
IBM Configuration Management Version Control
Concepts

 SC09-1633-00

Note: Before using this information and the product it supports, be sure to read the general information
under “Notices” on page ix.

First Edition (June 1993)

This edition applies to Version 2 Release1, Modification Level 0, of IBM Configuration Management Version Control/6000
(Program 5765–207), IBM Configuration Management Version Control for HP systems (Program 5765–202), IBM
Configuration Management Version Control for Sun systems (Program 5622–063), and to all subsequent releases and
modifications until otherwise indicated in new editions. Make sure you are using the correct edition for the level of the
product.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not
stocked at the address given below.

A form for readers’ comments is provided at the back of this publication. If the form has been removed, address your
comments to:

IBM Canada Ltd. Laboratory
Information Development
21/986/844/TOR
844 Don Mills Road
North York, Ontario, Canada. M3C 1V7

You can also send your comments by facsimile to (416) 448–6057 to the attention of the RCF Coordinator. If you have
access to Internet, IBMLINK, or IBM/PROFS, or IBMMAIL, you can send your comments electronically to
torrcf@vnet.ibm.com ; IBMLINK, to toribm(torrcf) ; IBM/PROFS, to torolab4(torrcf) ; IBMMAIL, to ibmmail(caibmwt9) .

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it
believes appropriate without incurring any obligation to you.

If you choose to respond through Internet, please include either your entire Internet network address, or a postal
address.

 Copyright International Business Machines Corporation 1993. All rights reserved.
Note to U.S. Government Users –– Documentation related to restricted rights –– Use, duplication or disclosure is subject
to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.
IBM is a registered trademark of International Business Machines Corporation, Armonk, N.Y.

� Copyright IBM Corp. 1993 iii

Contents

Figure List vii.

Notices ix.

Trademarks and Service Marks ix.

About This Book xi.

Who Should Read This Book xi.
What You Need to Know xi.
How to Use This Book xi.
Highlighting Style xii.
CMVC Publications xii.

Chapter 1. The CMVC Environment 1.

System Configuration 1.
Required Software 2.
User Interfaces 2.

CMVC Roles 2.

Chapter 2. An Introduction to CMVC 5.

Organizing Development Data 5.
Configuring CMVC Processes 7.
Reported Problems and Design Changes 8.

Evaluating Proposed Design Changes and Reported Problems 8.
Identifying the Work Required 8.

Tracking Features and Defects 8.
Tracking the Change Process 9.
Integrating the Changes 9.
Updating the Release 9.
Verifying Defects and Features 10.

Summary 10.

The CMVC Development Environment

Chapter 3. Using CMVC Components 13.

What Is a Component? 13.
Component Attributes 13.

The Component Hierarchy 13.
Using the Component Hierarchy to Manage Projects 14.
Creating Components With More than One Parent 15.

Component Ownership 16.
Using Components to Manage Data 16.

Controlling Access Authority 16.
Defining and Modifying Authority Groups 18.
Granting Access Authority 18.

iv CMVC Concepts

Inheritance 19.
Controlling Notification 20.
Defining and Modifying Interest Groups 21.

Component Processes 21.
Component-File Relationship 22.

Chapter 4. Using CMVC Releases 23.

What Is a Release? 23.
Release Management 23.

Creating a Release 24.
Using Releases to Organize Files 25.

The Release-File Relationship 25.
Change Control and Integrated Problem Tracking 26.

Configuring the Integrated Problem Tracking Subprocesses 26.
Extracting a Release 27.

Change Control and Problem Tracking

Chapter 5. Controlling File Changes 31.

What Is a CMVC File? 31.
File Attributes 31.

Versioning of Files 32.
Getting Files from CMVC 32.

Checking Out a File 32.
Extracting a File 33.

Checking in CMVC Files 34.
Files Shared Between Releases 34.

Common Files 35.
Breaking the Common Link 36.
Managing Access to Shared Files 37.

Files in Releases with Integrated Problem Tracking 38.
Undoing File Changes 39.

Chapter 6. Using Defects and Features 41.

What Are Defects and Features? 41.
Defect and Feature Attributes 41.
Opening Defects and Features 43.
Analyzing Defects and Features 43.
Designing the Resolution 43.
Identifying the Required Resources 43.
Reviewing the Design and Resource Estimates 45.
Resolving Defects and Implementing Features 45.
Verifying the Resolution of the Defect or Feature 45.

Responsibilities of the Originator 46.
Responsibilities of the Owner 46.
Changing Component Processes 46.

Contents v

Chapter 7. Using Tracks 47.

What is a Track? 47.
Track Attributes 47.

Configuring Your Change Control Process 48.
Working With Tracks 48.

The Approval Subprocess 49.
The Fix Subprocess 49.

Completing the Tracking Process 51.
The Test Subprocess 51.
After the Track Subprocess 52.

Responsibilities of a Track Owner 52.
The Track States 52.

Chapter 8 . Using Levels 55.

What is a Level? 55.
Level Attributes 55.
The Level States 55.

The Level Subprocess 55.
Creating New Levels and Adding Tracks As Level Members 56.
Prerequisite and Corequisite Checks 56.
Making Changes to Files Included In a Level 57.
Committing and Completing a Level 58.

Extracting a Level 58.
Extracting File Trees 58.
Combining File Trees 59.
Compiling a File Tree 59.

Updating a Release with the First Level 60.
Changing Release Processes 60.

Appendix A. The States of CMVC Objects 61.

The States of Features and Defects 61.
The States of a Track 63.
The States of a Level 65.
The Feature and Defect State Diagram 67.
The Track and Level State Diagram 69.
The Relationship Between Subprocesses and Track States 71.
The CMVC State Diagram 73.

Appendix B. CMVC Entity Relationships 75.

Glossary 77.

Index 83.

vi CMVC Concepts

� Copyright IBM Corp. 1993 vii

Figure List

Figure 1. Example of a client-server network of CMVC 1.
Figure 2. Example component hierarchy 6.
Figure 3. Releases, files, and components 7.
Figure 4. Example of three levels of file changes committed within a release 10
Figure 5. The component relationships 14.
Figure 6. Designing the initial component structure 14.
Figure 7. Adding to the initial component structure 15.
Figure 8. Components with more than one parent 16.
Figure 9. A user with the implicit authority to create a component. 17.
Figure 10. Grouping CMVC actions into authority groups. 18.
Figure 11. Granting access authority by using the access lists 19.
Figure 12. Managing access authority 20.
Figure 13. Grouping CMVC actions into interest groups. 21.
Figure 14. The release-component relationship 24.
Figure 15. Access and notification for releases 24.
Figure 16. File-component-release relationship 25.
Figure 17. A release grouping files from different components 26.
Figure 18. Checking files in and out of the CMVC server 33.
Figure 19. Two CMVC files 34.
Figure 20. Two releases sharing one file 35.
Figure 21. A common file between two releases 35.
Figure 22. Breaking the common link when checking in a file 36.
Figure 23. Two branches of a file 37.
Figure 24. Managing access to a shared file 38.
Figure 25. File changes in releases that include the track subprocess 39.
Figure 26. Feature and defect state diagram with all subprocesses configured 44
Figure 27. Track and level state diagram with all subprocesses configured. 50. .
Figure 28. CMVC State Diagram 53.
Figure 29. Example of prerequisite file changes in a level 57.
Figure 30. Delta and full file trees 59.
Figure 31. Feature and defect state diagram with all subprocesses configured 66
Figure 32. Track and level state diagram with all subprocesses configured. 68. .
Figure 33. Relationship between subprocesses and state transitions for tracks 70
Figure 34. CMVC State Diagram 72.
Figure 35. Example entity relationship diagram. 75.
Figure 36. CMVC objects represented in a entity relationship diagram. 76.

viii CMVC Concepts

ix Copyright IBM Corp. 1993

Notices

References in this publication to IBM products, programs, or services do not imply that IBM
intends to make these available in all countries in which IBM operates. Any reference to an
IBM licensed program in this publication is not intended to state or imply that only IBM’s
licensed program may be used. Any functionally equivalent product, program or service that
does not infringe any of IBM’s intellectual property rights may be used instead of the IBM
product, program, or service. The evaluation and verification of operation in conjunction
with other products, except those expressly designated by IBM, are the responsibility of the
user.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these patents.
You can send license inquiries, in writing, to the IBM Director of Commercial Relations, IBM
Corporation, Purchase, NY 10577, U.S.A.

This publication contains examples of data and reports used in daily business operations. To
illustrate them as completely as possible, the examples include the names of individuals,
companies, brands, and products. All of these names are fictitious and any similarity to the
names and addresses used by an actual business enterprise is entirely coincidental.

Trademarks and Service Marks
IBM, denoted by an asterisk (*) in this publication, is a trademark of the IBM Corporation in
the United States and other countries.

The following terms, denoted by a double asterisk (**) in this publication, are trademarks of
other companies as follows:

SoftBench Hewlett–Packard Company

INFORMIX, INFORMIX–SQL Informix Software, Inc.

ORACLE Oracle Corporation

OSF/Motif Open Software Foundation, Inc.

PVCS Version Manager INTERSOLV, Inc.

Sun, Network File System, NFS Sun Microsystems, Inc.

SYBASE, SYBASE SQL Sybase, Inc.

x CMVC Concepts

 Copyright IBM Corp. 1993 xi

About This Book

This book is part of the documentation library that supports the IBM* Configuration
Management Version Control (CMVC) products. Read this book to gain an understanding of
CMVC concepts and how CMVC can enhance your existing software development process.

Who Should Read This Book
Anyone who wants to learn about CMVC should read this book. This includes
administrators, planners, managers, project leaders, testers, application developers, and
technical writers. It discusses the underlying concepts of CMVC and how these concepts
relate to development processes. Examples of how CMVC can be used by a software
development organization are included.

After reading this book refer to the IBM CMVC Server Administration and Installation and
IBM CMVC Client Installation and Configuration for complete planning, installation, and
administration details. The IBM CMVC User’s Guide describes how to use CMVC with the
graphical user interface (GUI), and the IBM CMVC Commands Reference describes CMVC
commands as implemented for the command line interface.

What You Need to Know
You should read this book before you read the rest of the CMVC library. To understand all
concepts discussed within this book, you should be familiar with your operating system
environment.

How to Use This Book
The first part of this book consists of two introductory chapters.

• Chapter 1 describes the network environment, software that CMVC requires, and the
different CMVC roles.

• Chapter 2 provides an overview of all parts of CMVC. Anyone who reads only parts of
this book should read this chapter.

The second part of this book consists of two chapters explaining the CMVC Development
Environment.

• Chapter 3 explains CMVC components, component processes, the component structure,
user access, and notification of CMVC actions.

• Chapter 4 explains releases, release processes, and the relationship files have with
components and releases.

The third part of this book consists of four chapters explaining change control and problem
tracking.

• Chapter 5 discusses working with files, delta versioning of files, and files shared across
multiple releases.

• Chapter 6 discusses working with defects and features.

• Chapter 7 explains the use of tracks in integrated problem tracking and change control.

• Chapter 8 explains the uses of levels.

CMVC Conceptsxii

Highlighting Style

Bold Files, directories, field names, and other items predefined by
CMVC appear in bold.

Italic Titles of books and the occurrences of new terms appear in
italics.

Monotype Names of authority and interest groups appear in monotype,
as do examples of servers, components and releases.

CMVC Publications
The following list of IBM books contain additional information on CMVC and related topics:

• IBM CMVC Server Administration and Installation, SC09–1631, contains detailed
information needed to install, configure, customize, operate, and maintain your CMVC
environment.

• IBM CMVC Client Installation and Configuration, SC09–1596, contains detailed
information that you need to install, configure, and customize CMVC clients.

• IBM CMVC User’s Guide, SC09–1634, describes all CMVC actions as implemented in
the graphical user interface (GUI).

• IBM CMVC User’s Reference, SC09–1597, contains the reference lists, tables, and state
diagrams for CMVC, as well as a description of how the message–integrated CMVC
client communicates with other integrated development environment tools.

• IBM CMVC Commands Reference, SC09–1635, describes all CMVC commands, their
syntax, and use as implemented in the command line interface.

 1Copyright IBM Corp. 1993

Chapter 1. The CMVC Environment

This chapter briefly describes the Configuration Management Version Control (CMVC)
system configuration, the user interfaces, and the three main user roles within a CMVC
environment.

System Configuration
CMVC consists of a CMVC client and a CMVC server. Designed for use in a networked
environment, the CMVC products support several operating systems and are based on a
client-server model.

CMVC client

CMVC clientCMVC server

CMVC client

ÄÄÄ

Network

Figure 1. Example of a client-server network of CMVC

A CMVC server is a workstation that runs CMVC server software to control all data within
the CMVC environment. Files are stored in a file system on the server by means of a
version control system. All other development data is stored in a relational database on the
CMVC server. A CMVC client is a workstation that runs the CMVC client software to access
the information and files stored on a CMVC server. This client-server architecture allows
users to access files and project data without having to know where the networked
resources physically reside.

2 CMVC Concepts

Required Software
Two version control systems are available for use with your CMVC server:

– Source Code Control System (SCCS)

– INTERSOLV’s Polytron Version Control System** (PVCS Version Manager)

The databases available for use with CMVC servers include:

– ORACLE** Relational Database Management System

– INFORMIX–SQL**

– SYBASE SQL**

The available databases and version control systems may be limited by the platform that the
CMVC server is running on.

� For more detailed information, see IBM CMVC Server Administration and Installation.

User Interfaces
The CMVC clients support the following graphical user interfaces (GUIs) and a command
line interface:

• A message-integrated GUI that operates in two environments:

– The IBM AIX Software Development Environment (SDE) WorkBench/6000 product.

– The HP SoftBench** and HP SoftBench for Sun** products.

See the IBM CMVC User’s Guide for information on these GUIs.

• A non-message-integrated GUI for operation in an environment without SDE
WorkBench/6000 or HP SoftBench products. See the IBM CMVC User’s Guide for more
information about this GUI.

• A command line interface is provided for use within a shell environment. See IBM CMVC
Commands Reference for more information about this interface.

CMVC Roles
The tasks within the CMVC environment can be divided into three main categories:

• System administration

• Family administration

• End use.

For all documentation within the CMVC library, the roles are defined as follows:

System Administrator

The system administrator is responsible for:

• Installing, maintaining, and backing up the CMVC server

• Installing, maintaining, and backing up the relational database used by CMVC

• Planning, maintaining, and configuring all client and server hardware.

The system administrator has root access to the CMVC server and database administration
(dba) access to the relational database management system.

3Chapter 1. Network Overview

Family Administrator

The family administrator is responsible for:

• Planning and configuring CMVC for one or more families

• Managing user access to one or more CMVC families

• Maintaining one or more CMVC families.

The family administrator has root access to the CMVC server and dba access to the
relational database management system.

End User

The end user uses one or more CMVC families. Most of the tasks described in this book are
done by end users, such as project leaders, programmers, and technical writers.

4 CMVC Concepts

 Copyright IBM Corp. 1993 5

Chapter 2. An Introduction to CMVC

Software development organizations today face the challenges of planning, managing, and
performing development activities. The development life cycle typically involves such tasks
as planning, programming, testing, building, and documenting. These tasks all involve
sharing development data. As the development process unfolds this data changes
constantly. A dynamic development environment needs to systematically manage and
control its work.

CMVC provides configuration management, version control, change control, and problem
tracking in a distributed development environment to facilitate project-wide coordination of
development activities across all phases of the product development life cycle.

Configuration management is the process of identifying, managing, and controlling software
modules as they change over time. Version control is the storage of multiple versions of a
single file along with information about each version.

Shared access to all development data is supported by storing all files and information on a
central server and providing access control that can be configured for each component of
data. CMVC provides two types of change control. The first type controls access to files
and requires files to be locked while changes take place. The second type complements the
first with a mechanism for tracking all file changes across multiple products and
environments. You can track both problem correction and design implementation.

The integration of problem and design tracking with change control provides a systematic,
configurable approach to tracking the file changes made to resolve a reported problem or to
implement a proposed design. With CMVC, you can organize your development data for
effective development tracking.

Organizing Development Data
Data contained in CMVC is divided into one or more families. A CMVC family is a logical
unit of related development data. The data in one family cannot be shared with other CMVC
families.

A Component Hierarchy
Within each family, data is organized into groups called components. Components are
arranged in a hierarchical structure with a single top component called root as shown in
Figure 2. This hierarchy provides a mechanism for organizing components of data into
structured groups. Your family administrator can configure the components and the
hierarchical structure within each CMVC family. Some common ways to group data in a
component are by function, by platform, for access control, or for communication needs.
The component hierarchy reflects the organizational requirements of your development
efforts and can be modified over time as these requirements change.

6 CMVC Concepts

root

leaf component

branch component

Figure 2. Example component hierarchy

Components are the building blocks of the CMVC environment. They organize data for
information retrieval, access control, notification control, problem reporting, and data
organization.

Each file under CMVC control is managed by a component. Components that manage a set
of files are usually the leaf components of your hierarchy, while the branch components are
used for organization, access control, and problem reporting.

Component Ownership

Ownership of each component is assigned to a user. That user is responsible for managing
data related to that component, including any problems reported to the component and any
files managed by it.

In addition to defining ownership of data, the component hierarchy is a structure defining
access and communication control as appropriate for specific groups of users and specific
groups of data.

A Release of a Product
CMVC files are also grouped into categories called releases. All files that make up a single
version of a product are grouped in a release. Releases are defined separately from
components to ease the maintenance of multiple versions of a product. Often two different
versions of one file are used in two versions of a product; each release of that product can
provide a link to a different version of the file. One release can group files that are managed
by many components. An example of three releases grouping files is shown in Figure 3.

Chapter 2. An Introduction to CMVC 7

root

Legend

component file version release

Figure 3. Releases, files, and components

Components organize files and other development data for management purposes.
Releases organize files for product related activities. Each file must be managed by at least
one component and contained in at least one release.

