

IBM Compiler and Library for SAA REXX/370

1

2
3

4

5
67

8
9

IBM

User’s Guide and Reference
Release 3

 SH19-8160-04

IBM Compiler and Library for SAA REXX/370 IBM

User’s Guide and Reference
Release 3

 SH19-8160-04

 Note!

Before using this information and the product it supports, be sure to read the general information under Appendix G, “Notices”
on page 229.

Fifth Edition, February 2000

This edition applies to Release 3 of both the IBM Compiler for SAA REXX/370, Program Number 5695-013, and the IBM Library for
SAA REXX/370, Program Number 5695-014, and to all subsequent releases and modifications until otherwise indicated in new
editions or technical newsletters.

This edition replaces SH19-8160-03.

 Copyright International Business Machines Corporation 1991, 2000. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

 Contents

Preface . ix
How This Book Is Organized . ix
How to Read the Syntax Notation . x

| Additional Information and Help in the Internet . xi
How to Send Your Comments about This Book xi

Summary of Changes . xiii
| What's New in This Edition . xiii

Highlights of Release 3 . xiv

Part 1. Introduction to Compiling and Running REXX Programs 1

Chapter 1. Overview . 3
The Level of REXX Supported by the Compiler 3
Using the Compiler in Program Development . 4
Forms and Uses of Output . 4
Portability of Compiled REXX Programs . 5

Porting and Running Compiled REXX Programs 5
Calling and Linking REXX Programs . 6
Running above 16 Megabytes in Virtual Storage 6
SAA Compliance . 6
Choosing the National Language . 7
Alternate Library Overview . 7

Chapter 2. Getting Started with the Compiler 9
Invoking the Compiler under MVS/ESA . 9

Getting Started Using the Compiler Invocation EXEC under MVS/ESA . . . 10
Invoking the Compiler under CMS . 10

Batch Jobs . 11
Getting Started Using the Compiler Invocation Dialog under CMS 11

Checking the Results of a Compilation . 12
Return Codes . 12

Part 2. Programming Reference Information . 15

Chapter 3. Invoking the Compiler—In Detail 17
Invoking the Compiler with the REXXC EXEC (MVS/ESA) 17

Derived Default Data Set Names . 18
Invoking the Compiler with ISPF Panels (MVS/ESA) 18
Invoking the Compiler with JCL Statements (MVS/ESA) 20
Invoking the Compiler with Cataloged Procedures (MVS/ESA) 21
Data Sets Required by the Compiler (MVS/ESA) 21
Invoking the Compiler with REXXD (CMS) . 22

Setting the Compiler Options . 24
Invoking the Compiler with the REXXC EXEC (CMS) 25
Invoking the Compiler from ISPF Panels (CMS) 25

Chapter 4. Compiler Options and Control Directives 27
Compiler Options . 27

 Copyright IBM Corp. 1991, 2000 iii

ALTERNATE . 27
BASE . 27
CEXEC . 28
COMPILE . 30
CONDENSE . 30
DLINK . 31
DUMP . 33
FLAG . 33

| FORMAT . 34
IEXEC . 34

| LIBLEVEL . 36
LINECOUNT . 37
MARGINS . 38
OBJECT . 38

| OPTIMIZE . 41
PRINT . 41
SAA . 42
SLINE . 42
SOURCE . 43
TERMINAL . 43
TESTHALT . 43
TRACE . 44
XREF . 44

Control Directives . 44
%COPYRIGHT . 45
%INCLUDE . 45
%PAGE . 47

| %SYSDATE . 48
| %SYSTIME . 48
| %TESTHALT . 49

Chapter 5. Runtime Considerations . 51
Organizing Compiled and Interpretable EXECs under MVS/ESA 51
Organizing Compiled and Interpretable EXECs under CMS 52
Organizing Compiled and Interpretable EXECs under VSE/ESA 52
Use of the Alternate Library (MVS/ESA, CMS) 53
Other Runtime Considerations . 53

Chapter 6. Understanding the Compiler Listing 57
Compilation Summary . 57
Source Listing . 58
Messages . 60
Cross-Reference Listing . 63
Compilation Statistics . 64

| Examples with Column Numbers . 65
| Example of a Complete Compiler Listing . 69

Chapter 7. Using Object Modules and TEXT Files 73
Initial Considerations . 73
Object Modules (MVS/ESA) . 74

REXXL (MVS/ESA) . 76
TEXT Files (CMS) . 77
Object Modules (VSE/ESA) . 79

REXXPLNK Cataloged Procedure (VSE/ESA) 80

iv SAA REXX/370 User’s Guide and Reference

REXXLINK Cataloged Procedure (VSE/ESA) 81
REXXL Cataloged Procedure (VSE/ESA) . 82

Linking External Routines to a REXX Program 82
Resolving External References—An Example 83

Chapter 8. Converting CEXEC Output between Operating Systems 87
Compiling on One System and Running on Another System 87

Converting from MVS/ESA to MVS/ESA OpenEdition 87
Converting from MVS/ESA to CMS . 87
Converting from MVS/ESA to VSE/ESA . 88
Converting from CMS to MVS/ESA . 88
Converting from CMS to VSE/ESA . 89

Copying CEXEC Output . 89
REXXF (MVS/ESA) . 89
REXXF (CMS) . 89
REXXV (MVS/ESA) . 90
REXXV (CMS) . 91

Chapter 9. Language Differences between the Compiler and the
Interpreters . 93

Differences from the Interpreters on VM/ESA Release 2.1, TSO/E Version 2
Release 4, and REXX/VSE Version 1 Release 1 93

Compiler Control Directives . 94
Halt Condition . 94
NOVALUE Condition . 95
OPTIONS Instruction . 96
PARSE SOURCE Instruction . 96
PARSE VERSION Instruction . 97
SOURCELINE Built-In Function . 97
Start of Clause . 98
TRACE Instruction and TRACE Built-In Function 98
TS (Trace Start) and TE (Trace End) Commands 99

Differences to Earlier Releases of the Interpreters 99
SIGNAL Instruction . 100
Integer Divide (%) and Remainder (//) Operations 100
Exponentiation (**) Operation . 100
Location of PROCEDURE Instructions . 101
Binary Strings . 101
Templates Used by PARSE, ARG, and PULL 101
PROCEDURE EXPOSE and DROP . 101
DO LOOPs . 101
DBCS Symbols . 101
VALUE Built-In Function . 102
Argument Counting . 102
Options of Built-In Functions . 102
Built-In Functions . 103
Options of Instructions . 103
Strict Comparison Operators . 104
LINESIZE Built-In Function in Full-Screen CMS 104
Enhancement to the EXECCOMM Interface 104

Chapter 10. Limits and Restrictions . 105
Implementation Limits . 105
Technical Restrictions . 106

 Contents v

Chapter 11. Performance and Programming Considerations 109
Performance Considerations . 109

| Optimization, Optimization Stoppers, and Error Checking 109
Arithmetic . 112
Literal Strings . 112
Variables . 113
Compound Variables . 113
Labels within Loops . 113
Procedures . 113
TESTHALT Option . 113
Frequently Invoked External Routines . 114

Programming Considerations . 114
Verifying the Availability of the Library . 114
VALUE Built-in Function . 114
Stream I/O . 115
Determining whether a Program is Interpreted or Compiled 115
Creating REXX Programs for Use with the Alternate Library (MVS/ESA,

CMS) . 115
Limits on Numbers . 116

Part 3. Customizing the Compiler and Library . 119

Chapter 12. Customizing the Compiler and Library under MVS/ESA . . 121
Modifying the Cataloged Procedures Supplied by IBM 121
Customizing the REXXC EXEC . 121
Customizing the REXXL EXEC . 121
Message Repository . 122

Chapter 13. Customizing the Compiler and Library under CMS 123
Customizing the Compiler Invocation Shells 123

Modifying the Function of the Compiler Invocation Shells 123
Setting Up Installation Defaults for the Compiler Options 124

Customizing the Compiler Invocation Dialog 124
Customizing the Library . 125

Defining the Library as a Physical Segment 125
Saving the Physical Segment . 126
Defining the Library as a Logical Segment 126
Selecting the Version of the Library . 127
Customizing the Message Repository to Avoid a Read/Write A-Disk . . . 128
Files Needed to Run Compiled REXX Programs 128

Chapter 14. Customizing the Library under VSE/ESA 131
Modifying the Cataloged Procedures Supplied by IBM 131
Customizing the REXXL EXEC . 131

Part 4. Messages . 133

Chapter 15. Compilation Messages . 135

Chapter 16. Runtime Messages . 159

Chapter 17. Library Diagnostics Messages (CMS) 175

vi SAA REXX/370 User’s Guide and Reference

Part 5. Appendixes . 177

Appendix A. Interface for Object Modules (MVS/ESA) 179
ISPF Restrictions on Load Modules . 179
Link-Editing of Object Modules . 180

DLINK Example . 182
Stubs . 185

Processing Sequence for Stubs . 186
| Testing Stubs . 188

Parameter Lists . 188
CPPL Parameter List . 189
EFPL Parameter List . 189
CPPLEFPL . 191
MVS Parameter List . 191
CALLCMD Parameter List . 192

Search Order . 193
PARSE SOURCE . 193

Appendix B. Interface for TEXT Files (CMS) 195
The Call from the Assembler Program . 195

Extended PLISTs . 196
What the REXX Program Gets . 196

Invocation with a Tokenized PLIST Only . 196
Invocation with an Extended PLIST or a 6-Word Extended PLIST 197

Example of an Assembler Interface to a TEXT File 197

Appendix C. Interface for Object Modules (VSE/ESA) 199
Stubs . 199

Processing Sequence for Stubs . 200
Parameter Lists . 201

VSE Parameter List . 201
EFPL Parameter List . 202

PARSE SOURCE . 204

Appendix D. Alternate Library Packaging and Installation (MVS/ESA,
CMS) . 205

Packaging the Alternate Library with an Application 205
Alternate Library Parts (MVS/ESA) . 205
Alternate Library Parts (CMS) . 206

Installation Instructions (MVS/ESA) . 206
Installation Instructions (CMS) . 209

Customers with the CMS REXX Compiler - Library 210

Appendix E. The MVS/ESA Cataloged Procedures Supplied by IBM . . 211
REXXC . 211
REXXCG . 213
REXXCL . 215
REXXCLG . 217
REXXL . 219
REXXOEC . 221

| MVS2OE . 223

Appendix F. The VSE/ESA Cataloged Procedures Supplied by IBM . . . 225

 Contents vii

REXXPLNK . 225
REXXLINK . 227

Appendix G. Notices . 229
Programming Interface Information . 230

| Trademarks . 230

Glossary of Terms and Abbreviations . 233

Bibliography . 237

Index . 239

viii SAA REXX/370 User’s Guide and Reference

 Preface

This book is intended to help you compile and run programs written in the
Restructured EXtended eXecutor (REXX) language.

You are assumed to be familiar with the REXX language and with the operating
system under which you compile or run your programs:

� Multiple Virtual Storage/Enterprise System Architecture (MVS/ESA*) with Time
Sharing Option Extensions (TSO/E)

� Conversational Monitor System (CMS) on Virtual Machine/System Product
(VM/SP), Virtual Machine/Extended Architecture (VM/XA), or Virtual
Machine/Enterprise System Architecture (VM/ESA*)

� Virtual Storage Extended/Enterprise System Architecture (VSE/ESA*) with
REXX/VSE

This book documents the use of the IBM Compiler for SAA* REXX/370 (the
Compiler), the IBM Library for SAA REXX/370 (the Library), and the Library for
REXX/370 in REXX/VSE (also referred to as the Library) for MVS/ESA, CMS and
VSE/ESA users. It also describes how the Alternate Library can be used by
software developers and users of MVS/ESA or CMS who do not have the IBM
Library for SAA REXX/370.

Some of the information applies to all three systems: MVS/ESA, CMS and VSE/ESA.
Information that applies to only one system is marked in the text. For example, a
section heading may include the label “(CMS),” or a paragraph may begin “Under
MVS/ESA” to let you know that the information that follows applies to that system
only.

| Technical changes to the text are indicated by a vertical line (|) to the left of the
| change.

About information in boxes

In the text, labeled boxes such as this contain background information about
topics related to compilers, runtime libraries, or the MVS/ESA, CMS, or VSE/ESA
systems.

How This Book Is Organized
This book is organized into five parts:

Part 1, Introduction to Compiling and Running REXX Programs provides
an overview of the IBM Compiler for SAA REXX/370, the IBM Library for SAA
REXX/370, the Alternate Library, and the ways of invoking the Compiler. It
describes one of these ways for users who want to quickly start compiling
programs.

Part 2, Programming Reference Information provides detailed descriptions of
the ways of invoking the Compiler, and the Compiler options and control
directives. It also:

� Describes the enhanced options for the REXXC EXEC.

 Copyright IBM Corp. 1991, 2000 ix

� Contains suggestions for organizing your libraries and instructions for
running compiled programs.

� Explains the parts of the compiler listing.

� Describes when to use OBJECT output instead of CEXEC output.

� Describes what to do to run CEXEC output on an operating system other
than the one on which you generated the output. It also explains how to
copy, under MVS/ESA, CEXEC output from one data set to another.

� Describes how to copy compiled EXECs from MVS/ESA or CMS to VSE/ESA.

� Explains how to use the REXXL command to create object modules on
MVS/ESA and on VSE/ESA.

� Lists implementation limits, technical restrictions, and other performance
and programming considerations that you should be aware of.

Also in this part, Chapter 9, Language Differences between the Compiler and
the Interpreters explains the differences between the language processed by
the Compiler and the language processed by the interpreters.

Part 3, Customizing the Compiler and Library contains information for the
systems programmer about customizing the Compiler and the Library.

Part 4, Messages describes the compilation and runtime messages and the
runtime diagnostic messages.

Part 5, Appendixes contains reference information about the following:

� Generating a load module under MVS/ESA from a REXX program that was
compiled with the OBJECT option of the Compiler. It also describes the
various conventions for passing parameters in MVS/ESA that are supported,
and how they are mapped into an invocation of the EXEC handler,
IRXEXEC. This appendix also describes the PARSE SOURCE information,
as it appears in the REXX program.

� How an Assembler program can invoke a REXX program that was compiled
into a TEXT file under CMS. It also describes the parameters and PARSE
SOURCE information received by the REXX program.

� Generating a load module under VSE/ESA from a REXX program that was
compiled with the OBJECT option under MVS/ESA or CMS. This appendix
also describes the PARSE SOURCE information, as it appears in the REXX
program.

� How to install the Alternate Library and package it with an application.

� The cataloged procedures for MVS/ESA supplied by IBM.

� The cataloged procedures for VSE/ESA supplied by IBM.

How to Read the Syntax Notation
The notation used to define the command syntax in this book is as follows:

� A symbol (word) in boldface, such as CEXEC, denotes a keyword.

� Words in italics, such as options-list, denote variables or collections of
variables.

� The brackets [and] delimit optional parts of the commands.

x SAA REXX/370 User’s Guide and Reference

� The logical OR character | separates choices within brackets.

| Additional Information and Help in the Internet
| Visit our home page at http://www.ibm.com/software/ad/obj-rexx . There you will
| find:

| � This book in Acrobat Adobe format

| � Information about this program and other REXX programs

| If you have questions about, or problems with, this program, you can contact us
| directly using rexxhelp@vnet.ibm.com .

How to Send Your Comments about This Book
Your feedback is important in helping to provide the most accurate and high-quality
information. If you have any comments about this book:

| � Our home page at http://www.ibm.com/software/ad/obj-rexx contains the
feedback page where you can enter comments and send them.

� Send your comments by e-mail to swsdid@de.ibm.com, or to the IBMMAIL
address DEIBM3P3@IBMMAIL. Be sure to include the name of the book, the
part number of the book, the version of REXX, and, if applicable, the specific
location of the text you are commenting on (for example, a page number or
table number).

� Fill out one of the forms at the back of this book and return it by mail, by fax, or
by giving it to an IBM representative. The mailing address is on the back of the

| Readers’ Comments form. The fax number is +49-(0)7031-16-4892.

 Preface xi

xii SAA REXX/370 User’s Guide and Reference

Summary of Changes

| What's New in This Edition
| Changes to this information for this edition include:

| � Up to five arguments can now be added when invoking the DATE() built-in
| function (BIF). These arguments include an input date and its format, and the
| definition of the separator characters for the input and output dates.

| � The name of the source file (MVS*: DD name, CMS: file ID) is written to the
| compiled program, enabling a correlation between the compiled program and
| the program source.

| � A new variant has been added to the SLINE compiler option, namely
| SLINE(AUTO). This variant enables the compiler to check if the
| SOURCELINE() BIF has been used in the REXX program and, if so, to
| automatically include the REXX source in the compiled program.

| � The following compiler options have been added:

| – FORMAT to enable the compiler to produce column numbers in addition to
| the line numbers in the cross-reference listing and list of error messages.

| – LIBLEVEL(n) to enable the compiler to check the language constructs in
| the program being compiled against the level of the runtime system.

| – OPTIMIZE|NOOPTIMIZE to enable the compiler to suppress the
| optimization (NOOPTIMIZE) of the compiled program. This option is mainly
| intended for compiler debugging purposes and facilitates compiler
| maintenance.

| � The following control directives have been added:

| – %SYSDATE and %SYSTIME to create the variables SYSDATE and
| SYSTIME containing the date and time of the compilation.

| – %TESTHALT to enable users to specifically place testhalt hooks in their
| programs.

| � An improved numbering scheme for the nesting levels of the SELECT, IF, and
| DO language constructs has been implemented.

| � The compiler’s listings have been improved in the following respect:

| – A cross-reference of error numbers pointing to the erroneous lines has
| been introduced.

| – The ID of the source input file is listed in the options list for CMS.

| – The DCB parameters for the data sets and files used in the compilation
| including any %INCLUDE data sets or files are listed for both MVS and
| CMS.

| – Additional cross-reference information for labels is produced.

| � Sequence numbers are now also supported in CMS.

| � The arguments used in IBM supplied functions that address DBCS, such as
| DBLEFT() and DBADJUST, are now checked for plausibility at compilation time.

 Copyright IBM Corp. 1991, 2000 xiii

| � The arguments used in a system-specific function, such as SYSVAR() and
| PROMPT() under MVS, DIAG under VM, or ASSGN() under VSE, are now
| checked for plausibility at compilation time.

Highlights of Release 3
In Release 3, the IBM Compiler and Library for SAA REXX/370 contain several
enhancements:

� The TRACE instruction and the trace built-in function are supported (except for
TRACE setting SCAN), provided that the TRACE compiler option is used.

� The stream I/O built-in functions (LINES, LINEIN, LINEOUT, CHARS, CHARIN,
CHAROUT, and STREAM), PARSE LINEIN, and the corresponding exception
handling (NOTREADY condition) are supported on VM/ESA Release 2.1 and
subsequent releases.

� An Alternate Library has been introduced to enable users who do not have the
IBM Library for SAA REXX/370 installed to run compiled REXX programs.
Software developers can distribute the Alternate Library, free of charge, with
their compiled REXX programs.

� The %COPYRIGHT Compiler control directive inserts a visible text string, for
example a copyright notice, in both the CEXEC and OBJECT output of the
compiler.

� The %INCLUDE Compiler control directive inserts, at compilation time, REXX
code contained in MVS data sets or in CMS files into the REXX source program.

� The MARGINS Compiler option specifies the left and right margins of the REXX
program. Only the text contained between the specified margins is compiled.

� The IEXEC Compiler option produces output that contains the expanded source
of the REXX program being compiled. Expanded means that the main program
and all the parts included at compilation time are contained in the IEXEC output.
If the MARGINS option is active, only the text within the specified margins is
written to the IEXEC output.

� Compiled EXECs of type CEXEC can run under MVS/ESA OpenEdition*.

| � REXX source lines containing commands, including ADDRESS clauses, are
now also listed in the cross-reference listing.

xiv SAA REXX/370 User’s Guide and Reference

Part 1. Introduction to Compiling and Running REXX
Programs

This part assumes that you have coded and are ready to compile your program. It
provides an overview of the IBM Compiler and Library for SAA REXX/370 and, to
help you get started quickly, describes one method of invoking the Compiler. It
also explains how to check the results of a compilation and how to run a compiled
REXX program.

 Copyright IBM Corp. 1991, 2000 1

2 SAA REXX/370 User’s Guide and Reference

 Chapter 1. Overview

This chapter provides an overview of the features and functions of the IBM
Compiler for SAA REXX/370, the IBM Library for SAA REXX/370, and the Alternate
Library. The Compiler translates REXX source programs into compiled programs.
The Library contains routines that are called by compiled programs at run time.
The Alternate Library contains a language processor that transforms the compiled
programs and runs them with the interpreter. It can be used by MVS/ESA and CMS
users who do not have the IBM Library for SAA REXX/370 to run compiled
programs.

The Compiler and Library run on MVS/ESA systems with TSO/E, and under CMS on
VM/SP, VM/XA, and VM/ESA systems. The Library for REXX/370 in REXX/VSE
Version 1 Release 1 runs under VSE/ESA.

Background information about compilers

Instructions written in any high-level language, such as REXX, must be prepared
for execution. The two types of programs that can perform this task are:

� An interpreter, which parses and executes an instruction before it parses
and executes the next instruction.

� A compiler, which translates all the instructions of a program into a machine
code program. It can keep the machine code program for later execution.
It does not execute the program.

The input to a compiler is the source program that you write.

The output from a compiler is the compiled program and the listing.

The process of translating a source program into a compiled program is known
as compilation.

You may prefer to leave some programs uncompiled. This would be a good choice
for simple programs that are used infrequently. An example is a program that
renames all the files in a library in accordance with a new naming convention, and
then never needs to be run again.

The Level of REXX Supported by the Compiler
The Compiler supports REXX language level 3.48 on MVS/ESA in TSO/E Version 2
Release 4, CMS in VM/ESA releases earlier than Release 2.1, and on VSE/ESA in
REXX/VSE Version 1 Release 1. On CMS in VM/ESA Release 2.1 and subsequent

| releases, the language level supported is 4.02.

Most of your existing REXX programs should compile without error and should give
the same runtime results without modification.

Most of the language features that are new in VM/ESA Release 2 and TSO/E
Version 2 Release 4 are available when running compiled programs, even when
they are not accepted by the interpreters. See Chapter 9, “Language Differences
between the Compiler and the Interpreters” on page 93 for details.

 Copyright IBM Corp. 1991, 2000 3

Using the Compiler in Program Development
One effective way of using the Compiler to develop REXX programs is the following:

| 1. Compile the program with the TRACE and NOTESTHALT compiler options and
| without the %TESTHALT control directive. This step performs comprehensive

error checking and produces an output that can be traced.

2. Debug the program using the output of the previous step.

| 3. Compile the program with the NOTRACE compiler option and, if required, the
| TESTHALT compiler option and %TESTHALT control directive.

Background information about error checking

A compiler scans an entire program for such errors as incorrect instructions and
variable names, even in parts of a program that are not used when the program
is run. By contrast, an interpreter stops as soon as it detects an error. It does
not detect syntax errors in parts of a program that are not used during a
particular invocation.

A compiler, however, cannot detect errors that do not arise until run time.
Consider this assignment:

averagescore = totalscore/numberofgames

This is valid during compilation, but could give an error at run time. For
example, if the variable numberofgames is assigned the value zero, an arithmetic
error occurs.

Forms and Uses of Output
The Compiler can produce output in the following forms:

� Compiled EXECs: These behave exactly like interpreted REXX programs.
They are invoked the same way by the system’s EXEC handler, and the search
sequence is the same. The easiest way of replacing interpreted programs with
compiled programs is by producing compiled EXECs. Users need not know
whether the REXX programs they use are compiled EXECs or interpretable
programs. Compiled EXECs can be sent to VSE/ESA to be run there. In this
book, compiled EXECs are often referred to as CEXEC output.

� Object modules under MVS/ESA or TEXT files under CMS: These must be
transformed into executable form (load modules) before they can be used.

| Load modules and MODULE files are invoked the same way as load modules
derived from other compilers, and the same search sequence applies.
However, the search sequence is different from that of interpreted REXX
programs and compiled EXECs. These load modules can be used as

| commands and as parts of REXX function packages. Object modules or
| MODULE files can be sent to VSE/ESA to build phases.

� IEXEC output: This output contains the expanded source of the REXX program
being compiled. Expanded means that the main program and all the parts
included at compilation time by means of the %INCLUDE directive are contained

| in the IEXEC output. Only the text within the specified margins is contained in
| the IEXEC output. Note, however, that the default setting of MARGINS includes
| the entire text in the input records.

4 SAA REXX/370 User’s Guide and Reference

You can produce all forms of output in one compilation. Compiled EXECs and
object modules contain the compiled code for the program.

Generate load modules from object modules: Under MVS/ESA, object modules
can be used to generate load modules. You need to link-edit the object modules
with stubs before you can run them or before you can link them with other
programs. See “Object Modules (MVS/ESA)” on page 74 and Appendix A,
“Interface for Object Modules (MVS/ESA)” on page 179 for more information.

Generate load modules from TEXT files: Under CMS, a TEXT file can be
processed into a MODULE file. The MODULE file can be invoked like any other CMS
module. See “TEXT Files (CMS)” on page 77 and Appendix B, “Interface for
TEXT Files (CMS)” on page 195 for more information.

Build phases from object modules: Under VSE/ESA, object modules can be
used to build phases. You need to combine the object modules with the
appropriate stub, before you can use them. See “Object Modules (VSE/ESA)” on
page 79 and Appendix C, “Interface for Object Modules (VSE/ESA)” on page 199
for more information.

Linking TEXT files to Assembler programs: A TEXT file can be linked to an
Assembler program. See “TEXT Files (CMS)” on page 77 for more information.

Portability of Compiled REXX Programs
A REXX program compiled under MVS/ESA can run under CMS. Similarly, a REXX
program compiled under CMS can run under MVS/ESA.

Under CMS, a REXX program compiled in /370 mode can run in non-/370 mode.
Similarly, a program compiled in non-/370 mode can run in /370 mode.

A REXX program compiled under MVS/ESA or CMS can run under VSE/ESA if
REXX/VSE is installed.

See Chapter 8, “Converting CEXEC Output between Operating Systems” on
page 87 for more information.

Programs compiled with the CMS REXX Compiler or with the IBM Compiler for SAA
| REXX/370 Release 1 or 2 run without the need to be recompiled.

Porting and Running Compiled REXX Programs
This section tells you where to look to find out how to port a compiled REXX
program to a system other than that on which it was compiled, and how to run your
compiled program.

If you compiled your program under MVS/ESA using:

� The CEXEC option, and want to run it under:

– MVS/ESA, see “CEXEC” on page 28

– MVS/ESA OpenEdition, see “Converting from MVS/ESA to MVS/ESA
OpenEdition” on page 87

– CMS, see “Converting from MVS/ESA to CMS” on page 87

 Chapter 1. Overview 5

– VSE/ESA, see “Converting from MVS/ESA to VSE/ESA” on page 88

� The OBJECT option, and want to run it under:

– MVS/ESA, see “OBJECT” on page 38.

– CMS, transfer the OBJECT output to CMS and generate a module; see
“TEXT Files (CMS)” on page 77

– VSE/ESA, transfer the OBJECT output to VSE/ESA and generate a phase;
see “Object Modules (VSE/ESA)” on page 79

If you compiled your program under CMS using:

� The CEXEC option, and want to run it under:

– MVS/ESA, see “Converting from CMS to MVS/ESA” on page 88

– CMS, see “CEXEC” on page 28

– VSE/ESA, see “Converting from CMS to VSE/ESA” on page 89

� The OBJECT option, and want to run it under:

– MVS/ESA, transfer the OBJECT output to MVS/ESA and generate an object
module; see “Object Modules (MVS/ESA)” on page 74

– CMS, see “OBJECT” on page 38

– VSE/ESA, transfer the OBJECT output to VSE/ESA and generate a phase;
see “Object Modules (VSE/ESA)” on page 79

Calling and Linking REXX Programs
Compiled REXX programs can interface with other programs in the same ways as
interpreted REXX programs. For details, refer to one of the following manuals:

TSO/E Version 2 REXX/MVS: Reference
VM/SP System Product Interpreter: Reference
VM/XA SP Interpreter: Reference
VM/ESA Release 2 REXX/VM: Reference
IBM VSE/Enterprise Systems Architecture REXX/VSE: Reference

Running above 16 Megabytes in Virtual Storage
Under MVS/ESA systems and under VM systems running in XA mode, the Compiler,
the Library, and the compiled REXX programs can run above 16 megabytes in
virtual storage. Under VSE/ESA, the compiled REXX programs can run above 16
megabytes in virtual storage. This requires no user action. Data used during a
compilation or by a running program can reside above 16 megabytes in virtual
storage.

 SAA Compliance
The Systems Application Architecture* (SAA) definitions of software interfaces,
conventions, and protocols provide a framework for designing and developing
applications that are consistent within and across several operating systems.

The SAA REXX interface is supported by the interpreters under TSO/E, CMS, and
VSE/ESA, and can be used in any of these environments. Users whose programs

6 SAA REXX/370 User’s Guide and Reference

run under TSO/E, CMS, or VSE/ESA can use the language extensions provided by
these interpreters. If you plan to run your programs in other environments,
however, some restrictions may apply. For details of the restrictions, consult the
Systems Application Architecture Common Programming Interface REXX Level 2
Reference.

To help you to write programs for use in all SAA environments, the Compiler can
optionally check for SAA compliance. With this option in effect, a warning message
is issued for each non-SAA item found in a program.

Choosing the National Language
The Compiler and Library provide optional support for languages other than
American English. The language you select is used for:

 � Messages
� Some of the constant text in the compiler listing, such as the page headings

 � Help panels
� Compiler invocation panels under MVS/ESA

For information on selecting a national language:

� Under MVS/ESA, see the descriptions of:

– The SETLANG function in the TSO/E Version 2 REXX/MVS: Reference
manual

– The PLANGUAGE and SLANGUAGE operands of the PROFILE command in
the TSO/E Version 2: Command Reference

� Under CMS, see the description of the SET LANGUAGE command in the
command reference for your system.

� Under VSE/ESA, only English is supported when running the Library for
REXX/370 in REXX/VSE Release 1.

� Under MVS/SP Version 3, only English is supported when running the Compiler
or the Library. See Chapter 10, “Limits and Restrictions” on page 105 for
more information.

Alternate Library Overview
The Alternate Library enables users who do not have the Library installed to run
compiled REXX programs. It contains a language processor that transforms the
compiled programs and runs them with the interpreter, which is part of TSO/E and
CMS.

Software developers can distribute the Alternate Library, free of charge, with their
compiled REXX programs. In this way, if their customer:

� Has the Library installed, the programs run as compiled REXX programs

� Installs the Alternate Library, the programs are interpreted

Distributing the compiled REXX program, without the source, has these
advantages:

� Maintenance of the program is simplified, because the code cannot be modified
inadvertently.

 Chapter 1. Overview 7

� Compiled programs can be shipped in load module format and used to create
function packages, even for users who do not have the Library.

Notes:

1. With the Alternate Library, the performance of compiled REXX programs is
similar to that of interpreted programs. The performance advantages of
compiled REXX are available only when the Library is installed.

| 2. To work with the Alternate Library, you must set the ALTERNATE and SLINE
| compiler options.

8 SAA REXX/370 User’s Guide and Reference

Chapter 2. Getting Started with the Compiler

This chapter lists the different ways in which you can invoke the IBM Compiler for
SAA REXX/370 and describes one of these ways, for both MVS/ESA and CMS, so
you can get started using the Compiler.

To use the Compiler, you supply:

� A source program.
� Compiler options. These control aspects of the Compiler’s processing.

Depending on the options used, the Compiler produces the following types of
output:

� The compiled program, which can be a compiled EXEC, an object module for
MVS/ESA or VSE/ESA, or a TEXT file for CMS

� The compiler listing, which may include a source listing, messages, and a
cross-reference listing

� Messages on the terminal

� IEXEC output, which can be interpreted

If you compile a program that was previously only interpreted, you may find that, at
run time, its behavior is not identical. This is because there are some differences
between the language supported by the Compiler and that supported by the
interpreters. These differences are explained in Chapter 9, “Language Differences
between the Compiler and the Interpreters” on page 93.

When you are ready to invoke the Compiler, go to one of the following:

“Invoking the Compiler under MVS/ESA”
“Invoking the Compiler under CMS” on page 10

Invoking the Compiler under MVS/ESA
You can invoke the Compiler from:

� A compiler invocation EXEC
� An ISPF compiler invocation panel
� Job control language (JCL) statements
� A cataloged procedure

Compiler invocation EXEC: You can invoke the Compiler in a TSO/E environment
by using the compiler invocation EXEC, REXXC. This way is described in “Getting
Started Using the Compiler Invocation EXEC under MVS/ESA” on page 10.

ISPF compiler invocation panel: You can invoke the Compiler from an ISPF
compiler invocation panel in the same way that you invoke other high-level
language compilers. “Invoking the Compiler with ISPF Panels (MVS/ESA)” on
page 18 describes how to do this.

JCL statement or a cataloged procedure: You can invoke the Compiler from an
MVS batch environment by writing and running your own JCL statements or by
running the supplied cataloged procedures. “Invoking the Compiler with JCL

 Copyright IBM Corp. 1991, 2000 9

Statements (MVS/ESA)” on page 20 and “Invoking the Compiler with Cataloged
Procedures (MVS/ESA)” on page 21 describe how to do this.

The main advantage of using cataloged procedures is that they can include most of
the JCL statements that you would otherwise have to write yourself. This is useful
for sets of JCL statements that you use regularly.

| You can also invoke the Compiler in the foreground using ADDRESS LINKMVS
| 'REXXCOMP'. In this case, ensure that an input data set is allocated under SYSIN.
| If there is no data set, TSO displays the prompt mode. To exit the prompt mode,
| specify /*.

Getting Started Using the Compiler Invocation EXEC under MVS/ESA
The REXXC compiler invocation EXEC is supplied with the Compiler for compiling
REXX source programs.

For example, you may have stored an interpretable REXX program named SAMPLE
in the data set pref.REXX.EXEC, which is allocated to the ddname SYSPROC.

You can generate a compiled REXX EXEC by allocating the data set
pref.REXX.CEXEC to the ddname SYSEXEC and entering the following command:

rexxc rexx.exec(sample) cexec(rexx.cexec(sample)) print(*)

In this command, print(*) is an option that writes the listing to ddname SYSTERM.
Installation defaults are used for options that you do not specify.

You can run the compiled program as you would an interpreted EXEC, by entering
its name as a command. However, your compiled program must be in the search
sequence (see TSO/E Version 2 REXX/MVS Reference for information on search
sequence). For example, by entering: sample

For complete information on REXXC, including the available options, see “Invoking
the Compiler with the REXXC EXEC (MVS/ESA)” on page 17.

Invoking the Compiler under CMS
You can invoke the Compiler from:

� A compiler invocation dialog
� A compiler invocation EXEC
� An ISPF compiler invocation panel

Compiler invocation dialog: Enter the command REXXD to display the main
panel of the compiler invocation dialog. From this panel, you can invoke the
Compiler and perform associated tasks, such as inspecting the listing and editing
the source program. The main advantage of using an interactive dialog is that you
do not have to remember any commands or options: you are prompted for all the
necessary information. This is the way that is described in “Getting Started Using
the Compiler Invocation Dialog under CMS” on page 11.

Compiler invocation EXEC: The compiler invocation EXEC, REXXC, operates in
line mode; using it can be quicker than the dialog. For any options that you do not
specify, the EXEC uses defaults defined when the Compiler was installed. You may

10 SAA REXX/370 User’s Guide and Reference

prefer this method if you are an experienced CMS user. Refer to “Invoking the
Compiler with the REXXC EXEC (CMS)” on page 25 for details.

ISPF compiler invocation panel: With ISPF Version 3 or a subsequent release,
you can invoke the Compiler from an ISPF compiler invocation panel in the same
way that you invoke other high-level language compilers. Refer to ISPF/PDF Guide
Version 3 Release 2 for VM for details.

 Batch Jobs
The Compiler can run in a batch machine with the CMS Batch Facility or with the
IBM licensed program VM Batch Facility (Program Number 5664-364). To run the
compiler invocation EXEC in batch, use your standard procedure for submitting
batch jobs.

Getting Started Using the Compiler Invocation Dialog under CMS
To use the compiler invocation dialog under CMS, do the following:

| 1. Invoke the dialog by entering the command:

rexxd test exec a

The following panel appears:

à ð
IBM Compiler for SAA REXX/37ð, Release 3

 Specify a program. Licensed Materials - Property of IBM
 Then select an action. 5695-ð13 (C) Copyright IBM Corp. 1989, 1994

All rights reserved.
 Program TEST EXEC A Output disk: _

 Action _ Source active Compiled
1 Compile TEST EXEC A1 into TEST CEXEC A1
2 Switch (rename) source and compiled exec

 3 Run active (source) program with argument string
4 Edit source program
5 Inspect compiler listing
6 Print source program
7 Print compiler listing

8 Specify compiler options

 Argument string: __

 Command ===> ___
 Enter F1=Help F2=Filelist F3=Exit
 F12=Cancel

á ñ
Figure 1. Main Panel of the Sample Compiler Invocation Dialog

2. Select Action 1 to compile the source program.

| 3. Select Action 2 to rename the source program and the compiled EXEC. For
| background information, refer to “Background information about compiled
| EXECs” on page 29.

4. Select Action 3 to run the program.

If you need more information, refer to the online help by pressing the F1 key.

The sample dialog may have been customized by your system administrator.

 Chapter 2. Getting Started with the Compiler 11

For detailed information about REXXD, see “Invoking the Compiler with REXXD
(CMS)” on page 22.

Checking the Results of a Compilation
A return code or message indicates how successful your compilation was. If there
is a problem, you receive messages on your terminal or in the compiler listing. See
“Return Codes.” For a description of the compiler listing, see Chapter 6,
“Understanding the Compiler Listing” on page 57. For explanations of the compiler
messages, see Chapter 15, “Compilation Messages” on page 135.

If you receive a return code of 0, you can run the compiled EXEC. Refer to
Chapter 5, “Runtime Considerations” on page 51 before you do run your EXEC.

Regardless of what return code you receive, always check the results of your
compilation.

 Return Codes
The return code indicates the maximum severity of any messages issued, as
follows:

Return Code Meaning

0 No messages or only informational messages

 4 Warning

 8 Error

 12 Severe error

 16 Terminating error

>16 C/370* runtime return codes. They indicate that the Compiler has
terminated abnormally.

Notes:

1. No compiled code is generated if one of the following occurs:

� NOTRACE is in effect and a severe or terminating error is detected

� TRACE is in effect and a terminating error is detected

� NOCOMPILE is in effect

| � Warnings or errors have been issued and the appropriate options, such as
| NOCOMPILE(W) or NOCOMPILE(E), apply.

| 2. You can get unpredictable results if one of the following occurs:

| � NOTRACE is in effect and an error is detected

| � TRACE is in effect and an error or severe error is detected.

3. If the Compiler issues warning or informational messages, the program might
still run correctly. However, you should examine the source code to assess the
likely effects. For example, if the Compiler detects more than one definition of
the same label, check whether some occurrences are misspellings.

4. It is good programming practice to correct all compilation errors.

12 SAA REXX/370 User’s Guide and Reference

5. A program that can be interpreted successfully may give compilation errors.
There could be errors in parts of the program that are rarely, or never,
executed. Also, the program may contain language elements that are either
not supported by the Compiler or that must be coded differently. Refer to
Chapter 9, “Language Differences between the Compiler and the Interpreters”
on page 93 for details.

 Chapter 2. Getting Started with the Compiler 13

14 SAA REXX/370 User’s Guide and Reference

Part 2. Programming Reference Information

This part describes the ways of invoking the Compiler, and the Compiler options
and control directives. It also:

� Describes the enhanced options for the REXXC EXEC.

� Contains suggestions for organizing your libraries and instructions for running
compiled programs.

� Explains the parts of the compiler listing.

� Describes when to use OBJECT output instead of CEXEC output.

� Describes what to do to run CEXEC output on an operating system other than
the one on which you generated the output. It also explains how to copy,
under MVS/ESA, CEXEC output from one data set to another.

� Describes how to copy compiled EXECs from MVS/ESA or CMS to VSE/ESA.

� Explains how to use the REXXL command to create object modules on
MVS/ESA and on VSE/ESA.

� Lists implementation limits, technical restrictions, and other performance and
programming considerations that you should be aware of.

Also in this part, Chapter 9, “Language Differences between the Compiler and the
Interpreters” on page 93 explains the differences between the language processed
by the Compiler and the language processed by the interpreters.

 Copyright IBM Corp. 1991, 2000 15

16 SAA REXX/370 User’s Guide and Reference

Chapter 3. Invoking the Compiler—In Detail

This chapter describes in detail the various ways of invoking the IBM Compiler for
SAA REXX/370 under MVS/ESA and under CMS.

MVS/ESA users can invoke the Compiler by using:

� REXXC, the compiler invocation EXEC
� ISPF compiler invocation panels

 � JCL statements
 � Cataloged procedures

CMS users can invoke the Compiler by using:

� REXXC, the compiler invocation EXEC
� REXXD, the compiler invocation dialog
� ISPF compiler invocation panels

Invoking the Compiler with the REXXC EXEC (MVS/ESA)
A compiler invocation EXEC, REXXC, is supplied with the Compiler to compile REXX
source programs. This EXEC must run in a TSO/E address space. To start the
EXEC, enter the REXXC command in the following format:

REXXC source [options-list]

where:

source Specifies the data set containing the REXX source program.

options-list Any of the compiler options that are described in “Compiler
Options” on page 27. They can be specified in any order.

The following options have been enhanced so that you can explicitly specify where
the Compiler output is to be stored:

REXXC allocates the specified or defaulted output data sets if they do not already
exist. It uses defaults for data set attributes and allocation values that are
described in “Customizing the REXXC EXEC” on page 121. For information about
how the names of the default data sets are derived, see “Derived Default Data Set
Names” on page 18.

REXXC checks the data set organization for each output. It ends with an error
rather than overwriting a partitioned data set with a sequential data set of the same
name, and vice versa.

 Option Description on page

 BASE 27
 CEXEC 28
 DUMP 33
 IEXEC 34
 OBJECT 38
 PRINT 41

 Copyright IBM Corp. 1991, 2000 17

Derived Default Data Set Names
If you do not specify data set names, REXXC derives default names for output data
sets. The following tables show the default data set names that may be created by
the REXXC command.

This table shows the defaults that are derived from the specified source (or the
BASE option’s value, if specified). The source program was either a member of a
partitioned data set or a sequential data set.

The following table shows the default name for the load-data-set-name parameter
of the OBJECT option. It is derived from the name of the data set that contains the
output from the OBJECT option. This can be either a member of a partitioned data
set or a sequential data set.

where:
pref and qual represent the prefix and the last level qualifier, respectively; csect
represents the name the Compiler puts in the ESD from the OBJECT output. See
Chapter 7, “Using Object Modules and TEXT Files” on page 73 for more
information on csect.

Note that the user’s default prefix upref (as set by the PROFILE PREFIX command)
is used for the output data sets.

Option

Partitioned Data Set
pref.cccc.qual(member)

Sequential Data Set
pref.cccc.qual

CEXEC upref.cccc.CEXEC(member) upref.cccc.qual.CEXEC

IEXEC upref.cccc.IEXEC(member) upref.cccc.qual.IEXEC

OBJECT upref.cccc.OBJ(member) upref.cccc.qual.OBJ

PRINT upref.cccc.member.LIST upref.cccc.qual.LIST

DUMP upref.cccc.member.DUMP upref.cccc.qual.DUMP

Partitioned Data Set
pref.cccc.qual(member)

Sequential Data Set
pref.cccc.qual

load-data-set-name upref.cccc.LOAD(csect) upref.cccc.qual.LOAD(csect)

Invoking the Compiler with ISPF Panels (MVS/ESA)
Under ISPF, you can invoke the Compiler from the Foreground REXX/370
Compilation panel or the Batch REXX/370 Compilation panel. The panels, Figure 2
on page 19 and Figure 3 on page 19, are similar to those for other high-level
language compilers.

Because the ISPF panels use the REXXC EXEC to invoke the Compiler, you can
specify the enhanced options as well as all other Compiler options.

18 SAA REXX/370 User’s Guide and Reference

à ð
--------------------- FOREGROUND REXX/37ð COMPILATION ----------------------
 COMMAND ===>

 ISPF LIBRARY:
PROJECT ===> TEST

 GROUP ===> LIB1 ===> LIB2 ===> LIB3 ===>
 TYPE ===> REXX

MEMBER ===> (Blank or pattern for member selection list)

 OTHER PARTITIONED OR SEQUENTIAL DATA SET:
DATA SET NAME ===>

 LIST ID ===>

 COMPILER OPTIONS:
 ===>
 ===>

 INCLUDE DATA SETS:
 ===>
 ===>
 ===>

á ñ

Figure 2. Foreground REXX/370 Compilation Panel (Panel ID: FANFP14)

This panel may have been customized by your system administrator.

To use the Foreground REXX Compile panel:

1. Select FOREGROUND on the ISPF/PDF Primary Option Menu.

2. Select REXX Compiler.

3. Enter the appropriate data set names with the extensions described in
“Compiler Options” on page 27, and the compiler options.

See “Checking the Results of a Compilation” on page 12.

à ð
------------------------ BATCH REXX/37ð COMPILATION ------------------------
 COMMAND ===>

 ISPF LIBRARY:
PROJECT ===> TEST

 GROUP ===> LIB1 ===> LIB2 ===> LIB3 ===>
 TYPE ===> REXX

MEMBER ===> (Blank or pattern for member selection list)

 OTHER PARTITIONED OR SEQUENTIAL DATA SET:
DATA SET NAME ===>

 LIST ID ===> (Blank for hardcopy listing)
 SYSOUT CLASS ===> \ (If hardcopy requested)

 COMPILER OPTIONS:
 ===>
 ===>

 INCLUDE DATA SETS:
 ===>
 ===>
 ===>

á ñ

Figure 3. Batch REXX/370 Compilation Panel (Panel ID: FANJP14)

This panel may have been customized by your system administrator.

 Chapter 3. Invoking the Compiler—In Detail 19

To use the Batch REXX Compile panel:

1. Select BATCH on the ISPF/PDF Primary Option Menu.

2. Select REXX Compiler.

3. Enter the appropriate data set names with the extensions described in
“Compiler Options” on page 27, and the compiler options.

See “Checking the Results of a Compilation” on page 12.

The source program you specify must be stored in an ISPF library, a partitioned
data set, or a sequential data set. If you do not specify a member name of a
library or partitioned data set, a list is displayed from which you can select the
member to be compiled.

The default output data set names are the same as those described for the REXXC
EXEC (see “Derived Default Data Set Names” on page 18) with the following
additions:

� If the PRINT option is not specified, the compiler listing is named
upref.mmm.LIST, where upref is the user’s default data set prefix and mmm is
the specified list identifier (LIST ID) or the member name of the source program.

� The first group is used for the default output data set names if the source
comes from an ISPF library and more than one group is specified. Figure 2 on
page 19 and Figure 3 on page 19 show examples of a first group ISPF library
name TEST.LIB1.REXX.

In contrast to the compilation panels for other languages, not only the compiler
options but all REXXC command options can be specified. For example, you can
explicitly specify data set names for compiler output, thus overriding the defaults.

Online help is available for the invocation panels.

Invoking the Compiler with JCL Statements (MVS/ESA)
You can compile a REXX program in an MVS/ESA batch environment by writing your
own JCL statements.

The JCL statements that you need are:

� A JOB statement that identifies the start of the job.

� An EXEC statement (PGM=REXXCOMP) that identifies the Compiler and the
compiler options. Additionally, a JOBLIB or STEPLIB data definition (DD)
statement may be necessary, so that the system can locate the REXXCOMP
program.

� DD statements that identify both the input and the output data sets that the
Compiler requires. These are described in “Data Sets Required by the
Compiler (MVS/ESA)” on page 21.

� A delimiter statement that separates data in the input stream from the JCL
statements that follow the data.

� Job entry subsystem (JES) control statements that provide information to the
JES.

20 SAA REXX/370 User’s Guide and Reference

Invoking the Compiler with Cataloged Procedures (MVS/ESA)
You can compile a REXX program in an MVS/ESA batch environment by using a
cataloged procedure that is invoked by an EXEC statement in your job.

Your system administrator may have customized the cataloged procedures on your
system.

The first four cataloged procedures listed below are supplied with the Compiler.
The cataloged procedure REXXL is supplied with the Library.

REXXC Compile a REXX program.

REXXCG Compile and run a REXX program of type CEXEC.

REXXCL Compile and link-edit a REXX program of type OBJECT.

REXXCLG Compile, link-edit, and run a REXX program of type OBJECT.

REXXL Link-edit a REXX program of type OBJECT.

These cataloged procedures are listed in Appendix E, “The MVS/ESA Cataloged
Procedures Supplied by IBM” on page 211.

Data Sets Required by the Compiler (MVS/ESA)
The Compiler requires some standard input and output data sets. The number of
data sets depends on the compiler options specified. You must define these data
sets in DD statements with the ddnames shown in Figure 4 on page 22. The

| SYSIN DD statement is always required. DD statements corresponding to
| %INCLUDE directives are also required. Their DCB requirements correspond to
| those of SYSIN in the following table.

 Chapter 3. Invoking the Compiler—In Detail 21

Figure 4. Data Sets Required by the Compiler (MVS/ESA)

DDNAME

Record
Format
RECFM

Record Size
LRECL

Contents

Required
for
Option

SYSCEXEC F, FB ≤32 760 and ≥20 Compiled EXEC CEXEC

V, VB ≤32 756 and ≥24

SYSDUMP FA, FBA 121 Formatted dumps DUMP

VA, VBA 125

SYSIEXEC* F, FB ≤32 760 Expanded source
program

IEXEC

V, VB ≤32 756

SYSIN F, FB ≤32 760 Input to the Compiler

V, VB ≤32 756

SYSPRINT FA, FBA 121 Listing, including
messages

PRINT

VA, VBA 125

SYSPUNCH F, FB 80 Object module OBJECT

SYSTERM F, FB 80 (Recommended) Errors, error
messages, message
summary

TERMINAL or for
messages of severity T

FA, FBA 81 (Recommended)

V, VB 84 (Recommended)

VA, VBA 85 (Recommended)

* See “IEXEC” on page 34 for more details.

Invoking the Compiler with REXXD (CMS)
A sample compiler invocation dialog, REXXD, is supplied with the Compiler to
compile REXX source programs. The sample dialog may have been customized by
your system administrator. Ask your system administrator what command you
should enter to start this dialog if you do not succeed in using REXXD.

Start the dialog as follows:

REXXD [source-file-identifier]

where:

source-file-identifier
Is the file identifier of the source program. If you omit the file identifier,
the program last processed with REXXD is used again. You need not
fully specify the source file identifier. If you specify only the file name,
all accessed disks are searched for a REXX program that has this file
name and one of the supported file types (listed in variable $.0ptypes
in the file REXXDX XEDIT; see “Customizing the Compiler Invocation
Shells” on page 123). Alternatively, the file type could be prefixed
according to the rule specified in REXXDX in variable $.0ssft. The
selected file identifier appears in the main panel of the dialog. You
can change it there if you wish.

An example of the panel follows:

22 SAA REXX/370 User’s Guide and Reference

à ð
IBM Compiler for SAA REXX/37ð, Release 3

 Specify a program. Licensed Materials - Property of IBM
 Then select an action. 5695-ð13 (C) Copyright IBM Corp. 1989, 1994

All rights reserved.
 Program TEST EXEC A Output disk: _

 Action _ Source active Compiled
1 Compile TEST EXEC A1 into TEST CEXEC A1
2 Switch (rename) source and compiled exec

 3 Run active (source) program with argument string
4 Edit source program
5 Inspect compiler listing
6 Print source program
7 Print compiler listing

8 Specify compiler options

 Argument string: __

 Command ===> ___
 Enter F1=Help F2=Filelist F3=Exit
 F12=Cancel

á ñ

Figure 5. Main Panel of the Sample Compiler Invocation Dialog

Use the various functions of the dialog as you need them:

� In the field Program, type or change the identifier of the program you want to
work with.

� In the field Output disk, you can specify the disk on which the Compiler output
is to be stored.

� To select an action, type its number in the selection field and press the Enter
key.

� You can use the default compiler options to begin with.

� Whenever you need further guidance, press the Help key (F1) for online help.

When you start using the Compiler regularly, set up suitable values in the REXX
Compiler Options Specifications panel, shown in Figure 6 on page 24, and save
them for future use. The compiler options are explained in the online help and in
“Compiler Options” on page 27.

 Chapter 3. Invoking the Compiler—In Detail 23

Setting the Compiler Options
| When you select the “Specify compiler options” action you get the following panels
| that prompt you for the compiler options:

| à| ð
| REXX Compiler Options Specifications 1 of 2

| Specify the output files you want, and their file IDs More: +
| File identifiers
| Program name TEST EXEC A
| Y Compiler listing (Y/N/P) = LISTING =
| Y Compiled EXEC (Y/N) = C\ =
| N TEXT file (Y/N) = TEXT =
| N IEXEC file (Y/N) = I\ =
| Specify compiler messages to be issued
| I FLAG Minimum severity of messages to be shown (I/W/E/S/T/N)
| N TERM Display messages at the terminal (Y/N)
| N SAA SAA-compliance checking (Y/N)
| \ LL LIBLEVEL (\/2/3/4/5/6)
| Specify contents of compiler listing
| Y SOURCE Include source listing (Y/N)
| N XREF Include cross-reference listing (Y/S/N)
| N FORMAT Format with column numbers (Y/N)
| 55 LC Number of lines per page (1ð-99 or, for no page headings, ð or N)

| Command ===> ___
| Enter F1=Help F2=Filelist F3=Exit F4=Save F5=Refresh F6=Reset F8=Fwd
| F12=Cancel

| á| ñ

| Figure 6. Options Specification Panel (1 of 2)

| à| ð
| REXX Compiler Options Specifications 2 of 2

| Specify additional compiler options More: -

| Additional options
| N SL Support SOURCELINE built-in function (Y/A/N)
| N TH Support HI immediate command (Y/N)
| S NOC Error level to suppress compilation (\/W/E/S/T)
| N COND Condense compiled program (Y/N)
| N DL Include ESD and RLD in TEXT output (Y/N)
| N ALT Compiled program supports the Alternate Library (Y/N)
| N TR Compiled program can be traced (Y/N)
| 1 \ MARGINS Left and right source margins

| Special compiler diagnostics
| N DUMP Produce diagnostic output (ð-2ð47, Y, or N)
| Y OPT Optimize compiled program (Y/N)

| Command ===> ___
| Enter F1=Help F2=Filelist F3=Exit F4=Save F5=Refresh F6=Reset F7=Bkwd
| F12=Cancel

| á| ñ

| Figure 7. Options Specification Panel (2 of 2)

The current default options are displayed. You can type and optionally save new
values in any of the fields. The compiler invocation dialog will use the saved
options the next time it is invoked.

24 SAA REXX/370 User’s Guide and Reference

Invoking the Compiler with the REXXC EXEC (CMS)
A sample compiler invocation EXEC, REXXC, is supplied with the Compiler to
compile REXX source programs. Ask your system administrator what command
you should enter to start this EXEC if you do not succeed in using the IBM-supplied
EXEC.

Enter the command to start the EXEC in the following format:

REXXC source-file-identifier [(options-list[)]]

where:

source-file-identifier
Is the file identifier of the source program. You need not fully specify
the source file identifier. If the file type is not specified, EXEC is used.
If you do not specify the file mode, it defaults according to the CMS
search order.

options-list Is a list of compiler options to be used, separated by blanks. For
details of the options that can be specified, see “Compiler Options” on
page 27. The defined defaults are used for any options that you do
not specify. See “Setting Up Installation Defaults for the Compiler
Options” on page 124 for details.

Invoking the Compiler from ISPF Panels (CMS)
For information on how to invoke the Compiler from ISPF panels, see ISPF/PDF
Guide Version 3 Release 2 for VM.

 Chapter 3. Invoking the Compiler—In Detail 25

26 SAA REXX/370 User’s Guide and Reference

Chapter 4. Compiler Options and Control Directives

This chapter describes the compiler options, including the enhanced options for
REXXC, and the control directives that are available.

While the Compiler options are specified when the Compiler is invoked, the control
directives are within your program as part of the REXX code.

 Compiler Options
This section describes the functions and syntax of the compiler options, along with
their abbreviations and defaults supplied by IBM.

Make sure you separate the options by blanks. The last specification of an option
takes precedence.

The compiler options are described in alphabetical order.

 ALTERNATE
The ALTERNATE option specifies that at run time the Alternate Library may be
used.

ALTERNATE Creates a compiled program of CEXEC or OBJECT type that can
run both with the Alternate Library and the Library.

The SLINE Compiler option must also be specified.

If the DLINK option is specified, the program can take
advantage of directly linked programs only when running with
the Library. For programs that run with the Alternate Library,
DLINK has no effect; the standard REXX search order is used.
See “Creating REXX Programs for Use with the Alternate
Library (MVS/ESA, CMS)” on page 115 for more information.

NOALTERNATE Creates a compiled program of CEXEC or OBJECT type that will
run using the Library. The program cannot run with the
Alternate Library.

Abbreviations: ALT, NOALT

IBM default: NOALTERNATE

 BASE
The BASE option can be used only when invoking the Compiler with the REXXC

| EXEC under MVS/ESA (see page 17) or when invoking REXXC indirectly using the
| ISPF panels (see page 18).

It can be used to specify the base for constructing the default output data set
names for CEXEC, DUMP, IEXEC, OBJECT, and PRINT output.

BASE(data-set-name[(member)])
The data set name and member name are used to construct the
default data set names for compiler output.

If the BASE option is not specified, the output data set names are created as
explained in “Derived Default Data Set Names” on page 18.

 Copyright IBM Corp. 1991, 2000 27

 CEXEC
The CEXEC option specifies whether the Compiler is to produce a compiled EXEC.
See also “OBJECT” on page 38 for an alternative form of compiled output.

CEXEC Under MVS/ESA, this option produces a compiled EXEC in the
data set allocated to the ddname SYSCEXEC.

CEXEC[(data-set-name)]
Can be used only when invoking the Compiler with the REXXC
EXEC under MVS/ESA (see page 17). Generates a compiled
EXEC.

This option is extended so that you can specify the name of the
data set in which the compiled EXEC is to be stored. A default
data set name is used if you do not specify data-set-name.

CEXEC[(file-identifier)]
Under CMS, this option produces a compiled EXEC. You need
not fully specify the file identifier. The default file name is the
name of the source file. The default file type is the letter C
concatenated with the source file type. The default file mode is
the file mode of the source file, provided you currently have
read/write access to that minidisk; otherwise, file mode A1 is
used.

NOCEXEC Does not produce a compiled EXEC.

Abbreviations: CE, NOCE

IBM default: CEXEC

You can use compiled EXECs for:

� Programs to be used in command environments
 � XEDIT macros
� PDF edit macros

 � GDDM* macros
 � Pipe filters
� Any other program that is not required to be in the form of a TEXT file or object

module

28 SAA REXX/370 User’s Guide and Reference

Background information about compiled EXECs

You can replace your existing source EXECs with compiled EXECs. The search
order for compiled and interpretable EXECs is the same, and they can be
invoked in the same way. This makes it possible to ensure that there is no
difference, from a user’s point of view, between invoking a compiled EXEC and
invoking the interpreter for the source program.

To achieve this aim:

� Under MVS/ESA, using the explicit method of invoking EXECs, the TSO/E
EXEC command specifies the location of the REXX EXEC.

Using the implicit method of invoking EXECs, the interpretable EXEC is
invoked as a command using the member name of the interpretable EXEC.
For the system to give control to the compiled EXEC, the EXEC must have
the same member name and must come earlier in the search order than the
interpretable EXEC. For more information, see “Organizing Compiled and
Interpretable EXECs under MVS/ESA” on page 51, TSO/E Version 2
REXX/MVS Reference, and TSO/E Version 2 Command Reference.

� Under CMS, the compiled EXEC must be given the same file type, such as
EXEC or XEDIT, that the source program would have for interpretation. The
source file must, therefore, be renamed, removed, or moved further down
the search order. The sample compiler-invocation dialog, REXXD, handles
this requirement. See “Invoking the Compiler with REXXD (CMS)” on
page 22 for a description of this dialog.

A compiled EXEC behaves the same as an interpretable EXEC: the
EXECLOAD command makes the EXEC resident; the DCSSGEN utility loads
the EXEC in a discontiguous saved segment (DCSS); and the EXEC can be
loaded and started through the CMS EXEC handler.

� Under VSE/ESA, the compiled EXEC must be stored in a sublibrary with
member type PROC. To ensure that the compiled REXX program is found
before the interpretable one, use the LIBDEF statement as described in
“Organizing Compiled and Interpretable EXECs under VSE/ESA” on
page 52. See “Converting from MVS/ESA to VSE/ESA” on page 88 or
“Converting from CMS to VSE/ESA” on page 89 for details.

| The compiler writes information about the source file and the compilation to the
| compiled EXEC. The information includes the name of the source file (in MVS,
| the DSName of the first data set in the SYSIN concatenation; in CMS, the file
| ID), and the date and time of the compilation. The first 160 bytes of the
| compiled program are reserved for this information. You can use a text editor,
| for example, the ISPF browse, view, or edit functions or XEDIT to view the
| information.

 Chapter 4. Compiler Options and Control Directives 29

 COMPILE
The COMPILE option specifies whether the Compiler is to produce compiled code
after all error checking has been performed. (The CEXEC and OBJECT options
determine which files are created.)

COMPILE Generates compiled code, unless:

� NOTRACE is in effect and a severe or terminating error is
detected

� TRACE is in effect and a terminating error is detected

NOCOMPILE Unconditionally suppresses the generation of compiled code
after all error checking.

NOCOMPILE(W) Suppresses the generation of compiled code if a warning, error,
severe error, or terminating error is detected.

NOCOMPILE(E) Suppresses the generation of compiled code if an error, severe
error, or terminating error is detected.

NOCOMPILE(S) Suppresses the generation of compiled code if a severe error
or terminating error is detected.

Abbreviations: C, NOC

IBM default: NOCOMPILE(S)

| Note: If you specify COMPILE with TRACE in effect, you receive output even if
| severe errors are diagnosed. If you specify COMPILE with NOTRACE in effect, you
| receive the same output as with NOC(S).

 CONDENSE
The CONDENSE option specifies whether the generated ouput is to be condensed

| to take up less space. The saving in space can be up to 66%. The condensed
| program is uncondensed in storage prior to execution.

Note: The DLINK option and the CONDENSE option are mutually exclusive.

CONDENSE Condenses the output generated by the CEXEC or the OBJECT
compiler option, or both.

NOCONDENSE Does not condense the output generated by the CEXEC or the
OBJECT compiler option.

Abbreviations: COND, NOCOND

IBM default: NOCONDENSE

30 SAA REXX/370 User’s Guide and Reference

Background information about condensed programs

The size of a compiled REXX program often exceeds the size of the source
program. The CONDENSE compiler option enables you to significantly reduce

| the size of both CEXEC type output and OBJECT type output. The time taken to
| load the condensed program is shorter. However, execution time is longer
| because the program must be uncondensed before it is run. Use the
| CONDENSE compiler option for programs that are started infrequently, for
| example, programs that are run once a day. It is not recommended that you
| use CONDENSE for programs that are run frequently or programs that are
| EXECLOADed because of the time required to unpack the program each time it
| is run.

| This option:

� Reduces the amount of disk space required by compiled REXX programs

� Reduces the amount of virtual storage required by preloaded compiled
REXX programs

� Reduces the amount of I/O activity required to load compiled REXX
programs

When a condensed compiled REXX program is invoked, the program is
automatically uncondensed. A condensed compiled REXX program requires
more storage while it is running:

� During the uncondense operation, an additional 128KB (KB equals 1024
bytes) of storage are required.

