ROM2/Cleuseau Model 100/102
Developers Version
Supplement

Note: This document supplements the regular ROM2/Cleuseau ROM manual. The Developers version of this
ROM is available from Club 100 for Modes 100/102 only — a developers version is not available for the Model
200 or NEC PC8201a.

Cleuseau

Text Editor and BASIC Inspector

"‘User’'s Manual

e TRS-80 Model 100 ¢ Tandy 200 ¢ Nec PC-8201A

for
the Model 1007

ar -
the TANDY 2007

or
the NEC 8201ATM

User's Manual for ROM2 v5.1

Club 100: The Model "T" User Group (since 1983) Use your

P.0O. Box 23438, Pleasant Hill, CA 94523-0438 browsers
925-932-8956, fax 937-5039, bbs 939-1246 BACK
www.the-dock.com/club100.html to exit

ROM2/Cleuseau Model 100/102
Developers Version
Supplement

Note: This document supplements the regular ROM2/Cleuseau ROM manual. The Developers version of this
ROM is available from Club 100 for Modes 100/102 only — a developers version is not available for the Model
200 or NEC PC8201a.

Deleted CMD modes:

CALL 913,145
No longer activates Cleuseau.

CALL 913,193
No longer calculates ROM2's 8K checksum.

CALL 911°command str
No longer supported.

ROM2 entry points
ROM2 machine code entry points no longer supported.

New Cleuseau command:

ctri-R
Invokes ROM2 (if Cleuseau is active).

Model 100/102 new CMD modes:

RC$="str":CALL 911
Invokes ROM2 with value of RC$ as the command input.

CALL 913,17
Invokes DBG directly. Useful for invoking DBG directly from machine code.

CALL 913,129
Load machine code from TDD via routine.

CALL 63013,1
Enables Cleuseau.

CALL 83013,144
Disables Cleuseau.

Tandy 200 new CMD modes:

RC$="str":CALL 921,2

Invokes ROM2 with value of RC$ as the command input.

CALL 921,18
Invokes DBG directly. Useful for invoking DBG directly from machine code.

CALL 61167,2
Enables Cleuseau.

CALL 61167,144
Disables Cleuseau.

New messages:

Attach TDD!
This message is displayed if a TDD is not connected.

TDD err
This message is displayed if a TDD command cannot be completed properly.

?FC error
If ROM2 fails to complete a command as instructed, a ?FC error is issued.

New CMD commands:

RUN []
Load from the TDD and run it. ((BA and .DO files are loaded into RAM as while .CO files are loaded in the
HIMEM-MAXRAM area. If is omitted then the name is used.

LOAD]]
Load from the TDD into RAM as . If is omitted then the name is used.

SAVE []
Save in RAM to the TDD as . If is omitted then the name is used.

KILL
Kill on the TDD. (No confirmation.)

FILES
List TDD files and sizes.

FORMAT
Format the TDD disk. (No confirmation.)

TDD file types:
ROM2 uses the two character extension in TDD file names for determining the file type.
ROM?2 allows these extensions: .DO, .CO, .BA, and .BR.

Extensions in ROM2 commands which have two file names must have equivalent file types. If the extension is
omitted in the second file name then the extension of the first is used. If the extension is omitted in the first file
name then .DO is used.

Strong and weak machine file types:

ROM2 allows a third character in the TDD file extension. Weak machine file type checking (the default mode)

allows any character. Strong checking allows only the machine's corresponding digit (if the third character is blank
then the machine's digit is added). Machine file type checking helps when the TDD files are a mixture of Model
100, NEC 8201A, and/or Tandy 200 files. Since .CO files are almost never compatible, running the wrong
machine’s file will probably lead to a machine crash and data loss. Also, NEC and Tandy BASIC programs are
tokenized differently and will probably corrupt RAM if loaded into the wrong machine type. Strong machine file
type checking prevents loading the wrong type of file into the machine.

Weak machine file type mode:

100: POKE 63852,0
Third character in the file extension can be anything.

200: POKE 62044,0
Third character in the file extension can be anything.

NEC: POKE 63577,0
Third character in the file extension can be anything. Example (assuming the machine is a Model 100):

SAVE PROG.BA PROG.BA1
Save RAM file PROG.BA as TDD file PROG.BA1.

SAVE PROG.BA PROG.BA2
Save RAM file PROG.BA as TDD file PROG.BAZ.

Strong machine file type mode:

100: POKE 63852,32
Third character in the file extension must be *1".

200: POKE 62044,32
Third character in the file extension must be ‘2'.

NEC: POKE 63577,32
Third character in the file extension must be '0'.

If the third char is blank then the proper machine charis added. Example (assuming the machine is a Model 100):

SAVE PROG.BA PROG.BA1
Save RAM file PROG.BA as TDD file PROG.BA1.

SAVE PROG.BA PROG.BA2
Results in a ?FC error, due to machine type mismatch.

Example ROM2/TDD program:

10 INPUT "File":F$

20 IF F$="" THEN MENU

30 RC$="LOAD "+F$:CALL 911

40 RCS="ASMN "+F$+" "+F$:CALL 911
50 RCE="SAVE "+F5+".CO":CALL 911
60 MENU

e ASM/DBG Modifications ******
New ASM modes:

ASMI]
Assembles .DO to .CO Ifis omitted then machine code is placed directly into the HHMEM-MAXRAM area.

LAB.DO
An _ASM_.DQ file can be renamed _LAB_.DO and used as the initial symbol table for ASM. This reduces the
time and memory required to assemble programs which reference many constant label values.

New ASM pseudo ops:

ENTRY
Define the current PC ($) as the EXEcute address for the .CO file created by ASM.

DEC
Untyped constants are converted to decimal. This is the initial mode of ASM.

HEX
Untyped constants are converted to hexadecimal.

Extended ASM pseudo ops:

&file

&&file

If file.DO is not in RAM then load it from the TDD, include it and then delete it. Macros can not be defined in a file
loaded this way.

New ASM/DBG constant types:

[c.9* T
Decimal constant. This constant type is needed for entering decimal constants while in HEX mode, since 'D'is a
valid hex digit.

[0.11* 'y’
Binary constant. This constant type is needed for entering binary constants while in hex mode, since 'B' is a valid
hex digit.

New DBG commands:

F [.[]
Find all memory blocks matching the one that starts at address and is long. If is omitted then a length of three (3)
is used. If is omitted then the current PC is used.

DEC
Display register values in decimal. Untyped constants are converted to decimal.

HEX
Display register values in hexadecimal. Untyped constants are converted to hexadecimal. This is the initial mode
of DBG.

LPT
All DBG display goes to the printer, including prompts and keyboard entry.

COM

All DBG display and input via the COM/MDM port. Use TELCOM's STAT command or a BASIC OPEN statement
to set the communication parameters.

EQ [0

Breakpoint if the byte at is equal to . If is omitted then the current value at is used. if is omitted then the current

PC is used.

NEQ [].[]
Breakpoint if the byte at is not equal to . If is omitted then the current value at is used. If is omitted then the
current PC is used.

CST
Clear the stack trap address. DBG automatically exits when the RET at the end of a routine that invoked DBG is
simulated. CST turns off the auto exit.

D

Display registers and the next instruction to be simulated. All values displayed in decimal or hexadecimal,
controlled by the DEC and HEX commands. DBG starts in HEX mode. Values and addresses displayed as the
equivalent label name if possible.

L]

Disassembie opcodes starting at . All values displayed in decimal or hexadecimal, controlled by the DEC and
HEX commands. DBG starts in HEX mode. Values and addresses displayed as the equivalent label name if
possible.

N
as first debug command. Causes subsequent L commands to disassemble the Cleuseau/ROM2 addresses. This
allows you to examine and test the contents of the Cleuseau/ ROM2. Also can run/simulate ROM2 routines.

******Other Notes P e e e e e

RAM
ROM2/Cleuseau uses the following areas of RAM:
ROM_Check: TZ200:EECS8..EEEE

IN Buf: T200:EFCQ. .FO5F
ROM_Name: T200:F4D3. .F4DA
Page2: T200:F7C8. .F8CF

ROM2 uses the last two-thirds of In_buf for operating on user input. This limits the usable input line length to 80
chars while in DBG or other ROM2 functions.

In the T200, the Page2 area starts at F7B0 and runs for 640 bytes to FA2F. ROM2 and Cleuseau use the
F7C8..FBCF part only.

The Original Laptop Computer

Cleuseau

Text Editor and BASIC Inspector

‘User’s Manual

* TRS-80 Model 100 ¢ Tandy 200 ® Nec PC-8201A e

July 1, 1985
(second printing)

Copyright 1985
Polar Engineering and Consulting
P.O. Box 7188 Nikiski, Alaska 99635
(907) 776-5529

The firmware furnished in Cleuseau and the printed documentation in the ““User’s Manual” are
protected by copyright law. Duplication in any form is prohibited.

How to insert the option ROM into its socket.

° 9)
:)

o

PR CTNICT O

TSN AL AN ¢ NN L YR - e e !‘:

i : t
L T O e T T | .
® s S e

Y

EETE

T ,...;. ny e

i

I“ . 3
. >
: T
Roie Tt e
. Pl ¥, rmal
Tl :

S er e model 102 % :
e) bottom view '
CN) ®
model 100 model 200
bottom view bottomn view
1 Turn off the power to your computer. (It is not necessary to shut down memory power.) Turn the computer .

upside down on a soft surface, oriented as shown, depending on whether you have a model 100, 102 or 200.
Use a dime or a screwdriver to snap off the protective plastic cover from the options compartment. Locate the
option ROM socket and pin 1 on that socket. Pin 1 will be at the corner illustrated. Also, you will find a numeral *

1" printed on the circuit board by the corner.

2 Locate pin 1 on the eprom carrier.

opening in trace

\ pin 1

power off?!

4 Press straight down firmly and evenly with
two thumbs, until the carrier is seated as
deep as it can go inside the socket.

T

3 Line up eprom carrier pin 1 with socket pin 1, and set
the carrier gently on top of the opening in the socket.

¥

5 Replace the cover on the options compartment,
and proceed 1o test your new option ROM.

To remove the carrier, pry up gently at the two ends.

Club 198 ROMs are constructed as a one-piece unit.
DO NOT SEPARATE COMPONENTS. Lay ribbon (included)
into RON socket, first, for easy removal. VYes,

it’s a tight fit. Call if you have ANY questions,

CONTENTS

HARDWARE INSTALLATION (Model 100/Tandy 200)...cceecceeocssssl

HARDWARE INSTALLATION (NEC 8201A)....'..00.ooc.nooo...l..bo.z :

SOF'IWARE INSTALLATION'.'.................‘......I..I.;.Q.'..B

OVERVIEW OF CLEUSEAU ENHANCEMENTS TO MS TEXTeeeeneecncnnenedd
Comand Key mscripticns.....o.Q.."QQQ'I0."0000..'.0'000.05 ,‘ i

Filing.""......’...“.'....."‘Q....'.....O.........5
MOde Setting...D‘..".Q...."'QQ....'......l..."....6/

Movingao.aoo'..it.‘t..‘ocon.ooi....ooo.oc-..oooo-o..6

Character Editing......'.‘..l'..........'..'l...'...7

Searching and Repl&cing..'..'....'...'II.....I......B -

Selecting and Pﬂsting..'........'.l...'..'........l.g

Miscellaneous....l..............'.....C..l..'...l..lo-v
Duplicate Control KeyS.eeeeoeossoccecoosooscssseseall

Advanced Usage...cecesessesccsarevocscsocscsccioosscnnsaseal
Post Selection Of TeXt.eeseescscosesconcsccccscsesel?
ESC‘Repeat Function..-...................;.........14

CLEUSEAU TEXT QUICK REFERENCE..............................16

OVERVIEH OF CLmISEAU BASIC INSPmR.......'...............19
Comnd Description‘s..'0‘..........."...i.'......l......'.20
: GI'RLU mLx ESC...‘..Q......O......'........'..20

Edit comnds.......................“..............."....021‘

~0RENIJM.l...o.o.'t.o.........‘..000..0.00.'.0....0..21
.MOVE..Q.........'..‘...................Q...l......zz

.COPY....‘......O.I‘....'...‘.‘..l..........l......23

MIN' .DELCW.........o.o.....ﬁ...-o.-.-...........24
.SQUASH, .PACK.....................................25

’ bmAND’ nKILL.ood'oooﬁ.o.bo.‘o.onoocotoooouooooo-026
Debugging Comlnands..............-...'..o.n...-......¢.....27
«STOP, PRINT, cveceececoesssancsssccscnccascsonassl8

.CONT, .OFF, .LOG, .LOG [<num>], .LLOG,.ecceeeeeese29

Miscellaneous Comnds..ooo-oo-ooo-o-oo-onoo0000000000.00-030
.FILES, .LFILES, .LIST, .LLIST, .STEP, . (dot).....30
CLEUSEAU BASIC INSPECTOR QUICK REFERENCE....eeeevveeoeesaas3l

APPENDIX...32
How to Debug with Cleuseau.cseeeeesececerososoasese3
Debugging Strategy.ceeceseeccesscsccssccscscnsscsseeldd
Useful Debugging CommandsS....eceeeseeencccencsonssa3b

Index....ooo.oo‘...o....DOOOICOQOOCO..Q.o........‘l.003.000035

off the RAH uenory power.)

IMPORTANT

co e LS v ' F
Polar ‘Engineering and. Cpnsnl.tins sens C’.tmsam r mm&
100, Tandy 200. and, NEC. 8201A. . Though the three wersfing of. ;.
Cleuseau are very much alike, they are machine apecific. N

This nanual explains how to use Clensm on &11 mcl:im.
Variations between the ﬁbdel 100, Thndy 200’&&4 HBC 8201A are

noted,:

e
Do NOT remove the Cleuseau EGHI r
computer's main power.on,.. This ¢

corrupt. RAM memory,. Alnra : ££ the. uimmr We
installing. or. removing Cleuseau :Ir.@ 18" HOT n&c&ssary to turn

Alwaye DISABLE Cleuseau befora Load éiinQ;iihE?itﬁé?Giﬁédr _
DISK ﬂrive support software. -g{auk,;rt;,ﬂﬂ‘,f(wthpafgv%’,a g

Installation , ~1-

HARDWARE INSTALLATION :(Model .100/200)

WARNING: Improper installation may erase RAM memory or damage
Cleuseau or the Model 100/200. -Cleuseau is sensitive to static
electricity so exercise caution and FOLLOW installation
instructions. READ STEPS ‘1 THROUGH 10 BEFORE STARTING.

Handling: Do not touch Cleuseau's pins or the metal contacts on
the circuit board. DO-NOT REMOVE THE CIRCUIT BOARD; it is
essential to Cleuseau's functionality. -~ .

Step 1: Place a soft towel onm a flat table surface.

Step 2: Turn the Model 100/200 OFF and place it upside down on
the towel. Orient the Model 100/200 with the removable plastic
panel nearest you. " ‘

Step 3: Insert a penny into the slot on the near side of the
panel and pry the panel off.

Step 4: Correctly orient Cleuseau with its label reading from
left to right. LOOSELY place Cleuseau into the option ROM
socket (Ml1l, it is the nearer of the two). ‘DO NOT USE FORCE IN
THIS STEP!

Step 5: Cleuseau's label should read mormally. If NOT then
go back to the previous step and repeat it.
b
Step 6: Press‘Cleuseau:evenly,and‘steadily with your thumbs into
the socket until it will not' go down any more. . :

Step 7: Replace the panel.
Step 8: Turn the Model 100/200 face up ready for typing. .

S\ .
Step 9: Turn on the power. If the main menu does not appear,
turn off the power immediately and remove Cleuseau and repeat
entire installation from the first step., -

Step 10: If the main'menufdid appear then the hardware
installation is done. Proceed to the gsoftware installation.

i . Installation

- HARDWARE INSTALLATION (NEC 82014A)

WARNING: Improper.installation may erase RAM ‘memory or damage
Cleuseau or .the ‘NE€:8201A. - Cleuseau is sensitive to ‘static
electricity so exercise caution and FOLLOW installation
instructions. 'READ-STEPS 1 THROUGH 10 BEFORE STARTING.

Handling: Do not touch Cleuseau's: pins,.:Three: pins on Cleuseau
s is correct and necessary. DO NOT

may have been modified. "’ :
ATTEMPT TO ALTER Cleuseau'IK*ANY W&Y!

Step 1: Place a soft*towel on a flat table gurface.

Step 2: Turn the NEC 82014 off and place it upside down on the
towel. Orient the NEC 8201&‘w1th ‘the removable plastic panel
nearest you.

¥

Step 3: Remove the three philipS«screvs and ehe plastic cover. -

Step 4: Correctly orient Cleuseau ui;h 1ts label reading from

left to right.: Rotate it 90 degrees:counter-clockwise. Place -

it on the second socket: from the: left. (ThéEffrst socket has -
the MicroSoft ROM in it.) . &

Step 5: Cleuseau's. label should fegd;the same way as the
MicroSoft ROM. If NOT then go baCk?fOWthe'previous step'and
repeat it. ‘ : o

' Step 6: Using both thumbs, press Gleusean firmly into its
socket. Make sure that all the pina -are inserted.

Step 7: Replace the panel.

Step 8: Turn the NEC 8201A face up‘ready for'typihg.

Step 9: Turn on.the power. If the main menu does not appear,
turn off :the power immediately and remove Cleuseau and repeat
entire installation from the first step.

. Step 10: If the main menu did appear then the hardware
installation is done. Proceed to the software installation.

R D W B

Installation -3~

SOFTWARE INSTALLATION

Cleuseau softwafe is installed from BASIC. Enter from BASIC:

Model 100: CALL 63012
Tandy 200: CALL 61167,2
NEC 8201A: EXEC 62393

This only needs to be done once. When installed and enabled the
word "Cleuseau" will appear on the main menu. If, after
entering this command, the menu does not automatically appear
then Cleuseau may not be installed correctly. Repeat the
hardware installation. '

If your computer has multiple RAM banks you will have to install
the Cleuseau software in each bank you wish to use. ;

Cleuseau remains installed until a COLD-RESTART occurs or you
disable it. To disabled Cleuseau, enter from BASIC:

Model 100: CALL 913,145
Tandy 200: CALL 921,146
NEC 8201A: EXEC 1124,145

If you physically remove Cleuseau from your computer, Cleuseau
will automatically disable itself. You will have to repeat the
installation instructions completely to put Cleuseau back in
your computer. (Note: After removal, the word "Cleuseau" which
appears on the main menu may not disappear until a menu choice
has been made.) '

A

—4— Cleuseau TEXT

|]
AN OVERVIEW OF
CLEUSEAU ENHANCEMENTS TO MICROSOFT TEXT

Filing (Model 100/200 only) . '
Save.....(Model 100/200 only) Prompts for confirmation when
saving null files. This helps protect disk files when
Save is entered by mistake. :
CIRL_V...(Model 100/200 only) Compare the file with a saved
file. ‘Cursor advances to the first non-matching char.

Mode Sett:l.ng
CIRL_J...Toggle Cleuseau TEXT on/off
CIRL O...Overwrite mode.

CIRL G...Go to the next line following the next carriage return.

Character Editing
. CIRL P...Insert a control character. (New for the Nec 8201A)

Searching and Replacing

Ffnd.....Fixed the MS TEXT search bug. Also, allows
CTRL_P CTRL_<char> in the search string.

Bfnd.....Search backwards to the previous occurrence of a
string. Allows the search for control chars, like Ffnd.

CIRL N...Search for the next occurrence of the search string.

CIRL_S...Replace and search. If the cursor is at the search
string, replace it with the replacement string. Search
for the next occurrence of the search string. Allows
control characters in either strings. '

CTRL _Y...Repeat replace and search with current strings.

Selecting and
Copy.....Allows selection of text AFTER the command.
Cut......Allows selection of text AFTER the command.
CTRL_E...Append to the paste buffer. Copy text from the file and
' add it to the end of the paste buffer.
CIRL L...Convert text to lowercase.
CTRL U...Convert text to uppercase.

Miscellaneous

ESC......Repeat comand. Any character, digit or symbol key may
be repeated using ESC. Also, TEXT functions Ffnd, Bfnd,
PASTE, BKSP, DEL, TAB, ENTER, CTRL D, CTRL G, CTRL N,
CIRL_P, CIRL S, CTRL Y, arrow keys ¢ and SHIFT arrow keys
may e repeated

CIRL @...Displays the current cursor location.

CIRL_D...Displays the number of bytes, number of words and
number of lines between the top of the file and the
cursor.

CTRL_X...HELP text for all Cleuseau TEXT commands.

L

Cleuseau TEXT =5~

Command Key Descriptions

All command keys used by Cleuseau are described here. Many
keys are used the same as defined in the Model 100 User's
Manual (pages 43-60), the Tandy 200 Owner's Manual

(Chapters 2,3) and the NEC PC-8201A User's Guide (Chapter

7). Page references are given for those keys. Cleuseau alters
the function of some keys. Those keys are described in detail.

After some descriptions aréidna‘ﬁﬁ:mog§ examp1es,of appropriate
commands. If a command requires more than one ‘keystroke,
Cleuseau will prompt for an appropriate response.

Experiment with Cleuseau's commands. Most are easy to
understand when you see them in action. ‘

3

Filing

Load(Model 100/200 only) Same as MS TEXT (M100 pg 43,
T200 pg 11). Load file from CAS:, COM:, MDM:, 0:, or
1:. Prompts for the file to be loaded.

Save(Model 100/200 only) Same as MS TEXT -(M100 pg 43,
T200 pg 10) except null files require confirmation
before being saved. (This prevents accidentally
saving a null file on DISK when loading was intended.
‘The keys are next to each other.) Save file to
CAS:, COM:, MDM:, 0:, or 1l:. Prompts for the file
to be saved. ‘ : e : .

CIRL V(Model 100/200 only) Compare the file with one that
s ‘has been saved, to Verify that it is the same.
Cursor is advanced from the top of the file to the
first non-matching ¢haracter. Very useful for
verifying a sdve’to cassette tape. Verify file with
CAS:, COM:, MDM:, O:, or 1:. : ’

-6- . ' Cleuseau TEXT

Mode Setting

LABEL/Xeys ..When Cleuseau is not enabled (see CIRL_J), the
functions of the eight keys are shown, as MS
uses them. ' When Cleuseau is enabled, the functions.
of the eight keys are shown, as Cleuseau uses them.

LABEL (Model 100/200) \
Ffnd Load Save Bfnd Copy Cut Sel Menu
Fl F2° F3 F4 F5 F6 F7 F8

Keys (HEC 8201A)
Ffod Next Sel Cut Copy Bfnd Keys Menu
FL F2 F3 F4 F> F6 F7 FI10

CIRL JToggle switch. Turn off all Cleusesu IEXT coﬁmands
leaving the computer with only its original 'MS TEXT
commands, or restore Cleuseau TEXT commands.

