PC-820IA

na2_"_BﬂS IC

PC-B201A-AM
PT5-211



© 1983 NEC Home Electronics (U.S.A.), Inc.
Personal Computer Division
NEC Corporation, Tokyo, Japan

All rights reserved. No part of this publication may be reproduced in whole or in
part without the prior written permission of NEC Hame Electronics (U.S.A.), Inc.



N:~BASIC

REFERENCE MANUAL



TABLE OF CONTENTS

INTRODUCTION

CHAPTER 1 N32 BASIC Overview
- Operating Modes

- Getting Started with Ngo- BASIC

CHAPTER 2  General Information
- Screen Display
- Statements & Line Numbers
- Special Symbols
- Control Characters
- Error Messages
-+ Program Editing

CHAPTER 3 Expressions and Operations
+ Variables
- Arrays
- Constants
. Type Conversion
- Logical Expressions
Arithmetic
Relational
Logical
Strings . .
- Mathematical Functnons
- Hierarchy of Operations

CHAPTER 4 Ngo2-BASIC Instructions
- System Commands
- Statements
+ Functions

CHAPTER 5 Files
* File Names
- Buffers
+ File Handling
» Precautions for File Crea‘uon



TABLE OF CONTENTS

CHAPTER 6 Machine Language Programming . . . . . . 6-1
- Creating Machine Language Programs 6-2
CHAPTER 7 Ngo2-BASIC Programming . . . . . . . . 7-1
- Recovery from Different Critical
Situations . 7-1
- ProgrammingHints . . . . . . . . .7-6
CHAPTER 8 ErrorMessages . . . . . . . . . . . .81
CHAPTER 9 SamplePrograms . . . . . . . . . . . 9-1
APPENDICES
A. Tables
A1l. ReservedWords . . . . APX Al1-1
A2. Error Codes .. . . . APX A2-1
A3. Control Codes . . . . APX A3-1
A4, CharacterCodes . . . . APX Ad4-—-1
B. MemoryMaps . . . . . . . .APXB-1
C. EscapeSequences ~ . . . . . .APX C-—1
D. Glossary . . . . . . . . . .APXD-1

INDEX . . . . . . . . . . . . . . . . . . .INDEX-1



INTRODUCTION

The Ngp-BASIC Reference manual is a guide to the programming
language used for the PC-8201 personal computer. Microsoft TM s
Ng2-BASIC language, developed specifically for the PC-8201 offers a
wide range of commands and functions, making it very useful and
versatile, :

This Reference Manual was designed for anyone, from beginning to
professional programmers. It is intended to be used in conjunction
with the PC-8201 User’s Guide.

This Manual is divided into ten chapters:

Chapter 1 is an overview of the Ng2-BASIC language. You will
learn about the special features unique to Ng2-BASIC
and its operating modes. This chapter also gets you
started using Ng2-BASIC.

Chapter 2 includes all the general information about the BASIC
language that you will need to know, such as definitions
of statements and symbols used for programming. A
description of the PC-8201 LCD screen display is
included.

Chapter 3 explains how programming expressions are formed
specifically for the Ng2-BASIC language.

Chapter 4 includes complete explanations of the purpose and use
of system commands, statements, and functions avail-
able with Ng2-BASIC.

Chapter 5 outlines information needed for proper file handling.
Chapter 6 describes Machine Language Programming.
Chapter 7 is a guide to actual programming problems that may be

encountered, especially with beginning program-
mers. Programming hints and solutions to program-
ming problems are included.

11—



INTRODUCTION

Chapter 8 contains the causes and what action should be taken
when error messages occur.

Chapter 9 contains a variety of sample programs written in the
Ng2-BASIC language.

Chapter 10 includes the Appendices, offering quick reference tables
’ and guides, memory maps, etc.

The PC-8201 is a very special personal computer. It has its own
specialized built-in BASIC language, along with more easy to read
special Function Keys than any other portable computer avail-
_able. Another unique feature of the PC-8201 is its full screen editing
capzbility which is extremely powerful for a compact portable
computer.

In order to fully utilize the capabilities of the PC-8201, you should
become familiar with the Ng2-BASIC language outlined in this
Reference Manual.

It is best for beginning programmers to review this manual thoroughly
and actually input sample programs with the PC-8201. More
advanced programmers can use this manual as a reference.

The system commands, statements, and functions in Chapter 4 are
presented alphabetically for easy reference. The explanations are all
written in the following format:

FUNCTION: Gives a brief description of a command or
function.
FORMAT: Describes how an instruction is writ-

ten. The following points apply to the
format description for all of the commands
and functions:

1. All capitalized words are BASIC Reserved
Words.

2. All lower case words contained within



INTRODUCTION

angle bracket { ) symbols are para-
meters, which must be supplied by you.

Parentheses{ ) are required to be typed
in as shown in format.

The three types of parameters:

a. A line number — whole numbers are
allowed.

b. A string —enclosed by quotation
marks. Combinations of letters and
numbers are allowed.

c. A variable — constants, numerical
values, or numerical formulas are al-
lowed.

. Braces { } indicate that the enclosed
clause is optional, which you may choose
to omit.

. Brackets [ ] denote that any one of the
enclosed words must be chosen for use.

. Punctuation such as commas, periods,
semicolons, etc., must be included in the
format as written.

. Items preceding the ** " symbol can
be repeated any number of times as long
as they do not go over the length of a
line, which is 255 characters.

. Placement of spaces between reserved
words or parameters within the format of
a command or function is not essential.



INTRODUCTION
SAMPLE
STATEMENT:
DESCRIPTION:

NOTE:

SEE ALSO:

SAMPLE PROGRAM:

+{ Character ) :

+{ Character ) :

This is a sample of the correct format of sys-
tem commands, statements, and functions.

Explains important points for the method
of use for system commands, statements,
and functions.

Describes situations in which problems may
arise if you do nat fully understand the uses
of a command or function.

Consists of other items shared by the
command or function being described.

When included, this is a sample program for
system commands, statements, and func-
tions described.

Indicates that you should press and hold the
Key, then type the specified charac-
ter. The + sign is not to be typed in.

indicates that you should press and hold the
Key, then type the specified charac-
ter. The + sign is not to be typed in.

Symbols used in this Reference Manual:

NOTES to be remembered.

= REFERENCE is made to another chapter, to the
PC-8201 User’s Guide.

:> CAUTION is required when utilizing certain
features of the Ng2-BASIC language.



Ng-BASIC Overview



CHAPTER 1

Ng2-BASIC Overview

Ngo-BAS|C has been designed to fully utilize the many features of the
PC-8201 personal computer. The language that is used is similar to
" many other forms of BASIC language. In certain ways, it differs since
the hardware features of the PC-8201 are different than those on other
computers.

All of the hardware and software features of the PC-8201 are related 10
the Ng2-BASIC language:

Internal and External Features

- Programmable Function Keys
- Real-time Clock

- Sound Generator

- Automatic Power Shut off

- Cassette recorder connector

- RS-232C interface connector
- Dot Matrix Printer connector
- Letter Quality Printer connector (same as above)
- Bar Code Reader connector

+ SIO connectors

- Modem capability

- RAM Cartridges

For a computer of its size, the LCD screen of the PC-8201 can handle
extremely high resolution graphics of 240 x 64 pixels {dots}. - Graph-
ics capability is utilized through programs written in Ng2-BASIC.

You can easily create and modify (edit) BASIC programs using the
PC-8201’s powerful screen editor.  You also have the option to write
and edit programs while in the TEXT mode, and then load them into
the BASIC mode of the PC-8201. This TEXT feature is quite

powerful and versatile.



Chapter 1

Use of the PC-8201 for computer-to-computer communication through
a telephone modem is accomplished effectively.  This is done by using
the TELCOM software feature, along with BASIC operation instruc-
tions, such as ON COM GO SUB.

Large BASIC programs may be written with the PC-8201, since the
memory is expandable to 96K bytes. The PC-8201 comes equipped
with 16K bytes of RAM installed, with one memory bank available for
use. Two other memory banks of 32K bytes each may be utilized if
additional RAM chips or cartridges are instailed in the unit.

The PC-8201 can store up to 21 different files in each memory
bank. This allows for 18 of your own customized files, along with
the three primary files of BASIC, TEXT, and TELCOM. These files
can be accessed faster and easier than with a Disk Drive on other
computers.

Battery power of the PC-8201 is conserved as efficiently as possible due
to the Automatic Shut off feature. This feature is operated by the
POWER instruction, which is proprammed into the PC-8201.

Data stored within the RAM of the PC-8201 is protected from loss by a
back up Power system. This means that a minimal amount of battery
power is used even when the power switch is turned OFF, allowing the
files and programs stored in the RAM to remain intact.



Chapter 1

OPERATING MODES

The BASIC software feature of the PC-8201 has two operating modes,
the Direct Mode and the Program Mode. These operating modes are
used when you are in the BASIC mode of the PC-8201.

As described in the PC-8201 User’s Guide, the BASIC mode is entered
by moving the cursor onto the word BASIC on the LCD screen:

Load Save  MName List 12374

After pressing the Key, the message “Ok’’ will be displayed:

NEC PC-2201 BASIC Ver 1.8 (C) Microsoft
%|2(374 Bytes free

Load " Save " Files List Run




Chapter 1

You can now utilize either the Direct Mode or the Program Mode of the
BASIC feature.

DIRECT MODE

The Direct Mode of BASIC allows an individual program statement,
written in the Ng2-BASIC language, to be executed.  This is done by
typing in the statement and then pressing the Key. The
statements used in the Direct Mode do not have a line number, and
they must conform to syntax requirements of the Ng2-BASIC
language. The Direct Mode is useful for testing a particular
statement. You can then see if the statement acts as you expect it to,
or if it performs a function correctly, without running an entire
program or set of statements.

The variable of a statement used in the Direct Mode is “’held” in the
memory temporarily, while you are working with them.  They may
be erased from the memory by typing NEW and then pressing the
Key. These statements cannot by “SAVED in the RAM or external
devices for future use.

PROGRAM MODE

Statements used in the Program Mode must conform to command
format requirements of Ng2-BASIC. The Program Mode is entered
simply by placing a line number, such as 10, 20, or 30, directly to the
left of a program statement.

The line number and the statement can then be stored in the
RAM. This means that the numbered statement is “held’”” in the
working memory.  This way, multiple statements can be written to
create 'a program. This differs from statements in the Direct Mode
because those unnumbered statements cannot be “SAVED" in the
RAM or on external devices, such as a Data Recorder.  Line numbers
used in the Program Mode can range from O to 65529.



Chapter 1

Once a program has been created, it can be executed by using a RUN
command. The PC-8201 returns to the Direct Mode after a program
has ended.  This means that it switches back to the Direct Mode if a
program finishes running normally, if a program terminates abnormally
due to an error, or if the Key is pressed while a program is
running.

" The PC-8201 is device independent, allowing all of your programming
on the PC-8201 to be done without any peripheral devices attach-
ed. All programs can be written, edited, run, and saved within the
unit itself.  You have the option of attaching a Data Recorder for the
purpose of saving your programs, but it is certainly not neces-
sary. You are not even required to attach a printer since the LCD
screen displays your program for editing and modification.

1-56



Chapter 1

Getting Started with Ng2-BASIC

To begin using the Ngo-BASIC language, get the PC-8201 into the
BASIC Mode.  Your screen should appear as illustrated:

MES PC-821 BASIC Ver 1.8 (02 Microsoft
12374 Buytes free

ik

|

Load " Sawe " Files List Run

The "“Ok’’ message with the flashing cursor appearing on the next line
indicates that the PC-8201 is ready for use and is waiting for
instructions from you. The PC-8201 is now in the Direct Mode,
meaning that you can enter system commands or statements.

When in the Direct Mode, commands and statements are always
executed as soon as they are typed and the Key is pressed.

—z  SeeChapter 4 for a complete list of system commands.

Statements can be entered using either the Direct or Program Mode.

1-6



Chapter 1

Using the Direct Mode
The Direct Mode of Ng3-BASIC allows an individual statement to be
executed. Statements used in the Direct Mode are typed without line
numbers, and the Key is then pressed to execute the statement.
An example of using the Direct Mode:
Type in: INPUT ““Radius of circle”; R
This statement causes the question: “Radius of circle?”” to be printed
on the screen, waiting for your answer to be input.  Input your choice
and press the Key. (For example press b then Key).
Type in: PRINT “Diameter = ";2%R
This statement calculates the diameter of the circle and prints:
Diameter = {result)
on the screen.  (For our example the result will be 10)
Type in: PRINT ““Area = "; 3.14169%R™2
3.14159 is the value of 7.
This statement calculates the area of the circle and prints:
Area = {result)
on the screen.  (For our example 78.5397 will be the result.)
Type in: PRINT “Circumference = *;2%3.14159%R
This statement calculates the circumference of the circle and prints:

Circumference = (result)

on the screen. (The direct made will give 31.4159 as the result of our
example.)



Chapter 1

While in the Direct Mode, the PC-8201 prints an ““Ok’ message on the
screen each time the Key is input at the end of the statement.

The Direct Mode is useful for testing particular statements, or for
performing simple calculations, Most program statements can be
entered in the Direct Mode, but not all can be executed. This is
because some statements need to be executed in conjunction with
other statements.

The PC-8201 retains the vaiue of Radius (R) by holding it in a
temporary working area of the memory. Values will remain until a

CLEAR or NEW command is used, the power switch is turned OFF,
another program is executed or the value is redefined.

Notice whenever you type NEW or CLEAR, the radius loses
its value,

Using the Program Mode
Assume that you wanted to know the diameter, area and circumference
of a circle with a different radius, then you would have to repeat the
whole process described for the Direct Mode. This is where the
Program Mode comes in handy.
Type in the following:

10 INPUT “’Radius of circle” ;R

20 PRINT “Diameter = ;2 %R

30 PRINT “Area = ”;3.14159%R™2

4Q PRINT “Circumference = ;2 3.14 159 %R

50 END

Now type RUN and press the Key.



Chapter 1

If you type the program correctly the question ““Radius of circle?” will
appear on your screen.  Type in a radius value and press the Key.

Now you see the answers:
Diameter = {result)
Area = (result)
Circumference = (result)

Congratulations, you have written your first program. Now SAVE it
inthe RAM. Press the f.2 Function Key and then type:

“RADIUS.BA” and press the (J) Key.

Press the f.10 Function Key (hold down and press f.5) to go to
the MENU and you will see your program name among the other files.

0 By pressing the key, you change function keys f.1,
.2, £.3, .4, 1.5, to 1.6, £.7, 1.8, £.9, and £.10 respective-

ly. So, by holding down and pressing f.5 you have
entered the f.10 Function Key (MENU).

1—-9/{1-10 blank)



(General Information



CHAPTER 2

General Information

Screen Display

" The Liquid Crystal Display screen can display 8 lines of 40 characters
per line.  The first 7 lines are usually available for your use, depending
on the mode of the PC-8201.  The last line usually displays the names
of the functions corresponding to the Function Keys on the keyboard.

The character positions on the screen are numbered O through 39
columns from left to right, and 0 through 7 lines from top to bottom:

0.0 3%9.0

0.7 39.7

Each position is addressable by using the LOCATE statement.

Dot graphics may be displayed on the screen of the PC-8201. The
screen consists of 240 pixels (dots) across from left to right, with the
columns numbered 0 through 239. There are 64 pixels from top to
bottom on the screen, with the lines numbered 0 through 63:

0.0 - 239.0

0.63 239.63




Chapter 2

Each dot is addressed using the PSET statement.

Statements and Line Numbers

BASIC programs consist of statements, which give the PC-8201
instructions. These statements can perform arithmetic operations,
assign values, input data, output data, transfer the sequence of
execution of certain program functions, test certain conditions within a
program, etc.

A program line consists of one or more statements. If there is more
than one statement in a line, the group of statements are called
compound statements, Compound statements must be separated by a
colon (:).

Each program line begins with a line number, which indicates the
sequence in which they are to be executed and stored in the
memory. Program execution starts with the lowest numbered line
and then continues in programmed sequence. Acceptable line
numbers can range from O to 65529. Each program line cannot
exceed 255 characters.

EXAMPLE OF APROGRAM LINE FORMAT:
20 LetA=1:LetB=2:LetC=3

The above program line is a compound statement with the individual
statements separated by a colon, and a line number of 20.



Chapter 2

Special Symbols

In addition to regular arithmetic symbols, such as +, —, %, and /,
Ng2-BASIC reserves several symbols for special purposes:

. Period (.} is used to reference the last program line input. It is also
used to point to the line in which an error occurs during program
execution.

1

. Hyphen (-) indicates a range, in place of the word “‘to”, such as

1.19. The hyphen is the same character as the minus sign.
. Comma (,) separates variables or data within a PRINT command into

unit widths called Space Zones.

. Colon (:) is used to separate compound statements within one
program line, which saves memory space.

- Semicolon (;) is usually used in the PRINT or INPUT state-
ment. It directs the cursor to the position immediately following
the last printed character on the same line.

- A Single quotation mark  is used to precede remarks or comments
in a statement. These remarks are not executed when the

program is run.

- Double quotation marks (* ") are used to enclose character
strings.  The strings cannot be longer than 255 characters.

. Question mark (?) is the abbreviation for the PRINT command.

- Blank spaces are generally ignored by the PC-8201.



Chapter 2

Special Symbols following Variable Names:

Symbol Format Variable
Percent (%) (variable}%  Integer
Exclamation (!} (variable)! Real Number

Single Precision

Pound (#) {(variable}#  Real Number
Double Precision

Dollar {$) (variable}$  Character String

Control Characters

The characters recognized by Ng2-BASIC include:

Upper case alphabet A-Z

Lower case alphabet a-z

Numbers 0-9

Special symbols — PRV H S &=

(VLT /@+~ et

, and up to a total of 125
programmable graphics characters

Graphics characters



Chapter 2

Error Messages

Hf an error occus during program execution, thei PC-8201 will
terminate the program and return to the Direct Mode.

The error message is displayed on the screen if the PC-8201 is in the
_Direct Mode of BASIC. While in the Program Mode, the line
number where the error occurred is displayed along with the error
message.

=5 See Chapter 7 for the list and explanations of error
messages.

Program Editing

The two editing modes featured by the PC-8201 are the Direct Mode
in BASIC and the TEXT mode. You can edit your programs in
either mode, depending upon your preference.

Screen Editing of Programs

Editing programs in the BASIC mode is done by modifying program
lines. Wnhen you edit in this manner, the Key must be pressed
after your chahgés have been made in order to be entered into the
memory. Remember that a program line cannot be over 254
characters long, which is more than 6 full lines on the screen.  Itis
recommended that lines have less than 200 characters, so they may
be LISTed and edited.

The following operations are used to edit (modify) program
lines. First list the line by typing LIST and then the line number
following by the Key.

INSERT:

1. Move the cursor to the place where the character is to be
inserted using the Cursor Movement Keys.



Chapter 2

2. Press the Key.

3. Type the character(s) to be inserted.

4, If other insertions are needed on the same program line, move
the cursor to the desired positions again using the Cursor
Movement Keys, then press Key and insert the character(s).

5. Press the Key to enter your insertions into the memory.

6. Keep in mind that when INSERTion editing in the Direct Mode
of BASIC is used, the INSERT is active until a Key is
pressed, or a cursor movement key is entered.

DELETE:

To delete characters that precede the cursor in a program line, LIST
the line, then:

1. Move the cursor to the right of the character to be deleted.
2. Press the Key.

3. Press the same key as many times as needed to delete
characters to the left of the cursor.

4. Press the Key to store the changes.

To delete characters that follow the cursor in a program line, LIST
the line, then:

1. Move the cursor onto the first character to be deleted.
2. Press and hold the Key and then input the key.
3. Repeat the same process as many times as needed.

4. Press the Key to store the changes.



Chapter 2

To delete an entire line:

1. Type the line number to be deleted, with no characters
following it.

2. Press the Key.

Another way to delete an entire line is to LIST the line then:

1. Move the cursor to the space between the line number and the
body of the statement.

2. Press and hold the Key and input the E Key, then press
the Key.

This procedure of holding the Key down while
inputting a character will appear in this manual as +
( character ). Do not input the + sign, because it just
signifies that the two keys are heing entered simultaneous-

ly.
ADD:
A new line can be added at any point in the program.

The program is executed following the sequential order of line
numbers. The PC-8201 will put the line numbers in increasing
order, regardless of what order the lines were typed in.

To rewrite a line just type the old line number followed by the
contents of the new line, even if you are at the end of the
program. As stated above, the PC-8201 will put the lines in
order when the program is LISTed.



Chapter 2

Other Keys Used for Screen Editing

-
)4
o

+
.

~

l P

STOP

+
(@)

)
+
m

-

+
A

+
(o

e + M

" g
q
I

.

HE B
+
o}

+Q

+S

4+ u

-

Moves the cursor directly to columns 8, 16, 24, and 32
of the line in which the cursor is positioned.

Terminates the EDIT mode.

Same as the Key.

Erases characters from the position directly to the
right of the cursor, all the way to the end of the
program line.

Same as the Key.
Same as the 2] Key.

Moves the cursor to the cursor “‘home’” position, in the
upper left corner of the screen.

Clears the screen and moves the cursor to the home
position.

Same as the Key.
Continues the scrolling of a program listing on the
screen after the LIST instruction has been given and

the listing was interrupted.  See + 8.

Interrupts the scrolling of a program listing on the
screen after the LIST instruction has been used.

Same as the Key.

Erases a line displayed on the screen. The internal
memory is not altered.



Chapter 2

Editing Programs Using the TEXT Mode

Programs can be edited in the TEXT mode by entering EDIT and
then pressing the Key. To exit the TEXT editing maode, press
the @ Key twice or the .10 Function Key (Key and f.5).

In this mode, any characier typed is inserted one at a time, at the
" location of the cursor. Unlike editing in the Direct Mode, every
modification that you make in a program line is entered into the
memory of the PC-8201 immediately, before you press the Key.

Use of the Key while in the TEXT editing mode will indent
the line being typed. The Key must be used to end a program
line being typed or modified in this mode, or else the line will appear
in the program ou¥ of sequence.

The PC-B201 will check a newly input program line in the TEXT
editing mode. If a line with only a line number and no characters
following it or if a line which does not contain a line number is input
by you, the PC-8201 will not store it in the memory. When this
type of line is input the message ‘Text ill-formed” will be displayed
on the screen and a “BEEP’” sound will be generated. You will
have to type in a correct program line or delete the line number from
the screen to avoid this error message.

The TEXT editing mode is most useful if you want to copy a section
of a program into another progrem by using the PASTE buf-
fer. The pattern searching function of the FIND command is also
very helpful in locating certain words, strings, etc., when you are
editing programs. PASTE and FIND are described fully in the
User’s Guide.

2-9/(2—10 blank}



Expressions and
Operations



CHAPTER 3

Expressions and Operations

Variables

" Variables are distinct quantities for different types of elements within
your Ng2-BASIC programs that are represented by unique
names. The two types of variables used are numeric and string
variables.

An example of a numeric variable is when you want to use the
element CHARACTERS within a program, and 40 characters are
needed. You can then assign the name “CHARACTERS"” to
represent the quantity of 40 items of that variable.

When you assign variable names, try to use names that are meaningful
to you, and related to the element that they represent. The
Ng2-BASIC language utilizes only the first two characters of the
variable name to distinguish between variables. A variable type
specified character placed at the end of the variable name, indicates
whether a variable is string or numeric.

Variable names may be any length up to 255 characters, however
keep in mind that the longer the variable names the less RAM
available for your sub-sequent use. The recommended characters to
use for a variable name are fetters and numbers.

The first character for the variable must be a letter.  There are also
certain words that are reserved for use within Ng2-BASIC that are
not available for your use, such as all BASIC Reserved Words.



Chapter 3

Examples of Reserved Variables

TIMES . This varizble holds the time in hours, minutes
and seconds (HH:MM:SS).

DATES . This variable holds the year, month and date
(YY/MM/DD).
ERL . This variable holds the line number where an

error occurs during program execution.

ERR . This variable holds the error code which causes
the interrupt.

(=5~ See Appendix A1l for a complete listing of Reserved
Words.

Before utilizing a variable within your program you should initialize
it to some type of a value. As an example we will initialize
CHARACTERS with the following statement:

CHARACTERS=40
If you do not initialize your variables, then the numeric variables are

automatically init'alized to zero, the character variables are initialized
10 empty (null) string (* ).



Chapter 3

Types of Variables

The last character of a variable name determines the type of
variable. The 4 types of variables are, integers, single precision real
numbers, double precision real numbers, and string variables.  If the
variable type is omitted, it is assigned single precision (!} by default.

" Following is a table of the different types of variables:

[ ]
Character Numeric
Variable Variable
]
|
Real Number Integer
Variable Variable
1
Single Double
Precision Precision
Fixed Floating Fixed Floating
Decimal Decimal Decimal Decimal

Variable type can be designated by using declaration statements.
Examples of different types of variables:
A$ String variable
Al or A Single precision real number variable (default)
A# Double precision real number variable

A% Integer variable



Chapter 3

As you can see in the above example the variable name “A’ in
conjuction with special characters represent 4 different types of
variables.

Please refer to DEFINT, DEFSNG, DEFDBL and
DEFSTR commands, in Chapter 4.

String Variables

String variables are a collection of characters with a non-numeric
value. String Variables are composed of letters (both upper and
lower case letters}), numbers or special symbols. If double guota-
tions are used inside the character variable, CHR$(34) should be used
to enter the double quotations. The maximum length of a String
Variable is 255 characters, and it should not be used in an
arithmetical operation.

Numeric Variables
Numeric variables are integers or real numbers, represented by a
numeric variable name.

Integer Variable

In Ng2-BASIC, integers are numbers that have the following
characteristics:

- Numbers with no decimal point.
« Numbers in the range from —32768 to +32767.
* Numbers followed by % (percentage sign).

EXAMPLES: NUMBER% = 1234
NUMBER% = 123%



Chapter 3

Real Number Variables

Real numbers are subdivided into single precision format and double
precision format. Both single and double precision can have the
numbers expressed in either fixed decimal form or floating decimal

form.

" A fixed decimal form number may have a decimal point (a decimal
point is assumed at the end of the number if it is not specified).

A floating decimal form number represents its value in scientific
notation with an exponent.
Single Precision Format

The floating decimal, single precision number has two parts, the
magnitude and the exponent.

The magnitude is stored in 7 significant (high order) digits internal-
ly. When displaying the numeric value, the seventh digit is rounded
off and trailing zeroes are deleted to show 6 digits or less on the
screen.

The exponent portion is attached to the magnitude. It consists of
the letter E, a sign, and a two digit number. The valid exponent
number is from 01 to 38.

Single precision numbers have the following characteristics:

Real numbers of less than 7 digits.

Real numbers followed by an exclamation mark (!). The
exclamation mark is optional.

- Real numbers range from —1.70141E+38 to 1.70141E+38.

+ Exponent is indicated by E.



Chapter 3

EXAMPLES: Fixed decimal: NUMBER = 1.23
NUMBER! = 3.14!

Floating decimal: NUMBER = —7.06E+06
NUMBER! = 1.23E+10!
Double Precision Format

The double precision floating decimal number consists of magnitude
and exponent as in the single precision format.

The magnitude is stored with a precision of 17 significant digits and
can be displayed in up to 16 digits, the 17th digit is rounded
off. The exponent is indicated by the letter D, followed by a sign
and a two digit number. The valid exponent range is from 01 to
38.
Double precision numbers have the following characteristics:

- Numbers containing from 8 to 16 digits.

- Exponent indicated by the letter D,

. Numbers followed by a pound sign (#}.

EXAMPLES: Fixed decimal: NUMBER # = 123456789012345
NUMBER 3 = 0657036.1543976

Floating decimal: NUMBER # = —1.09432D+06
NUMBER # = 0.3141592653D+01




Chapter 3

Array

A group of logically related variables designated by the same variable
name is called an Array. The items of an array are called
elements. Each element is assigned a unique number called the
subscript, to distinguish each of them.

" Array values are indexed by subscript value. More than one
subscript may be designated, thus specifying the dimension of the
array. A single dimension array has one subscript index:

Subscripts: 0 1 2 3 4 5
Values: 11 91 36 12 19 50

When the elements of an array are designated with two subscripts
then the array has two dimensions. This is explained with the
following example. Let the array “ITEMS%" be two-dimensional to
a size of 4 rows by 8 columns. To reserve memory space for the
array, the statement DIM ITEMS%(3,7) would be used.  Following
is the layout of the location of each element of an array ITEMS% :

COLUMNS

0 8|12} 99 0| 70|88 123 9
1 23 (88| 56|91 | 87| 72|192 23

ROWS

As shown in the table, in order to access the fourth element of the
second row, you will have use the name ITEMS%(1,3), this element
contains the value 91.



Chapter 3

The subscripts are always enclosed in parentheses and they have a
numeric integer value greater than or equal to zero. Numeric
variables that follow the above rules can also be used when
designating subscripts.

Ngo-BASIC requires information such as the maximum number of
elements within each dimension of an array, so storage space can be
allocated for the entire array. This is possible through the use of a
DIM statement.

Sample format: DIM ITEMS%(I,T)

In this example “I'" represents the ROWS and “T'' represents the
COLUMNS. Notice that although there are 4 rows and 8 columns
for each row, DIM(3, 7) was specified. This is because the DIM
statement starts reserve space beginning with element 0. We could
have started with row1 and column 1, but memory space would have
been wasted.

The layout for the array with dimensions (3,7) is addressed by
subscripts according to the following table:

COLUMNS

0 |(0,0){(0,1}{(0,2)|(0,3) |(0,4) |(0,5) |(0,6) |(0,7)
(1,00[(1,1)]€1,2){(1,3) |(1,4) |(1,5) | (1,6) |(1,7)
2 [(2,0((2,1)}(2,2)|(2,3) |(2,4) |(2,5)|(2,6) |(2,7)
3 [(3,01[(3,1)[(3,2){(3,3) |(3,4) (3,5) | (3,6) |(3,7)

ROWS

An “array can be expanded to include over 100 dimensions,
(subelements of each element). The number of elements of an
array is limited by the amount of memory space available.



Chapter 3

The array names, like the four different variable names, could
represent the same types of information. The same rules as in the
variables govern the different types of arrays. In addition to those
rules, all the elements of an array can be only of one type. Also, if
the array is a character array, no element should be longer than 255
characters.

Constants

Constants are values that you assign to variable names for use
throughout your program or while in the Direct Mode. Constants
are elements that do not and cannot change during the execution of
a program.

Constants could represent the same types of information as vari-
ables. The same rules regarding designation of variables apply to
constants.  The following table illustrates types of constants used in

BASIC:
L |
Character Numeric
Constant Constant
1
[ 1
Real Number Integer Number
1
[ ]
Single Precision Double Precision
Fixed Decimal Ig:;;‘;% Fixed Decimal gg;;r;gl

3--9




Chapter 3

Numeric Constants

A numeric constant has between 1 and 16 digits, either positive or
negative,  Numeric constants cannot contain any spaces. When
numeric constants of more than 16 characters are used, the least
significant digits are rounded off by Ng2-BASIC, and the number will
be displayed in floating format. The following numeric constants
are valid:

25, 234567
-1234.01 32760
12345678901.23 1234567890123
3.14159

0000002

It is possible to enter numeric constants longer than 16 characters
using the following format:

{+ or I xxxxxxxxxxxxxxxD(+ or —)nn
where:

(+ or =) is the sign of the number. The minus sign is required
with negative numbers.