For example, one release contains many files. A group of users working on the release only
needs access to a subset of the files contained in the release. A single component can be
created to manage this set of files. Access to the files for this group of users is defined
through that component.

Each time a development cycle begins for the next version of a product, you can define a
separate release. Each subsequent release of a product will reference many of the same
files as its predecessor; however, each release links to particular versions of individual files
so that maintenance of an older release can progress at the same time as development of a
newer release.

Configuring CMVC Processes
CMVC monitors changes with defects, features, and integrated problem tracking. Each of
these restricts file changes so that they are made in a systematic manner. CMVC can
require users to analyze the time and resources required to make changes, verify changes,
select files to be changed, approve work to be done, and test the changes. The
requirements for changes are controlled by processes. Family administrators can create
processes for components and releases to use, configuring them from CMVC subprocesses.

The subprocesses affecting defects and features are configured in the process defined by
the component that is associated with the defect or feature. Each release must also use a
process. The release process configures the subprocesses that affect integrated problem
tracking.

� For information about how to configure processes, refer to IBM CMVC Server
Administration and Installation.

� Information about specific subprocesses can be found in Chapter 6, “Using Defects and
Features”, Chapter 7, “Using Tracks”, and Chapter 8, “Using Levels”. The relationship
between components and processes is described in detail in Chapter 3, “Using CMVC

8 CMVC Concepts

Components”. The relationship between releases and processes is described in detail in
Chapter 4, “Using CMVC Releases”.

Reported Problems and Design Changes
CMVC regulates reported problems and design changes and retains information about the
life cycle of each within the database on the CMVC server. A CMVC defect records each
reported problem. A CMVC feature records each proposed design change.

Each defect and feature is reported to a specific component within the component hierarchy.
The person who reported the defect or feature is known as the originator. Initially, a defect
or feature is owned by the owner of the component that it was opened against. The defect
or feature owner is responsible for evaluating the suggested changes. If necessary, the
problem can be reassigned to new owner or a more appropriate component.

Evaluating Proposed Design Changes and Reported Problems
When a feature is proposed or a defect is reported, its owner must assess the change and
can then return it to the originator, reassign it to another user or component, or accept it for
Design, Size and Review (the DSR subprocess). The DSR subprocess involves three
stages: design, size, and review. In the design stage, plan the implementation of the feature
or the resolution of the defect. In the size stage, identify the resources that will be required.
In the review stage, review the required resources and the feasibility of the planned
implementation or resolution. Size and review may indicate a need for additional design
work. At any of these stages, you can return the feature or defect.

A feature will not use the DSR subprocess if the component that it is assigned to uses a
process that does not include the feature DSR. Similarly, a defect will not use the DSR
subprocess if the defect DSR subprocess is not included. DSR records cannot be filled in if
the DSR subprocess is not being used. Note that assessment and choosing between
returning, reassigning, or accepting a feature or defect are always required.

Once the evaluation stages are complete you can accept the feature or defect for
implementation.

Identifying the Work Required
Defects and features record information about any problem or suggested design change.
Reported proposals and problems do not need to be related to the files under CMVC
control. The uses of defects include recording information about process problems,
hardware problems, and plan production problems. You can use features to record
proposals for process improvements, hardware enhancements, and plan changes.

Tracking Features and Defects
Releases using a process that includes the track subprocess record information about
progress of changes to a single feature or defect in that release. The level, approval, test,
and fix subprocesses can only be configured if tracking is also configured as part of the
change control process.

One defect may require changes in more than one release and one feature may be
implemented in more than one release. You must identify these releases before you make
the file changes needed to resolve the defect or implement the feature. When you identify
the releases a separate tracking mechanism is created for each release. This tracking
mechanism is called a CMVC track. Each track will monitor the resolution of one defect or
feature in one release.

Chapter 2. An Introduction to CMVC 9

Identify affected releases during the size stage of the DSR subprocess. The tracks for these
releases are created automatically when the feature or defect is accepted. Additional tracks
can be created manually if they are needed.

You must manually create all tracks required for defects and features if the DSR subprocess
does not apply to the managing components.

Tracking the Change Process
A track provides a mechanism to control file changes and to incorporate those changes into
each affected release. The track moves through successive states that both control and
indicate the type of work being done.

Files must be checked out from CMVC before they can be edited. After checking out the
file, make the required changes, and then check the changed file back in to CMVC. You
must reference a specific track when you check files in. The track links the file changes to
the defect or feature and the release that they affect.

Fixing a defect or implementing a feature may involve changing multiple files. A single track
monitors all the files changed within one release for one specific defect or feature.

Your development team should review and test all file changes before you move a track to
the next state for integration within the release.

Integrating the Changes
Resolving defects and implementing features for a specific release involves integrating the
files changed for those defects and features with each other and with the unchanged files in
the release. This can be done in one of two ways. If the level subprocess is included in the
release’s process, then CMVC levels can be used to integrate defect and feature file
changes with each other and unchanged files in the release. In this case, define a CMVC
level for the release for which you wish to integrate file changes. Then add the tracks that
monitor the file changes that you want to integrate within the release to the level as level
members. In this way you include all the file changes made to resolve the selected set of
problems in the level.

If the level subprocess is not included in the release’s process, then files changed for the
defect or feature can be integrated with the other files in the release by specifically
integrating or committing the track.

� Information about levels can be found in Chapter 8, “Using Levels”.

Updating the Release
Once a level of changed files is extracted, compiled and verified with the unchanged files in
a release, update the release by committing the level. Committing a level commits all tracks
that were designated as level members and all files changed in reference to those tracks as
stable. By committing the changes in a level, you establish a new baseline for subsequent
development of the release.

Once a release has been updated by completing a level, it is ready for formal testing. This
testing could involve testing the release on different platforms or in different environments.
When formal testing of each release is complete, the tracks monitoring the changes are also
complete.

You can recreate any committed or completed level at a later date. CMVC levels provide
snapshots of the release at different points in the development life cycle. In Figure 4, you
can recreate Level 1 or 2 at any time even though development is progressing based on the
committed file changes defined in Level 3.

10 CMVC Concepts

File’s
Version
Number

Files grouped by one release

FileC FileZ FileN FileW FileB FileG

Level 3
Level 2

Level 1

1.1
1.2

1.3

1.4
1.5

1.6

1.7

1.8
1.9

1.10

Figure 4. Example of three levels of file changes committed within a release

Verifying Defects and Features
If the verify subprocess is included in the component subprocess, then once a track is
completed the feature or defect for which the track was created must be verified by its
originator. If you originated the defect or feature, indicate concurrence or non-concurrence
with its resolution. If you do not concur with the resolution, open a new defect or feature.
The original problem will close automatically when two conditions are met: 1) all verification
record owners have indicated either concurrence or non-concurrence, and 2) all tracks
created for the feature or defect are complete.

If no tracks exist for a defect or feature, then it is verified by the originator when the owner
marks the it ready for verification.

Summary
A CMVC family is a logical organization of related development data. Within each family,
data is organized into groups called components. Components are arranged in a
hierarchical structure. Components are the focal point for information retrieval, access
control, notification control, problem reporting, and data organization. Within CMVC, files
are also grouped into categories called releases. All files that make up a single version of a
product are grouped in one release. Each file must be managed by at least one component
and contained in at least one release.

A CMVC defect records each reported problem. A CMVC feature records each proposed
design change. You must report each defect and feature to a specific component within the
component hierarchy. Defects and features record information about any problem or
suggested design change that you need to monitor. A CMVC track monitors the resolution
of one defect or feature for all affected files in one release. A CMVC level monitors the
integration of a selected set of defects and/or features for a specific release. The tracks that
monitored the defects or features that you want to integrate within the release are then
added to the level as level members. Committing a level commits all tracks that were
designated as level members and all files changed in reference to those tracks as stable.
When the changes in a level are committed, they establish a new baseline for subsequent
development of the release. Levels provide snapshots of the release at different points in
the release development life cycle. Once a track is completed, the originator of the defect or
feature for which the track was created can verify that the resolution or implementation was
correct.

11 Copyright IBM Corp. 1993

 The CMVC Development Environment

Within each CMVC family, data is organized into components and releases. The component
structure is the basis for information retrieval, access control, problem reporting, and data
organization. Releases organize files for product-related activities such as compilation and
building for distribution. The following chapters describe families, components, releases and their
relationship with your development data and the other objects within your CMVC development
environment.

12 CMVC Concepts

 Copyright IBM Corp. 1993 13

Chapter 3. Using CMVC Components

The CMVC component hierarchy organizes data into manageable groups and provides a
mechanism for controlling user access and notification. This chapter explains what a
component is and describes the relationships between components and other CMVC
objects within a family.

What Is a Component?
A component is the CMVC object that provides organization and control of development
data. Components are the focal point for information retrieval, access control, notification
control, problem reporting, and data organization.

Component Attributes
CMVC components have the following attributes:

• Name

– Each component name within a family must be unique.

• Owner

– Every component has an owner. The component owner is primarily responsible for
actions relating to that component.

• Parent component

– Every component except the root component must have at least one parent.

• Process

– The process that the component will use. This determines whether the DSR and verify
subprocesses are used for defects and features.

• Description

– Information describing the purpose of the component.

The Component Hierarchy
Four relationships exist between components within the component structure:

• Parent
• Child
• Ancestor
• Descendant.

14 CMVC Concepts

Every component except the root component must have at least one parent. A parent
component must be specified when each new component is created. Since no component
may be its own descendant or ancestor, the choice of additional parent components is
limited. Figure 5 illustrates the component relationships.

A1

parent

children

descendants

ancestors
root

Figure 5. The component relationships

Component A1 has one parent, three ancestors, three children, and seven descendants.

Careful planning of the component hierarchy for your organization is a vital part of the
configuration for CMVC, since a well-planned component hierarchy organizes your
development data for effective overall development tracking. Once this structure has been
created it can be modified as your organization grows, or as your needs change. Even if
you are not involved in planning the component structure for your family you need to
understand the uses of the CMVC component and its relationship to other CMVC objects.

Using the Component Hierarchy to Manage Projects
You can define components to organize your development data into manageable groups.
The component hierarchy subdivides your CMVC family into separate projects or work areas
to meet the needs of the development teams using that family. Your family administrator
may initially configure the component hierarchy but component owners and other end users
will utilize this structure and may build on it as their development needs evolve.

 Steve, your family administrator,
creates two components called
open and restricted, one for
the management of all data to be
contained in the family and one for
highly restricted information that
has to be carefully controlled. Ann
is assigned as the owner of
restricted and Steve maintains
ownership of open himself. As
children of the open component,
Steve creates vendor and
internal for easy control of
vendor access to information.
Since Brad is coordinating all
vendor agreements, Steve assigns
Brad the ownership of vendor.

root

open restricted

owner: Steve

owner: Steve owner: Ann

internalvendor

owner: Brad

owner: Steve

Figure 6. Designing the initial component structure

15Chapter 3. Using CMVC Components

Components can be used to group data according to the needs of your organization. Useful
ways to group data using the component hierarchy are by function, departmental
organization, access needs, notification needs, or a combination of these. For example, in
Figure 6 Steve creates a component hierarchy that addresses the access needs of his
development area. In Figure 7, Steve and Brad build on the initial structure to group the
data between the different projects and functions within those projects. Ownership of these
new components is assigned to the individual project leaders. The creator of a component
is automatically its owner unless a different owner is specified.

 Brad creates components,
vendorXX and vendorNN as
children of the vendor
component. Steve creates the
components projA, projB,
and projC . These components
will be used to group all data
related to the three projects
being developed within this
family.
 The Vendor XX team is doing
some work for the project A
team so Brad also creates the
component vprojA to group all
project A data needed by this
vendor. Ownership of these
new components is assigned to
the individual project leaders.

root

open restricted

vendorXX vendorNN

vendor

projA projB projC

vprojA

owner: Brad owner: Brad owner:Matt owner:Sarahowner:John

owner: Brad

internal

Figure 7. Adding to the initial component structure

Project leaders maintain responsibilities for their respective components. They can create
components as needed to further divide management roles, responsibility, and development
data.

Each additional level of the component hierarchy can be used to further distribute project
management responsibilities and to organize the development data into smaller and smaller
groups. Generally, the leaf components will manage a specific set of development data,
such as your source code files.

Creating Components With More than One Parent
Components can have more than one parent. Creating a second component as a parent
creates a cross reference for the child component since the child component is then
managed in two separate component groupings. For example, in Figure 8 the component
teamA is created to group both the internal and vendor components for the development of
project A, giving the projA and vprojA components each two parents. The teamA
component can facilitate notification for the entire project A team. You can manage access
control separately for the vendors and the internal users through the lower level
components, projA and vprojA , and you can manage notification for the entire team from
the component teamA .

16 CMVC Concepts

root

open restricted

internal

vendorXX

vendor

projA projB projC

vprojA

teamA

vendorNN

Figure 8. Components with more than one parent

Component Ownership
Ownership of each component is assigned to one user. That user is responsible for
managing all development data related to that component, including any problems reported
against that component, any features proposed for that component, and any files managed
by that component. The component owner is responsible for granting access and defining
notification for all development data managed by that component.

Component ownership can be reassigned to another user or the owner can delegate
aspects of management to other users by utilizing the component access list.

Using Components to Manage Data
Through components, you can organize your data into manageable groups, control access
to project data, and configure notification according to each user’s role within the project.
The component structure establishes a hierarchy that allows components to inherit access
and notification properties from their ancestor components.

Each component has an access list and a notification list. The access list manages access
to development data controlled by that component. The notification list manages user
notification about actions performed on the development data contained in that component.
Any notification interest defined for a user at one component is inherited by all descendant
components. Granted access authority is inherited to all descendant components that do
not have a restricted authority for the user in its access list. In this case only the component
with the restricted authority will not inherit the granted authority.

There are over one hundred actions that can be performed with CMVC commands. These
actions are split into various subsets to define different authority and interest groups. A user
can be granted or restricted one or more authority groups on a single component access list,
and one or more interest groups on a single component notification list. The authority and
interest groups are maintained by your family administrator and can be configured to fit the
needs of the development teams using your CMVC family.

Controlling Access Authority
Access within CMVC is based on four types of authority: base, implicit, explicit, and
restricted. The component access list defines explicit and restricted authority.

17Chapter 3. Using CMVC Components

Base Authority

All users have the authority to perform the following actions as soon as a user ID and host
list entry are created for them within CMVC:

• open defects

• open features

• comment on defects

• comment on features

• view the full path name of a file

• view user records

• search for information on CMVC objects (generate a report)

Implicit Authority

The implicit authority to perform certain actions against a CMVC object is automatically
granted to the user who owns the object.

For example,

The user Matt owns the component projA . He needs to create a component as a child of
projA to manage all documentation issues for his project. Since he is the owner of projA he
has the implicit authority to create a component with projA as a parent.

Figure 9. A user with the implicit authority to create a component.

� For a detailed list of all CMVC actions and the implicit authority required to perform them
see the IBM CMVC User’s Reference.

Explicit Authority

Users who are not CMVC superusers and do not own the specified object need to be
granted explicit authority to perform all CMVC actions except the base actions. Explicit
authority to perform actions against each development object in a family is managed
through the access list of the component that manages that object. The owner of each
component can create entries on the access list granting users explicit authority for an
action or set of actions related to the development data managed by that component.

� For more information about access lists see “Granting Access Authority” on page 18.

Restricted Authority

Restricted authority is used to prevent the inheritance of granted authority to a specific
component. The owner of each component can create entries on the access list to restrict
users from the authority to perform an action or set of actions on that component. This does
not affect the inheritance of authority to the components descending from it.

The Superuser Privilege
A user with the CMVC superuser privilege can perform any CMVC action. A CMVC
superuser is the only user who can add, delete, or recreate a user and only a CMVC
superuser can grant superuser privilege to another user. The number of users who have
this privilege should be minimized.

18 CMVC Concepts

Defining and Modifying Authority Groups
Authority groups are initially defined and can be modified over time by your family
administrator. Any number of authority groups can be defined and any number of actions
can be contained within one group. For example, each group may represent the actions
used by a particular type of user. In Figure 10, the authority group teamlead is created and
the developer and manager authority groups are used.

CompView
FileAdd
FileForceIn
FileExtract
FileView
LevelView
ReleaseCreate
ReleaseDelete
ReleaseExtract
ReleaseModify
ReleaseView
TrackFix
TrackIntegrate
TrackView

developer

manager

 The family administrator, Steve,
wants to set up an authority group
for users who work on files. He
chooses to use the shipped
authority group developer . The
managers of the project want to
view the status of all CMVC
objects and the team leaders
need access to all release
activities. Steve gives the
managers manager authority and
configures the authority group
teamlead . Now teamlead can
be used on all access lists in the
family.

teamlead

CMVC actions:

Figure 10. Grouping CMVC actions into authority groups.

Once authority groups are configured, component owners can use them to control user
access to actions performed on the development data under their management.

Granting Access Authority
Every component within your family has an access list that controls who has access to that
component. Each entry on an access list maps a user ID to an authority group and an
authority type. The authority group is composed of a group of CMVC actions which the
designated user is allowed to perform or restricted from performing.

� See the IBM CMVC User’s Reference for a complete listing of the IBM shipped authority
groups.

In Figure 11 Steve and John granted different authorities to different users. Those users are
shown in the access lists for each component. The authority granted on an access list has
to be the name of an existing authority group. Each entry on an access list grants or
restricts one user’s authority to perform one set of CMVC actions against the development
data managed by that component.

Only CMVC superusers, the component owner, and users with appropriate permission in
their authority group can grant or restrict authority on an access list. You cannot grant
authority greater than the authority that you have at that component. A superuser can grant
any authority to any user on any access list. In Figure 11 Steve granted Ann releaselead
authority at the restricted component. Steve is the family administrator and a CMVC
superuser and therefore can grant authority to any user on any access list.