CIRL OToggle between INSERT and OVERWRITE modes. MS TEXT
has only INSERT mode. In OVERWRITE mode:

Non~control chars (normal text) overwrite the
current cursor and advance the cursor.

Control chars and carriage returns are
still inserted.

Ends of lines are stretched.

BESP blanks out previous char if it is a non-
control char and moves back one space, leaving
a blank space.

BKSP deletes control chars.and carriage returns.

DEL deletes the char under the cursor in both
INSERT and OVERWRITE modes, leaving no blank. .
Same as MS TEXT (M100 pg 7, T200 pg 8 NEC pg 7-10).

Paste buffer is always inserted. : »

! A message showing the mode is printed when the mode

is changed.
Moving A _
«, >, A, % . . .Same as MS TEXT (M10O pg 45, T200 pg 12, NEC -
') pg 7-9). .
SEFT e, >, 4, ¥ ..Same as MS TEXT (M100 pg 45, T200 pg 14,
NEC P8 7-9).

CIRLe , >, 4

» ¥_ ..Same as MS TEXT (M100 pg 45, T200 pg 14,
NEC pg 7-9).

CTRL GGo to the next line after the next carriage return.

Cleuseau TEXT

Character Editing

BESPSame as MS TEXT (M100 pg 7, T200 pg 8, NEC pg 7-10)
except in overwrite mode (see CTRL 0). Erase char
to the left of the cursor. Same as CIRL H.

DEL(SHIFT_BKSP) Same as MS TEXT (M100 pg 7, T200 pg 9,
NEC pg 7-10). Delete char under cursor.

ENTERSame as MS TEXT (M100 pg 7, T200 pg 8, NEC pg 7-28).
Insert a carriage return and a line feed. Same as
CTRL_M. '

TABSame as MS TEXT. Move cursor to next tab position
by inserting a TAB character. Same as CTRL_I.

CIRL PSame as MS TEXT (M100 pg 60, T200 not docu@ented but
it works, new for the NEC)., Insert a control char
into the file. :

CTRL P CIRL L

Insert a form feed printer command into the
file.

J

-8~ . Cleuseau TEXT

Searching and Replacing

FfndSearch forwards. Prompts for a search string.
(Defaults to the last search string used.) Advances
to the next occurrence of the search string. Search
starts at the char following the cursor. (Cleuseau.
fixes the MicroSoft bug that causes a string to be
"not found" if the string is preceded with a
duplicate of the first character. For example: "ok"
would be missed in the word "book™.). Control chars
may be searched for,

Ffnd C H BE E R S ENTER
Searches for the next occurrence of "CHEERS".

Ffnd CTRL P CTRL L ENTER

»

Searches for the next occurrence of a form-feed.

Note: * appears as “* to distinguish it from “char,
which is a control character.

BfndLike Ffnd, except the search proceeds backwards from
the cursor to the beginning of the file. Search
starts at the char preceding the cursor. Prompts
for a search string. Control chars may be searched
for. (See Ffnd.)

CTRL N'.....Search for the Next occurrence of the search string.
Search in the same direction as the most recent Ffnd
~or Bfnd command. (NEC 8201A: same as Next.)

CIRL SReplace and Search. Prompts for a search string.

(Defaults to the last search string used.) Prompts

" for a replacement string. (Defaults to the last
replacement string used.) If search string is found
at the current cursor position then it is replaced
with the replacement string. In any case, this
command searches forwards for the next occurrence of
the search string. (Same as PAUSE).

Use CTRL Y to repeat the same replace and search’
again without having to retype the strings.

Use CIRL N to repeat the same search but without
replacing that particular occurrence of the search
string. (See CIRL Y and CIRL N.)

CIRL YRepeat the replace and search (see CTRL_S) with the
current search and replacement strings.

Cleuseau TEXT

Selecting and Pasting

SelSame as MS TEXT (M100 pg 44, T200 pg 15, NEC
‘ pg 7-18). Set select marker at cursor position. To
— select text, this must be ‘followed by one or more
> move commands, not necessarily the cursor arrows.

Sel SHIFT + SHIFT >
Selects the next two*words as those to be used.

- Sel is used with command keys Copy, Cut, CIRL E,
: CIRL_L, and CI!L . U

— ' CopySame as MS TEXT (M100 pg 44, T200 pg 16, NEC

‘ pg 7-22). Copy selection into paste buffer. erasing
whatever was previously there. This does not remove
the selection from the file. See "Advanced Usage"
for special Copy Cleuseau commands.

- CuatSame as MS TEXT (M10O pg 44, T200 pg 15, NEC
— pg 7-20). Cut selection into paste buffer, erasing
whatever was previously there. This removes the
selection from the file. See "Advanced Usage" for
special Cut Cleuseau commands.

CIRL BAppend to the paste buffer. Same as Copy except
‘ the selected chars are added to the End of the paste
- buffer instead of replacing the contents of the
' paste buffer. See. "Advanced Usage" for special
CTRL_E commands.

CTRL LChange the selected chars to Lowercase. See
. "Advanced Usage for special CTRL L commands.

- ' CIRL UChange the selected chars to Uppercase. -
- See Advanced Usage for special CIRL U commands.
- | Sel CTRL_> CTRL U

Select the line to the right of the cursor and
capitalize it. o

PASTESame as MS TEXT (M100 pg 4& T200 pg 16 NEC
pg 7-26). Insert a copy of the paste buffer at the
— cursor position.

-10- | Cleuseau TEXT

' Miscellaneous

BRFAK/STOP . . (SHIFT_PAUSE) Same as MS TEXT (M100 pg 44,

T200 p§—12, NEC pg 3-6). Abort any operation. This key will.

terminate ESC repeat commands.
jgg; eesessssRepeat function. See Cleuseau Advanced Usage.
| ESC 8 ENMDR SHDT >
Move eight words forwards.
Sel ESC 1 O Elﬁﬂl -+ CIRL U
Capitalize next ten characters.

MenuSame as MS TEXT (HIOO P8 44 'T200 pg 9, NEC P8 7-25).
Return to the mein Menu or BASIC.

PRINT(Model 100/200 only) Same aa_MS TEXT (M100 pg 44,
T200‘pg 6). Print streen contents on. the printer.

SHIFT PRINT ..(Model 100/200 only) Same as MS TEXT (Mi00 pg 44,
T200 pg 9). Print entire text file on the printer.

CIRL @Display the curreat cursor position.
. (Row #, Column #)

CIRL DDisplay the file status. Print a message showing
_the number of bytes, number of words, and number of
lines (carriage returns) between the top of the
file and the cursor. (Note: When EDITing a BASIC
program, this command displays the number of
bytes in the ASCII form.)

 CTRL X ees« HELP. Quick reference to all of the command keys.

CIRLX CIRLX -

Whole screen shows a list of all command
keys and description of each, To return to
editing, hit any key except ENTER. :

'CTRLX CTRLG ' v
Bottom line of screen shows a'description'bf
the key requested, in this case:

"CTRL_G go to next line".

The use of ALL command keys is described here and
in the printed Quick Reference.

:

Cleuseau TEXT , -11-

These command keys are duplicates of others. They are features
of the Model 100, Tandy 200 and NEC 8201A software and are not
covered in depth here.

CIRL ASame as SHIFT =, Move cursor to the beginning of
the word to the left. MS TEXT (M100 pg 60, T200 pg 54, NEC pg
7-9). :

CIRL BSame as SHIFT_V¥. Move cursor to the Bottom of the
display in ;he curreat colunn. MS TEXT (M100 pg 60,
- T200 pg 54, NEG pg 7-9).

é _

wese.Same as BREAK/STOP. Cancel any command. MS TEXT
(M100 pg 60, T200 pg 54, NEC pg 3-6).

CIRL FSame as SHIFT_+. Move cursor to the beginning of
the next word. MS TEXT (M100 pg 60, T200 pg 5S4,
NEC pg 7-9). , .

CIRL HSame as BKSP., MS TEXT (M100 pg60 T200 pg 54,
NEC pg 7-9). _

CIRL ISame as TAB. MS TEXT (M100 pg 60, T200 pg 54,

NEC pg 7-9).

?

«++..Not available to the user,

cesesSame as ENTER. MS TEXT (M100 pg 60, T200 pg 54,
NEC pg 7-28).

eessosSame as C.TRI.___‘ + Move cursor to the left end of the
current line. MS TEXT (MlOO pg 60, T200 pg 54,
NEC pg 7-9). .

:

secsosSame as CTRL_'D; Move cursor to the Right end of
the current line. MS TEXT (M1Q0 pg 60, T200 pg 54,
NEC pg 7-9).

eseese.Same as S!!IFT' A, Mbve cursor to. the Top of the
' display in the current column. MS TEXT (M100 pg 60,
T200 pg 54, NEC pg 7-9).

?

escs.Same as CTRL_4A. Move cursor to the beginning of
the file. MS TEXT (M100-pg 60, T200 pg 54,
"~ NEC pg 7-9).

CIRL ZSame as CIRL +. Move cursor to the end of the
. file. MS TEXT (M100 pg 60, T200 pg 54,
NEC pg 7-9).

12- © Cleuseau TEHT

Advaiiced ;a—!!-»-ér TEOD LRI L SR e e i
Feptno ot REL @t e i TR e AEYL e RESIRE IR SN

s RIUTC

This section explai:ns special combinations of command keys.
The Advanced Usasg is 1,n;ended for the specd and convenience of
t.he user.. . . R T -

Post Selectiou ef ';:ext- .

Cleuseau alIows an alte
and CIRL U.

before one

or ESC n ENTER _
Some commands are NOI‘ repeatabl .yl thg,m n syntax,
including -Copy: Ci e

commands BSC may préée&'.

imsediately precedes a command t]
message aborted" w:lll appeﬁv m*

mdw a aingle <move> key
"the rangé. 6f chars. SR

Copy TITTTY Copy <luve>

| chars the cursor gas
- Same as Sel <move> C

‘all chars the curdor has moved past:”’
SameasSelBCnM(mve)OoP’-

ok

<<<<<

mt-‘. m m)

. Move as directed. _Cut, to tpe paste buffer all chars .

t:ﬁe cursai:‘ uéveil past. Sm ‘as Sel <-ove> Cét.

) Cul: EC n m'm m -
Repeat ‘the move & times. “Cut’ to. the pasr.g buffer

all chars the cursor has ‘moved past. -
Same as Sel &nm <lovo) W

[T PR

B

Cleuseau TEXT 13-

CIRLE CTRLE <move>
" Move as Jirected"*:ﬁﬁpx"thp chars the cursor has'
moved ‘past ‘and ‘ddd them to the end of whatever is’

in the paste buffer.
o Same as S&I <invé> CTRL] E

SRepeat«Eﬁe; ﬁﬁe chars the cursor
has moved past an
s 1g4in’ the' pastes’

- Sane a3 Sel L E5C o BT

CIRL L CTRL L. <-ove> .

73 Fig »-y
Move as directeda
haa aoved p&&t. }

CTIL L ESC "
Repeat the move & Tiﬂ, Lowercase #11 chars the
cursor has moved past. - - .
‘ Same ‘as Sel ESC n EITE!, move> CTRI, L. -

- ' Move as directed.
cursor has moved past.

lize 311 ‘chars the.
‘Same "as Sel <move> CTRL . U.

CTRL U ESC n ENTER cmoved |
““Repeat ‘the move a- times. “Capitalize all ‘chars the

cursor has moved past. - -
Same as Sel ESC n ENTER <move> CIRL U.

~14- : Cleuseau TEXT

ESC-Repeat Function:

An example of propgr use of the ESC key in each instance is
followed by a descripnion of the command resnlts.

Note: ESC R ENTER can be used: to make the next comnand repeat,
an indefinite number of times. This is most useful when used
with search commands: thd Bfnd CTRL . N, CTIL S, CTRL . Y. For
example:

ESC R Ellal' CIIL S <ltriat> ENTER <str1ng> ENTER
Replaces all occurraaces of the firat <str1ng> with

> the second <strimg>. (Starting at the cursor and
moving in the direction of the previous search.)

Ffnd ESC n ENTER Ffad <string> mm o
Finds the ath string, searchins forwarda from the
cursor. If less than a strings are found, the
cursor will not move and a message shows how many
occurrences of the string were found.

ESCn ENTER.Pfhd CI!L P CI!L Z ERTER

Moves forward m. bytes. (This is a useful artifact)

Bfnd BSC n ENTRR Bend <atr1-g>' ENTRR

thctions the same as. thd except the search
pxoceeds backwards from the cursor. :

PASTE ESC n ENTER PASTE

At the current curser position. insert n copies
of the paste buffer.,‘, .

.M'.I.... m n m m
Same as typing EﬁTEl, n times.

TAB ESC n ENTER TAB
Same as typing TAB, n times,

Cleuseau TEXT -15-

BESP ESC n ENTER BKSP
Same as typing BKSP, n times.

char) BSC n ENTER <char>
'Same as typing <hhﬁr>, n times.

<char)> refers to a single chnracter. digit, symbol
or graph char. Usage for ‘control chars, function
keys, command keys or cursor keys is described

" elsewhere.

<move> ESC n ENTER <m)

Same as typing <move)>, n tines.
Valid <move) keys' e

CIRL P ESC n ENTER CIRL, P <CTRL, char>
Inserts n control chars <CTRL char) into the file.

CIRL S ESC n ENTRR cm,__s«u-:np m <string> ENTER

Replaces the ‘'search string (first <string>) with the
replacement string (second <string>). 1If the cursor -
is at a search string, the next m occurrences are
replaced. Otherwise, the next m-1 occurrences are
replaced.

If fewer than n (or n-1) are found, a message

will show how many are found and replach '
Otherwise, the cursor advances to the next occurrence
that is not: replaced. ,

CIRL Y ESC n ENTER CIRLY .

Replaces the current search string with the current
replacement string, n times. (See CIRL_S)

-16-

. CLEUSEAU TEXT

_ Cleuseau TEXT -

. FILING (Mode 100/200 only)

Load Load from file

Save Save to file
CTRLV......... Verify file with saved file
MODE SETTING

LABEU/Keys Toggle label tine on/off -
CTRLY......... Toggle Cleuseau. TEXT on/off

CTRLO Toggle INSERT/OVERWRITE

CHARACTER EDITING

BKSP Delete char left of cursor CTRL H

DEL............ Delete: char under cursor

ENTER Insert CR and line feed

TAB............ Insert tab to column 1,9,17,..CTRL |

CTRLP......... Insent control character

MISCELLANEOUS

BREAK/STOP ... Cancel any command

ESC........... . n times, repeat command
Menu........... MENU or BASIC (exit TEXT)

PRINT.......... Print screen on printer

SHIFT PRINT ... Print file on printer

CTRL® Display cursor location

CTRLD....... .. Display number of bytes/wordsl/lines

CTRLX......... HELP (CTRL X CTRL X for all)

" MODEL 100/200 FUNCTION KEYS

Find Load Save Bfnd Gopy Cut Sel Menu
Fl F2 F3 F4 F5 F6 F7 F8

N

-—

Cleuseau TEXT

CLEUSEAU TEXT

MOVING
- Move left one char .
SHIFTe Move to start of word (left) CTRL A
CTRL® Move to end of line (lef) CTRL Q
- Move right one char)
SHIFT=» Move to start of word (right) CTRL F
CTRL=> Move to end of line (right) CTRL R
Ao Move up one line
SHIFTA........ Move to top of screen CTRL T
CTRLA Move to top of file CTRL W
Vo Move down one line
SHIFTY Move 1o bottom of screen CTRL B
CfRLY......... Move to end of file CTRL Z
CTRLG Co to the next line

SEARCHING AND REPLACING

Find Search forwards

Bfnd Search backwards
CTRLN Search for next string
CTRLS......... Replace and search (PAUSE)

CTRLY......... Repeat replace and search -

SELECTING AND PASTING

Sel............. Set select marker at cursor .
Copy ..ot Copy selection to paste buffer
Cut Cut selection to paste buffer
CTRLE......... Append selection to paste buffer
CTRLL......... Lowercase selection
CTRLU......... Uppercase selection

PASTE Insert copy of paste buffer

NEC 8201A FUNCTION KEYS

Find Neéxt Sel Cut Copy Bfnd Keys Menu
F1 F2 F3 F4 FS Fé F7 . F10

-17-

Dbl ol L MG

LA R A

do Lo bl kil T s A LA A+ o o AN Lol
-

. Cleuseau helps you atte‘fﬂ

.....

Cleuseau BASIC Inspector | - -19-

AN OVERVIEW OF
CLEUSEAU BASIC INSPECTOR

Basic programming is sometimes’ more exasperating than it should
be. Programs race to their uit: r‘demi: "all Do

statement on the line’ it

reasonable and strategie%manﬁe;g A ﬁrog:am'written with the aid
of Cleuseau does not need Cleuseau* isfﬁled in order to run.,

You can set stop points anwaj ggprogram., It's .like
inserting a STOP command, exc qu won't clear the
variables. Also, you can set oints anywhere. When a
print point is encountered, the line number and the =~
GOSUB/RETURN stack is printed. This ky you can see where your
program was before it encountered an e The print log can
be directed to the printer, toaavfile or ta any other output
device. B

Ty ;ﬁerfn?”BASIC editing commands.
It can delete, renumber, move or cepy;lines, and can also delete
REH'statements and comments,’tg@¢E;;

ogether. These commands allow
you to keep*you:.BASi@;pregfegﬁgngggiffi and easy to read. When
the time comes you*méifmekefféggj@?Q:;f::small and fast, you can

=20~ Cleuseau BASIC Inspector

Command Descriptions

These Cleuseau commands are used to manipulate, analyze and
debug a BASIC program. All commands (except CIRL U, CTRL X and
ESC) begin with a . (dot). They can be entered only from the _
BASIC immediate command (direct) mode (Model 100 User's Manual
page 99, Tandy 200 BASIC Reference Guide, NEC 8201A N82-BASIC
Referencé Manual page 1-4). Portions of some commands.are
optional, depending on the use of the command, and are
designated by [] square brackets.

Some commands require confirmation. For this, the computer will
ask, "Sure?". Only a response of "Y" or "y" will be recognized.
Any other key will abort the command.

Most commands operate on a range of lines. Parts of the range
or the complete range specification may be omitted.. The range
will then use default values.

<range>={<num a>][-[<uum B>]]
If num a is omitted, O is used.

If num b is omitted, the last line number in the
program is used.
{range>= &0only line a is used.
<{range>= a- ,....line a to the end is used.

~ <range>= bonly line b is used.

. {range>= -bbeginning to line b is used.

{ranged>= a~bline a to line b is used.
This is the same syntax as BASIC (M100 pg 152,

_.Tandy 200 pg 40, NEC pg 4-77).

Some commands allow an optional match string and only operate on
lines in the <{range> that contain the specified <string).

<range>[=<string>]
If [=<string>] is omitted, it operates on
all lines in the range. Tho forms of <string>
can be used. '<string> will match string and
REM text while <strimg> (no quote) will match
BASIC tokens and variable names.

CTRL X..........HELP List all of the BASIC INSPECTOR Commands.
(Use CTRL U to delete all pending command input.)

ESC.cceceeveeesEntering ESC automatically enters the next line
number during programming. The next line number is
.the current line number plus the STEP value, set
y .STEP <num>.

CIRL U..........Delete the current input line.

Cleuseau BASIC Inspector | -21-

Edit Commands:

These commands clear the Basic variables, just like editing
a line would. . » -MOVE, .COPY, .MIN, .DELCOM, .SQUASH,
.PACK, and .EXPAND, all update GOTOs, GOSUBs and other line
referencing statements. to match the new line numbers. .KILL
does not change any line numbers. If a KILLed line is later
referenced, an undefined line error will occur.

The .RENUM, .MOVE and .COPY commands print the message
"MAXLINE=n" where n is the largest new line number allowed by
the operation. The command will not be done if any new line
number exceeds this maximum. :

-RENUM <range> [TO <num>] [STEP <num>]...Renumber the range.
All references to the renumbered lines;are also
renumbered. If .RENUM is directed to create
numbering that overlaps with current numbering,
an error message is printed.

New line numbers start at the TO <num).
Increment line numbers by the STEP <num>. If
TO <num> is omitted, then the starting line
defaults to the first line in the range
specification. If STEP <num> is omitted

then the current auto line STEP value is used
(See .STEP). = :

A line starting with a REM retains its line
number; subsequent lines renumber from it.
(Lines starting with a ' style REM are
renumbered.) Use .MOVE if the REM lines are to
be renumbered too.
If STEP <num> is zero, each line is offset by

-. the difference between the TO <num> and the
first line number in the range specification.

+RENUM will not rearrange the line order. Use
.MOVE to do that. ‘

Example: .RENUM 100- TO 1000
Renumber the lines that are now :
numbered 100 and higher. Start the
renumbering with the number 1000.
Increment the line numbers by the
current auto line STEP value.

Fxample: .RENUM
Renumber the entire program. New
line numbers start at zero and

increment by the current auto line
STEP value.

-22- Cleuseau BASIC Inspector

-MOVE <range> [TO <nul>] [STEP <num>]...Move a range of lines.
This command will renumber the lines as they
are moved. If lines are moved to an area that
already has lines, an error message is printed.
Groups of lines can be resequenced with this
command. REM lines are always renumbered. See
+RENUM for TO <num> and STEP <nmm> defaults.

Example: .MOVE 30-450 TO 10000 .STEP 10
Move lines 30 through 450 to 10000 and
up. Lines 451 through 9999 remain
where they are. This is useful for
making code into a subroutine.

Example: .MOVE 1000-1999 TO 10000 STEP O

Shift lines 1000 through 1999 to 10000
and up by adding 9000 to each line
number.

Example: 10 I=0
: 20 I=I+1:GOSUB 200: GOSUB 100
30 IF I<9 THEN 20
40 END
100 PRINT I
110 RETURN
200 PRINT "I=";
210 RETURN

.MOVE 100-110 TO 300

10 I=0

20 I=I+1:GOSUB 200: GOSUB 300
30 IF I<9 THEN 20

40 END

200 PRINT "Ia=";

210 RETURN

300 PRINT I

310 RETURN

RN

Cleussau” BASEC Inspector

1If lines are Gopisd te
_ by lines, an error !

ad

",Cap} a tnnge of
ther section of |
Be and line number”

! Qied 1ines are changed

=24~ _ Cleuseau BASIC Inspector

When your program is complete, use .MIN to compress it to its
smallest volume. It will then use a MINimal amount of memory,
saving those precious bytes for other things.

NOTE: Make sure you ‘are finished with the program, or keep an
uncompressed backup of it for future modifications. It will be
very hard to read or change, after it is compressed. :

If you require extra space during programming, use either

-DELCOM, .SQUASH, or_ .PME! on a range of lines to recapture
"lost" space. .