X is the number with up to 16 significant digits.
D represents the Exponent (the power of 10)
nn is the exponential value in the range of —38 to +37.




Chapter 3

The Exponent in this format can be O but never blank. The
following are valid numeric constants in D format:

1.2568D10 8.254681325257D—30
—1.234567890123D-12 2358.25624798D2

1235D—-30 1.2D20

Integer Constants

An integer constant is a special type of numeric constant that is a
whole number written without a decimal point and in the range of
—32768 to +32767. For example, the following numbers are all
integer constants:

1 0 —-1234
25 —15 100
32767 —32767 10000



Chapter 3

Character Constants

A character constant is one or more alphanumeric and/or special
characters, enclosed in double quotation marks (”). Include both
the starting and ending delimiters (quotation marks) when typing a
character constant in a program. Each character can be a letter, a
number, a space, or any ASCII character except a control character
and quotation marks. In such cases use CHR$ function and
concatenate {connect) them into the string with the + sign.

The following is an example of acceptable character constants:

Character Constant

“Another "+CHR$(34)+ ‘Constant”’+CHR$(34)

Internal Representation

Another ““Constant’’

3-12



Chapter 3

Type Conversion

Numeric variables can be converted from one type to another in
Ngz-BASIC. Character constants can be converted into numeric
types and vice versa. The following are rules for type conversions:

1. When assigning variables, the type of numeric value being
transferred depends upon the type of receiving variable.

EXAMPLE:

Statement Variable Value
ABC%=1.234 ABC% 1
ABC=1.234 ABC 1.234

2. Numeric types are arranged in the order of precedence:

Integer

Single Precision

Double Precision
Integer, as shown abive, is the Iowest degree of preci-
sion. Arithmetic operations are performed in numeric values
with the same degree of precision. [f different types of
numeric values are involved in an operation, the lower ordered
values are converted into the higher ordered format first, before
the operation is performed.

EXAMPLE:

103#/3 is first converted to 10#/3#



Chapter 3

3. All numeric values used in logical operations are converted into
integers.  Integers are returned as the result of the operation.

EXAMPLE:

Statement Variable Content

A#=12.34 A# 12.34000015258789
B=NOT A# B -13

4. Digits after a decimal point are omitted when real numbers are
converted to integers. Numbers converted outside the valid
range for integers (—32768 to +32767) would cause an
overflow error.

EXAMPLE:

Statement Variable Content
A%=34.4 A% 34
B%=34.5 B% 34

5. Values of Double Precision real numbers are rounded to 7
signigicant digits when converting to Single Precision num:
bers. An overflow error could occur if rounded values exceed
the valid Single Precision range of -1.7014E+38 to
+1.70141E+38.

EXAMPLE:

Statement Variable Content
A#=1.23456789%# A% 1.23456789
BI=A# B! 1.234567

3-14



Chapter 3

6. Numbers within strings can be converted to numeric variables
by using the VAL function.

EXAMPLE:

Statement Variable Content

A#=12.34 A# 12.34000015258789
error factor

A!=12.34 Al 12.34

A#=VAL(STR$(A!)] A# 12.34 no

error factor

7. Numeric variables can be converted into strings by using the
STR$ function.

EXAMPLE:

Statement Variable Content
Al=1.234 Al 1.234
A$=STR$(A!) A$ " 1.234"



Chapter 3

Logical Expressions
A Logical Expression is the specification of a series of operations to
be performed on variables, constants, and functions, resulting in one
value.  The types of logical expressions used in Ngp-BASIC are:

+ Arithmetic expressions

- Relational expressions

- Logical expressions

- String expressions

Arithmetic Expressions:

Priority Operator Function
1 -~ Exponentiation
2 - Negative sign
3 * Multiplication
3 / Division
4 \ Integer division
5 MOD Modulo division
(Remainder)
6 + Addition
6 — Subtraction

An arithmetic expression is defined as:

{ arithmetic term ) [ (arithmetic operator ) ( arithmetic term )]



Chapter 3

The follwing are examples of valid arithmetic expressions:
NOT A% Integer result
A%+23 Integer result

SUB.TOTAL+CURRENT*UNIT.PRICE  Single precision

ONE%*THREE Single precision
+1/-4 Single precision
3.14159%RADIUS™+2 Single precision
3%4/(PI#*R"2) Double precision

Rules for arithmetic expressions:

1. When there are different operators with the same priority,
calculation is performed from left to right.

2. All arithmetic expressions are calculated from left to right with
the highest priority (the lower priority number) operations
being calculated first, followed by the lower order ones.

3. Lower priority expressions enclosed in parentheses in an
arithmetic expression are performed before the higher priority
ones {outside the parentheses).

4. Priority order is in effect inside parentheses.
5. Any division with zeroes will cause an error.  This is also the
case if a zero is raised to a power of a negative number for

example (07—6).

6. An overflow error occurs whenever the results of an operation
exceed the assigned variable type limits.



Chapter 3

Example:

Statement
ZEX+Y
X/Y+2
(X+Y)/2
XT242%X+1
XT(Y7T2)
XY 72
Xk (—X)
2/0

0/-1
10\3

15 MOD 4

Meaning

ZX+Y

X
v 2

X+Y
2

X2+2X+1
x(Y?)
(XY)2

Y (=X)

A
10
INT(Z)

15
15—4(INT( 2 )

Result

?/0 ERROR



Chapter 3

Relational Expressions

A Relational Expression is defined as:

( arithmetic term ) ( relational operator ) { arithmetic term )
or

{ string term ) { relational operator ) { string term )

The following are all acceptable Relational Expressions:

STRINGS$ ) “HELLO" String relation
NUM1 ¢ = NUM2 Numeric relation
NUMBER% ( ) 225%(5—O0NE) Numeric relation

with arithmetic
sub-expression

539 = ONE Numeric relation



Chapter 3

Logical Expressions

A Logical Expression operates on integer values and ‘produces an
integer value. A Logical Expression is defined as:

{ arithmetic term Y { logical operator ) ¢ arithmetic term )

A logical operator is any of the following:

Operator Function

NOT Invert bits (ON to OFF; OFF to ON) in one term
AND Tests for bit ON in both terms

OR Tests for bit ON in either term

XOR Tests for bit ON in either but not both terms

IMP Tests both terms, it returns bit OFF if the first

term bit is ON and the second term bit is OFF

EQV Tests for equality, it returns bit ON only if both
bits are ON or both OFF

@ The binary representation of ON is —1, and O is the
binary representation of OFF.

Logical Expressions are comparisons between the corresponding
upits” of the two terms of the expression. A bit is a binary {either
ON or OFF) piece of information.  An integer value is composed of
sixteen bits. A decimal integer is expressed in bits by converting
the number to base 2 notation and adding any leading Dbinary zeros,
if necessary. The following is a list of some equivalent values in
decimal and binary:



Decimal

23

100

-1

Binary Bits

0000000000000000
0000000000000001
0000000000000101
0000000000010111
0000000001100100

1M111111111111 11

Chapter 3

Note that a decimal zero has all zero bits and a decimal minus one
This relationship between decimal and binary is
Logical expressions are
valid wherever arithmetic expressions are allowed, however, both
integers. The following tables are called truth
of the logical operations

has all one bits.
used in the result of relational expressions.

terms must be

tables. They show graphically the results
for every possible combination of two bits:

NOT

NOT A%

A% OR B%

-1
0




Chapter 3

AND XOR

A% B% A% AND B/ A% B% A% XOR B%
0 0 0 0 0 0
0 -1 0 0 —1 -1
-1 0 0 -1 0 1
~1 -1 —1 -1 -1 0

IMP EQV

A% B% A% IMP B% A% B% A% EQV B%
0 0 -1 0 0 -1
0 -1 -1 0 —1 0
1 0 0 -1 0 0
-1 -1 1 -1 -1 -1

The following are examples of logical expressions:

NUM1% OR NUM2%

1% AND 23

{% AND (NUMBER XOR TOTAL) IMP TEST%

(A AND B) OR (A AND C)

STRINGS ) = “A” AND STRINGS (= 2"

Logical expressions are normally used to evaluate terms that are the
result of relational expressions (bits all ON or all OFF).
since the logical expression compares all sixteen bits of each of the
terms there are many other uses for logical expressions.
more common of these other uses is binary coded information, or

bit switches"'.

However,

One of the



Chapter 3

Some examples will illustrate how the logical operators work on
non-relational values:

15 AND 14 0000000000001111  {15)
AND  0000000000001110  (14)
0000000000001110  (14) (TRUE)
10 OR 23 0000000000001010  (10)
OR 0000000000010111 _ {23)
0000000000011111  (31) (TRUE)
NOT 153 NCT  0000000000011001  (153)
1111111111100110  {(—154) (TRUE)
25 XOR 13 0000000000011001  (25)
XOR _ 0000000000001101  {13)
0000000000010100  (20) ({TRUE)
234 EQV 3429 0000000011101010  {234)

EQV  0001110101100101  (34299)
1111001001110000 (—3472) (TRUE)

56 IMP 720 0000000000111000  (56)
IMP 0000001011010000  (720)
1111111110101 (—41) (TRUE)

As you can see, there does not appear to be a relationship between
the decimal terms and the decimal result of the expression. How-
ever, using the binary representations of the integers, there is a
definite, Boolean, relationship. This can be utilized to make an
integer value contain sixteen binary (ON/OFF) switches. When
using binary switches the logical expressions can be utilized to set or
mask the number to expose the bit switch desired.



Chapter 3

String Expressions

Character strings can be joined together, broken down into shorter
strings, and sorted into order.

Connecting Strings:

A string can be concatenated (connected end to end) with another

string by the “+" operator. The resulting string cannot be longer
than 255 characters.

EXAMPLE:
Statement Variable Content
A$="NEC " A$ NEC

B$=CHRS$(34)+ "PORTABLE "
B$ “PORTABLE

C$="COMPUTER"+CHR$(34)
c$ COMPUTER"

D$=A$+B$+C$ D$ NEC “PORTABLE COMPUTER"



Chapter 3

Comparing Strings:

When sorting strings, relational operators are used for the comparison
of letters and numbers. Strings are compared one character at a
time, starting from the beginning until there are no more related
conditions.

Two strings are equal if they have the same character in the
respective position, and both strings have the same number of
characters.  Otherwise, they are not equal.

EXAMPLES:

Relational Testing Result
“AA” { "AB” TRUE
“BASIC"="BASIC"” TRUE
“PENX" { "PEN" FALSE
“em’ = “'CM" FALSE
"em" ) “CM” TRUE
"DESK"” ( “DESKS" TRUE



Chapter 3

Mathematical Functions
Mathematical functions are designated by enclosing the numeric value
or numeric variable in parentheses and placing the value or variable
after the function name.
Most functions do calculations in single precision format. For
integer functions all real numbers are converted into integers before
function operation is performed.
EXAMPLES:

A=SIN(3.14) + COS(3.14)

PRINT 2, 2%2, SQR(2)

See Chapter 4 for a complete listing of functions available
with Ng2-BASIC.

Mathematical formulas are a combination of numbers and variables
related with arithmetic operators.

EXAMPLES:
“N82'+''‘BASIC"
3.14159%2
10+3/5
A+B/C-D
TAN(DO)}+COS{DO)
1013/2

13 MOD 2




Hierarchy of Operations

Ng2-BASIC operations are performed in the following order:

Precedence

Expressions enclosed by parentheses

Functions

Exponential arithmetic ()

Negative sign (—)

Multiplication and division (*,/)

Integer division {\)

Modulo division (MOD)

Addition and subtraction (+,—)

Relational operators (=,{,),{ ),{(==), etc.)

Logical operator NOT

Logical
Logical
Logical
Logical

Logical

operator

operator

operator

operator

operator

AND

OR

XOR

MP

EQV

3—27/(3—28 blank)

Chapter 3



Ns:.-BASIC
Instructions



ABS

* FUNCTION:

FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

SAMPLE
PROGRAM:

CHAPTER 4

Ng2-BASIC Instructions

This function provides the absolute value of a
number.

ABS{ { numeric expression ))

PRINT ABS(—8.+7.9)

The ABS function is used to determine the absolute
value of a ( numeric expression ), e.g. without a
HE o " sign.

10 FOR X=-3 TO 3

20 PRINT

* IS

‘THE ABSOLUTE VALUE OF ";X;

"3 ABS(X)

30 NEXT X

48 END



Chapter 4

AND

FUNCTION:

FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

NOTE:

SEE ALSO:

This logical operator is used to test multiple
relational expressions.

{ operand 1) and ( operand 2}

IF A=5 AND B=6 THEN 30

And is a logical operator that performs tests on
multiple relational expressions, bit manipulation, or
Boolean operations. It returns either a non-zero
(true) or zero (false) value.

For the conditional operation to be true, both
( operands ) must be true. If ane or both is false,
then the conditional operation is false. The table
below indicates the evaluation process:

—1 AND —1--—1 (TRUE AND TRUE -—— TRUE)
—1 AND 0~ 0 (TRUE AND FALSE— FALSE)
0 and —1— 0 (FALSE AND TRUE — FALSE)

0 AND 0-~0 {FALSE AND FALSE — FALSE)

For more details on logical operations
and relational expressions see Chapter 3.

Logical operators work by converting their
( operands » to sixteen bits binary inte-
gers.  Therefore, the { operands ) must range from
32768 to +32767. If operands are not within
this range, an “?0V Error” (Overflow) message will
appear on the screen.

Functions NOT, OR, XOR, EQV, IMP, and Chap-
ter 3.



Chapter 4

EXAMPLE: INTEGER BINARY BITS
15 0000 0000 0000 1111
14 0000 0000 0000 1110

After you input the statement PRINT 15 AND 14,
the integer 14 appears on the screen, whose binary
representation is 0000 0000 0000 1110. By look-
ing at the above table in the DESCRIPTION
section, notice that the computation is correct.

SAMPLE
PROGRAM:
18 A=5: B=6:C=7
40 IF A=5 AND C=6 THEN 70O
58 PRINT " A IS NOT 5, OR B IS NOT 6°
78 IF A=5 AND C>6 THEN 90
80 PRINT "A IS NOT 5, OR C [S NOT GREATER

96

THAN 6°
PRINT "A IS S, B IS 6, AND C IS
GREATER THAN ¢°

10@ END



Chapter 4

ASC

FUNCTION:  This function provides the ASCII value of a charac-

ter.

FORMAT: ASC({ string ) )

SAMPLE

STATEMENT: PRINT ASC(“AB")

DESCRIPTION: The ASC function determines the ASCI| code of a

character, or the ASCII code of the first character
in the specified ¢ string ). If the ( string) is null
{an empty string) the “2EC Error” (illegal function
call) message will be displayed on the screen.

/ For more detail on ASCII codes see the
Table of Character Codes,

SEE ALSO: The CHRS$ function and Table of Character Codes.
SAMPLE
PROGRAM:

19 PRINT °THE ASCII VALUE OF D IS's

20

30
a0
69
70

88

ASC('D")

PRINT ° THE ASCI1 VALUE OF DAY IS
ALSO" ;ASC( "DAY ")

PRINT °‘PRESS ANY KEY TO CONTINUE..."
IF INKEY$="" THEN 40

FOR X=32 TO 122

PRINT “THE ASCII VALUE OF "3CHRS (XD 3"
IS ;ASC(CHR$(X))

NEXT X



ATN

Chapter 4

FUNCTION: This function provides the inverse tangent.

FORMAT: ATN( { numeric expression )}

. SAMPLE

STATEMENT: PRINT ATN(.05)

DESCRIPTION: The ATN function, used in trigonometric applica-

tions, computes the inverse tangent (arc tangent) of
an angle. The { numeric expression ) is the angle
expressed in radians, not in degrees.

The value obtained is within a range from —%/2 to
T/2 (—90 to +90 degrees).

NOTE: To convert values from degrees to radians multiply
the degrees by .0174533. To convert values from
radians to degrees multiply the radians by
57.29578.

SEE ALSO: TAN, COS, and SIN functions.

SAMPLE

PROGRAM:

10 FOR I=1 TO 5

20 PRINT "ENTER THE TANGENT OF AN ANGLE®

38 INPUT R

40 PRINT "THE ANGLE IS ";ATN(R);"
RADIANS, WHICH IS ";ATN(R)*57.2958;
*DEGREES®

50 NEXT



Chapter 4

BEEP

FUNCTION: This command is used to generate a “BEEP" sound
from the PC-8201.

FORMAT: BEEP

SAMPLE
STATEMENT: BEEP

DESCRIPTION: The duration of the beep is approximately 0.12
second.

NOTE: The BEEP has no parameter.

The statement PRINT CHR$(7) has the same
function as the BEEP command.

SEE ALSO: The SOUND command.

SAMPLE
PROGRAM:
19 FOR I1=0 TO 6
20 READ W:BEEP
30 FOR J=8B TO W:iNEXT J

40 NEXT 1
58 DATA 10,100,10,10,100,300,100,100

4-6



BLOAD

FUNCTION:

FORMAT:

SAMPLE
STATEMENTS:

DESCRIPTION:

Chapter 4

This system command is used to load a Machine
Language file into the memory.

BLOAD “{{external device name):} {file
name )"’

BLOAD “"MACHLG”
BLOAD “CAS:HEXCAL"

The BLOAD command loads a Machine Language
program file specified by ( file name ) into the
memory. The PC-8201 loads a Machine Language
file from RAM if ( external device name ) is
omitted.

Loading is not possible if a file in RAM is written
via the BSAVE command without the file
type. However, file type may be omitted when
the actual loading process is executed.

If an execute start address is designated when a
*.CO" file is created, this ".CO" file is executed as
a subroutine immediately after it is loaded.  There-
fore, an additional EXEC statement is not required
after a “.CO" file is loaded.

The PC-8201 returns to BASIC from the subroutine
by using a RET Machine Language instruction. It
loads from a data recorded if ""CAS:” is designated
for ( external device name). The PC-8201 loads
the first file it locates if € file name ) is omitted.

The and Keys can be pressed simulta-

neously to interrupt the execution of a BLOAD
“CAS:” command.



BLOAD?

FUNCTION:

* FORMAT:

SAMPLE

STATEMENT:

DESCRIPTION:

Chapter 4

This system command is used to compare/verify a
Machine Language program currently in the memory
with another program saved on cassette tape.

BLOAD? ‘" {{external device name):} (file
name ) "’

.BLOAD? “CAS:MATHLG"”

A Machine Language program in the memory and
another Machine Language program on cassette tape
can be compared and verified. This process is
used to determine if a program file has been saved

properly.

Execute a BLOAD? ““{ CAS:file name )"’ command
only when a data recorder is connected to the
PC-8201. If the content of both programs are
identical, the PC-8201 displays an 'Ok mes-
sage. Otherwise, if any error has occurred during
the load process, the PC-8201 will output the
message “BAD" and execution is terminated.

The BLOAD? command should be used immediately
after the BSAVE command is executed.

The and (37 ) Keys can be pressed at the
same time to interrupt the execution of a BLOAD?

““CAS:"” command,



Chapter 4

BSAVE

FUNCTION:

FORMAT:

SAMPLE
STATEMENTS:

DESCRIPTION:

This command is used to save a Machine Language
program from the memory in a designated file.

BSAVE ‘‘{{(external device name):} {file
name ) ', {start address), {length) {.{execute
start location ) }

BSAVE “MACHLG" ,61000,256
BSAVE ““CAS:MACHLG" ,61000,256

The BSAVE command saves a Machine Language
program or the contents of memory to a file
designated by ( file name ). The number of bytes
specified by ( length) is saved as the Machine
Language program beginning at ( start ad-
dress). This program may use BSAVE and
BLOAD only if it can be executed from ( start
address ) (execution entry point).

The PC-8201 saves a Machine Language file from
RAM if ( external device name ) is omit-
ted. When device name is specified, “CAS:" is
designated for data recorder.

If an { execute start location ) option is designated,
the contents can be stored as a “.CO” file. Itis
executed as a Machine Language subroutine when it
is loaded via the BLOAD statement.

The ( file name ) cannot be omitted. In the
sample statement, the contents are saved from
memory location 61000 to 61255.

The and Keys can be pressed simulta-

neously to interrupt the execution of a BSAVE
“CAS:’* command.



Chapter 4

SEE ALSO: The BLOAD commands and the chapters on Files
and Machine Language programming.



Chapter 4

CDBL

FUNCTION: This function converts integers or Single Precision
real numbers to Double Precision real numbers.

FORMAT: CDBL( { numeric expression ) )

SAMPLE

STATEMENT: PRINT CDBL{454.67)

DESCRIPTION: The CDBL function converts the {( numeric expres-
sion ) to a Double Precision real number without
changing the effective number of digits.

NOTE: Refer to Type Conversion in Chapter 3.
SEE ALSO: The CINT and CSNG functions.

SAMPLE
PROGRAM:
10 DEFDBL D
20 A%=875
30 B1=45.3442
48 D1=CDBL(A%)
5@ D2=CDBL(B1)
60 PRINT A%;TAB(20);D1
7@ PRINT B1;TAB(20);02
86 END

4-12



CHRS

FUNCTION:

FORMAT:

- SAMPLE
STATEMENT:

DESCRIPTION:

SEE ALSO:

SAMPLE
PROGRAM:

Chapter 4

This function allows the PC-8201 to change a single
value ASCII code to its matching character.

CHR$({ numeric expression )}

A$=CHRS(65)

This function returns a character specified by
( numeric expression). The ASCII character code
represented by ( numeric expression ) can corre-
spond to a letter, number, or any special charac-
ter. The value of the ( numeric expression ) must
be within a range between 0 and 255, or an "?FC
ERROR" (illegal function call) message will be
displayed.

Real numbers may be included in the { numeric
expression ) but the value is rounded off to the
decimal point.

The ASC function, and the Table of Character
Codes.

16 FOR I=8 TO 28

28 READ
30 DATA
408 DATA
50 DATA

C:PRINT C;" = ";CHR$(C):NEXT
36,32,130,68,79,94,100,125
95,63,129,64,85,80,102,126
33,122,111,125,99,81,38,55,%96

608 DATA 117,37,63,77



Chapter 4

CINT

FUNCTION:

FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

SEE ALSO:

This function converts Single or Double Precision
real numbers to integers.

CINT(( numeric expression ) )

CINT (4578)

The CINT function rounds off (truncates) the value
of the {(numeric expression ) and returns an inte-
ger.

An 70V Error’’ (Overflow) message is displayed if
the { numeric expression ) is not between —32768

and +32767.

The CDBL, CSNG, FIX, and INT functions.

4—14




CLEAR
FUNCTION:
FORMAT:

SAMPLE

STATEMENT:

DESCRIPTION:

NOTE:

Chapter 4

This statement is used to reset all variables to null
or zero, and to establish the size of a string region
and set the memory boundary.

CLEAR { (string area size) } {,( maximum memo-
ry used in BASIC ) }

CLEAR 300,60000

This statement initializes all numeric variables to
zero and string variables to null string.  If designat-
ed parameters are omitted, the previous value is
preserved,

Designate only the first parameter if large character
string arrays are used, or a large number of
character string operations are performed. The
second parameter sets the maximum memory used
for BASIC and maintains memory chapacity used
for Machine Language programs.

In the sample statement given above, the maximum
memory specified is 59999, thus a Machine Lan-
guage program can be placed between the area from
60000 to 62335. The locations beyond 62337
cannot be designated because they are reserved for
the PC-8201.

When both parameters are omitted, only the initiali-
zation of the variables is executed and the establish-
ment of memory location remains unchang-
ed. The string region is altered if the first para-
meter is specified. The establishment of a region
in the memory is not altered until a new CLEAR
statement is executed.  Therefore, if a large string
region is not secured in the program, an “?0S
Errar” (Out of String space) error message can
occur during execution.

4-15



Chapter 4

When a CLEAR statement is executed, any data in
the PASTE buffer will be erased.

SEE ALSO: The BLOAD, EXEC, and DIM commands.

SAMPLE
PROGRAM:
18 AS="ATW :B=486:C=7111
29 PRINT "A$=";As;" B=";B;'C="3C
3@ PRINT °"CLEAR ! :BEEP
20 CLEAR
59 PRINT "As$=";A%$;"' B=";B;'C=";C



CLOAD

FUNCTION:

FORMAT:

" SAMPLE
STATEMENT:

DESCRIPTION:

NOTE:

Chapter 4

This system command is used to load a recorded
program from cassette tape into the memory.

CLOAD “( file name )’

CLOAD “DEMO”

If a ( file name) is specified, the PC-8201 will
retrieve that program file from the cassette tape and
load it into memory. However, when a (file
name ) is not specified, the PC-8201 loads the first
program encountered from the cassette tape. A
maximum of six characters can be used for the
{ file name ).

When a specific file is being searched, the system
outputs a “SKIP: ( file name )" message during the
searching process. The PC-8201 will continue to
scan the cassette tape until it finds the specific file,
at which time it outputs a “FOUND” ( file
name ) message. An Ok’ message is displayed
when the loading process is completed.

If the remote lead of the cassette cable is properly
connected to the Data Recorder, the PC-8201 can
automatically turn the recorder ON and OFF during
the LOAD process.

If ( file name ) exceeds 6 characters (not including
the file type extension), or if a { file name ) does
not exist on tape, the CLOAD command will search
for the file name until the end of the tape is
reached.

Even after an ““Ok’ message has appeared, it is
possible that this loaded program may not operate
properly, and may be due to improper set up of the
Data Recorder.

4-17



Chapter 4

The CLOAD process can be interrupted by pressing
both the and Keys simultaneously.

SEE ALSO: The CSAVE, BLOAD, BLOAD?, BSAVE, NEW,
LOAD, CLOAD?, eand SAVE commands.

4-18



CLOAD?

FUNCTION:

.FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

SEE ALSO:

Chapter 4

This system command is used to compare/verify the
program currently in memory with another program
saved on cassette tape.

CLOAD? " ( file name ) "

CLOAD? “"DEMO"”

The CLOAD? command is used to verify whether a
previously CSAVED program matches with the
program currently residing in the memory. The
{ file name ) refers to the program recorded on
tape. If the content of both programs is the same
the system displays “Ok”, but if the programs are
not identical, the system displays “BAD" and
execution is terminated.

This verification is useful to check that the program
in the memory has been recorded correctly to
tape. The CLOAD? command is normally used
immediately after the CSAVE command.

The CSAVE, CLOAD, BLOAD, BLOAD?, BSAVE,
NEW, LOAD, and SAVE commands.



Chapter 4

CLOSE

FUNCTION:

FORMAT:

SAMPLE
STATEMENTS:

DESCRIPTION:

SEE ALSO:

This statement is used to close files.

CLOSE { { # } (file number) } {,{{#]} file num-
ber ) } ...

CLQSE
CLOSE #1,#2

This statement is used to terminate input/output
between a BASIC program and the data file(s). It
closes the file correspanding to ( file num-
ber). These files are closed simultaneously if
more than one ( file number ) is specified. All
currently opened files are closed if { file number )
is omitted.

Input/Output for a closed file is again possible if it
is reopened by a specified file number.

The CLOSE command writes out all data remaining
in the file buffer. These files must be closed in

order to correctly terminate file output.

The OPEN, END, and NEW commands.



CLS
FUNCTION:
FORMAT:

SAMPLE
" STATEMENT:

DESCRIPTION:

NOTE:

SAMPLE
PROGRAM:

Chapter 4

This statement erases the display screen.

CLS

CLS

The CLS statement clears all alphanumeric charac-
ters and graphics characters from the display
screen. However, when the second parameter
(Function key display switch) in the SCREEN
statement is 1" (means it is ON), only the
contents of the Function keys will remain on
display.

This statement has no parameter.

18 FOR I=06 TO 40

20 X=RND(1)%35:Y=RND(1)x7?

30 XP=RND(1)x248:YP=RND(1)x*64
48 PSET(XP,YP)

S@ LOCATE X,Y:PRINT "GARBAGE";

66 NEXT

70 LOCATE 6,08:INPUT'HIT RETURN TO CLEAR
THE DISPLAY"; C%

80 CLS



Chapter 4

COM ON/OFF/STOP

FUNCTION:

FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

SEE ALSO:

This command establishes, prohibits, or informs of
interruption by a data transmission circuit.

ON
COM | OFF

STOP
COM ON

The COM command informs BASIC that data that
is being input from an external device through the
communication port (the RS-232C circuit) may
occur.

The COM ON command establishes the possibility
of a BASIC program being interrupted by data,
from a data transmission circuit.  Interruption by
the communications may then occur after this
command is executed. The BASIC programming
flow will then be diverted as a process routine
designated by an ON COM GOSUB statement.

The COM OFF prohibits a BASIC program from
being interrupted by communications input.

The COM STOP signals BASIC to inform of the
occurrence of data, from a data transmission cir-
cuit. No divirsion to any proces routine will occur
after this command is executed through the signal
of the occurrence of the transmission is retain-
ed. After a subsequent COM ON command, diver-
sion occurs to the ON COM GOSUB process
routine.

The ON COM GOSUB command.



CONT

FUNCTION:

FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

Chapter 4

The CONT command restarts the execution of a
program that was interrupted, either by the STOP
statement, or the pressing of the [[So7) Key.

CONT

CONT

This command is normally used in conjunction with
the [STor ) Key (or the + C Keys) to debug a
program. The CONT command is used to re-start
the program after variable values, statements, etc.,
have been investigated in the Direct Mode. A
complete program can also be listed on the screen
when execution is interrupted.

By input of the CONT command or pressing the .7
Function Key ( and f.2), the program will
resume execution where the half occurred. If the
program has been altered while execution is stop-
ped, then execution cannot be continued using this
command.



Chapter 4

CcOS
FUNCTION: This function provides the cosine of an angle.
FORMAT: COS(( numeric expression ) )

SAMPLE
STATEMENT: PRINT COS(3.14159)

3
1
1

DESCRIPTION: The COS function is used in trigonometric applica:
tions, it computes the cosine of an angle. The
unit of the ( numeric expression ) is the angle
expressed in radians.

NOTE: To convert an angle from degrees to radians
multiply the degrees by .0174533.

SEE ALSO: SIN, TAN, and ATN functions.

SAMPLE
PROGRAM:
10 INPUT'ENTER AN ANGLE EXPRESSED IN
DEGREES” ;D
20 PRINT 'THE ANGLE EXPRESSED INRADIANS
IS ";D%.8174533;° AND 1TS COSINE 18*
$C0S(D%.08174533)
38 END




CSAVE

FUNCTION:
FORMAT:

"SAMPLE
STATEMENT:

DESCRIPTION:

NOTE:

SEE ALSO:

Chapter 4

This system command is used to save a copy of the
program on cassette tape.

CSAVE “ ( file name )"

CSAVE "DEMO”

This command saves a program currently in the
memory onto cassette tape. The file name is
specified using 6 characters or less. The PC-8201
will return to Direct Mode after the CSAVE
command has been executed.