19Chapter 3. Using CMVC Components

Access list
component User ID authority type
restricted Ann releaselead granted
restricted Steve releaselead granted

Access list
component User ID authority type
projB Sue manager granted
projB Dave developer granted
projB Enoch developer granted
projB Bill developer granted
projB John releaselead granted

 Steve grants authority to Ann by
creating an entry in the access list for
the components restricted and
internal . Since Ann needs to
oversee release activities Steve also
grants her releaselead authority.
Steve can also grant himself
releaselead authority since he has
the superuser privilege. Steve grants
John releaselead authority for
projB.
 John, as the owner of projB, can
grant access for this component. He
creates entries in the access list granting
Dave, Bill and Enoch the developer
authority and Sue manager authority.

root

open restricted

internal

projA projB

docA docB

Access list
component User ID authority type
internal Ann releaselead granted

Figure 11. Granting access authority by using the access lists

Each granted entry on an access list also implicitly grants the specified authority to the user
for any descendant components. For example, in Figure 11 Ann has releaselead
authority on any objects managed by projA, projB, docA, and docB even though she
is not on the access list for those components. Ann’s releaselead authority was
inherited by these components from the internal component.

Inheritance
A user with authority at one component has that authority at all descendants of the original
component through inheritance unless this authority is restricted at a descendant
component. The parent-child relationship between components allows each child
component to inherit properties from its parent components and all ancestor components.
The following properties are inherited:

• Access

– Any granted authority group defined for a user at one component is inherited by all
descendant components. That is, all entries on an access list are inherited. The
inheritance of authority can be restricted at a specific component, but the descendants
of this component will still inherit access.

• Notification

– Any interest group defined for a user at one component is inherited by all descendant
components. That is, all entries on a notification list are inherited.

Inheritance is cumulative. At a given component, a user will have the superset of all
authority groups granted at ancestor components, provided that the authorities are not
restricted at the given component.

In Figure 11, all users on the access lists for internal and projB will also have authority
on objects managed by the component docB . Any users not specified on the internal or
projB access lists who need authority on objects managed by docB need to be entered on
the access list for docB . If any of the users already on the access list for either internal
or projB need more authority for component docB than the authority that they inherited,
they need to be granted explicit authority on the access list for docB (see Figure 12).

20 CMVC Concepts

internal

projA projB

docB

Access list
component User ID authority type
internal Ann releaselead granted

Access list
component User ID authority Type
projB Sue manager granted
projB Deborah developer granted
projB Enoch developer granted
projB Bill developer granted
projB John releaselead granted

Access list
component User ID authority type
docB Bill releaselead granted
docB Jasna developer granted
docB Wayne developer granted
docB Deborah developer restricted

Through inheritance, Bill has
developer authority on any
objects managed by component
docB . But Bill is the team
leader for the documentation on
project B so John creates an
entry in the access list for
component docB , specifying Bill
with releaselead authority.
John also grants developer
authority to Wayne and Jasna.
Since Deborah does not have a
sufficient security clearance to
work on the files managed by
docB , John restricts her
developer authority at docB .

Figure 12. Managing access authority

In Figure 12, the additional entry for Bill at the component docB gives him more access to
data managed by docB but does not change his access to data managed by projB . When
granting access, you must look at both the existing inherited authority and the descendant
components where any new authority will be inherited.

Inherited authority can be removed from descendant components. If it is not removed, then
a component with more than one parent inherits access and notification properties
cumulatively from each parent component and all ancestors.

Controlling Notification
Notification of actions performed within CMVC are sent to the mail address specified in each
user’s CMVC user ID. Users are not notified of every action performed within their family.
With over one hundred actions possible, even a small family would generate too many
notifications. When an action is performed users get notified either automatically or
explicitly.

Automatic Notification

A user who owns a CMVC object is automatically notified of certain actions being performed
against that object. In addition, users automatically receive notification if an action affects
their user IDs or requires them to perform an action in return. For example, a user receives
automatic notification when their user ID is added to an access list.

Explicit Notification

Users who wish to receive additional notification need to be specified as subscribers.
Explicit notification about activity affecting a CMVC object is managed through the
notification list of the component that manages that object.

� For a detailed list of all CMVC actions and who is notified when they are performed see
the IBM CMVC User’s Reference.

Subscribers
A subscriber is a user who is notified when an action is performed against a development
object. Users interested in receiving notification about a development object can be added
to the notification list of the component that manages that object.

There is one notification list for every component within your family. Each entry on a
notification list maps a user ID to an interest group composed of a set of CMVC actions. If

21Chapter 3. Using CMVC Components

you subscribe to a component, you will be notified each time an action included in your
interest group occurs on data managed by that component.

� See the IBM CMVC User’s Reference for a complete listing of the IBM shipped interest
groups.

Defining and Modifying Interest Groups
Interest groups are initially defined by and can be modified over time by your family
administrator. Any number of interest groups can be configured and any number of actions
can be contained within one group. For example, each group may represent the actions a
particular type of user would want to be notified about. In Figure 13, the interest group
writer is created.

CompDelete
DefectAccept
DefectCancel
DefectClose
FeatureModify
FileCheckIn
FileLock
LevelCommit
LevelComplete
LevelCreate
ReleaseCreate
ReleaseModify

low

high

 Steve wants to set up an interest
group for technical writers. He
creates the interest group writer
composed of a set of CMVC actions.
Now this group can be used on any
notification list within the family. The
managers decide that an interest
group for those users who want to be
notified about all actions is needed as
well as one for users who want very
little notification. Steve uses the
shipped interest groups low and
high.

writer

CMVC actions:

Figure 13. Grouping CMVC actions into interest groups.

Once interest groups are configured, component owners can use them to specify individual
users as subscribers on notification lists.

Component Processes
In addition to managing files, authority lists, and notification lists, components control the
behavior of defects and features that are opened against them. This is done by selecting a
process for each component. The family administrator configures the possible processes
from the defect and feature DSR and verify subprocesses.

The component owner can set and change the process used by the component. Other
people, such as release and project leaders, may also have sufficient authority to change
the component’s process. The choice of processes will change the steps that are required
to resolve problems and implement design changes. Processes are chosen to reflect the
current stage of development that the objects managed by the component are in. For
example, components managing code may not require the defect DSR subprocess during
the early stages of software development.

� See Chapter 6, ‘‘Problem and Design Tracking” for more information about the defect
and feature DSR and verify subprocesses.

22 CMVC Concepts

Component-File Relationship
Components organize files into manageable groups, control access to files, and configure
notification about actions performed against files. Although components organize your files
into manageable groups, they do not alter the path name of the individual files.
Components provide a link to the files for management and control purposes.

Each CMVC file must be managed by a component. This component must be specified at
the time that the file is created within CMVC; however, it can be modified by a user with the
proper authority.

Access to each file under CMVC control is controlled through the access list of the
managing component. The authority group or groups that contain CMVC file actions must
be specified in order to grant a user access to a file. Creating an access list entry for a user
at one component grants him or her that authority over all development data, including files,
managed by that component or any of its descendants that do not explicitly restrict the
inheritance of the user’s authority.

Notification about file activities is configured through the notification list of the managing
component. The interest group or groups that contain CMVC file actions must be specified
when subscribing a user for file-related notification. Creating a notification list entry for a
user at one component subscribes him or her to all development data, including files,
managed by that component or any of its descendants.

23 Copyright IBM Corp. 1993

Chapter 4. Using CMVC Releases

The CMVC release organizes files into manageable groups for development as single
versions of a product. This chapter explains what a CMVC release is and describes the
relationship between releases, files, and components within a CMVC family.

What Is a Release?
A release is a logical organization of all files that are related
to a particular version of a product. However, like
components, a release does not change the physical
location of any files; instead it provides a logical view of the
files that must be built and distributed together in order to
create a version of a product.

Releases organize files for product related activities. Each
file must be managed by at least one component and grouped by at least one release.

Release Attributes

CMVC releases have the following attributes:

• Name

– Each release name within a family must be unique.

• Owner

– Every release has an owner. The release owner has the implicit authority to perform
most CMVC actions against that release and is primarily responsible for actions
relating to that release.

• Component

– Every release is associated with a component for the management of access control
and notification.

• Process

– The process that the release will use. This determines whether the tracking, level,
approval, test, and fix subprocesses are used.

• Description

– Information describing the purpose of the release.

Release Management
Every release must have a managing component. This component is specified when the
release is created. Through this component you can control access to the release and
configure notification according to each user’s interest in release-related actions. This is
done with the access and notification lists.

While components exist in a hierarchical structure, releases do not. A release has a
one-to-one relationship with a component for management purposes and a one-to-many
relationship with files for product-related activities. For example, in Figure 14 the release

Background
Components provide
organization and control of
development data.
Access lists designate
users with explicit authority
at a specified component.

24 CMVC Concepts

ToolAv1 is associated with the component teamA when teamA is specified as the
managing component.

root

open restricted

internal

vendorXX

vendor

projA projB projC

vprojA

teamA

vendorNN

docA codeA

ToolAv1 Matt owns teamA . He
creates the release
ToolAv1 to contain all
files that are part of the
first version of the product
Tool A. He specifies
teamA as the component
that will manage ToolAv1
and does not specify an
owner. Therefore, Matt
becomes the release
owner by default.

owner:Matt

Figure 14. The release-component relationship

Creating a Release
To create a release you must have the appropriate authority included in your authority group
for the component that you specify as the managing component (or one of its ancestors).

In Figure 14, access to release ToolAv1 is managed by members of the access list of
component teamA and notification about release ToolAv1 is managed by members of the
notification list of component teamA . All access and notification must be controlled from the
release’s managing component.

open

teamA

projAvprojA

ToolAv1

Access list
component user ID authority type
teamA Matt releaselead granted
teamA Martin releaselead granted

 Matt wants Paul to manage the
release so he changes ownership
of release ToolAv1 to Paul. Now
that Paul is the owner, he implicitly
has the authority to perform most
actions against his release.
 Paul wants Martin to help him
manage ToolAv1 so he asks Matt
to give Martin releaselead
authority.
 Paul also wants Ann to be notified
when actions are performed
against ToolAv1 so he asks Matt
to give Ann manager interest.

Notification list
component user ID interest
teamA Ann manager

owner:Paul

owner:Matt

Figure 15. Access and notification for releases

In Figure 15, although ownership of release ToolAv1 was assigned to Paul, access and
notification for the release are still managed by component teamA, and are therefore under
the control of Matt (who owns the component teamA) . In this way, Matt can maintain
access and notification control of the release, even though he has delegated the
management responsibilities to Paul.

If Matt wants to give Paul the ability to control the access to release ToolAv1, he can grant
Paul an authority which contains the authority to add users to the access list. Both Paul and
Matt would then have the authority to add entries to the access list of component teamA .

25Chapter 4. Using CMVC Releases

Matt can only grant other users an authority that he already has at that component. In other
words, he cannot grant any authority that is greater than the releaselead authority that he
currently has for teamA .

Considering User Access When Creating a Release
When you create a release, consider the access list of the component you are specifying to
manage the release. If you are in control of the access list, then you can control who can
perform actions against the release. However, you must also look at the access lists of the
ancestor components, since access authority is inherited. Find out what authority groups
grant release-related authority and check the access lists for users who have been granted
that authority. Creating a release that is managed by a component with few ancestors will
give you greater control of the access to that release. You can also control access by
explicitly restricting its inheritance at a given component.

Using Releases to Organize Files
Releases help you organize your files into the groups needed for the development of
particular versions of products. These groups could be based on products to be shipped,
parts of a product that need to be built separately, documents, test cases, or anything else
that requires a grouping of files for product-related activities such as extracting, building, or
compiling.

The Release-File Relationship
Releases are used to group files together along a single line of development. The files in a
release may be managed by one component or by a variety of components. When a file is
created in CMVC, a component must be specified to manage access and notification. A
release must also be specified. For example, in Figure 16, the file intro.i is created under
the component docA and the release ToolAv1 .

open

teamA

projA

ToolAv1

intro.i

 Paul wants to put his Tool
A introduction document
under CMVC control. He
creates a CMVC file
called intro.i which is a
copy of his Tool A
introduction document.
He specifies docA as the
managing component and
ToolAv1 as the release
under which intro.i will be
grouped.

docA codeA

Figure 16. File-component-release relationship

A file created and placed under CMVC control is identified by its path name. This path
name can be a portion of its path name on your workstation or its entire path name. This
path name is recreated when the file is extracted from the CMVC server. Extracting a
release copies all files grouped by that release to a specified Network File System (NFS**)
server, creating a file tree. This file tree can then be compiled and tested as needed.

26 CMVC Concepts

internal

projA projB

docBdocAcodeA

ToolAv1

codeB

intro.i

1.1
1.2

1.3
1.4

bkup.i

1.11.1
1.2

func.i

 As development on Tool A
progresses, more files are
created within this family.
Paul also needs a backup
document for Tool A. The
backup process for Tool A
is the same as the process
for a tool about which Ann
is writing. Ann creates
backup.i under docB so
that she controls access to
the file; however, she links
the file to release ToolAv1
so that it can be grouped
with other Tool A files.

1.1
1.2

1.3
1.4

1.5

fileX.c

1.1
1.2

1.3
1.4

fileN.c

open

teamA

Figure 17. A release grouping files from different components

In Figure 17, ToolAv1 contains the files fileX.c , fileN.c, intro.i , func.i , and bkup.i . The
document files are managed by docA or docB, and the code files are managed by codeA .
In this way, access to the document files can be managed separately from access to the
code files. Note that the components managing files contained in one release can be from
any part of the component tree.

Change Control and Integrated Problem Tracking
Change control regulates files so that only one user can edit a file at a time. If a release has
been configured to integrate problem tracking with change control, then all file changes are
linked to features and defects. This provides a systematic, configurable approach to
tracking the file changes needed to resolve a reported problem or implement a proposed
design. The change control process that has been configured for a release must be
followed.

To change a CMVC file you must check out the file. A CMVC file in a release can only be
checked out or locked by a single user. Once the file changes are complete, the file must be
checked back in to CMVC. It is then available for another user to check out.

Configuring the Integrated Problem Tracking Subprocesses
The family administrator can configure processes, each consisting of a name for the process
and the set of subprocesses that are used by the new process. Four subprocesses are
available to releases that use the track subprocess:

• The approval subprocess

• The fix subprocess

• The test subprocess

• The level subprocess.

The approval subprocess requires proposed file changes to be approved by everyone on
the approver list before the files are actually changed. An approver list is a list of users who
need to approve proposed changes to any files contained in the release.

The fix subprocess requires the component owner or the user making the file changes to
implement a feature or resolve a defect to mark the fix records as complete once changes

27Chapter 4. Using CMVC Releases

for the defect or feature are finished. This indicates that the file changes for the defect or
feature are ready to be integrated with the rest of the files in the release.

If the test subprocess is included in the change control process, file changes associated with
defects and features are tested in the newly updated release in certain environments. For
each release, an environment list defines the environments and the user responsible for
testing each environment.

The level subprocess provides a method of integrating files changed for defects and
features with the rest of the files in the release. It also provides a method of extracting the
most recent versions of files that will work together correctly. Levels can be used to facilitate
the testing subprocess.

� Change control for tracked releases is described in detail in Chapter 7, “Using Tracks”.

Extracting a Release
Extracting a release creates a file tree on a specified NFS server. The structure of the file
tree is dictated by the path names of the files that make up the release. Any directories in a
file’s path name that do not already exist on the specified NFS server will be created when
the release is extracted.

Several different versions of a release can be specified for extraction. The current and
committed versions of files grouped by a release can be extracted. It is also possible to
extract all of the files grouped by a release that were changed after a specified date.

28 CMVC Concepts

29 Copyright IBM Corp. 1993

 Change Control and Problem Tracking

Problem TrackingChange Control
Integrated

Problem Tracking
and Change Control

Change control regulates
how a file can be
changed. CMVC controls
changes to files by
allowing only one user to
edit a file at a time. This
is facilitated by requiring
all users to check out a file
prior to making any changes.

Problem tracking is the
process of tracking all
reported problems and
proposed designs through
to their resolution or
implementation. CMVC
retains information about
reported problems and
designs within the database
on the CMVC server.

Integrated problem tracking and
change control provides a

systematic, configurable approach
to tracking and controlling the file

changes needed to resolve a
reported problem or implement a

proposed design.

Change control prevents any two users from changing the same version of the same file.
Problem tracking is implemented through CMVC defects and features. Defects and features
record any problems or proposals that your organization needs to monitor. Integrated problem
tracking and change control are implemented by using a CMVC track to monitor the changes
made to the files of one release in order to resolve one defect or feature. The following chapters
outline the concepts involved in working with files, defects, features, tracks, and levels to
structure and manage your existing development process.

30 CMVC Concepts

31 Copyright IBM Corp. 1993

Chapter 5. Controlling File Changes

CMVC stores all versions of CMVC files on the CMVC server’s file system and records
information about those files in the relational database on the CMVC server. This chapter
describes how to work with files in the CMVC environment and how files relate to other
CMVC objects within a family.

Examples of file versioning in this book assume that SCCS is the underlying version control
system on the CMVC server. Version numbers may differ when using PVCS Version
Manager as the underlying version control system on the CMVC server.

What Is a CMVC File?
A CMVC file is a text or binary file that is under the control of the CMVC server. Each file
under CMVC control is uniquely identified by a path name and the name of the release in
which it is contained. All files under CMVC control are managed by components.

When you create a CMVC file, you are placing an existing file from your workspace under
CMVC control. Once a file is created under CMVC control the official copy of the file resides
in the file system on the CMVC server. Changes to this file are made by checking it out to a
CMVC client, making changes, and then checking the changed copy back into the CMVC
server. Components control access to all files under CMVC control and releases group files
for product-related activities.

CMVC stores additional information about the file each time an action is performed against
it. This information is stored in the relational database on the CMVC server and can be
queried at any time.