MIN [<aum}>]....Compress a program to its smallest size.
Command requires confirmation. See .PACK for
definition of <num>. This command is the same
as the command sequence:

- DELCOM
PACK [LEN <num>]
.RENUM TO 1 STEP 1

¥

 Note: If the ptongﬁ has been previously packed
it may pack better if it is EXPANDed before
MINimizing it.

« DELCOM <range>...De1ete a11 commenta in the range. Command
requires confirmation.: You may want to save a
backup of your progran containing comments.

A line starting with REM or ' (quote) is deleted.
GOTOs, GOSUBs .and other line referencing

statements to this line are redirected to the
following line.. A REM or ' (quote) NOT at the
beginning of a line is removed and the line is
retained. The last line in the range is NEVER
deleted. Comments on GOSUBs and GOTOs are also
deleted.

Example:. 10 REM sample prog
20 GOSUB 100 DO IT
30 END:REM done
100 'subroutine-do it
110 RETURN 'That's it

+DELOOM
Sure? Y

20 GOSUB 110
30 END
‘110 RETURN

Cleuseau BASIC'Inspéctbf’ ~25- |

e ‘ .SQUASH <range)...Remove blanks, unnecessary end quotes on
.string constants (M100 pg 104, T200 pg 4,
'NEC pg 3-12) and unnecessary semi-colons in
— print statements. Command requires confirmation.
You may want to save a backup of your program
before using e, Contents of string
constants, REM statements and 'DATA statements
are not changed.

Example: 10 PRINT "Hi there."

— A 20 FOR Ial T0 4: PRINT "Ia"; T:NEXT
- | % T E
_ | o SQB!SK |
Sure? r |
' 10 PRINT"Hi there.
- 20, FORI-1T04 PRINT"I="1:NEXT
. 30 END

.PACK <range> [LEN <num>]...Pack as much on each program line as
is possible. Saves 3 or 4 bytes for each line
packed. Command requires confirmation. The
LEN <num> sets the maximum amount to pack on
each program line.” If omitted, 255 is used.

‘ The line numbers of all lines initially longer

' than <num> are listed. (The minimum pack

‘ LENgth is 10 and the maximum is 255.)

The length of the Iine s number is always five.

This means that 1lines with shorter line ‘numbers

may not pack fully.‘ -

: The line ‘following a liﬁe containing a REH
- '(quote) or IF statement will not be packed onto-
the end of the previous line. TARGET LINES of
GOTOs, GOSUBs and other line referencing ‘
statements are not packed onto the previous line.

Example: 10 CLEAR program
: : 20 CLS
- : , 30 X=1 -
- . 40 X=X*2
- ‘ : .50 PRINT "Hello
— ’ 60 PRINT X
-~ 70 IF X<100 THEN 40
80 END _

" «PACK
Sure? Y

— (continued next page)

R WA = BT W TR

-26- S Cleuseau BASIC Inspector

'program
a1’ B

T TERr
TEgR T .

PRINT "ﬂello zPRINT X:IF X<100 THEN 40

" Notg:“1F the pi 'f; rcviously packed
. %xég?%;naﬁk begtgffif it is Exglﬁbed before
) g it. R

ment lines onto multiple
: sible. Command requires
~ It may be necessary to RENUMber
before EXPANDing in erder to fully unpack a

Fbr iple, 1f you try to EXPAND line

',f;f‘”y a line 13, line 12 has
epd remains PACKed. -

¥

] TO 10:X=X+I*I:NEXT

-KILL <range)...Delete ALL lines:in the range 'nus command -
rmat’ galIEL'will NOT renumber
references to the killed Iines. If killed lines
.are. later. rcferenced to. an. error message is

pmtﬁvy_‘~ SN

4“(0n£yéneline remains))

JE N VOGP S

Cleuseau BASIC Inspector 27—

Debugging Commands:

These commands do NOT clear.BASIC variables. They are allowed
~only in immediate command (direct) mode (M100 pg 99, T200 pg 1,
NEC pg 1-4).

Use the following sample program to help you understand how
.ST0P, .PRINT, .CONT, and .OFF operate, (DATA lines are
unaffected by these commands.):

5 T=0 :

10 FOR I=1 TO 8

11 READ X

15 T=T+X*I

20 NEXT

30 PRINT T

50 DATA 1,2,3,4,5,6,7,8

+PRINT 15-
.STOP 10
LIST

5 T=0

10 |FOR I=1 TO 8

11 READ X

15 _T=T+X*I

20 _NEXT

30 _PRINT T

50 DATA 1,2,3,4,5,6,7,8

.CONT 20-40
.OFF 15
LIST

5 T=0 .
10 |FOR I=1 TO

11 READ X

15 T=T+X*I

20 "NEXT

30 "PRINT T

50 DATA 1,2,3,4,5,6,7,8

.STOP ~1lm= _
.PRINTREAD
LIST

5 |T=0

10 |FOR I=1 TO 8

11 _READ X .

15 T=T+X*I

20 _NEXT

30 TPRINT T

50 DATA 1,2,3,4,5,6,7,8

-28~ : S Cleuseau BASIC Inspector

In the following debugging commands, <{range)> may be specified.
If <range> is not specified, the entire range is affected. If
=(string> is specified, only lines in the range containing the
<string> will be affected.

When a program contains print, stop or continue points it can
not be run from the main menu. You must use the BASIC RUN
command. Attempting to run the program from the main menu will .
cause a ?SN error when the first "point™ is reached.

The .STOP, .PRINT and .CONT commands will not insert a point if
the line would exceed 255 chars in length. The line number will
be printed whenever a "point" is not inserted for this reason.

«STOP <range>[=<string>]...Insert stop points. These cause
the program to stop, as if a STOP statement were
encountered, and then print the line. 'The
program can be resumed with the CONT command.

Stop points will replace print points and
continue points. Only one stop, print or
continue point is allowed at the beginning of
any line. Remove stop points by replacing them
with print points or continue points, or by using
OFF. Stop points show up as a vertical bar |

« STOP=Xw= ...Stops before every assignment of X.

PRINT <range>[-<string>]...Insert print points. When
encountered, these print:the line number and the
stack. Data is printed on the
screen if the .LOG file number is zero, or the
file isn't open for input. Data is printed on
the printer if .LLOG was called.

.LOG Print log to the screen. -

.LOG <num> 'Print log to the file number <num>.
.LLOG Print log to the printer. i

Print points replace stop points and continue
points. Only one stop, print or continue point
is allowed on any line. Remove print points by
replacing them with stop points or continue
points, or use .OFF. Print points show up as an
underbar __,

Cleuseau BASIC Inspector 29—

+CONT <range>[=<string>]...Insert continue points. These do
not alter program execution. Continue points
are "invisible" points. These points show' up as
tildes (SHIFT _GRPH [) on the Model 100/200 and
as backslashes \ on the NEC 8201A. A continue
point can be quickly changed to a stop or print. .
point. It does not affect the program, it just
speeds up, ‘the changing of stop and print points.

Continue pointa replace stop points and print
points. ‘Only one stop, print or continue point
is allowed on any" 1ine; - They should not be
removed until debugging is completed. Then they
may be deleted using OFF, :

If the prograu being debugged uses the VARPTR
function, use .CONT for the full range, before
starting the program. This way the BASIC
variable area will not shift when changing stop
or print points.

.OFF <range>[-<string>]....Delete stop points, print points
- or continue points. -

LOG...ceeeeess.Send the print point log to the screen.

LOG [<nu->]....Set the print point log file number. If this

file is open for output (M100 pg 165,

" 'T200 Pg 47, NEC pg 4-98), the print point log

~ data will be- sent to this file. Otherwise, the
‘data will be sent to the screen. If <num) is

- omitted or is zero, the print points send data
to the screen. <num> is reset to zero each
time BASIC is exited.

JLLOG.....cc:...Send .the print point log to the printer.

AR e BT

. ~30- Cleuseau BASIC Inspector

Miscellangouq Comggds. et

These coménda Q,W!.' claar BASIC va;iab].es.» They are allowed
Only in BASIC q it Mgnw S }

I:J.st ‘all the files ‘with their
qizeq. " 'l'hg firat entry in the .BA section

‘ | ehows the ‘unsaved BASIC -

@ first entry in the .DO

: ;, "shows the paste

EMOOQQQOQOQQQIB th“,g SCRER

.m.........m the Pm 11“ 811 the files with their
S s:l.ms.~ (See .m.m

list. 311 lines in
. If {string>

g]w.,OE 4

’ the range tha; '

pripted wil “one statemerii:‘per”
line for easy read ng. -ELSE statements
are indented appx‘opmtely.

«LLIST (range>-[<8tr1ng>]...0n the PRINTER (See .LIST.)

Wil T

+STEP <nn>. g,..Se: the autof, ine mmber atep value. Defaults
, , o 10, initially vhen Cleuseau is installed in
... ~-the computer. It resets to 10 when Cleuseau is
‘ :wv«i from the computer or there is a cold
reﬂtarfm L S .

SLENT

(dot).........Print the next BASIC line to be executed and
.-show. the GOSUE N st L e

§ oL

s R e e g i

Cleuseau BASIC Inspector -31-

CLEUSEAU BASIC INSPECTOR

EDITING

.RENUM <range> [TO<num>¥STEP<num>]}................. Renumber range of lines

-MOVE <range>[TO <num> [STEP<num>} Ceeeaiale... Move the range of lines

.COPY <range>[TO<num>YSTEP<nuUmM>) Copy range of lines . ‘

MIN[<hum>] [P -+ -+ Minimize program size (< num> defaultsto 255 chars/line)
.DELCOM<range>0..cooiieiiniiininenann.. .. Delete comments in range

SQUASH < Iange >t Unnecessary blanks, end quotes and semi-colons removed
.PACK<range>[LEN<num>]cociviin.. Pack program (LEN <num > dejauits 1o 255 chars/line)
EXPANDIange s ...t Unpack program lines

KILL<range>o e Delete lines in range. (Doesn’t update line nos.)
DEBUGGING

STOP<range>f=<String>]...............ooovuvnnn .. Insert stop points

PRINT<range>[=<String>}ocouuueeenn oo, .. insert print points

CONT<range>[=<string>)c..ooueeioanin.. Insert continue points

OFF <range>[s<string>]............................. .. Delete stop, print or continue points

LOG[<nums) . Print point log file number

LOG ...l B Print point log to screen -

LLOG ... e e - Print point log to printer

MISCELLANEOUS

CTRLU, e Delete input line

CTRL XL HELP. BASIC inspector

S . . e e, . Next line number

FILES . Files & sizes (screen)

LRI ES .. Files & sizes (printer)
LiST<range>[=<string>]................................... Lines in range with <string> (screen)
[LLIST <range> [« <string>]....... S S e, Lines in range with <string > (printer)

STEP<nUm> F R A Set auto line num step

Jdoty ..., et e List next line 10 execute and GOSUB/RETURN stack

-32- : Appendix

APPENDIX .

How‘to Debug with Cleuseau

Making a program work can be a frustrating task. There are
several situations where BASIC provides little or no help.
For example:

1. If an error occurs in a subroutine, BASIC does not tell
you where the subroutine was called from. To rectify
"this you must put PRINT statements all over your program
to see what happened before the error.

2. If an érror occurs in one of several statements packed
onto one line, BASIC does not tell which "sub-line"
caused the error. To figure this out you have to.break
the packed line into individual lines and rerun your
program,

3. Sometimes a variable unexpectedly changes its value.
. Nothing short of searching the entire program with EDIT
will give you an idea as to what is wrong.
WITHOUT Cleuseau, debugging can be very time consuming and
unrewarding. .)

Cleuseau's .PRINT command helps you understand where your

program has been. When your program encounters a print point,
Cleuseau shows the current line number and the GOSUB/RETURN
stack, tracing your program's path. Program lines .containing
more than one statement will also show the sub-line position. To
add flexibility to the .PRINT command, .LOG and .LLOG control
where the printed information goes.

When a paéked line contains an error, Cleuseau's ; (dot) command
shows the current line number and the current sub-line where the
error occured.,

When a variable is changing unexpectedly, you can use .LISTwvarw
to see all the lines where var is assigned a new value. If that
isn't sufficient, you can use .STOP=var= and run the program.
Before assigning var, Cleuseau will stop your program and let

you investigate. You could use BASIC STOP statements at each var
agssignment, but the act of inserting them clears all BASIC -
variables, requiring you to restart the program. Cleuseau stop
points can be inserted or deleted at ANY time without losing BASIC
variables. ’ '

Print points and stop points serve complimentary purposes.

Print points provide confirmation of program flow without
disrupting the program. Stop points halt the program so that
you can analyze it more extensively. When stopped (either after
encountering a stop point or pressing the BREAK/STOP key) you
may set more stop points, print points or continue points. This
lets you adjust your debugging strategy as you go.

Cleuseau BASIC Inspector iy

CLEUSEAU BASIC INSPECTOR

EDITING

.RENUM <range> [TO<num=>|[STEP<num=>] Renumber range of lines

.MOVE <range>[TO <num> HSTER <pum>d.i - e ver oo) C Nove the range of lines

-COPY <range>[TO<num>JISTEP<num=>] Copy range of lines

MINfapum=]. s e e e Minimize program size (< num> defaultsto 255 chars/line)
DELCOM <range> 7. 0l 0T T a e Delete comments in range

SQUASH-<ranges o .o ot i D e Unnecessary blanks, end quotes and semi-colons removed
PACK<range=[LEN<num>] ...,..... .. i cadea ol Pack program (LEN <num > defaults to 255 chars/iine)
EXPAND <rangespr. s % ol e acinn Crnaiiiaie SRR R Unpack program lines

KILL <fangess: o, o ocien Dnm Sesann s S ee e Delete lines in range. {Doesn’t update iine nos.)
DEBUGGING

STOP<range>f-<string=]............ ... 4 S Insert stop points

PRINT <ranges{=<string=}............. Insert print points

CONT <rangesfw < string>]. s.. .5, oo waiiams s o Insert continue points

OFF <rangeS [sestring>] 7 T o E b aaa e e Deiete stop, print or continue points

LOG [numS ot a0 20 S SRR e Print point log file number

LOG ... FENER TR S Dl R Print point log to screen -

ELOG . . coglnsb ity S SRR SRR Gl S e R Print point log to printer

MISCELLANEOUS

CIRLAL o v e i e i T S A Delete input line

CTIRL Xemmnmel, L2001 & G @Eoanel] e yrs s a HELP. BASIC Inspector

ESC.. o v dani i Badiy Sy 00 i nint Next line number

FIEES. ..o L T e e e s Files & sizes (screen)

EFILES ... o vl vi i aes bng eiena e Files & sizes {printer)

LIST <fange>[=-estring>]. .. . L @i 0 La s ha i Lines in range with <string> (screen)

[LLIST <tfange>[=<string>]. V55 0. oy oo T ki Lines in range with <string> (printer)

STEP <nom> 1. .Sfiee. wey s Goar tos n ey Set auto line num step

JAdot) sseeseeiese. e o S e e B R e List next line to execute and GOSUB/RETURN stack

=32 . Appendix

APPENDIX

How to Debug with Cleuseau

Making a program work can be a frustrating task. There are
several situations where BASIC provides little or no help.
For example:

1. If an error occurs in a subroutine, BASIC does not tell
you where the subroutine was called from. To rectify
this you must put PRINT statements all over your program
to see what happened before the error.

2. If an error occurs in one of several statements packed
onto one line, BASIC does not tell which "sub-line"
caused the error. To figure this out you have to break
the packed line into individual lines and rerun your
program.

3. Sometimes a variable unexpectedly changes its value,
Nothing short of searching the entire program with EDIT
will give you an idea as to what is wrong.

WITHOUT Cleuseau, debugging can be very time consuming and
unrewarding.

Cleuseau's .PRINT command helps you understand where your

program has been. When your program encounters a print point,
Cleuseau shows the current line number and the GOSUB/RETURN
stack, tracing your program's path. Program lines .containing
more than one statement will also show the sub-line position. To
add flexibility to the .PRINT command, .LOG and .LLOG control
where the printed information goes.

When a packed line contains an error, Cleuseau's . (dot) command
shows the current line number and the current sub-line where the
error occured.

When a variable is changing unexpectedly, you can use .LIST=var=
to see all the lines where var is assigned a new value. If that
isn't sufficient, you can use .STOP=var= and run the program.
Before assigning var, Cleuseau will stop your program and let

you investigate. You could use BASIC STOP statements at each var
assignment, but the act of inserting them clears all BASIC
variables, requiring you to restart the program. Cleuseau stop
points can be inserted or deleted at ANY time without losing BASIC
variables. :

Print points and stop points serve complimentary purposes.

Print points provide confirmation of program flow without
disrupting the program. Stop points halt the program so that
you can analyze it more extensively. When stopped (either after
encountering a stop point or pressing the BREAK/STOP key) you
may set more stop points, print points or continue points. This
lets you adjust your debugging strategy as you go.

Appendix -33-
Debugging Strategy

1) Get Started

Set continue points on every line of your program. This is a
good way to get started debugging with Cleuseau. To do this,
type .CONT. Once you have inserted these, you can quickly
change them to stop or print points where needed.

2) Establish Program Flow

It is very important to understand what you want your program to
do, what you think it will do and what it really does. The
three may not be the same. To watch program flow, you could set
print points on the entire program and run it. That would
create a lot of output and may be useful in cases of extreme
need. But, setting print points on lines with GOSUBs might tell
as much, with less output. Type .PRINT=GOSUB to do that. When
subroutines are called you'll know where and in what order. To
further refine this scheme, use .PRINT=RETURN. Now when you run
the program, each subroutine will announce its start and end.

3) Capture Bugs

When there is a problem, you need to isolate it. Try to form a
hypothesis as to what is causing the failure. Then use stop
points when you have an idea of where the problem may be. Set a
stop point at the start of the suspect code by typing

+STOP <line number>. Run the program. When it stops at the
stop point, check to see if everything is correct. If it is,
immediately set a stop point farther into the suspect code and
continue the program by typing CONT. Eventually you can locate
the problem between two stop points. Zero in on the problem by
running the program again and stopping more frequently between
the two stop points that isolate the problem.

Sometimes things are already screwed up by the time you reach
the first stop point. Try to understand why your hypothesis is
wrong. Use information from the program variables to help
reformulate that hypothesis. Then set an earlier stop point and
_run your program again. :

4) THINK, THINK, AND THINK

Don't jump to conclusions. - Take your time. Cleuseau is a good
debugging tool, but YOU must still do the thinking and decision
making. "When things get very muddled, don't hesitate to change
all the stop points and print points back to continue points and
start over. A well thought out attack on a program error can
yield good, quick results. A sloppy attack will give
juestionable results and confuse the situation. Take time to
reconfirm that "good" code is working as it should. Failing to
heck "working" code is a common stumbling block. Almost
nothing is beyond suspicion.

~34~ Appendix

Useful Debugging Commands
.CONT =|...,....Change all stop points to continue points.
.CONT =Change all print points to continue points.

oSTOP =(Model 100/200)
.STOP =\........(NEC 8201A)
Change all continue points to stop p01nts.

.STOP 10000.....Stop before executing line 10000.

.STOP =OPEN.....Stop before opening any files.

.STOP =KTLL.....Stop before killing any files.

+STOP =I=.......3top before any assignment to variable.I.
+STOP =POKE.....Stop before poking memory.

PRINT =(Model 100/200)
PRINT =\.......(NEC 82014)
Change all continue points to print points.

-PRINT.....c....Get a complete log of program execution.
+PRINT -999.....Log program execution for lines 0 to 999.

+PRINT =CALL....(Model 100/200)
-PR.INT =EXEC. s (NEC 8201A)
Log all lines that call machine code routines.

.PRINT =FOR
«PRINT =NEXT......Log all lines that start or end a FOR loop.

-PRINT =GOSUB 10000....Log all lines that GOSUB 10000.

[] (square brackets)......20
\ (backslash).29

T Cetldadisn i it

_ Cunderbar)...ccssvanesin 8

® ‘Cuphat).uunns SRR AARS G g
(vertical bar)........ 98

ot AR ET R o
CONT, ..o Sl o 2 29 3
001 S e LRSS S R SR Sl RN
DEECOM:. 4 5n nisas s s ii s inag
ERPAND, R Lst it is s st ion
JIHLES LR sa s st ns ekl
L s s s i et 75
LFIEES 3% s e3s 0558 5% aag
LIST G sineivevinvesins oD
JLEEST v aassviotis. ot iaaiiag
B0 0, SN e
LOG .o ilidi et 2 ine09
MENc sttt s i 0k
MOVE s wansans 3 E Bt 22
¢OFF....;.. s 09
PACK v i v e 25
LRINT L siss it A998 98

RENUM.-..-.-.----..-...-- 21

SR e e
- STEP e %0 00000009080 0 30
STOP. . usasesesrns So27028030

<{char>..... R Ol
MmovedsEiir.aTERs s 1S
rangedi sttty e

[=<string>]......20,28,99
SSERimpdissyisisdniiiigieiog
'Csbring>iscrrii: R e)

<

© ® 8 8 8880000 0see 0

SHEFT e Sospinriolian s p
CIRE~wssosszitns i = B
SetissisEaisere N Sl
SHIFT »» gsss4 e S
CTRL s > 5545 554 3 Tt D
TN PR FesdsaR i 6
SHIFT : hessevvvvedviniar b
CERL s Meisoe vopnssnin Foeslh
R L L TP TN s
SHIET - %o o0 o 2088 SRS EES6
CIRL . ¥: o ui g v v st aiarsra it

CEeSliT

=yt

INDEX

ADDEEL Sttt is i ened D oile
Advanced’ Usagel iiii%iss s il
Appendiciiiias R cesvald
Arrow KeystiinisssiiAnisnalp
Auto line number step

valae .l il itiiat i i 30

Baclkstashe\ i i i 11 it 2299
Baekspace i Ll e]
Backwards, search.... .. i5 .8
BASIC:- Inspector......=19
Bind. o i 6 Sk
£ O O Sl R iy 0

SHIFT BKSP.---q-o--..--.?
BRRARSTOP, (o2 s i g
Bytes

il oo iNPC et o

on packed line.........25

Cap¥raligetexter iiz: sro5,79
Carrfage returnsiiisticcined
Case :
lower...................9
UBPer f i s s et vidtiins 9
Selae . o ittt i S
€haracter FEditingi:.. ;.57
Cleuseau
BASTC *Faspector: 2210
BASIC Inspector Quick
Reéference. ;100 31
I S S s et e e
TEXT Quick Reference...16
Command
CONT i o siviinion o wiiiinm 28
Descriptions
(BASIC Inspector)..20
Key Descriptions
(Cleuseau TEXT).....5
SolipAEe - S P e nd S s o e
Compress . Lr . so0 2 r) aie e 24
BN e e S 27,29 34
Continue p01nts............29

Control chars....ooten it s

Copy...................6 9,12
SCOPTEa i s s ra g B23

Count bytes, words, lines..l0 .

