<|lli

DataGuide

Programming Guide and Reference

Version 3 Release 1

SC26-3368-03

Note!

Before using this information and the product it supports, be sure to read the

general information under [Appendix E._Notices” on page 2717.

Fourth Edition (January 1998)

This edition replaces and makes obsolete the previous edition, SC26-3368-02.The technical changes for this edition
are indicated by a vertical bar to the left of a change.

This edition applies to Version 3 Release 1 of Visual Warehouse Program Number 5697-VW3,and to any
subsequent releases until otherwise indicated in new editions or technical newsletters. Make sure you are using the
correct edition for the level of the product.

Order publications through your IBM representative or the IBM branch office serving your locality.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1994, 1998. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

About this book . . . C e e s i
What is an information Catalog’> S Y 1
What are Information Warehouse archrtected mterfaces” Y
Chapter 1. Introduction to DataGuide 1
Who uses DataGuide?. 2
Users . . 2
Administrators . . 2
Application programmers . 2
What kinds of applications work Wrth DataGurde’? 2
Informational applications. 3
Tools that maintain and admrnrster DataGurde metadata 3
Chapter 2. Managing objects with an application 5
Organizing objects using categories . 5
A programmer’s view of DataGuide object types 6
Defining object types 7
Specifying registration propertles . . 7
Specifying the category for a new object type . 9
Defining required object type properties e
Identifying your new object type and object mstances ¢
DataGuide identifiernames . 11
Chapter 3. Writing programs with DataGuide APlcalls 13
What you can do with DataGuide APl calls 13
Provide DataGuide application support. 13
Manage object type registrations 14
Manage objecttypes . 14
Manage object instances. 14
Manage DataGuide identifiers 15
Define object relationships 15
Locate object instances . 15
List object types and instances)
Copy metadata objects to or from DataGurde .)
Start external programs 16
Confirm or remove changes to the DataGurde database . I 4
Manage your enterprise information catalogs e v
Issuing a DataGuide APl call v 4
Passing data to and from DataGuide API caIIs .o 18
Passing single input values and pointers as parameters S .. . 18
Passing multiple values using input structures and output structures .. . 18
Including header files 1
An overview of writing a C Ianguage program A
Creating C language sourcecode 20
Setting up your environment 20
Compiling and linking your application 20
How to use DataGuide API calls in your program 21
Starting your program with FLGInit 21
Ending your program with FLGTerm. . . . 2
Protecting your DataGuide database when errors occur 21
Setting up Programs objects to start programs. 22
Creating metadata using APlcalls 23
Deleting metadata using APlcalls 23

© Copyright IBM Corp. 1994, 1998 iii

Specifying DataGuide metadata using DataGuide datatypes23

National language considerations.o e 24
Translated required properties 2
Specifying values in languages other than Englrsh)

Introducing DG2SAMP.C. 25

Chapter 4. DataGuide input and output structures .o .. 27

Common characteristics of the DataGuide API input and output structures .. 27

DataGuide API input structure 28
Header area — always required 29
Definition area — always required . . . < 0
Object area — Required when defining values N K

Creating input structures foran APl call 34
Defining lengths and values using DG2APIH 34
Calculating the size of the entire input structure 36
Defining the headerarea. 37
Defining the definitonarea 39
Defining the object area 40
Example of defining header, deflnltron and object areas 41

DataGuide API output structure 44
Header area — always present 45
Definition area — always present. Y
Object area — Present when retrieving mformatlon <

Reading an output structure resulting froman APlcall 50
Using pointers to read an output structure 50
Reading values using DG2APIH Y
Calculating the number of properties in the output structure Y
Calculating the number of sets of values returned. b2
Reading the property data types and lengths in the defrnrtron area 52
Stepping through the object area to read values b3
DG2SAMP.C example of locating a value in an output structure 54

Chapter 5. DataGuide API call syntax o1

API call syntax conventions. b9
Reading syntax diagrams. B9
Using constants defined in DG2API. H in your program B9

FLGAppendType. 60

FLGCommit. 064

FLGConverttD. 66

FLGCreatelnst. ... 067

FLGCreateReg . T3

FLGCreateType«

FLGDeletelnst. 84

FLGDeleteReg 86

FLGDeleteTree . 88

FLGDeleteType 92

FLGDeleteTypeExt .. 9

FLGExport .. 98

FLGFoundIn .103

FLGFreeMem .lo

FLGGetlnst. .. .109

FLGGetReg. 12

FLGGetType16

FLGImport ... 19

FLGInit22

FLGListAnchors .130

iV DataGuide Programming Guide and Reference

FLGListAssociates .
FLGListContacts .
FLGLIistObjTypes.
FLGListOrphans .
FLGListPrograms
FLGManageCommentStatus
FLGManageFlags
FLGManagelcons
FLGManageTagBuf .
FLGManageUsers
FLGMdisExport
FLGMdisImport
FLGNavigate .
FLGOpen
FLGRelation
FLGRollback
FLGSearch .
FLGSearchAll .
FLGTerm.
FLGTrace
FLGUpdatelnst
FLGUpdateReg
FLGWhereUsed .
FLGXferTagBuf

Appendix A. Sample program DG2SAMP.C
Compiling DG2SAMP.C Co
Linking DG2SAMP.C

Executing DG2SAMP.C

Appendix B. DataGuide API header file — DG2APIH

Constants defined in DG2API.H .
Structure and data type definitions in DG2API H .
DataGuide API call function prototypes.

Appendix C. DataGuide limits

Appendix D. DataGuide reason codes

Appendix E. Notices .
Programming Interface Informat|0n .
Trademarks.

Glossary

Bibliography

Index .

. 132
. 140
. 143
. 145
. 151
. 154
. 157
. 159
. 161
. 163
. 168
. 170
. 172
. 175
177
. 180
. 181
. 189
. 194
. 195
. 197
. 202
. 207
. 210

. 213
. 213
. 213
. 213

. 215
. 215
. 217
. 218

. 223

. 225

. 277
. 277
. 277

. 279

. 285

. 287

Contents

\Y

About this book

This book is intended for programmers who plan to write applications that work with
DataGuide. These programs can use application program interface (API) calls to
access DataGuide functions.

This book assumes that you are familiar with the concepts explained in Managing
DataGuide and with C language programming. You should also have Microsoft
Visual C++ Compiler installed.

DataGuide is a member of the Information Warehouse family of products.
DataGuide provides the application program interface (API) and import/export
interfaces for information catalogs defined by the Information Warehouse
framework.

What is an information catalog?

An information catalog is a mechanism for storing descriptive details, or metadata,
about an organization’s information resources. An information catalog can help
users find what data is available to them and what that data means. When users
find data they want, they can use informational applications to retrieve and analyze
the data. DataGuide provides functions that let users use informational application
functions, such as Lotus 1-2-3, with DataGuide.

What are Information Warehouse architected interfaces?

This book includes definitions for the Information Warehouse architected interfaces
for information catalogs. These interfaces include:

» Application program interface (API)
The information catalog API corresponds directly to the DataGuide API. The
syntax and specifications for input and output for DataGuide API calls are
documented in EChapter 5 _DataGuide API call syntax” on page 5d.
Specifications for the input and output structures used with these API calls are
documented in [Chapter 4 DataGuide input and output structures” on page 27.
* Import/export interface to the information catalog

The information catalog import/export interface corresponds directly to the
DataGuide tag language syntax. The syntax and information about using the tag
language is documented in Managing DataGuide.

For more information about the IBM Information Warehouse framework, you may
find the following material helpful:

Information Warehouse: An Introduction (publication)
Information Warehouse: An Introduction (video)
Information Warehouse Architecture and Information Catalog Overview

© Copyright IBM Corp. 1994, 1998 Vii

Chapter 1. Introduction to DataGuide

DataGuide helps business professionals locate data anywhere in an organization
quickly and easily. Users actually access the data using informational
applications—applications that allow them to retrieve and analyze their data, without
knowing or caring where the data is actually stored, as shown in

— —
Single . EI LAN
Workstation DataGuide — Server

EREN

A

MVS Host Workstation

[mem]

AIX AS/400

Figure 1. DataGuide helps you locate and use your data

DataGuide helps you learn:

* What data is available

* What the data means in business terms

* Where the data is located

* How you can access the data

* Who you can contact about the data

This information about data is called descriptive data, or metadata, and is stored in
an information catalog. Each information catalog is stored in a database that is
maintained by DataGuide.

Each information source or group of information sources is represented in
DataGuide as an object. You can use many types of objects to represent the

© Copyright IBM Corp. 1994, 1998 1

various kinds of information sources your organization uses, such as database
tables, spreadsheets, and digitized photographs. From many of these objects, you
can start programs that can work with the information sources.

Each DataGuide object is similar to a card in a card catalog. Each object provides
details about the information source, such as the name of the information source, a
description, and the date on which the information source was last updated.

Who uses DataGuide?

Users

Administrators

There are three types of DataGuide users:
* Users

* Administrators

» Application programmers

In your organization, users make business decisions and contribute to decisions
using information they locate using DataGuide. Although they might be familiar with
various software programs, they do not need to understand database or computer
programming concepts.

Some DataGuide users can perform additional object management tasks that are
normally performed by DataGuide administrators if they have been granted authority
by their administrator.

Administrators manage DataGuide. They provide the metadata that helps users
locate the data they need. Administrators ensure that the DataGuide metadata is
available, easy to find and use, current, and protected from unauthorized access.

Application programmers

Application programmers write programs that support users of DataGuide.
DataGuide provides C language API calls that let your programs use DataGuide
functions.

Application programmers need detailed information about how DataGuide organizes

and stores metadata. See EChapter 2. Managing ohjects with an application” od

for information about how a DataGuide application works with objects.

What kinds of applications work with DataGuide?

You can write two types of applications that use DataGuide functions:
» Applications that present data to the user

» Tools that help the administrator perform tasks such as adding and updating
metadata—extract programs, for example

2 DataGuide Programming Guide and Reference

What kinds of applications work with DataGuide?

Informational applications

You can write applications that work with DataGuide in two ways. These
applications can:

» Start the application from DataGuide

m shows that users can find the object they want, then start a familiar
informational application, running under DOS or Microsoft Windows, that works
with the information source identified by this object. DataGuide passes the
necessary metadata to this application.

[l reporemo - Report

Report Selected Edit View Data Help

Date 4-19-94 DIVISIONAL SALARY REPORT Page 1
Planned Increases by Sex a

Sex F

Division Current Salaries ~ Planned Increase New Salaries

Computing Total Total Total

S i Metadata $158,731.36 $16,652.64 $175,384.00
. Average Average Average

» $26,455.23 $2,775.44 $29,230.67

Total Total Total
$1,059,744.50 $89,286.48 $1,149,030.98
Average Average Average
$4,521.74

Head Office

g
$50,464.02 $54,715.76

DataGuide locates the data ... and starts an application that works with the data.

Figure 2. Starting an application from DataGuide

» Provide the application with metadata

Users work with familiar informational applications that run on DOS or Microsoft
Windows. These applications can use DataGuide functions to locate the
information sources that the user wants to work with. Then these applications
can retrieve and analyze the actual data located by DataGuide, and present the
results to the user using its own user interface, as shown in

~| User Application o | O]
API call > B F ¥
Your application 4% Sl i
runs here.... | APlcall
¢ Metadata |
Your application works with data ... located by DataGuide

Figure 3. Using an application that lets DataGuide locate the data
Tools that maintain and administer DataGuide metadata

You can write tools for your administrator that:
* Maintain DataGuide metadata
* Add metadata to the DataGuide catalog

Chapter 1. Introduction to DataGuide 3

What kinds of applications work with DataGuide?

Maintaining a DataGuide information catalog

One of the main tasks of a administrator is to update the metadata in the
DataGuide information catalog when the information source itself changes. For
example, metadata about a file can include the date of the most recent update; if
the file is again updated, the administrator needs to update the corresponding date
in the metadata.

You can automate this process by writing programs that update the metadata when
the corresponding information source changes.

Adding new objects

When administrators create new DataGuide information catalogs or add new
information sources to existing information catalogs, they need to add new object
types and objects. The administrator can add metadata by importing files that
contain DataGuide tag language. This tag language defines the meaning of the
metadata being imported into a DataGuide information catalog.

You can write applications that automatically generate tag language files based on
information specified by the administrator. These files can then be imported into one
or more DataGuide databases to populate the DataGuide information catalog with
metadata.

You can also write applications that extract metadata from existing data sources

and format the data as tag language files. These applications are called extract
programs, and are described in Managing DataGuide.

4 DataGuide Programming Guide and Reference

Chapter 2. Managing objects with an application

When you write applications that manage or access metadata in DataGuide
information catalogs, you need more information about how DataGuide organizes
and controls the metadata it stores. This chapter describes:

* How categories, object types, and object instances organize your information
catalog

* The two parts of the object type definition
* How to define new object types
» Terminology available for different levels of DataGuide users

Organizing objects using categories

DataGuide provides seven categories for classifying your metadata. These
categories control how objects work together to provide a structure for the metadata
in your DataGuide database. Except for the Program and Attachment categories,
you can create new object types in any of the following DataGuide categories:

Category
Definition

Grouping
Object types that can contain other object types.

Elemental
Non-Grouping object types that are the building blocks for other DataGuide
object types.

Contact
Object types that identify a reference for more information about an object.
More information might include the person who created the information that
the object represents, or the department responsible for maintaining the
information.

Program
A Programs object type that identifies and describes applications capable of
processing the actual information represented by DataGuide objects types.
The only object type belonging to the Program category is the Programs
object type, which is defined when you create an information catalog.

Dictionary
Object types that define terminology that is specific to your business.

Support
Object types that provide additional information about your information
catalog or enterprise.

Attachment
A Comments object type that identifies additional information attached to
another DataGuide object. The only object type belonging to the Attachment
category is the Comments object type, which is defined when you create an
information catalog.

Table 1 on page 8 summarizes the relationships among DataGuide’s object type
categories.

© Copyright IBM Corp. 1994, 1998 5

Organizing objects using categories

Table 1. DataGuide category relationships

Can contain/ Contacts Comments Programs launch
Category contained by Links with associated attached from
Grouping Contains other Other Grouping or | Yes Yes Yes
Grouping or Elemental objects
Elemental objects.
Elemental Contained by any | Other Grouping or | Yes Yes Yes
Grouping object. | Elemental objects
Contact None None No Yes Yes
Program None None No Yes No
Dictionary None None No Yes Yes
Support None None No Yes Yes
Attachment None None No No Yes

DataGuide lets you organize data about your information sources by defining object
types and objects.

You use object types to classify your objects. For example, if you have several
DATABASE 2 for OS/2 (DB2 for OS/2) database tables, you can create an object
type for DB2 for OS/2 tables so that you can store and maintain similar metadata
for each table. For most categories, you can define your object types to contain
whatever metadata is most useful for your organization.

Objects contain the metadata for a specific unit of information; for example,
information about a table, a person, or a program. An object type is a template for
an object; it defines the metadata that you need to store in the DataGuide
information catalog for each similar unit of information. Therefore, consider objects
as instances of the object type; you can define several instances based on a single

object type.

For more information about using different categories to design your information
catalog, see Managing DataGuide.

A programmer’s view of DataGuide object types

The administrator managing an object type with the user interface or tag language
is aware only of working with an object type. However, when you write a program
using the DataGuide API calls to manage an object type, you need to be aware that
there are two parts of the object type: the object type registration and the object
type itself.

Object type registration
The object type registration contains overall information about the object
type, including:
» Category the object type belongs to
* Extended (NAME) and short (DPNAME) names of the object type

* Name of the DataGuide database table containing the object instance
information

6 DataGuide Programming Guide and Reference

A programmer’s view of DataGuide object types

When you create or update the object type registration, you also give
DataGuide the name of an icon file associated with the object type.

Object type
The object type defines the properties that are used for each object. These
properties, such as OWNER and DESCRIPTION, contain information about
the information source described by each object.

The above two parts require separate maintenance functions, which are provided by
the following DataGuide API calls:

For object type registration: For object type: Purpose

FLGCreateReg FLGCreateType Define a new object type or
object type registration

FLGGetReg FLGGetType Get information about an
object type or object type
registration

FLGUpdateReg FLGAppendType Change the definition of an
object type or object type
registration

FLGDeleteReg FLGDeleteType Delete an object type or
FLGDeleteTypeExt object type registration

When you create or delete an object type, you need to use the FLGCreateReg and
FLGCreateType calls or FLGDeleteType and FLGDeleteReg calls as pairs to make
sure that complete object types are created or deleted. Object type registrations
that do not have associated object types with defined properties are useless and
can cause problems if you later try to use these object types to define objects in
your information catalog.

You cannot change or delete object type properties after you create the object type;
you can only append new optional properties using the FLGAppendType call (see

>).

Defining object types

When defining a new object type, at a minimum you must specify the following:
* Registration properties

* The category the object type belongs to

* Required properties common to all objects

After you complete the above steps, you can define additional optional properties
for the object type.

Specifying registration properties

When you register an object type, you must specify these six properties in the order
shown in

Chapter 2. Managing objects with an application 7

Defining object types

Table 2. Properties required for object type registrations

Position Property short name Property name ' Description Comments
1 NAME EXTERNAL NAME 80-byte name of the You must set this
OF OBJ TYPE object type. value using the
FLGCreateReg call.
You can modify this
value using the
FLGUpdateReg call.
2 PTNAME PHYSICAL TYPE 30-character name of You can only set this
NAME the table in the value using the
DataGuide database = FLGCreateReg call.
that contains the
object type. You cannot modify
this value after the
object type is
registered.

3 DPNAME DP NAME 8-character short You must set this
name for the object value using the
type. FLGCreateReg call.

You cannot modify
this value after the
object type is
registered.

4 CREATOR CREATOR 8-character user ID of DataGuide sets this
the administrator who value when the
creates the object FLGCreateType call is
type. issued for the object

type.
You cannot set or
modify this value.

5 UPDATEBY LAST CHANGED BY 8-character user ID of DataGuide sets and
the administrator who maodifies this value
last modified the when the
object type. FLGAppendType call

is issued to add
optional properties to
the object type.

6 UPDATIME LAST CHANGED 26-character time DataGuide sets and

DATE AND TIME stamp of the last date modifies this value
and time the object when the
type was modified. FLGCreateType or
FLGAppendType call
is issued for the
object type.
Note:

1. The property names in this column apply to English versions of DataGuide; if you are using a translated version of
DataGuide, the property name will also be translated.

8

DataGuide Programming Guide and Reference

Defining object types

Specifying the category for a new object type

You set the category of the object type when you register the object type using
FLGCreateReg.

You can create object types belonging to the following categories:

Grouping
Elemental
Contact
Dictionary
Support

These five categories are briefly described in tQrganizing objects using categaries?

. For more detailed information, see Managing DataGuide.

DataGuide defines both a Programs and Comments object type when you create a
new DataGuide database. Programs is the only object type that can belong to the
Program category; you cannot create any other Program object types. Comments is
the only object type that can belong to the Attachment category; you cannot create
any other Attachment object types.

Defining required object type properties

When you define a new object type, you must specify the five required properties
shown in [anle 3 as the first five properties for the object type. DataGuide uses the
property short names to identify the required properties.

Table 3. Properties required for every object type

Position Property short name Property name Description Comments

1 OBJTYPID Object type identifier ~ 6-character DataGuide generates

system-generated ID a unique identifier for
for the object type each object type.

This value is the first
part of the FLGID that
you use with several
API calls to identify
object instances.

You cannot modify
this value.

Chapter 2. Managing objects with an application 9

Defining object types

Table 3. Properties required for every object type (continued)

Position

Property short name Property name

Description

Comments

2

INSTIDNT

Instance identifier

10-character
system-generated ID

for the object instance

DataGuide generates
a unique identifier for
each object instance.

This value is the
second part of the
FLGID that you use
with several API calls
to identify object
instances.

You cannot modify
this value.

NAME

Name

80-byte user-specified
name for the object.

This name is
displayed by the
DataGuide user
interface.

You can modify this
value using the
FLGUpdatelnst call.

UPDATIME

Last Changed Date
and Time

26-character time
stamp of the last date
and time the object
instance was
modified.

DataGuide sets this
value when the object
instance is created or
modified (using
FLGCreatelnst or
FLGUpdatelnst calls).

You cannot modify
this value.

UPDATEBY

Last Changed By

8-character user ID of
the person who last
modified the object
instance.

DataGuide sets and
modifies this value
when the object
instance is created or
modified (using
FLGCreatelnst or
FLGUpdatelnst calls).

Identifying your

10 DataGuide Programming Guide and Reference

The property short names for these required properties are reserved. Do not use
these names for any other property short name assignments.

When you create a new object instance, you must specify a value for NAME.
DataGuide generates the values for OBJTYPID, INSTIDNT, UPDATIME, and

UPDATEBY. You cannot modify these system-generated values.

new object type and object instances

When the system generates OBJTYPID, you use this value to uniquely identify a
registered and defined object type.

When the system generates INSTIDNT, you use this value with OBJTYPID to

uniquely identify a single object instance.

Defining object types
This book refers to the combined OBJTYPID and INSTIDNT values as FLGID in

DataGuide identifier names

Because DataGuide is designed to be used by several different levels of users, we
use different terminology for describing object types for different product users. You
find less technical, more business-oriented terms in the DataGuide user interface

(EUI) and in the books Using DataGuide and Managing DataGuide.

In this book we use terms oriented to the data processing environment for
administrators and application programmers.

You need to be aware of these terminology differences when writing applications for
users or administrators.

terminology.

Table 4. DataGuide terminology for object types

provides a quick reference to the different levels of

Administrator

Tag language

Description User term term term API call term

Long (80-byte) Object type Object type EXTNAME(ext_narBTERNAL

name of object name NAME OF OBJ

type TYPE
NAME property
in the input or
output structure

Short — Short name TYPE (type) DP NAME

(8-character)

name of the DPNAME_

object type property in the
input or output
structure

Name of the — — PHYNAME PHYSICAL TYPE

DataGuide (table_name) NAME

database table .

containing the TYPE (type) if ~ PTNAME

object type PHYNAME is not property in input

information specified or output
structure

Long (80-byte) Property Property name EXTNAME Property name

property name (ext_name)

Property short — Short name SHRTNAME Property short

(8-character)
name

(short_name)

name

Chapter 2. Managing objects with an application 11

Chapter 3. Writing programs with DataGuide API calls

DataGuide provides C language API calls that let your programs use DataGuide
functions.

This chapter describes:

What DataGuide functions you can perform using API calls
The general structure of API calls

How to pass data to and from DataGuide API calls

C language header files provided by DataGuide

How to write a C language program using DataGuide
Rules for using DataGuide API calls

The DG2SAMP.C sample program

What you can do with DataGuide API calls

The DataGuide API calls have consistent syntax rules. See EChapter 5_DataGuidd

LPI call syntax” on page 59 for the complete syntax for each API call.

These API calls use self-defining input and output structures. Any programming
language can read and generate these structures. For more information about the

input structures and output structures, see IChapter 4_DataGuide input and outpui

This section briefly describes all of the API calls provided by DataGuide and tells
you where to find detailed information about each call.

Provide DataGuide application support

These API calls allow your program to use other DataGuide API calls.

API call Purpose See:

FLGInit Allocate required resources and 24
initialize the DataGuide client

FLGFreeMem Free output structures defined by o7
DataGuide.

FLGTerm Relinquish resources and terminate Y|
the DataGuide client

FLGTrace Set the level of tracing fod

© Copyright IBM Corp. 1994, 1998 13

What you can do with DataGuide API calls
Manage object type registrations

Registrations uniquely identify object types to DataGuide.

API call Purpose See:

FLGCreateReg Register a new object type 3

FLGDeleteReg Delete an object type registration

FLGGetReg Get the information for an object type)
registration

FLGUpdateReg Update the information for an object bod
type registration

FLGManagelcons Create and update icons that fisd

represent an object type

Manage object types

Object types define associated properties.

API call Purpose See:
FLGAppendType Add new properties to an object type
FLGCreateType Create a new object type 79
FLGDeleteType Delete an object type D2
FLGDeleteTypeExt Delete an object type along with its L
instances and object type registration
FLGGetType Get information about an object type 18
Manage object instances
Object instances contain metadata representing a unit of information.
API call Purpose See:
FLGCreatelnst Create a new object instance &4
FLGDeletelnst Delete an object instance B4
FLGDeleteTree Delete a Grouping object instance and B3
optionally delete all underlying
instances
FLGUpdatelnst Update information about an object fiad
instance
FLGGetInst Get information about an object
instance

14 DataGuide Programming Guide and Reference

What you can do with DataGuide API calls
Manage DataGuide identifiers

This API call allows your program to convert identifiers for performance purposes.

API call Purpose See:

FLGConvertID Convert object type and instance B6
identifiers for application performance

Define object relationships

Relationships define the interaction of two object instances.

API call Purpose See:

FLGRelation Create or delete a contains, contact, iz
attachment, or link relationship
between two object instances.

Locate object instances

You can locate object instances based on the values of certain properties.

API call Purpose See:

FLGSearch Return a list of the instances of a a1
specific object type that meet the
selection criteria

FLGSearchAll Return a list of the instances of any 189
object type that meet the selection
criteria

List object types and instances

You can retrieve a list of object types or instances according to their category or
relationships.

API call Purpose See:

FLGFoundIn Return a list of: objects in which a fod
specific instance is contained; objects
for which a specific instance is a
contact; objects to which a specific
instance is attached as a comment;
object types for which a specified
Programs instance is associated

FLGListAnchors Return a list of the Grouping objects fad
that are not contained by other
objects; these top-level Grouping
objects are referred to as anchors.

Chapter 3. Writing programs with DataGuide APl calls 15

What you can do with DataGuide API calls

API call Purpose See:

FLGListAssociates Return a list of the objects that are: 33
contained by a specified Grouping
object; contacts for a specified object;
comments attached to a specified
object; linked with a specified object;
or Programs associated with a
specified object type

FLGListContacts Return a list of all Contact objects fad
associated with a specified Grouping
or Elemental object

FLGListObjTypes Return a list of all object types fiad

FLGListOrphans Return a list of currently unassociated fiag
Attachment, Contact, or Program
object instances

FLGListPrograms Return a list of all Programs objects =1
associated with a non-Programs
object type

FLGNavigate Return a list of the Grouping or iz
Elemental objects that the specified
Grouping object contains

FLGWhereUsed Return a list of the Grouping objects PO7
that contain the specified object

Copy metadata objects to or from DataGuide

You can import or export metadata to or from a DataGuide database.

API call Purpose See:

FLGEXxport Copy and translate DataGuide D3
metadata objects to a file in tag
language format

FLGImport Interpret and copy metadata objects fad
from a file in tag language format into
DataGuide

FLGMdisExport Copy and translate DataGuide 08
metadata objects to a file in
MDIS-conforming tag language format

FLGMdisImport Interpret and copy metadata objects fad
from an MDIS-conforming tag
language file into DataGuide

Start external programs

You can start a DOS or Microsoft Windows application from DataGuide.

API call Purpose See:

FLGOpen Start an external program using 74

16

information from the specified object.

DataGuide Programming Guide and Reference

Confirm or remove changes to the DataGuide database

You can commit or roll back changes to the DataGuide database.

What you can do with DataGuide API calls

API call Purpose See:

FLGCommit Confirm that you want changes to the B4
DataGuide database made permanent

FLGRollback Remove changes made to the 130

DataGuide database back to the point
where changes were last committed.

Manage your enterprise information catalogs

You can manage the list of users authorized to perform object management tasks,
choose the comment status choices available to users, and propagate deletions
from one information catalog to shadow information catalogs in your enterprise.

API call Purpose See:

FLGManageUsers Update administrators and grant 63
object management authority to
specific users

FLGManageCommentStatus Set and update a list of available Y|
status choices for users to assign
comments

FLGManageFlags Start or stop recording of information =4
catalog deletions (delete history), or
retrieve current setting

FLGManageTagBuf Query or reset currently recorded 61
delete history

FLGXferTagBuf Transfer delete history to a tag file for kid

import into other catalogs

Issuing a DataGuide API

call

The standard structure for all DataGuide API calls is:
rc = FLGxxx (parameter,

parameter,
parameter,

&ExtCode) ;

These parameters are typically assigned values or addresses in the code preceding

the API call.

rc is the variable for the reason code returned by the API call; a reason code of
zero (0) means that the API call completed without errors or warnings. &ExtCode is
the address for the extended code sometimes returned by the API call.

Chapter 3. Writing programs with DataGuide API calls

17

Passing data to and from DataGuide API calls

DataGuide API calls receive input and provide output using two mechanisms:
parameters and input structures and output structures.

Passing single input values and pointers as parameters

You can use parameters to provide single input values and pointers to output values
and data structures.

All API call parameters that are character strings must be passed as strings
terminated by a null character, or null-terminated strings. Under the Syntax section
for each API call in LChapter 5_DataGuide API call syntax” an page 59, the
descriptions for such parameters specify the maximum length of the actual data
without the null terminator. For example, the length of an object type identifier,
ObjTypelD, is specified as 6, not 7.

However, the C declarations for such parameters in the examples include the extra
byte for the null terminator. For example, if you use the #define constants in the
DG2API.H file, a possible declaration for the ObjTypelD parameter is:

uchar objtypid[FLG_OBJTYPID LEN+1]

(See LAppendix B _DataGuide AP| header file — DG2APIH” on page 219 for a list of

the constants in the DG2API.H file.)

Passing multiple values using input structures and output structures

18

To provide multiple values of input and receive multiple values of output from
DataGuide API calls, you need to use input structures and output structures.

Input structures and output structures are self-defining data structures; each
structure defines the format and meaning of the data that it is passing.

Each self-defining structure must be a contiguous area of storage. Input structures
and output structures contain only character data, and cannot contain nulls.

Each input structure and output structure must contain these two areas:

Header area
Identifies and defines the size of the structure

Definition area
Defines object area properties

Structures that define or receive values for the properties defined in the definition
area must also contain an object area, which specifies values for the properties
defined in the definition area. Eigure 4 on page 19 shows how these three areas are
put together.

DataGuide Programming Guide and Reference

Passing data to and from DataGuide API calls

Header area

Definition area

Object area

Figure 4. An input or output structure

To pass an input structure to an API call, build the input structure and pass a
pointer to the beginning of the input structure as an input parameter for the API call.

To retrieve information from an output structure, pass the address of a null pointer
as an input parameter so that DataGuide can assign that pointer the address of the
beginning of the output structure.

For example, when you pass the API call a pointer named ppListStruct, which
contains the address of a null pointer named pOutStruct, the API call then assigns
pOutStruct the address of the output structure, as shown in

pOutStruct
Header area

Definition area

Object area

Figure 5. A pointer to an output structure

To avoid running out of memory after several API calls, your program can
deallocate the memory allocated for this output structure using the DataGuide API
call FLGFreeMem. For more information about using FLGFreeMem, see

Including header files

DataGuide provides C language header files that define the function prototypes of
DataGuide API calls, constants, data types, and constants for DataGuide reason

codes.

To work with DataGuide, your programs must include these header files:

DG2API.H
Defines the constants for frequently used values, DataGuide-specific data

types, and the function prototypes for API calls.

— ” contains
a complete list of what is defined in the DG2API.H file.

Chapter 3. Writing programs with DataGuide API calls 19

Including header files
DG2ERR.H

Defines constants for DataGuide reason codes.

Your program must contain the following #define and #include statements to work
with DataGuide for Windows:

#define DGWIN32
#include WINDOWS.H
#include DG2API.H
#include DG2ERR.H

WINDOWS.H is part of the Microsoft Visual C++ Compiler. This file embeds header
files that define standard declarations for Windows data types that are used by
DataGuide for Windows.

An overview of writin g a C language program

This section outlines the steps for writing and running a C language program that
uses DataGuide API calls. Most of this information is standard for any C language
program you write.

Creating C language source code

To build a DataGuide application using C language:

1.
2.
3.

4.

Create the source code.
Compile the source code using a C compiler.

Link the object files with the DataGuide and C language libraries to produce an
executable program.

The DataGuide for Windows library is DGWAPI.LIB.
Execute the application.

Setting up your environment

Use the following steps to set up your environment to compile and run DataGuide
programs written in the C language:

1.
2.

Install the compilers.
Verify the LIBPATH.

The LIBPATH= environment variable must include the x\VWSLIB directory,
where x is the drive where you installed DataGuide.

Set environment variables. You set environment variables either in your
AUTOEXEC.BAT or from the Microsoft Visual C++ Compiler menu bar (include
file path and library file path).

The SET INCLUDE= statement must include the x\VWSLIB\LIB directory. The
directory containing the WINDOWS.H should also be specified on SET INCLUDE=.

SET LIB= must include the x\VWSLIB\LIB directory.

Compiling and linking your application

20

To compile your application using Microsoft Visual C++ Compiler you need to issue
a command such as:

cl /c filename.c

DataGuide Programming Guide and Reference

An overview of writin g a C language program

You might need or want to add other options, depending on the compiler you use
and the way you write your program.

To link your program, issue a command such as:

link /dll dgwapi.lib filename.obj

How to use DataGuide API calls in your program

You must follow certain rules and guidelines when you write C language programs
that contain DataGuide API calls. These guidelines are explained in this section.

Starting your program with FLGInit

When you write a program that issues DataGuide API calls, you must issue an
FLGInit call before you can issue any other DataGuide API calls.

FLGInit initializes DataGuide, returns the names of properties required for
DataGuide object types and registrations, and returns environmental information.

Save the information returned by FLGInit. You might need this information for other
DataGuide API calls. If you are using a national language version of DataGuide,
FLGInit returns the translated names of the properties required for DataGuide object
types and registrations. You need to use these translated names in the definition
area of your input structure when you create or maintain object types and
registrations.

See lELGInit” on page 129 for information about the contents of the FLGInit output
structure.

Ending your program with FLGTerm

Your program must issue an FLGTerm call after it finishes using DataGuide
functions. FLGTerm ends the DataGuide session and releases resources used by

DataGuide. See 'ELGTerm” an page 194 for more information about this API call.

Protecting your DataGuide database when errors occur

Certain DataGuide errors indicate that some of the metadata in the DataGuide
database might be inconsistent. Therefore, you should write your program to roll
back the DataGuide database when your program encounters DataGuide errors. By

Chapter 3. Writing programs with DataGuide API calls 21

How to use DataGuide API calls in your program

issuing FLGCommit calls when your API calls succeed and FLGRollback calls when
they fail, you protect your DataGuide database from becoming inconsistent.

Attention: When your DataGuide database is on DATABASE 2 (DB2) you must
issue an FLGRollback call if you encounter an error. Otherwise, your DataGuide
database may be damaged when your program issues FLGTerm.

Setting up Programs objects to start programs

22

To start a program that works with your data from a DataGuide application, create a
Programs object instance that is associated with the object type that represents that
kind of data.

You must define values for three properties in the Programs object instance that
identify the program and associate the Programs object instance with an object
type, as shown in

Table 5. Properties of a Programs object instance that start the program

Property short
Property name name Value

Start by invoking STARTCMD Path and file name of the program to be started, as
well as the start options.

Object type this HANDLES 8-character short name of the object type
program handles

Parameter listis PARMLIST List of properties in the associated object type the
values of which you want to pass to the program as
command-line parameters. Each property is delimited
by two percent signs (%%)

The value of the Start by invoking (STARTCMD) property has different
recommended formats, depending on the program’s interface type, as shown in
[fable 6. The PATH statement must contain the directory where the program is
located.

Table 6. Recommended invocation parameters by program platform

Program type Recommended parameter value
Windows NT 3.5.1 and Windows NT 4.0 filename.exe
Windows 95 START filename.exe

If the file name of the program is in high-performance file system (HPFS) format
and contains blanks, then you must surround the path and file name of the program
with double quotes, as shown below:

""D:\PROGPATH\My Program.EXE""

If your program name contains blanks, then you cannot specify any other start
options in the STARTCMD property value.

To start a program, issue an FLGOpen call with the Programs object FLGID and
object instance FLGID as parameters. For more information about the FLGOpen

call, see lEELGQpen” on page 1784,

DataGuide Programming Guide and Reference

How to use DataGuide API calls in your program

Creating metadata using API calls

The registration, object type, object instances, and relationships build upon one
another; therefore, you can only create a set of these entities in a certain order.
When creating new object types, object instances, and relationships, you must
issue DataGuide API calls in the following order:

1. FLGCreateReg

2. FLGCreateType

3. FLGCreatelnst
4,

FLGRelation

Deleting metadata using API calls

You can, however, delete registration, object type, object instances, and
relationships in two manners: conservative (this method is slower), or potentially
destructive (yet quicker).

When deleting object types and object instances in a conservative manner, issue

the following DataGuide API calls for related object instances and object types in

the following order:

1. FLGRelation
You must delete all relationships where the particular object instances are
containers of other objects before you can delete these object instances.
FLGDeletelnst automatically deletes relationships where object instances are
contained or have associated Contact, Attachment, or linked objects

2. FLGDeletelnst
You must delete all object instances of a particular object type before you can
delete the object type using FLGDeleteType

3. FLGDeleteType

4. FLGDeleteReg

You can delete object instances and object types more quickly using the following
APIs, but if you are not completely certain of your information catalog’s contents,
the results can be destructive.
1. FLGDeleteTree
Simultaneously delete a Grouping object instance and, optionally, all object
instances it contains as well as all relationships in which the contained object
instances participate.

2. FLGDeleteTypeExt

Simultaneously delete the object type, object type registration, and all instances
of the object type. You must delete individual branches containing objects of
other object types before you can delete the object type using
FLGDeleteTypeExt.

Specifying DataGuide metadata using DataGuide data types

DataGuide stores the metadata for an object’s properties using four data types,

which are defined in [able Z on page 24.

Your program may need to make some data conversions to ensure that your
metadata is in a valid format.

Chapter 3. Writing programs with DataGuide API calls 23

How to use DataGuide API calls in your program

Table 7. Valid data types for DataGuide metadata

How an omitted value is
represented in input and output

Data type How represented structures
CHAR Occupies its defined length. The Blanks fill up the value’s defined
value is padded on the right with length.
trailing blanks if the value is shorter
than its defined length.
TIMESTAMP Occupies its full length (26) using Represented by 26 blanks.
the following format:
yyyy-mm-dd-hh.mm.ss.nnnnnn
LONG Preceded by an 8-character length Length field is set to zeros that
VARCHAR field that specifies the actual length specifies that no value follows.
of the following value. Example: 00000000
VARCHAR Preceded by an 8-character length Length field set to zeros that

field that specifies the actual length
of the following value.

specifies that no value follows.
Example: 00000000

With input structures, DataGuide automatically removes trailing blanks from

variable-length values and adjusts their lengths accordingly before validating and
accepting the request. Therefore, if only blanks are specified for a required value,
the request is rejected with a reason code indicating that a required value was not
specified. When a value is required, but not available, you can use the
not-applicable symbol to avoid errors.

National language considerations

Unless otherwise specified, DataGuide commands, parameters, required property
short names, data type names, indicator values, and option values are not
translated for national language versions, and must be entered in English.

Translated required properties

The 80-byte names of required registration properties and object type properties are
translated into the national language.

The English names for the required registration properties are:
+ EXTERNAL NAME OF OBJ TYPE

* PHYSICAL TYPE NAME

« DP NAME

*+ CREATOR

* LAST CHANGED BY

e LAST CHANGED DATE AND TIME

The English names for the required object type properties are:
* Object type identifier

* Instance identifier

* Name

» Last Changed Date and Time

24 DataGuide Programming Guide and Reference

National language considerations

* Last Changed By

The translated names are returned in the output structure produced by the FLGInit

call.

Specifying values in languages other than English

Most metadata values stored in a DataGuide information catalog can be stored in

any language. This section describes the guidelines for using SBCS characters and
DBCS characters in values with DataGuide.

Values that use SBCS characters only

DP NAME (object type short name) values
Property short names
PT NAME (physical type name) values

Values that can use SBCS or DBCS characters

NAME (external name of an object type) values

Property names, other than those required for object types and registrations

Property values for user-defined properties
Values for the following API call parameters:

FLGCreateReg
pszlconFileID

FLGGetReg
pszlconFilelD

FLGEXxport
pszTagFilelD, pszLogFilelD, pszicoPath

FLGImport
pszTagFilelD, pszLogFilelD, pszicoPath

FLGInit
pszUserlD, pszPassword, pszDatabaseName

FLGManagelcons
pszlconFilelD

FLGMdisExport

pszTagFilelD, pszLogFilelD, pszObjTypeName, pszObjectName

FLGMdisImport
pszTagFilelD, pszLogFileID

FLGUpdateReg
pszlconFileID

FLGXferTagBuf
pszTagFilelD

Introducing DG2SAMP.C

DataGuide provides a sample program, DG2SAMP.C, that you can compile, link,
and run. DG2SAMP.C is in the DG2LIB\LIB directory on the drive where you

installed DataGuide.

This book uses parts of DG2SAMP.C to show how to write applications that use the
DataGuide API calls. DG2SAMP.C issues the following calls:

Chapter 3. Writing programs with DataGuide API calls

25

Introducing DG2SAMP-C

* FLGCommit

* FLGFreeMem

* FLGGetInst

* FLGInit

* FLGLIistObjTypes
* FLGRollback

* FLGSearch

* FLGTerm

* FLGTrace

* FLGUpdatelnst

For instructions for compiling and linking DG2SAMP.C and an example for running
the program, see & i !

26 DataGuide Programming Guide and Reference

Chapter 4. DataGuide input and output structures

DataGuide API calls receive input and provide output using parameters and input
structures and output structures. The input structures and output structures allow
you to provide multiple values of input and receive multiple values of output from
DataGuide API calls.

Input structures and output structures are self-defining data structures; each
structure defines the format and meaning of the data that it passes.

To pass an input structure to an API call, you need to build the input structure and
pass a pointer to the beginning of the input structure as an input parameter for the

API call. This process is explained in LCreating input structures for an AP| call” o

To retrieve information from an output structure, you need to step through the
output structure using one or more pointers. This process is explained in

Although the examples in this book are written in C language, you can create and
read input and output structures using any programming language.

Common characteristics of the DataGuide API input and output
structures

DataGuide input structures and output structures contain three parts, called areas,
as shown in m

Header area

Definition area

Object area

Figure 6. An input or output structure

Header
Identifies and defines the size of the structure

Definition
Defines object area properties

Object
Specifies property values

The entire self-defining structure must be a contiguous area of storage.

Input structures and output structures contain only character data, and cannot
contain null characters.

© Copyright IBM Corp. 1994, 1998 27

Common characteristics of the DataGuide API input and output structures

If you omit a value in an input or output structure, use an appropriate humber of
space characters, called blanks in this book, in place of the value to keep the byte
offsets of the values consistent with the definition of the input structure and output
structure.

DataGuide API input structure

28

m shows the general format of the DataGuide API input structure. The
structure consists of three contiguous areas: the header area, the definition area,
and the object area. Some DataGuide API calls require only the first two areas.

The fields of each of the areas are described in the following sections.

0 8 16 24 32 33 39 160
definition object objarea |C| object
FLG-HEAD length length gg&’%’t g t)?ge
&N 8RS
0 80 110 118 T 160
propertyl name datatypel lengthl ppnl vil | usl| cs1| fs1
property2 name datatype2 length2 ppn2 vi2 | us2 | cs1| fs2
property3 name datatype3 length3 ppn3 vi3 | us3| cs3 | fs3

propertyl value

property2 value

property3 value

Figure 7. APl input structure

The following API calls receive input from an input structure:

FLGAppendType
Adds new properties to an object type

FLGCreatelnst
Creates a new object instance

FLGCreateReg
Registers a new object type

FLGCreateType
Creates a new object type

FLGExport
Copies and translates DataGuide metadata objects to a file in tag language
format

FLGManageCommentStatus
Updates the list of available status choices for comments

DataGuide Programming Guide and Reference

Header area —

DataGuide API input structure

FLGManageUsers
Updates the administrators and users for an information catalog and
identifies extent of each user’s authority

FLGSearch
Returns a list of the instances of a specific object type that meet the
selection criteria

FLGSearchAll
Returns a list of the instances of any object type that meet the selection
criteria

FLGUpdatelnst
Updates information about an object instance

FLGUpdateReg
Updates information about an object type registration

If FLGSearch and FLGSearchAll do not receive an input structure, they attempt to
retrieve all objects.

always required

The header area describes the information in the definition and object areas. Any
fields that are not required and are not specified must be set to blanks.

0 8 16 24 32 33 39 160

definition object objarea | C| object
FLG-HEAD length length entry al type
count t id

Figure 8. Input structure header area

[fable 4 describes the meaning of each byte offset position in the header area
shown in

Table 8. The input structure header area and its fields

Section from

Byte offset Required? Description

FLG-HEAD 0-7 Always Structure identifier.

definition 8-15 Always Length of the definition area.

length
The value must be a multiple of 160
(160 times the number of definition
records).

object length 16-23 Always Length of the object area.

For FLGAppendType and
FLGCreateType, this value is zero
(00000000).

Chapter 4. DataGuide input and output structures 29

DataGuide API input structure

Table 8. The input structure header area and its fields (continued)

Section from

m Byte offset Required? Description
obj area entry 24-31 Always Number of entries (property values)
count in the object area.
The value is the number of
properties in the definition area
times the number of sets of values
described in the object area.
For FLGAppendType and
FLGCreateType, this value is zero
(00000000).
cat 32 Required for: Category of the object type or
* FLGAppendType object.
* FLGCreatelnst Valid values are:
* FLGCreateReg G Grouping
* FLGCreateType £ - |
¢ FLGUpdatelnst ementa
+ FLGUpdateReg c Contact
P Program
D Dictionary
S Support
A Attachment
object type id 33-38 Required for: System-generated identifier for an
+ FLGAppendType Object type.
* FLGCreatelnst
* FLGCreateType
¢ FLGUpdatelnst
e FLGUpdateReg
39-159 Always Should be left blank.

Definition area — always required

The definition area contains a set of property definitions required as input by a
particular DataGuide API function.

ahle 9 on page 31 shows what the information in the definition area means for
different API calls that use input structures.

30 DataGuide Programming Guide and Reference

DataGuide API input structure

Table 9. The meaning of the definition area for different API calls

API calls Information in the definition area

FLGAppendType Definition of the set of properties that define the object

FLGCreatelnst registration, object type, or object instance

FLGCreateReg

FLGCreateType

FLGUpdatelnst

FLGUpdateReg

FLGSearch Definition of the set of properties that describe the selection

FLGSearchAll criteria

FLGExport Definition of the properties that specify the metadata to be
exported

FLGManageCommentStatus Definition of the set of properties that specify Comments
status choices

FLGManageUsers Definition of the set of properties that describe DataGuide
users

Each property in the definition area is defined by a set of formatted specifications.
describes the byte offset positions shown in

85 & % 8
0 80 110 118 A d A «d « 160
property name | datatype length | ppn vf us | cs | fs
Figure 9. Input structure definition record
Table 10. The input structure definition area and its fields
Section from Byte offset Required? Description
property name 0-79 Always External name of the property.
datatype 80-109 Always The data type of the property.

Valid values are:

CHAR Fixed-length character data.
Maximum length is 254.

VARCHAR
Variable-length character
data. Maximum length is
4000.

LONG VARCHAR
Variable-length character
data. Maximum length is
32700.

TIMESTAMP
Time stamp in the form of:
yyyy-mm-dd-
hh.mm.ss.nnnnnn
Timestamp length is 26.

Chapter 4. DataGuide input and output structures 31

DataGuide API input structure

Table 10. The input structure definition area and its fields (continued)

Section from Byte offset Required? Description

Eigure 9 onl
hage 21]

length 110-117 Always Maximum length of the property
value.
ppn 118-125 Required for: Property short name

* FLGAppendType
* FLGCreatelnst
* FLGCreateReg
* FLGCreateType

* FLGManage-
CommentStatus

* FLGSearch

* FLGSearchAll
¢ FLGUpdatelnst
* FLGUpdateReg

For other API calls
this field is unused

and left blank
vf 126 Required for: Value flag specifying whether a
« FLGAppendType property is required, optional, or
« FLGCreatelnst system-generated.
* FLGCreateReg Valid values are:
* FLGCreateType R Required
¢ FLGUpdatelnst .
* FLGUpdateReg o Optional
For other API calls S System-generated
this field is unused
and left blank.
us 127 Required for the Universal Unique Identifier (UUI)
following API calls: sequence number, which specifies
« FELGCreatelnst that a property is part of the UUL.

¢ FLGCreateType
* FLGUpdatelnst

Valid values are:

1 UUl Part 1
For other API calls,
this field is unused 2 UuI Part 2
and left blank. 3 UUl Part 3
4 UUl Part 4
5 UUI Part 5

(blank) Not part of the UUI

At least one property must be
specified as UUI Part 1 for any
object type.

See Managing DataGuide for more
information about defining UUI parts.

32 DataGuide Programming Guide and Reference

DataGuide API input structure

Table 10. The input structure definition area and its fields (continued)

Section from Byte offset Required? Description
cs 128 Required for the Case-sensitivity flag.

following API calls:

¢ FLGSearch
¢ FLGSearchAll

Valid values are:
Y Case-sensitive

For other API calls, N Not case-sensitive

this field is unused See [ELGSearch” on page 181 and

and left blank. : 0

information about using the
case-sensitivity flag.

fs 129 Required for the Fuzzy search flag.

following API calls:
Valid values are:

¢ FLGSearch
« FLGSearchAll Y Fuzzy search

For other API calls, N Not a fuzzy search

this field is unused See [ELGSearch’ on page 181 and

and left blank. : - fo

r
information about using the fuzzy
search flag.

130-159 Always Reserved section.

Should be left blank.

Object area — Required when defining values

The object area contains the values for the properties defined in the definition area.
The values must appear in the order defined in the definition area.

The object area for an input structure contains only one value per property defined
in the definition area for all APIs except FLGExport and FLGManageUsers. For
FLGExport and FLGManageUsers, the object area can contain more than one value
per property defined in the definition area.

The object area is required for the following API calls:
* FLGCreatelnst

* FLGCreateReg

* FLGEXxport

* FLGManageCommentStatus

* FLGManageUsers

* FLGSearch

* FLGSearchAll

* FLGUpdatelnst

* FLGUpdateReg

You can determine how to represent each value using the following rules:

Chapter 4. DataGuide input and output structures 33

DataGuide API input structure

Data type
How to represent the value in the object area

VARCHAR
Value is preceded by an 8-character length field that specifies the actual
length of the value. Trailing blanks are automatically removed from these
values; DataGuide adjusts the length field accordingly.

LONG VARCHAR
Value is preceded by an 8-character length field that specifies the actual
length of the value. Trailing blanks are automatically removed from these
values; DataGuide adjusts the length field accordingly.

CHAR Value occupies the number of bytes defined by the property’s length field in
the definition area and is padded on the right with blanks to fill the defined
length.

TIMESTAMP
26 bytes

Creating input structures for an API call

Follow these steps to create an input structure:

1. Define lengths and values using DG2API.H
Calculate the size of the entire output structure
Define the header area

Define the definition area

Define the object area

a s~ DN

Defining lengths and values using DG2API.H

34

DataGuide provides a C language header file named DG2API.H that defines many
of the value lengths and valid values that you need to create input structures and
read output structures. You can include (using the #include statement) this file in
your program so that you do not need to write the code for certain data types,
structures, and function prototypes yourself.

DG2API.H contains type definition (typedef) declarations of the structures needed
to build the header and definition areas, as shown in Eigure 10 on page 35. (In
Eigure 10 on page 35, WINDOWS refers only to Microsoft Windows 3.1.)

DataGuide Programming Guide and Reference

Creating input structures for an API call

#pragma pack(1)

/* Structure definition for the FLG header area */
typedef struct FLG_HEADER AREA {

UCHAR pchHIdent [FLG_H_IDENT_LEN 1;
UCHAR pchHDefLength [FLG_H DEFAREA LEN 1;
UCHAR pchHObjLength [FLG_H_OBJAREA_LEN IR
UCHAR pchHObjEntryCount [FLG_H_OBJAREAENT_LEN];
UCHAR pchHCategory [FLG_H CATEGORY LEN 1
UCHAR pchHObjTypeld [FLG_H_OBJTYPID_LEN 1;
UCHAR pchHReserved [FLG_H_RESERVED LEN 1;

} FLGHEADERAREA;
#ifdef WINDOWS

typedef FLGHEADERAREA _ huge *PFLGHEADERAREA;
#else

typedef FLGHEADERAREA *PFLGHEADERAREA;
#endif

/* Structure definition for the FLG definition area */
typedef struct FLG DEFINITION AREA {

UCHAR pchDPropName [FLG_D_PROPNM_LEN T;
UCHAR pchDDataType [FLG_D DATATYP LEN 1;
UCHAR pchDDatalength [FLG_D_DATA_LEN 1;
UCHAR pchDTagName [FLG_D _PPN_LEN 1;
UCHAR pchDVF [FLG_D_VF_LEN 1;
UCHAR pchDUS [FLG_D_US_LEN 1;
UCHAR pchDCS [FLG D _CS_LEN 1;
UCHAR pchDFS [FLG_D_FS_LEN 1;
UCHAR pchDReserved [FLG_D_RESERVED LEN T;

} FLGDEFINITIONAREA;
#ifdef WINDOWS

typedef FLGDEFINITIONAREA _ huge *PFLGDEFINITIONAREA;
#else

typedef FLGDEFINITIONAREA *PFLGDEFINITIONAREA;
#endif

Figure 10. DG2API.H: Structure definitions for the header and definition areas

Variables starting with FLG_D or FLG_H are lengths for the structure parts that are
defined in DG2API.H.

