SIBO 'C' Software Development Kit

HC PROGRAMMING GUIDE

Version 2.30

March 1, 1999

(C) Copyright Psion PLC 1990-98

All rights reserved. This manual and the programs referred to herein are copyrighted works of Psion PLC,
London, England. Reproduction in whole or in part, including utilization in machines capable of
reproduction or retrieval, without express written permission of Psion PLC, is prohibited. Reverse
engineering is also prohibited.

The information in this document is subject to change without notice.

Psion and the Psion logo are registered trademarks, and Psion, Psion MC, Psion HC, Psion Series 3, Psion
Series 3a, Psion Series 3c, Psion Siena and PsioraWartare trademarks of Psion PLC.

TopSpeed is a registered trademark of Clarion Software Corporation. IBM, IBM XT and IBM AT are
registered trademarks of International Business Machines Corp. Microsoft ab®DR&re registered
trademarks of Microsoft Corporation. Apple and Macintosh are registered trademarks of Apple Computer
Inc. VAX and VMS are registered trademarks ofiRigEquipment Corporation. Brief is a registered
trademark of Underware Inc. Psion PLC acknowledges that some other names referred to are registered
trademarks.

Contents

INtrodUuCtion 0 the HCo e e e s 1-1..

LI L= (O] (o= o) AU 1-1
SWItChing 0N and Offooiei s 1-1
Switching on for the firSt tiIMe ... 1-1

The DasIC hardWAareoooiii e 1-2
PIOCESSON ...ttt oottt ettt e e e ettt e e e e e e ea e aeae 1-2
INEEINAI MEIMOTY ... it s e e e e e e e e e et bbb eeeeeeas 1-2
SOlid StAtE AISKSISDIS). .. i iieeeeeeeiiiiiitiiis e e e e e e ettt a e e e e e e e e e e eeeerbb s aeeaeaeaeaeeeens 1-2
TYPES OF SSD ttiiiiii e e e 1-2
EXPaNnSIoN MOAUIESoouiiiiiiiiiee e e e e et e e as 1-3
The Fast Serial port and the Cradlecoiiiiiiiiiiii e 1-3
oL ST o] o] Y U PPTPTT 1-4
Caution regarding lithium batteriesccciiii i, 1-4
Yo 12T o PP TPPPPTTR 1-4
L)Y, 010 = T o N 1-5

The DASIC SOftWAIE........vviiiii i 5. 1-
Versions of the HC SOftWAIEouvviiiiiiiii e 1-6
The terms Epoc and Plib eXplained............ooiiiiiiiii e 1-6
GraphiCS WINAOW SEIVETuuu i e e e e e e e e e e e e et s e e e e et e e e eennnas 1-6
MUItI-taSKING KEIMEL e e e e e eens 1-6
Support for asynChroNOUS UO............iiiiiiiiiii e e 1-7
Database support fUNCHIONS.ooeveiii e r e e aeee 1-7
Support for remote filEGESS........ccovvviiie e 1-8
Other ROM-based liDrary SEIVICESoievviiiiii et e e e e s 1-8
Other ROM COMPONENTS.......uuiiiiiiiiiieeeieii e ee e e e et s e e e et e e e e et e e e e eaaa s e e s annnaaeaees 1-9

L1013 (o] 3 1151 o = Ut TN o [P 1-9
Hardware CUSTOMISALIONiiiiiieiiiiieceeii e e e e 1-9
Replacing the built-in Shell..........ccoooorii e 1:-10....
[T 111 T 1 1= o 1-10.....
Reproing the HCoee e e e eees 1-11....
Master SSDS and MaSICRY. eieeriiieee et e e e e e e e e e e e e e ean e 1-12.
Once-off ROM customisation using ROMWIItEe............covevveiiiiiieieieee e 1:12...
Customisation for CoOpy-ProteCtioNnccvvuuiiieiieeiin e 1-12...

Connecting to 0ther COMPULEIScoivie e e e e eees 1-13......
Basics of serial connections to an HC ..o 1-13....
RS232 CONNECLIONS.....eiiiiiiiii ettt 1-13..
Summary of straightforward usage of Link onthe HCocovviiiiiennnnn, 1-13...

WHY NOt MS-DOS ...t e e e e e e e e e e e e e e e e earanaes 1-14...

2 Writing Software for the HC oo r e e e s 2-1

Basic programming CROICES...........uuuuuuiiiiiiie ettt e e e e e e e e e eeeas 2-1
Choice of programming lanNQUAGE.ceeviiiiiiiiiiiiiiie e e 2-1
Standard C (Clib) or PSION C (PliD)vvuuiiiiiiiiiiiieeeeeeceeeeeeies e 2-1
WItiNg the USEr INTEITACEuueii i 2-2
Synchronous or asynCchronOUS PrOCESSINGcvvevvvrrrriiiiiiaieeeeeeeeeeeeeeeerrirria e eeaeeas 2-3

EXAMPIE PrOQIamMS ..coeiieiiiiiiiiiiei ittt e ettt e e e e e e e e e e et et eeeaatbb b s s aeaaeeeeeeeeeeeeenrnnes 2-4
A graphics version of HEllo WOrIdoooviiiiiiiiiii e 2-4
The Gauge apPliCALIONuuuuriiiiiii e e e e e e e 2-5
The need to flush the Window Server buffer............ccoovviiiiiiiiiiiiii e 2-6
Other graphics CallsS IN GAUGE........cooei i 2-6
A suite of line editor FUNCHONS..........uuuiiiiii e 2-6
Full specification of the lined fUNCLONSuuiiiiii e 2-8

LCTe oL = T ot] o] 0= LR 2-9
Device drivers for the HC ... 2-9
Writing a customised Shell ProCESSov i 2-9

Developing applications on restricted-keyboard HCS............coooviiiiiiiiii i, 2-9

GENERAL PROGRAMMING MANUAL

3 HC CommaNnd Shell.......ccooeiiiiiiee e e e e 3:1.....
OVBIVIBW. ...ttt e e ettt oo e ettt e et e et s e e e e etb e e e eetba e eaeeenan 3:1....
BatCh file PrOCESSINGuuniiiiiiii et 3-1
(= 10 ol o TTaTo [o] oo = U 41 SR 3-1
Synchronous programs and asynchronous Programseeuuueeeeninieeeeereeeerrsnennnnnn 3-2
TErMINALING PrOGIAMS .. uttuiii et ee e e ettt eeeett et e e e e e e e et e eaa et et e e e aeeeaaeeeesstrraaaaaaeaaeaaeees 3-2
The command lINE EUITOT.........coiiiiiiieee e e e e e e eeeaae 3-3
Pausing the SCreen diSPlay............oiiiiieiiiiiiiii e 3-3
Additional copies of the Command Shell.............ccoeiiiiiiiiiiiii e, 3-3
Sending commands from @ remote PCcoiiiiiiiiiiiiieeiie e 3-3
More on running programs remMOEIYcoviiiii i 3-4
Auto-terminating and non-auto-terminating Command Shells.............cccccceeeeiiinnnnnn. 3-4
Files and dir€CIOMIESuuuuiiiiieeiiiiiiiiieiie e e e e eeeesnsennn e e eneeee s D, 3-
File IN USE BITOr MESSAGESceiiieiieeeiiiiiiie st e e e e e e ettt s e e e e e e e e eeeaeabbr s aaaaeeaeaeeeeenes 3-4
Default path and current dir€CLOTYoovvuuiiiiiiiiii e 3-5
Specifying file names as command Parameterscoovvvvviviiiiiiiiee e 3-5
More details on filename sSpecifiCationsceiiiiii i 3-6
Specifying paths as command ParametersS.........oooeeeiviiiiiiiiiiiii e 3-6
The requirements Of GENEIalItYiiiiii i e 3-6
Alphabetical liIStINGvviiiiiii e T..... 3-
1\ 7= o] o SO PUPUPTT 3-7
How commands are implemMentedcoooe e 3-7
Set or clear file attributes (ATTRIBUTE)ccvvviiiiiiiiieeeieeeeeeiiiin e 3-7
Set time to auto-swWitCh-0ff (AUTO)ccoiiiiiiiiiiiis e 3-7
Set backlight time-out (BACKLIGHT)uuuiiiiiiiiiee e 3-8
Start battery check program (BATCHK)oiiiiiiiiiiiiiiie e 3-8
Specify battery type (BATTERY) ..ouuiiiiiiiiiee ettt e e e e e e eeeenens 3-8
(O g T Voo [N [[¢=Tel (o] VAN (@1 B) ISR 3-9
Set language file (CONFIG)........uuuuiiiiiiee i e e e e e eeeeaenees 3-9
10670]) VA 11T () I (OO] 1 TSR 3-9
Brief direCtory StING (D)eeeeeiiie e e e e e e e e et eeeaaans 3-10...
Display date and time (DATE)ccouuii i 3-10...
Delete file(S) (DELETE)ciiiiiiiiie et e e e e e e 3-10...
List deViceS (DEVICE)cccuiiii i 3-10...
Full directory listing (DIR)ciiiiiii e e e 3-11..
Display or set environment variable (ENV)ccooviiiiiiiiiiii e 3:11...
L L YL I (0 1) T 3:11...
Format device (FORMAT) .ouuui e e e e e e e e e e et e eees 3-11...
Display free memory (FREE)...........oii oo 3:12....
[L= B o o Lo =TT (S) 3-12..
List device drivers (LDEV).....cc.uuuiieiiiiii e e e et e e e e e e eeaeen 3:12...
Start Link program (LINK)ccoouuiiiiii e e e 3-13..
Configure low battery warnings (LOWBAT)uoiiiiiiiiiieeeeece e 3-13.
List processes (LPROC).........uiii e e e e e e e e e s 3:14.....
List SEgMENLS (LSEG) .vvvuniiiiiiiii ettt e e e s 3-14.....
Display time/date of masterinIASTER)ccovvviiiiiiii e 3:15
Lo T g=Tod (o VA (A7) 3:15...
Control whether the Notifier appears (NOTIFY)....cc.ooviiviiiiniiieein e 3-15...
Enable off-key handling (OFFENABLE)........ccoovvoiiiiiiii e 3:15
T o)V o 1 =Tod (o] VA ({5) 3:15....
Rename file(S) (RENAME)........cccoiiiii e e e e e 3:16.
Resume a suspended process (RESUME).........c.ucovviiiiiiiiieieiiiis e 3-16.......
Set default Path (SET) ... i e 3:16.....
Set time and date (SETDATE) ...uuii it e e 3:16....
Suspend a process (SUSPEND)cooiiiiiiiiiie e e e e e 3:17......
Terminate a process (TERMINATE) ...uiiiiiiiie e ee e e e e e e e e 3:17...
Type ateXt file (TYPE) ..o e e 3-17....
Display software version number (VERSION)ccccuviiiieiiiiiiiieeceeeee e, 3:17...
Wait for a process to complete (WAIT)......uoi i 3:17...
Configure Notifier appearance (WNOTIFY)uoiiiiiiiieiiiiieeeeiiie e 3-18..
What happens when the Command Shell starts ..., 3-18......
When no command liN€ iS PASSEUivveeeeiiiiiiiiiiiie e 3:18......

CONTENTS

4 The HC INthe Cradle.........oouuiiiiiiiiiiee e e e 4-1...
T 1o 0o 1o o RSO PSSSSPPPY 4-1.....

0] A O PP 1. 4-
HArdWare CONMECTIONScoiiiiiiiiiieiie s e e e e et e et a e e e e e e e e e e eeabbba e e e eeeens 4-1
Fitting an ASIC-2 eXpanSioN CaNQ..........coeeeiiiiiiiiiiiiiiisee e eeeeeeeeeenes 4-1
o] 1= T g ole] o g LT ex 1 o] 1 RS 4-2

High speed remote file access using Link software.............ccccevvvviiiiiiieniceeeiiiiinn 4-2
High speed debugging using Link SOftWArE...........cooeeviiiiiiiiiiiiiiiee e 4-3
The PMX/HSS MECHANISI......uuiiiiiii it e e e e 4-3
CoNfIGUIING NSSIAIM.SYS ...ttt e e e e e ettt e e e e e e e e e eeeeeneees 4-3
The PMX: DEVICE AFVEL......iii e et e e e e e e 4-4
More details abOUL PIMX.........uuiiiiieiiiie e e e 4-4
The CRD EVICE AFVEiiiieeiieeeeeeeie ettt e ettt r e e e e e e e e e eeeeeann s 4-5
5 Customising the HC ROMuuuiiiiiiiiiie et e e e e 5:1.....
T foT [0 Tox 1o o RS 5-1.....
SOMeE CAULIONAIY FEMAIKSuuiiiiiiii e e e e e e e e eeees 5-1
Creating an HC MaSter fil€.......eueiiiiiii i 5-2
10NV o] (T T =T o o o ST 5-2
Valid VErsion NUMDEIS........ouiiiiiii e 5-3
The files comMPrisSing the rOMoouiiiii e 5-3
SIZE CONSIAEIALIONS.coiiiieeeeeeei et e e e e e e eeeeae s 4....... 5-
Some possibilities for CUSTOMISALIONooiiiiiiiii s 5-4
AN alternative SNell..... ... i e 5-4
Variant Config fill@S........uuuuiiiii 5-5
Additional files that might be added...........ccoooiiiiiiiiii 5-5
Files that might be omitted............ooiiiiiiii e e 5-5
Customising the WINAOW SEIVELiiiiiiiii i e e 5-5
Creating and uSiNg @ MASIEr SSDuiiiiiiiiii e e e e e e aens 5-6
More details ON MASIEESDS.uuuiiiiie et e e 5-6
To repro numeric keyboard HCS.........cccooiiiiiii i 5-6
(11T €= To [T =T PP 5:7......
Appendix A: Technical SPeCIfiCatiONS..........ccouiiiiiiii e e A-1
Psion Solid State Disks Technical Specification............cccccoevvviiiiiiiiiiiniicieeiiins A-1
Psion HC Technical Specification.............cccoiiiiiiiiiiiiic e A-3
Psion HC RS232/Parallel (printer) module version 1, Technical Specification........ A-4
Psion HC RS232/Parallel (printer) module, version 2, Technical Specification....... A-5
Psion 15 Way to 25 Way converter cable, Technical Specification.............ccccccceeviieeeeeen. A-7
Psion HC MCR /RS232 /TTL RS232 module, (Version 2), Technical Specification A-9
Y [OF 2 B g1 (=] o 7= o= TSR A-9
RS232 / RS232 TTL INLEITACE......ciiiieieiiiiee e A-9
Psion HC RS232/TTL RS232 Interface Technical Specification............ccccceeeeeeeeenn.. A-10
RS232 INtEITACE. .. vutii ittt e e A-11
RS232 TTL INTEITACE. .. vttt e e e e A-12
Psion HC 16550 RS232/TTL RS232 moduleTechnical Specification....................... A-12
RS232 INtEITACE. .. vttt e e e A-13
RS232 TTL INTEITACE. .. vttt et e e e e A-14
Psion HC Bar Code Reader module, (Version 2), Technical Specification A-15
Psion HC RS232 / Bar Code Reader module, Technical Specification A-16
RS232 INtEITACE. .. vveii ittt e e A-16
Bar COOE INTEITACE.oeeiiiiiii e e A-17
Psion HC Modem UK module, Technical Specification...............ccccoeeeevviiinnnnnns A-18
Psion HC Vehicle Interface Box Technical Specification.............ccccceeviiiiiiiiiiieiiine e, A-19
Psion HC Cradle Technical Specification............cccccoeiiiiiiiiii e, A-20
Psion HC Docking Station Technical Specificationccccceevieiiiiiiieeiie e, A-21
T (ol [0 Tox (o] o RO PSSR A-21
Compatibility with Psion HC and RWAN mMachinesccoooovviiiiiiiiiiiii e A-21

GENERAL PROGRAMMING MANUAL

Compatibility with the PSION HC ... A-21
Compatibility with RWAN/PDT220ccoiiiiiiiiiiiiiii ettt A-21
WAIIANTS ...ttt ettt ettt e e e e e e e s e e e e e bbb bbb e e e e e e e e aaaaaaaaaaas A-21
Tol<T a1 1) {Tor=1 i o] o HR PO PPPPPUTTPTPPRTRRRRN A-22
FaSt Charger UNt........ue oottt e e e e e e e e e eeeeeeeessnees A-22
MAIN FEALUIES ...ttt e e e e e e e e e e e e eeebee e A-22
SEALUS INAICALOIS .ttt ettt e e e e e e e s e e b e e e e e e e aaaaaens A-22
Battery Charging oo A-22
Battery Status LED CONAItIONS........uuuuuiiiiiiiieeeceicceeeeeiiies e A-23
Charging both battery PACKSccooiiii e A-23
Battery Fast Charging CONItIONS.uuueiiiiiiiiee e A-23
Disharging prior to charging & capacity measurementooevvvvviiiiiininneeeeeeeenens A-23
L0 g T T o 1 oo IR 110 0= PPPPPUPUPPRRRTIN A-23
L0 g T T o 1 oo IR 110 0= SO PPPPUPPRRRTN A-24
Charging HMITAtIONSiiiiiie e e e e e e e e e e e e eeeeeeeaenees A-24
LIF MOUNTING KL, oetiiiitiiiis it e e e e e e e et s s s s e e e e e e eeeeeeeeeesnnnes A-24
HC/HC-DOS Holster with Socket HOUSING.coiiieviiiiiiiiiiiiiee e A-24
[(O B oot 1q] o] = L1 o] o SRR A-24
12V 2 amp unregulated POWEr SUPPIY.......uuiiiiiieiiiieiiiiei e A-25
Psion LIF - RS232 Cable Technical Specification...............coevvviiiiiiiiiieeiiiieeiiii, A-26
Psion LIF Connector Technical Specificationcccooviiiiiiiiiiiiiiiiiii e, A-27
Pin Definition for LIF -PFS CONNECLAL............ccociiiiiiiiiiiieeeeeeeeeee et A-28
Pin Definition for LIF - RS232 CONNECLAL.........uuuuiiiiiiiiiiiiiiiieeeieeeeee e A-29
DEfiNIIONS ...t e e e e e e et A-29
N O S .ttt 20..... A-
Appendix B: Safety and EmIiSSiONS APPIOVAIS..........iiiiieiiiiiiiiiiiiitiiis e e e eeeeens B-1
Safety and emissions technical terms explained.............cooii i B-1

CHAPTER 1

INTRODUCTION TO THE HC

The HC concept

Combining modular hardware design and the most modern software techniques, the Psion HC range of
computers represents a new approach to computing in the field. HC computers can extend existing
computer networks away from the office, right up to the "front line" - whether that's in a warehouse, on a
sales call, on a maintenance visit, or wherever. Rugged and powerful, HC computers are the mobile
elements of a computer system, ensuring that information held "at base" in the office is timely and
accurate by putting the base directly in touch with the point of action.

The HC has been designed to be integrated into any computer system and to meet any application
requirement: assisting with the making of deliveries, taking of orders, collecting or distributing
information, servicing equipment, and so on.

Every element of the hardware is configurable, from the plug-in megabyte-sized Solid State Disks, to the
internal expansion slots for peripheral devices such as bar code scanners, modems, and magnetic card
readers.

Equally important is the multi-tasking operating system with full graphics and windowing capability.
Applications can make productive use of the various fonts and emphases available, and can even display
and manipulate diagrams, maps, and pictures. The result: software applications that are highly
informative and intuitive to use, and which consequently improve opeieptance and efficiency.

The multi-tasking facilities - unique to the HC range among handheld computers - significantly shorten
software development times and greatly simplify otherwise complex issues ranging from the simultaneous
monitoring of several peripherals - a bar code scanner and a modem, for example - through to
sophisticated process control applications.

Switching on and off

The HC can be switched on or off by means ofdkkorrF key near the top left corner of its front face.
Typically, this key is salmon-coloured - though colour configuration is one of many customisation
measures possible for the HC.

There is no need to "exit" programs before switching the HC off. When the HC is next switched on, all
current programs continue from their previous state. The contents of the internal RAM memory are
preserved throughout the period of being switched off, without any significant current being drawn in the
meantime.

Switching on for the first time

The first time an HC is switched on or immediately following a reset, it will probably displdngest
Pack and press enterhiessage.

This indicates that the HC is searching for a configuration file calleaexec.btf

To by-pass this message and hence accept the default configuratiomspesssc (thepsionkey has
the familiar "cup and saucer" logo: it is usually located near the bottom left of the keyboard). For
keyboards that do not have esc key, sHIFT+c should be typed instead.

The HC in due course presents prompt to indicate that its Command Shell is ready to receive
commands.

11

HC PROGRAMMING GUIDE

The basic hardware

All aspects of the hardware of the HC have been designed with the following goals in mind:
e portability

e ruggedness

« data security

e ease of use

» adaptability

* long battery life.

Processor

The HC has an industry standard 80C86-compatible 16-bit processor, the NEC V30H, that runs at a clock
rate of 3.84MHz.

The HC also contains a humber of proprietary-designed custom-built chipsAalted which are
responsible for many of its more exclusive features. Selddiwvare Referenceanual for more details.

Internal memory

The amount of internal RAM memory on an HC varies from model to model. The basic model, the
HC100, has 128k of RAM; the HC110 has 256k, and the HC120 has 512k.

All models have 256k internal Flash ROM. Because the ROM is Flash rather than "OTP" (one-time
programmable) or "masked", it is possible for its contents to be altered by special techniques, facilitating
additional ROM-based customisation - even down to the level of individual HCs.

Solid state di sks (SSDs)

The standard HC has two solid state disk drives, which are the equivalent of disk drives on a PC. To
access them, open the rear cover by pressing the catch on the left side of the HC (if the catch is locked,
turn it through 180°.) SSDs can be inserted into the disk drives in the top third and the bottom third of the
area enclosed by the cover.

SSDs should be inserted with their upper faces (containing large writing) nearest to the rear cover of the
HC. If you try to insert them upside down, by accident, you will find they don't fit properly into their slots
- so there is no risk of any untoward damage.

The SSD drive near the top of the HC is drive A:, and that near the bottom is drive B..

SSDs give open-ended capacity for data storage in a highly secure and compact form. SSDs can also be
read by other computers in the SIBO range, as well as by PCs equipped with an SSD drive.

The speed of data transfer to and from SSea@mouslyfaster than with floppy disks, and compares
favourably, at 320 kBytes/sec, with even the fastest of hard disks.

There are no moving parts in any SSD, nor in any SSD drive. This is one reason why, notwithstanding the
high performance statistics for SSD data transfer, HC batteries last for as long as they do.

Note that you should never open the rear cover of the HC while any SSD is being accessed by the HC.
Opening the rear cover switches the machine off immediately, and data loss could occur. In any case of
doubt, switch the HC off manually (use the/orr key) before opening the rear cover: this method of
powering down the HC is guaranteed not to lose any data between the HC and its SSDs.

Types of SSD
There are two types of SSBtashandRam Either type of SSD can be used in either HC drive.
RAM SSDs can be overwritten selectively making them ideal for storing frequently altered information.

RAM SSDs when not pugged into an HC require a backup battery to preserve their data. The battery is a
standard miniature lithium cell, with a guaranteed in-use life of one year. It is easily replaced by the user.

A RAM SSD when plugged into an HC will preserve its datifinitely, the one year battery lifetime
refers only to periods in which the SSDhist plugged into an HC - only then does a RAM SSD draw
current from its own battery.

1-2

1 INTRODUCTION TO THE HC

Flash SSDs are a highly secure medium requiring no battery to maintain data integrity. They are ideal for
storing data not intended for frequent editing or revision.

When files on a Flash SSD are deleted or modified the original data is simply marked as "inaccessible".
The result is rather like crossing out entries in a filofax: the entries still occupy physical space. In due
course, the disk may become full up with out-of-date entries. However a Flash SSD can easily be reset to
its original pristine state by "formatting" it. If a Flash SSD is full because unwanted "erased" files are still
occupying space, but the disk also contains some data still wanted, copy all files to another disk (using eg
thecopy ** command of the Command Shell). The erased files are ignored by anygudommand,

so only the data wanted is copied across. The original disk can then be cleared, by formatting it, before
relevant files are copied back on to it.

At the time of writing, Flash SSDs are available up to 2 Mbyte in size and Ram SSDs up to 1 Mbyte. By
the time you read this, Flash SSDs up to 8 Mbyte in size may be available.

Each SSD has a switch so that the data on it can be write-protected. While an SSD is write-protected:
» nothing it contains can be altered or deleted

» the data held on it can only be read.

The write-protection can be removed by setting the switch back to the 'Write' position.

Expansion modules

There is an expansion port at either end of the HC. These can hold a wide variety of interface devices.
Possibilities include:

o RS232/parallel printer port

» barcode reader (complete with wand or CCD/Laser scanner)

* magnetic card reader ("MCR")

* modem

« "combination" devices such as RS232/MCR/scanner.

The two ports are identical, except for their names: "Port A" (at the top end of the HC) and "Port B".

To remove a module from either expansion port, release the rear cover, in the same way as for the SSDs.
Slide the release button next to the module to the UNLOCK position and pull the module out. To replace,
push the module right in and lock the module into position by pushing the catch into the locked position.
The rear cover cannot be closed unless this catch has been set to LOCK.

It is even possible for the contents of an expansion module to be exchanged "in the field". There is no
need to reset the HC before doing this.

The Fast Serial port and the Cradle
The Psion Cradle has been designed to satisfy requirements for;

* secure mounting for the HC

» "hands-free" operation

» battery recharge

» high speed data transfer with a PC.

The Cradle incorporates a security lock to ensure that the HC is held reliably. A trigger loaded spring
release and hand recess guarantees easy insertion and removal.

There is an additional i/o port, the Fast Serial port, on the right side of the machine, for data exchange
and battery charging. It is designed to be connected directly to a Cradle. The high reliability contacts
automatically engage when the HC is placed in the Cradle - no user-made connections are required.

Data is exchanged via the Fast Serial port at up to 1.5Mbits/sec.

The Cradle contains an expansion slot provided to accommodate a high-speed connection to a PC. This
slot can be used, alternatively, for RS232, MCR, or modem modules (among others). See th&hehapter
HC in the Cradlefor more details.

HC PROGRAMMING GUIDE

Power supply
The HC can be powered using rechargeable nickel-cadmium batteries or an optional mains adaptor.

The HC will not switch on if there is no power source, if the batteries are too low, or if the rear door is
open. Power is needed to operate the HC and to maintain the data stored in internal memory. Data stored
on SSDs, however, doesn't rely on the main power source.

On the right side of the machine, under the rubber plug, is a socket labelled POWER. Plug the mains
adaptor into this socket. The red power indicator light will come on. This light indicates that the HC is
being powered by an external source, such as the mains adaptor - even if the HC itself is not switched on.

The HC is also supplied with a small round lithium battery. This is the backup battery. It is essential
because it keeps the internal memory secure if the main batteries are being changed. It should be fitted
before the main batteries. However, the HC cannot be run using only the backup battery.

To see where to fit the backup battery, remove the expansion module at the base of the HC. The positive
side of the battery should face upwards (towards the rear of the HC).

The backup battery should last for approximately one year, provided the HC doesn't spend long periods
with no other power supply. It is recommended that a new backup battery is fitted yearly (if the HC is left
powered only by the backup battery, the battery will last for approximately one month).

The main battery cartridge is stored in the back of the HC, between the two SSD drives under the rear
cover. It contains the rechargeable battefdesnot attempt to disassemble the battery cartridge

To remove the cartridge, switch the machine off and release the back cover as for SSDs, then push and lift
the cartridge. To fit the battery cartridge back into the HC, slide it into place and close the rear cover; the
machine can now be switched on.

The nickel-cadmium batteries can be recharged in several ways:

» leave the sealed cartridge in the HC while powered from the mains - the batteries will be trickle
charged

» remove the sealed cartridge from the HC and plug a mains adaptor into it to recharge the batteries
directly from the mains

» trickle recharge by a standard Cradle
» fast recharge by a Cradle supporting this facility.

