KEY
Statement

Purpose: Sets or displays the soft keys.

Versions: Cassette Disk

Format:

Remarks:

ek ok k

KEY 7, x§

KEY LIST

KEY ON

KEY OFF

n

x$

The KEY statement allows function keys to be
designated soft keys. That is, you can set each
function key to automatically type any sequence of
characters. A string of up to 15 characters may be
assigned to any one or all of the ten function keys.

Advanced Compiler

Kk x

**)

is the function key number in the range 1 to 10.

is a string expression which will be assigned to
the key. (Remember to enclose string constants

in quotation marks.)

2]
<
>
=
T
=
(w9}
Z
ol
s

When the key is pressed, the string will be input to

Initially, the soft keys are assigned the following

BASIC.

values:

F1 LIST

F3 LOAD*
F5 CONT-=-
F7 TRON--
Fo KEY

F2
F4
F6
F8
F10

RUN-

SAVE"
LPT1: -—
TROFF=—
SCREEN 0,0,0 -

The arrow (<) indicates Enter.

4-131

KEY

Statement

4-132

KEY ON causes the soft key values to be displayed
on the 25thline. When the width is40, five of the ten
soft keys are displayed. When the width is 80, all ten
are displayed. In either width, only the first six
characters of each value are displayed. ON is the
default state for the soft key display.

KEY OFF erases the soft key display from the 25th
line, making that line available for program use. It
does not disable the function keys.

KEY LIST lists all ten soft key values on the screen.
All 15 characters of each value are displayed.

KEY 7, x§ assigns the value of x§ to the function key
specified (1 to 10). x§ may be 1 to 15 characters in
length. Ifitislonger than 15 characters, only the first
15 characters are assigned.

Assigning a null string (string of length zero) to a soft
key disables the function key as a soft key.

If the value entered for # is not the range 1 to 10, an
“Illegal function call” error occurs. The previous
key string assighment is retained.

When a soft key is pressed, the INKEY$ function
returns one character of the softkey string each time
it is called. If the soft key is disabled, INKEY#$

returns a two character string. The first character is

binary zero, the second is the key scan code, aslisted
in “Appendix G. ASCII Character Codes.”

Example:

KEY
Statement

Note: To avoid complications on the input
buffer in Cassette BASIC, you should execute:

DEF SEG: POKE 1¢6,0

after reassigning any soft keys and after
INKEY$ has received the last character you
want from a soft key string. This POKE is not
required in Disk or Advanced BASIC.

After turning off the soft key display with KEY
OFF, you can use LOCATE 25,1 followed by PRINT
to display anything you want on the bottom line of
the screen. Information on line 25 is not scrolled, as
are lines 1 through 24.

See the following section, “KEY(n) Statement,” to

see how to enable and disable function key trapping
in Advanced BASIC.

5@ KEY ON
displays the soft keys on the 25th line.

2]
—~
-
—
I
=
m
Z
—
w

208 KEY OFF

erases soft key display. The soft keys are still active,
but not displayed.

19 KEY 1,"FILES'"+CHRS$(13)

assigns the string “FILES”+Enter to soft key 1. This
is a way to assign a commonly used command to a
function key.

20 KEY 1,1

disables function key 1 as a soft key.

4-133

KEY(n)
Statement

Purpose:

Vetrsions:

Format:

Remarks:

4-134

Activates and deactivates trapping of the specified
key in a BASIC program. See “ON KEY(n)
Statement” in this chapter.

Cassette Disk Advanced Compiler

KEY(z) ON
KEY(z) OFF
KEY(z) STOP

7 isanumeric expressionin the range1 to 14, and
indicates the key to be trapped:

1-10 function keys F1 to F10
11 Cursor Up

12 Cursor Left

13 Cursor Right

14 Cursor Down

KEY(z) ON must be executed to activate trapping
of function key or cursor control key activity. After
KEY(z) ON, if a non-zero line number was specified
in the ON KEY(r) statement then every time BASIC
starts a new statement it will check to see if the
specified key was pressed. If so it will perform a
GOSUB to the line number specified in the ON
KEY(%) statement.

KEY(n)
Statement

If KEY(7) is OFF, no trapping takes place and even if
the key is pressed, the event is not remembered.

Once a KEY(7) STOP statement has been executed,
no trapping will take place. However, if you press

the specified key your action is remembered so that
an immediate trap takes place when KEY(z) ON is
executed.

KEY (#) ON has no effect on whether the soft key
values are displayed at the bottom of the screen.

If you use a KEY(r) statement in Cassette or Disk
BASIC, you will get a “Syntax error.” Refer to the
previous section, “KEY Statement,” for an

explanation of the KEY statement without the (7).

4-135

7
—
o=y
q
o]
=
T
Z
~
»

KILL

Command

Purpose:

Vetrsions:

Format:

Deletes a file from a diskette. The KILL .command
in BASIC is similar to the ERASE command in DOS.

Cassette Disk Advanced Compiler

LS4 dskk e

KILL filespec

Remarks: filespec is a valid file specification as explained

Example:

4-136

under “Naming Files” in Chapter 3. The
device name must be a diskette drive. If
the device name is omitted, the DOS
default drive is used.

KILL can be used for all types of diskette files. The
name must include the extension, if one exists. For
example, you may save a BASIC program using the
command

SAVE "'TEST"

BASIC supplies the extension .BAS for the SAVE
command, but not for the KILL command. If you

want to delete that program file later, you must say
KILL “TEST.BAS”, not KILL “TEST".

If a KILL statement is given for a file that is
currently open, a “File already open” error occuts.

200 KILL ""A:DATATY

This example deletes the file named “DATA1” on
drive A:.

LEFT$
Function

Purpose: Returns the leftmost » characters of xf.

Versions: Cassette Disk Advanced Compiler
Hekok dkk HkE %k ok sk

Format: uf = LEFT$(xf,7)

Remarks: xf is any string expression.

7 is a numeric expression which must be in the
range 0 to 255. It specifies the number of
characters which are to be in the result.

If # is greater than LEN(xf), the entite string (xf) is
returned. If =0, the null string (length zero) is -
returned.

Also see the MID$ and RIGHT$ functions.

Example: o

10 AS = ''BASIC PROGRAM'
20 BS = LEFTS(AS,5)

3@ PRINT BS

RUN

BASIC

Ok

In this example, the LEFT$ function is used to
extract the first five characters from the string
“BASIC PROGRAM”.

4-137

LEN

Function

Purpose:

Versions:

Format:

Remarks:

Example:

4-138

Returns the number of characters in x§.

Cassette Disk Advanced Compiler

Rk Rk kkk Hkk

» = LEN(x#)

x§ is any string expression.

Unprintable characters and blanks are included in
the count of the number of characters.

10 XS = "BOCA RATON, FLY
2¢ PRINT LEN(XS)
RUN
14
Ok

There are-14 characters in the string “BOCA
RATON, FL”, because the comma and the blank are
counted.

LET
Statement

Purpose: Assigns the value of an expression to a variable.

Versions: Cassette Disk Advanced Compiler
sk sk Hokok Rk

Format: [LET] variable=expression

Remarks: variable is the name of the variable orarray element
which is to receive a value. It may be a
string or numeric variable or array
element.

expression is the expression whose value will be
assigned to variable. The type of theé
expression (string or numeric) must match
the type of the variable, or a “Type
mismatch” error will occur.

The word LET is optional, that is, the equal sign is
sufficient when assigning an expression to a variable
name.

SINANHLVLS

4-139

LET

Statement

Example: 110 LET DORI=12

4-140

12¢ LET E=DORI+2
13¢ LET FDANCES='HORA"

This example assigns the value 12 to the variable
DORIL. It then assigns the value 14, which is the value
of the expression DORIH2, to the variable E. The
string “HORA” is assigned to the variable
FDANCES$.

The same statements could have also been written:
119 DORI= 12

12¢ E =DORI+2
13¢ FDANCES = ''HORA"

LINE
Statement

Purpose:

Versions:

Format:

Remarks:

Draws a line or a box on the screen.

Cassette Disk Advanced Compiler

ok * kK dkk sk ok

Graphics mode only.

LINE [(xZ,y1)] -(x2,2) [,[color] [,B[F]]]

(x1,y1), (x2,y2)
are coordinates in either absolute or
relative form. (See “Specifying
Coordinates” under “Graphics Modes” in
Chapter 3.)

color is the color number in the range 0 to 3. In
medium resolution, color selects the color
from the current palette as defined by the
COLOR statement. 0 is the background
color. The default is the foreground color,
color number 3. In high resolution, a color
of 0 (zero) indicates black, and the default
of 1 (one) indicates white.

>
‘
|
= |
S
Z
—~
w

The simplest form of LINE is:
LINE -(X2,Y2)

This will draw a line from the last point referenced
to the point (X2,Y2) in the foreground color.

4-141

LINE
Statement

We can include a starting point also:

LINE (¢,0)-(319,1 99) 'diagonal down screen
LINE (@,10¢)-(319,180) 'bar across screen

We can indicate the color to draw the line in:
LINE (1@,10)-(20,28) ,2 'draw in color 2

1 'draw random lines in random colors
1@ SCREEN 1,8,0,0: CLS

20 LINE -(RND*319,RND*199) ,RND*4

3¢ GOTO 20

1 ‘*alternating pattern - line on, line off
16 SCREEN 1,8,0,8: CLS

200 FOR X=@ T0 319

3¢ LINE (X,8)-(X,199),X AND 1

Ly NEXT

The last argument to LINE is B - box, or BF - filled
box. We can leave out color and include the final
argument:

LINE (#,8)-(108,188),,B 'box in foreground
or we may include the color:

LINE (@,0)-(1¢¢,10¢) ,2,BF 'fill box color 2

The B tells BASIC to draw a rectangle with the
points (xZ,y1) and (¥2,32) as opposite corners. This
avoids having to give the four LINE commands:

LINE (X1,Y1)~-(X2,Y1)
LINE (X1,Y1)=(X1,Y2)
LINE (X2,Y1)-(x2,v2)
LINE (X1,Y2)-(X2,Y2)

which perform the equivalent function.

4-142

Example:

LINE
Statement

The BF means draw the same rectangle as B, butalso
fill in the interior points with the selected color.

When coordinates which are out of range are given
to the LINE statement, the coordinate which is out
of range is given the closest valid value. In other
words, the negative values become zero and Y values
greater than 199 become 199. X values greater than
639 become 639. X values greater than 319 in
medium resolution wrap to the next horizontal line.

The last point referenced after a LINE statement is
point (x2,32). If you use the relative form for the
second coordinate, it is relative to the first
coordinate. For example,

LINE (18@,100) -STEP (1¢,-20)

will draw a line from (100,100) to (110,80).

This example will draw random filled boxes in
random colors.

186 CLS

20 SCREEN 1,8: COLOR 2,0

30 LINE - (RND*319 RND*199) ,RND#2+1, BF
L@ GOTO 30 'boxes will overlap

%
p—]
>
!
g5
=
i
Z
—
»

4-143

LINE INPUT
St_atement

Purpose:

Vetsions:

Format:

Remarks:

Example:

4-144

Reads an entire line (up to 254 characters) from the
keyboard into a string variable, ignoring delimiters.

Cassette Disk Advanced Compiler

Hokk &%k &k L33

LINE INPUTY;][“prompt’;] stringvar

“prompt” is a string constant that is displayed on the
screen before input is accepted. A
question mark is not printed unless it is
part of the prompt string.

stringvar is the name of the string variable or array
element to which the line will be assigned.
All input from the end of the prompt to
the Enter is assigned to stringuar. Trailing
blanks are ignored.

In Disk and Advanced BASIC, if LINE INPUT is
immediately followed by a semicolon, then pressing
Enter to end the input line does not produce a
carriage return/line feed sequence on the screen.
That is, the cursor remains on the same line as your
response.

You can exit LINE INPUT by pressing Ctrl-Break.
BASIC returns to command level and displays Ok.

You may then enter CONT to resume execution at
the LINE INPUT.

See example in the next section, “LINE INPUT #
Statement.”

LINE INPUT #
Statement

Purpose:

Reads an entire line (up to 254 characters), ignoring
delimiters, from a sequential file into a string
variable.

Versions: Cassette Disk Advanced Compiler

Format:

ok ok L33 E 2 2] k¥

LINE INPUT #filenum, stringvar

Remarks:, filenum is the number under which the file was

opened.

stringvar is the name of a string variable or array
element to which the line will be assigned.

LINE INPUT # reads all characters in the sequential
file up to a carriage return. It then skips over the
carriage return/line feed sequence, and the next
LINE INPUT # reads all characters up to the next
carriage return. (If a line feed/carriage return
sequence is encountered, it is preserved. That is, the
line feed/carriage return characters are returned as
part of the string.)

w
-
-
=
tr
=
2
Z
~
U) .

LINE INPUT # is especially useful if each line of a
file has been broken into fields, or if a BASIC '
program saved in ASCII mode is being read as data
by another program.

LINE INPUT # can also be used for random files.
See “Appendix B. BASIC Diskette Input and
Output.”

4-145

LINE INPUT #
Statement

Example: The following example uses LINE INPUT to get
information from the keyboard, where the
information is likely to have commas or other
delimiters in it. Then the information is written to a

sequential file, and read back out from the file using
LINE INPUT #.

4-146

Ok
10
20
30
Ly
50
6¢
790
80

RUN

OPEN “'LIST'* FOR OUTPUT AS #1
LINE INPUT "Address? '';C$
PRINT #1, CS

CLOSE 1

OPEN ''LIST'* FOR INPUT AS #1
LINE INPUT #1, CS

PRINT C$

CLOSE 1

Address?

Suppose you respond with DELRAY BEACH, FL
33445. The program continues:

Address? DELRAY BEACH, FL 33445

DELRAY BEACH, FL 33445

Ok

LIST
Command

Purpose:

Versions:

Format;

Remarks:

Lists the program currently in memory on the
screen or other specified device.

Cassette Disk Advanced Compiler

Hokk koK ok

LIST [/ine1] [-[line2]] [felespec]

linel, line2
are valid line numbers in the range 0 to
65529. linel is the first line to be listed.
line2 is the last line to be listed. A period(.)
may be used for either line number to
indicate the current line.

filespec is a string expression for the file
specification as outlined under “Naming
Files” in Chapter 3. If filespec is omitted,
the specified lines are listed on the screen.

In Cassette BASIC, listings directed to the screen by
omitting the device specifier may be stopped at any
time by pressing Ctrl-Break. Listings directed to

specific devices may not be interrupted, and will list
until the range is exhausted. That is, LIST range may
be interrupted, but LIST range, “SCRN:” may not.

SINHWALV.IS

In Disk and Advanced BASIC, any listing to either
the screen or the printer may be interrupted by
pressing Ctrl-Break.

If the line range is omitted, the entire program is
listed.

4-147

LIST

Command

Example:

4-148

When the dash (-) is used in a line range, three
options are available:

® If only /inel is given, that line and all higher
numbered lines are listed.

® Ifonly/ine2 is given, all lines from the beginning
of the program through /Zre2 are listed.

e Ifbothline numbersare specified, all lines from
linel through line2, inclusive, are listed.

When you list to a file on cassette or diskette, the
specified part of the program is saved in ASCII
format. This file may later be used with MERGE.

LIST

Lists the entire program on the screen.

LIST 35,"SCRN:"

Lists line 35 on the screen.

LIST 1¢-29, YLPT1:"

Lists lines 10 through 20 on the printer.

LIST 10@- ,''COMT: 1200 ,N,8"

Lists all lines from 100 through the end of the
program to the first communications adapter at
1200 bps, no parity, 8 data bits, 1 stop bit.

LIST -2@@,""CAST:BOB"

Lists from the first line through line 200 to a file
named “BOB” on cassette.

LLIST
Command

Purpose:

Versions:

Format:

Remarks:

Example:

Lists all or part of the program currently in memory
on the printer (LPT1:).

Cassette Disk Advanced Compiler

ok ok &Kk Hkck

LLIST [liner][- [/zne2]]

The line number ranges for LLIST work the same as
for LIST.

In Cassette BASIC, LLIST cannot be interrupted by
Ctrl-Break. If you want to stop the list, you must

turn the printer off.

BASIC always returns to command level after an
LLIST is executed.

LLEST

Prints a listing of the entire program.

90
<
>
~
33
=
&
Z
~
w

LLIST 35

Prints line 35.

LLIST 18-20

Lists lines 10 through 20 on the printer.
LLIST 198-

Prints all lines from 100 through the end of the
program.

LLIST -20¢

Prints the first line through line 200.
4-149

LOAD

Command

Purpose:

Versions:

Format:

Loads a program from the specified device into
memorty, and optionally runs it.

Cassette Disk Advanced Compiler

ok ok ek dkk

LOAD filespec[,R]

Remarks: filespec is a string expression for the file

4-150

specification. It must conform to the rules
outlined under “Naming Files” in Chapter
3, otherwise an error occurs and the load is
cancelled.

LOAD closes all open files and deletes all variables
and program lines currently residing in memory
before it loads the specified program. If the R
option is omitted, BASIC returns to direct mode
after the program is loaded.

However, if the R option is used with LOAD, the
program is run after it is loaded. In this case all open
data files are kept open. Thus, LOAD with the R
option may be used to chain several programs (or
segments of the same program). Information may
be passed between the programs using data files.

LOAD filespec,R is equivalent to RUN filespec.
If you are using Cassette BASIC and the device name

is omitted, CAS1: is assumed. CAS1: is the only
allowable device for LOAD in Cassette BASIC.

LOAD
Command

If you are using Disk or Advanced BASIC, the DOS
default diskette drive is used if the device is omitted.
The extension .BAS is added to the filename if no
extension is supplied and the filename is eight
characters or less.

Notes when using CAS1:

1. If the LOAD statement is entered in direct
mode, the file names on the tape will be
displayed on the screen followed by a period (.)
and a single letter indicating the type of file.
This is followed by the message “Skipped.” for
the files not matching the named file, and
“Found.” when the named file is found. Types
of files and their corresponding letter are:

.B for BASIC programs in internal format
(created with SAVE command)

P for protected BASIC programs in internal
format (created with SAVE ,P command)

A for BASIC programs in ASCII format
(created with SAVE ,A command)

.M for memory image files (created with

.D

wn
~
>
—
m
=
gl
Z
-
w

BSAVE command)
for data files (created by OPEN followed
by output statements)

To see what files are on a cassette tape, rewind
the tape and enter some name thatis known not
to be on the tape. For example, LOAD
“CAS1:NOWHERE”. All file names will then
be displayed.

