WRITE #
Statement

Purpose: Writes data to a sequential file.

Versions: Cassette Disk  Advanced Compiler

Format:

Heskock skakok Hkock kakck

WRITE #filenum, list of expressions

Remarks: filenum is the number under which the file was

opened for output.

list of expressions
is a list of string and/or numeric
expressions, separated by commas or
semicolons.

The difference between WRITE # and PRINT # is
that WRITE # inserts commas between the items as
they are written and delimits strings with quotation
marks. Therefore, it is not necessary for the user to
put explicit delimiters in the list. Also, WRITE #
does not put a blank in front of a positive number. A
carriage return/line feed sequence is inserted after
the last item in the list is written.

SININWHLV.LS

4-299



WRITE #
Statement

Example: Let A$="CAMERA” and B$="93604-1". The
statement:

WRITE #1,A$,BS
writes the following image to the file.

“CAMERA”,“93604-1"
A subsequent INPUT # statement, such as:

INPUT #1,AS,BS

would input “CAMERA” to A$ and “93604-1" to
B$.

4-300




APPENDIXES

Contents
APPENDIX A. MESSAGES ................ A-5
APPENDIX B. BASIC DISKETTE INPUT AND
OUTPUT ..ottt B-1
Specifying Filenames .................. ... B-2
Commands for Program Files ............ B-2
Protected Files .................. B-3
Diskette Data Files - Sequential and
Random I/O ..., B-4
Sequential Files ............... .. ... B-4
Creating and Accessing a
Sequential File ................. B-4
Adding Datatoa Sequential File ... B-7
Random Files ............... ... ... B-8
Creating a Random File .......... B-9
Accessing a Random File ......... B-10
An Example Program ............ B-12
Performance Hints ...........coovvnnnt, B-15

APPPENDIX C. MACHINE LANGUAGE
SUBROUTINES ..........ccoiiiiivennn. C-1

Setting Memory Aside for Your
Subroutines .......... . i C2

Getting the Subroutine Code into
1Y 55 U 3 o 200
Poking a Subroutine into Memory ....
Loading the Subroutine from a File ...

Calling the Subroutine from Your
BASIC Program ..........cciviiiinnn...
Common Features of CALL and USR ...
CALL Statement ..............c.......
USR Function Calls ..................

o
"
s
i
Z .
=
>
trs
w




APPENDIX D. CONVERTING PROGRAMS TO
IBM PERSONAL COMPUTER BASIC ... D-1

FileI/O ..o D-1
Graphics ......... i D-1
IF..THEN ..., D-2
Line Feeds ........................... D-3
Logical Operations ................... D-3
MAT Functions ...................... D-4
Multiple Assignments ................ D-4
Multiple Statements .................. D4
PEEKs and POKEs ................... D4
Relational Expressions ............... D-5
Remarks ...l D-5
Rounding of Numbers ............... D-5
Sounding the Bell .................... D-5
String Handling ...................... D-6
Use of Blanks ........................ D-7
Other ... ... i D-7
APPENDIX E. MATHEMATICAL
FUNCTIONS ...ttt E-1
APPENDIX F. COMMUNICATIONS ..... F-1
Opening a Communications File ...... EF-1
Communication /O .................. F-1
GET and PUT for Communications
Files ... EF-2
I/O Functions .................... F-2
INPUT$ Functions ............... EF-3
An Example Program ................. F-4
Notes on the Program ........... F-5
Operation of Control Signals ............. F-6
Control of OutputSignalswithOPEN .. F-6
Use of Input Control Signals .......... F-7
Testing for Modem Control Signals ... F-7
Direct Control of Output Control
Signals ....... .. .. ... il F-8

Communication Errors ............... F-10



APPENDIX G. ASCII CHARACTER

CODES .. i G-1
Extended Codes .................. e G-6
APPENDIX H. HEXADECIMAL CONVERSION

TABLE ...t H-1
APPENDIX I. TECHNICAL INFORMATION

AND TIPS ... it . I

Memory Map ...l I-2
How Variables Are Stored ............. I-3
BASIC File Control Block ............. I-4
Keyboard Buffer ...................... I-7
Search Order for Adapters ............. L7
Switching Displays .................... I-8
Some Techniques with Color .......... -9
Tips and Techniques ..................... I-10
APPENDIX J. GLOSSARY ................ J1

>
o
o
=
Z
=
>
)
w




A-4

NOTES




Appendix A. Messages

If BASIC detects an error that causes a program to
stop running, an error message is displayed. It is

possible to trap and test errors in a BASIC program
using the ON ERROR statement and the ERR and
ERL variables. (For complete explanations of ON
ERROR, ERR and ERL, see “Chapter 4. BASIC

Commands, Statements, Functions, and Variables.”)

This appendix lists all the BASIC error messages
with their associated error numbers.

Number Message

1

NEXT without FOR

The NEXT statement doesn’t have a
corresponding FOR statement. It may be
that a variable in the NEXT statement
does not correspond to any previously
executed and unmatched FOR statement
variable.

Fix the program so the NEXT has a
matching FOR.

Syntax error

A line contains an incorrect sequence of
characters, such as an unmatched
parenthesis, a misspelled command or
statement, or incorrect punctuation. Or,
the data in a DATA statement doesn’t
match the type (numeric or string) of the
variable in a READ statement.

When this error occurs, the BASIC
program editor automatically displays the
line in error. Correct the line or the
program.

>
U
..
m
Z
S
B
o)
177}




A-6

Number Message

3

RETURN without GOSUB
A RETURN statement needs a previous
unmatched GOSUB statement.

Correct the program. You probably need
to put a STOP or END statement before
the subroutine so the program doesn’t
“fall” into the subroutine code.

Out of data
A READ statement is trying to read more
data than is in the DATA statements.

Correct the program so that there are
enough constants in the DATA statements
for all the READ statements in the
program.

Illegal function call

A parameter that is out of range is passed
to a system function. The error may also
occur as the result of:

® A negative or unreasonably large
subscript

® ‘Trying to raise a negative number to a
power that is not an integer

® Calling a USR function before
defining the starting address with
DEF USR

® A negative record number on GET or
PUT (file) '

® An improper argument to a function
or statement

® Trying to list or edit a protected
BASIC program

® Trying to delete line numbers which
don’t exist



Number Message

Correct the program. Refer to “Chapter
4. Basic Commands, Statements,
Functions, and Variables” for information
about the particular statement or
function.

Overflow

The magnitude of a number is too large to
be represented in BASIC's number format.
Integer overflow will cause execution to
stop. Otherwise, machine infinity with the
appropriate sign is supplied as the result
and execution continues.

To correct integer overflow, you need to
use smaller numbers, or change to single-
or double-precision variables.

Note: If a number is too small to be
represented in BASIC's number format,
we have an underflow condition. If this
occurs, the result is zero and execution
continues without an error.

Out of memory

A program is too large, has too many FOR
loops or GOSUBs, too many variables,
expressions that are too complicated, or
complex painting.

You may want to use CLEAR at the
beginning of your program to set aside
more stack space or memory area.

Undefined line number

A line reference in a statement or
command refers to a line which doesn’t
exist in the program.

Check the line numbers in your program,
and use the correct line number.

o
o)
o)
m
Z
S
>
txs
2]




A-8

Number Message

9

10

11

Subscript out of range

You used an array element either with a
subscript that is outside the dimensions of
the array, or with the wrong number of
subscripts.

Check the usage of the array variable. You
may have puta subscript on a variable that
is not an array, or you may have coded a
built-in function incorrectly.

Duplicate Definition

You tried to define the size of the same
array twice. This may happen in one of
several ways:

@ The same array is defined in two DIM
statements.

® The program encounters a DIM
statement for an array after the
default dimension of 10 is established
for that array.

® The program sees an OPTION BASE
statement after an array has been
dimensioned, either by a DIM
statement or by default.

Move the OPTION BASE statement to
make sure it is executed before you use
any arrays; or, {ix the program so each

array is defined only once.

Division by zero

In an expression, you tried to divide by
zero, or you tried to raise zero to a negative
power.

It is not necessary to fix this condition,
because the program continues running.
Machine infinity with the sign of the



Number Message

12

13

14

15

16

number being divided is the result of the
division; or, positive machine infinity is
the result of the exponentiation.

Illegal direct

You tried to enter a statement in direct
mode which is invalid in direct mode (such
as DEF FN).

The statement should be entered as part of
a program line.

Type mismatch

You gave a string value where a numeric
value was expected, or you had a numeric
value in place of a string value. This error
may also be caused by trying to SWAP
variables of different types, such as
single- and double-precision.

Out of string space

BASIC allocates string space dynamically
until it runs out of memory. This message
means that string variables caused BASIC
to exceed the amount of free memory
remaining after housecleaning.

String too long
You tried to create a string more than 255
characters long.

Try to break the string into smaller strings.
String formula too complex
A string expression is too long or too

complex.

The expression should be broken into
smaller expressions.

>
o
o
o
Z
S
o
o)
w




A-10

Number

17

18

19

20

Message

Can’t continue
You tried to use CONT to continue a
program that:

® Halted due to an error,

® Was modified during a break in
execution, ot

® Does not exist

Make sure the program is loaded, and use
RUN to run it.

Undefined user function
You called a function before defining it
with the DEF FN statement.

Make sure the program executes the DEF
FN statement before you use the function.

No RESUME

The program branched to an active error
trapping routine as a result of an error
condition or an ERROR statement. The
routine does not have a RESUME
statement. (The physical end of the
program was encountered in the error
trapping routine.)

Be sure to include RESUME in your error
trapping routine to continue program
execution. You may want to add an ON
ERROR GOTO 0 statement to your error
trapping routine so BASIC displays the
message for any untrapped error.

RESUME without error

The program has encountered a RESUME
statement without having trapped an
error. The error trapping routine should
only be entered when an error occurs oran
ERROR statement is executed.



Number

22

23

24

25

Message

You probably need to include a STOP or
END statement before the error trapping
routine to prevent the program from
“falling into” the error trapping code.

Missing operand
An expression contains an operator, such
as * or OR, with no operand following it.

Make sure you include all the required
operands in the expression.

Line buffer overflow
You tried to enter a line that has too many
characters. '

Separate multiple statements on the line
so they are on more than one line. You
might also use string variables instead of
constants where possible.

Device Timeout

BASIC did not receive information from
an input/output device within a
predetermined amount of time. In
Cassette BASIC, this only occurs while the
program is trying to read from the cassette
or write to the printer.

For communications files, this message
indicates that one or more of the signals

tested with OPEN “COM... was not found
in the specified period of time.

Retry the operation.

Device Fault
A hardware error indication was returned
by an interface adapter.

In Cassette BASIC, this only occurs whena
fault status is returned from the printer
interface adapter.

A-11}

o
e
o
trl
Z
o
P
o)
w




A-12

Number

25
(cont.)

26

27

29

30

Message

This message may also occur when
transmitting data to a communications
file. In this case, it indicates that one or
more of the signals being tested (specified
on the OPEN “COM... statement) was not
found in the specified period of time.

FOR without NEXT

A FOR was encountered without a
matching NEXT. That is, a FOR loop was
active when the physical end of the
program was reached.

Correct the program so it includesa NEXT
statement.

Out of Paper
The printer is out of paper, or the printer is

not ewitched on
not switched on,

You should insert paper (if necessary),
verify that the printer is properly
connected, and make sure that the power
is on; then, continue the program.

WHILE without WEND

A WHILE statement does not have a
matching WEND. That is, a WHILE was
still active when the physical end of the
program was reached.

Correct the program so that each WHILE
has a corresponding WEND.

WEND without WHILE
A WEND is encountered before a
matching WHILE was executed.

Correct the prdgram so that there is a
WHILE for each WEND.



Number Message

50

51

52

FIELD overflow

A FIELD statement is attempting to
allocate more bytes than were specified for
the record length of a random file in the
OPEN statement. Or, the end of the
FIELD buffer is encountered while doing
sequential I/O (PRINT #, WRITE #,
INPUT #) to a random file.

Check the OPEN statement and the
FIELD statement to make sure they
correspond. If you are doing sequential
I/O to a random file, make sure that the
length of the data read or written does not
exceed the record length of the random

file.

Internal error
An internal malfunction occurred in

BASIC.

Recopy your diskette. Check the hardware
and retry the operation. If the error
reoccurs, report to your computer dealer
the conditions under which the message
appeared.

Bad file number

A statement uses a file number of a file that
is not open, or the file number is out of the
range of possible file numbers specified at
initialization. Or, the device name in the
file specification is too long or invalid, or
the filename was too long or invalid.

Make sure the file you wanted was opened
and that the file number was entered
correctly in the statement. Check that you
have a valid file specification (refer to
“Naming Files” in Chapter 3 for
information on file specifications).

A-13

SHXIANHAddY




A-14

Number Message

53

54

55

57

File not found

A LOAD, KILL, NAME, FILES, or OPEN
references a file that does not exist on the
diskette in the specified drive.

Verify that the correct diskette is in the
drive specified, and that the file
specification was entered correctly. Then
retry the operation.

Bad file mode

You tried to use PUT or GET with a
sequential file or a closed file; or to
execute an OPEN with a file mode other
than input, output, append, or random.

Make sure the OPEN statement was
entered and executed properly. GET and
PUT require a random file.

This error also occurs if you try to merge a
file thatis notin ASCII format. In this case,
make sure you are merging the right file. If
necessaty, load the program and save it
again using the A option.

File already open

You tried to open a file for sequential
output or append, and the file is already
opened or, you tried to use KILL ona file
that is open.

Make sure you only execute one OPEN to
a file if you are writing to it sequentially.
Close a file before you use KILL.

Device I/0O Error

An error occurred on a device I/O
operation. DOS cannot recover from the
error.



Number Message

58

61

62

When receiving communications data,
this error can occur from overrun,
framing, break, or parity errors. When you
are receiving data with 7 or less data bits,
the eighth bit is turned on in the byte in
errofr.

File already exists

The filename specified in a NAME
statement matches a filename already in
use on the diskette.

Retry the NAME command using a
different name.

Disk full
All diskette storage space is in use. Files
are closed when this error occurs.

If there are any files on the diskette that
you no longer need, erase them; or, use a
new diskette. Then retry the operation or
rerun the program.

Input past end

This is an end of file error. An input
statement is executed for a null (empty)
file, or after all the data in a sequential file
was already input.

To avoid this error, use the EOF function
to detect the end of file.

This error also occurs if you try to read
from a file that was opened for output or
append. If you want to read from a
sequential output (or append) file, you
must close it and open it again for input.

>
)
~J
55
Z
=
>
s
o

A-15




A-16

Number Message

63

64

66

67

68

Bad record number

In a PUT or GET statement, the record
number is either greater than the
maximum allowed (32767) or equal to
Zero.

Correct the PUT or GET statement to use
a valid record number.

Bad file name

An invalid form is used for the filename
with BLOAD, BSAVE, KILL, NAME,
OPEN, or FILES.

Check “Naming Files” in Chapter 3 for
information on valid filenames, and
correct the filename in error.

Direct statement in file

A direct statement was encountered while
loading or chaining to an ASCII format
file. The LOAD or CHAIN is terminated.

The ASCII file should consist only of
statements preceded by line numbers.
This error may occur because of a line feed
character in the input stream. Refer to

“Appendix D. Converting Programs to
IBM Personal Computer BASIC.”

Too many files

An attempt is made to create a new file
(using SAVE or OPEN) when all directory
entries on the diskette are full, or when the
file specification is invalid.

If the file specification is okay, use a new
formatted diskette and retry the
operation.

Device Unavailable

You tried to open a file to a device which
doesn’t exist. Either you do not have the
hardware to support the device (such as



Number Message

69

printer adapters for a second or third
printer), or you have disabled the device.
(For example, you may have used /C:0 on
the BASIC command to start Disk BASIC.
That would disable communications
devices.)

Make sure the device is installed correctly.
If necessary, enter the command:

SYSTEM

This returns you to DOS where you can
re-enter the BASIC command.

Communication buffer overflow
A communication input statement was

executed, but the input buffer was already
full.

You should use an ON ERROR statement
to retry the input when this condition
occurs. Subsequent inputs attempt to
clear this fault unless characters continue
to be received faster than the program can
process them. If this happens there are
several possible solutions:

® Increase the size of the
communications buffer using the /C:
option when you start BASIC.

® Implementa “hand-shaking” protocol
with the other computer to tell it to
stop sending long enough so you can
catch up. (See the example in
“Appendix F. Communications.”)

® DUse alower baud rate to transmit and
receive.

>
e
o
tm
Z
S
>
t
w

A-17




A-18

Number Message

70

71

72

73

Disk Write Protect
You tried to write to a diskette that is
write-protected.

Make sure you are using the right diskette.
If so, remove the write protection, then
retry the operation.

This error may also occur because of a
hardware failure.

Disk not Ready
The diskette drive door is open or a
diskette is not in the drive.

Place the correct diskette in the drive and
continue the program.

Disk Media Error

The controller attachment card detected a
hardware or media fault. Usually, this
means that the diskette has gone bad.