The HC can be configured so that, when either battery is low, a warning message will appear.
Independently of this, there are a variety of software methods to monitor the voltages of the batteries.

When the main battery is low, the HC may have enough power to display the screen and accept input from
the keyboard, but not enough to write to Flash disk or access expansion devices. The HC will turn off if an
operation is attempted for which it does not have enough power. New batteries should be fitted (or the
existing batteries recharged) before the operation is tried again.

In order to save power, the HC will by default switch itself off automatically, if left alone for 5 minutes.
The "auto-switch-off" time can be changed to another value, if desired, or the HC set so that it does not
auto-switch-off at all.

Caution regarding lithium batteries

Note that there is a risk of explosion if lithium batteries are fitted incorrd@dysure that the backup
battery is fitted so that, if the bottom expansion port is removed, the face of the battery containing the plus
symbol is the (partly) visible one. (This is the flatter of the two faces.)

Lithium batteries should be replaced only with the same or equivalent type, as recommended by Psion.
Used lithium batteries should be disposed of according to the manufacturer's instructions.

Screen

The normal HC screen is a retardation film LCD 160 pixels wide by 80 pixels deep. In a standard font,
this allows for the display of 9 lines each with around 30 characters. If fewer characters are required to be
displayed, a larger font can be used, to achieve a more striking screen image.

Changing the font is only one example of the graphics support supplied by the resident software.

1 INTRODUCTION TO THE HC

By default, the screen is illuminated by reflected light, using (as throughout the HC) state-of-the-art
technology. In case additional lighting is required, a variant is available with a factory-fitted backlight.
This backlight can be switched on or off whenever the user requires (bearing in mind that there is an
inevitable additional drain on the batteries whenever the backlight is used). Alternatively, the HC can be
configured to switch off the backlight automatically once a given time period has elapsed.

Keyboard
The keyboard features positive travel dished keys with durable legends.

Various keyboard layouts are available, depending on how the HC is to be used. For example,
» a full alphanumeric keyboard (53 standard-sized keys)
» a more limited, number-oriented keyboard (31 larger keys)

» the alphanumeric keyboard can be augmented with special characters used in Scandinavian
countries - these extra characters being accessed waithemodifier key

« alternatively, the alphanumeric keyboard can be augmented with special characters used in mainland
European countries.

The following special keys may also be present:

ON/OFF switches the HC on and off

BACKLIGHT switches the backlight on and off (if one is present)

LCD controls the contrast of the LCD display

MENU under application control

TASK accessed via th&1iFT key: allows for switching between tasks

INFO accessed via th&iFT key: under application control (by default, the voltage
levels of the main and backup batteries are displayed)

F1 throughr4 extra keys under application control

LOCK forces the keyboard into upper case

DEL used to edit typing

ESCOr C (CLEAR) used to clear a line of input or cancel an entry

ENTER terminates a line of input.

PSION an extra modifier key (analogousAor on a PC), recognisable by its familiar

"cup and saucer" Psion logo.

The basic software

The software running on an HC at any one time is a mixture of
« ROM resident core software (the "operating system")

« ROM resident utilities, such as the MS-DOS like Command Shell and the Link communications
software

« application software, from an SSD or internal memory
« library software, again from an SSD or internal memory.

Library software is software that can be re-used by more than one application. It may be written by Psion,
by the application writer, or by a third party.

The effectiveness of library software and application software can be increased considerably by informed
use of the ROM resident software - this software sets the HC apart from its competitors just as much as its
unique hardware does.

See the following chaptewriting Software for the HCfor some initial guide-lines on how to write
applications or library code for the HC.

HC PROGRAMMING GUIDE

Versions of the HC software

Whilst the bulk of the material in this manual holds true for HCs with ROM version humbers less than
1.50, parts of the manual presuppose that the ROM software running on the HC has version number at
least 1.50.

To see which version of ROM software is contained in any HC viypat thes prompt in the Command
Shell. (Alternatively, the version number is displayed following any reset.)

Machines with ROM version numbers less than 1.50 can easily be upgraded, uSiegribpocedure
discussed later in this chapter, in conjunction with a suitable Master SSD.

The terms Epoc and P lib explained

What counts as the operating system of the HC and what counts as an application depends on your point
of view. The services in the HC ROM software that applications programmers can call upon actually
consist of many layers - as the following few sections make clear.

The kernel of the operating system of the HC is knowBpoe See théntroductionchapter of thélib
Referencenanual for a detailed list of the essential characteristics of Epoc.

Epoc contains code to implement ®ié function library - Psion's version of the standard C
programming library, as modified and extended for use by HC programs.

The core ROM of the HC contains considerably more than just the Plib library: for examylimtioey
Serverwhich is responsible for the screen and the keyboard is a completely separate process the code for
which is resident in the ROM.

Hence in response to ther command at thg prompt of the Command Shell, versions numbers will be
given for the HC ROM version number, the Epoc operating system and the Command Shell.

Initially applications programmers will have little need to distinguish between the various components of
the HC operating system. However distinctions do exist and it is necessary to understand them in order to
write more advanced applications.

Graphics window server

The Window Server is ultimately responsible for all graphics output on the HC and is also responsible for
channelling all keyboard input to the appropriate application(s).

The Window Server includes support for basic text printing functions giutheandgets variety - as
used in the Command Shell. However, it is expected that most applications will go beyond this level and
hence take advantage of at least some of the graphics enhancements supported by the Window Server:

« text display in a variety of fonts and font styles (eg bold, italic), including fonts that are proportional
as well as some that are monospaced

« display of characters (or other small icons) ituatom-designedpplication-specific font

« line, box, and poly-line drawing

» area clearing, filling, inverting, and greying

» flashing cursors and other animated displays, including clocks that are automatically updated
» general bitmap and icon manipulation, eg involving maps, markers, and diagrams

« alert dialogs, information status messages, and flashing "busy" indicators.

It is possible to achieve screen displays which update themselves without any annoying flicker, which
scroll smoothly, and which redraw quickly whenever required - in marked contrast to some other graphics
systems.

See thaNindow Server Referencganual for a complete description of the Window Server.

Multi-tasking kernel

From the beginning Epoc was designed as a pre-emptive multi-tasking operating system. It is multi-
tasking in that multiple processes can run concurrently and exchange data dynamically. It is pre-emptive
in that a lower priority process is always interrupted when a higher priority process is ready to run.
Routine processing can alwaysdamt into background the user has something more urgent to attend to.

1 INTRODUCTION TO THE HC

Often an application is best written as two or more components each of which implements part of the
applications overall functionality. Under Epoc these processes can run concurrently and exchange data as
and when required. While one process is sitting idle waiting for an event another process is being run.
When the first process receives the event it too starts ruimmgdiately with no idle waiting for the

second process to complete.

Often the user will require two or more applications to be running at the same time. Under Epoc the user
can ask one application to print a large text file and then use another application for editing a second text
file. The only restriction is that no more than one application may access a given hardware device at a
given time. In the example the first applicationdsessing the serial (or parallel) port. The second is
accessing the screen and the keyboard. Thus there is no conflict.

To switch between applications provided with a user interface the user can presxtkey. This
simply brings the application into the foreground. Applications software may provide additional
mechanisms for bringing applications into the foreground.

Writing various programs separately and then giving the user the opportunity to combine them as required
- depending on circumstance - naturally adds to the attractiveness of a suite of software. For example the
shellcomponent of the operating system - the Command Shell which is supplied with the HC - can easily
be replaced with a third party shell as long as it is given the appropriate sy@$sh(l.imyand fulfils a

few basic functions. The Window Server may also be replaced although this would be a very complex task
and is thus not recommended. Less radically the applications programmer should consider supplying
processes that run alongside the in-built ones and which add to the overall functionality of the HC.

Support for asynchr onous i/o

A central concept that underlies user friendly interfaces is the idea that the computer should not be held
up indefinitely, waiting for an event to complete. For example, the user should always be able to cancel an
aberrant data transfer, or a mistaken print request, without having to resort to resetting the computer.

Part of the support Epoc provides for this is its multi-tasking capabilitiesifege)aAnother part is its
large range osynchronoudo services. Rather than just having a request, for example, to print a line
(and to wait until the line has indeed been printed), there is a request to prindrdliteenotify the
program when the line has been printedving the program free to process other data input in the
meanwhile.

Another reason why asynchronous services are of fundamental importance is that programs often cannot
tell which of two events will be the next one to occur - where the events include not just input from the
user, but also a variety of communications data and other peripheral input. Again, a subprocess may
report that it has finished some lengthy activity, such as scanning a large database; a supervising program
would have to be ready to respond to this notification, as well as being ready for any other kind of data
input. Programs ought to be structured to cope with any of these events being the next one to occur.

Traditionally, function libraries offer poor support for asynchronous services. Not so the Plib function
library that is built into the HC ROM.

Database s upport functions

The Plib file i/o functions can be used for any variety of data formats on file, and HC programmers can
choose whatever they feel most comfortable with.

However, much can be said in favour of the Dbf file format:
» ROM-resident code provides a rich set of services to simplify access to files of this format.

» itis designed with Flash-friendliness as a high priority, with incremental file modification as
individual records are updated.

» services such as random and sequential access are both highly optimised.
» other services such as merging and compressing databases are easy to use.

For larger or more complicated databases, programmers may consider us8Miflndexed
Sequential Access Methdibrary that is separately available to support program development. The
ISAM routines mesh closely with the Dbf services in Plib. Se¢SA# Referencenanual for more
details.

HC PROGRAMMING GUIDE

Support for remote file access

In contrast to just supporting remote fitansfer- a notion familiar to most users of computers - the HC
operating system supports the more radical and far-reaching notion of rematedi$sin many
situations, remote file access is altogether the more convenient way for software on one computer to
interact with some data stored on another computer.

To clarify the distinction between remote file transfer and remote file access, consider some software on
an HC, that from time to time accesses a database stored on a central PC. One method to achieve this
would involve the following steps:

» transfer a copy of the database from the PC to the HC

» have the HC software operate on the local copy of the database

« finally transfer the copy of the database back from the HC to the PC.
Two separate pieces of software are involved in this:

» the database application running on the HC

e some communications software, implementing the file transfer.

However, with remote filaccessthe database software on the HC directly accesses the database file on
the remote computer. There is no need for some independent software to edpylduatabase from PC

to HC and then, later, back again. Instead, the operating system of the HC automatically transfers only
that small part of the data in the database that the software on the HC needs to access.

At one level, the way this works is by an extension of the concept of a filename. Traditiondllyl, the
specification of the location of a file on a computer would have been something like

a:\project\library\backup.c

However, in the view of the HC operating system, this name is actually incomplete (though it suffices for
many purposes); strictly, speaking, the full specification of the location of a file on an HC would be
something like

loc::a:\project\library\backup.c

with the leadindoc:: indicating that the file is on tHecal computer. To gain direct access over a file on
a remote PC, a filename such as

rem::c:\hc\backup.c

should be specified - with the leadirgm:: indicating that the file is on themotecomputer. Given that
the computers are connected appropriately, observing the correct naming conventions is all that an
application needs to do to gain direct access to files on the remote computer.

In some ways, the remote file access facility of the HC operating system can be compared to the way that
networking software provides additional drives on desk top computers. Thus a PC which ordinarily has
drivesA: andC: may gain drivedN: andU: when connected to a network - these additional drives

allowing access to files stored on the network server or on other computers linked together by the network.

But in another way, the remote file access in Plib is considerably more general; this is why the additional
drives appeaas another filing systenThe point is that access is permitted not only to a PC connected to
the HC, but also to one of many other types of computers, such as Apple Macs.

For example, to specify a file on an Apple Mac connected to an HC, the following filename might be
given:

rem::hd40:mike's folder:november:results

where it should be noted that the form of the filename is quite different from that allowed by MS-DOS (eg
containing spaces and having more than eight letters in a directory name).

For more details, see the section belowCamnecting to other computers

1 INTRODUCTION TO THE HC

Other ROM-based library services

In order to fully appreciate the Plib library it is necessary to read the documentatiorPlib tReference
manual.

Features worth noting include:
» a full range of mathematical and scientific functions.
« file management and filename manipulation functions.
» support for reading and writing environment variables.

» support for dynamic memory allocation inside and outside the native data segment of an
application.

» support for absolute and relative timers. An application could for example switch on an HC and
perform a preassigned task at a preset time.

« control over the HC system set-up. Thus an application could for example set the auto-switch-off
time, change the language used, and adjust the LCD contrast and backlight setting.

» sophisticated support for error handling.
» special support for advanced object oriented programming methods.

Other ROM components
Additional files in the ROM include

custom$.dat a specially customisable file that can be written to once and once only

sys$shll.img the Command Shell, as described in detail in a separate chapter

sys$ntfy.img the basic Notifier process, used by default to report error conditions (such as
missing SSDs)

sys$ctry.cfo the location of all the language-dependent text strings used by the operating
system, as well as keyboard layout information

opl.dyl allows programs written in Opl to be run (see @ Development Kifor
more information)

olib.dyl provides additional services that object oriented programmersccassasee
the Olib Referencananual)

batchk.img displays information about battery voltage levels

pprint.img prints a specified file via a nominated peripheral (likely to be omitted from
future versions of the ROM)

ttest.img tests the status of the serial port (likely to be omitted from future versions of the
ROM).

Additionally, the ROM contains a variety of programs and device drivers to facilitate communication with
other computers - be they PCs, Macs, computers in the SIBO range, or whatever. Chief amongst these is
the Link program, described in more detail later in this chapter.

Finally, the ROM also contains a humber of built-in foritof files).

Footnote: to obtain a listing of all the files in the ROM, typép rom:: at theg prompt of the
Command Shell. Note that no file corresponding to Epoc itself appears in this listing. Epoc is the kernel
of the operating system, and not a fileam::.

HC PROGRAMMING GUIDE

Customising an HC

This section describes some of the many ways an HC can be customised, to make it ideally suited to some
particular set of needs.

Hardware customisation
The HC can be customised to suit customer requirements.

Simple examples of hardware customisation include changing the labels and branding, changing the
colour scheme and replacing the keyboard legends.

More complex examples of hardware customisation include changes in the keyboard layout, changes in
the size of the LCD, and changes in the assembly of the LCD allowing operation in more extreme ranges
of temperature (the cold of the arctic for example).

Further details of hardware customisation are beyond the scope of this manual, which focuses mainly on
software customisation.

Replacing the built-in Shell

The Window Server will when the HC is first switched on (or following a reset) search fshidhe
program stored in the filsys$shll.imgThe search is carried out as follows:

« firstin the root ofa:
e then in the root ob:
e then in the root ofn:
« finally in the ROM.
On finding the shell program the Window Server will start it running.

Unless specially customised to the contrary, the Window Server also looks for a program of this name,
along the same path, whenever the shell terminates (either normally or abnormally) - so as never to leave
the HC without a shell running on it.

The importance of this is that the shell program in the ROM can be over-ridden by one on an Si8D. HCs
the fieldwill typically be running a shell from an SSD, rather than that from the ROM.

The ROM shell is more suited tievelopmentvork, supporting a rich variety of file management, task
management, system configuration, and batch file processing commands. However, this functionality
brings its own cost in RAM consumption that may well be undesirable for HCs running application
software.

By and large, applications writers will most of the time use an alternative shell, switching back to the
built-in Command Shell only when the need arises during program development.

Switching from the Command Shell to a custom shell on an SSD involves
» inserting the SSD containing the custom shell
» tasking to the Command Shell
* typingterm sys$shll (term is short forterminate).
Switching back to the Command Shell from a custom shell involves
« removing the SSD on which the custom shell resides
« terminating the shell, either by a command supported by the custom shell, or by resetting the HC

« the Window Server, in restarting the shell, will no longer find the custom shell, and hence will
start the Command Shell from the ROM instead.

One reason why, even during development work, the Command Shell may not be required, is that most of
the basic functionality the Command Shell provides can be duplicated by commands transmitted down a
serial connection from the PC to the HC. These commands can be invoked either using the SIBO
Debugger, or using MCLink.

1-10

1 INTRODUCTION TO THE HC

A program developed as an alternative shell would typically have another name during development, such
ashcshell.img It would be renamed ®ys$shll.imgnly at the last minute. Otherwise, other SIBO

programs, such as the SIBO Debugger, might fail to work, on account of finding this alternative shell and
attempting to run it instead of the appropriate shell that is built into their own ROM.

Resetting the HC

It should rarely be necessary to reset the HC. Even if, during development, an application contains some
dreadful bug, this is most unlikely to cause the entire HC system to hang.

For example, any illegal attempt by an application to write to data outside its own data segment will lead
to the operating system terminating the application forthwith, in a so-gatéd Likewise should an
application leave interrupts disabled for too long.

However, the worst may come to the worst and a reset may prove necessary. Alternatively, it may be
required to reset the HC, just in order to terminate one shell process and to cause a new one (say that in
the ROM) to be started instead.

Before resetting, it is wise to first terminate all applications and save any important data to an SSD or
a PC.

To carry out asoftreset of an HC, insert the end of an opened paper-clip into the reset hole (located just to
the right of the microphone). This will kot the HC forcing the abandonment of all programs running

at the time and the consequent loss of the associated data. The files in the internal mgmdynot

be lost.

To carry out a hard reset hold the/orr key down while pressing the paper clip into the reset hole. This
will erase all internal memory including environment variables.

Reproing the HC

For some applications, an alternative mix of files on the ROM may be required for special customisation
purposes:

« programs run out of ROM have less of a RAM overhead than those run from an SSD.

e programs in the ROM are physically more secure than those on an SSD, in the sense that an SSD
can be removed by a user but the ROM cannot.

« programs in the ROM may be able to take advantage of special software features inaccessible to
programs on an SSD - for example, the fact that ROM code and data segments always remain at
a fixed address.

« programs in the ROM are easier to copy protect.

All the different files comprising an HC ROM need to be assembled on a PC, and then combined into a
specialmasterfile, with extensionmas This process is described in the chagiestomising the HC
Rom later in this manual.

The process of transferring masfile into the ROM of an HC is calle&programming or reproing for
short. Reproing can be used, not only to produce a specially customised version of the ROM software, but
also to upgrade an earlier ROM to a mareent one (say to ROM version 1.50).

Reproing requires master SSPpwhich contains both thenasfile and the repro software itself. Note that,
counter-intuitively, reproing will not work if the master SSD is write-protected.

During reproing, the HC should be powered from the mains. As a precaution, it is wise also to have a
charged battery in the HC: if the power fails during reprogramming, the HC will need to be sent back to
Psion before it works again.

The master SSD should be placed in either of the SSD drives and the rear cover of the HC closed. Type
repro followed byeENTER at thes prompt of the Command Shell. Once the HC has displayed the new
master details, pressiTER again to confirm reprogramming.

On HCs with the 31 key numeric keyboard, it is impossible tortype , so type the following instead:
YESO NOO ENTER

The messageoNo will appear on the screen, and threpro will run as normal.

1-11

HC PROGRAMMING GUIDE

During reproing, the HC displays large characters on the top line of the screen, startingovith all,

four rows of figures will eventually be displayed. On completion, the HC will emit beeps, and an
automatic reset should occur. Occasionally, the automatic reset may fail to occur, in which case a hard
reset should be executed (as described above).

As usual following a reset, the automatic search that takes place in these circumstances for a file
autoexec.btéan be circumvented by pressirgJontESC (0r, on keyboards with nesc key, SHIFT+C).

Once reprogramming has completed, the new ROM version number can be determined using the
commandver in the Command Shell.

Note that (in contrast with the case of reproing the laptop MC computers) no additional haegware
enableris required in order to repro an HC.

Master SSDs and mastcpy

The master SSDs used during reprogramming cannot be duplicated using ordinary software (such as the
copy command in the Command Shell). More precisely, paly of the contents of a master SSD can be
copied in this way.

However, a special tool is available, callegktcpy , whichcanmake a copy of a master SSD.
Themastcpy program runs on a PC with an external SSD drive.

Once-off ROM customisation using Romwrite

As an alternative to reproing an HC with a specially customised ROM, it is possible to customise it by
overwriting, in a special way, the contents of the dilgstom$.dathat is in the ROM. Typical uses of this
mechanism include

« adding special information such as serial numbers or details of the owner.

« loading an alternative set lalnguage textcontaining versions of such operating system
messages as "Low main battery" and "No system memory" in a foreign language.

In order to write to this file, the special taomwrite.img(available as part of the SDK) has to be used.

Note thatromwrite can only be used with HC ROMs with version number 1.50 and above. Mains must be
present foromwrite to operate.

Romwritecopies the contents of a file supplied by the user, with the nastem$.refinto the ROM file
custom$.datThe filecustom$.defust be placed in the same directoryamwrite.img A maximum size

of 4608 bytes is allowed faustom$.reflf this file is larger than 4608 bytes, only the first 4608 bytes will
be copied into ROM, and no error will be reported.

Romwriteappends two further bytes to the end of the copied information. These are required checksum
information.

To invokeromwrite
e copyromwrite.imgand a suitable fileustom$.refo an SSD.
» place the SSD in the HC.
e connect a mains adaptor to the HC.
* typeromwrite attheg prompt of the Command Shell.

An error message will be given if the fdastom$.dain the ROM has already been written to, or if there
were any problems in writing to the internal ROM.

Warning: if a write error occurs duringgmwrite, the HC must be reproed from a master SSD before
being used any furthebo not reset the HC

Once the contents ofistom$.dahave been overwritten usimgmwrite, they cannot be overwritten again
until the ROM has been reproed.

Reproing entirely loses the contents of this customised file. However, the contents are unaffected by any
reset,even a hard reset

1-12

1 INTRODUCTION TO THE HC

Customisation for copy-protection

One additional use of the filristom$.datvould be to frustrate illicit copying of software (see also the
chapterCopy-Protecting Softwarie theGeneral Programming Manudbr discussion of alternative
methods with the same end).

Briefly, when an application is started, it could read the contemisstdm$.datlooking for a pre-defined
byte-stream signature. If this signature is not present, the application would refuse to run.

The signature would have to be written beforehand,dastom$.datby means of a special installation
program. Possibly, the software company producing the application would make a special charge to
administer the installation program (whose details would need to be kept secret).

Connecting to other computers

Connections between an HC and another computer, such as a PC or Mac, can be divided into two sorts:

e high speed connectionghich require the HC to be located in a Cradle and which generally also
require the PC to be fitted with an ASIC-2 expansion card

e standard connectionsvhich simply require a standard serial cable between the HC and the other
computer (no expansion card is required in this case).

High speed connections are discussed more fully in the chelpgarC in the CradleThe remainder of
this section focuses primarily on standard connections. See also the theljtiey Mcprint, and Slinkn
the Additional System Informatiomanual.

Basics of serial ¢ onnections to an HC

Any connection between two computers involvémedware connectioand asoftware connectian

When an HC is connected to another computer, the software connection will generally be VimEpoc
software. A version of this software has to be running on each of the two computers.

The Link software can be started on the HC simply by typikg into the Command Shell. One way to
start it on a PC is to invoke the executahldink.exgsimilar programs also exist for other types of
computer, such as Apple Macs).

The hardware connection between a PC and an HC, when Link software is running, can involve either a
custom RS232 cable plugged into the PC at one end and the HC at the other, or a High Speed Serial
connection via an HC Cradle.

RS232 connections

Modern PCs have 9-pin sockets on serial ports; older ones have 25-pin sockets. If you only have one serial
port on your PC, it is calleBOM1, although it is common for PCs to have a second serial port called
COM2 (COM3and everCOM4 are also possible, but the Link software does not support these).

Connect the appropriate socket at the PC end of your cable to COML1 if is available - otherwise, use
COM2. Link software on the PC sees COMIrag:A and COM2 agTy:B. Alternatively, these can also
be referenced simply as "p1" and "p2" (farts 1 and 2).

To specify that MCLink uses port 1, type
mclink -p1
at the MS-DOS command line. Likewise typeink -p2 to specify port 2.
The socket at the HC end of the cable plugs straight into the serial port in expansion modules of the HC.

Summary of stra ightforward usage of Link on the HC
The Link software on the HC can be started by typing simigly at the Command Shedlprompt.

To terminate the Link software at some later date, tpelink

To discover whether or not Link software is running, type link

1-13

HC PROGRAMMING GUIDE

If thelink command is issued while Link is already running, a second copy of Link will be launched
briefly, but will quickly exit with the error number -32 (or 224), meaning that a prbnkssalready
exists. No harm will ensue as a result.

Link allows a HC to open or save files on a remote computer in the same way as it opens and saves files
on its internal memory and SSDs. Conversely MCLink allows a remote computer to open and save files on
an HC in the same manner. Note taltHC applications automatically possess the abilityctess

remote files in this way - no special "comms software" has to be added into the applications. All that is
required is a degree of agnosticism regarding the structure of filenames: eg it must not be assumed that
directory names end in '\' characters, nor that the core parts of flenames are restricted to eight letters in
length. Provided appropriate Plib library routines are used to manipulate ("parse”) filenames, remote file
access comes free.

The user should note that the Link software must be left running all the time that files on the other
computer are being accessed.

Why not MS-DOS?

Some would-be HC applications developers may be put off by the fact that the operating system of the
HC is not MS-DOS but Epoc. On the face of things, this poses two problems:

« applications written presupposing MS-DOS have to be rewritten before working on the HC

« there is a learning curve that has to be negotiated, in coming to terms with the differences
between Epoc and MS-DOS.

With regard to the first point, there is, frankly, no way standard MS-DOS applications can transfer over to
the smaller screen of a handheld computer witkooteamount of re-writing. The reduced screen size of
hand held computers actually means more than just "compressing" the screen display from say 80
columns to around 30; it means having to rethink some of the user interface completely (as many displays
simply won't work in their original form, if they are compressed by such factorgjutrgitativechange

in screen size is such that it in turns leadsdaalitativechange in the user interface supported.

However, this consideration is incidental to the main point, which is that Epoc is simply an operating
system far better suited to the particular needs of computers such as the HC.

Some of the special advantages of Epoc over any version of MS-DOS are:

» a much more sophisticated power distribution system can be managed, resulting in significantly
longer battery lifes than could ever be achieved under MS-DOS

» pre-emptive multi-tasking is natural to Epoc, but is artificial (and hence expensive) to MS-DOS
» Epoc supports remote filee@ess in a way that, again, is expensive to emulate in MS-DOS

» Epoc implements address trapping (on an 8086 chip!), amongst other measures, to prevent
aberrant processes from causing a system crash: just consider how many times PC developers
have to recourse to the "big red switch" when an aberrant MS-DOS application results in fatal
damage to PC RAM contents, and compare this with how few times a corresponding measure is
required during HC development

* Epoc allows a change in which device drivers are loaded, without the computer having to be
reset.

Briefly, Epoc results in smaller programs which execute more efficiently and in a manner more in line
with the intuitive expectations of end users.

This applies for the programs built into the ROM as well as those developers might write. As a result (and
this may well be the bottom line), HCs end up considerably cheaper than any corresponding MS-DOS
computer.

What actually lies behind the initial hesitation of many would-be HC developers is concern over the extent
to which files written by MS-DOS programs on PCs can be read and updated by Epoc programs on an HC.
Understandably developers are unwilling to upset an existicagssful PC setup, even if they are

prepared to learn a new programming system for the HC parts of the overall computer system.

1-14

1 INTRODUCTION TO THE HC

However, developers can rest assured that there is no inherent difference in file structure between
MS-DOS programs and Epoc programs. Epoc is fildycompatiblewith MS-DOS.

Furthermore, it should be re-emphasised that many existing progifintransfer fairly smoothly from
an MS-DOS environment to an Epoc environment. This is the role of the Clib library, discussed in more
detail in theGeneral Programming Manual

Finally, bear in mind what some experienced HC developers have said: that it is aciicallyto

develop programs for the HC than it is for the PC. In part, this is due to the rich Software Development

Kit (with high-powered libraries) available for the HC. But it is also in part due to the fact that Epoc is for
many purposes a superior operating system. Accordingly, the Epoc learning curve is one that is well worth
climbing!