If the LOAD command is executed in a BASIC
program, the file names skipped and found are
not displayed on the screen.

4-151

LOAD

Command

Example:

4-152

2. Note that Ctrl-Break may be typed at any time
during LOAD. Between files or after a time-out
period, BASIC will exit the search and return to
command level. Previous memory contents
remain unchanged.

3, If CASL1: is specified as the device and the

filename is omitted, the next program file on
the tape is loaded.

LOAD *“MENU"

Loads the program named MENU, but does not run
it.

LOAD "INVENT'" R

Loads and runs the program INVENT.
RUN '"INVENT"

Same as LOAD “INVENT” R.

LOAD "B:REPORT.BAS"

Loads the file REPORT.BAS from diskette drive B.
Note that the .BAS did not have to be specified.

LOAD "CAST:."

Loads the next program on the tape.

LOC
Function

Purpose: Returns the current position in the file.

Versions: Cassette Disk Advanced Compiler
Hkok E2 2 3 ok

Format: v = LOC(filenum)

Remarks: filenum is the file number used when the file was
opened.

With random files, LOC returns the record number
of the last record read or written to a random file.

With sequential files, LOC returns the number of
records read from or written to the file since it was
opened. (Arecordisa 128 byte block of data.) When
afile is opened for sequential input, BASIC reads the
first sector of the file, so LOC will return a 1 even
before any input from the file.

Fora communications file, LOC returns the number
of characters in the input buffer waiting to be read.
The default size for the input buffer is 256
characters, but you can change this with the /C:
option on the BASIC command. If there are more
than 255 characters in the buffer, LOC returns 255.
Since a string is limited to 255 characters, this
practical limit alleviates the need for you to test for
string size before reading data into it. If fewer than
255 characters remain in the buffer, then LOC
returns the actual count.

%
!
>
!
s
=
o
Z
~
»

4-153

LOC

Function

Example: 2¢¢ |F LOC(1)>50 THEN STOP

4-154

This first example stops the program if we’ve gone
past the 50th record in the file.

300 PUT #1,L0C(1)

The second example could be used to re-write the
record that was just read.

LOCATE
Statement

Purpose: Positions the cursor on the active screen. Optional
parameters turn the blinking cursor on and off and
define the size of the blinking cursor.

Versions: Cassette Disk Advanced Compiler
Hok sk skokk KRk EE T 3

Format: LOCATE [row][,[co] [,(cursor][,[start] [stop] 1]]

Remarks: row is a numeric expression in the range 1 to
25. It indicates the screen line number
where you want to place the cursor.

col is a numeric expression in the range 1 to 40
or 1 to 80, depending upon screen width. It
indicates the screen column number
where you want to place the cursor.

cursor is a value indicating whether the cursor is
visible or not. A 0 (zero) indicates off, 1
(one) indicates on.

%
~
o
=
r
=
i
Z
~
w

start is the cursor starting scan line. It must be a
numeric expression in the range 0 to 31.

stop is the cursor stop scan line. It also must be
numeric expression in the range 0 to 31.

cursor, start and stop do not apply to graphics mode.

4-155

LOCATE
Statement

4-156

start and stop allow you to make the cursor any size
you want. You indicate the starting and ending scan
lines. The scan lines are numbered from 0 at the top
of the character position. The bottom scan line is 7 if
you have the Colot/Graphics Monitor Adapter, 13 if
you have the IBM Monochrome Display and Parallel
Printer Adapter. If start is given and stgp is omitted,
stop assumes the value of start. If start is greater than
stop, you'll get a two-part cursor. The cursor “wraps”
from the bottom line back to the top.

After a LOCATE statement, I/O statements to the
screen begin placing characters at the specified
location.

When a program is running, the cursor is normally
off. You can use LOCATE ,,1 to turn it back on.

Normally, BASIC will not print to line 25. However,
you can turn off the soft key display using KEY
OFF, then use LOCATE 25,1: PRINT... to put
things on line 25.

Any parameter may be omitted. Omitted parameters
assume the current value.

Any values entered outside of the ranges indicated
will resultin an “Illegal function call” error. Previous
values are retained.

Example:

LOCATE
Statement

18 LOCATE 1,1

Moves the cursor to the home position in the upper
left-hand corner of the screen.

20 LOCATE ,,1

Makes the blinking cursor visible; its position
remains unchanged.

30 LOCATE ,,,7

Position and cursor visibility remain unchanged.
Sets the cursor to display at the bottom of the
character on the Color/Graphics Monitor Adapter
(starting and ending on scan line 7).

L@ LOCATE 5,1,1,8,7

Moves the cursor to line 5, column 1. Makes the
cursor visible, covering the entire character cell on
the Color/Graphics Monitor Adapter, starting at
scan line 0 and ending on scan line 7.

n
~
>
=
!
=
I
Z
—
%

4-157

LOF
Function

Purpose: Returns the number of bytes allocated to the file
(length of the file).

Versions: Cassette Disk Advanced Compiler
ok ok Hokok Sk

Format: v = LOF(filenum)

Remarks: filenum is the file number used when the file was
opened.

For diskette files created by BASIC, LOF will return
a multiple of 128. For example, if the actual data in
the file is 257 bytes, the number 384 will be
returned. For diskette files created outside BASIC
(for example, by using EDLIN), LOF returns the
actual number of bytes allocated to the file.

For communications, LOF returns the amount of
free space in the input buffer. That is,

size-LOC(felenum), where size is the size of the
communications buffer, which defaults to 256 but
may be changed with the /C: option on the BASIC
command. Use of LOF may be used to detect when
the input buffer is getting full. In practicality, LOC
is adequate for this purpose, as demonstrated in the
example in “Appendix F. Communications.”

Example: These statements will get the last record of the file
named BIG, assuming BIG was created with a record
length of 128 bytes:

19 OPEN "BIG" AS #1
20 GET #1,LO0F(1)/128

4-158

LOG

Function
Purpose: Returns the natural logarithm of .
Versions: Cassette Disk Advanced Compiler
Hikk &k Kok Hkok
Format: »=LOG(»)
Remarks: x must be a numeric expression which is greater
than zero.

The natural logarithm is the logarithm to the basee. .

Example: The first example calculates the logarithm of the

expression 45/7:

Ok

PRINT LOG(L5/7)
1.860752

Ok

The second example calculates the logorithm of e
and of ez :

92]
J
\
~
o
=
tm
Z
~H
a |

Ok
E=
Ok
7 LOG(E)
1
Ok
? LOG(E*E)
2
Ok

2.718282

4-159

LPOS

Function

Purpose:

Versions:

Format:

Remarks:

Example:

4-160

Returns the current position of the print head
within the printer buffer for LPT1:.

Cassette Disk Advanced Compiler

kkk *k ok sk Hokok

v = LPOS(»)

is a numeric expression which is a dummy
argument in Cassette BASIC. In Disk and
Advanced BASIC, 7 indicates which printer is
being tested, as follows:

N

Oorl LPT1:
2 LPT2:
3 LPT3;

Therefore, we recommend you use 0 or 1 in Cassette
BASIC to maintain compatibility with the other
versions.

The LPOS function does not necessarily give the
physical position of the print head on the printer.

In this example, if the line length is more than 60
characters long we send a carriage return character
to the printer so it will skip to the next line.

108 IF LPOS(@)>68 THEN LPRINT CHRS(13)

LPRINT and LPRINT USING
Statements

Purpose: Prints data on the printer (LPT1:).

Versions: Cassette Disk Advanced Compiler
Hokk sk E2 3 3 EX T 3

Format: LPRINT [/ist of expressions) [;]
LPRINT USING o, list of expressions [;]

Remarks: /75t of expressions
is a list of the numeric and/or string
expressions that are to be printed. The
expressions must be separated by commas
or semicolons.

vf is a string constant or variable which
identifies the format to be used for
printing. This is explained in detail under
“PRINT USING Statement.”

These statements function like PRINT and PRINT
USING, except output goes to the printer. See
“PRINT Statement” and “PRINT USING
Statement.”

9]
—
-
=
tr
=
g2
Z
=
w

LPRINT assumes an 80-character wide printer. That
is, BASIC automatically inserts a carriage return/line
teed after printing 80 characters. This will result in
two lines being skipped when you print exactly 80
characters, unless you end the statement with a
semicolon. You may change the width value with a
WIDTH “LPT1:” statement.

Printing is asynchronous with processing. If you do
a form feed (LPRINT CHR$(12);) followed by

another LPRINT and the printer takes more than 10
seconds to do the form feed, you may get a “Device

4-161

LPRINT and LPRINT USING
Statements

Timeout” error on the second LPRINT. To avoid
this problem, do the following:

1 ON ERROR GOTO 65000

65000 |F ERR = 24 THEN RESUME '2L=timeout

You might want to test ERL to make sure the
timeout was caused by an LPRINT statement.

Example: This is an example of sending special control
characters to the IBM 80 CPS Matrix Printer using
LPRINT and CHRS$. The printer control characters
are listed in the IBM Personal Computer Technical
Reference manual.

10 LPRINT CHRS(1h) ;" Title Line"

20 FOR 1=2 T0 4

3¢ LPRINT '"Report line'';l

4y NEXT 1

5@ LPRINT CHRS(15);"Condensed print; 132 char/line"
6¢ LPRINT CHRS(18);''Return to normal!

78 LPRINT CHR$(27) ;1 E"

8¢ LPRINT "This is emphasized print"

9B LPRINT CHRS{(27);"'fF"

199 LPRINT '"Back to normal again'

PRy

The output produced by this program looks like
this:

B T I T
Tire &
Lime 3
Feport line 4
Condenzed print; 132 char/line
Feturn to mormal

This is emphasized print

Back to normal again

4-162

LSET and RSET
Statements

Purpose:

Versions:

Format:

Remarks:

Moves data into a random file buffer (in preparation
for a PUT (file) statement).

Cassette Disk Advanced Compiler

ekt gk fkk

LSET stringvar = x§

RSET stringvar = x§

stringvar is the name of a variable that was defined in
a FIELD statement.

xf is a string expression for the information
to be placed into the field identified by
Stringuvar.

If x§ requires fewer bytes than were specified for
stringvar in the FIELD statement, LSET left-justifies
the string in the field, and RSET right-justifies the
string. (Spaces are used to pad the extra positions.)
If x¢ is longer than stringvar, characters are dropped
from the right.

»
1
>
—
M
=
g9
Z
~]
»

Numeric values must be converted to strings before
they are LSET or RSET. See “MKI$, MKS$, MKD$
Functions” in this chapter.

4-163

LSET and RSET
Statements

Refer to “Appendix B. BASIC Diskette Input and
Output” for a complete explanation of using
random files.

Note: LSET or RSET may also be used with a
string variable which was not defined in a
FIELD statement to left-justify or right-justify
a string in a given field. For example, the
program lines:

110 AS$S=SPACES(29)
120 RSET AS=NS

right-justify the string N$ in a 20-character

field. This can be useful for formatting printed
output.

Example: This example converts the numeric value AMT into
a string, and left-justifies it in the field A$ in
preparation for a PUT (file) statement.

150 LSET AS=MKSS (AMT)

4-164

MERGE
Command

Purpose:

Vetsions:

Format:

Merges the lines from an ASCII program file into the
program currently in memory.

Cassette Disk Advanced Compiler

kkk Hskok Hkk

MERGE filespec

Remarks: filespec is a string expression for the file

specification. It must conform to the rules
for naming files as outlined in “Naming
Files” in Chapter 3; otherwise an error
occurs and the MERGE is cancelled.

The device is searched for the named file. If found,
the program lines in the device file are merged with
the lines in memory. If any lines in the file being
merged have the same line number as lines in the
program in memory, the lines from the file will
replace the corresponding lines in memory.

After the MERGE command, the merged program
resides in memory, and BASIC returns to command
level.

%
~
>
~
23!
=
T
Z
~
%

In Cassette BASIC, if the device name is omitted,
CAS1: is assumed. CAS1: is the only allowable
device for MERGE in Cassette BASIC. With Disk
and Advanced BASIC, if the device name is omitted,
the DOS default drive is assumed.

If CAS1: is specified as the device name and the

filename is omitted, the next ASCII program file
encountered on the tape is merged.

4-165

MERGE
Command

Example:

4-166

If the program being merged was not saved in ASCII
format (using the A option on the SAVE command),
a ‘“Bad file mode” error occurs. The program in
memory remains unchanged.

MERGE ''A:NUMBRS"

This merges the file named “NUMBRS” on drive A:
with the program in memory.

MID$
Function and Statement

Purpose:

Versions:

Format:

Remarks:

Returns the requested part of a given string. When
used as a statement, as in the second format,
replaces a portion of one string with another string.

Cassette Disk Advanced Compiler

ek ke sk Rk
As a function:
uf = MID$(xf, 2[,m])
As a statement:
MID$(v8,[,m]) = y8
For the function (v§=MID4...):
x$ is any string expression.
7 is an integer expression in the range 1 to 255.

m is an integer expression in the range 0 to 255.

72
-
-
e
i
=
ki
Z
~
72

The function returns a string of length 7 characters
from x# beginning with the »th character. If 7 is
omitted or if there are fewer than characters to the
right of the #th character, all rightmost characters
beginning with the #th character are returned. If m is
equal to zero, or if 7 is greater than LEN(x#), then
MID$ returns a null string.

Also see the LEFT$ and RIGHT$ functions.

4-167

MID$
Function and Statement

For the statement (MID$...=y$):

vf is a string variable or array element that will
have its characters replaced.

7 is an integer expression in the range 1 to 255.
m is an integer expression in the range O to 255.
y§ is a string expression.

The characters in v§, beginning at position #, are
replaced by the characters in y§. The optional m
refers to the number of characters from y§ that will
be used in the replacement. If 7 is omitted, all of y§
is used.

However, regardless of whether 7 is omitted or
included, the length of 2§ does not change. For
example, if v§ is four characters long and y§ is five
characters long, then after the replacement uf will
contain only the first four characters of yf.

Note: If either » or 7 is out of range, an
“Illegal function call” error will be returned.

4-168

MID$
Function and Statement

Example: The first example uses the MID$ function to select
the middle portion of the string B$.

ok
10 AS="GOOD "

29 BS=""MORNING EVENING AFTERNOON"
3¢ PRINT AS;MIDS(BS,9,7)

RUN

GCOD EVENING

ok

The next example uses the MID$ statement to
replace characters in the string A$.

Ok
10 AS='"MARATHON, GREECE"
20 MIDS(AS,11)=""FLORIDA"

30 PRINT AS

RUN

MARATHON, FLORID
Ok

Note in the second example how the length of A$
was not changed.

n
<
>
=~
m
=
tr
Z
—
n

4-169

MKI$, MKS$, MKD$
Functions

Purpose: Convert numeric type values to string type values.

Versions: Cassette Disk Advanced Compiler
Hxk Hokok kR

Format: of = MKI$ (integer expression)
vf = MKS$ (single-precision expression)
vf = MKDS$ (double-precision expression)

Remarks: Any numeric value that is placed in a random file
buffer with an LSET or RSET statement must be
converted to a string. MKI$ converts an integer toa
2-byte string. MKS$ converts a single-precision
number to a 4-byte string. MKD$ converts a
double-precision number to an 8-byte string.

These functions differ from STR$ in that they do
not actually change the bytes of the data, just the
way BASIC interprets those bytes.

See also “CVI, CVS, CVD Functions” in this chapter

and “Appendix B. BASIC Diskette Input and
Output.”

4-170

MKI$, MKS$, MKD$
Functions

Example: This example uses a random file (#1) with fields
defined in line 100. The first field, D$, is intended to
hold a numeric value, AMT. Line 110 converts AMT
to a string value using MKS$ and uses LSET to place
what is actually the value of AMT into the random
file buffer. Line 120 places a string into the buffer
(we don’t need to convert a string); then line 130
writes the data from the random file buffer to the

file.
100 FIELD #1, 4 AS DS, 20 AS NS
118 LSET DS = MKSS(AMT)
1200 LSET NS = AS
130 PUT #1

»n
—
>
—
52!
=
!
Z
—~
w

4-171

MOTOR

Statement

Purpose:

Versions:

Format:

Remarks:

Example:

4-172

Turns the cassette player on and off from a program.

Cassette Disk Advanced Compiler
sk L2 EX X3

MOTOR [state]

State is a numeric expression indicating on or

off.

If state is non zero, the cassette motor is turned on. If
state is zero, the cassette motor is turned off.

If state is omitted, the cassette motor state is
switched. That is, if the motor is off, it is turned on
and vice-versa.

The following sequence of statements turns the
cassette motor on, then off, then back on again.

19 MOTOR 1
2¢ MOTOR @
30 MOTOR

NAME
Command

Purpose:

Versions:

Format:

Remarks:

Example:

Changes the name of a diskette file. The NAME
command in BASIC is similar to the RENAME
command in DOS.

Cassette Disk Advanced Compiler

Hk K 5 ok ok %k

NAME filespec AS filename

filespec is a file specification as outlined under
“Naming Files” in Chapter 3.

filename will be the new filename. It must be a valid
filename as outlined in the same section.

The file specified by filespec must exist and filename
must not exist on the diskette, otherwise an error
will result. If the device name is omitted, the DOS
default drive is assumed. Note that the file
extension does not default to .BAS.

w
-
s
—
t
=
Fri
Z
—
7]

After a NAME command, the file exists on the same
diskette, in the same area of diskette space, with the
new name.

NAME "'A:ACCTS.BAS'' AS "LEDGER.BAS"

In this example, the file that was formerly named
ACCTS.BAS on the diskette in drive A will now be
named LEDGER.BAS.

4-173

NEW

Command

Purpose:

Versions:

Format:

Remarks:

Example:

4-174

Deletes the program currently in memory and clears
all variables.