Please refer to BSAVE and SAVE commands in
regard to saving *.CO” and “.DO" fites (ASCII code
format) respectively.

A program file cannot be SAVEd to RAM once it
has been shifted to the BASIC area by using a
LOAD command. This is due to the fact that any
modifications to the MENU-displayed program that
is LOADed into BASIC automatically updates the
program showed in the MENU. The LIST com-
mand should be used for final inspection before a
CSAVE (to cassette tape} command is executed.

If interruption is necessary during the execution of
a CSAVE command, press the Key and the
Key at the same time.

The CLOAD, SAVE, LOAD, BSAVE, and BLOAD
commands.



Chapter 4

CSRLIN

FUNCTION:

FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

SEE ALSO:

SAMPLE

PROGRAM:
18 CLS

The CSRLIN function determines the line of the
current cursor position, and returns a line number.

CSRLIN

PRINT CSRLIN

The CSRLIN (cursor line) function returns the line
of the current cursor position (vertical position).

The top line of the screen is always 0. There-
fore, the value that is returned will be within the
range from 0 to the number of lines of the screen
minus 1. The number of the lines of the screen is
either 7 or 8, depending on the mode. If the
cursor is on the last line of the screen the CSRLIN
function will return 6 or 7 as the result, depending
on the mode.

The POS function.

L
20 PRINT “LINE 1 IS USED AS CURSOR

LINE:

*3CSRLIN

38 LOCATE 1,1:PRINT "LINE 2 1S USED AS
CURSOR LINE:';CSRLIN

10 LOCATE 2,2:PRINT "LINE 3 IS USED AS
CURSOR LINE: " ;CSRLIN

5@ LOCATE 3,3:PRINT "LINE 4 IS USED AS

v CURSOR LINE:"®3;CSRLIN

60 LOCATE 4,4:PRINT "LINE 5 IS USED AS
CURSOR LINE:";CSRLIN

2@ LOCATE 5,5:PRINT "LINE 6 IS USED AS
CURSOR LINE:";CSRLIN

80 LOCATE 6,6:PRINT 'LINE 7 IS USED AS
CURSOR LINE:“;CSRLIN

9@ LOCATE 7,7:PRINT 'LINE 8 IS USED AS
CURSOR LINE:";CSRLIN

198 LOCATE 8,8

110 END




DATA

FUNCTION:

FORMAT:

" SAMPLE
STATEMENT:

DESCRIPTION:

SEE ALSO:

Chapter 4

This statement holds the constants which are loaded
into the variables with a READ statement.

DATA {constant) {, ( constant) }

DATA 1, CBA,1465

The DATA statement is used to define infarmation
to the READ statement, and it can be inserted
anywhere in the program. A program can have as
many DATA statements as needed with no mare
than 255 characters on each data line.

READ statements input constants from DATA
statements, starting from the DATA statement with
the smallest line number. However, the order can
be revised with the RESTORE statement.

Arithmetic expressions used for reading in numeric
constants are not permitted in DATA state-
ment. Constants are separated by commas on the
data line. Their types should match the corre-
sponding variable types in the READ state-
ment. Numeric constant type is converted into
numeric variable type if the numeric types do not
match.  String constants are not type converted,
so they must be read into a string variable.

When a string data element includes significant
spaces (leading or trailing) or embedded commas, it

must be enclosed in double quotation marks.

See the READ and RESTORE commands.



Chapter 4

SAMPLE

PROGRAM:
CLEAR 256:DIM A$(5),A(5):CLS

10
20
30
a6
50
60
70
86
98

FOR I=0 TO 5
READ A$(I),A(I)
NEXT I

FOR I=0 TO S

LOCATE ACI),T:PRINT AS(D

BEEP:NEXT I
LOCATE 0,0
paTA THIS,S5,IS,

168 END

11,H0W,16,T0,21,USE, 25,

DATA,30




DATES

FUNCTION:

FORMAT:
"SAMPLE

STATEMENTS:

DESCRIPTION:

NOTE:

SEE ALSO:

Chapter 4

This function provides the data from the internal
real-time clock of the PC-8201.

DATES$="(year )/ (month )/ {(day) "

DATE$=""83/05/05"
PRINT DATE$

The DATES function is used to set year, month,
and day. The values for { year), ( month), and
{ day ) are designated for the current date, or any
desired date.

Once the date has been set correctly, reset of the
date again is not necessary, unless a Cold Start has
been performed.

The ( year ) value must be re-designated when the
year advances because the timer repeats the same
year again.

The TIMES$ function.



Chapter 4

DEFINT/SNG/DBL/STR
FUNCTION: This command defines the format of a variable.
FORMAT: DEF TINT { character range )
SNG
DBL
STR
SAMPLE
STATEMENT: DEFINT Al-K

DESCRIPTION:

By using the DEFINT statement, a variable name
that begins with a character designated by a
{ character range ) can be designated as integer
type.

in Single Precision real number format a DEFSNG
statement is used, in Double Precision real number
format a DEFDBL statement is used, or in string
format a DEFSTR statement is used.

Only one character may be used to specify each
variable name, with its range designated in  charac-
ter range . The range is indicated by joining the
characters with a hyphen if contiguous characters
are to be specified. (i.e. DEFINT X, Y, Z can be
entered as DEFINT X—Z).

Variable names followed by type declaration charac-
ters are given priority over variable names type-
designated by the DEF statement. All variables
starting with characters which have not been type
designated by a DEF statement are assumed to be
Single Precision type.




Chapter 4

SAMPLE

PROGRAM:
16 DEFINT A-J,L$DEFSNG N-T
26 DEFDBL U-W:DEFSTR S,X-Z
30 A=53.9314558#:7=53,9314558#
40 W=53.9314558#:SE=" END’
58 PRINT A,T,W,SE



Chapter 4

DIM

FUNCTION:

FORMAT:

SAMPLE

STATEMENT:

DESCRIPTION:

SEE ALSO:

The DIM (Dimension} statement is used to allocate
memory space for storing an array.

DIM ¢ variable name ) ({max subscript value )
{ , (max subscript value ) ...})

DiM A(12,2)

This statement allocates memory space for the array
area and sets the maximum subscript values for
array variables. When an array variable is used and
the DIM statement is not defined, the maximum
subscript value is set at 10.  Any reference to an
array beyond the allocated size will display a “?BS
Error” (subscript out of range} message.

If the same array is defined more than once, a
“?DD Error” (duplicate definition) message will be
displayed. By executing the CLEAR statement
this problem can be eliminated.

The minimum subscript values is set at 0. For
instance, if the array A is dimensioned A(3), four
elements are in the array with subscripts of 0, 1, 2,
and 3.

Array variables.




Chapter 4

SAMPLE
PROGRAM:
1@ PRINT "RND (1) 28 TIMES AND SORT THESE
NUMBERS "

28 DIM R(19)

39 FOR I=0 TO 19:R({IJ)=RND(1):NEXT I
48 FOR I=8 TO 18:L=R(I):N=I

50 FOR J=I+1 TO 19

60 IF R(JIX<L THEN L=R(J):N=J

70 NEXT J:T=RCI):R(I)=L:R(N)=T

80 NEXT I

98 FOR I=@ TO 19

100 PRINT USING “#.HH####" ;R(I);
116 NEXT I



Chapter 4

EDIT

FUNCTION: This command shifts the PC-8201 from BASIC
mode into TEXT mode.

FORMAT: EDIT {(line in which to start eidting ) }
{— ¢line in which to stop editing ) }

SAMPLE
STATEMENT: EDIT 20-80

DESCRIPTION: The command shifts into TEXT mode and allows
program editing.  H parameter is not designated
for editing, the entire program text is open for
editing.  Other combinations are also allowed.

Parameter Specified Line(s) Edited
No parameter All

specified

First parameter Only that line
only

First parameter That line and all
and hyphen following
Hyphen and

second parameter First line to the

second line specified
by that parameter

First parameter,
hyphen, and second
parameter The range of the

two parameters

SEE ALSO: Program Editing.

4-34



END

FUNCTION:

FORMAT:

" SAMPLE
STATEMENT:

DESCRIPTION:

SEE ALSO:

SAMPLE
PROGRAM:

Chapter 4

The END statement is used to terminate program
execution,

END

END

This command terminates program exscution, closes
all files, and returns the PC-8201 to Direct Mode.

The END statement is inserted into the program at
the location(s) at which it terminates program
execution. The final END statement may be
omitted in a program, but files are not closed.

The STOP and CLOSE commands.

18 PRINT "HIT ANY KEY®

20 IF INKEY$="" THEN 20

38 CLS:LOCATE 1,3

406 FOR I=0 TO 1@:READ S,L,P$

58 PRINT P$;" ";:SOUND S,L:NEXT

60 END

78 PRINT °"THIS SECTION CANNOT BE
EXECUTED. *

860 DATA 11172,16,THIS,11172,32,1S,
11172,16,THE, 11172

96 DATA 64,END,0,32,.,9394,32,MY,9952,
32,0NLY, 12538

166 DATA 32,FRIEND,11172,48,.,9394,16,.,

11172,64, .



Chapter 4

EOF

FUNCTION: This function determines if the end of a sequential
file is reached.

FORMAT: EOF({ file number ) )

SAMPLE

STATEMENT: IF EOF(3) THEN CLOSE #1 ELSE GOTO 100

DESCRIPTION: The EOF (End Of file) function determines if an

SAMPLE

end of a sequential file, designated by the ( file
number ), is reached.

The function returns a non-zero (true) value if the
end is reached, and it returns a zero (false) value if
the end has not been reached yet.

PROGRAM:

20
30

a0
58
60
70
86
90

OPEN "TSTEOF" FOR OUTPUT AS #1

INPUT HOW MANY TIMES DO YOU WANT 10
WRITE IN DATA';N

FOR I1=1 TO N

PRINT #1,I;

NEXT

CLOSE

OPEN "TSTEOF® FOR INPUT AS #1

IF EOF(1) THEN PRINT 'END OF FILE HAS
BEEN REACHED":END

1068 INPUTH1,N
118 GOTO 99




EQV
FUNCTION:
FORMAT:

SAMPLE
"STATEMENT:

DESCRIPTION:

NOTE:

Chapter 4

This logical operator tests multiple relations.

{ operand 1) EQV ( operand 2)

PRINT 5 EQV 6

The EQV (Equivalence) logical operator performs
tests on multiple relations, Boolean operations, and
bit manipulation. It returns either a non-zero
(true) value or zero (false) value.

For the operation to be true both ( operand 1)
and ( operand 2 ) must be true, or both of them
must be false. But if one of them is true and the
other is false then a zero (false) value is returned.

The following table indicates the evaluation process:
-1 EQV —-1— —1 (TRUE EQV TRUE — TRUE)
—1 EQV 0 —0 (TRUE EQV FALSE - FALSE}
0 EQV —1—0 (FALSE EQV TRUE — FALSE)
0 EQV 0 — —1 (FALSE EQV FALSE — TRUE)

< For more details on logical operators see
Chapter 3.

EQV performs exactly opposite to XOR. Logical
operators convert their ( operands ) to sixteen bit
binary integers. Therefore, each ( operand ) must
be in the range from —32768 to +32767. If they
are not within this range, an “?0V Error’’ (Over-
flow) message will be displayed.



Chapter 4

SEE ALSO:

EXAMPLE:

Functions AND, IMP, NOT, OR, XOR, and Chap-
ter 3.

INTEGER BINARY BITS
234 0000 0000 1110 1010
3429 0000 1101 0110 0101

After you input the statement PRINT 234 EQV
3429 the integer —3472 is returned, whose binary is
1111 0010 0111 0000. By looking at the table
under DESCRIPTION notice that the computation
was done correctly.

4--38




ERL

FUNCTION:

FORMAT:

" SAMPLE
STATEMENT:

DESCRIPTION:

NOTE:

SEE ALSO:

Chapter 4

The ERL function provides the line number where
an error occurs,

ERL

A=ERL

The ERL function is a Reserved variable used in the
error processing routine. It is used for displaying
the line location of an error. It has the value of
65535 if an error occurs in the Direct Mode.

The content of ERL changes each time an error
occurs during program execution. The value of
ERL can be accessed, but the values cannot be
assigned.

The ERL function has no parameters.

See the ON ERROR GOTO and ERROR state-
ments.



Chapter 4

ERR

FUNCTION:

FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

NOTE:

SEE ALSO:

The ERR function provides the error code when an
error occurs,

ERR

B=ERR

When errors occur in the Direct Mode or during
program execution, a message is displayed to indi-
cate the cause of an error. Each error message is
associated with a different error code.

The ERR function is a Reserved variable which
contains the error code when an error is detect-
ed. The content of ERR can be accessed but the
values cannot be designated. The PC-8201 assigns
ERR when an error occurs.

The ERR function has no parameter.

See the ON ERROR GOTO and ERROR state-
ments.



ERROR

FUNCTION:

FORMAT:

"SAMPLE
STATEMENT:

DESCRIPTION:

SEE ALSO:

Chapter 4

The ERROR statement is used to simulate the
occurrence of an existing error.

ERROR (integer )

ERROR 200

The value designated for { integer ) must be be-
tween 0 and 255. When a specified value has been
defined as a BASIC erfor code, the ERROR
statement simulates the occurrence of that error and
prints the corresponding message.

The ERROR statement may be used as a user-
defined or undefined error code. When under
particular conditions, the program branches to an
error routine spzcified with the ON ERROR GOTO
statement.

The ON ERROR GOTO and the ERL/ERR fune-
tions, and the Table of Error Codes.



Chapter 4

SAMPLE

PROGRAMS:

20
36
40
56
60
79
86
500
510

520
530
540
5560

560
578

ON ERROR GOTC 500
A=1/0
GOTO @

NEXT
PRINT SQR(-2)
ERROR 255
END

PRINT"ERROR® ERR “IN LINE NUMBER' ERL
IF ERR=11 THEN PRINT °“A DIVISION BY
ZERQ" ;

IF ERR=8 THEN PRINT'AN UNDEFINED
LINE NUMBER®;

IF ERR=1 THEN PRINT'NEXT WITHOUT FOR

IF ERR=5 THEN PRINT"AN ILLEGAL
FUNCTION CALL";

IF ERR=255 THEN PRINT"AN UNDEFINED";
PRINT ° ERROR HAS OCCURED. ' :PRINT
RESUME NEXT




EXEC

FUNCTION:

FORMAT:

"SAMPLE
STATEMENT:

DESCRIPTION:

NOTE:

SEE ALSO:

Chapter 4

This statement executes a Machine Language sub-
routine.

EXEC (initial location )

EXEC 61000

The EXEC statement transfers control to a Machine
Language subroutine in the memory. The ( initial
location ) is designated by integers from 33468 to
65535. A negative number, if used for (initial
location ) should be subtracted from 65536 (thus a
negative 1 is 65536 — 1, or 65535).

If values are POKEd into the following locations,
they can be transferred to the A, L, and H registers,
respectively.  After the system returns to BASIC
from the subroutine, it is possible to obtain results
by investigating the same locations using the PEEK
function.

A Register Location 63911
L Register Location 63912
H Register Location 63913

The PC-8201 can return to BASIC from a Machire
Language subroutine via the RET command.

Select ( initial location ) carefully to avoid erratic
operation.

The BLOAD, PEEK, and POKE commands.



Chapter 4

EXP

FUNCTION:

FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

This function calculates the value of “e” (base value
of natural logarithm =2.71828) raised to the power
specified in the parameter.

( arithmetic expression )
EXP {( { numeric constant )
{ numeric variable)

A=EXP(1)

This function returns the value of “e raised to the
specified power in Single Precision format. An
“?20V Error’” (Qverflow) message will result if the
power raised is greater than 87.33655.

4-44




Chapter 4

FILES

FUNCTION: This command displays all the files in the RAM.
FORMAT: FILES

SAMPLE

“STATEMENT: FILES

DESCRIPTION: This command displays all of the file names

(inctuding file type) stored in the RAM.

The file type “.BA" denotes a BASIC program file,
“DO"” is a TEXT file, and ".CO’” is a Machine
Language program. When an asterisk (k) is dis-
played directly after the file type extension “.BA’’,
this means that it is presently accessible.

SEE ALSO: Chapter 5, Files.
SAMPLE
PROGRAM:
10 THIS PROGRAM MAY BE DESTROYED UPON

20
30

40
50

60
78
86
90
1088

110
120
130
148

150
160

EXECUTION, SO SAVE IT BEFORE RUNNING!
ON ERRCR GOTO 169

PRINT °"TO USE IN ONE OF THE FOLLOWING
PROCESSES--L0AD, OPEN, BLOAD--'

FILES

INPUT "WHICH FILE NAME + FILE TYPE DO
YOU SELECT®;N$

K$=RIGHT$(N$%$, 3>

IF K$=".BA" THEN 118

IF K$=".DO" THEN 120

IF K$=".CO" THEN 130

PRINT "THE FILE NAME THAT YOU
DESIGNATE MDOES NOT EXIST!®:BEEP:
GOTO 30

LOAD Ns

OPEN N$ FOR INPUT AS #1: GOTO 140

BLOAD N$
INPUT#1,A$:PRINT A$:IF NOT (ECF(1))

THEN 140

END
RESUME 180



Chapter 4

FIX

FUNCTION: This function returns the integer portion of a
number.

FORMAT: FIX {{ numeric expression ) )

SAMPLE

STATEMENT: PRINT FIX(9.9)

DESCRIPTION: The FIX function returns the integer portion of the
( numeric expression ). It will omit the digits
after the decimal point.

NOTE: This function does not round off the number.
SEE ALSO: INT and CINT functions
SAMPLE
PROGRAM:
18 PRINT * I FIX INT®

20 FOR [=-2 TO 2 STEP .5

38 PRINT USING ‘### . ## HiH#H HitHuH"
I,FIXCI), INTCI)

48 NEXT



FOR...TO..

FUNCTION:

FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

Chapter 4

. STEP ~ NEXT

This statement repeats a series of instructions for a
designated number of times.

FOR ( variable name ) = (initial value ) TO
{ final value ) { STEP ( increment ) }

NEXT { ( variable name ) {,( variable name list }

where:
{ initial value ) = { numeric expression )
¢ final value )= { numeric expression )

{ increment )= { numeric expression )

FOR J=0 TO 100 STEP 10

NEXT J

The FOR...TO...STEP ~NEXT statement ex-
ecutes a series of statements a given number of
times (loop).

The ( variable name ) is used as a counter, which at
the beginning is set to the ¢ initial value ). Each
time the sequence is completed and the NEXT
statement is encountered, the { variable name )
increases or decreases specified by the { increment )
in the STEP parameter.



Chapter 4

The value of the ( variable name ) is compared with
the ( final value ), and the loop will stop executing
when the terminating condition is met or exceed-
ed. Once the value of the ( variable name )
exceeds the ( final value ), program control is
passed to the statement following the NEXT state-
ment.

The ( variable name ) in the NEXT statement may
be omitted. NEXT always terminates the last
unmatched FOR statement. If a ( variable name
list ) is used and the variable list is not in proper
sequence, the nested loops will not terminate
correctly.

If the STEP parameter is omitted the default value
off ( increment Yis +1. A negative value may also
be specified as an ( increment ).

The loop is executed only once in the following
cases:

- When { increment ) is positive, and ( initial
value ) is greater than ( final value ).

. When { increment ) is negative, and ( initial
value ) is less than ( final value }.

- When ( initial value ) is equal to { final value),
no matter what the { increment ) is.

- When there is not a matching NEXT statement.
If ¢ increment ) is zero then the loop is executed
continuously {infinite loop).  Press and
Keys for interruption.

FOR ~NEXT loops may be nested to any

depth. In such case different ( variable names )
must be used, and the second loop must be

4-48




NOTE:

Chapter 4

completely located within the first loop. An
“?NF Error” {Next without For) occurs if there is
an illegal form of nesting.

The loop may be exited with a GOTO state-
ment.  The loop will remain open until another
loop is executed using the same ( variable name),
or when the loop is re-entered.

After a loop is terminated the ( variable name ) has
the value of the ( final value > + 1.

A common practice to determine whether or not
the nested loops are legal is to draw lines between
the matching FOR and NEXT statements. If the
lines cross each other, then the nesting is il-
legal. For example:

——10 FOR I=1 TO 10
20 FOR J=10 TO 20 STEP 2

80 NEXT J

120 FOR K=30 TO 10 STEP —5

200 NEXT K

———300 NEXT |

The above is an example of legal nesting.

4-49



Chapter 4

——10 FOR X=10 TO 20

—50 FOR Y=1TO 20

100 NEXT X

L—200 NEXT Y
The above is an example of illegal nesting.

SAMPLE
PROGRAM:

10 FOR I= 1 TO S

20 FOR J=16880 TO 1000 STEP -1000

30 SOUND J,I
4@ NEXT J,I



FRE

FUNCTION:

FORMAT:

SAMPLE
STATEMENTS:

DESCRIPTION:

SAMPLE
PROGRAM:

1@ PRINT
20 PRINT
30 CLEAR
40 PRINT
56 PRINT

Chapter 4

This function reports the amount of unused memo-
ry area.

FRE({ ( expression ) }
where:

{ character string )

{ character variable )
{ expression ) = | { numeric expression )

{ numeric variable )

PRINT FRE(A)
PRINT FRE(A$)

The FRE function calculates the amount of free
string memory or the amount of free program
memory. The value returned is the amount of
unused bytes.

If the ( expression ) is a { character string ) or a
{ character variable ) the FRE function returns the
amount of string space available.

If the ( expression ) is a { numeric expression ) or
{ numeric variable ) the FRE function returns the
amount of program space available.

"INITIAL AMOUNT=";FRE(8)
*STRING AREA=";FRE(A$)

506

"AMOUNT OF PROGRAM NOW=";FRE(8)
"STRING SPACE NOW=";FRE(A%)



Chapter 4

GOSUB ~ RETURN

FUNCTION:

FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

SEE ALSO:

The GOSUB statement transfers control to a speci-
fied line number (beginning of the sub-
routine}. The RETURN branches back to the
GOSUB statement when the execution is completed.

GOSUB ¢ line number )

GOSUB 1000

The GOSUB statement is used to eliminate repeat-
ing frequently used routines.  The subroutine is a
portion of the program that starts with a specific
line number and terminates with a RETURN state-
ment. However, a subroutine can have more than
one RETURN statement, depending on the specific
subroutine.

Subroutines are called by the GOSUB statement to
perform the same sequence of instructions at dif-
ferent points of the program. Subroutines usually
reside at the end of a BASIC program, and the
statement GOSUB is used to call the sub-
routires. When a RETURN statement is reached
in the subroutine, the program will resume execu-
tion at the statement following the GOSUB state-
ment.

The procedure of one subroutine calling another
subroutine is called “‘subroutine nesting’”.  Such a
procedure can take place as long as the memory
stack is not overflow. (Seven stack bytes are used
for each GOSUB. The RETURN will put the
stack back to normal.)

The RETURN statement.




SAMPLE

Chapter 4

PROGRAM:

10
26
30

40
56

60
70

80

GOSUB 30:G0SUB 50:G0SUB 70

END

FOR 1=0 TO 9:PRINT "FIRST ROUTINE":
NEXT 1

BEEP :RETURN

FOR I=0 TO 9$:PRINT °"SECOND ROUTINE":
NEXT I .

BEEP ¢:RETURN

FOR I=0 TO 9:PRINT °“THIRD ROUTINE":
NEXT 1

BEEP :RETURN



Chapter 4

GOTO
FUNCTION: This statement branches the program execution to a
designated line number.
FORMAT: GOTO
GO TO J {line number )
SAMPLE
STATEMENTS: GOTO 500

GO TO 500

DESCRIPTION: This command unconditionally branches to a speci-
fied ( line number ) in the program.

NOTE: This statement may be written either as “GOTO" or
“GO TO”. If two or more blanks are entered,
Ng2-BASIC does not interpret it as the GOTO
statement.

SEE ALSO: The IF and GOSUB statements,

SAMPLE

PROGRAM:

28 GOTO 68

30 PRINT® SPAGHETTI.':GOTO 70

40 PRINT® CALLED";:G0TO 3@

58 PRINT® NOT MAKE®;:60TO 90

60 PRINT® THIS IS';:GOTO 4@

78 PRINT:PRINT® DO';:G0TO S@

88 PRINT" PROGRAM. :GOTO 100

99 PRINT® THIS KIND OF A";:GOTO 8@
180 END



IF ... THEN
IF ... GOTO
FUNCTION:

FORMAT:

SAMPLE
STATEMENTS:

DESCRIPTION:

Chapter 4

... ELSE
... ELSE

These statements are used to evaluate a logical
expression and then perform a conditional process.

THEN ( then clause )
IF ( expression)
GOTO ( goto clause )

ELSE ( else clause )

where:
( arithmetic expression ) |
{ expression ) =| ( logical expression )

{ relational expression )

( statement )
( then clause ) =] ( multiple statement )
( line number } ]

{ goto clause ) = { line number )

( statement )
{ else clause )= | ¢ line number }

IF A$="Y"" THEN BEEP ELSE 120
IF A+B=C AND A)E GOTO 200 ELSE PRINT A;
B

The IF ... THEN ... ELSE/IF ... GOTO ...
ELSE functions control the program execution
based on conditions established by the evaluation of
the ( expression ). If the evaluation of the ( ex-
pression ) is non-zero (true) the { then clause ) or
( goto clause ) is processed. If the evalustion is
zero (false) the { else clause ) is processed.



Chapter 4

NOTE:

When the ELSE option is omitted, and the evalua-
tion of the ( expression ) is zero (false), the next
line following the IF statement is processed.

Multipte (nested) |F statements are allowed. When
nesting occurs the ELSE option will match the most
previous unmatched |F statement.

The ( then clause ) can be made up from multiple
statements, separated by a colon(:).

The complexity of a multiple arrangement is limited
within the range of one line, which is 255 charac-
ters long, or before the Key is pressed.

=E For more details on the evaluation of a
( logical expression >, ( relational ex-
pression ) or ( arithmetic expression )
see Chapter 3.

Tabs are not considered in matching IF, THEN,
GOTO or ELSE clauses, they are only a program-
ming aid in the structure of the code.



SAMPLE
PROGRAM:

10 M=1002008:CLS

20 PRINT"YOU HAVE $“3M;".°

30 PRINT"$";M;"."; "HOW MACH DO YOU
WANT TO BET ON THIS DIE":

INPUT K

49 K=INT(K):PRINT

580 REM %% This is the nesting of the
type of IF statement of line 70

68 REM xx%x% when the input 1s not the
right input...

70 IF K>M THEN PRINT'IMPOSSIBLE WITH
ONLY "3 M BEEP:GOTO 38 ELSE IF
K<@ THEN PRINT'SNEAKY! " :BEEP:G0OTO
30 ELSE IF K>M/2 THEN PRINT
"GENEROUS! " ELSE IF K<(M/189 THEN
PRINT "CHEAPSKATE! "

83 INPUT" NOW WHAT DO TOU THINK WILL
COME UP ON THE DIE(1-6)";N

98 N=INT(N):PRINT

180 IF N<1 OR N>6 THEN PRINT" IMPOSSIBLE

WITH AN ORDINARY DIE. :BEEP:GOTO 8@
112 SOUND 3600,20:R=INT(RND(1)*6)+1
120 PRINT:PRINT'SO, ";R; "SPOT(S) CAME UP
ON THE DIE. ' ':PRINT

1368 IF N=R THEN SOUND 4008,18:M=M+Kx6:
PRINT YOU WERE SUCCESSFUL!" ELSE
PRINT"YOU LOST THIS TIME'":SOUND
146000, 10 :M=M-K

140 IF M<1 THEN PRINT YQU’RE BANKRUPT
NOW!'® ELSE IF M>1E+86 THEN PRINT
"YOU ARE A MILLIONAIRE!" ELSE 38

Chapter 4



Chapter 4

IMP

FUNCTION:

FORMAT:

SAMPLE
STATEMENT:

DESCRIPT(ON:

NOTE:

This logical operator is used to test multiple
relations.

( operand 1 ) IMP { operand 2

PRINT 2 IMP 2

The logical operation IMP (Implication) performs
tests on multiple relations, Boolean operations, and
bit manipulation. It returns .either a non-zero
(false) value or a non-zero (true} value.

The operation returns zero (false) whenever
(operand 1 ) is true and { operand 2 ) is
false.  Otherwise it returns a DELETE zero (true)
value,

The following table indicates the evaluation process:
—~1 IMP —1-—=—1 (TRUE IMP TRUE —TRUE

—1 IMP 0— 0 (TRUE IMP FALSE —FALSE)

0 IMP —1—-— —1 (FALSE IMP TRUE —TRUE)

0 IMP 0— —1 (FALSE IMP FALSE —TRUE)

For more details on logical operators see
Chapter 3.

IMP performs the same way as NOT ( (operand 1))
OR ((operand 2)). A IMP B is the same as NOT
(A) CR B.

Logical operators convert their operands to sixteen
bits binary integers. Therefore, { operand 1) and
( operand 2 ) must range from -—32768 to



SEE ALSO:

EXAMPLE:

Chapter 4

+32767. if not, an ““?0V Error” (Overflow) mes-
sage will be displayed.

Functions AND, EQV, NOT, OR, XOR, and Chap-
ter 3.

INTEGER BINARY BITS
23280 0101 1010 1111 0000
11853 0010 1110 0100 1101

After you input the statement PRINT 23280 IMP
11853, the integer —20657 appears, whose binary is
1010 1111 0100 1111. By looking at the table in
the DESCRIPTION section, notice that the com-
putation is correct.



Chapter 4

INKEY$

FUNCTION:

FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

SEE ALSO:

SAMPLE
PROGRAM:

The INKEY$ function is used to check if a
character has been entered through the keyboard.

INKEY$S

AS=INKEYS

The INKEY$ function returns a null string if the
keyboard buffer is empty. When the keyboard
buffer contains any character, the first character in
the buffer is returned, Any key that is not
included in the Character Codes Table will be
ignored.

The Table of Character Codes.

1@ SCREEN @,08:CLS:X=28:Y=3

28 PRINT® TRY TO MOVE THE CURSOR IN
DIFFERENT DIRECTIONS®

3@ PRINT® U=UP.D=DOUN,R=RIGHT,L=LEFT'

49 PRINT® HIT ANY OF THE ABOVE KEYS®

S8 A$S=INKEY$:IF A$='" THEN 50

60 LOCATE X,Y:PRINT® °;

78 IF A$="U" AND Y>8 THEN Y=Y-1

80 IF A$="D" AND Y<7 THEN Y=Y+1

90 IF A%$="R" AND X<39 THEN X=X+1

100 IF A$="L' AND X>@ THEN X=X-1

118 LOCATE X,Y:PRINT *X";

128 GOTO 58




Chapter 4

INP

FUNCTION: This function obtains a value from an input port.
FORMAT: INP({ port number )}

SAMPLE

STATEMENT: A=INP(15)
DESCRIPTION: The INP (Input from a Port) function reads a byte
from the input port specified by the ( port num-

ber ), and it returns that byte as the function value.

The ( port number ) must be an integer ranging
from O to 255.