See lAppendix B_DataGuide API header file — DG2APIH” on page 2185 for a list of

all the constants defined in the DG2API.H file.

You can use these defined structures to define the storage required for the header
and definition areas of the input structure. m shows a part of DG2SAMP.C
that uses data types defined in the DG2API.H header file to define the structures
later used to store the header and definition areas of an input structure.

// This structure defines the input structure for FLGSearch.
typedef Packed struct SEARCH _STRUCT {

FLGHEADERAREA srchHdr;
FLGDEFINITIONAREA srchDef;
OBJECTAREA Item;

} SEARCHSTRUCT;
typedef SEARCHSTRUCT *PSEARCHSTRUCT;

Figure 11. DG2SAMP.C: Defining the header and definition areas

Chapter 4. DataGuide input and output structures 35

Creating input structures for an API call

To ensure that the input structure is defined as contiguous storage, m

uses a #pragma pack(1) instruction, and Ei uses a
typedef Packed struct definition. If you build input structures using another
programming language, be aware that you might need to issue similar commands
to define the input structure as contiguous storage.

Calculating the size of the entire input structure

36

You need to calculate the size of the entire &inblock so that you can allocate the
amount of storage for the input structure. To make this calculation, you need to
know the following values:

* Number of properties defined in the definition area

This value depends on the number of properties required by the API call. You
use this value to calculate the length of the definition area.

» Lengths of the values in the object area. You add these values together to get
the length of the object area.

DG2API.H provides variables that define the length of the header area
(FLG_HEADER_SIZE) and the length of a single definition record
(FLG_DEFINITION_SIZE).

Calculating the definition area length

To calculate the definition area length, multiply the fixed length of each definition
record 5160) by the number of records needed to define your data, as shown in

DG2API.H provides the variable FLG_DEFINITION_SIZE, defined as 160, to help

Definition_area_length = number_of properties x FLG_DEFINITION_SIZE

Figure 12. Calculating the definition area length

you define this calculation in your code.

You will need this value to define the definition area length field of the header area,

as shown in [Defining the header area” an page 37.

Calculating the object area length

The object area length is the sum of the lengths of all the values that go into the
object area.

You will need this value to define the object area length field of the header area, as

shown in [Defining the header area” on page 317.

If you are creating an input structure for an API call that does not require or expect
an object area, the value in the object area is zero (00000000).

To calculate the exact object area length, you need the length of all of the values in
your object area. For CHAR and TIMESTAMP values, use the length defined in the
definition area. However, for LONG VARCHAR and VARCHAR values, you need to
check the length for each value and include the 8-byte length field as part of the
length value. The formula for this calculation is shown in Ei

DataGuide Programming Guide and Reference

Creating input structures for an API call

Object_area_length = Tength_of_propertyl +
length_of_property2 +
Tength_of_property3 +

Figure 13. Calculating the exact object area length

You can also define your object area to contain the longest possible value for all
properties, including VARCHAR and LONG VARCHAR values. With this method,
you can add the maximum data lengths for all the properties together to ensure that
the values you define for the object area will fit in the allocated storage. For
VARCHAR and LONG VARCHAR properties, be sure to include the 8-byte length
field as part of the maximum length value. The formula for this calculation is the
following:

Length_of object area = maximum_length _of propertyl +
maximum_length_of_property2 +
maximum_length_of_property3 +

Figure 14. Calculating the maximum possible object area length

Be aware, however, that this method can waste a lot of storage, especially if
several of your properties are LONG VARCHAR fields with a maximum length of
32700 bytes.

Adding all the parts together

The entire formula for determining the storage you need to allocate is shown in

Structure_size = FLG_HEADER_SIZE +
Definition_area_length +
Object_area_length

Figure 15. Calculating the required storage for an input structure
Defining the header area

Because the input structure is a self-defining structure, there are several values in
the header area that define the structure’s size and format. To define these values
properly, you need to consider the entire set of information and the structure you
need to create.

The header area is 160 bytes. Each byte position must be assigned a value; if you
do not specify a value, you must define a blank for that position. One way of
defining one or more byte positions as blanks is to use the C language memset
function to set the entire structure to FLG_BLANK or all zero characters first, and

Chapter 4. DataGuide input and output structures 37

Creating input structures for an API call

38

then to use the C language memcpy function to copy only the information that needs
to be set to something else. This method also makes it easier to use the constants
defined in DG2API.H, because you only need to worry about overlaying blanks or
zeroes, not about padding the values to match the data length.

Complete specifications for each byte of the header area are discussed in Fneadel

The syntax for the header area for each API call is discussed in WJ

Although some values in the header area not required for certain API calls, you
need to define the header area to contain the byte offset positions shown in

These byte offset positions are described in [[able 8 an page 29, [Table 11 lists

0 8 16 24 32 33 39 160
definition object objarea C| object
FLG-HEAD length length entry al type
count t id

Figure 16. The header area

constants in DG2API.H that can help you define the header area.

Table 11. Header area byte offset positions and useful constants defined in DG2API.H

Bytes Contents Useful constants defined in Value
DG2APIH

0-7 FLG-HEAD FLG_H_IDENT FLG-HEAD

8-15 Definition area length FLG_DEFINITION_SIZE 160; length of one

definition area record
16-23 Object area length
24-31 Object area entry
count

32 Category FLG_GROUPING_OBJ G
FLG_ELEMENTAL_OBJ E
FLG_CONTACT_OBJ C
FLG_DICTIONARY_OBJ g
FLG_PROGRAM_OBJ S
FLG_SUPPORT_OBJ A
FLG_ATTACHMENT_OBJ

33-38 Object type ID

39-159 Reserved area

(always blank)

When you define the header area, three values depend on the content of the
definition and object areas:

» Definition area length (bytes 8-15)
You probably already calculated this value to allocate storage for the input
structure. To review the description of this calculation, see Igm_pﬂ

* Object area length (bytes 16-23)

DataGuide Programming Guide and Reference

Creating input structures for an API call

You probably already calculated this value to allocate storage for the input

structure. To review the description of this calculation, see 'Calculating the object
area length” on page 34.

Object area entry count (bytes 23-31)

For all API calls requiring an input structure except FLGExport and
FLGManageUsers, the object area entry count equals the number of properties in
the definition area. For FLGExport, the object area entry count equals five times
the number of objects specified to be exported. For FLGManageUsers, the object
area entry count equals two for each user added or updated.

Defining the definition area

To define the definition area, you need to know what information the API call
requires in the input structure.

Each record of the definition area is 160 bytes long. Each byte position must be
assigned a value; even if you do not specify a value, you must define a blank for
that position. One way of defining one or more byte positions to blanks is to use the
C language memset function to set the entire structure to FLG_BLANK first, and then
to use the C language memcpy function to copy only the information that needs to be
set to something else. This method also makes it easier to use the constants
defined in DG2API.H, because you only need to worry about overlaying blanks, not
about padding the values to match the data length. Although some of the values are
not required for certain API calls, the definition area must always contain the full
160 bytes as shown in

These byte offset positions are described in [Mable 10 on page 31|. Mable 12 lists

0

[{e] N~ [e6] ()] o
80 110 118 3 3 99 160

property name | datatype length | ppn

Figure 17. A record in the definition area

constants in DG2API.H that can help you define the definition area.

Table 12. Definition area byte offset positions and useful constants defined in DG2API.H.

Bytes Contents Useful variables in Values
DG2API.H

0-79 Property name

80-109 Data type FLG_DTYPE_CHAR CHAR

FLG_DTYPE_VARCHARARCHAR
FLG_DTYPE_LONGVARENSRVARCHAR
FLG_DTYPE_TIMESTAMMESTAMP

110-117 Data length

Chapter 4. DataGuide input and output structures 39

Creating input structures for an API call

Table 12. Definition area byte offset positions and useful constants defined in
DGZ2API.H. (continued)

Bytes Contents Useful variables in Values
DG2API.H
118-125 Property short name FLG_PPN_OBJTYPID OBJTYPID

FLG_PPN_INSTIDNT INSTIDNT
FLG_PPN_INST_NAMENAME
FLG_PPN_UPDATIME YPDATIME
FLG_PPN_UPDATEBY UPDATEBY
FLG_PPN_EXTERNAL £
FLG_PPN_PTNAME pboNAME
FLG_PPN_DPNAME CREATOR

FLG_PPN_CREATOR

126 Value flag FLG_REQUIRED R
FLG_OPTIONAL O
FLG_SYSTEM S
127 UUI sequence FLG_UUI_1 1
number FLG_UUI_2 2
FLG_UUI_3 3
FLG_UUI_4 4
FLG_UUI 5 5
FLG_BLANK
128 Case- sensitivity flag FLG_YES Y
FLG_NO N
129 Fuzzy search flag FLG_YES Y
FLG_NO N
130-159 Reserved area

(always blank)

For more information about the specific meanings for all the byte positions in the

definition area, see EDefinition area — always required” on page 30. For more
information about the definition for the API call you are using, see

Defining the object area

How you define the values in your object area depends on the data type of each
property being defined. CHAR and TIMESTAMP values are relatively straightforward
because they have fixed lengths, but variable values (VARCHAR and LONG
VARCHAR) are more complicated.

TIMESTAMP values have a fixed length and format.

CHAR values are left-justified and padded with trailing blanks to fill the defined
length, as in this example:

'My example

All values must be character data. If the value is numeric, you must convert it to
character data.

Null characters are not permitted in any value. If the value you specify does not fill

the entire fixed length, you must define blanks or zeroes for the unfilled positions.
One way of defining blanks or zeroes for unused byte positions is to use the C

40 DataGuide Programming Guide and Reference

Creating input structures for an API call

language memset function to set the entire structure to FLG_BLANK or zero
characters ("0’ or 0x30) first, and then to use the C language memcpy function to
copy only the information that needs to be set to something else. This method also
makes it easier to use the constants defined in DG2API.H, because you only need
to worry about overlaying blanks, not about padding the values to match the data
length.

To specify VARCHAR and LONG VARCHAR values, include an extra 8 bytes before
the value to specify the length of the value. For example, the value you need to
specify for a VARCHAR value of “Employee records -- Southwest Region” would
be

00000036Employee records -- Southwest Region

Because this is a VARCHAR value, you do not need to pad the value with trailing
blanks.

Example of defining header, definition, and object areas

This section discusses the parts of DG2SAMP.C that define an input structure.
Calculating the object area length

The code shown in m calculates the object area length for an input
structure.

printf ("Enter object instance name:\n");
gets(pszObjInstName);

ulInstVallLen = strlen(pszObjInstName);

ulInstLen = (FLG_VARIABLE_DATA LENGTH_LEN + ullnstVallen); §
convertultoa(ulInstLen, pszlLength); 4

Figure 18. DG2SAMP.C: Determining the object area length

The code in m performs the following steps for determining the object area:

1] Sets pszObjlnstName to the object instance name entered by the user.
2] Determines the length of the object instance name
3} Adds the length of the variable data length field (8) to the length of the

object instance name

A Converts the object area length value to character data

Defining the header area

The code in Eigure 19 on page 44 shows how DG2SAMP.C defines the header area
of the input structure for FLGSearch. This header area contains the same values as

shown in Eigure 20 on page 42.

Chapter 4. DataGuide input and output structures 41

Creating input structures for an API call

memset (& (SearchStruct.srchHdr), FLG_BLANK, FLG_HEADER SIZE); Hi

memcpy (&SearchStruct.srchHdr.pchHIdent, FLG_H IDENT, FLG H IDENT LEN); 2]
memcpy (&SearchStruct.srchHdr.pchHDefLength, "00000160", FLG_H DEFAREA_LEN); 3]
memcpy (&SearchStruct.srchHdr.pchHObjLength, pszLength , FLG_H_OBJAREA_LEN); 4
memcpy (&SearchStruct.srchHdr.pchHObjEntryCount, "00000001", FLG_H_OBJAREAENT_LEN); §

=

Figure 19. DG2SAMP.C: Defining the header area

The code in m performs the following steps for defining a header area using

C language.

1} Sets the entire header area to blanks.

2] Sets bytes 0-7 to the identifier (FLG_HEAD).

3} Sets the definition length to 160.

4 Sets the object area length. This length was calculated earlier in the
program.

5] Sets the object area entry count to 1.

w shows the storage defined by the C language code in m

0 8 16 24 32 33 39 160

FLG-HEAD | 00000160 00000022 | 00000001

Figure 20. Defined header area—SearchStruct.srchHdr
Defining the definition area

The code in m shows how DG2SAMP.C defines the definition area of the
input structure for FLGSearch. This definition area contains the values shown in

Eigure 22 an page 43.

memset (&(SearchStruct.srchDef), FLG BLANK, FLG DEFINITION_SIZE); 1}
memcpy (&SearchStruct.srchDef.pchDPropName,

"Name ",FLG_D_PROPNM_LEN); @
memcpy (&SearchStruct.srchDef.pchDDataType, "VARCHAR ", FLG_D_DATATYP_LEN); 3]
memcpy (&SearchStruct.srchDef.pchDDatalLength, "00000080", FLG_D_DATA_LEN); @
memcpy (&SearchStruct.srchDef.pchDTagName, "NAME ", FLG_D_PPN_LEN); 5|

memset (SearchStruct.srchDef.pchDCS, 'N', FLG_D_CS_LEN); [
memset (SearchStruct.srchDef.pchDFS, 'N', FLG_D_FS_LEN); J

Figure 21. DG2SAMP.C: Defining the definition area

The code in w performs the following steps for defining a record in the
definition area using the C language:

42 DataGuide Programming Guide and Reference

B @& IS I=

N & &

Creating input structures for an API call

Sets the entire definition record to blanks
Sets the property name to Name

Sets the data type to VARCHAR

Sets the data length to 80

Sets the property short name to NAME
Sets the case-sensitivity flag to N

Sets the fuzzy search flag to N

% shows the storage defined by the C language code in m

80 110 118

126 127 128 129 130

160

Name

VARCHAR 00000080 | NAME

N

N

Figure 22. Defined definition area—SearchStruct.srchDef

Defining the object area

W shows how DG2SAMP.C defines the object area of the input structure for
FLGSearch. This object area contains values shown in Ei

memset (&(SearchStruct.Item), FLG_BLANK, FLG_INST_NAME_LEN + FLG_VARIABLE_DATA_LENGTH_LEN);

convertultoa(ulInstVallLen, pszNamelLength);
pszInstanceName=strncat (pszNameLength,pszObjInstName,ulInstVallLen); 5|
memcpy (&SearchStruct.Item.Name, pszInstanceName, ulInstlLen);]

Figure 23. DG2SAMP.C: Defining the object area

The code in m performs the following steps for defining an object area using
the C language:

&

Sets the object area to blanks

Converts the length of the Name value to character data

Concatenates the length of the VARCHAR value with the value

Sets the object area to the value length and the value

%m.pagﬂél shows the storage defined by the C language code in

Chapter 4. DataGuide input and output structures

43

0 22

00000014EmpToyee Query

Figure 24. Defined object area—SearchStruct.ltem

DataGuide API output structure

44

Eigure 24 shows the general format of the DataGuide API output structure. The
output structure consists of three contiguous areas: the header area, the definition
area, and the object area. Some DataGuide API calls (for example, FLGGetType)
produce only the first two areas.

When your program calls an API call that produces an output structure, it passes a
pointer to a null pointer as a parameter. The API call then assigns the address of
the output structure to the null pointer.

To avoid running out of memory after several API calls, your program can
deallocate the memory allocated for this output structure using the DataGuide API
call FLGFreeMem. For more information about FLGFreeMem, see EELGEreeMem]

0 8 16 24 32 33 39 160

FLG-HEAD definition object objarea | C| object

entry a type
length length count t o

[{e] N~ [e0)
0 80 110 118 8 9 9 160

propertyl name datatypel lengthl ppnl vl | usl

property2 name datatype2 length2 ppn2 vi2 | us2

property3 name datatype3 length3 ppn3 vf3 | us3

propertyl value

property2 value

property3 value

Figure 25. API output structure

The following API calls produce output structures to return data:

FLGDeleteTree
Returns a list of deleted object instances

FLGFoundIn
Returns a list of instances or object types in which a specified instance is
found

DataGuide Programming Guide and Reference

Header area —

DataGuide API output structure

FLGGetInst
Gets information about an object instance
FLGGetReg
Gets the information for an object type registration
FLGGetType
Gets information about an object type
FLGInit
Allocates required resources and initializes the DataGuide client
FLGListAnchors
Returns a list of the instances of the Grouping objects that are not
contained by other objects; these top-level Grouping objects are referred to
as anchors.
FLGListAssociates
Returns a list of the associate instances for a specified instance or object
type
FLGListContacts
Returns a list of all Contact object instance for a specified instance
FLGLIistObjTypes
Returns a list of all object types
FLGListOrphans
Returns a list of instances for a specified object type that are not currently
associated with any other instances
FLGListPrograms

Returns a list of all Program objects

FLGManageCommentStatus
Updates the list of available status choices for comments

FLGManageUsers
Updates the administrators and users for an information catalog and
identifies extent of each user’s authority

FLGNavigate
Returns a list of the Grouping or Elemental objects that the specified
Grouping object contains

FLGSearch
Returns a list of the instances of a specific object type that meet the
selection criteria

FLGSearchAll
Returns a list of the instances of any object type that meet the selection
criteria

FLGWhereUsed
Returns a list of the Grouping objects that contain the specified object

always present

The header area describes the information in the definition and object areas. The

byte-offset positions of the header area are shown in [Eigure 26 on page 46 and
described in [Tahle 13 on page 44.

Chapter 4. DataGuide input and output structures 45

DataGuide API output structure

0 8 16 24 32 33 39 160
definition object obj area ¢| object
FLG-HEAD length Ienlgth entry al type
count t id

Figure 26. Output structure header area

Table 13. The output structure header area and its fields

Section from
Byte offset Present? Description

FLG-HEAD 0-7 Always Structure identifier.

definition 8-15 Always Length of the definition area.

length
Value is a multiple of 160 (number of

properties times the length of each
definition record).

object length 16-23 Always Length of the object area.

If no data is returned, then the
length of the object area is zero
(00000000).

obj area entry 24-31 Always Number of individual property values
count entered in the object area.

Value is the number of properties in
the definition area times the number
of sets of values described in the
object area.

If no data is returned, then the
length of the object area is zero
(00000000).

cat 32 Present with: Category of the object type or

. FLGGetinst object.

* FLGGetReg Valid values are:

* FLGGetType Grouping
Elemental
Contact
Program
Dictionary

Support

> 0O U T O m ®

Attachment

46 DataGuide Programming Guide and Reference

DataGuide API output structure

Table 13. The output structure header area and its fields (continued)

Section from

M Byte offset Present? Description
object type id 33-38 Present with: System-generated identifier for an

* FLGGetlInst object type.

* FLGGetReg
* FLGGetType

39-159 Always Should be left blank.

Definition area — always present

The definition area contains a set of property definitions produced as output values
by a particular DataGuide API function.

[able 14 shows the meaning of the definition area for the API calls that produce
output structures.

Table 14. The meaning of the definition area for different API calls

API calls Information in the definition area

FLGGetInst Definition of the set of properties that define the object registration,

FLGGetReg object type, or object instance
FLGGetType

FLGDeleteTree

FLGInit Information about the DataGuide environment

FLGFoundin Definition of the set of properties that describe each item returned by
FLGListAnchors one of these API calls
FLGListAssociates

FLGListContacts

FLGListObjTypes

FLGListOrphans

FLGListPrograms

FLGManage-

CommentStatus

FLGManageUsers

FLGNavigate

FLGSearch

FLGSearchAll

FLGWhereUsed

m shows the byte-offset positions for a record in the definition area.

[{e] N~ [ee]
0 80 110 118 ¥ 3 3 160

length | ppn

property name | datatype

Figure 27. A record in the definition area

Each property in the set is defined by a set of formatted specifications, as described
in

Chapter 4. DataGuide input and output structures 47

DataGuide API output structure

Table 15. The output structure definition area and its fields

Section from

Eigure 27 on]

m Byte offset Present? Description
property name 0-79 Always External name
datatype 80-109 Always The data type of the property.
Valid values are:
CHAR Fixed-length character data.
Maximum length is 254.
VARCHAR
Variable-length character
data. Maximum length is
4000.
LONG VARCHAR
Variable-length character
data. Maximum length is
32700.
TIMESTAMP
Time stamp in the form of:
yyyy-mm-dd-
hh.mm.ss.nnnnnn
Timestamp length is 26.
length 110-117 Always Maximum length of the property
value in the object area.
ppn 118-125 Present with: Property short name
* FLGGetInst
* FLGGetReg
* FLGGetType
* FLGManage-
CommentStatus
For other API calls,
this field is unused
and left blank
vf 126 Present with: Value flag specifying whether a

¢ FLGGetlnst
* FLGGetReg
* FLGGetType
For other API calls,

this field is unused
and left blank

property is required, optional, or
system-generated.

Valid values are:

R Required
(0] Optional
S System-generated

48 DataGuide Programming Guide and Reference

DataGuide API output structure

Table 15. The output structure definition area and its fields (continued)

Section from

M Byte offset Present? Description
us 127 Present for the Universal Unique Identifier (UUI)

following API calls:

¢ FLGGetlInst
* FLGGetType
For other API calls,

this field is unused
and left blank

sequence number that specifies that

a property is part of the UUI.

Valid values are:

1
2
3
4
5

(blank) Not part of the UUI

UUI Part 1
UUI Part 2
UUI Part 3
UUl Part 4
UUI Part 5

See Managing DataGuide for more

information about UUI parts.

128-159 Always

Reserved section.

Is left blank.

Object area — Present when retrieving information

The object area contains the values for the properties defined in the definition area.
The values appear in the order defined in the definition area.

The object area is included in the output structure for the following API calls:

FLGDeleteTree
FLGFoundIn
FLGGetlInst
FLGGetReg
FLGInit
FLGListAnchors
FLGListAssociates
FLGListContacts
FLGListObjTypes
FLGListOrphans
FLGListPrograms
FLGManageCommentStatus
FLGManageUsers
FLGNavigate
FLGSearch
FLGSearchAll
FLGWhereUsed

You can determine the size of each value using the following rules:

Chapter 4. DataGuide input and output structures

49

DataGuide API output structure

Data type
Rules for value size

VARCHAR
Value is preceded by an 8-character length field that specifies the actual
length of the value.

LONG VARCHAR
Value is preceded by an 8-character length field that specifies the actual
length of the value.

CHAR Value occupies the number of bytes defined by the property’s length field in
the definition area and is padded on the right with blanks to fill the defined
length.

TIMESTAMP
26 bytes.

Reading an output structure resulting from an API call

DataGuide API calls that return information put that information into an output
structure.

To read an output structure, consider the structure as a whole, because different
parts of the structure define the meaning of other parts of the structure.

For API calls that return lists of object instances, the object area can contain more
than one value for each property. The object area can contain several sets of
values that map to the properties defined in the definition area.

Using pointers to read an output structure

50

To read values in the output structure, define two or more pointers to the structure,
using the pointer value returned by the API call.

When your program issues an API call that produces an output structure, your
program must define a pointer that contains the address of a null pointer and pass
this defined pointer to the API call as a parameter. The DataGuide API function then
assigns the null pointer the address of the output structure.

You need to define a second pointer that will step through the header and definition
areas of the structure, and a third that will step through the object area.

In Eigure 28 on page 51, pOutStruct is the pointer to the beginning of the output
structure. You can then define pReadStruct to step through the header area and

definition area, and pObjArea to step through the object area.

DataGuide Programming Guide and Reference

Reading an output structure resulting from an API call

pOutStruct ;i pReadStruct
‘ Header area H

Definition area

pObjArea, v

Object area H

Figure 28. Defining pointers that step through the output structure

Depending on your needs, you can either read the values of the structure in the
order they are returned, or you can search for a specific value. In either case, you
need to:

1. Calculate the number of properties and the number of objects returned

2. Find the data type and data length for each property

3. Step through the object area to read or locate values

Reading values using DG2API.H

DataGuide provides a header file named DG2API.H that defines many of the value
lengths and valid values that you need to read output structures. You can use these
lengths to write the C language code you need to step through the header,
definition, and object areas.

See [Appendix B. DataGuide AP| header file — DG2APIH” on page 219 for a

complete list of the constants defined in the DG2API.H file.

Calculating the number of properties in the output structure

Certain API calls return an unknown number of properties, so you need to calculate
this number.

Set a pointer to the beginning of the output structure using the pointer address
returned by the API call.

To calculate the number of properties in the definition area, divide the numeric value
of the definition length area of the header area (bytes 8-15) by the length of an
individual record in the definition area (160). You need to convert the definition
length character string to an integer value to perform this calculation.

DG2API.H provides the variable FLG_DEFINITION_SIZE to help you write this
calculation:

Chapter 4. DataGuide input and output structures 51

Reading an output structure resulting from an API call

number_of_properties = definition_length_integer_value / FLG_DEFINITION_SIZE

Figure 29. Calculating the number of properties

Calculating the number of sets of values returned

To calculate the number of sets of values returned in the output structure, divide the
object area entry count shown in m by the number of properties in the
structure, as shown in

0 8 16 24 32 33 39 160
definition object objarea | C| object
FLG-HEAD length Ien]gth entry al type
count t id

Figure 30. The object area entry count in the header area

number_of_sets_of values = object_area_entry_count / number_of properties

Figure 31. Calculating the number of sets of values

The fields in the header area are in character format and must be converted to
numeric format for use in the calculation in m You can use the structures
defined in DG2API.H to arrive at the calculation in

Reading the property data types and lengths in the definition area

52

To read the property data types and lengths, define a pointer and perform pointer
arithmetic to read the correct values in the definition area. The location of the data
types and lengths of the first property are highlighted in

pOutStruct g 8 16 24 32 33 39 160
i definition object objarea | C| object
FLG-HEAD length Ier{gth entry al type
count t id
& &]
0 80 110 118 — o - 160
propertyl name datatypel lengthl ppnl vil | usl
property2 name datatype2 length2 ppn2 vi2 | us2
property3 name datatype3 length3 ppn3 vi3 | us3

Figure 32. The data type and data length of the first property

To read the data type for the first property in the definition area, add the length of
the header area and the property name field of the first definition record to the

location of the pointer to the output structure, as shown in Eigure 33 on page 53.

DataGuide Programming Guide and Reference

Reading an output structure resulting from an API call

pLocationOfDataType = pOutStruct +
FLG_HEADER_SIZE +
FLG_D_PROPNM_LEN

Figure 33. Calculating the position of the data type value

pOutStruct is the pointer to the output structure, FLG_HEADER_SIZE is the length
of the header area, and FLG_D_PROPNM_LEN is the length of the property name
field. You can now save the value at this location in another variable.

To read the data length for the first property in the definition area, add the length of
the data type field to the pointer you calculated to get to the data type, as shown in

pLocationOfDataType is a pointer to the data type field in the definition record and

pLocationOfDataLen = plLocationOfDataType +
FLG_D_DATATYP_LEN

Figure 34. Calculating the position of the data length value
FLG_D_DATATYP_LEN is the length of the data type field.

To read the data types and lengths of other properties, continue to add offset
values. To get to the data type field for the next property, you can add the length of
an entire data record (160) to the pointer to the data type for the current property as
shown in

FLG_DEFINITION SIZE is 160 bytes.

pLocationOfDataType = pLocationOfDataType + FLG_DEFINITION SIZE

Figure 35. Calculating the position of the next data type value
Stepping through the object area to read values

To read a value in the object area, you need to calculate its position using pointer
arithmetic. You need to know the data type and length of the properties to calculate
positions properly.
1. Read the first value in the object area by incrementing the pointer to the
beginning of the object area, as shown in
FLG_HEADER_SIZE is the length of the header area and

pObjArea = pOutStructure + FLG_HEADER_SIZE +
(FLG_DEFINITION_SIZE x number_of_properties)

Figure 36. Moving the pointer to the beginning of the object area

FLG_DEFINITION_SIZE is the length of a record in the definition area.

2. Check the data type and data length for the property this value belongs to in the
definition area.

For CHAR or TIMESTAMP
Read in a value that is the length specified in the definition area.

Chapter 4. DataGuide input and output structures 53

Reading an output structure resulting from an API call

For VARCHAR or LONG VARCHAR

a. Read the first 8 characters for this value to determine the length of
the value.

b. Move the pointer 8 bytes to read the value itself.

Move to the next value in the object area by adding the actual length of the
current value to the pointer as shown in m

pObjValue = pObjArea + actual_value_length

Figure 37. Moving the pointer to the next value
m shows how to start at the beginning of the object area, read the length

of the VARCHAR value, move the pointer to the beginning of the value itself,
then read the value before moving the pointer to the next value.

pObjArea

00000005value nextvalue

Figure 38. Reading a VARCHAR value in the object area
DG2SAMP.C example of locating a value in an output structure

The DG2SAMP.C program gets an object type name from the user, then issues an
FLGLIistObjTypes call to retrieve a list of object types available in the DataGuide
database. The program tries to match the external name of an object type specified
by the user with a name in the output structure returned by FLGListObjTypes.

Eigure 39 an page 53 shows the format of the output structure produced by an
FLGListObjTypes API call.

54 DataGuide Programming Guide and Reference

Reading an output structure resulting from an API call

160

<«— header
area

0 8 16 24 32
object | obj area
FLG-HEAD 480 length entry
count
0 80 110 118
Object type identifier CHAR 00000006
EXTERNAL NAME OF OBJ TYPE| VARCHAR 00000080
DP NAME CHAR 00000008
0 6 86 94
value |value value object
area
value |[value value
value |value value

Figure 39. FLGLIstObjTypes output structure

Getting values from the user and the output structure

m shows how the program reads the value specified by the user and

160

definition
area

calculates its length. It also shows how the program copies values in the output
structure into null-terminated strings and calculates the number of sets of values in
the object area.

gets(pszObjName) ;
ulTypelLen = strlen(pszObjName);
memcpy (&psz0bjEntryCount, pListStruct->pchHObjEntryCount, FLG_H_OBJAREAENT LEN); 5|

memcpy (&pszDeflLength, pListStruct->pchHDeflLength, FLG_H DEFAREA LEN);

i

ulCount = (atoi(pszObjEntryCount) / (atoi(pszDeflLength) / FLG_DEFINITION_SIZE)); K

Figure 40. DG2SAMP.C: Getting a value from the user

The code in m performs the following steps:

| O DI O MO)

Assigning a pointer to the beginning of the object area

Gets the object type name as input from the user
Determines the length of the object type name

Copies the object entry count into a null-terminated string
Copies the definition length into a null-terminated string

Calculates the number of sets of values in the object area

The code in Eigure 41 on page 56 assigns a pointer to the beginning of the object

area.

Chapter 4. DataGuide input and output structures 55

Reading an output structure resulting from an API call

56

In this example, the output for FLGListObjTypes always has the same three
properties, so the program does not need to determine the number of properties,
the data type, or the data length.

ulPosition

= 0;
pCurrPos = ((U

1
CHAR *)pListStruct + FLG_HEADER_SIZE + ulDeflen); M

Figure 41. DG2SAMP.C: Assigning a pointer to the beginning of the object area

The code in Eigure 41 performs the following steps:
1] Sets the position counter to 0.

/] Positions a pointer at the beginning of the object area by adding the length
of the header area and definition area to the position of the pointer to the
beginning of the output structure (pListStruct).

Moving through the object area

The code in m moves a pointer through the object area, trying to find an
object type name that matches the name given by the user.

while (fNotFound && (ulPosition < ulCount)) 1]
{
ulPosition = (ulPosition + 1);
memcpy (&psz0bjTypeld, (void *) pCurrPos, FLG_H OBJTYPID LEN); 2
pCurrPos = pCurrPos + FLG_H_OBJTYPID_LEN; 3|
memcpy (&pszLength, (void *)pCurrPos, FLG_VARIABLE_DATA_LENGTH_LEN) ;[
ulLength = atoi(pszLength); 5|
pCurrPos = pCurrPos + FLG_VARIABLE_DATA_LENGTH_LEN; 6}
strncpy (pszObjectName, (void x)pCurrPos, ullength); U
pszObjectName[ullLength] = NULLCHAR;

K=

if (!(strcmp(pszObjName, pszObjectName))) |
{

fNotFound = FALSE;
printf ("The object type ID for %s is %s.\n\n", pszObjName, pszObjTypeld);

else

{ // Move temporary pointer to the next object
pCurrPos = pCurrPos + ullLength + FLG_DPNAME_LEN; I
}

Figure 42. DG2SAMP.C: Matching an object type name with one in the object area

The code in m performs the following steps:

1} Checks that the program has not yet found a matching object name, and
that the pointer has not yet reached the last set of values in the object area

2] Copies the object type ID of the first object type into pszObjTypeld

3] Moves the pointer to the next value, which is the value of the object type
name

4] Copies the first 8 characters of the object type name value, which contain

the length for this VARCHAR value

DataGuide Programming Guide and Reference

o)

s B

O

Reading an output structure resulting from an API call
Converts the length to integer data

Moves the pointer past the variable data length to the beginning of the
object type name

Copies the object type name at the pointer to pszObjectName

Adds a null character to the end of the object type name to make the value
a null-terminated string

Compares psz0ObjectName to the object type name specified by the user

If the value of pszObjectName doesn’'t match the object type name specified
by the user, moves the cursor to the beginning of the next set of values

Chapter 4. DataGuide input and output structures 57

Chapter 5. DataGuide API call syntax

DataGuide provides API calls to allow you to use DataGuide functions in your own
applications.

These API calls conform to the architected interfaces designed for Information
Warehouse information catalogs.

The API calls are described in alphabetic order. These descriptions include input
parameters and structures and output parameters and structures for each API call.

Each API call's description include this information, as appropriate:
* Input parameters

* Input structures

* Output parameters

e Output structures

API call syntax conventions
You must follow certain syntax conventions when using the DataGuide API calls.
Reading syntax diagrams

The syntax diagrams in this section are written in the form of C language function
prototypes.

These function prototypes are defined in the DG2API.H header file, so that you can
include (using the #include statement) this file in your program Wlthout having to
specify this function prototype in your own code.

header file — DG2APIH" on page 2115 lists the data types, function prototypes, and

constants defined in the DG2API.H file.

Reason codes are returned as the APIRET data type. APIRET is defined as the
unsigned long integer data type in the DG2API.H header file.

Reason codes and extended codes are listed in LAppendix D _DataGuide reason

Using constants defined in DG2API.H in your program

The DG2API.H header file contains structures, typedefs, and commonly used
values for the DataGuide API calls. The function prototypes for the DataGuide API
calls are also included in this file. You can use these constants to help you write

your C language program. See ‘Appendix B. DataGuide AP| header file —
DG2APIH” on page 215

for a list of the constants defined in the DataGuide API
header file.

© Copyright IBM Corp. 1994, 1998 59

FLGAppendType

Authorization

Syntax

Parameters

Input structure

Appends optional properties to an existing object type.

You can append to any object type except the Comments object type, because the
Comments object type cannot be extended.

Administrator

APIRET APIENTRY FLGAppendType(PFLGHEADERAREA pObjTypeStruct,
PFLGEXTCODE pExtCode);

pObjTypeStruct (PFLGHEADERAREA) — input
Points to the input structure that contains the specifications for one or more
properties to be appended for this object type.

pExtCode (PFLGEXTCODE) — output
Points to an extended code associated with the reason code. See w

DataGuide reason codes” on page 2285 to see if a meaningful extended code is

associated with the returned reason code.

Reason code (APIRET)
Represents the execution result of this API call.

See lAppendix D_DataGuide reason codes” on page 229 for an explanation of

the returned reason codes.

To use FLGAppendType, you must define the input structure shown in m
. This structure contains only the header area and the definition area.

60 DataGuide Programming Guide and Reference

0 8 16 24 3233 39 160

definition| object | obj area |c| object

FLG-HEAD length length entry al type <——header
count t id area
0 80 110 118 126 127 160
propertyl name | datatypel | lengthl | ppnl |0 <
property2 name | datatype2 | length2 | ppn2 |0
definition
property3 name | datatype3 | length3 | ppn3 |0 area

Figure 43. FLGAppendType input structure

For an explanation of the meanings of the byte offsets, see [DataGuide AP| input

Usage
Restrictions:

You can append to any object type except the Comments object type, because
the Comments object type cannot be extended.

If you append a new property that already exists within the object type, the
“new” property is treated as a duplicate and FLGAppendType completes
successfully with a warning (FLG_WRN_PROPDUP). A property is a duplicate if
all of the following match an existing property:

Data type
Data length
Property short name
Value flag
UUI number
Input requirements:
Header area
- The object type ID in bytes 33-38 must exist in the catalog.

- The category specified in byte 32 must match the category of the existing
object type specified in bytes 33-38.

Definition area

- The input structure should not contain any previously defined properties
for this object type, only new properties that are to be appended.

- Any properties being appended must be optional. Specify the letter O in
the value flag field in byte 126.

- Any properties being appended cannot be defined as part of the universal
unique identifier (UUI); define the field in byte 127 as blank.

- New property hames must be unique within the object type.

Chapter 5. DataGuide API call syntax 61

- New property short names must be unique within the object type. Property

short names must follow these rules:

» Characters must be single-byte character set (SBCS) only.

* The first character must be an English alphabetic character (A through
Z or a through z), @, #, or $.

» Characters other than the first can be an English alphabetic character
(A through Z or a through z), 0 through 9, @, #, $, or _ (underscore).

* No leading or embedded blanks are allowed.

* The name cannot be any of the SQL reserved words for the current

database. See the documentation for the underlying database for a list
of reserved words.

- The total length of all of the properties for an object type must not exceed
the environment limit:

DB2 for OS/2
4005

DB2 for MVS with 4K page
4046

DB2 for MVS or DB2 for OS/390 with 32K page
32704

DB2 for AIX
4005

DB2 for OS/400
4005

DB2 for Windows NT
4005

DB2 for Windows 95
4005

In general:
- The maximum number of properties for an object type is 255
(FLG_MAX_PROPERTIES).

- The maximum number of properties for an object type that can have a
data type of LONG VARCHAR is 14
(FLG_MAX_NUM_LONG_VARCHARS).

Controlling updates to your information catalog
To keep your program as synchronized as possible with your information
catalog, you should include a call to FLGCommit (see LELGCommit” on

) after FLGAppendType completes successfully. If FLGAppendType
does not complete successfully, you should include a call to FLGRollback

(see LELGRallhack” on page 180).

Examples

Eigure 44 an page 63 shows the C language code required to issue the

FLGAppendType call. This code appends an additional property named Density to
the object type with an object type identifier of 000044.

62 DataGuide Programming Guide and Reference

APIRET rc; // Declare reason code
PFLGHEADERAREA pObjTypeStruct; // Pointer to the input structure
FLGEXTCODE ExtCode = 0; // Declare extended code

/* Appending pObjTypeStruct object Type */
/* by providing object properties */

rc = FLGAppendType (pObjTypeStruct,
&ExtCode) ; // Pass pointer to extended code

Figure 44. Sample C language call to FLGAppendType

Eigure 49 shows the input structure for the FLGAppendType call. The
pObjTypeStruct parameter points to this input structure.

0 8 16 24 32 33 39 160
FLG-HEAD | 00000160 | 00000000 | 00000000 | E | 000044 <+— header
area
0 80 110 118 126 127 160
Density CHAR 00000010 | DENS 0 <«— definition

area

Figure 45. Sample input structure for FLGAppendType

Special error handling

If FLGAppendType encounters a database error, DataGuide rolls back the database
to the last commit that occurred in your program.

If this rollback is successful, FLGAppendType returns the reason code
FLG_SEVERR_DB_AUTO_ROLLBACK_COMPLETE. The extended code contains
the SQL code for the database error that prompted DataGuide to roll back the
database.

Attention: If this rollback fails, FLGAppendType returns the reason code
FLG_SEVERR_DB_AUTO_ROLLBACK_ FAIL. The extended code contains the SQL
code for the database error that prompted DataGuide to roll back the database. In
this case, your database could have severe integrity problems, and your program
should call FLGTerm to exit DataGuide.

Depending on the state of your database, you might need to recover your database
using your backed-up database files. For more information about recovering your
DataGuide database, see Managing DataGuide.

To prevent DataGuide from removing uncommitted changes that are not related to

the FLGAppendType error, include FLGCommit calls in your program just before
this call.

Chapter 5. DataGuide API call syntax 63

FLGCommit

Authorization

Syntax

Parameters

Usage

Commits all changes made to the DataGuide catalog since the unit of work was
started or since the last commit point.

Administrator or user

APIRET APIENTRY FLGCommit (PFLGEXTCODE pExtCode)

pExtCode (PFLGEXTCODE) — output
Points to an extended code associated with the reason code. See W

DataGuide reason codes” on page 229 to see if a meaningful extended code is

associated with the returned reason code.

APIRET
Represents the execution result of this API call.

See lAppendix D_DataGuide reason codes” an page 225 for an explanation of

the returned reason codes.

Your program should call FLGCommit after making changes to the DataGuide
database to make these changes permanent. In general, you can have your
program call FLGCommit after it makes any change to the database.

The following situations are particularly good opportunities for committing changes
to the database:

» After updating a series of related metadata values. To keep related information
consistent in the DataGuide information catalog, your program can issue
FLGCommit after making a number of related changes.

» After a set of FLGCreateReg and FLGCreateType calls that completely define a
new object type, or a set of FLGDeleteType and FLGDeleteReg calls that
completely remove an object type. At this point, you know that your program is
not committing a partial object type definition.

» After FLGDeleteTree or FLGDeleteTypeExt calls, because these calls make
major changes to your information catalog.

* Before FLGAppendType, FLGCreateReg, FLGCreateType, FLGDeleteType, and
FLGDeleteTypeExt calls. These API calls automatically roll back the database
when they encounter severe database errors. You can issue FLGCommit calls
before one or more of these API calls to prevent DataGuide from removing
uncommitted changes that are not related to the database error if a rollback
occurs.

» Before an FLGImport call. DataGuide rolls back the database when FLGImport
encounters errors. Your program should issue FLGCommit before issuing
FLGImport to ensure that DataGuide does not also roll back uncommitted
changes that occurred before the FLGImport call.

64 DataGuide Programming Guide and Reference

Examples

Eigure 44 shows the C language code that calls FLGCommit.

APIRET rc; // Declare reason code from FLGCommit
FLGEXTCODE ExtCode = 0; // Declare extended code
rc = FLGCommit (&ExtCode); // pass the address of

// extended code

Figure 46. Sample C language call to FLGCommit
Special error handling

If FLGCommit encounters a database error, DataGuide rolls back the database to
the previous commit that occurred in your program.

If this rollback is successful, FLGCommit returns the reason code
FLG_SEVERR_DB_AUTO_ROLLBACK COMPLETE. The extended code contains
the SQL code for the database error that prompted DataGuide to roll back the
database.

Attention: If this rollback fails, FLGCommit returns the reason code

FLG_SEVERR _DB_AUTO_ROLLBACK_FAIL. The extended code contains the SQL
code for the database error that prompted DataGuide to roll back the database. In
this case, your database could have severe integrity problems, and your program
should call FLGTerm to exit DataGuide.

Depending on the state of your database, you might need to recover your database

using your backed-up database files. For more information about recovering your
DataGuide database, see Managing DataGuide.

Chapter 5. DataGuide API call syntax 65

FLGConvertiD

Authorization

Syntax

Parameters

Examples

Retrieves the object type ID of an object type given the DP NAME, or the Name of
an object instance given the FLGID.

Administrator or user

APIRET APIENTRY FLGConvertID(PSZ pszInBuffer,
PSz pszOutBuffer,
FLGOPTIONS Options,
PFLGEXTCODE pExtCode);

pszinBuffer (PSZ) — input
Points to an input buffer containing either a 16-character system-generated,
unique identifier of an object instance (FLGID), or an 8-character short name for
an object type (DP NAME).

pszOutBuffer (PSZ) — output
Points to an output buffer containing either an 80-character external name of an
object instance, or a 6-character object type ID.

Options (FLGOPTIONS) — input
Choose one of the following options:

FLG_DPNAME
Indicates that the input buffer contains a DP NAME.

FLG_FLGID
Indicates that the input buffer contains an FLGID.

pExtCode (PFLGEXTCODE) — output
Points to an extended code associated with the reason code. See IMDJ

DataGuide reason codes” an page 229 to see if a meaningful extended code is

associated with the returned reason code.

Reason code (APIRET)
Represents the execution result of this API call.

See lAppendix D DataGuide reason codes” on page 229 for an explanation of

the returned reason codes.

Eigure 47 on page 67 shows the C language code required to issue the

FLGConvertID call. This sample code retrieves the object type identifier for a
specified object type.

66 DataGuide Programming Guide and Reference

APIRET rc; // reason code

PSZ pszInBuffer; // pointer to input buffer
PSZ pszOutBuffer; // pointer to output buffer
FLGOPTIONS options=FLG_DPNAME; // option flag

FLGEXTCODE xc = 0; // extended code

strcpy (pszInBuffer,"CHARTS"); // object type's DP NAME

rc = FLGConvertID (pszInBuffer,
pszOutBuffer,
options,
&xc)

Figure 47. Sample C language call to FLGConvertlD

FLGCreatelnst

Authorization

Syntax

Parameters

Creates a new instance of the specified object type.

Administrator or authorized user (all object types); user (Comments object type
only)

APIRET APIENTRY FLGCreateInst(PFLGHEADERAREA pObjInstStruct,
PSz pszFLGID,
PFLGEXTCODE pExtCode);

pObjinstStruct (PFLGHEADERAREA) — input
Points to the input structure that contains the property specifications and values
for the new object instance.

pszFLGID (PSZ) — output
Points to the 16-character, system-generated ID for the new object instance.

Characters 1-6 of this ID identify the object type of this instance; these
characters have the same value as bytes 33 through 38 in the input structure
header record.

Characters 7-16 of this ID are the system-generated unique instance identifier.

This returned pszFLGID is used by other API calls when referring to this
instance.

Chapter 5. DataGuide API call syntax 67

pszFLGID is set to NULL if the FLGCreatelnst API call is not successful.

pExtCode (PFLGEXTCODE) — output
Points to an extended code associated with the reason code. See Iml

DataGuide reason codes” on page 229 to see if a meaningful extended code is

associated with the returned reason code.

Reason code (APIRET)

Represents the execution result of this API call.

See lAppendix D_DataGuide reason codes” on page 225 for an explanation of

the returned reason codes.

Input structure

To use FLGCreatelnst, you must define the input structure shown in m This
structure contains the header area, the definition area, and the object area.

0 8 16 24 3233 39 160
definition| object | obj area |c| object
FLG-HEAD length length entry al type <— header
count t id area
0 80 110 118 126 127 128 160
Object type identifier CHAR 00000006 |OBJTYPID |S <
Instance identifier CHAR 00000010 |INSTIDNT |S
definiti
Name VARCHAR 00000080 |NAME R area
Last Changed Date and Time |TIMESTAMP |00000026 |UPDATIME |S
Last Changed By CHAR 00000008 |UPDATEBY |S
4_
0 6 16
Object
type Name of object instance object
1D area

Figure 48. FLGCreatelnst input structure

For an explanation of the meanings of the byte offsets, see [DataGuide API input

Usage
Prerequisites

68 DataGuide Programming Guide and Reference

— Before you can create an object instance, the object type must already exist
in the DataGuide catalog. If it does not, you must register and create the
object type by issuing an FLGCreateReg call followed by an FLGCreateType
call.

— To issue an FLGCreatelnst call, you must have the information about the
properties required to define a new instance, either from issuing the
FLGCreateType call or from issuing an FLGGetType call to retrieve this
information.

Restriction

If you are a user who has not been authorized to perform object management
tasks and you are creating a Comments object instance, you must not change
the Creator property value to be other than your logged-on user ID.

Input requirements
Header area:
All of the fields in the header record are required.
Definition area:

The definition area can contain any or all of the defined properties of the
object type for which you are creating an object instance. The following rules
apply:

- You must first specify all five of the DataGuide required properties in the

following order: OBJTYPID, INSTIDNT, NAME, UPDATIME, and
UPDATEBY.

- You must specify all other required (indicated by an R in byte 126)
properties.

- DataGuide compares all specified properties to the object type definition
for the following specifications:

Data type
Data length
Property short name
Value flag
UUI number
Object area:
- Values for the following properties must be specified:

OBJTYPID
Must be same as Header area, bytes 33 through 38.

NAME Must not be all blank.

The value of the property NAME does not have to be unique within an
object type; you can successfully create duplicate entries. However, when
you create duplicate entries, specify some descriptive information as the
value of another property to differentiate one object instance from another.

- Values for the following properties are system-generated and must be left
blank:

* INSTIDNT
* UPDATIME
 UPDATEBY

- If a value is not specified for a required property (defined with an R in
column 126 of the definition area) the appropriate space in the object area
must be initialized as follows:

Chapter 5. DataGuide API call syntax 69

Examples

70

Data type Initialized to

CHAR Not-applicable symbol followed by blanks for the length of the
property

TIMESTAMP Set to the largest allowable value: 9999-12-31-
24.00.00.000000

VARCHAR 00000001; the length field, specified in 8 bytes, followed by

LONG VARCHAR the not-applicable symbol

- If a value is not specified for an optional property, the appropriate space in
the object area must be initialized as follows:

Data type Initialized to

CHAR Blanks for the entire length of the property
TIMESTAMP

VARCHAR 00000000; the length field, specified in 8 bytes, must be
LONG VARCHAR present and set to zero

- DataGuide removes all trailing blanks of values in the object area with
data types of VARCHAR or LONG VARCHAR, and the length of that area
is automatically adjusted.

- The object type in the HANDLES property (when specified) must exist in
the DataGuide information catalog and be a non-Program object type. Any
properties specified in the PARMLIST property must be a property of the
object type specified in HANDLES. For more information, see m

- Each object instance must have unique values for the UUI properties. If
an object instance already exists with the same UUI values as the object
instance being created, an error will occur.

Controlling updates to your information catalog

To keep your program as synchronized as possible with your information
catalog, you should include a call to FLGCommit (see lELGCommit” on

) after FLGCreatelnst completes successfully. If FLGCreatelnst does
not complete successfully, you should include a call to FLGRollback (see

Eigure 49 on page 71l shows the C language code required to call FLGCreatelnst.

This sample code creates a new instance of a Grouping object type.

DataGuide Programming Guide and Reference

APIRET

PFLGFEADERAREA

UCHAR
FLGEXTCODE

rc;
pObjInstSt

ruct;

// Declare reason code
// Pointer to the input structure

pszFLGID[FLG_ID LEN+1]; // Returns system-generated ID

ExtCode =

0;

// Declare extended code

/* creating pObjInstStruct object Instance by providing property values */

rc = FLGCreateInst (pObjInstStruct,

pszFLG
&ExtCo

1D,
de);

// input structure
// Returned ID of created instance

// Pass pointer to extended code

Figure 49. Sample C language call to FLGCreatelnst

Eigure 5d shows the input structure for the FLGCreatelnst call. The pObjlnstStruct
parameter points to this structure, which carries the property and value information
for the new object instance.

0 8 16 24 32 33 39 160
FLG-HEAD | 00001280 | 00000246 |00000008 |G |000033 <+— header
area
0 80 110 118 126 127 128 160
Object type identifier CHAR 00000006 [OBJTYPID| S <
Instance identifier CHAR 00000010 | INSTIDNT| S
Name VARCHAR 00000080 | NAME R
definition
Last Changed Date and Time|TIMESTAMP 00000026 [UPDATIME| S area
Last Changed By CHAR 00000008 |[UPDATEBY| S
Source CHAR 00000032 | SOURCE 0
Sdesc VARCHAR 00000254 |SHRTDESC| 0
Ldesc LONG VARCHAR|00032700 | LONGDESC| 0O -«
000033 00000013Quality Group
DB2 object
area

00000027Departmental Quality Group.

00000100The Quality Group is an organization comprised of a member
from each department, who is responsible.

Figure 50. Sample input structure for FLGCreatelnst

Chapter 5. DataGuide API call syntax 71

Notes:

1. Bytes 33 through 38 of the header record contain the object type identifier
(000033) that was generated by the FLGCreateReg when this object type was
registered. The same value must be specified for the OBJTYPID in the object
area. In this example, it appears as the first value in the object area.

2. This object type contains the first five required properties (OBJTYPID,
INSTIDNT, NAME, UPDATIME, UPDATEBY) plus three more properties that
were added by the user.

72 DataGuide Programming Guide and Reference

FLGCreateReg

Authorization

Syntax

Parameters

Creates registration information in the DataGuide information catalog for an object
type.

This API call does not create the object type itself; it registers the object type so
that the object type can be created. The registration information that FLGCreateReg
stores in the DataGuide information catalog includes registration values that
describe the object type.

You can register a type for any category except the Program and Attachment
categories, because these categories can contain only the Programs and

Comments types respectively, which DataGuide automatically creates in the
DataGuide information catalog.

Administrator

APIRET APIENTRY FLGCreateReg(PFLGHEADERAREA pObjRegStruct,

PSz pszIconFilelD,
PSZ psz0bjTypelD,
PFLGEXTCODE pExtCode);

pObjRegStruct (PFLGHEADERAREA) — input
Points to the input structure that contains the property specifications and values
of the new object type registration.

pszlconFilelD (PSZ) — input
Contains the drive, directory path, and file name of the file that contains the
0S/2 icon for the new object type registration. If this parameter is NULL, then
no icon is associated with the new object type registration.

pszObjTypelD (PSZ) — output

Points to the 6-character, system-generated unique identifier (object type ID) of
the registered object type.