Cassette Disk Advanced Compiler

®k ok e ke Hkk

NEW

NEW is usually used to free memory before
entering a new program. BASIC always returns to
command level after NEW is executed. NEW causes
all files to be closed and turns trace off if it was on
(see “TRON and TROFF Commands,” later in this
chapter).

Ok
NEW
Ok

The program that had been in memory is now
deleted.

OCT$

Function

Purpose:

Versions:

Format:

Remarks:

Example:

Returns a string which represents the octal value of
the decimal argument.

Cassette Disk Advanced Compiler

ok ok Hkok oKk kK

vf = OCT$(»)

7 is a numeric expression in the range -32768 to
65535.

If » is negative, the two’s complement form is used.
That is, OCT$(-#) is the same as OCT$(65536-7).

See the HEX$ function for hexadecimal conversion.

4
ok >
PRINT OCTS(24) !
30 E
ok 2

;—]

5]

This example shows that 24 in decimal is 30 in octal.

4-175

ON COM(n)
Statement

Purpose:

Versions:

Format:

Remarks:

4-176

Sets up a line number for BASIC to trap to when
there is information coming into the
communications buffer.

Cassette Disk Advanced Compiler

ON COM(#) GOSUB /zne

7 is the number of the communications
adapter (1 or 2).

line is the line number of the beginning of the
trap routine. Setting /7ze equal to O (zero)
disables trapping of communications
activity for the specified adapter.

A COM(z) ON statement must be executed to
activate this statement for adapter 7. After COM(z)
ON, if a non-zero line number is specified in the ON
COM(») statement then every time the program
starts a new statement, BASIC checks to see if any
characters have come in to the specified
communications adapter. If so, BASIC performs a
GOSUB to the specified /re.

If COM(#) OFF is executed, no trapping takes place
for the adapter. Even if communications activity
does take place, the event is not remembered.

If a COM(#) STOP statement is executed, no
trapping takes place for the adapter. However, any
characters being received are remembered so an
immediate trap takes place when COM(z) ON is
executed.

When the trap occursan automatic COM(z) STOP is
executed so recursive traps can never take place.

Example:

ON COM(n)

Statement

The RETURN from the trap routine automatically
does a COM(#) ON unless an explicit COM(») OFF
was performed inside the trap routine.

Event trapping does not take place when BASIC is
not executing a program. When an error trap
(resulting from an ON ERROR statement) takes
place all trapping is automatically disabled
(including ERROR, STRIG(n), PEN, COM(n), and
KEY(n)).

Typically the communications trap routine reads an
entire message from the communications line
before returning back. It is not recommended that
you use the communications trap for single
character messages since at high baud rates the
overhead of trapping and reading for each individual
character may allow the interrupt buffer for
communications to overflow.

You may use RETURN /zze if you want to go back to
the BASIC program at a fixed line number. Use of
this non-local return must be done with care,
however, since any other GOSUBs, WHILEs, or
FORs that were active at the time of the trap will
remain active.

150 ON COM{1) GOSUB 5@@
160 COM(1) ON

50% REM incoming characters

590 RETURN 308

This example sets up a trap routine for the first
communications adapter at line 500.

4-177

»
~
>
=
S5
=
g3}
Z
~
%

ON ERROR
Statement

Purpose:

Versions:

Format:

Remarks:

4-178

Enables error trapping and specifies the first line of
the error handling subroutine.

Cassette Disk Advanced Compiler
ON ERROR GOTO /lne
line is the line number of the first line of the

error trapping routine. If the line number
does not exist, an “Undefined line
number’’ error results.

Once error trapping has been enabled, all errors
detected (¢ncluding divect mode errors) will cause a jump
to the specified error handling subroutine.

To disable error trapping, execute an ON ERROR
GOTO 0. Subsequent errors will print an error
message and halt execution. An ON ERROR
GOTO 0 statement thatappearsinan error trapping
subroutine causes BASIC to stop and print the error
message for the error that caused the trap. It is
recommended that all error trapping subroutines
execute an ON ERROR GOTO 0 if an error is
encountered for which there is no recovery action.

Note: If an error occurs during execution of
an error handling subroutine, the BASIC error
message is printed and execution terminates.
Error trapping does not occur within the error
handling subroutine.

Example:

ON ERROR
Statement

You use the RESUME statement to exit from the
error trapping routine. Refer to “RESUME
Statement” in this chapter.

1@ ON ERROR GOTO 198

20 LPRINT "This goes to the printer."

30 END

109 |F ERR=27 THEN PRINT '"Check printer'
RESUME

This example shows how you might trap a common
error — forgetting to put paper in the printer, or
forgetting to switch it on.

»
~
>
3
2
=
5
Z
)
%

4-179

ON...GOSUB and ON...GOTO
Statements

Purpose:

Versions:

Format:

Remarks:

4-180

Branches to one of several specified line numbers,
depending on the value of an expression.

Cassette Disk Advanced Compiler

Hkk kK dedkk seokok

ON » GOTO /line|,line]...
ON 7 GOSUB linel,line]...

n is a numeric expression which is rounded
to an integer, if necessary. It mustbe in the
range 0 to 255, an “Illegal function call”
error Occurs.

line is the line number of a line you wish to
branch to.

The value of 7 determines which line number in the
list will be used for branching. For example, if the
value of 7 is 3, the third line number in the list will be
the destination of the branch.

In the ON...GOSUB statement, each line numberin
the list must be the first line number of a subroutine.
That is, you eventually need to have a RETURN
statement to bring you back to the line following

the ON...GOSUB.

If the value of 7 is zero or greater than the number of
items in the list (but less than or equal to 255),
BASIC continues with the next executable
statement.

ON...GOSUB and ON...GOTO
Statements

Example: The first example branches to line 150 if L-1 equals
1, to line 300 it L-1 equals 2, to line 320 if L-1 equals
3, and to line 390 if L-1 equals 4. If L-1 is equal to 0
(zero) or is greater than 4, then the program just
goes on to the next statement.

16¢ ON L-1 GOTO 150, 308,320,390

The next example shows how to use an
ON...GOSUB statement.

1206 ON A GOSUB 1300, 1400
130@ REM start of subroutine for A=]

1396 RETURN

2
~
>
~
e
=
™
Z
—
»

4-181

ON KEY(n)
Statement

Purpose:

Versions:

Format:

Remarks:

4-182

Sets up a line number for BASIC to trap to when the
specified function key or cursor control key is
pressed.

Cassette Disk Advanced Compiler

ON KEY(z) GOSUB /ine

N

is a numeric expression in the range 1 to 14
indicating the key to be trapped, as fcllows:

1-10 function keys F1 to F10
11 Cursor Up

12 Cursor Left

13 Cursor Right

14 Cursor Down

line is the line number of the beginning of the
trapping routine for the specified key. Setting
line equal to O disables trapping of the key.

A KEY(z) ON statement must be executed to
activate this statement. After KEY(z) ON, if a
non-zero line number is specified in the ON KEY(»)
statement then every time the program starts a new
statement, BASIC checks to see if the specified key
was pressed. If so, BASIC performs a GOSUB to the
specified /zne.

If a KEY(z) OFF statement is executed, no trapping
takes place for the specified key. Even if the key is
pressed, the event is not remembered.

ON KEY(n)
Statement

If a KEY () STOP statement is executed, no
trapping takes place for the specified key. However,
if the key is pressed the event is remembered, so an
immediate trap takes place when KEY(z) ON is
executed. '

When the trap occurs an automatic KEY(z) STOP is
executed so recursive traps can never take place.
The RETURN from the trap routine automatically
does a KEY(#z) ON unless an explicit KEY(») OFF
was performed inside the trap routine.

Event trapping does not take place when BASIC is
not executing a program. When an error trap
(resulting from an ON ERROR statement) takes
place all trapping is automatically disabled
(including ERROR, STRIG(n), PEN, COM(n), and
KEY(n)).

Key trapping may not work when other keys are
pressed before the specified key. The key that
caused the trap cannot be tested using INPUT$ or
INKEYS$, so the trap routine for each key must be
different if a different function is desired.

You may use RETURN Zze if you want to go back o
the BASIC program at a fixed line number. Use of
this non-local return must be done with care,
however, since any other GOSUBs, WHILEs, or
FORs that were active at the time of the trap will
remain active.

KEY(#z) ON has no effect on whether the soft key
values are displayed at the bottom of the screen.

4-183

»
N
>
=
11
=
M
Z,
~
»

ON KEY(n)
Statement

Example: The following is an example of a trap routine for
function key 5.

163 ON KEY(5) GOSUB 20¢
110 KEY(5) ON

200 REM function key 5 pressed

298 RETURN 14p

4-184

ON PEN
Statement

Purpose:

Vetrsions:

Format:

Remarks:

Sets up a line number for BASIC to transfer control
to when the light pen is activated.

Cassette Disk Advanced Compiler

ON PEN GOSUB /e

line is the line number of the beginning of the
trap routine for the light pen. Using a line
number of 0 disables trapping of the light
pen.

A PEN ON statement must be executed to activate
this statement. After PEN ON, if a non-zero line
number is specified in the ON PEN statement, then
every time the program starts a new statement
BASIC will check to see if the pen was activated. If
so, BASIC performs a GOSUB /ize.

If PEN OFF is executed, no trapping takes place.
Even if the light pen is activated, the event is not
remembered.

" SLNANWALV.LS

If a PEN STOP statement is executed, no trapping
takes place, but pen activity is remembered so that
an immediate trap takes place when PEN ON is
executed.

When the trap occurs, an automatic PEN STOP is
executed so recursive traps can never take place.
The RETURN from the trap routine automatically
does a PEN ON unless an explicit PEN OFF was
performed inside the trap routine.

4-185

ON PEN
Statement

Event trapping does not take place when BASIC is
not executing a program. When an error trap
(resulting from an ON ERROR statement) takes
place all trapping is automatically disabled (including
ERROR, STRIG(n), PEN, COM(n), and KEY(n)).

PEN(0) is not set when pen activity causes a trap.

You may use RETURN Zze if you want to go back to
the BASIC program at a fixed line numbet. Use of
this non-local return must be done with care,
however, since any other GOSUBs, WHILEs, or
FORs that were active at the time of the trap will
remain active.

Note: Do not attempt any cassette I/O while
PEN is ON.

Example: Thisexample setsup a trap routine for the light pen.

4-186

19 ON PEN GOSUB 50¢
20 PEN ON

568 REM subroutine for pen

650 RETURN 30

ON STRIG(n)
Statement

Purpose: Setsup aline number for BASIC to trap to when one
of the joystick buttons (triggers) is pressed.

Versions: Cassette Disk Advanced Compiler
Hokk (**)

Format: ON STRIG(») GOSUB /e

Remarks: » may be 0, 2, 4, or 6, and indicates the button
to be trapped as follows:

0 Dbutton Al
2 button Bl
4 button A2
6 button B2

line is the line number of the trapping routine. If
line is 0, trapping of the joystick button is
disabled.

A STRIG(z) ON statement must be executed to
activate this statement for button ». If STRIG(z)
ON is executed and a non-zero line number is
specified in the ON STRIG(z) statement, then every
time the program starts a new statement BASIC
checks to see if the specified button has been
pressed. If so, BASIC performs a GOSUB to the
specified Jine.

<l
‘;
— |
w

If STRIG(z) OFF is executed, no trapping takes
place for button . Even if the button is pressed, the
event is not remembered.

If a STRIG(z) STOP statement is executed, no
trapping takes place for button #, but the button

4-187

ON STRIG(n)
Statement

Example:

4-188

being pressed is remembered so that an immediate
trap takes place when STRIG(#) ON is executed.

When the trap occurs, an automatic STRIG(#)
STOP is executed so recursive traps can never take
place. The RETURN from the trap routine
automatically does a STRIG(#) ON unless an
explicit STRIG(z) OFF was performed inside the
trap routine.

Event trapping does not take place when BASIC is
not executing a program. When an error trap
(resalting from an ON ERROR statement) takes
place all trapping is automatically disabled
(including ERROR, STRIG(n), PEN, COM(n), and
KEY(n)).

Using STRIG(») ON will activate the interrupt
routine that checks the button status for the
specified joystick button. Downstrokes that cause
trapping will not set functions STRIG(0),
STRIG(2), STRIG(4), or STRIG(6).

You may use RETURN /e if you want to go back to
the BASIC program at a fixed line number. Use of
this non-local return must be done with care,
however, since any other GOSUBs, WHILEs, or
FORs that were active at the time of the trap will
remain active.

This is an example of a trapping routine for the
button on the first joystick.

9@ ON STRIG{@) GOSUB 20800
110 STRIG(Z) ON

200@ REM subroutine for 1st button

210@ RETURN

OPEN
Statement

Purpose:

Versions:

Format:

Remarks:

Allows I/O to a file or device.

Cassette Disk Advanced Compiler
ks ok &%k L] ke ok K

First form:
OPEN filespec [FOR mode] AS [#] filenum [LEN=rec/]
Alternative form:

OPEN mode2, [#] filenum, filespec |,recl]

mode in the first form, is one of the following:

OUTPUT specifies sequential output
mode.

INPUT specifies sequential input
mode.

APPEND specifies sequential output
mode where the file is
positioned to the end of data
on the file when it is opened.

=
=
w
=
=
o
Z |
>
S

Note that mode must be a string constant,
not enclosed in quotation marks. If mode is
omitted, random access is assumed.

mode2 in the alternative form, is a string
expression whose first character is one of
the following:

O specifies sequential output mode.

I specifies sequential input mode.
R specifies random input/output mode.

4-189

OPEN

Statement

4-190

For both formats:

Sfilenum

filespec

recl

is an integer expression whose value is
between one and the maximum number of
files allowed. In Cassette BASIC, the
maximum number is 4. In Disk and
Advanced BASIC, the default maximum is
3, but this can be changed with the /F:
option on the BASIC command.

is a string expression for the file
specification as explained under “Naming
Files” in Chapter 3.

is an integer expression which, if included,
sets the record length for random files. It
may range from 1 to 32767. rec/ is not valid
for sequential files. The default record
length is 128 bytes. rec/ may not exceed the
value set by the /S: option on the BASIC
command.

OPEN allocates a buffer for I/O to the file or device
and determines the mode of access that will be used
with the buffer.

filenum is the number that is associated with the file
for as long as it is open and is used by other I/O
statements to refer to the file or device.

An OPEN must be executed before any I/O may be
done to a device or file using any of the following

statements, or any statement or function requiring a
file number:

PRINT # INPUT #
PRINT # USING LINE INPUT #
WRITE # GET

INPUTS$ PUT

OPEN
Statement

GET and PUT are valid for random files (or
communications files — see next section). A diskette
tile may be either random or sequential, and a
printer may be opened in either random or
sequential mode; however, all other devices may be
opened only for sequential operations.

BASIC normally adds a line feed after each carriage
return (CHR$(13)) sent to a printer. However, if
you open a printer (LPT1:, LPT2:, or LPT3:) asa
random file with width 255, this line feed is
suppressed.

APPEND is valid only for diskette files.. The file
pointer is initially set to the end of the file and the
record number is set to the last record of the file.
PRINT # or WRITE # will then extend the file.

Note: Atany one time, it is possible to have a
particular file open under more than one file
number. This allows different modes to be used
for different purposes. Or, for program clarity,
you may use different file numbers for different
modes of access. Each file number has a
different buffer, so you should use care if you
are writing using one file number and reading
using another file number.

However, a tile cannot be opened for sequential
output or append if the file is already open.

If the device name is omitted when you are using
Cassette BASIC, CAS1: is assumed. If you are using
Disk or Advanced BASIC, the DOS default drive is

assumed.
If CAS1: is specified as the device and the filename is

omitted, then the next data file on the cassette is
opened.

4-191

o
=
o
5
=
» |

OPEN

Statement

Example:

4-192

In Cassette BASIC, a maximum of four files may be
open at one time (cassette, printer, keyboard, and
screen). Note that only one cassette file may be
open at a time. For Disk and Advanced BASIC the
default maximum is three files. You can override
this value by using the /F: option on the BASIC
command.

If a file opened for input does not exist, a “File not
found” error occurs. If a file which does not exist is
opened for output, append, or random access, a file
is created.

Any values given outside the ranges indicated will
result in an “Illegal function call” error. The file is
not opened.

See “Appendix B. BASIC Diskette Input and
Output” for a complete explanation of using
diskette files. Refer to the next section, “OPEN
“COM... Statement,” for information on opening
communications files.

1§ OPEN ''DATA" FOR OUTPUT AS #1
or
1¢ OPEN ''0'',#1,"'DATA"

Either of these statements opens the file named
“DATA” for sequential output on the default device
(CAS1: for Cassette BASIC, default drive for Disk
and Advanced BASIC). Note that opening for
output destroys any existing data in the file. If you
do not wish to destroy data you should open for
APPEND.

2¢) OPEN ''B:SSFILE'" AS 1 LEN=256
or
2¢ OPEN ''R",1,'"B:SSFILE",256

OPEN
Statement

Either of the preceding two statements opens the
file named “SSFILE” on the diskette in drive B for
random input and output. The record length is 256.

25 FILES = "A:DATA.ART"
3¢ OPEN FILES FOR APPEND AS 3

This example opens the file “DATA.ART” on the
diskette in drive A and positions the file pointers so
that any output to the file is placed at the end of
existing data in the file.

Ok

1¢ OPEN '"LPT1:'" AS #1' random access

2 PRINT #1,'"Printing width 8@"

3@ PRINT #1,'"'"Now change to width 255"

L WIDTH #1,255

5@ PRINT #1,'"This line will be underlined"
60 WIDTH #1,8¢

70 PRINT #1, STRINGS(28,')

8¢ PRINT #1,"Printing width 88 with CR/LF"
RUN

Printing width 8¢

Now change to width 255

This line will be underlined

Printing width 88 with CR/LF

Ok

Line 10 in this example opens the printer in random
mode. Because the default width is 80, the lines
printed by lines 20 and 30 end with a carriage
return/line feed. Line 40 changes the printer width
to 255, so the line feed after the carriage return is
suppressed. Therefore, the line printed by line 50
ends only with a carriage return and not a line feed.
This causes the line printed by line 70 to overprint
“This line will be underlined”, causing the line to be
underlined. Line 60 changes the width back to 80 so
the underlines and following lines will end with a
line feed.