Copy any existing files to a new diskette
and re-format the bad diskette. If
formatting fails, the diskette should be
discarded.

Advanced Feature
Your program used an Advanced BASIC
feature while you were using Disk BASIC.

Start Advanced BASIC and rerun your
program.

Unprintable error

An error message is not available for the
error condition which exists. This is
usually caused by an ERROR statement
with an undefined error code.

Check your program to make sure you
handle all error codes which you create.



Appendix B. BASIC Diskette Input
and Output

This appendix describes procedures and special
considerations for using diskette input and output.
It contains lists of the commands and statements
that are used with diskette files, and explanations of
how to use them. Several sample programs are
included to help clarify the use of data files on
diskette. If you are new to BASIC or if you're getting
diskette-related errors, read through these
procedures and program examples to make sure
you’re using all the diskette statements correctly.

You may also want to refer to the IBM Personal
Computer Disk Operating System manual for other
information on handling diskettes and diskette files.

Note: Most of the information in this
appendix about program files and sequential
files applies to cassette I/O as well. The cassette
cannot be opened in random mode, however.

go i
el
Z |
=2
B
sl
w




Specifying Filenames

Filenames for diskette files must conform to DOS
naming conventions in order for BASIC to be able to
read them. Refer to “Naming Files” in Chapter 3 to
be sure you are specifying your diskette files
correctly. ’

Commands for Program Files

B-2

The commands which you can use with your BASIC
program files are listed below, with a quick
description. For more detailed information on any
of these commands, refer to “Chapter 4. BASIC
Commands, Statements, Functions, and Variables.”

SAVE filespec [,A]
Writes to diskette the program that is
currently residing in memory. Optional A
writes the program as a series of ASCII
characters. (Otherwise, BASIC uses a
compressed binary format.)

LOAD filespec [,R]
Loads the program from diskette into
memory. Optional R runs the program
immediately. LOAD always deletes the
current contents of memory and closes all
files before loading. If R is included,
however, open data files are kept open.
Thus, programs can be chained or loaded
in sections, and can access the same data
files.



RUN filespec [,R]
RUN filespec loads the program from
diskette into memory and runs it. RUN
deletes the current contents of memory
and closes all files before loading the
program. If the R option is included,
however, all open data files are kept open.

MERGE filespec
Loads the program from diskette into
memory, but does not delete the current
contents of memory. The program line
numbers on diskette are merged with the
line numbers in memory. If two lines have
the same number, only the line from the
diskette program is saved. After a MERGE
command, the “merged” program resides
in memory, and BASIC returns to
command level.

KILL filespec
Deletes the file from the diskette.

NAME filespec AS filename
Changes the name of a diskette file.

Protected Files

If you wish to save a program in an encoded binary
format, use the P (protect) option with the SAVE
command. For example:

SAVE ''"MYPROG'",P

A program saved this way cannot be listed, saved, or
edited. Since you cannot “unprotect” such a
program, you may also want to save an unprotected
copy of the program for listing and editing
purposes.

>
!
o
m
=
=
»<
tm
»

B3




Diskette Data Files - Sequential and
Random I/O

Two types of diskette data files may be created and
accessed by a BASIC program: sequential files and
random access files.

Sequential Files

B-4

Sequential files are easier to create than random files
but are limited in flexibility and speed when it
comes to accessing the data. The data that is written
to a sequential file is stored sequentially, one item
after another, in the order that each item is sent.
Each item is read back in the same way, from the
first item in the file, to the last item.

The statements and functions that are used with
sequential files are:

CLOSE WRITE #
INPUT # EOF
LINE INPUT # INPUT$
OPEN LOC
PRINT # LOF

PRINT # USING

Creating and Accessing a Sequential File

To create a sequential file and access the data in the
file, include the following steps in your program:

1. Open the file for output or append using the
OPEN statement.

2. Worite data to the file using the PRINT £
WRITE #, or PRINT # USING statements.



3. Toaccessthe data in the file, you must close the
tile (using CLOSE) and reopen it for input
(using OPEN).

4. Usethe INPUT # or LINE INPUT # statements
to read data from the sequential file into the
program.

The following are example program lines that
demonstrate these steps.

104 OPEN ''DATA" FOR OUTPUT AS #1 'step 1

200 WRITE #1,A$,BS,CS 'Step 2
30F CLOSE #1 'step 3

L@@ OPEN ''DATA" FOR INPUT AS #1 'also step 3
580 INPUT #1,X$,YS,ZS ‘step 4

The above program could also have been written as
tollows:

166G  OPEN ''Q'', #1,"'DATA" 'step 1

200 WRITE #1,A$,BS,CS  'step 2

30¢ CLOSE #1 ‘step 3

Lgg  OPEN ''I'' #1,"'DATA" 'still step 3
500 INPUT #1,X$,YS$,ZS 'step 4

Notice that both ways of writing the OPEN
statement yield the same results. Look under
“OPEN Statement” in Chapter 4 for details of the
syntax of each form of OPEN.

The following program, PROGRAM], is a short
program that creates a sequential file, “DATA”,
from information you enter at the keyboard.

>
o
o
t
Z
S
>
t
w

B-5




Program 1

1 REM PROGRAMI - create a seqguential file

10 OPEN "DATA'" FOR OUTPUT AS #1
20 INPUT ''NAME'';NS

25 [F NS$="'DONE" THEN CLOSE: END
3¢ INPUT ''DEPARTMENT!'; DS

L@ [NPUT "'DATE HIRED';HS

5¢ WRITE #1,NS,DS,HS

60 PRINT: GOTO 20

RUN

NAME? MICHELANGELO

DEPARTMENT? AUDI10/VISUAL AIDS
DATE HIRED? §1/12/72

NAME? SHERLOCK HOLMES
DEPARTMENT? RESEARCH
DATE HIRED? 12/83/65

NAME? EBENEEZER SCROOGE
DEPARTMENT? ACCOUNT NG
DATE HIRED? @L/27/78

NAME? SUPER MANN
DEPARTMENT? MAINTENANCE
DATE HIRED? ¢8/16/78

NAME? DONE
Ok

Now look at PROGRAM?2. It accesses the file
“DATA” that was created in PROGRAMI1 and
displays the name of everyone hired in 1978.

Program 2

1 REM PROGRAMZ - accessing a scquential
¢ OPEN ''DATA'" FOR [INPUT AS 1

20 INPUT #1,NS,DS,HS

3¢ IF RIGHTS(HS,2)="78" THEN PRINT NS
L@ GOTO 29

RUN

EBENEEZER SCROOGE
SUPER MANN

Input past end in 20
Ok

file



PROGRAM?2 reads, sequentially, every item in the
file. When all the data has been read, line 20 causes
an “Input past end” error. To avoid getting this
error, insert line 15 which uses the EOF function to
test for end of file:

15 |F EOF(1) THEN CLOSE: END

and change line 40 to GOTO 15. The end of file is
indicated by a special character in the file. This
character has ASCII code 26 (hex 1A). Therefore,
you should not put a CHR$(26) in a sequential file.

A program that creates a sequential file can also
write formatted data to the diskette with the
PRINT # USING statement. For example, the

statement:
PRINT #1,USING ""#### . #4 ":A,B,C,D

could be used to write numeric data to diskette
without explicit delimiters. The comma at the end
of the format string serves to separate the items in
the diskette file.

The LOC function, when used with a sequential file,
returns the number of records that have been
written to or read from the file since it was opened.
(A record is a 128-byte block of data.) The LOF
function returns the number of bytes allocated to
the file. This number is always a multiple of 128 (by
rounding upward, if necessary).

Adding Data to a Sequential File

If you have a sequential file residing on diskette and
later want to add more data to the end of it, you
cannot simply open the file for output and start
writing data. As soon as you open a sequential file
for output, you destroy its current contents.
Instead, you should open the file for APPEND.
Refer to “OPEN Statement” in Chapter 4 for
details.

B-7

>
)
)
3!
Z
S
>
T
92]



Random Files

B-8

Creating and accessing random files requires more
program steps than sequential files, but there are
advantages to using random files. For instance,
numbers in random files are usually stored on
diskette in binary formats, while numbers in
sequential files are stored as ASCII characters.
Therefore, in many cases random files require less
space on diskette than sequential files.

The biggest advantage to random files is that data
can be accessed randomly; that is, anywhere on the
diskette. It is not necessary to read through all the
information, as with sequential files. This is possible
because the information is stored and accessed in
distinct units called records, and each record is
numbered.

Records may be any length up to 32767 bytes. The
size of a record is not related to the size of a sector
on the diskette (512 bytes). BASIC automatically
uses all 512 bytesinasector for information storage.
It does this by both blocking records and spanning
sector boundaries (that is, part of a record may be at
the end of one sector and the other part at the
beginning of the next sector).

The statements and functions that are used with
random files are:

CLOSE CVI
FIELD CVS
GET LOC
LSET/RSET LOF
OPEN MKD$
PUT MKI$
CVvD MKS$



Creating a Random File

The following program steps are required to createa
random file.

1. Open the file for random access. The example
which follows to illustrate these steps specifies
a record length of 32 bytes. If the record length
is omitted, the default is 128 bytes.

2. Use the FIELD statement to allocate space in
the random buffer for the variables that will be
written to the random file.

3. Use LSET or RSET to move the data into the
random buffer. Numeric values must be made
into strings when placed in the buffer. To do
this, use the “make” functions: MKI$ to make
an integer value into a string, MKS$ for a
single-precision value, and MKD$ for a
double-precision value.

4. Worite the data from the buffer to the diskette
using the PUT statement.

The following lines illustrate these steps:

109 OPEN "FILE'" AS #1 LEN=32 'step 1
200 FIELD #1,20 AS NS, 4 AS AS, 8 AS P$

'step 2
3¢ LSET NS=X$ ‘step 3
Lg@ LSET AS=MKSS (AMT) 'still step 3
5¢¢ LSET PS=TELS 'still step 3
60¢ PUT #1,CODE% 'step 4

Note: Do not use a string variable which has
been defined in a FIELD statement in an input
statement or on the left side of an assignment
(LET) statement. This causes the pointer for
that variable to point into string space instead
of the random file buffer.

> |
N
lxo B
|
Z |
=
>
m o

B-9




B-10

Look at PROGRAM3. It takes information that is
entered at the keyboard and writes it to a random
file. Each time the PUT statement is executed, a
record is written to the file. The two-digit code that
is input in line 30 becomes the record number.

Program 3

1 REM PROGRAM3 - create a random file
10 OPEN "FILE'" AS #1 LEN=32

200 FIELD #1,20 AS N$, 4 AS AS, 8 AS PS
3¢ INPUT ""2-DIGIT CODE'';CODE%

35 IF CODE%=99 THEN CLOSE: END

Lo INPUT "'NAME''; XS

5@ [NPUT "AMOUNT''; AMT

60 INPUT "PHONE':;TELS: PRINT

7¢ LSET NS$=X$

8@ LSET AS$S=MKSS(AMT)

90 LSET PS=TELS

188 PUT #1,CODE%

110 GOTO 30

Accessing a Random File

The following program steps are required to accessa
random file:

1.  Open the file for random access.

2.  Use the FIELD statement to allocate space in
the random buffer for the variables that will be
read from the file.

Note: Ina program that performs both
input and output on the same random file,
you can usually use just one OPEN
statement and one FIELD statement.

3.  Use the GET statement to move the desired
record into the random buffer.



4. The data in the buffer may now be accessed by
the program. Numeric values must be
converted back to numbers using the
“convert” functions: CVI for integers, CVS for
single-precision values, and CVD for
double-precision values.

The following program lines illustrate these steps:

14¢ OPEN "'FILE'" AS 1 LEN=32 'step 1
20¢ FIELD #1 20 AS NS, 4 AS AS, 8 AS PS

'step 2
33@ GET #1,CODE% 'step 3
L@@ PRINT NS 'step 4
500 PRINT CVS(AS) 'still step 4

PROGRAM4 accesses the random file “FILE” that
was created in PROGRAM3. By entering the
two-digit code at the keyboard, the information
associated with that code is read from the file and
displayed.

Program 4

1 REM PROGRAML - access a random file
19 OPEN "FILE" AS 1 LEN=32

20 FIELD #1, 28 AS NS, 4 AS AS, 8 AS PS
3¢ INPUT "'2-DIGIT CODE';CODEY

35 |F CODE%=99 THEN CLOSE: END

Lg GET #1, CODEX

50 PRINT NS

60 PRINT USING "'SS###.##',CVS (AS)

76 PRINT P$: PRINT

86 GOTO 30

The LOC function, with random files, returns the
“current record number.” The current record
number is the last record number that was used in a
GET or PUT statement. For example, the statement

[F LOC(1)>50 THEN END

ends program execution if the current record
number in file #1 is higher than 50.

>
o
o
o3
Z
S
o
t
w

B-11




B-12

An Example Program

PROGRAMS is an inventory program that
illustrates random file access. In this program, the
record number is used as the part number, and it is
assumed the inventory will contain no more than
100 different part numbers. Lines 690-750 initialize
the data file by writing CHR$(255) as the first
character of each record. This is used later (line 180
and line 320) to determine whether an entry already
exists for that part number.

Lines 40-120 display the different inventory
functions that the program performs. When you
type in the desired function number, line 140
branches to the appropriate subroutine.

Program 5

10 REH FROGRAKS ~ inventory

20 OPEN "inven.dat® A5 81 LEN=39

30 FIELD #1,1 AS F$,30 A5 D$,2 AS B%,2 AG R$,4 A P3

40 PRINT: PRINT"Options:®: PRINT

S0 PRINT {,"Initialize File®

A0 PRINT 2,°"Create a New Entry"

70 PRIWT 3,"Display Inventory for One Part”

80 PRINT 4,°Add to Stock”

90 PRIRT 5,%Subtract from Stock®

100 PRINT 4,"List Iteas Helow Recrder Level"

110 PRINT 7."End Application”

120 PRINT: PRINT: INPUT "Choice";CHOICE

130 IF (CHDICECE) OR (CHOICEX7) THEW PRINT "Bad Choice Number"
1 GOTO 40

140 0N CHOICE GOSUR 690, 160, 300, 330, 470, 390, 740

150 6070 120

1540 REH build new entry

170 BOSUR 476

180 IF ABC{F$1{y255 THEN IKPUT "Overwrite”iAs:
IF ASCH"y® AND A$CE"Y" THEN RETURN

190 L8ET F$=CHR$(Q)

200 INPUT “Description”:DESCS

210 LSET D$=DESCS



220 INPUT "Quantity in stock";@%

230 LSET D$=HKI$(Q7)

240 INPUT "Reorder level":RY

0 LSET R$=MKI$(RY)

60 INPUT "Unit price";P

G LSET P&=HKS$(P)

PUT #1,PARTY

RETURN

REN display entry

BOSUR 670

IF ASC(F$)=255 THEN PRINT *Null entry": RETURN

PRINT USING "Part number ###";PARTY

0 PRINT D¢

350 PRINT USINE "Quantity on hand ##884":CV1(0%)

360 PRINT USING "Reorder level #####";CVI(R¢)

370 PRINT USING “"Unit price $&4#.48":CV5(P§)

JB0 RETURM

J90 REH add to stock

400 GOSUR 470

410 IF ASCiF$)=23% THEN PRINT"Null entry":RETURR

420 PRINT D&:INPUT "Buantity to add";A%

430 DI=CVI(Q%)+Al

440 LBET B=HKI$(Q1)

450 PUT #1,PARTY

460 RETURN

470 REH remove from stock

430 GOSUR 470

490 IF AGCIF$)=255 THEN PRINT "Null entry“: RETURN

S00 PRINT D¢

310 INPUT "Quantity to subtract":S%

520 Q%=CV1(a%)

0 IF (@4-5%)<0 THEN PRINT"Only";B%:;"in stock“: GOTO 510

0%=0%-5%

IF B%={CVI{R$)} THEN PRINT "Quantity now":0%;
'y Reorder level";CVI(R$)

360 LSET D#=MKI$(R%)

70 PUT #1,PARTY

80 RETURN

n

R N A
o

N G L g R R K
Cd BRI e S S0 D
S o &S &

ol
N
>

n o on
[
>

<

n

590 REH list items below reorder level
400 FOR I=1 70 to0
610 GET #1,1

620 IF ASCIF$)=255 THEN 640

30 IF CVI{B$)CCYIIRS) THEN PRINT Dé;" Buantity";CVI(Q$)
TAR{30) "Reorder level";CVI(RS)

640 NEXT 1

550 RETURN

>
!
e
%
Z
S
s
t
»n

B-13



450 REM  get part record

470 INPUT "Part number™;PARTY

680 IF PARTYCL OR PARTE:100 ‘

THEN PRINT "Bad part number®: 6OTO 470

ELSE BET #1,FARTY: RETURK

690 REM initialize file

700 IKPUT "Are you sure";B$: IF BHC"Y® AND B${:'y"
THEM RETURN

710 LSET F$=CHRE (233

720 FOR I=1 10 100

730 PUT #1,1

780 HEXT 1

730 RETURK

760 REH end application

770 CLOSE: END

B-14



Performance Hints

® If you do not use random files, specity /S:0 on
the BASIC command when you start BASIC.
This will save 128 bytes times the number of
files specified in the /F: option.