� While a condensed compiled REXX program is running, both the condensed
and the uncondensed copy exist in storage.

� Additional CPU time is required to uncondense the compiled REXX program.
Apart from that, the performance characteristics of a condensed program
equal the performance characteristics of an uncondensed program.

| Note: The CONDENSE option can also be used to make a program
| unreadable if the source lines were included in the compiled program using the
| SLINE option.

 DLINK
The DLINK option specifies whether the OBJECT output is to contain references to
external routines and functions. External references are generated in the form of
weak external references, requiring explicit inclusion of referenced programs when
linking or loading. External references are not generated if the name of the routine
is longer than 8 characters, contains embedded, trailing, or leading blanks, or the
name is specified within quotes.

Notes:

1. The DLINK option and the CONDENSE option are mutually exclusive.

2. The DLINK option and the TRACE option are mutually exclusive.

3. The DLINK option has no effect for programs that run with the Alternate Library.

 Chapter 4. Compiler Options and Control Directives 31

DLINK Generates weak external references in the OBJECT output for
external functions and subroutines whose names can be a
maximum of 8 characters in length. If a name is specified
within quotes, it must contain no blanks.

NODLINK Does not generate weak external references in the OBJECT
output.

Abbreviations: DL, NODL

IBM default: NODLINK

Background information about directly linked external programs

When external functions and subroutines are linked directly to the REXX
program, the REXX search order is bypassed, and the linked program is invoked
directly. The advantages are:

� Better performance, as no search for the program is needed
� No possibility of accidentally accessing a program with the same name

located earlier in the search order
� Improved packaging, because a program and its external subroutines can

be linked into one load module

External functions and subroutines linked directly to a REXX program can be:

� Compiled REXX programs of type OBJECT.

– In MVS/ESA they must be linked with the external function parameter list
(EFPL) stub; see Appendix A, “Interface for Object Modules (MVS/ESA)”
on page 179.

– In VSE/ESA they must be combined with the EFPL stub; see
Appendix C, “Interface for Object Modules (VSE/ESA)” on page 199.

� Programs that are written in any programming language that conforms to
the following linkage conventions:

– Under MVS/ESA and VSE/ESA, a directly linked program is invoked with
an EFPL. It must conform to the linkage conventions for external
functions and subroutines, as described in TSO/E Version 2 REXX/MVS:
Reference manual for MVS/ESA, and in IBM VSE/Enterprise Systems
Architecture REXX/VSE: Reference manual for VSE/ESA.

– Under CMS, SVC linkage conventions are used, and register 13 must
not be changed by the program. When applicable, the directly linked
program is invoked in AMODE 31, and arguments are not copied below
16MB (MB equals 1 048 576 bytes) in virtual storage. The call type is
X'05', a 6-word extended PLIST is passed to the invoked program.
See Appendix B, “Interface for TEXT Files (CMS)” on page 195 for
details.

You need not link all external functions and subroutines. If they are not linked,
they will be searched for on every invocation. For more information see
Chapter 7, “Using Object Modules and TEXT Files” on page 73, “Linking
External Routines to a REXX Program” on page 82, and “DLINK Example” on
page 182.

32 SAA REXX/370 User’s Guide and Reference

 DUMP
Note: The DUMP option is not designed for program debugging. Use this option
only if you suspect an error in the Compiler and if an IBM support representative
asks for interphase dumps.

The DUMP option provides diagnostic information for use by IBM support personnel.
If this option is specified, formatted dumps of the Compiler’s control blocks and
intermediate texts are taken after selected phases. Under MVS/ESA, the dump is
written to the SYSDUMP data set. Under CMS, the dump file is sent to the virtual
printer.

DUMP(n) Produces the interphase dumps specified by the value of n,
where n is a number in the range 0 through 2047. The
meaning of this parameter is fully described in the IBM
Compiler and Library for REXX/370: Diagnosis Guide.

DUMP Produces all interphase dumps.

DUMP[([data-set-name][,n])]
Can be used only when invoking the Compiler with the REXXC
EXEC under MVS/ESA (see page 17). Produces formatted
dumps.

This option is extended so that you can specify the name of the
data set in which the formatted dumps are to be stored. A
default data set name is used if you do not specify
data-set-name. All possible dumps are produced if you do not
specify n.

NODUMP Does not produce dumps.

Abbreviations: DU, NODU

IBM default: NODUMP

 FLAG
The FLAG option specifies the minimum severity of errors for which messages are
to be issued. (The PRINT and TERMINAL options specify where the messages
appear.)

FLAG Is equivalent to FLAG(I).

FLAG(I) Issues all messages, including informational messages.

FLAG(W) Issues messages only for warnings, errors, severe errors, and
terminating errors.

FLAG(E) Issues messages only for errors, severe errors, and terminating
errors.

FLAG(S) Issues messages only for severe errors and terminating errors.

FLAG(T) Issues messages only for terminating errors.

NOFLAG Is equivalent to FLAG(T).

Abbreviations: F, NOF

IBM default: FLAG(I)

 Chapter 4. Compiler Options and Control Directives 33

| FORMAT
| The FORMAT compiler option specifies that, in addition to the line numbers, the
| column numbers are to be included in the list of error messages and the
| cross-reference listing.

| FORMAT Is equivalent to FORMAT(C).

| FORMAT(C) Formats the error messages and cross reference with column
| numbers.

| NOFORMAT Does not format the error messages and cross reference with
| column numbers.

| Abbreviations: FO, NOFO

| IBM default: NOFORMAT

 IEXEC
The IEXEC option generates an expanded output that contains the REXX source
program and all members included by means of the %INCLUDE control directive.
The IEXEC output is an interpretable REXX program.

The IEXEC output can contain fixed-length or variable-length records. Fixed-length
records are written only if:

| � All input files (REXX source and included files) have fixed-length records of
identical record length.

� All %INCLUDE directives are defined either on separate lines or at the very end
of a line to avoid a split of the line.

� Either all files contain sequence numbers or none of the files contains
sequence numbers.

� Under MVS/ESA, the output data set is explicitly defined with RECFM=F or FB.

In all other cases, variable-length records are written.

| The compiler does not write sequence numbers to the IEXEC output. This is
| because the sequence numbers from any %INCLUDE file might not be compatible
| with the sequence numbers from the main REXX source program and lead to error
| messages issued by many text editors. However, the LRECL values provided by
| the compiler as default values provide 8 bytes for any renumbering.

34 SAA REXX/370 User’s Guide and Reference

| Background information about calculating record lengths in MVS

| This box describes the record lengths supported by the compiler. If you
| allocate a file for IEXEC output and assign an LRECL value to it, the value must
| conform to the description given in this box. The default values used by the
| compiler are described at the end of the box.

| For fixed-record lengths, LRECL must be set to one of the following:

| � Without sequence numbers

| right_margin - left_margin + 1

| � With sequence numbers

| right_margin - left_margin + 1 + 8

| The MARGINS values apply to the records remaining after the compiler has
| removed the sequence numbers. If you have set MARGINS to the default value
| MARGINS(1 *), LRECL is equal to the record length of the record length of the
| source files.

| For variable-length records, LRECL must be greater than, or equal to, one of the
| following:

| � If none of the files contain sequence numbers

| right_margin - left_margin + 5

| � If any of the files contain sequence numbers

| right_margin - left_margin + 5 + 8

| If you specified * for right_margin, the value of right_margin in the last two
| expressions must be set to the length of the longest input record.

| If no LRECL, RECFM, and BLKSIZE (MVS) parameters have been assigned to
| the IEXEC output file, the compiler supplies the following default values:

| RECFM = V (CMS) or VB (MVS)
| LRECL = max. value of (right_margin - left_margin + 5 + x)
| where x=8 if the record contains sequence numbers or
| x=ð if the record does not contain sequence numbers
| BLKSIZE = 1ð \ LRECL

| If you compile fixed-length records and want to have a fixed-length IEXEC file,
| create a file that assigns values to the RECFM, LRECL, and BLKSIZE
| parameters before calling the compiler.

If variable-length records are written to the IEXEC output, the records that originated
from fixed-record-length files contain the trailing blanks they had in the originating
file. This is necessary to ensure that the SOURCELINE built-in function, if called,
gives the same results when the compiled program is run and when the IEXEC
output is interpreted.

If you edit an IEXEC output of variable record length with a text editor like, for
example, XEDIT under CMS, you may inadvertently remove the trailing blanks.

 Chapter 4. Compiler Options and Control Directives 35

IEXEC Under MVS/ESA, this option produces IEXEC output and stores
it in the data set allocated to the ddname SYSIEXEC.

IEXEC[(data-set-name)]
Can be used only when invoking the Compiler with the REXXC
EXEC under MVS/ESA (see page 17). Generates IEXEC output.

This option is extended so that you can specify the name of the
data set in which the IEXEC output is to be stored. A default
data set name is used if you do not specify data-set-name.

IEXEC[(file-identifier)]
Under CMS, this option produces IEXEC output. You need not
fully specify the file identifier. The default file name is the
name of the source file. The default file type is the letter I
concatenated with the source file type. The default file mode is
the file mode of the source file, provided you currently have
read/write access to that minidisk; otherwise, file mode A1 is
used.

NOIEXEC Does not produce IEXEC output.

Abbreviations: I, NOI

IBM default: NOIEXEC

| LIBLEVEL
| The LIBLEVEL option specifies the version of the Library required to run the
| compiled program.

| LIBLEVEL (n) The level of the Library required to run the compiled program,
| where n is a number in the range 2 through 6. The Compiler
| checks that the language features used in the program are
| compatible with the Library level specified. If a feature is found
| that requires a higher Library level, this is flagged in the source
| listing.

| LIBLEVEL (*) Specifies that all levels of the Library are supported.

| Abbreviations: LL(N)

| IBM default: LL(*)

| The following table shows the language features supported by the different Library
| levels.

36 SAA REXX/370 User’s Guide and Reference

| Notes:

| 1. LIBLEVEL 0 and 1 are no longer supported.

| 2. Any higher library levels will be documented through APARs.

| Library Level| Library Name| New or Changed Features

| 2| Runtime
| Library
| Release 1
| (TSO)

| � CALL ON ERROR|FAILURE|HALT NAME built-in
| function
| � Addressing tails of compound variables with 1 or
| 2 components
| � Assignments

| 3| Runtime
| Library
| Release 2

| � Arithmetic operations, for example, addition,
| multiplication
| � Binary strings including B2X and X2B built-in
| functions
| � Variable reference list (variable name enclosed
| in parentheses) in DROP and EXPOSE
| � Alternate Library via PTF

| 4| Runtime
| Library
| Release 3

| � STREAM, LINES, LINEIN, LINEOUT, CHARS,
| CHARIN, and CHAROUT built-in functions
| � CALL|SIGNAL OFF NOTREADY
| � CALL|SIGNAL ON NOTREADY
| � TRACE statement and TRACE built-in function
| � INTERPRET statement

| 5| Runtime
| Library
| Release 3

| � Date conversion

| 6| Runtime
| Library
| Release 3

| � Date separation character

 LINECOUNT
The LINECOUNT option specifies the maximum number of lines to be included on
each page of the compiler listing. This number includes the header lines and any
blank lines. You can specify that there are to be no page breaks within the source
and cross-reference listings; this is useful if you intend to display the listing at a
terminal, because there are no page headers to scroll through. However, if you
print such a listing, your output continues from one page to the next without a
break.

LINECOUNT(n) Puts n lines on each page of the compiler listing, where n is a
number in the range 10 through 99.

LINECOUNT(0) Creates continuous output in the compiler listing.

Abbreviation: LC

IBM default: LINECOUNT(55)

 Chapter 4. Compiler Options and Control Directives 37

 MARGINS
The MARGINS option specifies the left and right margins of the REXX program.
Only the text contained within the specified margins is compiled. The Compiler
listing, however, always contains the complete input records.

If the SLINE option is specified, the OBJECT or CEXEC output contains only the text
within the specified margins. Similarly, if the IEXEC option is specified, the IEXEC
output contains only the text within the specified margins.

If the first record of the source file contains only decimal digits in the first 8 bytes
(RECFM=V|VB) or in the last 8 bytes (RECFM=F|FB), then the file is assumed to
contain sequence numbers. In this case, the sequence numbers are removed and
the specified margin values are applied to the remaining part of the record. Only
the text contained within the specified margins is compiled.

Each file included by means of the %INCLUDE control directive is checked for
sequence numbers. Therefore, a REXX source file can include files with different
record formats and files with or without sequence numbers.

MARGINS(left [right])

left Specifies the first column of the source file containing valid REXX
code. Valid values for left are:
� Under MVS/ESA: from 1 to 32 760
� Under CMS: from 1 to 65 535

right Specifies the last column of the source file containing valid REXX
code. Valid values for right are:
� * (asterisk), the default, to indicate the last column of the

input record
� Under MVS/ESA: from left to 32 760
� Under CMS: from left to 65 535

Abbreviation: M

IBM default: MARGINS(1 *)

 OBJECT
Under MVS/ESA, the OBJECT option specifies whether the Compiler is to produce
an object module.

Under CMS, the OBJECT option specifies whether the Compiler is to produce a
TEXT file.

OBJECT Under MVS/ESA, this option produces an object module in the
data set allocated to the ddname SYSPUNCH.

OBJECT [(obj-data-set-name) |
([obj-data-set-name],stub[,load-data-set-name])]

Can be used only when invoking the Compiler with the REXXC
EXEC under MVS/ESA (see page 17). Generates an object
module and, optionally, a load module.

This option is extended so that you can specify the name of the
data set in which the object output is to be stored. A default
data set name is used if you do not specify obj-data-set-name.
Optionally, you can specify a stub, which can be a member

38 SAA REXX/370 User’s Guide and Reference

name, the name of a partitioned data set including a member
name, or a predefined stub name. Five predefined stubs are
provided: CPPL, EFPL, CPPLEFPL, MVS, and CALLCMD. If a
stub is specified, a load module is created when the compiler
creates an OBJECT output. The name of the data set that is to
contain the load module may be specified. If the member
name is omitted, a default member name is assumed. A
default data set name is used if you do not specify
load-data-set-name.

Note: As the stubs are part of the Library, this form of
invocation is available only if the Library is installed.

OBJECT [(file-identifier)]
Under CMS, this option produces a TEXT file that has the file
identifier you specify. The file identifier need not be fully
specified. The default file name is the file name of the source
file. The default file type is TEXT. The default file mode is the
file mode of the source file, provided you currently have
read/write access to that minidisk; otherwise, file mode A1 is
used.

NOOBJECT Does not produce an object module or a TEXT file.

Abbreviations: OBJ, NOOBJ

IBM default: NOOBJECT

Refer to Chapter 7, “Using Object Modules and TEXT Files” on page 73 for
information on when to use OBJECT rather than CEXEC output, how to generate
executable modules, and how to determine the name of the TEXT file. See also
Appendix A, “Interface for Object Modules (MVS/ESA)” on page 179, Appendix B,
“Interface for TEXT Files (CMS)” on page 195, and Appendix C, “Interface for
Object Modules (VSE/ESA)” on page 199 for more information.

 Chapter 4. Compiler Options and Control Directives 39

Background information about using OBJECT output

Under MVS/ESA, object modules can be used to create load modules. The load
modules can be used as commands and parts of REXX function packages.

Load modules are invoked in the same way as output from other high-level
language compilers:

� From MVS JCL statements
� From the TSO/E command line
� As a host command
� As part of a function package from within a REXX program

See Chapter 7, “Using Object Modules and TEXT Files” on page 73 for
information about function packages, and Appendix A, “Interface for Object
Modules (MVS/ESA)” on page 179 for more information.

| For ISPF restrictions, see ISPF/PDF Guide and Reference Version 3 Release 5
| for MVS.

Under CMS, the Compiler can produce a TEXT file. A TEXT file can be
processed into a MODULE file, which can then be started like a CMS command.

| A TEXT file can also be linked to an Assembler program. A MODULE file can
| also be used to create a function package from a REXX program.

Notes:

1. MODULE files come after EXEC files in the CMS search order.

2. Although these TEXT files can be linked with other compiled programs, they
must receive standard SVC PLISTs as input, unlike other high-level language
programs. See Appendix B, “Interface for TEXT Files (CMS)” on page 195
for details.

3. If your program is in the form of a MODULE file and it calls another module,
the called module may overlay your program in storage. This occurs, for
example, when both modules are loaded at the default start address. You
can avoid this by specifying a start address when loading TEXT files or by
using the NUCXLOAD command or the RLDSAVE option of the LOAD
command.

| 4. For ISPF restrictions, see ISPF/PDF Guide Version 3 Release 1 for VM.

For more information on OBJECT output, see Chapter 7, “Using Object Modules
and TEXT Files” on page 73 and Appendix B, “Interface for TEXT Files (CMS)”
on page 195.

Under VSE/ESA, the output from the OBJECT option can be used to create a
phase. The output must be generated either on MVS/ESA or on CMS, then
transferred to VSE/ESA. When it is on VSE/ESA, phases can be built. The
phases can be invoked as programs from JCL, or as parts of REXX function
packages.

For more information see Chapter 7, “Using Object Modules and TEXT Files”
on page 73 and Appendix C, “Interface for Object Modules (VSE/ESA)” on
page 199.

40 SAA REXX/370 User’s Guide and Reference

| OPTIMIZE
| The OPTIMIZE option specifies whether the object code is to be optimized to reduce
| the amount of CPU time it requires at runtime.

| OPTIMIZE The compiled output is optimized.

| NOOPTIMIZE The compiled output is not optimized.

| Abbreviations: OPT/NOOPT

| IBM default: OPTIMIZE

| This option can also be coded as OPTIMISE/NOOPTIMISE to support British
| spelling.

| Use this option only to verify a defect encountered. In any case, report this
| problem to your IBM representative.

 PRINT
The PRINT option specifies whether a compiler listing is to be created and, if so,
where it is to be printed or stored.

The listing shows the compiler options used and, depending on which other
compiler options are in effect, the source program, messages, and cross-reference
listing. See also Chapter 6, “Understanding the Compiler Listing” on page 57.

PRINT Under MVS/ESA, this option creates a compiler listing in the
data set allocated to the ddname SYSPRINT.

Under CMS, this option creates a compiler listing and sends it
to the virtual printer.

PRINT[(data-set-name|*|**)]
Can be used only when invoking the Compiler with the REXXC
EXEC under MVS/ESA (see page 17).

This option is extended so that you can specify the name of the
data set where the compiler output listing is to be stored. If
you specify an asterisk, the listing is written to the terminal. A
default data set name is used if you do not specify
data-set-name or * (asterisk). If you specify ** (two asterisks),
any preallocation for SYSPRINT is used.

PRINT([file-identifier])
Under CMS, this option creates a compiler listing file that has
the file identifier you specify, or a default file identifier. You
need not fully specify the file identifier. The default file name is
the file name of the source file. The default file type is LISTING.
The default file mode is the file mode of the source file,
provided you currently have read/write access to that minidisk;
otherwise, file mode A1 is used.

NOPRINT Does not create a compiler listing.

Abbreviations: PR, NOPR

IBM default: MVS/ESA: PRINT
CMS: PRINT()

 Chapter 4. Compiler Options and Control Directives 41

 SAA
The SAA option specifies whether the Compiler is to check the source program for
REXX language elements that are not part of level 4.00 of the SAA REXX interface.
When this option is in effect and the FLAG option is set to I or W, a warning
message is issued for each non-SAA item found.

Note: The Compiler does not detect the following:

� A non-SAA item if it is contained in an instruction that is not fully analyzed until
| run time. For example, DATE('C') is flagged as a non-SAA item. However,
| INTERPRET "SAY DATE('C')" is not flagged because the contents of the
| character string after INTERPRET are evaluated at runtime.

� Wrong arguments in stream I/O built-in functions or a wrong number of
arguments in stream I/O built-in functions.

� DBCS symbols are not flagged if a program is compiled with Options 'ETMODE'
in effect.

SAA Checks for SAA compliance.

NOSAA Does not check for SAA compliance.

Abbreviations: None

IBM default: NOSAA

 SLINE
The SLINE option specifies whether the Compiler is to include the source program
in the compiled output and, consequently, support the SOURCELINE built-in function

| at run time. If you require support for Alternate Libraries or full tracing, you should
| also set this option. If the MARGINS option is specified, the compiled output

contains only the text between the specified margins.

This option also determines whether the source code appears in traceback
messages, which are issued for runtime errors. If you specify SLINE, users can see
the source code. Also, the compiled program is larger. See also “SOURCELINE
Built-In Function” on page 97.

SLINE Includes the source program in the compiled code.

| SLINE(AUTO) Includes the source program in the compiled code only if one
| or more of the following are met:

| � The SOURCELINE built-in function is found in the program.
| � The TRACE compiler option is set.
| � The ALTERNATE compiler option is set.

NOSLINE Does not include the source program in the compiled code.

Abbreviations: SL, SL(A), NOSL

IBM default: NOSLINE

42 SAA REXX/370 User’s Guide and Reference

 SOURCE
The SOURCE option specifies whether the compiler listing is to include a source
listing. If you specify NOSOURCE, only erroneous source lines are included in the
listing with the corresponding messages. See also “Source Listing” on page 58.

SOURCE Produces a source listing.

NOSOURCE Does not produce a source listing.

Abbreviations: S, NOS

IBM default: SOURCE

 TERMINAL
The TERMINAL option specifies whether messages and the message summary are
to be displayed at the terminal (CMS) or to be written to the data set allocated to
the ddname SYSTERM (MVS/ESA), in addition to being included in the compiler
listing. The messages depend on the setting of the FLAG option. Use the
TERMINAL option when you expect only a small number of errors.

A message displayed at the terminal is always preceded by the erroneous source
line. If no messages are issued, the message summary is not displayed.

Note: Under MVS/ESA, if SYSPRINT and SYSTERM are allocated to the same
destination, messages that would otherwise be issued to both SYSPRINT and
SYSTERM are issued only once.

TERMINAL Displays messages at the terminal.

NOTERMINAL Does not display messages at the terminal.

Abbreviations: TERM, NOTERM

IBM default: NOTERMINAL

 TESTHALT
The TESTHALT compiler option specifies whether the compiled program is to
contain code that supports the halt condition. One way to set the halt condition is,
for example, the HI (Halt Interpretation) immediate command. Specify the
TESTHALT option to be able to halt the program without consequently affecting the
operation of any other programs. This is especially useful when you want to halt
an edit macro that is looping, without terminating the whole editing session, as the

| HE command would do in MVS/ESA, or as the HX command would do in CMS. To
| specify TESTHALT hooks in the program independently of the TESTHALT compiler
| option, use the %TESTHALT compiler directive. For further information, see
| “%TESTHALT” on page 49.

For performance considerations, see “TESTHALT Option” on page 113. Also see
“Halt Condition” on page 94.

TESTHALT Generates code that supports the HI command.

NOTESTHALT Does not generate code that supports the HI command.

Abbreviations: TH, NOTH

IBM default: NOTESTHALT

 Chapter 4. Compiler Options and Control Directives 43

 TRACE
The TRACE option specifies that the compiled program can be traced. The
performance of a program compiled with the TRACE option is not as good as that of
the same program compiled with the NOTRACE option. However, a program
compiled with the TRACE option usually has a better performance than the same
program when it is interpreted.

TRACE Creates a compiled program of CEXEC or OBJECT type that can
be traced. The TRACE instruction and the TRACE built-in
function are supported, except for the trace setting SCAN. The
initial trace setting is NORMAL, as with the interpreter.

The SLINE Compiler option must also be specified.

NOTRACE Creates a compiled program of CEXEC or OBJECT type that
cannot be traced. The compiled program behaves the same as
interpreted programs that run with TRACE set to OFF. At run
time, all valid options in the TRACE instructions and TRACE
built-in functions are set to OFF.

Note: If the program is compiled with the ALTERNATE option
and run with the Alternate Library, it can be traced like a
normal interpreted program.

Abbreviations: TR, NOTR

IBM default: NOTRACE

 XREF
The XREF option specifies whether the compiler listing is to include a
cross-reference listing. This lists all variables, labels, constants, built-in functions,
and external routines, indicating the numbers of the lines on which they are

| referenced. Source lines containing recognized commands and ADDRESS clauses
are also listed. Lines that contain erroneous clauses may or may not appear in the
command list. The cross-reference listing is useful for debugging and program
maintenance. See also “Cross-Reference Listing” on page 63.

XREF Produces a cross-reference listing.

| XREF(SHORT) Produces a cross-reference listing that contains neither
constants nor commands.

NOXREF Does not produce a cross-reference listing.

| Abbreviations: X, X(S), NOX

IBM default: NOXREF

 Control Directives
This section describes the functions and syntax of the Compiler control directives in
alphabetic order.

| A control directive always starts with /*% and ends with */.

44 SAA REXX/370 User’s Guide and Reference

 %COPYRIGHT
The %COPYRIGHT control directive inserts a notice (for example a copyright notice)

| in the form of a visible text string in the CEXEC, OBJECT output, and core image of
| the compiled program. The text string starts after the header part.

The %COPYRIGHT control directive is contained in a comment; it is recognized as a
control directive only by the Compiler (it is treated as a normal comment by the
interpreter):

/\%COPYRIGHT (c) copyright MY company 1999\/

The %COPYRIGHT control directive is recognized as such only if it immediately
follows a /\ comment delimiter. The word %COPYRIGHT can be in mixed case.

The notice can be broken into several %COPYRIGHT control directives. The text
following %COPYRIGHT, starting with the first nonblank character and up to the end
of the comment, is called a copyright part and is used to build the copyright notice.
The final copyright notice is the concatenation of all copyright parts defined in the
program.

This is an example of a REXX program that contains %COPYRIGHT control
directives:

/\%COPYRIGHT This is an example of a copyright \/
Say 'Hello'
/\%COPYRIGHT notice. \/

The string:

This is an example of a copyright notice.

is taken as the copyright notice.

Note: Blank characters immediately following %COPYRIGHT are ignored. Blank
characters at the end of a copyright part, preceding the \/ delimiter, are taken as
part of the copyright notice.

A copyright part can contain comments. The text in these comments is taken as
such and used as part of the copyright notice, even if the comment contained in a
copyright part begins with a directive. For example:

/\%COPYRIGHT Example of a copyright notice containing a /\%COPYRIGHT comment\/.\/

The resulting copyright notice is:

Example of a copyright notice containing a /\%COPYRIGHT comment\/

 %INCLUDE
The %INCLUDE control directive inserts, at compilation time, REXX code contained
in MVS/ESA data sets or in CMS files into the REXX source program.

The %INCLUDE control directive is contained in a comment; it is recognized as a
control directive only by the Compiler (it is treated as a normal comment by the
interpreter):

/\%INCLUDE file1 \/

For a %INCLUDE directive to be recognized as such, the following must be true:

� The directive immediately follows a /\ comment delimiter.

 Chapter 4. Compiler Options and Control Directives 45

� The directive is not part of another %INCLUDE directive or of a %COPYRIGHT
directive.

� The name of the file to be included starts with the first nonblank character
following /\%INCLUDE and must not contain any blank characters.

| � The MVS/ESA data set identifiers member and ddname and the CMS file identifiers
filename and ddname are restricted to 8 characters in length.

The word %INCLUDE can be in mixed case. Blanks and nested comments
following the file name are ignored. Files that are included by means of %INCLUDE
directives can contain %INCLUDE directives.

This is an example of how %INCLUDE directives can be specified:

/\%INCLUDE file1 \/
Say 'Hello 1'
/\%INCLUDE file2 \/ Say 'Hello 2'

The contents of file1 will be inserted before Say 'Hello 1'. The last line in the
| example is split into two parts, forming two lines.

1. /\%INCLUDE file2 \/
2. Say 'Hello 2'

The contents of file2 will be inserted between the first part and the second part,
| immediately following the \/ delimiter. In the Compiler listing and IEXEC output, the
| first line is truncated. The second part of the line is not reformatted. However, the
| space previously occupied by the %INCLUDE directive and any statements
| preceding it, is replaced by blanks. If the IEXEC option has been specified, the

IEXEC output will have, in this case, variable length format (see “IEXEC” on
page 34).

Notes:

1. At the end of the first part of a split line, a line end is implied.

2. The built-in function SOURCELINE() returns the line number of the final line in
the expanded program, or 0 if the program was compiled with the NOSLINE
option.

The naming convention for included files is as follows:

 � Under MVS/ESA:

– /\%INCLUDE member \/

Search for member:

1. In the concatenation with ddname SYSLIB, if it is allocated
2. In the same partitioned data set as the source, if the source is in a

partitioned data set

– /\%INCLUDE ddname(member) \/

Search for member in the concatenation with ddname ddname.

 � Under CMS:

– /\%INCLUDE filename \/

Search for a file with file name filename and file type COPY on all accessed
disks. If it does not exist, search for a file with file name filename and file

46 SAA REXX/370 User’s Guide and Reference

type REXXINCL on all accessed disks. If it also does not exist, search for a
file with file name filename and file type EXEC on all accessed disks.

If more than one file is found for a specific file type, the one on the minidisk
which comes earlier in the search order is included.

– /\%INCLUDE ddname(filename) \/

1. FILEDEF ddname DISK fn ft [fm]

can be used to specify a collection of files.

Note: ft must be COPY, REXXINCL, or EXEC, otherwise the file will not
be found.

Search for a file with file name fn and file type COPY within the specified
collection. If it does not exist, search for a file with file name fn and file
type REXXINCL within the specified collection. If it also does not exist,
search for a file with file name fn and file type EXEC within the specified
collection.

If more than one file is found for a specific file type, the one on the
minidisk which comes earlier in the search order is included.

2. CREATE NAMEDEF fm ddname (FILEMODE or
CREATE NAMEDEF dirid ddname followed by
ACCESS dirid fm
can be used to identify a specific minidisk. Search for a file with file
name filename, file type COPY, and file mode fm. If it does not exist,
search for a file with file name filename, file type REXXINCL, and file
mode fm. If it also does not exist, search for a file with file name
filename, file type EXEC, and file mode fm.

If a file is found for a specific file type, it is included.

3. Members of MACLIBs can be included. If ddname is SYSLIB, all
MACLIBs established with the command GLOBAL MACLIB are searched
until a member with name filename is found and included.

If ddname is not SYSLIB, search within the MACLIB with name ddname
for a member with name filename and include it.

The names of the data sets or files that have been included are contained in the
compiler listing.

 %PAGE
The %PAGE listing control directive causes an unconditional skip to a new page in
the source listing.

The %PAGE listing control directive is contained in a comment; it is recognized as a
control directive only by the Compiler (it is treated as a normal comment by the
interpreter):

/\%PAGE \/

The %PAGE listing control directive is recognized as such only if it immediately
follows a /* comment delimiter and these characters are the first nonblank
characters on the line. The word %PAGE can be in mixed case. The rest of the
line can contain any other characters. It is good practice to close the comment on
the same line.

 Chapter 4. Compiler Options and Control Directives 47

A line that contains the %PAGE listing control directive is printed as the last line on
the current page of the listing; the next line in the source program starts a new
page. If the compiler option LINECOUNT(0) is specified, however, %PAGE has no
effect.

| %SYSDATE
| The %SYSDATE control directive inserts, at compilation time, code to create the
| variable SYSDATE, which contains the compilation date.

| Because %SYSDATE is contained in a comment only the Compiler recognizes it as
| a control directive. %SYSDATE must immediately follow a /* comment delimiter.

| /\%SYSDATE \/
| /\%SYSDATE(option) \/

| The word %SYSDATE can also be in lowercase or mixed case.

| The comment containing %SYSDATE must not be contained in a clause:

| say /\%sysdate \/ 'hello'

| Instead, enclose the comment in semicolons (;) or put it on a new line:

| say 'hello'
| /\%sysdate \/

| The option for %SYSDATE is one of the formats of the REXX February 10, 2000
| built-in function, namely B, D, E, M, N, O, S, U, or W. C and J are not supported.

| The variable SYSDATE is not set if running with the alternate library or if compiled
| with option TRACE. In the latter case, or if executing under the interpreter, the
| contents of the variable SYSDATE are set to the character string "SYSDATE" if no
| SIGNAL ON NOVALUE has been executed. If a SIGNAL ON NOVALUE has been
| executed, the NOVALUE condition is raised during execution. The code generated
| by the compiler does not raise the NOVALUE condition if compiled with NOTRACE.

| The following example raises a NOVALUE condition if interpreted or compiled with
| TRACE:

| /\%sysdate \/
| say 'compilation date=' sysdate

| To avoid a NOVALUE condition, change the previous example as follows:

| sysdate = ''
| /\%sysdate \/
| if (sysdate <> '') then say 'compilation date=' sysdate

| %SYSTIME
| The %SYSTIME control directive inserts, at compilation time, code to create the
| variable SYSTIME, which contains the compilation time.

| Because %SYSTIME is contained in a comment only the Compiler recognizes it as a
| control directive. %SYSTIME must immediately follows a /* comment delimiter.

| /\%SYSTIME \/
| /\%SYSTIME(option) \/

48 SAA REXX/370 User’s Guide and Reference

| The word %SYSTIME can also be in lowercase or mixed case.

| The comment containing %SYSTIME must not be contained in a clause:

| say /\%systime \/ 'hello'

| Instead, enclose the comment in semicolons (;) or put it on a new line:

| say 'hello'
| /\%systime \/

| The option for %SYSTIME is one of the formats of the REXX TIME built-in function,
| namely C, H, L, M, N, or S. E and R are not supported.

| The variable SYSTIME is not set if running with the alternate library or if compiled
| with option TRACE. In the latter case, or if executing under the interpreter, the
| contents of the variable SYSTIME are set to the character string "SYSTIME" if no
| SIGNAL ON NOVALUE has been executed. If a SIGNAL ON NOVALUE has been
| executed, the NOVALUE condition is raised during execution. The code generated
| by the compiler does not raise the NOVALUE condition if compiled with NOTRACE.

| The following example raises a NOVALUE condition if interpreted or compiled with
| TRACE:

| /\%systime \/
| say 'compilation time=' systime

| To avoid a NOVALUE condition, change the previous example as follows:

| systime = ''
| /\%systime \/
| if (systime <> '') then say 'compilation time=' systime

| %TESTHALT
| The %TESTHALT control directive inserts, at compilation time, code to support the
| HALT condition. It enables you to halt a program at specific statements during
| program execution.

| The %TESTHALT control directive is contained in a comment; it is recognized as a
| control directive only by the Compiler (it is treated as a normal comment by the
| interpreter):

| /\%TESTHALT \/

| The %TESTHALT control directive is recognized as such only if it immediately
| follows a /* comment delimiter. The word %TESTHALT can be in mixed case.

| The generated code for the TESTHALT hook is placed at the beginning of the
| clause containing the %TESTHALT compiler directive. In the following example, the
| TESTHALT hook is generated before the SAY keyword.

| say 'hello' /\%testhalt \/

| If you want the TESTHALT hook to be generated after the SAY clause, use a
| semicolon (;) to end the clause, or put the compiler directive on a new line:

| say 'hello'; /\%testhalt \/

| say 'hello'
| /\%testhalt \/

 Chapter 4. Compiler Options and Control Directives 49

| The %TESTHALT control directive provides better control over the TESTHALT hooks
| than the TESTHALT compiler option. It can be used either together with the
| TESTHALT compiler option to provide additional hooks, or without. In the latter
| case, only the hooks specified by the control directive are generated. Using the
| %TESTHALT control directive without the TESTHALT compiler option improves the
| runtime performance of the REXX program. This is because each TESTHALT hook
| is an overhead in the compiled program and the compiler optimizes the program
| less if it contains TESTHALT hooks.

50 SAA REXX/370 User’s Guide and Reference

 Chapter 5. Runtime Considerations

This chapter contains suggestions for organizing your libraries and other
information for improving the running of compiled programs. (Under CMS, see the
online help for information on how to run a program from the REXXD
compiler-invocation dialog.)

Note that to run compiled REXX programs, either the IBM Library for SAA REXX/370
or the Alternate Library must be installed on CMS or MVS/ESA. REXX/VSE must be
installed on VSE/ESA.

Organizing Compiled and Interpretable EXECs under MVS/ESA
Because REXX programs can either be interpreted or run compiled, you might
inadvertently run the source program with the interpreter when you intend to run the
compiled program.

You can avoid such situations by following the procedure described below. For the
purposes of this procedure, assume that your REXX source programs are stored in
the production library pref.cccc.EXEC, which is in your search order.

1. Compile the programs and store them in the data set pref.cccc.CEXEC. For
example, to compile a REXX program named ROULETTE you could enter the
following REXXC command:

rexxc 'pref.cccc.exec(roulette) ' cexec('pref.cccc.cexec(roulette) ')

2. Save the source programs in the data set pref.cccc.SEXEC. In this example,
the program ROULETTE is saved in pref.cccc.SEXEC(roulette).

3. Copy the compiled EXECs by means of the REXXF command from the
pref.cccc.CEXEC data set to the pref.cccc.EXEC data set. (See “REXXF
(MVS/ESA)” on page 89.) You now run the compiled EXECs that are in this
data set, because it is in the search order. However, if you want to run an
interpretable REXX EXEC, copy it from the pref.cccc.SEXEC data set to the
pref.cccc.EXEC data set.

The advantages of this organization include the following:

� Users can browse the source code of EXECs in the source library.

� Users can store copies of the source code of EXECs in their private EXEC
libraries for tracing or execution.

� Source EXECs can be maintained in the source library. When the modifications
are completed and tested, the EXECs can be compiled and stored in the
production library.

� Because the data sets containing source programs and compiled EXECs have
the same data set attributes, users can easily move and replace source
programs and compiled EXECs.

For other ways to switch between interpreted and compiled REXX programs, see
“Background information about compiled EXECs” on page 29.

 Copyright IBM Corp. 1991, 2000 51

Organizing Compiled and Interpretable EXECs under CMS
Because REXX programs can either be interpreted or run compiled, you might
inadvertently interpret the source program when you intend to run the compiled
program. The following examples show how this could occur:

� You have a compiled EXEC called ROULETTE. It is stored on a library disk,
which is accessed as your L-disk. You enter roulette to invoke the compiled
EXEC. But if the source program is on your A-disk and also has a file type of
EXEC, you invoke the interpreter instead.

� You have access to a compiled REXX program called ROULETTE MODULE. You
enter roulette to invoke the module. However, EXEC files precede MODULE
files in the CMS search order. So if you still have access to the source program
and its file type is EXEC, you invoke the interpreter instead.

You can avoid such situations by changing the file type of the source file after
compilation. The following table shows a suggested naming convention.

Note: You can also make source files unavailable by removing them from any
disks accessed by the program’s users.

If you are using the compiler-invocation dialog, REXXD, use the Switch (rename)
action to rename the files appropriately. Otherwise, use the CMS RENAME
command, as required.

Type of File Recommended File Type

Source file after compilation SEXEC, SXEDIT, and so on, as applicable

Compiled EXEC immediately after
compilation, when the source file type may
be EXEC.

CEXEC

Compiled EXEC ready for execution EXEC or other required file type, such as
XEDIT

Organizing Compiled and Interpretable EXECs under VSE/ESA
Because REXX programs can either be interpreted or run compiled, you might
inadvertently run the source program with the interpreter when you intend to run the
compiled program.

You can avoid such situations by following the procedure described below.

� Keep the source for all REXX programs in a library called REXXLIB.EXEC. Each
member has a member type of PROC.

� Once an EXEC is ready to be compiled, send it to either CMS or MVS/ESA and
compile it.

� After the compilation, send it back to VSE/ESA, and catalog the output in a
library called REXXLIB.CEXEC. The member name is the same as that of the
original source, and the member type is PROC. See “Converting from
MVS/ESA to VSE/ESA” on page 88 and “Converting from CMS to VSE/ESA”
on page 89 for more information.

� Use the following LIBDEF statement when running REXX programs:

52 SAA REXX/370 User’s Guide and Reference

LIBDEF PROC,SEARCH=(REXXLIB.CEXEC,REXXLIB.EXEC)

This ensures that the compiled REXX program, if it exists, is found before the
interpreted REXX program. If there is no compiled REXX program, the
interpreted program is found.

The advantages of this organization include the following:

� The source code of REXX EXECs is maintained in a central sublibrary, and can
always be retrieved.

� If a member with the same name is deleted in the REXXLIB.CEXEC sublibrary, a
subsequent invocation will invoke the interpreted program.

Use of the Alternate Library (MVS/ESA, CMS)
The Alternate Library is necessary for:

� Customers who want to run compiled REXX programs, but do not have the
Library installed

� Software developers who want to make their programs available to users who
do not have the Library installed

Users of the Library do not need the Alternate Library. The Library provides more
functions and better performance than the Alternate Library. Software developers
must test their applications with the Library and with the Alternate Library.

By enabling their programs to run with both the Library and the Alternate Library,
software developers give their customers the following possibilities:

� Use the Alternate Library provided with the application, if they have no library
installed.

� Use the IBM Library for SAA REXX/370, if it is installed.

| Use the SLINE and ALT options to enable a compiled program to run also with the
| Alternate Library.

Other Runtime Considerations
� Activation of the Alternate Library

– Under MVS/ESA, the Alternate Library is activated in different ways
depending on its intended use:

- Software developers use the Alternate Library from the ddname
STEPLIB. This is because they need to have both the Library and the
Alternate Library installed. To lower storage consumption, the Library
must reside in the link pack area (LPA) instead of residing in every
address space in the system. To test their programs with the Alternate
Library, software developers use the ddname STEPLIB to override the
Library.

- Customers use the Alternate Library from the LINKLIST. This is
because the LINKLIST is searched after the LPA. Customers should
always use the Library, if it is available. By placing the Alternate
Library in the LINKLIST, they will never override the Library in the LPA.

 Chapter 5. Runtime Considerations 53

Figure 8 on page 54 summarizes the possible library locations.

– Under CMS, the Alternate Library must always be loaded from disk to avoid
conflicts with the Library.

- Software developers activate the Alternate Library like this:

1. Copy EAGALPRC MODULE, the library loader of the Alternate
Library, to a disk that is ahead of the disk containing the library
loader of the library (EAGRTPRC MODULE) in the system search
order. Name this copy EAGRTPRC MODULE.

2. Copy EAGALUME TXTAMENG, the message repository of the
Alternate Library, to a disk that is ahead of the disk containing the
message repository of the library (EAGUME TXTAMENG) in the
system search order. Name this copy EAGUME TXTAMENG. If in
your installation EAGUME TXTAMENG has been renamed to
EAGUME TEXT, then name your copy EAGUME TEXT, as well.

3. To ensure that the library loader from this disk is being used, you
can either IPL your virtual machine, or issue the command
NUCXDROP EAGRTPRC.

- Customers who do not have the Library installed do not need to do
anything to use the Alternate Library. The Alternate Library is available
after it has been installed.

� Batch mode: Unless your program issues host commands that must be
executed in the foreground or is designed to be run interactively, you can run it
in batch mode. Use your standard procedure for submitting batch jobs.

� Error handling: If an instruction has an error, the Library might not raise the
same error that the interpreter would raise.

If the length of a variable’s value is greater than 16MB, the results are
unpredictable.

� Interfaces with interpreted programs: There are no restrictions on the
mutual invocation of compiled programs and interpreted programs: a compiled
program can call an interpreted program, and an interpreted program can call a
compiled program. When a program is invoked, MVS/ESA, CMS, or VSE/ESA
starts the correct language processor—either the interpreter or the Library.

� Loading the Library under CMS: Depending on the system setup, the CMS
Library can be loaded in two different ways:

1. The Library and the message repository are always available and do not
need to be explicitly loaded, if they are installed as logical segments. See
“Defining the Library as a Logical Segment” on page 126 for more
information.

Figure 8. Library and Alternate Library Locations (MVS/ESA)

Library name Library location

SW developer Customer

IBM Library for SAA REXX/370 LPA LPA

Alternate Library STEPLIB LINKLIST

54 SAA REXX/370 User’s Guide and Reference

2. The Library is loaded into virtual storage the first time a compiled REXX
program is run and remains loaded after the program ends. The Library is
loaded in the following way:

a. The library loader (EAGRTPRC MODULE), which is itself loaded from
disk, receives control and runs in the transient program area.

b. The library loader loads the message repository.

c. The library loader loads the Library from a DCSS unless one of the
following conditions applies:

– No DCSS exists.

– With Release 5 of CMS, the DCSS overlaps the storage of the
virtual machine. With subsequent releases, the storage where the
segment resides is in use. Storage can be reserved with the
SEGMENT RESERVE command in CMS.

– The library loader has been customized so that it does not look for
the Library in a DCSS.

If any of these conditions apply, the Library is loaded from disk.

d. The library loader makes the Library a nucleus extension and names it
EAGRTPRC.

Notes:

a. With systems before VM/ESA Release 1.1, the Library is made a
nucleus extension of length 0. This ensures that a
NUCXDROP EAGRTPRC or NUCXDROP * command issued from a
compiled REXX program does not free the storage into which the
Library is loaded. If a NUCXDROP command is issued, a new copy of
the Library is loaded the next time a compiled REXX program is run; the
storage occupied by the previous copy is not regained.

b. With VM/ESA Release 1.1 or a subsequent release, the Library is loaded
by issuing a NUCXLOAD command with the PERM option, so that a
NUCXDROP * command will not release the Library. Storage can be
regained by issuing a NUCXDROP EAGRTPRC command. This
command must not be issued while a compiled REXX program is
running, otherwise unpredictable results may occur.

c. A NUCXDROP EAGRTPRC command must be issued before purging the
segment that contains the Library, otherwise an ABEND will occur.

� Runtime messages: In certain cases, the Library gives more information
about the error than is provided by the interpreter’s error messages. In these
cases, a secondary message then follows the main message. For example, if
your program BRCL EXEC calls, on line 115, the LASTPOS built-in function with
a negative value for the start argument, you get both of these messages:

EAGREX4ðððE Error 4ð running compiled BRCL EXEC, line 115: Incorrect call to routine
EAGREX4ðð3I Argument not positive

For explanations of the runtime messages, see Chapter 16, “Runtime
Messages” on page 159.

Note: Secondary messages are for your information only. They are not
accessible through the ERRORTEXT function and do not affect the setting of the
special variable RC.

 Chapter 5. Runtime Considerations 55

� SETVAR: Starting with Release 2 of the IBM Compiler and Library, the VALUE
built-in function provides the same support as did RXSETVAR on CMS and
SETVAR on MVS/ESA in earlier releases. Even though, for compatibility with
earlier releases, RXSETVAR and SETVAR are still part of Release 3, new REXX
programs should use the VALUE built-in function.

� Some common errors: This section lists some common errors that can occur
at run time.

Under MVS/ESA:

– Library not found: If the Library is not in the LPA, in the LINKLIST
concatenation, or defined in the STEPLIB DD statement, the following failure
occurs:

CSVðð3I REQUESTED MODULE EAGRTPRC NOT FOUND
CSVðð3I REQUESTED MODULE EAGRTXLD NOT FOUND
CSVðð3I REQUESTED MODULE EAGRTXVH NOT FOUND
+IRXð158E The run time processor EAGRTPRC could not be found.

Under CMS:

– Module A Overlaid by Module B: If your program is in the form of a
module, module A, and it calls another module, module B, module B might
overlay your program in storage. This occurs if, for example, both modules
are loaded at the default starting address. The failure occurs when module
B tries to return control to your program.

To determine whether an overlay caused the failure, recompile the
program, creating a compiled EXEC, and re-create the circumstances in
which the failure occurred. If the problem disappears, the failure was
almost certainly caused by a module overlay. In this case, either continue
to run the program as a compiled EXEC or explicitly specify a different
starting address when loading your module. If the problem persists, the
failure has a different cause, and you should contact your system support
personnel.

– Return Code -3: If you get a return code of -3 when you invoke your
program, it usually means that the program was not found. However, it can
alternatively mean that the Library was not found. So, if you get this return
code when the program is available, make the Library available—either in a
DCSS or on disk.

– SVC depth: A maximum supervisor call (SVC) nesting depth of 200 is
supported by CMS. The CMS EXEC processor invokes the Library by
means of an SVC. The invocation of a compiled REXX program of CEXEC
type requires one SVC more than the invocation of an interpreted REXX
program. The maximum SVC nesting depth is reached earlier, for example,
in recursive programs.

� Testing the Halt Condition: Testing for the halt condition is supported only for
| programs that are compiled with the TESTHALT Compiler option or use the
| %TESTHALT directive. See “Halt Condition” on page 94 for details.

� Tracing compiled programs: Tracing of compiled programs is supported only
for programs that are compiled with the TRACE Compiler option. See “TRACE
Instruction and TRACE Built-In Function” on page 98 for details.

56 SAA REXX/370 User’s Guide and Reference

Chapter 6. Understanding the Compiler Listing

The Compiler produces a listing for each compilation unless the NOPRINT option
was specified. You can print the listing or store it in an MVS data set or in a CMS
file; see the description of the PRINT option on page 41 for details.

The compiler listing consists of the following items:

� The compilation summary

� The source listing, if the SOURCE option was specified

� Any messages that were produced and that were not suppressed by the FLAG
option

� A cross-reference listing, if the XREF option was specified

� The compilation statistics

| At the end of this chapter you find an example of a complete compiler listing.

 Compilation Summary
The information at the beginning of a compiler listing shows the outcome of the
compilation, and the options in effect for the compilation.

The text Compiled with OPTIONS 'ETMODE' follows the last compiler option if the
program was compiled with ETMODE in effect.

An example of a compilation summary is shown here:

 Copyright IBM Corp. 1991, 2000 57

 ===> Compilation Summary ROULETTE EXEC A1
 IBM Compiler REXX/37ð 3.ð PTF -NONE-- Time: ð9:57:12 Date: 1994-1ð-27 Page: 1

 3 message(s) reported. Highest severity code was 12 - Severe

 Compiler Options

| NOALTERNATE RECFM=F,LRECL=1ð24
 CEXEC (ROULETTE CEXEC A1)
 NOCOMPILE (S)
 NOCONDENSE
 NODLINK
 NODUMP
 FLAG (I)

| NOFORMAT
 NOIEXEC

| LIBLEVEL (\)
 LINECOUNT (55)
 MARGINS (1 \)
 NOOBJECT

| OPTIMIZE
| PRINT (ROULETTE LISTING A1) RECFM=V,LRECL=121

 NOSAA
 NOSLINE
 SOURCE

| SYSIN (ROULETTE EXEC A1) RECFM=V,LRECL=24
 NOTERMINAL
 NOTESTHALT
 NOTRACE
 XREF

| Minimum Library Level required: ð

Figure 9. Extract of Compiler Listing Showing the Compilation Summary as Printed on CMS

 Source Listing
Figure 10 on page 60 shows an extract from a source listing. You can control the
page breaks in this listing by using the %PAGE listing control directive, as described
on page 94. Each line of the listing contains the following information:

If The nesting level of IF instructions

Do The nesting level of DO instructions

Sel The nesting level of SELECT instructions

For example, a 2 in the If column indicates that the instruction on that line is part
of an IF instruction that is nested within another IF instruction.

Line The line number in the expanded source program. Source lines that are
| longer than the space available in a listing line are split and continued
| on subsequent lines of the listing. The space available depends on
| whether sequence numbers, %INCLUDE files, or both, have been found.

C Continuation (C) or splitting (S) of a line.

C Continuation line indicator. Indicates that the source line is longer
| than the space available and continues on this line.

S Split line indicator. The source line has been spilt as a result of
text following the closing \/ characters terminating a %INCLUDE
directive. The S is printed to the first split line that follows the
included records.

58 SAA REXX/370 User’s Guide and Reference

----+----1----+----2----+
| Columns of the source ranging from 1 to the number of columns
| available. If margins are specified, the characters > and < indicate

which part of the source has been compiled. The character > is placed
| one column to the left of the left margin, if this is >1 and fits on the line.

The character < is placed one column to the right of the right margin, if it
| fits on the line. For example, if you specified MARGINS (5 12), the

margins indicator shows:

--->+----1--<-+----2----+-

Sequence
| Contains the sequence numbers taken from the records from the main
| source file and any included files. Sequence numbers are expected in
| the last eight character positions of the record for fixed-length records
| and in the first eight character positions for variable-length records. If
| the source files do not contain sequence numbers, there is no Sequence
| column, but the space is used by the REXX source.

| The following examples show the sequence number at the beginning
| (first example) and at the end (second example) of a record:

| 1===> Source Listing VARTEST SEXEC A1
| IBM Compiler REXX/37ð 3.ð LVL PQ27267 Time: 11:18:46 Date: 2ððð-ð2-ð3 Page: 2
| If Do Sel Line C ----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+----9----+----ð

| 1 ðððððððð/\ REXX VARTEST \/
| 2 ððððððð2EXIT rc

|

| Sequence numbers in source detected
| 1===> Source Listing FIXTEST SEXEC A1
| IBM Compiler REXX/37ð 3.ð LVL PQ27267 Time: 11:18:47 Date: 2ððð-ð2-ð3 Page: 2
| If Do Sel Line C ----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 Sequence Incl Recd

| 1 /\ REXX Sub-ID=ðð1ð Include FIXTEST SEXEC A \/ ðððð1ððð 1
| 2 rc=4; /\%include include \/ ðððð11ðð 2
| 3 /\ REXX Sub-ID=ðð1ð Include INCLUDE COPY A \/ ðððð1ð1ð 1 1
| 4 rc=1 1 2
| 5 Exit rc 3

Incl Identifies the file, main or included, from which the line was taken.

If the column contains a blank, the print line is taken from the main
REXX source file whose file ID is printed in the first header line of the
listing.

A number in this column refers to a %INCLUDE file in the list of included
files that is printed in the compilation statistics sublisting. (See
Figure 13 on page 64.) This number is a reference number, which
does not indicate nesting of included files. The nesting of included files
can be derived from the contents of the Recd column.

| If the source files do not have any included files, there is no Incl
| column, but the space is used by the REXX source.

Recd Number of REXX lines within the main or the included file. The
numbering begins with 1 for each file, so that nested files can be
recognized by a break in the line number sequence.

 Chapter 6. Understanding the Compiler Listing 59

If the source files do not have any included files, there is no Recd
column.

 ===> Source Listing ROULETTE EXEC A1
 IBM Compiler REXX/37ð 3.ð PTF -NONE-- Time: ð9:54:3ð Date: 1994-1ð-27 Page: 2
 If Do Sel Line C ----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 Incl Recd

1 /\ REXX \\ 1
2 \ Roulette Implementation in REXX 2
3 \ This program can be used instead of the wheel usually employed in 3

 4 \ casinos. 4
5 \ Press enter to proceed to the game's next step. 5
6 \ After the display of a number you can stop playing by entering "end". 6

 7 \ 7
 8 \\\/ 8

9 Call set_color /\ initialize c.i with color of i \/ 9
1ð rr.=ð /\ initialize statistics \/ 1ð
11 Say '\\ Welcome to Roulette \\' /\ welcome the user \/ 11
12 Do Forever /\ repeat till end requested \/ 12

1 13 Say /\ an empty separator line \/ 13
1 14 Say 'Faites vos jeux' /\ ask players to make their bets \/ 14
1 15 Call pause('W') /\ wait for input to proceed \/ 15
1 16 Say 'Rien ne va plus' /\ stop them \/ 16
1 17 Call pause('W') /\ wait for input to proceed \/ 17
1 18 r=Random(ð,36) /\ get random number from ð to 36 \/ 18
1 19 rr.r=rr.r+1; /\ maintain statistics \/ 19
1 2ð If r=ð Then /\ zero \/ 2ð

 1 1 21 Say ' ð ZERO' /\ good for the casino \/ 21
1 22 Else Do /\ any other number (1 to 36) \/ 22

 1 2 23 If r//2=ð Then /\ even number \/ 23
 2 2 24 pi='pair'; /\ in French \/ 24
 1 2 25 Else /\ odd number \/ 25
 2 2 26 pi='impair'; /\ in French \/ 26
 1 2 27 If r<=18 Then /\ lower half \/ 27
 2 2 28 mp='manque'; /\ in French \/ 28
 1 2 29 Else /\ upper half \/ 29
 2 2 3ð mp='passe' /\ in French \/ 3ð
 1 2 31 Say Right(r,2) Left(pi,6) c.r mp /\ show where the ball stopped and the num 31

C ber's attributes \/
| 1 1 32 End 32

1 33 If pause('E')='END' Then /\ check if termination request \/ 33
 1 1 34 Leave /\ If so, end the loop \/ 34

| 35 End /\ end of one game, ready for next\/ 35
36 Say ' \\ Merci et au revoir \\' /\ thanks and good bye \/ 36
37 Exit /\ exit the program \/ 37

 38 38
 39 /\%INCLUDE setcolor\/ 39

4ð set_color: /\ Set up c.i to contain the color of each number \/ 1 1
41 c.='noir ' /\ set all of them to black \/ 1 2
42 rouge='1 3 5 7 9 12 14 16 18 19 21 23 25 27 3ð 32 34 36' 1 3
43 Do While rouge¬='' /\ process list of red numbers \/ 1 4

1 44 Parse Var rouge t rouge /\ pick the first in the list \/ 1 5
1 45 c.t='rouge' /\ set its color to red \/ 1 6

 1 46 End 1 7
 47 Return 1 8

Figure 10. Extract of Source Listing as Printed on CMS

 Messages
| Compiler messages are preceded by the erroneous source line. However, if the
| error does not occur in the REXX program, for example if there is an incorrect
| option or an error opening the output file, the error messages precede the first
| source line. If you request a source listing, the messages are interspersed in the

60 SAA REXX/370 User’s Guide and Reference

listing, as shown in Figure 11 on page 62. Otherwise, only the erroneous source
lines and their corresponding messages are included in the listing.

Notice that there is a vertical bar between the source line and the message line.
This marker is placed at or near the part of the instruction in the printed source line,
continuation line, or split line that caused the message. One error may cause more
than one message.

The result of an expression following an INTERPRET instruction is not analyzed by
the Compiler. If it contains errors, they are detected only when the INTERPRET
instruction is executed.

 Chapter 6. Understanding the Compiler Listing 61

===> Source Listing KOCH.REXX.CLIST(ROULETTE)
IBM Compiler REXX/37ð 3.ð PTF -NONE-- Time: 11:27:ð8 Date: 1994-1ð-27 Page: 2
 If Do Sel Line C ----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 Sequence Incl Recd

1 /\ REXX \\ ððð1ðððð 1
2 \ Roulette Implementation in REXX ððð2ðððð 2
3 \ This program can be used instead of the wheel usually employed in ððð3ðððð 3

 4 \ casinos. ððð4ðððð 4
5 \ Press enter to proceed to the game's next step. ððð5ðððð 5
6 \ After the display of a number you can stop playing by entering "end". ððð6ðððð 6

 7 \ ððð7ðððð 7
 8 \\\/ ððð8ðððð 8

9 Call set_color /\ initialize c.i with color of i \/ ððð9ðððð 9
1ð rr.=ð /\ initialize statistics \/ ðð1ððððð 1ð
11 Say '\\ Welcome to Roulette \\' /\ welcome the user \/ ðð11ðððð 11
12 Do Forever /\ repeat till end requested \/ ðð12ðððð 12

1 13 Say /\ an empty separator line \/ ðð13ðððð 13
1 14 Say 'Faites vos jeux' /\ ask players to make their bets \/ ðð14ðððð 14
1 15 Call pause('W') /\ wait for input to proceed \/ ðð15ðððð 15
1 16 Say 'Rien ne va plus' /\ stop them \/ ðð16ðððð 16
1 17 Call pause('W') /\ wait for input to proceed \/ ðð17ðððð 17
1 18 r=Random(ð,36) /\ get random number from ð to 36 \/ ðð18ðððð 18
1 19 rr,r=rr.r+1; /\ maintain statistics \/ ðð19ðððð 19

 |
+++FANPARð566S Unexpected "," in expression

1 2ð If r=ð Then /\ zero \/ ðð2ððððð 2ð
1 1 21 Say ' ð ZERO' /\ good for the casino \/ ðð21ðððð 21

1 22 Else Do /\ any other number (1 to 36) \/ ðð22ðððð 22
1 2 23 If r//2=ð Then /\ even number \/ ðð23ðððð 23
2 2 24 pi='pair'; /\ in French \/ ðð24ðððð 24
1 2 25 Else /\ odd number \/ ðð25ðððð 25
2 2 26 pi='impair'; /\ in French \/ ðð26ðððð 26
1 2 27 If r<=18 Then /\ lower half \/ ðð27ðððð 27
2 2 28 mp='manque'; /\ in French \/ ðð28ðððð 28
1 2 29 Else /\ upper half \/ ðð29ðððð 29
2 2 3ð mp='passe' /\ in French \/ ðð3ððððð 3ð
1 2 31 Say Right(r,2) Left(pi,6) c.r mp /\ show where the ball stopped \/ ðð31ðððð 31

| 1 1 32 End /\ and the number's attributes \/ ðð32ðððð 32
1 33 If pause('E')= Then /\ check if termination request \/ ðð33ðððð 33

 |
+++FANPARð561S Right operand missing
1 1 34 Leave /\ If so, end the loop \/ ðð34ðððð 34

| 35 End /\ end of one game, ready for next\/ ðð35ðððð 35
36 Say ' \\ Merci et au revoir \\' /\ thanks and good bye \/ ðð36ðððð 36
37 Exit /\ exit the program \/ ðð37ðððð 37

 38 ðð38ðððð 38
 39 set_color: ðð39ðððð 39
 4ð /\%INCLUDE setcolor\/ ðð4ððððð 4ð

41 set_color: /\ Set up c.i to contain the color of each number \/ ððð1ðððð 1 1
 |
+++FANPARðð71W Duplicate label: Only first occurrence on line 39 used

42 c.='noir ' /\ set all of them to black \/ ððð2ðððð 1 2
43 rouge='1 3 5 7 9 12 14 16 18 19 21 23 25 27 3ð 32 34 36' ððð3ðððð 1 3
44 Do While rouge¬='' /\ process list of red numbers \/ ððð4ðððð 1 4

1 45 Parse Var rouge t rouge /\ pick the first in the list \/ ððð5ðððð 1 5
1 46 c.t='rouge' /\ set its color to red \/ ððð6ðððð 1 6

 1 47 End ððð7ðððð 1 7
 48 Return ððð8ðððð 1 8

Figure 11. Extract of Source Listing with Messages as Printed on MVS/ESA

62 SAA REXX/370 User’s Guide and Reference

 Cross-Reference Listing
| For each item used in a program except for host commands, the cross-reference

listing shows:

� The attribute of the item. Because REXX does not require you to declare the
type of data to be stored in a variable, the attributes do not indicate formal data
types.

� The numbers of the lines on which it is referenced in the program.

Note: If the XREF(S) compiler option was specified, constants and commands are
not listed.

Each entry in the cross-reference listing contains the following information:

Item
The text of the item. Symbols are shown in uppercase, except for DBCS
characters. Literal strings are shown enclosed in single quotes. If the text is
longer than 30 characters, the rest of the text is continued on subsequent
lines of the listing.

Attribute
The attribute of the item, according to the classification of tokens defined in
REXX. The meanings of the values in this column are:

BIN STR A binary string

BUILT-IN A built-in function

COMP VAR A compound variable

CONST SYM A constant symbol

| DBCS RTN A function for manipulating DBCS strings

EXT BIF A stream I/O built-in function

EXT RTN An external routine

HEX STR A hexadecimal string

LABEL A label definition

LABEL +++ A multiple-label definition or a reference to an undefined label

LIT STR A literal string

NUMBER A number

SIMP VAR A simple variable

STEM A stem

| SYSTM RTN A function supplied by IBM that is specific to a system, such as
| DIAG under CMS, SYSVAR under MVS/ESA, or ASSIGN under
| VSE.

Line Reference
The number of each line on which the item is referenced. The meanings of
the characters that can be appended in parentheses to line numbers are:

(s) Sets the variable named in the ITEM column

(d) Indicates a valid label definition

 Chapter 6. Understanding the Compiler Listing 63

(u) Indicates a reference to an undefined label

(m) Indicates a duplicate label definition

| (c) The label is referred to in a CALL clause

| (C) The label is referred to in a CALL ON clause

| (s) The label is referred to in a SIGNAL clause

| (S) The label is referred to in a SIGNAL ON clause

| (f) The label is referred to as a function call.