SEE ALSO: OUT statement.



Chapter 4

INPUT

FUNCTION:

FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

The INPUT statement allows data to be entered
through the keyboard during program execution.

INPUT { ¢ prompt statement)’’; } ( variable 1)
{ ,{variable 2) } ...

INPUT “NAME, NO.”;N$,A$

The INPUT statement is used to display a prompt-
ing message and then accepts one or more fields of
data through keyboard input.

When the [INPUT statement is executed, the
¢ prompt statement ) is displayed with a gquestion
mark following it, and the PC-8201 waits for data
to be entered through the keyboard. If the
prompt statement is omitted, the question mark
alone will be displayed.

The input { variable(s) ) are separated by commans,
containing a mixture of variable types linteger,
string, numeric, array), and may be as long as the
line allows. Data elements entered are also sepa-
rated by commas, and each data element corre-
sponds to a variable in the INPUT statement.

If the number of data elements is less than the
number of variables indicated, a double question
mark (??] is displayed. This asks for additional
input until there is sufficient data for the variables.

On the other hand, if data entered is more than
needed, program execution continues with the next
statement following the INPUT statement, dis-
regarding the extra data. The message “‘?Extra
ignored’’ is then displayed.



Chapter 4

The type of data input should match the corre-
sponding variable type. The screen displays
“?Redo from start’ if a character string is input to
a numeric variable. Data must then be input
again, starting from the first variable.

It is optional to enclose the character string in
double quotation marks. However, if blank spaces
(leading or trailing the string) or commas are
entered into a string variable, they must be enclosed
in double quotation marks (). These double
quotation marks in this case are not considered part
of the character string.

Successive input of commas in the INPUT statement
(with more than 2 variables such as 12,,3) indicate
the omission of input data. The corresponding
variable is assigned ** " (null string) if it is a string
type, and O if it is a numeric type.

SEE ALSO: The LINE INPUT and INPUT # commands.
SAMPLE
PROGRAM:
19 INPUT °"ENTER NAME t"3NS$
20 PRINT “xxx USE COMMA TO SEPERATE
VARITABLES »xx" .
38 INPUT "ENTER 2 NUMBERS ¢ 3A%,B%

40 C%=A%+B% . .
50 PRINT N$;°,THE SUM OF";A%; "AND" ;B%;
18" Cx%



Chapter 4

INPUTS

FUNCTION:

FORMAT:

SAMPLE
STATEMENTS:

DESCRIPTION:

SEE ALSO:

This function reads a character string of a specified
length, either from a designated file in the function
statement or from the keyboard.

( integer constant }

INPUTS ( [( integer variable ) }{, {#}

( file number ) })

A$=INPUTS (10)
B$=INPUTS (1%, #3)

The integer in the first parameter is the character
string to be input from the file. The maximum
length of the string is 265 characters. The op-
tional { file number ) is assigned to the file by the
OPEN statement.

The string is input from the keyboard if the ( file
number ) is omitted in the statement. Keys enter-
ed are not displayed on the screen when input
through the keyboard. The PC-8201 waits for
more input if the number of characters entered is
less than the specified string length.

The Key or + C can be used to interrupt
the INPUTS$ function, All other keys are treated
as part of the input string. The input buffer is
cleared whenever the INPUT$ function is executed.

OPEN command.



SAMPLE

Chapter 4

PROGRAM:

10
20
30
48
50
66
70

86
90

REM* INPUT$x
CLS:INPUT"DESIGNATE A PASSWORD® ;PW$
WL=LEN(PUS$)

REM* THEN PROGRAM STARTS FROM HERE
CLS:PRINT "ENTER PASSWORD:";
N$=INPUTS$ (WL)

IF N$=PW$ THEN PRINT'WELCOME USER! ":
SOUND 30886,20:G0T0 28

LOCATE 0,3:PRINT"INVALID PASSWORD! "
PRINT "PLEASE TRY AGAIN®

186é SOUND 5080,4:S0UND 1000,4
11@ CLS:GOTO S0



Chapter 4

INPUT #

FUNCTION:

FORMAT:

SAMPLE
STATEMENTS:

DESCRIPTION:

This statement is used to read data from an opened
input file into variable{s) contained in the state-
ment.

INPUT # ( file number ), (variable 1) { ,{ variable
2y} ...

INPUT#1,A
INPUT#1,B,C$

This statement inputs data from a designated file (in
RAM, cassette tape, etc.) and functions similar to
the INPUT statement except that a question mark
{?) is not displayed.

The contents of the specified data file {file type
“.DO”) are read into the variables in the INPUT#
statement. The ( file number ) is the number
designated in the OPEN statement. The file
should be opened for the input mode.

The ( variable(s) ) are assigned from left to right,
starting from the beginning of the input file. The
number of { variable(s) ) in the INPUT # statement
is the number of data elements used each time the
statement is executed. Each time the INPUT#
statement of the same file number is executed, it
starts reading in data from where it terminated
previously.

Data in the input file should be the appropriate
type for the corresponding variable. The message
“?EF Error” (End of file} will be displayed when an
INPUT # statement is reached and insufficient data
is available. The EOF function is used to test for
end of file condition before an INPUT # statement
is executed.



Chapter 4

SEE ALSO: PRINT#, INPUT, LINE INPUT#, and the EOF
function.



Chapter 4

INSTR

FUNCTION:

FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

This function searches for a character string within
a string and returns its position.

INSTR { ( numeric expression ), } { character string
1), {character string 2}

PRINT INSTR(6,”THIS IS A TEST"”,”TEST")

The INSTR function locates a substring in a string
and returns its position. { Character string 1 ) is
the original string which is searched for a match
with ( character string 2 ) substring.

The ( numeric expression ) is designated by an
integer, that specifies the position in ( character
string 1), where the search begins. If the
{ numeric expression ) is omitted the searching
begins at position 1.

The INSTR function returns the position where the
match occurred. It returns zero if ( character
string 1 ) does not contain ( character string 2 )
(no match).

If ( character string 2 ) contains more than one
character and a perfect match is made, the INSTR
function returns only the position of the first
character in ( character string 1 ) where the match
begins.

When the null string (empty string} is designated for
( character string 2 ):

1. If the ( numeric expression ) is omitted then
“1" is returned.



NOTE:

Chapter 4

2. If { numeric expression ) is less than or equal
to the length of ( character string 1 ) then
the { numeric expression ) is returned.

or else O is returned if { numeric expression is larger
than the length of (character string 1) .

The ( numeric expression ) must be an integer from
1 to 255.  If not, an “?FC Error*’ (lllegal function
call) message is displayed on the screen.  When the
number is read just its integer portion is taken as
the beginning position.

The length of ( character string 2 ) must be less
than or equal to { (=) ( character string 1 ) or a
zero will be returned.



Chapter 4

INT
FUNCTION:
FORMAT:
SAMPLE

STATEMENT:

DESCRIPTION:

NOTE:

SEE ALSO:

SAMPLE
PROGRAM:

16 PRINT

This function rounds numbers to their integer value.

INT({ numeric expression })

PRINT INT (9.9)
PRINT INT (-9.9)

The INT function rounds the ( numeric expres-
sion ) to its integer (whole) value. If the ( numer-
ic expression ) is positive, INT truncates it (drops
decimal digits).

If the { numeric expression ) is negative, INT
returns the next smallest whole number. For
example:

INT(=3.1)=—4
INT(—3.9)=—4

The value that is returned is always less than or
equal to the { numeric expression ).

The FiX and CINT functions.

I INT FIx*

2¢ FOR I=-1.5 TO 1.5 STEP .2
30 PRINT USING ##i . ## HANHH HedHH";
1,INTCD),FIXCD) :

40 NEXT



KEY

FUNCTION:

FORMAT:

SAMPLE

STATEMENT:

DESCRIPTION:

SEE ALSO:

SAMPLE

PROGRAM:

As(@)=""

A$(1)="LOAD "+CHR$(34)
A$(2)="SAVE °+CHR$(3M)
A$(3)="FILES "+CHR$(13)
A$(4)="LIST *

A$(5)="RUN "+CHR$(13)

FOR I=1 TO S9%

KEY (I MOD S5)+1,As(] MOD 6)

10
20
30
40
50
60
70
80
90

NEXT

Chapter 4

This function is used to define functions of the
programmable function keys.

KEY ( key number ), ** { function ) "

KEY1, “LOAD"”

Up to ten programmable functions can be defined
by using the five function keys {five on the
keyboard, with five more in SHIFT mode}. The
function keys are numbered from 1 to 5, and 6 to
10 are used in the SHIFT mode. Each function
key can be assigned with a character string or a
control statement of 15 or less characters. Charac-
ters that cannot be input from the keyboard are
entered by using the plus sign ““+'* and the CHR$
function.

See the Table of Character Codes for use with the
CHRS$ function.



Chapter 4

KILL

FUNCTION:

FORMAT:

SAMPLE
STATEMENT:.

DESCRIPTION:

SEE ALSO:

This command is used to erase a designated file.

KILL * ( file name.file type )"’

KILL ““SAMPLE.BA"

The KILL command deletes a specific file designat-
ed by a file name and/or device name. The file to
be deleted must be closed. Any opened file is
indicated by an asterisk (%) when the FILES
command is executed. Only one file may be
deleted with each KILL command.

The file name must always include its file type
extension {.BA"”, “.DO”, and “.CO”) when the
KILL command is executed. The PC-8201 returns
to the Direct Mode after the execution.

The LOAD and SAVE commands and Chapter 5,
Files.



LEFTS

FUNCTION:

FORMAT:

SAMPLE STA
STATEMENT:

DESCRIPTION:

SEE ALSO:

SAMPLE
PROGRAM:

18 As$='

++++++"

Chapter 4

This function is used to designate a specific number
of characters from a string, starting from the left
most position of a string.

LEFTS$ ((character string ), { numeric expression ) )

B$=LEFT$(A$4)

A ( character string ) can be a string constant or a
string variable. The value of a ( numeric expes-
sion ) must be in a range from O to 255, which
specifies the number of characters to be read,
beginning from the left most character.

The full ( character string ) is returned when the
{ numeric expression ) is greater than or equal to
the total number of characters in the ( character
string ). LEFT$ returns a null string when the
( numeric expression ) is 0.

The RIGHTS$ and MID$ functions.

B o o S A e st

20 PRINT"INPUT DATA FOR EACH LINE.®

3@ FOR

I=0 TO 5:PRINT I;

40 INPUT"INPUT THE DESIRED BAR LENGTH
(8 TO 39)";A(D)

S8 IF A(I)<B OR A(I)>39 THEN BEEP:PRINT
"ILLEGAL NUMBER';:PRINT I:GOTO 4@

60 NEXT I

7@ FOR

I=6 70 5

80 PRINT LEFT$(A$,ACI))
99 NEXT I



Chapter 4

LEN
FUNCTION: This function returns the number of characters that
are contained in a string.
FORMAT: LEN ( { character string ) )
( character variable }
SAMPLE

STATEMENT: PRINT LEN (“123456789")

DESCRIPTION: The LEN (Length) function returns the length of a

( character string ) or { character variable ). It
counts all characters including the ones that can not
be printed (control codes 1-31).

NOTE: To determine the length of a number, double
quotation marks must be placed around it.

SAMPLE
PROGRAM:

29 INPUT 'INPUT ANY COMBINATION OF LESS

THAN 36 CHARACTERS. " ;N%

38 CLS: L=LEN(N%):GOSUB &0

49 PRINT ‘+ ";N$; +°

58 GOSUB 6@: END

69 FOR 1=1 TO L+4

70 PRINT "+";:NEXT

89 PRINT :RETURN




LET

FUNCTION:

FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

SAMPLE
PROGRAM:

Chapter 4

This statement is used to assign values to variable
names.

{ LET } (variable name ) = { value )

LET A=10+5

The BASIC Reserved Word (keyword) LET is
optional, so the statement LET A=10+5 can be
entered as A=10+5.

The ( variable name ) is assigned the evaluated
( value » which may be a number, a string, an
eqguation, or a function.

1@ BE=26:1T=818
280 LET IT=BE
30 PRINT IT,BE



Chapter 4

LINE INPUT

FUNCTION:

FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

SEE ALSO:

SAMPLE
PROGRAM:

The LINE INPUT statement is used to allow the
input of an entire line of data.

LINE INPUT { " (prompt string)"; } {string vari-
able )

LINE INPUT “WHAT?";A$

A ( prompt string ) is a sentence that displays a
query for a specific input. A maximum of 255
characters, including delimiters (quotation marks,
comma, etc.), can be entered and assigned to a
( string variable ). All input from the keyboard
(after the prompt string) up to the carriage return,
is substituted for the ( string variable }.

Any punctuation marks and symbols can be input
in the ( string variable ). The + C Keys and
the Key can be pressed to interrupt the LINE
INPUT statement.  This will stop program execu-
tion and return the PC-8201 to the Direct
Mode. The LINE INPUT statement can be contin-
ued by executing the CONT command.

The INPUT statement.

186 PRINT®INPUT (ANYTHING UP TO 255
CHARACTERS IN ALL, INCLUDING A COMMA
OR QUOTATION MAPKS):”

28  LINE INPUT A%

30 FOR I=1 TO LEN(A$)

46 PRINT MID%(A%,1,1);

58 FOR T=0 TO 288 :NEXT

68 NEXT 1



LIST/LLIST

FUNCTION:

FORMT:

SAMPLE
STATEMENTS:

DESCRIPTION:

Chapter 4

These commands are used to list either a portion or
an entire program currently in the memory.

LIST { Cline number 1) } { —(line number
LLIST 25}

LIST 70—-120
LLIST 70—-120

The LIST command is used to list a program on the
screen; the LLIST command outputs the listing to
the printer. The PC-8201 returns to the Direct
Mode after the LIST or LLIST command is execut-
ed.

When both ( line number )s are omitted, the entire
program is listed. The Key may be pressed
at any time to interrupt listing on the screen. The

Key and the Key are pressed simulta-

neously to interrupt listing to the printer.

If only (line number 1 ) is designated, only that
specific line is listed (if it exists). If { line number
1) and a hyphen {-) are specified, all lines starting
from ( line number 1) are listed. When a hyphen
is followed by a designated ( line number 2 ), the
listing starts from the beginning and continues up to
and including ( line number 2). When a hyphen
is used between both ( line number 1 ) and (line
number 2 ), all lines within the range of both {line
number ) s inclusive will be listed. The (line
number 2 ) must be greater than or equal to (line
number 1 ).

The LLIST command is identical to the LIST
command with the exception that it outputs to a
printer.



Chapter 4

LOAD

FUNCTION:

FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

This command is used to load a program file into
memory.
LOAD “{ (external device name):} (file name )"

{ R}

LOAD “CAS:SAMPLE.BA"',R

This command loads the program specified by ( file
name ) and optional ( external device name ) into
the memory. When executed, the LOAD com-
mand closes all open files and deletes variables.

RAM is selected if the ( external device name ) is
omitted, but { file name ) must be specified. The
PC-8201 loads from cassette tape if “CAS:"” is
designated for ( external device name). If file
name is omitted, the first program file that it
detects on the cassette tape is loaded. The
andKeys can be pressed simultaneously to
interrupt the execution of the LOAD “CAS:”
command.

The intended device is the RS-232C interface when
“COM:"” is designated for ( external device
name ). Data transmission format can be indicat-
ed but ( file name ) cannot be used. ( Please refer
to the OPEN ““COM:"" command for details on this
specific application).

The file must be a ".BA” or “.DO” file. File type
extension can be omitted during loading. If the
“R"” (Run) option is specified, the program is
executed immediately after loading.

The program currently in the memory is preserved

until the specified file is found and the program
loading has begun.

4-78



NOTE:

SEE ALSO:

Chapter 4

The PC-8201 returns to Direct Mode when the load
process has been completed.

A NEW command is executed before the actual
execution of a LOAD command occurs, so that all
existing variables and programs can be cleared.

The BLOAD, CLOAD, and SAVE commands. See
Chapter 5, Files.



Chapter 4

LOCATE

FUNCTION:

FORMAT:

SAMPLE

STATEMENT:

DESCRIPTION:

NOTE:

SAMPLE
PROGRAM:

This command designates the location of the screen
cursor.

LOCATE ( horizontal coordinate ), (vertical co-
odinate )

LOCATE 20,5

This command moves the cursor to a designated
location on the display screen. The range of the
{ horizontal coordinate ) is 0 through 39, and for
the ¢ vertical coordinate ) the range is O through
7. Home position is considered to be at co-
ordinate (0,0).

Any number greater than 39 will be set as 39 for
the ( horizontal coordinate ), while any number
larger than 7 will be set as 7 for the ( vertical
coordinate ) (or 6 when the Function Keys are
displayed on the bottom line of the screen).

A LOCATE statement designates character co-
ordinates and has absolutely no connection to the
dot matrix structure of the screen itself.

186 SCREEN 0,0:CLS

20 LOCATE 10,7:PRINT'X="';X;

380 LOCATE 20,7:PRINT"Y=";Y;

48 X=INT(RND(1)x3%9):Y=INT(RND(1)%7)
;

58 LOCATE X,Y:PRINT'HOP'

68 FOR

I=0 TO 388 :NEXT

70 LOCATE X,Y:PRINT' "3
80 GOTO 20



Chapter 4

LOG

FUNCTION: This function returns the natural logarithm of a
number.

FORMAT: LOG( ( numeric expression ) )

SAMPLE

STATEMENT: PRINT LOG(2.7182818)

DESCRIPTION: The LOG function is useful in trigonometric ap-
plications, and it returns the natural logarithm of a
number based on “e” {exponent).

The ( numeric expression ) must be greater than
zero. If it is zero or less an “?FC Error” (lilega!
function call) message is displayed on the screen.

SAMPLE

PROGRAM:

16 READ I

28 IF 1=999 THEN END
38 X=LOG(I)

40 PRINT I,X

56 GOTO 1@

60 DATA 34,1,06,44,8976,146,35.677,99%

78 END



Chapter 4

LPOS

FUNCTION:

FORMAT:

SAMPLE
PROGRAM:

DESCR{PTION:

SEE ALSO:

This function determines the current printer head
column.

LPOS( { numeric expression ) )

LPRINT “ABCDE’"; LPOS(0)

The LPOS function determines the current column
position of the printer head within the buffer. It
keeps track of the number of characters printed
until a carriage return appears, which resets it to
zero.

The value of the ( expression ) is only used as a
dummy expression, used for the value that is

returned by the LPOS function.

POS function.



MAXFILES

FUNCTION:

FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

SEE ALSO:

Chapter 4

This command establishes the number of files that
can be opened.

MAXFILES= {number of file(s))

MAXFILES=3

The number of files that can be opened is set to 1
when a Cold Start is conducted. The maximum
number of files that can be opened at one time is
designated by a MAXFILES statement,  The range
of ( number of file(s) > is from 0 through
15.  Once this type of value has been designated,
it will be protected until it is redesignated or when
a Cold Start is again conducted.

The OPEN and CLOSE statements, and Chapter 5,
Files.



Chapter 4

MENU

FUNCTION:

FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

NOTE:

This command returns to MENU display.

MENU

MENU

The MENU command clears all variables and returns
to MENU mode. Files in access mode (indicated
by an asterisk when the FILES command is execut-
ed), are closed when the MENU command is
executed. The program is maintained in the
BASIC area and execution is possible by entering
the BASIC mode.

MENU does not use any parameters.



MERGE

FUNCTION:
FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

NOTE:

SEE ALSO:

Chapter 4

This command is used to merge two programs
together.

MERGE { “external device name ) : } { {file name ))

MERGE ""CAS:DEMO.DQO”

A program file within the RAM or from an external
device can be merged with a program currently in
the memory.  The PC-8201 returns to Direct Mode
after the MERGE command is executed.

RAM is selected when the ( external device name )
is not specified, but ( file name ) cannot be
omitted. When "“CAS:" (cassette tape) is designat-
ed for external device and the ( file name ) is
omitted, the first program detected is used in the
merging process. When “COM:"” ({(the RS-232C
circuit) is designated, the file name cannot be used
but the designation of data transmission format is
possible.  (Refer to the OPEN command for more
detail in this specific situation.) The MERGE
command will close all files after execution.

In all cases, the designated program must have been
saved in ASCIl code (must be a “.DO" file). If it
is not, an error occurs.

Use with caution, because if the two programs have
identical line numbers, the line{s) in the memory

are overwritten by the line from the designated file.

The SAVE and RENUM commands.



Chapter 4

MIDS$

FUNCTION:

FORMAT:

SAMPLE

STATEMENT:

DESCRIPTION:

NOTE:

This function returns a specified number of charac-
ters from a desired position within a string.

MIDS$( ( character string ), ( numeric expression 1)
{ . (numeric expression 2) })

PRINT MID$("*ABCD",2,2)

The MID$ (Middle) function returns a substring of a
specified length from a desired position within the
( character string ).

The { numeric expression 1) specifies the position
within the ( character string), while ( numeric
expression 2 ) determines the length of the sub-
string.

When ( numeric expression 2 ) is omitted, or when
the number of characters to the right of the
{ numeric expression 1 ) position within the
{ character string ) is less than ( numeric expression
2), all characters to the right of the ( numeric
expression 1 ) position are returned.

If ( numeric expression 1 ) is greater than the
length of the ( character string ) a null string is
returned.

{ Numeric expression 2 ) must be an integer from 0
to 255, while ( numeric expression 1 ) must be an
integer from 1 to 255. If not an “?FC Error”
(lllegal function call) message is displayed.



Chapter 4

SAMPLE
PROGRAM:
18 A$="JANUARY XX, 19°
20 D$="123456789%99"
30 P$=MID$(A%,1,8)+MID$(D$,1,1)+MID$(D%,16,1)
+MID$(A%,11)+MIDS(DS,9,2)
40 PRINT P$
50 END



Chapter 4

MOD

FUNCTION:

FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

SAMPLE
PROGRAM:

This function provides the remainder of an arith-
metic expression.

( numeric expression 1) MQD ( numeric expression
2y

PRINT A MOD 7

Values for both numeric expressions can be positive
integers that are less than 32767. When a negative
value is used for { numeric expression 2}, it will be
processed as an absolute value. If a negative value
is specified for ( numeric expression 1 ), a negative
value as the result is returned.

In addition, a zero cannot be used in { numeric
expression 2 ). Any decimal fraction included is
rounded to the decimal point.

16 SCREEN 0,8:CLS
28 LOCATE 5,8:BEEP:INPUT" A NUMBER';

AtA=

INT(A)

30 IF A<32768! THEN 5@

48 PRINT"IT IS TOO LAARGE. :FOR I=6 TO
10080 :NEXT:GOTO 10

5@ CLS:LOCATE 6,2:PRINT'THE DECIMAL
NUMBER" ;A3 * WILL BE °

60 LOCATE 6,4:PRINT"IN BINARY®

78 N=8

80 LOCATE 36-Nx2,6

98 PRINT A MOD 2:A=INT(A/2):N=N+1
© 108 IF A<> © THEN 80

110 GOTO 20

4-88



Chapter 4

MOTOR

FUNCTION: This command controls the ON and OFF functions
of the motor that drives the cassette recorder.

FORMAT: MOTOR (switch)

SAMPLE
STATEMENT: MOTOR O

DESCRIPTION: The cassette recorder motor is turned OFF when
the ( switch ) value is set to 0. Any numeric
value ranging from 1 to 255 turns the motor ON.

An error occurs if a value greater than 255 is
designated to turn the motor ON.

SAMPLE

PROGRAM:

18 MOTOR @

26 PRINT"SELECT CASSETTE TAPE WITH
MUSIC THAT YOU LIKE®

38 PRINT'PLUG ONE END OF THE CABLE INTO
THE PC-8281 AND INSERT THE BLACK PLUG
INTO THE REMOTE CONNECTOR,®

48 PRINT®SET RECORDER TO ON*

50 PRINT'HIT 1 TO START®

68 IF INKEY$="" THEN 60

76 MOTOR 1

80 PRINT'HIT 8 TO STOP!'"®

90 IF INKEY$="" THEN 90

166 MOTOR @:GOTO S@



Chapter 4

NAME

FUNCTION:

FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

SEE ALSO:

This command is used to rename files in the RAM.

NAME ‘“ (old file name)” AS ““ (new file name )"

NAME “OLD.BA” AS “NEW.BA"

The NAME command renames the RAM file { old
file name ) as ( new file name ). The designated
file name must include the file type extension for
both the old and the new file names. The file
type for both file names must be identical.

An error message appears on the screen if one of
the following is true:

1. A non-existing file name is designated as an ¢ old
file name ).

2. An existing file name is used as a ( new file
name ).

3. File types for both files are not identical.

Chapter 5, Files.



Chapter 4

NEW
FUNCTION: This command erases any program or data currently
in the BASIC area and clears all variables.
FORMAT: NEW
" SAMPLE
STATEMENT: NEW
DESCRIPTION: The NEW command is used in Direct Mode prior to
the input of a new program. When executed, it
closes all opened files. Furthermore, a file in
access (indicated by an asterisk when FILES com-
mand is executed) will be terminated.
This command does not use any parameter and it
returns to Direct Mode after execution is com-
pleted.
SAMPLE
PROGRAM:
16 REM This program will self-destruct
when you run it.
20 PRINT"YOU HAVE DESTROYED THE
PROGRAAM ! *
30 BEEP:BEEP
40 NEW



Chapter 4

NOT

FUNCTION:
FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

NOTE:

SEE ALSO:

EXAMPLE:

This logical operator is used to test multiple
relations, bit manipulation, and Boolean operations.

NOT (operand )

PRINT NQOT 5

The logical operator NOT converts its { operand )
to a sixteen bit binary integer, and then it inverts
(negates} each bit of the ( operand ). It returns
—1 (true) if the bit is O (false) or it returns 0 if the
bit is —1.

The following table shows the negated calculations:
NOT —1— 0 (NOT TRUE — FALSE)
NOT 0—-1 (NOT FALSE—TRUE)

~ For more details on logical operators see
Chapter 3.

Because of the ( operand ) conversion to sixteen bit
binary, the ( operand ) must range from —32768 to
+34767. If not, an 20V Error’” (Overflow) mes-
sage is displayed.

Functions AND, EQV, IMP, OR, XOR, and Chap-
ter 3.

INTEGER BINARY BITS
153 0000 0000 1001 1001
—154 11111111 0110 0110



Chapter 4

To negate it just replace 0 with 1 and vice
versa. If you input the statement PRINT NOT
153, the PC-8201 responds —154, whose binary is
1111 1111 0110 0110, which is the correct result,
according to the table above in the DESCRIPTION
section.

4-93



Chapter 4

ON ... GOTO/ON ... GOSUB

FUNCTION:

FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

These statements transfer control (branch) to one of
several specified lines/subroutines based on the
evaluation of the statement.

ON ( numeric variable) | GOTO | € line number )
GOSUB
, {line number list )

ON A GOTO 100, 140, 200, 400

The ON ... GOTOQ/ON ... GOSUB statements
branch to a specific { line number ) based on the
evaluation of the { numeric variable ) .

After the ( numeric variable ) is evaluated its
integer part is taken, and it is then used to select
the first { line number > if the value is 1, the
second { line number ) if the value is 2, etc.

An “?FC Error in line’ occurs if the value of the
{ numeric variable ) is negative. But if it is zero
or greater than the number of (line number } then
control branches to the next logical line (following
the ON ... GOTO/GOSURB statement).

The ( line number ) following the GOTO or
GOSUB must be separated by commas, or else an
2SN Error” (Syntax) message is displayed on the
screen. There may be any number of ( line
numbers ) in a list {up to 255 characters per line).

When ON ... GOSUB is used and control is
transferred to the subroutine, a RETURN statement
is needed. After the RETURN statement is ex-
ecuted, control returns to the line following the ON
... GOSUB statement.



NOTE:

SEE ALSO:

SAMPLE

PROGRAM:

10
20

INPUT
ON (A
PRINT

Chapter 4

/ For more information refer to GOSUB
and RETURN statements.

These statements save time and program lines when
they are used in place of the IF ... THEN
statement.  For example:

IF L=1 THEN GOSUB 15010N L GOSUB 150, 80
200, ...
IF L=2 THEN GOSUB 80

IF L=3 THEN GOSUB 200

ON ERROR, GOTO, GOSUB, and RETURN state-
ments.

*ENTER A NUMBER FROM @ TO S5";A
AND 1)+1 GOSUB 120,130
"YOUR NUMBER IS °;

ON A+1 GOTO ¢@,7¢,80,90,100,110

PRINT
PRINT
PRINT
PRINT
PRINT

"OUT OF RANGE.":GOTO 10
"ZERO® {END

“ONE " :END

"TWO" :END

"THREE ' :END

180 PRINT "FOUR':END
118 PRINT "FIVE':END
126 PRINT A "IS AN EVEN NUMBER' :RETURN
138 PRINT A "IS AN ODD NUMBER® :RETURN



Chapter 4

ON COM GOSUB

FUNCTION:

FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

SEE ALSO:

This statement establishes initial line of a branch
process when interruption occurs from a RS-232C
communications port.

ON COM GOSUB ¢ line number )

ON COM GOSuUB 2000

This statement designates ( line number ), which
branches to the first line of a routine used to
perform communication process when an RS-232C
interrupt occurs.

A return from the process routine is conducted the
same as normal subroutine.

A return from ON COM GOSUB routine is exactly
the same as other normal routine, by using the
RETURN statement. When specified, the program
is restarted from where program execution was
suspended. When ( line number ) is specified, the
program is restarted from the specified line.

COM ON/OFF/STOP, OPEN and RETURN state-
ments.




Chapter 4

ON ERROR GOTO ~ RESUME

FUNCTION:

FORMAT:

SAMPLE
STATEMENTS:

DESCRIPTION:

SEE ALSO:

The ON ERROR GOTO statement is used to
specify an error subroutine used for trappable
errors.

ON ERROR GOTO{( line number )
)

ON ERROR GOTO 100
ON ERROR GOTO 0

The ON ERROR GOTO ~ RESUME statement
creates an error handling routine, which takes
control from Ng2-BASIC if an error is detected
during program execution.

The ON ERROR GOTO statement is used to
instruct the PC-8201 that an error processing sub-
routine is in effect. In situations when an error
occurs, { line number ) indicated is to receive
control, which should be the beginning of the error
handling routine. If a line specified in ( line
number } does not exist, a “?UL Error”’ (Undefined
line number) message will be displayed.

The ON ERROR GOTO 0 statement is used when
an error trap function is not possible, which signals
BASIC to handle all errors. BASIC proceeds with
normal system error handling by displaying error
messages and stopping program execution. It is
advisable to execute an ON ERROR GOTO 0
statement for error processing routines so that any
failure in the routines can be trapped.

The RESUME and ERROR statements.



Chapter 4

OPEN

FUNCTION:

FORMAT:-

SAMPLE

STATEMENT:

DESCRIPTION:

This statement is used to open a file for input or
output.