This returned ObjTypelD is used by other API calls to identify the object type. It
is set to NULL if the object type is not registered successfully.

pExtCode (PFLGEXTCODE) — output
Points to an extended code associated with the reason code. See ml

DataGuide reason codes” on page 223 to see if a meaningful extended code is

associated with the returned reason code.

Reason code (APIRET)
Represents the execution result of this API call.

See lAppendix D._DataGuide reason codes” on page 229 for an explanation of

the returned reason codes.

Chapter 5. DataGuide API call syntax 73

Input structure

To use FLGCreateReg, you must define the input structure shown in Eigure 51. This
structure contains the header area, the definition area, and the object area.

0 8 16 24 32 33 160
definition| object | obj area |c
FLG-HEAD length length entry a <«— header
count t area
0 80 110 118 126 127 160
EXTERNAL NAME OF OBJ TYPE [VARCHAR 00000080 | NAME R <
PHYSICAL TYPE NAME CHAR 00000030 | PTNAME 0
DP NAME CHAR 00000008 | DPNAME R
definition
CREATOR CHAR 00000008 | CREATOR | S area
LAST CHANGED BY CHAR 00000008 |[UPDATEBY | S
LAST CHANGED DATE AND TIME |TIMESTAMP 00000026 |[UPDATIME| S
<!

bytes

External name value

PTNAME value

DPNAME value

Figure 51. FLGCreateReg input structure

object area

In the input structure, you must specify these six properties in the definition area in
the order shown.

If you are using a version of DataGuide other than English, the names of these
required properties are translated, and are returned in the output structure of

FLGInit.

[Cable 16

Table 16. Properties required for object type registrations

Property

short name Property name * Description Specify value in object area?

NAME EXTERNAL NAME OF 80-byte name of the object type; can Required.

OBJ TYPE be later modified.

PTNAME PHYSICAL TYPE NAME 30-character name of the actual table Optional; default value is the value for
in the DataGuide information catalog DPNAME.
that contains the object type.

74 DataGuide Programming Guide and Reference

Table 16. Properties required for object type registrations (continued)

Property
short name Property name

1

Description Specify value in object area?

DPNAME DP NAME

8-character short name for the object You must set this value using

type. FLGCreateReg.
Required.

CREATOR CREATOR 8-character user ID of the No; DataGuide sets this value when
administrator who creates the object FLGCreateType is issued for the
type. object type.

UPDATEBY LAST CHANGED BY 8-character user ID of the No; DataGuide sets this value when

administrator who last modified the FLGAppendType is issued for the
object type. object type.

UPDATIME LAST CHANGED DATE 26-character time stamp of the last No; DataGuide sets this value when

AND TIME

date and time the object type was FLGCreateType or FLGAppendType
modified. is issued for the object type.

Note:

1. The property names in this column apply to English versions of DataGuide; if you are using a translated version of
DataGuide, the property name will also be translated.

For a general explanation of the meanings of the byte offsets, see [DataGuide API

Usage

Restrictions

You cannot register a new object type for the Program category (P), because
you cannot add any new Program object types. When you create your
information catalog, it includes the only permitted object type ("Programs”) of
category Program.

You cannot register a new object type for the Attachment category (A),
because you cannot add any new Attachment object types. When you create
your information catalog, it includes the only permitted object type
("Comments”) of category Attachment.

You can only assign an OS/2 icon to an object type upon registration. To
assign a Windows icon to the object type, use FLGManagelcons (see

After you define the object type using FLGCreateReg, you can issue
FLGUpdateReg or FLGManagelcons calls to change the icon that is
associated with the object type, or add an icon association if one was not
defined originally. You can also use FLGManagelcons to remove an icon
from an object type.

Input requirements

Header area:

: . : B I

is required.

Definition area:
- The definition area must contain definitions for each of the six registration

properties shown in Eigure 51 on page 74. The definitions for each of

Chapter 5. DataGuide API call syntax 75

76

these registration properties, except translated property names (see

[Mable 16 on page 74), must be specified exactly as shown.

Each required property name (bytes 0-80 for each property) could be

translated from the English property name shown in,

into any of the supported national languages. The translation of the

names of these required properties is returned in the output structure of
FLGInit.

Object area:

For properties defined with an S value in byte 126, leave the values in the
object area blank; DataGuide ignores any specified values for these
properties because the system generates these values when you create
or append the object type. These properties are CREATOR, UPDATEBY,
and UPDATIME.

Rules for the PTNAME:

The PTNAME of the object type must be unique within the DataGuide
catalog.

The DataGuide maximum length for the value of PTNAME is
FLG_PTNAME_LEN (30); however, database constraints can shorten
the maximum length in your DataGuide environment. See Managing
DataGuide for more information about setting this maximum.

If the number of significant characters of the PTNAME, not including
trailing blanks, exceeds the maximum allowed for your environment (the
value of STOR ENVSIZE returned by FLGInit), the registration request
is rejected.

Specifying the PTNAME is optional. If you do not specify the PTNAME,
then DataGuide sets it to the value of DPNAME by default.

The restrictions for PTNAME are:
— Must be SBCS only

— The first character must be an English alphabetic character (A
through Z or a through z), @, #, $

— Characters other than the first can be an English alphabetic
character (A through Z or a through z), 0 through 9, @, #, $, or _
(underscore).

— No leading or embedded blanks are allowed

— The PTNAME cannot be any of the SQL reserved words for your
database

The DPNAME of the object type:

Must be unique among all DataGuide catalogs in the organization
Must be SBCS only

The first character must be an English alphabetic character (A through
Z or a through z), @, #, or $.

Characters other than the first can be an English alphabetic character
(A through Z or a through z), 0 through 9, @, #, $, or _ (underscore).

* No leading or embedded blanks are allowed
* The NAME value must be unique within the local DataGuide catalog.

Output information

The system-generated object type identification is returned in the
output parameter pszObjTypelD. When DataGuide returns this

DataGuide Programming Guide and Reference

number, you use this number in subsequent calls, such as
FLGDeleteReg or FLGGetReg, to uniquely identify the object type
registration.

Controlling updates to your information catalog

If FLGCreateReg does not complete successfully, you should include a call to
FLGRollback (see LELGRallback” on page 18d). Do not call FLGCommit after
FLGCreateReg completes successfully—wait until you complete a call to
FLGCreateType.

Examples

m shows the C language code required to issue the FLGCreateReg call.
This sample code creates registration information for a new object type called
MYIMAGE that belongs to the Elemental category.

APIRET rc; // Declare reason code

PFLGHEADERAREA pObjRegStruct; // Pointer to the input structure

UCHAR pszIconFileID[FLG_ICON_FILE_ID_MAXLEN+1]; // Path/File name of ICON
UCHAR pszObjTypeID[FLG_OBJTYPID LEN+1]; // Returned system-generated ID

FLGEXTCODE ExtCode = 03 // Declare extended code
/* creating pObjRegStruct object Type Registration by providing values =/
strcpy (pszIconFileID,"Y:\\FLGICON2.IC0");

rc = FLGCreateReg (pObjRegStruct, // input structure

pszlconFilelD, // Path/File name of file containing the ICON
psz0bjTypelD, // Returned id of registered object type
&ExtCode) ; // Pass extended code pointer

Figure 52. Sample C language call to FLGCreateReg

Eigure 53 on page 78 shows the input structure for the FLGCreateReg call. The
pObjRegStruct pointer points to this structure, which carries the property and value
information needed for registration of the new object type.

Chapter 5. DataGuide API call syntax 77

0 8 16 24 32 33 160

FLG-HEAD | 00000960 |00000146 | 00000006 | E <+— header
area
0 80 110 118 126 127 160
-«
EXTERNAL NAME OF OBJ TYPE |VARCHAR 00000080 | NAME R
PHYSICAL TYPE NAME CHAR 00000030 | PTNAME 0
DP NAME CHAR 00000008 | DPNAME R
definition
CREATOR CHAR 00000008 |CREATOR | S area
LAST CHANGED BY CHAR 00000008 |[UPDATEBY| S
LAST CHANGED DATE AND TIME|TIMESTAMP |00000026 |UPDATIME| S
‘__

00000058MYIMAGE object type for product specification illu
strations

object
MYIMAGEOBJECTTYPE MYIMAGE area

Figure 53. Sample input structure for FLGCreateReg
Special error handling

If FLGCreateReg encounters a database error, DataGuide rolls back the database
to the last commit that occurred in your program.

If this rollback is successful, FLGCreateReg returns the reason code
FLG_SEVERR _DB_AUTO_ROLLBACK_COMPLETE. The extended code contains
the SQL code for the database error that prompted DataGuide to roll back the
database.

Attention: If this rollback fails, FLGCreateReg returns the reason code
FLG_SEVERR_DB_AUTO_ROLLBACK_FAIL. The extended code contains the SQL
code for the database error that prompted DataGuide to roll back the database. In
this case, your database could have severe integrity problems, and your program
should call FLGTerm to exit DataGuide.

Depending on the state of your database, you might need to recover your database
using your backed-up database files. For more information about recovering your
DataGuide database, see Managing DataGuide.

To prevent DataGuide from removing uncommitted changes that are not related to

the FLGCreateReg error, include FLGCommit calls in your program just before this
call.

78 DataGuide Programming Guide and Reference

FLGCreateType

Authorization

Syntax

Parameters

Input structure

Creates a new user-defined object type.

The Administrator can create a type for any category except the Program and
Attachment categories, because these categories can contain only the Programs
and Comments types respectively, which DataGuide automatically creates in the
DataGuide information catalog.

Administrator

APIRET APIENTRY FLGCreateType(PFLGHEADERAREA pObjTypeStruct,
PFLGEXTCODE pExtCode);

pObjTypeStruct (PFLGHEADERAREA) — input
Points to the input structure that contains the specifications of the properties for
this object type.

pExtCode (PFLGEXTCODE) — output
Points to an extended code associated with the reason code. See w
i “ to see if a meaningful extended code is
associated with the returned reason code.

Reason code (APIRET)
Represents the execution result of this API call.

See lAppendix D_DataGuide reason codes” on page 224 for an explanation of

the returned reason codes.

To use FLGCreateType, you must define the input structure shown in m
. This structure contains only the header area and the definition area.

Chapter 5. DataGuide API call syntax 79

Usage

8 16 24 3233 39 160
definition| object | obj area |c| object
FLG-HEAD length length entry a| type <«— header
count t id area
80 110 118 126 127 128 160
Object type identifier CHAR 00000006 [OBJTYPID| S <
Instance identifier CHAR 00000010 [INSTIDNT| S
Name VARCHAR 00000080 | NAME R
definition
Last Changed Date and Time|TIMESTAMP 00000026 [UPDATIME| S area
Last Changed By CHAR 00000008 [UPDATEBY | S
‘__

Prerequisites:

Figure 54. FLGCreateType input structure

For an explanation of the meanings of the byte offsets, see lDataGuide API input

Before you can call the FLGCreateType API to create a new object type, you
need to call the FLGCreateReg API to register this new type.

You need to specify the object type identifier returned by the FLGCreateReg API
when you call FLGCreateType.

Input requirements:
Header area

The object type that you specify in the header of the input structure must be
registered, but not yet created.

Definition area

- The first five properties defined in the definition area must be for these

five DataGuide required properties: OBJTYPID, INSTIDNT, NAME,

UPDATIME, and UPDATEBY. If these properties are not in this order, the

create will fail.

OBJTYPID

Unique system-generated identifier (ID) for the object type

INSTIDNT

Unique system-generated ID for an object instance

NAME User-specified nhame for an object

UPDATIME

System-generated time stamp of when the object was last

updated

80 DataGuide Programming Guide and Reference

UPDATEBY
System-generated user ID of the administrator or user who last
updated the object

Rules for the required properties:

* The data type, length, property short name, and value flag (vf) of each
of these DataGuide required properties are fixed and must be specified
exactly as shown in [Ei

* The UUI sequence (us) is fixed as blank for each of the four
system-generated (S) properties, but can be 1, 2, 3, 4, 5, or blank for
the NAME property.

* The 80-byte property name is fixed, but it is translated for the supported
national language versions. The translation of the names of these
required properties is returned in the output structure of FLGInit.

The total number of properties in the definition must not exceed
FLG_MAX_PROPERTIES (255).

The total number of properties in the definition that have a data type of
LONG VARCHAR must not exceed the DataGuide limit of
FLG_MAX_NUM_LONG_VARCHARS (14).

Rules for the UUI:
» At least one UUI property must be defined for each object type created.

» Within the object type, you must start the UUI numbering with 1 and not
skip any values. For example, in an object type, a set of UUI sequence
values of 1, 2, and 3 is valid, but 2, 3, and 5 is not.

* You cannot specify the same UUI sequence number more than once in
the same object type.

* Any property specified as a UUI must not exceed 254 bytes in length.

* Any property specified as a UUI must be a required property ("R”
value-flag, column 126).

* Any property specified as a UUI (column 127) must not have a data
type of LONG VARCHAR.

* You should define the UUI properties so that each instance of this
object type can be uniquely identified. You should be able to use these
properties to identify a single instance of this object type, even if
instances of this object type exist in several related DataGuide
information catalogs.

In addition to the DataGuide-required properties, the user can add more
properties to tailor the created object type to the needs of the business.

The order of these additional properties in the definition area does not
matter to DataGuide because DataGuide uses the property short names in
bytes 118-125 as a key to ensure that all required properties are always
specified. However, the order of the properties in the definition area for the
FLGCreateType call is the order in which DataGuide returns the properties
to the calling application.

New property names must be unique within the object type.

New property short names must be unique within the object type.

If a property belongs to an object type that is shared among two or more
related DataGuide information catalogs, and you plan to import and export
DataGuide data to share information, then the values for data type, data
length, property short name, value flag, and UUI sequence must be same

as for the same object type in the other DataGuide information catalogs.
The property name can be different.

Chapter 5. DataGuide API call syntax 81

Examples

- Property short names must follow these rules:

* Must be (SBCS) only.

* The first character must be an English alphabetic character (A through
Z or a through z), @, #, or $.

» Characters other than the first can be an English alphabetic character
(A through Z or a through z), 0 through 9, @, #, $, or _ (underscore).

* No leading or embedded blanks are allowed.

» Cannot be any of the SQL reserved words for the current database.

- The total length of all of the properties for an object type must not exceed
the row limit for the underlying database. See the documentation for the
underlying database for information about calculating the row length.

Controlling updates to your information catalog

To keep your program as synchronized as possible with your information
catalog, you should include a call to FLGCommit (see LELGCommit” on

) after FLGCreateType completes successfully. If FLGCreateType
does not complete successfully, you should include a call to FLGRollback

(see EELGRallhack” an page 180).

m shows the C language code required to issue the FLGCreateType API
call.

This sample code creates a new object type. This new object type is of the
Elemental category, as indicated by E in the structure header area, with an object
type ID of 000044. Along with the DataGuide-required properties, this object type
contains three additional required properties: imagecolor, imagesize, and
description.

APIRET rc; // Declare reason code
PFLGHEADERAREA pObjTypeStruct; // Pointer to the input structure
FLGEXTCODE ExtCode=0; // Declare extended code

/* creating pObjTypeStruct object type by */
/* providing object type's properties =/

rc = FLGCreateType (pObjTypeStruct,
&ExtCode) ; // Pass pointer to extended code

Figure 55. Sample C language call to FLGCreateType

Eigure 56 on page 83 shows the input structure for the FLGCreateType API call.
The pObjTypeStruct pointer points to the structure that carries the property

information for the new object type.

82 DataGuide Programming Guide and Reference

0 8 16 24 32 33 39 160

FLG-HEAD | 00001280 | 00000000 | 00000000 | E | 000044 <— header
area
0 80 110 118 126 127 128 160
Object type identifier CHAR 00000006 | OBJTYPID | S R o
Instance identifier CHAR 00000010 | INSTIDNT | S
Name VARCHAR 00000080 | NAME R 1
Last Changed Date and Time| TIMESTAMP 00000026 | UPDATIME | S
definitio
Last Changed By CHAR 00000008 | UPDATEBY | S area
imagecolor CHAR 00000010 | COLOR R
imagesize CHAR 00000010 | SIZE R
description LONG VARCHAR 00032700 | DESC R -

Figure 56. Sample input structure for FLGCreateType
Special error handling

If FLGCreateType encounters a database error, DataGuide rolls back the database
to the last commit that occurred in your program.

If this rollback is successful, FLGCreateType returns the reason code
FLG_SEVERR DB _AUTO_ROLLBACK_COMPLETE. The extended code contains
the SQL code for the database error that prompted DataGuide to roll back the
database.

Attention: If this rollback fails, FLGCreateType returns the reason code
FLG_SEVERR_DB_AUTO_ROLLBACK_FAIL. The extended code contains the SQL
code for the database error that prompted DataGuide to roll back the database. In
this case, your database could have severe integrity problems, and your program
should call FLGTerm to exit DataGuide.

Depending on the state of your database, you might need to recover your database
using your backed-up database files. For more information about recovering your
DataGuide database, see Managing DataGuide.

To prevent DataGuide from removing uncommitted changes that are not related to

the FLGCreateType error, include FLGCommit calls in your program just before the
call to FLGCreateReg for the object type you are creating.

Chapter 5. DataGuide API call syntax 83

FLGDeletelnst

Authorization

Syntax

Parameters

Usage

Deletes a single, specified object instance of an object type.

Administrator or authorized user (all object types); user (Comments object type
only)

APIRET APIENTRY FLGDeleteInst(PSZ pszFLGID,
PFLGEXTCODE pExtCode)3

pszFLGID (PSZ) — input
Points to the 16-character, system-generated unique identifier of the instance to
be deleted.

Characters 1-6 of this ID identify the object type of this instance.

Characters 7-16 of this ID are the system-generated unique instance identifier.

pExtCode (PFLGEXTCODE) — output
Points to an extended code associated with the reason code. See m
i “ to see if a meaningful extended code is
associated with the returned reason code.

Reason code (APIRET)
Represents the execution result of this API call.

See lAppendix D_DataGuide reason codes” on page 224 for an explanation of

the returned reason codes.

Prerequisites
The value specified for the pszFLGID input parameter must exist.
Restrictions
If you are a user who has not been authorized to perform object management
tasks, you can only delete Comments instances for which the value of your
logged-on user ID is the same as the value of the Creator property.
Rules for object instances with relationships
For instances participating in Attachment relationships:
- If the instance has one or more associated Comments instances, then all

the Comments instances and all such relationships are deleted when the
object instance itself is deleted.

- If the instance is a Comments instance in an Attachment relationship, then
all such relationships are deleted when the Comments object instance
itself is deleted.

For instances that are contained or containers:

- If the instance is a container, you must delete all relationships with
contained object instances before deleting the instance using

84 DataGuide Programming Guide and Reference

FLGDeletelnst. If you want to delete an instance that is a container and all
relationships with contained object instances, you can use FLGDeleteTree

instead (see 'ELGDeleteTree” on page 88§).

- If the instance is contained by another object, you can delete the instance
without first deleting the relationship with the container object. Both the
relationship and the instance itself are automatically deleted.

For instances participating in Contact relationships:

- If the instance participates in any Contact relationship, then all such
relationships are deleted when the object instance itself is deleted.

- If the instance is a Contact in a Contact relationship, then all such
relationships are deleted when the Contact object instance itself is
deleted.

For instances participating in link relationships:

If the instance participates in link relationships, then all such relationships
are deleted when the object instance itself is deleted.

For Programs instances associated with non-Program object types:
A Programs instance can be deleted at any time without affecting any
associated object types.

Controlling updates to your information catalog

To keep your program as synchronized as possible with your information

catalog, you should include a call to FLGCommit (see lELGCommit” on page 64)

after FLGDeletelnst completes successfully. If FLGDeletelnst does not complete
successfully, you should include a call to FLGRollback (see lELGRallback” orl

).

Examples

Eigure 57 shows the C language code required to issue the FLGDeletelnst call. This
sample code deletes an object instance.

APIRET res // Declare reason code
UCHAR pszFLGID[FLG_ID LEN + 1]; // Unique instance identifier

FLGEXTCODE ExtCode = 0; // Declare extended code
/% Get FLGID for object instance using FLGSearch. x/
strcpy (pszFLGID,"0000330000001234")

rc = FLGDeletelInst (pszFLGID, // Instance ID
&ExtCode)

Figure 57. Sample C language call to FLGDeletelnst

Chapter 5. DataGuide API call syntax 85

FLGDeleteReg

Authorization

Syntax

Parameters

Usage

Deletes a specific object type registration from the DataGuide information catalog.

You can delete registration for a type of any category except the Program and
Attachment categories, because DataGuide provides these categories when
creating the DataGuide information catalog.

Administrator

APIRET APIENTRY FLGDeleteReg(PSZ psz0bjTypelD,
PFLGEXTCODE pExtCode);

pszObjTypelD (PSZ) — input
Points to the 6-character, system-generated unique identifier (object type ID) of
the object type for which you are deleting the registration.

pExtCode (PFLGEXTCODE) — output
Points to an extended code associated with the reason code. See w

DataGuide reason codes” on page 2285 to see if a meaningful extended code is

associated with the returned reason code.

Reason code (APIRET)
Represents the execution result of this API call.

See lAppendix D_DataGuide reason codes” on page 229 for an explanation of

the returned reason codes.

This action does not delete the object type itself; it deletes the registration for the
object type.
Restrictions
The value for the input parameter pszObjTypelD must exist for an object
registration in the DataGuide information catalog.

Before you can delete the registration for the object type, the object type itself
must not exist. If the object type exists, you must delete the object type using
FLGDeleteType.

Controlling updates to your information catalog
To keep your program as synchronized as possible with your information

catalog, you should include a call to FLGCommit (see LELGCommit” on page 64))

after FLGDeleteReg completes successfully. If FLGDeleteReg does not
complete successfully, you should include a call to FLGRollback (see

FELGRolhack” 180),

86 DataGuide Programming Guide and Reference

Examples

m shows the C language code required to invoke the FLGDeleteReg API
call. This sample code deletes the registration information for an object type from
the DataGuide information catalog.

APIRET rc; // Declare reason code
UCHAR pszObjTypeID[FLG_OBJTYPID LEN + 1];

FLGEXTCODE ExtCode = 0; // Declare extended code
/* Get object type ID using FLGConvertID. =/
strcpy (pszObjTypelD,"000044");

rc = FLGDeleteReg (pszObjTypelD, // object type ID
&ExtCode);

Figure 58. Sample C language call to FLGDeleteReg

The example shown in m assumes that the object type ID that was returned
when you created the object registration (using FLGCreateReg) was 000044.

Chapter 5. DataGuide API call syntax 87

FLGDeleteTree

Authorization

Syntax

Parameters

Deletes a specific instance of a Grouping object type, all Comments instances
attached to it, and all ATTACHMENT, CONTACT, CONTAIN, and LINK relationships
in which it participates. Optionally also deletes all object instances contained in the
Grouping category object instance, all Comments instances attached to them, and
all ATTACHMENT, CONTACT, and LINK relationships in which they participate.

Administrator or authorized user

APIRET APIENTRY FLGDeleteTree(PSZ pszFLGID,
FLGOPTIONS Options,
PFLGHEADERAREA = ppListStruct,
PFLGEXTCODE pExtCode);

pszFLGID (PSZ) — input
Points to the 16-character, system-generated unique identifier of the Grouping
category instance (container) to be deleted.

Characters 1-6 of this ID identify the object type of this instance.

Characters 7-16 of this ID are the system-generated unique instance identifier.

Options (FLGOPTIONS) — input
Choose one of the following deletion options:

FLG_DELTREE_ALL
Deletes a Grouping category object instance, all Comments instances
attached to it, and all ATTACHMENT, CONTACT, and LINK relationships
in which it participates. Deletes all object instances contained in the
Grouping category object instance, all Comments instances attached to
them, and all ATTACHMENT, CONTACT, and LINK reIationshiEs in

which they participate. See Eigure 59 an page 9d through

for a graphical illustration of this option.

FLG_DELTREE_REL
Deletes a Grouping category object instance, all Comments instances
attached to it, and all ATTACHMENT, CONTACT, and LINK relationships
in which it participates. Deletes underlying tree structure of CONTAIN

Eigure 61 on page 91l

for a graphical illustration of this option.

ppListStruct (PFLGHEADERAREA) — output
Points to the address of the pointer to the output structure containing a list of
deleted object instances.

This output structure contains the 16-character FLGID of each deleted object
instance.

If this parameter is NULL, no output structure will be returned. If there is no
output structure, then the pointer to the output structure is set to NULL.

88 DataGuide Programming Guide and Reference

pExtCode (PFLGEXTCODE) — output
Points to an extended code associated with the reason code. See m

DataGuide reason codes” on page 229 to see if a meaningful extended code is

associated with the returned reason code.

Reason code (APIRET)
Represents the execution result of this API call.

See lAppendix D_DataGuide reason codes” on page 224 for an explanation of

the returned reason codes.

Usage
Prerequisite
The specified object instance ID (FLGID) must exist.
Restriction
Object instances that are contained by other Grouping objects than the one

being deleted (as illustrated in Eigure 60 an page 90d) are not deleted.

Freeing memory allocated for an output structure

If FLGDeleteTree returned data in the output structure, you must save the data
returned in the output structure and then call FLGFreeMem (see
). Do not use other methods, for example, C language instructions,

to free memory.

Controlling updates to your information catalog
To keep your program as synchronized as possible with your information

catalog, you should include a call to FLGCommit (see LELGCommit” on page 64))
after FLGDeleteTree completes successfully. If FLGDeleteTree does not
complete successfully, you should include a call to FLGRollback (see

FELGRalhack 180),

Examples

i through Ei illustrate the effects of the two
delete options. shows an information catalog with three

grouping objects A, Z, and Y. Object B will be deleted using FLGDeleteTree.

Chapter 5. DataGuide API call syntax 89

90

Figure 59. Sample information catalog before deletions

Using the FLG_DELTREE_REL option, object instance B and some relationships
under B are deleted. Object C and its containees are not touched because C is
contained by another tree, Z. Object D is not contained by any other object and is
therefore subject to the cascading effect.

w illustrates the information catalog after B is deleted.

A D G VA Y
C M
E F

Figure 60. Example of the FLG_DELTREE REL option

Using option FLG_DELTREE_ALL, object instance B and some instances under it
are deleted from the catalog. Object instance C and its containees are kept,
because it is also contained by Z.

Eigure 61 on page 91 shows the information catalog after B is deleted using the
FLG_DELTREE_ALL option.

DataGuide Programming Guide and Reference

Figure 61. Example of the FLG_DELTREE ALL option

Eigure 63 shows the C language code required to issue the FLGDeleteTree call.

This sample code deletes the DEPT001 Grouping category object instance, all

Comments instances attached to it, and all ATTACHMENT, CONTACT, and LINK

relationships in which it participates. The sample code also deletes all object
instances contained in DEPTO001 object instance, all Comments instances attached

to them, and all ATTACHMENT, CONTACT, and LINK relationships in which they

participate.
APIRET rc;
FLGOPTIONS ulOptMask=0;
UCHAR pszFLGID[FLG_ID LEN + 1];

PFLGHEADERAREA pDelStruct=NULL;
FLGEXTCODE xc = 0;

set value for pszFLGID

ulOptMask = ulOptMask | FLG_DELTREE_ALL;
rc = FLGDeleteTree (pszFLGID, ulOptMask,

&pDelStruct, &xc);

// Declare reason code

// Declare extended code

// delete whole tree

Figure 62. Sample C language call to FLGDeleteTree

Eigure 83 an page 92 shows the output structure for the FLGDeleteTree call.

Chapter 5. DataGuide API call syntax

91

0 8 16 24 32 160

FLG-HEAD |[00000160 (00000032 00000002 <—header
area
0 80 110 118 160
FLGID CHAR 00000016 <+—definition
area

object

0000010000000100 ::
area

0000030000000098

Figure 63. Sample output structure for FLGDeleteTree

FLGDeleteType

Authorization

Syntax

Parameters

Usage

Deletes a user-defined object type.

You can delete an object type of any category except the Program and Attachment
categories, because DataGuide provides these categories when creating the
DataGuide information catalog.

Administrator

APIRET APIENTRY FLGDeleteType(PSZ psz0bjTypelD,
PFLGEXTCODE pExtCode);

pszObjTypelD (PSZ) — input
Points to the 6-character system-generated unique identifier (object type ID) for
the object type to be deleted.

pExtCode (PFLGEXTCODE) — output
Points to an extended code associated with the reason code. See w

DataGuide reason codes” an page 2284 to see if a meaningful extended code is

associated with the returned reason code.

Reason code (APIRET)
Represents the execution result of this API call.

See lAppendix D_DataGuide reason codes” on page 229 for an explanation of

the returned reason codes.

Prerequisites:
The object type ID specified as the input parameter must exist.

92 DataGuide Programming Guide and Reference

Examples

No object instances can exist for the object type. If instances of an object type
exist, you must delete them using FLGDeletelnst before you can delete the
object type. You can either delete the instances individually using FLGDeletelnst
or delete several instances at once by importing a tag language file.

You cannot delete the Programs object type that was automatically created in
your DataGuide information catalog. However, an object type can be deleted if it
is related to one or more Program instances. The Program instances are
automatically updated to clear the values for the HANDLES and PARMLIST
properties.

You cannot delete the Comments object type that was automatically created in
your DataGuide information catalog.

Controlling updates to your information catalog
If FLGDeleteType does not complete successfully, you should include a call to

FLGRollback (see LELGRallhack” an page 18d). Do not call FLGCommit after

FLGDeleteType completes successfully—wait until you complete a call to
FLGDeleteReg.

w shows the C language code required to invoke the FLGDeleteType API

call. This sample code deletes an object type from the DataGuide information
catalog.

APIRET rc; // Declare reason code
UCHAR pszObjTypeID[FLG_OBJTYPID_LEN + 1];
FLGEXTCODE ExtCode = 0; // Declare extended code

/* Get the object type ID of MYIMAGE using FLGConvertID. */

rc = FLGDeleteType (pszObjTypelD,
&ExtCode) ;

. /] if (rc == 0)

. // rc = FLGDeleteReg (pszObjTypeID, &ExtCode);
. /] if (rc == 0)

. // rc = FLGCommit (&ExtCode);

. /] else

. // rc = FLGRollback (&ExtCode);

Figure 64. Sample C language call to FLGDeleteType

If instances of MYIMAGE exist, you must delete them before you can delete the
MYIMAGE obiject type. You can either delete the instances individually using the

administrator user interface or delete several instances at once by importing a tag

language file.

Special error handling

If FLGDeleteType encounters a database error, DataGuide rolls back the database

to the last commit that occurred in your program.

Chapter 5. DataGuide API call syntax

93

94

If this rollback is successful, FLGDeleteType returns the reason code
FLG_SEVERR_DB_AUTO_ROLLBACK_COMPLETE. The extended code contains
the SQL code for the database error that prompted DataGuide to roll back the
database.

Attention: If this rollback fails, FLGDeleteType returns the reason code
FLG_SEVERR_DB_AUTO_ROLLBACK_FAIL. The extended code contains the SQL
code for the database error that prompted DataGuide to roll back the database. In
this case, your database could have severe integrity problems, and your program
should call FLGTerm to exit DataGuide.

Depending on the state of your database, you might need to recover your database
using your backed-up database files. For more information about recovering your
DataGuide database, see Managing DataGuide.

To prevent DataGuide from removing uncommitted changes that are not related to
the FLGDeleteType error, include FLGCommit calls in your program just before this
call.

DataGuide Programming Guide and Reference

FLGDeleteTypeExt

Authorization

Syntax

Parameters

Usage

Deletes a user-defined object type and instances of that object type, any Comments
objects attached to those instances, and any relationships in which those instances
participate. Also deletes the object type registration.

You can delete an object type of any category except the Program and Attachment
categories, because DataGuide provides these categories when creating the
DataGuide information catalog.

Administrator

APIRET APIENTRY FLGDeleteTypeExt(PSZ pszObjTypelD,
PFLGEXTCODE pExtCode);

pszObjTypelD (PSZ) — input
Points to the 6-character system-generated unique identifier (object type ID) for
the object type to delete.

pExtCode (PFLGEXTCODE) — output
Points to an extended code associated with the reason code. See m

DataGuide reasaon codes” an page 225 to see if a meaningful extended code is

associated with the returned reason code.

Reason code (APIRET)
Represents the execution result of this API call.

See lAppendix D_DataGuide reason codes” on page 224 for an explanation of

the returned reason codes.

Prerequisites:

The object type ID specified as the input parameter must exist.

Restrictions:

FLGDeleteTypeExt does not delete Grouping category object instances that
contain instances of objects of a different object type. If such Grouping category
instances exist, you must delete them using FLGDeleteTree before you can
delete the object type.

You cannot delete the Programs object type that was automatically created in
your DataGuide information catalog. However, an object type can be deleted if it
is related to one or more Program instances. The Program instances are
automatically updated to clear the values for the HANDLES and PARMLIST
properties.

You cannot delete the Comments object type that was automatically created in
your DataGuide information catalog.

Controlling updates to your information catalog

Chapter 5. DataGuide API call syntax 95

Examples

Because FLGDeleteTypeExt deletes all instances of an object type along with
the object type, before calling FLGDeleteTypeExt you might want to search for
objects of a particular type to ensure that you do not want to retain any of the
existing objects of the object type you want to delete.

To keep your program as synchronized as possible with your information

catalog, you should include a call to FLGCommit (see L it”
after FLGDeleteTypeExt completes successfully. If FLGDeleteTypeExt does not
complete successfully, you should include a call to FLGRollback (see

0)

m shows the C language code required to issue the FLGDeleteTypeExt call.
This sample code deletes from the information catalog the MYIMAGE object type,
all instances of the MYIMAGE object type, all comments attached to instances of
the MYIMAGE object type, all relationships in which the MYIMAGE instances
participate, and the registration for the MYIMAGE object type.

APIRET rc; // Declare reason code
UCHAR pszTypeID[FLG_OBJTYPID LEN+1];
FLGEXTCODE xc = 0; // Declare extended code

/* processing */

rc = FLGDeleteTypeExt (pszTypelD,
&xc);

Figure 65. Sample C language call to FLGDeleteTypeExt

Special error handling

If FLGDeleteTypeExt encounters a database error, DataGuide rolls back the
database to the last commit that occurred in your program.

96 DataGuide Programming Guide and Reference

If this rollback is successful, FLGDeleteTypeExt returns the reason code
FLG_SEVERR_DB_AUTO_ROLLBACK_COMPLETE. The extended code contains
the SQL code for the database error that prompted DataGuide to roll back the
database.

Attention: If this rollback fails, FLGDeleteTypeExt returns the reason code
FLG_SEVERR_DB_AUTO_ROLLBACK_FAIL. The extended code contains the SQL
code for the database error that prompted DataGuide to roll back the database. In
this case, your database could have severe integrity problems, and your program
should call FLGTerm to exit DataGuide.

Depending on the state of your database, you might need to recover your database
using your backed-up database files. For more information about recovering your
DataGuide database, see Managing DataGuide.

To prevent DataGuide from removing uncommitted changes that are not related to

the FLGDeleteTypeExt error, include FLGCommit calls in your program just before
this call.

Chapter 5. DataGuide API call syntax 97

FLGExport

Authorization

Syntax

Parameters

Retrieves metadata from the DataGuide information catalog and translates it to tag
language in a file.

Administrator or authorized user

APIRET APIENTRY FLGExport(PSZ pszTagFilelD,
PSz pszLogFilelD,
PSz pszIcoPath,
PFLGHEADERAREA pListStruct,
PFLGEXTCODE pExtCode);

pszTagFilelD (PSZ) — input

Points to the name of the output tag language file. This parameter is required.

This parameter contains the drive, directory path, and file nhame, and must be
valid for a file allocation table (FAT) or HPFS file. The target drive for this file
can be either a fixed or removable disk. If you type only the file name,
DataGuide places the tag language file on the drive and path pointed to by the
DGWPATH environment variable.

The target tag language file must not exist; DataGuide does not overwrite
existing tag files.

The file name and extension (excluding the drive and directories) cannot
exceed 240 characters. The entire tag language file ID cannot exceed 259
characters.

pszLogFilelD (PSZ) — input

Points to the name of the log file. This parameter is required.

This parameter contains the drive, directory path, and file name, and must be
valid for a FAT or HPFS file. The target drive for the log file must be a fixed
disk. The log file ID cannot exceed 259 characters. If you specify only a file
name, DataGuide places the log file on the drive and path pointed to by the
DGWPATH environment variable.

If the log file specified in this parameter does not exist, a new file is created. If
the log file specified in this parameter already exists, then the FLGExport API
call appends to it.

pszicoPath (PSZ) — input

Points to the specification of the path containing the OS/2 or Windows icon
files.

This parameter is optional. If this parameter is NULL, no icon files are exported.

This parameter contains the drive and directories and must be valid for a FAT
or HPFS file. This parameter cannot be longer than 246 characters.

98 DataGuide Programming Guide and Reference

Input structure

If this parameter is specified, the target drive for the icon files must be a fixed
disk.

pListStruct (PFLGHEADERAREA) — input
Points to an input structure containing the list of objects to be exported and the
export options.

pExtCode (PFLGEXTCODE) — output
Points to an extended code associated with the reason code. See w

DataGuide reason codes” an page 2285 to see if a meaningful extended code is

associated with the returned reason code.

Reason code (APIRET)
Represents the execution result of this API call.

See lAppendix D_DataGuide reason codes” on page 224 for an explanation of

the returned reason codes.

To use FLGExport, you must define the input structure shown in m This
structure contains the header area, the definition area, and the object area.

0 8 16 24 32 160
definition| object | obj area
FLG-HEAD length length entry <— header
count area
0 80 110 118 160
FLGID CHAR 00000016 T
definition
CONTAINEE-IND | CHAR 00000001 area
CONTACT-IND CHAR 00000001
ATTACHMENT-IND| CHAR 00000001
LINK-IND CHAR 00000001 -
0 16 17 18 19 20
FLGID value YINJY|N|Y|N[Y|N
object area
FLGID value YINJY|N|Y|N[Y|N
FLGID value YIN|Y|N|Y|N|Y|N

Figure 66. FLGEXport input structure

For an explanation of the meanings of the byte offsets, see [DataGuide API input

Chapter 5. DataGuide API call syntax 99

Usage

100

Input structure
The definition area for the FLGEXxport input structure must be specified exactly

as shown in Eigure 66 on page 9d.

The input structure for FLGExport contains the following information:

FLGID

16-character, system-generated unique identifier of the instance to be
exported.

Characters 1-6 of this ID identify the object type of this instance.

Characters 7-16 of this ID are the system-generated unique instance
identifier.

You can export any DataGuide object instances.

CONTAINEE-IND

1-character indicator (Y | N) that specifies whether DataGuide exports all
objects contained by this object. This indicator applies only to Grouping
objects and is ignored for all other objects.

CONTACT-IND

1-character indicator (Y | N) that specifies whether DataGuide exports all
associated Contact objects of Grouping and Elemental objects. This
indicator applies only to Grouping and Elemental objects and is ignored
for all other objects.

ATTACHMENT-IND

LINK-IN

Generat

1-character indicator (Y | N) that specifies whether DataGuide exports all
Attachment objects attached to the specified object instance. This
indicator is ignored if the specified object is an Attachment object.

D

1-character indicator (Y | N) that specifies whether DataGuide exports all
Grouping and Elemental object instances linked with the specified object
instance. This indicator applies only to Grouping and Elemental objects
and is ignored for all other objects.

ed tag language file

FLGExport generates a tag language file that contains tags for each object
instance exported. Depending on what you specify for the indicators, object
instances are exported as shown in

Table 17. Object instances exported to tag language file for indicator combinations

Indicator value Exports:
CONTAINEE CONTACT ATTACHMENT LINK
Y Y Y Y a through j
Y Y Y N a, b,cdghi
J
Y Y N Y a,b,e f,gh
Y Y N N a, b g h
Y N Y Y a, b,cdef
Y N Y N a, b,cd
Y N N N a, b
Y N N Y a b, ef

DataGuide Programming Guide and Reference

Table 17. Object instances exported to tag language file for indicator
combinations (continued)

Indicator value Exports:
CONTAINEE CONTACT ATTACHMENT LINK
N Y Y Y aceq,i
N Y Y N acg,i
N Y N Y a, eg
N N Y Y a, c e
N N Y N a, c
N N N Y a, e
N N N N a only
Notes:
a Specified object instance
b Object instances contained by a
c Comments attached to a
d Comments attached to b
e Links for a
f Links for b
g Contacts for a
h Contacts for b

Comments attached to g

Comments attached to h

FLGExport generates frequent COMMIT tags in the tag language file.

FLGExport places a copy of the icon associated with each object type in the
specified icon path. FLGExport does not export the default category icons if no
other icon is associated with the object type. The name of the exported icon file
is the object type DP NAME (short name) with an extension of .ICO for OS/2
icons or .ICW for Windows icons.

Linking your VisualAge C ++ program when it exports metadata to diskettes

If your C language program issues an FLGExport call that exports DataGuide
information to diskettes, link your program with an application type of
WINDOWAPI so that DataGuide can use Presentation Manager (PM) interface
display messages that prompt the user for diskettes when necessary.

You can perform this linking using one of these methods:
— The following link statement:

ilink /NOFREE /PMTYPE:vio /NOI filename.obj,,,dgwapi.lib,,

— A module definition file. Specify an apptype of WINDOWAPI in your NAME
statement.

Chapter 5. DataGuide API call syntax 101

Examples

102

m shows the C language code required to invoke the FLGExport API call.
This sample code exports three DataGuide objects. All three objects are Grouping
objects:

* The first object, all the objects it contains, and its Contacts objects are exported.

* The second object, all the objects it contains, and attached Comments objects
are exported.

* The third object is exported without exporting objects it contains.

APIRET rc; // Declare reason code

UCHAR pszTagFileID[FLG_TAG_FILE_ID MAXLEN + 1]; // Tag file id
UCHAR pszLogFileID[FLG_LOG_FILE_ID MAXLEN + 1]; // Log file id
UCHAR pszIcoPath[FLG_ICON_PATH _MAXLEN + 1]; // icon files path
PFLGHEADERAREA pListStruct; // pointer to the input structure
FLGEXTCODE ExtCode=0; // declare an extended code for API

/* set values for Tag file/ Log file/ Icon path */
/* create object list */

rc = FLGExport (pszTagFilelD,

pszLogFilelD,

pszlcoPath,

pListStruct, // Pass input structure
&ExtCode) s // Pass pointer to extended code

Figure 67. Sample C language call to FLGEXxport
Eigure 68 on page 103 shows the input structure for the FLGExport call.

DataGuide Programming Guide and Reference

0 8 16 24 32 160

FLG-HEAD |00000800|00000060|00000015 <—header
area
0 80 110 118 160
FLGID CHAR 00000016 -«
definition
CONTAINEE-IND | CHAR 00000001 area
CONTACT-IND CHAR 00000001
ATTACHMENT-IND| CHAR 00000001
LINK-IND CHAR 00000001 -«

0000010000000100|Y|Y (N[N

object

0000020000022001 | Y [N |Y area

=

0000020000032300 |N|N[N|N

Figure 68. Sample input structure for FLGExport

FLGFoundIn

Retrieves a list of object instances or object types in which a specified instance is
found. FLGFoundIn can retrieve any of the following:

» Grouping object instances that contain the specified object instance
» Object instances for which the specified object instance is a Contact

» Object instances to which the specified object instance is attached as a
Comments object

* Object types with which the specified Programs object instance is associated

Authorization

Administrator or user
Syntax

APIRET APIENTRY FLGFoundIn(PSZ pszFLGID,
FLGOPTIONS Options,
PFLGHEADERAREA * ppListStruct,
PFLGEXTCODE pExtCode);

Parameters

pszFLGID (PSZ) — input
Points to the 16-character object instance ID (FLGID) of the object instance for
which a list of parents will be retrieved.

Characters 1-6 of this ID identify the object type of this instance.

Chapter 5. DataGuide API call syntax 103

104

Characters 7-16 of this ID are the system-generated unique instance identifier.

The FLGID you specify depends on what you want to list:

Attachments
FLGID of an Attachment category object instance (retrieves object
instances to which the specified object instance is attached as a
Comments object)

Contacts
FLGID of a Contact category object instance (retrieves object instances
for which the specified object instance is a Contact)

Containees
FLGID of an Elemental or Grouping category object instance (retrieves
Grouping object instances that contain the specified object instance)

Programs
FLGID of a Program category object instance (retrieves object types
with which the specified Programs object instance is associated)

Options (FLGOPTIONS) — input
Choose one of the following options:

FLG_LIST_ATTACHMENT
Retrieves object instances to which the specified object instance is
attached as a Comments object

FLG_LIST_CONTACT
Retrieves object instances for which the specified object instance is a
Contact

FLG_LIST_CONTAIN
Retrieves Grouping object instances that contain the specified object
instance

FLG_LIST_PROGRAM
Retrieves object types with which the specified Programs object
instance is associated

ppListStruct (PFLGHEADERAREA) — output
Points to the address of the pointer to the output structure containing a list of
object instances or object types in which a specified instance is found. If there
is no output structure, then the pointer to the output structure is set to NULL.

For each Contain, Contact, or Attachment relationship, the output structure
contains the following information about the “found-in” object instances:

* FLGID (16 characters)
* Name (80 characters)
All instances are sorted by object type name first, then object instance name, in

ascending order according to collating order of the underlying database
management system.

For each Program association, the output structure contains the following
information about the “found-in” object types:
* Object type ID (6 characters)

» 80-character external name of object type (EXTERNAL NAME OF OBJ
TYPE)

DataGuide Programming Guide and Reference

Usage

Examples

All object types are sorted by the 80-character external name of object type

(EXTERNAL NAME OF OBJ TYPE) in ascending order according to collating

order of the underlying database management system.

The maximum number of object instances or object types that can be returned

by FLGFoundinis 5000.
pExtCode (PFLGEXTCODE) — output

Points to an extended code associated with the reason code. See m
i “ to see if a meaningful extended code is

associated with the returned reason code.

Reason code (APIRET)
Represents the execution result of this API call.

See lAppendix D_DataGuide reason codes” on page 224 for an explanation of

the returned reason codes.

Freeing memory allocated for an output structure

If FLGFoundIn returned data in the output structure, you must save the data

returned in the output structure and then call FLGFreeMem (see

). Do not use other methods, for example, C language instructions,

to free memory.

This sample code retrieves a list of object instances in which the specified Contact

object is found. m shows the C language code required to issue the
FLGFoundin call.

APIRET rc; // reason code from FLGFoundIn
UCHAR pszInstID[FLG_ID LEN + 1];

FLGOPTIONS Option=0; // association type

PFLGHEADERAREA = ppReturnObjList; // pointer to output structure ptr

FLGEXTCODE xc=0; // extended code
/* provide values for input parameters x/
Option = Option | FLG_LIST CONTACT;
rc = FLGFoundIn (pszInstID,
Option,

ppReturnObjList,
&xc);

Figure 69. Sample C language call to FLGFoundin

Eigure 70 on page 106 shows the output structure for the FLGFoundin call.

Chapter 5. DataGuide API call syntax

105

106

0 8 16 24 32 33 39 160

FLG-HEAD | 00000320 | 00000077 | 00000004 <—header
area

0 80 110 118 160

FLGID CHAR 00000016 <«——definition

area

Name VARCHAR 00000080 D —

0000150000000052|00000017PERSONNEL RECORDS ::} object
area

0000220000000046 | 00000012FINANCE DEPT

Figure 70. Sample output structure for FLGFoundIn

This sample code retrieves a list of object types handled by the specified Programs
object instance. Eigure 71 shows the C language code required to issue the
FLGFoundIn call.

APIRET rc; // reason code from FLGFoundIn
UCHAR pszInstID[FLG_ID LEN + 1];

FLGOPTIONS Option=0; // association type

PFLGHEADERAREA * ppReturnObjList; // pointer to output structure ptr

FLGEXTCODE xc=0; // extended code
/* provide values for input parameters x/
Option = Option | FLG_LIST PROGRAM;
rc = FLGFoundIn (pszInstID,
Option,

ppReturnObjList,
&xc);

Figure 71. Sample C language call to FLGFoundin

Eigure 72 an page 107 shows the output structure for the FLGFoundin call.

DataGuide Programming Guide and Reference

0 8 16 24 32 33 39 160

FLG-HEAD | 00000320 | 00000019 | 00000002 <—header
area
0 80 110 118 160
Object type identifier CHAR 00000006 definition
EXTERNAL NAME OF OBJ TYPE | VARCHAR 00000080 ::} e

000002 |00000005TABLE |[«—object
area

Figure 72. Sample output structure for FLGFoundIn

FLGFreeMem

Authorization

Syntax

Parameters

Frees the memory allocated to an output structure created by a DataGuide API call;
for example FLGLIistObjTypes or FLGNavigate.

Administrator or user

APIRET APIENTRY FLGFreeMem(PFLGHEADERAREA pFLGOutputStruct,
PFLGEXTCODE pExtCode);

pFLGOutputStruct (PFLGHEADERAREA) — input
Points to the DataGuide output structure to be deallocated.

When you issue an API call that creates an output structure, you need to save
the value of the pointer to the output structure that is generated by DataGuide
and stored at the address indicated by the PFLGHEADERAREA data type so
that you can pass this pointer as a parameter to FLGFreeMem to free the
allocated memory.

FLGFreeMem works only with output structures produced by DataGuide API
calls.

pExtCode (PFLGEXTCODE) — output
Points to an extended code associated with the reason code. See IMDJ
i “ to see if a meaningful extended code is
associated with the returned reason code.

Reason code (APIRET)
Represents the execution result of this API call.

See Appendix D_DataGuide reason codes” aon page 229 for an explanation of

the returned reason codes.

Chapter 5. DataGuide API call syntax 107

Examples
m shows the C language code required to invoke the FLGFreeMem API call.

This sample code frees a DataGuide output structure in memory.

PFLGHEADERAREA pFLGOutputStruct; // pointer to the FLG output structure
APIRET rc; // reason code
FLGEXTCODE ExtCode = 0; // Extended code

rc = FLGFreeMem (pFLGOutputStruct, &ExtCode);

Figure 73. Sample C language call to FLGFreeMem

108 DataGuide Programming Guide and Reference

FLGGetlnst

Authorization

Syntax

Parameters

Retrieves a single object instance for a specified object type.

Administrator or user

APIRET APIENTRY FLGGetInst(PSZ pszFLGID,
PFLGHEADERAREA * ppObjInstStruct,
PFLGEXTCODE pExtCode);

pszFLGID (PSZ) — input
Points to the 16-character, system-generated unique identifier of the object
instance to be retrieved.

Characters 1-6 of this ID identify the object type of this instance.

Characters 7-16 of this ID are the system-generated unique instance identifier.

ppObjinstStruct (PFLGHEADERAREA) — output
Points to the address of the pointer to the output structure. This pointer is set to

NULL if FLGGetlInst fails.

pExtCode (PFLGEXTCODE) — output
Points to an extended code associated with the reason code. See IWX_DJ

DataGuide reason codes” an page 2285 to see if a meaningful extended code is

associated with the returned reason code.

Reason code (APIRET)
Represents the execution result of this API call.

See lAppendix D_DataGuide reason codes” on page 229 for an explanation of

the returned reason codes.

Output structure

FLGGetlnst produces an output structure containing the property specifications and
values of the requested object instance, as shown in [Ei

The object area of the output structure contains the values of the properties of the
requested object instance.

Chapter 5. DataGuide API call syntax 109

0 8 16 24 3233 39 160
definition| object | obj area |c| object
FLG-HEAD length length entry a| type <«— header
count t id area
0 80 110 118 126 127 128 160
Object type identifier CHAR 00000006 [OBJTYPID| S <
Instance identifier CHAR 00000010 [INSTIDNT| S
Name VARCHAR 00000080 | NAME R
definition
Last Changed Date and Time|TIMESTAMP 00000026 |UPDATIME| S area
Last Changed By CHAR 00000008 [UPDATEBY| S
property6 datatypeb length6 |ppn6 vf6|us6
property7 datatype7 length7 |ppn7 vf7|us7
property8 datatype8 length8 |ppn8 vf8|us8 -
value |[value value value
value value object
area
value
value

Figure 74. FLGGetlInst output structure

For an explanation of the meanings of the byte offsets, see lDataGuide AP| autpui

Usage

Prerequisites

The value in the pszFLGID input parameter must refer to an existing object
instance.

Freeing memory allocated for an output structure
If FLGGetlInst returned data in the output structure, you must save the data

returned in the output structure and then call FLGFreeMem (see
). Do not use other methods, for example, C language instructions,
to free memory.

Controlling updates to your information catalog

FLGGetInst commits changes to the database. Your program should issue
FLGCommit or FLGRollback before issuing FLGGetlnst to ensure that
DataGuide does not also commit unexpected changes that occurred before the
FLGGetlInst call.

110 DataGuide Programming Guide and Reference

Examples

m shows the C language code required to invoke the FLGGetlnst API call.
This sample code retrieves information about the Quality Group object instance.

APIRET rc; // Declare reason code
UCHAR pszFLGID[FLG_ID LEN+1]; // Unique ID for "Quality Group"
PFLGHEADERAREA * ppObjInstStruct; // Pointer to the output structure

FLGEXTCODE ExtCode = 0; // Declare extended code

/* Retrieving an object Instance =/

strcpy (pszFLGID,"0000330000001234")

rc = FLGGetInst (pszFLGID, // Instance ID
ppObjInstStruct, // Structure pointer where output will be returned
&ExtCode) ; // Pass pointer to extended code

Figure 75. Sample C language call to FLGGetlInst

Eigure 76 an page 112 shows the output structure that contains the property and
value information for the object instance.

