

IBM DB2 Universal Database
SQL Reference

Version 5

Document Number S10J-8165-00

IBM DB2 Universal Database ÉÂÔ

SQL Reference
Version 5

 S10J-8165-00

IBM DB2 Universal Database ÉÂÔ

SQL Reference
Version 5

 S10J-8165-00

Before using this information and the product it supports, be sure to read the general information under Appendix Q,
“Notices” on page 921.

This document contains proprietary information of IBM. It is provided under a license agreement and is protected by
copyright law. The information contained in this publication does not include any product warranties and any state-
ments provided in this manual should not be interpreted as such.

Order publications through your IBM representative or the IBM branch office serving your locality or by calling
1-800-879-2755 in U.S. or 1-800-IBM-4YOU in Canada.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way
it believes appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1993, 1997. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

Chapter 1. Introduction . 1
Who Should Use This Book . 1
How To Use This Book . 1

How This Book is Structured . 1
How to Read the Syntax Diagrams . 2
Conventions Used in This Manual . 5

Error Conditions . 5
Highlighting Conventions . 5

Related Documentation for This Book . 5

Chapter 2. Concepts . 7
Relational Database . 7
Structured Query Language (SQL) . 7
Embedded SQL . 7

Static SQL . 7
Dynamic SQL . 8

DB2 Call Level Interface (CLI) . 8
Interactive SQL . 9
Schemas . 9

Controlling Use of Schemas . 9
Tables . 10
Views . 10
Aliases . 10
Indexes . 11
Keys . 11

Unique Keys . 12
Primary Keys . 12
Foreign Keys . 12
Partitioning Keys . 12

Constraints . 12
Unique Constraints . 13
Referential Constraints . 13

Table Check Constraints . 16
Triggers . 16
Event Monitors . 18
Queries . 18
Table Expressions . 18

Common Table Expressions . 18
Packages . 18
Catalog Views . 19
Application Processes, Concurrency, and Recovery 19
Isolation Level . 21

Repeatable Read (RR) . 22
Read Stability (RS) . 22
Cursor Stability (CS) . 23

 Copyright IBM Corp. 1993, 1997 iii

Uncommitted Read (UR) . 23
Comparison of Isolation Levels . 23

Distributed Relational Database . 24
Application Servers . 24
CONNECT (Type 1) and CONNECT (Type 2) 25
Remote Unit of Work . 25
Application-Directed Distributed Unit of Work 29
Data Representation Considerations . 33

Character Conversion . 34
Character Sets and Code Pages . 35
Code Page Attributes . 36

Authorization and Privileges . 37
Storage Structures . 38
Data Partitioning Across Multiple Partitions . 39

Partitioning Maps . 40
Table Collocation . 41

Chapter 3. Language Elements . 43
Characters . 43

MBCS Considerations . 44
Tokens . 44

MBCS Considerations . 45
Identifiers . 45

SQL Identifiers . 45
Host Identifiers . 46

Naming Conventions . 46
Aliases . 48
Authorization IDs and authorization-names . 49
Data Types . 51

Nulls . 51
Large Objects (LOBs) . 52
Character Strings . 53
Graphic Strings . 55
Binary String . 56
Numbers . 56
Datetime Values . 57
Distinct Types . 60

Promotion of Data Types . 61
Casting Between Data Types . 62
Assignments and Comparisons . 64

Numeric Assignments . 65
String Assignments . 66
Datetime Assignments . 68
User-defined Type Assignments . 69
Numeric Comparisons . 69
String Comparisons . 70
Datetime Comparisons . 72
User-defined Type Comparisons . 73

iv SQL Reference

Rules for Result Data Types . 74
Character Strings . 74
Graphic Strings . 75
Binary Large Object (BLOB) . 75
Numeric . 75
DATE . 75
TIME . 76
TIMESTAMP . 76
User-defined Types . 76
Nullable Attribute of Result . 76

Rules for String Conversions . 76
Partition Compatibility . 78
Constants . 79

Integer Constants . 80
Floating-Point Constants . 80
Decimal Constants . 80
Character String Constants . 80
Hexadecimal Constants . 81
Graphic String Constants . 81

Special Registers . 82
CURRENT DATE . 82
CURRENT DEGREE . 82
CURRENT EXPLAIN MODE . 83
CURRENT EXPLAIN SNAPSHOT . 84
CURRENT FUNCTION PATH . 85
CURRENT NODE . 85
CURRENT QUERY OPTIMIZATION . 86
CURRENT SERVER . 86
CURRENT TIME . 87
CURRENT TIMESTAMP . 87
CURRENT TIMEZONE . 87
USER . 88

Column Names . 88
Qualified Column Names . 89
Correlation Names . 89
Column Name Qualifiers to Avoid Ambiguity 91
Column Name Qualifiers in Correlated References 93

References to Host Variables . 95
Host Variables in Dynamic SQL . 95
References to BLOB, CLOB, and DBCLOB Host Variables 97
References to Locator Variables . 98
References to BLOB, CLOB, and DBCLOB File Reference Variables 98

Functions . 100
Function Resolution . 102
Function Invocation . 105

Expressions . 107
Without Operators . 107
With the Concatenation Operator . 107

 Contents v

With Arithmetic Operators . 110
Two Integer Operands . 111
Integer and Decimal Operands . 111
Two Decimal Operands . 111
Decimal Arithmetic in SQL . 112
Floating-Point Operands . 112
User-defined Types as Operands . 112
Datetime Operations and Durations . 113
Datetime Arithmetic in SQL . 114
Precedence of Operations . 118
CASE Expressions . 119
CAST Specifications . 121

Predicates . 123
Basic Predicate . 124
Quantified Predicate . 125
BETWEEN Predicate . 128
EXISTS Predicate . 130
IN Predicate . 131
LIKE Predicate . 134
NULL Predicate . 139

Search Conditions . 140

Chapter 4. Functions . 143
Column Functions . 157

AVG . 158
COUNT . 160
COUNT_BIG . 161
GROUPING . 163
MAX . 165
MIN . 167
STDDEV . 169
SUM . 170
VARIANCE . 171

Scalar Functions . 172
ABS or ABSVAL . 173
ACOS . 174
ASCII . 175
ASIN . 176
ATAN . 177
ATAN2 . 178
BLOB . 179
CEIL or CEILING . 180
CHAR . 181
CHR . 186
CLOB . 187
COALESCE . 188
CONCAT . 189
COS . 190

vi SQL Reference

COT . 191
DATE . 192
DAY . 193
DAYNAME . 194
DAYOFWEEK . 195
DAYOFYEAR . 196
DAYS . 197
DBCLOB . 198
DECIMAL . 199
DEGREES . 202
DIFFERENCE . 203
DIGITS . 204
DOUBLE . 205
EVENT_MON_STATE . 207
EXP . 208
FLOAT . 209
FLOOR . 210
GENERATE_UNIQUE . 211
GRAPHIC . 213
HEX . 214
HOUR . 216
INSERT . 217
INTEGER . 218
JULIAN_DAY . 219
LCASE . 220
LEFT . 221
LENGTH . 222
LN . 223
LOCATE . 224
LOG . 225
LOG10 . 226
LONG_VARCHAR . 227
LONG_VARGRAPHIC . 228
LTRIM . 229
MICROSECOND . 230
MIDNIGHT_SECONDS . 231
MINUTE . 232
MOD . 233
MONTH . 234
MONTHNAME . 235
NODENUMBER . 236
NULLIF . 237
PARTITION . 238
POSSTR . 239
POWER . 241
QUARTER . 242
RADIANS . 243
RAISE_ERROR . 244

 Contents vii

RAND . 246
REAL . 247
REPEAT . 248
REPLACE . 249
RIGHT . 250
ROUND . 251
RTRIM . 252
SECOND . 253
SIGN . 254
SIN . 255
SMALLINT . 256
SOUNDEX . 257
SPACE . 258
SQRT . 259
SUBSTR . 260
TABLE_NAME . 263
TABLE_SCHEMA . 264
TAN . 266
TIME . 267
TIMESTAMP . 268
TIMESTAMP_ISO . 270
TIMESTAMPDIFF . 271
TRANSLATE . 272
TRUNC or TRUNCATE . 274
UCASE . 275
VALUE . 276
VARCHAR . 277
VARGRAPHIC . 278
WEEK . 280
YEAR . 281

User-Defined Functions . 282

Chapter 5. Queries . 285
subselect . 286

select-clause . 287
from-clause . 291
table-reference . 292
joined-table . 295
where-clause . 297
group-by-clause . 298
having-clause . 305
Examples of subselects . 306
Examples of Joins . 308
Examples of Grouping Sets, Cube, and Rollup 311

fullselect . 319
Examples of a fullselect . 321

select-statement . 324
common-table-expression . 325

viii SQL Reference

order-by-clause . 327
update-clause . 330
read-only-clause . 331
optimize-for-clause . 332
Examples of a select-statement . 333

Chapter 6. Statements . 335
How SQL Statements Are Invoked . 337

Embedding a Statement in an Application Program 338
Dynamic Preparation and Execution . 339
Static Invocation of a select-statement . 339
Dynamic Invocation of a select-statement 339
Interactive Invocation . 340

SQL Return Codes . 341
SQLCODE . 341
SQLSTATE . 341

SQL Comments . 342
ALTER BUFFERPOOL . 343
ALTER NODEGROUP . 345
ALTER TABLE . 348
ALTER TABLESPACE . 362
BEGIN DECLARE SECTION . 365
CALL . 367
CLOSE . 374
COMMENT ON . 376
COMMIT . 383
Compound SQL . 385
CONNECT (Type 1) . 389
CONNECT (Type 2) . 396
CREATE ALIAS . 403
CREATE BUFFERPOOL . 406
CREATE DISTINCT TYPE . 409
CREATE EVENT MONITOR . 415
CREATE FUNCTION . 424
CREATE FUNCTION (External Scalar) . 425
CREATE FUNCTION (External Table) . 441
CREATE FUNCTION (Sourced) . 454
CREATE INDEX . 461
CREATE NODEGROUP . 464
CREATE PROCEDURE . 467
CREATE SCHEMA . 475
CREATE TABLE . 478
CREATE TABLESPACE . 501
CREATE TRIGGER . 508
CREATE VIEW . 517
DECLARE CURSOR . 525
DELETE . 529
DESCRIBE . 533

 Contents ix

DISCONNECT . 537
DROP . 540
END DECLARE SECTION . 552
EXECUTE . 554
EXECUTE IMMEDIATE . 559
EXPLAIN . 561
FETCH . 565
FREE LOCATOR . 568
GRANT (Database Authorities) . 569
GRANT (Index Privileges) . 572
GRANT (Package Privileges) . 574
GRANT (Schema Privileges) . 577
GRANT (Table or View Privileges) . 580
INCLUDE . 587
INSERT . 589
LOCK TABLE . 594
OPEN . 596
PREPARE . 601
RELEASE . 609
RENAME TABLE . 611
REVOKE (Database Authorities) . 613
REVOKE (Index Privileges) . 616
REVOKE (Package Privileges) . 618
REVOKE (Schema Privileges) . 621
REVOKE (Table or View Privileges) . 623
ROLLBACK . 628
SELECT . 630
SELECT INTO . 631
SET CONNECTION . 633
SET CONSTRAINTS . 635
SET CURRENT DEGREE . 641
SET CURRENT EXPLAIN MODE . 643
SET CURRENT EXPLAIN SNAPSHOT . 645
SET CURRENT FUNCTION PATH . 647
SET CURRENT PACKAGESET . 649
SET CURRENT QUERY OPTIMIZATION . 651
SET EVENT MONITOR STATE . 654
SET transition-variable . 656
SIGNAL SQLSTATE . 659
UPDATE . 661
VALUES . 668
VALUES INTO . 669
WHENEVER . 671

Appendix A. SQL Limits . 673

Appendix B. SQL Communication Area (SQLCA) 679
Viewing the SQLCA Interactively . 679

x SQL Reference

SQLCA Field Descriptions . 679
Order of Error Reporting . 682
DB2 Extended Enterprise Edition Usage of the SQLCA 682

Appendix C. SQL Descriptor Area (SQLDA) 683
Field Descriptions . 683

Fields in the SQLDA Header . 684
Fields in an Occurrence of a Base SQLVAR 685
Fields in an Occurrence of a Secondary SQLVAR 686

Effect of DESCRIBE on the SQLDA . 687
SQLTYPE and SQLLEN . 688

Packed Decimal Numbers . 690
SQLLEN Field for Decimal . 691

Appendix D. Catalog Views . 693
Updatable Catalog Views . 694
 “Roadmap” to Catalog Views . 694
“Roadmap” to Updatable Catalog Views . 695

SYSCAT.BUFFERPOOLS . 696
SYSCAT.BUFFERPOOLNODES . 697
SYSCAT.CHECKS . 698
SYSCAT.COLAUTH . 699
SYSCAT.COLCHECKS . 700
SYSCAT.COLDIST . 701
SYSCAT.COLUMNS . 702
SYSCAT.CONSTDEP . 704
SYSCAT.DATATYPES . 705
SYSCAT.DBAUTH . 706
SYSCAT.EVENTMONITORS . 707
SYSCAT.EVENTS . 708
SYSCAT.FUNCPARMS . 709
SYSCAT.FUNCTIONS . 710
SYSCAT.INDEXAUTH . 713
SYSCAT.INDEXES . 714
SYSCAT.KEYCOLUSE . 716
SYSCAT.NODEGROUPDEF . 717
SYSCAT.NODEGROUPS . 718
SYSCAT.PACKAGEAUTH . 719
SYSCAT.PACKAGEDEP . 720
SYSCAT.PACKAGES . 721
SYSCAT.PARTITIONMAPS . 724
SYSCAT.PROCEDURES . 725
SYSCAT.PROCPARMS . 726
SYSCAT.REFERENCES . 727
SYSCAT.SCHEMAAUTH . 728
SYSCAT.SCHEMATA . 729
SYSCAT.STATEMENTS . 730
SYSCAT.TABAUTH . 731

 Contents xi

SYSCAT.TABCONST . 733
SYSCAT.TABLES . 734
SYSCAT.TABLESPACES . 736
SYSCAT.TRIGDEP . 737
SYSCAT.TRIGGERS . 738
SYSCAT.VIEWDEP . 739
SYSCAT.VIEWS . 740
SYSSTAT.COLDIST . 741
SYSSTAT.COLUMNS . 742
SYSSTAT.FUNCTIONS . 743
SYSSTAT.INDEXES . 745
SYSSTAT.TABLES . 748

Appendix E. Sample Tables . 749
The Sample Database . 749

To Install the Sample Database . 749
To Erase the Sample Database . 750
CL_SCHED Table . 750
DEPARTMENT Table . 750
EMPLOYEE Table . 751
EMP_ACT Table . 755
EMP_PHOTO Table . 757
EMP_RESUME Table . 757
IN_TRAY Table . 758
ORG Table . 758
PROJECT Table . 758
SALES Table . 759
STAFF Table . 760
STAFFG Table . 762

Sample Files with BLOB and CLOB Data Type 763
Quintana Photo . 763
Quintana Resume . 763
Nicholls Photo . 764
Nicholls Resume . 764
Adamson Photo . 765
Adamson Resume . 766
Walker Photo . 767
Walker Resume . 767

Appendix F. Reserved Schema Names and Reserved Words 769
Reserved Schemas . 769
Reserved Words . 769
IBM SQL Reserved Words . 769
ISO/ANS SQL92 Reserved Words . 770

Appendix G. Comparison of Isolation Levels 773

Appendix H. Interaction of Triggers and Constraints 775

xii SQL Reference

Appendix I. Incompatibilities Between Releases 779
System Catalog Tables/Views . 780

System Catalog Views . 780
System Catalog Tables . 780
Unique Table Identification . 782

Application Programming . 782
NS and NX Lock Modes . 782
CREATE TABLE NOT LOGGED INITIALLY 783
DB2 Call Level Interface (DB2 CLI) Defaults 783
Obsolete DB2 CLI Keywords . 784
DB2 CLI SQLSTATEs . 784
DB2 CLI Mixing Embedded SQL, Without CONNECT RESET 785
DB2 CLI Use of VARCHAR FOR BIT DATA 785
DB2 CLI Data Conversion Values for SQLGetInfo 785
DB2 CLI/ODBC Configuration Keyword Defaults 786
Obsolete DB2 CLI/ODBC Configuration Keywords 786
DB2 CLI SQLSTATEs . 787
Stored Procedure Catalog Table . 787
PREP Command - LANGLEVEL . 788
Change to SMALLINT Constants . 788
Error Handling . 788
Maximum Number of Sections in a Package 789
Bind Warnings . 789
Bind Options . 790
PREP with BINDFILE . 790
Varchar Structures in COBOL . 791
Incompatible APIs . 791
Supported Level of JDBC . 792
Calling Convention for Java Stored Procedures and UDFs 792
Java Runtime Environment . 793
Obsolete System Monitor Requests for DB2 PE Version 1.2 793

SQL . 793
Updating Partitioning Key Columns . 793
Column NGNAME . 794
Node Number Temporary Space Usage . 794
Authorities for Create and Drop Nodegroups 795
Target Map in REDISTRIBUTE NODEGROUP 795
Node Group for Create Table . 796
Revoking CONTROL on Tables or Views . 796
High Level Qualifiers for Objects in DB2 Version 5 797
Inoperative VIEWs . 798
Unusable VIEWs . 799
SQLCODE Changes . 799
WITH CHECK OPTION on CREATE VIEW 799
SQLSTATE Changes . 800
FOR BIT DATA Comparisons . 800
Code Page Conversion . 801
Isolation Levels and Blocking All . 801

 Contents xiii

ORDER BY Temporary Space Usage . 802
Using Quotes in SQL Statements . 802

Database Security and Tuning . 803
GROUP Authorizations . 803
Authentication Type . 803
SYSADM Groups . 804
Security Enhancements . 804

Utilities and Tools . 805
Executable Name Changes . 805
Backup and Restore - BUFF_SIZE Parameter 805
Backup and Restore - Changes Only Option 806
Backup and Restore - User Exits . 806
Backup and Restore - Authority . 806
Import - IMPORT REPLACE Option . 807
REORG - Alternate Path Option . 807

Connectivity and Coexistence . 808
Distributed Transaction Processing - Connect Type 808
Distributed Transaction Processing - SQLERRD Changes 808
DDCS - SQLJSETP . 809
DDCS - DDCSSETP . 809
DDCS - SQLJTRC.CMD . 810
DDCS - SQLJBIND.CMD . 810
APPC and APPN Nodes . 810

Configuration Parameters . 811
ADSM_PASSWORD . 811
MAXDARI and MAXCAGENTS . 812
LOGFILSIZ . 812
PCKCACHEFILSIZ . 813
APPLHEAPSZ and APP_CTL_HEAP_SZ . 813
BUFFPAGE and Multiple Buffer Pools . 814
NEWLOGPATH . 814
MULTIPAGE_ALLOC . 815
EXTENTSIZE vs SEGPAGES . 815
LOCKLIST . 816
BUFFPAGE and SORTHEAP . 816
Numeric Values for Database Manager Configuration Tokens 817
Numeric Values for Database Manager Configuration Tokens 817
New Generic Out-of-Range Return Codes 818
Segments versus 4KB Pages . 818
Obsolete Database Configuration Parameters 819
Obsolete Database Manager Configuration Parameters 819

Appendix J. Explain Tables and Definitions 821
EXPLAIN_ARGUMENT Table . 821
EXPLAIN_INSTANCE Table . 824
EXPLAIN_OBJECT Table . 826
EXPLAIN_OPERATOR Table . 828
EXPLAIN_PREDICATE Table . 830

xiv SQL Reference

EXPLAIN_STATEMENT Table . 831
EXPLAIN_STREAM Table . 833
Table Definitions for Explain Tables . 835

EXPLAIN_ARGUMENT Table Definition . 836
EXPLAIN_INSTANCE Table Definition . 837
EXPLAIN_OBJECT Table Definition . 838
EXPLAIN_OPERATOR Table Definition . 839
EXPLAIN_PREDICATE Table Definition . 840
EXPLAIN_STATEMENT Table Definition . 841
EXPLAIN_STREAM Table Definition . 842

Appendix K. Explain Register Values . 843

Appendix L. Recursion Example: Bill of Materials 847
Example 1: Single Level Explosion . 847
Example 2: Summarized Explosion . 849
Example 3: Controlling Depth . 850

Appendix M. Exception Tables . 853
Rules for Creating an Exception Table . 853
Handling Rows in the Exception Tables . 854
Querying the Exception Tables . 855

Appendix N. Japanese and Traditional-Chinese EUC Considerations 857
Language Elements . 857

Characters . 857
Tokens . 857
Identifiers . 857
Data Types . 858
Assignments and Comparisons . 858
Rules for Result Data Types . 859
Rules for String Conversions . 859
Constants . 860
Functions . 860
Expressions . 860
Predicates . 861

Functions . 862
LENGTH . 862
SUBSTR . 862
TRANSLATE . 862
VARGRAPHIC . 862

Statements . 863
CONNECT . 863
PREPARE . 863

Appendix O. Glossary . 865

Appendix P. How the DB2 Library Is Structured 911

 Contents xv

SmartGuides . 911
Online Help . 912
DB2 Books . 914
About the Information Center . 918

Appendix Q. Notices . 921
Trademarks . 921
Trademarks of Other Companies . 922

Index . 923

Contacting IBM . 925

xvi SQL Reference

 Chapter 1. Introduction

This introductory chapter:

¹ Identifies this book's purpose and audience.
¹ Explains how to use the book and its structure.
¹ Explains the syntax diagram notation, the naming and highlighting conventions

used throughout the manual.
¹ Lists related documentation.
¹ Presents the product family overview

Who Should Use This Book
This book is intended for anyone who wants to use the Structured Query Language
(SQL) to access a database. It is primarily for programmers and database administra-
tors, but it can also be used by general users using the command line processor.

This book is a reference rather than a tutorial. It assumes that you will be writing appli-
cation programs and therefore presents the full functions of the database manager.

How To Use This Book
This book defines the SQL language used by DB2 Version 5. Use it as a reference
manual for information on relational database concepts, language elements, functions,
the forms of queries, and the syntax and semantics of the SQL statements. The appen-
dixes can be used to find limitations and information on important components.

How This Book is Structured
This book has the following sections:

¹ Chapter 1, “Introduction,” identifies the purpose, the audience, and the use of the
book.

¹ Chapter 2, “Concepts” on page 7, discusses the basic concepts of relational data-
bases and SQL.

¹ Chapter 3, “Language Elements” on page 43, describes the basic syntax of SQL
and the language elements that are common to many SQL statements.

¹ Chapter 4, “Functions” on page 143, contains syntax diagrams, semantic
descriptions, rules, and usage examples of SQL column and scalar functions.

¹ Chapter 5, “Queries” on page 285, describes the various forms of a query.

¹ Chapter 6, “Statements” on page 335, contains syntax diagrams, semantic
descriptions, rules, and examples of all SQL statements.

¹ The appendixes contain the following information:

– Appendix A, “SQL Limits” on page 673 contains the SQL limitations
– Appendix B, “SQL Communication Area (SQLCA)” on page 679 contains the

SQLCA structure

 Copyright IBM Corp. 1993, 1997 1

– Appendix C, “SQL Descriptor Area (SQLDA)” on page 683 contains the
SQLDA structure

– Appendix D, “Catalog Views” on page 693 contains the catalog views for the
database

– Appendix E, “Sample Tables” on page 749 contains the sample tables used
for examples

– Appendix F, “Reserved Schema Names and Reserved Words” on page 769
contains the reserved schema names and the reserved words for the IBM SQL
and ISO/ANS SQL92 standards

– Appendix G, “Comparison of Isolation Levels” on page 773 contains a
summary of the isolation levels.

– Appendix H, “ Interaction of Triggers and Constraints” on page 775 discusses
the interaction of triggers and referential constraints.

– Appendix I, “Incompatibilities Between Releases” on page 779 contains the
release to release incompatibilities.

– Appendix J, “ Explain Tables and Definitions” on page 821 contains the
Explain tables and how they are defined.

– Appendix K, “Explain Register Values” on page 843 describes the interaction
of the CURRENT EXPLAIN MODE and CURRENT EXPLAIN SNAPSHOT
special register values with each other and the PREP and BIND commands.

– Appendix L, “Recursion Example: Bill of Materials” on page 847 contains an
example of a recursive query.

– Appendix M, “Exception Tables” on page 853 contains information on user-
created tables that are used with the SET CONSTRAINTS statement.

– Appendix N, “Japanese and Traditional-Chinese EUC Considerations” on
page 857 lists considerations when using EUC character sets.

How to Read the Syntax Diagrams
Throughout this book, syntax is described using the structure defined as follows:

Read the syntax diagrams from left to right and top to bottom, following the path of the
line.

The 55─── symbol indicates the beginning of a statement.

The ───5 symbol indicates that the statement syntax is continued on the next line.

The 5─── symbol indicates that a statement is continued from the previous line.

The ──5% symbol indicates the end of a statement.

Required items appear on the horizontal line (the main path).

5──STATEMENT──required item───5

2 SQL Reference

Optional items appear below the main path.

5─ ─STATEMENT─ ──┬ ┬─────────────── ──5
 └ ┘ ─optional item─

If an optional item appears above the main path, that item has no effect on the exe-
cution of the statement and is used only for readability.

 ┌ ┐─optional item─
5─ ─STATEMENT─ ──┴ ┴─────────────── ──5

If you can choose from two or more items, they appear in a stack.

If you must choose one of the items, one item of the stack appears on the main path.

5─ ─STATEMENT─ ──┬ ┬─required choice1─ ───────────────────────────────────────5
 └ ┘─required choice2─

If choosing none of the items is an option, the entire stack appears below the main
path.

5─ ─STATEMENT─ ──┬ ┬────────────────── ───────────────────────────────────────5
 ├ ┤─optional choice1─
 └ ┘─optional choice2─

If one of the items is the default, it will appear above the main path and the remaining
choices will be shown below.

 ┌ ┐─default choice──
5─ ─STATEMENT─ ──┼ ┼───────────────── ──5
 ├ ┤─optional choice─
 └ ┘─optional choice─

An arrow returning to the left, above the main line, indicates an item that can be
repeated. In this case, repeated items must be separated by one or more blanks.

 Chapter 1. Introduction 3

 ┌ ┐───────────────────
5─ ─STATEMENT─ ───6 ┴─repeatable item─ ──5

If the repeat arrow contains a comma, you must separate repeated items with a
comma.

 ┌ ┐─,───────────────
5─ ─STATEMENT─ ───6 ┴─repeatable item─ ──5

A repeat arrow above a stack indicates that you can make more than one choice from
the stacked items or repeat a single choice.

Keywords appear in uppercase (for example, FROM). They must be spelled exactly as
shown. Variables appear in lowercase (for example, column-name). They represent
user-supplied names or values in the syntax.

If punctuation marks, parentheses, arithmetic operators, or other such symbols are
shown, you must enter them as part of the syntax.

Sometimes a single variable represents a set of several parameters. For example, in
the following diagram, the variable parameter-block can be replaced by any of the
interpretations of the diagram that is headed parameter-block :

5──STATEMENT──┤ parameter-block ├───5

parameter-block:
├─ ──┬ ┬─parameter1───────────────── ──┤
 └ ┘ ─parameter2─ ──┬ ┬─parameter3─
 └ ┘─parameter4─

Adjacent segments occurring between “fat bullets” (Á) may be specified in any
sequence.

5──STATEMENT──item1──Á──item2──Á──item3──Á──item4─────────────────────────5

4 SQL Reference

The above diagram shows that item2 and item3 may be specified in either order. Both
of the following are valid:

STATEMENT item1 item2 item3 item4

STATEMENT item1 item3 item2 item4

Conventions Used in This Manual
This section specifies some conventions which are used consistently throughout this
manual.

 Error Conditions
An error condition is indicated within the text of the manual by listing the SQLSTATE
associated with the error in brackets. For example: A duplicate signature raises an SQL
error (SQLSTATE 42723).

 Highlighting Conventions
The following conventions are used in this book.

Bold Indicates commands, keywords, and other items whose names are predefined by the system.

Italics Indicates one of the following:

¹ Names or values (variables) that must be supplied by the user
 ¹ General emphasis
¹ The introduction of a new term
¹ A reference to another source of information.

Monospace Indicates one of the following:

¹ Files and directories
¹ Information that you are instructed to type at a command prompt or in a window
¹ Examples of specific data values
¹ Examples of text similar to what may be displayed by the system
¹ Examples of system messages.

Related Documentation for This Book
The following publications may prove useful in preparing applications:

 Administration Guide
Contains information required to design, implement, and maintain a database
to be accessed either locally or in a client/server environment.

Embedded SQL Programming Guide
Discusses the application development process and how to code, compile, and
execute application programs that use embedded SQL and APIs to access the
database.

IBM SQL Reference SC26-8416
This manual contains all the common elements of SQL that span across IBM's
library of database products. It provides limits and rules that assist in preparing
portable programs using IBM databases. It provides a list of SQL extensions

 Chapter 1. Introduction 5

and incompatibilities among the following standards and products: SQL92E,
XPGG4-SQL, IBM-SQL and the IBM relational database products.

American National Standard X3.135-1992, Database Language SQL
Contains the ANSI standard definition of SQL.

ISO/IEC 9075:1992, Database Language SQL
Contains the ISO standard definition of SQL.

6 SQL Reference

 Chapter 2. Concepts

The chapter provides an overview of the concepts commonly used in the Structured
Query Language (SQL). The intent of the chapter is to provide a high-level view of the
concepts. The reference material that follows provides a more detailed view.

 Relational Database
A relational database is a database that can be perceived as a set of tables and manip-
ulated in accordance with the relational model of data. It contains a set of objects used
to store, manage, and access data. Examples of such objects are tables, views,
indexes, functions, triggers, and packages.

A partitioned relational database is a relational database where the data is managed
across multiple partitions (also called nodes). This partitioning of data across partitions
is transparent to users of most SQL statements. However, some DDL statements take
partition information into consideration (e.g. create nodegroup).

Structured Query Language (SQL)
SQL is a standardized language for defining and manipulating data in a relational data-
base. In accordance with the relational model of data, the database is perceived as a
set of tables, relationships are represented by values in tables, and data is retrieved by
specifying a result table that can be derived from one or more base tables.

SQL statements are executed by a database manager. One of the functions of the
database manager is to transform the specification of a result table into a sequence of
internal operations that optimize data retrieval. The transformation occurs in two
phases: preparation and binding.

All executable SQL statements must be prepared before they can be executed. The
result of preparation is the executable or operational form of the statement. The method
of preparing an SQL statement and the persistence of its operational form distinguish
static SQL from dynamic SQL.

 Embedded SQL
Embedded SQL statements are SQL statements written within application programming
languages such as C and preprocessed by an SQL preprocessor before the application
program is compiled. There are two types of embedded SQL: static and dynamic.

 Static SQL
The source form of a static SQL statement is embedded within an application program
written in a host language such as COBOL. The statement is prepared before the
program is executed and the operational form of the statement persists beyond the exe-
cution of the program.

 Copyright IBM Corp. 1993, 1997 7

A source program containing static SQL statements must be processed by an SQL pre-
compiler before it is compiled. The precompiler turns the SQL statements into host lan-
guage comments, and generates host language statements to invoke the database
manager. The syntax of the SQL statements is checked during the binding process.

The preparation of an SQL application program includes precompilation, the binding of
its static SQL statements to the target database, and compilation of the modified source
program. The steps are specified in the Embedded SQL Programming Guide.

 Dynamic SQL
Programs containing embedded dynamic SQL statements must be precompiled like
those containing static SQL, but unlike static SQL, the dynamic SQL statements are
constructed and prepared at run time. The SQL statement text is prepared and exe-
cuted using either the PREPARE and EXECUTE statements, or the EXECUTE IMME-
DIATE statement. The statement can also be executed with the cursor operations if it is
a SELECT statement.

DB2 Call Level Interface (CLI)
The DB2 Call Level Interface is an application programming interface in which functions
are provided to application programs to process dynamic SQL statements. Through the
interface, applications use procedure calls at execution time to connect to databases, to
issue SQL statements, and to get returned data and status information. Unlike using
embedded SQL, no precompilation is required. Applications developed using this inter-
face may be executed on a variety of databases without being compiled against each of
the databases.

The DB2 CLI interface provides many features not available in embedded SQL. A few
of these are:

¹ CLI provides function calls which support a consistent way to query and retrieve
database system catalog information across the DB2 family of database manage-
ment systems. This reduces the need to write database server specific catalog
queries.

¹ Application programs written using CLI can have multiple concurrent connections to
the same database.

¹ CLI provides support for scrollable cursors.

¹ Stored procedures called from application programs written using CLI can return
result sets to those programs.

For a comparison between the features of CLI and Embedded Dynamic SQL, see Road
Map to DB2 Programming.

The CLI Guide and Reference describes the APIs supported with this interface.

8 SQL Reference

 Interactive SQL
Interactive SQL statements are entered by a user through an interface like the
command line processor or the command center. These statements are processed as
dynamic SQL statements. For example, an interactive SELECT statement can be proc-
essed dynamically using the DECLARE CURSOR, PREPARE, DESCRIBE, OPEN,
FETCH, and CLOSE statements.

The Command Reference lists the commands that can be issued using the command
line processor or similar facilities and products.

 Schemas
A schema is a collection of named objects. Schemas provide a logical classification of
objects in the database. Some of the objects that a schema may contain include tables,
views, triggers, functions and packages.

A schema is also an object in the database. It is explicitly created using the CREATE
SCHEMA statement with a user recorded as owner. It can also be implicitly created
when another object is created, provided the user has IMPLICIT_SCHEMA authority.

A schema name is used as the high-order part of a two-part object name. An object
that is contained in a schema is assigned to a schema when the object is created. The
schema to which it is assigned is determined by the name of the object if specifically
qualified with a schema name or by the default schema name if not qualified.

For example, a user with DBADM authority creates a schema called C for user A.

CREATE SCHEMA C AUTHORIZATION A

 User A can then issue the following statement to create a table called X in schema C:

CREATE TABLE C.X (COL1 INT)

Controlling Use of Schemas
When a database is created, all users have IMPLICIT_SCHEMA authority. This allows
any user to create objects in any schema that does not already exist. An implicitly
created schema allows any user to create other objects in this schema.1

If IMPLICIT_SCHEMA authority is revoked from PUBLIC, schemas are either explicitly
created using the CREATE SCHEMA statement or implicitly created by users (such as
those with DBADM authority) who are granted IMPLICIT_SCHEMA authority. While
revoking IMPLICIT_SCHEMA authority from PUBLIC increases control over the use of
schema names, it may result in authorization errors in existing applications when they
attempt to create objects.

1 The default privileges on an implicitly created schema provide upward compatibility with previous versions. Alias, distinct type, func-
tion and trigger creation is extended to implicitly created schemas.

 Chapter 2. Concepts 9

There are also privileges associated with a schema that control which users have the
privilege to create, alter and drop objects in the schema. A schema owner is initially
given all of these privileges on a schema with the ability to grant them to others. An
implicitly created schema is owned by the system and all users are initially given the
privilege to create objects in such a schema. A user with DBADM or SYSADM authority
can change the privileges held by users on any schema. Therefore, access to create,
alter and drop objects in any schema (even one that is implicitly created) can be con-
trolled.

 Tables
Tables are logical structures maintained by the database manager. Tables are made up
of columns and rows. The rows are not necessarily ordered within a table (order is
determined by the application program). At the intersection of every column and row is
a specific data item called a value. A column is a set of values of the same data type.
A row is a sequence of values such that the nth value is a value of the nth column of
the table.

A base table is created with the CREATE TABLE statement and is used to hold per-
sistent user data. A result table is a set of rows that the database manager selects or
generates from one or more base tables to satisfy a query.

 Views
A view provides an alternative way of looking at the data in one or more tables.

A view is a named specification of a result table. The specification is a SELECT state-
ment that is executed whenever the view is referenced in an SQL statement. Thus, a
view can be thought of as having columns and rows just like a base table. For retrieval,
all views can be used just like base tables. Whether a view can be used in an insert,
update, or delete operation depends on its definition as explained in the description of
CREATE VIEW. (See “CREATE VIEW” on page 517 for more information.)

When the column of a view is directly derived from a column of a base table, that
column inherits any constraints that apply to the column of the base table. For example,
if a view includes a foreign key of its base table, INSERT and UPDATE operations
using that view are subject to the same referential constraint as the base table. Also, if
the base table of a view is a parent table, DELETE and UPDATE operations using that
view are subject to the same rules as DELETE and UPDATE operations on the base
table.

A view may become inoperative, in which case it is no longer available for SQL state-
ments.

 Aliases

10 SQL Reference

An alias is an alternate name for a table or view. It can be used to reference a table or
view in those cases where an existing table or view can be referenced.2 Like tables and
views, an alias may be created, dropped, and have comments associated with it. Unlike
tables, aliases may refer to each other in a process called chaining. Aliases are publicly
referenced names so no special authority or privilege is required to use an alias.
Access to the tables and views referred to by the alias, however, still require the appro-
priate authorization for the current context.

In addition to table aliases, there are other types of aliases such as a database alias or
a network alias.

 Indexes
An index is an ordered set of pointers to rows of a base table. Each index is based on
the values of data in one or more table columns. An index is an object that is separate
from the data in the table. When an index is created, the database manager builds this
structure and maintains it automatically.

Indexes are used by the database manager to:

¹ Improve performance. In most cases, access to data is faster than without an
index.

An index cannot be created for a view. However, an index created for a table on
which a view is based may improve the performance of operations on the view.

¹ Ensure uniqueness. A table with a unique index cannot have rows with identical
keys.

 Keys
A key is a set of columns that can be used to identify or access a particular row or
rows. The key is identified in the description of a table, index, or referential constraint.
The same column can be part of more than one key.

A key composed of more than one column is called a composite key. In a table with a
composite key, the ordering of the columns within the composite key is not constrained
by their ordering within the table. The term value when used with respect to a com-
posite key denotes a composite value. Thus, a rule such as “the value of the foreign
key must be equal to the value of the primary key” means that each component of the
value of the foreign key must be equal to the corresponding component of the value of
the primary key.

2 An alias cannot be used in all contexts. For example, it cannot be used in the check condition of a check constraint.

 Chapter 2. Concepts 11

 Unique Keys
A unique key is a key that is constrained so that no two of its values are equal. The
columns of a unique key cannot contain null values. The constraint is enforced by the
database manager during the execution of any operation that changes data values,
such as INSERT or UPDATE. The mechanism used to enforce the constraint is called
a unique index. Thus, every unique key is a key of a unique index. Such an index is
also said to have the UNIQUE attribute. See “Unique Constraints” on page 13 for a
more detailed description.

 Primary Keys
A primary key is a special case of a unique key. A table cannot have more than one
primary key. See “Unique Keys” for a more detailed description.

 Foreign Keys
A foreign key is a key that is specified in the definition of a referential constraint. See
“Referential Constraints” on page 13 for a more detailed description.

 Partitioning Keys
A partitioning key is a key that is part of the definition of a table in a partitioned data-
base. The partitioning key is used to determine the partition on which the row of data is
stored. If a partitioning key is defined, unique keys and primary keys must include the
same columns as the partitioning key (they may have more columns).

 Constraints
A constraint is a rule that the database manager enforces.

There are three types of constraints:

¹ A unique constraint is a rule that forbids duplicate values in one or more columns
within a table. Unique and primary keys are the supported unique constraints. For
example, a unique constraint could be defined on the supplier identifier in the sup-
plier table to ensure that the same supplier identifier is not given to two suppliers.

¹ A referential constraint is a logical rule about values in one or more columns in one
or more tables. For example, a set of tables shares information about a corpo-
ration's suppliers. Occasionally, a supplier's name changes. A referential constraint
could be defined stating that the ID of the supplier in a table must match a supplier
id in the supplier information. This constraint prevents inserts, updates or deletes
that would otherwise result in missing supplier information.

¹ A table check constraint sets restrictions on data added to a specific table. For
example, it could define the salary level for an employee to never be less than
$20,000.00 when salary data is added or updated in a table containing personnel
information.

Referential and table check constraints may be turned on or off. Loading large amounts
of data into the database is typically a time to turn off checking the enforcement of a

12 SQL Reference

constraint. The details of setting constraints on or off are discussed in “SET
CONSTRAINTS” on page 635.

 Unique Constraints
A unique constraint is the rule that the values of a key are valid only if they are unique
within the table. Unique constraints are optional and can be defined in the CREATE
TABLE or ALTER TABLE statement using the PRIMARY KEY clause or the UNIQUE
clause. The columns specified in a unique constraint must be defined as NOT NULL. A
unique index is used by the database manager to enforce the uniqueness of the key
during changes to the columns of the unique constraint.

A table can have an arbitrary number of unique constraints, with at most one unique
constraint defined as a primary key. A table cannot have more than than one unique
constraint on the same set of columns.

A unique constraint that is referenced by the foreign key of a referential constraint is
called the parent key.

When a unique constraint is defined in a CREATE TABLE statement, a unique index is
automatically created by the database manager and designated as a primary or unique
system-required index.

When a unique constraint is defined in an ALTER TABLE statement and an index
exists on the same columns, that index is designated as unique and system-required. If
such an index does not exist, the unique index is automatically created by the database
manager and designated as a primary or unique system-required index.

Note that there is a distinction between defining a unique constraint and creating a
unique index. Although both enforce uniqueness, a unique index allows nullable
columns and generally cannot be used as a parent key.

 Referential Constraints
Referential integrity is the state of a database in which all values of all foreign keys are
valid. A foreign key is a column or set of columns in a table whose values are required
to match at least one primary key or unique key value of a row of its parent table. A
referential constraint is the rule that the values of the foreign key are valid only if:

¹ they appear as values of a parent key, or
¹ some component of the foreign key is null.

The table containing the parent key is called the parent table of the referential con-
straint, and the table containing the foreign key is said to be a dependent of that table.

Referential constraints are optional and can be defined in CREATE TABLE statements
and ALTER TABLE statements. Referential constraints are enforced by the database
manager during the execution of INSERT, UPDATE, DELETE, ALTER TABLE ADD
CONSTRAINT, and SET CONSTRAINTS statements. The enforcement is effectively
performed at the completion of the statement.

 Chapter 2. Concepts 13

Referential constraints with a delete or update rule of RESTRICT are enforced before
all other referential constraints. Referential constraints with a delete or update rule of
NO ACTION behave like RESTRICT in most cases. However, in certain SQL state-
ments there can be a difference.

Note that referential integrity, check constraints and triggers can be combined in exe-
cution. For further information on the combination of these elements, see Appendix H, “
Interaction of Triggers and Constraints” on page 775.

The rules of referential integrity involve the following concepts and terminology:

Parent key A primary key or unique key of a referential constraint.

Parent row A row that has at least one dependent row.

Parent table A table that is a parent in at least one referential con-
straint. A table can be defined as a parent in an arbitrary
number of referential constraints. A parent table can also
be a dependent table.

Dependent table A table that is a dependent in at least one referential con-
straint. A table can be defined as a dependent in an arbi-
trary number of referential constraints. A dependent table
can also be a parent table.

Descendent table A table is a descendent of table T if it is a dependent of T
or a descendent of a dependent of T.

Dependent row A row that has at least one parent row.

Descendent row A row is a descendent of row p if it is a dependent of p or
a descendent of a dependent of p.

Referential cycle A set of referential constraints such that each table in the
set is a descendent of itself.

Self-referencing row A row that is a parent of itself.

Self-referencing table A table that is a parent and a dependent in the same ref-
erential constraint. The constraint is called a self-
referencing constraint.

 Insert Rule
The insert rule of a referential constraint is that a non-null insert value of the foreign key
must match some value of the parent key of the parent table. The value of a composite
foreign key is null if any component of the value is null. This rule is implicit when a
foreign key is specified.

 Update Rule
The update rule of a referential constraint is specified when the referential constraint is
defined. The choices are NO ACTION and RESTRICT. The update rule applies when a
row of the parent or a row of the dependent table is updated.

In the case of a parent row, when a value in a column of the parent key is updated:

14 SQL Reference

¹ if any row in the dependent table matched the original value of the key, the update
is rejected when the update rule is RESTRICT

¹ if any row in the dependent table does not have a corresponding parent key when
the update statement is completed (excluding after triggers), the update is rejected
when the update rule is NO ACTION.

In the case of a dependent row, the update rule that is implicit when a foreign key is
specified is NO ACTION. NO ACTION means that a non-null update value of a foreign
key must match some value of the parent key of the parent table when the update
statement is completed.

The value of a composite foreign key is null if any component of the value is null.

 Delete Rule
The delete rule of a referential constraint is specified when the referential constraint is
defined. The choices are NO ACTION, RESTRICT, CASCADE, or SET NULL. SET
NULL can be specified only if some column of the foreign key allows null values.

The delete rule of a referential constraint applies when a row of the parent table is
deleted. More precisely, the rule applies when a row of the parent table is the object of
a delete or propagated delete operation (defined below) and that row has dependents
in the dependent table of the referential constraint. Let P denote the parent table, let D
denote the dependent table, and let p denote a parent row that is the object of a delete
or propagated delete operation. If the delete rule is:

¹ RESTRICT or NO ACTION, an error occurs and no rows are deleted

¹ CASCADE, the delete operation is propagated to the dependents of p in D

¹ SET NULL, each nullable column of the foreign key of each dependent of p in D is
set to null

Each referential constraint in which a table is a parent has its own delete rule, and all
applicable delete rules are used to determine the result of a delete operation. Thus, a
row cannot be deleted if it has dependents in a referential constraint with a delete rule
of RESTRICT or NO ACTION or the deletion cascades to any of its descendents that
are dependents in a referential constraint with the delete rule of RESTRICT or NO
ACTION.

The deletion of a row from parent table P involves other tables and may affect rows of
these tables:

¹ If table D is a dependent of P and the delete rule is RESTRICT or NO ACTION, D
is involved in the operation but is not affected by the operation.

¹ If D is a dependent of P and the delete rule is SET NULL, D is involved in the
operation, and rows of D may be updated during the operation.

¹ If D is a dependent of P and the delete rule is CASCADE, D is involved in the
operation and rows of D may be deleted during the operation.

 Chapter 2. Concepts 15

If rows of D are deleted, the delete operation on P is said to be propagated to D. If
D is also a parent table, the actions described in this list apply, in turn, to the
dependents of D.

Any table that may be involved in a delete operation on P is said to be delete-
connected to P. Thus, a table is delete-connected to table P if it is a dependent of P or
a dependent of a table to which delete operations from P cascade.

Table Check Constraints
A table check constraint is a rule that specifies the values allowed in one or more
columns of every row of a table. They are optional and can be defined using the SQL
statements CREATE TABLE and ALTER TABLE. The specification of table check con-
straints is a restricted form of a search condition. One of the restrictions is that a
column name in a table check constraint on table T must identify a column of T.

A table can have an arbitrary number of table check constraints. They are enforced
when:

¹ a row is inserted into the table
¹ a row of the table is updated.

A table check constraint is enforced by applying its search condition to each row that is
inserted or updated. An error occurs if the result of the search condition is false for any
row.

When one or more table check constraints are defined in the ALTER TABLE statement
for a table with existing data, the existing data is checked against the new condition
before the ALTER TABLE statement succeeds. The table can be placed in check
pending state which will allow the ALTER TABLE statement to succeed without
checking the data. The SET CONSTRAINT statement is used to place the table into
check pending state. It is also used to resume the checking of each row against the
constraint.

 Triggers
A trigger defines a set of actions that are executed at, or triggered by, a delete, insert,
or update operation on a specified table. When such an SQL operation is executed, the
trigger is said to be activated.

Triggers can be used along with referential constraints and check constraints to enforce
data integrity rules. Triggers can also be used to cause updates to other tables, auto-
matically generate or transform values for inserted or updated rows, or invoke functions
to perform tasks such as issuing alerts.

Triggers are a useful mechanism to define and enforce transitional business rules which
are rules that involve different states of the data (for example, salary cannot be
increased by more than 10 percent). For rules that do not involve more than one state
of the data, check and referential integrity constraints should be considered.

16 SQL Reference

Using triggers places the logic to enforce the business rules in the database and
relieves the applications using the tables from having to enforce it. Centralized logic
enforced on all the tables means easier maintenance, since no application program
changes are required when the logic changes.

Triggers are optional and are defined using the CREATE TRIGGER statement.

There are a number of criteria that are defined when creating a trigger which are used
to determine when a trigger should be activated.

¹ The subject table defines the table for which the trigger is defined.

¹ The trigger event defines a specific SQL operation that modifies the subject table.
The operation could be delete, insert or update.

¹ The trigger activation time defines whether the trigger should be activated before or
after the trigger event is performed on the subject table.

The statement that causes a trigger to be activated will include a set of affected rows.
These are the rows of the subject table that are being deleted, inserted or updated. The
trigger granularity defines whether the actions of the trigger will be performed once for
the statement or once for each of the rows in the set of affected rows.

The triggered action consists of an optional search condition and a set of SQL state-
ments that are executed whenever the trigger is activated. The SQL statements are
only executed if the search condition evaluates to true. When the trigger activation time
is before the trigger event, triggered action can include statements that select, set tran-
sition variables, and signal sqlstates. When the trigger activation time is after the trigger
event, triggered action can include statements that select, update, insert, delete, and
signal sqlstates.

The triggered action may refer to the values in the set of affected rows. This is sup-
ported through the use of transition variables. Transition variables use the names of the
columns in the subject table qualified by a specified name that identifies whether the
reference is to the old value (prior to the update) or the new value (after the update).
The new value can also be changed using the SET transition-variable statement in
before update or insert triggers. Another means of referring to the values in the set of
affected rows is using transition tables. Transition tables also use the names of the
columns of the subject table but have a name specified that allows the complete set of
affected rows to be treated as a table. As with transition variables, a transition table can
be defined for the old values and the new values but only in after triggers.

Multiple triggers can be specified for a combination of table, event, or activation time.
The order in which the triggers are activated is the same as the order in which they
were created. Thus, the most recently created trigger will be the last trigger activated.

The activation of a trigger may cause trigger cascading. This is the result of the acti-
vation of one trigger that executes SQL statements that cause the activation of other
triggers or even the same trigger again. The triggered actions may also cause updates
as a result of the original modification, or as a result of referential integrity delete rules
which may result in the activation of additional triggers. With trigger cascading, a signif-

 Chapter 2. Concepts 17

icant chain of triggers and referential integrity delete rules may be activated causing
significant change to the database as a result of a single delete, insert or update state-
ment.

 Event Monitors
An event monitor tracks specific data as the result of an event. For example, starting
the database might be an event that causes an event monitor to track the number of
users on the system by taking an hourly snapshot of authorization IDs using the data-
base.

Event monitors are activated or deactivated by a statement (SET EVENT MONITOR
STATE). A function (EVENT_MON_STATE) can be used to find the current state of an
event monitor; that is, if it is active or not active.

 Queries
A query is a component of certain SQL statements that specifies a (temporary) result
table.

 Table Expressions
A table expression creates a (temporary) result table from a simple query. Clauses
further refine the result table. For example, a table expression could be a query that
selects all the managers from several departments and further specifies that they have
over 15 years of working experience and are located at the New York branch office.

Common Table Expressions
A common table expression is like a temporary view within a complex query, and can
be referenced in other places within the query; for example, in place of a view, to avoid
creating the view. Each use of a specific common table expression within a complex
query shares the same temporary view.

Recursive use of a common table expression within a query can be used to support
applications such as bill of materials (BOM), airline reservation systems, and network
planning. A set of examples from a BOM application is contained in Appendix L,
“Recursion Example: Bill of Materials” on page 847.

 Packages
A package is an object that contains control structures (called sections) used to execute
SQL statements. Packages are produced during program preparation. The sections
created for static SQL can be thought of as the bound or operational form of SQL state-
ments. The sections created for dynamic SQL can be thought of as placeholder control
structures which are used at execution time. All sections in a package are derived from
the SQL statements embedded in a single source file. See the Embedded SQL Pro-
gramming Guide for more information on packages.

18 SQL Reference

 Catalog Views
The database manager maintains a set of views and base tables that contain informa-
tion about the data under its control. These views and base tables are collectively
known as the catalog. They contain information about objects in the database such as
tables, views, indexes, packages and functions.

The catalog views are like any other database views. SQL statements can be used to
look at the data in the catalog views in the same way that data is retrieved from any
other view in the system. The database manager ensures that the catalog contains
accurate descriptions of the objects in the database at all times. A set of updatable
catalog views can be used to modify certain values in the catalog (see “Updatable
Catalog Views” on page 694).

Statistical information is also contained in the catalog. The statistical information is
updated by utilities executed by an administrator, or through update statements by
appropriately authorized users.

The catalog views are listed in Appendix D, “Catalog Views” on page 693.

Application Processes, Concurrency, and Recovery
All SQL programs execute as part of an application process or agent. An application
process involves the execution of one or more programs, and is the unit to which the
database manager allocates resources and locks. Different application processes may
involve the execution of different programs, or different executions of the same
program.

More than one application process may request access to the same data at the same
time. Locking is the mechanism used to maintain data integrity under such conditions,
preventing, for example, two application processes from updating the same row of data
simultaneously.

The database manager acquires locks in order to prevent uncommitted changes made
by one application process from being accidentally perceived by any other. The data-
base manager releases all locks it has acquired and retained on behalf of an applica-
tion process when that process ends, but an application process itself should explicitly
request that locks be released sooner. This operation is called commit and it writes the
changes to the database.

The database manager provides a means of backing out uncommitted changes made
by an application process. This might be necessary in the event of a failure on the part
of an application process, or in a deadlock or lock timeout situation. An application
process itself, however, can explicitly request that its database changes be backed out.
This operation is called rollback.

A unit of work is a recoverable sequence of operations within an application process. At
any time, an application process has a single unit of work 3, but the life of an applica-

 Chapter 2. Concepts 19

tion process may involve many units of work as a result of commit or rollback oper-
ations.

A unit of work is initiated when an application process is initiated. A unit of work is also
initiated when the previous unit of work is ended by something other than the termi-
nation of the application process. A unit of work is ended by a commit operation, a
rollback operation, or the end of an application process. A commit or rollback operation
affects only the database changes made within the unit of work it ends. While these
changes remain uncommitted, other application processes are unable to perceive them
and they can be backed out.4 Once committed, these database changes are accessible
by other application processes and can no longer be backed out by a rollback.

Locks acquired by the database manager on behalf of an application process are held
until the end of a unit of work. The exception to this rule is with a read stability or
cursor stability isolation level, or an uncommitted read level, in which case the lock is
released as the cursor moves from row to row (see “Isolation Level” on page 21).

The initiation and termination of a unit of work define points of consistency within an
application process. For example, a banking transaction might involve the transfer of
funds from one account to another. Such a transaction would require that these funds
be subtracted from the first account, and added to the second. Following the sub-
traction step, the data is inconsistent. Only after the funds have been added to the
second account is consistency reestablished. When both steps are complete, the
commit operation can be used to end the unit of work, thereby making the changes
available to other application processes.

Point of
consistency

New point of
consistency

Begin unit
of work

Commit
End unit of work

one unit of work

database updatesTIME LINE

Figure 1. Unit of Work with a Commit Statement

3 DB2 CLI supports a connection mode called concurrent transactions which supports multiple connections, each of which is an inde-
pendent transaction. Furthermore, an application can have multiple concurrent connections to the same database, which is not pos-
sible at all with DB2 embedded SQL.

4 Except for isolation level uncommitted read, described in “Uncommitted Read (UR)” on page 23.

20 SQL Reference

If a failure occurs before the unit of work ends, the database manager will roll back
uncommitted changes to restore the data consistency that it assumes existed when the
unit of work was initiated.

Point of
consistency

New point of
consistency

Begin unit
of work

Failure;
Begin rollback

Data is returned to
its initial state;

End unit of work

one unit of work

database
updates

back out
updatesTIME LINE

Figure 2. Unit of Work with a Rollback Statement

Note: An application process is never prevented from performing operations because
of its own locks.

 Isolation Level
The isolation level associated with an application process defines the degree of iso-
lation of that application process from other concurrently executing application proc-
esses. The isolation level of an application process, P, therefore specifies:

¹ The degree to which rows read and updated by P are available to other concur-
rently executing application processes

¹ The degree to which update activity of other concurrently executing application
processes can affect P.

Isolation level is specified as an attribute of a package and applies to the application
processes that use the package. The isolation level is specified in the program prepara-
tion process. Depending on the type of lock, this limits or prevents access to the data
by concurrent application processes. The database manager supports three types of
locks:

Share Limits concurrent application processes to read-only operations on the
data.

Exclusive Prevents concurrent application processes from accessing the data in any
way except for application processes with an isolation level of uncommitted
read, which can read but not modify the data. (See “Uncommitted Read
(UR)” on page 23.)

 Chapter 2. Concepts 21

Update Limits concurrent application processes to read-only operations on the data
providing these processes have not declared they might update the row.
The database manager assumes the process looking at the row presently
may update the row.

The following descriptions of isolation levels refer to locking data in row units. Logically,
locking occurs at the base table row. The database manager, however, can escalate a
lock to a higher level. An application process is guaranteed at least the minimum
requested lock level.

The DB2 Universal Database database manager supports four isolation levels. Regard-
less of the isolation level, the database manager places exclusive locks on every row
that is inserted, updated, or deleted. Thus, all isolation levels ensure that any row that
is changed by this application process during a unit of work is not changed by any
other application processes until the unit of work is complete. The isolation levels are:

Repeatable Read (RR)
Level RR ensures that:

¹ Any row read during a unit of work 5 is not changed by other application processes
until the unit of work is complete. 6

¹ Any row changed by another application process cannot be read until it is com-
mitted by that application process.

RR does not allow phantom rows (see Read Stability) to be seen.

In addition to any exclusive locks, an application process running at level RR acquires
at least share locks on all the rows it references. Furthermore, the locking is performed
so that the application process is completely isolated 6 from the effects of concurrent
application processes.