4-193

2
-
-
-
m
=
3!
Z
~
7

OPEN “COM...

Statement

Purpose:

Versiens:

Format:

Remarks:

4-194

Opens a communications file.

Cassette Disk Advanced Compiler

Valid only with Asynchronous Communications
Adapter.

OPEN “COMﬂ:[J[?eed] [,parity] [, data] [,stop]
[LRS] [,CS[#]] [,DS[#]] [,CD[#]} [,LF]”
AS [#|filenum [LEN=number)

n is 1 or 2, indicating the number of the
Asynchronous Communications Adapter.

speed is an integer constant specifying the
transmit/receive bit rate in bits per second
(bps). Valid speeds are 75, 110, 150, 300,
600, 1200, 1800, 2400, 4800, and 9600.
The default is 300 bps.

parity is a one-character constant specifying the
parity for transmit and receive as follows:

S SPACE: Parity bit always transmitted
and received as a space (0 bit).

O ODD: 0dd transmit parity, odd
receive parity checking.

M MARK: Parity bit always transmitted
and received as a mark (1 bit).

data

stop

[filenum

number

OPEN “COM...
Statement

E EVEN: Even transmit parity, even
receive parity checking.

N NONE: No transmit parity, no
receive parity checking.

The default is EVEN (E).

is an integer constant indicating the
number of transmit/receive data bits.
Valid valuesare: 4, 5, 6, 7, or8. The default
is 7.

is an integer constant indicating the
number of stop bits. Valid values are 1 or
2. The default is two stop bits for 75 and
110 bps, one stop bit for all others. If you
use 4 or 5 fordata, a2 here will mean 1 1/2
stop bits.

is an integer expression which evaluates to
a valid file number. The number is then
associated with the file for as long as it is
open and is used by other communications
I/O statements to refer to the file.

is the maximum number of bytes which
can be read from the communication
buffer when using GET or PUT. The
default is 128 bytes.

OPEN “COM... allocates a buffer for I/O in the
same fashion as OPEN for diskette files. It supports
RS232 asynchronous communication with other
computers and peripherals.

A communications device may be open to only one
file number at a time.

4-195

w
=]
>
-
t
=
e9)
Z
e
wn

OPEN-“COM...
Statement

4-196

The RS, CS, DS, CD, and LF options affect the line
signals as follows:

RS suppresses RTS (Request To Send).
CS[#n] controls CTS (Clear To Send).
DS[n] controls DSR (Data Set Ready).
CD[r] controls CD (Carrier Detect).

LF sends a line feed following each carriage
return.

The CD (Carrier Detect) is also known as the RLSD
(Received Line Signal Detect).

Note: The speed, parsty, data, and stop
parameters are positional, but RS, CS, DS, CD,
and LF are not.

The RTS (Request To Send) line is turned on when
you execute an OPEN “COM... statement unless
you include the RS option.

The » argument in the CS, DS, and CD options
specifies the number of milliseconds to wait for the
signal before returning a “Device Timeout” error. 7
may range from0 to 65535. If 7 is omitted or is equal
to zero, then the line status is not checked at all.

The defaults are CS1000, DS1000, and CDO. If RS
was specified, CSO is the default.

That is, normally I/O statements to a
communications file will fail if the CTS (Clear To
Send) or DSR (Data Set Ready) signals are off. The
system waits one second before returning a “Device
Timeout.” The CS and DS options allow you to
ignore these lines or to specify the amount of time
to wait before the timeout.

OPEN “COM...
Statement

Normally Carrier Detect (CD or RLSD) is ignored
when an OPEN “COM... statement is executed. The
CD option allows you to test this line by including
the » parameter, in the same way as CS and DS. If 7 is
omitted or is equal to zero, then Carrier Detect is
not checked at all (which is the same as omitting the
CD option).

The LF parameter is intended for those using
communication files as a means of printing to a serial
line printer. When you specify LF, a line feed
character (hex 0A) is automatically sent after each
carriage return character (hex 0C). (This includes
the carriage return sent as a result of the width
setting.) Note that INPUT # and LINE INPUT #,
when used to read from a communications file that
was opened with the LF option, stop when they seea
carriage return. The line feed is always ignored.

Any coding errors within the string expression
starting with speed results in a ““Bad file name” error.
Anindication as to which parameter is in error is not
given. '

Refer to “Appendix F. Communications” for more
information on control of output signals and other
technical information on communications support.

If you specify 8 data bits, you must specify parity N.
If you specity 4 data bits, you must specify a parity,
that is, N parity is invalid. BASIC uses all 8 bitsin a
byte to store numbers, so if you are transmitting or
receiving numeric data (for example, by using PUT),
you must specify 8 data bits. (This is not the case if
you are sending numeric data as fext.)

Refer to the previous section for opening devices
other than communications devices.

4-197

OPEN “COM...
Statement

Example:

4-198

1¢ OPEN "COM1:'" AS 1

File 1 is opened for communication with all defaults.
The speed is 300 bps with even parity. There will be
7 data bits and one stop bit.

1¢ OPEN ''COM1:2Lgg' AS #2

File 2 is opened for communication at 2400 bps.
Parity, number of data bits, and number of stop bits
are defaulted.

20 OPEN ''COM2:128@,N,8" AS #1

File number 1 is opened for asynchronous I/O at
1200 bps, no parity is to be produced or checked,
8-bit bytes will be sent and received, and 1 stop bit
will be transmitted.

16 OPEN ''COM1:96@8@,N,8,,CS,DS,CD'" AS #1

Opens COM1: at 9600 bps with no parity and eight
data bits. CTS, DSR, and RLSD are not checked.

5¢ OPEN ''COMT:1284,,,,CS,DS208@" AS #1

Opens COM1: at 1200 bps with the defaults of even
parity and seven data bits. RTS is sent, CTS is not
checked, and “Device Timeout” is given if DSR is
not seen within two seconds. Note that the commas
are required to indicate the position of the parity,
start, and stop parameters, even though a value is not
specified. This is what is meant by positional
parameters.

OPEN “COM...
Statement

An OPEN statement may be used with an ON
ERROR statement to make sure a modem is
working properly before sending any data. For
example, the following program makes sure we get
Carrier Detect (CD or RLSD) from the modem
before starting. Line 20 is set to timeout after 10
seconds. TRIES is set to 6 so we give up if Carrier
Detect is not seen within one minute. Once
communication is established, we re-open the file
with a shorter delay until timeout.

5 TRIES=6

1¢ ON ERROR GOTO 1d¢

2¢ OPEN ''COM1:3@@,N,8,2,CS,DS,CD18@BE" AS #1
3% ON ERROR GOTO @

L@ CLOSE #1 ' works so can continue

5¢ GOTO 1¢¢0

1¢¢ TRIES=TRIES-1
114 IF TRIES=@ THEN ON ERROR GOTO @ ' give up
128 RESUME .

»
I~
b
=
i
=
o
Z
!
n

10¢¢% OPEN ''COM1:3¢@,N,8,2,CS,DS,CD2@@@" AS #1

The next example shows a typical way to use a
communication file to control a serial line printer.
The LF parameter in the OPEN statement ensures
that lines do not print on top of each other.

1¢ WIDTH "'COM1:'', 132

2¢ OPEN ''COM1:12¢0,N,8,,CS1800¢,DS1008090,
CD1Q@gE,LF"" AS #1

4-199

OPTION BASE
Statement

Purpose: Declares the minimum value for array subscripts.

Versions: Cassette Disk Advanced Compiler
LT EE 2 3 kg L k3

Format: OPTION BASE »

Remarks: 7 is1 orO.
The default base is 0. If the statement:
OPTION BASE 1

is executed, the lowest value an array subscript may
have is one.

The OPTION BASE statement must be coded before
you define or use any arrays.

4-200

ouT
Statement

Purpose:

Versions:

Format:

Remarks:

Sends a byte to a machine output port.

Cassette Disk Advanced Compiler

gk Hkk Hkk Hkk

OUT nm

n ' isanumeric expression for the port number, in
the range 0-65535.

m is a numeric expression for the data to be
transmitted, in the range 0-255.

Refer to the IBM Personal Computer Technical Reference
manual for a description of valid port numbers (I/O
addresses).

OUT is the complementary statement to the INP
function. Refer to “INP Function” in this chapter.

One use of OUT is to affect the video output. On
some displays attached to the Color/Graphics
Monitor Adapter, you may find that the first two or
three characters on the line don’t show up on the
screen. If your display does not have a horizontal
adjustment control, you can use the following
statements to shift the display:

w
—
>
=
tri
=
tri
Z,
~
»

OUT 980,2: OUT 981,43

This shifts the display two characters to the right in
40-column width (or 16 points in medium
resolution graphics mode, or 32 points in high
resolution graphics mode).

4-201

ouUT

Statement

Example:

4-202

OUT 98¢,2: OoUT 981,85

This shifts the display right five characters in
80-column width.

The shift caused by these OUT statements remains
in effect until a WIDTH or SCREEN statement is
executed. The MODE command from DOS can also
be used to shift the display as described here; it has
the benefit of remaining in effect until a System
Reset.

18¢ 0oUT 32,1¢¢

This sends the value 100 to output port 32.

PAINT
Statement

Purpose: Fillsin an area on the screen with the selected color.

Versions: Cassette

Disk Advanced Compiler

Hekok sk

Graphics mode only.

Format: PAINT (xy) [,paint [,boundary]]

Remarks: (x,y)

Dpaint

boundary

are the coordinates of a point within the
area to befilled in. The coordinates may be
given in absolute or relative form (see
“Specifying Coordinates” under
“Graphics Modes” in Chapter 3). This
point will be used as a starting point.

is the color to be painted with, in the range
0 to 3. In medium resolution, this color is
the color from the current palette as
defined by the COLOR statement. 0 is the
background color. The default is the
foreground color, color number 3. In high
resolution, paznt equal to O (zero) indicates
black, and the default of 1 (one) indicates
white.

9]
—
o
!
i
=
&2
Z
— .
w

is the color of the edges of the figure to be
filled in, in the range 0 to 3 as described
above.

The figure to be filled in is the figure with edges of
boundary color. The figure is filled in with the color

paint.

4-203

PAINT

Statement

Example:

4-204

Since there are only two colors in high resolution it
doesn’t make sense for paznt to be different from
boundary. Since boundary is defaulted to equal paint we
don’t need the third parameter in high resolution
mode.

In high resolution this means “blacking out” anarea
until black is hit, or “whiting out” an area until
white is hit.

In medium resolution we can fill in with color 1 with
aborder of color 2. Visually this might mean a green
ball with a red border.

The starting point of PAINT must be inside the
figure to be painted. If the specified point already
has the color boundary then PAINT will have no
effect. If paint is omitted the foreground color is
used (3 in medium resolution, 1 in high resolution).
PAINT can paint any type of figure, but *“jagged”
edges on a figure will increase the amount of stack
space required by PAINT. So if a lot of complex
painting is being done you may want to use CLEAR
at the beginning of the program to increase the
stack space available.

The PAINT statement allows scenes to be displayed
with very few statements. This can be a very useful
capability.

5 SCREEN 1
19 LINE (¢,0)-(1¢8,150),2,8
2¢ PAINT (50,58),1,2

The PAINT statement in line 20 fills in the box
drawn in line 10 with color 1.

PEEK
Function

Purpose:

Versions:

Format:

Remarks:

Example:

Returns the byte read from the indicated memory
position.

Cassette Disk Advanced Compiler

Kokk etk sk Heodek K%Kk

v = PEEK(r)

is an integer in the range 0 to 65535. 7 is the
offset from the current segment as defined by
the DEF SEG statement, and indicates the
address of the memory location to be read. (See
“DEF SEG Statement” in this chapter.)

3

The returned value will be an integer in the range 0
to 255.

PEEK is the complementary function to the POKE
statement (see “POKE Statement,” later in this
chapter).

The following example can be used in a program to
test which display adapter is on the system. After
line 30 is executed, the variable IBMMONO will
have a value of 0 (zero) if the Colot/Graphics
Monitor Adapter is used, or 1 (one) if the IBM
Monochrome Display and Parallel Printer Adapter
is used.

o,
b
-
=
=
™
~
v

10 'test display adapter

2¢ DEF SEG=0

3¢ IF (PEEK(&L1¢) AND &H3@)=&H3p
THEN |BMMONO=T1
ELSE |BMMONO=0

4-205

PEN
Statement and Function

Purpose: Reads the light pen.

Versions: Cassette Disk Advanced Compiler

PEN STOP only in Advanced and Compiler.

Format: As a statement:
PEN ON
PEN OFF
PEN STOP
As a function:
v = PEN(»)

Remarks: The PEN function, v=PEN(#), reads the light pen
coordinates.

7 isanumeric expression in the range 0 to 9, and
affects the value returned by the function as
follows:

0 Aflagindicating if pen was down since last
poll. Returns -1 if down, 0 if not.

1 Returns the x coordinate where pen was
last activated. Range is 0 to 319 in medium
resolution, or 0 to 639 in high resolution.

2 Returns the y coordinate where pen was
last activated. Range is 0 to 199.

3 Returns the current pen switch value. -1 if
down, 0 if up.

4-206

PEN
Statement and Function

4 Returns the last known valid x coordinate.
Range is 0 to 319 in medium resolution, or
0 to 639 in high resolution.

5 Returns the last known valid y coordinate.
Range is 0 to 199.

6 Returns the character row position where
pen was last activated. Range is 1 to 24.

7 Returns the character column position
where pen was last activated. Range is 1 to
40 or 1 to 80 depending on WIDTH.

8 Returns the last known valid character
row. Range is 1 to 24.

9 Returns the last known valid character
column position. Range is 1 to 40 or 1 to
80 depending on WIDTH.

PEN ON enables the PEN read function. The PEN
function is initially off. A PEN ON statement must
be executed before any pen read function calls can
be made. A call to the PEN function while the PEN
function is off results in an “Illegal function call” .
error.

Conversely, for execution speed improvements, itis
a good idea to turn the pen off with a PEN OFF
statement when you are not using the light pen.

For Advanced BASIC, executing PEN ON will also
allow trapping to take place with the ON PEN
statement. After PEN ON, if a nonzero line number
was specified in the ON PEN statement, then every
time the program starts a new statement BASIC
checks to see if the pen was activated. Refer to “ON
PEN Statement” in this chapter.

4-207

w
—
>
=
I
=
2!
Z
—
w

PEN

Statement and Function

Example:

4-208

PEN OFF disables the PEN read function. For
Advanced BASIC, no trapping of the pen takes place
and action by the light pen is not remembered even
if it does take place.

PEN STOP is only available in Advanced BASIC. It
disables trapping of light pen activity, but if activity
happens it is remembered so an immediate trap
occurs when a PEN ON is executed.

When the pen is down in the border area of the
screen, the values returned are inaccurate.

You should notattempt I/O to cassette while PEN is
ON.

5¢ PEN ON

6 FOR I=1 TO 500

78 X=PEN(@): X1=PEN(3)
§& PRINT X, X1

9% NEXT

1g¢ PEN OFF

This example prints the pen value since the last poll,
and the current value. :

PLAY
Statement

Purpose: Plays music as specified by string.

Versions: Cassette Disk Advanced Compiler

Format:

Remarks:

PLAY string

PLAY implements a concept similar to DRAW by
imbedding a “‘tune definition language” into a
character string.

string

The single character commands in PLAY are:

A to G with optional #, +, or—

Nn

is a string expression consisting of single
character music commands.

Plays the indicated note in the current
octave. A number sign (#) or plus sign (+)
afterwards indicates a sharp, a minus sign (-)
indicates a flat. The #, +, or - is not allowed
unless it corresponds to a black key on a
piano. For example, B# is an invalid note.

»
=~
>
—
s
=
1
Z
=~
w

Octave. Sets the current octave for the
following notes. There are 7 octaves,
numbered 0 to 6. Each octave goes from Cto
B. Octave 3 starts with middle C. Octave 4 is
the default octave.

Plays note n. n may range from0 to 84. In the
7 possible octaves, there are 84 notes. n=0
means rest. This is an alternative way of
selecting notes besides specifying the octave
(O n) and the note name (A-G).

4-209

PLAY
Statement

Ln Sets the length of the following notes. The
actual note length is 1/n. n may range from 1
to 64. The following table may help explain
this:

Length Equivalent

L1 whole note

L2 half note

L3 one of a triplet of three half notes
(1/3 of a 4 beat measure)

14 quarter note

Ls one of a quintuplet (1/5 of a
measure)

L6 one of a quarter note triplet

L64 sixty-fourth note

The length may also follow the note when
you want to change the length only for the
note. For example, Al16 is equivalent to
L16A.

Pn Pause (rest). n may range from 1 to 64, and
figures the length of the pause in the same
way as L (length).

(dot or period) After a note, causes the note
to be played as a dotted note. That is, its
length is multiplied by 3/2. More than one
dot may appear after the note, and the length
is adjusted accordingly. For example, “A..”
will play 9/4 as long as L specifies, “A...” will
play 27/8 as long, etc. Dots may also appear
after a pause (P) to scale the pause length in
the same way.

Tn Tempo. Sets the number of quarter notesina
minute. n may range from 32 to 255. The
default is 120. Under “SOUND Statement,”
later in this chapter, isa table listing common

4-210 tempos and the equivalent beats per minute.

PLAY
Statement

MF Music foreground. Music (created by
SOUND or PLAY) runs in foreground. That
is, each subsequent note or sound will not
start until the previous note or sound is
finished. You can press Ctrl-Break to exit
PLAY. Music foreground is the default state.

MB Music background. Music (created by
SOUND or PLAY) runs in background
instead of in foreground. That is, each note
or sound is placed in a buffer allowing the
BASIC program to continue executing while
music plays in the background. Up to 32
notes (or rests) may be played in background
at a time.

MN Music normal. Each note plays 7/8 of the
time specified by L (length). This is the
default setting of MN, ML, and MS.

ML Music legato. Each note plays the full period
set by L (length).

MS Music staccato. Each note plays 3/4 of the
time specified by L.

wn
>
il
—~
v]

X variable;
Executes specified string.