1-15

CHAPTER 2

WRITING SOFTWARE FOR THE HC

Basic programming choices
Choice of programm ing language
The two main high-level programming languages for the HC are Opl and C.

Whilst Opl has many points in its own favour for smaller projects (discussed @pthzevelopment Kjt
the following points are likely to sway any competent programmer to use C for any more substantial
application on the HC:

» C code executes more swiftly.

» Cis aricher programming environment, with abstract data structures, pointers, and typedefs.
» Itis generally much simpler to call routines in the OS from C than from Opl.

* Programmers with experience of C have no need to learn Opl.

e Code written in C for other products on other hardwareobaiously be converted more quickly
into C for the HC than into Opl for the HC.

e Conversely, code written in C for the HC is more likely than Opl code to have parts that are
portableto other projects; in this sense, programming in C is a better long-term investment.

Occasionally, some code may have to be written in assembly language (for example, when writing a
device driver).

Standard C (Clib) or Psion C (Plib)

A significant proportion of C code that companies have already written for other target computers can be
transferred almost straightaway to run on an HC. All thaé¢essary to do is to recompile and re-link the
code.

To take a very simple example, the progsimple.c

#include <stdio.h>

int main(void)
{
puts("Hello world");
getchar();
return(0);

}
together with a project filsimple.pr

#system epoc img
#model small jpi
#compile simple.c
#link simple

will run on an HC without any difficulty whatsoever (see the chaptéiding an Applicatiorin the
General Programming Manudibr further discussion of TopSpegat project files and their usage).

2-1

HC PROGRAMMING GUIDE

However, it is recommended that HC programmers rewrite the above program as follows:

#include <p_std.h>
#include <p_sys.h>

int main(void)
{
p_puts("Hello world");

p_getch();
return(0);

}
with the project file changed to

#system epoc img
#set epocinit=iplib
#model small jpi
#compile simple.c
#link simple

The latter is said to be the "Plib" version of the former, which is a "Clib" program (the "P" of "Plib" stands
for "Psion").

The following differences will be noticed between the two programs:
» the Plib program uses Psion-proprietary header files.
» the Plib program uses Psion-proprietary function calls« functions).

» the Plib program links with a different library (this is the significance oégbenit line in the
project file).

Code written with Plib calls is considerably more compact than code written with Clib calls. For example
the image file for the example Plib program (seeva) has siz676 bytes compared with the image file

for the equivalent Clib program that has size 4480 bytes - an increase in size of almost seven hundred per
cent.

The reason for the greater compactness of compiled Plib code is that Plib functions proweeycthiy
shellsfor functionality already present in the HC's ROM. Thus Plib calls make more efficient use of the
HC ROM software than do the equivalent Clib calls. Being tailored to the particular needs of computers
like the HC, Plib evolved with very different constraints and objectives from standard C libraries. In many
cases, Plib functions can be claimed to "improve" upon the specification of their nearest Clib equivalents.

The use of Plib calls does not always lead to such large space savings as seen in the example programs
(see above) - the reduction in the size of the compiled code depends on the number and types of library
function calls made.

Sometimes it will be desirable to write an application using both Clib and Plib calls simply because this
can ease the process of converting large programs to run on the Sibosdk system. The reduced development
time will thus outweigh the disadvantages of using the Clib calls.

However it is recommended that an application use the Plib library for at least some of its function calls.
Although it takes time to become familiar with the Plib library this will repay itself in the form of more
compact and powerful applications. Furthermore use of Plib functions is essentigefsiag many

features of the Sibosdk ROM software - the enhanced graphics facilities of the Window Server for
example.

Writing the u ser interface
A SIBO interface can be written in one of the following ways:

* using console service functions suclpasintt , p_getl , andp_puts or their Clib equivalents.
These functions can only produce simple graphical output. They can be extremely useful when
debugging an application.

» using functions in the Window Server library with the contents of each window backed up with a
bitmap. This method is capable of producing a high quality graphical display.

» using functions in the Window Server library with the contents of each window explicitly
redrawn. This method is capable of creating a high quality graphical display. Use of window
redraws is more efficient than use of bitmap backups.

2 WRITING SOFTWARE FOR THE HC

The applications programmer does not have to learn to write applications that use the window redrawing
mechanism: for many applications backing up the window with a bitmap is sufficient (the penalties of
windows with backup bitmaps are much less on the HC screen than on the larger screens of some of the
other SIBO computers).

The applications programmer who subsequently goes on to learn about window redrawing will not have
wasted his/her time learning about window bitmap backups. The latter provide an excellent foundation for
the more complex concepts behind window redrawing.

The best way to learn graphics programming on the HC is probably to follow the example programs at the
end of this chapter and then extend and modify their function. For example one of the example programs
illustrates the use of thenfoMsg andwsetBusymsg functions. These powerful graphics functions display

an information message and a flashing busy message respectively at the bottom right corner of the screen.
They are hardly more difficult to use than simple console functions suchrias andp_puts .

Working out how this program and the others work will help to familiarise you with the more commonly
used Window Server calls.

The example programs and the discussion in this chapter should provide the would-be HC applications
programmer with a sufficiently sound base to enable him/her to make effective us@Virfidlogv Server
Referencenanual.

Synchronous or asynchr onous pro cessing

There is a class of programs in which all input to a program comes via the keyboard. These programs can
be schematised as follows:

Initialise();
FOREVER

{
ReadKeyFromKeyboard();

ProcessKey();

}

The program terminates in response to a certain pre-defined key. Whilst waiting for a key from the
keyboard, the program "hangs", i.e. it is unresponsive to other sources of input. In this case the hanging of
the program does not matter as there are no other sources of input.

The callrReadKeyFromKeyboard makes what is known assynchronousead for a key; it is synchronous
becomes it does not return until the key it is waiting for has been delivered: the return of the call making
the request is automaticallynchronisedvith the delivery of the key.

Consider another examplesyfnchronoud/o. In this case, a program that is printing data might be
structured (at least in part) as follows:

Initialise();
FOREVER

{
PrepareLineToPrint();

SendLineToPrinter();
}

This program loop terminates when there is no more data to print. Now the process of sending a line of
data to the printer might take some time. The printer buffer could be full in which case the program would
have to wait for the buffer to empty a bit before being able to prepare the next line for printing. Thus the
call sendLineToPrinter ~ could be synchronous (this is the way beginner programmers would tend to write
the code), with the program "hanging" in the call until the printer has removed the data passed to it by the
program. In this state, the program is, again, unresponsive to other sources of input.

In either of the above examples, a simple extension of the code would req@iyachenousall to
becomeasynchronousThe printing program could and should be extended to allow the user to terminate
the printing while in progress by simply pressing a predefined key. The key-processing program could be
extended so as to respond to a timer expiring (for example a signal to commence a backup procedure).

Many programmers approach this kind of generalisation in an ad hoc manner resulting in spaghetti like
code that is hard to debug, hard to maintain and hard to extend.

Such code will usually force the user to wait while it is waiting for one or more events. The user can thus
be shut out for significant periods of time.

HC PROGRAMMING GUIDE

The software on the HC has been explicitly designed to address these issues. For all but the simplest of
programs the concept afynchronougvents is central to successful programming on the HC: would-be
applications writers are strongly urged to face up to this issue squarely, from the beginning.

This may sound daunting (and it probabiyuld be daunting, on alternative software platforms), but for
two reasons, it is not:

» the HC operating system software has carefully isolated the various components involved in
asynchronous i/o: signals, semaphores, "status words", and "active words" (amongst others)

+ example programs in tHeundamental Programming Guidelinelsapter of th&eneral
Programming Manuasurvey these components in a thorough yet straightforward manner.

Example programs

There are example programs scattered throughout the length and breadtBRK thieis recommended

that, whenever possible, would-be HC applications developers should take the time to try out these
examples, and to modify them. As in all fields, practice makes perfect - and it is always possible to get an
idea from the detail of one of these programs, which will prove helpful in a quite different coding

situation.

The three programs to be discussed in this chapter have particular relevance to the HC. They demonstrate
its graphics potential, and show how to create line editors to allow convenient data entry by end users of
the HC (whereas Series3 and Series3a programmers can use the Hwif library to obtaicesadyp éine

editors and other related user interface objects, there is at the time of writing no corresponding library for
the HC - so programmers have to take care of the user interface by themselves).

These examples build on those discussed iiG#meral Programming Manuaénd it is suggested that
any readers who have not yet worked through that manual carefully should do so now, before proceeding
any further.

In contrast with the examples in t@eneral Programming Manuawhich only use console i/o, the
example programs in this chapter all interact more directly with the Window Server.

The source code for all these examples is locat&slbosdk\demancidentally, these programs can also
be made to run, with minor modifications, on Series3 and Series 3a machines.

A graphics vers ion of Hello World
The first example is a short program storeevakello.c

#include <p_std.h>
#include <wlib.h>

GLDEF_C INT main(VOID)

{
WS_EV event;

wStartup();

gBorder(W_BORD_CORNER_4);

wSetBusyMsg("Hello world",W_CORNER_BOTTOM_LEFT);
do

{
wGetEventWait(&event);

} while (event.type!=WM_KEY || event.p.key.keycode!=W_KEY_ESCAPE);
return(0);

}

The callwstartup takes care of routine preparation to interact with the Window Server (sSéérttiew
Server Referenamanual for more details of all of these calls).

The callgBorder draws a pleasant curved border around the edge of the screen. Vary the flags passed to
gBorder for different types of curves.

The callwsetBusyMsg displays the specified message flashing, at the nominated corner of the screen. In
general, the message will continue to flash, without any assistance from the application, until such time as
a call such agcCancelBusyMsg is made.

2 WRITING SOFTWARE FOR THE HC

The callwGetEventwait IS asynchronousequest to receive an event from the Window Server. These

events include notification of coming into foreground or background, as well as keypresses and requests to
redraw portions of the screen (these latter events are used by applications that explicitly handle window
redraws - such applications do not use the wStartup function and instead use the lower level function).

As wGetEventwait IS synchronous, it does not return until there is an event for the application to process.
In this example, the application is uninterested in any events other than keypresses, and even then, only
theesckeypress is of interest.

In order to buildwv_hellg simply typemake w_hello when in the appropriate source directory
(\sibosdk\demp

The Gauge application
The Gaugeapplication is altogether more sophisticated thvahella

« the screen display contains text in various font styles.

« the screen also contains a "growing scrollbar" or "petrol gauge" display item, whose content
grows regularly, as a timer beats.

« the speed at which the timer beats can be adjusted by keypresses from the user.
» the user can also reset the gauge display at will.

» the range of options open to the user is displayed on a range of "buttons", which momentarily
highlight whenever they are selected.

* in programming terms, a timer channel is created as a second event source.
« the synchronousGeteventwait call is replaced by the asynchronous versieatEvent .
The schematic form afiain in gauge.ds as follows:

GLDEF_C VOID main(VOID)
{
WS_EV event;
WORD wactive;

wStartup();
INITIALISE();
QueueTimer();
wactive=FALSE;
FOREVER
{
if (wactive)
wFlush();
else
{
wGetEvent(&event);
wactive=TRUE;
}
p_iowait();
if (event.type==E_FILE_PENDING)
{
PROCESS_TIMER_EVENT();
QueueTimer();
continue;
}
wactive=FALSE;
if (event.type==WM_KEY)

switch (event.p.key.keycode)

2-5

HC PROGRAMMING GUIDE

The use of a little imagination will make it clear that this is the same basic architecture (albeit rearranged)
as in theEventsprograms discussed in tlneral Programming Manual

* the variablevactive is the active word for the Window Server event source

* the status word for the Window Server event source is built intewshevstruct passed to the
call wGetEvent : it is theeventtype field

e there is no test on the timer status wantktat , since if the call tp_iowait has returned and
eventtype is still equal tee_FILE_PENDING, it can only be the timer which has an event to
deliver (given that there are only two event sources in the application).

The need to flush the Window S erver buffer

Note the special test ovaciive at the top of the event loop iin . If wactive is still TRUE it means

there is no need to callsetevent again (and in fact the application would be panicked if it did so).
However, it is necessary, in this case, toweallsh , to ensure that the Window Server function buffer is
flushed out. Otherwise drawing calls could remain in this buffer all the time that the application is
suspended, inside iowait

The point here is that, for efficiency (minimising IPC - InterProcess Communication - traffic between the
application and the Window Server), many Window Server functions are not implemented immediately:
rather, they are stored in a buffer which is only "flushed" every so often. Séérttiew Server Reference
manual for full details.

Another instance in th@augeapplication whereFiush is called is in the routingash , in which a
highlight is momentarily displayed over a "button” containing the choice the user has just selected:

{
P_EXTENT ext;

glnvObloid(&ext);
wFlush();

p_sleep(2);
glnvObloid(&ext);

}
Other graphics calls in Gauge

The contents afauge.ccan usefully be studied (eg use the SIBO Debugger while the program is running)
for examples of the following graphics function calls:

gPrintBoxText useful for “flicker free" drawing of text.

gSetGC allows a change in the font or font style (and more besides) used to draw text.
gClIrRect clears or highlights a given rectangle.

gFillPattern applies a pattern (here, a "grey" pattern) to an area.

gTextWidth calculates the width of a string of text.

gInvObloid allows special "rounded" or "obloid-shaped" inverse videoing.

gBorderRect draws any of a variety of curves around the edge of a specified rectangle.

A suite of line editor functions

The applicatiorLinEd demonstrates the use of a suite of line editor functions: three line editors are
created on the screen, each with text that the user can edit. The user chooses which entry to edit at any
one time by using ther andbowN cursor keys. Other editing keys have the expected effects on the
editors:

* typing printable characters enters these characters into the current string (with any existing
highlighted selection in the string being deleted).

* the editor beeps if it has already grown to its maximum size.

» the editor scrolls horizontally if there are more characters to display than can fit in the width
allocated to it on the screen.

2 WRITING SOFTWARE FOR THE HC

« theDEL key deletes the character to the left of the cursor, whereesDEL deletes the
character to the right of the curseglONtDEL deletes to the end of the line.

e PSION+LEFT andPSIONFRIGHT "home" and "end" the cursor, respectiveBsgT andRIGHT just
move the cursor one position.

The suite of "lined" (line editor) functions should be independently useful, either in their present form, or
modified for particular purposes (the lined functions are as they stand fairly general). From a broader
perspective, the lined functions demonstrate the creation of a user interface for applications on the HC.

The code irflined.cdivides into two parts: the implementation of the lined functions, and the testing of
these functions. Th&ain routine of the test program is worth considering in full:

GLDEF_C VOID main(VOID)
{
LINED *ed[3];
INT which;
WS_EV event;
INT keycode;

wStartup();
gBorder(W_BORD_CORNER_4);
ed[0]=CreateLined(10,"One", TRUE);
ed[1]=CreateLined(30,"Two",FALSE);
ed[2]=CreateLined(50,"Three",FALSE);
which=0;
FOREVER

{

do

{

wGetEventWait(&event);

} while (event.type!=WM_KEY);
keycode=event.p.key.keycode&(~W_SPECIAL_KEY);
switch (keycode)

{
case W_KEY_ESCAPE:

if (event.p.key.modifiers==W_PSION_MODIFIER)

p_exit(0);
case W_KEY_UP:

if (which)

{
le_emphasise(ed[which--], FALSE);
le_emphasise(ed[which], TRUE);

}

break;
case W_KEY_DOWN:

if (which<2)

{
le_emphasise(ed[which++],FALSE);
le_emphasise(ed[which], TRUE);

}

break;
default:

le_key(ed[which],keycode,event.p.key.modifiers);

}
}

The array of three pointeeg[3] is used to hold the "handles" of the three lined objects created. This
creation is done inside the calkateLined (further discussed below). At any one time, only one of these
three editors is "active" - displaying a flashing cursor and receivitig@deys from the user. The
application uses the variablaich to keep track of the current active editor.

On receipt of arwp or bowN key, the application changes its record of which editor is active. At the same
time, the editors themselves have to be informed of this change - so that they can adjust their appearance.
This is the role of the calls t® emphasise

All other keys (apart fromrsioN+ESC, which exits the application) are passed straight through to the
current editor, using the cadl key .

2-7

HC PROGRAMMING GUIDE

Full specification of the lined functions

The routinge_init creates and initialises a lined object, according to the datainamep struct

passed. This creation involves two separate allocator calls - one for the control block of the editor itself,
and one for the buffer to hold the string of text to be edited. Note that either of these calls can fail - in
which case the failure is reported back to the caller. The test applicatioadrcignores this possibility,
under the rationale that the minimum heap of the application guarantees that these calls, made during
program initialisation, will always sgeed.

The call either returnsuLL, in the case of an alloc failure, or the handle to be used to identify this
particular editor in all subsequaatxxx calls.

The meanings of the fields in the interface stmatiNED (defined inlined.h are as follows:

maxchars the maximum length of text that can be edited.

winid the id of the window in which the editor is to appear.

xoff the x-offset from the origin of the window to the top left of the editor (in
pixels).

yoff the y-offset from the origin of the window to the top left of the editor (in
pixels).

width the width of the editor (in pixels).

height the height of the editor (in pixels).

asc the distance (in pixels) between the top of the editor and the base line of the
text edited.

font the identifier of the font used to display the text.

style the style of the font used to display the text.

autoselect TRUE to automatically select the entirety of any text set into the editor by the

calling programfpALSE to leave such text un-selected.
Note how these fields are set up in the routirateLined

LOCAL_C LINED *CreateLined(INT yoff, TEXT *msg,INT emph)
{
IN_LINED init;
LINED *ed;

init. maxchars=20;
init.winid=wMainWid;
init.xoff=10;

init.yoff=yoff;

init.width=80;

init.height=10;

init.asc=8;
init.font=WS_FONT_BASE+4;
init.style=0;
init.autoselect=TRUE;
ed=le_init(&init);
le_set_text(ed,p_slen(msg),msg);
le_emphasise(ed,emph);
le_visible(ed, TRUE);
return(ed);

}
The statiavmainwid is one that is set up by the cafltartup . See thaVindow Server Referenceanual.

The initial text of the editor is set in by a dallset_text made after the call te_init , but before the
call tole_visible which causes the editor to actually be drawn. Also in betweea e and

le_visible calls is a call tee_emphasise to specify whether the editor should be displaying a flashing
cursor (and also whether any selected region should be visibly highlighted).

Another call that could be made betwéemit andle_visible iSle_set_cwidth , to change the width
of the flashing cursor from its default (which is two pixels wide).

2 WRITING SOFTWARE FOR THE HC

As noted above, the way the applion sets text into a lined object is with the ealet text . In this
implementation, the application is required to specify the length of the string as a parameter to
le_set_text - ie there is no requirement to pass the string in zero-terminated form.

On the other hand, the editor itself maintains the string, as it is edited, in zero terminated form - which
may be convenient for the application.

The way the application can "sense" the contents of the string, as edited by the user, is simply to read this
string out from the data maintained by the lined object. For this purpose, the formigEthstruct

needs to be known. This struct is definedined.h Needless to say, most parts of the data in this struct

are strictly read-only. If an application writes directly into this data, random problems can ensue later.

If a lined object is no longer needed, all the memory it uses can be freed bylealisgpry . Be sure to
have an independent copy of the string edited, before making this call.

Finally, the functione_visible , as well as initially making the editor visible, can also be used at some
later stage to "hide" the editor again, if desired.

General comments

Device drivers for the HC

Note that thé/o Devices Referenamanual gives details of how to program many of the peripherals that
can be attached to an HC:

a parallel port.

a serial port (including xmodem and ymodem file transfer).
a magnetic card reader.

a bar code reader.

a modem.

The chapteiThe HC in the Cradldater in this manual, gives details of the operation of the HC when
located in a cradle.

Writing a customised shell pro cess

The System startupection of theéntroductionchapter of th&indow Server Referenceanual gives two
examples of possible small alternative shell programs. The source for one okiifedkg may be found

in \sibosdk\demoAs well as presenting the source, this section of the SDK raises various issues to do with
replacing the built-in shell program with a customised one.

In case it is desired to create a shell process with functionality intermediate bistretirandcorpshill
(which is the Command Shell), see the documentation, later in this manual, of each keyword supported by
the Command Shell, for a reference to the C functions used to implement that keyword.

Developing applications on restricted-keyboard HCs

Developers writing for HCs with restricted keyboards lacking a full set of alphabetic keys face the problem
that many commands that might ordinarily be typed into an HC during the course of program

development - for example, file or SSD managememincands in the HC Command Shell - simply

cannot be typed into the HC, on account of the required alphabetic keys not being present on the keyboard.

In practice, preliminary development would probably be done using a different HC, with a fuller
complement of keys. The program being developed would only be transferred to the restricted-keyboard
HC at a later stage of development. However, the problem recurs at this later stage.

The comprehensive solution to this problem involves one of the fundamental principles of the HC - its
interconnectability with other computers. Briefly, rather than the HC being controlled from its own
keyboard, it can be controllécbm a remote keyboarday that of a PC. The commands are transmitted to
the HC via one or other form of serial connection.

See the chaptéiC Command Shetbr more details of this mechanism.

HC PROGRAMMING GUIDE

2-10

CHAPTER 3

HC COMMAND SHELL

Overview

The HC Command Shell provides a M@®S like uility for functions that can be executed from a
command line. The range of functionality covered includes fileS8d management, program
management, information requests, and HC configuration.

Commands can be entered by typing at the HC command line in resporssprtorgpt. Alternatively,
commands can be enteneanotely by typing at the terminal of a PC connected to the HC.

The HC will run batch files consisting of a sequence of commands. Batch files can be run in either of the
above modes.

Batch file processing

Epoc batch files are plain text files consisting of a series of commands. Each command has a line to itself.
By default batch files have extensidif.

To invoke a batch file with namzackup.btf type @backup at the Command Shedlprompt. If necessary
specify the full path of the batch file. Thus

@loc::b:\batch\backup
or
@rem::c:\hc\devp\restore.bat

would both invoke batch files. In the first case the file is assumed to hhtfestension. In the second
case the file extension is specified to tat

Batch files can also call other batch files, and so on, up to eight levels deep.

Batch files are executexynchronouslyi.e. no additional commands can be typed into a Command Shell
until any batch files it is executing have completed.

Whilst batch files significantly enhance the utility of the HC Command Shell they do have some notable
limitations:

» they cannot have parameters passed to them.
» they cannot contain conditional statements, such.agto ...

These limitations can be got round by replacing the batch file with a program written in Opl, or in another
high level language such as C.

Launching prog rams

The Command Shell can be used to launch both batch files and programs (either Epoc executables or OPL
programs).

Epoc executables and OPL programs are run by simply typing their name without any additional prefix
(except possibly for aa - see below).

3-1

HC PROGRAMMING GUIDE

When the following line is entered at the Command Shell
dojob

the HC will attempt to locate the corresponding command or file. The HC will execute this command or
file when and if it is found. The search is carried out as follows:

e the HC checks that there is no internal command with the agene
» the HC looks for a filelojob.opoin the current directory
» the HC looks for a file&lojob.opoon a:, b:, andm: (in the order given)

+ the HC looks for a filelojob.img first in the current directory, then (as above) on draeb:,
andm:, and then imom::

» the HC looks along the same search path for adijeb.app

The search terminates once the command or file is found. Note thatlejdileopowill be found in
preference to a fildojob.img

To ensure that a fildojob.imgis run, enter the extension explicitly:
dojob.img

Programs are assumed to be Epoc executables unless they have the erjgmsiowhich case they are
assumed to be translated Opl programs.

Additional parameters can be passed to these programs. For example,
dojob b:
Synchronous prog rams and asynchr onous prog rams

In contrast to batch files, which are always run synchronously (see above), programs can be run either
synchronously or asynchronously thus exploiting the multi-tasking capabilities of the HC.

By default, programs are launched asynchronously. This means that while the program is executing, the
user can task back to the Command Shell and continue to issue other commands.

When the program is started, it will by default (assuming it has a user interface) take over the foreground
screen. To access the Command Shell, or indeed any other tasks that may be running on the HC at the
time, presgASK as many times as is required. Every timsk is pressed, a different program cycles into
foreground.

Note that there is no need to quit the foreground program in order to start another - start a new program
by pressing theask key until you get into the Command Shell, then type the name of the program at the
command line.

However, users should avoid starting up new programs unnecessarily - since each additional program
reduces the memory available for the programs already running.

To run a program synchronously, prefix the program name with Hote however that the command
offenable 0 should be issued before synchronously executing any lengthy program - otherwise it will be
impossible for the user to switch the HC off until the program has completed.

Terminating prog rams

Many programs include a facility that allows user termination. For example many programs contain an
Exit menu command.

When required the user can kill a program from the Command Shell, using eitkenithes or kil
commands. As explained in the alphabetical listing (see batlomihate should be used in preference
tokil whenever possible.

A program run synchronously can not be terminated by tasking to the Command Shell that launched it -
since that Command Shell is ot@ssible until the program terminates. In extreme circumstances it may
be necessary to reset the HC.

When a program launched from a Command Shell terminates, either normally or abnormally, the Shell
reports this fact to the user.

3-2

3 HC COMMAND SHELL

The command line editor

Up to eight previous commands can be reviewed by means wb HredDOWN cursor keys at the
command line. Any previous command displayed in this way can be edited before being issued again.

To clear the command line at any time, pEss

As might be expected, each individual command is entered to the HC by pessir@fter typing its
name. In most cases, the name can be abbreviated, as indicated in the alphabetical listing below.

Pausing the screen display

Some commands (suchiasc andiseg) automatically pause when a screenful of information has been
displayed. Other commands (suchyias) must be entered with/a flag to obtain the same effect. In

either case, pressing any key will resume the display (thougtsthieey sometimes terminates the
command listing).

At all times, the display of the Command Shell can be paused, independently, by meansioftherTt
key combination (or bgHIFT+LEFT on restricted keyboards (this feature is shared by all console
programs). Again pressing any key will resume the display.

Additional copies of the Co mmand Shell

The Command Shell can be run from the command line just like any other program. The first and
subsequent copies of the Command Shell differ only in that, by default, subsequent copies terminate as
soon as they have processed the command lines passed to them.

For example typingyssshll ver runs a copy of the Command Shell with the command line argument

ver . The effect is the same as simply typirg on its own except that the new copy of the Shell

terminates after the ver command completes. The display then reverts to that of the previous Command
Shell.

To force a copy of the Command Shell to pause before terminatingp tymenediately aftegyssshil
Thus

sys$shll /p ver
causes the display to pause waiting for any keypress, after completing listing the version information.

Exceptionally, if there is little available memory on the HC (for example, if there are many fitey on
additional copies of the Command Shell may fail to perform fully as expected.

Sending co mmands from a remote PC

The utility of running second copies of the Command Shell is most apparent when used in conjunction
with MCLink. MCLink allows programs on the remote computer (in this case, the HC) to be invoked with
the MCLinkrun command.

For example, typing
run sys$shll /p del *.bak

at the MCLink command line is essentially equivalent to typing
del *.bak

at the command line of the HC.

Operators may find typing at the PC to be more convenient than typing on the naturally more restricted
keyboard of the HC. In cases where the HC has only a numeric keyboard, commands must be entered
using a mechanism such as MCLink running on some remote computer.

The following alias may prove especially useful: typing
! <text>
at the MCLink command line is shorthand for typing
run sys$shll <text>
Thus typing
! /p del *.bak
at the MCLink command line may be a yet more convenient way of issuing the HC with the command
del *.bak

3-3

HC PROGRAMMING GUIDE

Often even typing these few characters is undesirable (it is impossible in the case of restricted keyboard
HCs) and so a batch file is used instead. A batclafiteexec.btfs placed in the root directory of an SSD.

This batch file is executed whenever the HC is reset - if the file contains the conmmanithe Link

software will automatically be started every time the HC is reset. Another (more advanced) possibility is to
place an alternative (custom) shell onS8D, before reséng the HC.