Chapter 5. DataGuide API call syntax 111

0 8 16 24 3233 39 160

FLG-HEAD | 00001280 | 00000259 | 00000008 |G | 000033 <— header

area

0 80 110 118 126 127 128 160

Object type identifier CHAR 00000006 [OBJTYPID| S -«
Instance identifier CHAR 00000010 | INSTIDNT| S

Name VARCHAR 00000080 | NAME R|1

definition

Last Changed Date and Time|TIMESTAMP 00000026 [UPDATIME| S area
Last Changed By CHAR 00000008 [UPDATEBY | S

Source CHAR 00000032 | SOURCE 0

Sdesc VARCHAR 00000254 | SHRTDESC| 0

Ldesc LONG VARCHAR|00032700 | LONGDESC| 0 -«
000033|0000001234|00000013Quality Group|1995-04-01-09.00.00.000000

DG2ADMIN|DB2

object

00000040Departmental Quali

area
ty Group -- by Region.

00000100The Quality Group
from each department, who

is an organization comprised of a member
is responsible.

Figure 76. Sample output structure for FLGGetInst

Retrieves registration information from the DataGuide information catalog for the

FLGGetReg

specified object type.
Authorization

Administrator or user
Syntax

APIRET APIENTRY FLGGetRe
112 DataGuide Programming Guide and Reference

g(PSZ psz0bjTypelD,
pPSz pszIconFilelD,
PFLGHEADERAREA * ppObjRegStruct,
PFLGEXTCODE pExtCode);

Parameters

pszObjTypelD (PSZ) — input
Points to the 6-character, system-generated unique identifier (object type ID) of
the object type for which you are retrieving the registration.

pszlconFilelD (PSZ) — input/output
As input, points to the file path and name of the file in which you want
DataGuide to return the OS/2 icon for the registered object type. If this
parameter is NULL, DataGuide does not retrieve the icon for the registered
object type.

As output, points to the file path and name of the file where DataGuide stored
the OS/2 icon for the registered object type. This pointer is set to NULL if there
is no icon associated with the object type registration.

ppObjRegStruct (PFLGHEADERAREA) — output
Points to the address of the pointer to the output structure.

The output structure contains the property specifications and values of the
requested object type registration information. The pointer is set to NULL if
FLGGetReg falils.

pExtCode (PFLGEXTCODE) — output
Points to an extended code associated with the reason code. See IIAppTLx_DJ

DataGuide reason codes” an page 229 to see if a meaningful extended code is

associated with the returned reason code.

Reason code (APIRET)
Represents the execution result of this API call.

See [Appendix D_DataGuide reason codes” on page 225 for an explanation of

the returned reason codes.

Output structure

FLGGetReg produces an output structure containing the property specifications and
values of the requested object type registration, as shown in Ei

The object area of the output structure contains the values of the registration
properties for the requested object type.

Chapter 5. DataGuide API call syntax 113

160

<«— header
area

0 8 16 24 3233 39
definition| object | obj area |c| object
FLG-HEAD length length entry a| type
count t id
0 80 110 118 126 127 128 160
EXTERNAL NAME OF OBJ TYPE |VARCHAR 00000080 | NAME R <
PHYSICAL TYPE NAME CHAR 00000030 | PTNAME 0
DPNAME CHAR 00000008 | CREATOR | R
CREATOR CHAR 00000008 | CREATOR | S
LAST CHANGED BY CHAR 00000008 |UPDATEBY | S
LAST CHANGED DATE AND TIME|TIMESTAMP 00000026 |UPDATIME| S -«
value |value value value object
area

value

value

Figure 77. FLGGetReg output structure

definition
area

For an explanation of the meanings of the byte offsets, see lDataGuide AP| autpui

Usage

Restrictions
You can only retrieve an OS/2 icon using FLGGetReg. To retrieve a Windows
icon, use FLGManagelcons(see LELGManagelcons” an page 159).
Prerequisites

The value in the pszObjTypelD parameter must refer to an existing object type
ID registered in the DataGuide information catalog.

Freeing memory allocated for an output structure

If FLGGetReg returned data in the output structure, you must save the data
returned in the output structure and then call FLGFreeMem (see
). Do not use other methods, for example, C language instructions,
to free memory.

Examples

Eigure 78 on page 115 shows the C language code required to invoke the

FLGGetReg API call. This sample code retrieves information about the registration
for the MYIMAGE obiject type from the DataGuide information catalog.

114 DpataGuide Programming Guide and Reference

APIRET
UCHAR
UCHAR

PFLGHEADERAREA * ppObjRegStruct;
FLGEXTCODE

rcs

// Declare reason code

pszObjTypeID[FLG_OBJTYPID LEN+1]; // Unique ID for MYIMAGE ObjType
pszIconFileID[FLG_ICON_FILE_ID MAXLEN+1]; // Path/File name for ICON

ExtCode = 0

H // Declare extended code

/* Retrieving an object Type Registration Instance =/

strcpy (pszObjTypelD,"000044");
strcpy (pszIconFileID,"Y:\\FLGICON2.IC0");

rc =

FLGGetReg

(pszObjTypelD, // id of the object type

pszlconFilelD,// Path/File name of file to contain ICON

// Ptr to pointer to the output structure

ppObjRegStruct,// Structure pointer where out put will be returned

&ExtC

ode) ;

Figure 78. Sample C language call to FLGGetReg

// Pass pointer to extended code

m shows the output structure that contains the property and value
information for the registration of the MYIMAGE object type.
In this example, bytes 33 through 38 of the header record contain the object type ID

0 8 16 24 3233 39 160
FLG-HEAD | 00000960 | 00000160 |00000006 | E 000044
0 80 110 118 126 127 160
<
EXTERNAL NAME OF 0BJ TYPE |VARCHAR 00000080 | NAME R
PHYSICAL TYPE NAME CHAR 00000030 | PTNAME 0
DP NAME CHAR 00000008 | DPNAME R
CREATOR CHAR 00000008 |CREATOR | S
LAST CHANGED BY CHAR 00000008 |UPDATEBY| S
LAST CHANGED DATE AND TIME|TIMESTAMP |00000026|UPDATIME| S
<
00000072MYIMAGE Object type for product specification illu
strations and diagrams
object
MYIMAGEOBJECTTYPE MY IMAGE area
PRIME-KA PRIME-KA 1995-03-24-10.00.00.000000

Figure 79. Sample output structure for FLGGetReg

<— header

area

definition
area

(000044) of the object type for which registration information has been retrieved. It
matches the object type ID specified as input in the pszObjTypelD parameter.

Chapter 5. DataGuide API call syntax

115

FLGGetType

Retrieves the definition of all properties of an object type.

Authorization
Administrator or user
Syntax
APIRET APIENTRY FLGGetType(PSZ pszObjTypelD,
PFLGHEADERAREA * ppObjTypeStruct,
PFLGEXTCODE pExtCode);
Parameters

pszObjTypelD (PSZ) — input
Points to the 6-character, system-generated unique identifier (object type ID)
that was returned when the object type was registered. You can also retrieve
this object type ID using either the FLGConvertlD or FLGListObjTypes API call.

ppObjTypeStruct (PFLGHEADERAREA) — output
Points to the address of the pointer to the output structure. The pointer is set to
NULL if the FLGGetType falils.

pExtCode (PFLGEXTCODE) — output
Points to an extended code associated with the reason code. See m

DataGuide reason codes” on page 228 to see if a meaningful extended code is

associated with the returned reason code.

Reason code (APIRET)
Represents the execution result of this API call.

See lAppendix D_DataGuide reason codes” an page 229 for an explanation of

the returned reason codes.

Output structure

FLGGetType produces an output structure containing the property specifications of
the requested object type, as shown in [Ei

The definition area of the output structure contains the properties of the requested
object type in the order in which they were specified when the object type was
created.

116 DataGuide Programming Guide and Reference

0 8 16 24 3233 39 160

definition| object | obj area |c| object

FLG-HEAD length length entry al type <«— header
count t id area
0 80 110 118 126 127 128 160
Object type identifier CHAR 00000006 [OBJTYPID| S <
Instance identifier CHAR 00000010 | INSTIDNT| S
Name VARCHAR 00000080 | NAME R
definition
Last Changed Date and Time|TIMESTAMP 00000026 |UPDATIME| S area
Last Changed By CHAR 00000008 |UPDATEBY| S
property6 datatypeb length6 |ppn6 vf6|us6
property7 datatype7 length7 |ppn7 vf7|us7
property8 datatype8 length8 |ppn8 vf8|us8
<«

Figure 80. FLGGetType output structure

For an explanation of the meanings of the byte offsets, see LChapter 4 _DataGuidel

Usage
Prerequisites
The value in the pszObjTypelD parameter must refer to an existing object type
ID registered in the DataGuide information catalog.
Freeing memory allocated for an output structure
If FLGGetType returned data in the output structure, you must save the data
returned in the output structure and then call FLGFreeMem (see
). Do not use other methods, for example, C language instructions,
to free memory.
Examples

Eigure 81 on page 118 shows the C language code required to invoke the

FLGGetType API call. This sample code retrieves information about the properties
of the MYIMAGE object type from the DataGuide information catalog.

Chapter 5. DataGuide API call syntax 117

118

APIRET
UCHAR

rc;

PFLGHEADERAREA * ppObjTypeStruct;

FLGEXTCODE ExtCode=0;

// Declare reason code

// Declare extended code

/* retrieving a user-defined object type - MYIMAGE
strcpy (pszObjTypelD,"000044");

rc = FLGGetType (pszObjTypelD,
ppObjTypeStruct,

&ExtCode);

Figure 81. Sample C language call to FLGGetType

*/

// Pass pointer to extended code

pszObjTypeID[FLG_OBJTYPID LEN + 1]; // Set to ID of MYIMAGE (000044)
// Pointer to the output structure

m shows the output structure that contains the property information for the

MYIMAGE object type.

0 8 16 24 32 33 39 160
FLG-HEAD | 00001440 | 00000000 | 00000000 | E | 000044 <— header
area
0 80 110 118 126 127 128 160
Object type identifier CHAR 00000006 | OBJTYPID | S <+
Instance identifier CHAR 00000010 | INSTIDNT | S
Name VARCHAR 00000080 | NAME R| 1
Last Changed Date and Time| TIMESTAMP 00000026 | UPDATIME | S
definition
Last Changed By CHAR 00000008 | UPDATEBY | S area
imagecolor CHAR 00000010 | COLOR R
imagesize CHAR 00000010 | SIZE R
description LONG VARCHAR 00032700 | DESC R
Density CHAR 00000010 | DENS 0 -«

Figure 82. Sample output structure for FLGGetType

DataGuide Programming Guide and Reference

FLGImport

Authorization

Syntax

Parameters

Imports metadata from a flat file in tag language format into the DataGuide.

Administrator

APIRET APIENTRY FLGImport(PSZ pszTagFilelD,
pSz pszLogFilelD,
PSz pszIcoPath,
FLGRESTARTOPTION RestartOpt,
PFLGEXTCODE pExtCode);

pszTagFilelD (PSZ) — input
Identifies the tag language file. This parameter is required.

This parameter contains the drive, directory path, and file nhame, and must be
valid for a FAT or HPFS file. This drive can be a removable drive. The file name
and extension, excluding the drive and directories, cannot exceed 240
characters. If you type only the file name, DataGuide assumes that the tag
language file is on the drive and path pointed to by the DGWPATH environment
variable.

The file identified by pszTagFileID contains the DataGuide objects and related
metadata to be imported.

pszLogFilelD (PSZ) — input
Specifies the location and name of the log file. This parameter is required.

This parameter contains the drive, directory path, and file name, and must be
valid for a FAT or HPFS file. The drive cannot be a removable drive. If you
specify only a file name, DataGuide places the log file on the drive and path
pointed to by the DGWPATH environment variable.

If the log file specified in this parameter does not exist, a new file is created. If
the log file specified in this parameter already exists, then DataGuide appends
to it.

The file identified by pszLogFilelD contains logging information as well as
warnings and errors detected during processing of the FLGImport API call.

pszlcoPath (PSZ) — input
Specifies the location of the OS/2 and Windows icon files. This parameter
contains the drive and directories, and must be valid for a FAT or HPFS file on
a nonremovable drive. The maximum length for the icon path is 246 characters.

This parameter is optional. If you do not specify this parameter, icon files are

not imported, even when the tag language file contains instructions to import
icons associated with object types.

Chapter 5. DataGuide API call syntax 119

Usage

When specified, the import function searches this path for any icon files
referenced within the tag language file identified by pszTagFilelD. If the tag
language file indicates that icons are to be associated with an object type, and
the icons do not reside in the icon path, a warning is recorded in the log file.

RestartOpt (FLGRESTARTOPTION) — input

Specifies whether DataGuide processes the input tag language file from the
beginning or from a checkpoint. Valid values are:

B Beginning

The tag language file is processed from the beginning, even if the same
tag language file was already specified at a previous time and only
partially processed because of run-time errors.

C Checkpoint

The same tag language file was processed, but only partially. The
system saved the checkpoint label information where execution is to
resume for this file. In this case, the tag language file is searched for
the saved checkpoint label and, if a match is found, importing resumes
from that point. If a match is not found, then the FLGImport API call
fails.

If C is specified for the RestartOpt, but the tag language file was not
previously processed, then DataGuide processes the tag language file
from the beginning.

pExtCode (PFLGEXTCODE) — output

Points to an extended code associated with the reason code. See |:AppTdix_D.|

DataGuide reason codes” an page 229 to see if a meaningful extended code is

associated with the returned reason code.

Reason code (APIRET)

Represents the execution result of this API call.

See [Appendix D _DataGuide reason codes” on page 229 for an explanation of

the returned reason codes.

Debugging import errors
DataGuide creates a log file and an echo file when importing a tag language file.

The log file records what happens during the import process. It includes the
times and dates when the import process started and stopped. It also includes
any warning or error messages for problems that occur during the process. The
log file is identified by the pszLogFilelD parameter.

The echo file lists the tags that have been processed by DataGuide. The echo
file has the same name as the import tag language file, and is stored in the
same directory and path as the log file, but has the .ech file extension.

You can use the echo file and log file to find the tag that is causing the import
error. The last one or two tags of an echo file tell you which tag in your tag
language file caused the import process to stop.

Importing a delete history tag file

To protect against erroneous deletions in other information catalogs, you should
examine the contents of a delete history tag file before importing it to any other
information catalog, especially if you have deleted Grouping object instances, or
object types.

120 DataGuide Programming Guide and Reference

Examples

Linking your VisualAge C ++ program when it imports from diskettes

If your C language program issues an FLGImport call that imports DataGuide
information from diskettes, link your program with an application type of
WINDOWAPI so that DataGuide can use the PM interface to display messages
that prompt the user for diskettes when necessary.

You can perform this linking using one of these methods:

— The following link statement:

ilink /NOFREE /PMTYPE:vio /NOI filename.obj,,,dgwapi.lib,,
— A module definition file. Specify an apptype of WINDOWAPI in your NAME
statement.
Committing changes before using FLGImport
DataGuide rolls back the database when FLGImport encounters errors. Your
program should issue FLGCommit before issuing FLGImport to ensure that

DataGuide does not also roll back uncommitted changes that occurred before
the FLGImport call.

The sample code in w imports a tag language file named TAGFILEL1.TAG.
DataGuide logs the processing information in TAGFILE1.LOG.

APIRET rc; // Declare reason code
UCHAR pszTagFileID[FLG_TAG_FILE ID MAXLEN+1]; // ID for Tag Language file
UCHAR pszLogFileID[FLG_LOG_FILE_ID MAXLEN+1]; // ID for Log file
UCHAR pszIconPath[FLG_ICON_PATH_MAXLEN+1]; // Path for Icon files
FLGRESTARTOPTION RestartOpt; // Restart option
FLGEXTCODE ExtCode=0; // Returned extended code

/* Importing the Tag Language file TAGFILE1.TAG */

strcpy (pszTagFileID,"c:\\DGdata\\TAGFILE1.TAG");
strcpy (pszLogFileID,"c:\\DGdata\\TAGFILE1.LOG");
strcpy (pszIconPath,"c:\\DGdata");

RestartOpt = FLG_RESTART_BEGIN;

rc = FLGImport (pszTagFilelD,
pszLogFilelD,
pszIconPath,
RestartOpt,
&ExtCode) // Pass extended code by reference

Figure 83. Sample C language call to FLGImport

Chapter 5. DataGuide API call syntax 121

FLGInit

Authorization

Syntax

Parameters

Initializes the DataGuide APl DLL for use, connects the application to the database,
and retrieves environmental information that you can use with other API calls.

Administrator or user

APIRET APIENTRY FLGInit(PSZ pszUserID,
PSz pszPassword,
PSz pszDatabaseName,
FLGADMIN Admin,
PFLGHEADERAREA * ppListStruct,
PFLGEXTCODE pExtCode);

pszUserlD (PSZ) — input
Points to a null-terminated string containing the user ID for the DataGuide
database logon.

pszPassword (PSZ) — input
Points to a null-terminated string containing the user’s password.

pszDatabaseName (PSZ) — input
Points to a null-terminated string containing the database alias for the
DataGuide information catalog.

admin (FLGADMIN) — input
Indicates the user option desired.

FLG_YES
Log on as a administrator.

FLG_NO
The default. Log on as a user.

ppListStruct (PFLGHEADERAREA) — output
Points to the address of the pomter to the output structure. For the format of the
output structure, see ”

If there is no output structure, the pointer to the output structure is set to NULL,
and DataGuide returns an error condition with a reason code.

pExtCode (PFLGEXTCODE) — output
Points to an extended code associated with the reason code. See |:AppTLx.D.|

DataGuide reason codes” an page 229 to see if a meaningful extended code is

associated with the returned reason code.

Reason code (APIRET)
Represents the execution result of this API call.

See [Appendix D _DataGuide reason codes” on page 229 for an explanation of

the returned reason codes.

122 DataGuide Programming Guide and Reference

Output structure

FLGInit produces an output structure containing information about the DataGuide

environment, as shown in Eigure 84 on page 124,

The object area of the output structure contains the required registration and object
properties in the user’s national language. The object area also contains values that
provide information about the user’'s DataGuide environment.

Chapter 5. DataGuide API call syntax 123

124

DataGuide Programming Guide and Reference

Figure 84. FLGInit output structure

0 8 16 24 32 160

FLG-HEAD | 00003520 | obj length| 00000022 <— header

area

0 80 110 118 160
EXTERNAL NAME OF OBJ TYPE | CHAR 00000080 <
PHYSICAL TYPE NAME CHAR 00000080

DP NAME CHAR 00000080

CREATOR CHAR 00000080

LAST CHANGED BY CHAR 00000080

LAST CHANGED DATE AND TIME| CHAR 00000080 definition
Object type identifier CHAR 00000080 aree
Instance identifier CHAR 00000080

Name CHAR 00000080

Last Changed Date and Time| CHAR 00000080

Last Changed By CHAR 00000080

STORE ENVIRON CHAR 00000020

STORE ENVSIZE CHAR 00000008

Not-Applicable Symbol CHAR 00000001

VERSION CHAR 00000020

LANGUAGE CHAR 00000004

KAUSERID CHAR 00000008

Product Path CHAR 00000260

System Path Length CHAR 00000008

Platform CHAR 00000008

Codepage CHAR 00000004

User Type CHAR 00000001 -

-
EXTERNAL NAME OF OBJ TYPE |PHYSICAL TYPE NAME DP NAME
object

CREATOR| LAST CHANGED BY| LAST CHANGED DATE AND TIME area
Object type identifier | Instance identifier | Name

Last Changed Date and Time Last Changed By |environ

ENVSIZE |N/A| VERSION|LANG|KAUSERID|PRODUCT PATH

SYS PATH LN PLATFORM
CODEPAGE USER TYPE -

Usage

The output structure returns the 80-byte property names required for all object
type registrations, object types, and objects.

If you are using a non-English version of DataGuide, the values in the object
area for each of these properties are translated. You need to save these
translated values so that you can use them with FLGCreateReg and

FLGCreateType.

Freeing memory allocated for an output structure

If FLGInit returned data in the output structure, you must save the data returned
in the output structure and then call FLGFreeMem (see LELGEreeMem” od
). Do not use other methods, for example, C language instructions, to

free memory.

fFable 1 shows the required properties that are returned by FLGInit.

Table 18. Required property names returned by FLGInit

Property name

Description

EXTERNAL NAME OF OBJ TYPE

First registration property in any object type
registration

PHYSICAL TYPE NAME

Second registration property in any object
type registration

DP NAME

Third registration property in any object type
registration

CREATOR

Fourth registration property in any object type
registration

LAST CHANGED BY

Fifth registration property in any object type
registration

LAST CHANGED DATE AND TIME

Sixth registration property in any object type
registration

Object type identifier

First required property on any object type

Instance identifier

Second required property on any object type

Name

Third required property on any object type

Last Changed Date and Time

Fourth required property on any object type

Last Changed By

Fifth required property on any object type

This output structure also returns environmental values. Save these values to use

with other API calls.

Chapter 5. DataGuide API call syntax 125

Table 19. Environmental values returned by FLGInit

Property name Description
STORE ENVIRON Database product name with the release number in VXRxMx
format.

DB2/2 VO2R01MO
DB2 for OS/2 product

DB2 VO3R01MO
DB2 for MVS product

DB2/6000 VO2R01M1
DB2 for AIX product

STORE ENVSIZE Value indicating the maximum length of PTNAME for the
DataGuide information catalog in this environment.

Not-applicable symbol 1-character default token of the DataGuide environment to
represent an unspecified data field. This value was set during
installation.

VERSION 20-character indicator of the version of DataGuide being run.

LANGUAGE 3-character national language code; for example, ENU

indicates English. Valid values are:
CHS Simplified Chinese
CHT Traditional Chinese
CsYy Czech

DEU German

ENU US English

ESP Spanish

FRA French

FRB Belgian Dutch

HUN Hungarian

ITA Italian

JPN Japanese

KOR Korean

NLB Belgian French

PLK Polish

PTB Brazilian Portuguese
RUS Russian

SLO Slovenian

KAUSERID 8-character user ID for the administrator currently logged on.

Product Path 260-character full working path for DataGuide.

System Path Length 8-character value for the maximum path length for the
system.

126 DataGuide Programming Guide and Reference

Examples

Table 19. Environmental values returned by FLGInit (continued)

Property name

Description

Platform 8-character platform identifier; set to:
0 DataGuide using DB2 for OS/2 (FLG_DG2_DB22)
1 DataGuide using DB2 for MVS or DB2 for OS/390
(FLG_DG2_DB2)
4 DataGuide using DB2 for OS/400
(FLG_DG2_DB2400)
6 DataGuide using DB2 for AIX (FLG_DG2_DB26000)
7 DataGuide using DB2 PE for AlIX or DB2 UDB EEE
(FLG_DG2_DB26000PE)
8 DataGuide using DB2 for Windows NT
(FLG_DG2_DB2NT)
9 DataGuide using DB2 for Windows 95
(FLG_DG2_DB295)
Code page 4-character code page identifier
User Type 1-character identifier, set to:

A
B
D

Logged-on user ID is the primary administrator
Logged-on user ID is the backup administrator

Logged-on user ID is a user with authority to
perform object management tasks

Logged-on user ID is a user

Eigure 85 an page 128 shows the C language code required to invoke the FLGInit
API call. This sample code initializes the DataGuide API DLL so that information

applications can issue calls to the DataGuide API.

Chapter 5. DataGuide API call syntax 127

UCHAR pszUserID[FLG_USERID_LEN + 1];

UCHAR pszPassword[FLG_PASSWORD LEN + 1];

UCHAR pszDatabaseName [FLG_DATABASENAME_LEN + 1];

FLGADMIN admin = FLG_YES;

APIRET rc; // reason code

PFLGHEADERAREA * ppListStruct; // pointer to output structure pointer
FLGEXTCODE ExtCode = 0; // Extended code

// 1A specific code

strcpy(pszUserID, "LAUTZ");
strcpy(pszPassword, "MYPASSWD");
strcpy(pszDatabaseName, "CATALOG");

rc = FLGInit (pszUserName,
pszPassword,
pszDatabaseName,
admin,
ppListStruct,
&ExtCode);

// Issue FLGFreeMem to release the output structure created by FLGInit
// Calls to the FLG API

// When complete, call
// FLGTerm()

Figure 85. Sample C language call to FLGInit

Eigure 86 on page 12d shows the output structure.

128 DataGuide Programming Guide and Reference

0 8 16 24 32 33 39

FLG-HEAD | 00003520 | 00001222 | 00000022
0 80 110 118 160
EXTERNAL NAME OF OBJ TYPE | CHAR 00000080 <
PHYSICAL TYPE NAME CHAR 00000080

DP NAME CHAR 00000080

CREATOR CHAR 00000080

LAST CHANGED BY CHAR 00000080

LAST CHANGED DATE AND TIME| CHAR 00000080

Object type identifier CHAR 00000080

Instance identifier CHAR 00000080

Name CHAR 00000080

Last Changed Date and Time| CHAR 00000080

Last Changed By CHAR 00000080

STORE ENVIRON CHAR 00000020

STORE ENVSIZE CHAR 00000008

Not-Applicable Symbol CHAR 00000001

VERSION CHAR 00000020

LANGUAGE CHAR 00000004

KAUSERID CHAR 00000008

Product Path CHAR 00000260

System Path Length CHAR 00000008

Platform CHAR 00000008

Codepage CHAR 00000004

User Type CHAR 00000001 -

-«

EXTERNAL NAME OF OBJ TYPE |PHYSICAL TYPE NAME DP NAME
CREATOR| LAST CHANGED BY| LAST CHANGED DATE AND TIME

Object type identifier | Instance identifier | Name

Last Changed Date and Time Last Changed By |DB2 VO2RO3M1
00000018 | * | VIRIMO ENU | LAUTZ H:\DG2

00000260 |00000001 |0850|A
<«

Figure 86. Sample output structure for FLGInit Chapter 5. DataGuide API call syntax

160

<+—header
area

definition
area

object
area

129

FLGListAnchors

Authorization

Syntax

Parameters

Output structure

Retrieves a list of all anchor instances for the Grouping category. Anchors are
Grouping category objects that have containees, but are not contained by other
objects.

Administrator or user

APIRET APIENTRY FLGListAnchors(PFLGHEADERAREA * ppListStruct,
PFLGEXTCODE pExtCode);

ppListStruct (PFLGHEADERAREA) — output
Points to the address of the pointer to the output structure listing the anchors.
When there is no output structure, the pointer to the structure is set to NULL.

The output structure contains the following information for each anchor object
instance:

* FLGID (16 characters)
* Name (80 characters)

All instances are sorted according to the collating sequence of the database
used for your DataGuide information catalog, first by object type name, then by
Name.

The maximum number of object instances that can be returned by
FLGListAnchors is 1600.

pExtCode (PFLGEXTCODE) — output
Points to an extended code associated with the reason code. See ILAppTi.x_DJ

DataGuide reasan cades” an page 221 to see if a meaningful extended code is

associated with the returned reason code.

Reason code (APIRET)
Represents the execution result of this API call.

See Appendix D DataGuide reason codes” on page 229 for an explanation of

the returned reason codes.

FLGListAnchors produces an output structure containing a list of anchors, as shown

in Eigure 87 on page 131,

The object area of the output structure contains a list of anchor object instances,
identified by the value of the FLGID and the external name for each object instance.

130 DataGuide Programming Guide and Reference

Usage

Examples

0 8 16 24 32 1
definition| object obj area
FLG-HEAD length length entry
count
0 80 110 118 160
FLGID CHAR 00000016 defin
j area
Name VARCHAR 00000080
FLGID valuel Name_valuel
object
FLGID_ value2 Name_value2 area
FLGID value3 Name_value3

Figure 87. FLGListAnchors output structure

Freeing memory allocated for an output structure

60

<— header
area

ition

If FLGListAnchors returned data in the output structure, you must save the data

returned in the output structure and then call FLGFreeMem (see

). Do not use other methods, for example, C language instructions,

to free memory.

m shows the C language code required to invoke the FLGListAnchors

API

call. This sample code retrieves a list of the anchors in your DataGuide information

catalog.
APIRET rc; // reason code from FLGListAnchors
PFLGHEADERAREA * ppListStruct; // pointer to output structure pointer
FLGEXTCODE ExtCode=0; // Extended code

rc = FLGListAnchors (ppListStruct,
&ExtCode) ;

// address of output structure pointer

Figure 88. Sample C language call to FLGLIistAnchors

Eigure 89 on page 134 shows the output structure.

Chapter 5. DataGuide API call syntax

131

0 8 16 24 32 160
FLG-HEAD | 00000320 | 00000117 | 00000006 <— header
area
0 80 110 118 160
FLGID CHAR 00000016 definition
::| area
Name VARCHAR 00000080

0000010000005555|00000008AAA CLUB

object

0000010000001234|00000012IEEE SOCIETY area

0000020000008888 | 00000025MMM INTERNATIONAL COMPANY

Figure 89. Sample output structure for FLGLIstAnchors

FLGLIistAssociates

Authorization

Syntax

Parameters

Retrieves a list of associate instances for a specified object instance or object type.
An associate can be any one of the following:

Instances contained by a Grouping object instance
Contact instances for an object instance
Attachment instances for an object instance
Instances linked with an object instances

Program instances associated with an object type

Administrator or user

APIRET APIENTRY FLGListAssociates(PSZ pszInBuffer,
FLGOPTIONS Options,
PFLGHEADERAREA * ppListStruct,
PFLGEXTCODE pExtCode);

pszinBuffer (PSZ) — input

Points to an input buffer containing either a 16-character, system-generated
unique identifier of an object instance, or a 6-character, system-generated
unique identifier of an object type, depending on what you are listing:

Attachments
Object instance ID (FLGID) of a non-Attachment category object
instance

Comments
FLGID of a non-Comments type object instance

132 DataGuide Programming Guide and Reference

Contacts
FLGID of an Elemental or Grouping category object instance

Containees
FLGID of a Grouping category object instance

Links FLGID of an Elemental or Grouping category object instance

Programs
Object type ID of a non-Program category object type

Options (FLGOPTIONS) — input
Choose one of the following options:

FLG_LIST_ATTACHMENT
Retrieves object instances in an Attachment relationship with the
specified instance.

FLG_LIST_COMMENTS
Retrieves Comments object instances attached to the specified
instance. FLG_LIST_COMMENTS retrieves the same object instances
as FLG_LIST_ATTACHMENT, but returns more information (Last
Changed Date and Time, Creator) about each instance

FLG_LIST_CONTACT
Retrieves Contact object instances associated with the specified
instance.

FLG_LIST_CONTAIN
Retrieves object instances contained in the specified instance.

FLG_LIST_LINK
Retrieves object instances linked with the specified instance.

FLG_LIST_PROGRAM
Retrieves Programs object instances associated with the specified
object type.

ppListStruct (PFLGHEADERAREA) — output
Points to the address of the pointer to the output structure listing the associates.
When there is no output structure, the pointer to the structure is set to NULL.

The output structure for each instance has the following information:

FLGID (16 characters)

Name (80 characters)
In addition, for FLG_LIST_CONTAIN, the output structure for each instance also
has a flag (CHILDIND) indicating whether it is itself a container. For

FLG_LIST_COMMENTS, the output structure for each instance also includes
the following:

Last Changed Date and Time

Creator
All instances are sorted by object type name first, then object instance name, in
ascending order according to collating order of the underlying database
management system.

The maximum number of object instances that can be returned by
FLGListAssociates is 5000.

Chapter 5. DataGuide API call syntax 133

pExtCode (PFLGEXTCODE) — output
Points to an extended code associated with the reason code. See W‘

DataGuide reason codes” on page 229 to see if a meaningful extended code is

associated with the returned reason code.

Reason code (APIRET)
Represents the execution result of this API call.

See lAppendix D_DataGuide reason codes” on page 2249 for an explanation of

the returned reason codes.

Usage
Freeing memory allocated for an output structure
If FLGListAssociates returned data in the output structure, you must save the
data returned in the output structure and then call FLGFreeMem (see
LEL GEreeMem” on page 107). Do not use other methods, for example, C
language instructions, to free memory.

Examples

This sample code retrieves a list of the Programs object instances associated with
the Grouping object type, MYREGION. m shows the C language code
required to issue the FLGListAssociates call.

APIRET rc; // reason code

UCHAR pszObjTypeID[FLG_OBJTYPID LEN + 1];
PFLGHEADERAREA * ppReturnObjList; // ptr to output structure ptr
FLGOPTIONS Option=0;

FLGEXTCODE xc=0; // extended code

Option=Option | FLG_LIST_PROGRAM;

rc = FLGListAssociates (pszObjTypelD,
Option,
ppReturnObjList,
&xc);

Figure 90. Sample C language call to FLGListAssociates

%ﬁ.&p&gﬂﬁﬂ shows the output structure for the FLGListAssociates call in

134 DataGuide Programming Guide and Reference

0 8 16 24 32 160

FLG-HEAD |00000320|00000068|00000004 <—header
area

0 80 110 118 160

FLGID CHAR 00000016 definition

j area
Name VARCHAR 00000080
0000050000000100|00000010VISUALIZER
::] object

0000050000000098 | 000000 1OMSACCESSOR area

Figure 91. Sample output structure for FLGListAssociates

This sample code retrieves the object instances contained in the Grouping object,
MYBGROUP. m shows the C language code required to issue the
FLGListAssociates call.

APIRET rc; // reason code

UCHAR objid[FLG_ID_LEN + 1];

PFLGHEADERAREA * ppReturnObjList; // ptr to output structure ptr
FLGOPTIONS Option=0;

FLGEXTCODE xc=0; // extended code

Option=Option | FLG_LIST CONTAIN;

rc = FLGListAssociates (objid,
Option,
ppReturnObjList,
&xc);

Figure 92. Sample C language call to FLGListAssociates

%&n_page_ud shows the output structure for the FLGListAssociates call in

Chapter 5. DataGuide API call syntax 135

136

0 8 16 24 32 160
FLG-HEAD |00000480|00000069|00000006 <—header
area
0 80 110 118 160
FLGID CHAR 00000016 definition
area
Name VARCHAR 00000080
CHILDIND CHAR 00000001
0000200000000100 | 000000 10ACCPAYABLE Y
::} object
0000300000022001 | 000000O9ACCRECBLE N area

Figure 93. Sample output structure for FLGListAssociates

This sample code retrieves the Contact object instances for the Grouping object,
MYBGROUP. shows the C language code required to issue the
FLGListAssociates call.

APIRET rc; // reason code
UCHAR objid[FLG_ID_LEN + 1];
PFLGHEADERAREA * ppReturnObjList; // ptr to output structure ptr
FLGOPTIONS Option=0;
// extended code

FLGEXTCODE xc=0;

Option=Option | FLG_LIST CONTACT;

rc = FLGListAssociates (objid,
Option,
ppReturnObjList,
&xc);

Figure 94. Sample C language call to FLGListAssociates

%@.{ﬁgﬂ:ﬂlshows the output structure for the FLGListAssociates call in

DataGuide Programming Guide and Reference

0 8 16 24 32 160

FLG-HEAD |00000320|00000102|00000004 <—header
area

0 80 110 118 160

FLGID CHAR 00000016 definition

j area
Name VARCHAR 00000080
0000040000000100|0000001OMOTHER
:::}object

0000040000000098 | 0000OOO9FATHER area

Figure 95. Sample output structure for FLGListAssociates

This sample code retrieves the Attachment category object instances for the
Grouping object, MYBGROUP. m shows the C language code required to
issue the FLGListAssociates call.

APIRET rc; // reason code

UCHAR objid[FLG_ID_LEN + 1];

PFLGHEADERAREA * ppReturnObjList; // ptr to output structure ptr
FLGOPTIONS Option=0;

FLGEXTCODE xc=0; // extended code

Option=Option | FLG_LIST ATTACHMENT;

rc = FLGListAssociates (objid,
Option,
ppReturnObjList,
&xc);

Figure 96. Sample C language call to FLGListAssociates

%ﬁm_page_ug shows the output structure for the FLGListAssociates call in

Chapter 5. DataGuide API call syntax 137

0 8 16 24 32 160

FLG-HEAD |00000320|00000102|00000004 <—header
area

0 80 110 118 160

FLGID CHAR 00000016 definition

::| area
Name VARCHAR 00000080
0000110000000100|00000010Your stuff
::} object

0000110000000098|00000009My stuff area

Figure 97. Sample output structure for FLGListAssociates

This sample code retrieves the Comments object instances attached to the
Elemental object, MYREPORT. m shows the C language code required to
issue the FLGListAssociates call.

APIRET rc; // reason code

UCHAR objid[FLG_ID_LEN + 1];

PFLGHEADERAREA * ppReturnObjList; // ptr to output structure ptr
FLGOPTIONS Option=0;

FLGEXTCODE xc=0; // extended code

Option=Option | FLG_LIST COMMENTS;

rc = FLGListAssociates (objid,
Option,
ppReturnObjList,
&xc);

Figure 98. Sample C language call to FLGListAssociates

%ﬁ_m_paguﬂshows the output structure for the FLGListAssociates call in

138 DataGuide Programming Guide and Reference

0 8 16 24 32 160

FLG-HEAD [00000640 (00000170 |00000008 <«—header
area
0 80 110 118 160
FLGID CHAR 00000016
Name VARCHAR 00000080

Last Changed Date and Time| TIMESTAMP 00000026

Creator CHAR 00000008
0000110000000111|{00000024Change wording of Tine 1 960220. .. |MYUSERID ::
objec
0000110000000222|00000030Third sentence is not clear |960310...|USERID area

Figure 99. Sample output structure for FLGListAssociates

This sample code retrieves the object instances with which the Grouping object,
MYBGROUP, is linked. wshows the C language code required to issue the
FLGListAssociates call.

APIRET rc; // reason code

UCHAR objid[FLG_ID LEN + 1];

PFLGHEADERAREA * ppReturnObjList; // ptr to output structure ptr
FLGOPTIONS Option=0;

FLGEXTCODE xc=0; // extended code

Option=Option | FLG_LIST LINK;

rc = FLGListAssociates (objid,
Option,
ppReturnObjList,
&xc);

Figure 100. Sample C language call to FLGListAssociates

%ﬁ_m_mgmd shows the output structure for the FLGListAssociates call in

Chapter 5. DataGuide API call syntax 139

definition
area

t

0 8 16 24 32 160

FLG-HEAD |00000320 (00000067 |00000004 <—header
area

0 80 110 118 160

FLGID CHAR 00000016 definition

::I area

Name VARCHAR 00000080

0000200000000999 | 00000010Tinked oba
:] object

0000150000000888|000000091ink numb area

Figure 101. Sample output structure for FLGLIistAssociates

FLGListContacts

Authorization

Syntax

Parameters

Retrieves a list of Contact objects for a DataGuide Elemental or Grouping object.

Administrator or user

APIRET APIENTRY FLGListContacts(PSZ pszFLGID,
PFLGHEADERAREA * ppListStruct,
PFLGEXTCODE pExtCode);

pszFLGID (PSZ) — input
Points to the 16-character FLGID of the object instance for which Contacts will
be retrieved.

Characters 1-6 of this ID identify the object type of this instance.

Characters 7-16 of this ID are the system-generated unique instance identifier.

ppListStruct (PFLGHEADERAREA) — output
Points to the address of the pointer to the output structure listing the Contacts.
When there is no output structure, the pointer to the structure is set to NULL.

This output structure contains the 16-character FLGID of each Contact object
and its 80-character name.

Entries in the list are first sorted by object type name, then by the value of the
Name property for each instance, according to the collating sequence used by
the database management system used by your DataGuide information catalog.

140 DataGuide Programming Guide and Reference

Output structure

Usage

The maximum number of Contact object instances that can be returned by
FLGListContacts is approximately 5000, depending on the storage available on
your machine.

pExtCode (PFLGEXTCODE) — output
Points to an extended code associated with the reason code. See w
i “ to see if a meaningful extended code is
associated with the returned reason code.

Reason code (APIRET)
Represents the execution result of this API call.

See lAppendix D_DataGuide reason codes” on page 224 for an explanation of

the returned reason codes.

FLGListContacts produces an output structure containing a list of Contacts, as
shown in m

The object area of the output structure contains a list of Contact object instances
associated with the specified object instance. These Contact objects are identified
by the value of the FLGID and the external name for each object instance.

0 8 16 24 32 160
definition| object obj area <— header
FLG-HEAD length length entry area
count
0 80 110 118 160
FLGID CHAR 00000016 definition
j area
Name VARCHAR 00000080
FLGID valuel Name_valuel
object
FLGID value2 Name_value2 area
FLGID value3 Name_value3

Figure 102. FLGListContacts output structure

Freeing memory allocated for an output structure

If FLGListContacts returned data in the output structure, you must save the data
returned in the output structure and then call FLGFreeMem (see

). Do not use other methods, for example, C language instructions,
to free memory.

Chapter 5. DataGuide API call syntax 141

Examples

w shows the C language code required to invoke the FLGListContacts API
call. This sample code retrieves a list of the Contacts for Elemental object

MYREPORT.
APIRET rc; // reason code from FLGListContacts
UCHAR pszFLGID[FLG_ID LEN + 1];
PFLGHEADERarea * ppListStruct; // pointer to output structure pointer
FLGEXTCODE ExtCode=0; // extended code

/* allocate storage for input parms */

/* set objid to FLGID of 'MYREPORT' */

rc = FLGListContacts (pszFLGID,
ppListStruct, // address of output structure pointer
&ExtCode) ;

Figure 103. Sample C language call to FLGListContacts

M shows the output structure for this API call.

0 8 16 24 32 160
FLG-HEAD |00000320|00000144 00000006 <— header
area
0 80 110 118 160
FLGID CHAR 00000016 definition
j area
Name VARCHAR 00000080

0000040000000100|{00000026J0HN DOE, DB ADMINISTRATOR

object
0000040000000098|00000027W. SMITH, RACF ADMINISTRATOR area

0000120000000056|00000019J. JONES, HELP DESK

Figure 104. Sample output structure for FLGListContacts

142 DataGuide Programming Guide and Reference

FLGLIistObjTypes

Authorization

Syntax

Parameters

Output structure

Displays all object types currently registered and created in the DataGuide
database.

Administrator or user

APIRET APIENTRY FLGListObjTypes(PFLGHEADERAREA * ppListStruct,
PFLGEXTCODE pExtCode);

ppListStruct (PFLGHEADERAREA) — output
Points to the address of the pointer to the output structure listing the object
types. When there is no output structure, the pointer to the structure is set to
NULL.

Each entry has the following information:

* Object type ID

* Object type external name (80-byte)

* Object type short name (8-byte DP NAME)

Entries are sorted by 80-byte object type external name (EXTERNAL NAME OF
OBJ TYPE); the actual order depends on the collating sequence used by the
database management system used for the DataGuide information catalog.

pExtCode (PFLGEXTCODE) — output
Points to an extended code associated with the reason code. See |iApperix_D.|

DataGuide reason codes” an page 225 to see if a meaningful extended code is

associated with the returned reason code.

Reason code (APIRET)
Represents the execution result of this API call.

See lAppendix D_DataGuide reason codes” on page 229 for an explanation of

the returned reason codes.

FLGLIistObjTypes produces an output structure containing a list of object types, as
shown in Ei

The object area of the output structure contains a list of all the object types in the
DataGuide information catalog. These object types are identified by the values of
the object type ID, the object type external name, and the object type DP NAME

(short name).

Chapter 5. DataGuide API call syntax 143

Usage

Examples

0 8 16 24 32 160

definition| object | obj area

FLG-HEAD length length entry <«— header
count area
0 80 110 118 160
Object type identifier CHAR 00000006 definition
area
EXTERNAL NAME OF 0BJ TYPE| VARCHAR 00000080
DP NAME CHAR 00000008
value |value value object
area
value |[value value
value |value value

Figure 105. FLGLIistObjTypes output structure

For an explanation of the meanings of the byte offsets, see LDataGuide AP| outpud

Freeing memory allocated for an output structure

If FLGListObjTypes returned data in the output structure, you must save the
data returned in the output structure and then call FLGFreeMem (see

LELGEreeMem” on page 107). Do not use other methods, for example, C

language instructions, to free memory.

m shows the C language code required to invoke the FLGLIistObjTypes API
call. This sample code retrieves a list of all the object types in the DataGuide
information catalog.

PFLGHEADERAREA * ppListStruct; // pointer to output structure pointer
APIRET rc; // reason code from FLGListObjTypes
FLGEXTCODE ExtCode=0; // extended code

rc = FLGListObjTypes (ppListStruct, // address of output structure pointer
&ExtCode);

Figure 106. Sample C language call to FLGListObjTypes

Eigure 107 on page 149 shows the output structure for this API call.

144 DataGuide Programming Guide and Reference

0 8 16 24 32 160

FLG-HEAD | 00000480 | 00000090 [00000009 <—header
area
0 80 110 118 160
Object type identifier CHAR 00000006
EXTERNAL NAME OF OBJ TYPE| VARCHAR 00000080
DP NAME CHAR 00000008
000111 ©0OOOOOO8GROUPONE PAYROLL
object
000321| 000000O9MYCOLUMN3 EMPLOYEE area
000231| 000O00O7MYTABLE DEPT21A

Figure 107. Sample output structure for FLGListObjTypes

FLGListOrphans

Authorization

Syntax

Parameters

Retrieves a list of all orphan instances of the Attachment, Contact, or Program
category. Orphans are Attachment, or Contact objects that are not associated with
other object instances, or Program objects that are not associated with any object

type.

You can use this list to clean up your information catalog by associating orphan
object instances to other objects or by deleting orphan instances.

Administrator or user

APIRET APIENTRY FLGListOrphans(PSZ psz0bjTypelD,
FLGOPTIONS Options,
PFLGHEADERAREA * ppListStruct,
PFLGEXTCODE pExtCode);

pszObjTypelD (PSZ) — input
Points to the 6-character, system-generated unique identifier (object type ID) of
an object type for which to retrieve a list of instances that exist, but are not
currently associated with any object instances. The object type ID you specify
depends on what you want to list:

Attachments
Attachment category object type ID

Comments
This parameter is ignored.

Chapter 5. DataGuide API call syntax 145

definition
area

146

Contacts
Contact category object type ID

Programs
Program category object type 1D

If pszObjTypelD is NULL, then DataGuide returns orphans of all object types in
the Attachment category (when FLG_LIST_ATTACHMENT is specified), or in
the Contact category (when FLG_LIST_CONTACT is specified).

Options (FLGOPTIONS) — input
Choose one of the following options:

FLG_LIST_ATTACHMENT

Retrieves Attachment category object instances that are currently
unattached.

FLG_LIST_COMMENTS
Retrieves Comments object instances that are currently unattached.
FLG_LIST_COMMENTS retrieves the same object instances as
FLG_LIST_ATTACHMENT, but returns more information (Last Changed
Date and Time, Creator) about each instance

FLG_LIST_CONTACT
Retrieves Contact category object instances that are currently
unattached.

FLG_LIST_PROGRAM

Retrieves Programs object instances that are not currently associated
with any object type.

ppListStruct (PFLGHEADERAREA) — output
Points to the address of the pointer to the output structure listing the orphans.
When there is no output structure, the pointer to the structure is set to NULL.

The output structure for each instance has the following information:

FLGID (16 characters)

Name (80 characters)
In addition, for FLG_LIST_COMMENTS, the output structure for each instance
also includes the following:

Last Changed Date and Time

Creator

All instances are sorted by object type name first, then object instance name, in
ascending order according to collating order of the underlying database
management system.

The maximum number of object instances that can be returned by
FLGListOrphans is 1600.

pExtCode (PFLGEXTCODE) — output
Points to an extended code associated with the reason code. See IMDJ

“ to see if a meaningful extended code is
associated with the returned reason code.

Reason code (APIRET)
Represents the execution result of this API call.

DataGuide Programming Guide and Reference

See [Appendix D. DataGuide reason codes” on page 229 for an explanation of

the returned reason codes.

Usage
Restrictions
If a user uses FLGListOrphans to list orphan Comments, FLGListOrphans only
returns the Comments for which the user is also the creator.
Freeing memory allocated for an output structure

If FLGListOrphans returned data in the output structure, you must save the data
returned in the output structure and then call FLGFreeMem (see

). Do not use other methods, for example, C language instructions,
to free memory.

Examples

This sample code retrieves all orphan Program category object instances.
m% shows the C language code required to issue the FLGListOrphans call.

APIRET rc; // reason code
PFLGHEADERAREA = ppReturnObjList; // ptr to output structure ptr
FLGOPTIONS Option=0;

FLGEXTCODE xc=0; // extended code

Option=Option | FLG_LIST_PROGRAM;

rc = FLGListOrphans (NULL,
Option,
ppReturnObjList,
&xc);

Figure 108. Sample C language call to FLGListOrphans

%m_pagﬁ_ua shows the output structure for the FLGListOrphans call in

Chapter 5. DataGuide API call syntax 147

148

0 8 16 24 32 160

FLG-HEAD |00000320|00000070|00000004 <—header
area
0 80 110 118 160
FLGID CHAR 00000016 definition
::] area
Name VARCHAR 00000080

0000050000000200 | 0000001 IMSEXCELATOR ::} object area

0000050000000310|00000011LOTUS NOTES

Figure 109. Sample output structure for FLGListOrphans

This sample code retrieves all orphan Contact category object instances. Figure 11d
shows the C language code required to issue the FLGListOrphans call.

APIRET rc; // reason code

PFLGHEADERAREA * ppReturnObjList; // ptr to output structure ptr
FLGOPTIONS Option=0;

FLGEXTCODE xc=0; // extended code

Option=Option | FLG_LIST CONTACT;

rc = FLGListOrphans (NULL,
Option,
ppReturnObjList,
&xc);

Figure 110. Sample C language call to FLGLIistOrphans

%ﬁa&pﬂg&.ﬂﬁ shows the output structure for the FLGListOrphans call in

DataGuide Programming Guide and Reference

0 8 16 24 32 160

FLG-HEAD |[00000320|00000072|00000004 <+—header
area
0 80 110 118 160
FLGID CHAR 00000016 definition
:} area
Name VARCHAR 00000080

0000040000000200|00000012LITTLE ANNIE ::} object area

0000120000000310|000000120LIVER TWIST

Figure 111. Sample output structure for FLGListOrphans

This sample code retrieves all orphan Attachment category object instances.
shows the C language code required to issue the FLGListOrphans call.

APIRET rc; // reason code
PFLGHEADERAREA * ppReturnObjList; // ptr to output structure ptr
FLGOPTIONS Option=0;

FLGEXTCODE xc=0; // extended code

Option=Option | FLG_LIST_ATTACHMENT;
rc = FLGListOrphans (NULL,
Option,
ppReturnObjList,
&xc);

Figure 112. Sample C language call to FLGLIistOrphans

%ﬁ.&mpage_ﬁd shows the output structure for the FLGListOrphans call in

Chapter 5. DataGuide API call syntax 149

150

0 8 16 24 32 160

FLG-HEAD |00000320|00000071|00000004 <—header
area
0 80 110 118 160
FLGID CHAR 00000016 definition
::] area
Name VARCHAR 00000080

0000110000000200|00000011ANNIE STUFF ::} object area

0000110000000310|000000120LIVER STUFF

Figure 113. Sample output structure for FLGListOrphans

This sample code retrieves all orphan Attachment category object instances that are
of the Comments object type. Eigure 114 shows the C language code required to
issue the FLGListOrphans call.

APIRET rc; // reason code
PFLGHEADERAREA * ppReturnObjList; // ptr to output structure ptr
FLGOPTIONS Option=0;

FLGEXTCODE xc=0; // extended code

Option=Option | FLG_LIST COMMENTS;
rc = FLGListOrphans (NULL,
Option,
ppReturnObjList,
&xc);

Figure 114. Sample C language call to FLGListOrphans

' shows the output structure for the FLGListOrphans call in
. This particular output structure has two additional property values.

DataGuide Programming Guide and Reference

0 8 16 24 32 160
FLG-HEAD |00000640|00000141|00000008 <«—header
area
0 80 110 118 160
FLGID CHAR 00000016
Name VARCHAR 00000080
Last Changed Date and Time| TIMESTAMP 00000026
Creator CHAR 00000008
0000110000000100|00000015Annotate name 1{1995... |SMITH .
0000110000000002 |00000010My comment|1995... [JONES ::| g:ggct

Figure 115. Sample output structure for FLGListOrphans

FLGListPrograms

Retrieves a list of Programs objects for a DataGuide non-Program object type.

FLGListPrograms(PSZ

PFLGEXTCODE

Authorization

Administrator or user
Syntax

APIRET APIENTRY
Parameters

pszObjTypelD (PSZ) — input
Points to the 6-character, system-generated unique identifier (object type ID) of
the object type for which to retrieve a list of associated Programs objects.

ppListStruct (PFLGHEADERAREA) — output
Points to the address of the pointer to the output structure listing the Programs
instances. When there is no output structure, the pointer to the structure is set

to NULL.

pszObjTypelD,
PFLGHEADERAREA * ppListStruct,

pExtCode);

This output structure contains the 16-character FLGID of a Programs object
instance and its 80-character external name.

Entries in the list are sorted by the external name (value of the NAME property);
the actual order of the list depends on the collating sequence used by the
database management system used for your DataGuide information catalog.

