
DB2 Alphablox for UNIX and Windows v5.6

Relational Reporting Developer’s Guide
SC18-9364-00

2

Note: Before using this information and the product it supports, read the information in
“Notices” on page 9.

First edition (August 2004)

This edition applies to version 5, release 6, of IBM DB2 Alphablox for UNIX and Windows V5.6
(product number 5724-J16) and to all subsequent releases and modifications until otherwise
indicated in new editions.

Copyright © 1996 - 2004 Alphablox Corporation. All rights reserved.

© Copyright International Business Machines Corporation 1996, 2004. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

Contents
Relational Reporting Developer’s Guide

Notices . 9
Trademarks . 11

Preface . 13
About This Book . 14
Related Documents . 16
Online Documentation User Interface . 17
Document Conventions . 18

Icons . 18
Typography . 18

Contacting IBM . 19
Product Information . 19
Comments on the Documentation . 20

Chapter 1
Relational Reporting Overview . 21

Relational Reporting . 22
Localization . 23

Components of Relational Reporting . 23
Reports as an HTML Tables . 26
Report Editor User Interface . 26

Column Header Context Menu . 28
Group Header Context Menu . 28
Group Total Context Menu . 29

Rendering Reports to PDF . 29
Browser Support . 30

Chapter 2
Relational Reporting Concepts . 31

Concepts for Relational Reporting . 32
Componentized Blox Based on Standard Technologies 32
Report Rendering . 32
Report Pipeline . 33
Accessing Individual Blox . 34

4 Contents
Columns and Members . 34
Styling the Relational Reports . 34

Style Classes . 35
Style Classes in the Report . 37
Style Classes in the Report Style Dialog Box 41
Style Classes for ErrorBlox. 41

Relational Reporting Custom Tags . 43
Nested Tags . 44
Standalone Tags . 46
The Order of Syntax Evaluation . 46
Session Scope . 48

Expression Syntax . 48
Member Identifiers vs. Display Names . 49

Chapter 3
Relational Report Development . 51

Before You Begin . 52
General Development Tips . 52

General Report Development Steps . 54
Define the Application and Data Source . 54
Include the Reporting Blox Tag Library . 55
Use a stylesheet . 55
Use ErrorBlox for Better Error Reporting . 56
Add Blox Tags . 57

Creating Your First Relational Report . 57
The Simplest Report . 57

Task: Create a Simplest Report . 58
The Simplest Interactive Report . 58

Task: Create a Simplest Interactive Report. 59
Learning Resources . 59

Chapter 4
Accessing and Retrieving Data . 61

Using SQLDataBlox and DataSourceConnectionBlox . 62
Dynamically Setting the Query . 62

Using RDBResultSetDataBlox to Access RDBResultSet from DataBlox 63
Error Handling Against SQLDataBlox . 65

Chapter 5
Processing and Manipulating Data .67

Sorting Data . 68
Filtering Data . 70
Grouping Data . 71

Contents 5
Adding Calculated Columns .71
Calculations Involving Missing Data .73
Adding Calculated Members Before Grouping .73

Removing Members .74
Hiding and Showing Members .75
Hiding and Showing Missing Data .76

Chapter 6
Formatting the Report and Data . 79

Display Areas in a Rendered Report .80
Report Layout Formatting and Styling Summary Table 81

Styling vs. Formatting vs. Setting Text .83
Processing Sequence for StyleBlox, FormatBlox, and TextBlox 84

StyleBlox vs. CSS Styles .85
Formatting Data .87
Wrapping HTML Code Around Data Values .88

Adding HTML code to Data Returned from a Query .89
Styling Data Displayed in Report .90
Specifying and Styling Column Headers .93

Styling Column Headers .95
Specifying Column Width, Color and Style .96
Special Substitution Variables for Displaying Member Names and Values 97

The <member/> Substitution Variable .97
The <value/> Substitution Variable .98
Using the <member/> and <value/> Variables .99

Setting or Turning Off Cell Banding .100
Setting the Report Display Area .101
Adding Background Images .102

Chapter 7
Grouping Data . 103

Overview of Break Groups and Break Group Levels .104
Break Group Aggregations .105

Specifying and Styling Break Group Headers, Footers, and Totals107
Calculating Group-based Summary Columns .110
Adding Report Title and Column Summary (Aggregations) .115
Using MembersBlox in Conjunction with GroupBlox .115

Chapter 8
Saving and Exporting Data . 117

Issues with Saving Interactive Reports Directly from Browser118
Saving as Static HTML to File System .119
Bookmarking Reports and Saving States .121
DB2 Alphablox
Relational Reporting Developer’s Guide

6 Contents
Loading Bookmarks . 123
Saving as PDF . 125

Saving Reports as PDF Files . 125
Rendering a Report Directly in PDF . 126

Saving to Excel or Other Applications . 127
Exporting to Excel . 127
Sending a Report Directly to Excel . 130

Chapter 9
Styling the Report Editor User Interface . 131

Style Classes in the Report Editor User Interface . 132
Overriding the Style Classes . 135
User Help for Using the Report Editor . 135

Chapter 10
Advanced Topics . 137

Managing Session Scope . 138
The Relational Reporting API . 139

Creating an Interactive Report using the API . 140
Dynamically Changing the Query . 142

Example 1: Directly access the SQLDataBlox and resets its query 143
Example 2: Dynamically setting queries without refreshing the whole page using
the global refreshReport() JavaScript method . 144

Accessing Data Rows and Cell Values in Rendered Report . 147

Chapter 11
Development and Troubleshooting Tips . 149

General Tips and Development Steps . 150
Design Considerations . 150
Providing User Help . 151

Localization of Help . 151
Impact of Style Setting on Performance . 152
Common Reporting Blox Tag Errors . 153

Forgetting to include the taglib directive for Reporting Blox Tag Library . . 153
Forgetting to use the correct prefix for Relational Reporting Blox 153
Incorrect case of a tag or tag attribute . 153
Forgetting to include the stylesheet . 154
Refreshed page doesn’t reflect code modification . 154
Refer to member or column names incorrectly . 154

Troubleshooting Tips . 155
Error Handling Using ErrorBlox . 156

Contents 7
Chapter 12
Relational Reporting Blox Tag Reference . 159

Using Blox Tags .160
CalculateBlox .161

The <bloxreport:calculate> Tag .162
DataSourceConnectionBlox .163

The <bloxreport:dataSourceConnection> Tag .163
ErrorBlox .165

The <bloxreport:error> Tag .165
FilterBlox .166

The <bloxreport:filter> Tag .166
FormatBlox .168

The <bloxreport:format> Tag .169
GroupBlox .172

The <bloxreport:group> Tag .173
MembersBlox .176

The <bloxreport:members> Tag .176
OrderBlox .178

The <bloxreport:order> Tag .178
PdfBlox .180

The <bloxreport:pdf> Tag .180
PersistenceBlox .182

The <bloxreport:persistence> Tag .182
RDBResultSetDataBlox .184

The <bloxreport:rdbResultSetData> Tag .184
ReportBlox .186

The <bloxreport:report> Tag .186
SortBlox .189

The <bloxreport:sort> Tag .189
SQLDataBlox .191

The <bloxreport:sqlData> Tag .191
StyleBlox .193

<bloxreport:style> Tag and Its Sub Tags .194
TextBlox .197

Nested Tags Inside <bloxreport:text> .198
The <member/> and <value/> Substitution Variables200

Appendix A
Relational Reporting Tags for Copy-and-Paste .205

All Tags Nested Within <bloxreport:report> .205
All Tag Attributes for PdfBlox .207
DB2 Alphablox
Relational Reporting Developer’s Guide

8 Contents
Appendix B
Deprecated Tags for Relational Reporting . 209

Deprecated Tags and Attributes in Release 5.5 . 210

Index . 211

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document
in other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY
10504-1785 U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation, Licensing, 2-31 Roppongi 3-chome,
Minato-ku, Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country
where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION
"AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement
may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

10
Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation, J46A/G4, 555 Bailey Avenue, San Jose, CA 95141-1003 U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Program License Agreement or any equivalent
agreement between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-
level systems and there is no guarantee that these measurements will be the same
on generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual
business enterprise is entirely coincidental.

Notices

Trademarks 11
This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM's application programming interfaces.

Trademarks
Alphablox, InLine Analytics, Alphablox Analysis Server, Blox, SpreadsheetBlox,
and theAlphablox logo are trademarks or registered trademarks of Alphablox
Corporation.

IBM, DB2, DB2 Universal Database, WebSphere, and DB2 OLAP Server are
trademarks of International Business Machines Corporation in the United States,
other countries, or both.

Intel and Pentium are trademarks of Intel Corporation in the United States, other
countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in
the United States, other countries, or both.

Other company, product or service names may be trademarks or service marks of
others.
DB2 Alphablox
Relational Reporting Developer’s Guide

12 Trademarks

Notices

Preface

This Preface describes the intended audience, organization, and conventions used
in the Relational Reporting Developer’s Guide. It also contains information about
the DB2 Alphablox documentation set and information about how to contact IBM
for technical problems or comments on the documentation.

Contents

• “About This Book” on page 14

• “Related Documents” on page 16

• “Online Documentation User Interface” on page 17

• “Document Conventions” on page 18

• “Contacting IBM” on page 19

14 About This Book
About This Book
The Relational Reporting Developer’s Guide contains information about creating
reports from relational data sources. It includes conceptual information on the
report development approach, procedures for performing report creation related
tasks, and reference information on Relational Reporting Blox .

The Relational Reporting Developer’s Guide is primarily designed for the people
who develop applications and reports using DB2 Alphablox. The book is
organized into the following chapters and appendix:

• Chapter 1, “Relational Reporting Overview” on page 21

This chapter provides an overview of the features and components of Relational
Reporting.

• Chapter 2, “Relational Reporting Concepts” on page 31

This chapter describes the major concepts, terms, and expression syntax
associated with Relational Reporting.

• Chapter 3, “Relational Report Development” on page 51

This chapter describes the general relational report assembly process as well as
specific tasks regarding report generation, formatting, and distribution.

• Chapter 4, “Accessing and Retrieving Data” on page 61

This chapter discusses different ways to retrieve relational data into a
ReportBlox.

• Chapter 5, “Processing and Manipulating Data” on page 67

This chapter discusses various common data processing and manipulation tasks
such as sorting and filtering data, hiding, removing, and reordering columns, and
adding calculated columns.

• Chapter 6, “Formatting the Report and Data” on page 79

This chapter provides information on how to format the overall report and the
data in the report for desired look and feel.

• Chapter 7, “Grouping Data” on page 103

This chapter discusses how to add break groups to your report, format the various
group headings, footers, and break group totals based on the break group levels.
In addition, information on how to add a group-based calculated column that
provides summary data per group—such as ranking, percent of totals, running
totals, and running count—is also provided.

Preface

About This Book 15
• Chapter 8, “Saving and Exporting Data” on page 117

This chapter describes the general relational report assembly process as well as
specific tasks regarding report generation, formatting, and distribution.

• Chapter 9, “Styling the Report Editor User Interface” on page 131

This chapter describes how you can customize the interactive Report Editor
user interface for your reports.

• Chapter 10, “Advanced Topics” on page 137

This chapter covers advanced topics such as managing session scope and
using Alphablox Analytics Relational Reporting API.

• Chapter 11, “Development and Troubleshooting Tips” on page 149

This chapter discusses general design considerations and troubleshooting tips
helpful to your relational report development tasks.

• Chapter 12, “Relational Reporting Blox Tag Reference” on page 159

This chapter contains a detailed listing of custom JSP tags for Blox associated
with Relational Reporting. Associated syntax, usage, tag attributes, and a code
sample are provided.

• Appendix A, “Relational Reporting Tags for Copy-and-Paste” on page 205

This appendix provides a copy-and-paste template for all tags in the Reporting
Blox Tag Library.

• Appendix B, “Deprecated Tags for Relational Reporting” on page 209

This appendix lists the deprecated tags for Relational Reporting.
DB2 Alphablox
Relational Reporting Developer’s Guide

16 Related Documents
Related Documents
The DB2 Alphablox documentation set includes books and online help. The
books are all available in HTML, PDF, and printed format. Context sensitive help
is available for all parts of the Alphablox Analytics home page as well as within
Alphablox applications. The DB2 Alphablox documentation set includes the
following books:

Javadoc is available for the server-side API, ReportBlox API, and FastForward
API in the following directory:

<alphablox_dir>/system/documentation/javadoc/
{blox,report,fastforward}

where <alphablox_dir> is the directory in which DB2 Alphablox is installed.

Title Description

Administrator’s Guide Contains information about setting up and managing
DB2 Alphablox and about DB2 Alphablox in a J2EE
environment.

Developer’s Guide for
the DHTML Client

Provides guidance on designing, developing, and
deploying analytical applications using the DHTML
client. If you are new to DB2 Alphablox or are
developing new applications, it is recommended that
you start with this book.

Developer’s Reference
for the DHTML Client

A complete API reference for developing applications
using the DHTML client; contains information on each
Blox, including its JSP syntax, properties, methods,
and objects.

Relational Reporting
Developer’s Guide

Contains information about setting up ReportBlox to
build a report from relational data.

Cube Server
Administrator’s Guide

Contains information about setting up Alphablox
cubes. Alphablox cubes allow you to present a
multidimensional view of data stored in a relational
data warehouse or data mart database.

Installation Guide Contains information on system requirements,
installing and configuring Alphablox Analytics,
installing sample data, and migrating application from
previous versions.

Preface

Online Documentation User Interface 17
Online Documentation User Interface
The DB2 Alphablox documentation is also available online in HTML and PDF
formats. To open the Online Documentation, select the Online Documentation
link on the Help menu or from any help page on the Alphablox Analytics home
page.

When you select the Online Documentation, it opens in a frameset. The right
frame displays documentation pages; the left frame contains the following
navigation tabs:

Tab Description

Contents The Contents tab presents a tree view of all the online books in
the documentation set. Click on a book icon beside a heading to
expand or collapse the tree, displaying or hiding the topics within
that heading. To view a topic, click on its hyperlinked heading.

To access a page containing links to all of the PDF versions of the
documentation, click the PDF Documentation book icon and then
click the PDF Documentation hyperlink.

Index The Index tab presents an alphabetical list of all indexed words
for every document in the DB2 Alphablox documentation set. To
view a topic, click on the indexed item. If multiple pages are
available for a topic, click the link with the page title for the first
topic, click the link with the number 2 for the second topic, and
so on.

Search The Search tab provides a text search.

The search feature provides a simple search on words entered.
You can search a single book instead of the entire documentation
set by selecting a book from the dropdown list. The search
supports the use of asterisks (*) for wildcard searches, but does
not use “near” logic or perform partial word search. Entering
multiple words implies an and between the words, returning pages
that contain all the words entered. The search is not case
sensitive.

To enter a search, click the Search tab, type one or more words in
the search box, and press the Search button. The search presents a
list of HTML pages containing the search word(s).

To view a page, click on its hyperlinked heading. When the page
appears in the right frame, use its hyperlinks or the browser’s
Find command to locate the word(s) within the page.
DB2 Alphablox
Relational Reporting Developer’s Guide

18 Document Conventions
Document Conventions
Icons and typography call attention to or elaborate on areas of interest throughout
the DB2 Alphablox documentation set.

Icons

The icons used in the documentation are as follows:

Typography

The typography used in the documentation is as follows:

Icons Description

Identifies information helpful for the current task.

Identifies conceptual information on a particular topic or suggestions for
usage.

Identifies important information that the audience should know before
proceeding with a task.

Convention Description

Bold Caution statements, labels, headings, and table headers
appear in a bold font.

Italics Italics indicate an emphasized word or phrase as well as
book titles.

Monospace type Code examples, filenames, object names, property names,
and method names appear monospace type.

“Quotation marks” The proper syntax for Blox properties and methods or
queries may require single or double quotation marks. In
addition, quotation marks surround a cross-reference to
another topic.

Preface

Contacting IBM 19
Contacting IBM
If you have a technical problem, please review and carry out the actions
suggested by the product documentation before contacting DB2 Alphablox
Customer Support. This guide suggests information that you can gather to help
DB2 Alphablox Customer Support to serve you better.

For information or to order any products, contact an IBM representative at a local
branch office or contact any authorized IBM software remarketer. If you live in
the U.S.A., you can call one of the following numbers:

• 1-800-IBM-SERV for customer support

• 1-888-426-4343 to learn about available service options

Product Information

If you live in the U.S.A., then you can call one of the following numbers:

• 1-800-IBM-CALL (1-800-426-2255) or 1-800-3IBM-OS2 (1-800-342-6672)
to order products or get general information.

• 1-800-879-2755 to order publications.

http://www.ibm.com/software/data/db2/alphablox

Provides links to information about DB2 Alphablox.

http://www.ibm.com/software/data/db2/udb

The DB2 Universal Database Web pages provide current information about
news, product descriptions, education schedules, and more.

http://www.elink.ibmlink.ibm.com/

Click Publications to open the International Publications ordering Web site that
provides information about how to order books.

http://www.ibm.com/education/certify/

The Professional Certification Program from the IBM Web site provides
certification test information for a variety of IBM products.

Note: In some countries, IBM-authorized dealers should contact their dealer
support structure instead of the IBM Support Center.
DB2 Alphablox
Relational Reporting Developer’s Guide

http://www.ibm.com/software/data/db2/alphablox
http://www.ibm.com/software/data/db2/udb
http://www.elink.ibmlink.ibm.com/
http://www.ibm.com/education/certify/

20 Contacting IBM
Comments on the Documentation

Your feedback helps IBM to provide quality information. Please send any
comments that you have about this book or other DB2 Alphablox documentation.
You can use any of the following methods to provide comments:

• Send your comments using the online readers' comment form at
www.ibm.com/software/data/rcf.

• Send your comments by electronic mail (e-mail) to comments@us.ibm.com.
Be sure to include the name of the product, the version number of the
product, and the name and part number of the book (if applicable). If you are
commenting on specific text, please include the location of the text (for
example, a title, a table number, or a page number).

Preface

mailto: comments@us.ibm.com

1
Relational Reporting Overview

This chapter provides an overview of the features, functionality, components, and
browser support of Relational Reporting.

Contents

• “Relational Reporting” on page 22

• “Components of Relational Reporting” on page 23

• “Browser Support” on page 30

22 Relational Reporting
Relational Reporting
Relational Reporting supports generation of dynamic, interactive reports from
relational data sources. You can extract data from any relational data sources
defined to Alphablox Analytics into a result set and then perform data formatting,
calculations, and report editing tasks. The reports are rendered in Dynamic
HTML and can be saved in PDF format.

A key feature of Relational Reporting is the Report Editor user interface that
gives your users the power to analyze data and create reports on the fly based on
their needs. When a report is rendered in interactive mode, a set of interactive
context menus are turned on. When the users move their mouse over the “hot
spots” in the report, these menus pop up and users can hide columns, reorder
columns, sort the data, add break groups, specify group header and footer text,
and change the look and feel of the report via point-and-click.

A set of Relational Reporting Blox is available to provide you the ability to:

• Connect to a relational data source defined via Alphablox Analytics home
page
CHAPTER 1
Relational Reporting Overview

Components of Relational Reporting 23
• Extract data from the data source using SQL queries

• Add a member based on some calculation

• Sort and filter the data

• Include or exclude members

• Arrange the column layout

• Add break groups

• Specify formats for different data types and missing values

• Add banding

• Specify the footer and header texts and types of aggregation (sum, average,
min, max, count, and none)

• Specify the colors and fonts for various elements in the report

• Enable the interactive context menus for users

• Bookmark a report for later retrieval

• Send a report to PDF

• Save a report in PDF or HTML

Localization

Relational Reporting supports localization. Reports will automatically be
displayed in the correct language based on the locale of the client.

 In order for the report to display correctly in languages other than English,
you should specify to use the UTF-8 character set using the JSP page directive’s
contentType attribute. See “General Development Tips” on page 52 for more
information.

Components of Relational Reporting
At the heart of Relational Reporting is ReportBlox. A set of other Blox—
SortBlox, FilterBlox, MembersBlox, OrderBlox, GroupBlox, CalculateBlox,
StyleBlox, FormatBlox, SQLDataBlox, DataSourceConnectionBlox, ErrorBlox,
and PdfBlox—work with ReportBlox to handle discrete data extraction,
manipulation, report formatting, and report rendering functions.
DB2 Alphablox
Relational Reporting Developer’s Guide

24 Components of Relational Reporting
All Relational Reporting Blox are Java beans. Each Blox provides a very specific
set of functionality as its name suggests. One handles JDBC connectivity to a
relational data source; another does nothing but sort the data; and another,
nothing but calculation. This clear division of functionality gives you the
flexibility to add the appropriate Blox to perform specific tasks only when they
are needed. It also gives you better control of the desired outcomes.

To create a relational report with these Blox, you use the provided custom tags in
your JSP pages. The order you put these Blox together dictates how these Blox
are connected and how the data result set gets transformed. For example, in the
following diagram, a calculated member is added based on some calculation, and
then some filtering operation is performed. This filtering operation may be based
on the values of the calculated member.

The following is a list of all Blox that support creation of relational reports:

Blox Description

ReportBlox Generates a report based on the data result set
produced by SQLDataBlox. The report can be
rendered either in a static HTML table or a
table in Dynamic HTML (DHTML) with
interactive report editing functionality.

SQLDataBlox Executes a SQL query against a data source
and stores the result in a result set.

DataSourceConnectionBlox Represents a connection to a relational data
source defined to Alphablox Analytics.

<bloxreport:report>

</bloxreport:report>

<bloxreport:filter>

</bloxreport:filter>

...

<bloxreport:calculate>

...

</bloxreport:calculate>

...
CHAPTER 1
Relational Reporting Overview

Components of Relational Reporting 25
RDBResultSetDataBlox Represents an RDBResultSet object derived
from a DataBlox.

CalculateBlox Lets you add a calculated member on the
Column dimension based on a specified
calculation expression.

SortBlox Lets you sort the data based on specified
members.

FilterBlox Enables filtering of numeric data based on the
criterion you specify.

GroupBlox Supports grouping of data. By adding a
GroupBlox to your ReportBlox, you can
create break groups in your report and specify
the type of aggregation—sum, average, count,
max, min, or none—at the end of each break
group.

MembersBlox Lets you specify members to be included or
excluded.

OrderBlox Lets you specify the order from left to right in
which the members are returned to the result
set

FormatBlox Lets you specify the display format for
numeric and date data types. It also lets you
define the text to display for missing data.

StyleBlox Lets you set styles such as the fonts, colors,
and positions of various elements in the
report. You can set style for missing or
negative values, and styles for individual
columns.

TextBlox Lets you specify the text to display for group
headers, footers, totals, or column headers.

PdfBlox Lets you send a relational report to PDF with
the layout you specify.

PersistenceBlox Lets you save the state of a report for later
retrieval.

Blox Description
DB2 Alphablox
Relational Reporting Developer’s Guide

26 Components of Relational Reporting
Reports as an HTML Tables

Relational reports are rendered as Dynamic HTML tables. Each element in the
tables, such as the columns, the rows, break group headers, and break group
footers, has a specific cascading style class associated with it. You can customize
the font colors, font families, font sizes, font weight, text alignment, and
background colors for each element as you normally would with HTML and
Cascading Style Sheet (CSS).

Relational Reporting offers an interactive Report Editor user interface for your
users to edit the report. Associated with ReportBlox is this interactive property
that determines if the report should be rendered in static HTML or dynamic
HTML. When you set the interactive attribute in the <bloxreport:report> tag
to true, the context menus will be activated when users mouse over “hot spots” in
the report where they can make changes.

<bloxreport:report interactive = "true">
...

</bloxreport:report>

This Report Editor is described next.

Report Editor User Interface

When a relational report is set to render in interactive mode, context menus pop
up when users mouse over certain areas in the report, allowing the users to
dynamically and interactively edit the report. The “hot spots” in a report are:

• column headers
• break group headers
• break group totals

The context menus popped up corresponding to these hot spots are Column
Header Context Menu, Group Header Context Menu, and Group Total Context
Menu.

ErrorBlox Catches the exception thrown and prints the
details in an HTML table with better handling
and display of nested exceptions.

Blox Description
CHAPTER 1
Relational Reporting Overview

Components of Relational Reporting 27
These menus provide the users with dynamic report editing functionality such as
sorting, adding break groups, hide/show columns, specifying break group
aggregation type, and edit column names and break group totals text. The Style...
menu option brings up the Report Style dialog box that allows the users to set text
font face, size, style, color, and alignment for various elements in the report. All
these context menus and the Report Style dialog box are implemented in
DHTML.You can easily customize the appearances of these menus and dialog
box by editing or supplying your own stylesheet that specifies the style for each
of the style class defined.

column headers

group totals

group headers
DB2 Alphablox
Relational Reporting Developer’s Guide

28 Components of Relational Reporting
Column Header Context Menu

The Column Header Context Menu offers the following menu items:

• Sort
• Hide
• Show All
• Rename
• Group
• Clear groups
• Style...

Via these menu items, users can dynamically sort on a column, hide a column,
show all columns (to bring back columns that are hidden via the Hide menu item),
rename the column heading, group the report based on data values in a column,
clear all break groups, and style the report.

Group Header Context Menu

The Group Header Context Menu offers the following menu items:

• Clear Group
• Style...
CHAPTER 1
Relational Reporting Overview

Components of Relational Reporting 29
The Clear Group option allows the users to clear just that break group rather than
all break groups.

Group Total Context Menu

The Group Total Context Menu offers the following menu items:

• Sum
• Count
• Average
• Min
• Max
• None
• Edit Text
• Style...

The default aggregation type for columns containing numeric data is sum. The
default aggregation type for columns containing strings is count. When a user
uses the Column Header Context Menu to dynamically add a break group, these
will be the default aggregation types applied unless you have specified otherwise
in your JSP file. The detail on adding break groups and specifying aggregation
type is described in “Specifying and Styling Break Group Headers, Footers, and
Totals” on page 107.

Rendering Reports to PDF

You can render a report or allow your users to save edited reports to PDF by using
PdfBlox. You can specify whether the PDF rendering should include a header or a
footer and set the margins and orientation.
DB2 Alphablox
Relational Reporting Developer’s Guide

30 Browser Support
Browser Support
Relational reports can be rendered in non-interactive HTML table or interactive
DHTML table. Browsers supported for non-interactive mode are:

• IE 5.5 and above

• Netscape v4.7 and above

Browsers supported for the interactive mode are:

• IE 5.5 and above

When users try to access an interactive report using Netscape browsers, an alert
window will pop up, informing them that Internet Explorer is required for
interactive reports.
CHAPTER 1
Relational Reporting Overview

2
Relational Reporting Concepts

This section discusses the key concepts in Relational Reporting that are essential
to the understanding of the overall design and to effective development of
relational reports.

Contents

• “Concepts for Relational Reporting” on page 32

• “Styling the Relational Reports” on page 34

• “Relational Reporting Custom Tags” on page 43

• “Expression Syntax” on page 48

32 Concepts for Relational Reporting
Concepts for Relational Reporting
Several key concepts essential to the understanding of the overall design and to
effective development of relational reports are discussed in the following
sections:

• “Componentized Blox Based on Standard Technologies” on page 32

• “Report Rendering” on page 32

• “Report Pipeline” on page 33

• “Accessing Individual Blox” on page 34

• “Columns and Members” on page 34

Componentized Blox Based on Standard Technologies

Blox supporting the Relational Reporting feature are functionally decoupled.
Each of them does a distinctive set of data transformation, access, or presentation
tasks. Each takes the result set produced by the Blox before them and produces a
result set that can be sent to ReportBlox for presentation or passed on to other
Blox for further data transformation. Because these Blox are componentized and
functionally decoupled, you can flexibly connect them together to produce your
desired result. When you add Relational Reporting Blox to your JSP page, the
order in which they are added dictates how the result set is transformed along the
way.

These Relational Reporting Blox adhere to standard Web technologies, including
JavaBeans, JavaScript 1.2,and Cascading Style Sheet 2. This means you can use
the standard Web development technologies in your JSP files with Relational
Reporting Blox to produce desired outcome and to extend their functionality.

 Even though you can have both a PresentBlox and a ReportBlox in the same
JSP page, since PresentBlox and all the other supporting user interface Blox
(GridBlox, ChartBlox, PageBlox, DataLayoutBlox, and ToolbarBlox) do not
process and pass along the result set in the same way, you cannot integrate
Relational Reporting Blox into a user interface Blox or vice versa.

Report Rendering

Relational reports are rendered into HTML tables. When the interactive mode is
set to true, the report is rendered in DHTML. You do not have the options to
render reports in different rendering modes (such as DHTML or Java). Instead,
you can specify whether the reports should be rendered in interactive mode or
non-interactive mode. This is done through setting the interactive attribute of
the <bloxreport:report> tag. When the interactive attribute is set to true, users
are given the power to format the report based on their needs and wants.
CHAPTER 2
Relational Reporting Concepts

Concepts for Relational Reporting 33
Beside the two rendering modes, another option in which a report that reflects
real time data can be presented to users is in PDF. You can generate the report on
the fly and directly send the report to PDF using PdfBlox.

 Unlike PresentBlox and all the other supporting user interface Blox, you
cannot set the visibility of a relational report to false nor can you use the
<blox:display> tag to reference a ReportBlox.

Report Pipeline

The order you put these Relational Reporting Blox together dictates how these
Blox are connected and how the data result set gets transformed through this
pipeline. Many Blox in Relational Reporting act as both data consumers and data
producers. They consume the data returned from the previous Blox, transform it,
and produce data for the subsequent Blox, with the ultimate consumer being the
ReportBlox.

Because each Blox handles very specific tasks and the order in which they are
connected makes a difference, you can manipulate the Blox in various ways to
arrive at your desired report. However, this can also result in incorrect data if you
are not careful. For instance, sorting the data before or after grouping will
produce different results. Adding a calculated column before or after grouping the
data also result in different data. These will be discussed in the chapters where the
specific tasks are described.

Not all Blox in Relational Reporting are data transformers. Some of the Blox
handle data formats, report styling, display text specifications, PDF rendering, or
error handling. The order these Blox are specified has no impact on the data
transformation process and they are either processed separately (such as
ErrorBlox) or after the data is completed processed. The following table shows
the transformers and non-transformers:

 DataSourceConnectionBlox, JDBCConnectionBlox, RDBResultSetDataBlox
and SQLDataBlox are not transformers, but they produce data for the data
transformers.

Data Transformers Non Data Transformers

CalculateBlox
FilterBlox
GroupBlox
MembersBlox
OrderBlox
SortBlox

ErrorBlox
FormatBlox
StyleBlox
TextBlox
PersistenceBlox
PdfBlox
DB2 Alphablox
Relational Reporting Developer’s Guide

34 Styling the Relational Reports
Accessing Individual Blox

A key difference between Relational Reporting Blox and PresentBlox and the
other user interface Blox is you can specify an id for Blox nested within
ReportBlox. With PresentBlox, GridBlox, and ChartBlox, you can only specify
the id tag attribute for the outmost Blox; nested Blox cannot have an id. With
Relational Reporting Blox, while the <bloxreport:report> tag is the outmost tag,
Blox added as a nested tag can still have a unique id that you can script to
directly. For example,

<bloxreport:report id="myReport">
<bloxreport:sqlData id="mySQLData" ...>

<bloxreport:dataSourceConnection ... />
</bloxreport:sqlData>

...
</bloxreport:report>

You can then directly script against mySQLData to dynamically change the query.

Columns and Members

Even though Relational Reporting lets you extract data from a relational data
source and transform it into reports that are typically in rows and columns, you
will find that often times you need to specify the “members” rather than the
“columns” in various data transformation operations. “Members” are used to refer
to the data fields or data members in the result set. “Columns” are used to refer to
the table columns in the rendered report. Generally speaking, when you are
styling your report, you are dealing with “columns.” When you are performing
data transformation tasks, you are dealing with “members.” A member may be in
a different column position once your users move or re-order the columns through
the Report Editor user interface. A member may not be on a column if it becomes
a break group.

Styling the Relational Reports
Various elements in the rendered report have associated style classes. The desired
appearances of your reports can be customized by specifying the style to use for
each of the classes.

Two stylesheets report.css and coleman.css are provided that you can use out
of the box. These stylesheets reside at:

<alphablox_dir>/system/AlphabloxPlatform/AlphabloxServer/report/

where <alphablox_dir> is the directory into which Alphablox Analytics is
installed.
CHAPTER 2
Relational Reporting Concepts

Styling the Relational Reports 35
In this directory, you will actually find several .css files: report.css,
coleman.css, styles.css, dialog.css, and error.css.

• styles.css: contains the complete definition of style classes used to display
a report.

• dialog.css: contains the definition for styles used by the Report Style dialog
box in the Report Editor user interface.

• error.css: contains definition of styles used by ErrorBlox for error
reporting.

The report.css file imports the above three style sheets. In your JSP pages, add

<link rel="stylesheet" href="/AlphabloxServer/report/report.css" />

to the <head> section to use this stylesheet. Since the data is rendered as an
HTML table, your report can be displayed even if you do not define the styles
either via an external stylesheet or in-line styles in the JSP page. It is simply
displayed as a plain HTML table. When the report is rendered in interactive
mode, the stylesheets have to exist in order for the context menus and Report
Style dialog box to display and work properly.

The coleman.css stylesheet mimics the Coleman theme used to render
PresentBlox and GridBlox. It actually imports report.css and redefines only
some of the style classes.