In all of these commands the » argument can be a
constant like 12 or it can be =variable; where
variable is the name of a variable. The semicolon (;) is
required when you use a variable in this way, and
when you use the X command. Otherwise a
semicolon is optional between commands, excepta
semicolon is not allowed after MF, MB, MN, ML, or
MS. Also, any blanks in string are ignored.

4-211

PLAY

Statement

Example:

4-212

You can also specify variables in the form
VARPTRS$(variable), instead of =variable;. This is
useful in programs that will later be compiled. For
example:

One Method Alternative Method

PLAY "XAS;" PLAY "X"+VARPTRS (AS)
PLAY "O=1I;" PLAY "'0="+VARPTRS ()

You can use X to store a “‘subtune” in one string and
call it repetitively with different tempos or octaves
from another string.

The following example plays a tune.

19 REM little lamb

20 MARYS="'GFE-FGGG"

3@ PLAY '""MB T108 03 L8;XMARYS;P8 FFFA4"
L@ PLAY "GB-B-4; XMARYS$:; GFFGFE-~."

POINT
Function

Purpose:

Versions:

Format:

Remarks:

Example:

Returns the color of the specified point on the
screen.

Cassette Disk Advanced Compiler

Hekook Hkck Hsdeock koK

Graphics mode only.
v = POINT (x,5)

(%) are the coordinates of the point to be used.
The coordinates must be in absolute form
(see “Specifying Coordinates” under
“Graphics Modes” in Chapter 3).

If the point given is out of range the value -1 is
returned. In medium resolution valid returns are 0,
1, 2, and 3. In high resolution they are 0 and 1.

The following example inverts the current state of
point (II).

w
~
o
=
T3
=
trs
Z
~
%

5 SCREEN 2
1¢ IF POINT{I,1)<># THEN PRESET(I,1)
ELSE PSET(I,1)

or
19 PSET(1,1),1-POINT(1,1)

4-213

POKE

Statement

Purpose:

Versions:

Format:

Remarks:

Example:

4-214

Writes a byte into a memory location.

Cassette Disk Advanced Compiler

&%k ok sk sk 2k Hkk

POKE #,m

#n must be in the range 0 to 65535 and indicates
the address of the memory location where the
data is to be written. It is an offset from the
current segment as defined by the DEF SEG
statement (see “DEF SEG Statement” in this
chapter).

m m is the data to be written to the specified
location. It must be in the range 0 to 255.

The complementary function to POKE is PEEK.
(See “PEEK Function” in this chapter.) POKE and
PEEK are useful for efficient data storage, loading
machine language subroutines, and passing
arguments and results to and from machine
language subroutines.

Warning:

BASIC does not do any checking on the address.
So don’t go POKEing around in BASIC'’s stack,
BASIC’s variable area, or your BASIC program.

10 DEF SEG: POKE 1¢6,0

See “INKEY$ Variable” in this chapter for an
explanation of this example.

POS

Function

Purpose: Returns the current cursor column position.

Versions: Cassette Disk Advanced Compiler

Format: v = POS(»)

Remarks: # is a dummy argument.

The current horizontal (column) position of the
cursor is returned. The returned value will be in the
range 1 to 40 or 1 to 80, depending on the current
WIDTH setting. CSRLIN can be used to find the
vertical (row) position of the cursor (see “CSRLIN
Variable” in this chapter). :

Also see the LPOS function.

Example: I|F POS(#)>68 THEN PRINT CHRS$(13)

This example prints a carriage return (moves the
cursor to the beginning of the next line) if the cursor
is beyond position 60 on the screen.

w
=~
>
=
v3|
=
m
Z
~
»

4-215

PRINT
Statement

Purpose:

Versions:

Format:

Displays data on the screen.

Cassette Disk Advanced Compiler

Rk Hokok sk X 2]

PRINT [/ist of expressions] [;]

2 [list of expressions] [;]

Remarks: /st of expressions

4-216

is a list of numeric and/or string

expressions, separated by commas, blanks,
or semicolons. Any string constants in the
list must be enclosed in quotation marks.

If the list of expressions is omitted, a blank line is
displayed. If the list of expressions is included, the
values of the expressions are displayed on the screen.

Note: The question mark (?) may be used asa
shorthand way of entering PRINT only when
you are using the BASIC program editor.

Print Positions

The position of each printed item is determined by
the punctuation used to separate the items in the
list. BASIC divides the line into print zones of 14
spaces each. In the list of expressions, a comma
causes the next value to be printed at the beginning
of the next zone. A semicolon causes the next value
to be printed immediately after the last value.
Typing one or more spaces between expressions has
the same effect as typing a semicolon.

PRINT
Statement

If a comma, semicolon, or SPC or TAB function
ends the list of expressions, the next PRINT
statement begins printing on the same line, spacing
accordingly. If the list of expressions ends without a
comma, semicolon, SPC or TAB function, a carriage
return is printed at the end of the line; that is, BASIC
moves the cursor to the beginning of the next line.

If the length of the value to be printed exceeds the
number of character positions remaining on the
current line, then the value will be printed at the
beginning of the nextline. If the value to be printed
is longer than the defined WIDTH, BASIC prints as
much as it can on the current line and continues
printing the rest of the value on the next physical
line.

Scrolling occurs as described under “Text Mode” in
Chapter 3.

Printed numbers are always followed by a space.
Positive numbers are preceded by a space. Negative
numbers are preceded by a minus sign.
Single-precision numbers that can be represented
with 7 or fewer digits in fixed point format no less
accurately than they can be represented in the
floating point format, are output using fixed point
or integer format. For example, 10" (-7) is output as
0000001 and 10~ (-8) is output as 1E-8.

BASIC automatically inserts a carriage return/line
feed after printing width characters, where width is 40
or 80, as defined by the WIDTH statement. This will
cause two lines to be skipped when you print exactly
40 (or 80) characters, unless the PRINT statement
ends in a semicolon (;).

LPRINT is used to print information on the printer.

See “LPRINT and LPRINT USING Statements”
earlier in this chapter.

4-217

9]
<
o
—~
tr
=
2
Z
~
%

PRINT
Statement

Example: 0k

4-218

1¢ X=5
20 PRINT X+5, X=5, X*(-5)
3% END
RUN
19 v/ -25
Ok

In this example, the commas in the PRINT
statement cause each value to be printed at the
beginning of the next print zone.

Ok

16 INPUT X

2% PRINT X 'MSQUARED IS' X72 "'AND'}
3% PRINT X "'CUBED IS' X73

RUN

79

9 SQUARED IS 81 AND 9 CUBED IS 729
Ok

RUN

7 21

21 SQUARED 1S 441 AND 21 CUBED IS 9261
Ok

Here, the semicolon at the end of line 20 causes both
PRINT statements to be printed on the same line.

Ok

19 FOR X = 1 T0 §

20 J=J+5

3¢ K=K+1¢

Lg 7J;K;

5@ NEXT X

RUN

5 1¢ 1¢ 206 15 3¢ 20 4@ 25 50
Ok

Here, the semicolons in the PRINT statement cause
each value to be printed immediately after the
preceding value. (Don’t forget, a number is always
followed by a space and positive numbers are
preceded by a space.) In line 40, a question mark is
used instead of the word PRINT.

PRINT USING
Statement

Purpose: Prints strings or numbers using a specified format.

Versions: Cassette Disk Advanced Compiler
kK Hkk . REx kK

Format: PRINT USING uv§; /st of expressions [;]

Remarks: o isastring constant or variable which consists of
special formatting characters. These formatting
characters (see below) determine the field and
the format of the printed strings or numbers.

list of expressions
consists of the string expressions or numeric
expressions that are to be printed, separated by
semicolons or commas.

String Fields

When PRINT USING is used to print strings, one of
three formatting characters may be used to format
the string field:

n
~
>
=
3
g .
5
Z
=
»

! Specifies that only the first character in
the given string is to be printed.

\n spaces\ Specifies that 2+n characters from the
string are to be printed. If the
backslashes are typed with no spaces,
two characters are printed; with one
space, three characters are printed, and
SO on.

4-219

PRINT USING

Statement

4-220

If the string is longer than the field, the
extra characters are ignored. If the field is
longer than the string, the string is
left-justified in the field and padded with
spaces on the right.

Example:

1¢ AS=''LOOK'": BS="OUT"

3¢ PRINT USING ''I';AS$;BS

L PRINT USING ' \'";AS$;BS

@ PRINT USING '\ \'';AS;BS;" IV
RUN

LO

LOOKOUT

LOOK OUT !

Specifies a variable length string field.
When the field is specified with “&”, the
string is output exactly as input. Example:

1¢ A$="'LOOK'': BS=''OUT"

2¢ PRINT USING ""1'';AS;
3¢ PRINT USING ''&'';BS
RUN

LOUT

Numeric Fields

When PRINT USING is used to print numbers, the
following special characters may be used to format
the numeric field:

#

A number sign is used to represent each
digit position. Digit positions are always
filled. If the number to be printed has
fewer digits than positions specified, the
number is right-justified (preceded by
spaces) in the field.

PRINT USING

Statement

A decimal point may be inserted at any
position in the field. If the format string
specifies that a digit is to precede the
decimal point, the digit will always be
printed (as O if necessary). Numbers are
rounded as necessary.

PRINT USING "'##.##";.78

7g.78

PRINT USING '""###.##"1:987.654

987.65

PRINT USING "##.## ';10.2,5.3,66.789,.234

10.20 5.3 66.79 §.23

In the last example, three spaces were
inserted at the end of the format string to
separate the printed values on the line.

+ A plus sign at the beginning or end of the
format string causes the sign of the
number (plus or minus) to be printed
before or after the number.

- A minus sign at the end of the format field
causes negative numbers to be printed
with a trailing minus sign.

w
—
>
—
tri
=
o3}
Z
—
w

PRINT USING "'+##. ## ",-68.95,2.4,55.6,-.9
-68.95 +2.40 +55.60 ~3.90
PRINT USING "##.4#- ":-68.95,22.449 -7.¢1

68.95- 22.45 7.81-
o A double asterisk at the beginning of the

format string causes leading spaces in the
numeric field to be filled with asterisks.

4-221

PRINT USING

Statement
The ** also specifies positions for two
more digits.
PRINT USING ‘s # 1:12.39,-6.9,765.1

*12.4 *-.9 765.1

44 A double dollar sign causes a dollar sign to
be printed to the immediate left of the
formatted number. The $$ specifies two
more digit positions, one of which is the
dollar sign. The exponential format
cannot be used with $$. Negative numbers
cannot be used unless the minus sign trails
to the right.

PRINT USING "'SS###.##'";456.78
$456.78

**g The **$ at the beginning of a format string
combines the effects of the above two
symbols. Leading spaces are filled with
asterisks and a dollar sign will be printed
before the number. **$ specifies three
more digit positions, one of which is the
dollar sign.

PRINT USING ""®#S## . #4"52.34

A comma that is to the left of the decimal
point in a formatting string causes a
comma to be printed to the left of every
third digit to the left of the decimal point.
A comma that is at the end of the format
string is printed as part of the string. A
comma specifies another digit position.

4-222

AAAA

PRINT USING
Statement

The comma has no effect if used with the
exponential (*""") format.

PRINT USING ''##44, ##,1234.5
1,234.50

PRINT USING "#### . ##,71234.5
1234 .59,

Four carets may be placed after the digit
position characters to specify exponential
format. The four carets allow space for
E+nn or D+nn to be printed. Any decimal
point position may be specified. The
significant digits are left-justified, and the
exponent is adjusted. Unless a leading + or
trailing + or - is specified, one digit
position is used to the left of the decimal
point to print a space or a minus sign.

Ok

PRINT USING "##.##~~"~11.234 56
2.35E+02

ok

PRINT USING ".###°7""-1.-338888
.889E+@5-

ok

PRINT USING ', ##°7"7"11:123

+.12E+03

Ok

2
~
>
-
3]
=
5!
Z
—
»

An underscore in the format string causes
the next character to be output as a literal
character.

PRINT USING "' !##.## 1';12.34

112. 34!
The literal character itself may be an
underscore by placing“__ _” in the format
string.

4-223

PRINT USING
Statement

If the number to be printed is larger than the
specified numeric field, a percent sign (%) is printed
in front of the number. If rounding causes the
number to exceed the field, the percent sign is
printed in front of the rounded number.

Ok

PRINT USING "'##.##";111.22

%111.22
Ok

PRINT USING ".##';.999

%1.00
Ok

If the number of digits specified exceeds 24, an
“Illegal function call” error occurs.

Example:

This example shows how you can include string

constants in the format string.

Ok

PRINT USING "'THIS
THIS IS EXAMPLE
Ok

4-224

g4,
i s 1

IS EXAMPLE

#1

PRINT # and PRINT # USING
Statements

Purpose: Writes data sequentially to a file.

Versions: Cassette Disk Advanced Compiler
Hkk L 3] L X3 okok

Format: PRINT # filenum, [USING vf;] list of exps

Remarks: filenum is the number used when the file was
opened for output.

vl is a string expression comprised of
formatting characters as described in the
previous section, “PRINT USING
Statement.”

list of exps is a list of the numeric and/or string
expressions that will be written to the file.

PRINT # does not compress data on the file. An

image of the data is written to the file just as it would
be displayed on the screen with a PRINT statement.
For this reason, care should be taken to delimit the

data on the file, so that it will be input correctly from
the file:

7]
!
>
!
gy
=
1
Z,
=
»

In the list of expressions, numeric expressions
should be delimited by semicolons. For example,

PRINT #1,A;B;C:X;Y;2Z
(If commas are used as delimiters, the extra blanks

that are inserted between print fields are also
written to the file.)

4-225

PRINT # and PRINT # USING
Statements
String expréssions must be separated by semicolons
in the list. To format the string expressions

correctly on the file, use explicit delimiters in the
list of expressions.

For example, let A$=“"CAMERA” and
B$=93604-1". The statement

PRINT #1,A$;BS

would write CAMERA93604-1 to the file. Because
there are no delimiters, this could not be input as
two separate strings. To correct the problem, insert
explicit delimiters into the PRINT # statement as
follows:

PRINT #1,AS;",";BS
The image written to the file is
CAMERA,936@4-1
which can be read back into two string variables.

If the strings themselves contain commas,
semicolons, significant leading blanks, carriage
returns, or line feeds, write them to the file
surrounded by explicit quotation marks using
CHR$(34).

For example, let A$="CAMERA, AUTOMATIC”
and B$=" 93604-1". The statement:

PRINT #1,A$;BS

writes the following image to the file:
'CAMERA, AUTOMATIC 936@4-1

and the statement:
INPUT #1,A$,BS

inputs the string “CAMERA” to A$ and

. “AUTOMATIC 93604-1 to B$.
4-226

Example:

PRINT # and PRINT # USING

Statements

To separate these strings properly on the file, write
double quotes to the file image using CHR$(34).
The statement:

PRINT #1,CHRS(34) ;AS;CHRS(34) ;CHRS (34) ;
BS;CHRS (34)

writes the following image to the file:
"CAMERA, AUTOMATIC'™! 9360pL-1"
and the statement:
INPUT #1,A$,8B$

inputs “CAMERA, AUTOMATIC” to A$ and
“ 93604-1” to B§.

The PRINT # statement may also be used with the
USING option to control the format of the file. For
example:

PRINT #1,USING"SSH## . ##,";J;5K;5L

The easy way to avoid all these problems is to use the
WRITE # statement rather than the PRINT #
statement. (Refer to “WRITE # Statement,” at the
end of this chapter.)

=
—
S5
=
Z
!
»

For more examples using PRINT # and WRITE #,
see “Appendix B. BASIC Diskette Input and
Output.”

4-227

PSET and PRESET
Statements

Purpose:

Versions:

Format:

Remarks:

4-228

Draws a point at the specified position on the
screen.

Cassette Disk Advanced Compiler

sk EE EX 23 desk ok

Graphics mode only.

PSET (x,y) [,color]
PRESET (x9) [,color]

(%) are the coordinates of the point to be set.
They may be in absolute or relative form,

as explained in the section “Specifying

Coordinates” under “Graphics Modes” in

Chapter 3.

color specifies the color to be used, in the range
0 to 3. In medium resolution, color selects

the color from the current palette as

defined by the COLOR statement. O is the

background color. The default is the

foreground color, color number 3. In high

resolution, a color of 0 (zero) indicates

black, and the default of 1 (one) indicates
white. In high resolution a color value of 2
~ will be treated as 0, and 3 will be treated as

1.

PRESET is almost identical to PSET. The only
difference is that if no color parameter is given to
PRESET, the background color (0) is selected. If

color is included, PRESET is identical to PSET. Line

70 in the example below could just as easily be:

70 PSET(1,1),0

Example:

PSET and PRESET
Statements

If an out of range coordinate is given to PSET or
PRESET no action is taken nor is an error given. If
color is greater than 3, this will result in an “Illegal
function call” error.

Lines 20 through 40 of this example draw a diagonal
line from the point (0,0) to the point (100,100).
Then lines 60 through 80 erase the line by setting
each point to a color of 0.

19 SCREEN 1

20 FOR 1=@ TO 140
3¢ PSET (1,1)

L NEXT

50 'erase line

6@ FOR I1=10¢ TO @ STEP -1
70 PRESET(I,1)

8¢ NEXT

4-229

«» |
—
=0
4.{'11
z |
—
[0

PUT
Statement (Files)

Purpose: Werites a record from a random buffer to a random
file.

Versions: Cassette Disk Advanced Compiler
sk kg EE X3

Format: PUT [#] filenum [number)

Remarks: filenum is the number under which the file was
opened.

number is the record number for the record to be
written, in the range 1 to 32767.

If number is omitted, the record has the next
available record number (after the last PUT).

PRINT #, PRINT # USING, WRITE #, LSET, and
RSET may be used to put characters in the random
file buffer before a PUT statement. In the case of
WRITE #, BASIC pads the buffer with spaces up to
the carriage return.

Any attempt to read or write past the end of the
buffer causes a “Field overflow” error. Refer to
“Appendix B. BASIC Diskette Input and Output.”