Figure 12 on page 65 shows the cross-reference listing for the ROULETTE EXEC in
figure Figure 11 on page 62.

 Compilation Statistics
The compilation statistics at the end of the source listing provide the following
information:

� Number of lines in the source program

� Size of the compiled program in bytes, if compiled code was generated

 � Message statistics

� Flagged source lines, if any source lines were flagged

� List of included MVS/ESA data set names or CMS file names, if any %INCLUDE
directives were found

Note: The message statistics and the flagged source lines are produced
regardless of the FLAG compiler-option setting. For more information about the
FLAG option see “Compiler Options” on page 27. An example of compilation
statistics is shown in Figure 13. The numbers indicate how many messages were
produced for each particular message severity.

===> Compilation Statistics KOCH.REXX.CLIST(ROULETTE)
IBM Compiler REXX/37ð 3.ð PTF -NONE-- Time: 11:27:ð8 Date: 1994-1ð-27 Page: 5

REXX Lines 48

Total messages Informational Warning Error Severe Terminating
 3 ð 1 ð 2 ð

The following lines have been flagged

 19 33 41

| Error No. Line

| 71 41

| 561 33

| 566 19

| Included files
| 1 KOCH.REXX.CLIST(SETCOLOR) RECFM=F,LRECL=8ð,BLKSIZE=8ðð

| Finishing time of compilation: 13:11:ð6

Figure 13. Extract of Compiler Listing Showing Compilation Statistics as Printed on MVS/ESA

64 SAA REXX/370 User’s Guide and Reference

 ===> Cross Reference Listing ROULETTE EXEC A1
 IBM Compiler REXX/37ð 3.ð PTF -NONE-- Time: ð9:57:12 Date: 1994-1ð-27 Page: 4
 Item Attribute Line References

 ----- Labels, Built-in Functions, External Routines -----

| LEFT BUILT-IN 31(f)
| PAUSE EXT RTN 15(c) 17(c) 33(f)
| RANDOM BUILT-IN 18(f)
| RIGHT BUILT-IN 31(f)
| SET_COLOR LABEL+++ 9(c) 39(d) 41(m)

 ----- Constants -----

 '' LIT STR 44
 ' \\ Merci et au revoir \\ LIT STR 36
 '
 ' ð ZERO' LIT STR 21
 '\\ Welcome to Roulette \\' LIT STR 11
 'impair' LIT STR 26
 'manque' LIT STR 28
 'noir ' LIT STR 42
 'pair' LIT STR 24
 'passe' LIT STR 3ð
 'rouge' LIT STR 46
 'E' LIT STR 33
 'Faites vos jeux' LIT STR 14
 'Rien ne va plus' LIT STR 16
 'W' LIT STR 15 17
 ð NUMBER 1ð 18 2ð 23
 1 NUMBER 19
 '1 3 5 7 9 12 14 16 18 19 21 2 LIT STR 43
 3 25 27 3ð 32 34 36'
 18 NUMBER 27
 2 NUMBER 23 31
 36 NUMBER 18
 6 NUMBER 31

 ----- Simple Variables -----

 MP SIMP VAR 28(s) 3ð(s) 31
 PI SIMP VAR 24(s) 26(s) 31
 R SIMP VAR 18(s) 19 19 2ð 23 27 31 31
 ROUGE SIMP VAR 43(s) 44 45 45(s)
 RR SIMP VAR 19
 T SIMP VAR 45(s) 46

 ----- Stems and Compound Variables -----

 C. STEM 42(s)
| C.R COMP VAR 31
| C.T COMP VAR 46(s)

 RR. STEM 1ð(s)
| RR.R COMP VAR 19

Figure 12. Extract of Cross-Reference Listing as Printed on CMS

| Examples with Column Numbers
| The following examples show the Compiler listings where FORMAT(C) and option
| SAA are in effect. The column numbers and the line numbers appear in the
| cross-reference listing of the variables and in the statistics listing that contains the
| flagged lines. The line numbers precede, and the column number follow, the colon
| (:) sign.

 Chapter 6. Understanding the Compiler Listing 65

| The program to be compiled also contains several host commands. They are
| printed in the cross-reference listing in the same format and sequence as in the
| source listing.

| Appendix E, “The MVS/ESA Cataloged Procedures Supplied by IBM” on page 211
| contains another version of this program without errors.

| ===> Source Listing MVS2OE2 EXEC A1
| IBM Compiler REXX/37ð 3.ð LVL INEH3_3 Time: 15:ð5:17 Date: 1999-ð9-22 Page: 2
| If Do Sel Line C ----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+----9----+----ð

| 1 /\ REXX \/
| 2 /\ COPYOE copies an MVS sequential data set to Open Edition. However, \/
| 3 /\ this version has been written to illustrate the host commands and \/
| 4 /\ column numbers in the cross-reference listing and contains \/
| 5 /\ deliberate errors. It is not an example of good programming. \/
| 6 /\\/
| 7 /\ try to retrieve previous values \/
| 8 Address ISPEXXXXXXXXXXEC "VGET (OEDSN,OEPATH,OEBIN)"
| |
| +++FANGAOð583S Environment name longer than 8 characters
| 9 if (rc = ð) then do /\ vget o.k., confirm values \/
| 1 1 1ð say 'MVS data set name';oedsn = check(oedsn)
| 1 1 11 say 'OE path name'; oepath = check(oepath)
| 1 1 12 say 'Binary/Text file'; call check oebin ; oebin = result
| 1 13 end
| 14 else do /\ vget not o.k., read in values \/
| 1 1 15 say 'please key in the complete DSNAME
| |
| +++FANPARð855W SAA: Literal strings must be completely on one line
| 1 1 16 with High Level Qualifier'; pull oedsn
| 1 1 17 say 'please key in the OE path'; parse pull oepath
| 1 1 18 say 'is it an executable (binary) program (Y or N)?'; pull oebin
| 1 19 end
| 2ð
| 21 IF (oebin = 'Y') THEN DO ; mode == 'SIXUSR'; bin == 'BINARY'; END
| |
| +++FANPARð182S Assignment operator must not be followed by another "="
| |
| +++FANPARð182S Assignment operator must not be followed by another "="
| 22 ELSE DO ; mode = '' ; bin = 'TEXT'; END
| 23
| 24 msg_status = msg('OFF') /\ suppress msgs from FREE etc. \/
| |
| +++FANGAOð857W SAA: Built-in function not part of SAA Procedures Language
| 25 "FREE DDNAME(OEIN)" /\ make sure OEIN and OEOUT are free \/
| 26 "FREE DDNAME(OEOUT)"
| 27 msg_status = msg(msg_status) /\ restore to previous value \/
| |
| +++FANGAOð857W SAA: Built-in function not part of SAA Procedures Language
| 28 "ALLOC DDNAME(OEIN) DSN('"oedsn"') SHR"
| 29 "ALLOC DDNAME(OEOUT) PATH('"oepath"') PATHDISP(KEEP KEEP)" ,
| 3ð "PATHOPTS(ORDWR OCREAT) PATHMODE(SIRUSR SIWUSR" mode")"
| 31 "OCOPY INDD(OEIN) OUTDD(OEOUT)" bin
| 32 if (rc <> ð) then say 'RC from OCOPY=' rc
| 33 "FREE DDNAME(OEIN)"; "FREE DDNAME(OEOUT)"
| 34
| 35 /\ save values for next invocation \/
| 36 Address ISPEXEC "VPUT (OEDSN,OEPATH,OEBIN) PROFILE"
| 37 exit ð /\ leave this exec \/
| 38
| 39 check:say '<ENTER> to use' arg(1) 'or key in new value'; pull answer
| 4ð if (answer = '') then return arg(1); else return answer
| 41 say 'end of program'
| |
| +++FANGAOð773I Instruction may never be executed

| Figure 14. Extract of Source Listing as Printed in CMS

66 SAA REXX/370 User’s Guide and Reference

| ===> Cross Reference Listing META.PVT.EXEC(MVS2OE)
| IBM Compiler REXX/37ð 3.ð LVL INEH3_3 Time: 15:ð5:17 Date: 1999-ð9-22 Page: 3
| Item Attribute Line References

| ----- Labels, Built-in Functions, External Routines -----

| ARG BUILT-IN 39:28(f) 4ð:31(f)
| CHECK LABEL 1ð:37(f) 11:37(f) 12:32(c) 39:1(d)
| MSG SYSTM RTN 24:14(f) 27:14(f)

| ----- Constants -----

| '' LIT STR 22:36 4ð:15
| '<ENTER> to use' LIT STR 39:11
| ')' LIT STR 3ð:67
| ''') PATHDISP(KEEP KEEP)' LIT STR 29:35
| ''') SHR' LIT STR 28:33
| 'end of program' LIT STR 41:6
| 'is it an executable (binary) LIT STR 18:7
| program (Y or N)?'
| 'or key in new value' LIT STR 39:35
| 'please key in the complete DS LIT STR 15:7
| NAME with High L
| evel Qualifier'
| 'please key in the OE path' LIT STR 17:7
| 'ALLOC DDNAME(OEIN) DSN(''' LIT STR 28:1
| 'ALLOC DDNAME(OEOUT) PATH(''' LIT STR 29:1
| 'Binary/Text file' LIT STR 12:7
| 'BINARY' LIT STR 21:53
| 'FREE DDNAME(OEIN)' LIT STR 25:1 33:1
| 'FREE DDNAME(OEOUT)' LIT STR 26:1
| 'FREE DDNAME(OEOUT)' LIT STR 33:24
| ISPEXEC CONST SYM 36:9
| ISPEXXXXXXXXXXEC CONST SYM 8:9
| 'MVS data set name' LIT STR 1ð:7
| 'OCOPY INDD(OEIN) OUTDD(OEOUT) LIT STR 31:1
| '
| 'OE path name' LIT STR 11:7
| 'OFF' LIT STR 24:18
| 'PATHOPTS(ORDWR OCREAT) PATHMO LIT STR 3ð:15
| DE(SIRUSR SIWUSR'
| 'RC from OCOPY=' LIT STR 32:23
| 'SIXUSR' LIT STR 21:36
| 'TEXT' LIT STR 22:53
| 'VGET (OEDSN,OEPATH,OEBIN)' LIT STR 8:26
| 'VPUT (OEDSN,OEPATH,OEBIN) PRO LIT STR 36:17
| FILE'
| 'Y' LIT STR 21:13
| ð NUMBER 9:1ð 32:11 37:6
| 1 NUMBER 39:32 4ð:35

| ----- Simple Variables -----

| ANSWER SIMP VAR 39:63(s) 4ð:6 4ð:51
| BIN SIMP VAR 21:46(s) 22:46(s) 31:33
| MODE SIMP VAR 21:28(s) 22:28(s) 3ð:63
| MSG_STATUS SIMP VAR 24:1(s) 27:1(s) 27:18
| OEBIN SIMP VAR 12:38 12:46(s) 18:62(s) 21:5
| OEDSN SIMP VAR 1ð:27(s) 1ð:43 16:49(s) 28:28
| OEPATH SIMP VAR 11:27(s) 11:43 17:47(s) 29:29
| RC SIMP VAR 9:5 32:5 32:4ð
| RESULT SIMP VAR 12:54

| Figure 15 (Part 1 of 2). Extract of Cross-Reference Listing as Printed in MVS/ESA

 Chapter 6. Understanding the Compiler Listing 67

| ----- Commands -----
| If Do Sel Line C ----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+----9----+----ð

| 8 Address ISPEXXXXXXXXXXEC "VGET (OEDSN,OEPATH,OEBIN)"
| 25 "FREE DDNAME(OEIN)" /\ make sure OEIN and OEOUT are free \/
| 26 "FREE DDNAME(OEOUT)"
| 28 "ALLOC DDNAME(OEIN) DSN('"oedsn"') SHR"
| 29 "ALLOC DDNAME(OEOUT) PATH('"oepath"') PATHDISP(KEEP KEEP)" ,
| 3ð "PATHOPTS(ORDWR OCREAT) PATHMODE(SIRUSR SIWUSR" mode")"
| 31 "OCOPY INDD(OEIN) OUTDD(OEOUT)" bin
| 33 "FREE DDNAME(OEIN)"; "FREE DDNAME(OEOUT)"
| 36 Address ISPEXEC "VPUT (OEDSN,OEPATH,OEBIN) PROFILE"

| Figure 15 (Part 2 of 2). Extract of Cross-Reference Listing as Printed in MVS/ESA

| ===> Compilation Statistics MVS2OE2 EXEC A1
| IBM Compiler REXX/37ð 3.ð LVL INEH3_3 Time: 15:ð5:17 Date: 1999-ð9-22 Page: 4

| REXX Lines 41

| Total messages Informational Warning Error Severe Terminating
| 7 1 3 ð 3 ð

| The following lines have been flagged

| 8:9 15:7 21:33 21:5ð 24:14 27:14 41:2

| Error No. Line:Col

| 182 21:33 21:5ð

| 583 8:9

| 773 41:2

| 855 15:7

| 857 24:14 27:14

| Finishing time of compilation: 15:ð5:17

| Figure 16. Extract of Statistics Listing as Printed in CMS

68 SAA REXX/370 User’s Guide and Reference

| Example of a Complete Compiler Listing

| 1===> Compilation Summary EH3IXREF EXEC A1
| IBM Compiler REXX/37ð 3.ð LVL PQ27267 Time: 11:13:59 Date: 2ððð-ð2-ð3 Page: 1

| 7 message(s) reported. Highest severity code was 12 - Severe

| Compiler Options

| NOALTERNATE
| CEXEC (EH3IXREF CEXEC A1)
| NOCOMPILE (S)
| NOCONDENSE
| NODLINK
| NODUMP
| FLAG (I)
| FORMAT (C)
| NOIEXEC
| LIBLEVEL (\)
| LINECOUNT (9ð)
| MARGINS (1 \)
| OBJECT (EH3IXREF TEXT A1)
| OPTIMIZE
| PRINT (EH3IXREF LISTING A1) RECFM=V,LRECL=121
| NOSAA
| SLINE (A)
| SOURCE
| SYSIN (EH3IXREF EXEC A1) RECFM=V,LRECL=8ð
| TERMINAL
| NOTESTHALT
| NOTRACE
| XREF
| Minimum Library Level required: N/A

| SLINE(AUTO) in effect, no source lines included

| Figure 17 (Part 1 of 5). A Complete Compiler Listing as Printed in MVS/ESA

 Chapter 6. Understanding the Compiler Listing 69

| 1===> Source Listing EH3IXREF EXEC A1
| IBM Compiler REXX/37ð 3.ð LVL PQ27267 Time: 11:13:59 Date: 2ððð-ð2-ð3 Page: 2
| If Do Sel Line C ----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+----9----+----ð

| 1 /\ REXX \\\
| 2 \ Name : EH3IXREF SRC
| 3 \ Purpose : Test XREF-Enhancements
| 4 \\\/
| 5 /\ Call - Signal - Function or multiple \/
| 6 id=ððð1; Signal Lð3;
| 7 Lð3:; /\ first occurrence of label \/
| 8 Lð3:; /\ second occurrence of label \/
| |
| +++FANPARðð71W Duplicate label: Only first occurrence on line 7 used
| 9 say 'idððð3' Signal Lð3;
| 1ð
| 11 /\ compound variables \\\/
| 12 id=ðð1ð; stema.='';
| 13 id=ðð11; stema.tail1 = Lð2(1);
| 14 id=ðð12; stema.tail2 = Lð2(2);
| 15 id=ðð13; stema.tail3 ,
| 16 = Lð2(2);
| 17 id=ðð14; stema.tail4.aaaaaaaa.bbbbbbbbbbbbbbbbbbbbbbbbbbb.5=ð;
| 18 id=ðð15; stema.tail9.ððððððð1.ððððððð2.ððððððð3.ððððððð4.ððððððð5.ððððððð6.ððððð
| 19 /\ 24ð < CV > 25ð \/
| 2ð
| 21 /\ flagged lines (multiple) \/
| 22 id=ðð21; RANDOM(2ð,1ð,4,5) DATE('X');
| |
| +++FANGAOð77ðS Invalid number of arguments in built-in function
| |
| +++FANGAOð866S Invalid option in built-in function invocation
| 23 id=ðð22; U = 'A' / 'B';
| |
| +++FANGAOð659S Nonnumeric term
| |
| +++FANGAOð659S Nonnumeric term
| 24
| 25 /\ list of errors \/
| 26 id=ðð23;
| 27 Say MIN(33,55,'l');
| |
| +++FANGAOð659S Nonnumeric term
| 28 Say MIN(33,55,'l');
| |
| +++FANGAOð659S Nonnumeric term
| 29
| 3ð /\ Error in column 149 \/
| 31 id=ðð24;
| 32
| 33 /\ drop \/
| 34 id=ðð25; vars = 'stema.tail1 stema.taila'; drop (vars); stema.tail1 = 1;

| Figure 17 (Part 2 of 5). A Complete Compiler Listing as Printed in MVS/ESA

70 SAA REXX/370 User’s Guide and Reference

| 1===> Cross Reference Listing EH3IXREF EXEC A1
| IBM Compiler REXX/37ð 3.ð LVL PQ27267 Time: 11:13:59 Date: 2ððð-ð2-ð3 Page: 3
| Item Attribute Line References

| ----- Labels, Built-in Functions, External Routines -----

| DATE BUILT-IN 22:29(f)
| Lð2 EXT RTN 13:24(f) 14:24(f) 16:24(f)
| Lð3 LABEL+++ 6:17(s) 7:1(d) 8:1(m)
| MIN BUILT-IN 27:7(f) 28:7(f)
| RANDOM BUILT-IN 22:1ð(f)

| ----- Constants -----

| '' LIT STR 12:17
| 'idððð3' LIT STR 9:7
| 'l' LIT STR 27:17 28:17
| 'stema.tail1 stema.taila' LIT STR 34:17
| 'A' LIT STR 23:15
| 'B' LIT STR 23:21
| 'X' LIT STR 22:34
| ð NUMBER 17:61
| ððððð NUMBER 18:76
| ððððððð1 NUMBER 18:22
| ððððððð2 NUMBER 18:31
| ððððððð3 NUMBER 18:4ð
| ððððððð4 NUMBER 18:49
| ððððððð5 NUMBER 18:58
| ððððððð6 NUMBER 18:67
| ððð1 NUMBER 6:4
| ðð1ð NUMBER 12:4
| ðð11 NUMBER 13:4
| ðð12 NUMBER 14:4
| ðð13 NUMBER 15:4
| ðð14 NUMBER 17:4
| ðð15 NUMBER 18:4
| ðð21 NUMBER 22:4
| ðð22 NUMBER 23:4
| ðð23 NUMBER 26:4
| ðð24 NUMBER 31:4
| ðð25 NUMBER 34:4
| 1 NUMBER 13:28 34:71
| 1ð NUMBER 22:2ð
| 2 NUMBER 14:28 16:28
| 2ð NUMBER 22:17
| 33 NUMBER 27:11 28:11
| 4 NUMBER 22:23
| 5 NUMBER 17:59 22:25
| 55 NUMBER 27:14 28:14

| ----- Simple Variables -----

| AAAAAAAA SIMP VAR 17:22
| BBBBBBBBBBBBBBBBBBBBBBBBBBB SIMP VAR 17:31
| ID SIMP VAR 6:1(s) 12:1(s) 13:1(s) 14:1(s) 15:1(s) 17:1(s) 18:1(s) 22:1(s)
| 23:1(s) 26:1(s) 31:1(s) 34:1(s)
| Lð3 SIMP VAR 9:23
| SIGNAL SIMP VAR 9:16
| TAIL1 SIMP VAR 13:16 34:63
| TAIL2 SIMP VAR 14:16
| TAIL3 SIMP VAR 15:16
| TAIL4 SIMP VAR 17:16
| TAIL9 SIMP VAR 18:16
| U SIMP VAR 23:1ð(s)
| VARS SIMP VAR 34:1ð(s) 34:5ð

| Figure 17 (Part 3 of 5). A Complete Compiler Listing as Printed in MVS/ESA

 Chapter 6. Understanding the Compiler Listing 71

| ----- Stems and Compound Variables -----

| STEMA. STEM 12:1ð(s)
| STEMA.TAIL1 COMP VAR 13:1ð(s) 34:57(s)
| STEMA.TAIL2 COMP VAR 14:1ð(s)
| STEMA.TAIL3 COMP VAR 15:1ð(s)
| STEMA.TAIL4.AAAAAAAA.BBBBBBB COMP VAR 17:1ð(s)
| BBBBBBBBBBBBBBBBBBBB.5
| STEMA.TAIL9.ððððððð1.ððððððð COMP VAR 18:1ð
| 2.ððððððð3.ððððððð4.ðððððð
| ð5.ððððððð6.ððððð

| ----- Commands -----
| If Do Sel Line C ----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+----9----+----ð

| 18 id=ðð15; stema.tail9.ððððððð1.ððððððð2.ððððððð3.ððððððð4.ððððððð5.ððððððð6.ððððð
| 22 id=ðð21; RANDOM(2ð,1ð,4,5) DATE('X');

| Figure 17 (Part 4 of 5). A Complete Compiler Listing as Printed in MVS/ESA

| 1===> Compilation Statistics EH3IXREF EXEC A1
| IBM Compiler REXX/37ð 3.ð LVL PQ27267 Time: 11:13:59 Date: 2ððð-ð2-ð3 Page: 4

| REXX Lines 34

| Total messages Informational Warning Error Severe Terminating
| 7 ð 1 ð 6 ð

| The following lines have been flagged

| 8:1 22:1ð 22:34 23:15 23:21 27:17 28:17

| Error No. Line:Col

| 71 8:1

| 659 23:15 23:21 27:17 28:17

| 77ð 22:1ð

| 866 22:34

| Finishing time of compilation: 11:13:59

| Figure 17 (Part 5 of 5). A Complete Compiler Listing as Printed in MVS/ESA

72 SAA REXX/370 User’s Guide and Reference

Chapter 7. Using Object Modules and TEXT Files

This chapter describes circumstances in which you may want to use OBJECT output
rather than CEXEC output. It also describes how to generate executable modules
from the compiler output generated when you select the OBJECT compiler option.

 Initial Considerations
Usually you choose the CEXEC option to compile REXX programs because
compiled programs of this type can replace interpreted REXX programs
transparently and in all circumstances. However, you may want to consider the
OBJECT option for:

� Invoking a REXX program as a command or a program (MVS/ESA)
� Improving the packaging and performance of your application
� Building function packages
� Writing parts of applications in REXX
� Placing programs in a discontiguous saved segment (DCSS) (CMS)
� Invoking a REXX program from JCL (VSE/ESA)

If you decide to use object output, you may have to:

� Change the invocation of the compiled REXX program if it is invoked by other
programs

� Change the processing of the information obtained with the PARSE SOURCE
instruction

� Check for storage overlaps with other modules (CMS)

Whether you run object output or CEXEC output for single programs, you can
expect the same runtime performance when the program starts running. The time
required to locate and load the program, however, may be different.

Object modules and TEXT files do not contain operating system dependencies, and
| can, therefore, be moved between operating systems. The generated code and the
| REXX Library are reentrant and can, therefore, be placed in read-only storage.

Object modules and TEXT files do not normally contain relocation information. If
you want to have relocation information, you must generate the object module or
TEXT file with the DLINK compiler option. This option enables you to link external
functions and subroutines directly to an object module or to a TEXT file. See the
compiler option DLINK on page 31 and “DLINK Example” on page 182.

The name of the TEXT file or the object module in the external symbol dictionary
(ESD) record is derived from the name of the input file or input data set when the
REXX program is compiled. For CMS, it is the file name of the input file. For
MVS/ESA, it is one of the following:

� The member name of the partitioned input data set
� The last qualifier of the name of the sequential input data set
� Or else, COMPREXX (for example, if the source file is part of the job stream)

 Copyright IBM Corp. 1991, 2000 73

To run either type of object code, the Library must be installed on CMS or MVS/ESA.
REXX/VSE Release 1 must be installed on VSE/ESA. (See Chapter 5, “Runtime
Considerations” on page 51 for information on the use of the Alternate Library.)

Object Modules (MVS/ESA)
Generating load modules: Before you can use an object module, you must link it
to the appropriate stub (a stub transforms input parameters into a form
understandable by the compiled REXX program). This can be done with the REXXL
cataloged procedure supplied by IBM, which is listed under “REXXL” on page 219,
with the REXXL EXEC explained in “REXXL (MVS/ESA)” on page 76, or with the
REXXC EXEC as described in “Invoking the Compiler with the REXXC EXEC
(MVS/ESA)” on page 17.

Stubs are provided for the following parameter-passing conventions:

� CPPL (command processor parameter list) for invocation from the TSO/E
command line, or for invocation from another REXX EXEC as a host command
by means of ADDRESS TSO.

� EFPL (external function parameter list) for invocation with the REXX CALL
instruction or as a function. This must be used when building a function
package.

� CPPLEFPL (a combination of the CPPL and the EFPL stubs) determines if the
program is being invoked as a TSO/E command or as a REXX external routine.

� MVS for invocation by means of MVS JCL, or for invocation from another REXX
EXEC by means of ADDRESS LINKMVS or ADDRESS ATTCHMVS.

� CALLCMD for invocation from the TSO/E command line with the TSO/E CALL
command, or from another REXX EXEC by means of ADDRESS TSO invoking
the TSO/E CALL command.

| For a detailed description of stubs, refer to “Stubs” on page 185.

After you have linked the modules to the appropriate stubs, you can use the
modules in the same way you use modules of other high-level language compilers.

Notes:

1. Do not use 8-character names that differ only in the eighth character, for load
modules that are made of multiple object modules. The eighth character of the
program name is lost during the link-edit step.

| 2. Compiled programs linked with RENT modules located in an APF library can
| cause a system abend in the module IRXSTAMP. To avoid this problem,
| compile the program using the CONDENSE option. The compiled program is
| uncondensed at runtime and the storage is getmained in the TSO subpool 78
| for execution of the program. For information on the CONDENSE compiler
| option, see “CONDENSE” on page 30.

Invoking a REXX program as a command or a program: A program linked with
the CPPL stub can be invoked as a command under TSO/E. The command is
usually found earlier in the search order than the same command executed as
either a compiled or interpreted REXX EXEC.

74 SAA REXX/370 User’s Guide and Reference

A program linked with the MVS or the CALLCMD stub enables you to invoke a REXX
program just as you would invoke a program written in another high-level language.

A program linked with the EFPL stub enables you to store an external function or
subroutine in a load library, where it is usually earlier in the search order than the
same function or subroutine executed as a compiled or interpreted REXX EXEC. It
can also be in a function package that is loaded when the environment is initialized.
The EFPL stub can also be used with the DLINK option, see “DLINK” on page 31
for more information.

A program linked with the CPPLEFPL stub can be invoked both as a TSO/E
command or as a REXX external routine. The CPPLEFPL stub determines whether
the REXX program has been invoked as TSO/E command or as a REXX external
routine, then gives control to the compiled REXX program with the appropriate
parameters.

Programs and commands can be stored and cached wherever a load module can
be stored and cached.

Improving packaging and performance: If your application includes many REXX
programs, you can create one module that contains all the REXX programs. You
can package it more compactly, thereby reducing the system load, because the
application spends less time searching for and invoking external functions and
subroutines. To generate a single module:

1. Specify the DLINK compiler option when you compile programs that invoke
external subroutines and functions whose references are intended to be
resolved.

2. Link-edit the main program with the appropriate stub for the intended
invocation.

3. Link-edit each external subroutine and function with an EFPL stub.

4. Link-edit all the programs together into a single module.

For an example, see “DLINK Example” on page 182.

Building function packages: The parts of a function package can be written in
REXX, compiled, linked with the EFPL stub, and then linked to function packages, in
which they must be defined as external routines. See the TSO/E Version 2
REXX/MVS: Reference manual for details about function packages.

Writing parts of applications in REXX: You can link-edit load modules that are
already link-edited with the appropriate stub with applications written in another
programming language. The language used must be able to provide the
parameters in one of the supported parameter-passing conventions. Otherwise,
you can write your own stub to support the parameter-passing convention of the
language in question, modeled after one of the existing stubs. See “Stubs” on
page 185 for more information.

 Chapter 7. Using Object Modules and TEXT Files 75

 REXXL (MVS/ESA)
There are two possible uses of the REXXL command:

� REXXL can be used in batch to create a load module. REXXL generates the
control cards for the linkage editor to link together a stub and a compiled REXX
program of type OBJECT. The compiled REXX program is read from the data
set allocated to SYSIN. The control cards, including the compiled REXX
program, are written to a data set allocated to SYSOUT.

� REXXL can be used interactively to create a load module. REXXL links together
a stub and the compiled REXX program of type OBJECT and builds a load
module. The SYSPRINT output of the linkage editor is stored in a sequential

| data set with a low-level qualifier of LINKLIST.

See also “Link-Editing of Object Modules” on page 180 for more information.

Enter the REXXL command in the following format:

REXXL stub obj-data-set-name [load-data-set-name]

where:

stub Is one of the following:

� A predefined stub name.

� A member name. The member will be searched for in the
default data set.

� The name of a partitioned data set including a member
name.

If only the member name is specified, a default data set name
is used. (This data set name is found in “Customizing the
REXXL EXEC” on page 121). Predefined stub names are:

CPPL The program is invoked as a TSO/E command.

EFPL The program is invoked as a REXX external routine.

CPPLEFPL The program is invoked as either a TSO/E command
or a REXX external routine.

MVS The program is invoked as an MVS program.

CALLCMD The program is invoked by the TSO/E CALL
command.

obj-data-set-name Is a partitioned or a sequential data set containing the compiled
REXX program of type OBJECT. If it is a partitioned data set,
the member name has to be specified.

load-data-set-name Is the partitioned data set in which the load module will be
stored. If the member name is not specified, it defaults to the
csect name that the Compiler puts in the ESD from the OBJECT
output. If load-data-set-name is not specified, a default name
is used.

Default names of the output data sets:

76 SAA REXX/370 User’s Guide and Reference

where:
pref and qual represent the prefix and the last level qualifier of obj-data-set-name.
csect represents the name that the compiler puts in the ESD from the OBJECT
output.

Note: The user's default prefix upref (as set by the PROFILE PREFIX command) is
used for the output data sets. If the prefix of obj-data-set-name is different, it is
replaced.

Partitioned Data Set
pref.cccc.qual(member)

Sequential Data Set
pref.cccc.qual

load data set
name

upref.cccc.LOAD(csect) upref.cccc.qual.LOAD(csect)

listing data set
name

upref.cccc.csect.LINKLIST upref.cccc.qual.LINKLIST

TEXT Files (CMS)
The OBJECT output that the Compiler generates has the same properties as TEXT
files that are generated by other high-level language compilers, with the following
exceptions:

� The compiled program cannot run in the transient program area (TPA).

� The compiled program cannot be invoked from a program that is running in the
TPA.

� A module generated from a TEXT file expects SVC parameter-passing
conventions. See Appendix B, “Interface for TEXT Files (CMS)” on page 195
for additional information. You can invoke such a module as a command from
the CMS command line or from a REXX program, but the parameter-passing
convention is different from that used by other high-level language compilers.

Generating modules: To generate a relocatable module from a TEXT file, use the
LOAD command followed by the GENMOD command. For example:

load progname (rldsave
genmod progname

Under CMS Release 5.5 or later, relocatable modules are loaded in free storage,
thereby reducing the probability that one module may overwrite part of another
module that was invoked by a compiled REXX program.

Background information for users of CMS Release 5

Many REXX programs invoke host commands or external routines that run in the
user program area. Under CMS Release 5, a module runs in the user program
area at address 20000, even when you use the LOAD command with the
RLDSAVE option. If your compiled REXX program invokes another program that
also runs at address 20000, your program is overwritten and usually ends
abnormally when control returns from the invoked program. To avoid this
problem, make your program a nucleus extension (by using the NUCXLOAD
command) before it is invoked.

 Chapter 7. Using Object Modules and TEXT Files 77

Improving performance: In the REXX search order for external functions and
subroutines, the first step is to search for a program whose name is prefixed with
RX and truncated to 8 characters. If this program is invoked many times, you can
improve its performance if you:

1. Generate a module from the OBJECT output and name it RXmyprog.

2. Load the module as a nucleus extension. For example, enter the NUCXLOAD
command in the following way:

nucxload rxmyprog

3. Invoke the program without the prefix RX. For example:

call myprog
a=myprog()

The nucleus extension RXmyprog is searched for and found first.

Improving packaging: If your application contains a REXX program and several
external subroutines, you can create one module that includes all these programs.
When you do so, your programs are more compactly packaged, thereby reducing
system load, because the application spends less time searching for and invoking
external functions and subroutines. You also eliminate the possibility of invoking
REXX programs that have the same name but are not part of the application. To
generate a single module:

1. Specify the DLINK compiler option when you compile the programs that invoke
external subroutines and functions whose references are intended to be
resolved.

2. Link together the TEXT files to create one relocatable module. For example:

load myprog mysub1 mysub2 mysub3 (rldsave
genmod myprog

3. Optionally, load the resulting module as a nucleus extension before it is
invoked, to avoid storage overlaps with other programs. This is particularly
important when you run applications under CMS Release 5.

Building function packages: The VM/ESA Release 2 REXX/VM: Reference manual
includes a coding example of a function package whose functions are included in
the code. You can, however, build a function package in which some or all of the
functions are compiled REXX programs of OBJECT type. These functions must be
linked to the function package and their names declared as external. Additionally,
to find out the size of such a function package, you need to link a dummy external
program to the end of the function package.

Writing parts of applications in REXX: You can link a compiled REXX program of
OBJECT type to a program written in another language. If the language enables
you to invoke programs that require REXX parameter-passing conventions (see
Appendix B, “Interface for TEXT Files (CMS)” on page 195), you can:

1. Declare the REXX program as an external program.
2. Link the REXX program to the application.
3. Invoke the REXX program from within the application.

Placing programs in a DCSS: You can load TEXT files into a DCSS located above
16MB in virtual storage. If you decide to do this, you first need to write additional

78 SAA REXX/370 User’s Guide and Reference

code that attaches the DCSS and identifies the REXX programs residing in the DCSS
as nucleus extensions.

Object Modules (VSE/ESA)
Generating phases: Before you can use an object module, you must combine it
with the appropriate stub (a stub transforms input parameters into a form
understandable by the compiled REXX program), then you must link-edit it to
generate a phase.

With the cataloged procedure REXXLINK supplied by IBM, you can create a phase
consisting of a single program in one step (see “REXXLINK Cataloged Procedure
(VSE/ESA)” on page 81).

To create a phase consisting of multiple programs (if you have used the DLINK
compiler option), you must combine each object module with the appropriate stub
by means of the cataloged procedure REXXPLNK supplied by IBM (See
“REXXPLNK Cataloged Procedure (VSE/ESA)” on page 80). You must then
link-edit the resulting object modules in an additional step to generate a phase.

Stubs are provided for the following parameter-passing conventions:

� VSE for invocation by means of VSE JCL.

� EFPL (external function parameter list) for invocation with the REXX CALL
instruction or as a function. This must be used when building a function
package.

Note: Do not use 8-character names that differ only in the eighth character, for
phases that are made of multiple object modules. The eighth character of the
program name is lost during the pre-link step.

After you have combined the object modules with the appropriate stubs and linked
them together, you can use the resulting phases in the same way you use phases
of high-level language compilers.

Invoking a REXX program as a phase: A program linked with the VSE stub
enables you to invoke a REXX program just as you would invoke a program written
in another high-level language.

Improving packaging and performance: If your application includes many REXX
programs, you can create one phase that contains all the REXX programs. You can
package it more compactly, thereby reducing system load, because the application
spends less time searching for and invoking external functions and subroutines. To
generate a single phase:

1. Specify the DLINK compiler option when you compile programs on MVS/ESA or
CMS that invoke external subroutines and functions whose references are
intended to be resolved.

| 2. Generate the object module on VM or MVS/ESA and send it to VSE/ESA.

3. Use the REXXPLNK cataloged procedure to combine the main program with the
appropriate stub for the intended invocation.

4. Use the REXXPLNK cataloged procedure to combine each external subroutine
and function with an EFPL stub.

 Chapter 7. Using Object Modules and TEXT Files 79

5. Link-edit all the combined object modules together into a single phase.

Building function packages: The parts of a function package can be written in
REXX, compiled, combined with the EFPL stub using REXXPLNK, and then linked to
the function packages, in which they are defined as external routines. See the IBM
VSE/Enterprise Systems Architecture REXX/VSE Reference manual for details about
function packages.

Writing parts of applications in REXX: You can link-edit the object modules that
are already combined with the appropriate stub with other object modules written in
another programming language. The language used must be able to provide the
parameters in one of the supported parameter-passing conventions. Otherwise,
you can write your own stub to support the parameter-passing convention of the
language in question, modeled after one of the existing stubs. See “Stubs” on
page 199 for more information.

Including a copyright notice in your program: You can provide stubs containing
a copyright notice. The stubs supplied by IBM contain comments that show where
the copyright notice can be easily added. The member names of the stubs are
EAGSDVSE and EAGSDEFP.

REXXPLNK Cataloged Procedure (VSE/ESA)
The cataloged procedure REXXPLNK builds as output an object module that
contains the stub combined with the input object module. The resulting object
module can be combined with other object modules to create a phase.

Invoke REXXPLNK in the following format:

// EXEC PROC=REXXPLNK,[STUBLIB='lib.sublib',]
 STUBNAM=mn,
 INLIB='lib.sublib',
 INNAME=mn,
 OUTLIB='lib.sublib',
 OUTNAME=mn

where:

STUBLIB ='lib.sublib' Is the name of the sublibrary where the stub resides. If
stublib is not specified, a default name is assumed. (The
default name is set in the cataloged procedure.)

STUBNAM=mn Is the member name of the stub residing in stublib. Member
type is always OBJ. You can also use one of the predefined
stub names:

VSE The program is invoked by VSE JCL as a program.

EFPL The program is invoked as a REXX external routine.

The default stub name supplied by IBM is EFPL.

INLIB='lib.sublib' Is the name of the sublibrary where the input object module
resides.

INNAME=mn Is the member name of the input object module residing in
inlib. Member type is always OBJ.

OUTLIB='lib.sublib' Is the name of the sublibrary where the output object module
will be stored.

80 SAA REXX/370 User’s Guide and Reference

OUTNAME=mn Is the member name of the output object module that will be
stored in outlib. Member type is always OBJ.

REXXLINK Cataloged Procedure (VSE/ESA)
The cataloged procedure REXXLINK is used to create a phase. REXXLINK does the
following:

1. Builds as output an object module that contains the stub combined with the
input object module

2. Link-edits the resulting object module

3. Catalogs the phase in the sublibrary specified by a LIBDEF PHASE,CATALOG=
lib.sublib statement

Invoke REXXLINK in the following format:

// EXEC PROC=REXXLINK,[STUBLIB='lib.sublib',]
 STUBNAM=mn,
 INLIB='lib.sublib',
 INNAME=mn,
 OUTLIB='lib.sublib',
 OUTNAME=mn
 [,PHASNAM=mn]

where:

STUBLIB ='lib.sublib' Is the name of the sublibrary where the stub resides. If
stublib is not specified, a default name is assumed. (The
default name is set in the cataloged procedure.)

STUBNAM=mn Is the member name of the stub residing in stublib. Member
type is always OBJ. You also can use one of the predefined
stubnames:

VSE The program is invoked by VSE JCL as a program.

EFPL The program is invoked as a REXX external routine

The default stub name supplied by IBM is EFPL.

INLIB='lib.sublib' Is the name of the sublibrary where the input object module
resides.

INNAME=mn Is the member name of the input object module residing in
inlib. Member type is always OBJ.

OUTLIB='lib.sublib' Is the name of the sublibrary where the output object module
will be stored.

OUTNAME=mn Is the member name of the output object module that will be
stored in outlib. Member type is always OBJ.

PHASNAM=mn Is the member name of the phase that will be cataloged in
the sublibrary specified by a LIBDEF PHASE,CATALOG=
lib.sublib statement. The default member name is that
specified in the outname parameter. Member type is always
PHASE.

 Chapter 7. Using Object Modules and TEXT Files 81

REXXL Cataloged Procedure (VSE/ESA)
The REXXL EXEC builds as output an object module that contains the stub
combined with the input object module. The resulting object module can be
link-edited with other object modules to create a phase.

Invoke REXXL in the following format:

// EXEC REXX=REXXL,PARM='stublib stubnam inlib inname outlib outname'

REXXL can also be called from a REXX program as a subroutine:

CALL REXXL 'stublib stubnam inlib inname outlib outname'

where:

stublib Is the name of the sublibrary, in the form lib.sublib, where the stub
resides.

stubnam Is the member name, in the form mn, of the stub residing in stublib.
Member type is always OBJ. You also can use one of the predefined
stub names:

VSE The program is invoked by VSE JCL as a program.

EFPL The program is invoked as a REXX external routine.

inlib Is the name of the sublibrary, in the form lib.sublib, where the input
object module resides.

inname Is the member name, in the form mn, of the input object module
residing in inlib. Member type is always OBJ.

outlib Is the name of the sublibrary, in the form lib.sublib, where the output
object module will be stored.

outname Is the member name of the output object module, in the form mn, that
will be stored in outlib. Member type is always OBJ.

Linking External Routines to a REXX Program
A REXX program can invoke external routines by means of either the REXX CALL
instruction or a function invocation if a routine of that name is neither an internal
routine nor a built-in function. Note that the DBCS routines behave identically to
built-in functions in terms of the REXX search order. Whenever an external routine
is invoked, the standard REXX search for external routines is performed.

Using the standard REXX search may lead to two problems:

� Invoking external routines frequently may affect performance, because each
invocation follows the search order.

� Name conflicts may occur in applications that invoke external routines whose
names are identical. The external routine that is earlier in the search order is
executed, which is not necessarily what you want to occur.

The DLINK compiler option enables you to create self-contained modules and avoid
these problems. You can selectively link external routines to the main program.
Alternatively, you can turn the main program into a self-contained module by linking
to it all externally referenced routines.

82 SAA REXX/370 User’s Guide and Reference

When the DLINK option is specified, the OBJECT output contains references to all
external functions and subroutines. These references are in the form of weak
external references, which means that during the link-edit or load steps the libraries
are not automatically searched to resolve these references.

Under MVS/ESA, the linkage editor resolves the addresses only if you link and load
the referenced module with the module containing the external reference.

Under CMS, the loader resolves the addresses only if you load the referenced
modules with the module containing the external reference, or if you bring in the
referenced module by means of an INCLUDE command.

Under VSE/ESA, the linkage editor resolves the addresses only if you link and load
the referenced object module with the object module containing the external
reference. If you do not link and load the referenced object module, the linkage
editor ends with return code 4, which indicates unresolved external references.

Resolving External References—An Example
The following example illustrates how to resolve external references selectively.
For the purposes of the example, assume the following:

� Your main program is MYAPPL; that is:

TEST.EXEC(MYAPPL) under MVS/ESA
MYAPPL EXEC under CMS

� Your main program contains a call to your external routine MYEXTR; that is:

TEST.EXEC(MYEXTR) under MVS/ESA
MYEXTR EXEC under CMS

It also contains a call to the external routine OTHRPROG contained in some
function package.

Note: If you are working on VSE/ESA, MYAPPL and MYEXTR are REXX EXECs
compiled on either MVS/ESA or CMS.

� You want to link MYEXTR directly to MYAPPL, but you want the standard search
order performed for OTHRPROG.

To accomplish this:

1. Compile MYAPPL EXEC with the DLINK, NOCEXEC, and OBJECT compiler
options to get:

TEST.OBJ(MYAPPL) under MVS/ESA
MYAPPL TEXT under CMS

2. Compile MYEXTR EXEC with the NOCEXEC and OBJECT compiler options to get:

TEST.OBJ(MYEXTR) under MVS/ESA
MYEXTR TEXT under CMS

3. Generate load modules as follows:

Under MVS/ESA:

1. Determine the appropriate parameter convention for MYAPPL. If, for example,
MYAPPL is called either from the TSO/E command line or from another EXEC as
a host command with ADDRESS TSO, the appropriate stub is CPPL.

 Chapter 7. Using Object Modules and TEXT Files 83

2. Link the CPPL stub with TEST.OBJ(MYAPPL) and store the result in
TEST.LOAD(MYAPPL). Use the REXXL cataloged procedure or the REXXL
command to perform this task.

3. Because MYEXTR is called as a subroutine, link the EFPL stub with
TEST.OBJ(MYEXTR) and store the result in TEST.LOAD(MYEXTR).

4. Link together the two linked modules from TEST.LOAD(MYAPPL) and
TEST.LOAD(MYEXTR), and store the result in TEST.LOAD(MYAPPL).

Assuming you have allocated the data set TEST.LOAD to ddname INFILE, the
appropriate control statements for the linkage editor are:

 INCLUDE INFILE(MYAPPL)
 INCLUDE INFILE(MYEXTR)
 ENTRY MYAPPL
 NAME MYAPPL(R)

Now you have an executable module that can be invoked from the TSO/E command
line or with ADDRESS TSO, where each invocation of MYEXTR from MYAPPL passes
control to MYEXTR directly instead of using the REXX search order. Recursive calls
from MYEXTR to MYEXTR use the REXX search order, because MYEXTR was not
compiled with the DLINK option. Therefore, the OBJECT output for MYEXTR does
not contain external references. Calls from MYAPPL to OTHRPROG also use the
REXX search order, because OTHRPROG was not included explicitly during the
link-edit step.

Under CMS:

Link MYAPPL with MYEXTR, without resolving the reference to OTHRPROG, and
generate a module in either of these ways:

LOAD MYAPPL MYEXTR (RLDSAVE
 GENMOD MYAPPL

or:

LOAD MYAPPL (RLDSAVE
INCLUDE MYEXTR (SAME

 GENMOD MYAPPL

Now you have an executable module that can be invoked from the CMS command
line as a host command or from another EXEC as an external routine. It can be
loaded as a nucleus extension (by using NUCXLOAD) to avoid address conflicts
when invoking another program that also runs in the CMS user area. Each
invocation of MYEXTR from MYAPPL passes control to MYEXTR directly instead of
following the REXX search order. Recursive calls from MYEXTR to MYEXTR use the
REXX search order, because MYEXTR was not compiled with the DLINK option.
Therefore, the OBJECT output for MYEXTR does not contain external references.
Calls from MYAPPL to OTHRPROG also use the REXX search order, because
OTHRPROG was not included explicitly during the load step.

Under VSE/ESA:

1. Send the object modules MYAPPL and MYEXTR from MVS/ESA or CMS to
VSE/ESA, and store them in the sublibrary REXXLIB.OBJECT under the names
MYAPPL.OBJ and MYEXTR.OBJ

84 SAA REXX/370 User’s Guide and Reference

2. Determine the appropriate parameter convention for MYAPPL. If, for example,
MYAPPL is invoked from VSE JCL by means of an EXEC MYAPPL statement, the
appropriate stub is VSE.

3. Combine the appropriate stub with REXXLIB.OBJECT.MYAPPL.OBJ and store the
result in the sublibrary REXXLIB.OBJECT under the name CMYAPPL.OBJ. Use
the REXXPLNK cataloged procedure to perform this task.

4. Because MYEXTR is called as a subroutine, combine the EFPL stub with
REXXLIB.OBJECT.MYEXTR.OBJ and store the result in the sublibrary
REXXLIB.OBJECT under the name CMYEXTR.OBJ. Use the REXXPLNK
cataloged procedure to perform this task.

5. Link together the two object modules REXXLIB.OBJECT.CMYAPPL.OBJ and
REXXLIB.OBJECT.CMYEXTR.OBJ and store the result in the sublibrary
REXXLIB.MODULE under the name MYAPPL.PHASE.

Specify the sublibrary where the phase should reside with a
LIBDEF PHASE,CATALOG= REXXLIB.MODULE statement, and the sublibrary where
the object modules reside with a LIBDEF OBJ,SEARCH=REXXLIB.OBJECT statement.
The appropriate control statements for the linkage editor are:

 PHASE MYAPPL,\,SVA
 INCLUDE CMYAPPL
 INCLUDE CMYEXTR

Now you have an executable phase that can be invoked from VSE JCL, where each
invocation of MYEXTR from MYAPPL passes control to MYEXTR directly, instead of
using the REXX search order. Recursive calls from MYEXTR to MYEXTR use the
REXX search order, because MYEXTR was not compiled with the DLINK option.
Therefore, the OBJECT output for MYEXTR does not contain external references.
Calls from MYAPPL to OTHRPROG also use the REXX search order, because
OTHRPROG was not included explicitly during the link-edit step.

 Chapter 7. Using Object Modules and TEXT Files 85

86 SAA REXX/370 User’s Guide and Reference

Chapter 8. Converting CEXEC Output between Operating
Systems

This chapter describes what to do to run CEXEC output on the operating system
other than the one on which you generated the output. To do this, you may have
to convert the record format and record length of the compiled EXEC. Use the
REXXF EXEC to perform the conversion on MVS/ESA or CMS. If you want to run
your compiled programs on VSE/ESA, you must prepare the CEXEC file for
transmission from MVS/ESA or CMS to VSE/ESA. Use the REXXV EXEC to perform
this task.

This chapter also explains how to copy, under MVS/ESA, CEXEC output from one
data set to another. You must use the REXXF EXEC to copy CEXEC output.

The EXECs are described in “REXXF (MVS/ESA)” on page 89, “REXXF (CMS)” on
page 89, “REXXV (MVS/ESA)” on page 90, and “REXXV (CMS)” on page 91.

Compiling on One System and Running on Another System
You can compile a REXX program on one operating system, convert the CEXEC
output by using either the REXXF or the REXXV EXEC, as appropriate, and then run
the converted EXEC under the other operating system. You can do this because
the generated code does not contain operating system dependencies.

Converting from MVS/ESA to MVS/ESA OpenEdition
Compiled EXECs of type CEXEC can run under MVS/ESA OpenEdition. They
behave the same as interpreted REXX programs.

To transfer the CEXEC output to an OpenEdition file system, use the OCOPY
command with the BINARY parameter. See MVS/ESA OpenEdition Command
Reference for a description of the OCOPY command, the cataloged procedure

| REXXOEC, and the REXX procedure MVS2OE in Appendix E, “The MVS/ESA
Cataloged Procedures Supplied by IBM” on page 211, for an example.

Compiled EXECs in load module format cannot run under MVS/ESA OpenEdition.

Converting from MVS/ESA to CMS
The two methods for converting CEXEC output from MVS/ESA to CMS are:

 � Method 1:

1. Transfer the CEXEC output to CMS, maintaining the same record length and
record format that the CEXEC had on MVS/ESA.

2. Use REXXF to convert the CEXEC output to record format F and record
length 1024.

 � Method 2:

1. Use REXXF to convert the CEXEC output to record format F or FB with a
record length of 1024.

2. Transfer the CEXEC output to CMS.

 Copyright IBM Corp. 1991, 2000 87

Converting from MVS/ESA to VSE/ESA
1. Use REXXV on MVS/ESA to prepare the CEXEC output for transmission to

VSE/ESA. The resulting record format must be F or FB, and the record length
must be 80.

2. Create a job containing the following control statements and send it to
VSE/ESA:

// LIBDEF PROC,SEARCH=lib.sublib
// EXEC REXX=REXXV,PARM='SYSIPT outlib outname [(option]'

 .
. prepared CEXEC output from step 1

 .
 /\

where:

lib.sublib Specifies the sublibrary where the EXEC REXXV resides.

outlib Is the name of the sublibrary, in the form lib.sublib, where the
output file will reside on VSE/ESA.

outname Is the member name and member type of the output file that will
reside in outlib, in the form mn.mt. If the member type is not
specified, it defaults to PROC.

option Can be DATA or NODATA . Nested procedures must be cataloged
all in the same way, either all with DATA=YES, or all with DATA=NO.
You cannot mix procedures cataloged with DATA=YES and
DATA=NO in one nesting.

DATA Indicates that the member outname is cataloged with
DATA=YES

NODATA Indicates that the member outname is cataloged with
DATA=NO

The default for a new member is NODATA . For an existing
member that is cataloged with DATA=YES, the default is DATA , if it
is cataloged with DATA=NO, the default is NODATA .

DATA and NODATA are used as parameters by the EXECIO
command in VSE/ESA. For further information about the EXECIO
command, refer to IBM VSE/Enterprise Systems Architecture
REXX/VSE Reference.

Converting from CMS to MVS/ESA
The two methods for converting CEXEC output from CMS to MVS/ESA are:

 � Method 1:

1. Transfer the CEXEC output to MVS/ESA. Receive the CEXEC output in a
data set with a record format F or FB and a record length of 1024.

2. Use REXXF to copy the CEXEC output to the target data set.

 � Method 2:

1. Use REXXF to convert the CEXEC output to record format F or V: F if the
receiving data set has record format F or FB, and V if the receiving data
set has record format V or VB.

88 SAA REXX/370 User’s Guide and Reference

– For record format F or FB, set the record length equal to the record
length of the receiving data set.

– For record format V or VB, set the record length equal to the record
length of the receiving data set minus 4.

2. Transfer the CEXEC output to MVS/ESA.

Converting from CMS to VSE/ESA
1. Use REXXV on CMS to prepare the CEXEC output for transmission to VSE/ESA.

The resulting record format must be F or FB, and the record length must be 80.

2. Continue with step 2 of “Converting from MVS/ESA to VSE/ESA” on page 88.

Copying CEXEC Output
To avoid having characters inserted into CEXEC output when copying it from one
data set to another, use the REXXF EXEC. Use the REXXV EXEC to prepare
compiled REXX programs (CEXEC type) for transmission to VSE/ESA, and then to
reformat them on VSE/ESA.

 REXXF (MVS/ESA)
The REXXF EXEC converts a CEXEC output to a different record format or a
different record length, or both. This EXEC must run in a TSO/E address space.

Enter the REXXF command in the following format:

REXXF input-data-set-name output-data-set-name [REPlace]

where:

input-data-set-name Is the name of the input data set that contains the CEXEC
output. If the data set has a partitioned organization, a
member name must be specified. The data set can have
one of the following record formats: F, FB, V, or VB with
an arbitrary logical record length.

output-data-set-name Is the name of the output data set that is to contain the
converted CEXEC output. If the data set has a partitioned
organization, a member name must be specified. The
data set can have one of the following record formats: F,
FB, V, or VB with an arbitrary logical record length equal
to or greater than 20 and equal to or less than 32 767.

REPlace Specifies that an existing output data set that is not empty
is to be overwritten. The minimum abbreviation is REP.

 REXXF (CMS)
The REXXF EXEC converts a CEXEC output to a different record format or a
different record length, or both.

Enter the REXXF command in the following format:

REXXF input-file-identifier [output-file-identifier] [(options]

 Chapter 8. Converting CEXEC Output between Operating Systems 89

where:

input-file-identifier Is the name of the input file. The file name must be
specified. If the file type is not specified, it defaults to
CEXEC. If the file mode is not specified, it defaults to A.
If you want to specify an output file identifier, you must
specify all parts of the input file identifier.

output-file-identifier Is the name of the output file. If a part of the file name is
not specified, it defaults to the corresponding part of the
input file identifier. Similarly, an = character used to
specify a part of the output file identifier is replaced by the
corresponding part of the input file identifier. Note that
the output-file-identifier and the input-file-identifier can be
the same, if the REPlace option is used.

options Options can be specified in any order. Each option can
be specified only once. The choices are:

F or V Indicates the record format of the output file.
The default record format is F.

n Indicates the record length of the output file.
The default record length is 1024. The
minimum record length is 20.

REPlace Specifies that an existing output file is to be
overwritten. The minimum abbreviation is
REP.

 REXXV (MVS/ESA)
The REXXV EXEC prepares a compiled REXX program (CEXEC type) for
transmission to VSE/ESA. It must run in a TSO/E address space.

Enter the REXXV command in the following format:

REXXV input-data-set-name output-data-set-name [REPlace]

where:

input-data-set-name Is the name of the input data set that contains the CEXEC
output. If the data set has a partitioned organization, a
member name must be specified. The data set can have
one of the following formats: F, FB, V, or VB with an
arbitrary logical record length.

output-data-set-name Is the name of the output data set that is to contain the
resulting CEXEC output. If the data set has a partitioned
organization, a member name must be specified. The
data set must have record format F or FB and the record
length must be 80. To protect the input data set, the
output-data-set-name must differ from the
input-data-set-name.

REPlace Specifies that an existing output data set that is not empty
is to be overwritten. The minimum abbreviation is the
string REP.

90 SAA REXX/370 User’s Guide and Reference

 REXXV (CMS)
The REXXV EXEC prepares a compiled REXX program (CEXEC type) for
transmission to VSE/ESA.

Enter the REXXV command in the following format:

REXXV input-file-identifier [output-file-identifier][(REPlace]

where:

input-file-identifier Is the name of the input file. The file name must be
specified. If the file type is not specified, it defaults to
CEXEC. If the file mode is not specified, it defaults to A.
If you want to specify an output file identifier, you must
specify all parts of the input file identifier.

output-file-identifier Is the name of the output file. The file will have record
format F and the record length will be 80. The file
identifier does not need to be fully specified. For every
missing part, the corresponding part of the
input-file-identifier is used. An = character is replaced by
the corresponding part of the input-file-identifier. Note
that the output-file-identifier and the input-file-identifier can
be the same, if the REPlace option is used.

REPlace Specifies that an existing output file is to be overwritten.
The minimum abbreviation is the string REP.

 Chapter 8. Converting CEXEC Output between Operating Systems 91

92 SAA REXX/370 User’s Guide and Reference

Chapter 9. Language Differences between the Compiler and
the Interpreters

This chapter describes the differences between the language processed by the
Compiler and by the interpreters. Programs that run with the Alternate Library are
interpreted, therefore they behave like normal interpreted programs.

Throughout the chapter, the key statements about the Compiler’s implementation of
REXX are preceded by a ♦.

For a complete description of the language definition and the other programming
interfaces provided by each of these implementations, see:

TSO/E Version 2 REXX/MVS: Reference
VM/SP System Product Interpreter: Reference
VM/XA SP Interpreter: Reference
VM/ESA REXX/VM: Reference
IBM VSE/Enterprise Systems Architecture REXX/VSE: Reference

Under CMS, use the HELP REXXCOMP command to get complete descriptions of
the REXX language elements.

Differences from the Interpreters on VM/ESA Release 2.1, TSO/E
Version 2 Release 4, and REXX/VSE Version 1 Release 1

The language accepted by the Compiler and Library is:

� REXX language level 4.00 on CMS on VM/ESA Release 2.1 and subsequent
releases

� REXX language level 3.48 everywhere else.

The differences between the Compiler and the interpreters are described here. In
programs that are affected by these differences, the effects can usually be
eliminated by minimal program changes. The support of some commands is also
different.

This is a list of items that the Compiler and Library handle differently from the
Interpreter:

 � Control directives:
 – %COPYRIGHT
 – %INCLUDE
 – %PAGE

| – %SYSDATE
| – %SYSTIME
| – %TESTHALT

 � Halt condition
 � NOVALUE condition
 � OPTIONS instruction
 � PARSE SOURCE instruction
 � PARSE VERSION instruction
� SOURCELINE built-in function
� Start of clause

 Copyright IBM Corp. 1991, 2000 93

� TRACE instruction and built-in function
� TS and TE commands

Compiler Control Directives
Valid control directives are:

 %COPYRIGHT
 %INCLUDE
 %PAGE

| %SYSDATE
| %SYSTIME
| %TESTHALT

♦ The Compiler supports control directives, which are contained in comments.

The interpreter treats them as normal comments. See “Control Directives” on
page 44 for an explanation of how to use the control directives.

 Halt Condition
The HI (Halt Interpretation) immediate command sets the halt condition. This may
terminate all currently running REXX programs without affecting the operation of any
other programs (as would the HE command under MVS/ESA and the HX command
under CMS).

| ♦ The HI command and testing for the halt condition are supported only for
| programs that are compiled with the TESTHALT option or %TESTHALT control
| directive. A program compiled with the NOTESTHALT option and no
| %TESTHALT directive continues to run if the HI command is entered; the HALT
| condition is not raised.

Notes:

1. A REXX program compiled with the TESTHALT option tests for the HALT
condition:

� At the beginning of a program

� After each host command

� At each label

� At the beginning of the body of a repetitive DO loop

� After the END of each iterative DO

� At the first instruction following a clause containing either the invocation of
an external function or the call (by means of a CALL instruction) to an
external routine:

– If an IF expression contains an invocation of an external function:

- At the beginning of the THEN

- At the beginning of the ELSE or, if there is no ELSE, after the THEN

– If a WHEN expression contains an invocation of an external function:

- At the beginning of the THEN

- At the beginning of the following WHEN or, if there is no following
WHEN, at the beginning of the OTHERWISE or, if there is no
OTHERWISE, before the code that raises the SYNTAX condition.

94 SAA REXX/370 User’s Guide and Reference

When you compile a program with the TESTHALT option, the compiled output
may be slightly larger and the runtime performance may be slightly degraded.

2. If a HALT condition is detected at a label, the compiled program stores the line
number of the label in the SIGL special variable, whereas the interpreter stores
the line number of the instruction following the label in the SIGL special
variable.

To avoid this problem, put the label and the beginning of the following
instruction on the same line.

| 3. When an EXEC runs under NetView, NetView issues a Halt Immediate
| command. An interpreted EXEC will stop the execution. For a compiled EXEC
| to show the same behavior, it must be compiled with the TESTHALT compiler
| option or the %TESTHALT control directive. If compiled with the default
| NOTESTHALT, the HALT condition is not raised and the program continues.

If the expression following a RETURN, EXIT, or SIGNAL VALUE instruction contains a
reference to an external function, the value stored in the special variable SIGL might
be different, depending on whether a program is run compiled or interpreted.

Hint: Assign the expression to an intermediate variable and use this variable in
the RETURN, EXIT, or SIGNAL VALUE instruction. For example, instead of
coding this:

Return ext_rtn()

code this:

a = ext_rtn()
Return a

 NOVALUE Condition
If a program contains a SIGNAL ON NOVALUE instruction but no NOVALUE label, the
interpreter issues the Label not found message if the NOVALUE condition is raised.
The message indicates the line number.

♦ If a program contains a SIGNAL ON NOVALUE instruction but no NOVALUE
label, the Compiler issues a message and does not generate compiled code.

You can correct this error by adding to the program a routine that handles the
NOVALUE condition. The routine should indicate which line caused the NOVALUE
condition and display the name of the uninitialized variable. The following code
shows an example of a NOVALUE routine:

...
Exit /\ End of routine \/

NOVALUE:
Say 'NOVALUE raised at line' sigl
Parse Version . langlevel .
If langlevel > 3.45 Then
Say 'The referenced variable is' "CONDITION"('D')

Exit

| ♦ The %SYSDATE and %SYSTIME control directives do not raise a NOVALUE
| condition.

 Chapter 9. Language Differences between the Compiler and the Interpreters 95

| The Compiler supports the %SYSDATE and %SYSTIME control directives, which
| generate the variables SYSDATE and SYSTIME, which contain the compilation
| date and time. The generated code ensures that the NOVALUE condition is not
| raised for these variables. If you did not explicitly assign a value to the variables
| SYSDATE and SYSTIME the interpreter raises the NOVALUE condition.
| Therefore, always assign a value to these variables:

| sysdate = ''
| /\%sysdate \/
| if (sysdate = '') then say 'interpreted'
| else say 'compiled on' sysdate

 OPTIONS Instruction
The ETMODE option requests checking of any double-byte character set (DBCS)
string, literal string, or comment in the program for proper use of DBCS
representation conventions, and enables the use of DBCS characters in symbols.

♦ The ETMODE option of the OPTIONS instruction is recognized only if:

– It is enclosed within quotes (single or double) by itself, that is, no other
option is enclosed within the quotes.