More on running prog rams remotely

Even if an alternative (custom) shell is running on an HC, the Command Shell can in many cases still be
invoked by means of typing (eg)

! /p ver

at the command line of MCLink. This mechanism may be found useful in cases where it is briefly
required to access the functionality of the Command Shell, even though, ordinarily, a custom shell is run
in place of the Command Shell.

Occasionally this mechanism will fail to work - for reasons explained below - with a second copy of the
custom shell being run instead.

The MCLinkrun command proceeds as follows:

» first, an extensionimgis added to the program name supplied and if no extension was explicitly
supplied

» the Link software starts looking, on the remote computer, for a program with this name; if at any
stage a program with this name is found, an attempt is made to execute it; if this attempt fails,
the search continues

» the first place searchedtise current path of the Link softwave the remote computésee
below for an explanation of the concept of current path)

» the search continues, if required, in the ROM of the remote computer

« finally, if required, the search continues on all the root directories of the remote computer, in
alphabetical order.

Accordingly, if the current path of the Link software on the HC contains a custom ceysfshll.img
this copy will be launched by an MCLinkcommand; otherwise, it will be the Command Shell (from the
HC ROM).

In practice, the only way for the current path of Link software on an HC to differrfrdims for aset
command to be issudfore the Link software is started

There is one further complication when attempting to simultaneously run two different programs with the
same name. Ordinarily, Epoc will refuse to allow the second program to run and will generate a "File
already exists" error message. The only exception is if the second program is in ROM. This explains why
the Command Shell can be started when a custom shell is already running, whereas a custom shell cannot
be started with the Command Shell still running (try it and see).

Auto-terminating and non-auto-t erminating Co mmand Shells

A Command Shell will only auto-terminate if invoked with a command line. Whether an instance of the
Command Shell is the first or an additional copy is irrelevant. To run an additional copy of the Command
Shell that does not auto-terminate after processing its command line (either straightaway, or after pausing
to receive a keypress), just tygesshil by itself, without any additional parameters (any "Capture failed

- File already exists" error message can in this case be safely ignored).

Files and directories

File In Use error messages

On the HC an open file can only be accessed by the application that opened it. An attempt by another
application to modify the file will lead to a File In Use error message.

As a consequence file commands issued from the Command Shell will fail when astebsosa
already open file. For example an attempt to copy an open file will generate a File In Use message.

3-4

3 HC COMMAND SHELL

Default path and current directory

In Epoc there is one current path for each running process (in Epoc it is preferable to refent@the
pathrather than theurrent directoryas this also includes the drive and the filing system). In contrast
MS-DOS logs a current directory for each drive and thus has as many current directories as drivers.

The current path of a Command Shell can be altered using twnmand. For examplg b:\play

would change the current pathotplay . Note that this could have a quite different effect in MS-DOS.
In MS-DOS change the current directoryatbwork\ then typecd b:\play\followed by adir command.
Thedir command will list the files im:\work\ and not those ib:\play\

Changing the current path for one application does not alter the current path for any other application.
This is in contrast to and an improvement on MS-DOS. In this case the currently logged directories in the
command shell can be annoyingly altered by running (synchronously!) another process. By the time the
second process has terminated the MS-DO&wand shell may have been logged to a different drive and

a different directory.

The HC Command Shell also supports the commando alter the so-calledefault pathwhich affects

all applications subsequently launched. $&ecommand has no effect on the current path of the present
application but provides thsitial current pathfor all future launched applications (regardless of where
these applications are launched from). Thus the sequence of commands

cd m:

set b:

sys$shll
dir

cd a:

dir

exit

dir

will bring about the following sequence of directory listings:

- first the second copy of the Command Shell lists the contebt$ sifice its current path was set
(on initialisation) tab: with theset command.(in the parent Command Shell)

e next, after changing the current path of the second SheN, tthe secondir command lists the
contents of:\

« finally, once the second copy of the Shell has been exited, thi lastmmand lists the contents
of m:\ - since the current path of the parent Shell has been affected by neitfer toexmand
(as that does not alter the current path) noedh@ommand (as that altered the current path of a
different process).

Note that any changes to the path of a Command Shell inside a batch file will continue to have effect after
the termination of the batch file, since no new process is run up, just by virtue of a batch file being
executed.

Specifying file n ames as command parameters

It is not always necessary to supply the full specification for a flename when passing it as an argument to
a Shell command. The missing parts (if any) are filled in from the current path.

Thus if the current path ®:\img\ the commandit job.img -r operates on the file with full path name
m:\img\job.imgand the commanalt b:\backup\job.img operates, naturally enough, on the file
b:\backup\job.img regardless of whether the current path isnorb:, or whatever.

Beware thattt b:job.img is equivalent tatt b\img\job.img and notatt b:\job.img (the first and

last forms differ only in the presence or not of a back-slash immediately after the colon). The reason why
these two forms are interpreted differently is that the filenlasjiok.imgis interpreted as having three

parts:

« adrive b))
e a basic namgdb)

» an extension.img).

3-5

HC PROGRAMMING GUIDE

As the path is not explicitly specified, the path specified in the current path of the application will be
assumed. If the (incorrectly specified) file is not found the command will fail with the error message
"Directory does not exist".

To specify a filgob.imgon the root directory df:, typeb:\job.img , including the crucial character.

More details on filename specificat ions
Filenames are assumed to héive parts:

» afiling system(egloc:: or rem::)
» adrive (egh:)
» apath(eg\ or\accounts\jan\
« abasic namdegjob)
e anextensioneg.img).
The current path of an application contains the first three components. It does not contain the last two.

The filing system will always be assumed to be that specified in the current path unless an alternative is
explicitly supplied.

Note that various Shell commands may unexpectedly fail to work if the filing system specified in the
current path is set tem::, and the remote link connection is subsequently broken.

Specifying paths as co mmand parameters

When using a command suchcast is often more convenient to omit one or more components of the
path as any missing components will be filled in from the current path. Thus with a current path of
m:\img\the commandd fles ~ would be equivalent ted m:\img\files and the comman@d tools

would be equivalent tad m:\img\tools

Note that it can sometimes be an error to supply a trailing back-slash. MéHsimg\tools\ is
acceptablend tools\ is not. The reason is that the trailing back-slash indicates that a path component
follows - themd command does not expect a path component to follow.

The requirements of generality

The user might consider the syntax of HC Command Shell commands to be more limiting than the MS-
DOS equivalent - the syntax oframmands such asdandrd on the HC is not the same as that ofrthe
andrd commands in M®OSalthough there are considerable similarities.

The extra limitations stem from a central design feature of the Epoc operating system - under Epoc an
application can directlyczess files that are stored on a remote computer whose filing system may or may
not be MS-DOS. Alterative remote filing systems that need to be borne in mind include UnixyM&

and the Apple Macintosh operating system.

Thus if the HC is connected to an Apple Macintosh computer, the following could be entered at the
command line:

cd rem::hd40:hcdevp:stock

Accordingly, the HC Command Shell does not simply approach filenames and path specifications in terms
of questions of back-slashes (were the Shell to insert a back-slash at the end of thenainavelcdon

behalf of the user", this would, most decidedigt be what the user intended). Instead, the approach is

much more general, in terms of the five part breakdown of filename specifications discussed two sections
previously.

Similarly, the HC provides no support for the syntax of "double dot" (for the parent directory) and "single
dot" (for the current directory).

Although this extra discipline has its occasional drawbacks, the advantages that it brings with it are an
important part of the vitahter-connectabldeature of the HC.

3-6

3 HC COMMAND SHELL

Alphabetical listing

Notation

This list of commands uses the following syntax:
COM[MAND] supplied-parameter [optional-parameter]

Items shown in square brackets ([]) are optional. To include optional information, type only the
information within the brackets. Do not type the square brackets themselves.

Legal shortened versions of commands may be inferred from the syntax given. Thudbbvéhe a
(generalised) examplepmwould be an acceptable shortened forroafimanpAny intermediate form
betweercom andcommand would also be acceptable - @ghm(but notcomd, needless to say).

Commands can be typed in any combination of lower and upper case. For example, except where clearly
stated to the contrary below, pairs of command sueln@sn andwnot ON are completely equivalent.

Commands must be separated from their options by inserting a space character.

Default values may be assumed if some options are not supplied. Default values of particular commands
are given in the individual command descriptions which follow.

Note: the following list actually contains two entries that are not really commands of the Shell, in the
strict sense, but are just the names of programs in theisemandbatchk . However, this distinction
may seem irrelevant to the user, and so, for convenience, these commands are listed too.

How commands are implemented

In many cases, the description of a command below gives the name of some of the key C functions
involved in the implementation of that command. This is provided partly for interest, partly as an
additional reference source (so that the corresponding sectionRiftitReferencer Window Server
Referencenanuals can be consulted), and partly as a guide for people wishing to write an alternative shell
(or shell-like) program.

Command ATTRIBUTE Set or clear file attributes (ATTRIBUTE)
ATT[RIBUTE] filename [(+/-)h] [(+/-)s] [(+/-)m] [(+/-)r]
Sets or resets the hiddet),(system {), modified) and/or read-only{ attributes of a file.

For exampleatt list.dat -m +s clears the modified attribute and sets the system attriblite. dét,
without altering its hidden or read-only attributes.

For each of, s, m andr, a prefix of- clears the corresponding attribute, and a prefixs#ts it. The four
attributes can be specified in any order, and any combination of the four bits can be set or cleared at once.
Omitting all four is pointless: nothing will happen.

Theattribute ~ command does noteept a wild card specifition.
This command is implemented via the C funcioststat

Note that thelir command includes the attributes of files as part of its display.

Command AUTO Set time to auto-switch-off (AUTO)
AUTI[O] seconds
Sets the time for auto-switch-off.

The auto-switch-off time is set taconds . If seconds is-1, auto-switch-off is disabled. The maximum
value forseconds is 32767, and the minimum non-zero value is 15.

This command is implemented via the C funciiogetauto

3-7

HC PROGRAMMING GUIDE

Command BACKLIGHT Set backlight time-out (BACKLIGHT)

BACKILIGHT] [time]

Sets the backlight auto-time-outtiee , or iftime is omitted, displays the current setting (in
hexadecimal).

The value ofime is in ticks, ie 1/32 of a second.
If time is zero, the backlight will remain on for as long as the HC is switched on.

Passingime as negative has the effectdi$ablingtheBACKLIGHT key. In that case, the backlight can
only be switched on under software control.

This command is implemented via the C functiprismcklight , p_getbacklight ~, andp_setbacklight

Command BATCHK Start battery check program (BATCHK)

BATCHK interval
Starts the programom::batchk(if found), which monitors the voltages of the main and backup batteries.

The value ofnterval gives the time period, in tenths of a second, between the time when checks are
made.

If either battery is found to be low when a check is made, a Natifier is displayed.

Thebatchkprogram also captures theo key so that, whenever this key is pressed, the user is presented
with information on the current voltages of the batteries. At the same time, a Notifier is displayed if
either battery is low.

Passingnterval aso has the effect that a check on the battery voltages is performed onlynrbés
pressed; no timer operates in this case.

If interval IS omitted, it defaults tgooo (5 minutes). Any value afterval less tharoo has the same
effect as passing

A copy ofbatchkis automatically run when the Command Shell starts. The Command Shelbatahts
with a value ofnterval equal to zero.

Attempting to run a second copylmtchkwithout terminating the first will result in an error message
and then a notification of abnormal program termination (the second cbptchR. In order to change
the value ofnterval that is in operation, to ten minutes (say), the following has to be entered:

term batchk
batchk 6000

See theowbat command for an independent method of checking the battery voltages.

The core functionality of thkatchkprogram is provided by the C caplssupply andp_wsupply .
Applications in which it is critical that battery power does not drop too low during some activity should
make their own calls to these functions when needed.

Command BATTERY Specify battery type (BATTERY)

BAT[TERY] type

Specifies which type of main battery is installed. This information may be used by other software on the
HC, affecting (eg) when low battery warnings are issued.

Allowed values otype include:

1 alkaline batteries

2 600 mAh Nickel Cadmium batteries

3 1000 mAh Nickel Cadmium batteries
4 500 mAh Nickel Cadmium batteries.

This command is implemented via the C functiogetbat .

3-8

3 HC COMMAND SHELL

Command CD Change directory (CD)
CD [path]
Changes to a different path, ordiih is omitted) displays the current path.
For example, to change the current directory framrk\product\to \work\admin) type
cd \work\admin\

To move to a directory below the current one, only the path from the current directory needs to be entered.
So to change frotwork\admin\to \work\admin\forms\the following command could be used:

cd forms\
The trailing back-slash in théave conmands can be omitted. Thetsorms instead otd forms\
There is no support for a command suchdas (to move to the parent directory).
Typecdb: (orcdb:) to change to the root directorylmf

This command is implemented via the C functogetpth (amongst others).

Command CONFIG Set language file (CONFIG)

CON[FIG] filename

Changes the language data file to that specifigtknifme is omitted, the effect is to revert to the file
sys$ctry.cfo

If the extension is omitted, it is assumed todfe.

The file given must be in the ROM of the HC. Unless a specially customised version of the ROM has been
made, this in practice limits the use of this command to

config custom$.dat
where the filecustom$.dahas been specially prepared by means of thedoohrite

The effect of specifying a file that has an unsuitable form is drastic: almost certainly, the HC will require a
hard reset to recover.

This command is implemented via the C functogetconfig ~ (@mongst others).

Command COPY Copy file(s) (COPY)
COPJY] source_filespec target_filespec
Copies one or more files, possibly changing their names in the process.

Any part of the target filename that is not specified (for example, the extension) and which cannot be
filled in from corresponding parts in the current path is taken from the corresponding part of the first
pathname.

The wildcards and» can be used to copy multiple files.

For examplegopy fred.* a:\jim.* copies all files such deed.btffrom the current directory into the
root ofa:\, renaming them (eg jom.btf) in the process.

As a possibly surprising example, if the current path:isthe commandopy a:\file. lis file.old
has the effect of copying the named fileriafile.old

As files are copied, the names of the files created are listed on the screen.

A file cannot be copied onto itself. If an attempt is made to do thispghiecommand quits, and an error
message such as the following is displayed:

Copy failed - file or device in use

This command is implemented via object-oriented techniques usimgathebject inOlib.dyl.

HC PROGRAMMING GUIDE

Command D Brief directory listing (D)
D [/p] [filespec]

Lists specified filenames in a directory, without any additional information except for the total size and
the total number of bytes free on the current device.

Typingd by itself lists all filenames in the current drive and directory. Typiagd a path, such as,,
lists all entries in the specified directory. If a filename without an extension is inciageités for
example), all files namedvoicesin the specified directory will be listed, whatever their extension.

The wildcards and? can be used in the file specification.

The/p flag causes the display to pause at the end of each screen. When the display is paused, it can be
resumed by pressing any key. Howevegsif is pressed, the directory listing is terminated.

This command is implemented via the C functipngen(P_FDIR) , p_dinfo , andp_iow(P_FREAD) .

Use thadir command for a fuller listing of the details of files.

Command DATE Display date and time (DATE)
DATIE]

Displays the current date and time.

This command is implemented via the C funciodate .

Use thesetdat command to change the date and/or time.

Command DELETE Delete file(s) (DELETE)
DEL[ETE] filespec
Deletes the specified file or files.

To delete more than one file at a time, the wildcardad/or? can be used. Alternatively, the following
deletes all files in the directokiemp

del \temp\
As files are deleted, the names of the files deleted are listed on the screen.

This command is implemented via object-oriented techniques usimgathebject inOlib.dyl, which
result, in the end, in calls to the C functiprelete .

See also the commamnt, which, in contrast t@el , can delete directories.

Command DEVICE List devices (DEVICE)

DEVI[ICE] [filespec]

Lists all devices ("drives”) in the filing system specifiedileypec . The only relevant part dfespec
is the filing systeml@c::, rem::, or whatever).

For exampledev rem:: lists the devices irem:: - assuming a remote connection is established.
Typically, the commandev just results in the following listing:

List of file devices for LOC::

A:-OK

B: - OK

M: - OK

In practice, the only time a device will be reported as other tranwill be if the connection to a remote
computer is broken midway through listing the device=wof:..

This command is implemented via the C functipnmen(P_FDEVICE) andp_iow(P_FREAD) .

3-10

3 HC COMMAND SHELL

Command DIR Full directory listing (DIR)
DIR [/p] [filespec]

Lists all the specified files in a directory, together with their sizes, the time and date of their last
modification, and their attributes.

The wildcards and» can be used in the file specification.

Thesp flag causes the display to pause at the end of each screen. When the display is paused, it can be
resumed by pressing any key. Howeveesifis pressed, the directory listing is terminated.

This command is implemented via the C functipngen(P_FDIR) , p_dinfo , p_iow(P_FREAD) , and
p_finfo

Use thads command for a briefer listing of the details of files.

Command ENV Display or set environment variable (ENV)
ENV [var[=[value]]]
Displays or sets the value of environment variables.

With no parameters, the values of all current environment variables are displageds|fiiven but

without any trailing equals sigr)(the values of all environment variables matching the specification in
var are listed. If the equals sigs) (s given too, the environment variable is set toalue. But if the
equals sign is given whilsalue is omitted, the environment variable is deleted.

For example:
env $Ws* displays the values of all environment variables whose names stastwgith
env last=34 sets the value afst to the string4
env last= deletes the environment variakle .

Values are displayed inside square brackets. The list pauses when the screen is full.

Note that environment names and values are both case dependent. Thus the environmengrsapiables
andGrourwvould be distinct.

Indeed, environment names and (more likely) environment values can even be binary. Non-printable byte
values are displayed as (eg}> or <o01>. There is no mechanism fsettingbinary values from the
Command Shell.

This command is implemented via the C functiprigdenviron , p_delenv , andp_setenv .

Command EXIT Exit level (EXIT)
EXI[T]

Exits the Command Shell. May be used to terminate second copies of the Command Shell that are no
longer required.

If theexit command is typed into the first copy of the Command Shell, the HC will automatically re-
launch a shell process, as explained in the chapteduction to the HC

If theexit command is found in a batch file, all that happens is that the batch file is terminated, and
control passes back to the previous level of batch file (or to the command line).

The command is implemented (when not in a batch file) by the C functian .

Command FORMAT Format device (FORMAT)

FOR[MAT] [device:][volname]

Formats Ram and FlaSSDs (or the internal disn:).

3-11

HC PROGRAMMING GUIDE

The command detects the typeSSD and places the apprigie format information onto the disk. This
information differs for Flash and Ra8&Ds.

The volume nameoiname is optional.
For exampleformat a:new will format thea: device, giving the volume nanmew
If device: is omitted, the internal memory is formatted.

Note carefully that no warning is given before the formatting takes place. So accidentally typmg (eg)
b could be disastrous:

* since no colon is typed,is interpreted as the volume name
* since no device name is specified, formatting defaults: to
» accordingly, all data om: is lost in a trice (with the volume namenof being set td).

The mere fact that there are read-only files on an S8Dat prevent it from being formatted. However,
if an SSD has the write-protection switch set, it mot be possible to format it.

Another reason foiermat being disallowed for a disk would be if there are apgn fileson it. In this
case, theormat request will fail with the error message "File or device in use".

This command is implemented via the C functiprngen(P_FFORMAT) andp_read .

Command FREE Display free memory (FREE)
FRE[E]
Displays the amount of free RAM in Kbytes.

Note that this in general exceeds the amount of bytes fireg & reported by @ ord command. The
discrepancy is because some parts of internal memory are reserved for code and data segments; not all of
it can be allocated to the contentgrof

This command is implemented via the C funciposyfree .

Command KILL Kill a process (KILL)
KIL[L] prochame
Kills the first process found matching the specificatiopréianame .

To kill a specified instance of a number of running tasks, all with the same name, the exact process name
must be found out and used. Eigjob.$09 or kill job.$14

Use thaproc command to give the full process names of all current processes.

Note thatill should only be used as a last resort, as it does not allow the process to tidy up before
exiting - this is a problem with the Link application which starts a number of sub-processes. To shut down
a processgerminate should normally be used in preferenceiito .

This command is implemented via the C functopkil

Command LDEV List device drivers (LDEV)

LDE[V] [device_spec]

Lists all specified device drivers. The list includes all ROM-resident device drivers, as well as external
ones that are currently loaded.

If device_spec is omitted, it defaults to* .

For each device driver listed, the lakdd or pddis given - the former for logical device drivers (which
are hardware-independent), the latter for physical device drivers (which are hardware dependent).

3-12

3 HC COMMAND SHELL

For example, enteringev con displays

List of devices:con

LDD - CON (units=-1)

The value given forunits is the number of channels a logical device driver can support. A vatue of
means that an unlimited number of channels can be opened.

As another example, enteringv fsy displays
List of devices:fsy

PDD - FSY.REM
PDD - FSY.LOC
PDD - FSY.ROM

listing the three ROM-resident filing system devitsg)(drivers - forrem::, loc::, androm::.

This command is implemented via the C functipngvind andp_devqu .

Command LINK Start Link program (LINK)
LINK [-b<baud>] [-p<port>] [filename]
Starts the Link communication software on the HC.

If filename is specified, it is assumed to specifyran file, and in that case, there should be no other
parameters on the command line. The extensiomis supplied fofilename if required.

If the command line is empty, the Link software searches as follows formacfilek.trmto configure it:
« first, in the current path of the Link software
e next, in the HC ROM (where it will indeed find a fiteclink.trnj.

The format and creation afm files is discussed in th&dditional System Informatiamanual.

Possible values ®hud range fromi9200 andoesoo all the way down taio, 75, andso, with all common
baud rates in between being supported. In the absence of a command line and if nonegliefoaim
file is found,baud defaults tmeoo. If theport OF serial_device is specified but ndiaud, baud defaults
to 19200.

The only time it is Bcessary to specipprt is if there are serial expansion devices in both the top and the
bottom of the HC. In this case, the parametermeans to use the top port, apgl means to use the
bottom port. Otherwise, the Link software simply uses whichever port is available.

(Other parameters are also possible but are omitted from the present description. See thddrdgpter
Mcprint, and Slinkn theAdditional System Informatiomanual.)

Just typingink should suffice in the majority of cases.
To terminate the Link software at some later date, ttypaink
To discover whether or not Link software is running, typs link

If thelink command is issued while Link is already running, a second copy of Link will be launched
briefly, but will quickly exit with the error number -32 (or 224), meaning that a priiogssalready
exists. No harm will ensue as a result.

See the sectioGonnecting to other computeirs Introduction to the HCfor more details.

Command LOWBAT Configure low battery warnings (LOWBAT)

LOWI[BAT] state

If state isoN the HC will check, each time the HC is switched on, for either of the batteries being low.
On detecting a low battery, the HC will issue a warning in the form of an information message in the
bottom right hand corner of the screen.

3-13

HC PROGRAMMING GUIDE

If state is OFF, this behaviour will not take place. (This is the default.)
This command is implemented via the C functi@gstem.

See alswatchk for an independent method of periodically checking the battery voltages.

Command LPROC List processes (LPROC)
LPR[OC] [process_spec]
Lists information about all specified processes. The information listed is:
e the full process name (in the fotmatchk.$07
* the size, in bytes, of the process data segment (given in hexadecimal)
* the current state of the process.
If process_spec IS omitted, it defaults to* .

Possible values of the state of the process are:

CURRENT the process is currently receiving cpu

READY the process has some events ready to process, as soon as cpu is given to the
process by the multi-tasking scheduler

DELTA the process is "sleeping” (eg as a result of calling the C functieep)

Sus the process has been suspended

SEM the process is waiting for some event to happen.

Additionally, the textvsuspwill be displayed if the processusiting to be suspended.
For example, enteringroc sys$shll may produce the display
List of processes:sys$shll

SYS$SHLL.$05 3DA0 SEM
SYS$SHLL.$11 3DA0 CURRENT

One common use of theoc command is to check whether Link software is currently runmrug:
link .

This command is implemented via the C functipnsind , p_getosd , andp_sgsize .

Command LSEG List segments (LSEG)
LSE[G] [process_spec]
Lists all memory segments currently in use by the specified process(es).
If process_spec IS omitted, it defaults tox .
The information listed about each memory segment is:
* its size in paragraphs (one paragraph is sixteen bytes)
* its segment address
* its access count.
Values are displayed in hexadecimal.

At the end the display, the total size in paragraphs of all the free segments is given (this gives the same
value, when converted into Kbytes,f@s).

This command is implemented via the C functiprsgfind , p_getosd , andp_sgfree .

3-14

3 HC COMMAND SHELL

CommandMASTER Display time/date of mastering (MASTER)

MAS[TER]
Displays the time and date when the ROM was mastered.

The command is implemented by the C funciomfo , passing as a parameter a file known to be in the
ROM (rom::sys$shil.im}y

Command MD Make directory (MD)

MD path
Makes a directory.

When a directory is created, it will appear in the current directory, unless a different path is explicitly
specified.

It is possible to omit the trailing back-slash from the path specification.
The following commands both create a directory namexdlk\ in the root directory of the current drive:

md \work\
md \work

This command is implemented via the C functomkdir .

Command NOTIFY Control whether the Notifier appears (NOTIFY)

NOTI[IFY] state

Controls whether the Notifier ever appears as a result of a file operation carried out by the Command
Shell.

If state IS ON(this is the default), and a file operation unexpectedly fails to firgiSih that was present
earlier, a Notifier will be presented giving the user the opportunity to repla&Steinstead of just
having the file operation fail.

If state IS OFF, no such Notifier will be displayed.

Thenotify command in the Shell has no effect on whether Notifiers are ever displaytteby
programs.

This command is implemented via the C functipretnotiy ~ andp_getnotify

Command OFFENABLE Enable off-key handling (OFFENABLE)

OFFE[NABLE] value

If value iso, the Command Shell gives up its capture ofdkekey, thereby allowing other applications
to capture this key to do their own processing of it.

If value is any non-zero number, the Command Shell attempts to captuwertkey again.
This command is implemented via the C functi@ospturekey andwcCancelCaptureKey

Note that there is no special need to heweapplication capture this key, since by default, the HC simply
switches itself off when this keypress is received. The behaviour of then@ad Shell in response to the
OFF key adds nothing to this.

Indeed, it is recommended that the commereable 0 be issued early in argutoexec.btétart-up
batch file.

Command RD Remove directory (RD)
RD path
Deletes a directory, including any files in it (and subdirectories).

Note that, in contrast to MS-DOS, there is no requirement to delete files in a directory before
removing the directory. Further, no warning is given before the directory is removed.

3-15

HC PROGRAMMING GUIDE

In another difference from MS-DOS, it is perfectly possible, in the H@rGand Shell, to remove the
directory where the current path is. All that will happen is that subsequent commandsdaucinag
fail until such time as the current path is changed.

As files and directories are deleted, their names are listed on the screen.
Therd command does noteept a wildcard specifition.

This command is implemented via object-oriented techniques usimgathebject inOlib.dyl, which
result, in the end, in calls to the C functiprelete .

Command RENAME Rename file(s) (RENAME)
REN[AME] filespec filename

Changes the name of a file or files.

The command renames all files matchiirgpec - which can include wildcards.

For example, the commaimgh work.* play.* changes the names of all files calleork in the current
directory (regardless of extension)day, with the extension being preserved across the rename.

As files are renamed, they are listed on the screen.

Because it is not possible to rename files from one directory to another, the command fails if any path
specified withfilename (explicitly or implicitly) differs from that ofilespec

It is not possible to rename a file to have the same name as a file that already exists.

This command is implemented via object-oriented techniques usimgathebject inOlib.dyl, which
result, in the end, in calls to the C functipmename .

Command RESUME Resume a suspended process (RESUME)
RES[UME] procname

Resumes the previously suspended progessame .

See als@uspend .

Some care needs to be exercised in the use of this command, to resume an instance jobpismgssn
any case where there may be more than one instajateroinning at a time. This is because the
command simply attempts to resume the first instance of the pjobdesnd, regardless of whether or
not that particular process is actually suspended.

This command is implemented via the C funcipopresume .