Read Stability (RS)
Like level RR, level RS ensures that:

¹ Any row read during a unit of work 5 is not changed by other application processes
until the unit of work is complete 7

¹ Any row changed by another application process cannot be read until it is com-
mitted by that application process.

Unlike RR, RS does not completely isolate the application process from the effects of
concurrent application processes. At level RS, application processes that issue the

5 The rows must be read in the same unit of work as the corresponding OPEN statement. See WITH HOLD in “DECLARE CURSOR”
on page 525.

6 Use of the optional WITH RELEASE clause on the CLOSE statement means that any guarantees against non-repeatable read and
phantoms no longer apply to any previously accessed rows if the cursor is reopened.

22 SQL Reference

same query more than once might see additional rows. These additional rows are
called phantom rows.

For example, a phantom row can occur in the following situation:

1. Application process P1 reads the set of rows n that satisfy some search condition.

2. Application process P2 then INSERTs one or more rows that satisfy the search
condition and COMMITs those INSERTs.

3. P1 reads the set of rows again with the same search condition and obtains both
the original rows and the rows inserted by P2.

In addition to any exclusive locks, an application process running at level RS acquires
at least share locks on all the qualifying rows.

Cursor Stability (CS)
Like the RR level:

¹ CS ensures that any row that was changed by another application process cannot
be read until it is committed by that application process.

Unlike the RR level:

¹ CS only ensures that the current row of every updatable cursor is not changed by
other application processes. Thus, the rows that were read during a unit of work
can be changed by other application processes.

In addition to any exclusive locks, an application process running at level CS has at
least a share lock for the current row of every cursor.

Uncommitted Read (UR)
For a SELECT INTO, FETCH with a read-only cursor, fullselect used in an INSERT,
row fullselect in an UPDATE, or scalar fullselect (wherever used), level UR allows:

¹ Any row that is read during the unit of work to be changed by other application
processes.

¹ Any row that was changed by another application process to be read even if the
change has not been committed by that application process.

For other operations, the rules of level CS apply.

Comparison of Isolation Levels
A comparison of the four isolation levels can be found on Appendix G, “Comparison of
Isolation Levels” on page 773.

7 Use of the optional WITH RELEASE clause on the CLOSE statement means that any guarantees against non-repeatable read no
longer apply to any previously accessed rows if the cursor is reopened.

 Chapter 2. Concepts 23

Distributed Relational Database
A distributed relational database consists of a set of tables and other objects that are
spread across different but interconnected computer systems. Each computer system
has a relational database manager to manage the tables in its environment. The data-
base managers communicate and cooperate with each other in a way that allows a
given database manager to execute SQL statements on another computer system.

Distributed relational databases are built on formal requester-server protocols and func-
tions. An application requester supports the application end of a connection. It trans-
forms a database request from the application into communication protocols suitable for
use in the distributed database network. These requests are received and processed by
an application server at the other end of the connection. Working together, the applica-
tion requester and application server handle the communication and location consider-
ations so that the application is isolated from these considerations and can operate as if
it were accessing a local database. A simple distributed relational database environ-
ment is illustrated in Figure 3.

R O C H E S T E R T O R O N T O

S Q L

P a c k a g e
P r o g r a m

A p p l i c a t i o n R e q u e s t e r A p p l i c a t i o n S e r v e r

Figure 3. A Distributed Relational Database Environment

For more information on Distributed Relational Database Architecture (DRDA) commu-
nication protocols, see Distributed Relational Database Architecture Reference
SC26-4651.

 Application Servers
An application process must be connected to the application server of a database
manager before SQL statements that reference tables or views can be executed. A
CONNECT statement establishes a connection between an application process and its
server. An application process has only one server at any time3 , but the server can
change when a CONNECT statement is executed.

The application server can be local to or remote from the environment where the
process is initiated. (An application server is present, even when not using distributed
relational databases.) This environment includes a local directory that describes the

24 SQL Reference

application servers that can be identified in a CONNECT statement. For a description of
local directories, see the Administration Guide

To execute a static SQL statement that references tables or views, the application
server uses the bound form of the statement. This bound statement is taken from a
package that the database manager previously created through a bind operation.

For the most part, an application can use the statements and clauses that are sup-
ported by the database manager of the application server to which it is currently con-
nected, even though that application might be running via the application requester of a
database manager that does not support some of those statements and clauses.

See the IBM SQL Reference for information on considerations for using a distributed
relational database on DB2 application servers on other platforms.

CONNECT (Type 1) and CONNECT (Type 2)
There are two types of CONNECT statements:

¹ CONNECT (Type 1) supports the single database per unit of work (Remote Unit of
Work) semantics. See “CONNECT (Type 1)” on page 389.

¹ CONNECT (Type 2) supports the multiple database per unit of work (Application-
Directed Distributed Unit of Work) semantics. See “CONNECT (Type 2)” on
page 396.

Remote Unit of Work
The remote unit of work facility provides for the remote preparation and execution of
SQL statements. An application process at computer system A can connect to an appli-
cation server at computer system B and, within one or more units of work, execute any
number of static or dynamic SQL statements that reference objects at B. After ending a
unit of work at B, the application process can connect to an application server at com-
puter system C, and so on.

Most SQL statements can be remotely prepared and executed with the following
restrictions:

¹ All objects referenced in a single SQL statement must be managed by the same
application server

¹ All of the SQL statements in a unit of work must be executed by the same applica-
tion server

Remote Unit of Work Connection Management
This section outlines the connection states that an application process may enter.

Connection States :

An application process is in one of four states at any time:
Connectable and connected
Unconnectable and connected
Connectable and unconnected

 Chapter 2. Concepts 25

Implicitly connectable (if implicit connect is available).

If implicit connect is available (see Figure 4 on page 27), the application process
is initially in the implicitly connectable state. If implicit connect is not available (see
Figure 5 on page 28), the application process is initially in the connectable and
unconnected state.

Availability of implicit connect is determined by installation options, environment
variables, and authentication settings. See the Quick Beginnings for information on
setting implicit connect on installation and the Administration Guide for information
on environment variables and authentication settings.

The implicitly connectable state :

If implicit connect is available, this is the initial state of an application process. The
CONNECT RESET statement causes a transition to this state. Issuing a COMMIT
or ROLLBACK statement in the unconnectable and connected state followed by a
DISCONNECT statement in the connectable and connected state also results in
this state.

The connectable and connected state :

An application process is connected to an application server and CONNECT state-
ments can be executed.

If implicit connect is available:

¹ The application process enters this state when a CONNECT TO statement or
a CONNECT without operands statement is successfully executed from the
connectable and unconnected state.

¹ The application process may also enter this state from the implicitly
connectable state if any SQL statement other than CONNECT RESET, DIS-
CONNECT, SET CONNECTION, or RELEASE is issued.

Whether or not implicit connect is available, this state is entered when:

¹ A CONNECT TO statement is successfully executed from the connectable and
unconnected state.

¹ A COMMIT or ROLLBACK statement is successfully issued or a forced
rollback occurs from the unconnectable and connected state.

The unconnectable and connected state :

An application process is connected to an application server, but a CONNECT TO
statement cannot be successfully executed to change application servers. The
process enters this state from the connectable and connected state when it exe-
cutes any SQL statement other than the following statements: CONNECT TO,
CONNECT with no operand, CONNECT RESET, DISCONNECT, SET CON-
NECTION, RELEASE, COMMIT or ROLLBACK.

The connectable and unconnected state :

26 SQL Reference

An application process is not connected to an application server. The only SQL
statement that can be executed is CONNECT TO, otherwise an error (SQLSTATE
08003) is raised.

Whether or not implicit connect is available:

¹ The application process enters this state if an error occurs when a CONNECT
TO statement is issued or an error occurs in a unit of work which causes the
loss of a connection and a rollback. An error caused because the application
process is not in the connectable state or the server-name is not listed in the
local directory does not cause a transition to this state.

If implicit connect is not available:

¹ the CONNECT RESET and DISCONNECT statements cause a transition to
this state.

State Transitions are shown in the following diagrams.

Implicitly
Connectable

Connectable
and

Connected

Connectable
and

Unconnected

Unconnectable
and

Connected

Begin process

CONNECT
RESET

CONNECT
RESET

CONNECT TO,
COMMIT,

or ROLLBACK

Failure of
implicit connect

System failure
with rollback

ROLLBACK,
successful COMMIT,

or deadlock

CONNECT TO,
COMMIT, or
ROLLBACK

SQL statement other
than CONNECT RESET,
COMMIT or ROLLBACKSQL statement other than

CONNECT TO, CONNECT RESET,
COMMIT or ROLLBACK

CONNECT TO with
 system fa

ilu
re

Successful C
ONNECT TO

Figure 4. Connection State Transitions If Implicit Connect Is Available

 Chapter 2. Concepts 27

Connectable
and

Unconnected

Unconnectable
and

Connected

Connectable
and

Connected

Begin p rocess
CONNECT RESET

CONNECT
RESET

CONNECT
RESET

System failure
with rollback

CONNECT TO,
COMMIT or
ROLLBACK

Successful CONNECT TO

CONNECT TO
with system failure

SQL statement other
than CONNECT RESET,
COMMIT or ROLLBACK

SQL statement other than
CONNECT TO, CONNECT RESET,

COMMIT or ROLLBACK

ROLLBACK,
successful COMMIT,

or deadlock

Figure 5. Connection State Transitions If Implicit Connect Is Not Available

Additional Rules :

¹ It is not an error to execute consecutive CONNECT statements because
CONNECT itself does not remove the application process from the connectable
state.

¹ It is an error to execute consecutive CONNECT RESET statements.

¹ It is an error to execute any SQL statement other than CONNECT TO, CONNECT
RESET, CONNECT with no operand, SET CONNECTION, RELEASE, COMMIT, or
ROLLBACK, and then execute a CONNECT TO statement. To avoid the error, a
CONNECT RESET, DISCONNECT (preceded by a COMMIT or ROLLBACK state-
ment), COMMIT, or ROLLBACK statement should be executed before executing
the CONNECT TO.

28 SQL Reference

Application-Directed Distributed Unit of Work
The application-directed distributed unit of work facility also provides for the remote
preparation and execution of SQL statements in the same fashion as remote unit of
work. An application process at computer system A can connect to an application
server at computer system B by issuing a CONNECT or SET CONNECTION statement.
The application process can then execute any number of static and dynamic SQL state-
ments that reference objects at B before ending the unit of work. All objects referenced
in a single SQL statement must be managed by the same application server. However,
unlike remote unit of work, any number of application servers can participate in the
same unit of work. A commit or rollback operation ends the unit of work.

Application-Directed Distributed Unit of Work Connection
Management
An application-directed distributed unit of work uses a Type 2 connection. A Type 2
connection connects an application process to the identified application server and
establishes the rules for application-directed distributed unit of work.

Overview of Application Process and Connection States
At any time a type 2 application process:

¹ Is always connectable

¹ Is in the connected state or unconnected state.

¹ Has a set of zero or more connections.

Each connection of an application process is uniquely identified by the database
alias of the application server of the connection.

At any time an individual connection has one of the following sets of connection
states:
¹ current and held
¹ current and release-pending
¹ dormant and held
¹ dormant and release-pending

Initial States and State Transitions: A type 2 application process is initially in the
unconnected state and does not have any connections.

A connection initially is in the current and held state.

The following diagram shows the state transitions:

 Chapter 2. Concepts 29

Current

Current

Dormant

Dormant

Held
Release-
pending

States of a Connection

States of a Connection

RELEASE

Successful CONNECT or
SET CONNECTION

specifying an
existing dormant connection

Successful CONNECT or
SET CONNECTION

specifying another connection

The current connection is intentionally ended,
or a failure occurs causing the loss

of the connection

Successful CONNECT or
SET CONNECTION

Begin
process

Figure 6. Application-Directed Distributed Unit of Work Connection and Application Process Connection State Transi-
tions

Application Process Connection States: A different application server can be estab-
lished by the explicit or implicit execution of a CONNECT statement.8 The following
rules apply:

¹ An application process cannot have more than one connection to the same appli-
cation server at the same time. Note that DB2 CLI does not have this restriction.
(DB2 CLI has its own connection type. DB2 CLI also can support a Type 2 con-
nection as discussed, in which case this restriction does apply.) See Adminis-
tration Guide for information on support of multiple connections to the same DB2
Universal Database at the same time.

8 Note that a Type 2 implicit connection is more restrictive than a Type 1. See “CONNECT (Type 2)” on page 396 for details.

30 SQL Reference

¹ When an application process executes a SET CONNECTION statement, the speci-
fied location name must be an existing connection in the set of connections of the
application process.

¹ When an application process executes a CONNECT statement, and the
SQLRULES(STD) option is in effect the specified server name must not be an
existing connection in the set of connections of the application process. See
“Options that Govern Distributed Unit of Work Semantics” on page 32 for a
description of the SQLRULES option.

If an application process has a current connection , the application process is in the
connected state. The CURRENT SERVER special register contains the name of the
application server of the current connection. The application process can execute SQL
statements that refer to objects managed by that application server.

An application process in the unconnected state enters the connected state when it
successfully executes a CONNECT or SET CONNECTION statement. If there is no
connection in the application but SQL statements are issued, an implicit connect will be
made provided the DB2DBDFT environment variable has been defined with a default
database.

If an application process does not have a current connection , the application
process is in the unconnected state. The only SQL statements that can be executed
are CONNECT, DISCONNECT ALL, DISCONNECT specifying a database, SET CON-
NECTION, RELEASE, COMMIT and ROLLBACK.

An application process in the connected state enters the unconnected state when its
current connection is intentionally ended or the execution of an SQL statement is
unsuccessful because of a failure that causes a rollback operation at the application
server and loss of the connection. Connections are intentionally ended either by the
successful execution of a DISCONNECT statement or by the successful execution of a
commit operation when the connection is in the release-pending state. Different options
specified in the DISCONNECT precompiler option, affect intentionally ending a con-
nection. If set to AUTOMATIC, then all connections are ended. If set to CONDITIONAL,
then all connections that do not have open WITH HOLD cursors are ended.

States of a Connection: If an application process executes a CONNECT statement
and the server name is known to the application requester and is not in the set of
existing connections of the application process, then:

¹ the current connection is placed into the dormant state, and

¹ the server name is added to the set of connections, and

¹ the new connection is placed into both the current state and the held state.

If the server name is already in the set of existing connections of the application
process and the application is precompiled with the option SQLRULES(STD), an error
(SQLSTATE 08002) is raised.

¹ Held and Release-pending States: The RELEASE statement controls whether a
connection is in the held or release-pending state. A release-pending state means

 Chapter 2. Concepts 31

that a disconnect is to occur for the connection at the next successful commit oper-
ation (a rollback has no effect on connections). A held state means that a con-
nection is not to be disconnected at the next operation. All connections are initially
in the held state and may be moved into the release-pending state using the
RELEASE statement. Once in the release-pending state, a connection cannot be
moved back to the held state. A connection will remain in a release-pending state
across unit of work boundaries if a ROLLBACK statement is issued or if an unsuc-
cessful commit operation results in a rollback operation.

Even if a connection is not explicitly marked for release, it may still be discon-
nected by a commit operation if the commit operation satisfies the conditions of the
DISCONNECT precompiler option.

¹ Current and Dormant States: Regardless of whether a connection is in the held
state or the release-pending state, a connection can also be in the current state or
dormant state. A current state means that the connection is the one used for SQL
statements that are executed while in this state. A dormant state means that the
connection is not current. The only SQL statements which can flow on a dormant
connection are COMMIT and ROLLBACK; or DISCONNECT and RELEASE, which
can specify either ALL (for all connections) or a specific database name. The SET
CONNECTION and CONNECT statements change the connection for the named
server into the current state while any existing connections are either placed or
remain in the dormant state. At any point in time, only one connection can be in
the current state. When a dormant connection becomes current in the same unit of
work, the state of all locks, cursors, and prepared statements will remain the same
and reflect their last use when the connection was current.

When a Connection is Ended: When a connection is ended, all resources that were
acquired by the application process through the connection and all resources that were
used to create and maintain the connection are deallocated. For example, if the appli-
cation process executes a RELEASE statement, any open cursors will be closed when
the connection is ended during the next commit operation.

A connection can also be ended because of a communications failure. The application
process is placed in the unconnected state if the connection ended was the current
one.

All connections of an application process are ended when the process ends.

Options that Govern Distributed Unit of Work Semantics
The semantics of type 2 connection management are determined by a set of precom-
piler options. These are summarized briefly below with the defaults indicated by bold
and underlined text. For details refer to the Command Reference or API Reference
manuals.

¹ CONNECT (1 | 2)

Specifies whether CONNECT statements are to be processed as type 1 or type 2.

¹ SQLRULES (DB2 | STD)

32 SQL Reference

Specifies whether type 2 CONNECTs should be processed according to the DB2
rules which allow CONNECT to switch to a dormant connection, or the SQL92
Standard (STD) rules which do not allow this.

¹ DISCONNECT (EXPLICIT | CONDITIONAL | AUTOMATIC)

Specifies what database connections are disconnected when a commit operation
occurs. They are either:

– those which had been explicitly marked for release by the SQL RELEASE
statement (EXPLICIT), or

– those that have no open WITH HOLD cursors as well as those marked for
release (CONDITIONAL)9 , or

– all connections (AUTOMATIC).

¹ SYNCPOINT (ONEPHASE | TWOPHASE | NONE)

Specifies how commits or rollbacks are to be coordinated among multiple database
connections.

ONEPHASE Updates can only occur on one database in the unit of work, all
other databases are read-only. Any update attempts to other
databases raise an error (SQLSTATE 25000).

TWOPHASE A Transaction Manager (TM) will be used at run time to coordi-
nate two phase commits among those databases that support
this protocol.

NONE Does not use any TM to perform two phase commit and does
not enforce single updater, multiple reader. When a COMMIT or
ROLLBACK statement is executed, individual COMMITs or
ROLLBACKs are posted to all databases. If one or more
rollbacks fails an error (SQLSTATE 58005) is raised. If one or
more commits fails an error (SQLSTATE 40003) is raised.

Any of the above options can be overridden at run time using a special SET CLIENT
application programming interface (API). Their current settings can be obtained using
the special QUERY CLIENT API. Note that these are not SQL statements; they are
APIs defined in the various host languages and in the Command Line Processor. These
are defined in the Command Reference and API Reference manuals.

Data Representation Considerations
Different systems represent data in different ways. When data is moved from one
system to another, data conversion sometimes must be performed. Products supporting
DRDA will automatically perform any necessary conversions at the receiving system.
With numeric data, the information needed to perform the conversion is the data type of
the data and how that data type is represented by the sending system. With character
data, additional information is needed to convert character strings. String conversion

9 The CONDITIONAL option will not work properly with downlevel servers prior to Version 2. A disconnection will occur in these cases
regardless of the presence of WITH HOLD cursors

 Chapter 2. Concepts 33

depends on both the coded character set of the data and the operation that is to be
performed with that data. Character conversions are performed in accordance with the
IBM Character Data Representation Architecture (CDRA). For more information on
character conversion, refer to Character Data Representation Architecture Reference
SC09-1390.

 Character Conversion
A string is a sequence of bytes that may represent characters. Within a string, all the
characters are represented by a common coding representation. In some cases, it
might be necessary to convert these characters to a different coding representation.
The process of conversion is known as character conversion.10

Character conversion can occur when an SQL statement is executed remotely. Con-
sider, for example, these two cases:

¹ The values of host variables sent from the application requester to the application
server

¹ The values of result columns sent from the application server to the application
requester.

In either case, the string could have a different representation at the sending and
receiving systems. Conversion can also occur during string operations on the same
system.

The following list defines some of the terms used when discussing character conver-
sion.

character set A defined set of characters. For example, the following char-
acter set appears in several code pages:

¹ 26 non-accented letters A through Z

¹ 26 non-accented letters a through z

¹ digits 0 through 9

¹ . , : ; ? () ' " / - _ & + % * = < >

code page A set of assignments of characters to code points. In the
ASCII encoding scheme for code page 850, for example, 'A'
is assigned code point X'41' and 'B' is assigned code point
X'42'. Within a code page, each code point has only one
specific meaning. A code page is an attribute of the data-
base. When an application program connects to the data-

10 Character conversion, when required, is automatic and is transparent to the application when it is successful. A knowledge of conver-
sion is therefore unnecessary when all the strings involved in a statement's execution are represented in the same way. This is
frequently the case for stand-alone installations and for networks within the same country. Thus, for many readers, character con-
version may be irrelevant.

34 SQL Reference

base, the database manager determines the code page of the
application.

code point A unique bit pattern that represents a character.

encoding scheme A set of rules used to represent character data. For example:

 ¹ Single-Byte ASCII
 ¹ Single-Byte EBCDIC
 ¹ Double-Byte ASCII
¹ Mixed Single- and Double-Byte ASCII.

Character Sets and Code Pages
The following example shows how a typical character set might map to different code
points in two different code pages.

FE

Ä

Ã

Á

Å

Â

À

Ö

®

5
8

2 3 4 50

0

1

1

2

3

4

5

E

F

″

%

/

0

1

2

3

4

5

@

A

B

C

D

E

N

0

>.

*

P

Q

R

S

T

U

0

1

2

3

4

5

E

F

FE0 1 A B

s

t

u

v

#

$

%

*

(

S

T

U

V

Â

C D

0

1

2

3

4

5

}

{ÁÀ ¢

! :

;

A

B

C

D

E

J

K

L

M

N

code page: pp1 (ASCII) code page: pp2 (EBCDIC)

character set ss1
(in code page pp2)

character set ss1
(in code page pp1)

code point: 2F

 Chapter 2. Concepts 35

Even with the same encoding scheme, there are many different coded character sets,
and the same code point can represent a different character in different coded char-
acter sets. Furthermore, a byte in a character string does not necessarily represent a
character from a single-byte character set (SBCS). Character strings are also used for
mixed and bit data. Mixed data is a mixture of single-byte, double-byte, or multi-byte
characters. Bit data (columns defined as FOR BIT DATA or BLOBs, or binary strings)
is not associated with any character set.

Code Page Attributes
The database manager determines code page attributes for all character strings when
an application is bound to a database. The potential code page attributes are:

The Database Code Page The database code page stored in the database config-
uration files. This code page value is determined when
the database is created and cannot be altered.

The Application Code Page The code page under which the application is exe-
cuted. Note that this is not necessarily the same code
page under which the application was bound. (See the
Embedded SQL Programming Guide for further infor-
mation on binding and executing application programs.)

Code Page 0 This represents a string that is derived from an
expression that contains a FOR BIT DATA or BLOB
value.

String Code Page Attributes
Character string code page attributes are as follows:

¹ Columns may be in the database code page or code page 0 (if defined as char-
acter FOR BIT DATA or BLOB).

¹ Constants and special registers (for example, USER, CURRENT SERVER) are in
the database code page. Note that constants are converted to the database code
page when an SQL statement is bound to the database.

¹ Input host variables are in the application code page.

A set of rules is used to determine the code page attributes for operations that combine
string objects, such as the results of scalar operations, concatenation, or set operations.
At execution time, code page attributes are used to determine any requirements for
code page conversions of strings.

For more details on character conversion, see:

¹ “Conversion Rules for String Assignments” on page 67 for rules on string assign-
ments

¹ “Rules for String Conversions” on page 76 for rules on conversions when com-
paring or combining character strings.

36 SQL Reference

Authorization and Privileges
An authorization allows a user or group to perform a general task such as connecting to
a database, creating tables, or administering a system. A privilege gives a user or
group the right to access one specific database object in a specified way.

The database manager requires that a user be specifically authorized, either implicitly
or explicitly,11 to use each database function needed by that user to perform a specific
task. Thus to create a table, a user must be authorized to create tables; to alter a table,
a user must be authorized to alter the table; and so on.

SYSADM
(System Administrator)

DBADM
(Database Administrator)

Database Users with Privileges

SYSCTRL
(System Resource Administrator)

SYSMAINT
(System Maintenance Administrator)

Figure 7. Hierarchy of Authorities and Privileges

The person or persons with administrative authority have the task of controlling the
database manager and are responsible for the safety and integrity of the data. They
control who will have access to the database manager and to what extent each user
has access.

The database manager provides two administrative authorities:

SYSADM System administrator authority
DBADM Database administrator authority

and two system control authorities:

SYSCTRL System control authority
SYSMAINT System maintenance authority

SYSADM authority is the highest level of authority and has control over all the
resources created and maintained by the database manager. SYSADM authority

11 Explicit authorities or privileges are granted to the user (GRANTEETYPE of U). Implicit authorities or privileges are granted to a
group to which the user belongs (GRANTEETYPE of G).

 Chapter 2. Concepts 37

includes all the privileges of DBADM, SYSCTRL, and SYSMAINT, and the authority to
grant or revoke DBADM authorities.

DBADM authority is the administrative authority specific to a single database. This
authority includes privileges to create objects, issue database commands, and access
the data in any of its tables through SQL statements. DBADM authority also includes
the authority to grant or revoke CONTROL and individual privileges.

SYSCTRL authority is the higher level of system control authority and applies only to
operations affecting system resources. It does not allow direct access to data. This
authority includes privileges to create, update, or drop a database; quiesce an instance
or database; and drop or create a table space.

SYSMAINT authority is the second level of system control authority. A user with
SYSMAINT authority can perform maintenance operations on all databases associated
with an instance. It does not allow direct access to data. This authority includes privi-
leges to update database configuration files, backup a database or table space, restore
an existing database, and monitor a database.

Database authorities apply to those activities that an administrator has allowed a user
to perform within the database that do not apply to a specific instance of a database
object. For example, a user may be granted the authority to create packages but not
create tables.

Privileges apply to those activities that an administrator or object owner has allowed a
user to perform on database objects. Users with privileges can create objects, though
they face some constraints, unlike a user with an authority like SYSADM or DBADM.
For example, a user may have the privilege to create a view on a table but not a trigger
on the same table. Users with privileges have access to the objects they own, and can
pass on privileges on their own objects to other users by using the GRANT statement.

CONTROL privilege allows the user to access a specific database object as desired
and to GRANT and REVOKE privileges to and from other users on that object. DBADM
authority is required to grant CONTROL privilege.

Individual privileges and database authorities allow a specific function but do not
include the right to grant the same privileges or authorities to other users. The right to
grant table, view or schema privileges to others can be extended to other users using
the WITH GRANT OPTION on the GRANT statement.

 Storage Structures
Storage structures contain the objects of the database. The basic storage structures
managed by the database manager are table spaces. A table space is a storage struc-
ture containing tables, indexes, large objects, and data defined with a LONG data type.
There are two types of table spaces:

Database Managed Space (DMS) Table Space
A table space which has its space managed by the database manager.

38 SQL Reference

Data Partitioning Across Multiple Partitions

System Managed Space (SMS) Table Space
A table space which has its space managed by the operating system.

All table spaces consist of containers. A container describes where objects, such as
some tables, are stored. For example, a subdirectory in a file system could be a con-
tainer.

For more information on table spaces and containers, see “CREATE TABLESPACE” on
page 501 or the Administration Guide.

Data that is read from table space containers is placed in an area of memory called a
buffer pool. A buffer pool is associated with a table space allowing control over which
data shares the same memory areas for data buffering. For more information on buffer
pools, see “CREATE BUFFERPOOL” on page 406 or the Administration Guide.

A partitioned database allows data to be spread across different database partitions.
The partitions included are determined by the nodegroup assigned to the table space. A
nodegroup is a group of one or more partitions that are defined as part of the database.
A table space includes one or more containers for each partition in the nodegroup. A
partitioning map is associated with each nodegroup. The partitioning map is used by
the database manager to determine which partition from the nodegroup will store a
given row of data. For more information on nodegroups and data partitioning, see “Data
Partitioning Across Multiple Partitions,” “CREATE NODEGROUP” on page 464 or the
Administration Guide.

Data Partitioning Across Multiple Partitions
DB2 allows great flexibility in spreading data across multiple partitions (nodes) of a par-
titioned database. Users can choose how to partition their data by declaring partitioning
keys and can determine which and how many partitions their table data can be spread
across by selecting the nodegroup and table space in which the data should be stored.
In addition, a partitioning map (which can be user-updatable) specifies the mapping of
partitioning key values to partitions. This makes it possible for flexible workload
parallelization across a partitioned database for large tables, while allowing smaller
tables to be stored on one or a small number of partitions if the application designer
chooses. Each local partition may have local indexes on the data it stores in order to
provide high performance local data access.

A partitioned database supports a partitioned storage model, in which the partitioning
key is used to partition table data across a set of database partitions. Index data is also
partitioned with its corresponding tables, and stored locally at each partition.

Before partitions can be used to store database data, they must be defined to the data-
base manager. Partitions are defined in a file called db2nodes.cfg. See the Adminis-
tration Guide for more details about defining partitions.

The partitioning key for a table in a table space on a partitioned nodegroup is specified
in the CREATE TABLE statement (or ALTER TABLE statement). If not specified, a par-
titioning key for a table is created by default from the first column of the primary key. If

 Chapter 2. Concepts 39

Data Partitioning Across Multiple Partitions

no primary key is specified, the default partitioning key is the first column defined in that
table that has a data type other than a LONG or LOB data type. Partitioned tables must
have at least one column that is neither a LONG nor a LOB data type. A table in a
table space on a single-partition nodegroup will only have a partitioning key if it is
explicitly specified.

Hash partitioning is used to place a row on a partition as follows.

1. A hashing algorithm (partitioning function) is applied to the partitioning key (all the
columns), which results in a partitioning map index being generated.

2. This partitioning map index is used as an index into the partitioning map. The
partition number at that index in the partitioning map is the partition where the row
is stored.

3. Partitioning maps are associated with nodegroups, and tables are created in table
spaces which are on nodegroups.

DB2 supports partial declustering, which means that the table can be partitioned across
a subset of partitions in the system (that is, a nodegroup). Tables do not have to be
partitioned across all the partitions in the system.

 Partitioning Maps
Each nodegroup is associated with a partitioning map, which is an array of 4 096 parti-
tion numbers . The partitioning map index produced by the partitioning function for each
row of a table is used as an index into the partitioning map to determine partition on
which a row is stored.

Figure 8 on page 41 shows how the row with the partitioning key value (c1, c2, c3) is
mapped to partitioning map index 2, which, in turn, references partition p5.

40 SQL Reference

Data Partitioning Across Multiple Partitions

p0 p2 p5 p0 p2 p5 ... p0

0 1 3 4 52 4095
...

Row

partitioning function maps (c1,c2,c3)

to partitioning map index 2

partitioning map

Nodegroup partitions are p0, p2, and p5

Note: Partition numbers start at 0.

(... c1, c2, c3 ...)

partitioning key

Figure 8. Data Distribution

The partitioning map can be changed, allowing the data distribution to be changed
without modifying the partitioning key or the actual data. The new partitioning map is
specified as part of the REDISTRIBUTE NODEGROUP command or API which uses it
to redistribute the tables in the nodegroup. See Command Reference or API Reference
for further information.

 Table Collocation
DB2 has the capability of recognizing when the data accessed for a join or subquery is
located at the same partition in the same nodegroup. When this happens DB2 can
choose to perform the join or subquery processing at the partition where the data is
stored, which often has significant performance advantages. This situation is called
table collocation. To be considered collocated tables, the tables must:

¹ be in the same nodegroup (that is not being redistributed 12)

¹ have partitioning keys with the same number of columns

¹ have the corresponding columns of the partitioning key be partition compatible (see
“Partition Compatibility” on page 78).

OR

¹ be in a single partition nodegroup defined on the same partition.

12 While redistributing a nodegroup, tables in the nodegroup may be using different partitioning maps - they are not collocated.

 Chapter 2. Concepts 41

Data Partitioning Across Multiple Partitions

Rows in collocated tables with the same partitioning key values will be located on the
same partition.

42 SQL Reference

Characters

 Chapter 3. Language Elements

This chapter defines the basic syntax of SQL and language elements that are common
to many SQL statements.

Subject Page

Characters 43

Tokens 44

Identifiers 45

Naming Conventions 46

Aliases 48

Authorization IDs and authorization-names 49

Data Types 51

Promotion of Data Types 61

Casting Between Data Types 62

Assignments and Comparisons 64

Rules for Result Data Types 74

Constants 79

Special Registers 82

Column Names 88

References to Host Variables 95

Functions 100

Expressions 107

Predicates 123

Search Conditions 140

 Characters
The basic symbols of keywords and operators in the SQL language are single-byte
characters that are part of all IBM character sets. Characters of the language are clas-
sified as letters, digits, or special characters.

A letter is any of the 26 uppercase (A through Z) and 26 lowercase (a through z) letters
plus the three characters ($, #, and @), which are included for compatibility with host
database products (for example, in code page 850, $ is at X'24' # is at X'23', and @
is at X'40'). Letters also include the alphabetics from the extended character sets.
Extended character sets contain additional alphabetic characters; for example, those
with diacritical (eg., ´) marks. The available characters depend on the code page in
use.

A digit is any of the characters 0 through 9.

 Copyright IBM Corp. 1993, 1997 43

Tokens

A special character is any of the characters listed below:

 blank − minus sign
" quotation mark or

double-quote
. period

% percent / slash
& ampersand : colon
' apostrophe or

single quote
; semicolon

(left parenthesis < less than
) right parenthesis = equals
* asterisk > greater than
+ plus sign ? question mark
, comma _ underline or under-

score
| vertical bar _ caret
! exclamation mark

 MBCS Considerations
All multi-byte characters are treated as letters, except for the double-byte blank which is
a special character.

 Tokens
The basic syntactical units of the language are called tokens. A token is a sequence of
one or more characters. A token cannot contain blank characters, unless it is a string
constant or delimited identifier, which may contain blanks. (These terms are defined
later.)

Tokens are classified as ordinary or delimiter tokens:

¹ An ordinary token is a numeric constant, an ordinary identifier, a host identifier, or
a keyword.

Examples

1 .1 +2 SELECT E 3

¹ A delimiter token is a string constant, a delimited identifier, an operator symbol, or
any of the special characters shown in the syntax diagrams. A question mark is
also a delimiter token when it serves as a parameter marker, as explained under
“PREPARE” on page 601.

Examples

, 'string' "fld1" = .

Spaces : A space is a sequence of one or more blank characters. Tokens other than
string constants and delimited identifiers must not include a space. Any token may be
followed by a space. Every ordinary token must be followed by a space or a delimiter
token if allowed by the syntax.

44 SQL Reference

Identifiers

Comments : Static SQL statements may include host language comments or SQL com-
ments. Either type of comment may be specified wherever a space may be specified,
except within a delimiter token or between the keywords EXEC and SQL. SQL com-
ments are introduced by two consecutive hyphens (--) and ended by the end of the line.
For more information, see “SQL Comments” on page 342.

Uppercase and Lowercase : Any token may include lowercase letters, but a lowercase
letter in an ordinary token is folded to uppercase, except for host variables in the C
language, which has case-sensitive identifiers. Delimiter tokens are never folded to
uppercase. Thus, the statement:

select * from EMPLOYEE where lastname = 'Smith';

is equivalent, after folding, to:

SELECT * FROM EMPLOYEE WHERE LASTNAME = 'Smith';

 MBCS Considerations
Multi-byte alphabetic letters are not folded to uppercase. Single-byte characters, a to z,
are folded to uppercase.

 Identifiers
An identifier is a token that is used to form a name. An identifier in an SQL statement is
either an SQL identifier or a host identifier.

 SQL Identifiers
There are two types of SQL identifiers: ordinary identifiers and delimited identifiers.

¹ An ordinary identifier is a letter followed by zero or more characters, each of which
is an uppercase letter, a digit, or the underscore character. An ordinary identifier
should not be identical to a reserved word (see Appendix F, “Reserved Schema
Names and Reserved Words” on page 769 for information on reserved words).

¹ A delimited identifier is a sequence of one or more characters enclosed within quo-
tation marks ("). Two consecutive quotation marks are used to represent one quo-
tation mark within the delimited identifier. In this way an identifier can include
lowercase letters.

Example:

 WKLYSAL WKLY_SAL "WKLY_SAL" "WKLY SAL" "UNION" "wkly_sal"

SQL identifiers are also classified according to their maximum length. A long identifier
has a maximum length of 18 bytes. A short identifier has a maximum length of 8 bytes.
These limits do not include the quotation marks surrounding the delimited identifier.

Character conversions between identifiers created on a double-byte code page but
used by an application or database on a multi-byte code page may require special con-
sideration. After conversion to multi-byte, it is possible that such identifiers may exceed

 Chapter 3. Language Elements 45

Naming Conventions

the length limit for an identifier (see Appendix N, “Japanese and Traditional-Chinese
EUC Considerations” on page 857 for details).

 Host Identifiers
A host identifier is a name declared in the host program. The rules for forming a host
identifier are the rules of the host language. A host identifier should not be greater than
30 characters and should not begin with 'SQL'.

 Naming Conventions
The rules for forming a name depend on the type of the object designated by the name.
The syntax diagrams use different terms for different types of names. The following list
defines these terms.

alias-name A qualified or unqualified name that designates an alias. The
unqualified form of an alias-name is a long identifier. An
unqualified alias-name in an SQL statement is implicitly quali-
fied by the authorization ID of that statement. The qualified
form is a short identifier followed by a period and a long identi-
fier.

authorization-name A short identifier that designates a user or group. Note the fol-
lowing restrictions on the characters that can be used:

¹ The underscore character (_) is not valid.
¹ The name must not begin with the characters 'SYS',

'IBM', or 'SQL'.
¹ The name must not be: ADMINS, GUESTS, LOCAL,

PUBLIC, or USERS.
¹ A delimited authorization ID must not contain lowercase

letters.
¹ Letters from the extended character set are not allowed.

bufferpool-name A long identifier that designates a bufferpool.

column-name A qualified or unqualified name that designates a column of a
table or view. The unqualified form of a column-name is a long
identifier. The qualified form is a qualifier followed by a period
and a long identifier. The qualifier is a table name, a view
name, or a correlation name. Column names have some
restrictions as specified by the “Naming Rules” section of the
Administration Guide

constraint-name A long identifier that designates a referential constraint,
primary key constraint, or a table check constraint.

correlation-name A long identifier that designates a table or a view.

cursor-name A long identifier that designates an SQL cursor.

46 SQL Reference

Naming Conventions

descriptor-name A colon followed by a host identifier that designates an SQL
descriptor area (SQLDA). See “References to Host Variables”
on page 95 for a description of a host identifier. Note that a
descriptor-name never includes an indicator variable.

distinct-type-name A qualified or unqualified name that designates a distinct type.
The unqualified form of a distinct-type-name is a long identifier.
An unqualified distinct-type-name in an SQL statement is
implicitly qualified by the database manager, depending on
context. The qualified form is a short identifier followed by a
period and a long identifier.

event-monitor-name A long identifier that designates an event monitor.

function-name A qualified or unqualified name that designates a function. The
unqualified form of a function-name is a long identifier. An
unqualified function-name in an SQL statement is implicitly
qualified by the database manager, depending on context. The
qualified form is a short identifier followed by a period and a
long identifier.

host-variable A sequence of tokens that designates a host variable. A host
variable includes at least one host identifier, as explained in
“References to Host Variables” on page 95.

index-name A qualified or unqualified name that designates an index. The
unqualified form of an index-name is a long identifier. An
unqualified index-name in an SQL statement is implicitly quali-
fied by the authorization ID of that statement. The qualified
form is a short identifier followed by a period and a long identi-
fier.

nodegroup-name A long identifier that designates a nodegroup.

package-name A qualified or unqualified name that designates a package.
The unqualified form of a package-name is a short SQL identi-
fier. An unqualified package-name in an SQL statement is
implicitly qualified by the authorization ID of that statement.
The qualified form is a short identifier followed by a period and
a short SQL identifier.

procedure-name A qualified or unqualified name that designates a procedure.
The unqualified form of a procedure-name is a long identifier.
An unqualified procedure-name in an SQL statement is implic-
itly qualified by the database manager depending on the
context. The qualified form is a short identifier followed by a
period and a long identifier.

schema-name A short identifier that provides a logical grouping for SQL
objects. A schema-name used as a qualifier of the name of an
object is often also an authorization-name.

server-name A long ordinary identifier that designates an application server.

 Chapter 3. Language Elements 47

Aliases

specific-name The unqualified form of a specific-name is an SQL identifier.
The qualified form is a schema-name followed by a period and
an SQL identifier. specific-name can be used to source a func-
tion, to drop and to comment on a procedure or a function. It
can never be used to invoke a function or procedure.

statement-name A long identifier that designates a prepared SQL statement.

table-name A qualified or unqualified name that designates a table. The
unqualified form of a table-name is a long identifier. An unqual-
ified table-name in an SQL statement is implicitly qualified by
the authorization ID of that statement. The qualified form is a
short identifier followed by a period and a long identifier.

tablespace-name A long identifier that designates a table space.

trigger-name A qualified or unqualified name that designates a trigger. The
unqualified form of a trigger-name is a long identifier. An
unqualified trigger-name in an SQL statement is implicitly quali-
fied by the authorization ID of that statement. The qualified
form is a short identifier followed by a period and a long identi-
fier.

view-name A qualified or unqualified name that designates a view. The
unqualified form of a view-name is a long identifier. An unquali-
fied view-name in an SQL statement is implicitly qualified by
the authorization ID of that statement. The qualified form is a
short identifier followed by a period and a long identifier.

 Aliases
A table alias can be thought of as an alternative name for a table or view. A table or
view, therefore, can be referred to in an SQL statement by its name or by a table alias.

An alias can be used wherever a table or view name can be used. An alias can be
created even though the object does not exist (though it must exist by the time a state-
ment referring to it is compiled). It can refer to another alias if no circular or repetitive
references are made along the chain of aliases. An alias can only refer to a table, view,
or alias within the same database. An alias name cannot be used where a new table or
view name is expected, such as in the CREATE TABLE or CREATE VIEW statements;
for example, if an alias name of PERSONNEL is created then a subsequent statement
such as CREATE TABLE PERSONNEL... will cause an error.

The option of referring to a table or view by an alias is not explicitly shown in the syntax
diagrams or mentioned in the description of the SQL statement.

A new unqualified alias cannot have the same fully-qualified name as an existing table,
view, or alias.

The effect of using an alias in an SQL statement is similar to that of text substitution.
The alias, which must be defined when the SQL statement is compiled, is replaced at

48 SQL Reference

Authorization IDs and authorization-names

statement compilation time by the qualified base table or view name. For example, if
PBIRD.SALES is an alias for DSPN014.DIST4_SALES_148, then at compilation time:

SELECT * FROM PBIRD.SALES

 effectively becomes

SELECT * FROM DSPN014.DIST4_SALES_148

For syntax toleration of existing DB2 for MVS/ESA applications, SYNONYM can be
used in place of ALIAS in the CREATE ALIAS and DROP ALIAS statements.

Authorization IDs and authorization-names
An authorization ID is a character string that is obtained by the database manager
when a connection is established between the database manager and either an appli-
cation process or a program preparation process. It designates a set of privileges. It
may also designate a user or a group of users, but this property is not controlled by the
database manager.

Authorization IDs are used by the database manager to provide:

¹ Authorization checking of SQL statements
¹ Implicit qualifiers for database objects like tables, views, aliases, packages, and

indexes.

An authorization ID applies to every SQL statement. The authorization ID that applies to
a static SQL statement is the authorization ID that is used during program binding. The
authorization ID that applies to a dynamic SQL statement is the authorization ID that
was obtained by the database manager when a connection was established between
the database manager and the process. This is called the run-time authorization ID.

An authorization-name specified in an SQL statement should not be confused with the
authorization ID of the statement. An authorization-name is an identifier that is used
within various SQL statement. An authorization-name is used in a CREATE SCHEMA
statement to designate the owner of the schema. An authorization-name is used in
GRANT and REVOKE statements to designate a target of the grant or revoke. Note
that the premise of a grant of privileges to X is that X or a member of the group X will
subsequently be the authorization ID of statements which require those privileges.

Examples:

¹ Assume SMITH is the userid and the authorization ID that the database manager
obtained when the connection was established with the application process. The
following statement is executed interactively:

GRANT SELECT ON TDEPT TO KEENE

 SMITH is the authorization ID of the statement. Thus, the authority to execute the
statement is checked against SMITH and SMITH is the implicit qualifier of TDEPT.

KEENE is an authorization-name specified in the statement. KEENE is given the
SELECT privilege on SMITH.TDEPT.

 Chapter 3. Language Elements 49

Authorization IDs and authorization-names

¹ Assume SMITH has administrative authority and is the authorization ID of the fol-
lowing statements:

DROP TABLE TDEPT

Removes the SMITH.TDEPT table.

DROP TABLE SMITH.TDEPT

Removes the SMITH.TDEPT table.

DROP TABLE KEENE.TDEPT

Removes the KEENE.TDEPT table. Note that KEENE.TDEPT and SMITH.TDEPT are dif-
ferent tables.

CREATE SCHEMA PAYROLL AUTHORIZATION KEENE

KEENE is the authorization-name specified in the statement which creates a
schema called PAYROLL. KEENE is the owner of the schema PAYROLL and is
given CREATEIN, ALTERIN, and DROPIN privileges with the ability to grant them
to others.

50 SQL Reference

Data Types

 Data Types
For information about specifying the data types of columns, see “CREATE TABLE” on
page 478.

The smallest unit of data that can be manipulated in SQL is called a value. How values
are interpreted depends on the data type of their source. The sources of values are:

 Constants
 Columns
 Host variables
 Functions
 Expressions
 Special registers.

DB2 supports a number of built-in datatypes, which are described in this section. It also
provides support for user-defined data types. See “Distinct Types” on page 60 for a
description of user-defined data types.

Figure 9 illustrates the supported built-in data types.

built-in data types

character
string

date

datetime

timestamp

binary
string

fixed
length

binary
large
object

fixed
length

varying
length

time

double-byte *
character string

* Double-byte character is usually referred to as graphic character.

double-byte
character

large object

char
large
object

varying
length

numeric

binary
integer

small large packed

decimal floating
point

double real

Figure 9. Supported Built-in Data Types

 Nulls
All data types include the null value. The null value is a special value that is distinct
from all non-null values and thereby denotes the absence of a (non-null) value.
Although all data types include the null value, columns defined as NOT NULL cannot
contain null values.

 Chapter 3. Language Elements 51

Data Types

Large Objects (LOBs)
The term large object and the generic acronym LOB are used to refer to any BLOB,
CLOB, or DBCLOB data type. LOB values are subject to the restrictions that apply to
LONG VARCHAR values as specified in “Restrictions Using Varying-Length Character
Strings” on page 54. For LOB strings, these restrictions apply even when the length
attribute of the string is 254 bytes or less.

Character Large Object (CLOB) Strings
A Character Large OBject (CLOB) is a varying-length string measured in bytes that can
be up to 2 gigabytes (2 147 483 647 bytes) long. A CLOB is used to store large SBCS
or mixed (SBCS and MBCS) character-based data such as documents written with a
single character set (and, therefore, has an SBCS or mixed code page associated with
it). Note that a CLOB is considered to be a character string.

Double-Byte Character Large Object (DBCLOB) Strings
A Double-Byte Character Large OBject (DBCLOB) is a varying-length string of double-
byte characters that can be up to 1 073 741 823 characters long. A DBCLOB is used to
store large DBCS character based data such as documents written with a single char-
acter set (and, therefore has a DBCS CCSID associated with it). Note that a DBCLOB
is considered to be a graphic string.

Binary Large Objects (BLOBs)
A Binary Large OBject (BLOB) is a varying-length string measured in bytes that can be
up to 2 gigabytes (2 147 483 647 bytes) long. A BLOB is primarily intended to hold
non-traditional data such as pictures, voice, and mixed media. Another use is to hold
structured data for exploitation by user-defined types and user-defined functions. As
with FOR BIT DATA character strings, BLOB strings are not associated with a char-
acter set.

Manipulating Large Objects (LOBs) with Locators
Since LOB values can be very large, the transfer of these values from the database
server to client application program host variables can be time consuming. However, it
is also true that application programs typically process LOB values a piece at a time,
rather than as a whole. For those cases where an application does not need (or want)
the entire LOB value to be stored in application memory, the application can reference
a LOB value via a large object locator (LOB locator).

A large object locator or LOB locator is a host variable with a value that represents a
single LOB value in the database server. LOB locators were developed to provide users
with a mechanism by which they could easily manipulate very large objects in applica-
tion programs without requiring them to store the entire LOB value on the client
machine where the application program may be running.

For example, when selecting a LOB value, an application program could select the
entire LOB value and place it into an equally large host variable (which is acceptable if
the application program is going to process the entire LOB value at once), or it could
instead select the LOB value into a LOB locator. Then, using the LOB locator, the appli-

52 SQL Reference

Data Types

cation program can issue subsequent database operations on the LOB value (such as
applying the scalar functions SUBSTR, CONCAT, VALUE, LENGTH, doing an assign-
ment, searching the LOB with LIKE or POSSTR, or applying UDFs against the LOB) by
supplying the locator value as input. The resulting output of the locator operation, for
example the amount of data assigned to a client host variable, would then typically be a
small subset of the input LOB value.

LOB locators may also represent more than just base values; they can also represent
the value associated with a LOB expression. For example, a LOB locator might repre-
sent the value associated with:

SUBSTR(<lob 1> CONCAT <lob 2> CONCAT <lob 3>, <start>, <length>)

For normal host variables in an application program, when a null value is selected into
that host variable, the indicator variable is set to -1, signifying that the value is null. In
the case of LOB locators, however, the meaning of indicator variables is slightly dif-
ferent. Since a locator host variable itself can never be null, a negative indicator vari-
able value indicates that the LOB value represented by the LOB locator is null. The null
information is kept local to the client by virtue of the indicator variable value — the
server does not track null values with valid locators.

It is important to understand that a LOB locator represents a value, not a row or
location in the database. Once a value is selected into a locator, there is no operation
that one can perform on the original row or table that will affect the value which is refer-
enced by the locator. The value associated with a locator is valid until the transaction
ends, or until the locator is explicitly freed, whichever comes first. Locators do not force
extra copies of the data in order to provide this function. Instead, the locator mech-
anism stores a description of the base LOB value. The materialization of the LOB value
(or expression, as shown above) is deferred until it is actually assigned to some
location — either into a user buffer in the form of a host variable or into another
record's field value in the database.

A LOB locator is only a mechanism used to refer to a LOB value during a transaction; it
does not persist beyond the transaction in which it was created. Also, it is not a data-
base type; it is never stored in the database and, as a result, cannot participate in
views or check constraints. However, since a locator is a client representation of a LOB
type, there are SQLTYPEs for LOB locators so that they can be described within an
SQLDA structure that is used by FETCH, OPEN and EXECUTE statements.

 Character Strings
A character string is a sequence of bytes. The length of the string is the number of
bytes in the sequence. If the length is zero, the value is called the empty string. This
value should not be confused with the null value.

Fixed-Length Character Strings
All values of a fixed-length string column have the same length, which is determined by
the length attribute of the column. The length attribute must be between 1 and 254,
inclusive.

 Chapter 3. Language Elements 53

Data Types

Varying-Length Character Strings
Varying-length character strings are of three types: VARCHAR, LONG VARCHAR, and
CLOB.

¹ VARCHAR types are varying-length strings of up to 4000 bytes.

¹ LONG VARCHAR types are varying-length strings of up to 32,700 bytes.

¹ CLOB types are varying-length strings of up to 2 gigabytes.

Restrictions Using Varying-Length Character Strings: Special restrictions apply to
an expression resulting in a varying-length string data type whose maximum length is
greater than 254 bytes; such expressions are not permitted in:

¹ A SELECT DISTINCT statement's SELECT list
¹ A GROUP BY clause
¹ An ORDER BY clause
¹ A column function with DISTINCT
¹ A subselect of a set operator other than UNION ALL.

In addition to the restrictions listed above, expressions resulting in LONG VARCHAR or
CLOB data types are not permitted in:

¹ A Basic, Quantified, BETWEEN, or IN predicate
¹ A column function
¹ VARGRAPHIC, TRANSLATE, and datetime scalar functions
¹ The pattern operand in a LIKE predicate or the search string operand in a

POSSTR function
¹ The string representation of a datetime value

LOBs cannot be exchanged with a DRDA server.

NUL-Terminated Character Strings
NUL-terminated character strings found in C are handled differently, depending on the
standards level of the precompile option. See the C language specific section in the
Application Programming Guide for more information on the treatment of
NUL-terminated character strings.

This data type cannot be created in a table. It can only be used to insert data into and
retrieve data from the database.

 Character Subtypes
Each character string is further defined as one of:

Bit data Data that is not associated with a coded character set.

SBCS data Data in which every character is represented by a single byte.

Mixed data Data that may contain a mixture of characters from a single-byte
character set (SBCS) and a multi-byte character set (MBCS).

SBCS and MBCS Considerations: SBCS data is supported only in a SBCS data-
base. Mixed data is only supported in an MBCS database.

54 SQL Reference

Data Types

 Graphic Strings
A graphic string is a sequence of bytes which represents double-byte character data.
The length of the string is the number of double-byte characters in the sequence. If the
length is zero, the value is called the empty string. This value should not be confused
with the null value.

Graphic strings are not validated to ensure that their values contain only double-byte
character code points.13 Rather, the database manager assumes that double-byte char-
acter data is contained within graphic data fields. The database manager checks that a
graphic string value is an even number of bytes in length.

A graphic string data type may be fixed length or varying length; the semantics of fixed
length and varying length are analogous to those defined for character string data
types.

Fixed-Length Graphic Strings
All values of a fixed-length graphic string column have the same length, which is deter-
mined by the length attribute of the column. The length attribute must be between 1
and 127, inclusive.

Varying-Length Graphic Strings
Varying-length graphic strings are of three types: VARGRAPHIC, LONG VARGRAPHIC,
and DBCLOB.

¹ VARGRAPHIC types are varying-length strings of up to 2000 double-byte charac-
ters.

¹ LONG VARGRAPHIC types are varying-length strings of up to 16,350 double-byte
characters.

¹ DBCLOB types are varying-length strings of up to 1 073 741 823 double-byte char-
acters.

Special restrictions apply to an expression resulting in a varying-length graphic string
data type whose maximum length is greater than 127. Those restrictions are the same
as specified in “Restrictions Using Varying-Length Character Strings” on page 54.

NUL-Terminated Graphic Strings
NUL-terminated graphic strings found in C are handled differently, depending on the
standards level of the precompile option. See the C language specific section in the
Application Programming Guide for more information on the treatment of
NUL-terminated graphic strings.

This data type cannot be created in a table. It can only be used to insert data into and
retrieve data from the database.

13 The exception to this rule is an application precompiled with the WCHARTYPE CONVERT option. In this case, validation does occur.
See “Programming in C and C++” in the Application Programming Guide for details.

 Chapter 3. Language Elements 55

Data Types

 Binary String
A binary string is a sequence of bytes. Unlike a character string which usually contains
text data, a binary string is used to hold non-traditional data such as pictures. Note that
character strings of the 'bit data' subtype may be used for similar purposes, but the two
data types are not compatible. The BLOB scalar function can be used to cast a char-
acter for bit string to a binary string. The length of a binary string is the number of
bytes. It is not associated with a coded character set. Binary strings have the same
restrictions as character strings (see “Restrictions Using Varying-Length Character
Strings” on page 54 for details).

 Numbers
All numbers have a sign and a precision. The precision is the number of bits or digits
excluding the sign. The sign is considered positive if the value of a number is zero.

Small Integer (SMALLINT)
A small integer is a two byte integer with a precision of 5 digits. The range of small
integers is -32768 to 32767.

Large Integer (INTEGER)
A large integer is a four byte integer with a precision of 10 digits. The range of large
integers is -2147483648 to +2147483647.

Single-Precision Floating-Point (REAL)
A single-precision floating-point number is a 32 bit approximation of a real number. The
number can be zero or can range from -3.402E+38 to -1.175E-37, or from 1.175E-37 to
3.402E+38.

Double-Precision Floating-Point (DOUBLE or FLOAT)
A double-precision floating-point number is a 64 bit approximation of a real number.
The number can be zero or can range from -1.79769E+308 to -2.225E-307, or from
2.225E-307 to 1.79769E+308.

Decimal (DECIMAL or NUMERIC)
A decimal value is a packed decimal number with an implicit decimal point. The position
of the decimal point is determined by the precision and the scale of the number. The
scale, which is the number of digits in the fractional part of the number, cannot be neg-
ative or greater than the precision. The maximum precision is 31 digits. For information
on packed decimal representation, see “Packed Decimal Numbers” on page 690.

All values of a decimal column have the same precision and scale. The range of a
decimal variable or the numbers in a decimal column is −n to +n, where the absolute
value of n is the largest number that can be represented with the applicable precision
and scale. The maximum range is -10**31+1 to 10**31-1.

56 SQL Reference

Data Types

 Datetime Values
The datetime data types are described below. Although datetime values can be used in
certain arithmetic and string operations and are compatible with certain strings, they are
neither strings nor numbers.

 Date
A date is a three-part value (year, month, and day). The range of the year part is 0001
to 9999. The range of the month part is 1 to 12. The range of the day part is 1 to x,
where x depends on the month.

The internal representation of a date is a string of 4 bytes. Each byte consists of 2
packed decimal digits. The first 2 bytes represent the year, the third byte the month,
and the last byte the day.

The length of a DATE column, as described in the SQLDA, is 10 bytes, which is the
appropriate length for a character string representation of the value.

 Time
A time is a three-part value (hour, minute, and second) designating a time of day under
a 24-hour clock. The range of the hour part is 0 to 24; while the range of the other
parts is 0 to 59. If the hour is 24, the minute and second specifications will be zero.

The internal representation of a time is a string of 3 bytes. Each byte is 2 packed
decimal digits. The first byte represents the hour, the second byte the minute, and the
last byte the second.

The length of a TIME column, as described in the SQLDA, is 8 bytes, which is the
appropriate length for a character string representation of the value.