– Any other options in the same instruction are also enclosed within quotes
by themselves.

| If the OPTIONS instruction is not the first non-comment, non-label clause of the
program, the Compiler ignores the ETMODE option. In the same situation, the
interpreter raises the SYNTAX condition.

Examples of valid OPTIONS instructions are:

Options "ETMODE"
Options 'ETMODE' 'EXMODE'

PARSE SOURCE Instruction
PARSE SOURCE returns information describing the source of the program being
executed.

♦ The PARSE instruction with the SOURCE option returns the same tokens as
returned by the interpreter, except in the following cases:

– Under MVS/ESA, when an object module is linked with the EFPL stub, it
always shows the string 'SUBROUTINE' as the second token, even when
it is invoked as a function. See “PARSE SOURCE” on page 193 for
details.

– Under CMS, when the compiled program is a TEXT file, the file type and
file mode (the fourth and fifth tokens) are \ characters.

When a module is generated from a TEXT file and is invoked using a
synonym, the file name (the third token) is the synonym (which is also
provided in the sixth token). See also “What the REXX Program Gets” on
page 196.

– Under VSE/ESA, when an object module is linked with the EFPL stub, it
always has the string 'SUBROUTINE' as the second token, even if it is
invoked as a function. See “PARSE SOURCE” on page 204 for more
information.

96 SAA REXX/370 User’s Guide and Reference

| – Under MVS/ESA and VSE/ESA, link-edited modules with stubs insert a
| question mark (?) for the third, fourth, fifth, and sixth tokens (see “PARSE
| SOURCE” on page 193 and 204).

PARSE VERSION Instruction
PARSE VERSION returns information describing the language level and the date of
the language processor.

♦ The PARSE instruction with the VERSION option returns five tokens:

1. The string REXXC37ð (interpreters produce REXX37ð).

2. The language level description. The language level depends on the
Operating System:

– Under VM/ESA Release 2.1 and subsequent releases, the language
| level is 4.02. This language level supports stream I/O. Programs

containing stream I/O that have been compiled with an earlier release
of the Compiler need to be recompiled.

– Under MVS/ESA, under CMS (releases earlier than VM/ESA Release
2.1), and under VSE/ESA, the language level is 3.48.

3. Three tokens describing the release date of the Compiler that was used
to generate the code (for example, 27 Oct 1994).

The general format of the PARSE VERSION information is the same as that provided
by the interpreter, although the values of the tokens differ.

SOURCELINE Built-In Function
In the interpreter, the SOURCELINE built-in function works like this:

� SOURCELINE() returns the line number of the final line in the source program.

� SOURCELINE(n) returns the nth line of the source program.

♦ The full functions of the SOURCELINE function are available only if the
program is compiled with the SLINE compiler option.

If you use the SLINE compiler option, the source program is included in the
compiled program and SOURCELINE continues to work as just described.

Notes:

1. Any implied or specified EXEC compression for the interpreter (specifying
%NOCOMMENT) will not be reflected by the Compiler.

| 2. The string returned by SOURCELINE(n) from a compiled program contains only
| the text within the specified margins. The string returned from a program
| interpreted with the system product interpreter, however, contains the complete
| line.

| 3. If source files are included using the %INCLUDE directive (see “%INCLUDE” on
| page 45), SOURCELINE() from a compiled program returns the total number of
| source lines including those from the included files.

If the NOSLINE compiler option is specified or defaulted to, however, SOURCELINE
works like this:

 Chapter 9. Language Differences between the Compiler and the Interpreters 97

� SOURCELINE() returns a value of 0.

� SOURCELINE(n) raises the SYNTAX condition at run time.

To find out whether the SLINE or NOSLINE option is in effect, test whether
SOURCELINE() is 0. The following code shows an example of this test:

Signal On Error
'COPY' ... /\ This command may give a \/

/\ nonzero return code \/
...
Exit /\ End of main program \/
/\--\/
/\ Error handler: common exit for command errors \/
/\--\/
ERROR:
Say "Unexpected return code" rc "from command"
/\ If the SL option was used, display the source line. \/
If Sourceline() ¬= ð Then
 Say " " Sourceline(sigl)
/\ Display the line number as shown in the listing. \/
Say "at line" sigl"."

Start of Clause
The interpreter considers the line that consists of only a continuation comma (and
possibly comments) as the start of a clause.

♦ The Compiler considers the line where the actual instruction starts as the
start of the clause.

This might lead to different output in the traceback (in case of an error) and in a
different value of the special variable SIGL.

Example:

, /\ 16 interpreter sets SIGL here \/
SIGNAL X /\ 17 Compiler sets SIGL here \/
 .
 .
 .
X: SAY SIGL /\ interpreter says 16 \/

/\ Compiler says 17 \/

TRACE Instruction and TRACE Built-In Function
♦ The TRACE instruction and the TRACE built-in function are supported (except

| for trace setting SCAN) only for programs compiled with the TRACE and
| SLINE options in effect.

Programs that have been compiled with the NOTRACE option behave the
same as interpreted programs that run with TRACE set to OFF. All valid
options in the TRACE instructions or built-in functions are changed to OFF.

| ♦ In a compiled program, interactive tracing starts immediately after the clause
| requesting it, provided that the clause is eligible. In an interpreted program,
| the clause following the eligible clause is executed before tracing is started.
| Trace ?R, for example, causes a first pause immediately after this trace

instruction (unless the program is in interactive debug already). Trace ?C

98 SAA REXX/370 User’s Guide and Reference

causes pauses only after host commands encountered after this instruction.
Interactive debug is, however, entered immediately after a host command that
contains this reference to the TRACE built-in function: Trace('?C').

♦ When tracing Intermediates (with TRACE setting I) of an expression that
contains more than one adjacent concatenation, all intermediate results of the
operands are shown before the intermediate results of the concatenations.

This example shows the difference between the output of the Compiler and
that of the interpreter when the following program is run:

/\REXX\/Trace I
Say 'Tracing' 'a' 'concatenation'

♦ The indentation of traced clauses reflects only function and subroutine
invocations of internal routines and INTERPRET instructions.

Note: Any implied or specified EXEC compression for the interpreter (specifying
%NOCOMMENT) will not be reflected by the Compiler.

Interpreter output Compiler output

2 \-\ Say 'Tracing' 'a' 'concatenation'
 >L> "Tracing"
 >L> "a"
 >O> "Tracing a"
 >L> "concatenation"

>O> "Tracing a concatenation"
Tracing a concatenation

2 \-\ Say 'Tracing' 'a' 'concatenation'
 >L> "Tracing"
 >L> "a"
 >L> "concatenation"
 >O> "Tracing a"

>O> "Tracing a concatenation"
Tracing a concatenation

TS (Trace Start) and TE (Trace End) Commands
The TS (Trace Start) and TE (Trace End) immediate commands are used to start
and stop interactive tracing. TS and TE are supported in programs that have been
compiled with the TRACE option.

TS and TE are not supported on VSE/ESA with REXX/VSE Release 1.

♦ The TS and TE commands have no effect on programs that have been
compiled with the NOTRACE option.

♦ Interactive tracing is started immediately after the TS command has been
executed.

♦ If interactive tracing is active and the TE command is executed, no interactive
pause takes place after TE.

Differences to Earlier Releases of the Interpreters
This section describes the differences between the language supported by the
Compiler and by releases of the interpreters earlier than those described in the
preceding section.

 Chapter 9. Language Differences between the Compiler and the Interpreters 99

 SIGNAL Instruction
The SIGNAL instruction changes the flow of control. The VALUE option specifies an
expression, and the result of evaluating this expression determines the label to get
control.

♦ The label name specified on a SIGNAL VALUE instruction must be in
uppercase, because all labels defined in the program are translated to
uppercase. The comparison is case-sensitive, and the result of the
expression is not translated to uppercase.

♦ A literal string specified as a label name on a SIGNAL labelname instruction
must also be in uppercase for the same reason. For example:

SIGNAL 'LABEL1'

This restriction is for compatibility with the SAA REXX interface.

Integer Divide (%) and Remainder (//) Operations
The ratio of the operands in integer divide (%) and remainder (//) operations is
checked.

♦ The following condition must be true for integer divide and remainder
operations:

first operand < second operand * (10**d)

where d is the current setting of NUMERIC DIGITS. The absolute values of the
terms in the formula are used.

This ensures that the quotient is a whole number within the current setting of
NUMERIC DIGITS. Therefore, the result of an integer division is never rounded.

Exponentiation (**) Operation
♦ In exponentiation (**) operations, the NUMERIC DIGITS setting is increased by

k + 1, where k is the number of digits in the second operand. Then, the
result is rounded to NUMERIC DIGITS, if necessary.

For example, in the operation a**500 with NUMERIC DIGITS 9, all intermediate
results are rounded to 13 significant digits (9 + 3 + 1).

This restricts the possible error in the result to a maximum of 1 in the least
significant position.

If the first operand cannot be expressed precisely within the current setting of
NUMERIC DIGITS, it may be rounded (as the result of a previous operation) or
truncated (as input to the exponentiation). In such cases, the precision of the first
operand must be the precision of the result + k + 1, and the NUMERIC DIGITS
setting must be raised accordingly.

100 SAA REXX/370 User’s Guide and Reference

Location of PROCEDURE Instructions
The PROCEDURE instruction sets up a local environment for the variables in an
internal subroutine.

♦ The PROCEDURE instruction, if used, must be the first instruction executed
after the CALL or function invocation—that is, it must be the first instruction
following the label.

Ensure that your programs contain no “deferred” PROCEDURE instructions when
you compile them.

 Binary Strings
♦ Binary strings may not be supported by your Interpreter. A binary string is

any sequence of zero or more binary digits (0 or 1) grouped in fours. The
first group may have fewer than four digits.

The groups of digits are optionally separated by one or more blanks, and the whole
sequence is delimited by single quotes or double quotes and immediately followed
by the symbol b or B.

 Examples: '1111ðððð'b "1ð1 11ð1"B

Templates Used by PARSE, ARG, and PULL
♦ The templates used by the PARSE, ARG, and PULL instructions may contain

variable column numbers.

A variable within parentheses, where the open parenthesis is preceded by an
equal, plus, or minus sign, means that the value of the variable is used as absolute
or relative positional pattern.

 Examples: =(v) +(v) -(v) =(v.1) +(v.1) -(v.1)

PROCEDURE EXPOSE and DROP
♦ The PROCEDURE EXPOSE and DROP instructions are enhanced to support

subsidiary lists.

Examples: Procedure Expose (list)
 Drop (list)

 DO LOOPs
| ♦ If variables are named TO, BY, and FOR, they can be used within the

expressions following WHILE and UNTIL, and within the repetitor expression
immediately following the DO.

 DBCS Symbols
♦ Symbols may contain DBCS characters, if OPTIONS 'ETMODE' is in effect.

 Chapter 9. Language Differences between the Compiler and the Interpreters 101

VALUE Built-In Function
♦ The VALUE built-in function may have up to three arguments.

Three arguments for the VALUE built-in function are supported in compiled REXX
only in CMS Release 6 and subsequent releases.

 Argument Counting
♦ Omitted trailing arguments are ignored. The number of arguments passed to

a function or a subroutine is the largest number for which the ARG built-in
function ARG(n,'e') returns 1. Where:

n is the position of the last argument string specified.
'e' is the existence test for the nth argument.

Options of Built-In Functions
The following options of built-in functions are supported by the Compiler, but may
not be supported by your Interpreter.

Function Option Definition and Example

DATATYPE Dbcs Returns 1 if the given string is a pure DBCS string
enclosed within a shift-out (SO) and shift-in (SI). For
example:

DATATYPE('<AABB>','D') → 1
DATATYPE('a<AABB>b','D') → ð

DATATYPE C Returns 1 if the given string is a valid mixed DBCS
string. For example:

DATATYPE('<AABB>','C') → 1
DATATYPE('a<AABB>b','C') → 1
DATATYPE('abcde','C') → ð

DATE Normal Specifies the default date format, which returns the
date in the format dd mon yyyy. For example:

DATE('N') → '3ð Jun 1991'

| DATE| 2nd to 5th| The second to fifth arguments represent an input
| date that can be converted to a specific output
| format. The fourth and fifth arguments specify the
| separation characters of the output and input strings,
| respectively. For example:

| DATE('U','28 ð2 9ð','E','\',' ')
| → 'ð2\28\9ð'

TIME Civil Returns the time in the format hh:mmxx, where the
hours are 1 through 12, and the minutes are 00
through 59. The minutes are immediately followed
by the letters am or pm. For example:

TIME('C') → '4:54pm'

TIME Normal Specifies the default time format, which returns the
time in the format hh:mm:ss. For example:

TIME('N') → '16:54:22'

102 SAA REXX/370 User’s Guide and Reference

Function Option Definition and Example

VERIFY Nomatch Specifies the default option, which returns the
position of the first character in the given string that
is not also in the given reference. For example:

VERIFY('AB4T','123456789ð','N') → 1

Note: < represents shift-out (SO), and > represents shift-in (SI).

 Built-In Functions
The following built-in functions are supported by the Compiler, but may not be
supported by your Interpreter.

Function Definition and Example

B2X Converts a string of binary digits into an equivalent string of
hexadecimal characters.

CONDITION Returns condition information associated with the most recently trapped
condition. For example:

CONDITION('I') → 'SIGNAL'

DIGITS Returns the current setting of NUMERIC DIGITS. For example:

DIGITS() → 9

FORM Returns the current setting of NUMERIC FORM. For example:

FORM() → 'SCIENTIFIC'

FUZZ Returns the current setting of NUMERIC FUZZ. For example:

FUZZ() → ð

WORDPOS Returns the word number of the first word of a given phrase found in a
given string. Returns 0 if phrase is not found.

WORDPOS('is the','now is the time') → 2

X2B Converts a string of hexadecimal characters into an equivalent string of
binary digits.

Options of Instructions
The following options of instructions are supported by the Compiler, but may not be
supported by your Interpreter.

Instruction Options Definition

CALL ON/OFF Controls the trapping of certain conditions.

NUMERIC
FORM

VALUE Enables specification of the SCIENTIFIC or
ENGINEERING form as an expression.

OPTIONS 'EXMODE'
'NOEXMODE'

Enables or disables DBCS data operations
capability1.

SIGNAL ON FAILURE Traps negative return codes from host commands.
(These are trapped by SIGNAL ON ERROR if
trapping of the failure condition is not enabled.)

SIGNAL ON NAME Specifies the name of a label to get control if a
specified condition occurs.

 Chapter 9. Language Differences between the Compiler and the Interpreters 103

Strict Comparison Operators
The strict comparison operators carry out a simple character-by-character
comparison. Unlike the other comparison operators, they never pad either of the
strings being compared and never attempt to perform a numeric comparison. The
strict comparison operators that may not be supported by your Interpreter are:

<< Strictly less than

<<= Strictly less than or equal to

¬<< Strictly not less than

>> Strictly greater than

>>= Strictly greater than or equal to

¬>> Strictly not greater than

♦ The backslash (\) is synonymous with the logical NOT character (¬). The two
characters may be used interchangeably in operators.

LINESIZE Built-In Function in Full-Screen CMS
The LINESIZE built-in function returns the current line width of the terminal.

♦ In full-screen CMS, the LINESIZE function invoked by a compiled REXX
program always returns a value of 999999999.

Enhancement to the EXECCOMM Interface
The EXECCOMM interface enables called commands to access and manipulate the
current generation of REXX variables.

♦ The Fetch Private Information operation has been extended to return
information for the following requests:

PARM Fetch the number of parameters (arguments) supplied to the
program.

PARM.n Fetch the nth parameter (argument string).

1 The support of DBCS data operations affects all functions that deal with delimiting words and determining length. For example,
the LENGTH function counts each double-byte character between SO and SI as 1 character.

104 SAA REXX/370 User’s Guide and Reference

Chapter 10. Limits and Restrictions

This chapter provides information both on the maximum implementation limits and
on technical restrictions imposed by the Compiler and Library.

If a program runs with the Alternate Library, all the limits and restrictions of the
appropriate interpreter apply.

 Implementation Limits
None of the following limits is lower than the corresponding interpreter limit:

Figure 18. Compiler Implementation Limits

Item Limit

Literal strings 250 bytes

Symbol (variable name) length 250 bytes

Nesting control structures 999

Clause length Virtual storage

Variable value length 16 megabytes2

Call arguments 16000

MIN and MAX function arguments 16000

Number of PARSE templates 16000

PROCEDURE EXPOSE items 16000

Queue entries Virtual storage

Queue entry length Same as interpreter

NUMERIC DIGITS value 999 999 999

Notational exponent value 999 999 999

Hexadecimal strings 250 bytes

Binary strings 250 bytes

C2D input string 250 bytes

D2C output string 250 bytes

X2D input string 500 bytes

D2X output string 500 bytes

| active PROCEDURES| 30000

2 If the length of a variable’s value exceeds 16 megabytes, the results are unpredictable.

 Copyright IBM Corp. 1991, 2000 105

 Technical Restrictions
Restrictions common to all systems:

� The number of lines of the source program is restricted to 99 999. The logical
record length of the source program is restricted:

– Under CMS, to 65 535

– Under MVS/ESA, to 32 760 for fixed length data sets, and to 32 756 for
variable length data sets

� The maximum number of external routines that can be referenced in a program
when compiled with the DLINK option is 65 534.

� The length of the value of variables is restricted to 16MB. If the length of a
variable’s value exceeds 16MB, the results are unpredictable.

� Compiled EXECs or object programs are restricted to 16MB in size.

� Checking of pad characters: some built-in functions that perform string
operations have an argument that specifies a pad character. If a program
contains an OPTIONS or an INTERPRET instruction, the pad characters on
built-in functions are not checked until run time.

MVS/ESA restrictions:

� You cannot invoke compiled REXX programs as authorized.

� The storage replaceable routine is not used by the Library.

� If the NOESTAE flag is set in the PARM BLOCK, no clean-up can be performed
by the Library in case an ABEND occurs.

� National Language Support: on MVS/SP Version 3, the messages are supported
only in English.

CMS restrictions:

� You cannot run compiled programs in the transient program area (TPA). A
program running in the TPA cannot invoke a compiled REXX program.

� A NUCXDROP EAGRTPRC command must be issued before purging the
segment that contains the Library, otherwise an ABEND will occur.

� Under VM/ESA Release 1.1 and subsequent releases, if the command
NUCXDROP EAGRTPRC is issued while a compiled REXX program is running,
unpredictable results may occur.

VSE/ESA restrictions:

� The storage replaceable routine is not used by the Library.

� National Language Support: the messages are supported only in English.

| C restriction:

| � The compilation of a program might be abended with the following messages:

| DMSABE155T User abend 21ðð called from ðð2BCEBð reason code ðððð72ð3 CMS
| DMSMOD1ð9S Virtual storage capacity exceeded

| Reason code 7203 states an error when extending the stack.

106 SAA REXX/370 User’s Guide and Reference

| When such an error occurs, refer to the book IBM C/370 Programming Guide,
| Version 2 Release 1 for information on how to proceed.

 Chapter 10. Limits and Restrictions 107

108 SAA REXX/370 User’s Guide and Reference

Chapter 11. Performance and Programming Considerations

This chapter is intended to help you to improve the performance of your compiled
programs. It also explains how to find out whether the IBM Library for SAA
REXX/370 is available on a system—an important programming consideration.

 Performance Considerations
The performance improvements that you can expect when you run compiled REXX
programs depend on the type of program. A program that performs large numbers
of arithmetic operations of default precision shows the greatest improvement. A
program that mainly issues commands to the host shows limited improvement,
because REXX cannot decrease the time taken by the host to process the
commands.

Note: This is true only when:

� The IBM Library for SAA REXX/370 is used. With the Alternate Library, the
performance of compiled REXX programs is similar to that of interpreted
programs.

� The program has been compiled with the NOTRACE option.

Compiled programs that include many ... Run this much faster

Arithmetic operations
6 to 10 times

String and word processing operations

Constants and variables

4 to 6 timesReferences to procedures and built-in functions

Changes to values of variables

Assignments
2 to 4 times

Reused compound variables

Host commands Minimal improvement

| Optimization, Optimization Stoppers, and Error Checking
| The compiler performs the following optimization procedures on a REXX program to
| improve error checking at compilation time and performance at runtime:

| � Keeping track of the status and value of variables

| � Performing operations at compilation time

| � Eliminating several evaluations of the same expression

| � Improving the access to compound variables in loops

| Certain REXX constructs do not allow the compiler to optimize. They are called
| optimization stoppers.

| The optimization procedures and stoppers are described in the following sections.

 Copyright IBM Corp. 1991, 2000 109

| Keeping Track of Variables
| After a value is assigned to a variable or the variable is used in an assignment,
| such as a target in a PARSE template, the variable is no longer in a dropped state.
| For example, in:

| SIGNAL ON NOVALUE; X = Y; SAY X

| the SAY instruction does not need to include code to test for, and raise, the
| NOVALUE condition although such code is needed for the evaluation of the
| expression Y in the assignment.

| After a constant is assigned to a simple variable, the compiler can use the constant
| instead of the variable. This improves performance and enables the compiler to
| find more errors. For example, in:

| I = 'A'; SAY SUBSTR(X, I)

| the compiler can detect that the argument I for SUBSTR has a value that is not
| numeric and therefore not valid.

| Even if the compiler cannot predict the exact value of a variable, it can derive
| properties of the value from the context in which the variable is used. For example,
| in:

| X = Y + Z; SAY DATE(X) DATE(Y) DATE(Z)

| the compiler can report that the arguments X, Y, and Z for the DATE function are
| not valid because they must all be numeric if the assignment is successful.

| Performing Operations at Compilation Time
| In many cases, the compiler can replace an expression involving only constants
| with the result of the expression. Together with keeping track of variables, this
| procedure can improve both the performance and error checking.

| Note, however, that in the expression X + 1 + 2, for example, the subexpression 1
| + 2 cannot be optimized. The reason for this is that, depending on the constants
| involved and the NUMERIC DIGITS setting, the expressions X + (1 + 2) and (X +
| 1) + 2 can have different results.

| Eliminating Several Evaluations
| If an expression occurs more than once in a REXX program, it is not always
| necessary to evaluate the expression more than once. For example, the compiler
| treats SAY X \ Y + X \ Y like T = X \ Y; SAY T + T where multiplication is
| performed only once at runtime.

| This optimization procedure is even more effective if a compound variable is
| involved. For example, for A.I = X; SAY A.I the compiler generates only once the
| code for searching the tree belonging to stem A. and the variable belonging to tail I.
| In addition, the search is performed only once at runtime.

110 SAA REXX/370 User’s Guide and Reference

| Improving Access to Compound Variables
| In a loop where the tail of the compound variable is the control variable of the loop,
| such as:

| DO I = 1 TO 1ððð
| SAY I A.I
| END

| all compound variables belonging to stem A. might be accessed sequentially. In
| this case, performing the general tree search for stem A. each time would be
| inefficient. Therefore, the code generated for A.I always first checks whether the
| next compound variable in stem A. is the one required. It then either uses it or
| continues its search.

| If the tail is the control variable of an outer loop instead of the immediately
| enclosing loop, the same variable might be accessed repeatedly. In many such
| cases, the compiler can apply the usual optimization for compound variables. If
| this is not possible, it generates code that checks whether the compound variable
| used previously is the one required and only continues its search if not.

| Note: This optimization procedure is not possible if a loop contains an optimization
| stopper.

| Optimization Stoppers
| An optimization stopper is a point in the REXX program where the compiler’s
| information about the state of the variables or the expressions evaluated previously
| becomes unreliable.

| Such optimization stoppers are:

| � A point where the EXECCOMM interface can be invoked because any variable
| in the REXX program can be changed by this interface. Examples are the start
| of the program, invocations of external procedures, host commands, and
| TESTHALT hooks.

| � Label definitions.

| � INTERPRET instructions.

| � Calls of the VALUE built-in function with a second argument.

| � NUMERIC instructions. They cause information derived from, or about,
| arithmetic or comparison expressions to become unreliable, but do not affect
| information about compound variables.

| The removal or introduction of an optimization stopper can cause the compiler to
| issue more or fewer warnings or error messages. In addition, the perfomance of
| the compiled program is affected if an optimization stopper is introduced into an
| inner loop.

| Because the TESTHALT compiler option introduces TESTHALT hooks, at least one in
| every loop, using this option reduces the possibilities for optimization and error
| checking. It is, therefore, recommended that you first compile without the
| TESTHALT option to improve error checking, and compile with the option after you
| corrected the errors. Similarly, use the %TESTHALT directive after correcting the
| errors.

 Chapter 11. Performance and Programming Considerations 111

| Optimization Limitations
| The compiler’s optimization procedures are designed to be compatible with the
| interpreter. Therefore, sometimes no optimization occurs where, at first glance, it
| seems possible. For example, in the following instruction:

| SAY A X Y; SAY B X Y

| the generated code evaluates the concatenation X Y only once, whereas no
| optimization occurs in:

| SAY A + X + Y; SAY B + X + Y

| To understand this, add the parentheses implied by the REXX evaluation order.
| The expression A X Y is equivalent to (A X) Y. The rules for REXX concatenation
| guarantee that the expressions (A X) Y and A (X Y) always produce the same
| result. However, in the case of the addition, the expressions (A + X) + Y and A +
| (X + Y) can produce different results because of the rounding rules required by
| NUMERIC DIGITS. Therefore, there is no common subexpression X + Y in these
| two expressions, and the optimizer cannot treat them alike. However, the compiler
| can optimize these expressions if they are rewritten as:

| SAY X + Y + A ; SAY X + Y + B

 Arithmetic
Compiled REXX programs normally use binary arithmetic for whole numbers. But
for NUMERIC DIGITS settings of less than 9, and for whole numbers in exponential
notation, arithmetic operations are performed using string arithmetic, which is
slower. String arithmetic is also used for whole numbers written with decimal
points, such as '2.' and '3.ð'.

Hints: Do not set NUMERIC DIGITS to a value less than 9, unless necessary. Do
not write whole numbers with decimal points, unless necessary.

 Literal Strings
A string in quotes is considered to be a literal constant; its contents are never
modified. Other symbols can also be used as constants: if no value has been
assigned to a symbol, the defined value is the symbol itself, translated to

| uppercase. If a value has been assigned to a symbol the line number in the
| Compiler’s cross-reference listing (see page “Cross-Reference Listing” on page 63)
| is followed by the characters '(s)'.

The Compiler does not know whether you intend to use a nonquoted symbol that
could be a variable as a constant, a variable, or both. Therefore, every nonquoted
symbol that could be a variable is checked for a value each time it is referenced.
(No check can be made for value assignment during compilation, because values
can be assigned to variables through the variable pool interface at run time.)

Hint: Enclose all literal constants in quotes. For example, instead of coding
this:

reportheader = customers /\ No value assigned to \/
/\ "customers" yet \/

code this:

reportheader = "CUSTOMERS"

112 SAA REXX/370 User’s Guide and Reference

 Variables
Simple variables and stems are addressed from a static symbol table created
during compilation, whereas compound variables are held in a binary tree created
at run time. This tree has to be searched to retrieve a compound variable.
Therefore, simple variables and stems are accessed faster than are compound
variables.

Hint: Use compound variables only for structures, such as arrays and lists, for
which they are appropriate.

 Compound Variables
Compound variables that have three or fewer numeric tail parts can be accessed
faster than compound variables that have nonnumeric characters in their tail.

Hint: If you need tails with nonnumeric and numeric tail parts, the first tail part
should be nonnumeric.

For the best performance, use three or fewer numeric tail parts.

Labels within Loops
If there is a label between a DO and its corresponding END, the performance of the
loop is adversely affected; control may jump incorrectly into the body of the loop,
thus requiring more runtime checking at the end of each pass through the loop.

Hint: Avoid putting labels within DO loops. Structure your code so that there is
no need for such labels.

 Procedures
The EXPOSE option of the PROCEDURE instruction is used to ensure that
references to specified variables within the internal routine refer to the variables
environment owned by the caller.

If you expose a stem, the entire array of compound variables is available to the
internal routine. This is much more efficient than exposing individual compound
variables of the same stem.

Hint: If you expose a compound variable in an internal routine, expose the
entire stem, if practical. For example, instead of coding this:

Procedure Expose x.j

code this:

Procedure Expose x.

 TESTHALT Option
When a program is compiled with the TESTHALT option, the Compiler generates
code in several places in the program to check for the HALT condition (see “Halt
Condition” on page 94.) This extra code may adversely affect the performance of
the program.

Hints :

� Compile with the TESTHALT option only when it is necessary.

 Chapter 11. Performance and Programming Considerations 113

| � Instead of the TESTHALT compiler option, use the %TESTHALT control directive
| to check for the HALT condition only at points in the program that affect the
| performance less, for example not inside inner loops.

Frequently Invoked External Routines
If your program frequently invokes external routines or functions, consider linking
them to the program that invokes them. This will improve performance by
eliminating the search time. See the compiler option DLINK on page 31 and
“DLINK Example” on page 182.

 Programming Considerations
This section explains:

� How to find out whether the Library is available on your system
� The different ways in which the MVS/ESA and the CMS Compilers handle the

VALUE built-in function
� The different ways in which different systems support stream I/O
� How to determine whether an EXEC is compiled or interpreted
� How to create programs that run with the Alternate Library

| � The upper and lower limits on the absolute value of numbers

Verifying the Availability of the Library
To find out whether the Library is available on a system, use the following code
sequence in an interpreted program for the system you wish to query:

Under MVS/ESA:

Trace 'O' /\ Suppress trace messages \/
Address Linkmvs 'EAGRTPRQ' /\ Check for the Library \/
If rc¬=-3 Then /\ -3 means the Library is not there \/
Say 'IBM Library for SAA REXX/37ð available'

Under CMS:

Trace 'O' /\ Suppress trace messages \/
Address Command 'EAGRTPRC' /\ Check for the Library \/
If rc¬=-3 Then /\ -3 means the Library is not there \/
Say 'IBM Library for SAA REXX/37ð available'

Under VSE/ESA, no checking is necessary because the Library for REXX/370 in
REXX/VSE, is always available if REXX/VSE is installed.

VALUE Built-in Function
When cross-compiling, you should bear in mind that the MVS/ESA and CMS
compilers show one significant difference when treating the VALUE built-in function.

The MVS/ESA compiler issues message FANGAOð6ððW Third argument of VALUE
built-in function not supported if the VALUE built-in function has been coded
with the selector argument. If you are compiling a REXX program with the MVS/ESA
compiler for execution under CMS, you should ignore this message.

114 SAA REXX/370 User’s Guide and Reference

When compiling under CMS for execution under MVS/ESA or VSE/ESA, no message
will be issued if the selector argument has been coded even though no MVS/ESA or
VSE/ESA run-time support for selector is available.

 Stream I/O
When cross-compiling, you should bear in mind that stream I/O is supported for
execution only under VM/ESA Release 2.1 and subsequent releases

Figure 19 illustrates how stream I/O is supported on the different systems.

The MVS/ESA compiler issues message FANPARð465W PARSE LINEIN not supported
under MVS/ESA for PARSE LINEIN and message FANPARð466W NOTREADY condition
not supported under MVS/ESA for SIGNAL ON/OFF NOTREADY, and CALL ON/OFF
NOTREADY. If you are compiling a REXX program with the MVS/ESA compiler for
execution under CMS on VM/ESA Release 2.1 and subsequent releases, you should
ignore this message.

When compiling under CMS for execution under MVS/ESA or VSE/ESA, no message
will be issued for PARSE LINEIN, SIGNAL ON/OFF NOTREADY, and CALL ON/OFF
NOTREADY even though no MVS/ESA or VSE/ESA runtime support for them is
available.

Figure 19. Stream I/O Support

Function VM/ESA 2.1 Other systems

LINEIN LINEOUT LINES
CHARIN CHAROUT CHARS
STREAM

Built-in function External function

PARSE LINEIN
SIGNAL ON/OFF NOTREADY
CALL ON/OFF NOTREADY

Executed Raise SYNTAX
condition at run time

Determining whether a Program is Interpreted or Compiled
Use the PARSE VERSION instruction to determine whether the EXEC is running
compiled or interpreted. This makes it possible to choose different logic paths
depending on whether the EXEC is compiled or interpreted.

Example:

Parse Version v . /\ Use Parse Version to see if compiled \/
If left(v,5)='REXXC' Then what='compiled'

 Else what='interpreted'
 Say what

Creating REXX Programs for Use with the Alternate Library (MVS/ESA,
CMS)

Not all programs are good candidates to run with the Alternate Library. This is
because programs that run with the Alternate Library are in fact interpreted.

To create a REXX program that can run with both the Library and the Alternate
Library, do the following:

� Compile the REXX program.

 Chapter 11. Performance and Programming Considerations 115

At compilation time, you must consider these options:

ALTERNATE Is required. It enables the program to run with the
Alternate Library. The program can also run with the
Library.

SLINE Is required. It enables the creation of the control structures
required by the interpreter.

| CONDENSE Is not required. However, because the SLINE option
| includes the program source in the compiled program,
| CONDENSE can be used to create compacted output, which
| is unreadable when using ISPF/PDF browse, view, and edit
| on MVS/ESA, or browse and XEDIT on CMS.

DLINK Requires special care. The DLINK option of a single
module requires the Library. To run a program that uses
the DLINK option with the Alternate Library, you must
supply the external functions and subroutines that are in
the single module as separate programs. In this way, the
interpreter can locate them and invoke them.

TESTHALT Has no effect when the program runs with the Alternate
Library.

� Continue with the preparation of the compiled program as explained in
Chapter 7, “Using Object Modules and TEXT Files” on page 73, if necessary.

� Document that the IBM Library for SAA REXX/370 is not a prerequisite, but if it
is available, using it will result in better runtime performance.

Limits on Numbers
There are upper and lower limits on the absolute values of numbers. These limits
apply regardless of the setting of NUMERIC DIGITS or NUMERIC FORM. If a string
that represents a number exceeds one of the limits, it is treated as non-numeric
(data type CHAR).

♦ A number is within the upper limit if the following conditions are true:

– The exponential part does not exceed +999999999. Leading zeros in the
exponent are ignored.

– The absolute value of the number does not exceed 9E+999999999.

Examples:

0.1E1000000000 is not numeric, because the exponent is too large.

9.1E+999999999 is not numeric, because the value is too large. If this
| number is the result of an arithmetic operation, an OVERFLOW occurs and
| the SYNTAX condition is raised.

♦ A number exceeds the lower limit if the following is true for any operand or
for the result:

exponent − number of fractional digits in the mantissa < −999999999

That is: the difference between the exponent and the number of fractional
digits in the mantissa is less than −999999999.

116 SAA REXX/370 User’s Guide and Reference

Note that trailing zeros in the fractional part of the mantissa are significant in
REXX.

| For example, 1.23E−999999998 causes an UNDERFLOW error and raises
| the SYNTAX condition because −999999998 − 2 is less than −999999999.

(The exponent relative to the trailing digit of the mantissa would be
−1000000000.)

 Chapter 11. Performance and Programming Considerations 117

118 SAA REXX/370 User’s Guide and Reference

Part 3. Customizing the Compiler and Library

This part is for the system programmer responsible for customizing the IBM
Compiler and Library for SAA REXX/370 or the Library for REXX/370 in REXX/VSE.

 Copyright IBM Corp. 1991, 2000 119

120 SAA REXX/370 User’s Guide and Reference

Chapter 12. Customizing the Compiler and Library under
MVS/ESA

This chapter describes the ways in which you can customize the IBM Compiler for
SAA REXX/370 and the IBM Library for SAA REXX/370 under MVS/ESA, when they
are installed or later. For instructions on how to install either the Compiler or the
Library under MVS/ESA, see the appropriate Program Directory.

Modifying the Cataloged Procedures Supplied by IBM
Modify the data set names and parameters as necessary for your system, and
store your cataloged procedures in SYS1.PROCLIB.

Customizing the REXXC EXEC
You can set up installation defaults for the compiler options by assigning the
required options to the variable instopts in the customization section of the REXXC
EXEC.

Other specifications that you can customize in this EXEC include:

� The UNIT specification and the size of data sets that are allocated by the
REXXC EXEC, if they are specified to receive output and do not already exist

� Data set attributes for these data sets (adhering to the limits shown in Figure 4
on page 22)

� The default data set names used for compiler output (see the routine MKDSN in
the REXXC EXEC)

� The text of messages issued by the EXEC

The defaults specified in the REXXC EXEC apply when users invoke the Compiler
from both the command line and from the foreground and background compilation
panels. The defaults do not apply when users use the cataloged procedures, or if
they invoke the Compiler directly.

Customizing the REXXL EXEC
Assign the default name of the data set where stubs in load module form reside to
variable g.ðlib in the customization section of the REXXL EXEC. This is also the
name of the data set where predefined stubs reside.

Other specifications that you can customize in this EXEC include:

� The member names of the predefined stubs

� The names of the predefined stubs that can be used as parameters of REXXL

� The UNIT specification and the size of data sets that are allocated by the
REXXL EXEC, if they are specified to receive output and do not already exist

� The data set attributes for these data sets

� The linkage editor and the linkage editor options

� The text of messages issued by the EXEC

 Copyright IBM Corp. 1991, 2000 121

 Message Repository
The Compiler, the Library, and the Alternate Library use the MVS message service
(MMS). Installation message files are provided for U.S. English (FANUMENU and
EAGUMENU) and Japanese (FANUMJPN and EAGUMJPN). For languages other
than U.S. English, Japanese, and Upper Case English, you must supply a version
of the installation message file with the appropriate translated message skeletons.
For information on how to translate messages and on how to activate these
translated messages, see the MVS/ESA Planning: Operations manual.

The Compiler and Library can run on MVS/ESA SP Version 3 systems that have
TSO/E Version 2 Release 4 installed. The Compiler and the Library use MVS
Message Services (MMS) to provide National Language Support (NLS) on MVS/ESA.
These services are not available on an MVS/ESA SP Version 3 system, therefore
only English is supported when running the Compiler or the Library on an MVS/ESA
SP Version 3 system.

Systems that use U.S. English or Upper Case English do not require the MMS. In
these cases, the installation message file for U.S. English is not used.

122 SAA REXX/370 User’s Guide and Reference

Chapter 13. Customizing the Compiler and Library under
CMS

This chapter describes the ways you can customize the IBM Compiler for SAA
REXX/370 and the IBM Library for SAA REXX/370 under CMS, either when they are
installed or later. For instructions on how to install either the Compiler or the
Library under CMS, see the appropriate Program Directory.

Customizing the Compiler Invocation Shells
Users can invoke the Compiler from a Compiler invocation shell. Two sample
Compiler invocation shells are supplied with the Compiler: a full-screen interactive
dialog, and an EXEC that operates in line mode. Customization tasks, which are
normally done immediately after installation but can also be done later, are:

� Modify the function of the invocation shells to suit your system’s requirements.

� Set up the installation defaults for the Compiler options.

Modifying the Function of the Compiler Invocation Shells
You can use the sample Compiler invocation shells as supplied. If you want to
customize them, modify the following files:

Compiler invocation EXEC: REXXC EXEC

Compiler invocation dialog: REXXD EXEC

REXXDX XEDIT

The shells are written in REXX and can be compiled.

The REXXCOMP Command
Use the REXXCOMP command if you plan to write your own compiler invocation
shell. The Compiler invocation shells use this command to invoke the Compiler.
The syntax of the REXXCOMP command is as follows:

REXXCOMP source-file-identifier [(options-list[)]]

where:

source-file-identifier Is the file identifier of the source program. The source file
identifier need not be fully specified. If the file type is not
specified, EXEC is used. If the file mode is not specified, it
defaults according to the CMS search order. The
REXXCOMP command does not translate the file identifier
to uppercase.

options-list Is a list of Compiler options to be used, separated by
blanks. The Compiler invocation shell must process any
user-defined defaults and explicitly selected options and
pass them to the REXXCOMP command. The default
values supplied by IBM are used for any options that are
not specified. For information on the syntax of the
Compiler options, see “Compiler Options” on page 27.

 Copyright IBM Corp. 1991, 2000 123

| Note: The enhanced form of the options must not be
| passed directly to the REXX compiler.

Setting Up Installation Defaults for the Compiler Options
The installation default values for the Compiler options are specified in the Compiler
invocation EXEC.

To set up the installation default values:

1. Read the descriptions of the Compiler options in “Compiler Options” on
page 27, and decide which options you want.

2. Edit the Compiler invocation EXEC (REXXC EXEC).

3. Find the place near the beginning of the file where the variable for the Compiler
options, InstOpts, is initialized. A comment box after the variable assignment
shows the default values supplied by IBM and the valid values.

4. In the assignment with the target InstOpts, specify any default values that you
want to change.

For the PRINT, CEXEC, OBJECT, and IEXEC options, you can use an equals (=)
sign as the file name or file mode; this specifies that the file name or file mode
are to be the same as the corresponding part of the source file identifier. You
can also use an asterisk at the beginning or end of the file type; this specifies
that part of the file type is to be the same as the corresponding part of the
source file type.

The following example shows a valid specification of installation defaults:

InstOpts='NOC(E) PRINT(= LIST =) TERM'

Note: This procedure does not change the defaults supplied by IBM in the
REXXCOMP module.

Customizing the Compiler Invocation Dialog
Some customization of the compiler invocation dialog may be required. REXXDX
XEDIT, the XEDIT macro that controls the dialog, contains a section in which you
can specify:

� The compilation command
� The GLOBALV group name for saving dialog information
� The commands for editing, printing, and invoking help
� The REXX file types that are acceptable
� The character set for file names and file types
� The naming convention for compiled and source EXECs

The installation defaults for compiler options are usually those that are specified in
REXXC.

124 SAA REXX/370 User’s Guide and Reference

Customizing the Library
This section describes how to:

� Define the DCSS
� Save the DCSS
� Select the version of the Library
� Customize the message repository to avoid the need for a read/write A-disk

It also lists the files needed to run compiled EXECs.

Defining the Library as a Physical Segment
The IBM Library for SAA REXX/370, which is required to run compiled REXX
programs, can be run in a DCSS.

For VM/SP:

1. Generate an entry for the Library shared segment in the DMKSNT system
name table. Figure 20 shows a sample DMKSNT entry.

EAGRTSEG NAMESYS SYSNAME=segname, (name of DCSS segment)
 SYSVOL=cccccc, (volume serial number)

SYSSTRT=(mm,nn), (starting location on SYSVOL)
SYSSIZE=192K, (required but ignored for a DCSS)
SYSPGCT=8ð, (number of pages)
SYSPGNM=(2432-2511), (page numbers, from-to)
SYSHRSG=(152,153,154,155,156), (segment numbers)
SYSCYL=, (null for count-key/fixed-block)
VSYSRES=, (null because VSYSADR=IGNORE)

 VSYSADR=IGNORE (must be IGNORE for a DCSS)

Figure 20. Sample DMKSNT Entry for the Compiler and Library DCSS

2. Ensure that the DCSS does not overlap any other DCSS or saved system. This
step involves an assembly of DMKSNT, a SYSGEN of the CP nucleus, and a
re-IPL of the VM system. For details, see the VM/SP: Administration manual.

For VM/ESA with 370 feature:

The recommended method of generating the Library shared segment is to create
an entry for the segment in the SNT OVERRIDE file and activate it with the
OVERRIDE command. (Alternatively, you can follow the previous instructions for
VM/SP.) Figure 21 shows a sample SNT override file.

 :DefSeg.segname /\ segment name \/
Volume=cccccc /\ volume serial number \/
SaveLoc=(mm,nn) /\ starting location on Volume \/
Size=192K /\ required but ignored \/
PageCount=8ð /\ number of pages \/
PageList=(2432-2511) /\ page numbers, from-to \/
SegList=(152-156) /\ segment numbers, from-to \/
IPLAddr=IGNORE /\ must be IGNORE for a SS \/

Figure 21. Sample SNT Override File for the Compiler and Library DCSS

 Chapter 13. Customizing the Compiler and Library under CMS 125

For VM/XA and VM/ESA with ESA feature:

1. Define the segment by using the DEFSEG command. For example:

DEFSEG EAGRTSEG 9ðð-94F SR

For details, see the VM/XA SP: Administration manual. The segment can be
above 16MB in virtual storage.

2. Ensure that the DCSS will not overlap any other DCSS or saved system.

Saving the Physical Segment
1. For an SP system, ensure that your virtual machine has class-E privilege and a

virtual storage size at least 0.5MB greater than the address of the end of the
segment.
For an XA system, round up this value to the nearest megabyte boundary.

2. Invoke the EAGDCSS EXEC with the DCSS name as an argument. If you do not
supply an argument, EAGRTSEG is used. While the segment is being saved,
the EAGRTPRC module is updated to contain the name of the DCSS.
Therefore, if the segment name you give it is different than the name contained
in the first EAGRTPRC module in the search order, this module must reside on a
disk accessed in read/write mode. For an explanation of how to load the
Library, see “Other Runtime Considerations” on page 53.

Defining the Library as a Logical Segment
With CMS Release 6 or a subsequent release, the Library can be contained in a
logical segment. Define the Library as follows:

1. Define the physical segment to CP as explained in “Defining the Library as a
Physical Segment” on page 125.

2. In file eagrtseg PSEG, define the physical segment contents by means of the
following record:

LSEGMENT NLSxxxxx LSEG

Note: Throughout this section, eagrtseg and xxxxx have the following
meaning:

eagrtseg Is the name of the segment

xxxxx Is AMENG for American English, or KANJI for Kanji.

3. In file NLSxxxxxLSEG , define the logical saved segment contents by means of
the following records:

MODULE EAGRTLIB (SYSTEM PERM NAME EAGRTPRC)
LANGUAGE EAG xxxxx

Note: The logical segment that contains a language information must be
called NLSxxxxxLSEG regardless of its contents.

4. Create a LANGMERG control file called EAGxxxxxLANGMCTL that contains the
following records:

ETMODE OFF
MESSAGE EAGUME

5. Enter the LANGMERG command to build EAGNLSTXTxxxxx :

LANGMERG xxxxx EAG

6. Enter the SEGGEN command to save the segment:

126 SAA REXX/370 User’s Guide and Reference

SEGGEN eagrtseg PSEG (MAP GEN

7. Access your system disk in read/write mode and copy the updated system
segment identification file SYSTEMSEGID .

To make the logical segment and its contents available, put the following SEGMENT
command into the SYSPROFEXEC :

SEGMENT LOAD NLSxxxxx

Note: If your installation has another logical segment named NLSxxxxxLSEG , you
should add the SEGMENTASSIGN command to this procedure to select the appropriate
physical segment from which the logical segment will be used:

SEGMENT ASSIGN NLSxxxxx eagrtseg

Selecting the Version of the Library
You may want to have multiple versions of the Library on one VM system. For
example, after applying a program temporary fix (PTF), you may want to try the new
version while all other users continue to use the old version.

The product is shipped with a library loader (EAGRTPRC MODULE), which does not
search for the Library in a DCSS and which assumes that the name of the Library is
EAGRTLIB MODULE.

You can customize the library loader to search for the Library in a named DCSS or
to suppress any DCSS search. You can also specify the name under which the
Library is searched for on disk. See “Other Runtime Considerations” on page 53
for a description of how the Library is loaded under CMS.

When the first compiled REXX program is run, the first library loader in the search
order loads the Library. If a new PTF is installed, you can:

1. Use the EAGCUST EXEC to generate a customized version of EAGRTPRC that
searches for the EAGRTNEW library and does not search the DCSS.

2. Copy the new EAGRTLIB MODULE to EAGRTNEW MODULE.

3. Place the customized version of EAGRTPRC ahead of the production version of
EAGRTPRC in the search order. Make sure that other users cannot access it.

4. IPL your CMS system.

Using the EAGCUST EXEC
With the EAGCUST EXEC you can:

� Query the current customization of EAGRTPRC.
� Specify a DCSS that is to be searched for the Library.
� Specify that the Library not be loaded from a DCSS.
� Specify the file name of the module that contains the Library.

These tasks are explained in the following paragraphs. The following definition
applies to all the syntax descriptions in those paragraphs:

file-identifier Is the file identifier of the file. The file name defaults to EAGRTPRC;
the file type defaults to MODULE; the file mode defaults to that of
the first file in the search order.

When you generate a customized version of EAGRTPRC, ensure that you have the
EAGRTPRC MODULE on a disk accessed in read/write mode.

 Chapter 13. Customizing the Compiler and Library under CMS 127

To query the current customization of EAGRTPRC, enter:

EAGCUST [file-identifier]

To specify that the Library is to be searched for in a DCSS, enter:

EAGCUST [file-identifier] (S segname

where:

segname Specifies the name of the DCSS that contains the Library to be
used.

To specify that the Library is not to be loaded from a DCSS, enter:

EAGCUST [file-identifier] (NOS

To specify the file name of the module that contains the Library, enter:

EAGCUST [file-identifier] (L libname

where:

libname Specifies the name of the module that contains the Library.

Customizing the Message Repository to Avoid a Read/Write A-Disk
The message repository is distributed as EAGUME TXTxxxxx, where xxxxx indicates
the language; it is AMENG (American English) in the base product. In this form, the
SET LANGUAGE command (issued when the Library is loaded) copies the message
repository to your A-disk and loads it from there. Your A-disk must be accessed in
read/write mode.

To avoid the need for an A-disk accessed in read/write mode when a compiled
REXX program is first invoked, change the message repository file type to TEXT.
See the description of the SET LANGUAGE command in the VM/SP CMS:
Command Reference manual for further explanation.

Note that the “NLS File Naming Convention SPE” must have been applied. The
associated VM APAR numbers are:

You can load the message repository into a DCSS that contains system-provided
language files, because the repository is loaded with the ALL option of the SET
LANGUAGE command when the Library is loaded. In this case, the message
repository need not be accessible on disk.

VM/SP Release 5 VM33407
VM/SP Release 6 VM33161
VM/XA SP Release 2 VM33398

Files Needed to Run Compiled REXX Programs
If neither the Library nor the message repository is in a DCSS, you need the
following files to run compiled REXX Programs:

128 SAA REXX/370 User’s Guide and Reference

If you need to work with compiled REXX cexecs (not object files) in MVS
background mode, you need the following files:

If you need to work with compiled REXX execs in MVS under TSO/E, you must
also have the following file:

If you need to use KANJI support, you must also have the following file:

Figure 22. Files Needed to Run Compiled REXX Programs

EAGUME TXTAMENG Message repository
EAGRTPRC MODULE Library loader
EAGRTLIB MODULE Library

EAGRTPRC Run time library
EAGUME English language

messages

IRXCMPTM Compiler programming
table

EAGUME Kanji message repository

 Chapter 13. Customizing the Compiler and Library under CMS 129

130 SAA REXX/370 User’s Guide and Reference

Chapter 14. Customizing the Library under VSE/ESA

This chapter describes the ways in which you can customize the Library for
REXX/370 in REXX/VSE Version 1 Release 1.

Modifying the Cataloged Procedures Supplied by IBM
Modify the data set names and parameters as necessary for your system, and
store your cataloged procedures in REXXLIB.PROCLIB.

Customizing the REXXL EXEC
The specifications that you can customize in this EXEC include:

� The member names of the predefined stubs

� The names of the predefined stubs that can be used as parameters of REXXL

� The text of messages issued by the EXEC

 Copyright IBM Corp. 1991, 2000 131

132 SAA REXX/370 User’s Guide and Reference

 Part 4. Messages

This part is intended to help you respond to messages issued by either the IBM
Compiler for SAA REXX/370 or the IBM Library for SAA REXX/370. It contains
explanations of the messages.

The messages are in three categories:

 Compilation messages

 Runtime messages

Library diagnostics messages (CMS)

Compilation messages are prefixed by the message identifier. Under MVS/ESA,
runtime messages include the identifier only if the TSO/E command PROFILE MSGID
ON has been issued. Under CMS, runtime messages include the identifier only if
the CP command SET EMSG ON has been issued. The format of the message
identifier is as follows:

┌──────────────────────── Compiler (FAN) or Library (EAG) product prefix
 │

│ ┌────────────────── Phase identifier (compilation),
│ │ REX (run time), or TRC (trace--CMS only)
│ │ ┌─────────── Message number

 │ │ │
│ │ │ ┌────── Severity code

 6 6 6 6
┌─────┬─────┬──────┬───┐
│ ppp │ mmm │ nnnn │ s │
└─────┴─────┴──────┴───┘

The severity codes are:

I Informational

W Warning

E Error

S Severe error

T Terminating error

In runtime messages, the first two digits of the message number are the REXX error
number, and the last two digits are the subcode. The subcode is used in
secondary messages to identify the error more specifically.

For example, EAGREX3300E is the main message for an error 33:

Error 33 running compiled program, line nn: Invalid expression result

Explanation: An expression result was encountered that is incorrect in its particular
context.

EAGREX3301I is a secondary message providing more information about error 33:

 Copyright IBM Corp. 1991, 2000 133

Invalid NUMERIC expression result

Explanation: The result of an expression on the NUMERIC instruction is incorrect. The
most common cause of this error is a DIGITS or FUZZ value that is not a whole number.

The categories of messages start on the following pages:

Chapter 15, Compilation Messages Page 135

Chapter 16, Runtime Messages Page 159

Chapter 17, Library Diagnostics Messages (CMS) Page 175

Note: Under CMS, diagnostic messages are issued by the Library when the
Library diagnostics are used. For information on Library diagnostics, see the IBM
Compiler and Library for SAA REXX/370: Diagnosis Guide.

134 SAA REXX/370 User’s Guide and Reference

 FANCON0050T � FANPAR0071W

 Chapter 15. Compilation Messages

FANCON0050T Source file cannot be opened

Explanation: The source file could not be opened.
You might have mistyped the file name, file type, or file
mode. This problem can also occur when you are
attempting to compile a program from a minidisk for
which you have read-only access, while someone with
read/write access to that minidisk has altered the
program so that it no longer exists in the same place on
the minidisk. Another possibility is that a lowercase file
identifier has been passed to the REXXCOMP command.

Your Response: Ensure that you specify the source
file correctly. If necessary, reaccess the minidisk on
which the program resides.

FANFMU0051T Source file cannot be read

Explanation: The source file could not be read from
the minidisk. This problem can occur when you are
compiling a program from a minidisk for which you have
read-only access, while someone with read/write access
to that minidisk has altered the program so that it no
longer exists in the same place on the minidisk.

Your Response: Reaccess the minidisk on which the
program resides.

FANCON0052T Compiler listing cannot be printed

Explanation: An error occurred when creating the
compiler listing. The most likely cause is insufficient
virtual storage.

Your Response: Obtain more free storage by
releasing a minidisk or SFS directory (to recover the
space used for the file directory) or by deleting a
nucleus extension. Alternatively, define a larger virtual
storage size for the virtual machine and re-IPL CMS.

FANTOK0053T Required comment not found in line
1

Explanation: The first line of the program does not
begin with a comment (delimited by /* and */) within the
specified margins setting.

Your Response: Start the program with a comment.

FANCOD0054T Virtual storage exhausted
FANCON0054T Virtual storage exhausted
FANFLA0054T Virtual storage exhausted
FANFMU0054T Virtual storage exhausted
FANGAO0054T Virtual storage exhausted
FANPAR0054T Virtual storage exhausted
FANPOP0054T Virtual storage exhausted
FANTOK0054T Virtual storage exhausted

Explanation: The Compiler was unable to get the
space needed for its work areas.

Your Response: Under MVS/ESA, increase your
region size.

Under CMS, obtain more free storage by releasing a
minidisk or SFS directory (to recover the space used for
the file directory) or by deleting a nucleus extension.
Alternatively, define a larger virtual storage size for the
virtual machine and re-IPL CMS.

FANCOD0055T Compiler error: Reason code nnn
FANCON0055T Compiler error: Reason code nnn
FANFLA0055T Compiler error: Reason code nnn
FANFMU0055T Compiler error: Reason code nnn
FANGAO0055T Compiler error: Reason code nnn
FANPAR0055T Compiler error: Reason code nnn
FANPOP0055T Compiler error: Reason code nnn
FANTOK0055T Compiler error: Reason code nnn

Explanation: An internal verification check in the
Compiler failed.

Your Response: Report any occurrence of this
message to your IBM representative. See the IBM
Compiler and Library for SAA REXX/370: Diagnosis
Guide for more information.

FANPAR0056I No comment found at start of
program

Explanation: The first line of the program does not
begin with a comment within the margins setting.

| Your Response: Start the program with a comment.

FANCON0060T Limit of 99999 source lines
exceeded

Explanation: Your program contains more source
lines than the limit of 99999. The limit includes the
lines in the source files, the lines in the included files,
and the lines resulting from the splitting of source lines
that contain %INCLUDE statements.

Your Response: Reduce the size of the program or
split it into several smaller programs.

FANPAR0071W Duplicate label: Only first
occurrence on line nn used

Explanation: The Compiler found more than one
occurrence of the same label. After a CALL or SIGNAL
instruction with this label as a target, control is always
passed to the first occurrence of the label - namely that
whose line number is shown in the message.

Your Response: Check whether one of the
occurrences of the label is a misspelling.

 Copyright IBM Corp. 1991, 2000 135

 FANGAO0072S � FANGAO0083S

FANGAO0072S Label not found

Explanation: The Compiler could not find the label
specified by a SIGNAL instruction or the label matching
an enabled condition. You might have mistyped the
label or forgotten to include it.

FANPAR0073S PROCEDURE not preceded by label

Explanation: The Compiler found a PROCEDURE
instruction that is not immediately preceded by a label.
The PROCEDURE instruction, if used, must be the first
instruction within a routine.

Your Response: Move the PROCEDURE instruction to
the beginning of the routine.

FANPAR0074W Label precedes THEN

Explanation: The Compiler found one or more labels
before a THEN clause. This causes a runtime error if
you use the label to transfer control to the THEN clause.

Your Response: If the label is for tracing, continue as
planned. Otherwise, remove the label.

FANPAR0075W Label precedes ELSE

Explanation: The Compiler found one or more labels
before an ELSE clause. This causes a runtime error if
you use the label to transfer control to the ELSE clause.

Your Response: If the label is for tracing, continue as
planned. Otherwise, remove the label.

FANPAR0076W Label precedes WHEN

Explanation: The Compiler found one or more labels
before a WHEN clause. This causes a runtime error if
you use the label to transfer control to the WHEN
clause.

Your Response: If the label is for tracing, continue as
planned. Otherwise, remove the label.

FANPAR0077W Label precedes OTHERWISE

Explanation: The Compiler found one or more labels
before an OTHERWISE clause. This causes a runtime
error if you use the label to transfer control to the
OTHERWISE clause.

Your Response: If the label is for tracing, continue as
planned. Otherwise, remove the label.

FANPAR0078W Label precedes END

Explanation: The Compiler found one or more labels
before an END clause. This causes a runtime error if
you use the label to transfer control.

Your Response: If the label is for tracing, continue as
planned. Otherwise, remove the label. If you used a
label because you wanted to stop the current iteration
of a DO loop, use the ITERATE instruction instead.

FANPAR0079S ":" not preceded by label name

Explanation: The Compiler found a colon that is not
used as a label terminator where it expects the
beginning of a clause. You might have used a colon in
a literal string without enclosing the string in quotes.

FANPAR0080S More than 16000
arguments/operands/templates

Explanation: A function invocation or a CALL has
more than 16000 arguments, or an EXPOSE has more
than 16000 operands, or a PARSE has more than
16000 templates.

Your Response: Reduce the number of
arguments/operands/templates.

FANPAR0081W Label before ITERATE

Explanation: The Compiler found one or more labels
before an ITERATE instruction. This causes a runtime
error if you use the label to transfer control to the
ITERATE instruction.

Your Response: If the label is for tracing, continue as
planned. Otherwise, remove the label.

FANPAR0082W Label before LEAVE

Explanation: The Compiler found one or more labels
before a LEAVE instruction. This causes a runtime error
if you use the label to transfer control to the LEAVE
instruction.

Your Response: If the label is for tracing, continue as
planned. Otherwise, remove the label.

| FANGAO0083S Label would match (line nn) if
| uppercased

| Explanation: The label referred to in a SIGNAL,
| SIGNAL VALUE, or SIGNAL ON clause is not defined.
| The label contains lowercase characters and would
| match the label defined in the indicated line if it were
| changed to uppercase.

| Your Response: Change the program such that the
| label reference is in uppercase.

136 SAA REXX/370 User’s Guide and Reference

 FANGAO0084W � FANPAR0163S

| FANGAO0084W Label corresponds to a BIF name

| Explanation: The label is equal to the name of a
| built-in function.

| Your Response: No response is required. However,
| always put a function name in quotes if it refers to a
| built-in function and specify it without quotes if it refers
| to an internal label.

FANPAR0090S Maximum nesting level of 999
exceeded

Explanation: You have exceeded the limit of 999
levels of nesting of control structures such as DO-END
and IF-THEN-ELSE and their components such as IF
clauses and ELSE clauses.

FANPAR0150S Mismatched DO control variable

Explanation: The variable specified on the END clause
does not match the control variable of the related DO
clause. The most common cause of this message is
incorrect nesting of loops.

Your Response: See the Do column of the source
listing, which shows the nesting level of each
instruction, to find the incorrectly matched DO
instruction.

FANPAR0151S Incomplete DO instruction: END not
found

Explanation: The Compiler has reached the end of
the source file without finding a matching END for an
earlier DO.

Your Response: See the Do column of the source
listing, which shows the nesting level of each
instruction, to find the incorrectly matched DO
instruction.

FANPAR0152S FOREVER not followed by
WHILE/UNTIL/";"

Explanation: The Compiler found incorrect data after
DO FOREVER. The only valid subkeywords after DO
FOREVER are WHILE and UNTIL.

| FANPAR0153S TO/BY/FOR found in a DO after DO
| FOREVER

Explanation: A BY, TO, or FOR subkeyword has been
found after FOREVER. The only valid subkeywords after
DO FOREVER are WHILE and UNTIL.

FANPAR0154S TO occurs more than once in a DO

Explanation: A DO clause contains more than one TO
phrase.

FANPAR0155S BY occurs more than once in a DO

Explanation: A DO clause contains more than one BY
phrase.

FANPAR0156S FOR occurs more than once in a DO

Explanation: A DO clause contains more than one
FOR phrase.

FANPAR0157S TO not followed by expression

Explanation: The Compiler expects an expression
after the TO subkeyword in a DO clause.

FANPAR0158S BY not followed by expression

Explanation: The Compiler expects an expression
after the BY subkeyword in a DO clause.

FANPAR0159S FOR not followed by expression

Explanation: The Compiler expects an expression
after the FOR subkeyword in a DO clause.

FANPAR0160S WHILE not followed by expression

Explanation: The Compiler expects an expression
after the WHILE subkeyword in a DO clause.

FANPAR0161S UNTIL not followed by expression

Explanation: The Compiler expects an expression
after the UNTIL subkeyword in a DO clause.

FANPAR0162S WHILE or UNTIL not allowed after
WHILE phrase

Explanation: The compiler found the subkeyword
WHILE or UNTIL in the WHILE phrase of a DO clause.

Your Response: If WHILE or UNTIL is the name of a
variable, change the name or use the VALUE built-in
function (for example, write VALUE('WHILE') instead of
WHILE). If it is meant as a constant string, enclose it in
quotes. If you intended to use both an UNTIL phrase
and a WHILE phrase, you must modify the program logic
to eliminate one of the phrases.

FANPAR0163S WHILE or UNTIL not allowed after
UNTIL phrase

Explanation: The Compiler found the subkeyword
WHILE or UNTIL in the UNTIL phrase of a DO clause.

Your Response: If WHILE or UNTIL is the name of a
variable, change the name or use the VALUE built-in
function (for example, write VALUE('WHILE') instead of
WHILE). If it is meant as a constant string, enclose it in
quotes. If you intended to use both an UNTIL phrase
and a WHILE phrase, you must modify the program logic
to eliminate one of the phrases.

 Chapter 15. Compilation Messages 137

 FANPAR0164S � FANPAR0255S

FANPAR0164S Unexpected END

Explanation: The Compiler has found more END
clauses in your program than DOs or SELECTs, or the
ENDs were placed so that they did not match the DOs or
SELECTs.