Command SET Set default path (SET)
SET path
Sets the default path.

For example, the commanet b:\ has the effect that all subsequently launched tasks start with their
current paths set tm\. This may be useful if a program assumes that its current path on start up is where
it should read and/or write certain files.

See the earlier sectidfiles and directoriedor further discussion.

This command is implemented via the C functiogetdefaultpath

Command SETDATE Set time and date (SETDATE)
SETD[ATE] dd/mm/yy hh:mm:ss
Sets the date and time.

For examplesetdate 26/02/92 15:10:00 sets the date to the 26th of February, 1992, and the time to ten
minutes past three in the afternoon.

3-16

3 HC COMMAND SHELL

All parameter fields must be present, with a two digits being supplied for each field.
The time should always be specified in 24 hour format.

If yy is in the rangeo to 99, the century is set . Otherwise it is set ten. That is, the range of years
that can be set is frome70 to2069.

This command is implemented via the C functosuate .

Command SUSPEND Suspend a process (SUSPEND)
SUS[PEND] procname
Suspends the first process found matching the specificatiptciame .

To suspend a specified instance of a number of running tasks, all with the same name, the exact process
name must be found out and used.sisfend job.$09 Of suspend job.$14 . If only one instance of
job.imgis running, it suffices to entetispend job

Use theproc command to give the full process names of all current processes. Wsgrtleecommand
to reverse the effect ofsaspend command.

This command is implemented via the C funciopsuspend .

CommandTERMINATE Terminate a process (TERMINATE)
TER[MINATE] procname
Terminates the first process found matching the specificatipidiame .

To terminate a specified instance of a number of running tasks, all with the same name, the exact process
name must be found out and used tdz@b.$09 Or ter job.$14

For most applications, the effect of being terminated is identical to being killed: the application is
interrupted immediately, with no chance being provided for data being saved to file or to environment
variables. However, an application can make use of an operating system servige dife@jnate) to
specify behaviour to be invoked whenever the application is to be terminated in this way.

This command is implemented via the C funciiopterminate

Command TYPE Type a text file (TYPE)
TY[PE] filename
Prints a text file to the screen.

There is no provision for the display to pause itself automatically. However, the user can pause the display
at any time, in the usual way, by pressHsgON+LEFT.

This command is implemented via the C functipngen(P_FTEXT) andp_read .

Command VER Display software version number (VERSION)
[VER]SION

Displays the Operating System (Epoc) version number, the HC Rom version humber, and the Command
Shell version number.

This command is implemented via the C functipngrsion andp_romversion

Command WAIT Wait for a process to complete (WAIT)
WAI[T]

Waits until a process completes. The message "Waiting" is displayed and the Shell becomes non-
interactive until such time as another process completes.

To break out of this mode, pressioN+ESC

3-17

HC PROGRAMMING GUIDE

Commonly, this command will be used inside batch files in the following general pattern:

<launch program asynchronously>
<some processing>

wait

Command WNOTIFY Configure Notifier appearance (WNOTIFY)

WNOI[TIFY] state
Configures the appearance of the Notifier.

If state is OFF, the Notifier will be drawn in the same way as it was for software versions prior to release
1.50 of the HC ROM. (This is the default.)

If state isON the Notifier will be drawn in an arguably more attractive form, and will also be displayed
automatically whenever any program terminates abnormally. This form of the Notifier also involves less
RAM usage.

Thewin the namavnotify stands foWindow Server the part of the operating system which actually
produces the more attractive version of the Notifier display.

To see what a Notifier looks like under either of the two methods, first terminate Link (if it is running)
and then type (eg)

link x
This brings about a "File does not exist" Notifier, since thexfilen (presumably) does not exist.
This command is implemented via the C functi@ystem (amongst others).

Using the commangle before and after typingnoton should reveal a memory saving of around 7
Kbytes.

What happens when the Command Shell starts

Exactly what happens when the Command Shell starts depends on whether it has been passed a command
line.

When the Shell is started by the Window Server (after a reset, for example), no command line is passed.
In most other cases, however, the user would pass a command line to the Shell.

For example, typing
run sys$shll /p ver

into MCLink has the effect of running a copysyis$shlion a remote HC, passing it the command sne
ver .

When no command line is p assed

The Command Shell checks to see if a prosgs$ntfyis already running. If not, it launches one from the
HC ROM. (However, if the Window Server has taken over the natifier function, the independent
sys$ntfy.imgorocess will quickly discover this fact, and terminate itself silently.)

Similarly, the progranbatchkis launched, if it is not already running.

Next, the Command Shell searches for a batclatiteexec.btind executes that, if one is found. The
search is on the root directoriesaof b:, andm:, in that order. If no such batch file is found, the user is
prompted to insert an SSD daining this file, and to preenTER to continue. However, the search can
be abandoned by pressirgiONt+ESCinstead.

3-18

3 HC COMMAND SHELL

Then some system information is displayed on the screen: the version numbers of the ROM-resident
software, the date and time, the size of the display screen, the battery type and internal power supply type,

the reason why the operating system was last restarted, and the size of the RAM and how much of it
remains free.

C functions involved in the start-up display (in addition to those mentioned ifdkie alphabetical
listing) includep_geticd , p_getbat , p_getpsu , andp_getres

The final thing the HC Command Shell does, before starting to process commands from the user, is to
attempt to capture therr key to itself.

3-19

CHAPTER 4

THE HC IN THE CRADLE

Introduction

The Psion Cradle was designed to provide:
e asecure mounting for the HC.
* hands-free operation.
» battery recharge.
* high speed data transfer with a PC.

The cradle automatically engages with the high speed serial port on the HC and can be connected via a
high speed cable to a PC. Running special software on the PC enables a high speed serial connection that
is significantly faster than the standard serial connections described elsewhere.

See the chapténtroduction to the HGor additional background details about the Cradle.

Port C

The Cradle contains an expansion socket that cegpaisome, but nail, of the HC's standard expansion
modules. This expansion socket has name "Port C" as seen by software (the two standard HC ports have
names "Port A" and "Port B".

For example, software that openy:.c will open any serial port in the Cradle expansion slot.

Link software can use a standard serial port fitted into the Cradle. The Link software must be invoked as
follows:

link -p3 -b9600
This allows the Link software to operate at standard rates of data transfer, i.e. up to Baud 9600.

The remainder of this chapter describes various kind of higher speed connections that are possible
between a PC and an HC. These require the expansion port of the Cradle to be fitted with a special high
speed serial module. Note that this module will not operate if it is connected into either Port A or Port B
of an HC - it has to be fitted into Port C.

Hardware connections

The high speed cable plugs into a special socket on an ASIC-2 expansion card fitted in the PC.

The remainder of this chapter assumes that the PC has an ASIC-2 expansion card fitted, and that the high
speed cable connects into this card.

Fitting an ASIC-2 expansion card
An ASIC-2 expansion card in a PC contains two sockets:

» the upper one is designed to be connected to a (local) set of SSD drives

» the lower one is designed to be connected to a high speed cable leading to an HC Cradle.

4-1

HC PROGRAMMING GUIDE

The two possible uses of an ASIC-2 card in a PC are completely independent from each other. Any local
SSD drive can be accessed as long as software device drivers geohaas.sy$iave been loaded by the
config.sygprogram on the PC (the drivefs.sys fefs.sysanddevflash.syslso need to be loaded to

access Flash SSDs in these drives), none of these drivers are required for the high speed socket to work.

The ASIC-2 card occupies eight consecutive memory addresses, and uses one hardware interrupt. A set of
jumpers on the card controls these two settings.

The standard ASIC-2 card works with MS-DOS versions 3.2 upwards. itablsuor all PCs, XTS,
ATs, and fully compatible computers. A variant of the card is also available for MCA-based computers,
such as most PS/2 models.

Full details of installing and configuring the ASIC-2 card are contained in the documstating the
Psion SSD/ fast serial card for P@adInstalling and using the Psion SSD software and SSD drive unit
for PCsthat accompany the ASIC-2 expansion card.

Software connections

There are two quite separate software mechanisms for connecting an HC in a Cradle to a PC with an
ASIC-2 expansion card:

* running suitable Link software on each end of the connection, allowing high speed remote file
access between the two computers

» using thermx: device driver on the HC and thesram.syslevice driver on the PC, allowing
RAM SSDs in the HC to be accessed from the PC as if they were SSD drives directly connected
to the PC.

At the time of writing, the remote filecaess supported by the ASIC-2 card allows data transfer on

average about four times faster than that possible using a standard RS232 serial connection between an
HC and a PC. The PMX/HSS mechaniallows data transfer that is considerably faster than this.

However:

* the PMX/HSS mechanism ondjlows acess to RAM SSDs in the HC, not (at thee of
writing) to FlashSSDs, nor to the "internal" driven()

* the PMX/HSS mechanism ondjlows acess to the HC SSD drives from the PC: there is no
guestion of access to the PC drives from the HC.

Evidently, the two different mechanisms are both well-suited to different circumstances.
Check with Psion on the availability of a drivessflash.syallowing acess to Flash SSDs in the HC.
High speed remote file access us ing Link software
In order for Link software on the HC and on the PC to use the high speed connection, the parameter
-stty:z
needs to be specified.
Thus at the HC end:
» any current Link software should be terminated, using the comraanichk
* Link software should then be started (or restarted), using the cominase:z
At the PC end, the same parameter should be passed on the command line to MCLink.
To check that a connection has successfully been established, simpiytype at either end.

In both cases, other parameters on the command line (such as an explicit value for the Baud rate) will
generally be ignored.

As is standard for Link and MCLink software, command line parameters can be spewfieily by
creating.trm files. For example, any parameters in a localfidink.trm(as created by st command

inside MCLink) will apply, in the absence of any other contents on the command line. For more details,
see the chaptéviclink, Mcprint, and Slinkn theAdditional System Informatiomanual.

Version 3.0 or higher of MCLink is required, in order for t:z parameter to be recognised.

4-2

4 THE HC IN THE CRADLE

High speed debugging using Link software

The Sibo Debugger can use a high speed connection to cut down on the time spent in data communication
between the PC (where the Debugger runs) and the HC (where the program being debugged runs).

For general information about the Sibo Debugger, seSitieeDebuggemanual.

As always when using the Sibo Debugger, Link software has to be running on the HC. In order for the
Link software to use the high speed connection, the paramsgter has to be specified:

link -stty:z

The same parameter has to specified on the command line of the Debugger. Thus instead of typing e.g.
\sibossdk\sys\sdbg sample

to debug the prograsample.imgthe following should be typed:

\sibosdk\sys\sdbg -stty:z sample

The PMX/HSS mechanism

If the following line (or equivalent) is placed in thenfig.sysstart-up program for a PC
device=c:\ssd\hhsram.sys
and the PC has an ASIC-2 expansion card fitted, the PC will gain four more disc drives.

If the PC ordinarily has floppy drives andb:, and a hard disk:, then drivesd: throughg: will be
added by this process.

However, typing e.gdird: at the MS-DOS ammand line would almost certainly lead to a message
such as

Not ready reading drive D:
Abort, Retry, Fail

This is becausemx: software has not yet been enabled at the HC end of the connection.

Incidentally, two definite effects of running thesramdriver on the PC can clearly be seen, even in the
absence of co-operatimyix: software on the HC:

e typingdird: gives an error message of the above sort, whereas typing e.g. leads to the
more Cursory messag®alid drive specification

» ifthere is ahardwareconnection between the PC and the Cradle, and if there is an HC in the
Cradle, the green "Data" light will flash when thei: command is given.

Configuring h ssram.sys

The documeninstalling and using the Psion SSD software and SSD drive unit fotrRCaccompanies
the ASIC-2 card for PCs describes how the base address of the ASIC-2 card can be altered, by means of
adjusting jumpers on the card.

This adjustment may occasionally becassary, away from the default base addreseaf and
hardware interrupt, in order to avoid conflicts with other expansion cards already fitted in the PC (for
example, network cards or internal modems).

In this case, as well as adjusting the jumpers on the ASIC-2 card, you will need to change the
configuration of some of the associated software drivers.

When using an SSD drive unit with the ASIC-2 card, the software dféxgam.sysieeds to be
reconfigured (if the jumpers are adjusted). This is fully described in the doclmsetiling and using the
Psion SSD software and SSD drive unit for PCs

When using the high speed connection to a HC in a Cradle, it is the softwaréndshegn.syshat needs
to be reconfigured (if the jumpers are adjusted). The new configuration is established in exactly the same
way as fordevram.sysexcept that every referencedevram.sy$as to be replaced by onehtssram.sys

4-3

HC PROGRAMMING GUIDE

For example, to change the base addresssto type the following:

c:
cd \ssd
config -a0x370 hssram.sys

In practice the default settings of the jumpers and of the ASIC-2 card should be suitable for the vast
majority of PCs.

In case it is known to what base address the card should be set, but it is unclear how the jumpers should be
set to effect this, simply run tteenfig program specifying the required base address (and/or hardware
interrupt number). The output of tkenfig program specifies which of the nine jumpers on the card

should be set.

The PMX: device driver
The following very simple program demonstrates the operation ¢fNh€ device driver:

#include <p_std.h>
#include <p_file.h>
#include <p_sys.h>

LOCAL_C VOID GetKey(TEXT *mess)

{
p_printf("Press a key to %s PMX:",mess);

p_printf("(PSION-ESC to terminate)");
p_getch();
}

GLDEF_C VOID main(VOID)

{
VOID *handle;

FOREVER

{

GetKey("open");
p_open(&handle,"PMX:",-1);
GetKey("close");
p_close(handle);

}
}

Basically, so long as thmvx: device is open by an application on the HC, any R&8Ds in the HC will
be inaccessible to the HC filing system. Attempting to read from &®Bs vill give a "Not ready" error.
Instead, these drives are given over to the control of any high speed serial requests from the PC.

Thus whilst theemx: device is open, typing e.grd: at the PC end of the connection will give a
directory listing of the contents of any Ram SSD in davef the HC. Likewise, typingire: at the PC
will list the contents of any Ra®SD in driveb: of the HC (this assumes thasram.syfas been
installed on the PC and that there is only one hard disk partition on the PC).

When thermx: device is closed again, the Ram SSDs in the HC come back under the aegis of the HC, and
the familiar"Not ready message will be given in response to an attemptdesa these drives directly
from the PC.

More details about PMX

ThepwMmx: device driver has no interface other thanghgen andp_close functions used in the above
code fragment.

It is possible for the_open to fail, with the following errors:
E_FILE_ALLOC failed to allocate memory for the control block

E_GEN_INUSE thepmx: driver is already open (e.g. in another application), or the high speed
port is already in use (e.g. by high speed Link)

E_FILE_LOCKED same as the previous case.

4 THE HC IN THE CRADLE

The CRD device driver

Thecrb: device driver, which is built into the ROM of the HC, can be used to report changes of state
when an HC is inserted or removed from a Cradle.

The purpose of therp: device is to allow a program to perform specific operations automatically when
the HC is inserted into a Cradle, and to "tidy up" when the HC is removed.

Note that thecrD: device does not have to be open for the Cradle expansion port to be used in any way.
The operating system will automatically stop and start active devices in the Cradle, regardless of whether
CRD: is open.

See theHC Cradle and Holstechapter of th&/O Devices Referender more details of using therp:
device in HC programs.

In fact, thecrp: device has a particularly simple interface (though not quite as simple asmhat, of
described earlier in this chapter). The entirety of the functionalitgofwhen used with a Cradle is
demonstrated by the following example program:

#include <p_std.h>
#include <p_file.h>
#include <p_sys.h>

LOCAL_D WORD CradleStatus;
LOCAL_D WORD CradleStat;
LOCAL_D VOID *Cradle;

LOCAL_C VOID ReadCrdStatus(VOID)
{
p_ioc4(Cradle,P_FREAD,&CradleStat,&CradleStatus);

}

GLDEF_C VOID main(VOID)

{

if (p_open(&Cradle,"CRD:",-1))
{
p_puts("Can't open CRD:");
p_getch();
p_exit(0);
}

ReadCrdStatus();

FOREVER
{
p_iowait();
p_puts(CradleStatus? "IN Cradle": "OUT of Cradle");
ReadCrdStatus();
}

}

In practice, of course, there would be more than one event source in the application (the only events in the
above example apphtion are when the HC is inserted or removed from the Cradle).

CHAPTER 5

CUSTOMISING THE HC ROM

Introduction

HCs are shipped with a standard set of software programs in their rom. Application programs usually
reside on SSDs which the user has to insert into the HC. Theseéippligrograms generally rely on the
ROM software in many ways, both direct and indirect.

For some purposes, however, it may be more suitable to alter the set of software programs that is on the
ROM of the HC:

e programs run out of ROM have less of a RAM overhead than those run from an SSD

e programs in the ROM are physically more secure than those 88@nin the sense that an SSD
can be removed by a user but the ROM cannot

» programs in the ROM may be able to take advantage of special software featoessibte to
programs on an SSD - for example, the fact that ROM codeatadsdgments always remain at
a fixed address

e programs in the ROM are easier to copy-protect.

All the different files comprising an HC ROM need to be assembled on a PC, and then combined into a
specialmasterfile, with extensionmas This process involves the Psion proprietary émom.exe

The next step is to copy the master file onto a specially forma8&d This requires the use of an SSD
drive attached either internally or externally to the PC, and the Psion proprietamtsilexeThe
outcome of this is a so-calledaster SSD

Finally, the.masfile can be transferred from the SSD into the ROM of an HC, by the procedure of
reprogramming(or reproing for short).

Some cautionary remarks
The process of creating customised HC roms is not without its own considerable drawbacks:

e the sheer inconvenience of reproing every relevant HC, each time the customised ROM software
is upgraded, has to be weighed against the simpler alternative of just copying new program files
onto an external SSD

« reproing "in the field" is an impractical option, given that mains adaptors (which must be present
for a repro to proceed) are unlikely to be present or usable in these circumstances

e acustomised ROM may fail to be "future proof" in that future upgrades to the standard OS may
reduce the free space in the ROM to the extent that additional custom software no longer fits

e again, a customised ROM may fail to be "future proof" against grawtttin the customised part
of the ROM - bear in mind that program systems almost inevitably develop over time and grow in
size as they develop

« acustomer who damages an HC will find it is less convenient to have it replaced or repaired if it
has been specially customised, than if it is a standard stock item

HC PROG

RAMMING GUIDE

» if an unsuitable combination of files is combined intonasfile, the outcome of reproing this

onto an HC may be a totally useless HC, that has to be returned to Psion and taken apart before
being capable of being used again (and note that HCs returned to Psion on account of a repro

failure in these circumstances would count as having violated the standard warranty conditions).

Incidentally, in the last of thesbave cases, it may be possible to rectify theasibm by means of putting

another

Window Server onto an SSD anlabaging the HC. This is because any progsys$wsrv.img

that is found on the root directory of an SSD is started in preference to that in the rom. At a simpler level,
putting an alternative shekys$shll.imyon an SSD and beoting may also salvage matters.

Perhaps the largest drawback of all has not been mentioned so far. This is the possible effort required to

produce

software sufficiently small that it fits on the available space remaining in the HC rom. In practical

terms, this may mean "optimising" and compressing code to the extent that it becomes unmaintainable or
otherwise flawed. However, it may still be worthwhile puttpagt of a customised software system into
the ROM of an HC, instead afl of it, so that at least some of the benefits mentioned earlier can be

gained.

Creating an HC master file

Invoking erom

The progranmerom.exds used to create the master file image of the HC rom. As so many parameters must
be passed it is usually invoked via a short batch file. The following batahrfilev.batcould be used:

erom

>sch.mep -¢ -m -b0xa000 -v0x033e -Isch -oENG epocchp

type sch.mep

This bat
the scre

ch file records its screen output to theskille. mepbefore printing the contents of this file onto
en.

The meanings of the other parts of this batch file are as follows:

-C

the ROM is to be marked as suitable for reproing onto HC computers (as opposed
to others in the Sibo range).

-m the ROM image should be written toraasfile.

-b0xa000 the ROM is to have base addressoo in the address map.

-v0x033e the version number of the ROM is to®ss e.

-Isch the files listed in the text filsch.romare to be assembled into the rom.

-0ENG the notional language of the ROM is English.

epocchp the ROM is to be based around the version of Epoc that is in tlepdEhp.exe

The master file produced by this batch file, if successful, would have vi@38eeng.masrhis name is
made up as follows:

the first letter is always.
the next four letters are the version number (in this @336.

» the final three letters are the notional language identifier.

Allowed
ENG
FRN
GRM
SPA
ITA
SWE
DAN

DUT

values of language identifier include:

"English"

"French"

"German"

"Spanish”

"ltalian”

"Swedish"

"Danish"

"Dutch”

5 CUSTOMISING THE HC ROM

In fact, erom.exewill fail if an unrecognised language identifier is specified. Note that the language
thereby identified has a purely notional role, being announced only during the process of reproing, when
the user is given a last chance to cancel before the ROM contents are changed (the actual value of
language, as determined by software calfingtlanguage , is set by the contents of one of the files in the
rom).

Valid version numbers

See the documentation fversion andp_romversion in thePlib Referencenanual for some
background details on valid version numbers.

Note that whereas roms produced by Psion are generally released with a version number entfingen
produced byrom.exeare automatically constrained to a final letter in the range. This is to help
guard against any confusion between customised roms and those produced by Psion.

One other feature of the roms produceaimym.exds that they always contain a zero-length file with the
namenon$stdrom (in additionto the files specified in thech.romfile).

The files comprising the rom

In order to produce a standard HC rom, the contents of the listfileomreferred to by the batch file
mrchv.batwould have to be as follows:

cheng.cfo,sys$ctry.cfo
wsrvhchl.img,sys$wsrv.img
corpshll.img,sys$shil.img
corpntfy.img,sys$ntfy.img
sys$env.ini

sys$rfsv.img
sys$ncp.img

link.img

mclinkpa.trm, mclink.trm
olib.dyl

big.fon

small.fon

mon_5x8.fon

mono.fon

sys$norm.fon
sys$bold.fon

exopl.img
oplch.dyl,opl.dyl
batchk.img

ttest.img

pprint.img

custom$.dat

The form of any line in this file is as follows:

<full path of the original name>[,<name by which the file should be called inside the
rom>]

These files have the following functions (see elsewhere iH@hErogramming Guidéor more details):

cheng.cfo The standard English language "“config file" for the HC (non-backlit variant)
wsrvhchl.img The Window Server program for the HC

corpshll.img The Command Shell

corpntfy.img The original (non-Window Server) Notifier program for the HC

sys$env.ini Initialisation data for the Window Server

sys$rfsv.img The Remote File Server program

sys$ncp.img The Networking Control Protocol program used by Remote Link

link.img The Link program

mclinkpa.trm Standard customisation data for Remote Link on the HC

olib.dyl A dynamic library of object-oriented classes and methods

HC PROGRAMMING GUIDE

* fon Six different font files

exopl.img A program facilitating the execution of Opl programs

oplch.dyl The Opl dyl for the HC (implementing Opl/g)

batchk.img Displays and monitors information about battery voltage levels

ttest.img A utility program to test the status of the serial port

pprint.img A utility program to print a specified file via a nominated peripheral

customs.dat An initially blank file that can be written to after reproing has finished, to allow

additional once-only customisation.

Of these files, the only one that it is absolutely mandatory for the ROM to contain is a version of the
config file, sys$ctry.cfoAll others can in principle be dispensed with, though some can be replaced more
easily than others - as is discussed below.

Size considerations

The following extract from a standantiepfile (the "list" output of runningrom.exg may give some
idea as to the current amount of free space in the HC rom:

CHENG.CFO - B=B832 L=010FD(Hex),004349(Dec)
WSRVHCH1.IMG - B=B942 L=085C0(Hex),034240(Dec)
CORPSHLL.IMG - B=C19E L=03D30(Hex),015664(Dec)
CORPNTFY.IMG - B=C571 L=007A0(Hex),001952(Dec)
SYSSENV.INI - B=C5EB L=00060(Hex),000096(Dec)
SYS$RFSV.IMG - B=C5F1 L=004F0(Hex),001264(Dec)
SYS$NCP.IMG - B=C640 L=02330(Hex),009008(Dec)
LINK.IMG - B=C873 L=00ADO0(Hex),002768(Dec)
MCLINKPA.TRM - B=C920 L=000E2(Hex),000226(Dec)
OLIB.DYL - B=C92F L=04828(Hex),018472(Dec)
BIG.FON - B=CDB2 L=00BCE(Hex),003022(Dec)
SMALL.FON - B=CE6F L=0093E(Hex),002366(Dec)
MON_5X8.FON - B=CF03 L=0093E(Hex),002366(Dec)
MONO.FON - B=CF97 L=00918(Hex),002328(Dec)
SYS$NORM.FON - B=D029 L=0093E(Hex),002366(Dec)
SYS$BOLD.FON - B=DOBD L=0093E(Hex),002366(Dec)
EXOPL.IMG - B=D151 L=002C0(Hex),000704(Dec)
OPLCH.DYL - B=D17D L=054C6(Hex),021702(Dec)
BATCHK.IMG - B=D6CA L=00750(Hex),001872(Dec)
TTEST.IMG - B=D73F L=00F40(Hex),003904(Dec)
PPRINT.IMG - B=D833 L=00850(Hex),002128(Dec)
CUSTOMS.DAT - B=D8B8 L=01800(Hex),006144(Dec)

Rom Base Segment is 0AO00(Hex)
Rom code size is 18150(Hex) 098640(Dec)
Rom disk size is 22230(Hex) 139824(Dec)
Free rom size is 05C60(Hex) 023648(Dec)

Note that the length of each file listed is given bythevalue - first in hex, then in decimal - and the
corresponding notional base address is given bysthgalue.

As can be seen, the amount of free space in the standard HC ROM is about 23k. However, this figure can
be increased by omitting some of the files normally included.

Some possibilities for customisation

An alternative shell
Rather than usingorpshll.img a customised version of the shell program may be substituted.

This alternative shell can have any suitable nameédtagshll.img, so long as the extension.isig and
the.romfile renames the shell gys$shll.img

See elsewhere in thHdC Programming Guidéor further details of writing a customised shell.

5-4

5 CUSTOMISING THE HC ROM

Variant config files

Replacingcheng.cfawith chengel.cfahanges from the non-backlit variant to the backlit variant of the
keyboard table (in fact altering the value of the keycode returned to software when the middle of the three
salmon-coloured keys on the top row is pressed).

Similarly:
chfrn.cfo produces a ROM suited to the continental version of the keyboard, supporting
some accented characters such as é
chswe.cfo produces a ROM suited to the Scandinavian version of the keyboard, supporting
characters such as &
chnzl.cfo produces a ROM suited to the numeric version of the keyboard.

There are also fileshfrnel.cfq chsweel.cfpandchnzlel.cfo which are backlit variants ehfrn.cfq
chswe.cfpandchnzl.cfo

Config files in.cfoformat are produced from text forméy files using the Psion proprietary tool
econfig.exedetails of which are available upon request.

Additional files that might be added

As many additional program (or data) files can be added as will fit in the rom. To make room for these
files, other files in the standard ROM may have to be omitted - see below.

Files that might be omitted

It is possible to omit any referencesgs$ntfy.imgrom the ROM file list provided that an alternative shell
is used. This shell must make a suitable call on start-wpyteem so that the Windows server version of
the notifier is enabled. Alternatively suitable values must be writtersyst®env.in{see below).

The filesttest.imgandpprint.imgcan each be omitted without any undue loss.

The filecustom$.datan be omitted if there is no intention to further customise individual HC roms
afterwards. Alternatively, a shorter form of this file can be substituted (every single byte in this file must
have the valuexft).

The filebatchk.imgcan be omitted or replaced with alternative battery checking software. In this case, it
is best not to useorpshll.img as this emits an error message on start-up if it cannot locate and run a copy
of batchk.img

The filesexopl.imgandoplch.dylcan be omitted if there is no need to run Opl programs on the HC.