36—

CTRL * sevcivvsesescsvesesnedd
CIRL. ® veiivesssvinnscnsinesld
CTRL. A . ..cucicicivincnsasasd
CTRL. ¥ .ecvensisansni cersssesd
CIRL B.voeusnonespiteotsnsld
CIRL Auvesoosisimnssnesinschudld
CIBL Boooococainnnve meminsis sl
CIRL C.cvovorcovsovnsansesall
CIRL DevvvovsesvessescennaldO
CIRL Beeeieeteeenennsesaddiis
CIRL F.veeeeccecnneasameoasll
CTRL GoitaotennenenesosnsOaild
CIRL Heveveeostsonenenneel,ll
CTRL I......... cosssesenel,yll
CTRE=J:4n:::553233 Vs cenaanss .6
CIRLTK s ceoll
CEREBRAIt oLl it vue omseDyl3
CTRL M.......7,11
CTRL Nevvovus tesresncnans 8,13

CTRE. Re sie e n0.s s Saiiiths BRI
CTRL S-.. % o0 80tB,lS
CTRL T.uvnveneoins R e

CERE X.ooveenssnaniinrees 10,20
CIRL Y e veinecssonas PRRER G
CTREL Zee oo onninnsssses sl
Cursor
ATTOWSeeeeenns sisiSiaseie s 5 ¢ 50
PoSitioNeccecssncsessssll
Cuatecoeo o vns v scie sisge. v e PPyl 2

Debug
BASICI........l.....20,32
COMMANdS. csosssossassesls

with Cleuseau...ceeeese32
DEL e ® 9 9 0 00 0 e o0 00" ...l.-67

DELCOM. ¢ ivveeecnnnas v il
Delete.iesececasnss PR e g

COMMENtSeeeaanss el
lineS.eeereocenanes s a6
Descriptions

BASIC Inspector
commandSeeeccooessssl0
Cleuseau TEXT

command keyS.eeeses. 5
Dot (.) «ee... seesens s ey 30
DOWn ArroW...eeeeeesessennns 6

Duplicate command keys.....ll

Index

Edit CommandS...ceeecescess2l
Enable Cleuseau....ceve...3,6
ENTER e ievesccssoscaseseal,lb
Erase chari.casiseess oesinsiselsel

Error, Undefined line...... 21

ESCeucicovevansessnnsal0,14,20
OE-‘YPAL\IDOOO_Oooe.uonon uuuuu -026

El thrit F10: ... ciccevreseneesd
FEnd: i iieersesas vsesead; 8,14
File
list with size on
Printer..ieccssess.30
list with size on
SCreENescoessssssesdl
StatUScivsssoessssssesall
SETEES . o ecevessonoeesdasiandd

Filing. .oe.. Fid s nnsepesntinsD
Forwards, search.ceececsescss8
Function keys...... oo enitiszD

GOSUB/RETURN stacKkeeece....30

Hardware installation
Model 100..cceccccccoas 5
NEC 8201A......... .ee il
Tandy 200..... swsesus I |
HELP
Cleuseau TEXT..ceoeeess10
BASIC Inspector.ses.e..20

Insert mode..eeecccascansnsed
Installation
hardware, Model 100.....1
hardware, NEC 8201A.....2
hardware, Tandy 200.....1
SOftWArC.eeesecanssnnneel

Key, Command..seeessoessed,10
KEEL: oiiietinsns s ve v 0 rerainll)

EABEE i s nassennsnsusessad
et arroW.iieeeeesscesssseasd

LEN <numl>.esunsese R T VA

EBTLES oot v vsoncsontanses 30
Line feedivveoweeooo . o T ENR. T
Lines, number of..ccccvee .10
i 13 D0 L N cossesed0
LEEST ot i eenee s e v e lie30

Loadieeeveivecesses escssasesd,b
Log file number...... o deesia29
JOG e inn, v . TS i 29

[<num>Jeeeeeeeennnns ...29
Lowercase...... cessscesces s 9

Index

Meau. . ineivaososs caais vae DO
MicroSoft TEXT.va..bib
MIN s s S s 20
Mimdmize: , . oo s iianimn we o 2b
Miscellaneous
BASIC Inspector
commandS..ceeeeees.30
TEXT commandsS.....e0...10
Mode Settingi.vssesaciiisinh
InSertecceecenssvess b

Overwrite.ve. oo L
Move CommandsS..seceessssinssb
MOVE..... s e S 22
SMONED J s sais aiinie oo st sitens D
Moving.oeiceecasesisnns R St
Nextoeiichuneiitineessnes 0.8

line to program....... .20

line to be executed....30
Number of
bytes, words, lines....l0

0] D T O N IR
Overview

BASIC Inspector...ssee.l9 .

Enhancements to
MS - TEXT i vvaisdnsih
Overwrite mode..ceeseeeesn B

Pack program lineS...ceesss.25

3710 R RO 25
PASTE. cieessess cevereseasd, 14
Paste Buffer........sis e Y
PAUSE i veeenes “diviviee e e e oD

SHIET PAUSE: eive .10
PRINT o sedvnnsaiva iwewee sl
Print

contents of file.......1l0
contents of screen.....l0
point log file num.....29

POINLS, civiiivans ceeaees28
PRENT . v st il 27,728,345
Printer..-..‘-n.............10

list files on.,.. :5:.30

send print point log...29 .

QUICK REFERENCE
Cleuseau TEXT.......10,16
BASIC Inspectoreeesss...31
ISatring . aivis il cheeis 20

Range Specification........20

SEANEE> sy s emna 20

F=<sering> 20,28,29
REM dines....... 212224695
RENEIM. . .o ks e e et 2

RENUMDET ¢ s suvvvvssnonnns 2l 27
Repeat
EURCEION . cvivscase 0. 14

replace and search......8
SEAECh L oo vn e s i S
- Replace .and search...... Fu el

Regeqiience 1iN8S. ... covoeid?
Restore Cleuseau..ieeesee...6
REIOht ATTOW.ciescsvensansneed

STt SRR e B
Screen . '
print contents of.......6
print files of.citeess30
send print point log...29
Search
backwards..ivecessesvnsed
FOLWALrdS . eessnsoencniseed
NeXt s sie sesecrecsceansed
replace andsseeececacesed
Searching and Replacing.....8
Sy R RN TN PN .
Select Marker.veescoeesssess 9
Selecting and Pasting.....)
SHEET
. vionin el

I'..U.Bl.l.l'l.‘."'..6

>

*..-.....'-.............6

BRSSP vt dnssossnsien
“PAISE. iviaves Ve e eis amie e 10
DRI e s v erennninnas 10
SizZzes of Fileg.iveeeesinses 30
Software Installation.......3

- Square brackets []..... sio v 20

SOUASH: co0 0 L., o el o «25

Status of file. . veu.. o nie el
SStep valle .. verensonsss 30

STEP <num>iic.... doenehme s add
SSHHD i R TP o
SO0 oo seswanee 27,28,34
SHL 01
StOP POTTES cinovsveoss o
CSERIRgS . Loy tidinassvesiiell
LCSEPTHE L0, L veiasesenn e 20

=37=

-38-

TAB.I.I.I--..II.Il.l.l..‘7,14
Tab position.cicecditieee sl

Tilde ~I ® oo 000 00 OSRGOS .29
TO <num>. ® 90 0 0 ° 000 OO OO RO .21
Turn off Cleuseau TEXT......0

Undefined line error.cece..21
Underbar _cecececccescssseslB
Unpack TinesS.ceeierecsnnnecll
UD YT OW, o v ds s vove ossnisiaeid
Uphat 3o deadisoncoinseiine 18
Uppercase. civeicen: vesrinis s

Index

VARPIR functioN..ceseceeceso29
Verify.I.......IQIDS
Vertical bar Feseddds, 300508

Words, number 0f.ccoeccscesll

_ sk dedk. ok k gkk
i § L
g e

- i i - %****

. for
— the Hodel 100'1"I

the TANDY 200™

- or
: the NEC 8201a™M

User's Manual for ROM2 v5.1

Table of Contents Page

How to use this Manual ., « « ¢ ¢« &« 4 o + o 1

Overview . o v v ¢ v 4t 4 4o o 4 b o o v e e e e 2

_ Hardware Installation (Model 100/TANDY 200). . . . 3
Hardware Installation (NEC 8201A). . . . + « « « . &

Software Installation.

FILES command. « o « ¢« « o o « o o « o & « + 2 s+ b

- COPY command .+ o v ¢« o o o o o o « o 2 2 « « o o o 7
FEQ command (file equality). « « « ¢« ¢« ¢« « « o & . 8

CH command (change). « « + o « « - . A

_ RN command (renumber—Model 100/200 only). .« « .« .10
ASM, ASML, ASMN, and ASMLN commands (assemble) . .12

DBG command (debug). S ¥ 4

8085 Instruction Table . ¢ o 4 « « o o o o o « « 22

- Extended BASIC/Machine Code CALL command25
Accessing ROM2 RoutineS. « o« « ¢ o o ¢ o ¢ o » o 226

ROM2 Routines Specifications «29

Appendix A: Diagnostic Program . « « « « « » .« o .37

Appendix B: ASM Error Table. . + v v v & o & + . .38

_ Appendix C: Macros and Ifs . . « ¢« ¢« &+ . o « o . .40
Appendix D;: Example MAcros . . . +» « v o o « o o .41

Appendix E: ASM/DBG Label Table Format s e s o o 43

Appendix F: Example Break Handler.44

- Appendix G: Notation v ¢ o v . . .46
Appendix H: Command Syntax . . « . v« v v ¢« + . o 47

Appendix I: Expression Syntax. . . « . «48

s e s e e s o449

- _ Appendix J: DBG Simulation Examples.

Supplled by: Polar Engineering and Consulting _
' P. 0. Box 7188

Nikiski, Alaska 99635

(907) 776—5529

CIS: 72136,1443

September 1, 1985
(fourth printing)

The firmware furnished in ROM2 and the printed documentation in the

"User's Manual" are protected by copyright law. Duplication in any
form is prohibited.

Polar Engineering and Consulting Copyright 1985

How to use this Manual

Polar Engineering and Consulting sells ROM2 for the Model 100, the TANDY
200 and the NEC 8201A. Though the three versions of ROM2 are very much
alike they are machine specific. A Model 100 ROM2 will not work with an
NEC 82014 or a TANDY 200. Likewise, an NEC 8201A ROM2 or a TANDY 200 ROM2
will not work with a Model 100. This manual explains how to use ROM2 on
all machines. Variations between the Model 100, the TANDY 200 and the NEC
8201A are noted. For example: ROM2 is accessed from BASIC. The Model 100
ROMZ is accessed by entering CALL 911. The TANDY 200 ROM2 is accessed by
entering CALL 921,2. The NEC 8201A ROM2 is accessed by entering EXEC 1124,
In this manual this is noted as: -

CALL 911 (Model 100)
CALL 921,2 (TANDY 200)
EXEC 1124 (NEC 82014)

Example programs and debugging sessions are shown for the Model 100, the
AL .

calloiil

CMD >

Ok

callgll

CMD> ?

RUN LOAD KILL SAVE FILES FORMAT
DBG ASMLN ASMN ASML ASM

CMD>

Ok

-RENUM .MOVE .COPY .MIN
-DELCOM .SQUASH .PACK .EXPAND .KILL
-LLOG .LOG .OFF .CONT .PRINT .STOP

oﬁFILES -LFILES .LIST .LLIST .STEP

Ok

-RENUM .MOVE .COPY .MIN
-DELCOM .SQUASH .PACK .EXPAND .KILL
-LLOG .LOG .OFF .CONT .PRINT .STOP

oﬁFILES -LFILES .LIST .LLIST .STEP

Overview

All ROM2 commands are accessed from BASIC by entering CALL 911 (Model 100),
CALL 921,2 (TANDY 200) or EXEC 1124 (NEC 8201A). Hit the BREAK key (Model
100/200) or STOP key (NEC 8201A) to stop ROM2 before or during a command.
That returns you back to BASIC. Typing the word MENU as a file name or the
DBG command sends you to the main MENU. Typing a question mark (?) prints
the keywords recognized by the current command.

All ROM2Z commands and all assembler statements recognize upper and lower
case as being the same. The CH (change) command is the only exception.
Its pattern string and replacement string are both case specific.

Typing the word FILES as a file name for a ROM2 command prints the RAM
directory (w/ sizes). This can be very convenient when you've forgotten
the name of the file you wanted to use, Unfortunately, ROM2 only operates
on RAM .DO files. Transfer files from cassette tape or floppy disk to RAM
in order to use ROM2 on them. ' '

About Printers (Model 100 only)

ROM2 supports the parellel printer interface. If you are using a serial
interface printer, you can get assembler listing by using the following
BASIC program. All LCD output is echoed to the RS232 port during the ROM2
ASM command. (Exercise caution when entering this program. If entered
incorrectly, it can cause the Model 100 to lock up and require you to do a
COLD—?ESTART. Save any valuable files before trying this program the first
time.

10 CALL 913,129 'init ROM2
20 ST$="S57I1E" 'RS232 STAT
30 CFZ=1

40 HLZ=VARPTR(ST$)

50 HL%Z=PEEK(HLZ+1)+PEEK(HL%+2)*256-65536
60 CALL 64902,0,6118 'set serial STAT
70 ALZ=PEFK(64226)

80 AHZ=PERK(64227)

90 POKE 64226,50

100 POKE 64227,110 'echo to RS232
110 CALL 911'asm i

120 POKE 64226,ALZ .

130 POKE 64227 ,AHZ 'end echo

140 END)

The value of ST$ will depend on your serial printer's baud rate and
protocol. A similar program can echo LCD output while debugging. Insert
these two lines when using the TRS-80 Model 100 Disk/Video interface.

65 SCREEN 0O
135 SCREEN 1

Hardware Installation (Model 100/TANDY 200)

WARNING: Improper installation may erase RAM memory or damage ROM2 or the’
Model 100/200. ROM2 is sensitive to static electricity so exercise caution
and FOLLOW installation instructions. READ STEPS 1 THROUGH 10 BEFORE
STARTING.

Handling: Do not touch ROM2's pins or the metal contacts on the circuit
board. DO NOT REMOVE THE CIRCUIT BOARD; it is essential to ROM2's
functionality. Repeated installations may damage the circuit board.

Step 1: Place a soft towel on a flat table surface.

Step 2: Turn the Model 100/200 OFF and place it upside down on the towel.
Orient the Model 100/200 with the removable plastic panel nearest you.

Step 3: Insert a penny into the slot on the near side of the panel and pry
the panel off, ;

Step 4: Correctly orient ROM2 with its label reading from left to right,

LOOSELY place ROM2 into the option ROM socket (M11l, it is the nearer of the
two). DO NOT USE FORCE IN THIS STEP!

Step 5: ROM2's label should read normally, If NOT then go back to the
previous step and repeat it. }

Step 6: Press ROM2 evenly and steadily with your thumbs into the socket
until it will not go down any more.

Step 7: Replace the panel.
Step 8: Turn the Model 100/200 face up ready for typing.

Step 9: Turn on the power. If the main menu does not appear, turn off the
power immediately and remove ROM2 and repeat entire installation from the
first step. : '

Step 10: If the main menu did appear then the hardware installation is
done. Proceed to the software installation.

Hardware Installation (NEC 8201A)

WARNING: Impréper installation may erase RAM memory or damage ROM2 or the
NEC 8201A. ROM2 is sensitive to static electricity so exercise caution and
FOLLOW installation instructions., READ STEPS 1 THROUGH 12 BEFORE STARTING.

Handling: Do not touch ROM2's pins. Three pins on ROM2 have been modified,
This is correct and necessary. DO NOT ATTEMPT TO ALTER ROM2 IN ANY WAY!

Step 1: Place a soft towel on a flat table surface.

Step 2: Turn the NEC 8201A and place it upside down on the towel. Orient
the NEC 8201A with the removable plastic panel nearest you.

Step 3: Remove the three philips screws and the plastic cover.
Step 4: Correctly orient ROM2 with its label reading from left to right.
Rotate it 90 degrees counter-clockwise. Place it on the second socket from

the left. (The first socket has the MicroSoft ROM in it.)

Step 5: ROM2's label should read the same way as the MlcroSoft ROM. TIf NOT
then go back to the previous step and repeat it.

Step 6: Using both thumbs, press ROM2 firmly into its socket. Make sure
that all the pins are inserted,

Step 7: Replace the panel.

Step 8: Turn the NEC 8201A face up ready for typing.

Step 9: Turn on the power. If the main menu does not appear, turn off the
power immediately and remove ROM2 and repeat entire installation from the

first step.

Step 10: If the main menu did appear'then the hardware installation is
done. Proceed to the software installation.

Software Installation

The ROM2 software is accessed from BASIC. First, test ROMZ by entering:

CALL 913,193 (Model 100)
CALL 921,194 (TANDY 200)
EXEC 1124,193 {NEC 82014)

If no number appears within five seconds then your ROM2 may not be
installed properly. Repeat the hardware installation instructions. If the
number printed does not match the five digit number on ROM2's label then it
may not be installed properly. (It may be necessary to COLD-RESTART the
Model 100/200 or NEC 8201A before reinstalling ROM2.)

Type the following BASIC command line to access ROM2.

CALL 911 (Model 100)
CALL 921,2 (TANDY 200)
EXEC 1124 ~ (NEC 82014)

ROM2 then prompts with "CMD>"., Now you can select one of these possible
commands,

FILES files directory (with file sizes)
COPY copy .DO file contents

FEQ compare two ,D0 files
CH global string change for a DO file
RN renumber the current basic program (Model 100/200 only)
ASM macro assembler (LCD listing)
ASML macro assembler (LPT listing)
- ASMN macro assembler (LCD, list errors only)
ASMLN macro assembler (LPT, list errors only)
DBG symbolic debugger
? list the names of the commands

Each of these commands is defined in detail in the following sections.

Since CALL 911 (Model 100), CALL 921,2 (TANDY 200) or EXEC 1124 (NEC 82014)
must be done before selecting any ROMZ command it will be convenient to
define function key 6. Use the BASIC KEY command to do that.

KEY ,"CALL911"+CHR§! 3) (Model 100)
XEY 6,"CALL921,2"+CHR$(13 (TANDY 200)
KEY 6, EXEC1124"+CHR$(13) (NEC 82014)

Press function key 6 and then function key 1 (Model 100/200)'6r function
key 3 (NEC 8201A) and you will see the RAM directory complete with sizes.

From BASIC programs ROM2 commands can be accessed like so:

Model 100: TANDY 200: NEC 8201A:
CALL911'FILES CALL921, 2'FILES EXEC1124'FILES
CALL911'COPY CALL921,2'COPY EXEC1124'COPY

or
ST$="FILES" + CHR$(13) ST$="FILES" + CHR3$(13)
CALL913,17,VARPTR(ST$) CALL921,18 ,VARPTR(STS) no equivalent

FILES (directory of all RAM files)

This command is accessed by typing:

Ok
{function key 6)
CMD> FILES

Typical LCD screen output from this command might look like this.

.BA:........345 BACKUP.1617

D0:eeseees..86 HWINST.1940 SWINST.1852
COPY...1415 FEQ....1189 RN.....3561
ASM....3864 ALC....2791

14867 Bytes free

The directory is listed in three major groups. First the .BA (BASIC
programs), then the ,DO (document files), then the .CO (8085 code
programs), and finally, the number of free bytes. When there are no files
in the .CO group, that group is omitted.

Following each file name is the number of RAM bytes that file is using.
This is called the size of the file. In other words, killing a file
increases the number of free bytes by its size. Also copying a file
decreases the number of free bytes by its size.

The first entry in the .BA: section has no name and shows the unsaved BASIC

program's size. The first entry in the .DO: section has nc name and shows
the paste buffer's size.

COPY (duplicate a .DO file)

This command is accessed by typing:

Ok :
(function key 6)
CMD> COPY file a file b

The purpose of this command is to create a new (or overwrite an old)
'file b'.D0 and duplicate the contents of 'file a'.DO into it. Suppose
that file MFEMO1.DO exists and we want a copy of it called MEMO2.DO. That
is done by typing:

Ok
(function key 6)
CMD> COPY MFMO1 MEMO2

This creates a new file called MEMO2.DO which contains a copy of the text

that is in MEMO1.DOQ. When MEMO2.DO already exists, rewrite confirmation is
needed. For example:

Ok

(function key 6)

CMD> COPY MEMO1 MEMO2
Rewrite? Y '

overwrites the previous contents of MEM02.DO with a copy of the contents of
MEMO1.DO. 1In the next sequence MEMO2.DO is saved and not overwritten,

Ok :
(function key 6)
CMD> COPY MEMO1 MEMO2

Rewrite? N
File: MEMO3

The previous command is equivalent to this:

Ok
(function key 6) _
CMD> COPY MEMO1 MEMO3

When there isn't enough free memory to copy the file, the 'Out of memory,'
message is printed.

FEQ (compare two .DO files)

This command is accessed by typing:

Ok
(function key 6)
CMD> FEQ file a file }

This command compares the characters in the 'file a'.DO with the characters
in 'file b'.DO. Suppose that the file A.DO (which is 54 lines long) has
Jjust been copied (using the COPY command or the paste buffer) into both
files B.DO and C.Do, Futhermore, the file C,DO hag been altered using EDIT

such that the 24th character in the first line is now gone. First compare
A.DO with B.DO,

Ok

(function key 6)
Q> FEQ A B

The 54 shows how many complete lipes matched. The Yes,

contents of A.DO are identical to the contents of B,.DQ,
with C.DO,

shows that the
Now compare A.D0

Ok
(function key 6)
> AC

0.23 (beep)”

differ) and only match through the first 23 characters. Please note that

each end-of-line ip a’ as two characters (a carriage

return, ASCIT 13, followed by a line feed, ASCII 10). Thus the character
match count shown by

the number of lines matched,

-

CH (global string change)

This command is accessed by typing:

Ok

(function key 6)

CMD> CH file

From: pattern string

To: replacement string

The purpose of this command is to find all the occurances of
'pattern_string' in 'file'.DO and change them to 'replacement_gtring'. The
strings in this command are case sensitive, hence a 'pattern string' must
match exactly (lowercase to lower, uppercase to upper) in order for the -
substitution to occur. Also, leading and trailing blanks are used in both
strings. Entering a null 'replacement string' deletes all occurances of
the 'pattern string'. A single question mark (?) is treated'as a
'pattern_string' or a 'replacement_string' and will not list the command
options, since there are none.

Suppose that file MEMO1.DO exists and we want a copy of it called MEM02,DO
with the name Joe Smith replaced by Bob Jones, Jr. That is done by typing:

Ok
(function key 6)
CMD> COPY MEMOl1 MEMO2

Ok
(function key 6)
- CMD> CH MEMO2
From: Joe Smith
To: Bob Jones, Jr.