Style Classes

The classes used in the generated reports include the following:

For the overall report:
� .report
� .loadingmessage

For break groups:
� .groupheader1
� .groupheader2
� .groupheaderN
� .groupfooter1
� .groupfooter2
� .groupfooterN
� .grouptotal1
� .grouptotal2
� .grouptotalN

For columns and data style:
� .column
� .columnhover
� .selected
� .data
� .banding
DB2 Alphablox
Relational Reporting Developer’s Guide

36 Styling the Relational Reports
For the interactive context menus:
� .menu
� .choice
� .choicehover
� .separator
� .selected

For the Report Style dialog box:
� .dialog
� .dialogtitle
� .dialogbody
� .dialoggroup
� .dialoggrouptitle
� .dialogradiogroup
� .dialogbutton
� .dialogbuttongroup
CHAPTER 2
Relational Reporting Concepts

Styling the Relational Reports 37
Style Classes in the Report

The following two images show the style class each report element uses:

With each break group added, the N in the classes groupheaderN, groupfooterN,
and grouptotalN increases by 1.

While the aggregation data at the end of each break group is rendered using the
grouptotalN style classes, you can add footer text at end of each break group that
uses the groupfooterN style classes.

groupheader1
groupheader2

menu
choice

column

choicehover

separator data
banding grouptotal1

grouptotal2

selected
DB2 Alphablox
Relational Reporting Developer’s Guide

38 Styling the Relational Reports
You can create your own stylesheet that defines how you want each of the classes
to look and specify in your JSP file where to find the stylesheet. For example, the
following is a sample stylesheet that demonstrates how you can define the fonts
and colors to use for each class.

.report {
background-color: white;
color: black;
font-family :Arial, sans-serif;
border: solid 1 black;
padding: 5;
margin : 5;
width: 0;

}

/* for display of "Report Loading..." message */
.loadingmessage {

white-space:nowrap;
}

/* break groups */
.groupheader1 {

background-color: #99CCFF;
color: black;
font-size: 135%;

The Sales column
is moved by
dragging the moving
the column to a
new column position.
The font, style, and
color are specified in
the columndragged
style class.

Break group footers,
using the
groupfooterN
style classes.
CHAPTER 2
Relational Reporting Concepts

Styling the Relational Reports 39
text-align: center;
border: solid white 1;

}

.grouptotal1 {
background-color: white;
color: black;
font-size: 120%;
text-align: right;
padding : 5;
border-top: double 3 black;
border-bottom: double 3 black;

}

.groupfooter1 {
display : none;

}

.groupheader2 {
background-color: #6699CC;
color: black;
font-size: 120%;
text-align: left;
padding : 2 5;
border-bottom: solid lightgrey 1;

}

.grouptotal2 {
background-color: white;
color: black;
font-size: 100%;
text-align: right;
padding 2;
border-top: solid black thin;

}

.groupfooter2 {
display : none;

}

.column {
color: black;
font-size: 90%;
font-weight: bold;
padding : 2 3;
text-align: left;
border: solid white 1;

}

.columndragged {
font-size: 90%;
font-weight: bold;
padding : 2 3;
color: white;
DB2 Alphablox
Relational Reporting Developer’s Guide

40 Styling the Relational Reports
text-align: left;
border: solid white 1;
position: absolute;
display: none;
background-color: darkgray;
cursor: hand;

}

.data {
font-size: 90%;
text-align: right;
padding-left:20;

}

.banding {
background-color: #CCCCFF;

}

/* Context Menus */
.menu {

position: absolute;
background-color: #E3E3E3;

 color: black;
font-size: 90%;
font-family: sans-serif;
text-align: left;
padding: 1;
margin: 1;
cursor: default;
border: solid white 1;

}

.choice {
padding : 1 5;
white-space: nowrap;
width: 100%;

}

.choicehover {
background-color: #336699;
color: white;
padding : 1 5;
white-space: nowrap;

}

.separator {
padding: 1;
font-size: 0;
border-top : solid 1 black;

}

.selected {
cursor: hand;
border-color: darkgray;
CHAPTER 2
Relational Reporting Concepts

Styling the Relational Reports 41
color: black;
background-color: lightgrey;

}

Style Classes in the Report Style Dialog Box

The Report Style dialog box is rendered in DHTML. By viewing the HTML
source from the browser, you will notice how the dialog window is rendered
using <DIV> and tags and style classes.

Style Classes for ErrorBlox

ErrorBlox displays uncaught errors in a collapsible list using an HTML table.
When an error is expanded, detailed error listing (the stack trace) is displayed.
For the table and the collapsible list to display appropriately, in your error
handling page containing an ErrorBlox, you should also use the error.css
stylesheet provided.

<!--Import the Reporting Blox Tag Library-->
<%@ taglib uri="bloxreporttld" prefix="bloxreport" %>
<%@ page isErrorPage="true" %>

dialogtitle

dialogbody

dialoggroup

dialogradiogroup

dialogbuttongroup

dialogbutton
DB2 Alphablox
Relational Reporting Developer’s Guide

42 Styling the Relational Reports
<html>
<head>

<title>Error</title>
<link rel="stylesheet"

href="/AlphabloxServer/report/error.css"
type="text/css" />

</head>

<body>
<bloxreport:error id="errorBlox" />

</body>

</html>

The style classes used to display the error list is shown as follows:

 This expand-and-collapse behavior is not supported in Netscape browsers.

.errorbox

.errorimage

.errortitlebar

.errormessage

.errornode

.errordetail

.errorbutton

td.errorstacktrace
CHAPTER 2
Relational Reporting Concepts

Relational Reporting Custom Tags 43
Relational Reporting Custom Tags
Custom JSP tags are available for connecting these Relational Reporting Blox.
These tags are packaged in the bloxreport.tld file. To use these tags, import the
Reporting Blox Tag Library as follows:

<%@ taglib uri="bloxreporttld" prefix="bloxreport" %>

Each Relational Reporting Blox has a corresponding JSP tag with a set of
attributes. The <bloxreport:report> tag is the “wrapper” tag that nest the other
tags, as shown in the following example. You create a relational report by
generating a data result set from a relational data source and then transform the
result set into the format you want through some calculation, sorting, filtering, re-
ording, data formatting, and report styling.

<bloxreport:report>
<%--Generating a data result set from the data source
and the SQL query specified--%>
<bloxreport:sqlData ...>

<bloxreport:dataSourceConnection ... />
</bloxreport:sqlData>

<%--Performing data transformation--%>
<bloxreport:calculate .../>
<bloxreport:sort .../>
<bloxreport:filter .../>
<bloxreport:group .../>
<bloxreport:order .../>

<%--Specifying the text to display for group headers, group
footers, group totals, column headers, and data cells--%>

<bloxreport:text>
<bloxreport:data .../>
<bloxreport:columnHeader .../>
<bloxreport:groupHeader .../>
<bloxreport:groupFooter .../>
<bloxreport:groupTotal .../>

</bloxreport:text>

<%--Formatting the data--%>
<bloxreport:format>

<bloxreport:numeric .../>
<bloxreport:date .../>
<bloxreport:missing .../>
<bloxreport:html .../>
<bloxreport:aggregation .../>

</bloxreport:format>

<%--Styling the report using CSS style strings--%>
<bloxreport:style>

<bloxreport:text ... />
<bloxreport:numeric ... />
DB2 Alphablox
Relational Reporting Developer’s Guide

44 Relational Reporting Custom Tags
<bloxreport:date ... />
<bloxreport:banding ... />
<bloxreport:missing ... />
<bloxreport:negative ... />
<bloxreport:column ... />
<bloxreport:data .../>
<bloxreport:columnHeader .../>
<bloxreport:groupHeader .../>
<bloxreport:groupFooter .../>
<bloxreport:groupTotal .../>

</bloxreport:style>
</bloxreport:report>

The only tag that can wrap outside the <bloxreport:report> tag is the
<bloxreport:pdf> tag. You use it when you want your users to view the report
with live data directly in PDF.

<bloxreport:pdf>
<bloxreport:report>

<bloxreport:sqlData>
<bloxreport:dataSourceConnection .../>

</bloxreport:sqlData>
<bloxreport:calculate .../>
<bloxreport:sort .../>
<bloxreport:filter .../>
<bloxreport:group .../>
<bloxreport:order .../>
<bloxreport:format />
<bloxreport:style />

</bloxreport:report>
</bloxreport:pdf>

All these Blox tags can be assigned an id to uniquely identify the specific
instance of that Blox. Even though in many cases one is not required, it is good
practice to specify a unique id, particularly to every instance of ReportBlox. This
allows you to reference it later to dynamically change its attribute values. When
you have more than one ReportBlox on a page, this allows the Alphablox
Analytics to correctly identify the state of the correct instance of ReportBlox.

Some of the Blox have nested tags for specifications of multiple elements. The
concept of nested tags is discussed next.

Nested Tags

Relational Reporting Blox that have nested tags are FormatBlox, GroupBlox,
SortBlox, StyleBlox, and TextBlox. For example, FormatBlox has nested tags to
define formats for numeric, date, and missing data:

<bloxreport:format>
<bloxreport:numeric format="####.00;(####.00)" />
<bloxreport:numeric format="$#,###.##;$(#,###.##)"
CHAPTER 2
Relational Reporting Concepts

Relational Reporting Custom Tags 45
member="Sales" />
<bloxreport:date format="yyyy.MM.dd G 'at' hh:mm:ss z" />
<bloxreport:missing format="Value Missing" />

</bloxreport:format>

GroupBlox has nested tags to specify the aggregation type for each column
member:

<bloxreport:group members = "Product, Area">
<bloxreport:aggregation member = "Sales" type = "sum" />
<bloxreport:aggregation member = "Cost" type = "average" />
<bloxreport:aggregation member = "Store" type = "count" />
<bloxreport:aggregation member = "Units" type = "max" />

</bloxreport:group>

SortBlox has one nested tag to define each sorting rule:

<bloxreport:sort>
<bloxreport:rule member="Product" ascending="true" />
<bloxreport:rule member="Week_Ending" ascending="false" />

</bloxreport:sort>

StyleBlox has nested tags to define styles for missing value, negative data, and
data columns:

<bloxreport:style>
<bloxreport:missing style="background-color: aqua;" />
<bloxreport:negative style="color: red;" />
<bloxreport:column style="background-color: #CCCCCC; color:

white;" columnName="Area" />
<bloxreport:column style="text-align:center;" columnName="Code"

/>
</bloxreport:style>

It also has nested tags to define styles for group headers, group footers, group
totals, column headers, and data cells:

<bloxreport:style>
<bloxreport:groupHeader

level="1" style="font-size:120%;" />
<bloxreport:groupFooter

level="1" style="font-size:120%;" />
<bloxreport:groupTotal

columnName="Sales" style="font-size:90%;" />
<bloxreport:columnHeader

columnName="Cost" style="font-size:90%;" />
<bloxreport:data

columnName="Product" style="color: #FFFFCC;" />
</bloxreport:text>
DB2 Alphablox
Relational Reporting Developer’s Guide

46 Relational Reporting Custom Tags
TextBlox has nested tags to define display text for group headers, group footers,
group totals, column headers, and data cells:

<bloxreport:text>
<bloxreport:groupHeader

level="1" text="<i>My Group Header Text Here</i>" />
<bloxreport:groupFooter

level="1" text="My Group Footer Text Here" />
<bloxreport:groupTotal

columnName="Sales" text="Total: <value/>" />
<bloxreport:columnHeader

columnName="Cost" text="Unit Cost" />
<bloxreport:data

columnName="Product" text="<value/>" />
</bloxreport:text>

Standalone Tags

There are three Blox in Relational Reporting that can or have to be added alone in
a JSP page: ErrorBlox, PdfBlox, and PersistenceBlox. ErrorBlox is added alone
in your error handling page, as described in “Use ErrorBlox for Better Error
Reporting” on page 56. PdfBlox can be added outside of the
<bloxreport:report> tag to directly render a report in PDF, or it can be added
alone in a JSP page that takes a ReportBlox ID passed in typically through the
HTTP request object and then sends the ReportBlox to PDF, as described in
“Rendering a Report Directly in PDF” on page 126 and “Saving Reports as PDF
Files” on page 125. PersistenceBlox also takes a ReportBlox passed in and saves
the state of the ReportBlox in the repository. For detail, see “Bookmarking
Reports and Saving States” on page 121.

The Order of Syntax Evaluation

Within the <bloxreport:report> tag, you can flexibly add any other Relational
Reporting Blox for formatting and data manipulation to meet your report
development needs. Sometimes you may need to have more than one instance of
the same tag in order to reach your development goal. Examples include the
<bloxreport:calculate> for multiple calculated members and
<bloxreport:filter> for multiple filtering operations. These tags are evaluated
in the sequence as they are declared, from top to bottom. Therefore, if you filter
out some data using FilterBlox, subsequent operations will no longer contain
those data since they no longer exist in the result set. In cases where you have
multiple instances of the same tag setting different values for the same attributes,
the last value set will be the value used.

Examples of Having Multiple Instances of the Same Tag
CHAPTER 2
Relational Reporting Concepts

Relational Reporting Custom Tags 47
Example 1:

<bloxreport:format>
<bloxreport:numeric format="####.00;(####.00)" />
<bloxreport:numeric format="$#,###.##;$(#,###.##)"

member="Sales" />
</bloxreport:format>

Example 2:

<bloxreport:format>
<bloxreport:numeric format="####.00;(####.00)" />
<bloxreport:numeric format="$#,###.##;$(#,###.##)"

member="Sales" />
<bloxreport:numeric format="$#,###;$(#,###)"

member="Sales" />
</bloxreport:format>

In the first example, all numeric data will be displayed using the
"####.00;(####.00)" format. The only exception is the data in the Sales column,
which will be displayed with in the "$#,###.##;$(#,###.##)" format. In the
second example, the third <bloxreport:numeric> tag overrules the second tag
since both applies to member “Sales,” resulting in Sales data displayed in the
"$#,###;$(#,###)" format.

Examples of Different Tags

In the following two examples, the outcomes will be different.

Example 1:

<bloxreport:sort
member="Units"

/>
<bloxreport:members

excluded = "Units"
/>

Example 2:

<bloxreport:members
excluded = "Units"

/>
<bloxreport:sort

member="Units"
/>

In the first example, the result set is first sorted based on the Units member and
then the Units member is removed. In the second example, since the Units
member is removed from the result set first, the subsequent sort operation will
fail.
DB2 Alphablox
Relational Reporting Developer’s Guide

48 Expression Syntax
Session Scope

By default, all tags have a session scope. Once the object is created on the server
and bound to a session, changes made to the value tag attributes in your JSP files
during development will not apply unless you start a new session. This is why you
need to start a new browser session to test changes you make. For your users, this
means the changes they make through the Report Editor user interface are
preserved only till the end of the session, not across sessions. Also, once your
users make changes to the report, they will not be able to return to the “default”
report as you created them in your JSP file through page reload from the browser.
To provide a way for your users to retrieve the default report, you will need to
explicitly provide a link or a button that unbinds the object from the session scope
so new objects will be created that reflect the values you set in your JSP pages.
See “Managing Session Scope” on page 138 for more details on session scope.

Expression Syntax
The general rules when specifying the expressions for operation or evaluation are:

• The entire expression should be included in double quotes:

<bloxreport:calculate
expression = "Sales = Unit_Cost * Units_Sold" />

<bloxreport:filter
expression = "Units > 500" />

• If a member name contains charcters other than a-z, A-Z, 0-9, and _, it should
be enclosed in square brackets ([]). If you have spaces or special charaters
in the member names, always enclose them in []. In cases where a member
name may be mistaken for a number, also use [] to avoid confusion.

<%--The following calculated member has "%" in its name--%>
<bloxreport:calculate

expression = "[Profits%] = Sales/ [Gross Margin]"
/>

<%--Enclose member names with spaces in []--%>
<bloxreport:calculate

id = "myCalc"
expression = "CurrentQuarter = [April 01] + [May 01] +

[June 01]"
/>

• If a member name already contains [], use an additional closing “]” to
indicate the end of the member name. For example, to specify the member
name West[CA] in an expression, you should say [West[CA]]].

• Supported operators:
CHAPTER 2
Relational Reporting Concepts

Expression Syntax 49
• For calculation expressions: +, -, *, and /

• For filter expressions: =, <, >,and !=

• Supported separator for calculation operators are (). For example:

<bloxreport:calculate
expression = "[Profit%] = Sales/(Unit_Cost * Units_Sold)"

/>

• No compound expressions. That is, you cannot connect two expression
strings with connectors such as AND, OR, &, or |. Instead, you need to use
two FilterBlox for multiple filter operations:

<bloxreport:filter
expression = "Code > 240" />

<bloxreport:filter
expression = "Code < 400" />

• Supported operators only work on numeric data. This includes integer,
floating point, and currency. You will not be able to perform calculation,
sorting, or filtering on string, date, time, or boolean data types.

Member Identifiers vs. Display Names

When specifying rules for sorting, expressions for data filtering, members to
exclude, calculation expression to add a calculated member, and the exact order
the members should be in, you are using operations that involve data
manipulation. In these cases, you should put member names in square brackets
when they do not start with a letter or when they contain special characters
(characters other than a-z, A-Z, 0-9, or underscores). This indicates to the
Alphablox Relational Reporting engine that these are variables in the expression.
Without square brackets, the reporting system may fail to correctly identify the
members. For example, a member named “2002” can be mistaken for a number
and a member named “Region-East” can be mistaken for a numeric expression. A
valid identifier requires that the name starts with a letter, followed by any
combination of a-z, A-Z, underscore, and 0-9. Any name that does not follow this
requirement should be placed in square brackets.

The following example shows the use of square brackets to enclose the member
names that do not meet the requirement:

<bloxreport:calculate
expression="[Profit%] = [Gross Margin]/Sales" />

<bloxreport:filter expression = "[Q1 Sales] <10000" />

<bloxreport:sort member="[Profit%]" />
DB2 Alphablox
Relational Reporting Developer’s Guide

50 Expression Syntax
<bloxreport:order included = "Product, [Profit%], Sales, Cost" />

However, when you are dealing with text displayed in the rendered report, square
brackets are no longer required since there is no confusion whether the text string
is a member name or an expression. For example, when you StyleBlox to specify
how the columns and texts should be displayed, or when you use the
<bloxreport:columnHeader> tag in TextBlox to specify the column header text,
you are operating on the display names in the rendered report. In these cases, you
do not need to enclose the member names in square brackets:

<bloxreport:report id="salesreport1">
...

<bloxreport:text>
<bloxreport:columnHeader

columnName="Profit%">
text="Profit Pct" />

<bloxreport:groupTotal
columnName="Profit%"
text="Avg.: <value/>" />

</bloxreport:text>

<bloxreport:style>
<bloxreport:columnHeader style="color: blue;"

columnName="Profit%" />
</bloxreport:style>

...
</bloxreport:report>

 As a rule of thumb, always specify the names of the member in the same
cases as they are exacted from the data source. Referring to the member “Cost” as
“COST” or “cost” may result in errors.
CHAPTER 2
Relational Reporting Concepts

3
Relational Report Development

This section describes the general steps to develop a relational report and
discusses common report development tasks. Some tips on design considerations
and troubleshooting are provided.

Contents

• “Before You Begin” on page 52

• “General Report Development Steps” on page 54

• “Creating Your First Relational Report” on page 57

• “Learning Resources” on page 59

52 Before You Begin
Before You Begin
Before you begin your development, check the Developer’s Guide for the DHTML
Client for general development preparation tips. You should also ask yourself a
few questions to decide if Relational Reporting is what you need and how you
should design the report so it meets your users’ requirements.

• Is the database from which you want to create a report relational? If you have
a multidimensional database, use GridBlox instead.

• Do your users need to chart the data? If yes, use GridBlox instead.

• What data do your users want to see? Users usually do not need to have all of
the data. A page that shows all of the data takes long loading time to load and
may not fit into the viewable area on the screen.

General Development Tips

The following are a few general rules about using and testing JSP tags that you
should be aware of:

• Import the Alphablox Tag Libraries. For Relational Reporting, you need to
import the Reporting Blox Tag Library as follows:

<%@ taglib uri="bloxreporttld" prefix="bloxreport" %>

• Blox tags and attribute names start with all lowercase first word, with the
first letter of each subsequent word in uppercase. Examples are:

� <bloxreport:sqlData />
� <bloxreport:dataSourceConnection />
� <bloxreport:groupHeader />
� <bloxreport:groupFooter />
� <bloxreport:groupTotal />
� <bloxreport:columnHeader />

• When specifying the value for an attribute, enclose the value in double or
single quotes. Even when the value appears to be numeric, JSP tags require
all values for attributes to be enclosed in quotes. In the following example:

<bloxreport:calculate
expression = "[Profit%] = Sales/GrossMargin"
index = "4"

/>

The calculated member Profit% will be added as the fifth column with the value
of the index attribute set to 4. Even though 4 is a number, it still needs to
enclosed within quotes.

• When you test a JSP page with Blox tags in your browser, you may want to
configure your browser to not cache any content and visit the server to fetch
the content with every request.
CHAPTER 3
Relational Report Development

Before You Begin 53
• During development, often times you make changes to the value of an
attribute in a Blox tag and want to test the changes. Since the object on the
server already exists for that session, it is reused and therefore will not reflect
the changes you make. You will need to start a new session by opening a new
instance of the browser. With Netscape, this means you need to close up all
browser windows before you open a new one.

There are two useful techniques you can use to avoid having to close and reopen
a new browser window. One technique is to use the removeAttribute(),
setAttribute() and getAttribute() methods associated with the session
object. For example:

<% session.removeAttribute("myReportBlox"); %>
<bloxreport:report id="myReportBlox"/>

This removeAttribute() method unbounds the object from the session. As the
JSP engine goes to the next line, since no object of that name is found associated
with the session, a new instance will be created. However, before you deploy the
application, remember to remove this scriptlet code. The setAttribute() and
getAttribute() methods allow you to dynamically manipulate the objects
without deleting them. Another technique is use a dynamic bloxName for your
ReportBlox. For details, check out the sections on “Managing Session Scope”
on page 138 and “Dynamically Changing the Query” on page 142.

• When you want to dynamically set the value of an attribute or a property of a
Relational Reporting Blox, it is required that an id is specified while the
instance of the Blox is created. Note that with the user interface Blox you use
to present multidimensional data in grids and charts, you cannot assign an id
to nested Blox. In Relational Reporting, you can. This gives you greater
control of the individual Blox supporting ReportBlox.

• When you have two ReportBlox on a page and one (or both) of them is rendered
in interactive mode, you should also specify a unique id in order for Alphablox
Analytics to correctly identify the state of each instance of the ReportBlox. In
general, for ReportBlox, an id is required if you want to do any of the
following:

• dynamically set the values of its attributes

• have two ReportBlox on a page, with one or both rendered in interactive
mode

• pass the current state of the ReportBlox to another JSP page (for
example, to send the ReportBlox to PDF or Excel)

• Relational reports are displayed based on the locale of the browser. However,
in order for the report to display correctly in languages other than English,
you should specify to use the UTF-8 character set using the page directive’s
DB2 Alphablox
Relational Reporting Developer’s Guide

54 General Report Development Steps
contentType attribute. With the contentType attribute, you can define the
MIME type and character set.

<%@ page contentType="text/html; charset=UTF-8" %>

• Since interactive reports are rendered in DHTML, if a report contains
thousands of data cells, it may take the browser several minutes to render the
page. This is a limitation with the browser. For best performance and results,
prepare your data in the native environment of your relational data sources and
extract only the needed data into ReportBlox. This may involve de-normalizing
the data or preparing tables containing summary data.

 This Guide focuses on the use of relational reporting tags. For Java methods
associated with relational reporting Blox, see the Relational Reporting Javadoc. The
Javadoc is available for both the server-side API and the ReportBlox API and can
be from the following directory:

<alphablox_dir>/system/documentation/javadoc

where <alphablox_dir> is the directory in which Alphablox Analytics is
installed.

General Report Development Steps
There are five general steps to develop a relational report using ReportBlox and
its supporting Blox. These steps are described next.

Define the Application and Data Source

As with any Alphablox application development, you need to define the
application and the data sources for your application to Alphablox Analytics
through the Alphablox Analytics Admin Pages. See the Administrator’s Guide or
online help on the admin pages for details on application and data source
definition.

Once you define the application, an application folder with the context name you
provided on the admin pages will be automatically created under the webapps/
folder, with a WEB-INF folder that contains the deployment descriptor web.xml and
the tlds/ folder that contains the Alphablox Tag Libraries descriptor files. Keep
these files intact.

If you do not have immediate access to a relational database, a relational canned
data is provided to help you get started. This will be described in the section on
“The Simplest Report” on page 57.
CHAPTER 3
Relational Report Development

../javadoc/report/index.html

General Report Development Steps 55
Include the Reporting Blox Tag Library

You need to include the Reporting Blox Tag Library in order to use the custom
tags for Relational Reporting. Include the following line in the beginning of your
JSP page:

<%@ taglib uri="bloxreporttld" prefix="bloxreport" %>

For general information on using the Alphablox Tag Libraries, see Developer’s
Guide for the DHTML Client.

Use a stylesheet

Since the rendered reports have associated style classes, you should use an
external Cascading Style Sheet to define the styles. This is particularly important
when the reports are rendered in interactive mode. Without a defined style for
each of the classes associated with the display of context menus and Report Style
dialog box, the Report Editor user interface will not work properly.

Since style sheets cascade, as a best practice, use the style sheet provided out-of-
the-box and then add your own stylesheet to modify only the styles for classes
you want to change:

<link rel="stylesheet" href="/AlphabloxServer/report/report.css" />
<link rel="stylesheet" href="yourStyleSheet.css" />

In yourStyleSheet.css, specify your styles to the classes you want to overwrite.
For example, if you want the data cells to have yellow background color:

.data {
color: yellow

}

An alternative technique is to import the main stylesheet from your custom
stylesheet:

// mystyle.css
@import url(/AlphabloxServer/report/report.css);
.data {

color: green
}

 When you upgrade or install new version of Alphablox Analytics, the entire
folder at <alphablox_dir>/system/AlphabloxPlatform/AlphabloxServer/
report/ will be overwritten. Therefore, you should not modify the default
stylesheets in there.

Finally, you can also make a copy of the supplied style sheets into your own
application folder and modify it to arrive at your desired look and feel. The
supplied style sheets are at:

<alphablox_dir>/system/AlphabloxPlatform/AlphabloxServer/report/
DB2 Alphablox
Relational Reporting Developer’s Guide

56 General Report Development Steps
where <alphablox_dir> is the directory where Alphablox Analytics is installed.
When you copy the stylesheets, make sure you copy all stylesheets (except
coleman.css unless you are using it) since report.css imports styles from the
other stylesheets.

Use ErrorBlox for Better Error Reporting

You should specify an error handling page with every JSP page you create for
better error reporting. In Relational Reporting, ErrorBlox catches the uncaught
exceptions thrown and prints the details in an HTML table using Cascading Style
Sheet. To use ErrorBlox, you can create an error report JSP page with the
following lines:

<%@ taglib uri="bloxreporttld" prefix="bloxreport" %>
<%@ page isErrorPage="true" %>

<html>
<head>

<link rel="stylesheet" href="/AlphabloxServer/report/
error.css" type="text/css" />

</head>

<body>
<bloxreport:error id="errorBlox" />

</body>
</html>

The first line specifies the tag libraries description (TLD) file to load in order to
use the <bloxreport:error> tag. The second line identifies itself as an error
reporting page. Inside the <head> tag, a stylesheet supplied by Alphablox
Analytics is specified to display the errors in an easy-to-read table. Then an
ErrorBlox is added inside the <body> tag. This is all you need for a basic custom
error handling page.

Then in your JSP pages containing ReportBlox, add the following line to point to
the error reporting page you just created as the error handling page:

<%@ page errorPage="yourError.jsp" %>

You can customize the styles used to display the errors. Note that when you
upgrade or install new version of Alphablox Analytics, the entire folder at
<alphablox_dir>/system/AlphabloxPlatform/AlphabloxServer/report/ will be
overwritten. Therefore, you should not modify the default error.css stylesheet
in there. Instead, create your own stylesheet in your application directory. Then
import the default stylesheet into your own error style sheet:

// myErrorStyle.css
@import url(/AlphabloxServer/report/error.css);
.errortitlebar {

background-color: yellow;
font-size: 120%;

}

CHAPTER 3
Relational Report Development

Creating Your First Relational Report 57
For more information on error handling and the use of ErrorBlox, see “Error
Handling Using ErrorBlox” on page 156. For more information on ErrorBlox
style classes, see “Style Classes for ErrorBlox” on page 41.

Add Blox Tags

To add a Relational Reporting Blox on your JSP page, you can copy the syntax
from examples provided or from the “Relational Reporting Blox Tag Reference”
on page 159. Start with the <bloxreport:report> tag as it wraps outside of all
other Blox for data retrieval, manipulation, and formatting. See “Relational
Reporting Custom Tags” on page 43 for details on how you connect these Blox
and what the general rules are for expression syntax.

Creating Your First Relational Report
After you have defined the application and your relational data source to
Alphablox Analytics, you can proceed to create your first relational report.

The Simplest Report

For every relational report you create, there are three essential Blox that you will
need:

• ReportBlox

• SQLDataBlox

• DataSourceConnectionBlox

DataSourceConnectionBlox lets you connect to your relational data source.
SQLDataBlox lets you specify the SQL command to extract the needed data from
your data source. ReportBlox lets you generate the output in an HTML table.
With these Blox you can produce your first relational report. The following is all
the JSP code needed. This is also the code needed for basically every report you
create.

<%@ taglib uri="bloxreporttld" prefix="bloxreport" %>

<html>
<head>
</head>
<body>

<bloxreport:report id = "myReport">
<bloxreport:sqlData query = "SELECT... FROM... WHERE...">

<bloxreport:dataSourceConnection
dataSourceName = "yourRDBdataSource">

</bloxreport:dataSourceConnection>
</bloxreport:sqlData>

</bloxreport:report>
DB2 Alphablox
Relational Reporting Developer’s Guide

58 Creating Your First Relational Report
</body>
</html>

Note that in Relational Reporting, member names are case sensitive. In your SQL
query statement, if you rename columns in the SELECT list, be sure to enclose
the column names in double quotes if you expect the case to be preserved. For
example:

SELECT FROM myTable total_sq_ft AS "Sq_Ft", sq_ft_pct AS "Pct"

In the <bloxreport:sqlData> tag, you will need to escape the quotation marks
with back-slashes:

<bloxreport:sqlData
query = "SELECT FROM myTable total_sq_ft AS \"Sq_Ft"\, sq_ft_pct AS
\"Pct\"">

Task: Create a Simplest Report
1 In you JSP development environment, open a new file and copy and paste the

above code into your file.

2 Enter your SQL query and relational data source name.

 If you do not have immediate access to a relational database, a canned
relational data is available for use. This canned data is actually a Java class and
does not understand SQL. To use it, add the <bloxreport:cannedData /> tag to
your code, replacing <bloxreport:sqlData> and
<bloxreport:dataSourceConnection>:

<%@ taglib uri="bloxreporttld" prefix="bloxreport" %>
<html>
<head>
</head>
<body>

<bloxreport:report id="myReport">
<bloxreport:cannedData/>

</bloxreport:report>

</body>
</html>

3 Save your file with .jsp as the extension into your application folder. Now
you can open a browser window and test this file.

The Simplest Interactive Report

To create your first interactive report involves two additional steps:

1 Add the interactive attribute to your <bloxreport:report> tag and set the
value to true.
CHAPTER 3
Relational Report Development

Learning Resources 59
<bloxreport:report id="myReport" interactive="true">
...

</bloxreport:report>

The interactive attribute is set to false by default.

2 Add a reference to the supplied style sheets in the <head> section.

<head>
<link rel="stylesheet" href="/AlphabloxServer/report/

report.css" />
</head>

Task: Create a Simplest Interactive Report
1 Open the simplest report you created in “Task: Create a Simplest Report” on

page 58.

2 Insert interactive="true" inside the <bloxreport:report> tag.

3 Insert the reference to the supplied style sheet in the <head> section.

4 Save the file.

5 Open a new browser window and test the JSP page you just saved.

 During your development, if you make a change to an attribute value of a
Blox tag, since the server already instantiates the object and the object exists
during the session scope, you will need to close the browser window or test the
modified JSP page using a different instance of the browser in order to see the
changes you made. An alternative is to use the removeAttribute() method
associated with the session object. See the “General Development Tips” on
page 52 for details on how to use this technique.

Now that you have created your first report, you can continue to add more Blox to
further transform the result set and format the report.

Learning Resources
The subsequent chapters in this Relatioinal Reporting Developer’s Guide are
organized by task. Besides going to the chapters that discuss tasks of interet,
make sure you check out the “Development and Troubleshooting Tips” on
page 149 for essential tips that will aid you in your report development. The Blox
Sampler - Relational Reporting example set in the Application Studio has live
examples that demonstrate many of the tasks detailed in this book.
DB2 Alphablox
Relational Reporting Developer’s Guide

60 Learning Resources
CHAPTER 3
Relational Report Development

4
Accessing and Retrieving Data

Getting data into a ReportBlox is the first step to building your relational report.
This chapter discusses different approaches that you can feed data into a
ReportBlox.

Contents

• “Using SQLDataBlox and DataSourceConnectionBlox” on page 62

• “Using RDBResultSetDataBlox to Access RDBResultSet from DataBlox” on
page 63

• “Error Handling Against SQLDataBlox” on page 65

62 Using SQLDataBlox and DataSourceConnectionBlox
Using SQLDataBlox and DataSourceConnectionBlox
DataSourceConnectionBlox handles data connection, providing access to your
relational data sources defined to Alphablox Analytics through the Alphablox
Analytics Admin Pages. It handles connection properties such as dataSourceName,
username, and password. SQLDataBlox extracts the data based on the SQL query
you specified, providing data to the Relational Reporting data pipeline.