Some of thefon files can be omitted, provided due care is paid to provide a suitably adjys$ehv.ini
(see below). For example, the MC-derived fdsitsfon small.fon andmono.foncould be omitted,
leaving onlymon_5x8.forand the Series3-derived forsigs$norm.fomndsys$bold.fonNote that the
order of listing.fonfiles in the.romfile defines which fonts correspond to which Window Server font
ids -ws_FoNT_sAsspecifying the firstfonfile in the.romlisting, and so on. Note also that the HC
console (as used by C programs containing statementséker p_printt , and also byrint
statements in Opl) presupposes the use of the.tbindile listed, so that this should always be
mono-spaced and of size 5 by 8.

Customising the Window S erver

Whenever the system restarts, the Window Server reads the cont®yrg$eriv.iniand sets environment
variables according to the data therein.

Dumping the contents of the standayd$env.inivill confirm that a particularly simple format is used in
this file:

[<byte count><name><byte count><value>]

with this pattern being repeated as many times as there are environment variables to initialise. For each
such environment variable, the byte count preceding the environment variable name gives the length of
the name, and the byte count preceding the environment variable value gives the length of the value.

HC PROGRAMMING GUIDE

The only environment variables that yoeedto considerdefining insys$env.inare the following:

$WS_SF gives (in two bytes) the index number of tfan file to use as the "system"
font, which is the default font for all drawing via any GCs (graphics contexts).
This will usually be left at value, and as such can be omitted freps$env.ini

$WS_IF gives (in two bytes) the index number of tfan file to use as the "internal”
font, which is what the Window Server uses when drawing alerts, busy
messages, and information messages. This has thesaldlee standard
sys$env.inithereby specifyingys$norm.foras the internal font. In case an
alternativeromfile omitsbig.fonand movesys$norm.forinto this slot, the
value ofsws_IF should be adjusted to

$WS_FL gives (in two bytes) the initial value of the Window Server flags. This is zero in
the standardys$env.ini

See theSystem start-upection in th&Vindow Server Referenaganual for more details of the possible
Window Server flags. In many cases, the initial vahoa will be appropriate, setting the flags
_NO_NOTIFIER_REBOOTANnd_HOOK_NOTIFIER

Creating and using a master SSD

Once a suitablamasfile has been created, the next step is to transfer it, together with the repro software,
onto a master SSD. This requires an SSD drive &itaehed to the PC, although no special software
drivers (such atefs.sysanddevflash.sysneed to be installed.

Anyone ordering an SSD drive for their PC should note that, for it to function, not only is the drive itself
required, but also an ASIC-2 expansion card, and (in the case of an external SSD diiab)ea su
connecting cable.

The master SSD is uslly created under the control of a batch file, of which the following
(makemast.batis an example:

@echo off

emast -ul v033eeng.mas

echo Transferring other software...
xcopy \hcmast*.* f:*.* /s

This potentially copies a whole directory tree onto the m&S#, i.e. the contents dfcmastincluding
subdirectories. In this case, the contenthiomast\would includerepro.app

The batch file assumes that the PC sees the first SSD slot as dravel would need to be altered if this
is not the case (changing to ege:\). The batch file also assumes that all relevant software drivers for
the external SSD drives have been loaded.

The-u1 parameter temastspecifies that the top left SSD slot in #éittachedSSD drive is to be used.
The filename passed &mastobviously has tonatch that of the master file created earlieetmm

Once the batch file has finished, the SSD can be used to repro HCs inrtz way.

More details on master SSDs

A master SSD must be a 512k Flash device and has a veigl $penat: part of it is devoted to a “file"
that is outside the filing system proper, and the remainder (just under 256Kk) is presented to the outside
world as if it were the entirety of the SSD.

That is, normal file operations do not see .thas"file" that is on the SSD. This is why thmasfile has
to be copied onto the SSD using a spleool, i.e.emast.exeThis tool not only copies on thmasfile but
also specially formats the remainder of 8f&D.

To repro numeric keyboard HCs

To prepare a master SSD that can be used to repro an HC with a numeric keyboard (and which therefore
lacks keys such as E, P, ando), a copy ofrepro.appshould be renamed y®n0.imgbefore being copied
onto the master SSD.

5-6

5 CUSTOMISING THE HC ROM

Files required

This section lists the files from the Optional Disk of the SDK that are needed, in order to be able to
produce a customised ROM for the HC:

source files: mrchv.bat sch.rom epochhp.exeepro.app makemast.baiand the 22 files
listed above as the standard contents.dbm file, i.e. cheng.cfahrough
custom$.dattogether with the other 7 standactb files

tools: erom.exeandemast.exe

5-7

APPENDIX A

TECHNICAL SPECIFICATIONS

Psion's continuing product development and improvement programs mean that specifications and
features are subject to change at any time and without notice.

Psion Solid State Disks Technical Specification

Dimensions

Size: 63mm (length) x 52mm (width) x 6mm (height)
Weight: =25¢g

Capacities

RAM: 128KB, 512KB, 1MB, 2MB

Flash: 128KB, 256KB, 512KB, 1MB, 2MB, 4MB, 8MB
PSRAM: 512KB, 1MB, 2MB

Solo Flash: 128KB, 256KB, 512KB

Filing System

Flash, RAM and PSRAMVS-DOS

RAM and PSRAM: FAT directory/file system

Interface

Physical: 6 pin serial

Electrical: Clock, 0V, Vbackup Vpp, V.. Data

Data Transfer

SSD interface: 320Kbytes/sec

File Access

Note: the quoted rates for the Series 3c also apply to the Siena with external SSD drive

All SSD types read: 30-40Kbytes/sec depending on SSD/directory structure (HC and Series 3c)
Flash write: =6Kbytes/sec (HCkx8Kbytes/sec (Series 3c)
RAM and PSRAM write: 30-40Kbytes/sec depending on SSD/directory structure

Formatting

Flash: =30 secs per 128K (HC)%20 secs per 128K (Series 3c); 9,999 times minimum
Format/write voltage: 12V DC
Programming voltage: 15.0V to 18.0V DC on the Vh pin @ 40mA max. (type Il flash)

RAM: =7.5 secs per 128K (HC¥6 secs per 128K (Series 3c)
Power

Flash, standby: 500pA

RAM, standby: 10pA

Flash and RAM, readingtmA

Flash, writing: 20-30mA

RAM, writing: =1mA

HC PROGRAMMING GUIDE

PSRAM versus SRAM SSDs

Important : Pseudo-Static RAM (PSRAM) SSDs aw@ recommended for use in consumer machines,
(Series 3a, Series 3c and Siena). This section explains why.

PSRAM SSD's araot suitablefor use with some machines:

Machine Compatible

HC Yes (with an upgrade - see below)
HC-DOS Yes (with an upgrade - see below)
Workabout Yes

MC (all variants) No

Series 3 (all variants) No

Series 3a 256K, 512K No

Series 3a 1M, 2M (S3m) Yes (see below)

The fact that PSRAM SSDs can only be used with the 1MB and 2MB Series 3a is effedtloaty the
Series 3 range, because of the problem of having to differentiate the various Series 3 models at point of
sale. PSRAM SSDs are therefore only recommended for use in Psion Industrial’s handhelds.

An upgrade to both HC and HC-DOS machines (involving a component change on the main PCB only)
is in progress. HC and HCDOS machines supporting PSRAM SSDs will be identifiable by their serial
number. The performance of the upgraded machines is not affected in any other way, including power
consumption and use with any peripherals and other SSD types.

All SSD's have a common serial interface which sets the data transfer rate. This means that for reading
and writing data, all types of RAM SSDs work at the same speed.

The power consumption of a PSRAM chip is generally higher than for the equivalent Static RAM
(SRAM) chip when read/writing data. However, both types of memory only transfer data during a small
part of the SIBO cycle so the power consumption of an active SSD is not much higher for a PSRAM as
opposed to an SRAM.

However, a PSRAM SSD consumes a significant amount of current when the host machine is turned on,
even though no data is being transferred. This is because an oscillator is required to refresh the
memory. This can increase the overall current consumption of the machine by up to a third. Also, when
the host machine is off, the backup current of the PSRAM SSD is much higher than the equivalent
SRAM SSD. A lithium cell in a 2MB PSRAM will have a life of about 17 days (400 hours) outside a

SIBO machine. PSRAM SSDs are best considered as memory expansion rather than removable media
and are most suited to applications where they remain inside a machine; then they only rely on their
backup batteries when the machine's main battery is changed.

PSRAM SSDs should therefore only be used in applications where the above disadvantditie have
affect. An example is a Woakoutwhich is mostly powered/recharged through insertion into a docking
station and whose SSDs are never removed.

APPENDIX A TECHNICAL SPECIFICATIONS

Psion HC Technical Specification

Models

Psion HC100:
Psion HC110:
Psion HC120:

128K CMOS static RAM.
256K CMOS static RAM.
512K CMOS static RAM.

All models have 256K internal Flash ROM.

Processor

Type:
Clock:

Dimensions

Size:
Weight:

Environmental

Temperature:
Humidity:
Weatherproofing:
Drop resistance:
EMC:

Safety:

Software

Operating system:

Command shell:
Communications:

Printing:
Solid State Disks

Built-in drives:
SSD capacities:

Filing system:

File Access

80C86-compatible 16-bit processor.
3.84MHz.

200mm (length) x 80mm (width) x 35mm (height).
395¢g (5409 with batteries but no SSDs).

Operating 0C to +50C, storage -20C to +70C.
Operating 90% max non-condensing.

IP54. Splashproof (depending on variant).

1 metre onto concrete.

FCC Class B; CE marked, E-marked.
EN60950.

Psion EPOC multitasking OS.

MS-DOS like command interpreter

Psion LINK, 50-9600 baud, asynchronous,

compatible with MCLINK, RCOM & PSIWIN software on remote PC.
Parallel and serial and via remote PC.

Two SSD drives.

Flash: 128KB, 256KB, 512KB, 1MB, 2MB, 4MB, 8MB
RAM: 128KB, 512KB, 1MB, 2MB.

MS-DOS compatible.

Note: the quoted rates apply only to the HC.

Flash read:
RAM read:
Flash write:
RAM write:

Formatting
Flash:

Format/write voltage:

RAM:
Screen

Type:
Resolution:
Dimensions:

Keyboard

Alphanumeric:
Numeric:
Custom:

30-40Kbytes/sec depending on SSD/directory structure.
30-40Kbytes/sec depending on SSD/directory structure.
=6Kbytes/sec.

30-40Kbytes/sec depending on SSD/directory structure.

=30 secs per 128K.
12V DC.
=7.5 secs per 128K.

Black and white retardation film LCD, optional back lighting.
160 X 80 pixels, 26 characters x 9 lines (default font).
60mm (width) x 50mm (height).

53 key UK/US, European and Scandinavian versions.
31 key with function keys.
Can be provided.

HC PROGRAMMING GUIDE

Sound
Built-in:
Power

Main battery:
Back-up:
External:
Battery life:

Expansion

Capabilities:
Modules:

Piezo buzzer (single tone) and loudspeaker.

NiCad 500mAH or 600mAH rechargeable pack.

CR1620 3V lithium cell.

12V DC via Psion adaptor.

Typically up to 50 hours, depending on use and configuration.

Two expansion module interfaces.

RS232/Parallel; Quad Modem; MCR/RS232/TTL-RS232; Bar Code Reader;
RS232/TTL-RS232; RS232/Bar Code Reader; Printer;RFS/Barcode;
LIF-PFS/TTL-RS232; 16550 RS232/TTL-RS232; Vehicle/TTL-RS232;
Integral Laser Scanner.

Psion HC RS232/Parallel (printer) module, version 1
Technical Specification

Important Notice - Compatibility

This module can continue to be used in both top and bottom ports of the HC. Applications requiring
serial or parallel comms from the HC should use this module.

This module can be used in the WalbutDocking Station for serial or parallel communications.

This module must not be used in an HC Docking Station sold in countries requiring the CE Mark. The
version 2 Psion HC RS232/Parallel (printer) module must be used instead.

Physical

Part number:
Module:

HC compatibility
HC-DOS compatibility

1502-0001
Integrated removable module.

Yes. Fits into either of the HC's expansion ports.
Yes

Docking station compatibility Not CE marked configuration - version 2 model required

EMC:

Safety

Connectors
RS232:

Parallel:

Serial Interface
Baud:

Data bits:

Stop hits:

Parity:
Handshaking:
Remote switch-on
Protocols:

FCC Class B, CE-mark and E-madk CE marked for use with HC
Docking Station

EN60950

9 way miniDIN female.

Standard Centronics 25 way D female

50, 75, 11, 134, 150, 300, 600, 1200, 1800, 2000, 2400, 3600, 4800, 7200,
9600.

5, 6, 7, 8 (ASCII).

1,2

Odd, even, none.

XON/XOFF, RTS/CTS, DSR/DTR, DCD.

Via DSR line (optional).

Psion proprietary MCLINK protocol.

Xmodem protocol.

APPENDIX A TECHNICAL SPECIFICATIONS

RS232 interface

Provides standard RS232 level signals and is similar to the RS232 interface on an IBM AT. The
difference between this socket and an IBM AT is that the RI (ringing indicator) pin is not implemented.
This pin on the HC can be optionally connected to the HC VSUP input/output supply via an on board
link.

RS232 , (9 way male D-type), pinout

Pin 1: DCD input.

Pin 2: RX input.

Pin 3: TX output.

Pin 4: DTR output.

Pin 5: Ground (0V).

Pin 6: DSR input.

Pin 7: RTS output.

Pin 8: CTS input.

Pin 9: Optional VSUP input/output, (7-10V DC). DC input must not exceed 10V.

Parallel Interface

Parallel Interface pinout

Pin 1 Strobe output
Pin 2 Data O output
Pin 3 Data 1 output
Pin 4 Data 2 output
Pin 5 Data 3 output
Pin 6 Data 4 output
Pin 7 Data 5 output
Pin 8 Data 6 output
Pin 9 Data 7 output
Pin 10 ACK input

Pin 11 BUSY input
Pin 12 PE input

Pin 13 NC

Pin 14 AUTO FD XT output
Pin 15 ERROR input
Pin 16 INIT output

Pin 17 SLCT IN output
Pins 18-25 Ground OV

Psion HC RS232/Parallel (printer) module, version 2
Technical Specification

Important Notice - Compatibility

This module must be used in the HC Docking Station for countries requiring the CE Mark.

This module is compatible with all configurations of Psion HC, HC Docking Station andaldéark
Docking Station and is recommended for all new installations.

HC PROGRAMMING GUIDE

Physical

Part number: 1502 0052 10

Module: Integrated removable module.

HC compatibility Yes. Fits into either of the HC's expansion ports.
HC-DOS compatibility Yes

Docking station compatibility Yes

EMC: FCC Class B, CE-mark and E-mark

Safety: EN60950

Connectors

RS232: 9 way male D-type (RS232, PC AT type).

Parallel: 15 way High Density D male. A 15 Way to 25 Way converter cable is

required for connection to a standard Centronics port.

Serial Interface

Baud: 50, 75, 11, 134, 150, 300, 600, 1200, 1800, 2000, 2400, 3600, 4800, 7200,
Data bits: 9600.

Stop hits: 5, 6, 7, 8 (ASCII).

Parity: 1, 2.

Handshaking: Odd, even, none.

Remote switch-on XON/XOFF, RTS/CTS, DSR/DTR, DCD.

Protocols: Via DSR line (optional).

Psion proprietary MCLINK protocol.
Xmodem protocol.

Eﬁ HC EXPANSION MODULE

PARALLEL / SERIAL PORTS

MADE IN THE UK

PRINTER & PARALLEL PORT RS 232 SERIAL
I — |

RS232 interface

Provides standard RS232 level signals and is similar to the RS232 interface on an IBM AT. The
difference between this socket and an IBM AT is that the RI (ringing indicator) pin is not implemented.
This pin on the HC can be optionally connected to the HC VSUP input/output supply via an on board
link.

RS232, (9 way male D-type), pinout

Pin 1: DCD input.

Pin 2: RX input.

Pin 3: TX output.

Pin 4: DTR output.

Pin 5: Ground (0V).

Pin 6: DSR input.

Pin 7: RTS output.

Pin 8: CTS input.

Pin 9: Optional VSUP Input/output, (7-10V DC). DC input must not exceed 10V.

APPENDIX A TECHNICAL SPECIFICATIONS

15 way High Density Parallel Interface
15 way High Density P arallel socket (male)

15 way High Density P arallel Interface pinout

Pin 1
Pin 2
Pin 3
Pin 4
Pin 5
Pin 6
Pin 7
Pin 8
Pin 9
Pin 10
Pin 11
Pin 12
Pin 13
Pin 14
Pin 15

Strobe output
Data O output
Data 1 output
Data 2 output
Data 3 output
Data 4 output
Data 5 output
Data 6 output
BUSY input
ERROR input
INIT output
SLCT IN output
Data 7 output
PE input
Ground OV

Psion 15 Way to 25 Way converter cable
Technical Specification

Physical
Part number:

Length:
EMC:

Safety:

Connectors

15-way parallel:

25-way parallel:

2403 0026 01

30cm.
FCC Class B, CE-mark and E-mark

EN60950

female; for connection to the 15-way high-density parallel (printer) socket on
the Psion HC RS232/Parallel (printer) module, version 2

for connection to a standard Centronics port on a printer.

HC PROGRAMMING GUIDE

15 way High Density P arallel plug (f emale)

15 way High Density P arallel Interface ¢ onnector pinout

Pin 1 Strobe output
Pin 2 Data O output
Pin 3 Data 1 output
Pin 4 Data 2 output
Pin 5 Data 3 output
Pin 6 Data 4 output
Pin 7 Data 5 output
Pin 8 Data 6 output
Pin 9 BUSY input
Pin 10 ERROR input
Pin 11 INIT output
Pin 12 SLCT IN output
Pin 13 Data 7 output
Pin 14 PE input

Pin 15 Ground OV
25-way connector pinout

Pin 1 Strobe output
Pin 2 Data O output
Pin 3 Data 1 output
Pin 4 Data 2 output
Pin 5 Data 3 output
Pin 6 Data 4 output
Pin 7 Data 5 output
Pin 8 Data 6 output
Pin 9 Data 7 output
Pin 10 NC

Pin 11 BUSY input
Pin 12 PE input

Pin 13 NC

Pin 14 NC

Pin 15 ERROR input
Pin 16 INIT output
Pin 17 SLCT IN output
Pins 18-25 Ground OV

APPENDIX A TECHNICAL SPECIFICATIONS

Psion HC MCR /RS232 /TTL RS232 module, (Version 2),
Technical Specification

Physical
Part number: 1502-0003
Module: Integrated removable module.
HC compatibility Yes. Fits into either of the HC's expansion ports.
HC-DOS compatibility No
Docking station compatibility Yes
Certification: FCC Class B
VDE Class B

MCR Interface

Connections
Socket: 7 way locking miniDIN female.
Readers supported: Single or simultaneous two track reader.

MCR unit power supply: 5V DC output available to power MCR unit. This is software switchable.

Pinout

Plug required: Hosiden type TCP6170-1100 or equivalent.

Pin 1: 5V output (100mMA max).

Pin 2: CLD. Card load input (low when card in reader). 100k pullup to 5V.

Pin 3: DATAL. Data input for track 1 reader. Data is read in on falling edge of the
clock line. 100k pullup to 5V.

Pin 4: CLOCKUI. Clock input for track 1 reader. 100k pullup to 5V.

Pin 5: DATAZ2. Data input for track 2 reader. Data is read in on falling edge of the
clock line. 100k pullup to 5V.

Pin 6: CLOCK?2. Clock input for track 2 reader. 100k pullup to 5V.

Pin 7: Ground. (0V).

RS232 / RS232 TTL Interface

Connections
The single RS232 interface can be software switched between 2 sockets.

Sockets: 8 way locking miniDIN socket (RS232 TTL).
9 way miniDIN socket (standard RS232).
Interface
Baud: 50, 75, 11, 134, 150, 300, 600, 1200, 1800, 2000, 2400, 3600, 4800, 7200,
Data bits: 9600.
Stop hits: 5, 6, 7, 8 (ASCII).
Parity: 1, 2.
Handshaking: Odd, even, none.
Remote switch-on XON/XOFF, RTS/CTS, DSR/DTR, CDC.
Protocols: via DSR line (optional).

Psion proprietary MCLINK protocol.
Xmodem protocol.

HC PROGRAMMING GUIDE

RS232 TTL socket

TTL levels: 0-5V.

TTL signals: TX, RX, RTS, CTS, DSR,, plus software switchable unregulated 7-10V DC
and regulated 5V DC.

TTL polarity: Programmable in software.

Readers supported: This interface is intended for use with peripherals such as low power laser

and CCD bar code scanners which support a TTL level RS232 interface.

Scanner power supply: Unregulated 7-10V DC and regulated 5V DC to power the scanner. These
are software switchable.

RS232 TTL socket pinout

Plug required: Hosiden type TCP6180-1100 or equivalent.

Pin 1: 5V DC regulated output. (250mA max*).

Pin 2: TX output. TTL transmit.

Pin 3: RTS output. TTL handshaking.

Pin 4: VSUP output. Unregulated 7-10V DC output (250mA max*).
Pin 5: RX input. TTL receive.

Pin 6: CTS input. TTL handshaking.

Pin 7: DSR input. TTL handshaking.

Pin 8: Ground. (0V).

*The maximumcombined current must not exce&b0mA

Standard RS232 interface

Provides standard RS232 level signals and is similar to the RS232 interface on an IBM AT. The difference
between this socket and an IBM AT is that the RI (ringing indicator) pin is not implemented. This pin on the
HC can be optionally connected to the HC VSUP input/output supply via an on board link.

RS232, (9 way male D-type), pinout

Pin 1: DCD input.

Pin 2: RX input.

Pin 3: TX output.

Pin 4: DTR output.

Pin 5: Ground (0V).

Pin 6: DSR input.

Pin 7: RTS output.

Pin 8: CTS input.

Pin 9: Optional VSUP Input/output, (7-10V DC). DC input must not exceed 10V.

Psion HC RS232 /TTL RS232 module,
Technical Specification

Note: a 16550 RS232/TTL-RS232 module is also available and is described later in this Appendix.

Physical

Part number (IP64): 1502-0039

Part number (non-1P64): 1502-0040

Module: Integrated removable module.

HC compatibility Yes. Fits into either of the HC's expansion ports.
HC-DOS compatibility Yes

Docking station compatibility Yes

APPENDIX A TECHNICAL SPECIFICATIONS

EMC:
Safety
Weatherproofing:

Connections

FCC Class B, CE-mark and E-mark
EN60950

IP64 (depending on model, see part number above)

The single RS232 interface can be software switched between 2 sockets.

Sockets:

Peripherals supported:

RS232 interface

Baud:

Data bits:

Stop hits:

Parity:
Handshaking:
Remote switch-on
Protocols:

RS232 TTL interface

TTL levels:
TTL signals:
TTL polarity:

Power supply outputs:

Power supply inputs:

RS232 interface

9 way female D-type (RS232 TTL).
9 way male D-type (RS232, PC AT type).

The TTL RS232 interface is intended for use with peripherals such as low
power laser and CCD bar code scanners which support a TTL level interface.

50, 75, 11, 134, 150, 300, 600, 1200, 1800, 2000, 2400, 3600, 4800, 7200,
9600.

5, 6, 7, 8 (ASCII).

1,2

Odd, even, none.

XON/XOFF, RTS/CTS, DSR/DTR, CDC.

via DSR line (optional).

Psion proprietary MCLINK protocol.

Xmodem protocol.

0-5V.
TX, RX, RTS, CTS, DSR., plus software switchable.
Programmable in software.

Software switchable unregulated 7-10V DC, unswitched unregulated
7-10V DC and regulated 5V DC.

The unswitched 7-10V pin is directly connected to the HC main power rail
and can therefore be used to power the HC. To do this the supply coming
into the HC must be diode isolated (so as not to take power from the HC)
and in the range 7-10V (10V maximurBOTE: powering the HC from
this pin will not charge the HC internal battery.

Provides standard RS232 level signals and is similar to the RS232 interface on an IBM AT. The
difference between this socket and an IBM AT is that the RI (ringing indicator) pin is not implemented.
This pin on the HC can be optionally connected to the HC VSUP input/output supply via an on board
link. This is described above.

RS232, (9 way male D-type), pinout

Pin 1:
Pin 2:
Pin 3:
Pin 4:
Pin 5:
Pin 6:
Pin 7:
Pin 8:
Pin 9:

DCD input.

RX input.

TX output.

DTR output.

Ground (0V).

DSR input.

RTS output.

CTS input.

Optional VSUP Input/output, (7-10V DC). DC input must not exceed 10V.

HC PROGRAMMING GUIDE

RS232 TTL interface
RS232 TTL socket pinout

Pin 1: VSUP switched output. Unregulated 7-10V DC output (250mA max*).

Pin 2: RX input. TTL receive.

Pin 3: TX output. TTL transmit.

Pin 4: 5V output. (250mA max*).

Pin 5: Ground (0V).

Pin 6: DSR input. TTL handshaking.

Pin 7: RTS output. TTL handshaking.

Pin 8: CTS input. TTL handshaking.

Pin 9: VSUP Input/output. 7-10V DC input/output. DC input must not exceed 10V.

*The maximumcombined current must not exce&b0mA

Psion HC 16550 RS232 /TTL-RS232 module,
Technical Specification

Note: an ASIC5 based RS232/TTL-RS232 module is also available, and is destobed a

This module may be used with any standard HC (or HCDOS machine) for faster data transfer
rates than the standard module. The essential difference between this module and the standard
"RS232 / TTL-RS232" module is that a 16550 UART is used rather than the ASIC5 UART

used in the standard module. Also the RI (Ringing Indicator) function is provided to make it a true
IBM PC-AT RS232 interface (note that the HC software does not make any use of RI).

Physical

Part number 1502-0045

Module: Integrated removable module.
Fits into either of the HC's expansion ports.

Operating temperature -20 to +60

Storage temperature -20 to +8D

Weight 60g

HC compatibility Yes, loadable PDD required

HCDOS compatibility Yes

Docking Station compatibility No

Emissions FCC class A

Connections

The single RS232 interface can be software switched between 2 sockets.

Sockets: 9 way female D-type (RS232 TTL).
9 way male D-type (RS232, PC AT type; full EIA-232 signal levels).
Peripherals supported: The TTL RS232 interface is intended for use with peripherals such as low

power laser and CCD bar code scanners which support a TTL level RS232
interface. The polarity of this interface can also be programmed to be
standard (non-inverting) or inverting.

APPENDIX A TECHNICAL SPECIFICATIONS

RS232 interface
Baud:

Data bits:

Stop hits:
Parity:
Handshaking:

Remote switch-on
Protocols:

RS232 TTL interface

TTL levels:
TTL signals:
TTL polarity:

Power supply outputs:

Power supply inputs:

HC usage

50, 75, 11, 134, 150, 300, 600, 1200, 1800, 2000, 2400, 3600, 4800, 7200,
9600, 19200; also 38400 using error corrected transmission.

5, 6, 7, 8 (ASCII).

1,2

Odd, even, none.

Xon/Xoff, RTS/CTS, DSR/DTR, CDC.

via DSR line (optional).

Psion proprietary MCLINK protocol.

Xmodem protocol.

0-5V.
TX, RX, RTS, CTS, DSR., plus software switchable.
Programmable in software.

Software switchable unregulated 6-10V DC, unswitched unregulated
6-10V DC and switched regulated 5V DC.

The unswitched 7-10V pin is directly connected to the HC main power rail
and can therefore be used to power the HC. To do this the supply coming
into the HC must be diode isolated (so as not to take power from the HC)
and in the range 7-10V (10V maximum).

NOTE: powering the HC from this pin wiliot charge the HC internal
battery.