Now MEMO2.DO has the name Bob Jones, Jr. everywhere the name Joe Smith was.

Control Characters

Control characters can be specified in both the 'pattern_string' and the
'replacement_string'. An * (uphat, shift 6) indicates that the following
character specifies a control character. For example "M specifies
control-M (carriage return, ASCII 13) while "“J specifies control-J
(line-feed, ASCII 10), Two uphats (**) specify a 'literal uphat. When the
last character in a pattern is a single uphat, it is a literal uphat.
Specifying the end-of-file control character, ASCIT 26, ("Z is used as the
end-of-file marker) is not allowed because manipulating the end-of-file
marker is too dangerous,

One line can be split into two by using *M*J in the 'replacement_string'.
Two lines can be concatenated by using *M"J in the 'pattern string'. The.
'pattern _string' “Jtext matches text at the start of a line. The

'pattern string' text"M matches text at the end of a line. Be sure to
replace the “J or "M character when doing this type of substitution. Many
other line manipulating operations can also be done.,

=10~
RN (renumber a BASIC program——Model 100/200 only)

This command is accessed by typing:

Ok

(function key 6)

CMD> RN

F,L,T,S: first,last,to,step

With this command all or part of the current BASIC program can be
renumbered. The current BASIC program is the last program loaded. Or it

is the unsaved BASIC program when no program has been loaded since entering
BASIC,

first and last: These two parameters are used to specify the renumbering
range. All BASIC lines with line numbers greater than or equal to 'first’
and less than or equal to 'last' are renumbered. When 'first' is not .
specified, 10 is used. When 'last' is not specified, 653535 is used.

to: This parameter specifies the new line number to be assigned to the
first line that gets renumbered., When 'to' is not specified, the value of
'first' is used.

step: The absolute value of this parameter specifies the increment or
spacing between the lines after renumbering. When 'step' is positive, no
REM lines in the range are renumbered (single quote style rem lines are
always renumbered). Lines immediately following a REM line are renumbered
relative to the REM line number., When 'step' is negative, -~'step' (minus
'step') is used as the increment and REM lines in the tange are renumbered.
When 'step' is not specified, +10 is used.

Suppose that the following program has been entered and was the current
BASIC program.

10 'Hailstone numbers

15 INPUT"Starting value";N

18 PRINT"N=":;N

19 IF N=1 THEN 999

20 IF N MOD 2=0 THEN N=N/2 ELSE N=N%3+1
21 GOTO 18

999 REM Done.

Now suppose that we want to count the 'Hailstone' numbers as they are
generated, To do so we need to insert two lines and modify a third.

12 I=1
20,5 I=I+1
modify 18 PRINT "I=";I;" N=";N

-11~-

Unfortunately, BASIC does not allow fractional line numbers, Renumbering
remedies this problem. ‘

Ok

(function key 6)

CMD> RN

F,L,T,S: _ (just press ENTER)

The BASIC program now looks like this.

10 'Hailstone numbers

20 INPUT"Starting value";N

30 PRINT"N=";N

40 IF N=1 THEN 999 _

50 IF N MOD 2=0 THEN N=N/2 ELSE N=N*3+1
60 GOTO 30

999 REM Done.

Note that the GOTQ statement number in line 60 was changed to the

appropriate new value (30 instead of 18). Now it is easy to insert the
changes.

Also note that line 999 does not get changed to line 70 as one might
expect. This feature allows REM lines to retain their original line
numbers even after renumbering. When a step factor of minus ten (instead
of the default positive ten) is specified, line 999 changes to line 70.
Typically, the first line of every subroutine begins with a REM statement.
Thus, it is desirable to keep those line numbers constant as the program is
developed. However, if necessary, it is not difficult to renumber some or
all of the REM lines by using a negative step factor and an agpropriate
range.

Here are some assorted F,L,T,S specification examples:

First lLast To Step renumber REM

F,L,T,S: ,,,-20 10 65535 10 20 YES
F,L,T,S: ,1000 16 1000 10 10 NO
F,L,T,S: 1000 1000 65535 1000 10 NO
F,L,T,S: ,,100,100 10 65535 100 100 NO

Finally, when renumbering by a given range and step would result in a
non~ascending line number sequence, the line number that makes the sequence
non-ascending is printed. Usually a smaller step value or a more limited
range will solve this problem. '

12—

ASM, ASMI, ASMN, ASMIN (macro assembler)

"This command is accessed by typing:

Ok
(function key 6)
CMD> ASM assembly source file

The purpose of an macro assembler is to read a text file and translate it
into binary machine codes and data. Assembled machine code is placed
directly into the area between HIMEM and MAXRAM unless the 'Output File'
option is used. ASM and ASML list each line as it is assembled. ASMN and
ASMLN list only lines with errors. ASM and ASMN list to the LCD screen.
ASML, and ASMLN list to the parallel printer port.

CAUTION: Be sure to save source files and other important RAM-data on
cassette tape when developing assembly programs. This must be done because
during the development phase executing a machine code program containing
errors can destroy RAM data or even cause a COLD-RESTART,.

Assembly Language Syntax

An assembly language program is a text file composed of single line machine
instructions represented in symbolic form. Each line has the following
stucture:

label: instruction scomment text

label: is the optional statement label and, when present, it must begin in
column one. The word used must be composed of no more than nine of the
characters $01234567897@ABC...XYZ_and it may end with a colon. A
statement label names a line for reference elsewhere in the program.

instruction is an optional specification of an 8085 machine instruction or
an assembler instruction. This instruction is composed of an 8085 opcode
(or pseudo op) and its required number of arguments. Again, lowercase
opcode names are allowed and do match their uppercase names.

;comment is also optional and is used for documenting and otherwise
clarifying the operational characteristics of the program. It must begin
with a semi-colon.

Argument expressions may use the symbol $. It represents ASM's current PC
‘value and is most often used in DB statements when calculating offsets from
a statement label defined earlier.

Pseudo Ops

DB expr [,expr]*
Assigns one or more bytes with the values of the 'expr's. Only the DB
pseudo op may have an 'expr' that is a quoted string of arbitrary length.
This allows for easy message definition.

DS expr
Allocates space (defines storage) for a variable, a table or an array. The
value of 'expr' is added to PC, reserving that many bytes for the program.
Each reserved byte is initialized to the value zero.

-13-

DW expr [,expr]* _
Assigns one or more two-byte words with the values of the 'expr's,

ELSE
Begins-a conditional assembly ELSE block. Code is generated from this
statement to its matching END when the corresponding IF is false.

END
Signals the end of an IF, IFZ, IFNZ, ELSE, MAC statement or the program.,

label: EQU expr

Assigns (equates) the value of 'expr' to 'label:'. This pseudo‘op requires
a statement label.

IF expr
Begins a conditional assembly IF block. Code is generated from this
statement to its matching END (or ELSE) when 'expr' is greater than or
equal to zero. .

IFZ expr
Beging a conditional assembly IFZ block., Code is generated from this
statement to its matching END (or ELSE) when 'expr' is equal to zero.

IFNZ expr
Begins a conditional assembly IFNZ block. - Code is generated from this
statement to its matching END (or ELSE) when 'expr' is not equal to zero.

MAC

Begins a macro definition block. The contents of this block (terminated by
its matching END) are substituted into the assembly by the &label:
invocation statement.

ORG expr
Sets the PC to the value of 'expr'. Used for defining the first
instruction's address (origin). ' :

&RAM .DO file

Includes file. Inserts the "RAM ..DO_file' into the assembly at the point

of this statement. Does not list the file's lines as it is processed.

&&RAM .DO file
Includes file. Inserts the 'RAM ,DO_file' into the assembly at the point
of this statement. Lists the file's lines as it is processed when the
include statement itself is printed.

&label: farg [:arg]l*] . :
Invokes macro. Substitutes the arguments specified into the 'label' macro
and insert it into the assembly. Does not list the macro's lines as it is
processed, :

&label: [arg [;arg]*]
Invokes macro. Substitutes the arguments specified into the 'label' macro
and insert it into the assembly. Lists the macro's lines as it is
processed when the invocation statement itself is printed.

FOF

End of file. Ends the program or included file by providing the necessary
number of END statements to terminate processing of the file.

14—

Assembler Output Echo

Entering 'ASM file name /' causes the bytes generated by the assembler to
be printed in hex form interlaced with the printed assembly source.

Assembler Output File

Entering 'ASM file name 1 file name 2' causes the bytes generated by the
assembler to be stored in hex form in 'file name 2'. All PC checking is
turned off and the output is not poked into memory. The output file has
the same format as '_ASM ,DO' except for the hex data that is stored by the
assembler immediately following the '>' character. (See "ASM/DBG Label
Table Format".)

Agsembler Include Files
An assembly language program may insert another RAM .DO file. This allows
common macros and external labels to be placed in a global include file for
sharing amongst many programs. Include has two forms:

1) silent (do not print included file as it is processed)
&RAM .DO file

or

2) echo {(print file if the include statement itself is printed)
&%RAM .DO file
Include file statements may be nested.

Assembler Macros

A macro definition has the form:
label: MAC
macro body
END
Invocation of a macro has two forms:
1) silent (do not print macro as it is substituted)
&label: argl;argZ;...argn

or
2) echo (print macro if the invocation statement itself is printed)
&label: argl;arg2;...argn
Macro invocation substitutes argn in place of the macro definition's
symbolic argument #n found in the macro body. When the macro invocation
does not specify an argument, a null string is used. Symbolic argument #O
is replaced by all arguments. Quoted semicolons must not be used within an
argument because the quotes are not recognized and the argument will be
split. Macros may be invoked from within macros. Since args are
substituted, care must be exercised when using args in complex expressions.
It may be necessary to parenthesize the symbolic arg to ensure correct
expression evaluation. A macro may not in turn define new macros.
Invocation of such a macro causes a 'Bad op.' error. Finally, use of a
macro label in an expression yields a funny value, because the value of the
macro label is the memory address of the macro definition.

~15-

Assembler Conditicnal Code Generation

Conditional assembly is controlled by the IF assembler statement., A
conditional assembly block has the form: '

IF expression

conditional code

END
If expression is greater than or equal to zero then the conditional code is
assembled. Otherwise it is skipped. Skipped assembly code does not create
labels, macros, or machine code. Skipped assembly code need not be valid
assembly code. IF blocks may be nested and placed within or around macro
definitions. Two other forms of the IF statement are recognized: IFZ and
IFNZ, An IFZ block is assembled when expression is zero. An IFNZ block is
assembled when expression is not zero.. An IF, IFZ, or IFNZ block may
terminate with an ELSE assembler statement instead of an END. An IF-ELSE
block pair has the form:

IF expression

if conditional code

ELSE

else conditional code

END
The else conditional code is assembled when the if conditional code is
skipped and visa-versa. The ELSE assembler statement should only be used
in conjunction with IF statements. Other uses produce strange results.

IF, IFZ, and IFNZ all allow multiple expressions. The effect is the same
as nesting the IFs with one expression per IF in the order specified.

Assembler FND Statement

The END statement is used in three contexts: 1) end of macro definition
block, 2) end of IF block, and 3) end of program., The end of file provides
the required number of END statements in order to terminate processing of
that file. The first END statement that is unmatched with a preceding MAC,
IF, IFZ, IFNZ, or ELSE statement ends the program. During assembly, when
code is being skipped, a '*' instead of a ':' is printed at the beginning
of each line. Also, the current nesting level is printed.

Assembler ORG Statement

The ORG statement sets the assembler's PC. For programs that have only one
ORG statement and éxecute starting at that statement, there is & general
purpose method for creating .CO files: ~ :
SAVEM"file",PEEK(64872)+PEFK(64873)*256, (Model 100)
' PEEK(64870)+PEEK(64871)%256~1, '
PEEK(64872)+PEEK({64873)*256

SAVEM"file",PEEK(63592)+PEEK(63593)*256, {TANDY 200)
PEEK(63590)+PEEK(63591)*256~1,
PEEK(63592)+PEEK (63593)*256

BSAVE"file",PEEK(64616)+PEEK(64617)%*256, (NEC 82014)
PEEK (64614)+PEEK(64615)*256— _
(PEFK(64616)+PEEK(64617)%256),

PEFK (64616)+PEEK(64617)%*256

-6~

Macro Assembler Source

The file read by the macro assembler contains symbolic descriptions of both
8085 instructions (opcodes with arguments) as well as macro assember
instructions (called pseudo ops). If you do not have complete 8085
instruction documentation or you are a beginning assembly language
programmer it is suggested that you buy "8080A/8085 Assembly Language
Programming", by Lance A. Leventhal. It is available in the computer
science section of most large book stores. Also, it can be ordered by mail
from Osborne/McGraw-Hill, 2600 Tenth Street, Berkeley, CA 94710 as ORDER
#10-1 for $18.95. Shipping is $1.50 UPS, $3.00 lst class/UPS Blue Label.
California residents add local sales tax. The opcodes and pseudo ops
provided by the ROM2's macro assembler conform to the ones used in
Leventhal's book and are recognized as the 8080/8085 standards.

~17-

DBG (symbolic debugger)

This command is accessed by typing:

Ok
(function key 6)
CMD> DBG

Polar Engr & Cons (C)1985

DBG> DBG command

CAUTTION: Be sure to save source files and other important RAM data on

cassette tape when developing assembly programs.

This must bhe done because

during the development phase executing a machine code program containing
errors can destroy RAM data or even cause a COLD-RESTART.

DBG commands:

Simulate: GE, GO, IN, N, QUT, S, SE ;
Execute: RUN

-PC control: CE, SKP

Break point: CB, CBS, LBS, 1, 2, 3, 4
Memory inspection: EX, L, MAP :

Register status: D

Output control: LCD, LPT

Trace: TN, TY

Main Menu: MENU

Command list: ?

Assembly: see immediate & patch

DBG starts simulating on code that 'gracefully' returns to BASIC.
GE, GO, OUT, and RUN all send you back to BASIC,

Entering

Simulation vs. Execution

There are two things to consider when debugging machine code. The first is
speed of simulation. The time required to simulate a single instruction is
about 1000 times that of executing the instruction. This is an obvious
disadvantage. If a subroutine has already been debugged then it is not
necessary to spend an excessive amount of time gimulating it. However, no
break points are recognized while executing code, so simulation does serve.
a very useful purpose.

The second problem with simulation is that some code just cannot be
properly simulated. Take for example a subroutine that displays a
character on the LCD screen. Here is a conflict in the use of a shared
resource, the LCD screen. When such a subroutine is stepped through, the
situation on the screen changes and therefore the simulation does not have
the same result as the execution of the same code. Be aware that for this
reason some simulations will not work.

-18-

DBG Simulate Commands

GE [expr]: Simulates all instructions until 'expr' break points have been
encountered. .

GO [expr]: Simulates all but CALL instructions until 'expr' break points
have been encountered. (Subroutines are executed, not simulated.)

IN [expr]: Simulates all instructions until- "expr' CALL and/or RET
instructions have been simulated. Simulation stops when any break point is
encountered.

N [expr]: Simulates all instructions until 'expr' instructions have been
simulated, Simulation stops when any break point is encountered.

OUT [expr]: Simulates all but CALL instructions until 'expr' RET
instructions have been simulated. (Subroutines are executed, not
simulated.) Simulation stops when any break point is encountered.

S [expr]: Simulates all but CALL instructions until 'expr' instructions
have been simulated. (Subroutines are executed, not simulated, and counted
as one instruction.) Simulation stops when any break point is encountered.

SE [expr]: Simulates all instructions until 'expr' instructions have been
simulated. (Subroutines are simulated but counted as only one
instruction.) Simulation stops when any break point is encountered.

BREAK or STOP: Hitting the BREAK key (Model 100) or STOP key (NEC 8201A)
interrupts simulation. (PAUSE key or CTRL-S suspends simulation.) The
BREAK key. or STOP key can not interrupt execution.

The count expression is optional for these seven simulation commands. When
simulation is interrupted by hitting the BREAK key and the remaining count
is more than one, the bell sounds, the remaining number is printed, and DBG
prompts for a new command. If the next simulate command is entered without
a count expression, the number printed when the BREAK key was hit is used.
The simulate command count is one when DBG is first entered.

The simulate commands GO, OUT, and S all execute subroutines when a CALL
instruction (or any flag testing variant) is encountered. (Standard ROM
RST 0,2,3,4,5,6 and Option ROM RST 0,1,4,6,7 instructions are considered
calls,) The subroutine invoked is not simulated. Instead, it is executed
directly by the 8085 processor in the Model 100. After the subroutine is
done, DBG simulates the instruction that follows the CALL. .

Before a subroutine is executed, DBG overwrites the called subroutine's
return with a trap return and saves the subroutine's return elsewhere.

When the subroutine returns to the trap return, the subroutine's real
return is used as the next PC for simulation.

Note: A subroutine that does memory referencing through the stacked return
address will not work because during the execution of the subroutine, DBG's
trap return is on the stack instead of the subroutine's return. Also, a
subroutine that returns more than one level exits DBG (like a RUN command),
since DBG's trap return is skipped. Use simulate commands GE, IN, N, and
SE to avoid these two cases.

Note: See "Appendix J: DBG Simulation Examples" for additional help.

-19-

DBG Non-Simulate Commands

CB: Clears the current break point. If a break point was just encountered,
clear it (set it to zero).

CBS: Clears all four break point addresses., (Sets them to Zero.)

CE [expr]: Simulates entering a subroutine with a CALL instruction by
stacking the contents of PC and placing the value of 'expr' in PC.
Displays new register status.

D: Displays the current register status. It redisplays the current

register status as if simulation has just stopped. (See "DBG Register
Status™.)

EX [expr]: Examines memory. Shows the two byte word's value whose address
is 'expr'. (Also shows the byte value.) .

Format: xxxx/ddddd=xx xxxx aa '

1 2 3 4 56

Shown are: 1) hexadecimal value of 'expr', 2) decimal value of 'expr', 3)
hexadecimal value of byte at 'expr' memory location, 4) hexadecimal value
of word at 'expr', 5) ASCIT byte at 'expr', and 6) ASCII byte at ‘expr'+l.
(Note: This command is also a handy hexadecimal-decimal calculator.)

L [expr]: Disassembles memory. It lists instructions starting at address
'expr'. Hit the BREAK key to terminate list,
Format: xxxx 8085 instruction
xxxx 8085 instruction

1 2
Shown are: 1) hexadecimal address, and 2) 8085 instruction at that address.
(Note: All values within the 8085 instruction are shown in hexadecimal.,)

LBS: Lists the four break point addresses.
Format: l.xxxx 2.xxxx 3.Xxxx &4.XxXxx
Shown are the four addresses in hexadecimal.

LCD: Sends all status information to the LCD screen. (not LPT)

LPT: Sends all status information to the printer. (not LCD)

MAP [expr]: Displays the memory map starting at 'expr'. This command
prints a hexadecimal and ASCII memory dump. Hit the BREAK key to terminate
MAP, Format: XXXX XX XX XX XX XX XX XX XX XX aaaaaaaa

— . — — i, —m—— r—— —— ———

1 2 3
Shown are: 1) hexadecimal address, 2) hexadecimal byte values in memory
from that address to the that address plus seven, and 3) ASCII values of
those same memory locations,

MENU: Exits to the main menu.
RIMN: Starts executing instructions. (DBG permanently exited.)

SKP: #4dvances PC to the instruction that immediately follows the current
one, Uisplays new register status.

—20-
TN: Stops tracing simulation. (not TY)

TY: Begins tracing simulation. The register status is printed after every
simulated instruction. (not TN)

1 [expr] (2, 3, or 4): Sets the corresponding break point address to the
value of 'expr'.

Note: When 'expr' is omitted the current value of PC is used.
Note: a is an ASCII character {control-characters displayed as a dot).

DBG Immediate and Patch Assembly Commands

Immediate assembly commands are of the form:

8085 instruction
When DBG gets a command that does not start with an expression and is not
one of its special command keywords, DBG sends the text to the assembler.
If the command is a valid '8085_instruction’ then DBG simulates it.

The patch command form is:
expr, 8085 instruction

or
expr,DB expr,...
or
: expr,DS expr
or

expr,DW expr,...
When DBG gets a command that starts with an expression, DBG sends the text
to the assembler., If the command is a valid '8085_ instruction' or DB, DS,
or DW pseudo op then DBG deposits the assembled, code starting at the
memory location indicated by 'expr'.

The § symbol (symbolic assembler PC) is set to one more than the last
address patched. If there is a syntax error them it is unchanged.
Immediate assembly commands may use the $ symbol in expression arguments.
Entering just an expression in DBG sets the $ symbol to that value.
(Constants 1, 2, 3, and 4 are interpreted as set break point commands.)

Example patch assembly commands:

57500,MVL A,129
$,CALL 913

Addresses 57500 and 57501 are patched by the first command. After which
the $ symbol is 57502. Thus, the next three bytes in memory are readily
patched with the second command.

DBG PC

DBG allows expressions with the symbol PC, Its value is always the next
instruction's address, Relative jumps are done by entering 'JMP

PC+offset'. Also, 'L PC' (or just 'L') displays the instructions about to
be simulated. ‘

=21~

DBG Register Status
The current register status is displayed in this format

xxxx instruction zf cf pf s SP=xxxx.yyyy
A=xx BC=xxyy.zz DE=xxyy.zz HL=xxyy.zz

where XXXx, YYYY, XX, Xxyy and zz are hexadecimal numbers.

xxxx instruction: The 8085 instruction at memory location xxxx is next to
be simulated by DBG (xxxx is the current value of the program counter or
PC)., When ROM2 is enabled (standard ROM disabled), an exclamation point is
printed immediately'following the current PC.

zf cf pf s: Each of the four current flag values is shown here; zf (zero

Fflag): NZ or Z, cf (carry flag): NC or C, pf (parity flag): PE or PO, and s
(sign flag): P or M.

SP=xxxx.yyyy: The stack pointer, SP, contains the word value xxxx and the
word at memory location xxxx contains the word value yyyy.

A=xx: The A register contains the byte value xx.

BC=xxyy.zz: The BC register pair contains the word value xxyy, the B
register contains the byte value xx, the C register contains the byte value
¥y and the byte at memory location xxyy contains the byte value zz.

DE=xxyy.zz: Refer to BC (D is to B as E is to C).
HL=xxyy.zz: Refer to BC (H is to B as L is to C).