As described in “The Simplest Report” on page 57, the general outline of you JSP
looks as follows:

<%@ taglib uri="bloxreporttld" prefix="bloxreport" %>
<html>
<head>

<link rel="stylesheet" href="/AlphabloxServer/report/
report.css" />
</head>
<body>

<bloxreport:report id = "myReport">
<bloxreport:sqlData query = "SELECT... FROM... WHERE...">

<bloxreport:dataSourceConnection
dataSourceName = "yourRDBdataSource">

</bloxreport:dataSourceConnection>
</bloxreport:sqlData>

</bloxreport:report>

</body>
</html>

For details on DataSourceConnectionBlox and its tag attributes, see
“DataSourceConnectionBlox” on page 163. For details on SQLDataBlox and its
tag attributes, see “SQLDataBlox” on page 191. For a list of supported relational
data sources, see the System Requirements section in the Installation Guide.

Dynamically Setting the Query

If you need to dynamically set or change the query, SQLDataBlox has a
setQuery(queryString) method and an execute() method. You must call the
execute() method after the new query is set. For a complete example, see
“Dynamically Changing the Query” on page 142 and the accompanying example
in the Blox Sampler - Relational Reporting example set in the Application Studio.
CHAPTER 4
Accessing and Retrieving Data

Using RDBResultSetDataBlox to Access RDBResultSet from DataBlox 63
Using RDBResultSetDataBlox to Access RDBResultSet from
DataBlox

Another way data can be fed to a ReportBlox is via a RDBResultSetDataBlox.
RDBResultSetDataBlox allows you to create a relational report using the
RDBResultSet returned from an existing DataBlox. DataBlox provides data to
user interface Blox such as PresentBlox, GridBlox, and ChartBlox (tags for these
Blox are in the Blox Tag Library, available with the <%@ taglib uri="bloxtld"
prefix="blox" %> taglib directive). DataBlox cannot provide data directly to
ReportBlox. However, RDBResultSet returned from a DataBlox can be used as
the source of data for Relational Reporting via RDBResultSetDataBlox. This is
useful for applications where relational details for data in a GridBlox cell from a
multidimensional data source can be presented in an attractive, easy-to-read
layout.

Alphablox Analytics’s drillthrough support for Microsoft Analysis Services data
sources in GridBlox and DataBlox, for example, uses a RDBResultSetDataBlox
that takes the DataBlox’s RDBResultSet to generate a relational report with
ReportBlox. You simply set the GridBlox drillThroughEnable property to true
and no custom code is needed.When users choose to drill through from a data
cell, relational detail for the cell is displayed in a pre-formatted report using
ReportBlox.

For custom report, you can supply your own JSP containing a ReportBlox
formatted to you liking. A live example is available in the MSAS version of Blox
Sampler, under the Retrieving Data section.

To feed the RDBResultSet of a DataBlox to a ReportBlox, in the calling JSP
containing the GridBlox (or PresentBlox), you should call the JSP containing the
ReportBlox by passing along three pieces of information:

• The id of the DataBlox whose RDBResultSet the ReportBlox will use as the
data producer.

• The coodinates (colIndex and rowIndex) of the cell whose relational details
is requested.

The JSP containing the ReportBlox may looks as follows:

<%@ taglib uri="bloxreporttld" prefix="bloxreport" %>
<html>
<head>

<link rel="stylesheet" href="/AlphabloxServer/report/
report.css" />
</head>
<body>

<bloxreport:report id="drillThroughFromDataBlox" ...>
DB2 Alphablox
Relational Reporting Developer’s Guide

64 Using RDBResultSetDataBlox to Access RDBResultSet from DataBlox
<bloxreport:rdbResultSetData
bloxRef="myDataBlox"
columnCoordinate="<%= request.getParameter(\"colIndex\") %>"
rowCoordinate="<%= request.getParameter(\"rowIndex\") %>"

/>

<%--further data manipulation and report formatting--%>
...

</bloxreport:report>
</body>
</html>

The value for the bloxRef attribute should be the id of the DataBlox defined in
the calling JSP. The colIndex and rowIndex parameters are passed in from a
scriptlet or Java class from the DHTML client in the calling JSP.

For example, assume the calling JSP has a DataBlox as follows:

<blox:data id="myDataBlox"
dataSourceName="QCC-MSAS"
selectableSlicerDimensions="Measures"
query="yourQueryString"/>

For the DHTML client, you may have a PresentBlox that uses myDataBlox:

<%@ taglib uri="bloxtld" prefix="blox"%>
<%@ taglib uri='bloxuitld' prefix='bloxui'%>
...
<body>
<blox:present id="myPresentBlox"

width="700"
height="580">
<blox:data bloxRef="myDataBlox"/>
<blox:grid drillThroughEnabled="true" />
<bloxui:actionFilter

className="<%= myCustomDrillThrough.class.getName() %>"
componentName="dataAdvancedDrillThrough" />

</blox:present>
...

When the user chooses the Advanced... > Drill through option from the right-click
menu (componentName = "dataAdvancedDrillThrough"), the
myCustomDrillThrough class is called. The class may look as follows:

import com.alphablox.blox.uimodel.core.grid.GridCell;
import com.alphablox.blox.uimodel.tags.IActionFilter;
...

public class myCustomDrillThrough implements IActionFilter
{

public void actionFilter(DataViewBlox blox, Component component)
throws Exception {
CHAPTER 4
Accessing and Retrieving Data

Error Handling Against SQLDataBlox 65
GridBrixModel grid =
((PresentBloxModel)blox.getBloxModel()).getGrid();

GridCell[] cells = grid.getSelectedCells();

// Make sure that a single data cell is selected
if (cells.length != 1 || cells[0].isRowHeader() ||

cells[0].isColumnHeader() || !(cells[0] instanceof GridBrixCellModel))
{

MessageBox.message(component, "Error", "You must select a
single data cell to drill through");

return;
}

GridBrixCellModel cell = (GridBrixCellModel)cells[0];
int rowIndex = cell.getNativeRow();
int colIndex = cell.getNativeColumn();
String bloxName = blox.getBloxName();

String urlStr = "myDrillThrough.jsp?bloxRef="+bloxName;
urlStr += "&colIndex=";
urlStr += colIndex;
urlStr += "&rowIndex=";
urlStr += rowIndex;
String timestamp = String.valueOf(System.currentTimeMillis());
urlStr += "&reportName=";
urlStr = urlStr + "reportBlox"+timestamp;

ClientLink link = new ClientLink(urlStr,
"reportBlox"+timestamp);

component.getDispatcher().showBrowserWindow(link);
}

}

For a complete example, see the Retrieving Data section under Blox Sampler.

Error Handling Against SQLDataBlox
When the data query produces no data, the default message displayed in the report
is “No data.” You can customize this message using the ReportBlox’s
noDataMessage tag attribute. If the query is not valid or the data source happens to
be unavailable at the time, your users will see a list of JSP errors. In this case, you
may want to set ReportBlox’s errors property to false so exceptions thrown are
not intercepted. You can then add a try/catch block to identify the problem and
display a more friendly error message. See “Error Handling Using ErrorBlox” on
page 156 for more discussions and a code example. See “The <bloxreport:report>
Tag” on page 186 for details on noDataMessage and noDataDueToErrorMessage tag
attributes.
DB2 Alphablox
Relational Reporting Developer’s Guide

66 Error Handling Against SQLDataBlox
CHAPTER 4
Accessing and Retrieving Data

5
Processing and Manipulating Data

Once you retrieve data into a ReportBlox, you can add more Blox to process and
manipulate the data.This chapter discusses various common data processing and
manipulation tasks such as sorting and filtering data, hiding, removing, and
reordering columns, and adding calculated columns. These involve data
“transformer” Blox, such as SortBlox, FilterBlox, CalculateBlox, GroupBlox,
MembersBlox, and OrderBlox.

The “Soring, Filtering, Hiding, and Calculating Data” example in the Blox
Sampler for Relational Reporting demonstrates most of the Blox discussed in this
chapter.

Contents

• “Sorting Data” on page 68

• “Filtering Data” on page 70

• “Grouping Data” on page 71

• “Adding Calculated Columns” on page 71

• “Removing Members” on page 74

• “Hiding and Showing Members” on page 75

• “Hiding and Showing Missing Data” on page 76

68 Sorting Data
Sorting Data
To sort your data, use SortBlox. With a simple, single level of grouping, such as
grouping a report by Product, you can specify the following:

<bloxreport:sort member="Product" />

By default, the report will be sorted in ascending order. You can specify the sort
order using the ascending attribute:

<bloxreport:sort member="Product"
ascending="false" />

By default, missing data are displayed last. You can specify to have them
displayed first:

<bloxreport:sort member="Product"
ascending="false"
missingLast="false" />

Notice the SortBlox’s member attribute is in singular form, meaning you can only
sort on one member using this syntax. SortBlox supports compound sorting using
multiple sort rules. Each rule is a nested tag within a SortBlox, and for each rule
you need to specify the member you want to sort on:

<bloxreport:sort>
<bloxreport:rule

member="Type"
missingLast="true"
ascending="true" />

<bloxreport:rule member="Product" />
</bloxreport:sort>

Keep in mind that the order you specify the rules makes a difference. The first
rule will be the primary sort; the second, the secondary sort.

 Having multiple sort rules is different from having multiple SortBlox. If you
add multiple SortBlox, the later one will override the sort operation performed
earlier.

SortBlox is the only Blox that handles sorting. If you want a report grouped by
product type, and also want the break groups appear in alphabetical order, you
should sort the data first before you group them. This is because grouping data
(using GroupBlox) does not imply sorting. GroupBlox only handles data grouping
and does not sort the data before grouping. For example, the following is a report
grouped by “Type” and then “Product,” with the break groups listed in
alphabetical order. Within each break group, the “Sales” column is sorted in
ascending order:
CHAPTER 5
Processing and Manipulating Data

Sorting Data 69
To create such a report, you should sort on “Type” first, then “Product”, and then
“Sales” before you add the break groups:

<bloxreport:sort>
<bloxreport:rule

member="Type"
missingLast="true"
ascending="true" />

<bloxreport:rule member="Product" />
<bloxreport:rule member="Sales" />

</bloxreport:sort>
<bloxreport:group members="Type, Product" />

Note that:

• There are three sort rules in this SortBlox. Each sort rule involves only one
member. Nesting your sort rules using one SortBlox makes it a compound
sorting operation. If you used multiple SortBlox, the later SortBlox would
override the previous ones and would not preserve the previous sort results.

Sales numbers
listed in
ascending
order.

Break group
“Type” listed
in ascending
order.

Each individual
break group is
listed in
ascending order
DB2 Alphablox
Relational Reporting Developer’s Guide

70 Filtering Data
• SortBlox is added before the GroupBlox, so the report will be grouped with
the different levels of break groups appear in alphabetical order, as shown in
the above screenshot.

For details on adding break groups, see “Overview of Break Groups and Break
Group Levels” on page 104. For details on SortBlox and SortBlox tag attributes,
see “SortBlox” on page 189. For details on GroupBlox and GroupBlox tag
attributes, see “GroupBlox” on page 172.

Filtering Data
To filter data based on some criterion, use FilterBlox. Each FilterBlox takes one
comparison expression. You can add multiple FilterBlox, each with its own
comparison expression. For example, if you are only interested in data whose
sales numbers fall between the range of 200 and 401, you would use two
FilterBlox as follows:

<bloxreport:report id="myReport">
...
<bloxreport:filter expression="Sales > 200" />
<bloxreport:filter expression="Sales < 401" />
...

</bloxreport:report>

Since the second FilterBlox will filter the data based on the result of the first
FilterBlox, if you need to perform operations such as keeping only sales data that
are either greater than 400 or smaller than 200, you need to prepare the data in
your database environment before retrieving them into ReportBlox.

Note that FilterBlox only works on numeric data. It supports four operators for
comparison: >, <, =, and !=. It provides the isMissing() function for filtering out
missing data (or for keeping missing data only).

 By default, FilterBlox does not filter out missing data unless you specify so:

<bloxreport:filter expression="not isMissiing(Sales)" />

It is important to keep in mind the different behaviors and tag syntax between
FilterBlox and SortBlox:

FilterBlox SortBlox

You can chain multiple FilterBlox
for compound filtering.

There can only be one SortBlox. The
one declared last will override the
previous ones. For compound sorting
use multiple sort rules.
CHAPTER 5
Processing and Manipulating Data

Grouping Data 71
See “FilterBlox” on page 166 for details on FilterBlox usage and “Expression
Syntax” on page 48 for more discussion on how to specify member names if they
contain spaces or special characters.

Grouping Data
To add grouping to your report, use GroupBlox:

<bloxreport:group members="Area, Location" />

The GroupBlox’s members attributte lets you specify the members to group on.
The above example will group the report by Area and then by Location. The
report is grouped based on the sequence of the members are specified. Once a
GroupBlox is added, you can:

• Get the aggregation value for each column in a break group

• Calculate group-bases summary columns to show ranking, running totals,
percentage of totals, and running counts.

• Specify texts for group totals based on break group level

• Specify the break group header and group footer text based on break group
level

Since these involve multiple closely related tasks, they are discussed in details in
“Overview of Break Groups and Break Group Levels” on page 104. For details on
GroupBlox tag syntax, see “GroupBlox” on page 172.

Adding Calculated Columns
You can add calculated columns using CalculateBlox. To specify the new column
name and the calculation expression, use the expression tag attribute:

<bloxreport:calculate
expression = "Profit = Sales - Cost"

/>

Each FilterBlox takes only one filter
expression.

SortBlox can take multiple sort runles,
each specified using a nested rule tag.

You can only filter number data. You can sort on numeric data, strings,
dates, and time.

FilterBlox SortBlox
DB2 Alphablox
Relational Reporting Developer’s Guide

72 Adding Calculated Columns
This creates a calculated column called Profit, whose values are derived by
substracting Cost from Sales. If the member names involve special characters or
spaces, enclose the names in square brackets:

<bloxreport:calculate
expression = "[Profit%] = Sales/ [Gross Margin]"

/>

By default, the new member is added to the end of the Column dimension. To
specify the exact column position where the new member should be added, use
the index attribute. Column counts start with 0, so in the following example, the
new member “Profit%” will be added as the first column.

<bloxreport:calculate
expression = "[Profit%] = Sales/ [Gross Margin]"
index = "0"

/>

Note the following when you use CalculateBlox:

• If any member used in the calculation involves missing or null values, the
calculation will result in missing data. See “Calculations Involving Missing
Data” on page 73 for more information.

• If a member name already contains [], use an additional closing “]” to
indicate the end of the member name. For example, to specify the member
name West[CA] in an expression, you should say [West[CA]]].

• Supported operators for calculation expressions are +, -, *, and /

• Supported separator for calculation operators are (). For example:

<bloxreport:calculate
expression = "[Profit%] = Sales/(Unit_Cost * Units_Sold)"

/>

• Supported operators only work on numeric data. This includes integer,
floating point, and currency. You will not be able to perform calculations on
string, date, time, or boolean data types.

• Four functions are supported in the calculation expressions: rank(),
percentOfTotal(), runningTotal(), and runningCount(). These functions
are related to how the report is grouped, and are discussed in details in
“Calculating Group-based Summary Columns” on page 110.
CHAPTER 5
Processing and Manipulating Data

Adding Calculated Columns 73
Calculations Involving Missing Data

When one of the operands involved contains missing value, the result will be
considered missing or Not a Number (NaN). This is different in column-wise
aggregations, where missing data is ignored. The following table shows how
missing data is treated in calculations depending on whether it is group total
aggregation or a calculated column using CalculateBlox.

The above table shows the data for two products in five stores. Store D’s data for
Product A is missing. For Store D, the value for the calculated member A+B will
be considered missing. For the aggregation value for each column, the missing
data is ignored. Note that by default an empty string is displayed when the value
is missing. To specify the display text when the data is missing, see “Formatting
Data” on page 87.

Adding Calculated Members Before Grouping

Because of the underlying data pipeline model, the aggregation value for the
calculated member can be different depending on where the GroupBlox is added
in relatioin to CalculateBlox. The following example demonstrateds the
differences.

GroupBlox Before CalculateBlox

<bloxreport:group members="Product">
<bloxreport:calculate expression = "[Z] = X*Y" />

Product A Product B A + B

Store A 5 10 10

Store B 4 10 14

Store C 3 7 10

Store D 3

Store E 4 5 7

Total: 16
Count: 4
Ave: 4

Total: 35
Count: 5
Ave: 7

Total: 41
Count: 4
Avg: 10.25

X Y Z

2 5 10

3 5 15

5 10 50
DB2 Alphablox
Relational Reporting Developer’s Guide

74 Removing Members
CalculateBlox Before GroupBlox:

<bloxreport:calculate expression = "[Z] = X*Y" />
<bloxreport:group members="Product">

If a GroupBlox is added first, the aggregation values of X and Y will be used to
calculate the aggregation value of the calculated member Z. If a GroupBlox is
added afterwards, the aggregation value for Z will be calculated based on the data
in the column.

The advanced calculation functions rank(), percentOfTotal(), runningTotal(),
and runningCount() allow you to specify how you want to calculate the rank
(percent of total, running total, and running count) in relation to the break groups.
When using these advanced calculation functions, you need to have break groups
added first before specifying the calculation functions. Since the usage of these
functions are closely related to break groups, the details are discussed in
“Calculating Group-based Summary Columns” on page 110 in the Grouping Data
chapter.

Removing Members
You can specify which members to be included in or excluded from the result set.
Members excluded are no longer available for subsequent operations. For
example, to remove “Cost” and “Units_Sold” from the data pipeline, you would
use:

<bloxreport:members excluded="Cost, Units_Sold" />

Unlike excluded members in OrderBlox, excluded members in MembersBlox is
no longer in the result set. Because they are no longer in the result set, when users
choose to Show All from the interactive Column Header Context Menu, they will
not be returned.

You can add multiple <bloxreport:members> tags in a <bloxreport:report> tag.
Each MembersBlox takes only either the excluded or the included attribute. If
you specify both attributes within one <bloxreport:members> tag, the last
attribute will be accepted and the earlier one will be ignored.

MembersBlox does not deal with the ordering of the members. If you have
members A, B, C, D, and E in the result set in that order, with

<bloxreport:members included="E, D, C" />

X Y Z

2 5 10

3 5 15

5 10 25
CHAPTER 5
Processing and Manipulating Data

Hiding and Showing Members 75
The members and their order in the result set becomes C, D, and E. To specify the
ordering of the members, use OrderBlox. For more information on hiding
members without removing them from the data pipeline, see “Hiding and
Showing Members” on page 75. For more information on MembersBlox tag
attributes, see “MembersBlox” on page 176.

Hiding and Showing Members
You can hide a member in the result set from users by using OrderBlox.
OrderBlox lets you specify which members to temporarily include or exclude in
the result set and in what order. The <bloxreport:order> tag has two attributes:
excluded and included. excluded lets you specify members to hide; included lets
you specify the members to show, and the order you specify the members is the
order they will be in.

For example, assume you have the following six members in the result set:

To hide “Cost” and “Units_Sold” from your users, you would use:

<bloxreport:order excluded="Cost, Units_Sold" />

You can also re-order the columns in the result set using OrderBlox. To specify
the columns and their order to appear in the report, set the value of the included
attribute to the list of members you want to include separated by commas. The
order you specify the members is the order they appear in the report from left to
right. For example:

<bloxreport:order included="Product, Gross_Margin, Sales" />

makes Product, Gross_Margin, and Sales the first three columns in the result set.
All other members become hidden.

You can add multiple <bloxreport:order> tags in a <bloxreport:report> tag.
Each OrderBlox takes only either the excluded or the included attribute. If you
specify both attributes within one <bloxreport:order> tag, the last attribute will
be accepted and the earlier one will be ignored.

Members excluded are still is the result set and available for subsequent
operations. When the interactive attribute in the <bloxreport:report> tag is set
to true, users can still see the excluded members when they choose to Show All
from the interactive Column Header Context Menu.

Product Location Sales Cost Gross_Margin Units_Sold
DB2 Alphablox
Relational Reporting Developer’s Guide

76 Hiding and Showing Missing Data
To permanently remove a member from the report, see “Removing Members” on
page 74. For hiding missing data, see “Hiding and Showing Missing Data” on
page 76. For more information on OrderBlox tag attributes and usage, see
“OrderBlox” on page 178. The following table summaries the similarities and
differences between MembersBlox and OrderBlox:

Hiding and Showing Missing Data
If you want to filter out missing data, FilterBlox has an isMissing(memberName)
function that allows you do so. In the following example, only rows whose Type
(product type) and Gross Margin data are not missing are returned:

<bloxreport:filter expression = "not isMissing(Type)"/>
<bloxreport:filter expression = "not isMissing([Gross Margin])"/>

Similarly, if you want to show only rows whose sales data is missing, you can
specify:

<bloxreport:filter expression="isMissiing(Sales)" />

FilterBlox only takes one expression at a time. For details on filtering data, see
“Filtering Data” on page 70. For FilterBlox syntax and usage, see “FilterBlox” on
page 166.

Note that you can use FormatBlox to display the desired text when the data is
missing. The <bloxreport:missing> tag nested within <bloxreport:format> lets
you specify the string to display for the named member when the data is missing:

MembersBlox OrderBlox

Allows you to remove members
from the result set. Excluded
members are no longer in the data
pipeline, and therefore not available
to subsequent data transformation.

Allows you to hide members from
users. Excluded members are still in
the data pipeline, available for
subsequent data transformation tasks.

Does not set the order of the
members with its included attribute.

Sets the order of the members with its
included attribute.

Each MembersBlox tag can only
take either the included or the
excluded attribute.

Like MembersBlox, each OrderBlox
tag can only take either the included
or the excluded attribute.

Members not in the included tag
attribute are excluded (permanently
removed from the data pipeline).

Members not in the included tag
attribute are excluded (temporarily
hidden from users)
CHAPTER 5
Processing and Manipulating Data

Hiding and Showing Missing Data 77
<bloxreport:format>
<bloxreport:missing format = "Sales value missing" member =

"Sales" />
<bloxreport:missing format = "Units value missing" member =

"Units" />
</bloxreport:format>

The format attribute will only take a string. You cannot assign any calculation
expression or variables as the value. To specify the text displayed for missing
data, you can use StyleBlox. StyleBlox lets you specifying the styles to use for
missing data or data with negative values, among other things. The following
example sets the font style and colors for displaying missing data:

<bloxreport:style>
<bloxreport:missing style="font-style: italic;

color: white;background-color: gray;"/>
</bloxreport:style>

For more on setting data display format using FormatBlox, see “Formatting Data”
on page 87. For more on setting styles using StyleBlox, see “StyleBlox” on
page 193 for its syntax and usage.
DB2 Alphablox
Relational Reporting Developer’s Guide

78 Hiding and Showing Missing Data
CHAPTER 5
Processing and Manipulating Data

6
Formatting the Report and Data

This section describes how you can format the general layout of a report such as
the column widths, font colors and styles, text background color, background
images, or size of the display area. This involves primarily the use of FormatBlox
for data format specification, StyleBlox for styling the font size, text/background
colors, and text alignment, and TextBlox for specifying the displayed text in the
report. These three Blox are not data transformers, and are typically added at the
end of your report JSP after the data transformation tasks are done.

The “Formatting the Report and Data” example in the Blox Sampler for
Relational Reporting demonstrates most of the tasks discussed in this chapter.

Contents

• “Display Areas in a Rendered Report” on page 80

• “Styling vs. Formatting vs. Setting Text” on page 83

• “StyleBlox vs. CSS Styles” on page 85

• “Formatting Data” on page 87

• “Wrapping HTML Code Around Data Values” on page 88

• “Styling Data Displayed in Report” on page 90

• “Specifying and Styling Column Headers” on page 93

• “Specifying Column Width, Color and Style” on page 96

• “Special Substitution Variables for Displaying Member Names and Values”
on page 97

• “Setting or Turning Off Cell Banding” on page 100

• “Setting the Report Display Area” on page 101

• “Adding Background Images” on page 102

80 Display Areas in a Rendered Report
Display Areas in a Rendered Report
A relational report is rendered into several general areas: group headers, group
footers, group totals, column headers, and data:

A report without any grouping has only the column headers and data areas. Once
a grouping is added, group headers, group footers, and group totals areas become
available. If the example above, the report is grouped by Product, creating:

• A level 1 group header area for the overall report

• A level 2 group header area for each of the Product category

• A level 2 group total area for aggregations of numeric data within each
Product category

• A level 1 group total area for aggregations of numeric data for the overall
report

• A level 2 group footer area for each Product category

• A level 1 group footer area for the overall report

group footer

group totals
level 1

level 1

group totals
level 2

level 2

group header
level 1

group header

column headers

data

group footers
 level 2
CHAPTER 6
Formatting the Report and Data

Display Areas in a Rendered Report 81
If the report is grouped by Product and then Week_Ending, then a level 3 is added
with a group header area, group footer area, and group total area for each week’s
data.

For each of the display areas in the report, you can use TextBlox to specify the
text to display, rename the column headers, set the group header/footer/total texts,
or even modify the displayed data or break group member names or wrap HTML
code around them. Likewise, you can use StyleBlox to specify the style for each
of the report areas.

Report Layout Formatting and Styling Summary Table

The following table provides a summary of how the different areas in a rendered
report can be customized. Attributes in square brackets ([]) are optional. When
the optional attributes are not specified, the text or style will be applied to all
columns or all levels.

To set text using TextBlox To set styles using StyleBlox
To set styles using
CSS style classes

Column Headers

Use the columnHeader sub tag:

<bloxreport:text>
<bloxreport:columnHeader
text="new column header"
columnName="columnName"
/>

</bloxreport:text>

Use the columnHeader sub tag:

<bloxreport:style>
<bloxreport:columnHeader
style="CSS style string"
[columnName="columnName"]
/>

</bloxreport:style>

.column

Data Cells

Use the data sub tag:

<bloxreport:text>
<bloxreport:data
text="new data text"
[columnName="columnName"]
/>

</bloxreport:text>

Use the data sub tag:

<bloxreport:style>
<bloxreport:data
style="CSS style string"
[columnName="columnName]"
/>

</bloxreport:style>

.data
DB2 Alphablox
Relational Reporting Developer’s Guide

82 Display Areas in a Rendered Report
More detailed tasks are discussed throughout this chapter. Also, since the
availability of the group headers, footers, and totals depends on whether and how
the report is grouped, more details are discussed in the chapter on “Grouping
Data” on page 103.

Group Footers

Use the groupFooter sub tag:

<bloxreport:text>
<bloxreport:groupFooter
text="group footer text"
[level="N"]
/>

</bloxreport:text>

Use the groupFooter sub tag:

<bloxreport:style>
<bloxreport:groupFooter
style="CSS style string"
level="N"
/>

</bloxreport:style>

.groupfooter1,

.groupfooter2,

...

.groupfooterN

Group Headers

Use the groupHeader sub tag:

<bloxreport:text>
<bloxreport:groupHeader
text="group header text"
[level="N"]
/>

</bloxreport:text>

Use the groupHeader sub tag:

<bloxreport:style>
<bloxreport:groupHeader
style="CSS style string"
level="N"
/>

</bloxreport:style>

.groupheader1,

.groupheader2,

...

.groupheaderN

Group Totals

Use the groupTotal sub tag:

<bloxreport:text>
<bloxreport:groupTotal
text="group total text"
[level="N"]
[columnName="columnName"]
/>

</bloxreport:text>

Use the groupTotal sub tag:

<bloxreport:style>
<bloxreport:groupTotal
style="CSS style string"
level="N"
[columnName="columnName"]
/>

</bloxreport:style>

.grouptotal1,

.grouptotal2,

...

.grouptotalN

To set text using TextBlox To set styles using StyleBlox
To set styles using
CSS style classes
CHAPTER 6
Formatting the Report and Data

Styling vs. Formatting vs. Setting Text 83
Styling vs. Formatting vs. Setting Text
The words “styling” and “formatting” are sometimes used interchangeably to
refer to everything from adding a title, specifying column widths, setting font
sizes, colors, and alignment, to having numeric data formatted in a certain way.
Since Relational Reporting uses cascading style classes and renders reports in
DHTML, it is important to differentiate styling-related tasks that are based on
CSS principles from data formatting tasks that have nothing to do with CSS.

StyleBlox in Relational Reporting provides a way for you to style the data in a
report based on the data type or member using CSS style strings. For example,
you can set the style for numeric data, text data, negative data values using a CSS
style string such as “font-size: 85%; color: white; background-color:
blue;.”

FormatBlox, on the other hand, lets you specify the data display format for dates
and numeric data by following Java’s format masks. The following table
compares the differences between StyleBlox and FormatBlox:

StyleBlox FormatBlox

Sets display style (such as text size, font,
color, alignment, and background color)
for different data types and report areas.

Sets the display format for
numeric, date, and missing data.

Styles specification follows CSS
principles.

Format specification follows Java
format masks.

Nested tags:

� numeric

� date

� missing

� text

� banding

� negative

• data (data only)
• column (both data and header for the

specified column)
• columnHeader (column header only)
• groupHeader
� groupFooter

� groupTotal

All the above tags have a style attribute
for specifying the CSS style string.

Nested tags:

• numeric: specifying the
numeric format, for example,
$#,###.00

• date: specifying the data
format, for example,
yyyy.MM.dd

• missing: specifying the text to
display if data is missing

• aggregation: specifying the
format for aggregation values
(group totals)

All the above tags have a format
attribute for specifying the format
string.
DB2 Alphablox
Relational Reporting Developer’s Guide

84 Styling vs. Formatting vs. Setting Text
TextBlox lets you set the display text or wrap HTML code around the current text
in the five areas in a rendered report: group headers, group footers, group totals,
column headers, and data. It has five identical sub tags as StyleBlox:
columnHeader, data, groupHeader, groupFooter, and groupTotal. See “Report
Layout Formatting and Styling Summary Table” on page 81 for a summary table
that compares the tags.

Note that FormatBlox, StyleBlox, and TextBlox are not data transformers, and
therefore the order they are added in your JSP does not impact the data pipeline.
Once the data is transformed through sorting, filtering, calculating, hiding/
removing members, or grouping, tags for these Blox are then processed to render
the final report.

Processing Sequence for StyleBlox, FormatBlox, and TextBlox

After the data is transformed through the pipeline, Alphablox Relational
Reporting engine renders the report in the following sequence:

1 The format mask gets applied to the value first (FormatBlox).

2 The formatted value is wrapped in text (TextBlox).

3 Then the cell is output with the style (StyleBlox).

For the following code:

<bloxreport:format>
<bloxreport:numeric format = "$#,###.00" />

</bloxreport:format>

<bloxreport:text>
<bloxreport:groupTotal

text = "Total: <value/>" />
</bloxreport:text>

<bloxreport:style>
<bloxreport:groupTotal

style = "color: green" />
</bloxreport:style>

The resulting HTML code for a data cell may look as follows:

<td style="color: green">Total: $1,000.00</td>

The order these tags are added are not important since they will always be
processed in the sequence described above. It is important to use the TextBlox
only to set texts and leave styling to StyleBlox. Since you can add HTML code to
text set through TextBlox, you should only add none-style related code since the
syles are likely going to be overriden by StyleBlox or the stylesheet.

For details on styling reports, see “Styling Data Displayed in Report” on page 90,
and “Specifying and Styling Column Headers” on page 93. The details for
StyleBlox usage and tag syntax are described in “StyleBlox” on page 193.
CHAPTER 6
Formatting the Report and Data

StyleBlox vs. CSS Styles 85
For details on data formatting, see “Formatting Data” on page 87. The details for
FormatBlox usage and tag syntax are described in “FormatBlox” on page 168.

For details on setting texts, see “Specifying and Styling Column Headers” on
page 93 and “Specifying and Styling Break Group Headers, Footers, and Totals”
on page 107. The details for TextBlox usage and tag syntax are described in
“TextBlox” on page 197.

StyleBlox vs. CSS Styles
A relational report is rendered using a set of styles defined in report.css in
<alphablox_dir>/system/AlphabloxPlatform/AlphabloxServer/report/. The
complete listing is provided in “Style Classes” on page 35. While StyleBlox lets
you style the data and column headers based on data type or member, the CSS
styles encompass the entire report, including the overall report, break group
related areas, all the interactive menus, and the Report Style dialog box.

Overall Report

The outmost wrapping HTML tag for a relational report is a DIV. The .report
class lets you define the entire report display attributes, such as the report
background color, border, padding, and margin. The default style for .report has
a white background with a solid, 1-pixel black border.

Break Groups

When a report is organized in groups by GroupBlox, group headers, footers, and
totals become available. Each of these areas has a corresponding style class.
Depending the levels of grouping, you have the following style classes:

• .groupheader1, .groupheader2, ..., .groupheaderN
• .groupfooter1, .groupfooter2, ..., .groupfooterN
• .grouptotal1, .grouptotal2, ..., .grouptotalN

For a visual representation of each of these areas, see the example in “Display
Areas in a Rendered Report” on page 80. For detailed discussion of grouping and
styling a report with break groups, see the chapter on “Grouping Data” on
page 103.

Interactive Context Menus

All the interactive context menus are rendered using style classes and can be
customized to match your report’soverall look and feel. Classes include .menu,
.choice, .choicehover, .separator, and .selected.

Report Style Dialog Box

The Report Style dialog is rendered using a set of style classes and can be
customized to match your application’s overall look and feel. For details, see
“Styling the Report Editor User Interface” on page 131.
DB2 Alphablox
Relational Reporting Developer’s Guide

86 StyleBlox vs. CSS Styles
Columns and Data

There are classes for the actual data and column headers in a report. This is where
the StyleBlox and the style classes overlap somewhat. When the two collide,
StyleBlox win. The following are the classes for defining the styles for column
headers, column headers when mouse over, column headers when they are
selected, data, and banding.