 Timestamp
A timestamp is a seven-part value (year, month, day, hour, minute, second, and micro-
second) that designates a date and time as defined above, except that the time
includes a fractional specification of microseconds.

The internal representation of a timestamp is a string of 10 bytes, each of which con-
sists of 2 packed decimal digits. The first 4 bytes represent the date, the next 3 bytes
the time, and the last 3 bytes the microseconds.

The length of a TIMESTAMP column, as described in the SQLDA, is 26 bytes, which is
the appropriate length for the character string representation of the value.

String Representations of Datetime Values
Values whose data types are DATE, TIME, or TIMESTAMP are represented in an
internal form that is transparent to the SQL user. Dates, times, and timestamps can,
however, also be represented by character strings, and these representations directly
concern the SQL user since there are no constants or variables whose data types are
DATE, TIME, or TIMESTAMP. Thus, to be retrieved, a datetime value must be
assigned to a character string variable. Note that the CHAR function can be used to

 Chapter 3. Language Elements 57

Data Types

change a datetime value to a string representation. The character string representation
is normally the default format of datetime values associated with the country code of
the database, unless overridden by specification of the DATETIME option when the
program is precompiled or bound to the database.

No matter what its length, a large object string or LONG VARCHAR cannot be used as
the string that represents a datetime value; otherwise an error is raised (SQLSTATE
42884).

When a valid string representation of a datetime value is used in an operation with an
internal datetime value, the string representation is converted to the internal form of the
date, time, or timestamp before the operation is performed. The following sections
define the valid string representations of datetime values.

 Date Strings
A string representation of a date is a character string that starts with a digit and has a
length of at least 8 characters. Trailing blanks may be included; leading zeros may be
omitted from the month and day portions.

Valid string formats for dates are listed in Table 1. Each format is identified by name
and includes an associated abbreviation and an example of its use.

Table 1. Formats for String Representations of Dates

Format Name Abbreviation Date Format Example

International Standards Organiza-
tion

ISO yyyy-mm-dd 1991-10-27

IBM USA standard USA mm/dd/yyyy 10/27/1991

IBM European standard EUR dd.mm.yyyy 27.10.1991

Japanese Industrial Standard
Christian era

JIS yyyy-mm-dd 1991-10-27

Site-defined (see the Installation
and Operation Guide

LOC Depends on
database
country code

—

 Time Strings
A string representation of a time is a character string that starts with a digit and has a
length of at least 4 characters. Trailing blanks may be included; a leading zero may be
omitted from the hour part of the time and seconds may be omitted entirely. If seconds
are omitted, an implicit specification of 0 seconds is assumed. Thus, 13.30 is equivalent
to 13.30.00.

Valid string formats for times are listed in Table 2 on page 59. Each format is identified
by name and includes an associated abbreviation and an example of its use.

58 SQL Reference

Data Types

Notes:

1. In ISO, EUR and JIS format, .ss (or :ss) is optional.

2. The International Standards Organization recently changed the time format so that
it is identical with the Japanese Industrial Standard Christian Era. Therefore, use
JIS format if an application requires the current International Standards Organiza-
tion format.

3. In the case of the USA time string format, the minutes specification may be
omitted, indicating an implicit specification of 00 minutes. Thus 1 PM is equivalent
to 1:00 PM.

4. In the USA time format, the hour must not be greater than 12 and cannot be 0
except for the special case of 00:00 AM. There is a single space before the AM
and PM. Using the ISO format of the 24-hour clock, the correspondence between
the USA format and the 24-hour clock is as follows:

12:01 AM through 12:59 AM corresponds to 00.01.00 through 00.59.00.
01:00 AM through 11:59 AM corresponds to 01.00.00 through 11.59.00.
12:00 PM (noon) through 11:59 PM corresponds to 12.00.00 through 23.59.00.
12:00 AM (midnight) corresponds to 24.00.00 and 00:00 AM (midnight) corre-
sponds to 00.00.00.

Table 2. Formats for String Representations of Times

Format Name Abbreviation Time Format Example

International Standards Organiza-
tion2

ISO hh.mm.ss 13.30.05

IBM USA standard USA hh:mm AM or
PM

1:30 PM

IBM European standard EUR hh.mm.ss 13.30.05

Japanese Industrial Standard
Christian Era

JIS hh:mm:ss 13:30:05

Site-defined (see the Installation
and Operation Guide

LOC Depends on
database
country code

—

 Timestamp Strings
A string representation of a timestamp is a character string that starts with a digit and
has a length of at least 16 characters. The complete string representation of a
timestamp has the form yyyy-mm-dd-hh.mm.ss.nnnnnn. Trailing blanks may be
included. Leading zeros may be omitted from the month, day, and hour part of the
timestamp, and microseconds may be truncated or entirely omitted. If any trailing zero
digits are omitted in the microseconds portion, an implicit specification of 0 is assumed
for the missing digits. Thus, 1991-3-2-8.30.00 is equivalent to
1991-03-02-08.30.00.000000.

SQL statements also support the ODBC string representation of a timestamp as an
input value only. The ODBC string representation of a timestamp has the form yyyy-

 Chapter 3. Language Elements 59

Data Types

mm-dd hh:mm:ss.nnnnnn. See the CLI Guide and Reference for more information on
ODBC.

 MBCS Considerations
Date, time and timestamp strings must contain only single-byte characters and digits.

 Distinct Types
A distinct type is a user-defined data type that shares its internal representation with an
existing type (its “source” type), but is considered to be a separate and incompatible
type for most operations. For example, one might want to define a picture type, a text
type, and an audio type, all of which have quite different semantics, but which use the
built-in data type BLOB for their internal representation.

The following example illustrates the creation of a distinct type named AUDIO:

CREATE DISTINCT TYPE AUDIO AS BLOB (1M)

 Although AUDIO has the same representation as the built-in data type BLOB, it is con-
sidered to be a separate type that is not comparable to a BLOB or to any other type.
This allows the creation of functions written specifically for AUDIO and assures that
these functions will not be applied to any other type (pictures, text, etc.).

Distinct types are identified by qualified identifiers. If the schema name is not used to
qualify the distinct type name when used in other than the CREATE DISTINCT TYPE,
DROP DISTINCT TYPE, or COMMENT ON DISTINCT TYPE statements, the function
path is searched in sequence for the first schema with a distinct type that matches. The
function path is described in “CURRENT FUNCTION PATH” on page 85. When cre-
ating a distinct type the normal qualification by authorization id is used.

Distinct types support strong typing by ensuring that only those functions and operators
explicitly defined on a distinct type can be applied to its instances. For this reason, a
distinct type does not automatically acquire the functions and operators of its source
type, since these may not be meaningful. (For example, the LENGTH function of the
AUDIO type might return the length of its object in seconds rather than in bytes.)

Distinct types sourced on LONG VARCHAR, LONG VARGRAPHIC or LOB types are
subject to the same restrictions as their source type.

However, certain functions and operators of the source type can be explicitly specified
to apply to the distinct type by defining user-defined functions that are sourced on func-
tions defined on the source type of the distinct type (see “User-defined Type
Comparisons” on page 73 for examples). The comparison operators are automatically
generated for user-defined distinct types, except those using LONG VARCHAR, LONG
VARGRAPHIC, BLOB, CLOB, or DBCLOB as the source type. In addition, functions are
generated to support casting from the source type to the distinct type and from the
distinct type to the source type.

60 SQL Reference

Promotion of Data Types

Promotion of Data Types
Data types can be classified into groups of related data types. Within such groups, a
precedence order exists where one data type is considered to precede another data
type. This precedence is used to allow the promotion of one data type to a data type
later in the precedence ordering. For example, the data type CHAR can be promoted to
VARCHAR; INTEGER can be promoted to DOUBLE PRECISION; but CLOB is NOT
promotable to VARCHAR.

Promotion of data types is used when:

¹ performing function resolution (see “Function Resolution” on page 102)

¹ casting user-defined types (see “Casting Between Data Types” on page 62)

¹ assigning user-defined types to built-in data types (see “User-defined Type
Assignments” on page 69).

Table 3 shows the precedence list (in order) for each data type and can be used to
determine the data types to which a given data type can be promoted. The table shows
that the best choice is always the same data type instead of choosing to promote to
another data type.

Table 3 (Page 1 of 2). Data Type Precedence Table

Data Type Data Type Precedence List (in best-to-worst order)

CHAR CHAR, VARCHAR, LONG VARCHAR, CLOB

VARCHAR VARCHAR, LONG VARCHAR, CLOB

LONG
VARCHAR

LONG VARCHAR, CLOB

GRAPHIC GRAPHIC, VARGRAPHIC, LONG VARGRAPHIC, DBCLOB

VARGRAPHIC VARGRAPHIC, LONG VARGRAPHIC, DBCLOB

LONG
VARGRAPHIC

LONG VARGRAPHIC, DBCLOB

BLOB BLOB

CLOB CLOB

DBCLOB DBCLOB

SMALLINT SMALLINT, INTEGER, decimal, real, double

INTEGER INTEGER, decimal, real, double

decimal decimal, real, double

real real, double

double double

DATE DATE

TIME TIME

TIMESTAMP TIMESTAMP

 Chapter 3. Language Elements 61

Casting Between Data Types

Table 3 (Page 2 of 2). Data Type Precedence Table

Data Type Data Type Precedence List (in best-to-worst order)

udt udt (same name)

Note:

The lower case types above are defined as follows:

decimal = DECIMAL(p,s) or NUMERIC(p,s)

real = REAL or FLOAT(n) where n is not greater than 24

double = DOUBLE, DOUBLE PRECISION, FLOAT or FLOAT(n) where n is greater than 24

udt = a user-defined type

Shorter and longer form synonyms of the data types listed are considered to be the same as the
synonym listed.

Casting Between Data Types
There are many occasions where a value with a given data type needs to be cast to a
different data type or to the same data type with a different length, precision or scale.
Data type promotion (as defined in “Promotion of Data Types” on page 61) is one
example where the promotion of one data type to another data type requires that the
value is cast to the new data type. A data type that can be cast to another data type is
castable from the source data type to the target data type.

Casting between data types can be done explicitly using the CAST specification (see
“CAST Specifications” on page 121) but may also occur implicitly during assignments
involving a user-defined types (see “User-defined Type Assignments” on page 69).
Also, when creating sourced user-defined functions (see “CREATE FUNCTION” on
page 424), the data types of the parameters of the source function must be castable to
the data types of the function that is being created.

The supported casts between built-in data types are shown in Table 4 on page 63.

The following casts involving distinct types are supported:

¹ cast from distinct type DT to its source data type S

¹ cast from the source data type S of distinct type DT to distinct type DT

¹ cast from distinct type DT to the same distinct type DT

¹ cast from a data type A to distinct type DT where A is promotable to the source
data type S of distinct type DT (see “Promotion of Data Types” on page 61)

¹ cast from an INTEGER to distinct type DT with a source data type SMALLINT

¹ cast from a DOUBLE to distinct type DT with a source data type REAL

¹ cast from a VARCHAR to distinct type DT with a source data type CHAR

¹ cast from a VARGRAPHIC to distinct type DT with a source data type GRAPHIC.

62 SQL Reference

Casting Between Data Types

When a user-defined data type involved in a cast is not qualified by a schema name,
the function path is used to find the first schema that includes the user-defined data
type by that name. The function path is described further in “CURRENT FUNCTION
PATH” on page 85.

Table 4. Supported Casts between Built-in Data Types

Target Data Type →

Source Data Type ↓

S
M
A
L
L
I
N
T

I
N
T
E
G
E
R

D
E
C
I
M
A
L

R
E
A
L

D
O
U
B
L
E

C
H
A
R

V
A
R
C
H
A
R

L
O
N
G
V
A
R
C
H
A
R

C
L
O
B

G
R
A
P
H
I
C

V
A
R
G
R
A
P
H
I
C

L
O
N
G
V
A
R
G

D
B
C
L
O
B

D
A
T
E

T
I
M
E

T
I
M
E
S
T
A
M
P

B
L
O
B

SMALLINT Y Y Y Y Y Y - - - - - - - - - - -

INTEGER Y Y Y Y Y Y - - - - - - - - - - -

DECIMAL Y Y Y Y Y Y - - - - - - - - - - -

REAL Y Y Y Y Y - - - - - - - - - - - -

DOUBLE Y Y Y Y Y - - - - - - - - - - - -

CHAR Y Y Y - - Y Y Y Y - Y - - Y Y Y Y

VARCHAR Y Y Y - - Y Y Y Y - Y - - Y Y Y Y

LONG VARCHAR - - - - - Y Y Y Y - - - - - - - Y

CLOB - - - - - Y Y Y Y - - - - - - - Y

GRAPHIC - - - - - - - - - Y Y Y Y - - - Y

VARGRAPHIC - - - - - - - - - Y Y Y Y - - - Y

LONG VARG - - - - - - - - - Y Y Y Y - - - Y

DBCLOB - - - - - - - - - Y Y Y Y - - - Y

DATE - - - - - Y Y - - - - - - Y - - -

TIME - - - - - Y Y - - - - - - - Y - -

TIMESTAMP - - - - - Y Y - - - - - - Y Y Y -

BLOB - - - - - - - - - - - - - - - - Y

Note: See the description preceding the table for information on supported casts involving user-defined types.

 Chapter 3. Language Elements 63

Assignments and Comparisons

Assignments and Comparisons
The basic operations of SQL are assignment and comparison. Assignment operations
are performed during the execution of INSERT, UPDATE, FETCH, SELECT INTO,
VALUES INTO and SET transition-variable statements. Arguments of functions are also
assigned when invoking a function. Comparison operations are performed during the
execution of statements that include predicates and other language elements such as
MAX, MIN, DISTINCT, GROUP BY, and ORDER BY.

The basic rule for both operations is that the data type of the operands involved must
be compatible. The compatibility rule also applies to set operations (see “Rules for
Result Data Types” on page 74). The compatibility matrix is as follows.

64 SQL Reference

Assignments and Comparisons

Table 5. Data Type Compatibility for Assignments and Comparisons

Operands
Binary
Integer

Decimal
Number

Floating
Point

Char-
acter
String

Graphic
String Date Time

Time-
stamp

Binary
String UDT

Binary
Integer

Yes Yes Yes No No No No No No 2

Decimal
Number

Yes Yes Yes No No No No No No 2

Floating
Point

Yes Yes Yes No No No No No No 2

Character
String

No No No Yes No 1 1 1 No
3

2

Graphic
String

No No No No Yes No No No No 2

Date No No No 1 No Yes No No No 2

Time No No No 1 No No Yes No No 2

Timestamp No No No 1 No No No Yes No 2

Binary
String

No No No No 3 No No No No Yes 2

UDT 2 2 2 2 2 2 2 2 2 Yes

Note:

1 The compatibility of datetime values and character strings is limited to assignment and comparison:

¹ Datetime values can be assigned to character string columns and to character string variables as
explained in “Datetime Assignments” on page 68.

¹ A valid string representation of a date can be assigned to a date column or compared with a date.
¹ A valid string representation of a time can be assigned to a time column or compared with a time.
¹ A valid string representation of a timestamp can be assigned to a timestamp column or compared with a

timestamp.

2 A user-defined type (UDT) value is only comparable to a value defined with the same UDT. In general,
assignments are supported between a UDT value and its source data type. For additional information see
“User-defined Type Assignments” on page 69.

3 Note that this means that character strings defined with the FOR BIT DATA attribute are also not compatible
with binary strings.

A basic rule for assignment operations is that a null value cannot be assigned to a
column that cannot contain null values, nor to a host variable that does not have an
associated indicator variable. (See “References to Host Variables” on page 95 for a
discussion of indicator variables.)

 Numeric Assignments
The basic rule for numeric assignments is that the whole part of a decimal or integer
number is never truncated. If the scale of the target number is less than the scale of
the assigned number the excess digits in the fractional part of a decimal number are
truncated.

 Chapter 3. Language Elements 65

Assignments and Comparisons

Decimal or Integer to Floating-Point
Floating-point numbers are approximations of real numbers. Hence, when a decimal or
integer number is assigned to a floating-point column or variable, the result may not be
identical to the original number.

Floating-Point or Decimal to Integer
When a floating-point or decimal number is assigned to an integer column or variable,
the fractional part of the number is lost.

Decimal to Decimal
When a decimal number is assigned to a decimal column or variable, the number is
converted, if necessary, to the precision and the scale of the target. The necessary
number of leading zeros is appended or eliminated, and, in the fractional part of the
number, the necessary number of trailing zeros is appended, or the necessary number
of trailing digits is eliminated.

Integer to Decimal
When an integer is assigned to a decimal column or variable, the number is converted
first to a temporary decimal number and then, if necessary, to the precision and scale
of the target. The precision and scale of the temporary decimal number is 5,0 for a
small integer, or 11,0 for a large integer.

Floating-Point to Decimal
When a floating-point number is converted to decimal, the number is first converted to a
temporary decimal number of precision 31, and then, if necessary, truncated to the pre-
cision and scale of the target. In this conversion, the number is rounded (using floating-
point arithmetic) to a precision of 31 decimal digits. As a result, a number less than
0.5*10-31 is reduced to 0. The scale is given the largest possible value that allows the
whole part of the number to be represented without loss of significance.

 String Assignments
There are two types of assignments:

¹ storage assignment is when a value is assigned to a column or parameter of a
function

¹ retrieval assignment is when a value is assigned to a host variable.

The rules for string assignment differ based on the assignment type.

 Storage Assignment
The basic rule is that the length of the string assigned to a column or function param-
eter must not be greater than the length attribute of the column or the function param-
eter. When the length of the string is greater than the length attribute of the column or
the function parameter, the following actions may occur:

¹ the string is assigned with trailing blanks truncated (from all string types except
long strings) to fit the length attribute of the target column or function parameter

¹ an error is returned (SQLSTATE 22001) when:

66 SQL Reference

Assignments and Comparisons

– non-blank characters would be truncated from other than a long string
– any character (or byte) would be truncated from a long string.

When a string is assigned to a fixed-length column and the length of the string is less
than the length attribute of the target, the string is padded to the right with the neces-
sary number of blanks. The pad character is always a blank even for columns defined
with the FOR BIT DATA attribute.

 Retrieval Assignment
The length of a string assigned to a host variable may be longer than the length attri-
bute of the host variable. When a string is assigned to a host variable and the length of
the string is longer than the length attribute of the variable, the string is truncated on
the right by the necessary number of characters (or bytes). When this occurs, a
warning is returned (SQLSTATE 01004) and the value 'W' is assigned to the
SQLWARN1 field of the SQLCA.

Furthermore, if an indicator variable is provided, and the source of the value is not a
LOB, the indicator variable is set to the original length of the string.

When a character string is assigned to a fixed-length variable and the length of the
string is less than the length attribute of the target, the string is padded to the right with
the necessary number of blanks. The pad character is always a blank even for strings
defined with the FOR BIT DATA attribute.

Retrieval assignment of C NUL-terminated host variables is handled based on options
specified with the PREP or BIND command. See the section on programming in C and
C++ in the Embedded SQL Programming Guide for details.

Conversion Rules for String Assignments
A character string or graphic string assigned to a column or host variable is first con-
verted, if necessary, to the coded character set of the target. Character conversion is
necessary only if all of the following are true:

¹ The code pages are different.
¹ The string is neither null nor empty.
¹ Neither string has a code page value of 0 (FOR BIT DATA). 14

MBCS Considerations for Character String Assignments
There are several considerations when assigning character strings that could contain
both single and multi-byte characters. These considerations apply to all character
strings, including those defined as FOR BIT DATA.

¹ Blank padding is always done using the single-byte blank character (X'20').

14 When acting as a DRDA application server, input host variables are converted to the code page of the application server, even if
being assigned, compared or combined with a FOR BIT DATA column. If the SQLDA has been modified to identify the input host
variable as FOR BIT DATA, conversion is not performed.

 Chapter 3. Language Elements 67

Assignments and Comparisons

¹ Blank truncation is always done based on the single-byte blank character (X'20').
The double-byte blank character is treated as any other character with respect to
truncation.

¹ Assignment of a character string to a host variable may result in fragmentation of
MBCS characters if the target host variable is not large enough to contain the
entire source string. If an MBCS character is fragmented, each byte of the MBCS
character fragment in the target is set to a single-byte blank character (X'20'), no
further bytes are moved from the source, and SQLWARN1 is set to 'W' to indicate
truncation. Note that the same MBCS character fragment handling applies even
when the character string is defined as FOR BIT DATA.

DBCS Considerations for Graphic String Assignments
Graphic string assignments are processed in a manner analogous to that for character
strings. Graphic string data types are compatible only with other graphic string data
types, and never with numeric, character string, or datetime data types.

If a graphic string value is assigned to a graphic string column, the length of the value
must not be greater than the length of the column.

If a graphic string value (the 'source' string) is assigned to a fixed length graphic string
data type (the 'target', which can be a column or host variable), and the length of the
source string is less than that of the target, the target will contain a copy of the source
string which has been padded on the right with the necessary number of double-byte
blank characters to create a value whose length equals that of the target.

If a graphic string value is assigned to a graphic string host variable and the length of
the source string is greater than the length of the host variable, the host variable will
contain a copy of the source string which has been truncated on the right by the neces-
sary number of double-byte characters to create a value whose length equals that of
the host variable. (Note that for this scenario, truncation need not be concerned with
bisection of a double-byte character; if bisection were to occur, either the source value
or target host variable would be an ill-defined graphic string data type.) The warning
flag SQLWARN1 in the SQLCA will be set to 'W'. The indicator variable, if specified, will
contain the original length (in double-byte characters) of the source string. In the case
of DBCLOB, however, the indicator variable does not contain the original length.

Retrieval assignment of C NUL-terminated host variables (declared using wchar_t) is
handled based on options specified with the PREP or BIND command. See the section
on programming in C and C++ in the Embedded SQL Programming Guide for details.

 Datetime Assignments
The basic rule for datetime assignments is that a DATE, TIME, or TIMESTAMP value
may only be assigned to a column with a matching data type (whether DATE, TIME, or
TIMESTAMP) or to a fixed− or varying−length character string variable or string column.
The assignment must not be to a LONG VARCHAR, BLOB, or CLOB variable or
column.

68 SQL Reference

Assignments and Comparisons

When a datetime value is assigned to a character string variable or string column, con-
version to a string representation is automatic. Leading zeros are not omitted from any
part of the date, time, or timestamp. The required length of the target will vary,
depending on the format of the string representation. If the length of the target is
greater than required, and the target is a fixed-length string, it is padded on the right
with blanks. If the length of the target is less than required, the result depends on the
type of datetime value involved, and on the type of target.

When the target is a host variable, the following rules apply:

For a DATE: If the variable length is less than 10 bytes, an error occurs.
For a TIME: If the USA format is used, the length of the variable must not be less
than 8; in other formats the length must not be less than 5.

If ISO or JIS formats are used, and if the length of the host variable is less than 8,
the seconds part of the time is omitted from the result and assigned to the indicator
variable, if provided. The SQLWARN1 field of the SQLCA is set to indicate the
omission.
For a TIMESTAMP: If the host variable is less than 19 bytes, an error occurs. If
the length is less than 26, but greater than or equal to 19 bytes, trailing digits of
the microseconds part of the value are omitted. The SQLWARN1 field of the
SQLCA is set to indicate the omission.

For further information on string lengths for datetime values, see “Datetime Values” on
page 57.

User-defined Type Assignments
With user-defined types, different rules are applied for assignments to host variables
than are used for all other assignments.

Assignment to host variables is done based on the source type of the distinct type. That
is, it follows the rule:

A value of a distinct type on the right hand side of an assignment is assignable to
a host variable on the left hand side if and only if the source type of this distinct
type is assignable to this host variable.

If the target of the assignment is a column, the source data type must be castable to
the target data type as described in “Casting Between Data Types” on page 62 for
user-defined types.

 Numeric Comparisons
Numbers are compared algebraically; that is, with regard to sign. For example, −2 is
less than +1.

If one number is an integer and the other is decimal, the comparison is made with a
temporary copy of the integer, which has been converted to decimal.

 Chapter 3. Language Elements 69

Assignments and Comparisons

When decimal numbers with different scales are compared, the comparison is made
with a temporary copy of one of the numbers that has been extended with trailing zeros
so that its fractional part has the same number of digits as the other number.

If one number is floating-point and the other is integer or decimal, the comparison is
made with a temporary copy of the other number, which has been converted to double-
precision floating-point.

Two floating-point numbers are equal only if the bit configurations of their normalized
forms are identical.

 String Comparisons
Character strings are compared according to the collating sequence specified when the
database was created, except those with a FOR BIT DATA attribute which are always
compared according to their bit values.

When comparing character strings of unequal lengths, the comparison is made using a
logical copy of the shorter string which is padded on the right with single-byte blanks
sufficient to extend its length to that of the longer string. This logical extension is done
for all character strings including those tagged as FOR BIT DATA.

Character strings (except character strings tagged as FOR BIT DATA) are compared
according to the collating sequence specified when the database was created (see the
Administration Guide for more information on collating sequences specified at database
creation time). For example, the default collating sequence supplied by the database
manager may give lowercase and uppercase versions of the same character the same
weight. The database manager performs a two-pass comparison to ensure that only
identical strings are considered equal to each other. In the first pass, strings are com-
pared according to the database collating sequence. If the weights of the characters in
the strings are equal, a second "tie-breaker" pass is performed to compare the strings
on the basis of their actual code point values.

Two strings are equal if they are both empty or if all corresponding bytes are equal. If
either operand is null, the result is unknown.

Long strings and LOB strings are not supported in any comparison operations that use
the basic comparison operators (=, <>, <, >, <=, and >=). They are supported in com-
parisons using the LIKE predicate and the POSSTR function. See “LIKE Predicate” on
page 134 and see “POSSTR” on page 239 for details.

Portions of long strings and LOB strings of up to 4000 bytes can be compared using
the SUBSTR and VARCHAR scalar functions. For example, given the columns:

 MY_SHORT_CLOB CLOB(300)

 MY_LONG_VAR LONG VARCHAR

then the following is valid:

WHERE VARCHAR(MY_SHORT_CLOB) > VARCHAR(SUBSTR(MY_LONG_VAR,1,300))

70 SQL Reference

Assignments and Comparisons

Examples:

For these examples, 'A', 'B', 'a', and 'b', have the code point values X'41', X'42',
X'61', and X'62' respectively.

Consider a collating sequence where the characters 'A', 'B', 'a', 'b' have weights 75,
101, 74, and 100. Then:

'a' < 'A' < 'b' < 'B'

 and

'aa' < 'aA' < 'ab' < 'aB' < 'Aa' < 'AA' < 'Ab' < 'AB'.

However, if the values being compared have the FOR BIT DATA attribute, the collating
sequence is ignored, and:

'A' < 'B' < 'a' < 'b'

 and

'AA' < 'AB' < 'Aa' < 'Ab' < 'aA' < 'aB' < 'aa' < 'ab'.

Now consider a collating sequence where the characters 'A', 'B', 'a', 'b' have (non-
unique) weights 74, 75, 74, and 75. Then:

'A' < 'a' < 'B' < 'b'

 and

'AA' < 'Aa' < 'aA' < 'aa' < 'AB' < 'Ab' < 'aB' < 'ab'.

Conversion Rules for Comparison
When two strings are compared, one of the strings is first converted, if necessary, to
the coded character set of the other string. For details, see “Rules for String
Conversions” on page 76.

Ordering of Results
Results that require sorting are ordered based on the string comparison rules discussed
in “String Comparisons” on page 70. The comparison is performed at the database
server. On returning results to the client application, code page conversion may be per-
formed. This subsequent code page conversion does not affect the order of the server-
determined result set.

MBCS Considerations for String Comparisons
Mixed SBCS/MBCS character strings are compared according to the collating sequence
specified when the database was created.

Mixed character strings are compared byte-by-byte. For some collating sequences, this
may result in unusual results for multi-byte characters that occur in mixed strings,
because each byte is considered independently.

Example:

 Chapter 3. Language Elements 71

Assignments and Comparisons

For this example, 'A', 'B', 'a', and 'b' double-byte characters have the code point values
X'8260', X'8261', X'8281', and X'8282', respectively.

Consider a collating sequence where the code points X'8260', X'8261', X'8281', and
X'8282' have weights 96, 65, 193, and 194. Then:

'B' < 'A' < 'a' < 'b'

 and

'AB' < 'AA' < 'Aa' < 'Ab' < 'aB' < 'aA' < 'aa' < 'ab'

Graphic string comparisons are processed in a manner analogous to that for character
strings.

Graphic string comparisons are valid between all graphic string data types except
LONG VARGRAPHIC. LONG VARGRAPHIC and DBCLOB data types are not allowed
in a comparison operation.

For graphic strings, the collating sequence of the database is not used. Instead,
graphic strings are always compared based on the numeric (binary) values of their cor-
responding bytes.

Using the previous example, if the literals were graphic strings, then:

'A' < 'B' < 'a' < 'b'

 and

'AA' < 'AB' < 'Aa' < 'Ab' < 'aA' < 'aB' < 'aa' < 'ab'

When comparing graphic strings of unequal lengths, the comparison is made using a
logical copy of the shorter string which is padded on the right with double-byte blank
characters sufficient to extend its length to that of the longer string.

Two graphic values are equal if they are both empty or if all corresponding graphics are
equal. If either operand is null, the result is unknown. If two values are not equal, their
relation is determined by a simple binary string comparison.

As indicated in this section, comparing strings on a byte by byte basis can produce
unusual results; that is, a result that differs from what would be expected in a character
by character comparison. The examples shown here assume the same MBCS code
page, however, the situation can be further complicated when using different multi-byte
code pages with the same national language. For example, consider the case of com-
paring a string from a Japanese DBCS code page and a Japanese EUC code page.

 Datetime Comparisons
A DATE, TIME, or TIMESTAMP value may be compared either with another value of
the same data type or with a string representation of that data type. All comparisons
are chronological, which means the farther a point in time is from January 1, 0001, the
greater the value of that point in time.

72 SQL Reference

Assignments and Comparisons

Comparisons involving TIME values and string representations of time values always
include seconds. If the string representation omits seconds, zero seconds is implied.

Comparisons involving TIMESTAMP values are chronological without regard to repres-
entations that might be considered equivalent.

Example:

TIMESTAMP('1990-02-23-00.00.00') > '1990-02-22-24.00.00'

User-defined Type Comparisons
Values with a user-defined type can only be compared with values of exactly the same
user-defined type. The user-defined type must have been defined using the WITH
COMPARISONS clause.

Example:

Given the following YOUTH distinct type and CAMP_DB2_ROSTER table:

CREATE DISTINCT TYPE YOUTH AS INTEGER WITH COMPARISONS

CREATE TABLE CAMP_DB2_ROSTER

 (NAME VARCHAR(20),

ATTENDEE_NUMBER INTEGER NOT NULL,

 AGE YOUTH,

 HIGH_SCHOOL_LEVEL YOUTH)

The following comparison is valid:

SELECT * FROM CAMP_DB2_ROSTER

WHERE AGE > HIGH_SCHOOL_LEVEL

The following comparison is not valid:

SELECT * FROM CAMP_DB2_ROSTER

WHERE AGE > ATTENDEE_NUMBER

However, AGE can be compared to ATTENDEE_NUMBER by using a function or
CAST specification to cast between the distinct type and the source type. The following
comparisons are all valid:

SELECT * FROM CAMP_DB2_ROSTER

WHERE INTEGER(AGE) > ATTENDEE_NUMBER

SELECT * FROM CAMP_DB2_ROSTER

WHERE CAST(AGE AS INTEGER) > ATTENDEE_NUMBER

SELECT * FROM CAMP_DB2_ROSTER

WHERE AGE > YOUTH(ATTENDEE_NUMBER)

SELECT * FROM CAMP_DB2_ROSTER

WHERE AGE > CAST(ATTENDEE_NUMBER AS YOUTH)

 Chapter 3. Language Elements 73

Rules for Result Data Types

Rules for Result Data Types
The data types of a result are determined by rules which are applied to the operands in
an operation. This section explains those rules.

These rules apply to:

¹ Corresponding columns in fullselects of set operations (UNION, INTERSECT and
EXCEPT)

¹ Result expressions of a CASE expression

¹ Arguments of the scalar function COALESCE (or VALUE)

¹ Expression values of the in list of an IN predicate

¹ Corresponding expressions of a multiple row VALUES clause.

These rules are applied subject to other restrictions on long strings for the various oper-
ations.

The rules involving various data types follow. In some cases, a table is used to show
the possible result data types.

These tables identify the data type of the result, including the applicable length or preci-
sion and scale. The result type is determined by considering the operands. If there is
more than one pair of operands, start by considering the first pair. This gives a result
type which is considered with the next operand to determine the next result type, and
so on. The last intermediate result type and the last operand determine the result type
for the operation. Processing of operations is done from left to right so that the inter-
mediate result types are important when operations are repeated. For example, con-
sider a situation involving:

CHAR(2) UNION CHAR(4) UNION VARCHAR(3)

 The first pair results in a type of CHAR(4). The result values always have 4 charac-
ters. The final result type is VARCHAR(4). Values in the result from the first UNION
operation will always have a length of 4.

 Character Strings
Character strings are compatible with other character strings. Character strings include
data types CHAR, VARCHAR, LONG VARCHAR, and CLOB.

The code page of the result character string will be derived based on the “Rules for
String Conversions” on page 76.

If one operand is... And the other
operand is...

The data type of the result is...

CHAR(x) CHAR(y) CHAR(z) where z = max(x,y)

74 SQL Reference

Rules for Result Data Types

 Graphic Strings
Graphic strings are compatible with other graphic strings. Graphic strings include data
types GRAPHIC, VARGRAPHIC, LONG VARGRAPHIC, and DBCLOB.

The code page of the result graphic string will be derived based on the “Rules for String
Conversions” on page 76.

If one operand is... And the other
operand is...

The data type of the result is...

GRAPHIC(x) GRAPHIC(y) GRAPHIC(z) where z = max(x,y)

Binary Large Object (BLOB)
A BLOB is compatible only with another BLOB and the result is a BLOB. The BLOB
scalar function should be used to cast from other types if they should be treated as
BLOB types (see “BLOB” on page 179). The length of the result BLOB is the largest
length of all the data types.

 Numeric
Numeric types are compatible with other numeric types. Numeric types include
SMALLINT, INTEGER, DECIMAL, REAL and DOUBLE.

If one operand is... And the other
operand is...

The data type of the result is...

SMALLINT SMALLINT SMALLINT

INTEGER INTEGER INTEGER

INTEGER SMALLINT INTEGER

DECIMAL(w,x) SMALLINT DECIMAL(p,x) where
p = x+max(w-x,5)1

DECIMAL(w,x) INTEGER DECIMAL(p,x) where
p = x+max(w-x,11)1

DECIMAL(w,x) DECIMAL(y,z) DECIMAL(p,s) where
p = max(x,z)+max(w-x,y-z)1s = max(x,z)

REAL REAL REAL

REAL DECIMAL, INTEGER,
or SMALLINT

DOUBLE

DOUBLE any numeric DOUBLE

Note:

1. Precision cannot exceed 31.

 DATE
A date is compatible with another date, or any CHAR or VARCHAR expression that
contains a valid string representation of a date. The data type of the result is DATE.

 Chapter 3. Language Elements 75

Rules for String Conversions

 TIME
A time is compatible with another time, or any CHAR or VARCHAR expression that
contains a valid string representation of a time. The data type of the result is TIME.

 TIMESTAMP
A timestamp is compatible with another timestamp, or any CHAR or VARCHAR
expression that contains a valid string representation of a timestamp. The data type of
the result is TIMESTAMP.

 User-defined Types
A user-defined type is compatible only with user-defined type and the result is user-
defined type.

Nullable Attribute of Result
With the exception of INTERSECT and EXCEPT, the result allows nulls unless both
operands do not allow nulls.

¹ For INTERSECT, if either operand does not allow nulls the result does not allow
nulls (the intersection would never be null).

¹ For EXCEPT, if the first operand does not allow nulls the result does not allow
nulls (the result can only be values from the first operand).

Rules for String Conversions
The code page used to perform an operation is determined by rules which are applied
to the operands in that operation. This section explains those rules.

These rules apply to:

¹ Corresponding string columns in fullselects with set operations (UNION, INTER-
SECT and EXCEPT)

¹ Operands of concatenation

¹ Operands of predicates (with the exception of LIKE)

¹ Result expressions of a CASE expression

¹ Arguments of the scalar function COALESCE (and VALUE)

¹ Expression values of the in list of an IN predicate

¹ Corresponding expressions of a multiple row VALUES clause.

In each case, the code page of the result is determined at bind time, and the execution
of the operation may involve conversion of strings to the coded character set identified
by that code page. A character that has no valid conversion is mapped to the substi-
tution character for the character set and SQLWARN10 is set to 'W' in the SQLCA.

The code page of the result is determined by the code pages of the operands. The
code pages of the first two operands determine an intermediate result code page, this

76 SQL Reference

Rules for String Conversions

code page and the code page of the next operand determine a new intermediate result
code page (if applicable), and so on. The last intermediate result code page and the
code page of the last operand determine the code page of the result string or column.
For each pair of code pages, the result is determined by the sequential application of
the following rules:

¹ If the code pages are equal, the result is that code page.

¹ If either code page is BIT DATA (code page 0), the result code page is BIT DATA.
14

¹ Otherwise, the result code page is determined by Table 6. An entry of 'first' in the
table means the code page from the first operand is selected and an entry of
'second' means the code page from the second operand is selected.

An intermediate result is considered to be a derived value operand. An expression that
is not a single column value, constant, special register, or host variable is also consid-
ered a derived value operand. There is an exception to this if the expression is a CAST
specification (or a call to a function that is equivalent). In this case, the kind for the first
operand is based on the first argument of the CAST specification.

View columns are considered to have the operand type of the object on which they are
ultimately based. For example, a view column defined on a table column is considered
to be a column value, whereas a view column based on a string expression (for
example, A CONCAT B) is considered to be a derived value.

Conversions to the coded character set of the result are performed, if necessary, for:

¹ An operand of the concatenation operator
¹ The selected argument of the COALESCE (or VALUE) scalar function
¹ The selected result expression of the CASE expression
¹ The expressions of the in list of the IN predicate
¹ The corresponding expressions of a multiple row VALUES clause
¹ The corresponding columns involved in set operations.

Character conversion is necessary if all of the following are true:

¹ The code pages are different
¹ Neither string is BIT DATA

Table 6. Selecting the Code Page of the Intermediate Result

First Operand

Second Operand

Column
Value

Derived
Value Constant

Special
Register

Host
Variable

Column Value first first first first first

Derived Value second first first first first

Constant second second first first first

Special Register second second first first first

Host Variable second second second second first

 Chapter 3. Language Elements 77

¹ The string is neither null nor empty
¹ The code page conversion selection table indicates that conversion is necessary.

Examples

Example 1: Given the following:

When evaluating the predicate:

COL_1 CONCAT :HV_2

The result code page of the two operands is 850, since the dominant operand is the
column COL_1.

Example 2: Using the information from the previous example, when evaluating the
predicate:

 COALESCE(COL_1, :HV_2:NULLIND,)

The result code page is 850. Therefore the result code page for the COALESCE scalar
function will be the code page 850.

Expression Type Code Page

COL_1 column 850

HV_2 host variable 437

 Partition Compatibility
Partition compatibility is defined between the base data types of corresponding columns
of partitioning keys. Partition compatible data types have the property that two vari-
ables, one of each type, with the same value, are mapped to the same partitioning map
index by the same partitioning function.

Table 7 on page 79 shows the compatibility of data types in partitions.

Partition compatibility has the following characteristics:

¹ Internal formats are used for DATE, TIME, and TIMESTAMP. They are not compat-
ible with each other, and none are compatible with CHAR.

¹ Partition compatibility is not affected by columns with NOT NULL or FOR BIT
DATA definitions.

¹ NULL values of compatible data types are treated identically. Different results might
be produced for NULL values of non-compatible data types.

¹ Base datatype of the UDT is used to analyze partition compatibility.

¹ Decimals of the same value in the partitioning key are treated identically, even if
their scale and precision differ.

¹ Trailing blanks in character strings (CHAR, VARCHAR, GRAPHIC or
VARGRAPHIC) are ignored by the system-provided hashing function.

78 SQL Reference

Constants

¹ CHAR or VARCHAR of different lengths are compatible data types.

¹ REAL or DOUBLE values that are equal are treated identically even though their
precision differs.

Table 7. Partition Compatibilities

Operands
Binary
Integer

Decimal
Number

Floating
Point

Char-
acter
String

Graphic
String Date Time

Time-
stamp UDT

Binary
Integer

Yes No No No No No No No 1

Decimal
Number

No Yes No No No No No No 1

Floating
Point

No No Yes No No No No No 1

Character
String3

No No No Yes2 No No No No 1

Graphic
String3

No No No No Yes No No No 1

Date No No No No No Yes No No 1

Time No No No No No No Yes No 1

Timestamp No No No No No No No Yes 1

UDT 1 1 1 1 1 1 1 1 1

Note:

1 A user-defined type (UDT) value is partition compatible with the source type of the UDT or any other UDT
with a partition compatible source type.

2 The FOR BIT DATA attribute does not affect the partition compatibility.

3 Note that data types LONG VARCHAR, LONG VARGRAPHIC, CLOB, DBCLOB, and BLOB are not appli-
cable for partition compatibility since they are not supported in partitioning keys.

 Constants
A constant (sometimes called a literal) specifies a value. Constants are classified as
string constants or numeric constants. Numeric constants are further classified as
integer, floating-point, or decimal.

All constants have the attribute NOT NULL.

A negative zero value in a numeric constant (-0) is the same value as a zero without
the sign (0).

 Chapter 3. Language Elements 79

Constants

 Integer Constants
An integer constant specifies an integer as a signed or unsigned number with a
maximum of 10 digits that does not include a decimal point. The data type of an integer
constant is a large integer, and its value must be within the range of a large integer.

Note that the smallest literal representation of an integer constant is -2 147 483 647 and
not -2 147 483 648, which is the limit for integer values. A constant that is defined
outside the range of large integer values is considered a decimal constant.

Examples

64 -15 +100 32767 720176

In syntax diagrams the term 'integer' is used for an integer constant that must not
include a sign.

 Floating-Point Constants
A floating-point constant specifies a floating-point number as two numbers separated by
an E. The first number may include a sign and a decimal point; the second number
may include a sign but not a decimal point. The data type of a floating-point constant is
double precision. The value of the constant is the product of the first number and the
power of 10 specified by the second number; it must be within the range of floating-
point numbers. The number of characters in the constant must not exceed 30.

Examples

15E1 2.E5 2.2E-1 +5.E+2

 Decimal Constants
A decimal constant is a signed or unsigned number that consists of no more than 31
digits and either includes a decimal point or is not within the range of binary integers. It
must be in the range of decimal numbers. The precision is the total number of digits
(including leading and trailing zeros); the scale is the number of digits to the right of the
decimal point (including trailing zeros).

Examples

25.5 1000. -15. +37589.3333333333

Character String Constants
A character string constant specifies a varying-length character string and consists of a
sequence of characters that starts and ends with an apostrophe ('). This form of string
constant specifies the character string contained between the string delimiters. The
length of the character string must not be greater than 4000 bytes. Two consecutive
string delimiters are used to represent one string delimiter within the character string.

Examples

 '12/14/1985'

 '32'

 'DON''T CHANGE'

80 SQL Reference

Constants

Unequal Code Page Considerations
The constant value is always converted to the database code page when it is bound to
the database. It is considered to be in the database code page. Therefore, if used in
an expression that combines a constant with a FOR BIT DATA column, of which the
result is FOR BIT DATA, the constant value will not be converted from its database
code page representation when used.

 Hexadecimal Constants
A hexadecimal constant specifies a varying-length character string with the code page
of the application server.

The format of a hexadecimal string constant is an X followed by a sequence of charac-
ters that starts and ends with an apostrophe (single quote). The characters between the
apostrophes must be an even number of hexadecimal digits. The number of
hexadecimal digits must not exceed 4000, otherwise an error is raised (SQLSTATE
-54002). A hexadecimal digit represents 4 bits. It is specified as a digit or any of the
letters A through F (uppercase or lowercase) where A represents the bit pattern '1010',
B the bit pattern '1011', etc. If a hexadecimal constant is improperly formatted (e.g. it
contains an invalid hexadecimal digit or an odd number of hexadecimal digits), an error
is raised (SQLSTATE 42606).

Examples

X'FFFF' representing the bit pattern '1111111111111111'

X'4672616E6B' representing the VARCHAR pattern of the ASCII string 'Frank'

Graphic String Constants
A graphic string constant specifies a varying-length graphic string and consists of a
sequence of double-byte characters that starts and ends with a single-byte apostrophe
(') and is preceded by a single-byte G or N. This form of string constant specifies the
graphic string contained between the string delimiters. The length of the graphic string
must be an even number of bytes and must not be greater than 4000 bytes.

 Examples
G'double-byte character string'

N'double-byte character string'

 MBCS Considerations
The apostrophe must not appear as part of an MBCS character to be considered a
delimiter.

Using Constants with User-defined Types: User-defined types have strong typing.
This means that a user-defined type is only compatible with its own type. A constant,
however, has a built-in type. Therefore, an operation involving a user-defined type and
a constant is only possible if the user-defined type has been cast to the constant's
built-in type or the constant has been cast to the user-defined type (see “CAST
Specifications” on page 121 for information on casting). For example, using the table

 Chapter 3. Language Elements 81

Special Registers

and distinct type in “User-defined Type Comparisons” on page 73, the following com-
parisons with the constant 14 are valid:

SELECT * FROM CAMP_DB2_ROSTER

WHERE AGE > CAST(14 AS YOUTH)

SELECT * FROM CAMP_DB2_ROSTER

WHERE CAST(AGE AS INTEGER) > 14

The following comparison is not valid:

SELECT * FROM CAMP_DB2_ROSTER

WHERE AGE > 14

 Special Registers
A special register is a storage area that is defined for an application process by the
database manager and is used to store information that can be referenced in SQL
statements. Special registers are in the database code page.

 CURRENT DATE
The CURRENT DATE special register specifies a date that is based on a reading of the
time-of-day clock when the SQL statement is executed at the application server. If this
special register is used more than once within a single SQL statement, or used with
CURRENT TIME or CURRENT TIMESTAMP within a single statement, all values are
based on a single clock reading.

 Example
Using the PROJECT table, set the project end date (PRENDATE) of the MA2111
project (PROJNO) to the current date.

 UPDATE PROJECT

SET PRENDATE = CURRENT DATE

WHERE PROJNO = 'MA2111'

 CURRENT DEGREE
The CURRENT DEGREE special register specifies the degree of intra-partition
parallelism for the execution of dynamic SQL statements.15 The data type of the register
is CHAR(5). Valid values are 'ANY ' or the string representation of an integer between 1
and 32767, inclusive.

If the value of CURRENT DEGREE represented as an integer is 1 when an SQL state-
ment is dynamically prepared, the execution of that statement will not use intra-partition
parallelism.

15 For static SQL, the DEGREE bind option provides the same control.

82 SQL Reference

Special Registers

If the value of CURRENT DEGREE represented as an integer is greater than 1 and
less than or equal to 32767 when an SQL statement is dynamically prepared, the exe-
cution of that statement can involve intra-partition parallelism with the specified degree.

If the value of CURRENT DEGREE is 'ANY' when an SQL statement is dynamically
prepared, the execution of that statement can involve intra-partition parallelism using a
degree determined by the database manager.

The actual runtime degree of parallelism will be the lower of:

¹ Maximum query degree (max_querydegree) configuration parameter
¹ Application runtime degree
¹ SQL statement compilation degree

If the intra_parallel database manager configuration parameter is set to NO, the value
of the CURRENT DEGREE special register will be ignored for the purpose of optimiza-
tion, and the statement will not use intra-partition parallelism.

See the Administration Guide for a description of parallelism and a list of restrictions.

The value can be changed by executing the SET CURRENT DEGREE statement (see
“SET CURRENT DEGREE” on page 641 for information on this statement).

The initial value of CURRENT DEGREE is determined by the dft_degree database con-
figuration parameter. See the Administration Guide for a description of this configuration
parameter.

CURRENT EXPLAIN MODE
The CURRENT EXPLAIN MODE special register holds a CHAR(8) value which controls
the behaviour of the Explain facility with respect to eligible dynamic SQL statements.
This facility generates and inserts Explain information into the Explain tables (for more
information see the Administration Guide). This information does not include the Explain
snapshot.

The possible values are YES, NO, and EXPLAIN.16

YES Enables the explain facility and causes explain information for a dynamic
SQL statement to be captured when the statement is compiled.

EXPLAIN Enables the facility like YES, however, the dynamic statements are not
executed.

NO Disables the Explain facility.

The initial value is NO.

16 For static SQL, the EXPLAIN bind option provides the same control. In the case of the PREP and BIND commands, the EXPLAIN
option values are: YES, NO and ALL.

 Chapter 3. Language Elements 83

Special Registers

Its value can be changed by the SET CURRENT EXPLAIN MODE statement (see “SET
CURRENT EXPLAIN MODE” on page 643 for information on this statement).

The CURRENT EXPLAIN MODE and CURRENT EXPLAIN SNAPSHOT special reg-
ister values interact when the Explain facility is invoked (see Table 85 on page 843 for
details). The CURRENT EXPLAIN MODE special register also interacts with the
EXPLAIN bind option (see Table 86 on page 844 for details).

Example: Set the host variable EXPL_MODE (char(8)) to the value currently in the
CURRENT EXPLAIN MODE special register.

VALUES CURRENT EXPLAIN MODE

 INTO :EXPL_MODE

CURRENT EXPLAIN SNAPSHOT
The CURRENT EXPLAIN SNAPSHOT special register holds a CHAR(8) value which
controls the behavior of the Explain snapshot facility. This facility generates com-
pressed information including access plan information, operator costs, and bind-time
statistics (for more information see the Administration Guide).

Only the following statements consider the value of this register: DELETE, INSERT,
SELECT, SELECT INTO, UPDATE, VALUES or VALUES INTO.

The possible values are YES, NO, and EXPLAIN.17

YES Enables the snapshot facility and takes a snapshot of the internal represen-
tation of a dynamic SQL statement as the statement is compiled.

EXPLAIN Enables the facility like YES, however, the dynamic statements are not
executed.

NO Disables the Explain snapshot facility.

The initial value is NO.

Its value can be changed by the SET CURRENT EXPLAIN SNAPSHOT statement (see
“SET CURRENT EXPLAIN SNAPSHOT” on page 645).

The CURRENT EXPLAIN SNAPSHOT and CURRENT EXPLAIN MODE special reg-
ister values interact when the Explain facility is invoked (see Table 85 on page 843 for
details). The CURRENT EXPLAIN SNAPSHOT special register also interacts with the
EXPLSNAP bind option (see Table 87 on page 845 for details).

 Example
Set the host variable EXPL_SNAP (char(8)) to the value currently in the CURRENT
EXPLAIN SNAPSHOT special register.

17 For static SQL, the EXPLSNAP bind option provides the same control. In the case of the PREP and BIND commands, the
EXPLSNAP option values are: YES, NO and ALL.

84 SQL Reference

Special Registers

VALUES CURRENT EXPLAIN SNAPSHOT

 INTO :EXPL_SNAP

CURRENT FUNCTION PATH
The CURRENT FUNCTION PATH special register specifies a VARCHAR(254) value
that identifies the function path to be used to resolve function references and data type
references that are used in dynamically prepared SQL statements. The initial value is
the default value specified below. For static SQL, the FUNCPATH bind option provides
a function path that is used for function and data type resolution (see the Command
Reference for more information on the FUNCPATH bind option).

The CURRENT FUNCTION PATH special register contains a list of one or more
schema-names, where the schema-names are enclosed in double quotes and sepa-
rated by commas (any quotes within the string are repeated as they are in any delim-
ited identifier).

For example, a function path specifying that the database manager is to first look in the
FERMAT, then XGRAPHIC, then SYSIBM schemas is returned in the CURRENT
FUNCTION PATH special register as:

 "FERMAT","XGRAPHIC","SYSIBM"

The default value is "SYSIBM","SYSFUN",X where X is the value of the USER special
register delimited by double quotes.

Its value can be changed by the SET CURRENT FUNCTION PATH statement (see
“SET CURRENT FUNCTION PATH” on page 647). The schema SYSIBM does not
need to be specified. If it is not included in the function path, it is implicitly assumed as
the first schema. SYSIBM does not take any of the 254 characters if it is implicitly
assumed.

The use of the function path for function resolution is described in “Functions” on
page 100. A data type that is not qualified with a schema name will be implicitly quali-
fied with the schema name that is earliest in the function path and contains a data type
with the same unqualified name specified. There are exceptions to this rule as
described in the following statements: CREATE DISTINCT TYPE, CREATE FUNC-
TION, COMMENT ON and DROP.

 Example
Using the SYSCAT.VIEWS catalog view, find all views that were created with the exact
same setting as the current value of the CURRENT FUNCTION PATH special register.

SELECT VIEWNAME, VIEWSCHEMA FROM SYSCAT.VIEWS

WHERE FUNC_PATH = CURRENT FUNCTION PATH

 CURRENT NODE
The CURRENT NODE special register specifies an INTEGER value that identifies the
coordinator node number (the partition to which an application connects).

 Chapter 3. Language Elements 85

Special Registers

CURRENT NODE returns 0 if the database instance is not defined to support parti-
tioning (no db2nodes.cfg file18).

The CURRENT NODE can be changed by the CONNECT statement, but only under
certain conditions (see “CONNECT (Type 1)” on page 389).

 Example
Set the host variable APPL_NODE (integer) to the number of the partition to which the
application is connected.

VALUES CURRENT NODE

 INTO :APPL_NODE

CURRENT QUERY OPTIMIZATION
The CURRENT QUERY OPTIMIZATION special register specifies an INTEGER value
that controls the class of query optimization performed by the database manager when
binding dynamic SQL statements. The QUERYOPT bind option controls the class of
query optimization for static SQL statements (see the Command Reference for addi-
tional information on the QUERYOPT bind option). The possible values range from 0 to
9. For example, if the query optimization class is set to the minimal class of optimiza-
tion (0), then the value in the special register is 0. The default value is determined by
the dft_queryopt database configuration parameter.

Its value can be changed by the SET CURRENT QUERY OPTIMIZATION statement
(see “SET CURRENT QUERY OPTIMIZATION” on page 651).

 Example
Using the SYSCAT.PACKAGES catalog view, find all plans that were bound with the
same setting as the current value of the CURRENT QUERY OPTIMIZATION special
register.

SELECT PKGNAME, PKGSCHEMA FROM SYSCAT.PACKAGES

WHERE QUERYOPT = CURRENT QUERY OPTIMIZATION

 CURRENT SERVER
The CURRENT SERVER special register specifies a VARCHAR(18) value that identi-
fies the current application server. The actual name of the application server (not an
alias) is contained in the register.

The CURRENT SERVER can be changed by the CONNECT statement, but only under
certain conditions (see “CONNECT (Type 1)” on page 389).

 Example

18 For partitioned databases , the db2nodes.cfg file exists and contains partition (or node) definitions. For details refer to the Adminis-
tration Guide.

86 SQL Reference

Special Registers

Set the host variable APPL_SERVE (varchar(18)) to the name of the application server
to which the application is connected.

VALUES CURRENT SERVER

 INTO :APPL_SERVE

 CURRENT TIME
The CURRENT TIME special register specifies a time that is based on a reading of the
time-of-day clock when the SQL statement is executed at the application server. If this
special register is used more than once within a single SQL statement, or used with
CURRENT DATE or CURRENT TIMESTAMP within a single statement, all values are
based on a single clock reading.

 Example
Using the CL_SCHED table, select all the classes (CLASS_CODE) that start
(STARTING) later today. Today's classes have a value of 3 in the DAY column.

SELECT CLASS_CODE FROM CL_SCHED

WHERE STARTING > CURRENT TIME AND DAY = 3

 CURRENT TIMESTAMP
The CURRENT TIMESTAMP special register specifies a timestamp that is based on a
reading of the time-of-day clock when the SQL statement is executed at the application
server. If this special register is used more than once within a single SQL statement, or
used with CURRENT DATE or CURRENT TIME within a single statement, all values
are based on a single clock reading.

 Example
Insert a row into the IN_TRAY table. The value of the RECEIVED column should be a
timestamp that indicates when the row was inserted. The values for the other three
columns come from the host variables SRC (char(8)), SUB (char(64)), and TXT
(varchar(200)).

INSERT INTO IN_TRAY

VALUES (CURRENT TIMESTAMP, :SRC, :SUB, :TXT)

 CURRENT TIMEZONE
The CURRENT TIMEZONE special register specifies the difference between UTC19 and
local time at the application server. The difference is represented by a time duration (a
decimal number in which the first two digits are the number of hours, the next two digits
are the number of minutes, and the last two digits are the number of seconds). The
number of hours is between -24 and 24 exclusive. Subtracting CURRENT TIMEZONE
from a local time converts that local time to UTC. The time is calculated from the oper-
ating system time at the moment the SQL statement is executed.20

19 Coordinated Universal Time, formerly known as GMT.

20 The CURRENT TIMEZONE value is determined from C runtime functions. See the Installation and Operation Guide for any installa-
tion requirements regarding time zone.

 Chapter 3. Language Elements 87

Column Names

The CURRENT TIMEZONE special register can be used wherever an expression of the
DECIMAL(6,0) data type is used, for example, in time and timestamp arithmetic.

 Example
Insert a record into the IN_TRAY table, using a UTC timestamp for the RECEIVED
column.

INSERT INTO IN_TRAY VALUES (

CURRENT TIMESTAMP - CURRENT TIMEZONE,

 :source,

 :subject,

 :notetext)

 USER
The USER special register specifies the run-time authorization ID passed to the data-
base manager when an application starts on a database. The data type of the register
is CHAR(8).

 Example
Select all notes from the IN_TRAY table that the user placed there himself.