Chapter 5. DataGuide API call syntax 151

definition
area

Output structure

Usage

The maximum number of Programs object instances that can be returned by
FLGListPrograms is approximately 5000, depending on the storage available on
your machine.

pExtCode (PFLGEXTCODE) — output

Points to an extended code associated with the reason code. See w
i “ to see if a meaningful extended code is

associated with the returned reason code.

Reason code (APIRET)
Represents the execution result of this API call.

See lAppendix D_DataGuide reason codes” on page 229 for an explanation of

the returned reason codes.

FLGListPrograms produces an output structure containing a list of Programs
objects, as shown in

The object area of the output structure contains a list of all the Programs objects
associated with the specified object type. These Programs objects are identified by
the values of the FLGID and the external name of the object instance.

0 8 16 24 32 160
definition| object obj area <— header
FLG-HEAD length length entry area
count

0 80 110 118 160

FLGID CHAR 00000016 definition

::] area
Name VARCHAR 00000080

FLGID valuel

Name_valuel

FLGID value2

Name_value2

FLGID value3

Name_value3

object
area

Figure 116. FLGListPrograms output structure

Freeing memory allocated for an output structure

If FLGListPrograms returned data in the output structure, you must save the
data returned in the output structure and then call FLGFreeMem (see

LEL GFreeMem” on page 107). Do not use other methods, for example, C

language instructions, to free memaory.

152 DataGuide Programming Guide and Reference

Examples

MShows the C language code required to invoke the FLGListPrograms API
call.

This sample code retrieves a list of programs that the object type named REPORT
is associated with.

There are two programs created to use with REPORT: Read report and Update
report.

APIRET rc; // reason code from FLGListPrograms
UCHAR pszObjTypeID[FLG_OBJTYPID LEN + 1];

PFLGHEADERAREA = ppListStruct; // pointer to output structure pointer
FLGEXTCODE ExtCode=0; // extended code

/* set object type ID to ID of 'REPORT' */
rc = FLGListPrograms (pszObjTypelD,

ppListStruct,
&ExtCode) ;

Figure 117. Sample C language call to FLGListPrograms

m shows the output structure for this API call.

0 8 16 24 32 160
FLG-HEAD |[00000320|00000072|00000004 <— header
area
0 80 110 118 160
FLGID CHAR 00000016 definition
::] area
Name VARCHAR 00000080
0000050000001002|00000011Read Report ::] object
area
0000050000100000|00000013Update Report

Figure 118. Sample output structure for FLGLIstPrograms

Chapter 5. DataGuide API call syntax 153

FLGManageCommentStatus

Authorization

Syntax

APIRET APIENTRY

Parameters

Usage

Sets the list of available status choices for users to assign to Comments objects
they create in the information catalog using the DataGuide user interface.. For
example, status choices might be: Open, Pending, Action required, and Closed.

Administrator; user (FLG_ACTION_GET only)

FLGManageCommentStatus(FLGOPTIONS Action,

FLGHEADERAREA * pStatusStruct,
PFLGHEADERAREA * ppStatusStruct,
PFLGEXTCODE pExtCode);

Action (FLGOPTIONS) — input
Choose one of the following action options:

FLG_ACTION_GET
Retrieves a list of current status choices for Comments object instances

FLG_ACTION_UPDATE
Adds, changes, or deletes entries from the list of status choices for

Comments object instances

pStatusStruct (PFLGHEADERAREA) — input
Points to the input structure that contains the updated list of status choices for
Comments object instances for FLG_ACTION_UPDATE.

ppStatusStruct (PFLGHEADERAREA) — output
Points to the output structure that contains the current list of status choices for
Comments object instances for FLG_ACTION_GET.

pExtCode (PFLGEXTCODE) — output
Points to an extended code associated with the reason code. See ILAppTix_DJ

DataGuide reasan cades” an page 221 to see if a meaningful extended code is

associated with the returned reason code.

Reason code (APIRET)
Represents the execution result of this API call.

See lAppendix D DataGuide reason codes” on page 229 for an explanation of

the returned reason codes.

Each time you call FLGManageCommentStatus, you must include the entire
10-entry definition area and corresponding 10 entries in the object area. Use

zeros for status areas you want to leave blank (see [Eigure 120 an page 156).
Freeing memory allocated for an output structure

If FLGManageCommentStatus returned data in the output structure, you must
save the data returned in the output structure and then call FLGFreeMem (see

LELGFreeMem” on page 107). Do not use other methods, for example, C

language instructions, to free memaory.

154 DataGuide Programming Guide and Reference

Controlling updates to your information catalog
To keep your program as synchronized as possible with your information

catalog, you should include a call to FLGCommit (see [ELGCommit” on page 64)
after FLGManageCommentStatus completes successfully. If
FLGManageCommentStatus does not complete successfully, you should include
a call to FLGRollback (see L "

Examples

This sample code retrieves the status structure. m shows the C language
code required to issue the FLGManageCommentStatus call.

APIRET rc; // reason code for API
FLGOPTIONS Action=0;
PFLGHEADERAREA pStatusStruct;
FLGEXTCODE xc=0; // extended code
/* */

Action= Action | FLG_ACTION GET; //set get option
rc = FLGManageCommentStatus (Action,

NULL,

&pStatusStruct,

&xc);

Figure 119. Sample C language call to FLGManageCommentStatus

Eigure 120 on page 156 shows the outEut structure for the

FLGManageCommentStatus call in

Chapter 5. DataGuide API call syntax 155

0 8 16 24 32 160

FLG-HEAD | 00001600 | 00000097 | 00000010 <«—header
area

0 80 110 118 126 160

Comment status 1 text VARCHAR 00000080 | CSTATUS1 T

Comment status 2 text VARCHAR 00000080 | CSTATUS2
definition

Comment status 3 text VARCHAR 00000080 | CSTATUS3 area

Comment status 4 text VARCHAR 00000080 | CSTATUS4

Comment status 5 text VARCHAR 00000080 | CSTATUSS

Comment status 6 text VARCHAR 00000080 | CSTATUS6

Comment status 7 text VARCHAR 00000080 | CSTATUS7

Comment status 8 text VARCHAR 00000080 | CSTATUS8

Comment status 9 text VARCHAR 00000080 | CSTATUS9

Comment status 10 text VARCHAR 00000080 | CSTATUSA -«

000000040pen | 00000007Pending |00000006CT1osed |00000000 00000000 | +—object area

00000000 | 00000000 |00000000|00000000| 00000000

Figure 120. Sample output structure for FLGManageCommentStatus

This sample code updates the status structure with an additional status field.
m shows the C language code required to issue the
FLGManageCommentStatus call.

APIRET rc; // reason code for API
FLGOPTIONS Action=0;
PFLGHEADERAREA pStatusStruct;
FLGEXTCODE xc=0; // extended code
/* */

Action= Action | FLG_ACTION_UPDATE; //update option
rc = FLGManageCommentStatus (Action,

pStatusStruct,

NULL,

&xc);

Figure 121. Sample C language call to FLGManageCommentStatus

Eigure 122 on page 157 shows the II’]EUI structure for the

FLGManageCommentStatus call in

156 DataGuide Programming Guide and Reference

0 8 16 24 32 160
FLG-HEAD | 00001600 | 00000104 | 00000010 <—header
area
0 80 110 118 126 160
Comment status 1 text VARCHAR 00000080 | CSTATUS1 7
Comment status 2 text VARCHAR 00000080 | CSTATUS2
definition
Comment status 3 text VARCHAR 00000080 | CSTATUS3 area
Comment status 4 text VARCHAR 00000080 | CSTATUS4
Comment status 5 text VARCHAR 00000080 | CSTATUSS
Comment status 6 text VARCHAR 00000080 | CSTATUS6
Comment status 7 text VARCHAR 00000080 | CSTATUS7
Comment status 8 text VARCHAR 00000080 | CSTATUS8
Comment status 9 text VARCHAR 00000080 | CSTATUS9
Comment status 10 text VARCHAR 00000080 | CSTATUSA -
000000040pen | 00000007Pending |00000006CTosed |00000007Suspend | «—-object area
00000000|00000000|00000000|00000000 | 00000000 | 00000000

Figure 122. Sample input structure for FLGManageCommentStatus

FLGManageFlags

Queries or starts or stops recording delete history. Delete history is a log of delete
activity that can be turned on and off.

Authorization

Administrator; user (FLG_ACTION_GET only)

Syntax

APIRET A

Parameters

PIENTRY

FLGManageFlags(FLGOPTIONS

F
U
U

LGOPTIONS
CHAR
CHAR

Action,

FlagType,

chValue,
* pchValue,

PFLGEXTCODE pExtCode);

Action (FLGOPTIONS) — input
Choose one of the following action options:

Chapter 5. DataGuide API call syntax 157

FLG_ACTION_GET
Indicates whether or not logging of delete history is currently enabled or

disabled

FLG_ACTION_UPDATE
Turns on or off logging of delete history

FlagType (FLGOPTIONS) — input
Indicates the flag type. This value must be FLG_HISTORY_TYPE_DELETE.

chvalue (UCHAR) — input
Indicates desired flag value for FLG_ACTION_UPDATE. Choose one of the

following flags:

FLG_YES
Enables logging of delete history

FLG_NO
Disables logging of delete history

pchValue (UCHAR) — output
Points to the status returned by FLG_ACTION_GET, either:

FLG_YES
Logging of delete history is enabled

FLG_NO
Logging of delete history is disabled

pExtCode (PFLGEXTCODE) — output
Points to an extended code associated with the reason code. See |:AppTdix_D.|

DataGuide reason codes” an page 229 to see if a meaningful extended code is

associated with the returned reason code.

Reason code (APIRET)
Represents the execution result of this API call.

See [Appendix D _DataGuide reason codes” on page 229 for an explanation of

the returned reason codes.

Usage
Controlling updates to your information catalog
To keep your program as synchronized as possible with your information

catalog, you should include a call to FLGCommit (see [ELGCommit” on page 64)
after FLGManageFlagssuccessfully updates flags. If FLGManageFlags does not
update flags successfully, you should include a call to FLGRollback (see

FEL Gholbad 180).

Examples

Eigure 123 an page 15d shows the C language code required to issue the
FLGManageFlags call. This sample code enables logging of the delete history.

158 DataGuide Programming Guide and Reference

APIRET rc; // reason code for API

FLGOPTIONS Action=0;

FLGOPTIONS Type=0;

UCHAR chValue=FLG_YES;

FLGEXTCODE xc=0; // extended code

Action= Action | FLG_ACTION_UPDATE;
Type = Type | FLG_HISTORY TYPE DELETE;
rc = FLGManageFlags (Action,

Type,

chValue,

NULL,

&xc);

Figure 123. Sample C language call to FLGManageFlags

FLGManagelcons

Creates, deletes, gets, queries, or updates representative OS/2 or Windows icons.

Authorization
Administrator; user (FLG_ACTION_GET and FLG_ACTION_QUERY only)
Syntax
APIRET APIENTRY FLGManagelIcons(PSZ psz0bjTypelD,
PSz pszIconFilelD,
FLGOPTIONS InOptions,
PFLGOPTIONS pOutOptions,
PFLGEXTCODE pExtCode);
Parameters

pszObjTypelD (PSZ) — input
Points to the 6-character, system-generated unique identifier (object type ID) of
an object type for which you want to retrieve, query, create, update, or delete
icons.

pszlconFilelD (PSZ) — input
Contains the drive, directory path, and file name (valid for a FAT or HPFS file)
of the file that contains the OS/2 or Windows icon you want to retrieve, create,
or update for the specified object type. This parameter is ignored for
FLG_ACTION_QUERY and FLG_ACTION_DELETE.

InOptions (FLGOPTIONS) — input
Indicates the desired action and platform options. Choose one of the following
action options:

FLG_ACTION_CREATE
Adds the specified icon to the specified object type.

FLG_ACTION_DELETE
Removes the specified icon from the specified object type.

Chapter 5. DataGuide API call syntax 159

Usage

Examples

FLG_ACTION_GET
Retrieves the specified icon file.

FLG_ACTION_QUERY
Determines whether the specified icon file exists.

FLG_ACTION_UPDATE
Changes the icon for the specified object type.
Choose one of the following platform options:

FLG_PLATFORM_0OS2
Manages OS/2 icons.

FLG_PLATFORM_WINDOWS
Manages Windows icons.

pOutOptions (PFLGOPTIONS) — output

Points to the status returned by FLG_ACTION_QUERY, either:
FLG_ICON_EXIST
FLG_ICON_NOTEXIST

pExtCode (PFLGEXTCODE) — output

Points to an extended code associated with the reason code. See m

DataGuide reason codes” an page 229 to see if a meaningful extended code is

associated with the returned reason code.

Reason code (APIRET)

Represents the execution result of this API call.

See Appendix D _DataGuide reason codes” on page 229 for an explanation of

the returned reason codes.

Prerequisite:

Before you can call FLGManagelcons, you need to call FLGCreateReg to
register the object type for which you want to manage icons.

Controlling updates to your information catalog

To keep your program as synchronized as possible with your information

catalog, you should include a call to FLGCommit (see [ELGCommit” on page 64)
after FLGManagelcons successfully creates, updates, or deletes icons. If
FLGManagelcons does not create, update, or delete icons successfully, you

should include a call to FLGRollback (see 'ELGRoallback” on page 180).

Eigure 124 an page 161 shows the C language code required to issue the

FLGManagelcons call. This sample code updates a Windows icon in DataGuide.

160 DataGuide Programming Guide and Reference

APIRET rc; // reason code from FLGManageIcons

UCHAR pszObjTypeID[FLG_OBJTYPID LEN + 1];
UCHAR pszIconFileID[FLG_ICON_FILE_ID MAXLEN + 1];
FLGOPTIONS Options = 0; // initialize option

FLGEXTCODE xc=0; // extended code
/* provide values for input parameters x/

Options = Options | FLG_ACTION_UPDATE | FLG_PLATFORM_WINDOWS;
rc = FLGManagelIcons (pszObjTypelD,

pszIconFilelD,

Options,

NULL,

&xc);

Figure 124. Sample C language call to FLGManagelcons

FLGManageTagBuf

Queries or resets the current delete history. Delete history is a log of delete activity
that can be turned on and off.

Authorization
Administrator
Syntax
APIRET APIENTRY FLGManageTagBuf(FLGOPTIONS InOptions,
PFLGOPTIONS pOutOptions,
PFLGEXTCODE pExtCode);
Parameters

InOptions (FLGOPTIONS) — input
Choose one of the following options:

FLG_TAGBUF_QUERY
Queries whether or not the delete history log currently contains entries

FLG_TAGBUF_RESET
Removes any existing entries from the delete history log

pOutOptions (PFLGOPTIONS) — output
Points to the status returned by FLG_TAGBUF_QUERY, either:
FLG_TAGBUF_STATUS_EMPTY
FLG_TAGBUF_STATUS_NOT_EMPTY

pExtCode (PFLGEXTCODE) — output
Points to an extended code associated with the reason code. See IWLLDJ

DataGuide reason codes” an page 2285 to see if a meaningful extended code is

associated with the returned reason code.

Reason code (APIRET)
Represents the execution result of this API call.

See Appendix D_DataGuide reason codes” an page 229 for an explanation of

the returned reason codes.

Chapter 5. DataGuide API call syntax 161

Usage
Controlling updates to your information catalog
To keep your program as synchronized as possible with your information

catalog, you should include a call to FLGCommit (see LELGCommit” on page 64)

after FLGManageTagBuf successfully resets the delete history. If
FLGManageTagBuf does not reset the delete history successfully, you should

include a call to FLGRollback (see lELGRollback” an page 180).

Examples

m shows the C language code required to issue the FLGManageTagBuf
call. This sample code deletes the current contents of the delete history.

APIRET rec; // reason code
FLGOPTIONS Opt1=0; //option
FLGEXTCODE xc=0; // extended code
) /* */
Opt1=0ptl | FLG_TAGBUF RESET; //set reset option
rc = FLGManageTagBuf (Optl,
NULL, // not used.
&xc);

Figure 125. Sample C language call to FLGManageTagBuf

162 DataGuide Programming Guide and Reference

FLGManageUsers

Authorization

Syntax

Parameters

Authorizes specified DataGuide users in your organization to perform the following
object management tasks that are normally performed by a DataGuide
administrator:

» Creating an object

* Deleting an object

» Updating an object

» Copying an object

* Exporting an object

» Associating contacts

» Updating links between objects

» Updating groupings of objects

» Associating programs with objects

FLGManageUsers also updates primary and backup administrators for the
information catalog.

Administrator

APIRET APIENTRY FLGManageUsers(FLGOPTIONS Options,
PFLGHEADERAREA pListStruct,
PFLGHEADERAREA * ppListStruct,
PFLGEXTCODE pExtCode);

Action (FLGOPTIONS) — input
Choose one of the following action options:

FLG_ACTION_CREATE
Adds the specified users to the list of users authorized to perform
additional object management tasks for the current information catalog.

FLG_ACTION_UPDATE
Changes the primary or backup administrator.

FLG_ACTION_DELETE
Removes the specified users from the list of users authorized to
perform additional object management tasks for the current information
catalog.

FLG_ACTION_LIST
Returns a list of the following:
Administrator
Backup administrator

Users authorized to perform additional object management tasks for
the current information catalog.

Chapter 5. DataGuide API call syntax 163

Usage

pListStruct (PFLGHEADERAREA) — input

Points to the input structure that contains the new, changed, or deleted user
IDs.

ppListStruct (PFLGHEADERAREA) — output

Points to the address of the pointer to the output structure listing the primary
and backup administrators and all users authorized to perform additional object
management tasks for the current information catalog.

Each entry in the output structure has the following information:
* USERID (8 characters)
* User Type (1 character) flag:

A USERID is the primary administrator (FLG_USERTYPE_PADMIN)
B USERID is the backup administrator (FLG_USERTYPE_BADMIN)
D USERID is a user authorized to perform additional object

management tasks (FLG_USERTYPE_POWERUSER)

All users are sorted by User Type first, then USERID, in ascending order
according to collating order of the underlying database management system.

When there is no output structure, the pointer to the structure is set to NULL.

pExtCode (PFLGEXTCODE) — output

Points to an extended code associated with the reason code. See m

DataGuide reason codes” an page 229 to see if a meaningful extended code is

associated with the returned reason code.

Reason code (APIRET)

Represents the execution result of this API call.

See [Appendix D _DataGuide reason codes” on page 229 for an explanation of

the returned reason codes.

Restrictions

DataGuide only allows one primary and one backup administrator and only the
administrators can invoke FLGManageUsers. If FLGManageUsers affects the
logged-on administrator user ID, then the change will not take effect until the
current administrator logs off.

Freeing memory allocated for an output structure

If FLGManageUsers returned data in the output structure, you must save the
data returned in the output structure and then call FLGFreeMem (see

LELGEreeMem” an page 107). Do not use other methods, for example, C

language instructions, to free memory.

Controlling updates to your information catalog
To keep your program as synchronized as possible with your information

catalog, you should include a call to FLGCommit (see LELGCaommit” on page 64)

after FLGManageUsers successfully creates, updates, or deletes users. If
FLGManageUsers does not create, update, or delete users successfully, you

should include a call to FLGRollback (see LELGRallback” an page 180).

164 DataGuide Programming Guide and Reference

Examples

This sample code adds two users to the list of administrators and DataGuide users
who are authorized to perform additional object management tasks.
shows the C language code required to issue the FLGManageUsers call.

APIRET rc; // reason code for API
FLGOPTIONS Action=0;
PFLGHEADERAREA pInList;
FLGEXTCODE xc=0; // extended code
/* */

Action= Action | FLG_ACTION_CREATE;
rc = FLGManageUsers (Action,
pInList,
NULL,
&xc);

Figure 126. Sample C language call to FLGManageUsers

w shows the input structure for the FLGManageUsers call in w

0 8 16 24 32 160
FLG-HEAD | 00000320 | 00000018 | 00000004 <—header
area
0 80 110 118 160
USERID CHAR 00000008 definition
j area
User Type CHAR 00000001

DGUSERO1|D object
::| area

DGUSEROZ2 | D

Figure 127. Sample input structure for FLGManageUsers

This sample code retrieves a current list of users who are authorized to perform

additional object management tasks. [Eigure 128 an page 166 shows the C language
code required to issue the FLGManageUsers call.

Chapter 5. DataGuide API call syntax 165

166

APIRET rc;

FLGOPTIONS Acti

PFLGHEADERAREA = ppO

FLGEXTCODE xc=0
/*

// reason code for API

on=0;
utList;
H // extended code

Action= Action | FLG_ACTION_LIST;
rc = FLGManageUsers (Action,

NULL,
ppOutlList,
&xc);

Figure 128. Sample C language call to FLGManageUsers

m shows the output structure for the FLGManageUsers call in w

0 8 16 24 32 33 160
FLG-HEAD | 00000320 | 00000036 | 00000008 <«—header
area
0 80 110 118 160
USERID CHAR 00000008 definition
::] area
User Type CHAR 00000001
LEONARDO |A
SALVADOR B
object
DGUSERO1|D area
DGUSERG2|D

Figure 129. Sample output structure for FLGManageUsers

This sample code updates the primary administrator. Eigure 130 an page 167 shows

the C language code required to issue the FLGManageUsers call.

DataGuide Programming Guide and Reference

APIRET rc; // reason code for API

FLGOPTIONS Action=0;
PFLGHEADERAREA pInList;
FLGEXTCODE xc=0; // extended code
/* */

Action= Action | FLG_ACTION_UPDATE;
rc = FLGManageUsers (Action,
pInList,
NULL,
&xc);

Figure 130. Sample C language call to FLGManageUsers

m shows the input structure for the FLGManageUsers call in m

Because only the primary administrator is updated, the backup administrator
remains the same.

0 8 16 24 32 33 39 160
FLG-HEAD | 00000320 | 00000009 | 00000002 <«—header
area
0 80 110 118 160
USERID CHAR 00000008 definition
j area
User Type CHAR 00000001
RAPHAEL |A|<—object area

Figure 131. Sample input structure for FLGManageUsers

Chapter 5. DataGuide API call syntax 167

FLGMdisExport

Retrieves MDIS-conforming metadata from the DataGuide information catalog and
translates it to an MDIS-conforming file. The information catalog from which you
export MDIS metadata is not limited to containing MDIS metadata, but
FLGMdisExport exports only MDIS-conforming metadata.

Authorization
Administrator or authorized user
Syntax
APIRET APIENTRY FLGExport(PSZ pszTagFileName,
PSz pszLogFileName,
PSz psz0bjTypeName,
PSz pszObjectName,
PFLGEXTCODE pExtCode);
Parameters

pszTagFileName (PSZ) — input
Name of the output tag language file. This parameter is required.

This parameter contains the drive, directory path, and file hame, and must be
valid for a file allocation table (FAT) or HPFS file. The target drive for this file
must be a fixed disk. If you type only the file name, DataGuide places the
MDIS—conforming file on the drive and path pointed to by the DGWPATH
environment variable.

The target MDIS—conforming file must not exist; DataGuide does not overwrite
existing files.

The file name and extension (excluding the drive and directories) cannot
exceed 240 characters. The entire MDIS tag file name cannot exceed 259
characters.

pszLogFileName (PSZ) — input
Points to the name of the log file. This parameter is required.

This parameter contains the drive, directory path, and file nhame, and must be
valid for a FAT or HPFS file. The target drive for the log file must be a fixed
disk. The log file name cannot exceed 259 characters. If you specify only a file
name, DataGuide places the log file on the drive and path pointed to by the
DGWPATH environment variable.

If the log file specified in this parameter does not exist, a new file is created. If
the log file specified in this parameter already exists, then the FLGMdisExport
API call appends to it.

pszObjTypeName (PSZ) — input
Specifies one of the following MDIS object types that you want to export:
Database
Dimension
Subschema

168 DataGuide Programming Guide and Reference

Record
Element

The object type name is not case sensitive.

pszObjectName (PSZ) — input

Specifies the objects you want to export. Depending on the object type you
specified with the pszObjTypeName parameter, the value for pszObjectName is
from three to five property values, separated by periods (.).

pszObjTypeName
pszObjectName

Database
ServerName.DatabaseName.OwnerName

Dimension
ServerName.DatabaseName.OwnerName.DimensionName

Subschema
ServerName.DatabaseName.OwnerName.SubschemaName

Record
ServerName.DatabaseName.OwnerName.RecordName

Element
ServerName.DatabaseName.OwnerName.RecordName.ElementName

In this list, the parts of the name are represented with their MDIS name. To find
the equivalent DataGuide names, refer to Appendix B in Managing DataGuide:

1. Find the table for the object type you are exporting
2. Find the MDIS name in the Maps to MDIS name column

3. Find the equivalent DataGuide names in the Property name and Property
short name columns

For each part, enter the value of the named property for the object you want to
export. You can use an asterisk (*) as a wildcard within, or instead of, any of
the parts. If you enter nothing for a required part, DataGuide uses the
not-applicable symbol when searching for objects to export. (The not-applicable
symbol is a hyphen unless you identified a different symbol when you created
the information catalog.) If you enter nothing for an optional part, DataGuide
uses a null character when searching for objects to export.

pExtCode (PFLGEXTCODE) — output

Points to an extended code associated with the reason code. See W

DataGuide reason codes” on page 229 to see if a meaningful extended code is

associated with the returned reason code.

Reason code (APIRET)

Represents the execution result of this API call.

See lAppendix D_DataGuide reason codes” on page 224 for an explanation of

the returned reason codes.

Chapter 5. DataGuide API call syntax 169

FLGMdisImport

Authorization

Syntax

Parameters

Imports metadata from a file that conforms to the Metadata Interchange
Specification (MDIS) into the DataGuide. The information catalog into which you
import MDIS metadata must include, but is not limited to, valid MDIS object type
definitions. Appendix B of Managing DataGuide describes the DataGuide
pre-defined object types and how they map to MDIS.

Administrator

APIRET APIENTRY FLGMdisImport(PSZ pszTagFilelD,
PSz pszLogFilelD,
PFLGEXTCODE pExtCode);

pszTagFilelD (PSZ) — input
Identifies the tag language file. This parameter is required.

This parameter contains the drive, directory path, and file name, and must be
valid for a FAT or HPFS file. The drive cannot be a removable drive. The file
name and extension, excluding the drive and directories, cannot exceed 240
characters. If you type only the file name, DataGuide assumes that the tag
language file is on the drive and path pointed to by the DGWPATH environment
variable.

The file identified by pszTagFilelD contains the MDIS—conforming metadata to
be imported.

pszLogFilelD (PSZ) — input
Specifies the location and name of the log file. This parameter is required.

This parameter contains the drive, directory path, and file name, and must be
valid for a FAT or HPFS file. The drive cannot be a removable drive. If you
specify only a file name, DataGuide places the log file on the drive and path
pointed to by the DGWPATH environment variable.

If the log file specified in this parameter does not exist, a new file is created. If
the log file specified in this parameter already exists, then DataGuide appends
to it.

The file identified by pszLogFilelD contains logging information as well as
warnings and errors detected during processing of the FLGMdisImport API call.

pExtCode (PFLGEXTCODE) — output
Points to an extended code associated with the reason code. See FAppendix D]

DataGuide reason codes” an page 229 to see if a meaningful extended code is

associated with the returned reason code.

Reason code (APIRET)
Represents the execution result of this API call.

170 DataGuide Programming Guide and Reference

Usage

See [Appendix D. DataGuide reason codes” on page 229 for an explanation of

the returned reason codes.

Setting the MDIS environment
Before running MDIS import, set the MDIS environment variable:
SET MDIS_PROFILE=X:\VWSLIB\METADATA\PROFILES

where X is the drive where DataGuide is installed.

If you already had MDIS configuration and profile files, the Visual Warehouse

3.1 installation program did not overwrite them. However, before you use the

MDIS function of DataGuide for the first time, you must merge the information in

the DataGuide MDIS profile and configuration files with your existing files.

Complete the following steps:

1. Check the MDIS environment variable setting to locate your existing MDIS
profile file (MDISTOOL.PRO) and configuration file (MDISTOOL.CFG).

2. Using a text editor, append the contents of
X \VWSLIB\METADATA\PROFILES\MDISTOOL.PRO to your existing profile
file. (X is the drive where you installed DataGuide.)

3. Using a text editor, append the contents of
X:\VWSLIB\METADATA\PROFILES\MDISTOOL.CFG to your existing
configuration file. (X is the drive where you installed DataGuide.)

Debugging MDIS import errors

DataGuide creates a log file when importing an MDIS-conforming file.

The log file records what happens during the import process. It includes the

times and dates when the import process started and stopped. It also includes

any warning or error messages for problems that occur during the process. The
log file is identified by the pszLogFilelD parameter.

Chapter 5. DataGuide API call syntax 171

FLGNavigate

Authorization

Syntax

Parameters

Retrieves a list of objects contained by a specific Grouping object.

Administrator or user

APIRET APIENTRY FLGNavigate(PSZ pszFLGID,
PFLGHEADERAREA = ppListStruct,
PFLGEXTCODE pExtCode);

pszFLGID (PSZ) — input
Points to the 16-character FLGID of the object instance for which contained
objects will be retrieved.

Characters 1-6 of this ID identify the object type of this instance.

Characters 7-16 of this ID are the system-generated unique instance identifier.

ppListStruct (PFLGHEADERAREA) — output
Points to the address of the pointer to the output structure. If there is no output
structure, then the pointer to the output structure is set to NULL.

pExtCode (PFLGEXTCODE) — output
Points to an extended code associated with the reason code. See IWX_DJ

DataGuide reason codes” an page 2215 to see if a meaningful extended code is

associated with the returned reason code.

Reason code (APIRET)
Represents the execution result of this API call.

See lAppendix D_DataGuide reason codes” on page 229 for an explanation of

the returned reason codes.

Output structure

FLGNavigate produces an output structure containing a list of objects contained by

the specified object, as shown in Eigure 132 on page 173.

The object area of the output structure contains a list of all the object instances
contained by the specified object instance. Returned for each object instance are
the values of the FLGID, the object instance external name, and the child indicator,
which indicates whether the object contains any other objects.

172 DataGuide Programming Guide and Reference

Usage

0 8 16 24 32 160
definition| object | obj area
FLG-HEAD length length entry <— header
count area
0 80 110 118 160
FLGID CHAR 00000016
Name VARCHAR 00000080
definition
CHILDIND CHAR 00000001 area
FLGID value [Name value YN
object area
FLGID value [Name value YN
FLGID value [Name value YN

Figure 132. FLGNavigate output structure

For an explanation of the meanings of the byte offsets, see [Chapter 4_DataGuidél

The output structure contains the following property values for each instance
returned:

FLGID The 16-character identifier of the object instance
Name The 80-byte external name of the object instance

CHILDIND
1-character value specifying whether an object instance contains other
object instances: Y is yes, N is no

The output list is sorted by object type name, then by the 80-byte name of the
object instance according to the collating order used by the underlying database
management system.

The maximum number of contained object instances that can be returned by
FLGNavigate is approximately 5000, depending on the storage available on your
machine.

Freeing memory allocated for an output structure

If FLGNavigate returned data in the output structure, you must save the data
returned in the output structure and then call FLGFreeMem (see

). Do not use other methods, for example, C language instructions,
to free memory.

Chapter 5. DataGuide API call syntax 173

Examples

m navigates through a structure of objects that contain other objects. In
this example, ACCOUNTING contains three objects: ACCPAYABLE, ACCRECBLE, and
GLEDGER. The structure is illustrated in m

ACCOUNTING
ACCPAYABLE
PAYABLE1
PAYABLE?2
ACCRECBLE
GLEDGER

Figure 133. The contents of the ACCOUNTING object

m shows the C language code required to invoke the FLGNavigate API
call.

APIRET rc; // reason code from FLGNavigate
UCHAR pszFLGID[FLG_ID LEN + 1];

PFLGHEADERAREA =+ ppListStruct;

FLGEXTCODE ExtCode = 03 // Declare extended code

/* set pszParentID to FLGID of 'ACCOUNTING' */
rc = FLGNavigate (pszFLGID,
ppListStruct, // pass the address of

// output structure pointer
&ExtCode) ;

Figure 134. Sample C language call to FLGNavigate

Eigure 135 an page 179 illustrates the output structure for this API call.

174 DataGuide Programming Guide and Reference

0 8 16 24 32 160

FLG-HEAD |00000480|00000101|00000009 <— header

area

0 80 110 118 160

FLGID CHAR 00000016 definition

area

Name VARCHAR 00000080

CHILDIND CHAR 00000001
0000020000000100|00000010ACCPAYABLE Y

object

0000030000022001 | 000000O9ACCRECBLE N area
0000090000032300|00000007GLEDGER N

Figure 135. Sample output structure for FLGNavigate

FLGOpen

Authorization

Syntax

Parameters

Starts an external program from DataGuide.

Administrator or user

APIRET APIENTRY FLGOpen(PSZ pszPgmFLGID,

PSzZ psz0bjFLGID,
PFLGEXTCODE pExtCode);

pszPgmFLGID (PSZ) — input
Points to the 16-character FLGID of the Programs object instance that contains
execution information. This FLGID includes the 6-character object type ID
followed by a 10-character instance ID of the Programs object.

pszObjFLGID (PSZ) — input
Points to the 16-character FLGID of a non-Program category object instance
that supplies values to the parameter list. This includes the 6-character object
type ID followed by a 10-character instance ID.

pExtCode (PFLGEXTCODE) — output
Points to an extended code associated with the reason code. See m

DataGuide reason cades” an page 228 to see if a meaningful extended code is

associated with the returned reason code.

Reason code (APIRET)
Represents the execution result of this API call.

Chapter 5. DataGuide API call syntax 175

See [Appendix D. DataGuide reason codes” on page 229 for an explanation of

the returned reason codes.

Usage
To issue an FLGOpen call for a program, the program object must be set up as
described in L i i u
When the program described by the Programs object starts, it uses invocation
parameters provided by the identified object instance. DataGuide removes any
formatting characters entered with the invocation parameters.

Examples

m shows the C language code required to call the FLGOpen API call. This
sample code launches a program named PRINTRPT using invocation parameters
supplied by an object instance named REPORT1.

APIRET rc; // reason code from FLGOpen
UCHAR pszPgmFLGID[FLG_ID LEN + 1];

UCHAR pszObjFLGID[FLG_ID LEN + 1];

FLGEXTCODE ExtCode = 0; // Extended code

/* set pszPgmFLGID DataGuide-id of 'PRINTRPT' */
/* set pszObjFLGID to DataGuide-id of 'REPORTL1' */

rc = FLGOpen (pszPgmFLGID,
psz0bjFLGID,
&ExtCode) ;

Figure 136. Sample C language call to FLGOpen

176 DataGuide Programming Guide and Reference

FLGRelation

Authorization

Syntax

Parameters

Creates or deletes the following relationships between two object instances:

Attachment
Contains
Contact
Link

Administrator or authorized user (all relationships); user (Attachment relationships

only)

APIRET APIENTRY FLGRelation(PSZ pszSrcFLGID,
PSz pszTrgFLGID,
FLGRELTYPE RelType,
FLGRELOPTION RelOpt,
PFLGEXTCODE pExtCode);

pszSrcFLGID (PSZ) — input

Points to the 16-character, system-generated unique identifier of the source
object instance.

Characters 1-6 of this ID identify the object type of this instance.
Characters 7-16 of this ID are the system-generated unique instance identifier.

The FLGID you specify depends on the type of relationship you want to create
or delete:

Attachment relationship
FLGID of a non-Attachment category object instance to which a
Comments is being attached or detached

Contact relationship
FLGID of an Elemental or Grouping category object instance for which
a Contact is being defined or removed

Contains relationship
FLGID of the Grouping category container object instance

Link relationship
FLGID of an Elemental or Grouping category object instance for which
a peer relationship with another object instance is to be created or
deleted

pszTrgFLGID (PSZ) — input

Points to the 16-character, system-generated unique ID of the target object.
This includes the 6-character object type ID and the 10-character instance ID.
The FLGID you specify depends on the type of relationship you want to create
or delete:

Chapter 5. DataGuide API call syntax 177

Usage

Examples

Attachment relationship
FLGID of an Attachment category object instance being attached or
detached

Contact relationship
FLGID of a Contact category object instance being defined or removed

Contains relationship
FLGID of the Elemental or Grouping category object instance being
added or removed from the Grouping source container

Link relationship
FLGID of an Elemental or Grouping category object instance for which
a peer relationship with another object instance is to be created or
deleted

RelType (FLGRELTYPE) — input
Identifies the type of relationship being created or deleted. Valid values are:

A Attachment
C Contains

L Link

T Contact

RelOpt (FLGRELOPTION) — input
Specifies the action being performed. Valid values are:

C Create the relationship
D Delete the relationship

pExtCode (PFLGEXTCODE) — output
Points to an extended code associated with the reason code. See |:Apij.x_D.|

DataGuide reason codes” on page 229 to see if a meaningful extended code is

associated with the returned reason code.

Reason code (APIRET)
Represents the execution result of this API call.

See [Appendix D_DataGuide reason codes” on page 229 for an explanation of

the returned reason codes.

Prerequisite

Before deleting an object instance, you must delete all relationships where the
object instance contains other object instances.

Controlling updates to your information catalog

To keep your program as synchronized as possible with your information
catalog, you should include a call to FLGCommit (see L it”

after FLGRelation completes successfully. If FLGRelation does not complete
successfully, you should include a call to FLGRollback (see LELGRallback” od

).

Eigure 137 an page 179 shows the C language code required to call the
FLGRelation API call to create a relationship defining objects contained by an object
instance. In the sample

178 DataGuide Programming Guide and Reference

code, MYBUSGRP is an instance of a Business Group object type (a Grouping
object), and IMAGE-A is an instance of an Image object type (an Elemental object).

APIRET rc; // Declare reason code

UCHAR pszSrcFLGID[FLG_ID _LEN + 1];

UCHAR pszTrgFLGID[FLG_ID_LEN + 1];

FLGRELTYPE RelType=FLG_CONTAINER_RELATION;
FLGRELOPTION RelOpt=FLG_CREATE_RELATION;
FLGEXTCODE ExtCode=0; // Declare extended code

/* set values for pszSrcFLGID and pszTrgFLGID

rc = FLGRelation (pszSrcFLGID,
pszTrgFLGID,
RelType,
RelOpt,
&ExtCode) ;

Figure 137. Sample C language call to FLGRelation

Chapter 5. DataGuide API call syntax 179

FLGRollback

Authorization

Syntax

Parameters

Usage

Examples

Deletes all DataGuide information catalog changes made since the last commit
point or rollback.

Administrator and user

APIRET APIENTRY FLGRollback (PFLGEXTCODE pExtCode)

pExtCode (PFLGEXTCODE) — output
Points to an extended code associated with the reason code. See W

DataGuide reason codes” on page 229 to see if a meaningful extended code is

associated with the returned reason code.

Reason code (APIRET)
Represents the execution result of this API call.

See lAppendix D_DataGuide reason codes” an page 225 for an explanation of

the returned reason codes.

Issue FLGRollback when your program encounters an error that might make your
DataGuide information catalog inconsistent.

m invokes the FLGRollback API call.

APIRET recs // Declare reason code from FLGRollback
FLGEXTCODE ExtCode = 0; // Declare extended code
rc = FLGRol1back(&ExtCode); // pass the address of

// extended code

Figure 138. Sample C code to invoke the FLGRollback API call

180 DataGuide Programming Guide and Reference

FLGSearch

Authorization

Syntax

Parameters

Searches the DataGuide information catalog to locate instances of a particular
DataGuide object type based on user-defined search criteria.

Administrator or user

APIRET APIENTRY FLGSearch(PSZ psz0bjTypelD,
PFLGHEADERAREA pSelCriteriaStruct,
PFLGHEADERAREA * ppListStruct,
PFLGEXTCODE pExtCode);

pszObjTypelD (PSZ) — input
Indicates any 6-character DataGuide object type ID you want to search.

pSelCriteriaStruct (PFLGHEADERAREA) — input

Points to an input structure that contains the property specifications and values
of the search criteria.

If this value is NULL, then DataGuide returns all instances of the specified
object type.

ppListStruct (PFLGHEADERAREA) — output
Points to the address of the pointer to the output structure containing a list of
selected object instances resulting from the search.

Each instance has the following information:
* FLGID (16 characters)
* Name (80 characters)

All instances are sorted by the 80-byte external name (value of Name) in
ascending order according to the collating order of the underlying database
management system.

The maximum number of object instances that can be returned by FLGSearch
is approximately 5000, depending on the storage available on your machine.

If there is no output structure, then the pointer to the output structure is set to
NULL.

pExtCode (PFLGEXTCODE) — output
Points to an extended code associated with the reason code. See ml

DataGuide reason codes” on page 229 to see if a meaningful extended code is

associated with the returned reason code.

Reason code (APIRET)
Represents the execution result of this API call.

See [Appendix D. DataGuide reason codes” on page 225 for an explanation of

the returned reason codes.

Chapter 5. DataGuide API call syntax 181

Input structure

Output structure

To use FLGSearch, you must define the input structure shown in Eigure 13d. This
structure contains only the header area and the definition area.

0 8 16 24 32 160
definition| object | obj area
FLG-HEAD length length entry <— header
count area

0 80 110 118 126 127 128 129 160

Propertyl datatypel |Tengthl |[ppnl csl [fsl

Property?2 datatype2 |Tength2 |[ppn2 cs2 |fs2

definition

Property3 datatype3 |Tength3 |[ppn3 cs3 |[fs3 area
value value value|<«— object area

Figure 139. FLGSearch input structure

The definition area for the FLGSearch input structure must be specified as shown in
, although you can specify any and all of the properties defined for the

object type. You must provide a corresponding search criteria value in the object

area for each property specified in the definition area. For an explanation of the

meanings of the byte offsets, see lDataGuide AP| output structure” an page 44.

The maximum length for search criteria when the database is DB2 for MVS is 254.

FLGSearch produces an output structure containing a list of objects retrieved using

the search criteria, as shown in Eigure 140 on page 183.

The object area of the output structure contains a list of all the object instances that
match the input search criteria. The returned object instances are identified by the
values of the FLGID and object instance external name.

182 DataGuide Programming Guide and Reference

Usage

0 8 16 24 32 160
object obj area <«— header
FLG-HEAD | 00000320 length entry area
count

0 80 110 118 160

FLGID CHAR 00000016 definition

] area
Name VARCHAR 00000080

FLGID_valuel

Name_valuel

FLGID_value2

Name_value2

FLGID_value3

Name_value3

Figure 140. FLGSearch output structure

object
area

FLGSearch searches for instances of only one object type. To search for

instances of all object types, use the FLGSearchAll API call.

To search for instances of more than one object type, but not all object types,

call FLGSearch for each object type that you want to search.

The input structure contains the property specifications and values of the search

criterion:

— Any of the object’s properties can be specified as a search criterion property.
— When more than one property is specified, the properties are linked with an

AND operator to produce the search criteria.

Any blanks you include, except trailing blanks on nonCHAR data types, are
considered as part of the search criterion

You can include wildcard characters in the search criterion. These characters
allow you to specify a pattern you are trying to locate in the values for a
given property. The database supports two wildcard characters:

% Represents zero or more characters
Represents one character

Although you can use different wildcard characters in the user interface, you
can only use the % and _ characters with FLGSearch.

Because DB2 databases treat trailing blanks as significant, you should
include a wildcard at the end of search criteria on CHAR type properties,
otherwise you might receive less objects than you expected from the call to
FLGSearch.

If you include wildcard characters in the search criterion, you must set the
fuzzy-search flag (fs) to Y.

You must specify values for the following flags in the definition area:

cs Case-sensitivity flag in byte 128. Valid values are Y for case
sensitive, N for not case sensitive.

Chapter 5. DataGuide API call syntax 183

If your DataGuide information catalog is located on DB2 for MVS
and:

- Was created with all uppercase values (DataGuide default), then
the case-sensitivity flag must be N.

- Was created with mixed-case values, then the case-sensitivity flag
must be .

fs Fuzzy search flag in byte 129. Valid values are Y for fuzzy search, N
for not a fuzzy search. This value must be Y if wildcards (% or) are
included in the search criterion.

Controlling updates to your information catalog

FLGSearch commits changes to the database. Your program should issue
FLGCommit or FLGRollback before issuing FLGSearch to ensure that
DataGuide does not also commit unexpected changes that occurred before
the FLGSearch call.

Freeing memory allocated for an output structure

If FLGSearch returned data in the output structure, you must save the data
returned in the output structure and then call FLGFreeMem (see

LEL GEreeMem” on page 107). Do not use other methods, for example, C

language instructions, to free memory.

Examples
FLGSearch: Example 1

The sample code in m performs a search for glossary instances. This
search is an exact search because the fuzzy search flag in byte 129 of the
definition area is set to N, as shown in Eigure 142 on page 185. However, the case
of the characters in the values (uppercase or lowercase) is not significant because
the case-sensitivity flag in byte 128 is set to N. You must have already found the
object type identifier using an FLGListObjTypes or FLGGetType call.

APIRET rc; // reason code from FLGSearch

UCHAR pszObjTypeID[FLG_OBJTYPID LEN + 1];

PFLGHEADERAREA pSelCriteria; // search criterion input structure pointer
PFLGHEADERAREA * ppListStruct; // pointer to search result pointer

FLGEXTCODE ExtCode = 0; // Declare extended code

/* provide values for input parameters */
strcpy (pszObjTypelD, "000006");
rc = FLGSearch (pszObjTypelD, // DataGuide object type ID
pSelCriteria, // input structure pointer
ppListStruct, // pass the address of

// output structure pointer
&ExtCode) ;

Figure 141. Sample C language call to FLGSearch

Eigure 142 on page 189 shows the search condition input structure(pointed to by

pSelCriteria) that carries the property and value information for the search.

184 DataGuide Programming Guide and Reference

The case sensitivity flag at byte 128 and the fuzzy search flag at byte 129 of the
definition area must be set to N, because the user wants an exact search, but is not
concerned about the case of the property value.

0 8 16 24 32 160
FLG-HEAD | 00000160 | 00000032 | 00000001 <— header
area
0 80 110 118 126 127 128 129 160
Context of term definition| CHAR [00000032 [CONTEXT cs |fs <«— definition
area
Customer Orders <+— object area

Figure 142. Sample input structure for FLGSearch

m shows the output structure (ppListStruct points to the address of the
pointer to this output structure) that carries glossary instances as the search result.

0 8 16 24 32 160
FLG-HEAD | 00000320 | 00000043 | 00000002 <— header
area
0 80 110 118 160
FLGID CHAR 00000016 definition
::] area
Name VARCHAR 00000080
0000060000000001 |00000019Accounts Receivable |<— object

area

Figure 143. Sample output structure for FLGSearch

The CONTEXT value Customer Orders is used as the search criterion. Any glossary
instance with this CONTEXT value is returned in the output structure. Because the
case-sensitivity flag is set to N, even CONTEXT values like customer orders or
CUSTOMER ORDERS would have been returned if they existed.

FLGSearch: Example 2

This example shows how your program can use fuzzy searches to locate instances
that contain values fitting a pattern.

The values specified in the input structure shown in [Eigure 144 on page 184 specify

a wildcard search for glossary instances that contain the letters metadata. The
multiple-character wildcards (%) indicate where any other characters can occur in
the value and still fit the search criterion.

Chapter 5. DataGuide API call syntax 185

m shows the input structure(pointed to by pSelCriteria) that your program
passes to FLGSearch.

0 8 16 24 32 160
FLG-HEAD | 00000160 | 00000018 | 00000001 <— header
area
0 80 110 118 126 127 128 129 160
Definition LONG VARCHAR |00032700 |LONGDESC Y| Y <+— definition

area

00000010%metadata% |<+— object area

Figure 144. Sample input structure for FLGSearch

Because this is a wildcard search, the fuzzy search flag at byte 129 must be set to
Y. If the fuzzy search flag is set to N, then the % character becomes a literal part of
the search criterion; that is, any instances that are returned must have % in the
specified property value.

The case sensitivity flag at byte 128 of the definition area is set to Y because the
case of metadata is significant in this example. w shows the output
structure (ppListStruct points to the address of the pointer to the output structure)
that carries glossary instances as the search result.

0 8 16 24 32 160
FLG-HEAD | 00000320 | 00000211 | 00000012 <— header
area
0 80 110 118 160
FLGID CHAR 00000016 definition
::] area
Name VARCHAR 00000080
0000060000000023|00000018DataGuide database -«
object
0000060000000030|00000006Export area
0000060000000039 | 00000009EXxtractor
0000060000000040|00000008Metadata
0000060000000071|00000018Physical type name
0000060000000072|00000008Populate -«

Figure 145. Sample output structure for FLGSearch

The value of the Definition property, $metadata%, is used as the search criterion.
Any glossary instance with a Definition property value containing metadata is
returned in the output structure. Because the case sensitivity flag is set to Y, all
instances found in the example also match the case of metadata.

186 DataGuide Programming Guide and Reference

FLGSearch: Example 3

This example shows how your program can use fuzzy searches to locate instances
that contain values fitting a pattern.

The values specified in the input structure shown in w uses the
single-character wildcard () to search for glossary instances that have the specified
property value with only one variable character.

m shows the input structure(pointed to by pSelCriteria) that your program
passes to FLGSearch.

0 8 16 24 32 160
FLG-HEAD | 00000320 | 00000039 | 00000002 <— header
area
0 80 110 118 126 127 128 129 160
Name VARCHAR 00000080 |NAME Y| Y ::
Last Changed Date and Time | TIMESTAMP 00000026 |UPDATIME Y[Y
definition
area
00000005Dept_ 1995- -01-_ . . . <— object area

Figure 146. Sample input structure for FLGSearch

Because the search criterion contains the single-character wildcard (), the fuzzy
search flag at byte 129 must be set to Y. If the fuzzy search flag is set to N,
DataGuide assumes that _is a literal part of the search criterion, and only returns
object instances that have _ as part of the specified property value.

In this example, the values for both NAME and UPDATIME are used as the search
criterion.

* The specified NAME value Dept_ means search for instances starting with Dept
and ending with an unknown character. This value contains five characters.

* Values for year and day are provided for the time stamp data type property
UPDATIME. The UPDATIME values with the year 1995 and the day 01 are linked
using the AND operator with the value of NAME to construct the search criteria
which determine whether an object instance is returned. Both the UPDATIME
value and the NAME value must match the search criterion before DataGuide
returns the object instance.

Eigure 147 on page 184 shows the output structure (ppListStruct points to the

address of the pointer to the output structure) that carries glossary instances as the
search result.

Chapter 5. DataGuide API call syntax 187

188

16

24

32

160

FLG-HEAD | 00000320

00000058 | 00000004

<— header
area

160

i

0 80 110 118
FLGID CHAR 00000016
Name VARCHAR 00000080

0000060000001234

0000060000001266

00000005Dept.
::} object

00000005Depts

area

Figure 147. Sample output structure for FLGSearch

definition
area

Any glossary instance with Dept as the prefix for the five-character Name value and
updated on the first day of each month in year 1995 is returned in the output

structure.

DataGuide Programming Guide and Reference

FLGSearchAll

Authorization

Syntax

Parameters

Searches all object types in the DataGuide information catalog to locate any
instances that have instance names (value of Name property) that match the search
criterion.

Administrator or user

APIRET APIENTRY FLGSearchA11(PFLGHEADERAREA pSelCriteriaStruct,
PFLGHEADERAREA * ppListStruct,
PFLGEXTCODE pExtCode);

pSelCriteriaStruct (PFLGHEADERAREA) — input
Points to an input structure.

The structure contains the property specification and value of the search
criterion. Only the value of the object instance’s external name (Name) can be
used as the search criterion with FLGSearchAll.

If pSelCriteriaStruct is set to NULL, then DataGuide returns all instances in the
DataGuide information catalog up to a maximum of approximately 5000.

ppListStruct (PFLGHEADERAREA) — output
Points to the address of the pointer to the output structure containing a list of
selected object instances resulting from the search. If there is no output
structure, then the pointer to the output structure is set to NULL. Each instance
has the following information:

* FLGID (16 characters)
* Name (80 characters)

All instances are first sorted by object type name, then by the instance external
name (value of Name) in ascending order according to the collating order of the
underlying database management system.

The maximum number of object instances that can be returned by
FLGSearchAll is approximately 5000, depending on the storage available on
your machine.

pExtCode (PFLGEXTCODE) — output
Points to an extended code associated with the reason code. See IiAppTLx_DJ

DataGuide reason codes” on page 229 to see if a meaningful extended code is

associated with the returned reason code.

Reason code (APIRET)
Represents the execution result of this API call.

See [Appendix D _DataGuide reason codes” on page 229 for an explanation of

the returned reason codes.

Chapter 5. DataGuide API call syntax 189

Input structure

To specify search criterion for FLGSearchAll, you must define the following input
structure. This structure contains the header area, the definition area, which can
contain only the Name property, and the object area.

0 8 16 24 32 33 39 160

FLG-HEAD | 00000160 | 00000012 | 00000001 <«—header

area

0 80 110 118 126 127 128 129 160

Name VARCHAR 00000080 | NAME cs |fs <«—definition

area
Name_value <«—object
area

Figure 148. FLGSearchAll input structure

The definition area for the FLGSearchAll input structure must be specified exactly
as shown in m For an explanation of the meanings of the byte offsets, see

FDataGuide APL ; >4,

Output structure

FLGSearchAll produces an output structure containing a list of objects retrieved
using the search criterion, as shown in

The object area of the output structure contains a list of all the object instances that
match the input search criteria. The returned object instances are identified by the
values of the FLGID and object instance external name.