Exanmple:
FD8C CALL FAAS Z NC PE P SP=F160,1E20
A=04 BC=00BE,50 DE=0000.C3 HL=0850.62

The current DBG PC is FD8C hex. The instruction starting at that address
is CALL FAAS (hex). The Zero flag is set, the Carry flag is clear, the
parity is even, and the sign is positive, The stack pointer is F160 hex.
The last word pushed onto the stack is 1E20 hex. The A register is four.
The BC register pair is BE hex (the B register is zero and the C register
is BE hex). The byte at address BE hex is 50 hex. (An LDAX B instruction
would set the A register to BE hex.) The DE register pair is zero (both
the D and E registers are zero). The byte at address zero is C3 hex. (Arn
LDAX D instruction would set the A register to C3 hex.) The HL register
pair is 850 hex (the H register is eight and the L register is 50 hex).
The byte at address 850 hex is 62 hex and is value of the M register.

02—

addr
byte
dreg

8085 Instruction Table

Arguments:
— 16 bit data address
-- 8 bit binary value
-~ destination (see reg)

drp — (destination rp for MVX) one of B, D, or H
label -- 16 bit instruction address

n——
port

(restart index) one of 0, 1, 2, 3, 4, 5, 6, or 7
-- 8 bit binary input or output port number

reg — one of A, B, C, D, E, H, L, or M

(the M register is the byte addressed by the HL pai

rp -~ (register pair) one of B, D, H, or SP

sreg

(PUSH and POP use rp PSW instead of SP)
—— source (see reg)

srp — (source rp for MVX) one of B, D, or H

word

HMMmEHOO W R
|
|

-~ 16 bit binary value

Registers:

accumulator (low byte of PSW)

auxilary register (high byte of B rp)

auxilary register (low byte of B rp)

auxilary register (high byte of D rp)

auxilary register (low byte of D rp)

auxilary register (high byte of H rp)

auxilary register (low byte of H rp)

temporary register (only used during comparisons)

Register pairs:

B — (BC) B and C registers, high byte is B, low byte is C
D -~ (DE) D and E registers, high byte is D, low byte is E
H — (HL) H and L registers, high byte is H, low byte is L
PC -- program counter

PSW -~ program status word, low byte is A
SP -- stack pointer

Flags: (in high byte of PSW)

Cf — carry (NC:Cf=0, C:Cf=1) bit O of PSW high byte
Pf — parity (PO:Pf=0, PE:Pf=1) bit 2 of PSW high byte
Sf —- sign (P:Sf=0, M:Sf=1) bit 7 of PSW high byte

Zf — zero (NZ:Zf=0, Z:Zf=1) bit 6 of PSW high byte
TSf -- true sign, bit 5 of PSW high byte

—O M.
|

+ —

Flag status:
no change
changed according to the result of the instruction's
reset (clear) '
set

Operators:
addition
subtraction

not — 0=>1, 1=>0
and — 0 and 0=>0, 0 and 1=>0, 1 and 0=>0, 1 and 1=>1

or --

0 or 0=>0, 0 or 1=>1, 1 or O=>1, 1 or l=>1

xor — 0 xor 0=>0, 0 xor 1=>1, 1 xor O0=>1, 1 xor 1=>0

r)

operation

ek
R

dok
ok

Note: Instructions marked with *%* are undocumented 80C85

SP<=SP-2, w[SP]<=PC+3, PC<=label

CALL label
CALL label

CALL label
CALL 1label
CALL 1label

CALL label

CALL label

CALL label
d just

rupts

port

JMP label
JMP label

JMP label
JMP label
JMP label
JMP label
JMP 1label

if TSf=1 then JMP label

JMP label
JMP label

instruction action

ACI byte Al{=A+byte+CE
ADC reg Al=A+regt+CE
ADD reg Al=A+Teg

ADT byte Al=A+byte

ANA reg A<=A and reg
ANI hyte A<=A and byte
CALL label

CC label if Cf=1 then
CM label if Sf=1 then
CMA A<{=not A

CMC Cf<{=not Cf
CMP reg T{=A-reg

CNC label if C£=0 then
CNZ label if Z£=0 then
CP label if S£=0 then
CPE label if Pf=1 then
CPI byte T<=A-byte
CPO label if P£f=0 then
CZ label if Zf=1 then
DAA decimal add a
DAD rp HL{=HL+rp
DCR reg reg<=reg-1
DCX rp rp<=rp-1

DEHL byte HL<{=HL+byte
DESP byte DE<=SP+byte
b1 disable inter
E1 enable interrupts
HLMBC HL<=HL-BC
HLT halt 8085 processor
IN port A<{=data from
INR reg reg<{=reg+l
INX rp rp<=rp+l

JC label if Cf=1 then
JM label if Sf=1 then
JMP label PC<=label

JNC label if C£=0 then
JNZ label if Zf=0 then
JP label if Sf=0 then
JPE label if Pf=1 then
JPO label if P£=0 then
JTM label

JTP label if TSf=0.then
JZ label if Zf=1 then
LDA addr A<=b[addr]
LDAX B A<=b[BC]

|5
|2
g

I
L N
. 8 e w s + 4 s e s « s+ s & N « s M oe e s s & M oa F « % s B oe 8 & e ¥ W NNNNN'I"!‘) (iO

RNV
=R
MM oMK K

. s s s P
s e s e O
e & & ¢ M

»

s Mo
b Mo
] "

s s s Mo
. .
o« & 0+ M e

LI I]
s Me e

]
.
"

. L] * (]
. [
* = = = =

opcodes.

instruction action
LDAX D A<=b[DE]
LHLD addr HL<=w[addr]
% LHLI HL<=w[DE]
IXI rp,word rp<=word
MOV dreg,sreg dreg<=sreg
MVI reg,byte reg<=byte
MVX drp,srp drp<{=srp
NOP do nothing
ORA reg A<{=A or reg
ORI byte A{=A or byte
- OUT port data to port<{=A
PCHL, PC<=HL
POP rp rp<{=w{SP], SP{=SP+2
PUSH rp SP<{=SP-2, w[SP]<=rp
RAL rotate A left thru Cf
RAR rotate A right thru Cf
RC if Cf=1 then RET
¥ RDEL rotate DE left thru Cf
RET - PC<=w[SP], SP<=SP+2
R85 RIM A<{=interrupt mask
RLC - rotate A left
RM if Sf=1 then RET
RNC if Cf=0 then RET
RNZ if Zf=0 then RET
RP if Sf=0 then RET
RPE if Pf=1 then RET
RPO if Pf=0 then RET
RRC rotate A right
RST n SP<=SP+2, w[SP]<=PC+1, PC<-n*8
RZ if Zf=1 then RET
SBB reg A<{=A-reg~Cf
SBI byte A<{=A-byte-Cf
SHLD addr wladdr J<=HL
% SHLI w[DE }<=HL
ok SHLR shift HL right (extend sign)
4085 SIM interrupt mask<=A
SPHL SP<=HL
STA addr b[addr]<=A
STAX B b{BC]<=A
STAX D b[DE]<=A
STC Cf<=1
SUB reg Al=A-Teg -
5UI byte A{=A-byte
XCHG HL<=DE while DE<=HL
YRA reg A<=A xor reg
il byte A<=A xor byte
% THL HL<=w[SP] while w{SP]<=HL

« 8 o »

M ode o 0w

*+ » e+ a8 4

‘-N-.

OO =+ =

Moe s M oe M

L B -

. " & 2 @

E

e N}

* s = 2+ »

* e & XM

. L] L] * L]

L

™

.« o % * ®

= 0 o+ M oM

’ L] . - L]

E

]

-25-

Extended BASIC/Machine Code CALL Command

First, ROM2 must be initialized.

Model 100: 10 CALL 911',, (apostrophe—-comma—comma)
TANDY 200: 10 CALL 921,2',, (apostrophe~comma-comma)
NEC 8201A: 10 EXEC 1124',, (apostrophe-comma~comma)

After which, standard ROM or ROM2 routines may be accessed in this way:

Model 100: 220 CALL 64902,0,standard rom addr
430 CALL 64902,2,rom2 addr

TANDY 200: 220 CALL 63622,0,standard rom addr ;
430 CALL 63622,2,rom2 addr

NEC 82014A: 220 EXEC 64646,0,standard rom addr
430 EXEC 64646,2,rom2 addr

BASIC variables ARZ, CFZ, ZFZ%, BCZ, DEZ, and HLZ provide initial register
values. Final register values are stored in these variables after the
routine has completed.

-26-

Accegsing ROM2 Routines

First, ROM2 must be initialized.,

Model 100: TANDY 200: NEC 8201A:
MVI A,129 MVI A,130 MVI A,129
CALL 913 CALL 921 CALL 1127

After which, ROM2 routines can be accessed this way:

Model 100: ' TANDY 200: - NEC 8201A:

CALL FAASH CALL F4D4H CALL F992H

CALL oprom addr: CALL oprom addr: CALL oprom addr:
R

ST 7 RST 7 RST 7

Remember that standard ROM and ROM2 are accessed exclusively of each other.
Only one can be referenced at any given time. At the beginning of a BASIC
or assembly program memory looks like this:

—t Standard ROM enabled
FFFFH -
RAM
8000H -
et
7FFFH -
Standard ROM
OOCCH -

ot

After CALL FAA5H (Model 100), CALL F4D4H (TANDY 200) or CALL F992H (NEC
8201A) memory looks like:

e ‘ROM2 enabled
FFFFH -
RAM
8000H —
et
7FFFH -
ROM2
QCO0H -
+—t

When ROM2 is enabled, RST 7 disables it and standard ROM is then
accessible, CAUTION: A RST 7 must only be done when ROM2 is enabled.

The assembly example on the following page checks for file existance using
ROM2 routines. Remember, the assembler can only check for syntax ervors,
leaving logic errors for debugging. Don't try to run any untested assembly
program if your RAM files aren't saved on tape or disk. This rule will

protect you from the inevitable bug that trashes RAM or causes a
COLD-RESTART that kills all your files.

Model 100/200 Example:

Polar Engr & Cons (C)1985

0000:1 ;Assembly example

0000:1 .

0000:1 ORG 62600

F488:1 '

F488:1 $PROMPT: EQU OO8SOH

F488:1 $FINDDO: EQU 008%H

F488:1 $PRINT: EQU 077CH

F488:1 $PRTDEC: EQU 0862H

F488:1 $DIR: EQU 1B73H

F488:1

F488:1 MVI A,129

F48A:1 CALL 913 ;init ROM2
F48D:1

F48D:1 AGAIN: LXI H,FILEPR

F490:1 CALL FAASH ;enable ROM2
F493:1 CALL $PROMPT ;get user input
F496:1 CPI 1

F498:1 CZ $DIR

F49B:1 RST 7 ;disable ROM2
F49C:1 JZ AGAIN

F49F:1

F49F:1 ;DE points to input buffer

F49F:1 PUSH D

F4A0:1 LXI H,0

FAA3:1 SHLD FCD2H ;search all
F4A6:1 CALL FAASH ;enable ROM2
F4A9:1 CALL $FINDDO

F4AC:1 RST 7 ;disable ROM2
F4AD:1 POP D

F4AE:1 XCHG

F4AF:1

F4AF:1 RC . s;bad file name
F4BO:1 CALL FAASH ;enable ROM2
F4B3:1 CALL $PRINT sprint file name
F4B6:1 PUSH H

F4B7:1 LXT H,NFMSG

F4BA:1 CZ $PRINT ;if ZF=1
F4BD:1 LXT H,ATMSG

F4CO:1 CNZ $PRINT sif ZF=0
F4C3:1 CNZ $TODECS

F4C6:1 RST 7 ;disable ROM2
F4C7:1 POP H '

F4C8:1 RET

F4C9:1

F4C9:1 FILEPR: DB 'File name: ',0,1

F4D6:1 - DB 'FILES',13

F4DC:1 NFMSG: DB ' not found.',13

F4E8:1 ATMSG: DB ' starts at:',0

F4F4:1 END

0 error(s).

;TANDY 200:

;s TANDY 200:
; TANDY 200:

s TANDY 200:

iprint file directory

; TANDY 200:
:TANDY 200:

;search directory

;DE points to top of file
;HL. points to file name

; TANDY 200:

;if ZF=0 print decimal

jone keyword

~27-

ORG 60000

MVI A,130
CALL 921

CALL F4D4H

SHLD F7D2H
CALL F4D4H

CALL FAD4H

NEC 8201A Example:

Polar Engr & Cons (C)1985

0 error(s).

-28-—

0000:1 ;Assembly example
0000:1
0000:1 ORG 62088
F288:1
F288:1 $PROMPT: EQU QO8CH
F288:1 SFINDDO: EQU 0OO089H
F288:1 §$PRINT: EQU 077CH
F288:1 $PRTDEC: EQU 0862H
F288:1 $DIR: EQU 1B73H
F288:1
F288:1 MVI A,129
F28A:1 CALL 1127 ;init ROM2
F28D:1
F28D:1 AGAIN: LXI H,FILEPR _
F290:1 CALL F992H ;enable ROM2 .
F293:1 CALL $PROMPT ;get user input N
F296:1 CPI 1 .
F208:1 CZ $DIR sprint file directory
F29B:1 RST 7 ;disable ROM2
F29C:1 JZ AGAIN
F29F:1
F29F:1 ;DE points to input buffer
F29F:1 PUSH D
F2A0:1 LXI H,0
F2A3:1 SHLD FBD2H ;don't exclude any from search
F2A6:1 - CALL F992H senable ROM2
F2A9:1 CALL $FINDDO ;search directory
F2AC:1 RST 7 sdisable ROM2
F2AD:1 POP D
F2AE:1 XCHG ;DE points to top of file
F2AF:1 ;HL, points to file name
F2AF:1 RC _ sbad file name
F2B0:1 CALL F992H senable ROM2 -
F2B3:1 CALI, $PRINT ;print file name
F2B6:1 PUSH H
F2B7:1 LXI H,NFMSG
F2BA:1 CZ $PRINT sif ZF=1
F2BD:1 LXT H,ATMSG
. F2C0:1 CNZ $PRINT 1if ZF=0
F2C3:1 CNZ $PRTDEC ;if ZF=0 print decimal
F2C6:1 RST 7 ;disable ROM2
F2C7:1 - POP H
F2C8:1 RET
F2C9:1
F2C9:1 FILEPR: DB 'File name: ',0,1 ;one keyword
F2D6:1 DB 'FILES',13
F2DC:1 NFMSG: DB ' not found.',13
F2E8:1 ATMSG: DB ' starts at:',0
F2F4:1 END

ROM2 Routine Specifications

iy Lo

The routine descriptions on the following pages explain the register input

conditions and output results.

Use these descriptions as a guide. Use the

debugger on small test programs if further clarification is needed.

Registers:

A register (8 bit)

BC

register pair (16 bit)

DE register pair (16 bit)

HL

register pair (16 bit)

Carry flag (1 bit)
Zero flag (1 bit)

ok
io
in
ot

Register Usage Key:
—— destroyed (not used as input)
— 1input and output
~— not used (not changed)
— value used on input (not changed)
— result generated as output (not used as input)

Current output device:

ARBCDEHL Cf zf
XX -
XX
xx
XX
XX
XX

If memory location FD85H (Model 100), F885H (TANDY 200) or FC85H (NEC
8201A) is O then the current output device is the LCD screen, otherwise it

is

the parallel printer port.

-30-
Arithmetic: R BC

$COMPAR: O0410H (1040) o,
Cf<=1 if DE<w[HL]
Z2f<{=1 if DE=w[HL]

Compares the unsigned integer in DE with the unsigned integer

$DECPHL: O40AH (1034) *E
Cf<=1 if DECHL
Zf<=1 if DE=HL

Compares the unsigned integer in DE with the unsigned integer
$DEMNHL.: O44BH (1099) ** o,
HL<=DE-HL

Cf<=1 if DE>=HL
Subtracts the unsigned integer in HL from the one in DE.

$INDEX: O0421H (1057) in ..
HL<=w[HL+2%A] »
Loads HL through HL+2*A. (A must be in the range 0O to 127.)

$INDEX1: 0853H (2131) io ..
A<=b[HL+A+2]
HL<=w[HL)+b[HL+A+2]

Loads HL through the byte table.

$NEGATE: O0400H (1024) : ve s
HL<=-HL
$OFFSET: O418H (1048) in ..
HL<{=HL+A

String manipulation: AR BC
$COPY: 0456H (1110) io .. i
s[HL]<=" ' (for A number of characters)
s[HL]<=s[DE] -
DE<=e(s[DE])
HL<=e(s[HL])

in in
wlHL].
in in

in HL,

in io

“ew iO

es 10

.+ 10

«e 10

Copies the string starting at DE to the address in HL. (Lower case

characters translated to upper case.)

$COPYID: 0531H (1329) e oe
i[HL]<=i[DE]
Copies the indentifier starting at DE to the address in HL.

$CPYBLK: 0048H (72) in ..
A=>number of bytes to copy
blk[HL]<=blk[DE]

Copies the block starting at DE to the address in HL.

$FILL: 042DH (1069) in in
blk[HL]<=A (for BC number of characters)

$XCHBLK: 0056H (86) in ..
A=>number of bytes to exchange
b1k[HL]<=blk[DE] while blk{DE]<=blk[HL]

Exchanges the block starting at DE with the block starting at

in in

in in

e 1in

in in

ot

ot

LK

ot

Hok

ke

-31=

String compare: AR BCDE HL Cf Zf
ok

$COMPID: 0542H (1346)
Cf<=1 if i[DE]<i[HL]
2£<=1 if i[DE]=i[HL]
Compares the identifier starting at DE with the one starting at HL.

.o in in ot ot

$FINDCH: 0450H (1104) in io 01
HL, advanced until b{HL]=A
Searches starting at HL for the value in A.

$FINDEN: 0525H (1317) . : R 1
HL<=e(i[HL])
Advances HL to first character past the identifier that starts at HL.

tr e

$FINDID: 0498H (1176) ¥ L., .. 10 0 ot

Advance HL to first "non-blank"

Zf<=1 if end-of-line reached X
Advances past no more than one comma. End-of-line characters are any one
of: null (ASCII 0), cr (ASCII 13), eof (ASCII 26), or semi-colon (ASCII
59). Tabs (ASCII 9) are treated like blanks.

$FINDNS: O4BCH (1212) *¥* 10 0 ot
Advance HL to first "non-blank"
Zf<=1 if end-of-line reached

Functions exactly like $FINDID: except that HL is incremented by one before
the first test, and commas are always "non-blank".

$FINDSP: 0489H (1161) *¥ io ** ot
Advance HL to first "space"
Zf<=1 if end-of-word reached

A "space" is either a blank (ASCIT 32), a comma (ASCII 44), or a semi-colon

(ASCII 59). End-of-word occurs if the "space" character reached is a comma
or a semi-colon.

$LEN: 043BH (1083) - 7 © .. 0t .. in
BC<=length of n{HL]
A null (ASCII O) terminates the string.

$NXTLIN: Q4C3H (1219) % L. .. 10 ® ot
HL. advanced to next line :

Zf<=1 if end-of-file reached -

- Advances to the character right after the end-of-line characters (er 1f).
When an eof (ASCII 26) is encountered, the Zero flag is set,

$NXTWRD: 04D2H (1234) _ ‘ FE e ee 10 0 ot
HL advanced to next word
Zf<=1 if end-of-line reached
Advances to the next word by calling $FINDSP followed by SFINDID., See
those routines for more information.

~32-

String conversion: : | AR BC DE HL Cf Zf

$FRANYS: O0719H (1817) *#* ., ot in ot O
DE<=value of constant in s[HL}
Cf<=1 if invalid constant
Calculates the value of s[HL] by evaluating the constant in the string
s{HL]. This constant may be decimal, hexadecimal, octal, or binary.

$FRBINS: O6BDH (1725) ** ., ot in ot O
DE<=binary value of s[HL]
Cf¢=1 if invalid binary value

The last character in the string s[HL] may be a B.

$FRDECS: 0675H (1653) ** ,.o0otin ot O
DE<=decimal value of s[HL]
Cf<=1 if invalid decimal value

The last character in the string s[HL] may be a D.

$FREXPS: OOADH (173) * .,y 0ot in ot 0O

DE<{=value of expression n[HL]

Cf<=1 if invalid expression
Calculates the value of n{HL] (terminated by a null, cr, semi-colon, or
eof) by evaluating the algebraic expression in the string n[BL]. This
expression may contain decimal, hexadecimal, octal, or binary constants.
The addition, subtraction, multiplication, division, and shift operators as
well as parentheses are allowed.

$FRHEXS: 0646H (1606) ** ..ot in ot O
DE<=hexadecimal value of s[HL]
Cf<=1 if invalid hexadecimal value

The last character in the string s[HL] may be an H.

$FROCTS: O6E9H (1769) ** ,. 0ot in ot O
DE<¢=octal value of s[HL] '
Cf<=1 if invalid octal value

The last character in the string s[{HL] may be an O.

$TOBINS: OSDEH (1502) ’ e wa in il'l e s
s[BL]<=binary string form of DE
When D<>0, the binary string gets 16 digits, otherwise it gets 8 digits.

$TODECS: 0596H (1430) es =+ in in s e
- s{HL]<=decimal string form of DE
. All leading zeros are suppressed,

$TOHEXS: 056BH (1387) o ee eedindin
s[HL]<=hexadecimal string form of DE

When D<>0, the hexadecimal string gets 4 digits, otherwise it gets 2
digits,

$TOOCTS: OSFFH (1535) se es in in ., ..
s[HL]<=octal string form of DE
When DE>511, the octal string gets 6 digits, otherwise it gets 3 digits.

$TO4HXS: 0625H (1573) ee es in in ee e
s[HL]<=hexadecimal string form of DE
Always 4 digits in the string.

LCD and printer output: AR BC DE HL Cf zf
- (The routine $BRKCHK is called by all of these routines.)
$LCDOUT: O7SEH (1886) se ss oo iD .. .,
- LCD screen<=s[HL]+next character

Sends the string starting at HL plus its non-string terminating character
to the LCD screen.

$LPTOUT: 0763H (1891) ee s s in
printer<=s[HL]+next character .
Sends the string starting at HL plus its non-string terminating character
- - to the. printer.

se =

$OUTCHR: 0794H (1940) in e oo oo e s
LCD screen or print<=A
Sends the character in A to the current output device. Carriage returns
are printed with line-feeds.

3

-~ $PRINT: 077CH (1916) ee ss se in L. ..
LCD screen or printer<=s[HL}+next character
Sends the string starting at HL plus its non-string terminating character
_ to the current output device.

$PRTCHR: 069DH (1693) in o0 o0 ¥ FF Ak
LCD screen or print<=A
Sends the character in A to the current output device., When the character
is unprintable, print a dot instead.

$PR’I‘CR: 0825H (2085) "8 49 se e ae o
Sends a cr (ASCII 13) to the current output device.

$PRTDEC: 0862H (2146) s oo in ., e aa
LCD screen or print<=DE in decimal string form
Sends the decimal encoding to the current output device. Leading zeros are
suppressed. '

_ $PRTDOT: 081FH (2079) e ee ss e e s
Sends a period (ASCII 46) to the current output device,

$PRTHEX: 086CH (2156) ee oo in .. e o

LCD screen or print<=DE in 2 or 4 digit hexadecimal string form
Sends the two or four digit hexadecimal encoding to the current output
device. See $TOHEYS.