File Attributes
A CMVC file always has the following attributes:

• Path name

– The name of the file as known to the CMVC server. A path name can consist of a set
of directory names and a base name, or just a base name. The path name must be
unique within the release that contains the file.

• Base name

– The name assigned to the file, excluding any directory names. For example,
tools/intro.i has a base name of intro.i .

• File mode

– The read, write, and execute permissions for the file, represented as an octal number.
This attribute is updated each time the file is checked in.

• Component

– The component that manages the file.

• Release

– The release that groups the file.

• Current version

– The version number of the last version of this file to be checked in to the CMVC server.

32 CMVC Concepts

• Committed Version

– The version number of the most recent version of the file that has been committed with
a track or associated with a committed level. If the file is grouped by a release not
under tracking then the committed version is the same as the current version.

� Levels and the process of integrating file changes into a committed level are
described in detail in Chapter 8, “Using Levels”.

� For information about how to configure additional attributes, refer to IBM CMVC Server
Administration and Installation.

Versioning of Files
CMVC uses an underlying version control system to version files as they change. Your
family administrator will have configured the CMVC server to use either Source Code
Control System (SCCS) or INTERSOLV’s PVCS Version Manager as the underlying version
control system. The version control system installed on the CMVC server controls the
versioning of all files under CMVC control.

Each CMVC file is created with an initial version number of 1.1. When a file is checked out
of the CMVC server, a new version number is reserved for the version of the file which will
be checked back in. When you check in a file to the CMVC server, only the differences (the
delta) between the version of the file that you check in and the previous version are
recorded and stored as the new version. This is called delta versioning. The version of a
file that you check out is constructed as the sum of all deltas along a single line of
development.

Getting Files from CMVC
A CMVC file can be extracted or checked out by a user with the proper authority. Any
version of a file may be extracted at any time, but only unlocked current versions of files may
be checked out. Checking out a file implies the intention to modify it.

To check out or extract a CMVC file you must specify its path name, the release that groups
the file, and the directory where you want the file to be placed on your CMVC client. A
version number must also be supplied if you wish to extract a version of the file other than
the current version. The authority to check out and extract files is granted to you on the
access list of the component that manages the file or one of the component’s ancestors.

Checking out and extracting a file both copy the file from CMVC and place it in the
destination directory on a CMVC client. CMVC will avoid overwriting a file with the same
name by renaming the old file. For example in Figure 18, when Ann extracted version 1.1 of
intro.i, and then extracted version 1.5 of intro.i, both versions were extracted to the same
directory on jessica . The first copy of intro.i was automatically renamed. The CMVC
client preserves one backup copy of any file that could otherwise be overwritten by the
checking out or extracting a file.

Checking Out a File
When you check out a file, the current version is copied and placed in the specified directory
on your CMVC client. The copy of the file on your CMVC client is known as the working
version of the file. The working version of the file will have the permissions specified in the
file mode attribute. On the CMVC server a new version number is reserved for the version
of the file which will be checked in. The file on the CMVC server is locked so that no other
user can check out the file until you have checked in your changes to the CMVC server. For
example, in Figure 18 when Paul checks out the file intro.i, a copy of the current version

33Chapter 5. Controlling File Changes

(1.4) is placed on his CMVC client. Version 1.4 is then locked and a new version number
(1.5) is reserved for Paul’s changes. Similarly, when Ann checks out the file func.i, a copy
of the current version (1.1) is made and placed on her CMVC client.

Any locked CMVC file can be unlocked by users that have the proper authority defined for
the file’s managing component (or its ancestors) can perform this action. The number of
users granted the authority to perform this action should be minimzed.

Extracting a File
Extracting a file copies the indicated version of the file to your workstation but does not lock
the file in CMVC. By default, the file on the workstation will have the permissions in the file
mode attribute, except that nobody will have write permission. A locked version of a file can
be extracted by other users. For example, in Figure 18 Paul needs to look at information in
a file that is already locked. Since he does not intend to make changes to the file all he
needs is a copy of the most recent version. So he extracts version 1.1 of the file func.i . Ann
needs information that she thinks was included in an earlier version of a file, so she
performs a file extract to get version 1.1 of the file intro.i .

intro.i

1.1
1.2

1.3
1.4

bkup.i

1.1
Á
Á

1.1
1.2

func.i

Á
Á

intro.i

1.1
1.2

1.3
1.4

bkup.i

1.1

func.i

ÂÂ
ÂÂ

intro.i

Â
Â
Å

func.i

intro.i

1.1

ÂÂ
ÂÂ
ÂÂfunc.iÂÂ

ÂÂ
ÅÅintro.i

1.1

func.i

 CMVC server CMVC client CMVC client
 orwell jessica

 Paul is a user on the CMVC client
orwell and Ann is a user on the
CMVC client jessica. Paul needs to
work on the introduction document for
Tool A so he checks out the file
intro.i . Ann needs to add some new
function description to the document
in file func.i so she checks out that
file.

––––––––––
 Paul needs to look at the functional
descriptions so he extracts version
1.1 of the file func.i . One of the
functions that Ann needs to describe
in the function document used to be
described in the introduction
document. Ann extracts version 1.1
of intro.i to see if the description she
needs is in there.

––––––––––
 Paul finishes work on intro.i so he
checks in the file. Ann is having
trouble describing the new functions
and wants to look at what Paul has
done so she extracts version 1.5 of
intro.i .

––––––––––
 Ann finishes her functional
descriptions and checks in func.i to
the CMVC server.

ÁÁ
Â
Â
Å
Å

intro.i

1.2
1.3

1.4

bkup.i

1.11.1
1.2

func.i .intro.i

1.1

func.i

1.5

1.1

func.i

1.1
1.5

intro.i

intro.i

1.2
1.3

1.4

bkup.i

1.11.1
1.2

func.i .intro.i

1.1

1.5

1.1

func.i

1.1
1.5

intro.i

Legend
One version
of a file

Á
Á

A locked version
of a file

1.5
Á

1.5
Á

1.1
1.2

intro.i

1.5

1.2

func.i

A reserved version
of a file

Â
Â

A working copy
of a file

intro.i

1.5

(1.5)

(1.5)

(1.2)

(1.2)

(1.2)

()
The reserved version
number on the CMVC
server

Figure 18. Checking files in and out of the CMVC server

34 CMVC Concepts

Checking in CMVC Files
If you checked out a file from CMVC, you implicitly have the authority to check in the file.

Checking in a file copies your working version of that file into the file system on the CMVC
server, unlocks the current version and establishes your changes as the new current
version. For example, in Figure 18 when Paul checks in intro.i to the CMVC server it
becomes version 1.5. Note that when Ann wanted to look at this current version of intro.i
she did not check out the file, even though it was not locked. If you are not going to make
any changes to a file, extract the file instead of checking it out so that the file will still be
available for other users to check out.

To check in a file to the CMVC server you must specify the path name of the file, the
directory on your workstation where the file can be found, and the release that groups the
file that you originally checked out. If the release process includes the track subprocess,
you must also specify the track that is monitoring the file changes for that release.

Files Shared Between Releases
A CMVC file is uniquely identified by the path name of the file and the name of the release in
which it is contained. Both the release name and the path name must be specified
whenever you perform a CMVC action on a file. Multiple releases may group the same file.

1.1

1.2

1.3

1.3.1.1

1.3.1.2

1.3.1.3

1.4

1.5

1.6

CMVC file:
matt/tools/util.c in
release Mgrtool

CMVC file:
matt/tools/util.c in
release Xfontv1

Figure 19. Two CMVC files

Any file that is contained in two or more releases is a shared file. A shared file consists of
two CMVC files sharing information. Each path name-release pair represents a separate
CMVC file, as shown in Figure 19.

If the developers of one product need to use the information that is already contained in a
release for a different product then they can link the file that contains that information to their
release (if they have the proper authority). Both releases would then have a link to the
current version of that file. In Figure 20, the file bkup.i is a shared file since both ToolAv1
and ToolBv1 contain bkup.i . Since both releases are linked to the current version of
bkup.i (version 1.2), bkup.i is also a common file.

35Chapter 5. Controlling File Changes

internal

projA projB

docBdocAcodeA codeB

intro.i

1.1
1.2

1.3
1.4

bkup.i

1.11.1
1.2

func.i

 The file bkup.i is
contained in the release
ToolAv1 . However, Ann
needs to reference that file
in a new document she is
writing for the new product
Tool B.
 She creates the release
ToolBv1 and links bkup.i
to it. All files needed for
version 1 of Tool B will be
contained by this release. 1.1

1.2
1.3

1.4
1.5

fileX.c

1.1
1.2

1.3
1.4

fileN.c

ToolBv1

1.2

open

teamA

ToolAv1

Figure 20. Two releases sharing one file

Common Files
A common file is a file that is shared between multiple releases where each release
references the same current version of the file. File bkup.i in Figure 20 is both a common
and a shared file. Checking out a common file from either release locks the current version
of the file. Since both releases are linked to the same current version, the file is locked in
both releases. For example in Figure 21, when bkup.i is checked out of ToolAv1 on the
CMVC server it is locked in both ToolAv1 and ToolBv1 .

In releases that include the track subprocess, common files can be maintained
automatically. To check in a common file to the CMVC server and maintain the common
link, you must specify the release from which you checked out the file and any other
releases in which it is common. In this way any changes made to a common file can be
reflected in more than one release through a single check in action.

In releases that do not include the track subprocess, the common link is broken
automatically as soon as the file is checked in.

projA projB

docBdocAcodeA

ToolAv1

codeB

intro.i

1.1
1.2

1.3
1.4

bkup.i

1.11.1
1.2

func.i

 The file bkup.i is being
actively developed by the
team working on Tool A.
Each time they check the
file out of ToolAv1 it is
locked and a new version
number is reserved for it
on the CMVC server.
 Since bkup.i is a common
file, the release ToolBv1
is also linked to each new
version of the file.

1.1
1.2

1.3
1.4

1.5

fileX.c

1.1
1.2

1.3
1.4

fileN.c

ToolBv1

1.2
1.3

1.4

internal

open

teamA

Figure 21. A common file between two releases

36 CMVC Concepts

When development begins on a new release of a product, all the files in the current release
can be linked to a new release, so that initially all the files are common between both
releases. As development of the releases progresses, the common link between the files
can be broken as needed to separate development of the new release from maintenance of
the current release.

Breaking the Common Link
When a file is linked to other releases, that file will remain common in all releases until the
common link is broken. The common link can be broken in one of two ways:

• Breaking the common link at check in

• Breaking the common link at check out.

If you have made changes to a common file and do not want the changes to be reflected in
the other releases that link to that file, then you can break the common link when you check
in the file. The other releases will not be linked to the version you check in if you break the
common link. This file is still a shared file but it is no longer a common file.

If a file is common between more than two releases you have the option of maintaining the
common link between some of the releases while breaking the link with others. This can
only be done when checking the file in to the CMVC server.

projA projB

docBdocAcodeA codeB

intro.i

1.1
1.2

1.3
1.4

bkup.i

1.11.1
1.2

func.i

 Ann checked out the file
bkup.i from the CMVC
server, specifying ToolBv1
as the release. After
making some changes that
were specific to Tool B, she
checked in the file and
broke the common link.
 The changes Ann made
are contained in version 1.5
of bkup.i . Since this file is
no longer a common file her
changes will only be
reflected in ToolBv1 .
ToolAv1 ’s most current
version of bkup.i is still
version 1.4

1.1
1.2

1.3
1.4

1.5

fileX.c

1.1
1.2

1.3
1.4

fileN.c

ToolBv1

1.2
1.3

1.4
1.5

internal

open

teamA

ToolAv1

Figure 22. Breaking the common link when checking in a file

If you want to make changes to an already locked common file, you have the option of
breaking the common link when you check out the file. Breaking the common link at check
out can only occur if the common file is already locked in another release.

Each release contains successive versions of individual files. The versions that are
contained in each release represent a single line of development. In Figure 22, the release
ToolAv1 contains the versions 1.1 to 1.4 of bkup.i and ToolBv1 contains the versions 1.1
to 1.5. Each release contains the versions of bkup.i that contribute towards the
development of the related product. This includes any development done while bkup.i was
a common file.

The next time bkup.i is checked out of ToolAv1 , the file will branch at version 1.4. Figure
23 shows a magnified view of bkup.i after the common link is broken.

37Chapter 5. Controlling File Changes

ToolAv1

 When Ann broke the common
link (see Figure 22), ToolAv1
stayed linked to version 1.4. of
bkup.i .
 Steve now checks out bkup.i
from release ToolAv1 . This
places a copy of version 1.4 on
his workstation. Since version
1.5 already exists, a new
version number (1.4.1.1) is
reserved for the version that
Steve will check in.
 Each release contains its own
versions of bkup.i and both
contain versions 1.1 to 1.4. As
work continues in each
release, the branches of
bkup.i continue along the
same lines of descent.

ToolBv1

1.1

1.2

1.3

1.4

1.4.1.1

1.4.1.2

1.4.1.3

1.5

1.6

bkup.i

Figure 23. Two branches of a file

You can only check out the current version of a file in a release. In Figure 23, you can only
check out version 1.4.1.3 of the file from the release ToolAv1 , and version 1.6 from
ToolBv1 . In Figure 22, all versions of bkup.i are managed by the component docB . Any
user who has the authority to check out bkup.i from ToolAv1 can also check out bkup.i
from release ToolBv1, since access is managed by the file’s component. If different
access control is required for different lines of development within the file, then separate
managing components can be defined.

Managing Access to Shared Files
A shared file may be managed by multiple components. One component can be specified to
manage each line of development within the file. In other words, one component can be
specified to manage the versions of a file contained in one release.

When a file is first created on the CMVC server, one component manages the file and one
release contains the file. If the file is later linked to another release, a separate component
can be specified to manage the development of the file in the new release.

38 CMVC Concepts

ToolAv1

 Paul wants to control
access to all versions of
bkup.i developed under
ToolAv1 . All access to
bkup.i is currently managed
by docB which is under
Ann’s control. Paul wants all
versions of bkup.i
contained in ToolAv1 to be
managed by docA , so he
asks Ann to modify the
managing component for
that file in that release.
 Paul can now manage
changes to bkup.i in the
release ToolAv1 and Ann
can continue to manage the
changes to bkup.i in
ToolBv1 .

ToolBv1

1.1

1.2

1.3

1.4

1.4.1.1

1.4.1.2

1.4.1.3

1.5

1.6

bkup.i

docBdocA

Figure 24. Managing access to a shared file

Only a user granted permission to modify file attributes in an authority group on the access
list of the current managing component or one of its ancestors (provided that the authority is
not restricted at the managing component) can change the component that manages the
file. In Figure 24, Paul does not have the proper authority to modify the managing
component for file bkup.i even though he owned one of the releases linked to that file (this
is why he asks Ann to make the modification). Access is always controlled by the file’s
managing component.

Files in Releases with Integrated Problem Tracking
CMVC tracks are used to monitor file changes made to resolve one defect or feature in one
release. Changes to files contained in a release that includes the track subprocess must
reference a track. Specify a track when performing the following actions:

• Creating a file

• Checking in a file

• Linking a file to a release

• Undoing file changes

• Recreating a file

• Renaming a file

• Deleting a file.

The track referenced must be in the appropriate state before the action is allowed. For
example, a file can only be checked in if the track referenced is in the fix state. If the fix
subprocess is configured as part of the component’s process, the associated fix records
must be in the ready or active states.

� For more information about tracks and their relationships to releases and file changes
see Chapter 7, “Using Tracks”.

39Chapter 5. Controlling File Changes

Undoing File Changes
Changes made to any file can be undone by a user with the proper authority, unless the
version of the file which includes those changes has been committed. Changes to files
include all actions that may be performed against files. File changes must always be
undone in the reverse order that they were made. For example, suppose that you check in
a file, rename it, and then realize that the file should not have been checked in yet. To undo
checking in the file, the renaming must first be undone.

If the release that includes the file is not configured to include the track subprocess then any
number of file changes may be undone. If the release is tracked then the committed version
of a file is a permanent version of that file; changes made prior to the committed version of a
file cannot be undone.

After committing a tracked file you can create, rename, delete, recreate, or link it only once
before the next time it is committed. This makes the ability to undo file changes very
important. For example, you cannot create a file and then rename it before it is committed;
instead you must undo the creation of the file and then create a new file with the name that
you wanted the old file file to have.

Figure 25 shows three files before and after their tracks were included in a committed level.
In Example 1, the changes made in version 1.4 of FileB can be undone by a user with the
proper authority. In Example 2, the changes made in version 1.4 of FileB have been
committed and therefore can not be undone.

ÈÈ
ÈÈ

	�
�� 	�
�� 	�
��

��
��
� ��

Example 1 shows three files that are contained in release Rel1 . Each is the
current version of that file in Rel1 and each is the committed version of that file
in Rel1 . Changes made to FileA after version 1.2 and any changes made to
FileB or FileC (there can be no changes made to a file before version 1.1) may
be undone. FileB and FileC may not be renamed, linked, or deleted.

Example 2 shows the same files after the tracks they referenced were included
in a level that was committed. Each is both the committed and the current
version of that file in release Rel1 . No changes to any file may be undone.
FileB and FileC , however, may now be renamed, linked, or deleted.

��
��
� ��

���

���

���

���

ÈÈ
ÈÈ
ÈÈ
���

���

���

���

ÈÈ
ÈÈ
ÈÈ
���

���

���

ÈÈ
ÈÈ

ÈÈ
ÈÈ

	�
�� 	�
�� 	�
��

ÁÁ
ÁÁ

���

���

���

���

ÁÁ
ÁÁ

���

���

���

���

ÁÁ
ÁÁ
ÁÁ

���

���

���

Á

Rel1

Rel1

Figure 25. File changes in releases that include the track subprocess

40 CMVC Concepts

41 Copyright IBM Corp. 1993

Chapter 6. Using Defects and Features

CMVC problem tracking monitors all reported problems and retains information about their
life cycle in the database on the CMVC server. This chapter describes the problem tracking
process as it relates to both defects and features, how configured processes affect problem
tracking, and how CMVC monitors all reported defects and features.