• .column: for column headers
• .columnhover: for column headers when mouseover
• .selected: column headers when they are selected
• .data: for data rows
• .banding: for alternate data rows

Places where StyleBlox and the style classes overlap are the .column, .data, and
.banding styles. The following table shows the overlaps and how they work
differently:

 Note that if these styles are specified in both places, styles specified in
StyleBlox will be applied.

Nested Tags in StyleBlox CSS Style Classes

column: style applies to both the
header and the data of the specified
member.

[none]

columnHeader: style applies to all
column headers if a member is not
specified. If a member is specified,
the style is applied only to the
header of that column.

.column: style applies to all column
headers.

data: style applies to all data if a
member is not specified. If a
member is specified, the style is
applied only to data for that
column.

.data: style applies to all data

banding: style applies to alternate
data rows

.banding: style applies to alternate
data rows
CHAPTER 6
Formatting the Report and Data

Formatting Data 87
Formatting Data
To specify the default data format by data type or by member, you can use
FormatBlox. FormatBlox supports specification of display format for the
following types of data:

• numeric

• date (and time)

• missing data

• aggregation (for aggregation data, also known as the group totals, which are
available when a report is grouped and the values are always numeric).

You can specify the data format using Java format masks, as shown in the
following example:

<bloxreport:format>
 <bloxreport:numeric format="####.00;(####.00)" />
<bloxreport:numeric format="$#,###.00;$(#,###.00)"
member="Sales" />

<bloxreport:aggregation format="$#,###;$(#,###)"
member="Sales" />

<bloxreport:date format="yyyy.MM.dd G 'at' hh:mm:ss z" />
<bloxreport:date format="EEE, MMM d, ''yy" member="Date" />
<bloxreport:missing format="Units Value Missing"
member="Units" />

<bloxreport:missing format="Sales Value Missing"
member="Sales" />

</bloxreport:format>

This code example sets:

• the default format for positive numeric data to �####.00�; the default format
for negative numeric data to �(####.00)." For example, 1234.5 becomes
1234.50, and -1234.5 becomes (1234.50).

• the numeric data for member “Sales” to "$#,###.00;$(#,###.00)." For
example, 1234.5 becomes $1,234.50, and -1234.5 becomes $(1,234.50).

• the group totals for “Sales” to "$#,###;$(#,###)." For example, 1234.5
becomes $1,235, and -1234.5 becomes $(1,235).

• the default format for dates to "yyyy.MM.dd G 'at' hh:mm:ss z". An
example of this format is 2001.10.01 AD at 09:27:13 PDT.

• the date format for member “Date Member” to "EEE, MMM d, ''yy". An
example of this format is Mon, October 1, '01.

• the text display when member “Units” contains missing data to “Units Value
Missing”
DB2 Alphablox
Relational Reporting Developer’s Guide

88 Wrapping HTML Code Around Data Values
• the text display when member “Sales” contains missing data to “Sales Value
Missing”

For details on format masks, see http://java.sun.com/j2se/1.4.2/docs/api/java/text/
DecimalFormat.html.

You can add only one <bloxreport:format> tag in a <bloxreport:report> tag.
However, within the <bloxreport:format> tag, you can have multiple
<bloxreport:numeric>, <bloxreport:date>, and <bloxreport:missing> tags.
This allows you to set the data format for different members.

For adding styles or wrapping HTML code around data values, see the next
sections on “Wrapping HTML Code Around Data Values” and “Styling Data
Displayed in Report.”

Wrapping HTML Code Around Data Values
You may want to add HTML code around data values in a report to, for example,
add additional text, images, styles, or links to other related information. TextBlox
provides a way to set the text for five distinct areas in a report, one of which is the
data area. TextBlox sends the entire text string to the browser untouched, except
for two special substitution variables, <member/> and <value/>.

The five areas in a render report is described in “Display Areas in a Rendered
Report” on page 80. Using TextBlox, you can rename or wrap HTML code
around column headers, group headers, group footers, group totals, and data. The
following example shows how the data values in the column “Location” are
replaced with the string “Not to be disclosed” using the TextBlox’s nested data
tag:

<bloxreport:text>
<bloxreport:data

columnName = "Location"
text = "Not to be disclosed"

/>
</bloxreport:text>

In most cases, however, what you want is to wrap HTML code around the values
rather than replace the values. The following example shows how the data values
in the column “Location” become hyperlinks that bring up more information on
each location.
CHAPTER 6
Formatting the Report and Data

http://java.sun.com/j2se/1.4.2/docs/api/java/text/DecimalFormat.html

Wrapping HTML Code Around Data Values 89
This is done using the following code:

<bloxreport:report id="myReport">
...
<bloxreport:text>

<bloxreport:data
columnName="Location"
text="<a href=\"javascript:getURL('<value/>')\"><value/>"

/>
</bloxreport:text>
...

</bloxreport:report>

<value/> is a substitution vairable (not a JSP tag) that gets substituted into the
actual data values when TextBlox sends the text string to the browser. Inside the
TextBlox tag, you can have multiple data tags. For each column whose data
values you want to modify, add a nested data tag.

The getURL() JavaScript function may look as follows:

function getURL(location) {
shortName = location.substr(0,product.indexOf(" "));
url="http://myserver/sites/" + shortName + ".html";
open(url);

}

When users click on Beverly Hills, the Javascript getURL("Beverly Hills") is
called and url gets the value of http://myserver/sites/Beverly.html.

For more information on TextBlox, its nested tags, and the substitution variables,
see “TextBlox” on page 197 and “Special Substitution Variables for Displaying
Member Names and Values” on page 97.

Adding HTML code to Data Returned from a Query

Another way to add HTML code to data returned from a query can be done by
instructing the FormatBlox not to encode the HTML using the FormatBlox’s
<bloxreport:html> nested tag:

<%
session.removeAttribute("htmlLinkReport");
DB2 Alphablox
Relational Reporting Developer’s Guide

90 Styling Data Displayed in Report
Query = "Select Week_Ending, Area, '<a href=info.jsp?location='
+ Loc + '>' + Loc + '' as �Location�, Product" +
"FROM qcc";

%>

<bloxreport:report id="htmlLinkReport" interactive="true">
<bloxreport:sqlData

query="<%= Query %>">
<bloxreport:dataSourceConnection
dataSourceName="myRDB" />

</bloxreport:sqlData>

<bloxreport:format>
<bloxreport:html member="Location" />

</bloxreport:format>

The returned data for the Location column will preserve the HTML code. When
users click on the Sonoma link, a request for page
moreInfo.jsp?location=Sonoma is issued. Notice that the member is given an
alias “Location” in the query. Since the Alphablox Relational Reporting engine is
instructed to “leave HTML alone” and not to encode it, we need a display name
for the member so we can reference it in the <bloxreport:html> tag.

Styling Data Displayed in Report
To specify the data display style such as font face, size, style, color, text
alignment, or background color, use StyleBlox or cascading style sheets.

A relational report is displayed based on the styles you specify for each of the
style classes used by Relational Reporting. The style classes related to data
display are:

� .data

� .banding

The following table shows the use of these classes:

Example Effect

.data {
font-size: 11;
text-align: right;
padding-left: 20;
color: black;
background-color: white;

}

All data cells are displayed in the style
specified.

.banding {
background-color: #CCCCFF;

}

Alternative data rows are displayed in the
style specified.
CHAPTER 6
Formatting the Report and Data

Styling Data Displayed in Report 91
For a complete list of classes you can use to style a report, see “Style Classes” on
page 35.

To set the display style for missing data, negative data values, or for a specified
data type or data column, you can use StyleBlox. StyleBlox lets you specify the
display style for the following data type:

The default text alignment by data type in the rendered report is as follows:

You can overwrite the default using StyleBlox as shown in the following
example:

<bloxreport:style>
<bloxreport:text style="text-align: center" />

</bloxreport:style>

In addition, StyleBlox lets you set the display style for the following report data
and element:

• cell banding

• missing data

• negative data values

• a specified column

Data Type
Nested Tags within
<bloxreport:style>

Effect

date <bloxreport:date
style="yourStyle"/>

All columns containing date or
timestamp are displayed in the style
specified.

numeric <bloxreport:numeric
style="yourStyle" />

All columns containing numeric
data are displayed in the style
specified.

text <bloxreport:text
style="yourStyle" />

All columns containing text are
displayed in the style specified.

Data Type Text Alignment

Date left

Numeric right

Text left
DB2 Alphablox
Relational Reporting Developer’s Guide

92 Styling Data Displayed in Report
The corresponding tags and their effects are described in the following table:

In the following example:

<bloxreport:style>
<bloxreport:banding style="background-color: #FFCCFF" />
<bloxreport:missing style="background-color: aqua" />
<bloxreport:negative style="background-color: red" />
<bloxreport:column style="color: yellow" member="Country"/>
<bloxreport:column style="color: blue" member="State"/>

</bloxreport:style>

• the background color for alternate data rows are #FFCCFF

• the background color for the cell containing missing data is set to aqua

• the background color for the cell containing negative data is set to red

• the text color for the Country member is set to yellow

• the text color for the State member is set to blue

Report Data
or Element

Nested Tags within
<bloxreport:style>

Effect

cell
banding

<bloxreport:banding
style="yourStyle"/>

Alternate data rows are
displayed in the specified
style.

 The style for alternate data
rows can also be specified using
the .banding style class.
However, styles set through
StyleBlox win over the styles
set in style classes.

missing
data

<bloxreport:missing
style="yourStyle"/>

All missing data (or null data)
are displayed in the style
specified.

negative
data values

<bloxreport:negative
style="yourStyle"/>

All negative data values in the
report are displayed in the
style specified.

a specified
column

<bloxreport:column
style="yourStyle"
member="memberName"/>

Both data and column headers
in the named column is
displayed in the style
specified.
CHAPTER 6
Formatting the Report and Data

Specifying and Styling Column Headers 93
 You can have only one StyleBlox in a report. If you have multiple StyleBlox,
only the last StyleBlox has any effect on the report. However, for its nested tags, you
can have multiple column, missing, negative or banding tages, and styles set
through these nested tags will cascade.

Specifying and Styling Column Headers
To specify column headers that are different from the field names in the database,
you can do so in your SQL statement that extracts the data, such as using a
statement like "SELECT FROM myTable column1 AS newColumnName1, column2 AS
newColumnName2...." In this case, the members are known to ReportBlox as
newColumnName1 and newColumnName2. Note that member names are case-
sensitive, so in your later references to these members, their cases should be
respect.

 Oracle returns the new names in all uppercases. To preserve the cases, quote
the member names:

"SELECT FROM myTable total_sq_ft AS \"Sq_Ft"\, sq_ft_pct AS \"Pct\""

Another approach is to use the TextBlox. TextBlox lets you specify the display
texts for the five areas in a rendered report: column headers, data, and, if the
report is grouped, group headers, group footers, and group totals (see “Display
Areas in a Rendered Report” on page 80 for these areas on a report). The
<bloxreport:text> tag has nested tags for you to specify the text or add HTML
code around the value/member for each of the five areas.

To specify a column header, use the TextBlox’s nested columnHeader tag. This
tag has two tag attributes:

• columnName— required; the name of the member on this column

• text— required; the text to display for the column header. Everything you
specify here will be sent to the browser for processing, including any HTML
code added.

The following example sets the column header for member “Sales” to “Product
Sales” and the column header for member “Units” to “Units Sold:”

<%@ taglib uri="bloxreporttld" prefix="bloxreport" %>
<bloxreport:report id = "MyReport">
...

<bloxreport:text>
<bloxreport:columnHeader

columnName="Sales">
text="Product Sales" />

<bloxreport:columnHeader
columnName="Units"
DB2 Alphablox
Relational Reporting Developer’s Guide

94 Specifying and Styling Column Headers
text="Units Sold" />
</bloxreport:text>

...
</bloxreport:report>

You can wrap HTML code around column headers to add formatting, links, or
images. The following example:

• Renames the column header for member Cost to Unit Cost.

• Adds a link from the header to another URL in the myApp application for
additional information on the cost.

• Adds an image info.gif that resides in the same directory as this report JSP.

<bloxreport:text>
<bloxreport:columnHeader

columnName="Cost"
text="<img

src="info.gif">Unit Cost" />
</bloxreport:text>

The rendered report looks as follows:

TextBlox preserves your HTML code for the column header so you can use the
standard HTML to format the headers. The URL and image path can be relative or
absolute:

• For absolute URLs, the string should begin with “http://”.

• For relative URLs:

• Starting the string with a slash (/) indicates that the URL is relative to the
server root. The application context needs to be included in the URL.

• Starting the string without a slash indicates that the URL is relative to the
current document.

To add HTML code around the member name without renaming it, use the
<member/> substitution variable, as shown in the following example:

<bloxreport:text>
<bloxreport:columnHeader

columnName="Cost"
text="<img
CHAPTER 6
Formatting the Report and Data

Specifying and Styling Column Headers 95
src="info.gif"><member/>"/>
</bloxreport:text>

<member/> is a substitution variable that gets substituted into the member name
when the relational report HTML is sent to the browser. It is not a JSP tag.

 If the report is rendered in interactive mode, when users choose to rename the
column header using the Column Header Context Menu, all the HTML code will
appear. This could be undesirable. In addition, your users can easily overwrite
your HTML code and formatting. It is recommended that you set the interactive
attribute of your ReportBlox to false if you have HTML code wrapped around
your column headers or footers.

 Avoid adding styling strings using TextBlox. Styles are output last by the
Alphablox Relational Reporting engine after the data has been formatted and
wrapped in text. Setting styles through the text attribute in TextBlox’s nested
tags is not as efficient and can cause you confusion as the styles are overridden by
styles set in stylesheets and StyleBlox.

 In an interactive report, if you wrapp an anchor tag outside the column header
text (or group headers, footers, and totals), when you mouse over the column header,
the context menu will not pop up. You will need to hover somewhere else in the cell
(but not the link) in order for the menu to pop up. This is the browser’s behavior.
Keep this in mind as you design your report.

Styling Column Headers

To style a column header, use the StyleBlox’s nested columnHeader tag. This tag
has two tag attributes:

• columnName— optional; the name of the member on this column

• style— required; the style to apply to the column header.

The following example sets the column header style for “Sales” to center-aligned:

<%@ taglib uri="bloxreporttld" prefix="bloxreport" %>
<bloxreport:report id = "MyReport">
...

<bloxreport:style>
<bloxreport:columnHeader

columnName="Sales">
style="text-align: center;" />

</bloxreport:style>
...
</bloxreport:report>
DB2 Alphablox
Relational Reporting Developer’s Guide

96 Specifying Column Width, Color and Style
Recall that in TextBlox’s nested columnHeader tag, you can wrap HTML code
around the column header text. Avoid adding styling strings using TextBlox since
styles are output last by the Alphablox Relational Reporting engine after the data
has been formatted and wrapped in text. Setting styles through the text attribute
in TextBlox’s nested tags is not as efficient and can cause you confusion since the
styles are overridden by styles set in stylesheets and StyleBlox.

Specifying Column Width, Color and Style
You can use StyleBlox’s <bloxreport:column> tag to specify the width,
background color and font style for both data and the column headers in the
named column. Specify the style as you normally would to an HTML table cell,
with each style attribute and value pair separated with a semicolon (;).

<bloxreport:style>
<bloxreport:column style="font-weight: bold; color: white;

background-color: gray" member="Type" />
<bloxreport:column style="width:20px; background-color:

#99ffcc; font-weight: bold" member="Product" />
</bloxreport:style>

Typical attributes you can specify for a table cell include:

• background color

• font face, size, style, weight, and color

• text alignment: left, right, center

• border color

Use an a style sheet editor or an HTML editor with a graphical user interface to
help you achieve your desired style.

To specify the style for column headers, you can:

• Specify the style for the .column class, which is applied to all column
headers.

• Specify your own style class and apply that to specified column headers
using the nested <bloxreport:columnHeader> tag inside TextBlox.

See “Specifying and Styling Column Headers” on page 93 for more details and
code examples.
CHAPTER 6
Formatting the Report and Data

Special Substitution Variables for Displaying Member Names and Values 97
Special Substitution Variables for Displaying Member Names and
Values

Two special substitution variables are available for you to get the name of a
member on a column, the break group member names, or the value of a member.
These are useful when you need to add HTML code to around column headers,
dynamically display break group member names, get the value of a specific
member, or display data from another column. The following sections describe
the two variables.

The <member/> Substitution Variable

The <member/> variable is used to substitute the name of the current member into
the current location. It is valid inside all of TextBlox’s nested tags. It has one
optional level attribute for referencing current or higher level break group
members (level <= currentLevel).

Examples:

• Used inside TextBlox’s nested groupHeader tag to extract the break group
member name of the current or higher level:

<bloxreport:report ...>
<bloxreport:text>

<bloxreport:groupHeader level="1"
text="Sales Report by <member/>" />

<bloxreport:groupHeader level="2"
text="<i><member/></i>" />

</bloxreport:text>
</bloxreport:report>

• Used inside TextBlox’s nested columnHeader tag to extract the name of the
column header:

<bloxreport:report ...>
<bloxreport:text>

<bloxreport:columnHeader columnName="Product"
text="<member/> />

</bloxreport:text>
</bloxreport:report>

• Used inside TextBlox’s nested groupFooter tag to extract the name of the
current or higher level break group member:

<bloxreport:report ...>
<bloxreport:text>

<bloxreport:groupFooter level="2"
text="Group footer for Level 2: by <member level="\1\"/>,

<member/>" />
</bloxreport:text>

</bloxreport:report>
DB2 Alphablox
Relational Reporting Developer’s Guide

98 Special Substitution Variables for Displaying Member Names and Values
You can only reference a break group member at the current or a higher level. If a
lower level is specified, the entire tag string will be treated as texts and no
variable substitution will occur. If no level is specified, the current level is
implied. For example, a level 2 break group footer can only reference level 2 and
level 1 break group members, not level 3.

 Double quotes in the text string should be escaped (“\”).

The <value/> Substitution Variable

The <value/> variable is used to substitute the value of current member or a
specified member. It is valid inside the data, groupTotal, groupFooter, and
groupHeader tags. It can be used to extract either values of a different column into
data in the current column, or the group aggregation data (group totals) of a
different member into the group aggregation data in the current column.

Examples:

• Used inside TextBlox’s nested groupTotal tag to extact the aggregation value
for the break group:

<bloxreport:report ...>
<bloxreport:text>

<bloxreport:groupTotal level="1"
columnName="products"
text="<i>Total:</i> <value />" />

</bloxreport:text>
</bloxreport:report>

• Inside the TextBlox’s nested groupHeader tag for extracting the group total of
a named member:

<bloxreport:report ...>
<bloxreport:text>

<bloxreport:groupHeader level="1"
columnName="products"
text="<div align=\"left\"><member/></div>
<div align=\"right\">Rank:<value member=\"RankbyProduct\" /

></div>" />
</bloxreport:text>

</bloxreport:report>

• Used inside TextBlox’s nested data tag to extact the data value for the
column:

<bloxreport:report ...>
<bloxreport:text>

<bloxreport:data
columnName ="products"
text="<value/>" />

</bloxreport:text>
</bloxreport:report>
CHAPTER 6
Formatting the Report and Data

Special Substitution Variables for Displaying Member Names and Values 99
To get the value of another member, specify the member name. For example:

<value member="Sales" />

If the member name is not recognized or does not exist, the entire tag string will
be treated as texts and no variable substitution will occur.

 Double quotes in the text string should be escaped (“\”).

Using the <member/> and <value/> Variables

The following is an example of a level 2 group header referencing a level 1 break
group member:

This is done with the following code:

<bloxreport:report ...>
<bloxreport:text>

<bloxreport:groupHeader level="1"
text="Sales Report by <member/>" />

<bloxreport:groupHeader level="2"
text="<member level="1"/>: <member/>" />

</bloxreport:text>
</bloxreport:report>

The <member/> variable has a level attribute. If level is not specified, the current
grouping level as specified in the groupHeader, groupFooter or groupTotal tag is
implied. You can only reference the member of the current grouping level or at a
higher level. For example, a level 2 group header can only reference level 2 and
level 1 group members, not level 3. If the level is set to 3, the entire tag string will
be treated as texts and no variable substitution will occur.

The <value/> variable has a member attribute. If member is not specified, the
current member in the column is implied. For the groupHeader tag, you should
specify the member whose aggregation value for the grouping level you want to
extract. Without specification of a member, the <value/> substitution variable is
ignored since the Alphablox Relational Reporting engine cannot determine which
aggregation value should be used.

Sales Report by Product

Product: Chocolate Blocks
(Rows of data go here)

Product: Chocolate Blocks with Almond
(Rows of data go here)

Level 1
Group Header

Level 2
Group Header
DB2 Alphablox
Relational Reporting Developer’s Guide

100 Setting or Turning Off Cell Banding
Since group headers, footers, and totals are only available when a report is
grouped, more details are discussed in the Grouping Data chapter and the section
on “Specifying and Styling Break Group Headers, Footers, and Totals” on
page 107.

For live examples that demonstrate how these variables can be useful, see the
examples in “Formatting the Report and Data” and the “Grouping and Adding
Group-based Summary Columns” sections in Relational Reporting Blox Sampler.

Setting or Turning Off Cell Banding
The style classes related to data display are.data and .banding. The default
stylesheet has the two classes set to different background colors so data rows
appear in alternate colors. To set the banding colors, either specify the style for
the .banding style class or use the StyleBlox’s nested banding tag:

<style>
.banding { background-color: #ffffcc; }

</style>

or

<bloxreport:style>
<bloxreport:banding style="background-color: #ffffcc;" />

</bloxreport:style>

To turn off cell banding, set the same style for both classes. For example:

.data, .banding {
background-color: white;

}

Note that:

• Styles set through StyleBlox win over the styles set in style classes.

• In an interactive report, users can use the Report Style dialog (via the context
menus’ Style... option) to set styles for data cells in a column or all data cells in
the report. This will override the cell banding setting specified in your JSP. Since
the Report Style dialog is not aware of existing styles in the rendered report,
existing cell banding will be replaced by the background color specified in the
dialog for data in the column (or all columns if styles are set to apply to all data
cells).
CHAPTER 6
Formatting the Report and Data

Setting the Report Display Area 101
Setting the Report Display Area
As relational reports are displayed using Cascading Style Sheet, you can specify
the display area on the page using the .report class. Sometimes you may not want
the report to take up the entire browser window and only want the report to be
displayed inside an area on a specified position in a page. You can do so to the
style sheet your JSP page referenced, or you can specify that in-line right within
your JSP page. For example:

<head>
...

<style>
.report { height: 400; width: 500 }

</style>
</head>

This will cause the report to display as a scrollable 400 X 500 box inside the
browser window. This gives you greater control of the page layout. For example,
you may have a ReportBlox followed by a GridBlox and some text on the same
page:

 Not all browsers provide full support for Cascading Style Sheet. Some DHTML
related techniques may not work in Netscape browsers. Many resources are available
on the Web that provide tips for using CSS across multiple browsers.
DB2 Alphablox
Relational Reporting Developer’s Guide

102 Adding Background Images
Adding Background Images
To add a background image, add the image to the .report class in the style sheet:

.report { height: 300; width: 450;
background: white url(background.gif) no-repeat
fixed center

}

This will add an image at the center of the report, relative to the display area. The
following example shows a watermark background image added to the report, and
as the users scroll up and down, the image stays in the center.

 Not all browsers provide full support for Cascading Style Sheet. Some DHTML
related techniques may not work in Netscape browsers. Many resources are available
on the Web that provide tips for using CSS across multiple browsers.
CHAPTER 6
Formatting the Report and Data

7
Grouping Data

This section discusses tasks that are closely related to grouping of data. These
include creating break groups, adding aggregation data per break group, adding
calculated columns that provide group-based summary data, and formatting the
report for break group headers, footers, and totals for each break group level.
These involve primarily the use of GroupBlox for adding break groups, TextBlox
for specifying text for various display areas in the report, and CalculateBlox for
adding group-based summary data columns.

The “Grouping and Adding Group-based Summary Columns” section in the Blox
Sampler for Relational Reporting has examples demonstrating most of the tasks
discussed in this chapter.

Contents

• “Overview of Break Groups and Break Group Levels” on page 104

• “Specifying and Styling Break Group Headers, Footers, and Totals” on
page 107

• “Calculating Group-based Summary Columns” on page 110

• “Adding Report Title and Column Summary (Aggregations)” on page 115

• “Using MembersBlox in Conjunction with GroupBlox” on page 115

104 Overview of Break Groups and Break Group Levels
Overview of Break Groups and Break Group Levels
Often times a report is grouped for ease of reading, data interpretation and data
comparison. Once a report is grouped:

• Group headers, footers, and totals/aggregations areas become available. You
can specify the text and display style for each of these areas

• You can add group-based calculations (ranking, percent of total, running
total, and running count) based on specified break group level.

GroupBlox lets you group a report by specifying the members whose values you
want to use as break groups. For example, the following code lets you group the
data by product.

<bloxreport:group members="Product" />

When a break group is addded, a level is automatically added, with level 1 being
the overall level that includes all data, and level 2 being the level for the
individual break groups. In the above example, the title of the report becomes
level 1 group heading, and each Product group is at level 2, as shown below:

group footer

group totals
level 1

level 1

group totals
level 2

level 2

group header
level 1

group header

group footers
 level 2

column headers

data
CHAPTER 7
Grouping Data

Overview of Break Groups and Break Group Levels 105
A report without any grouping has only the column headers and data areas. Once
a report is grouped in some way, group headers and group footers become
available. In addition, an aggregation value, or group total, is available for each
numeric column per break group. The default aggregation type is sum. You can
specify the aggregation type using the nested <bloxreport:aggregation> tag. The
following example shows a report grouped by “Product,” and for each product,
we want a count of the locations that sell that product, and an average of units
sold.

<bloxreport:group members="Product">
<bloxreport:aggregation member="Location" type="count" />
<bloxreport:aggregation member="Units" type="average" />

</bloxreport:group>

 To create a report with aggregation values for each column, or to create a
report “title” without any grouping, add a GroupBlox with the group members set
to an empty string:

<bloxreport:group members="" />

It is important to note that:

• The order the grouping members are specified is important. With each
member specified in the members attribute, another level of grouping is added.

• GroupBlox handles only grouping and does not imply sorting. In the above
example, the product break groups do not appear in alphabetical order unless
you sort the data on product first. See “Sorting Data” on page 68 for
information on sorting.

Break Group Aggregations

Aggregation values for numeric data are automatically available in a grouped
reported. They appear in a report’s group totals area. Supported aggregation types
are:

� average

� count

� max

� min

� none

� sum

By default, the aggregation type for numeric data is sum unless specified
otherwise. If you do not want any aggregations, set the type to none. For none-
numeric columns, the default aggregation value is treated as missing data. The
only valid aggregation type for none-numeric data is count.
DB2 Alphablox
Relational Reporting Developer’s Guide

106 Overview of Break Groups and Break Group Levels
When aggregations are calculated, missing values are ignored. The following
example shows the aggregation values for the give data:

The following table shows the Blox and tags to use for various tasks related to
group totals:

See “Specifying and Styling Break Group Headers, Footers, and Totals” on
page 107 and “Formatting Data” on page 87 for more information.

A column with the
following data

The aggregation values will be:

1 • sum: 15

• average: 3

• count: 5

• max: 5

• min: 1

2

3

4

5

Missing

Task Solution

Setting style CSS style class:
grouptotal1, .grouptotal2, ..., .grouptotalN.

StyleBlox’s groupTotal sub tag:

<bloxreport:style>
<bloxreport:groupTotal level="N"

style="color: red" />
</bloxreport:style>

Specifying data format FormatBlox’s aggregation sub tag:

<bloxreport:format>
<bloxreport:aggregation format="$#,###" />

</bloxreport:format>

Modifying displayed
group totals

TextBlox’s nested groupTotal tag:

<bloxreport:text>
<bloxreport:groupTotal

columnName="Cost"
text="Total: <value/>" />

</bloxreport:text>
CHAPTER 7
Grouping Data

Specifying and Styling Break Group Headers, Footers, and Totals 107
Specifying and Styling Break Group Headers, Footers, and Totals
When you group a report using GroupBlox, three report display areas become
available: group headers, group footers, and group totals. With each level of
grouping added, another level of group header, footer, and total areas become
available. For a diagram that shows the different areas, see “Overview of Break
Groups and Break Group Levels” on page 104.

In a report grouped by Product, for example, you may want the report title to be
“Profitability by Product.” For each product group, you get a group header, a
group total for each numeric data column, and a group footer. The group header
and footer are specified using the TextBlox’s nested groupHeader and
groupFooter tags:

<bloxreport:report id="anotherSampleReport" ...>
...
<bloxreport:text>

<bloxreport:groupHeader level="1"
text="Profitability by <member/>" />

<bloxreport:groupFooter level="1"
text="--End of Report" />

<bloxreport:groupTotal columnName="Cost"
text="Grand Total Cost: <value/>" />

</bloxreport:text>
</bloxreport:report>

Level 1 is the outmost level. With each level of grouping added, a level is added.
If a report is grouped by Product and then by Country, for example, level 1
represents the overall report; level 2, each Product break group; and level 3, each
Country break group. This same rule applies to the groupHeader, groupFooter,
and groupTotal tags.

TextBlox sends the entire specified text string to the browser untouched, except
that it looks for two special substitution variables, <member/> and <value/>,
replacing the variables with the actual member names or data values.

Note the following:

• If the text string includes any double quotes, they should be escaped (“\”).

• You should avoid adding styling strings using TextBlox. Setting styles
through the text attribute in TextBlox’s nested tags is not as efficient and can
cause you confusion since the styles are overridden by styles set in
stylesheets and StyleBlox.

• Group footers for levels 1 through 3 are disabled by default in the supplied
stylesheet. This means:
DB2 Alphablox
Relational Reporting Developer’s Guide

108 Specifying and Styling Break Group Headers, Footers, and Totals
• If you want the group footers for levels 1 to 3 to display, you need to
overwrite the style class in your page or stylesheet:

.groupfooterN { display: inline; }

• If you have 4 or more levels of break groups, group footers for level 4
and up will be displayed while the higher level footers don’t. To hide the
footers for level 4 and up, set the display to none :

.groupfooterN { display: none; }

It is important to know that adding groupings, specifying group headers/footers/
totals, and setting the styles used to display them involves different Blox,
multiple tags, and several stylesheet classes, as described in the following table:

Add Grouping

Use GroupBlox:

<bloxreport:group
members="Product,Week_Ending" />

Product is the first level grouping;
Week_Ending, the second level.

Specify text for group headers, footers, and totals

Use TextBlox:

<bloxreport:text>
<bloxreport:groupHeader

level="1"
text="Profitability by <member/>" />

<bloxreport:groupHeader
level="2"
text="<member level="1" />: <member/

>" />
<bloxreport:groupHeader

level="2"
text="<member/> (Ranking: <value

member=\"RankOfSales\"/>"
/>

<bloxreport:groupFooter
level="2"
text="--End of <member/>" />

<bloxreport:groupFooter
level="1"
text="--End of Report" />

<bloxreport:groupTotal
level="1"
columnName="Cost">
text="Grand Total: <value/>" />

<bloxreport:groupTotal
level="2"
columnName="Cost">
text="subtotal: <value/>" />

</bloxreport:text>

groupHeader, groupFooter, and groupTotal
are nested tags within the <bloxreport:text>
tag. However, they are only in effect when the
report is grouped. If level is not specified, the
text will be applied to group headers, footers,
and totals of all levels.

The <member/> variable will be substituted by
the member name of the specified grouping
level. If level is not specified, the current
grouping level is implied. You can only
reference the current or higher levels of break
group members.

The <value/> variable will be substituted by
the aggregation value for the specified
member for the specified level of grouping. If
level is not specified, the current grouping
level is implied. You can only reference the
current or higher levels of break group
members.

See “Special Substitution Variables for
Displaying Member Names and Values” on
page 97 for details on the <member/> and
<value/> variables.
CHAPTER 7
Grouping Data

Specifying and Styling Break Group Headers, Footers, and Totals 109
 Again, group footers for levels 1 through 3 are disabled in the supplied stylesheet:

.groupfooter1, .groupfooter2, .groupfooter3 { display: none; }

To enable group footers for a particular level, add the following CSS to your
stylesheet:

Specify display style for group headers, footers, and totals

Use CSS stylesheet:

.groupheader1 {
font-size: 110%;
background-color: #9999FF; font-

weight: bold;
}

.groupfooter1 {
font-size: 80%;
background-color: #9999FF;

}
.grouptotal1 {
font-size: 100%;
text-align: right;

}

Use the style classes groupheaderN,
groupfooterN, and grouptotalN to specify the
display styles.

Use StyleBlox:

<bloxreport:style>
<bloxreport:groupHeader

level="1"
style="font-size: 110%;" />

<bloxreport:groupHeader
level="2"
style="font-size: 90%;" />

<bloxreport:groupFooter
level="1"
style="font-weight: bold;" />

<bloxreport:groupTotals
style="font-size:90%;font-

style:italic;" />
</bloxreport:style>

groupHeader, groupFooter, and groupTotal
are nested tags within the <bloxreport:style>
tag. These tags have a style attribute for
specifying CSS style strings. They are only in
effect when the report is grouped. If level is
not specified, the style will be applied to
group headers, footers, or totals of all levels.