$PRTSP: 08195 (2073) as se 20 Be . e .n
Sends a space (ASCII 32) to the current output device.

$PRTTAB: 0813H (2067) et sa se sa e ve
Sends a tab (ASCII 9) to the current output device,

$PRTAHX: 0876H (2166) es as in .. e =

LCD screen or print<=DE in 4 digit hexadecimal string form
Sends the four digit hexadecimal encoding to the current output device.

~34-

Keyboard input: AR BC DE HL Cf Zf
$BUFTST: OOBOH (176) * L, .. i0 0 ot

HL<{=advanced to next input word
Zf<{=set if buffer is empty
Checks for pending input in the buffer.

$GETVAL: 0095H (149) ¥ ., iodio dio 1

s[DE}=>prompt string

DE<{=destroyed

HL=>default user value

HL<{=user value

Cf£=>0:prompt only if input buffer is empty

Cf=>1:always prompt for new input

Cf<=1 if bad expression entered
The string starting at DE must be terminated by two zero byte values.
Example prompt string

DB 'Enter a value: ',0,0
When the user enters just a cr or a comma, the HL value 1nput to the
_routine is returned as the user value.

$PROMPT: OO80H (128) ' "ot .. Ot i0 ¥ ot

A<=index of keyword matched with user input

DE<{=address of user input (input buffer)

s[HL]=>prompt and keyword string

HL<{=destroyed

Z2f<=1 if no keyword was matched
Here is a sample prompt and keyword string.

DB 'Okay? ',0,2,'YES NO',13
If the user enters YES then the keyword index returned in A would be 2. If
NO was entered then A would be 1 and if neither was entered then A would be
0. The general form of the prompt and keyword string is:

DB 'prompt',0,n, 'keyw_n ... keyw 2 keyw 1', 13
A single blank is used to separate keywords and the final byte is always
13, This routine lists the keywords for the user when a 7 is entered, if

'n' is not zero.

$SETINB: 00AlH (161) . "es ee in ., se e
input buffer<=s[DE]
A531gns the string starting at DE to the 1nput buffer, The next time input
is retrieved by a $PROMPT routine the user won't be asked for any input
because the input buffer already has some.

Files (.DO): _ AR BC DE HL Cf Zf
$COMPDO: 1B79H (7033) ** ot ot ¥ ot ot

BC<{=number of bytes that were the same
DE<=number of whole lines matched
Cf<¢=1 if files are different
Zf<{=1 if user aborted compare

Prompts the user for two files to compare.

$COPYDO: 1B76H (7030) R Okk Rk xE op WX
Cf<=1 if out-of-memory
Prompts the user for a file to copy and a new file to copy into.

$DIR: 1373H (7027) -.e LN -8 - e LN] - e
Prints the directory of RAM files with sizes to the current output device.

—35-

Files (.DO): continued AR BC DE HL Cf Zf
$FILLEN: 008CH (140) # . ot in kF wx
DE<=file length :

HL=>directory address
$FINDDO: 0089H (137) ¥ ., 10 ot ot ot

blk[DE]=>file name

DE<=file's directory address

HL<{=file's top address

Cf<=1 if file name is invalid

Zf<=1 if file is not found
Searches the directory for a .DO file, The word at location FCD2H (Model
100), F7D2H (TANDY 200) or FBD2H (NEC 8201A) contains the directory address
excluded from the search. If 2F=1 then HL will be zero.

$INNAME: 0083H (131) #% . io ot *% or
DE=>exclude this directory address

DE<=input file's directory address

HL<{=input file's top address

Zf<=1 if user only typed ENTER (no input file)
- Prompts the user for an input file name,

$KTLLDO: OOA4H (164) : ee we wo din ..
HL=>file's directory address

$MAKHOL: OO8FH (143) *¥¥ in .. in ot
BC=>number of bhytes to insert

HL=>insert gap in file starting at this address

Cid=1 if out-of-memory

+*
3%

$MASDEL: O0AAH (170) : : ® in ,, in ** 0
BC=>number of bytes to delete
L=>start deleting in file at this address

$OUTNAM: Q086H (134) *¥ ., 10 ot X ot

DE=>exclude this directory address :

DE<=output file's directory address

HL<=output file's top address

Zf<=1 if user only typed ENTER (no ocutput file)
Prompts the user for an output file name. When the file already exists,
the user is prompted for overwrite permission. If Zf=0 then the file
created or overwritten is null.

$SUBS: IB7CH (7036)) ** in in o ** ot

BC=>pattern length , '

n[DE]=>replacement string

HL=>file top

Hl.<{=file end

CF<{=set if out of memory during substitution
Replaces all occurrences of the pattern string with the replacement string
in the file. The memory word at location FD2EH (Model 100), or F82EIl
(Ta0Y 200) or FC2EH (NEC 8201A) contains the pattern string's start
address,

$WRITES: 0092H (146) " es ws 1in do
1 DE]=>string to write
il=>start writing string at this address
Hi <=one past last address written
Wreite - » ciring into a file, This routine does not insert a gap, it
overwiies existing characters.

-36-

Misc: AR BC DE HL Cf Zf
$BITTST: OADSH (1243) io .4 «oin ot O
A=>bit index to be tested
A<{=ig destroyed
HL=>bit string starts at this address
Cf<=1 if the tested bit is zero
A bit string is a sequence of bytes. Each byte contains 8 bits and the
high order bits are indexed first. For example
DB 01000100B, 100000018
Bits at indices 1, 5, 8, and 15 are ones.

~ $BRECHK: 0735H (1845) e se s s e e
Checks for BREAK key or PAUSE key (Model 100/200) or STOP key or CTRL-S
(NEC 8201A). When the PAUSE key or CTRL-S is hit, wait for another before
continuing. When the BREAK key or STOP key is hit, call the break handler.
The default break handler calls the main menu., To override this, store the
desired handler (subroutine) entry address like so

Model 100: TANDY 200: NEC 8201A:

MVI A,CFH MVI A,CFH MVI A,CFH

STA FDBEH STA F8BEH STA FCBEH

LXI H,handler addr LXI H,handler_addr @~ LXI H,handler_addr
SHLD FDBFH SHLD F8BFH . SHLD FCBFH

The subroutine at 'break handler entry addr' is called if the BREAK key or
STOP key has been hit before $BRKCHK is called. When debugging a program

that defines its own break handler, DBG's break handler is still used. To
simulate a BREAK key or STOP key being hit: 1) Hit the BREAK or STOP key.

2) Call the break handler from the debugger,

$HEXTST: 0638H (1592) io ot %k
A<=A-"0" or A<=A-TA'+10 :
Cf<=1 if A is not one of: 0123456789ABCDEF

Checks if character in A represents a hexadecimal digit.

$IDCHAR: O4FDH (1277) . i0 ee oe oo ot O
A<=uppercase of A
Cf<=1 if A is not one of: $0..976A..Z a..z

Checks if character in A is a valid identifier character.

$MON: O0850H (2128) : s ed se we e o
Invokes DBG on the instruction immediately following the call to $MON. A
RST 7 must not follow the call to $MON. (This call should not be
simulated.)

$SHIFT: O0O9BH (155) «s «o in .. in ..

DE=>insert/delete one byte at this address

Cf=>1:insert, Cf=>0:delete
Inserts or deletes bytes in BASIC programs. When this routine is called,
$SHTFTE must be called once at the very end of the assembly program to do
the final clean-up.

$SHIFTE: OO9EH (158) e es se e RN
End of program cleanup for $SHIFT., Must be called at the end of the
assembly program, if $SHIFT has ever been called. This routine also fixes
the RAM file directory when running machine code combined with BASIC
programs.

-37-

Appendix A:; Diagnostic Program

This diagnostic program calculates the check sum of your ROM2, If you are

having trouble with your ROM2 enter this BASIC program and run it. If the

check sum printed does not match the number on the label of your ROM2 then

it may be defective. If you think you have a defective ROM2 please call us
so we can help correct the problem.

Model 100 diagnostic program:

10 CLEAR 256,HIMEM-33

20 FOR I=HIMEM TO HIMEM+32: READ X:T=T+X:NEXT

30 IF T<>3651 THEN 150

40 RESTORE

50 FOR TI=HIMEM TO HIMEM+32:READ X:POKE I,X:NEXT
60 POKE HIMEM+23, (HIMEM+11-32768) MOD 256

70 POKE HIMEM+24,(HIMEM+11)/256

80 IF PEEK(HIMEM+23)+PEEK(HIMEM+24)*256<>HIMEM+11 THEN 150
90 CALL HIMEM

100 GOTO 160

110 DATA 243,17,0,0,33,0,0,62,1,211,224

120 DATA 26,133,111,124,206,0,103,19,122

130 DATA 254,32,194,0,0,175,211,224,251,205

140 DATA 212,57,201

150 BEEP: PRINT"Program entered incorrectly."”

160 CLEAR 256,HIMEM+33

TANDY 200 diagnostic program: (from BANK #1 only)

10 CLEAR 256,HIMEM-33

20 FOR I=HIMEM TO HIMEM+32:READ X:T=T+X:NEXT

30 IF T<>3449 THEN 150

40 RESTORE

50 FOR I=HIMEM TO HIMEM+32:READ X:POKE I,X:NEXT
60 POKE HIMEM+23, (HIMEM+11-32768) MOD 256

70 POKE HIMEM+24, (HIMEM+11)/256

80 IF PEEK(HIMEM+23)+PEEK(HIMEM+24)*256<>HIMEM+11 THEN 150
90 CALL HIMEM

100 GOTO 160

110 DATA 243,17,0,0,33,0,0,62,2,211,216

120 DATA 26,133,111,124,206,0,103,19,122

130 DATA 254,32,194,0,0,175,211,216,251,205

140 DATA 11,71,201

150 BEEP: PRIVT“Program entered 1ncorrectly.

160 CLEAR 256, HIMEM+33

NEC 82014 diagnostic program: (from BANK #1 only)
10 CLEAR 256,62200

20 FOR I=62200 TO 62236:READ X:T=T+X:NEXT
30 IF T<>4554 THEN 120

40 REDTORE

5(FOR 1=62200 TO 62236:READ X:POKE I,X:NEXT
60 FREC ;fZOO

oo Nt PREK(63912)+PEEK(63913) %256

A0 ARDb

g0 e 443,17,0,0,33,0,0,219,161,230,12,246,1,211, 161
10C "ATA 26,133,111,124,206,0,103,19,122

110 savs 454,32,194,7,243,219,161,230,12,211,161,251,201
120 2Ry :PRINT"Program entered incorrectly."

~38~

Appendix B: ASM Error Table

This table explains the various error combinations that can occur when
assembling a program. During pass 1 the assembler dees not print source
lines, so errors found during that pass have no source line context,

During pass 2 the source line is printed immediately prior to the error
message.

Pass 1 Brrors

In use:X:ABCD

Reason: Multiply defined label 'X:', Label 'X:' is used more than once as
a statement label, '

Fix: Change the other 'X:' labels to different names.

In use:X:$

No label:X:$.

Reason: Forward label reference to a MAC statement, The statement '&X:' is
used to invoke macro 'X:' before the macro has been defined.

Fix: Put macro definition 'X:' before the invocation statement '&X:'.

In use:X:$BCD

No label:X:$BCD :

Reason: Label 'X:' is both multiply defined and forward referenced.
Fix: Change the other 'X:' labels and remove forward references.

No label:X:
Reason: Label 'X:' is undefined.

Fix: use 'X:' as a statement label or correct the spelling.

No label:X:$BCD

Reason: Forward label reference in an EQU statement. Label 'X:' is used in
a EQU statement's expression before it is used as a statement label.

Fix: Put the statement label 'X:' before the EQU expression that uses 'X:'.

Bad op.
Qut of memory.

Reason: ORG or DS expression is bad or has a forward reference.
Fix: HMake all ORG and DS expressions correct, and remove all forward
references,

Qut of memory.,

- When: If ?FRE(Q) is less than 256 or _ASM DO is a null file,
- Reason: No more RAM space is available for label table.

Fix: Free up some RAM space by deleting files or changing HIMEM before
reassembling.

Out of memory.
When: If ?FRE(0Q) is greater than 256 and _ASM .DO is not a null file.

Reason: No more macro expansion space is available or infinitely recursive
include file.

Fix: Remove the deeply nested macro reference or the infinitely recursive
file include. The first part of the label table file '_ASM .DO' will
centain the failing expansion, so refer to it for further assistance.

~30-

Appendix B: ASM Error Table (continued)
Pass 2 Errors
&file

Bad file. |
Reason: Include 'file'.DO not found in RAM directory.
Fix: Correct spelling of 'file' or read in 'file' from tape or disk.

Reason: An EQU statement must have a statement label,
Fix: Add a statement label.

MAC
Bad op.
Reason: A MAC statement must have a statement label.
Fix: Add a statement label.

&X:
Bad op.
Reason: No definition of macro 'X:'.
Fix: Add definition of macro 'X:'.
Reason: Macro 'X:' contains a macro definition.
Fix: Do not nest macro definitions.
garbage
Bad op,
Reason: 'garbage' is not an 8085 instruction or an assembler pseudo op.
Fix: Correct the spelling of 'garbage'.

opcode,expr
Bad arg. .
Reason: 'expr' is not a valid algebraic expression or is out of the valid
range for 'opcode'.
Fix: Correct 'expr' so that it is a valid.

opcode garbage
Line too long.
Reason: The text 'garbage' is spurious text.
Fix: Add a missing comment delimiter or correct the spelling of 'opcode'.

opcode
No arg.
Reason: 'opcode' is missing one or two arguments,
Fix: Add the needed args.

opcode,expr
No_arg.
Reason: 'opcode' is missing its second argument.
Fix: Add the second arg.

opcode
PC bad,
Out _of memory.
Reason: Program counter is outside of the HIMEM to MAXRAM-1 range,
Fix: Either move the program's entry address (by changing the ORG
expression), or change HIMEM with the BASIC CLEAR command.

40~

Appendix C: Macros and Ifs

Recursive Macros

Combining IF statements and macro statements allows recursive macros to be
defined., Fach time a macro is invoked from within a macro the current
macro is suspended and the invoked macro is processed., This locks up a
certain amount macro expansion space. For this reason nested macro
substitution may not be possible because of insufficient macro expansion
space. This is a hard limit and may prevent certain complex recursive (or
even non-recursive, but heavily nested) macros from being expanded. Here
is an example of a recursive macro that works, provided the input args are
not teoo many characters long. ' '
BITMASK: MAC

IF #2-1

&BITMASK: #1;#2-1

END

DB (#1).(#2)

END

Invoking the macro like this:
&BITMASK: 1;7

is the same as writing this assembly line:
bB 1,2,4,8,16,32,64,128

Useful IF Statements
The first column shows the situation under which code generation is

desired. The second shows the form of the IF statement needed to obtain
that result. X, Y, and Z represent the expressions to be tested.

x>=0 IF x

x<=0 IF —x

x>0 IF x-1

x<0 IF -x-1

x=0 IFZ x

x>0 IFNZ x

x mod 2=0 IFZ x.15

x mod 2=1 IFNZ x.15

X>=y IF x-y

x>y IF x-y-1

x=y - IFZ x-y

xOy IFNZ x-y

x mod y=z IFZ x-(x/y)*y-=z
x mod y<{>z IFNZ x-(x/y)*y~z
x>=y and x<{=z IF x-y,z-x (requires two ENDs)

x>=y and x<{=z IFZ (y-x).-15 + (x-z).-15
x<{y or x>z IFNZ (x~y).-15 + (z-x).-15

b1~

Appendix D: Example Macros
SAVE: MAC ;jsave all the registers on the stack
PUSH PSW
PUSH B
PUSH D
PUSH H
END
&SAVE: ;all registers saved on the stack
RESTORE: MAC jrestore all registers from the stack
POP H
POP D
POP B
POP PSW
END
&RESTORE: ;all registers restored from the staék
PUSHI: MAC ; push word onto stack
PUSH H ;save HL
LXT 1,#1 ;HL gets #1
XTHL ;HL restored, #1 pushed
END

&PUSHI: 44B4H

ROM2: MAC
CALL FAASH
CALL #1
IFNZ #1-0850H

RST 7
END
END

&ROM2: 0850H

;push 44B4H onto the stack

scall a ROM2 routine

;enable ROM2 (TANDY 200: F4D4H, NEC 8201A:

scall ROM2Z routine

; $MON starts simulating with the standard
+ROM enabled, so don't do a RST 7 for it
;enable the standard ROM

scall $MON

LDAX: MAC ;load A with b[BC], b[DE], or b{HL]
IFZ "#1'-'B'
LDAX B +A<=b[BC]
ELSE
IFZ "#1'-'D’
LDAX D ;A<=b[DE]
ELSE
IFZ "#1'-'8#'
MOV A,M ;A<=b{HL]
ELSE
1&LDAX: #0 ;#1 is bad, flag as a 'Bad op.' error
END
END
END
END
&LDAX: B; ;A<=b[BC}
&LDAX: H; ; A<=b[HL]
&LDAX: L; ;error flagged by macro

F992H)

49—

Appendix D: Example Macros (continued)
STI: MAC ;store byte in memory
PUSH PSW :save AF
IFZ #2
XRA A sA<=0
ELSE
MVI A,#2 s A<=#2
END
STA #1 ;b[#1]<=A
POP PSW ;AF restored
END

SIiD:

SID2:

REP:

MULT':

MREP:

&STI: COUNT:;0 ;b[COUNT: J<=0
&STI: FLAG:;1 ;b[FLAG: J<=1

MAC ;store word in memory
PUSH H ssave HL
LXI H,#1 ;HL<=#1
SHLD #2 sw{HL]<=#2
POP H ;HL restored
END

&SID: TEN:;10 :;w[ADDR:]<=10

MAC sstore word in memory (like SID:)
&STI: #1;(#2).8.-8 ;b{#1]<=low byte of #2
&STI: #1+1;(#2).-8 ;b{#1+1]<=high byte of #2
END

MAC ;jrepeat
IF #1-1
#2
GREP: -1+#0
END
END

&REP: 4;INX H sincrement HL 4 times

MAC smultiple statements on cne line
#1
#2
#3
#4
#5
#6
#7
#8 _
END #9 serror if too many statements

&MULT: INX H;MOV A,M;DCX H

MAC ;jrepeat multiple statements
IF #1-1
SMULT: #2;#3;8#4:#5;#6;#7:#8:#9
&MREP: -1+#0
END
END

&MREP: 2;MOV A,M;CPI 'A';JZ FOUND:;INX H

43—
Appendix E: ASM/DBG Label Table Format

The assembler creates the file _ASM .DO with this format:
CR
label 1 : 4digit hex CR
label 2 : 4digit hex CR

-

- label n : 4digit hex CR
> EOF
Each statement label in the last program assembled has one line in this
file. The labels are organized alphabetically. The value of a macro label
is the address of the macro definition in RAM at the time of the assembly
and may be meaningless after the assembly is completed. This table is used
by DBG for symbol resolution.

Assembler Output File

When the assembler output file option is used, the assembled machine code
is appended to the end of the output file specified. The output file has
the same initial format as _ASM_.DO. The machine codes are appended to the
file two hex characters for each byte., This is the format:

CR

label 1 : 4digit hex CR

label 2 : 4digit hex CR

label n : 4digit hex CR .
> 2digit hex 2digit hex ... 2digit hex EOF
Spaces (ASCII 32) may exist between the last 2digit hex and EOF.

by

Appendix F: | Example Break Handler

The routine $BRKCHK and other printing routines (LCD and PRT) check to see
if the BREAK key (Model 100/200) or STOP key (NEC 8201A) has been hit. TIf
you want your assembly program to do something special (rather than return
to the main MENU) you can override the default break handler with one of
your own. The following program establishes a break handler that causes
the program to return to BASIC when the BREAK key or STOP key is hit.

Model 100/200 example:
ORG 57000

ROM2: MAC

CALL FAA5H ;enable ROM2 ;TANDY 200: CALL F4D4H
CALL #1 scall ROM2 routine

IFNZ #1-0850H o

RST 7 sdisable RCM2

END .

END "

LCDOUT: EQU O75EH

MVI A,129 ;TANDY 200: MVI A,130
CALL 913 ;initialize ROM2 ;TANDY 200: CALL 921

CALL PROG

LXI H,STOP
&ROM2: LCDOUT
RET

STOP: DB 'Stop.’',13

PROG: LXI H,O0
DAD SP .
SHLD STKPTR ;save the entry stack level

MVI A,CFH

STA FDBEH ;TANDY 200: STA FSBEH

LXT H,BREAK

SHLD FDBFH ;TANDY 200: SHLD F8DFH
;jdefault break handler replaced

LXT H,RUNNING
LOOP: &ROM2: LCDOUT

JMP LOOP
RUNNING: DB 'Running.',0

{BREAK handler
BREAK: LHLD STKPTR

SPHL, jreturn to entry stack level
RET ;return out of PROG
STKPTR: DS 2 ;allocate a word for storage

END

Appendix F: Example Break Handler (continued)

NEC 8201A example:

ROM2:

LCDOUT:

STOP:

PROG:

LOOP:

ORG 57000

MAC)

CALL F992H ;enable ROM2

CALL #1 scall ROM2 routine
IFNZ #1-0850H

RST 7 ;disable ROM2

END

"END

EQU O75EH

MVI 4,129
CALL 1127 ;jinitialize ROM2

CALL PROG

LXT H,STOP
&ROMZ: LCDOUT
RET

DB 'Stop.',13

LXT H,0
DAD SP
SHLD STKPTR ;save the entry stack level

MVI A,CFH

STA FCBEH

LXT H,BREAK

SHLD FCBFH ;joverride default break handler

LXT H,RUNNING
&ROM2: LCDOUT
JMP LOOP

RUNNING: DB 'Running.',0

;BREAK handler

BREAK:

STKPTR:

LHLD STKPTR o

SPHL ;return to entry stack level
RET yreturn out of PROG .

DS 2 ;allocate a word for storage

END

45~

—46—
Appendix G:
Syantax

Notation:
a:::=b

[a]

a }*

b

oy

nIH-N o
fa T

Example:

Notation

Exglanation

construct 'a' is defined as construct
use zero or one of 'a'

use zero or n of of 'a' repeatedly
use either 'a' or 'b' once

select a value in the range x to value y (inclusive)
non-terminal syntax construct

terminal syntax char

lb'!

Dec ::= [0..9]* [D] .
means that a decimal constant, Dec, is defined as any sequence of digits,
followed by an optional terminal syntax char D.

