

Approved Product

PRODUCT FEATURES

- Supports Power PC CPU's.
- Supports simultaneous PCI and Fast PCI Buses.
- Uses external buffer to reduce EMI and Jitter
- PCI synchronous clock.
- Fast PCI synchronous clock
- Separated 3.3 volt power supplies for reduced Jitter
- < 500 pS skew between CPU and PCI clocks</p>
- Programmable features:
 - frequency selection
 - margin testing frequency increases
 - Output Enable for board level testing
 - CPU to PCI clock offset selection
- Independent VDD supplies for all output clocks
- 28-pin SSOP 209 mil. package
- Spread Spectrum Technology for EMI reduction
- Internal Crystal Load Capacitors for 20 pF parallel resonant crystal support.

FREQUENCY TABLE (MHz)

				. ,	
FS2	FS1	FS0	CPU	PCI	PCIF
0	0	0	90	30.0	60.0
0	0	1	94.5(90+5%)	31.5	63
0	1	0	66.6*	33.3*	66.6*
0	1	1	70(66+5%)**	35**	70**
1	0	0	100.0(99.6)*	33.3*	66.6*
1	0	1	105.0**	35.0**	69.9**
1	1	0	120.0(119.9)	30.0	60.0
1	1	1	133.0**	33.3**	66.6**

* indicates 0.5 % down spread spectrum capable

** See TEST MODE table for functional definition when SSON is low

TEST MODE. FUNCTIONALITY NOT GUARANTEED OVER FULL TEMPERATURE AND VOLTAGE

Rev.2.1

Approved Product

PIN DESCRIPTION								
Pin Number	Pin Name	PWR	I/O	Description				
2	XIN	VDD	I	These pins form an on-chip reference oscillator when connected to terminals of an external parallel resonant crystal (nominally 14.318 MHz). Xin may also serve as input for an externally generated reference signal. If the external input is used, Pin 3 is left unconnected.				
3	XOUT	VDD	0					
18	PCIF	VDDP	0	66.6 Mhz FAST PCI clock rising edge synchronized to the CPU clock.				
21	PCI	VDDP	0	33.3 Mhz PCI clock rising edge synchronized to the CPU clock.				
17	VDDF	-	PWR	Power for 48 Mhz fixed clock buffer.				
19	VDDPF	-	PWR	Power for FAST PCI (66 Mhz) clock buffer and PCIF (66 Mhz) clock buffer				
22	VDDP	-	PWR	Power for PCI (33 Mhz) clock buffer and PCIF (66 Mhz) clock buffer				
24	CPU	VDDC	0	CPU clock output. See table on page 1 for frequencies.				
13	SSON	VDD	I PU	Spread Spectrum clock modulation pin. Enables Spread Spectrum EMI reduction when at a logic low (0) level. Has an internal pull-up resistor.				
16	48M	VDDF	0	This pin is a fixed frequency 48 Mhz clock output.				
14	OE	VDD	Ι	Output enable. When at logic level low causes all clock outputs to be in a Tri-state mode. Has internal pull-up resistor.				
27	REF	VDD	0	This pin is a Buffered output copy of the crystal reference frequency.				
6, 7, 8	FS[0:2]	VDD PU	I	Frequency selection input pins. See table on page 1 for functionality. Contain internal pull-up resistors.				
4, 10, 12, 15, 20, 23, 26	VSS	-	PWR	Ground pins for the chip.				
5, 9, 28	VDD	-	PWR	Power supply pins for analog circuit and core logic.				
25	VDDC	-	PWR	Power supply for CPU clock output buffer.				
1	VDDR	-	PWR	Power supply for reference clock output buffer.				

A bypass capacitor (0.1 μ F) should be placed as close as possible to each Vdd pin. If these bypass capacitors are not close to the pins their high frequency filtering characteristic will be canceled by the lead inductance's of the traces.