Specify aggregation type for group totals

Use GroupBlox:

<bloxreport:group members =
"Product, Week_Ending">
<bloxreport:aggregation
member="Units" type="sum"/>

</bloxreport:group>

Use the <bloxreport:aggregation> tag nested
within the <bloxreport:group> tag to specify
the aggregation type for each numeric data
column. The default aggregation type for
numeric data is sum. Valid values are sum,
average, count, min, max, and none.
DB2 Alphablox
Relational Reporting Developer’s Guide

110 Calculating Group-based Summary Columns
.groupfooterN { display: block; }

or

.groupfooterN { display: inline; }

 Keep in mind that when the report is rendered in interactive mode, users can
change the column name, group totals text, and display styles for each element in the
report via the interactive context menus. Therefore, you should use the <member/>
and <value/> substitution variables to dynamically set your header and footer texts.

 In an interactive report, if you wrap an anchor tag around a column header, group
header, group footer, or group total to make it a link, when you mouse over them, the
context menu will not pop up. You will need to hover somewhere else in the cell (but
not the link) in order for the menu to pop up. This is the browser’s behavior. Keep this
in mind as you design your report.

Calculating Group-based Summary Columns
Using CalculateBlox, you can add a calculated column based on a calculation
expression. CalculateBlox also has four calculation functions for adding group-
based summary columns that rank the data, calculate the running totals, percent of
totals, and running counts in each break group. Since these are group-based
calculations, their working relies on an already grouped report. That is, before the
CalculateBlox is added to the pipeline, the report should have been grouped using
a GroupBlox.

The following shows a report grouped by Area, Location, and then Week_Ending,
with these added columns based on the values in Units:
CHAPTER 7
Grouping Data

Calculating Group-based Summary Columns 111
Notice that for the week of 2000-04-01, Milk Chocolate Blocks with Almonds
was the number one seller in Napa of the Northern California area, accounting for
24.5% of the units sold. This calculation is based on level 4 grouping, the lowest
level available. You can optionally specify to have the summary columns
calculated based on level 3 (for each location), 2 (for each area), or 1 (for all areas
in the report with no grouping).

For ranking, notice there is no aggregation value within the level the calculation
is based on (since this would not be meaningful). With the other calculations, you
get their aggregation values for each grouping level, and these values are
accessible using the <value/> substitution variable.

The following shows the same report with the level for each of the calculated
summary columns set to level 3. Compare the output with the previous one and
notice that:

Four columns—Rank, % Total, RunningTotal, and RunningCount—are calculated
based on the value in Units, with grouping level set to 4 (the lowest level, which is
the default).
DB2 Alphablox
Relational Reporting Developer’s Guide

112 Calculating Group-based Summary Columns
• The Rank column now ranks the Units for each level 3 group (in this case,
it’s Napa), regardless of the week. A group total for Rank is available for
each sub-group in Napa.

• The other three summary columns are calculated based on each level 3
grouping.

When grouping level is set to 3, notice the ranking are now for the Napa location
across the two weeks. During these two weeks, the Napa location sold a total of
1312 units, with the first week accounts for 47% of the sale, while the second week
sold 53%.
CHAPTER 7
Grouping Data

Calculating Group-based Summary Columns 113
The following table shows the syntax for each of the functions. All function
names are case-sensitive.

Function Syntax

rank() rank(memberName [, ASC|DESC] [, level])

Defaults to the lowest level of grouping if level is not specified or the
specified level does not exist. The default sort direction is DESC. The
directions are case-sensitive. Examples:

<bloxreport:calculate expression = "Rank = rank(Units)" />
<bloxreport:calculate expression = "[Rank of Sales] =
rank(Sales, 2)" />
<bloxreport:calculate expression="Rank = rank(Cost), ASC" />
<bloxreport:calculate expression="Rank = rank(Cost, ASC, 1)"
/>

percentOfTotal() percentOfTotal(memberName [, level])

Defaults to the lowest level of grouping if level is not specified or the
specified level does not exist.

<bloxreport:calculate expression = "[% Total] =
percentOfTotal(Units)" />
<bloxreport:calculate expression = "[% Total] =
percentOfTotal(Units, 2)" />

The calculated values will be decimals (for example, 0.245). To
format the data as 24.5%, use FormatBlox.

runningCount() runningCount(memberName [, level])

Defaults to the lowest level of grouping if level is not specified or the
specified level does not exist. Examples:

<bloxreport:calculate expression = "RunningCount =
runningCount(Units)" />
<bloxreport:calculate expression = "RunningCount =
runningCount(Units, 3)" />

runningTotal() runningTotal(memberName [, level])

Defaults to the lowest level of grouping if level is not specified or the
specified level does not exist. Examples:

<bloxreport:calculate expression = "RunningTotal =
runningTotal(Units)" />
DB2 Alphablox
Relational Reporting Developer’s Guide

114 Calculating Group-based Summary Columns
Keep in mind that these summary columns are calculated based on groups. You
should have a GroupBlox before the CalculateBlox in order for the summary data to
be meaningful and accurate. If the GroupBlox is added after the CalculateBlox
(either in the JSP or as users change the break groups using the interactive user
interface), the calculated columns are treated as regular numeric data columns
and the group aggregation values will be calculated as such. As a result, you will
get a report that contains meaningless data as show in the following screenshot:

 The above example uses FormatBlox to format the data in the % Total column,
generated using the percentOfTotal() function.

If GroupBlox is added AFTER the CalculateBlox, these summary columns are
treated as regular numeric columns with fixed values. The Rank column now has a
total of 191, and data in the other three columns are meaningless as the values are
based on the entire report without any break group.
CHAPTER 7
Grouping Data

Adding Report Title and Column Summary (Aggregations) 115
Adding Report Title and Column Summary (Aggregations)
To add a report title, you can do that in HTML outside of the ReportBlox. Or, if
the report is grouped, level 1 group header will appear as the title of the report.
See “Specifying and Styling Break Group Headers, Footers, and Totals” on
page 107.

If you want to provide summary data at the end of your report or add a title
without adding any break group, you can use the <bloxreport:group> tag and set
the value of the members attribute to an empty string (members = ""). You cannot
provide summary data (group totals) without adding a <bloxreport:group> tag.

The following example shows how to add aggregated data without break groups:

<bloxreport:group members = "" >
<bloxreport:aggregation member = "Sales" type = "sum" />
<bloxreport:aggregation member = "Units" type = "average" />

</bloxreport:group>

Using MembersBlox in Conjunction with GroupBlox
If you are using MembersBlox in conjunction with GroupBlox, you should use
MembersBlox before GroupBlox. This is because in interactive reports, users may
run into problems when they choose to Clear Group. For example, if you have
members A, B, C, D, and E in the result set, and you have a GroupBlox that makes
member A the break group member:

<bloxreport:group
members="A" />

Member A is now moved to a different “dimension,” similar to the page
dimension in a PresentBlox when you work with multidimensional data sources.

After the GroupBlox, in you choose to include only members B and C on the
Column dimension with MembersBlox:
DB2 Alphablox
Relational Reporting Developer’s Guide

116 Using MembersBlox in Conjunction with GroupBlox
<bloxreport:members
included="B, C" />

This keeps only members B and C on the Column dimension in the result set. If
your report is rendered in interactive mode, and your users choose to Clear
Group from the Column Header Context Menu, an error will occur since member
A no longer exists in the Column dimension as specified by the MembersBlox. To
avoid this potential problem, use MembersBlox before GroupBlox.
CHAPTER 7
Grouping Data

8
Saving and Exporting Data

This section discusses different ways your relational report can be saved or
exported for the purpose of sharing, printing, or offline reviewing. Options
include saving it as a static HTML or PDF file, sending it to Excel or other
applications, or bookmarking the reports.

The Saving and Exporting Data with Dynamic Queries example in Blox Sampler -
Relational Reporting demonstrates the different options discussed in this section.

Contents

• “Issues with Saving Interactive Reports Directly from Browser” on page 118

• “Saving as Static HTML to File System” on page 119

• “Bookmarking Reports and Saving States” on page 121

• “Saving as PDF” on page 125

• “Saving to Excel or Other Applications” on page 127

118 Issues with Saving Interactive Reports Directly from Browser
Issues with Saving Interactive Reports Directly from Browser
Since a relational report is rendered as HTML tables, your users may want to use
the browser's File -> Save As... option to save a copy on their local system. The
result, however, may not be desirable. If you save a report using a Netscape
browser, only the HTML is saved. Images, style sheets, and other external
resources referenced are not downloaded. As a result, the saved report will look
different from the original format and layout. In Internet Explorer, one can choose
to save a page as a complete Web page, as a Web archive file, or as HTML only.
Each option will produce different results. The following table summarizes the
results of trying to save a relational report through the browser:

Browser File Saveing Option Result of File --> Save As...

Non-interactive Reports

IE Save as complete
Web page

An error message saying the Web page
cannot be saved.

Save as HTML only The report is saved without the style
sheets and therefore may look different.

Save as Web
Archive (.mht)

The report is saved correctly with all
images and styles stored in one .mht file.
Can be viewed in IE.

Netscape The report is saved without the style
sheets and therefore may look different.

Interactive Reports

IE Save as complete
Web page

An error message saying the Web page
cannot be saved.

Save as HTML only The report is saved but it contains no data.

Save as Web
Archive (.mht)

The report is saved correctly with all
images and styles stored in one .mht file.
The DHTML associated with the Report
Editor interface is also saved; however, it
does not function when the page is loaded.

Netscape Not supported.

Report is rendered as a static HTML table
and the layout and format may be
incorrect.
CHAPTER 8
Saving and Exporting Data

Saving as Static HTML to File System 119
The “Web Archive, single file” file saving feature in Internet Explorer stores a
Web page as a single document (with an .mht file extension), embedding the
graphics and styles rather than storing them in a separate folder. An MHT file can
be viewed directly in Internet Explorer v5 or later. No links or references to
external resources are needed. When a relational report is saved as an MHT file,
the report format and layout are correctly preserved. However, for an interactive
report, the context menus in DHTML are saved as well. When a user views the
saved MHT file on his local machine, the Report Editor user interface will appear
to be available while in reality it does not function at all.

To provide a reliable way for your users to save a report with the correct layout,
you can provide a “bookmarking” feature that stores the state of the report in the
Alphablox Analytics repository. You can also render the report in PDF for your
users to print or save it onto their local system. Or you can offer to save an
interactive report in static HTML without the Report Editor interface to avoid
confusion caused by the non-functioning Report Editor user interface. All these
options are described next.

Saving as Static HTML to File System
To offer your users the option to save an interactive report as a static HTML page
onto their local system for later reviewing, the key is to set the interactive
property of the ReportBlox to false. This ensures the saved report will not
include the non-functioning context menus. Otherwise, the DHTML associated
with the context menus are saved with the report, resulting in potential confusion
as these context menus do not function offline.

Below is a sample report saver JSP file that demonstrates how a report is saved
onto a specified location, with all the users’ modifications to the report through
the Report Editor interface preserved.

In your JSP file containing ReportBlox, assuming you have code like the
following to call the report saver JSP page and pass in the report’s bloxName:

<head>
<%

String reportName = "myReport";
%>
<script>

var REPORT_NAME = "<%= reportName %>";
function toFile() {

window.open("file.jsp?reportname=" + REPORT_NAME, REPORT_NAME +
"_file", "height=400, width=600, scrollbars=yes, resizable=yes");

}
</script>
</head>

<body>
DB2 Alphablox
Relational Reporting Developer’s Guide

120 Saving as Static HTML to File System
...
Save File

<bloxreport:report id="report" bloxName="<%=reportName%>"
interactive="true" errors="true" >
...

</bloxreport:report>

The report saver JSP page file.jsp looks like the following:

<!--Importing the associated java classes in order to use
the APIs -->
<%@ page import="com.alphablox.blox.*" %>
<%@ page errorPage="error.jsp" %>
<%@ page import="java.io.*" %>

<!---Getting the reportName via the URL-->
<% String reportName = (String)request.getParameter("reportname");%>

<html>
<head>

<title><%= reportName %> Saving Report As File</title>
</head>
<body>
<%

// set the report to non-interactive mode so the menu items do not get
// rendered
if(reportName != null){

ReportBlox reportBlox = (ReportBlox)session.getAttribute(
reportName);

boolean isInteractive = reportBlox.isInteractive();
if(reportBlox != null){

reportBlox.setInteractive(false);
try {

/* Specify a location to save the file. Modify this
for your application. */
String filePath = "C:\\temp\\" + reportName + ".html";
FileWriter file = new FileWriter(filePath);
file.write("<html>");
file.write("<head>");
file.write("<title>" + reportName + " Report</title>");
file.write("<style>");

// Write the contents of the stylesheet into the page
String appPath = application.getRealPath("/");
String styleSheetPath = appPath + "\\style\\reportstyles.css";
// Create input stream object.
FileInputStream fis = new FileInputStream(styleSheetPath);
// Set variable for looping through bytes.
int c;
while((c = fis.read()) != -1) {

file.write(c); // Loop to read and write bytes.
}
fis.close(); // Close output and input resources.
CHAPTER 8
Saving and Exporting Data

Bookmarking Reports and Saving States 121
// Done writing out style sheet

file.write("</style>");
file.write("</head>");
file.write("<body>");
reportBlox.writeUpdate(file); // Generate the report table.
file.write("</body>");
file.write("</html>");
file.close();

out.println("Your file was successfully saved at " + filePath
+".");

}
catch(Exception e) {

out.println("The page not saved :\n" + e.getMessage());
}
finally {

// Set back to initial state
reportBlox.setInteractive(isInteractive); }

} else {
out.println("The report " + reportName + " does not exist.");

}
} else {
out.println("This page was called without a report name.");

}
%>
</body>
</html>

The same approach can be used to provide a page that is more suitable for
printing from the browser window.

Bookmarking Reports and Saving States
Bookmarking a report allows a user to save the “states” of a report in the
Alphablox Analytics repository. Using PersistenceBlox, you can save a report’s
format and data layout in the repository’s reportingpersistence/ directory.
When the bookmarked report is loaded, a connection to the data source is
instantiated and the up-to-date data is represented with the preserved format and
layout. Because live data is fetched when a bookmark is loaded from the
repository, the underlying data source needs to be available at load time.

To save a bookmark on a relational report, you need to specify the following in
the <bloxreport:persistence> tag:

• the location under the repository where the bookmark is to be stored

• the name of the bookmark

• the ID of the ReportBlox that you want to bookmark
DB2 Alphablox
Relational Reporting Developer’s Guide

122 Bookmarking Reports and Saving States
• the “save” operation

It is important to know that before you bookmark a report, if the report is
rendered in interactive mode, you should set it to non-interactive. If you don’t, the
report will not display correctly when the bookmark is loaded. This also means
that bookmarked reports can only be loaded as non-interactive reports.

Once a bookmark is saved in the repository, to continue to allow your users to
interact with the report on the screen, you should also reset the interactive mode
to true. The following example assumes a report.jsp file that provides a
bookmark saving function via an HTML form:

<%@ taglib uri="bloxreporttld" prefix="bloxreport" %>
<%@ page errorPage="error.jsp" %>

<html>
<head>

<title>Bookmark Example</title>
<link rel="stylesheet" href="/AlphabloxServer/report/

report.css">
</head>
<body>

<h1>Bookmark Example</h1>
<form method="GET" action="save.jsp" target="_blank">

<input type="text" name="bookmark" value="bookmark name"/>
<input type="submit" value="Save this bookmark"/>

</form>

<bloxreport:report id="MySalesReport1" interactive="true">
<bloxreport:cannedData/>

</bloxreport:report>

</body>
</html>

As the user enters a name for the bookmark and clicks the Save this bookmark
button, save.jsp is invoked and displayed in a separate browser window. The
following code snippet demonstrates the sequence of setting a report to non-
interactive mode, saving a bookmark of the report, and then resetting the
interactive to true:

//save.jsp
<%@ taglib uri="bloxreporttld" prefix="bloxreport" %>
<%@ page errorPage="error.jsp" %>
<%@ page import="com.alphablox.blox.*" %>

<html>
<head></head>
<body>
<h1>Report Bookmark Saved</h1>
<%

String bookmark = request.getParameter("bookmark");
CHAPTER 8
Saving and Exporting Data

Bookmarking Reports and Saving States 123
// "MySalesReport1" is the ID of a ReportBlox
// page that calls this SaveBookmark.jsp page.
ReportBlox report = (ReportBlox)

session.getAttribute("MySalesReport1");

// Set the interactive mode to false
report.setInteractive(false);

%>

<%--Add a PersistenceBlox, providing the ReportBlox ID
(targetBloxID), location, bookmark name (persistedName),
and operation to perform--%>

<bloxreport:persistence id="p1"
targetBloxId="MySalesReport1"
location="sales/east"
persistedName="<%= bookmark %>"
operation="save" />

// Set the report back to interactive mode
<%

report.setInteractive(true);
%>

<p>The bookmark <%= bookmark %> has been saved.</p>
</body>
</html>

If your Alphablox Analytics repository is file based, the above example will save
a bookmark named “SavesApr02” in the following location:

<alphablox_dir>/repository/reportingpersistence/sales/east/

If however, your Alphablox Analytics repository is database based, the above
example will save a bookmark in the repository with �reportingpersistence/
sales/east� in the CONTEXT column and �SavesApr02� in the NAME Column.

Loading Bookmarks

To retrieve a bookmark for relational reports, specify the location, the name of the
bookmark, and the “load” operation. In order for the bookmark to be loaded
successfully, the underlying data source needs to be available for live data to be
retrieved. The following example demonstrates how to generate a list of
bookmarks saved in the repository and make each bookmark a link:

<%@ taglib uri="bloxreporttld" prefix="bloxreport" %>
<%@ page errorPage="error.jsp" %>

<html>
<head>

<title>List Bookmarks</title>
</head>
<body>

<p>Your bookmarks:</p>
DB2 Alphablox
Relational Reporting Developer’s Guide

124 Bookmarking Reports and Saving States
<bloxreport:persistence id="repository" />
<table>
<%

String[] files = repository.list("sales/east",
repository.LIST_TYPE_STATES);

for(int i = 0; i < files.length; i++){
%>

<tr><td><a href="load.jsp?bookmark=<%= files[i] %>">
<%= files[i] %></td></tr>

<%
}

%>
</table>

</body>
</html>

When the user clicks a bookmark link, load.jsp is invoked with the bookmark
name passed in:

<%@ taglib uri="bloxreporttld" prefix="bloxreport" %>
<%@ page errorPage="error.jsp" %>

<html>
<head>

<title>Loading Bookmark</title>
<link rel="stylesheet" href="/AlphabloxServer/report/

report.css">
</head>

<%
String bookmark = request.getParameter("bookmark");

%>
<h1>Bookmark: <%= bookmark %></h1>
<%

if(bookmark != null) {
%>
<bloxreport:persistence

location="sales/east"
persistedName="<%= bookmark %>"
operation="load" />

<%
}

%>
</html>

It’s important to know that when a bookmarked report is loaded, PersistenceBlox
creates an instance of the ReportBlox object on the server. If an instance already
exists in the session, PersistenceBlox will overwrite the old instance. The Saving
and Exporting Data with Dynamic Queries example in Blox Sampler - Relational
Reporting demonstrates how you can manage this issue using bloxName.
CHAPTER 8
Saving and Exporting Data

Saving as PDF 125
Saving as PDF
A relational report can be rendered in PDF format using PdfBlox. This section
discusses two scenarios where you may offer a PDF version of a relational report.
The first scenario is the more common scenario where you provide a link or
button on the page to render the report to PDF. The other scenario discussed is
when you want users to view reports only in PDF; that is, instead of displaying a
report in DHTML (interactive mode) or static HTML (non-interactive mode), you
can have a report displayed directly in PDF.

Saving Reports as PDF Files

To offer users an option to save a report as a PDF file, you may offer a button or a
link on the page, that when clicked, saves the report as a PDF file. This involves a
separate JSP file as shown in the following diagram:

The yourReport.jsp page has a ReportBlox with an id of Report1. When users
click the Save to PDF button, the second page toPDF.jsp is called. This page has
a PdfBlox that takes the Report1 ReportBlox and saves it as a PDF file.

To dynamically render any report with only one copy of the toPDF.jsp file, use
the following code to get the parameter passed with the request:

<%@ taglib uri="bloxreporttld" prefix="bloxreport" %>
<bloxreport:pdf id="mypdf"

report='<%= request.getParameter("report") %>' />

</bloxreport:report>

<bloxreport:calculate>
...

</bloxreport:calculate>

...

<bloxreport:report id="Report1">

Save
to PDF

<bloxreport:pdf id="pdf1"

<bloxreport:sort>

</bloxreport:sort>

...

toPDF.jsp yourReportFile.jsp

report="Report1">
</bloxreport:pdf>
DB2 Alphablox
Relational Reporting Developer’s Guide

126 Saving as PDF
This is all you need in toPDF.jsp. The first line is to include the needed tag
library and the second line adds a PdfBlox with its report attribute set to the
value of the report parameter passed in via the request. Note that a unique id for
the <bloxreport:pdf> tag is required. In your JSP file containing the report, the
link should be modified to pass the report id via the report parameter:

Send to PDF

You have to specify an id to the ReportBlox in order for PdfBlox to correctly
reflect the state of the report to produce the PDF. That is, the PDF rendering
engine will preserve the changes the user makes through the interactive context
menus.

Note the following:

• You can have only one PdfBlox on a page; if you have more than one, the
first one will be the one displayed in the browser.

• PdfBlox will not preserve the style set through the style sheet, the interactive
context menus, or StyleBlox in the JSP file.

• The rendered PDF will not include the other HTML texts in the JSP. PdfBlox
only renders the ReportBlox in the JSP page and ignores all other HTML
texts on the page.

• The rendered PDF has fixed font faces, styles, colors, and sizes. They cannot
be set programmatically.

• The content and position of the rendered footer and header cannot be
customized. The footer is always at the lower right corner and shows the
current page number and the total page number. The header includes the
specified logo and a date. The logo will appear at the upper left corner and
the date will appear at the upper right corner.

Rendering a Report Directly in PDF

To directly display a report reflecting live data in PDF, use the <bloxreport:pdf>
tag to wrap outside the <bloxreport:report> tag, as shown in the following
diagram.
CHAPTER 8
Saving and Exporting Data

Saving to Excel or Other Applications 127
. Note the following:

• A unique id for the <bloxreport:pdf> tag is required.

• You can have only one PdfBlox on a page. If you add more than one PdfBlox
and each has its own unique id, even though both objects will be created on
the server, the browser will display only the first PdfBlox.

• Each PdfBlox will take only one ReportBlox. If you have two or more
ReportBlox within the <bloxreport:pdf> tag, the ReportBlox declared the
last will be used.

Saving to Excel or Other Applications
This section discusses two scenarios where you may offer users a way to see and
manipulate the data in Excel or other applications. The first scenario is the more
common scenario where you provide a link or button on the page to send the
currently displayed report to Excel. The other scenario discussed is when you
want users to view report data directly in Excel; that is, instead of displaying a
report in DHTML (interactive mode) or static HTML (non-interactive mode), the
data is directly displayed in Excel.

Exporting to Excel

The JSP page directive has this contentType attribute that tells the browser what
content type to expect of the requested page. By setting this attribute, you can
instruct the browser what application to invoke to handle the page. For sending
the currently displayed report to Excel, you need to:

<bloxreport:sort>

</bloxreport:sort>

...

</bloxreport:report>

<bloxreport:calculate>
...

</bloxreport:calculate>

...

<bloxreport:pdf id="pdf1�>

</bloxreport:pdf>

<bloxreport:report id="report1">

yourReportFile.jsp
DB2 Alphablox
Relational Reporting Developer’s Guide

128 Saving to Excel or Other Applications
• Set the contentType:

<%@ page contentType="application/vnd.ms-excel;
charset=UTF-8" %>

• Set the interactive property of the ReportBlox to false.
By setting the report to be non-interactive, the resulting file will not include
menu items from the context menus. This is done in similar way as in
“Saving as Static HTML to File System” on page 119.

In your JSP file containing ReportBlox, assuming you have code like the
following to call a separate JSP page for exporting the report to Excel and pass in
the report’s bloxName:

<head>
<%

String reportName = "myReport";
%>
<script>

var REPORT_NAME = "<%= reportName %>";
function toExcel() {

window.open("excel.jsp?reportname=" + REPORT_NAME, REPORT_NAME +
"_excel", "height=400, width=600, scrollbars=yes,

resizable=yes");
}

</script>
</head>

<body>
...
Export to Excel

<bloxreport:report id="report" bloxName="<%=reportName%>"
interactive="true" errors="true" >
...

</bloxreport:report>

excel.jsp looks as follows:

<!--Using the taglibs -->
<%@ taglib uri="bloxreporttld" prefix="bloxreport" %>
<!--Importing the associated java classes in order to use
the APIs -->
<%@ page import="com.alphablox.blox.*" %>
<!-- Setting the contentType -->
<%@ page contentType="application/vnd.ms-excel;
charset=UTF-8" %>

<%
//Set report to non-interactive mode so the menus don�t get rendered
String reportName = (String)request.getParameter("reportname");
if(reportName != null) {
ReportBlox reportBlox = (ReportBlox)session.getAttribute(
CHAPTER 8
Saving and Exporting Data

Saving to Excel or Other Applications 129
reportName);
if(reportBlox != null) {

reportBlox.setInteractive(false);
} else {

out.println("The report " + reportName + " does not exist.");
}

} else {
out.println("This page was called without a report name.");

}
%>
<html>
<head>

<title><%= reportName %> Excel Report</title>
<%--In line the styles so they�ll be saved if the page is saved and

you are not asked to be authenticated--%>
<style>

<jsp:include page="style/reportstyles.css" flush="true"/>
</style>

</head>
<body>

<%--The reportblox tag that follows causes the html of the report to be
rendered --%>
<bloxreport:report id="reportBlox" bloxName="<%=reportName%>" />
</body>
</html>

Notice that we use a JSP include statement to include an inline stylesheet.
Depending on the version of Excel and your operating system, using imported
stylesheet may result in the need to authenticate the user when Excel needs to
access the stylesheet. If you use the JSP include technique to inline a stylesheet,
note the following:

• This stylesheet should not import other stylesheets as Excel cannot resolve
the imports.

• If you want to use the provided report.css stylesheet at /AlphabloxServer/
report/, since this stylesheet actually imports three other stylesheets
(styles.css for the report, dialog.css for the context menus, and
errors.css for ErrorBlox), you should change the JSP include statement to
use styles.css:

<head>
<style>

<jsp:include page="/AlphabloxServer/report/styles.css"
flush="true"/>

</style>
</head>

This ensures the report format and layout is preserved in Excel, no additional
authentication is required, and Excel does not hang due to failure to resolve
the stylesheet import statements.
DB2 Alphablox
Relational Reporting Developer’s Guide

130 Saving to Excel or Other Applications
• If you are using the provided coleman.css stylesheet in /AlphabloxServer/
report/, since it imports styles from report.css, you should make a custom
version of coleman.css to eliminate the need to import other stylesheets. This
may involve copying style definitions from styles.css into your custom
version and modifying them.

Sending a Report Directly to Excel

The JSP page directive has this contentType attribute that tells the browser what
content type to expect of the requested page. You can send a report directly to
Excel by setting the appropriate contentType using the following code in the
beginning of your JSP page:

<%@ page contentType="application/vnd.ms-excel;
charset=UTF-8" %>

The browser, upon receiving the returned response from the server, will launch
the application specified to open files of this particular content type to display the
returned page.
CHAPTER 8
Saving and Exporting Data

9
Styling the Report Editor User

Interface

You may want to customize the look and feel of the Report Editor user interface
to adhere to your corporate color scheme or the overall look and feel of your
application. This section describes the style classes used in the Report Editor so
you can specify your own styles for those classes.

Contents

• “Style Classes in the Report Editor User Interface” on page 132

• “User Help for Using the Report Editor” on page 135

132 Style Classes in the Report Editor User Interface
Style Classes in the Report Editor User Interface
The Report Editor user interface includes three context menus and a Report Style
dialog box. The fonts and colors displayed are all based on a set of style classes.

The style classes for the context menus are:

� .menu
� .choice
� .choicehover
� .separator
� .selected

The style classes related for the Report Style dialog box are:

� .dialog
� .dialogtitle
� .dialogbody
� .dialoggroup
� .dialoggrouptitle
� .dialogradiogroup
� .dialogbutton
� .dialogbuttongroup

The following image shows the styles for context menus:

The following diagram shows the classes for the Report Style dialog box:

.selected

.choice

.choicehover

.separator

.menu
CHAPTER 9
Styling the Report Editor User Interface

Style Classes in the Report Editor User Interface 133
The following is the default style provided in dialog.css. It demonstrates how
you can define the fonts, colors, and styles for the Report Style dialog window:

//for overall background color, fonts, position, borders...
.dialog {

background-color: #E3E3E3;
font-size: 80%;
font-family: sans-serif;
position: absolute;
cursor: default;
border: solid 2 black;
border-top-width: 1;
border-left-width: 1;

}

//for the dialog window title area
.dialogtitle {

background-color: #CCCCCC;
text-align: left;
font-weight: bold;
padding : 5 10 5 10;
margin-bottom: 5;
cursor: hand;

}

//for the body of the dialog window
.dialogbody {

padding : 10;
vertical-align: middle;

}

.dialog

.dialogtitle

.dialogbody

.dialoggroup

.dialoggrouptitle

.dialogradiogroup

.dialogbuttongroup

.dialogbutton

OK Cancel Apply

Report Style

Align:

Apply to:

Left
Center
Right

All Data
Data in Selected Column
Selected Column Header
All Column Headers
DB2 Alphablox
Relational Reporting Developer’s Guide

134 Style Classes in the Report Editor User Interface
/* for each group of selections; there are four groups in the
dialog window, each with a thin border (1px) in color
#CCCCCC */
.dialoggroup {

text-align: left;
padding : 5;
border : solid 1 #CCCCCC;
margin: 5;

}

//for the title in each group
.dialoggrouptitle {

margin-bottom: 5;
}

//for each button, either radio or checkbox
.dialogradiogroup {

padding-left: 10;
}

//for each of the three action buttons--OK, Cancel, and
//Apply
.dialogbutton {

margin-right: 5;
font-size: 80%;
padding: 2 0 1 0;
width: 60;

}

//for the group of three action buttons--OK, Cancel, and
//Apply
.dialogbuttongroup {

text-align: right;
padding-top :20;

}

 When setting font faces, styles, and sizes in the stylesheets, watch out
particularly for the consistency of the font faces and sizes. Typically you want to use
the same font faces and sizes for the following classes so the columns do not change
in width and the report does not appear jiggling when users move their cursors over
the hot spots:

� .column
� .choicehover
� .selected
CHAPTER 9
Styling the Report Editor User Interface

Overriding the Style Classes 135
Overriding the Style Classes
Having an external stylesheet makes your JSP page cleaner and allows you to
reuse the same stylesheet for your entire application. A good technique to use is
to create your external stylesheet that imports the stylesheets supplied by
Alphablox Analytics and then overrides the style classes you want to customize.
This means you will not miss any classes that need to be defined, and you only
need to add one link to your external stylesheet.

For example, your JSP page containing a ReportBlox will reference your
stylesheet:

<html>
<head>

<link rel="stylesheet" href="myreportbuilder.css" type="text/
css" />

...

In the beginning of your myreportbuilder.css, import the stylesheets that come
with Alphablox Analytics:

@import url(/AlphabloxServer/report/report.css);

.report {
background-color: white;
color: black;
font-family: Trebuchet MS,Verdana, Arial, Helvetica, sans-serif;
border: solid 1 black;
padding: 5;
margin : 5;
width: 0;

}

This way your styles will override the ones in the supplied stylesheets. Keep in
mind that you should never modify the stylesheets in the /AlphabloxServer/
report/ directory since they get wiped out during Alphablox Analytics upgrades.

User Help for Using the Report Editor
If your report is interactive, you may want to provide user help that explains how
the user interface works. User help files are provided for you in four languages—
English, French, German, and Japanese—if you want to offer them to your users.
There is no link to the end user help files from within the Report Editor user
interface. You will need to provide your own link. The help files are simply a
collection of HTML files and images, so you can easily customize them for your
application. For details on where the files are and how to link to them, see
“Providing User Help” on page 151.
DB2 Alphablox
Relational Reporting Developer’s Guide

136 User Help for Using the Report Editor
CHAPTER 9
Styling the Report Editor User Interface

10
Advanced Topics

This section covers advanced topics related to relational report development. In
particular, the topics of managing session scope, using the Alphablox Relational
Reporting API, and accessing data rows and cell values in the rendered report will
be discussed.

Contents

• “Managing Session Scope” on page 138

• “The Relational Reporting API” on page 139

• “Dynamically Changing the Query” on page 142

• “Accessing Data Rows and Cell Values in Rendered Report” on page 147

138 Managing Session Scope
Managing Session Scope
When you use Blox tags to add Relational Reporting Blox to your JSP page, these
Blox have a session scope by default. As demonstrated in the following example,
imagine a report builder application that lets your users dynamically create a
relational report based on some criteria they specify. Once they select how they
want to group or sort the data, they click the “Generate Report” button to create
the report. The generated report is set to render in interactive mode, and therefore
the users can edit the report using the Report Editor user interface.

Each time a new set of criteria is specified and a new report is requested, you will
need to remove the server object that already exists since no new object will be
instantiated. This can be done through the standard removeAttribute() method:

<% session.removeAttribute("myReportBlox"); %>
<bloxreport:report id="myReportBlox" >
...

Since deleting server objects and re-instantiating them could be a memory
intensive operation, you should use this cautiously and only when it is needed in a
production environment. A more efficient approach is to reuse, rather than
remove, the objects in the session.