What Are Defects and Features?
What Is a Defect?

Defects monitor and record information about problems. Defects may refer to problems not
related to the files under CMVC control. For example, defects can record information about
personnel problems, hardware problems, and process problems, as well as problems that
are found in products being developed under CMVC control.

What is a Feature?

Features monitor and record information about proposed design changes. Design changes
proposed using a CMVC feature do not need to be related to files under CMVC control. For
example, features can record proposals for process improvements and hardware design
changes, as well as proposals for design changes in products being developed under
CMVC control.

Defect and Feature Attributes
All CMVC defects and features have the following attributes:

• Name

– Each defect and feature has a unique name created when you open it.

• Component

– Each defect and feature is opened against a single component for evaluation,
management, and resolution or implementation.

• State

– Defects and features move through different states during their life cycles. Valid states
are open, design, size, review, working, verify, closed, returned, and canceled.

• Originator

– The user who opened the defect or feature. This person is responsible for verifying the
defect resolution or feature resolution.

• Owner

– The user responsible for managing the defect resolution or feature resolution.

• Remarks

– Information describing the defect or feature.

• Prefix

– A code for specifying different types of defects or features.

• Age

– The elapsed time that the defect or feature has been active. The aging mechanism
can be configured by the family administrator.

42 CMVC Concepts

• Reference

– An optionally assigned value used to group related defects and features.

• Abstract

– A short description of the defect or feature. This defaults to the first 63 characters of
the remarks if no abstract is recorded.

Attributes Specific to Defects
Since defects describe errors found in existing files (or other materials related to a family’s
components), defects have extra attributes to contain the additional information available.

• Answer

– The answer to the defect. This field is used by the defect owner when accepting the
defect for resolution or when returning a defect.

• Environment

– An optional indication of the environment in which the problem was discovered.

• Release

– Each defect can optionally have a release specified. When the track for this release
moves to the complete state then the defect automatically moves to the verify state.

• Severity

– The estimated severity of the reported problem.

Optional Attributes
CMVC allows the family administrator to configure features and defects to have additional
attributes. Several suggested attributes are provided by CMVC:

 For Defects and Features

• Priority

– An indication of the relative importance of the defect or feature.

• Target

– An indication of when the defect will be resolved or the feature will be implemented.

For Defects Only

• Phase Found

– The development phase in progress when the problem was discovered.

• Phase Injected

– The development phase in progress when the defect was reported (injected).

• Symptom

– An indication of the symptoms of the problem.

� For information about how to configure additional attributes, refer to IBM CMVC Server
Administration and Installation.

43Chapter 6. Using Defects and Features

Opening Defects and Features
Each problem or design change is reported by opening a CMVC defect or feature. Details
about the defect or feature are recorded by the user who opens it. The user who opens a
defect or feature is the originator of that defect or feature. Each defect or feature must be
reported to a component within the component hierarchy. This designates responsibility for
the defect or feature to the component owner. The owner of the component becomes the
defect or feature owner by default.

Analyzing Defects and Features
The owner is responsible for analyzing a defect or feature once it is opened. He or she can
then return it if it is not valid or feasible, reassign it to another user, or accept it for
resolution. The owner can return a defect or feature for any reason. Only the originator can
cancel a defect or feature. If a defect or feature is returned, then the originator may want to
record more information about the problem or enhancement and then reopen it. If the defect
or feature does not relate to the component to which it was reported, the owner can reassign
it to a more appropriate component within the hierarchy.

This process of clarifying the defect or feature and determining who should accept it may
involve reopening and returning the defect or feature many of times. Accepting a defect or
feature implies the responsibility to resolve the defect or implement the feature. Not all
defects will be accepted since some problems may turn out to be invalid (such as user error)
and may be canceled by the originator. Not all features will be accepted since some
proposals will not be feasible and may be canceled by the originator.

Designing the Resolution
Once a defect or feature has been accepted for consideration, the actual resolution needs to
be designed so that an informed evaluation can be made. This resolution needs to be
designed by users who are familiar with the product or area affected by the defect or feature.
Design text is recorded within the defect or feature and can be supplemented by other users
until a complete resolution design exists. No resolution can be made unless design text has
been recorded.

Identifying the Required Resources
The design text identifies the resources required to resolve the defect or implement the
feature. If a product being developed under CMVC control is affected, then the releases that
contain affected files need to be identified, as do the components that manage those files.
Sizing records are created by the owner to identify the components and releases that may
be affected. Each component-release pair is identified by one sizing record.

Each owner of a component referenced in a sizing record needs to evaluate the impact of
the defect or feature on the files managed by that component. If the files under the
management of a component are affected by the defect or feature, then this is recorded by
accepting the sizing record and adding sizing information. If the files are not affected, then
this is recorded by rejecting the sizing record.

44 CMVC Concepts

Figure 26 shows all the state transitions that features and defects with all subprocesses
included in the component process can make.

closed

Features and Defects

Verify
Subprocess

Any user within the family can open features and
defects against any component in the hierarchy.

canceled

Originator
can reopen
if canceled.

Originator
can reopen
if returned.

Owner can return a
feature or defect
after design, size,
or review. A
working design can
be returned if no
tracks exist for that
feature or defect.

Originator can cancel a
returned feature or defect.

Owner
can return
if open.

returned

open

Owner can move to
the design state if
open or returned.

Additional
design text
can be
added in the
design state.

Owner can move to the
size state if design text
has been entered.

Owner can
move back
to the
design state.

Owner can move to
the review state once
sizing records have
been marked.

The move to the verify state is
automatic, depending on the
states of associated tracks.

If no tracks exist for
the feature or
defect, then the
owner must move it
manually to the
verify state. verify

Track
Subprocess

design

A feature or defect
moves to the closed
state once all
verification records
are marked and all
tracks are complete.

Originator
can cancel
if open.

Owner can
move back to
the design
state.

LEGEND
state transitions for

tracking only
state transitions for all
features and defects

state transition is automatic or
a non-force action is required

DSR
Subprocess

Owner
can move
to the
working
state by
accepting.

size

working

review

Figure 26. Feature and defect state diagram with all subprocesses configured

� For a detailed description of all feature and defect state transitions see Appendix A: “The
States of CMVC Objects”.

45Chapter 6. Using Defects and Features

Reviewing the Design and Resource Estimates
Once the resolution has been designed and the resources have been identified, the
proposal needs to be reviewed. At this time the need for additional design work may be
identified. Features and defects that are not feasible can be returned to the originator. Any
returned defect or feature can be reopened, if necessary, by the originator.

One defect or feature may require changes in more than one release. Before file changes
are made to resolve a defect or implement a feature, the releases which are affected must
be identified. These releases are identified by sizing records that have been accepted
during the sizing stage. A track for each of these releases is created automatically when the
defect or feature is accepted. Tracks are only created for releases that include the track
subprocess.

For defects and features that do not affect files under CMVC control, you can add notes to
them to indicate the work required to resolve the problem or implement the design change.

Accepting a defect or feature indicates an intention to resolve the defect or implement the
feature.

Resolving Defects and Implementing Features
A track provides a mechanism to monitor file changes required for the resolution of one
defect or feature in one release. Files contained in a release under tracking can only be
changed by specifying the track that is monitoring those changes. The changes made to a
file in a tracked release are specifically linked to a defect or feature by this reference to a
track. Once a track has been created it moves through successive states which both
indicate and control the type of work being done.

Resolving one defect or implementing one feature in one release may involve one or more
users changing many files. To change a file, a user must check out the file from the CMVC
server, make the changes required to resolve the problem or implement the design change,
and check in the file to the CMVC server. Files can be checked out at any time and are
checked in with reference to the track monitoring the defect or feature. A single file may be
changed many times by many users before the feature is implemented or the defect is
resolved. All the file changes made for one defect or one feature within one release are
monitored by a single track.

Resolving a defect or feature also involves integrating the files changed for that problem or
enhancement with changes made for other defects and features in that release. These
changes also must be integrated with the unchanged files within the release.

� Using a track to monitor file changes and the integration of those changes in the
releases they affect is described in detail in Chapter 7, “Using Tracks”.

Verifying the Resolution of the Defect or the Feature
If the reported defect or feature does not involve tracks, then it can be verified in two steps:

1. The owner of the defect or feature indicates that the resolution or implementation is
correct by moving the defect or feature to the verify state.

2. The originator indicates that the defect is resolved or the feature is implemented in the
defect or feature’s verification record. This automatically closes the defect or feature.

Once the owner of the defect or feature moves it to the verify state, it is up to the originator
to record verification that the defect or feature was resolved or implemented satisfactorily.

46 CMVC Concepts

If tracks were created, the defect or feature will move automatically to the verify state in one
of two ways.

• If a release is specified for a defect, the defect will change from the working state to the
verify state when the track associated with that release is completed.

• Defects with no release specified and all features will move from the working state to the
verify state once the first track associated with the defect or feature is completed.

The originator uses a verification record to record satisfaction or dissatisfaction with a
resolution or implementation. If a duplicate defect or feature exists for the defect or feature,
then a verification record for the originator of the duplicate defect or feature is automatically
created when this defect or feature is accepted.

If the originator decides that the problem has not been resolved or the enhancement has not
been implemented correctly, then a new defect or feature can be opened. The original
defect or feature will close automatically once the originator and the originators of any
duplicates have recorded concurrence or non-concurrence and all tracks created for the
defect or feature are complete.

Responsibilities of the Originator
When a defect is found or a design change is proposed, a defect or feature is opened
against a component. The user who opens the defect or feature is the originator of the
defect or feature. The originator is responsible for recording information about the problem
or enhancement so that the owner can analyze it completely and thoroughly plan a design.
If the defect or feature is not described clearly it may be returned. A returned defect or
feature is the responsibility of the originator and can be reopened against the same
component, opened against a different component, or canceled. If it is reopened against the
same component, more information about the nature of the problem or enhancement is
probably required before the owner will accept it.

The originator is responsible for verifying the defect or feature once it is resolved. A different
user can be assigned as originator if necessary. If a verification record for the defect or
feature already exists, it can also be assigned to the new originator.

Responsibilities of the Owner
Every defect and feature is opened against a component. The owner of that component
automatically becomes the owner. The owner is responsible for managing the resolution
and must therefore be familiar with the area where the problem was found.

Ownership can be reassigned. If a defect or feature is opened against a component and the
owner does not feel that it pertains to that component, then ownership can be reassigned to
a different component. This will cause the problem ownership to automatically switch to the
owner of the new component. You can also reassign the ownership to a different user
without reassigning the problem to a different component.

Changing Component Processes
Users with sufficient authority, such as component owners, can modify components to use
different processes under certain conditions. If the old process included the defect (or
feature) DSR subprocess but the new one does not, then no defects (or features) opened
against the component can be in the design, size, or review states. If the old process
included the defect (or feature) verify subprocess but the new one does not, then no defects
(or features) opened against the component can be in the verify state.

47� Copyright IBM Corp. 1993

Chapter 7. Using Tracks

The integration of problem tracking and change control provides a systematic approach to
track the file changes required to resolve a reported problem or implement a proposed
enhancement. This chapter describes configuring your change control process for each
release, working with CMVC tracks, working with CMVC levels, and the interaction between
tracks, levels and the other CMVC objects within a family.

Defects and features record information about the life cycle of reported problems and
enhancements. Tracks monitor the resolution of those defects and features in releases that
include the track subprocess.

What is a Track?
A track is a CMVC object used to monitor the resolution of a defect or the implementation of
a feature within a release that includes the track subprocess.

Tracks are created when a defect or feature is in the working state. Since a single defect or
feature may affect multiple releases, a separate track must be created for each tracked
release in which file changes are required. Tracks are created automatically for any
releases specified by an accepted sizing record.

Every track must be created in reference to one defect or feature and one release. This
pair of release and defect or feature uniquely identifies the track within your family. By
default, the track is owned by its creator. If the track was created automatically then the
initial track owner is the owner of the release that the track references.

Track Attributes
A CMVC track has the following attributes:

• Name

– Each track has a name that corresponds to the name of the defect or feature that the
track is monitoring.

• Release

– The release in which the track is monitoring a defect or feature resolution.

• Prefix

– The track prefix is that of the respective defect or feature.

• State

– Each track moves through different states during its life cycle. Valid states are
approve, fix, integrate, commit, test, and complete.

• Owner

– Each track has an owner.

• Abstract

– The track abstract is that of the respective defect or feature, and is a summary of the
defect or feature.

48 CMVC Concepts

• Level

– The level in which the track is committed. This value is updated by CMVC, and will be
blank if the track is committed without a level.

• Target

– Each track can optionally have a target for the resolution of the defect or
implementation of the feature.

• Reference

– The track reference is that of the respective defect or feature.

Configuring Your Change Control Process
Tracks provide a mechanism for managing the stages
involved in the development of a release. The change
control requirements for each release within your family
may differ. The release process can be configured by the
family administrator to include any combination of the
following four subprocesses:

• The approval subprocess

– This subprocess requires all proposed file changes in
a release to be approved before the files are actually
changed.

• The fix subprocess

– During the fix subprocess, files that need to be changed for a specific defect or feature
are identified with fix records.

• The level subprocess

– This subprocess integrates file changes with all unchanged files in the release.
Building, compilation, and integration testing takes place during integration.

• The test subprocess

– This subprocess requires formal testing of a newly updated release in environments
specified by the environment list.

Working With Tracks
Tracks monitor the resolution of a defect or feature in a specific release. The track moves
through successive states which both control and indicate the type of work being done.

A track provides a mechanism to control file changes and the incorporation of those
changes into each affected release. When a track is first created, it starts in one of two
initial states: approve or fix. If a track’s release has the approval subprocess configured
then the initial state of the track is the approve state and the approval subprocess begins. If
the approval subprocess is not configured, then the initial state of the track is the fix state
and, if the fix subprocess is configured, the fix subprocess can begin.

Background

Components provide
organization and control of
development data.
Releases contain files for
product-related activities.
Defects are used to record
information about reported
problems.
Features are used to record
information about proposed
enhancements.

49Chapter 7. Using Tracks

The Approval Subprocess
When a project is first being developed, tight control of all changes may not be needed;
however, a development team getting close to a deadline may need a checkpoint in their
change control process. The approval subprocess provides a checkpoint to control which
defects and features are resolved in a release.

In a release implementing the approval subprocess, approval must be given for proposed
changes before work can begin on the resolution of a defect or the implementation of a
feature. The users specified in the approver list for this release need to review the
information recorded in the defect or feature and evaluate the changes proposed to the
release in relation to other project considerations (such as the development schedule or
resources required). An approval record is created for each approver when the track is
created. Each approver indicates his or her evaluation of the changes on their approval
record. CMVC will not accept any file changes for that defect or feature within that release
until all approvers accept the proposed changes.

A release that has one or more tracks in the approve state cannot be modified to use a
different process if the old process includes the approval subprocess but the new one does
not.

Working with the Approver List
An approver list is a list of users who must approve changes to any files contained in the
release. Each tracked release with the approval subprocess configured has an approval
list. If the approval subprocess is configured as part of the current process, each user on
this list will be issued an approval record for each track that is created for the release.

The approval list can be modified at any time by adding and deleting users. If the approval
subprocess is configured as part of the current process then there must be at least one user
on the approval list. Modifying an approver list does not affect approval records or tracks
that already exist for that release.

The Fix Subprocess
During the fix state of the track, files to be changed are identified. Then changes are made
and the files are tested before being checked into the CMVC server. The fix subprocess is
a way of informing CMVC and users that the files changed for the defect or feature are
ready for integration.

Resolving a defect or feature within a release may affect multiple files managed by more
than one component. A fix record is used to monitor the file changes within a single
component. Fix records provide a controlled mechanism for reviewing all file changes on a
component basis, before allowing those changes to be integrated with changes made for
other defects and features.

Fix records can be created explicitly; for example, a defect owner may create the necessary
tracks and fix records for the defect at the same time. Fix records are created automatically
for features or defects according to the accepted sizing records. If a fix record does not
already exist for the component then one will be created automatically when a file managed
by that component is modified or checked in to the CMVC server. Each fix record is initially
owned by the owner of the component; this ownership can be reassigned if necessary.

50 CMVC Concepts

fix

complete

TRACKS

complete

Levels

Approval
Subprocess

 Test
Subprocess

..
If this track is created
for a release with an
approver list then the
initial state for the track
is the approve state.

An approval record is
automatically created
for each user on the
approver list for this
release.

A track is created automatically for every release referenced by an accepted sizing record or
can be created manually to track the resolution of a defect or feature in a specific release.

Once all approval records have
been marked with abstain or
accept, the track moves
automatically to the fix state.

The fix records created for
all affected components
are ready when the track
moves to the fix state. File
changes
can now be
modified or
checked in.

The track will automatically
move to the integrate state
when all fix records marked
as complete.

Owner can
move the
track back
to the fix
state for
additional
file
changes.

Tracks in the fix or integrate
state can be designated as

level members.

A level automatically
moves to the integrate
state when the first
track is added as a
level member.

If all level members
are deleted then the
level automatically
moves back to the
working state.

integrate
Committing a level
commits all tracks
designated as level
members and all files
changed in reference
to those tracks.

File changes are
committed within the

release.

commit
The test records created for each
environment on the environment list
are ready when the track moves to
the test state. File changes are
tested within the release.

The track will automatically move
to the complete state when all
test records are marked.

The level must be moved
to the complete state
when the level is ready
for environment testing.

A track automatically moves to
the test state when the level it is
included in moves to complete.test

When a track associated with a defect or feature is complete, the
defect or feature moves to the next state after the working state.