0 8 16 24 32 160
object obj area <— header
FLG-HEAD | 00000320 length entry area
count
0 80 110 118 160
FLGID CHAR 00000016 definition
::] area
Name VARCHAR 00000080
FLGID_valuel Name_valuel
object
FLGID_value2 Name_value2 area
FLGID_value3 Name_value3

Figure 149. FLGSearchAll output structure

190 DataGuide Programming Guide and Reference

Usage

Examples

Only the value of the object instance’s external name (Name) can be used as the
search criterion. No other property values can be used with FLGSearchAll. If
you need to use the values of other properties in your search criterion, use
FLGSearch (see L z

You can include wildcard characters in the search criterion. These characters
allow you to specify a pattern you are trying to locate in the values for a given
property. The database supports two wildcard characters:

% Represents zero or more characters

Represents one character

Although you can use different wildcard characters in the user interface, you can
only use the % and _ characters with FLGSearchAll.

If you include wildcard characters in the search criterion, you must set the
fuzzy-search flag (fs) to V.

You must specify values for the following flags in the definition area:

Ccs Case-sensitivity flag in byte 128. Valid values are Y for case sensitive, N
for not case sensitive.

If your DataGuide information catalog is located on DB2 for MVS and:

— Was created with all uppercase values (DataGuide default), then the
case-sensitivity flag must be N.

— Was created with mixed-case values, then the case-sensitivity flag
must be Y.

fs Fuzzy search flag in byte 129. Valid values are Y for fuzzy search, N for
not a fuzzy search. This value must be Y if you want to have DataGuide
search using wildcards (% or) are included in the search criterion.

Controlling updates to your information catalog

FLGSearchAll commits changes to the database. Your program should issue

FLGCommit or FLGRollbackbefore issuing FLGSearchAll to ensure that

DataGuide does not also commit unexpected changes that occurred before the

FLGSearchAll call.

Freeing memory allocated for an output structure

If FLGSearchAll returned data in the output structure, you must save the data

returned in the output structure and then call FLGFreeMem (see FELGFreeMem]

). Do not use other methods, for example, C language instructions,
to free memory.

Eigure 150 on page 192 shows the C language code required to invoke the
FLGSearchAll. This sample code searches for a name across all object type
instances.

Chapter 5. DataGuide API call syntax 191

APIRET rc; // reason code from FLGSearchAll

PFLGHEADERAREA pSelCriteria; // search criterion input structure pointer
PFLGHEADERAREA ppListStruct; // pointer to search result pointer

FLGEXTCODE ExtCode = 0; // Declare extended code

/* provide values for input parameters */

rc = FLGSearchAll (pSelCriteria, // input structure pointer
ppListStruct, // pass the address of
// output structure pointer
&ExtCode)

Figure 150. Sample C language call to FLGSearchAll

Eigure 151 shows the search condition input structure(pointed to by pSelCriteria)
that carries the property and value information for the search.

0 8 16 24 32 160
FLG-HEAD | 00000160 | 00000017 | 00000001 <— header
area
0 80 110 118 126 127 128 129 160
Name VARCHAR 00000080 | NAME N Y <— definition
area
00000009Customer%| <«— object area

Figure 151. Sample input structure for FLGSearchAll

In this example, you want to perform a fuzzy search using wildcard characters in
the search criterion, so the fuzzy search flag at byte 129 of the definition area is set
to Y.

The case-sensitivity flag at byte 128 of the definition area is set to N, because the
user does not need case sensitivity in the search criterion.

shows the output structure (ppListStruct points to the address of the
pointer to this output structure) that carries DataGuide objects as the search result.

192 DataGuide Programming Guide and Reference

16 24 32

160

FLG-HEAD | 0000

0320 | 00000390 | 00000018

0 80

110 118

160

FLGID

CHAR |00000016

Name

VARCHAR | 00000080

0000110000000018

00000016Customer Address

0000110000000014

00000034Customer City, State, and Zip Code

0000110000000015

00000030Customer Identification Number

0000110000000016

00000013Customer Name

0000110000000010

00000015Customer Number

0000110000000011

00000021Customer Part Ordered

0000110000000017

00000021Customer Phone Number

0000140000000007

00000015Customer Orders

0000140000000010

00000009Customers

Figure 152. Sample output structure for FLGSearchAll

definition
area

object
area

The specified partial object instance name is used by the nine instances in two
different object types.

Chapter 5. DataGuide API call syntax

<— header

area

193

FLGTerm

Authorization

Syntax

Parameters

Usage

Examples

Ends the DataGuide API DLL environment, disconnects from the database
manager, and frees all associated system resources.

Administrator or user

APIRET APIENTRY FLGTerm (PFLGEXTCODE pExtCode)

pExtCode (PFLGEXTCODE) — output
Points to an extended code associated with the reason code. See W

DataGuide reason codes” on page 229 to see if a meaningful extended code is

associated with the returned reason code.

Reason code (APIRET)
Represents the execution result of this API call.

See lAppendix D_DataGuide reason codes” an page 225 for an explanation of

the returned reason codes.

When your program calls FLGTerm, DataGuide automatically commits any
uncommitted changes to the DataGuide database. If any changes need to be rolled
back, your program should call FLGRollback before calling FLGTerm to exit
DataGuide.

If DataGuide encountered a severe error while trying to roll back the database,
FLGTerm will encounter an error while shutting down DataGuide and trying to
release resources. If the person using your program is logged on as an
administrator when the FLGTerm call fails, that person might need to use the
DataGuide CLEARKA utility to log off the administrator user ID.

Eigure 153 on page 199 shows the C language code required to invoke the

FLGTerm API call. This sample code stops the DataGuide API DLL.

194 DataGuide Programming Guide and Reference

APIRET rc; // Reason code
FLGEXTCODE ExtCode = 0; // Extended code

// FLGInit()
// calls to the FLG API

rc = FLGTerm (&ExtCode);

Figure 153. Sample C language call to FLGTerm

FLGTrace

Authorization

Syntax

Parameters

Sets the level of information about DataGuide function written in the trace (.TRC)
file.

Administrator or user

APIRET APIENTRY FLGTrace(FLGTRACEOPTION TraceOpt,
PFLGEXTCODE pExtCode);

TraceOpt (FLGTRACEOPTION) — input
Indicates the desired trace option. Valid options are:

0 The default. Include all messages and warning, error, and severe error
conditions.

1 Include entry and exit records of the highest level DataGuide functions.

2 Include extremely granular entry and exit records of the DataGuide
functions.

3 Include input and output parameters (excluding input or output
structure)

4 Include all input or output structures that are passed to and used by

DataGuide, including SQLCA information passed to and used by the
underlying database management system.

Constants for these values are defined in the DataGuide API header file,
DG2API.H.

pExtCode (PFLGEXTCODE) — output
Points to an extended code associated with the reason code. See m

DataGuide reason cades” an page 223 to see if a meaningful extended code is

associated with the returned reason code.

Reason code (APIRET)
Represents the execution result of this API call.

Chapter 5. DataGuide API call syntax 195

See [Appendix D. DataGuide reason codes” on page 229 for an explanation of

the returned reason codes.

Usage
The name of the trace file is the name of the DataGuide information catalog you
are using with the extension of .TRC.
When you use trace files to debug your programs, levels 0 and 4 are most likely
to be useful to you.
Level O
Returns information explaining the functions that DataGuide is
performing.
When DataGuide encounters an error, DataGuide inserts the reason
code and extended code for that error into the trace file as the New
Reason Code and the New Extended Code. The trace file also contains
an Old Reason Code and an Old Extended Code, which contain the
reason code that DataGuide returned before the error occurred.
DataGuide also places any messages that DataGuide produces in the
trace file.
Level 4
Returns the same information as for Level 0, more detailed functional
information about DataGuide, and information about the data structures
passed to and from DataGuide, including input structures, output
structures, and SQLCA structures from the database.
Tracing the contents of these structures can be valuable when you need
to determine the cause of data errors or ensure that the contents of an
input or output structure is being produced or read properly.
For more information about using trace files, see Managing DataGuide.
Examples
Eigure 154 on page 197 shows the C language code required to invoke the
FLGTrace API call. This sample code sets the level of tracing from an information
application.
196 DataGuide Programming Guide and Reference

FLGTRACEOPTION TraceOpt FLG_TRACELEVEL_1; // Turn on Entry/Exit Tracing
FLGTRACEOPTION TraceReset = FLG_TRACELEVEL 0; // Reset to default level
APIRET rc; // reason code

FLGEXTCODE ExtCode = 0; // Extended code

// FLGInit()
// calls to the FLG API

rc = FLGTrace (TraceOpt,
&ExtCode);

// Check rc and ExtCode

// More API calls

= FLGTrace (TraceReset,
&ExtCode);

Figure 154. Sample C language call to FLGTrace

FLGUpdatelnst

Authorization

Syntax

Parameters

Alters one or more property values for a specific object instance.

Administrator or authorized user (all object types); user (Comments object type
only)

APIRET APIENTRY FLGUpdateInst(PFLGHEADERAREA pObjInstStruct,
PFLGEXTCODE pExtCode);

pObjinstStruct (PFLGHEADERAREA) — input
Points to the input structure that contains the property specifications and values
of the database object being updated.

pExtCode (PFLGEXTCODE) — output
Points to an extended code associated with the reason code. See m

DataGuide reason codes” on page 2285 to see if a meaningful extended code is

associated with the returned reason code.

Reason code (APIRET)
Represents the execution result of this API call.

See lAppendix D_DataGuide reason codes” on page 225 for an explanation of

the returned reason codes.

Chapter 5. DataGuide API call syntax 197

Input structure

To use FLGUpdatelnst, you must define the input structure shown in Eigure 155
This structure contains the header area, the definition area, and the object area.

0 8 16 24 3233 39 160
definition| object | obj area |c| object
FLG-HEAD length length entry a| type <— header
count t id area

0 80 110 118 126 127 128 160

Object type identifier CHAR 00000006 [OBJTYPID| S -

Instance identifier CHAR 00000010 | INSTIDNT| S

Name VARCHAR 00000080 | NAME R

definition

Last Changed Date and Time|TIMESTAMP 00000026 |UPDATIME| S area

Last Changed By CHAR 00000008 |UPDATEBY| S

property6 datatype6 length6 |ppn6 vf6|us6

property7 datatype7 length7 |ppn7 vf7|us7

property8 datatype8 length8 |ppn8 vf8|us8

<!
value [value value value
value value object
area
value
value

Figure 155. FLGUpdatelnst input structure

For an explanation of the meanings of the byte offsets, see DataGuide AP| input

Usage
Prerequisites

Before issuing an FLGUpdatelnst call, you must issue either an FLGCreatelnst
call or an FLGGetlnst call to obtain the property specifications and values of the
instance being modified.

Input requirements
Header area:
- All of the information shown in the header record is required.

198 DataGuide Programming Guide and Reference

- The value for the object type identifier must be the same in the header
record (bytes 33 through 38) as in the object area (first item in the object
area).

Definition area:

The definition area can contain any or all of the defined properties of the
object type for which you are updating an object instance. The following
rules apply:

- You must first specify all five of the DataGuide required properties in the
following order: OBJTYPID, INSTIDNT, NAME, UPDATIME, and
UPDATEBY.

- You must specify all UUI properties.

- DataGuide compares the values for all specified properties to the object
type definition for the following specifications:

Data type
Data length
Property short name
Value flag
UUI number

Object area:

- The object type in the HANDLES property (when specified) must exist in
the DataGuide information catalog and be a non-Program object type. Any
properties specified in the PARMLIST property must be a property of the
object type specified in HANDLES. For more information, see m

- If a value is not specified for a required property (defined with an R in
column 126 of the definition area) the appropriate space in the object area
must be initialized as follows:

Data type Initialized to

CHAR Not-applicable symbol followed by blanks for the length of the
property

TIMESTAMP Set to the largest allowable value: 9999-12-31-

24.00.00.000000
VARCHAR LONG VARCHAR 00000001; the length field, specified in 8 bytes, followed by
the not-applicable symbol

- Values for the OBJTYPID and INSTIDNT properties identify the instance
being updated, and therefore must be present.

- Values for the UPDATIME and UPDATEBY properties are system
generated and therefore should not be modified by the user. If you issue
an FLGGetlInst call before issuing this FLGUpdatelnst call, the object area
can contain values for these two system-generated properties. This does
not cause an error, but when the instance is updated, the system replaces
the values of these two properties.

Trailing blanks are automatically removed from object area values that have
VARCHAR or LONG VARCHAR data types and the length field is adjusted
accordingly.

Controlling updates to your information catalog

To keep your program as synchronized as possible with your information
catalog, you should include a call to FLGCommit (see LELGCommit” an
page 64

Chapter 5. DataGuide API call syntax 199

Examples

hage 64)) after FLGUpdatelnst completes successfully. If FLGUpdatelnst
does not complete successfully, you should include a call to FLGRollback

(see 'ELGRallback” on page 180).

m shows the C language code required to invoke the FLGUpdatelnst API

call.

This sample code updates the object instance named Quality Group that was
defined in the FLGCreatelnst example. The update modifies the value for the short
description property, Sdesc.

APIRET rc; // Declare reason code
PFLGHEADERAREA pObjInstStruct; // Pointer to the input structure

FLGEXTCODE ExtCode = 0; // Declare extended code

/* updating pObjInstStruct object Instance by =*/
/* providing an updated input structure */

rc = FLGUpdateInst (pObjInstStruct, // Pointer to updated input structure

&ExtCode) ; // Pass pointer to extended code

Figure 156. Sample C language call to FLGUpdatelnst

Eigure 157 an page 201 shows the input structure (pointed to by the
"pObjlnstStruct” pointer in the C code) that carries the property and value
information for the object instance to be updated.

1

200 DataGuide Programming Guide and Reference

0 8 16 24 3233 39 160

FLG-HEAD |00001280| 00000259 | 00000008 |G |000033 <+— header
area
0 80 110 118 126 127 128 160
Object type identifier CHAR 00000006 [OBJTYPID| S <+
Instance identifier CHAR 00000010 [INSTIDNT| S
Name VARCHAR 00000080 | NAME RI|1
definition
Last Changed Date and Time|TIMESTAMP 00000026 |UPDATIME| S area
Last Changed By CHAR 00000008 |UPDATEBY| S
Source CHAR 00000032 | SOURCE 0
Sdesc VARCHAR 00000254 | SHRTDESC| 0O
Ldesc LONG VARCHAR|00032700|LONGDESC| O -

000033|0000001234|00000013Quality Group|1994-06-30-12.30.00.000000

DG2ADMIN|DB2 object
area

00000040Departmental Quality Group -- by Region.

00000100The Quality Group is an Organization comprised of a member
from each department, who is responsible.

Figure 157. Sample input structure for FLGUpdatelnst

The values in the object area that are not system-generated (the value at byte 126
is not S) can be modified:

+ NAME

* SOURCE

*+ SHRTDESC

*+ LONGDESC

When you use FLGUpdatelnst, you can omit properties and values that you are not
modifying.

In this example, the Sdesc value is updated. Modifying the Sdesc value affects its
length also. Therefore, the 8-character length field that precedes the Sdesc field in
the object area is modified from 27 to 40. The object Length value in the header
record is changed from 246 to 259.

When FLGUpdatelnst completes, the value for UPDATEBY is modified to contain

the user ID used to update the instance, and UPDATIME is modified to contain the
time stamp of the update.

Chapter 5. DataGuide API call syntax 201

FLGUpdateReg

Authorization

Syntax

Parameters

Input structure

Modifies registration information in the DataGuide information catalog for a specific
object type.

This action does not update the object type itself; it updates the registration
information for the object type.

Administrator

APIRET APIENTRY FLGUpdateReg(PFLGHEADERAREA pObjRegStruct,
PSz pszlconFilelD,
PFLGEXTCODE pExtCode);

pObjRegStruct (PFLGHEADERAREA) — input
Points to the input structure that contains the property specifications and values
of the object type registration being updated.

pszlconFilelD (PSZ) — input
Contains the drive, directory path, and file name of the file that contains the
OS/2 ICON for the object type registration being updated. If this parameter is
NULL, then no change is made to the ICON. If specified, the OS/2 ICON is
added to the object type registration if an ICON does not currently exist or
replaces any existing ICON for the registration.

pExtCode (PFLGEXTCODE) — output
Points to an extended code associated with the reason code. See m

DataGuide reason cades” an page 223 to see if a meaningful extended code is

associated with the returned reason code.

Reason code (APIRET)
Represents the execution result of this API call.

See Appendix D_DataGuide reason codes” on page 229 for an explanation of

the returned reason codes.

To use FLGUpdateReg, you must define the input structure shown in m
. This structure contains only the header area and the definition area.

202 DataGuide Programming Guide and Reference

Usage

0 8 16 24 3233 39 160
object | obj area |c| object
FLG-HEAD | 00000960 | length entry al type <«— header
count t id area
0 80 110 118 126 127 128 160
EXTERNAL NAME OF OBJ TYPE |VARCHAR 00000080 | NAME R <«
PHYSICAL TYPE NAME CHAR 00000030 | PTNAME 0
DPNAME CHAR 00000008 | DPNAME R
definition
CREATOR CHAR 00000008 | CREATOR | S area
LAST CHANGED BY CHAR 00000008 |UPDATEBY| S
LAST CHANGED DATE AND TIME|TIMESTAMP 00000026 [UPDATIME| S <
value |[value value value
j object
value value area

Figure 158. FLGUpdateReg input structure

Restrictions

The registration information stored in the DataGuide information catalog by
FLGCreateReg consists of registration values, such as DP NAME, Physical
Type Name, External Name, and Icon, which describe the object type.
FLGUpdateReg can only update the External Name and Icon information.

You can only update an OS/2 icon using FLGUpdateReg. To update a
Windows icon, use FLGManagelcons (see L Z

After you define the object type using FLGCreateReg, you can issue
FLGUpdateReg or FLGManagelcons calls to change the icon that is
associated with the object type, or add an icon association if one was not
defined originally. You can also use FLGManagelcons to remove an icon
from an object type.

Prerequisites

Before issuing an FLGUpdateReg call, you must obtain the current values of the
registration information. You can either save this information from the original
FLGCreateReqg call, or issue an FLGGetReg call for the object type registration
being modified.

Input requirements

Header area
All of the information shown in the header record is required.

Definition area

The definition area must contain definitions for each of the six registration
properties. The definitions for each of these registration properties are fixed,
and all specifications other than those for the property name must be exactly

Chapter 5. DataGuide API call syntax 203

Examples

as shown in Eigure 158 on page 203. The property name is also fixed, but

might be translated from the English property name illustrated in the example
into any one of the supported languages.

— The properties (as identified by their property short names) must be specified
in the following order in the definition and object area:
1. NAME

PTNAME

DPNAME

CREATOR

UPDATEBY

UPDATIME

These properties are explained in LELGCreateReg” an page 73.

Object area

Only the value for NAME (EXTERNAL NAME OF OBJ TYPE) can be updated.
The NAME value must be unique within the local DataGuide information catalog.
The remaining property values cannot be modified. CREATOR, UPDATEBY, and
UPDATIME are system-generated values. DPNAME and PTNAME are the
unique identifiers of the object type, and cannot be updated. Values for
system-generated properties are generated when the object type itself is created
or appended.

The value for DPNAME must be specified and match the DPNAME of the
current object registration associated with the object type ID in the header area.

Controlling updates to your information catalog
To keep your program as synchronized as possible with your information

catalog, you should include a call to FLGCommit (see LELGCommit” on page 64)

after FLGUpdateReg completes successfully. If FLGUpdateReg does not
complete successfully, you should include a call to FLGRollback (see

FELGRolhack” 180),

IS L e S N

Eigure 159 on page 204 shows the C language code required to invoke the

FLGUpdateReg API call. This sample code updates the object type registration for
the MYIMAGE object type. The update modifies the value for the external name
property, NAME.

204 DataGuide Programming Guide and Reference

APIRET rc; // Declare reason code

PFLGHEADERAREA pObjRegStruct; // Pointer to the input structure
UCHAR pszIconFileID[FLG_ICON_FILE_ID_MAXLEN+1]; // Path/File name of ICON

FLGEXTCODE ExtCode=0; // Declare extended code

/* updating pObjRegStruct object type */
/* registration by providing an updated input structure =/

strcpy (pszIconFileID,"Y:\\FLGICON2.ICO");
rc = FLGUpdateReg (pObjRegStruct, // Pointer to updated Input Structure

pszIconFilelD, // Path/File name of file containing the ICON
&ExtCode); // Pass pointer to extended code

Figure 159. Sample C language call to FLGUpdateReg

m shows the input structure (pointed to by the pObjRegStruct pointer in the
C code) that carries the property and value information for the object type
registration information to be updated.

0 8 16 24 3233 39 160
FLG-HEAD | 00000960 | 00000160 |00000006 | E 000044 <+— header
area
0 80 110 118 126 127 160
4__
EXTERNAL NAME OF OBJ TYPE |VARCHAR 00000080 | NAME R
PHYSICAL TYPE NAME CHAR 00000030 | PTNAME 0
DP NAME CHAR 00000008 | DPNAME R
definition
CREATOR CHAR 00000008 |CREATOR | S area
LAST CHANGED BY CHAR 00000008 |UPDATEBY| S
LAST CHANGED DATE AND TIME|TIMESTAMP 00000026 |UPDATIME| S
4—

00000072MYIMAGE Object type for product specification i1lu
strations and Diagrams

object
MYIMAGEobjectTYPE MYIMAGE area

PRIME-KA PRIME-KA 1994-06-30-10.00.00.000000

Figure 160. Sample input structure for FLGUpdateReg

In this example, the values in the object areas corresponding to system-generated
properties (CREATOR, LAST CHANGED BY, and LAST CHANGED DATE AND
TIME) cannot be updated and are ignored by FLGUpdateReg. We show them here
because one way of generating the input structure is to issue FLGGetReg to get the
current definition and values and use the output structure from that API call as a
template for this FLGUpdateReg input structure.

Chapter 5. DataGuide API call syntax 205

Bytes 33 through 38 of the header area contain the object type ID (000044) of the
object type for which registration information is being updated.

206 DataGuide Programming Guide and Reference

FLGWhereUsed

Retrieves a list of Grouping object instances that contain a specific object instance.

Authorization
Administrator or user
Syntax
APIRET APIENTRY FLGWhereUsed(PSZ pszFLGID,
PFLGHEADERAREA * ppListStruct,
PFLGEXTCODE pExtCode);
Parameters

pszFLGID (PSZ) — input
Points to the system-generated unique ID for the contained instance (16
characters).

Characters 1-6 of this ID identify the object type of this instance.

Characters 7-16 of this ID are the system-generated unique instance identifier.

ppListStruct (PFLGHEADERAREA) — output
Points to the address of the pointer to the output structure listing the container
objects.

The output structure includes some property specifications and the property
values of the container objects. Each container object has the following
information:

* FLGID (16 characters)

* Name (80 characters)

All instances are first sorted by object type name, and then sorted by Name; the
actual order of the instances depends on the collating sequence used by the
database management system for the DataGuide information catalog.

The maximum number of object instances that can be returned by
FLGWhereUsed is approximately 5000, depending on the storage available on
your machine.

When there is no output structure, the pointer to the structure is set to NULL.

pExtCode (PFLGEXTCODE) — output
Points to an extended code associated with the reason code. See IiAppTLx_DJ

DataGuide reason codes” on page 229 to see if a meaningful extended code is

associated with the returned reason code.

Reason code (APIRET)
Represents the execution result of this API call.

See [Appendix D _DataGuide reason codes” on page 229 for an explanation of

the returned reason codes.

Chapter 5. DataGuide API call syntax 207

Output structure

Usage

Examples

208

FLGWhereUsed produces an output structure containing a list of objects that
contain the specified object, as shown in

The object area of the output structure contains a list of all the Grouping objects
that contain the specified object instance. The returned object instances are
identified by the values of the FLGID and object instance external name.

0 8 16 24 32 160
object obj area <+— header
FLG-HEAD | 00000320 length entry area
count
0 80 110 118 160
FLGID CHAR 00000016 definition
::] area
Name VARCHAR 00000080

FLGID valuel

Name_valuel

FLGID value2

Name_value2

object
area

FLGID value3

Name_value3

Figure 161. FLGWhereUsed output structure

Freeing memory allocated for an output structure

If FLGWhereUsed returned data in the output structure, you must save the data
returned in the output structure and then call FLGFreeMem (see

). Do not use other methods, for example, C language instructions,
to free memory.

Eigure 162 on page 209 shows the C language code required to invoke the

FLGWhereUsed API call. This sample code invokes the FLGWhereUsed API call.

DataGuide Programming Guide and Reference

APIRET rc; // reason code from FLGWhereUsed

UCHAR pszFLGID[FLG_ID LEN + 1]; // DataGuide ID
PFLGHEADERAREA * ppListStruct; // pointer to output structure pointer

FLGEXTCODE ExtCode=0; // extended code
/* provide values for input parameters */

strcpy (pszFLGID, "0000770000003333");

rc = FLGWhereUsed (pszFLGID,

ppListStruct, // address of output structure pointer
&ExtCode);

Figure 162. Sample C language call to FLGWhereUsed

Eigure 163 shows the resulting output structure.

0 8 16 24 32 160
FLG-HEAD | 00000320 | 00000117 | 00000006 <— header
area
0 80 110 118 160
FLGID CHAR 00000016 definition
j area
Name VARCHAR 00000080

0000560000005555|00000008AAA CLUB

object
0000560000001234 | 00000012IEEE SOCIETY area

0000220000008888 |00000025MMM INTERNATIONAL COMPANY

Figure 163. Sample output structure for FLGWhereUsed
The specified object instance is contained by three instances in two different object

types. The object type name for the object type ID 000056 is alphabetically less
than the object type name for the object ID 000022, and therefore appears first.

Chapter 5. DataGuide API call syntax 209

FLGXferTagBuf

Authorization

Syntax

Parameters

Usage

Transfers the delete history, which is a log of delete activity, to a tag file to duplicate
the deletions in other information catalogs, for example, “shadow” information
catalogs in a distributed environment.

Administrator

APIRET APIENTRY FLGXferTagBuf(PSZ pszTagFilelD,
FLGOPTIONS Options,
PFLGEXTCODE pExtCode);

pszTagFilelD (PSZ) — input
Points to the name of the output tag language file. This parameter is required.

For OS/2, this parameter contains the drive, directory path, and file name, and
must be valid for a file allocation table (FAT) or HPFS file. The file name and
extension (excluding the drive and directories) cannot exceed 240 characters.

The target drive for this file can be either a fixed or removable disk.

Options (FLGOPTIONS) — input
Choose one of the following options for the file to which you want to transfer the
delete history:

FLG_TAGOPT_NEW
Create a new file

FLG_TAGOPT_REPLACE
Replaces an existing file

pExtCode (PFLGEXTCODE) — output
Points to an extended code associated with the reason code. See ILAppTdix_DJ

DataGuide reason codes” an page 228 to see if a meaningful extended code is

associated with the returned reason code.

Reason code (APIRET)
Represents the execution result of this API call.

See Appendix D _DataGuide reason codes” on page 229 for an explanation of

the returned reason codes.

FLGXferTagBuf terminates abnormally when the target disk is full, even if the
disk is removable.

To protect against erroneous deletions in other information catalogs, you should
examine the contents of a delete history tag file before importing it to any other
information catalog, especially if you have deleted Grouping object instances, or
object types.

210 DataGuide Programming Guide and Reference

Examples

m shows the C language code required to issue the FLGXferTagBuf call.
This sample code creates the file c:\sampdel.tag, to which it then transfers the
delete history.

APIRET rc; // reason code from API
PSZ pszTagFile = "c:\\sampdel.tag";
FLGEXTCODE xc=0; // extended code
FLGOPTIONS Options=0;

) /* */

Options=Options | FLG_TAGOPT NEW;

rc = FLGXferTagBuf (pszTagFile,
Options,
&xc);

Figure 164. Sample C language call to FLGXferTagBuf

Chapter 5. DataGuide API call syntax 211

Appendix A. Sample program DG2SAMP.C

DataGuide provides a sample program, DG2SAMP.C, that you can compile, link,
and run. DG2SAMP.C is in your DG2LIB\LIB directory on the drive where
DataGuide is installed. This sample program lets the user change the name of an
object instance by:

1.

2.
3.
4

Getting a list of the object types in your DataGuide information catalog
Finding the object you are looking for if it exists

Getting information about the instance

Updating the value of the Name property.

This program issues the following API calls:

FLGCommit
FLGFreeMem
FLGGetInst
FLGInit
FLGLIistObjTypes
FLGRollback
FLGSearch
FLGTerm
FLGTrace
FLGUpdatelnst

Compiling DG2SAMP.C

To compile DG2SAMP.C using Microsoft Visual C++ Compiler you need to issue the
following command while in the same directory as DG2SAMP.C:

cl /c DG2SAMP.C

Linking DG2SAMP.C

To link your Microsoft Visual C++ Compiler program, issue the following command
while in the same directory as DG2SAMP.C:

Tink /d11 dgwapi.lib dg2samp.obj

Executing DG2SAMP.C

This example uses the DGSAMPLE DataGuide information catalog provided with
DataGuide, and assumes that you have administrator authorization to this
DataGuide information catalog.

1.

2.
3.
4

Enter the command DG2SAMP.

Enter your user ID.

Enter your password.

Enter the name of the DataGuide information catalog.

For this scenario, enter: DGSAMPLE

Enter the external name of the object type of the object you want to change.
For this scenario, enter: Business groupings

© Copyright IBM Corp. 1994, 1998 213

Executing DG2SAMP-C

6. Enter the external name of the object you want to change.
For this scenario, enter: Billings

7. Enter the new external name of the object.
For this scenario, enter: Account payment histories

214 DataGuide Programming Guide and Reference

Appendix B. DataGuide API header file — DG2APIH

DataGuide provides a header file, DG2API.H that defines the function prototypes of
API calls, constants, and data types required for C language applications that use
DataGuide API calls.

DG2API.H is installed in the VWSLIB\LIB directory on the drive where you installed
DataGuide.

To use the definition types defined in DG2API.H with DataGuide for Windows, you
need to include in your program the WINDOWS.H header file included with
Microsoft Visual C++ Compiler.

Constants defined in DG2API.H

Table 20 on page 216 contains variables defined for programs that use DataGuide
application program interface calls to access DataGuide functions.

© Copyright IBM Corp. 1994, 1998 215

Constants defined in DG2API-H

Table 20. Constants defined in DG2API.H

Input or output structure header Bytes Defines length of:

area constants

FLG_H_IDENT_LEN 8 Structure identifier (FLG-HEAD)

FLG_H_DEFAREA_LEN 8 Definition length

FLG_H_OBJAREA_LEN 8 Object area length

FLG_H_OBJAREAENT_LEN 8 Object area entry count

FLG_H_CATEGORY_LEN 1 Category

FLG_H_OBJTYPID_LEN 6 Object type ID

FLG_H_RESERVED_LEN 121 Reserved area

FLG_HEADER_SIZE 160 Header area

Input or output structure definition Bytes Defines length of:

area lengths

FLG_D_PROPNM_LEN 80 Property name

FLG_D_DATATYP_LEN 30 Data type value

FLG_D_DATA_LEN 8 Data length value

FLG_D_PPN_LEN 8 Property short name

FLG_D_VF_LEN 1 Value flag

FLG D _US LEN 1 UUI sequence number

FLG D _CS_LEN 1 Case- sensitivity flag

FLG_D_FS _LEN 1 Fuzzy-search flag

FLG_D RESERVED_LEN 30 Reserved area

FLG_DEFINITION_SIZE 160 Definition area record

DataGuide string lengths Byte length Defines length of:

FLG_OBJTYPID_LEN 6 Object type ID

FLG_INSTIDNT_LEN 10 Instance ID

FLG_INST_NAME_LEN 80 Instance name

FLG_UPDATIME_LEN 26 Time stamp for when the object type
is created or updated

FLG_UPDATEBY_LEN 8 User ID of the person who performed
the update

FLG_ID_LEN 16 FLGID value

FLG_EXTERNAL_NAME_LEN 80 Object type external name

FLG_PTNAME_LEN 30 Object type physical type name

FLG_DPNAME_LEN 8 Object type short name

FLG_CREATOR_LEN 8 User ID of the creator of the object
type

FLG_USERID_LEN 8 Log on user ID

FLG_PASSWORD_LEN 8 Log on password

FLG_DATABASENAME_LEN 8 Name of the DataGuide database

FLG_VARIABLE_DATA_LENGTH_LEN 8

Length field for VARCHAR and LONG
VARCHAR values

Data type maximum lengths Bytes Defines maximum length for:
FLG_CHAR_MAXLEN 254 CHAR data type
FLG_VARCHAR_MAXLEN 4000 VARCHAR data type
FLG_LONG_VARCHAR_MAXLEN 32700 LONG VARCHAR data type
FLG_TIMESTAMP_MAXLEN 26 TIMESTAMP data type
Maximum values Value Defines maximum for:
FLG_REG_NUM_PROPERTIES 6 Number of registration properties

E&%—IWJ@-ﬂB@MQ%ﬁ%wde and %@%rence

FLG_TAG_FILE_ID_MAXLEN

259

Length of the path, file name, and
extension of the icon file
Length of the path, file name, and

DL T T P 21

Structure and data type definitions in DG2API.H

[able 21 and [able 22 contain definitions for structures and data types used with
DataGuide API calls.

Table 21. Structure definitions

Header area Description
typedef struct FLG HEADER AREA { Defines a structure containing all the
UCHAR pchHIdent [FLG_H_IDENT_LEMementd§ pf the header area for a DataGuide

UCHAR pchHDefLength [
UCHAR pchHObjLength [FLG_H OBJAREA L
UCHAR pchHObjEntryCount [FLG_H_OBJAREAENT_LEN J;
UCHAR pchHCategory [FLG_H_CATEGORY_LEN 1];
UCHAR pchHObjTypeld [FLG_H_OBJTYPID LEN 1
UCHAR pchHReserved [FLG_H_RESERVED_LEN 13
} FLGHEADERAREA;
#ifdef WINDOWS

typedef FLGHEADERAREA _ huge *PFLGHEADERAREA;
#else

typedef FLGHEADERAREA *PFLGHEADERAREA;
#endif

FLG_H_DEFAREAJh?{Hjt or j]mtput structure

Definition area Description

typedef struct FLG _DEFINITION_AREA { Defines a structure containing all the
UCHAR pchDPropName [FLG_D_PROP&MMENKts df;a definition area record for a

UCHAR pchDDataType [FLG_D_DATAD%RaERNdelinput or output structure
UCHAR pchDDatalength [FLG D DATA LEN 13
UCHAR pchDTagName [FLG_D_PPN_LEN 1s
UCHAR pchDVF [FLG_D_VF _LEN 1;
UCHAR pchDUS [FLG_D_US_LEN 1;
UCHAR pchDCS [FLG D CS_LEN 1;
UCHAR pchDFS [FLG_D_FS_LEN 1:
UCHAR pchDReserved [FLG_D RESERVED LEN];

} FLGDEFINITIONAREA;
#ifdef WINDOWS

typedef FLGDEFINITIONAREA _ huge *PFLGDEFINITIONAREA;
#else

typedef FLGDEFINITIONAREA *PFLGDEFINITIONAREA;
#endif

Table 22. Data type definitions

Synonyms for data types Data types

FLGRELOPTION UCHAR—unsigned character

FLGRELTYPE UCHAR—unsigned character

FLGTRACEOPTION ULONG—unsigned long integer

FLGIDLENGTH ULONG—unsigned long integer

FLGOPTIONS ULONG—unsigned long integer

PFLGOPTIONS * FLGOPTIONS—pointer to unsigned long
integer

FLGADMIN UCHAR—unsigned character

FLGRESTARTOPTION UCHAR—unsigned character

FLGEXTCODE LONG—Ilong integer

PFLGEXTCODE * FLGEXTCODE—pointer to long integer

Appendix B. DataGuide API header file — DG2APIH 217

DataGuide API call function prototypes

[able 23 defines the function prototypes for DataGuide API calls.

Table 23. DataGuide API call function prototypes

FLGAppendType

APIRET APIENTRY

FLGAppendType(PFLGHEADERAREA

PFLGEXTCODE

pObjTypeStruct,
pExtCode);

FLGCommit

APIRET APIENTRY

FLGCommit(PFLGEXTCODE

pExtCode);

FLGConvertlD

APIRET APIENTRY

FLGConvertID(PSZ
PSz
FLGOPTIONS
PFLGEXTCODE

pszInBuffer,
pszOutBuffer,
Options,
pExtCode);

FLGCreatelnst

APIRET APIENTRY

FLGCreateInst(PFLGHEADERAREA

PSz
PFLGEXTCODE

pObjInstStruct,
pszFLGID,
pExtCode);

FLGCreateReg

APIRET APIENTRY

FLGCreateReg(PFLGHEADERAREA
pSz
PSz
PFLGEXTCODE

pObjRegStruct,
pszIconFilelD,
psz0bjTypelD,
pExtCode);

FLGCreateType

APIRET APIENTRY

FLGCreateType(PFLGHEADERAREA
PFLGEXTCODE

pObjTypeStruct,
pExtCode);

FLGDeletelnst

APIRET APIENTRY

FLGDeleteInst(PSZ

pszFLGID,

PFLGEXTCODE pExtCode);
FLGDeleteReg
APIRET APIENTRY FLGDeleteReg(PSZ psz0bjTypelD,
PFLGEXTCODE pExtCode);

FLGDeleteTree

APIRET APIENTRY

FLGDeleteTree(PSZ
FLGOPTIONS
PFLGHEADERAREA
PFLGEXTCODE

pszFLGID,
Options,

* ppListStruct,
pExtCode);

FLGDeleteType

APIRET APIENTRY

FLGDeleteType(PSZ
PFLGEXTCODE

psz0bjTypelD,
pExtCode);

FLGDeleteTypeExt

APIRET APIENTRY

FLGDeleteTypeExt(PSZ
PFLGEXTCODE

psz0bjTypelD,
pExtCode);

FLGExport

218

DataGuide Programming Guide and Reference

DataGuide API call function prototypes

Table 23. DataGuide API call function prototypes (continued)

APIRET APIENTRY

FLGExport(PSZ
PSz
PSz
PFLGHEADERAREA
PFLGEXTCODE

pszTagFilelD,
pszLogFilelD,
pszIcoPath,
pListStruct,
pExtCode);

FLGFoundIn

APIRET APIENTRY

FLGFoundIn(PSZ
FLGOPTIONS

pszFLGID,
Options,

PFLGHEADERAREA * ppListStruct,

PFLGEXTCODE

pExtCode);

FLGFreeMem

APIRET APIENTRY

FLGFreeMem(PFLGHEADERAREA
PFLGEXTCODE

pFLGOutputStruct,
pExtCode);

FLGGetlInst

APIRET APIENTRY

FLGGetInst(PSZ

pszFLGID,

PFLGHEADERAREA * ppObjInstStruct,

PFLGEXTCODE

pExtCode);

FLGGetReg

APIRET APIENTRY

FLGGetReg(PSZ
PSz
PFLGHEADERAREA *
PFLGEXTCODE

psz0bjTypelD,
pszIconFilelD,
ppObjRegStruct,
pExtCode);

FLGGetType

APIRET APIENTRY

FLGGetType(PSZ
PFLGHEADERAREA
PFLGEXTCODE

psz0bjTypelD,
* ppObjTypeStruct,
pExtCode);

FLGImport

APIRET APIENTRY

FLGImport(PSZ
pPSz
PSz
FLGRESTARTOPTION
PFLGEXTCODE

pszTagFilelD,
pszLogFilelD,
pszIcoPath,
RestartOpt,
pExtCode);

FLGInit

APIRET APIENTRY

FLGInit(PSZ pszUserID,
PSz pszPassword,
PSZ pszDatabaseName,
FLGADMIN Admin,

PFLGHEADERAREA * ppListStruct,

PFLGEXTCODE

pExtCode);

FLGListAnchors

APIRET APIENTRY

FLGListAnchors(PFLGHEADERAREA * ppListStruct,

PFLGEXTCODE

pExtCode);

FLGListAssociates

APIRET APIENTRY

FLGListAssociates(PSZ

FLGOPTIONS

pszInBuffer,
Options,

PFLGHEADERAREA * ppListStruct,

PFLGEXTCODE

pExtCode);

FLGListContacts

Appendix B. DataGuide API header file — DG2APIH

219

DataGuide API call function prototypes

Table 23. DataGuide API call function prototypes (continued)

APIRET APIENTRY

FLGListContacts(PSZ

pszFLGID,

PFLGHEADERAREA * ppListStruct,

PFLGEXTCODE

pExtCode);

FLGListObjTypes

APIRET APIENTRY

FLGListObjTypes(PFLGHEADERAREA * ppListStruct,

PFLGEXTCODE

pExtCode);

FLGListOrphans

APIRET APIENTRY

FLGListOrphans(PSZ
FLGOPTIONS
PFLGHEADERAR
PFLGEXTCODE

pszObjTypelD,
Options,

EA * ppListStruct,
pExtCode);

FLGListPrograms

APIRET APIENTRY

FLGListPrograms(PSZ
PFLGHEADERAR
PFLGEXTCODE

psz0bjTypelD,
EA * ppListStruct,
pExtCode);

FLGManageCommentStatus

APIRET APIENTRY FLGManageCommentStatus(FLGOPTIONS Action,
FLGHEADERAREA * pStatusStruct,

PFLGHEADERAREA * ppStatusStruct,

220

PFLGEXTCODE pExtCode);
FLGManageFlags
APIRET APIENTRY FLGManageFlags(FLGOPTIONS Action,
FLGOPTIONS FlagType,
UCHAR chValue,
UCHAR * pchValue,
PFLGEXTCODE pExtCode);

FLGManagelcons

APIRET APIENTRY

FLGManageIcons(PSZ
PSz
FLGOPTIONS
PFLGOPTIONS
PFLGEXTCODE

psz0ObjTypelD,
pszIconFilelD,
InOptions,
pOutOptions,
pExtCode);

FLGManageTagBuf

APIRET APIENTRY

FLGManageTagBuf(FLGOPTIONS
PFLGOPTIONS
PFLGEXTCODE

InOptions,
pOutOptions,
pExtCode);

FLGManageUsers

APIRET APIENTRY

FLGManageUsers(FLGOPTIONS
PFLGHEADERAR
PFLGHEADERAR
PFLGEXTCODE

Options,
EA pListStruct,
EA * ppListStruct,
pExtCode);

FLGMdisExport

APIRET APIENTRY

FLGMdisExport(PSZ

pszTagFileName,

PSz pszLogFileName,
pPSz psz0bjTypeName,
pPSz pszObjectName,
PFLGEXTCODE pExtCode);

DataGuide Programming Guide and Reference

DataGuide API call function prototypes

Table 23. DataGuide API call function prototypes (continued)
FLGMdisImport

APIRET APIENTRY FLGMdisImport(PSZ pszTagFilelD,
PSz pszLogFilelD,
PFLGEXTCODE pExtCode);
FLGNavigate
APIRET APIENTRY FLGNavigate(PSZ pszFLGID,
PFLGHEADERAREA * ppListStruct,
PFLGEXTCODE pExtCode);
FLGOpen
APIRET APIENTRY FLGOpen(PSZ pszPgmFLGID,
PSZ pszObjFLGID,
PFLGEXTCODE pExtCode);
FLGRelation
APIRET APIENTRY FLGRelation(PSZ pszSrcFLGID,
PSZz pszTrgFLGID,
FLGRELTYPE RelType,
FLGRELOPTION RelOpt,
PFLGEXTCODE pExtCode);
FLGRollback
APIRET APIENTRY FLGRo11back(PFLGEXTCODE pExtCode);
FLGSearch
APIRET APIENTRY FLGSearch(PSZ psz0bjTypelD,

PFLGHEADERAREA pSelCriteriaStruct,
PFLGHEADERAREA * ppListStruct,
PFLGEXTCODE pExtCode);

FLGSearchAll

APIRET APIENTRY FLGSearchA11(PFLGHEADERAREA pSelCriteriaStruct,
PFLGHEADERAREA * ppListStruct,
PFLGEXTCODE pExtCode);

FLGTerm

APIRET APIENTRY FLGTerm(PFLGEXTCODE pExtCode);

FLGTrace

APIRET APIENTRY FLGTrace(FLGTRACEOPTION TraceOpt,
PFLGEXTCODE pExtCode);

FLGUpdatelnst

APIRET APIENTRY FLGUpdateInst(PFLGHEADERAREA pObjInstStruct,

PFLGEXTCODE pExtCode);
FLGUpdateReg
APIRET APIENTRY FLGUpdateReg(PFLGHEADERAREA pObjRegStruct,
PSz pszIconFilelD,
PFLGEXTCODE pExtCode);
FLGWhereUsed
APIRET APIENTRY FLGWhereUsed(PSZ pszFLGID,
PFLGHEADERAREA = ppListStruct,
PFLGEXTCODE pExtCode);

Appendix B. DataGuide API header file — DG2APIH 221

DataGuide API call function prototypes

Table 23. DataGuide API call function prototypes (continued)
FLGXferTagBuf

APIRET APIENTRY FLGXferTagBuf(PSZ pszTagFilelD,
FLGOPTIONS Options,
PFLGEXTCODE pExtCode);

222 DataGuide Programming Guide and Reference

Appendix C. DataGuide limits

fable 24 describes certain DataGuide limits.
Table 24. DataGuide limits

DataGuide values Limit

Longest DataGuide database name 30 characters

Longest DataGuide physical table name (PT 30 characters
NAME)

Longest physical table name (PT NAME) with 18 characters
DB2 for OS/2

Longest physical table name (PT NAME) with 18 characters

DB2 for MVS

Longest UUI property value length 254 bytes
Maximum for total of five UUI property value 1270 bytes
lengths

Largest DataGuide object type icon 30000 bytes
Most properties in an object type 255

Most properties with LONG VARCHAR data 14
type in a DataGuide object type

Longest search criteria length for a LONG 3000 bytes
VARCHAR property

Maximum number of unique object types 3500
processed with ACTION.OBJTYPE() tags in a
single tag language file

Maximum number of objects returned for the 1600
following API calls:

FLGListAnchors
FLGListOrphans

Maximum number of objects returned for the 5000
following API calls:

FLGFoundIn
FLGListAssociates
FLGListContacts
FLGListPrograms
FLGNavigate
FLGSearch
FLGSearchAll
FLGWhereUsed

© Copyright IBM Corp. 1994, 1998 223

Appendix D. DataGuide reason codes

[fahle 29 contains all the reason codes produced by DataGuide. The reason codes
are ordered by number, and include the mnemonic name, the extended code, and
an explanation of what condition produces the reason code.

Certain reason codes produce extended codes, which provide more information
about the error situation. If a reason code returns an extended code, the possible
meanings of the extended code are listed.

Table 25. DataGuide reason codes

Number

Reason code Extended codes Explanation

0

FLG_OK — Completed successfully.

1

FLG_WRN — Place holder; indicates the
beginning of the numeric
range for warnings.

201

FLG_WRN_DISCONNECTED— The database has been
disconnected.

202

FLG_WRN_DBM_ALREADY_STARTED The database manager was
already started before
DataGuide initialization.

203

FLG_WRN_DB_RESTART — The database manager
needed to be restarted
before DataGuide
initialization.

204

FLG_WRN_DB_ACTIVE — The specified database
manager was already active
before DataGuide
initialization.

1001

FLG_WRN_INST_NOTFOUNDB— Unable to find the object
instance (also used by
FLGListOrphans,
FLGFoundIn,
FLGListAssociates, and
FLGEXxport).

1002

FLG_WRN_CONTAINER_NOF-OUND Unable to find a container
for the specified object
instance.

1003

FLG_WRN_CONTAINEE_NOH-OUND Unable to find any objects
contained by the specified
object instance.

1004

FLG_WRN_CONTACT_NOTFOUND Unable to find a contact for
the specified object
instance.

1005

FLG_WRN_PROGRAM_NOTFOUND Unable to find a program
associated with this object

type.

© Copyright IBM Corp. 1994, 1998 225

DataGuide reason codes

Table 25. DataGuide reason codes (continued)

Number Reason code Extended codes

Explanation

1006

FLG_WRN_ANCHOR_NOTFGUYND

Unable to find any anchors
(subjects) defined in the
DataGuide database.

1007

FLG_WRN_PROGRAM_CHANGED

One or more associated
program instances were
changed when the object
type was deleted.

1008

FLG_WRN_NO_INPARM_ICON- FILE

FLGGetReg API call did not
specify a pointer to receive
the name of the retrieved
icon file. DataGuide did not
return an icon.

1009

FLG_WRN_NO_ICON —

No icon associated with the
object type.

1010

FLG_WRN_ID_LIMIT_REACHED

Reached the maximum
number of object types limit.

1011

FLG_WRN_OBJECT NOT_CHANGED

Reserved

1012

FLG_WRN_EXCEED_MAX_ANGH@RNdber of anchors

Unable to return all anchors
(subjects) defined in the
DataGuide database.

1013

FLG_WRN_ICON_REPLACED—

An icon file already existed
in the specified ICOPATH.
The icon file was replaced.

1014

FLG_WRN_PROPDUP —

The property to be
appended already exists.

1015

FLG_WRN_EXCEED_MAX_OR®RttANMNIUNer of orphans

Exceeded the maximum
number of orphans.

1016

FLG_WRN_DB_ICON_REPLAGED

The object type icon has
been replaced in the
catalog.

1017

FLG_WRN_LINKOBJ_NOTFOUYND

Unable to find a linked
object for the specified
object instance.

1018

FLG_WRN_ATTACHOBJ_NOFFOUND

Unable to find attachment
objects for the specified
object instance.

1019

FLG_WRN_MISSING_PROPS—N_IOSTRUCT

The input structure contains
less properties than that
defined for the object type.
All missing properties are
optional. Object instance is
created/updated.

226

DataGuide Programming Guide and Reference

DataGuide reason codes

Table 25. DataGuide reason codes (continued)

Number Reason code Extended codes Explanation

2002 FLG_WRN_NO_DISKCNTL_TAG_PRESENTED DISKCNTL is not the first
tag in the input tag
language file on a
removable device. Importing
continues, but only the tag
language file on the current
diskette is processed.

2003 FLG_WRN_NEED_NEW_TAGHLE_DISKETTE Insert the next diskette to
continue importing the tag
language file.

2004 FLG_WRN_ICONFILE_OPENERR Reserved

2005 FLG_WRN_NOTHING_TO_ IMRORT Unable to find any data to

import in the tag language
file or in the part of the tag
language file after the last
checkpoint. The file or part
of the file may be empty or
contain only COMMENT or
DISKCNTL tags.

2006 FLG_WRN_ICONFILE_RETRIRY&SdERROR AP| FLGCreateReg or
FLGUpdateReg
encountered an error while
retrieving (opening, reading,
or closing) the icon file
specified in parameter
pszlconFilelD. The reason
code returned in the
extended code indicates the
error. FLGCreateReg and
FLGUpdateReg have
completed all other
registration processing
successfully.

2007 FLG_WRN_P_HANDLES CLEARED FLGImport cleared the
HANDLES property value
for a program instance,
because this value refers to
an object type that does not
exist in the target
information catalog.

2501 FLG_WRN_CFLAG_IGNOREB- CONTAINEE-IND value for
the exported object was
ignored because the object
does not belong to the
Grouping category.

2502 FLG_WRN_TFLAG_IGNOREDB— CONTACT-IND value for the
exported object was ignored
because the object does not
belong to the Grouping or
Elemental categories.

Appendix D. DataGuide reason codes 227

DataGuide reason codes

Table 25. DataGuide reason codes (continued)

Number Reason code Extended codes

Explanation

2503

FLG_WRN_NO_ICOPATH —

No icon path was specified,;
no icons were exported.

2504

FLG_WRN_GETREG_WARNIRE&ason code

Export encountered a
warning from FLGGetReg.
The extended code contains
the reason code returned by
FLGGetReg.

2505

FLG_WRN_GETINST_WARNIR&ason code

Export encountered a
warning from FLGGetlInst.
The extended code contains
the reason code returned by
FLGGetlInst.

2506

FLG_WRN_LISTCONTACTS_R&sRbiNGde

Export encountered a
warning from
FLGListContacts. The
extended code contains the
reason code returned by
FLGListContacts.

2507

FLG_WRN_NAVIGATE_WARMB&EZ30n code

Export encountered a
warning from FLGNavigate.
The extended code contains
the reason code returned by
FLGNavigate.

2508

FLG_WRN_AFLAG_IGNOREDB—

ATTACHMENT-IND value
for the exported object was
ignored because the object
is in the Attachment
category and cannot have
associated attachment
objects.

2509

FLG_WRN_LFLAG_IGNORED—

LINK-IND value for the
exported object was ignored
because the object does not
belong to the Grouping or
Elemental categories.

2601

FLG_WRN_NO_HISTORY —

There is no history entry in
the history bulffer.

2602

FLG_WRN_NO_TYPE_RELAFE_TO_PROGRAM

There is no object type
related to the program
instance.

7500

FLG_WRN_VIEW_NOT_SUPRORTED

View "T" is specified in the
Tool profile, but this function
is not supported in
DataGuide Version 3.1.

7501

FLG_WRN_LEVEL_NOT_SURRORTED

Level "T" is specified in the
Tool profile, but this function
is not supported in
DataGuide Version 3.1.

