IBM DB2 Universal Database
SQL Reference
Version 5.2

Document Number S10J-8165-01

IBM DB2 Universal Database

SQL Reference

Version 5.2

S$10J-8165-01

IBM DB2 Universal Database

SQL Reference

Version 5.2

S$10J-8165-01

Before using this information and the product it supports, be sure to read the general information under Appendix Q,
“Notices” on page 991.

This document contains proprietary information of IBM. It is provided under a license agreement and is protected by
copyright law. The information contained in this publication does not include any product warranties and any state-
ments provided in this manual should not be interpreted as such.

Order publications through your IBM representative or the IBM branch office serving your locality or by calling
1-800-879-2755 in U.S. or 1-800-IBM-4YOU in Canada.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way
it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1993, 1998. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Chapter 1. Introduction 1
Who Should Use This Book 1
How To Use ThisBook, 1
How This Book is Structured 1
How to Read the Syntax Diagrams 2
Conventions Used in This Manual 5
Error Conditions L 5
Highlighting Conventions 5
Related Documentation for This Book 5
Chapter 2. Concepts 7
Relational Database 7
Structured Query Language (SQL)o 7
Embedded SQL 7
Static SQL 7
Dynamic SQL e 8
DB2 Call Level Interface (CLI) 8
Interactive SQL L 9
Schemas 9
Controlling Use of Schemas 9
Tables 10
VIEWS . . o e 10
Aliases e 11
Indexes e 11
Keys . . e 12
Unique Keys 12
Primary Keys 12
Foreign Keys 12
Partitioning Keys 12
Constraints e 12
Unique Constraints 13
Referential Constraints 14
Table Check Constraints 16
TRQUErS e 17
Event Monitors 18
Queries . . . L e 18
Table EXpressions e 18
Common Table Expressions 19
Packages 19
Catalog Views 19
Application Processes, Concurrency, and Recovery 19
Isolation Level 22
Repeatable Read (RR) 22
Read Stability (RS) 23
Cursor Stability (CS) 23

© Copyright IBM Corp. 1993, 1998 iii

iv

Uncommitted Read (UR) 24

Comparison of Isolation Levels 24
Distributed Relational Database 24
Application Servers 25
CONNECT (Type 1) and CONNECT (Type 2) 25
Remote Unit of Work 26
Application-Directed Distributed Unit of Work 30
Data Representation Considerations 34
Character Conversion 35
Character Sets and Code Pages, 36
Code Page Attributes L 37
Authorization and Privileges oL 38
Storage Structures L e e 39
Data Partitioning Across Multiple Partitions 41
Partitioning Maps L 41
Table Collocation 42
Chapter 3. Language Elements L. 45
Characters 45
MBCS Considerations 46
TOKENS . . . 46
MBCS Considerations a7
Identifiers L a7
SQL Identifiers e 47
Host Identifiers 48
Naming Conventions and Implicit Object Name Qualifications 48
Allases . . . 51
Authorization IDs and authorization-names 51
Data Types 54
Nulls . . e 54
Large Objects (LOBS) e 55
Character Strings 56
Graphic Strings 58
Binary String 59
Numbers 59
Datetime Values 60
DATALINK Values 63
User Defined Types e 64
Promotion of Data Types e 66
Casting Between Data Types 67
Assignments and Comparisons Lo 70
Numeric Assignments 72
String Assignments L L L Lo 72
Datetime Assignments Lo 75
DATALINK Assignments 75
User-defined Type Assignments 77
Reference Type Assignments 77
Numeric Comparisons 78

SQL Reference

String Comparisons
Datetime Comparisons
User-defined Type Comparisons
Reference Type Comparisons
Rules for Result Data Types
Character Strings L
Graphic Strings L L
Binary Large Object (BLOB)
Numeric
DATE . . .
TIME . . .
TIMESTAMP e
DATALINK . . o
User-defined Types
Nullable Attribute of Resulto
Rules for String Conversionso
Partition Compatibilityo
Constants e
Integer Constants
Floating-Point Constants
Decimal Constants
Character String Constants
Hexadecimal Constants
Graphic String Constants
Special Registers
CURRENT DATE
CURRENT DEGREE
CURRENT EXPLAIN MODE
CURRENT EXPLAIN SNAPSHOT
CURRENT NODE e
CURRENT PATH e
CURRENT QUERY OPTIMIZATION
CURRENT REFRESH AGE
CURRENT SCHEMA e
CURRENT SERVER e
CURRENT TIME e e
CURRENT TIMESTAMP e
CURRENT TIMEZONE o e e
USER . . .
Column Names e
Qualified Column Names
Correlation Names
Column Name Qualifiers to Avoid Ambiguity
Column Name Qualifiers in Correlated References
References to Host Variableso
Host Variables in Dynamic SQL
References to BLOB, CLOB, and DBCLOB Host Variables
References to Locator Variables

Contents

\'

Vi

References to BLOB, CLOB, and DBCLOB File Reference Variables 108

Functions L 110
Function Resolution 112
Function Invocation 115

EXpressions 117
Without Operators 117
With the Concatenation Operator 117
With Arithmetic Operatorso 120
Two Integer Operands 121
Integer and Decimal Operands, 121
Two Decimal Operands 121
Decimal Arithmeticin SQL 122
Floating-Point Operands 122
User-defined Types as Operands 122
Datetime Operations and Durations 123
Datetime Arithmeticin SQL 124
Precedence of Operations 128
CASE EXPressions 129
CAST Specifications 131
Dereference Operations 134

Predicates 135
Basic Predicate 136
Quantified Predicate 137
BETWEEN Predicate 140
EXISTS Predicate e 142
IN Predicate e 143
LIKE Predicate 146
NULL Predicate e 151
TYPE Predicate 152

Search Conditions 153

Chapter 4. Functions 155

Column Functions 170
AVG . 171
COUNT . . e e 173
COUNT_BIG e e 174
GROUPING e 176
MAX . e 178
MIN e 180
STDDEV e 182
SUM . e 183
VARIANCE e 184

Scalar Functions L 185
ABS or ABSVAL 186
ACOS . . . 187
ASCIL . e 188
ASIN . 189
ATAN 190

SQL Reference

ATAN2 191

BIGINT . . o o oo oo 192
BLOB o\ o e e e e 193
CEILOF CEILING . . . o\ttt e e 194
CHAR . . 195
CHR o o o 200
CLOB o ot e e e 201
COALESCE . . o o o oo 202
CONCAT o ot e e 203
COS o o o 204
COT o o 205
DATE oo oo e 206
DAY o 207
DAYNAME . . o o oo 208
DAYOFWEEK . . o o oo 209
DAYOFYEAR . o o o o 210
DAYS 211
DBCLOB . . o o o oo 212
DECIMAL . o o o oo 213
DEGREES . . . o o oo 216
DEREF . o o oo oo 217
DIFFERENCE . . . o o e 218
DIGITS .\ o o oo o 219
DLCOMMENT . o o o 220
DLLINKTYPE .« o o o 221
DLURLCOMPLETE . .\t v oo oo 222
DLURLPATH .« o o o 223
DLURLPATHONLY . .\ o oo oo 224
DLURLSCHEME ottt oo 225
DLURLSERVER oot 226
DLVALUE . . o o oo 227
DOUBLE . . . o oo oo e e 229
EVENT_MON_STATE o o oo 231
EXP o o 232
FLOAT . oo oo o 233
FLOOR . ot oo oo 234
GENERATE_UNIQUE o o v oo 235
GRAPHIC . . o o o o 237
HEX o ot e e 238
HOUR . . o oo o o o 240
INSERT . o v oo oo 241
INTEGER .« o o o ot e e e e 242
JULIAN DAY . o o oo oo 243
LCASE . . o o oo e 244
LEFT o ot e e e e 245
LENGTH . o o o oo o 246
LN o 247
LOCATE .« o oo oo e 248

Contents Vii

LOGIO . o oo e e e 250
LONG_VARCHAR . . . o o 251
LONG_VARGRAPHIC o o, 252
LTRIM © o oo e e 253
MICROSECOND . .« o o oo 254
MIDNIGHT _SECONDS . . .« o o o oo 255
MINUTE o oo e 256
MOD . o o oo 257
MONTH o o oo 258
MONTHNAME . .« o o o oo, 259
NODENUMBER . . .« o o oo 260
NULLIF o oo e 262
PARTITION o o o oo 263
POSSTR .+« o o oo e e 265
POWER .+ o o oo e e 267
QUARTER .« o o oo 268
RADIANS . o o oo 269
RAISE_ERROR . . o o oo 270
RAND .« o o oot 272
REAL .« o oo 273
REPEAT . . o o o 274
REPLACE . . o\ oo o 275
RIGHT . o o 276
ROUND o oo oo 277
RTRIM .« o oo 278
SECOND o o o 279
SIGN o 280
SIN © o 281
SMALLINT . . oot e oo 282
SOUNDEX . . o oo oo 283
SPACE o o 284
SORT o oo 285
SUBSTR .+ o v o oo 286
TABLE_NAME . . . o o oo 289
TABLE_SCHEMA o o 291
TAN o 293
TIME .« o o 294
TIMESTAMP . . o o oo o 295
TIMESTAMP_ISO .« o o oo 297
TIMESTAMPDIFFE .« o o oo 298
TRANSLATE . o v oo o 299
TRUNC O TRUNCATE .« o o o oo 301
TYPE_ID . o o oot 302
TYPE_NAME © o o oo 303
TYPE_SCHEMA . . o o o 304
UCASE .+ o oo e 305
VALUE .« o oo 306

Viii SQL Reference

VARCHAR 307

VARGRAPHIC e 308
WEEK . . . e 310
YEAR . . e 311
User-Defined Functions 312
Chapter 5. Queries 315
subselect . . . L 316
select-clause 317
from-clause 321
table-reference L 322
joined-table 326
where-clause 328
group-by-clause 329
having-clause L 336
Examples of subselects Lo 337
Examples of Joins 339
Examples of Grouping Sets, Cube, andRollup 342
fullselect e 350
Examples of a fullselect 352
select-statement L 355
common-table-expression Lo 356
order-by-clause L 358
update-clause L 361
read-only-clause 362
fetch-first-clause 363
optimize-for-clauseo 364
Examples of a select-statement L. 365
Chapter 6. Statements 367
How SQL Statements Are Invoked 369
Embedding a Statement in an Application Program 370
Dynamic Preparation and Execution 371
Static Invocation of a select-statement 371
Dynamic Invocation of a select-statement 372
Interactive Invocation 372
SQL Return Codes 373
SQLCODE e 373
SQLSTATE e 373
SQLComments e 374
ALTER BUFFERPOOL e 375
ALTER NODEGROUP e 377
ALTER TABLE e 380
ALTER TABLESPACE e e 399
ALTER TYPE (Structured) 403
ALTER VIEW e 405
BEGIN DECLARE SECTION e 407
CALL . . e 409

Contents iX

CLOSE . . . 416

COMMENT ON e 418
COMMIT . . . 426
Compound SQL e 428
CONNECT (Type 1) o e e e s e e 432
CONNECT (TYpe 2) . . . o o o e e e e e s 439
CREATE ALIAS 446
CREATE BUFFERPOOL e e 449
CREATE DISTINCT TYPE e 452
CREATE EVENT MONITOR o e 458
CREATE FUNCTION e s e 467
CREATE FUNCTION (External Scalar) 468
CREATE FUNCTION (External Table) 484
CREATE FUNCTION (Sourced) it 497
CREATE INDEX e e e 504
CREATE NODEGROUP e 508
CREATE PROCEDURE e 511
CREATE SCHEMA e 519
CREATE TABLE e 522
CREATE TABLESPACE e 559
CREATE TRIGGER 568
CREATE TYPE (Structured) 578
CREATE VIEW e 582
DECLARE CURSOR e e 595
DELETE e 599
DESCRIBE 604
DISCONNECT e e e s s e 608
DROP . . . 611
END DECLARE SECTION e 624
EXECUTE 626
EXECUTE IMMEDIATE e e 631
EXPLAIN . 633
FETCH . . 637
FREE LOCATOR e e e 640
GRANT (Database Authorities), 641
GRANT (Index Privileges) o 644
GRANT (Package Privileges) 646
GRANT (Schema Privileges) 649
GRANT (Table or View Privileges) 652
INCLUDE 659
INSERT 661
LOCK TABLE 666
OPEN . . . 668
PREPARE 673
REFRESH TABLE 682
RELEASE e 683
RENAME TABLE 685
REVOKE (Database Authorities) 687

X SQL Reference

REVOKE (Index Privileges)o 690

REVOKE (Package Privileges) 692
REVOKE (Schema Privileges)o 695
REVOKE (Table or View Privileges) 697
ROLLBACK e 702
SELECT e 704
SELECT INTO e 705
SET CONNECTION e 707
SET CONSTRAINTS e 709
SET CURRENT DEGREE e 716
SET CURRENT EXPLAIN MODE 718
SET CURRENT EXPLAIN SNAPSHOT 720
SET CURRENT PACKAGESET e 722
SET CURRENT QUERY OPTIMIZATION 724
SET CURRENT REFRESHAGE 727
SET EVENT MONITOR STATE e 729
SET PATH . . . e 731
SET SCHEMA e 733
SET transition-variable 735
SIGNAL SQLSTATE e 738
UPDATE o 740
VALUES 747
VALUES INTO 748
WHENEVER 750
Appendix A. SQL Limits 753
Appendix B. SQL Communication Area (SQLCA) 759
Viewing the SQLCA Interactively 759
SQLCA Field Descriptions 759
Order of Error Reporting 762
DB2 Extended Enterprise Edition Usage of the SQLCA 762
Appendix C. Appendix C. SQL Descriptor Area (SQLDA) 763
Field Descriptions 763

Fields in the SQLDA Header 764

Fields in an Occurrence of a Base SQLVAR 765

Fields in an Occurrence of a Secondary SQLVAR 766
Effect of DESCRIBE onthe SQLDA 767
SQLTYPE and SQLLEN 768

Packed Decimal Numbers 770

UNRECOGNIZED AND UNSUPPORTED SQLTYPES 771

SQLLEN Field for Decimal 771
Appendix D. Catalog Views 773
Updatable Catalog Views 774
“Roadmap” to Catalog Views 774
“Roadmap” to Updatable Catalog Views 775

Contents Xi

Xii

SYSCAT.BUFFERPOOLS o
SYSCAT.BUFFERPOOLNODES
SYSCAT.CHECKS
SYSCAT.COLAUTH
SYSCAT.COLCHECKS
SYSCAT.COLDIST
SYSCAT.COLUMNS
SYSCAT.CONSTDEP
SYSCAT.DATATYPES
SYSCAT.DBAUTHo
SYSCAT.EVENTMONITORSo o .
SYSCAT.EVENTS
SYSCAT.FUNCPARMS
SYSCAT.FUNCTIONS e
SYSCAT.INDEXAUTH e
SYSCAT.INDEXES e
SYSCAT.KEYCOLUSE
SYSCAT.NODEGROUPDEF
SYSCAT.NODEGROUPS o
SYSCAT.PACKAGEAUTH
SYSCAT.PACKAGEDEP
SYSCAT.PACKAGES
SYSCAT.PARTITIONMAPS
SYSCAT.PROCEDURES e
SYSCAT.PROCPARMS
SYSCAT.REFERENCES
SYSCAT.SCHEMAAUTH e
SYSCAT.SCHEMATA
SYSCAT.STATEMENTS
SYSCAT.TABAUTH
SYSCAT.TABCONST e
SYSCAT.TABLES
SYSCAT.TABLESPACES e
SYSCAT.TRIGDEP
SYSCAT.TRIGGERS e
SYSCAT.VIEWDEP e
SYSCAT.VIEWS e
SYSSTAT.COLDIST
SYSSTAT.COLUMNS
SYSSTAT.FUNCTIONS e
SYSSTAT.INDEXES
SYSSTAT.TABLES

Appendix E. Catalog Views For Use With Structured Types
Updatable Catalog Views For Use With Structured Types
“Roadmap” to Catalog Views for Structured Types
“Roadmap” to Updatable Catalog Views For Structured Types
OBJCAT.ATTRIBUTES e e e

SQL Reference

OBJCAT.CHECKS e e 836
OBJCAT.COLCHECKS e e 837
OBJCAT.COLUMNS e 838
OBJCAT.CONSTDEP e 841
OBJCAT.DATATYPES e 842
OBJCAT.FUNCPARMS e 843
OBJCAT.FUNCTIONS e 844
OBJCAT.HIERARCHIES e 847
OBJCAT.NDEXES e 848
OBJCAT.KEYCOLUSE e 851
OBJCAT.PACKAGEDEP e 852
OBJCAT.REFERENCES e 853
OBJCAT.TABCONST e 854
OBJCAT.TABLES e 855
OBJCAT.TRIGDEP e 858
OBJCAT.TRIGGERS 859
OBJCAT.VIEWDEP e 860
OBJSTAT.TABLES e 861
Appendix F. Sample Tables 863
The Sample Database 863
To Install the Sample Database 863
To Erase the Sample Database 864
CL_SCHED Table e 864
DEPARTMENT Table 864
EMPLOYEE Table 865
EMP_ACT Table 867
EMP_PHOTO Table 869
EMP_RESUME Table 869
IN_TRAY Table 870
ORG Table 870
PROJECT Table 870
SALES Table 871
STAFF Table 872
STAFFG Table 874
Sample Files with BLOB and CLOB Data Type 875
Quintana Photo 875
Quintana Resume 875
Nicholls Photo 876
Nicholls Resume 876
Adamson Photo 877
Adamson Resume 878
Walker Photo 879
Walker Resume L 879
Appendix G. Reserved Schema Names and Reserved Words 881
Reserved Schemas 881
Reserved Words L 881

Contents Xili

Xiv

IBM SQL Reserved Words e 881

ISO/ANS SQL92 Reserved Words e 882
Appendix H. Comparison of Isolation Levels 885
Appendix I. Interaction of Triggers and Constraints 887
Appendix J. Incompatibilities Between Releases 891
System Catalog Tables/Views 892
System Catalog Views 892
System Catalog Tables 892
Unique Table Identification L. 894
Application Programming 894
NS, NW and NX Locks 894
CREATE TABLE NOT LOGGED INITIALLY 895
DB2 Call Level Interface (DB2 CLI) Defaults 896
Obsolete DB2 CLI Keywords 896
DB2 CLI SQLSTATES e e 897
DB2 CLI Mixing Embedded SQL, Without CONNECT RESET 897
DB2 CLI Use of VARCHAR FOR BIT DATA 897
DB2 CLI Data Conversion Values for SQLGetInfo 898
DB2 CLI/ODBC Configuration Keyword Defaults 898
Obsolete DB2 CLI/ODBC Configuration Keywords 899
DB2 CLI SQLSTATES e e e 899
Stored Procedure Catalog Table 900
PREP Command - LANGLEVEL 900
Change to SMALLINT Constants 900
Down-level Client and Distinct Types Sourced on BIGINT 901
Error Handling 902
Maximum Number of Sections ina Package 902
Bind Warnings 903
Bind Options 903
PREP with BINDFILE 903
Varchar Structures in COBOL 904
Incompatible APIs 905
Supported Level of JIDBC 905
Calling Convention for Java Stored Procedures and UDFs 905
Java Runtime Environment Lo 906
Obsolete System Monitor Requests for DB2 PE Version 1.2 906
SQL . 907
Updating Partitioning Key Columns 907
Column NGNAME 907
Node Number Temporary Space Usage 908
Authorities for Create and Drop Nodegroups 908
Target Map in REDISTRIBUTE NODEGROUP 908
Node Group for Create Table 909
Revoking CONTROL on Tables or Views 910
High Level Qualifiers for Objects in DB2 Version5 910

SQL Reference

Inoperative VIEWS 911

Unusable VIEWS 912
SQLCODE Changes o i it i e 912
WITH CHECK OPTION on CREATE VIEW 913
SQLSTATE Changes 913
FOR BIT DATA Comparisons o o v i it e 913
Code Page Conversiono 914
Isolation Levels and Blocking All 915
ORDER BY Temporary Space Usage 915
Using Quotes in SQL Statements 916
Database Security and Tuning 916
GROUP Authorizations L 916
Authentication Type L 917
SYSADM Groups 917
Security Enhancementso L 917
Obsolete Profile Registry and Environment Variables 918
Utilities and TooIs L L 918
Executable Name Changes 918
Backup and Restore - BUFF_SIZE Parameter 919
Backup and Restore - Changes Only Option 919
Backup and Restore - User Exits 919
Backup and Restore - Authority o 920
Import - IMPORT REPLACE Option 920
LOAD TERMINATE e 921
REORG - Alternate Path Option 921
Connectivity and Coexistence 921
Distributed Transaction Processing - Connect Type 921
Distributed Transaction Processing - SQLERRD Changes 922
DDCS - SQLISETP 923
DDCS - DDCSSETP 923
DDCS - SQLITRC.CMD o 923
DDCS - SQLIBIND.CMDo 924
APPC and APPN Nodes 924
Configuration Parameters 925
ADSM_PASSWORD e 925
Agent Pool Size (NUM_POOLAGENTS) 925
MAXDARI and MAXCAGENTS i 926
LOGFILSIZ . . . e 926
PCKCACHEFILSIZ e 927
APPLHEAPSZ and APP_CTL_HEAP_SZ 928
BUFFPAGE and Multiple Buffer Pools 928
NEWLOGPATH e 929
MULTIPAGE_ALLOC e e 929
EXTENTSIZE vs SEGPAGES i 929
LOCKLIST e 930
BUFFPAGE and SORTHEAP i 930
Numeric Values for Database Manager Configuration Tokens 931
Numeric Values for Database Manager Configuration Tokens 931

Contents XV

XVi

New Generic Out-of-Range Return Codes
Segments versus 4KB Pageso Lo oo
Obsolete Database Configuration Parameters
Obsolete Database Manager Configuration Parameters
DB2_MMAP_READ and DB2_MMAP_WRITE

Appendix K. Explain Tables and Definitons
EXPLAIN_ARGUMENT Table
EXPLAIN_INSTANCE Table
EXPLAIN_OBJECT Table
EXPLAIN_OPERATOR Table
EXPLAIN_PREDICATE Table
EXPLAIN_STATEMENT Table
EXPLAIN_STREAM Table
Table Definitions for Explain Tables
EXPLAIN_ARGUMENT Table Definiton
EXPLAIN_INSTANCE Table Definiton
EXPLAIN_OBJECT Table Definiton
EXPLAIN_OPERATOR Table Definiton
EXPLAIN_PREDICATE Table Definiton
EXPLAIN_STATEMENT Table Definiton
EXPLAIN_STREAM Table Definiton

Appendix L. Explain Register Values L.

Appendix M. Recursion Example: Bill of Materials
Example 1: Single Level Explosion
Example 2: Summarized Explosion Lo
Example 3: Controlling Depth,

Appendix N. Exception Tables
Rules for Creating an Exception Table
Handling Rows in the Exception Tables
Querying the Exception Tables

Appendix O. Japanese and Traditional-Chinese EUC Considerations

Language Elements
Characters e
TOKENS e
Identifiers L
Data Types
Assignments and Comparisonso e
Rules for Result Data Types
Rules for String Conversionso
Constants
Functions L
EXpressions
Predicates

SQL Reference

Functions e 978

LENGTH . . . e 978
SUBSTR 978
TRANSLATE . . . 978
VARGRAPHIC 978
Statements L. 979
CONNECT o e 979
PREPARE 979
Appendix P. How the DB2 Library Is Structured 981
SmartGuides 981
Online Help o e 982
DB2 BOOKS 983
Viewing Online Books 987
Searching Online Books 988
Printing the PostScript Books 988
Ordering the Printed DB2 Books 989
Information Center 990
Appendix Q. Notices 991
Trademarks 991
Trademarks of Other Companies 992
Appendix R. Contacting IBM 993
Index . . . 995

Contents XVii

XViii SQL Reference

Chapter 1. Introduction

This introductory chapter:

Identifies this book's purpose and audience.

Explains how to use the book and its structure.

Explains the syntax diagram notation, the naming and highlighting conventions
used throughout the manual.

Lists related documentation.

Presents the product family overview

Who Should Use This Book

This book is intended for anyone who wants to use the Structured Query Language
(SQL) to access a database. It is primarily for programmers and database administra-
tors, but it can also be used by general users using the command line processor.

This book is a reference rather than a tutorial. It assumes that you will be writing appli-
cation programs and therefore presents the full functions of the database manager.

How To Use This Book

This book defines the SQL language used by DB2 Version 5.2. Use it as a reference
manual for information on relational database concepts, language elements, functions,
the forms of queries, and the syntax and semantics of the SQL statements. The appen-
dixes can be used to find limitations and information on important components.

How This Book is Structured
This book has the following sections:

© Copyright IBM Corp.

Chapter 1, “Introduction,” identifies the purpose, the audience, and the use of the
book.

Chapter 2, “Concepts” on page 7, discusses the basic concepts of relational data-
bases and SQL.

Chapter 3, “Language Elements” on page 45, describes the basic syntax of SQL
and the language elements that are common to many SQL statements.

Chapter 4, “Functions” on page 155, contains syntax diagrams, semantic
descriptions, rules, and usage examples of SQL column and scalar functions.

Chapter 5, “Queries” on page 315, describes the various forms of a query.

Chapter 6, “Statements” on page 367, contains syntax diagrams, semantic
descriptions, rules, and examples of all SQL statements.

The appendixes contain the following information:

— Appendix A, “SQL Limits” on page 753 contains the SQL limitations
— Appendix B, “SQL Communication Area (SQLCA)” on page 759 contains the
SQLCA structure

1993, 1998 1

Appendix C, “Appendix C. SQL Descriptor Area (SQLDA)” on page 763 con-
tains the SQLDA structure

Appendix D, “Catalog Views” on page 773 contains the catalog views for the
database

Appendix F, “Sample Tables” on page 863 contains the sample tables used
for examples

Appendix G, “Reserved Schema Names and Reserved Words” on page 881
contains the reserved schema names and the reserved words for the IBM SQL
and ISO/ANS SQL92 standards

Appendix H, “Comparison of Isolation Levels” on page 885 contains a
summary of the isolation levels.

Appendix |, “ Interaction of Triggers and Constraints” on page 887 discusses
the interaction of triggers and referential constraints.

Appendix J, “Incompatibilities Between Releases” on page 891 contains the
release to release incompatibilities.

Appendix K, “ Explain Tables and Definitions” on page 935 contains the
Explain tables and how they are defined.

Appendix L, “Explain Register Values” on page 957 describes the interaction
of the CURRENT EXPLAIN MODE and CURRENT EXPLAIN SNAPSHOT
special register values with each other and the PREP and BIND commands.
Appendix M, “Recursion Example: Bill of Materials” on page 961 contains an
example of a recursive query.

Appendix N, “Exception Tables” on page 967 contains information on user-
created tables that are used with the SET CONSTRAINTS statement.
Appendix O, “Japanese and Traditional-Chinese EUC Considerations” on
page 973 lists considerations when using EUC character sets.

How to Read the Syntax Diagrams

2

Throughout this book, syntax is described using the structure defined as follows:

Read the syntax diagrams from left to right and top to bottom, following the path of the

line.

The »—— symbol indicates the beginning of a statement.

The — symbol indicates that the statement syntax is continued on the next line.

The »— symbol indicates that a statement is continued from the previous line.

The —< symbol indicates the end of a statement.

Required items appear on the horizontal line (the main path).

»—STATEMENT—required item

v

SQL Reference

Optional items appear below the main path.

\4

»—STATEMENT:
I—optz’onal itemJ

If an optional item appears above the main path, that item has no effect on the exe-
cution of the statement and is used only for readability.

optional ite
»—STATEMENT: [m—|

\4

If you can choose from two or more items, they appear in a stack.

If you must choose one of the items, one item of the stack appears on the main path.

v

>—STATEMENT—Erequired choicel
required choiceZJ

If choosing none of the items is an option, the entire stack appears below the main
path.

optional choicel

»—STATEMENT t >
optional choiceZ?

If one of the items is the default, it will appear above the main path and the remaining
choices will be shown below.

default choice
»—STATEMENT: E]

optional choicej
optional choice

v

An arrow returning to the left, above the main line, indicates an item that can be
repeated. In this case, repeated items must be separated by one or more blanks.

Chapter 1. Introduction

3

>—STATEMENT—¢—repeatabZe item | >

If the repeat arrow contains a comma, you must separate repeated items with a
comma.

opeatable item
> STATEMENT—%—r

epeatable item

v

A repeat arrow above a stack indicates that you can make more than one choice from
the stacked items or repeat a single choice.

Keywords appear in uppercase (for example, FROM). They must be spelled exactly as
shown. Variables appear in lowercase (for example, column-name). They represent
user-supplied names or values in the syntax.

If punctuation marks, parentheses, arithmetic operators, or other such symbols are
shown, you must enter them as part of the syntax.

Sometimes a single variable represents a set of several parameters. For example, in
the following diagram, the variable parameter-block can be replaced by any of the
interpretations of the diagram that is headed parameter-block :

v

»—STATEMENT—] parameter-block |

parameter-block:

parameterl i
parameterZ—Eparameteﬁj—‘
parameter4

Adjacent segments occurring between “fat bullets” () may be specified in any
sequence.

»—STATEMENT—item]l—e—item?—e—item3—e—item4

v

4 SQL Reference

The above diagram shows that item2 and item3 may be specified in either order. Both
of the following are valid:

STATEMENT iteml item2 item3 item4
STATEMENT iteml item3 item2 item4

Conventions Used in This Manual

This section specifies some conventions which are used consistently throughout this
manual.

Error Conditions
An error condition is indicated within the text of the manual by listing the SQLSTATE
associated with the error in brackets. For example: A duplicate signature raises an SQL
error (SQLSTATE 42723).

Highlighting Conventions
The following conventions are used in this book.

Bold Indicates commands, keywords, and other items whose names are predefined by the system.

Italics Indicates one of the following:

Names or values (variables) that must be supplied by the user
General emphasis

The introduction of a new term

A reference to another source of information.

Monospace Indicates one of the following:

¢ Files and directories

¢ Information that you are instructed to type at a command prompt or in a window
¢ Examples of specific data values

e Examples of text similar to what may be displayed by the system

¢ Examples of system messages.

Related Documentation for This Book
The following publications may prove useful in preparing applications:

Administration Guide
Contains information required to design, implement, and maintain a database
to be accessed either locally or in a client/server environment.

Embedded SQL Programming Guide
Discusses the application development process and how to code, compile, and
execute application programs that use embedded SQL and APlIs to access the
database.

IBM SQL Reference SC26-8416
This manual contains all the common elements of SQL that span across IBM's
library of database products. It provides limits and rules that assist in preparing
portable programs using IBM databases. It provides a list of SQL extensions

Chapter 1. Introduction 5

and incompatibilities among the following standards and products: SQL92E,
XPGG4-SQL, IBM-SQL and the IBM relational database products.
American National Standard X3.135-1992, Database Language SQL
Contains the ANSI standard definition of SQL.
ISO/IEC 9075:1992, Database Language SQL
Contains the ISO standard definition of SQL.

6 SQL Reference

Chapter 2. Concepts

The chapter provides an overview of the concepts commonly used in the Structured
Query Language (SQL). The intent of the chapter is to provide a high-level view of the
concepts. The reference material that follows provides a more detailed view.

Relational Database

A relational database is a database that can be perceived as a set of tables and manip-
ulated in accordance with the relational model of data. It contains a set of objects used
to store, manage, and access data. Examples of such objects are tables, views,
indexes, functions, triggers, and packages.

A partitioned relational database is a relational database where the data is managed
across multiple partitions (also called nodes). This partitioning of data across partitions
is transparent to users of most SQL statements. However, some DDL statements take
partition information into consideration (e.g. create nodegroup).

Structured Query Language (SQL)

SQL is a standardized language for defining and manipulating data in a relational data-
base. In accordance with the relational model of data, the database is perceived as a
set of tables, relationships are represented by values in tables, and data is retrieved by
specifying a result table that can be derived from one or more base tables.

SQL statements are executed by a database manager. One of the functions of the
database manager is to transform the specification of a result table into a sequence of
internal operations that optimize data retrieval. The transformation occurs in two
phases: preparation and binding.

All executable SQL statements must be prepared before they can be executed. The
result of preparation is the executable or operational form of the statement. The method
of preparing an SQL statement and the persistence of its operational form distinguish
static SQL from dynamic SQL.

Embedded SQL

Static SQL

Embedded SQL statements are SQL statements written within application programming
languages such as C and preprocessed by an SQL preprocessor before the application
program is compiled. There are two types of embedded SQL: static and dynamic.

The source form of a static SQL statement is embedded within an application program
written in a host language such as COBOL. The statement is prepared before the
program is executed and the operational form of the statement persists beyond the exe-
cution of the program.

© Copyright IBM Corp. 1993, 1998 7

A source program containing static SQL statements must be processed by an SQL pre-
compiler before it is compiled. The precompiler turns the SQL statements into host lan-
guage comments, and generates host language statements to invoke the database
manager. The syntax of the SQL statements is checked during the binding process.

The preparation of an SQL application program includes precompilation, the binding of
its static SQL statements to the target database, and compilation of the modified source
program. The steps are specified in the Embedded SQL Programming Guide.

Dynamic SQL
Programs containing embedded dynamic SQL statements must be precompiled like
those containing static SQL, but unlike static SQL, the dynamic SQL statements are
constructed and prepared at run time. The SQL statement text is prepared and exe-
cuted using either the PREPARE and EXECUTE statements, or the EXECUTE IMME-
DIATE statement. The statement can also be executed with the cursor operations if it is
a SELECT statement.

DB2 Call Level Interface (CLI)

The DB2 Call Level Interface is an application programming interface in which functions
are provided to application programs to process dynamic SQL statements. Through the
interface, applications use procedure calls at execution time to connect to databases, to
issue SQL statements, and to get returned data and status information. Unlike using
embedded SQL, no precompilation is required. Applications developed using this inter-
face may be executed on a variety of databases without being compiled against each of
the databases.

The DB2 CLI interface provides many features not available in embedded SQL. A few
of these are:

e CLI provides function calls which support a consistent way to query and retrieve
database system catalog information across the DB2 family of database manage-
ment systems. This reduces the need to write database server specific catalog
queries.

e Application programs written using CLI can have multiple concurrent connections to
the same database.

e CLI provides support for scrollable cursors.

e Stored procedures called from application programs written using CLI can return
result sets to those programs.

For a comparison between the features of CLI and Embedded Dynamic SQL, see Road
Map to DB2 Programming.

The CLI Guide and Reference describes the APIs supported with this interface.

8 SQL Reference

Interactive SQL

Interactive SQL statements are entered by a user through an interface like the
command line processor or the command center. These statements are processed as
dynamic SQL statements. For example, an interactive SELECT statement can be proc-
essed dynamically using the DECLARE CURSOR, PREPARE, DESCRIBE, OPEN,
FETCH, and CLOSE statements.

The Command Reference lists the commands that can be issued using the command
line processor or similar facilities and products.

Schemas

A schema is a collection of named objects. Schemas provide a logical classification of
objects in the database. Some of the objects that a schema may contain include tables,
views, triggers, functions and packages.

A schema is also an object in the database. It is explicitly created using the CREATE
SCHEMA statement with a user recorded as owner. It can also be implicitly created
when another object is created, provided the user has IMPLICIT_SCHEMA authority.

A schema name is used as the high-order part of a two-part object name. An object
that is contained in a schema is assigned to a schema when the object is created. The
schema to which it is assigned is determined by the name of the object if specifically
qualified with a schema name or by the default schema name if not qualified.

For example, a user with DBADM authority creates a schema called C for user A.
CREATE SCHEMA C AUTHORIZATION A

User A can then issue the following statement to create a table called X in schema C:
CREATE TABLE C.X (COL1 INT)

Controlling Use of Schemas

When a database is created, all users have IMPLICIT_SCHEMA authority. This allows
any user to create objects in any schema that does not already exist. An implicitly
created schema allows any user to create other objects in this schema.l

If IMPLICIT_SCHEMA authority is revoked from PUBLIC, schemas are either explicitly
created using the CREATE SCHEMA statement or implicitly created by users (such as
those with DBADM authority) who are granted IMPLICIT_SCHEMA authority. While
revoking IMPLICIT_SCHEMA authority from PUBLIC increases control over the use of
schema names, it may result in authorization errors in existing applications when they
attempt to create objects.

1 The default privileges on an implicitly created schema provide upward compatibility with previous versions. Alias, distinct type, func-
tion and trigger creation is extended to implicitly created schemas.

Chapter 2. Concepts 9

There are also privileges associated with a schema that control which users have the
privilege to create, alter and drop objects in the schema. A schema owner is initially
given all of these privileges on a schema with the ability to grant them to others. An
implicitly created schema is owned by the system and all users are initially given the
privilege to create objects in such a schema. A user with DBADM or SYSADM authority
can change the privileges held by users on any schema. Therefore, access to create,
alter and drop objects in any schema (even one that is implicitly created) can be con-
trolled.

Tables

Tables are logical structures maintained by the database manager. Tables are made up
of columns and rows. The rows are not necessarily ordered within a table (order is
determined by the application program). At the intersection of every column and row is
a specific data item called a value. A column is a set of values of the same data type.
A row is a sequence of values such that the nth value is a value of the nth column of
the table.

A base table is created with the CREATE TABLE statement and is used to hold per-
sistent user data. A result table is a set of rows that the database manager selects or
generates from one or more base tables to satisfy a query.

A summary table is a table that is defined by a query that is also used to determine the
data in the table. Summary tables can be used to improve the performance of queries.
If the database manager determines that a portion of a query could be resolved using a
summary table, the query may be rewritten by the database manager to use the
summary table. This decision is based on certain settings such as CURRENT
REFRESH AGE and CURRENT QUERY OPTIMIZATION special registers.

A table can have the data type of each column defined separately, or have the types
for the columns based on the attributes of a user-defined structured type. This is called
a typed table. A user-defined structured type may be part of a type hierarchy. A
subtype is said to inherit attributes from its supertype. Similarly, a typed table can be
part of a table hierarchy. A subtable is said to inherit columns from its supertable. Note
that the term subtype applies to a user-defined structured type and all user-defined
structured types that are below it in the type hierarchy. A proper subtype of a struc-
tured type T is a structured type below T in the type hierarchy. Similarly the term sub-
table applies to a typed table and all typed tables that are below it in the table
hierarchy. A proper subtable of a table T is a table below T in the table hierarchy.

Views

A view provides an alternative way of looking at the data in one or more tables.

A view is a named specification of a result table. The specification is a SELECT state-
ment that is executed whenever the view is referenced in an SQL statement. Thus, a
view can be thought of as having columns and rows just like a base table. For retrieval,
all views can be used just like base tables. Whether a view can be used in an insert,

10 sSQL Reference

update, or delete operation depends on its definition as explained in the description of
CREATE VIEW. (See “CREATE VIEW” on page 582 for more information.)

When the column of a view is directly derived from a column of a base table, that
column inherits any constraints that apply to the column of the base table. For example,
if a view includes a foreign key of its base table, INSERT and UPDATE operations
using that view are subject to the same referential constraint as the base table. Also, if
the base table of a view is a parent table, DELETE and UPDATE operations using that
view are subject to the same rules as DELETE and UPDATE operations on the base
table.

A view can have the data type of each column derived from the result table, or have
the types for the columns based on the attributes of a user-defined structured type. This
is called a typed view. Similar to a typed table, a typed view can be part of a view
hierarchy. A subview is said to inherit columns from its superview. The term subview
applies to a typed view and all typed views that are below it in the view hierarchy. A
proper subview of a view V is a view below V in the typed view hierarchy.

A view may become inoperative, in which case it is no longer available for SQL state-
ments.

Aliases

An alias is an alternate name for a table or view. It can be used to reference a table or
view in those cases where an existing table or view can be referenced.2 Like tables and
views, an alias may be created, dropped, and have comments associated with it. Unlike
tables, aliases may refer to each other in a process called chaining. Aliases are publicly
referenced names so no special authority or privilege is required to use an alias.
Access to the tables and views referred to by the alias, however, still require the appro-
priate authorization for the current context.

In addition to table aliases, there are other types of aliases such as a database alias or
a network alias.

Indexes

An index is an ordered set of pointers to rows of a base table. Each index is based on
the values of data in one or more table columns. An index is an object that is separate
from the data in the table. When an index is created, the database manager builds this
structure and maintains it automatically.

Indexes are used by the database manager to:

¢ Improve performance. In most cases, access to data is faster than without an
index.

2 An alias cannot be used in all contexts. For example, it cannot be used in the check condition of a check constraint.

Chapter 2. Concepts 11

An index cannot be created for a view. However, an index created for a table on
which a view is based may improve the performance of operations on the view.

e Ensure uniqueness. A table with a unique index cannot have rows with identical
keys.

Keys

Unique Keys

Primary Keys

Foreign Keys

A key is a set of columns that can be used to identify or access a particular row or
rows. The key is identified in the description of a table, index, or referential constraint.
The same column can be part of more than one key.

A key composed of more than one column is called a composite key. In a table with a
composite key, the ordering of the columns within the composite key is not constrained
by their ordering within the table. The term value when used with respect to a com-
posite key denotes a composite value. Thus, a rule such as “the value of the foreign
key must be equal to the value of the primary key” means that each component of the
value of the foreign key must be equal to the corresponding component of the value of
the primary key.

A unique key is a key that is constrained so that no two of its values are equal. The
columns of a unique key cannot contain null values. The constraint is enforced by the
database manager during the execution of any operation that changes data values,
such as INSERT or UPDATE. The mechanism used to enforce the constraint is called
a unique index. Thus, every unique key is a key of a unique index. Such an index is
also said to have the UNIQUE attribute. See “Unique Constraints” on page 13 for a
more detailed description.

A primary key is a special case of a unique key. A table cannot have more than one
primary key. See “Unique Keys” for a more detailed description.

A foreign key is a key that is specified in the definition of a referential constraint. See
“Referential Constraints” on page 14 for a more detailed description.

Partitioning Keys

A partitioning key is a key that is part of the definition of a table in a partitioned data-
base. The partitioning key is used to determine the partition on which the row of data is
stored. If a partitioning key is defined, unique keys and primary keys must include the
same columns as the partitioning key (they may have more columns).

Constraints

A constraint is a rule that the database manager enforces.

There are three types of constraints:

12 SQL Reference

¢ A unique constraint is a rule that forbids duplicate values in one or more columns
within a table. Unique and primary keys are the supported unique constraints. For
example, a unique constraint could be defined on the supplier identifier in the sup-
plier table to ensure that the same supplier identifier is not given to two suppliers.

e A referential constraint is a logical rule about values in one or more columns in one
or more tables. For example, a set of tables shares information about a corpo-
ration's suppliers. Occasionally, a supplier's name changes. A referential constraint
could be defined stating that the ID of the supplier in a table must match a supplier
id in the supplier information. This constraint prevents inserts, updates or deletes
that would otherwise result in missing supplier information.

e A table check constraint sets restrictions on data added to a specific table. For
example, it could define the salary level for an employee to never be less than
$20,000.00 when salary data is added or updated in a table containing personnel
information.

Referential and table check constraints may be turned on or off. Loading large amounts
of data into the database is typically a time to turn off checking the enforcement of a
constraint. The details of setting constraints on or off are discussed in “SET
CONSTRAINTS” on page 709.

Unique Constraints
A unique constraint is the rule that the values of a key are valid only if they are unique
within the table. Unique constraints are optional and can be defined in the CREATE
TABLE or ALTER TABLE statement using the PRIMARY KEY clause or the UNIQUE
clause. The columns specified in a unique constraint must be defined as NOT NULL. A
unique index is used by the database manager to enforce the uniqueness of the key
during changes to the columns of the unique constraint.

A table can have an arbitrary number of unique constraints, with at most one unique
constraint defined as a primary key. A table cannot have more than than one unique
constraint on the same set of columns.

A unique constraint that is referenced by the foreign key of a referential constraint is
called the parent key.

When a unique constraint is defined in a CREATE TABLE statement, a unique index is
automatically created by the database manager and designated as a primary or unique
system-required index.

When a unique constraint is defined in an ALTER TABLE statement and an index
exists on the same columns, that index is designated as unique and system-required. If
such an index does not exist, the unique index is automatically created by the database
manager and designated as a primary or unique system-required index.

Note that there is a distinction between defining a unique constraint and creating a

unique index. Although both enforce uniqueness, a unique index allows nullable
columns and generally cannot be used as a parent key.

Chapter 2. Concepts 13

Referential Constraints
Referential integrity is the state of a database in which all values of all foreign keys are
valid. A foreign key is a column or set of columns in a table whose values are required
to match at least one primary key or unique key value of a row of its parent table. A
referential constraint is the rule that the values of the foreign key are valid only if:

e they appear as values of a parent key, or
e some component of the foreign key is null.

The table containing the parent key is called the parent table of the referential con-
straint, and the table containing the foreign key is said to be a dependent of that table.

Referential constraints are optional and can be defined in CREATE TABLE statements
and ALTER TABLE statements. Referential constraints are enforced by the database
manager during the execution of INSERT, UPDATE, DELETE, ALTER TABLE ADD
CONSTRAINT, and SET CONSTRAINTS statements. The enforcement is effectively
performed at the completion of the statement.

Referential constraints with a delete or update rule of RESTRICT are enforced before
all other referential constraints. Referential constraints with a delete or update rule of
NO ACTION behave like RESTRICT in most cases. However, in certain SQL state-
ments there can be a difference.

Note that referential integrity, check constraints and triggers can be combined in exe-
cution. For further information on the combination of these elements, see Appendix I, “
Interaction of Triggers and Constraints” on page 887.

The rules of referential integrity involve the following concepts and terminology:

Parent key A primary key or unique key of a referential constraint.
Parent row A row that has at least one dependent row.
Parent table A table that is a parent in at least one referential con-

straint. A table can be defined as a parent in an arbitrary
number of referential constraints. A parent table can also
be a dependent table.

Dependent table A table that is a dependent in at least one referential con-
straint. A table can be defined as a dependent in an arbi-
trary number of referential constraints. A dependent table
can also be a parent table.

Descendent table A table is a descendent of table T if it is a dependent of T
or a descendent of a dependent of T.

Dependent row A row that has at least one parent row.

Descendent row A row is a descendent of row p if it is a dependent of p or

a descendent of a dependent of p.

Referential cycle A set of referential constraints such that each table in the
set is a descendent of itself.

14 SQL Reference

Self-referencing row A row that is a parent of itself.

Self-referencing table A table that is a parent and a dependent in the same ref-
erential constraint. The constraint is called a self-
referencing constraint.

Insert Rule

The insert rule of a referential constraint is that a non-null insert value of the foreign key
must match some value of the parent key of the parent table. The value of a composite
foreign key is null if any component of the value is null. This rule is implicit when a
foreign key is specified.

Update Rule

The update rule of a referential constraint is specified when the referential constraint is
defined. The choices are NO ACTION and RESTRICT. The update rule applies when a
row of the parent or a row of the dependent table is updated.

In the case of a parent row, when a value in a column of the parent key is updated:

e if any row in the dependent table matched the original value of the key, the update
is rejected when the update rule is RESTRICT

¢ if any row in the dependent table does not have a corresponding parent key when
the update statement is completed (excluding after triggers), the update is rejected
when the update rule is NO ACTION.

In the case of a dependent row, the update rule that is implicit when a foreign key is
specified is NO ACTION. NO ACTION means that a non-null update value of a foreign
key must match some value of the parent key of the parent table when the update
statement is completed.

The value of a composite foreign key is null if any component of the value is null.

Delete Rule

The delete rule of a referential constraint is specified when the referential constraint is
defined. The choices are NO ACTION, RESTRICT, CASCADE, or SET NULL. SET
NULL can be specified only if some column of the foreign key allows null values.

The delete rule of a referential constraint applies when a row of the parent table is
deleted. More precisely, the rule applies when a row of the parent table is the object of
a delete or propagated delete operation (defined below) and that row has dependents
in the dependent table of the referential constraint. Let P denote the parent table, let D
denote the dependent table, and let p denote a parent row that is the object of a delete
or propagated delete operation. If the delete rule is:

e RESTRICT or NO ACTION, an error occurs and no rows are deleted
e CASCADE, the delete operation is propagated to the dependents of p in D

e SET NULL, each nullable column of the foreign key of each dependent of p in D is
set to null

Chapter 2. Concepts 15

Each referential constraint in which a table is a parent has its own delete rule, and all
applicable delete rules are used to determine the result of a delete operation. Thus, a
row cannot be deleted if it has dependents in a referential constraint with a delete rule
of RESTRICT or NO ACTION or the deletion cascades to any of its descendents that
are dependents in a referential constraint with the delete rule of RESTRICT or NO
ACTION.

The deletion of a row from parent table P involves other tables and may affect rows of
these tables:

e |f table D is a dependent of P and the delete rule is RESTRICT or NO ACTION, D
is involved in the operation but is not affected by the operation.

e If D is a dependent of P and the delete rule is SET NULL, D is involved in the
operation, and rows of D may be updated during the operation.

e If D is a dependent of P and the delete rule is CASCADE, D is involved in the
operation and rows of D may be deleted during the operation.

If rows of D are deleted, the delete operation on P is said to be propagated to D. If
D is also a parent table, the actions described in this list apply, in turn, to the
dependents of D.

Any table that may be involved in a delete operation on P is said to be delete-
connected to P. Thus, a table is delete-connected to table P if it is a dependent of P or
a dependent of a table to which delete operations from P cascade.

Table Check Constraints

A table check constraint is a rule that specifies the values allowed in one or more
columns of every row of a table. They are optional and can be defined using the SQL
statements CREATE TABLE and ALTER TABLE. The specification of table check con-
straints is a restricted form of a search condition. One of the restrictions is that a
column name in a table check constraint on table T must identify a column of T.

A table can have an arbitrary number of table check constraints. They are enforced
when:

e arow is inserted into the table
e a row of the table is updated.

A table check constraint is enforced by applying its search condition to each row that is
inserted or updated. An error occurs if the result of the search condition is false for any
row.

When one or more table check constraints are defined in the ALTER TABLE statement
for a table with existing data, the existing data is checked against the new condition
before the ALTER TABLE statement succeeds. The table can be placed in check
pending state which will allow the ALTER TABLE statement to succeed without
checking the data. The SET CONSTRAINT statement is used to place the table into

16 SQL Reference

check pending state. It is also used to resume the checking of each row against the
constraint.

Triggers

A trigger defines a set of actions that are executed at, or triggered by, a delete, insert,
or update operation on a specified table. When such an SQL operation is executed, the
trigger is said to be activated.

Triggers can be used along with referential constraints and check constraints to enforce
data integrity rules. Triggers can also be used to cause updates to other tables, auto-
matically generate or transform values for inserted or updated rows, or invoke functions
to perform tasks such as issuing alerts.

Triggers are a useful mechanism to define and enforce transitional business rules which
are rules that involve different states of the data (for example, salary cannot be
increased by more than 10 percent). For rules that do not involve more than one state
of the data, check and referential integrity constraints should be considered.

Using triggers places the logic to enforce the business rules in the database and
relieves the applications using the tables from having to enforce it. Centralized logic
enforced on all the tables means easier maintenance, since no application program
changes are required when the logic changes.

Triggers are optional and are defined using the CREATE TRIGGER statement.

There are a number of criteria that are defined when creating a trigger which are used
to determine when a trigger should be activated.

e The subject table defines the table for which the trigger is defined.

¢ The trigger event defines a specific SQL operation that modifies the subject table.
The operation could be delete, insert or update.

e The trigger activation time defines whether the trigger should be activated before or
after the trigger event is performed on the subject table.

The statement that causes a trigger to be activated will include a set of affected rows.
These are the rows of the subject table that are being deleted, inserted or updated. The
trigger granularity defines whether the actions of the trigger will be performed once for
the statement or once for each of the rows in the set of affected rows.

The triggered action consists of an optional search condition and a set of SQL state-
ments that are executed whenever the trigger is activated. The SQL statements are
only executed if the search condition evaluates to true. When the trigger activation time
is before the trigger event, triggered action can include statements that select, set tran-
sition variables, and signal sqlstates. When the trigger activation time is after the trigger
event, triggered action can include statements that select, update, insert, delete, and
signal sqlstates.

Chapter 2. Concepts 17

The triggered action may refer to the values in the set of affected rows. This is sup-
ported through the use of transition variables. Transition variables use the names of the
columns in the subject table qualified by a specified name that identifies whether the
reference is to the old value (prior to the update) or the new value (after the update).
The new value can also be changed using the SET transition-variable statement in
before update or insert triggers. Another means of referring to the values in the set of
affected rows is using transition tables. Transition tables also use the names of the
columns of the subject table but have a name specified that allows the complete set of
affected rows to be treated as a table. As with transition variables, a transition table can
be defined for the old values and the new values but only in after triggers.

Multiple triggers can be specified for a combination of table, event, or activation time.
The order in which the triggers are activated is the same as the order in which they
were created. Thus, the most recently created trigger will be the last trigger activated.

The activation of a trigger may cause trigger cascading. This is the result of the acti-
vation of one trigger that executes SQL statements that cause the activation of other
triggers or even the same trigger again. The triggered actions may also cause updates
as a result of the original modification, or as a result of referential integrity delete rules
which may result in the activation of additional triggers. With trigger cascading, a signif-
icant chain of triggers and referential integrity delete rules may be activated causing
significant change to the database as a result of a single delete, insert or update state-
ment.

Event Monitors

An event monitor tracks specific data as the result of an event. For example, starting
the database might be an event that causes an event monitor to track the number of

users on the system by taking an hourly snapshot of authorization IDs using the data-
base.

Event monitors are activated or deactivated by a statement (SET EVENT MONITOR
STATE). A function (EVENT_MON_STATE) can be used to find the current state of an
event monitor; that is, if it is active or not active.

Queries

A query is a component of certain SQL statements that specifies a (temporary) result
table.

Table Expressions

A table expression creates a (temporary) result table from a simple query. Clauses
further refine the result table. For example, a table expression could be a query that
selects all the managers from several departments and further specifies that they have
over 15 years of working experience and are located at the New York branch office.

18 SQL Reference

Common Table Expressions
A common table expression is like a temporary view within a complex query, and can
be referenced in other places within the query; for example, in place of a view, to avoid
creating the view. Each use of a specific common table expression within a complex
query shares the same temporary view.

Recursive use of a common table expression within a query can be used to support
applications such as hill of materials (BOM), airline reservation systems, and network
planning. A set of examples from a BOM application is contained in Appendix M,
“Recursion Example: Bill of Materials” on page 961.

Packages

A package is an object that contains control structures (called sections) used to execute
SQL statements. Packages are produced during program preparation. The sections
created for static SQL can be thought of as the bound or operational form of SQL state-
ments. The sections created for dynamic SQL can be thought of as placeholder control
structures which are used at execution time. All sections in a package are derived from
the SQL statements embedded in a single source file. See the Embedded SQL Pro-
gramming Guide for more information on packages.