OPEN" { (external device name) :} ( file name) "
INPUT

FOR| OQUTPUT |AS { #] (file number)
APPEND

OPEN “"SESAME” FOR QUTPUT AS #1
OPEN “CAS:SESAME"” FOR OUTPUT AS# 2

The OPEN statement opens a file specified by ( file
name ) for use with the buffer number ( file
number ). A range from 1 through 15 can be
designated for ( file number ). A ( file number )
previously used to open a file cannot be subsequent-
ly used to open another (a second) file.  Input and
output of an opened file are conducted by sub-
sequently specifying a file number.

Three different ( modes ) are used to specify their
access methods to a file.  “INPUT' assigns sequen-
tial input from a device or an existing file, “"OUT-
PUT" designates sequential output to a device or a
file, and “APPEND’ specifies addition to a RAM
file.

The PC-8201 opens a file from RAM if { external
device name ) is omitted, but the file name must be
supplied.  When device name is specified, “CAS:”
is designated for data recorder. If file name is
omitted in this context, the PC-8201 opens the first
tape file it detects if in input mode, and creates a
new tape file if in the output mode but without a
file name. The and Keys are pressed
to interrupt the execution of an OPEN “CAS:”
command.



NOTE:

SEE ALSO:

SAMPLE
PROGRAM:

Chapter 4

OPEN reserves the buffer space required for input/
output and uses it only for the specified file while
it is open.

Any file name designated in output mode means
that a new file is being created. If an existing file
name is used for output, its content is erased when
the file is open. Care should be exercised when
selecting a file name for OPEN OUTPUT.

Please refer to OPEN ‘“'COM’ for details on its
subject.

The CLOSE and OPEN ‘““COM” statements, and
Files in Chapter 5.

20 OPEN °"SESAME" FOR OUTPUT AS #1
30 PRINT#1, "OPEN SESAME!"
40 PRINT#1, °"CLOSE SESAME!"

50 CLOSE

60 OPEN "SESAME" FOR INPUT AS #1
70 INPUT #1,A%$:PRINT A%$:SOUND 2608, 20
88 INPUT #1,A4:PRINT A%$:SOUND 5000, 20

%0 CLOSE

189 PRINT "THE SESAME FILE IS NOW
ARRANGED. "
1180 PRINT "FILES':FILES



Chapter 4

OPEN “COM”

FUNCTION:

FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

This statement opens up the RS-232C circuit.

INPUT
OPEN “COM:{ (CPBSXS) }” FOR | OUTPUT
AS { #} ( file number )
OPEN ""COM:9N82XN" FOR INPUT AS#1
This command establishes the RS-232C circuit data
transmission format and opens it as a
file. { Mode )} and { file number )} perform the

same way as in the OPEN statement. However,
appended output mode cannot be designated.

[5? Please refer to OPEN statement for
more details.

The designated parameter that follows the COM:
requires six characters to establish a data transmis-
sion circuit format. Respective designation are as
follows.

““COM: { CPBSXS) "
where CPBSXS stands for:
C Communications speed (BAUD RATE)
P Parity
B Word Length
S Stop bit

X Control according to “’X’* parameter

S Control according to shift in/out sequence

4—-100



Chapter 4

Each different character of the parameter is control-
led by a different feature of the communication
format.

The following are the values for each different
feature of the communication format:

VALUE Communication Speed (Baud Rate)
(Bits per second}

1 : 75 bps

2 : 110 bps

3 : 300 bps

4 : 600 bps

5 : 1200 bps

6 : 2400 bps

7 : 4800 bps

8 : 9600 bps

9 : 19200 bps
PARITY

N : No Parity

E : Even Parity

0 : Odd Parity

| : Parity Bit Ignored

4--101



Chapter 4

WORD LENGTH

6 : 6 word length bits

7 : 7 word length bits

8 : 8 word length bits
STOP BIT

1 : 1 Stop Bit

2 : 2 Stop Bits

CONTROL ACCORDING TO “X” PARAMETER
X : Affects Control
N : Does not Affect Control

The “’X’" parameter controls communication trans-
mission by using + S to start and +Qto
stop transmission.

CONTROL ACCORDING TO SHIFT IN/OUT SE-
QUENCE

S : Affects Control
N : Does not Affect Control

If the value of { CPBSXS ) is omitted, then the
previously established value is in effect.

When the RS-232C circuit is used in BASIC, two
separate files must be opened to send transmitted
data. The OPEN statement (at either end of the
transmission) that was established last is used to set
the data transmission format.

4-102



Chapter 4

The + S and + Q functions can be
transmitted although only the input/output of a file
is opened.

NOTE: The RS-232C circuit cannot be used while the data
recorder is in use.

Please refer to the TELCOM command
in the PC-8201 User's Guide for specific
precautions.

SEE ALSO: The OPEN and COM ON/OFF/STOP statements,
and TELCOM section of the PC-8201 User’s Guide.

4-103



Chapter 4

OR

FUNCTION:

FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

NOTE:

SEE ALSO:

This logical operator is used to test multiple
relations.

( operand 1) OR { operand 2 )

IF A=5 OR B=5 THEN 200

The logical operator OR performs tests on multiple
relations, bit manipulation, and Boolean opera-
tion. It returns either a non-zero (true) or zero
(false) value.

For the operation to return a non-zero (true) value,
the condition of at least one ( operand ) has to be
true, or else the operation returns zero (false).
The following table indicates the evaluation process:
-1 OR —1——1 (TRUE OR TRUE —TRUE)
—1 OR 0— —1 (TRUE OR FALSE —TRUE)
0 OR —1-= —1 (FALSE OR TRUE — TRUE}

0 OR 0—0 (FALSE OR FALSE —FALSE)

=5 For more details on logical operators see
Chapter 3.

Logical ( operators ) work by converting their
{ operands ) to sixteen bit binary integers.  There-
fore, ( operand 1 ) and ( operand 2 ) must range
from —32768 to +32767. If not, an “?0V Error”
(Overflow) message will be displayed.

Functions AND, EQV, IMP, NOT, XOR, and Chap-
ter 3.

4-104




Chapter 4

EXAMPLE: INTEGER BINARY BITS
23280 0101 1010 1111 0000
11853 0010 1110 0100 1101

After you input the statement PRINT 23280 OR
11863, the integer 32509 appears, whose binary is
0111 1170 1111 1101. By looking at the above
table in DESCRIPTION, notice that the computa-
tion is correct.

4-105



Chapter 4

OouT
FUNCTION:
FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

NOTE:

This statement sends data to a specific port.

OUT ( port number ), {( data )

OuT 1,32

The OUT statement sends data to a designated
output port. The { port number ) must be an
integer ranging from 0 to 255, while { data ) is the
data that is output through the port.

if the OUT statement is not used correctly BASIC
might not operate normally.

4-106



Chapter 4

PEEK

FUNCTION: This function loads the content of a designated
location in the memory.

FORMAT: PEEK { (address))

-SAMPLE

STATEMENT: A=PEEK (61400}
DESCRIPTION: The PEEK function returns the memory content of
a designated ( address ). Any value from O

through 65535 may be designated for ( address ).

Any numbers (specified for { address)) that con-
tain decimal fractions are rounded off.

SEE ALSO: The POKE command.

4-107



Chapter 4
POKE

FUNCTION:

FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

NOTE:

SEE ALSO:

This command writes data to a designated memory
address.

POKE ( address ), {data)

POKE 61400,201

This command is used to write one byte (8 bits) of
data into a designated location in the memo-
ry. The ( address ) is designated with 2 byte
integers between O and 65535. The { data ) is
designated by one byte integers between 0 and
955. The POKE statement is used in conjunction
with the PEEK statement to perform the inverse
operation. It is used when the numeric values of a
Machine Language subroutine are to be accessed.

The POKE command rewrites the current memory
content. Therefore, it should only be used after
checking the memory to ensure that data in the
BASIC work area is not destroyed. It is quite
easy to destroy programs and files if you do not
adequately understand Machine Language. If the
PC-8201 operates abnormally after the POKE state-
ment is used, the Reset Switch may be pressed to
restore normal operation.

The PEEK statement and Machine Language Pro-
gramming.

4-108




POS

FUNCTION:

FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

NOTE:

SEE ALSO:

SAMPLE
PROGRAM:
18 CLS

Chapter 4

This function determines the current cursor column.

POS( ( expression )

PRINT** 123456 ;POS(0)

The POS (position) function determines the current
column position (horizontal position) of the cursor
on the screen.

The ( expression ) is only used for the value that is
returned by the POS function. Therefore, it does
not make any difference what value is used for the
{ expression ).

Since there are 40 columns on the screen, the
returned value is always between 0 through 39.

The CSRLIN function.

20 PRINT:PRINT'PC-8281";
38 PRINT POS(X)

48 LOCATE 2,2

58 PRINT POS(X)

68 LOCATE 4,4

70 PRINT POS(X)

4-109



Chapter 4

POWER

FUNCTION:

FORMAT:

SAMPLE
STATEMENTS:

DESCRIPTION:

This statement automatically turns OFF the elec-
trical power of the PC-8201.

POWER | ( timer)
OFF ,RESUME
CONT

POWER 200
POWER OFF
POWER CONT

The designated value for ({ timer ) can be ranging
from 10 through 255, at increments of approxi-
mately 6 seconds per unit. Keyboard input is not
accepted once the designated ( timer ) is reached
and the electrical power is automatically turned
OFF. Once the value for the ( timer ) has been
established, it remains at that value until it is reset
or modified.

The electrical power of the PC-8201 is promptly
turned OFF when a POWER OFF command is
executed. It returns to the MENU mode when the
power switch is turned ON again. If optional
parameter ‘,RESUME” is also appended, the
PC-8201 is reinstated in the configuration when it
was automatically turned OFF. The contents of
the variables is also reinstated.

After a POWER CONT (Continuous Power} com-
mand is executed, the automatic power shut off
function is deactivated until the POWER ( timer )
command is input again.

it is not recommended to execute the POWER

CONT command unless an AC Adapter is used,
otherwise the batteries may be severely drained.

4-110



Chapter 4

In the sample statement, the POWER 200 statement
will cause the PC-8201 to shut off in 20 minutes, if
nothing is input or output during that time.  The
calculation of time for the sample statement is as
follows:

200 units % 6 seconds (per unit) = 1,200 seconds or
20 minutes

4-111



Chapter 4

PRESET

FUNCTION:

FORMAT:

SAMPLE

STATEMENT:

DESCRIPTION:

SEE ALSO:

This statement resets the desired dot pattern on the
LCD screen.

PRESET ((horizontal coordinate ), ¢ vertical co-
ordinate ) {, ( function code) })

PRESET (80,32)

The PRESET statement resets dots on the screen at
the designated coordinates. The ( vertical ) and
{ horizontal ) coordinates or the function code
must be within the range from 0 to 255 or else an
error occurs.

The system for the dot coordinates for the LCD
display is 239 X 63. If the ( hcrizontal co-
ordinate ) is greater than 239, it is generally treated
as 239, and if the ( vertical coordinate ) is greater
than 63 it is generally treated as 63.

When the ( function code ) is an even number, the
PRESET command reverses, and operates exactly
the same way as the PSET command.

If the ( function code ) is an odd number the
command operates the same way as when it is

omitted.

PSET statements.

4-112



SAMPLE

PROGRAM:

10
20
36
40
56
60
70
80
90

PRINT"® THESE SENTENCES WILL®
PRINT

PRINT" DISAPPEAR SLOWLY®
PRINT

PRINT"® BY THE EFFECTS OF*
PRINT

PRINT® PRESET!";

FOR Y=B TO 55:FOR X=3@ TO 169
PRESET(X,Y):NEXT X,Y

4-113

Chapter 4



Chapter 4

PRINT/LPRINT

FUNCTION:

FORMAT:

SAMPLE
STATEMENTS:

DESCRIPTION:

NOTE:

These statements output information to the display
screen or to a printer.

|:PRINT {"}{ (expression) ... }{"}
LPRINT

PRINT “ABC”
LPRINT “PC-8201"

The PRINT statement outputs the values of a
designated expression or a string to the display
screen, while the LPRINT statement outputs to a
printer.

A PRINT statement by itself (without expression],
will cause a line feed carriage return to be execut-
ed. If acomma is used to separate each individual
item, it causes these items to be printed every 14
spaces, which are called print zones.

A question mark (?) can be used as the abbreviated
form of the PRINT statement.

A comma (,), semicolon (;), or blank space can be
omitted, except for punctuation within a string
(where a variable is enclosed by quotation
marks). In this case, the operation is identical to
using a semicolon for punctuation.

Single Precision numbers can be displayed without
loss of precision in six columns (excluding ex-
ponential format). Double Precision numeric
values can be displayed without loss of precision
{excluding exponential format) in sixteen columns.

4-114



Chapter 4

SAMPLE
PROGRAM:
18 PRINT'IF YOU DO NOT WANT AN
INDENTATION, *;
20 PRINT"THEN",
36 PRINT"USE A SEMICOLON. "

4-115



Chapter 4

PRINT USING/LPRINT USING

FUNCTION: This statement outputs formatted data to the
display screen or to a printer,

LPRIN { numeric expression )
{ [] ( numeric expression list)
}

FORMAT: LPRINT :l USING ( formatting string );
T

’

SAMPLE
STATEMENT: PRINT USING “g# #### 23,4567

DESCRIPTION: The PRINT USING statement outputs numeric date
in a designated format. It formats numbers in
several ways, making it easier to read and interpret
the output on the screen. LPRINT USING out-
puts data to a printer in the same manner.

PRINT USING/LPRINT USING allows you to
specify:

- Number of significant digits.

. Location of decimal point.

- Exponential format.

. inclusion of symbols (asterisk, dollar sign,
comma, leading zeros).

- Indicate negative values.

The output of a { numeric expression ) field will
always be the same length as the length of the
( formatting string }, unless there is insufficient
space and an error occurs.

If the field specified by the ( formatting string ) is
not large enough for the { numeric expression ), the
number that is printed includes a “%"” symbol at
the beginning.

4-116



Chapter 4

The ( formatting string ) may include the follow-
ing:

1. The “#"(symbol ) pound sign , which reserves
space for one digit and indicates that leading
zeros are to be suppressed. For example:

PRINT USING “###":3
PRINT USING “###";3333

results:

-3
%333

@ The underscore (_) denotes a blank
space.

2. The “.”, (decimal point), which specifies the
number of digits to the left and right of the
decimal point. The digits to the left of *."" will
always be printed, even if zeros are required.

Rounding will occur when the number of speci-
fied spaces to the right of “.” is less than the
{ numeric expression >, Only one “."” may be
specified. A second “’.”" indicates the end of
the old format field and the beginning of a new
one. For example:

PRINT USING “###. ##,2.5
PRINT USING "“###. ##''2.655
PRINT USING “#4#t#.#.#".2.34,45

will result:
__2.50

——_2.56
——2.3%45.0

4—-117



Chapter 4

3. The “,”” symbol {(comma), which is used any-

where within the ( formatting string ), after the
first character and before the decimal point. It
punctuates the printed number with " ap-
pearing every third digit, starting from the

decimal point and heading left. For example:

PRINT USING “'#, ##. 1 #4,2222.2
PRINT USING “#, gt ##4. ##7;123456
PRINT USING “##f# ##.,4';1234.5

will result:
2,222.200

%123,456.00
—1235,,

. The "+ symbol (plus sign), which is used at the

beginning or at the end of the ( formatting
string ), and specifies the sign (+ or —) of the
{ numeric expression ). For example:

PRINT USING “+##. ##':2

PRINT USING “##.#+":34.5

PRINT USING “"+##.##" ;-3

PRINT USING “###.4#+":—34.5
PRINT USING “# ####.4+"7,12345.6

will result:

_+2.00
34.5+
_-3.00
_34.5—-
12,245.6+

. The ““~"" symbol (minus sign), which is used only

at the end of the ( formatting string ), and
specifies the sign (+ or —) of the ( numeric
expression ). For example:

4--118



Chapter 4

PRINT USING “###.#—",—123
PRINT USING “##.#-",123
PRINT USING “#, ####.#—-"—12345.6

will result:

123.0—-
12.3
12,345.6—

. The “~" symbol (exponent), which is used at
the end of the ( formatting string ), and outputs
the exponential format of a ( numeric expres-
sion ). For example;

PRINT USING “###.#HH#~""",123456
PRINT USING "'#. ##H~~~""";1234567
PRINT USING "#.#H##~~~~",—-1234567

will result:

—12.346E+04
0.123E+07
—.123E+07

. The "x%'" (asterisks), which are used at the
beginning of the ( formatting string ), and
provide the number with leading asterisks instead
of with leading zeros. For example:

PRINT USING “‘sk #H#. ##—""1-2.2
PRINT USING “'skk # ####+",—-123
PRINT USING 'k ## ##H##.#—"",—12345.6

will result:
* %k%kk2.20—

%k k% k123—
% %k %12,345.6—

4-119



Chapter 4

NOTE: When characters that are not described above are
used, they will be printed before or after any

numeric values.

SEE ALSO: The PRINT/LPRINT, PRINT#, and
USING statements.

SAMPLE
PROGRAM:

10 PRINT'LET’S CREATE TWO HUNDRED
RANDOM NUMBERS OF FOUR COLUMNS
EACH. "

280 FOR I=8 TO 24

38 FOR J=06 TO 7

486 R=RND(1)x10000

5O PRINT USING' ###4" ;R

60 NEXTJ,I

4-120

PRINT#



PSET

FUNCTION:

FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

SEE ALSO:

SAMPLE
PROGRAM:

Chapter 4

This statement sets a desired dot pattern on the
LCD screen of the PC-8201.

PSET ((horizontal coordinate ), ( vertical co-
ordinate ) { ,{ function code ) })

PSET (80,32)

The PSET statement sets dots on the screen at the
designated coordinates, The ( vertical ) and
{ horizontal ) coordinates of the ( function code }
must be within the range from 0 to 255, or else an
error occurs,

The LCD display has 240 dots horizontally and €4
dots vertically. If the ( horizontal coordinate ) is
greater than 239 it is generally treated as 239, and
if the ( vertical coordinate ) is greater than 63 it is
generally treated as 63.

When the ( function code ) is an even number, the
PSET command reverses, and operates exactly the
same way as the PRESET command. |If the
{ function code ) is an odd number, the command
operates the same as if it was omitted.

PRESET statements.

1@ SCREEN 0,8:CLS

20- A=158:B=.,85:C=11

30 FOR T=-15 70 72 STEP .13

48 X=EXP(-T*B)*CO0S(160%3.14%T/180-A)
58 Y=EXP(-TxB)xC0S(166%3.14xT/180-C)
60 X=X%120+120:Y=Y*32+32

70 IF X>=0 AND X<236 AND Y>=@ THEN

PSET(X,Y)
80 NEXT
90 BEEP

4-121



Chapter 4

READ

FUNCTION:

FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

SEE ALSO:

This statement is used to read a value from a DATA
statement and assign data to a variable.

READ ( variable list )

READ A,Z H$

The READ statement is always used in conjuction
with the DATA statement. The READ statement
is used to accept data from the DATA statements
and assigns corresponding dsta to a vari
able. Numeric or string variables may be contain-
ed in the READ statement.

A single READ statement may access one or more
DATA statements (accessed in order). In addition,
multiple READ statements may access a single
DATA statement. If the number of data items in
the DATA statement is less than the variables
specified in the ( variable list ), an 20D Error”
(out of data} message is displayed.

When designated variables in the { variable list ) are
less than the amount of data in a DATA statement,
the next READ statement accesses data not read
previously. If no more READ statements are
coded in the program, any extra data is ignored.

if repeat utilization of the same data in a program
is necessary, the RESTORE statement can make this
possible by recycling through the complete or
partial set of DATA statements.

The RESTORE and DATA statements.

4-122



SAMPLE

PROGRAM:

CLS:LOCATE 8,3

FOR I=6 TO 8

READ R%$

PRINT R$;" "

NEXT

END

DATA Please, read, this, manual.
DATA I, (PC-82081), am, reading,
data.

4-123

Chapter 4



Chapter 4

REM

FUNCTION:

FORMAT:

SAMPLE
STATEMENTS:

DESCRIPTION:

The REMARK statement is used to put non-
executable remarks or comments in a program.

[REM} ( remark »

REM THIS IS A TEST PRCGRAM
“ THIS IS A TEST PROGRAM

The REM statement is used to input explanatory
remarks or comments in a program. It is not an
executable statement.

There is a single quotation mark on the keyboard,
used as an apostrophe. An apostrophe () can be
used as a substitute for the keyword “REM” in a
REMARK statement.

When the program is listed, all the REM statements
are output unchanged. REM statements may be
used in multistatement lines only as the last
statement. This is because all statements that
follow the REM statement in the multi-statement
line are treated as the { remark ), and they will not
be executed.

4-124



Chapter 4

SAMPLE

PROGRAM:

18 REM xx REM 3%

20 REM A REMARK statement is included as
an explanation in a program.

30 “An apostrophe can be subsrituted for
the keyword "REM' in a REM statement.

40 REM The PC-8201 disregards anything
in a REM statement that follows the
keyword “REM".

580 REM Any commands that follow a REM
statement in the same line will also
be disregarded.

68 PRINT"HOWEVER, THE REVERSE WITH A
REM STATEMENT AFTER ANOTHER
STATEMENT IN A LINE IS POSSIBLE.:

REM This is useless,"

4-125



Chapter 4

RENUM

FUNCTION:

FORMAT:

SAMPLE
STATEMENTS:

DESCRIPTION:

NOTE:

This command is used to reorganize the line
numbers of a program.

RENUM { ( new line number) } {, {old line num-
ber ) } { ,{increment) }

RENUM
RENUM 101,50
RENUM ,.,6

The ( new line number ) is the line number
replacing the ( old line number ) when re-
numbering, with a default value of 10. The ( old
line number ) is the first line to be renumbered as
{ new line number ), with its default value being
the first line number of the current pro-
gram. Optional ( increment ) is the amount that
each subsequent line number is to be incremented,
with the default value being 10.

The RENUM command can renumber lines used in
conjunction with the GOTO, GOSUB, ON. .GOTO,
ON. .GOSUB, THEN RESTORE statements, and
ERL function. If a non-existent line is designated
by one of these statements, an “Undefined line
il in vyyyy' error message appears on the
screen. In such a case, an erroneous line number
(llll} cannot be modified via the RENUM com-
mand, but line number {yyyy) can be altered,

The PC-8201 returns to Direct Mode after the
RENUM command is executed.

The RENUM command cannot be used to change
the sequence of program lines, for example, using
RENUM 15,30 with three lines numbered 10, 20,
and 30 in a program.

4-126



Chapter 4

Line numbers cannot be written in excess of 65529,
or else an “?FC Error” (ltlegal Function Call}
message will occur.

4—-127



Chapter 4

RESTORE

FUNCTION:

FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

SAMPLE
PROGRAM:
18 FOR

The RESTORE statement is used to manipulate the
data list pointer, and thus re-use data elements from
the DATA statement.

RESTORE { ¢ line number ) }

RESTORE 80

The RESTORE statement is used when the same
data elements (from the DATA statement) are
needed to be utilized more than once.

If ( line number ) is omitted, the first DATA
statement in the program is accessed by the next
READ statement.

{F ( line number ) is specified, the first item of the

DATA statement (designated by { line number Y)is
the next item to be accessed.

I=0 TO 19

20 READ A%$:PRINT A$;" "3

30 RESTORE 76

48 NEXT 1

58 RESTORE 89

60 READ A$:PRINT A%

78 DATA Anything

880 DATA "can be read as data.’

4-128



RESUME

FUNCTION:

FORMAT:

SAMPLE
STATEMENTS:

DESCRIPTION:

SEE ALSO:

Chapter 4

This statement is used to continue program execu-
tion after performing an error processing routine.

RESUME (0)
{ NEXT )
{ line number)

RESUME
RESUME NEXT
RESUME 100

The RESUME statement terminates an error handl-
ing routine and the parameter specifies NEXT
action when program execution continues. This
statement functions in @ manner similar to the
RETURN statement, but may only be used in an
error routine, and then returns control to BASIC
after an error processing routine has been perform-
ed.

Depending on the location where program execution
is to continue after an error processing routine, one
of the following three formats is selected:

1. RESUME or RESUMEDO — continues execution at
the statement that caused the error.

2. RESUME NEXT — continues execution at the
statement immediately after the statement where
the error occurred.

3. RESUME (line number ) — continues execution
but control is to be transferred to the line
specified.

The ON ERROR GOTO statement.

4-129



Chapter 4

RETURN

FUNCTION:

FORMAT:

SAMPLE
STATEMENTS:

DESCRIPTION:

NOTE:

SEE ALSO:

The RETURN statement terminates execution in a
subroutine and returns control to the statement
following the GOSUB (call) statement.

RETURN { (line number) }

RETURN
RETURN 200

The RETURN statement from the subroutine trans-
fers control to the first statement which follows the
GOSUB statement.

If an optional ( line number ) is included with the
RETURN statement, program execution transfers to
the line number specified, and the statement follow-
ing the GOSUB call is discarded.

A GOSUB statement is used when performing
(calling) subroutines. If a GOSUB is not executed
first, and a RETURN is encountered an “?RG
Error’’ (Return without gosubl message will be
displayed.

A subroutine can have more than one RETURN
statement. Only one RETURN statement is ex-
ecuted each time a subroutine is called.

1f a CLEAR command is executed in a subroutine,
the line number to which the subroutine is to
return is removed from the memory. An "?RG
Error’” (Return without Gosub) message results
when the RETURN statement is reached.

See the CLEAR, GOSUB...RETURN, and
ON ... GOSUB statements.

4-130



SAMPLE

PROGRAM:

10
20
30
40
200
210

GOosuB 2@@

A%=A%+1: PRINT A%;

IF A% < 6 THEN GOSUB 20@
END

IF A% ¢ 5 THEN RETURN 28
RETURN

4-131

Chapter 4



Chapter 4

RIGHTS

FUNCTION

FORMAT:

SAMPLE

: This function is used to access a specific number of
characters from a string, starting from the right
most position of the string.

RIGHTS( ( character string ), { numeric expression y)

STATEMENT: B$=RIGHTS$(A$,4)

DESCRIPTI

SEE ALSO:

SAMPLE
PROGRAM

10
20
30

a8

ON: The ( character string ) can be a string constant or
a string variable. The ( numeric expression ) is a
value ranging from O to 255, which specifies the
number of characters to be read, beginning from the
right most character.

The full ( character string ) is returned when the
{ numeric expression ) is greater than or equal to
the total number of characters in the ( character
string). The RIGHT$ statement returns a null
string when the ( numeric expression ) is 0.

The LEFTS and MID$ functions.

A$="CONTEST"

B$=RIGHT®(A%,4)

PRINT"THE " ;RIGHT$("ALRIGHT",S5);
*$ FUNCTION PASSED THIS ';B%3".°
END

4-132




RND

FUNCTION:

FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

SAMPLE
PROGRAM:

Chapter 4

The RND function generates a uniformly distributed
random number between 0 and 1.

RND ({ numeric expression ) }

PRINT RND (9.9)

The RND (Random) function is used whenever you
want the PC-8201 to pick a number, flip a coin,
draw a card, etc.

The random number that is furnished by the RND
function is a floating point (real number) between O
and 1, and it depends upon the { numeric expres-
sion ). The following cases apply to the RND
function:

- If the ( numeric expression ) is positive, an
ordinary random number is generated.

- If the ( numeric expression ) is zero, the same
number as the most recent one designated is
generated repeatedly.

. If the ( numeric expression ) is less than zero
(negative number), a new random series is estab-
lished by changing the random seed.

18 X=120:Y=32

20 SCREEN 8,0:CLS

30 X=X+INT(RND(1)x3)-1

40 IF X<@ OR X>255 THEN X=120
50 Y=Y+INT(RND(1)x3)-1

60 IF Y<@ OR Y>63 THEN Y=32
70 PSET(X,Y)

89 GOTO 3@

4-—-133



Chapter 4

RUN

FUNCTION:

FORMAT:

SAMPLE
STATEMENTS:

DESCRIPTION:

This statement is used to execute a program already
in memory or to load a program and execute it.

RUN { ¢ line number) }
RUN  ““{ (device name):} ( program name )"’

{.R}

RUN 100
RUN ""GAME"

The format of RUN { ( line number) } is used to
execute a program from a designated ¢ line num-
ber ). Program execution starts from the first line
if the ( line number ) is not specified.

When a parameter is not specified with the RUN
statement, the program currently in the memory is
executed starting from the first statement of that
program. If a program does not exist in the
memory, the PC-8201 will display an Ok’ message
and execution is not performed.

The format RUN “{ ( device name ):} ( program
name )’ {,R} loads a program file from the RAM
if ( device name ) is omitted. When ““CAS:” is
designated, a program file from the data recorder is
loaded and executed. If option *“R”" is included, it
will open all data files.

When a RUN statement is executed all open files
are closed, and the contents of the BASIC area is

cleared when the program is loaded.

The PC-8201 reverts back to Direct Mode after
program execution is completed.

4-134



Chapter 4

NOTE: The loading for RUN ““CAS:” can be interrupted by
pressing both the Key and Kev at the
same time.

SAMPLE

PROGRAMS:

o) "SAVE THIS PROGRAM UNDER THE NAME
RUN 1

18 REM xx RUN 1 xx

20 REM It's not easy to use a "RUN'
command within an actual program.

38 PRINT'IF IT RUNS, THE PROGRAM WILL
NOT sToOP. "

40 PRINT

58 PRINT"PRESS THE STOP KEY!"

60 PRINT

70 RUN “RUN 2°

S ‘SAVE THIS PROGRAM UNDER THE NAME
"RUN 2°

18 REM %% RUN 2xx

20 PRINT'NOW, RUN 2 IS BEING EXECUTED."

30 PRINT

40 PRINT°NEXT, LET’S RETURN TO RUN 1.°

50 PRINT

60 RUN "RUN 1°

4—-135



Chapter 4

SAVE

FUNCTION:

FORMAT:

SAMPLE
STATEMENTS:

DESCRIPTION:

This command is used to save a program on a
designated device.

SAVE ' { (external device name):} (file
name) " {,A}

SAVE “"ENERGY" A
SAVE “CAS:ENERGY" A

This command saves a program currently in the
memory into RAM or onto external devices. The
designated ( file name ) can be six characters or
less. When an identical ( file name ) is specified,
(compared to an existing file name) the original file
content will be overwritten. After the command
is executed, the PC-8201 returns to Direct Mode.

The PC-8201 saves a program file from the RAM if
( external device name ) is omitted. When ( ex-
ternal device name ) is specified, “CAS:"” is desig-
nated for data recorder, “COM:"” is designated for
an RS-232C circuit, and “LPT:" is used to designate
a printer.

For more details, please refer to the CSAVE
command for ‘“CAS:”, the OPEN command for
COM:", and the LLIST command for “’LPT:".

File type ““.BA" is automatically selected if none is
specified. If file type ".DO"” is designated for a
" BA" file, or if option ““A" is assigned, then a
“.DO” file in ASCII format is created.

Once a program file is saved, it is maintained as a
file unless another program is saved with an
identical file name, until a KILL command is
executed, or when a Cold Start is performed.

4-136



NOTE:

SEE ALSO:

Chapter 4

An "“?FC Error” (lllegal function call] message will
be displayed if a program is saved twice with the
same file name.