228

DataGuide Programming Guide and Reference

DataGuide reason codes

Table 25. DataGuide reason codes (continued)

Number Reason code Extended codes Explanation

7505 FLG_WRN_NO_ BEGIN_DEFINITION_SECTION The BEGIN DEFINITION
section is missing from the
tag language file.

7510 FLG_WRN_VALUE_TRUNCAFED A value is truncated
because it exceeded the
maximum allowable length.

7515 FLG_WRN_INV_TIMESTAMP—+ORMAT A date or time value does
not follow the correct format.

Format for date values:
YYYY-MM-DD.

Format for time values:
HH.MM.SS

Format for refresh date
values:
YYYY-MM-DD-HH.MM.SS.

30000 FLG_ERR — Place holder; indicates the
beginning of the numeric
range for errors.

30001 FLG_ERR_INVALID_NUM_STR The numeric string passed
to DataGuide as input is
invalid.

30002 FLG_ERR_INVALID_NUMBER— The integer value passed to
DataGuide as input is too
large.

30003 FLG_ERR_BUFF_TOO_SMAI+ DataGuide internal error.

30004 FLG_ERR_MSGFILE_NOTFOUND Unable to locate the

DataGuide message file
(DGXYMSG.MSG or
DGxySTR.MSG, where x is
the platform identifier and y
is the national language
version identifier).

This file must be in the
DataGuide working

directory.

30005 FLG_ERR_MSGID_NOTFOUNB The message identifier
could not be located in the
message file.

30006 FLG_ERR_CANT_ACCESS_MSGFILE Unable to open the

DataGuide message file.

Appendix D. DataGuide reason codes 229

DataGuide reason codes

Table 25. DataGuide reason codes (continued)

Number Reason code Extended codes

Explanation

30007 FLG_ERR_INVALID_MSGFILE-FORMAT

The message file
(DGXxyMSG.MSG or
DGxySTR.MSG, where x is
the platform identifier and y
is the national language
version identifier) is
corrupted or invalid.

Reinstall the affected file.

30008 FLG_ERR_MSGFILE_ERROR—

DataGuide internal error.

30009 FLG_ERR_TRACE_FAIL —

An error occurred in the
DataGuide trace function.
The trace file may be
corrupted or incomplete.

30010 FLG_ERR_INTERNAL_ERROR-; Reason code

DataGuide encountered an
internal error.

Check the reason code
returned in the extended
code and try to remedy the
problem; if this is
unsuccessful, call your IBM
Service Representative.

30011 FLG_ERR_RESDLL_NOT_LOADED

Language DLL file is not
found.

30012 FLG_ERR_DGPATH_NOT_FGUND

Environment path
(DG2PATH) was not set in
the CONFIG.SYS file.

Environment path
(DGWPATH) was not set in
either the system registry or
the AUTOEXEC.BAT file.

30013 FLG_ERR_CP_LOAD_FAILED—

The primary and secondary
code pages specified in
your CONFIG.SYS file are
not supported by
DataGuide.

30014 FLG_ERR_DBSEM_ERROR —

DataGuide internal error
(can’t get database
semaphore).

30015 FLG_ERR_STRINGFILE_ERROR

Reserved

30016 FLG_ERR_MSG_TOO_LONG—

DataGuide internal error.

30017 FLG_ERR_DG_DB_INUSE —

User tried to log on to the
same DataGuide database
twice.

30018 FLG_ERR_DGLANG_PATH_NOT_FOUND

DataGuide language
dependent directory path
cannot be found.

230 DataGuide Programming Guide and Reference

DataGuide reason codes

Table 25. DataGuide reason codes (continued)

Number Reason code Extended codes Explanation

30019 FLG_ERR_INV_DG_CP — The code pages specified
on the workstation are not
supported by DataGuide.

30020 FLG_ERR_INV_DB_CP — The code pages specified
on the workstation are not
supported by the database.

30021 FLG_ERR_VWSPATH_NOT_FOUND Environment path
(VWSPATH) was not set in
either the system registry or
the AUTOEXEC.BAT file.

31000 FLG_ERR_DBERROR Database SQLCODE An unexpected database
error has occurred. See the
database documentation for
an explanation of the

SQLCODE.

31001 FLG_ERR_DBDISC_FAIL — Error occurred while
disconnecting from the
database.

31002 FLG_ERR_NODBACCESS — You cannot access the
specified DataGuide
database.

Ask the administrator or
database administrator for
the database authorization
you need.

31003 FLG_ERR_ID_LIMIT_EXCEEDBED The system-generated 1D
(object type ID or instance
ID) exceeds the maximum
number of IDs allowed in
the DataGuide database.

This limit is 99999999 for
object instance IDs, and
999999 for object type IDs.

31004 FLG_ERR_PROP_LIMIT_EXGEEDED Exceeded the maximum
number of properties (255)
allowed for an object type.

31005 FLG_ERR_LONG_VARCHAR —LINH&qEXCE BDEDer of Exceeded the maximum
property number of LONG
VARCHAR properties (14)
allowed for an object type.

31006 FLG_ERR_PTNAME_EXCEEBS_ENVSIZE The physical type name for
the object type exceeds the
maximum length allowed.
This maximum length
depends on the underlying
database you are using.

Appendix D. DataGuide reason codes 231

DataGuide reason codes

Table 25. DataGuide reason codes (continued)

Number Reason code Extended codes

Explanation

31007

FLG_ERR_DBNAME_NOT_FGUND

Unable to find DataGuide
database. If the database is
local, the database name
was not found. If the
database is remote, the
database name was not
defined in the local
database directory.

31008

FLG_ERR_SRH_CRITERIA_TSOLONG

The total length of the
search criteria is too long.
The maximum length for the
sum of the lengths for all
specified search criteria is
about 32700 bytes,
depending on the number of
properties in the search
criteria.

31009

FLG_ERR_DB_TRANSLOG_FUYLL

The database transaction
log is full.

Issue FLGCommit or
FLGRollback immediately.
Increase the database log
file size to increase the
number of changes possible
before you need to commit
the changes.

31010

FLG_ERR_INVALID_AUTHENHCATION

The database was
cataloged with an incorrect
authentication option.

31011

FLG_ERR_CHARCONV_WINFODBM

An error occurred while
converting a character from
the Windows code page to
the database code page.

31012

FLG_ERR DB _TIMEOUT —

Database server is busy or
deadlocked.

31013

FLG_ERR_NOT_SUPPORTEB-BY_DB

This function is not
supported by the database
server.

31014

FLG_ERR_DB_ICON_EXIST —

FLGManagelcons was
called with the InOptions
parameter set to
FLG_ACTION_CREATE, but
the icon specified in
pszlconFilelD already exists
in the database.

Specify a different icon file,
or use
FLG_ACTION_UPDATE.

232

DataGuide Programming Guide and Reference

Table 25. DataGuide reason codes (continued)

DataGuide reason codes

Number

Reason code

Extended codes

Explanation

32000

FLG_ERR_REG_NOTEXIST —

No registration information
exists for the specified
object type.

32001

FLG_ERR_TYPEID_NOTEXISF

No registration information
exists for the specified
object type.

32002

FLG_ERR_SRCTYPEID_NOTEXIST

The specified source object
type does not exist.

32003

FLG_ERR_TRGTYPEID_NOTEXIST

The specified target object
type does not exist.

32004

FLG_ERR_INSTID_NOTEXIST-

The specified object ID
(FLGID) does not exist.

32005

FLG_ERR_SRCINSTID_NOTEXIST

The specified source object
ID (FLGID) does not exist.

32006

FLG_ERR_TRGINSTID_NOTEXIST

The specified target object
ID (FLGID) does not exist.

32007

FLG_ERR_PROP_NOTEXIST—

Unable to start the specified
program. The property
specified in the program
object parameter list is not
defined for the object
instance.

32008

FLG_ERR_REL_NOTEXIST —

Unable to delete the
relationship because it does
not exist.

32009

FLG_ERR_TYPE_NOT_CREATED

The specified object type
has been registered but not
created.

32010

FLG_ERR_SRCTYPE_NOT_GREATED

The object type specified in
the FLGID of the source
object instance has been
registered but not created.

32011

FLG_ERR_TRGTYPE_NOT_GREATED

The object type specified in
the FLGID of the target
object instance has been
registered but not created.

32012

FLG_ERR_INV_P_CATEGORY-

P (Program) is an invalid
value for the category when
creating or deleting object
types. You cannot create or
delete Program category
object types.

Appendix D. DataGuide reason codes 233

DataGuide reason codes

Table 25. DataGuide reason codes (continued)

Number Reason code Extended codes

Explanation

32013

FLG_ERR_INV_P_HANDLE_GAT

The HANDLES property
value of the Program object
instance is invalid.

The value must be the
name of a non-PROGRAM
object type.

32014

FLG_ERR_P_HANDLE_NOTEXIST

The HANDLES property
value of the Program object
instance is invalid. The
specified object type does
not exist.

32015

FLG_ERR_P_HANDLE_NOT -GREATED

The HANDLES property
value of the Program object
instance is invalid. The
specified object type has
been registered, but not
created.

32016

FLG_ERR_INV_A_CATEGORY-

A (Attachment) is an invalid
value for the category when
creating, deleting, or
appending to object types.
You cannot create, delete,
or append to Attachment
category object types.

32300

FLG_ERR_REG_DUP —

Unable to register the object
type. The specified object
type has already been
registered.

32301

FLG_ERR_TYPE_DUP —

Unable to create an object
type with the specified
name. The specified object
type name already exists in
the DataGuide database.

32302

FLG_ERR_INST_DUP —

Unable to create the
specified object instance.
The DataGuide database
already contains an object
instance with identical UUI
property values.

32303

FLG_ERR_REL_DUP —

Unable to create the
specified object relationship.
The relationship already
exists.

32304

FLG_ERR_REL_RECURSIVE—

Unable to create the
specified relationship. The
specified relationship would
cause a Grouping object to
contain itself.

234

DataGuide Programming Guide and Reference

DataGuide reason codes

Table 25. DataGuide reason codes (continued)

Number

Reason code Extended codes

Explanation

32305

FLG_ERR_UUI_DUP Sequence number of
property that duplicates the
UUI sequence number

The definition of this object
type or object contains two
or more properties with the
same UUI sequence
number.

32306

FLG_ERR_INVALID_LINK_RELATION

The specified LINK
relationship is invalid,
because the linker and
linkee are the same.

32307

FLG_ERR_INVALID_ATTACHMENT_RELATION

The attachment relationship
is rejected because the
target object is already
related to some
non-attachment source
object. Attachment category
objects can be associated
to only one non-attachment
category source object.

32308

FLG_ERR_ICONFILE_RETRIR¢Es@&REDR

APl FLGManagelcons
encountered an error while
retrieving (opening, reading,
or closing) the icon file
specified in parameter
pszlconFilelD. This applies
to input options
FLG_ACTION_CREATE or
FLG_ACTION_UPDATE
only. The reason code
returned in the extended
code indicates the error.
Processing is unsuccessful.

32400

FLG_ERR_CONTAINEE_EXISF+

Unable to delete this object
instance because this
Grouping object instance
contains one or more object
instances. You cannot
delete this object instance
until you delete either the
relationships or the
contained objects.

32401

FLG_ERR_INST_EXIST —

Unable to delete the
specified object type
because instances of the
object type exist. You
cannot delete this object
type until you delete all its
instances.

Appendix D. DataGuide reason codes 235

DataGuide reason codes

Table 25. DataGuide reason codes (continued)

Number

Reason code Extended codes

Explanation

32402

FLG_ERR_TYPE_EXIST —

Unable to delete the object
type registration because its
object type exists. You
cannot delete this object
type registration until the
object type is deleted.

32403

FLG_ERR_CONTAINEE_DIFFFYPE

FLGDeleteTypeExt API
stopped, because it found a
containee belonging to a
different object type.

32500

FLG_ERR_INVALID_SRCCAT—

Unable to create the
specified relationship. The
category for the source
object type is invalid.

32501

FLG_ERR_INVALID TRGCAT—

Unable to create the
specified relationship. The
category for the target
object type is invalid.

32502

FLG_ERR_INVALID CAT —

The category of the input
object type is incorrect.

Refer to the specific
documentation for the API
you called for the required
input object type.

32600

FLG_ERR_KAEXIST —

Unable to log on as a
administrator. Another
administrator is already
logged on. DataGuide
allows only one
administrator to log on at a
time.

32601

FLG_ERR_NOTAUTH —

The current user ID is not
authorized to use this
DataGuide function.

32602

FLG_ERR_NOT _INITIALIZED—

DataGuide is not initialized.

FLGInit must be issued
before DataGuide can
perform any other functions.

32603

FLG_ERR_ALREADY_INITIAIHZED

DataGuide has already
been initialized. You cannot
issue a second FLGInit call
before issuing an FLGTerm
call.

32604

FLG_ERR_NOT_CREATOR —

You do not have the
authority to update
Comments objects you did
not create.

236 DataGuide Programming Guide and Reference

DataGuide reason codes

Table 25. DataGuide reason codes (continued)

Number

Reason code Extended codes

Explanation

32700

FLG_ERR_INVALID_TYPEID —

The specified object type 1D
(OBJTYPID) is invalid.

32701

FLG_ERR_INVALID_TYPEID +EN

The specified object type ID
(OBJTYPID) is invalid. This
value must be 6 bytes long.

32702

FLG_ERR_INVALID_TYPEID VAL

The value of the specified
object type ID (OBJTYPID)
is invalid.

32703

FLG_ERR_INVALID_FLGID Number of exported objects
or position of parameter

The specified object ID
(FLGID) is invalid.

32704

FLG_ERR_INVALID_FLGID_LEN

The object ID (FLGID) is
invalid. This value must be
16 bytes long.

32705

FLG_ERR_INVALID_FLGID VAL

The object ID (FLGID)
contains invalid characters.

32706

FLG_ERR_INVALID_TYPNM —

The object type name is
invalid.

32707

FLG_ERR_INVALID_INSTNM—

The object instance name is
invalid.

32708

FLG_ERR_INVALID_TIMESTA3¢Buence number of
property

The input value is invalid.
The input value must be a
time stamp of the form
YYYY-MM-DD-
HH.MM.SS.NNNNNN and
26 bytes long.

32709

FLG_ERR_INVALID_SRCID —

The source object ID
(FLGID) is invalid.

32710

FLG_ERR_INVALID_TRGID —

The target object ID
(FLGID) is invalid.

32711

FLG_ERR_INVALID_RELTYPE-

The specified relation type
(RelType) is invalid. Valid
values are C, T, A, or L.

32712

FLG_ERR_INVALID_RELOPT—

The specified relation option
(RelOpt) is invalid. Valid
values are C or D.

32713

FLG_ERR_INVALID_PGM_FLGID

The specified object ID
(FLGID) for the program
object is invalid.

32714

FLG_ERR_INVALID_OBJ_FLGID

The specified object ID
(FLGID) for the object
providing parameters for the
FLGOpen call is invalid.

Appendix D. DataGuide reason codes 237

DataGuide reason codes

Table 25. DataGuide reason codes (continued)

Number Reason code Extended codes

Explanation

32718 FLG_ERR_INVALID_USERID —

The user ID value is invalid.
The length must be 1-8
characters.

User ID/password is invalid
(password is case sensitive
on AIX).

User is not logged on to the
remote node (DB2 for OS/2
V2.1).

32719 FLG_ERR_INVALID_PASSWGORD

The specified password is
invalid. The length must be
1-8 characters.

32720 FLG_ERR_INVALID_DBNAME—

The specified DataGuide
database name is invalid.
The length must be 1-8
characters.

32721 FLG_ERR_INVALID_ADMINOPRT

The specified user option
(admin) is invalid. Valid
values are Y and N.

32722 FLG_ERR_INVALID_TRACEGRT

The trace option (TraceOpt)
is invalid. Valid options are:
0,1, 2,3, and 4.

32723 FLG_ERR_NULL_PARAMETHPbsition of parameter

A parameter required as
input to this API call is
missing or null. The
extended code indicates the
position of the null
parameter.

32724 FLG_ERR_NULL_EXTCODE —

The extended code pointer
parameter (pExtCode) is
null.

32725 FLG_ERR_INVALID_CONVERFOPT

The specified input option
(Options) was invalid. Valid
values are D, or F.

32726 FLG_ERR_INVALID_ICONOPF+

The specified input options
(Options) are not valid for
FLGManagelcons.

32727 FLG_ERR_INVALID_TAGBUFGPT

The InOptions specified for
FLGManageTagBuf API is
not valid. Use
FLG_TAGBUF_QUERY or
FLG_TAGBUF_RESET as
defined in the DGXAPI.H
file.

238 DataGuide Programming Guide and Reference

DataGuide reason codes

Table 25. DataGuide reason codes (continued)

Number Reason code Extended codes Explanation

32728 FLG_ERR_INVALID_TAGFILESPT The Options parameter
specified for FLGXferTagBuf
APl is not valid. Use
FLG_TAGOPT_NEW or
FLG_TAGOPT_REPLACE
as defined in the DGXAPIL.H
file.

32729 FLG_ERR_INV_DGFLAG_ACHON The Action parameter
specified for
FLGManageFlags is not
valid. Use
FLG_ACTION_GET or
FLG_ACTION_UPDATE as
defined in DGXAPI.H file.

32730 FLG_ERR_INV_DGFLAG_FLAGTYPE The FlagType parameter
specified for the
FLGManageFlags API is not
valid. Use
FLG_HISTORY_TYPE_DELETE
as defined in the DGXAPIL.H
file.

32731 FLG_ERR_INV_DGFLAG_VALUE The chValue parameter
specified for
FLGManageFlags is not
valid. Valid values are
FLG_YES or FLG_NO.

32732 FLG_ERR_INV_STATUS_ACHON The Action parameter
specified for the
FLGManageCommentStatus
APl is not valid. Use
FLG_ACTION_UPDATE or
FLG_ACTION_GET as
defined in the DGXAPI.H

file.
32733 FLG_ERR_INV_STATUS_LENSequence number of The input structure object
property area contains a status field
that is longer than 80
characters.
32734 FLG_ERR_INVALID TREEOP¥+ The Options parameter

specified for FLGDeleteTree
APl is not valid. Use
FLG_DELTREE_REL or
FLG_DELTREE_ALL as
defined in the DGXAPIL.H
file.

Appendix D. DataGuide reason codes 239

DataGuide reason codes

Table 25. DataGuide reason codes (continued)

Number Reason code Extended codes

Explanation

32735 FLG_ERR_INVALID_ASSOCGRT

The Options parameter
specified for
FLGListAssociates API is
not valid. Use
FLG_LIST_PROGRAM,
FLG_LIST_ATTACHMENT,
FLG_LIST_COMMENTS,
FLG_LIST_CONTAIN,
FLG_LIST_CONTACT or
FLG_LIST_LINK as defined
in the DGXAPI.H file.

32736 FLG_ERR_INVALID_ORPHANGOPT

The Options parameter
specified for the
FLGListOrphans API is not
valid. Use
FLG_LIST_PROGRAM,
FLG_LIST_CONTACT,
FLG_LIST_ATTACHMENT
or FLG_LIST_COMMENTS
as defined in the DGXAPI.H
file.

32737 FLG_ERR_INVALID_FOUNDINOPT

The Options parameter
specified in the FLGFoundIn
APl is not valid. Use
FLG_LIST_PROGRAM,
FLG_LIST_CONTAIN,
FLG_LIST_CONTACT or
FLG_LIST_ATTACHMENT
as defined in the DGxXAPI.H
file.

33000 FLG_ERR_ICON_NOTEXIST —

The specified icon file does
not exist.

34000 FLG_ERR_INVALID_IOSTRUGF

The input structure is
invalid. Either the definition
area length or object area
length does not match the
length of the area it
describes.

34001 FLG_ERR_NO_DEFN_AREA —

The definition area is
missing in the input
structure.

34002 FLG_ERR_NO _OBJ AREA —

The object area is missing
in the input structure.

34003 FLG_ERR_INVALID_POSITION-

DataGuide internal error.

34004 FLG_ERR_IOSTRUCT_CONVERSION

A DataGuide internal error
occurred while reading the
input structure or writing the
output structure.

240 DataGuide Programming Guide and Reference

DataGuide reason codes

Table 25. DataGuide reason codes (continued)

Number

Reason code Extended codes Explanation

34005

FLG_ERR_INVALID_IOSTRU®BYVteNhftdet The input structure contains
a null character.

34006

FLG_ERR_OBJLEN_OBJCNT=MISMATCH Either the object area entry
count or the object area
length is zero.

If one of the values is
greater than zero, the other
value cannot be zero.

34200

FLG_ERR_INV_HEADER_IDENT The identifier in the input
structure header area is
invalid.

The identifier must be
FLG-HEAD.

34201

FLG_ERR_INV_HEADER_DEFLEN The definition length in the
input structure header area
is not valid.

The definition length must
be greater than 0 and a
multiple of 160. Some API
calls require a fixed
definition length; see the
syntax for the API call for
the required definition
length.

34202

FLG_ERR_INV_HEADER_DEFCNT The number of definitions
expected based on the
definition length in the
header area is invalid for
FLGEXxport.

The number of definitions
must be five for FLGExport;
therefore, the definition
length must be 800.

34203

FLG_ERR_INV_HEADER_OBJLEN The object length in the
input structure header area
is not valid.

34204

FLG_ERR_INV_HEADER_OB3ENT The object area entry count
in the input structure header
area is not valid.

Appendix D. DataGuide reason codes 241

DataGuide reason codes

Table 25. DataGuide reason codes (continued)

Number Reason code Extended codes

Explanation

34205

FLG_ERR_INV_HEADER_CATEGORY

Invalid category specified in
header area.

For FLGCreateReg, the
category value must be one
of the following: G, E, C, D,
or S.

For FLGCreateType,
FLGCreatelnst,
FLGUpdateReg,
FLGAppendType, and
FLGUpdatelnst, the
category value must match
the value for the related
object type registration.

34206

FLG_ERR_INV_HEADER_OBJTYPEID

The value of the object type
ID in the header area is
invalid.

This value must be identical
to the object type ID
generated for the related
object type registration.

34207

FLG_ERR_CONFLICTING_HEADER_FIELDS

The number of properties
derived from the definition
length conflicts with the
object area entry count in
the header area.

The number of properties
equals the definition area
length divided by 160, and
the object area entry count
must be evenly divisible by
the number of properties.

34208

FLG_ERR_CONFLICTING_OE¥qyetse number of
property

The value specified for the
object type identifier
(OBJTYPID) in the object
area does not match the
object type ID in the header
area.

34209

FLG_ERR_HEADER_DEFLEN—EXCEEDS_MAX

The definition length in the
header area exceeds the
maximum number of
properties.

34210

FLG_ERR_NONBLANK_HEABER_CATEGORY

The category value in the
header area is invalid.

34211

FLG_ERR_NONBLANK_HEABER_OBJTYPEID

The object type ID value in
the header area is invalid.

242

DataGuide Programming Guide and Reference

DataGuide reason codes

Table 25. DataGuide reason codes (continued)

Number Reason code Extended codes Explanation

34222 FLG_ERR_NONBLANK_ HEABER_RESERVED The reserved area of the
input structure header area
must always be blank.

34500 FLG_ERR_INV_PROPERTY_NAMEquence number of The specified property name
property is not one of the property
names required with this
API call.
34501 FLG_ERR_INV_PROPERTY_PPNs®{ience number of The property short name for
property a property in the definition

area is invalid. The value
may be missing, using
DBCS characters, or not
using the value required by

the API call.
34502 FLG_ERR_INV_PROPERTY_BAT2d¢(Race number of The data type for a property
property in the definition area is
invalid.

Valid values are CHAR,
TIMESTAMP, VARCHAR, or
LONG VARCHAR,
depending on the API call.

34503 FLG_ERR_INV_PROPERTY_®efué&&e number of The value flag for the
property indicated property in the
definition area is invalid.

Valid values are R, O, or S.

34504 FLG_ERR_INV_PROPERTY_S¥iutHeehirhA& of The value flag for the
property indicated property in the
definition area is invalid.
The specified value flag is
S, but DataGuide does not
generate the property
indicated by the property

short name.
34505 FLG_ERR_INV_PROPERTY_ES $dq\@nce number of The case-sensitivity flag
property value for the indicated

property in the definition
area is invalid.

Valid values are Y or N.

34506 FLG_ERR_INV_PROPERTY_B8gkeAte number of The fuzzy search flag value
property for the indicated property in
the definition area is invalid.

Valid values are Y or N.

Appendix D. DataGuide reason codes 243

DataGuide reason codes

Table 25. DataGuide reason codes (continued)

Number Reason code Extended codes

Explanation

34507 FLG_ERR_INV_PROPERTY_BU8E@e number of
property

The UUI Sequence for the
indicated property in the
definition area is invalid.

Valid values are 1, 2, 3, 4,
5, or blank.

34508 FLG_ERR_INV_PROPERTY_LENSERNES N@Eber of
property

The length value is invalid
for the indicated property in
the definition area because
of the defined data type.

34509 FLG_ERR_INV_PROP_LEN_MEfEnce number of
property

The length for the indicated
property in the definition
area is invalid.

Check the API call syntax
for the required length.

34510 FLG_ERR_INV_PROP_VAL_LEN

The length field for a
VARCHAR or LONG
VARCHAR property value in
the object area is invalid; it
must contain right-aligned
numeric characters.

34511 FLG_ERR_INV_RQDPROP_SRéEflience number of
property

In a property definition in
the definition area, one or
more fields required to
define a required property
are invalid.

For a required property, the

following fields must be

specified as shown in the

input structure diagrams for

the API call:

* Property name (bytes
0-79)

« Data type (bytes 80-109)

e Length (bytes 110-117)

* Property short name
(bytes 118-125)

» Value flag (byte 126)

* UUI sequence number
(byte 127)

34512 FLG_ERR_DUP_PROPERTY S¢4ltiice number of
property

Another property in the input
structure already has this
property name. Each
property name must be
unique in the input structure.

244 DpataGuide Programming Guide and Reference

Table 25. DataGuide reason codes (continued)

DataGuide reason codes

Number

Reason code Extended codes

Explanation

34513

FLG_ERR_DUP_PROPERTY SeRNéME number of
property

The property short name for
the indicated property is
identical to the property
short name of another
property in this input
structure. Each property
short name must be unique
in the input structure.

34514

FLG_ERR_INV_TOT_UUI_LEN-

Reserved

34515

FLG_ERR_INV_UUI_LENGTHJUI sequence number

The indicated UUI property
length value in the definition
area exceeds the maximum
length for a UUI property.

34516

FLG_ERR_MISSING_PROPERTY

The definition area for the
object instance does not
contain all the properties
defined for the object type.

34517

FLG_ERR_MISSING_PROPER&Yu®KEumber of
property

The property name is
required but missing for the
indicated property in the
definition area.

34518

FLG_ERR_MISSING_PROPER&YudENGiliFber of
property

The length value is required
but missing for the indicated
property in the definition
area.

34519

FLG_ERR_MISSING_PROPER&YuERNAMIEber of
property

The property short name is
required but missing for the
indicated property in the
definition area.

34520

FLG_ERR_MISSING_REG_DPNAME

The DP NAME (DPNAME)
property is required but
missing in the input
structure definition area.

34521

FLG_ERR_MISSING_REG_PTNAME

The PHYSICAL TYPE
NAME (PTNAME) property
is required but missing in
the input structure definition
area.

34522

FLG_ERR_MISSING_REG_CREATOR

The CREATOR property is
required but missing in the
input structure definition
area.

34523

FLG_ERR_MISSING_REG_UPRDATIME

The LAST CHANGED DATE
AND TIME (UPDATIME)
property is required but
missing in the input
structure definition area.

Appendix D. DataGuide reason codes 245

DataGuide reason codes

Table 25. DataGuide reason codes (continued)

Number

Reason code Extended codes

Explanation

34524

FLG_ERR_MISSING_REG_URDATEBY

The LAST CHANGED BY
(UPDATEBY) property is
required but missing in the
input structure definition
area.

34525

FLG_ERR_MISSING_REG_NAME

The EXTERNAL NAME OF
OBJ TYPE (NAME) property
is required but missing in
the input structure definition
area.

34526

FLG_ERR_MISSING_UUI_SEQUENCE

The indicated UUI sequence
number was specified in the
definition area, although the
preceding nhumber was not.

UUI sequence numbers
must not skip numbers in
the sequence: 1, 2, and 3 is
valid; 1, 3, and 5 is invalid.

34527

FLG_ERR_MISSING_RQD_INSTIDNT

The Instance identifier
(INSTIDNT) property is
required but missing in the
input structure definition
area.

34528

FLG_ERR_MISSING_RQD_NAME

The Name (NAME) property
is required but missing in
the input structure definition
area.

34529

FLG_ERR_MISSING_RQD_OBJTYPID

The Object type identifier
(OBJTYPID) property is
required but missing in the
input structure definition
area.

34530

FLG_ERR_MISSING_RQD_UPDATEBY

The Last Changed By
(UPDATEBY) property is
required but missing in the
input structure definition
area.

34531

FLG_ERR_MISSING_RQD_UPRDATIME

The Last Changed Date and
Time (UPDATIME) property
is required but missing in
the input structure definition
area.

34532

FLG_ERR_NOMATCH_PROPS®&J0erdaMEmber of
property

The indicated input property
in the definition area
matches the property short
name for an existing
property, but the property
names do not match.

246 DataGuide Programming Guide and Reference

Table 25. DataGuide reason codes (continued)

DataGuide reason codes

Number

Reason code Extended codes

Explanation

34533

FLG_ERR_NOMATCH_PROPS®&j0erBEEGmber of
property

The indicated property in
the definition area matches
the property name and
property short name for an
existing property; however,
the data type, length, value
flag, or UUI sequence
values do not match.

34534

FLG_ERR_PROPERTY_NOTBXLiENCe number of
property

The property specified as
part of the selection criteria
does not exist.

34536

FLG_ERR_UNMATCH_DEFIN¥F&&quence number of
property

One of the following
occurred:

* The indicated property
specified in the definition
area for the object
instance does not match
any property defined for
the object type.

* The object instance has
more properties defined
in the definition area than
are defined for the object

type.

34537

FLG_ERR_PROPDUP —

Duplicate property name or
property short name
specified in the definition
area.

34538

FLG_ERR_REG_PROPS_OUT-OF SEQUENCE

The registration properties
are not specified in the
correct sequence.

34539

FLG_ERR_RQD_PROPS_OUT-OF SEQUENCE

The required properties are
not specified in the correct
sequence in the definition
area.

34540

FLG_ERR_INV_V_FLAG_FORSe§RPmEMIumber of
property

The indicated appended
property has a value flag of
SorR.

An appended property must
have a value flag of "O”
(optional property).

34541

FLG_ERR_INV_UUI_FOR_AP®&(NBNnCce number of
property

The indicated appended
property is specified as a
UUI property. Appended
properties cannot be UUI
properties.

Appendix D. DataGuide reason codes 247

DataGuide reason codes

Table 25. DataGuide reason codes (continued)

Number

Reason code Extended codes

Explanation

34542

FLG_ERR_NONBLANK_PROBERI&NCE ilAGEr of
property

The value flag for the
indicated property is not
blank. The value flag is not
used by this API call and
must be left blank.

34543

FLG_ERR_NONBLANK_PROBERI&N0ESIFLAEE of
property

The case-sensitivity flag for
the indicated property is not
blank. The case-sensitivity
flag is not used by this API
call and must be left blank.

34544

FLG_ERR_NONBLANK_PROBERI&NIENIFOBE of
property

The fuzzy search flag for
the indicated property is not
blank. The fuzzy search flag
is not used by this API call
and must be left blank.

34545

FLG_ERR_NONBLANK_PROBERT&nd8UISERET of
property

The UUI sequence position
for the indicated property is
not blank.

The UUI sequence position
is not used by this APl and
must be left blank.

The data type is LONG
VARCHAR and the UUI
sequence position is not
blank. A UUI property can
be CHAR, VARCHAR,
TIMESTAMP, but not LONG
VARCHAR.

34546

FLG_ERR_NONBLANK_PROBERTendREBEREE Bf
property

The reserved area of the
input structure property
specifications must always
be blank.

34547

FLG_ERR_UUI_V_FLAG_MUSEgB&N® number of
property

The value flag for the
indicated property is not
valid because all UUI
properties must have value
flags of R (required).

34548

FLG_ERR_AT_LEAST ONE_WYl_PROP_RQD

None of the properties
specified in the definition
area are defined as UUI
properties.

Every DataGuide object
type must be defined with at
least one UUI property.

248 DataGuide Programming Guide and Reference

DataGuide reason codes

Table 25. DataGuide reason codes (continued)

Number Reason code Extended codes Explanation

34550 FLG_ERR_DUP_REG_DPNAME The DP NAME (DPNAME)
specified in the definition
area duplicates the DP
NAME value of an existing
object type registration.

The DPNAME value must
be unique across the
DataGuide database.

34551 FLG_ERR_DUP_REG_PTNAME The PHYSICAL TYPE
NAME (PTNAME)
duplicates the name of an
existing table in the
database.

The PTNAME value must
be unique across the
DataGuide database.

34552 FLG_ERR_DUP_REG_NAME— The specified EXTERNAL
NAME OF OBJ TYPE
(NAME) duplicates the
NAME value of an existing
object type registration.

The NAME must be unique
across the DataGuide

database.
34553 FLG_ERR_INV_DPNAME — The syntax of the specified
DPNAME value is invalid.
34554 FLG_ERR_INV_DB_PTNAME— The specified PTNAME

value is not valid according
to database syntax rules.

34555 FLG_ERR_INV_DB_DPNAME— Reserved

34556 FLG_ERR_INV_DB_PROPER¥Y_PPNAME The property short name is
not valid according to
database syntax rules.

34557 FLG_ERR_INV_TOT_PROPERTY_LEN The total length of CHAR,
VARCHAR, and
TIMESTAMP properties,
plus overhead, is longer
than the maximum allowed
by a database for each row
in the physical table in the

database.
34558 FLG_ERR_INV_PTNAME — The syntax of the specified
PTNAME value is invalid.
34559 FLG_ERR_INV_PROPERTY_G8&qtéidd_rrOibeDBf The value for the
property case-sensitivity flag is not

valid for the database.

Appendix D. DataGuide reason codes 249

DataGuide reason codes

Table 25. DataGuide reason codes (continued)

Number

Reason code Extended codes

Explanation

34560

FLG_ERR_SRH_PROP_VAL_Sefead¢Gumber of
property

The search criteria value is
too long. The maximum
length when using DB2 on
MVS is 254 bytes.

34561

FLG_ERR_EXTRA_PROPS_IN-IOSTRUCT

The input structure contains
one or more properties that
are not in the object type
definition.

34562

FLG_ERR_MISSING_REQ_PReREREY number of
property

A required property is
missing from the input
structure of an
FLGCreatelnst or
FLGUpdatelnst API. The
extended code points to the
position of the missing
property using the object
type’s complete definition.

34800

FLG_ERR_PROP_VALUE_RESMIREDe number of
property

No value was specified in
the object area for the
indicated property. The
definition for the property
specifies that a value is
required.

34801

FLG_ERR_PROP_VALUE_EXS#E[EBE® number of
property

The length of the value for
the indicated property
exceeds the maximum
length defined in the
definition area.

34802

FLG_ERR_INVALID_PROPERI&tj0ékceBumber of
property

The property value is invalid
for one of the following
reasons:

e The value uses DBCS
characters, but must use
SBCS characters.

* With FLGUpdatelnst, the
INSTIDNT value in the
object area is not valid.

34803

FLG_ERR_INV_SRH_VAL FCSeduON@VARTIEABS
property

The search value for the
indicated property is longer
than the maximum length
allowed for search criteria
with a LONG VARCHAR
data type (3000).

34804

FLG_ERR_INV_OBJ_LENGTH-

The actual length of the
object area does not match
the object length specified
in the header area.

250 DataGuide Programming Guide and Reference

DataGuide reason codes

Table 25. DataGuide reason codes (continued)

Number Reason code Extended codes Explanation
34805 FLG_ERR_PARMLIST_REQUSESe riZeNDInBR:r of The HANDLES property is
property not specified in the
definition area.
34806 FLG_ERR_REG_CONFLICT — The DPNAME or the

PTNAME values specified in
the object area do not
match the values for the
registration information
identified by the object type

ID.

34807 FLG_ERR_ICON_EXCEEDS HMIT The icon size is greater than
the maximum icon size
(30000).

34808 FLG_ERR_INST_VALUE_EXGEEDED The total length of the

instance value exceeds the
database limit.

34809 FLG_ERR_INVALID_VARCHAR- LENGTH Reserved

34810 FLG_ERR_INVALID_CREATOR- APIs FLGCreatelnst and
FLGUpdatelnst found an
error in the input I/O
structure. The CREATOR
value is not the same as the
logged-on user ID. This is a
requirement if the calling
user is not authorized to
perform object management
operations.

35000 FLG_ERR_PRG_NOT_STARTED The program could not be
started due to an
unexpected operating
system error.

35001 FLG_ERR_PROG_PARM_TOGLONG The parameter specified for
the Parameter list
(PARMLIST) property of the
program object is too long
for the platform-specific
program invocation.

35002 FLG_ERR_INV_PROG_PARM— The parameter list in the
program object contains an
unmatched token specifier
(%), or a property delimited
by token specifiers is not a
property of the object type
identified by the HANDLES
property.

35003 FLG_ERR_PROGRAM_NOTEXIST The program to be started
does not exist or the path
specification is incorrect.

Appendix D. DataGuide reason codes 251

DataGuide reason codes

Table 25. DataGuide reason codes (continued)

Number Reason code Extended codes Explanation

35004 FLG_ERR_INV_SYNTAX_STARTCMD The value of the
STARTCMD property of the
Program object is invalid.

36001 FLG_ERR_ACCESS_DENIED— Access is denied when
opening or reading a file.

36002 FLG_ERR_BAD_INVOCATION— An error occurred on the
DataGuide command line
invocation.

36003 FLG_ERR_BROKEN_PIPE — Unable to open or read the
specified file.

36004 FLG_ERR_BUFFER_OVERFLOW DataGuide internal error.

36005 FLG_ERR_CANNOT_MAKE — Unable to create the
specified file.

36006 FLG_ERR_CLOSE_ERROR — Unable to close the file.

36007 FLG_ERR_COPY_ERROR — Unable to copy a file.

36008 FLG_ERR_DELETE_ERROR — Unable to delete the
specified file.

36009 FLG_ERR_DEVICE_IN_USE — Unable to access a file; the
file is currently in use.

36010 FLG_ERR_DIRECT_ACCESS—HANDLE DataGuide internal error.

36011 FLG_ERR_DISK_FULL — The disk is full and the file
cannot be created.

36012 FLG_ERR_DRIVE_LOCKED — Unable to access a drive;
the drive is currently in use.

36013 FLG_ERR_DUPHNDL_ERROR- DataGuide internal error.

36014 FLG_ERR_EAS DIDNT _FIT — The icon file has too many
extended attributes.

36015 FLG_ERR_EA_LIST_INCONSISTENT Some of the extended
attributes of the icon file are
invalid.

36016 FLG_ERR_EAS NOT_SUPPGRTED Unable to copy a file with
extended attributes to a file
system that does not
support extended attributes.

36017 FLG_ERR_FILENAME_EXCEB- RANGE The file name or path was
invalid.

36018 FLG_ERR_FILE_NOT_FOUNB- The specified path and file
name was not found.

36019 FLG_ERR_FINDFILE_ERROR— Unable to find the specified
file.

36020 FLG_ERR_FINDNEXT_ERROR- Unable to find the next file.

36021 FLG_ERR_INVALID_ACCESS— Unable to write to the file;

the file is read-only.

252 DataGuide Programming Guide and Reference

Table 25. DataGuide reason codes (continued)

DataGuide reason codes

Number Reason code Extended codes Explanation

36022 FLG_ERR_INVALID DIRECTGRY The specified directory is
invalid.

36023 FLG_ERR_INVALID_DRIVE — Unable to access the
specified drive.

36024 FLG_ERR_INVALID_EA NAME- DataGuide internal error.

36025 FLG_ERR_INVALID_FILE_NAME The specified file name is
invalid.

36026 FLG_ERR_INVALID_FUNCTIOGN DataGuide internal error.

36027 FLG_ERR_INVALID HANDLE— DataGuide internal error.

36028 FLG_ERR_INVALID_PARAMEFER DataGuide internal error.

36029 FLG_ERR_INVALID_TARGET—HANDLE DataGuide internal error.

36030 FLG_ERR_LOCK_ VIOLATION— Unable to access a file; the
file is locked by another
application.

36031 FLG_ERR_META_EXPANSION- TOO_LONG DataGuide internal error.

36032 FLG_ERR_MORE_DATA — Unable to open a file; the
file is too large.

36033 FLG_ERR_NEED_EAS_FOUNB Unable to move the file to a
drive that does not support
extended attributes.
Extended attributes are
required for this file.

36034 FLG_ERR_NEGATIVE_SEEK— DataGuide internal error.

36035 FLG_ERR_NOT_DOS DISK — The specified disk is not a
valid disk or does not exist.

36036 FLG_ERR_NO_MORE_FILES— DataGuide internal error.

36037 FLG_ERR_NO_MORE_SEAREH_HANDLES This DataGuide session
reached the maximum
number of handles.

In your CONFIG.SYS file,
increase the value for the
FILES= option.

36038 FLG_ERR_OPEN_ERROR — Unable to open the icon file,
tag language file, echo file,
or log file.

36039 FLG_ERR_OPEN_FAILED — Unable to open the icon file,
tag language file, echo file,
or log file.

36040 FLG_ERR_PATH_NOT_FOUNB The specified path was not
found.

36041 FLG_ERR_PIPE_BUSY — DataGuide internal error.

36042 FLG_ERR_READ_ERROR — DataGuide internal error.

36043 FLG_ERR_SEEK_ON_DEVICE- DataGuide internal error.

Appendix D. DataGuide reason codes 253

DataGuide reason codes

Table 25. DataGuide reason codes (continued)

Number Reason code Extended codes

Explanation

36044 FLG_ERR_SETFILEPTR_ERROR

DataGuide internal error.

36045 FLG_ERR_SHARING_BUFFER- EXCEEDED

This file cannot be shared,
because there is a buffer
overflow.

36046 FLG_ERR_SHARING_VIOLAHON

Unable to access this file.
Another process is using
this file.

36047 FLG_ERR_TOO_MANY_OPEN-FILES

Unable to open any more
files.

Under OS/2, increase the
value of the FILES= option.

36048 FLG_ERR_WRITE_ERROR —

DataGuide internal error.

36049 FLG_ERR_WRITE_FAULT —

Unable to write to the disk.
The disk might be locked or
unreadable.

36050 FLG_ERR_WRITE_PROTECT—

Unable to write to the file.
The file is read-only.

36200 FLG_ERR_NO_MORE_THREADS

No more system threads are
available.

Close some existing
programs to continue.

36201 FLG_ERR_QDISK_FAIL —

Unable to access
information about the disk
drive.

37001 FLG_ERR_INV_RESTART ORT

The specified restart option
(RestartOpt) was invalid.

Valid values are B, C, b, or
c.

37002 FLG_ERR_INV_OBJTYPE_ORF

The option on the
ACTION.OBJTYPE tag is
invalid.

Valid options are MERGE,
ADD, UPDATE, DELETE,
DELETE_EXT, and
APPEND.

37003 FLG_ERR_INV_OBJINST _OPT-

The option on the
ACTION.OBJINST tag is
invalid.

Valid options are ADD,
UPDATE, DELETE,
DELETE_TREE_REL,
DELETE_TREE_ALL, and
MERGE.

254 DataGuide Programming Guide and Reference

Table 25. DataGuide reason codes (continued)

DataGuide reason codes

Number

Reason code

Extended codes

Explanation

37004

FLG_ERR_INV_RELATION_ORT

The option on the
ACTION.RELATION tag is
invalid.

Valid options are ADD and
DELETE.

37005

FLG_ERR_TAG_OUT_OF_SEQUENCE

A tag is not in the correct
sequence following an
ACTION tag in the tag
language file.

37006

FLG_ERR_KEYNAME_TOO_LONG

A UUI property short name
on the INSTANCE tag is
longer than the maximum
length (8).

37007

FLG_ERR_INV_ACTION_TYPE

The keyword on the
ACTION tag is invalid.

Valid keywords are
OBJTYPE, OBJINST, or
RELATION.

37008

FLG_ERR_KEYWORD_TOO_+ONG

A keyword on a tag is
longer than the maximum
allowed for the keyword.

37009

FLG_ERR_PROPNAME_TOO—LONG

Property short name on the
INSTANCE tag is longer
than the maximum length

(8).

37010

FLG_ERR_VALUE_TOO_LONG

Value in the tag language
file is longer than the
maximum allowed by its
keyword, property short
name, or UUI property short
name.

37011

FLG_ERR_OBJTAG_DUP_KEYWORD

A keyword on the OBJECT
tag is specified more than
once.

37012

FLG_ERR_PROPTAG_DUP_KEYWORD

A keyword on the
PROPERTY tag is specified
more than once.

37013

FLG_ERR_RELTAG_DUP_KEYAWORD

A keyword is specified more
than once on the RELTYPE
tag.

37014

FLG_ERR_INSTTAG_DUP_KEYNAME

A UUI property short name
is specified more than once
on the INSTANCE tag.

37015

FLG_ERR_INSTTAG_DUP_PROPNAME

A property short name is
specified more than once on
the INSTANCE tag.

Appendix D. DataGuide reason codes 255

DataGuide reason codes

Table 25. DataGuide reason codes (continued)

Number

Reason code Extended codes

Explanation

37016

FLG_ERR_OBJTAG_INV_KEYMWORD

A keyword on the OBJECT
tag is invalid.

Valid keywords are TYPE,
CATEGORY, EXTNAME,
PHYNAME, ICOFILE and
ICWFILE.

37017

FLG_ERR_PROPTAG_INV_KEYWORD

A keyword on the
PROPERTY tag is invalid.

Valid keywords are
EXTNAME, DT, DL,
SHRTNAME, NULLS, and
UUISEQ.

37018

FLG_ERR_RELTAG_INV_KEYWORD

A keyword on the RELTYPE
tag is invalid.

Valid keywords are TYPE,
SOURCETYPE, and
TARGETYPE.

37019

FLG_ERR_CMMTTAG_INV_KEYWORD

A keyword on the COMMIT
tag is invalid.

The valid keyword is
CHKPID.

37020

FLG_ERR_INSTTAG_INV_KE¥NAME

A UUI property short name
on the INSTANCE tag is
invalid.

37021

FLG_ERR_INSTTAG_INV_PROPNAME

A property short name on
the INSTANCE tag is
invalid.

The property short name
must exist in the object type
specified on the OBJECT
tag.

37022

FLG_ERR_INSTTAG_MISSING- SKEY

SOURCEKEY is not the first
keyword on the INSTANCE
tag.

37023

FLG_ERR_INSTTAG_MISSING- TKEY

TARGETKEY is not the
second keyword on the
INSTANCE tag when
creating or deleting a
relationship.

37024

FLG_ERR_TAGFILE_PREMAFTJYRE_EOF

DataGuide encountered the
end of the tag language file
unexpectedly when
importing the tag language
file.

256 DataGuide Programming Guide and Reference

DataGuide reason codes

Table 25. DataGuide reason codes (continued)

Number Reason code Extended codes Explanation

37025 FLG_ERR_PROPTAG_INV_D+ The DT value on the
PROPERTY tag is invalid.

Valid values are C, V, L, and
T.

37026 FLG_ERR_PROPTAG_RESERVED_SHRTNAME The short name of a
reserved property was
specified as the value for
SHRTNAME on the
PROPERTY tag.

The following short names
are reserved and cannot be
specified as the
SHRTNAME: OBJTYPID,
INSTIDNT, UPDATIME, and
UPDATEBY.

37027 FLG_ERR_PROPTAG_INV_NULLS NULLS value on the
PROPERTY tag is invalid.

Valid values are Y and N.

37028 FLG_ERR_PROPTAG_INV_UWSEQ UUISEQ value on the
PROPERTY tag is invalid.

Valid values are 0, 1, 2, 3,
4, and 5.

37029 FLG_ERR_INSTTAG_RESERVED PROPNAME The property short name of
a reserved property was
specified on the INSTANCE
tag.

The following property short
names are reserved and
cannot be assigned values:
OBJTYPID, INSTIDNT,
UPDATIME, and

UPDATEBY.
37030 FLG_ERR_OBJTAG_MISSING-REQD_KEYWORD A required keyword is
missing on the OBJECT tag.
37031 FLG_ERR_OBJTAG_KEYWORD_NOT_ALLOWED A keyword specified on the

OBJECT tag is not allowed
with the current ACTION tag
keyword and option.

Appendix D. DataGuide reason codes 257

DataGuide reason codes

Table 25. DataGuide reason codes (continued)

Number Reason code Extended codes

Explanation

37032 FLG_ERR_PROPTAG_MISSING_REQD_KEYWORD

A required keyword is
missing on the PROPERTY
tag.

Required keywords are:
EXTNAME, DT, DL,
SHRTNAME, and NULLS.

When NAME is specified as
the value of SHRTNAME,
SHRTNAME is the only
required keyword.

37033 FLG_ERR_RELTAG_MISSING-REQD_KEYWORD

A required keyword is
missing on the RELTYPE
tag.

Required keywords are
TYPE, SOURCETYPE, and
TARGETYPE.

37034 FLG_ERR_INVALID_DISKCNFL_TAG

The values and keywords
on the DISKCNTL tag are
invalid.

37035 FLG_ERR_NO_VALID_INPUT-TAG

The tag language file
contains no valid tags.

37037 FLG_ERR_OBJTAG_INV_CAFEGORY

The CATEGORY value on
the OBJECT tag is invalid.

Valid values are
GROUPING, ELEMENTAL,
CONTACT, DICTIONARY,
and SUPPORT.

37038 FLG_ERR_RELTAG_INV_TYRE

The TYPE value on the
RELTYPE tag is invalid.

Valid values are CONTAIN,
CONTACT, LINK, and
ATTACHMENT.

37039 FLG_ERR_MISSING_LPAREN-

A left parenthesis is missing
following a keyword, UUI
property short name, or
property short name.

37040 FLG_ERR_INSTTAG_NO_PRGPNAME

No property short names
were specified on the
INSTANCE tag.

37041 FLG_ERR_NO_VALUE —

The value for the specified
keyword is missing.

258 DataGuide Programming Guide and Reference

DataGuide reason codes

Table 25. DataGuide reason codes (continued)

Number Reason code Extended codes Explanation
37042 FLG_ERR_NO_KEYWORD — A tag does not include any
keywords.

At least one keyword is
required for all tags except
COMMENT, NL, and TAB.

37043 FLG_ERR_TAG_FOLLOWED-BY_GARBAGE A valid tag is followed by
extra characters.
37044 FLG_ERR_BAD_ PAREN_WITHIN_ VALUE A parenthesis specified

within this value is invalid.

A parenthesis within values
must be surrounded by
single quotation marks.

37046 FLG_ERR_PROPTAG_KEYWOGRD_NOT_ALLOWED A specified keyword is not
allowed on the PROPERTY
tag when NAME is specified
as the SHRTNAME value.

Valid keywords in this case
are SHRTNAME and
UUISEQ.

37047 FLG_ERR_UNEXPECTED_LPAREN A left parenthesis is
specified before an
expected keyword, UUI
property short name, or
property short name.

37048 FLG_ERR_UNEXPECTED_RPAREN A right parenthesis is
specified before an
expected left parenthesis,
keyword, UUI property short
name, or property short

name.
37300 FLG_ERR_CHKPT_DUP — DataGuide internal error.
37301 FLG_ERR_CHKPT_NOTEXIS+ DataGuide internal error.
37302 FLG_ERR_INV_SAVEAREA_LEN DataGuide internal error.
37303 FLG_ERR_INV_CHKPT_TOT-EN DataGuide internal error.
37304 FLG_ERR_MISSING CHKPT-YALUE DataGuide internal error.
37305 FLG_ERR_NO_MATCH_ON_EHKPTID Unable to match the

system-saved checkpoint ID
with any COMMIT tag
checkpoint ID in the
specified tag language file.

37500 FLG_ERR_REQUEST A _NEW-DISK_FAILED The user did not insert the
next tag language file
diskette in the sequence.

Appendix D. DataGuide reason codes 259

DataGuide reason codes

Table 25. DataGuide reason codes (continued)

Number Reason code Extended codes Explanation

37501 FLG_ERR_VERIFY_DISKETTE- SEQUENCE_FAILED DataGuide encountered an
error while trying to verify
the diskette sequence.

37502 FLG_ERR_UNABLE_TO_FINB-REQUIRED_PROPERTY Unable to find a specified
property short name in the
target database.

This property short name
was specified on the
INSTANCE tag while
updating or merging an
object instance using
ACTION.OBJINST(UPDATE)
or
ACTION.OBJINST(MERGE).

37503 FLG_ERR_UNABLE_TO_FINB-REQUIRED_OBJTYPE Unable to find the object
type name, specified on the
OBJECT tag, in the target

database.

37504 FLG_ERR_NONUNIQUE_UUIKEY The specified UUI values
identify more than one
instance.

37505 FLG_ERR_MISMATCH_UUI_IN- MERGE In an object type merge, the

UUI property short names
for the object type in the
input tag language filedo not
match the UUI property
short names for the same
object type in the
DataGuide database.