® BASIC sets up three files by default. If you use
less than three, set /F:files when you start
BASIC with the BASIC command. Note that
the screen, keyboard, and printer do not count
as files unless you explicitly OPEN them.

® Sequential files use a buffer of 128 bytes.
Random files also default to a buffer of 128
bytes, but this can be overridden with the /S:
option on the BASIC command. There is no
advantage to setting /S: to a number greater
than the largest record length on any of your
random files. However, the combination of a
record length of 512 and /S:512 gives improved
performance since the diskette sector size is
512 bytes.

If you want to do sequential I/O, but still want
improved performance, you can use random
files to do “pseudo-sequential” I/O. For
example:

1 ' example 1A
19 OPEN "ABC' FOR OUTPUT AS #1

28 FOR I=1 TO 30¢0
30 PRINT #1,"MELH"
L NEXT

5¢ CLOSE #1: END

This example (1A) uses regular sequential I/O
to create a file with 3000 items in it.

>
)
"
tT
Z,
o
—
X
<!
73

B-15




‘I I
19
20
39
Ly
50
4
7

This

example 1B

OPEN "ABC!'" FOR [NPUT AS 41
OPEN '"DEF'" FOR OUTPUT AS #2
[F EOF(1) THEN CLOSE: END
INPUT #1,AS

PRINT #2,A$

GOTO 30

END

example (1B) copies the sequential file
“ABC”, which we just created, to a file named
“DEF,’.

For the next examples we will perform the
same task using “pseudo-sequential”’ I/O.

1

19
15
20
30
40
L5
50
60
990

example 2A

OPEN "'PQR' AS #1 LEN=512

ON ERROR GOTO 90

FOR I=1 TO 3¢0@¢

PRINT #1,"MELH"

NEXT

PRINT #1,"/eof"

ON ERROR GOTO §: PUT #1: CLOSE
END

PUT #1: RESUME

This example (2A) creates a file with 3000 items
using random I/O. This isa “pseudo-sequential”

file.

1

10
29
30
Ly
50
Y
70

8¢

B-16

' example 2B

OPEN "PQR' AS #1 LEN=512
OPEN ''XYZ' AS #2 LEN=512
ON ERROR GOTO 8¢
GET #1
INPUT #1,AS
PRINT #2,AS
IF AS<x'/eof" THEN 5@ ELSE
ON ERROR GOTO @: PUT #2: CLOSE: END
IF ERL=5@ THEN GET #1: RESUME
ELSE PUT #2: RESUME



This final example copies the
“pseudo-sequential”’ file created in the
previous example to a new “pseudo-sequential”
file named “XYZ”. It takes about halfaslong to
run as the example using sequential I/O.

The technique used in these examples involves
detection of the “FIELD overflow” error (error
50) and doing the appropriate GET or PUT to
purge the buffer (line 90 in example 2A and line
80 in example 2B). Note also that a dummy end
of file must be written (*‘/eof” in the example)
and checked for during input. Also, the INPUT
and PRINT statements use only single
variables, rather than a list of variables.

This technique is useful only when you have
more than one file open at a time.’

B-17

>
o
g
m
Z
=
>
ey
w




NOTES

B-18




Appendix C. Machine Language
Subroutines

This appendix describes how BASIC interfaces with
machine language subroutines. In particular, it
describes:

® How to allocate memory for the subroutines

® How to get the machine language subroutine
into memory

® How to call the subroutine from BASIC and
pass parameters to it

This appendix is intended to be used by an
experienced machine language programmer.

Reference Material

Rector, Russell and Alexy, George. The 8086
Book. Osborne/McGraw-Hill, Berkeley,
California, 1980. (includes the 8088)

Intel Corporation Literature Department. The
8086 Family User’s Manual, 9800722.
3065 Bowers Avenue, Santa Clara, CA 95051.

IBM Corporation Personal Computer library.
Macro-Assembler. Boca Raton, FL 33432.

[BM Corporation Personal Computer library.
Technical Reference. Boca Raton, FL 33432,




Setting Memory Aside for
Your Subroutines

BASIC normally uses all memory available from its
starting location up to a maximum of 64K-bytes.
This BASIC workarea contains your BASIC program
and data, along with the interpreter workarea and
BASIC’s stack. You may allocate memory space for
machine language subroutines either inside or
outside of this BASIC 64K workarea. Where you
decide to put the routines depends on the total
amount of available memory and the size of the
applications to be loaded.

Your system needs more than 64K-bytes of memory
if you want to put your machine language
subroutines outside BASIC's 64K workarea. If you
are using Disk or Advanced BASIC, DOS takes up
approximately 12K-bytes, and BASIC takes up
another 10K-bytes, so you need at least a
96K-byte system in order for there to be room
outside the BASIC workarea for the machine
language subroutines.

Outside the BASIC Workarea: If your system has
enough memory that you can put your subroutines
outside the BASIC 64K-byte workarea, you don’t
have to do anything to reserve thatarea. You use the
DEF SEG statement to address the external
subroutine area outside the BASIC workarea.

For example, in a 96K-byte system, to specify an
address in the upper 4K-bytes of memory, you could
use:

119 DEF SEG=&H1700

This statement specifies a segment starting at
hexadecimal location 17000 (92K).



Inside the BASIC Werkarea: In order to keep
BASIC from writing over your subroutines in
memory, use either:

® The CLEAR statement, which is available in all
versions of BASIC

® The/M: option on the BASIC command to start
Disk and Advanced BASIC from DOS

Only the highest memory locations can be set aside
for subroutines. For example, to reserve the highest
4K-byte area of BASIC’s 64K-byte workarea for

your machine language subroutines, you could use:

19 CLEAR ,&HF@@@
or start BASIC with the DOS command:
BASIC /M:eHF@O®

Either of these statements restricts the size of the
BASIC workarea to hex FO00 (60K) bytes, so you
can use the uppermost 4K-bytes for machine
language subroutines.

Getting the Subroutine Code into
Memory

The following are offered as suggestions as to how
machine language subroutines can be loaded. We
don’t describe all possible situations.

Two common ways to get a machine language
program into memory are:

® Poking it into memory from your BASIC
program

® Loading it from a file on diskette or cassette

C3

>
=
PU
e
Z
>
<
o3
w




Poking a Subroutine into Memory

You can code relatively short subroutines in
machine language and use the POKE statement to
put the code into memory. In this way, the
subroutine actually becomes a part of your BASIC
program. One way to do this is:

1. Determine the machine code for your
subroutine.

2. Put the hex value (& Hxx format) of each byte
of the code into DATA statements.

3. Execute a loop which reads each data byte, and
then pokes it into the area you've selected for
the subroutine (see the preceding discussion).

4. After the loop is complete, the subroutine is

loaded. If you are going to call the subroutine
using the USR function, then you must execute
a DEF USR statement to define the entry

address of the subroutine; if you are going to
call the subroutine using the CALL statement,

you must set the value of the subroutine
variable to the subroutine’s entry address.

For example:

Ok
19 DEFINT A-Z
2@ DEF SEG=gH172%2
3¢ FOR I=0 70 21
4@ READ J
5% POKE 1,J
60 NEXT
7@ SUBRT=%2
8¢ A=2:B=3:C=0
9¢ CALL SUBRT(A,B,C)
18@ PRINT C
118 END
1200 DATA &H55,&H8B,eHEC, sHB8B ,6H76, 6HEA
130 DATA &HS3B,eHOL ,eHEB,eHT76 , eHE8
The DATA &HZ3, eHOBL ,eHBB,sHTE, HES
153 DATA &H39,eH@5, 6H5D, &HCA, §HE6 , sHBE
RUN
r,

s

Ok




Loading the Subroutine from a File

You use the BASIC BLOAD command to load a
memory image file directly into memory. The
memory image can be a machine language
subroutine which was saved using the BSAVE
command. Of course, that leads to the question of
how the subroutine got there in the first place. The
machine language subroutine may be an executable
file which was created by the linker from DOS, and
which was placed into memory using DEBUG.
DEBUG and the linker are explained in the IBM
Personal Computer Disk Operating System manual.

The following is a suggested way to use BLOAD to
get such a machine language subroutine into
memory:

1. Use the linker to produce an .EXE file of your
routine (let’s call it ASMROUT.EXE) so it will
load at the HIGH end of memory.

2. Load BASIC under DEBUG by entering:

DEBUG BASIC.COM

3. Display the registers (use the R command) to
find out where BASIC was put in memory.
Record the values contained in the registers
(CS, IP, SS, SP, DS, ES) for later reference.

4. Use DEBUG to load the .EXE file (your
subroutine) into HIGH memory, where it will
overlay the transient portion of

COMMAND.COM.

N ASMROUT.EXE
L

>
o
o
™
Z
S
>
I
w




C-6

10.

Display the registers (use the R command) to
find out where the subroutine was placed in
memory. Record the values contained in the CS
and IP registers for later use.

Reset the registers (use the R command) back
to the values they contained when BASIC.COM
was originally loaded, using the values noted in
step 3.

Use the G command to branch to the BASIC
entry point and to set breakpoints (if desired) in
the machine language subroutine.

When BASIC prompts, load your BASIC
application program and edit the DEF SEG and
either the DEF USR statement or the value of
the CALL variable to correspond with the
location of the subroutine as determined when
you loaded the subroutine in step 5.

® Use the previously recorded value in the
CS register for DEF SEG

® Use the previously recorded value in the IP
register for the DEF USR or the variable
value of the CALL

In direct mode in BASIC, enter a BSAVE
command to save the subroutine area. Use the
starting location defined by the CS and IP
registers when the subroutine was loaded in
step 5, and the code length printed on the
assembler listing or LINK map. (Refer to
“BSAVE Command” in Chapter 4.)

Edit your BASIC application program so it
contains a BLOAD statement after the DEF
SEG that sets the proper value of CS for the
subroutine.



Note: If the machine language routine is
self-relocatable, BLOAD can be used to
put the subroutine some place other than
where the linker originally placed it. If you
make such a change, be sure to make a
corresponding change to the DEF SEG
statement associated with the call so that
BASIC can find the subroutine at
execution time.

Some suggestions for alternate locations
for the subroutine are:

® An unused screen buffer

® An unused file buffer (located with
VARPTR(#/))

® A string variable area located with
VARPTR(stringvar)

(See ‘BLOAD Command” and “VARPTR
Function” in Chapter 4.)

11. Save the resulting modified BASIC application.

Some Notes on Using DEBUG with BASIC:
When you run BASIC under DEBUG, BASIC is
loaded after DEBUG in memory, so DEBUG is not
written over if you load a large BASIC program. If
you set breakpoints in your machine language
subroutine, they return you to DEBUG. The
SYSTEM command also returns you from BASIC to
DEBUG.

>
T
m
m
Z
O
>
t
»




Calling the Subroutine from
Your BASIC Program

All versions of BASIC have two ways to call machine
language subroutines: the USR function, and the
CALL statement. This section describes the use of
both USR and CALL.

Common Features of CALL and USR

Whether you call your machine language
subroutines with CALL or with the USR function,
you must keep the following things in mind:

C-8

Entering the Subroutine

At entry, the segment registers DS, ES, and SS
are all set to the same value, the address of
BASIC’s data space (the default for DEF SEG).

At entry, the code segment register, CS,
contains the current value specified in the latest
DEF SEG. If DEF SEG has not been specified,
or if the latest DEF SEG did not specify an
override value, the value in CS is the same as in
the other three segment registers.

String Arguments

If an input argument is a string, the value
received in the argument is the address of a
three-byte area called the string descriptor:

1. ByteO of the string descriptor contains the
length of the string (0 to 255).

2. Byte 1 of the string descriptor contains the

lower 8 bits of the offset of the string in
BASIC’s data space.



3. Byte 2 of the string descriptor contains the
higher 8 bits of the offset of the string in
BASIC’s data space.

The string itself is pointed to by the last two
bytes of the string descriptor.

Warning:

The subroutine must not change the
contents of any of the three bytes of the string
descriptor.

The subroutine may change the content of the
string itself, but not its lengzh.

If the subroutine changes a string, be aware that
this may modify your program. The following
example may change the string “TEXT”in the
BASIC program.

AS = VTEXTH
CALL SUBRT(AS)

However, the next example does not modify
the program, because the string concatenation
causes BASIC to copy the string into the string
space where it may be safely changed without
affecting the original text.

As = lIBAS]CIS +IHI
CALL SUBRT(AS)

Returning from the Subroutine

The return to BASIC must be by an
inter-segment RET instruction. (The
subroutine is a FAR procedure.)

At exit, all segment registers and the stack
pointer, SP, must be restored. All other
registers (and flags) may be altered.

>
e
d
tm
Z
S
o)
t
72]




The stack pointer, at entry, indicates a stack
that has only 16 bytes (eight words) available
for use by the subroutine. If more stack space is
needed, the subroutine must set up its own
stack segment and stack pointer. You should
make sure that the location of the current stack
is recorded so its pointer can be restored just
prior to return.

If interrupts were disabled by the subroutine,
they should be enabled prior to return.

CALL Statement

Machine language subroutines may be called using
the BASIC CALL statement. The format of the
CALL statement is:

C-10

CALL numuvar [(variable list))

numvar is the name of a numeric variable. Its

value is the offset, from the segment set
by DEF SEG, thatis the starting pointin
memory of the subroutine being called.

variable list contains the variables, separated by

commas, that are to be passed as
arguments to the routine. (The
arguments cannot be constants.)

Execution of a CALL statement causes the
following:

1.

For each variable in the variable list, the
variable’s location is pushed onto the stack.
The location is specified as a two-byte offset
into BASIC’s data segment (the default DEF
SEG).



2.  The return address specified in the CS register
and the offset are pushed onto the stack.

3. Control is transferred to the machine language
routine using the segment address specified in
the last DEF SEG statement and the offset
specified by the value of numuvar.

Notes for the CALL Statement

® You can return values to BASIC through the
arguments by changing the values of the
variables in the argument list.

® If the argument is a string, the offset for the
argument points to the three-byte string
descriptor as explained previously.

® The called routine must know how many
arguments were passed. Parameters are
referenced by adding a positive offset to BP
after the called routine moves the current stack
pointer into BP. The first instructions in the
subroutine should be:

ISR oy IR
Flon

MOV BP SP

The offset into the stack of any one particular
argument is calculated as follows:

offset from BP = 2*(z-m)+6
where:
7 is the total number of arguments passed.
m  is the position of the specific argument in the

argument list of the BASIC CALL statement (7
may range from 1 to z).

>
o
o
1
Z
=
o
rr
w

C-11



Example: The following example adds the values
in A% and B% and stores the result in C%:

The following statements are in BASIC:

100 A%=2: B%=3

200 DEF SEG=&H27EQ

25¢ BLOAD "'SUBRT.EXE',§
3¢@ SUBRT=§

Leg CALL SUBRT (A%,B%,C:
S5@@ PRINT C%

)

o

Note: Line200 sets the segment to location
hex 27E00. SUBRT is set to 0 so that the call
to SUBRT executes the subroutine at
location &H27E00.

The following statements are in IBM Personal
Computer Macro-Assembler source code:

CSEG SEGMENT
ASSUME CS:CSEG

SUBRT PROC FAR
PUSH BP SAVE BP
MOV BP,SP :SET BASE PARM LIST
MOV S1,[BP1+1¢ ;GET ADDR PARM A
MOV AX,[S!] -GET VALUE OF A
MOV SI,[BP1+8 ;GET ADDR PARM B
ADD AX,[S1] ADD VALUE B TO REG
MOV DI,{BPJ+6 ;GET ADDR PARM C
MOV [DI11,AX -PASS BACK SUM
POP BP :RESTORE BP
RET 6 “FAR RETURN TO BASIC
SUBRT ENDP
CSEG  ENDS
END

Note: When you call a routine using the
CALL statement, the routine must return
with a RET #», where 7 is 2 times the number
of arguments in the variable list. This is
necessary to adjust the stack to the point at
the start of the calling sequence.

C-12



As another example:

10 DEFINT A-Z

100 DEF SEG=8H1800

119 BLOAD ''SUBRT.EXE'!,@
1200 SUBRT=0

139 CALL SUBRT (A,BS,C)

The following sequence of Macro-Assembler code
shows how the arguments (including the address of a
string descriptor) are passed and accessed, and how
the result is stored in variable C:

PUSH BP ; SAVE BP

MOV BP,SP ;GET CURRENT STK POSITION INTO BP
MOV BX, BP |+8 ;GET ADDR OF BS STRING DESCRIPTOR
MOV CL,{BX! ;GET LENGTH OF BS INTO CL

MOV DX, 11 BX ] ; GET ADDR OF BS TEXT iNTO DX

MOV SI,[BPJ+18 ;GET ADDR OF A INTO Si
MOV DI,!BP]+6 :GET ADDR OF C INTO DI

MOVS  WORD ;STORE VARIABLE A INTO C
POP  BP ;RESTORE BP
RET 6 ;RESTORE STACK, RETURN
END

Warning:

It is entirely up to you to make sure that the
arguments in the CALL statement match in
number, type, and length with the arguments
expected by the subroutine.