SELECT * FROM IN_TRAY

WHERE SOURCE = USER

 Column Names
The meaning of a column name depends on its context. A column name can be used
to:

¹ Declare the name of a column, as in a CREATE TABLE statement.

¹ Identify a column, as in a CREATE INDEX statement.

¹ Specify values of the column, as in the following contexts:

– In a column function, a column name specifies all values of the column in the
group or intermediate result table to which the function is applied. (Groups
and intermediate result tables are explained under Chapter 5, “Queries” on
page 285.) For example, MAX(SALARY) applies the function MAX to all
values of the column SALARY in a group.

– In a GROUP BY or ORDER BY clause, a column name specifies all values in
the intermediate result table to which the clause is applied. For example,
ORDER BY DEPT orders an intermediate result table by the values of the
column DEPT.

– In an expression, a search condition, or a scalar function, a column name
specifies a value for each row or group to which the construct is applied. For
example, when the search condition CODE = 20 is applied to some row, the
value specified by the column name CODE is the value of the column CODE
in that row.

88 SQL Reference

Column Names

¹ Temporarily rename a column, as in the correlation-clause of a table-reference in a
FROM clause.

Qualified Column Names
A qualifier for a column name may be a table, view, alias, or correlation name.

Whether a column name may be qualified depends on its context:

¹ Depending on the form of the COMMENT ON statement, a single column name
may need to be qualified. Multiple column names must be unqualified.

¹ Where the column name specifies values of the column, it may be qualified at the
user's option.

¹ In all other contexts, a column name must not be qualified.

Where a qualifier is optional, it can serve two purposes. They are described under
“Column Name Qualifiers to Avoid Ambiguity” on page 91 and “Column Name Qual-
ifiers in Correlated References” on page 93.

 Correlation Names
A correlation name can be defined in the FROM clause of a query and in the first
clause of an UPDATE or DELETE statement. For example, the clause FROM
X.MYTABLE Z establishes Z as a correlation name for X.MYTABLE.

FROM X.MYTABLE Z

With Z defined as a correlation name for X.MYTABLE, only Z can be used to qualify a
reference to a column of that instance of X.MYTABLE in that SELECT statement.

A correlation name is associated with a table, view, alias, nested table expression or
table function only within the context in which it is defined. Hence, the same correlation
name can be defined for different purposes in different statements, or in different
clauses of the same statement.

As a qualifier, a correlation name can be used to avoid ambiguity or to establish a cor-
related reference. It can also be used merely as a shorter name for a table, view, or
alias. In the case of a nested table expression or table function, a correlation name is
required to identify the result table. In the example, Z might have been used merely to
avoid having to enter X.MYTABLE more than once.

If a correlation name is specified for a table, view, or alias name, any qualified refer-
ence to a column of that instance of the table, view, or alias must use the correlation
name, rather than the table, view, or alias name. For example, the reference to
EMPLOYEE.PROJECT in the following example is incorrect, because a correlation
name has been specified for EMPLOYEE:

Example

FROM: EMPLOYEE E

 WHERE EMPLOYEE.PROJECT='ABC' * incorrect*

 Chapter 3. Language Elements 89

Column Names

The qualified reference to PROJECT should instead use the correlation name, "E", as
shown below:

FROM EMPLOYEE E

 WHERE E.PROJECT='ABC'

Names specified in a FROM clause are either exposed or non-exposed. A table, view,
or alias name is said to be exposed in the FROM clause if a correlation name is not
specified. A correlation name is always an exposed name. For example, in the following
FROM clause, a correlation name is specified for EMPLOYEE but not for DEPART-
MENT, so DEPARTMENT is an exposed name, and EMPLOYEE is not:

FROM EMPLOYEE E, DEPARTMENT

A table, view, or alias name that is exposed in a FROM clause may be the same as
any other table name or view name exposed in that FROM clause or any correlation
name in the FROM clause. This may result in ambiguous column name references
which returns an error (SQLSTATE 42702).

The first two FROM clauses shown below are correct, because each one contains no
more than one reference to EMPLOYEE that is exposed:

1. Given the FROM clause:

FROM EMPLOYEE E1, EMPLOYEE

a qualified reference such as EMPLOYEE.PROJECT denotes a column of the
second instance of EMPLOYEE in the FROM clause. A qualified reference to the
first instance of EMPLOYEE must use the correlation name “E1” (E1.PROJECT).

2. Given the FROM clause:

FROM EMPLOYEE, EMPLOYEE E2

a qualified reference such as EMPLOYEE.PROJECT denotes a column of the first
instance of EMPLOYEE in the FROM clause. A qualified reference to the second
instance of EMPLOYEE must use the correlation name “E2” (E2.PROJECT).

3. Given the FROM clause:

FROM EMPLOYEE, EMPLOYEE

the two exposed table names included in this clause (EMPLOYEE and
EMPLOYEE) are the same. This is allowed, but references to specific column
names would be ambiguous (SQLSTATE 42702).

4. Given the following statement:

 SELECT *

FROM EMPLOYEE E1, EMPLOYEE E2 * incorrect *

WHERE EMPLOYEE.PROJECT = 'ABC'

the qualified reference EMPLOYEE.PROJECT is incorrect, because both instances
of EMPLOYEE in the FROM clause have correlation names. Instead, references to
PROJECT must be qualified with either correlation name (E1.PROJECT or
E2.PROJECT).

5. Given the FROM clause:

90 SQL Reference

Column Names

FROM EMPLOYEE, X.EMPLOYEE

a reference to a column in the second instance of EMPLOYEE must use
X.EMPLOYEE (X.EMPLOYEE.PROJECT). If the authorization ID of the statement
is X, however, columns cannot be referenced since any such reference would be
ambiguous.

The use of a correlation name in the FROM clause also allows the option of specifying
a list of column names to be associated with the columns of the result table. As with a
correlation name, these listed column names become the exposed names of the
columns that must be used for references to the columns throughout the query. If a
column name list is specified, then the column names of the underlying table become
non-exposed.

Given the FROM clause:

FROM DEPARTMENT D (NUM,NAME,MGR,ANUM,LOC)

a qualified reference such as D.NUM denotes the first column of the DEPARTMENT
table that is defined in the table as DEPTNO. A reference to D.DEPTNO using this
FROM clause is incorrect since the column name DEPTNO is a non-exposed column
name.

Column Name Qualifiers to Avoid Ambiguity
In the context of a function, a GROUP BY clause, ORDER BY clause, an expression,
or a search condition, a column name refers to values of a column in some table, view,
nested table expression or table function. The tables, views, nested table expressions
and table functions that might contain the column are called the object tables of the
context. Two or more object tables might contain columns with the same name; one
reason for qualifying a column name is to designate the table from which the column
comes.

A nested table expression or table function will consider table-references that precede it
in the FROM clause as object tables. The table-references that follow are not consid-
ered as object tables.

 Table Designators
A qualifier that designates a specific object table is called a table designator. The
clause that identifies the object tables also establishes the table designators for them.
For example, the object tables of an expression in a SELECT clause are named in the
FROM clause that follows it:

SELECT CORZ.COLA, OWNY.MYTABLE.COLA

FROM OWNX.MYTABLE CORZ, OWNY.MYTABLE

Table designators in the FROM clause are established as follows:

¹ A name that follows a table, view, nested table expression or table function is both
a correlation name and a table designator. Thus, CORZ is a table designator.
CORZ is used to qualify the first column name in the select list.

 Chapter 3. Language Elements 91

Column Names

¹ An exposed table or view name is a table designator. Thus, OWNY.MYTABLE is a
table designator. OWNY.MYTABLE is used to qualify the second column name in
the select list.

Each table designator should be unique within a particular FROM clause to avoid the
possibility of ambiguous references to columns.

Avoiding Undefined or Ambiguous References
When a column name refers to values of a column, exactly one object table must
include a column with that name. The following situations are considered errors:

¹ No object table contains a column with the specified name. The reference is unde-
fined.

¹ The column name is qualified by a table designator, but the table designated does
not include a column with the specified name. Again the reference is undefined.

¹ The name is unqualified, and more than one object table includes a column with
that name. The reference is ambiguous.

¹ The column name is qualified by a table designator, but the table designated is not
unique in the FROM clause and both occurrences of the designated table include
the column. The reference is ambiguous.

¹ The column name is in a nested table expression which is not preceded by the
TABLE keyword or in a table function or nested table expression that is the right
operand of a right outer join or a full outer join and the column name does not refer
to a column of a table-reference within the nested table expression's fullselect. The
reference is undefined.

Avoid ambiguous references by qualifying a column name with a uniquely defined table
designator. If the column is contained in several object tables with different names, the
table names can be used as designators. Ambiguous references can also be avoided
without the use of the table designator by giving unique names to the columns of one
of the object tables using the column name list following the correlation name.

When qualifying a column with the exposed table name form of a table designator,
either the qualified or unqualified form of the exposed table name may be used.
However, the qualifier used and the table used must be the same after fully qualifying
the table name or view name and the table designator.

1. If the authorization ID of the statement is CORPDATA:

 SELECT CORPDATA.EMPLOYEE.WORKDEPT

 FROM EMPLOYEE

is a valid statement.

2. If the authorization ID of the statement is REGION:

 SELECT CORPDATA.EMPLOYEE.WORKDEPT

FROM EMPLOYEE * incorrect *

is invalid, because EMPLOYEE represents the table REGION.EMPLOYEE, but the
qualifier for WORKDEPT represents a different table, CORPDATA.EMPLOYEE.

92 SQL Reference

Column Names

Column Name Qualifiers in Correlated References
A fullselect is a form of a query that may be used as a component of various SQL
statements. See Chapter 5, “Queries” on page 285 for more information on fullselects.
A fullselect used within a search condition of any statement is called a subquery. A
fullselect used to retrieve a single value as an expression within a statement is called a
scalar fullselect or scalar subquery. A fullselect used in the FROM clause of a query is
called a nested table expression. Subqueries in search conditions, scalar subqueries
and nested table expressions are referred to as subqueries through the remainder of
this topic.

A subquery may include subqueries of its own, and these may, in turn, include subque-
ries. Thus an SQL statement may contain a hierarchy of subqueries. Those elements of
the hierarchy that contain subqueries are said to be at a higher level than the subque-
ries they contain.

Every element of the hierarchy contains one or more table designators. A subquery can
reference not only the columns of the tables identified at its own level in the hierarchy,
but also the columns of the tables identified previously in the hierarchy, back to the
highest level of the hierarchy. A reference to a column of a table identified at a higher
level is called a correlated reference.

For compatibility with existing standards for SQL, both qualified and unqualified column
names are allowed as correlated references. However, it is good practice to qualify all
column references used in subqueries; otherwise, identical column names may lead to
unintended results. For example, if a table in a hierarchy is altered to contain the same
column name as the correlated reference and the statement is prepared again, the ref-
erence will apply to the altered table.

When a column name in a subquery is qualified, each level of the hierarchy is
searched, starting at the same subquery as the qualified column name appears and
continuing to the higher levels of the hierarchy until a table designator that matches the
qualifier is found. Once found, it is verified that the table contains the given column. If
the table is found at a higher level than the level containing column name, then it is a
correlated reference to the level where the table designator was found. A nested table
expression must be preceded with the optional TABLE keyword in order to search the
hierarchy above the fullselect of the nested table expression.

When the column name in a subquery is not qualified, the tables referenced at each
level of the hierarchy are searched, starting at the same subquery where the column
name appears and continuing to higher levels of the hierarchy, until a match for the
column name is found. If the column is found in a table at a higher level than the level
containing column name, then it is a correlated reference to the level where the table
containing the column was found. If the column name is found in more than one table
at a particular level, the reference is ambiguous and considered an error.

In either case, T, used in the following example, refers to the table designator that con-
tains column C. A column name, T.C (where T represents either an implicit or an
explicit qualifier), is a correlated reference if, and only if, these conditions are met:

 Chapter 3. Language Elements 93

Column Names

¹ T.C is used in an expression of a subquery.

¹ T does not designate a table used in the from clause of the subquery.

¹ T designates a table used at a higher level of the hierarchy that contains the sub-
query.

Since the same table or view can be identified at many levels, unique correlation
names are recommended as table designators. If T is used to designate a table at
more than one level (T is the table name itself or is a duplicate correlation name), T.C
refers to the level where T is used that most directly contains the subquery that
includes T.C. If a correlation to a higher level is needed, a unique correlation name
must be used.

The correlated reference T.C identifies a value of C in a row or group of T to which two
search conditions are being applied: condition 1 in the subquery, and condition 2 at
some higher level. If condition 2 is used in a WHERE clause, the subquery is evaluated
for each row to which condition 2 is applied. If condition 2 is used in a HAVING clause,
the subquery is evaluated for each group to which condition 2 is applied. (For another
discussion of the evaluation of subqueries, see the descriptions of the WHERE and
HAVING clauses in Chapter 5, “Queries” on page 285.)

For example, in the following statement, the correlated reference X.WORKDEPT (in the
last line) refers to the value of WORKDEPT in table EMPLOYEE at the level of the first
FROM clause. (That clause establishes X as a correlation name for EMPLOYEE.) The
statement lists employees who make less than the average salary for their department.

SELECT EMPNO, LASTNAME, WORKDEPT

FROM EMPLOYEE X

WHERE SALARY < (SELECT AVG(SALARY)

 FROM EMPLOYEE

WHERE WORKDEPT = X.WORKDEPT)

The next example uses THIS as a correlation name. The statement deletes rows for
departments that have no employees.

DELETE FROM DEPARTMENT THIS

WHERE NOT EXISTS(SELECT *

 FROM EMPLOYEE

WHERE WORKDEPT = THIS.DEPTNO)

94 SQL Reference

References to Host Variables

References to Host Variables
A host variable is either:

¹ A variable in a host language such as a C variable, a C++ variable, a COBOL data
item, a FORTRAN variable, or a REXX variable

or:

¹ A host language construct that was generated by an SQL precompiler from a vari-
able declared using SQL extensions

that is referenced in an SQL statement. Host variables are either directly defined by
statements in the host language or are indirectly defined using SQL extensions.

A host variable in an SQL statement must identify a host variable described in the
program according to the rules for declaring host variables.

All host variables used in an SQL statement must be declared in an SQL DECLARE
section in all host languages except REXX (see the Embedded SQL Programming
Guide for more information on declaring host variables for SQL statements in applica-
tion programs). No variables may be declared outside an SQL DECLARE section with
names identical to variables declared inside an SQL DECLARE section. An SQL
DECLARE section begins with BEGIN DECLARE SECTION and ends with END
DECLARE SECTION.

The meta-variable host-variable, as used in the syntax diagrams, shows a reference to
a host variable. A host-variable in the VALUES INTO clause or the INTO clause of a
FETCH or a SELECT INTO statement, identifies a host variable to which a value from a
column of a row or an expression is assigned. In all other contexts a host-variable
specifies a value to be passed to the database manager from the application program.

Host Variables in Dynamic SQL
In dynamic SQL statements, parameter markers are used instead of host variables. A
parameter marker is a question mark (?) representing a position in a dynamic SQL
statement where the application will provide a value; that is, where a host variable
would be found if the statement string were a static SQL statement. The following
example shows a static SQL statement using host variables:

INSERT INTO DEPARTMENT

VALUES (:hv_deptno, :hv_deptname, :hv_mgrno, :hv_admrdept)

This example shows a dynamic SQL statement using parameter markers:

INSERT INTO DEPARTMENT VALUES (?, ?, ?, ?)

For more information on parameter markers, see “Parameter Markers” in “PREPARE”
on page 601.

The meta-variable host-variable in syntax diagrams can generally be expanded to:

 Chapter 3. Language Elements 95

References to Host Variables

5─ ─:host-identifier─ ──┬ ┬───────────────────────────────── ─────────────────────5
 │ │┌ ┐─INDICATOR─
 └ ┘ ──┴ ┴─────────── ─:host-identifier─

Each host-identifier must be declared in the source program. The variable designated
by the second host-identifier must have a data type of small integer.

The first host-identifier designates the main variable. Depending on the operation, it
either provides a value to the database manager or is provided a value from the data-
base manager. An input host variable provides a value in the runtime application code
page. An output host variable is provided a value that, if necessary, is converted to the
runtime application code page when the data is copied to the output application vari-
able. A given host variable can serve as both an input and an output variable in the
same program.

The second host-identifier designates its indicator variable. The purposes of the indi-
cator variable are to:

¹ Specify the null value. A negative value of the indicator variable specifies the null
value. A value of -2 indicates a numeric conversion or arithmetic expression error
occurred in deriving the result.

¹ Record the original length of a truncated string (if the source of the value is not a
large object type)

¹ Record the seconds portion of a time if the time is truncated on assignment to a
host variable.

For example, if :HV1:HV2 is used to specify an insert or update value, and if HV2 is
negative, the value specified is the null value. If HV2 is not negative the value specified
is the value of HV1.

Similarly, if :HV1:HV2 is specified in a VALUES INTO clause or in a FETCH or
SELECT INTO statement, and if the value returned is null, HV1 is not changed and
HV2 is set to a negative value.21 If the value returned is not null, that value is assigned
to HV1 and HV2 is set to zero (unless the assignment to HV1 requires string truncation
of a non-LOB string; in which case HV2 is set to the original length of the string). If an
assignment requires truncation of the seconds part of a time, HV2 is set to the number
of seconds.

If the second host identifier is omitted, the host-variable does not have an indicator vari-
able. The value specified by the host-variable reference :HV1 is always the value of
HV1, and null values cannot be assigned to the variable. Thus, this form should not be
used in an INTO clause unless the corresponding column cannot contain null values. If

21 If the database is configured with DFT_SQLMATHWARN yes (or was during binding of a static SQL statement), then HV2 could be
-2. If HV2 is -2, then a value for HV1 could not be returned because of an error converting to the numeric type of HV1 or an error
evaluating an arithmetic expression that is used to determine the value for HV1. When accessing a database with a client version
earlier than DB2 Universal Database Version 5, HV2 will be -1 for arithmetic exceptions.

96 SQL Reference

References to Host Variables

this form is used and the column contains nulls, the database manager will generate an
error at run time.

An SQL statement that references host variables must be within the scope of the decla-
ration of those host variables. For host variables referenced in the SELECT statement
of a cursor, that rule applies to the OPEN statement rather than to the DECLARE
CURSOR statement.

 Example
Using the PROJECT table, set the host variable PNAME (varchar(26)) to the project
name (PROJNAME), the host variable STAFF (dec(5,2)) to the mean staffing level
(PRSTAFF), and the host variable MAJPROJ (char(6)) to the major project (MAJPROJ)
for project (PROJNO) ‘IF1000’. Columns PRSTAFF and MAJPROJ may contain null
values, so provide indicator variables STAFF_IND (smallint) and MAJPROJ_IND
(smallint).

SELECT PROJNAME, PRSTAFF, MAJPROJ

INTO :PNAME, :STAFF :STAFF_IND, :MAJPROJ :MAJPROJ_IND

 FROM PROJECT

WHERE PROJNO = 'IF1000'

 MBCS Considerations: Whether multi-byte characters can be used in a host variable
name depends on the host language.

References to BLOB, CLOB, and DBCLOB Host Variables
Regular BLOB, CLOB, and DBCLOB variables, LOB locator variables (see “References
to Locator Variables” on page 98), and LOB file reference variables (see “References
to BLOB, CLOB, and DBCLOB File Reference Variables” on page 98) can be defined
in all host languages. Where LOBs are allowed, the term host-variable in a syntax
diagram can refer to a regular host variable, a locator variable, or a file reference vari-
able. Since these are not native data types, SQL extensions are used and the precom-
pilers generate the host language constructs necessary to represent each variable. In
the case of REXX, LOBs are mapped to strings.

It is sometimes possible to define a large enough variable to hold an entire large object
value. If this is true and if there is no performance benefit to be gained by deferred
transfer of data from the server, a locator is not needed. However, since host language
or space restrictions will often dictate against storing an entire large object in temporary
storage at one time and/or because of performance benefit, a large object may be ref-
erenced via a locator and portions of that object may be selected into or updated from
host variables that contain only a portion of the large object at one time.

As with all other host variables, a large object locator variable may have an associated
indicator variable. Indicator variables for large object locator host variables behave in
the same way as indicator variables for other data types. When a null value is returned
from the database, the indicator variable is set and the locator host variable is
unchanged. This means a locator can never point to a null value.

 Chapter 3. Language Elements 97

References to Host Variables

References to Locator Variables
A locator variable is a host variable that contains the locator representing a LOB value
on the application server. (See “Manipulating Large Objects (LOBs) with Locators” on
page 52 for information on how locators can be used to manipulate LOB values.)

A locator variable in an SQL statement must identify a locator variable described in the
program according to the rules for declaring locator variables. This is always indirectly
through an SQL statement.

The term locator variable, as used in the syntax diagrams, shows a reference to a
locator variable. The meta-variable locator-variable can be expanded to include a host-
identifier the same as that for host-variable.

When the indicator variable associated with a locator is null, the value of the referenced
LOB is null.

If a locator-variable that does not currently represent any value is referenced, an error
is raised (SQLSTATE 0F001).

At transaction commit, or any transaction termination, all locators acquired by that
transaction are released.

References to BLOB, CLOB, and DBCLOB File Reference Variables
BLOB, CLOB, and DBCLOB file reference variables are used for direct file input and
output for LOBs, and can be defined in all host languages. Since these are not native
data types, SQL extensions are used and the precompilers generate the host language
constructs necessary to represent each variable. In the case of REXX, LOBs are
mapped to strings.

A file reference variable represents (rather than contains) the file, just as a LOB locator
represents, rather than contains, the LOB bytes. Database queries, updates and inserts
may use file reference variables to store or to retrieve single column values.

A file reference variable has the following properties:

Data Type BLOB, CLOB, or DBCLOB. This property is specified when the
variable is declared.

Direction This must be specified by the application program at run time
(as part of the File Options value -see below). The direction is
one of:

¹ Input (used as a source of data on an EXECUTE state-
ment, an OPEN statement, an UPDATE statement, an
INSERT statement, or a DELETE statement).

¹ Output (used as the target of data on a FETCH statement
or a SELECT INTO statement).

98 SQL Reference

References to Host Variables

File name This must be specified by the application program at run time.
It is one of:

¹ The complete path name of the file (which is advised).
¹ A relative file name. If a relative file name is provided, it is

appended to the current path of the client process.

Within an application, a file should only be referenced in one
file reference variable.

File Name Length This must be specified by the application program at run time.
It is the length of the file name (in bytes).

File Options An application must assign one of a number of options to a file
reference variable before it makes use of that variable. Options
are set by an INTEGER value in a field in the file reference
variable structure. One of the following values must be speci-
fied for each file reference variable:

¹ Input (from client to server)

SQL_FILE_READ 22 This is a regular file that can be
opened, read and closed.

¹ Output (from server to client)

SQL_FILE_CREATE 23 Create a new file. If the file already
exists, it is an error.

SQL_FILE_OVERWRITE (Overwrite) 24 If an existing file
with the specified name exists, it is over-
written; otherwise a new file is created.

SQL_FILE_APPEND 25 If an existing file with the specified
name exists, the output is appended to it;
otherwise a new file is created.

Data Length This is unused on input. On output, the imple-
mentation sets the data length to the length of the
new data written to the file. The length is in bytes.

As with all other host variables, a file reference variable may have an associated indi-
cator variable.

Example of an Output File Reference Variable (in C)

Given a declare section is coded as:

22 SQL-FILE-READ in COBOL, sql_file_read in FORTRAN, READ in REXX.

23 SQL-FILE-CREATE in COBOL, sql_file_create in FORTRAN, CREATE in REXX.

24 SQL-FILE-OVERWRITE in COBOL, sql_file_overwrite in FORTRAN, OVERWRITE in REXX.

25 SQL-FILE-APPEND in COBOL, sql_file_append in FORTRAN, APPEND in REXX.

 Chapter 3. Language Elements 99

Functions

EXEC SQL BEGIN DECLARE SECTION

SQL TYPE IS CLOB_FILE hv_text_file;

 char hv_patent_title[64];

EXEC SQL END DECLARE SECTION

Following preprocessing this would be:

EXEC SQL BEGIN DECLARE SECTION

/* SQL TYPE IS CLOB_FILE hv_text_file; */

 struct {

unsigned long name_length; // File Name Length

 unsigned long data_length; // Data Length

unsigned long file_options; // File Options

char name[255]; // File Name

 } hv_text_file;

 char hv_patent_title[64];

EXEC SQL END DECLARE SECTION

Then, the following code can be used to select from a CLOB column in the data-
base into a new file referenced by :hv_text_file.

 strcpy(hv_text_file.name, "/u/gainer/papers/sigmod.94");

hv_text_file.name_length = strlen("/u/gainer/papers/sigmod.94");

hv_text_file.file_options = SQL_FILE_CREATE;

EXEC SQL SELECT content INTO :hv_text_file from papers

WHERE TITLE = 'The Relational Theory behind Juggling';

Example of an Input File Reference Variable (in C)

Given the same declare section as above, the following code can be used to insert
the data from a regular file referenced by :hv_text_file into a CLOB column.

 strcpy(hv_text_file.name, "/u/gainer/patents/chips.13");

hv_text_file.name_length = strlen("/u/gainer/patents/chips.13");

hv_text_file.file_options = SQL_FILE_READ:

strcpy(:hv_patent_title, "A Method for Pipelining Chip Consumption");

EXEC SQL INSERT INTO patents(title, text)

 VALUES(:hv_patent_title, :hv_text_file);

 Functions
A database function is a relationship between a set of input data values and a set of
result values. For example, the TIMESTAMP function can be passed input data values
of type DATE and TIME and the result is a TIMESTAMP. Functions can either be
built-in or user-defined.

¹ Built-in functions are provided with the database manager providing a single result
value and are identified as part of the SYSIBM schema. Examples of such func-
tions include column functions such as AVG, operator functions such as "+",
casting functions such as DECIMAL, and others such as SUBSTR.

100 SQL Reference

Functions

¹ User-defined functions are functions that are registered to a database in
SYSCAT.FUNCTIONS (using the CREATE FUNCTION statement). User-defined
functions are never part of the SYSIBM schema. One such set of functions is pro-
vided with the database manager in a schema called SYSFUN.

With user-defined functions, DB2 allows users and application developers to extend the
function of the database system by adding function definitions provided by users or
third party vendors to be applied in the database engine itself. This allows higher per-
formance than retrieving rows from the database and applying those functions on the
retrieved data to further qualify or to perform data reduction. Extending database func-
tions also lets the database exploit the same functions in the engine that an application
uses, provides more synergy between application and database, and contributes to
higher productivity for application developers because it is more object-oriented.

A complete list of functions in the SYSIBM and SYSFUN schemas is documented in
Table 13 on page 143.

A user-defined function can be external or sourced. An external function is defined to
the database with a reference to an object code library and a function within that library
that will be executed when the function is invoked. External functions can not be
column functions. A sourced function is defined to the database with a reference to
another built-in or user-defined function that is already known to the database. Sourced
functions can be scalar functions or column functions. They are very useful for sup-
porting the use of existing functions with user-defined types.

Each user-defined function is also categorized as a scalar, column or table function. A
scalar function is one which returns a single-valued answer each time it is called. For
example, the built-in function SUBSTR() is a scalar function. Scalar UDFs can be either
external or sourced. A column function is one which conceptually is passed a set of like
values (a column) and returns a single-valued answer from this set. These are also
sometimes called aggregating functions in DB2. An example of a column function is the
built-in function AVG(). An external column UDF cannot be defined to DB2, but a
column UDF which is sourced upon one of the built-in column functions can be defined.
This is useful for distinct types. For example if there is a distinct type SHOESIZE
defined with base type INTEGER, a UDF AVG(SHOESIZE) which is sourced on the
built-in function AVG(INTEGER) could be defined, and it would be a column function. A
table function is a function which returns a table to the SQL statement which references
it, and it may only be referenced in the FROM clause of a SELECT. Such a function
can be used to apply SQL language processing power to data which is not DB2 data,
or to convert such data into a DB2 table. It could, for example, take a file and convert it
to a table, sample data from the world-wide web and tabularize it, or access a Lotus
Notes database and return information about mail messages, such as the date, sender,
and the text of the message. This information can be joined with other tables in the
database. A table function can only be an external function (a table function cannot be
a sourced function).

A function is identified by its schema, a function name, the number of parameters and
the data types of its parameters. This is called a function signature which must be
unique within the database. There can be more than one function with the same name

 Chapter 3. Language Elements 101

Functions

in a schema provided that the number of parameters or the data types of the parame-
ters are different. A function name for which there are multiple function instances is
called an overloaded function. A function name can be overloaded within a schema, in
which case there is more than one function by that name in the schema (which of
necessity have different parameter types). A function name can also be overloaded in a
function path, in which case there is more than one function by that name in the path,
and these functions do not necessarily have different parameter types.

A function can be invoked by referring in an allowable context to the qualified name
(schema and function name) followed by the list of arguments enclosed in parentheses.
A function can also be invoked without the schema name resulting in a choice of pos-
sible functions in different schemas with the same or acceptable parameters. In this
case, the function path is used to assist in function resolution. The function path is a
list of schemas that are searched to identify a function with the same name, number of
parameters and acceptable data types. For static SQL statements, function path is
specified using the FUNCPATH bind option (see Command Reference for details). For
dynamic SQL statements, function path is the value of the CURRENT FUNCTION
PATH special register (see “CURRENT FUNCTION PATH” on page 85).

 Function Resolution
Given a function invocation, the database manager must decide which of the possible
functions with the same name is the “best” fit. This includes resolving functions from the
built-in and user-defined functions.

An argument is a value passed to a function upon invocation. When a function is
invoked in SQL, it is passed a list of zero or more arguments. They are positional in
that the semantics of an argument are determined by its position in the argument list. A
parameter is a formal definition of an input to a function. When a function is defined to
the database, either internally (the built-in functions) or by a user (user-defined func-
tions), its parameters (zero or more) are specified, the order of their definitions defining
their positions and thus their semantics. Therefore, every parameter is a particular
positional input of a function. On invocation, an argument corresponds to a particular
parameter by virtue of its position in the list of arguments.

The database manager uses the name of the function given in the invocation, the
number and data types of the arguments, all the functions with the same name in the
function path, and the data types of their corresponding parameters as the basis for
deciding whether or not to select a function. The following are the possible outcomes of
the decision process:

1. A particular function is deemed to be the best fit. For example, given the functions
named RISK in the schema TEST with signatures defined as:

 TEST.RISK(INTEGER)

 TEST.RISK(DOUBLE)

 a function path including the TEST schema and the following function reference
(where DB is a DOUBLE column):

SELECT ... RISK(DB) ...

102 SQL Reference

Functions

 then, the second RISK will be chosen.

The following function reference (where SI is a SMALLINT column):

SELECT ... RISK(SI) ...

 would choose the first RISK, since SMALLINT can be promoted to INTEGER and
is a better match than DOUBLE which is further down the precedence list (as
shown in Table 3 on page 61).

2. No function is deemed to be an acceptable fit. For example, given the same two
functions in the previous case and the following function reference (where C is a
CHAR(5) column):

SELECT ... RISK(C) ...

 the argument is inconsistent with the parameter of both RISK functions.

3. A particular function is selected based on the function path and the number and
data types of the arguments passed on invocation. For example, given functions
named RANDOM with signatures defined as:

 TEST.RANDOM(INTEGER)

 PROD.RANDOM(INTEGER)

 and a function path of:

 "TEST","PROD"

 Then the following function reference:

SELECT ... RANDOM(432) ...

 will choose TEST.RANDOM since both RANDOM functions are equally good
matches (exact matches in this particular case) and both schemas are in the path,
but TEST precedes PROD in the function path.

Method of Choosing the Best Fit
A comparison of the data types of the arguments with the defined data types of the
parameters of the functions under consideration forms the basis for the decision of
which function in a group of like-named functions is the "best fit". Note that the data
type of the result of the function or the type of function (column, scalar, or table) under
consideration does not enter into this determination.

Function resolution is done using the steps that follow.

1. First, find all functions from the catalog (SYSCAT.FUNCTIONS) and built-in func-
tions such that all of the following are true:

a. For invocations where the schema name was specified (i.e. qualified refer-
ences), then the schema name and the function name match the invocation
name.

b. For invocations where the schema name was not specified (i.e. unqualified ref-
erences), then the function name matches the invocation name and has a
schema name that matches one of the schemas in the function path.

c. The number of defined parameters matches the invocation.

 Chapter 3. Language Elements 103

Functions

d. Each invocation argument matches the function’s corresponding defined
parameter in data type, or is “promotable” to it (see “Promotion of Data Types”
on page 61).

2. Next, consider each argument of the function invocation, from left to right. For each
argument, eliminate all functions that are not the best match for that argument. The
best match for a given argument is the first data type appearing in the precedence
list corresponding to the argument data type in Table 3 on page 61 for which there
exists a function with a parameter of that data type. Lengths, precisions, scales
and the "FOR BIT DATA" attribute are not considered in this comparison. For
example, a DECIMAL(9,1) argument is considered an exact match for a
DECIMAL(6,5) parameter, and a VARCHAR(19) argument is an exact match for a
VARCHAR(6) parameter.

3. If more than one candidate function remains after Step 2, then it has to be the
case (the way the algorithm works) that all the remaining candidate functions have
identical signatures but are in different schemas. Choose the function whose
schema is earliest in the user’s function path.

4. If there are no candidate functions remaining after step 2, an error is returned
(SQLSTATE 42884).

Function Path Considerations for Built-in Functions
Built-in functions reside in a special schema called SYSIBM. Additional functions are
available in the SYSFUN schema which are not considered built-in functions since they
are developed as user-defined functions and have no special processing consider-
ations. Users can not define additional functions in SYSIBM or SYSFUN schemas (or in
any schema whose name begins with the letters “SYS”).

As already stated, the built-in functions participate in the function resolution process
exactly as do the user-defined functions. One difference between built-in and user-
defined functions, from a function resolution perspective, is that the built-in function
must always be considered by function resolution. Therefore, omission of SYSIBM from
the path results in an assumption for function and data type resolution that SYSIBM is
the first schema on the path.

For example, if a user’s function path is defined as:

 "SHAREFUN","SYSIBM","SYSFUN"

 and there is a LENGTH function defined in schema SHAREFUN with the same number
and types of arguments as SYSIBM.LENGTH, then an unqualified reference to
LENGTH in this user’s SQL statement will result in selecting SHAREFUN.LENGTH.
However, if the user’s function path is defined as:

 "SHAREFUN","SYSFUN"

 and the same SHAREFUN.LENGTH function exists, then an unqualified reference to
LENGTH in this user’s SQL statement will result in selecting SYSIBM.LENGTH since
SYSIBM is implicitly first in the path because it was not specified. It is possible to mini-
mize potential problems in this area by:

104 SQL Reference

Functions

¹ never using the names of built-in functions for user-defined functions, or
¹ qualifying any references to these functions, if for some reason it is deemed neces-

sary to create a user-defined function with the same name as a built-in function.

Example of Function Resolution
The following is an example of successful function resolution.

There are six FOO functions, in two different schemas, registered as (note that not all
required keywords appear):

 CREATE FUNCTION AUGUSTUS.FOO (CHAR(5), INT, DOUBLE) SPECIFIC FOO_1 ...

 CREATE FUNCTION AUGUSTUS.FOO (INT, INT, DOUBLE) SPECIFIC FOO_2 ...

 CREATE FUNCTION AUGUSTUS.FOO (INT, INT, DOUBLE, INT) SPECIFIC FOO_3 ...

 CREATE FUNCTION JULIUS.FOO (INT, DOUBLE, DOUBLE) SPECIFIC FOO_4 ...

 CREATE FUNCTION JULIUS.FOO (INT, INT, DOUBLE) SPECIFIC FOO_5 ...

 CREATE FUNCTION JULIUS.FOO (SMALLINT, INT, DOUBLE) SPECIFIC FOO_6 ...

 CREATE FUNCTION NERO.FOO (INT, INT, DEC(7,2)) SPECIFIC FOO_7 ...

 The function reference is as follows (where I1 and I2 are INTEGER columns, and D is
a DECIMAL column):

SELECT ... FOO(I1, I2, D) ...

 Assume that the application making this reference has a function path established as:

 "JULIUS","AUGUSTUS","CAESAR"

Following through the algorithm...

FOO_7 is eliminated as a candidate, because the schema "NERO" is not included
in the function path.
FOO_3 is eliminated as a candidate, because it has the wrong number of parame-
ters. FOO_1 and FOO_6 are eliminated because in both cases the first argument
cannot be promoted to the data type of the first parameter.
Because there is more than one candidate remaining, the arguments are then con-
sidered in order.
For the first argument, all remaining functions — FOO_2, FOO_4 and FOO_5 are
an exact match with the argument type. No functions can be eliminated from con-
sideration, therefore the next argument must be examined.
For this second argument, FOO_2 and FOO_5 are exact matches while FOO_4 is
not, so it is eliminated from consideration. The next argument is examined to deter-
mine some differentiation between FOO_2 and FOO_5.
On the third and last argument, neither FOO_2 nor FOO_5 match the argument
type exactly, but both are equally good.
There are two functions remaining, FOO_2 and FOO_5, with identical parameter
signatures. The final tie-breaker is to see which function’s schema comes first in
the function path, and on this basis FOO_5 is finally chosen.

 Function Invocation
Once the function is selected, there are still possible reasons why the use of the func-
tion may not be permitted. Each function is defined to return a result with a specific
data type. If this result data type is not compatible with the context in which the function

 Chapter 3. Language Elements 105

Functions

is invoked, an error will occur. For example, given functions named STEP defined, this
time, with different data types as the result:

STEP(SMALLINT) returns CHAR(5)

 STEP(DOUBLE) returns INTEGER

and the following function reference (where S is a SMALLINT column):

SELECT ... 3 + STEP(S) ...

then, because there is an exact match on argument type, the first STEP is chosen. An
error occurs on the statement because the result type is CHAR(5) instead of a numeric
type as required for an argument of the addition operator.

A couple of other examples where this can happen are as follows, both of which will
result in an error on the statement:

1. The function was referenced in a FROM clause, but the function selected by the
function resolution step was a scalar or column function.

2. The reverse case, where the context calls for a scalar or column function, and
function resolution selects a table function.

In cases where the arguments of the function invocation were not an exact match to the
data types of the parameters of the selected function, the arguments are converted to
the data type of the parameter at execution using the same rules as assignment to
columns (see “Assignments and Comparisons” on page 64). This includes the case
where precision, scale, or length differs between the argument and the parameter.

106 SQL Reference

Expressions

 Expressions

 ┌ ┐─operator──────────────────────────
55─ ───6 ┴──┬ ┬───── ──┬ ┬─function───────────── ───5%

├ ┤─ + ─ ├ ┤─(expression)─────────
└ ┘─ – ─ ├ ┤─constant─────────────

 ├ ┤─column-name──────────
 ├ ┤─host-variable────────
 ├ ┤─special-register─────
 ├ ┤─(scalar-fullselect)──
 ├ ┤─labeled-duration───(1) ──
 ├ ┤─case-expression───(2) ───
 └ ┘─cast-specification───(3)

operator:
├─ ──┬ ┬─CONCAT───(4) ──┤

├ ┤─ / ──────
├ ┤─ * ──────
├ ┤─ + ──────
└ ┘─ – ──────

Notes:
1 See “Labeled Durations” on page 113 for more information.
2 See “CASE Expressions” on page 119 for more information.
3 See “CAST Specifications” on page 121 for more information.
4 || may be used as a synonym for CONCAT.

An expression specifies a value.

A scalar fullselect as supported in an expression is a fullselect, enclosed in paren-
theses, that returns a single row consisting of a single column. If the fullselect does not
return a row, the result of the expression is the null value. See “fullselect” on page 319
for more information.

 Without Operators
If no operators are used, the result of the expression is the specified value.

Examples: SALARY :SALARY 'SALARY' MAX(SALARY)

With the Concatenation Operator
The concatenation operator (CONCAT) links two string operands to form a string
expression.

The operands of concatenation must be compatible strings. Note that a binary string
cannot be concatenated with a character string, including character strings defined as
FOR BIT DATA (SQLSTATE 42884). For more information on compatibility, refer to the
compatibility matrix on page Table 5 on page 65.

 Chapter 3. Language Elements 107

Expressions

If either operand can be null, the result can be null, and if either is null, the result is the
null value. Otherwise, the result consists of the first operand string followed by the
second. Note that no check is made for improperly formed mixed data when doing con-
catenation.

The length of the result is the sum of the lengths of the operands.

The data type and length attribute of the result is determined from that of the operands
as shown in the following table:

Table 8 (Page 1 of 2). Data Type and Length of Concatenated Operands

Operands

Combined
Length
Attributes Result

CHAR(A) CHAR(B) <255 CHAR(A+B)

CHAR(A) CHAR(B) >254 VARCHAR(A+B)

CHAR(A) VARCHAR(B) <4001 VARCHAR(A+B)

CHAR(A) VARCHAR(B) >4000 LONG VARCHAR

CHAR(A) LONG VARCHAR - LONG VARCHAR

VARCHAR(A) VARCHAR(B) <4001 VARCHAR(A+B)

VARCHAR(A) VARCHAR(B) >4000 LONG VARCHAR

VARCHAR(A) LONG VARCHAR - LONG VARCHAR

LONG VARCHAR LONG VARCHAR - LONG VARCHAR

CLOB(A) CHAR(B) - CLOB(MIN(A+B, 2G))

CLOB(A) VARCHAR(B) - CLOB(MIN(A+B, 2G))

CLOB(A) LONG VARCHAR - CLOB(MIN(A+32K, 2G))

CLOB(A) CLOB(B) - CLOB(MIN(A+B, 2G))

GRAPHIC(A) GRAPHIC(B) <128 GRAPHIC(A+B)

GRAPHIC(A) GRAPHIC(B) >127 VARGRAPHIC(A+B)

GRAPHIC(A) VARGRAPHIC(B) <2001 VARGRAPHIC(A+B)

GRAPHIC(A) VARGRAPHIC(B) >2000 LONG VARGRAPHIC

GRAPHIC(A) LONG VARGRAPHIC - LONG VARGRAPHIC

VARGRAPHIC(A) VARGRAPHIC(B) <2001 VARGRAPHIC(A+B)

VARGRAPHIC(A) VARGRAPHIC(B) >2000 LONG VARGRAPHIC

VARGRAPHIC(A) LONG VARGRAPHIC - LONG VARGRAPHIC

LONG VARGRAPHIC LONG VARGRAPHIC - LONG VARGRAPHIC

DBCLOB(A) GRAPHIC(B) - DBCLOB(MIN(A+B, 1G))

DBCLOB(A) VARGRAPHIC(B) - DBCLOB(MIN(A+B, 1G))

108 SQL Reference

Expressions

Note that, for compatibility with previous versions, there is no automatic escalation of
results involving LONG data types to LOB data types. For example, concatenation of a
CHAR(200) value and a completely full LONG VARCHAR value would result in an error
rather than in a promotion to a CLOB data type.

The code page of the result is considered a derived code page and is determined by
the code page of its operands as explained in “Rules for String Conversions” on
page 76.

One operand may be a parameter marker. If a parameter marker is used, then the data
type and length attributes of that operand are considered to be the same as those for
the non-parameter marker operand. The order of operations must be considered to
determine these attributes in cases with nested concatenation.

Example 1: If FIRSTNME is Pierre and LASTNAME is Fermat, then the following :

FIRSTNME CONCAT ' ' CONCAT LASTNAME

returns the value Pierre Fermat

Example 2: Given:

COLA defined as VARCHAR(5) with value 'AA'
:host_var defined as a character host variable with length 5 and value 'BB '

COLC defined as CHAR(5) with value 'CC'
COLD defined as CHAR(5) with value 'DDDDD'

The value of: COLA CONCAT :host_var CONCAT COLC CONCAT COLD is:

'AABB CC DDDDD'

The data type is VARCHAR, the length attribute is 17 and the result code page is the
database code page.

Example 3: Given:

COLA is defined as CHAR(10)
COLB is defined as VARCHAR(5)

The parameter marker in the expression:

Table 8 (Page 2 of 2). Data Type and Length of Concatenated Operands

Operands

Combined
Length
Attributes Result

DBCLOB(A) LONG VARGRAPHIC - DBCLOB(MIN(A+16K, 1G))

DBCLOB(A) DBCLOB(B) - DBCLOB(MIN(A+B, 1G))

BLOB(A) BLOB(B) - BLOB(MIN(A+B, 2G))

 Chapter 3. Language Elements 109

Expressions

COLA CONCAT COLB CONCAT ?

is considered VARCHAR(15) since COLA CONCAT COLB is evaluated first giving a result
which is the first operand of the second CONCAT operation.

 User-defined Types
A user-defined type cannot be used with the concatenation operator even if its source
data type is character. To concatenate, create a function with the CONCAT operator as
its source. For example, if there were distinct types TITLE and TITLE_DESCRIPTION,
both of which had VARCHAR(25) data types, then the following user-defined function,
ATTACH, could be used to concatenate them.

CREATE FUNCTION ATTACH (TITLE, TITLE_DESCRIPTION)

RETURNS VARCHAR(50) SOURCE CONCAT (VARCHAR(), VARCHAR())

Alternately, the concatenation operator could be overloaded using a user-defined func-
tion to add the new data types.

CREATE FUNCTION CONCAT (TITLE, TITLE_DESCRIPTION)

RETURNS VARCHAR(50) SOURCE CONCAT (VARCHAR(), VARCHAR())

With Arithmetic Operators
If arithmetic operators are used, the result of the expression is a value derived from the
application of the operators to the values of the operands.

If any operand can be null, or the database is configured with DFT_SQLMATHWARN
set to yes, the result can be null.

If any operand has the null value, the result of the expression is the null value.

Arithmetic operators must not be applied to character strings. For example, USER+2 is
invalid.

The prefix operator + (unary plus) does not change its operand. The prefix operator −
(unary minus) reverses the sign of a nonzero operand; and if the data type of A is small
integer, then the data type of −A is large integer. The first character of the token fol-
lowing a prefix operator must not be a plus or minus sign.

The infix operators +, −, *, and / specify addition, subtraction, multiplication, and divi-
sion, respectively. The value of the second operand of division must not be zero. These
operators can also be treated as functions. Thus, the expression "+"(a,b) is equivalent
to the expression a+b. “operator” function.

 Arithmetic Errors
If an arithmetic error such as zero divide or a numeric overflow occurs during the proc-
essing of an expression, an error is returned and the SQL statement processing the
expression fails with an error (SQLSTATE 22003 or 22012).

A database can be configured (using DFT_SQLMATHWARN set to yes) so that arith-
metic errors return a null value for the expression, issue a warning (SQLSTATE 01519

110 SQL Reference

Expressions

or 01564), and proceed with processing of the SQL statement. When arithmetic errors
are treated as nulls, there are implications on the results of SQL statements. The fol-
lowing are some examples of these implications.

¹ An arithmetic error that occurs in the expression that is the argument of a column
function causes the row to be ignored in the determining the result of the column
function. If the arithmetic error was an overflow, this may significantly impact the
result values.

¹ An arithmetic error that occurs in the expression of a predicate in a WHERE clause
can cause rows to not be included in the result.

¹ An arithmetic error that occurs in the expression of a predicate in a check con-
straint results in the update or insert proceeding since the constraint is not false.

If these types of impacts are not acceptable, additional steps should be taken to handle
the arithmetic error to produce acceptable results. Some examples are:

¹ add a case expression to check for zero divide and set the desired value for such
a situation

¹ add additional predicates to handle nulls (like a check constraint on not nullable
columns could become:

check (c1*c2 is not null and c1*c2>5000)

 to cause the constraint to be violated on an overflow).

Two Integer Operands
If both operands of an arithmetic operator are integers, the operation is performed in
binary and the result is a large integer. Any remainder of division is lost. The result of
an integer arithmetic operation (including unary minus) must be within the range of
large integers.

Integer and Decimal Operands
If one operand is an integer and the other is a decimal, the operation is performed in
decimal using a temporary copy of the integer which has been converted to a decimal
number with precision p and scale 0. p is 11 for a large integer and 5 for a small
integer.

Two Decimal Operands
If both operands are decimal, the operation is performed in decimal. The result of any
decimal arithmetic operation is a decimal number with a precision and scale that are
dependent on the operation and the precision and scale of the operands. If the opera-
tion is addition or subtraction and the operands do not have the same scale, the opera-
tion is performed with a temporary copy of one of the operands. The copy of the shorter
operand is extended with trailing zeros so that its fractional part has the same number
of digits as the longer operand.

The result of a decimal operation must not have a precision greater than 31. The result
of decimal addition, subtraction, and multiplication is derived from a temporary result

 Chapter 3. Language Elements 111

Expressions

which may have a precision greater than 31. If the precision of the temporary result is
not greater than 31, the final result is the same as the temporary result.

Decimal Arithmetic in SQL
The following formulas define the precision and scale of the result of decimal operations
in SQL. The symbols p and s denote the precision and scale of the first operand, and
the symbols p' and s' denote the precision and scale of the second operand.

Addition and Subtraction
The precision is min(31,max(p-s,p'-s') +max(s,s')+1). The scale of the result of addition
and subtraction is max (s,s').

 Multiplication
The precision of the result of multiplication is min (31,p+p') and the scale is
min(31,s+s').

 Division
The precision of the result of division is 31. The scale is 31-p+s-s'. The scale must not
be negative.

 Floating-Point Operands
If either operand of an arithmetic operator is floating-point, the operation is performed in
floating-point, the operands having first been converted to double-precision floating-
point numbers, if necessary. Thus, if any element of an expression is a floating-point
number, the result of the expression is a double-precision floating-point number.

An operation involving a floating-point number and an integer is performed with a tem-
porary copy of the integer which has been converted to double-precision floating-point.
An operation involving a floating-point number and a decimal number is performed with
a temporary copy of the decimal number which has been converted to double-precision
floating-point. The result of a floating-point operation must be within the range of
floating-point numbers.

User-defined Types as Operands
A user-defined type cannot be used with arithmetic operators even if its source data
type is numeric. To perform an arithmetic operation, create a function with the arith-
metic operator as its source. For example, if there were distinct types INCOME and
EXPENSES, both of which had DECIMAL(8,2) data types, then the following user-
defined function, REVENUE, could be used to subtract one from the other.

CREATE FUNCTION REVENUE (INCOME, EXPENSES)

RETURNS DECIMAL(8,2) SOURCE "-" (DECIMAL, DECIMAL)

Alternately, the - (minus) operator could be overloaded using a user-defined function to
subtract the new data types.

CREATE FUNCTION "-" (INCOME, EXPENSES)

RETURNS DECIMAL(8,2) SOURCE "-" (DECIMAL, DECIMAL)

112 SQL Reference

Expressions

Datetime Operations and Durations
Datetime values can be incremented, decremented, and subtracted. These operations
may involve decimal numbers called durations. Following is a definition of durations and
a specification of the rules for datetime arithmetic.

A duration is a number representing an interval of time. There are four types of
durations:

 Labeled Durations

labeled-duration:
├─ ──┬ ┬─function────── ──┬ ┬─YEAR───────── ───┤
 ├ ┤─(expression)── ├ ┤─YEARS────────
 ├ ┤─constant────── ├ ┤─MONTH────────
 ├ ┤─column-name─── ├ ┤─MONTHS───────
 └ ┘─host-variable─ ├ ┤─DAY──────────
 ├ ┤─DAYS─────────
 ├ ┤─HOUR─────────
 ├ ┤─HOURS────────
 ├ ┤─MINUTE───────
 ├ ┤─MINUTES──────
 ├ ┤─SECOND───────
 ├ ┤─SECONDS──────
 ├ ┤─MICROSECOND──
 └ ┘─MICROSECONDS─

A labeled duration represents a specific unit of time as expressed by a number (which
can be the result of an expression) followed by one of the seven duration keywords:
YEARS, MONTHS, DAYS, HOURS, MINUTES, SECONDS, or MICROSECONDS26 .
The number specified is converted as if it were assigned to a DECIMAL(15,0) number.
A labeled duration can only be used as an operand of an arithmetic operator in which
the other operand is a value of data type DATE, TIME, or TIMESTAMP. Thus, the
expression HIREDATE + 2 MONTHS + 14 DAYS is valid, whereas the expression
HIREDATE + (2 MONTHS + 14 DAYS) is not. In both of these expressions, the labeled
durations are 2 MONTHS and 14 DAYS.

 Date Duration
A date duration represents a number of years, months, and days, expressed as a
DECIMAL(8,0) number. To be properly interpreted, the number must have the format
yyyymmdd., where yyyy represents the number of years, mm the number of months,
and dd the number of days. 27 The result of subtracting one date value from another, as
in the expression HIREDATE − BRTHDATE, is a date duration.

26 Note that the singular form of these keywords is also acceptable: YEAR, MONTH, DAY, HOUR, MINUTE, SECOND, and MICRO-
SECOND.

27 The period in the format indicates a DECIMAL data type.

 Chapter 3. Language Elements 113

Expressions

 Time Duration
A time duration represents a number of hours, minutes, and seconds, expressed as a
DECIMAL(6,0) number. To be properly interpreted, the number must have the format
hhmmss., where hh represents the number of hours, mm the number of minutes, and
ss the number of seconds. 27 The result of subtracting one time value from another is a
time duration.

 Timestamp duration
A timestamp duration represents a number of years, months, days, hours, minutes,
seconds, and microseconds, expressed as a DECIMAL(20,6) number. To be properly
interpreted, the number must have the format yyyymmddhhmmss.zzzzzz, where yyyy,
mm, dd, hh, mm, ss, and zzzzzz represent, respectively, the number of years, months,
days, hours, minutes, seconds, and microseconds. The result of subtracting one
timestamp value from another is a timestamp duration.

Datetime Arithmetic in SQL
The only arithmetic operations that can be performed on datetime values are addition
and subtraction. If a datetime value is the operand of addition, the other operand must
be a duration. The specific rules governing the use of the addition operator with
datetime values follow.

¹ If one operand is a date, the other operand must be a date duration or labeled
duration of YEARS, MONTHS, or DAYS.

¹ If one operand is a time, the other operand must be a time duration or a labeled
duration of HOURS, MINUTES, or SECONDS.

¹ If one operand is a timestamp, the other operand must be a duration. Any type of
duration is valid.

¹ Neither operand of the addition operator can be a parameter marker.

The rules for the use of the subtraction operator on datetime values are not the same
as those for addition because a datetime value cannot be subtracted from a duration,
and because the operation of subtracting two datetime values is not the same as the
operation of subtracting a duration from a datetime value. The specific rules governing
the use of the subtraction operator with datetime values follow.

¹ If the first operand is a date, the second operand must be a date, a date duration,
a string representation of a date, or a labeled duration of YEARS, MONTHS, or
DAYS.

¹ If the second operand is a date, the first operand must be a date, or a string repre-
sentation of a date.

¹ If the first operand is a time, the second operand must be a time, a time duration, a
string representation of a time, or a labeled duration of HOURS, MINUTES, or
SECONDS.

¹ If the second operand is a time, the first operand must be a time, or string repre-
sentation of a time.

114 SQL Reference

Expressions

¹ If the first operand is a timestamp, the second operand must be a timestamp, a
string representation of a timestamp, or a duration.

¹ If the second operand is a timestamp, the first operand must be a timestamp or a
string representation of a timestamp.

¹ Neither operand of the subtraction operator can be a parameter marker.

 Date Arithmetic
Dates can be subtracted, incremented, or decremented.

Subtracting Dates: The result of subtracting one date (DATE2) from another (DATE1)
is a date duration that specifies the number of years, months, and days between the
two dates. The data type of the result is DECIMAL(8,0). If DATE1 is greater than or
equal to DATE2, DATE2 is subtracted from DATE1. If DATE1 is less than DATE2,
however, DATE1 is subtracted from DATE2, and the sign of the result is made nega-
tive. The following procedural description clarifies the steps involved in the operation
result = DATE1 − DATE2.

If DAY(DATE2) <= DAY(DATE1)
then DAY(RESULT) = DAY(DATE1) – DAY(DATE2).

If DAY(DATE2) > DAY(DATE1)
then DAY(RESULT) = N + DAY(DATE1) – DAY(DATE2)

where N = the last day of MONTH(DATE2).

MONTH(DATE2) is then incremented by 1.

If MONTH(DATE2) <= MONTH(DATE1)
then MONTH(RESULT) = MONTH(DATE1) - MONTH(DATE2).

If MONTH(DATE2) > MONTH(DATE1)
then MONTH(RESULT) = 12 + MONTH(DATE1) – MONTH(DATE2).

YEAR(DATE2) is then incremented by 1.

YEAR(RESULT) = YEAR(DATE1) − YEAR(DATE2).

For example, the result of DATE('3/15/2000') − '12/31/1999' is 00000215. (or, a dura-
tion of 0 years, 2 months, and 15 days).

Incrementing and Decrementing Dates: The result of adding a duration to a date, or
of subtracting a duration from a date, is itself a date. (For the purposes of this opera-
tion, a month denotes the equivalent of a calendar page. Adding months to a date,
then, is like turning the pages of a calendar, starting with the page on which the date
appears.) The result must fall between the dates January 1, 0001 and December 31,
9999 inclusive.

If a duration of years is added or subtracted, only the year portion of the date is
affected. The month is unchanged, as is the day unless the result would be February
29 of a non-leap-year. In this case, the day is changed to 28, and a warning indicator in
the SQLCA is set to indicate the adjustment.

Similarly, if a duration of months is added or subtracted, only months and, if necessary,
years are affected. The day portion of the date is unchanged unless the result would be

 Chapter 3. Language Elements 115

Expressions

invalid (September 31, for example). In this case, the day is set to the last day of the
month, and a warning indicator in the SQLCA is set to indicate the adjustment.

Adding or subtracting a duration of days will, of course, affect the day portion of the
date, and potentially the month and year.