The complete
state is the final
state of a track.

approve

commit

LEGEND
state transitions for

tracking
force action
is required

state transition is automatic or
a non-force action is required

 Fix
Subprocess

working

Level
Subprocess

integrate

Track Subprocess

Figure 27. Track and level state diagram with all subprocesses configured.

� For a detailed description of track and level state transitions see Appendix A: “The
States of CMVC Objects”.

51Chapter 7. Using Tracks

A file can be checked out at any time. However, if the fix subprocess is included in the
release process, then before a file can be modified or checked in to CMVC, the following
conditions must be met:

• A defect or feature requiring the file changes must exist.

• The track (for that defect or feature and the release that contains the file you have
changed) must be in the fix state.

• If a fix record exists for the component that manages this file, it must be in the ready or
active state.

When all necessary file changes within the specified component have been made, these
changes can be reviewed or inspected. The fix record owner is responsible for this review.
When the fix record owner is satisfied that the file changes made within that component are
complete and ready for integration with other files in the release, the fix record is marked
complete. When all existing fix records for a track are complete, the track is ready for
integration. If the fix subprocess is not included, fix records will not be created and the track
must be moved to the integrate state explicitly.

A release that has one or more tracks with fix records marked ready, not ready, or active
cannot be modified to use a different process if the old process includes the fix subprocess
but the new one does not.

Completing the Tracking Process
Once a level or track is committed, the formal environment test subprocess can begin.
After a committed level has been distributed to the appropriate testers, the level subprocess
is ready to be completed. Completing the level makes the committed level available for
formal testing by activating the test subprocess.

If the release associated with the track does not include the level subprocess, then
committing the tracks and distributing the collection of file changes for the release makes
the track available for formal testing by activating the test subprocess.

If the test subprocess is not included in the release’s process, then the tracks which were
included in the level automatically move to the complete state. Tracks committed without
levels will automatically move to the complete state.

The Test Subprocess
Formal testing of a release may not be required for all stages of your development process.
For defects and features that require file changes in only one release, the verification record
for each defect or feature may provide an adequate testing focus. However, when tracking
a problem resolution or feature implementation across multiple releases and release
environments, an additional formal test process is often needed. The test process provides
each release with a configurable set of environments and testers for formal testing.

Once a level has been completed, or a track has been committed, the release is ready to be
tested formally against the environments specified in the environment list.

In a release implementing the test subprocess, testing results must be recorded by the
specified tester for the related environment. A test record is automatically created for each
tester when a track is created for this release. Each tester must test the newly updated
release against the specified environment and record the results. If the defect or feature
related to this track was not resolved in the test environment then the test record is rejected
and a new defect or feature should be opened outlining the remaining problems. If the
defect or feature was resolved in this environment then the tester should accept the test
record. An abstain option is also available.

52 CMVC Concepts

Once all test records created for a track have been marked with test results, the track
automatically moves to the complete state.

A release that has one or more tracks in the test state cannot be modified to use a different
process if the old process includes the test subprocess but the new one does not.

Working with the Environment List
An environment list contains an entry for each environment in which a specified release
needs to be tested and can be defined as needed. Environment lists can include such
aspects as hardware, operating system, and related products. Each list entry must include
the environment and the user who is responsible for testing that environment. Each user
specified as a tester on the release environment list will be issued a test record for each
track that is created for the release if the test subprocess is included in the current process.

The environment list can be modified by adding or deleting environments associated with
the release. If the test subprocess is configured for that release then there must be at least
one user on the environment list. Modifying an environment list does not affect test records
or tracks that already exist for that release.

After the Track Subprocess
If no release is specified for a defect or feature, it will move from the defect or feature
working state to the verify state once the first track associated with it is completed. The
defect or feature can then be verified. However, if a release is specified for a defect, the
defect will change from the working state to the verify state when the track associated with
that release is completed. The defect can then be verified. For more information about
verifying defects and features see “Verifying the Resolution of the Defect or the Feature” on
page 45.

Responsibilities of a Track Owner
Each track is created when the associated defect or feature is in the working state. The
track owner defaults to the track creator if no owner is specified when the track is created.
Track ownership can be reassigned if necessary.

The track owner can move the track from one state to another if the automatic state
changes need to be circumvented. If additional file changes are needed after a track has
moved to the integrate state, the track owner can move the track back to the fix state. The
track owner may also cancel the track if there are no active file changes associated with it.

The Track States
Each track moves through different states during its life cycle. Different CMVC actions can
be performed against a track depending on its state. Different users will be involved in the
defect or feature resolution at separate points in the track life cycle. The state diagram in
Figure 27 shows the interaction of the different states and describes the movement from
one state to another. A detailed description of the track states and state transitions is
provided in Appendix A.

Integrating problem tracking and change control involves all stages of your development life
cycle. Monitoring all stages of your development process requires the interaction of many
of the CMVC objects. Figure 28 shows the main interactions between the states of defects,
features, tracks, and levels.

Defects and features are used to record information about the life cycle of reported
problems and enhancements. Tracks are used to monitor the resolution of those problems
and enhancements in releases under tracking and levels are used to integrate those
changes within the release.

53Chapter 7. Using Tracks

closed

approve

fix

commit

test

complete

FEATURES and DEFECTS

Tracks

Levels

verify Verify
Subprocess

open

canceled

 Fix
Subprocess

 Approval
Subprocess

 Test
Subprocess

..

integrateintegrate

Track
Subprocess

working

commit

LEGEND
state transitions for

tracked releases only
state transitions for

all changes
force action
is required

state transition is automatic or
a non-force action is required

See page 44.

See page 50.

size

design

review

DSR
Subprocess

returned

..

working

 Level
Subprocess

complete

state transitions when
subprocesses are not configured

Figure 28. CMVC State Diagram

54 CMVC Concepts

55� Copyright IBM Corp. 1993

Chapter 8. Using Levels

Resolving a selected set of problems for a specific release involves integrating the files
changed for those problems with each other and with the unchanged files in the release.
CMVC provides levels to facilitate this. The tracks that monitor the file changes that you
wish to integrate within the release are added as members to the level. This allows all file
changes made to resolve a selected set of problems to be represented in one level. Levels
also allow you to reconstruct sets of files as they were at the time that the level was
committed.

What is a Level?
A level is a CMVC object used to monitor and implement the integration of file changes
within a release. The level provides a method for systematically integrating changes into a
release under development. Levels can only be created for tracked releases using the level
subprocess.

Level Attributes
A CMVC level has the following attributes:

• Level name

– Each level name must be unique within the release.

• Release

– The name of the release for which this level is created.

• Owner

– The level owner is responsible for managing the level subprocess. The level owner is
automatically the user who creates the level. This ownership can be re-assigned.

• Type

– Level types can be configured for your development process. The available types are
defined by your family administrator.

The Level States
Each level moves through four states during its life cycle: working, integrate, commit, and
complete. CMVC actions can be performed against a level depending on its state. A
detailed description of the level state transitions is provided in Appendix A: “The States of
CMVC Objects”.

� Refer to the track and level state diagram (Figure 27 on page 50) to see how level
states interact with track states.

The Level Subprocess
At regular intervals during the development of a release, the release can be updated by
integrating all changed files with the remaining unchanged files in the release. CMVC levels
provide a controlled mechanism which defines and extracts the set of files to be integrated,
and then makes the file changes permanent after integration testing is complete. CMVC

56 CMVC Concepts

does not actually process or compile the file changes. Compilation and integration testing
must be done using additional tools after the files are extracted from the CMVC server.

Once a level is committed it can be reproduced at any time by extracting the full file tree of
the level. This extracts all of the file changes which were committed in the level as well as
the base set of files which were unchanged in the release.

This section discusses the process by which levels are defined, extracted, and committed.

Steps in the Level Subprocess

The level subprocess for a release requires the following steps:

1. Create a new level and add at least one track as a level member

2. Check the level for any existing prerequisite or corequisite track relationships

3. If necessary, extract the level to verify the compilation and the correctness of the file
changes.

4. Commit and complete the level

Creating New Levels and Adding Tracks As Level Members
A new level is created by assigning a new level name to the release. Level names must be
unique within a release. Tracks are added as level members once a level is created.
Adding a track as a level member includes the file changes monitored by that track in the
level. A track in the integrate or fix state can be added as a level member; however, a level
can not be committed unless all of its member tracks are in the integrate state. This allows
a level to include a partial fix for testing purposes without allowing a partial fix to be
committed in the level.

Once you have defined the new level, check for any existing prerequisite or corequisite
track relationships. If any are found, you will need to either remove some of the level
members or add tracks to the level in order to resolve the prerequisite and corequisite
requirements. When there are no remaining prerequisites or corequisites, the files can be
extracted in preparation for compilation.

Prerequisite and Corequisite Checks
Before extracting and compiling all the files in a level, you should perform prerequisite and
corequisite checks on the level. You will probably want to resolve any existing prerequisite
and corequisite relationships amongst the files before beginning compilation. The CMVC
server automatically checks the level for prerequisites and corequisites between all level
members before committing the level, and will not permit the commit action if any are found.

Prerequisite relationships are monitored automatically by the CMVC server to support file
integrity when a given set of files are changed for multiple defects and features. If a file has
been changed to resolve more than one defect or feature then the track referenced by the
first change is a prerequisite of any tracks referenced by the later changes. A track is a
prerequisite to another track if:

1. file changes have been checked in, but not committed, in reference to the first track.

2. one or more of those same files is then checked out, changed, and checked in again in
reference to the second track.

57Chapter 8. Using Levels

For example,

If File Y1 has been changed to
resolve two different defects (123 and
456) and one of these defects is
included in a level, then both defects
must be included in the level prior to
committing it.

In addition, any other files changed
for these defects will be included in
the level. Therefore File N8 , File
W3,and File C2 will be included in
the same level as File Y1 .

ÈÈ
ÈÈ��� ��� ��� ��� ��� ���

��
�
�

change for defect 123

change for defect 456

change for defect 456
change for defect 123

ÈÈ
ÈÈ��� ��� ���

È
È

��
� 	�

��� ��� ��� ��� ���

ÈÈ
ÈÈ

��
� ��

��� ��� ���

change for defect 456

changes for defect 456
change for defect 123

��
� ��

Figure 29. Example of prerequisite file changes in a level

Two or more tracks can be explicitly designated as corequisites so that all tracks in the
corequisite group must be included as members in the same level. If a track is added to a
level then all tracks that have a corequisite relationship with that track must also be included
in the same level before the level is committed.

Checking a level for existing prerequisites and corequisites returns a list of tracks which
have not been defined as members of the level but are either a prerequisite or a corequisite
for one or more tracks in the level.

Corequisite and prerequisite checking are not made in releases that do not include the level
subprocess. This means that in the above example, the changes to File Y1 for defect 456
can be committed (at version 1.6) before the changes for defect 123 are committed (at
version 1.5). If the changes for defect 123 are committed after the changes for defect 456,
File Y1 will still be committed at version 1.6.

Making Changes to Files Included In a Level
If the fix subprocess is configured, then changes can only be made to files when the
associated track is in the fix state and the associated fix record is in the ready or active
state. If additional changes are identified when the track is still in the fix state but the
required fix record is completed, the fix record needs to be moved back to the active state.
If additional changes are identified when the track is in the integrate state, the track owner
needs to move the track back to the fix state and the fix records for each component in
which changes are needed must then be moved back to the active state.

If the track has already been included in a level when additional changes are identified, the
track owner must:

1. Remove the level member associated with the track from the level.

2. Change the track from the integrate state to the fix state.

3. Change the affected fix records back to the active state. Respective fix owners can
accomplish this.

The track owner can then make the required file changes and check them in to the CMVC
server.

58 CMVC Concepts

Committing and Completing a Level
Committing a Level

When integration testing of a new level is complete, the release can be updated by
committing the level. Committing a level commits all tracks that were designated as level
members, and all file changes included in those tracks. When the changes in a level are
committed, they establish a new baseline for subsequent development of the release.

Commit a level when you are ready to finalize all the file changes included in the level. If
any outstanding prerequisite or corequisite track relationships exist for the level, it cannot be
committed. When a level is committed, all tracks which are level members change from the
integrate state to the commit state, and the file changes represented by those tracks
become permanent.

A single track can be a member of more than one level. If one of the levels including this
track is committed, the state of the track will change to commit. Other levels which include
this track will ignore the track.

The only alterations that can be made to a committed level are changing its type and
changing its owner. If you discover a defect in a committed level, you must open a new
defect to make additional file changes to a new level.

The committed level can be extracted to produce a new base file tree, against which the
next set of changes will be applied. The full file tree can be extracted at any time for any
previously committed level.

Completing a Level

The final step in the level subprocess is to complete the committed level. Completing a
level activates the formal test subprocess by changing all the tracks in the level from the
commit state to the test state. You should complete a committed level after the updated
release has been distributed to the appropriate testers or test groups.

Extracting a Level
Activities associated with extracting levels include:

• Extracting the most recent committed version of all files in the release and new levels

• Combining extracted file trees to produce an updated full file tree for the release

• Compiling and testing the full file system using additional tools outside CMVC

Extracting File Trees
Extracting files from the CMVC server copies the files from the server to a specified NFS
server. When extracting a level the destination of the file tree can be specified.

When using levels, there are two steps required to update the release:

1. Extract the most recently committed version of all files in the release either by extracting
the release, or by extracting the last committed level for the release.

– Extracting this set of files copies the committed versions of all files contained in the
release to the designated host’s file system. The resulting file tree is the full file tree
for that release.

59Chapter 8. Using Levels

2. Extract the level representing the set of changed files to the same NFS server.

– Extracting the level copies all the files changed for the tracks that are included in the
level to the designated host’s file system. The resulting file tree is the delta file tree for
that release.

	�������

����������

��

ÉÉÉ
ÉÉÉ

	�������

ÉÉÉÉ
ÉÉÉÉ

�����

ÉÉÉ
ÉÉÉ
	�������

�����ÉÉÉ
ÉÉÉ

�����

��

�
�������

����

	���

�
��

����

	���

���	�

����

	���

Figure 30. Delta and full file trees

Combining File Trees
If you extract both the full file tree and the delta file tree to the same directory, this will result
in a updated full file tree for the release. Alternatively, if you extract the full file tree and the
delta file tree to different directories, you can combine the two extracted file trees by copying
the delta file tree onto the full file tree. This will result in a updated full file tree for the
release. Note that in either case, if the new level includes renamed or deleted files, then the
updated file tree will have some files that need to be removed, since any deleted files will be
part of the full file tree, and any renamed files will have been included by their old path
name. These files can be deleted from the updated file tree. The CMVC server includes an
extra file in a delta file tree extraction that lists the full path names of all files that were
deleted or renamed in the level.

Multiple extractions to the same location will overwrite the previously extracted file tree.

Compiling a File Tree
Compiling the updated file tree for the release must be done using tools outside of CMVC.
Once the file tree is successfully compiled, and functional testing of the updated release
produces satisfactory results, you can commit the level.

60 CMVC Concepts

Once the updated file tree is compiled, all integration testing is performed. If errors are
discovered during integration testing, selected tracks can be deleted from the level and
moved back to the fix state in order to make additional file changes.

Updating a Release with the First Level
When a release is first created, there are two ways of initializing, or creating, all the files for
the release. The first option is:

1. Create the release with a process that does not include the track subprocess

2. Create all the files for the release

3. Modify the release to use a process that includes the track subprocess for the release.

The second option is:

1. Create the release with a process that includes the track subprocess

2. Create one feature (or defect) and one track for the release

3. Create all the files for the release in reference to this track.

If you use the second option, you will probably want to create an initial level for the release
and include in it the single track associated with creating all the files. In this case, extracting
the delta file tree for the level will actually produce a full file tree for the release, which can
be compiled for verification before committing the level. Subsequent development can
follow the integration method described above.

If you use the first option, then your first level for the release will include a set of tracks
associated with changes to the files in the release. These changes may include new
versions of the files, renaming some files, creating additional files, and so on. In this case,
in order to create the full base file tree, you will need to extract the release using the
committed option, which extracts the committed version of all files in the release. Although
the initial version of all the files in the release were not explicitly committed in a level, the
first version of the file is considered the committed version in this case, and will be
extracted. The resulting file tree can be updated with the delta tree extracted for the level,
and then compiled.

CMVC levels provide snapshots of the release at different points in the release development
life cycle. Each committed level can be recreated at a later date by extracting either the full
file tree or the delta file tree represented by the level.

Extracting the full file tree will recreate the release as it existed at the time that the level was
committed. Extracting the delta file tree will recreate only the files that were changed for
that level.

Changing Release Processes
Users with sufficient authority, such as release leaders, can modify releases to use different
processes. If one of the processes includes the level subprocess and the other does not,
then certain conditions must be met before the release process can be changed.

If the old process includes the level subprocess, but the new one does not, then all of the
levels in the release must be in the working state (and therefore have no level members) or
in the complete state, and no tracks in the release can be in the integrate state.

If the new process includes the level subprocess, but the old one does not, then none of the
tracks in the release can be in the fix state.

APPENDIX A

61 Copyright IBM Corp. 1993

Appendix A. The States of CMVC Objects

The States of Features and Defects
Features and defects record information about the life cycle of a problem. Each feature or
defect moves through different states during its life cycle. The CMVC actions you can
perform against a feature or defect depend on its current state.

� The feature and defect state diagram is on page 66.

The Open State
Any user within a family can open a feature or defect against any component within the
family’s hierarchy. That user is recorded as the originator. When a feature or defect is first
opened it is in the open state and is given a unique name (which may be specified by the
creator).

A feature or defect must be created in reference to a component. The owner of this
component becomes the feature or defect owner and is responsible for managing the
resolution. The component you open a feature or defect against should be one that
manages files affected by the enhancement or problem. Deciding which component to open
a feature or defect against depends on the component hierarchy created by your
organization. Component descriptions and the structure of the hierarchy will help you find
the most appropriate component for management of the feature or defect. If a problem is
opened against an inappropriate component, the component owner can reassign it.

