen and all characters are passed
through to the program except for:

® Ctrl-Break, which stops the program

® Ctrl-Num Lock, which sends the system into a
pause state '

® Alt-Ctrl-Del, which does a System Reset

® PrtSc, which prints the screen

4-119

INKEY$
Variable

If you press Enter in response to INKEY$, the
carriage return character passes through to the
program.

Note: To avoid complications on the input
buffer in Cassette BASIC, you should execute:

DEF SEG: POKE 1¢6,¢

after INKEY$ has received the last character

you want from a soft key string. This POKE is
not required in Disk or Advanced BASIC.

Example: The following section of a program stops the
program until any key on the keyboard is pressed:

118 PRINT "Press any key to continue'
120 AS=INKEYS: IF AS='"'" THEN 12¢

The next example shows program lines that could be
used to test a two-character code being returned:

210 KBS=INKEYS
220 IF LEN(KBS)=2 THEN KBS$=RIGHTS(KBS,1)

4-120

INP
Function

Purpose:

Versions:

Format:

Remarks:

Example:

Returns the byte read from port 7.

Cassette Disk Advanced Compiler
dkk sdeokk ®EK Rk

v = INP(»)

» must be in the range 0 to 65535.

INP is the complementary function to the OUT
statement (see “OUT Statement” in this chapter).

INP performs the same function as the IN
instruction in assembly language. Refer to the IBM
Personal Computer Technical Reference manual for a

description of valid port numbers (I/O addresses).

160 A=INP(255)

This instruction reads a byte from port 255 and
assigns it to the variable A.

»
-
>
=
T
=
2!
Z
~
»

4-121

INPUT
Statement

Purpose:

Versions:

Format:

Remarks:

4-122

Receives input from the keyboard during program
execution.

Cassette Disk Advanced Compiler

ok ok sk sk e ok *

INPUT; [“prompt”;) variable| variable]...

“prompt” is a string constant which will be used to
prompt for the desired input.

variable is the name of the numeric or string
variable orarray element which will receive
the input.

When the program sees an INPUT statement, it
pauses and displays a question mark on the screen to
indicate that it is waiting for data. If a “prompt” is
included, the string is displayed before the question
mark. You may then enter the required data from
the keyboard.

You may use a comma instead of a semicolon after
the prompt string to suppress the queestion mark.
For example, the statement INPUT “ENTER
BIRTHDATE” B$ prints the prompt without the
question mark.

The data that you enter is assigned to the varzable(s)
given in the variable list. The data items you supply
must be separated by commas, and the number of
data items must be the same as the number of
variables in the list.

The type of each data item that you enter mustagree
with the type specified by the variable name. (Strings
entered in response to an INPUT statement need

not be surrounded by quotation marks unless they

INPUT
Statement

contain commas or significant leading or trailing

blanks.)

If you respond to INPUT with too many or too few
items, or with the wrong type of value (letters
instead of numbers, etc.), BASIC displays the
message “?Redo from start”. If a single variable is
requested, you may simply press Enter to indicate
the default values of 0 for numeric input or null for
string input. However, if more than one variable is
requested, pressing Enter will cause the “?Redo
from start” message to be printed because too few
items were entered. BASIC does notassign any of the
input values to variables until you give an acceptable
response.

In Disk and Advanced BASIC, if INPUT is
immediately followed by a semicolon, then pressing
Enter to input data does not produce a carriage
return/line feed sequence on the screen. This means
that the cursor remains on the same line as your
response.

Example: 0k
18 INPUT X
20 PRINT X "'SQUARED 1S'' X2
3¢ END

RUN
?

»
=
—
5
=
Tl
Z,
—
9%

In this example, the question mark displayed by the
computerisa promptto tellyouit wantsyou to enter
something. Suppose you enter a 5. The program
continues:

75
5 SQUARED 1S 25
Ok
4-123

INPUT
Statement

4-124

Ok

19 PI=3.14

20 INPUT “WHAT IS THE RADIUS'';R

3¢ A=P1*R"2

Ly PRINT "THE AREA OF THE CIRCLE [S';A
5@ END

RUN

WHAT IS THE RADIUS?

For this second example, a prompt was included in
line 20, so this time the computer prompts with
“WHAT IS THE RADIUS? ”” Suppose you respond
with 7.4. The program continues:

WHAT IS THE RADIUS? 7.4
THE AREA OF THE CIRCLE IS 171.9464
Ok

INPUT #
Statement

Purpose: Readsdataitems from a sequential device or file and
assigns them to program variables.

Versions: Cassette Disk Advanced Compiler
ko k ok k kK X

Format: INPUT #fdlenum, variable {,variable]...

Remarks: filenum is the number used when the file was
opened for input.

variable is the name of a variable that will have an
item in the file assigned to it. It may be a
string or numeric variable, or an array
element.