A program file in the RAM cannot be saved if it is
retrieved into the BASIC area by a LOAD com-
mand.

The LIST command can be executed before the
SAVE command. This is to display the program
content before saving, and any required changes can
then be made.

If screen editing is performed while a program is in
access mode (indicated by an asterisk when the
FILES command is executed), the original state-
ment(s) is rewritten by the newly input state-
ment(s).

A program should be saved as a "“.DO” file if
adequate memory capacity is available. [If this is
not possible, try saving the program on cassette tape
as a “.BA"” file. Use the option "“A” when
creating a ‘“.DO’ (ASCIl format) file on cas-

sette.  The and Keys can be pressed
simultaneously to interrupt the SAVE ‘“CAS:”

command.

The CSAVE, LOAD, LLIST, BSAVE, and OPEN
“COM:’* commands, and Chapter 5, Files.

4-137



Chapter 4

SCREEN
FUNCTION:
FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

SEE ALSO:

SAMPLE
PROGRAM:

This statement establishes the display mode.

SCREEN 0, ( function key display switch )

SCREEN 0,0

The SCREEN statement establishes the display
mode,

When the ( function key display switch ) is O, the
function key is not indicated and display is 8 lines
long.
The first parameter is dammy and can be omitted,
and the comma is always needed. For
example:
SCREEN 0, 1 (function. key display enable)
SCREEN 0, 0 (function key display disenable)

The { function key device switch ) must be in the
range from O to 255, or else an error occurs.

The CLS statement.

10 FOR I=0 TO 21
2@ SCREEN 8,1 MOD 2

30 NEXT

4-138



Chapter 4

SGN

FUNCTION: This function determines whether a number has a
negative or positive sign.

FORMAT: SGN ( { numeric expression ) )

"SAMPLE

STATEMENT: PRINT SGN (-245)

DESCRIPTION: The SGN function returns 1 if the { numeric
expression ) is positive, 0 if the ( numeric expres-
sion ) is 0, and —1 is returned if the ( numeric
expression ) is negative.

SAMPLE

PROGRAM:
18 READ. X
20 IF X=999 THEN END
30 PRINT X,SGN(X)

48 GOTO 1@
5@ DATA 55,2,0,-3,4,18,5,99%99
60 END

4-139



Chapter 4

SIN

FUNCTION:

FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

NOTE:

SEE ALSO:

SAMPLE
PROGRAM:

This function provides the sine of a numeric
expression.

SIN ( { numeric expression })

PRINT SIN (3.14159/2)
The SIN function has many practical uses such as
trigonometric applications.  The ( numeric expres-

sion ) determines the angle expressed in radians.

To convert an angle from degrees to radians,
multiply it by .0174533.

The ATN, COS, and TAN functions.

18 SCREEN 0,0:CLS

28 X=0:N=0:F=1

30 Y=SIN(N/25)%32+33
48 PSET(X,Y)

S50 IF X<1 THEN F=1

68 IF X>23%9 THEN F=-1
70 X=X+F :N=N+1

80 GOTO 30

4-140



This command produces a designated sound.

SOUND (tone), (length )

SOUND 5586,50

command s

designated by
, which produce a sound.

Chapter 4

tone and
The integers

for the tones range from 0 through 16383, where

SOUND

FUNCTION:

FORMAT:

SAMPLE

‘STATEMENT:

DESCRIPTION: This

length

higher
tone.

numbers

produce

higher

pitch

Length is comprised of integers within a
range of O through 250, where the length of a single
unit is 0.02 seconds.

The designation of 5586 in the example produces a
sound of 440 Ha.

MUSCIAL SCALE TABLE:

mooo

OCTAVE

1 2 3 4 5 6
c - 9394 4697 2348 171 587
c# - 8866 4433 2216 1103 554
D - 8368 4184 2002 1045 523
D# | 15800 | 7900 3950 1975 987 493
E 14912 | 7456 3728 1864 932 466
F 14064 | 7032 3516 1758 879 439
F# 13284 | 6642 3321 1660 830 415

4-141



Chapter 4

1 2 3 4 5
G 12538 6269 3134 1567 783
G# 11836 5918 2954 1479 733
A 11172 5586 2793 1396 693
A# 10544 5272 2636 1316 653
B 9952 4968 2486 1244 622
SEE ALSO: The BEEP statement.
SAMPLE
PROGRAM:
180 DIM S(17):2#=4697
286 FOR I=1 T0O 17
30 S(1)=Z#
40 Z#=7#/1.0594639#
58 NEXT
60 FOR I=1 TO 16

78
86
90

SOUND S(15),32/1:SOUND S(17),32/1
SOUND S(13),32/1:SOUND S(1),32/1
SOUND S(8),48/1:SOUND S(0),16/1

186 NEXT 1

4-142




Chapter 4

SPACES

FUNCTION: This function provides spaces (blanks) of a desired
length, ‘

FORMAT: SPACES$ (( numeric expression ) )

SAMPLE
STATEMENT: PRINT “A"”+"B""+SPACE$(5)+"C”’

DESCRIPTION: The SPACES function is used in spacing output for
reports and forms. It will provide a string of
spaces determined by the designated {( numeric
expression ). The value of the { numeric expres-
sion ) must range from 0 to 250.

SEE ALSO: The TAB function.

SAMPLE
PROGRAM:
16 FOR Z=1 TO 12
20 PRINT “%"+SPACE$(Z)+ %"
38 NEXT Z
48 END

4-143



Chapter 4

SQR
FUNCTION:
FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

SAMPLE
PROGRAM:

This function provides the square root of a number.

SOR (( numeric expression ) )

PRINT SQR (16)

The SOR function is used to compute the square
root of a positive { numeric expression Y. If the
{ numeric expression ) is negative, the message
“9FC Error’ (illegal function call} will be displayed.

18 INPUT “WHAT’S YOUR NUMBER' ;X

26 IF X=8 THEN END

39 PRINT "THE SQUARE ROOT IS';SQR(X)
40 GOTO 1@

4-—-144




STOP

FUNCTION:

FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

SEE ALSO:

SAMPLE
PROGRAM:

Chapter 4

The STOP statement is used to halt program
execution and return to Direct Mode.

STOP

STOP

When a STOP statement is executed, the PC-8201
halts the execution of a program. The following
message is displayed on the screen. ‘‘Break in
o is displayed, with “/lll"” representing the
line number that the STOP statement has executed.

A STOP statement differs from an END statement
because STOP does not close the file. This state-
ment is useful for debugging programs. The ex-
ecution of the program can be resumed by using the
CONT command, unless the program has been
altered while stopped.

The CONT command,

18 PRINT'Use a STOP command for
debugging.’

20 PRINT"Use a CONT command to c?ntinue
the execution of the program.

36 STOP “USE CONT TO CONTINUE

49 I1=1:PRINT I; Resume execution.'

58 GOTO 20

4-145



Chapter 4

STRS

FUNCTION: This function converts a numeric value to a numeric
string.

FORMAT: STR$( { numeric expression })

SAMPLE

STATEMENT: A$=STR$(123)

DESCRIPTION: The STR$ function converts the value of the
{ numeric expression ) to a string. This function
is useful for programming a sort routine that
includes both numbers and characters.

{ numeric expression ) contains a non-numeric
character, then a 0 will be returned.

SEE ALSO: The VAL and STRINGS$ functions.

SAMPLE

PROGRAM:

19 PRINT'ENTER A 1 OR 2 DIGIT NUMBER®

20 INPUT"NOW, WHAT HOUR IS IT"jH:H$=
MID$(STR$(H),2)

38 IF LEN(H$)>=1 THEN H$="8"+H$

48 INPUT "HOW MANY MINUTES® ;M:M3$=MID%
(STRE(M),2)

50 IF LEN(M$)>=1 THEN M3$="0"+M$

60 INPUT"HOW MANY SECONDS® ;S:S$=MID%
(STR%(S),2)

70 IF LEN(S$)=1 THEN S$="0°+S$%

80 TIMES=H$+": +M$+": +5%

98 PRINT"THE TIME HAS NOW BEEN SET AT’

sTIMES; " . "

4-146



STRINGS

FUNCTION:

FORMAT:

SAMPLE
STATEMENTS:

DESCRIPTION:

SEE ALSO:

SAMPLE
PROGRAM:

Chapter 4

This function provides a string which contains the
specified character, repeated a designated number of
times.

STRINGS$( ( numeric expression )},
{ character string )
({ ASCII code )

PRINT STRINGS$(10,” %)
PRINT STRING$(10,45)

The STRING$ function returns a string which
contains the desired ( character string ) or { ASCII
code ), repeated by the { numeric expression ).

The ¢ numeric expression ) must be in the range of
0 to 250. [f it is not within this range, a “?TM
Error” (Type Mismatch) message is displayed.  The
{ ASCII code ) is converted to its equivalent charac-
ter code and then it is returned by the function.

If the ( character string ) is more than one charac-
ter, only the first character is returned.

The STRS function.

18 PRINT STRING$(2@, “*'); "HEADING' ;STRINGS
(18, "*")
28 PRINT

38 PRINT STRING$(28, "~
49 PRINT STRING$(20, "%
50 PRINT STRING$(20,45)

")3 "LINE ONE*®
")+ "LINE TWO"
3 "LINE THREE®

4-147



Chapter 4

TAB

FUNCTION:

FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

NOTE:

SEE ALSO:

The TAB function is used to space out or separate
data to be printed or displayed on a line.

TAB ({ numeric expression ) )

PRINT “A"; TAB(10);B”

This function is useful for printing reports, tables,
and forms, and to organize the screen display for
maximum readability.

It spaces out or separates data to be printed or
displayed on the current line.  Before the printing
begins, the cursor or the print-head skips to the
position specified by the ( numeric  expres-
sion ). The ( numeric expression ) must be in the
range of 0 to 255, or else and “?FC Error’ (lllegal
function call) message will be displayed on the
screen.

The cursor position does not move backward, so if
the position specified by the ¢ numeric expression )

is left of the cursor, the TAB function will start
displaying from the right side of the cursor.

The TAB function is only used with the PRINT and
LPRINT statements.

You can use more than one TAB function on the
same line.

The SPACES$ function.

4-148




Chapter 4

SAMPLE
PROGRAM:

1@ FOR I=1 TO 21 STEP 4 D .
20 PRINT STRING$(I, "#%);TAB(22-1); %
38  NEXT

4-149



Chapter 4

TAN

FUNCTION:

FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

NOTE:

SEE ALSO:

SAMPLE
PROGRAM:

This function provides the tangent of an angle.

TAN{{ numeric expression ) }

PRINT TAN(3.14159/4)

The TAN function is used in trigonometric applica-
tions. It computes the tangsnt of an angle.  The
unit of the ( numeric expression ) is the angle
expressed in radians.

To convert an angle from degrees 10 radians,
multiply the degrees by .0174533.

The ATN, COS, and SIN functions.

18 INPUT"ENTER AN ANGLE IN DEGREES™;D

20 PRINT'THE ";D;" DEGREES ANGLE IS";
D%.0174533; "RADIAND AND ITS TANGENT
I1S" s TAN(D%*,8174533)

38 END

4—-150



Chapter 4

TIMES

FUNCTION: This function provides the time from the internal
real-time clock of the PC-8201.

FORMAT: TIME$="( hour ) : ¢ minute) : ( second ) "’

SAMPLE

STATEMENTS: TIME$="15:30:20"

PRINT TIME$

DESCRIPTION: The TIMES$ function is used to set the current
time. The ¢ hour ) is a number between 00 and
23. Both the ( minute ) and ( second ) values are
numbers ranging from 00 through 59, used when
the time is set. Reset is not necessary once the
time has been set, unless a Cold Start is performed.

SEE ALSO: The DATES$ function.

4-151



Chapter 4

VAL

FUNCTION:

FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

SEE ALSO:

SAMPLE
PROGRAM:

This function returns the numeric value of a
numeric string.

VAL( { numeric string )

PRINT VAL(""123")

The VAL function returns the numeric value of a

numeric string . The "+ or “—" sign can be
used as the first character of the ¢ numeric
string ). For example:

VAL("“—1234.567") = —1234.567

Any spaces in the numeric string ) are disregard-
ed. For example:

VAL{"12 12"} =1212
If any other character not mentioned above is used
within the ( numeric string ), anything after that

character is ignored.  For example:

VAL(*123a4") =123
VAL("ab"”) =0

The STR$ and CHR$ functions.

18 A$='123':B$="456.7":($="-8.9"
20 X=VAL(A$):Y=VAL(B%$):Z=VAL(C$)
30 D$=A$+Bs+(C$

40 N=X+Y+Z

5@ PRINT A$,B%$,C%,0%

608 PRINT X,Y,Z,N

70 END

4—-152



XOR

FUNCTION:

FORMAT:

SAMPLE

STATEMENTS:

DESCRIPTION:

NOTE:

Chapter 4

This logical operator is used to test multiple
relations.

 operand 1 ) XOR ( operand 2>

IF A=5 XOR B=5 THEN 200

PRINT 5+t3 XOR 4+4

The logical operator XOR (exclusive OR)} performs
tests on multiple relations, bit manipulation, and
Boolean operations. It returns either a non-zero
(true) or zero (false) value.

For the operation to return a non-zero (true) value,
one of them has to be true and the other must be
false.  Otherwise, if both of them are true, or both
are false, the operation returns a zero (false) value.
The following table indicates the evaluation process:
—1 XOR —1—0 (TRUE XOR TRUE —~—FALSE)
—1 XOR 0 ——1 (TRUE XOR FALSE — TRUE)

0 XOR —1——1 (FALSE XOR TRUE — TRUE)

0 XOR 0—0 (FALSE XOR FALSE — FALSE)

For more details on logical operators,
see Chapter 3.

The XOR function performes exactly opposite from
the EQV function.

Logical operators work by converting their

( operands ) to sixteen bits binary inte-
gers. Therefore, the ( operands } must be in the

4-153



Chapter 4

EXAMPLE:

SEE ALSO:

range from —32768 to +32767. If the
( operands ) are not within this range, an "“?0V
Error”’ (Overflow) message will be displayed on the
screen.

INTEGER BINARY BITS
25 0000 0000 0001 1001
13 0000 0000 0000 1101

After inputting the statement PRINT 25 XOR 13
the integer 20 appears on the screen, whose binary
is 0000 0000 0001 0100. By looking at the table
in the DESCRIPTION section above, notice that the
computation is correct.

The AND, EQV, IMP, NOT, and OR functions.

4154



Files



CHAPTER 5

Files

A file is a collection of records in the RAM of the PC-8201 or
external devices, such as a data recorder. Each record consists of a
group of logically related characters. For example, an Ng9-BASIC
program line is one record. The PC-8201 uses the record unit to
read or write into a file, and each file is designated a distinct file
name when the file is created.

File Names

A file name consists of three parts:

- The main name, which must be no more than 6 characters in
length.

- A period, used as a connector in the middle of the file name.

- The file type extension, added to the end of the file name,
which is 2 characters long.

The file name can consist of any combination of characters, however
the use of letters instead of numbers or symbols is recommend-
ed. You run the risk of getting the error message “?NM Error”
(Name Error) when using characters other than ordinary letters. A
legal file name must be entered if this error message is displayed.

An example of a legal file name with a file type extension:
PC8201.BA

The “.BA" is the extension added by the PC-8201 when the file was
saved.



Chapter §

The file name may be input in either upper or lower case characters,
and will be saved and displayed on the screen exactly as typ-
ed. The extension will always be displayed as upper case characters,
so it does not matter which way it is typed if input by you.

The extensions represent specific file types:

“ BA" BASIC file. BASIC programs are in Binary for-
mat.
- .DO” TEXT file. TEXT and BASIC programs are in
ASCII format.
. ".CO” Machine Language file. Programs and data are in

Machine Language format.
The file type extension can be input by you, or the PC-8201 will
assign one according to the mode you are using. For the BASIC
mode, the file type extension assigned by the PC-8201 would be
lt.BAII.

The file names are displayed on the MENU screen in the following
order:

Machine Language files
TEXT files
BASIC files
You can also display the file names within the specific bank when in

the BASIC mode by using the “FILES” command. It is possibie to
execute BASIC programs from the MENU mode.



Chapter 5

EXAMPLE:

Move the cursor onto the word “PC8201.BA’’ and then press the
Key. The PC-8201 is now in the BASIC mode and the previously
created BASIC program ““PC8201.BA” is executed. The screen will
appear as shown:

The PC-8281 is a frendly computer!

It offers many features, including the
generation of sound,

wordperocessing and many more.

Buffers

Buffer memory is reserved RAM area that is used by the PC-8201 to
store transmitted and received data. Each time you OPEN a file
thru BASIC you reserve a buffer area. The maximum number of
OPEN files that are open at the same time is 15. This means that
the maximum number of buffers that you can reserve is also 15.



Chapter §

File Handling

in order to read or write to a file you will have to prepare the file
for this. This is done by the use of the OPEN command. The
OPEN command utilizes the file number in conjunction with the file
descriptor to assign a specific buffer area to that file.

After a file has been OPENed you can use the READ command to
read records and the PRINT command to write records. When you
have completed your processing you will have to close the file by the
use of the CLOSE command.

Precautions for File Creation

When accessing files within the RAM of the PC-8201, the extensions
are checked during the process. This means that you can use
identical file names for different files if the extensions of those
names are different. The PC-8201 will recognize the difference
between each of these files during loalfng and saving, because it will
check for an external device descriptor and file type extension, as
well as for the file name.

The maximum number of files that can be stored in each of the three
memory banks is 21, depending on the size of the individual
files. If an attempt is made to store more than the maximum
allowable in a bank, an error will occur, and the message “?FL
Error’' is displayed.

When a Machine Language file is saved using the BASIC language
#BSAVE’ command, it can then be run directly from the
MENU. However, when a file created does not have a designated
execute address, the Machine Language file is loaded into the
memory, but the file does not run.




Machine Language
Programming



CHAPTER 6

Machine Language Programming

Machine Language Programming is a collection of meaningful coded
instructions that the PC-8201 can execute. All other programming
languages must be compiled or translated into Machine Language
before they can be executed. Machine Language is also known as
Assembler Language or Code.

Machine Language programs execute much faster than any other
programs, such as BASIC. They take less memory, and they have
virtually no limit to the things they can be programmed to do.

With Machine Language programs you have the ability to get into any
memory location of the PC-8201. It is necessary to save important
programs or files on external devices, such as a data recorder, because
a simple mistake can easily wipe out files in RAM.

If you alter vital memoty locations, such as the programs that
operate the PC-8201, you could get the PC-8201 into a "hung up”
situation, meaning that it does not respond, no matter what you
input.

In the case of such a problem, you will have to perform a Cold
Start.  After a Cold Start only the primary programs of BASIC,
TEXT and TELCOM are displayed on the screen. The rest of the
files are destroyed. This is why it is so important to save your files
before attempting to run your Machine Language program.

i~ See the User’s Guide for more detail on how to execute a
Cold Start.



Chapter 6

Creating Machine Language Programs

In order to write Machine Language programs you will have to know
the 8085 Assembler tanguage. An Assembler program can be
written in the TEXT mode and then use the optional Assembler
Language compiler to create Machine Language code, or use the
POKE command to actually create a Machine Language routine in the
PC-8201 RAM.

Since creating a Machine Language program is tedious work, make
sure you save it using the BSAVE command before attempting to test
it, which avoids the loss of effort.  When debugging (testing) your
Machine Language programs you can use the PEEK command to
check the value of a specific memory location.

See Chapter 4 for an explanation on how to use the
BSAVE, POKE, and PEEK commands.

Once the Machine Language routine has been tested and saved, the
BLOAD command can be used to load your program into the
PC-8201 RAM. The EXEC command is then used from within
BASIC mode to run it.  Before loading a Machine Language routine,
enough space must be reserved within the RAM for the routine.

=5 For more datails on BLOAD and EXEC commands, please
refer to Chapter 4.

The Machine Language program should include a RET command at
the end of the routine, so control can be returned to BASIC mode.



Ns:-BASIC
Programming



CHAPTER 7

Ng2-BASIC Programming Aids

This chapter is designed to provide enough information to make
programming easier for beginning programmers. It will aid in the
creation of your own programs, as well as helping to resolve problems
within those programs.

Recovery from Different Critical Situations

Wrap Around and Screen Scrolling
SITUATION:

Scrolling occurs whenever characters are input on the bottom line of
the screen, or the space between characters is not what is expected.

EXPLANATION:

The cursor in the BASIC Mode is described as a flashing box |l; its
position is very important when you input or print on the screen
display.

Wrap around is a process when characters continue on to the next
line of the screen. When characters are input past the 39th position
of the current line, they are moved onto the first position of the
next line.

Wrap around occurs when a field longer than 40 characters is
printed, or the semicolon ";"" is used when printing more than
one field on the same line with the total length over 40.

When you print a field with less than 40 characters in length

and the semicolon *;’’ is not used, the cursor skips to the
beginning of the next line when the operation is completed.



Chapter 7

Scrolling is the process when all of the lines of the screen display
move up one line, with the top line moving off the screen and a new
line appearing at the bottom.  Scrolling occurs if the cursor is at the
last line and a wrap aroud is encountered.

Spontaneous Program Execution Errors
SITUATION:

A program started to operate incorrectly but executed previously
without any difficulty.

EXPLANATION:

In this situation, the program was somehow modified.  This primari-
ly happens when a ‘“.BA" file has been loaded and modified. When
programs are loaded into the temporary working area of the PC-8201,
they can be modified and stored in the RAM or on external devices,
such as a Data Recorder.

When a program is loaded from the RAM and needs modification,
this program should be saved again in the RAM and not on external
devices. If a program is loaded from a cassette tape, do not save it
in the RAM unless it is free of errors and operates the way it should.

When loaded files from tape are modified and then SAVEd in the
RAM, the display of the file name includes an asterisk () after the
file type extension, when the FILES command is used. It is
important to recognize that these modified programs may contain
potential errors when attempting to LOAD the original file from
tape, and the bad file can mistakenly be loaded.



Chapter 7

Logical Errors

SITUATION:

When the program result is different than expected.
EXPLANATION:

This type of situation is hard to resolve, because it is difficult to
determine all the underlying causes. You will have to go through
your program statement by statement, and determine the operation
of each statement. By doing so, the logical flow of your program
may be established.

You have to be persistent, because even if the program initially
appears to be in order, it may actually have a problem at some
point.  Keep in mind that the PC-8201 is executing your commands
to the letter, exactly as they were input, and it will do exactly what
you ask of it.

EXAMPLE:
Assume that you have the following program:

20 DATA 10,13,2,5,6,33
30 FOR I=0 TO 5

40 READ All)

50 NEXT

60 FOR I=1 TO 6

70 B=B+A(l)

80 NEXY

90 PRINT B

In this program we want to add the numbers 10, 13, 2, 5, 6, and 33,
and print the result of this calculation.  If you RUN the program,
the result printed is 59, which is incorrect.  The logical error must
be found, which is actually in statement 60. Statement 20 defines
values for 6 different numbers, with statement 30 reading the values
of the numbers into statements 40 and 50. The array is A, so A{0)
will have the value of 10, A(1) a value of 13, A{(2) a value of 2,



Chapter 7

etc.  Statements 60, 70 and 80 will add the values of A(1) through
A(6) into B, and then statement 90 will print the value of B.

The logical error occurs in statement 60 because we add elements 1
to 6 instead of 0 to 5. We do not add element O which has the
value of 10, instead we add element 6 which has not been initialized,
and therefore it has the value of zero. In order to demonstrate this
change statement 60 to read:

60 FOR I=0TO 5

Type RUN and press the Key and you will see that the result of
69 is now correct.

Loss of Program Control

SITUATION:

TheKey is ineffective and you have no control over a program.
EXPLANATION:

In this situation you may have temporarily overlayed vital routines
through the use of a POKE command or through your own Machine
Language programs. These vital routines include the information
that the PC-8201 utilizes for its operation.

Files stored in the RAM are erased when this situation is encounter-
ed. The only option you have at this point is to turn the power
switch  OFF.  When the power is turn ON again, no files are
displayed on the MENU screen except the primary files of BASIC,
TEXT, and TELCOM.

If the PC-8201 still does not operate correctly in some way,
conducting a Cold Start is necessary.  To do this, press the ) Key
and the Key simultaneously, while the Reset Switch on the
back of the PC-8201 is pressed. If necessary, refer to the User’s
Guide.



Chapter 7

Return to BASIC from TEXT is Impossible
SITUATION:

When editing a BASIC program within the TEXT Mode, it may be
impossible to exit from this mode.

EXPLANATION:

In this situation, the message “‘Text ill-formed” is displayed on the
screen whenever you try to exit and return to the BASIC or MENU
Mode. This happens because a statement within the program is
longer than 255 characters, or the statement format is illegal.

The PC-8201 locks you out and pressing the (%) Key or the .10
Function Key have no effect except to display the error mes-
sage. To resolve this problem, it is necessary to find the long
statement and make it shorter, or re-format the statement, Exit
from the TEXT Mode should then be possible.



Chapter 7

Programming Hints

Hints for Detecting Errors:

1. A flowchart (a chart depicting the course of program opera-
tions) should be carefully constructed. This is especially
useful when beginning programmers are suddenly confronted
with a major error in the middle of a program.

2. The PC-8201 User's Guide and this Ng2-BASIC Reference
Manual should be carefully read and you should understand and
try out the commands and functions utilized by the PC-8201.

3. A chart of the variables you have assigned should be kept to
avoid any duplication in the names of variables.

4, Make it a point to use extensive REM statements and avoid
multiple statements as much as possible, which makes the
program easy to understand when searching for errors.

5. If a particular line does not work at all, isolate it by means of a
REM statement rather than eliminating it. You can then
easily modify it later.

6. Use a STOP statement to confirm any changes in the value of a
variable. A CONT command can be used during this process.



Chapter 7

Hints for Speeding Up Program Execution:
1. Spaces and REM statements should be eliminated.
2. Integer variables should be used whenever possible.

3. Omit a control variable designation within NEXT statements
when possible,

4. Multiple statements should be used as much as possible.

5. Use the format A=0 at the beginning of a program for any
frequently used variables.

6. Frequently used subroutines should be placed at the beginning
of a program.

7. Make sure that the region for string use is adequate.

8. Try to simplify the process of frequently used loops.



Chapter 7

Hints for Saving Memory Space:
1. Use multiple statements whenever possible.
2. Remove spaces and REM statements from the program.

3. Constants should be held with a variable, no matter how many
times a constant appears within a program.

4. Utilize old variables no longer being used within a program,
instead of defining new variables.

5. When there are numerous situations where the same process is
being conducted, consider ordering these by directing them

through a single subroutine.

6. Any array variable used should be declared. If it has not been
declared it is automatically declared to 10.

7. Integer variables should be used whenever possible.

8. Keep the memory area reserved for strings to a minimum,

7-8



Error Messages



CHAPTER 8

Error Messages

This chapter outlines causes and what action you should take when
error messages are displayed on your screen.  There are 43 messages
programmed into the PC-8201. Many more error messages could be
defined by you, using a BASIC program.

If an incorrect system command, statement, or function is encounter-
ed while a BASIC program is running, the program will terminate
abnormally and an error message will be displayed.

Ng2-BASIC has a built-in error trap function. To simplify the

process of determining the source of errors within a program, the
explanations of error messages listed are in alphabetical order.

Error Messages

MESSAGE: ?A0 ERROR File is Already Open.
POSSIBLE
CAUSES: 1. The execution of an OPEN statement for a file

already opened.

2. The execution of a KILL statement for an open
file.

USER
ACTION: Close the file using the CLOSE command before
trying to OPEN it or to KILL it.



Chapter 8

MESSAGE:

POSSIBLE
CAUSES:

USER
ACTION:

MESSAGE:

POSSIBLE
CAUSE:

USER
ACTION:

MESSAGE:

POSSIBLE
CAUSES:

72BN ERROR Bad file Number is used.

1. When a PRINT statement is used with a file
number nor previously designated by an OPEN
statement.

2. When an OPEN statement is used to assign a file
number larger than the maximum number
designated by a MAXFILES command.

1. OPEN the file.

2. Use the MAXFILES command to assign the
desired number of files.

7B0 ERROR  Buffer is Overflowed.

An attempt is made to input more characters than
the buffer can hold.

Adjust the program that creates the file to shorten
the length of the records.

?BS ERROR  Bad Subscript

1. When the subscript of an element of an array is
incorrect.

2. When the subscript of an element of an array is
outside the dimensions of the array.



USER
ACTION:

MESSAGE:

POSSIBLE
CAUSE:

USER
ACTION:

MESSAGE:

POSSIBLE
CAUSES:

USER
ACTION:

Chapter 8

1. Correct the number of elements specified for
arrays within the program.

2. Increase the size of array dimensions if necessary.

?2CE ERBOR Closed File

An attempt is made to access an unopened file.

Open the file properly before trying to access it.

?CN ERRDOR Continue Not Possible

1 When a CONT statement is used after a break
occurs in program execution and the program
is then edited.

2. When a CONT command is written as a state-
ment within a program.

3. When a CONT statement is used after a break
occurs in program execution, following a CLEAR
statement.

1. Return the program by using a RUN command.

2. Eliminate the CONT statement from the program
content.

3. Rerun the program from the beginning.



Chapter 8

MESSAGE:

POSSIBLE
CAUSE:

USER
ACTION:

MESSAGE:

POSSIBLE
CAUSE:

USER
ACTION:

MESSAGE:

POSSIBLE
CAUSE:

NOTE:

?DD ERROR Duplicate Definition

An attempt is made to redefine an array previously
designated by use of the DIM command.

Use the CLEAR command within the program to
clear all arrays so that they can be re-
defined. When using the NEW or RUN command
all arrays will be cleared.

?DS ERROR  Direct Statement in File

When loading a file using the LOAD command with
a file type extension of “.DO", and the file contains
a statement without a line number.

Enter the ".DO" file while in the TEXT mode and
add line numbers to all lines within the file.

?DU ERROR  Device Unavailable

When there is something unusual or incorrect for a
device designation.

An “?FC Error’’ (lllegal Function Call) occurs if no
external devices are connected to the PC-8201.



MESSAGE:

POSSIBLE
CAUSE:

USER
ACTION:

MESSAGE:

POSSIBLE
CAUSES:

Chapter 8

?EF ERROR  End of File

When using the INPUT statement or LINEINPUT
statement beyond the end of the file.

Use the EOF command in conjuction with INPUT
or LINEINPUT commands to detect the end of the
file and avoid going past it.

?FC ERROR  lilegal Function Call

A parameter that is out of range is passed to a math
or string function. May also occur as the result
of:

1. A negative or unreasonably large subscript.
2. A negative or zero argument with LOG
3. A negative argument to SQR or CLEAR

4, When ".BA" files are combined with a MERGE
command.

5. When a RENUM statement is used improperly
and line sequence is changed.

6. When a device is used that is not connected or is
incorrectly connected to the PC-8201.

7. When parameter values are not within the proper
range for CLOSE, ERROR, LOCATE, MOTOR,
GOTO, GOSUB, OUT, POKE, POWER, PRESET,
SCREEN, CHR, EOF, INP, INPUT, INST, LEFT,
MID, RIGHT, SPACE, STRING, TAB, KEY,
MAXFILES, and SOUND statements.