Note: The owner of a feature or defect is the user responsible for its implementation. The
originator is the user responsible for verifying the resolution.

The Returned State
A feature or defect can be returned from the open, design, size, or review state if the owner
decides that it is not feasible or not valid. A feature or defect in the working state can only
be returned if it is not tracked. Returning a feature or defect moves it to the returned state
where the originator can either cancel or reopen it. When you return a feature or defect you
should add your reason for returning it so that the originator and any other users can
evaluate why you believed it infeasible or invalid.

Reopening Features and Defects

An originator can reopen a feature or defect in the returned or canceled state. It cannot be
reopened if it is in the closed state. When you reopen a feature or defect you should add
your reason for reopening it and clarify the description of the design change or problem. A
reopened feature or defect retains both the original name and the managing component it
was originally opened against.

The Canceled State
A feature or defect can be canceled by the originator if it is in the returned or open state.
Canceling a feature or defect moves it to the canceled state. When canceled, it is no longer
active until it is reopened by the originator.

APPENDIX A

CMVC Concepts62

The Design State
A feature or defect in the open or returned state can be moved to the design state by the
owner if the DSR subprocess is part of the process used by the managing component. In
this state, the proposed change is designed and the design text is entered. Design text
must be entered before it can move to the size state. Once all design specifications have
been documented, the owner moves the feature or defect to the size state.

The Size State
When a feature or defect is in the size state you can create sizing records for each release
that contains files affected by the design, and the components that manage those files.
Each component-release pair is identified by one sizing record.

Sizing Records

Sizing records identify the work required for and the resources affected by the feature or
defect. The owner of the component referenced in the sizing record is automatically the
owner of the sizing record. The sizing record owner is responsible for entering information
about the approximate amount of work required to implement the feature or resolve the
defect in the corresponding component.

The sizing record owner should enter the required information and change the sizing record
to the accept state if the feature or defect affects that component. If it does not affect that
component then move the sizing record to the reject state.

When all sizing records have been marked, then the feature or defect can be moved to the
review state or back to the design state if more design information is needed.

The Review State
The owner of a feature or defect in the size state can move it to the review state, where the
design text and size records are reviewed to determine the feasibility of the proposal. If
more information is needed then the feature or defect can be moved back to the design
state. After reviewing the recorded information the owner can accept the feature or defect
for resolution or return it.

The Working State
A feature or defect can be accepted by the owner if it is in the review state. Accepting the
feature or defect moves it to the working state and implies an intention to resolve it. If the
managing component does not use the DSR subprocess then the owner can move the
feature or defect to the working state if it is in the returned or open state.

Once you accept a feature or defect you need to identify what releases are affected by it.
One feature or defect may require changes in more that one release. These releases were
identified during sizing and a track is automatically created for each identified release that
uses tracking when the feature or defect is accepted. Each track will monitor the progress
of the resolution within one release and follow the change control process configured for the
release that it is monitoring.

The feature or defect will automatically move to the verify state (closed state if the feature or
defect verify subprocess is not included in the component process) when the first track
moves to the complete state. If it has no tracks, then the owner can force the feature or
defect to the verify or closed state. Note that a defect associated with a release requires
that the track associated with that release is in the complete state before it moves from the
working state.

APPENDIX A

63Appendix A. The States of CMVC Objects

The Verify State
When a feature or defect is accepted and the verify subprocess is configured, a verification
record is created for the originator. The originator cannot use the verification record to
verify the implementation until the feature or defect moves to the verify state.

A feature or defect in the working state can be moved to the verify state by the owner if no
tracks were created for it. If tracks were created, the feature or defect will automatically
move to the verify state when a track is completed. Note that a defect associated with a
release requires that the track associated with that release is in the complete state before it
moves to the verify state.

Verification Record

To ensure that the feature or defect is resolved to the originator’s satisfaction, it cannot be
closed until the originator moves a verification record to the accept, reject, or abstain state.
As the originator, if you are not satisfied with the resolution, move the verification record to
the reject state. If you are satisfied with the resolution, move the verification record to the
accept state. If you are indifferent or are unable to assess the resolution, move the
verification record to the abstain state.

Once in the verify state a feature or defect cannot return to the working state. If you believe
the resolution to be incorrect, record your dissatisfaction by moving the verification record to
reject and open a feature or defect to propose the changes needed. In this new feature or
defect you can reference the feature or defect originally opened to resolve the problem or
enhancement.

The Closed State
Once all verification records have been moved to the accept, reject, or abstain state and all
tracks have moved to the complete state then the corresponding feature or defect is
automatically closed. A feature or defect in the closed state cannot be reopened. If it was
not resolved correctly then a new feature or defect must be opened to address the changes
needed.

The States of a Track
Features and defects record information about the life cycle of design changes and reported
problems. Tracks monitor the resolution of those features and defects in releases that
include the track subprocess.

� The track state diagrams are on pages 68 and 70.

The Approve State
When a track is created its initial state is approve if the approval subprocess is part of the
process used by the track’s release. When the track enters the approve state, an approval
record is issued for each user on the approver list of the release associated with the track.
The track will stay in this state until all approval records are marked with accept or abstain.

The Fix State
While the track is in the fix state, file changes for the resolution of the feature or defect are
made and checked in to the CMVC server. Any existing fix records for the track move to
the ready state when the track moves to the fix state. A fix record will move to the active
state when a file managed by the associated component is checked in or modified with
reference to this track. A fix record will be created automatically if a file for which there is no

APPENDIX A

CMVC Concepts64

existing fix record is checked in or modified. When the file changes managed by each
component are completed and tested, the associated fix record is moved to the complete
state by the fix record owner. The track will automatically move to the integrate state when
all fix records are complete and if the level subprocess is included in the release’s process.
Otherwise, the track will automatically move to the next state governed by the release’s
process. When the fix subprocess is not included, fix records will not be created. When all
file changes are complete, the track must be moved to the integrate state explicitly.

A track can be explicitly moved from the integrate state back to the fix state. Additional file
changes can then be made if the necessary fix records are also moved back to the active
state. A track that is a member of a level cannot be moved back to the fix state until it is
removed from the level.

The Integrate State
If the fix and level subprocesses are configured, the track moves automatically to the
integrate state when all fix records are complete. The track owner can force a track to the
integrate state if necessary, provided no file changes are associated with the track. Tracks
in the integrate state can be added to an existing level as level members if the level
subprocess is configured. All tracks in the integrate state do not have to be added to the
same level.

If the level subprocess is configured, then levels can be created at any time. Each level will
automatically move to the integrate state when the first track is added as a level member. If
all tracks are removed from the level then the level will automatically move back to the
working state. Committing a level will commit all tracks included as level members and all
files changed in reference to those tracks.

The track will stay in the integrate state until the level in which it is a member is committed.
The track owner can force a track to the commit state, provided that no file changes are
associated with the track. If the release process does not include the level subprocess, the
integrated track moves to the test state if the test subprocess is included, or the complete
state if it is not included.

The Commit State
The track moves automatically to the commit state when the level to which it belongs is
committed. At this point all files changed for the resolution of the feature or defect in this
release have been committed. The track stays in the commit state until the level to which it
belongs is completed. If the level subprocess is not configured, the track can be committed
explicitly.

If the level process is configured then the level is moved explicitly to the complete state
when it is ready for environment testing.

The Test State
When the associated level is moved to the complete state or when a track is committed
without a level, the track will move to the test state if the release being monitored by this
track has the test subprocess configured. The level is ready for formal testing in the
specified environments. Any existing test records for the track will move to the ready state
when the track moves to the test state. The track will stay in the test state until all test
records are moved from the ready state. Each tester can mark his or her test record with
accept, reject or abstain.

The track will automatically move to the complete state if the test subprocess is not
configured or when all test records are marked.

APPENDIX A

65Appendix A. The States of CMVC Objects

The Complete State
The complete state is the final state of a track. If the test subprocess is not included in the
release process, the track will move directly to the complete state when the associated level
is completed or when the track is forced to be committed.

When a track is complete the feature or defect it was monitoring moves automatically to the
verify or complete state. If a defect is associated with a release then it will not leave the
working state until the track for that release is complete. The feature or defect is ready to
be verified by the originator.

The States of a Level
Levels monitor and implement the integration of file changes within a release. Those file
changes are included in a level by adding the tracks referenced by the changed files to the
level as level members.

� The level state diagram is on page 68.

The Working State
The initial state of a level is the working state. While the level is in the working state it is not
associated with any tracks and therefore contains no file changes. Creating a level assigns
a name and owner to the level.

The Integrate State
Tracks can be added to levels as level members if the level is in the working or integrate
state and the track is in the fix or integrate state. As soon as the first level member is
added, the level automatically moves to the integrate state.

The level can be extracted when it is in the integrate state. This will copy all files changed
in reference to any level members, to a designated NFS server. When the level is in the
integrate state only a delta file tree can be extracted. A delta file tree is the file structure of
the changed files within the release that are associated with level members for this level.

The Commit State
Committing a level changes the state of the level to commit as well as the state of all tracks
included as level members. A committed level can be extracted for a full file tree as well as
a delta file tree. A full file tree is the file structure of all the files within the release. The full
file tree can then be tested, distributed, or compiled as required.

When a level moves to the commit state all tracks that are included as level members move
to the commit state. When a track is in the commit state all file changes associated with the
track become permanent and can be extracted with the other files in the release by
extracting the committed version of the release. All files within the release including the
changed files can be extracted once the level has been committed.

The Complete State
Once your level has been committed you are ready for formal environment testing. Move
the level to the complete state. This automatically moves all tracks included as level
members to the test state.

APPENDIX A

CMVC Concepts66

closed

Features and Defects

Verify
Subprocess

Any user within the family can open features and
defects against any component in the hierarchy.

canceled

Originator
can reopen
if canceled.

Originator
can reopen
if returned.

Owner can return a
feature or defect
after design, size, or
review. A working
design can be
returned if no tracks
exist for that feature
or defect.

Originator can cancel a
returned feature or defect.

Owner
can return
if open.

returned

open

Owner can move to
the design state if
open or returned.

Additional
design text
can be
added in the
design state.

Owner can move to the
size state if design text
has been entered.

Owner can
move back
to the design
state.

Owner can move to
the review state once
sizing records have
been marked.

The move to the verify state is
automatic, depending on the
states of associated tracks.

If no tracks exist for
the feature or
defect, then the
owner must move it
manually to the
verify state. verify

Track
Subprocess

design

A feature or defect
moves to the closed
state once all
verification records
are marked and all
tracks are complete.

Originator
can cancel
if open.

Owner can
move back to
the design
state.

LEGEND
state transitions for

tracking only
state transitions for all
features and defects

state transition is automatic or
a non-force action is required

DSR
Subprocess

Owner
can move
to the
working
state by
accepting.

size

working

review

Figure 31. Feature and defect state diagram with all subprocesses configured

APPENDIX A

67Appendix A. The States of CMVC Objects

The Feature and Defect State Diagram

APPENDIX A

CMVC Concepts68

fix

complete

TRACKS

complete

Levels

Approval
Subprocess

 Test
Subprocess

..
If this track is created
for a release with an
approver list then the
initial state for the track
is the approve state.

An approval record is
automatically created
for each user on the
approver list for this
release.

A track is created automatically for every release referenced by an accepted sizing record or
can be created manually to track the resolution of a defect or feature in a specific release.

Once all approval records have
been marked with abstain or
accept, the track moves
automatically to the fix state.

The fix records created for
all affected components
are ready when the track
moves to the fix state. File
changes
can now be
modified or
checked in.

The track will automatically
move to the integrate state
when all fix records marked
as complete.

Owner can
move the
track back
to the fix
state for
additional
file
changes.

Tracks in the fix or integrate
state can be designated as

level members.

A level automatically
moves to the integrate
state when the first
track is added as a
level member.

If all level members
are deleted then the
level automatically
moves back to the
working state.

integrate
Committing a level
commits all tracks
designated as level
members and all files
changed in reference
to those tracks.

File changes are
committed within the

release.

commit
The test records created for each
environment on the environment list
are ready when the track moves to
the test state. File changes are
tested within the release.

The track will automatically move
to the complete state when all
test records are marked.

The level must be moved
to the complete state
when the level is ready
for environment testing.

A track automatically moves to
the test state when the level it is
included in moves to complete.test

When a track associated with a defect or feature is complete, the
defect or feature moves to the next state after the working state.

The complete
state is the final
state of a track.

approve

commit

LEGEND
state transitions for

tracking
force action
is required

state transition is automatic or
a non-force action is required

 Fix
Subprocess

working

Level
Subprocess

integrate

Track Subprocess

Figure 32. Track and level state diagram with all subprocesses configured.

APPENDIX A

69Appendix A. The States of CMVC Objects

The Track and Level State Diagram

APPENDIX A

CMVC Concepts70

TRACKS

LEGEND
automatic state transitions association between

status record and state

Status Records
If the track is in a state
which is associated with a
status record that is part of
a configured subprocess,
then the status record must
be filled in before the track
can change states.

an action is required for the
state transitions to occur

to the feature or defect verify or close state

Approval Subprocess

 Test Subprocess

Fix Subprocess

Working

Complete

Complete

Approve

Fix

Test

Complete
Level

Create
First
Level

Delete
Last
Level

Integrate
Track*

Fix
Track

Level States

Approval Records

Fix Records

Test Records

Level Subprocess

from the feature or defect working state

A track moves only to states corresponding to the subprocesses configured in the
release process. For example, if your release process is configured to include only
the track and approval subprocesses, then a track moves from the Approve state to

the Fix state, and then to the Complete state.

Member Member

state status record

Integrate

Commit

Integrate

Commit

Commit
Level

Figure 33. Relationship between subprocesses and state transitions for tracks

* This transition is automatic if the fix subprocess is included in the release subprocess.

APPENDIX A

71Appendix A. The States of CMVC Objects

Relationship Between Subprocesses and Track States

APPENDIX A

CMVC Concepts72

closed

approve

fix

commit

test

complete

FEATURES and DEFECTS

Tracks

Levels

verify Verify
Subprocess

open

canceled

 Fix
Subprocess

 Approval
Subprocess

 Test
Subprocess

..

integrateintegrate

Track
Subprocess

working

commit

LEGEND
state transitions for

tracked releases only
state transitions for

all changes
force action
is required

state transition is automatic or
a non-force action is required

See page 44.

See page 50.

size

design

review

DSR
Subprocess

returned

..

working

 Level
Subprocess

complete

state transitions when
subprocesses are not configured

Figure 34. CMVC State Diagram

APPENDIX A

73Appendix A. The States of CMVC Objects

The CMVC State Diagram

APPENDIX A

CMVC Concepts74

APPENDIX B

 Copyright IBM Corp. 1993 75

Appendix B. CMVC Entity Relationships

Entity Relationships Between CMVC Objects in a Family
Figure 36 shows the different entity relationships between each of the CMVC objects. Each
box represents a CMVC object. Every possible relationship between one object and another
is represented by a connecting line with an arrow at one end. For example, in Figure 35 the
relationship between users and access lists is represented.

1
 are defined on
(grants authority to) Access list

m

This diagram would be
read as: Many users are
defined on one Access
list and one Access list
grants authority to many
users.

User

Figure 35. Example entity relationship diagram.

The arrow indicates which way to read the corresponding descriptions of the relationship.
The description above the line describes the relationship in the direction of the arrow. The
description below the line (in parentheses) describes the relationship in the opposite
direction of the arrow. An m at one end of the line and a 1 at the other represents a
many-to-one relationship in one direction and a one-to-many relationship in the opposite
direction. Two 1’s represent a one-to-one relationship. (An m in parentheses refers to a
possible one-to-many relationship, however the normal case is a one-to-one relationship.) If
there are two m’s, then the relationship is many–to–many. This relationship should be
interpreted as one–to–many in both directions.

APPENDIX B

CMVC Concepts76

m

m

1

1

1 1

11

1

1

1 (m) 11 1

 is defined on
(grants authority to)

belongs to
 (has)

belongs to
 (has)

belongs to
 (has)

 is defined on
(maintains notification status for)

User
Access list

Notification listHost list

Approver list

Environment list

File

Approval record

Test record

Fix record

Level

Track

Defect Feature

Verification record

(owns)
is owned by

(owns)
is owned by

 is defined on
(maintains testing status for)

 is defined on
(maintains approver status for)

 manages
(is managed by)

 manages
(is managed by)

 groups
(is associated with)

belongs to
 (has)

belongs to
 (has)

is associated with
 (has)

 defines
(is defined by)

 defines
(is defined by)

 defines
(is defined by)

belongs to
 (has)

belongs to
 (has)

belongs to
 (has)

 manages
(is managed by)

 manages
(is managed by)

belongs to
 (has)

belongs to
 (has)

 defines a
(represents a)

 belongs to
 (contains)

belongs to
 (has)

1 1

1

1

1 1

1 (m)

11 1 1 1

1 (m)

1

1

1

1

1

1

1

1 1

1

1 1

mm

m

m

m

m

m

m

m

m

m

m

m

m

m

CMVC Entity Relationships

*

*
*

*

*

* *

*

1

m

(m)(m)

belongs to
 (has)

1

m

Component*

Release *

Sizing record *

Level member

Figure 36. CMVC objects represented in a entity relationship diagram.

Any objects with a * also have a one-to-one relationship with a user: one user owns one object and one
object is owned by one user.

77 Copyright IBM Corp. 1993

Glossary

Access List

A CMVC object that controls access to
development data. A list of user ID-authority group
pairs attached to a component, designating users
and the corresponding authority access they are
granted or restricted from using. See also
Authority, Granted Authority, and Restricted
Authority.

Action

A task performed by the CMVC server and
requested by a CMVC client. A CMVC action
corresponds to issuing one CMVC command.