Because BASIC and DOS block as many records as
possible in 512 byte sectors, the PUT statement
does not necessarily perform a physical write to the
diskette.

4-230

PUT
Statement (Files)

PUT can be used for a communications file. In that
case number is the number of bytes to write to the
communications file. This number must be less than
or equal to the value set by the LEN option on the
OPEN “COM... statement.

Example: See “Appendix B. BASIC Diskette Input and
Output.”

w
!
g‘
gl
Z
H
77

4-231

PUT

Statement (Graphics)

Purpose:

Versions:

Format:

Remarks:

4-232

Writes colors onto a specified area of the screen.

Cassette Disk Advanced Compiler

* 3k ok Fdk

Graphics mode only.
PUT (x,y) ,array |action)

(%) are the coordinates of the top left corner
of the image to be transferred.

array is the name of a numeric array containing
the information to be transferred. See
“GET Statement (Graphics)” in this
chapter for more information on this
array.

action is one of:

PSET
PRESET
XOR
OR
AND

XOR is the default.

PUT is the opposite of GET in the sense that it takes
data out of the array and puts it onto the screen.
However it also provides the option of interacting
with the data already on the screen by the use of the
action.

PUT
Statement (Graphics)

PSET as an action simply stores the data from the
array onto the screen, so this is the true opposite of
GET.

PRESET is the same as PSET except a negative
image is produced. That is, a value of O in the array
causes the corresponding point to have color
number 3, and vice versa; a value of 1 in the array
causes the corresponding point to have color
number 2, and vice versa.

AND is used when you want to transfer the image
only if an image already exists under the transferred
image.

OR is used to superimpose the image onto the
existing image.

XOR is a special mode which may be used for
animation. XOR causes the points on the screen to
be inverted where a point exists in the array image.
XOR has a unique property that makes it especially
useful for animation: when an image is PUT against
a complex background fwice, the background is
restored unchanged. This allows you to move an
object around without obliterating the background.

=
=
=
I
=
ool
4
—]
7

In medium resolution mode, AND, XOR, and OR
have the following effects on color:

AND
array value

0 1 2 3
S 0 0 0 0 0
¢ 0 1 0 1
r
e 2 0 0 2 2
e
n 3 0 1 2 3

4-233

PUT
Statement (Graphics)

OR
array value
0 1 2 3
s 0 0 2 3
¢ 1 1 1 3 3
t
S 2 2 3 2 3
e
n 3 3 3 3 3
XOR
array value
0 1 2 3
s 0 0 1 2 3
¢ 1 1 0 3 2
t
€ 2 2 3 0 1
e
n 3 3 2 1 0

Animation of an object can be performed as follows:

1. PUT the object on the screen (with XOR).

2. Recalculate the new position of the object.

3. PUT the object on the screen (with XOR) a
second time at the old location to remove the

old image.

4. Gotostep 1, this time putting the object at the
new location.

4-234

PUT
Statement (Graphics)

Movement done this way leaves the background
unchanged. Flicker can be reduced by minimizing
the time between steps 4 and 1, and making sure
there is enough time delay between steps 1 and 3. If
more than one object is being animated, every
object should be processed at once, one step at a
time.

If it is not important to preserve the background,
animation can be performed using the PSET action
verb. But you should remember to have an image
area that will contain the “before” and “after”
images of the object. This way the extra area will
effectively erase the old image. This method may be
somewhat faster than the method using XOR
described above, since only one PUT is required to
move an object (although you must PUT a larger
image).

If the image to be transferred is too large to fit on
the screen, an “Illegal function call” error occurs.

4-235

7y
=
»
!
e3]
=
=
Z,
~
%

RANDOMIZE
Statement

Purpose:

Versions:

Format:

Remarks:

4-236

Reseeds the random number generator.

Cassette Disk Advanced Compiler

¥k kK &k Hkk

RANDOMIZE []

n is an integer expression which will be used as
the random number seed.

If # is omitted, BASIC suspends program execution
and asks for a value by displaying:

Random Number Seed (-32768 to 32767)7

before executing RANDOMIZE.

If the random number generator is not reseeded, the
RND function returns the same sequence of
random numbers each time the program is run. To
change the sequence of random numbers every time
the program is run, place a RANDOMIZE
statement at the beginning of the program and
change the seed with each run.

In Disk and Advanced BASIC, the internal clock can
be 4 useful way to get a random number seed. You
can use VAL to change the last two digits of TIME$
to a number, and use that number for 7.

RANDOMIZE
Statement

Example: 1§ RANDOMIZE
20 FOR 1=1 TO 4
3% PRINT RND:
L NEXT |
RUN
Random Number Seed (-32768 to 32767)7

Suppose you respond with 3. The program
continues:

Random Number Seed (-32768 to 32767)7 3
.7655695 .35586@7 .3742327 .1388798
Ok

RUN

Random Number Seed (-32768 to 32767)7

Suppose this time you respond with 4. The program
continues:

Random Number Seed (-32768 to 32767)7 4
.1719568 .5273236 .6879686 .713297

Ok

RUN

Random Number Seed (-32768 to 32767)7?

If you try 3 again, you’ll get the same sequence as the
first run:

SINAWALY.LS

Random Number Seed (-32768 to 32767)7 3
.7655695 3558607 .3742327 .1388798
Ok

4-237

READ

Statement

Purpose:

Versions:

Format:

Remarks:

4-238

Reads values from a DATA statement and assigns
them to variables (see “DATA Statement’ in this
chapter).

Cassette Disk Advanced Compiler

& 3k Hokox Hokok *okk

READ variable [, variable]...

variable is a numeric or string variable or array
element which is to receive the value read
from the DATA table.

A READ statement must always be used in
conjunction with a DATA statement. READ
statements assign DATA statement values to the
variables in the READ statement on a one-to-one
basis. READ statement variables may be numeric or
string, and the values read must agree with the
variable types specified. If they do not agree, a
“Syntax error’” will result.

A single READ statement may access one or more
DATA statements (they will be accessed in order), or
several READ statements may access the same
DATA statement. If the number of variables in the
list of variables exceeds the number of elements in
the DATA statement(s), an “Out of data’ error
occurs. If the number of variables specified is fewer
than the number of elements in the DATA
statement(s), subsequent READ statements will
begin reading data at the first unread element. If
there are no subsequent READ statements, the
extra data is ignored.

Example:

READ
Statement

To reread data from any line in the list of DATA
statements, use the RESTORE statement (see
“RESTORE Statement” in this chapter).

8¢ FOR I=1 TO 10
9@ READ A(1)

100 NEXT |

11¢ DATA 3.08,5.19,3.12,3.98,4.24
120 DATA 5.¢8,5.55,5%.00,3.16,3.37

This program segment reads the values from the
DATA statements into the array A. After execution,
the value of A(1) is 3.08, and so on.

Ok

16 PRINT “CITY'', USTATE", '* ZIP"
20 READ C$,5$,2Z

3¢ DATA '"'DENVER,', COLORADO, 80211
L@ PRINT €$,55.Z

RUN 4
CITY STATE ZIp >
DENVER, COLORADO 8¢211 =
=
ok =
Z
~
w

This program reads string and numeric data from
the DATA statement in line 30. Note that youdon’t
need quotation marks around COLORADO,
because it doesn’t have commas, semicolons, or
significant leading or trailing blanks. However, you
do need the quotation marks around “DENVER,”
because of the comma.

4-239

REM

Statement

Purpose:

Versions:

Format:

Remarks:

Example:

4-240

Inserts explanatory remarks in a program.

Cassette Disk Advanced Compiler

REM remark

remark may be any sequence of characters.

REM statements are not executed but are output
exactly as entered when the program is listed.
However, they do slow up execution time
somewhat, and take up space in memory.

REM statements may be branched into (from a
GOTO or GOSUB statement), and execution
continues with the first executable statement after
the REM statement.

Remarks may be added to the end of a line by
preceding the remark with a single quotation mark
instead of :REM. If you put a remark on a line with
other BASIC statements, the remark mustbe the last
statement on the line.

1@ REM calculate average velocity
1180 SUM=@: REM initialize SUM

12¢ FOR (=1 TO 20

130 SUM=SUM + V(1)

Line 110 might also be written:

110 SUM=@ ' initialize SUM

RENUM

Command

Purpose: Renumbers program lines.

Versions: Cassette Disk Advanced Compiler
ok ok %ok ok

Format: RENUM [rewnum) |,[oldnum) | increment])

Remarks: zewnum is the first line number to be used in the
new sequence. The default is 10.

oldnum is the line in the current program where
renumbering is to begin. The defaultis the
first line of the program.

increment is the increment to be used in the new
sequence. The default is 10.

RENUM also changes all line number references
following GOTO, GOSUB, THEN, ELSE,
ON...GOTO, ON...GOSUB, RESTORE,
RESUME, and ERL test statements to reflect the
new line numbers. If a nonexistent line number
appears after one of these statements, the error
message “‘Undefined line number xxxxx in yyyyy” is
printed. The incorrect line number reference
(xxxxx) is not changed by RENUM, but line
number yyyyy may be changed. '

n
—
>
=
1
=
=
Z
=
»

Note: RENUM cannot be used to change the
order of program lines (for example, RENUM
15,30 when the program has th-ee lines
numbered 10, 20 and 30) or to create line
numbers greater than 65529. An “Illegal
function call” error will result.

4-241

RENUM
Command

Example: RENUM

4-242

Renumbers the entire program. The first new line
number is 10. Lines increment by 10.

RENUM 300, ,50

Renumbers the entire program. The first new line
number is 300. Lines increment by 50.

RENUM 1007 ,90@ ,20

Renumbers the lines from 900 up so they start with
line number 1000 and increment by 20.

RESET
Command

Purpose:

Versions:

Format:

Remarks:

Closes all diskette files and clears the system buffer.

Cassette Disk Advanced Compiler

koK dkk gk

RESET

If all open files are on diskette, then RESET is the
same as CLOSE with no file numbers after it.

2
=
=
!
m
= |
!
Z
-
72

4-243

RESTORE
Statement

Purpose:

Vetrsions:

Format:

Remarks:

Example:

- 4-244

Allows DATA statements to be reread from a
specified line.

Cassette Disk Advanced Compiler

ok ok LS ok ok

RESTORE [/7ne]

line is the line number of a DATA statement in
the program.

After a RESTORE statement is executed, the next
READ statement accesses the first item in the first
DATA statement in the program. If /zze is specified,
the next READ statement accesses the first item in
the specified DATA statement.

Ok
10 READ A,B,C
20 RESTORE
3¢ READ D,E,F
L@ DATA 57, 68, 79
5@ PRINT A;B;C;D;E;F
RUN
57 68 79 57 68 79
Ok

The RESTORE statement in line 20 resets the
DATA pointer to the beginning, so that the values
that are read in line 30 are 57, 68, and 79.

RESUME
Statement

Purpose:

Versions:

Format:

Remarks:

Continues program execution after an error
recovery procedure is performed.

Cassette Disk Advanced Compiler

RESUME [0]
RESUME NEXT
RESUME /ize

Any of the formats shown above may be used,
depending upon where execution is to resume:

RESUME or RESUME 0
Execution resumes at the
statement which caused the
error.

Note: If you try to
renumber a program
containing a RESUME 0
statement, you will get an
“Undefined line number”
error. The statement will
still say RESUME 0, which is
okay.

n
e
»>
=
tri
=
m
Z
!
%

RESUME NEXT Execution resumes at the
statement immediately following
the one which caused the error.

RESUME line Execution resumes at the
specified line number.

4-245

RESUME
Statement

Example:

4-246

A RESUME statement that is not in an error trap
routine causes a “RESUME without error’” message
to occur.

16 ON ERROR GOTO 9¢8

9@ 1F (ERR=23¢)AND(ERL=9@) THEN PRINT
UTRY AGAIN'': RESUME 8@

Line 900 is the beginning of the error trapping
routine. The RESUME statement causes the
program to return to line 80 when error 230 occurs
in line 90.

RETURN
Statement

Purpose: To bring you back from a subroutine. See “GOSUB
and RETURN Statements” in this chapter.

Vetsions: Cassette Disk Advanced Compiler
gk ok e ok seskok * ok

line valid only in Advanced and Compiler.
Format: RETURN [/ze]

Remarks: /line is the line number of the program line you
wish to return to. You may use it only in
Advanced BASIC.

Although you can use RETURN /ze to return from
any subroutine, this enhancement was added to
allow non-local returns from the event trapping
routines. From one of these routines you will often
want to go back to the BASIC program at a fixed line
number while still eliminating the GOSUB entry the
trap created. Use of the non-local RETURN must be
done with care, however, since any other GOSUBs,
WHILEs, or FORs that were active at the time of the
trap will remain active.

9]
~
>
-
m
=
es!
Z
—
w

4-247

RIGHTS$

Function

Purpose:

Versions:

Format:

Remarks:

Example:

4-248

Returns the rightmost # characters of string x§.

Cassette Disk Advanced Compiler
Rk £ &Rk Hok ok

vf = RIGHT$(x8, »)

x$ is any string expression.

n isan integer expression specifying the number
of characters to be in the result.

If # is greater than or equal to LEN(x#), then xf§ is
returned. If 7 is zero, the null string (length zero) is
returned.

Also see the MID$ and LEFT$ functions.

0k

10 A$S=""BOCA RATON, FLORIDA"
2 PRINT RIGHTS(AS,7)

RUN

FLORIDA

Ok

Therightmost seven characters of the string A$ are
returned.

RND
Function

Purpose:

Versions:

Format:

Returns a random number between 0 and 1.

Cassette Disk Advanced Compiler
Bk Sk Hkk Heokok
v = RND{(x)]

Remarks: ¥ is a numeric expression which affects the

returned value as described below.

The same sequence of random numbers is generated
each time the program is run unless the random
number generator is reseeded. This is most easily
done using the RANDOMIZE statement (see
“RANDOMIZE Statement” in this chapter). You
may also reseed the generator when you call the
RND function by using x where x is negative. This
always generates the particular sequence for the
given x. This sequence is not affected by
RANDOMIZE, so if you want to generate a different
sequence each time the program is run, you must
use a different value for x each time.

n
~
>
=
t
=
m
Z
~
%

Ifx is positive or notincluded, RND(x) generates the
next random number in the sequence.

RND(0) repeats the last number generated.

To get random numbers in the range 0 (zero)
throggh n, use the formula:

INT(RND * (#+1))

4-249

RND
Function

Example: 0k

19 FOR I=1 TO 3

2¢ PRINT RND(I);

30 NEXT |

L PRINT: X=RND(-6)
5 FOR I=1 T0 3

6@ PRINT RND(I);

70 NEXT |

I x>@
Uox<@

[X>¢

8¢ RANDOMIZE 853 !'randomize

9@ PRINT: X=RND(-6)
100 FOR I=1 TO 3
110 PRINT RND;

1200 NEXT |

1 X<¢

same as x>0

130 PRINT: PRINT RND(@)

RUN

.6291626 .1948297
.6818615 .4193624
6818615 4193624
.6215937

0k

.6305799
.6215937
.6215937

The first horizontal line of results shows three
random numbers, generated using a positive x.

In line 40, a negative number is used to reseed the
random number generator. The random numbers
produced after this seeding are in the second row of

results.

Inline 80, the random number generator is reseeded
using the RANDOMIZE statement; in line 90 it is

reseeded again by calling RND with the same

negative value we used in line 40. This cancels the
effect of the RANDOMIZE statement, as you can
see; the third line of results is identical to the second

line.

Inline 130, RND is called with an argument of zero,

so the last number printed is the same as the

preceding number.

4-250

RUN
Command

Purpose: Begins execution of a program.

Versions: Cassette Disk Advanced Compiler

Format: RUN [/re]
RUN filespec[,R]

Remarks: /ine is the line number of the program in
memory where you wish execution to
begin.

Sfilespec is a string expression for the file
specification, as explained under “Naming
Files” in Chapter 3. The default extension
.BAS is supplied for diskette files.

RUN or RUN /ine begins execution of the program
currently in memory. If /ire is specified, execution
begins with the specified line number. Otherwise,

execution begins at the lowest line number.

w
—
>
—
!
=
!
Z
—
»

RUN filespec loads a file from diskette or cassette
into memory and runs it. It closes all open files and
deletes the current contents of memory before
loading the designated program. However, with the
R option, all data files remain open. Refer also to
“Appendix B. BASIC Diskette Input and Output.”

Executing a RUN command will turn off any sound
that is running and reset to Music Foreground. Also,
PEN and STRIG will be reset to OFF.

4-251

RUN

Command

Example: 0k

4-252

18 PRINT 1/7
RUN

1428571
Ok
19 P1=3.141593
2¢ PRINT Pl
RUN 2@

g
Ok

In this first example, we use the first form of RUN
on two very small programs. The first program is run
from the beginning. We used the RUN /ize option
for the second example to run the program from
line 20. In this case, line 10 does not get executed, so
PI does not receive its proper value. A 0 is printed
because all numeric variables have an initial value of
Z€ro.

RUN "CAST:NEWFIL'',R

The preceding example loads the program
“NEWFIL” from the tape and runs it, keeping files
open.

SAVE
Command

Purpose: Saves a BASIC program file on diskette or cassette.

Versions: Cassette Disk Advanced Compiler
EE 3 sk Hoksk

Format: SAVE filespec [,A]
SAVE filespec [,P]

Remarks: filespec is a string expression for the file
specification. If filespec does not conform
to the rules outlined under “Naming Files”
in Chapter 3, an error is issued and the save
is cancelled.

The BASIC program is written to the specified
device. When saving to CAS1:, the cassette motor is
turned on and the file is immediately written to the
tape.

For diskette files, if the filename is eight characters
or less and no extension is supplied, the extension
.BAS is added to the name. If a file with the same
filename already exists on the diskette, it will be
written over.

w»
<!
>
o
le2)
=
tr
Z
=
w

When using Cassette BASIC, if the device name is
omitted, CAS1: is assumed. CAS1: is the only
allowable device for SAVE in Cassette BASIC.

For Disk and Advanced BASIC, the device defaults
to the DOS default drive.