A loadable software Physical Device Driver (PDD) is available to allow this module to be used on any

standard HC. Once this driver is loaded the module is accessed exactly the same as the current ASIC5

based RS232/TTL-RS232 module.
When fitted it allows the HC to reliably communicate at 19200 baud (the standard module is only

reliable up to 9600 baud). However when using error corrected protocols such as LINK, communicating
at 38400 baud is feasible. In tests file transfer rates in excess of 2Kbytes/second have been achieved
using LINK in conjunction with MCLINK on a 486 PC.

Docking station usage

The HC/HCDOS communicates with this module via the parallel expansion bus, therefore it cannot be
plugged into a Docking Station.

HCDOS usage

Baud rates of up to 115,200 are achievable compared with a maximum of 19,200 for the standard
module.

Connector selection and TTL polarity selection will normally be under application control but the
HCSETUP utility can be used. The port appears as COML1 if the module is plugged into the top HCDOS
expansion slot or COM2 in the bottom slot.

RS232 interface

Provides standard RS232 level signals and is similar to the RS232 interface on an IBM AT. The
difference between this socket and an IBM AT is that the RI (ringing indicator) pin can be optionally
connected to the HC VSUP input/output supply via an on board switch. This is described below.

RS232, (9 way male D-type), pinout

Pin 1: DCD input.
Pin 2: RX input.
Pin 3: TX output.
Pin 4: DTR output.
Pin 5: Ground (0V).
Pin 6: DSR input.

HC PROGRAMMING GUIDE

Pin 7: RTS output.
Pin 8: CTS input.
Pin 9: RI inputor

VSUP Input. 7-10V DC input. DC input must not exceed 1@V.

VSUP Output. 6-10V DC unregulated. 250mA maximum current, or 200mA
maximum current if another expansion module is also being powered.

See below for full details.

Pin 9 RI / VSUP switch

If you hold the module with the component side of the PCB facing you and the D-type connectors at the
top, this switch is located below the right hand D-type connector.

Important: the normal position for this switch is 'RI' (in the left hand position), it should only be
switched to the 'VSUP' position for special applications as described below otherwise damage
could occur to either the HC or the device connected at the other end.

The 'VSUP' connection should be seledrly if one of the following is required:

1. The HC is to be powered externally. The supply applied to the HC must be diode isolated (to
prevent power drain from the HC) and in the raig@®V (10V maximum).
NOTE: powering the HC from this pin wiflot charge the HC internal battery.

2. The HC is required to supply power to another device, for example certain true RS232 I/F laser
scanners require power to be supplied from the RS232 connector. Note that VSUP is not software
switchable and is present even when the HC is switched off, so the device would need its own
ON-OFF switch to prevent the HC battery being drained when the device is not in use.

VSUP is an unregulated supply in the range 6-10V. The device powered from pin 9 should not
draw more thar250mA from VSUP if no other expansion modules are powered up
simultaneously (if another expansion module is fitted and powered up, the current drawn should
not excee@00mA).

DSR auto-wakeup switch

If you hold the module with the component side of the PCB facing you and the D-type connectors at the
top, this switch is located to the bottom left hand corner of the PCB. If this switch is ON (in the right
hand position) the HC is automatically turned on when DSR is asserted by the device connected to the
RS232 port.

Power consumption
When the RS232 port is open it typically dre8wsA plus the current drawn by the device connected at

the other end, this will vary depending on the device, for example connected to a PC the total current
drawn will increase to typically 18mA (this however will vary from one PC to another).
TTL interface

RS232 TTL socket pinout, (9 way f emale D-type)

Pin 1: VSUP switched output. Unregulated 6-10V DC output (250mA max*).
Pin 2: RX input. TTL receive.

Pin 3: TX output. TTL transmit.

Pin 4: Switched 5V output. (250mA max*).

Pin 5: Ground (0V).

Pin 6: DSR input. TTL handshaking.

Pin 7: RTS output. TTL handshaking.

Pin 8: CTS input. TTL handshaking.

Pin 9: VSUP Input. 7-10V DC input. DC input must not exceed 10V.

VSUP Output. 6-10V DC unregulated. 250mA maximum current*, or
200mA maximum current* if another expansion module is also being
powered.

*The maximumcombined current must not exce&b0mA

A-14

APPENDIX A TECHNICAL SPECIFICATIONS

Switched VSUP (pin 1) and 5V (pin 4) outputs

Both these switched power supply outputs are provided to power peripherals plugged into the TTL
connector and both are enabled only when the port is open and TTL connector is selected.

VSUP is an unregulated supply in the range 6-10V.
The 5V regulated output has a tolerance of +/- 5%.

The device powered from either supply should not draw more2b@mA if no other expansion

modules are powered up simultaneously (if another expansion module is fitted and powered up, the
current drawn should not exce2dOmA). If current is drawn from both rails then the combined current
should not excee?50mA (or 200mA if another module is present).

VSUP direct ¢ onnection (pin 9)

A direct VSUP connection is also provided for the same purposes as the VSUP option on pin 9 of the
RS232 connector, see descriptidioee.

Power consumption

When the port is open and the TTL interface is selected, the interface typicallybtn&ws most
cases however the current drawn by the peripheral device dominates.

Psion HC Bar Code Reader module, (Version 2),
Technical Specification

Physical

Part number (HP wand): 1502-0020
Part no. (Welch Allen wand): 1502-0021

Module: Integrated removable module.
HC compatibility Yes. Fits into either of the HC's expansion ports.
HC-DOS compatibility No
Docking station compatibility No
Certification: FCC Class A
VDE Class B
Connection
Socket: 6 way locking miniDIN socket.
Peripherals supported: Will support most standard bar code wands and also scanners with wand

emulation output. It is supplied with one of either:
HP wand HPBCS-A207 and plugr
Welch Allen wand and plug

Remote switch-on: Facility for remotely switching machine on with bar code wand or scanner.

Power supply output: 5V DC available to power a wand or scanner. This is software switchable.

Pinout

Plug required: Hosiden type TCP6160-1100 or equivalent.

Pin 1: EXON. Turns HC on when pulled low. 100k pullup to 5V present at all
times (even if machine is switched off)

Pin 2: Enable output. Optional output to barcode device. Under software control
(application dependant).

Pin 3 Switch input. Optional input for barcode switch.

Pin 4: Data input. Input from barcode wand. 2k2 pullup to 5V when reading
from wand.

Pin 5: 5V output. (Max 250mA)

Pin 6: Ground. (0V)

HC PROGRAMMING GUIDE

Psion HC RS232 / Bar Code Reader module,
Technical Specification

This module combines a standard RS232 interface via a 9 way male D-type (PC-AT type) connector
with a bar code interface via a 9 way male D-type click-lock connector.

Physical

Part number 1502-0044

Module: Integrated removable module.
Operating temperature: -20 to +60

Storage temperature: -20 to +8D

Weight: 629

HC compatibility Yes. Fits into either of the HC's expansion ports.
HC-DOS compatibility Yes

Docking station compatibility Yes

EMC: FCC Class B, CE-mark and E-mark
Safety EN60950

Weatherproofing: No

RS232 interface
The RS232 interface iseessed by opening TTY:A (top slot) or TTY:B (bottom slot).

It provides standard RS232 level signals and is similar to the RS232 interface on an IBM AT. The
difference between this socket and an IBM AT is that the RI (ringing indicator) pin (pin9) is not
implemented. This pin can be optionally connected to the HC VSUP main power supply rail by fitting a
jumper to the 2-pin header on the PCB (described below).

Connection

Socket: 9 way male D-type (PC-AT type)

Peripherals supported: Will support most standard bar code wands and also scanners with wand
emulation output.

Remote switch-on: Facility for remotely switching machine on. Selectable by switch on PCB;
see below.

Power supply input: Optional VSUP connection, (7-10V DC unregulated), to power the HC;
see below.

Power supply output: Optional VSUP connection, (6-10V DC unregulated), available to power a
wand or scanner; see below.

Pinout

Pin 1: DCD input

Pin 2: RX input.

Pin 3: TX output.

Pin 4: DTR output.

Pin 5: Ground (0v)

Pin 6: DSR input.

Pin 7: RTS output.

Pin 8: CTS input.

Pin 9: Optional VSUP connection. See below.

APPENDIX A TECHNICAL SPECIFICATIONS

Pin 9 VSUP connection
The jumper should be fitted to make this conneatioly if one of the following is required:

e The HC is to be powered externally. The supply applied to the HC must be diode isolated (to
prevent power drain from the HC) and in the raig@®V (10V maximum).
NOTE: powering the HC from this pin witlot charge the HC internal battery.

» The HC is required to supply power to another device, for example certain true RS232 I/F laser
scanners require power to be supplied from the RS232 connector. Note that VSUP is not software
switchable and is present even when the HC is switched off, so the device would need its own
ON-OFF switch to prevent the HC battery being drained when the device is not in use.

VSUP is an unregulated supply in the range 6-10V. The device powered from pin 9 should not
draw more thar250mA from VSUP if no other expansion modules are powered up
simultaneously. If another expansion module is fitted and powered up, the current drawn should
not excee@00mA.

Warning: the jumper should not be fitted in any other circumstance, to prevent damage to the device
connected or to the HC.

DSR auto-wakeup switch

If you hold the module with the component side of the PCB facing you and the D-type connectors at the
top, the switch is located to the bottom left hand corner of the PCB. If this switch is ON (in the left

hand position) the HC is automatically turned on when DSR is asserted by the device connected to the
RS232 port.

Power consumption

The RS232 port is only powered up when the appropriate channel is open. Typically the interface draws
10mA plus the current drawn by the device connected at the other end, this will vary depending on the
device, for example connected to a PC the total current drawn will increase to about 20mA (this
however will vary from one PC to another).

Bar code interface

The interface to the Bar code decoder is via RS232 serial signalscdessad by opening TTY:D(top
slot) or TTY:E (bottom slot). The port is powered up and down by opening and closing the appropriate
channel.

Decoder

Decoder IC: Hewlett Packard HBCR-1612
Input speed: 9600 Baud via serial

Input data: 8 Data bits, 1 Stop Bit
Discrimination: Automatic

Supported symbologies: Code 39 (standard or extended)
Interleaved 2 of 5
UPC A, EO, E1 (with supplemental digits)
EAN/JAN 8,13 (with supplemental digits)

Codabar
Code 128

Maximum scan speed: 30 ips (76 cm/s)

Output data: By default when a successful bar code is read the number is transmitted to
the HC in ASCII format followed by a carriage return.

Peripherals supported: Will support most standard bar code wands and also scanners with wand
emulation output.

Unsupported scanners: ‘Undecoded Laser Scanner' (also known as HHLC, hand held laser
compatibility).

Programming: The HBCR-1612 is programmable via escape sequences. For more detailed

programming information refer to théD Devices Referenaeanual.

HC PROGRAMMING GUIDE

Connection

Socket: 9 way male D-type click-lock

Power supply outputs: VSUP connection, (6-10V DC unregulated), and 5V DC regulated, available
to power a wand or scanner. See below.

Pinout

Pin 1: DCD input

Pin 2: Bar Data input

Pin 3: No connect

Pin 4: Switched VSUP (6-10V DC) output*.

Pin 5: DSR input

Pin 6: DTR output.

Pin 7: Ground (0V)

Pin 8: Ground (0V)

Pin 9: Switched 5V regulated output*.

VSUP and 5V regulated outputs

Both these switched power supply outputs are provided to power devices plugged into the bar code port
and both are enabled only when the appropriate channel is open.

VSUP is an unregulated supply in the range 6-10V.
The 5V regulated output has a tolerance of +/- 5%.

*The device powered from either supply should not draw more26@maA if no other expansion
modules are powered up simultaneously. If another expansion module is fitted and powered up, the
current drawn should not excedOmA. If current is drawn from both rails then the combined current
should not excee?50mA (or 200mA if another module is present).

Power consumption

The Bar code port is only powered up when the appropriate channel is open. Typically the interface
draws10mA idle plus any current drawn by the wand. During a scan the interface typically draws
24mA plus the current drawn by the wand. Current drain varies greatly from one wand to another and
choice of wand can have a considerable effect on battery life.

Note

HC bar code readers may be converted for use with the Psiorabéaitk SeeAppendix A - Technical
Specificationsn theWorkabout Programming Guideanual.

Psion HC Modem UK module,
Technical Specification

Physical

Part number: 2400-0090-01

Module: Integrated removable module.

HC compatibility Yes. Fits into either of the HC's expansion ports.

HC-DOS compatibility No

Docking station compatibility Yes

Certification: BABT approved in UK (approval number NS/1397/3/T/605141)
BS6301 (safety)

Power: 70mA maximum

APPENDIX A TECHNICAL SPECIFICATIONS

Environment

Operating temperature:

Operating humidity:
Communication modes

V standards:
Operational modes:

Data transfer rate:

Network connection
Line connection:

Signal level:
Equalisation:
Interface:
REN:

Autodial/autoanswer

Dial method:

Call progress:

Call control:

Auto answer:
Mode selection:
Call disconnection:

Data interface
DTE interface:
Command buffer:
Protocol:

DTE speed:
Error correction:

Diagnostics
Test modes:

0-50C
0 - 96% non-condensing

V21, V22, V22bis, V23.
V22bis 2400 bps full duplex.
V22 1200 bps full duplex.
V23 1200/75 bps full duplex.
V23 75/1200 bps full duplex.
V21 300 bps full duplex.

Up to 2400 bps with V22bis.

BT 600 series jack for 2 wire PSTN,

3 wire bell tinkle suppression supported

-9dBm.

Transmit - fixed compromisegceive - automatic adaptive.
600Q

1

Pulse and tone dialling.

Internal loudspeaker with volume control, extended results codes.
Extended Hayes AT command set.

To ITU-T (CCITT) V25 recommendation, with echo suppression.
Automatic configuration to V23/V22bis/\VV22/V21 on receive.

Loss of carrier, DTR or by command.

Psion high speed serial

Compliant with V24/V28 TX, RX, RTS, CTS, DSR, DCD, DTR, RI
40 characters

Async command and data mode.

300, 600, 1200 and 2400bps.

V42 including LAPM and MNP Class 4.

V54 digital and analogue loops.

Psion HC Vehicle Interface Box Technical Specification

This unit is designed to be mounted in a vehicle and provide the following functions:
« DC power regulation and protection.
« Wiring interfacing.
« Direct connection to the RS232 interface.

The unit and cables have E-Mark certification.

The wiring connections, (as shown in the system block diagram below), are:
« Unregulated 10-18 volts input from the vehicle source, ('Vehicle Supply').
« RS232 serial interface to a radio or telephone modem, ('RS232").
« RS232 to/from the HC, power, trickle charge for the battery, (RS232 and Power").

Note that the HC Vehicle Interface Box does not support the Psionamrirange; sedppendix An
theWorkabout Programming Guideanual for a description of the WaithoutVIC (Vehicle Interface

Cradle).

The HC needs to be fitted with a special BFS/TTL-RS232 expansion module.

HC PROGRAMMING GUIDE

Boo=

]

Daooag
Doooag,
Doooog
pDoooaq Vehicle Supply

Daooag
Doooag,
SE(EE C——
= RS 232 Y
and Power a RS 232
l o -
° o o

HC Computer Vehicle Interface Box Radio/Modem

System block diagram

LED Indicator

9 Way D type (Male) connector 15 Way D type (Female) connector
and 2 way Power input

End views of the HC Vehicle Interface Box showing the connectors

The Vehicle Interface kit includes:
* Vehicle Interface Box, Part Number 2400-0079.

e ALIF-RS232 cable 1.5m length, terminated at one end with a LIF connector
(Polarisation Type A) and a 15 way D type connector at the other.
LIF - RS232 Cable : Part Number 2403-0011

e The appropriate HC Expansion Module, TTL/LIF-RS232. Part Number 2400-0068

—_—

|

Vehicle Interface Box Installation Kit

Psion HC Cradle Technical Specification

Note: this HC accessory has been superseded by the Psion HC Docking Station.

Dimensions

Size: 190mm (length) x 150mm (width) x 850mm (height)

Weight: 4009

HC compatibility Yes. Models prior to revision 4 (serial number below 200,000).

HC-DOS compatibility No
Interfaces

HC serial interface: High speed - 190kBytes/sec
Expansion module slot: Fits RS232/Parallel and Modem modules

APPENDIX A TECHNICAL SPECIFICATIONS

Battery recharge

Trickle charge: 14-16 hour recharge of HC battery in situ

NiCad recharge slot: Allows charging of stand alone spare battery

Features

Security lock: Ensures HC held in position

Insertion/removal: Trigger loaded spring release and hand recess

Control panel: LEDs indicating mains power, fast charge, spare battery charge, active comms

Mounting options

Flat surface: e.g. point-of-sale counter
Wall mounting: e.g. industrial environments
In-vehicle: e.g. fleet vehicles

Psion's continuing product development and improvement programs mean that specifications and
features are subject to change at any time and without notice.

Psion HC Docking Station Technical Specification

Introduction

The HC Docking Station is designed to provide a multi-function mounting point for the Psion HC and
the Psion HC-DOS corporate hand held computers, (referred to in this technical specifiddugon as
computey.

The Docking Station supersedes the HC Cradle, and has the following features:
» Battery management, including fast charge of batteries (fast model)
« Small footprint
« Reliable connection between the Psion and the docking station using the new LIF connector
e Option for in-vehicle use

« FCC, static and safety approval

Compatibility with Psion HC and RWAN machines

Compatibility with the Psion HC

To allow connection of the HC to the Docking Station using the LIF connector, the HC main circuit

board was revised so that the connections for the fast serial and charging interfaces were available at the
bottom expansion slot (version 4 onwards). As a result of this, Psion HC computers with pre revision 4
boards (serial numbers below 200,000) are not compatible with the Docking Station or expansion
modules which have a LIF interface. The HC must also be reproed to version 1.70F or above of the
EPOC operating system.

A spares kit is available consisting of an HC main board (latest revision), plus the side and bottom
boards. This allows a field update so that early versions can be made compatible with the Docking
Station. Contact your Psion distributor for more information.

Only HC battery packs marked "Fast Rechargeable" and with the letters "FC" (for Fast Charge) in the
top right hand corner of the label are suitable for fast charging with the HC docking station.

Compatibility with RWAN/PDT220
The Docking Station does not support RWAN/PDT220 machines.

Variants

A total of four build options available for the HC:
1. HC fast charge

HC PROGRAMMING GUIDE

2. HC trickle charge,
Note: Both the above variants are also available with vehigleast circuitry on board.

This gives a total of 4 possible build variants.

Identification

PCB number and revision marked on PCB is common for all variants.

The main visual differences that distinguish an HC fast charger from aaldéwrifast charger are:
HC fast charger: 4 pin bulky power supply socket fitted

Workaboutfast charger: 2 pin 1.3mm DC jack fitted

Docking Station Unit

Main features

The Docking Station Unit has the following features:
» Fast charging of the computer internal battery pack, (fast model).
e Spare bhattery pack fast charging.
» Stable desktop mounting.

» Accepts some of the HC expansion modules which communicate via the Psion Fast Serial
(PFS) protocol. These are accessible by the HC and HC-DOS computers. See fhsidable
HC build variant and accessories matekthe end of this Appendix for details.

» Data transfer from the computer, (with the appropriate expansion module and software driver).
» Simultaneous battery charging and data transfer, (if the Psion is not monitoring battery status).
« Wall mounting and bulk head fitting designed in.

» The battery compartment is factory configured to accept as standard the HC rechargeable
battery pack.

Status indicators
There are several LEDs on the front of the charger unit to indicate the following:
¢ Communications/data transfer
» Yellow during data transfer
e Power status-On/Off
» Green when charger is connected to mains power
e Main computer battery charging status (Fast model onl\Bagery Status LED conditiops
e Spare battery charging status (Fast model onlyBagery Status LED conditiops
Battery char ging
The Docking Station has two charging modes:
* Normal

« Software controlled. See ti@radle and Docking Statiochapter in thé&/O Devices Reference
manual.

If both the computer and the spare battery are fitted when the docking station is connected to mains
power, charging priority will go to the spare battery. If the docking station is already connected to
mains power , charging priority will go to whichever battery was plugged in first.

The computer main battery can be discharged before charging commences. This feature is controlled
from the computer.

Note that the Slow Charge variant of the Docking station does not have a Battery Status LED. This is
because it has only one status - charging.

APPENDIX A TECHNICAL SPECIFICATIONS

Battery Status LED c onditions

LED indication Battery status

Flashing red Preparation for fast charging (two seconats)
Battery condition outside specified range - trickle charging
For the battery pack inside the Psion: discharging under softwdre

controlor

Error
Steady red Charging
Steady green Charged
Flashing red/green Waiting or

For the battery pack inside the Psion: discharging under softwdre
control, while the spare is fast charging

Charging both batt ery packs

If a spare battery is inserted into the Docking Station whilst a battery pack inside the Psion is being
charged, charging of the spare pack will begin after the internal battery pack has been charged.

If a Psion computer is inserted into the Docking Station whilst a spare battery pack is being charged,
charging of the battery inside the Psion will begin after the spare pack has been charged.

If both the Psion and the spare battery pack are inserted into the Docking Station at the same time, (or
both are in the Docking Station prior to it being connected to the mains), the packs will not be charged
simultaneously. In the case of the Fast Charge variant of the Docking Station their respective LEDs will
flash red for about two seconds, until the charger decides which to battery pack to charge. The LED for
the one charging then comes on red, and the other one's LED starts flashing red/green as it is waiting
to be charged. For both Docking station variants the spare battery pack will normally be charged first.

Battery Fast Char ging conditions

The Fast Charge variant of the Docking Station can Fast Charge in the following conditions:
Within the temperature range: 5to 45

Voltage of the battery pack: 4.5 to 11.3V DC for the HC and HC-DOS

If the battery pack temperature or voltage is outside the specified range, the charger trickle charges until
the condition is within the allowable range, after which it will fast charge. A new or fully discharged
battery pack (that has been left on for a long time) may have a voltage below the minimum for Fast
Charging.

If the battery temperature is within the allowable range and the battery status LED continues to flash
red it is likely that the battery pack is faulty.

Discharging prior to charging & capacity measurement

The Psion's internal battery pack may be discharged, under software control, prior to charging. This is
not possible with the spare battery pack.

It is possible to charge the spare battery pack whilst discharging the main battery pack in the Psion.

Software controlled discharging of the battery pack leaves the voltage above the allowable minimum for
subsequent Fast Charging.

Charging will automatically commence after the battery is discharged.

Under software control it is also possible to measure the actual capacity or the remaining capacity of the
battery pack inside the Psion computer. the discharging current for the HC is 308¥%A

Fast Charging times

A fully discharged battery pack takes approximately one hour to Fast Charge to 90-95% of its maximum
capacity. If left in the Docking Station after this time it will be "topped-up" to its maximum capacity
after a further two hours.

HC PROGRAMMING GUIDE

Slow Charging times

A fully discharged battery pack takes approximately 14 to 16 hours to Slow Charge to 100% of its
maximum capacity.

Charging limitations

The Fast Charge and Slow Charge facilities only support the main Computer battery, not the battery of
any attached peripheral. The HC Printer however, contains its own Quick Charge circuitry and may
charge simultaneously under software control.

LIF Mounting Kit
The LIF mounting kit allows a LIF connector on the end of a cable to be fitted to a holster.

The holster itself is a plastic moulding into which the computer can be inserted. This incorporates a
positive latching mechanism which holds the computer securely in place. The holster does not include
any electronics.

The Clip cover and the 2 short screws that are fitted as standard to the LIF connector will need to be
replaced with the blank cover and the 2 long screws supplied with the Kkit.

HC/HC-DOS Holster with Socket Housing
The kit for the HC Computer consists of:-

e HC holster
e LIF connector rear housing
e LIF connector blank front cover

e 2 screws - type K2.2 x 12 mm CSK (not shown)

HC Docking Station

This is a Battery Charger with serial data communication capabilities supplied with a factory fitted

HC holster, also known as an HC Docking Station. It comes in two variants, Fast Charge and

Slow Charge. The cable from the hardware board to the LIF connector is protected by an over-moulded
rubber grommet. The HC Docking Station is also compatible with the HC-DOS computer.

A 12v 2 amp unregulated power supply is available separately.

APPENDIX A TECHNICAL SPECIFICATIONS

HC Docking Station: Part Numbers 1503-0017-01 (Fast Charge)
1503-0018-01 (Slow Charge)

12V 2 amp unregulated Power Supply

TN

o -

Note: Euro part number 2300-0212-01, US part number 2300-0213-01; a universal switch mode
adaptor is also available, part number 2402-0003-01 (contact your Psion distributor for details).

HC PROGRAMMING GUIDE

Psion LIF - RS232 Cable Technical Specification

A cable 1.5 m length terminated at one end with a LIF connector (Polarisation Type A) and a 15 way D
type (Male) plug at the other. LIF - RS232 Cable .

APPENDIX A TECHNICAL SPECIFICATIONS

Psion LIF Connector Technical Specification

The Low Insertion Force (LIF) connector has been designed for connecting the computer to the Docking
Station, as well as to other Psion accessories.

The LIF connector cover is moulded with a polarising pin in one of two positions.

Pin numbers
Ist [GROUND 9
2nd C——] SIGNALS 2,3,4,5,8,10
3rd ——] POWER 1,6,7,11

The step arrangement of the LIF Connector pins

Polarising Pin A

©©©©©©©©©©©©©3 (@@@@@@@@@@@3

Cable mounted LIF (Female plug) Computer mounted LIF (Male
socket)

Polarising Pin B

©©©©©©©©©©©©©3 (@@@@@@@@@@@3

Cable mounted LIF (Female plug) Computer mounted LIF
(Male socket)

The Type A and Type B polarisation of the LIF Connector

HC PROGRAMMING GUIDE

Pin Definition for LIF - PFS Connector
LIF Connector Polarisation Type B

pull-up resistor to allow
connection to an open-
collector/drain driver. Normal
usage is: low indicates the
presence of a remote?
device.

Pin No Pin Wire Colour Contact Direction Standard Function Docking Station usage
Name Gauge (Docking
Station's
perspective)

1 LCA 7/0.1 Brown Third Input Locall Computer Active. Used as an enable for
High when the computer is the Docking Station
on. (The Workabout can resident expansion
source 100mA from this pin module 5V supply.
and the HC/HC-DOS 5mA to
power remote? circuitry)

2 EXON 7/0.1 Blue Second Output EXternal switch ON, active May be asserted by a
high (+5V). Asserted by a Docking Station resident
remote? device to switch on expansion module.
the computer.

3 INT 7/0.1 Orange Second Output INTerrupt to computer, May be asserted by a
active high (+5V). Docking Station resident

expansion module.

4 THM 7/0.1 Yellow Second Input Battery thermistor terminal. Standard function
Allows remote? sensing of
the battery temperature.

5 DLA 7/0.1 Green Second Output Disconnect Local® ASIC, Asserted by the Docking
active high (+5V). (does not Station ASIC, connects
apply to Workabout). When the Docking Station
this signal is asserted the resident expansion
serial channel is module to the serial
disconnected from the local® channel.

ASIC4/5 in the HC resident
expansion module (if
present) and instead
connected to a remote
ASICA4/5 (if present).
6 BAT 28 Red Third Output +ve battery terminal (1 amp) Standard function
SWG
7 Vin 28 Black Third Output Power supply to computer Standard function
SWG (+10V)
8 SCLK 7/0.1 Grey Second Input Serial channel CLocK. Standard function
9 GND 28 White First - Power, signal ground and - Standard function
SWG ve battery terminal (1 amp)
10 SDATA 7/0.1 Violet Second Bi-directional | Serial channel DATA. Standard function
11 STATUS 7/0.1 Pink Third Output STATUS. Connected to a Driven low by an open

collector driver when
LCA is high and the
Docking Station is
powered-up to allow the
computer to sense
whether or not the
Docking Station is
connected.