Catalog Views

The database manager maintains a set of views and base tables that contain informa-
tion about the data under its control. These views and base tables are collectively
known as the catalog. They contain information about objects in the database such as
tables, views, indexes, packages and functions.

The catalog views are like any other database views. SQL statements can be used to
look at the data in the catalog views in the same way that data is retrieved from any
other view in the system. The database manager ensures that the catalog contains
accurate descriptions of the objects in the database at all times. A set of updatable
catalog views can be used to modify certain values in the catalog (see “Updatable
Catalog Views” on page 774).

Statistical information is also contained in the catalog. The statistical information is
updated by utilities executed by an administrator, or through update statements by
appropriately authorized users.

The catalog views are listed in Appendix D, “Catalog Views” on page 773.

Application Processes, Concurrency, and Recovery

All SQL programs execute as part of an application process or agent. An application
process involves the execution of one or more programs, and is the unit to which the
database manager allocates resources and locks. Different application processes may
involve the execution of different programs, or different executions of the same
program.

Chapter 2. Concepts 19

More than one application process may request access to the same data at the same
time. Locking is the mechanism used to maintain data integrity under such conditions,
preventing, for example, two application processes from updating the same row of data
simultaneously.

The database manager acquires locks in order to prevent uncommitted changes made
by one application process from being accidentally perceived by any other. The data-
base manager releases all locks it has acquired and retained on behalf of an applica-
tion process when that process ends, but an application process itself should explicitly
request that locks be released sooner. This operation is called commit and it writes the
changes to the database.

The database manager provides a means of backing out uncommitted changes made
by an application process. This might be necessary in the event of a failure on the part
of an application process, or in a deadlock or lock timeout situation. An application
process itself, however, can explicitly request that its database changes be backed out.
This operation is called rollback.

A unit of work is a recoverable sequence of operations within an application process. At
any time, an application process has a single unit of work 3, but the life of an applica-
tion process may involve many units of work as a result of commit or rollback oper-
ations.

A unit of work is initiated when an application process is initiated. A unit of work is also
initiated when the previous unit of work is ended by something other than the termi-
nation of the application process. A unit of work is ended by a commit operation, a
rollback operation, or the end of an application process. A commit or rollback operation
affects only the database changes made within the unit of work it ends. While these
changes remain uncommitted, other application processes are unable to perceive them
and they can be backed out.# Once committed, these database changes are accessible
by other application processes and can no longer be backed out by a rollback.

Locks acquired by the database manager on behalf of an application process are held
until the end of a unit of work. The exception to this rule is with a read stability or
cursor stability isolation level, or an uncommitted read level, in which case the lock is
released as the cursor moves from row to row (see “Isolation Level” on page 22).

The initiation and termination of a unit of work define points of consistency within an
application process. For example, a banking transaction might involve the transfer of
funds from one account to another. Such a transaction would require that these funds
be subtracted from the first account, and added to the second. Following the sub-
traction step, the data is inconsistent. Only after the funds have been added to the
second account is consistency reestablished. When both steps are complete, the

4

DB2 CLI supports a connection mode called concurrent transactions which supports multiple connections, each of which is an inde-
pendent transaction. Furthermore, an application can have multiple concurrent connections to the same database, which is not pos-
sible at all with DB2 embedded SQL.

Except for isolation level uncommitted read, described in “Uncommitted Read (UR)” on page 24.

20 sQL Reference

commit operation can be used to end the unit of work, thereby making the changes
available to other application processes.

Point of New point of
consistency consistency

14— one unit of work —»l
TIME LINE database updates

T T

Begin unit Commit
of work End unit of work

Figure 1. Unit of Work with a Commit Statement

If a failure occurs before the unit of work ends, the database manager will roll back
uncommitted changes to restore the data consistency that it assumes existed when the
unit of work was initiated.

Point of New point of
consistency consistency

14— one unit of work —»l

database back out
Begin unit Failure; Data is returned to
of work Begin rollback its initial state;

End unit of work

Figure 2. Unit of Work with a Rollback Statement

Note: An application process is never prevented from performing operations because
of its own locks.

Chapter 2. Concepts 21

Isolation Level

The isolation level associated with an application process defines the degree of iso-
lation of that application process from other concurrently executing application proc-
esses. The isolation level of an application process, P, therefore specifies:

e The degree to which rows read and updated by P are available to other concur-
rently executing application processes

e The degree to which update activity of other concurrently executing application
processes can affect P.

Isolation level is specified as an attribute of a package and applies to the application
processes that use the package. The isolation level is specified in the program prepara-
tion process. Depending on the type of lock, this limits or prevents access to the data
by concurrent application processes. The database manager supports three types of
locks:

Share Limits concurrent application processes to read-only operations on the
data.

Exclusive Prevents concurrent application processes from accessing the data in any
way except for application processes with an isolation level of uncommitted
read, which can read but not modify the data. (See “Uncommitted Read
(UR)” on page 24.)

Update Limits concurrent application processes to read-only operations on the data
providing these processes have not declared they might update the row.
The database manager assumes the process looking at the row presently
may update the row.

The following descriptions of isolation levels refer to locking data in row units. Logically,
locking occurs at the base table row. The database manager, however, can escalate a
lock to a higher level. An application process is guaranteed at least the minimum
requested lock level.

The DB2 Universal Database database manager supports four isolation levels. Regard-
less of the isolation level, the database manager places exclusive locks on every row
that is inserted, updated, or deleted. Thus, all isolation levels ensure that any row that
is changed by this application process during a unit of work is not changed by any
other application processes until the unit of work is complete. The isolation levels are:

Repeatable Read (RR)

Level RR ensures that:

e Any row read during a unit of work 5 is not changed by other application processes
until the unit of work is complete. ¢

5 The rows must be read in the same unit of work as the corresponding OPEN statement. See WITH HOLD in “DECLARE CURSOR”

on page 595.

22 SQL Reference

¢ Any row changed by another application process cannot be read until it is com-
mitted by that application process.

RR does not allow phantom rows (see Read Stability) to be seen.

In addition to any exclusive locks, an application process running at level RR acquires
at least share locks on all the rows it references. Furthermore, the locking is performed
so that the application process is completely isolated ¢ from the effects of concurrent
application processes.

Read Stability (RS)
Like level RR, level RS ensures that:

e Any row read during a unit of work 5 is not changed by other application processes
until the unit of work is complete 7

e Any row changed by another application process cannot be read until it is com-
mitted by that application process.

Unlike RR, RS does not completely isolate the application process from the effects of
concurrent application processes. At level RS, application processes that issue the
same query more than once might see additional rows. These additional rows are
called phantom rows.
For example, a phantom row can occur in the following situation:

1. Application process P1 reads the set of rows n that satisfy some search condition.

2. Application process P2 then INSERTs one or more rows that satisfy the search
condition and COMMITs those INSERTS.

3. P1 reads the set of rows again with the same search condition and obtains both
the original rows and the rows inserted by P2.

In addition to any exclusive locks, an application process running at level RS acquires
at least share locks on all the qualifying rows.

Cursor Stability (CS)
Like the RR level:

e CS ensures that any row that was changed by another application process cannot
be read until it is committed by that application process.

Unlike the RR level:

6 Use of the optional WITH RELEASE clause on the CLOSE statement means that any guarantees against non-repeatable read and
phantoms no longer apply to any previously accessed rows if the cursor is reopened.

7 Use of the optional WITH RELEASE clause on the CLOSE statement means that any guarantees against non-repeatable read no
longer apply to any previously accessed rows if the cursor is reopened.

Chapter 2. Concepts 23

e CS only ensures that the current row of every updatable cursor is not changed by
other application processes. Thus, the rows that were read during a unit of work
can be changed by other application processes.

In addition to any exclusive locks, an application process running at level CS has at
least a share lock for the current row of every cursor.

Uncommitted Read (UR)
For a SELECT INTO, FETCH with a read-only cursor, fullselect used in an INSERT,
row fullselect in an UPDATE, or scalar fullselect (wherever used), level UR allows:

e Any row that is read during the unit of work to be changed by other application
processes.

e Any row that was changed by another application process to be read even if the
change has not been committed by that application process.

For other operations, the rules of level CS apply.

Comparison of Isolation Levels

A comparison of the four isolation levels can be found on Appendix H, “Comparison of
Isolation Levels” on page 885.

Distributed Relational Database

A distributed relational database consists of a set of tables and other objects that are
spread across different but interconnected computer systems. Each computer system
has a relational database manager to manage the tables in its environment. The data-
base managers communicate and cooperate with each other in a way that allows a
given database manager to execute SQL statements on another computer system.

Distributed relational databases are built on formal requester-server protocols and func-
tions. An application requester supports the application end of a connection. It trans-
forms a database request from the application into communication protocols suitable for
use in the distributed database network. These requests are received and processed by
an application server at the other end of the connection. Working together, the applica-
tion requester and application server handle the communication and location consider-
ations so that the application is isolated from these considerations and can operate as if
it were accessing a local database. A simple distributed relational database environ-
ment is illustrated in Figure 3 on page 25.

24 sSQL Reference

ROCHESTER TORONTO
Program [~"71 """ _2=% SQL
P __.| Package
Application Requester Application Server

Figure 3. A Distributed Relational Database Environment

For more information on Distributed Relational Database Architecture (DRDA) commu-
nication protocols, see Distributed Relational Database Architecture Reference
SC26-4651.

Application Servers
An application process must be connected to the application server of a database
manager before SQL statements that reference tables or views can be executed. A
CONNECT statement establishes a connection between an application process and its
server. An application process has only one server at any time?3 , but the server can
change when a CONNECT statement is executed.

The application server can be local to or remote from the environment where the
process is initiated. (An application server is present, even when not using distributed
relational databases.) This environment includes a local directory that describes the
application servers that can be identified in a CONNECT statement. For a description of
local directories, see the Administration Guide

To execute a static SQL statement that references tables or views, the application
server uses the bound form of the statement. This bound statement is taken from a
package that the database manager previously created through a bind operation.

For the most part, an application can use the statements and clauses that are sup-
ported by the database manager of the application server to which it is currently con-
nected, even though that application might be running via the application requester of a
database manager that does not support some of those statements and clauses.

See the IBM SQL Reference for information on considerations for using a distributed
relational database on DB2 application servers on other platforms.

CONNECT (Type 1) and CONNECT (Type 2)
There are two types of CONNECT statements:

e CONNECT (Type 1) supports the single database per unit of work (Remote Unit of
Work) semantics. See “CONNECT (Type 1)” on page 432.

Chapter 2. Concepts 25

e CONNECT (Type 2) supports the multiple database per unit of work (Application-
Directed Distributed Unit of Work) semantics. See “CONNECT (Type 2)” on
page 439.

Remote Unit of Work
The remote unit of work facility provides for the remote preparation and execution of
SQL statements. An application process at computer system A can connect to an appli-
cation server at computer system B and, within one or more units of work, execute any
number of static or dynamic SQL statements that reference objects at B. After ending a
unit of work at B, the application process can connect to an application server at com-
puter system C, and so on.

Most SQL statements can be remotely prepared and executed with the following
restrictions:

e All objects referenced in a single SQL statement must be managed by the same
application server

e All of the SQL statements in a unit of work must be executed by the same applica-
tion server

Remote Unit of Work Connection Management
This section outlines the connection states that an application process may enter.

Connection States

An application process is in one of four states at any time:
Connectable and connected
Unconnectable and connected
Connectable and unconnected
Implicitly connectable (if implicit connect is available).

If implicit connect is available (see Figure 4 on page 28), the application process
is initially in the implicitly connectable state. If implicit connect is not available (see
Figure 5 on page 29), the application process is initially in the connectable and
unconnected state.

Availability of implicit connect is determined by installation options, environment
variables, and authentication settings. See the Quick Beginnings for information on
setting implicit connect on installation and the Administration Guide for information
on environment variables and authentication settings.

The implicitly connectable state

If implicit connect is available, this is the initial state of an application process. The
CONNECT RESET statement causes a transition to this state. Issuing a COMMIT
or ROLLBACK statement in the unconnectable and connected state followed by a
DISCONNECT statement in the connectable and connected state also results in
this state.

The connectable and connected state

26 SQL Reference

An application process is connected to an application server and CONNECT state-
ments can be executed.

If implicit connect is available:

¢ The application process enters this state when a CONNECT TO statement or
a CONNECT without operands statement is successfully executed from the
connectable and unconnected state.

e The application process may also enter this state from the implicitly
connectable state if any SQL statement other than CONNECT RESET, DIS-
CONNECT, SET CONNECTION, or RELEASE is issued.

Whether or not implicit connect is available, this state is entered when:

¢ A CONNECT TO statement is successfully executed from the connectable and
unconnected state.

¢ A COMMIT or ROLLBACK statement is successfully issued or a forced
rollback occurs from the unconnectable and connected state.

The unconnectable and connected state

An application process is connected to an application server, but a CONNECT TO
statement cannot be successfully executed to change application servers. The
process enters this state from the connectable and connected state when it exe-
cutes any SQL statement other than the following statements: CONNECT TO,
CONNECT with no operand, CONNECT RESET, DISCONNECT, SET CON-
NECTION, RELEASE, COMMIT or ROLLBACK.

The connectable and unconnected state

An application process is not connected to an application server. The only SQL
statement that can be executed is CONNECT TO, otherwise an error (SQLSTATE
08003) is raised.

Whether or not implicit connect is available:

¢ The application process enters this state if an error occurs when a CONNECT
TO statement is issued or an error occurs in a unit of work which causes the
loss of a connection and a rollback. An error caused because the application
process is not in the connectable state or the server-name is not listed in the
local directory does not cause a transition to this state.

If implicit connect is not available:
¢ the CONNECT RESET and DISCONNECT statements cause a transition to
this state.

State Transitions are shown in the following diagrams.

Chapter 2. Concepts 27

CONNECT

Begin process RESET

\

Failure of

implicit connect — —~—a

Connectable
and
Unconnected

\

O
A% System failure
with rollback

Implicitly
Connectable

7

CONNECT
RESET

CONNECT TO,
COMMIT,
or ROLLBACK

CONNECT TO,
COMMIT, or
ROLLBACK

Unconnectable

Connectable
Connected successful COMMIT, Connected

or deadlock
/ SQL statement other

SQL statement other than
CONNECT TO, CONNECT RESET, than CONNECT RESET,
COMMIT or ROLLBACK COMMIT or ROLLBACK

Figure 4. Connection State Transitions If Implicit Connect Is Available

28 sSQL Reference

CONNECT RESET .
Begin process
CONNECT TO,
COMMIT or Successful CONNECT TO

/

ROLLBACK CONNECT TO
Connectable ith failure Connectable
and with system failure and
Connected Unconnected

CONNECT
RESET
SQL statement other than
CONNECT TO, CONNECT RESET, CONNECT
RESET

COMMIT or ROLLBACK

ROLLBACK, System failure
successful COMMIT, with rollback
or deadlock

Unconnectable
and
Connected

)

SQL statement other
than CONNECT RESET,
COMMIT or ROLLBACK

Figure 5. Connection State Transitions If Implicit Connect Is Not Available

Additional Rules :

e |tis not an error to execute consecutive CONNECT statements because
CONNECT itself does not remove the application process from the connectable
state.

¢ Itis an error to execute consecutive CONNECT RESET statements.

e |tis an error to execute any SQL statement other than CONNECT TO, CONNECT
RESET, CONNECT with no operand, SET CONNECTION, RELEASE, COMMIT, or
ROLLBACK, and then execute a CONNECT TO statement. To avoid the error, a
CONNECT RESET, DISCONNECT (preceded by a COMMIT or ROLLBACK state-
ment), COMMIT, or ROLLBACK statement should be executed before executing
the CONNECT TO.

Chapter 2. Concepts 29

Application-Directed Distributed Unit of Work
The application-directed distributed unit of work facility also provides for the remote
preparation and execution of SQL statements in the same fashion as remote unit of
work. An application process at computer system A can connect to an application
server at computer system B by issuing a CONNECT or SET CONNECTION statement.
The application process can then execute any number of static and dynamic SQL state-
ments that reference objects at B before ending the unit of work. All objects referenced
in a single SQL statement must be managed by the same application server. However,
unlike remote unit of work, any number of application servers can participate in the
same unit of work. A commit or rollback operation ends the unit of work.

Application-Directed Distributed Unit of Work Connection
Management

An application-directed distributed unit of work uses a Type 2 connection. A Type 2
connection connects an application process to the identified application server and
establishes the rules for application-directed distributed unit of work.

Overview of Application Process and Connection States
At any time a type 2 application process:

¢ |s always connectable

e Isin the connected state or unconnected state.

e Has a set of zero or more connections.
Each connection of an application process is uniquely identified by the database
alias of the application server of the connection.

At any time an individual connection has one of the following sets of connection
states:

e current and held

e current and release-pending

e dormant and held

e dormant and release-pending

Initial States and State Transitions: A type 2 application process is initially in the
unconnected state and does not have any connections.

A connection initially is in the current and held state.

The following diagram shows the state transitions:

30 SQL Reference

Begin
process

States of a Connection

The current connection is intentionally ended,
or a failure occurs causing the loss

Current

of the connection

v

Dormant

A

Successful CONNECT or 7y
SET CONNECTION

States of a Connection

Successful CONNECT or
SET CONNECTION

Current |, "

specifying another connection

Dormant

Successful CONNECT or
SET CONNECTION
specifying an
existing dormant connection

Held

RELEASE Release-

pending

Figure 6. Application-Directed Distributed Unit of Work Connection and Application Process Connection State Transi-

tions

Application Process Connection States:

A different application server can be estab-

lished by the explicit or implicit execution of a CONNECT statement.8 The following
rules apply:

An application process cannot have more than one connection to the same appli-
cation server at the same time. Note that DB2 CLI does not have this restriction.
(DB2 CLI has its own connection type. DB2 CLI also can support a Type 2 con-
nection as discussed, in which case this restriction does apply.) See Adminis-

tration Guide for information on support of multiple connections to the same DB2
Universal Database at the same time.

8 Note that a Type 2 implicit connection is more restrictive than a Type 1. See “CONNECT (Type 2)” on page 439 for details.

Chapter 2. Concepts 31

32

¢ When an application process executes a SET CONNECTION statement, the speci-
fied location name must be an existing connection in the set of connections of the
application process.

e When an application process executes a CONNECT statement, and the
SQLRULES(STD) option is in effect the specified server name must not be an
existing connection in the set of connections of the application process. See
“Options that Govern Distributed Unit of Work Semantics” on page 33 for a
description of the SQLRULES option.

If an application process has a current connection , the application process is in the
connected state. The CURRENT SERVER special register contains the name of the
application server of the current connection. The application process can execute SQL
statements that refer to objects managed by that application server.

An application process in the unconnected state enters the connected state when it
successfully executes a CONNECT or SET CONNECTION statement. If there is no
connection in the application but SQL statements are issued, an implicit connect will be
made provided the DB2DBDFT environment variable has been defined with a default
database.

If an application process does not have a current connection , the application
process is in the unconnected state. The only SQL statements that can be executed
are CONNECT, DISCONNECT ALL, DISCONNECT specifying a database, SET CON-
NECTION, RELEASE, COMMIT and ROLLBACK.

An application process in the connected state enters the unconnected state when its
current connection is intentionally ended or the execution of an SQL statement is
unsuccessful because of a failure that causes a rollback operation at the application
server and loss of the connection. Connections are intentionally ended either by the
successful execution of a DISCONNECT statement or by the successful execution of a
commit operation when the connection is in the release-pending state. Different options
specified in the DISCONNECT precompiler option affect intentionally ending a con-
nection. If set to AUTOMATIC, then all connections are ended. If set to CONDITIONAL,
then all connections that do not have open WITH HOLD cursors are ended.

States of a Connection: If an application process executes a CONNECT statement
and the server name is known to the application requester and is not in the set of
existing connections of the application process, then:

e the current connection is placed into the dormant state, and

* the server name is added to the set of connections, and

¢ the new connection is placed into both the current state and the held state.
If the server name is already in the set of existing connections of the application

process and the application is precompiled with the option SQLRULES(STD), an error
(SQLSTATE 08002) is raised.

e Held and Release-pending States: The RELEASE statement controls whether a
connection is in the held or release-pending state. A release-pending state means

SQL Reference

that a disconnect is to occur for the connection at the next successful commit oper-
ation (a rollback has no effect on connections). A held state means that a con-
nection is not to be disconnected at the next operation. All connections are initially
in the held state and may be moved into the release-pending state using the
RELEASE statement. Once in the release-pending state, a connection cannot be
moved back to the held state. A connection will remain in a release-pending state
across unit of work boundaries if a ROLLBACK statement is issued or if an unsuc-
cessful commit operation results in a rollback operation.

Even if a connection is not explicitly marked for release, it may still be discon-
nected by a commit operation if the commit operation satisfies the conditions of the
DISCONNECT precompiler option.

e Current and Dormant States: Regardless of whether a connection is in the held
state or the release-pending state, a connection can also be in the current state or
dormant state. A current state means that the connection is the one used for SQL
statements that are executed while in this state. A dormant state means that the
connection is not current. The only SQL statements which can flow on a dormant
connection are COMMIT and ROLLBACK; or DISCONNECT and RELEASE, which
can specify either ALL (for all connections) or a specific database name. The SET
CONNECTION and CONNECT statements change the connection for the named
server into the current state while any existing connections are either placed or
remain in the dormant state. At any point in time, only one connection can be in
the current state. When a dormant connection becomes current in the same unit of
work, the state of all locks, cursors, and prepared statements will remain the same
and reflect their last use when the connection was current.

When a Connection is Ended: When a connection is ended, all resources that were
acquired by the application process through the connection and all resources that were
used to create and maintain the connection are deallocated. For example, if the appli-
cation process executes a RELEASE statement, any open cursors will be closed when
the connection is ended during the next commit operation.

A connection can also be ended because of a communications failure. The application
process is placed in the unconnected state if the connection ended was the current
one.

All connections of an application process are ended when the process ends.

Options that Govern Distributed Unit of Work Semantics

The semantics of type 2 connection management are determined by a set of precom-
piler options. These are summarized briefly below with the defaults indicated by bold
and underlined text. For details refer to the Command Reference or APl Reference
manuals.

e CONNECT (1] 2)
Specifies whether CONNECT statements are to be processed as type 1 or type 2.
e SQLRULES (DB2 | STD)

Chapter 2. Concepts 33

Specifies whether type 2 CONNECTSs should be processed according to the DB2
rules which allow CONNECT to switch to a dormant connection, or the SQL92
Standard (STD) rules which do not allow this.

e DISCONNECT (EXPLICIT | CONDITIONAL | AUTOMATIC)

Specifies what database connections are disconnected when a commit operation
occurs. They are either:

— those which had been explicitly marked for release by the SQL RELEASE
statement (EXPLICIT), or

— those that have no open WITH HOLD cursors as well as those marked for
release (CONDITIONAL)® , or

— all connections (AUTOMATIC).

¢ SYNCPOINT (ONEPHASE | TWOPHASE | NONE)

Specifies how commits or rollbacks are to be coordinated among multiple database
connections.

ONEPHASE Updates can only occur on one database in the unit of work, all
other databases are read-only. Any update attempts to other
databases raise an error (SQLSTATE 25000).

TWOPHASE A Transaction Manager (TM) will be used at run time to coordi-
nate two phase commits among those databases that support
this protocol.

NONE Does not use any TM to perform two phase commit and does
not enforce single updater, multiple reader. When a COMMIT or
ROLLBACK statement is executed, individual COMMITs or
ROLLBACKS are posted to all databases. If one or more
rollbacks fails an error (SQLSTATE 58005) is raised. If one or
more commits fails an error (SQLSTATE 40003) is raised.

Any of the above options can be overridden at run time using a special SET CLIENT
application programming interface (API). Their current settings can be obtained using
the special QUERY CLIENT API. Note that these are not SQL statements; they are
APIs defined in the various host languages and in the Command Line Processor. These
are defined in the Command Reference and AP/ Reference manuals.

Data Representation Considerations
Different systems represent data in different ways. When data is moved from one
system to another, data conversion sometimes must be performed. Products supporting
DRDA will automatically perform any necessary conversions at the receiving system.
With numeric data, the information needed to perform the conversion is the data type of
the data and how that data type is represented by the sending system. With character
data, additional information is needed to convert character strings. String conversion

9 The CONDITIONAL option will not work properly with downlevel servers prior to Version 2. A disconnection will occur in these cases
regardless of the presence of WITH HOLD cursors

34 SQL Reference

depends on both the coded character set of the data and the operation that is to be
performed with that data. Character conversions are performed in accordance with the
IBM Character Data Representation Architecture (CDRA). For more information on
character conversion, refer to Character Data Representation Architecture Reference
SC09-1390.

Character Conversion

A string is a sequence of bytes that may represent characters. Within a string, all the
characters are represented by a common coding representation. In some cases, it
might be necessary to convert these characters to a different coding representation.
The process of conversion is known as character conversion.10

Character conversion can occur when an SQL statement is executed remotely. Con-
sider, for example, these two cases:

¢ The values of host variables sent from the application requester to the application
server

e The values of result columns sent from the application server to the application
requester.

In either case, the string could have a different representation at the sending and
receiving systems. Conversion can also occur during string operations on the same
system.

The following list defines some of the terms used when discussing character conver-
sion.

character set A defined set of characters. For example, the following char-
acter set appears in several code pages:

e 26 non-accented letters A through Z
e 26 non-accented letters a through z
¢ digits 0 through 9

e ., ?20)""-_&+%F=<>

code page A set of assignments of characters to code points. In the
ASCII encoding scheme for code page 850, for example, 'A'
is assigned code point X'41' and 'B' is assigned code point
X'42'. Within a code page, each code point has only one
specific meaning. A code page is an attribute of the data-
base. When an application program connects to the data-

10 Character conversion, when required, is automatic and is transparent to the application when it is successful. A knowledge of conver-
sion is therefore unnecessary when all the strings involved in a statement's execution are represented in the same way. This is
frequently the case for stand-alone installations and for networks within the same country. Thus, for many readers, character con-
version may be irrelevant.

Chapter 2. Concepts 35

base, the database manager determines the code page of the

application.
code point A unique bit pattern that represents a character.
encoding scheme A set of rules used to represent character data. For example:

e Single-Byte ASCII

e Single-Byte EBCDIC

e Double-Byte ASCII

¢ Mixed Single- and Double-Byte ASCII.

Character Sets and Code Pages
The following example shows how a typical character set might map to different code
points in two different code pages.

code page: pp1 (ASCII) code page: pp2 (EBCDIC)
o|1|2| 3| 4|5 E| F 0| 1 A|B|C|DJ|E]|F
0 0| @| P A 0 # 0
1 1 A |l Q A| & 1 $|A|J 1
2 "l 2| B|R Ales |2 s |%|B|K|S|2
3 3[C| S Al7 3 t|—™|C|L|T]| 3
4 4 | D|T Als ||4 u|l*|D|M|U| 4
5 %| 5| E|U Ale |5 V| (|E|N|V]|S5
N I
| | | | | |l | | | | | | | |
Lo [[[I | | L | \ [[[[[[|
R ! boor b A
E > | N %10 ||E ! Al
F /| *|o0 ® F Ale| | A|{
| | . o —
code point: 2F character set ss1 character set ss1
(in code page pp1) (in code page pp2)

36 SQL Reference

Even with the same encoding scheme, there are many different coded character sets,
and the same code point can represent a different character in different coded char-
acter sets. Furthermore, a byte in a character string does not necessarily represent a
character from a single-byte character set (SBCS). Character strings are also used for
mixed and bit data. Mixed data is a mixture of single-byte, double-byte, or multi-byte
characters. Bit data (columns defined as FOR BIT DATA or BLOBS, or binary strings)
is not associated with any character set.

Code Page Attributes
The database manager determines code page attributes for all character strings when
an application is bound to a database. The potential code page attributes are:

The Database Code Page The database code page stored in the database config-
uration files. This code page value is determined when
the database is created and cannot be altered.

The Application Code Page The code page under which the application is exe-
cuted. Note that this is not necessarily the same code
page under which the application was bound. (See the
Embedded SQL Programming Guide for further infor-
mation on binding and executing application programs.)

Code Page 0 This represents a string that is derived from an
expression that contains a FOR BIT DATA or BLOB
value.

String Code Page Attributes
Character string code page attributes are as follows:

e Columns may be in the database code page or code page O (if defined as char-
acter FOR BIT DATA or BLOB).

¢ Constants and special registers (for example, USER, CURRENT SERVER) are in
the database code page. Note that constants are converted to the database code
page when an SQL statement is bound to the database.

¢ Input host variables are in the application code page.

A set of rules is used to determine the code page attributes for operations that combine
string objects, such as the results of scalar operations, concatenation, or set operations.
At execution time, code page attributes are used to determine any requirements for
code page conversions of strings.

For more details on character conversion, see:

e “Conversion Rules for String Assignments” on page 73 for rules on string assign-
ments

e “Rules for String Conversions” on page 85 for rules on conversions when com-
paring or combining character strings.

Chapter 2. Concepts 37

Authorization and Privileges

An authorization allows a user or group to perform a general task such as connecting to
a database, creating tables, or administering a system. A privilege gives a user or
group the right to access one specific database object in a specified way.

The database manager requires that a user be specifically authorized, either implicitly
or explicitly,1! to use each database function needed by that user to perform a specific
task. Thus to create a table, a user must be authorized to create tables; to alter a table,
a user must be authorized to alter the table; and so on.

SYSADM
(System Administrator)

|

DBADM SYSCTRL
(Database Administrator) (System Resource Administrator)
SYSMAINT
(System Maintenance Administrator)

CTTTTTITTTIITTTT T T

Database Users with Privileges

Figure 7. Hierarchy of Authorities and Privileges

The person or persons with administrative authority have the task of controlling the
database manager and are responsible for the safety and integrity of the data. They
control who will have access to the database manager and to what extent each user
has access.

The database manager provides two administrative authorities:

SYSADM System administrator authority
DBADM Database administrator authority

and two system control authorities:
SYSCTRL System control authority
SYSMAINT System maintenance authority

SYSADM authority is the highest level of authority and has control over all the
resources created and maintained by the database manager. SYSADM authority

11 Explicit authorities or privileges are granted to the user (GRANTEETYPE of U). Implicit authorities or privileges are granted to a
group to which the user belongs (GRANTEETYPE of G).

38 SQL Reference

includes all the privileges of DBADM, SYSCTRL, and SYSMAINT, and the authority to
grant or revoke DBADM authorities.

DBADM authority is the administrative authority specific to a single database. This
authority includes privileges to create objects, issue database commands, and access
the data in any of its tables through SQL statements. DBADM authority also includes
the authority to grant or revoke CONTROL and individual privileges.

SYSCTRL authority is the higher level of system control authority and applies only to
operations affecting system resources. It does not allow direct access to data. This
authority includes privileges to create, update, or drop a database; quiesce an instance
or database; and drop or create a table space.

SYSMAINT authority is the second level of system control authority. A user with
SYSMAINT authority can perform maintenance operations on all databases associated
with an instance. It does not allow direct access to data. This authority includes privi-
leges to update database configuration files, backup a database or table space, restore
an existing database, and monitor a database.

Database authorities apply to those activities that an administrator has allowed a user
to perform within the database that do not apply to a specific instance of a database
object. For example, a user may be granted the authority to create packages but not
create tables.

Privileges apply to those activities that an administrator or object owner has allowed a
user to perform on database objects. Users with privileges can create objects, though
they face some constraints, unlike a user with an authority like SYSADM or DBADM.
For example, a user may have the privilege to create a view on a table but not a trigger
on the same table. Users with privileges have access to the objects they own, and can
pass on privileges on their own objects to other users by using the GRANT statement.

CONTROL privilege allows the user to access a specific database object as desired
and to GRANT and REVOKE privileges to and from other users on that object. DBADM
authority is required to grant CONTROL privilege.

Individual privileges and database authorities allow a specific function but do not
include the right to grant the same privileges or authorities to other users. The right to
grant table, view or schema privileges to others can be extended to other users using
the WITH GRANT OPTION on the GRANT statement.

Storage Structures

Storage structures contain the objects of the database. The basic storage structures
managed by the database manager are table spaces. A table space is a storage struc-
ture containing tables, indexes, large objects, and data defined with a LONG data type.
There are two types of table spaces:

Database Managed Space (DMS) Table Space
A table space which has its space managed by the database manager.

Chapter 2. Concepts 39

System Managed Space (SMS) Table Space
A table space which has its space managed by the operating system.

All table spaces consist of containers. A container describes where objects, such as
some tables, are stored. For example, a subdirectory in a file system could be a con-
tainer.

For more information on table spaces and containers, see “CREATE TABLESPACE” on
page 559 or the Administration Guide.

Data that is read from table space containers is placed in an area of memory called a
buffer pool. A buffer pool is associated with a table space allowing control over which

data shares the same memory areas for data buffering. For more information on buffer
pools, see “CREATE BUFFERPOOL” on page 449 or the Administration Guide.

A partitioned database allows data to be spread across different database partitions.
The partitions included are determined by the nodegroup assigned to the table space. A
nodegroup is a group of one or more partitions that are defined as part of the database.
A table space includes one or more containers for each partition in the nodegroup. A
partitioning map is associated with each nodegroup. The partitioning map is used by
the database manager to determine which partition from the nodegroup will store a
given row of data. For more information on nodegroups and data partitioning, see “Data
Partitioning Across Multiple Partitions” on page 41, “CREATE NODEGROUP” on

page 508 or the Administration Guide.

A table can also include columns that register links to data stored in external files. The
mechanism for this is the DATALINK data type. A DATALINK value which is recorded
in a regular table points to a file stored in an external file server.

The DB2 File Manager, which is installed on a fileserver, works in conjunction with DB2
to provide the following optional functionality:

¢ Referential integrity to insure that files currently linked to DB2 are not deleted or
renamed.

e Security to insure that only those with suitable SQL privileges on the DATALINK
column can read the files linked to that column.

e Coordinated backup and recovery of the file.

The DataLinker product comprises the following facilities:

DataLinks File Manager
Registers all the files in a particular file server that are linked to DB2.

Datalinks Filter
Filters file system commands to insure that registered files are not deleted or
renamed. Optionally also filters commands to insure that proper access authority
exists.

40 SQL Reference

Data Partitioning Across Multiple Partitions

Data Partitioning Across Multiple Partitions

DB2 allows great flexibility in spreading data across multiple partitions (nodes) of a par-
titioned database. Users can choose how to partition their data by declaring partitioning
keys and can determine which and how many partitions their table data can be spread
across by selecting the nodegroup and table space in which the data should be stored.
In addition, a partitioning map (which can be user-updatable) specifies the mapping of
partitioning key values to partitions. This makes it possible for flexible workload
parallelization across a partitioned database for large tables, while allowing smaller
tables to be stored on one or a small number of partitions if the application designer
chooses. Each local partition may have local indexes on the data it stores in order to
provide high performance local data access.

A partitioned database supports a partitioned storage model, in which the partitioning
key is used to partition table data across a set of database partitions. Index data is also
partitioned with its corresponding tables, and stored locally at each partition.

Before partitions can be used to store database data, they must be defined to the data-
base manager. Partitions are defined in a file called db2nodes.cfg. See the Adminis-
tration Guide for more details about defining partitions.

The partitioning key for a table in a table space on a partitioned nodegroup is specified
in the CREATE TABLE statement (or ALTER TABLE statement). If not specified, a par-
titioning key for a table is created by default from the first column of the primary key. If
no primary key is specified, the default partitioning key is the first column defined in that
table that has a data type other than a LONG or LOB data type. Partitioned tables must
have at least one column that is neither a LONG nor a LOB data type. A table in a
table space on a single-partition nodegroup will only have a partitioning key if it is
explicitly specified.

Hash patrtitioning is used to place a row on a partition as follows.

1. A hashing algorithm (partitioning function) is applied to the partitioning key (all the
columns), which results in a partitioning map index being generated.

2. This partitioning map index is used as an index into the partitioning map. The
partition number at that index in the partitioning map is the partition where the row
is stored.

3. Partitioning maps are associated with nodegroups, and tables are created in table
spaces which are on nodegroups.

DB2 supports partial declustering, which means that the table can be partitioned across
a subset of partitions in the system (that is, a nodegroup). Tables do not have to be
partitioned across all the partitions in the system.

Partitioning Maps

Each nodegroup is associated with a partitioning map, which is an array of 4096 parti-
tion numbers . The partitioning map index produced by the partitioning function for each

Chapter 2. Concepts 41

Data Partitioning Across Multiple Partitions

row of a table is used as an index into the partitioning map to determine partition on
which a row is stored.

Figure 8 shows how the row with the partitioning key value (c1, c2, c3) is mapped to
partitioning map index 2, which, in turn, references partition p5.

Row
partitioning key
(...c1,c2,c3..)

partitioning function maps (c1, c2, c3)
to partitioning map index 2

Partitioning Map
p0 p2 p5 pO p2 p5 p0
0 1 2 3 4 5 4095

Nodegroup partitions are p0, p2, and p5
Note: Partition numbers start at 0.

Figure 8. Data Distribution

The partitioning map can be changed, allowing the data distribution to be changed
without modifying the partitioning key or the actual data. The new partitioning map is
specified as part of the REDISTRIBUTE NODEGROUP command or API which uses it
to redistribute the tables in the nodegroup. See Command Reference or API Reference
for further information.

Table Collocation

DB2 has the capability of recognizing when the data accessed for a join or subquery is
located at the same partition in the same nodegroup. When this happens DB2 can
choose to perform the join or subquery processing at the partition where the data is
stored, which often has significant performance advantages. This situation is called
table collocation. To be considered collocated tables, the tables must:

e be in the same nodegroup (that is not being redistributed 12)

¢ have partitioning keys with the same number of columns

12 While redistributing a nodegroup, tables in the nodegroup may be using different partitioning maps - they are not collocated.

SQL Reference

Data Partitioning Across Multiple Partitions

¢ have the corresponding columns of the partitioning key be partition compatible (see
“Partition Compatibility” on page 87).

OR

e be in a single partition nodegroup defined on the same partition.

Rows in collocated tables with the same partitioning key values will be located on the
same partition.

Chapter 2. Concepts 43

Data Partitioning Across Multiple Partitions

44 SQL Reference

Characters

Chapter 3. Language Elements

This chapter defines the basic syntax of SQL and language elements that are common
to many SQL statements.

Subject Page
Characters 45
Tokens 46
Identifiers 47
Naming Conventions and Implicit Object Name Qualifications 48
Aliases 51
Authorization IDs and authorization-names 51
Data Types 54
Promotion of Data Types 66
Casting Between Data Types 67
Assignments and Comparisons 70
Rules for Result Data Types 82
Constants 88
Special Registers 91
Column Names 98
References to Host Variables 105
Functions 110
Expressions 117
Predicates 135
Search Conditions 153

Characters

The basic symbols of keywords and operators in the SQL language are single-byte
characters that are part of all IBM character sets. Characters of the language are clas-
sified as letters, digits, or special characters.

A letter is any of the 26 uppercase (A through Z) and 26 lowercase (a through z) letters
plus the three characters ($, #, and @), which are included for compatibility with host
database products (for example, in code page 850, $is at X'24' # is at X'23', and @
is at X'40'). Letters also include the alphabetics from the extended character sets.
Extended character sets contain additional alphabetic characters; for example, those
with diacritical (eg., “) marks. The available characters depend on the code page in
use.

A digit is any of the characters 0 through 9.

© Copyright IBM Corp. 1993, 1998 45

Tokens

A special character is any of the characters listed below:

MBCS Considerations

blank

quotation mark or
double-quote
percent
ampersand
apostrophe or
single quote

left parenthesis
right parenthesis
asterisk

plus sign
comma

vertical bar
exclamation mark

minus sign
period

slash
colon
semicolon

less than

equals

greater than
question mark
underline or under-
score

caret

All multi-byte characters are treated as letters, except for the double-byte blank which is
a special character.

Tokens

The basic syntactical units of the language are called tokens. A token is a sequence of
one or more characters. A token cannot contain blank characters, unless it is a string
constant or delimited identifier, which may contain blanks. (These terms are defined
later.)

Tokens are classified as ordinary or delimiter tokens:

e An ordinary token is a numeric constant, an ordinary identifier, a host identifier, or
a keyword.

Examples

1 .1 +2 SELECT E 3

e A delimiter token is a string constant, a delimited identifier, an operator symbol, or

any of the special characters shown in the syntax diagrams. A question mark is
also a delimiter token when it serves as a parameter marker, as explained under
“PREPARE” on page 673.
Examples

, 'string’ "f1d1" =

Spaces: A space is a sequence of one or more blank characters. Tokens other than
string constants and delimited identifiers must not include a space. Any token may be
followed by a space. Every ordinary token must be followed by a space or a delimiter
token if allowed by the syntax.

46 SQL Reference

Identifiers

Comments : Static SQL statements may include host language comments or SQL com-
ments. Either type of comment may be specified wherever a space may be specified,
except within a delimiter token or between the keywords EXEC and SQL. SQL com-
ments are introduced by two consecutive hyphens (--) and ended by the end of the line.
For more information, see “SQL Comments” on page 374.

Uppercase and Lowercase : Any token may include lowercase letters, but a lowercase
letter in an ordinary token is folded to uppercase, except for host variables in the C
language, which has case-sensitive identifiers. Delimiter tokens are never folded to
uppercase. Thus, the statement:

select * from EMPLOYEE where lastname = 'Smith';

is equivalent, after folding, to:
SELECT * FROM EMPLOYEE WHERE LASTNAME

'Smith';

MBCS Considerations

Multi-byte alphabetic letters are not folded to uppercase. Single-byte characters, a to z,
are folded to uppercase.

Identifiers

An identifier is a token that is used to form a name. An identifier in an SQL statement is
either an SQL identifier or a host identifier.

SQL Identifiers
There are two types of SQL identifiers: ordinary identifiers and delimited identifiers.

¢ An ordinary identifier is a letter followed by zero or more characters, each of which
is an uppercase letter, a digit, or the underscore character. An ordinary identifier
should not be identical to a reserved word (see Appendix G, “Reserved Schema
Names and Reserved Words” on page 881 for information on reserved words).

¢ A delimited identifier is a sequence of one or more characters enclosed within quo-
tation marks ("). Two consecutive quotation marks are used to represent one quo-
tation mark within the delimited identifier. In this way an identifier can include
lowercase letters.

Example:
WKLYSAL WKLY_SAL "WKLY_SAL" "WKLY SAL" "UNION" "wkly_sal"
SQL identifiers are also classified according to their maximum length. A long identifier

has a maximum length of 18 bytes. A short identifier has a maximum length of 8 bytes.
These limits do not include the quotation marks surrounding the delimited identifier.

Character conversions between identifiers created on a double-byte code page but

used by an application or database on a multi-byte code page may require special con-
sideration. After conversion to multi-byte, it is possible that such identifiers may exceed

Chapter 3. Language Elements 47

Naming Conventions

the length limit for an identifier (see Appendix O, “Japanese and Traditional-Chinese
EUC Considerations” on page 973 for details).

Host Identifiers
A host identifier is a name declared in the host program. The rules for forming a host
identifier are the rules of the host language. A host identifier should not be greater than
30 characters and should not begin with 'SQL".

Naming Conventions and Implicit Object Name Qualifications

I

| The rules for forming a name depend on the type of the object designated by the name.
| Database object names may be made up of a single identifier or they may be schema

| qualified objects made up of two identifiers. Schema qualified object names may be

| specified without the schema name. In such cases, a schema name is implicit.

| In dynamic SQL statements, a schema qualified object name implicitly uses the

| CURRENT SCHEMA special register value as the qualifer for unqualified object name
| references. By default it is set to the current authorization ID. See “SET SCHEMA” on
| page 733 for detalils.

| In static SQL statements, the QUALIFIER precompile/bind option implicitly specifies the
| qualifier for unqualified database object names. By default it is set to authorization ID of
| the binder. See the Command Reference for details.

The syntax diagrams use different terms for different types of names. The following list
defines these terms.

alias-name A schema qualified name that designates an alias. The unqual-
ified form of an alias-name is a long identifier. The qualified
form is a short identifier followed by a period and a long identi-

fier.

attribute-name A long identifier that designates an attribute of a structured
data type.

authorization-name A short identifier that designates a user or group. Note the fol-

lowing restrictions on the characters that can be used:

e The underscore character (_) is not valid.

e The name must not begin with the characters 'SYS',
'IBM', or 'SQL".

e The name must not be: ADMINS, GUESTS, LOCAL,
PUBLIC, or USERS.

¢ A delimited authorization ID must not contain lowercase
letters.

o Letters from the extended character set are not allowed.

bufferpool-name A long identifier that designates a bufferpool.

column-name A qualified or unqualified name that designates a column of a
table or view. The unqualified form of a column-name is a long
identifier. The qualified form is a qualifier followed by a period

48 SQL Reference

constraint-name

correlation-name
cursor-name

descriptor-name

distinct-type-name

event-monitor-name

function-name

host-variable

index-name

nodegroup-name

package-name

procedure-name

Naming Conventions

and a long identifier. The qualifier is a table-name, a view-
name, or a correlation-name.

A long identifier that designates a referential constraint,
primary key constraint, unique constraint or a table check con-
straint.

A long identifier that designates a table or a view.
A long identifier that designates an SQL cursor.

A colon followed by a host identifier that designates an SQL
descriptor area (SQLDA). See “References to Host Variables”
on page 105 for a description of a host identifier. Note that a
descriptor-name never includes an indicator variable.

A qualified or unqualified name that designates a distinct type-
name. The unqualified form of a distinct-type-name is a long
identifier. The qualified form is a short identifier followed by a
period and a long identifier. An unqualified distinct-type-name
in an SQL statement is implicitly qualified by the database
manager, depending on context.

A long identifier that designates an event monitor.

A qualified or unqualified name that designates a function. The
unqualified form of a function-name is a long identifier. The
qualified form is a short identifier followed by a period and a
long identifier. An unqualified function-name in an SQL state-
ment is implicitly qualified by the database manager,
depending on context.

A sequence of tokens that designates a host variable. A host
variable includes at least one host identifier, as explained in
“References to Host Variables” on page 105.

A schema qualified name that designates an index. The
unqualified form of an index-name is a long identifier. The
qualified form is a short identifier followed by a period and a
long identifier.

A long identifier that designates a nodegroup.

A schema qualified name that designates a package. The
unqualified form of a package-name is a short identifier. The
qualified form is a short identifier followed by a period and a
short identifier.

A qualified or unqualified name that designates a procedure.
The unqualified form of a procedure-name is a long identifier.
The qualified form is a short identifier followed by a period and
a long identifier. An unqualified procedure-name in an SQL
statement is implicitly qualified by the database manager,
depending on context.

Chapter 3. Language Elements 49

Naming Conventions

schema-name

server-name

specific-name

statement-name

supertype-name

table-name

tablespace-name

trigger-name

type-name

typed-table-name

50 SQL Reference

A short identifier that provides a logical grouping for SQL
objects. A schema-name used as a qualifier of the name of an
object may be implicitly determined:

¢ from the value of the CURRENT SCHEMA special register
¢ from the value of the QUALIFIER precompile/bind option

e based on a resolution algorithm that uses the CURRENT
PATH special register

¢ based on the schema name of another object in the same
SQL statement.

A long identifier that designates an application server.

A qualified or unqualified name that designates specific-name.
The qualified form is a schema-name followed by a period and
a long identifier. A specific-name can be used to source a
function, to drop and to comment on a procedure or a function.
It can never be used to invoke a function or procedure. An
unqualified specific-name in an SQL statement is implicitly
qualified by the database manager, depending on context.

A long identifier that designates a prepared SQL statement.

A qualified or unqualified name that designates a the super-
type of a type-name. The unqualified form of a supertype-
name is a long identifier. The qualified form is a short identifier
followed by a period and a long identifier. An unqualified
supertype-name in an SQL statement is implicitly qualified by
the database manager, depending on context.

A schema qualified name that designates a table. The unquali-
fied form of a table-name is a long identifier. The qualified form
is a short identifier followed by a period and a long identifier.

A long identifier that designates a table space.

A schema qualified name that designates a trigger. The
unqualified form of a trigger-name is a long identifier. The qual-
ified form is a short identifier followed by a period and a long
identifier.

A qualified or unqualified name that designates a type-name.
The unqualified form of a type-name is a long identifier. The
qualified form is a short identifier followed by a period and a
long identifier. An unqualified type-name in an SQL statement
is implicitly qualified by the database manager, depending on
context.

A schema qualified name that designates a typed table. The
unqualified form of a typed-table-name is a long identifier. The
qualified form is a short identifier followed by a period and a
long identifier.

Authorization IDs and authorization-names

typed-view-name A schema qualified name that designates a typed view. The
unqualified form of a typed-view-name is a long identifier. The
qualified form is a short identifier followed by a period and a
long identifier.

view-name A schema qualified name that designates a view. The unquali-
fied form of a view-name is a long identifier. The qualified form
is a short identifier followed by a period and a long identifier.

Aliases

A table alias can be thought of as an alternative name for a table or view. A table or
view, therefore, can be referred to in an SQL statement by its name or by a table alias.

An alias can be used wherever a table or view name can be used. An alias can be
created even though the object does not exist (though it must exist by the time a state-
ment referring to it is compiled). It can refer to another alias if no circular or repetitive
references are made along the chain of aliases. An alias can only refer to a table, view,
or alias within the same database. An alias name cannot be used where a new table or
view name is expected, such as in the CREATE TABLE or CREATE VIEW statements;
for example, if an alias name of PERSONNEL is created then a subsequent statement
such as CREATE TABLE PERSONNEL... will cause an error.

The option of referring to a table or view by an alias is not explicitly shown in the syntax
diagrams or mentioned in the description of the SQL statement.

A new unqualified alias cannot have the same fully-qualified name as an existing table,
view, or alias.

The effect of using an alias in an SQL statement is similar to that of text substitution.

The alias, which must be defined when the SQL statement is compiled, is replaced at
statement compilation time by the qualified base table or view name. For example, if

PBIRD.SALES is an alias for DSPN014.DIST4 SALES 148, then at compilation time:

SELECT * FROM PBIRD.SALES
effectively becomes
SELECT = FROM DSPNO14.DIST4_ SALES 148

For syntax toleration of existing DB2 for MVS/ESA applications, SYNONYM can be
used in place of ALIAS in the CREATE ALIAS and DROP ALIAS statements.

Authorization IDs and authorization-names

An authorization ID is a character string that is obtained by the database manager
when a connection is established between the database manager and either an appli-
cation process or a program preparation process. It designates a set of privileges. It
may also designate a user or a group of users, but this property is not controlled by the
database manager.

Chapter 3. Language Elements 51

Authorization IDs and authorization-names

52

Authorization IDs are used by the database manager to provide:

Authorization checking of SQL statements

Default value for the QUALIFIER precompile/bind option and the CURRENT
SCHEMA special register. Also, the authorization ID is included in the default
CURRENT PATH special register and FUNCPATH precompile/bind option.

An authorization ID applies to every SQL statement. The authorization ID that applies to
a static SQL statement is the authorization ID that is used during program binding. The
authorization ID that applies to a dynamic SQL statement is the authorization ID that
was obtained by the database manager when a connection was established between
the database manager and the process. This is called the run-time authorization ID.

An authorization-name specified in an SQL statement should not be confused with the
authorization 1D of the statement. An authorization-name is an identifier that is used
within various SQL statement. An authorization-name is used in a CREATE SCHEMA
statement to designate the owner of the schema. An authorization-name is used in
GRANT and REVOKE statements to designate a target of the grant or revoke. Note
that the premise of a grant of privileges to X is that X or a member of the group X will
subsequently be the authorization ID of statements which require those privileges.

Examples:

SQL Reference

Assume SMITH is the userid and the authorization ID that the database manager
obtained when the connection was established with the application process. The
following statement is executed interactively:

GRANT SELECT ON TDEPT TO KEENE
SMITH is the authorization ID of the statement. Hence, in a dynamic SQL state-
ment the default value of the CURRENT SCHEMA special register and in static
SQL the default QUALIFIER precomiple/bind option is SMITH. Thus, the authority
to execute the statement is checked against SMITH and SMITH is the table-name
implicit qualifier based on qualification rules described in “Naming Conventions and
Implicit Object Name Qualifications” on page 48.

KEENE is an authorization-name specified in the statement. KEENE is given the
SELECT privilege on SMITH.TDEPT.

Assume SMITH has administrative authority and is the authorization 1D of the fol-
lowing dynamic SQL statements with no SET SCHEMA statement issued during
the session:

DROP TABLE TDEPT
Removes the SMITH.TDEPT table.
DROP TABLE SMITH.TDEPT
Removes the SMITH.TDEPT table.
DROP TABLE KEENE.TDEPT

Removes the KEENE.TDEPT table. Note that KEENE.TDEPT and SMITH.TDEPT are dif-
ferent tables.

Authorization IDs and authorization-names

CREATE SCHEMA PAYROLL AUTHORIZATION KEENE

KEENE is the authorization-name specified in the statement which creates a
schema called PAYROLL. KEENE is the owner of the schema PAYROLL and is
given CREATEIN, ALTERIN, and DROPIN privileges with the ability to grant them
to others.

Chapter 3. Language Elements

53

Data Types

Data Types

For information about specifying the data types of columns, see “CREATE TABLE” on
page 522.

The smallest unit of data that can be manipulated in SQL is called a value. How values
are interpreted depends on the data type of their source. The sources of values are:

Constants
Columns

Host variables
Functions
Expressions
Special registers.

DB2 supports a number of built-in datatypes, which are described in this section. It also
provides support for user-defined data types. See “User Defined Types” on page 64 for
a description of user-defined data types.

Figure 9 illustrates the supported built-in data types.

built-in data types

|
[| | | 1

binary character double-byte * datetime numeric datalink
string string character string | ‘
date timestamp time [‘]
binary decimal floating
[|] integer point
binary large fixed varying char fixed varying double-byte
g packed
object length length large length length character
object large object small large big real double

* Double-byte character is usually referred to as graphic character.

Figure 9. Supported Built-in Data Types

Nulls
All data types include the null value. The null value is a special value that is distinct
from all non-null values and thereby denotes the absence of a (non-null) value.
Although all data types include the null value, columns defined as NOT NULL cannot
contain null values.

54 sSQL Reference

Data Types

Large Objects (LOBS)
The term large object and the generic acronym LOB are used to refer to any BLOB,
CLOB, or DBCLOB data type. LOB values are subject to the restrictions that apply to
LONG VARCHAR values as specified in “Restrictions Using Varying-Length Character
Strings” on page 57. For LOB strings, these restrictions apply even when the length
attribute of the string is 254 bytes or less.

Character Large Object (CLOB) Strings

A Character Large OBject (CLOB) is a varying-length string measured in bytes that can
be up to 2 gigabytes (2147483647 bytes) long. A CLOB is used to store large SBCS
or mixed (SBCS and MBCS) character-based data such as documents written with a
single character set (and, therefore, has an SBCS or mixed code page associated with
it). Note that a CLOB is considered to be a character string.