Low Jitter Spectrum Clock Generator for PowerPC Designs. Approved Product

SPREAD SPECTRUM CLOCK GENERATION (SSCG)

Spread Spectrum is a modulation technique applied here for maximum efficiency in minimizing Electro-Magnetic Interference radiation generated from repetitive digital signals mainly clocks. A clock accumulates EM energy at the center frequency it is generating. Spread Spectrum distributes this energy over a small frequency bandwidth therefore spreading the same amount of energy over a spectrum. This technique is achieved by modulating the clock down from its resting frequency by a certain percentage (which also determines the energy distribution bandwidth). In this product, the modulation is 1.0% down from the resting frequency.

TEST MODE CONTROL TABLE

The FS0, 1 and 2 pin table on page 1 defines the function of these pins in setting the output clock frequencies. When the SSO# pin is brought to a logic low state the function of this table is modified. The following table indicates the effect of this signal when the SSON# pin is at low logic level

SSON	FS2	FS1	FS0	CPU	PCI	PCIF	48M	REF
0	0	0	0	90.0	30.0	60.0	48	14.318
0	0	0	1	94.5	31.5	63	48	14.318
0	0	1	0	66.6	33.3	66.6	48	14.318
0	0	1	1	TriState	TriState	TriState	TriState	TriState
0	1	0	0	100 SS	33.3 SS	66.6 SS	48	14.318
0	1	0	1	T2*	T2*	T2*	T2*	T2*
0	1	1	0	120	30	60	48	14.318
0	1	1	1	XIN/2	XIN/4	XIN/2	XIN	XIN

Note: (All frequencies are in Mhz, Xin defines the clock applied to the XIN pin for testing purposes, and SS = Spread Spectrum.) T2 is a IMI device test mode and is not intended for customer use.

Approved Product

MAXIMUM RATINGS

Voltage Relative to VSS:	-0.3V
Voltage Relative to VDD:	0.3V
Storage Temperature:	-65°C to + 150°C
Operating Temperature:	0 °C to +70 °C
Maximum Power Supply:	7V

This device contains circuitry to protect the inputs against damage due to high static voltages or electric field; however, precautions should be taken to avoid application of any voltage higher than the maximum rated voltages to this circuit. For proper operation, Vin and Vout should be constrained to the range: VSS<(Vin or Vout)<VDD Unused inputs must always be tied to an appropriate logic voltage level (either VSS or VDD).

ELECTRICAL CHARACTERISTICS								
Characteristic	Symbol	Min	Тур	Мах	Units	Conditions		
Input Low Voltage	VIL	-	-	1.0	Vdc	-		
Input High Voltage	VIH	2.3	-	-	Vdc	-		
Input Low Current	IIL			-66	μA			
Input High Current	IIH			5	μA			
Tri-State leakage Current	loz	-	-	10	μA			
Dynamic Supply Current	Idd	-	-	100	mA	CPU = 100 MHz		
Static Supply Current	Isdd	-	-	6	mA	OE = 0 (logic low)		
Short Circuit Current	ISC	25	-	-	mA	1 output at a time - 30 seconds		

VDD = *VDDC* = *VDDP* = *VDDF* = *VDDF* = *VDDR* =3.15 - 3.45*V* , *TA* = 0°*C* to +70°*C*

SWITCHING CHARACTERISTICS								
Characteristic	Symbol	Min	Тур	Мах	Units	Conditions		
Output Duty Cycle	-	45	50	55	%	Measured at 1.5V		
Skew (CPU to CPU)	tSKEW1	-	-	±250	pS	30 pF Load Measured at 1.5V		
Skew (CPU to PCI or PCIF)	tSKEW1	-	-	±375	pS	30 pF Load Measured at 1.5V		
Skew (PCI or PCIF to PCI)	tSKEW2	-	-	±250	pS	30 pF Load Measured at 1.5V		
∆Period Adjacent Cycles	ΔPA	-	-	<u>+</u> 250	pS	-		
Jitter Spectrum Long term	ΔPL			<u>+</u> 500	pS	Measured over 10 Seconds		
VDD = VDDC= VDDP = VDDF = VDDF = VDDR =3.15-3.45V, TA = 0°C to +70°C								