The optional bloxName tag attribute lets you reuse an object as its value can be
dynamically assigned. While the required id uniquely identifies a Blox on the
page is used as the scripting variable name in your JSP, bloxName can be
dynamically assigned and is the name the server knows the object as. If bloxName
CHAPTER 10
Advanced Topics

The Relational Reporting API 139
is not specified, id is used as both the server object name and the scripting
variable name. If bloxName is specified, you can change it dynamically in your
JSP. The following example shows how a bloxName will be different every time a
page is loaded or refreshed:

<% String bloxName="report"+System.currentTimeMillis(); %>

<bloxreport:report id="myReportBlox"
bloxName="<%= bloxName %>" >

...

bloxName is useful as a development tool so you do not need to close and restart
the browser windows everytime you make a change to your JSP. The Saving and
Exporting Data with Dynamic Queries example in Blox Sampler - Relational
Reporting also demonstrates the use of bloxName to render a report to different
formats in a separate browser window.

Another phenomenon with session scope is that users’ changes to the report will
not be preserved when they access the report in a different session. You will want
to provide report saving options such as sending the report to PDF or Excel so
your users can save their report onto their local system or somewhere on the
server. For providing report saving functionality, see “Saving as Static HTML to
File System” on page 119, “Saving Reports as PDF Files” on page 125, and
“Exporting to Excel” on page 127.

The Relational Reporting API
As described earlier in “Report Pipeline” on page 33, a relational report is created
by processing the Relational Reporting Blox in the sequence they are added. The
ultimate data producers are SQLDataBlox and RDBResultSetDataBlox. The
ultimate consumer is ReportBlox. CalculateBlox, FilterBlox, GroupBlox,
MembersBlox, OrderBlox, and SortBlox in the middle are “transformers” that
serve as both data consumers and data producers that take the data from the
previous Blox, transform it in some way, and pass it on to the next Blox.

All these “transformers” inherit from the IConsumer and IProducer interfaces.
IConsumer has a setInput() method that sets the input for the Blox. IProducer
has a getData() method that gives you access to the IDataSet interface for further
access to IDimension and IMember.

The following example demonstrates how a relational report is created using the
API:

<%@ page import="com.alphablox.blox.*" %>
<html>
<head>

<link rel="stylesheet" href="/AlphabloxServer/report/report.css"
/>
</head>
DB2 Alphablox
Relational Reporting Developer’s Guide

140 The Relational Reporting API
<body>
<%

String query="SELECT location, product_name, sales, units, cost
FROM qcc WHERE week_ending = '2000-04-08'";

try {
ReportBlox rBlox = new ReportBlox();
rBlox.setErrors(true);
rBlox.setId("myRBlox");

DataSourceConnectionBlox dConn = new
DataSourceConnectionBlox();

dConn.setDataSourceName("qcc-rdb");
dConn.connect();

SQLDataBlox dBlox = new SQLDataBlox();
dBlox.setInput(dConn);
dBlox.setQuery(query);
dBlox.execute();

// Create the grouping
GroupBlox myGroup = new GroupBlox();
myGroup.setMembers(new String [] {"locatioin"});
myGroup.setAggregationType("units", "none");

// Set up the input for the group
myGroup.setInput(dBlox);
rBlox.setInput(myGroup);

// Finally call ReportBlox�s write() method to write it out
rBlox.write(out);

}
catch (Exception e) {

ErrorBlox eBlox = new ErrorBlox();
Throwable msg = eBlox.getRootCause(e);
out.println("
 This Exception was captured
 "+

msg.getMessage());
}

%>
</body>
</html>

Note that this example creates a non-interactive report as this is the default
behavior.

Creating an Interactive Report using the API

To create an interactive report using the API, there are three additional things you
need to specify.

1 Set the ReportBlox to interactive using the setInteractive method.

rBlox.setInteractive(true);
CHAPTER 10
Advanced Topics

The Relational Reporting API 141
2 Set the URL prefix. This information is needed by the servlet handling
interactivity. Typically this is handled automatically for you when you use
the Blox Report Tag Library to create your ReportBlox. When using the API,
you have to explicitly specify the URL prefix.

If, for example, the salesReport.jsp is located at http://myServer/myApp/
Sales/East/salesReport.jsp, you should set the URL prefix as follows:

rBlox.setUrlPrefix("/myApp/Sales/East");

3 Place the ReportBlox into the session. When you use the Blox Report Tag
Library, this is also handled automatically for you. When using the API, you
have to explicitly add the ReportBlox to the session.

session.setAttribute(bloxName, rBlox);

The complete example is now as follows:

<%@ page import="com.alphablox.blox.*" %>
<html>
<head>

<link rel="stylesheet" href="/AlphabloxServer/report/report.css"
/>
</head>
<body>
<%

String query="SELECT location, product_name, sales, units, cost
FROM qcc WHERE week_ending = '2000-04-08'";

try {
ReportBlox rBlox = new ReportBlox();
rBlox.setErrors(true);
rBlox.setId("myRBlox");

// 1. Set the ReportBlox to interactive
rBlox.setInteractive(true);

DataSourceConnectionBlox dConn = new
DataSourceConnectionBlox();

dConn.setDataSourceName("qcc-rdb");
dConn.connect();

SQLDataBlox dBlox = new SQLDataBlox();
dBlox.setInput(dConn);
dBlox.setQuery(query);
dBlox.execute();

// Create the grouping
GroupBlox myGroup = new GroupBlox();
myGroup.setMembers(new String [] {"locatioin"});
myGroup.setAggregationType("units", "none");

// Set up the input for the group
myGroup.setInput(dBlox);
DB2 Alphablox
Relational Reporting Developer’s Guide

142 Dynamically Changing the Query
rBlox.setInput(myGroup);

// 2. Set the URL prefix
rBlox.setUrlPrefix("/myApp/Sales/East");

// 3. Add the ReportBlox to the session
session.setAttribute(bloxName, rBlox);

// Finally call ReportBlox�s write() method to write it out
rBlox.write(out);

}
catch (Exception e) {

ErrorBlox eBlox = new ErrorBlox();
Throwable msg = eBlox.getRootCause(e);
out.println("
 This Exception was captured
 "+

msg.getMessage());
}

%>
</body>
</html>

You probably have found that it is a lot more convenient to use tags to create your
relational report. You can always script to the objects using their id when you
need to.

Dynamically Changing the Query
All the relational reporting Blox are instantiated in the session as beans. These
beans can be individual accessed and their methods invoked in a JSP page. For
methods associated with these Blox, see the ReportBlox Javadoc at:

<alphablox_dir>\system\documentation\javadoc\report\index.html

Since changes to tag attribute values are not re-evaluated when the page reloads,
when you want to dynamically change the query after the report has been created
and rendered, you will need to remove or reuse the objects from the server. To
remove an object from the session, you can use the standard removeAttribute()
method of the session object:

<% session.removeAttribute("yourReportBlox"); %>

This, however, is a memory intensive and expensive operation. The following
examples demonstrate different ways to perform the task more efficiently without
removing the objects from the session. One technique is to access the Blox you
need to modify directly from the session attribute (for example, accessing the
SQLDataBlox to set and execute a new query) .
CHAPTER 10
Advanced Topics

../javadoc/report/index.html

Dynamically Changing the Query 143
Example 1: Directly access the SQLDataBlox and resets its query
• The example has two radio buttons for user to select. One for February and

the other for March.

• The com.alphablox.blox.* import statement is needed to use the ReportBlox
API.

• The SQLDataBlox in the ReportBlox has an id of sqlDataBlox. Upon initial
page load, its query is set to query2, which shows the data for February.

• monthlyData is typecast to be of type SQLDataBlox.

• When the user selects a month, the page reloads and the requested month is
checked. The query for the existing SQLDataBlox is reset and executed using
the setQuery() and execute() methods.

<%@ taglib uri="bloxreporttld" prefix="bloxreport"%>
<%@ page errorPage="error.jsp" %>
<%@ page contentType="text/html; charset=UTF-8" %>
<%@ page import="com.alphablox.blox.*" %>
<%

String query2 = "SELECT month, sales FROM qcc WHERE year=2000 AND
month=2";

String query3 = "SELECT month, sales FROM qcc WHERE year=2000 AND
month=3";

String query = query2; //defaults to February
String monthNum = null;
String thisURL = "http://" + request.getServerName() +

(request.getServerPort()==80?"":":" +
request.getServerPort()) + request.getRequestURI();

SQLDataBlox monthlyData = null;

// if monthlyData already exists, there will be a sesson
// object of same name. This will never happen in the first
// pass through this page
monthlyData = (SQLDataBlox) session.getAttribute("sqlDataBlox"

);
monthNum = request.getParameter("monthNum");

// User did request a monthnum
if((monthNum != null) && ! ("".equals(monthNum))) {

if("3".equals(monthNum))
{

query = query3;
}
if(monthlyData != null)
{ // if monthlyData exists, the query is executed through

// a method on the Blox
monthlyData.setQuery(query);
monthlyData.execute();

}
}

%>
DB2 Alphablox
Relational Reporting Developer’s Guide

144 Dynamically Changing the Query
<html>
<head>

<title>ReportBlox with Changing Query</title>
<!--Uses the default stylesheet; required for interactive

mode-->
<link rel="stylesheet"
href="/AlphabloxServer/report/report.css" />

</head>

<body bgcolor="#FFFFFF">
<form name="monthForm" action="<%=thisURL%>" method=POST >

<input type="radio" name="monthNum" value="2"
OnClick="document.monthForm.submit()"
<%=(! "3".equals(monthNum))?"checked":""%> >February

<input type="radio" name="monthNum" value="3"
OnClick="document.monthForm.submit()"
<%=("3".equals(monthNum))?"checked":""%> >March

</form>

The current Query is:
<pre><%=query%></pre>
<bloxreport:report id="profitReport" interactive="false">

<bloxreport:sqlData id="sqlDataBlox"
query="<%=query%>" >
<bloxreport:dataSourceConnection

dataSourceName="qcc-rdb" />
</bloxreport:sqlData>

</bloxreport:report>

The Sales Report with HTML Links example in the Blox Sampler - Relational
Reporting example set uses a similar technique to dynamically set the query.

Example 2: Dynamically setting queries without refreshing the whole page using the
global refreshReport() JavaScript method

This example demonstrates how to dynamically setting the query without
reloading the page by calling another JSP that sets the query on the server and
then refresh the ReportBlox in the current page.

• When users request a different query such as through a form selection,
instead of loading in a new page or refreshing the whole page, this example
uses an iframe as the target for the form post action. This allows you to
execute some server-side code without reloading the current page.

• The JSP page that is called resets the query for the underlying SQLDataBlox.

• In order to refresh just the ReportBlox on the current page to reflect the
change to the underlying query, we use the global
refreshReport(ReportBloxName) JavaScript method:

<script>
function refresh(reportName) {

refreshReport(reportName);
CHAPTER 10
Advanced Topics

Dynamically Changing the Query 145
}
</script>

 The refreshReport() JavaScript method only works in interactive reports.

• This example also demonstrates the use of bloxName. Unlike the id tag
attribute, which cannot be dynamically set, the optional bloxName allows you
to dynamically create Blox names with tags. If you specify the value of
bloxName for a Blox, then:

• this bloxName will be the name of the Blox the Alphablox Analytics
server knows this object as

• this bloxName will be the name of the rendered JavaScript object (to be
used in the global JavaScript function refreshReport() when
referencing the ReportBlox)

• id will now only serve as the Java scripting variable you use in your JSP
page.

For a live example, see the Dynamic Queries example in the Blox Sampler -
Relational Reporting example set. Below is the code:

<%@ taglib uri="bloxreporttld" prefix="bloxreport" %>
<%@ page errorPage="error.jsp" %>

<%
String reportName = "qcc";
String weekEnding = "'2000-04-08'";
String query = "SELECT scenario, location, product_name, sales,

units, cost " +
"FROM qcc " +
"WHERE week_ending = " + weekEnding + " " +
" AND scenario = 'Actual' " +
"ORDER BY location, product_name";

session.setAttribute("weekEnding", weekEnding);
%>

<html>
<head>

<link rel="stylesheet" href="/AlphabloxServer/report/report.css"
/>

<script>
function refresh(reportName) {

refreshReport(reportName);
}

</script>
<%-- remove the style tag below to have the report not be

contained in a scrolling iframe --%>
<style> .report { height:400; width: 600 } </style>

</head>
<body>
<h3>QCC data for week of <%=weekEnding%> </h3>
DB2 Alphablox
Relational Reporting Developer’s Guide

146 Dynamically Changing the Query
<form name="queryForm" method="post" action="execQuery.jsp"
target="callFrame" >
<input type="hidden" name="reportname" value="<%=reportName%>">
Scenario:
<input type="radio" name="scenario" id="scenario"
value="Actual" checked>Actual

<input type="radio" name="scenario" id="scenario"
value="Budget" >Budget

<input type="submit" name="submit" id="submit" value="Update" >
</form>

<bloxreport:report id="reportBlox" bloxName="<%=reportName%>"
interactive="true">
<bloxreport:sqlData id="dataBlox" query="<%=query%>" >

<bloxreport:dataSourceConnection dataSourceName="qcc-rdb" />
<% session.setAttribute(reportName + "_data", dataBlox);%>

</bloxreport:sqlData>
</bloxreport:report>

<iframe name="callFrame" id="callFrame" src="blank.jsp"
height="1" width="1" frameborder="0">

</iframe>

</body>
</html>

The execQuery.jsp page that is called looks as follows:

<%@ page import="com.alphablox.blox.*" %>
<%@ page import="javax.servlet.http.*" %>

<%
String reportName = request.getParameter("reportname");
String scenario = request.getParameter("scenario");
boolean isError = false;
String errorMessage = "";
String query =
"SELECT scenario, location, product_name, sales, units, cost " +
"FROM qcc " +
"WHERE week_ending = " + ((String) session.getAttribute(

"weekEnding")) + " " +
" AND scenario = '" + scenario + "' " +
"ORDER BY location, product_name";

try
{

ReportBlox reportBlox = ReportBlox)session.getAttribute(
reportName);

SQLDataBloxdataBlox = (SQLDataBlox)session.getAttribute(
reportName + "_data");

dataBlox.setQuery(query);
dataBlox.execute();

}

CHAPTER 10
Advanced Topics

Accessing Data Rows and Cell Values in Rendered Report 147
catch (Exception e)
{

isError = true;
errorMessage = e.toString();
System.out.println("[execQuery.jsp] Error: " + errorMessage);

}
%>

<html>
<head>
</head>

<body>
<script>

<% if(isError)
{//pop the error message in an alert dialog if there was one

out.println("alert(\"" + errorMessage + "\")");
}
else
{//there is a js function in the parent page called refresh(

reportName)
out.println("parent.refresh(\"" + reportName + "\");");

}
%>

</script>
</body>
</html>

Accessing Data Rows and Cell Values in Rendered Report
Each data row in a report is rendered in an HTML <TR> tag and each data cell in a
<TD> tag. Using JavaScript, you can gain access to a data row or its cell values.
For example, using the TextBlox’s data tag, you can add HTML code to data
cells that, when a data cell is clicked, calls a JavaScript function to get the value
of the cell. From the data cell, you can also get to its parent, the data row. The
following example demonstrates how to get the cell values in an entire row when
the user clicks on an information icon on a row.

In this example, we add an information icon using TextBlox’s data tag to a
column whose column header is replaced by an empty space and data is replaced
by an info icon:

<bloxreport:text>
<bloxreport:columnHeader columnName="ADummyColumn"

text=" " >
</bloxreport:columnHeader>

<bloxreport:data columnName="ADummyColumn"
text="<img src=\"i.gif\" width=\"16\" height=\"16\"

border=\"0\" onclick=\"getRowValues(this)\" >" >
</bloxreport:data>

</bloxreport:text>
DB2 Alphablox
Relational Reporting Developer’s Guide

148 Accessing Data Rows and Cell Values in Rendered Report
The displayed report looks as follows:

When users click on the info icon, the getRowValues() function is called with the
current anchor object passed in. The getRowValues() function then gets the parent
object (the row object) of the clicked object and iterates through the cells in the
table row to get the cell values:

function getRowValues(anchorObj) {
var currObj = anchorObj;
while((currObj.tagName != "TR") && (currObj.tagName != null)){

currObj = currObj.parentElement;
}

var rowObj = currObj;
var cellCount = rowObj.cells.length;
var tdObj = rowObj.firstChild;
var colValues = new Array(cellCount);

for(i = 0; i < cellCount; i++) {
currObj = rowObj.cells[i];
while((currObj != null) && (currObj.innerText == null)) {

currObj = currObj.firstChild;
 }

 if(currObj != null)
colValues[i] = currObj.innerText;

}

alert("ColValues is: " + colValues);
}

The Saving and Exporting Data example in Blox Sampler - Relational Reporting
demonstrates this and other JavaScript techniques.
CHAPTER 10
Advanced Topics

11
Development and Troubleshooting

Tips

This section discusses general design considerations and troubleshooting tips
helpful to your relational report development tasks.

Contents

• “General Tips and Development Steps” on page 150

• “Design Considerations” on page 150

• “Providing User Help” on page 151

• “Impact of Style Setting on Performance” on page 152

• “Common Reporting Blox Tag Errors” on page 153

• “Troubleshooting Tips” on page 155

• “Error Handling Using ErrorBlox” on page 156

150 General Tips and Development Steps
General Tips and Development Steps
Make sure you check out the “General Report Development Steps” on page 54 for
the essential steps to create any relational report. Then go over the “General
Development Tips” on page 52 that provides important notes and insight for
successful development of a relational report.

Design Considerations
The following are some design tips that you should take into consideration as you
develop your relational report:

• Even though you can use OrderBlox to limit the data displayed in the report,
keep in mind that when the report is rendered in interactive mode (with the
interactive attribute of the <bloxreport:report> tag set to true), your users
may bring back all data if they choose to Show All or Clear Groups if there is
no further data manipulation (such as data filtering or sorting) after the
OrderBlox is added.

• If you turn on the interactive Report Editor to allow your users to
dynamically change the layout and break groups in the report, keep in mind
that they can clear the break groups you have specified in your JSP file and
create their own break groups. In this case, when you design the group header
using the <bloxreport:groupHeader> tag, make sure you use the <member/>
substitution variable to extract the name of the break group. Make sure you
use the <value/> variable in your <bloxreport:groupTotal> tag to extract
the aggregation value for the specified column member for the break group.

• Interactive reports generally take longer for the browsers to render. The
difference may become noticeable when a report contains hundreds of data
rows.

• If you have users using Netscape browsers, keep in mind that:

• interactive reports will not display or work properly

• use of StyleBlox may slow down the rendering (see “Impact of Style
Setting on Performance” on page 152)

• If your report is interactive, you may want to provide user help that explains
how the user interface works. User help files are provided for you if you want
to offer them to your users. You will need to provide your own link to the
help files. More details are provided in the next section on “Providing User
Help” on page 151.
CHAPTER 11
Development and Troubleshooting Tips

Providing User Help 151
Providing User Help
User help files that explain how the Report Editor user interface works are
available in four languages: English, French, German, and Japanese. There is no
link to the end user help files from the Report Editor. To offer these online help
files to your users, make a copy of the help files and add a link or a button from
your application to point to your copy of help files.

The help files are located at:

<alphablox_dir>\system\documentation\help\ReportBlox\{en,
fr,de,ja}

where <alphablox_dir> is the directory in which Alphablox Analytics is
installed.

The end user help consists of a set of HTML pages, a stylesheet, and a set of
images, and can be easily customized. In the following example, a copy of the
help files is located under a help/ subdirectory in the application folder, and the
user help is loaded into a separate browser window using JavaScript:

<script>
function openHelp(url) {

window.open(url,'reportHelp','width=500,height=560,
scrollbars=yes,toolbar=no,menubar=no,directories=no,
status=no');

}
</script>
...

<img src="images/help.gif" alt="Instructions on using interactive
reports"
border=0>

To use the help files without modification, you can also link directly to the
documentation directory using:

<a href="javascript:openHelp('/AlphabloxServer/documentation/help/
ReportBlox/{en,fr,de,ja}/index.html');">

The benefit of using the original copy of help files in the documentation directory
is that the help files will always be up to date when you upgrade Alphablox
Analytics. For the same reason, if you need to customize the help files, always
modify your own copy. Otherwise, your changes may be lost when you upgrade.

Localization of Help

In order for the report to display correctly in languages other than English, you
should specify to use the UTF-8 character set using the page directive’s
contentType attribute. With the contentType attribute, you can define the MIME
type and character set.
DB2 Alphablox
Relational Reporting Developer’s Guide

152 Impact of Style Setting on Performance
<%@ page contentType="text/html; charset=UTF-8" %>

If you have users using different languages, you can detect the locale of the
browser through the HTTP request object. In this case, copy all the versions of
help files you need, use the request.getLocale() method to get the locale, and
then dynamically set link to the right version of help.

Impact of Style Setting on Performance
When you use StyleBlox to set styles, in the rendered report, the styles are
specified for each data cell. For example, if you have the following code that sets
the text color for numeric data to “blue”:

<bloxreport:style>
<bloxreport:numeric style="color: blue"/>

</bloxreport:style>

For each data cell containing numeric data, the generated HTML code will look
as follows:

<td class='data' style='text-align: right;color: blue;�>
145</td>
<td class='data' style='text-align: right;color: blue;�>
12.55</td>

Note that �text-align: right� is at the beginning of the style list because
ReportBlox has default text alignment based on data type. In Netscape, when you
have a large report involving thousands of data cells, the time it takes to render
the report will be noticeably slower. To improve the performance in Netscape
with large reports, limit your use of StyleBlox to avoid a long list of styles for
each table cell. You can also overwrite the default text alignment by setting it to
none:

<bloxreport:style>
<bloxreport:text style=""/>
<bloxreport:column style="text-align: center" columnName="Area"/>
<bloxreport:column style="text-align: left" columnName="Product"/

>
</bloxreport:style>

This removes the default text alignment and reduces the style list from:

<td class='data'
style='text-align: left;text-align: center;'> N. Cal</td>

to:

<td class='data' style=';text-align: center;'> N. Cal</td>
CHAPTER 11
Development and Troubleshooting Tips

Common Reporting Blox Tag Errors 153
Generally speaking, using style classes is better than using StyleBlox as styles set
in StyleBlox will be added to each component (such as each data cell) the style is
for, creating a long CSS style string to be wrapped around each occurrance of the
element.

In Internet Explorer, the CSS is usually not an issue.

Common Reporting Blox Tag Errors
Included in the following list are some of the most frequently encountered errors
that you are likely to come across when working with the Reporting Blox Tag
Library.

Forgetting to include the taglib directive for Reporting Blox Tag Library

If you forget to place the taglib directive for the Reporting Blox Tag Library at
the top of your JSP page, no report will be rendered since none of the tags will be
recognized. Make sure you have the following taglib directive in all of your JSP
pages containing Relational Reporting Blox:

<%@ taglib uri="bloxreporttld" prefix="bloxreport" %>

Forgetting to use the correct prefix for Relational Reporting Blox

If you have the taglib directory for the Blox Tag Library (blox.tld) and try to use
the blox prefix for your relational report, you will get an JSP error. For example,
with the <blox:report> tag, you will get:

No such tag report in the tag library imported with prefix blox

Since the Reporting Blox Tag Library is separate from the Blox Tag Library,
make sure you have the correct taglib directives at the top of your JSP page and
use different prefixes for the two tag libraries.

Incorrect case of a tag or tag attribute

Case and spelling errors will result in compilation errors. In these cases, the JSP
compiler will throw an exception indicating that an invalid tag or tag attribute has
been used. Keep in mind that tags and attribute names start with all lowercase
first word, with the first letter of each subsequent word in uppercase. Examples
are: <bloxreport:sqlData />, <bloxreport:dataSourceConnection />,
<bloxreport:groupHeader />, <bloxreport:groupFooter />, or
<bloxreport:groupTotal />.
DB2 Alphablox
Relational Reporting Developer’s Guide

154 Common Reporting Blox Tag Errors
Forgetting to include the stylesheet

Without a defined style for each of the classes associated with the display of
context menus and Report Style dialog box, the Report Editor user interface will
not work properly. The Report Editor user interface will be chaotic, with the
context menus popping up in the wrong places with incorrect font sizes.

Without a defined style for each of the classes associated with the display of the
column headers, data, or break group footers, a report will not be as attractive or
easy to read as it will be rendered as a plain HTML table.

Since stylesheets cascade, as a best practice, use the stylesheet provided out-of-
the-box and then add your own stylesheet (or use inline styles) to modify only the
styles for classes you want to change:

<link rel="stylesheet" href="/AlphabloxServer/report/report.css" />
<link rel="stylesheet" href="yourStyleSheet.css" />

Refreshed page doesn’t reflect code modification

Blox tags and JSP statements within these tags are interpreted only the first time a
page is loaded. Since the object on the server already exists for that session, it is
reused and therefore will not reflect the changes you make. You will need to start
a new session by opening a new instance of the browser. To test page
modifications within Blox tags, one technique is to use the removeAttribute()
method associated with the session object. Another technique is use a dynamic
bloxName for your ReportBlox. All Blox in Relational Reporting have a bloxName
attribute that allows you to dynamically assign a name to the Blox to effectively
reuse the object on the server. For details, check out the sections on “Managing
Session Scope” on page 138.

Refer to member or column names incorrectly

When performing data manipulation tasks such as sorting, calculating, grouping,
or filtering data, you should put member names in square brackets when they do
not start with a letter or when they contain special characters (characters other
than a-z, A-Z, 0-9, or underscores). This indicates to the Alphablox Relational
Reporting engine that these are variables in the expression. Without square
brackets, the reporting system may fail to correctly identify the members. When
performing report layout formatting and styling tasks such as setting group
headers and footers, or styling the data and column headers, you are dealing with
the rendered report and square brackets are no longer required. This is because
there is no confusion whether the text string is a member name or an expression.
CHAPTER 11
Development and Troubleshooting Tips

Troubleshooting Tips 155
Because of this difference in data manipulation versus report layout, you will
notice that some Relational Reporting Blox have a member (or members) attribute
while others have a columnName attribute. For example, GroupBlox has a members
attribute, while sub tags inside TextBlox and StyleBlox have a columnName
attribute. For more information, see “Columns and Members” on page 34,
“Member Identifiers vs. Display Names” on page 49

Troubleshooting Tips
Messages from ReportBlox are sent as DEBUG level messages to the Alphablox
Analytics server log. To examine the activities from ReportBlox and its
supporting Blox, you can set the message level to DEBUG. However, keep in
mind that the log file can grow large fairly quickly. For catching uncaught errors,
you should create an error catching page and specify to have it handle error
reporting in every JSP page you create. See “Use ErrorBlox for Better Error
Reporting” on page 56.

The following are some general troubleshooting tips:

• Make sure the stylesheet referenced actually exists and is in the correct
location. Different browsers have different tolerance for missing stylesheets.

• When you have the interactive attribute of the <bloxreport:report> tag set
to true, if the interactive context menus in the Report Editor user interface do
not show up or show up as lines of plain text in the beginning of your report,
this is often because you do not have a stylesheet associated with the report,
or the stylesheet referenced is not found. Add a link to your stylesheet or to
the stylesheet supplied:

<link rel="stylesheet" href="/AlphabloxServer/report/report.css" />

• If the browser seems to hang while displaying a report, it is probably due to
the size of the rendered report. Keep in mind that the report is rendered as an
HTML table. A table with 10,000 rows and 10 columns can take several
minutes for any browser to display.

• Member names are case sensitive. Referring to the member “Cost” as
“COST” or “cost” may result in errors in some cases (such as CalculateBlox,
OrderBlox, FilterBlox, SortBlox, and GroupBlox, which need to identify the
exact members to act on) and may be ignored in others (such as FormatBlox
or StyleBlox).

If you are using IBM DB2 Universal Database, Oracle, or MSSQL Server,
and you rename columns in the SELECT list, be sure to enclose the column
names in double quotes if you expect the case to be preserved. For example:
DB2 Alphablox
Relational Reporting Developer’s Guide

156 Error Handling Using ErrorBlox
SELECT FROM myTable total_sq_ft AS "Sq_Ft", sq_ft_pct AS "Pct"

Be sure to escape the quotation marks with back-slashes when you include them
in your JSP page:

"SELECT FROM myTable total_sq_ft AS \"Sq_Ft"\, sq_ft_pct AS \"Pct\""

• Make sure that the error handling page specified in the page directive actually
exists in the correct location. Otherwise, you will encounter a “404—Page
Not Found” error.

Error Handling Using ErrorBlox
By default, when a query returns no data, the message “No data” is displayed. If
no data occurs further down the pipeline during data transformation due to an
error, the default message displayed is “No data: An error occurred while
generating report data.” This can happen, for example, if you try to group or sort
the data based on a non-existing member.

When ReportBlox’s errors attribute is set to false (the default), exceptions are
intercepted. You should supply an error handling page and use a try/catch block
to catch errors or your users may see unfriendly error messages in cases such as
bad queries or unavailability of the data source.

Sometimes you may need to check the exceptions in order to track down where
the problem is. Exceptions thrown by Relational Reporting Blox are nested, and it
can be difficult to identify the root cause. To iterate through the nested exceptions
and get to the root cause:

1 Set the ReportBlox’s errors tag attribute to true so the exceptions are not
intercepted and you can catch them with a try/catch block.

2 Use the ErrorBlox’s getRootCause(Throwable exception) method that will
iterate through the nested exceptions of the specified exception and return the
root cause exception. ErrorBlox also has a getNextException(Throwable
exception) method that will return the next nested exception for the
specified exception.

The following example shows how an exception is caught and the root cause is
identified:

<%@ page import="com.alphablox.blox.*" %>
<%@ taglib uri="bloxreporttld" prefix="bloxreport"%>

<html>
<head>

<title>Exception Test</title>
<link rel="stylesheet" href="/AlphabloxServer/report/report.css"

/>
</head>
CHAPTER 11
Development and Troubleshooting Tips

Error Handling Using ErrorBlox 157
<%
String query="SELECT product_name, area, location From qcc WHERE

week_ending = '2000-04-08'";
%>

<body>
<%

try { %>
<bloxreport:report id="testTryCatch" errors="true">

<bloxreport:sqlData query="<%= query%>" >
<bloxreport:dataSourceConnection dataSourceName="qcc-rdb"

/>
</bloxreport:sqlData>

</bloxreport:report>
<% }

catch (Exception e) {
ErrorBlox eblox = new ErrorBlox();
Throwable msg = eblox.getRootCause(e);
out.println("
 This Exception was captured
 "+

msg.getMessage());
}

%>
</body>
</html>
DB2 Alphablox
Relational Reporting Developer’s Guide

158 Error Handling Using ErrorBlox
CHAPTER 11
Development and Troubleshooting Tips

12
Relational Reporting Blox Tag

Reference

This section lists the tags associated with each Relational Reporting Blox. For
each Blox, its associated tags, tag attributes, properties, methods, method syntax
and usage are provided. For Java methods available to Relational Reporting Blox,
see the Javadoc at:

<alphablox_dir>/system/documentation/javadoc/report/index.html

Contents

• “Using Blox Tags” on page 160
• “CalculateBlox” on page 161
• “DataSourceConnectionBlox” on page 163
• “ErrorBlox” on page 165
• “FilterBlox” on page 166
• “FormatBlox” on page 168
• “GroupBlox” on page 172
• “MembersBlox” on page 176
• “OrderBlox” on page 178
• “PdfBlox” on page 180
• “PersistenceBlox” on page 182
• “RDBResultSetDataBlox” on page 184
• “ReportBlox” on page 186
• “SortBlox” on page 189
• “SQLDataBlox” on page 191
• “StyleBlox” on page 193
• “TextBlox” on page 197

160 Using Blox Tags
Using Blox Tags
The custom Blox tags for Relational Reporting work similarly to the tags for the
other Blox in Alphablox Analytics:

• To use the custom tags for Relational Reporting Blox, the following line
should be included in the beginning of your JSP files:

<%@ taglib uri="bloxreporttld" prefix="bloxreport" %>

• The tags start with <bloxreport:...>, and ends with a corresponding ending
tag </bloxreport:...>. If the tag does not involve nested tags, it can end
with a slash (<bloxreport:calculate ... />) without a separate ending tag.

• The <bloxreport:report> tag is similar to the <blox:present> tag in that it is
the wrapping tag for most all the other Relational Reporting Blox. The only
exceptions are ErrorBlox, PdfBlox, and PersistenceBlox.

• Tags and attribute names always start with lowercase first word and an
uppercase first letter for subsequent words (for example,
dataSourceConnection).

A major different between the <bloxreport:report> tag and the <blox:present>
tag is that Blox nested within the <bloxreport:report> tag can have their own id
that you can script to, whereas Blox nested within the <blox:present> tag
cannot. This is because Blox supporting the Relational Reporting feature are
functionally distinctively decoupled.

For a list of all tags associated with ReportBlox., see “Relational Reporting Tags
for Copy-and-Paste” on page 205.
CHAPTER 12
Relational Reporting Blox Tag Reference

CalculateBlox 161
CalculateBlox
CalculateBlox lets you add a calculated member to a report. For the calculated
member, you specify a calculation expression and the position this new member
should appear. The JSP tag for CalculateBlox is <bloxreport:calculate> .

Syntax <bloxreport:report id="idName">
...
<bloxreport:calculate id = "idName"

expression="calculatedMemberName= calculationExpression"
index = "int">

</bloxreport:calculate>
...

</bloxreport:report>

Usage You can use multiple <bloxreport:calculate> tags in a <bloxreport:report>
tag. ReportBlox performs the calculations in the order they are specified. The
expression consists of two parts: the name of the calculated member and the
calculation expression. In the following example:

"[Total Sales] = [Unit Price] * [Units_Sold]"

“Total Sales” is the name of the calculated member, and its value is the product of
[Unit Price] * [Units_Sold]. The square brackets ([]) are needed in the
expression since there are spaces in the member name.