Double-Byte Character Large Object (DBCLOB) Strings

A Double-Byte Character Large OBject (DBCLOB) is a varying-length string of double-
byte characters that can be up to 1 073 741 823 characters long. A DBCLOB is used to
store large DBCS character based data such as documents written with a single char-
acter set (and, therefore has a DBCS CCSID associated with it). Note that a DBCLOB
is considered to be a graphic string.

Binary Large Objects (BLOBS)

A Binary Large OBject (BLOB) is a varying-length string measured in bytes that can be
up to 2 gigabytes (2147483647 bytes) long. A BLOB is primarily intended to hold
non-traditional data such as pictures, voice, and mixed media. Another use is to hold
structured data for exploitation by user-defined types and user-defined functions. As
with FOR BIT DATA character strings, BLOB strings are not associated with a char-
acter set.

Manipulating Large Objects (LOBs) with Locators

Since LOB values can be very large, the transfer of these values from the database
server to client application program host variables can be time consuming. However, it
is also true that application programs typically process LOB values a piece at a time,
rather than as a whole. For those cases where an application does not need (or want)
the entire LOB value to be stored in application memory, the application can reference
a LOB value via a large object locator (LOB locator).

A large object locator or LOB locator is a host variable with a value that represents a
single LOB value in the database server. LOB locators were developed to provide users
with a mechanism by which they could easily manipulate very large objects in applica-
tion programs without requiring them to store the entire LOB value on the client
machine where the application program may be running.

For example, when selecting a LOB value, an application program could select the
entire LOB value and place it into an equally large host variable (which is acceptable if
the application program is going to process the entire LOB value at once), or it could
instead select the LOB value into a LOB locator. Then, using the LOB locator, the appli-

Chapter 3. Language Elements 55

Data Types

cation program can issue subsequent database operations on the LOB value (such as
applying the scalar functions SUBSTR, CONCAT, VALUE, LENGTH, doing an assign-
ment, searching the LOB with LIKE or POSSTR, or applying UDFs against the LOB) by
supplying the locator value as input. The resulting output of the locator operation, for
example the amount of data assigned to a client host variable, would then typically be a
small subset of the input LOB value.

LOB locators may also represent more than just base values; they can also represent
the value associated with a LOB expression. For example, a LOB locator might repre-
sent the value associated with:

SUBSTR(<lob 1> CONCAT <lob 2> CONCAT <lob 3>, <start>, <length>)

For normal host variables in an application program, when a null value is selected into
that host variable, the indicator variable is set to -1, signifying that the value is null. In
the case of LOB locators, however, the meaning of indicator variables is slightly dif-
ferent. Since a locator host variable itself can never be null, a negative indicator vari-
able value indicates that the LOB value represented by the LOB locator is null. The null
information is kept local to the client by virtue of the indicator variable value — the
server does not track null values with valid locators.

It is important to understand that a LOB locator represents a value, not a row or
location in the database. Once a value is selected into a locator, there is no operation
that one can perform on the original row or table that will affect the value which is refer-
enced by the locator. The value associated with a locator is valid until the transaction
ends, or until the locator is explicitly freed, whichever comes first. Locators do not force
extra copies of the data in order to provide this function. Instead, the locator mech-
anism stores a description of the base LOB value. The materialization of the LOB value
(or expression, as shown above) is deferred until it is actually assigned to some
location — either into a user buffer in the form of a host variable or into another
record's field value in the database.

A LOB locator is only a mechanism used to refer to a LOB value during a transaction; it
does not persist beyond the transaction in which it was created. Also, it is not a data-
base type; it is never stored in the database and, as a result, cannot participate in
views or check constraints. However, since a locator is a client representation of a LOB
type, there are SQLTYPESs for LOB locators so that they can be described within an
SQLDA structure that is used by FETCH, OPEN and EXECUTE statements.

Character Strings
A character string is a sequence of bytes. The length of the string is the number of
bytes in the sequence. If the length is zero, the value is called the empty string. This
value should not be confused with the null value.

Fixed-Length Character Strings

All values of a fixed-length string column have the same length, which is determined by
the length attribute of the column. The length attribute must be between 1 and 254,
inclusive.

56 SQL Reference

Data Types

Varying-Length Character Strings
Varying-length character strings are of three types: VARCHAR, LONG VARCHAR, and
CLOB.

¢ VARCHAR types are varying-length strings of up to 4000 bytes.
¢ LONG VARCHAR types are varying-length strings of up to 32,700 bytes.
e CLOB types are varying-length strings of up to 2 gigabytes.

Restrictions Using Varying-Length Character Strings: Special restrictions apply to
an expression resulting in a varying-length string data type whose maximum length is
greater than 254 bytes; such expressions are not permitted in:

e A SELECT DISTINCT statement's SELECT list

¢ A GROUP BY clause

¢ An ORDER BY clause

¢ A column function with DISTINCT

¢ A subselect of a set operator other than UNION ALL.

In addition to the restrictions listed above, expressions resulting in LONG VARCHAR or
CLOB data types are not permitted in:

¢ A Basic, Quantified, BETWEEN, or IN predicate

e A column function

* VARGRAPHIC, TRANSLATE, and datetime scalar functions

¢ The pattern operand in a LIKE predicate or the search string operand in a
POSSTR function

¢ The string representation of a datetime value

NUL-Terminated Character Strings

NUL-terminated character strings found in C are handled differently, depending on the
standards level of the precompile option. See the C language specific section in the
Application Programming Guide for more information on the treatment of
NUL-terminated character strings.

This data type cannot be created in a table. It can only be used to insert data into and
retrieve data from the database.

Character Subtypes
Each character string is further defined as one of:

Bit data Data that is not associated with a coded character set.
SBCS data Data in which every character is represented by a single byte.
Mixed data Data that may contain a mixture of characters from a single-byte

character set (SBCS) and a multi-byte character set (MBCS).

SBCS and MBCS Considerations: ~ SBCS data is supported only in a SBCS data-
base. Mixed data is only supported in an MBCS database.

Chapter 3. Language Elements 57

Data Types

Graphic Strings
A graphic string is a sequence of bytes which represents double-byte character data.
The length of the string is the number of double-byte characters in the sequence. If the
length is zero, the value is called the empty string. This value should not be confused
with the null value.

Graphic strings are not validated to ensure that their values contain only double-byte
character code points.13 Rather, the database manager assumes that double-byte char-
acter data is contained within graphic data fields. The database manager checks that a
graphic string value is an even number of bytes in length.

A graphic string data type may be fixed length or varying length; the semantics of fixed
length and varying length are analogous to those defined for character string data

types.

Fixed-Length Graphic Strings

All values of a fixed-length graphic string column have the same length, which is deter-
mined by the length attribute of the column. The length attribute must be between 1
and 127, inclusive.

Varying-Length Graphic Strings
Varying-length graphic strings are of three types: VARGRAPHIC, LONG VARGRAPHIC,
and DBCLOB.

¢ VARGRAPHIC types are varying-length strings of up to 2000 double-byte charac-
ters.

¢ LONG VARGRAPHIC types are varying-length strings of up to 16,350 double-byte
characters.

e DBCLOB types are varying-length strings of up to 1 073 741 823 double-byte char-
acters.

Special restrictions apply to an expression resulting in a varying-length graphic string
data type whose maximum length is greater than 127. Those restrictions are the same
as specified in “Restrictions Using Varying-Length Character Strings” on page 57.

NUL-Terminated Graphic Strings

NUL-terminated graphic strings found in C are handled differently, depending on the
standards level of the precompile option. See the C language specific section in the
Application Programming Guide for more information on the treatment of
NUL-terminated graphic strings.

This data type cannot be created in a table. It can only be used to insert data into and
retrieve data from the database.

13 The exception to this rule is an application precompiled with the WCHARTYPE CONVERT option. In this case, validation does occur.
See “Programming in C and C++" in the Application Programming Guide for details.

58 sSQL Reference

Binary String

Numbers

Data Types

A binary string is a sequence of bytes. Unlike a character string which usually contains
text data, a binary string is used to hold non-traditional data such as pictures. Note that
character strings of the 'bit data' subtype may be used for similar purposes, but the two
data types are not compatible. The BLOB scalar function can be used to cast a char-
acter for bit string to a binary string. The length of a binary string is the number of
bytes. It is not associated with a coded character set. Binary strings have the same
restrictions as character strings (see “Restrictions Using Varying-Length Character
Strings” on page 57 for details).

All numbers have a sign and a precision. The precision is the number of bits or digits
excluding the sign. The sign is considered positive if the value of a number is zero.

Small Integer (SMALLINT)
A small integer is a two byte integer with a precision of 5 digits. The range of small
integers is -32768 to 32767.

Large Integer (INTEGER)
A large integer is a four byte integer with a precision of 10 digits. The range of large
integers is -2147483648 to +2147483647.

Big Integer (BIGINT)
A big integer is an eight byte integer with a precision of 19 digits. The range of big
integers is -9223372036854775808 to +9223372036854775807.

Single-Precision Floating-Point (REAL)

A single-precision floating-point number is a 32 bit approximation of a real number. The
number can be zero or can range from -3.402E+38 to -1.175E-37, or from 1.175E-37 to
3.402E+38.

Double-Precision Floating-Point (DOUBLE or FLOAT)

A double-precision floating-point number is a 64 bit approximation of a real number.
The number can be zero or can range from -1.79769E+308 to -2.225E-307, or from
2.225E-307 to 1.79769E+308.

Decimal (DECIMAL or NUMERIC)

A decimal value is a packed decimal number with an implicit decimal point. The position
of the decimal point is determined by the precision and the scale of the number. The
scale, which is the number of digits in the fractional part of the number, cannot be neg-
ative or greater than the precision. The maximum precision is 31 digits. For information
on packed decimal representation, see “Packed Decimal Numbers” on page 770.

All values of a decimal column have the same precision and scale. The range of a
decimal variable or the numbers in a decimal column is —n to +n, where the absolute
value of n is the largest number that can be represented with the applicable precision
and scale. The maximum range is -10**31+1 to 10**31-1.

Chapter 3. Language Elements 59

Data Types

Datetime Values
The datetime data types are described below. Although datetime values can be used in
certain arithmetic and string operations and are compatible with certain strings, they are
neither strings nor numbers.

Date

A date is a three-part value (year, month, and day). The range of the year part is 0001
to 9999. The range of the month part is 1 to 12. The range of the day part is 1 to x,
where x depends on the month.

The internal representation of a date is a string of 4 bytes. Each byte consists of 2
packed decimal digits. The first 2 bytes represent the year, the third byte the month,
and the last byte the day.

The length of a DATE column, as described in the SQLDA, is 10 bytes, which is the
appropriate length for a character string representation of the value.

Time

A time is a three-part value (hour, minute, and second) designating a time of day under
a 24-hour clock. The range of the hour part is 0 to 24; while the range of the other
parts is 0 to 59. If the hour is 24, the minute and second specifications will be zero.

The internal representation of a time is a string of 3 bytes. Each byte is 2 packed
decimal digits. The first byte represents the hour, the second byte the minute, and the
last byte the second.

The length of a TIME column, as described in the SQLDA, is 8 bytes, which is the
appropriate length for a character string representation of the value.

Timestamp

A timestamp is a seven-part value (year, month, day, hour, minute, second, and micro-
second) that designates a date and time as defined above, except that the time
includes a fractional specification of microseconds.

The internal representation of a timestamp is a string of 10 bytes, each of which con-
sists of 2 packed decimal digits. The first 4 bytes represent the date, the next 3 bytes
the time, and the last 3 bytes the microseconds.

The length of a TIMESTAMP column, as described in the SQLDA, is 26 bytes, which is
the appropriate length for the character string representation of the value.

String Representations of Datetime Values

Values whose data types are DATE, TIME, or TIMESTAMP are represented in an
internal form that is transparent to the SQL user. Dates, times, and timestamps can,
however, also be represented by character strings, and these representations directly
concern the SQL user since there are no constants or variables whose data types are
DATE, TIME, or TIMESTAMP. Thus, to be retrieved, a datetime value must be
assigned to a character string variable. Note that the CHAR function can be used to

60 SQL Reference

Data Types

change a datetime value to a string representation. The character string representation
is normally the default format of datetime values associated with the country code of
the database, unless overridden by specification of the DATETIME option when the
program is precompiled or bound to the database.

No matter what its length, a large object string or LONG VARCHAR cannot be used as
the string that represents a datetime value; otherwise an error is raised (SQLSTATE
42884).

When a valid string representation of a datetime value is used in an operation with an
internal datetime value, the string representation is converted to the internal form of the
date, time, or timestamp before the operation is performed. The following sections
define the valid string representations of datetime values.

Date Strings

A string representation of a date is a character string that starts with a digit and has a
length of at least 8 characters. Trailing blanks may be included; leading zeros may be
omitted from the month and day portions.

Valid string formats for dates are listed in Table 1. Each format is identified by name
and includes an associated abbreviation and an example of its use.

Table 1. Formats for String Representations of Dates

Format Name Abbreviation Date Format Example
International Standards Organiza- ISO yyyy-mm-dd 1991-10-27
tion

IBM USA standard USA mm/dd/yyyy 10/27/1991
IBM European standard EUR dd.mm.yyyy 27.10.1991
Japanese Industrial Standard JIS yyyy-mm-dd 1991-10-27
Christian era

Site-defined (see DataLinker Quick LOC Depends on —
Beginnings) database

country code

Time Strings

A string representation of a time is a character string that starts with a digit and has a
length of at least 4 characters. Trailing blanks may be included; a leading zero may be
omitted from the hour part of the time and seconds may be omitted entirely. If seconds
are omitted, an implicit specification of 0 seconds is assumed. Thus, 13.30 is equivalent
to 13.30.00.

Valid string formats for times are listed in Table 2 on page 62. Each format is identified
by name and includes an associated abbreviation and an example of its use.

Chapter 3. Language Elements 61

Data Types

Table 2. Formats for String Representations of Times

Format Name Abbreviation Time Format Example
International Standards Organiza- ISO hh.mm.ss 13.30.05
tion2
IBM USA standard USA hh:mm AM or 1:30 PM
PM
IBM European standard EUR hh.mm.ss 13.30.05
Japanese Industrial Standard JIS hh:mm:ss 13:30:05
Christian Era
Site-defined (see DataLinker Quick LOC Depends on —
Beginnings) database
country code

Notes:
1. In I1SO, EUR and JIS format, .ss (or :ss) is optional.

2. The International Standards Organization recently changed the time format so that
it is identical with the Japanese Industrial Standard Christian Era. Therefore, use
JIS format if an application requires the current International Standards Organiza-
tion format.

3. In the case of the USA time string format, the minutes specification may be
omitted, indicating an implicit specification of 00 minutes. Thus 1 PM is equivalent
to 1:00 PM.

4. In the USA time format, the hour must not be greater than 12 and cannot be 0
except for the special case of 00:00 AM. There is a single space before the AM
and PM. Using the ISO format of the 24-hour clock, the correspondence between
the USA format and the 24-hour clock is as follows:

12:01 AM through 12:59 AM corresponds to 00.01.00 through 00.59.00.

01:00 AM through 11:59 AM corresponds to 01.00.00 through 11.59.00.

12:00 PM (noon) through 11:59 PM corresponds to 12.00.00 through 23.59.00.
12:00 AM (midnight) corresponds to 24.00.00 and 00:00 AM (midnight) corre-
sponds to 00.00.00.

Timestamp Strings

A string representation of a timestamp is a character string that starts with a digit and
has a length of at least 16 characters. The complete string representation of a
timestamp has the form yyyy-mm-dd-hh.mm.ss.nnnnnn. Trailing blanks may be
included. Leading zeros may be omitted from the month, day, and hour part of the
timestamp, and microseconds may be truncated or entirely omitted. If any trailing zero
digits are omitted in the microseconds portion, an implicit specification of 0 is assumed
for the missing digits. Thus, 1991-3-2-8.30.00 is equivalent to
1991-03-02-08.30.00.000000.

SQL statements also support the ODBC string representation of a timestamp as an
input value only. The ODBC string representation of a timestamp has the form yyyy-

62 SQL Reference

Data Types

mm-dd hh:mm:ss.nnnnnn. See the CLI Guide and Reference for more information on
ODBC.

MBCS Considerations
Date, time and timestamp strings must contain only single-byte characters and digits.

| DATALINK Values

| A DATALINK value is an encapsulated value that contains a logical reference from the

| database to a file stored outside the database. The attributes of this encapsulated value
| are as follows:

| link type
| The currently supported type of link is a URL (Uniform Resource Locator).

scheme
For URLSs this is a value such as HTTP or FILE. The value, no matter what case it
is entered in, is stored in the database in upper case. If a value is not specified,
FILE is included in the DATALINK value.

file server name
The complete address of the file server. The value, no matter what case it is
entered in, is stored in the database in upper case. If a value is not specified, the
file server name of the database server is selected as default and included in the
DATALINK value.

| file path
| The identity of the file within the server. The value is case sensitive and therefore it
| is not converted to upper case when stored in the database.

access control token
When appropriate, the access token is embedded within the file path. It is gener-
ated dynamically and is not a permanent part of the DATALINK value that is stored
in the database.

| comment
| Up to 254 bytes of descriptive information. This is intended for application specific
| uses such as further or alternative identification of the location of the data.

The characters used in a DATALINK value are limited to the set defined for a URL.
These characters include the uppercase (A through Z) and lower case (a through z)
letters, the digits (0 through 9) and a subset of special characters ($, -, _, @, ., &, +, |,
N G) = 1, #, ?,:, space, and comma).

The first four attributes are collectively known as the linkage attributes. It is possible for
a DATALINK value to have only a comment attribute and no linkage attributes. Such a
value may even be stored in a column but, of course, no file will be linked to such a
column.

| It should be noted that DATALINKs cannot be exchanged with a DRDA server.

Chapter 3. Language Elements 63

Data Types

It is important to distinguish between these DATALINK references to files and the LOB
file reference variables described in the section entitled "References to BLOB, CLOB,
and DBCLOB File Reference Variables". The similarity is that they both contain a repre-
sentation of a file. However:

e DATALINKS are retained in the database and both the links and the data in the
linked files can be considered as a natural extension of data in the database.

* File reference variables exist temporarily on the client and they can be considered
as an alternative to a host program buffer.

Built-in scalar functions are provided to build a DATALINK value (DLVALUE) and to
extract the encapsulated values from a DATALINK value (DLCOMMENT, DLLINKTYPE,
DLURLCOMPLETE, DLURLPATH, DLURLPATHONLY, DLURLSCHEME,
DLURLSERVER).

User Defined Types

Distinct Types

A distinct type is a user-defined data type that shares its internal representation with an
existing type (its “source” type), but is considered to be a separate and incompatible
type for most operations. For example, one might want to define a picture type, a text
type, and an audio type, all of which have quite different semantics, but which use the
built-in data type BLOB for their internal representation.

The following example illustrates the creation of a distinct type named AUDIO:
CREATE DISTINCT TYPE AUDIO AS BLOB (1M)

Although AUDIO has the same representation as the built-in data type BLOB, it is con-
sidered to be a separate type that is not comparable to a BLOB or to any other type.
This allows the creation of functions written specifically for AUDIO and assures that
these functions will not be applied to any other type (pictures, text, etc.).

Distinct types are identified by qualified identifiers. If the schema name is not used to
qualify the distinct type name when used in other than the CREATE DISTINCT TYPE,
DROP DISTINCT TYPE, or COMMENT ON DISTINCT TYPE statements, the SQL path
is searched in sequence for the first schema with a distinct type that matches. The SQL
path is described in “CURRENT PATH” on page 94.

Distinct types support strong typing by ensuring that only those functions and operators
explicitly defined on a distinct type can be applied to its instances. For this reason, a
distinct type does not automatically acquire the functions and operators of its source
type, since these may not be meaningful. (For example, the LENGTH function of the
AUDIO type might return the length of its object in seconds rather than in bytes.)

Distinct types sourced on LONG VARCHAR, LONG VARGRAPHIC, LOB types, or
DATALINK are subject to the same restrictions as their source type.

However, certain functions and operators of the source type can be explicitly specified
to apply to the distinct type by defining user-defined functions that are sourced on func-

64 SQL Reference

Data Types

tions defined on the source type of the distinct type (see “User-defined Type
Comparisons” on page 81 for examples). The comparison operators are automatically
generated for user-defined distinct types, except those using LONG VARCHAR, LONG
VARGRAPHIC, BLOB, CLOB, DBCLOB, or DATALINK as the source type. In addition,
functions are generated to support casting from the source type to the distinct type and
from the distinct type to the source type.

Structured Types

A structured type is a user-defined data type that has a structure that is defined in the
database. It contains a sequence of named attributes, each of which has a data type. A
structured type may be defined as a subtype of another structured type, called its
supertype. A subtype inherits all the attributes of its supertype and may have additional
attributes defined. The set of structured types that are related to a common supertype
is called a type hierarchy and the supertype that does not have any supertype is called
the root type of the type hierarchy.

A structured type may be used as the type of a table or a view. The names and data
types of the attributes of the structured type become the names and data types of the
columns of this typed table or typed view. Rows of the typed table or typed view can
be thought of as a representation of instances of the structured type.

A structured type cannot be used as the data type of a column of a table or a view.
There is also no support for retrieving a structured type into a host variable in an appli-
cation program.

Reference (REF) Types

A reference type is a companion type to a structured type. Similar to a distinct type, a
reference type is a scalar type that shares a common representation with one of the
built-in data types. This same representation is shared for all types in the type hier-
archy. The reference type representation is defined when the root type of a type hier-
archy is created. When using a reference type, a structured type is specified as a
parameter of the type. This parameter is called the target type of the reference.

The target of a reference is always a row in a typed table or view. When a reference
type is used, it may have a scope defined. The scope identifies a table (called the
target table) or view (called the target view) that contains the target row of a reference
value. The target table or view must have the same type as the target type of the refer-
ence type. An instance of a scoped reference type uniquely identifies a row in a typed
table or typed view, called the target row.

Chapter 3. Language Elements 65

Promotion of Data Types

Promotion of Data Types

Data types can be classified into groups of related data types. Within such groups, a
precedence order exists where one data type is considered to precede another data
type. This precedence is used to allow the promotion of one data type to a data type
later in the precedence ordering. For example, the data type CHAR can be promoted to
VARCHAR; INTEGER can be promoted to DOUBLE PRECISION; but CLOB is NOT
promotable to VARCHAR.

Promotion of data types is used when:

e performing function resolution (see “Function Resolution” on page 112)

e casting user-defined types (see “Casting Between Data Types” on page 67)

¢ assigning user-defined types to built-in data types (see “User-defined Type
Assignments” on page 77).

Table 3 shows the precedence list (in order) for each data type and can be used to
determine the data types to which a given data type can be promoted. The table shows
that the best choice is always the same data type instead of choosing to promote to

another data type.

Table 3 (Page 1 of 2). Data Type Precedence Table

Data Type Data Type Precedence List (in best-to-worst order)
CHAR CHAR, VARCHAR, LONG VARCHAR, CLOB
VARCHAR VARCHAR, LONG VARCHAR, CLOB

LONG LONG VARCHAR, CLOB

VARCHAR

GRAPHIC GRAPHIC, VARGRAPHIC, LONG VARGRAPHIC, DBCLOB
VARGRAPHIC VARGRAPHIC, LONG VARGRAPHIC, DBCLOB
LONG LONG VARGRAPHIC, DBCLOB

VARGRAPHIC

BLOB BLOB

CLOB CLOB

DBCLOB DBCLOB

SMALLINT SMALLINT, INTEGER, BIGINT, decimal, real, double
INTEGER INTEGER, BIGINT, decimal, real, double

BIGINT BIGINT, decimal, real, double

decimal decimal, real, double

real real, double

double double

DATE DATE

TIME TIME

66 SQL Reference

Casting Between Data Types

Table 3 (Page 2 of 2). Data Type Precedence Table

Data Type Data Type Precedence List (in best-to-worst order)
TIMESTAMP TIMESTAMP

DATALINK DATALINK

udt udt (same name)

REF(T) REF(S) (provided that S is a supertype of T)
Note:

The lower case types above are defined as follows:

decimal = DECIMAL(p,s) or NUMERIC(p,s)

real = REAL or FLOAT(n) where n is not greater than 24

double = DOUBLE, DOUBLE PRECISION, FLOAT or FLOAT(n) where n is greater than 24
udt = a user-defined type

Shorter and longer form synonyms of the data types listed are considered to be the same as the
synonym listed.

Casting Between Data Types

There are many occasions where a value with a given data type needs to be castto a
different data type or to the same data type with a different length, precision or scale.
Data type promotion (as defined in “Promotion of Data Types” on page 66) is one
example where the promotion of one data type to another data type requires that the
value is cast to the new data type. A data type that can be cast to another data type is
castable from the source data type to the target data type.

Casting between data types can be done explicitly using the CAST specification (see
“CAST Specifications” on page 131) but may also occur implicitly during assignments
involving a user-defined types (see “User-defined Type Assignments” on page 77).
Also, when creating sourced user-defined functions (see “CREATE FUNCTION” on
page 467), the data types of the parameters of the source function must be castable to
the data types of the function that is being created.

The supported casts between built-in data types are shown in Table 4 on page 69.

The following casts involving distinct types are supported:
e cast from distinct type DT to its source data type S
e cast from the source data type S of distinct type DT to distinct type DT
e cast from distinct type DT to the same distinct type DT

e cast from a data type A to distinct type DT where A is promotable to the source
data type S of distinct type DT (see “Promotion of Data Types” on page 66)

e cast from an INTEGER to distinct type DT with a source data type SMALLINT
e cast from a DOUBLE to distinct type DT with a source data type REAL

Chapter 3. Language Elements 67

Casting Between Data Types

e cast from a VARCHAR to distinct type DT with a source data type CHAR

e cast from a VARGRAPHIC to distinct type DT with a source data type GRAPHIC.
When a user-defined data type involved in a cast is not qualified by a schema name,
the SQL path is used to find the first schema that includes the user-defined data type
by that name. The SQL path is described further in “CURRENT PATH" on page 94.
The following casts involving reference types are supported:

e cast from reference type RT to its representation data type S

e cast from the representation data type S of reference type RT to reference type RT

e cast from reference type RT with target type T to a reference type RS with target
type S where S is a supertype of T.

e cast from a data type A to reference type RT where A is promotable to the repre-
sentation data type S of reference type RT (see “Promotion of Data Types” on
page 66).

When the target type of a reference data type involved in a cast is not qualified by a
schema name, the SQL path is used to find the first schema that includes the user-
defined data type by that name. The SQL path is described further in “CURRENT
PATH” on page 94.

68 SQL Reference

Casting Between Data Types

Table 4. Supported Casts between Built-in Data Types

Target Data Type —

Source Data Type |

D>TOP>L

ID>ITOII>PP<OZO0r

WO O

OTIT>»00

OTITT>IOI>L
OI>»<OZOor
WO Owo

m-—= >0

mz — -

T4 0omZz — A

mOoOrw

SMALLINT

INTEGER

BIGINT

<|<|<|<|m>T0O

DECIMAL

REAL

<|<|<|<|<|<|r>»m=z
<|<|<|<|<|<|mrmcoo

DOUBLE

CHAR

<|<|<|<|<|<|<|<|Az—-"F>=z0n
<|<|=<|=<|<|<|<|<|mmom—a=z—
<|<|<|<|<|<|<|<|9z—"0~w
<|=<|=<|<|<|<|<|<|FPz—0moO

VARCHAR

<|=<
<|=<
<|=<
<|=<

LONG VARCHAR

CLOB

<|=<|=<|=<

<|=<|=<]|=<

<|=<|=<|=<

GRAPHIC

VARGRAPHIC e e

LONG VARG - - - - - - -

DBCLOB

<|=<|=<|=<

<|=<|=<|=<
<|=<|=<|=<

<|=<|=<|=<|=<|=<]=<]|=<

DATE

<

TIME

<|=<|=<

TIMESTAMP e e

<<=

BLOB

Notes

¢ See the description preceding the table for information on supported casts involving user-defined types and refer-

ence types.
¢ Only a DATALINK type can be cast to a DATALINK type.

Chapter 3. Language Elements

69

Assignments and Comparisons

Assignments and Comparisons

The basic operations of SQL are assignment and comparison. Assignment operations
are performed during the execution of INSERT, UPDATE, FETCH, SELECT INTO,
VALUES INTO and SET transition-variable statements. Arguments of functions are also
assigned when invoking a function. Comparison operations are performed during the
execution of statements that include predicates and other language elements such as
MAX, MIN, DISTINCT, GROUP BY, and ORDER BY.

The basic rule for both operations is that the data type of the operands involved must

be compatible. The compatibility rule also applies to set operations (see “Rules for
Result Data Types” on page 82). The compatibility matrix is as follows.

70 SQL Reference

Assignments and Comparisons

Table 5. Data Type Compatibility for Assignments and Comparisons

Char-
Binary Decimal Floating acter Graphic Time- Binary
Operands Integer Number Point String String Date Time stamp String UDT
Binary Yes Yes Yes No No No No No No 2
Integer
Decimal Yes Yes Yes No No No No No No 2
Number
Floating Yes Yes Yes No No No No No No 2
Paint
Character No No No Yes No 1 1 1 No 2
String 3
Graphic No No No No Yes No No No No 2
String
Date No No No 1 No Yes No No No 2
Time No No No 1 No No Yes No No 2
Timestamp No No No 1 No No No Yes No 2
Binary No No No No 3 No No No No Yes 2
String
uDT 2 2 2 2 2 2 2 2 2 Yes
Note:
1 The compatibility of datetime values and character strings is limited to assignment and comparison:
¢ Datetime values can be assigned to character string columns and to character string variables as
explained in “Datetime Assignments” on page 75.

e A valid string representation of a date can be assigned to a date column or compared with a date.

¢ A valid string representation of a time can be assigned to a time column or compared with a time.

e A valid string representation of a timestamp can be assigned to a timestamp column or compared with a

timestamp.
2

A user-defined type (UDT) value is only comparable to a value defined with the same UDT. In general,
assignments are supported between a distinct type value and its source data type. For additional information
see “User-defined Type Assignments” on page 77.

Note that this means that character strings defined with the FOR BIT DATA attribute are also not compatible
with binary strings.

A DATALINK operand can only be assigned to another DATALINK operand. The DATALINK value can only
be assigned to a column if the column is defined with NO LINK CONTROL or the file exists and is not
already under file link control.

For information on assignment and comparison of reference types see “Reference Type Assignments” on
page 77 and “Reference Type Comparisons” on page 82.

A basic rule for assignment operations is that a null value cannot be assigned to a
column that cannot contain null values, nor to a host variable that does not have an
associated indicator variable. (See “References to Host Variables” on page 105 for a
discussion of indicator variables.)

Chapter 3. Language Elements 71

Assignments and Comparisons

Numeric Assignments
The basic rule for numeric assignments is that the whole part of a decimal or integer
number is never truncated. If the scale of the target number is less than the scale of
the assigned number the excess digits in the fractional part of a decimal number are
truncated.

Decimal or Integer to Floating-Point

Floating-point numbers are approximations of real numbers. Hence, when a decimal or
integer number is assigned to a floating-point column or variable, the result may not be
identical to the original number.

Floating-Point or Decimal to Integer
When a floating-point or decimal number is assigned to an integer column or variable,
the fractional part of the number is lost.

Decimal to Decimal

When a decimal number is assigned to a decimal column or variable, the number is
converted, if necessary, to the precision and the scale of the target. The necessary
number of leading zeros is appended or eliminated, and, in the fractional part of the
number, the necessary number of trailing zeros is appended, or the necessary humber
of trailing digits is eliminated.

Integer to Decimal

When an integer is assigned to a decimal column or variable, the number is converted
first to a temporary decimal number and then, if necessary, to the precision and scale
of the target. The precision and scale of the temporary decimal number is 5,0 for a
small integer, or 11,0 for a large integer, or 19,0 for a big integer.

Floating-Point to Decimal

When a floating-point number is converted to decimal, the number is first converted to a
temporary decimal number of precision 31, and then, if necessary, truncated to the pre-
cision and scale of the target. In this conversion, the number is rounded (using floating-
point arithmetic) to a precision of 31 decimal digits. As a result, a number less than
0.5*10-31 is reduced to 0. The scale is given the largest possible value that allows the
whole part of the number to be represented without loss of significance.

String Assignments
There are two types of assignments:

e storage assignment is when a value is assigned to a column or parameter of a
function
e retrieval assignment is when a value is assigned to a host variable.

The rules for string assignment differ based on the assignment type.

72 SQL Reference

Assignments and Comparisons

Storage Assignment

The basic rule is that the length of the string assigned to a column or function param-
eter must not be greater than the length attribute of the column or the function param-
eter. When the length of the string is greater than the length attribute of the column or
the function parameter, the following actions may occur:

¢ the string is assigned with trailing blanks truncated (from all string types except
long strings) to fit the length attribute of the target column or function parameter
e an error is returned (SQLSTATE 22001) when:
— non-blank characters would be truncated from other than a long string
— any character (or byte) would be truncated from a long string.

When a string is assigned to a fixed-length column and the length of the string is less
than the length attribute of the target, the string is padded to the right with the neces-
sary number of blanks. The pad character is always a blank even for columns defined
with the FOR BIT DATA attribute.

Retrieval Assignment

The length of a string assigned to a host variable may be longer than the length attri-
bute of the host variable. When a string is assigned to a host variable and the length of
the string is longer than the length attribute of the variable, the string is truncated on
the right by the necessary number of characters (or bytes). When this occurs, a
warning is returned (SQLSTATE 01004) and the value 'W' is assigned to the
SQLWARNL field of the SQLCA.

Furthermore, if an indicator variable is provided, and the source of the value is not a
LOB, the indicator variable is set to the original length of the string.

When a character string is assigned to a fixed-length variable and the length of the
string is less than the length attribute of the target, the string is padded to the right with
the necessary number of blanks. The pad character is always a blank even for strings
defined with the FOR BIT DATA attribute.

Retrieval assignment of C NUL-terminated host variables is handled based on options
specified with the PREP or BIND command. See the section on programming in C and
C++ in the Embedded SQL Programming Guide for details.

Conversion Rules for String Assignments

A character string or graphic string assigned to a column or host variable is first con-
verted, if necessary, to the coded character set of the target. Character conversion is
necessary only if all of the following are true:

¢ The code pages are different.
e The string is neither null nor empty.

14 When acting as a DRDA application server, input host variables are converted to the code page of the application server, even if
being assigned, compared or combined with a FOR BIT DATA column. If the SQLDA has been modified to identify the input host
variable as FOR BIT DATA, conversion is not performed.

Chapter 3. Language Elements 73

Assignments and Comparisons

¢ Neither string has a code page value of 0 (FOR BIT DATA). 14

MBCS Considerations for Character String Assignments

There are several considerations when assigning character strings that could contain
both single and multi-byte characters. These considerations apply to all character
strings, including those defined as FOR BIT DATA.

e Blank padding is always done using the single-byte blank character (X'20").

e Blank truncation is always done based on the single-byte blank character (X'20').
The double-byte blank character is treated as any other character with respect to
truncation.

e Assignment of a character string to a host variable may result in fragmentation of
MBCS characters if the target host variable is not large enough to contain the
entire source string. If an MBCS character is fragmented, each byte of the MBCS
character fragment in the target is set to a single-byte blank character (X'20'), no
further bytes are moved from the source, and SQLWARN1 is set to 'W' to indicate
truncation. Note that the same MBCS character fragment handling applies even
when the character string is defined as FOR BIT DATA.

DBCS Considerations for Graphic String Assignments

Graphic string assignments are processed in a manner analogous to that for character
strings. Graphic string data types are compatible only with other graphic string data
types, and never with numeric, character string, or datetime data types.

If a graphic string value is assigned to a graphic string column, the length of the value
must not be greater than the length of the column.

If a graphic string value (the 'source' string) is assigned to a fixed length graphic string
data type (the 'target', which can be a column or host variable), and the length of the
source string is less than that of the target, the target will contain a copy of the source
string which has been padded on the right with the necessary number of double-byte
blank characters to create a value whose length equals that of the target.

If a graphic string value is assigned to a graphic string host variable and the length of
the source string is greater than the length of the host variable, the host variable will
contain a copy of the source string which has been truncated on the right by the neces-
sary number of double-byte characters to create a value whose length equals that of
the host variable. (Note that for this scenario, truncation need not be concerned with
bisection of a double-byte character; if bisection were to occur, either the source value
or target host variable would be an ill-defined graphic string data type.) The warning
flag SQLWARNL in the SQLCA will be set to 'W'. The indicator variable, if specified, will
contain the original length (in double-byte characters) of the source string. In the case
of DBCLOB, however, the indicator variable does not contain the original length.

Retrieval assignment of C NUL-terminated host variables (declared using wchar_t) is

handled based on options specified with the PREP or BIND command. See the section
on programming in C and C++ in the Embedded SQL Programming Guide for details.

74 SQL Reference

Assignments and Comparisons

Datetime Assignments

The basic rule for datetime assignments is that a DATE, TIME, or TIMESTAMP value
may only be assigned to a column with a matching data type (whether DATE, TIME, or
TIMESTAMP) or to a fixed- or varying-length character string variable or string column.
The assignment must not be to a LONG VARCHAR, BLOB, or CLOB variable or
column.

When a datetime value is assigned to a character string variable or string column, con-
version to a string representation is automatic. Leading zeros are not omitted from any
part of the date, time, or timestamp. The required length of the target will vary,
depending on the format of the string representation. If the length of the target is
greater than required, and the target is a fixed-length string, it is padded on the right
with blanks. If the length of the target is less than required, the result depends on the
type of datetime value involved, and on the type of target.

When the target is a host variable, the following rules apply:

For a DATE: If the variable length is less than 10 bytes, an error occurs.
For a TIME: If the USA format is used, the length of the variable must not be less
than 8; in other formats the length must not be less than 5.

If 1ISO or JIS formats are used, and if the length of the host variable is less than 8,
the seconds part of the time is omitted from the result and assigned to the indicator
variable, if provided. The SQLWARNL field of the SQLCA is set to indicate the
omission.

For a TIMESTAMP: If the host variable is less than 19 bytes, an error occurs. If
the length is less than 26, but greater than or equal to 19 bytes, trailing digits of
the microseconds part of the value are omitted. The SQLWARNL1 field of the
SQLCA is set to indicate the omission.

For further information on string lengths for datetime values, see “Datetime Values” on
page 60.

DATALINK Assignments

The assignment of a value to a DATALINK column results in the establishment of a link
to a file unless the linkage attributes of the value are empty or the column is defined
with NO LINK CONTROL. In cases where a linked value already exists in the column,
that file is unlinked. Assigning a null value where a linked value already exists also
unlinks the file associated with the old value.

If the application provides the same data location as already exists in the column, the
link is retained. There are two reasons that this might be done:
e the comment is being changed

e if the table is placed in Datalink Reconcile Not Possible (DRNP) state, the links in
the table can be reinstated by providing linkage attributes identical to the ones in
the column.

A DATALINK value may be assigned to a column in any of the following ways:

Chapter 3. Language Elements 75

Assignments and Comparisons

e The DLVALUE scalar function can be used to create a new DATALINK value and
assign it to a column. Unless the value contains only a comment or the URL is
exactly the same, the act of assignment will link the file.

e A DATALINK value can be constructed in a CLI parameter using the CLI function
SQLBuildDataLink. This value can then be assigned to a column. Unless the value
contains only a comment or the URL is exactly the same, the act of assignment will
link the file.

When assigning a value to a DATALINK column, the following error conditions return
SQLSTATE 428D1:

e Data Location (URL) format is invalid (reason code 21).

* File server is not registered with this database (reason code 22).

e Invalid link type specified (reason code 23).

e Invalid length of comment or URL (reason code 27).

Note that the size of a URL parameter or function result is the same on both input
or output and is bound by the length of the DATALINK column. However, in some
cases the URL value returned has an access token attached. In situations where
this is possible, the output location must have sufficient storage space for the
access token and the length of the DATALINK column. Hence, the actual length of
the comment and URL in its fully expanded form, including any default URL
scheme or default hostname, provided on input should be restricted to accomodate
the output storage space. If the restricted length is exceeded, this error is raised.
When the assignment is also creating a link, the following errors can occur:
e File server not currently available (SQLSTATE 57050).
¢ File does not exist (SQLSTATE 428D1, reason code 24).
¢ Referenced file cannot be accessed for linking (reason code 26).
¢ File already linked to another column (SQLSTATE 428D1, reason code 25).
Note that this error will be raised even if the link is to a different database.
In addition, when the assignment removes an existing link, the following errors can
occur:
¢ File server not currently available (SQLSTATE 57050).
» File with referential integrity control is not in a correct state according to the DB2
DataLinks File Manager (SQLSTATE 58004).
A DATALINK value may be retrieved from the database in either of the following ways:

e Portions of a DATALINK value can be assigned to host variables by use of scalar
functions (such as DLLINKTYPE or DLURLPATH).

76 SQL Reference

Assignments and Comparisons

Note that usually no attempt is made to access the file server at retrieval time.15 It is
therefore possible that subsequent attempts to access the file server through file
system commands might fail.

When retrieving a DATALINK, the registry of file servers at the database server is
checked to confirm that the file server is still registered with the database server
(SQLSTATE 55022). In addition, a warning may be returned when retrieving a
DATALINK value because the table is in reconcile pending or reconcile not possible
state (SQLSTATE 01627).

User-defined Type Assignments
With user-defined types, different rules are applied for assignments to host variables
than are used for all other assignments.

Assignment to host variables is done based on the source type of the distinct type. That
is, it follows the rule:

A value of a distinct type on the right hand side of an assignment is assignable to
a host variable on the left hand side if and only if the source type of this distinct
type is assignable to this host variable.

If the target of the assignment is a column, the source data type must be castable to
the target data type as described in “Casting Between Data Types” on page 67 for
user-defined types.

Reference Type Assignments
A reference type with a target type of T can be assigned to a reference type column
that is also a reference type with target type of S where S is a supertype of T. If an
assignment is made to a scoped reference column or variable, no check is performed
to ensure that the actual value being assigned exists in the target table or view defined
by the scope.

Assignment to host variables is done based on the representation type of the reference
type. That is, it follows the rule:

A value of a reference type on the right hand side of an assignment is assignable
to a host variable on the left hand side if and only if the representation type of this
reference type is assignable to this host variable.

If the target of the assignment is a column, and the right hand side of the assignment is
a host variable, the host variable must be explicitly cast to the reference type of the
target column.

15 It may be necessary to access the file server to determine the prefix name associated with a path. This can be changed at the file
server when the mount point of a file system is moved. First access of a file on a server will cause the required values to be
retrieved from the file server and cached at the database server for the subsequent retrieval of DATALINK values for that file server.
An error is returned if the file server cannot be accessed (SQLSTATE 57050).

Chapter 3. Language Elements 77

Assignments and Comparisons

Numeric Comparisons
Numbers are compared algebraically; that is, with regard to sign. For example, -2 is
less than +1.

If one number is an integer and the other is decimal, the comparison is made with a
temporary copy of the integer, which has been converted to decimal.

When decimal numbers with different scales are compared, the comparison is made
with a temporary copy of one of the numbers that has been extended with trailing zeros
so that its fractional part has the same number of digits as the other number.

If one number is floating-point and the other is integer or decimal, the comparison is
made with a temporary copy of the other number, which has been converted to double-
precision floating-point.

Two floating-point numbers are equal only if the bit configurations of their normalized
forms are identical.

String Comparisons
Character strings are compared according to the collating sequence specified when the
database was created, except those with a FOR BIT DATA attribute which are always
compared according to their bit values.

When comparing character strings of unequal lengths, the comparison is made using a
logical copy of the shorter string which is padded on the right with single-byte blanks
sufficient to extend its length to that of the longer string. This logical extension is done
for all character strings including those tagged as FOR BIT DATA.

Character strings (except character strings tagged as FOR BIT DATA) are compared
according to the collating sequence specified when the database was created (see the
Administration Guide for more information on collating sequences specified at database
creation time). For example, the default collating sequence supplied by the database
manager may give lowercase and uppercase versions of the same character the same
weight. The database manager performs a two-pass comparison to ensure that only
identical strings are considered equal to each other. In the first pass, strings are com-
pared according to the database collating sequence. If the weights of the characters in
the strings are equal, a second "tie-breaker" pass is performed to compare the strings
on the basis of their actual code point values.

Two strings are equal if they are both empty or if all corresponding bytes are equal. If
either operand is null, the result is unknown.

Long strings and LOB strings are not supported in any comparison operations that use
the basic comparison operators (=, <>, <, >, <=, and >=). They are supported in com-
parisons using the LIKE predicate and the POSSTR function. See “LIKE Predicate” on
page 146 and see “POSSTR” on page 265 for details.

Portions of long strings and LOB strings of up to 4000 bytes can be compared using
the SUBSTR and VARCHAR scalar functions. For example, given the columns:

78 SQL Reference

Assignments and Comparisons

MY_SHORT CLOB CLOB(300)
MY_LONG_VAR LONG VARCHAR

then the following is valid:
WHERE VARCHAR(MY SHORT CLOB) > VARCHAR(SUBSTR(MY_ LONG_VAR,1,300))

Examples:

For these examples, 'A’, 'B', 'a’, and 'b’, have the code point values X'41', X'42",
X'61', and X'62' respectively.

Consider a collating sequence where the characters 'A', 'B', 'a’, 'b' have weights 75,
101, 74, and 100. Then:

'a' < lAI < 'bl < lB'
and
'aa' < 'aA' < 'ab' < 'aB' < 'Aa' < 'AA' < 'Ab' < 'AB'.
However, if the values being compared have the FOR BIT DATA attribute, the collating
sequence is ignored, and:
'A' < 'B' < 'a' < 'b'
and
'"AA' < 'AB' < 'Aa' < 'Ab' < 'aA' < 'aB' < 'aa' < 'ab'.
Now consider a collating sequence where the characters 'A’', 'B', 'a’, 'b' have (nhon-
unique) weights 74, 75, 74, and 75. Then:
'A' < 'a' < 'B' < 'b!
and

'AA' < 'Aa' < 'aA' < 'aa' < 'AB' < 'Ab' < 'aB' < 'ab'.

Conversion Rules for Comparison

When two strings are compared, one of the strings is first converted, if necessary, to
the coded character set of the other string. For details, see “Rules for String
Conversions” on page 85.

Ordering of Results

Results that require sorting are ordered based on the string comparison rules discussed
in “String Comparisons” on page 78. The comparison is performed at the database
server. On returning results to the client application, code page conversion may be per-
formed. This subsequent code page conversion does not affect the order of the server-
determined result set.

MBCS Considerations for String Comparisons

Mixed SBCS/MBCS character strings are compared according to the collating sequence
specified when the database was created. For databases created with default
(SYSTEM) collation sequence, all single-byte ASCII characters are sorted in correct

Chapter 3. Language Elements 79

Assignments and Comparisons

order, but double-byte characters are not necessarily in code point sequence. For
databases created with IDENTITY sequence, all double-byte characters are correctly
sorted in their code point order, but single-byte ASCII characters are sorted in their
code point order as well. For databases created with COMPATIBILITY sequence, a
compromise order is used that sorts properly for most double-byte characters, and is
almost correct for ASCII. This was the default collation table in DB2 Version 2.

Mixed character strings are compared byte-by-byte. This may result in unusual results
for multi-byte characters that occur in mixed strings, because each byte is considered
independently.

Example:

For this example, 'A’, 'B', 'a’, and 'b' double-byte characters have the code point values
X'8260', X'8261', X'8281', and X'8282', respectively.

Consider a collating sequence where the code points X'8260', X'8261', X'8281"', and
X'8282' have weights 96, 65, 193, and 194. Then:

IBI < IAI < Ial < lbl
and
'AB' < 'AA' < 'Aa' < 'Ab' < 'aB' < 'aA' < 'aa' < 'ab'

Graphic string comparisons are processed in a manner analogous to that for character
strings.

Graphic string comparisons are valid between all graphic string data types except
LONG VARGRAPHIC. LONG VARGRAPHIC and DBCLOB data types are not allowed
in a comparison operation.

For graphic strings, the collating sequence of the database is not used. Instead,
graphic strings are always compared based on the numeric (binary) values of their cor-
responding bytes.

Using the previous example, if the literals were graphic strings, then:
IAI < 1 BI < 1 a 1 < 1 b 1
and
"AA' < 'AB' < 'Aa' < 'Ab' < 'aA' < 'aB' < 'aa' < 'ab'
When comparing graphic strings of unequal lengths, the comparison is made using a

logical copy of the shorter string which is padded on the right with double-byte blank
characters sufficient to extend its length to that of the longer string.

Two graphic values are equal if they are both empty or if all corresponding graphics are

equal. If either operand is null, the result is unknown. If two values are not equal, their
relation is determined by a simple binary string comparison.

80 SQL Reference

Assignments and Comparisons

As indicated in this section, comparing strings on a byte by byte basis can produce
unusual results; that is, a result that differs from what would be expected in a character
by character comparison. The examples shown here assume the same MBCS code
page, however, the situation can be further complicated when using different multi-byte
code pages with the same national language. For example, consider the case of com-
paring a string from a Japanese DBCS code page and a Japanese EUC code page.

Datetime Comparisons

A DATE, TIME, or TIMESTAMP value may be compared either with another value of
the same data type or with a string representation of that data type. All comparisons
are chronological, which means the farther a point in time is from January 1, 0001, the
greater the value of that point in time.

Comparisons involving TIME values and string representations of time values always
include seconds. If the string representation omits seconds, zero seconds is implied.

Comparisons involving TIMESTAMP values are chronological without regard to repres-
entations that might be considered equivalent.

Example:
TIMESTAMP('1990-02-23-00.00.00') > '1990-02-22-24.00.00"

User-defined Type Comparisons
Values with a user-defined type can only be compared with values of exactly the same
user-defined type. The user-defined type must have been defined using the WITH
COMPARISONS clause.
Example:

Given the following YOUTH distinct type and CAMP_DB2_ROSTER table:
CREATE DISTINCT TYPE YOUTH AS INTEGER WITH COMPARISONS

CREATE TABLE CAMP_DB2_ROSTER

(NAME VARCHAR(20) ,
ATTENDEE_NUMBER INTEGER NOT NULL,
AGE YOUTH,

HIGH_SCHOOL_LEVEL YOUTH)

The following comparison is valid:
SELECT = FROM CAMP_DB2_ROSTER
WHERE AGE > HIGH_SCHOOL_LEVEL
The following comparison is not valid:

SELECT » FROM CAMP_DB2_ROSTER
WHERE AGE > ATTENDEE_NUMBER

Chapter 3. Language Elements 81

Rules for Result Data Types

However, AGE can be compared to ATTENDEE_NUMBER by using a function or
CAST specification to cast between the distinct type and the source type. The following
comparisons are all valid:

SELECT = FROM CAMP_DB2_ROSTER
WHERE INTEGER(AGE) > ATTENDEE_NUMBER

SELECT » FROM CAMP_DB2_ROSTER
WHERE CAST(AGE AS INTEGER) > ATTENDEE_NUMBER

SELECT » FROM CAMP_DB2_ROSTER
WHERE AGE > YOUTH(ATTENDEE_NUMBER)

SELECT » FROM CAMP_DB2_ROSTER
WHERE AGE > CAST(ATTENDEE_NUMBER AS YOUTH)

Reference Type Comparisons

Reference type values can be compared only if their target types have a common
supertype. The appropriate comparison function will only be found if the schema name
of the common supertype is included in the function path. The comparison is performed
using the representation type of the reference types. The scope of the reference is not
considered in the comparison.

Rules for Result Data Types

82

The data types of a result are determined by rules which are applied to the operands in
an operation. This section explains those rules.
These rules apply to:

e Corresponding columns in fullselects of set operations (UNION, INTERSECT and
EXCEPT)

¢ Result expressions of a CASE expression

e Arguments of the scalar function COALESCE (or VALUE)

e Expression values of the in list of an IN predicate

e Corresponding expressions of a multiple row VALUES clause.

These rules are applied subject to other restrictions on long strings for the various oper-
ations.

The rules involving various data types follow. In some cases, a table is used to show
the possible result data types.

These tables identify the data type of the result, including the applicable length or preci-
sion and scale. The result type is determined by considering the operands. If there is
more than one pair of operands, start by considering the first pair. This gives a result
type which is considered with the next operand to determine the next result type, and
so on. The last intermediate result type and the last operand determine the result type

SQL Reference

Rules for Result Data Types

for the operation. Processing of operations is done from left to right so that the inter-
mediate result types are important when operations are repeated. For example, con-
sider a situation involving:

CHAR(2) UNION CHAR(4) UNION VARCHAR(3)

The first pair results in a type of CHAR(4). The result values always have 4 characters.
The final result type is VARCHAR(4). Values in the result from the first UNION opera-
tion will always have a length of 4.

Character Strings

Character strings are compatible with other character strings. Character strings include
data types CHAR, VARCHAR, LONG VARCHAR, and CLOB.

If one operand is... And the other The data type of the result is...
operand is...
CHAR(X) CHAR(y) CHAR(z) where z = max(x,y)

The code page of the result character string will be derived based on the “Rules for
String Conversions” on page 85.

Graphic Strings

Graphic strings are compatible with other graphic strings. Graphic strings include data
types GRAPHIC, VARGRAPHIC, LONG VARGRAPHIC, and DBCLOB.

If one operand is... And the other The data type of the result is...
operand is...
GRAPHIC(x) GRAPHIC(y) GRAPHIC(z) where z = max(x,y)

The code page of the result graphic string will be derived based on the “Rules for String
Conversions” on page 85.

Binary Large Object (BLOB)

Numeric

A BLOB is compatible only with another BLOB and the result is a BLOB. The BLOB
scalar function should be used to cast from other types if they should be treated as
BLOB types (see “BLOB” on page 193). The length of the result BLOB is the largest
length of all the data types.

Numeric types are compatible with other numeric types. Numeric types include
SMALLINT, INTEGER, BIGINT, DECIMAL, REAL and DOUBLE.

Chapter 3. Language Elements 83

Rules for Result Data Types

If one operand is...

And the other

The data type of the result is...

operand is...
SMALLINT SMALLINT SMALLINT
INTEGER INTEGER INTEGER
INTEGER SMALLINT INTEGER
BIGINT BIGINT BIGINT
BIGINT INTEGER BIGINT
BIGINT SMALLINT BIGINT
DECIMAL(w,X) SMALLINT DECIMAL(p,X) where
p = x+max(w-x,5)1
DECIMAL(w,X) INTEGER DECIMAL(p,x) where
p = x+max(w-x,11)1
DECIMAL(w,x) BIGINT DECIMAL(p,x) where

p = x+max(w-x,19)1

DECIMAL(W,x)

DECIMAL(y,z)

DECIMAL(p,s) where
p = max(x,z)+max(w-x,y-z)1s = max(x,z)

REAL REAL REAL
REAL DECIMAL, BIGINT, DOUBLE
INTEGER, or
SMALLINT
DOUBLE any numeric DOUBLE
Note:

1. Precision cannot exceed 31.

DATE

A date is compatible with another date, or any CHAR or VARCHAR expression that
contains a valid string representation of a date. The data type of the result is DATE.