The A option saves the program in ASCII format.
Otherwise, BASIC saves the file in a compressed
binary (tokenized) format. ASCII files take up more
space, but some types of access require that files be

4-253

SAVE

Command

Example:

4-254

in ASCII format. For example, a file intended to be
merged must be saved in ASCII format. Programs
saved in ASCII may be read as data files.

The P option saves the program in an encoded
binary format. This is the protection option. When
a protected program is later run (or loaded), any
attempt to LIST or EDIT it fails with an “Illegal
function call” error. No way is provided to
“unprotect” such a program.

Note: The diskette directory entry for a
BASIC program file gives no indication that the
file is either protected or stored in ASCII
format. The .BAS extension is used in any case.

See also “Appendix B. BASIC Diskette Input and
Output.”

SAVE "INVENT"

Saves the program in memory as INVENT. The
program is saved on cassette if you are using
Cassette BASIC. If you are using Disk or Advanced

BASIC, the program is saved on the diskette in the
DOS default drive and given an extension of .BAS.

SAVE "'B:PROG'',A

Saves PROG.BAS on drive B: in ASCII, so it may
later be merged.

SAVE ""A:SECRET.BOZ!,P

Saves SECRET.BOZ ondrive A:, protected so it may
not be altered.

SCREEN
Function

Purpose:

Versions:

Format:

Remarks:

Returns the ASCII code (0-255) for the character on
the active screen at the specified row (line) and
column.

Cassette Disk Advanced Compiler

kkok desksk ko H#kosk

v = SCREEN(row, col[,2])
row 1is a numeric expression in the range 1 to 25.

co/ isanumeric expression in the range 1 to40 or 1
to 80 depending upon the WIDTH setting.

z is a numeric expression which evaluates to a
true or false value. z is only valid in text mode.

Refer to “Appendix G. ASCII Character Codes” for
a list of ASCII codes.

In text mode, if z is included and is true (non-zero),
the' color attribute for the character is returned
instead of the code for the character. The color
attribute is a number in the range 0 to 255. This
number, v, may be deciphered as follows:

|72]
=
>
~
o)
=
!
Z
—~
72}

(v MOD 16) is the foreground color.

(((v - foreground)/16) MOD 128) is the background
color, where foreground is calculated as above.

(v>1 27) is true (-1) if the character is blinking,
false (0) if not.

4-255

SCREEN
Function

Example:

4-256

Refer to “COLOR Statement” for a list of colorsand

their associated numbers.

In graphics mode, if the specified locaticn contains
graphic information (points or lines, as opposed to
justa character), then the SCREEN function returns
Zero.

Any values entered outside of the ranges indicated
result in an “Illegal function call” error.

The SCREEN statement is explained in the next
section.
189 X = SCREEN (19,10)

If the character at 10,10 is A, then X is 65.

119 X = SCREEN (1,1,1)

Returns the color attribute of the character in the
upper left hand corner of the screen.

SCREEN
Statement

Purpose:

Vetrsions:

Format:

Remarks:

Sets the screen attributes to be used by subsequent
statements.

Cassette Disk Advanced Compiler

sk & sk sk dokok % % %

Meaningful with the Color/Graphics Monitor
Adapter only.

SCREEN ([mode] [,[burst] {,[apage] [,upage]]]

mode is a numeric expression resulting in an
integer value of 0, 1 or 2. Valid modes are:

0 Text mode at current width (40 or
80).

1 Medium resolution graphics mode
(320x200). Use with Color/Graphics
Monitor Adapter only.

2 High resolution graphics mode
(640x200). Use with Color/Graphics
Monitor Adapter only.

7
~
>
]
2!
=
tm
Z
-
7

burst is a numeric expression resulting in a true
or false value. It enables color. In text
mode (mode=0), a false (zero) value disables
color (black and white images only) and a
true (non-zero) value enables color (allows
color images). In medium resolution
graphics mode (mode=1), a true (non-zero)
value will disable color, and a false (zero)
value will enable color. Since black and
white are the only colors in high resolution
graphics (mode=2), this parameter will not
have much effect in high resolution.

4-257

SCREEN
Statement

4-258

apage (active page) isan integer expression in the
range 0 to 7 for width 40, or O to 3 for
width 80. It selects the page to be written
to by output statements to the screen, and
is valid in text mode (mode=0) only.

vpage (visual page) selects which page is to be
displayed on the screen, in the same way as
apage above. The visual page may be
different than the active page. vpage is valid
in text mode (mode=0) only. If omitted,
vpage defaults to apage.

If all parameters are valid, the new screen mode is
stored, the screen is erased, the foreground color is
set to white, and the background and border colors
are set to black.

If the new screen mode is the same as the previous
mode, nothing is changed.

If the mode is text, and only #page and vpage are
specified, the effectis that of changing display pages
for viewing. Initially, both active and visual pages
default to 0 (zero). By manipulating active and visual
pages, you can display one page while building
another. Then you can switch visual pages
instantaneously.

Note: There is only one cursor shared
between all the pages. If you are going to switch
active pages back and forth, you should save the
cursor position on the current active page
(using POS(0) and CSRLIN), before changing
to another active page. Then when you return
to the original page, you can restore the cursor
position using the LOCATE statement.

SCREEN
Statement

Any parameter may be omitted. Omitted
parameters, except ypage, assume the old value.

Any values entered outside of the ranges
indicated will result in an “Illegal function call”
etror. Previous values are retained.

If you are writing a program which is intended
to be run on a machine that may have either
adapter, we suggest you use the SCREEN 0,0,0
and WIDTH 40 statements at the beginning of
the program.

Example: 1§ SCREEN ¢,1,0,0

Selects text mode with color, and sets active and
visual page to 0.

20 SCREEN ,,1,2

Mode and color burst remain unchanged. Active
page is set to 1 and display page to 2.

«»
=
>
]
oo
o
=]
w

3% SCREEN 2,.,0.,0

Switches to high resolution graphics mode.

L@ SCREEN 1,0

Switches to medium resolution color graphics.

5 SCREEN ,1

Sets medium resolution graphics with color off.

4-259

SGN

Function

Purpose: Returns the sign of x.

Versions: Cassette Disk Advanced Compiler
Hkok &Rk sk LR

Format: v = SGN(x)

Remarks: x is any numeric expression.
SGN(x) is the mathematical signum function:
® Ifxis positive, SGN(x) returns 1.
® Ifxiszero, SGN(x) returns O.

® Ifxis negative, SGN(x) returns -1.
Example: ON SGN(X)+2 GOTO 10¢,20¢,300

branches to 100 if X is negative, 200 if X is zero, and
300 if X is positive.

4-260

SIN

Function

Purpose:

Versions:

Format:

Calculates the trigonometric sine function.

Cassette Disk Advanced Compiler

ok ok *kk sk &k ok

v = SIN(x)

Remarks: ¥ is an angle in radians.

Example:

If you want to convert degrees to radians, multiply
by PI/180, where PI=3.141593.

SIN(x) is calculated in single precision.

Ok
10 P1=3.141593 w
20 DEGREES = 90 <!
3¢ RADIANS=DEGREES * PI1/18¢ ' Pl/2 ;
4@ PRINT SIN(RADIANS) =
RUN 3!
1 4
_I
Ok »

This example calculates the sine of 90 degrees, after
first converting the degrees to radians.

4-261

SOUND
Statement

Purpose:

Generates sound through the speaker.

Versions: Cassette Disk Advanced Compiler
Rk Hkok L2 3 &k sk
Format: SOUND freq, duration
Remarks: freg is the desired frequency in Hertz (cycles

4-262

per second). It must be a numeric
expression in the range 37 to 32767.

duration is the desired duration in clock ticks. The
clock ticks occur 18.2 times per second.
duration must be a numeric expression in
the range 0 to 65535.

When the SOUND statement produces a sound, the:
program continues to execute until another
SOUND statement is reached. If duration of the new
SOUND statement is zero, the current SOUND
statement that is running is turned off. Otherwise,
the program waits until the first sound completes
before it executes the new SOUND statement.

If you are using Advanced BASIC, you can cause the
sounds to be buffered so execution does not stop
when a new SOUND statement is encountered. See
the MB command explained under “PLAY
Statement” in this chapter for details.

If no SOUND statement is running, SOUNDX,0 has
no effect.

SOUND
Statement

The tuning note, A, has a frequency of 440. The
following table correlates notes with their
frequencies for two octaves on either side of middle

C.

Note Frequency | Note Frequency
C 130.810 C* 523.250
D 146.830 D 587.330
E 164.810 E 659.260
F 174.610 F 698.460
G 196.000 G 783.990
A 220.000 A 880.000
B 246.940 B 987.770
C 261.630 C 1046.500
D 293.660 D 1174.700
E 329.630 E 1318.500
F 349.230 F 1396.900
G 392.000 G 1568.000
A 440.000 A 1760.000
B 493.880 B 1975.500

*middle C. Higher (or lower) notes may be
approximated by doubling (or halving) the
frequency of the corresponding note in the previous
(next) octave.

192]
~
>
=
o
=
rm
Z
~
2}

To create periods of silence, use SOUND
32767 duration.

The duration for one beat can be calculated from

beats per minute by dividing the beats per minute
into 1092 (the number of clock ticks in a minute).

4-263

SOUND

Statement

The next table shows typical tempos in terms of
clock ticks:

Beats/ |Ticks/
Tempo Minute |Beat
very slow Larghissimo
Largo 40-60 | 27.3-18.2
Larghetto 60-66 | 18.2-16.55
Grave
Lento
Adagio 66-76 |16.55-14.37
slow Adagietto
Andante 76-108 [14.37-10.11
medium Andantino
Moderato 108-120| 10.11-9.1
fast Allegretto
Allegro 120-168 9.1-6.5
Vivace
Veloce
Presto 168-208 | 6.5-5.25
very fast Prestissimo

Example: The following program creates a

glissando up and down.

10
20
30
Ly
5¢
60

4-264

FOR I=L44p TO 100@ STEP 5

FOR 1=100¢ TO 44y STEP -5

SOUND |, §.5
NEXT
SOUND |, §.5
NEXT

SPACE$
Function

Purpose:

Versions:

Format:

Remarks:

Example:

Returns a string consisting of » spaces.

Cassette Disk Advanced Compiler

Heskook dkk hkk L 2]

v$ = SPACE$(»)

n must be in the range 0 to 255.

Refer also to the SPC function.

Ok

18 FOR | = 1 T0 5
20 XS = SPACES(1)
3¢ PRINT X$:l

L NEXT |

RUN

»
—
>
—
s
=
T
Z
~
»

Ok

This example uses the SPACE$ function to print
each number I on a line preceded by I spaces. An
additional space is inserted because BASIC puts a
space in front of positive numbers.

4-265

SPC
Function

Purpose: Skips » spaces in a PRINT statement.

Versions: Cassette Disk Advanced Compiler
Hkok EE 23 Sk Hkeock

Format: PRINT SPC(#)

Remarks: # must be in the range 0 to 255.

If 7 is greater than the defined width of the device,
then the value used is#» MOD wzdth. SPC may only be
used with PRINT, LPRINT and PRINT #

statements.

If the SPC function is at the end of the list of data
items, then BASIC does not add a carriage return, as
though the SPC function had an implied semicolon
after it.

Also see the SPACE$ function.

Example: Ok
PRINT "OVER'" SPC(15) "THERE"
OVER THERE
Ok

This example prints OVER and THERE separated
by 15 spaces.

4-266

SQR

Function

Purpose: Returns the square root of x.

Versions: Cassette Disk Advanced Compiler
Fkk kg kg Kook

Format: »= SQR(x)

Remarks: x must be greater than or equal to zero.

Example 0k
19 FOR X = 18 TO 25 STEP 5
20 PRINT X, SQR(X)

30 NEXT
RUN
10 3.162278
15 3.872984
20 4. 472136
25 5
Ok

This example calculates the square roots of the
numbers 10, 15, 20 and 25.

»
—
>
—
ey
<
m
Z
—
w

4267 |

STICK

Function

Purpose: Returns the x and y coordinates of two joysticks.

Versions: Cassette Disk Advanced Compiler
®ok % E R 3 %%k dkk

Format: v = STICK(»)

Remarks: » is a numeric expression in the range 0 to 3
which affects the result as follows:
0 returns the x coordinate for joystick A.
1 returns the y coordinate of joystick A.
2 returns the x coordinate of joystick B.
3 returns the y coordinate of joystick B.
Note: STICK(0) retrieves all four values for
the coordinates, and returns the value for
STICK(0). STICK(1), STICK(2), and STICK(3)
do not sample the joystick. They get the values

previously retrieved by STICK (0).

The range of values for x and y depends on your
particular joysticks.

4-268

Example:

STICK

Function

10 PRINT '"Joystick B'"

2@ PRINT '"'x coordinate'!,''y coordinate'
3¢ FOR J=1 TO 100

L TEMP=STICK(@)

50 X=STICK(2): Y=STICK(3)

60 PRINT X,V

70 NEXT

This program takes 100 samples of the coordinates
of joystick B and prints them.

%
]
>
=]
&
=
5
Z
~
W

4-269

STOP

Statement

Purpose:

Versions:

Format:

Remarks:

4-270

Terminates program execution and returns to
command level.

Cassette Disk Advanced Compiler

STOP

STOP statements may be used anywhere in a
program to terminate execution. When BASIC
encounters a STOP statement, it displays the
following message:

Break in nnnnn

where nnnnn is the line number where the STOP
occurred.

Unlike the END statement, the STOP statement
does not close files.

BASIC always returns to command level after it
executes a STOP. You can resume execution of the
program by issuing a CONT command (see “CONT
Command” in this chapter).

Example:

STOP

Statement

10 INPUT A, B
20 TEMP= A*B
3¢ STOP

Lp FINAL = TEMP+2@0: PRINT FINAL
RUN

7 26, 2.1
Break in 30
Ok

PRINT TEMP
54,6

Ok

CONT

254 .6

Ok

This example calculates the value of TEMP, then
stops. While the program is stopped, we can check
the value of TEMP. Then we can use CONT to

resume program execution at line 40.

2
—
-
=
e2!
=
m
Z
~
7z

4-271

STR¢$

Function

Purpose:

Versions:

Format:

Remarks:

Example:

4-272

Returns a string representation of the value of x.

Cassette Disk Advanced Compiler

Hdkok %K Kok Heokok

8 = STR$(x)

x is any numeric expression.

If x is positive, the string returned by STR$ contains
aleading blank (the space reserved for the plus sign).
For example:

Ok
? STRS(321); LEN(STRS$(321))
321 4

Ok

The VAL function is complementary to STR$.

This example branches to different sections of the
program based on the number of digits in a number
thatisentered. The digitsin the numberare counted
by using STR$ to convert the number to a string,
then branching based on the length of the string.

5 REM arithmetic for kids

1@ INPUT "'"TYPE A NUMBER';N

28 ON LEN(STRS(N))-1 GOSUB 38,100,200, 300
@

&

&

STRIG
Statement and Function

Purpose:

Versions:

Format:

Remarks:

Returns the status of the joystick buttons (triggers).

Cassette Disk Advanced Compiler
L 23 &k Heokok Hkok

As a statement:
STRIG ON
STRIG OFF

As a function:

v = STRIG(r)

n is a numeric expression in the range 0 to 3. It
affects the value returned by the function as
follows:

0 Returns -1 if button Al was pressed since
the last STRIG(0) function call, returns O
if not.

1 Returns -1 if button Al is currently
pressed, returns 0 if not.

»
—
>
.
52
=
I
Z,
=
»

2 Returns -1 if button B1 was pressed since - - B
the last STRIG(2) function call, returns O
if not.

3 Returns -1 if button B1 is currently
pressed, returns 0 if not.

4-273

STRIG
Statement and Function

In Advanced BASIC and the BASIC Compiler,
you can read four buttons from the joysticks.
The additional values for » are:

4 Returns -1 if button A2 was pressed since
the last STRIG(4) function call, returns 0
if not.

5 Returns -1 if button A2 is currently
pressed, returns O if not.

6 Returns -1 if button B2 was pressed since
the last STRIG(6) function call, returns O
if not.

7 Returns -1 if button B2 is currently
pressed, returns O if not.

STRIG ON must be executed before any STRIG(%)
function calls may be made. After STRIG ON, every
time the program starts a new statement BASIC
checks to see if a button has been pressed.

If STRIG is OFF, no testing takes place.
Refer also to the next section, “STRIG(n)

Statement” for enhancements to the STRIG
function in Advanced BASIC.

4-274

STRIG(n)
Statement

Puzrpose:

Versions:

Format:

Remarks:

Enables and disables trapping of the joystick
buttons.

Cassette Disk Advanced Compiler

STRIG(z) ON
STRIG(z) OFF
STRIG(z) STOP

n maybeO, 2,4, or 6, and indicates the button to
be trapped as follows:

0 Dbutton Al
2 button Bl
4 button A2
6 Dbutton B2

STRIG(#) ON must be executed to enable trapping |
by the ON STRIG(#) statement (see “ON STRIG(n)
Statement” in this chapter). After STRIG(») ON,
every time the program starts a new statement,
BASIC checks to see if the specified button hasbeen
pressed.

SINIWHLV.LS

If STRIG(#7) OFF is executed, no testing or trapping
takes place. Even if the button is pressed, the event
is not remembered.

If a STRIG(#) STOP statement is executed, no
trapping takes place. However, if the button is
pressed it is remembered so that an immediate trap
takes place when STRIG(z) ON is executed.

Refer also to the previous section, “STRIG
Statement and Function.”

4-275

STRINGS$

Function

Purpose: Returns a string of length » whose characters all
have ASCII code 7 or the first character of x§.

Versions: Cassette Disk Advanced Compiler
&k ok ook kkk X 13
Format: uf = STRING$(nm)
v§ = STRINGS$(n,x8)

Remarks: # m are in the range 0 to 255.

x§ is any string expression.

Example: 0k
19 XS = STRINGS(10,45)
2 PRINT XS '""MONTHLY REPORT'' XS
RUN

The first example repeats an ASCII value of 45 to
print a string of hyphens.

Ok
10 X$=''"ABCD"

20 Y$S+STRINGS (18, XS)
3% PRINT YS

RUN

AAAAAAAAAA

Ok

The second example repeats the first character of
the string “ABCD”.