Date durations, whether positive or negative, may also be added to and subtracted from
dates. As with labeled durations, the result is a valid date, and a warning indicator is
set in the SQLCA whenever an end-of-month adjustment is necessary.

When a positive date duration is added to a date, or a negative date duration is sub-
tracted from a date, the date is incremented by the specified number of years, months,
and days, in that order. Thus, DATE1 + X, where X is a positive DECIMAL(8,0)
number, is equivalent to the expression:

DATE1 + YEAR(X) YEARS + MONTH(X) MONTHS + DAY(X) DAYS.

When a positive date duration is subtracted from a date, or a negative date duration is
added to a date, the date is decremented by the specified number of days, months, and
years, in that order. Thus, DATE1 − X, where X is a positive DECIMAL(8,0) number, is
equivalent to the expression:

DATE1 − DAY(X) DAYS − MONTH(X) MONTHS − YEAR(X) YEARS.

When adding durations to dates, adding one month to a given date gives the same
date one month later unless that date does not exist in the later month. In that case,
the date is set to that of the last day of the later month. For example, January 28 plus
one month gives February 28; and one month added to January 29, 30, or 31 results in
either February 28 or, for a leap year, February 29.

Note: If one or more months is added to a given date and then the same number of
months is subtracted from the result, the final date is not necessarily the same
as the original date.

 Time Arithmetic
Times can be subtracted, incremented, or decremented.

Subtracting Times: The result of subtracting one time (TIME2) from another (TIME1)
is a time duration that specifies the number of hours, minutes, and seconds between
the two times. The data type of the result is DECIMAL(6,0).

If TIME1 is greater than or equal to TIME2, TIME2 is subtracted from TIME1.

If TIME1 is less than TIME2, however, TIME1 is subtracted from TIME2, and the sign of
the result is made negative. The following procedural description clarifies the steps
involved in the operation result = TIME1 − TIME2.

If SECOND(TIME2) <= SECOND(TIME1)
then SECOND(RESULT) = SECOND(TIME1) – SECOND(TIME2).

116 SQL Reference

Expressions

If SECOND(TIME2) > SECOND(TIME1)
then SECOND(RESULT) = 60 + SECOND(TIME1) – SECOND(TIME2).

MINUTE(TIME2) is then incremented by 1.

If MINUTE(TIME2) <= MINUTE(TIME1)
then MINUTE(RESULT) = MINUTE(TIME1) – MINUTE(TIME2).

If MINUTE(TIME1) > MINUTE(TIME1)
then MINUTE(RESULT) = 60 + MINUTE(TIME1) – MINUTE(TIME2).

HOUR(TIME2) is then incremented by 1.

HOUR(RESULT) = HOUR(TIME1) − HOUR(TIME2).

For example, the result of TIME('11:02:26') − '00:32:56' is 102930. (a duration of 10
hours, 29 minutes, and 30 seconds).

Incrementing and Decrementing Times: The result of adding a duration to a time, or
of subtracting a duration from a time, is itself a time. Any overflow or underflow of hours
is discarded, thereby ensuring that the result is always a time. If a duration of hours is
added or subtracted, only the hours portion of the time is affected. The minutes and
seconds are unchanged.

Similarly, if a duration of minutes is added or subtracted, only minutes and, if neces-
sary, hours are affected. The seconds portion of the time is unchanged.

Adding or subtracting a duration of seconds will, of course, affect the seconds portion of
the time, and potentially the minutes and hours.

Time durations, whether positive or negative, also can be added to and subtracted from
times. The result is a time that has been incremented or decremented by the specified
number of hours, minutes, and seconds, in that order. TIME1 + X, where “X” is a
DECIMAL(6,0) number, is equivalent to the expression:

TIME1 + HOUR(X) HOURS + MINUTE(X) MINUTES + SECOND(X) SECONDS

Note: Although the time '24:00:00' is accepted as a valid time, it is never returned as
the result of time addition or subtraction, even if the duration operand is zero
(e.g. time('24:00:00')±0 seconds = '00:00:00').

 Timestamp Arithmetic
Timestamps can be subtracted, incremented, or decremented.

Subtracting Timestamps: The result of subtracting one timestamp (TS2) from
another (TS1) is a timestamp duration that specifies the number of years, months,
days, hours, minutes, seconds, and microseconds between the two timestamps. The
data type of the result is DECIMAL(20,6).

If TS1 is greater than or equal to TS2, TS2 is subtracted from TS1. If TS1 is less than
TS2, however, TS1 is subtracted from TS2 and the sign of the result is made negative.
The following procedural description clarifies the steps involved in the operation result =
TS1 − TS2:

 Chapter 3. Language Elements 117

Expressions

If MICROSECOND(TS2) <= MICROSECOND(TS1)
then MICROSECOND(RESULT) = MICROSECOND(TS1) –

 MICROSECOND(TS2).

If MICROSECOND(TS2) > MICROSECOND(TS1)
then MICROSECOND(RESULT) = 1000000 +

MICROSECOND(TS1) – MICROSECOND(TS2)

and SECOND(TS2) is incremented by 1.

The seconds and minutes part of the timestamps are subtracted as specified in the
rules for subtracting times.

If HOUR(TS2) <= HOUR(TS1)
then HOUR(RESULT) = HOUR(TS1) – HOUR(TS2).

If HOUR(TS2) > HOUR(TS1)
then HOUR(RESULT) = 24 + HOUR(TS1) – HOUR(TS2)

and DAY(TS2) is incremented by 1.

The date part of the timestamps is subtracted as specified in the rules for subtracting
dates.

Incrementing and Decrementing Timestamps: The result of adding a duration to a
timestamp, or of subtracting a duration from a timestamp is itself a timestamp. Date and
time arithmetic is performed as previously defined, except that an overflow or underflow
of hours is carried into the date part of the result, which must be within the range of
valid dates. Microseconds overflow into seconds.

Precedence of Operations
Expressions within parentheses are evaluated first.28 When the order of evaluation is
not specified by parentheses, prefix operators are applied before multiplication and divi-
sion, and multiplication and division are applied before addition and subtraction. Opera-
tors at the same precedence level are applied from left to right.

1 4 32

1.10 (Salary + Bonus) + Salary / :VAR3*

Figure 10.

28 Note that parentheses are also used in subselect statements, search conditions, and functions. However, they should not be used to
arbitrarily group sections within SQL statements.

118 SQL Reference

Expressions

 CASE Expressions

case-expression:
 ┌ ┐─ELSE NULL───────────────
├─ ─CASE─ ──┬ ┬─searched-when-clause─ ──┼ ┼───────────────────────── ─END───────┤
 └ ┘─simple-when-clause─── └ ┘ ─ELSE──result-expression─

searched-when-clause:
 ┌ ┐───
├─ ───6 ┴─WHEN──search-condition──THEN─ ──┬ ┬─result-expression─ ───────────────┤
 └ ┘─NULL──────────────

simple-when-clause:
 ┌ ┐───
├──expression─ ───6 ┴─WHEN──expression──THEN─ ──┬ ┬─result-expression─ ─────────┤
 └ ┘─NULL──────────────

CASE expressions allow an expression to be selected based on the evaluation of one
or more conditions. In general, the value of the case-expression is the value of the
result-expression following the first (leftmost) case that evaluates to true. If no case
evaluates to true and the ELSE keyword is present then the result is the value of the
result-expression or NULL. If no case evaluates to true and the ELSE keyword is not
present then the result is NULL. Note that when a case evaluates to unknown (because
of NULLs), the case is not true and hence is treated the same way as a case that
evaluates to false.

If the CASE expression is in a select list, a VALUES clause, an IN predicate, a GROUP
BY clause, or an ORDER BY clause, the search-condition in a searched-when-clause
cannot be a quantified predicate, IN predicate using a fullselect, or an EXISTS predi-
cate (SQLSTATE: 42625).

When using the simple-when-clause, the value of the expression prior to the first
WHEN keyword is tested for equality with the value of the expression following the
WHEN keyword. The data type of the expression prior to the first WHEN keyword must
therefore be comparable to the data types of each expression following the WHEN
keyword(s). The expression prior to the first WHEN keyword in a simple-when-clause
cannot include a function that is variant or has an external action (SQLSTATE 42845).

A result-expression is an expression following the THEN or ELSE keywords. There
must be at least one result-expression in the CASE expression (NULL cannot be speci-
fied for every case) (SQLSTATE 42625). All result-expressions must have compatible
data types (SQLSTATE 42804), where the attributes of the result are determined based
on the “Rules for Result Data Types” on page 74.

 Examples:
¹ If the first character of a department number is a division in the organization, then

a CASE expression can be used to list the full name of the division to which each
employee belongs:

 Chapter 3. Language Elements 119

Expressions

 SELECT EMPNO, LASTNAME,

 CASE SUBSTR(WORKDEPT,1,1)

WHEN 'A' THEN 'Administration'

WHEN 'B' THEN 'Human Resources'

WHEN 'C' THEN 'Accounting'

WHEN 'D' THEN 'Design'

WHEN 'E' THEN 'Operations'

 END

 FROM EMPLOYEE;

¹ The number of years of education are used in the EMPLOYEE table to give the
education level. A CASE expression can be used to group these and to show the
level of education.

 SELECT EMPNO, FIRSTNME, MIDINIT, LASTNAME,

 CASE

WHEN EDLEVEL < 15 THEN 'SECONDARY'

WHEN EDLEVEL < 19 THEN 'COLLEGE'

ELSE 'POST GRADUATE'

 END

 FROM EMPLOYEE

¹ Another interesting example of CASE statement usage is in protecting from division
by 0 errors. For example, the following code finds the employees who earn more
than 25% of their income from commission, but who are not fully paid on
commission:

 SELECT EMPNO, WORKDEPT, SALARY+COMM FROM EMPLOYEE

 WHERE (CASE WHEN SALARY=0 THEN NULL

 ELSE COMM/SALARY

END) > 0.25;

¹ The following CASE expressions are the same:

 SELECT LASTNAME,

 CASE

WHEN LASTNAME = 'Haas' THEN 'President'

 ...

 SELECT LASTNAME,

 CASE LASTNAME

WHEN 'Haas' THEN 'President'

 ...

There are two scalar functions, NULLIF and COALESCE, that are specialized to handle
a subset of the functionality provided by CASE. Table 9 shows the equivalent
expressions using CASE or these functions.

Table 9 (Page 1 of 2). Equivalent CASE Expressions

Expression Equivalent Expression

CASE WHEN e1=e2 THEN NULL ELSE e1 END NULLIF(e1,e2)

CASE WHEN e1 IS NOT NULL THEN e1 ELSE e2 END COALESCE(e1,e2)

120 SQL Reference

Expressions

Table 9 (Page 2 of 2). Equivalent CASE Expressions

Expression Equivalent Expression

CASE WHEN e1 IS NOT NULL THEN e1 ELSE
COALESCE(e2,...,eN) END

COALESCE(e1,e2,...,eN)

 CAST Specifications

cast-specification:
├──CAST──(─ ──┬ ┬─expression─────── ─AS──data-type──)────────────────────────┤
 ├ ┤─NULL─────────────
 └ ┘─parameter-marker─

The CAST specification returns the cast operand (the first operand) cast to the type
specified by the data type.

expression
If the cast operand is an expression (other than parameter marker or NULL), the
result is the argument value converted to the specified target data type.

The supported casts are shown in Table 4 on page 63 where the first column
represents the data type of the cast operand (source data type) and the data types
across the top represent the target data type of the CAST specification. If the cast
is not supported an error will occur (SQLSTATE 42846).

When casting character strings (other than CLOBs) to a character string with a dif-
ferent length, a warning (SQLSTATE 01004) is returned if truncation of other than
trailing blanks occurs. When casting graphic character strings (other than
DBCLOBs) to a graphic character string with a different length, a warning
(SQLSTATE 01004) is returned if truncation of other than trailing blanks occurs.
For BLOB, CLOB and DBCLOB cast operands, the warning is issued if any charac-
ters are truncated.

NULL
If the cast operand is the keyword NULL, the result is a null value that has the
specified data type.

parameter-marker
A parameter marker (specified as a question mark character) is normally consid-
ered an expression, but is documented separately in this case because it has a
special meaning. If the cast operand is a parameter-marker, the specified data type
is considered a promise that the replacement will be assignable to the specified
data type (using store assignment for strings). Such a parameter marker is consid-
ered a typed parameter marker. Typed parameter markers will be treated like any
other typed value for the purpose of function resolution, DESCRIBE of a select list
or for column assignment.

 Chapter 3. Language Elements 121

Expressions

data type
The name of an existing data type. If the type name is not qualified, the function
path is used to do data type resolution. A data type that has an associated attri-
butes like length or precision and scale should include these attributes when speci-
fying data type (CHAR defaults to a length of 1 and DECIMAL defaults to a
precision of 5 and scale of 0 if not specified). Restrictions on the supported data
types are based on the specified cast operand.

¹ For a cast operand that is an expression, see “Casting Between Data Types”
on page 62 for the target data types that are supported based on the data
type of the cast operand (source data type).

¹ For a cast operand that is the keyword NULL, any existing data type can be
used.

¹ For a cast operand that is a parameter marker, the target data type can be
any existing data type. If the data type is a user-defined type, the application
using the parameter marker will use the source data type of the user-defined
type.

When numeric data is cast to character the result data type is a fixed-length character
string (see “CHAR” on page 181). When character data is cast to numeric, the result
data type depends on the type of number specified. For example, if cast to integer, it
would become a large integer (see “INTEGER” on page 218).

 Examples:
¹ An application is only interested in the integer portion of the SALARY (defined as

decimal(9,2)) from the EMPLOYEE table. The following query, including the
employee number and the integer value of SALARY, could be prepared.

SELECT EMPNO, CAST(SALARY AS INTEGER) FROM EMPLOYEE

¹ Assume the existence of a distinct type called T_AGE that is defined on SMALLINT
and used to create column AGE in PERSONNEL table. Also assume the existence
of a distinct type called R_YEAR that is defined on INTEGER and used to create
column RETIRE_YEAR in PERSONNEL table. The following update statement
could be prepared.

UPDATE PERSONNEL SET RETIRE_YEAR =?

WHERE AGE = CAST(? AS T_AGE)

The first parameter is an untyped parameter marker that would have a data type of
R_YEAR, although the application will use an integer for this parameter marker.
This does not require the explicit CAST specification because it is an assignment.

The second parameter marker is a typed parameter marker that is cast as a dis-
tinct type T_AGE. This satisfies the requirment that the comparison must be per-
formed with compatible data types. The application will use the source data type
(which is SMALLINT) for processing this parameter marker.

Successful processing of this statement assumes that the function path includes
the schema name of the schema (or schemas) where the two distinct types are
defined.

122 SQL Reference

Predicates

 Predicates
A predicate specifies a condition that is true, false, or unknown about a given row or
group.

The following rules apply to all types of predicates:

¹ All values specified in a predicate must be compatible.

¹ An expression used in a Basic, Quantified, IN, or BETWEEN predicate must not
result in a character string with a length attribute greater than 4000, a graphic
string with a length attribute greater than 2000, or a LOB string of any size.

¹ The value of a host variable may be null (that is, the variable may have a negative
indicator variable).

¹ The code page conversion of operands of predicates involving two or more oper-
ands, with the exception of LIKE, are done according to “Rules for String
Conversions” on page 76

A fullselect is a form of the SELECT statement which is described under Chapter 5,
“Queries” on page 285. A fullselect used in a predicate is also called a subquery.

 Chapter 3. Language Elements 123

Basic Predicate

 Basic Predicate

5──expression─ ──┬ ┬─ = ──── ─── ──expression─ ────────────────────────────────5
 ├ ┤─ <> ───(1)

├ ┤─ < ────
├ ┤─ > ────

 ├ ┤─ <= ───(1)

 └ ┘─ >= ───(1)

Note:
1 Other comparison operators are also supported29

A basic predicate compares two values.

If the value of either operand is null, the result of the predicate is unknown. Otherwise
the result is either true or false.

For values x and y:

Predicate Is True If and Only If...
x = y x is equal to y
x <> y x is not equal to y
x < y x is less than y
x > y x is greater than y
x >= y x is greater than or equal to y
x <= y x is less than or equal to y

Examples:

 EMPNO='528671'

SALARY < 20000

PRSTAFF <> :VAR1

SALARY > (SELECT AVG(SALARY) FROM EMPLOYEE)

29 The following forms of the comparison operators are also supported in basic and quantified predicates; _=, _<, _>, !=, !< and !>. In
addition, in code pages 437, 819, and 850, the forms ¬=, ¬<, and ¬> are supported.

All these product-specific forms of the comparison operators are intended only to support existing SQL that uses these operators,
and are not recommended for use when writing new SQL statements.

124 SQL Reference

Quantified Predicate

 Quantified Predicate

5─ ──┬ ┬─expression1─ ──┬ ┬─ = ──── ──┬ ┬─SOME─ ─(fullselect1)────── ─────────────5
│ │├ ┤─ <> ───(1) ├ ┤─ANY──
│ │├ ┤─ < ──── └ ┘─ALL──
│ │├ ┤─ > ────
│ │├ ┤─ <= ───
│ │└ ┘─ >= ───

 │ │┌ ┐─,─────────────
 └ ┘─(─ ───6 ┴─ ──expression2─ ─)── = ─ ──┬ ┬─SOME─ ─(fullselect2)─
 └ ┘─ANY──

Note:
1 Other comparison operators are also supported29 .

A quantified predicate compares a value or values with a collection of values.

The fullselect must identify a number of columns that is the same as the number of
expressions specified to the left of the predicate operator (SQLSTATE 428C4). The
fullselect may return any number of rows.

When ALL is specified:

¹ The result of the predicate is true if the fullselect returns no values or if the speci-
fied relationship is true for every value returned by the fullselect.

¹ The result is false if the specified relationship is false for at least one value
returned by the fullselect.

¹ The result is unknown if the specified relationship is not false for any values
returned by the fullselect and at least one comparison is unknown because of the
null value.

When SOME or ANY is specified:

¹ The result of the predicate is true if the specified relationship is true for each value
of at least one row returned by the fullselect.

¹ The result is false if the fullselect returns no rows or if the specified relationship is
false for at least one value of every row returned by the fullselect.

¹ The result is unknown if the specified relationship is not true for any of the rows
and at least one comparison is unknown because of a null value.

Examples: Use the following tables when referring to the following examples.

 Chapter 3. Language Elements 125

Quantified Predicate

TBL :AB TBL :XY
COLX

2
3

COLY

22
23

COLA

1
2
3
4
-

COLB

12
12
13
14
-

Figure 11.

Example 1

SELECT COLA FROM TBLAB

WHERE COLA = ANY(SELECT COLX FROM TBLXY)

Results in 2,3. The subselect returns (2,3). COLA in rows 2 and 3 equals at least one
of these values.

Example 2

SELECT COLA FROM TBLAB

WHERE COLA > ANY(SELECT COLX FROM TBLXY)

Results in 3,4. The subselect returns (2,3). COLA in rows 3 and 4 is greater than at
least one of these values.

Example 3

SELECT COLA FROM TBLAB

WHERE COLA > ALL(SELECT COLX FROM TBLXY)

Results in 4. The subselect returns (2,3). COLA in row 4 is the only one that is greater
than both these values.

Example 4

SELECT COLA FROM TBLAB

WHERE COLA > ALL(SELECT COLX FROM TBLXY

 WHERE COLX<0)

Results in 1,2,3,4, null. The subselect returns no values. Thus, the predicate is true for
all rows in TBLAB.

Example 5

SELECT * FROM TBLAB

WHERE (COLA,COLB+10) = SOME (SELECT COLX, COLY FROM TBLXY)

The subselect returns all entries from TBLXY. The predicate is true for the subselect,
hence the result is as follows:

126 SQL Reference

Quantified Predicate

COLA COLB

----------- -----------

 2 12

 3 13

Example 6

SELECT * FROM TBLAB

WHERE (COLA,COLB) = ANY (SELECT COLX,COLY-10 FROM TBLXY)

The subselect returns COLX and COLY-10 from TBLXY. The predicate is true for the
subselect, hence the result is as follows:

COLA COLB

----------- -----------

 2 12

 3 13

 Chapter 3. Language Elements 127

BETWEEN Predicate

 BETWEEN Predicate

5─ ─expression─ ──┬ ┬───── ─BETWEEN──expression──AND──expression──────────────5
 └ ┘ ─NOT─

The BETWEEN predicate compares a value with a range of values.

The BETWEEN predicate:

value1 BETWEEN value2 AND value3

 is equivalent to the search condition:

value1 >= value2 AND value1 <= value3

The BETWEEN predicate:

value1 NOT BETWEEN value2 AND value3

 is equivalent to the search condition:

NOT(value1 BETWEEN value2 AND value3); that is,

value1 < value2 OR value1 > value.

The values for the expressions in the BETWEEN predicate can have different code
pages. The operands are converted as if the above equivalent search conditions were
specified.

The first operand (expression) cannot include a function that is variant or has an
external action (SQLSTATE 426804).

Given a mixture of datetime values and string representations of datetime values, all
values are converted to the data type of the datetime operand.

Examples:

Example 1

EMPLOYEE.SALARY BETWEEN 20000 AND 40000

Results in all salaries between $20,000.00 and $40,000.00.

Example 2

SALARY NOT BETWEEN 20000 + :HV1 AND 40000

Assuming :HV1 is 5000, results in all salaries below $25,000.00 and above $40,000.00.

Example 3

Given the following:

128 SQL Reference

BETWEEN Predicate

When evaluating the predicate:

:HV_1 BETWEEN :HV_2 AND COL_1

 It will be interpreted as:

:HV_1 >= :HV_2

AND :HV_1 <= COL_1

The first occurrence of :HV_1 will remain in the application code page since it is being
compared to :HV_2 which will also remain in the application code page. The second
occurrence of :HV_1 will be converted to the database code page since it is being com-
pared to a column value.

Table 10.

Expressions Type Code Page

HV_1 host variable 437
HV_2 host variable 437
Col_1 column 850

 Chapter 3. Language Elements 129

EXISTS Predicate

 EXISTS Predicate

5──EXISTS──(fullselect)───5

The EXISTS predicate tests for the existence of certain rows.

The fullselect may specify any number of columns, and

¹ The result is true only if the number of rows specified by the fullselect is not zero.

¹ The result is false only if the number of rows specified is zero

¹ The result cannot be unknown.

Example:

EXISTS (SELECT * FROM TEMPL WHERE SALARY < 10000)

130 SQL Reference

IN Predicate

 IN Predicate

5─ ──┬ ┬ ─expression1─ ──┬ ┬───── ─IN─ ──┬ ┬─(fullselect1)─────────── ─────────────5
 │ │└ ┘ ─NOT─ │ │┌ ┐─,─────────────
 │ │├ ┤ ─(─ ───6 ┴─ ──expression2─ ─)─
 │ │└ ┘─expression2─────────────
 │ │┌ ┐─,─────────────
 └ ┘ ─(─ ───6 ┴─ ──expression3─ ─)─ ──┬ ┬───── ─IN──(fullselect2)───
 └ ┘ ─NOT─

The IN predicate compares a value or values with a collection of values.

The fullselect must identify a number of columns that is the same as the number of
expressions specified to the left of the IN keyword (SQLSTATE 428C4). The fullselect
may return any number of rows.

¹ An IN predicate of the form:

expression IN expression

 is equivalent to a basic predicate of the form:

expression = expression

¹ An IN predicate of the form:

expression IN (fullselect)

 is equivalent to a quantified predicate of the form:

expression = ANY (fullselect)

¹ An IN predicate of the form:

expression NOT IN (fullselect)

 is equivalent to a quantified predicate of the form:

expression <> ALL (fullselect)

¹ An IN predicate of the form:

expression IN (expressiona, expressionb, ..., expressionk)

 is equivalent to:

expression = ANY (fullselect)

 where fullselect in the values-clause form is:

VALUES (expressiona), (expressionb), ..., (expressionk)

¹ An IN predicate of the form:

(expressiona, expressionb,..., expressionk) IN (fullselect)

 is equivalent to a quantified predicate of the form:

(expressiona, expressionb,..., expressionk) = ANY (fullselect)

 Chapter 3. Language Elements 131

IN Predicate

The values for expression1 and expression2 or the column of fullselect1 in the IN predi-
cate must be compatible. Each expression3 value and its corresponding column of
fullselect2 in the IN predicate must be compatible. The “Rules for Result Data Types”
on page 74 can be used to determine the attributes of the result used in the compar-
ison.

The values for the expressions in the IN predicate (including corresponding columns of
a fullselect) can have different code pages. If a conversion is necessary then the code
page is determined by applying “Rules for String Conversions” on page 76 to the IN list
first and then to the predicate using the derived code page for the IN list as the second
operand.

Examples:

Example 1: The following evaluates to true if the value in the row under evaluation in
the DEPTNO column contains D01, B01, or C01:

DEPTNO IN ('D01', 'B01', 'C01')

Example 2: The following evaluates to true only if the EMPNO (employee number) on
the left side matches the EMPNO of an employee in department E11:

EMPNO IN (SELECT EMPNO FROM EMPLOYEE WHERE WORKDEPT = 'E11')

Example 3: Given the following information, this example evaluates to true if the spe-
cific value in the row of the COL_1 column matches any of the values in the list:

When evaluating the predicate:

COL_1 IN (:HV_2, :HV_3, CON_4)

The two host variables will be converted to code page 850 based on the “Rules for
String Conversions” on page 76.

Example 4: The following evaluates to true if the specified year in EMENDATE (the
date an employee activity on a project ended) matches any of the values specified in
the list (the current year or the two previous years):

YEAR(EMENDATE) IN (YEAR(CURRENT DATE),

YEAR(CURRENT DATE - 1 YEAR),

YEAR(CURRENT DATE - 2 YEARS))

Example 5: The following evaluates to true if both ID and DEPT on the left side match
MANAGER and DEPTNUMB respectively for any row of the ORG table.

Table 11. IN Predicate example

Expressions Type Code Page

COL_1 column 850
HV_2 host variable 437
HV_3 host variable 437
CON_1 constant 850

132 SQL Reference

IN Predicate

(ID, DEPT) IN (SELECT MANAGER, DEPTNUMB FROM ORG)

 Chapter 3. Language Elements 133

LIKE Predicate

 LIKE Predicate

5─ ─match-expression─ ──┬ ┬───── ─LIKE──pattern-expression────────────────────5
 └ ┘─NOT─

5─ ──┬ ┬─────────────────────────── ───5
 └ ┘ ─ESCAPE──escape-expression─

The LIKE predicate searches for strings that have a certain pattern. The pattern is
specified by a string in which the underscore and percent sign may have special
meanings. Trailing blanks in a pattern are part of the pattern.

If the value of any of the arguments is null, the result of the LIKE predicate is unknown.

The values for match-expression, pattern-expression, and escape-expression are com-
patible string expressions. There are slight differences in the types of string expressions
supported for each of the arguments. The valid types of expressions are listed under
the description of each argument.

None of the expressions can yield a distinct type. However, it can be a function that
casts a distinct type to its source type.

match-expression
An expression that specifies the string that is to be examined to see if it conforms
to a certain pattern of characters.

The expression can be specified by any one of:

 ¹ a constant
¹ a special register
¹ a host variable (including a locator variable or a file reference variable)
¹ a scalar function
¹ a large object locator
¹ a column name
¹ an expression concatenating any of the above

pattern-expression
An expression that specifies the string that is to be matched.

The expression can be specified by any one of:

 ¹ a constant
¹ a special register
¹ a host variable
¹ a scalar function whose operands are any of the above
¹ an expression concatenating any of the above

with the restrictions that:

134 SQL Reference

LIKE Predicate

¹ No element in the expression can be of type LONG VARCHAR, CLOB, LONG
VARGRAPHIC or DBCLOB. In addition it cannot be a BLOB file reference vari-
able.

¹ The actual length of pattern-expression cannot be more than 4000 bytes.

A simple description of the use of the LIKE pattern is that the pattern is used to
specify the conformance criteria for values in the match-expression where:

¹ The underscore character (_) represents any single character.

¹ The percent sign (%) represents a string of zero or more characters.

¹ Any other character represents itself.

If the pattern-expression needs to include either the underscore or the percent
character, the escape-expression is used to specify a character to preceed either
the underscore or percent character in the pattern.

A rigorous description of the use of the LIKE pattern follows. Note that this
description ignores the use of the escape-expression; its use is covered later.

Let m denote the value of match-expression and let p denote the value of
pattern-expression. The string p is interpreted as a sequence of the minimum
number of substring specifiers so each character of p is part of exactly one
substring specifier. A substring specifier is an underscore, a percent sign, or
any non-empty sequence of characters other than an underscore or a percent
sign.

The result of the predicate is unknown if m or p is the null value. Otherwise,
the result is either true or false. The result is true if m and p are both empty
strings or there exists a partitioning of m into substrings such that:

¹ A substring of m is a sequence of zero or more contiguous characters and
each character of m is part of exactly one substring.

¹ If the nth substring specifier is an underscore, the nth substring of m is
any single character.

¹ If the nth substring specifier is a percent sign, the nth substring of m is
any sequence of zero or more characters.

¹ If the nth substring specifier is neither an underscore nor a percent sign,
the nth substring of m is equal to that substring specifier and has the
same length as that substring specifier.

¹ The number of substrings of m is the same as the number of substring
specifiers.

It follows that if p is an empty string and m is not an empty string, the result is
false. Similarly, it follows that if m is an empty string and p is not an empty
string, the result is false.

The predicate m NOT LIKE p is equivalent to the search condition NOT (m
LIKE p).

 Chapter 3. Language Elements 135

LIKE Predicate

When the escape-expression is specified, the pattern-expression must not contain
the escape character identified by the escape-expression except when immediately
followed by the escape character, the underscore character or the percent sign
character (SQLSTATE 22025).

If the match-expression is a character string in an MBCS database then it can
contain mixed data. In this case, the pattern can include both SBCS and MBCS
characters. The special characters in the pattern are interpreted as follows:

¹ An SBCS underscore refers to one SBCS character.

¹ A DBCS underscore refers to one MBCS character.

¹ A percent (either SBCS or DBCS) refers to a string of zero or more SBCS or
MBCS characters.

escape-expression
This optional argument is an expression that specifies a character to be used to
modify the special meaning of the underscore (_) and percent (%) characters in the
pattern-expression. This allows the LIKE predicate to be used to match values that
contain the actual percent and underscore characters.

The expression can be specified by any one of:

 ¹ a constant
¹ a special register
¹ a host variable
¹ a scalar function whose operands are any of the above
¹ an expression concatenating any of the above

with the restrictions that:

¹ No element in the expression can be of type LONG VARCHAR, CLOB, LONG
VARGRAPHIC or DBCLOB. In addition, it cannot be a BLOB file reference
variable.

¹ The result of the expression must be one SBCS or DBCS character or a
binary string containing exactly 1 byte (SQLSTATE 22019).

When escape characters are present in the pattern string, an underscore, percent
sign, or escape character can represent a literal occurrence of itself. This is true if
the character in question is preceded by an odd number of successive escape
characters. It is not true otherwise.

In a pattern, a sequence of successive escape characters is treated as follows:

Let S be such a sequence, and suppose that S is not part of a larger
sequence of successive escape characters. Suppose also that S contains a
total of n characters. Then the rules governing S depend on the value of n:

¹ If n is odd, S must be followed by an underscore or percent sign
(SLQSTATE 22025). S and the character that follows it represent (n-1)/2
literal occurrences of the escape character followed by a literal occurrence
of the underscore or percent sign.

136 SQL Reference

LIKE Predicate

¹ If n is even, S represents n/2 literal occurrences of the escape character.
Unlike the case where n is odd, S could end the pattern. If it does not end
the pattern, it can be followed by any character (except, of course, an
escape character, which would violate the assumption that S is not part of
a larger sequence of successive escape characters). If S is followed by an
underscore or percent sign, that character has its special meaning.

Following is a illustration of the effect of successive occurrences of the escape
character (which, in this case, is the back slash (\)).

Pattern string Actual Pattern

\% A percent sign

\\% A back slash followed by zero or more arbitrary characters

\\\% A back slash followed by a percent sign

The code page used in the comparison is based on the code page of the match-
expression value.

¹ The match-expression value is never converted.

¹ If the code page of pattern-expression is different from the code page of match-
expression, the value of pattern-expression is converted to the code page of
match-expression, unless either operand is defined as FOR BIT DATA (in which
case there is no conversion).

¹ If the code page of escape-expression is different from the code page of match-
expression, the value of escape-expression is converted to the code page of
match-expression, unless either operand is defined as FOR BIT DATA (in which
case there is no conversion).

 Examples
¹ Search for the string 'SYSTEMS' appearing anywhere within the PROJNAME

column in the PROJECT table.

SELECT PROJNAME FROM PROJECT

WHERE PROJECT.PROJNAME LIKE '%SYSTEMS%'

¹ Search for a string with a first character of 'J' that is exactly two characters long in
the FIRSTNME column of the EMPLOYEE table.

SELECT FIRSTNME FROM EMPLOYEE

WHERE EMPLOYEE.FIRSTNME LIKE 'J_'

¹ In the CORP_SERVERS table, search for a string in the LA_SERVERS column
that matches the value in the CURRENT SERVER special register.

SELECT LA_SERVERS FROM CORP_SERVERS

WHERE CORP_SERVERS.LA_SERVERS LIKE CURRENT SERVER

¹ Retrieve all strings that begin with the sequence of characters '%_\' in column A of
the table T.

 Chapter 3. Language Elements 137

LIKE Predicate

SELECT A FROM T WHERE T.A LIKE

 '\%_\\%' ESCAPE '\'

¹ Use the BLOB scalar function, to obtain a one byte escape character which is com-
patible with the match and pattern data types (both BLOBs).

SELECT COLBLOB FROM TABLET

WHERE COLBLOB LIKE :pattern_var ESCAPE BLOB(X'OE')

138 SQL Reference

NULL Predicate

 NULL Predicate

5─ ─expression──IS─ ──┬ ┬───── ─NULL──5
 └ ┘ ─NOT─

The NULL predicate tests for null values.

The result of a NULL predicate cannot be unknown. If the value of the expression is
null, the result is true. If the value is not null, the result is false. If NOT is specified, the
result is reversed.

Examples:

PHONENO IS NULL

SALARY IS NOT NULL

 Chapter 3. Language Elements 139

Search Conditions

 Search Conditions

search-condition:
├─ ──┬ ┬───── ──┬ ┬─predicate────────── ───────────────────────────────────────5
 └ ┘ ─NOT─ └ ┘─(search-condition)─

 ┌ ┐──
5─ ───6 ┴┬ ┬── ────────────────────────┤
 └ ┘ ──┬ ┬─AND─ ──┬ ┬───── ──┬ ┬─predicate──────────
 └ ┘─OR── └ ┘ ─NOT─ └ ┘─(search-condition)─

A search condition specifies a condition that is “true,” “false,” or “unknown” about a
given row.

The result of a search condition is derived by application of the specified logical opera-
tors (AND, OR, NOT) to the result of each specified predicate. If logical operators are
not specified, the result of the search condition is the result of the specified predicate.

AND and OR are defined in Table 12, in which P and Q are any predicates:

NOT(true) is false, NOT(false) is true, and NOT(unknown) is unknown.

Search conditions within parentheses are evaluated first. If the order of evaluation is not
specified by parentheses, NOT is applied before AND, and AND is applied before OR.
The order in which operators at the same precedence level are evaluated is undefined
to allow for optimization of search conditions.

Table 12. Truth Tables for AND and OR

P Q P AND Q P OR Q

True True True True

True False False True

True Unknown Unknown True

False True False True

False False False False

False Unknown False Unknown

Unknown True Unknown True

Unknown False False Unknown

Unknown Unknown Unknown Unknown

140 SQL Reference

Search Conditions

1

1

32

2 or 3 2 or 3

MAJPROJ = ' MA2100' DEPTNO = ' D11' DEPTNO = ' B03' DEPTNO = ' E11'AND OR OR

MAJPROJ = ' MA2100' (DEPTNO = ' D11' DEPTNO = ' B03') DEPTNO = ' E11'AND OR OR

Figure 12. Search Conditions Evaluation Order

 Chapter 3. Language Elements 141

Search Conditions

142 SQL Reference

 Chapter 4. Functions

A function is an operation that is denoted by a function name followed by a pair of
parentheses enclosing the specification of arguments (there may be no arguments).

Functions are classified as column functions, scalar functions or table functions. The
argument of a column function is a collection of like values. It returns a single value
(possibly null), and can be specified in an SQL statement where an expression can be
used. Additional restrictions apply to the use of column functions as specified in
“Column Functions” on page 157. The argument(s) of a scalar function are individual
scalar values, which can be of different types and have different meanings. It returns a
single value (possibly null), and can be specified in an SQL statement wherever an
expression can be used. The argument(s) of a table function are individual scalar
values, which can be of different types and have different meanings. It returns a table
to the SQL statement, and can be specified only within the FROM clause of a SELECT.
Additional restrictions apply to the use of table functions as specified in “from-clause”
on page 291.

Table 13 shows the functions that are supported. The "Function Name" combined with
the "Schema" give the fully qualified name of the function. "Description" briefly
describes what the function does. "Input Parameters" gives the data type that is
expected for each argument during function invocation. Many of the functions include
variations of the input parameters allowing either different data types or different
numbers of arguments to be used. The combination of schema, function name and
input parameters make up a function signature. Each function signature may return a
value of a different type which is shown in the "Returns" columns. There are some dis-
tinctions that should be understood about the input parameter types. In some cases the
type is specified as a specific built-in data type and in other cases it will use a general
variable like any-numeric-type. When a specific data type is listed, this means that an
exact match will only occur with the specified data type. When a general variable is
used, each of the data types associated with that variable will result in an exact match.
This distinction impacts function selection as described in “Function Resolution” on
page 102.

There may be additional functions available because user-defined functions may be
created in different schemas using one of these function signatures as a source (see
"CREATE FUNCTION" for details) or users may create external functions using their
own programs.

Table 13 (Page 1 of 13). Supported Functions

Function name

Schema Description

Input Parameters Returns

ABS or ABSVAL

SYSFUN Returns the absolute value of the argument.

SMALLINT SMALLINT

INTEGER INTEGER

DOUBLE DOUBLE

 Copyright IBM Corp. 1993, 1997 143

Table 13 (Page 2 of 13). Supported Functions

Function name

Schema Description

Input Parameters Returns

ACOS
SYSFUN Returns the arccosine of the argument as an angle expressed in radians.

DOUBLE DOUBLE

ASCII

SYSFUN Returns the ASCII code value of the leftmost character of the argument as an
integer.

CHAR INTEGER

VARCHAR INTEGER

CLOB(1M) INTEGER

ASIN
SYSFUN Returns the arcsine of the argument as an angle, expressed in radians.

DOUBLE DOUBLE

ATAN
SYSFUN Returns the arctangent of the argument as an angle, expressed in radians.

DOUBLE DOUBLE

ATAN2

SYSFUN Returns the arctangent of x and y coordinates, specified by the first and
second arguments respectively, as an angle, expressed in radians.

DOUBLE, DOUBLE DOUBLE

AVG
SYSIBM Returns the average of a set of numbers (column function).

numeric-type 4 numeric-type 1

BLOB

SYSIBM Casts from source type to BLOB, with optional length.

string-type BLOB

string-type, INTEGER BLOB

CEIL or CEILING

SYSFUN Returns the smallest integer greater than or equal to the argument.

SMALLINT SMALLINT

INTEGER INTEGER

DOUBLE DOUBLE

CHAR

SYSIBM Returns a string representation of the source type.

character-type CHAR

character-type, INTEGER CHAR(integer)

datetime-type CHAR

datetime-type, keyword 2 CHAR

SMALLINT CHAR(6)

INTEGER CHAR(11)

DECIMAL CHAR(2+precision)

DECIMAL, VARCHAR CHAR(2+precision)

CHAR
SYSFUN Returns a character string representation of a floating-point number.

DOUBLE CHAR(24)

CHR

SYSFUN Returns the character that has the ASCII code value specified by the argu-
ment. The value of the argument should be between 0 and 255; otherwise, the
return value is null.

INTEGER CHAR(1)

144 SQL Reference

Table 13 (Page 3 of 13). Supported Functions

Function name

Schema Description

Input Parameters Returns

CLOB SYSIBM Casts from source type to CLOB, with optional length.

character-type CLOB

character-type, INTEGER CLOB

COALESCE 3
SYSIBM Returns the first non-null argument in the set of arguments.

any-type, any-union-compatible-type, ... any-type

CONCAT or ||
SYSIBM Returns the concatenation of 2 string arguments.

string-type, compatible-string-type max string-type

COS

SYSFUN Returns the cosine of the argument, where the argument is an angle expressed
in radians.

DOUBLE DOUBLE

COT

SYSFUN Returns the cotangent of the argument, where the argument is an angle
expressed in radians.

DOUBLE DOUBLE

COUNT

SYSIBM Returns the count of the number of rows in a set of rows or values (column
function).

any-builtin-type 4 INTEGER

COUNT_BIG

SYSIBM Returns the number of rows or values in a set of rows or values (column func-
tion). Result can be greater than the maximum value of integer.

any-builtin-type 4 DECIMAL(31,0)

DATE

SYSIBM Returns a date from a single input value.

DATE DATE

TIMESTAMP DATE

DOUBLE DATE

VARCHAR DATE

DAY

SYSIBM Returns the day part of a value.

VARCHAR INTEGER

DATE INTEGER

TIMESTAMP INTEGER

DECIMAL INTEGER

DAYNAME

SYSFUN Returns a mixed case character string containing the name of the day (e.g.
Friday) for the day portion of the argument based on what the locale was when
db2start was issued.

VARCHAR(26) VARCHAR(100)

DATE VARCHAR(100)

TIMESTAMP VARCHAR(100)

DAYOFWEEK

SYSFUN Returns the day of the week in the argument as an integer value in the range
1-7, where 1 represents Sunday.

VARCHAR(26) INTEGER

DATE INTEGER

TIMESTAMP INTEGER

 Chapter 4. Functions 145

Table 13 (Page 4 of 13). Supported Functions

Function name

Schema Description

Input Parameters Returns

DAYOFYEAR

SYSFUN Returns the day of the year in the argument as an integer value in the range
1-366.

VARCHAR(26) INTEGER

DATE INTEGER

TIMESTAMP INTEGER

DAYS

SYSIBM Returns an integer representation of a date.

VARCHAR INTEGER

TIMESTAMP INTEGER

DATE INTEGER

DBCLOB

SYSIBM Casts from source type to DBCLOB, with optional length.

graphic-type DBCLOB

graphic-type, INTEGER DBCLOB

DECIMAL or DEC

SYSIBM Returns decimal representation of a number, with optional precision and scale.

numeric-type DECIMAL

numeric-type, INTEGER DECIMAL

numeric-type INTEGER, INTEGER DECIMAL

DECIMAL or DEC

SYSIBM Returns decimal representation of a character string, with optional precision,
scale, and decimal-character.

VARCHAR DECIMAL

VARCHAR, INTEGER DECIMAL

VARCHAR, INTEGER, INTEGER DECIMAL

VARCHAR, INTEGER, INTEGER, VARCHAR DECIMAL

DEGREES

SYSFUN Returns the number of degrees converted from the argument in expressed in
radians.

DOUBLE DOUBLE

DIFFERENCE

SYSFUN Returns the difference between the sounds of the words in the two argument
strings as determined using the SOUNDEX function. A value of 4 means the
strings sound the same.

VARCHAR, VARCHAR INTEGER

DIGITS
SYSIBM Returns the character string representation of a number.

DECIMAL CHAR

DOUBLE or
DOUBLE_PRECISION

SYSIBM Returns the floating-point representation of a number.

numeric-type DOUBLE

DOUBLE

SYSFUN Returns the floating-point number corresponding to the character string repre-
sentation of a number. Leading and trailing blanks in argument are ignored.

VARCHAR DOUBLE

EVENT_MON_STATE
SYSIBM Returns the operational state of particular event monitor.

VARCHAR INTEGER

EXP
SYSFUN Returns the exponential function of the argument.

DOUBLE DOUBLE

146 SQL Reference

Table 13 (Page 5 of 13). Supported Functions

Function name

Schema Description

Input Parameters Returns

FLOAT SYSIBM Same as DOUBLE.

FLOOR

SYSFUN Returns the largest integer less than or equal to the argument.

SMALLINT SMALLINT

INTEGER INTEGER

DOUBLE DOUBLE

GENERATE_UNIQUE

SYSIBM Returns a bit data character string that is unique compared to any other exe-
cution of the same function.

no argument CHAR(13) FOR BIT DATA

GRAPHIC

SYSIBM Cast from source type to GRAPHIC, with optional length.

graphic-type GRAPHIC

graphic-type, INTEGER GRAPHIC

GROUPING

SYSIBM Used with grouping-sets and super-groups to indicate sub-total rows generated
by a grouping set (column function). The value returned is:

1 The value of the argument in the returned row is a null value and the
row was generated for a grouping set. This generated row provides a
sub-total for a grouping set.

0 otherwise.

any-type SMALLINT

HEX
SYSIBM Returns the hexadecimal representation of a value.

any-builtin-type VARCHAR

HOUR

SYSIBM Returns the hour part of a value.

VARCHAR INTEGER

TIME INTEGER

TIMESTAMP INTEGER

DECIMAL INTEGER

INSERT

SYSFUN Returns a string where argument3 bytes have been deleted from argument1
beginning at argument2 and where argument4 has been inserted into
argument1 beginning at argument2.

VARCHAR, INTEGER, INTEGER, VARCHAR VARCHAR(4000)

CLOB(1M), INTEGER, INTEGER, CLOB(1M) CLOB(1M)

BLOB(1M), INTEGER, INTEGER, BLOB(1M) BLOB(1M)

INTEGER or INT

SYSIBM Returns the integer representation of a number.

numeric-type INTEGER

VARCHAR INTEGER

JULIAN_DAY

SYSFUN Returns an integer value representing the number of days from January 1,
4712 B.C. (the start of the Julian date calendar) to the date value specified in
the argument.

VARCHAR(26) INTEGER

DATE INTEGER

TIMESTAMP INTEGER

 Chapter 4. Functions 147

Table 13 (Page 6 of 13). Supported Functions

Function name

Schema Description

Input Parameters Returns

LCASE

SYSFUN Returns a string in which all the characters have been converted to lower case
characters. LCASE will only handle characters in the invariant set. Therefore,
LCASE(UCASE(string)) will not necessarily return the same result as
LCASE(string).

VARCHAR VARCHAR(4000)

CLOB(1M) CLOB(1M)

LEFT

SYSFUN Returns a string consisting of the leftmost argument2 bytes in argument1.

VARCHAR, INTEGER VARCHAR(4000)

CLOB(1M), INTEGER CLOB(1M)

BLOB(1M), INTEGER BLOB(1M)

LENGTH

SYSIBM Returns the length of the operand in bytes (except for double byte string types
which return the length in characters).

any-builtin-type INTEGER

LN
SUSFUN Returns the natural logarithm of the argument (same as LOG).

DOUBLE DOUBLE

LOCATE

SYSFUN Returns the starting position of the first occurrence of argument1 within
argument2. If the optional third argument is specified, it indicates the character
position in argument2 at which the search is to begin. If argument1 is not found
within argument2, the value 0 is returned.

VARCHAR, VARCHAR INTEGER

VARCHAR, VARCHAR, INTEGER INTEGER

CLOB(1M), CLOB(1M) INTEGER

CLOB(1M), CLOB(1M), INTEGER INTEGER

BLOB(1M), BLOB(1M) INTEGER

BLOB(1M), BLOB(1M), INTEGER INTEGER

LOG
SYSFUN Returns the natural logarithm of the argument (same as LN).

DOUBLE DOUBLE

LOG10
Returns the base 10 logarithm of the argument.

DOUBLE DOUBLE

LONG_VARCHAR
SYSIBM Returns a long string.

character-type LONG VARCHAR

LONG_VARGRAPHIC
SYSIBM Casts from source type to LONG_VARGRAPHIC.

graphic-type LONG VARGRAPHIC

LTRIM

SYSFUN Returns the characters of the argument with leading blanks removed.

VARCHAR VARCHAR(4000)

CLOB(1M) CLOB(1M)

MAX
SYSIBM Returns the maximum value in a set of values (column function).

any-builtin-type 5 same as input type

148 SQL Reference

Table 13 (Page 7 of 13). Supported Functions

Function name

Schema Description

Input Parameters Returns

MICROSECOND

SYSIBM Returns the microsecond (time-unit) part of a value.

VARCHAR INTEGER

TIMESTAMP INTEGER

DECIMAL INTEGER

MIDNIGHT_SECONDS

SYSFUN Returns an integer value in the range 0 to 86400 representing the number of
seconds between midnight and time value specified in the argument.

VARCHAR(26) INTEGER

TIME INTEGER

TIMESTAMP INTEGER

MIN
SYSIBM Returns the minimum value in a set of values (column function).

any-builtin-type 5 same as input type

MINUTE

SYSIBM Returns the minute part of a value.

VARCHAR INTEGER

TIME INTEGER

TIMESTAMP INTEGER

DECIMAL INTEGER

MOD

SYSFUN Returns the remainder (modulus) of argument1 divided by argument2. The
result is negative only if argument1 is negative.

SMALLINT, SMALLINT SMALLINT

INTEGER, INTEGER INTEGER

MONTH

SYSIBM Returns the month part of a value.

VARCHAR INTEGER

DATE INTEGER

TIMESTAMP INTEGER

DECIMAL INTEGER

MONTHNAME

SYSFUN Returns a mixed case character string containing the name of month (e.g.
January) for the month portion of the argument that is a date or timestamp,
based on what the locale was when the database was started.

VARCHAR(26) VARCHAR(100)

DATE VARCHAR(100)

TIMESTAMP VARCHAR(100)

NODENUMBER

SYSIBM Returns the node number of the row. The argument is a column name within a
table.

any-type INTEGER

NULLIF 3
SYSIBM Returns NULL if the arguments are equal, else returns the first argument.

any-type, any-comparable-type any-type

PARTITION

SYSIBM Returns the partitioning map index (0 to 4095) of the row. The argument is a
column name within a table.

any-type INTEGER

 Chapter 4. Functions 149

Table 13 (Page 8 of 13). Supported Functions

Function name

Schema Description

Input Parameters Returns

POSSTR
SYSIBM Returns the position at which one string is contained in another.

string-type, compatible-string-type INTEGER

POWER

SYSFUN Returns the value of argument1 to the power of argument2.

INTEGER, INTEGER INTEGER

DOUBLE, INTEGER DOUBLE

DOUBLE, DOUBLE DOUBLE

QUARTER

SYSFUN Returns an integer value in the range 1 to 4 representing the quarter of the
year for the date specified in the argument.

VARCHAR(26) INTEGER

DATE INTEGER

TIMESTAMP INTEGER

RADIANS

SYSFUN Returns the number of radians converted from argument which is expressed in
degrees.

DOUBLE DOUBLE

RAISE_ERROR

SYSIBM Raises an error in the SQLCA. The sqlstate returned is indicated by
argument1. The second argument contains any text to be returned.

VARCHAR, VARCHAR any-type 6

RAND

SYSFUN Returns a random floating point value between 0 and 1 using the argument as
the optional seed value.

no argument required DOUBLE

INTEGER DOUBLE

REAL
SYSIBM Returns the single-precision floating-point representation of a number.

numeric-type REAL

REPEAT

SYSFUN Returns a character string composed of argument1 repeated argument2 times.

VARCHAR, INTEGER VARCHAR(4000)

CLOB(1M), INTEGER CLOB(1M)

BLOB(1M), INTEGER BLOB(1M)

REPLACE

SYSFUN Replaces all occurrences of argument2 in argument1 with argument3.

VARCHAR, VARCHAR, VARCHAR VARCHAR(4000)

CLOB(1M), CLOB(1M), CLOB(1M) CLOB(1M)

BLOB(1M), BLOB(1M), BLOB(1M) BLOB(1M)

RIGHT

SYSFUN Returns a string consisting of the rightmost argument2 bytes in argument1.

VARCHAR, INTEGER VARCHAR(4000)

CLOB(1M), INTEGER CLOB(1M)

BLOB(1M), INTEGER BLOB(1M)

ROUND

SYSFUN Returns the first argument rounded to argument2 places right of the decimal
point. If argument2 is negative, argument1 is rounded to the absolute value of
argument2 places to the left of the decimal point.

INTEGER, INTEGER INTEGER

DOUBLE, INTEGER DOUBLE

150 SQL Reference

Table 13 (Page 9 of 13). Supported Functions

Function name

Schema Description

Input Parameters Returns

RTRIM

SYSFUN Returns the characters of the argument with trailing blanks removed.

VARCHAR VARCHAR(4000)

CLOB(1M) CLOB(1M)

SECOND

SYSIBM Returns the second (time-unit) part of a value.

VARCHAR INTEGER

TIME INTEGER

TIMESTAMP INTEGER

DECIMAL INTEGER

SIGN

SYSFUN Returns an indicator of the sign of the argument. If the argument is less than
zero, -1 is returned. If argument equals zero, 0 is returned. If argument is
greater than zero, 1 is returned.

SMALLINT SMALLINT

INTEGER INTEGER

DOUBLE DOUBLE

SIN

SYSFUN Returns the sine of the argument, where the argument is an angle expressed
in radians.

DOUBLE DOUBLE

SMALLINT

SYSIBM Returns the small integer representation of a number.

numeric-type SMALLINT

VARCHAR SMALLINT

SOUNDEX

SYSFUN Returns a 4 character code representing the sound of the words in the argu-
ment. The result can be used to compare with the sound of other strings. See
also DIFFERENCE.

VARCHAR CHAR(4)

SPACE
SYSFUN Returns a character string consisting of argument1 blanks.

INTEGER VARCHAR(4000)

SQRT
SYSFUN Returns the square root of the argument.

DOUBLE DOUBLE

STDDEV
SYSIBM Returns the standard deviation of a set of numbers (column function).

DOUBLE DOUBLE

SUBSTR

SYSIBM Returns a substring of a string argument1 starting at argument2 for argument3
characters. If argument3 is not specified, the remainder of the string is
assumed.

string-type, INTEGER string-type

string-type, INTEGER, INTEGER string-type

SUM
SYSIBM Returns the sum of a set of numbers (column function).

numeric-type 4 max-numeric-type1

 Chapter 4. Functions 151

Table 13 (Page 10 of 13). Supported Functions

Function name

Schema Description

Input Parameters Returns

TABLE_NAME

SYSIBM Returns an unqualified name of a table or view based on the object name
given in argument1 and the optional schema name given in argument2. It is
used to resolve aliases.

VARCHAR VARCHAR(18)

VARCHAR, VARCHAR VARCHAR(18)

TABLE_SCHEMA

SYSIBM Returns the schema name portion of the two part table or view name given by
the object name in argument1 and the optional schema name in argument2. It
is used to resolve aliases.

VARCHAR CHAR(8)

VARCHAR, VARCHAR CHAR(8)

TAN

SYSFUN Returns the tangent of the argument, where the argument is an angle
expressed in radians.

DOUBLE DOUBLE

TIME

SYSIBM Returns a time from a value.

TIME TIME

TIMESTAMP TIME

VARCHAR TIME

TIMESTAMP

SYSIBM Returns a timestamp from a value or a pair of values.

TIMESTAMP TIMESTAMP

VARCHAR TIMESTAMP

VARCHAR, VARCHAR TIMESTAMP

VARCHAR, TIME TIMESTAMP

DATE, VARCHAR TIMESTAMP

DATE, TIME TIMESTAMP

TIMESTAMP_ISO

SYSFUN Returns a timestamp value based on a date, time, or timestamp argument. If
the argument is a date, it inserts zero for all the time elements. If the argument
is a time, it inserts the value of CURRENT DATE for the date elements and
zero for the fractional time element.

DATE TIMESTAMP

TIME TIMESTAMP

TIMESTAMP TIMESTAMP

VARCHAR(26) TIMESTAMP

152 SQL Reference

Table 13 (Page 11 of 13). Supported Functions

Function name

Schema Description

Input Parameters Returns

TIMESTAMPDIFF

SYSFUN Returns an estimated number of intervals of type argument1 based on the dif-
ference between two timestamps. The second argument is the result of sub-
tracting two timestamp types and converting the result to CHAR. Valid values
of interval(argument1) are:

1 Fractions of a second
2 Seconds
4 Minutes
8 Hours
16 Days
32 Weeks
64 Months
128 Quarters
256 Years

INTEGER, CHAR(22) INTEGER

TRANSLATE

SYSIBM Returns a string in which one or more characters may have been translated
into other characters.

CHAR CHAR

VARCHAR VARCHAR

CHAR, VARCHAR, VARCHAR CHAR

VARCHAR, VARCHAR, VARCHAR VARCHAR

CHAR, VARCHAR, VARCHAR, VARCHAR CHAR

VARCHAR, VARCHAR, VARCHAR, VARCHAR VARCHAR

GRAPHIC, VARGRAPHIC, VARGRAPHIC GRAPHIC

VARGRAPHIC, VARGRAPHIC, VARGRAPHIC VARGRAPHIC

GRAPHIC, VARGRAPHIC, VARGRAPHIC, VARGRAPHIC GRAPHIC

VARGRAPHIC, VARGRAPHIC, VARGRAPHIC,
VARGRAPHIC

VARGRAPHIC

TRUNC or TRUNCATE

SYSFUN Returns argument1 truncated to argument2 places right of the decimal point. If
argument2 is negative, argument1 is truncated to the absolute value of
argument2 places to the left of the decimal point.

INTEGER, INTEGER INTEGER

DOUBLE, INTEGER DOUBLE

UCASE

SYSFUN Returns a string in which all the characters have been converted to upper case
characters.

VARCHAR VARCHAR(4000)

VALUE 3 SYSIBM Same as COALESCE.