37506 FLG_ERR_DATA LENGTH_CONVERSION_FAILED DataGuide internal error.

37507 FLG_ERR_MISMATCH_DATA—LENGTH_IN_MERGE The value of DL (data
length) on a PROPERTY
tag following an
ACTION.OBJTYPE(MERGE)
tag in the input tag
language file does not
match the value for the
same property in the target
DataGuide database for the
same object type.

260 DataGuide Programming Guide and Reference

DataGuide reason codes

Table 25. DataGuide reason codes (continued)

Number Reason code Extended codes Explanation

37508 FLG_ERR_MISMATCH_DATA—TYPE_IN_MERGE The value of DT (data type)
on a PROPERTY tag
following an

ACTION.OBJTYPE(MERGE)
tag in the input tag

language file does not
match the value for the
same property in the target
DataGuide database for the
same object type.

37509 FLG_ERR_MISMATCH_PRORERTY_NAME_IN_MERGE The value of SHRTNAME
(property short name) on a
PROPERTY tag that follows
an
ACTION.OBJTYPE(MERGE)
tag in the input tag
language filedoes not match
any property in the
DataGuide database for the
same object type.

37510 FLG_ERR_MISMATCH_CATEGORY_IN_MERGE The value of CATEGORY
on an OBJECT tag following
an
ACTION.OBJTYPE(MERGE)
tag in the input tag
language filedoes not match
the value in the DataGuide
database for the same
object type.

37511 FLG_ERR_MISSING_REQUIRED_OBJTYPE_MERGE_STAUEKE&To merge an object
instance using
ACTION.OBJINST(MERGE)
before its object type is
merged using
ACTION.OBJTYPE(MERGE).

The
ACTION.OBJTYPE(MERGE)
tag must be processed
before an
ACTION.OBJINST(MERGE)
for the same object type.

37512 FLG_ERR_NONUNIQUE_SOURCE_UUI_KEY Reserved
37513 FLG_ERR_NONUNIQUE_TARGET UUI_KEY Reserved
37514 FLG_ERR_NO_TAGFILE_ON-BISKETTE Unable to find the input tag

language file on the
provided diskette.

37515 FLG_ERR_WRONG_DISK_SEQUENCE The diskettes containing the
tag language file were
inserted in the wrong order.

Appendix D. DataGuide reason codes 261

DataGuide reason codes

Table 25. DataGuide reason codes (continued)

Number Reason code Extended codes Explanation

37516 FLG_ERR_REQ INST _NOTFGUND Unable to find the instance
to be updated.

37801 FLG_ERR_NO_UUI — Export encountered an
object with no UUI and
cannot process.

37802 FLG_ERR_CREATEREG_FAILEED Reserved

37803 FLG_ERR_UPDATEREG_FAIEED Reserved

37804 FLG_ERR_GETREG_FAILED—; Reason code Export calls FLGGetReg,
which returned an error.
See the log file for
information about how this
error affects the export.

37805 FLG_ERR_DELETEREG_FAILED Reserved

37806 FLG_ERR_CREATETYPE_FAH{ED Reserved

37807 FLG_ERR_APPENDTYPE_FAHED Reserved

37808 FLG_ERR_GETTYPE_FAILED— Reserved

37809 FLG_ERR_DELETETYPE_FAKED Reserved

37820 FLG_ERR_CREATEINST_FAILED Reserved

37821 FLG_ERR_UPDATEINST_FAIEED Reserved

37822 FLG_ERR_GETINST_FAILED—; Reason code Export calls FLGGetlInst,
which returned an error.
See the log file for
information about how this
error affects the export.

37823 FLG_ERR_DELETEINST_FAILED Reserved

37824 FLG_ERR_LISTTYPE_FAILED— Reserved

37825 FLG_ERR_SEARCH_FAILED — Reserved

37826 FLG_ERR_RELATE_FAILED — Reserved

37827 FLG_ERR_LISTCONTACTS_HRAdhE@h code Export calls
FLGListContacts, which
returned an error.

See the log file for
information about how this
error affects the export.

37828 FLG_ERR_NAVIGATE_FAILEReason code Export calls FLGNavigate,

which returned an error.

See the log file for
information about how this
error affects the export.

262 DataGuide Programming Guide and Reference

DataGuide reason codes

Table 25. DataGuide reason codes (continued)

Number Reason code Extended codes Explanation

37829 FLG_ERR_FREEMEM_FAILEReason code Export calls FLGFreeMem,
which returned an error.

See the log file for
information about how this
error affects the export.

37831 FLG_ERR_LISTASSOC_FAILH2ason code This function calls
FLGListAssociates which
returned an error.

37901 FLG_ERR_NULL_LOGFILE — The log file pointer
parameter value is NULL.

A value is required for this
parameter.

37902 FLG_ERR_LOGFILE_OPENERRason code Import or export
encountered an error while
opening the log file.

The extended code contains
the reason code for the
error.

37904 FLG_ERR_LOGFILE_WRITEHERRSson code Import or export
encountered an error while
writing to the log file.

The extended code contains
the reason code for the
error.

37906 FLG_ERR_LOGFILE_CLOSERRRson code Import or export
encountered an error while
closing the log file.

The extended code contains
the reason code for the
error.

37908 FLG_ERR_INV_TAGFILE_LEN- One of the following has
occurred:

» The specified name of
the tag language file is
null.

* The full name of the tag
language file including
the path information, is
longer than the maximum
length allowed (259).

* The tag language
filename and extension
are longer than the
maximum length allowed
(240).

Appendix D. DataGuide reason codes 263

DataGuide reason codes

Table 25. DataGuide reason codes (continued)

Number Reason code Extended codes

Explanation

37909

FLG_ERR_INV_LOGFILE_LEN-

One of the following has
occurred:

* The specified hame of
the log file is null.

¢ The entire name,
including the path, is
longer than the allowed
maximum length (259).

37910

FLG_ERR_INV_TAGFILE —

The specified drive for the
tag language file is invalid
because
DataGuideencountered an
error while trying to access
it.

If the tag language file is in
MDIS format, then the drive
cannot be a removable
drive.

37911

FLG_ERR_INV_LOGFILE —

The specified drive for the
log file is invalid. The
specified drive might be
removable, or an error
occurred when DataGuide
tried to access it.

37912

FLG_ERR_ECHOFILE_OPENER#&s0on code

Import encountered an error
while opening the echo file.

The extended code contains
the reason code for the
error.

37913

FLG_ERR_TAGFILE_READERRason code

Import encountered an error
while reading the tag
language file.

The extended code contains
the reason code for the
error.

37914

FLG_ERR_ECHOFILE_WRITHEeRB8on code

Import encountered an error
while writing to the echo file.

The extended code contains
the reason code for the
error.

37915

FLG_ERR_INV_ICOPATH_LEN-

The specified icon path is
too long.

The maximum length for an
icon path, including the
drive and directories, is 246.

264

DataGuide Programming Guide and Reference

DataGuide reason codes

Table 25. DataGuide reason codes (continued)

Number Reason code Extended codes Explanation

37919 FLG_ERR_ICOPATH_NONBLANK_EXT The specified icon path
(pszlcoPath) includes an
extension.

This value should include
only the path.

37920 FLG_ERR_INV_ICOPATH — The drive or extension
specified in the icon path is
invalid for one of the
following reasons:

* The drive was not
specified, the drive is
removable, or
DataGuideencountered
an error while reading
from it.

* Afile extension was
specified in the icon path.

37921 FLG_ERR_TAGFILE_OPENERRason code Import, export, or
FLGXferTagBuf encountered
an error while opening the
tag language file.

The extended code contains
the reason code for the
open error.

37922 FLG_ERR_TAGFILE_CLOSEHRR®Rson code Import, export, or
FLGXferTagBuf encountered
an error while closing the
tag language file.

The extended code contains
the reason code for the
error.

37923 FLG_ERR_ECHOFILE_CLOSRER$dN code Import encountered an error
while closing the echo file.

The extended code contains
the reason code for the
error.

37924 FLG_ERR_INV_ECHOFILE_LEN The length of the log file
path with the tag language
file name and the ECH
extension is longer than the
maximum length allowed for
the complete echo file path
and name.

This maximum is 259
characters.

Appendix D. DataGuide reason codes 265

DataGuide reason codes

Table 25. DataGuide reason codes (continued)

Number Reason code Extended codes

Explanation

37925

FLG_ERR_MAX_OBJTYPE_EXCEEDED

The tag language file
contains more than the
maximum number of
discrete object types
allowed (3500) when
importing or exporting.

37926

FLG_ERR_TAGFILE_WRITEBREason code

Export or the
FLGXferTagBuf API
encountered an error while
trying to write to the tag
language file.

The extended code contains
the reason code for the
write error.

37928

FLG_ERR_INV_TAGFILE_EXT-

The filename specified for
the tag language file has an
extension of ECH. This
extension is invalid.

37929

FLG_ERR_INV_LOGFILE_EXF-

The filename specified for
the log file has an extension
of ECH. This extension is
invalid.

37930

FLG_ERR_TAGFILE_LOGFILE-CONFLICT

The specified log file is the
same as the tag language
file. The two files must be

different.

38000

FLG_ERR_INVALID_EXPORTSH)S&RIGGTImber of object

The input structure for
FLGExport is invalid.

38001

FLG_ERR_INVALID_CFLAG Sequence number of object

The containee flag value is
invalid in the FLGExport
input structure.

Valid values are Y or N.

38002

FLG_ERR_INVALID_TFLAG Sequence number of object

The contact flag value is
invalid in the FLGExport
input structure.

Valid values are Y or N.

38003

FLG_ERR_TAGFILE_EXIST —

The name specified for the
export output tag language
file (pszTagFileID) points to
a file that already exists.

The name of the output tag
language file must not
already exist.

38004

FLG_ERR_GET_ICON_FAILEReason code

Unable to export the icon for
the specified object type.

266

DataGuide Programming Guide and Reference

DataGuide reason codes

Table 25. DataGuide reason codes (continued)

Number

Reason code Extended codes

Explanation

38005

FLG_ERR_INVALID_AFLAG Sequence number of object

The attachment flag on the
export input structure is not
valid. Valid values are 'Y’ or
‘N’

38006

FLG_ERR_INVALID_LFLAG Sequence number of object
type.

The link flag in the export
input structure is not valid.
Valid values are 'Y’ or 'N’.

39000

FLG_ERR_UPM_FAIL —

The User Profile
Management utility failed
(logon failed or logon user
ID is different than
connected user ID).

39001

FLG_ERR_INV_INPUT_PARM—

The input parameter
keywords for the command
are invalid or missing.

39002

FLG_ERR_MISSING_PARM_VALUE

The input parameter values
for the command are invalid
or missing.

39003

FLG_ERR_INIT_BIDI_ERROR—

DataGuide encountered an
error while initializing for the
bi-directional environment.
This applies only when
DataGuide is running on an
Arabic or Hebrew machine.

39201

FLG_ERR_INVALID_USERTYRE_FOR_UPDATE

The user type specified to
be updated is invalid. The
valid types are either the
primary or backup
administrator.

39202

FLG_ERR_INVALID_USERTYRE_FOR_CRT_OR_DEL

The user type specified to
be created or deleted is
invalid. Only users
authorized to perform object
management tasks can be
created or deleted.

39203

FLG_ERR_INVALID_ID_BAD -GHAR

The specified user ID
contains an invalid
character. Refer to your
database documentation for
valid characters.

39204

FLG_ERR_INVALID_ID_NUM-START

The specified user ID
begins with a numeric. This
is not a valid starting
character.

39205

FLG_ERR_INVALID_ID_IMB_BtANK

The specified user ID
contains an imbedded
blank. This is not allowed.

Appendix D. DataGuide reason codes 267

DataGuide reason codes

Table 25. DataGuide reason codes (continued)

Number

Reason code Extended codes

Explanation

39206

FLG_ERR_INVALID_MUU_ORF

The option specified for the
FLGManageUsers APl is
invalid. Valid actions are
FLG_ACTION_CREATE,
FLG_ACTION_UPDATE,
FLG_ACTION_DELETE, or
FLG_ACTION_LIST.

39209

FLG_ERR_INVALID_PADMIN-YUSERID

The specified user ID for the
primary administrator is
invalid. Verify the user ID
syntax in your database
documentation.

39210

FLG_ERR_INVALID_BADMIN-USERID

The specified user ID for the
backup administrator is
invalid. Verify the user ID
syntax in your database
documentation.

39211

FLG_ERR_INVALID_POWERCSEBERIN$SERIDdex to the
user ID in the input structure

that is invalid.

The specified user ID is
invalid. Verify the user ID
syntax in your database
documentation.

39502

FLG_ERR_CDF_ERROR —

Reserved

39504

FLG_ERR_INSTPROFILE_ERROR

Reserved

39700

FLG_ERR_TERM_FAIL_ROLLBACK_CLOSE

Reserved

39701

FLG_ERR_TERM_FAIL_ROLLBACK

Reserved

39702

FLG_ERR_TERM_FAIL_COMMIT

Reserved

40001

FLG_ERR_INVALID_CONFIG=PROFILE

The MDIS Configuration
profile file does not contain
a valid BEGIN
CONFIGURATION section.

40002

FLG_ERR_CONFIGFILE_REAB&RR code

MDIS import encountered
an error while reading the
Configuration profile file.

40003

FLG_ERR_CONFIGFILE_CLOS&ERR0de

MDIS import encountered
an error while closing the
Configuration profile file.

40006

FLG_ERR_CONFIGFILE_INV-BEGIN_STMT

The MDIS Configuration
profile file contains an
invalid BEGIN statement.
Valid statement is: BEGIN
CONFIGURATION.

40007

FLG_ERR_CONFIGFILE_INV-END_STMT

The MDIS Configuration
profile file contains an
invalid END statement. Valid
statement is: END
CONFIGURATION.

268 DataGuide Programming Guide and Reference

DataGuide reason codes

Table 25. DataGuide reason codes (continued)

Number Reason code Extended codes Explanation

40010 FLG_ERR_CONFIGFILE_INV-KEYWORD The MDIS Configuration
profile file contains an
invalid keyword.

40011 FLG_ERR_CONFIGFILE_INV-FEXT The MDIS Configuration
profile file contains invalid
text.

40012 FLG_ERR_CONFIGFILE_INV-VALUE The MDIS Configuration
profile file contains an
invalid keyword value.

40013 FLG_ERR_CONFIGFILE_VALYE_TOO_LONG The MDIS Configuration
profile file contains a
keyword value that exceeds
the maximum allowable
length for that keyword.

40015 FLG_ERR_CONFIGFILE_PREMATURE_EOF MDIS import unexpectedly
encountered the end of the
Configuration profile file.

40021 FLG_ERR_INVALID_TOOL_PROFILE The MDIS Tool profile file
does not contain a valid
BEGIN TOOL section.

40022 FLG_ERR_TOOLFILE_READEER0ON code MDIS import encountered
an error while reading the
Tool profile file.

40023 FLG_ERR_TOOLFILE_CLOSE&#®Bn code MDIS import encountered
an error while closing the
Tool profile file.

40026 FLG_ERR_TOOLFILE_INV_BEGIN_STMT The MDIS Tool profile file
contains an invalid BEGIN
statement. Valid statements
are: BEGIN TOOL, BEGIN
APPLICATIONDATA.

40027 FLG_ERR_TOOLFILE_INV_END_STMT The MDIS Tool profile file
contains an invalid END
statement. Valid statements
are: END TOOL, END
APPLICATIONDATA.

40030 FLG_ERR_TOOLFILE_INV_KEYWORD The MDIS Tool profile file
contains an invalid keyword.

40031 FLG_ERR_TOOLFILE_INV_TEXT The MDIS Tool profile file
contains invalid text.

40032 FLG_ERR_TOOLFILE_INV_VAELUE The MDIS Tool profile file
contains an invalid keyword
value.

Appendix D. DataGuide reason codes 269

DataGuide reason codes

Table 25. DataGuide reason codes (continued)

Number

Reason code Extended codes

Explanation

40033

FLG_ERR_TOOLFILE_VALUE-TOO_LONG

The MDIS Tool profile file
contains a keyword value
that exceeds the maximum
allowable length for that
keyword.

40034

FLG_ERR_TOOLFILE_CONFHCTING_VALUES

The MDIS Tool profile file
contains conflicting
RECORD, DIMENSION, or
ELEMENT values.

40050

FLG_ERR_TOOLFILE_PREMATURE_EOF

MDIS import unexpectedly
encountered the end of the
Tool profile file.

40100

FLG_ERR_UNSUPPORTED_MDIS_FUNCTION

The Configuration profile file
specifies a function that is
not supported in DataGuide
Version 3.1.

40101

FLG_ERR_MISSING_REQ MBiS_KEYWORD

A required MDIS keyword is
not present in the tag
language file.

40110

FLG_ERR_TAGFILE_INV_KEYWORD

The MDIS tag language file
contains an invalid keyword.

40111

FLG_ERR_TAGFILE_INV_TEXF

The MDIS tag language file
contains invalid text.

40112

FLG_ERR_TAGFILE_INV_VALYE

The MDIS tag language file
contains an invalid keyword
value.

40113

FLG_ERR_TAGFILE_VALUE_FOO_LONG

The MIDS tag language file
contains a keyword value
that exceeds the maximum
allowable length for that
keyword.

40115

FLG_ERR_MISSING_DQUOTE-

A double quotation mark is
missing following a keyword.

40116

FLG_ERR_UNEXPECTED_DQUOTE

A double quotation mark
was found unexpectedly.

40117

FLG_ERR_SPECIFIED_PRORERTY_NOT_FOUND

Unable to find a specified
property short name in the
target database.

40118

FLG_ERR_TAGFILE_INV_ENB-STMT

The MDIS tag language file
contains an invalid END
statement.

40119

FLG_ERR_TAGFILE_INV_BEGIN_STMT

The MDIS tag language file
contains an invalid BEGIN
statement.

40130

FLG_ERR_INV_RECORD_SEGTION

A BEGIN RECORD section
is incorrectly nested in the
MDIS tag language file.

270 DataGuide Programming Guide and Reference

DataGuide reason codes

Table 25. DataGuide reason codes (continued)

Number Reason code Extended codes Explanation

40131 FLG_ERR_INV_DIMENSION_SECTION A BEGIN DIMENSION
section is incorrectly nested
in the MDIS tag language
file.

40132 FLG_ERR_INV_SUBSCHEMA—SECTION A BEGIN SUBSCHEMA
section is incorrectly nested
in the MDIS tag language

file.

40201 FLG_ERR_DUPLICATE_IDENHFIER An identifier value is
duplicated in the MDIS tag
language file.

40202 FLG_ERR_INV_IDENTIFIER_REFERENCE Either a

SourceObjectldentifier or a
TargetObjectldentifier value
does not refer to an
identifier value previously
defined in the tag language
file.

40211 FLG_ERR_INV_PART1 VALUE The value for the first part of
an MDIS object does not
match the parent value.

40212 FLG_ERR_INV_PART2_VALUE The value for the second
part of an MDIS object does
not match the parent value.

40213 FLG_ERR_INV_PART3_VALUE- The value for the third part
of an MDIS object does not
match the parent value.

40214 FLG_ERR_INV_PART4_VALUE The value for the fourth part
of an MDIS object does not
match the parent value.

40215 FLG_ERR_MDIS_WORK_BUFFER_OVERFLOW An MDIS file (Configuration
profile file, Tool profile file,
or tag language file)
contains a value that is
longer than the maximum
allowable size of internal
work buffers (32700 bytes).

40216 FLG_ERR_MDIS_APPL_DATA-TOO_LONG ApplicationData section of
MDIS tag language file
exceeds limits for
DataGuide Application data
object type. DataGuide
Application data object type
is limited to 10 properties of
32700 bytes each.

80000 FLG_SEVERR — Place holder; indicates the
beginning of the numeric
range for severe errors.

Appendix D. DataGuide reason codes 271

DataGuide reason codes

Table 25. DataGuide reason codes (continued)

Number

Reason code

Extended codes

Explanation

80002

FLG_SEVERR_NO_MEMORY—

DataGuide is unable to
allocate more memory.

80003

FLG_SEVERR_MEM_ERROR—

One of the following
occurred:

e A hardware memory
interrupt occurred.

* Some corruption in the
DataGuide heap prevents
DataGuide from allocating
or deallocating memory.

80004

FLG_SEVERR NO_CSA —

DataGuide internal error.

80005

FLG_SEVERR_APIDLL_FAILURE

The API DLL is missing API
calls, or the API DLL could
not be loaded.

80006

FLG_SEVERR_VIOPOPUP_FA

DataGuide is unable to
display OS/2
character-based error
messages using video
input/output (VIO).

80007

FLG_SEVERR_BIDIDLL_FAILURE

DataGuide encountered an
error while loading the
PMBIDI.DLL. This DLL is
needed when DataGuide
runs on an Arabic or
Hebrew machine.

80008

FLG_SEVERR_DG2IFORDLL-FAILURE

A necessary DG2IFOR.DLL
file was not found or is
invalid. DataGuide cannot
continue.

81000

FLG_SEVERR_STARTDBM_FAIL

Unable to start the local
database management
system. Refer to your
database documentation for
an explanation of the
SQLCODE.

81001

FLG_SEVERR_STARTDB_FAH-

Reserved

81002

FLG_SEVERR_DB_DISCONNECTED

The database disconnected
unexpectedly.

81003

FLG_SEVERR_DB_INCONSISTENT

DataGuide detected an
inconsistency in the
DataGuide database.

81004

FLG_SEVERR_COMMIT_FAIl—

The commit call to the
DataGuide database failed.

81005

FLG_SEVERR_ROLLBACK_FAIL

The rollback call to the
DataGuide database failed.

272

DataGuide Programming Guide and Reference

Table 25.

. DataGuide reason codes (continued)

DataGuide reason codes

Number

Reason code

Extended codes

Explanation

81006

FLG_SEVERR_NO_DBSPACE-

The database server has
run out of space or the file
system is full.

81007

FLG_SEVERR_DB_AUTO_RAtBiGE SQINIRIEH E

DataGuide encountered a
database error and rolled
back any uncommitted

changes to the database.

Check the extended code
for the database SQLCODE
that describes the error
condition that caused
DataGuide to perform the
rollback.

81008

FLG_SEVERR_DB_AUTO RMAtBR«K $SBICODE

DataGuide encountered a
database error and
attempted to roll back any
uncommitted changes to the
database, but this roll back
failed.

Check the extended code
for the database SQLCODE
that describes the error
condition that caused
DataGuide to perform the
rollback.

The database might be in
an inconsistent state and
need to be recovered.

82000

FLG_SEVERR_INIT_FAIL

DataGuide encountered an
unexpected condition,
probably an OS/2 internal
memory error, that prevents
DataGuide from running
normally.

82001

FLG_SEVERR_TERM_FAIL

DataGuide encountered an
unexpected condition,
probably an OS/2 internal
memory error, that prevents
DataGuidefrom releasing its
allocated resources. The
resources will be freed
when the calling application
session ends.

82002

FLG_SEVERR_TERM_FAIL_GLOSE

Reserved

82200

FLG_SEVERR_GETREG_FAIReAson code

Export calls FLGGetReg,
which returned a severe
error.

Appendix D. DataGuide reason codes 273

DataGuide reason codes

Table 25. DataGuide reason codes (continued)

Number

Reason code Extended codes

Explanation

82201

FLG_SEVERR_GETINST_FAIRE&son code

Export calls FLGGetlInst,
which returned a severe
error.

82202

FLG_SEVERR_LISTCONTACR8aBAlL &fdle

Export calls
FLGListContacts, which
returned a severe error.

82203

FLG_SEVERR_NAVIGATE_FAREREDN code

Export calls FLGNavigate,
which returned a severe
error.

82204

FLG_SEVERR_FREEMEM_FAREEEN code

Export calls FLGFreeMem,
which returned a severe
error.

82400

FLG_SEVERR_THREAD_FAILED

A severe error occurred
while creating the new
thread and DataGuide
cannot continue.

82500

FLG_SEVERR_PARMS_MISSING

DataGuide required system
table is corrupted or
missing.

82501

FLG_SEVERR_DGEMPTY —

The DataGuide database
contains no registrations or
object types. The DataGuide
database is corrupted.

Recover the database using
your backed-up database
files.

82502

FLG_SEVERR_TYPE_WOUT-PROPERTY

No properties exist for the
specified object type, or
DataGuideis unable to
retrieve any properties.

82503

FLG_SEVERR_MORE_THAN-ONE_KA

A security violation

occurred; more than one
administrator is logged on at
the same time.

83000

FLG_SEVERR_SESSION_ABENDED

Reserved

83001

FLG_SEVERR_CDF_ERROR—

Reserved

83002

FLG_SEVERR_INTERNAL_ERROR

Reserved

84000

FLG_SEVERR_DEMO_EXPIRED

The evaluation period for
IBM DataGuide
Administrator has ended.
Please contact the local
software reseller or your
IBM representative to order
the product.

274 DataGuide Programming Guide and Reference

DataGuide reason codes

Table 25. DataGuide reason codes (continued)

Number Reason code Extended codes Explanation

84101 FLG_SEVERR_DB_CONNECT¥FAILED Unable to connect to
database. Refer to your
database documentation for
an explanation of the
SQLCODE.

84102 FLG_SEVERR_DB_BIND — Unable to bind DataGuide
to the information catalog.
DataGuide has encountered
an unexpected database
error or cannot find the bind
file in the current directory
or path.

84103 FLG_SEVERR_INSAUTH_BINB You must have SYSADM
authority to bind DataGuide
to the information catalog.

84104 FLG_SEVERR_CREATETAB — Unable to create DataGuide
system table.

84105 FLG_SEVERR_INSAUTH_GRANT You must have SYSADM
authority to grant access to
the information catalog.

84106 FLG_SEVERR_CREATECOLIECTION DataGuide failed to create
an 0S/400 library collection.

84107 FLG_SEVERR_ICON_NOT_GENERATED DataGuide has encountered
a system error, or is unable
to find the DataGuide icon
files or the DataGuide
executable file.

DataGuide icons will not be
generated.

84108 FLG_SEVERR_DGCOL_NOTEXIST You must create the OS/400
library collection,
DATAGUIDE, prior to
invoking this utility.

84109 FLG_SEVERR_DB_NOTFOUND DataGuide cannot find the
specified database. Create
the database if it does not
exist. Then, register the
remote database on your
workstation.

Appendix D. DataGuide reason codes 275

Appendix E. Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates. Any
reference to an IBM product, program, or service is not intended to state or imply
that only that IBM product, program, or service may be used. Subject to IBM’s valid
intellectual property or other legally protectable rights, any functionally equivalent
product, program, or service may be used instead of the IBM product, program, or
service. The evaluation and verification of operation in conjunction with other
products, except those expressly designated by IBM, are the responsibility of the
user.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to the IBM Director of Licensing,
IBM Corporation, 500 Columbus Avenue, Thornwood, NY 10594, U.S.A.

Licensees of this program who wish to have information about it for the purpose of
enabling: (1) the exchange of information between independently created programs
and other programs (including this one) and (2) the mutual use of the information
which has been exchanged, should contact IBM Corporation, 555 Bailey Avenue,
P.O. Box 49023, San Jose, CA 95161-9023.

Such information may be available, subject to appropriate terms and conditions,
including, in some cases, payment of a fee.

Programming Interface Information

This book is intended to help you create programs that use DataGuide functions.
This book documents General-use Programming Interface and Associated Guidance
Information provided by DataGuide.

General-use programming interfaces allow the customer to write programs that
obtain the services of DataGuide.

Trademarks

The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:

AlIX MVS
DB2 0S/2
DataGuide 0S/390
IBM 0S/400

Information Warehouse

1-2-3 and Lotus are trademarks of Lotus Development Corporation in the United
States and/or other countries.

Microsoft, Windows, Windows NT®, and the Windows logo are registered
trademarks of Microsoft Corporation.

Other company, product, and service names, may be trademarks or service marks
of others.

© Copyright IBM Corp. 1994, 1998 277

Glossary
A

administrator. A person responsible for managing the
content and use of DataGuide.

anchor. A Grouping object that contains other objects,
but is not contained by another Grouping object.

application program interface (API). See DataGuide

application programming interface.

Attachment. The category for object types used to
attach additional information to another DataGuide
object. For example, you can attach comments to an
object.

B

browse. To display DataGuide objects that are
grouped by subject. Contrast with search.

C

catalog. See information catalog and database
catalog.

category. A classification for DataGuide object types.
The category designates the:

» Actions available to object types

* Relationships allowed between object types in the
same or different categories.

Object types belong to one of the following categories:

Attachment

Contact

Dictionary

Elemental

Grouping

Program

Support

CelDial sample data. A sample information catalog
(DGV3SAMP) available when you install DataGuide that
can be used for installation verification. This sample
information catalog is also used in the exercises in
Using DataGuide.

collection. A container for objects. A collection can be
used to gather objects of interest for easy access.

Comments. A classification for objects that annotate
another object in DataGuide. For example, you may
want to attach a Comments object to a chart object that

© Copyright IBM Corp. 1994, 1998

contains notes about the data in the chart. The
Comments object type is shipped with DataGuide. You
cannot add properties to it.

commit. To make changes to the DataGuide database
permanent. Contrast with roll back.

contact. A reference for more information about an
object. Further information might include the person who
created the information that the object represents, or the
department responsible for maintaining the information.

Contact. A category for the Contact object type and
other object types that identify contacts.

Contact object type.
identify contacts.

D

database catalog. A collection of tables that contains
descriptions of database objects such as tables, views,
and indexes.

A classification for objects that

DataGuide application program interface (API). The
portion of DataGuide that processes application
program requests for DataGuide services and functions.

DataGuide Catalog window. The main DataGuide
window. It contains all the DataGuide objects available.

DataGuide database. The set of relational tables
containing the metadata managed by DataGuide. See
information catalog.

DBCS. Double-byte character set.

decision-support system. A system of applications
that help users make decisions. This kind of system
allows users to work with information presented in
meaningful ways; for example, spreadsheets, charts,
and reports.

delete history. A log of delete activity, the capture of
which is turned on and off by the DataGuide
administrator. The log can be transferred to a tag
language file.

derived data. Data that is copied or enhanced
(perhaps by summarizing the data) from operational
data sources into an informational database.

descriptive data. Data that identifies and describes an
object, for example, the name of a table, the location of
a spreadsheet, or the creator of a document. Also called
metadata.

Description view. A view that lists the properties and
property values for an object.

279

Dictionary. The category for object types that can be
used to define terminology (for example, the “Glossary
entries” object type in the sample information catalog).

dictionary facility. A collection of definitions or
synonyms for the business terms you use in the
information catalog. After it is created, the dictionary
facility appears in every user’s Catalog window as a
saved search icon.

double-byte character set (DBCS). A set of
characters in which each character is represented by
two bytes. Languages such as Japanese, Chinese, and
Korean, which contain more symbols than can be
represented by 256 code points, require double-byte
character sets. Contrast with single-byte character set.

DP NAME. An identification for an object type that
uniquely identifies it for import operations. Also called
the short name of an object type.

E

echo file. Afile produced by DataGuide when it
imports a tag language file. This file contains all the
tags that have been processed since either the
beginning of the tag language file or the point when the
last COMMIT tag was processed.

Elemental. The category for non-Grouping object
types that are the building blocks for other DataGuide
object types. Elemental object types are at the bottom
of object type hierarchies. “Columns in relational tables,”
“Presentations {electronic and hardcopy},” and
“Graphics and Images” are all examples of Elemental
object types.

export. To copy metadata from DataGuide, translate
the metadata into tag language, and put this output in a
tag language file for a subsequent import operation.

external name. The 80-byte name for an object type.
Also called object type name.

extract control file. A file that contains statements
that control the operation of an extractor utility program.

extract program. A utility program that copies from a
metadata source, such as an RDBMS catalog,
translates the metadata into tag language, and places
this output in a tag language file.

F

FAT. File allocation table. A table used to allocate
space on a disk for a file and to locate the file.

FLGID. See object identifier.

280 DataGuide Programming Guide and Reference

G

Grouping. The category for object types that can
contain other object types. Examples of Grouping object
types available in the sample information catalog
shipped with DataGuide are: “Tables or views in a
relational database,” which contains the Elemental
object type “Columns in relational tables”; and
“Multi-dimensional model,” which contains another
Grouping object type “Dimension.”

H

HPFS. High-performance file system. In OS/2, an
installable file system that uses high-speed buffer
storage, known as a cache, to provide fast access to
large disk volumes. File names used with the HPFS can
have as many as 254 characters.

icon. A graphical representation of an object, object
type, collection, new search, saved search, or subject.

import. To apply the contents of a tag language file to
a DataGuide information catalog to initially populate the
information catalog, change the information catalog
contents, or copy the contents of another DataGuide
information catalog to the information catalog.

information catalog. =~ The database managed by
DataGuide containing descriptive data that helps users
identify and locate the data and information available to
them in the organization. The information catalog is a
component of the Information Warehouse framework.

information source. An item of data or information,
such as a table or chart, that is represented by a
DataGuide object.

Information Warehouse framework. A definition for
an integrated set of software that manages and delivers
business information to authorized individuals.

informational application. A program or system that
lets users retrieve and analyze their data.

informational database. A database that contains
derived data and is intended for business decision
making.

input structure. A self-defining data structure used to
submit data to the DataGuide application program
interface.

instance. See object.

instance identifier. A 10-digit numeric identifier
generated by DataGuide for each object. The identifier
is unique for that object within a given object type (an
object of another object type may have the same

identifier), and within a given DataGuide database (an
object in another DataGuide database may have the
same identifier).

I/O structure.

K

keyword. An element of the DataGuide tag language
that identifies the meaning of a data value imported into
or exported out of a DataGuide information catalog.

See input structure and output structure.

keyword search. See search.

L

link. A connection between two or more objects
involved in a linked relationship.

linked relationship. A relationship between objects in
an information catalog. Objects in a linked relationship
are peers, rather than one an underlying object of the
other. For example, in the sample information catalog
shipped with DataGuide, the object called CelDial
Sales Information is linked with various objects
describing CelDial advertisements for the year.

log file. A file produced by DataGuide when it imports
a tag language file or exports objects in the DataGuide
information catalog. This file records the times and
dates when the import or export started and stopped
and any error information for the process.

M

metadata. Data about information sources. See
descriptive data.

multiple character wildcard. A character used to
represent any series of characters of any length. By
default, the multiple character wildcard is an asterisk (*).
See also wildcard and single character wildcard.

N

New Search icon. Anicon in the DataGuide Catalog
window that is used to begin a search.

not-applicable symbol. A character that indicates that
a value for a required property was not provided when
an object was created. The not-applicable symbol is a
hyphen (-) by default, but you could have identified a
different symbol when you created the information
catalog.

O

object. An item that represents a unit or distinct
grouping of information. Each DataGuide object

identifies and describes information, but does not
contain the actual information. For example, an object
can provide the name of a report, list its creation date,
and describe its purpose.

object identifier. A 16-digit identifier for an object that
is made up of its 6-digit object type identifier and its
10-digit instance identifier that is used with some API
calls. See object type identifier and instance identifier.

object type. A classification for objects. An object type
is used to reflect a type of business information, such
as a table, report, or image. DataGuide provides a set
of sample object types, which you can modify. You can
also create additional object types to meet the needs of
your organization.

object type identifier. A 6-digit numeric identifier
generated by DataGuide for each object type. The
identifier is unique within the DataGuide database.

object type registration. With the DataGuide
application program interface, the basic information
about an object type that you must define in the
DataGuide information catalog before you can define
the properties for the object type. This information
includes the category, the name, the icon, and the name
of the table containing the object information.

operational data. Data used to run the day-to-day
operations of an organization.

option. In DataGuide tag language, a parameter of the
ACTION tag that defines the action to be performed on
objects or object types in the DataGuide database when
the tag language file is imported.

output structure. A self-defining data structure
produced by DataGuide when returning data produced
by a DataGuide API call.

P

physical type name. The name of the table in the
DataGuide database that contains metadata for
instances of a specific object type.

populate. To add object types, objects, or metadata to
the DataGuide information catalog.

Program category.
object type.

The category for the Programs

Programs object type. A classification for objects that
identify and describe applications capable of processing
the actual information described by DataGuide objects.
The Programs object type is shipped with DataGuide.

property. A characteristic or attribute that describes a
unit of information. Each object type has a set of
associated properties. For example, the “Graphics and
Images” object type in the sample DataGuide
information catalog includes the following properties:

Glossary 281

Name
Description
Image type
Image filename

For each object, a set of values are assigned to the
properties.

property name. The 80-byte descriptive name of a
property that is displayed in the DataGuide user
interface. Contrast with property short name.

property short name. An 8-character name used by
DataGuide to uniquely identify a property of an object or
object type.

property value. The value of a property.

PT NAME. See physical type name.

R

RDBMS. Relational database management system.

RDBMS catalog. A set of tables that contain
descriptions of SQL objects, such as tables, views, and
indexes, maintained by an RDBMS.

relational database management system. A software
system, such as DB2 for OS/2, that manages and
stores relational data.

registration. See object type registration.

roll back. To remove uncommitted changes to the
DataGuide database. Contrast with commit.

S

saved search. A set of search criteria that is saved for
subsequent use. Appears as an icon in the Catalog
window.

SBCS. Single-byte character set.

search. To request the display of DataGuide objects
that meet specific criteria.

search by subject. See browse.

search by term. See search.

search criteria. Options and character strings used to
specify how to perform a search. This can include
object type names, property values, whether the search
is for an exact match, and whether the search is case
sensitive.

single-byte character set (SBCS). A character set in
which each character is represented by a one-byte
code. Contrast with double-byte character set.

282 DataGuide Programming Guide and Reference

single character wildcard. A character used to
represent any single character. By default, the single
character wildcard is a question mark (?). See also
wildcard and multiple character wildcard.

subject search. See browse.

Subjects icon. An icon in the DataGuide Catalog
window that when selected displays the Subjects
window.

Support. The category for object types that provide
additional information about your information catalog or
enterprise (for example, the “ DataGuide News” object
type in the sample information catalog).

support facility. A collection of information you
consider helpful for users of your information catalog,
such as announcements of changes or updates to the
information catalog. After it is created, the support
facility appears in every user’'s Catalog window as a
saved search icon.

T

tag. An element of the tag language. Tags indicate
actions to be taken when the tag language file is
imported to DataGuide.

tag language. A format for defining object types and
objects, and actions to be taken on those object types
and objects, in a DataGuide information catalog.

tag language file. A file containing DataGuide tag
language that describes objects and object types to be
added, updated, or deleted in the DataGuide
information catalog when the file is imported. You can
also use the tag language file for batch imports of
objects into DataGuide. A tag language file is produced
by:

» Exporting objects from an information catalog

» Transferring a delete history log

» Extracting descriptive data from another database
system using an extract program

Tree view. A view that displays hierarchically an object
and the objects it contains.

U

unit of work. A recoverable sequence of operations
within an application process. A unit of work is the basic
building block a database management system uses to
ensure that a database is in a consistent state. A unit of
work is ended when changes to the database are
committed or rolled back.

universal unique identifier (UUI). A key for an object.
The key is comprised of up to five properties, which,
when concatenated in a designated order, uniquely
identify the object during import and export functions.

user. A person who accesses the information available
in DataGuide information catalogs but who is not an
administrator. Some DataGuide users, if they have been
granted authority, can perform some object
management tasks normally performed by DataGuide
administrators.

Vv

View menu. A menu used to change the way objects
are displayed in a window.

W

wildcard. A special character that is used as a
variable when specifying property values in a search.
See also single character wildcard and multiple
character wildcard.

work area. See DataGuide Catalog window.

Glossary 283

Bibliography

To get copies of the books listed here, or to get
more information about a particular library, see
your IBM representative.

DATABASE 2 publications

DATABASE 2 Administration Guide for
common servers (S20H-4580)

IBM DB2 Universal Database Administration
Guide (S10J-8157)

DATABASE 2 Messages Reference for
common servers (S20H-4808)

IBM DB2 Universal Database Messages
Reference (S10J-8168)

DATABASE 2 Problem Determination Guide for
common servers (S20H-4779)

IBM DB2 Universal Database Troubleshooting
Guide (S10J-8169)

DATABASE 2 (for MVS) Version 3 Messages
and Codes (SC26-4892)

DATABASE 2 (for MVS) Version 4 Messages
and Codes (SC26-3268)

DB2/400 SQL Programming Version 3
(SC21-3611)

© Copyright IBM Corp. 1994, 1998

Information Warehouse

Information Warehouse An Introduction
Publication (GC26-4876)
Video (GV26-1025)

Information Warehouse Architecture and
Information Catalog Overview (GC24-4019)

VisualAge C ++

VisualAge C++ User’s Guide (S25H-6961)

Other Visual Warehouse information

Installing Visual Warehouse and DataGuide
(SC26-3496)

Managing DataGuide (SC26-3362)
Managing Visual Warehouse (SC26-8822)

Using DataGuide This book is available online
in the DataGuide folder.

Visual Warehouse and DataGuide Messages &
Reason Codes This book is available online in
the DataGuide folder.

Online help

285

Index

Special Characters
#define statements 20

#define statements in DG2API.H 215
#include statements 19, 20

A

adding
object instances 67
object type registrations 73
object types 79
objects 4
administrator 2
anchors, listing 130
API call
call structure 17
FLGAppendType 60
FLGCommit 64
FLGConvertiD 66
FLGCreatelnst 67
FLGCreateReg 73
FLGCreateType 79
FLGDeletelnst 84
FLGDeleteReg 86
FLGDeleteTree 88
FLGDeleteType 92
FLGDeleteTypeExt 95
FLGExport 98
FLGFoundin 103
FLGFreeMem 107
FLGGetInst 109
FLGGetReg 112
FLGGetType 116
FLGImport 119
FLGInit 122
FLGListAnchors 130
FLGListAssociates 132
FLGListContacts 140
FLGListObjTypes 143
FLGListOrphans 145
FLGListPrograms 151
FLGManageCommentStatus 154
FLGManageFlags 157
FLGManagelcons 159
FLGManageTagBuf 161
FLGManageUsers 163
FLGMdisExport 168
FLGMdisImport 170
FLGNavigate 172
FLGOpen 175
FLGRelation 177
FLGRollback 180
FLGSearch 181
FLGSearchAll 189
FLGTerm 194
FLGTrace 195
FLGUpdatelnst 197
FLGUpdateReg 202

© Copyright IBM Corp. 1994, 1998

API call (continued)
FLGWhereUsed 207
FLGXferTagBuf 210
function prototypes in DG2API.H 218
reason codes 225
syntax conventions 59
API syntax 59
appending properties to an object type 60
application program 2, 4
application support
FLGFreeMem 13
FLGInit 13
FLGTerm 13
FLGTrace 13
associates, listing 132
Attachment category
definition of 5
relationships
summary of 5

C

C language 20
categories of metadata 5
categories of objects 5
category
Attachment
definition of 5
relationships with other categories 5
Contact
definition of 5
relationships with other categories 5
Dictionary
definition of 5
relationships with other categories 5
Elemental
definition of 5
relationships with other categories 5
Grouping
definition of 5
relationships with other categories 5
Program
definition of 5
relationships with other categories 5
Support
definition of 5
relationships with other categories 5
CHAR data type 23
codes, reason 225
comments
status choices
setting list of 154
committing changes to the database
FLGCommit 17
committing changes to the DataGuide information
catalog 64
compiling a C language program
under Windows 20

287

compiling and linking the sample program 213 DG2APIL.H (continued)
Contact for reading output structures 51
creating and deleting relationships 177 header file 34
listing 140 DG2SAMP.C 25, 213
objects adding and removing 177 Dictionary category
Contact category definition of 5
definition of 5 relationships
relationships summary of 5
summary of 5 DOS batch file 22
contains 177 DOS character-based program 22
converting DPNAME property 7
DP NAME to object type ID 66 converting to OBJTYPID property 66
FLGID to object instance name 66

copying object instances 16
copying object types 16
creating

object instances 67

object type registrations 73

object types 79
CREATOR property 7

D

data
passing with APl calls 18
structure 28, 44
types 23, 217

database, maintaining 4

E

Elemental category
definition of 5
relationships

summary of 5

error recovery 21, 195

examples
FLGAppendType API call 62
FLGCommit 65
FLGConvertID 66
FLGCreatelnst 70
FLGCreateReg 77
FLGCreateType 82

DataGuide
introduction 1 FLGDeletelnst 85
limits 223 FLGDeleteReg 87
objects 5 FLGDeleteTree 89

DBCS characters in values 25
definition area
data structure in DG2API.H 217
input structure 30, 39
output structure 47
sample code defining 42
delete activity
log
querying 161
resetting 161
transferring to tag file 210

FLGDeleteType 93
FLGDeleteTypeExt 96
FLGExport 102
FLGFoundin 105
FLGFreeMem 108
FLGGetlnst 111
FLGGetReg 114
FLGGetType 117
FLGImport 121
FLGInit 127
FLGListAnchors 131
FLGListAssociates 134

logg:ggbnng 157 FLGListContacts 142
enabling 157 FLGListObjTypes 144
delete history FLGListOrphans 147
log FLGListPrograms 153

querying 161
resetting 161
transferring to tag file 210

FLGManageCommentStatus
FLGManageFlags 158
FLGManagelcons 160
FLGManageTagBuf 162

logging
disabling 157 FLGManageUsers 165
enabling 157 FLGNavigate 174
deleting FLGOpen_ 176
object instances 84 FLGRelation 178
grouping 88 FLGRollback 180

object type registrations 86
object types 92
object types and instances of 95
descriptive data 1
DG2API.H
definitions in 215

288 DataGuide Programming Guide and Reference

FLGSearch 184
FLGSearchAll 191
FLGTerm 194
FLGTrace 196
FLGUpdatelnst 200
FLGUpdateReg 204

155

examples (continued)

FLGWhereUsed 208

FLGXferTagBuf 211

sample code for reading 54
exporting DataGuide metadata 98, 168
exporting metadata 16

F
finding

object instances within other instances 103
FLGAppendType

API call 60

overview 7
FLGCommit 64
FLGConvertID 66
FLGCreatelnst 67
FLGCreateReg

APl call 73

overview 7
FLGCreateType

APl call 79

overview 7
FLGDeletelnst 84
FLGDeleteReg

APl call 86

overview 7
FLGDeleteTree 88
FLGDeleteType

APl call 92

overview 7
FLGDeleteTypeExt 95
FLGExport 98
FLGFoundIin 103
FLGFreeMem 107
FLGGetInst 109
FLGGetReg

APl call 112

overview 7
FLGGetType

APl call 116

overview 7
FLGID

converting to object instance name 66
FLGImport 119
FLGInit

API call 122

starting your program 21
FLGListAnchors 130
FLGListAssociates 132
FLGListContacts 140
FLGListObjTypes 143
FLGListOrphans 145
FLGListPrograms 151
FLGManageCommentStatus 154
FLGManageFlags 157
FLGManagelcons 159
FLGManageTagBuf 161
FLGManageUsers 163
FLGMdisExport 168
FLGMdisImport 170
FLGNavigate 172

FLGOpen

APl call 175

starting programs 22
FLGRelation 177
FLGRollback 180
FLGSearch 181
FLGSearchAll 189
FLGTerm

APl call 194

ending your program 21
FLGTrace 195
FLGUpdatelnst 197
FLGUpdateReg

APl call 202

overview 7
FLGWhereUsed 207
FLGXferTagBuf 210
freeing storage for output structures 107
function prototypes in DG2API.H 218

G

getting information

about an object instance 109

about an object type 116

about an object type registration 112
Grouping category

definition of 5

relationships

summary of 5

Grouping objects 172, 177

H

HANDLES property 22
header area
data structure in DG2APILH 217
input structure 29, 37
output structure 45
sample code defining 41
header file 19, 215

icons
managing 159
identifier names 11
importing metadata 16, 119, 170
include file 215
initializing DataGuide 122
input data structure 28
input structure
calculating the size of 36
common characteristics 27
constants defined in DG2API.H 215
defining
definition area 39
header area 37
object area 40
definition area 30
definition area in DG2API.H 217

Index

289

input structure (continued)
example of defining 41
format 28
header area 29
header area in DG2API.H 217
object area 33
overview 18
passing to an APl call 18
sample code
defining definition area 42
defining header area 41
defining object area 43
input structures
creating 34
instances of object types 6
INSTIDNT property 9
introduction 1

L

launching program
external 175
setting up Programs objects 22
workstation 16

LIBPATH 20

limits 223

linking a C language program
under Windows 20

listing
anchor objects 130
associate objects 132
Contact objects 140

Grouping objects that contain this object 207

object instances 15
object types 15, 143
orphan objects 145
programs 151
subject objects 130
locating object instances
in any object type 189
in one object type 181
using one or more properties 181
using properties 15
using the object name 189
within other instances 103
log
delete activity
querying 161
resetting 161
transferring to a tag file 210

logging
delete activity
disabling 157
enabling 157

LONG VARCHAR data type 23

M

maintaining a database 4
managing
comment status 154
databases, enterprise
FLGManageCommentStatus 17

290 DataGuide Programming Guide and Reference

managing (continued)
databases, enterprise (continued)
FLGManageFlags 17
FLGManageTagBuf 17
FLGManageUsers 17
FLGXferTagBuf 17
DataGuide identifiers
FLGConvertID 15
DataGuide users 163
delete activity log 161
icons 159
object instances 14
object relationships 15
object type registrations 14
object types 14
maximum values in DataGuide 223
metadata
categories 5
defined 1
deleting with API calls 23
valid data types 23
Microsoft Windows program 22

N

NAME property 7,9
names used in DataGuide 11
national language considerations 24

O

object
adding 4
classifying 6
overview 5, 6
object area
input structure 33, 40
output structure 49
sample code defining 43
object categories 5
object instance 6
copying
FLGExport 16
FLGImport 16
creating 67
deleting 84
grouping 88
finding other instances in 103
listing
FLGFoundin 15
FLGListAnchors 15
FLGListAssociates 15
FLGListContacts 15
FLGListOrphans 15
FLGListPrograms 15
FLGNavigate 15
FLGWhereUsed 15
listing objects that contain this object
locating
FLGSearch 15
FLGSearchAll 15
managing
FLGCreatelnst 14

207

object instance (continued)
managing (continued)
FLGDeletelnst 14
FLGDeleteTree 14
FLGGetInst 14
FLGUpdatelnst 14
retrieving information 109
searching for 181, 189
updating information 197
object relationship 15
object type
adding properties 60
copying
FLGExport 16
FLGImport 16
creating 79
creating with API calls 23
defining 7
defining required properties 9
deleting 92
deleting, and instances of 95
listing
FLGListObjTypes 15
listing all 143
managing
FLGAppendType 14
FLGCreateType 14
FLGDeleteType 14
FLGDeleteTypeExt 14
FLGGetType 14
overview 6
registration 6
relationships between 5
retrieving information 116
specifying categories for 9
terminology 11
object type registration
creating 73
deleting 86
managing
FLGCreateReg 14
FLGDeleteReg 14
FLGGetReg 14
FLGManagelcons 14
FLGUpdateReg 14
required properties 7
retrieving information 112
updating information 202
OBJTYPID property 9
converting DP NAME to 66
orphans, listing 145
0Ss/2 22
output data structure 44
output structure
calculating the number of properties 51
calculating the number sets of values returned 52
common characteristics 27
constants defined in DG2APIL.H 215
definition area 47
definition area in DG2API.H 217
format 44

output structure (continued)
header area 45
header area in DG2API.H 217
object area 49
overview 18
reading 50, 59
retrieving from an APl call 19
sample code for reading 54

P

parameters of APl calls 18
PARMLIST property 22

populating a DataGuide information catalog 119, 170

Program category
definition of 5
relationships

summary of 5

programmer 2

programs
listing 151
setting up Programs objects 22
starting
FLGOpen 16

writing with API calls 13
programs in C language 20
properties of object types 9
PTNAME property 7

R

reading an output structure 50, 54
recording error conditions 195
recovering from errors 21
registration 6
related publications 285
relationships 177
object types, between 5
required properties of object types 9
retrieving
information about an object instance 109
information about an object type 116

information about an object type registration 112

retrieving a list of contained objects 172
rolling back changes to the database
FLGRollback 17
rolling back changes to the DataGuide information
catalog 180
running the sample program 213

S

sample program
compiling and linking 213
defining an input structure 41
DG2SAMP.C 25
executing 213
SBCS characters in values 25
searching for object instances 181, 189
SET INCLUDE 20
SETLIB 20

Index

2901

setting trace levels 195
STARTCMD property 22
starting
DataGuide 122
programs
FLGOpen 16, 175
HPFS file considerations 22
STARTCMD property 22
with FLGOpen 22
with HPFS file names 22
stopping DataGuide 194
structure
common characteristics 27
input format 28
output format 44
subjects, listing 130
Support category
definition of 5
relationships
summary of 5
supporting applications
FLGFreeMem 13
FLGInit 13
FLGTerm 13
FLGTrace 13
syntax diagrams, reading 59
syntax for API calls 59

T

tag file
transferring delete activity to 161, 210
templates of objects 6
terminating DataGuide 194
terminology for object types 11
TIMESTAMP data type 23
trace (.TRC) file 195
tracing DataGuide functions 195
translated required property names 24, 125

U

UPDATEBY property 7,9

UPDATIME property 7,9

updating metadata for an object instance 197
updating object type registration information 202
user 2

using DataGuide API calls 21

V

VARCHAR data type 23

W

Windows header file 215
writing programs in C language 20
writing programs with API calls 13

292 DataGuide Programming Guide and Reference

on recycled paper containing 10%

@ Printed in the United States of America
recovered post-consumer fiber.

$C26-3368-03