TIME

A time is compatible with another time, or any CHAR or VARCHAR expression that
contains a valid string representation of a time. The data type of the result is TIME.

TIMESTAMP

A timestamp is compatible with another timestamp, or any CHAR or VARCHAR
expression that contains a valid string representation of a timestamp. The data type of

the result is TIMESTAMP.

DATALINK

A datalink is compatible with another datalink. The data type of the result is DATALINK.
The length of the result DATALINK is the largest length of all the data types.

84 sSQL Reference

Rules for String Conversions

User-defined Types

Distinct Types
A user-defined distinct type is compatible only with the same user-defined distinct type.
The data type of the result is the user-defined distinct type.

Reference Types

A reference type is compatible with another reference type provided that their target
types have a common supertype. The data type of the result is a reference type having
the common supertype as the target type. If all operands have the identical scope table,
the result has that scope table. Otherwise the result is unscoped.

Nullable Attribute of Result

With the exception of INTERSECT and EXCEPT, the result allows nulls unless both
operands do not allow nulls.

e For INTERSECT, if either operand does not allow nulls the result does not allow
nulls (the intersection would never be null).

e For EXCEPT, if the first operand does not allow nulls the result does not allow
nulls (the result can only be values from the first operand).

Rules for String Conversions

The code page used to perform an operation is determined by rules which are applied
to the operands in that operation. This section explains those rules.
These rules apply to:

e Corresponding string columns in fullselects with set operations (UNION, INTER-
SECT and EXCEPT)

¢ Operands of concatenation

¢ Operands of predicates (with the exception of LIKE)

¢ Result expressions of a CASE expression

¢ Arguments of the scalar function COALESCE (and VALUE)

e Expression values of the in list of an IN predicate

e Corresponding expressions of a multiple row VALUES clause.
In each case, the code page of the result is determined at bind time, and the execution
of the operation may involve conversion of strings to the coded character set identified

by that code page. A character that has no valid conversion is mapped to the substi-
tution character for the character set and SQLWARN10 is set to 'W' in the SQLCA.

The code page of the result is determined by the code pages of the operands. The

code pages of the first two operands determine an intermediate result code page, this
code page and the code page of the next operand determine a new intermediate result

Chapter 3. Language Elements 85

Rules for String Conversions

code page (if applicable), and so on. The last intermediate result code page and the
code page of the last operand determine the code page of the result string or column.
For each pair of code pages, the result is determined by the sequential application of
the following rules:

e If the code pages are equal, the result is that code page.

e |If either code page is BIT DATA (code page 0), the result code page is BIT DATA.
14

e Otherwise, the result code page is determined by Table 6. An entry of 'first' in the
table means the code page from the first operand is selected and an entry of
'second’ means the code page from the second operand is selected.

Table 6. Selecting the Code Page of the Intermediate Result
Second Operand

Column Derived Special Host
First Operand Value Value Constant Register Variable
Column Value first first first first first
Derived Value second first first first first
Constant second second first first first
Special Register second second first first first
Host Variable second second second second first

An intermediate result is considered to be a derived value operand. An expression that
is not a single column value, constant, special register, or host variable is also consid-
ered a derived value operand. There is an exception to this if the expression is a CAST
specification (or a call to a function that is equivalent). In this case, the kind for the first
operand is based on the first argument of the CAST specification.

View columns are considered to have the operand type of the object on which they are
ultimately based. For example, a view column defined on a table column is considered
to be a column value, whereas a view column based on a string expression (for
example, A CONCAT B) is considered to be a derived value.

Conversions to the coded character set of the result are performed, if necessary, for:

¢ An operand of the concatenation operator

¢ The selected argument of the COALESCE (or VALUE) scalar function
e The selected result expression of the CASE expression

e The expressions of the in list of the IN predicate

e The corresponding expressions of a multiple row VALUES clause

e The corresponding columns involved in set operations.

Character conversion is necessary if all of the following are true:

e The code pages are different
¢ Neither string is BIT DATA
e The string is neither null nor empty

86 SQL Reference

The code page conversion selection table indicates that conversion is necessary.

Examples

Example 1: Given the following:

Expression Type Code Page
COL_1 column 850
HV_2 host variable 437

When evaluating the predicate:

COL_1 CONCAT :HV 2

The result code page of the two operands is 850, since the dominant operand is the

co

lumn COL_1.

Example 2: Using the information from the previous example, when evaluating the
predicate:

COALESCE(COL_1, :HV_2:NULLIND,)

The result code page is 850. Therefore the result code page for the COALESCE scalar
function will be the code page 850.

Partition Compatibility

Partition compatibility is defined between the base data types of corresponding columns

of

partitioning keys. Partition compatible data types have the property that two vari-

ables, one of each type, with the same value, are mapped to the same partitioning map
index by the same partitioning function.

Table 7 on page 88 shows the compatibility of data types in partitions.

Partition compatibility has the following characteristics:

Internal formats are used for DATE, TIME, and TIMESTAMP. They are not compat-
ible with each other, and none are compatible with CHAR.

Partition compatibility is not affected by columns with NOT NULL or FOR BIT
DATA definitions.

NULL values of compatible data types are treated identically. Different results might
be produced for NULL values of non-compatible data types.

Base datatype of the UDT is used to analyze partition compatibility.

Decimals of the same value in the partitioning key are treated identically, even if
their scale and precision differ.

Trailing blanks in character strings (CHAR, VARCHAR, GRAPHIC or
VARGRAPHIC) are ignored by the system-provided hashing function.

Chapter 3. Language Elements 87

Constants

CHAR or VARCHAR of different lengths are compatible data types.

REAL or DOUBLE values that are equal are treated identically even though their
precision differs.

Table 7. Partition Compatibilities

Char-

Binary Decimal Floating acter Graphic Time-
Operands Integer Number Paint String String Date Time stamp UDT
Binary Yes No No No No No No No 1
Integer
Decimal No Yes No No No No No No 1
Number
Floating No No Yes No No No No No 1
Point
Character No No No Yes2 No No No No 1
String3
Graphic No No No No Yes No No No 1
String3
Date No No No No No Yes No No 1
Time No No No No No No Yes No 1
Timestamp No No No No No No No Yes 1
uDT 1 1 1 1 1 1 1 1 1
Note:

1 A user-defined type (UDT) value is partition compatible with the source type of the UDT or any other UDT
with a partition compatible source type.

2 The FOR BIT DATA attribute does not affect the partition compatibility.

3 Note that data types LONG VARCHAR, LONG VARGRAPHIC, CLOB, DBCLOB, and BLOB are not appli-

cable for partition compatibility since they are not supported in partitioning keys.

Constants

A constant (sometimes called a literal) specifies a value. Constants are classified as
string constants or numeric constants. Numeric constants are further classified as
integer, floating-point, or decimal.

All constants have the attribute NOT NULL.

A negative zero value in a numeric constant (-0) is the same value as a zero without
the sign (0).

88 SQL Reference

Constants

Integer Constants
An integer constant specifies an integer as a signed or unsigned number with a
maximum of 19 digits that does not include a decimal point. The data type of an integer
constant is a large integer if its value is within the range of a large integer. The data
type of an integer constant is big integer if its value is outside the range of large integer
but within the range of a big integer. A constant that is defined outside the range of big
integer values is considered a decimal constant.

Note that the smallest literal representation of an integer constant is -2 147 483647 and
not -2 147 483648, which is the limit for integer values. Similarly, the smallest literal rep-
resentation of a big integer constant is -9,223,372,036,854,775,807 and not
-9,223,372,036,854,775,808 which is the limit for big integer values.

Examples
64 -15 +100 32767 720176 12345678901

In syntax diagrams the term 'integer' is used for an integer constant that must not
include a sign.

Floating-Point Constants
A floating-point constant specifies a floating-point number as two numbers separated by
an E. The first number may include a sign and a decimal point; the second number
may include a sign but not a decimal point. The data type of a floating-point constant is
double precision. The value of the constant is the product of the first number and the
power of 10 specified by the second number; it must be within the range of floating-
point numbers. The number of characters in the constant must not exceed 30.

Examples
15E1 2.E5 2.2E-1 +5.E+2

Decimal Constants
A decimal constant is a signed or unsigned number that consists of nho more than 31
digits and either includes a decimal point or is not within the range of binary integers. It
must be in the range of decimal numbers. The precision is the total number of digits
(including leading and trailing zeros); the scale is the number of digits to the right of the
decimal point (including trailing zeros).

Examples
25.5 1000. -15. +37589.3333333333

Character String Constants
A character string constant specifies a varying-length character string and consists of a
sequence of characters that starts and ends with an apostrophe ('). This form of string
constant specifies the character string contained between the string delimiters. The
length of the character string must not be greater than 4000 bytes. Two consecutive
string delimiters are used to represent one string delimiter within the character string.

Chapter 3. Language Elements 89

Constants

Examples

'12/14/1985"
I32I
'DON''T CHANGE'

Unequal Code Page Considerations

The constant value is always converted to the database code page when it is bound to
the database. It is considered to be in the database code page. Therefore, if used in
an expression that combines a constant with a FOR BIT DATA column, of which the
result is FOR BIT DATA, the constant value will not be converted from its database
code page representation when used.

Hexadecimal Constants

A hexadecimal constant specifies a varying-length character string with the code page
of the application server.

The format of a hexadecimal string constant is an X followed by a sequence of charac-
ters that starts and ends with an apostrophe (single quote). The characters between the
apostrophes must be an even number of hexadecimal digits. The number of
hexadecimal digits must not exceed 4000, otherwise an error is raised (SQLSTATE
-54002). A hexadecimal digit represents 4 bits. It is specified as a digit or any of the
letters A through F (uppercase or lowercase) where A represents the bit pattern '1010',
B the bit pattern '1011', etc. If a hexadecimal constant is improperly formatted (e.qg. it
contains an invalid hexadecimal digit or an odd number of hexadecimal digits), an error
is raised (SQLSTATE 42606).

Examples
X'FFFF!' representing the bit pattern '1111111111111111"'

X'4672616E6B' representing the VARCHAR pattern of the ASCII string 'Frank'

Graphic String Constants
A graphic string constant specifies a varying-length graphic string and consists of a
sequence of double-byte characters that starts and ends with a single-byte apostrophe
(") and is preceded by a single-byte G or N. This form of string constant specifies the
graphic string contained between the string delimiters. The length of the graphic string
must be an even number of bytes and must not be greater than 4000 bytes.

Examples
G'double-byte character string'
N'double-byte character string'

MBCS Considerations

The apostrophe must not appear as part of an MBCS character to be considered a
delimiter.

90 SQL Reference

Special Registers

Using Constants with User-defined Types: User-defined types have strong typing.
This means that a user-defined type is only compatible with its own type. A constant,
however, has a built-in type. Therefore, an operation involving a user-defined type and
a constant is only possible if the user-defined type has been cast to the constant's
built-in type or the constant has been cast to the user-defined type (see “CAST
Specifications” on page 131 for information on casting). For example, using the table
and distinct type in “User-defined Type Comparisons” on page 81, the following com-
parisons with the constant 14 are valid:

SELECT = FROM CAMP_DB2_ROSTER
WHERE AGE > CAST(14 AS YOUTH)

SELECT » FROM CAMP_DB2_ROSTER
WHERE CAST(AGE AS INTEGER) > 14
The following comparison is not valid:

SELECT » FROM CAMP_DB2_ROSTER
WHERE AGE > 14

Special Registers

A special register is a storage area that is defined for an application process by the
database manager and is used to store information that can be referenced in SQL
statements. Special registers are in the database code page.

CURRENT DATE
The CURRENT DATE special register specifies a date that is based on a reading of the
time-of-day clock when the SQL statement is executed at the application server. If this
special register is used more than once within a single SQL statement, or used with
CURRENT TIME or CURRENT TIMESTAMP within a single statement, all values are
based on a single clock reading.

Example
Using the PROJECT table, set the project end date (PRENDATE) of the MA2111
project (PROJNO) to the current date.

UPDATE PROJECT

SET PRENDATE = CURRENT DATE
WHERE PROJNO = 'MA2111'

CURRENT DEGREE
The CURRENT DEGREE special register specifies the degree of intra-partition
parallelism for the execution of dynamic SQL statements.1¢ The data type of the register
is CHAR(5). Valid values are 'ANY ' or the string representation of an integer between 1
and 32767, inclusive.

16 For static SQL, the DEGREE bind option provides the same control.

Chapter 3. Language Elements 91

Special Registers

If the value of CURRENT DEGREE represented as an integer is 1 when an SQL state-
ment is dynamically prepared, the execution of that statement will not use intra-partition
parallelism.

If the value of CURRENT DEGREE represented as an integer is greater than 1 and
less than or equal to 32767 when an SQL statement is dynamically prepared, the exe-
cution of that statement can involve intra-partition parallelism with the specified degree.

If the value of CURRENT DEGREE is 'ANY' when an SQL statement is dynamically
prepared, the execution of that statement can involve intra-partition parallelism using a
degree determined by the database manager.

The actual runtime degree of parallelism will be the lower of:

e Maximum query degree (max_querydegree) configuration parameter
e Application runtime degree
e SQL statement compilation degree

If the intra_parallel database manager configuration parameter is set to NO, the value
of the CURRENT DEGREE special register will be ignored for the purpose of optimiza-
tion, and the statement will not use intra-partition parallelism.

See the Administration Guide for a description of parallelism and a list of restrictions.

The value can be changed by executing the SET CURRENT DEGREE statement (see
“SET CURRENT DEGREE”" on page 716 for information on this statement).

The initial value of CURRENT DEGREE is determined by the dft_degree database con-
figuration parameter. See the Administration Guide for a description of this configuration
parameter.

CURRENT EXPLAIN MODE

The CURRENT EXPLAIN MODE special register holds a CHAR(8) value which controls
the behaviour of the Explain facility with respect to eligible dynamic SQL statements.
This facility generates and inserts Explain information into the Explain tables (for more
information see the Administration Guide). This information does not include the Explain
snapshot.

The possible values are YES, NO, and EXPLAIN.7

YES Enables the explain facility and causes explain information for a dynamic
SQL statement to be captured when the statement is compiled.

EXPLAIN Enables the facility like YES, however, the dynamic statements are not
executed.

NO Disables the Explain facility.

17 For static SQL, the EXPLAIN bind option provides the same control. In the case of the PREP and BIND commands, the EXPLAIN
option values are: YES, NO and ALL.

92

SQL Reference

Special Registers

The initial value is NO.

Its value can be changed by the SET CURRENT EXPLAIN MODE statement (see “SET
CURRENT EXPLAIN MODE” on page 718 for information on this statement).

The CURRENT EXPLAIN MODE and CURRENT EXPLAIN SNAPSHOT special reg-
ister values interact when the Explain facility is invoked (see Table 108 on page 957
for details). The CURRENT EXPLAIN MODE special register also interacts with the
EXPLAIN bind option (see Table 109 on page 958 for details).

Example: Set the host variable EXPL_MODE (char(8)) to the value currently in the
CURRENT EXPLAIN MODE special register.

VALUES CURRENT EXPLAIN MODE
INTO :EXPL_MODE

CURRENT EXPLAIN SNAPSHOT
The CURRENT EXPLAIN SNAPSHOT special register holds a CHAR(8) value which
controls the behavior of the Explain snapshot facility. This facility generates com-
pressed information including access plan information, operator costs, and bind-time
statistics (for more information see the Administration Guide).

Only the following statements consider the value of this register: DELETE, INSERT,
SELECT, SELECT INTO, UPDATE, VALUES or VALUES INTO.

The possible values are YES, NO, and EXPLAIN.18

YES Enables the snapshot facility and takes a snapshot of the internal represen-
tation of a dynamic SQL statement as the statement is compiled.

EXPLAIN Enables the facility like YES, however, the dynamic statements are not
executed.

NO Disables the Explain snapshot facility.

The initial value is NO.

Its value can be changed by the SET CURRENT EXPLAIN SNAPSHOT statement (see
“SET CURRENT EXPLAIN SNAPSHOT” on page 720).

The CURRENT EXPLAIN SNAPSHOT and CURRENT EXPLAIN MODE special reg-
ister values interact when the Explain facility is invoked (see Table 108 on page 957
for details). The CURRENT EXPLAIN SNAPSHOT special register also interacts with
the EXPLSNAP bind option (see Table 110 on page 959 for details).

Example
Set the host variable EXPL_SNAP (char(8)) to the value currently in the CURRENT
EXPLAIN SNAPSHOT special register.

18 For static SQL, the EXPLSNAP bind option provides the same control. In the case of the PREP and BIND commands, the
EXPLSNAP option values are: YES, NO and ALL.

Chapter 3. Language Elements 93

Special Registers

VALUES CURRENT EXPLAIN SNAPSHOT
INTO :EXPL_SNAP

CURRENT NODE

The CURRENT NODE special register specifies an INTEGER value that identifies the
coordinator node number (the partition to which an application connects).

CURRENT NODE returns 0 if the database instance is not defined to support parti-
tioning (no db2nodes.cfg file19).

The CURRENT NODE can be changed by the CONNECT statement, but only under
certain conditions (see “CONNECT (Type 1)” on page 432).

Example
Set the host variable APPL_NODE (integer) to the number of the partition to which the
application is connected.

VALUES CURRENT NODE
INTO :APPL_NODE

CURRENT PATH

The CURRENT PATH special register specifies a VARCHAR(254) value that identifies
the SQL path to be used to resolve function references and data type references that

| are used in dynamically prepared SQL statements.20 CURRENT PATH is also used to

| resolve stored procedure references in CALL statements. The initial value is the default
value specified below. For static SQL, the FUNCPATH bind option provides a SQL path
that is used for function and data type resolution (see the Command Reference for
more information on the FUNCPATH bind option).

The CURRENT PATH special register contains a list of one or more schema-names,
where the schema-names are enclosed in double quotes and separated by commas
(any quotes within the string are repeated as they are in any delimited identifier).

For example, a SQL path specifying that the database manager is to first look in the
FERMAT, then XGRAPHIC, then SYSIBM schemas is returned in the CURRENT PATH
special register as:

"FERMAT", "XGRAPHIC","SYSIBM"

The default value is "SYSIBM","SYSFUN",X where X is the value of the USER special
register delimited by double quotes.

Its value can be changed by the SET CURRENT FUNCTION PATH statement (see
“SET PATH” on page 731). The schema SYSIBM does not need to be specified. If it is

19 For partitioned databases , the db2nodes.cfg file exists and contains partition (or node) definitions. For details refer to the Adminis-
tration Guide.

| 20 CURRENT FUNCTION PATH is a synonym for CURRENT PATH.

94 sSQL Reference

Special Registers

not included in the SQL path, it is implicitly assumed as the first schema. SYSIBM does
not take any of the 254 characters if it is implicitly assumed.

The use of the SQL path for function resolution is described in “Functions” on

page 110. A data type that is not qualified with a schema name will be implicitly quali-
fied with the schema name that is earliest in the SQL path and contains a data type
with the same unqualified name specified. There are exceptions to this rule as
described in the following statements: CREATE DISTINCT TYPE, CREATE FUNC-
TION, COMMENT ON and DROP.

Example
Using the SYSCAT.VIEWS catalog view, find all views that were created with the exact
same setting as the current value of the CURRENT PATH special register.

SELECT VIEWNAME, VIEWSCHEMA FROM SYSCAT.VIEWS
WHERE FUNC_PATH = CURRENT PATH

CURRENT QUERY OPTIMIZATION
The CURRENT QUERY OPTIMIZATION special register specifies an INTEGER value
that controls the class of query optimization performed by the database manager when
binding dynamic SQL statements. The QUERYOPT bind option controls the class of
query optimization for static SQL statements (see the Command Reference for addi-
tional information on the QUERYOPT bind option). The possible values range from 0 to
9. For example, if the query optimization class is set to the minimal class of optimiza-
tion (0), then the value in the special register is 0. The default value is determined by
the dft_queryopt database configuration parameter.

Its value can be changed by the SET CURRENT QUERY OPTIMIZATION statement
(see “SET CURRENT QUERY OPTIMIZATION” on page 724).

Example

Using the SYSCAT.PACKAGES catalog view, find all plans that were bound with the
same setting as the current value of the CURRENT QUERY OPTIMIZATION special
register.

SELECT PKGNAME, PKGSCHEMA FROM SYSCAT.PACKAGES
WHERE QUERYOPT = CURRENT QUERY OPTIMIZATION

| CURRENT REFRESH AGE

| The CURRENT REFRESH AGE special register specifies a timestamp duration value

| with a data type of DECIMAL(20,6). This duration is the maximum duration since a

| REFRESH TABLE statement has been processed on a REFRESH DEFERRED

| summary table such that the summary table can be used to optimize the processing of
| a query. If CURRENT REFRESH AGE has a value of 99999999999999 (ANY), and

| QUERY OPTIMIZATION class is 5 or more, REFRESH DEFERRED summary tables

| are considered to optimize the processing of a dynamic SQL query. A summary table

| with the REFRESH IMMEDIATE attribute and not in check pending state is assumed to
| have a refresh age of zero.

Chapter 3. Language Elements 95

Special Registers

Its value can be changed by the SET CURRENT REFRESH AGE statement (see “SET
CURRENT REFRESH AGE” on page 727). Summary tables defined with REFRESH
DEFERRED are never considered by static embedded SQL queries.

The initial value of CURRENT REFRESH AGE is zero.

CURRENT SCHEMA

The CURRENT SCHEMA special register specifies a CHAR(8) value that identifies the
schema name used to qualify unqualified database object references where applicable
in dynamically prepared SQL statements.2!

The initial value of CURRENT SCHEMA is the authorization ID of the current session
user.

Its value can be changed by the SET SCHEMA statement (see “SET SCHEMA” on
page 733).

The QUALIFIER bind option controls the schema name used to qualify unqualified data-
base object references where applicable for static SQL statements (see Command Ref-
erence for more information).

Example
Set the schema for object qualification to 'D123".

SET CURRENT SCHEMA = 'D123'

CURRENT SERVER

The CURRENT SERVER special register specifies a VARCHAR(18) value that identi-
fies the current application server. The actual name of the application server (not an
alias) is contained in the register.

The CURRENT SERVER can be changed by the CONNECT statement, but only under
certain conditions (see “CONNECT (Type 1)” on page 432).

Example
Set the host variable APPL_SERVE (varchar(18)) to the name of the application server
to which the application is connected.

VALUES CURRENT SERVER
INTO :APPL_SERVE

CURRENT TIME

The CURRENT TIME special register specifies a time that is based on a reading of the
time-of-day clock when the SQL statement is executed at the application server. If this
special register is used more than once within a single SQL statement, or used with

21 For compatibility with DB2 for OS/390, the special register CURRENT SQLID is treated as a synonym for CURRENT SCHEMA.

96 SQL Reference

Special Registers

CURRENT DATE or CURRENT TIMESTAMP within a single statement, all values are
based on a single clock reading.

Example
Using the CL_SCHED table, select all the classes (CLASS_CODE) that start
(STARTING) later today. Today's classes have a value of 3 in the DAY column.

SELECT CLASS_CODE FROM CL_SCHED
WHERE STARTING > CURRENT TIME AND DAY = 3

CURRENT TIMESTAMP
The CURRENT TIMESTAMP special register specifies a timestamp that is based on a
reading of the time-of-day clock when the SQL statement is executed at the application
server. If this special register is used more than once within a single SQL statement, or
used with CURRENT DATE or CURRENT TIME within a single statement, all values
are based on a single clock reading.

Example

Insert a row into the IN_TRAY table. The value of the RECEIVED column should be a
timestamp that indicates when the row was inserted. The values for the other three
columns come from the host variables SRC (char(8)), SUB (char(64)), and TXT
(varchar(200)).

INSERT INTO IN_TRAY
VALUES (CURRENT TIMESTAMP, :SRC, :SUB, :TXT)

CURRENT TIMEZONE
The CURRENT TIMEZONE special register specifies the difference between UTC?22 and
local time at the application server. The difference is represented by a time duration (a
decimal number in which the first two digits are the number of hours, the next two digits
are the number of minutes, and the last two digits are the number of seconds). The
number of hours is between -24 and 24 exclusive. Subtracting CURRENT TIMEZONE
from a local time converts that local time to UTC. The time is calculated from the oper-
ating system time at the moment the SQL statement is executed.23

The CURRENT TIMEZONE special register can be used wherever an expression of the
DECIMAL(6,0) data type is used, for example, in time and timestamp arithmetic.

Example
Insert a record into the IN_TRAY table, using a UTC timestamp for the RECEIVED
column.

22 Coordinated Universal Time, formerly known as GMT.

23 The CURRENT TIMEZONE value is determined from C runtime functions. See the Quick Beginnings for any installation require-
ments regarding time zone.

Chapter 3. Language Elements 97

Column Names

INSERT INTO IN_TRAY VALUES (
CURRENT TIMESTAMP - CURRENT TIMEZONE,
:source,
:subject,
:notetext)

USER
The USER special register specifies the run-time authorization ID passed to the data-
base manager when an application starts on a database. The data type of the register
is CHAR(8).

Example
Select all notes from the IN_TRAY table that the user placed there himself.

SELECT * FROM IN_TRAY
WHERE SOURCE = USER

Column Names

The meaning of a column name depends on its context. A column name can be used
to:

¢ Declare the name of a column, as in a CREATE TABLE statement.
e Identify a column, as in a CREATE INDEX statement.
e Specify values of the column, as in the following contexts:

— In a column function, a column name specifies all values of the column in the
group or intermediate result table to which the function is applied. (Groups
and intermediate result tables are explained under Chapter 5, “Queries” on
page 315.) For example, MAX(SALARY) applies the function MAX to all
values of the column SALARY in a group.

— Ina GROUP BY or ORDER BY clause, a column name specifies all values in
the intermediate result table to which the clause is applied. For example,
ORDER BY DEPT orders an intermediate result table by the values of the
column DEPT.

— In an expression, a search condition, or a scalar function, a column name
specifies a value for each row or group to which the construct is applied. For
example, when the search condition CODE = 20 is applied to some row, the
value specified by the column name CODE is the value of the column CODE
in that row.

e Temporarily rename a column, as in the correlation-clause of a table-reference in a
FROM clause.

Qualified Column Names
A qualifier for a column name may be a table, view, alias, or correlation name.

Whether a column name may be qualified depends on its context:

98 SQL Reference

Column Names

¢ Depending on the form of the COMMENT ON statement, a single column name
may need to be qualified. Multiple column names must be unqualified.

¢ Where the column name specifies values of the column, it may be qualified at the
user's option.

¢ In all other contexts, a column name must not be qualified.

Where a qualifier is optional, it can serve two purposes. They are described under
“Column Name Quialifiers to Avoid Ambiguity” on page 101 and “Column Name Qual-
ifiers in Correlated References” on page 102.

Correlation Names
A correlation name can be defined in the FROM clause of a query and in the first
clause of an UPDATE or DELETE statement. For example, the clause FROM
X.MYTABLE Z establishes Z as a correlation name for X.MYTABLE.

FROM X.MYTABLE Z

With Z defined as a correlation name for X.MYTABLE, only Z can be used to qualify a
reference to a column of that instance of X.MYTABLE in that SELECT statement.

A correlation name is associated with a table, view, alias, nested table expression or
table function only within the context in which it is defined. Hence, the same correlation
name can be defined for different purposes in different statements, or in different
clauses of the same statement.

As a qualifier, a correlation name can be used to avoid ambiguity or to establish a cor-
related reference. It can also be used merely as a shorter name for a table, view, or
alias. In the case of a nested table expression or table function, a correlation name is
required to identify the result table. In the example, Z might have been used merely to
avoid having to enter X.MYTABLE more than once.

If a correlation name is specified for a table, view, or alias name, any qualified refer-
ence to a column of that instance of the table, view, or alias must use the correlation
name, rather than the table, view, or alias name. For example, the reference to
EMPLOYEE.PROJECT in the following example is incorrect, because a correlation
name has been specified for EMPLOYEE:

Example

FROM: EMPLOYEE E
WHERE EMPLOYEE.PROJECT='ABC' * incorrectx

The qualified reference to PROJECT should instead use the correlation name, "E", as
shown below:

FROM EMPLOYEE E
WHERE E.PROJECT='ABC'

Names specified in a FROM clause are either exposed or non-exposed. A table, view,
or alias name is said to be exposed in the FROM clause if a correlation name is not

Chapter 3. Language Elements 99

Column Names

specified. A correlation name is always an exposed name. For example, in the following
FROM clause, a correlation name is specified for EMPLOYEE but not for DEPART-
MENT, so DEPARTMENT is an exposed name, and EMPLOYEE is not:

FROM EMPLOYEE E, DEPARTMENT

A table, view, or alias name that is exposed in a FROM clause may be the same as
any other table name or view name exposed in that FROM clause or any correlation
name in the FROM clause. This may result in ambiguous column name references
which returns an error (SQLSTATE 42702).

The first two FROM clauses shown below are correct, because each one contains no
more than one reference to EMPLOYEE that is exposed:

1.

100 sQL Reference

Given the FROM clause:
FROM EMPLOYEE E1, EMPLOYEE

a qualified reference such as EMPLOYEE.PROJECT denotes a column of the
second instance of EMPLOYEE in the FROM clause. A qualified reference to the
first instance of EMPLOYEE must use the correlation name “E1” (E1.PROJECT).

Given the FROM clause:
FROM EMPLOYEE, EMPLOYEE E2

a qualified reference such as EMPLOYEE.PROJECT denotes a column of the first
instance of EMPLOYEE in the FROM clause. A qualified reference to the second
instance of EMPLOYEE must use the correlation name “E2” (E2.PROJECT).

Given the FROM clause:
FROM EMPLOYEE, EMPLOYEE

the two exposed table names included in this clause (EMPLOYEE and
EMPLOYEE) are the same. This is allowed, but references to specific column
names would be ambiguous (SQLSTATE 42702).

Given the following statement:

SELECT *
FROM EMPLOYEE E1, EMPLOYEE E2 * incorrect *
WHERE EMPLOYEE.PROJECT = 'ABC'

the qualified reference EMPLOYEE.PROJECT is incorrect, because both instances
of EMPLOYEE in the FROM clause have correlation names. Instead, references to
PROJECT must be qualified with either correlation name (E1.PROJECT or
E2.PROJECT).

. Given the FROM clause:

FROM EMPLOYEE, X.EMPLOYEE

a reference to a column in the second instance of EMPLOYEE must use
X.EMPLOYEE (X.EMPLOYEE.PROJECT). If X is the CURRENT SCHEMA special
register value in dynamic SQL or the QUALIFIER precompile/bind option in static
SQL, then the columns cannot be referenced since any such reference would be
ambiguous.

Column Names

The use of a correlation name in the FROM clause also allows the option of specifying
a list of column names to be associated with the columns of the result table. As with a
correlation name, these listed column names become the exposed names of the
columns that must be used for references to the columns throughout the query. If a
column name list is specified, then the column names of the underlying table become
non-exposed.

Given the FROM clause:
FROM DEPARTMENT D (NUM,NAME,MGR,ANUM, LOC)

a qualified reference such as D.NUM denotes the first column of the DEPARTMENT
table that is defined in the table as DEPTNO. A reference to D.DEPTNO using this
FROM clause is incorrect since the column name DEPTNO is a non-exposed column
name.

Column Name Qualifiers to Avoid Ambiguity
In the context of a function, a GROUP BY clause, ORDER BY clause, an expression,
or a search condition, a column name refers to values of a column in some table, view,
nested table expression or table function. The tables, views, nested table expressions
and table functions that might contain the column are called the object tables of the
context. Two or more object tables might contain columns with the same name; one
reason for qualifying a column name is to designate the table from which the column
comes.

A nested table expression or table function will consider table-references that precede it
in the FROM clause as object tables. The table-references that follow are not consid-
ered as object tables.

Table Designators

A qualifier that designates a specific object table is called a table designator. The
clause that identifies the object tables also establishes the table designators for them.
For example, the object tables of an expression in a SELECT clause are named in the
FROM clause that follows it:

SELECT CORZ.COLA, OWNY.MYTABLE.COLA
FROM OWNX.MYTABLE CORZ, OWNY.MYTABLE

Table designators in the FROM clause are established as follows:

¢ A name that follows a table, view, nested table expression or table function is both
a correlation name and a table designator. Thus, CORZ is a table designator.
CORZ is used to qualify the first column name in the select list.

¢ An exposed table or view name is a table designator. Thus, OWNY.MYTABLE is a
table designator. OWNY.MYTABLE is used to qualify the second column name in
the select list.

Each table designator should be unique within a particular FROM clause to avoid the
possibility of ambiguous references to columns.

Chapter 3. Language Elements 101

Column Names

Avoiding Undefined or Ambiguous References
When a column name refers to values of a column, exactly one object table must
include a column with that name. The following situations are considered errors:

* No object table contains a column with the specified name. The reference is unde-
fined.

e The column name is qualified by a table designator, but the table designated does
not include a column with the specified name. Again the reference is undefined.

¢ The name is unqualified, and more than one object table includes a column with
that name. The reference is ambiguous.

e The column name is qualified by a table designator, but the table designated is not
unique in the FROM clause and both occurrences of the designated table include
the column. The reference is ambiguous.

e The column name is in a nested table expression which is not preceded by the
TABLE keyword or in a table function or nested table expression that is the right
operand of a right outer join or a full outer join and the column name does not refer
to a column of a table-reference within the nested table expression's fullselect. The
reference is undefined.

Avoid ambiguous references by qualifying a column name with a uniquely defined table
designator. If the column is contained in several object tables with different names, the
table names can be used as designators. Ambiguous references can also be avoided
without the use of the table designator by giving unique names to the columns of one
of the object tables using the column name list following the correlation name.

When qualifying a column with the exposed table name form of a table designator,
either the qualified or unqualified form of the exposed table name may be used.
However, the qualifier used and the table used must be the same after fully qualifying
the table name or view name and the table designator.

1. If the authorization ID of the statement is CORPDATA:

SELECT CORPDATA.EMPLOYEE.WORKDEPT
FROM EMPLOYEE

is a valid statement.
2. If the authorization ID of the statement is REGION:

SELECT CORPDATA.EMPLOYEE.WORKDEPT
FROM EMPLOYEE * incorrect *

is invalid, because EMPLOYEE represents the table REGION.EMPLOYEE, but the
qualifier for WORKDEPT represents a different table, CORPDATA.EMPLOYEE.

Column Name Qualifiers in Correlated References
A fullselect is a form of a query that may be used as a component of various SQL
statements. See Chapter 5, “Queries” on page 315 for more information on fullselects.
A fullselect used within a search condition of any statement is called a subquery. A
fullselect used to retrieve a single value as an expression within a statement is called a

102 sQL Reference

Column Names

scalar fullselect or scalar subquery. A fullselect used in the FROM clause of a query is
called a nested table expression. Subqueries in search conditions, scalar subqueries
and nested table expressions are referred to as subqueries through the remainder of
this topic.

A subqguery may include subqueries of its own, and these may, in turn, include subque-
ries. Thus an SQL statement may contain a hierarchy of subqueries. Those elements of
the hierarchy that contain subqueries are said to be at a higher level than the subque-
ries they contain.

Every element of the hierarchy contains one or more table designators. A subquery can
reference not only the columns of the tables identified at its own level in the hierarchy,
but also the columns of the tables identified previously in the hierarchy, back to the
highest level of the hierarchy. A reference to a column of a table identified at a higher
level is called a correlated reference.

For compatibility with existing standards for SQL, both qualified and unqualified column
names are allowed as correlated references. However, it is good practice to qualify all

column references used in subqueries; otherwise, identical column names may lead to
unintended results. For example, if a table in a hierarchy is altered to contain the same
column name as the correlated reference and the statement is prepared again, the ref-
erence will apply to the altered table.

When a column name in a subquery is qualified, each level of the hierarchy is
searched, starting at the same subquery as the qualified column name appears and
continuing to the higher levels of the hierarchy until a table designator that matches the
qualifier is found. Once found, it is verified that the table contains the given column. If
the table is found at a higher level than the level containing column name, then it is a
correlated reference to the level where the table designator was found. A nested table
expression must be preceded with the optional TABLE keyword in order to search the
hierarchy above the fullselect of the nested table expression.

When the column name in a subquery is not qualified, the tables referenced at each
level of the hierarchy are searched, starting at the same subquery where the column
name appears and continuing to higher levels of the hierarchy, until a match for the
column name is found. If the column is found in a table at a higher level than the level
containing column name, then it is a correlated reference to the level where the table
containing the column was found. If the column name is found in more than one table
at a particular level, the reference is ambiguous and considered an error.

In either case, T, used in the following example, refers to the table designator that con-
tains column C. A column name, T.C (where T represents either an implicit or an
explicit qualifier), is a correlated reference if, and only if, these conditions are met:

e T.Cis used in an expression of a subquery.
¢ T does not designate a table used in the from clause of the subquery.

¢ T designates a table used at a higher level of the hierarchy that contains the sub-
query.

Chapter 3. Language Elements 103

Column Names

Since the same table or view can be identified at many levels, unique correlation
names are recommended as table designators. If T is used to designate a table at
more than one level (T is the table name itself or is a duplicate correlation name), T.C
refers to the level where T is used that most directly contains the subquery that
includes T.C. If a correlation to a higher level is needed, a unique correlation name
must be used.

The correlated reference T.C identifies a value of C in a row or group of T to which two
search conditions are being applied: condition 1 in the subquery, and condition 2 at
some higher level. If condition 2 is used in a WHERE clause, the subquery is evaluated
for each row to which condition 2 is applied. If condition 2 is used in a HAVING clause,
the subquery is evaluated for each group to which condition 2 is applied. (For another
discussion of the evaluation of subqueries, see the descriptions of the WHERE and
HAVING clauses in Chapter 5, “Queries” on page 315.)

For example, in the following statement, the correlated reference X.WORKDEPT (in the
last line) refers to the value of WORKDEPT in table EMPLOYEE at the level of the first
FROM clause. (That clause establishes X as a correlation name for EMPLOYEE.) The

statement lists employees who make less than the average salary for their department.

SELECT EMPNO, LASTNAME, WORKDEPT
FROM EMPLOYEE X
WHERE SALARY < (SELECT AVG(SALARY)
FROM EMPLOYEE
WHERE WORKDEPT = X.WORKDEPT)

The next example uses THIS as a correlation name. The statement deletes rows for
departments that have no employees.
DELETE FROM DEPARTMENT THIS
WHERE NOT EXISTS(SELECT =

FROM EMPLOYEE
WHERE WORKDEPT = THIS.DEPTNO)

104 sQL Reference

References to Host Variables

References to Host Variables
A host variable is either:

¢ A variable in a host language such as a C variable, a C++ variable, a COBOL data
item, a FORTRAN variable, or a REXX variable

or:

¢ A host language construct that was generated by an SQL precompiler from a vari-
able declared using SQL extensions

that is referenced in an SQL statement. Host variables are either directly defined by
statements in the host language or are indirectly defined using SQL extensions.

A host variable in an SQL statement must identify a host variable described in the
program according to the rules for declaring host variables.

All host variables used in an SQL statement must be declared in an SQL DECLARE
section in all host languages except REXX (see the Embedded SQL Programming
Guide for more information on declaring host variables for SQL statements in applica-
tion programs). No variables may be declared outside an SQL DECLARE section with
names identical to variables declared inside an SQL DECLARE section. An SQL
DECLARE section begins with BEGIN DECLARE SECTION and ends with END
DECLARE SECTION.

The meta-variable host-variable, as used in the syntax diagrams, shows a reference to
a host variable. A host-variable in the VALUES INTO clause or the INTO clause of a
FETCH or a SELECT INTO statement, identifies a host variable to which a value from a
column of a row or an expression is assigned. In all other contexts a host-variable
specifies a value to be passed to the database manager from the application program.

Host Variables in Dynamic SQL
In dynamic SQL statements, parameter markers are used instead of host variables. A
parameter marker is a question mark (?) representing a position in a dynamic SQL
statement where the application will provide a value; that is, where a host variable
would be found if the statement string were a static SQL statement. The following
example shows a static SQL statement using host variables:

INSERT INTO DEPARTMENT
VALUES (:hv_deptno, :hv_deptname, :hv_mgrno, :hv_admrdept)

This example shows a dynamic SQL statement using parameter markers:
INSERT INTO DEPARTMENT VALUES (?, ?, 7, ?)

For more information on parameter markers, see “Parameter Markers” in “PREPARE”
on page 673.

The meta-variable host-variable in syntax diagrams can generally be expanded to:

Chapter 3. Language Elements 105

References to Host Variables

»—:host-identifier >
INDICATOR
[INDICATORT

:host-identifier—l

Each host-identifier must be declared in the source program. The variable designated
by the second host-identifier must have a data type of small integer.

The first host-identifier designates the main variable. Depending on the operation, it
either provides a value to the database manager or is provided a value from the data-
base manager. An input host variable provides a value in the runtime application code
page. An output host variable is provided a value that, if necessary, is converted to the
runtime application code page when the data is copied to the output application vari-
able. A given host variable can serve as both an input and an output variable in the
same program.

The second host-identifier designates its indicator variable. The purposes of the indi-
cator variable are to:

¢ Specify the null value. A negative value of the indicator variable specifies the null
value. A value of -2 indicates a numeric conversion or arithmetic expression error
occurred in deriving the result.

¢ Record the original length of a truncated string (if the source of the value is not a
large object type)

¢ Record the seconds portion of a time if the time is truncated on assignment to a
host variable.

For example, if :HV1:HV2 is used to specify an insert or update value, and if HV2 is
negative, the value specified is the null value. If HV2 is not negative the value specified
is the value of HV1.

Similarly, if :HV1:HV2 is specified in a VALUES INTO clause or in a FETCH or
SELECT INTO statement, and if the value returned is null, HV1 is not changed and
HV2 is set to a negative value.24 If the value returned is not null, that value is assigned
to HV1 and HV2 is set to zero (unless the assignment to HV1 requires string truncation
of a non-LOB string; in which case HV2 is set to the original length of the string). If an
assignment requires truncation of the seconds part of a time, HV2 is set to the number
of seconds.

If the second host identifier is omitted, the host-variable does not have an indicator vari-
able. The value specified by the host-variable reference :HV1 is always the value of
HV1, and null values cannot be assigned to the variable. Thus, this form should not be
used in an INTO clause unless the corresponding column cannot contain null values. If

24 |f the database is configured with DFT_SQLMATHWARN yes (or was during binding of a static SQL statement), then HV2 could be
-2. If HV2 is -2, then a value for HV1 could not be returned because of an error converting to the numeric type of HV1 or an error
evaluating an arithmetic expression that is used to determine the value for HV1. When accessing a database with a client version
earlier than DB2 Universal Database Version 5, HV2 will be -1 for arithmetic exceptions.

106 sSQL Reference

References to Host Variables

this form is used and the column contains nulls, the database manager will generate an
error at run time.

An SQL statement that references host variables must be within the scope of the decla-
ration of those host variables. For host variables referenced in the SELECT statement
of a cursor, that rule applies to the OPEN statement rather than to the DECLARE
CURSOR statement.

Example

Using the PROJECT table, set the host variable PNAME (varchar(26)) to the project
name (PROJNAME), the host variable STAFF (dec(5,2)) to the mean staffing level
(PRSTAFF), and the host variable MAJPROJ (char(6)) to the major project (MAJPROJ)
for project (PROJNO) ‘IF1000°. Columns PRSTAFF and MAJPROJ may contain null
values, so provide indicator variables STAFF_IND (smallint) and MAJPROJ_IND
(smallint).

SELECT PROJNAME, PRSTAFF, MAJPROJ
INTO :PNAME, :STAFF :STAFF_IND, :MAJPROJ :MAJPROJ_IND
FROM PROJECT
WHERE PROJNO = 'IF1000'

MBCS Considerations: Whether multi-byte characters can be used in a host variable
name depends on the host language.

References to BLOB, CLOB, and DBCLOB Host Variables
Regular BLOB, CLOB, and DBCLOB variables, LOB locator variables (see “References
to Locator Variables” on page 108), and LOB file reference variables (see “References
to BLOB, CLOB, and DBCLOB File Reference Variables” on page 108) can be defined
in all host languages. Where LOBs are allowed, the term host-variable in a syntax
diagram can refer to a regular host variable, a locator variable, or a file reference vari-
able. Since these are not native data types, SQL extensions are used and the precom-
pilers generate the host language constructs necessary to represent each variable. In
the case of REXX, LOBs are mapped to strings.

It is sometimes possible to define a large enough variable to hold an entire large object
value. If this is true and if there is no performance benefit to be gained by deferred
transfer of data from the server, a locator is not needed. However, since host language
or space restrictions will often dictate against storing an entire large object in temporary
storage at one time and/or because of performance benefit, a large object may be ref-
erenced via a locator and portions of that object may be selected into or updated from
host variables that contain only a portion of the large object at one time.

As with all other host variables, a large object locator variable may have an associated
indicator variable. Indicator variables for large object locator host variables behave in
the same way as indicator variables for other data types. When a null value is returned
from the database, the indicator variable is set and the locator host variable is
unchanged. This means a locator can never point to a null value.

Chapter 3. Language Elements 107

References to Host Variables

References to Locator Variables
A locator variable is a host variable that contains the locator representing a LOB value
on the application server. (See “Manipulating Large Objects (LOBs) with Locators” on
page 55 for information on how locators can be used to manipulate LOB values.)

A locator variable in an SQL statement must identify a locator variable described in the
program according to the rules for declaring locator variables. This is always indirectly
through an SQL statement.

The term locator variable, as used in the syntax diagrams, shows a reference to a
locator variable. The meta-variable locator-variable can be expanded to include a host-
identifier the same as that for host-variable.

When the indicator variable associated with a locator is null, the value of the referenced
LOB is null.

If a locator-variable that does not currently represent any value is referenced, an error
is raised (SQLSTATE 0F001).

At transaction commit, or any transaction termination, all locators acquired by that
transaction are released.

References to BLOB, CLOB, and DBCLOB File Reference Variables
BLOB, CLOB, and DBCLOB file reference variables are used for direct file input and
output for LOBs, and can be defined in all host languages. Since these are not native
data types, SQL extensions are used and the precompilers generate the host language
constructs necessary to represent each variable. In the case of REXX, LOBs are
mapped to strings.

A file reference variable represents (rather than contains) the file, just as a LOB locator
represents, rather than contains, the LOB bytes. Database queries, updates and inserts
may use file reference variables to store or to retrieve single column values.

A file reference variable has the following properties:

Data Type BLOB, CLOB, or DBCLOB. This property is specified when the
variable is declared.

Direction This must be specified by the application program at run time
(as part of the File Options value -see below). The direction is
one of:

¢ Input (used as a source of data on an EXECUTE state-
ment, an OPEN statement, an UPDATE statement, an
INSERT statement, or a DELETE statement).

e OQutput (used as the target of data on a FETCH statement
or a SELECT INTO statement).

108 sQL Reference

References to Host Variables

File name This must be specified by the application program at run time.
It is one of:

e The complete path name of the file (which is advised).
¢ A relative file name. If a relative file name is provided, it is
appended to the current path of the client process.

Within an application, a file should only be referenced in one
file reference variable.

File Name Length This must be specified by the application program at run time.
It is the length of the file name (in bytes).

File Options An application must assign one of a number of options to a file
reference variable before it makes use of that variable. Options
are set by an INTEGER value in a field in the file reference
variable structure. One of the following values must be speci-
fied for each file reference variable:

¢ Input (from client to server)

SQL_FILE_READ 25 This is a regular file that can be
opened, read and closed.

e Qutput (from server to client)

SQL_FILE_CREATE 26 Create a new file. If the file already
exists, it is an error.

SQL_FILE_OVERWRITE (Overwrite) 27 If an existing file
with the specified name exists, it is over-
written; otherwise a new file is created.

SQL_FILE_APPEND 28 If an existing file with the specified
name exists, the output is appended to it;
otherwise a new file is created.

Data Length This is unused on input. On output, the imple-
mentation sets the data length to the length of the
new data written to the file. The length is in bytes.

As with all other host variables, a file reference variable may have an associated indi-
cator variable.

Example of an Output File Reference Variable (in C)

Given a declare section is coded as:

25 SQL-FILE-READ in COBOL, sql_file_read in FORTRAN, READ in REXX.

26 SQL-FILE-CREATE in COBOL, sql_file_create in FORTRAN, CREATE in REXX.

27 SQL-FILE-OVERWRITE in COBOL, sql_file_overwrite in FORTRAN, OVERWRITE in REXX.
28 SQL-FILE-APPEND in COBOL, sql_file_append in FORTRAN, APPEND in REXX.

Chapter 3. Language Elements 109

Functions

EXEC SQL BEGIN DECLARE SECTION
SQL TYPE IS CLOB_FILE hv_text file;
char hv_patent_title[64];

EXEC SQL END DECLARE SECTION

Following preprocessing this would be:

EXEC SQL BEGIN DECLARE SECTION
/* SQL TYPE IS CLOB FILE hv_text file; */
struct {
unsigned long name_length; // File Name Length
unsigned long data length; // Data Length
unsigned long file_ options; // File Options
char name[255]; // File Name
} hv_text file;
char hv_patent_title[64];
EXEC SQL END DECLARE SECTION

Then, the following code can be used to select from a CLOB column in the data-
base into a new file referenced by :hv_text_file.

strcpy (hv_text_file.name, "/u/gainer/papers/sigmod.94");
hv_text_file.name_length = strlen("/u/gainer/papers/sigmod.94");
hv_text_file.file_options = SQL_FILE_CREATE;

EXEC SQL SELECT content INTO :hv_text file from papers
WHERE TITLE = 'The Relational Theory behind Juggling';

Example of an Input File Reference Variable (in C)

Given the same declare section as above, the following code can be used to insert
the data from a regular file referenced by :hv_text_file into a CLOB column.

strcpy (hv_text_file.name, "/u/gainer/patents/chips.13");
hv_text_file.name_length = strlen("/u/gainer/patents/chips.13");
hv_text_file.file_options = SQL_FILE_READ:

strcpy(:hv_patent_title, "A Method for Pipelining Chip Consumption");

EXEC SQL INSERT INTO patents(title, text)
VALUES(:hv_patent_title, :hv_text file);

Functions

A database function is a relationship between a set of input data values and a set of
result values. For example, the TIMESTAMP function can be passed input data values
of type DATE and TIME and the result is a TIMESTAMP. Functions can either be
built-in or user-defined.

e Built-in functions are provided with the database manager providing a single result
value and are identified as part of the SYSIBM schema. Examples of such func-
tions include column functions such as AVG, operator functions such as "+",
casting functions such as DECIMAL, and others such as SUBSTR.

110 sQL Reference

Functions

e User-defined functions are functions that are registered to a database in
SYSCAT.FUNCTIONS (using the CREATE FUNCTION statement). User-defined
functions are never part of the SYSIBM schema. One such set of functions is pro-
vided with the database manager in a schema called SYSFUN.

With user-defined functions, DB2 allows users and application developers to extend the
function of the database system by adding function definitions provided by users or
third party vendors to be applied in the database engine itself. This allows higher per-
formance than retrieving rows from the database and applying those functions on the
retrieved data to further qualify or to perform data reduction. Extending database func-
tions also lets the database exploit the same functions in the engine that an application
uses, provides more synergy between application and database, and contributes to
higher productivity for application developers because it is more object-oriented.

A complete list of functions in the SYSIBM and SYSFUN schemas is documented in
Table 13 on page 156.

A user-defined function can be external or sourced. An external function is defined to
the database with a reference to an object code library and a function within that library
that will be executed when the function is invoked. External functions can not be
column functions. A sourced function is defined to the database with a reference to
another built-in or user-defined function that is already known to the database. Sourced
functions can be scalar functions or column functions. They are very useful for sup-
porting the use of existing functions with user-defined types.

Each user-defined function is also categorized as a scalar, column or table function. A
scalar function is one which returns a single-valued answer each time it is called. For
example, the built-in function SUBSTR() is a scalar function. Scalar UDFs can be either
external or sourced. A column function is one which conceptually is passed a set of like
values (a column) and returns a single-valued answer from this set. These are also
sometimes called aggregating functions in DB2. An example of a column function is the
built-in function AVG(). An external column UDF cannot be defined to DB2, but a
column UDF which is sourced upon one of the built-in column functions can be defined.
This is useful for distinct types. For example if there is a distinct type SHOESIZE
defined with base type INTEGER, a UDF AVG(SHOESIZE) which is sourced on the
built-in function AVG(INTEGER) could be defined, and it would be a column function. A
table function is a function which returns a table to the SQL statement which references
it, and it may only be referenced in the FROM clause of a SELECT. Such a function
can be used to apply SQL language processing power to data which is not DB2 data,
or to convert such data into a DB2 table. It could, for example, take a file and convert it
to a table, sample data from the world-wide web and tabularize it, or access a Lotus
Notes database and return information about mail messages, such as the date, sender,
and the text of the message. This information can be joined with other tables in the
database. A table function can only be an external function (a table function cannot be
a sourced function).

A function is identified by its schema, a function name, the number of parameters and
the data types of its parameters. This is called a function signature which must be
unique within the database. There can be more than one function with the same name

Chapter 3. Language Elements 111

Functions

in a schema provided that the number of parameters or the data types of the parame-
ters are different. A function name for which there are multiple function instances is
called an overloaded function. A function name can be overloaded within a schema, in
which case there is more than one function by that name in the schema (which of
necessity have different parameter types). A function name can also be overloaded in a
SQL path, in which case there is more than one function by that name in the path, and
these functions do not necessarily have different parameter types.

A function can be invoked by referring in an allowable context to the qualified name
(schema and function name) followed by the list of arguments enclosed in parentheses.
A function can also be invoked without the schema name resulting in a choice of pos-
sible functions in different schemas with the same or acceptable parameters. In this
case, the SQL path is used to assist in function resolution. The function path is a list of
schemas that are searched to identify a function with the same name, number of
parameters and acceptable data types. For static SQL statements, SQL path is speci-
fied using the FUNCPATH bind option (see Command Reference for details). For
dynamic SQL statements, SQL path is the value of the CURRENT FUNCTION PATH
special register (see “CURRENT PATH” on page 94).

Function Resolution
Given a function invocation, the database manager must decide which of the possible
functions with the same name is the “best” fit. This includes resolving functions from the
built-in and user-defined functions.

An argument is a value passed to a function upon invocation. When a function is
invoked in SQL, it is passed a list of zero or more arguments. They are positional in
that the semantics of an argument are determined by its position in the argument list. A
parameter is a formal definition of an input to a function. When a function is defined to
the database, either internally (the built-in functions) or by a user (user-defined func-
tions), its parameters (zero or more) are specified, the order of their definitions defining
their positions and thus their semantics. Therefore, every parameter is a particular
positional input of a function. On invocation, an argument corresponds to a particular
parameter by virtue of its position in the list of arguments.