In the preceding example, the instruction MOVS
WORD copies only two bytes because variables A
and C are integers. However, if A and C are
single-precision, four bytes must be copied; if A and
C are double-precision, eight bytes must be copied.

>
)vA
ae]
m
Z

i
>
ey
wn

C-13




USR Function Calls

C-14

The other way to call machine language subroutines
from BASIC is with the USR function. The format of
the USR function is:

USR[#](arg)
n  must be a single digit in the range 0 through 9.

arg is any numeric expression or a string variable
name.

7 specifies which USR routine is being called, and
corresponds with the digit supplied in the DEF USR
statement for that routine. If #z is omitted, USRO is
assumed. The address specified in the DEF USR
statement determines the starting address of the
subroutine. Even if the subroutine does not require
an argument, a dummy argument must still be
supplied.

When the USR function is called, register AL
contains a value that specifies the type of argument
that was supplied. The value in AL will be one of the
following:

Valuein AL Type of Argument

2 Two-byte integer (two’s complement)
3 String

4 Single-precision number

8 Double-precision number

If the argument is a string, the DX register points to
the three-byte string descriptor. (See “Common
Features of CALL and USR,” described previously.)



If the argument is a number and not a string, the
value of the argument is placed in the Floating Point
Accumulator (FAC), which is an eight-byte area in
BASIC’s data space. In this case, the BX register
contains the offset within the BASIC data space to
the fifth byte of the eight-byte FAC. For the
following examples, assume that the FAC is in bytes
hex 49F through hex 4A6; that is, BX contains hex
4A3:

If the argument is an integer:

® Hex 4A4 contains the upper 8 bits of the
argument.

® Hex 4A3 contains the lower 8 bits of the
argument.

If the argument is a single-precision number:

® Hex4A6 contains the exponent minus 128, and
the binary point is to the left of the most
significant bit of the mantissa. Hex 4A5
contains the highest 7 bits of the mantissa with
the leading 1 suppressed (implied). Bit 7 is the
sign of the number (0 = positive; 1 = negative).

® Hex 4A4 contains the middle 8 bits of the
mantissa.

® Hex 4A3 contains the lowest 8 bits of the
mantissa.

If the argument is a double-precision number:

® Hex 4A3 through hex 4A6 are the same as
described under single-precision floating-point
number in the preceding paragraph.

® Hex 49F through Hex 4A2 contain four more
bytes of the mantissa (hex 49F contains the
lowest 8 bits).

>
o
o)
t
Z,
S
o
es]
92]

C-15




C-16

Usually, the value returned by a USR function is the
same type (integer, string, single-precision, or
double-precision) as the argument that was passed
to it. However, a numerical argument of the
function, regardless of its type, may be forced to an
integer value by calling the FRCINT routine to get
the integer equivalent of the argument placed into
register BX.

If the value being returned by the function is to be
an integer, place the resulting value into the BX
register. Then make a call to MAKINT just prior to
the inter-segment return. This passes the value back
to BASIC by placing it into the FAC.

The methods for accessing FRCINT and MAKINT
are shown in the following example:

10¢ DEF SEG=&H18¢¢

12 BLOAD "'SUBRT.EXE'' 0

13¢ DEF USR@=@

Thg X = 5 'Note that X is single-precision
150 Y = USR@(X)

160 PRINT Y

At location 1800:0 (segment:offset), the following
Macro-Assembler language routine hasbeen loaded.
The routine doubles the argument passed and
returns an integer result:




R5EG GF6G@H BASE OF BASIC ROM
;OFFSET 70 FORCE INTEGER
FRCENT
(OFFSET TO MAKE INTEGER
MAKINT
RSEG
CSEG
USRPRG VENTRY POINT
JFORCE ARG
BX = BX
JPUT OINT RS FAL
VINTER-SEGMENT RETURM TO BASIC
USRPRG ENDP
CSEG ENDS

Note: FRCINT and MAKINT perform
inter-segment returns. You should make sure
that the calls to FRCINT and MAKINT are
defined by a FAR procedure.

>
o
g
o
Z
=
>
i
w

C-17




NOTES

C-18




Appendix D. Converting Programs
to IBM Personal
Computer BASIC

Since IBM Personal Computer BASIC is very similar
to many microcomputer BASICs, the IBM Personal
Computer will support programs written for a wide
variety of microcomputers. If you have programs
written in a BASIC other than IBM Personal
Computer BASIC, some minor adjustments may be
necessary before running them with IBM Personal
Computer BASIC. Here are some specific things to
look for when converting BASIC programs.

File I/O

In IBM Personal Computer BASIC, you read and
write information to a file on diskette or cassette by
opening the file to associate it with a particular file
number; then using particular I/O statements which
specify that file number. I/O to diskette and cassette
files is implemented differently in some other
BASICs. Refer to the section in Chapter 3 called
“Files,” and to “OPEN Statement” in Chapter 4 for
more specific information.

Also, in IBM Personal Computer BASIC, random
file records are automatically blocked as
appropriate to fitas many recordsas possible in each
sectof.

Graphics

How you draw on the screen varies greatly between
different BASICs. Refer to the discussion of
graphics in Chapter 3 for specific information about
IBM Personal Computer graphics.

>

T

PU .

3

Z
I

>

t

7




IF...THEN

The IF statement in IBM Personal Computer BASIC
contains an optional ELSE clause, which is
performed when the expression being tested is false.
Some other BASICs do not have this capability. For
example, in another BASIC you may have:

19 IF A=B THEN 3¢

2¢ PRINT ""NOT EQUAL' : GO10 4§
3¢ PRINT MEQUALY

Ly REM CONTINUE

This sequence of code will still function correctly in
IBM Personal Computer BASIC, but it may also be
conveniently recoded as:

19 IF A=B THEN PRINT "EQUAL'' ELSE PRINT ''NOT EQUAL"
20 REM CONTINUE

IBM Personal Computer BASIC also allows multiple
statements in both the THEN and ELSE clauses.
This may cause a program written in another BASIC
to perform differently. For example:

18 |F A=B THEN GOTO 14@ : PRINT 'NOT EQUALY
2@ REM CONT!NUE

In some other BASICs, if the test A=B is false,
control branches to the next statement; that is, if A is
not equal to B, “NOT EQUAL” is printed. In IBM
Personal Computer BASIC, both GOTO 100 and
PRINT “NOT EQUAL” are considered to be part of
the THEN clause of the IF statement. If the test is
false, control continues with the next program /ze;
that is, to line 20 in this example. PRINT “NOT
EQUAL” can never be executed.

This example can be recoded in IBM Personal
Computer BASIC as:

18 1F A=B THEN 1¢¢@ ELSE PRINT "NOT EQUAL"
2¢ REM CONTINUE



Line Feeds

In other BASICs, when you enter a line feed, a line
feed character is actually inserted into the text. On
the IBM Personal Computer, entering a line feed
will pad the rest of the display line with spaces — it
does not insert the line feed character. If you try to
load a program with line feed characters in it, you
will get a “Direct statement in file” error.

Logical Operations

In IBM Personal Computer BASIC, logical
operations (NOT, AND, OR, XOR, IMP, and EQV)
are performed bit-by-bit on integer operands to
produce an integer result. In some other BASICs,
the operands are considered to be simple “true”
(non-zero) or “false” (zero) values, and the result of
the operation is either true or false. As an example
of this difference, consider this small program:

18 A=9: B=2
200 |F A AND B THEN PRINT '"'BOTH A AND B ARE TRUE"

This example in another BASIC will perform as
follows: A is non-zero, so itis true; Bisalso non-zero,
so it is also true; because both A and B are true, A
AND B is true, so the program prints BOTH A AND
B ARE TRUE.

However, IBM Personal Computer BASIC
calculates it differently: A is 1001 in binary form,
and B is 0010 in binary form, so A AND B
(calculated bit-by-bit) is 0000, or zero; zero
indicates false, so the message is nof printed, and the
program continues with the next line.

This can affect not only tests made in IF statements,
but calculations as well. To get similar results,
recode logical expressions like the following:

18 A=9: B=2
20 IF (A<=0) AND (B<>0)
THEN PRINT "BOTH A AND B ARE TRUE"

D-3

>
o)
o
o)
Z
S
>
t
w




MAT Functions

Programs using the MAT functions available in
some BASICs must be rewritten using FOR...NEXT
loops to execute properly.

Multiple Assignments

Some BASICs allow statements of the form:
10 LET B=C=0¢

to set B and C equal to zero. IBM Personal
Computer BASIC would interpret the second equal
sign as a logical operator and set B equal to -1 if C
equaled 0. Instead, convert this statement to two
assignment statements:

10 C=f:B=0

Multiple Statements

Some BASICs use a backslash (\) to separate
multiple statements on a line. With IBM Personal
Computer BASIC, be sure all statements on a line
are separated by a colon (3).

PEEKs and POKEs

D-4

Many PEEKs and POKEs are dependent on the
particular computer you are using. You should
examine the purpose of the PEEKs and POKEs in a
program in another BASIC, and translate the
statement so it performs the same function on the
IBM Personal Computer.



Relational Expressions

In IBM Personal Computer BASIC, the value
returned by a relational expression, such as A>B, is
either -1, indicating the relation is true, of 0,
indicating the relation is false. Some other BASICs
return a positive 1 to indicate true. If you use the
value of a relational expression in an arithmetic
calculation, the results are likely to be different
from what you want.

Remarks

Some BASICs allow you to add remarks to the end of
a line using the exclamation point (!). Be sure to
change this to a single quote (') when converting to
IBM Personal Computer BASIC.

Rounding of Numbers

IBM Personal Computer BASIC rounds single- or
double-precision numbers when it requires an
integer value. Many other BASICs truncate instead.
This can change the way your program runs, because
it affects not only assighment statements (for
example, 1%=2.5 results in 1% equal to 3), but also
affects function and statement evaluations (for
example, TAB(4.5) goes to the fifth position, A(1.5)
is the same as A(2), and X=11.5 MOD 4 will resultin
a value of 0 for X). Note in particular that rounding
may cause IBM Personal Computer BASIC to select
a different element from an array than another
BASIC — possibly one that is out of range!

Sounding the Bell

Some BASICs require PRINT CHR$(7) to send an
ASCII bell character. In IBM Personal Computer
BASIC, you may replace this statement with BEEP,
although it is not required.

>
o
o
tr
Z .
S
>
[
w

D-5




String Handling

String Length: Since strings in IBM Personal
Computer BASIC are all variable length, you should
delete all statements that are used to declare the
length of strings. A statement such as DIM A$(L]),
which dimensions a string array for J elements of
length I, should be converted to the IBM Personal
Computer BASIC statement DIM A$(]).

Concatenation: Some BASICs use a comma or
ampersand for string concatenation. Each of these
must be changed to a plus sign, which is the operator
for IBM Personal Computer BASIC string
concatenation.

Substrings: In IBM Personal Computer BASIC,
the MID$, RIGHT$, and LEFT$ functions are used
to take substrings of strings. Forms such as A$(I) to
access the Ith character in A$, or A$(LJ) to take a
substring of A$ from positin I to position J, must be
changed as follows:

Other BASIC IBM Personal Computer BASIC

X$=AS (1) XS=MIDS(AS,1,1)
X$=AS(1,J) XS=MIDS(AS, 1, J-1+1)

If the substring reference is on the left side of an
assignment and X$ is used to replace characters in
A$, convert as follows:

Other BASIC IBM Personal Computer BASIC

AS(1)=XS MIDS(AS,1,1)=XS
AS(1,J)=XS MIDS(AS, 1, J~1+1)=X$



Use of Blanks

Other

Some BASICs allow statements with no separation
of keywords:

20FORI=1T0X

With IBM Personal Computer BASIC be sure all
keywords are separated by a space:

20 FOR I=1 TO %

The BASIC language on another computer may be
different from the IBM Personal Computer BASIC
in other ways than those listed here. You should
become familiar with IBM Personal Computer
BASIC as much as possible in order to be able to
appropriately convert any function you may
require.

o
o)
o
tm
Z
e
>
ool
w




D-8

NOTES




Appendix E.

Mathematical Functions

Functions that are not intrinsic to IBM Personal
Computer BASIC may be calculated as follows.

Function

Logarithm to base B
Secant

Cosecant

Cotangent

Inverse sine

Inverse cosine

Inverse secant
Inverse cosecant

Inverse cotangent
Hyperbolic sine
Hyperbolic cosine
Hyperbolic tangent

Hyperbolic secant

Hyperbolic cosecant

Hyperbolic

cotangent

Inverse hyperbolic
sine

Inverse hyperbolic
cosine

Inverse hyperbolic
tangent

Inverse hyperbolic
secant

Inverse hyperbolic
cosecant

Inverse hyperbolic
cotangent

Equivalent

LOGB(X) = LOG(X)/LOG(B)
SEC(X) = 1/COS(X)
CSC(X) = 1/SIN(X)
COT(X) = 1/TAN(X)
ARCSIN(X) = ATN(X/SQR(1-X*X))
ARCCOS(X) = 1.570796
-ATN(X/SQR(1-X*X))
ARCSEC(X) = ATN(SQR(X*X-1))
+(X<0)*3.141593
ARCCSC(X) = ATN(1/SQR(X*X-1))
+(X<0)*3.141593
ARCCOT(X) = 1.57096-ATN(X)
SINH(X) = (EXP(X)-EXP(-X))/2
COSH(X) = (EXP(X)+EXP(-X))/2
TANH(X) = (EXP(X)-EXP(-X))
/(EXP(X)+EXP(-X))
SECH(X) = 2/(EXP(X)+EXP(-X))
CSCH(X) = 2/(EXP(X)-EXP(-X))
COTH(X) = (EXP(X)+EXP(-X))
/(EXP(X)-EXP(-X))

ARCSINH(X) = LOG(X+SQR(X*X+1))
ARCCOSH(X) = LOG(X+SQR(X*X-1))
ARCTANH(X) = LOG((1+X)/(1-X))/2
ARCSECH(X) = LOG((1+SQR(1-X*X))/X)

ARCCSCH(X) = LOG((1+SGN(X)
*SQR(1+X*X))/X)

ARCCOTH(X) = LOG((X+1)/(X-1))/2

>
o
o
oo
Z
=
>4
o)
w




E-2

If you use these functions, a good way to code them
would be with the DEF FN statement. For example,
instead of coding the formula for inverse hyperbolic
sine each time you need it, you could code:

DEF FNARCSINH(X) = LOG(X+SQR(X*X+1))
in one place, then refer to it as
FNARCS INH(Y)

each time you need it. .




’Appendix F. Communications

This appendix describes the BASIC statements
required to support RS232 asynchronous
communication with other computers and
peripherals.

Opening a Communications File

OPEN “COM... allocates a buffer for I/O in the
same fashion as OPEN for diskette files. Refer to
“OPEN “COM... Statement” in Chapter 4.

Communication I/O

Since each communications adapter is opened as a
file, all input/output statements that are valid for
diskette files are valid for communications.

Communications sequential input statements are
the same as those for diskette files. They are:

INPUT #
LINE INPUT #
INPUTS$

Communications sequential output statements are
the same as those for diskette files, and are:

PRINT #
PRINT # USING
WRITE #

Refer to the INPUT and PRINT sections for details
of coding syntax and usage.

>
i~
PU;
o
Z:
o |
o
i
@

F-1




GET and PUT for Communications Files

GET and PUT are only slightly different for
communications files than for diskette files. They
are used for fixed length I/O from or to the
communications file. In place of specifying the
record number to be read or written, you specify the
number of bytes to be transferred into or out of the
file buffer. This number cannot exceed the value set
by the LEN option on the OPEN “COM...
statement. Refer to the GET and PUT sections in
Chapter 4.

I/0O Functions

The most difficult aspect of asynchronous
communication is being able to process characters
as fast as they are received. At rates of 1200 bps or
higher, it may be necessary to suspend character
transmission from the other computer long enough
to “catch up.” This can be done by sending XOFF
(CHR$(19)) to the other computer and XON
(CHR$(17)) when ready to resume. XOFF tells the
other computer to stop sending, and XON tells it it
can start sending again.

Note: This is a commonly used convention,
but it is not universal. It depends on the
protocol implemented between you and the
other computer or peripheral.

Disk and Advanced BASIC provide three functions
which help in determining when an “overrun”
condition may occur. These are:

LOC(f) Returns the number of characters in the
input buffer waiting to be read. If the
number is greater than 255, LOC returns
255.

LOF(f) Returns the amount of free space in the
input buffer. This is the same as z-LOC(f),
where 7 is the size of the communictions
buffer as set by the /C: option on the
BASIC command. The default for 7 is 256.