VARCHAR

SYSIBM Returns a VARCHAR representation of the first argument. If a second argu-
ment is present, it specifies the length of the result.

character-type VARCHAR

character-type, INTEGER VARCHAR

datetime-type VARCHAR

 Chapter 4. Functions 153

Table 13 (Page 12 of 13). Supported Functions

Function name

Schema Description

Input Parameters Returns

VARGRAPHIC

SYSIBM Returns a VARGRAPHIC representation of the first argument. If a second argu-
ment is present, it specifies the length of the result.

graphic-type VARGRAPHIC

graphic-type, INTEGER VARGRAPHIC

VARCHAR VARGRAPHIC

VARIANCE or VAR
SYSIBM Returns the variance of a set of numbers (column function).

DOUBLE DOUBLE

WEEK

SYSFUN Returns the week of the year in of the argument as an integer value in the
range of 1-54.

VARCHAR(26) INTEGER

DATE INTEGER

TIMESTAMP INTEGER

YEAR

SYSIBM Returns the year part of a value.

VARCHAR INTEGER

DATE INTEGER

TIMESTAMP INTEGER

DECIMAL INTEGER

“+”
SYSIBM Adds two numeric operands.

numeric-type, numeric-type max numeric-type

“+”
SYSIBM Unary plus operator.

numeric-type numeric-type

“+”

SYSIBM Datetime plus operator.

DATE, DECIMAL(8,0) DATE

TIME, DECIMAL(6,0) TIME

TIMESTAMP, DECIMAL(20,6) TIMESTAMP

DECIMAL(8,0), DATE DATE

DECIMAL(6,0), TIME TIME

DECIMAL(20,6), TIMESTAMP TIMESTAMP

datetime-type, DOUBLE, labeled-duration-code datetime-type

“−”
SYSIBM Subtracts two numeric operands.

numeric-type, numeric-type max numeric-type

“−”
SYSIBM Unary minus operator.

numeric-type numeric-type 1

154 SQL Reference

Table 13 (Page 13 of 13). Supported Functions

Function name

Schema Description

Input Parameters Returns

“−”

SYSIBM Datetime minus operator.

DATE, DATE DECIMAL(8,0)

TIME, TIME DECIMAL(6,0)

TIMESTAMP, TIMESTAMP DECIMAL(20,6)

DATE, VARCHAR DECIMAL(8,0)

TIME, VARCHAR DECIMAL(6,0)

TIMESTAMP, VARCHAR DECIMAL(20,6)

VARCHAR, DATE DECIMAL(8,0)

VARCHAR, TIME DECIMAL(6,0)

VARCHAR, TIMESTAMP DECIMAL(20,6)

DATE, DECIMAL(8,0) DATE

TIME, DECIMAL(6,0) TIME

TIMESTAMP, DECIMAL(20,6) TIMESTAMP

datetime-type, DOUBLE, labeled-duration-code datetime-type

“*”
SYSIBM Multiplies two numeric operands.

numeric-type, numeric-type max numeric-type

“/”
SYSIBM Divides two numeric operands.

numeric-type, numeric-type max numeric-type

“·” SYSIBM Same as CONCAT.

Notes

¹ References to string data types that are not qualified by a length should be assumed to support the maximum
length for the data type (e.g. VARCHAR means VARCHAR(4000)).

¹ References to a DECIMAL data type without precision and scale should be assumed to allow any supported
precision and scale.

 Chapter 4. Functions 155

Key to Table

any-builtin-type Any data type that is not a distinct type.
any-type Any type defined to the database.
any-comparable-type Any type that is comparable with other argument types as defined in “Assignments and

Comparisons” on page 64.
any-union-compatible-type Any type that is compatible with other argument types as defined in “Rules for Result

Data Types” on page 74.
character-type Any of the character string types: CHAR, VARCHAR, LONG VARCHAR, CLOB.
compatible-string-type A string type that comes from the same grouping as the other argument (e.g. if one

argument is a character-type the other must also be a character-type).
datetime-type Any of the datetime types: DATE, TIME, TIMESTAMP.
graphic-type Any of the double byte character string types: GRAPHIC, VARGRAPHIC, LONG VARGRAPHIC,

DBCLOB.
labeled-duration-code As a type this is a SMALLINT. If the function is invoked using the infix form of the plus or

minus operator, labeled-durations as defined in “Labeled Durations” on page 113 can be used.
For a source function that does not use the plus or minus operator character as the name, the
following values must be used for the labeled-duration-code argument when invoking the func-
tion.
1 YEAR or YEARS
2 MONTH or MONTHS
3 DAY or DAYS
4 HOUR or HOURS
5 MINUTE or MINUTES
6 SECOND or SECONDS
7 MICROSECOND or MICROSECONDS

LOB-type Any of the large object types: BLOB, CLOB, DBCLOB.
max-numeric-type The maximum numeric type of the arguments where maximum is defined as the rightmost

numeric-type.
max-string-type The maximum string type of the arguments where maximum is defined as the rightmost

character-type or graphic-type. If arguments are BLOB, the max-string-type is BLOB.
numeric-type Any of the numeric types: SMALLINT, INTEGER, DECIMAL, REAL, DOUBLE.
string-type Any type from character type, graphic-type or BLOB.

Table Footnotes

1 When the input parameter is SMALLINT, the result type is INTEGER. When the input parameter is REAL, the
result type is DOUBLE.

2 Keywords allowed are ISO, USA, EUR, JIS, and LOCAL. This function signature is not supported as a sourced
function.

3 This function cannot be used as a source function.
4 The keyword ALL or DISTINCT may be used before the first parameter. If DISTINCT is specified, use of long

string types is not supported.
5 Use of long string types is not supported.
6 The type returned by RAISE_ERROR depends upon the context of its use. RAISE_ERROR, if not cast to a

particular type, will return a type appropriate to its invocation within a CASE expression.

156 SQL Reference

 Column Functions
The argument of a column function is a set of values derived from an expression. The
expression may include columns but cannot include a scalar-fullselect or another
column function (SQLSTATE 42607). The scope of the set is a group or an interme-
diate result table as explained in Chapter 5, “Queries” on page 285.

If a GROUP BY clause is specified in a query and the intermediate result from the
FROM, WHERE, GROUP BY and HAVING clauses is the empty set; then the column
functions are not applied, the result of the query is the empty set, the SQLCODE is set
to +100 and the SQLSTATE is set to '02000'.

If a GROUP BY clause is not specified in a query and the intermediate result is of the
FROM, WHERE, and HAVING clauses is the empty set, then the column functions are
applied to the empty set.

For example, the result of the following SELECT statement is the number of distinct
values of JOBCODE for employees in department D01:

SELECT COUNT(DISTINCT JOBCODE)

 FROM CORPDATA.EMPLOYEE

WHERE WORKDEPT = 'D01'

The keyword DISTINCT is not considered an argument of the function, but rather a
specification of an operation that is performed before the function is applied. If DIS-
TINCT is specified, duplicate values are eliminated. If ALL is implicitly or explicitly spec-
ified, duplicate values are not eliminated.

Expressions can be used in column functions, for example:

SELECT MAX(BONUS + 1000)

 INTO :TOP_SALESREP_BONUS

 FROM EMPLOYEE

WHERE COMM > 5000

The column functions that follow are in the SYSIBM schema and may be qualified with
the schema name (for example, SYSIBM.COUNT(*)).

 Chapter 4. Functions 157

 AVG

 ┌ ┐─ALL──────
5─ ─AVG──(─ ──┼ ┼────────── ─expression──)────────────────────────────────────5
 └ ┘─DISTINCT─

The schema is SYSIBM.

The AVG function returns the average of a set of numbers.

The argument values must be numbers and their sum must be within the range of the
data type of the result. The result can be null.

The data type of the result is the same as the data type of the argument values, except
that:

¹ The result is a large integer if the argument values are small integers.
¹ The result is double-precision floating point if the argument values are single-

precision floating point.

If the data type of the argument values is decimal with precision p and scale s, the
precision of the result is 31 and the scale is 31-p+s.

The function is applied to the set of values derived from the argument values by the
elimination of null values. If DISTINCT is specified, duplicate values are eliminated.

If the function is applied to an empty set, the result is a null value. Otherwise, the
result is the average value of the set.

If the type of the result is integer, the fractional part of the average is lost.

Examples:

¹ Using the PROJECT table, set the host variable AVERAGE (decimal(5,2)) to the
average staffing level (PRSTAFF) of projects in department (DEPTNO) 'D11'.

 SELECT AVG(PRSTAFF)

 INTO :AVERAGE

 FROM PROJECT

WHERE DEPTNO = 'D11'

Results in AVERAGE being set to 4.25 (that is 17/4) when using the sample table.

¹ Using the PROJECT table, set the host variable ANY_CALC (decimal(5,2)) to the
average of each unique staffing level value (PRSTAFF) of projects in department
(DEPTNO) 'D11'.

SELECT AVG(DISTINCT PRSTAFF)

 INTO :ANY_CALC

 FROM PROJECT

WHERE DEPTNO = 'D11'

158 SQL Reference

Results in ANY_CALC being set to 4.66 (that is 14/3) when using the sample table.

 Chapter 4. Functions 159

 COUNT

 ┌ ┐─ALL──────
5─ ─COUNT──(─ ──┬ ┬ ──┼ ┼────────── ─expression─ ─)──────────────────────────────5
 │ │└ ┘─DISTINCT─
 └ ┘ ─*────────────────────────

The schema is SYSIBM.

The COUNT function returns the number of rows or values in a set of rows or values.

If DISTINCT is used, the resulting expression must not have a length greater than 254
for a character column or 127 for a graphic column.

The result of the function is a large integer. The result cannot be null.

The argument of COUNT(*) is a set of rows. The result is the number of rows in the
set. A row that includes only NULL values is included in the count.

The argument of COUNT(DISTINCT expression) is a set of values. The function is
applied to the set of values derived from the argument values by the elimination of null
and duplicate values. The result is the number of different non-null values in the set.

The argument of COUNT(expression) or COUNT(ALL expression) is a set of values.
The function is applied to the set of values derived from the argument values by the
elimination of null values. The result is the number of non-null values in the set,
including duplicates.

Examples:

¹ Using the EMPLOYEE table, set the host variable FEMALE (int) to the number of
rows where the value of the SEX column is 'F'.

 SELECT COUNT(*)

 INTO :FEMALE

 FROM EMPLOYEE

WHERE SEX = 'F'

Results in FEMALE being set to 13 when using the sample table.

¹ Using the EMPLOYEE table, set the host variable FEMALE_IN_DEPT (int) to the
number of departments (WORKDEPT) that have at least one female as a member.

SELECT COUNT(DISTINCT WORKDEPT)

 INTO :FEMALE_IN_DEPT

 FROM EMPLOYEE

WHERE SEX = 'F'

Results in FEMALE_IN_DEPT being set to 5 when using the sample table. (There
is at least one female in departments A00, C01, D11, D21, and E11.)

160 SQL Reference

COUNT_BIG

 COUNT_BIG

 ┌ ┐─ALL──────
5─ ─COUNT_BIG──(─ ──┬ ┬ ──┼ ┼────────── ─expression─ ─)──────────────────────────5
 │ │└ ┘─DISTINCT─
 └ ┘ ─*────────────────────────

The schema is SYSIBM.

The COUNT_BIG function returns the number of rows or values in a set of rows or
values. It is similar to COUNT except that the result can be greater than the maximum
value of integer.

If DISTINCT is used, the resulting expression must not have a length greater than 254
for a character column or 127 for a graphic column.

The result of the function is a decimal with precision 31 and scale 0. The result cannot
be null.

The argument of COUNT_BIG(*) is a set of rows. The result is the number of rows in
the set. A row that includes only NULL values is included in the count.

The argument of COUNT_BIG(DISTINCT expression) is a set of values. The function is
applied to the set of values derived from the argument values by the elimination of null
and duplicate values. The result is the number of different non-null values in the set.

The argument of COUNT_BIG(expression) or COUNT_BIG(ALL expression) is a set of
values. The function is applied to the set of values derived from the argument values by
the elimination of null values. The result is the number of non-null values in the set,
including duplicates.

Examples:

¹ Refer to COUNT examples and substitute COUNT_BIG for occurrences of COUNT.
The results are the same except for the data type of the result.

¹ Some applications may require the use of COUNT but need to support values
larger than the largest integer. This can be achieved by use of sourced user-
defined functions and setting the function path. The following series of statements
shows how to create a sourced function to support COUNT(*) based on
COUNT_BIG and returning a decimal value with a precision of 15. The function
path is set such that the sourced function based on COUNT_BIG is used in subse-
quent statements such as the query shown.

 CREATE FUNCTION RICK.COUNT() RETURNS DECIMAL(15,0)

 SOURCE SYSIBM.COUNT_BIG();

 SET CURRENT FUNCTION PATH RICK, SYSTEM PATH;

 SELECT COUNT(*) FROM EMPLOYEE;

 Chapter 4. Functions 161

COUNT_BIG

Note how the sourced function is defined with no parameters to support COUNT(*).
This only works if you name the function COUNT and do not qualify the function
with the schema name when it is used. To get the same effect as COUNT(*) with a
name other than COUNT, invoke the function with no parameters. Thus, if
RICK.COUNT had been defined as RICK.MYCOUNT instead, the query would
have to be written as follows:

SELECT MYCOUNT() FROM EMPLOYEE;

If the count is taken on a specific column, the sourced function must specify the
type of the column. The following statements created a sourced function that will
take any CHAR column as a argument and use COUNT_BIG to perform the
counting.

 CREATE FUNCTION RICK.COUNT(CHAR()) RETURNS DOUBLE

 SOURCE SYSIBM.COUNT_BIG(CHAR());

 SELECT COUNT(DISTINCT WORKDEPT) FROM EMPLOYEE;

162 SQL Reference

GROUPING

 GROUPING

5──GROUPING──(──expression──)───5

The schema is SYSIBM.

Used in conjunction with grouping-sets and super-groups (see “group-by-clause” on
page 298 for details), the GROUPING function returns a value which indicates whether
or not a row returned in a GROUP BY answer set is a row generated by a grouping set
that excludes the column represented by expression.

The argument can be of any type, but must be an item of a GROUP BY clause.

The result of the function is a small integer. It is set to one of the following values:

1 The value of expression in the returned row is a null value, and the row was gen-
erated by the super-group. This generated row can be used to provide sub-total
values for the GROUP BY expression.

0 The value is other than the above.

Example:

The following query:

 SELECT SALES_DATE,

 SALES_PERSON,

SUM(SALES) AS UNITS_SOLD,

GROUPING(SALES_DATE) AS DATE_GROUP,

GROUPING(SALES_PERSON) AS SALES_GROUP

 FROM SALES

GROUP BY CUBE (SALES_DATE, SALES_PERSON)

ORDER BY SALES_DATE, SALES_PERSON

results in:

SALES_DATE SALES_PERSON UNITS_SOLD DATE_GROUP SALES_GROUP

---------- --------------- ----------- ----------- -----------

12/31/1995 GOUNOT 1 0 0

12/31/1995 LEE 6 0 0

12/31/1995 LUCCHESSI 1 0 0

12/31/1995 - 8 0 1

03/29/1996 GOUNOT 11 0 0

03/29/1996 LEE 12 0 0

03/29/1996 LUCCHESSI 4 0 0

03/29/1996 - 27 0 1

03/30/1996 GOUNOT 21 0 0

03/30/1996 LEE 21 0 0

03/30/1996 LUCCHESSI 4 0 0

03/30/1996 - 46 0 1

 Chapter 4. Functions 163

GROUPING

03/31/1996 GOUNOT 3 0 0

03/31/1996 LEE 27 0 0

03/31/1996 LUCCHESSI 1 0 0

03/31/1996 - 31 0 1

04/01/1996 GOUNOT 14 0 0

04/01/1996 LEE 25 0 0

04/01/1996 LUCCHESSI 4 0 0

04/01/1996 - 43 0 1

- GOUNOT 50 1 0

- LEE 91 1 0

- LUCCHESSI 14 1 0

- - 155 1 1

An application can recognize a SALES_DATE sub-total row by the fact that the value of
DATE_GROUP is 0 and the value of SALES_GROUP is 1. A SALES_PERSON sub-
total row can be recognized by the fact that the value of DATE_GROUP is 1 and the
value of SALES_GROUP is 0. A grand total row can be recognized by the value 1 for
both DATE_GROUP and SALES_GROUP.

164 SQL Reference

 MAX

 ┌ ┐─ALL──────
5─ ─MAX──(─ ──┼ ┼────────── ─expression──)────────────────────────────────────5
 └ ┘─DISTINCT─

The schema is SYSIBM.

The MAX function returns the maximum value in a set of values.

The argument values can be of any built-in type other than a long string.

If DISTINCT is used, the resulting expression must not have a length greater than 254
for a character column or 127 for a graphic column.

The data type, length and code page of the result are the same as the data type, length
and code page of the argument values. The result is considered to be a derived value
and can be null.

The function is applied to the set of values derived from the argument values by the
elimination of null values.

If the function is applied to an empty set, the result is a null value. Otherwise, the
result is the maximum value in the set.

The specification of DISTINCT has no effect on the result and therefore is not recom-
mended. It is included for compatibility with other relational systems.

Examples:

¹ Using the EMPLOYEE table, set the host variable MAX_SALARY (decimal(7,2)) to
the maximum monthly salary (SALARY/12) value.

SELECT MAX(SALARY) / 12

 INTO :MAX_SALARY

 FROM EMPLOYEE

Results in MAX_SALARY being set to 4395.83 when using the sample table.

¹ Using the PROJECT table, set the host variable LAST_PROJ(char(24)) to the
project name (PROJNAME) that comes last in the collating sequence.

 SELECT MAX(PROJNAME)

 INTO :LAST_PROJ

 FROM PROJECT

Results in LAST_PROJ being set to 'WELD LINE PLANNING' when using the
sample table.

¹ Similar to the previous example, set the host variable LAST_PROJ (char(40)) to
the project name that comes last in the collating sequence when a project name is

 Chapter 4. Functions 165

concatenated with the host variable PROJSUPP. PROJSUPP is '_Support'; it has
a char(8) data type.

SELECT MAX(PROJNAME CONCAT PROJSUPP)

 INTO :LAST_PROJ

 FROM PROJECT

Results in LAST_PROJ being set to 'WELD LINE PLANNING_SUPPORT' when
using the sample table.

166 SQL Reference

 MIN

 ┌ ┐─ALL──────
5─ ─MIN──(─ ──┼ ┼────────── ─expression──)────────────────────────────────────5
 └ ┘─DISTINCT─

The schema is SYSIBM.

The MIN function returns the minimum value in a set of values.

The argument values can be of any built-in type other than a long string.

If DISTINCT is used, the resulting expression must not have a length greater than 254
for a character column or 127 for a graphic column.

The data type, length, and code page of the result are the same as the data type,
length, and code page of the argument values. The result is considered to be a derived
value and can be null.

The function is applied to the set of values derived from the argument values by the
elimination of null values.

If this function is applied to an empty set, the result of the function is a null value.
Otherwise, the result is the minimum value in the set.

The specification of DISTINCT has no effect on the result and therefore is not recom-
mended. It is included for compatibility with other relational systems.

Examples:

¹ Using the EMPLOYEE table, set the host variable COMM_SPREAD (decimal(7,2))
to the difference between the maximum and minimum commission (COMM) for the
members of department (WORKDEPT) 'D11'.

SELECT MAX(COMM) - MIN(COMM)

 INTO :COMM_SPREAD

 FROM EMPLOYEE

WHERE WORKDEPT = 'D11'

Results in COMM_SPREAD being set to 1118 (that is, 2580 - 1462) when using
the sample table.

¹ Using the PROJECT table, set the host variable (FIRST_FINISHED (char(10)) to
the estimated ending date (PRENDATE) of the first project scheduled to be com-
pleted.

 SELECT MIN(PRENDATE)

 INTO :FIRST_FINISHED

 FROM PROJECT

 Chapter 4. Functions 167

Results in FIRST_FINISHED being set to '1982-09-15' when using the sample
table.

168 SQL Reference

 STDDEV

 ┌ ┐─ALL──────
5─ ─STDDEV──(─ ──┼ ┼────────── ─expression──)─────────────────────────────────5
 └ ┘─DISTINCT─

The schema is SYSIBM.

The STDDEV function returns the standard deviation of a set of numbers.

The argument values must be numbers.

The data type of the result is double-precision floating point. The result can be null.

The function is applied to the set of values derived from the argument values by the
elimination of null values. If DISTINCT is specified, duplicate values are eliminated.

If the function is applied to an empty set, the result is a null value. Otherwise, the
result is the standard deviation of the values in the set.

The order in which the values are aggregated is undefined, but every intermediate
result must be within the range of the result data type.

Example:

¹ Using the EMPLOYEE table, set the host variable DEV (double precision floating
point) to the standard deviation of the salaries for those employees in department
(WORKDEPT) 'A00'.

 SELECT STDDEV(SALARY)

 INTO :DEV

 FROM EMPLOYEE

WHERE WORKDEPT = 'A00'

Results in DEV being set to approximately 9938.00 when using the sample table.

 Chapter 4. Functions 169

 SUM

 ┌ ┐─ALL──────
5─ ─SUM──(─ ──┼ ┼────────── ─expression──)────────────────────────────────────5
 └ ┘─DISTINCT─

The schema is SYSIBM.

The SUM function returns the sum of a set of numbers.

The argument values must be numbers (built-in types only) and their sum must be
within the range of the data type of the result.

The data type of the result is the same as the data type of the argument values except
that:

¹ The result is a large integer if the argument values are small integers.
¹ The result is double-precision floating point if the argument values are single-

precision floating point.

If the data type of the argument values is decimal, the precision of the result is 31 and
the scale is the same as the scale of the argument values. The result can be null.

The function is applied to the set of values derived from the argument values by the
elimination of null values. If DISTINCT is specified, duplicate values are also eliminated.

If the function is applied to an empty set, the result is a null value. Otherwise, the
result is the sum of the values in the set.

Example:

¹ Using the EMPLOYEE table, set the host variable JOB_BONUS (decimal(9,2)) to
the total bonus (BONUS) paid to clerks (JOB='CLERK').

 SELECT SUM(BONUS)

 INTO :JOB_BONUS

 FROM EMPLOYEE

WHERE JOB = 'CLERK'

Results in JOB_BONUS being set to 2800 when using the sample table.

170 SQL Reference

 VARIANCE

 ┌ ┐─ALL──────
5─ ─VARIANCE───(1) ─(─ ──┼ ┼────────── ─expression──)─────────────────────────────5
 └ ┘─DISTINCT─

Note:
1 VAR can be used as a synonym for VARIANCE.

The schema is SYSIBM.

The VARIANCE function returns the variance of a set of numbers.

The argument values must be numbers.

The data type of the result is double-precision floating point. The result can be null.

The function is applied to the set of values derived from the argument values by the
elimination of null values. If DISTINCT is specified, duplicate values are eliminated.

If the function is applied to an empty set, the result is a null value. Otherwise, the
result is the variance of the values in the set.

The order in which the values are added is undefined, but every intermediate result
must be within the range of the result data type.

Example:

¹ Using the EMPLOYEE table, set the host variable VARNCE (double precision
floating point) to the variance of the salaries for those employees in department
(WORKDEPT) 'A00'.

 SELECT VARIANCE(SALARY)

 INTO :VARNCE

 FROM EMPLOYEE

WHERE WORKDEPT = 'A00'

Results in VARNCE being set to approximately 98763888.88 when using the
sample table.

 Chapter 4. Functions 171

 Scalar Functions
A scalar function can be used wherever an expression can be used. However, the
restrictions that apply to the use of expressions and column functions also apply when
an expression or column function is used within a scalar function. For example, the
argument of a scalar function can be a column function only if a column function is
allowed in the context in which the scalar function is used.

The restrictions on the use of column functions do not apply to scalar functions
because a scalar function is applied to a single value rather than a set of values.

Example: The result of the following SELECT statement has as many rows as there are
employees in department D01:

SELECT EMPNO, LASTNAME, YEAR(CURRENT DATE - BRTHDATE)

 FROM EMPLOYEE

WHERE WORKDEPT = 'D01'

The scalar functions that follow are in the SYSIBM schema and may be qualified with
the schema name (for example, SYSIBM.CHAR(123)).

172 SQL Reference

ABS or ABSVAL

ABS or ABSVAL

5──ABS or ABSVAL──(──expression──)──5

The schema is SYSFUN.

Returns the absolute value of the argument.

The argument can be of any built-in numeric data type. If it is of type DECIMAL or
REAL, it is converted to a double-precision floating-point number for processing by the
function.

The result of the function is:

¹ SMALLINT if the argument is SMALLINT

¹ INTEGER if the argument is INTEGER

¹ DOUBLE if the argument is DOUBLE, DECIMAL or REAL.

The result can be null; if the argument is null, the result is the null value.

 Chapter 4. Functions 173

ACOS

 ACOS

5──ACOS──(──expression──)───5

The schema is SYSFUN.

Returns the arccosine of the argument as an angle expressed in radians.

The argument can be of any built-in numeric data type. It is converted to a double-
precision floating-point number for processing by the function.

The result of the function is a double-precision floating-point number. The result can be
null; if the argument is null, the result is the null value.

174 SQL Reference

ASCII

 ASCII

5──ASCII──(──expression──)──5

The schema is SYSFUN.

Returns the ASCII code value of the leftmost character of the argument as an integer.

The argument can be of any built-in character string type up to a maximum of 1048576
bytes (1M). LONG VARCHAR is converted to CLOB for processing by the function.

The result of the function is always INTEGER.

The result can be null; if the argument is null, the result is the null value.

 Chapter 4. Functions 175

ASIN

 ASIN

5──ASIN──(──expression──)───5

The schema is SYSFUN.

Returns the arcsine on the argument as an angle expressed in radians.

The argument can be of any built-in numeric type. It is converted to a double-precision
floating-point number for processing by the function.

The result of the function is a double-precision floating-point number. The result can be
null; if the argument is null, the result is the null value.

176 SQL Reference

ATAN

 ATAN

5──ATAN──(──expression──)───5

The schema is SYSFUN.

Returns the arctangent of the argument as an angle expressed in radians.

The argument can be of any built-in numeric data type. It is converted to a double-
precision floating-point number for processing by the function.

The result of the function is a double-precision floating-point number. The result can be
null; if the argument is null, the result is the null value.

 Chapter 4. Functions 177

ATAN2

 ATAN2

5──ATAN2──(──expression──,──expression──)─ ────────────────────────────────5

The schema is SYSFUN.

Returns the arctangent of x and y coordinates as an angle expressed in radians. The x
and y coordinates are specified by the first and second arguments respectively.

The first and the second arguments can be of any built-in numeric data type. Both are
converted to a double-precision floating-point number for processing by the function.

The result of the function is a double-precision floating-point number. The result can be
null; if any argument is null, the result is the null value.

178 SQL Reference

BLOB

 BLOB

5──BLOB──(──string-expression─ ──┬ ┬──────────── ─)──────────────────────────5
 └ ┘ ─,──integer─

The schema is SYSIBM.

The BLOB function returns a BLOB representation of a string of any type.

string-expression
A string-expression whose value can be a character string, graphic string, or a
binary string.

integer
An integer value specifying the length attribute of the resulting BLOB data type. If
integer is not specified, the length attribute of the result is the same as the length
of the input, except where the input is graphic. In this case, the length attribute of
the result is twice the length of the input.

The result of the function is a BLOB. If the argument can be null, the result can be null;
if the argument is null, the result is the null value.

Examples

¹ Given a table with a BLOB column named TOPOGRAPHIC_MAP and a VARCHAR
column named MAP_NAME, locate any maps that contain the string 'Pellow Island'
and return a single binary string with the map name concatenated in front of the
actual map.

SELECT BLOB(MAP_NAME || ': ') || TOPOGRAPHIC_MAP

 FROM ONTARIO_SERIES_4

WHERE TOPOGRAPIC_MAP LIKE BLOB('%Pellow Island%')

 Chapter 4. Functions 179

CEIL or CEILING

CEIL or CEILING

5──CEIL or CEILING──(──expression──)──────────────────────────────────────5

The schema is SYSFUN.

Returns the smallest integer value greater than or equal to the argument.

The argument can be of any built-in numeric type. If the argument is of type DECIMAL
or REAL, it is converted to a double-precision floating-point number for processing by
the function. If the argument is of type SMALLINT or INTEGER, the argument value is
returned.

The result of the function is:

¹ SMALLINT if the argument is SMALLINT

¹ INTEGER if the argument is INTEGER

¹ DOUBLE if the argument is DECIMAL, REAL or DOUBLE. Decimal values with
more than 15 digits to the left of the decimal will not return the desired integer
value due to loss of precision in the conversion to DOUBLE.

The result can be null; if the argument is null, the result is the null value.

180 SQL Reference

CHAR

 CHAR

Datetime to Character:

5──CHAR──(──datetime-expression─ ──┬ ┬────────────── ─)──────────────────────5
 └ ┘ ─,─ ──┬ ┬─ISO───
 ├ ┤─USA───
 ├ ┤─EUR───
 ├ ┤─JIS───
 └ ┘─LOCAL─

Character to Character:

5──CHAR──(──character-expression─ ──┬ ┬──────────── ─)───────────────────────5
 └ ┘ ─,──integer─

Integer to Character:

5──CHAR──(──integer-expression──)───5

Decimal to Character:

5──CHAR──(──decimal-expression─ ──┬ ┬────────────────────── ─)───────────────5
 └ ┘ ─,──decimal-character─

Floating-point to Character:

5──CHAR──(──floating-point-expression──)──────────────────────────────────5

The schema is SYSIBM. However, the schema for CHAR(floating-point-expression) is
SYSFUN.

The CHAR function returns a character-string representation of a:

¹ Datetime value if the first argument is a date, time or timestamp

¹ Character string value if the first argument is any type of character string

¹ Integer number if the first argument is a SMALLINT or INTEGER

¹ Decimal number if the first argument is a decimal number

¹ Double-precision floating-point number if the first argument is a DOUBLE or REAL.

The result of the function is a fixed-length character string. If the first argument can be
null, the result can be null. If the first argument is null, the result is the null value.

Datetime to Character

datetime-expression
An expression that is one of the following three data types

date The result is the character string representation of the
date in the format specified by the second argument. The
length of the result is 10. An error occurs if the second

 Chapter 4. Functions 181

CHAR

argument is specified and is not a valid value (SQLSTATE
42703).

time The result is the character string representation of the time
in the format specified by the second argument. The
length of the result is 8. An error occurs if the second
argument is specified and is not a valid value (SQLSTATE
42703).

timestamp The second argument is not applicable and must not be
specified. SQLSTATE 42815 The result is the character
string representation of the timestamp. The length of the
result is 26.

The code page of the string is the code page of the database at the
application server.

Character to Character

character-expression
An expression that returns a value that is CHAR, VARCHAR, LONG
VARCHAR, or CLOB data type.

integer
the length attribute for the resulting fixed length character string. The
value must be between 0 and 254.

If the length of the character-expression is less than the length attribute of
the result, the result is padded with blanks up to the length of the result. If
the length of the character-expression is greater than the length attribute of
the result, truncation is performed. A warning is returned (SQLSTATE
01004) unless the truncated characters were all blanks and the character-
expression was not a long string (LONG VARCHAR or CLOB).

Integer to Character

integer-expression
An expression that returns a value that is an integer data type (either
SMALLINT or INTEGER).

The result is the character string representation of the argument in the form
of an SQL integer constant. The result consists of n characters that are the
significant digits that represent the value of the argument with a preceding
minus sign if the argument is negative. It is left justified.

¹ If the first argument is a small integer:

The length of the result is 6. If the number of characters in the result is
less than 6, then the result is padded on the right with blanks to length
6.

¹ If the first argument is a large integer:

182 SQL Reference

CHAR

The length of the result is 11. If the number of characters in the result
is less than 11, then the result is padded on the right with blanks to
length 11.

The code page of the string is the code page of the database at the appli-
cation server.

Decimal to Character

decimal-expression
An expression that returns a value that is a decimal data type. If a
different precision and scale is desired, the DECIMAL scalar function
can be used first to make the change.

decimal-character
Specifies the single-byte character constant that is used to delimit the
decimal digits in the result character string. The character cannot be a
digit, plus ('+'), minus ('-') or blank. (SQLSTATE 42815). The default is
the period ('.') character

The result is the fixed-length character-string representation of the argu-
ment. The result includes a decimal character and p digits, where p is the
precision of the decimal-expression with a preceding minus sign if the argu-
ment is negative. The length of the result is 2+p, where p is the precision
of the decimal-expression. This means that a positive value will always
include one trailing blank.

The code page of the string is the code page of the database at the appli-
cation server.

Floating-point to Character

floating-point-expression
An expression that returns a value that is a floating-point data type
(DOUBLE or REAL).

The result is the fixed-length character-string representation of the argu-
ment in the form of a floating-point constant. The length of the result is 24.
If the argument is negative, the first character of the result is a minus sign.
Otherwise, the first character is a digit. If the argument value is zero, the
result is 0E0. Otherwise, the result includes the smallest number of charac-
ters that can represent the value of the argument such that the mantissa
consists of a single digit other than zero followed by a period and a
sequence of digits. If the number of characters in the result is less than 24,
then the result is padded on the right with blanks to length 24.

The code page of the string is the code page of the database at the appli-
cation server.

Examples:

¹ Assume the column PRSTDATE has an internal value equivalent to 1988-12-25.

 Chapter 4. Functions 183

CHAR

 CHAR(PRSTDATE, USA)

 Results in the value ‘12/25/1988’.

¹ Assume the column STARTING has an internal value equivalent to 17.12.30, the
host variable HOUR_DUR (decimal(6,0)) is a time duration with a value of 050000.
(that is, 5 hours).

CHAR(STARTING, USA)

 Results in the value '5:12 PM'.

CHAR(STARTING + :HOUR_DUR, USA)

 Results in the value '10:12 PM'.

¹ Assume the column RECEIVED (timestamp) has an internal value equivalent to the
combination of the PRSTDATE and STARTING columns.

 CHAR(RECEIVED)

 Results in the value ‘1988-12-25-17.12.30.000000’.

¹ Use the CHAR function to make the type fixed length character and reduce the
length of the displayed results to 10 characters for the LASTNAME column (defined
as VARCHAR(15)) of the EMPLOYEE table.

SELECT CHAR(LASTNAME,10) FROM EMPLOYEE

 For rows having a LASTNAME with a length greater than 10 characters (excluding
trailing blanks), a warning that the value is truncated is returned.

¹ Use the CHAR function to return the values for EDLEVEL (defined as smallint) as
a fixed length character string.

SELECT CHAR(EDLEVEL) FROM EMPLOYEE

 An EDLEVEL of 18 would be returned as the CHAR(6) value '18 ' (18 followed by
four blanks).

¹ Assume that STAFF has a SALARY column defined as decimal with precision of 9
and scale of 2. The current value is 18357.50 and it is to be displayed with a
comma as the decimal character (18357,50).

 CHAR(SALARY, ',')

 returns the value '00018357,50 '.

¹ Assume the same SALARY column subtracted from 20000.25 is to be displayed
with the default decimal character.

CHAR(20000.25 - SALARY)

 returns the value '-0001642.75'.

¹ Assume a host variable, SEASONS_TICKETS, has an integer data type and a
10000 value.

 CHAR(DECIMAL(:SEASONS_TICKETS,7,2))

Results in the character value '10000.00 '.

184 SQL Reference

CHAR

¹ Assume a host variable, DOUBLE_NUM has a double data type and a value of
-987.654321E-35.

 CHAR(:DOUBLE_NUM)

Results in the character value of '-9.87654321E-33 '. Since the result data
type is CHAR(24), there are 9 trailing blanks in the result.

 Chapter 4. Functions 185

CHR

 CHR

5──CHR──(──expression──)──5

The schema is SYSFUN.

Returns the character that has the ASCII code value specified by the argument.

The argument can be either INTEGER or SMALLINT. The value of the argument should
be between 0 and 255; otherwise, the return value is null.

The result of the function is CHAR(1). The result can be null; if the argument is null, the
result is the null value.

186 SQL Reference

CLOB

 CLOB

5──CLOB──(──character-string-expression─ ──┬ ┬──────────── ─)────────────────5
 └ ┘ ─,──integer─

The schema is SYSIBM.

The CLOB function returns a CLOB representation of a character string type.

character-string-expression
An expression that returns a value that is a character string.

integer
An integer value specifying the length attribute of the resulting CLOB data type.
The value must be between 0 and 2 147 483 647. If integer is not specified, the
length of the result is the same as the length of the first argument.

The result of the function is a CLOB. If the argument can be null, the result can be null;
if the argument is null, the result is the null value.

 Chapter 4. Functions 187

COALESCE

 COALESCE

 ┌ ┐─────────────────
5──COALESCE───(1) ─(──expression─ ───6 ┴─,──expression─ ─)────────────────────────5

Note:
1 VALUE is a synonym for COALESCE.

The schema is SYSIBM.

COALESCE returns the first argument that is not null.

The arguments are evaluated in the order in which they are specified, and the result of
the function is the first argument that is not null. The result can be null only if all the
arguments can be null, and the result is null only if all the arguments are null. The
selected argument is converted, if necessary, to the attributes of the result.

The arguments must be compatible. See “Rules for Result Data Types” on page 74 for
what data types are compatible and the attributes of the result. They can be of either a
built-in or distinct data type. 30

Examples:

¹ When selecting all the values from all the rows in the DEPARTMENT table, if the
department manager (MGRNO) is missing (that is, null), then return a value of
'ABSENT'.

SELECT DEPTNO, DEPTNAME, COALESCE(MGRNO, 'ABSENT'), ADMRDEPT

 FROM DEPARTMENT

¹ When selecting the employee number (EMPNO) and salary (SALARY) from all the
rows in the EMPLOYEE table, if the salary is missing (that is, null), then return a
value of zero.

SELECT EMPNO, COALESCE(SALARY, 0)

 FROM EMPLOYEE

30 This function may not be used as a source function when creating a user-defined function. Since it accepts any compatible data
types as arguments, it is not necessary to create additional signatures to support user-defined distinct types.

188 SQL Reference

CONCAT

 CONCAT

5──CONCAT───(1) ─(──expression1──,──expression2──)────────────────────────────5

Note:
1 || may be used as a synonym for CONCAT.

The schema is SYSIBM.

Returns the concatenation of two string arguments. The two arguments must be com-
patible types.

The result of the function is a string. Its length is sum of the lengths of the two argu-
ments. If the argument can be null, the result can be null; if the argument is null, the
result is the null value.

See “With the Concatenation Operator” on page 107 for more information.

 Chapter 4. Functions 189

COS

 COS

5──COS──(──expression──)──5

The schema is SYSFUN.

Returns the cosine of the argument, where the argument is an angle expressed in
radians.

The argument can be of any built-in numeric type. It is converted to a double-precision
floating-point number for processing by the function.

The result of the function is a double-precision floating-point number. The result can be
null; if the argument is null, the result is the null value.

190 SQL Reference

COT

 COT

5──COT──(──expression──)──5

The schema is SYSFUN.

Returns the cotangent of the argument, where the argument is an angle expressed in
radians.

The argument can be of any built-in numeric type. It is converted to a double-precision
floating-point number for processing by the function.

The result of the function is a double-precision floating-point number. The result can be
null; if the argument is null, the result is the null value.

 Chapter 4. Functions 191

DATE

 DATE

5──DATE──(──expression──)───5

The schema is SYSIBM.

The DATE function returns a date from a value.

The argument must be a date, timestamp, a positive number less than or equal to
3 652 059, a valid character string representation of a date or timestamp, or a character
string of length 7 that is neither a CLOB nor a LONG VARCHAR.

If the argument is a character string of length 7, it must represent a valid date in the
form yyyynnn, where yyyy are digits denoting a year, and nnn are digits between 001
and 366, denoting a day of that year.

The result of the function is a date. If the argument can be null, the result can be null; if
the argument is null, the result is the null value.

The other rules depend on the data type of the argument:

¹ If the argument is a date, timestamp, or valid string representation of a date or
timestamp:

– The result is the date part of the value.

¹ If the argument is a number:

– The result is the date that is n-1 days after January 1, 0001, where n is the
integral part of the number.

¹ If the argument is a character string with a length of 7:

– The result is the date represented by the character string.

Examples:

¹ Assume that the column RECEIVED (timestamp) has an internal value equivalent
to ‘1988-12-25-17.12.30.000000’.

 DATE(RECEIVED)

Results in an internal representation of ‘1988-12-25’.

¹ This example results in an internal representation of ‘1988-12-25’.

 DATE('1988-12-25')

¹ This example results in an internal representation of ‘1988-12-25’.

 DATE('25.12.1988')

¹ This example results in an internal representation of ‘0001-02-04’.

 DATE(35)

192 SQL Reference

DAY

 DAY

5──DAY──(──expression──)──5

The schema is SYSIBM.

The DAY function returns the day part of a value.

The argument must be a date, timestamp, date duration, timestamp duration, or a valid
character string representation of a date or timestamp that is neither a CLOB nor a
LONG VARCHAR.

The result of the function is a large integer. If the argument can be null, the result can
be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:

¹ If the argument is a date, timestamp, or valid string representation of a date or
timestamp:

– The result is the day part of the value, which is an integer between 1 and 31.

¹ If the argument is a date duration or timestamp duration:

– The result is the day part of the value, which is an integer between −99 and
99. A nonzero result has the same sign as the argument.

Examples:

¹ Using the PROJECT table, set the host variable END_DAY (smallint) to the day
that the WELD LINE PLANNING project (PROJNAME) is scheduled to stop
(PRENDATE).

 SELECT DAY(PRENDATE)

 INTO :END_DAY

 FROM PROJECT

WHERE PROJNAME = 'WELD LINE PLANNING'

Results in END_DAY being set to 15 when using the sample table.

¹ Assume that the column DATE1 (date) has an internal value equivalent to
2000-03-15 and the column DATE2 (date) has an internal value equivalent to
1999-12-31.

DAY(DATE1 - DATE2)

Results in the value 15.

 Chapter 4. Functions 193

DAYNAME

 DAYNAME

5──DAYNAME──(──expression──)──5

The schema is SYSFUN.

Returns a mixed case character string containing the name of the day (e.g. Friday) for
the day portion of the argument based on the locale when the database was started.

The argument must be a date, timestamp, or a valid character string representation of a
date or timestamp that is neither a CLOB nor a LONG VARCHAR.

The result of the function is VARCHAR(100). The result can be null; if the argument is
null, the result is the null value.

194 SQL Reference

DAYOFWEEK

 DAYOFWEEK

5──DAYOFWEEK──(──expression──)──5

The schema is SYSFUN.

Returns the day of the week in the argument as an integer value in the range 1-7,
where 1 represents Sunday.

The argument must be a date, timestamp, or a valid character string representation of a
date or timestamp that is neither a CLOB nor a LONG VARCHAR.

The result of the function is INTEGER. The result can be null; if the argument is null,
the result is the null value.

 Chapter 4. Functions 195

DAYOFYEAR

 DAYOFYEAR

5──DAYOFYEAR──(──expression──)──5

The schema is SYSFUN.

Returns the day of the year in the argument as an integer value in the range 1-366.

The argument must be a date, timestamp, or a valid character string representation of a
date or timestamp that is neither a CLOB nor a LONG VARCHAR.

The result of the function is INTEGER. The result can be null; if the argument is null,
the result is the null value.

196 SQL Reference

DAYS

 DAYS

5──DAYS──(──expression──)───5

The schema is SYSIBM.

The DAYS function returns an integer representation of a date.

The argument must be a date, timestamp, or a valid character string representation of a
date or timestamp that is neither a CLOB nor a LONG VARCHAR.

The result of the function is a large integer. If the argument can be null, the result can
be null; if the argument is null, the result is the null value.

The result is 1 more than the number of days from January 1, 0001 to D, where D is
the date that would occur if the DATE function were applied to the argument.

Examples:

¹ Using the PROJECT table, set the host variable EDUCATION_DAYS (int) to the
number of elapsed days (PRENDATE - PRSTDATE) estimated for the project
(PROJNO) ‘IF2000’.

SELECT DAYS(PRENDATE) - DAYS(PRSTDATE)

 INTO :EDUCATION_DAYS

 FROM PROJECT

WHERE PROJNO = 'IF2000'

Results in EDUCATION_DAYS being set to 396 when using the sample table.

¹ Using the PROJECT table, set the host variable TOTAL_DAYS (int) to the sum of
elapsed days (PRENDATE - PRSTDATE) estimated for all projects in department
(DEPTNO) ‘E21’.

SELECT SUM(DAYS(PRENDATE) – DAYS(PRSTDATE))

 INTO :TOTAL_DAYS

 FROM PROJECT

WHERE DEPTNO = 'E21'

Results in TOTAL_DAYS being set to 1584 when using the sample table.

 Chapter 4. Functions 197

DBCLOB

 DBCLOB

5──DBCLOB──(──graphic-expression─ ──┬ ┬──────────── ─)───────────────────────5
 └ ┘ ─,──integer─

The schema is SYSIBM.

The DBCLOB function returns a DBCLOB representation of a graphic string type.

graphic-expression
An expression that returns a value that is a graphic string.

integer
An integer value specifying the length attribute of the resulting DBCLOB data type.
The value must be between 0 and 1 073 741 823. If integer is not specified, the
length of the result is the same as the length of the first argument.

The result of the function is a DBCLOB. If the argument can be null, the result can be
null; if the argument is null, the result is the null value.

198 SQL Reference

DECIMAL

 DECIMAL

Numeric to Decimal:

5─ ─DECIMAL───(1) ─(──numeric-expression─ ──┬ ┬── ─)────5
 └ ┘ ─,──precision-integer─ ──┬ ┬──────────────────
 └ ┘ ─,──scale-integer─

Note:
1 DEC can be used as a synonym for DECIMAL.

Character to Decimal:

5─ ─DECIMAL───(1) ─(──character-expression───5

5─ ──┬ ┬── ─)────────────5
 └ ┘ ─,──precision-integer─ ──┬ ┬──
 └ ┘ ─,──scale-integer─ ──┬ ┬──────────────────────
 └ ┘ ─,──decimal-character─

Note:
1 DEC can be used as a synonym for DECIMAL.

The schema is SYSIBM.

The DECIMAL function returns a decimal representation of

 ¹ A number
¹ A character string representation of a decimal number
¹ A character string representation of a integer number.

The result of the function is a decimal number with precision of p and scale of s, where
p and s are the second and third arguments. If the first argument can be null, the result
can be null; if the first argument is null, the result is the null value.

Numeric to Decimal

numeric-expression
An expression that returns a value of any numeric data type.

precision-integer
An integer constant with a value in the range of 1 to 31.

The default for the precision-integer depends on the data type of the
numeric-expression:

¹ 15 for floating-point and decimal
¹ 11 for large integer
¹ 5 for small integer.

scale-integer
An integer constant in the range of 0 to the precision-integer value.
The default is zero.

 Chapter 4. Functions 199

DECIMAL

The result is the same number that would occur if the first argument were
assigned to a decimal column or variable with a precision of p and a scale
of s, where p and s are the second and third arguments. An error occurs if
the number of significant decimal digits required to represent the whole part
of the number is greater than p-s.

Character to Decimal

character-expression
An expression that returns a value that is a character string with a
length not greater than the maximum length of a character constant
(4 000 bytes). It cannot have a CLOB or LONG VARCHAR data type.
Leading and trailing blanks are eliminated from the string. The
resulting substring must conform to the rules for forming an SQL
integer or decimal constant (SQLSTATE 22018).

The character-expression is converted to the database code page if
required to match the code page of the constant decimal-character.

precision-integer
An integer constant with a value in the range 1 to 31 that specifies the
precision of the result. If not specified, the default is 15.

scale-integer
An integer constant with a value in the range 0 to precision-integer that
specifies the scale of the result. If not specified, the default is 0.

decimal-character
Specifies the single byte character constant that is used to delimit the
decimal digits in character-expression from the whole part of the
number. The character cannot be a digit plus ('+'), minus ('-') or blank
and can appear at most once in character-expression (SQLSTATE
42815).

The result is a decimal number with precision p and scale s where p and s
are the second and third arguments. Digits are truncated from the end if
the number of digits right of the decimal character is greater than the scale
s. An error occurs if the number of significant digits left of the decimal char-
acter (the whole part of the number) in character-expression is greater than
p-s (SQLSTATE 22003). The default decimal character is not valid in the
substring if the decimal-character argument is specified (SQLSTATE
22018).

Examples:

¹ Use the DECIMAL function in order to force a DECIMAL data type (with a precision
of 5 and a scale of 2) to be returned in a select-list for the EDLEVEL column (data
type = SMALLINT) in the EMPLOYEE table. The EMPNO column should also
appear in the select list.

SELECT EMPNO, DECIMAL(EDLEVEL,5,2)

 FROM EMPLOYEE

200 SQL Reference

DECIMAL

¹ Assume the host variable PERIOD is of type INTEGER. Then, in order to use its
value as a date duration it must be "cast" as decimal(8,0).

SELECTPRSTDATE + DECIMAL(:PERIOD,8)

 FROM PROJECT

¹ Assume that updates to the SALARY column are input through a window as a
character string using comma as a decimal character (for example, the user inputs
21400,50). Once validated by the application, it is assigned to the host variable
newsalary which is defined as CHAR(10).

 UPDATE STAFF

SET SALARY = DECIMAL(:newsalary, 9, 2, ',')

WHERE ID = :empid;

The value of newsalary becomes 21400.50.

¹ Add the default decimal character (.) to a value.

DECIMAL('21400,50', 9, 2, '.')

This fails because a period (.) is specified as the decimal character but a comma
(,) appears in the first argument as a delimiter.

 Chapter 4. Functions 201

DEGREES

 DEGREES

5──DEGREES──(──expression──)──5

The schema is SYSFUN.

Returns the number of degrees converted from the argument expressed in radians.

The argument can be of any built-in numeric type. It is converted to double-precision
floating-point number for processing by the function.

The result of the function is a double-precision floating-point number. The result can be
null; if the argument is null, the result is the null value.

202 SQL Reference

DIFFERENCE

 DIFFERENCE

5──DIFFERENCE──(──expression──,──expression──)────────────────────────────5

The schema is SYSFUN.

Returns a value from 0 to 4 representing the difference between the sounds of two
strings based on applying the SOUNDEX function to the strings. A value of 4 is the
best possible sound match.

The arguments can be character strings that are either CHAR or VARCHAR.

The result of the function is INTEGER. The result can be null; if the argument is null,
the result is the null value.

Example:

VALUES (DIFFERENCE('CONSTRAINT','CONSTANT'),SOUNDEX('CONSTRAINT'),SOUNDEX('CONSTANT')),

 (DIFFERENCE('CONSTRAINT','CONTRITE'),SOUNDEX('CONSTRAINT'),SOUNDEX('CONTRITE'))

This example returns the following.

 1 2 3

 ----------- ---- ----

4 C523 C523

2 C523 C536

In the first row, the words have the same result from SOUNDEX while in the second
row the words have only some similarity.

 Chapter 4. Functions 203

DIGITS

 DIGITS

5──DIGITS──(──expression──)───5

The schema is SYSIBM.

The DIGITS function returns a character-string representation of a number.

The argument must be an expression that returns a value of type SMALLINT,
INTEGER or DECIMAL.

If the argument can be null, the result can be null; if the argument is null, the result is
the null value.

The result of the function is a fixed-length character string representing the absolute
value of the argument without regard to its scale. The result does not include a sign or
a decimal character. Instead, it consists exclusively of digits, including, if necessary,
leading zeros to fill out the string. The length of the string is:

¹ 5 if the argument is a small integer
¹ 10 if the argument is a large integer
¹ p if the argument is a decimal number with a precision of p.

Examples:

¹ Assume that a table called TABLEX contains an INTEGER column called INTCOL
containing 10-digit numbers. List all distinct four digit combinations of the first four
digits contained in column INTCOL.

SELECT DISTINCT SUBSTR(DIGITS(INTCOL),1,4)

 FROM TABLEX

¹ Assume that COLUMNX has the DECIMAL(6,2) data type, and that one of its
values is -6.28. Then, for this value:

 DIGITS(COLUMNX)

 returns the value '000628'.

The result is a string of length six (the precision of the column) with leading zeros
padding the string out to this length. Neither sign nor decimal point appear in the
result.

204 SQL Reference

DOUBLE

 DOUBLE

Numeric to Double:

5──DOUBLE───(1) ─(──numeric-expression──)─────────────────────────────────────5

Note:
1 FLOAT or DOUBLE_PRECISION can be used as a synonym for the DOUBLE

function in the SYSIBM schema.

Character String to Double:

5──DOUBLE──(──string-expression──)──5

The schema is SYSIBM. However, the schema for DOUBLE(string-expression) is
SYSFUN.

The DOUBLE function returns a floating-point number corresponding to a:

¹ number if the argument is a numeric expression

¹ character string representation of a number if the argument is a string expression.

Numeric to Double

numeric-expression
The argument is an expression that returns a value of any built-in
numeric data type.

The result of the function is a double-precision floating-point number. If
the argument can be null, the result can be null; if the argument is null,
the result is the null value.

The result is the same number that would occur if the argument were
assigned to a double-precision floating-point column or variable.

Character String to Double

string-expression
The argument can be of type CHAR or VARCHAR in the form of a
numeric constant. Leading and trailing blanks in argument are ignored.

The result of the function is a double-precision floating-point number.
The result can be null; if the argument is null, the result is the null
value.

The result is the same number that would occur if the string was con-
sidered a constant and assigned to a double-precision floating-point
column or variable.

Example:

 Chapter 4. Functions 205

DOUBLE

Using the EMPLOYEE table, find the ratio of salary to commission for employees
whose commission is not zero. The columns involved (SALARY and COMM) have
DECIMAL data types. To eliminate the possibility of out-of-range results, DOUBLE is
applied to SALARY so that the division is carried out in floating point:

SELECT EMPNO, DOUBLE(SALARY)/COMM

 FROM EMPLOYEE

WHERE COMM > 0

206 SQL Reference

EVENT_MON_STATE

 EVENT_MON_STATE

5─ ─EVENT_MON_STATE─ ──(─string-expression──)───────────────────────────────5

The schema is SYSIBM.

The EVENT_MON_STATE function returns the current state of an event monitor.

The argument is a string expression with a resulting type of CHAR or VARCHAR and a
value that is the name of an event monitor. If the named event monitor does not exist in
the SYSCAT.EVENTMONITORS catalog table, SQLSTATE 42704 will be returned.

The result is an integer with one of the following values:

0 The event monitor is inactive.

1 The event monitor is active.

If the argument can be null, the result can be null; if the argument is null, the result is
the null value.

Example:

¹ The following example selects all of the defined event monitors, and indicates
whether each is active or inactive:

 SELECT EVMONNAME,

 CASE

WHEN EVENT_MON_STATE(EVMONNAME) = 0 THEN 'Inactive'

WHEN EVENT_MON_STATE(EVMONNAME) = 1 THEN 'Active'

 END

 FROM SYSCAT.EVENTMONITORS

 Chapter 4. Functions 207

EXP

 EXP

5──EXP──(──expression──)──5

The schema is SYSFUN.

Returns the exponential function of the argument.

The argument can be of any built-in numeric data type. It is converted to double-
precision floating-point number for processing by the function.

The result of the function is a double-precision floating-point number. The result can be
null; if the argument is null, the result is the null value.

208 SQL Reference

FLOAT

 FLOAT

5──FLOAT──(──numeric-expression──)──5

The schema is SYSIBM.

The FLOAT function returns a floating-point representation of a number.

FLOAT is a synonym for DOUBLE. See “DOUBLE” on page 205 for details.

 Chapter 4. Functions 209

FLOOR

 FLOOR

5──FLOOR──(──expression──)──5

The schema is SYSFUN.

Returns the largest integer value less than or equal to the argument.

The argument can be of any built-in numeric type. If the argument is of type DECIMAL
or REAL, it is converted to a double-precision floating-point number for processing by
the function. If the argument is of type SMALLINT or INTEGER, the argument value is
returned.

The result of the function is:

¹ SMALLINT if the argument is SMALLINT

¹ INTEGER if the argument is INTEGER

¹ DOUBLE if the argument is DOUBLE, DECIMAL or REAL. Decimal values with
more than 15 digits to the left of the decimal will not return the desired integer
value due to loss of precision in the conversion to DOUBLE.

The result can be null; if the argument is null, the result is the null value.

210 SQL Reference

GENERATE_UNIQUE

 GENERATE_UNIQUE

5──GENERATE_UNIQUE──(──)──5

The schema is SYSIBM.

The GENERATE_UNIQUE function returns a bit data character string 13 bytes long
(CHAR(13) FOR BIT DATA) that is unique compared to any other execution of the
same function.31

There are no arguments to this function (the empty parentheses must be specified).

The result of the function is a unique value that includes the internal form of the Uni-
versal Time, Coordinated (UTC) and the partition number where the function was proc-
essed. The result cannot be null.

The result of this function can be used to provide unique values in a table. Each suc-
cessive value will be greater than the previous value, providing a sequence that can be
used within a table. The value includes the partition number where the function exe-
cuted so that a table partitioned across multiple partitions also has unique values in
some sequence. The sequence is based on the time the function was executed.

This function differs from using the special register CURRENT TIMESTAMP in that a
unique value is generated for each row of a multiple row insert statement or an insert
statement with a fullselect.

The timestamp value that is part of the result of this function can be determined using
the TIMESTAMP scalar function with the result of GENERATE_UNIQUE as an argu-
ment.

Examples:

¹ Create a table that includes a column that is unique for each row. Populate this
column using the GENERATE_UNIQUE function. Notice that the UNIQUE_ID
column has "FOR BIT DATA" specified to identify the column as a bit data char-
acter string.

31 The system clock is used to generate the internal Universal Time, Coordinated (UTC) timestamp along with the partition number on
which the function executes. Adjustments that move the actual system clock backward could result in duplicate values.