Your Response: Use the Do and Sel columns of the
source listing, which show the nesting level of each
instruction, to check the program’s structure.

FANPAR0180S Initial expression missing in
controlled DO loop

Explanation: The Compiler expects an expression to
be assigned to the control variable after the assignment
operator (=) in a DO.

FANPAR0181S Variable required to the left of "="

Explanation: The symbol to the left of the "=" in an
assignment begins with a period or digit, hence does
not represent a variable.

Your Response: If the clause was intended as a
command, enclose the expression in parentheses.

FANPAR0182S Assignment operator must not be
followed by another "="

Explanation: The Compiler found a second "="
immediately after the first one of an assignment.

Your Response: Delete one "=" to form a correct
assignment, or, if the clause was intended as a
command, enclose the expression in parentheses.

FANPAR0190S THEN expected

Explanation: The Compiler expects a THEN clause
after an IF or WHEN clause.

Your Response: Insert a THEN clause between the IF
or WHEN clause and the following clause.

FANPAR0191S IF not followed by expression

Explanation: The Compiler expects an expression in
an IF clause.

FANPAR0192S Unexpected THEN

Explanation: The Compiler has found a THEN that
does not match an IF clause or the WHEN clause of a
SELECT instruction.

FANPAR0193S Unexpected ELSE

Explanation: The Compiler has found an ELSE that
does not match a corresponding IF clause. This
situation can be caused by a DO-END in the THEN part
of a complex IF-THEN-END construct. For example:

 WRONG RIGHT

If a=b Then Do If a=b Then Do
 Say 'EQUALS' Say 'EQUALS'
 Exit Exit
Else End
Say 'NOT EQUALS' Else

Say 'NOT EQUALS'

FANPAR0194S Instruction expected after ELSE

Explanation: The next clause after ELSE (not counting
label clauses) must be an instruction or the start of an
instruction. The Compiler found instead a
non-instruction clause (such as END) or the end of the
source program.

Your Response: Remove the ELSE or insert an
instruction. As an explicit indication that no action is
needed in the ELSE case, you can use a NOP
instruction.

FANPAR0250I No OTHERWISE found in a SELECT
instruction ending in line nn

Explanation: The Compiler found a SELECT instruction
that does not contain an OTHERWISE phrase. This
causes a runtime error if all WHEN expressions are
found to be false.

Your Response: If it is possible that none of the
WHEN expressions will be true, insert an OTHERWISE
that handles this condition.

FANPAR0253S SELECT not followed by ";" (WHEN
follows instead)

Explanation: The Compiler expects a semicolon or
implied semicolon between a SELECT and the first
WHEN.

Your Response: Insert a semicolon or begin a new
line between the SELECT and WHEN.

FANPAR0254S Incomplete SELECT instruction: END
not found

Explanation: The Compiler has reached the end of
the source file and has found a SELECT without a
matching END.

Your Response: See the Sel column of the source
listing, which shows the nesting level of each
instruction.

FANPAR0255S WHEN expected

Explanation: The Compiler expects a WHEN after a
SELECT.

Your Response: Insert one or more WHEN clauses
after the SELECT.

138 SAA REXX/370 User’s Guide and Reference

 FANPAR0256S � FANPAR0278S

FANPAR0256S WHEN/OTHERWISE/END expected

Explanation: The Compiler expects a series of
WHENs, an OTHERWISE, and a terminating END within a
SELECT instruction. This message is issued when any
other instruction is found. The error can be caused by
forgetting to enclose the list of instructions following a
THEN within a DO and END. For example:

 WRONG RIGHT

Select Select
When a=b Then When a=b Then Do
Say 'A equals B' Say 'A equals B'

 Exit Exit
 Otherwise Nop End
 End Otherwise Nop
 End

FANPAR0257S WHEN not followed by expression

Explanation: The Compiler expects an expression
after the WHEN in a SELECT instruction.

FANPAR0258S Unexpected WHEN

| Explanation: The Compiler has found a WHEN clause
| that does not match a SELECT clause. You might have

accidentally enclosed the WHEN in a DO-END construct
by forgetting the matching END.

Your Response: Check whether the END is missing.

FANPAR0259S Unexpected OTHERWISE

Explanation: The Compiler has found an OTHERWISE
| clause that does not match a SELECT clause. You

might have accidentally enclosed the OTHERWISE in a
DO-END construct by forgetting the matching END.

Your Response: Check whether the END is missing.

FANPAR0260S Instruction expected after THEN

Explanation: The next clause after THEN (not counting
label clauses) must be an instruction or the start of an
instruction. The Compiler found instead a
non-instruction clause (such as END) or the end of the
source program.

Your Response: Remove the THEN or insert an
instruction. As an explicit indication that no action is
needed in the THEN case, you can use a NOP
instruction.

FANPAR0270S Unexpected data in template

| Explanation: The Compiler found unexpected data, for
| example, a symbol that is neither a number nor a
| variable, within a parsing template.

FANPAR0271S "+" not followed by a whole number
or "("

Explanation: The Compiler found an incorrect
positional pattern in a parsing template: a plus sign
must be followed by a whole number or by the name of
a variable in parentheses.

FANPAR0272S "−" not followed by a whole number
or "("

Explanation: The Compiler found an incorrect
positional pattern in a parsing template: a minus sign
must be followed by a whole number or by the name of
a variable in parentheses.

FANPAR0273S "(" not followed by a variable

Explanation: The Compiler found an incomplete
pattern in a parsing template: an open parenthesis
must be followed by the name of a variable and a close
parenthesis.

FANPAR0274S PARSE not followed by a valid
subkeyword

Explanation: The Compiler found a PARSE keyword
that is not followed by the UPPER subkeyword or by one
of the subkeywords ARG, EXTERNAL, LINEIN, NUMERIC,
PULL, SOURCE, VALUE, VAR, or VERSION.

FANPAR0275S PARSE UPPER not followed by a
valid subkeyword

Explanation: The Compiler found a PARSE UPPER
that is not followed by one of the subkeywords ARG,
EXTERNAL, LINEIN, NUMERIC, PULL, SOURCE, VALUE,
VAR, or VERSION.

FANPAR0276S PARSE VAR not followed by a
variable

Explanation: The Compiler expects the name of a
variable at this position in a PARSE VAR instruction.

FANPAR0277S Incomplete PARSE VALUE: WITH not
found

Explanation: The Compiler found a PARSE VALUE
instruction that does not contain a WITH subkeyword.

FANPAR0278S Variable expected

Explanation: The Compiler found something other
than the name of a variable in the operand list of an
UPPER instruction. The variables can be simple or
compound, but not stems.

 Chapter 15. Compilation Messages 139

 FANPAR0279S � FANPAR0391S

| FANPAR0279S Variable pattern not terminated by
| ")"

Explanation: The Compiler found an open parenthesis
in a parsing template but no corresponding close
parenthesis. Each open parenthesis must be followed
by the name of a variable and a close parenthesis.

Your Response: Ensure that you close all
parentheses.

FANPAR0280S Unexpected ")" in template

Explanation: In a parsing template, the Compiler
found a close parenthesis which does not match an
open parenthesis.

FANPAR0281S Unexpected ":" in template

Explanation: In a parsing template, a colon was
found. Only variable names, patterns, and periods are
accepted.

FANPAR0282S Unexpected operator in template

Explanation: An operator, such as ¬ or ││ was found.
Only variable names, patterns, and periods are
accepted.

FANPAR0283S DROP list must not be empty

Explanation: DROP must be followed by at least one
variable name or at least one variable name in
parentheses.

FANPAR0284S UPPER list must not be empty

Explanation: The UPPER instruction needs at least
one variable as an operand. The variable must be
simple or compound. No stem variables are accepted.

FANPAR0285W Variable name WITH found on
PARSE VAR

Explanation: A WITH was found after the variable
operand of a PARSE VAR. The WITH is assumed to be
a variable.

Your Response: None if you intended WITH to be a
variable. Otherwise, remove it.

FANPAR0290S Expression expected after OPTIONS

Explanation: The keyword OPTIONS must be followed
by an expression.

Your Response: If you want to write an OPTIONS
instruction, you must add an expression. If you want to
use OPTIONS as a command, do one of the following:

� Enclose OPTIONS in parentheses or quotes.

� Prefix OPTIONS with a null string.

� Choose another name.

FANPAR0350S CALL not followed by routine
name/ON/OFF

Explanation: The Compiler expects the name of a
routine, or ON with a condition name, or OFF with a
condition name at this position in a CALL instruction.

FANPAR0352S CALL ON/OFF not followed by
ERROR/FAILURE/HALT/NOTREADY

Explanation: The Compiler expects one of the
conditions ERROR, FAILURE, HALT, or NOTREADY at this
position in a CALL ON or CALL OFF instruction.

FANPAR0353S NAME not followed by routine name

Explanation: The Compiler expects the name of a
routine at this position in a CALL ON instruction. This
error can occur if the routine name is in quotes.

FANPAR0354S ";" or subkeyword NAME expected

Explanation: The Compiler found incorrect data at the
end of a CALL ON instruction. The only subkeyword
accepted after the condition name is NAME.

FANPAR0371S No stem permitted in UPPER
instruction

Explanation: The Compiler found a stem in an UPPER
instruction. A stem cannot be converted to uppercase.

Your Response: Issue an UPPER instruction for each
variable referred to by the stem.

FANPAR0381S INTERPRET not followed by
expression

Explanation: The Compiler found an INTERPRET
instruction that does not contain an expression to be
interpreted.

FANPAR0390S LEAVE not valid outside repetitive
DO loop

Explanation: The Compiler found a LEAVE instruction
outside a repetitive DO loop.

FANPAR0391S ITERATE not valid outside repetitive
DO loop

Explanation: The Compiler found an ITERATE
instruction outside a repetitive DO loop.

140 SAA REXX/370 User’s Guide and Reference

 FANPAR0392S � FANPAR0472S

FANPAR0392S Variable does not match control
variable of an active DO loop

Explanation: The symbol specified on a LEAVE or
ITERATE instruction does not match the control variable
of a currently active DO loop. You might have mistyped
the name.

FANPAR0393S Name of DO control variable
expected

Explanation: The Compiler expects the name of the
control variable of a currently active DO loop after a
LEAVE or ITERATE instruction. Some other characters
were found.

FANPAR0394S ";" expected: corresponding DO not
controlled by a variable

Explanation: An END clause specifies a symbol, but
the related DO instruction does not have a control
variable. The most common cause of this message is
incorrect nesting of DO groups.

FANPAR0450S NUMERIC not followed by
DIGITS/FORM/FUZZ

Explanation: The Compiler expects one of the
subkeywords DIGITS, FORM, or FUZZ after the keyword
NUMERIC.

FANPAR0451S NUMERIC FORM not followed by
expression/valid subkeyword/ ";"

Explanation: The Compiler found incorrect data at the
end of a NUMERIC FORM. The only data recognized
after FORM is an expression or one of the subkeywords
VALUE, SCIENTIFIC, or ENGINEERING.

FANPAR0452S NUMERIC FORM VALUE not
followed by expression

Explanation: The Compiler expects an expression
after the subkeyword VALUE.

| Your Response: Supply the missing expression or, if
| you are using VALUE as the name of a variable, enclose
| it in parentheses or write VALUE VALUE.

FANPAR0460S PROCEDURE not followed by
EXPOSE or ";"

Explanation: The Compiler found incorrect data in a
PROCEDURE instruction. The only subkeyword
recognized on a PROCEDURE instruction is EXPOSE.

FANPAR0465W PARSE LINEIN not supported under
MVS/ESA

Explanation: PARSE LINEIN is supported only under
VM/ESA Release 2.1 and subsequent releases. The
SYNTAX condition is raised if the program runs under
systems other than VM/ESA Release 2.1 or subsequent
releases.

FANPAR0466W NOTREADY condition not supported
under MVS/ESA

Explanation: The NOTREADY condition is supported
only under VM/ESA Release 2.1 and subsequent
releases. The SYNTAX condition is raised if the
program runs under systems other than VM/ESA
Release 2.1 or subsequent releases.

FANPAR0469S SIGNAL VALUE not followed by
expression

Explanation: The Compiler expects an expression
after the subkeyword VALUE.

Your Response: Supply the missing expression or, if
| you are using VALUE as the name of a variable, enclose
| it in parentheses or write VALUE VALUE.

FANPAR0470S SIGNAL not followed by label name
or VALUE/ON/OFF

Explanation: After the keyword SIGNAL the compiler
expects one of the subkeywords ON, OFF or VALUE, or
a symbol, literal string or expression for a label. The
end of the clause (or source program) was found
instead.

Your Response: If you intended to use SIGNAL as a
command, enclose it in quotes or parentheses.
Otherwise complete the instruction or delete the clause.

FANPAR0471S SIGNAL ON/OFF not followed by
condition name

Explanation: The Compiler expects the name of a
condition (ERROR, FAILURE, HALT, NOTREADY,
NOVALUE, or SYNTAX) after the subkeyword ON or OFF.

Your Response: Supply the missing condition or, if
you are using ON or OFF as a label, write it in
uppercase and enclose it in quotes.

FANPAR0472S NAME not followed by label name

Explanation: The subkeyword NAME in a SIGNAL ON
instruction must be followed by a symbol. It is not
permitted at this point to enclose the label name in
quotes or to obtain it by evaluating an expression.

 Chapter 15. Compilation Messages 141

 FANPAR0490S � FANPAR0580S

FANPAR0490S ADDRESS VALUE not followed by
expression

Explanation: The Compiler expects an expression
after the subkeyword VALUE.

FANPAR0550W Unsupported TRACE options will
default to OFF

Explanation: REXX programs that have been compiled
with Compiler option NOTRACE support no TRACE
options other than OFF. The Compiler has found a
TRACE instruction or a use of the TRACE built-in function
which might require a different option.

Your Response: Compile your program with Compiler
option TRACE or use an interpreter if you wish to trace.

FANPAR0560S Left operand missing

Explanation: The Compiler found an expression that
does not have a term before the operator. Only the
following can be used as prefix operators:

+ − ¬ \

FANPAR0561S Right operand missing

Explanation: The Compiler found an expression that
does not have a term after the operator.

FANPAR0562S Prefix operator not followed by
operand

Explanation: The Compiler found an expression that
does not have a term after a prefix operator.

FANPAR0564S "(" not followed by an expression or
subexpression

Explanation: The Compiler expects an expression or
subexpression after an open parenthesis, unless it is
the open parenthesis of a function invocation.

FANPAR0565S Unmatched "(" in expression

Explanation: The Compiler found an unmatched open
parenthesis in an expression. This message is also
displayed if a single parenthesis is included in a
command without being enclosed in quotes. For
example, the instruction:

COPY A B C A B D (REP

should be written as:

COPY A B C A B D '('REP

FANPAR0566S Unexpected "," in expression

Explanation: The Compiler found a comma outside a
routine invocation. This message is also displayed if a
comma is included in a character expression without
being enclosed in quotes. For example, the instruction:

Say Enter A, B, or C

should be written as:

Say 'Enter A, B, or C'

FANPAR0567S Unexpected ")" in expression

Explanation: The Compiler found too many close
parentheses in an expression.

FANPAR0568S Unexpected ":" in expression

Explanation: The Compiler found a colon in an
expression. This message is also displayed if a colon
is included in a character expression without being
enclosed in quotes. For example, the instruction:

Say Enter address: city and state

should be written as:

Say 'Enter address: city and state'

FANPAR0569S Invalid operator

Explanation: The Compiler found an incorrect
sequence of operator tokens in an expression. There
might be two adjacent operators with no data
in-between, or the characters might be in the wrong
order, or special characters might be included in a
character expression without being enclosed in quotes.
For example, the instruction:

LISTFILE \ \ \

should be written as:

'LISTFILE \ \ \'

or, if LISTFILE is a variable, as:

LISTFILE '\ \ \'

FANPAR0570S Invalid use of NOT operator

Explanation: The Compiler found a logical NOT
operator (¬ or \), which is not part of a longer
(comparison) operator, after a term in an expression.
You might have meant to write a comparison operator
but omitted the =, < or > characters.

Your Response: If you intend to concatenate the
result of a NOT operation to the result of the preceding
term, write an explicit concatenation operator (||) before
the NOT operator. If you intend a comparison, append
one or two =, < or > characters to the NOT operator.

FANPAR0580S Variable name longer than 250
characters

Explanation: A symbol used as a variable name is
longer than the limit of 250 characters.

Your Response: Reduce the length of the variable
name.

142 SAA REXX/370 User’s Guide and Reference

 FANPAR0581S � FANPAR0597S

FANPAR0581S Invalid hexadecimal constant

Explanation: Hexadecimal constants cannot have
leading or trailing blanks and can have embedded
blanks only at byte boundaries.

The following are all valid hexadecimal constants:

'13'x
'A3C2 1c34'x
'1de8'x

Your Response: If you want to have a literal (quoted)
string followed by the symbol X, but you do not want it
to be interpreted as a hexadecimal constant, you must
insert a concatenation operator (||) between the string
and the symbol X. Otherwise, ensure that no digits are
mistyped and remove any blanks that do not
correspond to byte boundaries.

FANPAR0582S Resulting string longer than 250
characters

Explanation: The Compiler tried to convert a binary
string, a hexadecimal string, or a literal string into
internal format. The length of the resulting string
exceeds the limit of 250 characters. Binary strings are
limited to 2000 binary digits, hexadecimal strings are
limited to 500 hexadecimal digits, and literal strings are
limited to 250 characters.

This error can be caused by a missing ending quote or
by a single quote in a string. For example, the string
'don't' must be written as 'don''t' or "don't".

Your Response: To specify a string longer than 250
characters, concatenate two or more smaller strings,
each with fewer than 250 characters.

FANGAO0583S Environment name longer than 8
characters

Explanation: The Compiler found an environment
name longer than the limit of 8 characters specified on
an ADDRESS instruction.

Your Response: Correct the environment name.

FANPAR0584S Name longer than 250 characters

Explanation: A symbol used as a label is longer than
the limit of 250 characters.

Your Response: Reduce the length of the label.

FANPAR0590S Invalid binary constant

Explanation: The Compiler has found a literal string
that is immediately followed by a symbol consisting only
of the letter B, and tries to interpret it as a binary
constant. No leading or trailing blanks are allowed in
the string. Blanks can occur only at four-digit
boundaries.

Your Response: If you want to have a literal (quoted)
string followed by the symbol B, but you do not want it
to be interpreted as a binary constant, you must insert a
concatenation operator (||) between the string and the
symbol B. Otherwise, ensure that no digits are
mistyped and remove any blanks that do not
correspond to four-digit boundaries.

FANPAR0591S EXPOSE list must not be empty

Explanation: A PROCEDURE instruction contains the
subkeyword EXPOSE but no further data. EXPOSE must
be followed by at least one variable name or one
variable name in parentheses.

Your Response: If you wish to expose no variables,
omit the subkeyword EXPOSE.

FANPAR0592S "=" not followed by a whole number
or "("

Explanation: The Compiler found an incorrect
positional pattern in a parsing template: an equal sign
must be followed by a whole number or by the name of
a variable in parentheses.

FANPAR0593S Unmatched "(" in DROP list

Explanation: After each open parenthesis in a DROP
instruction there must be the name of a variable and a
close parenthesis.

FANPAR0594S Unmatched "(" in EXPOSE list

Explanation: After each open parenthesis in the
EXPOSE list of a PROCEDURE instruction there must be
the name of a variable and a close parenthesis.

FANPAR0595S Variable expected after "(" in DROP
list

Explanation: After each open parenthesis in a DROP
instruction there must be the name of a variable and a
close parenthesis.

FANPAR0596S Variable expected after "(" in
EXPOSE list

Explanation: After each open parenthesis in the
EXPOSE list of a PROCEDURE instruction there must be
the name of a variable and a close parenthesis.

FANPAR0597S Variable or "(" expected in DROP list

Explanation: Each entry in the list following DROP
must be the name of a variable optionally enclosed in
parentheses. The Compiler has found some other
token, such as a symbol that does not begin with a
letter.

 Chapter 15. Compilation Messages 143

 FANPAR0598S � FANGAO0657S

FANPAR0598S Variable or "(" expected in EXPOSE
list

Explanation: Each entry in the EXPOSE list of a
PROCEDURE instruction must be the name of a variable
optionally enclosed in parentheses. The Compiler has
found some other token, such as a symbol that does
not begin with a letter.

FANPAR0599S TRACE VALUE not followed by
expression

Explanation: The Compiler expects an expression
after the subkeyword VALUE.

Your Response: Supply the missing expression or, if
you are using VALUE as the name of a variable, enclose
it in parentheses or write VALUE VALUE.

FANGAO0600W Third argument of VALUE built-in
function not supported

Explanation: VALUE built-in functions with three
parameters are only supported on CMS.

FANPAR0601W Invalid DBCS data in comment

Explanation: The first instruction of the program is
OPTIONS 'ETMODE', and the Compiler has detected an
invalid DBCS string in a comment. The number of bytes
between shift-out and shift-in is odd.

Your Response: Correct the comment.

FANPAR0648S Invalid data after SELECT

Explanation: The Compiler expects a semicolon or
implied semicolon after a SELECT.

Your Response: Remove the incorrect data after the
SELECT, and insert a semicolon or begin a new line
when appropriate.

FANPAR0650S Invalid data at end of clause

Explanation: The Compiler has found extra tokens
after those allowed in the clause. You might have
omitted a semicolon or not have started a new line after
the offending clause.

Your Response: Insert a semicolon if necessary, or
put the next clause into a new line.

FANPAR0651S Clause not completed before end of
program

Explanation: The Compiler reached the end of the
source program without finding the end of the last
clause. This often occurs because of some other error,
such as an unmatched start of comment or an invalid
DBCS string.

Your Response: Terminate all quoted strings,
comments and DBCS strings correctly. Do not use a
continuation comma on the last line of the program.

FANPAR0652S Unmatched quote

Explanation: The Compiler reached the end of the
source program without finding the close quote for a
literal string.

Your Response: Add the close quote.

FANPAR0653S Unmatched shift-out character

Explanation: The Compiler found a character string or
a comment that has unmatched shift-out/shift-in pairs
(that is, a shift-out character without a shift-in character)
with OPTIONS 'ETMODE' in effect.

Your Response: Supply the appropriate shift-in
character.

FANPAR0654S Unmatched "/*"

Explanation: The Compiler reached the end of the
source program without finding the ending */ for a
comment.

Your Response: Add the missing */ characters.

FANPAR0655S Invalid character in program

Explanation: The Compiler found an unexpected
character outside a literal (quoted) string or comment
that is not a blank or one of the following:

A-Z a-z ð-9 (Alphanumerics)

@ # $ ¢ . ? ! _ (Name Characters)

& \ () - + = \ ¬ ' " ; : < , > / | %
 (Special Characters)

Any DBCS character when OPTIONS 'ETMODE' is in effect

In case the program was imported from another system:
Verify that the translation of the characters was correct.

FANPAR0656E Invalid DBCS data in string

Explanation: A character string that has an odd
number of bytes between the shift-out/shift-in characters
was encountered with OPTIONS 'ETMODE' in effect.

Your Response: Correct the character string.

FANGAO0657S Invalid whole number

Explanation: The Compiler found a parsing positional
pattern or the right-hand term of the exponentiation (**)
operator that did not evaluate to a whole number within
the current setting of NUMERIC DIGITS, or that was
greater than the limit, for these uses, of 999 999 999.

144 SAA REXX/370 User’s Guide and Reference

 FANGAO0658S � FANENV0673S

FANGAO0658S Logical value not 0 or 1

Explanation: The Compiler found a logical expression
that does not result in a 0 or 1. Any term operated on
by a logical operator (¬, \, |, &, or &&) must result in a 0
or 1. The expression in an IF clause, in a WHEN
clause, or in a WHILE or UNTIL phrase must result in a 0
or 1.

FANGAO0659S Nonnumeric term

Explanation: The Compiler found a nonnumeric term
in an arithmetic expression or as an argument of a
built-in function, or in a DO clause.

FANPAR0660S Program ends with ","

Explanation: The last line of the source file ends with
the line continuation character (a comma).

FANPAR0661S Invalid DBCS data in symbol

Explanation: With OPTIONS 'ETMODE' in effect invalid
DBCS data in a symbol was detected. DBCS data in a
symbol is considered invalid if:

A shift-in character immediately follows a shift-out
character

A shift-out character immediately follows a shift-in
character

The number of bytes between any shift-out
character and shift-in character is odd

Any byte between shift-out character and shift-in
character has a value outside the range '41'X
through 'FE'X.

Your Response: Correct the symbol.

FANPAR0662S Unmatched shift-out character in
symbol

Explanation: With OPTIONS 'ETMODE' in effect, a
symbol that has shift-out and possibly shift-in characters
was detected. The shift-in character for symbols must
be defined on the same line as the symbol.

Your Response: Correct the symbol.

FANENV0663S Recursive %INCLUDE directives not
allowed

Explanation: A sequence of %INCLUDE directives was
detected that lead to an already included file. This
would cause an endless include activity. For example,
an included file contains a %INCLUDE directive
specifying itself; or, file A includes file B which in turn
includes file A. The Compiler breaks the recursion and
does not execute any more %INCLUDEs within that
recursion.

Your Response: Correct the erroneous %INCLUDE
directives.

| FANENV0669T fileid output file ID must not be
| identical with %INCLUDE file ID

| Explanation: The file name, file type, and file mode of
| one of the %INCLUDE files is equal to the file name,
| file type, and file mode of one of the output files. The
| value of fileid shows which output file ID is wrong:

| CEXEC refers to the compiled EXEC.
| IEXEC refers to the expanded IEXEC output.
| OBJECT refers to the TEXT file.
| PRINT refers to the compiler listing.

| Your Response: Specify a different file ID for the
| output file.

FANENV0670S Compiler option not recognized:
option

Explanation: The command used to invoke the
Compiler contains incorrect data in the options string.
The name of an option might be mistyped.

Your Response: Invoke the Compiler again with a
valid options list.

FANENV0671T No "(" found to mark start of
compiler options

Explanation: The command used to invoke the
Compiler did not contain an open parenthesis to mark
the start of the options list.

Your Response: Reissue the command with an open
parenthesis between the source file identifier and the
options list.

FANENV0672T File name, file type, or file mode too
long: fileid-part

Explanation: The identifier you specified for the
source file or for one of the output files is incorrect.
Either the file name or the file type is longer than 8
characters or the file mode is longer than 2 characters.

Your Response: Invoke the Compiler again with a
valid file identifier.

FANENV0673S LINECOUNT value not 0 or a whole
number in the range 10-99: value

Explanation: The value of the LINECOUNT (LC)
compiler option is not 0 or a whole number in the range
10 through 99.

Your Response: Invoke the Compiler again with a
valid value for the LINECOUNT option.

 Chapter 15. Compilation Messages 145

 FANENV0674T � FANCON0686T

FANENV0674T option: no ")" found after parameter

Explanation: A keyword parameter in a compiler
option does not contain a close parenthesis.

Your Response: Add the missing close parenthesis.

FANENV0675T No file ID for REXX source found

Explanation: The command used to invoke the
Compiler did not specify a source file.

Your Response: Invoke the Compiler again with a
source file identifier.

FANENV0676T option output file ID must not be
identical with source file ID

Explanation: The file name, file type, and file mode of
one of the output files is the same as the file name, file
type, and file mode specified for the source file. The
value of option indicates which output file identifier is in
error: CEXEC refers to the compiled EXEC, IEXEC refers
to the expanded (IEXEC) output, OBJECT refers to the
TEXT file, and PRINT refers to the compiler listing.

Your Response: Specify a different file identifier for
the output file.

FANENV0677S Option option ignored because of
missing ")"

Explanation: A compiler option is ignored because a
previous keyword parameter in a compiler option does
not contain a close parenthesis.

Your Response: Add the missing close parenthesis.

FANENV0678T option1/option2 output file IDs must
not be identical

Explanation: The same file name, file type, and file
mode has been specified for more than one of the
output files. The values of option1 and option2 indicate
which output file identifiers are identical: CEXEC refers
to the compiled EXEC, IEXEC refers to the expanded
(IEXEC) output, OBJECT refers to the TEXT file, and
PRINT refers to the compiler listing.

Your Response: Specify a unique file identifier for
each output file.

FANENV0679T Invalid file ID: fileid

Explanation: The fileid specified for the source file or
one of the output files is not a valid CMS file name. The

| fileid contains one or more asterisks or the file mode is
| not in the range A0 to Z6 or A to Z.

Your Response: Invoke the compiler again with a
valid CMS fileid.

FANFMU0680T Error opening CEXEC file

Explanation: The Compiler could not open the
compiled EXEC file specified in the CEXEC compiler
option. This problem can occur if your virtual machine
does not have read/write access to the minidisk.

Your Response: Use a minidisk to which your virtual
machine has read/write access.

FANFMU0681T Error opening OBJECT file

Explanation: The Compiler could not open the TEXT
file specified in the OBJECT compiler option. This
problem can occur if your virtual machine does not have
read/write access to the minidisk.

Your Response: Use a minidisk to which your virtual
machine has read/write access.

FANFMU0682T Error writing to CEXEC file

Explanation: An error occurred when writing to the
compiled EXEC file specified in the CEXEC compiler
option. The most likely cause of this message is a full
disk.

Your Response: Obtain more free disk space.

FANFMU0683T Error closing CEXEC file

Explanation: The Compiler could not close the
compiled EXEC file specified in the CEXEC compiler
option.

Your Response: If the problem persists, notify your
system support personnel.

FANFMU0684T Error writing to OBJECT file

Explanation: An error occurred when writing to the
object file specified in the OBJECT compiler option. The
most likely cause of this message is a full disk.

Your Response: Obtain more free disk space.

FANFMU0685T Error closing OBJECT file

Explanation: The Compiler could not close the TEXT
file specified in the OBJECT compiler option.

Your Response: If the problem persists, notify your
system support personnel.

FANCON0686T Error closing source file

Explanation: The Compiler could not close the source
file.

Your Response: If the problem persists, notify your
system support personnel.

146 SAA REXX/370 User’s Guide and Reference

 FANLIS0687T � FANENV0697T

FANLIS0687T Error opening file or virtual printer for
PRINT output

Explanation: The Compiler could not open the
compiler listing specified in the PRINT compiler option.
This problem can occur if your virtual machine does not
have read/write access to the minidisk, if the virtual
printer is not operational, or if the Compiler was unable
to get the space needed for the work areas.

Your Response: Use a minidisk to which your virtual
machine has read/write access, direct the print output to
the virtual printer, make the virtual printer operational, or
obtain more storage by releasing a minidisk or SFS
directory, or by deleting a nucleus extension.
Alternatively, define a larger virtual storage size for the
virtual machine and re-IPL CMS.

FANLIS0688T Error writing to file or virtual printer
for PRINT output

Explanation: An error occurred when writing to the
compiler listing file specified in the PRINT compiler
option. The most likely causes of this error are a full
disk, or a non-operational virtual printer.

Your Response: Obtain more free disk space, or use
the PRINT compiler option to send the file to another
disk or to the virtual printer, or make the virtual printer
operational.

FANCON0689T Error closing file or virtual printer
for PRINT output

FANLIS0689T Error closing file or virtual printer for
PRINT output

Explanation: The Compiler listing specified in the
PRINT compiler option could not be closed. The most
likely cause of this message is that a release-storage
request has failed.

Your Response: If the problem persists, notify your
system support personnel.

FANENV0690T Source file cannot be opened: record
length greater than 65535

Explanation: The source file could not be opened,
because the record length is greater than 65 535 bytes.

Your Response: Reduce the record length of the
source file.

FANENV0691W CEXEC file type truncated: source
file type has 8 characters

Explanation: The file type of the compiled EXEC,
which is C concatenated with the source file type, was
truncated because it was longer than 8 characters.

Your Response: Either specify a valid file type for the
compiled EXEC on the CEXEC option or change the file
type of the source file.

FANENV0692S No blank between ")" and next
option; next option ignored

Explanation: There is no blank between the close
parenthesis of a keyword parameter in a compiler
option and the next compiler option. The next compiler
option is ignored.

Your Response: Insert a blank between the compiler
options.

FANENV0693T DUMP value not a whole number in
the range 0-2047: value

Explanation: The value of the DUMP (DU) compiler
option is not a whole number in the range 0 through
2047.

Your Response: Invoke the Compiler again with a
valid value for DUMP.

FANENV0694T Incorrect RECFM value for ddname

Explanation: See “Data Sets Required by the
Compiler (MVS/ESA)” on page 21 for a list of the valid
RECFM values.

Your Response: Specify an appropriate output data
set.

FANENV0695T Incorrect BLKSIZE value for ddname

Explanation: See “Data Sets Required by the
Compiler (MVS/ESA)” on page 21 for a list of the valid
BLKSIZE values.

Your Response: Specify an appropriate output data
set.

FANENV0696T Incorrect LRECL value for ddname

Explanation: See “Data Sets Required by the
Compiler (MVS/ESA)” on page 21 for a list of the valid
LRECL values.

Your Response: Specify an appropriate output data
set.

FANENV0697T DSORG=PO but no member name
given: ddname

Explanation: The dsname associated with the
ddname corresponds to a partitioned data set, but no
member name has been given.

Your Response: Either specify a member name or
correct the dsname to correspond to a sequential data
set.

 Chapter 15. Compilation Messages 147

 FANENV0698T � FANENV0712T

FANENV0698T DSORG=PS but member name given:
ddname

Explanation: The dsname associated with the
ddname corresponds to a sequential data set, but a
member name has been given.

Your Response: Either omit the member name or
correct the dsname to correspond to a partitioned data
set.

| FANENV0703S LIBLEVEL not a whole number in
| range 2-6, or "*": value

| Explanation: The value of the LIBLEVEL (LL) compiler
| option is neither a whole number in the range 2 through
| 6 nor "*".

| Your Response: Invoke the compiler again with a
| valid LIBLEVEL option.

| FANCON0704S Full TRACE support requires runtime
| level value

| Explanation: You have requested full TRACE support
| for your compiled program (TRACE and SLINE compiler
| options) but the Library level specified in the LIBLEVEL
| option is too low.

| Your Response: Do one of the following:

| � Invoke the compiler again using a higher value for
| the LIBLEVEL option. The "value" value in the
| message indicates the minimum Library level
| required for full TRACE support.

| � Compile the program without the TRACE and SLINE
| options.

| FANCOD0705S CONDENSE requires runtime level
| value

| Explanation: You have requested that your compiled
| program be condensed (CONDENSE compiler options)
| but the Library level specified in the LIBLEVEL option is
| too low.

| Your Response: Do one of the following:

| � Invoke the compiler again using a higher value for
| the LIBLEVEL option. The "value" value in the
| message indicates the minimum Library level
| required for full CONDENSE support.

| � Compile the program without the CONDENSE option.

| FANCOD0706S Runtime level value needed
| FANGAO0706S Runtime level value needed
| FANPAR0706S Runtime level value needed

| Explanation: You specified the LIBLEVEL(x) compiler
| options and the compiler has detected a language
| feature that requires a higher level of the Library. The
| error marker symbol usually points to the start of the
| clause containing the language feature.

| Your Response: Do one of the following:

| � Invoke the compiler again using a higher value for
| the LIBLEVEL option. The "value" value in the
| message indicates the minimum Library level
| required for the language feature.

| � Rewrite the clause indicated by the error message.

FANENV0708T The ALTERNATE option requires the
SLINE option

Explanation: When specifying the ALTERNATE
Compiler option, the SLINE option is required. The
Alternate Library cannot prepare the control blocks
needed by the interpreter if the source of the REXX
program is not included at compilation time using the
SLINE option.

Your Response: Compile the REXX program again,
specifying both the ALTERNATE and SLINE Compiler
options.

FANENV0709W DLINK has no effect when running
with the Alternate Library

Explanation: The DLINK option supports a direct link
of an external subroutine or function when a module is
generated from OBJECT output. This option is
supported by the Library, but not by the Alternate
Library. The Alternate Library runs the compiled REXX
program by invoking the interpreter; the standard
system search order is used.

Your Response: When distributing the compiled
REXX programs, include the external subroutines and
functions that are directly linked for the Library as
separate modules for the Alternate Library.

FANENV0710T The TRACE option requires the SLINE
option

Explanation: When specifying the TRACE option, the
SLINE (or SLINE(AUTO)) option is required.

Your Response: Recompile the program specifying
both the TRACE and SLINE options.

FANENV0711T DLINK and TRACE must not be
specified together

Explanation: These options are mutually exclusive.

Your Response: Omit one of the two options.

FANENV0712T DLINK and CONDENSE must not be
specified together

Explanation: These options are mutually exclusive. A
condensed program cannot be used with DLINK.

Your Response: Omit one of the two options.

148 SAA REXX/370 User’s Guide and Reference

 FANCON0713S � FANGAO0773I

FANCON0713S Message repository not found

Explanation: The Compiler was not able to load the
message repository. This means that it could not locate
the file containing the error and informational messages
and make it available to the compiler run. There are
several possible causes:

1. The A-disk is either full or in read only-mode.

2. At invocation time, the Compiler could not locate the
required file in the current search order.

Your Response: First check if your A-disk is full. If it
is, make some space on it (for example, by deleting
files no longer needed) and reinvoke the Compiler.

Check if your A-disk is read-only. If it is, reaccess it in
read/write mode, or modify the search order so that a
read/write disk becomes your A-disk, then recompile.
Alternatively, you can change the file type of the
message repository to TEXT (see “Customizing the
Message Repository to Avoid a Read/Write A-Disk” on
page 128).

Check the search order active at compiler invocation
time (for example with the FILELIST command) to make
sure that the necessary repository file is available. If
you are using the default national language (U.S.
English), the file you need is called FANUME TXTAMENG.
If you have chosen another national language, AMENG
must be replaced by the language of your choice. If
you cannot find a file with this name, you must access
the disk containing the repository files (for example, with
the CP LINK command). Ask your systems programmer
on which disk the repository files have been installed.

FANENV0718T Left MARGINS value not a whole
number in the range 1-32760: margins

FANENV0718T Left MARGINS value not a whole
number in the range 1-65535: margins

Explanation: The left margin specified by the
MARGINS compiler option must be a whole number in
the range 1 - 32760 under MVS/ESA or 1 - 65535 under
CMS.

Your Response: Invoke the compiler again with a
valid MARGINS option.

FANENV0719T Right MARGINS value not a whole
number in the range left margin - 32760
or "*": margins

FANENV0719T Right MARGINS value not a whole
number in the range left margin - 65535
or "*": margins

Explanation: The right margin specified by the
MARGINS compiler option is neither '*' nor a whole
number in the range left margin - 32760 under
MVS/ESA, or left margin - 65535 under CMS.

Your Response: Invoke the compiler again with valid
values for the MARGINS option.

FANGAO0770S Invalid number of arguments in
built-in function

Explanation: The number of arguments you passed to
a built-in function is either of the following:

� Less than the number of required arguments for the
function

� Greater than the number of arguments defined for
the function.

FANENV0771S option ignored because of missing
"("

Explanation: The option is ignored because the
command used to invoke the Compiler did not contain
an open parenthesis to mark the start of the options list.

Your Response: Reissue the command after typing
an open parenthesis between the source-file identifier
and the options list.

FANGAO0772W SOURCELINE built-in function used
and SL option not specified

Explanation: The Compiler found a reference to the
SOURCELINE built-in function and the SLINE compiler
option (abbreviation: SL) was not specified. The full
functions of the SOURCELINE function are available only

| if the program is compiled with the SLINE or
| SLINE(AUTO) compiler option. For more information on

using the SOURCELINE function with the Compiler, see
“SOURCELINE Built-In Function” on page 97.

Your Response: To use the full functions of the
SOURCELINE function, recompile the program with the
SLINE option.

| FANGAO0773I Instruction might never be executed

Explanation: The compiler has found that a section of
code starting at the marked point cannot be reached
during execution of the program. Such cases occur

| when the code is not labelled or the label is not valid or
| is defined several times, and the preceding instruction

transfers control to another part of the program.
Instructions that transfer control are EXIT, ITERATE,
LEAVE, RETURN, and SIGNAL (without ON or OFF), as
well as IF and SELECT instructions that contain such
instructions after every THEN and ELSE/OTHERWISE.

Your Response: If the code is unreachable because
| you have forgotten a label, misspelled it, or defined it
| several times, or because of mismatched DO/END

clauses, correct the error. If you do not want the code
to be executed, but do not wish to remove it completely,
it is more efficient to enclose it in a comment. Code
that is not normally executable can still be executed

| using the SOURCELINE built-in function in connection
| with INTERPRET, for example.

 Chapter 15. Compilation Messages 149

 FANGAO0774W � FANGAO0858W

| FANGAO0774W Number of arguments in standard
| function not valid

| Explanation: A function of an IBM supplied standard
| function package is used with the wrong number of
| arguments.

| Your Response: Correct the number of arguments.

FANPAR0849W SAA: Source expression in
assignment is missing

Explanation: This message warns of noncompliance
with SAA guidelines. The Compiler did not find an
expression after the assignment operator (=).

Your Response: To assign a null string ('') to the
variable, code it after the =.

FANPAR0850W SAA: UPPER instruction not part of
SAA Procedures Language

Explanation: This message warns of noncompliance
with SAA guidelines. The Compiler found an UPPER
instruction in the program. The UPPER instruction is
supported by the Compiler, but is not part of the SAA
REXX interface.

Your Response: Use the TRANSLATE built-in function
instead.

FANPAR0851W SAA: PARSE EXTERNAL not part of
SAA Procedures Language

Explanation: This message warns of noncompliance
with SAA guidelines. The Compiler found a PARSE
EXTERNAL instruction in the program. PARSE
EXTERNAL is supported by the Compiler, but is not
supported by the SAA REXX interface.

Your Response: Use PARSE PULL instead.

FANPAR0852W SAA: PARSE NUMERIC not part of
SAA Procedures Language

Explanation: This message warns of noncompliance
with SAA guidelines. The Compiler found a PARSE
NUMERIC instruction in the program. PARSE NUMERIC
is supported by the Compiler, but is not supported by
the SAA REXX interface.

Your Response: Use the DIGITS, FORM, or FUZZ
built-in functions instead.

FANPAR0854W SAA: "@", "#", "$", "¢" might not
be used in symbols

Explanation: This message warns of noncompliance
with SAA guidelines. The Compiler found one of the
following characters in a symbol:

@ # $ ¢

The use of these characters in symbols is supported by
the Compiler, but is not supported by the SAA REXX
interface. This message is not issued when compiling
with the SAA compiler option while OPTIONS 'ETMODE' is
in effect.

Your Response: Change the symbol.

FANPAR0855W SAA: Literal strings must be
completely on one line

Explanation: This message warns of noncompliance
with SAA guidelines. The Compiler found a literal string
that crosses a line boundary. Such strings are
supported by the Compiler, but are not supported by the
SAA REXX interface.

Your Response: Either put the entire string on one
line of the source file, or divide the string into smaller
strings and concatenate those strings. For example,
the assignment:

title = 'Director of European Sales and Marketing'

could be written as:

title = 'Director of '||,
'European Sales and Marketing'

FANPAR0856W SAA: "/" must not be used in a
comparison operator

Explanation: This message warns of noncompliance
with SAA guidelines. The Compiler found a / character
being used as part of a comparison operator. This use
of the / character is supported by the Compiler, but is
not supported by the SAA REXX interface.

Your Response: Use ¬ or \ instead.

FANGAO0857W SAA: Built-in function not part of
SAA Procedures Language

Explanation: This message warns of noncompliance
with SAA guidelines. The Compiler found a built-in
function that is supported by the Compiler, but is not
supported by the SAA REXX interface.

Your Response: For FIND, use WORDPOS instead.
For INDEX, use POS instead. For any other function,
change the program to avoid using the function.

FANGAO0858W Trace prefix ! not part of SAA
Procedures Language

Explanation: The message warns of noncompliance
with SAA guidelines. The Compiler found a ! character
being used as trace prefix. This use of the ! trace prefix
is supported by the Compiler, but is not supported by
the SAA REXX interface.

| Your Response: Correct the trace prefix.

150 SAA REXX/370 User’s Guide and Reference

 FANGAO0859S � FANGAO0869S

FANGAO0859S Division by zero

Explanation: The Compiler detected an attempt to
divide by zero (/, %, //), which is not valid. The zero
divisor can be a constant, a variable, or an expression,
which the Compiler recognizes to have a value of zero.

Your Response: Correct the expression.

FANGAO0860S Not a positive whole number

Explanation: The Compiler expects a number greater
than zero in the indicated position. The number can be
the operand of a NUMERIC DIGITS instruction or an
argument of a built-in function. This operand or
argument can be a constant or a variable which the
Compiler recognizes to have a value equal to or less
than zero; or, it is no number at all.

Your Response: Correct the operand or argument.

FANGAO0861S Positive whole number or zero
required.

| Explanation: REXX requires a nonnegative numeric
| value at the indicated position, which can be the
| operand of a DO, DO FOR, or NUMERIC FUZZ instruction
| or an argument of a built-in function. This operand or
| argument can be a constant, variable, or expression.
| The Compiler recognizes that its value cannot be
| numeric or, if numeric, cannot be a whole number or be
| positive or zero.

Your Response: Correct the operand or argument.

FANGAO0862S Not a whole number in the range
0-99

Explanation: The Compiler expects a number from 0
through 99 as the argument of the ERRORTEXT built-in
function. This argument can be a constant or a variable
from which the Compiler recognizes that it has a value
outside this range.

Your Response: Correct the argument.

FANGAO0863S Required argument in built-in
function missing

Explanation: A required argument of a built-in function
has not been specified.

Your Response: Supply the argument.

FANGAO0864S Argument of built-in function is not
a single character

Explanation: A built-in function requires an argument
that must be a single character. An argument of
another length has been specified.

Note: If the program contains an OPTIONS instruction,
the Compiler checks only whether this argument has a
length greater than zero.

Your Response: Supply an argument of 1 character.

FANGAO0865S Argument of built-in function is not
a hexadecimal string

Explanation: An X2C or X2D built-in function requiring
a hexadecimal first argument has been supplied with a
wrong argument. This argument is a constant, a
variable, or an expression which the Compiler
recognizes to have an invalid value.

Your Response: Supply a hexadecimal argument.

FANGAO0866S Invalid option in built-in function
invocation

Explanation: An option of a built-in function has an
incorrect value, for example:

TIME('G'),TIME('GMT')

Your Response: Supply a correct option.

FANGAO0867W SAA: Option in built-in function
invocation invalid under SAA

Explanation: This message warns of noncompliance
with SAA guidelines. An option of a built-in function has
a value that is supported by the Compiler, but not by
the SAA REXX interface. For example:

DATE('C'),DATE('Century')

Your Response: Supply a correct option.

| FANGAO0868S RANDOM() BIF: either min>max or
| (max-min)>100000

| Explanation: The values found for the max argument,
| the min argument, or both in an invocation of a
| RANDOM built-in function are not valid for one of the
| following reasons:

| � The min argument is greater than the max
| argument.

| � The difference max-min is greater than 100000.

| Either one or both of the arguments might have resulted
| because of defaulting. For example, RANDOM(2000,) is
| not a valid min argument because the max argument
| defaults to 999.

| Your Response: Specify values for the arguments or
| allow them to default so as to comply with the rules
| specified above.

FANGAO0869S Expression must evaluate to
SCIENTIFIC or ENGINEERING

Explanation: The expression following NUMERIC
FORM must evaluate to SCIENTIFIC or ENGINEERING.

| Your Response: Correct the expression.

 Chapter 15. Compilation Messages 151

 FANFMU0870S � FANGAO0883S

FANFMU0870S More than 65534 external routine
invocations

Explanation: When the DLINK option is specified, the
Compiler cannot process a program containing
invocations of more than 65 534 external procedures or
functions.

Your Response: Reduce the number of external
routines or specify the NODLINK option.

FANFMU0871T Size of object module exceeds 16MB

Explanation: The size of an object module (that is,
core image) created by the REXX compiler is limited to
16MB. This restriction applies to both CEXEC and
OBJECT output.

Your Response: If you have not used the
SOURCELINE built-in function in your program, you
should compile with NOSLINE to avoid incorporating the
source statements into your object module.

Try to reduce the size of the REXX source program by
dividing it into several sources that can be compiled
individually. Obvious candidates for forming new
sources are any PROCEDURE subprograms without
EXPOSE.

| FANGAO0872I Positive whole number or zero
| expected

| Explanation: This argument of the function GETMSG
| must be a positive number or zero.

| Your Response: Correct the argument.

| FANGAO0873I Asterisk, blank, or nonnegative
| number expected

| Explanation: This argument of the function OUTTRAP
| must be a positive number or zero, or a string
| consisting of one asterisk.

| Your Response: Correct the argument.

| FANGAO0874I Argument should have 8
| hexadecimal digits

| Explanation: This argument of the function STORAGE
| must be a string in the range of 1 to 8 hexadecimal
| digits.

| Your Response: Correct the argument.

| FANGAO0875I Argument should be a nonnegative
| whole number

| Explanation: This argument of the function STORAGE
| must be a positive whole number or zero.

| Your Response: Correct the argument.

| FANGAO0878S Separator arg of DATE incompatible
| with argument argument

| Explanation: You specified a separator for the output
| or input date, although the corresponding date format
| does not allow for a separator. The formats permitting
| no separator are B, C, D, J, M and W. A zero-length
| string, too, is a separator and therefore not permitted.

| Your Response: Remove the separator argument. For
| example, DATE("C", X, Y, "", Z) is wrong, but
| DATE("C", X, Y, , Z) is correct.

| FANGAO0879S Separator arg (4 or 5) of DATE
| exceeds one character

| Explanation: The separator for a date format must not
| be longer than one character.

| Your Response: Replace the invalid argument with a
| string that contains no or a single character.

FANGAO0880S Argument of built-in function is not
a binary string

Explanation: A B2X built-in function requiring a binary
first argument has been supplied with a wrong
argument. This argument is a constant, a variable, or
an expression, which the Compiler recognizes to have
an invalid value.

Your Response: Supply a binary argument.

FANGAO0881S TRACE option is not valid

Explanation: The option in a TRACE instruction or a
use of the TRACE built-in function is not valid. The
option is a constant, a variable, or an expression, which
the Compiler recognizes to have an invalid value.

FANGAO0882E Derived variable name longer than
250 characters

Explanation: The Compiler predicts that at runtime
after substitution of values of variables into a compound
symbol, the length of the resulting name will be greater
than the limit of 250 characters.

| FANGAO0883S Argument is not an unbracketed
| DBCS string

| Explanation: The DBCS processing function
| DBBRACKET requires an argument that consists of at
| least one pair of bytes, each pair being a valid EBCDIC
| DBCS character. The SO and SI characters must not
| be present. Valid pairs are:

| � Two EBCDIC blanks
| � Two characters with hexadecimal values in the
| range of '41'X to, and including, 'FE'X

| Your Response: Correct the argument value.

152 SAA REXX/370 User’s Guide and Reference

 FANGAO0884S � FANENV0893T

| FANGAO0884S Argument is not a valid DBCS string

| Explanation: This argument to a DBCS processing
| function must be a valid DBCS string or mixed string.
| The argument can contain SBCS parts, in which any
| character other than SO and SI is permitted, and DBCS
| parts. A DBCS part starts with SO and ends with SI.
| Between SO and SI there must be pairs of bytes, each
| pair being a valid EBCDIC DBCS character. Valid pairs
| are:

| � Two EBCDIC blanks

| � Two characters with hexadecimal values in the
| range of '41'X to, and including, 'FE'X

| Your Response: Correct the argument value.

| FANGAO0885S Argument is not a single bracketed
| DBCS string

| Explanation: The DBCS processing function
| DBUNBRACKET requires an argument consisting of a
| single pure DBCS string. A valid argument value starts
| with SO and ends with SI. Between SO and SI there
| must be pairs of bytes, each pair being a valid EBCDIC
| DBCS character. Valid pairs are:

| � Two EBCDIC blanks

| � Two characters with hexadecimal values in the
| range of '41'X to, and including, 'FE'X

| Your Response: Correct the argument value.

| FANGAO0886S Argument is not one of the
| permitted values

| Explanation: The first argument to the function
| ASSGN has a value other than "STDIN" or "STDOUT".

| Your Response: Correct the argument.

| FANGAO0887S Incompatible arguments to ASSGN

| Explanation: The first argument to the function
| ASSGN is "STDIN"and the second is "SYSLST", or the
| first is "STDOUT" and the second is "SYSIPT".

| Your Response: Change one of the arguments.

| FANGAO0888W Argument must be a single SBCS
| or DBCS character

| Explanation: This argument to a DBCS processing
| function must consist of a single SBCS or DBCS
| character. It must be a single character other than SO
| and SI, or four bytes consisting of SO, a pair of bytes
| representing a valid DBCS character, and SI. Valid
| pairs are:

| � Two EBCDIC blanks

| � Two characters with hexadecimal values in the
| range of '41'X to, and including, 'FE'X

| Your Response: Correct the argument.

| FANGAO0889T Argument must be name of a simple
| variable or stem

| Explanation: This argument to the function GETMSG
| or OUTTRAP must be a string containing a valid name
| for a simple variable or stem. A valid string can contain
| alphanumeric characters, exclamation marks (!),
| question mark (?), and underscores (_). It must start
| with an alphabetic character and can end with a period.

| Your Response: Correct the argument.

| FANENV0890T Incorrect LRECL value for
| SYSIEXEC, expected/found:
| option1/option2

| Explanation: The LRECL value found for the
| SYSIEXEC output (option2) is incorrect. The compiler
| expected option1. Refer to “IEXEC” on page 34 for
| information on how to calculate the record length.

| Your Response: Specify an output data set with the
| correct LRECL.

| FANENV0891T Incorrect RECFM value (F|FB) for
| SYSIEXEC, input records vary in length

| Explanation: The data set specified for the
| SYSIEXEC output has fixed-length records but the input
| contains records of different length. Input means, in
| MVS, all data sets in the SYSIN concatenation and, in
| MVS and CMS, files inserted into the compilation using
| %INCLUDE directives. Records of different length are
| the result of a split of the source lines if the source text
| is found on the same line as the %INCLUDE directive.

| Your Response: Specify a data set for SYSIEXEC
| with variable-length records.

| FANENV0892T Incorrect RECFM value (F|FB) for
| SYSIEXEC, input with RECFM=V|VB

| Explanation: The data set specified for the
| SYSIEXEC output has fixed-length records but one or
| more of the input data sets has a record format of V or
| VB (variable length).

| Your Response: Specify a data set for SYSIEXEC
| with variable-length records or change the input data
| sets such that they all have a record format of F or FB
| and the record lengths (LRECL) are identical.

| FANENV0893T Incorrect RECFM value (F|FB) for
| SYSIEXEC, input with/without seq no

| Explanation: The data set specified for the
| SYSIEXEC output has fixed-length records, but some of
| the input data sets contain sequence numbers and
| some do not.

| Your Response: Either specify an output data set with

 Chapter 15. Compilation Messages 153

 FANCON0900T � FANFMU0909T

| variable-length records or change the input data sets
| such that either all or none of them have sequence
| numbers.

FANCON0900T Source data set cannot be opened

Explanation: The Compiler was unable to open the
SYSIN data set.

Your Response: Check that:

� If the Compiler was invoked from a batch job, a DD
statement with DD name SYSIN was provided in the
job step in which the Compiler was invoked.

� If the Compiler was invoked in a TSO session, a
TSO ALLOC command for DD name SYSIN is in
effect when the compiler is invoked.

� The data set is accessible when the Compiler is
invoked.

FANCON0901T Source data set cannot be read
FANFMU0901T Source data set cannot be read

Explanation: The Compiler was unable to read the
SYSIN data set containing the REXX source program to
be compiled.

Your Response: Check that the data set is accessible
when the Compiler is invoked.

| FANENV0902T dataset-name output data set must
| not be identical with %INCLUDE data set

| Explanation: The data set name of one of the
| %INCLUDE data sets is equal to the data set name of
| one of the output data sets. The value of dataset-name
| shows which output data set name is wrong:

| CEXEC refers to the compiled EXEC.
| IEXEC refers to the expanded IEXEC output.
| OBJECT refers to the object data set.
| PRINT refers to the compiler listing.
| TERM refers to the terminal output.
| DUMP refers to the DUMP output.

| Your Response: Specify a different name for the
| output data set.

FANENV0903T option output data set name must not
be identical with source data set name

Explanation: One of the output data sets and the
source data set have the same data set name. The
value of option indicates which output data set name is
in error. CEXEC refers to the compiled EXEC, IEXEC
refers to the expanded (IEXEC) output, OBJECT refers to
the OBJECT data set, PRINT refers to the compiler
listing, TERM refers to the terminal output, and DUMP
refers to the DUMP output.

Your Response: Specify a different name for the
output data set.

FANENV0904T option1/option2 output data set names
must not be identical

Explanation: You have specified the same name for
more than one of the output data sets. The message
indicates which data set names are identical. CEXEC
refers to the compiled EXEC, IEXEC refers to the
expanded (IEXEC) output, OBJECT refers to the OBJECT
data set, PRINT refers to the compiler listing, TERM
refers to the terminal output, and DUMP refers to the
DUMP output.

Your Response: Specify a unique name for each
output data set.

FANFMU0906T Error opening CEXEC data set

Explanation: The Compiler was unable to open the
SYSCEXEC data set.

Your Response: Check that:

� If the Compiler was invoked from a batch job, a DD
statement with DD name SYSCEXEC was provided
in the job step in which the Compiler was invoked.

� If the Compiler was invoked in a TSO session, a
TSO ALLOC command for DD name SYSCEXEC is in
effect when the compiler is invoked.

� The data set is accessible when the Compiler is
invoked.

FANFMU0907T Error opening OBJECT data set

Explanation: The Compiler was unable to open the
SYSPUNCH data set.

Your Response: Check that:

� If the Compiler was invoked from a batch job, a DD
statement with DD name SYSPUNCH was provided
in the job step in which the Compiler was invoked.

� If the Compiler was invoked in a TSO session, a
TSO ALLOC command for DD name SYSPUNCH is in
effect when the compiler is invoked.

� The data set is accessible when the Compiler is
invoked.

FANFMU0908T Error writing to CEXEC data set

Explanation: The Compiler was unable to write to the
SYSCEXEC data set.

Your Response: Check that the data set is accessible
when the Compiler is invoked.

FANFMU0909T Error closing CEXEC data set

Explanation: The Compiler was unable to close the
SYSCEXEC data set.

Your Response: Check that the data set is accessible
when the Compiler is invoked.

154 SAA REXX/370 User’s Guide and Reference

 FANFMU0910T � FANLIS0921T

FANFMU0910T Error writing to OBJECT data set

Explanation: The Compiler was unable to write to the
SYSPUNCH data set.

Your Response: Check that the data set is accessible
when the Compiler is invoked.

FANFMU0911T Error closing OBJECT data set

Explanation: The Compiler was unable to close the
SYSPUNCH data set.

Your Response: Check that the data set is accessible
when the Compiler is invoked.

FANCON0912T Error closing source data set

Explanation: The Compiler was unable to close the
SYSIN data set containing the REXX source program to
be compiled.

Your Response: Check that the data set is accessible
when the Compiler is invoked.

FANLIS0913T Error opening PRINT data set

Explanation: The Compiler was unable to open the
SYSPRINT data set.

Your Response: Check that:

� If the Compiler was invoked from a batch job, a DD
statement with DD name SYSPRINT was provided in
the job step in which the Compiler was invoked.

� If the Compiler was invoked in a TSO session, a
TSO ALLOC command for DD name SYSPRINT is in
effect when the compiler is invoked.

� The data set is accessible when the Compiler is
invoked.

FANLIS0914T Error writing to PRINT data set

Explanation: The Compiler was unable to write to the
SYSPRINT data set.

Your Response: Check that the data set is accessible
when the Compiler is invoked.

FANLIS0915T Error closing PRINT data set

Explanation: The Compiler was unable to close the
SYSPRINT data set.

Your Response: Check that the data set is accessible
when the Compiler is invoked.

FANENV0916T Source data set cannot be opened:
record length greater than 32760

Explanation: The Compiler was unable to open the
source file, because it contains records longer than
32 760 characters (bytes).

Your Response: Reorganize the source file so that
the value of the LRECL parameter of the DCB statement
is less than or equal to 32 760. See “Data Sets
Required by the Compiler (MVS/ESA)” on page 21.

FANENV0917T Error opening DUMP data set

Explanation: The Compiler was unable to open the
SYSDUMP data set.

Your Response: Check that:

� If the Compiler was invoked from a batch job, a DD
statement with DD name SYSDUMP was provided in
the job step in which the Compiler was invoked.

� If the Compiler was invoked in a TSO session, a
TSO ALLOC command for DD name SYSDUMP is in
effect when the compiler is invoked.

� The data set is accessible when the Compiler is
invoked.

FANENV0918T Error writing to DUMP data set

Explanation: The Compiler was unable to write to the
SYSDUMP data set.

Your Response: Check that the data set is accessible
when the Compiler is invoked.

FANENV0919T Error closing DUMP data set

Explanation: The Compiler was unable to close the
SYSDUMP data set.

Your Response: Check that the data set is accessible
when the Compiler is invoked.

FANTOK0920T Source data set is empty

Explanation: The SYSIN data set contains no records
at all.

Your Response: Makes sure that the SYSIN data set
contains the source program you want to compile.

FANLIS0921T Error opening TERM output

Explanation: The Compiler could not open the target
destination for terminal output.

Under MVS/ESA, the output is directed to the destination
specified in the SYSTERM DD statement (or TSO ALLOC
command).

Under CMS, the output is directed to the user's terminal
unless the Compiler is running in a batch machine, in
which case output is directed to the Console Log. The

 Chapter 15. Compilation Messages 155

 FANLIS0922T � FANENV0925T

error can occur if the Compiler was unable to get the
space needed for work areas.

Note: You will only see this message in the printed
output. However, even if there is no printed output, for
example if NOPRINT is in effect, the return code passed
from the Compiler to the system, at the end of the
Compiler run, will correspond to the severity of this
message.

Your Response:

� Under MVS/ESA, check that:

– If the compiler was invoked in a batch job, a DD
statement with DD name SYSTERM was
provided in the job step in which the compiler is
invoked.

– If the Compiler was invoked in a TSO session, a
TSO ALLOC command for DD name SYSTERM is
in effect when the Compiler is invoked.

– The data set is accessible when the Compiler is
invoked.

� Under CMS, compile without the TERM compiler
option, obtain more storage by releasing a minidisk
or SFS directory, or by deleting a nucleus extension.
Alternatively, define a larger virtual storage size for
the virtual machine and re-IPL CMS.

FANLIS0922T Error writing to TERM

Explanation: The Compiler was unable to write to the
target destination for terminal output.

Under MVS/ESA, the output is directed to the destination
specified in the SYSTERM DD statement (or TSO ALLOC
command).

Under CMS, the output is directed to the user's terminal.
The most likely cause of the error is that the virtual
screen is not defined or insufficient storage was
available to execute the request.

Note: It is very unlikely that you will ever see this
message. The Compiler first writes the PRINT output,
then closes it. Only after the PRINT output has been
closed, the Compiler writes the TERM output. If an error
occurs while writing the TERM output, there is nowhere
to write this error message. However, the return code
that the Compiler passes back to the system at the end
of the Compiler run corresponds to the severity of this
message.

Your Response:

� Under MVS/ESA, check that the data set is
accessible when the Compiler is invoked.

� Under CMS, compile without the TERM compiler
option, define the virtual screen, or obtain more
storage by releasing a minidisk or SFS directory, or
by deleting a nucleus extension. Alternatively,

define a larger virtual storage size for the virtual
machine and re-IPL CMS.

FANLIS0923T Error closing TERM output
FANCON0923T Error closing TERM output

Explanation: The Compiler was unable to close the
target destination for terminal output.

Under MVS/ESA, the output is directed to the destination
specified in the SYSTERM DD statement (or TSO ALLOC
command).

Under CMS, the output is directed to the user's terminal
unless the Compiler is running in a batch machine in
which case the output is directed to the Console Log.
The most likely cause of the error is that a release
storage request has failed.