EOF(f) Returns true (-1) if the input buffer is
empty; false (0) if there are any characters
waiting to be read.

Note: A “Communication buffer overflow”
can occur if a read is attempted after the input
buffer is full (that is, when LOF(f) returns 0).

INPUT$ Function

The INPUT$ function is preferred over the
INPUT # and LINE INPUT # statements when
reading communications files, since all ASCII
characters may be significant in communications.
INPUT # is least desirable because input stops when
a comma (,) or carriage return is seen. LINE
INPUT # stops when a carriage return is seen.

INPUT$ allows all characters read to be assigned to
a string. INPUT$(#,/) will return » characters from
the #f tile. The following statements are efficient for
reading a communications file:

11¢ WHILE NOT EOF (1)
120 AS=INPUTS(LOC(1),#1)

(process data returned in A$)

1é(2f WEND

These statements return the characters in the buffer
into A$ and process them, as long as there are
characters in the input buffer. If there are more than
255 characters in the buffer, only 255 will be
returned at a time to prevent ‘“‘String overflow.”
Further, if this is the case, EOF(1) is false and input
continues until the input buffer is empty. Simple,
concise, and fast.

o
e
s~
tr
Z
<
>
€3]
w

F-3




In order to process characters quickly, you should
avoid, if possible, examining every character as you
receive it. If you are looking for special characters
(such as control characters), you can use the INSTR
function to find them in the input string.

An Example Program

F-4

The following program .enables the IBM Personal
Computer to be used as a conventional “dumb”
terminal in a full duplex mode. This program
assumes a 300 bps line and an input buffer of 256
bytes (the /C: option was not used on the BASIC
command).

10 REM  dumb terminal example

20 'set screen to black and white text mode
3¢ ! and set width to 4

Ly SCREEN @,8: WIDTH 4@

50 ‘'turn off soft key display; clear screen;
6g ! make sure all files are closed

78 KEY OFF: CLS: CLOSE

80 'define all numeric variables as integer
9% DEFINT A-Z

199 'define true and false

110 FALSE=@: TRUE= NOT FALSE

12¢ 'define the XON, XOFF characters

12f XOFFS=CHRS(19) : XONS=CHRS{17)

143 'open communications to file number 1,
150 ' 300 bps, EVEN parity, 7 data bits

160 OPEN '"COM1:30¢ ,E,7'" AS +1

170 'use screen as a file, just for fun

162 OPEN "'SCRN:'' FOR QUTPUT AS 2

"turn cursor on

LOCATE .1

PAUSE=FALSE: ON ERROR GOTO 9@gg@

i




53¢ 'send keyboard input to com line

510 BS=INKEYS: IF BS«<»'"' THEN PRINT #1,BS;

52¢ 'if no chars in com buffer, check key in

53¢ IF EOF(1) THEN 519

54g Uif buffer more than 1/2 full, then

559 ¢ set PAUSE flag to say input suspended,

560 send XOFF to host to stop transmission
570 IF LOC(1):-128 THEN PAUSE=TRUE: PRINT #1,XOFFS;
58¢ ‘read contents of com buffer

59¢ AS=INPUTS(LOC(T),~1)

60F 'get rid of linefeeds to avoid double spaces
o1g ! when input displayed on screen

620 LFP=0

630 LFP=INSTR{LFP+1,AS,CHRS(18)) 'look for LF
LG IF LFP @ THEN MIDS(AS,LFP 1)="" "' GOTO 63§
65¢ 'display com input, and check for more

66F PRINT #2,AS:: IF LOC(1) @ THEN 570

670 'if transmission suspended by XOFF,
637 resume by sending XON
690 |F PAUSE THEN PAUSE=FALSE: PRINT #1,XONS;

786 ‘'check for keyboard input again

719 GOTC 510

8999 'if ervor, display error number and retry
SUEE PRINT YERROR NO.'';ERR: RESUME

Notes on the Program

® “Asynchronous” communication implies
character I/O as opposed to line or block I/O.
Therefore, all PRINTS (either to
communications file or to screen) are
terminated with a semicolon (;). This stops the
carriage return normally issued at the end of
the list of values to be printed.

® Line90, where all numeric variables are defined
as integer, is coded because any program
looking for speed optimization should use
integer counters in loops where possible.

® Noteinline510 that INKEY$ will return a null
string if no character is pending.

>
o
T
3
Z
o
>
o
»




Operation of Control Signals

This section contains more detailed technical
information that you may need to know to

communicate with another computer or peripheral
from BASIC.

The output from the Asynchronous Communications
Adapter conforms to the EIA RS232-C standard for
interface between Data Terminal Equipment (DTE)
and Data Communications Equipment (DCE). This
standard defines a number of control signals thatare
transmitted or received by your IBM Personal
Computer to control the interchange of data with
another computer or peripheral. These signals are
DC voltages that are either ON (greater than +3
volts) or OFF (less than -3 volts). See the IBM
Personal Computer Technical Reference manual for
details.

Control of Output Signals with OPEN

F-6

When you start BASIC on your IBM Personal
Computer, the RTS (Request To Send) and DTR
(Data Terminal Ready) lines are held OFF. When an
OPEN “COM... statement is performed, both of
these lines are normally turned ON. However, you
can specify the RS option on the OPEN “COM...
statement to suppress the RTS signal. The lines stay
ON until the communications file is closed (by
CLOSE, END, NEW, RESET, SYSTEM, or RUN
without the R option). Even if the OPEN “COM...
statement fails with an error (as described below),
the DTR line (and RTS line, if applicable) is turned
ON and stays ON. This allows you to retry the
OPEN without having to execute a CLOSE.



Use of Input Control Signals

Normally, if either the CTS (Clear To Send) or DSR
(Data Set Ready) lines are OFF, then an OPEN
“COM... statement will not execute. After one
second, BASIC will return with a “Device Timeout”
error (error code 24). The Carrier Detect
(sometimes called Receive Line Signal Detect) can
be either ON or OFF; it has no effect on the
operation of the program.

However, you can specify how you want these lines
tested with the RS, CS, DS, and CD options on the
OPEN “COM... statement. Refer to

“OPEN “COM... Statement” in Chapter 4 for details.

If any of the signals that are being tested are turned
OFF while the program is executing, I/O statements
associated with the communications file won’t
work. For example, when you execute a PRINT #
statement after the CTS or DSR line is turned off, a
“Device Fault” (code 25) or “Device Timeout”
(code 24) error occurs. The RTS and DTR stay on
even if such an error occurs.

You can test for a line disconnect by using the INP
function to read the bits in the MODEM Status
Register on the Asynchronous Communications
Adapter. See the following section, “Testing for
Modem Control Signals,” for details.

Testing for Modem Control Signals

There are four input control signals picked up by
the Asynchronous Communications Adapter. These
signals are the CTS and DSR signals described
previously, the Carrier Detect (sometimes called
Received Line Signal Detect) (pin 8), and Ring
Indicator (pin 22). You can specify how you want to
test the CTS, DSR, and CD lines with the OPEN
“COM... statement. Ring Indicator is not used at all
by the communications function in BASIC.

>
-]
PU
[es]
Z,
>
>
r
wn

F-7




If you need to test for any of these signals in a
program, you can check the bits corresponding to
these signals in the MODEM Status Register on the
Asynchronous Communications Adapter. To read
the eight bits in this register, you use the INP
function—use INP(&H3FE) to read the register on
an unmodified communications adapter, and
INP(&H2FE) to read the register on a modified
communications adapter. See the “Asynchronous
Communications Adapter” section of the Technical
Reference manual for a description of which bits in
the Status Register correspond to which control
signals. You can also use the Delta bits in this
register to determine if transient signals have
appeared on any of the control lines. Note that fora
control signal to have meaning, the pin
corresponding to that signal must be connected in
the cable to your modem or to the other computer.

You can also test for bits in the Line Status Register
on the Asynchronous Communications Adapter.
Use INP(&H3FD) to access this register on an
unmodified communications adapter, and
INP(&H2FD) to access it on a modified
communications adapter. Again, the bits are
described in the IBM Personal Computer Technical
Reference manual. These bits can be used to
determine what types of errors have occurred on
receipt of characters from the communications line
or whether a break signal has been detected.

Direct Control of Output Control Signals

You can control the RTS or DTR control signals
directly from a BASIC program with an OUT
statement. The states (ON or OFF) of these signals
are controlled by bits in the MODEM Control
Register on the Asynchronous Communications
Adapter. The address of this register is& H3FConan
unmodified communications adapter and &H2FC
on a modified communications adapter. The IBM
Personal Computer Technical Reference manual describes
which of these bits correspond to which signals.



You can also modify bits in the Line Control
Register on the Asynchronous Communications
Adapter. You should be careful in modifying these
bits as most of the bits in this register have been set
by BASIC at the time an OPEN statement is
executed and changing a bit could cause
communications failure. The Line Control Register
is at address & H3FB on an unmodified
communications adapterand ataddress& H2FB ona
modified communications adapter.

When changing bits in either the MODEM Control
Register or the Line Control Register, you should
tirst read the register (with an INP function) and
then rewrite the register with only the pertinent bit
or bits changed.

A bit you may wish to control in the Line Control
Register is bit 6, the Set Break bit. This bit permits
you to produce a Break signal on the
communications send line. A Break is often used to
signal a remote computer to stop transmission.
Typically a Break lasts for half a second. To produce
such a signal, you must turn ON the Set Break, wait
for the desired time of the Break signal, and then
turn the bit OFF. The following BASIC statements
will produce a Break signal of approximately half a
second duration on an unmodified communications
adapter.

109 1C<=INP{&H3FB) 'get contents of modem register

118 1Z7=1C7 OR &HA4P 'turn ON the Set Break bit

118 OUT &H3FB,1Z* ‘'transmit to modem control register
120 FOR i=1 TO G@Z: NEXT | 'delay half a second

130 OUT €H3FB,ICs 'turn Set Break bit GFF in register

.
e
]
5z
Z
S
>
s
»n




Communication Errors

Errors occur on communication files in the
following order:

1) When opening the file —

a) “Device Timeout” if one of the signals to
be tested (CTS, DSR, or CD) is missing.

2) When reading data —
a) ‘“Com buffer overflow” if overrun occurs.

b) “Device I/O error” for overrun, break,
parity, or framing errots.

c) “Device Fault” if you lose DSR or CD.
3) When writing data —

a) “Device Fault” if you lose CTS, DSR, or
CD on a Modem Status Interrupt while
BASIC was doing something else.

b) “Device Timeout” if you lose CTS, DSR,

or CD while waiting to put data in the
output buffer.

F-10



Appendix G. ASCII Character Codes

The following table lists all the ASCII codes (in
decimal) and their associated characters. These
characters can be displayed using PRINT CHR$(z),
where 7 is the ASCII code. The column headed
“Control Character” lists the standard
interpretations of ASCII codes O to 31 (usually used
for control functions or communications).

Each of these characters may be entered from the
keyboard by pressing and holding the Alt key, then
pressing the digits for the ASCII code on the
numeric keypad. Note, however, that some of the
codes have special meaning to the BASIC program
editor—the program editor uses its own
interpretation for the codes and may not display the
special character listed here.

>
T
C
s
Z
S
<
M
»




ASCH
value

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031

Character

{null)

e oe@®O

(beep)

a

(tab)

{line feed)
{home)

(form feed)
(carriage return)

[ aaiaaiing Bila =il W AE =3

{cursor right)
(cursor left)
{cursor up)
{cursor down)

Control
character

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
LF
VT
FF
CR
SO
sl
DLE
DCT
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
SUB
ESC
FS
GS
RS
us

ASCIl
value

032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063

Character

{space)
!

s

T2 R ok

ke — e~

© W N O A WwN = O~ +

R NEERE

.\)\/




ASCli ASCII

value Character value Character
064 @ 096 )
065 A 097 a
066 B 098 b
067 C 099 c
068 D 100 d
069 E 101 e
070 F 102 f
071 G 103 g
072 H 104 h
073 | 105 i
074 J 106 i
075 K 107 k
076 L 108 I
077 M 109 m
078 N 110 n
079 0 11 o
080 P 112 p
081 Q 113 q
082 R 114 r
083 S 115 s
084 T 116 t
085 U 117 u
086 V 118 v
087 w 119 w
088 X 120 X
089 Y 121 y
090 Z 122 z
091 [ 123 {
092 \ 124 |
093 ] 125 }
094 AN 126 ~
095 — 127 (6]

>
&
g
m
Z
J
>
eyl
w




ASCHi ASCllI

value Character value Character
128 C 160 4
129 i 161 .
130 8 162 é
131 5 163 d
132 E 164 A
133 3 165 N
134 4 166 a
135 ¢ 167 0
136 2 168 é
137 8 169 —
138 8 170 —
139 i 171 %
140 i 172 Y%
141 i 173 i
142 A 174 «
143 A 175

144 E 176

145 ® 177

146 A 178

147 5 179 l
148 0 180 —
149 e 181 =
150 G 182 Al
151 u 183 -
152 ¥ 184 =
1563 0 185 3
154 U 186 I
155 ¢ 187 =
156 £ 188 =
157 ¥ 189 &
158 Pt 190 =
159 f 191 -



ASCHI ASCII

value Character value Character
192 L 224 o
193 L 225 B
194 - 226 r
195 F 227 s
196 — 228 z
197 + 229 o
198 k 230 u
199 i3 231 T
200 & 232 o
201 " 233 -
202 <L 234 Q
203 5F 235 &
204 F 236 o
205 = 237 )
206 aF 238 €
207 = 239 N
208 4 240 =
209 == 241 +
210 - 242 >
211 L 243 <
212 = 244 r
213 = 245 J
214 - 246 +
215 4 247 ~
216 + 248 °
217 N 249 .
218 r 250 .
219 [ ] 251 N
220 - 252 n
221 | 253 2
222 | 254 n
223 - 255 (blank ‘FF*)

>
o
)
el
Z
S
>
o2
w




Extended Codes

For certain keys or key combinations that cannotbe
represented in standard ASCII code, an extended
code is returned by the INKEY$ system variable. A
null character (ASCII code 000) will be returned as
the first character of a two-character string. If a
two-character string is received by INKEY$, then
you should go back and examine the second
character to determine the actual key pressed.
Usually, but not always, this second code is the scan
code of the primary key that was pressed. The ASCII
codes (in decimal) for this second character, and the
associated key(s) are listed on the following page.



Second Code

3
15
16-25
30-38
44-50
59-68

71

72

73

75

77

79

80

81

82

33

84-93

94-103
104-113
114
115
116
117
118
119
120-131
132

Meaning

(null character) NUL

(shift tab) | €—

Alt- Q, W, E,R, T,Y,U, I, O, P

Alt- A, S, D, F, G, H,J,K, L

Al-Z2,X,C, V,B,N, M

function keys F1 through F10
(when disabled as soft keys)

Home

Cursor Up

Pg Up

Cursor Left

Cursor Right

End

Cursor Down

Pg Dn

Ins

Del

F11-F20 (Shift- F1 through F10)

F21-F30 (Ctrl- F1 through F10)

F31-F40 (Alt- F1 through F10)

Ctrl-PrtSc

Ctrl-Cursor Left (Previous Word)

Ctrl-Cursor Right (Next Word)

Ctrl-End

Ctrl-Pg Dn

Ctrl-Home

Alt- 1,2,3,4,5,6,7,8,9,0,-,=

Ctrl-Pg Up

S
o
o)
o
Z
=
o
m
w

G-7




G-8

NOTES




Appendix H. Hexadecimal
Conversion Table

Hex Decimal Hex Decimal
1 1 10 16

2 2 20 32

3 3 30 48

4 4 40 64

5 5 50 80

6 6 60 96

7 7 70 112

8 8 80 128

9 9 90 144

A 10 AO 160
B 11 BO 176

C 12 Co 192

D 13 Do 208

E 14 EO0 224

F 15 Fo 240
100 256 1000 4096
200 512 2000 8192
300 768 3000 12288
400 1024 4000 16384
500 1280 5000 20480
600 1536 6000 24576
700 1792 7000 28672
800 2048 8000 32768
900 2304 9000 36864
A0O 2560 A000 40960
Boo 2816 B000 45056
C00 3072 C000 49152
Doo 3328 Dooo 53248
E00 3584 E000 57344
Foo 3840 Fooo 61440

>
p-U
o
i
Z
S
>
x
w




NOTES



Appendix I. Technical Information
and Tips

This appendix contains more specific technical
information pertaining to BASIC. Included are a
memory map, descriptions of how BASIC stores
data internally, and some special techniques you can
use to improve program performance.

Other information may be found in the IBM Personal
Computer Technical Reference manual.

>
o
o]
rm
Z
S
>
lws]
92]

I-1




Memory Map

The following is a memory map for Disk and _

Advanced BASIC. DOS and the BASIC extensions
are not present for Cassette BASIC. Addresses are in
hexadecimal in the form segment:offset.