The database manager uses the name of the function given in the invocation, the
number and data types of the arguments, all the functions with the same name in the
SQL path, and the data types of their corresponding parameters as the basis for
deciding whether or not to select a function. The following are the possible outcomes of
the decision process:

1. A particular function is deemed to be the best fit. For example, given the functions
named RISK in the schema TEST with signatures defined as:

TEST.RISK(INTEGER)
TEST.RISK(DOUBLE)

a SQL path including the TEST schema and the following function reference
(where DB is a DOUBLE column):

SELECT ... RISK(DB) ...

112 sSQL Reference

Functions

then, the second RISK will be chosen.
The following function reference (where Sl is a SMALLINT column):
SELECT ... RISK(SI) ...

would choose the first RISK, since SMALLINT can be promoted to INTEGER and
is a better match than DOUBLE which is further down the precedence list (as
shown in Table 3 on page 66).

. No function is deemed to be an acceptable fit. For example, given the same two
functions in the previous case and the following function reference (where C is a
CHAR(5) column):

SELECT ... RISK(C) ...
the argument is inconsistent with the parameter of both RISK functions.

. A particular function is selected based on the SQL path and the number and data
types of the arguments passed on invocation. For example, given functions named
RANDOM with signatures defined as:

TEST.RANDOM(INTEGER)
PROD. RANDOM(INTEGER)

and a SQL path of:
"TEST","PROD"

Then the following function reference:
SELECT ... RANDOM(432) ...

will choose TEST.RANDOM since both RANDOM functions are equally good
matches (exact matches in this particular case) and both schemas are in the path,
but TEST precedes PROD in the SQL path.

Method of Choosing the Best Fit

A comparison of the data types of the arguments with the defined data types of the
parameters of the functions under consideration forms the basis for the decision of
which function in a group of like-named functions is the "best fit". Note that the data
type of the result of the function or the type of function (column, scalar, or table) under
consideration does not enter into this determination.

Function resolution is done using the steps that follow.
1. First, find all functions from the catalog (SYSCAT.FUNCTIONS) and built-in func-

tions such that all of the following are true:

a. For invocations where the schema name was specified (i.e. qualified refer-
ences), then the schema name and the function name match the invocation
name.

b. For invocations where the schema name was not specified (i.e. unqualified ref-
erences), then the function name matches the invocation name and has a
schema name that matches one of the schemas in the SQL path.

c. The number of defined parameters matches the invocation.

Chapter 3. Language Elements 113

Functions

d. Each invocation argument matches the function’s corresponding defined
parameter in data type, or is “promotable” to it (see “Promotion of Data Types”
on page 66).

2. Next, consider each argument of the function invocation, from left to right. For each
argument, eliminate all functions that are not the best match for that argument. The
best match for a given argument is the first data type appearing in the precedence
list corresponding to the argument data type in Table 3 on page 66 for which there
exists a function with a parameter of that data type. Lengths, precisions, scales
and the "FOR BIT DATA" attribute are not considered in this comparison. For
example, a DECIMAL(9,1) argument is considered an exact match for a
DECIMAL(6,5) parameter, and a VARCHAR(19) argument is an exact match for a
VARCHAR(6) parameter.

3. If more than one candidate function remains after Step 2, then it has to be the
case (the way the algorithm works) that all the remaining candidate functions have
identical signatures but are in different schemas. Choose the function whose
schema is earliest in the user's SQL path.

4. If there are no candidate functions remaining after step 2, an error is returned
(SQLSTATE 42884).

Function Path Considerations for Built-in Functions

Built-in functions reside in a special schema called SYSIBM. Additional functions are
available in the SYSFUN schema which are not considered built-in functions since they
are developed as user-defined functions and have no special processing consider-
ations. Users can not define additional functions in SYSIBM or SYSFUN schemas (or in
any schema whose name begins with the letters “SYS”).

As already stated, the built-in functions participate in the function resolution process
exactly as do the user-defined functions. One difference between built-in and user-
defined functions, from a function resolution perspective, is that the built-in function
must always be considered by function resolution. Therefore, omission of SYSIBM from
the path results in an assumption for function and data type resolution that SYSIBM is
the first schema on the path.

For example, if a user’s SQL path is defined as:
"SHAREFUN","SYSIBM","SYSFUN"

and there is a LENGTH function defined in schema SHAREFUN with the same number
and types of arguments as SYSIBM.LENGTH, then an unqualified reference to
LENGTH in this user’'s SQL statement will result in selecting SHAREFUN.LENGTH.
However, if the user's SQL path is defined as:

"SHAREFUN","SYSFUN"

and the same SHAREFUN.LENGTH function exists, then an unqualified reference to
LENGTH in this user’'s SQL statement will result in selecting SYSIBM.LENGTH since
SYSIBM is implicitly first in the path because it was not specified. It is possible to mini-
mize potential problems in this area by:

e never using the names of built-in functions for user-defined functions, or

114 sSQL Reference

Functions

¢ qualifying any references to these functions, if for some reason it is deemed neces-
sary to create a user-defined function with the same name as a built-in function.

Example of Function Resolution
The following is an example of successful function resolution.

There are six FOO functions, in two different schemas, registered as (note that not all
required keywords appear):

CREATE FUNCTION AUGUSTUS.FOO (CHAR(5), INT, DOUBLE) SPECIFIC F00 1 ...
CREATE FUNCTION AUGUSTUS.FOO (INT, INT, DOUBLE) SPECIFIC F00_2 ...
CREATE FUNCTION AUGUSTUS.FOO (INT, INT, DOUBLE, INT) SPECIFIC F00_3 ...
CREATE FUNCTION JULIUS.FOO (INT, DOUBLE, DOUBLE) SPECIFIC F00 4 ...
CREATE FUNCTION JULIUS.FOO (INT, INT, DOUBLE) SPECIFIC FOO 5 ...
CREATE FUNCTION JULIUS.FOO (SMALLINT, INT, DOUBLE) SPECIFIC FO0 6 ...
CREATE FUNCTION NERO.FOO (INT, INT, DEC(7,2)) SPECIFIC F00_7 ...

The function reference is as follows (where I1 and 12 are INTEGER columns, and D is
a DECIMAL column):

SELECT ... FOO(I1, I2, D) ...
Assume that the application making this reference has a SQL path established as:
"JULIUS","AUGUSTUS","CAESAR"

Following through the algorithm...

FOOQ_7 is eliminated as a candidate, because the schema "NERQ" is not included
in the SQL path.

FOO_3 is eliminated as a candidate, because it has the wrong number of parame-
ters. FOO_1 and FOO_6 are eliminated because in both cases the first argument
cannot be promoted to the data type of the first parameter.

Because there is more than one candidate remaining, the arguments are then con-
sidered in order.

For the first argument, all remaining functions — FOO_2, FOO_4 and FOO_5 are
an exact match with the argument type. No functions can be eliminated from con-
sideration, therefore the next argument must be examined.

For this second argument, FOO_2 and FOO_5 are exact matches while FOO_4 is
not, so it is eliminated from consideration. The next argument is examined to deter-
mine some differentiation between FOO_2 and FOO_5.

On the third and last argument, neither FOO_2 nor FOO_5 match the argument
type exactly, but both are equally good.

There are two functions remaining, FOO_2 and FOOQO_5, with identical parameter
signatures. The final tie-breaker is to see which function’s schema comes first in
the SQL path, and on this basis FOO_5 is finally chosen.

Function Invocation
Once the function is selected, there are still possible reasons why the use of the func-
tion may not be permitted. Each function is defined to return a result with a specific
data type. If this result data type is not compatible with the context in which the function

Chapter 3. Language Elements 115

Functions

is invoked, an error will occur. For example, given functions named STEP defined, this
time, with different data types as the result:

STEP(SMALLINT) returns CHAR(5)
STEP(DOUBLE) returns INTEGER

and the following function reference (where S is a SMALLINT column):
SELECT ... 3 + STEP(S) ...

then, because there is an exact match on argument type, the first STEP is chosen. An
error occurs on the statement because the result type is CHAR(5) instead of a numeric
type as required for an argument of the addition operator.

A couple of other examples where this can happen are as follows, both of which will
result in an error on the statement:

1. The function was referenced in a FROM clause, but the function selected by the
function resolution step was a scalar or column function.

2. The reverse case, where the context calls for a scalar or column function, and
function resolution selects a table function.

In cases where the arguments of the function invocation were not an exact match to the
data types of the parameters of the selected function, the arguments are converted to
the data type of the parameter at execution using the same rules as assignment to
columns (see “Assignments and Comparisons” on page 70). This includes the case
where precision, scale, or length differs between the argument and the parameter.

116 SQL Reference

Expressions

Expressions

operator
»>> i -function >«
E + :| —(expression)
- —constant
—column-name
—host-variable
—special-register
—(scalar-fullselect)
—labeled-duration—H——
—case-expression—&———
—cast-specification—3—
'—dereference-operation—4-
operator:
[——CONCAT—= |
/
* — |
+ —_—
Notes:

1 See “Labeled Durations” on page 123 for more information.

2 See “CASE Expressions” on page 129 for more information.

3 See “CAST Specifications” on page 131 for more information.

4 See “Dereference Operations” on page 134 for more information.
5 || may be used as a synonym for CONCAT.

An expression specifies a value.

A scalar fullselect as supported in an expression is a fullselect, enclosed in paren-
theses, that returns a single row consisting of a single column value. If the fullselect
does not return a row, the result of the expression is the null value. If the select list
element is an expression that is simply a column name or a dereference operation, the
result column name is based on the name of the column. See “fullselect” on page 350
for more information.

Without Operators
If no operators are used, the result of the expression is the specified value.

Examples: SALARY :SALARY 'SALARY' MAX(SALARY)

With the Concatenation Operator
The concatenation operator (CONCAT) links two string operands to form a string
expression.

The operands of concatenation must be compatible strings. Note that a binary string
cannot be concatenated with a character string, including character strings defined as

Chapter 3. Language Elements 117

Expressions

FOR BIT DATA (SQLSTATE 42884). For more information on compatibility, refer to the

compatibility matrix on page Table 5 on page 71.

If either operand can be null, the result can be null, and if either is null, the result is the

null value. Otherwise, the result consists of the first operand string followed by the

second. Note that no check is made for improperly formed mixed data when doing con-

catenation.

The length of the result is the sum of the lengths of the operands.

The data type and length attribute of the result is determined from that of the operands

as shown in the following table:

Table 8 (Page 1 of 2). Data Type and Length of Concatenated Operands

Combined

Length
Operands Attributes Result
CHAR(A) CHAR(B) <255 CHAR(A+B)
CHAR(A) CHAR(B) >254 VARCHAR(A+B)
CHAR(A) VARCHAR(B) <4001 VARCHAR(A+B)
CHAR(A) VARCHAR(B) >4000 LONG VARCHAR
CHAR(A) LONG VARCHAR - LONG VARCHAR
VARCHAR(A) VARCHAR(B) <4001 VARCHAR(A+B)
VARCHAR(A) VARCHAR(B) >4000 LONG VARCHAR
VARCHAR(A) LONG VARCHAR - LONG VARCHAR
LONG VARCHAR LONG VARCHAR - LONG VARCHAR
CLOB(A) CHAR(B) - CLOB(MIN(A+B, 2G))
CLOB(A) VARCHAR(B) - CLOB(MIN(A+B, 2G))
CLOB(A) LONG VARCHAR - CLOB(MIN(A+32K, 2G))
CLOB(A) CLOB(B) - CLOB(MIN(A+B, 2G))
GRAPHIC(A) GRAPHIC(B) <128 GRAPHIC(A+B)
GRAPHIC(A) GRAPHIC(B) >127 VARGRAPHIC(A+B)
GRAPHIC(A) VARGRAPHIC(B) <2001 VARGRAPHIC(A+B)
GRAPHIC(A) VARGRAPHIC(B) >2000 LONG VARGRAPHIC
GRAPHIC(A) LONG VARGRAPHIC - LONG VARGRAPHIC
VARGRAPHIC(A) VARGRAPHIC(B) <2001 VARGRAPHIC(A+B)
VARGRAPHIC(A) VARGRAPHIC(B) >2000 LONG VARGRAPHIC

VARGRAPHIC(A) LONG VARGRAPHIC

LONG VARGRAPHIC

LONG VARGRAPHIC LONG VARGRAPHIC

LONG VARGRAPHIC

118 sSQL Reference

Expressions

Table 8 (Page 2 of 2). Data Type and Length of Concatenated Operands

Combined

Length
Operands Attributes Result
DBCLOB(A) GRAPHIC(B) - DBCLOB(MIN(A+B, 1G))
DBCLOB(A) VARGRAPHIC(B) - DBCLOB(MIN(A+B, 1G))
DBCLOB(A) LONG VARGRAPHIC - DBCLOB(MIN(A+16K, 1G))
DBCLOB(A) DBCLOB(B) - DBCLOB(MIN(A+B, 1G))
BLOB(A) BLOB(B) - BLOB(MIN(A+B, 2G))

Note that, for compatibility with previous versions, there is no automatic escalation of
results involving LONG data types to LOB data types. For example, concatenation of a
CHAR(200) value and a completely full LONG VARCHAR value would result in an error
rather than in a promotion to a CLOB data type.

The code page of the result is considered a derived code page and is determined by
the code page of its operands as explained in “Rules for String Conversions” on
page 85.

One operand may be a parameter marker. If a parameter marker is used, then the data
type and length attributes of that operand are considered to be the same as those for
the non-parameter marker operand. The order of operations must be considered to
determine these attributes in cases with nested concatenation.

Example 1: 1If FIRSTNME is Pierre and LASTNAME is Fermat, then the following :
FIRSTNME CONCAT ' ' CONCAT LASTNAME
returns the value Pierre Fermat

Example 2: Given:

COLA defined as VARCHAR(5) with value 'AA'

thost_var defined as a character host variable with length 5 and value 'BB '
COLC defined as CHAR(5) with value 'CC'

COLD defined as CHAR(5) with value 'DDDDD'

The value of: COLA CONCAT :host_var CONCAT COLC CONCAT COLD is:
'AABB CC DDDDD'

The data type is VARCHAR, the length attribute is 17 and the result code page is the
database code page.

Example 3: Given:
COLA is defined as CHAR(10)

Chapter 3. Language Elements 119

Expressions

COLB is defined as VARCHAR(5)

The parameter marker in the expression:
COLA CONCAT COLB CONCAT ?

is considered VARCHAR(15) since COLA CONCAT COLB is evaluated first giving a result
which is the first operand of the second CONCAT operation.

User-defined Types

A user-defined type cannot be used with the concatenation operator even if its source
data type is character. To concatenate, create a function with the CONCAT operator as
its source. For example, if there were distinct types TITLE and TITLE_DESCRIPTION,
both of which had VARCHAR(25) data types, then the following user-defined function,
ATTACH, could be used to concatenate them.

CREATE FUNCTION ATTACH (TITLE, TITLE_DESCRIPTION)
RETURNS VARCHAR(50) SOURCE CONCAT (VARCHAR(), VARCHAR())

Alternately, the concatenation operator could be overloaded using a user-defined func-
tion to add the new data types.

CREATE FUNCTION CONCAT (TITLE, TITLE_DESCRIPTION)
RETURNS VARCHAR(50) SOURCE CONCAT (VARCHAR(), VARCHAR())

With Arithmetic Operators

If arithmetic operators are used, the result of the expression is a value derived from the
application of the operators to the values of the operands.

If any operand can be null, or the database is configured with DFT_SQLMATHWARN
set to yes, the result can be null.

If any operand has the null value, the result of the expression is the null value.

Arithmetic operators must not be applied to character strings. For example, USER+2 is
invalid.

The prefix operator + (unary plus) does not change its operand. The prefix operator —
(unary minus) reverses the sign of a nonzero operand; and if the data type of A is small
integer, then the data type of —A is large integer. The first character of the token fol-
lowing a prefix operator must not be a plus or minus sign.

The infix operators +, -, *, and / specify addition, subtraction, multiplication, and divi-
sion, respectively. The value of the second operand of division must not be zero. These
operators can also be treated as functions. Thus, the expression "+"(a,b) is equivalent
to the expression a+b. “operator” function.

Arithmetic Errors

If an arithmetic error such as zero divide or a numeric overflow occurs during the proc-
essing of an expression, an error is returned and the SQL statement processing the
expression fails with an error (SQLSTATE 22003 or 22012).

120 sSQL Reference

Expressions

A database can be configured (using DFT_SQLMATHWARN set to yes) so that arith-
metic errors return a null value for the expression, issue a warning (SQLSTATE 01519
or 01564), and proceed with processing of the SQL statement. When arithmetic errors
are treated as nulls, there are implications on the results of SQL statements. The fol-
lowing are some examples of these implications.

¢ An arithmetic error that occurs in the expression that is the argument of a column
function causes the row to be ignored in the determining the result of the column
function. If the arithmetic error was an overflow, this may significantly impact the
result values.

¢ An arithmetic error that occurs in the expression of a predicate in a WHERE clause
can cause rows to not be included in the result.

¢ An arithmetic error that occurs in the expression of a predicate in a check con-
straint results in the update or insert proceeding since the constraint is not false.

If these types of impacts are not acceptable, additional steps should be taken to handle
the arithmetic error to produce acceptable results. Some examples are:

e add a case expression to check for zero divide and set the desired value for such
a situation

e add additional predicates to handle nulls (like a check constraint on not nullable
columns could become:

check (cl*c2 is not null and clxc2>5000)

to cause the constraint to be violated on an overflow).

Two Integer Operands
If both operands of an arithmetic operator are integers, the operation is performed in
binary and the result is a large integer unless either (or both) operand is a big integer,
in which case the result is a big integer. Any remainder of division is lost. The result of
an integer arithmetic operation (including unary minus) must be within the range of the
result type.

Integer and Decimal Operands
If one operand is an integer and the other is a decimal, the operation is performed in
decimal using a temporary copy of the integer which has been converted to a decimal
number with precision p and scale 0. pis 19 for a big integer, 11 for a large integer
and 5 for a small integer.

Two Decimal Operands
If both operands are decimal, the operation is performed in decimal. The result of any
decimal arithmetic operation is a decimal number with a precision and scale that are
dependent on the operation and the precision and scale of the operands. If the opera-
tion is addition or subtraction and the operands do not have the same scale, the opera-
tion is performed with a temporary copy of one of the operands. The copy of the shorter
operand is extended with trailing zeros so that its fractional part has the same number
of digits as the longer operand.

Chapter 3. Language Elements 121

Expressions

The result of a decimal operation must not have a precision greater than 31. The result
of decimal addition, subtraction, and multiplication is derived from a temporary result
which may have a precision greater than 31. If the precision of the temporary result is
not greater than 31, the final result is the same as the temporary result.

Decimal Arithmetic in SQL
The following formulas define the precision and scale of the result of decimal operations
in SQL. The symbols p and s denote the precision and scale of the first operand, and
the symbols p' and s' denote the precision and scale of the second operand.

Addition and Subtraction
The precision is min(31,max(p-s,p-s’) +max(s,s)+1). The scale of the result of addition
and subtraction is max (s,s)).

Multiplication
The precision of the result of multiplication is min (31,p+p)) and the scale is
min(31,s+s)).

Division
The precision of the result of division is 31. The scale is 31-p+s-s'. The scale must not
be negative.

Floating-Point Operands
If either operand of an arithmetic operator is floating-point, the operation is performed in
floating-point, the operands having first been converted to double-precision floating-
point numbers, if necessary. Thus, if any element of an expression is a floating-point
number, the result of the expression is a double-precision floating-point number.

An operation involving a floating-point number and an integer is performed with a tem-
porary copy of the integer which has been converted to double-precision floating-point.
An operation involving a floating-point number and a decimal number is performed with
a temporary copy of the decimal number which has been converted to double-precision
floating-point. The result of a floating-point operation must be within the range of
floating-point numbers.

User-defined Types as Operands
A user-defined type cannot be used with arithmetic operators even if its source data
type is numeric. To perform an arithmetic operation, create a function with the arith-
metic operator as its source. For example, if there were distinct types INCOME and
EXPENSES, both of which had DECIMAL(8,2) data types, then the following user-
defined function, REVENUE, could be used to subtract one from the other.

CREATE FUNCTION REVENUE (INCOME, EXPENSES)
RETURNS DECIMAL(8,2) SOURCE "-" (DECIMAL, DECIMAL)

Alternately, the - (minus) operator could be overloaded using a user-defined function to
subtract the new data types.

122 sSQL Reference

Expressions

CREATE FUNCTION "-" (INCOME, EXPENSES)
RETURNS DECIMAL(8,2) SOURCE "-" (DECIMAL, DECIMAL)

Datetime Operations and Durations
Datetime values can be incremented, decremented, and subtracted. These operations
may involve decimal numbers called durations. Following is a definition of durations and
a specification of the rules for datetime arithmetic.

A duration is a number representing an interval of time. There are four types of
durations:

Labeled Durations

labeled-duration:
function YEAR |
(expression)— | —YEARS
constant
column-name—— —MONTHS
host-variable— DAY

FMINUTE——
—MINUTES
—SECOND——
—SECONDS
—MICROSECOND—
—MICROSECONDS—

A labeled duration represents a specific unit of time as expressed by a number (which
can be the result of an expression) followed by one of the seven duration keywords:
YEARS, MONTHS, DAYS, HOURS, MINUTES, SECONDS, or MICROSECONDS?° .
The number specified is converted as if it were assigned to a DECIMAL(15,0) number.
A labeled duration can only be used as an operand of an arithmetic operator in which
the other operand is a value of data type DATE, TIME, or TIMESTAMP. Thus, the
expression HIREDATE + 2 MONTHS + 14 DAYS is valid, whereas the expression
HIREDATE + (2 MONTHS + 14 DAYS) is not. In both of these expressions, the labeled
durations are 2 MONTHS and 14 DAYS.

Date Duration
A date duration represents a number of years, months, and days, expressed as a
DECIMAL(8,0) number. To be properly interpreted, the number must have the format

29 Note that the singular form of these keywords is also acceptable: YEAR, MONTH, DAY, HOUR, MINUTE, SECOND, and MICRO-
SECOND.

30 The period in the format indicates a DECIMAL data type.

Chapter 3. Language Elements 123

Expressions

yyyymmdd., where yyyy represents the number of years, mm the number of months,
and dd the number of days. 30 The result of subtracting one date value from another, as
in the expression HIREDATE - BRTHDATE, is a date duration.

Time Duration

A time duration represents a number of hours, minutes, and seconds, expressed as a
DECIMAL(6,0) number. To be properly interpreted, the number must have the format
hhmmss., where hh represents the number of hours, mm the number of minutes, and
ss the number of seconds. 30 The result of subtracting one time value from another is a
time duration.

Timestamp duration

A timestamp duration represents a number of years, months, days, hours, minutes,
seconds, and microseconds, expressed as a DECIMAL(20,6) number. To be properly
interpreted, the number must have the format yyyymmddhhmmss.zzzzzz, where yyyy,
mm, dd, hh, mm, ss, and zzzzzz represent, respectively, the number of years, months,
days, hours, minutes, seconds, and microseconds. The result of subtracting one
timestamp value from another is a timestamp duration.

Datetime Arithmetic in SQL

The only arithmetic operations that can be performed on datetime values are addition
and subtraction. If a datetime value is the operand of addition, the other operand must
be a duration. The specific rules governing the use of the addition operator with
datetime values follow.

e If one operand is a date, the other operand must be a date duration or labeled
duration of YEARS, MONTHS, or DAYS.

e If one operand is a time, the other operand must be a time duration or a labeled
duration of HOURS, MINUTES, or SECONDS.

e If one operand is a timestamp, the other operand must be a duration. Any type of
duration is valid.

¢ Neither operand of the addition operator can be a parameter marker.

The rules for the use of the subtraction operator on datetime values are not the same
as those for addition because a datetime value cannot be subtracted from a duration,
and because the operation of subtracting two datetime values is not the same as the
operation of subtracting a duration from a datetime value. The specific rules governing
the use of the subtraction operator with datetime values follow.

¢ If the first operand is a date, the second operand must be a date, a date duration,
a string representation of a date, or a labeled duration of YEARS, MONTHS, or
DAYS.

e |If the second operand is a date, the first operand must be a date, or a string repre-
sentation of a date.

e If the first operand is a time, the second operand must be a time, a time duration, a
string representation of a time, or a labeled duration of HOURS, MINUTES, or
SECONDS.

124 sSQL Reference

Expressions

¢ |If the second operand is a time, the first operand must be a time, or string repre-
sentation of a time.

¢ |If the first operand is a timestamp, the second operand must be a timestamp, a
string representation of a timestamp, or a duration.

¢ |If the second operand is a timestamp, the first operand must be a timestamp or a
string representation of a timestamp.

¢ Neither operand of the subtraction operator can be a parameter marker.

Date Arithmetic
Dates can be subtracted, incremented, or decremented.

Subtracting Dates: The result of subtracting one date (DATE2) from another (DATE1L)
is a date duration that specifies the number of years, months, and days between the
two dates. The data type of the result is DECIMAL(8,0). If DATEL is greater than or
equal to DATE2, DATEZ2 is subtracted from DATEL. If DATEL is less than DATEZ2,
however, DATEL is subtracted from DATEZ2, and the sign of the result is made nega-
tive. The following procedural description clarifies the steps involved in the operation
result = DATE1 - DATE2.

If DAY(DATE2) <= DAY(DATEL)
then DAY (RESULT) = DAY(DATE1) — DAY(DATE2).

If DAY(DATE2) > DAY (DATEL)
then DAY (RESULT) = N + DAY(DATE1) — DAY (DATE2)
where N = the last day of MONTH(DATE2).
MONTH(DATE2) is then incremented by 1.

If MONTH(DATE2) <= MONTH(DATE1)
then MONTH(RESULT) = MONTH(DATEL) - MONTH(DATE2).

If MONTH(DATE2) > MONTH(DATE1)
then MONTH(RESULT) = 12 + MONTH(DATEL) — MONTH(DATE2).
YEAR(DATE2) is then incremented by 1.

YEAR(RESULT) = YEAR(DATEL) — YEAR(DATE2).

For example, the result of DATE('3/15/2000"') — '12/31/1999"' is 00000215. (or, a dura-
tion of 0 years, 2 months, and 15 days).

Incrementing and Decrementing Dates: The result of adding a duration to a date, or
of subtracting a duration from a date, is itself a date. (For the purposes of this opera-
tion, a month denotes the equivalent of a calendar page. Adding months to a date,
then, is like turning the pages of a calendar, starting with the page on which the date
appears.) The result must fall between the dates January 1, 0001 and December 31,
9999 inclusive.

If a duration of years is added or subtracted, only the year portion of the date is
affected. The month is unchanged, as is the day unless the result would be February
29 of a non-leap-year. In this case, the day is changed to 28, and a warning indicator in
the SQLCA is set to indicate the adjustment.

Chapter 3. Language Elements 125

Expressions

Similarly, if a duration of months is added or subtracted, only months and, if necessary,
years are affected. The day portion of the date is unchanged unless the result would be
invalid (September 31, for example). In this case, the day is set to the last day of the
month, and a warning indicator in the SQLCA is set to indicate the adjustment.

Adding or subtracting a duration of days will, of course, affect the day portion of the
date, and potentially the month and year.

Date durations, whether positive or negative, may also be added to and subtracted from
dates. As with labeled durations, the result is a valid date, and a warning indicator is
set in the SQLCA whenever an end-of-month adjustment is necessary.

When a positive date duration is added to a date, or a negative date duration is sub-
tracted from a date, the date is incremented by the specified number of years, months,
and days, in that order. Thus, DATEL + X, where X is a positive DECIMAL(8,0)
number, is equivalent to the expression:

DATEL + YEAR(X) YEARS + MONTH(X) MONTHS + DAY(X) DAYS.

When a positive date duration is subtracted from a date, or a negative date duration is
added to a date, the date is decremented by the specified number of days, months, and
years, in that order. Thus, DATEL - X, where X is a positive DECIMAL(8,0) number, is
equivalent to the expression:

DATEL — DAY(X) DAYS — MONTH(X) MONTHS — YEAR(X) YEARS.

When adding durations to dates, adding one month to a given date gives the same
date one month later unless that date does not exist in the later month. In that case,
the date is set to that of the last day of the later month. For example, January 28 plus
one month gives February 28; and one month added to January 29, 30, or 31 results in
either February 28 or, for a leap year, February 29.

Note: If one or more months is added to a given date and then the same number of
months is subtracted from the result, the final date is not necessarily the same
as the original date.

Time Arithmetic
Times can be subtracted, incremented, or decremented.

Subtracting Times: The result of subtracting one time (TIMEZ2) from another (TIMEL)
is a time duration that specifies the number of hours, minutes, and seconds between
the two times. The data type of the result is DECIMAL(6,0).

If TIMEL is greater than or equal to TIME2, TIME2 is subtracted from TIME1.

If TIMEL is less than TIMEZ2, however, TIMEL1 is subtracted from TIMEZ2, and the sign of
the result is made negative. The following procedural description clarifies the steps
involved in the operation result = TIME1 - TIME2.

If SECOND(TIME2) <= SECOND(TIMEL)
then SECOND(RESULT) = SECOND(TIME1) — SECOND(TIME2).

126 SQL Reference

Expressions

If SECOND(TIME2) > SECOND(TIME1)
then SECOND(RESULT) = 60 + SECOND(TIME1) — SECOND(TIME2).
MINUTE(TIME2) is then incremented by 1.

If MINUTE(TIME2) <= MINUTE(TIME1)
then MINUTE(RESULT) = MINUTE(TIMEL) — MINUTE(TIME2).

If MINUTE(TIME1) > MINUTE(TIME1)
then MINUTE(RESULT) = 60 + MINUTE(TIMEL) — MINUTE(TIME2).
HOUR(TIME2) is then incremented by 1.

HOUR(RESULT) = HOUR(TIME1) — HOUR(TIME2).

For example, the result of TIME('11:02:26") - '00:32:56" is 102930. (a duration of 10
hours, 29 minutes, and 30 seconds).

Incrementing and Decrementing Times: The result of adding a duration to a time, or
of subtracting a duration from a time, is itself a time. Any overflow or underflow of hours
is discarded, thereby ensuring that the result is always a time. If a duration of hours is
added or subtracted, only the hours portion of the time is affected. The minutes and
seconds are unchanged.

Similarly, if a duration of minutes is added or subtracted, only minutes and, if neces-
sary, hours are affected. The seconds portion of the time is unchanged.

Adding or subtracting a duration of seconds will, of course, affect the seconds portion of
the time, and potentially the minutes and hours.

Time durations, whether positive or negative, also can be added to and subtracted from
times. The result is a time that has been incremented or decremented by the specified
number of hours, minutes, and seconds, in that order. TIME1 + X, where “X" is a
DECIMAL(6,0) number, is equivalent to the expression:

TIMELl + HOUR(X) HOURS + MINUTE(X) MINUTES + SECOND(X) SECONDS

Note: Although the time '24:00:00' is accepted as a valid time, it is never returned as
the result of time addition or subtraction, even if the duration operand is zero
(e.g. time('24:00:00"+0 seconds = '00:00:00").

Timestamp Arithmetic
Timestamps can be subtracted, incremented, or decremented.

Subtracting Timestamps: The result of subtracting one timestamp (TS2) from
another (TS1) is a timestamp duration that specifies the number of years, months,
days, hours, minutes, seconds, and microseconds between the two timestamps. The
data type of the result is DECIMAL(20,6).

If TS1 is greater than or equal to TS2, TS2 is subtracted from TS1. If TS1 is less than
TS2, however, TS1 is subtracted from TS2 and the sign of the result is made negative.
The following procedural description clarifies the steps involved in the operation result =
TS1 - TS2:

Chapter 3. Language Elements 127

Expressions

If MICROSECOND(TS2) <= MICROSECOND(TS1)
then MICROSECOND(RESULT) = MICROSECOND(TS1) —
MICROSECOND(TS2) .

If MICROSECOND(TS2) > MICROSECOND(TS1)
then MICROSECOND(RESULT) = 1000000 +
MICROSECOND(TS1) — MICROSECOND(TS2)
and SECOND(TS2) is incremented by 1.

The seconds and minutes part of the timestamps are subtracted as specified in the
rules for subtracting times.

If HOUR(TS2) <= HOUR(TS1)
then HOUR(RESULT) = HOUR(TS1) — HOUR(TS2).

If HOUR(TS2) > HOUR(TS1)
then HOUR(RESULT) = 24 + HOUR(TS1) — HOUR(TS2)
and DAY(TS2) is incremented by 1.

The date part of the timestamps is subtracted as specified in the rules for subtracting
dates.

Incrementing and Decrementing Timestamps: The result of adding a duration to a
timestamp, or of subtracting a duration from a timestamp is itself a timestamp. Date and
time arithmetic is performed as previously defined, except that an overflow or underflow
of hours is carried into the date part of the result, which must be within the range of
valid dates. Microseconds overflow into seconds.

Precedence of Operations

Expressions within parentheses are evaluated first.31 When the order of evaluation is
not specified by parentheses, prefix operators are applied before multiplication and divi-
sion, and multiplication and division are applied before addition and subtraction. Opera-
tors at the same precedence level are applied from left to right.

1.10 * (Salary + Bonus) + Salary / :VAR3

o o o o

Figure 10.

31 Note that parentheses are also used in subselect statements, search conditions, and functions. However, they should not be used to
arbitrarily group sections within SQL statements.

128 sSQL Reference

Expressions

CASE Expressions

case-expression:
ELSE NULL

I—CASE—Esearched—when—clause END |
simple-when-clause—, |—ELSE—resuZt-expression—

searched-when-clause:

}—‘LWHEN—search—condition—THEN—Er‘esuZt—expr‘ession | i

NULL:

simple-when-clause:

F—express fon—¥iH EN—expression—TH EN—Er‘esuZt-expLion—,—l—{
NULL:

CASE expressions allow an expression to be selected based on the evaluation of one
or more conditions. In general, the value of the case-expression is the value of the
result-expression following the first (leftmost) case that evaluates to true. If no case
evaluates to true and the ELSE keyword is present then the result is the value of the
result-expression or NULL. If no case evaluates to true and the ELSE keyword is not
present then the result is NULL. Note that when a case evaluates to unknown (because
of NULLS), the case is not true and hence is treated the same way as a case that
evaluates to false.

If the CASE expression is in a VALUES clause, an IN predicate, a GROUP BY clause,
or an ORDER BY clause, the search-condition in a searched-when-clause cannot be a
quantified predicate, IN predicate using a fullselect, or an EXISTS predicate
(SQLSTATE 42625).

When using the simple-when-clause, the value of the expression prior to the first
WHEN keyword is tested for equality with the value of the expression following the
WHEN keyword. The data type of the expression prior to the first WHEN keyword must
therefore be comparable to the data types of each expression following the WHEN
keyword(s). The expression prior to the first WHEN keyword in a simple-when-clause
cannot include a function that is variant or has an external action (SQLSTATE 42845).

A result-expression is an expression following the THEN or ELSE keywords. There
must be at least one result-expression in the CASE expression (NULL cannot be speci-
fied for every case) (SQLSTATE 42625). All result-expressions must have compatible
data types (SQLSTATE 42804), where the attributes of the result are determined based
on the “Rules for Result Data Types” on page 82.

Examples:
o If the first character of a department number is a division in the organization, then
a CASE expression can be used to list the full name of the division to which each
employee belongs:

Chapter 3. Language Elements 129

Expressions

SELECT EMPNO, LASTNAME,
CASE SUBSTR(WORKDEPT,1,1)
WHEN 'A' THEN 'Administration'
WHEN 'B' THEN 'Human Resources'
WHEN 'C' THEN 'Accounting'
WHEN 'D' THEN 'Design'
WHEN 'E' THEN 'Operations'
END
FROM EMPLOYEE;

e The number of years of education are used in the EMPLOYEE table to give the
education level. A CASE expression can be used to group these and to show the
level of education.

SELECT EMPNO, FIRSTNME, MIDINIT, LASTNAME,
CASE
WHEN EDLEVEL < 15 THEN 'SECONDARY'
WHEN EDLEVEL < 19 THEN 'COLLEGE'
ELSE 'POST GRADUATE'
END

FROM EMPLOYEE

¢ Another interesting example of CASE statement usage is in protecting from division
by 0 errors. For example, the following code finds the employees who earn more
than 25% of their income from commission, but who are not fully paid on
commission:

SELECT EMPNO, WORKDEPT, SALARY+COMM FROM EMPLOYEE
WHERE (CASE WHEN SALARY=0 THEN NULL

ELSE COMM/SALARY

END) > 0.25;

¢ The following CASE expressions are the same:

SELECT LASTNAME,
CASE
WHEN LASTNAME = 'Haas' THEN 'President'

SELECT LASTNAME,
CASE LASTNAME
WHEN 'Haas' THEN 'President'

There are two scalar functions, NULLIF and COALESCE, that are specialized to handle
a subset of the functionality provided by CASE. Table 9 shows the equivalent
expressions using CASE or these functions.

Table 9 (Page 1 of 2). Equivalent CASE Expressions

Expression Equivalent Expression
CASE WHEN el=e2 THEN NULL ELSE el END NULLIF(el,e2)
CASE WHEN €1 IS NOT NULL THEN el ELSE e2 END COALESCE(el,e2)

130 sQL Reference

Expressions

Table 9 (Page 2 of 2). Equivalent CASE Expressions

Expression

Equivalent Expression

CASE WHEN el IS NOT NULL THEN el ELSE
COALESCE(e2,....eN) END

COALESCE(el,e2,...,.eN)

CAST Specifications

F—CAST—(

»

cast-specification:
expression—————AS—data-type

NULL:
parameter-marker—

»

Note:

LSCOPE—[typed- table-namej—‘
typed-view-name

) Q)

1 The SCOPE clause only applies to the REF data type.

The CAST specification returns the cast operand (the first operand) cast to the type
specified by the data type.

expression

If the cast operand is an expression (other than parameter marker or NULL), the
result is the argument value converted to the specified target data type.

The supported casts are shown in Table 4 on page 69 where the first column
represents the data type of the cast operand (source data type) and the data types
across the top represent the target data type of the CAST specification. If the cast
is not supported an error will occur (SQLSTATE 42846).

When casting character strings (other than CLOBS) to a character string with a dif-
ferent length, a warning (SQLSTATE 01004) is returned if truncation of other than
trailing blanks occurs. When casting graphic character strings (other than
DBCLOBS) to a graphic character string with a different length, a warning
(SQLSTATE 01004) is returned if truncation of other than trailing blanks occurs.
For BLOB, CLOB and DBCLOB cast operands, the warning is issued if any charac-
ters are truncated.

NULL

If the cast operand is the keyword NULL, the result is a null value that has the
specified data type.

parameter-marker
A parameter marker (specified as a question mark character) is normally consid-
ered an expression, but is documented separately in this case because it has a
special meaning. If the cast operand is a parameter-marker, the specified data type
is considered a promise that the replacement will be assignable to the specified
data type (using store assignment for strings). Such a parameter marker is consid-

Chapter 3. Language Elements 131

Expressions

ered a typed parameter marker. Typed parameter markers will be treated like any
other typed value for the purpose of function resolution, DESCRIBE of a select list
or for column assignment.

data type
The name of an existing data type. If the type name is not qualified, the SQL path
is used to do data type resolution. A data type that has an associated attributes
like length or precision and scale should include these attributes when specifying
data type (CHAR defaults to a length of 1 and DECIMAL defaults to a precision of
5 and scale of 0 if not specified). Restrictions on the supported data types are
based on the specified cast operand.

e For a cast operand that is an expression, see “Casting Between Data Types”
on page 67 for the target data types that are supported based on the data
type of the cast operand (source data type).

e For a cast operand that is the keyword NULL, any existing data type can be
used.

e For a cast operand that is a parameter marker, the target data type can be
any existing data type. If the data type is a user-defined type, the application
using the parameter marker will use the source data type of the user-defined

type.

SCOPE
When the data type is a reference type, a scope may be defined that identifies the
target table or target view of the reference.

typed-table-name
The name of a typed table. The table must already exist (SQLSTATE 42704).
The cast must be to data-type REF(S), where S is the type of typed-table-
name (SQLSTATE 428DM).

typed-view-name
The name of a typed view. The view must exist or have the same name as the
view being created that includes the cast as part of the view
definition(SQLSTATE 42704). The cast must be to data-type REF(S), where S
is the type of typed-view-name (SQLSTATE 428DM).

When numeric data is cast to character the result data type is a fixed-length character
string (see “CHAR” on page 195). When character data is cast to numeric, the result
data type depends on the type of number specified. For example, if cast to integer, it
would become a large integer (see “INTEGER” on page 242).

Examples:
e An application is only interested in the integer portion of the SALARY (defined as
decimal(9,2)) from the EMPLOYEE table. The following query, including the
employee number and the integer value of SALARY, could be prepared.

SELECT EMPNO, CAST(SALARY AS INTEGER) FROM EMPLOYEE

e Assume the existence of a distinct type called T_AGE that is defined on SMALLINT
and used to create column AGE in PERSONNEL table. Also assume the existence

132 sQL Reference

Expressions

of a distinct type called R_YEAR that is defined on INTEGER and used to create
column RETIRE_YEAR in PERSONNEL table. The following update statement
could be prepared.

UPDATE PERSONNEL SET RETIRE_YEAR =?
WHERE AGE = CAST(? AS T_AGE)

The first parameter is an untyped parameter marker that would have a data type of
R_YEAR, although the application will use an integer for this parameter marker.
This does not require the explicit CAST specification because it is an assignment.

The second parameter marker is a typed parameter marker that is cast as a dis-
tinct type T_AGE. This satisfies the requirment that the comparison must be per-
formed with compatible data types. The application will use the source data type
(which is SMALLINT) for processing this parameter marker.

Successful processing of this statement assumes that the function path includes
the schema name of the schema (or schemas) where the two distinct types are
defined.

Chapter 3. Language Elements 133

Expressions

Dereference Operations

dereference-operation:
|—scoped-ref—expression— —> —qttribute-name |

The dereference operation returns the named column value from the target table or a
subtable, or the target view or a subview, of the scoped reference expression from the
row with the matching object identifier column (OID column). See “CREATE TABLE” on
page 522 for further information on the OID column. The result can be null, regardless
of whether the column corresponding to the attribute-name can be null. If there is no
row in the target table with a matching OID, the result is null. The dereference opera-
tion takes precedence over all other operators.

scoped-ref-expression
An expression that is a reference type that has a scope (SQLSTATE 428DT). If
the expression is a host variable, parameter marker or other unscoped reference
type value, a CAST specification with a SCOPE clause is required to give the refer-
ence a scope.

attribute-name
Specifies the name of an attribute of the target type (column in the target table or
view) of the scoped-ref-expression (SQLSTATE 42704). The attribute-name must
be an attribute of the target type of the reference. The data type of the attribute
determines the data type of the result of the dereference operation. When the
dereference operation is used in a select list and is not included as part of an
expression, the attribute name becomes the result column name.

The authorization ID of the statement that uses a dereference operation must have
SELECT privilege on the target table of the scoped-ref-expression (SQLSTATE 42501).

Examples:

e Assume the existence of an EMPLOYEE table that contains a column called
DEPTREF which is a reference type scoped to a typed table based on a type that
includes the attribute DEPTNAME. The values of DEPTREF in the table
EMPLOYEE should correspond to the OID column values in the target table of
DEPTREF column.

SELECT EMPNO, DEPTREF->DEPTNAME FROM EMPLOYEE

134 sQL Reference

Predicates

Predicates
A predicate specifies a condition that is true, false, or unknown about a given row or
group.
The following rules apply to all types of predicates:
¢ All values specified in a predicate must be compatible.

e An expression used in a Basic, Quantified, IN, or BETWEEN predicate must not
result in a character string with a length attribute greater than 4000, a graphic
string with a length attribute greater than 2000, or a LOB string of any size.

e The value of a host variable may be null (that is, the variable may have a negative
indicator variable).

¢ The code page conversion of operands of predicates involving two or more oper-
ands, with the exception of LIKE, are done according to “Rules for String
Conversions” on page 85

e Use of a DATALINK value is limited to the NULL predicate.

A fullselect is a form of the SELECT statement which is described under Chapter 5,
“Queries” on page 315. A fullselect used in a predicate is also called a subquery.

Chapter 3. Language Elements 135

Basic Predicate

Basic Predicate

»—expression = expression >
<> 1)
<
>
<= —1)
>= —(1)
Note:
1 Other comparison operators are also supported32

A basic predicate compares two values.

If the value of either operand is null, the result of the predicate is unknown. Otherwise
the result is either true or false.

For values x and y:

Predicate Is True If and Only If...

X=y X is equal to y

X<>y X is not equal to y

X<y X is less than y

X>y X is greater than y

X>=y X is greater than or equal to y
X<=Yy X is less than or equal to y
Examples:

EMPNO="'528671"

SALARY < 20000

PRSTAFF <> :VARL

SALARY > (SELECT AVG(SALARY) FROM EMPLOYEE)

32 The following forms of the comparison operators are also supported in basic and quantified predicates; *=, *<, >, I=, I< and !>. In
addition, in code pages 437, 819, and 850, the forms -=, -<, and -> are supported.

All these product-specific forms of the comparison operators are intended only to support existing SQL that uses these operators,
and are not recommended for use when writing new SQL statements.

136 SQL Reference

Quantified Predicate

Quantified Predicate

expressionl = SOME (fullselectl) >
<) l:ANY
< ALL
>
<= —
o |

4 .
(—‘r—expresszonZ)— = SOM

= E llselect?)
Caned

Note:
1 Other comparison operators are also supporteds? .

A quantified predicate compares a value or values with a collection of values.

The fullselect must identify a number of columns that is the same as the number of
expressions specified to the left of the predicate operator (SQLSTATE 428C4). The
fullselect may return any number of rows.

When ALL is specified:

The result of the predicate is true if the fullselect returns no values or if the speci-
fied relationship is true for every value returned by the fullselect.

The result is false if the specified relationship is false for at least one value
returned by the fullselect.

The result is unknown if the specified relationship is not false for any values
returned by the fullselect and at least one comparison is unknown because of the
null value.

When SOME or ANY is specified:

The result of the predicate is true if the specified relationship is true for each value
of at least one row returned by the fullselect.

The result is false if the fullselect returns no rows or if the specified relationship is
false for at least one value of every row returned by the fullselect.

The result is unknown if the specified relationship is not true for any of the rows
and at least one comparison is unknown because of a null value.

Examples: Use the following tables when referring to the following examples.

Chapter 3. Language Elements 137

Quantified Predicate

TBLAB: TBLXY:
COLA COLB COLX COoLY
1 12 2 22
2 12 3 23
3 13
4 14
Figure 11.
Example 1

SELECT COLA FROM TBLAB
WHERE COLA = ANY(SELECT COLX FROM TBLXY)

Results in 2,3. The subselect returns (2,3). COLA in rows 2 and 3 equals at least one
of these values.

Example 2

SELECT COLA FROM TBLAB
WHERE COLA > ANY(SELECT COLX FROM TBLXY)

Results in 3,4. The subselect returns (2,3). COLA in rows 3 and 4 is greater than at
least one of these values.

Example 3

SELECT COLA FROM TBLAB
WHERE COLA > ALL(SELECT COLX FROM TBLXY)

Results in 4. The subselect returns (2,3). COLA in row 4 is the only one that is greater
than both these values.

Example 4

SELECT COLA FROM TBLAB
WHERE COLA > ALL(SELECT COLX FROM TBLXY
WHERE COLX<0)

Results in 1,2,3,4, null. The subselect returns no values. Thus, the predicate is true for
all rows in TBLAB.

Example 5

SELECT * FROM TBLAB
WHERE (COLA,COLB+10) = SOME (SELECT COLX, COLY FROM TBLXY)

The subselect returns all entries from TBLXY. The predicate is true for the subselect,
hence the result is as follows:

138 sQL Reference

Quantified Predicate

Example 6

SELECT » FROM TBLAB
WHERE (COLA,COLB) = ANY (SELECT COLX,COLY-10 FROM TBLXY)

The subselect returns COLX and COLY-10 from TBLXY. The predicate is true for the
subselect, hence the result is as follows:

Chapter 3. Language Elements 139

BETWEEN Predicate

BETWEEN Predicate

>—expression—|_—_,—B ETWEEN—expression—AND—expression——»
NOT

The BETWEEN predicate compares a value with a range of values.

The BETWEEN predicate:
valuel BETWEEN value2 AND value3

is equivalent to the search condition:

valuel >= value2 AND valuel <= value3

The BETWEEN predicate:
valuel NOT BETWEEN value2 AND value3
is equivalent to the search condition:

NOT(valuel BETWEEN value2 AND value3); that is,
valuel < value2 OR valuel > value3.

The values for the expressions in the BETWEEN predicate can have different code
pages. The operands are converted as if the above equivalent search conditions were
specified.

The first operand (expression) cannot include a function that is variant or has an
external action (SQLSTATE 426804).

Given a mixture of datetime values and string representations of datetime values, all
values are converted to the data type of the datetime operand.

Examples:

Example 1
EMPLOYEE.SALARY BETWEEN 20000 AND 40000

Results in all salaries between $20,000.00 and $40,000.00.

Example 2
SALARY NOT BETWEEN 20000 + :HV1 AND 40000

Assuming :HV1 is 5000, results in all salaries below $25,000.00 and above $40,000.00.
Example 3

Given the following:

140 sSQL Reference

BETWEEN Predicate

Table 10.

Expressions Type Code Page
HV_1 host variable 437

HV_2 host variable 437

Col 1 column 850

When evaluating the predicate:

:HV_1 BETWEEN :HV_2 AND COL_1

It will be interpreted as:

tHV_1 >= :HV_ 2
AND :HV_1 <= COL_1

The first occurrence of :HV_1 will remain in the application code page since it is being
compared to :HV_2 which will also remain in the application code page. The second
occurrence of :HV_1 will be converted to the database code page since it is being com-

pared to a column value.

Chapter 3. Language Elements 141

EXISTS Predicate

EXISTS Predicate

»—EXISTS—(fullselect)

v

The EXISTS predicate tests for the existence of certain rows.

The fullselect may specify any number of columns, and
e The result is true only if the number of rows specified by the fullselect is not zero.
e The result is false only if the number of rows specified is zero

e The result cannot be unknown.

Example:
EXISTS (SELECT * FROM TEMPL WHERE SALARY < 10000)

142 sSQL Reference

IN Predicate

IN Predicate

expressionl—m—IN (fullselectl) >
NOT .
E(—‘L_—express ion2:|—) —
expression———

(—‘L:expressionJ9)] IN—(fullselect2)
NOT

The IN predicate compares a value or values with a collection of values.

The fullselect must identify a number of columns that is the same as the number of
expressions specified to the left of the IN keyword (SQLSTATE 428C4). The fullselect
may return any number of rows.

e An IN predicate of the form:
expression IN expression
is equivalent to a basic predicate of the form:
expression = expression
¢ An IN predicate of the form:
expression IN (fullselect)
is equivalent to a quantified predicate of the form:
expression = ANY (fullselect)
¢ An IN predicate of the form:
expression NOT IN (fullselect)
is equivalent to a quantified predicate of the form:
expression <> ALL (fullselect)
¢ An IN predicate of the form:
expression IN (expressiona, expressionb, ..., expressionk)
is equivalent to:
expression = ANY (fullselect)
where fullselect in the values-clause form is:
VALUES (expressiona), (expressionb), ..., (expressionk)
¢ An IN predicate of the form:
(expressiona, expressionb,..., expressionk) IN (fullselect)
is equivalent to a quantified predicate of the form:

(expressiona, expressionb,..., expressionk) = ANY (fullselect)

Chapter 3. Language Elements 143

IN Predicate

The values for expression1 and expressionZ2 or the column of fullselectl in the IN predi-
cate must be compatible. Each expression3 value and its corresponding column of
fullselect2 in the IN predicate must be compatible. The “Rules for Result Data Types”
on page 82 can be used to determine the attributes of the result used in the compar-
ison.

The values for the expressions in the IN predicate (including corresponding columns of
a fullselect) can have different code pages. If a conversion is necessary then the code
page is determined by applying “Rules for String Conversions” on page 85 to the IN list
first and then to the predicate using the derived code page for the IN list as the second
operand.

Examples:

Example 1: The following evaluates to true if the value in the row under evaluation in
the DEPTNO column contains D01, BO1, or CO1:

DEPTNO IN ('DO1', 'BO1', 'CO1')

Example 2: The following evaluates to true only if the EMPNO (employee number) on
the left side matches the EMPNO of an employee in department E11:

EMPNO IN (SELECT EMPNO FROM EMPLOYEE WHERE WORKDEPT = 'E11')

Example 3: Given the following information, this example evaluates to true if the spe-
cific value in the row of the COL_1 column matches any of the values in the list:

Table 11. IN Predicate example

Expressions Type Code Page
CoL_1 column 850

HV_2 host variable 437

HV_3 host variable 437
CON_1 constant 850

When evaluating the predicate:
COL_1 IN (:HV_2, :HV_3, CON_4)

The two host variables will be converted to code page 850 based on the “Rules for
String Conversions” on page 85.

Example 4: The following evaluates to true if the specified year in EMENDATE (the
date an employee activity on a project ended) matches any of the values specified in
the list (the current year or the two previous years):

YEAR(EMENDATE) IN (YEAR(CURRENT DATE),
YEAR(CURRENT DATE - 1 YEAR),
YEAR(CURRENT DATE - 2 YEARS))

Example 5: The following evaluates to true if both ID and DEPT on the left side match
MANAGER and DEPTNUMB respectively for any row of the ORG table.

144 sQL Reference

IN Predicate

(ID, DEPT) IN (SELECT MANAGER, DEPTNUMB FROM ORG)

Chapter 3. Language Elements 145

LIKE Predicate

LIKE Predicate

v

»—match-express ion—l_—_l—LI KE—pattern-expression
NOT

»
>

v

|—ESCAPE—escape-express ionJ

The LIKE predicate searches for strings that have a certain pattern. The pattern is
specified by a string in which the underscore and percent sign may have special
meanings. Trailing blanks in a pattern are part of the pattern.

If the value of any of the arguments is null, the result of the LIKE predicate is unknown.

The values for match-expression, pattern-expression, and escape-expression are com-
patible string expressions. There are slight differences in the types of string expressions
supported for each of the arguments. The valid types of expressions are listed under
the description of each argument.

None of the expressions can yield a distinct type. However, it can be a function that
casts a distinct type to its source type.

match-expression
An expression that specifies the string that is to be examined to see if it conforms
to a certain pattern of characters.

The expression can be specified by any one of:

e a constant

e a special register

e a host variable (including a locator variable or a file reference variable)
e a scalar function

e a large object locator

e a column name

e an expression concatenating any of the above

pattern-expression
An expression that specifies the string that is to be matched.

The expression can be specified by any one of:

e a constant

e a special register

e a host variable

e a scalar function whose operands are any of the above
e an expression concatenating any of the above

with the restrictions that:

146 sSQL Reference

LIKE Predicate

¢ No element in the expression can be of type LONG VARCHAR, CLOB, LONG
VARGRAPHIC or DBCLOB. In addition it cannot be a BLOB file reference vari-
able.