The sequential file may reside on diskette or on
cassette; it may be a sequential data stream from a
communications adapter; or it may be the keyboard
(KYBD:).

The type of data in the file must match the type
specified by the variable name. Unlike INPUT, no
question mark is displayed with INPUT #.

n
~
>
!
s
=
i
Z
~
%

The data items in the file should appear just as they
would if the data were being typed in response to an
INPUT statement. With numeric values, leading
spaces, carriage returns, and line feeds are ignored.
The first character encountered that is not a space,
carriage return, or line feed isassumed to be the start
of the number. The number ends with a space,
carriage return, line feed, or comma.

4-125

INPUT #
Statement

Example:

4-126

If BASIC is scanning the data for a string item,
leading spaces, carriage returns, and line feeds are
also ignored. The first character encountered that is
not a space, carriage return, or line feed is assumed
to be the start of the string item. If this first character
isa quotation mark (%), the string item will consist of
all characters read between the first quotation mark
and the second. Thus, a quoted string may not
contain a quotation mark as a character. If the first
character of the string is not a quotation mark, the
string is an unquoted string; it will end when a
comma, carriage return, or line feed, or after 255
characters have been read. If end of file is reached
when a numeric or string item is being input, the
item is cancelled.

INPUT # can also be used with a random file.

See “Appendix B. BASIC Diskette Input and
Output.”

INPUTS$

Function

Purpose:

Versions:

Format:

Remarks:

Returns a string of » characters, read from the
keyboard or from file number fZlenum.

Cassette Disk Advanced Compiler
Rk sk ok sk hkok £ 3

v = INPUTS(n[,[#]f7lenum))

7 is the number of characters to be read from

the file.

filenum is the file number used on the OPEN
statement. If filenum is omitted, the
keyboard is read.

If the keyboard is used for input, no characters will
be displayed on the screen. All characters (including
control characters) are passed through except
Ctrl-Break, which is used to interrupt the execution
of the INPUT$ function. When responding to
INPUT$ from the keyboard, it is not necessary to
press Enter.

m |
=
> |
=i
to |
=
m i
Z,

i

w

The INPUT$ function enables you to read
characters from the keyboard which are significant
to the BASIC program editor, such as Backspace
(ASCII code 8). If you want to read these special
characters, you should use INPUT$ or INKEY$ (zof
INPUT or LINE INPUT).

For communications files, the INPUT$ function is
preferred over the INPUT # and LINE INPUT #
statements, since all ASCII characters may be
significant in communications. Refer to “Appendix
F. Communications.”

4-127

INPUT$
Function

Example: The following program lists the contents of a
sequential file in hexadecimal.

10 OPEN ''DATA' FOR INPUT AS #1

20 |F EOF(1) THEN 50

3¢ PRINT HEXS(ASC{INPUTS(1,#1)));
LG GOTO 20

50 PRINT

60 END

The next example reads a single character from the
keyboard in response to a question.

100 PRINT "TYPE P TO PROCEED OR S TO STOP'
110 XS$S=INPUTS(1)

12¢ IF XS$="P''* THEN 50¢

130 IF XS$="'S" THEN 7@¢@ ELSE 100

4-128

INSTR
Function

Purpose:

Versions:

Format:

Remarks:

Example:

Searches for the first occurrence of string yf in 4§
and returns the position at which the match isfound.
The optional offset # sets the position for starting
the search in xf.

Cassette Disk Advanced Compiler

®k ok ek ok k Hkk

v = INSTR([#,]x$,v%)

B

is a numeric expression in the range 1 to
255.

x$, y$ may be string variables, string expressions
of string constants.

Ifn>LEN(xf), orifx§ is null, or if y§ cannotbe found,
INSTR returns 0. If yf is null, INSTR returns~ (or 1
if # is not specified).

Ifz is out of range, an “Illegal function call” error will
be returned.

»
=
>
=l
s
= |
e
~

Ok

19 AS = "ABCDEB'

2@ B$ = HBH

3¢ PRINT INSTR(AS,BS); INSTR(L4,AS,BS)
RUN

2 6

Ok

This example searches for the string “B” within the
string “ABCDEB”. When the string is searched from
the beginning, “B” is found at position 2; when the
search starts at position4, “B” is found at position 6.

4-129

INT

Function

Purpose:

Versions:

Format:

Returns the largest integer that is less than or equal
to x.

Cassette Disk Advanced Compiler

sk sk sekok sk

» = INT(¥)

Remarks: x is any numeric expression.

Example:

4-130

This is called the “floor” function in some other
programming languages.

See the FIX and CINT functions, which also return
integer values.

Ok
PRINT INT(45.67)
45
Ok
PRINT INT(~2.89)
-3
0k

This example shows how INT truncates positive
integers, but rounds negative numbers upward (in a
negative direction).