0000:0000
system
0060:0000 1
0oS Ex
rs':0000 l
pst:0100 DOS workarea
v 5 x Notes:
BASIC L BT
3 =3 €358
extensions 28 2 1. PS refers to DOS
1 1 Program Segment
ps2:0000 T
inte:(preter 3 2. DS refers to BASIC’s
workarea =3
052 { Data Segment
BASIC ..
program 3. the number xxxx is in
0sgyeyd locations DS:30 and
scalar variables | DS31 (IOW byte, hlgh
arrays & byte)
x
<t
string Y 4. the number yyyy is in
space locations DS:358,
1 DS:359 (low byte,
top of::emury BASIC % é hlgh byte)
stack w8
DSZ:FFFF v
5. or set by CLEAR
. command
7 4
A000:0000
system
(includes screen buffers)
F400:0000
read-only memory




How Variables Are Stored

Scalar variables are stored in BASIC’s data area as
follows:

Byte

]

4 d+jength
AN AN

type

char

name data

char length | length chars 2, 3,4, or 8 bytes

type

name

data

W\ v

identifies the variable’s type:

integer

string
single-precision
double-precision

0 W N

is the name of the variable. The first two
characters of the name are stored in the
bytes 1 and 2. Byte 3 tells how many more
characters are in the variable name. These
additional characters are stored starting at
byte 4.

Note that this means any variable name
will take up at least three bytes. A one- or
two-character name will occupy exactly
three bytes; an ¥ character name will
occupy x¥+1 bytes.

follows the name of the variable, and may
be either two, three, four, or eight bytes
long (as described by #ype). The value
returned by the VARPTR function points
to this data.

>
e
o
o3
Z
=
o
o)
w




For string variables, data is the string descriptor:

The first byte of the string descriptor contains
the length of the string (0 to 255).

The last two bytes of the string descriptor
contain the address of the string in BASIC’s
data space (the offset into the default segment).
Addresses are stored with the low byte first and
the high byte second, so:

— The second byte of the string descriptor
contains the low byte of the offset.

—  The third byte of the string descriptor
contains the high byte of the offset.

For numeric variables data contains the actual value
of the variable:

Integer values are stored in two bytes, with the
low byte first and the high byte second.

Single-precision values are stored in four bytes
in BASIC’s internal floating point binary
format.

Double-precision values are stored in eight
bytes in BASIC'’s internal floating point binary
format.

BASIC File Control Block

When you call VARPTR with a file number as an
argument, the returned value is the address of the
BASIC file control block. The address is specified as
an offset into BASICs Data Segment. (Note that the
BASIC file control block is not the same as the DOS
file control block.)

I-4




Information contained in the file control block is as
follows (offsets are relative to the value returned by
VARPTR):

Offset Length Description

0 1 The mode in which the file was
opened:
1 - Input only
2 - Output only
4. - Random
16 - Append only
32 - Internal use
128 - Internal use

1 38 DOS file control block

39 2 For sequential files, the number
of sectors read or written. For
random files, contains 1 + the
last record number read or
written.

41 1 Number of bytes in sector when
read or written.

42 1 Number of bytes left in input
buffer.
43 3 (reserved)
46 1 Device number:
0,1 - Diskette drives A: and B:
248 - LPT3:
249 - LPT2:
250 - COM2:
251 - COM1:
252 - CASI1:
253 - LPT1:
254 - SCRN:

255 - KYBD:

e
o .
g3
Z
=
>
S
7]




Offset Length Description

47
48

49

50

51

179

181

183
185

186

188

1

1

128

Device width.
Position in buffer for PRINT #.

Internal use during LOAD and
SAVE. Not used for data files.

Output position used during tab
expansion.

Physical data buffer. Used to
transfer data between DOS and
BASIC. Use this offset to
examine data in sequential I/O
mode.

Variable length record size.
Default is 128. Set by length
parameter on OPEN statement.

Current physical record number.

Current logical record number.
(reserved)

Diskette files only. Position for
PRINT #, INPUT #, and
WRITE #.

Actual FIELD data buffer. Size n
is determined by the /S: option
on the BASIC command. Use
this offset to examine file data in
random mode.




Keyboard Buffer

Characters typed on the keyboard are saved in the
keyboard buffer until they are processed. Up to 15
characters can be held in the buffer; if you try to

type more than 15 characters, the computer beeps.

INKEY$ will read only one character from the
keyboard buffer even if there are several characters
pending there. INPUT$ can be used to read
multiple characters; however, if the requested
number of characters are not already present in the
buffer, BASIC will wait until enough characters are
typed.

The system keyboard buffer may be cleared by the
following lines of code:

DEF SEG=@: POKE 145¢, PEEK(1852)

This technique could be useful, for example, to
clear the buffer before you ask the user to “‘pressany
key.”

BASIC has its own line buffer, where the program
editor acts on characters that are received from the

system keyboard buffer. BASIC's line buffer may be
cleared using the following code:

DEF SEG: POKE 1¢6,0

Search Order for Adapters

The printers associated with LPT1:, LPT2:, and
LPT3: are assigned when you switch your computer
on. The system looks for printer adapters in a

particular sequence; the first printer adapter found
becomes LPT1:, the second adapter (if one exists)
becomes LPT2:, and the third (if it exists) becomes
LPT3:. The search order is as follows:

1.  An IBM Monochrome Display and Parallel
Printer Adapter

2. A Parallel Printer Adapter

3. A Parallel Printer Adapter which has been
modified to change its base address

>
&
&
<
Z
s
>
)
w




If a printer was re-routed using the MODE
command from DOS, the change is effective in
BASIC as well.

The communication devices COM1: and COM2: are
assigned in a manner similar to the printers. Their
search order is:

1. An Asynchronous Communications Adapter
2. A modified Asynchronous Communications
Adapter

Switching Displays

If you have both the Color/Graphics Monitor
Adapter and the IBM Monochrome Display and
Parallel Printer Adapter in your IBM Personal
Computer, the one BASIC will normally write to
would be the Monochrome Display. However, you
can switch from one display to the other from
BASIC by using the following code:

1¢ ' switch to monochrome adapter
20 DEF SEG = @

30 POKE &H41@, (PEEK(SH418) OR &H3@)
L@ SCREEN @

5@ WIDTH 4@

6¢ WIDTH 8¢

7@ LOCATE ,,1,12,13

i@ ' switch to color adapter

20 DEF SFEG = @

30 POKE &HL1@, (PEEK(&H41@) AND &HCF) OR &H1@
Lg SCREEN 1,0,0,0

5@ SCREEN ¢

60 WIDTH Lg

7@ LOCATE ,,1,6,7

Note: When you use this technique, the
screen you are switching # is cleared. Also, you
may need to keep track of the cursor location
independently for each display.



Some Techniques with Color

Sixteen Background Colors: In text mode, if you
are willing to give up blink, you can get all 16 colors
(0-15) for the background color. Do the following:

In 40-column width: OUT &H3D8,8
In 80-column width: OUT &H3D8,9

Character Color in Graphics Mode: You can
display regular text characters while in graphics
mode. In medium resolution, the foreground color
of the characters is color number 3; the background
is color number 0.

You can change the foreground color of the
characters from 3 to 2 or 1 by performing a:

DEF SEG: POKE &HLE, color
where color is the desired foreground color (1, 2, or

3— 0 is not allowed). Later PRINTSs will use the
specified foreground color.

>
o)
o
M
Z
S
>
el
w

I-9



Tips and Techniques

I-10

Often there are several different ways you can code
something in BASIC and still get the same function.
This section contains some general hints for coding
to improve program performance.

GENERAL

Combine statements where convenient to
take advantage of the 255 character statement
length. For example:

Do

1¢¢ FOR I=1 TO 1¢: READ A(I): NEXT |

Instead of

1¢6¢ FOR I=1 T0 1#
119 READ A(I)
128 NEXT |

Avoid repetitive evaluation of expressions. If
you do the identical calculation in several
statements, you can evaluate the expression
once and save the result in a variable for use in
later statements. For example:

Do Instead of

30@ X=C#3+D 310 A=C*3+D+Y
310 A=X+Y 32¢ B=C*3+D+Z
320 B=X+Z

However, assigning a constant to a variable is
faster than assigning the value of another
variable to the variable.



Use simple arithmetic. In general, addition
is performed faster than multiplication, and
multiplication is faster than division or
exponentiation.

Consider these example:

Do Instead of
250 B=A*.5 250 B=A/2
503 B=A+A 53¢ B=A*2
650 B=AXA%A% €50 B=A"3
750 B%Z=A%Z\4 75@ B%=INT (A%/L)

Use built-in functions. Use the built-in
system functions where possible; they always

execute faster than the same capability written
in BASIC.

Use remarks sparingly. It takes a small
amount of time for BASIC to identify a remark.
Use the single quote () to place remarks at the
end of the line rather than using a separate
statement for them when possible. This
improves performance and saves storage by
eliminating the need for a line number. For
example:

Do

19 FOR I=1 T0 1¢
20 A(1)=30 ' initialize A
30 NEXT |

Instead of

1@ FOR 1=1 TO 1¢
15 ' initialize A
20 A(1)=3¢
3@ NEXT |

Just a note about IBM Personal Computer
BASIC— When BASIC wants to branch to a
particular line number, it doesn’t know exactly

>
"o
"
t
Z
=
>
32
9]

I-11




I-12

where in memory that line is. Therefore BASIC
has to search through the line numbers in the
program, starting at the beginning, to find the
line it’s looking for.

In some other BASICs, this search must be
performed each time the branch occurs in the
program. In IBM Personal Computer BASIC,
the search is only performed once, and
thereafter the branch is direct. So placing
frequently-used subroutines at the beginning
of the program will not make your program run
faster.

LOGIC CONTROL

Use the capabilities of the IF statement. By
using AND and OR and the ELSE clause, you
can often avoid the need for more IF
statements and additional code in the program.
For example:

Do .

200 |F A=B AND C=D THEN Z=12 ELSE Z=B

Instead of

20 IF A=B THEN GOTO 210
285 GOTO 215

219 IF C=D THEN 225

215 Z=B

22¢ GOTO 238

225 7=12

23¢ ...

Otder IF statements so the most frequently
occurring condition is tested first. This avoids
having to make extra tests. For example,
suppose you have a data entry file for customer
orders which consists of different record types
and numerous individual transactions.



A typical record group looks like this:

Type code Record type

A Header
B Customer name and address
C Transaction
C Transaction
C Transaction
D Trailer
Do

19@ IF TYPES=''C'' THEN 3000
119 |F TYPES="'A"" THEN 1000
120 IF TYPES=''B'' THEN 2000
130 IF TYPES=''D''" THEN L4ggg

Instead of

168 1F TYPES=''A' THEN 1¢¢¢
11¢ IF TYPES=''B" THEN 2000
120 1F TYPES=''C"" THEN 3¢¢¢
13¢ IF TYPES='D'"" THEN 40¢@

If you had 100 groups, with 10 transactions per
group, moving the test to the beginning of the
list results in 1800 fewer IF statements being
executed.

>
.-
.
tr
Z
S
>
s
75

I13




I-14

Another example of ordering IF statementsina
cascade so less tests need to be performed:

DO

20¢ IF A<>1 THEN 258

210 1IF B=1 THEN X=¢
22¢ 1F B=2 THEN X=1
23¢ {F B=3 THEN X=2
24¢ GOTO 28¢
25¢ |F B=1 THEN X=3
269 IF B=2 THEN X=4
27¢ |F B=3 THEN X=5
28¢ ...

Instead of

203 IF A=1 AND B=1 THEN X=0
21¢ |F A=1 AND B=2 THEN X=1
22¢ 1F A=1 AND B=3 THEN X=2
23¢ IF A<>1 AND B=1 THEN X=3
24F 1F A<>1 AND B=2 THEN X=4
25¢ IF A<>1 AND B=3 THEN X=5

LOOPS

Use integer counters on FOR..NEXT loops
when possible. Integer arithmetic is performed
faster than single- and double-precision
arithmetic.

Omit the variable on the NEXT statement
where possible. If you include the variable,
BASIC takes a little time to check to see that it
is correct. It may be necessary to include the
variable on the NEXT statement if you are
branching out of nested loops. Refer to “FOR
and NEXT Statements” in Chapter 4 for more
information.

Use FOR...NEXT loops instead of using the IF,
GOTO combination of statements.



For example:

Do Instead of
209 FOR =1 T0 16 28¢ 1=1
. 219 ...
. Zé@ [=1+1
3¢@ NEXT | 30¢ IF 1<=10 THEN 210¢

Remove unnecessary code from loops. This
includes statements which don’t affect the
loop, as well as non-executable statements such
as REM and DATA. For example:

Do

1¢ A=B+1

20 FOR X=1 TO 1¢¢

3¢ 1F D(X)>A THEN D(X)=A
L KEXT X

Instead of

1¢ FOR X=1 TO 1¢¢

20 A=B+1

3¢ IF D(X)>A THEN D(X)=A
Ly NEXT X

In the preceding example, it is not necessary to
calculate the value of A each time through the
loop, because the loop never changes the value

of A.

The next example shows a non-executable
statement.

Do Instead of

200 DATA 5, 12, 1543 2¢¢ FOR I=1 TO 10¢
21¢ FOR I=1 TO 1¢¢ 21¢ DATA 5, 12, 1943

300 NEXT | 300 NEXT |

>
&
e
es!
Z
S
>
o
w

115




Refer also to “‘Performance Hints” in
Appendix B for some tips relating to diskette
files.

I-16




Appendix J. Glossary

This part of the book explains many of the technical
terms you may run across while programming in
BASIC.

absolute coordinate form: In graphics, specifying
the location of a point with respect to the origin of
the coordinate system.

access mode: A technique used to obtain a specific
logical record from, or put a logical record into, a

file.

accuracy: The quality of being free from error. On
a machine this is actually measured, and refers to the
size of the error between the actual number and its
value as stored in the machine.

active page: On the Colot/Graphics Monitor
Adapter, the screen buffer which has information
written to it. It may be different from the screen
buffer whose information is being displayed.

adapter: A mechanism for attaching parts.

address: The location of a register, a particular
part of memory, or some other data source or
destination. Or, to refer to a device or a data item by
its address.

addressable point: In computer graphics, any
point in a display space that can be addressed. Such
points are finite in number and form a discrete grid
over the display space.

algorithm: A finite set of well-defined rules for the
solution of a problem in a finite number of steps.

>
g
.
tm
Z
S
o
el
w

J1




J-2

allocate: To assign a resource, such as a diskette
file or a part of memory, to a specific task.

alphabetic character: A letter of the alphabet.

alphameric or alphanumeric: Pertaining to a
character set that contains letters and digits.

application program: A program written by or for
a user which applies to the user’s work. For
example, a payroll application program.

argument: A value that is passed from a calling
program to a function.

arithmetic overflow: Same as overflow.

array: Anarrangement of elements in one or more
dimensions.

ASCII: American National Standard Code for
Information Interchange. The standard code used
for exchanging information among data processing
systems and associated equipment. An ASCII file isa
text file where the characters are represented in

ASCII codes.

asynchronous: Without regular time relationship;
unpredictable with respect to the execution of a
program’s instructions.

attribute: A property or characteristic of one or
more items.

background: The area which surrounds the
subject. In particular, the part of the display screen
surrounding a character.

backup: Pertaining to a system, device, file, or
facility that can be used in case of a malfunction or
loss of data.



baud: A unit of signalling speed equal to the
number of discrete conditions or signal events per
second.

binary: Pertaining to a condition that has two
possible values or states. Also, refers to the Base 2
numbering system.

bit: A binary digit.

blank: A part of a data medium in which no
characters are recorded. Also, the space character.

blinking: An intentional regular change in the
intensity of a character on the screen.

boolean value: A numeric value thatisinterpreted
as “true” (if it is not zero) or “false” (if it is zero).

bootstrap: An existing version, perhaps a
primitive version, of a computer program that is
used to establish another version of the program.
Can be thought of as a program which loads itself.

bps: Bits per second.

bubble sort: A technique for sorting a list of items
into sequence. Pairs of items are examined, and
exchanged if they are out of sequence. This process
is repeated until the list is sorted.

buffer: An area of storage which is used to
compensate for a difference in rate of flow of data,
or time of occurrence of events, when transferring
data from one device to another. Usually refers to an
area reserved for I/O operations, into which data is
read or from which data is written.

bug: An error in a program.

byte: The representation of a character in binary.
Eight bits.