¢ The actual length of pattern-expression cannot be more than 4000 bytes.

A simple description of the use of the LIKE pattern is that the pattern is used to
specify the conformance criteria for values in the match-expression where:

¢ The underscore character (_) represents any single character.
¢ The percent sign (%) represents a string of zero or more characters.

e Any other character represents itself.

If the pattern-expression needs to include either the underscore or the percent
character, the escape-expression is used to specify a character to preceed either
the underscore or percent character in the pattern.

A rigorous description of the use of the LIKE pattern follows. Note that this
description ignores the use of the escape-expression; its use is covered later.

Let m denote the value of match-expression and let p denote the value of
pattern-expression. The string p is interpreted as a sequence of the minimum
number of substring specifiers so each character of p is part of exactly one
substring specifier. A substring specifier is an underscore, a percent sign, or
any non-empty sequence of characters other than an underscore or a percent
sign.

The result of the predicate is unknown if m or p is the null value. Otherwise,
the result is either true or false. The result is true if m and p are both empty
strings or there exists a partitioning of m into substrings such that:

¢ A substring of mis a sequence of zero or more contiguous characters and
each character of mis part of exactly one substring.

¢ |If the nth substring specifier is an underscore, the nth substring of mis
any single character.

¢ |f the nth substring specifier is a percent sign, the nth substring of mis
any sequence of zero or more characters.

¢ If the nth substring specifier is neither an underscore nor a percent sign,
the nth substring of m is equal to that substring specifier and has the
same length as that substring specifier.

e The number of substrings of m is the same as the number of substring
specifiers.

It follows that if p is an empty string and m is not an empty string, the result is
false. Similarly, it follows that if m is an empty string and p is not an empty
string, the result is false.

The predicate m NOT LIKE p is equivalent to the search condition NOT (m
LIKE p).

Chapter 3. Language Elements 147

LIKE Predicate

When the escape-expression is specified, the pattern-expression must not contain
the escape character identified by the escape-expression except when immediately
followed by the escape character, the underscore character or the percent sign
character (SQLSTATE 22025).

If the match-expression is a character string in an MBCS database then it can
contain mixed data. In this case, the pattern can include both SBCS and MBCS
characters. The special characters in the pattern are interpreted as follows:

e An SBCS underscore refers to one SBCS character.
¢ A DBCS underscore refers to one MBCS character.

e A percent (either SBCS or DBCS) refers to a string of zero or more SBCS or
MBCS characters.

escape-expression

148 sSQL Reference

This optional argument is an expression that specifies a character to be used to
modify the special meaning of the underscore (_) and percent (%) characters in the
pattern-expression. This allows the LIKE predicate to be used to match values that
contain the actual percent and underscore characters.

The expression can be specified by any one of:

e a constant

e a special register

e a host variable

e a scalar function whose operands are any of the above
e an expression concatenating any of the above

with the restrictions that:

¢ No element in the expression can be of type LONG VARCHAR, CLOB, LONG
VARGRAPHIC or DBCLOB. In addition, it cannot be a BLOB file reference
variable.

e The result of the expression must be one SBCS or DBCS character or a
binary string containing exactly 1 byte (SQLSTATE 22019).

When escape characters are present in the pattern string, an underscore, percent
sign, or escape character can represent a literal occurrence of itself. This is true if
the character in question is preceded by an odd number of successive escape
characters. It is not true otherwise.

In a pattern, a sequence of successive escape characters is treated as follows:

Let S be such a sequence, and suppose that S is not part of a larger
sequence of successive escape characters. Suppose also that S contains a
total of n characters. Then the rules governing S depend on the value of n:

e If nis odd, S must be followed by an underscore or percent sign
(SLQSTATE 22025). S and the character that follows it represent (n-1)/2
literal occurrences of the escape character followed by a literal occurrence
of the underscore or percent sign.

LIKE Predicate

e If nis even, S represents n/2 literal occurrences of the escape character.
Unlike the case where n is odd, S could end the pattern. If it does not end
the pattern, it can be followed by any character (except, of course, an
escape character, which would violate the assumption that S is not part of
a larger sequence of successive escape characters). If S is followed by an
underscore or percent sign, that character has its special meaning.

Following is a illustration of the effect of successive occurrences of the escape
character (which, in this case, is the back slash (\)).

Pattern string Actual Pattern

\% A percent sign

\\% A back slash followed by zero or more arbitrary characters
\\% A back slash followed by a percent sign

The code page used in the comparison is based on the code page of the match-
expression value.

The match-expression value is never converted.

If the code page of pattern-expression is different from the code page of match-
expression, the value of pattern-expression is converted to the code page of
match-expression, unless either operand is defined as FOR BIT DATA (in which
case there is no conversion).

If the code page of escape-expression is different from the code page of match-
expression, the value of escape-expression is converted to the code page of
match-expression, unless either operand is defined as FOR BIT DATA (in which
case there is no conversion).

Examples

Search for the string 'SYSTEMS' appearing anywhere within the PROJNAME
column in the PROJECT table.

SELECT PROJNAME FROM PROJECT
WHERE PROJECT.PROJNAME LIKE '%SYSTEMS%'

Search for a string with a first character of 'J' that is exactly two characters long in
the FIRSTNME column of the EMPLOYEE table.

SELECT FIRSTNME FROM EMPLOYEE
WHERE EMPLOYEE.FIRSTNME LIKE 'J_‘

In the CORP_SERVERS table, search for a string in the LA_SERVERS column
that matches the value in the CURRENT SERVER special register.

SELECT LA_SERVERS FROM CORP_SERVERS
WHERE CORP_SERVERS.LA_SERVERS LIKE CURRENT SERVER

Retrieve all strings that begin with the sequence of characters '%_\' in column A of
the table T.

Chapter 3. Language Elements 149

LIKE Predicate

SELECT A FROM T WHERE T.A LIKE
"\%_\\%' ESCAPE '\'

¢ Use the BLOB scalar function, to obtain a one byte escape character which is com-
patible with the match and pattern data types (both BLOBS).

SELECT COLBLOB FROM TABLET
WHERE COLBLOB LIKE :pattern_var ESCAPE BLOB(X'OE')

150 sQL Reference

NULL Predicate

NULL Predicate

v

»—expression—IS NULL
Lyor-!

The NULL predicate tests for null values.

The result of a NULL predicate cannot be unknown. If the value of the expression is

null, the result is true. If the value is not null, the result is false. If NOT is specified, the
result is reversed.

Examples:
PHONENO IS NULL
SALARY IS NOT NULL

Chapter 3. Language Elements 151

TYPE Predicate

TYPE Predicate

I

| EIS] s |

| »—expression OF DYNAMIC TYPE—(—LL—J-typename) >
[ONLY

| A TYPE predicate compares the type of an expression with one or more user-defined
| structured types.

The dynamic type of an expression involving the dereferencing of a reference type is
the actual type of the referenced row from the target typed table or view. This may
differ from the target type of an expression involving the reference which is called the
static type of the expression.

If the value of expression is null, the result of the predicate is unknown. The result of
the predicate is true if the dynamic type of the expression is a subtype of one of the
structured types specified by typename, otherwise the result is false. If ONLY precedes
any typename the proper subtypes of that type are not considered.

| If typename is not qualified, it is resolved using the SQL path. Each typename must
| identify a user-defined type that is in the type hierarchy of the static type of expression
| (SQLSTATE 428DU).

The DEREF function should be used whenever the TYPE predicate has an expression
involving a reference type value. The static type for this form of expression is the target
type of the reference. See “DEREF” on page 217 for more information about the
DEREF function.

| Example:

A table hierarchy exists having root table EMPLOYEE of type EMP and subtable
MANAGER of type MGR. Another table ACTIVITIES includes a column called
WHO_RESPONSIBLE that is defined as REF(EMP) SCOPE EMPLOYEE. The following
is a type predicate that evaluates to true when a row corresponding to
WHO_RESPONSIBLE is a manager :

DEREF (WHO_RESPONSIBLE) IS OF DYNAMIC TYPE (MGR)

152 sQL Reference

Search Conditions

Search Conditions

search-condition:
| iy
| predicate
|—NOTJ |—(search-condition)J
— | |
O —predicote———— -
OR: NOT: (search-condition)

v

A search condition specifies a condition that is “true,” “false,” or “unknown” about a
given row.

The result of a search condition is derived by application of the specified logical opera-
tors (AND, OR, NOT) to the result of each specified predicate. If logical operators are
not specified, the result of the search condition is the result of the specified predicate.

AND and OR are defined in Table 12, in which P and Q are any predicates:

Table 12. Truth Tables for AND and OR

P Q P AND Q PORQ
True True True True
True False False True
True Unknown Unknown True
False True False True
False False False False
False Unknown False Unknown
Unknown True Unknown True
Unknown False False Unknown
Unknown Unknown Unknown Unknown

NOT(true) is false, NOT(false) is true, and NOT(unknown) is unknown.

Search conditions within parentheses are evaluated first. If the order of evaluation is not
specified by parentheses, NOT is applied before AND, and AND is applied before OR.
The order in which operators at the same precedence level are evaluated is undefined
to allow for optimization of search conditions.

Chapter 3. Language Elements 153

Search Conditions

MAJPROJ = 'MA2100' AND DEPTNO = 'D11'OR DEPTNO = 'B03'OR DEPTNO = 'E11'

MAJPROJ = 'MA2100' AND (DEPTNO ='D11'OR DEPTNO = 'B03) OR DEPTNO = E11'

Figure 12. Search Conditions Evaluation Order

154 sQL Reference

Chapter 4. Functions

A function is an operation that is denoted by a function name followed by a pair of
parentheses enclosing the specification of arguments (there may be no arguments).

Functions are classified as column functions, scalar functions or table functions. The
argument of a column function is a collection of like values. It returns a single value
(possibly null), and can be specified in an SQL statement where an expression can be
used. Additional restrictions apply to the use of column functions as specified in
“Column Functions” on page 170. The argument(s) of a scalar function are individual
scalar values, which can be of different types and have different meanings. It returns a
single value (possibly null), and can be specified in an SQL statement wherever an
expression can be used. The argument(s) of a table function are individual scalar
values, which can be of different types and have different meanings. It returns a table
to the SQL statement, and can be specified only within the FROM clause of a SELECT.
Additional restrictions apply to the use of table functions as specified in “from-clause”
on page 321.

Table 13 on page 156 shows the functions that are supported. The "Function Name"
combined with the "Schema" give the fully qualified name of the function. "Description”
briefly describes what the function does. "Input Parameters" gives the data type that is
expected for each argument during function invocation. Many of the functions include
variations of the input parameters allowing either different data types or different
numbers of arguments to be used. The combination of schema, function name and
input parameters make up a function signature. Each function signature may return a
value of a different type which is shown in the "Returns" columns. There are some dis-
tinctions that should be understood about the input parameter types. In some cases the
type is specified as a specific built-in data type and in other cases it will use a general
variable like any-numeric-type. When a specific data type is listed, this means that an
exact match will only occur with the specified data type. When a general variable is
used, each of the data types associated with that variable will result in an exact match.
This distinction impacts function selection as described in “Function Resolution” on
page 112.

There may be additional functions available because user-defined functions may be
created in different schemas using one of these function signatures as a source (see
"CREATE FUNCTION" for details) or users may create external functions using their
own programs.

© Copyright IBM Corp. 1993, 1998 155

Table 13 (Page 1 of 13). Supported Functions

Schema | Description
Function name Input Parameters Returns
SYSFUN | Returns the absolute value of the argument.
SMALLINT SMALLINT
ABS or ABSVAL INTEGER INTEGER
BIGINT BIGINT
DOUBLE DOUBLE
SYSFUN Returns the arccosine of the argument as an angle expressed in radians.
ACOS DOUBLE DOUBLE
SYSFUN Returns the ASCII code value of the leftmost character of the argument as an
integer.
ASCII CHAR INTEGER
VARCHAR INTEGER
CLOB(1M) INTEGER
SYSFUN | Returns the arcsine of the argument as an angle, expressed in radians.
ASIN DOUBLE | pousLe
SYSFUN | Returns the arctangent of the argument as an angle, expressed in radians.
ATAN DOUBLE | pousLE
SYSFUN Returns the arctangent of x and y coordinates, specified by the first and
ATAN2 second arguments respectively, as an angle, expressed in radians.
DOUBLE, DOUBLE | DOUBLE
AVG SYSIBM Returns the average of a set of numbers (column function).
numeric-type 4 | numeric-type 1
SYSIBM Returns a 64 bit integer representation of a number or character string in the
form of an integer constant.
BIGINT numeric-type BIGINT
VARCHAR BIGINT
SYSIBM | Casts from source type to BLOB, with optional length.
BLOB string-type BLOB
string-type, INTEGER BLOB
SYSFUN | Returns the smallest integer greater than or equal to the argument.
SMALLINT SMALLINT
CEIL or CEILING INTEGER INTEGER
BIGINT BIGINT
DOUBLE DOUBLE

156 sSQL Reference

Table 13 (Page 2 of 13). Supported Functions

Schema | Description
Function name Input Parameters Returns

SYSIBM | Returns a string representation of the source type.

character-type CHAR

character-type, INTEGER CHAR(integer)

datetime-type CHAR

datetime-type, keyword 2 CHAR
CHAR

SMALLINT CHAR(6)

INTEGER CHAR(11)

BIGINT CHAR(20)

DECIMAL CHAR(2+precision)

DECIMAL, VARCHAR CHAR(2+precision)
CHAR SYSFUN Returns a character string representation of a floating-point number.

DOUBLE | cHAR(4)

SYSFUN Returns the character that has the ASCII code value specified by the argu-

ment. The value of the argument should be between 0 and 255; otherwise, the

CHR return value is null.

INTEGER | cHar®)
CLOB SYSIBM | Casts from source type to CLOB, with optional length.

character-type CLOB

character-type, INTEGER CLOB

SYSIBM | Returns the first non-null argument in the set of arguments.
COALESCE 3

any-type, any-union-compatible-type, ... | any-type

SYSIBM | Returns the concatenation of 2 string arguments.
CONCAT or || - - - -

string-type, compatible-string-type | max string-type

SYSFUN Returns the cosine of the argument, where the argument is an angle expressed
cos in radians.

DOUBLE | pousLE

SYSFUN Returns the cotangent of the argument, where the argument is an angle
coT expressed in radians.

DOUBLE | pousLE

SYSIBM Returns the count of the number of rows in a set of rows or values (column
COUNT function).

any-builtin-type 4 | INTEGER

SYSIBM Returns the number of rows or values in a set of rows or values (column func-
COUNT BIG tion). Result can be greater than the maximum value of integer.

any-builtin-type 4 | DECIMAL(31,0)

SYSIBM Returns a date from a single input value.

DATE DATE
DATE TIMESTAMP DATE

DOUBLE DATE

VARCHAR DATE

Chapter 4. Functions 157

Table 13 (Page 3 of 13). Supported Functions

Schema | Description
Function name Input Parameters Returns
SYSIBM | Returns the day part of a value.
VARCHAR INTEGER
DAY DATE INTEGER
TIMESTAMP INTEGER
DECIMAL INTEGER
SYSFUN Returns a mixed case character string containing the name of the day (e.g.

Friday) for the day portion of the argument based on what the locale was when
db2start was issued.

DAYNAME VARCHAR(26) VARCHAR(100)
DATE VARCHAR(100)
TIMESTAMP VARCHAR(100)
SYSFUN Returns the day of the week in the argument as an integer value in the range
1-7, where 1 represents Sunday.
DAYOFWEEK VARCHAR(26) INTEGER
DATE INTEGER
TIMESTAMP INTEGER
SYSFUN Returns the day of the year in the argument as an integer value in the range
1-366.
DAYOFYEAR VARCHAR(26) INTEGER
DATE INTEGER
TIMESTAMP INTEGER
SYSIBM Returns an integer representation of a date.
VARCHAR INTEGER
DAYS
TIMESTAMP INTEGER
DATE INTEGER
SYSIBM | Casts from source type to DBCLOB, with optional length.
DBCLOB graphic-type DBCLOB
graphic-type, INTEGER DBCLOB
SYSIBM | Returns decimal representation of a number, with optional precision and scale.
numeric-type DECIMAL
DECIMAL or DEC
numeric-type, INTEGER DECIMAL
numeric-type INTEGER, INTEGER DECIMAL
SYSIBM Returns decimal representation of a character string, with optional precision,
scale, and decimal-character.
VARCHAR DECIMAL
DECIMAL or DEC VARCHAR, INTEGER DECIMAL
VARCHAR, INTEGER, INTEGER DECIMAL
VARCHAR, INTEGER, INTEGER, VARCHAR DECIMAL

158 sQL Reference

Table 13 (Page 4 of 13). Supported Functions

Schema Description
Function name Input Parameters | Returns

SYSFUN Returns the number of degrees converted from the argument in expressed in
DEGREES radians.

DOUBLE | pousLE

SYSIBM Returns an instance of the target type of the reference type argument.
DEREF REF(any-structured-type) with defined scope any-structured-type (same

as input target type)
SYSFUN Returns the difference between the sounds of the words in the two argument
strings as determined using the SOUNDEX function. A value of 4 means the

DIFFERENCE strings sound the same.

VARCHAR, VARCHAR | INTEGER

GITS SYSIBM | Returns the character string representation of a number.

DIGIT.

DECIMAL | chHar

SYSIBM | Returns the comment attribute of a datalink value.
DLCOMMENT

DATALINK | VARCHAR(254)

SYSIBM | Returns the link type attribute of a datalink value.
DLLINKTYPE

DATALINK | VARCHAR(4)

SYSIBM | Returns the complete URL (including access token) of a datalink value.
DLURLCOMPLETE

DATALINK | VARCHAR

SYSIBM | Returns the path and file name (including access token) of a datalink value.
DLURLPATH

DATALINK | VARCHAR

SYSIBM | Returns the path and file name (without any access token) of a datalink value.
DLURLPATHONLY

DATALINK | VARCHAR

SYSIBM | Returns the scheme from the URL attribute of a datalink value.
DLURLSCHEME

DATALINK | VARCHAR

SYSIBM | Returns the server from the URL attribute of a datalink value.
DLURLSERVER

DATALINK | VARCHAR

SYSIBM Builds a datalink value from a data-location argument, link type argument and

optional comment-string argument.

DLVALUE VARCHAR DATALINK

VARCHAR, VARCHAR DATALINK

VARCHAR, VARCHAR, VARCHAR DATALINK
DOUBLE or SYSIBM Returns the floating-point representation of a number.
DOUBLE_PRECISION numeric-type | DOUBLE

SYSFUN Returns the floating-point number corresponding to the character string repre-
DOUBLE sentation of a number. Leading and trailing blanks in argument are ignored.

VARCHAR | DOUBLE

SYSIBM | Returns the operational state of particular event monitor.
EVENT_MON_STATE

VARCHAR | INTEGER
Exp SYSFUN | Returns the exponential function of the argument.

DOUBLE | pousLe

Chapter 4. Functions 159

Table 13 (Page 5 of 13). Supported Functions

Schema Description
Function name Input Parameters Returns
FLOAT SYSIBM Same as DOUBLE.
SYSFUN Returns the largest integer less than or equal to the argument.
SMALLINT SMALLINT
FLOOR INTEGER INTEGER
BIGINT BIGINT
DOUBLE DOUBLE
SYSIBM Returns a bit data character string that is unique compared to any other exe-
GENERATE_UNIQUE cution of the same function.
no argument CHAR(13) FOR BIT DATA
SYSIBM Cast from source type to GRAPHIC, with optional length.
GRAPHIC graphic-type GRAPHIC
graphic-type, INTEGER GRAPHIC
SYSIBM Used with grouping-sets and super-groups to indicate sub-total rows generated
by a grouping set (column function). The value returned is:
1 The value of the argument in the returned row is a null value and the
GROUPING row was generated for a grouping set. This generated row provides a
sub-total for a grouping set.
0 otherwise.
any-type | SMALLINT
SYSIBM | Returns the hexadecimal representation of a value.
HEX any-builtin-type | VARCHAR
SYSIBM | Returns the hour part of a value.
VARCHAR INTEGER
HOUR TIME INTEGER
TIMESTAMP INTEGER
DECIMAL INTEGER
SYSFUN Returns a string where argument3 bytes have been deleted from argument1
beginning at argument2 and where argument4 has been inserted into
argument1 beginning at argument2.
INSERT VARCHAR, INTEGER, INTEGER, VARCHAR VARCHAR
CLOB(1M), INTEGER, INTEGER, CLOB(1M) CLOB(1M)
BLOB(1M), INTEGER, INTEGER, BLOB(1M) BLOB(1M)
SYSIBM Returns the integer representation of a number.
INTEGER or INT numeric-type INTEGER
VARCHAR INTEGER
SYSFUN Returns an integer value representing the number of days from January 1,
4712 B.C. (the start of the Julian date calendar) to the date value specified in
the argument.
JULIAN_DAY VARCHAR(26) INTEGER
DATE INTEGER
TIMESTAMP INTEGER

160 sSQL Reference

Table 13 (Page 6 of 13). Supported Functions

Function name

Schema

Description

Input Parameters

Returns

SYSFUN Returns a string in which all the characters have been converted to lower case
characters. LCASE will only handle characters in the invariant set. Therefore,
LCASE(UCASE(string)) will not necessarily return the same result as
LCASE LCASE(string).
VARCHAR VARCHAR
CLOB(1M) CLOB(1M)
SYSFUN Returns a string consisting of the leftmost argument2 bytes in argument1.
VARCHAR, INTEGER VARCHAR
LEFT
CLOB(1M), INTEGER CLOB(1M)
BLOB(1M), INTEGER BLOB(1M)
SYSIBM Returns the length of the operand in bytes (except for double byte string types
LENGTH which return the length in characters).
any-builtin-type | INTEGER
SUSFUN Returns the natural logarithm of the argument (same as LOG).
LN
DOUBLE | pousLE
SYSFUN Returns the starting position of the first occurrence of argumentl1 within
argument2. If the optional third argument is specified, it indicates the character
position in argument2 at which the search is to begin. If argument1 is not found
within argument2, the value 0 is returned.
VARCHAR, VARCHAR INTEGER
LOCATE VARCHAR, VARCHAR, INTEGER INTEGER
CLOB(1M), CLOB(1M) INTEGER
CLOB(1M), CLOB(1M), INTEGER INTEGER
BLOB(1M), BLOB(1M) INTEGER
BLOB(1M), BLOB(1M), INTEGER INTEGER
LOG SYSFUN | Returns the natural logarithm of the argument (same as LN).
DOUBLE | pousLE
| Returns the base 10 logarithm of the argument.
LOG10
DOUBLE | pousLE
SYSIBM | Returns a long string.

LONG_VARCHAR

character-type

| LONG VARCHAR

SYSIBM | Casts from source type to LONG_VARGRAPHIC.
LONG_VARGRAPHIC -
graphic-type | LONG VARGRAPHIC
SYSFUN | Returns the characters of the argument with leading blanks removed.
LTRIM VARCHAR VARCHAR
CLOB(1M) CLOB(1M)
SYSIBM | Returns the maximum value in a set of values (column function).
MAX

any-builtin-type 5

same as input type

Chapter 4. Functions

161

Table 13 (Page 7 of 13). Supported Functions

Schema | Description
Function name Input Parameters Returns
SYSIBM | Returns the microsecond (time-unit) part of a value.
VARCHAR INTEGER
MICROSECOND
TIMESTAMP INTEGER
DECIMAL INTEGER
SYSFUN Returns an integer value in the range 0 to 86400 representing the number of
seconds between midnight and time value specified in the argument.
MIDNIGHT _SECONDS VARCHAR(26) INTEGER
TIME INTEGER
TIMESTAMP INTEGER
SYSIBM | Returns the minimum value in a set of values (column function).
MIN any-builtin-type 5 same as input type
SYSIBM | Returns the minute part of a value.
VARCHAR INTEGER
MINUTE TIME INTEGER
TIMESTAMP INTEGER
DECIMAL INTEGER
SYSFUN Returns the remainder (modulus) of argument1 divided by argument2. The
result is negative only if argument1 is negative.
MOD SMALLINT, SMALLINT SMALLINT
INTEGER, INTEGER INTEGER
BIGINT, BIGINT BIGINT
SYSIBM Returns the month part of a value.
VARCHAR INTEGER
MONTH DATE INTEGER
TIMESTAMP INTEGER
DECIMAL INTEGER
SYSFUN Returns a mixed case character string containing the name of month (e.g.
January) for the month portion of the argument that is a date or timestamp,
based on what the locale was when the database was started.
MONTHNAME VARCHAR(26) VARCHAR(100)
DATE VARCHAR(100)
TIMESTAMP VARCHAR(100)
SYSIBM Returns the node number of the row. The argument is a column name within a
NODENUMBER 3 table.
any-type | INTEGER
NULLIF 3 SYSIBM Returns NULL if the arguments are equal, else returns the first argument.
any-type 5, any-comparable-type® | any-type
SYSIBM Returns the partitioning map index (0 to 4095) of the row. The argument is a
PARTITION 3 column name within a table.
any-type | INTEGER

162 sSQL Reference

Table 13 (Page 8 of 13). Supported Functions

Schema | Description
Function name Input Parameters | Returns
SYSIBM | Returns the position at which one string is contained in another.
POSSTR
string-type, compatible-string-type | INTEGER
SYSFUN | Returns the value of argument1 to the power of argument2.
INTEGER, INTEGER INTEGER
POWER BIGINT, BIGINT BIGINT
DOUBLE, INTEGER DOUBLE
DOUBLE, DOUBLE DOUBLE
SYSFUN Returns an integer value in the range 1 to 4 representing the quarter of the
year for the date specified in the argument.
QUARTER VARCHAR(26) INTEGER
DATE INTEGER
TIMESTAMP INTEGER
SYSFUN Returns the number of radians converted from argument which is expressed in
RADIANS degrees.
DOUBLE | pousLE
SYSIBM Raises an error in the SQLCA. The sqlstate returned is indicated by
RAISE ERROR argument1. The second argument contains any text to be returned.
VARCHAR, VARCHAR | any-type 6
SYSFUN Returns a random floating point value between 0 and 1 using the argument as
the optional seed value.
RAND no argument required DOUBLE
INTEGER DOUBLE
REAL SYSIBM | Returns the single-precision floating-point representation of a number.
numeric-type REAL
SYSFUN | Returns a character string composed of argumentl repeated argument2 times.
VARCHAR, INTEGER VARCHAR
REPEAT
CLOB(1M), INTEGER CLOB(1M)
BLOB(1M), INTEGER BLOB(1M)
SYSFUN Replaces all occurrences of argument2 in argumentl with argument3.
VARCHAR, VARCHAR, VARCHAR VARCHAR
REPLACE
CLOB(1M), CLOB(1M), CLOB(1M) CLOB(1M)
BLOB(1M), BLOB(1M), BLOB(1M) BLOB(1M)
SYSFUN Returns a string consisting of the rightmost argument2 bytes in argument1.
VARCHAR, INTEGER VARCHAR
RIGHT
CLOB(1M), INTEGER CLOB(1M)
BLOB(1M), INTEGER BLOB(1M)

Chapter 4. Functions 163

Table 13 (Page 9 of 13). Supported Functions

Schema Description
Function name Input Parameters Returns
SYSFUN Returns the first argument rounded to argument2 places right of the decimal
point. If argument2 is negative, argument1 is rounded to the absolute value of
argument?2 places to the left of the decimal point.
ROUND INTEGER, INTEGER INTEGER
BIGINT, INTEGER BIGINT
DOUBLE, INTEGER DOUBLE
SYSFUN | Returns the characters of the argument with trailing blanks removed.
RTRIM VARCHAR VARCHAR
CLOB(1M) CLOB(1M)
SYSIBM | Returns the second (time-unit) part of a value.
VARCHAR INTEGER
SECOND TIME INTEGER
TIMESTAMP INTEGER
DECIMAL INTEGER
SYSFUN Returns an indicator of the sign of the argument. If the argument is less than
zero, -1 is returned. If argument equals zero, 0 is returned. If argument is
greater than zero, 1 is returned.
SIGN SMALLINT SMALLINT
INTEGER INTEGER
BIGINT BIGINT
DOUBLE DOUBLE
SYSFUN Returns the sine of the argument, where the argument is an angle expressed
SIN in radians.
DOUBLE DOUBLE
SYSIBM Returns the small integer representation of a number.
SMALLINT numeric-type SMALLINT
VARCHAR SMALLINT
SYSFUN Returns a 4 character code representing the sound of the words in the argu-
ment. The result can be used to compare with the sound of other strings. See
SOUNDEX also DIFFERENCE.
VARCHAR | cHar@)
SYSFUN | Returns a character string consisting of argument1 blanks.
SPACE
INTEGER | VARCHAR
SYSFUN | Returns the square root of the argument.
SQRT
DOUBLE | pousLe
SYSIBM | Returns the standard deviation of a set of numbers (column function).
STDDEV
DOUBLE | pousLe

164 sSQL Reference

Table 13 (Page 10 of 13). Supported Functions

Schema Description
Function name Input Parameters Returns
SYSIBM Returns a substring of a string argument1 starting at argument2 for argument3
characters. If argument3 is not specified, the remainder of the string is
SUBSTR assumed.
string-type, INTEGER string-type
string-type, INTEGER, INTEGER string-type
s SYSIBM Returns the sum of a set of numbers (column function).
UM
numeric-type 4 max-numeric-type 1
SYSIBM Returns an unqualified nhame of a table or view based on the object name
given in argumentl and the optional schema name given in argument2. It is
TABLE_NAME used to resolve aliases.
VARCHAR VARCHAR(18)
VARCHAR, VARCHAR VARCHAR(18)
SYSIBM Returns the schema name portion of the two part table or view name given by

TABLE_SCHEMA

the object name in argumentl and the optional
is used to resolve aliases.

schema name in argument2. It

VARCHAR CHAR(8)
VARCHAR, VARCHAR CHAR(8)
SYSFUN Returns the tangent of the argument, where the argument is an angle
TAN expressed in radians.
DOUBLE DOUBLE
SYSIBM Returns a time from a value.
TIME TIME
TIME
TIMESTAMP TIME
VARCHAR TIME
SYSIBM Returns a timestamp from a value or a pair of values.
TIMESTAMP TIMESTAMP
VARCHAR TIMESTAMP
TIMESTAMP VARCHAR, VARCHAR TIMESTAMP
VARCHAR, TIME TIMESTAMP
DATE, VARCHAR TIMESTAMP
DATE, TIME TIMESTAMP
SYSFUN Returns a timestamp value based on a date, time, or timestamp argument. If
the argument is a date, it inserts zero for all the time elements. If the argument
is a time, it inserts the value of CURRENT DATE for the date elements and
zero for the fractional time element.
TIMESTAMP_ISO DATE TIMESTAMP
TIME TIMESTAMP
TIMESTAMP TIMESTAMP
VARCHAR(26) TIMESTAMP

Chapter 4. Functions 165

Table 13 (Page 11 of 13). Supported Functions

Schema Description
Function name Input Parameters Returns
SYSFUN Returns an estimated number of intervals of type argument1 based on the dif-
ference between two timestamps. The second argument is the result of sub-
tracting two timestamp types and converting the result to CHAR. Valid values
of interval(argument1) are:
1 Fractions of a second
2 Seconds
TIMESTAMPDIFF 4 Minutes
8 Hours
16 Days
32 Weeks
64 Months
128 Quarters
256 Years
INTEGER, CHAR(22) INTEGER
SYSIBM Returns a string in which one or more characters may have been translated
into other characters.
CHAR CHAR
VARCHAR VARCHAR
CHAR, VARCHAR, VARCHAR CHAR
VARCHAR, VARCHAR, VARCHAR VARCHAR
TRANSLATE CHAR, VARCHAR, VARCHAR, VARCHAR CHAR
VARCHAR, VARCHAR, VARCHAR, VARCHAR VARCHAR
GRAPHIC, VARGRAPHIC, VARGRAPHIC GRAPHIC
VARGRAPHIC, VARGRAPHIC, VARGRAPHIC VARGRAPHIC
GRAPHIC, VARGRAPHIC, VARGRAPHIC, VARGRAPHIC GRAPHIC
VARGRAPHIC, VARGRAPHIC, VARGRAPHIC, VARGRAPHIC
VARGRAPHIC
SYSFUN Returns argument1 truncated to argument2 places right of the decimal point. If
argument2 is negative, argument1 is truncated to the absolute value of
argument?2 places to the left of the decimal point.
TRUNC or TRUNCATE INTEGER, INTEGER INTEGER
BIGINT, INTEGER BIGINT
DOUBLE, INTEGER DOUBLE
SYSIBM Returns the internal data type identifier of the dynamic data type of the argu-
TYPE ID 3 ment. Note that the result of this function is not portable across databases.
any-structured-type | INTEGER
SYSIBM | Returns the unqualified name of the dynamic data type of the argument.
TYPE_NAME 3
any-structured-type | VARCHAR(18)
SYSIBM | Returns the schema name of the dynamic type of the argument.
TYPE_SCHEMA 3
any-structured-type | CHAR(8)
SYSFUN Returns a string in which all the characters have been converted to upper case
UCASE characters.
VARCHAR | VARCHAR
VALUE 3 SYSIBM Same as COALESCE.

166 SQL Reference

Table 13 (Page 12 of 13). Supported Functions

Function name

Schema Description

Input Parameters

Returns

SYSIBM Returns a VARCHAR representation of the first argument. If a second argu-
ment is present, it specifies the length of the result.

VARCHAR character-type VARCHAR
character-type, INTEGER VARCHAR
datetime-type VARCHAR
SYSIBM Returns a VARGRAPHIC representation of the first argument. If a second argu-

ment is present, it specifies the length of the result.

VARGRAPHIC graphic-type VARGRAPHIC
graphic-type, INTEGER VARGRAPHIC
VARCHAR VARGRAPHIC

VARIANCE or VAR SYSIBM Returns the variance of a set of numbers (column function).

DOUBLE DOUBLE
SYSFUN Returns the week of the year in of the argument as an integer value in the
range of 1-54.

WEEK VARCHAR(26) INTEGER
DATE INTEGER
TIMESTAMP INTEGER
SYSIBM Returns the year part of a value.

VARCHAR INTEGER

YEAR DATE INTEGER
TIMESTAMP INTEGER
DECIMAL INTEGER
SYSIBM | Adds two numeric operands.

numeric-type, numeric-type

| max numeric-type

SYSIBM | Unary plus operator.

numeric-type

| numeric-type

SYSIBM | Datetime plus operator.

DATE, DECIMAL(8,0) DATE
TIME, DECIMAL(6,0) TIME
TIMESTAMP, DECIMAL(20,6) TIMESTAMP
DECIMAL(8,0), DATE DATE
DECIMAL(6,0), TIME TIME
DECIMAL(20,6), TIMESTAMP TIMESTAMP

datetime-type, DOUBLE, labeled-duration-code

datetime-type

SYSIBM | Subtracts two numeric operands.

numeric-type, numeric-type

| max numeric-type

SYSIBM | Unary minus operator.

numeric-type

| numeric-type 1

Chapter 4. Functions

167

Table 13 (Page 13 of 13). Supported Functions

Function name

“

Schema | Description

Input Parameters Returns
SYSIBM | Datetime minus operator.

DATE, DATE DECIMAL(8,0)
TIME, TIME DECIMAL(6,0)

TIMESTAMP, TIMESTAMP

DECIMAL(20,6)

DATE, VARCHAR

DECIMAL(8,0)

TIME, VARCHAR

DECIMAL(6,0)

TIMESTAMP, VARCHAR

DECIMAL(20,6)

VARCHAR, DATE

DECIMAL(8,0)

VARCHAR, TIME

DECIMAL(6,0)

VARCHAR, TIMESTAMP

DECIMAL(20,6)

DATE, DECIMAL(8,0)

DATE

TIME, DECIMAL(6,0)

TIME

TIMESTAMP, DECIMAL(20,6)

TIMESTAMP

datetime-type, DOUBLE, labeled-duration-code

datetime-type

ke

SYSIBM | Multiplies two numeric operands.

numeric-type, numeric-type

max numeric-type

ap

SYSIBM | Divides two numeric operands.

numeric-type, numeric-type

max numeric-type

u”n

SYSIBM | Same as CONCAT.

Notes

¢ References to string data types that are not qualified by a length should be assumed to support the maximum
length for the data type (e.g. VARCHAR means VARCHAR(4000)).

¢ References to a DECIMAL data type without precision and scale should be assumed to allow any supported
precision and scale.

168 sSQL Reference

Key to Table

any-builtin-type Any data type that is not a distinct type.

any-type Any type defined to the database.

any-structured-type Any user-defined structured type defined to the database.

any-comparable-type Any type that is comparable with other argument types as defined in “Assignments and
Comparisons” on page 70.

any-union-compatible-type Any type that is compatible with other argument types as defined in “Rules for Result
Data Types” on page 82.

character-type Any of the character string types: CHAR, VARCHAR, LONG VARCHAR, CLOB.

compatible-string-type A string type that comes from the same grouping as the other argument (e.g. if one
argument is a character-type the other must also be a character-type).

datetime-type Any of the datetime types: DATE, TIME, TIMESTAMP.

graphic-type Any of the double byte character string types: GRAPHIC, VARGRAPHIC, LONG VARGRAPHIC,
DBCLOB.

labeled-duration-code As a type this is a SMALLINT. If the function is invoked using the infix form of the plus or
minus operator, labeled-durations as defined in “Labeled Durations” on page 123 can be used.
For a source function that does not use the plus or minus operator character as the name, the
following values must be used for the labeled-duration-code argument when invoking the func-

1 YEAR or YEARS
2 MONTH or MONTHS
3 DAY or DAYS
4 HOUR or HOURS
5 MINUTE or MINUTES
6 SECOND or SECONDS
7 MICROSECOND or MICROSECONDS
LOB-type Any of the large object types: BLOB, CLOB, DBCLOB.
max-numeric-type The maximum numeric type of the arguments where maximum is defined as the rightmost
numeric-type.
max-string-type The maximum string type of the arguments where maximum is defined as the rightmost
character-type or graphic-type. If arguments are BLOB, the max-string-type is BLOB.
numeric-type Any of the numeric types: SMALLINT, INTEGER, BIGINT, DECIMAL, REAL, DOUBLE.
string-type Any type from character type, graphic-type or BLOB.

Table Footnotes

1 When the input parameter is SMALLINT, the result type is INTEGER. When the input parameter is REAL, the
result type is DOUBLE.

2 Keywords allowed are ISO, USA, EUR, JIS, and LOCAL. This function signature is not supported as a sourced
function.

3 This function cannot be used as a source function.

4 The keyword ALL or DISTINCT may be used before the first parameter. If DISTINCT is specified, use of long
string types or a DATALINK type is not supported.

5 Use of long string types or a DATALINK type is not supported.

6 The type returned by RAISE_ERROR depends upon the context of its use. RAISE_ERROR, if not cast to a
particular type, will return a type appropriate to its invocation within a CASE expression.

Chapter 4. Functions 169

Column Functions

The argument of a column function is a set of values derived from an expression. The
expression may include columns but cannot include a scalar-fullselect or another
column function (SQLSTATE 42607). The scope of the set is a group or an interme-
diate result table as explained in Chapter 5, “Queries” on page 315.

If a GROUP BY clause is specified in a query and the intermediate result from the
FROM, WHERE, GROUP BY and HAVING clauses is the empty set; then the column
functions are not applied, the result of the query is the empty set, the SQLCODE is set
to +100 and the SQLSTATE is set to '02000'.

If a GROUP BY clause is not specified in a query and the intermediate result is of the
FROM, WHERE, and HAVING clauses is the empty set, then the column functions are
applied to the empty set.

For example, the result of the following SELECT statement is the number of distinct
values of JOBCODE for employees in department DO1:

SELECT COUNT (DISTINCT JOBCODE)
FROM CORPDATA.EMPLOYEE
WHERE WORKDEPT = 'DO1'

The keyword DISTINCT is not considered an argument of the function, but rather a
specification of an operation that is performed before the function is applied. If DIS-
TINCT is specified, duplicate values are eliminated. If ALL is implicitly or explicitly spec-
ified, duplicate values are not eliminated.

Expressions can be used in column functions, for example:

SELECT MAX(BONUS + 1000)
INTO :TOP_SALESREP_BONUS
FROM EMPLOYEE
WHERE COMM > 5000

The column functions that follow are in the SYSIBM schema and may be qualified with
the schema name (for example, SYSIBM.COUNT(*)).

170 sSQL Reference

AVG

ALL
—AVG—([
DISTINCT—

v

expression—)

The schema is SYSIBM.
The AVG function returns the average of a set of numbers.

The argument values must be numbers and their sum must be within the range of the
data type of the result. The result can be null.

The data type of the result is the same as the data type of the argument values, except
that:

e The result is a large integer if the argument values are small integers.
¢ The result is double-precision floating point if the argument values are single-
precision floating point.

If the data type of the argument values is decimal with precision p and scale s, the
precision of the result is 31 and the scale is 31-p+s.

The function is applied to the set of values derived from the argument values by the
elimination of null values. If DISTINCT is specified, duplicate values are eliminated.

If the function is applied to an empty set, the result is a null value. Otherwise, the
result is the average value of the set.

If the type of the result is integer, the fractional part of the average is lost.

Examples:

e Using the PROJECT table, set the host variable AVERAGE (decimal(5,2)) to the
average staffing level (PRSTAFF) of projects in department (DEPTNO) 'D11".

SELECT AVG (PRSTAFF)
INTO :AVERAGE
FROM PROJECT
WHERE DEPTNO = 'D11'

Results in AVERAGE being set to 4.25 (that is 17/4) when using the sample table.

e Using the PROJECT table, set the host variable ANY_CALC (decimal(5,2)) to the
average of each unique staffing level value (PRSTAFF) of projects in department
(DEPTNO) 'D11".

SELECT AVG(DISTINCT PRSTAFF)
INTO :ANY_CALC
FROM PROJECT
WHERE DEPTNO = 'D11'

Chapter 4. Functions 171

Results in ANY_CALC being set to 4.66 (that is 14/3) when using the sample table.

172 sSQL Reference

COUNT

ALL
»—COUNT—(B
DISTINCT—

*-

expression)

v

The schema is SYSIBM.
The COUNT function returns the number of rows or values in a set of rows or values.

If DISTINCT is used, the resulting expression must not have a length greater than 254
for a character column or 127 for a graphic column.

The result of the function is a large integer. The result cannot be null.

The argument of COUNT(*) is a set of rows. The result is the number of rows in the
set. A row that includes only NULL values is included in the count.

The argument of COUNT(DISTINCT expression) is a set of values. The function is
applied to the set of values derived from the argument values by the elimination of null
and duplicate values. The result is the number of different non-null values in the set.

The argument of COUNT (expression) or COUNT(ALL expression) is a set of values.
The function is applied to the set of values derived from the argument values by the
elimination of null values. The result is the number of non-null values in the set,
including duplicates.

Examples:

e Using the EMPLOYEE table, set the host variable FEMALE (int) to the number of
rows where the value of the SEX column is 'F'.

SELECT COUNT (%)
INTO :FEMALE
FROM EMPLOYEE
WHERE SEX = 'F'

Results in FEMALE being set to 13 when using the sample table.

e Using the EMPLOYEE table, set the host variable FEMALE_IN_DEPT (int) to the
number of departments (WORKDEPT) that have at least one female as a member.
SELECT COUNT(DISTINCT WORKDEPT)
INTO :FEMALE_IN_DEPT

FROM EMPLOYEE
WHERE SEX = 'F'

Results in FEMALE_IN_DEPT being set to 5 when using the sample table. (There
is at least one female in departments A0O, C01, D11, D21, and E11.)

Chapter 4. Functions 173

COUNT_BIG

COUNT_BIG

ALL
»—COUNT_BIG—(B
DISTINCT—

*.

v

expression)

The schema is SYSIBM.

The COUNT_BIG function returns the number of rows or values in a set of rows or
values. It is similar to COUNT except that the result can be greater than the maximum
value of integer.

If DISTINCT is used, the resulting expression must not have a length greater than 254
for a character column or 127 for a graphic column.

The result of the function is a decimal with precision 31 and scale 0. The result cannot
be null.

The argument of COUNT_BIG(*) is a set of rows. The result is the number of rows in
the set. A row that includes only NULL values is included in the count.

The argument of COUNT_BIG(DISTINCT expression) is a set of values. The function is
applied to the set of values derived from the argument values by the elimination of null
and duplicate values. The result is the number of different non-null values in the set.

The argument of COUNT_BIG(expression) or COUNT_BIG(ALL expression) is a set of
values. The function is applied to the set of values derived from the argument values by
the elimination of null values. The result is the number of non-null values in the set,
including duplicates.

Examples:

¢ Refer to COUNT examples and substitute COUNT_BIG for occurrences of COUNT.
The results are the same except for the data type of the result.

e Some applications may require the use of COUNT but need to support values
larger than the largest integer. This can be achieved by use of sourced user-
defined functions and setting the SQL path. The following series of statements
shows how to create a sourced function to support COUNT(*) based on
COUNT_BIG and returning a decimal value with a precision of 15. The SQL path is
set such that the sourced function based on COUNT_BIG is used in subsequent
statements such as the query shown.

CREATE FUNCTION RICK.COUNT() RETURNS DECIMAL(15,0)
SOURCE SYSIBM.COUNT BIG();

SET CURRENT FUNCTION PATH RICK, SYSTEM PATH;
SELECT COUNT(*) FROM EMPLOYEE;

174 sQL Reference

COUNT_BIG

Note how the sourced function is defined with no parameters to support COUNT(*).
This only works if you name the function COUNT and do not qualify the function
with the schema name when it is used. To get the same effect as COUNT(*) with a
name other than COUNT, invoke the function with no parameters. Thus, if
RICK.COUNT had been defined as RICK.MYCOUNT instead, the query would
have to be written as follows:

SELECT MYCOUNT() FROM EMPLOYEE;

If the count is taken on a specific column, the sourced function must specify the
type of the column. The following statements created a sourced function that will
take any CHAR column as a argument and use COUNT_BIG to perform the
counting.

CREATE FUNCTION RICK.COUNT(CHAR()) RETURNS DOUBLE
SOURCE SYSIBM.COUNT_BIG(CHAR());
SELECT COUNT(DISTINCT WORKDEPT) FROM EMPLOYEE;

Chapter 4. Functions 175

GROUPING

GROUPING

»—GROUPING—(—expression—)

v

The schema is SYSIBM.

Used in conjunction with grouping-sets and super-groups (see “group-by-clause” on
page 329 for details), the GROUPING function returns a value which indicates whether
or not a row returned in a GROUP BY answer set is a row generated by a grouping set
that excludes the column represented by expression.

The argument can be of any type, but must be an item of a GROUP BY clause.

The result of the function is a small integer. It is set to one of the following values:

1 The value of expression in the returned row is a null value, and the row was gen-
erated by the super-group. This generated row can be used to provide sub-total
values for the GROUP BY expression.

0 The value is other than the above.
Example:

The following query:

SELECT SALES_DATE,
SALES_PERSON,
SUM(SALES) AS UNITS_SOLD,
GROUPING (SALES_DATE) AS DATE_GROUP,
GROUPING (SALES PERSON) AS SALES_GROUP
FROM SALES
GROUP BY CUBE (SALES_DATE, SALES_PERSON)
ORDER BY SALES DATE, SALES_PERSON

results in:
SALES_DATE SALES PERSON UNITS_SOLD DATE_GROUP SALES GROUP

12/31/1995 GOUNOT 1 0 0
12/31/1995 LEE 6 0 0
12/31/1995 LUCCHESSI 1 0 0
12/31/1995 - 8 0 1
03/29/1996 GOUNOT 11 0 0
03/29/1996 LEE 12 0 0
03/29/1996 LUCCHESSI 4 0 0
03/29/1996 - 27 0 1
03/30/1996 GOUNOT 21 0 0
03/30/1996 LEE 21 0 0
03/30/1996 LUCCHESSI 4 0 0
03/30/1996 - 46 0 1

176 SQL Reference

03/31/1996
03/31/1996
03/31/1996
03/31/1996
04/01/1996
04/01/1996
04/01/1996
04/01/1996

GOUNOT
LEE
LUCCHESSI

GOUNOT
LEE
LUCCHESSI

GOUNOT
LEE
LUCCHESSI

3
27

1
31
14
25

4
43
50
91
14

155

PP PP OOODOOOOO

GROUPING

HPOOOHOOORrHrOOO

An application can recognize a SALES_DATE sub-total row by the fact that the value of
DATE_GROUP is 0 and the value of SALES_GROUP is 1. A SALES_PERSON sub-
total row can be recognized by the fact that the value of DATE_GROUP is 1 and the
value of SALES_GROUP is 0. A grand total row can be recognized by the value 1 for

both DATE_GROUP and SALES_GROUP.

Chapter 4. Functions

177

MAX

r—ALL
—MAX—(B
DISTINCT—

v

expression—)

The schema is SYSIBM.
The MAX function returns the maximum value in a set of values.
The argument values can be of any built-in type other than a long string or DATALINK.

If DISTINCT is used, the resulting expression must not have a length greater than 254
for a character column or 127 for a graphic column.

The data type, length and code page of the result are the same as the data type, length
and code page of the argument values. The result is considered to be a derived value
and can be null.

The function is applied to the set of values derived from the argument values by the
elimination of null values.

If the function is applied to an empty set, the result is a null value. Otherwise, the
result is the maximum value in the set.

The specification of DISTINCT has no effect on the result and therefore is not recom-
mended. It is included for compatibility with other relational systems.

Examples:
e Using the EMPLOYEE table, set the host variable MAX_SALARY (decimal(7,2)) to
the maximum monthly salary (SALARY/12) value.

SELECT MAX(SALARY) / 12
INTO :MAX_SALARY
FROM EMPLOYEE

Results in MAX_SALARY being set to 4395.83 when using the sample table.

¢ Using the PROJECT table, set the host variable LAST_PROJ(char(24)) to the
project name (PROJNAME) that comes last in the collating sequence.

SELECT MAX(PROJNAME)
INTO :LAST_PROJ
FROM PROJECT

Results in LAST_PROJ being set to 'WELD LINE PLANNING' when using the
sample table.

e Similar to the previous example, set the host variable LAST_PROJ (char(40)) to
the project name that comes last in the collating sequence when a project name is

178 sSQL Reference

concatenated with the host variable PROJSUPP. PROJSUPP is '_Support'; it has
a char(8) data type.

SELECT MAX(PROJNAME CONCAT PROJSUPP)
INTO :LAST_PROJ
FROM PROJECT

Results in LAST_PROJ being set to 'WELD LINE PLANNING_SUPPORT' when
using the sample table.

Chapter 4. Functions 179

MIN

[ALL
—MIN—(B
DISTINCT—

v

expression—)

The schema is SYSIBM.
The MIN function returns the minimum value in a set of values.
The argument values can be of any built-in type other than a long string or DATALINK.

If DISTINCT is used, the resulting expression must not have a length greater than 254
for a character column or 127 for a graphic column.

The data type, length, and code page of the result are the same as the data type,
length, and code page of the argument values. The result is considered to be a derived
value and can be null.

The function is applied to the set of values derived from the argument values by the
elimination of null values.

If this function is applied to an empty set, the result of the function is a null value.
Otherwise, the result is the minimum value in the set.

The specification of DISTINCT has no effect on the result and therefore is not recom-
mended. It is included for compatibility with other relational systems.

Examples:

e Using the EMPLOYEE table, set the host variable COMM_SPREAD (decimal(7,2))
to the difference between the maximum and minimum commission (COMM) for the
members of department (WORKDEPT) 'D11".

SELECT MAX(COMM) - MIN(COMM)
INTO :COMM_SPREAD
FROM EMPLOYEE
WHERE WORKDEPT = 'DI11'

Results in COMM_SPREAD being set to 1118 (that is, 2580 - 1462) when using
the sample table.

e Using the PROJECT table, set the host variable (FIRST_FINISHED (char(10)) to
the estimated ending date (PRENDATE) of the first project scheduled to be com-
pleted.

SELECT MIN(PRENDATE)
INTO :FIRST_FINISHED
FROM PROJECT

180 sSQL Reference

Results in FIRST_FINISHED being set to '1982-09-15' when using the sample
table.

Chapter 4. Functions 181

STDDEV

|—ALL
»—STDDEV—(O
DISTINCT-

expression—)

v

The schema is SYSIBM.

The STDDEYV function returns the standard deviation of a set of numbers.

The argument values must be numbers.

The data type of the result is double-precision floating point. The result can be null.

The function is applied to the set of values derived from the argument values by the
elimination of null values. If DISTINCT is specified, duplicate values are eliminated.

If the function is applied to an empty set, the result is a null value. Otherwise, the
result is the standard deviation of the values in the set.

The order in which the values are aggregated is undefined, but every intermediate
result must be within the range of the result data type.

Example:

e Using the EMPLOYEE table, set the host variable DEV (double precision floating
point) to the standard deviation of the salaries for those employees in department
(WORKDEPT) 'A00'".

SELECT STDDEV (SALARY)
INTO :DEV
FROM EMPLOYEE
WHERE WORKDEPT = 'A0O'

Results in DEV being set to approximately 9938.00 when using the sample table.

182 sQL Reference

SUM

ALL
—SUM—([
DISTINCT—

v

expression—)

The schema is SYSIBM.
The SUM function returns the sum of a set of numbers.

The argument values must be numbers (built-in types only) and their sum must be
within the range of the data type of the result.

The data type of the result is the same as the data type of the argument values except
that:

e The result is a large integer if the argument values are small integers.
¢ The result is double-precision floating point if the argument values are single-
precision floating point.

If the data type of the argument values is decimal, the precision of the result is 31 and
the scale is the same as the scale of the argument values. The result can be null.

The function is applied to the set of values derived from the argument values by the
elimination of null values. If DISTINCT is specified, duplicate values are also eliminated.

If the function is applied to an empty set, the result is a null value. Otherwise, the
result is the sum of the values in the set.

Example:

¢ Using the EMPLOYEE table, set the host variable JOB_BONUS (decimal(9,2)) to
the total bonus (BONUS) paid to clerks (JOB='"CLERK").

SELECT SUM(BONUS)
INTO :JOB_BONUS
FROM EMPLOYEE
WHERE JOB = 'CLERK'

Results in JOB_BONUS being set to 2800 when using the sample table.

Chapter 4. Functions 183

VARIANCE

ALL
»—VARIANCE—D—([

expression—)

LprstineT-

Note:
1 VAR can be used as a synonym for VARIANCE.

v

The schema is SYSIBM.

The VARIANCE function returns the variance of a set of numbers.

The argument values must be numbers.

The data type of the result is double-precision floating point. The result can be null.

The function is applied to the set of values derived from the argument values by the
elimination of null values. If DISTINCT is specified, duplicate values are eliminated.

If the function is applied to an empty set, the result is a null value. Otherwise, the
result is the variance of the values in the set.