Approval Record

A status record on which an approver must give an
opinion of the proposed file changes required to
resolve a defect or implement a feature in a
release. See also Status Record.

Approver

A user who approves changes within a specific
release.

Approver List

A list of user IDs attached to a release representing
the users who must approve file changes required
to resolve a defect or implement a feature in that
release.

Attribute

Attributes in CMVC are records containing
information accessible to the user. CMVC allows
family administrators to customize defect, feature,
user, and file records by adding new attributes.

Authority

The right to access development objects and
perform CMVC commands. See also Access List,
Base Authority, Explicit Authority, Granted
Authority, Implicit Authority, Restricted Authority,
and Superuser Privilege.

Base Authority

The set of actions granted to a user whenever a
user ID is created within a CMVC family. See also
Authority.

Base File Name

The name assigned to a file outside of the CMVC
server environment, excluding any directory
names.

Base File Tree

The base set of files, associated with a release, to
which changes are applied over time. Each
committed level for a release updates the base file
tree for that release.

Change Control

The process of limiting and auditing changes to
files through the mechanism of checking files in
and out of a central, controlled, storage location.
Change control for individual releases can be
integrated with problem tracking by specifying a
process for the release that includes the track
subprocess.

Child Component

All components in each CMVC family, except the
root component, are created in reference to an
existing component. The existing component is the
parent component, and the new component is the
child component. A parent component can have
more than one child component. See also
Component, and Parent Component.

Client

A workstation that requests services from another
workstation. Contrast with Server.

CMVC Client

A workstation with the CMVC client software
installed.

78 CMVC Concepts

CMVC File

A file that is stored by the CMVC server and
retrieved by a path name. See also File, Common
File, and Shared File.

CMVC Server

A workstation with the CMVC server software
installed.

Common File

A file that is shared by two or more releases and
the same version of the file is the current version
for those releases. See also Shared File.

Component

A CMVC object that organizes project data into
structured groups, and controls configuration
management properties. Component owners can
control access to development data (see Access
List) and configure notification about CMVC actions
(see Notification List). Components exist in a
parent-child hierarchy, with descendent
components inheriting access and notification
information from ancestor components.

Configuration Management

The process of identifying, managing, and
controlling software modules as they change over
time.

Corequisite Tracks

Two or more tracks designated as corequisites by a
user so that all tracks in the corequisite group must
be included as members in the same level. If a
track is added to a level then all tracks that have a
corequisite relationship with that track must also be
included in the same level before the level is
committed. See also Prerequisite Tracks.

Database

A systemized collection of data that can be
accessed and operated upon by a data processing
system for a specific purpose.

Default

A value that is used when an alternative is not
specified by the user.

Defect

A CMVC object used to formally report and record
information about a problem. The user who opens
a defect is the defect originator.

Delete

Deleting a development object, such as a file or a
user ID. Certain objects can be deleted only if
certain criteria are met. Most objects that are
deleted can be re-created.

Delta File Tree

A directory structure representing only those files
that have been changed and included in a specified
level.

Destroy

The only CMVC development object that can be
destroyed in CMVC is a file. Destroying a file
removes the file record from the database on the
CMVC server. The file still exists in the file system
on the CMVC server for access when extracting
levels which refer to the file. A destroyed file
cannot be re-created.

End User

See User.

Environment

A user-defined testing domain for a particular
release. Testing domains might include operating
systems, hardware configurations, and related
software products.

Environment List

A CMVC object used to specify environments in
which a release should be tested. A list of
environment-user ID pairs attached to a release,
representing the user responsible for testing each
environment. Only one tester can be identified per
environment.

Explicit Authority

The ability to perform an action against a CMVC
object because you have been granted the
authority to perform that action. Contrast with
Implicit Authority and Base Authority.

79Glossary

Extract

A CMVC action you can perform on a file, level, or
release. A file extraction results in the specified file
being copied to the client workstation. A level
extraction and release extraction result in copying
the files associated with the level or release to a
designated NFS server.

Family

A logical organization of related development data.
A single installation of the CMVC can support
multiple families. There is no way to access data
within one family from another family.

Family Administrator

A user who is responsible for all non-system
related tasks for one or more CMVC families such
as planning, configuring, and maintaining the
CMVC environment and managing user access to
those families.

Feature

A CMVC object used to formally request and record
information about a functional addition or
enhancement. The user who opens a feature is
the feature originator.

File

A collection of data that is stored by the CMVC
server and retrieved by a path name. Any text or
binary file used in a development project can be
created as a CMVC file. Examples include source
code, executables, documentation, and test cases.
See also Common File and Shared File.

Fix Record

A status record that is associated with a track and
is used to monitor the phases of change within a
component that is affected by a defect or feature
for a specific release.

Full File Tree

A directory structure representing a complete set of
active files associated with a release.

Granted Authority

If an authority is granted on an access list, then it
applies for all objects managed by this component
and any of its descendants for which the authority

is not restricted. See also Access List, Authority,
and Inheritance. Contrast with Restricted Authority.

GUI

The OSF/Motif** based CMVC graphical user
interface program.

Host List

A list associated with each CMVC user ID which
indicates the client hosts that can access CMVC
and act on behalf of the CMVC user. The list is
used by the CMVC Server to authenticate the
identity of a CMVC client upon receipt of a CMVC
command. Each entry consists of a login and a
host name.

Implicit Authority

The ability to perform an action against a CMVC
object without being granted explicit authority. This
authority is implicitly granted through inheritance or
object ownership. See also Access List, and
Authority. Contrast with Explicit Authority and Base
Authority.

Inheritance

The passing of configuration management
properties from parent component to child
component. The configuration management
properties that are inherited are access and
notification. Inheritance within each CMVC family
is cumulative although the inheritance of access at
a given component can be restricted explicitly.

Integrated Problem Tracking

The process of integrating problem tracking with
change control to track all reported defects, all
proposed features, and all subsequent changes to
files. See also Change Control.

Level

A collection of tracks which represent a set of
changed files within a release. Levels are only
associated with releases whose processes include
the track and level subprocesses.

Level Member

A track that has been added to a level.

80 CMVC Concepts

Lock

An action that prevents editing access to a file
stored within the CMVC development environment
so that only one user can make changes to a given
file at one time.

Login

Operating system user identification.

Network File System (NFS)

A program that allows you to share files with other
computers in one or more networks over a variety
of machine types and operating systems.

Notification List

A CMVC object allowing component owners to
configure notification. A list of user ID-interest
group pairs attached to a component, designating
users and their corresponding interest in receiving
notification for all objects managed by this
component or any of its descendants.

Originator

The user who opens a defect or feature and who is
responsible for verifying the outcome of the defect
or feature on a verification record. The
responsibility can be reassigned.

Owner

The user who is responsible for a CMVC object
within a CMVC family, either because they created
the object or because they were assigned
ownership of that object.

Parent Component

All components in each CMVC family, except the
root component, are created in reference to an
existing component. The existing component is the
parent component. See also Child Component,
and Component.

Path Name

The name of a file under CMVC control. A path
name can be a set of directory names and a base
name or just a base name. It must be unique
within the release that groups the files.

Prerequisite Tracks

If a file has been changed to resolve more than one
defect or feature, the track referenced by the first

change is a prerequisite of the track referenced by
the later changes. A track is a prerequisite to
another track if:

• File changes have been checked in, but not
committed, in reference to the first track, and

• One or more of those same files is then checked
out, changed, and checked in again in reference
to the second track.

See also Corequisite Track.

Problem Tracking

The process of tracking all reported defects
through to resolution and proposed features
through to implementation.

Process

A combination of CMVC subprocesses configured
by the family administrator for a component or
release, that controls the general movement of
CMVC objects (defects, features, tracks, and
levels) from state. See also State and Subprocess.

Release

A CMVC object defined by the user that groups all
the files that must be built, tested, and distributed
as a single entity.

Restricted Authority

The restriction of a user’s ability to perform certain
actions at a specified component. See also Access
List, Authority, and Inheritance. Contrast with
Granted Authority.

Root Component

The initial component that is created when a CMVC
family is configured. All components in a CMVC
family are descendants of the root component.
Only the root component has no parent
component.

Shared File

A file that is shared between two or more releases.
See also Common File.

Sizing Record

A status record created for each
component-release pair possibly affected by a
defect or feature. The sizing record owner must
indicate whether the defect or feature affects the

81Glossary

specified component-release pair and the
approximate amount of work needed to resolve the
defect or implement the feature within the specified
component-release pair. See also Status Record.

State

Tracks, levels, features, and defects move through
various states during their life cycles. An object’s
current state determines which actions may be
performed against it.

Status Record

A status record records a decision made by the
owner of the status record. See also Approval
Record, Fix Record, Test Record, and Verification
Record.

Subprocess

CMVC subprocesses govern the state changes for
CMVC objects. The design, size, review (DSR)
and verify subprocesses are configured for
component processes. The track, approve, fix,
level, and test subprocesses are configured for
release processes. See also Process.

Superuser Privilege

Superuser privilege allows a user to perform any
action available in the CMVC family.

Note: Superuser privilege is internal to the CMVC
tool and not related to operating system
superuser authority.

System Administrator

A user who is responsible for all system-related
tasks involving CMVC such as installing,
maintaining, and backing up CMVC and the
relational database used by CMVC.

Test Record

A status record used to record the outcome of an
environment test performed for each defect and
feature in a specific level of a release. See also
Status Record.

Tester

A user responsible for testing the resolution of a
defect or the implementation of a feature for a
specific level of a release and recording the results
on a test record.

Track

A CMVC object created to monitor the progress of
changes within a release to resolve a specific
defect or implement a specific feature.

User

A person with an active CMVC user ID and access
to one or more CMVC families.

User ID

Unique identification for a login on a specific host
(provided by the operating system). CMVC uses
the user ID to refer to and communicate with a
user.

Verification Record

A status record which must be marked by the
originator of a defect or a feature before the defect
or feature can move to the closed state. This
allows the originator of the defect or feature to
verify the action’s resolution or implementation.
See also Status Record.

Version Control

The storage of multiple versions of a single file
along with information about each version.

82 CMVC Concepts

� 83Copyright IBM Corp. 1993

Index

A
access, 7, 16

controlling, 16
file, 5
inheritance, 16, 17, 19
shared files, 37

access list, 16
definition, 77

action, 16
definition, 77

ancestor component, 13
approval record, 49

definition, 77
approval subprocess, 48, 49
approve state, 63
approver, definition, 77
approver list, 49

definition, 77
attribute

defect, 41, 42
definition, 77
features, 41, 42
file, 31
release, 23
track, 47

authority, 16
base. See base authority
definition, 77
explicit. See explicit authority
granted. See granted authority
implicit. See implicit authority
restricted. See restricted authority

authority group, 16, 18
automatic notification, 20

B
base authority, 17

definition, 77
base file tree, 60

definition, 77
book audience, xi
buildable file tree, 59

C
canceled state, 61
change control, 5

definition, 77
integrated, 26
process, configuring, 48

child component, 13
definition, 77

client–server model, 1
closed state, 63

CMVC, introduction, 5
CMVC actions, 16
CMVC client, 1
CMVC files, 31

example, 34
CMVC roles, 2
CMVC server, 1
CMVC state diagram, 53, 72
CMVC system configuration, 1
CMVC tasks, 2
CMVC user interface, 2
combining file trees, 59
command line interface, 2
commit state

level, 65
track, 64

common file, 35
definition, 78

common link, breaking, 36
example, 36

compiling, 56, 59
complete state

level, 65
track, 65

component, 5, 13
access list, 16
ancestor, 13
child, 13
definition, 13, 78
descendant, 13
inheritance, 19
multiple parents, 15
notification list, 16
parent, 13
relationship with features and defects, 21
relationship with files, 7, 22, 31, 32, 37
relationship with other components, 13
relationship with processes, 21
relationship with releases, 7, 23
root, 14

definition, 80
component attributes, 13
component hierarchy, 5, 13, 16
component organization, 14
component owner, 5, 13, 16
configuration management, 5

definition, 78
corequisite check, 56
corequisite tracks, 56

definition, 78

D
data management, 5, 16
data ownership, 6

84 CMVC Concepts

database, 31
definition, 78
supported, 2

defect, 29, 41
accepting, 62
analyzing, 8, 43
canceling, 61
closing, 63
definition, 41, 78
designing, 43, 62
duplicate, 46
fixing, 9
opening, 61
relationship with components, 21, 41, 43, 61
relationship with processes, 21
relationship with tracks, 9, 45, 62
reopening, 61
reporting, 8
resolving, 45
returning, 61
reviewing, 45, 62
sizing, 43, 62
sizing record. See sizing record
verification record. See verification record
verifying, 10, 45, 63

defect attributes, 41, 42
defect life cycle, 8
defect originator, 41, 43, 46
defect owner, 41, 43, 46
defect state diagram, 44, 66
defect states, 41, 61
delete, 39

definition, 78
delta file tree, 58

definition, 78
descendant component, 13
design change. See feature
design state, 62
DSR Subprocess, 8

E
end user, 3

definition, 78
entity relationships, 75

diagram, 76
environment, definition, 78
environment list, 52

definition, 78
explicit authority, 17

definition, 78
explicit notification, 20
extracting file trees, 58
extracting files, 32, 33

definition, 79

F
family, 5

definition, 79
family administration, 2

family administrator, 3, 16, 18
definition, 79

feature, 29, 41
accepting, 62
canceling, 61
closing, 63
definition, 41, 79
designing, 43, 62
duplicate, 46
evaluating, 8, 43
fixing, 9
implementing, 45, 62
opening, 61
proposing, 8
relationship with components, 21, 41, 43, 61
relationship with processes, 21
relationship with tracks, 9, 45, 62
reopening, 61
returning, 61
reviewing, 45, 62
sizing, 43, 62
sizing record. See sizing record
verification record. See verification record
verifying, 10, 45, 63

feature attributes, 41, 42
feature life cycle, 8
feature originator, 41, 43, 46
feature owner, 41, 43, 46
feature state diagram, 44, 66
feature states, 41, 61
file, 31

base name, 31
definition, 77

checking in, 34
checking out, 32
committed version, 32, 39
common, 35

definition, 78
example, 35

current version, 31, 32
definition, 79
delete, 39
destroy, definition, 78
extracting. See extracting files
lock, 32, 33, 34

definition, 80
path name, 31

definition, 80
relationship with components, 7, 22, 31
relationship with releases, 7, 25, 34
relationship with tracks, 38, 55, 57, 58
shared, 34

access, 37
definition, 80
example, 35

versioning, 32, 34
file access authority, 32
file attributes, 31

85Index

file changes, 9, 32, 51, 57
example, 33
tracking, 47
undoing, 39

example, 39
file integration, 9, 45
file mode, 31, 32, 33
file organization, 25
file tree, 56, 58

base, 60
definition, 77

buildable, 59
combining, 59
delta, 58

definition, 78
diagram, 59
extracting, 58
full, 58

definition, 79
fix

record, definition, 79
state, 63

fix record, 49
fix subprocess, 48, 49
full file tree, 58

definition, 79

G
granted authority, 16, 18

definition, 79
GUI (graphical user interface), 2

definition, 79

H
hierarchy, component, 5, 13, 16
highlighting style, xii
host list, definition, 79

I
implicit authority, 17

definition, 79
inheritance, 19

access, 16, 17, 19
definition, 79
notification, 16, 19
restricting, 16, 17

integrate state
level, 65
track, 64

interest group, 16, 21
Intersolv’s PVCS Version Manager. See PVCS

L
level, 55

committing, 9, 57
completing, 57
definition, 55, 79
introduction, 9

level attributes, 55
level member, 9

definition, 79
level state diagram, 50, 68
level states, 65
level subprocess, 48, 56
login, definition, 80

M
mode, 32, 33

N
network overview, 1
notification, 20

controlling, 20
explicit, 20
inheritance, 16, 19

notification list, 16
definition, 80

O
open state, 61
originator, definition, 80
ownership, 6

definition, 80

P
parent component, 13

definition, 80
prerequisite check, 56
prerequisite tracks, 56

definition, 80
problem tracking, 5

definition, 80
integrated, 5, 47

definition, 79
introduction, 8

process, 7
definition, 80
relationship with components, 13, 21
relationship with releases, 26

publications, related, xii
PVCS, 2, 32

R
related publications, xii
release, 6

definition, 23, 80
relationship with change control, 26
relationship with components, 7, 23
relationship with files, 6, 7, 25, 31, 34
relationship with processes, 23
relationship with tracks, 26, 45
updating, 9, 60

release attributes, 23
release management, 23, 25
release organization, examples, 24

86 CMVC Concepts

release owner, 23
release–file, example, 25, 26
restricted authority, 16, 17, 19

definition, 80
returned state, 61
review state, 62
root component, 13, 14

S
shared file, 34

definition, 80
example, 35

size state, 62
sizing records, 62

definition, 80
Source Code Control System (SCCS), 2, 32
state, definition, 81
status record, definition, 81
style, highlighting, xii
subprocess, 7

approval. See approval subprocess
definition, 81
DSR. See DSR subprocess
fix. See fix subprocess
level. See level subprocess
test. See test subprocess
track. See track subprocess
verify. See verify subprocess

subscribers, 20
superuser privilege, 17

definition, 81
system administration, 2
system administrator, 2

definition, 81
system configuration, 1

T
test record, 51, 52

definition, 81

test state, 64
test subprocess, 48, 51
tester, 51

definition, 81
track, 29, 62

definition, 47, 81
introduction, 8
overview, 48
relationship with features and defects, 9, 45, 62
relationship with files, 9, 55, 57, 58
relationship with releases, 45

track attributes, 47
track owner, 52
track state diagram, 50, 68, 70
track states, 52, 63

U
user, 3

definition, 81
User ID, definition, 81
user interface, 2

V
verification record, 63

definition, 81
verify state, 63
verify subprocess, 52
version control, 5

definition, 81

W
working state, level, 65
working state, features and defects, 62