Your Response:

� Under MVS/ESA, check that the data set is
accessible when the Compiler is invoked.

� Under CMS, compile without the TERM compiler
option or notify your system support personnel if the
problem persists.

Note: It is very unlikely that you will ever see this
message. The Compiler first writes the PRINT output,
then closes it. Only after the PRINT output has been
closed, the Compiler writes the TERM output. If an error
occurs while closing the TERM output, there is nowhere
to write this error message. However, the return code
that the Compiler passes back to the system at the end
of the Compiler run corresponds to the severity of this
message.

FANENV0924T Error opening virtual printer for
DUMP

Explanation: The Compiler could not open the virtual
printer for DUMP output. This problem can occur if the
virtual printer is not operational or if the Compiler was
unable to get the space needed for work areas.

Your Response: Compile with the NODUMP compiler
option, make the virtual printer operational, or obtain
more storage by releasing a minidisk or SFS directory,
or by deleting a nucleus extension. Alternatively, define
a larger virtual storage size for the virtual machine and
re-IPL CMS.

FANENV0925T Error writing to virtual printer for
DUMP

Explanation: An error occurred when writing to the
virtual printer. The most likely cause of this message is
a full disk or a non operational virtual printer.

Your Response: Compile with the NODUMP compiler
option or make the virtual printer operational.

156 SAA REXX/370 User’s Guide and Reference

 FANCON0926T � FANENV0930T

FANCON0926T Error closing virtual printer for DUMP

Explanation: The virtual printer could not be closed.
The most likely cause of this is that a release storage
request has failed.

Your Response: Compile with the NODUMP compiler
option or notify your system support personnel if the
problem persists.

FANENV0927S Error opening %INCLUDE input

Explanation: The Compiler was unable to open a file
specified in a %INCLUDE directive. Either the file
specified does not exist or the file specification contains
characters that are invalid in your Operating System.

Under CMS, the problem can occur if:

� The file you are including does not exist with file
type COPY, REXXINCL, or EXEC on:

– The accessed disks, for /\%INCLUDE fn\/
directives

– The specified collection, for /\%INCLUDE
ddname(filename) /\ with FILEDEF ddname DISK
fn ft [fm]\/ directives

� The file you are including does not exist on:

– The specified MACLIB, for /\%INCLUDE
maclib(fn)\/ directives

– The MACLIBs established with the GLOBAL
MACLIB command, for /\%INCLUDE SYSLIB(fn)\/
directives.

� The specification of the file to be included contains
invalid characters

� You are including a file from a minidisk for which
you have read-only access, while someone with
read/write access to that minidisk has altered the
file so that it no longer exists in the same place on
the minidisk.

Your Response:

� Under MVS/ESA, check that:

– If the Compiler was invoked in a batch job, a
DD statement with a DD name identical with the
DD name given or defaulted in the %INCLUDE
directive is present.

– If the Compiler was invoked in a TSO session, a
TSO ALLOC command for a DD name identical
with the DD name given or defaulted in the
%INCLUDE directive is in effect when the
Compiler is invoked.

– The data set is accessible when the Compiler is
invoked.

– Check that a member with the specifed name is
present in one of the libraries concatenated
under the DD name specified or defaulted in the
%INCLUDE directive at the time the Compiler is
invoked.

� Under CMS, make sure that the file exists, the file
specification contains valid characters, or reaccess
the minidisk on which the file to be included resides.

FANENV0928S Error reading %INCLUDE input

Explanation: The Compiler was unable to read from a
file specified in a %INCLUDE directive.

Under CMS, the problem can occur when you are
including a file from a minidisk to which you have
read-only access, while someone with read/write access
to that minidisk has altered the file so that it no longer
exists in the same place on the minidisk.

Your Response:

� Under MVS/ESA, check that the specified member is
accessible when the Compiler is invoked.

� Under CMS, reaccess the minidisk that contains the
file to be included.

FANENV0929S Error closing %INCLUDE input

Explanation: The Compiler was unable to close a file
specified in a %INCLUDE directive.

Your Response:

� Under MVS/ESA, check that the data set is
accessible when the Compiler is invoked.

� Under CMS, reaccess the minidisk that contains the
file to be included.

FANENV0930T Error opening IEXEC output

Explanation: The compiler was unable to open the
target destination for IEXEC output.

Under MVS/ESA, the output is directed to the destination
specified in the SYSIEXEC DD statement (or TSO ALLOC
command).

Under CMS, this problem can occur if your virtual
machine does not have read/write access to the
specified minidisk.

Your Response:

� Under MVS/ESA, check that the data set is
accessible when the Compiler is invoked.

� Under CMS, use a minidisk to which your virtual
machine has read/write access.

 Chapter 15. Compilation Messages 157

 FANENV0931T � FANLIS9999S

FANENV0931T Error writing to IEXEC output

Explanation: The compiler was unable to write to the
target destination for IEXEC output.

Under MVS/ESA, the output is directed to the destination
specified in the SYSIEXEC DD statement (or TSO ALLOC
command).

Under CMS, this problem can occur if your virtual
machine does not have read/write access to the
specified minidisk.

Your Response:

� Under MVS/ESA, check that the data set is
accessible when the Compiler is invoked.

� Under CMS, use a minidisk to which your virtual
machine has read/write access.

FANENV0932T Error closing IEXEC output

Explanation: The compiler was unable to close the
target destination for IEXEC output.

Your Response:

� Under MVS/ESA, check that the data set is
accessible when the Compiler is invoked.

� Under CMS, compile with the NOIEXEC compiler
option or notify your system support personnel if the
problem persists.

FANENV0934E Invalid %INCLUDE directive

Explanation: The file specification in the %INCLUDE
directive contains embedded blanks, or the length of the
name specified for member, ddname, or filename exceeds
8 characters.

Your Response: Correct the %INCLUDE directive.

| FANPAR0935E Option for %SYSDATE or %SYSTIME
| not valid

| Explanation: The option specified for %SYSDATE or
| %SYSTIME is too complex for the compiler. The option
| must be a single symbol or quoted string and must only
| contain alphanumeric characters of which only the first
| character is significant.

| Your Response: Simplify or correct the option.

| FANPAR0936E Options R and E not valid for
| %SYSTIME

| Explanation: The elapsed-time options R and E
| cannot be used for the compilation time.

| Your Response: Specify a different option.

| FANPAR0937E %SYSDATE/%SYSTIME is not
| allowed within a clause

| Explanation: A %SYSDATE or %SYSTIME control
| directive can only be used where a REXX statement is
| allowed.

| Your Response: Insert a semicolon in front of the
| control directive or write the control directive on a
| separate line.

| FANLIS9999S Message number nnn

| Explanation: The Compiler was about to issue a
| message but the message could not be found in the
| message repository currently allocated. This can occur
| when you have different product releases or PTF levels
| installed. If the correct level of the message repository
| for Release 3 of REXX/370 is not loaded, compilations
| complete with return code 12 and the compiler listing
| contains error lines.

| Your Response:

| � Under CMS:
| If this message has been issued only a few times,
| you are probably using a back-level version of the
| message repository and the Compiler cannot find
| the newer messages. Upgrade your repository.

| If this message has been issued several times and
| the Compiler’s listing does not contain correct
| headers and text, the Compiler cannot find the
| repository. If you did not customize the repository,
| see “Customizing the Message Repository to Avoid
| a Read/Write A-Disk” on page 128 for the correct
| names supplied by IBM. Issue a FILELIST
| command to see if one of these repositories is in
| your current search order. If you wish to customize
| the repository, make sure you issued the GENMSG
| and SET LANG commands with the correct
| parameters and file IDs.

| � Under MVS:
| If this message has been issued only a few times,
| you are probably using a back-level version of the
| message repository and the Compiler cannot find
| the newer messages. Check with your Systems
| Programming staff.

| If this message has been issued several times and
| the Compiler’s listing is mainly in English although
| you have been trying to use another language, the
| Compiler cannot find the text in the message
| repository and has switched to hard-coded English
| text. Check with your Systems Programming staff
| and see “Message Repository” on page 122 for
| more details.

158 SAA REXX/370 User’s Guide and Reference

 EAGREX0248E � EAGREX0302I

 Chapter 16. Runtime Messages

| The Library and the Alternate Library have the
| same error messages. If you have both libraries
| installed, do one of the following:

| � Change the message prefix for the Alternate
| Library from EAGREX to EAGALT. If you are
| using the MVS Message Repository, you must
| recompile the messages.

| Note: Some of the messages coming from
| the Alternate Library start with EAGALT instead
| of EAGREX. However, they are equal to the
| EAGREX messages. For example, if you get
| message EAGALT0248E, you will find the
| explanation for this message under
| EAGREX0248E in this book.

| � Move the member EAGKMENU into a save
| data set, and run MMS without the member
| EAGKMENU.

EAGREX0248E Unable to load IBM Library for SAA
REXX/370

Explanation: The program cannot be executed,
because the Library could not be loaded as a nucleus
extension, by means of the NUCXLOAD command. This
error occurs if your virtual machine does not have
access to the Library or does not have sufficient
storage. You cannot run any compiled REXX programs
until this problem is corrected.

Your Response: Ensure that you have access to the
disk that contains the Library (EAGRTLIB MODULE). If
you already have access, obtain more storage by
releasing a minidisk or SFS directory, or by deleting a
nucleus extension. Alternatively, define a larger virtual
storage size for the virtual machine and re-IPL CMS.

EAGREX0249E Unable to load EAG Message
Repository

Explanation: The program cannot be executed for one
of the following reasons. In the following text, * is the
language identifier.

� The message repository is not installed in the
language DCSS, and neither EAGUME TXT* nor
EAGUME TEXT was found on an accessed disk.

� You do not have a read/write A-disk, and the
message repository has the file type TXT*.

� You do not have enough space on your read/write
A-disk, and the message repository has the file type
TXT*.

Your Response: Check that the message repository is
available either in the language DCSS or on disk. If it is
not available in the language DCSS and its file type is
TXT*, check that your read/write A-disk is large enough
to store the message repository. If the problem remains
unresolved, report it to your IBM representative. See
the IBM Compiler and Library for SAA REXX/370:
Diagnosis Guide for more information. The values for
the language identifier (*) can be found in VM/ESA CP
Planning and Administration, VM/SP Administration,
VM/XA Planning and Administration, and VM/ESA
Planning and Administration.

EAGREX0300E Error 3 running compiled program,
line nn: Program is unreadable

Explanation: Refer to the secondary message if one
is displayed. Under CMS, the REXX program could not
be read from the minidisk. This problem can occur if
you attempt to run a program from a minidisk for which
you have read-only access, while someone with
read/write access to that minidisk has altered the
program so that it no longer exists in the same place on
the minidisk.

On MVS/ESA and VSE/ESA, this message is always
followed by a secondary message.

Your Response: On CMS, reaccess the minidisk on
which the program resides.

EAGREX0301I Compiled EXEC does not have fixed
length records

Explanation: The compiled EXEC does not have
fixed-length records. The Compiler always uses the
fixed-length record format for compiled EXEC files in
CMS, but the record format might have been changed
later.

Your Response: Recompile the program or format it
for CMS by using the REXXF EXEC if the program was
imported from MVS.

EAGREX0302I Program is not a valid compiled
EXEC

Explanation: The compiled code in the program file is
not in the format that the Compiler generates.

Your Response: Recompile the program.

 Copyright IBM Corp. 1991, 2000 159

 EAGREX0303I � EAGREX0801I

EAGREX0303I Level of IBM Library for SAA
REXX/370 too low

Explanation: The program cannot be run, because it
was compiled for a more recent version of the Library

| than the one installed on your system, or it contains
| language features that are not supported by the
| specified level of the Library.

| Your Response: Do one of the following:

| � Run the program on a system with a version of the
| Library that corresponds to the version of the
| Compiler used to compile the program.

| � If you have access to the source file, recompile the
| program on the system on which you want to run it.

| � Recompile the program with the recommended
| minimum library level (LIBLEVEL compiler option).

If the error persists after recompilation, notify your
system support personnel.

EAGREX0304I The program cannot run with the
Alternate Library

Explanation: The program has been compiled with the
NOALTERNATE compiler option.

Your Response: Do one of the following:

� Compile the program with the ALTERNATE compiler
option.

� Check your installation to make sure that you use
the Library.

EAGREX0400E Error 4 running compiled program,
line nn: Program interrupted

Explanation: The system interrupted execution of the
REXX program. This is usually caused by your issuing
the HI (Halt Interpretation) immediate command under
MVS/ESA or CMS, or the EXECUTIL HI command under
MVS/ESA.

EAGREX0500E Error 5 running compiled program,
line nn: Machine storage exhausted

Explanation: The Library was unable to get the
storage needed for its work areas and variables. This
might have occurred because the program that invoked
the compiled program has already used up most of the
available storage.

Your Response: Under MVS/ESA, use a larger region
size.

Under CMS, you can obtain more free storage by
releasing a minidisk or SFS directory (to recover the
space used for the file directory) or by deleting a
nucleus extension. Alternatively, define a larger virtual
storage size for the virtual machine and re-IPL CMS.

Under VSE, use a larger partition size.

EAGREX0600E Error 6 running compiled program,
line nn: Unmatched "/*" or quote

Explanation: A comment or literal string was started
but never finished.

Your Response: See the secondary message for
more specific information. Correct the literal string or
comment.

EAGREX0601I Unmatched quote

Explanation: A literal string was started but never
finished.

EAGREX0602I Unmatched "/*"

Explanation: A comment was started but never
finished.

EAGREX0603I Unmatched shift-out character in
DBCS string

Explanation: A literal string or a comment that has
unmatched shift-out/shift-in pairs (that is, a shift-out
character without a shift-in character or an odd number
of bytes between the shift-out and shift-in characters)
was processed with OPTIONS 'ETMODE' in effect.

EAGREX0700E Error 7 running compiled program,
line nn: WHEN or OTHERWISE expected

Explanation: Within a SELECT instruction, at least one
WHEN clause (and possibly an OTHERWISE clause) is
expected. If any other instruction is found (or no WHEN
clause is found before the OTHERWISE) then this
message is issued.

Your Response: Insert one or more WHEN clauses
after the SELECT.

EAGREX0800E Error 8 running compiled program,
line nn: Unexpected THEN or ELSE

Explanation: The program tried to execute a THEN or
ELSE clause without first executing the corresponding IF
or WHEN clause. This error occurs when control is
transferred within or into an IF or WHEN construct, or if
a THEN or an ELSE is outside the context of an IF or
WHEN construct.

Your Response: See the secondary message for
more specific information.

EAGREX0801I Unexpected THEN

Explanation: The program tried to execute a THEN
clause without first executing the corresponding IF or
WHEN clause. This error occurs when control is
transferred to the THEN clause.

160 SAA REXX/370 User’s Guide and Reference

 EAGREX0802I � EAGREX1403I

EAGREX0802I Unexpected ELSE

Explanation: The program tried to execute an ELSE
clause without first executing the corresponding IF
clause. This error occurs when control is transferred to
the ELSE clause.

EAGREX0900E Error 9 running compiled program,
line nn: Unexpected WHEN or
OTHERWISE

Explanation: The program tried to execute a WHEN or
OTHERWISE clause without first executing the
corresponding SELECT instruction. This error occurs
when control is transferred to a WHEN or OTHERWISE
clause, or if a WHEN or an OTHERWISE appears outside
of the context of a SELECT instruction.

Your Response: See the secondary message for
more specific information.

EAGREX0901I Unexpected WHEN

Explanation: The program tried to execute a WHEN
clause without first executing the corresponding SELECT
instruction. This error occurs when control is
transferred to a WHEN clause.

EAGREX0902I Unexpected OTHERWISE

Explanation: The program tried to execute an
OTHERWISE clause without first executing the
corresponding SELECT instruction. This error occurs
when control is transferred to an OTHERWISE clause.

EAGREX1000E Error 10 running compiled program,
line nn: Unexpected or unmatched END

Explanation: The program reached an END clause
when the corresponding DO loop or SELECT clause was
not active. This error can occur if you transfer control
into a loop, or if there are too many ENDs in the
program. Note that the SIGNAL instruction terminates
any current loops, so it cannot be used to transfer
control from one place inside a loop to another.
Another cause for this message is placing an END
immediately after a THEN or ELSE subkeyword or
specifying a name on the END keyword that does not
match the name of the control variable in a DO clause.

EAGREX1100E Error 11 running compiled program,
line nn: Control stack full

Explanation: This message is issued if the program
exceeds a Library runtime limit.

EAGREX1101I PROCEDURE nesting exceeds 30000

Explanation: This message is issued if you exceed
the limit of 30 000 active procedures. A recursive
subroutine that does not terminate correctly could loop
until it causes this message to be issued.

| EAGREX1200E Error 12 running compiled program,
| line nn: Clause too long

| Your Response: Rewrite the clause.

EAGREX1300E Error 13 running compiled program,
line nn: Invalid character in program

Explanation: The string to be interpreted includes an
unexpected character outside a literal (quoted) string or
comment that is not a blank or one of the following:

A-Z a-z ð-9 (Alphanumerics)

@ # $ ¢ . ? ! _ (Name Characters)

& \ () - + = \ ¬ ' " ; : < , > / | %
(Special Characters)

Any DBCS character when OPTIONS 'ETMODE' is in effect

In case the program was imported from another system:
Verify that the translation of the characters was correct.

EAGREX1400E Error 14 running compiled program,
line nn: Incomplete DO/SELECT/IF

Explanation: On reaching the end of the program (or
end of the string in an INTERPRET instruction), it has
been detected that there is a DO or SELECT without a
matching END, or that a THEN clause or an ELSE clause
is not followed by an instruction.

Your Response: See the secondary message for
more specific information.

EAGREX1401I Incomplete DO instruction: END not
found

Explanation: No matching END for an earlier DO was
found.

EAGREX1402I Incomplete SELECT instruction: END
not found

Explanation: No matching END for an earlier SELECT
was found.

EAGREX1403I Instruction expected after THEN

Explanation: A THEN clause is not followed by an
instruction.

 Chapter 16. Runtime Messages 161

 EAGREX1404I � EAGREX2004I

EAGREX1404I Instruction expected after ELSE

Explanation: An ELSE clause is not followed by an
instruction.

EAGREX1500E Error 15 running compiled program,
line nn: Invalid hexadecimal or binary
string

Explanation: Hexadecimal strings might not have
leading or trailing blanks, and might only have
embedded blanks at byte boundaries. Only the digits
0-9 and the letters a-f and A-F are allowed. Similarly,
binary strings might only have blanks added at the
boundaries of groups of four binary digits, and only the
digits 0 and 1 are allowed.

EAGREX1600E Error 16 running compiled program,
line nn: Label not found

Explanation: The label specified in a SIGNAL
instruction, or specified by the result of the expression
on a SIGNAL VALUE instruction, could not be found.
There might be an error in the expression or the label
might not have been defined.

EAGREX1601I Label reference in SIGNAL is mixed
case, but label is uppercase

Explanation: The label specified in a SIGNAL
instruction, or by the result of the expression on a
SIGNAL VALUE instruction is a mixed-case string, but the
name of the label that probably is intended to be
referenced is defined in uppercase.

Your Response: Change the expression so that it
results in an uppercase string.

EAGREX1700E Error 17 running compiled program,
line nn: Unexpected PROCEDURE

Explanation: A PROCEDURE instruction was
encountered in an incorrect position. This error is
caused by “dropping through” into a PROCEDURE
instruction, rather than invoking it properly by a CALL
instruction or a function reference.

EAGREX1800E Error 18 running compiled program,
line nn: THEN expected

Explanation: All IF clauses and WHEN clauses in
REXX must be followed by a THEN clause. Some other
clause was found when a THEN clause was expected.

EAGREX1900E Error 19 running compiled program,
line nn: String or symbol expected

Explanation: On a SIGNAL or CALL instruction a literal
string or a symbol was expected but neither was found.

Your Response: See the secondary message for
more specific information.

EAGREX1901I CALL not followed by routine
name/ON/OFF

Explanation: The name of a routine, or ON with a
condition name, or OFF with a condition name is
expected in a CALL instruction.

EAGREX1902I SIGNAL not followed by label name
or VALUE/ON/OFF or expression

Explanation: SIGNAL is not followed by a label name,
or by ON, or OFF, or VALUE, or an expression.

EAGREX2000E Error 20 running compiled program,
line nn: Symbol expected

Explanation: In the clauses CALL ON, END, ITERATE,
LEAVE, and SIGNAL ON, a single symbol is expected.
Either it was not present when required, or some other
token was found, or a symbol followed by some other
token was found.

Alternatively, the DROP, UPPER, and PROCEDURE
EXPOSE instructions expect a list of symbols or variable
references. Some other token was found.

Your Response: See the secondary message for
more specific information.

EAGREX2001I Variable expected

Explanation: Some other token was found where a
variable was expected.

EAGREX2002I UPPER list can contain only simple
or compound variables

Explanation: The list of variables for the UPPER
instruction contains items other than the permitted ones.

EAGREX2003I NAME not followed by routine name

Explanation: In a CALL ON clause the subkeyword
NAME must be followed by the name of a routine.

EAGREX2004I NAME not followed by label name

Explanation: In a SIGNAL ON clause the subkeyword
NAME must be followed by a label name.

162 SAA REXX/370 User’s Guide and Reference

 EAGREX2100E � EAGREX2600E

EAGREX2100E Error 21 running compiled program,
line nn: Invalid data at end of clause

Explanation: A clause is followed by some token
other than a comment, where no other token was
expected.

EAGREX2200E Error 22 running compiled program,
line nn: Invalid character string

Explanation: Under OPTIONS 'ETMODE' a symbol was
detected which contains characters or character
combinations not allowed for symbols containing DBCS
characters.

EAGREX2300E Error 23 running compiled program,
line nn: Invalid SBCS/DBCS mixed string

Explanation: A character string that has unmatched
shift-out—shift-in pairs (that is, a shift-out character
without a shift-in character) or an odd number of bytes
between the shift-out—shift-in characters was
processed with OPTIONS 'EXMODE' in effect or was
passed to a DBCS function.

Your Response: Correct the character string.

EAGREX2400E Error 24 running compiled program,
line nn: Invalid TRACE request

Explanation: The setting specified on a TRACE
instruction starts with a character that does not match
one of the valid TRACE settings.

| EAGREX2500E Error 25 running compiled program,
| line nn: Invalid subkeyword found

Explanation: The language processor expected a
particular subkeyword in an instruction but found
something else. For example, in the NUMERIC
instruction the second token must be the subkeyword
DIGITS, FORM, or FUZZ. If NUMERIC is followed by
anything else, this message is issued.

EAGREX2501I PARSE not followed by a valid
subkeyword

Explanation: A PARSE keyword was found that is not
followed by the UPPER subkeyword, or by one of the
subkeywords ARG, EXTERNAL, LINEIN, NUMERIC, PULL,
SOURCE, VALUE, VAR, or VERSION.

Note: LINEIN is a valid subkeyword only on VM/ESA
Release 2.1 or subsequent releases.

EAGREX2502I PARSE UPPER not followed by a
valid subkeyword

Explanation: A PARSE UPPER was found that is not
followed by one of the subkeywords ARG, EXTERNAL,
LINEIN, NUMERIC, PULL, SOURCE, VALUE, VAR, or
VERSION.

EAGREX2503I CALL ON/OFF not followed by
supported condition name

Explanation: One of the conditions: ERROR, FAILURE,
HALT or, on VM/ESA Release 2.1 or subsequent
releases, NOTREADY is expected in a CALL ON or CALL
OFF instruction.

EAGREX2504I ";" or subkeyword NAME expected

Explanation: Incorrect data was found at the end of a
CALL ON instruction. The only subkeyword accepted
after the condition name is NAME.

EAGREX2505I NUMERIC not followed by
DIGITS/FORM/FUZZ

Explanation: One of the subkeywords DIGITS, FORM,
or FUZZ is expected in a NUMERIC instruction.

EAGREX2506I NUMERIC FORM not followed by
expression/valid subkeyword/";"

Explanation: Incorrect data was found at the end of a
NUMERIC FORM. The only data recognized after FORM
is an expression or one of the subkeywords VALUE,
SCIENTIFIC, or ENGINEERING.

EAGREX2507I PROCEDURE not followed by
EXPOSE or ";"

Explanation: Incorrect data were found in a
PROCEDURE instruction. The only subkeyword
recognized on a PROCEDURE instruction is EXPOSE.

EAGREX2508I SIGNAL ON/OFF not followed by
supported condition name

Explanation: One of the conditions: ERROR, FAILURE,
HALT, NOVALUE, SYNTAX or, on VM/ESA Release 2.1 or
subsequent releases, NOTREADY is expected in a
SIGNAL ON or SIGNAL OFF instruction.

EAGREX2600E Error 26 running compiled program,
line nn: Invalid whole number

Explanation: An expression that was expected to
evaluate to a whole number either did not evaluate to a
whole number within the current setting of NUMERIC
DIGITS or was greater than the limit, for the intended
use, of 999 999 999.

 Chapter 16. Runtime Messages 163

 EAGREX2601I � EAGREX2800E

EAGREX2601I Exponent not a whole number

Explanation: The right-hand term of the
exponentiation (**) operator did not evaluate to a whole
number within the current setting of NUMERIC DIGITS or
was greater than the limit, for the intended use, of
999 999 999.

EAGREX2602I Returned value not a whole number

Explanation: The return code passed back from an
EXIT or RETURN instruction (when a REXX program is
invoked as a command) is not a whole number in the
range from -2147483648 through 2147483647.

EAGREX2603I NUMERIC setting not a whole number

Explanation: An expression in the NUMERIC
instruction did not evaluate to a whole number within
the current setting of NUMERIC DIGITS or was greater
than the limit, for the intended use, of 999 999 999.

EAGREX2604I Quotient from integer division not a
whole number

Explanation: The result of an integer division (%) is
not a whole number within the current setting of
NUMERIC DIGITS.

EAGREX2605I Quotient from remainder operation
not a whole number

Explanation: The result of the integer division
performed to obtain the remainder (//) is not a whole
number within the current setting of NUMERIC DIGITS.

EAGREX2606I Repetition value in DO not a whole
number

Explanation: The repetition value in a DO clause did
not evaluate to a whole number within the current
setting of NUMERIC DIGITS or was greater than the limit,
for the intended use, of 999 999 999.

EAGREX2607I Column number in PARSE not a
whole number

Explanation: A column number in an absolute
positional pattern or the value of a variable specified in
a variable pattern used as absolute positional pattern on
a PARSE instruction is either not a whole number within
the current setting of NUMERIC DIGITS, or is greater
than the limit, for the intended use, of 999 999 999.

EAGREX2608I Relative position in PARSE not a
whole number

Explanation: A number specified as a relative
positional pattern or the value of a variable specified in
a variable pattern used as relative positional pattern on
a PARSE instruction is either not a whole number within
the current setting of NUMERIC DIGITS, or is greater
than the limit, for the intended use, of 999 999 999.

EAGREX2609I Input to stream I/O function not a
whole number

Explanation: A number specified as input to a stream
I/O function is not a whole number.

EAGREX2700E Error 27 running compiled program,
line nn: Invalid DO syntax

Explanation: Some syntax error was found in the DO
clause.

Your Response: See the secondary message for
more specific information.

EAGREX2701I FOREVER not followed by
WHILE/UNTIL/";"

Explanation: Incorrect data were found after DO
FOREVER. The only valid subkeywords after DO
FOREVER are WHILE and UNTIL.

EAGREX2703I TO/BY/FOR phrase occurs more than
once in a DO

Explanation: A DO clause contains more than one TO,
BY, or FOR-phrase.

EAGREX2706I TO/BY/FOR not followed by
expression

Explanation: An expression is expected after a TO,
BY, or FOR subkeyword in a DO clause.

EAGREX2800E Error 28 running compiled program,
line nn: Invalid LEAVE or ITERATE

Explanation: The program tried to execute a LEAVE or
ITERATE instruction when no loop was active. This
error occurs when control transfers within or into a loop,
or if the LEAVE or ITERATE was encountered outside a
repetitive DO loop. A SIGNAL instruction terminates all
active loops; any ITERATE or LEAVE instruction issued
then causes this message to be issued.

Your Response: See the secondary message for
more specific information.

164 SAA REXX/370 User’s Guide and Reference

 EAGREX2801I � EAGREX3300E

EAGREX2801I Invalid LEAVE

Explanation: The program tried to execute a LEAVE
instruction when no loop was active.

EAGREX2802I Invalid ITERATE

Explanation: The program tried to execute an
ITERATE instruction when no loop was active.

EAGREX2803I LEAVE not valid outside repetitive
DO loop

Explanation: A LEAVE instruction was found outside a
repetitive DO loop.

EAGREX2804I ITERATE not valid outside repetitive
DO loop

Explanation: An ITERATE instruction was found
outside a repetitive DO loop.

EAGREX2805I Variable does not match control
variable of an active DO loop

Explanation: The symbol specified on a LEAVE or
ITERATE instruction does not match the control variable
of a currently active DO loop.

EAGREX2806I Name of DO control variable
expected

Explanation: The name of the control variable of a
currently active DO loop is expected after a LEAVE or
ITERATE instruction. Some other token was found.

EAGREX2900E Error 29 running compiled program,
line nn: Environment name too long

Explanation: The environment name on an ADDRESS
instruction was specified as the value of an expression,
and the result of evaluating the expression is longer
than the limit of 8 characters.

EAGREX3000E Error 30 running compiled program,
line nn: Name or string > 250 characters

Explanation: A name or string that is longer than the
limit of 250 characters was found.

Your Response: See the secondary message for
more specific information.

EAGREX3001I Name of compound variable > 250
characters

Explanation: The name of a compound variable, after
substitution, is longer than the limit of 250 characters.

EAGREX3002I Label name > 250 characters

Explanation: The name of a label specified as an
expression on a SIGNAL VALUE instruction is longer
than the limit of 250 characters.

EAGREX3004I String > 250 characters

Explanation: A quoted string, after substitution of
hexadecimal or binary strings, exceeds the limit of 250
characters.

EAGREX3005I Name > 250 characters

Explanation: The name of a symbol exceeds the limit
of 250 characters.

EAGREX3100E Error 31 running compiled program,
line nn: Name starts with number or "."

Explanation: A value must not be assigned to a
variable whose name starts with a digit or a period.
Similarly, a symbol whose name starts with a digit or a
period can not be contained in the list of variables of a
DROP, EXPOSE, or UPPER instruction, and cannot follow
the VAR subkeyword of the PARSE instruction.

Your Response: See the secondary message for
more specific information.

EAGREX3101I "(" not followed by a variable name

Explanation: A variable name denoting a subsidiary
list was expected in a DROP instruction or after the
subkeyword EXPOSE of a PROCEDURE instruction.

EAGREX3102I Variable name expected

Explanation: A name starting with a digit or a period
was found in the list of a DROP instruction or after the
subkeyword EXPOSE of a PROCEDURE instruction.

EAGREX3104I Variable required to the left of "="

Explanation: The target of an assignment was found
to be a symbol starting with a digit or a period.

EAGREX3200E Error 32 running compiled program,
line nn: Invalid use of stem

Explanation: The name of a stem has been found in
the list of an UPPER instruction.

EAGREX3300E Error 33 running compiled program,
line nn: Invalid expression result

Explanation: An expression result was encountered
that is incorrect in its particular context.

 Chapter 16. Runtime Messages 165

 EAGREX3301I � EAGREX3506I

EAGREX3301I Invalid NUMERIC expression result

Explanation: The result of an expression on the
NUMERIC instruction is incorrect. The most common
cause of this error is a DIGITS or FUZZ value that is not
a whole number.

EAGREX3302I NUMERIC DIGITS not greater than
NUMERIC FUZZ

Explanation: The program issued a NUMERIC
instruction that would make the current NUMERIC DIGITS
value less than or equal to the current NUMERIC FUZZ
value. The DIGITS value must be greater than the FUZZ
value.

EAGREX3304I SIGNAL VALUE not followed by
expression

Explanation: In a SIGNAL VALUE instruction the
required expression is missing.

EAGREX3305I ADDRESS VALUE not followed by
expression

Explanation: In the ADDRESS VALUE instruction the
required expression is missing.

EAGREX3306I NUMERIC FORM VALUE not followed
by expression

Explanation: In the NUMERIC FORM VALUE
instruction the required expression is missing.

EAGREX3400E Error 34 running compiled program,
line nn: Logical value not 0 or 1

Explanation: The expression in an IF-, WHEN-, DO
WHILE-, or DO UNTIL-phrase must result in a 0 or 1, as
must any term operated on by a logical operator (that
is, ¬, \, |, &, or &&). For example, the phrase:

If result Then Exit rc

fails if result has a value other than 0 or 1. Thus, the
phrase might be better written as:

If result¬=ð Then Exit rc

EAGREX3401I WHILE not followed by expression

Explanation: The subkeyword WHILE must be followed
by an expression.

EAGREX3402I UNTIL not followed by expression

Explanation: The subkeyword UNTIL must be followed
by an expression.

EAGREX3403I IF not followed by expression

Explanation: The keyword IF must be followed by an
expression.

EAGREX3404I WHEN not followed by expression

Explanation: The keyword WHEN must be followed by
an expression.

EAGREX3500E Error 35 running compiled program,
line nn: Invalid expression

Explanation: An expression contains a grammatical
error.

Your Response: See the secondary message for
more specific information.

EAGREX3501I Assignment operator must not be
followed by another "="

Explanation: A second "=" was found immediately
after the first one of an assignment.

Your Response: Delete one "=" to form a correct
assignment, or, if the clause was intended as a
command, enclose the expression in parentheses.

EAGREX3502I Left operand missing

Explanation: An operator was found that is not a
prefix operator, and whose left operand is missing.

EAGREX3503I Right operand missing

Explanation: An operator is not followed by an
operand.

EAGREX3504I Prefix operator not followed by
operand

Explanation: A prefix operator was found that is not
followed by a symbol or by a literal string or by an open
parenthesis.

EAGREX3505I "(" not followed by an expression or
subexpression

Explanation: An open parenthesis was found that is
not followed by a valid expression or subexpression.

EAGREX3506I Invalid operator

Explanation: An expression contains an invalid
sequence of operator characters.

166 SAA REXX/370 User’s Guide and Reference

 EAGREX3507I � EAGREX4006I

EAGREX3507I Invalid use of NOT operator

Explanation: An expression or subexpression of the
form a¬b or (a)¬b was found.

Your Response: If you want to concatenate a negated
term:

� To some other operand, enclose it into parentheses,
for example: left(a,3)(¬b).

� To a symbol or a literal string, use the
concatenation operator, for example: a||(¬b).

EAGREX3508I Missing expression

Explanation: An expression is missing where one is
expected. Example: INTERPRET;

EAGREX3600E Error 36 running compiled program,
line nn: Unmatched "(" in expression

Explanation: The parentheses in an expression are
not paired correctly. There are more open parentheses
than close parentheses.

EAGREX3700E Error 37 running compiled program,
line nn: Unexpected "," or ")"

Explanation: In an expression, either a comma was
found outside a function invocation, or there are too
many close parentheses.

EAGREX3800E Error 38 running compiled program,
line nn: Invalid template or pattern

Explanation: Within a parsing template, a special
character that is not allowed was found, or the syntax of
a variable pattern is incorrect. This message is also
issued if the WITH subkeyword is omitted in a PARSE
VALUE instruction.

EAGREX3801I Incomplete PARSE VALUE: WITH not
found

Explanation: The WITH subkeyword is omitted in a
PARSE VALUE instruction.

| EAGREX3900E Error 39 running compiled program,
| line nn: Evaluation stack overflow

| Explanation: INTERPRET or TRACE caused a stack
| overflow. You exceeded the maximum number of
| nesting levels.

EAGREX4000E Error 40 running compiled program,
line nn: Incorrect call to routine

Explanation: The program invoked a built-in function
with incorrect parameters, or invoked an external
routine, which ended with a SYNTAX condition that was
not trapped.

If you were not trying to invoke a routine, you might
have a symbol or a string adjacent to a left parenthesis
when you meant it to be separated by a space or an
operator. A symbol or a string in this position causes
the phrase to be read as a function call. For example,
TIME(4+5) should be written as TIME\(4+5) if a
multiplication was intended.

EAGREX4001I Null string specified as option

Explanation: The program invoked a built-in function
that has an option argument, and passed a null string
as the option.

Your Response: Specify a valid value for the option.

EAGREX4002I Invalid option

Explanation: The program invoked a built-in function
that has an option argument, and passed an incorrect
value for the option.

Your Response: Specify a valid value for the option.

EAGREX4003I Argument not positive

Explanation: The program invoked a built-in function
with an argument whose value is less than or equal to
zero.

EAGREX4004I Argument not a single character

Explanation: A built-in function expected an argument
of length 1; one of a different length was supplied.

EAGREX4005I Argument not a whole number

Explanation: The value of an argument on the
invoked built-in function must be a whole number, but
the program supplied something else. For example, a
length argument is expected to be a whole number.

EAGREX4006I First argument negative and second
argument not supplied

Explanation: The program did not supply the second
argument of the D2C or D2X function, but this argument
is required when the first argument is a negative
number.

 Chapter 16. Runtime Messages 167

 EAGREX4007I � EAGREX4019I

EAGREX4007I String longer than 250 characters
(500 hexadecimal digits)

Explanation: The program invoked the C2D or X2D
function with an input string that exceeds one of the
following limits:

� The input string for the C2D function must not have
more than 250 characters that are significant in
forming the result of the function.

� The input string for the X2D function must not have
more than 500 hexadecimal digits that are
significant in forming the final result.

EAGREX4008I Argument not a valid hexadecimal
string

Explanation: The value of an argument on the
invoked built-in function must be a hexadecimal string,
but the program supplied something else. A
hexadecimal string can contain only the characters 0-9,

| a-f, and A-F. Blanks may only occur only at byte
| boundaries and are not allowed at the beginning or the
| end of the string.

EAGREX4009I Output string longer than 250
characters (500 hexadecimal digits)

Explanation: The output string on an invocation of the
D2C or D2X function would exceed one of the following
limits:

� The output string of the D2C function must not have
more than 250 significant characters.

� The output string of the D2X function must not have
more than 500 significant hexadecimal characters.

EAGREX4010I Result not a whole number

Explanation: The data returned by the invoked built-in
function is not a whole number and cannot be formatted
without an exponent. This can occur if the NUMERIC
DIGITS value is not large enough. For example, this
error occurs if you set NUMERIC DIGITS to 2 and then
invoke the C2D function with C2D(1); the result is 241,
which needs three digits, but only two digits are allowed
for.

EAGREX4011I Result too long

Explanation: The data returned by the invoked built-in
function is too large for the available memory. This
error can occur if you use, for example, the COPIES,
INSERT, OVERLAY, or SPACE built-in functions.

Your Response: Specify smaller string or count
arguments, or obtain more storage.

EAGREX4012I Failure in system service, no clock
available

Explanation: The invoked built-in function was unable
to obtain the system time, due to a failure in a system
service.

Your Response: If the problem persists, notify your
system support personnel.

EAGREX4013I "min " > "max" on RANDOM function

Explanation: The program invoked the RANDOM
built-in function with a value for the min argument
greater than the value for the max argument. The min
argument must be less than or equal to the max
argument.

EAGREX4014I "max" − "min " exceeds 100000 in
RANDOM function

Explanation: The range between the min and max
arguments in an invocation of the RANDOM built-in
function is greater than the limit of 100 000.

EAGREX4015I Error number out of range in
ERRORTEXT function

Explanation: The program invoked the ERRORTEXT
built-in function with an incorrect value for the error
number argument. The error number must be in the
range of 0 through 99.

EAGREX4017I Argument not positive or zero

Explanation: The program invoked a built-in function
with a value less than zero for an argument that must
be greater than or equal to zero.

EAGREX4018I Invalid pad character

Explanation: The value of the pad argument on the
invoked built-in function must be a single character, but
the program supplied something else.

EAGREX4019I Elapsed-time clock out of range in
TIME function invocation

Explanation: The elapsed-time clock was out of range
in an invocation of the TIME built-in function. This error
occurs if the number of seconds in the elapsed-time
clock exceeds nine digits.

Your Response: This error might be caused by a
system problem; notify your system support personnel.

168 SAA REXX/370 User’s Guide and Reference

 EAGREX4020I � EAGREX4031I

EAGREX4020I Line number out of range in
SOURCELINE function

Explanation: An invocation of the SOURCELINE built-in
function was incorrect for one of these reasons:

� The program passed an incorrect line number to the
function.

� The program was compiled with the NOSLINE
(NOSL) option.

Your Response: If the program was compiled with the
SLINE option, ensure that the line number does not
exceed the number of the final line in the source file. If
the program was compiled with the NOSLINE option,
either change the program or recompile with the SLINE
option.

EAGREX4021I Invalid symbol in name argument of
VALUE function

Explanation: The value of the name argument in the
VALUE built-in function must be a valid REXX symbol,
but the program supplied something else. The most
common cause of this message is the use of special
characters that are not valid within symbols.

EAGREX4022I Incorrect call to built-in function or
DBCS function package

Explanation: An error occurred when a function was
invoked with OPTIONS 'EXMODE' in effect. This error
can occur for functions in the DBCS function package
and for built-in functions that perform string operations.

Your Response: If the cause of the problem is not
obvious, debug the program using the interpreter.

EAGREX4023I Argument not a number

Explanation: The value of an argument on the
invoked built-in function must be a number, but the
program supplied something else.

EAGREX4024I Exponent exceeds specified digits in
FORMAT function

Explanation: The value supplied for the exponent
argument of the FORMAT built-in function is out of range
for the result. This error occurs if the FORMAT built-in
function is invoked with an exponent size too small for
the number to be formatted.

EAGREX4025I Integer part exceeds specified digits
in FORMAT function

Explanation: The program invoked the FORMAT
built-in function with a value for the before argument
that is not large enough to contain the integer part of
the number to be formatted. For example, this error
occurs if the function is invoked with FORMAT(225.1,2);
there are three integer digits in the number, but space
has been specified for only two digits.

EAGREX4026I External routine returned with
non-zero return code

Explanation: An external routine returned with a
nonzero return code.

Your Response: Correct the external routine.

EAGREX4027I External routine could not obtain an
EVALBLOCK

Explanation: An external routine could not obtain an
EVALBLOCK control block, because there was not
enough storage.

Your Response: Use a larger region size.

EAGREX4028I External routine could not locate
language processor environment

Explanation: An external routine could not locate a
language processor environment.

Your Response: Notify your system support
personnel.

EAGREX4029I External routine encountered an
ABEND

Explanation: An external routine abnormally ended.

Your Response: Correct the external routine.

EAGREX4030I Invalid number of arguments on
built-in function invocation

Explanation: A built-in function was invoked, but the
number of arguments passed is not in the range of
arguments expected by the function.

EAGREX4031I Required argument missing in built-in
function invocation

Explanation: A built-in function was invoked, but an
argument required by this function was not provided.

 Chapter 16. Runtime Messages 169

 EAGREX4032I � EAGREX4047I

EAGREX4032I Argument not a valid binary string

Explanation: The value of an argument on the
invoked built-in function must be a binary string, but the
program supplied something else. A binary string can

| contain only the digits 0 and 1. Blanks may only occur
| at the boundaries of groups of four binary digits and are
| not allowed at the beginning or the end of the string.

EAGREX4033I Selector not supported for VALUE
function

Explanation: A selector for the VALUE built-in function
is only supported on CMS Release 6 or subsequent
releases.

EAGREX4034I Global variable name longer than 255
characters

Explanation: The VALUE built-in function was invoked
with a selector on CMS Release 6 or subsequent
releases, but the length of the name of the variable
exceeds the allowed maximum of 255 characters.

EAGREX4035I New global variable value longer than
255 characters

Explanation: The VALUE built-in function was invoked
with a selector on CMS Release 6 or subsequent
releases, but the length of the value exceeds the
allowed maximum of 255 characters.

EAGREX4036I Invalid selector

Explanation: The VALUE built-in function was invoked
with a selector on CMS Release 6 or a subsequent
release, but the first token in the selector is not valid.
Valid tokens are GLOBAL, SESSION, and LASTING.

EAGREX4037I Error upon invocation of system
service in VALUE function

Explanation: The VALUE built-in function was invoked
with a selector on CMS Release 6 or subsequent
releases, but the attempt to perform the desired action
was unsuccessful. This might be caused by a full
A-disk, or by an A-disk not accessed in read/write
mode, or by not having accessed an A-disk.

EAGREX4038I Variable expected

Explanation: The first argument on an invocation of
the VALUE built-in function was a symbol starting with a
numeric digit or a period, and a selector is not supplied.

EAGREX4039I Start value of CHARIN or CHAROUT
function must be 1

Explanation: A value other than 1 was specified as
start value of the CHARIN or CHAROUT function.

EAGREX4040I Count value of the LINEIN function
must be 0 or 1

Explanation: A value other than 0 or 1 was specified
as count value of the LINEIN function.

EAGREX4041I Command required for operation 'C'

Explanation: Invocation of the STREAM function with
operation 'C' requires a command as third parameter.

EAGREX4042I Command not allowed with operation
other than 'C'

Explanation: A command can be specified only if the
STREAM function is invoked with operation 'C'.

EAGREX4043I Operation value of STREAM function
must be 'C', 'D', or 'S'

Explanation: The only valid STREAM function
operations are:

 � 'C' (command)
 � 'D' (description)
 � 'S' (state)

EAGREX4044I Invalid argument value in stream I/O
function

Explanation: A stream I/O function (CHARIN,
CHAROUT, CHARS, LINEIN, LINEOUT, LINES, or STREAM)
returned an error.

| EAGREX4045I Argument 2 is not in the format
| described by argument 3

| Explanation: The second argument specified is not in
| the format described by the third argument.

| Your Response: Check the format definitions of the
| built-in function for which the error is reported. Either
| correct the value of the second argument or change the
| format specified in the third argument.

| EAGREX4046I BIF argument 4/5 must be a single
| non-alphanumeric character or the null
| string

| Explanation: You specified a wrong date separation
| character.

| EAGREX4047I BIF argument 1/3 is in a format
| incompatible with separator in argument
| 4/5

| Explanation: You specified a separator character for a
| date type that does not allow for separators.

170 SAA REXX/370 User’s Guide and Reference

 EAGREX4048I � EAGREX4300E

| EAGREX4048I Argument 2 is not in the format
| described by argument 5

| Explanation: The separator character in the input date
| in argument 2 does not correspond to the date
| separator character specified in argument 5.

EAGREX4100E Error 41 running compiled program,
line nn: Bad arithmetic conversion

Explanation: In an arithmetic expression, a term was
found that was not a valid number or that had an
exponent outside the range of −999 999 999 through
+999 999 999.

A variable might have been incorrectly used or an
arithmetic operator might have been included in a
character expression without being put in quotes. For
example, the command MSG \ Hi! should be written as
'MSG \ Hi!', otherwise the program will try to multiply
MSG by Hi!.

EAGREX4101I Initial expression missing in
controlled DO loop

Explanation: No initial expression was found in a
controlled DO loop where one was expected.

EAGREX4200E Error 42 running compiled program,
line nn: Arithmetic overflow/underflow

Explanation: A result of an arithmetic operation was
encountered that required an exponent greater than the
limit of nine digits (more than +999 999 999 or less than
−999 999 999). This error can occur during evaluation
of an expression or during the stepping of a DO loop
control variable.

EAGREX4201I Overflow occurred during addition or
subtraction

Explanation: The result of an addition or subtraction
required an exponent greater than 999 999 999.

EAGREX4202I Overflow occurred during
multiplication

Explanation: The result of a multiplication required an
exponent greater than 999 999 999.

EAGREX4203I Underflow occurred during
multiplication

Explanation: The result of a multiplication required an
exponent less than −999 999 999.

EAGREX4204I Overflow occurred during division

Explanation: The result of a division required an
exponent greater than 999 999 999.

EAGREX4205I Underflow occurred during division

Explanation: The result of a division required an
exponent less than −999 999 999.

EAGREX4206I Division by zero

Explanation: The program tried to divide a number by
zero.

EAGREX4207I Integer division by zero

Explanation: The program tried to divide a number by
zero with the % (integer division) operator.

EAGREX4208I Remainder of division by zero

Explanation: The program tried to divide a number by
zero with the // (remainder) operator.

EAGREX4209I Overflow occurred during
exponentiation

Explanation: The result of an exponentiation operation
required an exponent greater than 999 999 999.

EAGREX4210I Underflow occurred during
exponentiation

Explanation: The result of an exponentiation operation
required an exponent less than −999 999 999.

EAGREX4211I Value zero to a negative power

Explanation: The program tried to raise zero to a
negative power in an exponentiation operation.

EAGREX4300E Error 43 running compiled program,
line nn: Routine not found

Explanation: An external routine called in your
program could not be found. The simplest, and
probably most common, cause of this error is a
mistyped name. Another possibility is that one of the
standard function packages is not available.

If you were not trying to invoke a routine, you might
have put a symbol or string adjacent to a left
parenthesis when you meant it to be separated by a
space or operator. The Compiler would see that as a
function invocation. A symbol or a string in this position
causes the phrase to be read as a function call. For
example, the string 3(4+5) should be written as 3\(4+5)
if a multiplication was intended.

 Chapter 16. Runtime Messages 171

 EAGREX4400E � EAGREX9999S

EAGREX4400E Error 44 running compiled program,
line nn: Function did not return data

Explanation: The program invoked an external routine
as a function within an expression. The routine seemed
to end without error, but it did not return data for use
within the expression.

EAGREX4500E Error 45 running compiled program,
line nn: No data specified in RETURN
function

Explanation: A REXX program or internal routine has
been called as a function, but an attempt is being made
to return (by a RETURN instruction) without passing
back any data.

EAGREX4600E Error 46 running compiled program,
line nn: Invalid variable reference

Explanation: Within a DROP or PROCEDURE
instruction, the syntax of a variable reference (a variable
whose value is to be used, indicated by its name being
enclosed in parentheses) is incorrect. The close
parenthesis that should immediately follow the variable
name is missing.

EAGREX4700E Error 47 running compiled program,
line nn: Unexpected label

Explanation: A label was found in the string of an
INTERPRET instruction.

EAGREX4800E Error 48 running compiled program,
line nn: Failure in system service

Explanation: Either a system service, such as user
input, output, or manipulation of the console stack, has
failed to work correctly, or a system exit detected such
an error in a system service.

Your Response: Ensure that your input is correct and
that your program is working correctly. If the problem
persists, notify your system support personnel.

EAGREX4801I Error in EXECINIT invocation

Explanation: The EXECINIT routine specified in the
module name table either could not be invoked, or
returned a nonzero return code.

Your Response: Notify your system support
personnel.

EAGREX4802I Error in EXECTERM invocation

Explanation: The EXECTERM routine specified in the
module name table either could not be invoked, or
returned a nonzero return code.

Your Response: Notify your system support
personnel.

EAGREX4803I EVALBLOCK cannot be obtained

Explanation: The Library attempted to obtain an
EVALBLOCK control block by calling the IRXRLT system
routine with the GETEVAL function, but did not succeed.

Your Response: Notify your system support
personnel.

EAGREX4804I Error in invocation of global exit for
REXX programs

Explanation: A global exit for REXX programs on CMS
was specified, but cannot be invoked due to missing
system interfaces. You might be missing a prerequisite
CMS PTF.

Your Response: Notify your system support
personnel.

EAGREX4805I System interfaces for invocation of
stream I/O function not available

Explanation: Stream I/O on VM/ESA Release 2.1 and
VM/ESA Release 2.2 was specified, but cannot be
invoked due to missing system interfaces. You might
be missing a prerequisite CMS PTF.

Your Response: Notify your system support
personnel.

EAGREX4806I Error in stream I/O function

Explanation: A stream I/O function (CHARIN,
CHAROUT, CHARS, LINEIN, LINEOUT, LINES, or STREAM)
returned an error.

| EAGREX4900E Error 49 running compiled program,
| line nn: Interpretation error

Explanation: An internal self-consistency check of the
INTERPRET processor indicated an error.

Your Response: Report any occurrence of this
message to your IBM representative.

| EAGREX9999S Message number nnn

| Explanation: The Library was about to issue a
| message but the message could not be found in the
| message repository currently allocated. This can occur
| when you have different product releases or PTF levels
| installed.

| Your Response:

172 SAA REXX/370 User’s Guide and Reference

| � Under CMS:
| If this message has been issued only a few times,
| you are probably using a back-level version of the
| message repository and the Compiler cannot find
| the newer messages. Upgrade your repository.

| If this message has been issued several times and
| the Compiler’s listing does not contain correct
| headers and text, the Compiler cannot find the
| repository. If you did not customize the repository,
| see “Customizing the Message Repository to Avoid
| a Read/Write A-Disk” on page 128 for the correct
| names supplied by IBM. Issue a FILELIST
| command to see if one of these repositories is in
| your current search order. If you wish to customize
| the repository, make sure you issued the GENMSG

| and SET LANG commands with the correct
| parameters and file IDs.

| � Under MVS:
| If this message has been issued only a few times,
| you are probably using a back-level version of the
| message repository and the Compiler cannot find
| the newer messages. Check with your Systems
| Programming staff.

| If this message has been issued several times and
| the Compiler’s listing is mainly in English although
| you have been trying to use another language, the
| Compiler cannot find the text in the message
| repository and has switched to hard-coded English
| text. Check with your Systems Programming staff
| and see “Message Repository” on page 122 for
| more details.

 Chapter 16. Runtime Messages 173

174 SAA REXX/370 User’s Guide and Reference

 EAGTRC0131E � EAGTRC0142I

Chapter 17. Library Diagnostics Messages (CMS)

EAGTRC0131E Diagnostics module and the Library
versions do not match

Explanation: The Library diagnostics cannot be run,
because the Library diagnostics module is not the same
version as the Library. A new version of the Library
was probably installed, but not all the components were
replaced.

Your Response: Install the same version of all the
product components on your system.

EAGTRC0132E User program abended

Explanation: One of your programs (not necessarily a
REXX program) ended abnormally or was terminated by
the HX command while Library diagnostics were active.
The Library diagnostics are stopped.

Your Response: None.

EAGTRC0133I Printer nnn detached

Explanation: The printer at the specified virtual
address, which was defined by the Library diagnostics,
has been closed and detached from your virtual
machine because the Library diagnostics have
terminated.

Your Response: None.

EAGTRC0134I Specified printer address ignored

Explanation: You restarted the Library diagnostics
and specified a new printer address. The new address
is ignored, and diagnostics output is written to the
previously specified printer address.

Your Response: None.

EAGTRC0135I Diagnostics resumed

Explanation: The Library diagnostics are now active.
The recording of diagnostics continues until you enter
the EAGTRACE OFF command.

Your Response: None.

EAGTRC0136E Invalid syntax for EAGTRACE
command

Explanation: The syntax of the EAGTRACE command
is incorrect. The parameters of the command might
have been mistyped.

Your Response: Reissue the command with the
correct syntax. Examples of valid EAGTRACE
commands are EAGTRACE ON ððE and EAGTRACE OFF. For

details of the syntax of EAGTRACE, see the description
of Library diagnostics in IBM Compiler and Library for
SAA REXX/370: Diagnosis Guide.

EAGTRC0137E Device nnn is not a printer

Explanation: The virtual address (nnn) specified in the
EAGTRACE ON command is not the address of a printer.
The Library diagnostics are not started.

Your Response: Find a virtual address for a printer on
your virtual machine and reissue the command.

EAGTRC0138I Printer nnn defined

Explanation: The virtual address (nnn) specified, or
defaulted to, with the EAGTRACE ON command was not
already defined. A printer has now been defined at this
virtual address for use by the Library diagnostics.

Your Response: None.

EAGTRC0139I Diagnostics terminated

Explanation: The Library diagnostics have been
stopped because an unrecoverable error occurred.

Your Response: See the explanations of any other
messages issued. Restart the Library diagnostics after
the error has been corrected.

EAGTRC0140I Diagnostics already active

Explanation: An EAGTRACE ON command was issued
while Library diagnostics were active. The command is
ignored.

Your Response: If you are trying to change the printer
address, issue EAGTRACE OFF before you issue
another EAGTRACE ON command. Otherwise, no
response is required.

EAGTRC0141I Diagnostics already stopped

Explanation: An EAGTRACE OFF command was
issued after Library diagnostics had been stopped. The
command is ignored.

Your Response: None.

EAGTRC0142I Diagnostics not active

Explanation: An EAGTRACE OFF command was
issued before Library diagnostics had been started.
The command is ignored.

Your Response: None.

 Copyright IBM Corp. 1991, 2000 175

 EAGTRC0143I � EAGTRC0149E

EAGTRC0143I Diagnostics started

Explanation: The Library diagnostics are now active.
The recording of diagnostics continues until you enter
the EAGTRACE OFF command.

Your Response: None.

EAGTRC0144I Diagnostics stopped

Explanation: The Library diagnostics have been
stopped. No more diagnostics information is gathered
for compiled REXX programs.

Your Response: None.

EAGTRC0145E Unable to NUCXLOAD diagnostics
module

Explanation: The attempt to load the Library
diagnostics module as a nucleus extension failed. The
most common cause of this message is insufficient
storage in your virtual machine.

Your Response: Redefine storage and reissue the
command.

EAGTRC0146E Machine storage exhausted

Explanation: The Library diagnostics module was
unable to get the space needed for its work areas and
variables.

Your Response: You can obtain more free storage by
releasing a minidisk or SFS directory (to recover the
space used for the file directory) or by deleting a

nucleus extension. Alternatively, define a larger virtual
storage size for the virtual machine, then re-IPL CMS.

EAGTRC0147E Stack name does not fit

Explanation: An internal self-consistency check in the
Library diagnostics failed.

Your Response: Report any occurrence of this
message to your IBM representative. See the IBM
Compiler and Library for SAA REXX/370: Diagnosis
Guide for more information.

EAGTRC0148E Diagnostics module dropped while
diagnostics active

Explanation: The nucleus extension that contains the
Library diagnostics was dropped by the NUCXDROP
command while the diagnostics were active. If a
compiled EXEC was running when this error occurred,
the results are unpredictable.

Your Response: Restart the Library diagnostics and
the REXX programs to be monitored.

EAGTRC0149E Unable to locate the IBM Library for
SAA REXX/370

Explanation: The Library diagnostics cannot be
started because the Library could not be loaded.

Your Response: If the Library is installed correctly
and is accessible, report the problem to your IBM
representative. See the IBM Compiler and Library for
SAA REXX/370: Diagnosis Guide for more information.

176 SAA REXX/370 User’s Guide and Reference

 Part 5. Appendixes

 Copyright IBM Corp. 1991, 2000 177

178 SAA REXX/370 User’s Guide and Reference

Appendix A. Interface for Object Modules (MVS/ESA)

This appendix explains in detail the preparatory steps for generating a load module
from a REXX program that has been compiled to an object module under MVS/ESA,
and the ISPF restrictions on load modules. It also describes the parameter-passing
conventions for the different stubs and how the stubs invoke the EXEC handler,
IRXEXEC. This appendix also describes the PARSE SOURCE information, as it
appears in the REXX program.

ISPF Restrictions on Load Modules
Starting with ISPF Version 4.1, compiled REXX load modules are supported through

| the ISPSTART command and the SELECT service by a new value, CREX, for the
| LANG parameter of the CMD keyword.

Earlier releases of ISPF require that all variables that will be manipulated by ISPF
services, such as VGET, be defined using the VDEFINE service. The VDEFINE
service cannot be invoked from a REXX program, therefore the creation of a load
module from a REXX program is not supported, if the load module is to run directly
from the SELECT service.

The use of a REXX load module as an external routine is supported. This program
is created using the EFPL stub. If an application is to be completely packaged, it
can use an interpreted REXX program in a SELECT CMD statement, and this
interpreted REXX program can invoke the packaged external routine with the REXX
CALL instruction.

As an example, assume that you have an interpreted REXX program, called
MYISPFRX, that has many external routines, all written in REXX. Your program can
be invoked as follows:

SELECT CMD(MYISPFRX)

One way of improving the performance is to create a load module containing the
MYISPFRX program and all its external routines. To do this, use the DLINK option
(see “Object Modules (MVS/ESA)” on page 74).

To run the load module on ISPF Version 4.1, the MYISPFRX program must be linked
with either the CPPL or the CPPLEFPL stub. Invoke the program as follows:

SELECT CMD(MYISPFRX) LANG(CREX)

| ISPF uses the correct function pool for the variables. For example:

| � To copy a variable to the ISPF pool:

| /\ Copy variable to variable to ISPF pool \/
| myvar='-TESTING VPUT-';
| ADDRESS ISPEXEC "VPUT MYVAR PROFILE";
| Exit;

| � To get a variable from the ISPF pool:

| /\ Get a variable from the ISPF pool \/
| ADDRESS ISPEXEC 'VGET MYVAR PROFILE';
| SAY 'Variable myvar holds:' myvar;
| Exit;

 Copyright IBM Corp. 1991, 2000 179

| � To call a load module:

| /\ Call a load module \/
| "SELECT CMD(MYVPUT) LANG(CREX)";
| SAY 'VPUT RC='rc;
| "SELECT CMD(MYVGET) LANG(CREX)";
| SAY 'VGET RC='rc;

To run the load module on earlier releases of ISPF, the MYISPFRX program must be
linked with either the EFPL or the CPPLEFPL stub. You need to write another REXX
program that can be either interpreted or of CEXEC type. The source of your new
program called, for example, MYISPFST EXEC is:

/\ REXX \ MYISPFST \\\
\ This EXEC calls MYISPFRX
\\\/
 CALL MYISPFRX

Figure 23. MYISPFST Sample Program

Invoke this program as follows:

SELECT CMD(MYISPFST)

The load module consisting of REXX programs will now run successfully.

| If ISPF variables are accessed with REXX programs running under TSO, note the
| following: If SYSICMD is retrieved using the SYSVAR function, link-edited REXX
| EXECs return a null string. For compiled EXECs that are not link-edited and are
| therefore equal to interpreted REXX EXECs, SYSVAR(sysicmd) contains the EXEC
| name. The name of the link-edited REXX EXEC can be retrieved using
| SYSVAR(syspcmd) provided that it is obtained before any other subcommand is
| issued. In interpreted REXX EXECs and compiled REXX EXECs that are not
| link-edited, the initial value in SYSVAR(syspcmd) is 'EXEC'.

Link-Editing of Object Modules
There are various parameter-passing conventions. Stubs are used to:

� Transform the input parameters into a form understandable by the compiled
REXX program

� Invoke the compiled REXX program

� Transform the returned result into a form understandable by the caller

You must link-edit the OBJECT output of the Compiler with a stub.

To compile a program and link-edit the resulting OBJECT output with a stub, use the
REXXC EXEC with the enhanced OBJECT option (see “Compiler Options” on
page 27), or the REXXCL cataloged procedure which is supplied with the Compiler.
Note that these require that the Library is also installed on your system.

To link-edit a stub and a compiled REXX program, use the REXXL cataloged
procedure, which is supplied with the Library, or the REXXL EXEC to link-edit a stub
and a compiled REXX program.

180 SAA REXX/370 User’s Guide and Reference

When used in a batch job, REXXL EXEC generates the control statements for the
linkage editor to link-edit a stub and a compiled REXX program of type OBJECT.
The compiled REXX program is read from the data set allocated to SYSIN. The
control statements, including the compiled REXX program, are written to a data set
allocated to SYSOUT.

When used interactively, REXXL EXEC link-edits a stub and the compiled REXX
program of type OBJECT and builds a load module. The SYSPRINT output of the

| linkage editor is stored in a sequential data set, where the last identifier is
| LINKLIST.

Note: For object modules, do not use 8-character names that differ only in the
eighth character, because the eighth character of the program name is lost during
the link-edit step.

The original name of each stub is EAGSTUB. Each stub contains an external
reference to the compiled REXX program named EAGOBJ.