The order in which the values are added is undefined, but every intermediate result
must be within the range of the result data type.

Example:

¢ Using the EMPLOYEE table, set the host variable VARNCE (double precision
floating point) to the variance of the salaries for those employees in department
(WORKDEPT) 'A00'".

SELECT VARIANCE (SALARY)
INTO :VARNCE
FROM EMPLOYEE
WHERE WORKDEPT = 'A0O'

Results in VARNCE being set to approximately 98763888.88 when using the
sample table.

184 sQL Reference

Scalar Functions

A scalar function can be used wherever an expression can be used. However, the
restrictions that apply to the use of expressions and column functions also apply when
an expression or column function is used within a scalar function. For example, the
argument of a scalar function can be a column function only if a column function is
allowed in the context in which the scalar function is used.

The restrictions on the use of column functions do not apply to scalar functions
because a scalar function is applied to a single value rather than a set of values.

Example: The result of the following SELECT statement has as many rows as there are
employees in department DO1:

SELECT EMPNO, LASTNAME, YEAR(CURRENT DATE - BRTHDATE)
FROM EMPLOYEE
WHERE WORKDEPT = 'DO1'

The scalar functions that follow are in the SYSIBM schema and may be qualified with
the schema name (for example, SYSIBM.CHAR(123)).

Chapter 4. Functions 185

ABS or ABSVAL

ABS or ABSVAL

v

»—ABS or ABSVAL—(—expression—)

The schema is SYSFUN.
Returns the absolute value of the argument.

The argument can be of any built-in numeric data type. If it is of type DECIMAL or
REAL, it is converted to a double-precision floating-point number for processing by the
function.
The result of the function is:

e SMALLINT if the argument is SMALLINT

¢ INTEGER if the argument is INTEGER

e BIGINT if the argument is BIGINT

e DOUBLE if the argument is DOUBLE, DECIMAL or REAL.

The result can be null; if the argument is null, the result is the null value.

186 sSQL Reference

ACOS

ACOS

»—ACOS—(—expression—)

v

The schema is SYSFUN.
Returns the arccosine of the argument as an angle expressed in radians.

The argument can be of any built-in numeric data type. It is converted to a double-
precision floating-point number for processing by the function.

The result of the function is a double-precision floating-point number. The result can be
null; if the argument is null, the result is the null value.

Chapter 4. Functions 187

ASCII

ASCII

v

»—ASCII—(—expression—)

The schema is SYSFUN.
Returns the ASCII code value of the leftmost character of the argument as an integer.

The argument can be of any built-in character string type up to a maximum of 1048576
bytes (1M). LONG VARCHAR is converted to CLOB for processing by the function.

The result of the function is always INTEGER.

The result can be null; if the argument is null, the result is the null value.

188 sQL Reference

ASIN

ASIN

v

»—ASIN—(—expression—)

The schema is SYSFUN.
Returns the arcsine on the argument as an angle expressed in radians.

The argument can be of any built-in numeric type. It is converted to a double-precision
floating-point number for processing by the function.

The result of the function is a double-precision floating-point number. The result can be
null; if the argument is null, the result is the null value.

Chapter 4. Functions 189

ATAN

ATAN

v

»—ATAN—(—expression—)

The schema is SYSFUN.
Returns the arctangent of the argument as an angle expressed in radians.

The argument can be of any built-in numeric data type. It is converted to a double-
precision floating-point number for processing by the function.

The result of the function is a double-precision floating-point number. The result can be
null; if the argument is null, the result is the null value.

190 sQL Reference

ATAN2

ATAN2

»—ATAN2— (—expression—,—expression—)

v

The schema is SYSFUN.

Returns the arctangent of x and y coordinates as an angle expressed in radians. The x
and y coordinates are specified by the first and second arguments respectively.

The first and the second arguments can be of any built-in numeric data type. Both are
converted to a double-precision floating-point number for processing by the function.

The result of the function is a double-precision floating-point number. The result can be
null; if any argument is null, the result is the null value.

Chapter 4. Functions 191

BIGINT

BIGINT

>—BIGINT—(—Enumeric-expression B)

v

character-expression

The schema is SYSIBM.

The BIGINT function returns a 64 bit integer representation of a number or character
string in the form of an integer constant.

numeric-expression

An expression that returns a value of any built-in numeric data type.

If the argument is a numeric-expression, the result is the same number that would
occur if the argument were assigned to a big integer column or variable. If the
whole part of the argument is not within the range of integers, an error occurs. The
decimal part of the argument is truncated if present.

character-expression

An expression that returns a character string value of length not greater than the
maximum length of a character constant. Leading and trailing blanks are eliminated
and the resulting string must conform to the rules for forming an SQL integer con-
stant (SQLSTATE 22018). The character string cannot be a long string.

If the argument is a character-expression, the result is the same number that would
occur if the corresponding integer constant were assigned to a big integer column
or variable.

The result of the function is a big integer. If the argument can be null, the result can be
null; if the argument is null, the result is the null value.

Examples:

192 sSQL Reference

From ORDERS_HISTORY table, count the number of orders and return the result
as a big integer value.

SELECT BIGINT (COUNT_BIG(*))
FROM ORDERS_HISTORY

Using the EMPLOYEE table, select the EMPNO column in big integer form for
further processing in the application.

SELECT BIGINT(EMPNO) FROM EMPLOYEE

BLOB

BLOB

v

»—BLOB—(—string-expression T u)
,—integer

The schema is SYSIBM.

The BLOB function returns a BLOB representation of a string of any type.

string-expression
A string-expression whose value can be a character string, graphic string, or a
binary string.

integer
An integer value specifying the length attribute of the resulting BLOB data type. If
integer is not specified, the length attribute of the result is the same as the length
of the input, except where the input is graphic. In this case, the length attribute of
the result is twice the length of the input.

The result of the function is a BLOB. If the argument can be null, the result can be null;
if the argument is null, the result is the null value.

Examples

¢ Given a table with a BLOB column named TOPOGRAPHIC_MAP and a VARCHAR
column named MAP_NAME, locate any maps that contain the string 'Pellow Island’
and return a single binary string with the map name concatenated in front of the
actual map.

SELECT BLOB(MAP_NAME || ': ') || TOPOGRAPHIC_MAP
FROM ONTARIO_SERIES 4
WHERE TOPOGRAPIC_MAP LIKE BLOB('%Pellow Island%')

Chapter 4. Functions 193

CEIL or CEILING

CEIL or CEILING

»—CEIL or CEILING—(—expression—)

v

The schema is SYSFUN.
Returns the smallest integer value greater than or equal to the argument.

The argument can be of any built-in numeric type. If the argument is of type DECIMAL
or REAL, it is converted to a double-precision floating-point number for processing by
the function. If the argument is of type SMALLINT or INTEGER, the argument value is
returned.
The result of the function is:

e SMALLINT if the argument is SMALLINT

¢ INTEGER if the argument is INTEGER

e BIGINT if the argument is BIGINT

e DOUBLE if the argument is DECIMAL, REAL or DOUBLE. Decimal values with
more than 15 digits to the left of the decimal will not return the desired integer
value due to loss of precision in the conversion to DOUBLE.

The result can be null; if the argument is null, the result is the null value.

194 SQL Reference

CHAR

CHAR

Datetime to Character:
»—CHAR—(—datetime-expression) >
|—, ISO——I

Character to Character:
»—CHAR—(—character-expression B |)
,—integer

Integer to Character:
»—CHAR—(—integer-expression—) >

Decimal to Character:
»—CHAR—(—decimal-expression

Floating-point to Character:
»—CHAR—(—floating-point-expression—)

USA—
EUR—
JIS—
LOCAL—

v

) >

|—,—decimal—char‘acl‘erJ

v

The schema is SYSIBM. However, the schema for CHAR(floating-point-expression) is
SYSFUN.

The CHAR function returns a character-string representation of a:

Datetime value if the first argument is a date, time or timestamp
Character string value if the first argument is any type of character string
Integer number if the first argument is a SMALLINT, INTEGER or BIGINT
Decimal number if the first argument is a decimal number

Double-precision floating-point number if the first argument is a DOUBLE or REAL.

The result of the function is a fixed-length character string. If the first argument can be
null, the result can be null. If the first argument is null, the result is the null value.

Datetime to Character

datetime-expression
An expression that is one of the following three data types

date The result is the character string representation of the
date in the format specified by the second argument. The
length of the result is 10. An error occurs if the second

Chapter 4. Functions 195

CHAR

argument is specified and is not a valid value (SQLSTATE
42703).

time The result is the character string representation of the time
in the format specified by the second argument. The
length of the result is 8. An error occurs if the second
argument is specified and is not a valid value (SQLSTATE
42703).

timestamp The second argument is not applicable and must not be
specified. SQLSTATE 42815 The result is the character
string representation of the timestamp. The length of the
result is 26.

The code page of the string is the code page of the database at the
application server.

Character to Character

character-expression
An expression that returns a value that is CHAR, VARCHAR, LONG
VARCHAR, or CLOB data type.

integer
the length attribute for the resulting fixed length character string. The
value must be between 0 and 254.

If the length of the character-expression is less than the length attribute of
the result, the result is padded with blanks up to the length of the result. If
the length of the character-expression is greater than the length attribute of
the result, truncation is performed. A warning is returned (SQLSTATE
01004) unless the truncated characters were all blanks and the character-
expression was not a long string (LONG VARCHAR or CLOB).

Integer to Character

integer-expression
An expression that returns a value that is an integer data type (either
SMALLINT, INTEGER or BIGINT).

The result is the character string representation of the argument in the form
of an SQL integer constant. The result consists of n characters that are the
significant digits that represent the value of the argument with a preceding
minus sign if the argument is negative. It is left justified.

e |If the first argument is a small integer:

The length of the result is 6. If the number of characters in the result is
less than 6, then the result is padded on the right with blanks to length
6.

e If the first argument is a large integer:

196 SQL Reference

CHAR

The length of the result is 11. If the number of characters in the result
is less than 11, then the result is padded on the right with blanks to
length 11.

e |If the first argument is a big integer:

The length of the result is 20. If the number of characters in the result
is less than 20, then the result is padded on the right with blanks to
length 20.

The code page of the string is the code page of the database at the appli-
cation server.

Decimal to Character

decimal-expression
An expression that returns a value that is a decimal data type. If a
different precision and scale is desired, the DECIMAL scalar function
can be used first to make the change.

decimal-character
Specifies the single-byte character constant that is used to delimit the
decimal digits in the result character string. The character cannot be a
digit, plus ('+"), minus (-') or blank. (SQLSTATE 42815). The default is
the period ('.") character

The result is the fixed-length character-string representation of the argu-
ment. The result includes a decimal character and p digits, where p is the
precision of the decimal-expression with a preceding minus sign if the argu-
ment is negative. The length of the result is 2+p, where p is the precision
of the decimal-expression. This means that a positive value will always
include one trailing blank.

The code page of the string is the code page of the database at the appli-
cation server.

Floating-point to Character

floating-point-expression
An expression that returns a value that is a floating-point data type
(DOUBLE or REAL).

The result is the fixed-length character-string representation of the argu-
ment in the form of a floating-point constant. The length of the result is 24.
If the argument is negative, the first character of the result is a minus sign.
Otherwise, the first character is a digit. If the argument value is zero, the
result is OEO. Otherwise, the result includes the smallest number of charac-
ters that can represent the value of the argument such that the mantissa
consists of a single digit other than zero followed by a period and a
sequence of digits. If the number of characters in the result is less than 24,
then the result is padded on the right with blanks to length 24.

The code page of the string is the code page of the database at the appli-
cation server.

Chapter 4. Functions 197

CHAR

Examples:

198 sSQL Reference

Assume the column PRSTDATE has an internal value equivalent to 1988-12-25.

CHAR(PRSTDATE, USA)
Results in the value ‘12/25/1988'.

Assume the column STARTING has an internal value equivalent to 17.12.30, the
host variable HOUR_DUR (decimal(6,0)) is a time duration with a value of 050000.
(that is, 5 hours).

CHAR(STARTING, USA)

Results in the value '5:12 PM'.
CHAR(STARTING + :HOUR DUR, USA)

Results in the value '10:12 PM'.

Assume the column RECEIVED (timestamp) has an internal value equivalent to the
combination of the PRSTDATE and STARTING columns.

CHAR(RECEIVED)
Results in the value ‘1988-12-25-17.12.30.000000'.

Use the CHAR function to make the type fixed length character and reduce the
length of the displayed results to 10 characters for the LASTNAME column (defined
as VARCHAR(15)) of the EMPLOYEE table.

SELECT CHAR(LASTNAME,10) FROM EMPLOYEE

For rows having a LASTNAME with a length greater than 10 characters (excluding
trailing blanks), a warning that the value is truncated is returned.

Use the CHAR function to return the values for EDLEVEL (defined as smallint) as
a fixed length character string.

SELECT CHAR(EDLEVEL) FROM EMPLOYEE

An EDLEVEL of 18 would be returned as the CHAR(6) value '18 ' (18 followed by
four blanks).

Assume that STAFF has a SALARY column defined as decimal with precision of 9
and scale of 2. The current value is 18357.50 and it is to be displayed with a
comma as the decimal character (18357,50).

CHAR(SALARY, ',")
returns the value '00018357,50 .

Assume the same SALARY column subtracted from 20000.25 is to be displayed
with the default decimal character.

CHAR(20000.25 - SALARY)
returns the value -0001642.75'.

Assume a host variable, SEASONS_TICKETS, has an integer data type and a
10000 value.

CHAR

CHAR (DECIMAL (: SEASONS_TICKETS,7,2))
Results in the character value '10000.00 .

e Assume a host variable, DOUBLE_NUM has a double data type and a value of
-987.654321E-35.

CHAR(:DOUBLE_NUM)

Results in the character value of -9.87654321E-33 '. Since the result data
type is CHAR(24), there are 9 trailing blanks in the result.

Chapter 4. Functions 199

CHR

CHR

»—CHR—(—expression—)

v

The schema is SYSFUN.
Returns the character that has the ASCII code value specified by the argument.

The argument can be either INTEGER or SMALLINT. The value of the argument should
be between 0 and 255; otherwise, the return value is null.

The result of the function is CHAR(1). The result can be null; if the argument is null, the
result is the null value.

200 sQL Reference

CLOB

CLOB

»—CLOB—(—character-string-expression B rJ) >
,—intege

The schema is SYSIBM.

The CLOB function returns a CLOB representation of a character string type.

character-string-expression
An expression that returns a value that is a character string.

integer
An integer value specifying the length attribute of the resulting CLOB data type.
The value must be between 0 and 2 147 483 647. If integer is not specified, the
length of the result is the same as the length of the first argument.

The result of the function is a CLOB. If the argument can be null, the result can be null;
if the argument is null, the result is the null value.

Chapter 4. Functions 201

COALESCE

COALESCE

~
v

»—COALESCE—H—(—express ion—L,—express ion

Note:
1 VALUE is a synonym for COALESCE.

The schema is SYSIBM.
COALESCE returns the first argument that is not null.

The arguments are evaluated in the order in which they are specified, and the result of
the function is the first argument that is not null. The result can be null only if all the
arguments can be null, and the result is null only if all the arguments are null. The
selected argument is converted, if necessary, to the attributes of the result.

The arguments must be compatible. See “Rules for Result Data Types” on page 82 for
what data types are compatible and the attributes of the result. They can be of either a
built-in or user-defined data type. 33

Examples:

¢ When selecting all the values from all the rows in the DEPARTMENT table, if the
department manager (MGRNO) is missing (that is, null), then return a value of
'ABSENT".

SELECT DEPTNO, DEPTNAME, COALESCE(MGRNO, 'ABSENT'), ADMRDEPT
FROM DEPARTMENT

¢ When selecting the employee number (EMPNO) and salary (SALARY) from all the
rows in the EMPLOYEE table, if the salary is missing (that is, null), then return a
value of zero.

SELECT EMPNO, COALESCE(SALARY, 0)
FROM EMPLOYEE

33 This function may not be used as a source function when creating a user-defined function. Since it accepts any compatible data
types as arguments, it is not necessary to create additional signatures to support user-defined distinct types.

202 sQL Reference

CONCAT

CONCAT

»—CONCAT-—(—expressionl—,—expression2—)

Note:
1 || may be used as a synonym for CONCAT.

v

The schema is SYSIBM.

Returns the concatenation of two string arguments. The two arguments must be com-
patible types.

The result of the function is a string. Its length is sum of the lengths of the two argu-
ments. If the argument can be null, the result can be null; if the argument is null, the
result is the null value.

See “With the Concatenation Operator” on page 117 for more information.

Chapter 4. Functions 203

COS

COS

v

»—C0S—(—expression—)

The schema is SYSFUN.

Returns the cosine of the argument, where the argument is an angle expressed in
radians.

The argument can be of any built-in numeric type. It is converted to a double-precision
floating-point number for processing by the function.

The result of the function is a double-precision floating-point number. The result can be
null; if the argument is null, the result is the null value.

204 sQL Reference

COoT

CoT

v

»—COT—(—expression—)

The schema is SYSFUN.

Returns the cotangent of the argument, where the argument is an angle expressed in
radians.

The argument can be of any built-in numeric type. It is converted to a double-precision
floating-point number for processing by the function.

The result of the function is a double-precision floating-point number. The result can be
null; if the argument is null, the result is the null value.

Chapter 4. Functions 205

DATE

DATE

»—DATE—(—expression—)

v

The schema is SYSIBM.
The DATE function returns a date from a value.

The argument must be a date, timestamp, a positive number less than or equal to
3652059, a valid character string representation of a date or timestamp, or a character
string of length 7 that is neither a CLOB nor a LONG VARCHAR.

If the argument is a character string of length 7, it must represent a valid date in the
form yyyynnn, where yyyy are digits denoting a year, and nnn are digits between 001
and 366, denoting a day of that year.

The result of the function is a date. If the argument can be null, the result can be null; if
the argument is null, the result is the null value.
The other rules depend on the data type of the argument:

e If the argument is a date, timestamp, or valid string representation of a date or
timestamp:

— The result is the date part of the value.
e |f the argument is a number:

— The result is the date that is n-1 days after January 1, 0001, where n is the
integral part of the number.

e |If the argument is a character string with a length of 7:

— The result is the date represented by the character string.

Examples:

¢ Assume that the column RECEIVED (timestamp) has an internal value equivalent
to 1988-12-25-17.12.30.000000'.

DATE (RECEIVED)
Results in an internal representation of ‘1988-12-25'.
¢ This example results in an internal representation of ‘1988-12-25".
DATE('1988-12-25")
e This example results in an internal representation of ‘1988-12-25".
DATE('25.12.1988")

¢ This example results in an internal representation of ‘0001-02-04".
DATE(35)

206 SQL Reference

DAY

DAY

»—DAY—(—expression—)

v

The schema is SYSIBM.
The DAY function returns the day part of a value.

The argument must be a date, timestamp, date duration, timestamp duration, or a valid
character string representation of a date or timestamp that is neither a CLOB nor a
LONG VARCHAR.

The result of the function is a large integer. If the argument can be null, the result can
be null; if the argument is null, the result is the null value.
The other rules depend on the data type of the argument:

e |If the argument is a date, timestamp, or valid string representation of a date or
timestamp:

— The result is the day part of the value, which is an integer between 1 and 31.
¢ |If the argument is a date duration or timestamp duration:
— The result is the day part of the value, which is an integer between -99 and
99. A nonzero result has the same sign as the argument.
Examples:

¢ Using the PROJECT table, set the host variable END_DAY (smallint) to the day
that the WELD LINE PLANNING project (PROJNAME) is scheduled to stop
(PRENDATE).

SELECT DAY (PRENDATE)
INTO :END_DAY
FROM PROJECT
WHERE PROJNAME = 'WELD LINE PLANNING'

Results in END_DAY being set to 15 when using the sample table.

¢ Assume that the column DATEL (date) has an internal value equivalent to
2000-03-15 and the column DATE2 (date) has an internal value equivalent to
1999-12-31.

DAY (DATE1 - DATE2)

Results in the value 15.

Chapter 4. Functions 207

DAYNAME

DAYNAME

»—DAYNAME—(—expression—)

v

The schema is SYSFUN.

Returns a mixed case character string containing the name of the day (e.g. Friday) for
the day portion of the argument based on the locale when the database was started.

The argument must be a date, timestamp, or a valid character string representation of a
date or timestamp that is neither a CLOB nor a LONG VARCHAR.

The result of the function is VARCHAR(100). The result can be null; if the argument is
null, the result is the null value.

208 sQL Reference

DAYOFWEEK

DAYOFWEEK

v

»—DAYOFWEEK— (—expression—)

The schema is SYSFUN.

Returns the day of the week in the argument as an integer value in the range 1-7,
where 1 represents Sunday.

The argument must be a date, timestamp, or a valid character string representation of a
date or timestamp that is neither a CLOB nor a LONG VARCHAR.

The result of the function is INTEGER. The result can be null; if the argument is null,
the result is the null value.

Chapter 4. Functions 209

DAYOFYEAR

DAYOFYEAR

v

»—DAYOFYEAR— (—expression—)

The schema is SYSFUN.
Returns the day of the year in the argument as an integer value in the range 1-366.

The argument must be a date, timestamp, or a valid character string representation of a
date or timestamp that is neither a CLOB nor a LONG VARCHAR.

The result of the function is INTEGER. The result can be null; if the argument is null,
the result is the null value.

210 SQL Reference

DAYS

DAYS

»—DAYS—(—expression—)

v

The schema is SYSIBM.
The DAYS function returns an integer representation of a date.

The argument must be a date, timestamp, or a valid character string representation of a
date or timestamp that is neither a CLOB nor a LONG VARCHAR.

The result of the function is a large integer. If the argument can be null, the result can
be null; if the argument is null, the result is the null value.

The result is 1 more than the number of days from January 1, 0001 to D, where D is
the date that would occur if the DATE function were applied to the argument.

Examples:

¢ Using the PROJECT table, set the host variable EDUCATION_DAYS (int) to the
number of elapsed days (PRENDATE - PRSTDATE) estimated for the project
(PROJNO) ‘IF2000'.

SELECT DAYS(PRENDATE) - DAYS(PRSTDATE)
INTO :EDUCATION_DAYS
FROM PROJECT
WHERE PROJNO = 'IF2000'

Results in EDUCATION_DAYS being set to 396 when using the sample table.

¢ Using the PROJECT table, set the host variable TOTAL_DAYS (int) to the sum of
elapsed days (PRENDATE - PRSTDATE) estimated for all projects in department
(DEPTNO) ‘E21".

SELECT SUM(DAYS(PRENDATE) — DAYS(PRSTDATE))
INTO :TOTAL_DAYS
FROM PROJECT
WHERE DEPTNO = 'E21'

Results in TOTAL_DAYS being set to 1584 when using the sample table.

Chapter 4. Functions 211

DBCLOB

DBCLOB

v

»—DBCLOB— (—graphic-expression B)
,—integerJ

The schema is SYSIBM.

The DBCLOB function returns a DBCLOB representation of a graphic string type.

graphic-expression
An expression that returns a value that is a graphic string.
integer
An integer value specifying the length attribute of the resulting DBCLOB data type.

The value must be between 0 and 1 073 741 823. If integer is not specified, the
length of the result is the same as the length of the first argument.

The result of the function is a DBCLOB. If the argument can be null, the result can be
null; if the argument is null, the result is the null value.

212 SQL Reference

DECIMAL

DECIMAL

Numeric to Decimal:

»—DECIMAL—B—(—numeric-expression

Note:

)

L,—precision—integer B
,—scale-i nteger—I

1 DEC can be used as a synonym for DECIMAL.

Character to Decimal:

»—DECIMAL-D—(—character-expression

»

\4

»

Note:

L,—precision-integer

v

)

L,—sca]e—integer |_ J |
,—decimal-character

1 DEC can be used as a synonym for DECIMAL.

The schema is SYSIBM.

The DECIMAL function returns a decimal representation of

e A number
e A character string representation of a decimal number
e A character string representation of a integer number.

The result of the function is a decimal number with precision of p and scale of s, where
p and s are the second and third arguments. If the first argument can be null, the result
can be null; if the first argument is null, the result is the null value.

Numeric to Decimal

numeric-expression
An expression that returns a value of any numeric data type.

precision-integer
An integer constant with a value in the range of 1 to 31.

The default for the precision-integer depends on the data type of the
numeric-expression:

e 15 for floating-point and decimal
e 19 for big integer

e 11 for large integer

e 5 for small integer.

scale-integer
An integer constant in the range of 0 to the precision-integer value.
The default is zero.

Chapter 4. Functions 213

DECIMAL

The result is the same number that would occur if the first argument were
assigned to a decimal column or variable with a precision of p and a scale
of s, where p and s are the second and third arguments. An error occurs if
the number of significant decimal digits required to represent the whole part
of the number is greater than p-s.

Character to Decimal

Examples:

character-expression
An expression that returns a value that is a character string with a
length not greater than the maximum length of a character constant
(4000 bytes). It cannot have a CLOB or LONG VARCHAR data type.
Leading and trailing blanks are eliminated from the string. The
resulting substring must conform to the rules for forming an SQL
integer or decimal constant (SQLSTATE 22018).

The character-expression is converted to the database code page if
required to match the code page of the constant decimal-character.

precision-integer
An integer constant with a value in the range 1 to 31 that specifies the
precision of the result. If not specified, the default is 15.

Scale-integer
An integer constant with a value in the range 0 to precision-integer that
specifies the scale of the result. If not specified, the default is 0.

decimal-character
Specifies the single byte character constant that is used to delimit the
decimal digits in character-expression from the whole part of the
number. The character cannot be a digit plus ('+'), minus (=) or blank
and can appear at most once in character-expression (SQLSTATE
42815).

The result is a decimal number with precision p and scale s where p and s
are the second and third arguments. Digits are truncated from the end if
the number of digits right of the decimal character is greater than the scale
s. An error occurs if the number of significant digits left of the decimal char-
acter (the whole part of the number) in character-expression is greater than
p-s (SQLSTATE 22003). The default decimal character is not valid in the
substring if the decimal-character argument is specified (SQLSTATE
22018).

e Use the DECIMAL function in order to force a DECIMAL data type (with a precision
of 5 and a scale of 2) to be returned in a select-list for the EDLEVEL column (data
type = SMALLINT) in the EMPLOYEE table. The EMPNO column should also
appear in the select list.

SELECT EMPNO, DECIMAL(EDLEVEL,5,2)
FROM EMPLOYEE

214 sSQL Reference

DECIMAL

Assume the host variable PERIOD is of type INTEGER. Then, in order to use its
value as a date duration it must be "cast" as decimal(8,0).

SELECTPRSTDATE + DECIMAL(:PERIOD,8)
FROM PROJECT

Assume that updates to the SALARY column are input through a window as a
character string using comma as a decimal character (for example, the user inputs
21400,50). Once validated by the application, it is assigned to the host variable
newsalary which is defined as CHAR(10).

UPDATE STAFF
SET SALARY = DECIMAL(:newsalary, 9, 2, ',')
WHERE ID = :empid;

The value of newsalary becomes 21400.50.
Add the default decimal character (.) to a value.
DECIMAL('21400,50', 9, 2, '.")

This fails because a period (.) is specified as the decimal character but a comma
(,) appears in the first argument as a delimiter.

Chapter 4. Functions 215

DEGREES

DEGREES

»—DEGREES—(—expression—)

v

The schema is SYSFUN.
Returns the number of degrees converted from the argument expressed in radians.

The argument can be of any built-in numeric type. It is converted to double-precision
floating-point number for processing by the function.

The result of the function is a double-precision floating-point number. The result can be
null; if the argument is null, the result is the null value.

216 SQL Reference

DEREF

DEREF

»—DEREF—(—expression—) >

The schema is SYSIBM.
The DEREF function returns an instance of the target type of the argument.

The argument can be any value with a reference data type that has a defined scope
(SQLSTATE 428DT).

The static data type of the result is the target type of the argument. The dynamic data
type of the result is a subtype of the target type of the argument. The result can be null.
The result is the null value if expression is a null value or if expression is a reference
that has no matching OID in the target table.

The result is an instance of the subtype of the target type of the reference. The result is
determined by finding the row of the target table or target view of the reference that has
an object identifier that matches the reference value. The type of this row determines
the dynamic type of the result. Since the type of the result can be based on a row of a
subtable or subview of the target table or target view, the authorization ID of the state-
ment must have SELECT privilege on the target table and all of its subtables or the
target view and all of its subviews (SQLSTATE 42501).

This function can only be used on the left side of the TYPE predicate or in the argu-
ment of the TYPE_ID, TYPE_NAME and TYPE_SCHEMA functions.

Examples:

See Examples section in “TYPE_NAME” on page 303.

Chapter 4. Functions 217

DIFFERENCE

DIFFERENCE

»—DIFFERENCE—(—expression—,—expression—)

v

The schema is SYSFUN.

Returns a value from 0 to 4 representing the difference between the sounds of two
strings based on applying the SOUNDEX function to the strings. A value of 4 is the
best possible sound match.

The arguments can be character strings that are either CHAR or VARCHAR.

The result of the function is INTEGER. The result can be null; if the argument is null,
the result is the null value.

Example:

VALUES (DIFFERENCE('CONSTRAINT','CONSTANT'),SOUNDEX('CONSTRAINT'),
SOUNDEX (' CONSTANT')),
(DIFFERENCE('CONSTRAINT', 'CONTRITE'),SOUNDEX('CONSTRAINT'),
SOUNDEX (' CONTRITE'))

This example returns the following.

4 C523 (523
2 C523 (536

In the first row, the words have the same result from SOUNDEX while in the second
row the words have only some similarity.

218 SQL Reference

DIGITS

DIGITS

»—DIGITS—(—expression—)

v

The schema is SYSIBM.
The DIGITS function returns a character-string representation of a number.

The argument must be an expression that returns a value of type SMALLINT,
INTEGER, BIGINT or DECIMAL.

If the argument can be null, the result can be null; if the argument is null, the result is
the null value.

The result of the function is a fixed-length character string representing the absolute
value of the argument without regard to its scale. The result does not include a sign or
a decimal character. Instead, it consists exclusively of digits, including, if necessary,
leading zeros to fill out the string. The length of the string is:

e 5 if the argument is a small integer

e 10 if the argument is a large integer

e 19 if the argument is a big integer

e pif the argument is a decimal number with a precision of p.

Examples:

e Assume that a table called TABLEX contains an INTEGER column called INTCOL
containing 10-digit numbers. List all distinct four digit combinations of the first four
digits contained in column INTCOL.

SELECT DISTINCT SUBSTR(DIGITS(INTCOL),1,4)
FROM TABLEX

¢ Assume that COLUMNX has the DECIMAL(6,2) data type, and that one of its
values is -6.28. Then, for this value:

DIGITS (COLUMNX)
returns the value '000628".

The result is a string of length six (the precision of the column) with leading zeros
padding the string out to this length. Neither sign nor decimal point appear in the
result.

Chapter 4. Functions 219

DLCOMMENT

DLCOMMENT

»—DLCOMMENT—(—datalink-expression—)

\4

The schema is SYSIBM.

The DLCOMMENT function returns the comment value, if it exists, from a DATALINK
value.

The argument must be an expression that results in a value with data type of
DATALINK.

The result of the function is VARCHAR(254). If the argument can be null, the result can
be null; if the argument is null, the result is the null value.

Example:

220 SQL Reference

Prepare a statement to select the date, the description and the comment from the
link to the ARTICLES column from the HOCKEY_GOALS table. The rows to be
selected are those for goals scored by either of the Richard brothers (Maurice or
Henri).

stmtvar = "SELECT DATE_OF GOAL, DESCRIPTION, DLCOMMENT(ARTICLES)

FROM HOCKEY_GOALS

WHERE BY_PLAYER = 'Maurice Richard' OR BY_PLAYER = 'Henri Richard' ";
EXEC SQL PREPARE HOCKEY_STMT FROM :stmtvar;

Given a DATALINK value that was inserted into column COLA of a row in table
TBLA using the scalar function:

DLVALUE('http://d1fs.almaden.ibm.com/x/y/a.b',"URL','A comment')
then the following function operating on that value:

DLCOMMENT (COLA)
will return the value:

A comment

DLLINKTYPE

DLLINKTYPE

»—DLLINKTYPE—(—datalink-expression—)

v

The schema is SYSIBM.
The DLLINKTYPE function returns the linktype value from a DATALINK value.
The argument must be an expression that results in a value with data type DATALINK.

The result of the function is VARCHAR(4). If the argument can be null, the result can
be null; if the argument is null, the result is the null value.
Example:

¢ Given a DATALINK value that was inserted into column COLA of a row in table
TBLA using the scalar function:

DLVALUE('http://d1fs.almaden.ibm.com/x/y/a.b',"URL"','a comment')
then the following function operating on that value:

DLLINKTYPE(COLA)
will return the value:

URL

Chapter 4. Functions 221

DLURLCOMPLETE

DLURLCOMPLETE
»—DLURLCOMPLETE—(—datalink-expression—)

\4

The schema is SYSIBM.

The DLURLCOMPLETE function returns the complete URL value from a DATALINK
value with a link type of URL. The value is the same as what would be returned by the
concatenation of DLURLSCHEME with "://', then DLURLSERVER, then '/' and then
DLURLPATH. When appropriate, the value includes a file access token.

The argument must be an expression that results in a value with data type DATALINK.

The result of the function is VARCHAR(254). If the argument can be null, the result can
be null; if the argument is null, the result is the null value.

If the DATALINK value only includes the comment the result returned is a zero length
string.
Example:

¢ Given a DATALINK value that was inserted into column COLA of a row in table
TBLA using the scalar function:

DLVALUE('http://d1fs.almaden.ibm.com/x/y/a.b',"'URL','a comment')
then the following function operating on that value:

DLURLCOMPLETE (COLA)
will return the value:

HTTP://DLFS.ALMADEN. IBM.COM/X/y/*****kkkkkkkk***;a.b

(where xxxkkxxxxxxxk+%% represents the access token)

222 SQL Reference

DLURLPATH

DLURLPATH

»—DLURLPATH—(—datalink-expression—) >

The schema is SYSIBM.

The DLURLPATH function returns the path and file name necessary to access a file
within a given server from a DATALINK value with a linktype of URL. When appro-
priate, the value includes a file access token.

The argument must be an expression that results in a value with data type DATALINK.

The result of the function is VARCHAR(254). If the argument can be null, the result can
be null; if the argument is null, the result is the null value.

If the DATALINK value only includes the comment the result returned is a zero length
string.
Example:

¢ Given a DATALINK value that was inserted into column COLA of a row in table
TBLA using the scalar function:

DLVALUE('http://d1fs.almaden.ibm.com/x/y/a.b',"URL"','a comment')
then the following function operating on that value:
DLURLPATH (COLA)

will return the value:

[X[y [*xFxwsxxrxkrxkxx;a.b
(where *xxxxskxrxxxxx%* represents the access token)

Chapter 4. Functions 223

DLURLPATHONLY

DLURLPATHONLY
»—DLURLPATHONLY—(—datalink-expression—)

\4

The schema is SYSIBM.

The DLURLPATHONLY function returns the path and file name necesary to access a
file within a given server from a DATALINK value with a linktype of URL. The value
returned NEVER includes a file access token.

The argument must be an expression that results in a value with data type DATALINK.

The result of the function is VARCHAR(254). If the argument can be null, the result can
be null; if the argument is null, the result is the null value.

If the DATALINK value only includes the comment the result returned is a zero length
string.
Example:

e Given a DATALINK value that was inserted into column COLA of a row in table
TBLA using the scalar function:

DLVALUE('http://d1fs.almaden.ibm.com/x/y/a.b',"URL','a comment')
then the following function operating on that value:
DLURLPATHONLY (COLA)

will return the value:
/x/yla.b

224 SQL Reference

DLURLSCHEME

DLURLSCHEME
»—DLURLSCHEME—(—datalink-expression—) >

The schema is SYSIBM.

The DLURLSCHEME function returns the scheme from a DATALINK value with a
linktype of URL. The value will always be in upper case.

The argument must be an expression that results in a value with data type DATALINK.

The result of the function is VARCHAR(20). If the argument can be null, the result can
be null; if the argument is null, the result is the null value.

If the DATALINK value only includes the comment the result returned is a zero length
string.
Example:

¢ Given a DATALINK value that was inserted into column COLA of a row in table
TBLA using the scalar function:

DLVALUE('http://d1fs.almaden.ibm.com/x/y/a.b',"URL"','a comment')
then the following function operating on that value:
DLURLSCHEME (COLA)

will return the value:
HTTP

Chapter 4. Functions 225

DLURLSERVER

DLURLSERVER
»—DLURLSERVER—(—datalink-expression—)

\4

The schema is SYSIBM.

The DLURLSERVER function returns the file server from a DATALINK value with a
linktype of URL. The value will always be in upper case.

The argument must be an expression that results in a value with data type DATALINK.

The result of the function is VARCHAR(254). If the argument can be null, the result can
be null; if the argument is null, the result is the null value.

If the DATALINK value only includes the comment the result returned is a zero length
string.
Example:

e Given a DATALINK value that was inserted into column COLA of a row in table
TBLA using the scalar function:

DLVALUE('http://d1fs.almaden.ibm.com/x/y/a.b','URL','a comment')
then the following function operating on that value:
DLURLSERVER (COLA)

will return the value:
DLFS.ALMADEN.IBM.COM

226 SQL Reference

DLVALUE

DLVALUE

»—DLVALUE—(—data-location >

:L I) >

,—Llinktype-strin
P I |—,—c0mment-stringJ

The schema is SYSIBM.

The DLVALUE function returns a DATALINK value. When the function is on the right
hand side of a SET clause in an UPDATE statement or is in a VALUES clause in an
INSERT statement, it usually also creates a link to a file. However, if only a comment
is specified (in which case the data-location is a zero-length string), the DATALINK
value is created with empty linkage attributes so there is no file link.

data-location
If the link type is URL, then this is an expression that yields a varying length char-
acter string containing a complete URL value. If the expression is not an empty
string and does not include the URL scheme and URL server, then the defaults of
scheme "FILE" and the server name of the database server are included in the
complete URL value.

linktype-string
An optional VARCHAR expression that specifies the link type of the DATALINK
value. The only valid value is 'URL' (SQLSTATE 428D1).

comment-string
An optional VARCHAR(254) value that provides a comment or additional location
information.

The result of the function is a DATALINK value. If any argument of the DLVALUE func-
tion can be null, the result can be null; If the data-location is null, the result is the null
value.

When defining a DATALINK value using this function, consider the maximum length of
the target of the value. For example, if a column is defined as DATALINK(200), then
the maximum length of the data-location plus the comment is 200 bytes.

Example:

e Insert a row into the table. The URL values for the first two links are contained in
the variables named url_article and url_snapshot. The variable named
url_snapshot_comment contains a comment to accompany the snapshot link.
There is, as yet, no link for the movie, only a comment in the variable named
url_movie_comment.

Chapter 4. Functions 227

DLVALUE

228 SQL Reference

EXEC SQL INSERT INTO HOCKEY_GOALS

VALUES ('Maurice Richard',
'Montreal Canadien',
I?I
'Boston Bruins,
'1952-04-24",
'"Winning goal in game 7 of Stanley Cup final',
DLVALUE(:url_article),
DLVALUE(:url_snapshot, 'URL', :url_snapshot comment),
DLVALUE('', 'URL', :url_movie_comment));

DOUBLE

DOUBLE

Note:

Numeric to Double:
»—DOUBLE—D—(—numeric-expression—)

1 FLOAT or DOUBLE_PRECISION can be used as a synonym for the DOUBLE
function in the SYSIBM schema.

Character String to Double:

»—DOUBLE—(—string-expression—) >

v

The schema is SYSIBM. However, the schema for DOUBLE(string-expression) is

SYSFUN.

The DOUBLE function returns a floating-point number corresponding to a:

e number if the argument is a humeric expression

e character string representation of a number if the argument is a string expression.

Numeric to Double

numeric-expression

The argument is an expression that returns a value of any built-in
numeric data type.

The result of the function is a double-precision floating-point number. If
the argument can be null, the result can be null; if the argument is null,
the result is the null value.

The result is the same number that would occur if the argument were
assigned to a double-precision floating-point column or variable.

Character String to Double

Example:

string-expression

The argument can be of type CHAR or VARCHAR in the form of a
numeric constant. Leading and trailing blanks in argument are ignored.

The result of the function is a double-precision floating-point number.
The result can be null; if the argument is null, the result is the null
value.

The result is the same number that would occur if the string was con-
sidered a constant and assigned to a double-precision floating-point
column or variable.

Chapter 4. Functions 229

DOUBLE

Using the EMPLOYEE table, find the ratio of salary to commission for employees
whose commission is not zero. The columns involved (SALARY and COMM) have
DECIMAL data types. To eliminate the possibility of out-of-range results, DOUBLE is
applied to SALARY so that the division is carried out in floating point:

SELECT EMPNO, DOUBLE(SALARY)/COMM
FROM EMPLOYEE
WHERE COMM > 0

230 SQL Reference

EVENT_MON_STATE

EVENT_MON_STATE

»—EVENT_MON_STATE—(—string-expression—)

v

The schema is SYSIBM.
The EVENT_MON_STATE function returns the current state of an event monitor.

The argument is a string expression with a resulting type of CHAR or VARCHAR and a
value that is the name of an event monitor. If the named event monitor does not exist in
the SYSCAT.EVENTMONITORS catalog table, SQLSTATE 42704 will be returned.

The result is an integer with one of the following values:

0 The event monitor is inactive.

1 The event monitor is active.

If the argument can be null, the result can be null; if the argument is null, the result is
the null value.

Example:

¢ The following example selects all of the defined event monitors, and indicates
whether each is active or inactive:

SELECT EVMONNAME,
CASE
WHEN EVENT_MON_STATE (EVMONNAME) = O THEN 'Inactive'
WHEN EVENT_MON_STATE(EVMONNAME) = 1 THEN 'Active'
END
FROM SYSCAT.EVENTMONITORS

Chapter 4. Functions 231

EXP

EXP

v

»—EXP—(—expression—)

The schema is SYSFUN.
Returns the exponential function of the argument.

The argument can be of any built-in numeric data type. It is converted to double-
precision floating-point number for processing by the function.

The result of the function is a double-precision floating-point number. The result can be
null; if the argument is null, the result is the null value.

232 SQL Reference

FLOAT

FLOAT

v

»—FLOAT—(—numeric-expression—)

The schema is SYSIBM.
The FLOAT function returns a floating-point representation of a number.

FLOAT is a synonym for DOUBLE. See “DOUBLE” on page 229 for details.

Chapter 4. Functions 233

FLOOR

FLOOR

»—FLOOR—(—expression—)

v

The schema is SYSFUN.
Returns the largest integer value less than or equal to the argument.

The argument can be of any built-in numeric type. If the argument is of type DECIMAL
or REAL, it is converted to a double-precision floating-point number for processing by
the function. If the argument is of type SMALLINT, INTEGER or BIGINT the argument
value is returned.
The result of the function is:

e SMALLINT if the argument is SMALLINT

¢ INTEGER if the argument is INTEGER

e BIGINT if the argument is BIGINT

e DOUBLE if the argument is DOUBLE, DECIMAL or REAL. Decimal values with
more than 15 digits to the left of the decimal will not return the desired integer
value due to loss of precision in the conversion to DOUBLE.

The result can be null; if the argument is null, the result is the null value.

234 SQL Reference

GENERATE_UNIQUE

GENERATE_UNIQUE

»—GENERATE_UNIQUE—(—)

v

The schema is SYSIBM.

The GENERATE_UNIQUE function returns a bit data character string 13 bytes long
(CHAR(13) FOR BIT DATA) that is unique compared to any other execution of the
same function.34

There are no arguments to this function (the empty parentheses must be specified).

The result of the function is a unique value that includes the internal form of the Uni-
versal Time, Coordinated (UTC) and the partition number where the function was proc-
essed. The result cannot be null.

The result of this function can be used to provide unique values in a table. Each suc-
cessive value will be greater than the previous value, providing a sequence that can be
used within a table. The value includes the partition number where the function exe-
cuted so that a table partitioned across multiple partitions also has unique values in
some sequence. The sequence is based on the time the function was executed.

This function differs from using the special register CURRENT TIMESTAMP in that a
unique value is generated for each row of a multiple row insert statement or an insert
statement with a fullselect.

The timestamp value that is part of the result of this function can be determined using
the TIMESTAMP scalar function with the result of GENERATE_UNIQUE as an argu-
ment.

Examples:

¢ Create a table that includes a column that is unique for each row. Populate this
column using the GENERATE_UNIQUE function. Notice that the UNIQUE_ID
column has "FOR BIT DATA" specified to identify the column as a bit data char-
acter string.

34 The system clock is used to generate the internal Universal Time, Coordinated (UTC) timestamp along with the partition number on
which the function executes. Adjustments that move the actual system clock backward could result in duplicate values.

Chapter 4. Functions 235

GENERATE_UNIQUE

236 SQL Reference

CREATE TABLE EMP_UPDATE
(UNIQUE_ID CHAR(13) FOR BIT DATA,
EMPNO CHAR(6) ,
TEXT VARCHAR(1000))

INSERT INTO EMP_UPDATE
VALUES (GENERATE_UNIQUE(), '000020', 'Update entry...'),
(GENERATE_UNIQUE(), '000050', 'Update entry...')

This table will have a unique identifier for each row provided that the UNIQUE_ID
column is always set using GENERATE_UNIQUE. This can be done by introducing
a trigger on the table.

CREATE TRIGGER EMP_UPDATE_UNIQUE

NO CASCADE BEFORE INSERT ON EMP_UPDATE
REFERENCING NEW AS NEW_UPD

FOR EACH ROW MODE DB2SQL

SET NEW_UPD.UNIQUE_ID = GENERATE_UNIQUE()

With this trigger defined, the previous INSERT statement could be issued without
the first column as follows.

INSERT INTO EMP_UPDATE (EMPNO, TEXT)
VALUES ('000020', 'Update entry 1...'),
('000050', 'Update entry 2...")

The timestamp (in UTC) for when a row was added to EMP_UPDATE can be
returned using:

SELECT TIMESTAMP (UNIQUE_ID), EMPNO, TEXT FROM EMP_UPDATE

Therefore, there is no need to have a timestamp column in the table to record
when a row is inserted.

GRAPHIC

GRAPHIC

v

»—GRAPHIC—(—graphic-expression B — a)
,—integer

The schema is SYSIBM.

The GRAPHIC function returns a GRAPHIC representation of a graphic string type.

graphic-expression
An expression that returns a value that is a graphic string.
integer
An integer value specifying the length attribute of the resulting GRAPHIC data type.

The value must be between 1 and 127. If integer is not specified, the length of the
result is the same as the length of the first argument.

The result of the function is a GRAPHIC. If the argument can be null, the result can be
null; if the argument is null, the result is the null value.

Chapter 4. Functions 237

HEX

HEX

v

»—HEX—(—expression—)

The schema is SYSIBM.

The HEX function returns a hexadecimal representation of a value as a character
string.

The argument can be an expression that is a value of any built-in data type with a
maximum length of 2000 bytes.

The result of the function is a character string. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

The code page is the database code page.

The result is a string of hexadecimal digits. The first two represent the first byte of the
argument, the next two represent the second byte of the argument, and so forth. If the
argument is a datetime value or a numeric value the result is the hexadecimal repre-
sentation of the internal form of the argument. The hexadecimal representation that is
returned may be different depending on the application server where the function is
executed. Cases where differences would be evident include:

e Character string arguments when the HEX function is performed on an ASCII client
with an EBCDIC server or on an EBCDIC client with an ASCII server.

¢ Numeric arguments (in some cases) when the HEX function is performed where
client and server systems have different byte orderings for numeric values.
The type and length of the result vary based on the type and length of character string
arguments.
e Character string
— Fixed length not greater than 127

- Result is a character string of fixed length twice the defined length of the
argument.

— Fixed length greater than 127

- Result is a character string of varying length twice the defined length of
the argument.

— Varying length

- Result is a character string of varying length with maximum length twice
the defined maximum length of the argument.

e Graphic string

238 SQL Reference

HEX

— Fixed length not greater than 63

- Result is a character string of fixed length four times the defined length of
the argument.

¢ Fixed length greater than 63

— Result is a character string of varying length four times the defined length of
the argument.

e Varying length

— Result is a character string of varying length with maximum length four times
the defined maximum length of the argument.

Examples:

Assume the use of a DB2 for AIX application server for the following examples.

¢ Using the DEPARTMENT table set the host variable HEX_MGRNO (char(12)) to
the hexadecimal representation of the manager number (MGRNO) for the
‘PLANNING’ department (DEPTNAME).

SELECT HEX(MGRNO)
INTO :HEX_MGRNO FROM DEPARTMENT WHERE DEPTNAME = 'PLANNING'

HEX_MGRNO will be set to '303030303230" when using the sample table (char-
acter value is '000020").

e Suppose COL_1 is a column with a data type of char(1) and a value of 'B'. The
hexadecimal representation of the letter 'B' is X'42'. HEX(COL_1) returns a two-
character string '42".

e Suppose COL_3 is a column with a data type of decimal(6,2) and a value of 40.1.
An eight-character string '0004010C' is the result of applying the HEX function to
the internal representation of the decimal value, 40.1.

Chapter 4. Functions 239

HOUR

HOUR

»—HOUR—(—expression—)

v

The schema is SYSIBM.
The HOUR function returns the hour part of a value.

The argument must be a time, timestamp, time duration, timestamp duration or a valid
character string representation of a time or timestamp that is neither a CLOB nor a
LONG VARCHAR.

The result of the function is a large integer. If the argument can be null, the result can
be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:

e If the argument is a time, timestamp or valid string representation of a time or
timestamp:

— The result is the hour part of the value, which is an integer between 0 and 24.
e If the argument is a time duration or timestamp duration:

— The result is the hour part of the value, which is an integer between -99 and
99. A nonzero result has the same sign as the argument.

Example:

Using the CL_SCHED sample table, select all the classes that start in the afternoon.

SELECT * FROM CL_SCHED
WHERE HOUR(STARTING) BETWEEN 12 AND 17

240 SQL Reference

INSERT

INSERT

»—INSERT—(—expressionl—,—expression2—,

v

v

»—expression3—,—expressiond—)

The schema is SYSFUN.

Returns a string where expression3 bytes have been deleted from expressionl begin-
ning at expression2 and where expression4 has been inserted into expressionl begin-
ning at expression2. If the length of the result string exceeds the maximum for the
return type, an error occurs (SQLSTATE 38552).

The first argument is a character string or a binary string with a maximum length of
1048576 bytes. The second and third arguments must be a numeric value with a data
type of SMALLINT or INTEGER. If the first argument is a character string, then the
fourth argument must also be a character string with a maximum length of 1048576
bytes. If the first argument is a binary string, then the fourh argument must be a binary
string with a maximum length of 1048576 bytes. For the first and fourth arguments,
CHAR is converted to VARCHAR and LONG VARCHAR to CLOB(1M), for second and
third arguments SMALLINT is converted to INTEGER for processing by the function.

The result is based on the argument types as follows:
¢ VARCHAR(4000) if both the first and fourth arguments are VARCHAR or CHAR

e CLOB(1M) if either the first or fourth argument is CLOB or LONG VARCHAR
¢ BLOB(1M) if both first and fourth arguments are BLOB.

The result can be null; if any argument is null, the result is the null value.

Example:

e Delete one character from the word 'DINING' and insert 'VID', both beginning at the
third character.

VALUES CHAR(INSERT('DINING', 3, 1, 'VID'), 10)

This example returns the following:

DIVIDING

As mentioned, the output of the INSERT function is VARCHAR(4000). For the
above example the function CHAR has been used to limit the output of INSERT to
10 bytes. The starting location of a particular string can be found using LOCATE.
Refer to “LOCATE” on page 248 for more information.

Chapter 4. Functions 241

INTEGER

INTEGER

v

»—INTEGER——(numeric-expression)
Echaracter—expr‘essionJ

Note:
1 INT can be used as a synonym for INTEGER.

The schema is SYSIBM.

The INTEGER function returns an integer representation of a number or character
string in the form of an integer constant.

numeric-expression
An expression that returns a value of any built-in numeric data type.

If the argument is a numeric-expression, the result is the same number that would
occur if the argument were assigned to a large integer column or variable. If the
whole part of the argument is not within the range of integers, an error occurs. The
decimal part of the argument is truncated if present.

character-expression
An expression that returns a character string value of length not greater than the
maximum length of a character constant. Leading and trailing blanks are eliminated
and the resulting string must conform to the rules for forming an SQL integer con-
stant (SQLSTATE 22018). The character string cannot be a long string.

If the argument is a character-expression, the result is the same number that would
occur if the corresponding integer constant were assigned to a large integer
column or variable.

The result of the function is a large integer. If the argument can be null, the result can
be null; if the argument is null, the result is the null value.

Examples:

e Using the EMPLOYEE table, select a list containing salary (SALARY) divided by
education level (EDLEVEL). Truncate any decimal in the calculation. The list
should also contain the values used in the calculation and employee number
(EMPNO). The list should be in descending order of the calculated value.

SELECT INTEGER (SALARY / EDLEVEL), SALARY, EDLEVEL, EMPNO

FROM EMPLOYEE
ORDER BY 1 DESC

e Using the EMPLOYEE table, select the EMPNO column in integer form for further
processing in the application.

SELECT INTEGER(EMPNO) FROM EMPLOYEE

242 SQL Reference

JULIAN_DAY

JULIAN_DAY

v

»—JULIAN_DAY—(—expression—)

The schema is SYSFUN.

Returns an integer value representing the number of days from January 1,4712 B.C.
(the start of Julian date calendar) to the date value specified in the argument.

The argument must be a date, timestamp, or a valid character string representation of a
date or timestamp that is neither a CLOB nor a LONG VARCHAR.

The result of the function is INTEGER. The result can be null; if the argument is null,
the result is the null value.

Chapter 4. Functions 243

LCASE

LCASE

v

»—| CASE—(—expression—)

The schema is SYSFUN.

Returns a string in which all the characters A-Z have been converted to the characters
a-z (characters with diacritical marks are not converted). Note that
LCASE(UCASE(string)) will therefore not necessarily return the same result as
LCASE(string).

The argument can be of any built-in character string type up to a maximum of 1048576
bytes (1M).

The result of the function is:
¢ VARCHAR(4000) if the argument is VARCHAR or CHAR
e CLOB(1M) if the argument is CLOB or LONG VARCHAR

The result can be null; if the argument is null, the result is the null value.

244 SQL Reference

LEFT

LEFT

»—LEFT—(—expressionl—,—expression2—)

v

The schema is SYSFUN.
Returns a string consisting of the leftmost expression2 bytes in expressionl.

The first argument is a character string or binary string with maximum length of
1048576 bytes. The second argument must be of INTEGER or SMALLINT dataype.

The result of the function is:
¢ VARCHAR(4000) if the argument is VARCHAR or CHAR
e CLOB(1M) if the argument is CLOB or LONG VARCHAR
e BLOB(1M) if the argument is BLOB.