 Chapter 4. Functions 211

GENERATE_UNIQUE

 CREATE TABLE EMP_UPDATE

 (UNIQUE_ID CHAR(13) FOR BIT DATA,

 EMPNO CHAR(6),

 TEXT VARCHAR(1000))

 INSERT INTO EMP_UPDATE

VALUES (GENERATE_UNIQUE(), '000020', 'Update entry...'),

(GENERATE_UNIQUE(), '000050', 'Update entry...')

This table will have a unique identifier for each row provided that the UNIQUE_ID
column is always set using GENERATE_UNIQUE. This can be done by introducing
a trigger on the table.

 CREATE TRIGGER EMP_UPDATE_UNIQUE

 NO CASCADE BEFORE INSERT ON EMP_UPDATE

 REFERENCING NEW AS NEW_UPD

 FOR EACH ROW MODE DB2SQL

 SET NEW_UPD.UNIQUE_ID = GENERATE_UNIQUE()

With this trigger defined, the previous INSERT statement could be issued without
the first column as follows.

 INSERT INTO EMP_UPDATE (EMPNO, TEXT)

VALUES ('000020', 'Update entry 1...'),

('000050', 'Update entry 2...')

The timestamp (in UTC) for when a row was added to EMP_UPDATE can be
returned using:

SELECT TIMESTAMP (UNIQUE_ID), EMPNO, TEXT FROM EMP_UPDATE

Therefore, there is no need to have a timestamp column in the table to record
when a row is inserted.

212 SQL Reference

GRAPHIC

 GRAPHIC

5──GRAPHIC──(──graphic-expression─ ──┬ ┬──────────── ─)──────────────────────5
 └ ┘ ─,──integer─

The schema is SYSIBM.

The GRAPHIC function returns a GRAPHIC representation of a graphic string type.

graphic-expression
An expression that returns a value that is a graphic string.

integer
An integer value specifying the length attribute of the resulting GRAPHIC data type.
The value must be between 1 and 127. If integer is not specified, the length of the
result is the same as the length of the first argument.

The result of the function is a GRAPHIC. If the argument can be null, the result can be
null; if the argument is null, the result is the null value.

 Chapter 4. Functions 213

HEX

 HEX

5──HEX──(──expression──)──5

The schema is SYSIBM.

The HEX function returns a hexadecimal representation of a value as a character
string.

The argument can be an expression that is a value of any built-in data type with a
maximum length of 2 000 bytes.

The result of the function is a character string. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

The code page is the database code page.

The result is a string of hexadecimal digits. The first two represent the first byte of the
argument, the next two represent the second byte of the argument, and so forth. If the
argument is a datetime value or a numeric value the result is the hexadecimal repre-
sentation of the internal form of the argument. The hexadecimal representation that is
returned may be different depending on the application server where the function is
executed. Cases where differences would be evident include:

¹ Character string arguments when the HEX function is performed on an ASCII client
with an EBCDIC server or on an EBCDIC client with an ASCII server.

¹ Numeric arguments (in some cases) when the HEX function is performed where
client and server systems have different byte orderings for numeric values.

The type and length of the result vary based on the type and length of character string
arguments.

 ¹ Character string

– Fixed length not greater than 127

- Result is a character string of fixed length twice the defined length of the
argument.

– Fixed length greater than 127

- Result is a character string of varying length twice the defined length of
the argument.

 – Varying length

- Result is a character string of varying length with maximum length twice
the defined maximum length of the argument.

 ¹ Graphic string

214 SQL Reference

HEX

– Fixed length not greater than 63

- Result is a character string of fixed length four times the defined length of
the argument.

¹ Fixed length greater than 63

– Result is a character string of varying length four times the defined length of
the argument.

 ¹ Varying length

– Result is a character string of varying length with maximum length four times
the defined maximum length of the argument.

Examples:

Assume the use of a DB2 for AIX application server for the following examples.

¹ Using the DEPARTMENT table set the host variable HEX_MGRNO (char(12)) to
the hexadecimal representation of the manager number (MGRNO) for the
‘PLANNING’ department (DEPTNAME).

 SELECT HEX(MGRNO)

INTO :HEX_MGRNO FROM DEPARTMENT WHERE DEPTNAME = 'PLANNING'

 HEX_MGRNO will be set to '303030303230' when using the sample table (char-
acter value is '000020').

¹ Suppose COL_1 is a column with a data type of char(1) and a value of 'B'. The
hexadecimal representation of the letter 'B' is X'42'. HEX(COL_1) returns a two-
character string '42'.

¹ Suppose COL_3 is a column with a data type of decimal(6,2) and a value of 40.1.
An eight-character string '0004010C' is the result of applying the HEX function to
the internal representation of the decimal value, 40.1.

 Chapter 4. Functions 215

HOUR

 HOUR

5─ ─HOUR──(──expression──)───5

The schema is SYSIBM.

The HOUR function returns the hour part of a value.

The argument must be a time, timestamp, time duration, timestamp duration or a valid
character string representation of a time or timestamp that is neither a CLOB nor a
LONG VARCHAR.

The result of the function is a large integer. If the argument can be null, the result can
be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:

¹ If the argument is a time, timestamp or valid string representation of a time or
timestamp:

– The result is the hour part of the value, which is an integer between 0 and 24.

¹ If the argument is a time duration or timestamp duration:

– The result is the hour part of the value, which is an integer between −99 and
99. A nonzero result has the same sign as the argument.

Example:

Using the CL_SCHED sample table, select all the classes that start in the afternoon.

SELECT * FROM CL_SCHED

WHERE HOUR(STARTING) BETWEEN 12 AND 17

216 SQL Reference

INSERT

 INSERT

5──INSERT──(──expression1──,──expression2──,──────────────────────────────5

5──expression3──,──expression4──)───5

The schema is SYSFUN.

Returns a string where expression3 bytes have been deleted from expression1 begin-
ning at expression2 and where expression4 has been inserted into expression1 begin-
ning at expression2. If the length of the result string exceeds the maximum for the
return type, an error occurs (SQLSTATE 38552).

The first argument is a character string or a binary string with a maximum length of
1048576 bytes. The second and third arguments must be a numeric value with a data
type of SMALLINT or INTEGER. If the first argument is a character string, then the
fourth argument must also be a character string with a maximum length of 1048576
bytes. If the first argument is a binary string, then the fourh argument must be a binary
string with a maximum length of 1048576 bytes. For the first and fourth arguments,
CHAR is converted to VARCHAR and LONG VARCHAR to CLOB(1M), for second and
third arguments SMALLINT is converted to INTEGER for processing by the function.

The result is based on the argument types as follows:

¹ VARCHAR(4000) if both the first and fourth arguments are VARCHAR or CHAR

¹ CLOB(1M) if either the first or fourth argument is CLOB or LONG VARCHAR

¹ BLOB(1M) if both first and fourth arguments are BLOB.

The result can be null; if any argument is null, the result is the null value.

Example:

¹ Delete one character from the word 'DINING' and insert 'VID', both beginning at the
third character.

VALUES CHAR(INSERT('DINING', 3, 1, 'VID'), 10)

This example returns the following:

1

DIVIDING

As mentioned, the output of the INSERT function is VARCHAR(4000). For the
above example the function CHAR has been used to limit the output of INSERT to
10 bytes. The starting location of a particular string can be found using LOCATE.
Refer to “LOCATE” on page 224 for more information.

 Chapter 4. Functions 217

INTEGER

 INTEGER

5─ ─INTEGER───(1) ─(─ ──┬ ┬─numeric-expression─── ─)──────────────────────────────5
 └ ┘─character-expression─

Note:
1 INT can be used as a synonym for INTEGER. SMALLINT can be used as a

synonym, but returns a small integer.

The schema is SYSIBM.

The INTEGER function returns an integer representation of a number or character
string in the form of an integer constant.

numeric-expression
An expression that returns a value of any built-in numeric data type.

If the argument is a numeric-expression, the result is the same number that would
occur if the argument were assigned to a large integer column or variable. If the
whole part of the argument is not within the range of integers, an error occurs. The
decimal part of the argument is truncated if present.

character-expression
An expression that returns a character string value of length not greater than the
maximum length of a character constant. Leading and trailing blanks are eliminated
and the resulting string must conform to the rules for forming an SQL integer con-
stant (SQLSTATE 22018). The character string cannot be a long string.

If the argument is a character-expression, the result is the same number that would
occur if the corresponding integer constant were assigned to a large integer
column or variable.

The result of the function is a large integer. If the argument can be null, the result can
be null; if the argument is null, the result is the null value.

Examples:

¹ Using the EMPLOYEE table, select a list containing salary (SALARY) divided by
education level (EDLEVEL). Truncate any decimal in the calculation. The list
should also contain the values used in the calculation and employee number
(EMPNO). The list should be in descending order of the calculated value.

SELECT INTEGER (SALARY / EDLEVEL), SALARY, EDLEVEL, EMPNO

 FROM EMPLOYEE

ORDER BY 1 DESC

¹ Using the EMPLOYEE table, select the EMPNO column in integer form for further
processing in the application.

SELECT INTEGER(EMPNO) FROM EMPLOYEE

218 SQL Reference

JULIAN_DAY

 JULIAN_DAY

5──JULIAN_DAY──(──expression──)───5

The schema is SYSFUN.

Returns an integer value representing the number of days from January 1,4712 B.C.
(the start of Julian date calendar) to the date value specified in the argument.

The argument must be a date, timestamp, or a valid character string representation of a
date or timestamp that is neither a CLOB nor a LONG VARCHAR.

The result of the function is INTEGER. The result can be null; if the argument is null,
the result is the null value.

 Chapter 4. Functions 219

LCASE

 LCASE

5──LCASE──(──expression──)──5

The schema is SYSFUN.

Returns a string in which all the characters A-Z have been converted to the characters
a-z (characters with diacritical marks are not converted). Note that
LCASE(UCASE(string)) will therefore not necessarily return the same result as
LCASE(string).

The argument can be of any built-in character string type up to a maximum of 1048576
bytes (1M).

The result of the function is:

¹ VARCHAR(4000) if the argument is VARCHAR or CHAR

¹ CLOB(1M) if the argument is CLOB or LONG VARCHAR

The result can be null; if the argument is null, the result is the null value.

220 SQL Reference

LEFT

 LEFT

5──LEFT──(──expression1──,──expression2──)────────────────────────────────5

The schema is SYSFUN.

Returns a string consisting of the leftmost expression2 bytes in expression1.

The first argument is a character string or binary string with maximum length of
1048576 bytes. The second argument must be of INTEGER or SMALLINT dataype.

The result of the function is:

¹ VARCHAR(4000) if the argument is VARCHAR or CHAR

¹ CLOB(1M) if the argument is CLOB or LONG VARCHAR

¹ BLOB(1M) if the argument is BLOB.

The result can be null; if any argument is null, the result is the null value.

 Chapter 4. Functions 221

LENGTH

 LENGTH

5──LENGTH──(──expression──)───5

The schema is SYSIBM.

The LENGTH function returns the length of a value.

The argument can be an expression that returns a value of any built-in data type.

The result of the function is a large integer. If the argument can be null, the result can
be null; if the argument is null, the result is the null value.

The result is the length of the argument. The length does not include the null indicator
byte of column arguments that allow null values. The length of strings includes blanks
but does not include the length control field of varying-length strings. The length of a
varying-length string is the actual length, not the maximum length.

The length of a graphic string is the number of DBCS characters. The length of all other
values is the number of bytes used to represent the value:

¹ 2 for small integer
¹ 4 for large integer
¹ (p/2)+1 for decimal numbers with precision p
¹ The length of the string for binary strings
¹ The length of the string for character strings
¹ 4 for single-precision floating-point
¹ 8 for double-precision floating-point
¹ 4 for date
¹ 3 for time
¹ 10 for timestamp

Examples:

¹ Assume the host variable ADDRESS is a varying length character string with a
value of '895 Don Mills Road'.

 LENGTH(:ADDRESS)

 Returns the value 18.

¹ Assume that START_DATE is a column of type DATE.

 LENGTH(START_DATE)

 Returns the value 4.

¹ This example returns the value 10.

 LENGTH(CHAR(START_DATE, EUR))

222 SQL Reference

LN

 LN

5──LN──(──expression──)───5

The schema is SYSFUN.

Returns the natural logarithm of the argument (same as LOG).

The argument can be of any built-in numeric data type. It is converted to double-
precision floating-point number for processing by the function.

The result of the function is a double-precision floating-point number. The result can be
null; if the argument is null, the result is the null value.

 Chapter 4. Functions 223

LOCATE

 LOCATE

5──LOCATE──(──expression1──,──expression2─ ──┬ ┬──────────────── ─)──────────5
 └ ┘ ─,──expression3─

The schema is SYSFUN.

Returns the starting position of the first occurrence of expression1 within expression2. If
the optional expression3 is specified, it indicates the character position in expression2
at which the search is to begin. If expression1 is not found within expression2, the
value 0 is returned.

If the first argument is a character string, then the second argument must be a char-
acter string with a maximum length of 1048576 bytes. If the first argument is a binary
string, then the second argument must be a binary string with a maximum length of
1048576 bytes. The third argument must be is INTEGER or SMALLINT.

The result of the function is INTEGER. The result can be null; if any argument is null,
the result is the null value.

Example:

¹ Find the location of the letter 'N' (first occurrence) in the word 'DINING'.

VALUES LOCATE ('N', 'DINING')

This example returns the following:

1

 3

224 SQL Reference

LOG

 LOG

5──LOG──(──expression──)──5

The schema is SYSFUN.

Returns the natural logarithm of the argument (same as LN).

The argument can be of any built-in numeric data type. It is converted to double-
precision floating-point number for processing by the function.

The result of the function is a double-precision floating-point number. The result can be
null; if the argument is null, the result is the null value.

 Chapter 4. Functions 225

LOG10

 LOG10

5──LOG10──(──expression──)──5

The schema is SYSFUN.

Returns the base 10 logarithm of the argument.

The argument can be of any built-in numeric type. It is converted to double-precision
floating-point number for processing by the function.

The result of the function is a double-precision floating-point number. The result can be
null; if the argument is null, the result is the null value.

226 SQL Reference

LONG_VARCHAR

 LONG_VARCHAR

5──LONG_VARCHAR──(──character-string-expression──)────────────────────────5

The schema is SYSIBM.

The LONG_VARCHAR function returns a LONG VARCHAR representation of a char-
acter string data type.

character-string-expression
An expression that returns a value that is a character string with a length no
greater than 32700 bytes.

The result of the function is a LONG VARCHAR. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

 Chapter 4. Functions 227

LONG_VARGRAPHIC

 LONG_VARGRAPHIC

5──LONG_VARGRAPHIC──(──graphic-expression──)──────────────────────────────5

The schema is SYSIBM.

The LONG_VARGRAPHIC function returns a LONG VARGRAPHIC representation of a
double-byte character string.

graphic-expression
An expression that returns a value that is a graphic string with a length no greater
than 16350 double byte characters .

The result of the function is a LONG VARGRAPHIC. If the argument can be null, the
result can be null; if the argument is null, the result is the null value.

228 SQL Reference

LTRIM

 LTRIM

5──LTRIM──(──expression──)──5

The schema is SYSFUN.

Returns the characters of the argument with leading blanks removed.

The argument can be any built-in character string with a maximum length of 1048576
bytes (1M).

The result of the function is:

¹ VARCHAR(4000) if the argument is VARCHAR or CHAR

¹ CLOB(1M) if the argument is CLOB or LONG VARCHAR.

The result can be null; if the argument is null, the result is the null value.

 Chapter 4. Functions 229

MICROSECOND

 MICROSECOND

5──MICROSECOND──(──expression──)──5

The schema is SYSIBM.

The MICROSECOND function returns the microsecond part of a value.

The argument must be a timestamp, timestamp duration or a valid character string rep-
resentation of a timestamp that is neither a CLOB nor a LONG VARCHAR.

The result of the function is a large integer. If the argument can be null, the result can
be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:

¹ If the argument is a timestamp or a valid string representation of a timestamp:

– The integer ranges from 0 through 999999.

¹ If the argument is a duration:

– The result reflects the microsecond part of the value which is an integer
between −999999 through 999999. A nonzero result has the same sign as the
argument.

Example:

¹ Assume a table TABLEA contains two columns, TS1 and TS2, of type
TIMESTAMP. Select all rows in which the microseconds portion of TS1 is not zero
and the seconds portion of TS1 and TS2 are identical.

SELECT * FROM TABLEA

WHERE MICROSECOND(TS1) <> 0 AND

SECOND(TS1) = SECOND(TS2)

230 SQL Reference

MIDNIGHT_SECONDS

 MIDNIGHT_SECONDS

5──MIDNIGHT_SECONDS──(──expression──)─────────────────────────────────────5

The schema is SYSFUN.

Returns an integer value in the range 0 to 86400 representing the number of seconds
between midnight and the time value specified in the argument.

The argument must be a time, timestamp, or a valid character string representation of a
time or timestamp that is neither a CLOB nor a LONG VARCHAR.

T>he result of the function is INTEGER. The result can be null; if the argument is null,
the result is the null value.

Example:

¹ Find the number of seconds between midnight and 00:10:10, and midnight and
13:10:10.

VALUES (MIDNIGHT_SECONDS('00:10:10'), MIDNIGHT_SECONDS('13:10:10'))

This example returns the following:

1 2

----------- -----------

 610 47410

Since a minute is 60 seconds, there are 610 seconds between midnight and the
specified time. The same follows for the second example. There are 3600 seconds
in an hour, and 60 seconds in a minute, resulting in 47410 seconds between the
specified time and midnight.

¹ Find the number of seconds between midnight and 24:00:00, and midnight and
00:00:00.

VALUES (MIDNIGHT_SECONDS('24:00:00'), MIDNIGHT_SECONDS('00:00:00'))

This example returns the following:

1 2

----------- -----------

 86400 0

Note that thses two values represent the same point in time, but return different
MIDNIGHT_SECONDS values.

 Chapter 4. Functions 231

MINUTE

 MINUTE

5──MINUTE──(──expression──)───5

The schema is SYSIBM.

The MINUTE function returns the minute part of a value.

The argument must be a time, timestamp, time duration, timestamp duration or a valid
character string representation of a time or timestamp that is neither a CLOB nor a
LONG VARCHAR.

The result of the function is a large integer. If the argument can be null, the result can
be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:

¹ If the argument is a time, timestamp or valid string representation of a time or
timestamp:

– The result is the minute part of the value, which is an integer between 0 and
59.

¹ If the argument is a time duration or timestamp duration:

– The result is the minute part of the value, which is an integer between −99 and
99. A nonzero result has the same sign as the argument.

Example:

¹ Using the CL_SCHED sample table, select all classes with a duration less than 50
minutes.

SELECT * FROM CL_SCHED

WHERE HOUR(ENDING - STARTING) = 0 AND

MINUTE(ENDING - STARTING) < 50

232 SQL Reference

MOD

 MOD

5──MOD──(──expression──,──expression──)───────────────────────────────────5

The schema is SYSFUN.

Returns the remainder of the first argument divided by the second argument. The
result is negative only if first argument is negative.

The first and second arguments can be either SMALLINT or INTEGER.

The result of the function is SMALLINT if both arguments are SMALLINT, otherwise it is
an INTEGER. The result can be null; if any argument is null, the result is the null value.

 Chapter 4. Functions 233

MONTH

 MONTH

5──MONTH──(──expression──)──5

The schema is SYSIBM.

The MONTH function returns the month part of a value.

The argument must be a date, timestamp, date duration, timestamp duration or a valid
character string representation of a date or timestamp that is neither a CLOB nor a
LONG VARCHAR.

The result of the function is a large integer. If the argument can be null, the result can
be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:

¹ If the argument is a date, timestamp, or a valid string representation of a date or
timestamp:

– The result is the month part of the value, which is an integer between 1 and
12.

¹ If the argument is a date duration or timestamp duration:

– The result is the month part of the value, which is an integer between −99 and
99. A nonzero result has the same sign as the argument.

Example:

¹ Select all rows from the EMPLOYEE table for people who were born (BIRTHDATE)
in DECEMBER.

SELECT * FROM EMPLOYEE

WHERE MONTH(BIRTHDATE) = 12

234 SQL Reference

MONTHNAME

 MONTHNAME

5──MONTHNAME──(──expression──)──5

The schema is SYSFUN.

Returns a mixed case character string containing the name of month (e.g. January) for
the month portion of the argument, based on the locale when the database was started.

The argument must be a date, timestamp, or a valid character string representation of a
date or timestamp that is neither a CLOB nor a LONG VARCHAR.

The result of the function is VARCHAR(100). The result can be null; if the argument is
null, the result is the null value.

 Chapter 4. Functions 235

NODENUMBER

 NODENUMBER

5──NODENUMBER──(──column-name──)──5

The schema is SYSIBM.

The NODENUMBER function returns the partition number of the row. For example, if
used in a SELECT clause, it returns the partition number for each row of the table that
was used to form the result of the SELECT statement.

The argument must be the qualified or unqualified name of a column of a table. The
column can have any data type. If column-name references a column of a view the
expression in the view for the column must reference a column of the underlying base
table and the view must be deletable. A nested or common table expression follows the
same rules as a view. See “Notes” on page 520 for the definition of a deletable view.

The specific row (and table) for which the partition number is returned by the
NODENUMBER function is determined from the context of the SQL statement that uses
the function.

The data type of the result is INTEGER and is never null. Since row-level information is
returned, the results are the same, regardless of which column is specified for the table.
If there is no db2nodes.cfg file, the result is 0.

The NODENUMBER function cannot be used:

¹ within check constraints
¹ on transition tables or transition variables in the definition of a trigger.

Examples:

¹ Count the number of rows where the row for an EMPLOYEE is on a different parti-
tion from the employee's department description in DEPARTMENT.

SELECT COUNT(*) FROM DEPARTMENT D, EMPLOYEE E

 WHERE D.DEPTNO=E.WORKDEPT

AND NODENUMBER(E.LASTNAME) <>NODENUMBER(D.DEPTNO)

¹ Join the EMPLOYEE and DEPARTMENT tables where the rows of the two tables
are on the same partition.

SELECT * FROM DEPARTMENT D, EMPLOYEE E

WHERE NODENUMBER(E.LASTNAME) = NODENUMBER(D.DEPTNO)

236 SQL Reference

NULLIF

 NULLIF

5──NULLIF──(──expression──,──expression──)────────────────────────────────5

The schema is SYSIBM.

The NULLIF function returns a null value if the arguments are equal, otherwise it
returns the value of the first argument.

The arguments must be comparable (see “Assignments and Comparisons” on
page 64). They can be of either a built-in or distinct data type. 32 The attributes of the
result are the attributes of the first argument.

The result of using NULLIF(e1,e2) is the same as using the expression

CASE WHEN e1=e2 THEN NULL ELSE e1 END

Note that when e1=e2 evaluates to unknown (because one or both arguments is
NULL), CASE expressions consider this not true. Therefore, in this situation, NULLIF
returns the value of the first argument.

Example:

¹ Assume host variables PROFIT, CASH, and LOSSES have DECIMAL data types
with the values 4500.00, 500.00, and 5000.00 respectively:

NULLIF (:PROFIT + :CASH , :LOSSES)

Returns a null value.

32 This function may not be used as a source function when creating a user-defined function. Since it accepts any compatible data
types as arguments, it is not necessary to create additional signatures to support user-defined distinct types.

 Chapter 4. Functions 237

PARTITION

 PARTITION

5──PARTITION──(──column-name──)───5

The schema is SYSIBM.

The PARTITION function returns the partitioning map index of the row obtained by
applying the partitioning function on the partitioning key value of the row. For example,
if used in a SELECT clause, it returns the partitioning map index for each row of the
table that was used to form the result of the SELECT statement.

The argument must be the qualified or unqualified name of a column of a table. The
column can have any data type. If column-name references a column of a view the
expression in the view for the column must reference a column of the underlying base
table and the view must be deletable. A nested or common table expression follows the
same rules as a view. See “Notes” on page 520 for the definition of a deletable view.

The specific row (and table) for which the partitioning map index is returned by the
PARTITION function is determined from the context of the SQL statement that uses the
function.

The data type of the result is INTEGER in the range 0 to 4095. For a table with no
partitioning key, the result is always 0. A null value is never returned. Since row-level
information is returned, the results are the same, regardless of which column is speci-
fied for the table.

The PARTITION function cannot be used:

¹ within check constraints
¹ on transition tables or transition variables in the definition of a trigger.

Example:

¹ List the employee numbers (EMPNO) from the EMPLOYEE table for all rows with a
partitioning map index of 100.

SELECT EMPNO FROM EMPLOYEE

WHERE PARTITION(PHONENO) = 100

238 SQL Reference

POSSTR

 POSSTR

5──POSSTR──(──source-string──,──search-string──)──────────────────────────5

The schema is SYSIBM.

The POSSTR function returns the starting position of the first occurrence of one string
(called the search-string) within another string (called the source-string). Numbers for
the search-string position start at 1 (not 0).

The result of the function is a large integer. If either of the arguments can be null, the
result can be null; if either of the arguments is null, the result is the null value.

source-string
An expression that specifies the source string in which the search is to take place.

The expression can be specified by any one of:

 ¹ a constant
¹ a special register
¹ a host variable (including a locator variable or a file reference variable)
¹ a scalar function
¹ a large object locator
¹ a column name
¹ an expression concatenating any of the above

search-string
An expression that specifies the string that is to be searched for.

The expression can be specified by any one of:

 ¹ a constant
¹ a special register
¹ a host variable
¹ a scalar function whose operands are any of the above
¹ an expression concatenating any of the above

with the restrictions that:

¹ No element in the expression can be of type LONG VARCHAR, CLOB, LONG
VARGRAPHIC or DBCLOB. In addition, it cannot be a BLOB file reference
variable.

¹ The actual length of search-string cannot be more than 4000 bytes.

Note that these rules are the same as those for the pattern-expression described in
“LIKE Predicate” on page 134.

Both search-string and source-string have zero or more contiguous positions. If the
strings are character or binary strings, a position is a byte. If the strings are graphic
strings, a position is a graphic (DBCS) character.

 Chapter 4. Functions 239

POSSTR

The POSSTR function accepts mixed data strings. However, POSSTR operates on a
strict byte-count basis, oblivious to changes between single and multi-byte characters.

The following rules apply:

¹ The data types of source-string and search-string must be compatible, otherwise
an error is raised (SQLSTATE 42884).

– If source-string is a character string, then search-string must be a character
string, but not a CLOB or LONG VARCHAR, with an actual length of 4000
bytes or less.

– If source-string is a graphic string, then search-string must be a graphic string,
but not a DBCLOB or LONG VARGRAPHIC, with an actual length of 2000
double-byte characters or less.

– If source-string is a binary string, then search-string must be a binary string
with an actual length of 4000 bytes or less.

¹ If search-string has a length of zero, the result returned by the function is 1.

 ¹ Otherwise:

– If source-string has a length of zero, the result returned by the function is zero.

 – Otherwise:

- If the value of search-string is equal to an identical length substring of
contiguous positions from the value of source-string, then the result
returned by the function is the starting position of the first such substring
within the source-string value.

- Otherwise, the result returned by the function is 0.

Example

¹ Select RECEIVED and SUBJECT columns as well as the starting position of the
words 'GOOD BEER' within the NOTE_TEXT column for all entries in the IN_TRAY
table that contain these words.

SELECT RECEIVED, SUBJECT, POSSTR(NOTE_TEXT, 'GOOD BEER')

 FROM IN_TRAY

WHERE POSSTR(NOTE_TEXT, 'GOOD BEER') <> 0

240 SQL Reference

POWER

 POWER

5──POWER──(──expression1──,──expression2──)───────────────────────────────5

The schema is SYSFUN.

Returns the value of expression1 to the power of expression2.

The arguments can be of any built-in numeric data type. DECIMAL and REAL argu-
ments are converted to double-precision floating-point number.

The result of the function is:

¹ INTEGER if both arguments are INTEGER or SMALLINT

 ¹ DOUBLE otherwise.

The result can be null; if any argument is null, the result is the null value.

 Chapter 4. Functions 241

QUARTER

 QUARTER

5──QUARTER──(──expression──)──5

The schema is SYSFUN.

Returns an integer value in the range 1 to 4 representing the quarter of the year for the
date specified in the argument.

The argument must be a date, timestamp, or a valid character string representation of a
date or timestamp that is neither a CLOB nor a LONG VARCHAR.

The result of the function is INTEGER. The result can be null; if the argument is null,
the result is the null value.

242 SQL Reference

RADIANS

 RADIANS

5──RADIANS──(──expression──)──5

The schema is SYSFUN.

Returns the number of radians converted from argument which is expressed in
degrees.

The argument can be of any built-in numeric data types. It is converted to double-
precision floating-point number for processing by the function.

The result of the function is a double-precision floating-point number. The result can be
null; if the argument is null, the result is the null value.

 Chapter 4. Functions 243

RAISE_ERROR

 RAISE_ERROR

5──RAISE_ERROR──(──sqlstate──,──diagnostic-string──)──────────────────────5

The schema is SYSIBM.

The RAISE_ERROR function causes the statement that includes the function to return
an error with the specified SQLSTATE, SQLCODE -438 and diagnostic-string. The
RAISE_ERROR function always returns NULL with an undefined data type.

sqlstate
A character string containing exactly 5 characters. It must be of type CHAR defined
with a length of 5 or type VARCHAR defined with a length of 5 or greater. The
sqlstate value must follow the rules for application-defined SQLSTATEs as follows:

¹ Each character must be from the set of digits ('0' through '9') or non-accented
upper case letters ('A' through 'Z')

¹ The SQLSTATE class (first two characters) cannot be '00', '01' or '02' since
these are not error classes.

¹ If the SQLSTATE class (first two characters) starts with the character '0'
through '6' or 'A' through 'H', then the subclass (last three characters) must
start with a letter in the range 'I' through 'Z'

¹ If the SQLSTATE class (first two characters) starts with the character '7', '8', '9'
or 'I' though 'Z', then the subclass (last three characters) can be any of '0'
through '9' or 'A' through 'Z'.

If the SQLSTATE does not conform to these rules an error occurs (SQLSTATE
428B3).

diagnostic-string
An expression of type CHAR or VARCHAR that returns a character string of up to
70 bytes that describes the error condition. If the string is longer than 70 bytes, it
will be truncated.

In order to use this function in a context where Rules for Result Data Types do not
apply (such as alone in a select list), a cast specification must be used to give the null
returned value a data type. A CASE expression is where the RAISE_ERROR function
will be most useful.

Example:

List employee numbers and education levels as Post Graduate, Graduate and Diploma.
If an education level is greater than 20, raise an error.

244 SQL Reference

RAISE_ERROR

 SELECT EMPNO,

CASE WHEN EDUCLVL < 16 THEN 'Diploma'

WHEN EDUCLVL < 18 THEN 'Graduate'

WHEN EDUCLVL < 21 THEN 'Post Graduate'

 ELSE RAISE_ERROR('70001',

'EDUCLVL has a value greater than 20')

 END

 FROM EMPLOYEE

 Chapter 4. Functions 245

RAND

 RAND

5──RAND──(─ ──┬ ┬──────────── ─)───5
 └ ┘─expression─

The schema is SYSFUN.

Returns a random floating point value between 0 and 1 using the argument as the
optional seed value.

An argument is not required, but if it is specified it can be either INTEGER or
SMALLINT.

The result of the function is a double-precision floating-point number. The result can be
null; if the argument is null, the result is the null value.

246 SQL Reference

REAL

 REAL

5──REAL──(──numeric-expression──)───5

The schema is SYSIBM.

The REAL function returns a single-precision floating-point representation of a number.

The argument is an expression that returns a value of any built-in numeric data type.

The result of the function is a single-precision floating-point number. If the argument
can be null, the result can be null; if the argument is null, the result is the null value.

The result is the same number that would occur if the argument were assigned to a
single-precision floating-point column or variable.

Example:

Using the EMPLOYEE table, find the ratio of salary to commission for employees
whose commission is not zero. The columns involved (SALARY and COMM) have
DECIMAL data types. The result is desired in single-precision floating point. Therefore,
REAL is applied to SALARY so that the division is carried out in floating point (actually
double precision) and then REAL is applied to the complete expression to return the
result in single-precision floating point.

SELECT EMPNO, REAL(REAL(SALARY)/COMM)

 FROM EMPLOYEE

WHERE COMM > 0

 Chapter 4. Functions 247

REPEAT

 REPEAT

5──REPEAT──(──expression──,──expression──)────────────────────────────────5

The schema is SYSFUN.

Returns a character string composed of the first argument repeated the number of
times specified by the second argument.

The first argument is a character string or binary string with a maximum length of
1048576 bytes. The second argument can be SMALLINT or INTEGER.

The result of the function is:

¹ VARCHAR(4000) if the first argument is VARCHAR or CHAR

¹ CLOB(1M) if the first argument is CLOB or LONG VARCHAR

¹ BLOB(1M) if the first argument is BLOB.

The result can be null; if any argument is null, the result is the null value.

Example:

¹ List the phrase 'REPEAT THIS' five times.

VALUES CHAR(REPEAT('REPEAT THIS', 5), 60)

This example return the following:

1

--

REPEAT THISREPEAT THISREPEAT THISREPEAT THISREPEAT THIS

As mentioned, the output of the REPEAT function is VARCHAR(4000). For the
above example the function CHAR has been used to limit the output of REPEAT to
60 bytes.

248 SQL Reference

REPLACE

 REPLACE

5──REPLACE──(──expression1──,──expression2──,──expression3──)─────────────5

The schema is SYSFUN.

Replaces all occurrences of expression2 in expression1 with expression3.

The first argument is a character string or binary string with a maximum length of
1048576 bytes. CHAR is converted to VARCHAR and LONG VARCHAR is converted
to CLOB(1M). The second and third arguments are identical to the first argument.

The result of the function is:

¹ VARCHAR(4000) if the first, second and third arguments are VARCHAR or CHAR

¹ CLOB(1M) if the first, second and third arguments are CLOB or LONG VARCHAR

¹ BLOB(1M) if the first, second and third arguments are BLOB.

The result can be null; if any argument is null, the result is the null value.

Example:

¹ Replace all occurrence of the letter 'N' in the word 'DINING' with 'VID'.

VALUES CHAR (REPLACE ('DINING', 'N', 'VID'), 10)

This example returns the following:

1

DIVIDIVIDG

As mentioned, the output of the REPLACE function is VARCHAR(4000). For the
above example the function CHAR has been used to limit the output of REPLACE
to 10 bytes.

 Chapter 4. Functions 249

RIGHT

 RIGHT

5──RIGHT──(──expression1──,──expression2──)───────────────────────────────5

The schema is SYSFUN.

Returns a string consisting of the rightmost expression2 bytes in expression1.

The first argument is a character string or binary string with maximum length of
1048576 bytes. The second argument can be INTEGER or SMALLINT.

The result of the function is:

¹ VARCHAR(4000) if the first argument is VARCHAR or CHAR

¹ CLOB(1M) if the first argument is CLOB or LONG VARCHAR

¹ BLOB(1M) if the first argument is BLOB.

The result can be null; if any argument is null, the result is the null value.

250 SQL Reference

ROUND

 ROUND

5──ROUND──(──expression1──,──expression2──)───────────────────────────────5

The schema is SYSFUN.

Returns the expression1 rounded to expression2 places right of the decimal point. If
expression2 is negative, expression1 is rounded to the absolute value of expression2
places to the left of the decimal point.

The first argument can be of any built-in numeric data type. The second argument can
be INTEGER or SMALLINT. DECIMAL and REAL are converted to double-precision
floating-point number for processing by the function.

The result of the function is:

¹ INTEGER if the first argument is INTEGER or SMALLINT

¹ DOUBLE if the first argument is DOUBLE, DECIMAL or REAL.

The result can be null; if any argument is null, the result is the null value.

Example:

¹ Display the number 973.726 rounded to 2, 1, 0, -1 and -2 decimal places respec-
tively.

VALUES (DECIMAL(ROUND(873.726,2),6,3), DECIMAL(ROUND(873.726,1),6,3),

 DECIMAL(ROUND(873.726,0),6,3), DECIMAL(ROUND(873.726,-1),6,3),

 DECIMAL(ROUND(873.726,-2),6,3))

The above example returns:

1 2 3 4 5

-------- -------- -------- -------- ---------

873.730 873.700 874.000 870.000 900.000

As mentioned, the output of the ROUND function is DOUBLE. For the above
example the function DECIMAL has been used to limit the output of ROUND.

 Chapter 4. Functions 251

RTRIM

 RTRIM

5──RTRIM──(──expression──)──5

The schema is SYSFUN.

Returns the characters of the argument with trailing blanks removed.

The argument can be of any built-in character string data types.

The result of the function is:

¹ VARCHAR(4000) if the argument is VARCHAR or CHAR

¹ CLOB(1M) if the argument is CLOB or LONG VARCHAR.

The result can be null; if the argument is null, the result is the null value.

252 SQL Reference

SECOND

 SECOND

5──SECOND──(──expression──)───5

The schema is SYSIBM.

The SECOND function returns the seconds part of a value.

The argument must be a time, timestamp, time duration, timestamp duration or a valid
character string representation of a time or timestamp that is neither a CLOB nor a
LONG VARCHAR.

The result of the function is a large integer. If the argument can be null, the result can
be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:

¹ If the argument is a time, timestamp or valid string representation of a time or
timestamp:

– The result is the seconds part of the value, which is an integer between 0 and
59.

¹ If the argument is a time duration or timestamp duration:

– The result is the seconds part of the value, which is an integer between −99
and 99. A nonzero result has the same sign as the argument.

Examples:

¹ Assume that the host variable TIME_DUR (decimal(6,0)) has the value 153045.

 SECOND(:TIME_DUR)

Returns the value 45.

¹ Assume that the column RECEIVED (timestamp) has an internal value equivalent
to 1988-12-25-17.12.30.000000.

 SECOND(RECEIVED)

Returns the value 30.

 Chapter 4. Functions 253

SIGN

 SIGN

5──SIGN──(──expression──)───5

The schema is SYSFUN.

Returns an indicator of the sign of the argument. If the argument is less than zero, −1 is
returned. If argument equals zero, 0 is returned. If argument is greater than zero, 1 is
returned.

The argument can be of any built-in numeric data types. DECIMAL and REAL are con-
verted to double-precision floating-point number for processing by the function.

The result of the function is:

¹ INTEGER if the argument is INTEGER

¹ SMALLINT if the argument is SMALLINT

 ¹ DOUBLE otherwise.

The result can be null; if the argument is null, the result is the null value.

254 SQL Reference

SIN

 SIN

5──SIN──(──expression──)──5

The schema is SYSFUN.

Returns the sine of the argument, where the argument is an angle expressed in
radians.

The argument can be of any built-in numeric data types. It is converted to double-
precision floating-point number for processing by the function.

The result of the function is a double-precision floating-point number. The result can be
null; if the argument is null, the result is the null value.

 Chapter 4. Functions 255

SMALLINT

 SMALLINT

5─ ─SMALLINT─ ─(─ ──┬ ┬─numeric-expression─── ─)───────────────────────────────5
 └ ┘─character-expression─

The schema is SYSIBM.

The SMALLINT function returns a small integer representation of a number or character
string in the form of a small integer constant.

numeric-expression
An expression that returns a value of any built-in numeric data type.

If the argument is a numeric-expression, the result is the same number that would
occur if the argument were assigned to a small integer column or variable. If the
whole part of the argument is not within the range of small integers, an error
occurs. The decimal part of the argument is truncated if present.

character-expression
An expression that returns a character string value of length not greater than the
maximum length of a character constant. Leading and trailing blanks are eliminated
and the resulting string must conform to the rules for forming an SQL integer con-
stant (SQLSTATE 22018). However, the value of the constant must be in the range
of small integers (SQLSTATE 22003). The character string cannot be a long string.

If the argument is a character-expression, the result is the same number that would
occur if the corresponding integer constant were assigned to a small integer
column or variable.

The result of the function is a small integer. If the argument can be null, the result can
be null; if the argument is null, the result is the null value.

256 SQL Reference

SOUNDEX

 SOUNDEX

5──SOUNDEX──(──expression──)──5

The schema is SYSFUN.

Returns a 4 character code representing the sound of the words in the argument. The
result can be used to compare with the sound of other strings.

The argument can be a character string that is either a CHAR or VARCHAR.

The result of the function is CHAR(4). The result can be null; if the argument is null, the
result is the null value.

The SOUNDEX function is useful for finding strings for which the sound is known but
the precise spelling is not. It makes assumptions about the way that letters and combi-
nations of letters sound that can help to search out words with similar sounds. The
comparison can be done directly or by passing the strings as arguments to the DIF-
FERENCE function (see “DIFFERENCE” on page 203).

Example:

Using the EMPLOYEE table, find the EMPNO and LASTNAME of the employee with a
surname that sounds like 'Loucesy'.

 SELECT EMPNO, LASTNAME FROM EMPLOYEE

WHERE SOUNDEX(LASTNAME) = SOUNDEX('Loucesy')

This example returns the following:

 EMPNO LASTNAME

 ------ ---------------

 000110 LUCCHESSI

 Chapter 4. Functions 257

SPACE

 SPACE

5──SPACE──(──expression──)──5

The schema is SYSFUN.

Returns a character string consisting of blanks with length specified by the second
argument.

The argument can be SMALLINT or INTEGER.

The result of the function is VARCHAR(4000). The result can be null; if the argument is
null, the result is the null value.

258 SQL Reference

SQRT

 SQRT

5──SQRT──(──expression──)───5

The schema is SYSFUN.

Returns the square root of the argument.

The argument can be any built-in numeric data type. It has to be converted to double-
precision floating-point number for processing by the function.

The result of the function is double-precision floating-point number. The result can be
null; if the argument is null, the result is the null value.

 Chapter 4. Functions 259

SUBSTR

 SUBSTR

5──SUBSTR──(──string──,──start─ ──┬ ┬─────────── ─)──────────────────────────5
 └ ┘ ─,──length─

The schema is SYSIBM.

The SUBSTR function returns a substring of a string.

If string is a character string, the result of the function is a character string represented
in the code page of its first argument. If it is a binary string, the result of the function is
a binary string. If it is a graphic string, the result of the function is a graphic string
represented in the code page of its first argument. If any argument of the SUBSTR
function can be null, the result can be null; if any argument is null, the result is the null
value.

string
An expression that specifies the string from which the result is derived.

If string is either a character string or a binary string, a substring of string is zero or
more contiguous bytes of string. If string is a graphic string, a substring of string is
zero or more contiguous double-byte characters of string.

start
An expression that specifies the position of the first byte of the result for a char-
acter string or a binary string or the position of the first character of the result for a
graphic string. start must be an integer between 1 and the length or maximum
length of string, depending on whether string is fixed-length or varying-length
(SQLSTATE 22011, if out of range).

length
An expression that specifies the length of the result. If specified, length must be a
binary integer in the range 0 to n, where n equals (the length attribute of string) −
start + 1 (SQLSTATE 22011, if out of range).

If length is explicitly specified, string is effectively padded on the right with the nec-
essary number of blank characters (single-byte for character strings; double-byte
for graphic strings) so that the specified substring of string always exists. The
default for length is the number of bytes from the byte specified by the start to the
last byte of string in the case of character string or binary string or the number of
double-byte characters from the character specified by the start to the last char-
acter of string in the case of a graphic string. However, if string is a varying-length
string with a length less than start, the default is zero and the result is the empty
string. (For example, the column NAME with a data type of VARCHAR(18) and a
value of 'MCKNIGHT' will yield an empty string with SUBSTR(NAME,10)).

Table 14 on page 261 shows that the result type and length of the SUBSTR function
depend on the type and attributes of its inputs.

260 SQL Reference

SUBSTR

If string is a fixed-length string, omission of length is an implicit specification of
LENGTH(string) - start + 1. If string is a varying-length string, omission of length is an
implicit specification of zero or LENGTH(string) - start + 1, whichever is greater.

Table 14. Data Type and Length of SUBSTR Result

String Argument Data
Type Length Argument Result Data Type

CHAR(A) constant (Z<255) CHAR(Z)

CHAR(A) not specified but start argument is a
constant

CHAR(A-start+1)

CHAR(A) not a constant VARCHAR(A)

VARCHAR(A) constant (Z<255) CHAR(Z)

VARCHAR(A) constant (254<Z<4001) VARCHAR(Z)

VARCHAR(A) not a constant or not specified VARCHAR(A)

LONG VARCHAR constant (Z<255) CHAR(Z)

LONG VARCHAR constant (254<Z<4001) VARCHAR(Z)

LONG VARCHAR constant (Z>4000) LONG VARCHAR

LONG VARCHAR not a constant or not specified LONG VARCHAR

CLOB(A) constant (Z) CLOB(Z)

CLOB(A) not a constant or not specified CLOB(A)

GRAPHIC(A) constant (Z<128) GRAPHIC(Z)

GRAPHIC(A) not specified but start argument is a
constant

GRAPHIC(A-start+1)

GRAPHIC(A) not a constant VARGRAPHIC(A)

VARGRAPHIC(A) constant (Z<128) GRAPHIC(Z)

VARGRAPHIC(A) constant (127<Z<2001) VARGRAPHIC(Z)

VARGRAPHIC(A) not a constant VARGRAPHIC(A)

LONG VARGRAPHIC constant (Z<128) GRAPHIC(Z)

LONG VARGRAPHIC constant (127<Z<2001) VARGRAPHIC(Z)

LONG VARGRAPHIC constant (Z>2000) LONG VARGRAPHIC

LONG VARGRAPHIC not a constant or not specified LONG VARGRAPHIC

DBCLOB(A) constant (Z) DBCLOB(Z)

DBCLOB(A) not a constant or not specified DBCLOB(A)

BLOB(A) constant (Z) BLOB(Z)

BLOB(A) not a constant or not specified BLOB(A)

 Chapter 4. Functions 261

SUBSTR

Examples:

¹ Assume the host variable NAME (varchar(50)) has a value of 'BLUE JAY' and the
host variable SURNAME_POS (int) has a value of 6.

 SUBSTR(:NAME, :SURNAME_POS):ehp2s

Returns the value 'JAY'

 SUBSTR(:NAME, :SURNAME_POS,1)

Returns the value 'J'.

¹ Select all rows from the PROJECT table for which the project name (PROJNAME)
starts with the word 'OPERATION '.

SELECT * FROM PROJECT

WHERE SUBSTR(PROJNAME,1,10) = 'OPERATION '

The space at the end of the constant is necessary to preclude initial words such as
'OPERATIONS'.

Notes:

1. In dynamic SQL, string, start, and length may be represented by a parameter
marker (?). If a parameter marker is used for string, the data type of the operand
will be VARCHAR, and the operand will be nullable.

2. Though not explicitly stated in the result definitions above, it follows from these
semantics that if string is a mixed single- and multi-byte character string, the result
may contain fragments of multi-byte characters, depending upon the values of start
and length. That is, the result could possibly begin with the second byte of a
double-byte character, and/or end with the first byte of a double-byte character.
The SUBSTR function does not detect such fragments, nor provides any special
processing should they occur.

262 SQL Reference

TABLE_NAME

 TABLE_NAME

5─ ─TABLE_NAME─ ─(──objectname─ ──┬ ┬──────────────────── ─────────────────────5
 └ ┘─,──objectschema──)─

The schema is SYSIBM.

The TABLE_NAME function returns an unqualified name of the object found after any
alias chains have been resolved. The specified objectname (and objectschema) are
used as the starting point of the resolution. If the starting point does not refer to an
alias, the unqualified name of the starting point is returned. The resulting name may be
of a table, view, or undefined object.

objectname
A character expression representing the unqualified name (usually of an existing
alias) to be resolved. objectname must have a data type of CHAR or VARCHAR
and a length greater than 0 and less than 19 characters.

objectschema
A character expression representing the schema used to qualify the supplied
objectname value before resolution. objectschema must have a data type of CHAR
or VARCHAR and a length greater than 0 and less than 9 characters.

If objectschema is not supplied, the default schema is used for the qualifier.

The data type of the result of the function is VARCHAR(18). If objectname can be null,
the result can be null; if objectname is null, the result is the null value. If objectschema
is the null value, the default schema name is used. The result is the character string
representing an unqualified name. The result name could represent one of the
following:

Therefore, if a non-null value is given to this function, a value is always returned, even
if no object with the result name exists.

Examples:

See Examples section in “TABLE_SCHEMA” on page 264.

table The value for objectname was either a table name (the input value is returned) or
an alias name that resolved to the table whose name is returned.

view The value for objectname was either a view name (the input value is returned) or

an alias name that resolved to the view whose name is returned.

undefined
object

The value for objectname was either an undefined object (the input value is
returned) or an alias name that resolved to the undefined object whose name is
returned.

 Chapter 4. Functions 263

TABLE_SCHEMA

 TABLE_SCHEMA

5─ ─TABLE_SCHEMA─ ─(──objectname─ ──┬ ┬───────────────── ─)────────────────────5
 └ ┘ ─,──objectschema─

The schema is SYSIBM.

The TABLE_SCHEMA function returns the schema name of the object found after any
alias chains have been resolved. The specified objectname (and objectschema) are
used as the starting point of the resolution. If the starting point does not refer to an
alias, the schema name of the starting point is returned. The resulting schema name
may be of a table, view, or undefined object.

objectname
A character expression representing the unqualified name (usually of an existing
alias) to be resolved. objectname must have a data type of CHAR or VARCHAR
and a length greater than 0 and less than 19 characters.

objectschema
A character expression representing the schema used to qualify the supplied
objectname value before resolution. objectschema must have a data type of CHAR
or VARCHAR and a length greater than 0 and less than 9 characters.

If objectschema is not supplied, the default schema is used for the qualifier.

The data type of the result of the function is CHAR(8). If objectname can be null, the
result can be null; if objectname is null, the result is the null value. If objectschema is
the null value, the default schema name is used. The result is the character string
representing a schema name. The result schema could represent the schema name for
one of the following:

Therefore, if a non-null objectname value is given to this function, a value is always
returned, even if the object name with the result schema name does not exist. For
example, TABLE_SCHEMA('DEPT', 'PEOPLE') returns 'PEOPLE ' if the catalog entry is
not found.

Examples:

table The value for objectname was either a table name (the input or default value of
objectschema is returned) or an alias name that resolved to a table for which the
schema name is returned.

view The value for objectname was either a view name (the input or default value of

objectschema is returned) or an alias name that resolved to a view for which the
schema name is returned.

undefined
object

The value for objectname was either an undefined object (the input or default
value of objectschema is returned) or an alias name that resolved to an undefined
object for which the schema name is returned.

264 SQL Reference

TABLE_SCHEMA

¹ PBIRD tries to select the statistics for a given table from SYSCAT.TABLES using
an alias PBIRD.A1 defined on the table HEDGES.T1.

SELECT NPAGES, CARD FROM SYSCAT.TABLES

WHERE TABNAME = TABLE_NAME ('A1')

AND TABSCHEMA = TABLE_SCHEMA ('A1')

The requested statistics for HEDGES.T1 are retrieved from the catalog.

¹ Select the statistics for an object called HEDGES.X1 from SYSCAT.TABLES using
HEDGES.X1. Use TABLE_NAME and TABLE_SCHEMA since it is not known
whether HEDGES.X1 is an alias or a table.

SELECT NPAGES, CARD FROM SYSCAT.TABLES

WHERE TABNAME = TABLE_NAME ('X1','HEDGES')

AND TABSCHEMA = TABLE_SCHEMA ('X1','HEDGES')

Assuming that HEDGES.X1 is a table, the requested statistics for HEDGES.X1 are
retrieved from the catalog.

¹ Select the statistics for a given table from SYSCAT.TABLES using an alias
PBIRD.A2 defined on HEDGES.T2 where HEDGES.T2 does not exist.

SELECT NPAGES, CARD FROM SYSCAT.TABLES

WHERE TABNAME = TABLE_NAME ('A2','PBIRD')

AND TABSCHEMA = TABLE_SCHEMA ('A2',PBIRD')

The statement returns 0 records as no matching entry is found in
SYSCAT.TABLES where TABNAME = 'T2' and TABSCHEMA = 'HEDGES'.

¹ Select the qualified name of each entry in SYSCAT.TABLES along with the final
referenced name for any alias entry.

SELECT TABSCHEMA AS SCHEMA, TABNAME AS NAME,

TABLE_SCHEMA (BASE_TABNAME, BASE_TABSCHEMA) AS REAL_SCHEMA,

TABLE_NAME (BASE_TABNAME, BASE_TABSCHEMA) AS REAL_NAME

 FROM SYSCAT.TABLES

The statement returns the qualified name for each object in the catalog and the
final referenced name (after alias has been resolved) for any alias entries. For all
non-alias entries, BASE_TABNAME and BASE_TABSCHEMA are null so the
REAL_SCHEMA and REAL_NAME columns will contain nulls.

 Chapter 4. Functions 265

TAN

 TAN

5──TAN──(──expression──)──5

The schema is SYSFUN.

Returns the tangent of the argument, where the argument is an angle expressed in
radians.

The argument can be any built-in numeric data type. It has to be converted to double-
precision floating-point number for processing by the function.

The result of the function is double-precision floating-point number. The result can be
null; if the argument is null, the result is the null value.

266 SQL Reference

TIME

 TIME

5──TIME──(──expression──)───5

The schema is SYSIBM.

The TIME function returns a time from a value.

The argument must be a time, timestamp, or a valid character string representation of a
time or timestamp that is neither a CLOB nor a LONG VARCHAR.

The result of the function is a time. If the argument can be null, the result can be null; if
the argument is null, the result is the null value.

The other rules depend on the data type of the argument:

¹ If the argument is a time:

– The result is that time.

¹ If the argument is a timestamp:

– The result is the time part of the timestamp.

¹ If the argument is a character string:

– The result is the time represented by the character string.

Example:

¹ Select all notes from the IN_TRAY sample table that were received at least one
hour later in the day (any day) than the current time.

SELECT * FROM IN_TRAY

WHERE TIME(RECEIVED) >= CURRENT TIME + 1 HOUR

 Chapter 4. Functions 267

TIMESTAMP

 TIMESTAMP

5──TIMESTAMP──(──expression─ ──┬ ┬───────────── ─)───────────────────────────5
 └ ┘─,expression─

The schema is SYSIBM.

The TIMESTAMP function returns a timestamp from a value or a pair of values.

The rules for the arguments depend on whether the second argument is specified.

¹ If only one argument is specified:

– It must be a timestamp, a valid character string representation of a timestamp,
or a character string of length 14 that is neither a CLOB nor a LONG
VARCHAR.

A character string of length 14 must be a string of digits that represents a valid
date and time in the form yyyyxxddhhmmss, where yyyy is the year, xx is the
month, dd is the day, hh is the hour, mm is the minute, and ss is the seconds.

¹ If both arguments are specified:

– The first argument must be a date or a valid character string representation of
a date and the second argument must be a time or a valid string represen-
tation of a time.

The result of the function is a timestamp. If either argument can be null, the result can
be null; if either argument is null, the result is the null value.

The other rules depend on whether the second argument is specified:

¹ If both arguments are specified:

– The result is a timestamp with the date specified by the first argument and the
time specified by the second argument. The microsecond part of the
timestamp is zero.

¹ If only one argument is specified and it is a timestamp:

– The result is that timestamp.

¹ If only one argument is specified and it is a character string:

– The result is the timestamp represented by that character string. If the argu-
ment is a character string of length 14, the timestamp has a microsecond part
of zero.

Example:

¹ Assume the column START_DATE (date) has a value equivalent to 1988-12-25,
and the column START_TIME (time) has a value equivalent to 17.12.30.

 TIMESTAMP(START_DATE, START_TIME)

268 SQL Reference

TIMESTAMP

Returns the value '1988-12-25-17.12.30.000000'.

 Chapter 4. Functions 269

TIMESTAMP_ISO

 TIMESTAMP_ISO

5──TIMESTAMP_ISO──(──expression──)──5

The schema is SYSFUN.

Returns a timestamp value based on date, time or timestamp argument. If the argument
is a date, it inserts zero for all the time elements. If the argument is a time, it inserts the
value of CURRENT DATE for the date elements and zero for the fractional time
element.

The argument must be a date, timestamp, or a valid character string representation of a
date or timestamp that is neither a CLOB nor a LONG VARCHAR.

The result of the function is TIMESTAMP. The result can be null; if the argument is null,
the result is the null value.

270 SQL Reference

TIMESTAMPDIFF

 TIMESTAMPDIFF

5──TIMESTAMPDIFF──(──expression──,──expression──)─────────────────────────5

The schema is SYSFUN.

Returns an estimated number of intervals of the type defined by the first argument,
based on the difference between two timestamps.

The first argument can be either INTEGER or SMALLINT. Valid values of interval (the
first argument) are:

1 Fractions of a second
2 Seconds
4 Minutes
8 Hours
16 Days
32 Weeks
64 Months
128 Quarters
256 Years

The second argument is the result of subtracting two timestamps types and converting
the result to CHAR(22).

The result of the function is INTEGER. The result can be null; if the argument is null,
the result is the null value.

The following assumptions may be used in estimating the difference:

¹ there are 365 days in a year
¹ there are 30 days in a month
¹ there are 24 hours in a day
¹ there are 60 minutes in an hour
¹ there are 60 seconds in a minute

These assumptions are used when converting the information in the second argument,
which is a timestamp duration, to the interval type specified in the first argument. The
returned estimate may vary by a number of days. For example, if the number of days
(interval 16) is requested for a difference in timestamps for '1997-03-01-00.00.00' and
'1997-02-01-00.00.00', the result is 30. This is because the difference between the
timestamps is 1 month so the assumption of 30 days in a month applies.

 Chapter 4. Functions 271

TRANSLATE

 TRANSLATE

character string expression:

5──TRANSLATE──(──char-string-exp──5

5─ ──┬ ┬─── ─)───────────────────────────5
 │ │┌ ┐ ─,──' '──────
 └ ┘─,──to-string-exp──,──from-string-exp─ ──┼ ┼─────────────
 └ ┘ ─,──pad-char─

graphic string expression:

5──TRANSLATE──(──graphic-string-exp──,──to-string-exp──,──from-string-exp─────────────────5

 ┌ ┐ ─,──' '──────
5─ ──┼ ┼───────────── ─)───5
 └ ┘ ─,──pad-char─

The schema is SYSIBM.