The name of the OBJECT module in the external symbol dictionary (ESD) record is
derived from the name of the input data set when the REXX program is compiled. It
is one of the following:

� The member name of the partitioned input data set
� The last qualifier of the name of the sequential input data set
� Or else, COMPREXX (for example, if the source file is part of the job stream)

To link a stub with a program, REXXL generates the following linkage editor input:

 CHANGE EAGSTUB(csect),EAGOBJ(temp_name)
 INCLUDE SYSLIB(stub_name)
 CHANGE csect(temp_name)
\\compiled REXX program is included here\\
 ENTRY csect

For example, if the REXX program AGOODPGM is to be link-edited with the EFPL
stub, the control statements are as follows:

 CHANGE EAGSTUB(AGOODPGM),EAGOBJ($AGOODPG)
 INCLUDE SYSLIB(EAGSTEFP)
 CHANGE AGOODPGM($AGOODPG)

\\compiled REXX program AGOODPGM is included here\\
 ENTRY AGOODPGM

With this input, the linkage editor performs the following:

� Changes the external name of the stub to the original name of the compiled
REXX program. The name of the compiled REXX program becomes a
temporary name, which is the original name contained in the ESD record,
prefixed with a $ character, and truncated to eight characters.

� Includes the stub

� Changes the external name of the REXX program to the temporary name

� Includes the compiled REXX program

The csect name, which is now the external name of the stub, is the recognized
entry point.

Instead of invoking the Compiler and the linkage editor separately, you can create a
load module with a single invocation of the REXXC command. Assuming that the

 Appendix A. Interface for Object Modules (MVS/ESA) 181

source for AGOODPGM is located in the partitioned data set upref.REXX130.EXEC,
the following statement generates a load module with name AGOODPGM, with an
EFPL stub in the partitioned data set upref.REXX130.LOAD:

REXXC REXX13ð.EXEC(AGOODPGM) OBJECT(,EFPL)

See “Compiler Options” on page 27 for more details.

Note: You can link more than one stub to a compiled REXX program to make a
program known under different names for invocation with different
parameter-passing conventions. Or you can use your own renaming scheme by
preparing the necessary linkage editor control statements yourself.

 DLINK Example
The use of the DLINK option is discussed in “Object Modules (MVS/ESA)” on
page 74. The following is a step-by-step example of an application that is
packaged using the DLINK and OBJECT options of the Compiler.

This particular application is simply a performance test for the DLINK option. It is
made up of three different REXX programs:

DLT: Is the main program. The source code is shown in Figure 24 on
page 183.

CPUTIME: Returns the CPU time that has been used. The source code is
shown in Figure 25 on page 184.

ECHO: Is a simple EXEC that returns the argument that was passed to it.
The source code is shown in Figure 26 on page 184.

Note that the names are unique in the first seven characters, to prevent a naming
conflict when the stubs are added.

The DLT EXEC was originally stored in a partitioned data set allocated to the
ddname SYSPROC. It was invoked using a command equal to its name, DLT. The
other two EXECs were included in the same partitioned data set, and were found as
external routines only after all function packages and all the appropriate load
libraries had been searched.

182 SAA REXX/370 User’s Guide and Reference

/\ REXX \ DLT \\
\ Performance Test for DLINK option:
\ Invoke external routine ECHO 5ð times and tell how long it took
\\\/
 n='DLT'
Parse Version v . /\ Use Parse Version to see if compiled \/
If left(v,5)='REXXC' Then what=n 'compiled'

Else what=n 'interpreted'
 Say what
 num=5ð

 tð=cputime()
Call time 'r'
Say num 'invocations of ECHO will be measured'
Do i=1 To num
Call echo i

 End
Say 'This took me' (cputime()-tð) 'CPU-seconds.'
Say '(elapsed:' time('E')')'

Figure 24. DLT Sample Program

The CPUTIME program can be used on several operating systems. The CPU time
is calculated using an operating-system-dependent facility. Logic is also included to
return the output when the program is invoked as an external routine.

 Appendix A. Interface for Object Modules (MVS/ESA) 183

/\ REXX \ CPUTIME \\
\ Return the cpu-time used up so far
\\\/
Parse Version v

 Parse Source s

Parse Var s sys .

Select /\ Figure out which system we are on \/
When sys='CMS' Then Do

 qt="DIAG"(8,'Q TIME')
Parse Var qt . 'VIRTCPU=' mm . ':' +1 ss +6

 cpu=mm\6ð+ss
 End

When sys='TSO' Then Do
 cpu=sysvar('SYSCPU')
 End

When wordpos(sys,'PCDOS OS/2')>ð Then Do
 t=Time()

Parse Var t hh ':' mm ':' ss
 cpu=(hh\6ð+mm)\6ð+ss
 End
 Otherwise Do

Say 'System' sys 'is unknown to CPUTIME'
 cpu=ð
 End
 End
If word(s,2)='COMMAND' Then
Say 'CPU time used so far:' cpu

Else /\ When an external routine \/
Return cpu /\ Return the CPU time \/

Figure 25. CPUTIME Sample Program

ECHO is a simple EXEC that returns its first argument.

/\ REXX \ ECHO \\\
\ Performance Test for DLINK option:
\ Return the argument
\\\/
 Return arg(1)

Figure 26. ECHO Sample Program

To package this application, the following steps are required:

1. Compile all the routines that will be included in the application with both the
OBJECT and DLINK options. In our example, DLT, CPUTIME, and ECHO are the
appropriate routines.

2. Create a load module with the OBJECT code for the main routine and the
appropriate stub, using either the REXXL cataloged procedure, or the REXXL
command provided with the Library. In our example, we create a load module
with DLT and the CPPL stub.

3. Once again, using the REXXL cataloged procedure, or the REXXL command
provided with the Library, create a load module with the OBJECT code for each

184 SAA REXX/370 User’s Guide and Reference

of the external routines and the EFPL stub. In our example, we combine both
the CPUTIME and the ECHO routine with an EFPL stub. This creates two
separate load modules both having their own EFPL stub.

4. Combine all three load modules into a single load module using the linkage
editor. The entry point for this load module is DLT. In our example, BJVLIB is
the ddname of the load library containing the programs. The control
statements for the linkage editor are:

 INCLUDE BJVLIB(DLT)
 INCLUDE BJVLIB(ECHO)
 INCLUDE BJVLIB(CPUTIME)
 ENTRY DLT
 NAME DLT(R)

Place the load module in the appropriate load library so that it will get control
before the REXX EXEC. The application is packaged and ready to run.

Notes on recursive routines that are compiled with the DLINK option:

� Routines that are called from other external routines recursively must be linked
to the appropriate EFPL or CPPLEFPL stub.

� Routines that call themselves recursively must be renamed to a temporary
name before compilation, otherwise the internal recursive call resolves to the
beginning of the OBJECT module instead of the beginning of the stub.

If, for example, DLT contained a Call DLT instruction, the following actions
would be required:

1. Rename DLT to a temporary name, for example: DLT1

2. Compile DLT1 with compiler options DLINK, NOCE, and OBJ

3. Link DLT1 to the CPPLEFPL stub:

CHANGE EAGSTUB(DLT),EAGOBJ(DLT1)
INCLUDE SYSLIB(EAGSTCE)
INCLUDE OBJECTS(DLT1)
ENTRY DLT
NAME DLT(R)

 Stubs
A stub is code that:

� Provides an interface between a certain parameter-passing convention and the
parameter-passing convention defined for REXX programs

� Invokes the compiled REXX program

� Transforms the result of the compiled REXX program into a form
understandable by the caller

Five stubs are supplied with the Library to provide interfaces with the following
| types of parameter-passing conventions (see also “Object Modules (MVS/ESA)” on
| page 74):

| CPPL For running REXX applications from the TSO/E command line as a TSO
| command processor or if the program was invoked from an EXEC that
| contained ADDRESS TSO.

 Appendix A. Interface for Object Modules (MVS/ESA) 185

| EFPL For REXX applications that are invoked by a REXX CALL statement or
| as function program_name().

| CPPLEFPL This is a combination of the CPPL and EFPL stubs. It is recommended
| for most compiled REXX applications running under TSO/ISPF.

| MVS For invoking the link-edited REXX load module from MVS JCL using
| EXEC PGM=program_name, or as a host command from an EXEC with
| ADDRESS LINKMVS or ADDRESS ATTCHMVS.

| CALLCMD For calling the program from the TSO/E command line using the TSO
| CALL command.

If you want to create additional stubs, you can use as models the stubs shipped in
the sample data set.

On entry to each stub, registers are set as follows:

Register 0 Address of the environment block (EFPL stub only)
Register 1 Address of the parameter list
Registers 2-12 Unpredictable
Register 13 Address of a register save area
Register 14 Return address
Register 15 Entry point address

On exit of each stub, registers are set as follows:

Registers 0-14 Same as on entry
Register 15 Return code

Stub name Member name in the sample data set

CPPL EAGSTCPP

EFPL EAGSTEFP

CPPLEFPL EAGSTCE

MVS EAGSTMVS

CALLCMD EAGSTCAL

Processing Sequence for Stubs
For each stub, the general processing sequence is as follows:

1. Save the registers.

2. Obtain storage required to execute the stub. For an EFPL parameter list,
| storage is requested from the same subpool as REXX. For CPPL and CALLCMD
| parameter lists, storage is requested from subpool 78. For MVS parameter
| lists, no subpool parameter is supplied for obtaining the required storage.

3. Build a parameter list to invoke IRXEXEC. How the input parameter list maps
into the parameter list for the invocation of IRXEXEC is shown separately for
each type of parameter list.

 4. Invoke IRXEXEC.

5. Convert the result supplied by IRXEXEC to the form needed for a specific type
of invocation (described separately for each type of invocation).

6. Free the storage obtained in Step 2.

7. Restore the registers and return to the caller.

186 SAA REXX/370 User’s Guide and Reference

Parameter List for Invoking IRXEXEC
The parameter list for invoking IRXEXEC is as follows:

Parameter 1 The address of an EXECBLK. An EXECBLK address is never
supplied; therefore the value of the parameter is 0.

Parameter 2 The address of the argument list.

Parameter 3 Specify the type of invocation (COMMAND, SUBROUTINE, or
FUNCTION) and whether extended return codes are
requested.

The COMMAND invocation is specified except for EFPL
parameter lists where the SUBROUTINE invocation is
specified. Extended return codes are always requested.

Parameter 4 The address of the in-storage control block describing the
compiled program. An in-storage control block is always
supplied.

Parameter 5 The address of the CPPL. The value of the parameter is 0 if
no CPPL is supplied.

Parameter 6 The address of the EVALBLOCK control block that is to
contain the result.

For EFPL parameter lists, the passed EVALBLOCK control
block is used. In all other cases, an EVALBLOCK control
block with a data length of 16 bytes is used. This is large
enough to hold any expected result. It holds the result of a
COMMAND invocation, which must be numeric and must fit
into a fullword.

Parameter 7 The address of a work area vector or 0. A work area vector
address is never supplied; therefore the value of the
parameter is 0.

Parameter 8 The address of a user field or 0. A user field address is
never supplied; therefore the value of the parameter is 0.

Parameter 9 The address of the environment block.

For EFPL parameter lists, the address of the environment
block as passed in register 0 is supplied. Otherwise, no
parameter is supplied.

For a complete description of the parameters, see the TSO/E Version 2 REXX/MVS:
Reference manual.

In-Storage Control Block
The in-storage control block supplied when IRXEXEC is invoked is as follows (the
default values are indicated in parentheses):

ACRONYM String 'IRXINSTB'.

HDRLEN Length of the in-storage control block.

ADDRESS Address of the vector of records. A vector of records containing one
address and length pair is supplied. The address points to the setup
code, and the length is 20; this is the length needed for IRXEXEC to
identify the header.

 Appendix A. Interface for Object Modules (MVS/ESA) 187

USEDLEN Length of the vector of records (8).

MEMBER Name of the EXEC ('? ').

DDNAME Name of the DD from which the program was loaded (' ').

SUBCOM Name of the initial host command environment (' ').

DSNLEN Length of the data set name (0).

DSNAME Name of the data set (X'00').

If the environment is known (because a program is linked to the EFPL stub), the
environment is passed to IRXEXEC when IRXEXEC is called. Otherwise, a value of
0 is passed to register 0. IRXEXEC locates the last nonreentrant environment and
uses it when it executes your program.

| Testing Stubs
| You can use the following program to test that a stub is invoked and the parameter
| list is passed correctly.

| /\ Tell me who I am \/
| Parse source allsrc;
| Arg allp;
| Say 'Source;' allsrc;
| Say 'says hello world...';
| If allp /='' then Say 'Parmlist:' allp;
| Else Say 'No parmlist received...';
| Exit;

| If you are using the wrong stub, one of the following might happen:

| � 0C4 Abend in the stub before calling the compiled program.
| � The parameters are not all passed to the compiled program.

| In either case, use a different stub. For example, if you used CALLCMD STUB, use
| MVS STUB instead.

 Parameter Lists
Each of the following sections contains a figure showing, in the upper part, the
parameter list that is passed to the stub when the stub is invoked. Register 1
points to this parameter list. The upper part of the figure also shows the relevant
surrounding structures. The lower part of the figure shows the parameter list that is
passed to IRXEXEC when IRXEXEC is invoked. Register 1 points to this parameter
list. The lower part of the figure also shows the surrounding structures built by the
stub for the invocation of IRXEXEC.

The following sections also describe, for each type of parameter list, how to obtain
the return code (to be passed back in register 15) and, for EFPL, the necessary
EVALBLOCK control block processing.

188 SAA REXX/370 User’s Guide and Reference

CPPL Parameter List
A CPPL parameter list is supplied if, on the TSO/E command line, the user issued
the command program_name, or if the program was invoked from an EXEC that
used ADDRESS TSO.

Storage is obtained from subpool 78.

┌─ When stub is entered ──┐
 │┌───┐ │
 ││ ┌─────────┐ │
 │6 6 ││ │
R1─5┌───────┐ ┌─────┬─────┬── ──── ─────┐ ││ │

││ ├──5│Len │Offs │COMMAND arg │ ││ │
 │├─┴─┴─┴─┤ └──┴──┴──┴──┴── ──── ─────┘ ││ │
 ││ │ │ └──Offs──┘ │ ││ │
 │├───────┤ └─────────Len─────────────┘ ││ │
 ││ │ ││ │
 │├───────┤ ││ │
 ││ │ ││ │
 │└───────┘ ││ │
 └──││─────────────────────────┘
 ││
 ┌──││─────────────────────────┐
R1─5┌───────┐ ┌───────────┐ ││ │

││ ├┬─5│ðð ðð ðð ðð│ ││ │
 │├───────┤& └──┴──┴──┴──┘ ││ │
 ││ ├│─────────────────5┌───────────┬──5┌───────────┬───────────┐│
 │├───────┤│ ┌───────────┐ └──┴──┴──┴──┘ │└┤ │ Len_1 ││

││ ├│─5│9ð ðð ðð ðð│ │ ├──┴──┴──┴──┼──┴──┴──┴──┤│
│├───────┤│ └──┴──┴──┴──┘ ┌───────────┐ │ │FF FF FF FF│FF FF FF FF││
││ ├│─5┌───────────┬──5│ INSTBLK │ │ └──┴──┴──┴──┴──┴──┴──┴──┘│

 │├───────┤│ └──┴──┴──┴──┘ └───────────┘ │ │
 ││ ├│─5┌───────────┬─────────────────┘ │
 │├───────┤│ └──┴──┴──┴──┘ ┌───────────┐ │

││ ├│─5┌───────────┬──5│ EVALBLOCK │ │
 │├───────┤│ └──┴──┴──┴──┘ └───────────┘ │
 ││ ├┤ ┌────────────────────────────────────┐│

│├───────┤& │ Len_1=Len─Offs─4; If Len_1=ð Then ││
││ ├┘ │ address Argument List without Args ││

 │└───────┘ └────────────────────────────────────┘│
└─ When IRXEXEC is entered ───┘

Figure 27. CPPL Parameter List Mapping

If the return code from IRXEXEC is not 0, the return code is passed back in register
15. Otherwise, the value contained in the EVALBLOCK control block is converted to
a fullword and passed back in register 15.

EFPL Parameter List
An EFPL parameter list is supplied if, from within an EXEC, either the instruction
CALL program_name is issued or a program is invoked through the function
invocation program_name(). The compiled REXX program is always invoked as a
subroutine, because the information specifying whether the program is to be
invoked as a subroutine or as a command is not accessible.

Storage is obtained from the same subpool as REXX. The subpool number is
contained in the parameter block, which is addressed through the environment
block. The address of the environment block is passed in register 0 when the stub
is entered.

 Appendix A. Interface for Object Modules (MVS/ESA) 189

| Note: Most NetView applications require the EFPL stub.

┌─ When stub is entered ──┐
R1─5┌───────┐ ┌──────────────────────────────────┐ │

││ │ │ Saved entry Rð ┌───────────┐ │ │
│├───────┤ │ ┌───────────┬──5│ ENVBLOCK │ │ │

 ││ │ └5└──┴──┴──┴──┘ └───────────┘ │ │
 │├───────┤ │ │
 ││ │ │ │
 │├───────┤ ┌────────────────┐ │ │
 ││ │ │ ┌───────────┐ │ │ │
 │├───────┤ └5│ ArgList │ │ │ │
 ││ ├──────────────────5└───────────┘ │ │ │
 │├─┴─┴─┴─┤ ┌───────────┐ │ │ │

││ ├──5┌───────────┬──5│ EVALBLOCK │ │ │ │
 │└─┴─┴─┴─┘ ┌5└──┴──┴──┴──┘ └───────────┘ │ │ │
 └──────────│────────────────────────────────│─│───────────────────────┘
 │ │ │
 ┌──────────│────────────────────────────────│─│───────────────────────┐
R1─5┌───────┐ │ ┌───────────┐ │ │ │

││ ├┬─5│ðð ðð ðð ðð│ │ │ │
 │├───────┤&│ └──┴──┴──┴──┘ ┌───────────┬──┘ │ │
 ││ ├│─────────────────5└──┴──┴──┴──┘ │ │
 │├───────┤││ ┌───────────┐ │ │

││ ├│─5│3ð ðð ðð ðð│ │ │
 │├───────┤││ └──┴──┴──┴──┘ ┌───────────┐ │ │
 ││ ├│─5┌───────────┬──5│ INSTBLK │ │ │
 │├───────┤││ └──┴──┴──┴──┘ └───────────┘ │ │
 ││ ├┤│ │ │
 │├───────┤&│ │ │
 ││ ├│┘ │ │
 │├───────┤│ │ │
 ││ ├┤ │ │
 │├───────┤& │ │
 ││ ├┘ │ │
 │├───────┤ │ │
 ││ ├────────────────────────────────────┘ │
 │└───────┘ │

└─ When IRXEXEC is entered ───┘

Figure 28. EFPL Parameter List Mapping

The required, final EVALBLOCK control block handling (and the determination of the
return code to pass back in register 15) is:

rc_to_pass_back = ð
If rc_from_irxexec ¬=ð Then

 rc_to_pass_back=rc_from_irxexec
 Else Do

If evalblock shows truncated result Then Do
invoke irxrlt 'GETBLOCK'
If rc ¬= ð Then

 rc_to_pass_back=rc
 Else Do

put new evalblock Address INTO parameter list
invoke irxrlt 'GETRLTE' With new evalblock
If rc ¬= ð Then

 rc_to_pass_back=rc
 End
 End
 End

190 SAA REXX/370 User’s Guide and Reference

If the return code passed back from IRXEXEC is 100 or 104 (which indicates an
abend), register 0 contains the value passed back by IRXEXEC (abend code and
reason code).

 CPPLEFPL
This stub is a combination of the CPPL and EFPL stubs. It contains the logic to
determine if the REXX program is being invoked as a TSO/E command or as a
REXX external routine. Once this has been determined, the compiled REXX
program is given control with the appropriate parameters.

| CPPLEFPL is recommended for most compiled REXX programs running under
| TSO/ISPF.

MVS Parameter List
An MVS parameter list is supplied when a program is invoked from MVS JCL by
means of EXEC PGM=program_name, or as a host command from an EXEC with
ADDRESS LINKMVS or ADDRESS ATTCHMVS.

The end of the parameter list is indicated by the high-order bit of the last element of
the address list being set to 1.

When obtaining storage, no subpool parameter is supplied.

 Appendix A. Interface for Object Modules (MVS/ESA) 191

┌─ When stub is entered ──┐
 │ ┌────────────────────────┐ │
 │ 6 │ │
R1─5┌───────┐ ┌─────┬── ──── ─────┐ │ │
 ││ ├──5│Len 1│ │ │ │
 │├─┴─┴─┴─┤ └──┴──┴── ──── ─────┘ │ │

││ ├─┐ ┌─────┬── ──── ─────┐ │ │
│├─┴─┴─┴─┤ └5│Len 2│ │ │ │
│ └──┴──┴── ──── ─────┘ │ │

 │ & │ │
 │ └───────────────────────┐│ │
 │├─┴─┴─┴─┤ ┌─────┬── ──── ─────┐ ││ │
 ││ ├──5│Len n│ │ ││ │
 │└─┴─┴─┴─┘ └──┴──┴── ──── ─────┘ ││ │
 │ & ││ │
 │ └──────────────────────┐││ │
 └───│││─────────────────────────┘
 │││
 ┌───│││─────────────────────────┐
R1─5┌───────┐ ┌───────────┐ │││ │

││ ├┬─5│ðð ðð ðð ðð│ │││ │
 │├───────┤& └──┴──┴──┴──┘ │││ │
 ││ ├│─────────────────5┌───────────┬──5┌───────────┬───────────┐│

│├───────┤│ ┌───────────┐ └──┴──┴──┴──┘││└┤ │ðð ðð Len 1││
││ ├│─5│9ð ðð ðð ðð│ ││ ├──┴──┴──┴──┼──┴──┴──┴──┤│
│├───────┤│ └──┴──┴──┴──┘ ┌───────────┐│└─┤ │ðð ðð Len 2││

 ││ ├│─5┌───────────┬──5│ INSTBLK ││ ├──┴──┴──┴──┼──┴──┴──┴──┤│
 │├───────┤│ └──┴──┴──┴──┘ └───────────┘│ │
 ││ ├┤ │ ├──┴──┴──┴──┼──┴──┴──┴──┤│

│├───────┤& ┌───────────┐└──┤ │ðð ðð Len n││
││ ├│─5┌───────────┬──5│ EVALBLOCK │ ├──┴──┴──┴──┼──┴──┴──┴──┤│

 │├───────┤│ └──┴──┴──┴──┘ └───────────┘ │FF FF FF FF│FF FF FF FF││
 ││ ├┤ └──┴──┴──┴──┴──┴──┴──┴──┘│
 │├───────┤& │
 ││ ├┘ │
 │└───────┘ │

└─ When IRXEXEC is entered ───┘

Figure 29. MVS/ESA Parameter List Mapping

If the return code from IRXEXEC is not 0, the return code is passed back in register
15. Otherwise, the value contained in the EVALBLOCK control block is converted to
a fullword and passed back in register 15.

CALLCMD Parameter List
A CALLCMD parameter list is supplied when the CALL program_name command is
issued from the TSO/E command line, or when the CALL program_name host
command is issued from within an EXEC executing under TSO/E.

The address pointed to by register 1 on entry is an AMODE 24 address (the first
byte must be ignored).

Storage is obtained from subpool 78.

192 SAA REXX/370 User’s Guide and Reference

┌─ When stub is entered ──┐
 │ ┌────────────────────────┐ │
 │ 6 │ │
R1─5┌───────┐ ┌─────┬── ──── ─────┐ │ │
 ││ ├──5│Len 1│ │ │ │
 │└─┴─┴─┴─┘ └──┴──┴── ──── ─────┘ │ │
 └───│─────────────────────────┘
 │
 ┌───│─────────────────────────┐
R1─5┌───────┐ ┌───────────┐ │ │

││ ├┬─5│ðð ðð ðð ðð│ │ │
 │├───────┤& └──┴──┴──┴──┘ │ │
 ││ ├│─────────────────5┌───────────┬──5┌───────────┬───────────┐│

│├───────┤│ ┌───────────┐ └──┴──┴──┴──┘ └┤ │ðð ðð Len 1││
││ ├│─5│9ð ðð ðð ðð│ ├──┴──┴──┴──┼──┴──┴──┴──┤│

 │├───────┤│ └──┴──┴──┴──┘ ┌───────────┐ │FF FF FF FF│FF FF FF FF││
 ││ ├│─5┌───────────┬──5│ INSTBLK │ └──┴──┴──┴──┴──┴──┴──┴──┘│
 │├───────┤│ └──┴──┴──┴──┘ └───────────┘ │
 ││ ├┤ │
 │├───────┤& ┌───────────┐ │

││ ├│─5┌───────────┬──5│ EVALBLOCK │ │
 │├───────┤│ └──┴──┴──┴──┘ └───────────┘ │
 ││ ├┤ │
 │├───────┤& │
 ││ ├┘ │
 │└───────┘ │

└─ When IRXEXEC is entered ───┘

Figure 30. CALLCMD Parameter List Mapping

If the return code from IRXEXEC is not 0, it is passed back in register 15.
Otherwise, the value contained in the EVALBLOCK control block is converted to a
fullword and passed back in register 15.

 Search Order
When an external function or subroutine is invoked from a compiled REXX program
of OBJECT type, the standard REXX search order applies. The in-storage control
block that is set up in the stubs indicates that the compiled REXX program has
been loaded from the default system file in which you can store REXX EXECs.

 PARSE SOURCE
For a REXX program compiled into an object module, the source string that can be
obtained by means of the PARSE SOURCE instruction contains the following tokens:

� The characters TSO

� If the program is linked with the EFPL stub, the string SUBROUTINE; otherwise,
the string COMMAND

� A question mark (?) to indicate that the name of the EXEC is not known

� A question mark (?) to indicate that the name of the DD statement from which
the EXEC was loaded is not known

� A question mark (?) to indicate that the name of the data set from which the
EXEC was loaded is not known

� A question mark (?) to indicate that the name of the EXEC as it was invoked is
not known

 Appendix A. Interface for Object Modules (MVS/ESA) 193

� The initial host command environment in uppercase

� The name of the address space in uppercase

� An 8-character user token

194 SAA REXX/370 User’s Guide and Reference

Appendix B. Interface for TEXT Files (CMS)

This appendix explains how an Assembler program can invoke a REXX program
that has been compiled into a TEXT file under CMS. It also describes the
parameters and the PARSE SOURCE information received by the REXX program.

The Call from the Assembler Program
A TEXT file can be linked to an Assembler program and may be called by using any
of the standard forms of PLIST.

Call Type: Under VM/SP Release 5, the call type is specified in the high-order
byte of register 1. Under later releases of VM supported by the Compiler and
Library, the call type is specified in the byte that follows the 24-word save area.

Registers: On entry to the called program, the following registers are defined:

R0 For call type X'05', the address of a 6-word extended PLIST (see “Extended
PLISTs” on page 196) and, in the high-order bit, an indication of the
invocation type.

For call types X'01', X'0B', X'02', and X'06', the address of an extended
PLIST (see “Extended PLISTs” on page 196).

R1 The address of a tokenized PLIST.

For VM/SP Release 5 systems, the high-order byte specifies the call type.

R2 User word (meaningful only for non-SVC invocation).

R13 The address of a 24-word save area.

For non-VM/SP Release 5 systems, the byte that follows the save area
specifies the call type.

For SVC invocations, the SVC handler provides the save area and sets
register 13.

R14 The return address.

For SVC invocations, the SVC handler sets this register.

R15 The entry point address.

For SVC invocations, the SVC handler sets this register.

On return to the Assembler program, the following register is defined:

R15 The return code.

For call type X'05', this is the return code produced by the last operation that
set the return code during execution of the REXX program. The value
specified in the RETURN or EXIT instruction is passed back by means of the
6-word extended PLIST.

For all other call types, this is the return code specified on the RETURN or
EXIT instruction.

 Copyright IBM Corp. 1991, 2000 195

 Extended PLISTs
The extended PLIST has the form:

EPLIST DS ðF PLIST with pointers:
DC A(COMVERB) → C'synonym' CL1' '

\ (Note that this area must precede
\ the area containing the Argstring.)

DC A(BEGARGS) → start of Argstring
DC A(ENDARGS) → character after end of the Argstring
DC A(FBLOK) → file block

\ (If there is no file block,
\ this pointer must be ð.
\ The high-order byte is ignored.)

The 6-word extended PLIST has the same four pointers followed by:

DC AL4(ARGLIST) → Argument list.
\ If there is no argument list,
\ this pointer is ð, and BEGARGS/ENDARGS
\ are used for the ARG string.

DC A(SYSFUNRT) → SYSFUNRT location, which:
\ - contains a ð on entry
\ - will be unchanged if no result is
\ returned
\ - will contain the address of an
\ EVALBLOK if a result is returned

What the REXX Program Gets
The arguments accessible through the PARSE ARG instruction and the ARG built-in
function, and the information returned by the PARSE SOURCE instruction, depend
on the type of PLIST used.

Invocation with a Tokenized PLIST Only
If the program is invoked with only a tokenized PLIST, the argument string is
available to the program as a single argument. This is taken from the second
token of the parameter list, which is delimited by X'FFFFFFFF'. There is one
blank between each token of the argument.

The information returned by PARSE SOURCE is as follows:

Description of Token Value

— CMS

Invocation type COMMAND

File name The first token of the PLIST or *

File type *

File mode *

Synonym The first token of the PLIST or ?

Initial (default) address
for commands

CMS

196 SAA REXX/370 User’s Guide and Reference

Invocation with an Extended PLIST or a 6-Word Extended PLIST
If the program is invoked with an extended PLIST, the argument string (as defined
by BEGARGS and ENDARGS) is available to the program as a single argument.

If the program is invoked with a 6-word extended PLIST and an argument list is
supplied, the arguments are taken from the argument list. If the address of the
argument list is 0, the argument string (as defined by BEGARGS and ENDARGS) is
available to the program as a single argument.

The information returned by PARSE SOURCE is as follows:

Description of
Token

Value

— CMS

Invocation type For call type X'05', when high-order bit of R0=1: FUNCTION
For call type X'05', when high-order bit of R0=0: SUBROUTINE
For all other call types: COMMAND

File name The file name in the file block or, if there is no file block, the first token
of the tokenized PLIST.

File type The file type in the file block. If the file type in the file block is blank:
EXEC.
If there is no file block: *

File mode The file mode in the file block. If there is no file block: *

Synonym For files of type CEXEC: a question mark or the first token (delimited
by an open parenthesis, close parenthesis, or blank) from the area
identified by BEGARGS and ENDARGS.
For files of type OBJ: the synonym from the extended plist.

Initial (default)
address for
commands

If a named PSW is specified in the file block, that name is used. If an
unnamed PSW is specified in the file block, ? is used. If the file type is
EXEC or blank, or if there is no file block, CMS is used Otherwise, the
file type is used.

Example of an Assembler Interface to a TEXT File
The following code shows an example of how an Assembler program can invoke a
TEXT file that has been linked to it. Note that the setting of the high-order bit of
register 1 depends on the CMS release. The code in the example works correctly
on all the releases of CMS supported by the Compiler and the Library. On XA
systems, the example works with both 24-bit and 31-bit addressing.

 Appendix B. Interface for TEXT Files (CMS) 197

 .
. set up Rð if necessary
LA 13,SAVE address save area
IC 15,TYPE get call type
SLL 15,24 to HOB, fill rest with ðs
LA 1,ð(,15) ð for non-XA or type 'ðð'x or '8ð'x
LTR 1,1 is it ð ?
LA 1,TOKPL address tokenized PLIST
BNZ $1 skip for A and not 'ðð'x or '8ð'x
OR 1,15 insert HOB of R1 for non-XA machine

or when type is 'ðð'x or '8ð'x
$1 L 15,PROG entry point

BALR 14,15 invoke REXX program
. REXX program will return here

 .
PROG DC V(REXXPRG) entry of compiled program, name of

the source file goes here
TOKPL DC CL8'REXXPRG' tokenized PLIST

DC CL8'token 1' parameter starts here (if passed by means of
 DC CL8'token 2' tokenized PLIST)
 .
 .

DC 8X'FF' tokenized PLIST ended by fence
SAVE DS 24F save area
TYPE DC X'ðð' call type follows save area, enter

required call type here

Note: In this case, HOB stands for high order byte.

198 SAA REXX/370 User’s Guide and Reference

Appendix C. Interface for Object Modules (VSE/ESA)

This appendix describes the parameter passing conventions for the different stubs
and how the stubs invoke the EXEC handler, ARXEXEC. This appendix also
describes the PARSE SOURCE information, as it appears in the REXX program.

 Stubs
A stub is code that:

� Provides an interface between a certain parameter-passing convention and the
parameter-passing convention defined for REXX programs

� Invokes the compiled REXX program

� Transforms the result of the compiled REXX program into a form
understandable by the caller

Two stubs are supplied with the Library to provide interfaces with the following
types of parameter-passing conventions:

 VSE
 EFPL

If you want to create additional stubs, you can use the supplied stubs as models.

On entry to the VSE stub, registers are set as follows:

Register 0 Unpredictable
Register 1 Address of the parameter list if the contents of Register 1 and

Register 15 are different.
Registers 2-12 Unpredictable
Registers 13 Address of a register save area
Register 14 Return address
Register 15 Unpredictable

On exit from the VSE stub, registers are set as follows:

Registers 0-14 Same as on entry
Register 15 Return code

On entry to the EFPL stub, registers are set as follows:

Register 0 Address of the environment block
Register 1 Address of the parameter list
Registers 2-12 Unpredictable
Register 13 Address of a register save area
Register 14 Return address
Register 15 Entry point address

On exit from the EFPL stub, registers are set as follows:

Registers 0-14 Same as on entry
Register 15 Return code

 Copyright IBM Corp. 1991, 2000 199

Processing Sequence for Stubs
For each stub, the general processing sequence is as follows:

1. Save the registers.

2. Obtain storage required to execute the stub.

3. Build a parameter list to invoke ARXEXEC. How the input parameter list maps
into the parameter list for the invocation of ARXEXEC is shown separately for
each type of parameter list.

 4. Invoke ARXEXEC.

5. Convert the result supplied by ARXEXEC to the form needed for a specific type
of invocation (described separately for each type of invocation).

6. Free the storage obtained in Step 2.

7. Restore the registers and return to the caller.

Parameter List for Invoking ARXEXEC
The parameter list for invoking ARXEXEC is as follows:

Parameter 1 The address of an EXECBLK. An EXECBLK address is never
supplied; therefore the value of the parameter is 0.

Parameter 2 The address of the argument list.

Parameter 3 Specify the type of invocation (COMMAND, SUBROUTINE, or
FUNCTION) and whether extended return codes are
requested.

The COMMAND invocation is specified except for EFPL
parameter lists where the SUBROUTINE invocation is
specified. Extended return codes are always requested.

Parameter 4 The address of the in-storage control block describing the
compiled program. An in-storage control block is always
supplied.

Parameter 5 Reserved, must be 0.

Parameter 6 The address of the EVALBLOCK control block that is to
contain the result.

For EFPL parameter lists, the passed EVALBLOCK control
block is used. For VSE parameter lists, an EVALBLOCK
control block with a data length of 16 bytes is used. This is
large enough to hold any expected result. It holds the result
of a COMMAND invocation, which must be numeric and must
fit into a fullword.

Parameter 7 The address of a work area vector or 0. A work area vector
address is never supplied; therefore the value of the
parameter is 0.

Parameter 8 The address of a user field or 0. A user field address is
never supplied; therefore the value of the parameter is 0.

200 SAA REXX/370 User’s Guide and Reference

Parameter 9 The address of the environment block.

For EFPL parameter lists, the address of the environment
block as passed in register 0 is supplied. Otherwise, no
parameter is supplied.

For a complete description of the parameters, see the IBM VSE/Enterprise Systems
Architecture REXX/VSE Reference manual.

In-Storage Control Block
The in-storage control block supplied when ARXEXEC is invoked is as follows (the
default values are indicated in parentheses):

ACRONYM String 'ARXINSTB'.

HDRLEN Length of the in-storage control block.

ADDRESS Address of the vector of records. A vector of records containing one
address and length pair is supplied. The address points to the setup
code, and the length is 20; this is the length needed for ARXEXEC to
identify the header.

USEDLEN Length of the vector of records (8).

MEMBER Name of the EXEC ('? ').

DDNAME Name of the member that represents the load data set (' ').

SUBCOM Name of the initial host command environment (' ').

DSNLEN Length of the data set name (0).

DSNAME Name of the data set (X'00').

If the environment is known (because a program is linked to the EFPL stub), the
environment is passed to ARXEXEC when ARXEXEC is called. Otherwise, a value
of 0 is passed to register 0. ARXEXEC locates the last nonreentrant environment
and uses it when it executes your program.

 Parameter Lists
Each of the following sections contains a figure showing in the upper part the
parameter list that is passed to the stub when the stub is invoked. Register 1
points to this parameter list. The upper part of the figure also shows the relevant
surrounding structures. The lower part of the figure shows the parameter list that is
passed to ARXEXEC when ARXEXEC is invoked.

The following sections also describe, for each type of parameter list, how to obtain
the return code (to be passed back to register 15) and, for EFPL, the necessary
EVALBLOCK control block processing.

VSE Parameter List
A VSE parameter list is supplied when a program is invoked from VSE JCL by
means of EXEC program_name.

No parameter list is provided if on entry to the stub register 1 and register 15 are
set to the same value.

 Appendix C. Interface for Object Modules (VSE/ESA) 201

The high-order bit of the fullword addressed by register 1 on entry to the stub is set
to 1 if the parameter length is greater than 0, otherwise it is set to 0. The address
pointed to by Register 1 on entry is an AMODE 24 address (the first byte must be
ignored).

┌─ When stub is entered ──┐
 │ ┌────────────────────────┐ │
 │ 6 │ │
R1─5┌───────┐ ┌─────┬── ──── ─────┐ │ │
 ││ ├──5│Len │ │ │ │
 │└─┴─┴─┴─┘ └──┴──┴── ──── ─────┘ │ │
 └───│─────────────────────────┘
 │
 ┌───│─────────────────────────┐
R1─5┌───────┐ ┌───────────┐ │ │

││ ├┬─5│ðð ðð ðð ðð│ │ │
 │├───────┤& └──┴──┴──┴──┘ │ │
 ││ ├│─────────────────5┌───────────┬──5┌───────────┬───────────┐│

│├───────┤│ ┌───────────┐ └──┴──┴──┴──┘ └┤ │ðð ðð Len ││
││ ├│─5│9ð ðð ðð ðð│ ├──┴──┴──┴──┼──┴──┴──┴──┤│

 │├───────┤│ └──┴──┴──┴──┘ ┌───────────┐ │FF FF FF FF│FF FF FF FF││
 ││ ├│─5┌───────────┬──5│ INSTBLK │ └──┴──┴──┴──┴──┴──┴──┴──┘│
 │├───────┤│ └──┴──┴──┴──┘ └───────────┘ │
 ││ ├┤ │
 │├───────┤& ┌───────────┐ │

││ ├│─5┌───────────┬──5│ EVALBLOCK │ │
 │├───────┤│ └──┴──┴──┴──┘ └───────────┘ │
 ││ ├┤ │
 │├───────┤& │
 ││ ├┘ │
 │└───────┘ │

└─ When ARXEXEC is entered ───┘

Figure 31. VSE Parameter List Mapping

A return code of 4095 is passed back in register 15 if either storage could not be
obtained, or ARXEXEC could not be loaded, or ARXEXEC issued a return code
different from 0 (indicating that the program did not complete successfully). If the
return code from ARXEXEC is 0, the value contained in the EVALBLOCK control
block is divided by 4096, and the remainder is passed back in register 15.

EFPL Parameter List
An EFPL parameter list is supplied if, from within an EXEC, either the instruction
CALL program_name is issued or a program is invoked through the function
invocation program_name(). The compiled REXX program is always invoked as a
subroutine, because the information specifying whether the program is to be
invoked as a subroutine or as a command is not accessible.

The address of the environment block is passed in register 0 when the stub is
entered.

202 SAA REXX/370 User’s Guide and Reference

┌─ When stub is entered ──┐
R1─5┌───────┐ ┌──────────────────────────────────┐ │

││ │ │ Saved entry Rð ┌───────────┐ │ │
│├───────┤ │ ┌───────────┬──5│ ENVBLOCK │ │ │

 ││ │ └5└──┴──┴──┴──┘ └───────────┘ │ │
 │├───────┤ │ │
 ││ │ │ │
 │├───────┤ ┌────────────────┐ │ │
 ││ │ │ ┌───────────┐ │ │ │
 │├───────┤ └5│ ArgList │ │ │ │
 ││ ├──────────────────5└───────────┘ │ │ │
 │├─┴─┴─┴─┤ ┌───────────┐ │ │ │

││ ├──5┌───────────┬──5│ EVALBLOCK │ │ │ │
 │└─┴─┴─┴─┘ ┌5└──┴──┴──┴──┘ └───────────┘ │ │ │
 └──────────│────────────────────────────────│─│───────────────────────┘
 │ │ │
 ┌──────────│────────────────────────────────│─│───────────────────────┐
R1─5┌───────┐ │ ┌───────────┐ │ │ │

││ ├┬─5│ðð ðð ðð ðð│ │ │ │
 │├───────┤&│ └──┴──┴──┴──┘ ┌───────────┬──┘ │ │
 ││ ├│─────────────────5└──┴──┴──┴──┘ │ │
 │├───────┤││ ┌───────────┐ │ │

││ ├│─5│3ð ðð ðð ðð│ │ │
 │├───────┤││ └──┴──┴──┴──┘ ┌───────────┐ │ │
 ││ ├│─5┌───────────┬──5│ INSTBLK │ │ │
 │├───────┤││ └──┴──┴──┴──┘ └───────────┘ │ │
 ││ ├┤│ │ │
 │├───────┤&│ │ │
 ││ ├│┘ │ │
 │├───────┤│ │ │
 ││ ├┤ │ │
 │├───────┤& │ │
 ││ ├┘ │ │
 │├───────┤ │ │
 ││ ├────────────────────────────────────┘ │
 │└───────┘ │

└─ When ARXEXEC is entered ───┘

Figure 32. EFPL Parameter List Mapping

The required, final EVALBLOCK control-block handling (and the determination of the
return code to pass back in register 15) is:

rc_to_pass_back = ð
If rc_from_arxexec ¬=ð Then

 rc_to_pass_back=rc_from_arxexec
 Else Do

If evalblock shows truncated result Then Do
invoke arxrlt 'GETBLOCK'
If rc ¬= ð Then

 rc_to_pass_back=rc
 Else Do

put new evalblock Address INTO parameter list
invoke arxrlt 'GETRLTE' With new evalblock
If rc ¬= ð Then

 rc_to_pass_back=rc
 End
 End
 End

If storage could not be obtained, a return code of 100 is passed back in register 15.
In this case, register 0 contains a cancel code of 0. If the return code passed back

 Appendix C. Interface for Object Modules (VSE/ESA) 203

from ARXEXEC is either 100 or 104 (which indicates an abend), register 0 contains
the value passed back by ARXEXEC (cancel code).

 PARSE SOURCE
For a REXX program compiled into an object module, the source string that can be
obtained by means of the PARSE SOURCE instruction contains the following tokens:

� The characters VSE

� If the program is linked with the EFPL stub, the string SUBROUTINE; otherwise,
the string COMMAND

� A question mark (?) to indicate that the name of the EXEC is not known

� A question mark (?) to indicate that the name of the DD statement from which
the EXEC was loaded is not known

� A question mark (?) to indicate that the name of the file from which the EXEC
was loaded is not known

� A question mark (?) to indicate that the name of the file as it was passed to the
language processor (that is, the name is not translated to uppercase) is not
known

� The initial host command environment in uppercase

� The name of the address space in uppercase

� An 8-character user token

204 SAA REXX/370 User’s Guide and Reference

Appendix D. Alternate Library Packaging and Installation
(MVS/ESA, CMS)

This appendix gives a detailed explanation on how to package the Alternate Library
with an application.

Installation instructions for MVS/ESA and CMS systems are also given in this
appendix.

Packaging the Alternate Library with an Application
To package the Alternate Library as part of an application, follow these steps:

1. Create the compiled REXX programs as explained in “Creating REXX Programs
for Use with the Alternate Library (MVS/ESA, CMS)” on page 115.

2. Create the required data sets for the Alternate Library parts as explained in
“Alternate Library Parts (MVS/ESA)” or in “Alternate Library Parts (CMS)” on
page 206, as appropriate.

3. Create the installation instructions for the Alternate Library as explained in
“Installation Instructions (MVS/ESA)” on page 206 or in “Installation Instructions
(CMS)” on page 209, as appropriate.

These instructions assume that the application will always use the Library when
it is available and prevent any naming or usage conflicts between the Alternate
Library and the Library.

It is important that you create installation instructions identical to those given in
this appendix in order to ensure easy and successful installation of both the
Alternate Library and the application.

Alternate Library Parts (MVS/ESA)
The software developer must ship the FMID HWJ9123 (and the FMID JWJ9124 for
Kanji, if necessary) with the application. Only the parts of these FMIDs may be
provided with the application; the sending of other parts is a violation of the Library
licensing agreement.

 Copyright IBM Corp. 1991, 2000 205

Figure 33. Alternate Library Parts (MVS/ESA)

EAGKRLIB
EAGKRXIN
EAGKRXLD
EAGKRXTR
EAGKIINI
EAGKIUNP
EAGKXMMS
EAGKXMSG

Are the modules used to create the Alternate Library.

EAGKUMOD
Is a sample that may be used when creating the compiler programming
table.

EAGKMENU Is the English message skeleton.

EAGKACC
EAGKACQ
EAGKALLO
EAGKAPP
EAGKAPQ
EAGKDDD

Are the JCL samples used to install the Alternate Library.

Alternate Library Parts (CMS)
The software developer must include the following parts in the application. Only
these parts may be provided with the application; the sending of other parts is a
violation of the Library licensing agreement.

If you want to use the Kanji feature, you may also send these files:

Figure 34. Alternate Library Parts (CMS)

EAGRTALT MODULE Is the Alternate Library.

EAGALPRC MODULE Is the library loader of the Alternate Library.

EAGALUME TXTAMENG Is the message repository of the Alternate Library.

EAGALUME REPAMENG Is the source of the message repository of the
Alternate Library. It can be used as a sample to
translate the message repository.

Figure 35. Alternate Library Parts for Kanji Feature (CMS)

EAGALUME TXTKANJI Is the Kanji message repository of the Alternate
Library.

EAGALUME REPKANJI Is the source of the Kanji message repository of the
Alternate Library.

Installation Instructions (MVS/ESA)
This section contains the instructions for the installation of the Alternate Library.
These instructions must be provided by the software developer when the Alternate
Library is included as part of an application. To prevent installation problems, they
must be sent exactly as they are given here.

1. Determine if the IBM Library for SAA REXX/370 Release 3 (FMID HWJ9130) or
the Alternate Library (FMID HWJ9123) is installed. If either one is installed, you
need take no further action.

206 SAA REXX/370 User’s Guide and Reference

If Release 1 (FMID HWJ9110) or Release 2 (FMID HWJ9120) of the Library is
installed, you must install Release 3. Once Release 3 is installed, you need
take no further action.

2. Use SMP/E to RECEIVE the Alternate Library (FMID HWJ9123).

3. Allocate these data sets:

Note: In these instructions, we refer to high level qualifiers 1 and 2 of the
Alternate Library as follows:

High level qualifier 1: REXX
High level qualifier 2: V1R3M0

In your installation these two qualifiers could be different.

To perform the allocations, you can use the sample EAGKALLO, which is in data
set REXX.V1R3M0.HWJ9123.F2, which was created by the RECEIVE step.

4. Add data definitions (DDDEFs) for the following ddnames:

 SEAGALT
 AEAGMOD1
 SEAGMENU
 AEAGMENU
 SEAGSAM
 AEAGSAM
 SEAGJENU
 AEAGJENU

You can do it with this UCLIN:

Figure 36. Alternate Library Data Set Characteristics

Data Set Name Space RECFM LRECL BLKSIZE

REXX.V1R3M0.SEAGALT (6144,(12,12,4)) U 6144

REXX.V1R3M0.AEAGMOD1 (6144,(20,190,32)) U 6144

REXX.V1R3M0.SEAGMENU (8800,(10,10,2)) VB 255 8800

REXX.V1R3M0.AEAGMENU (8800,(10,10,2)) VB 255 8800

REXX.V1R3M0.SEAGSAM (8800,(10,10,2)) FB 80 8800

REXX.V1R3M0.AEAGSAM (8800,(10,10,2)) FB 80 8800

REXX.V1R3M0.SEAGJENU (8800,(5,5,2)) FB 80 8800

REXX.V1R3M0.AEAGJENU (8800,(5,5,2)) FB 80 8800

 Appendix D. Alternate Library Packaging and Installation (MVS/ESA, CMS) 207

 SET BDY(TGTZONE).
 UCLIN.
 ADD DDDEF(SEAGALT) DA(REXX.V1R3Mð.SEAGALT) SHR.
 ADD DDDEF(AEAGMOD1) DA(REXX.V1R3Mð.AEAGMOD1) SHR.
 ADD DDDEF(SEAGMENU) DA(REXX.V1R3Mð.SEAGMENU) SHR.
 ADD DDDEF(AEAGMENU) DA(REXX.V1R3Mð.AEAGMENU) SHR.
 ADD DDDEF(SEAGSAM) DA(REXX.V1R3Mð.SEAGSAM) SHR.
 ADD DDDEF(AEAGSAM) DA(REXX.V1R3Mð.AEAGSAM) SHR.
 ADD DDDEF(SEAGJENU) DA(REXX.V1R3Mð.SEAGJENU) SHR.
 ADD DDDEF(AEAGJENU) DA(REXX.V1R3Mð.AEAGJENU) SHR.
 ENDUCL.
 SET BDY(DLIBZONE).
 UCLIN.
 ADD DDDEF(AEAGMOD1) DA(REXX.V1R3Mð.AEAGMOD1) SHR.
 ADD DDDEF(AEAGMENU) DA(REXX.V1R3Mð.AEAGMENU) SHR.
 ADD DDDEF(AEAGSAM) DA(REXX.V1R3Mð.AEAGSAM) SHR.
 ADD DDDEF(AEAGJENU) DA(REXX.V1R3Mð.AEAGJENU) SHR.
 ENDUCL.

The UCLIN can be found in the sample EAGKDDD, which is in data set
REXX.V1R3M0.HWJ9123.F2, which was created by the RECEIVE step.

5. Now you can install the Alternate Library using APPLY/ACCEPT. Sample JCL for
the next steps is provided in data set REXX.V1R3M0.HWJ9123.F2, which was
created by the RECEIVE step.

a. Use the JCL sample EAGKAPQ to verify that SMP/E is ready to perform the
APPLY step. If the job finishes with a return code of zero, use the JCL
sample EAGKAPP to perform the APPLY.

b. Use the JCL sample EAGKACQ to verify that SMP/E is ready to perform the
ACCEPT step. If this job finishes with a return code of zero, use the JCL
sample EAGKACC to perform the ACCEPT.

6. Install the Compiler Programming Table.

| The Compiler Programming Table (CPT) IRXCMPTM is the TSO/E module that
| identifies one or more alternate exec processors and their corresponding
| interface routines to TSO/E. When a program is compiled by the REXX/370
| Compiler, the compiled exec contains the name of the REXX/370 Library as the
| alternate exec processor. The CPT must be updated to include the Alternate
| Library. Your installation uses either the default table in SYS1.LINKLIB shipped

with TSO/E, or an installation-defined CPT.

| To replace the default IRXCMPTM shipped with TSO/E, use the SMP/E usermod
| example EAGKUMOD, which is in data set REXX.V1R3M0.SEAGSAM. This

prevents inadvertent updates of the CPT. If IRXCMPTM is updated by program
| service, SMP/E issues a warning. If the ++SRC statement in EAGKUMOD is:

| ++SRC (EAGKCPT) SYSLIB(SEAGSAM) DISTLIB(AEAGSAM)

| Change it to:

| ++SRC (IRXCMPTM) SYSLIB(SAMPLIB) DISTLIB(ASAMPLIB)

| If you are installing the Alternate Library in the same zone as TSO/E, this
| replaces the default IRXCMPTM in the SYS1.LINKLIB with the updated
| IRXCMPTM. If you are installing the Alternate Library in a different zone to
| TSO/E, you must manually replace IRXCMPTM in SYS1.LINKLIB after running
| EAGKUMOD.

To replace an installation-defined IRXCMPTM, perform the following steps:

208 SAA REXX/370 User’s Guide and Reference

a. Get the source for the installation-defined IRXCMPTM.

| b. Copy the installation-defined statements for the Alternate Library into the
| usermod example EAGKUMOD in REXX.V1R3M0.SEAGSAM.

| c. Set the number of entries in the table to the number of entries in the
| installation-defined CPT plus 1. This ensures that the Alternate Library can
| be used concurrently with the other runtime libraries specified in the
| installation-defined CPT.

d. Assemble and link-edit the updated IRXCMPTM.

| e. Replace the existing IRXCMPTM.

| f. Update the REXX/370 program directory. The program directory changes
| are handled via PSP bucket updates and program directory replacement. If
| you are a vendor, you must change the EAGKUMOD sample that you deliver
| to your customers. Change:

| ++SRC (EAGKCPT) SYSLIB(SEAGSAM) DISTLIB(AEAGSAM)

| To:

| ++SRC (IRXCMPTM) SYSLIB(SAMPLIB) DISTLIB(ASAMPLIB)

7. Install REXX.V1R3M0.SEAGALT, the Alternate Library, in the system LINKLIST.
Do not place the Alternate Library either in the LPA or in a STEPLIB for the
application; see "Activation of the Alternate Library" on page 53 for an
explanation.

The verification job that is sent with your application needs to run a compiled REXX
program to ensure that the installation was done properly. This REXX program
must be compiled with the ALTERNATE option.

If you intend to use the Kanji feature, you must adapt the instructions found in the
program directory.

Installation Instructions (CMS)
This section contains the instructions for the installation of the Alternate Library.
These instructions must be provided by the software developer when the Alternate
Library is included as part of an application.

1. Package the required parts listed in “Alternate Library Parts (CMS)” on
page 206 as part of your application.

2. As part of your installation, issue a prompt to the user to check if:

� The IBM Library for SAA REXX/370 Release 3 is installed. If it is, the
Alternate Library is not required, and you need take no further action.

� Release 1 or Release 2 of the Library is installed. If it is, you must install
Release 3. Once Release 3 is installed, you need take no further action.

� The CMS REXX Compiler (5664-390) or the CMS REXX Compiler - Library
(5684-124) is installed. If it is, continue with “Customers with the CMS
REXX Compiler - Library” on page 210.

3. Rename EAGALPRC MODULE to EAGRTPRC MODULE and EAGALUME
TXTAMENG to EAGUME TXTAMENG.

 Appendix D. Alternate Library Packaging and Installation (MVS/ESA, CMS) 209

If you are using the Kanji feature, rename EAGALUME TXTKANJI to EAGUME
TXTKANJI.

Customers with the CMS REXX Compiler - Library
1. Make sure that the CMS REXX Compiler - Library is installed in a shared

segment to avoid losing the virtual storage where the library resides.

2. Install the Alternate Library on the same disk as this application.

Rename EAGALPRC MODULE to EAGRTPRC MODULE and EAGALUME
TXTAMENG to EAGUME TXTAMENG.

If you are using the Kanji feature, rename EAGALUME TXTKANJI to EAGUME
TXTKANJI.

3. Each time you start this application, access the disk and enter:

NUCXDROP EAGRTPRC

to remove the CMS REXX Compiler - Library.

4. Make sure that the EAGRTPRC MODULE on the application disk is the first one
in the search order.

5. Run the application.

6. Release the disk where this application is installed and enter:

NUCXDROP EAGRTPRC

Note: On releases earlier than VM/ESA 1.1, you will lose 8KB of virtual storage
on each invocation of this application.