APPENDIX A TECHNICAL SPECIFICATIONS

Pin Definition for LIF - RS 232 Connector
LIF Connector Polarisation Type A

Pin No Pin Wire Colour Contact Direction Function
Name Gauge (Computer's
perspective)
1 DCD 7/0.1 Brown Third Input RS232 signal
2 RX 7/0.1 Blue Second Input RS232 signal
3 TX 7/0.1 Orange Second Output RS232 signal
4 THERM 7/0.1 Yellow Second - Battery thermistor terminal
5 DTR 7/0.1 Green Second Output RS232 signal
6 VBAT 28 Red Third - +ve battery terminal
SWG
7 VIN 28 Black Third Input Power supply to computer
SWG
8 DSR 7/0.1 Grey Second Input RS232 signal
9 GND 28 White First - Power, signal ground and -ve battery terminal
SWG
10 RTS 7/0.1 Violet Second Output RS232 signal
11 CTS 7/0.1 Pink Third Input RS232 signal
Definitions
Computer HC, HC-DOS or Wosdbout

Docking Station Expansion module fitted to the Docking Station, may or may not be present.
resident expansion
module

HC resident Expansion module fitted to the HC which contains the Docking Station interface
expansion module and possibly another peripheral.

HC peripheral A peripheral located in the HC resident expansion module which is connected to
the same serial channel as the Docking Station.

Docking Station ~ An ASIC5 located on the main Docking Station PCB which remains connected
ASIC to the serial channel irrespective of the state of DLA.

Notes

1. The term "local computer" implies the computer local to the LIF connector, i.e. the HC,
HC-DOS or Worlabout as opposed to a "remote" computer which might be connected via a
Docking Station resident expansion module, for example.

2. Theterm "remote" implies something on the other side of the LIF connector to the computer.

3. The term "local" implies something on the computer side of the LIF connector including
devices on an HC resident expansion module.

HC PROGRAMMING GUIDE

Psion HC build variant and accessories matrix

KEY : ® Compatible X Not compatible / not available

HC | HC | HC HCR HC Work about
100 | 110 | 120 | 400/800 | Docking Docking
Build variants 900 | staton | Station
Screen With EL backlighting 4 4 4 4
Without EL backlighting . o o X
Use Industrial X o o o
Non-industrial . o o X
Keypad 53 Key A/N UK 2401-0026] b b X
AIN European 2401-0051 4 4 4
AN Scandinavian 2401-005p . . X
Numeric only UK 2401-0044 o o X
53 Key A/N USA 2400-0024 X X X o
HC Expansion modules
RS232 / Parallel (printer) version 1 4 4 4 4 not CE i
1502-000125 way D type (F) + 9 way Mini
DIN
FCC Class B, CE-mark, E-marEN60950
RS232 / Parallel (printer) version 2 . U U U . .
1502-0052,15 way High Density + 9 way D
type (M)
FCC Class B, CE-mark, E-marEN60950
RS232 / TTL-RS232 L o L o o o
1502-0039 (IP64), 1502-0040 (NON 1P64)
9 way D type (F) + 9 way D type (M)
FCC Class B, CE-mark, E-marEN60950
UK Modem (ASIC 8) 1502-0010
RJ 11 connector
BABT Approved in UK, BS6301 (Safety)

APPENDIX A TECHNICAL SPECIFICATIONS

Build variants

HC
100

HC
110

HC
120

HCR
400/800
900

HC
Docking
Station

Work about
Docking
Station

Barcode only

HP Wand HBCS-A207 + Plug + EXMOD
1502-0020

Wand Welch Allen + Plug + EXMOD 1502-
0021

FCC Class A/ VDE Class B

X

X

RS232 / Barcode 1502-0044
9 way D type Quick Loc(F) + 9 way D type (M)

FCC Class B, CE-mark, E-marEN60950

MCR / Scanner / RS232 1502-0003

MiniDIN connectors:
Scanner NipDenso + Plug (1502-0022)

Scanner DigVision + Plug (1502-0023)
Magnetic Card Reader + Plug (1502-0024)

FCC Class B/ VDE Class B

LIF-PFS / RS232 (available on request)

9 way D type (M) + 9 way LIF- PFS (M)
FCC Class B, CE-mark, E-marEN60950

LIF-PFS / TTL-RS232 (due 1995)

9 way D type (F) + 9 way LIF- PFS (M)
FCC Class B, CE-mark, E-marEN60950

B
D

LIF-PFS / Barcode 1502-0043

9 way D type Quick Loc(F) + 9 way LIF- PFS
(™M)
FCC Class B, CE-mark, E-marEN60950

TTL-RS232 / LIF-RS232 (Vehicle)

9 way D type (F) + 9 way LIF- RS232 (M)

16550 RS232 / TTL-RS232 (1502-0045)
9 way D type (F) + 9 way D type (M)

FCC Class A

Printer (high resolution) (1502-0037)

Laser scanner (1503-0012)

Fast

Charger

Docking Station (Fast Charger with Holster)

Fast Charger without Holster (not yet available)

Trickle

Docking Station (Trickle Charger with Holster|

HC PROGRAMMING GUIDE

HC | HC | HC HCR HC Work about
]] 100 | 110 | 120 | 400/800 | Docking Docking
Build variants 900 Station Station
Charger Trickle Charger without Holster (not yet M M M X
available)
Additional Nicad battery pack 600 mA (1503-0005) M M M X

accessories

15 way high density to 25 way Centronics
convertor cable2403-0026)

APPENDIX B

SAFETY AND EMISSIONS APPROVALS

Safety and emissions technical terms explained

CE

EN60950

EN55022

FCC

IEC

GS

From 1 January 1996 all electrical and electronic equipment, that fall within the
scope of 89/336/EEC (‘The EMC Directive’), sold in the EU must have a CE Mark.

TheeuropeanNorm (i.e. a specification recognised throughout the EU) for Safety of
Information Technology Equipment.

TheeuropeanNorm for Emissions from Information Technology Equipment. It is
known as a 'Product Specific Standard'.

Stands foFederal Communications Commissiwhich is the body in the USA for
providing equipment authorisation. Class B are the emission limits the FCC have set
for residential equipment. Class A are the emission limits for commercial equipment.
Psion equipment for sale in the USA needs to meet the appropriate requirement.

Stands for thénternational Electrotechnical Commissi@rhich is a standards body
recognised by most western countries. IEC801 is known as a 'basic standard' and is
divided into various parts, one of which covers static. The 801 series cover
susceptibility, or immunity.

Stands fotnternational Protectionlt gives a measure of how weatherproof a product
is.

Stands foGeprufte Sicherheit'Proof of safety"), which is used in Germany to
indicate safety.

INDEX

.btf files
HC, 3-1
.mas files
HC ROM build, 5-1
16550 RS232 /TTL RS232 module
specification HC, A-12
application
keyboard restriction on HC, 2-9
programs example HC, 2-4
asynchronous
processing HC, 2-3
asynchronous 1/0
HC, 1-7
asynchronous programs
HC, 3-2
ATTRIBUTE
HC command, 3-7
AUTO
HC command, 3-7
BACKLIGHT
HC command, 3-8
bar code interface
specification HC, A-17
bar code reader module - version 2
specification HC, A-15
batch file processing
HC, 3-1
BATCHK
HC command, 3-8
BATTERY
HC command, 3-8
CD
HC command, 3-9
CE mark approvals
Europe, B-1
Class B (FCC)
USA, B-1
command
from remote PC HC, 3-3, 3-4
command implementation
HC, 3-7
command line editor
HC, 3-3
command shell
copies of HC, 3-3
HC, 3-1
start up HC, 3-18

terminating auto HC, 3-4
terminating non auto HC, 3-4
command syntax
HC, 3-7
communication
with other computers HC, 1-13
CONFIG
HC command, 3-9
converter cable - 15 Way to 25
specification HC, A-7
COPY
HC command, 3-9
copy protection
ROM customisation HC, 1-13
cradle
HC, 1-3
specification HC, A-20
Cradle
connections hardware HC, 4-1
connections software HC, 4-2
HC introduction, 4-1
port C HC, 4-1
CRD: device
driver HC, 4-5
customising
hardware HC, 1-10
HC, 1-10
software HC, 1-10
D
HC command, 3-10
database
support HC, 1-7
DATE
HC command, 3-10
DELETE
HC command, 3-10
DEVICE
HC command, 3-10
device drivers
for HC, 2-9
devices
CRD: driver HC, 4-5
PMX: driver HC, 4-4
DIR
HC command, 3-11
directories and files
HC, 3-4
display
HC, 1-4
docking cradle
HC, 1-3
docking station
specification HC, A-21
DOS
not on HC, 1-14
emast.exe
HC ROM building utility, 5-1
utility program, 5-1

HC PROGRAMMING GUIDE

EN55022 standard

Europe, B-1
EN60950 standard

Europe, B-1
ENV

HC command, 3-11
environment variables

HC ROM, 5-6
EPOC

explained HC, 1-6
erom.exe

HC ROM building utility, 5-1

HC ROM utility, 5-2

utility program, 5-1, 5-2
European

safety and emissions approval - technical

terms, B-1

safety and emissions approvals, B-1
European Norm, B-1
EXIT

HC command, 3-11
expansion modules

HC, 1-3
FCC Class A standard
USA, B-1
FCC Class B standard
USA, B-1
Federal Communications Commission
USA, B-1
file access
remote HC, 1-8
file name
specifications HC, 3-6
file names
command parameters HC, 3-5
file paths
command parameters HC, 3-6
files
in HC ROM, 5-3

ROM based HC, 1-9
files and directories

HC, 3-4
files in use

error HC, 3-4
FORMAT

HC command, 3-11
FREE

HC command, 3-12
gauge

example program HC, 2-5

graphics calls example HC, 2-6
graphics calls

gauge example HC, 2-6
GS Gepriifte Sicherhdit

German safety, B-1
hardware

basic HC, 1-2

customising HC, 1-10
HC

btf files, 3-1

application keyboard restrictions, 2-9
asynchronous /0, 1-7
asynchronous processing, 2-3
asynchronous programs, 3-2

batch file processing, 3-1

CLIB programming, 2-1

command implementation, 3-7
command line editor, 3-3

command shell, 3-1

command shell copies of, 3-3
command shell start up, 3-18
command shell terminating auto, 3-4
command shell terminating non auto, 3-4
command syntax, 3-7
communication with other computers, 1-13
concept behind, 1-1

copy protection ROM customisation, 1-13
cradle, 1-3

Cradle connections hardware, 4-1
Cradle connections software, 4-2
CRD: device driver, 4-5
customising, 1-10

database support, 1-7

device drivers, 2-9

directories and files, 3-4

display, 1-4

EPOC explained, 1-6

example gauge program, 2-5
example hello world program, 2-4
example lined program, 2-6
example programs, 2-4

expansion modules, 1-3

fast serial port, 1-3

file access remote, 1-8

file name command parameters, 3-5
file name specifications, 3-6

file path command parameters, 3-6
files and directories, 3-4

files in use error, 3-4

graphics calls gauge example, 2-6
graphics window server, 1-6
hardware basics, 1-2

hardware customising, 1-10
hssram.sys configuring, 4-3
introduction to, 1-1

keyboard, 1-5

Link connection high speed, 4-2
lithium batteries caution, 1-4
mastcpy, 1-12

master SSD, 1-12

memory internal, 1-2

multi-tasking, 1-6

not DOS, 1-14

path default, 3-5

pausing screen display, 3-3

PLIB explained, 1-6

PLIB programming, 2-1

PMX/HSS mechanism, 4-3

PMX: device details, 4-4

PMX: driver, 4-4

INDEX

power supply, 1-4

processor, 1-2

program launching, 3-1

programming choices, 2-1

programming for, 2-1

programming languages, 2-1

remote commands from PC, 3-3, 3-4

reprogramming, 1-11

reproing, 1-11

resetting, 1-11

ROM customisation, 1-12

romwrite, 1-12

screen, 1-4

shell process writing, 2-9

shell replacing, 1-10

software basic, 1-5

software customising, 1-10

software versions, 1-6

specification, A-3

SSDs, 1-2

switching on for first time, 1-1

synchronous processing, 2-3

synchronous programs, 3-2

terminating programs, 3-2

user interface programming, 2-2

window server buffer flushing, 2-6
HC command

ATTRIBUTE, 3-7

AUTO, 3-7

BACKLIGHT, 3-8

BATCHK, 3-8

BATTERY, 3-8

CD, 3-9

CONFIG, 3-9

COPY, 3-9

D, 3-10

DATE, 3-10

DELETE, 3-10

DEVICE, 3-10

DIR, 3-11

ENV, 3-11

EXIT, 3-11

FORMAT, 3-11

FREE, 3-12

KILL, 3-12

LDEV, 3-12

LINK, 3-13

LOWBAT, 3-13

LPROC, 3-14

LSEG, 3-14

MASTER, 3-15

MD, 3-15

NOTIFY, 3-15

OFFENABLE, 3-15

RD, 3-15

RENAME, 3-16

RESUME, 3-16

SET, 3-16

SETDATE, 3-16

SUSPEND, 3-17

TERMINATE, 3-17
TYPE, 3-17
VER, 3-17
WAIT, 3-17
WNOTIFY, 3-18
HC Cradle
introduction, 4-1
specification, A-20
HC docking station
specification, A-21
HC modem (UK)
specification, A-18
HC ROM
.mas file, 5-1
.mas file creating, 5-6
.mas file required files, 5-7
building utility emast.exe, 5-1
building utility erom.exe, 5-1
customisation options, 5-4
customising, 5-1
environment variables, 5-6
files in, 5-3
master file, 5-1
master file creating, 5-6
master file creation, 5-2
master file requirde files, 5-7
master SSD, 5-1
mastering cautionary notes, 5-1
size consideration, 5-4
utility erom.exe, 5-2
version numbers, 5-3
hello world
example program HC, 2-4
hssram.sys
configuring HC, 4-3
IEC801 standard
International, B-1
International Electrotechnical Commission
standards, B-1
IP (International Protection
weather proofing), B-1
keyboard
HC, 1-5
restrictions on HC, 2-9
KILL
HC command, 3-12
launching programs
HC, 3-1
LDEV
HC command, 3-12
library services
ROM based HC, 1-9
LIF - RS232 cable
specification HC, A-26
LIF connector
specification HC, A-27
lined
example program HC, 2-6
Link
connection high speed HC, 4-2

HC PROGRAMMING GUIDE

LINK

HC command, 3-13
lithium batteries

caution HC, 1-4
LOWBAT

HC command, 3-13
LPROC

HC command, 3-14
LSEG

HC command, 3-14
mastcpy

HC, 1-12
MASTER

HC command, 3-15
master file

creating HC ROM, 5-2, 5-6

required files HC ROM, 5-7
master SSD

HC, 1-12

ROM HC, 5-1
MCR /RS232 /TTL RS232 module - version 2

specification HC, A-9
MCR interface

specification HC, A-9
MD

HC command, 3-15
memory

internal HC, 1-2
modem - HC (UK)

specification, A-18
multi-tasking

HC, 1-6
NOTIFY

HC command, 3-15
OFFENABLE

HC command, 3-15
parallel interface - 15 way high density

specification HC, A-7
parallel Interface specification

HC, A-5
path default

HC, 3-5
pausing screen display

HC, 3-3
PLIB

explained HC, 1-6
PMX/HSS mechanism

HC, 4-3
PMX: device

details HC, 4-4

driver HC, 4-4
port C

Cradle HC, 4-1
power supply

HC, 1-4
processor

HC, 1-2
programming

choices for the HC, 2-1

CLIB for the HC, 2-1

for the HC, 2-1
languages for the HC, 2-1
PLIB for the HC, 2-1
programs
example gauge HC, 2-5
example HC, 2-4
example hello world HC, 2-4
example lined HC, 2-6
pseudo static RAM
PSRAM, A-2
PSRAM
versus SRAM, A-2
RD
HC command, 3-15
remote file access
HC, 1-8
RENAME
HC command, 3-16
reprogramming
HC, 1-11
reproing
HC, 1-11
resetting
HC, 1-11
RESUME
HC command, 3-16
ROM
customisation HC, 1-12
customisation options HC, 5-4
customising HC, 5-1
other components HC, 1-9
ROM based
library services HC, 1-9
romwrite
HC, 1-12
RS232 / bar code reader module
specification HC, A-16
RS232 / RS232 TTL interface
technical specification, A-9
RS232 /TTL RS232 interface (9-way D-type)
specification HC, A-10
RS232 /TTL RS232 module (16550)
specification HC, A-12
RS232 interface
specification HC, A-11, A-13, A-16
RS232 interface specification
HC, A-5, A-6
RS232 TTL interface
specification HC, A-12, A-14
RS232/Parallel (printer) module specification
version 2 HC, A-5
RS232/Parallel (printer) module version 1
specification HC, A-4
safety and emissions approvals
Europe, B-1
technical terms, B-1
screen
HC, 1-4
SDD
pseudo static RAM PSRAM, A-2

INDEX

PSRAM, A-2
serial port
fast HC, 1-3
SET
HC command, 3-16
SETDATE
HC command, 3-16
shell
replacing HC, 1-10
shell process
writing for HC, 2-9
software
basic HC, 1-5
customising HC, 1-10
versions HC, 1-6
solid state disks
specifications, A-1
specification technical
16550 RS232 /TTL RS232 module, A-12
bar code interface HC, A-17
bar code reader module - version 2 HC, A-15
converter cable - 15 Way to 25 Way HC, A-7
docking station HC, A-21
HC, A-3
HC Cradle, A-20
LIF - RS232 cable HC, A-26
LIF connector HC, A-27
MCR /RS232 /TTL RS232 module - version 2
HC, A-9
MCR interface HC, A-9
modem - HC (UK), A-18
parallel interface - 15 way high density HC,
A-7
parallel Interface HC, A-5
RS232 / bar code reader module HC, A-16
RS232 / RS232 TTL interface, A-9
RS232 /TTL RS232 interface - version 2 HC,
A-10
RS232 interface, A-11
RS232 interface HC, A-5, A-6, A-13, A-16
RS232 TTL interface, A-12
RS232 TTL interface HC, A-14
RS232/Parallel (printer) module - version 1
HC, A-4

RS232/Parallel (printer) module - version 2

HC, A-5

solid state disks, A-1

SSDs, A-1

vehicle interface box HC, A-19
SRAM

versus PSRAM, A-2
SSD

specifications, A-1
SSDs

HC, 1-2
SUSPEND

HC command, 3-17
switching on

first time HC, 1-1
synchronous

processing HC, 2-3
synchronous programs

HC, 3-2
TERMINATE

HC command, 3-17
terminating programs

HC, 3-2
TYPE

HC command, 3-17
user interface

programming the HC, 2-2
utility program

emast.exe, 5-1

erom.exe, 5-1
vehicle interface box

specification HC, A-19
VER

HC command, 3-17
version numbers

HC ROM, 5-3
WAIT

HC command, 3-17
window server

buffer flushing HC, 2-6

graphics HC, 1-6
WNOTIFY

HC command, 3-18

	HC PROGRAMMING GUIDE
	Contents
	CHAPTER 1 INTRODUCTION TO THE HC
	The HC concept
	Switching on and off
	Switching on for the first time

	The basic hardware
	Processor
	Internal memory
	Solid state disks (SSDs)
	Types of SSD
	Expansion modules
	The Fast Serial port and the Cradle
	Power supply
	Caution regarding lithium batteries
	Screen
	Keyboard

	The basic software
	Versions of the HC software
	The terms Epoc and Plib explained
	Graphics window server
	Multi-tasking kernel
	Support for asynchronous i/o
	Database support functions
	Support for remote file access
	Other ROM-based library services
	Other ROM components

	Customising an HC
	Hardware customisation
	Replacing the built-in Shell
	Resetting the HC
	Reproing the HC
	Master SSDs and mastcpy
	Once-off ROM customisation using Romwrite
	Customisation for copy-protection

	Connecting to other computers
	Basics of serial connections to an HC
	RS232 connections
	Summary of straightforward usage of Link on the HC

	Why not MS-DOS?

	CHAPTER 2 WRITING SOFTWARE FOR THE HC
	Basic programming choices
	Choice of programming language
	Standard C (Clib) or Psion C (Plib)
	Writing the user interface
	Synchronous or asynchronous processing

	Example programs
	A graphics version of Hello World
	The Gauge application
	The need to flush the Window Server buffer
	Other graphics calls in Gauge
	A suite of line editor functions
	Full specification of the lined functions

	General comments
	Device drivers for the HC
	Writing a customised shell process
	Developing applications on restricted-keyboard HCs

	CHAPTER 3 HC COMMAND SHELL
	Overview
	Batch file processing
	Launching programs
	Synchronous programs and asynchronous programs
	Terminating programs
	The command line editor
	Pausing the screen display
	Additional copies of the Command Shell
	Sending commands from a remote PC
	More on running programs remotely
	Auto-terminating and non-auto-terminating Command Shells

	Files and directories
	File In Use error messages
	Default path and current directory
	Specifying file names as command parameters
	More details on filename specifications
	Specifying paths as command parameters
	The requirements of generality

	Alphabetical listing
	Notation
	How commands are implemented
	Command ATTRIBUTE Set or clear file attributes (ATTRIBUTE)
	Command AUTO Set time to auto-switch-off (AUTO)
	Command BACKLIGHT Set backlight time-out (BACKLIGHT)
	Command BATCHK Start battery check program (BATCHK)
	Command BATTERY Specify battery type (BATTERY)
	Command CD Change directory (CD)
	Command CONFIG Set language file (CONFIG)
	Command COPY Copy file(s) (COPY)
	Command D Brief directory listing (D)
	Command DATE Display date and time (DATE)
	Command DELETE Delete file(s) (DELETE)
	Command DEVICE List devices (DEVICE)
	Command DIR Full directory listing (DIR)
	Command ENV Display or set environment variable (ENV)
	Command EXIT Exit level (EXIT)
	Command FORMAT Format device (FORMAT)
	Command FREE Display free memory (FREE)
	Command KILL Kill a process (KILL)
	Command LDEV List device drivers (LDEV)
	Command LINK Start Link program (LINK)
	Command LOWBAT Configure low battery warnings (LOWBAT)
	Command LPROC List processes (LPROC)
	Command LSEG List segments (LSEG)
	CommandMASTER Display time/date of mastering (MASTER)
	Command MD Make directory (MD)
	Command NOTIFY Control whether the Notifier appears (NOTIFY)
	Command OFFENABLE Enable off-key handling (OFFENABLE)
	Command RD Remove directory (RD)
	Command RENAME Rename file(s) (RENAME)
	Command RESUME Resume a suspended process (RESUME)
	Command SET Set default path (SET)
	Command SETDATE Set time and date (SETDATE)
	Command SUSPEND Suspend a process (SUSPEND)
	CommandTERMINATE Terminate a process (TERMINATE)
	Command TYPE Type a text file (TYPE)
	Command VER Display software version number (VERSION)
	Command WAIT Wait for a process to complete (WAIT)
	Command WNOTIFY Configure Notifier appearance (WNOTIFY)

	What happens when the Command Shell starts
	When no command line is passed

	CHAPTER 4 THE HC IN THE CRADLE
	Introduction
	Port C

	Hardware connections
	Fitting an ASIC-2 expansion card

	Software connections
	High speed remote file access using Link software
	High speed debugging using Link software

	The PMX/HSS mechanism
	Configuring hssram.sys
	The PMX: device driver
	More details about PMX

	The CRD device driver

	CHAPTER 5 CUSTOMISING THE HC ROM
	Introduction
	Some cautionary remarks

	Creating an HC master file
	Invoking erom
	Valid version numbers
	The files comprising the rom

	Size considerations
	Some possibilities for customisation
	An alternative shell
	Variant config files
	Additional files that might be added
	Files that might be omitted
	Customising the Window Server

	Creating and using a master SSD
	More details on master SSDs
	To repro numeric keyboard HCs

	Files required

	APPENDIX A TECHNICAL SPECIFICATIONS
	Psion Solid State Disks Technical Specification
	Dimensions
	Capacities
	Filing System
	Interface
	Data Transfer
	File Access
	Formatting
	Power
	PSRAM versus SRAM SSDs

	Psion HC Technical Specification
	Models
	Processor
	Dimensions
	Environmental
	Software
	Solid State Disks
	File Access
	Formatting
	Screen
	Keyboard
	Sound
	Power
	Expansion

	Psion HC RS232/Parallel (printer) module, version 1 Technical Specification
	Important Notice - Compatibility
	Physical
	Connectors
	Serial Interface
	RS232 interface
	RS232 , (9 way male D-type), pinout

	Parallel Interface
	Parallel Interface pinout

	Psion HC RS232/Parallel (printer) module, version 2 Technical Specification
	Important Notice - Compatibility
	Physical
	Connectors
	Serial Interface
	RS232 interface
	RS232 , (9 way male D-type), pinout

	15 way High Density Parallel Interface
	15 way High Density Parallel socket (male)
	15 way High Density Parallel Interface pinout

	Psion 15 Way to 25 Way converter cable Technical Specification
	Physical
	Connectors
	15 way High Density Parallel plug (female)
	15 way High Density Parallel Interface connector pinout
	25-way connector pinout

	Psion HC MCR /RS232 /TTL RS232 module, (Version 2), Technical Specification
	Physical
	MCR Interface
	Connections
	Pinout

	RS232 / RS232 TTL Interface
	Connections
	Interface
	RS232 TTL socket
	RS232 TTL socket pinout
	Standard RS232 interface
	RS232 , (9 way male D-type), pinout

	Psion HC RS232 /TTL RS232 module, Technical Specification
	Physical
	Connections
	RS232 interface
	RS232 TTL interface
	RS232 interface
	RS232 , (9 way male D-type), pinout

	RS232 TTL interface
	RS232 TTL socket pinout

	Psion HC 16550 RS232 /TTL-RS232 module, Technical Specification
	Physical
	Connections
	RS232 interface
	RS232 TTL interface
	HC usage
	Docking station usage
	HCDOS usage
	RS232 interface
	RS232 , (9 way male D-type), pinout
	Pin 9 RI / VSUP switch
	DSR auto-wakeup switch
	Power consumption

	TTL interface
	RS232 TTL socket pinout, (9 way female D-type)
	Switched VSUP (pin 1) and 5V (pin 4) outputs
	VSUP direct connection (pin 9)
	Power consumption

	Psion HC Bar Code Reader module, (Version 2), Technical Specification
	Physical
	Connection
	Pinout

	Psion HC RS232 / Bar Code Reader module, Technical Specification
	Physical
	RS232 interface
	Connection
	Pinout
	Pin 9 VSUP connection
	DSR auto-wakeup switch
	Power consumption

	Bar code interface
	Decoder
	Connection
	Pinout
	VSUP and 5V regulated outputs
	Power consumption
	Note

	Psion HC Modem UK module,
	Physical
	Environment
	Communication modes
	Network connection
	Autodial/autoanswer
	Data interface
	Diagnostics

	Psion HC Vehicle Interface Box Technical Specification
	Psion HC Cradle Technical Specification
	Dimensions
	Interfaces
	Battery recharge
	Features
	Mounting options

	Psion HC Docking Station Technical Specification
	Introduction
	Compatibility with Psion HC and RWAN machines
	Compatibility with the Psion HC
	Compatibility with RWAN/PDT220

	Variants
	Identification
	Docking Station Unit
	Main features
	Status indicators
	Battery charging
	Battery Status LED conditions
	Charging both battery packs
	Battery Fast Charging conditions
	Discharging prior to charging & capacity measurement
	Fast Charging times
	Slow Charging times
	Charging limitations

	LIF Mounting Kit
	HC/HC-DOS Holster with Socket Housing

	HC Docking Station
	HC Docking Station: Part Numbers
	12V 2 amp unregulated Power Supply

	Psion LIF - RS232 Cable Technical Specification
	Psion LIF Connector Technical Specification
	Pin Definition for LIF - PFS Connector
	Pin Definition for LIF - RS232 Connector
	Definitions

	Psion HC build variant and accessories matrix
	HC Expansion modules

	APPENDIX B SAFETY AND EMISSIONS APPROVALS
	Safety and emissions technical terms explained

	INDEX