Chapter 8

USER
ACTION:

MESSAGE:

POSSIBLE
CAUSES:

USER
ACTION:

MESSAGE:

POSSIBLE
CAUSE:

1. Be-sure all peripheral devices used with the
PC-8201 are attached correctly.

2. Correct all parameter designations entered into
the program incorrectly.

See Chapter4 for legal parameter designations of system
commands, statements, and functions.

FF ERROR File Not Found

1. When a file used with a LOAD, KILL, or OPEN
command is not on a designated device. If the
device designated is a Data Recorder, the
PC-8201 will continue searching for the file until
the end of the tape is reached.

2. When a file with a type extension other than
. CO" is loaded using the BLOAD command.

1. Be sure all files loaded with the BLOAD com-
mand are '.CO" files.

2. Use the Key and the [mood Key simulta-
neously to interrupt the searching and try the
command with the correct name.

?FL ERROR  Filing Limit

When the MENU director is filled with file names,
and no space is avilable for display of a new file
name. Memory bytes may still be free.



USER
ACTION:

MESSAGE:

POSSIBLE
CAUSE:

USER
ACTION:

MESSAGE:

POSSIBLE
CAUSES:

USER
ACTION:

MESSAGE:

POSSIBLE
CAUSE:"

USER
ACTION:

Chapter 8

Move some files to external devices and KILL
unwanted files, to create space for more directory
entries.

E ERROR Internal Error

An error occurs within BASIC itself.

Consult your Authorized NEC Dealer.

710 ERROR Input-Output Error

1. When the Key and [Lsor) Key are pressed
to forcibly stop input or output to an external
device.

2. When peripheral equipment is in need of mainte-

nance.

Check equipment if error occurred spontaneous-
ty. May need maintenance such as cleaning of
Data Recorder heads.

7LS ERROR  Long String

An attempt is made to designate a string longer
than 255 characters.

Use multiple variables to break down string length
to avoid exceeding limit of 255 characters. If the



Chapter 8

string was made too fong in error, simply change
the length designated in the program.

MESSAGE: M0 ERROR  Missing Operand

POSSIBLE

CAUSE: A necessary operand is missing.

USER

ACTION: Check the program and insert the omitted para-
meter.

@ See Chapter 4 for full explanations of statement format.

MESSAGE: INE ERROR  NEXT without FOR
POSSIBLE
CAUSES: 1. A program attempts to execute a NEXT state-

ment without the previous execution of a corre-
sponding FOR.

2 When a GOTO or GOSUB subroutine causes a p |
program to jump into a FOR NEXT loop.

3. When a FOR NEXT loop is improperly nested.

USER
ACTION: 1. Check that the program has the same number of
NEXT and FOR statements.

2. Check the GOTO and GOSUB subroutine opera-
tions included in the program, and correct if
necessary.

3. Correct improper nesting of FOR NEXT loops.

og See Chapter4 for rules for the use of nested loops.



MESSAGE:

POSSIBLE
CAUSES:

USER
ACTION:

MESSAGE:

POSSIBLE
CAUSE:

USER
ACTION:

MESSAGE:

POSSIBLE
CAUSES:

Chapter 8

?NM ERROR  File Name Mismatch

1. File name conventions described in Chapter 5
were not followed.

2. An attempt is made to access .CO" files using
commands other than BLOAD or BSAVE.

1. Correct file name to follow conventions exactly.

2. Be sure that correct commands for loading and
saving of files are used for different file types.

?7NR ERROR No Resume

When an error processing subroutine has no RE-
SUME statement.

Add RESUME, END, or ON ERROR GOTO to
error processing subroutines.

70D ERROR Out of Data

1. The elements read by using the READ statement
do not correspond to the number of elements
within the DATA statements.

2. When a RESTORE statement is not used at all,
or is improperly used.



Chapter 8

USER
ACTION:

1. Check the program to be sure the number of

elements designated for READ and DATA state-
ments correspond.

. Be sure the program includes a RESTORE

statement in the appropriate place, before trying
to read DATA elements that have been previous-
ly read.

=3 See Chapter 4 for correct use of the RESTORE state-

MESSAGE:

POSSIBLE
CAUSES:

?0M ERROR  Out of Memory

When a program is too long to be stored in the
memory,

. When sufficient memory is available for storage

of a program but there is not enough available to
run it.

. When an array is too large for the available

memory.

. When a string is too large for the available

memory space.

. When nesting becomes excessively deep with

FOR or GOSUB statements.

. When you are creating or expanding a file and

there is no memory available.

. When memory area required for a Machine

Language application becomes too small.



USER
ACTION:

MESSAGE:

POSSIBLE
CAUSE:

USER
ACTION:

MESSAGE:

POSSIBLE
CAUSES:

USER
ACTION:

Chapter 8

Move files to external devices, such as a Data
Recorder, or KILL unwanted files to create memory
space.

708 ERROR  Out of String Space

A sufficient working memory area for string handl-
ing has not been maintained.

Utilize the CLEAR command to reserve enough
RAM space for string operations. The default
value for the working area is 2565 characters. You
can use combined (concatenated) strings totaling
255 characters in length. If more area is needed,
you will have to use the CLEAR command to
reserve more space.

70V ERROBR  Overflow

1. When results of an integer operation or substitu-
tion are not within the range of —32768 through
+32767.

2. When the results of a real number operation are
not between —1.70141E + 38 and
1.70141E + 38.

3. When parameters used with POKE, OUT, and

DiM statements are not within the proper range.

Rearrange operations within the program so that
they flow within the legal ranges.



Chapter 8

~g

MESSAGE:

POSSIBLE
CAUSE:

USER
ACTION:

MESSAGE:

POSSIBLE
CAUSE:

USER
ACTION:

MESSAGE:

POSSIBLE
CAUSE:

See Chapter 4 for descriptions of legal ranges for state-
ments and Chapter 3 for ranges of integer and real
number operations.

7PC ERROR PC-8001

When an N-BASIC program, which cannot be
executed in Ng2-BASIC, is loaded into the PC-8201.

The program will need to be written and modified
into an Ngo-BASIC program. This error will
usually not occur because an “?SN ERROR" or
“?FC ERROR’ will occur first.

7RG ERROR  Return without Gosub.

An attempt is made to execute a RETURN state-
ment without a corresponding GOSUB statement.

1. Make sure you are ont using a GOTO to execute
a subroutine.
2. Make sure to use an END statement, so the

program does not fall through any possible
subsequent subroutines.

7RW ERROR  Resume Without error

A RESUME statement is encountered before an
error trapping routine is entered.



USER
ACTION:

Chapter 8

1. Check for any other GOTO’s or GOSUB’'s to

error trapping routines, except by using the ON
ERROR command.

2. Check for END statement, so at the end the

program does not fall through any possible
subsequent error trapping routines.

g~ See Chapter4 for more information about the ON

MESSAGE:

POSSIBLE
CAUSES:

ERROR command.

?SN ERROR  Syntax Error

. When a statement or a command does not agree

with the grammar of BASIC.

. When there is only a function or mathematical

expression on the left side of a substitution
formula (although it can normally be used alone
in a statement).

. When the name of a variable does not begin with

a letter, when a reserved word is included, etc.

. When a colon is missing as a punctuation mark

between multiple statements,

. When line numbers are not within the range from

0 to 656529.

. When a variable is used to designate a line

number.

. When an ELSE is used without a THEN in terms

of an IF statement.



Chapter 8

USER
ACTION:

MESSAGE:

POSSIBLE
CAUSE:

USER
ACTION:

8. When the number of dummy variables in a
function or the parameters of a command are
insufficient or in excess.

9. When two lines become joined together during
the screen editing process.

1. Use the LIST command. In most cases, the
number of the line in which the error has
occurred will be displayed, after the f.9 Function
Key is pressed.

2. If two lines are joined together, edit this exces-
sively long line in the TEXT mode.

3. Check for an accidental substitution, (1 and I, a
period and a comma, a colon and a semicolon,
etc.).

4. Check names of variables that might contain a
Reserved Word (a keyword), for instance, COST,
SHIFT, etc.

5. Check for compound numeric formulas that are
not properly enclosed by punctuation marks.

ST ERROR  String Formula is too complex

When an expression is too long or too complex.

Expression should be broken into smaller expres-
sions.

8—-14



MESSAGE:

POSSIBLE
CAUSES:

USER
ACTION:

MESSAGE:

POSSIBLE
CAUSE:

USER
ACTION:

MESSAGE:

POSSIBLE
CAUSES:

USER
ACTION:

Chapter 8

?TM ERROR  Type Mismatch
1. When a string variable name is assigned a numeric
value or vice versa.

2. When a function that expects a numerical argu-
ment is given a string argument or vice versa.

3. When a Double Precision real number is used as
the control variable in a FOR statement.

Correct the incorrectly assigned value.

?2UF ERRORBR  Undefined User Function

When an undefined user function has been called
up.

This error cannot occur in Ng2-BASIC.

2UL ERROR Undefined Line number

,
1. When a reference is made to a nonexistent line
number.

2. When no line number exists but one has been
designated by a RESTORE or RUN statement.

3. When a program has nonexistent line for GOTO
or GOSUB.

Correct program references for line numbers.



Chapter 8

MESSAGE:

POSSIBLE
CAUSES:

USER
ACTION:

7/0 ERROR  Division by zero

1. When division is performed with an undefined
variable, (and its initial value has been set at
zero).

2 When the variable that comprises the resultant
divisor of an operation is zero.

3. When the dummy variable of a TAN function is
/2.

4. When multiplication is performed on zero by a
negative exponent.

Have the value of the variable displayed by the
PRINT statement. Attempt to investigate the por-
tion where the operation has been run that has used
that variable within the program in terms of zero.




Sample Programs



CHAPTER 9

Sample programs

PSET Routine

The PSET routine is used to draw lines and functions. It
specifically draws boxes and circles. You should feel free to use
required segments from this program by themselves to function as
subroutines when creating new programs.

10 ° LINE BOX CIRCLE
20 SCREEN 0,0:CLS

30 PRINT

40 PRINT ° PSET PRACTICE®

38 PRINT

6@ PRINT * 1 LINE®

70 PRINT " 2 BOX®

80 PRINT " 3 CIRCLE®

98 PRINT

100 INPUT® WHAT DO YOU WANT TO DRAW?® ;A%

110 ON VAL(A$) GOTO 136,266,400

120 BEEP: GOTO 20

130 ° LINE

148 CLS:PRINT

150 INPUT"COORDINATE FOR POINT X";X8: IF X0<®
OR X8>239 THEN BEEP: GOTO 150

178 INPUT*COORDINATE FOR POINT Y';Y@: IF Ya<o
OR Y8>63 THEN BEEP: GOTO 170

198 INPUT "COORDINATE FOR ENDPOINT X";X1:IF X1<8
OR X1>23%9 THEN BEEP:GOTO 19@

200 INPUT “COORDINATE FOR ENDPOINT Y';Y1:IF Y1<0
OR Y1>63 THEN BEEP:GOTO 210

230 CLS:GOSUB 520

249 FOR I=0 TO 1808 :NEXT:BEEP:GOTC 20

268 7 BOX

270 CLS:PRINT

290 INPUT "X COORDINATE®;X@8:IF X0<@ OR X@8>239
THEN BEEP:GOTO 290

318 INPUT'Y COORDINATE";Y@:IF Y8<8 OR YB>43
THEN BEEP:GOTO 31

330 INPUT"SECOND X COORDINATE®;X1:IF X1<8 OR
X1>239 THEN BEEP:GOTO 330



Chapter 9

350

370
380
460
419
420
430

450

47oe
490
500
520
5308
540
3550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
760
710
720
730
740
750
760
770
780

790

810
820
836
840
850

INPUT "SECOND Y COORDINATE®;Y1:IF Y1<@ OR
Y1>63 THEN BEEP:GOTO 350

CLS:GOSUB 660

FOR I=0 TO 1800 :NEXT:BEEP:GOTO 20

’ CIRCLE

CLS:PRINT

PRINT "CENTER COORDINATES:®

INPUT*X COORDINATE";X8:IF X0<0 OR X8>239
THEN BEEP:GOTO 430

INPUT'Y COORDINATE";Y8:IF Y0B<@ OR Y@>63
THEN BEEP:GOTO 450

INPUT "RADIUS  ;R:IF R<@ THEN BEEP:GOTO 478
CLS:GOSUB 740

FOR I=0 TO 1880 :NEXT:BEEP:GOTO 20

‘ SUB LINE
XD=ABS(X1-X8):YD=ABS(Y1-Y8)
XS=SGN(X1-X8) : YS=SGN(Y1-Y@)

IF XD>YD THEN 600

F=-1:T=XB:X0=Y0:YB=T

T=X1:X1=Y1:Y1=T

T=XD:XD=YD:YD=T

T=XS:XS=YS:YS=T

R=XD/2

IF F THEN PSET(Y®,X8) ELSE PSET(X8,Y®)

IF X@=X1 THEN RETURN

X0=X0+XS:R=R+YD

IF R>=XD THEN R=R-XD:Y@=Y@+YS

GOTO 610
‘ SUB BOX

FOR I=X@ TO X1 STEP SGN(X1-X@8)
PSET(I,Y@):PSET(I,Y1) ‘

NEXT

FOR I=YB TO Y1 STEP SGN(Y1-Y@)
PSET(XB,I1):PSET(X1,1)

NEXT

RETURN

‘ SUB CIRCLE

FOR I=0 TO 1 STEP 1/(Rx2)

IT=1Ix%I

X=RxI%2/(I1+1)
Y=R*(1-11)/CI11+1)
X2=X0-X:IF X2<@ THEN X2=0
Y2=Y0-Y:IF Y2<@ THEN Y2=0
X1=X0+X:Y1=Y0+Y
PSET(X1,Y1):PSET(X1,Y2)
PSET(X2,Y1):PSET(X2,Y2)
NEXT

RETURN



Chapter 9

Character Definition Program

There are many characters that can be defined by you through the
character definition function. When vyou type in the following
program, such composition is greatly simplified because up to 125
individual graphics characters can be created at one time using the
screen editing process. A group of characters that have been
defined at one time as a character set can be loaded one set after
another by means of a BLOAD command, to bring out a hundred or
even a thousand graphics characters to work with if so desired.

Since characters can be skipped over when the Key and the "‘E”
Key are used, you can even replace individual characters in a given
set without erasing or altering others that you wish to retain (and if
nothing is newly defined, it is also possible to eliminate all if so
desired].

The newly defined characters are stored into a machine language
program. The value of the character corresponds to the ASCIl
character code represented on the keyboard. The graphic characters
are accessed by pressing the Key and any other key at the same
time.

18 REM COPYRIGHT (C) NEC 1983
1880 REM CHARACTER GENERATOR
110 REM USING ADRESS E968-EACF
120 CLEAR 256,59743!:DIM M(S,7)sDEFINTB-Z
130 REM xxx%xx INITIALIZE xxxxx
146 SCREEN @,0:CLS
156 POKE 65215!,96:POKE 65216!',233
160 H=131:C=0:AD=59744!
178 REM xx%xx% MAIN LOOP1 »xxxx
189 LOCATE 20,0:PRINT ° USING KEY"®
198 LOCATE 15,1:PRINT "SPACE = MODE"'
200 LOCATE 15,2:PRINT °"CURSOR = MOVE"
210 LOCATE 15,3:PRINT °"“ESC’ = NEXT®
220 LOCATE 15,4:PRINT " = DEFINE CHARACTER'
230 LOCATE 15,5:PRINT "E = END®
240 LOCATE 10,7:PRINT "CHR$(";
258 PRINT MID$(STR$(H),2); " )BEING DEFINED";
268 X=B:Y=08:MX=0:MY=0:H=H+1:IF H=168 THEN H=224
278 FOR Y1=0 TO 63:PSET(36,Y1):NEXT:
288 REM xxx%x MAIN LOOP2 xxxxx
290 IF T=0 THEN C3$="ERASE" ELSE C$="WRITE"



Chapter 9

300 LOCATE 10,08:PRINT C%$

310 LOCATE X,Y:I$=INPUT$(1)

3208 IF I$=CHR$(27) THEN 4508

339 IF 1$=CHR$(28) THEN X=X+1:IF X=6 THEN X=5

- 'ELSE MX=MX+1

340 IF I1$=CHR$(29) THEN X=X-1:IF X=-1 THEN X=0
ELSE MX=MX-1

950 IF I$=CHR$(3@) THEN Y=Y-1:IF Y=-1 THEN Y=0
ELSE MY=MY-1

340 IF I$=CHR$(31) THEN Y=Y+1:IF Y=8 THEN Y=7
ELSE MY=MY+1

370 IF I%=CHR$(32) THEN T=NOT T

380 IF I$="E" OR I$='e" THEN 6060

399 IF I$=CHR$(13) THEN GOSUB 490:G0TC 458

480 M(MX,MY)=-T:LOCATE X,Y

410 IF T THEN PRINT'#'; ELSE PRINT" *;

420 PSET(MX+40,MY+38,-T)

439 GOTO 290

440 REM xxxxx END OF LOOPxxx%x

458 IF H=256 THEN 600

468 C=C+1:CLS

478 GOTO 1806

480 REM xxxxx DATA POKE  ®#xxxx

490 FOR X=0 T0O 5

5@ FOR Y=6 TO 7

518 M=M+M(X,Y)*2"Y

528 NEXT Y

538 POKE AD+Cx6+X,M

540 M=0

550 NEXT X

568 FOR Q=0 TO S:FOR R=0 TO 7:M(Q,R)>=0

570 NEXT R,Q

588 RETURN

5990 REM xxx%xx [ ISTING %xxx

608 CLS:PRINT °"DEFINED CHARACTER(131-159)°

618 FOR [=131 70O 159

628 PRINT CHR$(I);" "3:NEXT:PRINT

630 PRINT “AND(224-255)°

640 FOR 1=224 TO 255

650 PRINT CHR$(I);" "3 :NEXT:PRINT

660 INPUT"BSAVE (Y/N)";Y$%

670 .IF Y$="Y' OR Y$="y  THEN INPUT'FILE NAME™;N$
ELSE END

680 REM xxxxx FILE SAVE *»xxx

698 BSAVE N$,59744!,366

708 END



Chapter 9

Music Program

The SOUND command in Ngp-BASIC can be used to create
sophisticated music compositions consisting of simple half
notes. The number 1 parameter determines the precise musical
step. The SOUND command will also work quite effectively in
programs where a composition is to be performed. The program
that follows is exclusively for musical composition.

The keyboard of the PC-8201 is turned into an actual keyboard of a
musical instrument in terms of input. This keyboard input is
organized in the following order of input:

a) Length of note (the ‘L’ Key +a length designation between 1
and 9 with an initial automatic designation of ‘5’);

b) Octave {the ‘O’ Key + an octave designation between 1 and 4
with an initial automatic designation of ‘2°);

c} Note the keys “Z’, “X*, “C"”, V", “B”, “N”, and “M" on
the keyboard correspond to the whole notes “do”, *‘re”, “mi”,
“fa”, “so”, "la"”, and ‘‘ti"" in the key of C, while the keys ‘S,
“D”, “G"”, “H" and "“J"” located obliquely above the first group
on the keyboard correspond to half notes. The designated

length of a note consists of the following. A rest is input by

the SPACE bar.
[ S NN S
o

Loeloed

The length of a note and the octave can be omitted if these are not
to be modified because they will automatically be set at the values
indicated above. A single note at a time can be modified by using
the Key.

._.
]

]

)]
]



Chapter 9

It is a useful practice to press the “'E”" Key after every 20 or so notes
have been input because this will cause an immediate review of those
input notes and will define that series of notes as a 'Part’ before a
prompt is dispiayed inquiring whether you want to redo or save that
series of notes.

If you dislike what you heard during the playback review, the entire
series can be discarded and you can begin again. The input will be
displayed on the screen as capical letters “A’" through “G" the sharps
displayed as lower case letters that correspond to “1a”" through “'s0"’
{in the key of C}. The input process can be stopped at any time by
the “Q" Key.

The data can be performed after it has been input at any time that
you desire, once this data has been converted into a file. Tempo
and transposition functions are also available during playback. You
simply have to follow carefully the instructions in the program.

If you desire to compose jonger compositions, useful modifications
can be made to the input and editing methods by manipulating the
data as string arrays (the original data) and numerical arrays (data for
the performance of a composition).  In addition, the structure of
the original data itself can be directly rewritten while that data is
open to editing in the TEXT mode,

16 REM COPYRIGHT(C) 1983 NEC

20 REM x%x MUSIC xx%

30 CLEAR 20800! :MAXFILES=1

49 DEFINT A-T:DEFSNG U-Y:DEFDBL Z
50 DIM A(48).M$(d9).8(588),L(500)
40 SCREEN 8,0:Z=9394#

79 FOR I[=0 TO 47

89 A(I1)=Z:2=7/1.059463%#%

98 NEXT I

188 FOR I=1 TO 9:READ LNCI ) sNEXT
118 DATA 4,8,16,24,32,&8,64,96,128
120 REM xxx MENU xxx

130 CLS:PRINT" xx%x% MUSIC %%xx

148 PRINT:PRINT® —--— Play or Input -—-°
150 PRINT:INPUT (P/1)";Y%$

160 IF Y$="P" OR Yé="p* THEN 200
170 IF Y$="1" OR Y$="i" THEN 710
180 PRINT"?7?77?" :BEEP:BEEP:GOTO 138

9-6



190

210
228
230
240
250
268
270
280
290
300

310
320
338
340

350
360
370

380
396

409

410
420

430
440
458
460
4708
480
490
508
510
526
530
548
550
568
578

580

590

600

Chapter 9

REM %% PLAY %%

CLS:PRINT" --— PLAYER ---"

PRINT:PRINT "Type music data'

INPUT"file name.":N$

OPEN N$ FOR INPUT AS #1

S=0:E=0

IF EOF{(1) THEN 2809

LINEINPUT #1,M$(E)

E=E+1:G0T0 258

CLOSE:PRINT"End of road,'

PRINT "Data conversion."

PRINT *You may transpose for music from 016G to
04G."

PRINT"You may change to tempo.(but L1=4)"
INPUT "Are you change transpose?(Y/N)";I1$

IF I$="Y" OR I$="y" THEN GOTO 350

IF I$="N" OR I$="n" THEN GOTO 350 ELSE BEEP: CLS:
GOTO 280

INPUT "Are you change tempo?(Y/N)":Y$

IF Y$="Y" OR Y$="y" THEN GOTO 388

IF Y$="N" OR Y$="n" THEN GOTO 388 ELSE BEEP: CLS:
GOTQ 289

IF I$<)'Y' AND I$<>"y" THEN 420

INPUT Change transpose of a unit.(from -7 to
7)"3D:IF D<-7 OR D>7 THEN 390

IF D>8 THEN FOR I=0 TO 41:A(I)=A(I+D): NEXT GOTO
420

FOR I=47 TO 7 STEP -1:ACI)=ACI+D):NEXT

IF Y$="Y" OR Y$="y" THEN INPUT'V (From .25 to
2)";V ELSE v=1

PRINT® ---Just moment please-——"

C=0:FOR I=0 TO E-1

T$=M$(1):60SUB 610

NEXT I

BEEP:CLS _
PRINT N%$;° End of change data.

LLOCATE 1@,3:PRINT N$:LOCATE 10,4

PRINT" Hit any key.!"

IF INKEY$<>"" THEN 510

IF INKEY$="" THEN 520

LOCATE 10,4:PRINT SPACE$(14)

FOR I=0 TO C—1:SOUND S(I),LC(I)%V:NEXT 1
INPUT 'Onece more (Y/N)';Y$

IF Y$="Y" OR Y$="y  THEN 490

IF Y$="N" OR Y$="n" THEN GOTO 588 ELSE BEEP: CLS:
GOTO 48¢@

IF I$="Y"' OR I$="y" THEN PRINT'I must do
initialize ouver again.  tRUN

GOTO 130

REM xxx DATA COMPILER xxx

9-7



Chapter 9

610
626
630
640
658
660
670

680
690
700
71@
720
730
748
756

760
770

780
790
800
810
820
830
840
83@

860
87Q

880
890
900
916
920
936
940
950
968
970
980
998

16006
1010

1020
1030

FOR T=1 TO LEN(T$)

N=INSTR( 'CcDJEFfGghaB LO" ,MID$(T$,T,1))

IF N>13 THEN GOSUB 678:GOTO0 620

M=N+M:S(C)I=A(M-1):L(C)I=L :M=M-N

IF N=13 THEN S(C)=0

C=C+1:NEXT T:RETURN

IF N=15 THEN M=12*(VAL(MID$(T$,T+1,1))—1):T=T+2:

RETURN

L=VAL(MID$(T$,T+1,1)) :L=LN(L)

T=T+2:RETURN

REM xxx INPUT xxx

CLS:PRINT" --- INPUT ---"°

S=@:E=0:C=0

INPUT" Append or New data (A/N)";Y$

IF Y$="N" OR Y$="n" THEN GOTO 760

IF Y$='A" OR Y$="a" THEN GOTO 768 ELSE BEEP: CLS:
GOTO 720

INPUT'File name. " ;N$

IF Y$="A" OR Y$="a" THEN OPEN N$ FOR APPEND AS H1

ELSE go0@

PRINT'Please input continue’:GOTO 820

REM xx% NEW DATA Xxx

OPEN N$ FOR OUTPUT AS #1

PRINT'Please input new music

PRINT 'Data. "’

INPUT ‘Are you want explanation for input?(Y/N) ;Y%
IF Y$="Y" OR Y$="y' THEN GOSUB 1390

IF Y$="N" OR Y$="n" THEN GOTO 860 ELSE BEEP : CLS:
GOTO 818

REM xxx KEY INPUT xxx
CLS:L$="L5":0$="02":5=C:M$(E)=""1:B=0:T%=""1:F=1:

L=32

LLOCATE ©,0:PRINT L%

LOCATE 3,0:PRINT 0%

LOCATE 6,0:1$=INPUT$(1)

P=INSTR( * ZSXDCVGBHNJIM LOE "+CHR$(27)+"Q", I$)

IF P=0 THEN 900

I1$=MID$( "CcDJEFfGgAaB " ,P,1)

IF F=1 THEN T$=L%+0%+I%

IF F=2 THEN T$=0%+1%

IF F=3 THEN T$=L$+I%

IF F=0 THEN T%$=1I%

IF B=8 THEN T$=L$+0%+1%

IF P=17 THEN IF F<>@ OR B=8 THEN 880 ELSE B=0:

GOTO 1220

I; P=18 THEN IF S=C THEN E=E-1:G0T0 1250 ELSE
1259

IF P>13 THEN 1079

X$=T$:B=1

PRINT I%;:M$(E)=M$(E)+T$

9-8



1640
1850
1060
1070
1080

10%@

1166
1110

1120

1136
1146
1150
1140
1170

1180

1196
1200

1210
1220
1230

1240
1250
1260
1276
1286
1298
1300
1319
1320
1330
1340
1350
1360
1370
13806
1390
1400
1410
1420

1430

Chapter 9

LOCATE 8,5:PRINT M$(E)+SPACE$(10)

GOSUB 610:SOUND S(C-1),L(C-1):F=p

GOTO 880

ON P-13 GOTO 1086,1118,1140

IF S=C THEN F=1 ELSE IF F=2 THEN F=1 ELSE

F=3

LOCATE 8,8:Y$=INPUTS$(1):P=INSTR( 123456789 ,Y$):
IF P=0 THEN 10680

L$="L"+Y$:G0TO 880

LOCATE 3,8:Y$=INPUT$(1):P=INSTR("1234",Y$):IF P=0
THEN 11t0

IF 5=C THEN F=1 ELSE IF F=3 THEN F=1 ELSE

F=2

0$="0"+Y$:G0TO 888

LOCATE 8,3:PRINT "END OF PART":E;

FOR I=S TO C-1:SOUND S¢I),LC¢I)sNEXT

INPUT" OKC(Y/N) " 3Y$:IF Y$="Y" THEN 12060

IF Y$="N" OR Y$="n" THEN GOTO 1198 ELSE BEEP: CLS:
GOTO 1146

IF Y$="Y" OR Y$="y" THEN GOTO 1198 ELSE BEEP: CLS
¢GOTO 1140

C=S:PRINT'Try again. :BEEP:GOTO 870

S=C:IF E<4% THEN E=E+1:M$(E)="":F=1:B=0:CL.S:G0OTO
8806

BEEP:PRINT"OUT OF DATA SPACE":GOTCO 1280
M$(E)=LEFT$(ME(E) ,LEN(M$(E) )-LEN(X%$))
C=C-1:BEEP:LOCATE @,3:PRINT"1 STEP BACK":

BEEP

LOCATE 9,3:PRINT SPACE$(12);::G0T0 880

PRINT:PRINT"END OF MUSIC®

C=C+1

REM %% END %%

PRINT "Your music.':FOR I=0 TO 208 :NEXT

FOR I=8 TO C-2:SOUND S(I),LC(I):NEXT
CLS:PRINT"Save to start.’

PRINT"File name.  ;N$:PRINT"Hit any key.'

IF INKEY$="" THEN 1320

FOR I=0 TO E:PRINT #1,M$(I):NEXT I

CLOSE :BEEP

PRINT"End of save. Hit any key.'

IF INKEY$="" THEN 1360

GOTO 139

REM xxx EXPLAIN %xx

PRINT * EXPLANATIONS. *

PRINT"1 Please push “CAPS’ key!.,'

PRINT"2 “ZSXDCVGBHNUM keys are music keybord.®
PRINT "3 “ZSXDCVGBHNJUM keys changed ~CcDdEFfGghAaB’
keys, "

LOCATE 8,7:PRINT® Hit any key.';



Chapter 9

14480
1450
1468
1470

1488
1490
1500
1519
1520

1530
1540

1550
1568
1578

IF INKEY$="" THEN 1440

PRINT:PRINT"4 Push "E’ key end to one brock. "
PRINT'S Push "Q° key end of input.’

PRINT® 6 Push ‘ESC’ key return one music
brock."®

PRINT"7 Space is a rest.

LOCATE 9,7:PRINT" Hit any key.

IF INKEY$-" THEN 1500

PRINT:PRINT"8 L=LENGTH(1-9),0= OCTAVE(i -4)"
PRINT 9 1nput about 20 keys,push ‘E’ key goto
next step. *

PRINT 10 End to part 49."

PRINT"11 ‘L” and "0’ keys could change many
times, if you not push “ESC’ key.

LOCATE 8,7:PRINT" Hit any key.

IF INKEY$—" THEN 1560

RETURN 869



Chapter 9

Random Display Printing Program

Data that is placed in an array can be easily used for calculation or
for display. If data is properly combined with the RND function
the RESULTS are very interesting. It is even possible to INTE-
GRATE this type of process with the Character Definition program
introduced previously.

Please use any alphabetical or numerical characters when you run the
program.