Low Jitter Spectrum Clock Generator for PowerPC Designs. Approved Product

TB41 BUFFER CHARACTERISTICS FOR CPU, PCI, PCIF, REF and 48M								
Characteristic	Symbol	Min	Тур	Max	Units	Conditions		
Pull-Up Current Min	IOH _{min}	30	-	39	mA	Vout = Vdd - 0.5V		
Pull-Up Current Max	IOH _{max}	75	-	109	mA	Vout = 1.5V		
Pull-Down Current Min	IOL _{min}	30	-	40	mA	Vout = 0.4V		
Pull-Down Current Max	IOL _{max}	75	-	103	mA	Vout = 1.2V		
Rise/Fall Time Min Between 0.4 V and 2.4 V	TRF _{min}	0.5	-	-	nS	15 pF Load		
Rise/Fall Time Max TRF _{max} - - 2.0 nS 30 pF Load Between 0.4 V and 2.4 V - - 2.0 nS 30 pF Load								
VDD = VDDP = VDDF = VDDF = VDDR =3.15 - 3.45 V , TA = 0°C to +70°C								

CRYSTAL AND REFERENCE OSCILLATOR PARAMETERS Characteristic Symbol Min Max Units Conditions Typ 12.00 Frequency F_{o} 14.31818 16.00 MHz ΤС +/-100 PPM Calibration note 1 Tolerance --ΤS +/- 100 PPM Stability (Ta -10 to +60C) note 1 --ΤA PPM --5 Aging (first year @ 25C) note 1 Parallel Resonant Mode OM --**Pin Capacitance** CP 36 pF Capacitance of XIN and Xout pins to ground (each) V DC Bias Voltage VBIAS 0.3Vdd Vdd/2 0.7Vdd Startup time Ts -30 μS CL Load Capacitance 20 pF The crystals rated load. note 1 --Effective Series -R1 -40 Ohms resistance (ESR) **Power Dissipation** DL mW note 1 0.10 -crystals internal package CO 8 pF Shunt Capacitance -capacitance (total)

For maximum accuracy, the total circuit loading capacitance should be equal to CL. This loading capacitance is the effective capacitance across the crystal pins and includes the device pin capacitance (CP) in parallel with any circuit traces, the clock generator and any onboard discrete load capacitors. Budgeting Calculations Typical trace capacitance, (< half inch) is 4 pF, Load to the crystal is therefore = 2.0 pF Clock generator internal pin capacitance of 36 pF, Load to the crystal is therefore = 18.0 pF

the total parasitic capacitance would therefore be

Note 1: It is recommended but not mandatory that a crystal meets these specifications.

INTERNATIONAL MICROCIRCUITS, INC. 525 LOS COCHES ST. MILPITAS, CA 95035. TEL: 408-263-6300. FAX 408-263-6571 Rev.2.1

= 20.0 pF.

Approved Product

Approved Product

PACKAGE DRAWING AND DIMENSIONS

28 PIN SSOP OUTLINE DIMENSIONS								
		INCHES		MILLIMETERS				
SYMBOL	MIN	NOM	MAX	MIN	NOM	MAX		
А	0.068	0.073	0.078	1.73	1.86	1.99		
A ₁	0.002	0.005	0.008	0.05	0.13	0.21		
A2	0.066	0.068	0.070	1.68	1.73	1.78		
В	0.010	0.012	0.015	0.25	0.30	0.38		
С	0.005	0.006	0.009	0.13	0.15	0.22		
D	0.397	0.402	0.407	10.07	10.20	10.33		
E	0.205	0.209	0.212	5.20	5.30	5.38		
е	0.	.0256 BSC)		0.65 BS	С		
н	0.301`	0.307	0.311	7.65	7.80	7.90		
а	0°	4°	8°	0°	4°	8°		
L	0.022	0.030	0.037	0.55	0.75	0.95		

ORDERING INFORMATION						
Part Number	Number Package Type Production Flow					
SG500DYB 28 PIN SSOP Commercial, 0°C to +70°C						

<u>Note</u>: The ordering part number is formed by a combination of device number, device revision, package style, and screening as shown below.

Marking: Example: IMI SG500DYB Date Code, Lot #