Note the following when you use CalculateBlox:

• If a member name already contains [], use an additional closing “]” to
indicate the end of the member name. For example, to specify the member
name West[CA] in an expression, you should say [West[CA]]].

• Supported operators for calculation expressions are +, -, *, and /

• Supported separator for calculation operators are (). For example:

<bloxreport:calculate
expression = "[Profit%] = Sales/(Unit_Cost * Units_Sold)"

/>

• Supported calculation functions are: rank(), percentOfTotal(),
runningTotal(), and runningCount(). For example:

<bloxreport:calculate
expression = "[% Total] = percentOfTotal(Units)"

/>

These functions are related to how the report is grouped, and are discussed in
details in “Calculating Group-based Summary Columns” on page 110.
DB2 Alphablox
Relational Reporting Developer’s Guide

162 CalculateBlox
• Supported operators only work on numeric data. This includes integer,
floating point, and currency. You will not be able to perform calculations on
string, date, time, or boolean data types.

If any member used in the calculation involves missing or null values, the
calculation will result in missing data.

The <bloxreport:calculate> Tag

Examples <bloxreport:calculate
expression = "[Profit%] = Sales/GrossMargin"
index = "4"

/>

This tag adds a calculated member named Profit% as the fifth member, with
Profit% deriving from Sales divided by GrossMargin.

See Also “Adding Calculated Columns” on page 71, “Calculating Group-based Summary
Columns” on page 110.

Tag Attribute Required Default Description

id No The unique identifier for this instance of
CalculateBlox.

bloxName No The unique identifier for this instance of
CalculateBlox on the server that allows you to
dynamically set its name. See “Managing Session
Scope” on page 138.

expression No Sum of
all
numeric
columns
in a new
column
named
“Total”

The expression CalculateBlox evaluates to add the
named calculated member.

An invalid or empty expression results in an error.

If a <bloxreport:calculate> tag is added without the
expression attribute, CalculateBlox will
automatically add a calculated member called “Total”
with the sum of all column members as the value.

For valid expression syntax, see “Expression Syntax”
on page 48.

index No member
count

The position in the Column dimension where the
calculated member appears, with 0 being the first
member.

By default calculated members are added to the end.
CHAPTER 12
Relational Reporting Blox Tag Reference

DataSourceConnectionBlox 163
DataSourceConnectionBlox
DataSourceConnectionBlox represents a connection to a relational data source
defined to Alphablox Analytics. The JSP tag for DataSourceConnectionBlox is
<bloxreport:dataSourceConnection> . The tag for DataSourceConnectionBlox
needs to be nested under <bloxreport:sqlData>. Nonetheless, it is a Blox and can
be assigned an id for later references in your code.

Syntax <bloxreport:report id = "idName">
<bloxreport:sqlData>

<bloxreport:dataSourceConnection
id = "dataSourceIdName"
dataSourceName = "dataSourceName" >

</bloxreport:dataSourceConnection>
</bloxreport:sqlData>

</bloxreport:report>

Usage Only one <bloxreport:dataSourceConnection> tag can be added in a
<bloxreport:sqlData> tag. Only one <bloxreport:sqlData> tag can be added in
a <bloxreport:report> tag.

The <bloxreport:dataSourceConnection> Tag

Tag Attribute Required Default Description

id No The unique identifier for this instance of
DataSourceConnectionBlox.

bloxName No The unique identifier for this instance of
DataSourceConnectionBlox on the server that
allows you to dynamically set its name. See
“Managing Session Scope” on page 138.

dataSourceName No The name of the relational data source as
defined via the Alphablox Analytics home
pages. A non-relational data source results in
an error.

userName No The username for accessing the data source
specified.
DB2 Alphablox
Relational Reporting Developer’s Guide

164 DataSourceConnectionBlox
Examples <bloxreport:report id="profitReport">
<bloxreport:sqlData>

<bloxreport:dataSourceConnection
id = "myDataSource"
dataSourceName = "chocoblocks"
userName = "sa"
password = "allmighty">

</bloxreport:dataSourceConnection>
</bloxreport:sqlData>

</bloxreport:report>

The above code specifies a defined data source named “chocoblocks” with
username “sa” and password “allmighty” as the SQL data source for an instance
of ReportBlox named “profitReport.”

password No The password for the username specified to
access the data source.

If password is an empty string, then
password="".

If password is blank or null, do not specify a
password.

Tag Attribute Required Default Description
CHAPTER 12
Relational Reporting Blox Tag Reference

ErrorBlox 165
ErrorBlox
ErrorBlox prints the details of errors in an HTML table. The JSP tag for
ErrorBlox is <bloxreport:error>.

Syntax <bloxreport:error id = "idName">
</bloxreport:error>

Usage Use the <bloxreport:error> tag in your custom JSP error reporting page. To
identify a JSP file as the error reporting page, add <%@ page isErrorPage="true"
%> in the beginning of the file. Then in your regular JSP pages, use the following
directive to point to your custom JSP error reporting page:

<%@ page errorPage="yourErrorPage.jsp" %>

See “Use ErrorBlox for Better Error Reporting” on page 56 for details on how to
create an error reporting JSP. See “Error Handling Using ErrorBlox” on page 156
for more details on using ErrorBlox to catch exceptions.

The <bloxreport:error> Tag

Examples A custom JSP error page using ErrorBlox:

<%@ taglib uri="bloxreporttld" prefix="bloxreport" %>
<%@ page isErrorPage="true" %>

<html xmlns="http://www.w3.org/1999/xhtml">
<head>

<title>My JSP Error Reporting Page</title>
<link rel="stylesheet" href="/AlphabloxServer/report/

error.css" type="text/css" />
</head>

<body>
<H1>Error Reporting Page</H1>
<bloxreport:error id="errorBlox" />

</body>
</html>

Tag Attribute Required Default Description

id No The unique identifier for this instance of
ErrorBlox.

bloxName No The unique identifier for this instance of
ErrorBlox on the server that allows you to
dynamically set its name. See “Managing
Session Scope” on page 138.
DB2 Alphablox
Relational Reporting Developer’s Guide

166 FilterBlox
FilterBlox
FilterBlox allows you to filter a numeric result set based on a specified
expression. The JSP tag for FilterBlox is <bloxreport:filter>. Data filtered out
are removed from the result set.

Syntax <bloxreport:report id="idName">
...
<bloxreport:filter id = "filterIdName"

expression = "filterExpression" >
</bloxreport:filter>
...

</bloxreport:report>

Usage You can only filter on numeric data. You can have multiple <bloxreport:filter>
tags in a <bloxreport:report> tag. Each FilterBlox takes exactly one filter
expression. You cannot specify compound filters using AND or OR. Instead, you
can chain multiple FilterBlox to achieve your desired outcome. Since the
subsequent FilterBlox will filter the data based on the result of the previous
FilterBlox, if you need to perform operations such as keeping only sales data that
are either greater than 400 or smaller than 100, you need to prepare the data in
your database environment before retrieving them into ReportBlox.

By default, missing data are not filtered out. To exclude missing data from the
filtered result, add a separate filter using the isMissing() function (specify
not isMissing() for negation). See examples below for more details.

For member names that contain charcters other than a-z, A-Z, 0-9, and _, they
should be enclosed in square brackets ([]). In cases where a member name may
be mistaken for a number, also use [] to avoid confusion. If a member name
already contains [or], use an additional closing “]” to indicate the end of the
member name. For example, to specify the member name West[CA] in an
expression, you should say [West[CA]]].

The <bloxreport:filter> Tag

Tag Attribute Required Default Description

id No The unique identifier for this instance of
FilterBlox.

bloxName No The unique identifier for this instance of FilterBlox
on the server that allows you to dynamically set its
name. See “Managing Session Scope” on
page 138.
CHAPTER 12
Relational Reporting Blox Tag Reference

FilterBlox 167
Examples <bloxreport:report id="salesReport">
...
<bloxreport:filter

id = "filter1"
expression = "Sales < 10000"

/>
<bloxreport:filter

id = "filter2"
expression = "Sales > 0"

/>
...

</bloxreport:report>

The above block of code keeps rows of data where Sales is between 0 and 10000.
Note that missing data will be returned. To exclude missing data, add another
filter:

<bloxreport:filter
id = "filter3"
expression = "not isMissing(Sales)"

/>

expression Yes The criteria for filtering.

If a value does not meet the condition specified in
the expression, it is filtered out. Valid operators for
filter expressions are =, <, >,and !=. For
example:

expression = "Sales > 3000"
expression = "[Product Code] != 200"

You cannot have calculation operators inside the
filter expression (+, -, /, or * is not allowed), nor
can you add methods or Java scriptlets inside the
expression. An invalid expression results in an
error.

One function is available for filter expressions:
isMissing(memberName).

See “Expression Syntax” on page 48 for
discussions on expression syntax and how to
specify member names if the names contain special
characters or spaces.

Tag Attribute Required Default Description
DB2 Alphablox
Relational Reporting Developer’s Guide

168 FormatBlox
FormatBlox
FormatBlox allows setting the display format for numeric, date, and missing data.
Null data in the database is treated as missing data. If no format is specified:

• the default format type for the client locale is applied

• the default display text for missing or null data is an empty string

The JSP tag for FormatBlox is <bloxreport:format>. Since FormatBlox handles
data formatting for multiple data types and each data type has multiple attributes,
a separate tag is required for each data type. In addition, it has a tag that allows
you to specify whether HTML code can be added around the data returned from a
data query. These tags are:

� <bloxreport:numeric>
� <bloxreport:date>
� <bloxreport:missing>
� <bloxreport:html>
� <bloxreport:aggregation>

The <bloxreport:numeric> tag applies to all numeric data types, including
integer, floating points, and currency. The <bloxreport:date> tag applies to all
data types inheriting from java.util.Date, and these include the Date, Time, and
Timestamp subclasses. All formats conform to Java’s format masks.

Syntax <bloxreport:report id="SalesReport">
...

<bloxreport:format>
<bloxreport:numeric format = "formatExpression1" />
<bloxreport:numeric format = "formatExpression2"

member = "memberName" />
<bloxreport:date format = "formatExpression1" />
<bloxreport:date format = "formatExpression2"

member = "memberName" />
<bloxreport:missing format = "stringToDisplay" member =

"memberName" />
<bloxreport:html member = "memberName1" />
<bloxreport:html member = "memberName2" />
<bloxreport:aggregation member = "memberName2"

format="formatExpression" />
</bloxreport:format>

...
</bloxreport:report>

Usage You can add only one <bloxreport:format> tag in a <bloxreport:report> tag.
Within the <bloxreport:format> tag, you can have multiple
<bloxreport:numeric>, <bloxreport:date>, and <bloxreport:missing> tags.
Note the following:

• Use Java format masks for the format expression.

• If a member is not specified, the format is applied to all data of that data type.
CHAPTER 12
Relational Reporting Blox Tag Reference

FormatBlox 169
• If a member is specified, the specified format is applied only to that member.

• If formats are specified twice for the same member, the format specified last
is applied.

For Java decimal format, see http://java.sun.com/j2se/1.4.2/docs/api/java/text/
DecimalFormat.html. For Java date and time format, see http://java.sun.com/j2se/
1.3/docs/api/java/text/SimpleDateFormat.html

FormatBlox does not handle report layout formatting. See “Formatting the Report
and Data” on page 79 for tasks related to report layout formatting. See
“StyleBlox” on page 193 for tags that allow you to specify styles such as font
size, background color, and text alignment.

The <bloxreport:format> Tag

Tag Attribute Required Default Description

<bloxreport:format>

id No The unique identifier for this instance of
FormatBlox

bloxName No The unique identifier for this instance of
FormatBlox on the server that allows you to
dynamically set its name. See “Managing Session
Scope” on page 138.

<bloxreport:numeric>, <bloxreport:date>, <bloxreport:missing>

format Yes The format for the data type.

member No The member to apply the specified format.

<bloxreport:html>
DB2 Alphablox
Relational Reporting Developer’s Guide

http://java.sun.com/j2se/1.3/docs/api/java/text/SimpleDateFormat.html
http://java.sun.com/j2se/1.3/docs/api/java/text/SimpleDateFormat.html
http://java.sun.com/j2se/1.4.2/docs/api/java/text/DecimalFormat.html
http://java.sun.com/j2se/1.4.2/docs/api/java/text/DecimalFormat.html

170 FormatBlox
Examples <bloxreport:report id="SalesReport">
...

<bloxreport:format>
<bloxreport:numeric format="####.00;(####.00)" />
<bloxreport:numeric format="$#,###.00;$(#,###.00)"
member="Sales" />
<bloxreport:aggregation member="Sales" format="$#,###;$(#,###)"

/>
<bloxreport:date format="yyyy.MM.dd G 'at' hh:mm:ss z" />
<bloxreport:date format="EEE, MMM d, ''yy" member="Date" />
<bloxreport:missing format="Units Value Missing"

member="Units" />
<bloxreport:missing format="Sales Value Missing"

member="Sales" />
</bloxreport:format>

...
</bloxreport:report>

This code example sets:

member No A member’s display name. The data for the
specified member, when returned from the SQL
query, will preserve the added HTML code. By
default, any HTML code added is encoded unless
you specify not to by specifying the memeber
whose data you want the HTML to be left alone. See
“Adding HTML code to Data Returned from a
Query” on page 89 for an example and more details
on using a member’s display name.

You can have multiple <bloxreport:html> tags, but
each can only have one member specified. To
specify that all HTML code should be left alone for
data returned for all members, set the value to an
empty string as follows:

member=""

<bloxreport:aggregation>

member No A member’s display name.

format Yes The format to apply to aggregation values (group
totals) for the specified member. If member is not
specified, the format is applied to all aggregation
values.

Tag Attribute Required Default Description
CHAPTER 12
Relational Reporting Blox Tag Reference

FormatBlox 171
• the default format for positive numeric data to �####.00�; the default format
for negative numeric data to �(####.00).� For example, 1234.5 becomes
1234.50, and -1234.5 becomes (1234.50).

• the numeric data for member “Sales” to �$#,###.00;$(#,###.00).� For
example, 1234.5 becomes $1, 234.50.

• The aggregation values for member “Sales” to “$#,###;$(#,###).� For
example, 1234.5 becomes $1,235.

• the default format for dates to "yyyy.MM.dd G 'at' hh:mm:ss z". An
example of this format is 2001.10.01 AD at 09:27:13 PDT.

• the date format for member “Date Member” to "EEE, MMM d, ''yy". An
example of this format is Mon, October 1, '01.

• the text display when member “Units” contains missing data to “Units Value
Missing”

• the text display when member “Sales” contains missing data to “Sales Value
Missing”
DB2 Alphablox
Relational Reporting Developer’s Guide

172 GroupBlox
GroupBlox
GroupBlox allows creation of break groups. The JSP tag for GroupBlox is
<bloxreport:group>. Since the aggregation summary for each member can be
different, a separate <bloxreport:aggregation> tag is needed to set the member
name and aggregation type for that member.

Syntax <bloxreport:report id="idName">
...
<bloxreport:group members="breakmember1, breakmember2, ...">

<bloxreport:aggregation
member="memberName"
type="aggregationType">

</bloxreport:aggregation>
</bloxreport:group>
...

</bloxreport:report>

Usage You can have multiple <bloxreport:group> tags within a <bloxreport:report>
tag. Within each <bloxreport:group> tag , you can have multiple
<bloxreport:aggregation> tags. The order of the break members you specify in
the members attribute determines the break group level. For example, the
following tag:

<bloxreport:group
members="Product, Country">

</bloxreport:group>

groups the report by Product first and then by Country, making the overall report
(for all products) level 1, individual product group at level 2, and individual
country group at level 3. This group level corresponds to the level you specify in
TextBlox’s nested tags:

<bloxreport:text>
<bloxreport:groupHeader level = "int"

text="Some group header text here" />
</bloxreport:text>

or

<bloxreport:text>
<bloxreport:groupFooter level = "int"

text="Some group footer text here" />
</bloxreport:text>

To specify the styles such as font size, colors, and background colors for
breakgroup headers and footers, see “Styling the Relational Reports” on page 34
and “Styling Data Displayed in Report” on page 90.
CHAPTER 12
Relational Reporting Blox Tag Reference

GroupBlox 173
The <bloxreport:group> Tag

Tag Attribute Required Default Description

<bloxreport:group>

id No The unique identifier for this instance of
GroupBlox.

bloxName No The unique identifier for this instance of
GroupBlox on the server that allows you to
dynamically set its name. See “Managing
Session Scope” on page 138.

members No Members for grouping.

To add aggregation data (sum, average, count,
max, and min) for columns at the end of your
report without break groups, set the value of
members to an empty string (members = "").

<bloxreport:aggregation>

member Yes The member to provide an aggregation value.
DB2 Alphablox
Relational Reporting Developer’s Guide

174 GroupBlox
Examples <bloxreport:group members = "Product">
<bloxreport:aggregation member = "Sales" type = "sum" />
<bloxreport:aggregation member = "Units" type = "average" />

</bloxreport:group>

The above code creates a break group by Product, and for aggregation values in
the summary row, shows the count of number of States and the average for Units.
For all other members whose aggregation type is not specified, their totals will be
displayed. The following is a sample output.

type No sum Type of aggregation. Valid values are:

� sum
� average
� count
� max
� min
� none

Note that:

• The default aggregation type for all
numeric data columns is sum.

• If no type is specified, the default is sum.

• Type count works on both string and
numeric values. All others only work on
numeric values.

• If an aggregration is specified on an
invalid data type, it is ignored.

• If the member to provide an aggregation
value is not found, it is ignored.

• If there are missing data, they are
excluded from the aggregation. That is,
they are not included in the data count or
any other types of aggregation.

Tag Attribute Required Default Description
CHAPTER 12
Relational Reporting Blox Tag Reference

GroupBlox 175
DB2 Alphablox
Relational Reporting Developer’s Guide

176 MembersBlox
MembersBlox
MembersBlox allows you to specify which members to include in or exclude from
a report. Excluded members no longer exist in the resultset. The JSP tag for
MembersBlox is <bloxreport:members>.

Syntax <bloxreport:report id = "idName">
...
<bloxreport:members id = "membersIdName"

excluded = "member1, member2,..."
included = "member1, member2,..." >

</bloxreport:members>
...

</bloxreport:report>

Usage You can add multiple <bloxreport:members> tags in a <bloxreport:report> tag.
Each MembersBlox takes only either the excluded or the included attribute. If
you specify both attributes within one <bloxreport:members> tag, the last
attribute will be accepted and the earlier one will be ignored.

Excluded members are permanently removed from the resultset. To temporarily
hide a member or members, use OrderBlox.

The <bloxreport:members> Tag

Tag Attribute Required Default Description

excluded No Members to be excluded.

Excluded members are no longer in the result
set.

If the member names do not start with a letter
or contain spaces or special characters, they
need to be enclosed in square brackets. See
“Member Identifiers vs. Display Names” on
page 49 for detail.

id No The unique identifier for this instance of
MembersBlox.

bloxName No The unique identifier for this instance of
MembersBlox on the server that allows you to
dynamically set its name. See “Managing
Session Scope” on page 138.
CHAPTER 12
Relational Reporting Blox Tag Reference

MembersBlox 177
Examples <bloxreport:report id = "ProfitReport">
<bloxreport:members

id = "members1"
excluded = "[Unit Cost], [Unit Price]"

/>
</bloxreport:report>

The above example specifies that the Unit Cost and Unit Price members are not to
be included in the report. Both are enclosed in square brackets as the names
contain spaces.

See Also “OrderBlox” on page 178

included No Members to be included. Members not in the
list are excluded.

If the member names do not start with a letter
or contain spaces or special characters, they
need to be enclosed in square brackets. See
“Member Identifiers vs. Display Names” on
page 49 for detail.

Tag Attribute Required Default Description
DB2 Alphablox
Relational Reporting Developer’s Guide

178 OrderBlox
OrderBlox
OrderBlox allows you to specify the order from left to right in which the members
are returned. It also allows you to temporarily hide members. The JSP tag for
OrderBlox is <bloxreport:order>.

Syntax <bloxreport:report id = "idName">
...
<bloxreport:order id = "orderIdName"

excluded = "member1, member2,..."
included = "member1, member2,..." >

</bloxreport:order>
...

</bloxreport:report>

Usage You can add multiple <bloxreport:order> tags in a <bloxreport:report> tag.
Each OrderBlox takes only either the excluded or the included attribute. If you
specify both attributes within one <bloxreport:order> tag, the last one will be
accepted and the earlier one will be ignored.

The excluded attribute allows you to temporarily hide members. Excluded
members do not display in the rendered report but still exist in the resultset. In an
interactive report (interactive = "true"), when users choose to Show All from
the interactive context menu, hidden members will show. To permanently hide a
member or members, use MembersBlox.

The <bloxreport:order> Tag

Tag Attribute Required Default Description

excluded No Members to be excluded in the ordering.

Unlike excluded members via MembersBlox,
excluded members are still in the result set,
available for subsequent data transformation
actions in the pipeline.

If the member names do not start with a letter
or contain spaces or special characters, they
need to be enclosed in square brackets. See
“Member Identifiers vs. Display Names” on
page 49 for detail.

id No The unique identifier for this instance of
OrderBlox.
CHAPTER 12
Relational Reporting Blox Tag Reference

OrderBlox 179
Examples <bloxreport:report id = "ProfitReport">
<bloxreport:order

id = "order1"
excluded = "[Unit Cost], [Unit Price]"

/>
</bloxreport:report>

The above example specifies that the Unit Cost and Unit Price members are not to
be displayed in the report. Both are enclosed in square brackets as the names
contain spaces. In an interactive report, users can see these members by choosing
to Show All via the Column Header Context Menu.

See Also “MembersBlox” on page 176

bloxName No The unique identifier for this instance of
OrderBlox on the server that allows you to
dynamically set its name. See “Managing
Session Scope” on page 138.

included No Members to be included in the order from left
to right.

If the member names do not start with a letter
or contain spaces or special characters, they
need to be enclosed in square brackets. See
“Member Identifiers vs. Display Names” on
page 49 for detail.

Tag Attribute Required Default Description
DB2 Alphablox
Relational Reporting Developer’s Guide

180 PdfBlox
PdfBlox
PdfBlox allows you to send a relational report to PDF . The JSP tag for PdfBlox is
<bloxreport:pdf>.

Syntax <bloxreport:pdf id = "idName"
[attributeN = "valueN"] >

</bloxreport:pdf>

Usage You can have only one <bloxreport:pdf> tag in a JSP page. Unlike other Blox,
an id is required. The <bloxreport:pdf> tag can be added outside the
<bloxreport:report> tag to directly send a report to PDF with live data. It can
also stand alone in a JSP page to send an instance of a ReportBlox to PDF.

The <bloxreport:pdf> Tag

Tag Attribute Required Default Description

id Yes The unique identifier for this instance of PdfBlox.

bloxName No The unique identifier for this instance of PdfBlox
on the server that allows you to dynamically set its
name. See “Managing Session Scope” on
page 138.

bottom No 1in Specifies the bottom margin. Units can be in, cm,
px, or pts.

Note: there should be no space in between the
number and the unit in your specification.

footerVisible No true Specifies if the footer (page numbers) should be
visible. The default is true.

headerVisible No true Specifies if the header (logo, time, and date)
should be visible. The default is true.

height No 11in Specifies the height of the page. Units can be in,
cm, px, or pts. The default is 11in.

left No 1.25in Specifies the left margin. Units can be in, cm, px,
or pts. The default is 1.25in.
CHAPTER 12
Relational Reporting Blox Tag Reference

PdfBlox 181
Examples <!---Content of toPDF.jsp---->
<%@ taglib uri="bloxreporttld" prefix="bloxreport" %>
<bloxreport:pdf id="myPDF"

report='<%= request.getParameter("report") %>' />

The above example shows a simple yet complete JSP page that is called when a
user clicks on a button or link on another JSP page containing a ReportBlox This
JSP page may look like the following:

<!---Content of myReport.jsp---->
<%@ taglib uri="bloxreporttld" prefix="bloxreport" %>
<html>
<body>
Send to PDF
<bloxreport:report id="myReport1" interactive="true">

...
</bloxreport:report>
</body>
</html>

logoSource No Specifies the logo to use when the report is
rendered to PDF. Images added in the JSP file
using the HTML tag are not
included in the PDF render. You must use this
attribute to explicitly specify the source image
URL.

The URL must be a complete URL using the
HTTP protocol:

http://<servername>/<path>/mylogo.gif

portrait No true Specifies if the page should be rendered in
portrait. False will result in the page rendered in
landscape. The default is true, with the report
rendered in portrait.

report No Specifies the instance of ReportBlox (the
ReportBlox id) to render to PDF.

right No 1.25in Specifies the right margin. Units can be in, cm, px,
or pts. The default is 1.25in.

top No 1in Specifies the top margin. Units can be in, cm, px,
or pts. The default is 1in.

width No 8.5in Specifies the width of the page. Units can be in,
cm, px, or pts. The default is 8.5in.

Tag Attribute Required Default Description
DB2 Alphablox
Relational Reporting Developer’s Guide

182 PersistenceBlox
PersistenceBlox
PersistenceBlox allows you to save the state of a ReportBlox to the Alphablox
Repository for later retrieval under the location and name specified. The JSP tag
for PersistenceBlox is <bloxreport:persistence>.

Syntax <bloxreport:persistence id = "idName"
targetBloxId="ReportBloxId"
location="location"
persistedName="bookmarkName"
operation="operation"

/>

Usage There can be multiple <bloxreport:persistence> tags on a JSP page. Before a
bookmark is saved for a specified ReportBlox, set the ReportBlox’ interactive
attribute to false. If a bookmark is saved on an interactive ReportBlox, the report
will not display properly when the bookmark is loaded from the Repository.
When the bookmark is retrieved, the required data source needs to be accessible.
All bookmarks are saved under the reportingpersistence/ folder under the
Repository.

The <bloxreport:persistence> Tag

Tag Attribute Required Default Description

id No The unique identifier for this instance of
PersistenceBlox.

bloxName No The unique identifier for this instance of
PersistenceBlox on the server that allows you to
dynamically set its name. See “Managing
Session Scope” on page 138.

location Yes The folder name under the repository’s
reportingpersistence/ folder. You can specify
sub-folders such as “sales/east”, which creates
an east/ folder under sales/ under the
reportingpersistence/ folder in the repository
if they do not already exist.

operation Yes The operation to perform on the bookmark
specified (via the persistedName attribute).
Valid values are save and load.

persistedName Yes The name of the bookmark.
CHAPTER 12
Relational Reporting Blox Tag Reference

PersistenceBlox 183
Examples <bloxreport:persistence id = "myBookmark"
targetBloxId="MyReport"
location="sales/east"
persistedName="salesApr02"
operation="save"

/>

The above example saves the state of a previous defined ReportBlox whose id is
“MyReport” into the Repository:

<alphablox_dir>/repository/reportingpersistence/sales/east/
salesApr02

where <alphablox_dir> is the Alphablox installation directory.

targetBloxId The id of the ReportBlox to bookmark. This
attribute is required when the operation is save.

Tag Attribute Required Default Description
DB2 Alphablox
Relational Reporting Developer’s Guide

184 RDBResultSetDataBlox
RDBResultSetDataBlox
The RDBResultSetDataBlox allows you to use the RDBResultSet object from a
DataBlox and generate a relational report using Relational Reporting Blox.

Syntax <bloxreport:rdbResultSetData id="id"
bloxName="bloxName"
bloxRef= "DataBloxName"
columnCoordinate="col"
drillThroughReportName="reportName"
rowCoordinate="row"

/>

Usage Only one <bloxreport:rdbResultSetData> tag can be added in a
<bloxreport:report> tag. You have to specify an existing DataBlox using its
bloxRef attribute. If column and row coordinates are not specified, the
getResultSet() method on the DataBlox referenced will be called. If the column
and row coordinates are specified, the drillThrough() method on the DataBlox
referenced is called. For DB2 OLAP Server or Hyperion Essbase drillthrough,
since there may be multiple reports defined for a cell, use
drillThroughReportName to specify the report of interest.

The <bloxreport:rdbResultSetData> Tag

Tag Attribute Required Default Description

id No The unique identifier for this instance of
RDBResultSetDataBlox.

bloxName No The unique identifier for this instance of
RDBResultSetDataBlox on the server that
allows you to dynamically set its name.
See “Managing Session Scope” on
page 138.

bloxRef Yes The name of an existing DataBlox.

columnCoordinate No The column coordinate of the specified
cell.

drillThroughReportName No The name of the DB2 OLAP Server or
Essbase drillthrough report.

rowCoordinate No The row coordinate of the specified cell.
CHAPTER 12
Relational Reporting Blox Tag Reference

RDBResultSetDataBlox 185
Example In the following example, another JSP containing a DataBlox called
“myDataBlox” is referenced in this JSP:

<bloxreport:rdbResultSetData
bloxRef="myDataBlox"
columnCoordinate="<%= request.getParameter(\"colIndex\") %>"
rowCoordinate="<%= request.getParameter(\"rowIndex\") %>"

/>

The colIndex and rowIndex parameters are passed in from a JavaScript function
or a Java scriptlet, depending on the rendering mode of the PresentBlox or
GridBlox. For more details, see “Using RDBResultSetDataBlox to Access
RDBResultSet from DataBlox” on page 63.

See Also The DrillThrough example in Blox Sampler’s Retrieving Data section (MSAS
version) and the Retrieving Data chapter in the Developer’s Guide for the DHTML
Client.
DB2 Alphablox
Relational Reporting Developer’s Guide

186 ReportBlox
ReportBlox
ReportBlox generates a report in an HTML table. The JSP tag for ReportBlox is
<bloxreport:report>.

When the interactive attribute is set to true, the Report Editor user interface is
turned on. With mouse over a column header, a break group header, or a break
group footer, a context menu automatically shows up and allows users to
dynamically editing the reports. See “Styling the Relational Reports” on page 34
for descriptions on these context menus.

Syntax <bloxreport:report id="reportID">
...

</bloxreport:report>

Usage You can have multiple <bloxreport:report> tags within a JSP file. Each report
can have only one SQLDataBlox and one DataSourceConnectionBlox. Or it can
take an RDBResultSetDataBlox, which allows you to access an RDBResultSet
object from a DataBlox. It is a good practice to specify an id for each instance of
ReportBlox.

The <bloxreport:report> Tag

Tag Attribute Required Default Description

<bloxreport:report>

id No The unique identifier for this instance of
ReportBlox if bloxName is not specified.
If bloxName is specified, id is the local
Java scripting variable name. For details,
see the bloxName entry in Developer’s
Reference for the DHTML Client.

bloxName No The unique identifier for this instance of
ReportBlox on the server that allows you
to dynamically set its name. See
“Managing Session Scope” on page 138
and the bloxName entry in Developer’s
Reference for the DHTML Client.
CHAPTER 12
Relational Reporting Blox Tag Reference

../index.html?context=reference&topic=bloxName
../index.html?context=reference&topic=bloxName

ReportBlox 187
errors No false Intercepts exceptions thrown.

By default, when the data query returns
no data, the text “No data” is displayed. If
no data occurs as a result of data
transformation such as grouping or
calculating data on a non-existent
member, the text “No data: An error
occurred while generating report data” is
displayed. These messages can be
customized using the noDataMessage and
noDataDueToErrorMessage attributes.

With this default behavior, your users see
a more graceful message rather than an
exception. However, in some cases you
may want to check the exception in order
to track the problem. In this case, set this
attribute is set to true. See “Error
Handling Using ErrorBlox” on page 156
for more information on tracking the root
cause of an exception.

interactive No false The attribute to set whether the report
should be rendered in DHTML table for
interactive report editing.

The default value is false, that is, there
will not be the interactive context menus
available for users.

When interactive is set to true, a
stylesheet defining the styles for classes
associated with the interactive menu and
columns needs to be provided in order for
the Report Editor user interface to work
appropriately. See “Styling the Relational
Reports” on page 34 for details on styles.

noDataMessage No No data The message displayed in the rendered
report when the ReportBlox returns no
data. Note that errors attribute needs to
be set to false (the default) or exceptions
will be displayed.

Tag Attribute Required Default Description
DB2 Alphablox
Relational Reporting Developer’s Guide

188 ReportBlox
noDataDueToErrorMe
ssage

No An error
occurred
while
generating
report data

The message displayed in the rendered
report when errors occur duing data
transformation in the pipeline.

When the ReportBlox returns no data due
to such an exception, users will see both
noDataMessage and
noDataDueToErrorMessage in one string:
“No data: An error occurred while
generating report data.”

Tag Attribute Required Default Description
CHAPTER 12
Relational Reporting Blox Tag Reference

SortBlox 189
SortBlox
SortBlox allows sorting on the specified members in either ascending or
descending order. The tag for SortBlox is <bloxreport:sort>. SortBlox supports
compound sorting with nested <bloxreport:rule> tag for specification of each
sort rule.

Syntax <bloxreport:report id="reportID">
...
<bloxreport:sort member="memberName"

ascending="boolean"
missingLast="boolean" />

...
</bloxreport:report>

For compound sorting with multiple rules:

<bloxreport:report id="reportID">
...
<bloxreport:sort>

<bloxreport:rule
member="sortMemberName1"
ascending="boolean"
missingLast="boolean" />

<bloxreport:rule member="sortMemberName2" />
</bloxreport:sort>
...

</bloxreport:report>

Usage You can sort on numeric data, strings, dates, and time. SortBlox will sort based
on the sequence the rules are specified. If multiple SortBlox are added, the later
operation will not retain the earlier sort operations. By default, the data will be
sorted in ascending order, with missing data displayed last.

The <bloxreport:sort> Tag

Tag Attribute Required Default Description

<bloxreport:sort>

id No The unique identifier for this instance of
SortBlox.

bloxName No The unique identifier for this instance of
SortBlox ton the server that allows you to
dynamically set its name. See “Managing
Session Scope” on page 138.