10 ° DEMO

26 CLEAR 256,62336!

30 SCREEN 0,0:CLS

40 DIM C%(39,7),X%(319,1):C=0

50 PRINT "READING DATA®

68 FOR X=8 TO 39

70 FOR Y=@ TO 7

80 X%(Y*x40+X,0)=X:X%(Y*4B+X,1)=Y

968 READ C%(X,Y)

1860 NEXT Y,X

110 ° MAKE DATA

120 SCREEN 0,08:CLS:PRINT

130 PRINT "DATA SCRAMBLING®
148 FOR I=8 TO 209

158 R=RND(1)%319

160 R1=RND(1)%319

170 N=X%(R,08):X%(R,8)=X%(R1,8):X%(R1,08)=N
180 N=X%(R,1):X%(R,1)=X%(R1,1):X%(R1,1)=N
190 NEXT
200 ° PRINT
216 BEEP:CLS:PRINT CHR$(27)+"V"’
220 PRINT "HIT ANY KEY';:A$=INPUT$(1)
230 PRINT A$:PRINT
248 PRINT "HIT ANOTHER KEY';:B$=INPUT$(1)
250 PRINT B%:CLS
260 FOR N=8 TO 319
2708 X=X%(N,8):Y=X%(N,1)
280 SOUND Xx200+208,3
290 LOCATE X,Y
300 IF C%(X,Y)=1 THEN PRINT A$; ELSE PRINT B$;
318 NEXT
320 BEEP:LOCATE 0,0:PRINT A%; ELSE PRINT B%;
336 FOR 1=8 TO S5SB88:NEXT
340 LOCATE 8,0:G0T0 13@

9-11



Chapter 9

1,1,1,1,1,08,1,
2,1,0,0,0,0,0,
9,0,0,1,08,08,1,
0,0,0,1,0,0,0,
©,0,0,0,0,08,0,
9,1,0,0,1,8,0,
9,0,1,0,1,0,1,
9,0,6,0,0,0,8,
9,0,0,0,1,0,0,
1,1,1,1,1,0,0,

® a® v e ® vt r@®@ A mvi O
10101;198y0’8’0o0’1y

’
0

A S N R § ol i i g
T~ ~q - L L ~q L L ~-L -
CooooedeO-a-w0o0-0-0®
® ® ® 0O ® O 0 ° 9 @
N © ~ ®» &8 @ = &N o
m ®m m M 0s s TS

9-12



Chapter 9

Game Program

The missile base is moved by using the left and right Cursor
Movement keys, while pressing the Space bar shoots a missile.  As
presently set, the game will end after one minute but play can easily
be extended by simply modifying the TIMES function in line 130.

18 GAME

20 DEFINT A-Z

38 SCREEN @6,0:CLS

40 TIME$='00:00:00"

58 SC=0

68 ° START

78 X=RND(1)%35+1

88 LOCATE X,8:PRINT " >0<¢ “;

98 I$=INKEY$

100 IF I$=CHR%(28) THEN M=M+1

110 IF I$=CHR$(29) THEN M=M-1

128 IF I$=" " THEN GOSUB 239

136 IF TIME$>"00:01:00° THEN 468

140 IF M<@ THEN M=37:LOCATE @,6:PRINT " *;
156 IF M>38 THEN M=1:LOCATE 38,6:PRINT " *;
168 LOCATE M,6:PRINT “ M °;

178 LOCATE 2,7:PRINT TIMES;

180 LOCATE 18,7:PRINT SC; "POINTS";

190 P=INT(RND(1)>%3)~1:X=X+P
206 IF X<1 THEN X=1

210 IF X>35 THEN X=35

220 GOTO 8@

238 7 MISSILE SuB
240 FOR Y=¢6 TO @ STEP -1

250 LOCATE M+1,Y:PRINT "7
268 SOUND Yx1000+1006,1

278 LOCATE M+1,Y:PRINT " "
280 NEXT

290 IF M=X OR M=X+2 THEN SC=SC+1:BEEP:G0SUB

336:RETURN 7@

360 IF M=X+1 THEN GOSUB 390

310 RETURN

328 ° MISS
330 FOR I=8 TO 1@

348 LOCATE X,0:PRINT "OOPS!’

350 FOR J=0 TO 20:NEXT:LOCATE X,0:PRINT "

360 SOUND 16808, 1:NEXT

370 RETURN

386 ° SOLID HIT
399 SC=SC+5:S0UND 440,19



Chapter 9

4ge
410
420
430
440
450
460

FOR I=0 TO 18

LOCATE X-1,8:PRINT °"HOORAY!®
SOUND 1760, 1

NEXT I

LOCATE X-1,@:PRINT
RETURN

LOCATE 1@,4:PRINT "END OF GAME":END



Chapter 9

Score Ranking Program

This program uses the sequential file management function which
Ng2-BASIC contains, in order to manipulate results, scores, ranks,
etc. It can be used in a variety of applications if the kinds of items
and number of items are appropriately adjusted to specific require-
ments.

10 SCREEN 8,0:CLS

20 PRINT “x%x RANKING SCORES xxx"

30 PRINT

40 PRINT"PLEASE INPUT SCORE TITLE °
58 PRINT,":";

6@ LINE INPUT TIs

7@ PRINT

80 INPUT °"NUMBER OF ITEM " $NC

90 INPUT “NUMBER OF PERSONS";NR

188 DIM D(NC,NR), IT$(NC),NA$(NR),RSUM(NR) ,RMEAN(NR),

SUMUNC), SSMINC) ,MEAN(NC), SD(NC)

1108 CLS

120 PRINT "NAME OF ITEMS:®

138 FOR I=1 TO NC

140 LOCATE ©,2:PRINT SPACE$(48)

156 LOCATE 8,2:PRINT 'NAME OF ITEM";I;
160 INPUT ITM$CI)

178 NEXT

180 CLS

198 PRINT "INPUT THE DATA®
2060 FOR J=1 TO NR
219 LOCATE ©,2:PRINT SPACE$(48):BEEP
220 LOCATE ©,2:PRINT °"NO.";J; “NAME";
230 INPUT NAS(J)
240 FOR I=1 TO NC

250 LOCATE 9,4:PRINT SPACE$(40)

268 LLOCATE 8,4:PRINT ITM$(I);" POINTS";
279 INPUT DA

280 D(I,J)=DA:RSUM(J)=RSUM(J)+DA

290 SUM(I1)=SUM(1)+DA

300 SSM(I1)=SSM(I1)+DA"2

310 NEXT 1

320 LOCATE ©,4:PRINT SPACE$(40)
330 RMEAN(J)=RSUM(J)/NC

348 NEXT J

350 FOR I=1 TO NC

3680  MEANCI)=SUMCI)/NR

370 SD(I)=SSM(I)/NR-MEAN(I)"2
380 NEXT I

350 ° OUTPUT



Chapter 9

400
410
420
430
448
450
460

476
480
490
500
516
520
530
540
550

568
570
580
596
600
610
620
630
640
650
660
670
680
690
706
r’ie
728
730
740
750
760
770
7808
790
800

820
830
840
850

860

PRINT'PLEASE PRESS THE SPACE BAR TO FINISH.®

OPEN “SCRN:®
FOR I=0 TO 1000 :NEXT:BEEP:CLS

FOR OUTPUT AS #1

TT=280:G0SUB 600

CLOSE#1: PRI

NT

PRINT *DO YOU WANT TO CREATE A FILE (Y/N)
Y$=INPUT$(1) tPRINT Y$:IF Y$<O'Y" AND Y$<O© y

THEN 340

ON ERROR GO
INPUT “NAME
OPEN A$ FOR
ON ERROR GO
TT=0:605SUB
CLOSE#1
PRINT

TO 5S40

OF FILE' ;A%
OUTPUT AS #1
T0 @

600

PRINT *DO YOU TO PRINT IT (Y/N)°
Y$=INPUT$(1) :PRINT Y$:IF Y$OTY’ AND Y$<O Ty "

THEN END
OPEN "LPT:’
TT=0:G0SUB
CLOSE#1:END
BESUME 480

PRINT#1,

FOR OUTPUT AS #1
6060

OUTPUT SUBROUTINE
PRINT#1,SPACE$(12);LEFT$(TI%$,30)

PRINT#1,SPACES(9);

FOR I=1 TO

NC

PRINT#1,LEFT$(ITM$(I1)+SPACE$(12),12);

NEXT I
PRINT#1,"TO
FOR J=1 TO

TAL MEAN®
NR

PRINT#1,LEFT$(NA$(J)+SPACE$(18),10);

FOR I=1 T
PRINT#1
NEXT I

0 NC
, USING" ##t##s

"sDCI,d

PRINT#1, USING'#### ####, 4 ;RSUM(J);RMEANCY)

IF TT<)0

FOR T=0 T
NEXT J
PRINT#1,
PRINT#1,'TO

PRINT#1, PO

FOR I=1 TO
PRINT#1,
PRINT#1,
PRINT#1, 'ME
FOR I=1 TO
PRINT#1,
NEXT
PRINT#1,

THEN IF INKEY$="
0 TI:NEXT

TAL®

INTS "3

NC
USING " ###H###
AN '

NC

USING ' #H##HH4#

* THEN A$=INPUT$(1)

" sSUMCT ) s NEXT

*sMEANCI) ;¢



Chapter 9

87¢ PRINT#1, "DEVIATION °;

880 FOR I=1 TO NC

896  PRINTH1, USING"######. # *$SQR(SD(IN)
tNEXT

906 PRINT#1,

910 RETURN

STUDENT ACHIEVEMENT BY SUBJECT

ENGL ISH MATHEMATICS HISTORY TOTAL MEAN
JOHN 71 78 73 222 74.0
JAMES 53 78 80 211 70.3
MARY 83 62 48 193 64.3
ANN 78 91 45 214 71.3
BOB 73 a6 43 162 54.0
HELEN 43 75 72 198 63.3
DORIS 80 71 72 223 74.3
ALEX 78 64 69 211 78.3
LOIS 68 82 70 220 73.3
ADAM 60 58 93 211 70.3
TOTAL
POINTS 687 705 665
MEAN 6% 71 67
DEVIATION 12.3 12.5 15.4

9-17/(9—-18 blank)



APPENDICES



ABS
AND
ASC
ATN
BEEP
BLOAD
BLOAD?
BSAVE
cDBL
CHR$
CINT
CLEAR
CLOAD
CLOAD?
CLOSE
CLS
COM ON/OFF/STOP
CONT
COS
CSAVE
CSNG
CSRLIN
DATA
DATES
DEFINT/SNG/DBL/STR
DIM
EDIT
END
EOF
EQV
ERL
ERR
ERROR
EXEC
EXP

APPENDIX Al

Reserved Words

FILES
FIX

FOR...TO...STEP ~NEXT

FRE

GOSUB ~ RETURN

GOTO

IF...THEN ... ELSE

IMP
INKEYS$
INP

INPUT
INPUTS
INPUT#
INSTR

INT

KEY

KILL
LEFTS$
LEN

LET

LINE INPUT
LINE INPUT#
LIST/LLIST
LOAD
LOCATE
LOG

LPOS
MAXFILES
MENU
MERGE
MID$

MOD
MOTOR
NAME
NEW

APX A1-1



Appendices Al

NOT

ON COM GOSUB
ON ERROR GOTO ~ RESUME
ON ... GOTO/GOSUB
OPEN

OPEN ""COM"
OR

ouT

PEEK

POKE

POS

POWER

PRESET
PRINT/LPRINT
PRINT USING/LPRINT USING
PSET

READ

REM

RENUM
RESTORE
RESUME
RETURN
RIGHTS

RND

RUN

SAVE

SCREEN

SGN

SIN

SOUND

SPACES$

SQOR

STOP

STR$

STRINGS

TAB

TAN

TIMES

VAL

XOR

APX A1-2



APPENDIX A2

Error Codes
Error Ng2-BASIC .
Code Meanin
Message Message € 9

?AQ Error 53 File Already The same file has
Open been opened before.

?BN Error 51 Bad file The number of file
Number is inappropriate.

?BO Error 23 Buffer Overflow | The input buffer

has overflowed.

?BS Error 9 Bad Subscript | The subscrpit of the
{out of range) array is inappropriate

?0F Error 58 File not open The file has not yet

been opende.

?0N Error 17 Continuation is | The execution of the
Not possible program connot be

resumed by means
of a CONT command.

?DD Error 10 Duplicate The same array is
Definition declared twice.

?DS Error b6 Direct An ASCII format
Statement in file does not load.
file

?DU Error 25 Device A designated device
Unavailable is not being used.

?EF Error 54 End of File No more data in the

file.

?FC Error 5 Itlegal Function | Commands or

Call

Functions are used
incorrectly.

APX A2-1




Appendices A2

N .
Error Code 82 BASIC Meaning
Message Message
?FF Error 52 File not Found | The designated name
of file can not be
located.
?FL Error 57 Filing Limit There are too many
files.
?I1D Error 12 lllegal Direct The specified
command cannot
be used in the
dircet mode.
2HE Error 80 Internal Error | An error has occured
within BASIC itself.
210 Error 29 1/O Error An error occurs
during input or
output.
?LS Error 15 Long String The contents of a
string variable are
in excess of 265
characters.
?MO Error 22 Missing A required parameter
Operand is missing.
?NF Error 1 NEXT without |There is no FOR
FOR statement to match
the NEXT statement.
?NM Error b5 File Name The name of the file
_ Mismatch is inappropriate.
?NR Error 19 No RESUME There is no RESUME
command present in
an error reutine.
?0D Error 4 Out of Data The data required
to be read is
insufficient.

APX A2—2



Appendices A2

Error

Ng2 BASIC

Dode Meanin
Message Message g

?0M Error 7 Out of There is insufficient
Memory memory.

?0S Error 14 Out of String The memory region
space available for string

storage is inadequate.

?0V Error 6 Overflow A numerical value
is excessive.

?PC Error b9 PC-8001 This command is

Command used on the PC-8001.

?RG Error 3 RETURN A RETURN
without statement is present
GOSUB without GOSUB

statement.

?RW Error 20 RESUME A RESUME is
Without encountered before
existence of an error routine is
an Error entered.

?SN Error 2 Syntac error The grammar of a
statement is
erroneous.

?ST Error 16 String formula | The string formula

Too complex is complicated.

?TM Error 13 Type Mismatch | The types of variables
and integers are in-
consistent with one
another.

?UE Error 21 Unprintable An error that has

Error not been designated
in a message.

?UF Error 18 Undefined An undefined user
Function function has been

read.

APX A2-3




Appendices A2

Error Ng2-BASIC .
Message Code Message Meaning
?UL Error 8 Undefined Line |A designated line
number has not been defined
?/0 Error 11 Division by A division by O is
Zero performed.

APX A2—4



APPENDIX A3

Control Codes
The PC-8201 uses ASCII character codes from 1 through 31 as
control codes, and has a function for display operations such as

cursor movement control,

The following control codes are effective in the TELCOM mode:

CHARACTER
PERATION CTION

OPERA CODE FUN

+C 3 interrupts command
input (effective during
keyboard input) the
same as the ket

+G 7 Bell to sound the
beeper

+H 8 Back Space (the same
as

+1 6 ()

+J 10 Line Feed

() + K 11 Home Position

+ L 12 Clear the Screen

+M 13 Carriage Return (same
as Key)

+N 14 Shift QUT (effective
anly with a control
designation, applies to
RS-232C)

£ +o 15 Shift IN (effective only
with a control
deisgnation)

APX A3-1



Appendices A3

CHARACTER
OPERATION 10
0] CODE FUNCTION
+Q 17 Request Interrupt
during transmission
(effective only with a
control deisgnation)
+S 19 Atuhorizes Reopening
of transmission
(effective only with a
control designation)
= 27 Begins the Escape
Sequence
<] 28 Moves the cursor one
character to the right
9 29 Moves the cursor one
character to the left
< 30 Moves the cursor up
one line
A 31 Moves the cursor down

one line

APX A3-2



APPENDIX A4

Character Codes

A

Q —

=] . . 33

@ | Control Code Table Comparison {Unique code M - s H oo R & -
& that cannot be output as characters) | &

=

(&}

©

£ R332 388R8RBFI8IBLEH B
-1

o

E

o

o

® Control Code Table Comparison (Unique code that cannot be output as characters)
©

£

&)

Decimal

O = &N OO < W O N~ 0 O O -
—_

APX A4-1



Appendices A4

Decimal Character Decimal Character
40 ( 65 A
41 ) 66 B
42 % 67 C
43 + 68 D
44 , 69 E
45 — 70 F
46 . 71 G
47 / 72 H
48 0 73 |
49 1 74 J
50 2 75 K
51 3 76 L
52 4 77 M
53 5 78 N
b4 6 79 o
55 7 80 P
56 8 81 Q
57 9 B2 R
58 : 83 S
59 ; B4 T
60 ( 85 U
61 = 86 Y
62 > 87 W
63 ? 88 X
64 @ 89 Y

APX A4-2



Appendices A4

Decimal Character Decimal Character
90 z 115 s
91 [ 116 t
92 \ 117 u
93 ] 118 v
94 ~ 119 w
95 - 120 X
96 121 v
97 a 122 z
98 b 123 {
99 c 124 !

100 d 125 }
101 e 126 ~
102 f 127
103 g 128 4
104 h 129 <«
105 i 130
106 j 131 ¢
@
107 k 132 a
o
108 | 133 g 3
5 (oK
109 m 134 T
~ o
110 n 135 g8
30
11 ) 136 -
T -~
®© "0
112 D 137 = S
o @©
< 3
13 q 138 g5
QO
114 r 139 a3

APX A4--3



Appendices A4

Decimal Character Decimal Character

140 165
141 166
142 167
143 168
144 169

C C

145 3 170 g

146 g 171 g

e 5

147 2 172 2

(=] (2]

148 Z 173 T

a 3

149 3 174 a

@ o

150 it 175 b

0 vl

o o

151 2 176 g

2 2.

152 g 177 &

154 - 178 o

1] (]

154 5 179 5

T ©

[ = [

1566 - 180 -

156 Kol § 181 S

157 bimons 3 182 )

A ~

158 HEQs 2 183 2

g g

159 e © 184 ®

e e
160 185
- 161 186
162 187
163 188
164 189

APX A4-4



Appendices A4

Y

[L]

-

© | User-defined characters (Potential to . . .

© A User-defined characters (Output by using the CHS$ function)

.ma be Input from the keyboard)

(&)

®

E|l o © ~ o & © — & M|t B W M~ W D O — N M ¢ W © M~ 0 O
=l e = - = & NN &N AN N NN AN O MDD o0 MM MmO M
% N o N (o] N N N (] N ™~N o~ o~ N N N N N N N o~N N N (o] N o~
0

Y

[T

®

e User-defined characters (Potential to be Input from the Keyboard)

©

£

[&]

©

El o = &0 0 & ©B © N ©®© O O = N M & W O N O O O —~ N ™ <
== &0 O O O O O O o O O 0 0 © O 0 Q0 O Q0 O 8 & = = = =
m — — — -— - — — —— -— — [aV] N (o] o o o (o] N (o] N o~ o [aN] o [a)]
3 .

APX A4-5



Appendices A4

Character

User-defined characters (Output by using the CHS$ function)

Decimal

240

241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

APX A4-6



65535

62336

8000

APPENDIX B

Memory Maps

Work area

File control block

String region

FOR/GOSUB stack

System stack

Array region

Pure variable region

Machine language program file
.CO

ASCII code text file
.DO

BASIC program file
.BA

APX B-1

Changes
according
to MAXFILES

} Changes according
to CLEAR statement
number 1 parameter



Appendices B

65535

32768

32767

RAM
16K
#1

RAM
16K
(option)

System
ROM

32K

RAM RAM

32K 32K

#2 #3

RAM

(option) cartridge

[ i | [ |
| | | |
| | | |
| | | |
| | | |
! | i !
| | | !
L___4 | S |

The addresses for RAM # 2 and RAM # 3 can be designated as
either 0 through 32767 or 32768 through 65535.

Each block can affect a bank conversion in 32K byte segments.

APX B-2




APPENDIX C

Escape Sequences
An Escape Sequence involves the performance of a designated
function according to any array of letters which follow the Escape
code (ESC:27). It is input by pressing the Key and pressing a
letter key. The methods of using the and Keys are
entirely different, so do not confuse these special methods with

An Escape Sequence is also effective in BASIC.

The following Escape Sequences can be used with the PC-8201:

CHARACTER
+ FUNCTION
ESC CODE
E 27,69 Clears Screen and moves
the cursor to the top left
corner of the screen (the
home position)
J 27, 106 Clear Screen
K 27,75 Erases characters from
cursor position to the end
of line
J 27,74 Erases characters from
cursor position up to the
end of the display
| 27, 108 Erases characters on the
line where the cursor is
located
L 27,76 Inserts a Line
M 27,77 Deletes the line where the
cursor is located

APX C-1



Appendices C

HARACTER

ESC + gooe FUNCTION

Y(y) (x} Moves the cursor to a
designated location, the
y x offset by the space
character ASCII (decimal
32).

A 27, 65 Moves the cursor one
line up

B 27, 66 Moves the cursor one
line down

C 27, 67 Moves the cursor one
character {one column)
to the right

D 27, 68 Moves the cursor one
character (one column)
to the left

P 27, 112 Changes the screen into
reverse display

q 27, 113 Restores characters to
normal {switches from
reverse display)

T 27, 84 Displays Function Keys

27, 85 Erases the display of

Function Keys

\Y 27, 86 Inhibits scrolling (freezes
the display)

W 27, 87 Permits Scrolling

APX C-2




Appendices C

ESC+Y (y) (x)

The cursor position is designated vertically and horizontally by two
characters which are subsequent to ESC + Y,

Capital letters from character code 32 are used in the designa-
tion. A blank (space) corresponds to the location 0, and (!)
corresponds to 1, while ("'} corresponds to 2. for instance, to move
the cursor to home position, input the following string:

ESC' AIYIII " II' e ors
This means 27, 89, 32, 32 in character code.

F—’\ In TERM mode, when the Key is input, only the

—1” carriage code (13) is transmitted while the change line
code (10) is not transmitted. In the case where the
carriage return code is received, the line is not chang-
ed. Though this does not cause a problem in com-
munication with a host computer, when communicating
with other computers the user must input +J in
order to actively perform the change of lines.

No change line code will be transmitted when the UPLOAD
command is executed. This is something to be fully aware of when
a program is being created at the receiving end of the data
transmission.

APX C-3/(C—4 blank)



ABSOLUTE
VALUE

ARRAY

ASCII

BASIC

BOOLEAN

CONDITIONAL

COSINE

DATA

DELIMIT

DIMENSION

APPENDIX D

Glossary

The positive form of any given number,

A set of values arranged in a regular
pattern such as in single-file or in two
dimensions.

American Standard Code for Information
Interchange.

Beginner’s All purpose Symbolic Instruc-
tion Code. Easy to understand program-
ming language.

Deals with on-off circuit elements, and
binary mathematics.

A statement that requires a test to be
made. An |F statement is a conditional
statement since the computer will take one
of two paths.

In a right triangle, the value obtained when
the side adjacent to an angle is divided by

the hypotenuse.

The input values that a computer must
have in order to solve a given problem.

Separate.
The number of elements in an array and

their configuration {one or two dimen-
sions).

APX D-1



Appendices D

EXPONENTIATION

EXPRESSION

FILE

INCREMENT

INITIALIZATION

INPUT

INTEGER

LINE

NUMBER

LOG
(NATURAL)

LOOP

MEMORY

NULL

Raising a number to some power.

In an assignment statement, the value to
the right of the equal sign (=).

A collection of data to be used with a
computer program. The program itself is
often called a file.

To increase the value of a counter.

Giving first values to a data name. In
loops, counters are normally initialized to
1.

The values that a program must have in
order to solve a given problem.

A whole number.

An identifying number that is placed ahead
of each BASIC statement in a program.

The number to which "e” must be raised
in order to obtain a given value.

A set of statements that is executed over
and over.

A computer can store electronically within
its mechanism several million characters of
information at any given moment. In
back up deviced, computers can store up to
several trillion characters for relatively im-
mediate use.

Empty set or empty string: { }

APX D-2




OUTPUT
PROGRAM

READ

RELATIONAL
SYMBOLS

RAM

RETURN KEY

RESERVED
WORD

ROM

SEARCH

SINE

Appendices D

The answers given by a computer program.

A set of instructions telling a computer
how to solve a given problem. The
instructions are given in a programming
language such as BASIC.

To obtain data from a DATA statement.

The symbols ) ,=, and ( that may be
used to indicate whether one value is
larger, smaller, equal, or not equal to
another.  Relational symbols are used in
IF statements.

Random Access Memory. The type of
memory that can be altered, by means of
saving files or new programs or running
programs.

A key on your terminal’s keyboard that is
used to enter a BASIC statement.

In BASIC, the first word of a statement
that identifies the type of statement.

Read On!y Memory. The type of memo-
ry that stays intact even when the
PC-8201's power is turned OFF,

The finding of a particular value in an
array table.

In a right triangle, the value obtained when

the side opposite the angle is divided by
the hypotenuse.

APX D-3



Appendices D

SQUARE ROOT

STATEMENT

SUBSCRIPT

SYSTEM
COMMAND

TANGENT

TEST

TRUNCATE

ZONE

The number which, when multipled by
itself gives a specified value. Thus, the
square root of 64 is 8.

A single instruction to the computer such
as: 10 LET P=7

A number, name, or expression that tells
which one of an array element is to be
worked with.

A command directly to the computer
telling it to do something with a program
you have created or wish to create. Some
system commands are SAVE, LIST, RUN,
NEW.

In a right triangle, the value obtained when
the side opposite the angle is divided by
the side adjacent to the angle.

To check out, such as the value of a
counter, the state of a condition, a pro-

gram, etc.

Drop the decimal digits of a num-
ber. {Rounded off).

One of the two areas of the screen where
an answer may be displayed.

APX D—4



INDEX

ABS

AND L

Arithmetical operation

Array e
Array elements
Array variable

ASC .

ASCII

ATN

BASIC
BEEP
Bit .
BLOAD
BSAVE
Buffer
Byte

CDBL

CHR$

Character .
Character string
Character variable

CINT

CLEAR

CLOAD

CLOSE

CLS

CcOoM

Command

Constant

CONT

Control character

COoSs e e

Creating machine language

CSAVE

CSRLIN

INDEX-1

A-12
.4-13
.4-13
.4—64
. 3-3
.4-14
.4—15
.4-17
.4-20
4-21
.4-22
. 1-6
. 3-9
.4-23

4-25
464



Index

DATA

DATE$

Dafault
DEFINT
Device

DIM

Dimension
Direct Mode
Division by zero
Dot . . . .
Double precision

EDIT ..
Editing in the TEXT mode
END

EOF

EQV

ERL

ERR . .

ERROR

Error code

Error message

Escape Sequence

EXEC

Execution

EXP

External device

FILES
Files ..

File descriptor

File name

File type
FIX e
FOR TO STEP NEXT
FRE
Function

GOSUB
GOTO

INDEX-2

4-27
3-2,4-29
. 3-3
.4-30
. 4-7
A4-32
4-32
. 1-4,3-9
.8-16
.21
. 36

4-34
.4-34
.4-35
.4-36
.4-37
2,4-39
-2, 4-40
4-41
APX A2-1
. 2-5, 8—1
. APX C-1
.4-43
.4-43
4-44

. 4-7

3
3

A-45
. 51
. 51



IF THEN ELSE

IMP
INKEY$
INP
INPUT
INPUTS
INPUT#
INSTR
INT
Integer

KEY
KILL

LEFTS$

LEN

LET

LINE INPUT
Line number
LIST/LLIST
LOAD

Load
LOCATE
LOG

Logical expression
Logical operator

Loap
LPRINT
LPOS

Machine Language program
Mathematical function

MAXFILES
Memory map
MENU . .
MERGE
MID$

MOD

Mode
MOTOR

Index

.4-55
.4-58
.4—60
461
.4-62
464
.4—66
.4-68
.4-70
. 2-4

.4-71
.4-72

.4-73
.4-74
.4-75
.4-76
. 2-2
.4-77
4-78
.72
.4-B0
4-81
.3-20
.3-20
.4-48

. 4-114

.4-82

. 6-2
-3-26
.4-83

. APX B-1

.4-85
.4-86
.4—-88



Index

NAME

Name of device
Name of file
NEW

NOT

Null string

ON COM
ON ERRCR
ON GOSsuB
ON GOTO
OPEN
Operating mode
Operation
Option

OR
Overflow
ouT

PEEK

POKE

POS

POWER

PRESET

PRINT ;

PRINT USING

Program e
Program editing
Program Mode
Programming hints
Programming problem

PSET

RAM ..
Random number
READ

REM

RENUM
Reserved variable
Reserved word

INDEX—4

.4-90
. 4-7,4-136
. 52
4-91
4-92
.44

.4—-96
.4—-97
.4-94
.4-94
.4-98
. 1-3

.. 1-4

. 4-133

. 4-122

. 4-124

. 4-126
.4-39
APX A1-1



RESTORE
RESUME
RETURN
RIGHTS
RND
ROM

RUN

SAVE

Saving a program
SCREEN
Screen display
SGN

SIN

Sine precision
SOUND
SPACE$
Special Symbol
SQOR

Statement.
STOP

STR$
STRING$
String ..

String Variable

TAB

TAN

TEXT

Text files
TIMES

Type conversion

VAL . .
Variable
Variable name

XOR

INDEX-5/(6 blank)

Index



¥OX ELL4:] Hox #iNdNI 3INIT ‘AB3 ON -

YidHUA *AB3 ON —— $iNdNI 3NI7 ‘AB3 ON ——

4018 $3NTL “AD3 ON —— 3N °AD3 ON ——

440 e3WIL "AD3 ON —— Ad0D1 ‘AB3 ON ——

NO $3WIl *AB3 ON -— d0l8 A3 ‘AD3 ON —-——

440 GNNOoS *AD3 ON —— 440 A3N ‘AB3 ON ——

NO annos "AB3 ON —— NO A3X “AB3 ON -

WNNY “AD3. ON —— L8177 AN *AD3 ON -

440 ¥3aMod *AB3 ON —-—— Ad1 ‘AD3 ON ———

iNOD ¥3IMOd “AB3 ON ——— Sl INYs dhtl

M0 3uvs ¥0 W3WTIH "AB3 ON -——

81809 $3WIL NO “AD3 ON ——— 1D HYIINIS 33x3

anso09 WaW NO "AG03 ON - sAD3 auvs AD3

€Ns09 A3N NO ‘AD3 ON -—— $90X8Q L 2] soN8q

10N 3uvs 10N 181580 3uve sIN8a

aou 3uvs aok $8AVO “AD3 ON ———

d048 WaW ‘AD3 ON —— W3Av8D YYIINRIS 3nvsd

440 WaW *AB3 ON —— —— "AD3 ON Lavoia

NO WaW *AB3 ON —— Wavo L L abe bg:] avoa

HYHYX YW ‘AB3 ON —-—— 108 3Wvs Jasv

1407 ELLZ- 407 1ANY anys aNv

I BINIY¥d Llari2s: 319207 188y ELlg-] sdv
o0t JaN 00t J3N

§8/¢ - A4juol J43sp 00Z8
IST7] purwwo] Q0T [2pPOW