210 SAA REXX/370 User’s Guide and Reference

Appendix E. The MVS/ESA Cataloged Procedures Supplied
by IBM

This appendix contains the following cataloged procedures supplied by IBM:

 REXXC
 REXXCG
 REXXCL
 REXXCLG
 REXXL
 REXXOEC

 REXXC
//\\
//\
//\ REXXC Compile a REXX program.
//\
//\ Copyright:
//\
//\ Licensed Materials - Property of IBM
//\ 5695-ð13 IBM Compiler for SAA REXX/37ð, Release 3
//\ (C) Copyright IBM Corp. 1991, 1994
//\ All rights reserved.
//\
//\ Change Activity:
//\ 94-1ð-27 Release 3.ð
//\
//\\
//\
//\ Parameters:
//\
//\ OPTIONS Compilation options.
//\ Default: XREF OBJECT
//\
//\ COMPDSN DSN of IBM Compiler for SAA REXX/37ð load library.
//\
//\ Required:
//\
//\ REXX.SYSIN DDNAME, REXX program to be compiled.
//\
//\ Example:
//\
//\ To compile MYREXX.EXEC(MYPROG) and to keep the resulting
//\ CEXEC output and OBJECT output in MYREXX.CEXEC(MYPROG) and
//\ MYREXX.OBJ(MYPROG), respectively, use the following
//\ invocation:
//\
//\ //S1 EXEC REXXC
//\ //REXX.SYSCEXEC DD DSN=MYREXX.CEXEC(MYPROG),DISP=SHR
//\ //REXX.SYSPUNCH DD DSN=MYREXX.OBJ(MYPROG),DISP=SHR
//\ //REXX.SYSIN DD DSN=MYREXX.EXEC(MYPROG),DISP=SHR
//\
//\\
//\

 Copyright IBM Corp. 1991, 2000 211

//REXXC PROC OPTIONS='XREF OBJECT', REXX Compiler options
// COMPDSN='REXX.V1R3Mð.SFANLMD' REXX Compiler load lib
//\
//\---
//\ Compile REXX program.
//\---
//\
//REXX EXEC PGM=REXXCOMP,PARM='&OPTIONS'
//STEPLIB DD DSN=&COMPDSN,DISP=SHR
//SYSPRINT DD SYSOUT=\
//SYSTERM DD SYSOUT=\
//\SYSIEXEC DD DUMMY
//\SYSDUMP DD DUMMY
//SYSCEXEC DD DSN=&&CEXEC(GO),DISP=(MOD,PASS),UNIT=SYSDA,
// SPACE=(8ðð,(8ðð,1ðð,1))
//SYSPUNCH DD DSN=&&OBJECT,DISP=(MOD,PASS),UNIT=SYSDA,
// SPACE=(8ðð,(8ðð,1ðð))

212 SAA REXX/370 User’s Guide and Reference

 REXXCG
//\\
//\
//\ REXXCG Compile and run a REXX program of CEXEC type.
//\
//\ Copyright:
//\
//\ Licensed Materials - Property of IBM
//\ 5695-ð13 IBM Compiler for SAA REXX/37ð, Release 3
//\ (C) Copyright IBM Corp. 1991, 1994
//\ All rights reserved.
//\
//\ Change Activity:
//\ 94-1ð-27 Release 3.ð
//\
//\\
//\
//\ Parameters:
//\
//\ OPTIONS Compilation options.
//\ Default: XREF
//\
//\ COMPDSN DSN of IBM Compiler for SAA REXX/37ð load library.
//\
//\ LIBLPA DSN of IBM Library for SAA REXX/37ð LPA library.
//\
//\ Required:
//\
//\ REXX.SYSIN DDNAME, REXX program to be compiled and run.
//\
//\ Example:
//\
//\ To compile MYREXX.EXEC(MYPROG), to keep the resulting CEXEC
//\ output in MYREXX.CEXEC(MYPROG), and to run this compiled
//\ program, passing the string MYPARM as parameter for this run,
//\ use the following invocation (note that the first token in the
//\ PARM of the GO step specifies the name of the program):
//\
//\ //S1 EXEC REXXCG,PARM.GO='MYPROG MYPARM'
//\ //REXX.SYSCEXEC DD DSN=MYREXX.CEXEC(MYPROG),DISP=SHR
//\ //REXX.SYSIN DD DSN=MYREXX.EXEC(MYPROG),DISP=SHR
//\ //GO.SYSEXEC DD DSN=MYREXX.CEXEC,DISP=SHR
//\
//\\
//\
//REXXCG PROC OPTIONS='XREF', REXX Compiler options
// COMPDSN='REXX.V1R3Mð.SFANLMD', REXX Compiler load lib
// LIBLPA='REXX.V1R3Mð.SEAGLPA' REXX Library LPA lib
//\
//\---
//\ Compile REXX program.
//\---
//\
//REXX EXEC PGM=REXXCOMP,PARM='&OPTIONS'
//STEPLIB DD DSN=&COMPDSN,DISP=SHR
//SYSPRINT DD SYSOUT=\

 Appendix E. The MVS/ESA Cataloged Procedures Supplied by IBM 213

//SYSTERM DD SYSOUT=\
//\SYSIEXEC DD DUMMY
//\SYSDUMP DD DUMMY
//SYSCEXEC DD DSN=&&CEXEC(GO),DISP=(MOD,PASS),UNIT=SYSDA,
// SPACE=(8ðð,(8ðð,1ðð,1))
//SYSPUNCH DD DUMMY
//\
//\---
//\ Run the compiled REXX program.
//\---
//GO EXEC PGM=IRXJCL,PARM='GO',
// COND=(9,LT,REXX)
//\
//\ Activate STEPLIB only if &LIBLPA is not in the search order
//\STEPLIB DD DSN=&LIBLPA,DISP=SHR
//SYSEXEC DD DSN=&&CEXEC,DISP=(OLD,DELETE)
//SYSTSPRT DD SYSOUT=\

214 SAA REXX/370 User’s Guide and Reference

 REXXCL
//\\
//\
//\ REXXCL Compile and link edit a REXX program of OBJ type.
//\
//\ Copyright:
//\
//\ Licensed Materials - Property of IBM
//\ 5695-ð13 IBM Compiler for SAA REXX/37ð, Release 3
//\ (C) Copyright IBM Corp. 1991, 1994
//\ All rights reserved.
//\
//\ Change Activity:
//\ 94-1ð-27 Release 3.ð
//\
//\\
//\
//\ Parameters:
//\
//\ STUB Type of stub (MVS, CPPL, CALLCMD, EFPL, CPPLEFPL).
//\ Default: EFPL.
//\
//\ OPTIONS Compilation options.
//\ Default: XREF OBJECT NOCEXEC
//\
//\ COMPDSN DSN of IBM Compiler for SAA REXX/37ð load library.
//\
//\ LIBDSN DSN of IBM Library for SAA REXX/37ð load library.
//\
//\ LIBXDSN DSN of IBM Library for SAA REXX/37ð exec library.
//\
//\ Required:
//\
//\ REXX.SYSIN DDNAME, REXX program to be compiled and link
//\ edited.
//\
//\ Example:
//\
//\ To compile MYREXX.EXEC(MYPROG) and to link edit the resulting
//\ OBJECT output together with a stub suitable for invocation
//\ of the program from a REXX EXEC with the CALL instruction or
//\ via function invocation, and to keep the resulting load module
//\ in MYREXX.LOAD(MYPROG), use the following invocation:
//\
//\ //S1 EXEC REXXCL
//\ //REXX.SYSIN DD DSN=MYREXX.EXEC(MYPROG),DISP=SHR
//\ //LKED.SYSLMOD DD DSN=MYREXX.LOAD(MYPROG),DISP=SHR
//\
//\\
//\
//REXXCL PROC STUB=EFPL, Type of stub
// OPTIONS='XREF OBJECT NOCEXEC', REXX Compiler options
// COMPDSN='REXX.V1R3Mð.SFANLMD', REXX Compiler load lib
// LIBDSN='REXX.V1R3Mð.SEAGLMD', REXX Library load lib
// LIBXDSN='REXX.V1R3Mð.SEAGCMD' REXX Library exec lib
//\

 Appendix E. The MVS/ESA Cataloged Procedures Supplied by IBM 215

//\---
//\ Compile REXX program.
//\---
//\
//REXX EXEC PGM=REXXCOMP,PARM='&OPTIONS'
//STEPLIB DD DSN=&COMPDSN,DISP=SHR
//SYSPRINT DD SYSOUT=\
//SYSTERM DD SYSOUT=\
//\SYSIEXEC DD DUMMY
//\SYSDUMP DD DUMMY
//\SYSCEXEC DD DUMMY
//SYSPUNCH DD DSN=&&OBJECT,DISP=(MOD,PASS),UNIT=SYSDA,
// SPACE=(8ðð,(8ðð,1ðð))
//\
//\---
//\ Prepare SYSLIN data set for subsequent link step.
//\---
//\
//PLKED EXEC PGM=IRXJCL,PARM='REXXL &STUB',
// COND=(9,LT,REXX)
//\
//SYSEXEC DD DSN=&LIBXDSN,DISP=SHR
//SYSIN DD DSN=&&OBJECT,DISP=(OLD,DELETE)
//SYSTSPRT DD SYSOUT=\
//SYSOUT DD DSN=&&SYSOUT,DISP=(MOD,PASS),UNIT=SYSDA,
// DCB=(RECFM=FB,LRECL=8ð,BLKSIZE=8ðð),
// SPACE=(8ðð,(8ðð,1ðð))
//\
//\---
//\ Link together stub and program.
//\---
//\
//LKED EXEC PGM=HEWL,PARM='LIST,AMODE=31,RMODE=ANY,RENT,MAP',
// COND=((9,LT,REXX),(ð,NE,PLKED))
//\
//SYSLIN DD DSN=&&SYSOUT,DISP=(OLD,DELETE)
//SYSLIB DD DSN=&LIBDSN,DISP=SHR
//SYSUT1 DD UNIT=SYSDA,SPACE=(1ð24,(2ðð,2ð))
//SYSPRINT DD SYSOUT=\
//SYSLMOD DD DSN=&&GOSET(GO),DISP=(MOD,PASS),UNIT=SYSDA,
// SPACE=(1ð24,(5ð,2ð,1))

216 SAA REXX/370 User’s Guide and Reference

 REXXCLG
//\\
//\
//\ REXXCLG Compile, link edit, and run a REXX program of OBJ type.
//\
//\ Copyright:
//\
//\ Licensed Materials - Property of IBM
//\ 5695-ð13 IBM Compiler for SAA REXX/37ð, Release 3
//\ (C) Copyright IBM Corp. 1991, 1994
//\ All rights reserved.
//\
//\ Change Activity:
//\ 94-1ð-27 Release 3.ð
//\
//\\
//\
//\ Parameters:
//\
//\ OPTIONS Compilation options.
//\ Default: XREF OBJECT NOCEXEC
//\
//\ COMPDSN DSN of IBM Compiler for SAA REXX/37ð load library.
//\
//\ LIBDSN DSN of IBM Library for SAA REXX/37ð load library.
//\
//\ LIBLPA DSN of IBM Library for SAA REXX/37ð LPA library.
//\
//\ LIBXDSN DSN of IBM Library for SAA REXX/37ð exec library.
//\
//\ Required:
//\
//\ REXX.SYSIN DDNAME, REXX program to be compiled, link edited,
//\ and run.
//\
//\ Example:
//\
//\ To compile MYREXX.EXEC(MYPROG), to link edit the resulting
//\ OBJECT output together with a stub suitable for invocation
//\ in MVS batch, to keep the resulting load module in
//\ MYREXX.LOAD(MYPROG), and to run this load module, use the
//\ following invocation:
//\
//\ //S1 EXEC REXXCLG
//\ //REXX.SYSIN DD DSN=MYREXX.EXEC(MYPROG),DISP=SHR
//\ //LKED.SYSLMOD DD DSN=MYREXX.LOAD(MYPROG),DISP=SHR
//\
//\\
//\
//REXXCLG PROC STUB=MVS, Type of stub
// OPTIONS='XREF OBJECT NOCEXEC', REXX Compiler options
// COMPDSN='REXX.V1R3Mð.SFANLMD', REXX Compiler load lib
// LIBDSN='REXX.V1R3Mð.SEAGLMD', REXX Library load lib
// LIBLPA='REXX.V1R3Mð.SEAGLPA', REXX Library LPA lib
// LIBXDSN='REXX.V1R3Mð.SEAGCMD' REXX Library exec lib
//\

 Appendix E. The MVS/ESA Cataloged Procedures Supplied by IBM 217

//\---
//\ Compile REXX program.
//\---
//\
//REXX EXEC PGM=REXXCOMP,PARM='&OPTIONS'
//STEPLIB DD DSN=&COMPDSN,DISP=SHR
//SYSPRINT DD SYSOUT=\
//SYSTERM DD SYSOUT=\
//\SYSIEXEC DD DUMMY
//\SYSDUMP DD DUMMY
//\SYSCEXEC DD DUMMY
//SYSPUNCH DD DSN=&&OBJECT,DISP=(MOD,PASS),UNIT=SYSDA,
// SPACE=(8ðð,(8ðð,1ðð))
//\
//\---
//\ Prepare SYSLIN data set for subsequent link step.
//\---
//\
//PLKED EXEC PGM=IRXJCL,PARM='REXXL &STUB',
// COND=(9,LT,REXX)
//\
//SYSEXEC DD DSN=&LIBXDSN,DISP=SHR
//SYSIN DD DSN=&&OBJECT,DISP=(OLD,DELETE)
//SYSTSPRT DD SYSOUT=\
//SYSOUT DD DSN=&&SYSOUT,DISP=(MOD,PASS),UNIT=SYSDA,
// DCB=(RECFM=FB,LRECL=8ð,BLKSIZE=8ðð),
// SPACE=(8ðð,(8ðð,1ðð))
//\
//\---
//\ Link together stub and program.
//\---
//\
//LKED EXEC PGM=HEWL,PARM='LIST,AMODE=31,RMODE=ANY,RENT,MAP',
// COND=((9,LT,REXX),(ð,NE,PLKED))
//\
//SYSLIN DD DSN=&&SYSOUT,DISP=(OLD,DELETE)
//SYSLIB DD DSN=&LIBDSN,DISP=SHR
//SYSUT1 DD UNIT=SYSDA,SPACE=(1ð24,(2ðð,2ð))
//SYSPRINT DD SYSOUT=\
//SYSLMOD DD DSN=&&GOSET(GO),DISP=(MOD,PASS),UNIT=SYSDA,
// SPACE=(1ð24,(5ð,2ð,1))
//\
//\---
//\ Run the compiled REXX program.
//\---
//\
//GO EXEC PGM=\.LKED.SYSLMOD,
// COND=((9,LT,REXX),(ð,NE,PLKED),(ð,NE,LKED))
//\
//\ Activate STEPLIB only if &LIBLPA is not in the search order
//\STEPLIB DD DSN=&LIBLPA,DISP=SHR
//SYSTSPRT DD SYSOUT=\

218 SAA REXX/370 User’s Guide and Reference

 REXXL
//\\
//\
//\ REXXL Link edit a REXX program of OBJ type.
//\
//\ Copyright:
//\
//\ Licensed Materials - Property of IBM
//\ 5695-ð14 IBM Library for SAA REXX/37ð, Release 3
//\ (C) Copyright IBM Corp. 1991, 1994
//\ All rights reserved.
//\
//\ Change Activity:
//\ 94-1ð-27 Release 3.ð
//\
//\\
//\
//\ Parameters:
//\
//\ STUB Type of stub (CPPL, EFPL, CPPLEFPL, MVS, CALL).
//\ Default: EFPL.
//\
//\ LIBDSN DSN of IBM Library for SAA REXX/37ð load library.
//\
//\ LIBXDSN DSN of IBM Library for SAA REXX/37ð exec library.
//\
//\ Required:
//\
//\ PLKED.SYSIN DDNAME, REXX program of OBJ type to be link
//\ edited.
//\
//\ Example:
//\
//\ To link MYREXX.OBJ(MYPROG), a compiled REXX program of OBJECT
//\ type, together with a stub suitable for invocation in MVS
//\ batch, and to place the resulting load module in
//\ MYREXX.LOAD(MYPROG), use the following invocation:
//\
//\ //S1 EXEC REXXL,STUB=MVS
//\ //PLKED.SYSIN DD DSN=MYREXX.OBJ(MYPROG),DISP=SHR
//\ //LKED.SYSLMOD DD DSN=MYREXX.LOAD(MYPROG),DISP=SHR
//\
//\\
//\
//REXXL PROC STUB=EFPL, Type of stub
// LIBDSN='REXX.V1R3Mð.SEAGLMD', REXX Library load lib
// LIBXDSN='REXX.V1R3Mð.SEAGCMD' REXX Library exec lib
//\
//\---
//\ Prepare SYSLIN data set for subsequent link step.
//\---
//\
//PLKED EXEC PGM=IRXJCL,PARM='REXXL &STUB'
//\
//SYSEXEC DD DSN=&LIBXDSN,DISP=SHR
//SYSTSPRT DD SYSOUT=\

 Appendix E. The MVS/ESA Cataloged Procedures Supplied by IBM 219

//SYSOUT DD DSN=&&SYSOUT,DISP=(MOD,PASS),UNIT=SYSDA,
// DCB=(RECFM=FB,LRECL=8ð,BLKSIZE=8ðð),
// SPACE=(8ðð,(8ðð,1ðð))
//\
//\---
//\ Link together stub and program.
//\---
//\
//LKED EXEC PGM=HEWL,PARM='LIST,AMODE=31,RMODE=ANY,RENT,MAP',
// COND=(ð,NE,PLKED)
//\
//SYSLIN DD DSN=&&SYSOUT,DISP=(OLD,DELETE)
//SYSLIB DD DSN=&LIBDSN,DISP=SHR
//SYSUT1 DD UNIT=SYSDA,SPACE=(1ð24,(2ðð,2ð))
//SYSPRINT DD SYSOUT=\
//SYSLMOD DD DSN=&&GOSET(GO),DISP=(MOD,PASS),UNIT=SYSDA,
// SPACE=(1ð24,(5ð,2ð,1))

220 SAA REXX/370 User’s Guide and Reference

 REXXOEC
//\\
//\
//\ REXXOEC Compile a REXX program for OpenEdition MVS
//\
//\ Copyright:
//\
//\ Licensed Materials - Property of IBM
//\ 5695-ð13 IBM Compiler for SAA REXX/37ð, Release 3
//\ (C) Copyright IBM Corp. 1991, 1994
//\ All rights reserved.
//\
//\ Change Activity:
//\ 94-1ð-27 Release 3.ð
//\
//\\
//\
//\ Parameters:
//\
//\ OPTIONS Compilation options.
//\ Default: XREF
//\
//\ COMPDSN DSN of IBM Compiler for SAA REXX/37ð load library.
//\
//\ Required:
//\
//\ REXX.SYSIN DDNAME, REXX program to be compiled.
//\
//\ Example:
//\
//\ To compile MYREXX.EXEC(MYPROG) and to keep the resulting
//\ CEXEC output in '/vienna/myprog' and the listing in
//\ '/vienna/myprogl' use the following invocation:
//\
//\ //STEP1 EXEC REXXOEC
//\ //REXX.SYSIN DD DSN=MYREXX.EXEC(MYPROG),DISP=SHR
//\ //REXX.SYSPRINT DD DSN=&&LIST,DISP=(NEW,PASS),UNIT=SYSDA
//\ //OCOPY.OUT DD PATH='/vienna/myprog',PATHDISP=(KEEP,DELETE),
//\ // PATHOPTS=(ORDWR,OCREAT),PATHMODE=(SIRUSR,SIWUSR)
//\ //OCOPY.IN2 DD DSN=&&LIST,DISP=(OLD,DELETE)
//\ //OCOPY.OUT2 DD PATH='/vienna/myprogl',PATHDISP=(KEEP,DELETE),
//\ // PATHOPTS=(ORDWR,OCREAT),PATHMODE=(SIRUSR,SIWUSR)
//\ //OCOPY.SYSTSIN DD \
//\ OCOPY INDD(IN) OUTDD(OUT) BINARY
//\ OCOPY INDD(IN2) OUTDD(OUT2)
//\ /\
//\
//\\
//\
//REXXOEC PROC OPTIONS='XREF', REXX Compiler options
// COMPDSN='REXX.V1R3Mð.SFANLMD' REXX Compiler load lib
//\
//\---
//\ Compile REXX program
//\---
//\

 Appendix E. The MVS/ESA Cataloged Procedures Supplied by IBM 221

//REXX EXEC PGM=REXXCOMP,PARM='&OPTIONS'
//STEPLIB DD DSN=&COMPDSN,DISP=SHR
//SYSPRINT DD SYSOUT=\
//SYSTERM DD SYSOUT=\
//\SYSIEXEC DD DUMMY
//\SYSDUMP DD DUMMY
//SYSCEXEC DD DSN=&&CEXEC,DISP=(MOD,PASS),UNIT=SYSDA,
// SPACE=(8ðð,(8ðð,1ðð))
//OCOPY EXEC PGM=IKJEFTð1,
// COND=(9,LT,REXX)
//SYSTSPRT DD SYSOUT=\
//SYSTSIN DD DUMMY
//IN DD DSN=&&CEXEC,DISP=(OLD,DELETE)
//OUT DD DUMMY

222 SAA REXX/370 User’s Guide and Reference

| MVS2OE
| The following REXX program is a simple example of an interactive procedure for
| copying a sequential data set, such as a CEXEC (compiled EXEC) to OpenEdition.
| IBM provides this example in hard copy only.

| /\ ------------------------------ REXX ------------------------------ \/
| /\ MVS2OE \/
| /\ Copy an MVS data set to OpenEdition \/
| /\ \/
| /\ MVS2OE: This EXEC will copy a sequential data set or a member in \/
| /\ a library to OpenEdition (OE). It will run in a TSO environment. \/
| /\ You may find it helpful when you copy a compiled REXX program \/
| /\ to OE for execution there. However, it has intentionally been \/
| /\ kept simple but you can adapt it to your own purposes. You can \/
| /\ improve plausibility checking, for example by using the sysdsn() \/
| /\ function to see if the data set to be copied exists and is \/
| /\ available. You can read in the DSNAME from the invocation line \/
| /\ (with ARG or PARSE ARG) and only prompt the user if no arguments \/
| /\ have been given. For your convenience, debugging routines for \/
| /\ NOVALUE and SYNTAX have been included in case you do want to
| /\ modify this program. \/
| /\ \/
| /\ This exec uses 3 values: 1) the DSNAME of the sequential data set \/
| /\ to be written, 2) the path name under OE to be written to, 3) an \/
| /\ indication if the data set is binary (for example, a load module \/
| /\ or compiled exec, a CEXEC). These values are saved at the end of \/
| /\ this exec, the saved values are retrieved at the start of this \/
| /\ exec. \/
| /\ \/
| /\ This exec is invoked by: \/
| /\ EXEC lib(MVS2OE) \/
| /\ from the TSO prompt, usually selection 6 from the ISPF primary \/
| /\ option menu, where 'lib' is the name of the library containing \/
| /\ this exec. If the name of the library does not start with the \/
| /\ prefix specified in your profile, you must enclose lib(MVS2OE) \/
| /\ within single quotes. This exec does not expect any arguments \/
| /\ from the invocation line. \/
| /\\/

| signal on novalue; signal on syntax

| /\ try to retrieve previous values \/
| address ISPEXEC "VGET (OEDSN,OEPATH,OEBIN)"
| if (rc = ð) then do /\ vget o.k., confirm values \/
| say 'MVS data set name'; oedsn = check(oedsn)
| say 'OE path name'; oepath = check(oepath, 'lower')
| say 'Binary file (Y or N)'; oebin = check(oebin)
| end
| else do /\ vget not o.k., read in values \/
| say 'please key in the complete DSNAME with High Level Qualifier'
| pull oedsn
| say 'please key in the OE path'
| parse pull oepath
| say 'is it an executable (binary) program (Y or N)?'
| pull oebin
| end

 Appendix E. The MVS/ESA Cataloged Procedures Supplied by IBM 223

| say 'Abort run? "Y" aborts, anything else performs copy'
| say 'from' oedsn 'to' oepath
| pull answer
| if (answer = 'Y') then exit

| if (oebin = 'Y') then DO /\ set up some of the file's OE attributes \/
| mode = 'SIXUSR'
| bin = 'BINARY'
| end
| else do
| mode = ''
| bin = 'TEXT'
| end

| msg_status = msg('OFF') /\ suppress msgs from FREE etc. \/
| "FREE DDNAME(OEIN)" /\ make sure OEIN and OEOUT are free \/
| "FREE DDNAME(OEOUT)"
| msg_status = msg(msg_status) /\ restore to previous value \/

| "ALLOC DDNAME(OEIN) DSN('"oedsn"') SHR"
| "ALLOC DDNAME(OEOUT) PATH('"oepath"') PATHDISP(KEEP KEEP)" ,
| "PATHOPTS(ORDWR OCREAT) PATHMODE(SIRUSR SIWUSR" mode")"

| "OCOPY INDD(OEIN) OUTDD(OEOUT)" bin /\ perform copy operation \/
| if (rc <> ð) then say 'RC from OCOPY=' rc /\ check return code \/
| "FREE DDNAME(OEIN)"
| "FREE DDNAME(OEOUT)"

| /\ save values for next invocation \/
| address ISPEXEC "VPUT (OEDSN,OEPATH,OEBIN) PROFILE"
| exit ð /\ leave this exec \/

| /\ subprogram to request user to confirm or overwrite a value \/
| /\ -- \/
| check:
| say 'Use <ENTER> to use' arg(1) 'or key in new value'
| if (arg(2) = 'lower') then do
| parse pull answer /\ keep case as typed in \/
| end
| else do
| parse upper pull answer /\ uppercase input \/
| end
| if (answer = '') then return arg(1); else return answer

| /\ Debugging routines for NOVALUE and SYNTAX \/
| /\ --- \/
| novalue: say ' '
| say ' Novalue condition from line' sigl
| say sourceline(sigl)
| say ' variable:' condition('D'); trace ?r; nop; exit

| syntax: say ' '
| say ' Syntax error no.' rc 'from line' sigl
| say ' 'errortext(rc)
| say sourceline(sigl)
| say ' description:'condition('D'); trace ?r ; nop

224 SAA REXX/370 User’s Guide and Reference

Appendix F. The VSE/ESA Cataloged Procedures Supplied by
IBM

This appendix contains the following cataloged procedures supplied by IBM:

 REXXPLNK
 REXXLINK

 REXXPLNK
// PROC STUBLIB='REXXLIB.OBJECT',STUBNAM='EFPL'
GOTO SKIPCOM
\ \\
\
\ REXXPLNK Combine a program of OBJ type with the appropriate stub.
\
\ Copyright:
\
\ Licensed Materials - Property of IBM
\ 5695-ð14 IBM Library for SAA REXX/37ð, Release 3
\ (C) Copyright IBM Corp. 1993, 1994
\ All rights reserved.
\
\ Change Activity:
\ 94-1ð-27 Release 3.ð
\
\ \\
\
\ Parameters:
\
\ STUBLIB is the name of the sublibrary where the stub resides.
\ Default: REXXLIB.OBJECT
\
\ STUBNAM is the member name of the stub residing in STUBLIB
\ or one of the predefined stub names: VSE, EFPL.
\ Default: EFPL
\
\ INLIB is the name of the sublibrary where the input object
\ module resides.
\
\ INNAME is the member name of the input object module
\ residing in INLIB.
\
\ OUTLIB is the name of the sublibrary where the output object
\ module will be stored.
\
\ OUTNAME is the member name of the output object module that
\ will be stored in OUTLIB.
\
\
\ Example:
\
\ To combine the program MYAPPL.OBJ residing in the sublibrary
\ MYLIB.TEST with the EFPL stub, which is appropriate if the
\ program will be invoked as a REXX external routine, and to

 Copyright IBM Corp. 1991, 2000 225

\ store the resulting object module under the name CMYAPPL.OBJ
\ residing in the sublibrary MYLIB.TEST, use the following
\ invocation:
\
\ // EXEC PROC=REXXPLNK,INLIB='MYLIB.TEST',INNAME=MYAPPL,
\ OUTLIB='MYLIB.TEST',OUTNAME=CMYAPPL
\
\ \\
\
/. SKIPCOM
// EXEC REXX=REXXL,PARM='&STUBLIB &STUBNAM &INLIB &INNAME &OUTLIB &OUTNC
 AME'
/+

226 SAA REXX/370 User’s Guide and Reference

 REXXLINK
// PROC STUBLIB='REXXLIB.OBJECT',STUBNAM='EFPL',PHASNAM=''
GOTO SKIPCOM
\ \\
\
\ REXXLINK Link-edit a program of OBJ type and catalog the resulting
\ phase in a VSE/ESA library.
\
\ Copyright:
\
\ Licensed Materials - Property of IBM
\ 5695-ð14 IBM Library for SAA REXX/37ð, Release 3
\ (C) Copyright IBM Corp. 1993, 1994
\ All rights reserved.
\
\ Change Activity:
\ 94-1ð-27 Release 3.ð
\ \\
\
\ Parameters:
\
\ STUBLIB is the name of the sublibrary where the stub resides.
\ Default: REXXLIB.OBJECT
\
\ STUBNAM is the member name of the stub residing in STUBLIB
\ or one of the predefined stub names: VSE, EFPL.
\ Default: EFPL
\
\ INLIB is the name of the sublibrary where the input object
\ module resides.
\
\ INNAME is the member name of the input object module
\ residing in INLIB.
\
\ OUTLIB is the name of the sublibrary where the output object
\ module will be stored.
\
\ OUTNAME is the member name of the output object module that
\ will be stored in OUTLIB.
\
\ PHASNAM is the member name of the phase that will be
\ cataloged in the sublibrary specified by a
\ LIBDEF PHASE,CATALOG=lib.sublib statement.
\ Default: OUTNAME
\
\
\ Example:
\
\ To link-edit the program MYAPPL.OBJ residing in the sublibrary
\ MYLIB.TEST with the VSE stub, which is appropriate if the program
\ will be invoked as a VSE program, and to catalog the resulting
\ phase under the name MYAPPL.PHASE in the sublibrary MYLIB.TEST,
\ you have to specify as well the name of the resulting object
\ module serving as input for the linkage editor: for example
\ CMYAPPL.OBJ in the sublibrary MYLIB.TEST.
\ To perform this task use the following invocation:

 Appendix F. The VSE/ESA Cataloged Procedures Supplied by IBM 227

\
\ // LIBDEF PHASE,CATALOG=MYLIB.TEST
\ // EXEC PROC=REXXLINK,STUBNAM=VSE,INLIB='MYLIB.TEST',INNAME=MYAPPL,
\ OUTLIB='MYLIB.TEST',OUTNAME=CMYAPPL,PHASNAM=MYAPPL
\
\ \\
\
/. SKIPCOM
IF PHASNAM='' THEN
// SETPARM PHASNAM=&OUTNAME
// EXEC REXX=REXXL,PARM='&STUBLIB &STUBNAM &INLIB &INNAME &OUTLIB &OUTNC
 AME'
IF $RC NE ð THEN
GOTO $EOJ
// LIBDEF OBJ,SEARCH=&OUTLIB
// OPTION CATAL
 PHASE &PHASNAM,\,SVA
 INCLUDE &OUTNAME
// EXEC LNKEDT
/+

228 SAA REXX/370 User’s Guide and Reference

 Appendix G. Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply only that IBM product,
program, or service may be used. Any functionally product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However,
it is the user's responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
licence to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this at any
time without notice.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Deutschland
Informationssysteme GmbH

 Copyright IBM Corp. 1991, 2000 229

Department 3982
Pascalstrasse 100
70569 Stuttgart
Germany

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to IBM,
for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not been
thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply
reliability, serviceability, or function of these programs. You may copy, modify, and
distribute these sample programs in any form without payment to IBM for the
purposes of developing, using, marketing, or distributing application programs
conforming to IBM's application programming interfaces.

Programming Interface Information
This User’s Guide and Reference is intended to help customers compile and run
programs written in the Restructured EXtended eXecutor (REXX) language. This
manual documents General-Use Programming Interface and Associated Guidance
Information provided by the IBM Compiler for SAA REXX/370 and the IBM Library for
SAA REXX/370.

General-Use programming interfaces allow the customer to write programs that
obtain the services of the IBM Compiler for SAA REXX/370 and the IBM Library for
SAA REXX/370.

| Trademarks
The following terms, denoted by an asterisk (*) in this publication, are trademarks of
the IBM Corporation in the United States, or other countries, or both:

C/370 GDDM
IBM IMS
MVS MVS/ESA
OpenEdition OS/2
OS/390 RACF
SAA S/390
SP System/370
Systems Application Architecture VM/ESA
VSE/ESA

230 SAA REXX/370 User’s Guide and Reference

| Other company, product, and service names may be trademarks or service marks
| of others.

 Appendix G. Notices 231

232 SAA REXX/370 User’s Guide and Reference

Glossary of Terms and Abbreviations

| This glossary defines terms as they are used in this
| book. If you cannot find the term you are looking for,
| refer to the Dictionary Computing New York:
| McGraw-Hill, 1994.

 C
CEXEC output . Output produced by the IBM Compiler
for REXX/370 licensed program when the CEXEC
option is specified.

clause . According to SAA Common Programming
Interface REXX Level 2 Reference, a REXX program is
built from a series of clauses that are composed of:

� Zero or more blanks (which are ignored)
� A sequence of tokens
� Zero or more blanks (again, ignored)
� A semicolon (;) delimiter that may be implied by

line-end, certain keywords, or the colon (:)

CMS. Conversational Monitor System.

compiled EXEC . A compiled REXX program file that
has the same file type that the corresponding source file
would have for interpretation.

Conversational Monitor System (CMS) . A virtual
machine operating system that provides general
interactive time sharing, problem solving, and program
development capabilities, and operates only under
control of the VM control program.

CPPL. TSO/E command processor parameter list.

CPPLEFPL . A stub that is a combination of the CPPL
and EFPL stubs. It contains the logic to determine if
the REXX program is being invoked as a TSO/E
command or as a REXX external routine. Once this
has been determined, the compiled REXX program is
given control with the appropriate parameters.

cross-reference listing . The portion of the compiler
listing that contains information on where symbols are
referenced in a program.

 D
DBCS. Double-byte character set.

DCSS. (1) Discontiguous saved segment. (2) Also
known as discontiguous shared segment.

discontiguous saved segment (DCSS) . An area of
storage beyond the address of your virtual machine

address space (not contiguous with your virtual storage)
where segments are loaded as needed.

double-byte character set (DBCS) . A character set,
such as Kanji, for languages that require 2 bytes to
uniquely define each character.

 E
EFPL. External function parameter list.

ESD. External symbol dictionary.

extended architecture (XA) . An extension to
System/370 architecture* that takes advantage of
continuing high-performance enhancements to computer
system hardware.

extended architecture mode (XA mode) . A method
of processing computer instructions in which 31 bits are
used to determine an address for a requested operation
(for instance, the address of data to be manipulated).
The 31-bit mechanism extends the maximum range of
an addressable storage space to 2 billion (that is,
2x10ù) bytes. By comparison, IBM System/370
processors use a 24-bit mechanism that allows a
maximum addressable storage space of approximately
16 million bytes.

external symbol dictionary (ESD) . Control
information associated with an object or load module
that identifies the external symbols in the module.

 F
FMID. Function modification identifier.

 I
IEXEC output . Output produced by the IBM Compiler
for REXX/370 licensed program when the IEXEC option
is specified.

Interactive System Productivity Facility (ISPF) . An
IBM-licensed program that provides a common dialog
management facility across operating system
environments.

interpreter . A program that translates and executes
each instruction of a high-level programming language
before it translates and executes the next instruction.

ISPF. Interactive System Productivity Facility.

 Copyright IBM Corp. 1991, 2000 233

 K
KB . Kilobyte; 1024 bytes.

keyword . A language-defined word which identifies a
clause. Examples of keywords are: IF, THEN, SAY.

 L
LPA . Link pack area.

 M
MB. Megabyte; 1 048 576 bytes.

MMS. MVS message service.

module . An object code file whose external references
have been resolved.

MVS. Multiple Virtual Storage.

MVS/ESA. Multiple Virtual Storage/Enterprise System
Architecture.

 N
NLS. National Language Support.

 O
OBJECT output . Output produced by the IBM
Compiler for REXX/370 licensed program when the
OBJECT option is specified.

object program . (1) A target program suitable for
execution. An object program may or may not require
linking. (2) Contrast with source program. Object
program is used on MVS/ESA only.

| OpenEdition . Pertaining to the elements of OS/390
| that incorporate the UNIX interfaces standardized in
| POSIX.

| OS/390 Operating System . An IBM licensed program
| that not only includes and integrates functions
| previously provided by many IBM software products
| (including the MVS operating system) but also (a) is an
| open, secure operating system for the IBM S/390 family
| of enterprise servers, (b) complies with industry
| standards, (c) is Year 2000 ready and enabled for
| network computing and e-business, and (d) supports

| technology advances in networking server capability,
| parallel processing, and object-oriented programming.

 P
PDF. Program Development Facility.

phase . In VSE, the smallest complete unit of
executable code that can be loaded into virtual storage.
It is the output of the linkage editor.

phrase . A language construct associated with a
sub-keyword. Examples of phrases are: TO-phrase,
WHILE-phrase.

 S
SBCS. Single-byte character set.

SFS. Shared file system.

| SI. The shift-in character (X'0F') indicating the end of
| a double-byte character string.

| SO. The shift-out character (X'0E') indicating the start
| of a double-byte character string.

SPI. System Product Interpreter.

stub . A code segment that transforms parameter lists
from one format into another.

sub-keyword . A language-defined word occurring in
(but not identifying) a clause. Examples of
sub-keywords are: TO, BY, FOR, VALUE.

supervisor call (SVC) . A request that serves as the
interface into operating system functions, such as
allocating storage. The SVC protects the operating
system from inappropriate user entry. All operating
system requests must be handled by SVCs.

supervisor call instruction . An instruction that
interrupts a program being executed and passes control
to the supervisor so that it can perform a specific
service indicated by the instruction.

SVC. Supervisor call.

System Product Interpreter (SPI) . The component of
the VM/SP or VM/XA SP operating system that
processes procedures, XEDIT macros, and programs
written in the Restructured Extended Executor (REXX)
language.

234 SAA REXX/370 User’s Guide and Reference

 T
TEXT file . An object-code file whose external
references have not been resolved. This term is used
on VM only.

token . According to SAA Common Programming
Interface REXX Level 2: Reference, a token is the unit
of low-level syntax from which clauses are built.

TPA. Transient program area.

transient program area (TPA) . In CMS, the virtual
storage area occupying locations X'E000' to
X'10000'. Some CMS commands and user programs
can be executed in this area of CMS storage.

TSO/E. Time Sharing Option Extensions.

 V
| Virtual Machine/Enterprise Systems Architecture
| (VM/ESA). An IBM licensed program that manages the
| resources of a single computer so that multiple
| computing systems appear to exist. Each virtual
| machine is the functional equivalent of a real machine.

Virtual Machine/Extended Architecture System
Product (VM/XA SP) . An IBM-licensed program with
extended architecture support that manages the
resources of a single computing system so that multiple
computing systems (virtual machines) appear to exist.

Virtual Machine/System Product (VM/SP) . An
IBM-licensed program that manages the resources of a
single computer so that multiple computing systems
appear to exist. Each virtual machine is the functional
equivalent of a “real” machine.

VM/ESA. Virtual Machine/Enterprise Systems
Architecture.

VM/SP. Virtual Machine/System Product.

VM/XA SP. Virtual Machine/Extended Architecture
System Product.

VSE/ESA. Virtual Storage Extended/Enterprise
Systems Architecture.

 X
XA. Extended architecture.

 Glossary of Terms and Abbreviations 235

236 SAA REXX/370 User’s Guide and Reference

 Bibliography

Other IBM Compiler and Library for SAA REXX/370
Publications:

IBM Compiler and Library for SAA REXX/370:
Introducing the Next Step in REXX Programming,
G511-1430

Helps managers and data processing
professionals evaluate the IBM Compiler and
Library for SAA REXX/370. It provides general
information about the features and benefits of
the IBM Compiler and Library for SAA REXX/370
and the system resources required to run it.

IBM Compiler and Library for SAA REXX/370:
Diagnosis Guide, SH19-8179

For system programmers and other data
processing professionals responsible for
maintaining the IBM Compiler and Library for
SAA REXX/370. It explains how to diagnose
suspected errors in the product and how to
report them to the appropriate IBM personnel.

IBM Compiler and Library for SAA REXX/370:
Diagnosis Guide and IBM Compiler and Library for
SAA REXX/370: User’s Guide and Reference

are available also in softcopy form on:

IBM Online Library MVS Collection CD-ROM,
SK2T-0710

IBM Online Library VM Collection CD-ROM,
SK2T-2067

IBM Online Library VSE Collection CD-ROM,
SK2T-0060

ISPF Publications:

ISPF Dialog Developer's Guide and Reference,
SC34-4486
ISPF Services Guide, SC34-4485
ISPF User's Guide, SC34-4484

| ISPF/PDF Guide Version 3 Release 1 for VM,
| SC34-4299
| ISPF/PDF Guide and Reference Version 3 Release 5
| for MVS, SC34-4258

Learning REXX:

VM/IS: Writing Simple Programs with REXX,
SC24-5357

For users with little or no experience in
computer programming or programming in
REXX. It provides an excellent introduction to
REXX and can help you get started in
programming.

TSO/E Version 2 REXX/MVS: User’s Guide,
SC28-1882, or

VM/SP System Product Interpreter: User’s Guide,
SC24-5238, or
VM/XA SP Interpreter: User’s Guide, SC23-0375 or
VM/ESA REXX/VM: User’s Guide, SC24-5465

REXX Reference:

TSO/E Version 2 Procedures Language MVS/REXX,
SC28-1883, or
VM/SP System Product Interpreter: Reference,
SC24-5239, or
VM/XA SP Interpreter: Reference, SC23-0374, or
VM/ESA REXX/VM: Reference, SC24-5466, or
IBM VSE/Enterprise Systems Architecture REXX/VSE
Reference, SC33-6529

For experienced programmers, particularly
those who have used a structured high-level
language. It lists the REXX messages and
describes instructions, functions, debugging
aids, and parsing.

Systems Application Architecture Common
Programming Interface: REXX Level 2 Reference,
SC24-5549

Describes the SAA REXX interface.

| C Publication:

| IBM C/370 Programming Guide Version 2 Release 1,
| SC09-1384

MVS/ESA Publications:

TSO/E Version 2: Primer, GC28-1879

TSO/E Version 2: Customization, SC28-1872

TSO/E Version 2 REXX/MVS: User’s Guide,
SC28-1882

TSO/E Version 2: Command Reference, SC28-1881

MVS/DFP 3.3: Linkage Editor and Loader, SC26-4564

MVS/ESA Planning: Operations GC28-1625

MVS/ESA Application Development Guide:
Assembler Language Programs GC28-1644

MVS/ESA OpenEdition Publication:

MVS/ESA OpenEditon Command Reference,
SC23-3014

VM/SP Publications:

VM/SP CMS: Primer, SC24-5236

VM/SP CMS: Primer for Line-Oriented Terminals,
SC24-5242

VM/SP CMS: User’s Guide, SC19-6210

 Copyright IBM Corp. 1991, 2000 237

VM/SP CMS: Command Reference, SC19-6209

VM/SP System Product Editor: User’s Guide,
SC24-5220

VM/SP: Administration, SC24-5285

VM/XA SP Publications:

VM/XA SP CMS: Primer, SC23-0368

VM/XA SP CMS: User’s Guide, SC23-0356

VM/XA SP CMS: Command Reference, SC23-0354

VM/XA SP System Product Editor: User’s Guide,
SC23-0373

VM/XA SP: Administration, SC23-0353

C Publication:

VM/ESA CMS: Primer, SC24-5458

VM/ESA CMS: User’s Guide, SC24-5460

VM/ESA CMS: Command Reference, SC24-5461

VM/ESA XEDIT: User’s Guide, SC24-5463

VM/ESA CMS: Planning and Administration Guide,
SC24-5445

VM/ESA CMS: Administration Reference, SC24-5446

238 SAA REXX/370 User’s Guide and Reference

 Index

Special Characters
// (remainder operator) 100
** (exponentiation operator) 100
\ (NOT operator) 104
\<< (strictly not less than operator) 104
\>> (strictly not greater than operator) 104
% (integer divide operator) 100
%COPYRIGHT control directive 45, 94
%INCLUDE control directive 45, 94
%PAGE control directive 47, 58, 94
%SYSDATE control directive 48, 94
%SYSTIME control directive 48, 94
%TESTHALT control directive 49, 94, 95

optimization stopper 111
<< (strictly less than operator) 104
<<= (strictly less than or equal operator) 104
>> (strictly greater than operator) 104
>>= (strictly greater than or equal operator) 104

Numerics
6-word extended parameter list, invocation with 197

A
abnormal end (abend) 77
ALTERNATE (ALT) compiler option 27
Alternate Library

activation 53
creating REXX programs for use with 115
installation (CMS) 209
installation (MVS/ESA) 206
overview 7
packaging 205
parts (CMS) 206
parts (MVS/ESA) 205
use of 53

application
writing part in REXX (CMS) 78
writing part in REXX (MVS/ESA) 75

argument string, tokenized parameter list 196
arithmetic

integer divide and remainder operations 100
limits on numbers 116
performance 112

ARXEXEC EXEC handler
in-storage control block 201
parameters 200

Assembler interface to TEXT file, example 197
Assembler program call for TEXT file 195

B
B2X built-in function 103
backslash, use of 104
BASE compiler option 27
Batch REXX Compile panel (MVS/ESA) 19
batch, running jobs in 11, 54
binary string, maximum length 105
BLKSIZE 22
built-in function

differences between compiler and interpreter 103
LINESIZE (CMS) 104
options of 102
SOURCELINE 97
TRACE 98
VALUE 102, 111, 114

C
C2D input string, maximum length 105
call arguments, implementation limit 105
CALL command stub 74
CALL instruction 103
CALLCMD parameter list 192
CALLCMD stub 185
calling and linking REXX programs 6
cataloged procedure

customizing 121, 131
overview 9
REXXC 21, 211
REXXCG 21, 213
REXXCL 21, 215
REXXCLG 21, 217
REXXL 21, 219

linking stub and compiled REXX program 180
REXXLINK 227
REXXOEC 221
REXXPLNK 225
types of 21

CEXEC (CE) compiler option 28
CEXEC file type 52

See also compiled EXEC
CEXEC output

converting 87, 89
copying (MVS/ESA) 89

checking results of compilation 12
clause, maximum length 105
CMS Batch Facility 11, 54
code, compiled

generating 12, 30
in condensed form 30
optional code 42, 43

 Copyright IBM Corp. 1991, 2000 239

coexistence with the interpreter 51
command

Halt Interpretation (HI) 94
NUCXDROP 55
NUCXLOAD 77
REXXC (CMS) 25
REXXC (MVS/ESA) 10, 17
REXXCOMP 123
REXXD (CMS) 11, 22
REXXF 89
Trace End (TE) 99
Trace Start (TS) 99

comments, reserved wording 45, 47
comparison operators 104
compatibility, cross-system 87
compilation errors, summary 60
compilation messages 60, 135

shown in compiler listing 60
summary 61

compilation statistics 64
COMPILE (C) compiler option 30
compiled EXEC

converting from CMS to MVS/ESA 88
converting from MVS/ESA to CMS 87
converting from MVS/ESA to MVS/ESA

OpenEdition 87
cross-system compatibility 87
file identifier 28
files needed to run (CMS) 128
general description 5
organizing with interpretable EXEC (CMS) 52
organizing with interpretable EXEC (MVS/ESA) 51
organizing with interpretable EXEC (VSE/ESA) 52
producing 29
when to use 29

compiled REXX program
formats 4
general description 3
portability 5
reducing size of 29

compiler and interpreter language differences 93
compiler invocation

from cataloged procedures 21
in batch (CMS) 10
overview 9, 10
with ISPF panels (MVS/ESA) 18, 19
with the REXXC EXEC (CMS) 25
with the REXXC EXEC (MVS/ESA) 10, 17
with the REXXD EXEC (CMS) 11, 22

compiler invocation shells, customizing 123
compiler listing

attribute 63
continuing on next line 58
controlling lines per page 37, 48
cross-reference 44, 63
description 57—64

compiler listing (continued)
example 60, 62, 69
included files 59
item 63
line numbers 59
line reference 63
margins indicator 59
message summary 61
name (MVS/ESA) 20
nesting of included files 59
options summary 57
producing 41
sequence numbers 59
source 43, 58
split lines 58
statistics 64
suppressing 41

compiler options
ALTERNATE (ALT) 27
BASE 27
CEXEC (CE) 28
COMPILE (C) 30
CONDENSE (COND) 30
customizing installation defaults (CMS) 124
customizing installation defaults (MVS/ESA) 121
customizing installation defaults (VSE/ESA) 131
customizing with REXXCOMP command 123
defaults supplied by IBM 27
DLINK (DL) 31
DUMP (DU) 33
FLAG (F) 33
FORMAT 34
IEXEC (I) 34
LIBLEVEL 36
LINECOUNT (LC) 37
MARGINS (M) 38
NOALTERNATE (NOALT) 27
NOCEXEC (NOCE) 28
NOCOMPILE (NOC) 30
NOCONDENSE (NOCOND) 30
NODLINK (NODL) 32
NODUMP (NODU) 33
NOFLAG (NOF) 33
NOFORMAT 34
NOIEXEC (NOI) 34
NOOBJECT (NOOBJ) 38
NOOPTIMIZE (NOOPT) 41
NOPRINT (NOPR) 41
NOSAA 42
NOSLINE (NOSL) 42
NOSOURCE (NOS) 43
NOTERMINAL (NOTERM) 43
NOTESTHALT (NOTH) 43, 94, 95
NOTRACE (NOTR) 44
NOXREF (NOX) 44
OBJECT (OBJ) 38

240 SAA REXX/370 User’s Guide and Reference

compiler options (continued)
OPTIMIZE (OPT) 41
PRINT (PR) 41
SAA 42
shown in compiler listing 57
SLINE (SL) 42
SOURCE (S) 43
TERMINAL (TERM) 43
TESTHALT (TH) 43, 94, 95
TRACE (TR) 44
XREF (X) 44

compiler output, types of 9
compiler-invocation dialog (REXXD) for CMS

customizing 124
overview 10
using 11, 22

compiler-invocation EXEC (REXXC)
customizing 123
introduction (CMS) 10
introduction (MVS/ESA) 9, 10
using under CMS 25
using under MVS/ESA 17

compiling
a program 9—13
checking results of 12
performating operations during 110
summary of errors 60

compliance checking, SAA 42
compound variables

improving access to 111
performance 113

CONDENSE (COND) compiler option 30
condense operation 31
condition

NOVALUE 95
SYNTAX 97, 116

CONDITION built-in function 103
constants 112
continuation lines in source listing 58
control directive

%COPYRIGHT 45
%INCLUDE 45
%PAGE 47, 58
%SYSDATE 48
%SYSTIME 48
%TESTHALT 49, 95

converting CEXEC output
from CMS to MVS/ESA 88, 89
from CMS to VSE/ESA 89
from MVS/ESA to CMS 87
from MVS/ESA to MVS/ESA OpenEdition 87
from MVS/ESA to VSE/ESA 88

copying CEXEC output (MVS/ESA) 89
copyright 45
CPPL parameter list 189

CPPL stub 74, 185
CPPLEFPL stub 186
cross-reference listing

description 63
example 65, 67
producing 44

cross-system compatibility 87
customizing

cataloged procedures 121, 131
compiler invocation dialog (CMS) 124
compiler invocation shells (CMS) 123
compiler options 123
EAGCUST EXEC 127
installation defaults for compiler options (CMS) 124
installation defaults for compiler options

(MVS/ESA) 121
installation defaults for compiler options

(VSE/ESA) 131
Library (CMS) 125
message repository (CMS) 128
message repository (MVS/ESA) 122
the Compiler and Library

under CMS 123
under MVS/ESA 121

the Library 131

D
D2C output string, maximum length 105
D2X output string, maximum length 105
data set name, derived defaults 18
data sets required by the compiler (MVS/ESA) 21
DATATYPE function 116
DBCS (double-byte character set) 96
DCB 22
DCSS (discontiguous saved segment)

defining
for VM/ESA with 370 feature 125
for VM/SP 125
for VM/XA and for VM/ESA with ESA

feature 126
placing programs in (CMS) 78
saving 126

DCSSGEN utility 29
DDNAME 22
debugging 98
default DSNAME 18
derived default data set names 18
derived DSNAMES 18
development cycle 4
diagnostics (Library) 175
dialog

See compiler-invocation dialog (REXXD) for CMS
differences from the interpreter

See language differences

 Index 241

DIGITS built-in function 103
DIGITS value of NUMERIC instruction 105, 112
directly linked external programs 32
discontiguous saved segment

See DCSS (discontiguous saved segment)
DLINK (DL) compiler option 31
DMKSNT system name table 125
DO loops

labels within 113
nesting level 58

double-byte character set (DBCS) 96
DSNAME 18, 21
dump

compiler diagnostics 33
interphase 33

DUMP (DU) compiler option 33
duplicate labels 63

E
EAGCUST EXEC 127

querying the current customization of
EAGRTPRC 128

specifying that the Library is searched for in
DCSS 128

specifying that the Library not be loaded from a
DCSS 128

specifying the name of the module containing the
Library 128

EAGDCSS EXEC 126
EAGRTPRC library loader 55, 127
EFPL parameter list 189, 202
EFPL stub 74, 186, 199
enhanced options 17
error

OVERFLOW 116
UNDERFLOW 116

error checking 4, 109
error messages

See messages
error statistics 61
errors, runtime 54
ESD (external symbol dictionary) record 73, 181
ETMODE option of OPTIONS instruction 96
EVALBLOCK control block handling, example 190,

203
EXEC file type 52
EXEC handler 5, 29
EXECCOMM interface

enhancements 104
optimization stoppers 111

EXECLOAD command 29
executing compiled programs 4
exponent, maximum value 105
exponentiation (**) operator 100

EXPOSE option of PROCEDURE instruction 113
extended architecture (XA) mode 6
extended parameter list 196
external function, frequently invoked 114
external programs, directly linked 32
external references, example of resolving 83
external routine

frequently invoked 114
linking to a REXX program 82

external symbol dictionary (ESD) record 73, 181

F
file identifiers

compiled EXEC 28
requirements for file type 29, 52
source program 25, 123
TEXT file (CMS) 39

file naming convention (CMS) 52
FLAG (F) compiler option 33
Foreground REXX Compile panel (MVS/ESA) 18
FORM built-in function 103
FORMAT compiler option 34
function package

building (CMS) 78
building (MVS/ESA) 75

FUZZ built-in function 103

G
generating a load module 74, 83
generating compiled code 12, 30

in condensed form 30

H
Halt condition 43, 94, 95, 113
Halt Interpretation (HI) immediate command 43, 94
help

for compiler invocation dialog 23
for REXX language elements 93

hexadecimal string, maximum length 105
HI (Halt Interpretation) immediate command 43, 94
hiding source code 42, 52
host commands 111

I
IEXEC (I) compiler option 34
IEXEC output 4
IF nesting level 58
implementation limits 105
in-storage control block 187, 201
include data sets 19
informational messages 12
instructions

CALL 103

242 SAA REXX/370 User’s Guide and Reference

instructions (continued)
NUMERIC FORM 103
OPTIONS 96, 103
options of 103
PARSE SOURCE 96, 193, 204
PARSE VERSION 97
PROCEDURE 113
SIGNAL 97
SIGNAL ON 103
TRACE 98

integer divide (%) operator 100
interface

between compiled programs and interpreted
programs 54

between REXX programs and other programs 6
for object modules (MVS/ESA) 179
for object modules (VSE/ESA) 199
for TEXT files 195

interphase dump 33
INTERPRET 111
interpretable EXEC

organizing with compiled EXEC (CMS) 52
organizing with compiled EXEC (MVS/ESA) 51
organizing with compiled EXEC (VSE/ESA) 52

interpretable program
invoking from a compiled program 54
invoking unintentionally 51, 52

interpreter, language differences 93
interrupting program execution 94
invocation dialog

See compiler-invocation dialog (REXXD) for CMS
invocation EXEC

See compiler-invocation EXEC (REXXC)
invoking the Compiler

from cataloged procedures 21
overview (CMS) 10
overview (MVS/ESA) 9
using JCL statements 20
with ISPF panels (MVS/ESA) 18, 19
with LINKMVS 10
with the REXXC EXEC (CMS) 25
with the REXXC EXEC (MVS/ESA) 10, 17
with the REXXD EXEC (CMS) 11, 22

IRXEXEC EXEC handler
in-storage control block 187
parameters 187

ISPF compiler invocation panel (CMS) 11
ISPF compiler invocation panel (MVS/ESA) 9

J
job control language 20

L
labels

optimization stopper 111
referenced with SIGNAL 100
shown in cross-reference listing 63

labels within loops, performance 113
language differences 93—104

from the interpreter 93
to the interpreter 99

language level of Compiler 3, 93, 99
language processing 3
language, national 7
LIBLEVEL compiler option 36
Library 3, 54

customizing (CMS) 125
diagnostics 175
not found 56
selecting version of (CMS) 127
verifying availability of 114

library loader EAGRTPRC 55, 127
limits and restrictions

implementation limits 105
technical restrictions 106

line numbers 58, 63
line width of terminal 104
LINECOUNT (LC) compiler option 37, 48
lines per page, compiler listing 37, 48
LINESIZE built-in function 104
link-editing object modules

description 180
external references 83

linking object modules to external routines 74
linking REXX programs to external routines 82
linking TEXT files to external routines 77
listing

See compiler listing
listing control directive (%PAGE) 47, 58
literal strings

maximum length 105
performance 112

load module
generating 74, 83
generating from object modules 5

location of PROCEDURE instruction (CMS) 101
logical segment 126
loops 111

labels within 113
LRECL 22

M
machine code

See code, compiled
macros 28

 Index 243

MARGINS (M) compiler option 38
MAX function arguments 105
maximum implementation limits 105, 106
message identifier 133
message repository

customizing (CMS) 128
customizing (MVS/ESA) 122

message summary in compiler listing 61
messages

compilation
displaying at terminal 43
explanations 135—158
suppressing 33

data sets required by the compiler (MVS/ESA) 21
description 60
Library diagnostics 175—176
runtime

explanations 159—173
general description 55

summary 61
traceback 42

MIN function arguments 105
module file 96

generate from TEXT files (CMS) 5
multiple labels 63
MVS parameter list 191
MVS stub 74, 185
MVS/ESA Batch Facility 54
MVS2OE

example 223

N
naming convention (CMS) 52
national language selection 7
nesting of control structures

maximum 105
shown in cross-reference listing 58

NetView 95
NOALTERNATE (NOALT) compiler option 27
NOCEXEC (NOCE) compiler option 28
NOCOMPILE (NOC) compiler option 30
NOCONDENSE (NOCOND) compiler option 30
NODLINK (NODL) compiler option 32
NODUMP (NODU) compiler option 33
NOFLAG (NOF) compiler option 33
NOFORMAT compiler option 34
NOIEXEC (NOI) compiler option 34
NOOBJECT (NOOBJ) compiler option 38, 39
NOOPTIMIZE (NOOPT) compiler option 41
NOPRINT (NOPR) compiler option 41
NOSAA compiler option 42
NOSLINE (NOSL) compiler option 42, 97
NOSOURCE (NOS) compiler options 43
NOTERMINAL (NOTERM) compiler option 43

NOTESTHALT (NOTH) compiler option 43, 94, 95
NOTRACE (NOTR) compiler option 44
NOVALUE condition 95
NOXREF (NOX) compiler option 44
nucleus extension 77, 78
NUCXDROP command 55
NUCXLOAD command 40, 77
numbers 112, 116
NUMERIC DIGITS

performance 112
value 105, 110

NUMERIC FORM instruction 103
NUMERIC instruction 111

O
OBJECT (OBJ) compiler option 38
object code

See code, compiled
object module

cataloged procedures, link-editing 180
data set name 38
deriving name of 73, 181
external routines, linking 74
general description 5
interface (MVS/ESA) 179
interface (VSE/ESA) 199
link-editing 180
linking external routines 74
naming restriction 74, 181
PARSE SOURCE 193, 204
producing 40
search order 193, 204
when to use 40

OBJECT output
background information 40
deriving name of 73
MODULE file (MVS/ESA) 38
object module (MVS/ESA) 74
TEXT file (CMS) 77
when to use 73

object program
See object module

online help
for compiler invocation dialog 23
for REXX language elements 93

operating systems 93
operators

\<< (strictly not less than) 104
\>> (strictly not greater than) 104
<< (strictly less than) 104
<<= (strictly less than or equal) 104
>> (strictly greater than) 104
>>= (strictly greater than or equal) 104
exponentiation (**) operator 100
integer divide (%) 100

244 SAA REXX/370 User’s Guide and Reference

operators (continued)
¬<< (strictly not less than) 104
¬>> (strictly not greater than) 104
remainder (//) 100
strictly greater than (>>) 104
strictly greater than or equal (>>=) 104
strictly less than (<<) 104
strictly less than or equal (<<=) 104
strictly not greater than (\>>) 104
strictly not greater than (¬>>) 104
strictly not less than (\<<) 104
strictly not less than (¬<<) 104

optimization
description 109
limitations 112

optimization stoppers 111
options

See also compiler options
enhanced 17
on built-in functions (CMS) 102
on instructions (CMS) 103

OPTIONS instruction 103
effect on checking of pad characters 106
ETMODE option 96

output, forms of 4
OVERFLOW error 116

P
¬ (NOT operator) 104
¬<< (strictly not less than operator) 104
¬>> (strictly not greater than operator) 104
packaging

improving (CMS) 78
improving (MVS/ESA) 75

pad characters 106
page break, in source listing 47
PAGE listing control directive 47
panel

Batch REXX Compile (MVS/ESA) 19
compiler invocation dialog (CMS) 11, 23
Foreground REXX Compile (MVS/ESA) 18
REXX Compiler Options Specifications (CMS) 24

parameter list 188, 201
6-word extended, invocation with 197
CALLCMD 192
CPPL 189
CPPLEFPL 191
EFPL 189, 202
extended 196
invocation with 197
MVS 191
tokenized 196
VSE stub 201

parameter-passing convention
CALLCMD 74, 185

parameter-passing convention (continued)
CPPL (command processor parameter list) 74, 185
CPPLEFPL 74
EFPL (external function parameter list) 74
MVS 74, 185
stubs for 74
VSE 199

PARSE SOURCE instruction 96, 193, 204
PARSE VERSION instruction 97
performance and programming

considerations 109—117
%TESTHALT control directive 111
arithmetic 112
compound variables 111, 113
error checking 109
EXECCOMM interface 111
frequently invoked external routines and

functions 114
host commands 111
improving performance (CMS) 78
improving performance (MVS/ESA) 75
INTERPRET instruction 111
labels 111
labels within loops 113
literal strings 112
loops 111
NUMERIC DIGITS 110
NUMERIC instruction 111
optimization stoppers 111
PROCEDURE instruction 113
TESTHALT (TH) compiler option 111, 113
VALUE function 111
variables 113
verifying Library availability 114

phase, naming restriction 79
physical segment

defining
for VM/ESA with 370 feature 125
for VM/SP 125
for VM/XA and for VM/ESA with ESA

feature 126
saving 126

PLIST 40
See also parameter list

portability of compiled REXX programs 5
PRINT (PR) compiler option 41
PROCEDURE instruction

location of (CMS) 101
performance 113

program
See also compiled program, source program
development cycle 4

 Index 245

Q
queue entries, maximum number 105
quotes

use with ETMODE option 96
use with literal strings 112

R
RECFM 22
record length, maximum value for source files 106
reentrant modules 73
remainder (//) operator 100
renaming program files 29, 52
resolving external references 83
restrictions, technical 106
return codes 12
REXX

control directives 94
implementation 3, 93
language differences 93

argument counting 102
built-in functions (CMS) 103
copyright control directive 45
EXECCOMM interface (CMS) 104
exponentiation (**) operator 100
for CMS Release 6 and TSO/E Version 2 93
Halt Interpretation (HI) immediate command 94
include control directive 45
integer divide (%) operator 100
limits on numbers 116
LINESIZE built-in function in full-screen

CMS 104
listing control directive 47
location of PROCEDURE instruction (CMS) 101
NOVALUE condition 95
operators 104
OPTIONS instruction 96
options of built-in functions (CMS) 102
options of instructions (CMS) 103
PARSE SOURCE instruction 96
PARSE VERSION instruction 97
remainder (//) operator 100
SIGNAL instruction 97
SOURCELINE built-in function 97
TE (Trace End) command 99
TRACE built-in function 98
TS (Trace Start) command 99

language level of Compiler 3
writing applications in (CMS) 78
writing applications in (MVS/ESA) 75

REXX program
calling and linking 6
invoked as command or program (MVS/ESA) 74
linking an external routine 82
portability of 5

REXXC cataloged procedure 21, 211
REXXC EXEC 17, 25, 121

See also compiler-invocation EXEC (REXXC)
CEXEC option (MVS/ESA) 28
customizing 121
default data set names 18
DUMP option (MVS/ESA) 27, 33
enhanced options (MVS/ESA) 17
example 10
invoking the compiler (MVS/ESA) 17
OBJECT option (MVS/ESA) 38
PRINT option (MVS/ESA) 41

REXXCG cataloged procedure 21, 213
REXXCL cataloged procedure 21, 215
REXXCLG cataloged procedure 21, 217
REXXCOMP command 123
REXXD command 22
REXXD EXEC

See compiler-invocation dialog (REXXD) for CMS
REXXDX XEDIT 22, 123
REXXF EXEC

converting CEXEC output 87, 89
copying CEXEC output 89

REXXL cataloged procedure 21, 82, 180, 219
REXXL EXEC 76

customizing 121, 131
default data set names 76

REXXLINK cataloged procedure 81, 227
REXXOEC cataloged procedure 87, 221
REXXPLNK cataloged procedure 80, 225
REXXV EXEC

converting CEXEC output 88, 89
copying CEXEC output 90, 91

running
above 16MB in virtual storage 6
compiled programs 4, 56

runtime
batch mode 54
considerations 51
diagnostics messages 175
errors 54, 56
including support for HI command 56
interfaces with interpreted programs 54
loading the Library (CMS) 54
messages 55, 159
organizing compiled and interpretable EXECs

(CMS) 52
organizing compiled and interpretable EXECs

(MVS/ESA) 51
organizing compiled and interpretable EXECs

(VSE/ESA) 52
performance 109
tracing compiled programs 56

246 SAA REXX/370 User’s Guide and Reference

S
SAA (Systems Application Architecture)

compliance checking 42
general description 6

SAA compiler option 42
SAA REXX interface 6, 42
search order

compiled and interpretable EXECs 29, 51
object modules 193

secondary messages 55
SELECT nesting level 58
service marks 230
SETVAR 56
severe errors 12
SEXEC file type 52
shared segment

See DCSS (discontiguous saved segment)
shell, for compiler invocation

See compiler invocation dialog, compiler invocation
EXEC

SIGNAL instruction 97
SIGNAL ON instruction 103
SLINE (SL) compiler option 42, 97
SOURCE (S) compiler option 43
source code

displayed at terminal 43
hiding 42, 52
included in compiled program 42
referencing at run time 97

source listing
%PAGE control directive 58
controlling page breaks 47
description 58
example 60, 62, 66
producing 43
with messages 60

SOURCE option of PARSE instruction 96
source program

file identifier
for REXXC EXEC 25
for REXXCOMP command 123
for REXXD EXEC 22

general description 3
maximum number of lines 106
maximum record length 106

SOURCELINE built-in function 42, 97
split lines in source listing 58
statistics listing, example 68
stem of a variable 113
stream I/O 115
strict comparison operators 104
strings

See literal strings
stub (MVS/ESA)

CALLCMD 74

stub (MVS/ESA) (continued)
CPPL (command processor parameter list) 74, 185
definition 185, 199
EFPL (external function parameter list) 74, 186,

199
linkage editor input 181
MVS 74, 185
parameter lists 187, 200
parameter-passing conventions 74
processing sequence

in-storage control block 187
IRXEXEC parameter 187

processing sequence (MVS/ESA) 186
processing sequence (VSE/ESA) 200
registers set (MVS/ESA) 186
registers set (VSE/ESA) 199
types of 185, 199
using REXXL to link program 181
VSE 199

stub (VSE/ESA)
processing sequence

ARXEXEC parameter 200
in-storage control block 201

suppressing
code generation 30
compilation messages 33

symbols, maximum length 105
synonyms for module files 96
syntax checking 30
SYNTAX condition 97
syntax notation x
SYSCEXEC 22
SYSDUMP 22
SYSIEXEC 22
SYSIN 22
SYSPRINT 22
SYSPUNCH 22
System Product Interpreter 93
Systems Application Architecture

See SAA (Systems Application Architecture)
SYSTERM 22

T
TE (Trace End) command 99
technical restrictions 106
TERMINAL (TERM) compiler option 43
terminal, finding line width 104
terminating errors 12, 43
TESTHALT (TH) compiler option 43, 94, 95

optimization stopper 111
performance 113

TEXT file (CMS)
Assembler interface to, example 197
call from Assembler program

call type 195
extended parameter list 196

 Index 247

TEXT file (CMS) (continued)
call from Assembler program (continued)

registers 195
deriving name of 73
file identifier 39
general description 4, 5, 40
generating module files from 5
interface 195
linking to Assembler programs 77
PARSE SOURCE information for 96
producing 40
when to use 40

tokenized parameter list, argument string 196
TPA (transient program area) 77, 106
TRACE (TR) compiler option 44
TRACE built-in function 98
Trace End (TE) command 99
Trace Start (TS) command 99
traceback messages 42
tracing 98
trademarks and service marks 230
transient program area (TPA) 77, 106
TS (Trace Start) command 99

U
UNDERFLOW error 116

V
VALUE function 102, 111, 114
VALUE option of SIGNAL instruction 100
variables

keeping track of 110
 performance and programming considerations

of 113
setting, shown in cross-reference listing 63
value, maximum length 105

VERSION option of PARSE instruction 97
virtual storage, running above 16MB 6
VM Batch Facility 11, 54
VSE parameter list 201
VSE stub 199

W
warning messages 12
WORDPOS built-in function 103

X
X2B built-in function 103
X2D input string, maximum length 105
XA (extended architecture) mode 6
XREF (X) compiler option 44

248 SAA REXX/370 User’s Guide and Reference

Your comments, please ...

IBM Compiler and Library for SAA REXX/370
User’s Guide and Reference
Release 3

Publication No. SH19-8160-04

Use this form to tell us what you think about this manual. If you have found errors in it, or if you want to
express your opinion about it (such as organization, subject matter, appearance) or make suggestions for
improvement, this is the form to use.

To request additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized remarketer.
This form is provided for comments about the information in this manual and the way it is presented.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments
in any way it believes appropriate without incurring any obligation to you.

If you mail this form to us, be sure to print your name and address below if you would like a reply.

You can also send us your comments using:

� A fax machine. The number is: +49–7031–164892.

� Internet. The address is: swsdid@de.ibm.com.

� IBMLink. The address is: SDFVM1(SWSDID).

� IBM Mail Exchange. The address is: DEIBM3P3 at IBMMAIL.

Please include the title and publication number (as shown above) in your reply.

Name Address

Company or Organization

Phone No.

Cut or Fold
Along Line

Cut or Fold
Along Line

Your comments, please ...
SH19-8160-04 IBM

Fold and Tape Please do not staple Fold and Tape

PLACE
POSTAGE
STAMP
HERE

IBM Deutschland Entwicklung GmbH
Information Development, Dept. 0446
Schoenaicher Strasse 220
71032 Boeblingen
Germany

Fold and Tape Please do not staple Fold and Tape

SH19-8160-04

IBM

Program Number: 5695-013
 5695-014

Printed in Denmark by IBM Danmark A/S

SH19-816ð-ð4