4-276

SWAP
Statement

Purpose:

Versions:

Format:

Remarks:

Example:

Exchanges the values of two variables.

Cassette Disk Advanced Compiler
kg &gk EX 33 dokk

SW AP variablel, variable2

variablel, variable2
are the names of two variables or array
elements.

Any type variable may be swapped (integer,
single-precision, double-precision, string), but the
two variables must be of the same type or a “Type
mismatch” error results.

wn
Ok =
19 AS="" ONE ' : BS='' ALL "' : C$="'FOR" =
20 PRINT AS CS BS =
30 SWAP AS, BS =
L@ PRINT AS CS$ BS 5
RUN %
ONE FOR ALL
ALL FOR ONE
Ok

After line 30 is executed, A$ has the value ““ ALL
and B$ has the value “ ONE ”.

4-277

SYSTEM
Command

Purpose: Exits BASIC and returns to DOS.

Versions: Cassette Disk Advanced Compiler
%k sk HoR K &Kk

Format: SYSTEM

Remarks: SYSTEM closes all files before it returns to DOS.
Your BASIC program is lost.

If you entered BASIC through a Batch file from
DOS, the SYSTEM command returns you to the
Batch file, which continues executing at the point it
left off.

4-278

TAB

Function

Purpose:

Versions:

Format;:

Remarks:

Example:

Tabs to position .

Cassette Disk Advanced Compiler

deokok Hkck Fksk Hokok

PRINT TAB(r)

n must be in the range 1 to 255.

If the current print position is already beyond space
n, TAB goes to position# on the next line. Space 1 is
the leftmost position, and the rightmost position is
the defined WIDTH.

TAB may only be used in PRINT, LPRINT, and
PRINT # statements.

If the TAB function is at the end of the list of data
items, then BASIC does notadd a carriage return, as
though the TAB function had an implied semicolon
after it.

@
i
>
=
g3l
=
5
Z
~
%

TAB is used in the following example to cause the ¥
information on the screen to line up in columns.

Ok
10 PRINT ''NAME' TAB(25) '"AMOUNT' : PRINT
20 READ AS,BS

3% PRINT AS TAB(25) BS

L@ DATA L. M. JACOBS'',"'$25. gg"

RUN
NAME AMOUNT
L. M. JACOBS 525.00
Ok

4-279

TAN

Function

Purpose:

Versions:

Format:

Remarks:

Example:

4-280

Returns the trigonometric tangent of x.

Cassette Disk Advanced Compiler

Hakk L Hskok &Kk
v = TAN(x)
x is the angle in radians. To convert degrees
to radians, multiply by PI/180, where
PI=3.141593.

TAN(x) is calculated in single precision.

Ok
10 P1=3.141593
200 DEGREES=45
30 PRINT TAN(DEGREES*P1/18¢)
RUN
1
Ok

This example calculates the tangent of 45 degrees.

TIME$
Variable and Statement

Purpose:

Versions:

Format:

Remarks:

Sets or retrieves the current time.

Cassette Disk Advanced Compiler

sk Hkock ok ok

As a variable:
vf = TIME$
As a statement:

TIMES$ = x§

For the variable (v$ = TIME$):

The current time is returned as an 8 character string.
The string is of the form Ah:mm.ss, where bb is the
hour (00 to 23), mm is the minutes (00 to 59), and ss is
the seconds (00 to 59). The time may have been set
by DOS prior to entering BASIC.

w
~
>
=
m
=
T3
Z,
=~
»

For the statement (TIME$ = x$):

The current time is set. 4§ is a string expression
indicating the time to be set. x§ may be given in one
of the following forms:

hh Set the hour in the range 0 to 23. Minutes
and seconds default to 00.

bh.mm Set the hour and minutes. Minutes must be
in the range 0 to 59. Seconds default to 00.

hh:mm:ss Set the hour, minutes, and seconds.
Seconds must be in the range 0 to 59.

4-281

TIMES$
Variable and Statement

A leading zero may be omitted from any of the
above values, but you mustinclude at least one digit.
For example, if you wanted to set the time as a half
hour after midnight, you could enter
TIME$="0:30", but not TIME$=":30". If any of the
values are out of range, an “Illegal function call”
error is issued. The previous time is retained. If xf is
not a valid string, a ““Type mismatch” error results.

Example: The following program displays the time
continuously in the middle of the screen.

19 CLS

20 LOCATE 10,15
3¢ PRINT TIMES
Lg GOTO 38

4-282

TRON and TROFF

Commands

Purpose:

Vetrsions:

Format:

Remarks:

Example:

Traces the execution of program statements.

Cassette Disk Advanced Compiler

TRON
TROFF

As an aid in debugging, the TRON command (which
may be entered in indirect mode) enables a trace flag
that prints each line number of the program as it is
executed. The numbers appear enclosed in square
brackets. The trace is turned off by the TROFF

command.

Ok

10 K=10

20 FOR J=1 TO 2

30 L=K + 18

L@ PRINT J;K;L

5@ K=K+10

60 NEXT

70 END

TRON

Ok

RUN

1031281003841 1 19 20
[5Q77601301M4g1 2 28 30
(5011601178

Ok

TROFF

Ok

This example uses TRON and TROFF to trace
execution of a loop. The numbers in brackets are
line numbers; the numbers not in brackets at the
end of each line are the values of J, K, and L which
are printed by the program.

W
=1
o>
=
3!
=
3!
Z,
-
v

4-283

USR

Function

Purpose:

Versions:

Format:

Remarks:

Example:

4-284

Calls the indicated machine language subroutine
with the argument arg.

Cassette Disk Advanced Compiler

v= USR[#](arg)

n is in the range 0 to 9 and corresponds to the
digit supplied with the DEF USR statement for
the desired routine (see “DEF USR Statement”
in this chapter). If » is omitted, USRO is
assumed.

arg is any numeric expression or string variable,
which will be the argument to the machine
language subroutine.

The CALL statement is another way to call a
machine language subroutine. See “Appendix C.
Machine Language Subroutines” for complete
information on using machine language
subroutines.

19 DEF USRQ = SHF@@Q
50 C = USRP(B/2)
60 D = USR(B/3)

il

The function USRO is defined in line 10. Line 50
calls the function USRO with the argument B/2. Line
60 calls USRO again, with the argument B/3.

VAL
Function

Purpose:

Vetrsions:

Format:

Remarks:

Example:

Returns the numerical value of string x§.

Cassette Disk Advanced Compiler

L skok sk ok Hkk

v = VAL(x#)

x$ is a string expression.

The VAL function strips blanks, tabs, and line feeds
from the argument string in order to determine the
result. For example,

VAL(“ _3”)
returns -3.
%)
If the first characters of 4§ are not numeric, then ;
VAL(xf) will return 0O (zero). g
=
See the STR$ function for numeric to string 1
conversion. ?_1
»
Ok
PRINT VAL("'3L4p8 SHERWOOD BLVD.')
3438
Ok

In this example, VAL is used to extract the house
number from an address.

4-285

VARPTR

Function

Purpose:

Versions:

Format:

Remarks:

4-286

Returns the address in memory of the variable or file
control block.

Cassette Disk Advanced Compiler

v = VARPTR(variable)
v = VARPTR(#filenunt)

variable is the name of a numeric or string variable
or array element in your program. A value
must be assigned to variable prior to the
call to VARPTR, or an “Illegal function
call” error results.

filenum is the number under which the file was
opened.

For both formats, the address returned is an integer
in the range 0 to 65535. This number is the offset
into BASIC’s Data Segment. The address is not
affected by the DEF SEG statement.

The first format returns the address of the first byte
of data identified with variable. The format of this
data is described in Appendix I under “How
Variables Are Stored.”

Note: All simple variables should be assigned
before calling VARPTR for an array, because
addresses of arrays change whenever a new
simple variable is assigned.

VARPTR is usually used to obtain the address of a
variable or array so it may be passed to a USR
machine language subroutine. A function call of the

Example:

VARPTR
Function

form VARPTR(A(0)) is usually specified when
passing an artay, so that the lowest-addressed
element of the array is returned.

The second format returns the starting address of
the file control block for the specified file. This is
not the same as the DOS file control block. Refer to
“BASIC File Control Block™ in “Appendix L
Technical Information and Tips” for detailed
information about the format of the file control

block.

VARPTR is meaningless for cassette files.

This example reads the first byte in the buffer of a
random file:

16 OPEN ''DATA.FIL' AS #1

20 GET #£1

30 'get address of control block
Ly FCBADR = VARPTR{#1)

5@ 'figure address of data buffer
6f DATADR = FCBADR+188

7¢ 'get first byte in data buffer
80 A% = PEEK(DATADR)

»
=
-
-
e
=
m
4
~
72

The next example use VARPTR to get the data from
a variable. In line 30, P gets the address of the data.
Integer data is stored in two bytes, with the less
significant byte first. The actual value stored at
location P is calculated in line 40. The bytes are read
with the PEEK function, and the second byte is
multiplied by 256 because it contains the high-order
bits.

1§ DEFINT A-Z

20 DATA1=50¢

30 P=VARPTR(DATAT)

4g V=PEEK(P) + 256%PEEK(P+1)
50 PRINT V

4-287

VARPTRS$
Function

Purpose:

Versions:

Format:

Remarks:

4-288

Returns a character form of the address of a variable
in memory. It is primarily for use with PLAY and
DRAW in programs that will later be compiled.

Cassette Disk Advanced Compiler

Hok ok X 33 L X]

vf = VARPTRS$(variable)

variable is the name of a variable existing in the
program.

Note: All simple variables should be assigned
before calling VARPTR$ for an array element,
because addresses of arrays change whenever a
new simple variable is assigned.

VARPTRS$ returns a three-byte string in the form:

Byte 0 Byte 1 Byte 2

type low byte of high byte of
variable variable
address address

type indicates the variable type:

integer

string
single-precision
double-precision

0w

VARPTR$
Function

The returned value is the same as:
CHR$(¢ype)+MKI$(VARPTR(variable))

You can use VARPTRS$ to indicate a variable name
in the command string for PLAY or DRAW. For
example:

Method One Alternative Method

PLAY "'XAS; ! PLAY "'X'+VARPTRS (AS)
PLAY "0=1 ;" PLAY "0="+VARPTRS (1)

This technique is mainly for use in programs which
will later be compiled.

w
s
o
=
s
=
 m
=2
.
92}

4-289

WAIT

Statement

Purpose:

Suspends program execution while monitoring the
status of a machine input port.

Versions: Cassette Disk Advanced Compiler
ERE ok Hokk seokk
Format: WAIT port, n[,m]
Remarks: port is the port number, in the range 0 to
65535.
n, m are integer expressions in the range 0 to
255.

4-290

Refer to the IBM Personal Computer Technical Reference
manual for a description of valid port numbers (I/O
addresses).

The WAIT statement causes execution to be
suspended until a specified machine input port
develops a specified bit pattern.

The data read at the port is XORed with the integer
expression and then ANDed with . If the result is
zero, BASIC loops back and reads the data at the
port again. If the result is nonzero, execution
continues with the nextstatement. If % is omitted, it
is assumed to be zero.

Example:

WAIT
Statement

The WAIT statement lets you test one or more bit
positions on an input port. You can test the bit
position for either a 1 or a 0. The bit positions to be
tested are specified by setting 1’s in those positions
in #. If you do not specify », the input port bits are
tested for 1’s. If you do specify 7, a 1 in any bit
position in 7 (for which there is a 1 bit in #) causes
WAIT to test for a O for that input bit.

When executed, the WAIT statement loops testing
those input bits specified by 1’s in z. If any one of
those bitsis 1 (or 0 if the corresponding bitinm is 1),
then the program continues with the next
statement. Thus WAIT does not wait for an entire
pattern of bits to appear, but only for one of them to
occur.

Note: It is possible to enter an infinite loop

with the WAIT statement. You can do a
Ctrl-Break or a System Reset to exit the loop.

To suspend program execution until port 32

receives a 1 bit in the second bit position:

100 WAIT 32,2

4-291

w
—
>
~
es!
=
tr
Z
=
7

WHILE and WEND
Statements

Purpose:

Versions:

Format:

Remarks:

4-292

Executes a series of statements in a loop as long asa
given condition is true.

Cassette Disk Advanced Compiler

WHILE expression
(loop statements)

WEND

expression is any numeric expression.

If expression is true (not zero), loop statements are
executed until the WEND statement is encountered.
BASIC then returns to the WHILE statement and
checks expression. If it is still true, the process is
repeated. If it is not true, execution resumes with
the statement following the WEND statement.

WHILE...WEND loops may be nested to any level.
Each WEND will match the most recent WHILE.

An unmatched WHILE statement causes a “WHILE
without WEND” error, and an unmatched WEND
statement causes a “WEND without WHILE” error.

WHILE and WEND
Statements

Example: This example sorts the elements of the string array
A$ into alphabetical order. A$ was defined with J
elements.

90 'bubble sort array AS

109 FLIPS=1 'force one pass thru loop
110 WHILE FLIPS

115 FLIPS=0

126 FOR 1=1 70 J-1

136 1F AS(1)>AS(1+1) THEN

SWAP AS(1),AS(I+1): FLIPS=1
140 NEXT |
150 WEND

»n
=
-
=
trd
g .
tri
Z
~
w

4-293

WIDTH
Statement

Purpose:

Versions:

Format:

Remarks:

4-294

Sets the output line width in number of characters.
After outputting the indicated number of
characters, BASIC adds a carriage return.

Cassette Disk Advanced Compiler

WIDTH szze

WIDTH filenum,size

WIDTH device, size

5ize is a numeric expression in the range 0 to

255. This is the new width. WIDTH 0 is
the same thing as WIDTH 1.

filenum is a numeric expression in the range 1 to
15. This is the number of a file opened to
one of the devices listed below.

device is a string expression for the device
identifier. Valid devices are SCRN:,
LPT1:, LPT2:, LPT3:, COM1:, or COM2:.

Depending upon the device specified, the following
actions are possible:

WIDTH size or WIDTH “SCRN:”,size
Sets the screen width. Only 40 or 80
column width is allowed.

If the screen is in medium resolution
graphics mode (as would occur with a
SCREEN 1 statement), WIDTH 80 forces
the screen into high resolution (just like a
SCREEN 2 statement).

WIDTH
Statement

If the screen is in high resolution graphics
mode (as would occur with a SCREEN 2
statement), WIDTH 40 forces the screen
into medium resolution (like a SCREEN 1
statement).

Note: Changing the screen width
causes the screen to be cleared, and
sets the border screen color to black.

WIDTH device,size
Used as a deferred width assignment for
the device. This form of width stores the
new width value without actually changing
the current width setting. A subsequent
OPEN to the device will use this value for
width while the file is open. The width
does not change immediately if the device
is already open.

Note: LPRINT, LLIST, and 4
LIST,“LPTn:” do an implicit OPEN [3

and are therefore affected by this o

statement. =

i

WIDTH filenum,size é

The width of the device associated with
filenum is immediately changed to the new
size specified. This allows the width to be
changed at will while the file is open. This
form of WIDTH has meaning only for
LPT1: in Cassette BASIC. Disk and
Advanced BASIC also allow LPT2:, LPT?3:,
COM1: and COM2:.

4-295

WIDTH

Statement

4-296

Any value entered outside of the ranges indicated
will result in an “Illegal function call” error. The
previous value is retained.

WIDTH has no effect for the keyboard (KYBD:) or
cassette (CAS1:).

The width for each printer defaults to 80 when
BASIC is started. The maximum width for the IBM
80 CPS Matrix Printer is 132. However, no error is
returned for values between 132 and 255.

It is up to you to set the appropriate physical width
on your printer. Some printers are set by sending
special codes, some have switches. For the IBM 80
CPS Matrix Printer you should use LPRINT
CHR$(15); to change to a condensed typestyle when
printing at widths greater than 80. Use LPRINT
CHR#$(18); to return to normal. The IBM 80 CPS
Matrix Printer is set up to automatically add a
carriage return if you exceed the maximum line
length.

Specifying a width of 255 disables line folding. This
has the effect of “‘infinite” width. WIDTH 255 is the
default for communications files.

Changing the width for a communications file does
not alter either the receive or the transmit buffer; it
just causes BASIC to send a carriage return
character after every size characters.

Changing screen mode affects screen width only
when moving between SCREEN 2 and SCREEN 1 or
SCREEN 0. See “SCREEN Statement’ in this

chapter.

Example:

WIDTH
Statement

19 WIDTH "'LPTT:",75
2¢ OPEN "LPT1:'"' FOR OUTPUT AS #1

602¢ WIDTH

#1,40

In the preceding example, line 10 stores a printer
width of 75 characters per line. Line 20 opens file #1
to the printer and sets the width to 75 for
subsequent PRINT #1,... statements. Line 6020
changes the current printer width to 40 characters

per line.

SCREEN 1,0
WIDTH 8¢
WIDTH 4@

SCREEN @, 1
WIDTH 8¢

'Set to med-res color graphics
'Go to hi-res graphics
"Go back to medium res

'Go to 4@x25 text color mode
‘Go to B@x25 text color mode

@
M
Nl
e
M
g,
<28
Z_A
H -
.

4-297

WRITE
Statement

Purpose: Outputs data on the screen.

Versions: Cassette Disk Advanced Compiler
L X B2 X3 Rk EX 23

Format: WRITE [/ist of expressions)

Remarks: /ist of expressions
is a list of numeric and/or string
expressions, separated by commas or
semicolons.

If the list of expressions is omitted, a blank line is
output. If the list of expressions is included, the
values of the expressions are output on the screen.

When the values of the expressions are output, each
item is separated from the last by a comma. Strings
are delimited by quotation marks. After the lastitem
in the list is printed, BASIC adds a carriage
return/line feed.

WRITE is similar to PRINT. The difference
between WRITE and PRINT is that WRITE inserts
commas between the items as they are displayed and
delimits strings with quotation marks. Also, positive
numbers are not preceded by blanks.

Example: This example shows how WRITE displays numeric
and string values.

10 A=8¢: B=9@: CS='"THAT'S ALL"
20 WRITE A,B,CS

RUN

80,90, "THAT'S ALL"

0k

4-298