>
<
o
i
Z,
=
<
&
»n




call: To bring a computer program, a routine, ora
subroutine into effect, usually by specifying the
entry conditions and jumping to an entry point.

carriage return character (CR): A character that
causes the print or display position to move to the
first position on the same line.

channel: A path along which signals can be sent,
for example, a data channel or an output channel.

character: A letter, digit, or other symbol that is
used as part of the organization, control, or
representation of data. A connected sequence of
characters is called a character string.

clock: A device that generates periodic signals
used for synchronization. Each signal is called a
clock pulse or clock tick.

code: To representdata oracomputer programina
symbolic form that can be accepted by a computer;
to write a routine. Also, loosely, one or more
computer programs, or part of a program.

comment: A statement used to document a
program. Comments include information that may
be helpful in running the program or reviewing the
output listing.

communication: The transmission and reception
of data.

complement: An “opposite.” In particular, a
number that can be derived from a given number by
subtracting it from another given number.

compression: Arranging data so it takes up a
minimal amount of space.




concatenation: The operation that joins two
strings together in the order specified, forming a
single string with a length equal to the sum of the
lengths of the two strings.

constant: A fixed value or data item.

control character: A character whose occurrence
in a particular context initiates, modifies, or stops a
control operation. A control operation is an action
that affects the recording, processing, transmission,
or interpretation of data; for example, carriage
return, font change, or end of transmission.

coordinates: Numbers which identify a location
on the display.

cursor: A movable marker thatisused to indicate a
position on the display.

debug: To find and eliminate mistakes in a
program.

default: A value or option that is assumed when
none is specified.

delimiter: A character that groups or separates
words or values in a line of input.

diagnostic: Pertaining to the detection and
isolation of a malfunction or mistake.

directory: A table of identifiers and references to
the corresponding items of data. For example, the
directory for a diskette contains the names of files
on the diskette (identifiers), along with information
that tells DOS where to find the file on the diskette.

disabled: A state that prevents the occurrence of
certain types of interruptions.

>
o
e
oy
Z
o
>
ey
w




J-6

DOS: Disk Operating System. In this book, refers
only to the IBM Personal Computer Disk Operating
System.

dummy: Having the appearance of a specified
thing but not having the capacity to function as
such. For example, a dummy argument to a
function.

duplex: In data communication, pertaining to a
simultaneous two-way independent transmission in
both directions. Same as full duplex.

dynamic: Occurring at the time of execution.

echo: To reflect received data to the sender. For
example, keys pressed on the keyboard are usually
echoed as characters displayed on the screen.

edit: To enter, modify, or delete data.

element: A member of a set; in particular, an item
in an array.

enabled: A state of the processing unit that allows
certain types of interruptions.

end of file (EOF): A “marker” immediately
following the last record of a file, signalling the end
of that file.

event: An occurrence or happening; in IBM
Personal Computer Advanced BASIC, refers
particularly to the events tested by the COM(n),
KEY(n), PEN, and STRIG(n).

execute: To perform an instruction or a computer
program.

extent: A continuous space on a diskette,
occupied or reserved for a particular file.



fault: An accidental condition that causes a device
to fail to perform in a required manner.

field: In a record, a specific area used for a
particular category of data.

file: A set of related records treated as a unit.

fixed-length: Referring to something in which the
length does not change. For example, random files
have fixed-length records; that is, each record has

the same length as all the other records in the file.

flag: Any of various types of indicators used for
identification, for example, a character that signals
the occurrence of some condition.

floppy disk: A diskette.

folding: A technique for converting data to a
desired form when it doesn’t start out in that form.
For example, lowercase letters may be folded to
uppercase. ’

font: A family or assortment of characters of a
particular size and style.

foreground: The partof the display area that is the
character itself.

format: The particular arrangement or layout of
data on a data medium, such as the screen or a
diskette.

form feed (FF): A character that causes the print
or display position to move to the next page.

function: A procedure which returns a value
depending on the value of one or more independent
variables in a specified way. More generally, the
specific purpose of a thing, or its characteristic
action.

>
o)
o)
o
Z
=
o
tr
w




J-8

function key: One of the ten keys labeled F1
through F10 on the left side of the keyboard.

garbage collection: Synonym for housecleaning.

graphic: A symbol produced by a process such as
handwriting, printing, or drawing.

half duplex: In data communication, pertaining
to an alternate, one way at a time, independent
transmission.

hard copy: A printed copy of machine outputina
visually readable form.

header record: A record containing common,
constant, or identifying information for a group of
records that follows.

hertz (Hz): A unit of frequency equal to one cycle
per second.

hierarchy: A structure having several levels,
arranged in a tree-like form. “Hierarchy of
operations” refers to the relative priority assigned
to arithmetic or logical operations which must be
performed.

host: The primary or controlling computer in a
multiple computer installation.

housecleaning: When BASIC compresses string
space by collecting all of its useful data and frees up
unused areas of memory that were once used for
strings.

implicit declaration: The establishment of a
dimension for an array without it having been
explicitly declared in a DIM statement.

increment: A value used to alter a counter.



initialize: To set counters, switches, addresses, or
contents of memory to zero or other starting values
at the beginning of, or at prescribed points in, the
operation of a computer routine.

instruction: In a programming language, any
meaningful expression that specifies one operation
and its operands, if any.

integer: One of the numbers 0, +£1, +2, +3, ...

integrity: Preservation of data for its intended
purpose; data integrity exists as long asaccidental or
malicious destruction, alteration, or loss of data are
prevented.

interface: A shared boundary.

interpret: To translate and execute each source
language statement of a computer program before
translating and executing the next statement.

interrupt: To stop a process in such a way that
it can be resumed.

invoke: To activate a procedure at one of its entry
_points.

joystick: A lever thatcan pivotinall directionsand
is used as a locator device.

justify: To align characters horizontally or
vertically to fit the positioning constraints of a
required format.

K: When referring to memory capacity, two to the
tenth power or 1024 in decimal notation.

keyword: One of the predefined words of a
programming language; a reserved word.

leading: The first part of something. For example,

you might refer to leading zeroes or leading blanks
in a character string.

J9

>
e
o
o
Z
S
P4
tm
w




J-10

light pen: A light sensitive device that is used to
select a locat1on on the d1sp1ay by pointing it at the
screen.

line: When referring to text ona screen or printer,
one or more characters output before a return to the
first print or display position. When referring to
input, a string of characters accepted by the system
as a single block of input; for example, all characters
entered before you press the Enter key. In graphics,
a series of points drawn on the screen to form a
straight line. In data communications, any physmal
medium, such as a wire or microwave beam, that is
used to transmit data

line feed (LF): A character that causes the print or
display position to move to the corresponding
position on the next line.

literal: An explicit representation of a value,
especially a string value; a constant.

location: Any place in which data may be stored.

loop: A set of instructions that may be executed
repeatedly while a certain condition is true.

M: Mega; one million. When referring to memory,
two to the twentieth power; 1,048,576 in decimal
notation.

machme 1nf1n1ty The Iargest number that can be
represented in a computer’s 1nternal format.

mantissa: For a number expressed in floating
point notation, the numeral that is fot the
exponent.

mask: A pattern of characters that is used to
control the retention or elimination of another
pattern of characters.



matrix: An array with two or more dimensions.

matrix printer: A printer in which each character
is represented by a pattern of dots.

menu: A list of available operations. You select
which operation you want from the list.

minifloppy: A 5-1/4 inch diskette.

nest: To incorporate a structure of some kind into
another structure of the same kind. For example,
you can nest loops within other loops, or call
subroutines from other subroutines.

notation: A set of symbols, and the rules for their
use, for the representation of data.

null: Empty, having no meaning. In particular, a
string with no characters in it.

octal: Pertaining to a Base 8 number system.

offset: The number of units from a starting point
(in a record, control block, or memory) to some
other point. For example, in BASIC the actual
address of a memory location is given as an offset in
bytes from the location defined by the DEF SEG

statement.

on-condition: An occurrence that could cause a
program interruption. It may be the detection of an
unexpected error, or of an occurrence that is
expected, but at an unpredictable time.

operand: That which is operated upon.

J-11

o
o)
o)
g3}
Z
S
o
o)
2]



J-12

operating system: Software that controls the
execution of programs; often used to refer to DOS.

operation: A well-defined action that, when
applied to any permissible combination of known
entities, produces a new entity.

overflow: When the result of an operation
exceeds the capacity of the intended unit of storage.

overlay: To use the same areas of memory for
different parts of a computer program at different
times.

overwrite: To record into an area of storage so as
to destroy the data that was previously stored there.

pad: Tofillablock with dummy data, usually zeros
or blanks.

page: Part of the screen buffer that can be
displayed and/or written on independently.

parameter: A name in a procedure that is used to
refer to an argument passed to that procedure.

parity check: A technique for testing transmitted
data. Typically, a binary digit is appended to a group
of binary digits to make the sum of all the digits

either always even (even parity) or always odd (odd

party).

pixel: A graphics “point.” Also, the bits which
contain the information for that point.

port:  An access point for data entry or exit.
position: In a string, each location that may be

occupied by a character and that may be identified
by a number.



precision: A measure of the ability to distinguish
between nearly equal values.

prompt: A question the computer asks when it
needs you to supply information.

protect: To restrict access to or use of all, or part
of, a data processing system.

queue: A line or list of items waiting for service;
the first item that went in the queue is the first item
to be serviced.

random access memory: Storage in which you can
read and write to any desired location. Sometimes
called direct access storage.

range: Thesetof values thata quantity or function
may take.

raster scan: A technique of generating a display
image by a line-by-line sweep across the entire
display screen. This is the way pictures are created
on a television screen.

read-only: A type of access to data that allows it to
be read but not modified.

record: A collection of related information,
treated as a unit. For example, in stock control, each
invoice might be one record.

recursive: Pertaining to a process in which each
step makes use of the results of earlier steps, such as
when a function calls itself.

relative coordinates: In graphics, values that
identify the location of a point by specifying
displacements from some other point.

reserved word: A word thatisdefined in BASIC for
a special purpose, and that you cannot use as a
variable name.

J-13

kS
=
.
e9l
Z
)
9
ey}
wn




J-14

resolution: In computer graphics, a measure of
the sharpness of an image, expressed as the number
of lines per unit of length discernible in that area.

routine: Part of a program, or a sequence of
instructions called by a program, that may have
some general or frequent use.

row: A horizontal arrangement of characters or
other expressions.

scalar: A value or variable that is not an array.

scale: To change the representation of a quantity,
expressing it in other units, so that its range is
brought within a specified range.

scan: To examine sequentially, part by part. See
raster scan.

scroll: To move all or part of the display image
vertically or horizontally so that new data appears at
one edge as old data disappears at the opposite edge.

segment: A particular 64K-byte area of memory.

sequential access: An access mode in which
records are retrieved in the same order in which they
were written. Each successive access to the file refers
to the next record in the file.

stack: A method of temporarily storing data so
that the last item stored is the first item to be
processed.

statement: A meaningful expression that may
describe or specify operations and is complete in the
context of the BASIC programming language.

stop bit: A signal following a character or block
that prepares the receiving device to receive the
next character or block.



storage: A device, or part of a device, that can
retain data. Memory.

string: A sequence of characters.

subscript: A number thatidentifies the position of
an element in an array.

syntax: The rules governing the structure of a
language.

table: An arrangement of data in rows and
columns.

target: In an assignment statement, the variable
whose value is being set.

telecommunication: Synonym for data
communication.

terminal: A device, usually equipped with a
keyboard and display, capable of sending and
receiving information.

toggle: Pertaining to anything having two stable
states; to switch back and forth between the two
states.

trailing: Located at the end of a string or number.
For example, the number 1000 has three trailing
Z€10S.

trap: A set of conditions that describe an event to
be intercepted and thne action to be taken after the
interception.

truncate: To remove the ending elements from a
string.

two’s complement: A form for representing
negative numbers in the binary number system.

>
o)
o
m
Z
o
»d
o2
w»

J-15




J-16

typematic key: A key that repeats as long as you
hold it down.

update: To modify, usually a master file, with
current information.

variable: A quantity that canassume any of a given
set of values.

variable-length record: A record having a length
independent of the length of other records in the
file.

vector: In graphics, a directed line segment. More
generally, an ordered set of numbers, and so, a
one-dimensional array.

wraparound: The technique for displaying items
whose coordinates lie outside the display area.

write: To record data in a storage device or on a
data medium.



INDEX

Special Characters

! 3-14

$ 3-13

% 3-14

?Redo from start 4-123
# 3-14

A

A: 3-35
ABS 4-23
absolute form for specifying
coordinates 3-43
absolute value 4-23
accuracy 3-11
adapters
communications -8
display 3-38, 4-31, 4-205,
I-8
printer I-7
adding characters 2-34
adding program lines 2-36
addition 3-21
Advanced BASIC 1-6
alphabetic characters 3-4
Alt 2-13
Alt-Ctrl-Del  2-18
Alt-key words 2-14
alternate shifts 2-13
AND 3-25
append 4-189, B-8
arctangent 4-25
arithmetic operators 3-21
arrays 3-15, 4-77, 4-87,
4-200

ASC 4-24

ASCII codes 4-24, 4-38,
Appendix G

ASCII format 4-253

aspect ratio 4-42, 4-80

assembly language
subroutines See machine
language subroutines

assignment statement 4-139

ATN 4-25

AUTO 3-3,4-26

automatic line numbers 4-26

B

B: 3-35
background 3-40, 4-49
Backspace 2-12, 2-28, 2-34
BASIC command 2-4
BASIC versions 1-3
BASIC, starting 2-3
BASIC’s Data Segment 4-71
BEEP 4-28
beeping from the
computer [-7
blanks 3-6, D-7
blinking characters 4-50,
4-51
BLOAD 4-29, C-5
Boolean operations 3-25
border screen 3-40, 4-4¢
branching 4-113, 4-180
Break 2-17,2-29
bringing up BASIC 2-3
BSAVE 4-32



buffer
communications 2-5,
4-195
keyboard I-7
reading the 4-119,
4-127
random file 2-5, 4-106,
4-163, 4-230
screen 3-41, 4-31, 4-33
built-in functions
See functions

C

CALL 4-34, C-10
cancelling a line 2-35
capital letters 2-12
Caps Lock 2-12
Cassette BASIC 1-4
cassette [/O  B-1
cassette motor 4-172
CAS1: 3-35,4-151
CDBL 4-35
CHAIN 4-36, 4-57
changing BASIC program

2-36
changing characters 2-32

changing line numbers 2-39

changing lines anywhere on
the screen 2-38

changing program lines 2-37

character color 1-9
character set 3-4,
Appendix G

CHR$ 4-38, G-1
CINT 4-40

CIRCLE 4-41
CLEAR 4-44

clear screen 4-48
clearing memory 2-38,
4-174

clearing the keyboard
buffer I-7
clock 3-44, 4-262
CLOSE 4-46
CLS 4-48
COLOR 4-49
in graphics modes
3-42, 4-54 _
in text mode 3-40, 4-49
COM 4-56
command level 2-7, 2-32
commands 4-6
comments 3-4, 4-240
COMMON 4-36, 4-57
communications 4-194,
Appendix F
buffer size 2-5
trapping 4-56, 4-176
comparisons
numeric 3-23
string  3-24
complement, logical 3-25
complement, two’s 3-27,
3-28
computed GOSUB/GOTO
4-180
COM1: 3-35,I8
COM2: 3-35, 18
concatenation 3-31
conjunction 3-25
constants 3-9

CONT 4-58
control block, file I-5
converting
character to ASCII
code 4-24

degrees to radians 4-60
from number to
string 4-272
from numbers for random
files 4-170
from numeric to
octal 4-175



hexadecimal 4-115, H-1
numbers from random
files 4-63
one numeric precision to
another 3-18
radians to degrees 4-25
string to numeric 4-285
converting programs to IBM
Personal Computer BASIC
Appendix D
coordinates 3-43
copy display 2-13
correcting current line 2-32
COS 4-60
cosine 4-60
CSNG 4-61
CSRLIN 4-62
Ctel 2-13
Ctrl-Break 2-17, 2-29
Ctrl-Num Lock 2-17
cursor 2-19
cursor cointrol keys 2-19
Cursor Down key 2-21
Cursor Left key 2-22
cursor position 4-62, 4-155,
4-215
Cursor Right key 2-22
Cursor Up key 2-21
CVI, CVS, CVD 4-63, B-11