The result can be null; if any argument is null, the result is the null value.

Chapter 4. Functions 245

LENGTH

LENGTH

v

»—LENGTH—(—expression—)

The schema is SYSIBM.
The LENGTH function returns the length of a value.
The argument can be an expression that returns a value of any built-in data type.

The result of the function is a large integer. If the argument can be null, the result can
be null; if the argument is null, the result is the null value.

The result is the length of the argument. The length does not include the null indicator
byte of column arguments that allow null values. The length of strings includes blanks
but does not include the length control field of varying-length strings. The length of a
varying-length string is the actual length, not the maximum length.

The length of a graphic string is the number of DBCS characters. The length of all other
values is the number of bytes used to represent the value:

e 2 for small integer

e 4 for large integer

e (p/2)+1 for decimal numbers with precision p
e The length of the string for binary strings

e The length of the string for character strings
e 4 for single-precision floating-point

e 8 for double-precision floating-point

e 4 for date

e 3 for time

e 10 for timestamp

Examples:

e Assume the host variable ADDRESS is a varying length character string with a
value of '895 Don Mills Road"'.

LENGTH (: ADDRESS)
Returns the value 18.
e Assume that START_DATE is a column of type DATE.
LENGTH (START_DATE)
Returns the value 4.

¢ This example returns the value 10.
LENGTH (CHAR(START_DATE, EUR))

246 SQL Reference

LN

LN

»—LN—(—expression—)

v

The schema is SYSFUN.

Returns the natural logarithm of the argument (same as LOG).

The argument can be of any built-in numeric data type. It is converted to double-

precision floating-point number for processing by the function.

The result of the function is a double-precision floating-point number. The result can be

null; if the argument is null, the result is the null value.

Chapter 4. Functions

247

LOCATE

LOCATE

»—LOCATE—(—expressionl—,—expression2

)

v

I—,—express z'on3J

The schema is SYSFUN.

Returns the starting position of the first occurrence of expressionl within expression2. If
the optional expression3 is specified, it indicates the character position in expression2
at which the search is to begin. If expressionl is not found within expression2, the
value 0 is returned.

If the first argument is a character string, then the second argument must be a char-
acter string with a maximum length of 1048576 bytes. If the first argument is a binary
string, then the second argument must be a binary string with a maximum length of
1048576 bytes. The third argument must be is INTEGER or SMALLINT.

The result of the function is INTEGER. The result can be null; if any argument is null,
the result is the null value.

Example:
e Find the location of the letter 'N' (first occurrence) in the word 'DINING'.
VALUES LOCATE ('N', 'DINING')

This example returns the following:

248 SQL Reference

LOG

LOG

»—L0G—(—expression—)

v

The schema is SYSFUN.
Returns the natural logarithm of the argument (same as LN).

The argument can be of any built-in numeric data type. It is converted to double-
precision floating-point number for processing by the function.

The result of the function is a double-precision floating-point number. The result can be
null; if the argument is null, the result is the null value.

Chapter 4. Functions 249

LOG10

LOG10

»—10G10—(—expression—)

v

The schema is SYSFUN.
Returns the base 10 logarithm of the argument.

The argument can be of any built-in numeric type. It is converted to double-precision
floating-point number for processing by the function.

The result of the function is a double-precision floating-point number. The result can be
null; if the argument is null, the result is the null value.

250 SQL Reference

LONG_VARCHAR

LONG_VARCHAR

»—LONG_VARCHAR—(—character-string-expression—)

v

The schema is SYSIBM.

The LONG_VARCHAR function returns a LONG VARCHAR representation of a char-
acter string data type.

character-string-expression

An expression that returns a value that is a character string with a length no
greater than 32700 bytes.

The result of the function is a LONG VARCHAR. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

Chapter 4. Functions 251

LONG_VARGRAPHIC

LONG_VARGRAPHIC

»—LONG_VARGRAPHIC—(—graphic-expression—)

v

The schema is SYSIBM.

The LONG_VARGRAPHIC function returns a LONG VARGRAPHIC representation of a
double-byte character string.

graphic-expression
An expression that returns a value that is a graphic string with a length no greater
than 16350 double byte characters .

The result of the function is a LONG VARGRAPHIC. If the argument can be null, the
result can be null; if the argument is null, the result is the null value.

252 SQL Reference

LTRIM

LTRIM

v

»—LTRIM—(—expression—)

The schema is SYSFUN.
Returns the characters of the argument with leading blanks removed.

The argument can be any built-in character string with a maximum length of 1048576
bytes (1M).

The result of the function is:
¢ VARCHAR(4000) if the argument is VARCHAR or CHAR
e CLOB(1M) if the argument is CLOB or LONG VARCHAR.

The result can be null; if the argument is null, the result is the null value.

Chapter 4. Functions 253

MICROSECOND

MICROSECOND

»—MICROSECOND—(—expression—)

v

The schema is SYSIBM.
The MICROSECOND function returns the microsecond part of a value.

The argument must be a timestamp, timestamp duration or a valid character string rep-
resentation of a timestamp that is neither a CLOB nor a LONG VARCHAR.

The result of the function is a large integer. If the argument can be null, the result can
be null; if the argument is null, the result is the null value.
The other rules depend on the data type of the argument:
e If the argument is a timestamp or a valid string representation of a timestamp:
— The integer ranges from O through 999999.

e |If the argument is a duration:

— The result reflects the microsecond part of the value which is an integer

between -999999 through 999999. A nonzero result has the same sign as the
argument.

Example:

e Assume a table TABLEA contains two columns, TS1 and TS2, of type
TIMESTAMP. Select all rows in which the microseconds portion of TS1 is not zero
and the seconds portion of TS1 and TS2 are identical.

SELECT * FROM TABLEA
WHERE MICROSECOND(TS1) <> O AND
SECOND(TS1) = SECOND(TS2)

254 sSQL Reference

MIDNIGHT_SECONDS

MIDNIGHT_SECONDS

»—MIDNIGHT_SECONDS—(—expression—)

v

The schema is SYSFUN.

Returns an integer value in the range 0 to 86400 representing the number of seconds
between midnight and the time value specified in the argument.

The argument must be a time, timestamp, or a valid character string representation of a
time or timestamp that is neither a CLOB nor a LONG VARCHAR.

T>he result of the function is INTEGER. The result can be null; if the argument is null,
the result is the null value.

Example:

Find the number of seconds between midnight and 00:10:10, and midnight and
13:10:10.

VALUES (MIDNIGHT_SECONDS('00:10:10'), MIDNIGHT_SECONDS('13:10:10'))

This example returns the following:

Since a minute is 60 seconds, there are 610 seconds between midnight and the
specified time. The same follows for the second example. There are 3600 seconds
in an hour, and 60 seconds in a minute, resulting in 47410 seconds between the
specified time and midnight.

Find the number of seconds between midnight and 24:00:00, and midnight and
00:00:00.

VALUES (MIDNIGHT_SECONDS('24:00:00'), MIDNIGHT_SECONDS('00:00:00'))

This example returns the following:

Note that thses two values represent the same point in time, but return different
MIDNIGHT_SECONDS values.

Chapter 4. Functions 255

MINUTE

MINUTE

»—MINUTE—(—expression—)

v

The schema is SYSIBM.
The MINUTE function returns the minute part of a value.

The argument must be a time, timestamp, time duration, timestamp duration or a valid
character string representation of a time or timestamp that is neither a CLOB nor a
LONG VARCHAR.

The result of the function is a large integer. If the argument can be null, the result can
be null; if the argument is null, the result is the null value.
The other rules depend on the data type of the argument:

e If the argument is a time, timestamp or valid string representation of a time or
timestamp:

— The result is the minute part of the value, which is an integer between 0 and
59.

e If the argument is a time duration or timestamp duration:

— The result is the minute part of the value, which is an integer between -99 and
99. A nonzero result has the same sign as the argument.

Example:

e Using the CL_SCHED sample table, select all classes with a duration less than 50
minutes.

SELECT * FROM CL_SCHED
WHERE HOUR(ENDING - STARTING) = O AND
MINUTE (ENDING - STARTING) < 50

256 SQL Reference

MOD

MOD

»—MOD—(—expression—,—expression—)

v

The schema is SYSFUN.

Returns the remainder of the first argument divided by the second argument. The
result is negative only if first argument is negative.
The result of the function is:
e SMALLINT if both arguments are SMALLINT
¢ INTEGER if one argument is INTEGER and the other is INTEGER or SMALLINT
e BIGINT if one argument is BIGINT and the other argument is BIGINT, INTEGER or
SMALLINT.

The result can be null; if any argument is null, the result is the null value.

Chapter 4. Functions 257

MONTH

MONTH

»—MONTH— (—expression—)

v

The schema is SYSIBM.
The MONTH function returns the month part of a value.

The argument must be a date, timestamp, date duration, timestamp duration or a valid
character string representation of a date or timestamp that is neither a CLOB nor a
LONG VARCHAR.

The result of the function is a large integer. If the argument can be null, the result can
be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:

e If the argument is a date, timestamp, or a valid string representation of a date or
timestamp:

— The result is the month part of the value, which is an integer between 1 and
12.

e If the argument is a date duration or timestamp duration:
— The result is the month part of the value, which is an integer between -99 and
99. A nonzero result has the same sign as the argument.

Example:

e Select all rows from the EMPLOYEE table for people who were born (BIRTHDATE)
in DECEMBER.

SELECT * FROM EMPLOYEE
WHERE MONTH(BIRTHDATE) = 12

258 sSQL Reference

MONTHNAME

MONTHNAME

»—MONTHNAME— (—expression—)

v

The schema is SYSFUN.

Returns a mixed case character string containing the name of month (e.g. January) for
the month portion of the argument, based on the locale when the database was started.

The argument must be a date, timestamp, or a valid character string representation of a
date or timestamp that is neither a CLOB nor a LONG VARCHAR.

The result of the function is VARCHAR(100). The result can be null; if the argument is
null, the result is the null value.

Chapter 4. Functions 259

NODENUMBER

NODENUMBER

»—NODENUMBER— (—co lumn-name—)

v

The schema is SYSIBM.

The NODENUMBER function returns the partition number of the row. For example, if
used in a SELECT clause, it returns the partition number for each row of the table that
was used to form the result of the SELECT statement.

The partition number returned on transition variables and tables is derived from the
current transition values of the partitioning key columns. For example, in a before insert
trigger, the function will return the projected partition number given the current values of
the new transition variables. However, the values of the partitioning key columns may
be modified by a subsequent before insert trigger. Thus, the final partition number of
the row when it is inserted into the database may differ from the projected value.

The argument must be the qualified or unqualified name of a column of a table. The
column can have any data type.35 If column-name references a column of a view the
expression in the view for the column must reference a column of the underlying base
table and the view must be deletable. A nested or common table expression follows the
same rules as a view. See “Notes” on page 589 for the definition of a deletable view.

The specific row (and table) for which the partition number is returned by the
NODENUMBER function is determined from the context of the SQL statement that uses
the function.

The data type of the result is INTEGER and is never null. Since row-level information is
returned, the results are the same, regardless of which column is specified for the table.
If there is no db2nodes.cfg file, the result is 0.

The NODENUMBER function cannot be used on replicated tables or within check con-
straints (SQLSTATE 42881).

Examples:

e Count the number of rows where the row for an EMPLOYEE is on a different parti-
tion from the employee's department description in DEPARTMENT.

SELECT COUNT(*) FROM DEPARTMENT D, EMPLOYEE E

WHERE D.DEPTNO=E.WORKDEPT
AND NODENUMBER(E.LASTNAME) <>NODENUMBER(D.DEPTNQ)

35 This function may not be used as a source function when creating a user-defined function. Since it accepts any data types as an
argument, it is not necessary to create additional signatures to support user-defined distinct types.

260 SQL Reference

NODENUMBER

Join the EMPLOYEE and DEPARTMENT tables where the rows of the two tables
are on the same partition.

SELECT * FROM DEPARTMENT D, EMPLOYEE E
WHERE NODENUMBER(E.LASTNAME) = NODENUMBER(D.DEPTNO)

Log the employee number and the projected partition number of the new row into a
table called EMPINSERTLOG1 for any insertion of employees by creating a before
trigger on the table EMPLOYEE.

CREATE TRIGGER EMPINSLOGTRIG1
BEFORE INSERT ON EMPLOYEE
REFERENCING NEW AW NEWTABLE
FOR EACH MODE ROW MODE DB2SQL
INSERT INTO EMPINSERTLOG1
VALUES (NEWTABLE.EMPNO, NODENUMBER(NEWTABLE.EMPNO))

Chapter 4. Functions 261

NULLIF

NULLIF

»—NULLIF—(—expression—,—expression—)

v

The schema is SYSIBM.

The NULLIF function returns a null value if the arguments are equal, otherwise it
returns the value of the first argument.

The arguments must be comparable (see “Assignments and Comparisons” on

page 70). They can be of either a built-in (other than a long string or DATALINK) or
distinct data type (other than based on a long string or DATALINK). 3¢ The attributes of
the result are the attributes of the first argument.

The result of using NULLIF(el,e2) is the same as using the expression

CASE WHEN el=e2 THEN NULL ELSE el END
Note that when el=e2 evaluates to unknown (because one or both arguments is
NULL), CASE expressions consider this not true. Therefore, in this situation, NULLIF
returns the value of the first argument.
Example:

e Assume host variables PROFIT, CASH, and LOSSES have DECIMAL data types
with the values 4500.00, 500.00, and 5000.00 respectively:

NULLIF (:PROFIT + :CASH , :LOSSES)

Returns a null value.

36 This function may not be used as a source function when creating a user-defined function. Since it accepts any compatible data
types as arguments, it is not necessary to create additional signatures to support user-defined distinct types.

262 SQL Reference

PARTITION

PARTITION

»—PARTITION—(—column-name—)

v

The schema is SYSIBM.

The PARTITION function returns the partitioning map index of the row obtained by
applying the partitioning function on the partitioning key value of the row. For example,
if used in a SELECT clause, it returns the partitioning map index for each row of the
table that was used to form the result of the SELECT statement.

The partitioning map index returned on transition variables and tables is derived from
the current transition values of the partitioning key columns. For example, in a before
insert trigger, the function will return the projected partitioning map index given the
current values of the new transition variables. However, the values of the partitioning
key columns may be modified by a subsequent before insert trigger. Thus, the final
partitioning map index of the row when it is inserted into the database may differ from
the projected value.

The argument must be the qualified or unqualified name of a column of a table. The
column can have any data type.37 If column-name references a column of a view the
expression in the view for the column must reference a column of the underlying base
table and the view must be deletable. A nested or common table expression follows the
same rules as a view. See “Notes” on page 589 for the definition of a deletable view.

The specific row (and table) for which the partitioning map index is returned by the
PARTITION function is determined from the context of the SQL statement that uses the
function.

The data type of the result is INTEGER in the range 0 to 4095. For a table with no
partitioning key, the result is always 0. A null value is never returned. Since row-level
information is returned, the results are the same, regardless of which column is speci-
fied for the table.

The PARTITION function cannot be used on replicated tables or within check
constraints(SQLSTATE 42881).
Example:

¢ List the employee numbers (EMPNO) from the EMPLOYEE table for all rows with a
partitioning map index of 100.

37 This function may not be used as a source function when creating a user-defined function. Since it accepts any data type as an
arguments, it is not necessary to create additional signatures to support user-defined distinct types.

Chapter 4. Functions 263

PARTITION

264 SQL Reference

SELECT EMPNO FROM EMPLOYEE
WHERE PARTITION(PHONENO) = 100

Log the employee number and the projected partitioning map index of the new row
into a table called EMPINSERTLOG?2 for any insertion of employees by creating a
before trigger on the table EMPLOYEE.

CREATE TRIGGER EMPINSLOGTRIG2
BEFORE INSERT ON EMPLOYEE
REFERENCING NEW AW NEWTABLE
FOR EACH MODE ROW MODE DB2SQL
INSERT INTO EMPINSERTLOG2
VALUES (NEWTABLE.EMPNO, PARTITION(NEWTABLE.EMPNO))

POSSTR

POSSTR

»—POSSTR—(—source-string—,—search-string—)

v

The schema is SYSIBM.

The POSSTR function returns the starting position of the first occurrence of one string
(called the search-string) within another string (called the source-string). Numbers for
the search-string position start at 1 (not 0).

The result of the function is a large integer. If either of the arguments can be null, the
result can be null; if either of the arguments is null, the result is the null value.

source-string
An expression that specifies the source string in which the search is to take place.

The expression can be specified by any one of:

a constant

a special register

a host variable (including a locator variable or a file reference variable)
a scalar function

a large object locator

a column name

an expression concatenating any of the above

search-string
An expression that specifies the string that is to be searched for.

The expression can be specified by any one of:

a constant

a special register

a host variable

a scalar function whose operands are any of the above
an expression concatenating any of the above

with the restrictions that:

No element in the expression can be of type LONG VARCHAR, CLOB, LONG
VARGRAPHIC or DBCLOB. In addition, it cannot be a BLOB file reference
variable.

The actual length of search-string cannot be more than 4000 bytes.

Note that these rules are the same as those for the pattern-expression described in
“LIKE Predicate” on page 146.

Both search-string and source-string have zero or more contiguous positions. If the
strings are character or binary strings, a position is a byte. If the strings are graphic
strings, a position is a graphic (DBCS) character.

Chapter 4. Functions 265

POSSTR

The POSSTR function accepts mixed data strings. However, POSSTR operates on a
strict byte-count basis, oblivious to changes between single and multi-byte characters.

The following rules apply:
e The data types of source-string and search-string must be compatible, otherwise
an error is raised (SQLSTATE 42884).

— If source-string is a character string, then search-string must be a character
string, but not a CLOB or LONG VARCHAR, with an actual length of 4000
bytes or less.

— If source-string is a graphic string, then search-string must be a graphic string,
but not a DBCLOB or LONG VARGRAPHIC, with an actual length of 2000
double-byte characters or less.

— If source-string is a binary string, then search-string must be a binary string
with an actual length of 4000 bytes or less.

e If search-string has a length of zero, the result returned by the function is 1.

e Otherwise:
— If source-string has a length of zero, the result returned by the function is zero.

— Otherwise:

- If the value of search-string is equal to an identical length substring of
contiguous positions from the value of source-string, then the result
returned by the function is the starting position of the first such substring
within the source-string value.

- Otherwise, the result returned by the function is 0.

Example
e Select RECEIVED and SUBJECT columns as well as the starting position of the
words 'GOOD BEER' within the NOTE_TEXT column for all entries in the IN_TRAY
table that contain these words.
SELECT RECEIVED, SUBJECT, POSSTR(NOTE_TEXT, 'GOOD BEER')

FROM IN_TRAY
WHERE POSSTR(NOTE_TEXT, 'GOOD BEER') <> 0

266 SQL Reference

POWER

POWER

v

»—POWER— (—expressionl—,—expression2—)

The schema is SYSFUN.
Returns the value of expressionl to the power of expression2.

The arguments can be of any built-in numeric data type. DECIMAL and REAL argu-
ments are converted to double-precision floating-point number.
The result of the function is:

¢ INTEGER if both arguments are INTEGER or SMALLINT

e BIGINT if one argument is BIGINT and the other argument is BIGINT, INTEGER or
SMALLINT

¢ DOUBLE otherwise.

The result can be null; if any argument is null, the result is the null value.

Chapter 4. Functions 267

QUARTER

QUARTER

»—QUARTER—(—expression—)

v

The schema is SYSFUN.

Returns an integer value in the range 1 to 4 representing the quarter of the year for the
date specified in the argument.

The argument must be a date, timestamp, or a valid character string representation of a
date or timestamp that is neither a CLOB nor a LONG VARCHAR.

The result of the function is INTEGER. The result can be null; if the argument is null,
the result is the null value.

268 SQL Reference

RADIANS

RADIANS

»—RADIANS—(—expression—)

v

The schema is SYSFUN.

Returns the number of radians converted from argument which is expressed in
degrees.

The argument can be of any built-in numeric data types. It is converted to double-
precision floating-point number for processing by the function.

The result of the function is a double-precision floating-point number. The result can be
null; if the argument is null, the result is the null value.

Chapter 4. Functions 269

RAISE_ERROR

RAISE_ERROR

v

»—RAISE_ERROR—(—sgqlstate—,—diagnostic-string—)

The schema is SYSIBM.

The RAISE_ERROR function causes the statement that includes the function to return
an error with the specified SQLSTATE, SQLCODE -438 and diagnostic-string. The
RAISE_ERROR function always returns NULL with an undefined data type.

sqlstate
A character string containing exactly 5 characters. It must be of type CHAR defined
with a length of 5 or type VARCHAR defined with a length of 5 or greater. The
sqlstate value must follow the rules for application-defined SQLSTATESs as follows:

e Each character must be from the set of digits ('0' through '9") or non-accented
upper case letters ('A' through 'Z")

e The SQLSTATE class (first two characters) cannot be '00', '01' or '02' since
these are not error classes.

e |f the SQLSTATE class (first two characters) starts with the character '0'
through '6' or 'A' through 'H', then the subclass (last three characters) must
start with a letter in the range 'I' through 'Z'

e If the SQLSTATE class (first two characters) starts with the character '7', '8', '9'
or 'I' though 'Z', then the subclass (last three characters) can be any of 'O’
through '9' or 'A' through 'Z'.

If the SQLSTATE does not conform to these rules an error occurs (SQLSTATE
428B3).

diagnostic-string
An expression of type CHAR or VARCHAR that returns a character string of up to
70 bytes that describes the error condition. If the string is longer than 70 bytes, it
will be truncated.

In order to use this function in a context where Rules for Result Data Types do not
apply (such as alone in a select list), a cast specification must be used to give the null
returned value a data type. A CASE expression is where the RAISE_ERROR function
will be most useful.

Example:

List employee numbers and education levels as Post Graduate, Graduate and Diploma.
If an education level is greater than 20, raise an error.

270 SQL Reference

RAISE_ERROR

SELECT EMPNO,
CASE WHEN EDUCLVL < 16 THEN 'Diploma’
WHEN EDUCLVL < 18 THEN 'Graduate'
WHEN EDUCLVL < 21 THEN 'Post Graduate'
ELSE RAISE_ERROR('70001' s
"EDUCLVL has a value greater than 20')
END
FROM EMPLOYEE

Chapter 4. Functions 271

RAND

RAND

»—RAND—()

v

|—exp ress ionJ

The schema is SYSFUN.

Returns a random floating point value between 0 and 1 using the argument as the
optional seed value.

An argument is not required, but if it is specified it can be either INTEGER or
SMALLINT.

The result of the function is a double-precision floating-point number. The result can be
null; if the argument is null, the result is the null value.

272 SQL Reference

REAL

REAL

»—REAL—(—numeric-expression—)

v

The schema is SYSIBM.
The REAL function returns a single-precision floating-point representation of a number.
The argument is an expression that returns a value of any built-in numeric data type.

The result of the function is a single-precision floating-point number. If the argument
can be null, the result can be null; if the argument is null, the result is the null value.

The result is the same number that would occur if the argument were assigned to a
single-precision floating-point column or variable.

Example:

Using the EMPLOYEE table, find the ratio of salary to commission for employees
whose commission is not zero. The columns involved (SALARY and COMM) have
DECIMAL data types. The result is desired in single-precision floating point. Therefore,
REAL is applied to SALARY so that the division is carried out in floating point (actually
double precision) and then REAL is applied to the complete expression to return the
result in single-precision floating point.

SELECT EMPNO, REAL (REAL(SALARY)/COMM)
FROM EMPLOYEE
WHERE COMM > 0

Chapter 4. Functions 273

REPEAT

REPEAT

v

»—REPEAT—(—expression—,—expression—)

The schema is SYSFUN.

Returns a character string composed of the first argument repeated the number of
times specified by the second argument.

The first argument is a character string or binary string with a maximum length of
1048576 bytes. The second argument can be SMALLINT or INTEGER.
The result of the function is:

¢ VARCHAR(4000) if the first argument is VARCHAR or CHAR

e CLOB(1M) if the first argument is CLOB or LONG VARCHAR

e BLOB(1M) if the first argument is BLOB.

The result can be null; if any argument is null, the result is the null value.

Example:
e List the phrase 'REPEAT THIS' five times.
VALUES CHAR(REPEAT('REPEAT THIS', 5), 60)

This example return the following:

REPEAT THISREPEAT THISREPEAT THISREPEAT THISREPEAT THIS

As mentioned, the output of the REPEAT function is VARCHAR(4000). For the
above example the function CHAR has been used to limit the output of REPEAT to
60 bytes.

274 SQL Reference

REPLACE

REPLACE

»—REPLACE—(—expressionl—,—expression2—,—expression3—)—— >

The schema is SYSFUN.
Replaces all occurrences of expression2 in expressionl with expression3.

The first argument is a character string or binary string with a maximum length of
1048576 bytes. CHAR is converted to VARCHAR and LONG VARCHAR is converted
to CLOB(1M). The second and third arguments are identical to the first argument.
The result of the function is:
¢ VARCHAR(4000) if the first, second and third arguments are VARCHAR or CHAR
e CLOB(1M) if the first, second and third arguments are CLOB or LONG VARCHAR
e BLOB(1M) if the first, second and third arguments are BLOB.

The result can be null; if any argument is null, the result is the null value.

Example:
¢ Replace all occurrence of the letter 'N' in the word 'DINING' with 'VID'.
VALUES CHAR (REPLACE ('DINING', 'N', 'VID'), 10)

This example returns the following:

DIVIDIVIDG

As mentioned, the output of the REPLACE function is VARCHAR(4000). For the
above example the function CHAR has been used to limit the output of REPLACE
to 10 bytes.

Chapter 4. Functions 275

RIGHT

RIGHT

»—RIGHT—(—expressionl—,—expression2—)

v

The schema is SYSFUN.
Returns a string consisting of the rightmost expression2 bytes in expressionl.

The first argument is a character string or binary string with maximum length of
1048576 bytes. The second argument can be INTEGER or SMALLINT.
The result of the function is:

¢ VARCHAR(4000) if the first argument is VARCHAR or CHAR

e CLOB(1M) if the first argument is CLOB or LONG VARCHAR

e BLOB(1M) if the first argument is BLOB.

The result can be null; if any argument is null, the result is the null value.

276 SQL Reference

ROUND

ROUND

v

»—ROUND— (—expressionl—,—expression2—)

The schema is SYSFUN.

Returns the expressionl rounded to expression2 places right of the decimal point. If
expression2 is negative, expressionl is rounded to the absolute value of expression2
places to the left of the decimal point.

The first argument can be of any built-in numeric data type. The second argument can
be INTEGER or SMALLINT. DECIMAL and REAL are converted to double-precision
floating-point number for processing by the function.

The result of the function is:
¢ INTEGER if the first argument is INTEGER or SMALLINT

e BIGINT if the first argument is BIGINT
¢ DOUBLE if the first argument is DOUBLE, DECIMAL or REAL.

The result can be null; if any argument is null, the result is the null value.

Example:
e Display the number 973.726 rounded to 2, 1, O, -1 and -2 decimal places respec-
tively.
VALUES (DECIMAL(ROUND(873.726,2),6,3), DECIMAL(ROUND(873.726,1),6,3),
DECIMAL (ROUND(873.726,0),6,3), DECIMAL(ROUND(873.726,-1),6,3),
DECIMAL (ROUND(873.726,-2),6,3))
The above example returns:

1 2 3 4 5

873.730 873.700 874.000 870.000 900.000

As mentioned, the output of the ROUND function is DOUBLE. For the above
example the function DECIMAL has been used to limit the output of ROUND.

Chapter 4. Functions 277

RTRIM

RTRIM

»—RTRIM—(—expression—)

v

The schema is SYSFUN.
Returns the characters of the argument with trailing blanks removed.
The argument can be of any built-in character string data types.

The result of the function is:
¢ VARCHAR(4000) if the argument is VARCHAR or CHAR
e CLOB(1M) if the argument is CLOB or LONG VARCHAR.

The result can be null; if the argument is null, the result is the null value.

278 SQL Reference

SECOND

SECOND

»—SECOND— (—expression—)

v

The schema is SYSIBM.
The SECOND function returns the seconds part of a value.

The argument must be a time, timestamp, time duration, timestamp duration or a valid
character string representation of a time or timestamp that is neither a CLOB nor a
LONG VARCHAR.

The result of the function is a large integer. If the argument can be null, the result can
be null; if the argument is null, the result is the null value.
The other rules depend on the data type of the argument:

e If the argument is a time, timestamp or valid string representation of a time or
timestamp:

— The result is the seconds part of the value, which is an integer between 0 and
59.

¢ If the argument is a time duration or timestamp duration:
— The result is the seconds part of the value, which is an integer between -99
and 99. A nonzero result has the same sign as the argument.
Examples:
¢ Assume that the host variable TIME_DUR (decimal(6,0)) has the value 153045.
SECOND (: TIME_DUR)
Returns the value 45.

e Assume that the column RECEIVED (timestamp) has an internal value equivalent
to 1988-12-25-17.12.30.000000.

SECOND (RECEIVED)

Returns the value 30.

Chapter 4. Functions 279

SIGN

SIGN

v

»—SIGN—(—expression—)

The schema is SYSFUN.

Returns an indicator of the sign of the argument. If the argument is less than zero, -1 is
returned. If argument equals zero, 0 is returned. If argument is greater than zero, 1 is
returned.

The argument can be of any built-in numeric data types. DECIMAL and REAL are con-
verted to double-precision floating-point number for processing by the function.
The result of the function is:

e SMALLINT if the argument is SMALLINT

¢ INTEGER if the argument is INTEGER

e BIGINT if the argument is BIGINT

e DOUBLE otherwise.

The result can be null; if the argument is null, the result is the null value.

280 SQL Reference

SIN

SIN

»—SIN—(—expression—)

v

The schema is SYSFUN.

Returns the sine of the argument, where the argument is an angle expressed in
radians.

The argument can be of any built-in numeric data types. It is converted to double-
precision floating-point number for processing by the function.

The result of the function is a double-precision floating-point number. The result can be
null; if the argument is null, the result is the null value.

Chapter 4. Functions 281

SMALLINT

SMALLINT

»—SMALLINT—(numeric-expression])

v

character-expression

The schema is SYSIBM.

The SMALLINT function returns a small integer representation of a number or character
string in the form of a small integer constant.

numeric-expression

An expression that returns a value of any built-in numeric data type.

If the argument is a numeric-expression, the result is the same number that would
occur if the argument were assigned to a small integer column or variable. If the
whole part of the argument is not within the range of small integers, an error
occurs. The decimal part of the argument is truncated if present.

character-expression

An expression that returns a character string value of length not greater than the
maximum length of a character constant. Leading and trailing blanks are eliminated
and the resulting string must conform to the rules for forming an SQL integer con-
stant (SQLSTATE 22018). However, the value of the constant must be in the range
of small integers (SQLSTATE 22003). The character string cannot be a long string.

If the argument is a character-expression, the result is the same number that would
occur if the corresponding integer constant were assigned to a small integer
column or variable.

The result of the function is a small integer. If the argument can be null, the result can
be null; if the argument is null, the result is the null value.

282 SQL Reference

SOUNDEX

SOUNDEX

»—SOUNDEX—(—expression—)

v

The schema is SYSFUN.

Returns a 4 character code representing the sound of the words in the argument. The
result can be used to compare with the sound of other strings.

The argument can be a character string that is either a CHAR or VARCHAR.

The result of the function is CHAR(4). The result can be null; if the argument is null, the
result is the null value.

The SOUNDEX function is useful for finding strings for which the sound is known but
the precise spelling is not. It makes assumptions about the way that letters and combi-
nations of letters sound that can help to search out words with similar sounds. The
comparison can be done directly or by passing the strings as arguments to the DIF-
FERENCE function (see “DIFFERENCE” on page 218).

Example:

Using the EMPLOYEE table, find the EMPNO and LASTNAME of the employee with a
surname that sounds like 'Loucesy'.

SELECT EMPNO, LASTNAME FROM EMPLOYEE
WHERE SOUNDEX(LASTNAME) = SOUNDEX('Loucesy')

This example returns the following:
EMPNO LASTNAME

000110 LUCCHESSI

Chapter 4. Functions 283

SPACE

SPACE

»—SPACE—(—expression—)

v

The schema is SYSFUN.

Returns a character string consisting of blanks with length specified by the second
argument.

The argument can be SMALLINT or INTEGER.

The result of the function is VARCHAR(4000). The result can be null; if the argument is
null, the result is the null value.

284 SQL Reference

SQRT

SQRT

»—SQRT—(—expression—)

v

The schema is SYSFUN.
Returns the square root of the argument.

The argument can be any built-in numeric data type. It has to be converted to double-
precision floating-point number for processing by the function.

The result of the function is double-precision floating-point number. The result can be
null; if the argument is null, the result is the null value.

Chapter 4. Functions 285

SUBSTR

SUBSTR

v

»—SUBSTR—(—string—,—start B
,—ZengrthJ

The schema is SYSIBM.
The SUBSTR function returns a substring of a string.

If string is a character string, the result of the function is a character string represented
in the code page of its first argument. If it is a binary string, the result of the function is
a binary string. If it is a graphic string, the result of the function is a graphic string
represented in the code page of its first argument. If any argument of the SUBSTR
function can be null, the result can be null; if any argument is null, the result is the null
value.

string
An expression that specifies the string from which the result is derived.

If string is either a character string or a binary string, a substring of string is zero or
more contiguous bytes of string. If string is a graphic string, a substring of string is
zero or more contiguous double-byte characters of string.

start
An expression that specifies the position of the first byte of the result for a char-
acter string or a binary string or the position of the first character of the result for a
graphic string. start must be an integer between 1 and the length or maximum
length of string, depending on whether string is fixed-length or varying-length
(SQLSTATE 22011, if out of range).

length
An expression that specifies the length of the result. If specified, /length must be a
binary integer in the range 0 to n, where n equals (the length attribute of string) —
start + 1 (SQLSTATE 22011, if out of range).

If length is explicitly specified, string is effectively padded on the right with the nec-
essary number of blank characters (single-byte for character strings; double-byte
for graphic strings) so that the specified substring of string always exists. The
default for length is the number of bytes from the byte specified by the start to the
last byte of string in the case of character string or binary string or the number of
double-byte characters from the character specified by the start to the last char-
acter of string in the case of a graphic string. However, if string is a varying-length
string with a length less than start, the default is zero and the result is the empty
string. (For example, the column NAME with a data type of VARCHAR(18) and a
value of 'MCKNIGHT' will yield an empty string with SUBSTR(NAME, 10)).

Table 14 on page 287 shows that the result type and length of the SUBSTR function
depend on the type and attributes of its inputs.

286 SQL Reference

Table 14. Data Type and Length of SUBSTR Result

SUBSTR

String Argument Data
Type

Length Argument

Result Data Type

CHAR(A) constant (¢<255) CHAR(€)
CHAR(A) not specified but start argument is a CHAR(A-start+1)
constant

CHAR(A) not a constant VARCHAR(A)
VARCHAR(A) constant (€<255) CHAR(¢)
VARCHAR(A) constant (254<€<4001) VARCHAR(¢)
VARCHAR(A) not a constant or not specified VARCHAR(A)
LONG VARCHAR constant (€<255) CHARC(¢)

LONG VARCHAR constant (254<¢<4001) VARCHAR(¢)

LONG VARCHAR

constant (¢>4000)

LONG VARCHAR

LONG VARCHAR

not a constant or not specified

LONG VARCHAR

CLOB(A) constant (¢) CLOB(¢)

CLOB(A) not a constant or not specified CLOB(A)

GRAPHIC(A) constant (£<128) GRAPHIC(¢)

GRAPHIC(A) not specified but start argument is a GRAPHIC(A-start+1)
constant

GRAPHIC(A) not a constant VARGRAPHIC(A)

VARGRAPHIC(A)

constant (¢<128)

GRAPHIC(¢)

VARGRAPHIC(A)

constant (127<€<2001)

VARGRAPHIC(¢)

VARGRAPHIC(A)

not a constant

VARGRAPHIC(A)

LONG VARGRAPHIC

constant (¢<128)

GRAPHIC(¢)

LONG VARGRAPHIC

constant (127<€<2001)

VARGRAPHIC(¢)

LONG VARGRAPHIC

constant (¢>2000)

LONG VARGRAPHIC

LONG VARGRAPHIC

not a constant or not specified

LONG VARGRAPHIC

DBCLOB(A) constant (¢) DBCLOB(¥¢)
DBCLOB(A) not a constant or not specified DBCLOB(A)
BLOB(A) constant (¢) BLOB(¢)
BLOB(A) not a constant or not specified BLOB(A)

If string is a fixed-length string, omission of length is an implicit specification of
LENGTH(string) - start + 1. If string is a varying-length string, omission of length is an
implicit specification of zero or LENGTH(string) - start + 1, whichever is greater.

Chapter 4. Functions 287

SUBSTR

Examples:

Assume the host variable NAME (varchar(50)) has a value of 'BLUE JAY' and the
host variable SURNAME_POS (int) has a value of 6.

SUBSTR(:NAME, :SURNAME_POS) :ehp2s
Returns the value 'JAY'

SUBSTR(:NAME, :SURNAME_P0S,1)
Returns the value 'J'.

Select all rows from the PROJECT table for which the project name (PROIJNAME)
starts with the word 'OPERATION .

SELECT * FROM PROJECT
WHERE SUBSTR(PROJNAME,1,10) = 'OPERATION '

The space at the end of the constant is necessary to preclude initial words such as
'OPERATIONS'.

Notes:

1.

288 SQL Reference

In dynamic SQL, string, start, and length may be represented by a parameter
marker (?). If a parameter marker is used for string, the data type of the operand
will be VARCHAR, and the operand will be nullable.

Though not explicitly stated in the result definitions above, it follows from these
semantics that if string is a mixed single- and multi-byte character string, the result
may contain fragments of multi-byte characters, depending upon the values of start
and length. That is, the result could possibly begin with the second byte of a
double-byte character, and/or end with the first byte of a double-byte character.
The SUBSTR function does not detect such fragments, nor provides any special
processing should they occur.

TABLE_NAME

TABLE_NAME

»—TABLE_NAME—(—objectname)

v

l—,—objectschema—]

The schema is SYSIBM.

The TABLE_NAME function returns an unqualified name of the object found after any
alias chains have been resolved. The specified objectname (and objectschema) are
used as the starting point of the resolution. If the starting point does not refer to an
alias, the unqualified name of the starting point is returned. The resulting name may be
of a table, view, or undefined object.

objectname
A character expression representing the unqualified name (usually of an existing
alias) to be resolved. objectname must have a data type of CHAR or VARCHAR
and a length greater than 0 and less than 19 characters.

objectschema
A character expression representing the schema used to qualify the supplied
objectname value before resolution. objectschema must have a data type of CHAR
or VARCHAR and a length greater than 0 and less than 9 characters.

If objectschema is not supplied, the default schema is used for the qualifier.

The data type of the result of the function is VARCHAR(18). If objectname can be null,
the result can be null; if objectname is null, the result is the null value. If objectschema
is the null value, the default schema name is used. The result is the character string
representing an unqualified name. The result name could represent one of the

following:

table The value for objectname was either a table name (the input value is
returned) or an alias name that resolved to the table whose name is
returned.

view The value for objectname was either a view name (the input value is
returned) or an alias name that resolved to the view whose name is
returned.

undefined object

The value for objectname was either an undefined object (the input value is
returned) or an alias name that resolved to the undefined object whose
name is returned.

Therefore, if a non-null value is given to this function, a value is always returned, even
if no object with the result name exists.

Examples:

Chapter 4. Functions 289

TABLE_NAME

See Examples section in “TABLE_SCHEMA” on page 291.

290 SQL Reference

TABLE_SCHEMA

TABLE_SCHEMA

»—TABLE_SCHEMA—(—objectname)

v

|—,—objectschemaJ

The schema is SYSIBM.

The TABLE_SCHEMA function returns the schema name of the object found after any
alias chains have been resolved. The specified objectname (and objectschema) are
used as the starting point of the resolution. If the starting point does not refer to an
alias, the schema name of the starting point is returned. The resulting schema name
may be of a table, view, or undefined object.

objectname
A character expression representing the unqualified name (usually of an existing
alias) to be resolved. objectname must have a data type of CHAR or VARCHAR
and a length greater than 0 and less than 19 characters.

objectschema
A character expression representing the schema used to qualify the supplied
objectname value before resolution. objectschema must have a data type of CHAR
or VARCHAR and a length greater than 0 and less than 9 characters.

If objectschema is not supplied, the default schema is used for the qualifier.

The data type of the result of the function is CHAR(8). If objectname can be null, the
result can be null; if objectname is null, the result is the null value. If objectschema is
the null value, the default schema name is used. The result is the character string
representing a schema name. The result schema could represent the schema name for
one of the following:

table The value for objectname was either a table name (the input or default
value of objectschema is returned) or an alias name that resolved to a
table for which the schema name is returned.

view The value for objectname was either a view name (the input or default
value of objectschema is returned) or an alias name that resolved to a view
for which the schema name is returned.

undefined object

The value for objectname was either an undefined object (the input or
default value of objectschema is returned) or an alias name that resolved
to an undefined object for which the schema name is returned.

Therefore, if a non-null objectname value is given to this function, a value is always
returned, even if the object name with the result schema name does not exist. For
example, TABLE_SCHEMA('DEPT', 'PEOPLE') returns 'PEOPLE ' if the catalog entry is
not found.

Chapter 4. Functions 291

TABLE_SCHEMA

Examples:

e PBIRD tries to select the statistics for a given table from SYSCAT.TABLES using
an alias PBIRD.A1 defined on the table HEDGES.T1.

SELECT NPAGES, CARD FROM SYSCAT.TABLES
WHERE TABNAME = TABLE_NAME ('Al')
AND TABSCHEMA = TABLE_SCHEMA ('Al')

The requested statistics for HEDGES.T1 are retrieved from the catalog.

e Select the statistics for an object called HEDGES.X1 from SYSCAT.TABLES using
HEDGES.X1. Use TABLE_NAME and TABLE_SCHEMA since it is not known
whether HEDGES. X1 is an alias or a table.

SELECT NPAGES, CARD FROM SYSCAT.TABLES
WHERE TABNAME = TABLE_NAME ('X1','HEDGES')
AND TABSCHEMA = TABLE_SCHEMA ('X1','HEDGES')

Assuming that HEDGES.X1 is a table, the requested statistics for HEDGES.X1 are
retrieved from the catalog.

¢ Select the statistics for a given table from SYSCAT.TABLES using an alias
PBIRD.A2 defined on HEDGES.T2 where HEDGES.T2 does not exist.

SELECT NPAGES, CARD FROM SYSCAT.TABLES
WHERE TABNAME = TABLE_NAME ('A2','PBIRD')
AND TABSCHEMA = TABLE_SCHEMA ('A2',PBIRD')

The statement returns 0 records as no matching entry is found in
SYSCAT.TABLES where TABNAME = 'T2' and TABSCHEMA = 'HEDGES..

e Select the qualified name of each entry in SYSCAT.TABLES along with the final
referenced name for any alias entry.

SELECT TABSCHEMA AS SCHEMA, TABNAME AS NAME,
TABLE_SCHEMA (BASE_TABNAME, BASE_TABSCHEMA) AS REAL_SCHEMA,
TABLE_NAME (BASE_TABNAME, BASE_TABSCHEMA) AS REAL_NAME
FROM SYSCAT.TABLES

The statement returns the qualified name for each object in the catalog and the
final referenced name (after alias has been resolved) for any alias entries. For all
non-alias entries, BASE_TABNAME and BASE_TABSCHEMA are null so the
REAL_SCHEMA and REAL_NAME columns will contain nulls.

292 SQL Reference

TAN

TAN

»—TAN—(—expression—)

v

The schema is SYSFUN.

Returns the tangent of the argument, where the argument is an angle expressed in
radians.

The argument can be any built-in numeric data type. It has to be converted to double-
precision floating-point number for processing by the function.

The result of the function is double-precision floating-point number. The result can be
null; if the argument is null, the result is the null value.

Chapter 4. Functions 293

TIME

TIME

v

»—TIME—(—expression—)

The schema is SYSIBM.
The TIME function returns a time from a value.

The argument must be a time, timestamp, or a valid character string representation of a
time or timestamp that is neither a CLOB nor a LONG VARCHAR.

The result of the function is a time. If the argument can be null, the result can be null; if
the argument is null, the result is the null value.
The other rules depend on the data type of the argument:
e If the argument is a time:
— The result is that time.
e |If the argument is a timestamp:
— The result is the time part of the timestamp.
e |f the argument is a character string:

— The result is the time represented by the character string.

Example:

e Select all notes from the IN_TRAY sample table that were received at least one
hour later in the day (any day) than the current time.

SELECT * FROM IN_TRAY
WHERE TIME(RECEIVED) >= CURRENT TIME + 1 HOUR

294 SQL Reference

TIMESTAMP

TIMESTAMP

)

v

»—TIMESTAMP—(—expression B T
,expression

The schema is SYSIBM.
The TIMESTAMP function returns a timestamp from a value or a pair of values.

The rules for the arguments depend on whether the second argument is specified.
e |f only one argument is specified:

— It must be a timestamp, a valid character string representation of a timestamp,
or a character string of length 14 that is neither a CLOB nor a LONG
VARCHAR.

A character string of length 14 must be a string of digits that represents a valid
date and time in the form yyyyxxddhhmmss, where yyyy is the year, xx is the
month, dd is the day, hh is the hour, mm is the minute, and ss is the seconds.

¢ If both arguments are specified:

— The first argument must be a date or a valid character string representation of
a date and the second argument must be a time or a valid string represen-
tation of a time.

The result of the function is a timestamp. If either argument can be null, the result can
be null; if either argument is null, the result is the null value.
The other rules depend on whether the second argument is specified:

¢ If both arguments are specified:

— The result is a timestamp with the date specified by the first argument and the
time specified by the second argument. The microsecond part of the
timestamp is zero.

e If only one argument is specified and it is a timestamp:
— The result is that timestamp.
¢ If only one argument is specified and it is a character string:

— The result is the timestamp represented by that character string. If the argu-
ment is a character string of length 14, the timestamp has a microsecond part
of zero.

Example:

¢ Assume the column START_DATE (date) has a value equivalent to 1988-12-25,
and the column START_TIME (time) has a value equivalent to 17.12.30.

TIMESTAMP (START _DATE, START_ TIME)

Chapter 4. Functions 295

TIMESTAMP

Returns the value '1988-12-25-17.12.30.000000'.

296 SQL Reference

TIMESTAMP_ISO

TIMESTAMP_ISO

v

»—TIMESTAMP_ISO—(—expression—)

The schema is SYSFUN.

Returns a timestamp value based on date, time or timestamp argument. If the argument
is a date, it inserts zero for all the time elements. If the argument is a time, it inserts the
value of CURRENT DATE for the date elements and zero for the fractional time
element.

The argument must be a date, timestamp, or a valid character string representation of a
date or timestamp that is neither a CLOB nor a LONG VARCHAR.

The result of the function is TIMESTAMP. The result can be null; if the argument is null,
the result is the null value.

Chapter 4. Functions 297

TIMESTAMPDIFF

TIMESTAMPDIFF

v

»—TIMESTAMPDIFF—(—expression—,—expression—)

The schema is SYSFUN.

Returns an estimated number of intervals of the type defined by the first argument,
based on the difference between two timestamps.

The first argument can be either INTEGER or SMALLINT. Valid values of interval (the
first argument) are:

1 Fractions of a second
2 Seconds

4 Minutes

8 Hours

16 Days

32 Weeks

64 Months

128 Quarters

256 Years

The second argument is the result of subtracting two timestamps types and converting
the result to CHAR(22).

The result of the function is INTEGER. The result can be null; if the argument is null,
the result is the null value.

The following assumptions may be used in estimating the difference:

e there are 365 days in a year

e there are 30 days in a month

e there are 24 hours in a day

e there are 60 minutes in an hour
¢ there are 60 seconds in a minute

These assumptions are used when converting the information in the second argument,
which is a timestamp duration, to the interval type specified in the first argument. The
returned estimate may vary by a number of days. For example, if the number of days
(interval 16) is requested for a difference in timestamps for '1997-03-01-00.00.00' and
'1997-02-01-00.00.00', the result is 30. This is because the difference between the
timestamps is 1 month so the assumption of 30 days in a month applies.

298 SQL Reference

TRANSLATE

TRANSLATE

character string expression:

»—TRANSLATE—(—char-string-exp

v

L,—to-s tring-exp—,—from-string-exp [
,—pad-char—

graphic string expression:

v

»—TRANSLATE—(—graphic-string-exp—,—to-string-exp—,—from-string-exp

.

v

)

|—,—pad-char—

v

The schema is SYSIBM.

The TRANSLATE function returns a value in which one or more characters in a string

expression may have been translated into other characters.

The result of the function has the same data type and code page as the first argument.
The length attribute of the result is the same as that of the first argument. If any speci-
fied expression can be NULL, the result can be NULL. If any specified expression is

NULL, the result will be NULL.

char-string-exp or graphic-string-exp
A string to be translated.

to-string-exp

Is a string of characters to which certain characters in the char-string-exp will be

translated.

If the to-string-exp is not present and the data type is not graphic, all characters in
the char-string-exp will be monocased (that is, the characters a-z will be translated
to the characters A-Z, and characters with diacritical marks will be translated to
their upper case equivalents if they exist. For example, in code page 850, € maps
to E, but ¥ is not mapped since code page 850 does not include V).

from-string-exp

Is a string of characters which, if found in the char-string-exp, will be translated to
the corresponding character in the to-string-exp. If the from-string-exp contains
duplicate characters, the first one found will be used, and the duplicates will be
ignored. If the to-string-exp is longer than the from-string-exp, the surplus charac-
ters will be ignored. If the to-string-exp is present, the from-string-exp must also be

present.

Chapter 4. Functions 299

TRANSLATE

pad-char-exp
Is a single character that will be used to pad the to-string-exp if the to-string-exp is
shorter than the from-string-exp. The pad-char-exp must have a length attribute of
one, or an error is returned. If not present, it will be taken to be a single-byte blank.

The arguments may be either strings of data type CHAR or VARCHAR, or graphic
strings of data type GRAPHIC or VARGRAPHIC. They may not have data type LONG
VARCHAR, LONG VARGRAPHIC, BLOB, CLOB, or DBCLOB.

With graphic-string-exp, only the pad-char-exp is optional (if not provided, it will be
taken to be the double-byte blank), and each argument, including the pad character,
must be of graphic data type.

The result is the string that occurs after translating all the characters in the
char-string-exp or graphic-string-exp that occur in the from-string-exp to the corre-
sponding character in the to-string-exp or, if no corresponding character exists, to the
pad character specified by the pad-char-exp.

The code page of the result of TRANSLATE is always the same as the code page of
the first operand, which is never converted. Each of the other operands is converted to
the code page of the first operand unless it or the first operand is defined as FOR BIT
DATA (in which case there is no conversion).

If the arguments are of data type CHAR or VARCHAR, the corresponding characters of
the to-string-exp and the from-string-exp must have the same number of bytes. For
example, it is not valid to translate a single-byte character to a multi-byte character or
vice versa. An error will result if an attempt is made to do this. The pad-char-exp must
not be the first byte of a valid multi-byte character, or SQLSTATE 42815 is returned. If
the pad-char-exp is not present, it will be taken to be a single-byte blank.

If only the char-string-exp is specified, single-byte characters will be monocased and
multi-byte characters will remain unchanged.
Examples:
e Assume the host variable SITE (VARCHAR(30)) has a value of '"Hanauma Bay'.
TRANSLATE (:SITE)
Returns the value 'HANAUMA BAY".
TRANSLATE(:SITE 'j','B")
Returns the value 'Hanauma jay'.
TRANSLATE(:SITE,'ei',"'aa")
Returns the value 'Heneume Bey'.
TRANSLATE(:SITE,'bA', 'Bay','%")
Returns the value 'HANAUMA bA%'.
TRANSLATE(:SITE,'r','Bu')

Returns the value 'Hana ma ray'.

300 SQL Reference

TRUNC or TRUNCATE

TRUNC or TRUNCATE

v

»—TRUNC or TRUNCATE—(—expression—,—expression—)

The schema is SYSFUN.

Returns argumentl truncated to argument2 places right of decimal point. If argument2
is negative, argumentl is truncated to the absolute value of argument2 places to the
left of the decimal point.

The first argument can be any built-in numeric data type. The second argument has to
be an INTEGER or SMALLINT. DECIMAL and REAL are converted to double-precision
floating-point number for processing by the function.
The result of the function is:

¢ INTEGER if the first argument is INTEGER or SMALLINT

e BIGINT if the first argument is BIGINT

¢ DOUBLE if the first argument is DOUBLE, DECIMAL or DOUBLE.

The result can be null; if any argument is null, the result is the null value.

Chapter 4. Functions 301

TYPE_ID

| TYPE_ID

| »—TYPE_ID—(—expression—) >

| The schema is SYSIBM.

| The TYPE_ID function returns the internal type identifier of the dynamic data type of the
| expression.

| The argument must be a user-defined structured type.38

| The data type of the result of the function is INTEGER. If expression can be null, the
| result can be null; if expression is null, the result is the null value.

The value returned by the TYPE_ID function is not portable across databases. The
value may be different, even though the type schema and type name of the dynamic
data type are the same. When coding for portability, use the TYPE_SCHEMA and
TYPE_NAME functions to determine the the type schema and type name.

Examples:

¢ A table hierarchy exists having root table EMPLOYEE of type EMP and subtable
MANAGER of type MGR. Another table ACTIVITIES includes a column called
WHO_RESPONSIBLE that is defined as REF(EMP) SCOPE EMPLOYEE. For
each reference in ACTIVITIES, display the internal type identifier of the row that
corresponds to the reference.

SELECT TASK, WHO_RESPONSIBLE->NAME,
TYPE_ID(DEREF (WHO_RESPONSIBLE))
FROM ACTIVITIES

The DEREF function is used to return the object corresponding to the row.

| 38 This function may not be used as a source function when creating a user-defined function. Since it accepts any structured data type
as an argument, it is not necessary to create additional signatures to support different user-defined types.

302 sQL Reference

TYPE_NAME

TYPE_NAME

»—TYPE_NAME—(—expression—) >

The schema is SYSIBM.

The TYPE_NAME function returns the unqualified name of the dynamic data type of the
expression.

The argument must be a user-defined structured type.3°

The data type of the result of the function is VARCHAR(18). If expression can be null,
the result can be null; if expression is null, the result is the null value. Use the
TYPE_SCHEMA function to determine the schema name of the type name returned by
TYPE_NAME.

Examples:

e A table hierarchy exists having root table EMPLOYEE of type EMP and subtable
MANAGER of type MGR. Another table ACTIVITIES includes a column called
WHO_RESPONSIBLE that is defined as REF(EMP) SCOPE EMPLOYEE. For
each reference in ACTIVITIES, display the type of the row that corresponds to the
reference.

SELECT TASK, WHO RESPONSIBLE->NAME,