Registers, Régister Pairs, and Flags

x<{=expression

X=>y

after completing the instruction (or routine) register,
register pair, or flag 'x' contains the value of
'expression'

before initiating the instruction (or routine) register,

register pair, or flag 'x' must contain input data 'y'

Memory References

b{x]
bik[x]
i{x]
n{x]
s(x]
w[x]

e(ilx])
e(n[x])
e(s[x])

byte value in memory location x

memory block beginning at address x

identifier string beginning at address x

null terminated string beginning at address x -
text string beginning at address x

word value in memory location x and x+1

address of non-identifier char that ends i[x]
address of null char that ends n[x]
address of non-string char that ends s[x]

Char Definitions

Tern.

char

id char
null char
string char

Definition

an ASCII character (one byte)

ASCIT $, 0..9, 7, @, A..Z, _, a..z
ASCIT value O
ASCII values 9, 32,.127

Appendix H: Command Syntax

—47-

CMD) one 11ne Commands.........--......-....----......o.,.....-......-.-...

BREAK or STOP
ENTER

? ENTER
ASM file
ASML file
ASMLN file

] ENTER
11 ENTER

CMD> multiple line commandS.eeeesesesssesoassecaas

ASM ENTER
ASML ENTER
ASMLN ENTER
ASMN ENTER
CH ENTER

COPY ENTER

FEQ ENTER
RN ENTER

ASMN file [[file|/]] ENTER

COPY file file [[Y|N]] ENTER
DBG ENTER

FEQ file file ENTER

FILES ENTER

RN [,num [,num [,num [,num}]}] ENTER

LI B B B BB B B BN BB RO N NN

File: file [[flle /1] ENTER
File: flle [[file|/]] ENTER
File: file [[file|/]] ENTER
File: flle [[flle /1] ENTER
File: f11e ENTER

from: pattern string ENTER

to: replacement string ENTER
File: file ENTER

File: file ENTER

[Rewrite: [Y|N] ENTER]

File: file ENTER

File: file ENTER

F,L,T,S: [num [,num [,num [,num]}]]] ENTER

num::= [BREAK or STOP | null | expr]

Flle: COmmandS.-o----.--.-.---o---..o--o--o-o.o....-----..------....ooo.o.a

? ENTER
FILES ENTER
MENU ENTER

Dm> Commands-.ltbltocoo..!.0'...1....!..0-0....-.c-‘..w...l.n...t--c----.-

BREAK or STOP
ENTER

RAM .DO file ENTER
BREAK or STOP
ENTER

expr ENTER

[expr,]8085 instruction ENTER
expr,DB expr [,expr]* ENTER
expr,DS expr ENTER

expr,DW expr [,expr]* ENTER
? ENTER

CB ENTER

CBS ENTER

CE [expr] ENTER

D ENTER .

EX [expr] ENTER

GE [expr] ENTER

GO [expr] ENTER

IN [expr] ENTER
L [expr] ENTER
LBS ENTER

LCD ENTER

LPT ENTER

MAP [expr] ENTER
MENU ENTER

N [expr] ENTER
OUT [expr] ENTER
RUN ENTER

S [expr] ENTER
SE [expr] ENTER
SKP ENTER

TN ENTER

TY ENTER

ASM Statements...-....-.....--...;..............-...........;..........---.

EOF

[label:] CR

[label:] 8085 instruction CR
[label:] DB expr [,expr}* CR
[label:] DS expr CR

{label:] DW expr [,expri* CR
[label:] ELSE CR

[1label:] END CR

label: EQU expr CR

IF expr [,expr]* CR
:} IFNZ expr [,expr]* CR

IFZ expr [,expr}* CR
MAC CR

ORG expr CR

&RAM .DO file CR

¯o label: [arg [;arg]*] CR
&&RAM .DO file CR

&¯o label: [arg [;arg]*] CR

48—

Appendix I:

‘Expression Syntax

All expressions are processed from left to right. The following is a BNF
he expression syntax. The expressions allowed by ROM2 are

definition of t

essentially the same as those allowed by BASIC.

BNF syntax defi

ntion:

expression ::= primary [operator primary]*

primary ::= [=]* value

value ::= $

constant ::= h

hex ::= [0..9 | A..F | a..f }J* (range:
dec ::=1] 0.,.9 J* (range:
oct :=[0..7]* (range:
bin ::= [0..1]* (range:
ascii ::= asciichar [asciichar]
asciichar

label :

operator ii= + | - | *

Operator preced
highest
middle
lowest

Operator evalua

ences;
: unary negation

PC | constant | label [:] | (expression)
ex H] dec [D] [oct O] bin B[' ascii '

0. .FFFFH)

0..65535D)
0..1777770)
0..1111111111111111B)

::= ascii values: 9 [32,..38 | 40..126 | 128..255
:=[$Io..gl‘i’}elA..ZI‘_la..Z]*g .

i

: multiplication, division, and shift

: addition and subtraction

tion (valid result range):

-X : unary negation (no overflow possible)

x+y: signed addition (range: -32768..32767)

x~y: signed subtraction (range: -32768..32767)
x*y: signed multiplication (range: -32768,.32767)
x/y: signed division (range: -32768..32767)

(divide by zero yields overflow)

x.y: shift (no overflow possible, y range: -16..16)

Shift operator definition (x.y):
If y>0 then shift x y bits left else shift x -y bits right. Zero bits are
shifted in. (The low 16 bits of the integer formula x*(2%%¥y) is an)
equivalent definition.) Example shift operations:

ABCDH.-8 yields ABH
ABCDH.8 yields CDOCH
ABCDH,8.-8 yields CDH
ABCDH.-8.8 yields ABOCH

21,2 yields 84
21.-1 yields 10

~49-
Appendix J: DBG Simulation Examples (Model 100)

These example command sequences operate on this program. Use TEXT to enter
it into a file named PROG.DO. The ORG value can be changed to a different
value, if 62900 is not suitable,

ORG 62900

PROG: 1XI D,-2 ;entry to main program
- LXI H,2
CALL B
B _DONE: DAD D
EXIT: RET

B: MVI B,0 sentry to subroutine B
LOOP_B: CALL C s;loop 10 times on five instructions
INR B
MOV A,B .
CPI 10 >
JNZ LOOP_B
RET

;jentry to subroutine C
;loop 248 times on four instructions

C: MVI
LOOP_C: INR
MOV
CPI
JINZ
RET

00
800(') o
v
]

Enter BASIC and allocate user high memory area,

Ok
CLEAR 256,62900 (use your ORG value, if different)

Assemble the program.

Ok ’

(function key 6

CMD> ASMN PROG

Polar Engr & Cons (c)1985
0 error(s).

Enter DBG,

Ok

{(function key 6)

CMD> DBG :

Polar Engr & Cons (c)1985

FDBC CALL FAAS Z NC PE P SP=F160,1E20
A=04 BC=00BE.50 DE=0000.C3 HL=0850.62
DBG> DBG command

Each of the following examples assume that you have just entered DBG

1) CALL PROG * immediate assembly command executes PROG,
returns to FD8CH
2% CE PROG * stacks FD8CH, jumps to PROG

ouT simulates PROG, executes B, returns to FDSCH

=50)-

Appendix J: DBG Simulation Examples (Model 100--continued)
3) CE PROG * gtacks FD8CH, jumps to PROG
N3 : simulates three instructions, stops at B
4) CE PROG * gtacks FD8CH, jumps to PROG
IN simulates three instructions, stops at B
5) CE PROG * stacks FD8CH, jumps to PROG
1B set break point 1 at B
GE simulates three instructions, stops at B
6) CE PROG * stacks FD8CH, jumps to PROG
1B set break point 1 at B
GO simulates three instructions, stops at B _
(DBG simulates the jump part of CALL B and
encounters the break point) '
7) CE PROG * stacks FDBCH, jumps to PROG
53 simulates two instructions, executes B, (three
total) stops at B_DONE)
8) CE PROG * stacks FD8CH, jumps to PROG :
SE 3 simulates two instructions, simulates B and C,
(three total) stops at B_DONE (takes 10 seconds)
9) CE PROG * stacks FD8CH, jumps to PROG
IN simulates three instructions, stops at B
ouT simulates B, executes € 10 times, stops at B _DONE
10) CE PROG * stacks FD8CH, jumps to PROG
IN simulates three imstructions, stops at B
S 5*10+2 simulates 42 instructions, executes C 10 times,
_ (52 steps) stops at B_DONE
11) CE PROG * stacks FD8CH, jumps to PROG
N 3 simulates three instructions, stops at B

N 2410%(5+2+248%4)

simulates 9992 instructions, stops at B_DONE
(takes 10 seconds)

12) CE PROG * stacks FD8CH, jumps to PROG
IN 2+10%2 simulates thru 22 CALLs and RETs, stops at B_DONE
{(takes 8 seconds)
13) CE PROG * stacks FD8CH, jumps to PROG
IN 2 simulates thru two CALLs, stops at C
ouT 2 simulates C once, simulates B, executes C nine
times, stops at B DONE (takes 1 second)
14) CE PROG * gtacks FD8CH, jumps to PROG
' 1 B_DONE set break point 1 at B_DONE
GE simulates PROG, B, and C, stops at B_DONE (takes
_ 10 seconds)
15) CE PROG * gtacks FD8CH, jumps to PROG
1 B DONE set break point 1 at B DONE
GO simulates PROG, executes B, stops at B _DONE
16) CE PROG * stacks FD8CH, jumps to PROG
1C set break point 1 at C
2 EXIT set break point 2 at EXIT
GE simulates five instructions, stops at C
GE 10 simulates thru-nine C break points, stops at EXIT
{takes 10 seconds)
F7) CE PROG * stacks FD8CH, jumps to PROG
P set break point 1 at C
A LXLT set break point 2 at EXIT
&0 simulates PROG, executes B, stops at EXIT (CALL C

is executed thus hiding the break point on C)

-51—

Appendix J: DBG Simulation Examples (TANDY 200)

These example command sequences operate on this program. Use TEXT to enter
it intoe a file named PROG.DO. The ORG value can be changed to a different
value, if 61000 is not suitable.

ORG 61000

PROG: LXI D,-2 jentry to main program
LXI H,2
CALL B

B DONE: DAD D

EXIT: RET

B: MVI B,0 sentry to subroutine B
LOOP_B: CALL C tloop 10 times on five instructions
INR B
MOV A,B .
CPI 10 '
JNZ LOOP_B
RET

C: MVI C,0 ;entry to subroutine C
LOOP_C: INR C ;loop 248 times on four instructions
MOV A,C
— CPI 248
JNZ LOOP_C
RET

Enter BASIC and allocate user high memory area.

Ok .
- CLEAR 256,61000 (use your ORG value, if different)

Assemble the program.

Ok

(function key 6)
CMD> ASMN PROG
Polar Engr {(c)1985
0 error(s).

Enter DBG,

Ok

(function key 6)

CMD> DBG

Polar Engr (c)1985 .

F88C CALL F4D4 Z NC PE P SP=EB28,2906
4=04 BC=00BE.50 DE=0000,C3 HL=0850.08

DBG> DBG command

Each nt the following examples assume that you have Jjust entered DBG,
PR S & * immediate assembly command executes PROG,
returns to F88CH
2, Coooend * stacks F88CH, jumps to PROG

simulates PROG, executes B, returns te FS88CH

-

~52-

Appendix J:

DBG Simulation Examples (TANDY 200—continued)

3) CE PROG * gtacks F88CH, jumps to PROG
N3 simulates three instructions, stops at B
4) CE PROG * stacks F88CH, jumps to PROG
IN simulates three instructions, stops at B
5) CE PROG * stacks F88CH, jumps to PROG
. 1B set break point 1 at B
GE simulates three instructions, stops at B
6) CE PROG * gstacks F88CH, jumps to PROG
1B - set break point 1 at B
GO simulates three instructions, stops at B
(DBG simulates the jump part of CALL B and
encounters the break point)
7) CE PROG * gtacks F88CH, jumps to PROG
53 simulates two instructions, executes B (three
total) stops at B _DONE
8) CE PROG * stacks F88CH, jumps to PROG ‘
SE 3 simulates two instructions, simulates B and C,
(three total) stops at B DONE (takes 10 seconds)
9) CE PROG * stacks F88CH, jumps to PROG
IN simulates three instructions, stops at B
ouT simulates B, executes C 10 times, stops at B _DONE
10) CE PROG * stacks F88CH, jumps to PROG
IN , simulates three instructions, stops at B
S 5*10+2 simulates 42 instructions, executes C 10 times,
(52 steps) stops at B _DONE
11) CE PROG * stacks F88CH, jumps to PROG
N 3 simulates three instructions, stops at B

N 2+410%(5+24248%4)

CE PROG

simulates 9992 instructions, stops at B_DONE
(takes 10 seconds)

12) * stacks F88CH, jumps to PROG
IN 2+10%2 simulates thru 22 CALLs and RETs, stops at B_DONE
(takes 8 seconds)
13) CE PROG * stacks F88CH, jumps to PROG
IN 2 simulates thru two CALLs, stops at C
ouT 2 simulates C once, simulates B, executes C nine
times, stops at B DONE (takes 1 second)
14) CE PROG * stacks F88CH, jumps to PROG
1 B_DONE set break point 1 at B_DONE
GE simulates PROG, B, and | C, stops at B DONE (takes
10 seconds)
15) CE PROG * stacks F88CH, jumps to PROG
1 B_DONE set break point 1 at B_DONE,
GO : simulates PROG, executes B, stops at B DOVE
16) CE PROG * stacks F88CH, jumps to PROG
1C set break point 1 at C
2 EXIT set break peint 2 at EXIT
GE simulates five instructions, stops at C
GE 10 simulates thru nine C break points, stops at EXIT
(takes 10 seconds)
17) CE PROG * stacks F88CH, jumps to PROG
1C set break point 1 at C
2 EXIT set break point 2 at EXIT
GO simulates PROG, executes B, stops at EXIT (CALL C

is executed thus hiding the break point on C)

=53~

Appendix J: DBG Simulation Examples (NEC 82014)

These example command sequences operate on this program. Use TEXT to enter
it into a file named PROG.DO. The ORG value can be changed to a different
value, 1f 62200 is not suitable, -

ORG 62200

PROG: LXI D,-2 ;entry to main program
LXT #,2
CALL B

B DONE: DAD.D

EXIT: RET

B: MVI B,0 ;entry to subroutine B
LOOP_B: CALL C sloop 10 times on five instructions
INR B
MOV A,B ’
CPI 10 ;
JNZ LOOP_B
RET

C: MVI C,0 sentry to subroutine C
LOOP_C: INR C ;loop 248 times on four instructions
MOV A,C
CPI 248
JNZ LOOP_C
RET

Enter BASIC and allocate user high memory area.

Ok
CLEAR 256,62200 (use your ORG value, if different)

Assemble the program.

Ok

(function key 6)

CMD> ASMN PROG

Polar Engr & Cons (c)1984
0 error(s).

Enter DRG,

Ok

(function key 6)

CMD> DBG

Polar Engr & Cons (c)1984

FC8C CALL F992 Z NC PE P SP=F160,2010
A=04 BC=00BE.81 DE=0000.C3 HL=0850.08
DRG> DBG command

Each of the following examples assume that you have just entered DBG.

CROG * immediate assembly command executes PROG,
returns to FC3CH
o * stacks FC8CH, jumps to PROG
S simulates PROG, executes B, returns to FC8SCH

-54-—

~ Appendix J:

DBG Simulation Examples (NEC 8201A-——continued)

3) CE PROG * stacks FC8CH, jumps to PROG
N3 simulates three instructiomns, stops at B
4) CE PROG * gtacks FC8CH, jumps to PROG
IN simulates three instructions, stops at B
5) CE PROG * stacks FC8CH, jumps to PROG
1B set break point 1 at B
GE simulates three instructions, stops at B
6) CE PROG * stacks FC8CH, jumps to PROG
1B set break point 1 at B
GO simulates three instructions, stops at B
{DBG simulates the jump part of CALL B and
encounters the break point)
7) CE PROG #* stacks FCBCH, jumps to PROG
S3 simulates two instructions, executes B, (three
total) stops at B_DONE .
8) CE PROG * stacks FC8CH, jumps to PROG .
SE 3 simulates two instructicns, simulates B and C,
(three total) stops at B_DONE (takes 10 seconds)
9) CE PROG * stacks FC8CH, jumps to PROG
N simulates three instructions, stops at B
ouT simulates B, executes C 10 times, stops at B_DONE
10) CE PROG * stacks FCBCH, jumps to PROG '
IN simulates three instructions, stops at B
S 5¥*10+2 simulates 42 instructions, executes C 10 times,
(52 steps) stops at B_DONE
11} CE PROG * gtacks FC8CH, jumps to PROG
N3 simulates three instructions, stops at B

N 2+10%(5+2+248%4)

simulates 9992 instructions, stops at B DONE
(takes 10 seconds)

12) CE PROG * stacks FC8CH, jumps to PROG
IN 2+10%2 simulates thru 22 CALLs and RETs, stops at B DONE
(takes 8 seconds)
13) CE PROG * gstacks FC8CH, jumps to PROG
IN 2 ‘ simulates thru two CALLs, stops at C
OuT 2 simulates C once, simulates B, executes C nine
times, stops at B_DONE (takes 1 second)
14) CE PROG * stacks FC8CH, jumps to PROG
1 B_DONE set break point 1 at B_DONE
GE simulates PROG, B, and C, stops at B_DONE (takes
10 seconds)
15) CE PROG * stacks FC8CH, jumps to PROG
1 B DONE set break point 1 at B_DONE
GO simulates PROG, executes B, stops at B_DONE
16) CE PROG * stacks FC8CH, jumps to PROG
, 1C set break point 1 at C
2 EXIT set break point 2 at EXIT
GE simulates five instructions, stops at C
GE 10 simulates thru nine C break points, stops at EXIT
{(takes 10 seconds)
17) CE PROG * stacks FC8CH, jumps to PROG
1C set break-point 1 at C
2 EXIT set break point 2 at EXIT
GO simulates PROG, executes B, stops at EXIT (CALL C

is executed thus hiding the break point on C)

INDEX

Topic Index
Page

Accessing ROMZ.eeeevecesnesa2D=28
From BASIC.....-------0-.0-.25
From assembly.ieeeeeesesel2b=28

ASM command..seacsssessscsesl2=16

AssembleTreeecssenccsoseaseasal2-10
Error Summarysecceseeesss38-39
ExampleS..cacessess27-28,40-42

44-45,49,51,53
SyNtaXseessesasness12-13,47-48
Break handler..seeceesees36,44=45

Break point.see....18-20,50,52,54

CH command..eesscesesscenansasssd
Command SyntaX.eseeeescscsasseesad?
Comment.s.csesseessceccesanssosnell
Comparing fileSseevesessescaseas8d
Conditional assembly..13,15,40-42
COPY commandssecessecescccssnens?
Current output dev1ce....ﬂ.....29
DBG COMMANGaasoensenneonnesaal?=21
Debugger.cceeesesssaneessceal7=21

ExampleS.cecersessscseeestsd=-54

SyNtaXeseesoesesesel7-20,47-48

Diagnostic programeicecccceceese3? .

Directory.a.........---.........6
Duplicating fileS.ieeeeeeneennaas?
Execution.....-.--....17—18,49—54
Expression SyntaXieesececesssesd8
FEQ command..........--.........8
File SiZ@uicesccannssnsasnssacasd

ROM Routine Index

Page

FILES commandeceeecsessonosasased
IV statement.eeeseses«13,15,40-42
InstallatioN.ieescecececacssaessed=d
Hardware.eecsssessescecesesd~4b
SoftWareessasenesssassasnsasned
Instructionesescececssasessaneal?
LabEI---cnoooooooo.o-o-.----00012
MAC statement..eeee...13-14,40-42
Macro assembler.ivui.ceeeseaessl2-16
NOtaAtiONessessacsccasonennnseesll
Opcodessssnsesseroccncansnceasal?
OvervieW.sesesssecesecsononsnnenl
PatChecececansesancscsesnaneeas
PC (current DBG PC)evesaseseses
Psetdo OPucevnrscerceraseensl2-13
Register StatuUS.eeecescvocseasall
Renumber BASIC program......10-11
RN command..ceccassanscesnes10-11
Example parameterS..esseeecsell
ROM2 routine SpecSeeeeesssss29-36
Simulationeessecesssesl7-18,49-54
Standard ROMeseeeesoesseeess25-26
Statement label.isecssessssesesel?
String substitutioNeecsssceceeses?
8085 inStruCtioNeseesssessssslF-24
Table............'....l..22-24
$ (current ASM PC).ceeeasses12,20

"ASM__.DO formatlo...c-'.‘..'...d’B

Addr Page Addr Page Addr Page
$BITTST...04D8H,..36 $FRDECS...0675H,..32" $PRINT....077CH...33
$BRKCHK...0735H...36 $FREXPS..,.00ADH,..32 $PROMPT. . .0080H,..34
$BUFTST...0OBCH...34 $FRHEXS...0646H...32 $PRTCHR...069DH,...33
$COMPAR...0410H...30 $FROCTS...06F9H..,32 $PRTCR....0825H...33
SCOMPDRO. ..1B79H...34 $GETVAL..,0095H,..34 $PRTDEC...0862H...33
$COMPID,..0542H...31 $HEXTST...0638H...36 $PRTDOT...081FH...33
$COPY.....0456H...30 $IDCHAR...04FDH...36 $PRTHEX...086CH,..33
$COPYDO...1B76H,..34 $INDEX....0421H...30 $PRTSP....0819H...33
$COPYID...0531H...30 $INDEX1...0853H...30 $PRTTAB...0813H,..33
$CPYBLK...0048H...30 $INNAME...0083H...35 $PRT4HX...08761,., .33
$DECPHL...040AH...30 $KILLDO...00A4H,...35 $SETINB...00A1H,...34
$DEMNHL., . .044BH...30 $LCDOUT...075EH...33 $SHIFT....009BH,...36
$DIR......1B731,..34 $LEN......043BH...31 $SHIFTE...009EH,..36
SFILL.....042DH...30 SLPTOUT..,.0763H...33 $SUBS.....1B7CH...35
$FILLEN...008CH...35 $MAKHOL...008FH...35 $TOBINS...05DEH..,32
$FINDCH...0450H,..31 $MASDEL...00AAH,..35 $TODECS...0596H, . .32
SFINDEN...0525H,...31 $MON......0850H...36 3TOHEXS...056BH,..32
$FINDID....04984,..31 $NEGATE..,0400H...30 $TOOCTS...05FFH, . .32
$FINDDO...0089H,..35 $NXTLIN...04C3H...31 $TO4HXS...0625H.,.32
$FINDNS...04BCH...31 SNXTWRD..,04D2H,..31 $WRITES...0092H...35
$FINDSP...0489H,,.31 $0FFSET,...0418H...30 $XCHBLK...0056H...30
$FRANYS...0719H...32 $OUTCHR,...0794H,..33

$FRBINS...06BDH...32

$OUTNAM. . .0086H,..35