D

DATA 4-64, 4-238

Data Segment 4-71
DATE$ 4-66

DEBUG C-7

decisions 4-116

declaring arrays 3-15, 4-77

declaring variable types
3-13, 3-14, 4-73

DEF FN 4-68

DEF SEG 4-71

DEF USR 4-75

DEFtype (-INT, -SNG,
-DBL, -STR) 3-14, 4-73

Del key 2-27

DELETE 3-3, 4-76

deleting a file 4-136

deleting a program 2-38,
4-174

deleting arrays 4-87

deleting characters 2-33

deleting program lines 2-37,
4-76

delimiting reserved
words 3-6

descriptor, string I-4

device name 3-34, 3-35

Device Timeout 4-162, A-11

DIM 4-77

dimensioning arrays 3-15,
4-77

DIR 4-97

direct mode 2-7, 4-178

disjunction 3-25

diskette /O Appendix B

display adapters 3-38,
4-31, 4-205, 1-8

display pages 3-41, 4-258

display program lines 4-147

display screen, using 3-38

division 3-21

division by zero A-8

double-precision 3-11,
4-35

DRAW 4-79

DS (BASIC’s Data
Segment) 4-71

duplicating a program
line 2-38

X-3



E

EDIT 3-3, 4-84
editor 2-19
editor keys 2-19
Backspace 2-28
Ctrl-Break 2-29
Ctrl-End  2-25
Ctrl-Home 2-20
Cursor Down 2-21
Cursor Left 2-22
Cursor Right 2-22
Cursor Up 2-21
Del 2-27
End 2-25
Esc 2-28
Home 2-20
Ins 2-26
Next Word 2-23
Previous Word 2-24
Tab 2-30
ELSE 4-116
END 4-85
End key 2-25
end of file 4-86, B-7
ending BASIC 4-278
Enter key 2-11
entering BASIC
program 2-36
entering data 2-19
EOF 4-86, B-7
equivalence 3-25
EQV 3-25
ERASE 4-87
ERASE (DOS) 4-136
erasing a file 4-136
erasing a program 2-38,
4-174
erasing arrays 4-87
erasing characters 2-33
erasing part of a line 2-35
erasing program lines 2-37,
4-76

erasing variables 4-44
ERL 4-89
ERR 4-89
ERROR 4-91
error codes 4-89, 4-91,
Appendix A
error line 4-89
error messages Appendix A
error trapping 4-89, 4-91,
4-178, 4-245
Esc key 2-28
event trapping
COM(n) (communications
activity) 4-56, 4-176
KEY(n) 4-134, 4-182
PEN 4-185, 4-206
STRIG(n) (joystick
button) 4-187, 4-275
exchanging
variables 4-277
exclusive or 3-25
executable statements 3-3
executing a program 2-4,
4-251
EXP 4-93
exponential function 4-93
exponentiation 3-21
expressions
numeric 3-21
string  3-31
extended ASCII codes G-6
extension, filename 3-36

F

false 3-23, 3-25

FIELD 4-94

file control block I-5
file specification 3-34
filename 3-34, 3-36
filename extension 3-36



files 3-33, Appendix B, D-1
control block I-4
file number 3-33
maximum number 2-4
naming 3-34
opening 3-33, 4-189
position of 4-153
size 4-158
FILES 4-97
FIX 4-99
tixed point 3-9
fixed-length strings 4-163
floating point 3-9
floor function 4-130
flushing the keyboard
buffer 1-7
folding, line 2-27
FOR 4-100, I-14
foreground 3-40, 4-49
format notation v
formatting 4-219
FRE 4-104
free space 2-5, 4-44, 4-104
frequency table 4-263
function keys 2-9
functions 3-29, 3-32, 4-5,
4-17, I-11
derived Appendix E
user-defined 4-68

G

garbage collection 4-104
GET (files) 4-106, B-10
GET (graphics) 4-108
glissando 4-264

GOSUB 4-111, 4-180
GOTO 4-113, 4-180
graphics 3-38, D-1
graphics modes 3-41, 4-257

graphics statements
CIRCLE 4-41
COLOR 4-54
DRAW 4-79
GET 4-108
LINE 4-141
PAINT 4-203
POINT function 4-213
PSET and PRESET 4-228
PUT 4-232

H

hard copy of screen 2-13
HEX$ 4-115
hexadecimal 3-10, 4-115,
H-1
hierarchy of operations 3-29
high resolution 3-43, 4-257
high-intensity
characters 4-50, 4-51
hold 2-17
Home key 2-20
housecleaning 4-104

I

I/O statements 4-13,
Appendix B

IF 4-116, D-2,I-12

IMP  3-25

implication 3-25

implicit declaration of
arrays 3-17

index (position in string)
4-129

indirect mode 2-7

initializing BASIC 2-3

INKEY$ 4-119, G-6

INP 4-121

INPUT 4-122



INPUT # 4-125

input and output 3-33

input file mode 4-189, B-5

INPUT$ 4-127, F-3

Ins key 2-26

insert mode 2-26

inserting characters 2-34

INSTR 4-129

INT 4-130

integer 3-9, 3-11
converting to 4-40, 4-99,

4-130

integer division 3-22

interrupting program
execution 2-17

intrinsic functions
See functions

invisible characters 4-51

J

joystick 3-45, 4-268

joystick button 4-187,
4-273, 4-275

jumping 4-113, 4-180

K

KEY 4-131

KEY(n) 4-134

keyboard 2-8
buffer See buffer,
keyboard
input 4-119,4-122,4-127,
4-144

KILL 4-136, B-3

KYBD: 3-35

L

last point referenced 3-43
LEFT$ 4-137
left-justify 4-163
LEN 4-138
length of file 4-158
length of string 4-104,
4-138
LET 4-139
light pen 3-45, 4-185, 4-206
LINE 4-141
line feed 2-32, 4-191, D-3
LINE INPUT 4-144
LINE INPUT # 4-145
lines
BASIC program 3-3
drawing in graphics 4-141
folding 2-27
line numbers 2-7, 3-3,
4-26, 4-241
on screen 3-39
LIST 3-3, 4-147
list program lines 4-149
listing files
on cassette 4-151
on diskette 4-97
LLIST 4-149
LOAD 4-150, B-2
loading binary data 4-29
LOC 4-153
LOCATE 4-155
LOF 4-158
LOG 4-159
logarithm 4-159
logical line 2-32
logical operators 3-25, D-3
loops 4-100, 4-292, I-14
LPOS 4-160
LPRINT 4-161
LPRINT USING 4-161



LPT1: 3-35, 4-149, 4-160,
4-161, I-7
LPT2: 3-35,1-7
LPT3: 3-35, 17
LSET 4-163
M

machine language
subroutines  4-34, 4-75,
4-284, Appendix C

medium resolution 3-42,
4-257

memory image 4-32

memory map [-2

MERGE 4-36, 4-165, B-3

messages Appendix A

MID$ 4-167, D-6

MKI$, MKS$, MKD$ 4-170,
B-9

MOD 3-22

modulo arithmetic 3-22

MOTOR 4-172

multiple statements on a
line 3-3

multiplication 3-21

music 3-44, 4-209

N

NAME 4-173
naming files 3-34
negation 3-21
NEW . 4-174
NEXT 4-100
See also FOR
Next Word 2-23
non-executable statements
3-3

NOT 3-25

Num Lock 2-16

numeric characters 3-4
numeric comparisons 3-23
numeric constants 3-9
numeric expressions 3-21
numeric functions 3-29,4-17
numeric keypad 2-15
numeric variables 3-13

O

OCT$ 4-175
octal 3-10, 4-175
Ok prompt 2-7
ON COM(n) 4-176
ON ERROR 4-178
ON KEY(n) 4-182
ON PEN 4-185
ON STRIG(n) 4-187
ON...GOSUB 4-180
ON...GOTO 4-180 .
OPEN (tile) 4-189, B4,
B-9
OPEN “COM... 4-194, F-6
operators
arithmetic 3-21
concatenation 3-31
functions 3-29, 3-32
logical 3-25
numeric 3-21
relational 3-23
. string  3-31
OPTION BASE 4-200
options on BASIC
command 2-4
OR 3-25
ot, exclusive 3-25
order of execution 3-29
OUT 4-201



output file mode 4-189, B-4
overflow A-7

ovetlay 4-36

overscan 3-40

P

paddles 3-45

PAINT 4-203

palette 3-42, 4-54

parentheses 3-30

pause 2-17

PEEK 4-205, D-4

PEN 4-206

performance hints B-15,
I-10

Pg Up and Pg Dn  2-16

PLAY 4-209

POINT 4-213

POKE 4-214, C4, D4

POS 4-215

position in string 4-129

position of file 4-153

positioning the cursor 4-155

precedence 3-29

precision 3-11, 4-73

PRESET 4-228

Previous Word 2-24

PRINT 4-216

PRINT # 4-225

PRINT # USING 4-225

print formatting 4-219

print screen 2-13

PRINT USING 4-219

printing 4-161

program editor 2-19

protected files 4-253, B-3

PrtSc 2-13

PSET 4-228

PUT (files) 4-230, B-9

PUT (graphics) 4-232

R

random files 4-94, 4-106,
4-189, B-8
random numbers 4-236,
4-249
RANDOMIZE 4-236
READ 4-64, 4-238
record length
maximum 2-5
setting 4-189
?Redo from start 4-123
related publications vi
relational operators 3-23
relative form for specifying
coordinates 3-43
REM 4-240
remarks 3-4, 4-240
RENAME 4-173
renaming files 4-173, B-3
RENUM 4-36, 4-89, 4-241
repeating a string 4-276
replacing program lines 2-37
requirements See system
requirements
reserved words 3-6, 3-13
RESET 4-243
RESTORE 4-244
RESUME 4-245
resume execution 4-58
RETURN 4-111, 4-247
reverse image characters
4-51
RIGHT$ 4-248
right-justify 4-163
RND 4-249
rounding 3-18, D-5
rounding to an integer 4-40
RSET 4-163
RS232 See communications
RUN 4-251, B-2



S

SAVE 4-253, B-2
saving binary data 4-32
screen 3-39

shifting 4-201

use of 3-38
SCREEN function 4-255
SCREEN statement 4-257
SCRN: 3-35
Scroll Lock 2-16
scrolling 3-40
search order for adapters I-7
seeding random number

generator 4-236
segment of storage 4-71
sequential files 4-189, B-4
SGN 4-260
shifting screen image 4-201
sign of number 4-260
SIN 4-261
sine 4-261
single-precision 3-11, 4-61
soft keys 2-9, 4-131
SOUND 4-262
sounds 3-44, 4-28, 4-209,

4-262
SPACE$ 4-265
spaces 3-6, D-7
SPC 4-266
special characters 3-5
specification of files 3-34
specifying coordinates 3-43
SQR 4-267
square root 4-267
stack space 4-44
starting BASIC 2-3
statements 4-8

/O 4-13

non-I/O 4-8
STICK 4-268
STOP 4-270

STR$ 4-272
STRIG 4-273
STRIG(n) 4-275
string comparisons 3-24
string constants 3-9
string descriptor I-4
string expressions 3-31
string functions 3-32, 4-21,
D-6
string space 2-5, 4-44, 4-104
string variables 3-13
STRING§$ 4-276
subroutines 4-111, 4-180,
I-11
subroutines, machine
language 4-34,4-75,4-284,
Appendix C
subscripts 3-15, 4-77, 4-200
substring 4-137, 4-167,
4-248
subtraction 3-21
SWAP 4-277
switching displays I-8
syntax diagrams v
syntax errors 2-40
SYSTEM 4-278
system functions
See functions
system requirements
Advanced 1-6
Cassette 1-4
Disk 1-5
System Reset 2-18

T

TAB 4-279

Tab key 2-30

TAN 4-280

tangent 4-280

technical information I-1



telecommunications

See communications
tempo table 4-264
terminating BASIC 4-278
text mode 3-39, 4-257
THEN 4-116
TIME$ 4-281
tips I-10
trace 4-283
trigonometric functions

arctangent 4-25

cosine 4-60

sine 4-261

tangent 4-280
TROFF 4-283
TRON 4-283.
true  3-23, 3-25
truncation 4-99, 4-130
truncation of program

lines 2-36
two’scomplement 3-27,3-28
type declaration

characters 3-14
typewriter keyboard 2-10

U
underflow A-7
underlined characters 4-51
uppershift 2-12
user workspace 2- 5, 4-44,
4-104 .
user-defined functions 4-68

using the screen 3-38
USR 4-75, 4-284, C-14

X-10

\%

VAL 4-285
variables 3-12
names 3-12
storage of I-3
VARPTR 4-286, I-3
versions 1-3
visual page
See display pages

\%

WAIT 4-290

WEND 4-292

WHILE 4-292

WIDTH 4-294

word 2-23

workspace 2-5, 4-44, 4-104
WRITE 4-298

WRITE # 4-299

X

XOR 3-25



The Personal Computer
Software Library

Product Comment Form

BASIC 6025013

Your comments assist us in improving our products. IBM
may use and distribute any of the information you supply in
any way it believes appropriate without incurring any
obligation whatever. You may, of course, continue to use the
information you supply.

For prompt resolution to questions regarding set up,
operation, program support, and new program literature,
contact the Authorized IBM Personal Computer Dealer in
your area.

Comments:

If you wish a reply, provide your name and address in this
space.

Name
Address
City State
Zip Code




Tape Please do not staple Tape

Fold here

................................................................................

2eYee valdO14 ‘NOLvd vO09d
O-8¢€l X08 'O'd

3OIAH3IS ® S3TVS
H31LNdWOD TVYNOSH3d WAl

338S3HAAV A8 dIvd 39 711IM 3DV LSOd

ZEYEE VAIHOTd ‘NOLVH vOO8  €2F "'ON LIWH3d  SSV1O LSHid

TIVIN A1d3H SSINISNE

S31V1S GILINN

JHL N}
a3TIvia 4i
AHVSS3IIIN
39V1S0d ON




The Personal Computer
Software Library

Product Comment Form

BASIC 6025013

Your comments assist us in improving our products. IBM
may use and distribute any of the information you supply in
any way it believes appropriate without incurring any
obligation whatever. You may, of course, continue to use the
information you supply.

For prompt resolution to questions regarding set up,
operation, program support, and new program literature,
contact the Authorized IBM Personal Computer Dealer in
your area.

Comments:

If you wish a reply, provide your name and address in this
space.

Name
Address
City State
Zip Code




Tape Piease do not staple Tape

Fold here

.................................................................................

2EPEE YAIHO14 ‘NOLvd vO09g
0-8¢€1 X049 'O'd

3DIAH3IS ® SITVS
H31NdWOD TVYNOSH3d N4l

33SS34HAAV A8 Aivd 38 711IM 3DVLSOd

ZEYEE VAIHOTd ‘NOLVY vO08 €21 "ON MiWH3d  SSV1O 1SHid

TIVIN A'1d3H SSANISNE

S31V1S QILINN

JH1 NI
a3anvw i
AHVSSIIIN
39Vv1S0d ON




The Personal Computer
" Software Library

Product Comment Form

BASIC 6025013

Your comments assist us in improving our products. IBM
may use and distribute any of the information you supply in
any way 1t believes appropriate without incurring any
obhgauon whatever. You may, of course, continue to use the
information you supply

For prompt resolution to questions regarding set up,
operation, program support, and new program literature,
contact the Authorized IBM Personal Computer Dealer in
your area. '

Comments:

If you wish a reply, provide your name and address in this
space. '

Name
Address
City : State
Zip Code




Tape Please do not staple Tape

Fold here

..................................................................................

2EYEE YAIHOT4d ‘'NOLVH vO09g
0-8¢€1 X089 'O'd

30IAH3S ¥ S3TVS
H31NdWOD TVYNOSH3d N8I

33SS34AAV A8 Aivd 39 T1IM IDVISOd

ZEPEE VAIHOTY ‘NOLVH VD08 €21 'ON LINH3d  SSV1D 1SHId

TIVIN Ad3H SSANISNg

S$34V1S Q3ILINA

JHL NI
a3Tivin 41
AHVSSIIIN
39v1S0d ON




The Personal Computer
Software Library

Product Comment Form

BASIC 6025013

Your comments assist us in improving our products. IBM
may use and distribute any of the information you supply in
any way it believes appropriate without incurring any
obligation whatever. You may, of course, continue to use the
information you supply.

For prompt resolution to questions regarding set up,
operation, program support, and new program literature,
contact the Authorized IBM Personal Computer Dealer in
your area.

Comments:

If you wish a reply, provide your name and address in this
space.

Name
Address
City State
Zip Code




Tape Please do not staple Tape

Fold here

Zeree valdold 'NOLvd vOO8
0-82¢t X049 '0O'd

30IAH3S ® STVS
H3I1NdWOD TVYNOSHId N4l

33SS34AAV A9 dIvd 38 11IM 3DV1SOd

ZEYEE VAIHOTE ‘NOLVYH YOO8 €21 'ON LIWH3ad - SSVID iSHId

TIVIN A1d3H SS3NISNE

S31V1S Q3LINN

JHL NI
WERIMVE]
AHVSS3I3IN
39v1iS0d ON




=== The Personal Computer
Software Library

Product Comment Form

BASIC 6025013

Your comments assist us in improving our products. IBM
may use and distribute any of the information you supply in
any way it believes appropriate without incurring any
obligation whatever. You may, of course, continue to use the
information you supply.

For prompt resolution to questions regarding set up,
operation, program support, and new program literature,
contact the Authorized IBM Personal Computer Dealer in
your area.

Comments:

If you wish a reply, provide your name and address in this
space.

Name
Address
City State
Zip Code




Tape Please do not staple Tape

Fold here

................................................................................

¢evee vadlgod ‘'NOLvYd vO04d
O-8¢€lL X049 O0'd

3OIAH3IS ® STTVS
H3ILNdNOD TYNOSH3Id NEI

33SS3HAAY AG AIVd 39 T1IM 3OVLSOd

ZEYEE VAIYOTS ‘NOLVH vOOH  £21 'ON LINH3d  SSV1D LSHI4

TIVIN A11d3H SSINISNY

$31ViS 43LINN

JHL NI
a3Tivin di
AYVSS3II3IN
39v1S0d ON