<bloxreport:sort>, <bloxreport:rule>
DB2 Alphablox
Relational Reporting Developer’s Guide

190 SortBlox
Examples <bloxreport:report id="MarketReport">
...
<bloxreport:sort id="sort1">

<bloxreport:rule
member="Area"
missingLast = "false"
ascending = "false" />

<bloxreport:rule
member="Location"
missingLast = "false"
ascending = "false" />

</bloxreport:sort>
...

</bloxreport:report>

The above example will sort the data based on Area and then Location, generating
a result like the following:

ascending No true Whether to sort ascendingly.

member Yes Name of the member to sort on. You can
specify only one member name with each
rule.

If the member name does not start with a
letter or contain spaces or special characters,
it needs to be enclosed in square brackets. See
“Member Identifiers vs. Display Names” on
page 49 for detail.

missingLast No true Whether missing values will be displayed
last.

Tag Attribute Required Default Description

Area Location Product Units Cost Sales

S. Cal Beverly Hills Truffles #Missing #Missing #Missing

S. Cal Beverly Hills Brittles 72 120 240

N. Cal Sonoma Truffles #Missing #Missing #Missing

N. Cal Sonoma Brittles 27 45 90

N. Cal Napa Brittles 48 80 160
CHAPTER 12
Relational Reporting Blox Tag Reference

SQLDataBlox 191
SQLDataBlox
SQLDataBlox represents a SQL query that can be executed against
DataSourceConnectionBlox.

Syntax <bloxreport:report id="profitReport">
<bloxreport:sqlData
 id = "idName"
query = "sqlCommand" >
 <bloxreport:dataSourceConnection >

...
</bloxreport:dataSourceConnection>

</bloxreport:sqlData>
</bloxreport:report>

Usage Only one <bloxreport:sqlData> tag can be added within a <bloxreport:report>
tag.

The <bloxreport:sqlData> Tag
.

Examples <bloxreport:report id="profitReport">
<bloxreport:sqlData
id = "dataquery1"
query = "select Product, UnitSold, UnitCost, Sales from

chocoblocks" >

<bloxreport:dataSourceConnection
dataSourceName="chocoblocks" />

Tag Attribute Required Default Description

id No The unique identifier of this instance of
SQLDataBlox.

bloxName No The unique identifier for this instance of
SQLDataBlox on the server that allows you to
dynamically set its name. See “Managing
Session Scope” on page 138.

query Yes The SQL command to extract data from the
relational data source.

The data source should be specified using the
<bloxreport:dataSourceConnectio
n> tag, a tag that nests within
<bloxreport:sqlData>.
DB2 Alphablox
Relational Reporting Developer’s Guide

192 SQLDataBlox
</bloxreport:sqlData>
</bloxreport:report>

Below is a sample output:

Product UnitSold UnitCost Sales

Brittles x x 651,345

Fudge x x 454,450

Truffles x x 450,000

Seasonal x x 1,004,045
CHAPTER 12
Relational Reporting Blox Tag Reference

StyleBlox 193
StyleBlox
StyleBlox lets you set the styles for the displayed data and various areas in the
report. You can set styles for data based on data type, for missing or negative
data, and for the different areas in a report—column headers, data, group headers,
group footers, and group totals. The tag for StyleBlox is <bloxreport:style>. It
has the following nested tags:

• <bloxreport:text>: styles will be applied to data in all text columns

• <bloxreport:numeric>: styles will be applied to data in all numeric columns

• <bloxreport:date>: styles will be applied to data in all date columns

• <bloxreport:banding>: styles will be applied to alternate data rows

• <bloxreport:missing>: styles will be applied to missing data

• <bloxreport:negative>: styles will be applied to all negative values

• <bloxreport:column>: styles will be applied to both the column header and
the data for the specified member; member specification is required.

• <bloxreport:data>: styles will be applied to all data in the report, unless a
column is specified.

• <bloxreport:columnHeader>: styles will be applied to all column headers in
the rport, unless a column is specified

• <bloxreport:groupHeader>: styles will be applied to all group headers in the
rport, unless a level is specified

• <bloxreport:groupFooter>: styles will be applied to all group footers in the
rport, unless a level is specified

• <bloxreport:groupTotal>: styles will be applied to all group totals in the
rport, unless a level is specified

Syntax <bloxreport:style>
<bloxreport:text style="yourStyle" />
<bloxreport:numeric style="yourStyle" />
<bloxreport:date style="yourStyle" />
<bloxreport:banding style="yourStyle" />
<bloxreport:missing style="yourStyle" />
<bloxreport:negative style="yourStyle" />
<bloxreport:column style="yourStyle" columnName="member" />
<bloxreport:data style="yourStyle" columnName="member" />
<bloxreport:columnHeader style="yourStyle" columnName="member" /
<bloxreport:groupHeader style="yourStyle" level="level" />
<bloxreport:groupFooter style="yourStyle" level="level" />
DB2 Alphablox
Relational Reporting Developer’s Guide

194 StyleBlox
<bloxreport:groupTotal style="yourStyle" level="level" />
</bloxreport:style>

Usage Only one StyleBlox can be added to a <bloxreport:report> tag. If you have
multiple <bloxreport:style> tags, only the last one will be applied. If different
styles are specified to the same element within the same <bloxreport:style> tag,
the style declared last will be applied.

Styles set through StyleBlox win over the styles set in style classes. For example,
if you specify the font color for the .data style class to be blue in the stylesheet,
and use the StyleBlox to set all data in text columns to be black, then the data will
be in black.

<bloxreport:style> Tag and Its Sub Tags

Tag Attribute Required Default Description

<bloxreport:style>

id No The unique identifier for this instance of
StyleBlox.

bloxName No The unique identifier for this instance of
StyleBlox on the server that allows you to
dynamically set its name. See “Managing
Session Scope” on page 138.

Nested text, negative, banding Tags

style Yes The style to apply. Specify the style using
CSS attributes in the format of attribute:
value pair within the quotes, separated with
“;”.
CHAPTER 12
Relational Reporting Blox Tag Reference

StyleBlox 195
 The five sub tags inside StyleBlox can also be used within the TextBlox for setting the
display text for each of the report areas. When nested inside the TextBlox, the text attribute
should be used to set the display text. When nested inside the StyleBlox, the style attribute
should be used to set the display style. Use of the style attribute inside TextBlox will be
ingored, and use of the text attribute in the StyleBlox will be ignored.

Examples <bloxreport:style>
<bloxreport:text style="text-align: right;" />
<bloxreport:numeric style="text-align: right;" />
<bloxreport:date style="text-align: left;" />
<bloxreport:banding style="background-color: #CCCCCC;" />
<bloxreport:missing style="background-color: aqua;" />

Nested column, numeric, date, missing Tags

style Yes The style to apply. Specify the style using
CSS attributes in the format of attribute:
value pair within the quotes, separated with
“;”.

columnName Yes for the
column tag;
No for date,
missing, and
numeric;

The name of the column to which this style
should be applied.

For the <bloxreport:column> tag, a
columnName has to be specified. The
specified style will be applied to both the
data and the column header for the specified
column. For the other tags, if a columnName
is not specified, the specified style will be
applied to all columns.

Nested columnHeader, data, groupHeader, groupFooter, groupTotal Tags

style Yes The style to apply. Specify the style using
CSS attributes in the format of attribute:
value pair within the quotes, separated with
“;”.

columnName No Applies to the data and columnHeader tags.
If column name is not specified, the style
will be applied to all data or all column
headers.

level Yes Applies only to the groupHeader,
groupFooter, and groupTotal tags.

Tag Attribute Required Default Description
DB2 Alphablox
Relational Reporting Developer’s Guide

196 StyleBlox
<bloxreport:negative style="background-color: red;" />
<bloxreport:column style="font-size: 85%; color: white;

background-color: gray;" member="Type" />
<bloxreport:column style="color: purple; " member="Country"/>
<bloxreport:column style="color: blue;" member="State"/>

</bloxreport:style>

The above example sets:

• all text columns to be right-aligned

• all numeric columns to be right-aligned

• all date columns to be left-aligned

• the background color for alternate data rows to #CCCCCC (pale grey)

• the background color for the cell containing missing data to aqua

• the background color for the cell containing negative data to red

• the background color for the Type column to gray, with text in white, at 85%
of the regular text size

• the text color for the Country column (both column header and data) to
purple

• the text color for the State member (both column header and data) to red

Below is the sample output:

Note: The text displayed for missing value is set using FormatBlox.
CHAPTER 12
Relational Reporting Blox Tag Reference

TextBlox 197
TextBlox
TextBlox lets you specify the display text for the five areas in a rendered report:
group headers, group footers, group totals, column headers, and data. It has the
following nested tags:

• <bloxreport:groupHeader>: text is applied to all group headers, or the group
header of a specified level

• <bloxreport:groupFooter>: text is applied to all group footers, or the group
footer of a specified level

• <bloxreport:groupTotal>: text is applied to all group totals, or the group
totals of a specified level

• <bloxreport:columnHeader>: text is applied to all column headers, or the
column header of a named column

• <bloxreport:data>: text is applied to all data cells, or data cells of a named
column

Within each break group, two substitution variables are available for extracting
the name of the column or break group and the aggregation value for the column:

• <member/>: This is valid inside the <bloxreport:groupHeader> tag for
specifying break group headers, the <bloxreport:groupFooter> tag for
specify break group footers, and the <bloxreport:columnHeader> tag in the
for specifying column headers.

• <value/>: This is valid inside the nested groupHeader and groupFooter tag
for extracting the group total of a named member, the nested groupTotal tag
for specifying break group totals, and the nested data tag for specifying data
values.

Syntax <bloxreport:text>
<bloxreport:groupHeader

level="level"
text="text for group header" />

<bloxreport:groupFooter
level="level"
text="text for group footer" />

<bloxreport:columnHeader
columnName="columnName"
text="text for the column header" />

<bloxreport:data
columnName="columnName"
text="text for data in the column" />

<bloxreport:groupTotal level="level"
DB2 Alphablox
Relational Reporting Developer’s Guide

198 TextBlox
text="text for group totals" />
<bloxreport:text>

Usage Only one TextBlox can be added inside of a <bloxreport:report> tag. If you
have multiple <bloxreport:text> tags, only the last one will be applied. If
different texts are specified to the same element within the same
<bloxreport:text> tag, the text declared last will be applied.

Nested Tags Inside <bloxreport:text>

The following table describes TextBlox’s sub tags and their attributes.

Attribute Required Default Description

Nested columnHeader and data Tags

columnName Yes for
columnHeader;
No for data

The name of the column this column
header text or data text should be
applied to.

text Yes <member/> for
columnHeader;
<value/> for
data

The text to display for the named
column, or for all columns if
columnName is not specified. If text is
not specified, the entire columnHeader
and data tags will be ignored.

The entire value of this attribute is sent
to the browser, allowing you to add
custom HTML code to the column
headers and data values. The only
things processed by the Alphablox
Relational Reporting engine are the
two substitution variables—<member/>
and <value/>. See “Special
Substitution Variables for Displaying
Member Names and Values” on
page 97.

Nested groupFooter, groupHeader, and groupTotal Tags

columnName No Applies to the groupTotal tag only.

The name of the column this column
header text should be applied to.
CHAPTER 12
Relational Reporting Blox Tag Reference

TextBlox 199
 The five sub tags inside TextBlox can also be used within the StyleBlox for setting the
styles for each of the report areas. When nested inside the TextBlox, the text attribute should
be used to set the display text. When nested inside the StyleBlox, the style attribute should be
used to set the display style. Use of the style attribute inside TextBlox will be ingored, and
use of the text attribute in the StyleBlox will be ignored.

level No The level this group footer, header, or
total text or style should be applied to,
with level 1 being the overall report
levell (grouping is added using
GroupBlox).

With each grouping added, a level is
added. In a report grouped by product
and then by country, for example,
level 1 represents the overall report for
all products; level 2, each product
break group; level 3, each country
break group.

If level is not specifed, the specified
footer, header, or total text and style
will be applied to all grouping levels.

text Yes <member/> for
groupHeader
and
groupFooter;
<value/> for
groupTotal

The text to display for the group
footer, header, or total. If level is not
specifed, the specified text will be
applied to all grouping levels.

The entire value of this attribute is sent
to the browser, allowing you to add
custom HTML code to the column
headers and data values. The only
things processed by the Alphablox
Relational Reporting engine are the
two substitution variables—<member/>
and <value/>. See “Special
Substitution Variables for Displaying
Member Names and Values” on
page 97.

Attribute Required Default Description
DB2 Alphablox
Relational Reporting Developer’s Guide

200 TextBlox
The <member/> and <value/> Substitution Variables

The Alphablox Relational Reporting engine, when encountering the <member/>
variable, will replace the variable with the name of the current member, or the
grouping member of a specified, higher level. This variable allows you to extract
the member name in a report’s group headers, group footers, and column headers
area and wrap HTML code around the member name. When used inside the
groupHeader and groupFooter tags, it is replaced by the break group member
name. When used inside the columnHeader tag, it is replaced by the column name.

The <member/> variable has one attribute:

When the Alphablox Relational Reporting engine encounters the <value/>
variable, it substibutes the variable with the value of the current column or a
named column. This variable is valid inside the TextBlox’s data, groupTotal,
groupFooter and groupHeader tags, allowing you to wrap HTML code around the
values. When used inside the groupTotal tag, it is replaced by the aggregation
value for the current column for the break group, or the aggregation value for the
named column for the break group. When used inside the groupHeader tag, it is
replaced by the aggregation value of the named column for the same grouping
level.

Tag Attribute Required Default Description

level No The current
grouping level,
as specified in
the
groupHeader,
groupFooter,
or groupTotal
tag

You can only reference the
member of the current grouping
level or at a higher level. For
example, a level 2 group header
can only reference level 2 and
level 1 group members, not level
3. If the level is set to 3, the entire
tag string will be treated as texts
and no variable substitution will
occur. If no level is specified, the
current level is implied
CHAPTER 12
Relational Reporting Blox Tag Reference

TextBlox 201
The <value/> variable has one attribute:

For more discussions and examples, see “Special Substitution Variables for
Displaying Member Names and Values” on page 97.

Examples <bloxreport:report id="SummaryReport">
...

<bloxreport:text>
<bloxreport:groupHeader level="1"

text="Profitability by <member/>" />
<bloxreport:groupHeader level="2"

text="<member level=\"1\"/>: <member/>" />
<bloxreport:columnHeader

columnName="Units"
text="Units Sold" />

<bloxreport:groupTotal level="1"
columnName="Cost"
text="Grand Total Cost: <value/>" />

<bloxreport:groupTotal level="1"
columnName="Sales"
text="Grand Total Sales: <value/>" />

<bloxreport:groupTotal level="1"
columnName="Units"
text="Overall Total Units: <value/>" />

<bloxreport:groupTotal level="2"
columnName="Cost"
text="total: <value/>" />

<bloxreport:groupTotal level="2"
columnName="Sales"
text="total: <value/>" />

<bloxreport:groupTotal level="2"
columnName="Units"
text="total: <value/>" />

</bloxreport:text>
</bloxreport:report>

Tag Attribute Required Default Description

member No for
groupTotal and
data; yes for
groupHeader

The curent
member in
the column

If the member name is not
recognized or does not
exist, the entire tag string
will be treated as texts and
no variable substitution will
occur.
DB2 Alphablox
Relational Reporting Developer’s Guide

202 TextBlox
Below is a sample output:

See the Grouping and Adding Group-based Summary Columns section in Blox
Sampler - Relational Reporting for an example. This section also has an example
that demonstrates a use case when <value/> is used in group headers to produce a
report as follows:
CHAPTER 12
Relational Reporting Blox Tag Reference

TextBlox 203
1 This report adds ranking information to each level 2 group header to identify
the location that made the most sales. The calculation of ranking is set to
level 1 so the group total value for the calculated member "Rank" will be
available in the group header.

2 A product count is added to indicate the number of products carried in each
location for each week. This is done by calculating a temporary column using
the runningCount calculation function and later use the TextBlox’s data tag
to set the text in the column to be blank.

See the Grouping and Adding Group-based Summary Columns section in Blox
Sampler - Relational Reporting for the complete code.
DB2 Alphablox
Relational Reporting Developer’s Guide

204 TextBlox
CHAPTER 12
Relational Reporting Blox Tag Reference

A
Relational Reporting Tags for

Copy-and-Paste

This section includes two lists of all tags associated with ReportBlox. The first
list include all tags nested within the <bloxreport:report> tag. The second list
include the tags for PdfBlox. Tag names that represent Blox are bold, indicating
you can assign an id to that instance of Blox.

• “All Tags Nested Within <bloxreport:report>” on page 205

• “All Tag Attributes for PdfBlox” on page 207

All Tags Nested Within <bloxreport:report>
<bloxreport:report id="reportId"

bloxName="bloxName"
errors="true|false"
interactive="true|false"
noDataMessage="messageText"
noDataDueToErrorMessage="messageText">

<bloxreport:sqlData
query = "sqlCommand" >
<bloxreport:dataSourceConnection

id="uniqueID"
dataSourceName = "dataSourceName" >

</bloxreport:dataSourceConnection>
</bloxreport:sqlData>

<bloxreport:calculate
expression="calculatedMemberName= calculationExpression"
index = "int">

</bloxreport:calculate>

206 All Tags Nested Within <bloxreport:report>
<bloxreport:sort>
<bloxreport:rule

member="sortMember1"
ascending="boolean"
missingLast="true|false" />

</bloxreport:sort>

<bloxreport:filter
expression = "filterExpression" >

</bloxreport:filter>

<bloxreport:members
excluded = "member1, member2,..."
included = "member1, member2,..." >

</bloxreport:members>

<bloxreport:order
excluded = "member1, member2,..."
included = "member1, member2,..." >

</bloxreport:order>

<bloxreport:group members="member1, member2, ...">
<bloxreport:aggregation

member="memberName"
type="aggregationType">

</bloxreport:aggregation>
</bloxreport:group>

<bloxreport:format>
<bloxreport:numeric format="numericFormat1" />
<bloxreport:numeric format="numericFormat2"

member="member"/>
<bloxreport:date format="dateFormat1" />
<bloxreport:date format="dateFormat2" member="member"/>
<bloxreport:missing format="missingDataFormat" />
<bloxreport:html member = "member"/>
<bloxreport:aggregation format="numericFormat1"

member = "member1" />
<bloxreport:aggregation format="numericFormat2"

member = "member2" />
</bloxreport:format>

<bloxreport:style>
<bloxreport:text style="textStyle" />
<bloxreport:numeric style="numericStyle" />
<bloxreport:date style="dateStyle" />
<bloxreport:banding style="dateStyle" />
<bloxreport:missing style="missingDataStyle" />
<bloxreport:negative style="negativeStyle" />
<bloxreport:column style="colStyle1" columnName="member1" />
<bloxreport:column style="colStyle2" columnName="member2" />
<bloxreport:data style="yourStyle" />
<bloxreport:data style="yourStyle" columnName="member" />
<bloxreport:columnHeader style="yourStyle"/>
APPENDIX A
Relational Reporting Tags for Copy-and-Paste

All Tag Attributes for PdfBlox 207
<bloxreport:columnHeader style="yourStyle"
columnName="member" />

<bloxreport:columnHeader style="yourStyle"
columnName="member" level="n" />

<bloxreport:groupHeader style="yourStyle" />
<bloxreport:groupHeader style="yourStyle" level="n" />
<bloxreport:groupFooter style="yourStyle" />
<bloxreport:groupFooter style="yourStyle" level="n" />
<bloxreport:groupTotal style="yourStyle" />
<bloxreport:groupTotal style="yourStyle" level="n" />

</bloxreport:style>

<bloxreport:text>
<bloxreport:data text="yourText" />
<bloxreport:data text="yourText"" columnName="column" />
<bloxreport:columnHeader text="yourText" />
<bloxreport:columnHeader text="yourText" columnName="column"

level="n" />
<bloxreport:columnHeader text="yourText" columnName="n" />
<bloxreport:groupHeader text="yourText" />
<bloxreport:groupHeader text="yourText" level="n" />
<bloxreport:groupFooter text="yourText" />
<bloxreport:groupFooter text="yourText" level="n" />
<bloxreport:groupTotal text="yourText" />
<bloxreport:groupTotal text="yourText" level="n" />

</bloxreport:text>

</bloxreport:report>

ReportBlox can also take an RDBResultSetDataBlox, which lets you build a
relational report based on an RDBResultSet object from a DataBlox.

<bloxreport:report id="reportId">
<bloxreport:rdbResultSetData

bloxRef= "DataBloxName"
columnCoordinate="col"
drillThroughReportName="reportName"
rowCoordinate="row"

</bloxreport>
...

</bloxreport:report>

All Tag Attributes for PdfBlox
<bloxreport:pdf id = "idName"

bloxName="bloxName"
logoSource = "urlToImage"
portrait = "true"
bottom = "1in"
top = "1in"
height = "11in"
width = "8.5in"
DB2 Alphablox
Relational Reporting Developer’s Guide

208 All Tag Attributes for PdfBlox
left = "1.25in"
right = "1.25in"
footerVisible = "true"
headerVisible = "true" >
report="ReportBlox_id"

</bloxreport:pdf>

 The attribute values shown are the default unless they are in italic.
APPENDIX A
Relational Reporting Tags for Copy-and-Paste

B
Deprecated Tags for Relational

Reporting

This section lists deprecated tags and the replacements for the deprecated
functionality.

Deprecated tags and APIs receive support for a limited time but are no longer a
part of strategic product direction. IBM recommends eliminating their use as soon
as possible. Unless explicitly stated otherwise, a deprecated tag or API receives
support for three major releases, including the one in which the release notes
announced its deprecation. Major releases are, for example, 5.0.0 or 5.5.0. Minor
releases are, for example, 5.0.1.

Contents

• “Deprecated Tags and Attributes in Release 5.5” on page 210

210 Deprecated Tags and Attributes in Release 5.5
Deprecated Tags and Attributes in Release 5.5

Deprecated Tags/Attributes New Tags/Attributes

The following nested tags inside the
<bloxreport:report> tag are deprecated:

columnText
footerText
headerText

Use TextBlox (<bloxreport:text>) and its
nested tags:

columnHeader
groupFooter
groupHeader

See “TextBlox” on page 197 for details.

The following attribute for nested tags for
StyleBlox are deprecated:

member

Use columnName instead.

Example of new attribute:

<bloxreport:style>
<bloxreport:column style=""

columnName="" />
<bloxreport:data style=""
columnName="" />

</bloxreport:style>
APPENDIX B
Deprecated Tags for Relational Reporting

Index

B
Blox tags

Relational Reporting Blox, listing 205
Blox tags, see tags
Blox tags, using 160
bookmark

relational reports 121
break group

totals, specifying 107
break groups

footers, specifying 107
headers, specifying 107
style classes, listing 35

browsers
Relational Reporting 30

C
CalculateBlox

definition 25
percentOfTotal() function 113
rank() function 113
runningCount() function 113
runningTotal() function 113
tag reference 161

calculated members
adding, in relational reports 71

calculating data
in relational reports 71

cell banding
setting colors 100
turning off 100

cell banding, Relational Reporting 90

cell values, accessing 147
column header

Context Menu 28
column headers

Context Menu 28
column headers, renaming and formatting 93
components

Relational Reporting 23
concepts

Relational Reporting 32
custom tags

see Blox Reporting Tag Library

D
data

accessing, Relational Reporting 54
display style 90
filtering 70
formatting 87
hiding and showing members, in relational

reports 75
removing members, in relational reports 74
sorting, in relatonal reports 68

data columns
formatting 96
style classes in Relational Reporting,

listing 35
width, color, and style, setting 96

data columns, renaming and formatting column
headers 93

data row, accessing 147

212 Index
data sources
Relational Reporting, defining access to 54

DataSourceConnectionBlox
definiton 24
tag reference 163

design considerations
Relational Reporting 150

display areas 80
display names 49

E
error reporting

ErrorBlox, using 56
ErrorBlox

definition 26
getNextException() method 156
style classes 41
tag reference 165
using 56

ErrorBlox()
getRootCause() method 156

Excel, exporting to 127
exporting, to Excel 127
exporting, to static HTML 119

F
FilterBlox

definition 25
tag reference 166

filtering
data, in relational reports 70

footer, for break groups 107
FormatBlox

definition 25
HTML formatting, adding 89
tag reference 168

functions
percentOfTotal() 113
rank() 113
runningCount() 113
runningTotal() 113

G
getData() method 139

group header
Context Menu 28

group headers
Context Menu 28

group total
Context Menu 29

group totals
Context Menu 29

GroupBlox
definition 25
tag reference 172

H
header

break group headers, setting 107
column headers, renaming and formatting

93
HTML code, adding to data returned 89

I
interactive

context menus, style classes 36
relational reports, essential steps to

creating 58

L
localization

Relational Reporting 23

M
member names, variable 97
member values, variable 97
members

definition of, in relational reports 34
member identifier vs. display names 49

MembersBlox
definition 25
tag reference 176

message logging
Relational Reporting 155

Index 213
missing data
calculation, involving 73
display text, setting 87
hiding or showing, in relational reports 76

O
OrderBlox 25

definition 25
tag reference 178

P
PDF, saving reports to 125
PdfBlox

definition 25
tag reference 180

percentOfTotal() function 113
performance

relational report rendering 152
persistence

bookmarking, relational reports 121
PersistenceBlox

definition 25
tag reference 182
usage 121

R
rank() function 113
RDBResultSetDataBlox

definiton 25
tag reference 184

refreshReport() JavaScript method 144

Relational Reporting
Column Header Context Menu 28
components 23
concepts 32
custom tags, general syntax 43
custom tags, nested 44
default stylesheets 34
design considerations 150
development steps, general 54
development tips 52
error reporting 56
expression syntax, evaluating 46
Group Header Context Menu 28
Group Total Context Menu 29
localization 23
overview 22
rendering 26
rendering options 32
Report Editor user interface 26
Report Style dialog box, listing of style

classes 36
simplest interactive report, creating 58
simplest report, creating 57
style classes, listing 35

relational reports 70
background image, adding 102
bookmarking 121
creating, essential steps to 57
data columns, setting styles 96
exporting to Excel 127
exporting, to static HTML 118
images, adding 102
performance considerations, using

StyleBlox 152
rendering 26
rendering to PDF 29
report display area, setting 101
saving in browsers, options 118
saving, as HTML tables 119
saving, in PDF 125
sorting data 68
state, saving and retrieving 121
styles, defining 38
text alignment, default 91

rendering to PDF 29
DB2 Alphablox
Relational Reporting Developer’s Guide

214 Index
Report Editor
Column Header Context Menu 28
Group Footer Context Menu 29
Group Header Context Menu 28
specifying styles 132
style classes, listing 133
user interface, Relational Reporting 26

Report Style dialog box
style classes 41
style classes, listing 36

ReportBlox 24
definition 24
tag reference 186

runningCount() function 113
runningTotal() function 113

S
session scope

dynamic reports 138
Relational Reporting tags 48
terminating 138

setInput() method 139
SortBlox

definition 25
tag reference 189

sorting, in relational reports 68
SQLDataBlox

definition 24
setting queries, dynamically 142
tag reference 191

style classes
break groups, listing 35
column and data, listing 35
ErrorBlox 41
interactive context menus, listing 36
relational reports 35
Report Style dialog box, listing 36

StyleBlox
definition 25
tag reference 193

stylesheets
referencing, in Relational Reporting 55

styling
relational reports 34

T
tags

general rules
nested tags, Relational Reporting 44
Relational Reporting vs. other Blox 160
syntax, Relational Reporting 43

text alignment
relational reports, default 91

TextBlox
definition 25
tag reference 197

troubleshooting
Relational Reporting 155

U
user help

Relational Reporting 151

	Relational Reporting Developer’s Guide
	Contents
	Notices
	Trademarks

	Preface
	About This Book
	Related Documents
	Online Documentation User Interface
	Document Conventions
	Icons
	Typography

	Contacting IBM
	Product Information
	Comments on the Documentation

	Relational Reporting Overview
	Relational Reporting
	Localization

	Components of Relational Reporting
	Reports as an HTML Tables
	Report Editor User Interface
	Column Header Context Menu
	Group Header Context Menu
	Group Total Context Menu

	Rendering Reports to PDF

	Browser Support

	Relational Reporting Concepts
	Concepts for Relational Reporting
	Componentized Blox Based on Standard Technologies
	Report Rendering
	Report Pipeline
	Accessing Individual Blox
	Columns and Members

	Styling the Relational Reports
	Style Classes
	Style Classes in the Report
	Style Classes in the Report Style Dialog Box
	Style Classes for ErrorBlox

	Relational Reporting Custom Tags
	Nested Tags
	Standalone Tags
	The Order of Syntax Evaluation
	Session Scope

	Expression Syntax
	Member Identifiers vs. Display Names

	Relational Report Development
	Before You Begin
	General Development Tips

	General Report Development Steps
	Define the Application and Data Source
	Include the Reporting Blox Tag Library
	Use a stylesheet
	Use ErrorBlox for Better Error Reporting
	Add Blox Tags

	Creating Your First Relational Report
	The Simplest Report
	Task: Create a Simplest Report

	The Simplest Interactive Report
	Task: Create a Simplest Interactive Report

	Learning Resources

	Accessing and Retrieving Data
	Using SQLDataBlox and DataSourceConnectionBlox
	Dynamically Setting the Query

	Using RDBResultSetDataBlox to Access RDBResultSet from DataBlox
	Error Handling Against SQLDataBlox

	Processing and Manipulating Data
	Sorting Data
	Filtering Data
	Grouping Data
	Adding Calculated Columns
	Calculations Involving Missing Data
	Adding Calculated Members Before Grouping

	Removing Members
	Hiding and Showing Members
	Hiding and Showing Missing Data

	Formatting the Report and Data
	Display Areas in a Rendered Report
	Report Layout Formatting and Styling Summary Table

	Styling vs. Formatting vs. Setting Text
	Processing Sequence for StyleBlox, FormatBlox, and TextBlox

	StyleBlox vs. CSS Styles
	Formatting Data
	Wrapping HTML Code Around Data Values
	Adding HTML code to Data Returned from a Query

	Styling Data Displayed in Report
	Specifying and Styling Column Headers
	Styling Column Headers

	Specifying Column Width, Color and Style
	Special Substitution Variables for Displaying Member Names and Values
	The <member/> Substitution Variable
	The <value/> Substitution Variable
	Using the <member/> and <value/> Variables

	Setting or Turning Off Cell Banding
	Setting the Report Display Area
	Adding Background Images

	Grouping Data
	Overview of Break Groups and Break Group Levels
	Break Group Aggregations

	Specifying and Styling Break Group Headers, Footers, and Totals
	Calculating Group-based Summary Columns
	Adding Report Title and Column Summary (Aggregations)
	Using MembersBlox in Conjunction with GroupBlox

	Saving and Exporting Data
	Issues with Saving Interactive Reports Directly from Browser
	Saving as Static HTML to File System
	Bookmarking Reports and Saving States
	Loading Bookmarks

	Saving as PDF
	Saving Reports as PDF Files
	Rendering a Report Directly in PDF

	Saving to Excel or Other Applications
	Exporting to Excel
	Sending a Report Directly to Excel

	Styling the Report Editor User Interface
	Style Classes in the Report Editor User Interface
	Overriding the Style Classes
	User Help for Using the Report Editor

	Advanced Topics
	Managing Session Scope
	The Relational Reporting API
	Creating an Interactive Report using the API

	Dynamically Changing the Query
	Example 1: Directly access the SQLDataBlox and resets its query
	Example 2: Dynamically setting queries without refreshing the whole page using the global refresh...

	Accessing Data Rows and Cell Values in Rendered Report

	Development and Troubleshooting Tips
	General Tips and Development Steps
	Design Considerations
	Providing User Help
	Localization of Help

	Impact of Style Setting on Performance
	Common Reporting Blox Tag Errors
	Forgetting to include the taglib directive for Reporting Blox Tag Library
	Forgetting to use the correct prefix for Relational Reporting Blox
	Incorrect case of a tag or tag attribute
	Forgetting to include the stylesheet
	Refreshed page doesn’t reflect code modification
	Refer to member or column names incorrectly

	Troubleshooting Tips
	Error Handling Using ErrorBlox

	Relational Reporting Blox Tag Reference
	Using Blox Tags
	CalculateBlox
	The <bloxreport:calculate> Tag

	DataSourceConnectionBlox
	The <bloxreport:dataSourceConnection> Tag

	ErrorBlox
	The <bloxreport:error> Tag

	FilterBlox
	The <bloxreport:filter> Tag

	FormatBlox
	The <bloxreport:format> Tag

	GroupBlox
	The <bloxreport:group> Tag

	MembersBlox
	The <bloxreport:members> Tag

	OrderBlox
	The <bloxreport:order> Tag

	PdfBlox
	The <bloxreport:pdf> Tag

	PersistenceBlox
	The <bloxreport:persistence> Tag

	RDBResultSetDataBlox
	The <bloxreport:rdbResultSetData> Tag

	ReportBlox
	The <bloxreport:report> Tag

	SortBlox
	The <bloxreport:sort> Tag

	SQLDataBlox
	The <bloxreport:sqlData> Tag

	StyleBlox
	<bloxreport:style> Tag and Its Sub Tags

	TextBlox
	Nested Tags Inside <bloxreport:text>
	The <member/> and <value/> Substitution Variables

	Relational Reporting Tags for Copy-and-Paste
	All Tags Nested Within <bloxreport:report>
	All Tag Attributes for PdfBlox

	Deprecated Tags for Relational Reporting
	Deprecated Tags and Attributes in Release 5.5

	Index