The TRANSLATE function returns a value in which one or more characters in a string
expression may have been translated into other characters.

The result of the function has the same data type and code page as the first argument.
The length attribute of the result is the same as that of the first argument. If any speci-
fied expression can be NULL, the result can be NULL. If any specified expression is
NULL, the result will be NULL.

char-string-exp or graphic-string-exp
A string to be translated.

to-string-exp
Is a string of characters to which certain characters in the char-string-exp will be
translated.

If the to-string-exp is not present and the data type is not graphic, all characters in
the char-string-exp will be monocased (that is, the characters a-z will be translated
to the characters A-Z, and characters with diacritical marks will be translated to
their upper case equivalents if they exist. For example, in code page 850, é maps
to É, but ÿ is not mapped since code page 850 does not include Ÿ).

from-string-exp
Is a string of characters which, if found in the char-string-exp, will be translated to
the corresponding character in the to-string-exp. If the from-string-exp contains
duplicate characters, the first one found will be used, and the duplicates will be
ignored. If the to-string-exp is longer than the from-string-exp, the surplus charac-
ters will be ignored. If the to-string-exp is present, the from-string-exp must also be
present.

272 SQL Reference

TRANSLATE

pad-char-exp
Is a single character that will be used to pad the to-string-exp if the to-string-exp is
shorter than the from-string-exp. The pad-char-exp must have a length attribute of
one, or an error is returned. If not present, it will be taken to be a single-byte blank.

The arguments may be either strings of data type CHAR or VARCHAR, or graphic
strings of data type GRAPHIC or VARGRAPHIC. They may not have data type LONG
VARCHAR, LONG VARGRAPHIC, BLOB, CLOB, or DBCLOB.

With graphic-string-exp, only the pad-char-exp is optional (if not provided, it will be
taken to be the double-byte blank), and each argument, including the pad character,
must be of graphic data type.

The result is the string that occurs after translating all the characters in the
char-string-exp or graphic-string-exp that occur in the from-string-exp to the corre-
sponding character in the to-string-exp or, if no corresponding character exists, to the
pad character specified by the pad-char-exp.

The code page of the result of TRANSLATE is always the same as the code page of
the first operand, which is never converted. Each of the other operands is converted to
the code page of the first operand unless it or the first operand is defined as FOR BIT
DATA (in which case there is no conversion).

If the arguments are of data type CHAR or VARCHAR, the corresponding characters of
the to-string-exp and the from-string-exp must have the same number of bytes. For
example, it is not valid to translate a single-byte character to a multi-byte character or
vice versa. An error will result if an attempt is made to do this. The pad-char-exp must
not be the first byte of a valid multi-byte character, or SQLSTATE 42815 is returned. If
the pad-char-exp is not present, it will be taken to be a single-byte blank.

If only the char-string-exp is specified, single-byte characters will be monocased and
multi-byte characters will remain unchanged.

Examples:

¹ Assume the host variable SITE (VARCHAR(30)) has a value of 'Hanauma Bay'.

 TRANSLATE(:SITE)

Returns the value 'HANAUMA BAY'.

 TRANSLATE(:SITE 'j','B')

Returns the value 'Hanauma jay'.

 TRANSLATE(:SITE,'ei','aa')

Returns the value 'Heneume Bey'.

 TRANSLATE(:SITE,'bA','Bay','%')

Returns the value 'HAnAumA bA%'.

 TRANSLATE(:SITE,'r','Bu')

Returns the value 'Hana ma ray'.

 Chapter 4. Functions 273

TRUNC or TRUNCATE

TRUNC or TRUNCATE

5──TRUNC or TRUNCATE──(──expression──,──expression──)─────────────────────5

The schema is SYSFUN.

Returns argument1 truncated to argument2 places right of decimal point. If argument2
is negative, argument1 is truncated to the absolute value of argument2 places to the
left of the decimal point.

The first argument can be any built-in numeric data type. The second argument has to
be an INTEGER or SMALLINT. DECIMAL and REAL are converted to double-precision
floating-point number for processing by the function.

The result of the function is:

¹ INTEGER if the first argument is INTEGER or SMALLINT

¹ DOUBLE if the first argument is DOUBLE, DECIMAL or DOUBLE.

The result can be null; if any argument is null, the result is the null value.

274 SQL Reference

UCASE

 UCASE

5──UCASE──(──expression──)──5

The schema is SYSFUN.

Returns a string in which all the characters have been converted to upper case charac-
ters. All characters in the expression are monocased. That is a-z are translated to A-Z,
and characters with diacritical marks are translated to their upper case if they exist. For
example, in code page 850, é maps to É, but ÿ is not mapped since code page 850
does not include Ÿ.

The argument can be CHAR or VARCHAR.

The result of the function is VARCHAR(4000). The result can be null; if the argument is
null, the result is the null value.

 Chapter 4. Functions 275

VALUE

 VALUE

 ┌ ┐───────────────
5──VALUE──(──expression─ ───6 ┴─,expression─ ─)───────────────────────────────5

The schema is SYSIBM.

The VALUE function returns the first argument that is not null.

VALUE is a synonym for COALESCE. See “COALESCE” on page 188 for details.

276 SQL Reference

VARCHAR

 VARCHAR

Character to Varchar:

5──VARCHAR──(──character-string-expression─ ──┬ ┬──────────── ─)─────────────5
 └ ┘ ─,──integer─

Datetime to Varchar:

5──VARCHAR──(──datetime-expression──)─────────────────────────────────────5

The schema is SYSIBM.

The VARCHAR function returns a varying-length character string representation of a
character string or datetime value.

The result of the function is a varying-length string (VARCHAR data type). If the first
argument can be null, the result can be null; if the first argument is null, the result is the
null value.

Character to Varchar

character-string-expression
An expression whose value must be of a character-string data type with a
maximum length no greater than 4 000 bytes.

integer
The length attribute for the resulting varying-length character string. The value
must be between 0 and 4 000. If this argument is not specified, the length of the
result is the same as the length of the argument.

Datetime to Varchar

datetime-expression
An expression whose value must be of a date, time, or timestamp data type.

Example:

¹ Using the EMPLOYEE table, set the host variable JOB_DESC (varchar(8)) to the
VARCHAR equivalent of the job description (JOB defined as CHAR(8)) for
employee Delores Quintana.

 SELECT VARCHAR(JOB)

 INTO :JOB_DESC

 FROM EMPLOYEE

WHERE LASTNAME = 'QUINTANA'

 Chapter 4. Functions 277

VARGRAPHIC

 VARGRAPHIC

Character to Vargraphic:

5──VARGRAPHIC──(──character-string-expression──)──────────────────────────5

Graphic to Vargraphic:

5──VARGRAPHIC──(──graphic-string-expression─ ──┬ ┬──────────── ─)────────────5
 └ ┘ ─,──integer─

The schema is SYSIBM.

The VARGRAPHIC function returns a graphic string representation of a:

¹ character string value, converting single byte characters to double byte characters

¹ graphic string value, if the first argument is any type of graphic string.

The result of the function is a varying length graphic string (VARGRAPHIC data type). If
the first argument can be null, the result can be null; if the first argument is null, the
result is the null value.

Character to Vargraphic

character-string-expression
An expression whose value must be of a character string data type other than
LONG VARCHAR or CLOB, and whose maximum length must not be greater than
2000 bytes.

The length attribute of the result is equal to the length attribute of the argument.

Let S denote the value of the character-string-expression. Each single-byte character in
S is converted to its equivalent double-byte representation or to the double-byte substi-
tution character in the result; each double-byte character in S is mapped 'as-is'. If the
first byte of a double-byte character appears as the last byte of S, it is converted into
the double-byte substitution character. The sequential order of the characters in S is
preserved.

The following are additional considerations for the conversion.

¹ The conversion to double-byte code points by the VARGRAPHIC function is based
on the code page of the operand.

¹ Double-byte characters of the operand are not converted (see Appendix N,
“Japanese and Traditional-Chinese EUC Considerations” on page 857 for excep-
tion). All other characters are converted to their corresponding double-byte
depiction. If there is no corresponding double-byte depiction, the double-byte sub-
stitution character for the code page is used.

278 SQL Reference

VARGRAPHIC

¹ No warning or error code is generated if one or more double-byte substitution char-
acters are returned in the result.

Graphic to Vargraphic

graphic-string-expression
An expression that returns a value that is a graphic string.

integer
The length attribute for the resulting varying length graphic string. The value must
be between 0 and 2000. If this argument is not specified, the length of the result is
the same as the length of the argument.

If the length of the graphic-string-expression is greater than the length attribute of the
result, truncation is performed and a warning is returned (SQLSTATE 01004) unless the
truncated characters were all blanks and the graphic-string-expression was not a long
string (LONG VARGRAPHIC or DBCLOB).

 Chapter 4. Functions 279

WEEK

 WEEK

5──WEEK──(──expression──)───5

The schema is SYSFUN.

Returns the week of the year of the argument as an integer value in range 1-54 . The
week starts with Sunday.

The argument must be a date, timestamp, or a valid character string representation of a
date or timestamp that is neither a CLOB nor a LONG VARCHAR.

The result of the function is INTEGER. The result can be null; if the argument is null,
the result is the null value.

280 SQL Reference

YEAR

 YEAR

5──YEAR──(──expression──)───5

The schema is SYSIBM.

The YEAR function returns the year part of a value.

The argument must be a date, timestamp, date duration, timestamp duration or a valid
character string representation of a date or timestamp that is neither a CLOB nor a
LONG VARCHAR.

The result of the function is a large integer. If the argument can be null, the result can
be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument specified:

¹ If the argument is a date, timestamp, or valid string representation of a date or
timestamp:

– The result is the year part of the value, which is an integer between 1 and
9999.

¹ If the argument is a date duration or timestamp duration:

– The result is the year part of the value, which is an integer between −9999 and
9999. A nonzero result has the same sign as the argument.

Examples:

¹ Select all the projects in the PROJECT table that are scheduled to start
(PRSTDATE) and end (PRENDATE) in the same calendar year.

SELECT * FROM PROJECT

WHERE YEAR(PRSTDATE) = YEAR(PRENDATE)

¹ Select all the projects in the PROJECT table that are scheduled to take less than
one year to complete.

SELECT * FROM PROJECT

WHERE YEAR(PRENDATE - PRSTDATE) < 1

 Chapter 4. Functions 281

User-Defined Functions

 User-Defined Functions

5─ ─function-name──(─ ──┬ ┬──────────────── ─)────────────────────────────────5
 │ │┌ ┐─,──────────
 └ ┘ ───6 ┴─expression─

User-defined functions are extensions or additions to the existing built-in functions of
the SQL language. A user-defined function can be a scalar function, which returns a
single value each time it is called, a column function, which is passed a set of like
values and returns a single value for the set, or a table function, which returns a table.
(Note that a UDF can be a column function only when it is sourced on an existing
column function. Similarly, a UDF can be a table function only if it is an external func-
tion.)

A user-defined scalar or column function registered with the database can be refer-
enced in the same contexts that any built-in function can appear.

A user-defined table function registered with the database can be referenced only in the
FROM clause of a SELECT, as described in “from-clause” on page 291.

A user-defined function is referenced by means of a qualified or unqualified function
name, followed by parentheses enclosing the function arguments (if any).

Arguments of the function must correspond in number and position to the parameters
specified in the user-defined function as it was registered with the database. In addition,
the arguments must be of data types promotable to the data types of the corresponding
defined parameters. (see “CREATE FUNCTION” on page 424).

The result of the function is as specified in the RETURNS clause specified when the
user-defined function was registered. The RETURNS clause determines if a function is
a table function or not.

If the NOT NULL CALL clause was specified (or defaulted to) when the function was
registered then, if any argument is null, the result is null. For table functions, this is
interpreted to mean a return table with no rows (empty table).

There are a collection of user-defined functions provided in the SYSFUN schema (see
Table 13 on page 143).

Examples:

¹ Assume that a scalar function called ADDRESS was written to extract the home
address from a script format resume. The ADDRESS function expects a CLOB
argument and returns a VARCHAR(4000). The following example illustrates the
invocation of the ADDRESS function.

SELECT EMPNO, ADDRESS(RESUME) FROM EMP_RESUME

WHERE RESUME_FORMAT = 'SCRIPT'

282 SQL Reference

User-Defined Functions

¹ Assume a table T2 with a numeric column A and the ADDRESS function described
in the previous example. The following example illustrates an attempt to invoke the
ADDRESS function with an incorrect argument.

SELECT ADDRESS(A) FROM T2

An error (SQLSTATE 42884) is raised since there is no function with a matching
name and with a parameter promotable from the argument.

¹ Assume a table function WHO was written to return information about the sessions
on the server machine which were active at the time the statement is executed.
The following example illustrates the invocation of WHO in a FROM clause (TABLE
keyword with mandatory correlation variable).

SELECT ID, START_DATE, ORIG_MACHINE

FROM TABLE(WHO()) AS QQ

WHERE START_DATE LIKE 'MAY%'

The column names of the WHO() table are defined in the CREATE FUNCTION
statement.

 Chapter 4. Functions 283

User-Defined Functions

284 SQL Reference

Queries

 Chapter 5. Queries

A query specifies a result table.

A query is a component of certain SQL statements. The three forms of a query are:

 ¹ subselect
 ¹ fullselect
 ¹ select-statement.

There is another SQL statement that can be used to retrieve at most a single row
described under “SELECT INTO” on page 631.

Authorization

For each table or view referenced in the query, the authorization ID of the statement
must have at least one of the following:

¹ SYSADM or DBADM authority
 ¹ CONTROL privilege
 ¹ SELECT privilege.

Group privileges are not checked for queries contained in static SQL statements.

 Copyright IBM Corp. 1993, 1997 285

subselect

 subselect

5─ ─select-clause──from-clause─ ──┬ ┬────────────── ──────────────────────────5
 └ ┘─where-clause─

5─ ──┬ ┬───────────────── ──┬ ┬─────────────── ────────────────────────────────5
 └ ┘─group-by-clause─ └ ┘─having-clause─

The subselect is a component of the fullselect.

A subselect specifies a result table derived from the tables or views identified in the
FROM clause. The derivation can be described as a sequence of operations in which
the result of each operation is input for the next. (This is only a way of describing the
subselect. The method used to perform the derivation may be quite different from this
description.)

The clauses of the subselect are processed in the following sequence:

 1. FROM clause
 2. WHERE clause

3. GROUP BY clause
 4. HAVING clause
 5. SELECT clause.

286 SQL Reference

select-clause

 select-clause

 ┌ ┐─ALL──────
5─ ─SELECT─ ──┼ ┼────────── ──┬ ┬─*─── ───────────────5
 └ ┘─DISTINCT─ │ │┌ ┐─,───
 └ ┘───6 ┴┬ ┬ ─expression─ ──┬ ┬─────────────────────────
 │ ││ │┌ ┐─AS─
 │ │└ ┘ ──┴ ┴──── ─new-column-name─
 ├ ┤─table-name.*────────────────────────────
 ├ ┤─view-name.*─────────────────────────────
 └ ┘─correlation-name.*──────────────────────

The SELECT clause specifies the columns of the final result table. The column values
are produced by the application of the select list to R. The select list is the names or
expressions specified in the SELECT clause, and R is the result of the previous opera-
tion of the subselect. For example, if the only clauses specified are SELECT, FROM,
and WHERE, R is the result of that WHERE clause.

ALL
Retains all rows of the final result table, and does not eliminate redundant dupli-
cates. This is the default.

DISTINCT
Eliminates all but one of each set of duplicate rows of the final result table. If DIS-
TINCT is used, no string column of the result table can have a maximum length
that is greater than 254 bytes. DISTINCT may be used more than once in a subse-
lect. This includes SELECT DISTINCT, the use of DISTINCT in a column function
of the select list or HAVING clause, and subqueries of the subselect.

Two rows are duplicates of one another only if each value in the first is equal to
the corresponding value of the second. (For determining duplicates, two null values
are considered equal.)

Select List Notation:
* Represents a list of names that identify the columns of table R. The first name in

the list identifies the first column of R, the second name identifies the second
column of R, and so on.

The list of names is established when the program containing the SELECT clause
is bound. Hence, * (the asterisk) does not identify any columns that have been
added to a table after the statement containing the table reference has been
bound.

expression
Specifies the values of a result column. May be any expression of the type
described in Chapter 3, but commonly the expressions used include column
names. Each column name used in the select list must unambiguously identify a
column of R.

 Chapter 5. Queries 287

select-clause

new-column-name or AS new-column-name
Names or renames the result column. The name must not be qualified and
does not have to be unique. Subsequent usage of column-name is limited as
follows:

¹ A new-column-name specified in the AS clause can be used in the order-
by-clause, provided the name is unique.

¹ A new-column-name specified in the AS clause of the select list cannot be
used in any other clause within the subselect (where-clause, group-by-
clause or having-clause).

¹ A new-column-name specified in the AS clause cannot be used in the
update-clause.

¹ A new-column-name specified in the AS clause is known outside the
fullselect of nested table expressions, common table expressions and
CREATE VIEW.

name.*
Represents a list of names that identify the columns of name. The name may be a
table name, view name, or correlation name, and must designate a table or view
named in the FROM clause. The first name in the list identifies the first column of
the table or view, the second name in the list identifies the second column of the
table or view, and so on.

The list of names is established when the statement containing the SELECT clause
is bound. Therefore, * does not identify any columns that have been added to a
table after the statement has been bound.

The number of columns in the result of SELECT is the same as the number of
expressions in the operational form of the select list (that is, the list established
when the statement is prepared) and cannot exceed 500 .

Limitations on String Columns
For limitations on the select list, see “Restrictions Using Varying-Length Character
Strings” on page 54.

Applying the Select List
Some of the results of applying the select list to R depend on whether or not GROUP
BY or HAVING is used. The results are described in two separate lists:

If GROUP BY or HAVING is used:

¹ An expression X (not a column function) used in the select list must have a
GROUP BY clause with:

– a grouping-expression in which each column-name unambiguously identifies a
column of R (see “group-by-clause” on page 298) or

– each column of R referenced in X as a separate grouping-expression.

288 SQL Reference

select-clause

¹ The select list is applied to each group of R, and the result contains as many rows
as there are groups in R. When the select list is applied to a group of R, that group
is the source of the arguments of the column functions in the select list.

If neither GROUP BY nor HAVING is used:

¹ Either the select list must not include any column functions, or each column-name
in the select list must be specified within a column function or must be a correlated
column reference.

¹ If the select does not include column functions, then the select list is applied to
each row of R and the result contains as many rows as there are rows in R.

¹ If the select list is a list of column functions, then R is the source of the arguments
of the functions and the result of applying the select list is one row.

In either case the nth column of the result contains the values specified by applying the
nth expression in the operational form of the select list.

Null attributes of result columns: Result columns do not allow null values if they are
derived from:

¹ A column that does not allow null values
 ¹ A constant
¹ The COUNT or COUNT_BIG function
¹ A host variable that does not have an indicator variable
¹ A scalar function or expression that does not include an operand that allows nulls.

Result columns allow null values if they are derived from:

¹ Any column function except COUNT or COUNT_BIG
¹ A column that allows null values
¹ A scalar function or expression that includes an operand that allows nulls
¹ A NULLIF function with arguments containing equal values.
¹ A host variable that has an indicator variable.
¹ A result of a set operation if at least one of the corresponding items in the select

list is nullable.
¹ An arithmetic expression or view column that is derived from an arithmetic

expression and the database is configured with DFT_SQLMATHWARN set to yes.

Names of result columns:

¹ If the AS clause is specified, the name of the result column is the name specified
on the AS clause.

¹ If the AS clause is not specified and the result column is derived from a column,
then the result column name is the unqualified name of that column.

¹ All other result column names are unnamed.33

33 The system assigns temporary numbers (as character strings) to these columns. These system assigned names cannot be used in
an order-by clause.

 Chapter 5. Queries 289

select-clause

Data types of result columns: Each column of the result of SELECT acquires a data
type from the expression from which it is derived.

When the expression is ... The data type of the result column is ...

the name of any numeric column the same as the data type of the column,
with the same precision and scale for
DECIMAL columns.

an integer constant INTEGER

a decimal constant DECIMAL, with the precision and scale of
the constant

a floating-point constant DOUBLE

the name of any numeric variable the same as the data type of the variable,
with the same precision and scale for
DECIMAL variables.

an expression For a description of data type attributes, see
“Expressions” on page 107.

any function (see Chapter 4 to determine the data type
of the result.)

a hexadecimal constant representing n bytes VARCHAR(n). The codepage is the data-
base codepage.

the name of any string column the same as the data type of the column,
with the same length attribute.

the name of any string variable the same as the data type of the variable,
with the same length attribute. If the data
type of the variable is not identical to an
SQL data type (for example, a
NUL-terminated string in C), the result
column is a varying-length string.

a character string constant of length n VARCHAR(n)

a graphic string constant of length n VARGRAPHIC(n)

the name of a datetime column the same as the data type of the column.

290 SQL Reference

from-clause

 from-clause

 ┌ ┐─,───────────────
5─ ─FROM─ ───6 ┴─table-reference─ ───5

The FROM clause specifies an intermediate result table.

If one table-reference is specified, the intermediate result table is simply the result of
that table-reference. If more than one table-reference is specified, the intermediate
result table consists of all possible combinations of the rows of the specified table-
references (the Cartesian product). Each row of the result is a row from the first table-
reference concatenated with a row from the second table-reference, concatenated in
turn with a row from the third, and so on. The number of rows in the result is the
product of the number of rows in all the individual table-references. For a description of
table-reference, see “table-reference” on page 292.

 Chapter 5. Queries 291

table-reference

 table-reference

5─ ──┬ ┬──┬ ┬─table-name─ ──┬ ┬──────────────────────── ────────────────────────────────── ──────5
 │ │└ ┘─view-name── └ ┘─┤ correlation-clause ├─
 ├ ┤ ─TABLE──(──function-name──(─ ──┬ ┬──────────────── ─)──)──┤ correlation-clause ├─
 │ ││ │┌ ┐─,──────────
 │ │└ ┘ ───6 ┴─expression─
 ├ ┤──┬ ┬─────── ─(fullselect)──┤ correlation-clause ├──────────────────────────────
 │ │└ ┘─TABLE─
 └ ┘ ─joined-table───

correlation-clause:
 ┌ ┐─AS─
├─ ──┴ ┴──── ─correlation-name─ ──┬ ┬─────────────────────── ───────────────────────────────────┤
 │ │┌ ┐─,───────────
 └ ┘ ─(─ ───6 ┴─column-name─ ─)─

Each table-name or view-name specified as a table-reference must identify an existing
table or view at the application server or the table-name of a common table expression
(see “common-table-expression” on page 325) defined preceding the fullselect con-
taining the table-reference. Each function-name together with the types of its argu-
ments, specified as a table reference must resolve to an existing table function at the
application server.

A fullselect in parentheses followed by a correlation name is called a nested table
expression.

A joined-table specifies an intermediate result set that is the result of one or more join
operations. For more information, see “joined-table” on page 295.

The exposed names of all table references should be unique. An exposed name is:

 ¹ A correlation-name,
¹ A table-name that is not followed by a correlation-name,
¹ A view-name that is not followed by a correlation-name.

Each correlation-name is defined as a designator of the immediately preceding table-
name, view-name, function-name reference or nested table expression. Any qualified
reference to a column for a table, view, table function or nested table expression must
use the exposed name. If the same table name or view name is specified twice, at least
one specification should be followed by a correlation-name. The correlation-name is
used to qualify references to the columns of the table or view. When a correlation-name
is specified, column-names can also be specified to give names to the columns of the
table-name, view-name, function-name reference or nested table expression. For more
information, see “Correlation Names” on page 89.

In general, table functions and nested table expressions can be specified on any from-
clause. Columns from the table functions and nested table expressions can be refer-
enced in the select list and in the rest of the subselect using the correlation name which

292 SQL Reference

table-reference

must be specified. The scope of this correlation name is the same as correlation names
for other table or view names in the FROM clause. A nested table expression can be
used:

¹ in place of a view to avoid creating the view (when general use of the view is not
required)

¹ when the desired result table is based on host variables.

Table Function References
In general, a table function together with its argument values can be referenced in the
FROM clause of a SELECT in exactly the same way as a table or view. There are,
however, some special considerations which apply.

¹ Table Function Column Names

Unless alternate column names are provided following the correlation-name, the
column names for the table function are those specified in the RETURNS clause
of the CREATE FUNCTION statement. This is analogous to the names of the
columns of a table, which are of course defined in the CREATE TABLE statement.
See “CREATE FUNCTION (External Table)” on page 441 for details about creating
a table function.

¹ Table Function Resolution

The arguments specified in a table function reference, together with the function
name, are used by an algorithm called function resolution to determine the exact
function to be used. This is no different from what happens with other functions
(such as scalar functions), used in a statement. Function resolution is covered in
“Function Resolution” on page 102.

¹ Table Function Arguments

As with scalar function arguments, table function arguments can in general be any
valid SQL expression. So the following examples are valid syntax:

 Example 1: SELECT c1

FROM TABLE(tf1('Zachary')) AS z

WHERE c2 = 'FLORIDA';

 Example 2: SELECT c1

FROM TABLE(tf2 (:hostvar1, CURRENT DATE)) AS z;

 Example 3: SELECT c1

 FROM t

WHERE c2 IN

(SELECT c3 FROM

TABLE(tf5(t.c4)) AS z -- correlated reference

) -- to previous FROM clause

Correlated References in table-references
Correlated references can be used in nested table expressions or as arguments to
table functions. The basic rule that applies for both these cases is that the correlated

 Chapter 5. Queries 293

table-reference

reference must be from a table-reference at a higher level in the hierarchy of subque-
ries. This hierarchy includes the table-references that have already been resolved in the
left-to-right processing of the FROM clause. For nested table expressions, the TABLE
keyword must appear before the fullselect. So the following examples are valid syntax:

Example 1: SELECT t.c1, z.c5

FROM t, TABLE(tf3(t.c2)) AS z -- t precedes tf3 in FROM

WHERE t.c3 = z.c4; -- so t.c2 is known

Example 2: SELECT t.c1, z.c5

FROM t, TABLE(tf4(2 * t.c2)) AS z -- t precedes tf3 in FROM

WHERE t.c3 = z.c4; -- so t.c2 is known

Example 3: SELECT d.deptno, d.deptname,

 empinfo.avgsal, empinfo.empcount

FROM department d,

TABLE (SELECT AVG(e.salary) AS avgsal,

COUNT(*) AS empcount

FROM employee e -- department precedes and

WHERE e.workdept=d.deptno -- TABLE is specified

) AS empinfo; -- so d.deptno is known

But the following examples are not valid:

Example 4: SELECT t.c1, z.c5

FROM TABLE(tf6(t.c2)) AS z, t -- cannot resolve t in t.c2!

WHERE t.c3 = z.c4; -- compare to Example 1 above.

Example 5: SELECT a.c1, b.c5

FROM TABLE(tf7a(b.c2)) AS a, TABLE(tf7b(a.c6)) AS b

WHERE a.c3 = b.c4; -- cannot resolve b in b.c2!

Example 6: SELECT d.deptno, d.deptname,

 empinfo.avgsal, empinfo.empcount

FROM department d,

(SELECT AVG(e.salary) AS avgsal,

COUNT(*) AS empcount

FROM employee e -- department precedes but

WHERE e.workdept=d.deptno -- TABLE is not specified

) AS empinfo; -- so d.deptno is unknown

294 SQL Reference

joined-table

 joined-table

 ┌ ┐ ─INNER────────────────
5─ ──┬ ┬─table-reference─ ──┼ ┼────────────────────── ─JOIN──table-reference──ON──join-condition──5
 │ │└ ┘ ──┬ ┬─LEFT── ──┬ ┬───────
 │ │├ ┤─RIGHT─ └ ┘─OUTER─
 │ │└ ┘─FULL──
 └ ┘─(──joined-table──)───

A joined table specifies an intermediate result table that is the result of either an inner
join or an outer join. The table is derived by applying one of the join operators: INNER,
LEFT OUTER, RIGHT OUTER, or FULL OUTER to its operands.

Inner joins can be thought of as the cross product of the tables (combine each row of
the left table with every row of the right table), keeping only the rows where the join-
condition is true. The result table may be missing rows from either or both of the joined
tables. Outer joins include the inner join and preserve these missing rows. There are
three types of outer joins:

1. left outer join includes rows from the left table that were missing from the inner
join.

2. right outer join includes rows from the right table that were missing from the inner
join.

3. full outer join includes rows from both the left and right tables that were missing
from the inner join.

If a join-operator is not specified, INNER is implicit. The order in which multiple joins
are performed can affect the result. Joins can be nested within other joins. The order
of processing for joins is generally from left to right, but based on the position of the
required join-condition. Parentheses are recommended to make the order of nested
joins more readable. For example:

tb1 left join tb2 on tb1.c1=tb2.c1

right join tb3 left join tb4 on tb3.c1=tb4.c1

 on tb1.c1=tb3.c1

 is the same as:

(tb1 left join tb2 on tb1.c1=tb2.c1)

right join (tb3 left join tb4 on tb3.c1=tb4.c1)

 on tb1.c1=tb3.c1

A joined table can be used in any context in which any form of the SELECT statement
is used. A view or a cursor is read-only if its SELECT statement includes a joined table.

A join-condition is a search-condition except that:

¹ it cannot contain any subqueries, scalar or otherwise

 Chapter 5. Queries 295

Join Operations

¹ any column referenced in an expression of the join-condition must be a column of
one of the operand tables of the associated join (in the scope of the same joined-
table clause)

¹ any function referenced in an expression of the join-condition of a full outer join
must be deterministic and have no external action.

An error occurs if the join-condition does not comply with these rules (SQLSTATE
42972).

Column references are resolved using the rules for resolution of column name qual-
ifiers. The same rules that apply to predicates apply to join-conditions (see “Predicates”
on page 123).

 Join Operations
A join-condition specifies pairings of T1 and T2, where T1 and T2 are the left and right
operand tables of the JOIN operator of the join-condition. For all possible combinations
of rows of T1 and T2, a row of T1 is paired with a row of T2 if the join-condition is true.
When a row of T1 is joined with a row of T2, a row in the result consists of the values
of that row of T1 concatenated with the values of that row of T2. The execution might
involve the generation of a null row. The null row of a table consists of a null value for
each column of the table, regardless of whether the columns allow null values.

The following summarizes the result of the join operations:

¹ The result of T1 INNER JOIN T2 consists of their paired rows where the join-
condition is true.

¹ The result of T1 LEFT OUTER JOIN T2 consists of their paired rows where the
join-condition is true and, for each unpaired row of T1, the concatenation of that
row with the null row of T2. All columns derived from T2 allow null values.

¹ The result of T1 RIGHT OUTER JOIN T2 consists of their paired rows where the
join-condition is true and, for each unpaired row of T2, the concatenation of that
row with the null row of T1. All columns derived from T1 allow null values.

¹ The result of T1 FULL OUTER JOIN T2 consists of their paired rows and, for each
unpaired row of T2, the concatenation of that row with the null row of T1 and, for
each unpaired row of T1, the concatenation of that row with the null row of T2. All
columns derived from T1 and T2 allow null values.

296 SQL Reference

where-clause

 where-clause

5──WHERE──search-condition──5

The WHERE clause specifies an intermediate result table that consists of those rows of
R for which the search-condition is true. R is the result of the FROM clause of the
subselect.

The search-condition must conform to the following rules:

¹ Each column-name must unambiguously identify a column of R or be a correlated
reference. A column-name is a correlated reference if it identifies a column of a
table or view identified in an outer subselect.

¹ A column function must not be specified unless the WHERE clause is specified in
a subquery of a HAVING clause and the argument of the function is a correlated
reference to a group.

Any subquery in the search-condition is effectively executed for each row of R, and the
results are used in the application of the search-condition to the given row of R. A sub-
query is actually executed for each row of R only if it includes a correlated reference. In
fact, a subquery with no correlated references is executed just once, whereas a sub-
query with a correlated reference may have to be executed once for each row.

 Chapter 5. Queries 297

group-by-clause

 group-by-clause

 ┌ ┐─,───────────────────────
5─ ─GROUP BY─ ───6 ┴──┬ ┬─grouping-expression─ ─────────────────────────────────5
 ├ ┤─grouping-sets───────
 └ ┘─super-groups────────

The GROUP BY clause specifies an intermediate result table that consists of a
grouping of the rows of R. R is the result of the previous clause of the subselect.

In its simplest form, a GROUP BY clause contains a grouping expression. A grouping-
expression is an expression used in defining the grouping of R. Each column-name
included in grouping-expression must unambiguously identify a column of R
(SQLSTATE 42702 or 42703). The length attribute of each grouping-expression must
not be more than 254 bytes (SQLSTATE 42907). A grouping-expression cannot
include a scalar-fullselect (SQLSTATE 42822) or any function that is variant or has an
external action (SQLSTATE 42845).

More complex forms of the GROUP BY clause include grouping-sets and super-groups.
For a description of these forms, see “grouping-sets” on page 299 and “super-groups”
on page 300, respectively.

The result of GROUP BY is a set of groups of rows. Each row in this result represents
the set of rows for which the grouping-expression is equal. For grouping, all null values
from a grouping-expression are considered equal.

A grouping-expression can be used in a search condition in a HAVING clause, in an
expression in a SELECT clause or in a sort-key-expression of an ORDER BY clause
(see “order-by-clause” on page 327 for details). In each case, the reference specifies
only one value for each group. For example, if the grouping-expression iscol1+col2 then
an allowed expression in the select list would be col1+col2+3. Associativity rules for
expressions would disallow the similar expression, 3+col1+col2, unless parentheses are
used to ensure that the corresponding expression is evaluated in the same order. Thus,
3+(col1+col2) would also be allowed in the select list. If the concatenation operator is
used, the grouping-expression must be used exactly as the expression was specified in
the select list.

If the grouping-expression contains varying-length strings with trailing blanks, the values
in the group can differ in the number of trailing blanks and may not all have the same
length. In that case, a reference to the grouping-expression still specifies only one value
for each group, but the value for a group is chosen arbitrarily from the available set of
values. Thus, the actual length of the result value is unpredictable.

As noted, there are some cases where the GROUP BY clause cannot refer directly to a
column that is specified in the SELECT clause as an expression (scalar-fullselect,
variant or external action functions). To group using such an expression, use a nested
table expression or a common table expression to first provide a result table with the

298 SQL Reference

group-by-clause

expression as a column of the result. For an example using nested table expressions,
see Example A9 on page 307.

 grouping-sets

 ┌ ┐─,─────────────────────────────────────
5─ ─GROUPING SETS──(─ ───6 ┴──┬ ┬──┬ ┬─grouping-expression─ ────────── ─)─────────5
 │ │└ ┘─super-groups────────
 │ │┌ ┐─,───────────────────────
 └ ┘ ─(─ ───6 ┴──┬ ┬─grouping-expression─ ─)─
 └ ┘─super-groups────────

A grouping-sets specification allows multiple grouping clauses to be specified in a
single statement. This can be thought of as the union of two or more groups of rows
into a single result set. It is logically equivalent to the union of multiple subselects with
the group by clause in each subselect corresponding to one grouping set. A grouping
set can be a single element or can be a list of elements delimited by parentheses,
where an element is either a grouping-expression or a super-group. Using grouping-
sets allows the groups to be computed with a single pass over the base table.

The grouping-sets specification allows either a simple grouping-expression to be used,
or the more complex forms of super-groups. For a description of super-groups, see
“super-groups” on page 300.

Note that grouping sets are the fundamental building block for GROUP BY operations.
A simple group by with a single column can be considered a grouping set with one
element. For example:

GROUP BY a

is the same as

GROUP BY GROUPING SET((a))

and

GROUP BY a,b,c

is the same as

GROUP BY GROUPING SET((a,b,c))

Non-aggregation columns from the select list of the subselect that are excluded from a
grouping set will return a null for such columns for each row generated for that grouping
set. This reflects the fact that aggregation was done without considering the values for
those columns. See “GROUPING” on page 163 for how to distinguish rows with nulls in
actual data from rows with nulls generated from grouping sets.

Example C2 on page 311 through Example C7 on page 315 illustrate the use of
grouping sets.

 Chapter 5. Queries 299

group-by-clause

 super-groups

5─ ──┬ ┬─ROLLUP──(──grouping-expression-list──)───(1) ──────────────────────────5
 ├ ┤─CUBE──(──grouping-expression-list──)───(2) ──

└ ┘─┤ grand-total ├──────────────────────────

grouping-expression-list:
 ┌ ┐─,─────────────────────────────────
├─ ───6 ┴──┬ ┬─grouping-expression─────────── ─────────────────────────────────┤
 │ │┌ ┐─,───────────────────
 └ ┘ ─(─ ───6 ┴─grouping-expression─ ─)─

grand-total:
├──(──)───┤

Notes:
1 Alternate specification when used alone in group-by-clause is: grouping-

expression-list WITH ROLLUP.
2 Alternate specification when used alone in group-by-clause is: grouping-

expression-list WITH CUBE.

ROLLUP (grouping-expression-list)
A ROLLUP grouping is an extension to the GROUP BY clause that produces a
result set that contains sub-total rows in addition to the "regular" grouped rows.
Sub-total rows34 are "super-aggregate" rows that contain further aggregates whose
values are derived by applying the same column functions that were used to obtain
the grouped rows.

A ROLLUP grouping is a series of grouping-sets. The general specification of a
ROLLUP with n elements

GROUP BY ROLLUP(C1,C2,...,Cn-1,Cn)

is equivalent to

GROUP BY GROUPING SETS((C1,C2,...,Cn-1,Cn)

 (C1,C2,...,Cn-1)

 ...

 (C1,C2)

 (C1)

 ())

Notice that the n elements of the ROLLUP translate to n+1 grouping sets.

Note that the order in which the grouping-expressions is specified is significant for
ROLLUP. For example:

GROUP BY ROLLUP(a,b)

is equivalent to

34 These are called sub-total rows, because that is their most common use, however any column function can be used for the aggre-
gation. For instance, MAX and AVG are used in Example C8 on page 317.

300 SQL Reference

group-by-clause

GROUP BY GROUPING SETS((a,b)

 (a)

 ())

while

GROUP BY ROLLUP(b,a)

is the same as

GROUP BY GROUPING SETS((b,a)

 (b)

 ())

The ORDER BY clause is the only way to guarantee the order of the rows in the
result set. Example C3 on page 312 illustrates the use of ROLLUP.

CUBE (grouping-expression-list)
A CUBE grouping is an extension to the GROUP BY clause that produces a result
set that contains all the rows of a ROLLUP aggregation and, in addition, contains
"cross-tabulation" rows. Cross-tabulation rows are additional "super-aggregate"
rows that are not part of an aggregation with sub-totals.

Like a ROLLUP, a CUBE grouping can also be thought of as a series of grouping-
sets. In the case of a CUBE, all permutations of the cubed grouping-expression-list
are computed along with the grand total. Therefore, the n elements of a CUBE
translate to 2**n (2 to the power n) grouping-sets. For instance, a specification of

GROUP BY CUBE(a,b,c)

is equivalent to

GROUP BY GROUPING SETS((a,b,c)

 (a,b)

 (a,c)

 (b,c)

 (a)

 (b)

 (c)

 ())

Notice that the 3 elements of the CUBE translate to 8 grouping sets.

The order of specification of elements does not matter for CUBE. 'CUBE
(DayOfYear, Sales_Person)' and 'CUBE (Sales_Person, DayOfYear)' yield the
same result sets. The use of the word 'same' applies to content of the result set,
not to its order. The ORDER BY clause is the only way to guarantee the order of
the rows in the result set. Example C4 on page 312 illustrates the use of CUBE.

grouping-expression-list
A grouping-expression-list is used within a CUBE or ROLLUP clause to define the
number of elements in the CUBE or ROLLUP operation. This is controlled by using
parentheses to delimit elements with multiple grouping-expressions.

 Chapter 5. Queries 301

group-by-clause

The rules for a grouping-expression are described in “group-by-clause” on
page 298. For example, suppose that a query is to return the total expenses for
the ROLLUP of City within a Province but not within a County. However the clause:

GROUP BY ROLLUP(Province, County, City)

results in unwanted sub-total rows for the County. In the clause

GROUP BY ROLLUP(Province, (County, City))

the composite (County, City) forms one element in the ROLLUP and, therefore, a
query that uses this clause will yield the desired result. In other words, the two
element ROLLUP

GROUP BY ROLLUP(Province, (County, City))

generates

GROUP BY GROUPING SETS((Province, County, City)

 (Province)

 ())

while the 3 element ROLLUP would generate

GROUP BY GROUPING SETS((Province, County, City)

 (Province, County)

 (Province)

 ())

Example C2 on page 311 also utilizes composite column values.

grand-total
Both CUBE and ROLLUP return a row which is the overall (grand total) aggre-
gation. This may be separately specified with empty parentheses within the
GROUPING SET clause. It may also be specified directly in the GROUP BY
clause, although there is no effect on the result of the query. Example C4 on
page 312 uses the grand-total syntax.

Combining Grouping Sets
This can be used to combine any of the types of GROUP BY clauses. When simple
grouping-expression fields are combined with other groups, they are "appended" to the
beginning of the resulting grouping sets. When ROLLUP or CUBE expressions are
combined, they operate like "multipliers" on the remaining expression, forming addi-
tional grouping set entries according to the definition of either ROLLUP or CUBE.

For instance, combining grouping-expression elements acts as follows:

GROUP BY a, ROLLUP(b,c)

 is equivalent to

GROUP BY GROUPING SETS((a,b,c)

 (a,b)

 (a))

 Or similarly,

GROUP BY a, b, ROLLUP(c,d)

302 SQL Reference

group-by-clause

 is equivalent to

GROUP BY GROUPING SETS((a,b,c,d)

 (a,b,c)

 (a,b))

 Combining of ROLLUP elements acts as follows:

GROUP BY ROLLUP(a), ROLLUP(b,c)

is equivalent to

GROUP BY GROUPING SETS((a,b,c)

 (a,b)

 (a)

 (b,c)

 (b)

 ())

Similarly,

GROUP BY ROLLUP(a), CUBE(b,c)

is equivalent to

GROUP BY GROUPING SETS((a,b,c)

 (a,b)

 (a,c)

 (a)

 (b,c)

 (b)

 (c)

 ())

Combining of CUBE and ROLLUP elements acts as follows:

GROUP BY CUBE(a,b), ROLLUP(c,d)

is equivalent to

GROUP BY GROUPING SETS((a,b,c,d)

 (a,b,c)

 (a,b)

 (a,c,d)

 (a,c)

 (a)

 (b,c,d)

 (b,c)

 (b)

 (c,d)

 (c)

 ())

Like a simple grouping-expression, combining grouping sets also eliminates duplicates
within each grouping set. For instance,

GROUP BY a, ROLLUP(a,b)

 Chapter 5. Queries 303

group-by-clause

 is equivalent to

GROUP BY GROUPING SETS((a,b)

 (a))

A more complete example of combining grouping sets is to construct a result set that
eliminates certain rows that would be returned for a full CUBE aggregation.

For example, consider the following GROUP BY clause:

GROUP BY Region,

 ROLLUP(Sales_Person, WEEK(Sales_Date)),

CUBE(YEAR(Sales_Date), MONTH (Sales_Date))

The column listed immediately to the right of GROUP BY is simply grouped, those
within the parenthesis following ROLLUP are rolled up, and those within the parenthesis
following CUBE are cubed. Thus, the above clause results in a cube of MONTH within
YEAR which is then rolled up within WEEK within Sales_Person within the Region
aggregation. It does not result in any grand total row or any cross-tabulation rows on
Region, Sales_Person or WEEK(Sales_Date) so produces fewer rows than the clause:

GROUP BY ROLLUP (Region, Sales_Person, WEEK(Sales_Date),

YEAR(Sales_Date), MONTH(Sales_Date))

304 SQL Reference

having-clause

 having-clause

5──HAVING──search-condition───5

The HAVING clause specifies an intermediate result table that consists of those groups
of R for which the search-condition is true. R is the result of the previous clause of the
subselect. If this clause is not GROUP BY, R is considered a single group with no
grouping columns.

Each column-name in the search condition must do one of the following:

¹ Unambiguously identify a grouping column of R.

¹ Be specified within a column function.

¹ Be a correlated reference. A column-name is a correlated reference if it identifies a
column of a table or view identified in an outer subselect.

A group of R to which the search condition is applied supplies the argument for each
column function in the search condition, except for any function whose argument is a
correlated reference.

If the search condition contains a subquery, the subquery can be thought of as being
executed each time the search condition is applied to a group of R, and the results
used in applying the search condition. In actuality, the subquery is executed for each
group only if it contains a correlated reference. For an illustration of the difference, see
Example A6 on page 306 and Example A7 on page 307.

A correlated reference to a group of R must either identify a grouping column or be
contained within a column function.

When HAVING is used without GROUP BY, the select list can only be a column name
within a column function, a correlated column reference, a literal, or a special register.

 Chapter 5. Queries 305

Examples of subselects

Example A1: Select all columns and rows from the EMPLOYEE table.

SELECT * FROM EMPLOYEE

Example A2: Join the EMP_ACT and EMPLOYEE tables, select all the columns from
the EMP_ACT table and add the employee's surname (LASTNAME) from the
EMPLOYEE table to each row of the result.

SELECT EMP_ACT.*, LASTNAME

 FROM EMP_ACT, EMPLOYEE

 WHERE EMP_ACT.EMPNO = EMPLOYEE.EMPNO

Example A3: Join the EMPLOYEE and DEPARTMENT tables, select the employee
number (EMPNO), employee surname (LASTNAME), department number (WORKDEPT
in the EMPLOYEE table and DEPTNO in the DEPARTMENT table) and department
name (DEPTNAME) of all employees who were born (BIRTHDATE) earlier than 1930.

SELECT EMPNO, LASTNAME, WORKDEPT, DEPTNAME

 FROM EMPLOYEE, DEPARTMENT

 WHERE WORKDEPT = DEPTNO

 AND YEAR(BIRTHDATE) < 1930

Example A4: Select the job (JOB) and the minimum and maximum salaries (SALARY)
for each group of rows with the same job code in the EMPLOYEE table, but only for
groups with more than one row and with a maximum salary greater than or equal to
27000.

SELECT JOB, MIN(SALARY), MAX(SALARY)

 FROM EMPLOYEE

GROUP BY JOB

HAVING COUNT(*) > 1

AND MAX(SALARY) >= 27000

Example A5: Select all the rows of EMP_ACT table for employees (EMPNO) in depart-
ment (WORKDEPT) ‘E11’. (Employee department numbers are shown in the
EMPLOYEE table.)

 SELECT *

 FROM EMP_ACT

WHERE EMPNO IN

 (SELECT EMPNO

 FROM EMPLOYEE

WHERE WORKDEPT = 'E11')

Example A6: From the EMPLOYEE table, select the department number
(WORKDEPT) and maximum departmental salary (SALARY) for all departments whose
maximum salary is less than the average salary for all employees.

SELECT WORKDEPT, MAX(SALARY)

 FROM EMPLOYEE

GROUP BY WORKDEPT

HAVING MAX(SALARY) < (SELECT AVG(SALARY)

 FROM EMPLOYEE)

306 SQL Reference

 The subquery in the HAVING clause would only be executed once in this example.

Example A7: Using the EMPLOYEE table, select the department number
(WORKDEPT) and maximum departmental salary (SALARY) for all departments whose
maximum salary is less than the average salary in all other departments.

SELECT WORKDEPT, MAX(SALARY)

FROM EMPLOYEE EMP_COR

 GROUP BY WORKDEPT

 HAVING MAX(SALARY) < (SELECT AVG(SALARY)

 FROM EMPLOYEE

WHERE NOT WORKDEPT = EMP_COR.WORKDEPT)

In contrast to Example A6 on page 306, the subquery in the HAVING clause would
need to be executed for each group.

Example A8: Determine the employee number and salary of sales representatives
along with the average salary and head count of their departments.

This query must first create a nested table expression (DINFO) in order to get the
AVGSALARY and EMPCOUNT columns, as well as the DEPTNO column that is used
in the WHERE clause.

 SELECT THIS_EMP.EMPNO, THIS_EMP.SALARY, DINFO.AVGSALARY, DINFO.EMPCOUNT

FROM EMPLOYEE THIS_EMP,

(SELECT OTHERS.WORKDEPT AS DEPTNO,

AVG(OTHERS.SALARY) AS AVGSALARY,

COUNT(*) AS EMPCOUNT

FROM EMPLOYEE OTHERS

GROUP BY OTHERS.WORKDEPT

) AS DINFO

WHERE THIS_EMP.JOB = 'SALESREP'

AND THIS_EMP.WORKDEPT = DINFO.DEPTNO

Using a nested table expression for this case saves the overhead of creating the
DINFO view as a regular view. During statement preparation, accessing the catalog for
the view is avoided and, because of the context of the rest of the query, only the rows
for the department of the sales representatives need to be considered by the view.

Example A9: Display the average education level and salary for 5 random groups of
employees.

This query requires the use of a nested table expression to set a random value for
each employee so that it can subsequently be used in the GROUP BY clause.

SELECT RANDID , AVG(EDLEVEL), AVG(SALARY)

 FROM (

SELECT EDLEVEL, SALARY, INTEGER(RAND()*5) AS RANDID

 FROM EMPLOYEE

) AS EMPRAND

GROUP BY RANDID

 Chapter 5. Queries 307

Examples of Joins

Example B1: This example illustrates the results of the various joins using tables J1
and J2. These tables contain rows as shown.

SELECT * FROM J1

 W X

 --- ------

 A 11

 B 12

 C 13

SELECT * FROM J2

 Y Z

 --- ------

 A 21

 C 22

 D 23

The following query does an inner join of J1 and J2 matching the first column of both
tables.

SELECT * FROM J1 INNER JOIN J2 ON W=Y

 W X Y Z

--- ------ --- ------

 A 11 A 21

 C 13 C 22

In this inner join example the row with column W='C' from J1 and the row with column
Y='D' from J2 are not included in the result because they do not have a match in the
other table. Note that the following alternative form of an inner join query produces the
same result.

SELECT * FROM J1, J2 WHERE W=Y

The following left outer join will get back the missing row from J1 with nulls for the
columns of J2. Every row from J1 is included.

SELECT * FROM J1 LEFT OUTER JOIN J2 ON W=Y

 W X Y Z

--- ------ --- ------

 A 11 A 21

 B 12 - -

 C 13 C 22

The following right outer join will get back the missing row from J2 with nulls for the
columns of J1. Every row from J2 is included.

308 SQL Reference

SELECT * FROM J1 RIGHT OUTER JOIN J2 ON W=Y

 W X Y Z

--- ------ --- ------

 A 11 A 21

 C 13 C 22

 - - D 23

The following full outer join will get back the missing rows from both J1 and J2 with
nulls where appropriate. Every row from both J1 and J2 is included.

SELECT * FROM J1 FULL OUTER JOIN J2 ON W=Y

 W X Y Z

--- ------ --- ------

 A 11 A 21

 C 13 C 22

 - - D 23

 B 12 - -

Example B2: Using the tables J1 and J2 from the previous example, examine what
happens when and additional predicate is added to the search condition.

SELECT * FROM J1 INNER JOIN J2 ON W=Y AND X=13

 W X Y Z

--- ------ --- ------

 C 13 C 22

The additional condition caused the inner join to select only 1 row compared to the
inner join in Example B1 on page 308.

Notice what the impact of this is on the full outer join.

SELECT * FROM J1 FULL OUTER JOIN J2 ON W=Y AND X=13

 W X Y Z

--- ------ --- ------

 - - A 21

 C 13 C 22

 - - D 23

 A 11 - -

 B 12 - -

The result now has 5 rows (compared to 4 without the additional predicate) since there
was only 1 row in the inner join and all rows of both tables must be returned.

The following query illustrates that placing the same additional predicate in WHERE
clause has completely different results.

SELECT * FROM J1 FULL OUTER JOIN J2 ON W=Y

 WHERE X=13

 W X Y Z

--- ------ --- ------

 C 13 C 22

 Chapter 5. Queries 309

The WHERE clause is applied after the intermediate result of the full outer join. This
intermediate result would be the same as the result of the full outer join query in
Example B1 on page 308. The WHERE clause is applied to this intermediate result and
eliminates all but the row that has X=13. Choosing the location of a predicate when
performing outer joins can have significant impact on the results. Consider what
happens if the predicate was X=12 instead of X=13. The following inner join returns no
rows.

SELECT * FROM J1 INNER JOIN J2 ON W=Y AND X=12

Hence, the full outer join would return 6 rows, 3 from J1 with nulls for the columns of J2
and 3 from J2 with nulls for the columns of J1.,

SELECT * FROM J1 FULL OUTER JOIN J2 ON W=Y AND X=12

 W X Y Z

--- ------ --- ------

 - - A 21

 - - C 22

 - - D 23

 A 11 - -

 B 12 - -

 C 13 - -

If the additional predicate is in the WHERE clause instead, 1 row is returned.

SELECT * FROM J1 FULL OUTER JOIN J2 ON W=Y

 WHERE X=12

 W X Y Z

--- ------ --- ------

 B 12 - -

Example B3: List every department with the employee number and last name of the
manager, including departments without a manager.

SELECT DEPTNO, DEPTNAME, EMPNO, LASTNAME

FROM DEPARTMENT LEFT OUTER JOIN EMPLOYEE

ON MGRNO = EMPNO

Example B4: List every employee number and last name with the employee number
and last name of their manager, including employees without a manager.

SELECT E.EMPNO, E.LASTNAME, M.EMPNO, M.LASTNAME

FROM EMPLOYEE E LEFT OUTER JOIN

DEPARTMENT INNER JOIN EMPLOYEE M

ON MGRNO = M.EMPNO

ON E.WORKDEPT = DEPTNO

The inner join determines the last name for any manager identified in the DEPART-
MENT table and the left outer join guarantees that each employee is listed even if a
corresponding department is not found in DEPARTMENT.

310 SQL Reference

Examples of Grouping Sets, Cube, and Rollup

The queries in Example C1 on page 311 through Example C4 on page 312 use a
subset of the rows in the SALES tables based on the predicate 'WEEK(SALES_DATE)
= 13'.

SELECT WEEK(SALES_DATE) AS WEEK,

DAYOFWEEK(SALES_DATE) AS DAY_WEEK,

SALES_PERSON, SALES AS UNITS_SOLD

 FROM SALES

WHERE WEEK(SALES_DATE) = 13

which results in:
WEEK DAY_WEEK SALES_PERSON UNITS_SOLD

----------- ----------- --------------- -----------

 13 6 LUCCHESSI 3

 13 6 LUCCHESSI 1

 13 6 LEE 2

 13 6 LEE 2

 13 6 LEE 3

 13 6 LEE 5

 13 6 GOUNOT 3

 13 6 GOUNOT 1

 13 6 GOUNOT 7

 13 7 LUCCHESSI 1

 13 7 LUCCHESSI 2

 13 7 LUCCHESSI 1

 13 7 LEE 7

 13 7 LEE 3

 13 7 LEE 7

 13 7 LEE 4

 13 7 GOUNOT 2

 13 7 GOUNOT 18

 13 7 GOUNOT 1

Example C1: Here is a query with a basic GROUP BY clause over 3 columns:

SELECT WEEK(SALES_DATE) AS WEEK,

DAYOFWEEK(SALES_DATE) AS DAY_WEEK,

SALES_PERSON, SUM(SALES) AS UNITS_SOLD

 FROM SALES

WHERE WEEK(SALES_DATE) = 13

GROUP BY WEEK(SALES_DATE), DAYOFWEEK(SALES_DATE), SALES_PERSON

ORDER BY WEEK, DAY_WEEK, SALES_PERSON

This results in:
WEEK DAY_WEEK SALES_PERSON UNITS_SOLD

----------- ----------- --------------- -----------

 13 6 GOUNOT 11

 13 6 LEE 12

 13 6 LUCCHESSI 4

 13 7 GOUNOT 21

 13 7 LEE 21

 13 7 LUCCHESSI 4

Example C2: Produce the result based on two different grouping sets of rows from the
SALES table.

 Chapter 5. Queries 311

SELECT WEEK(SALES_DATE) AS WEEK,

DAYOFWEEK(SALES_DATE) AS DAY_WEEK,

SALES_PERSON, SUM(SALES) AS UNITS_SOLD

 FROM SALES

WHERE WEEK(SALES_DATE) = 13

GROUP BY GROUPING SETS ((WEEK(SALES_DATE), SALES_PERSON),

 (DAYOFWEEK(SALES_DATE), SALES_PERSON))

ORDER BY WEEK, DAY_WEEK, SALES_PERSON

This results in:
WEEK DAY_WEEK SALES_PERSON UNITS_SOLD

----------- ----------- --------------- -----------

 13 - GOUNOT 32

 13 - LEE 33

 13 - LUCCHESSI 8

 - 6 GOUNOT 11

 - 6 LEE 12

 - 6 LUCCHESSI 4

 - 7 GOUNOT 21

 - 7 LEE 21

 - 7 LUCCHESSI 4

The rows with WEEK 13 are from the first grouping set and the other rows are from the
second grouping set.

Example C3: If you use the 3 distinct columns involved in the grouping sets of
Example C2 on page 311 and perform a ROLLUP, you can see grouping sets for
(WEEK,DAY_WEEK,SALES_PERSON), (WEEK, DAY_WEEK), (WEEK) and grand
total.

SELECT WEEK(SALES_DATE) AS WEEK,

DAYOFWEEK(SALES_DATE) AS DAY_WEEK,

SALES_PERSON, SUM(SALES) AS UNITS_SOLD

 FROM SALES

WHERE WEEK(SALES_DATE) = 13

GROUP BY ROLLUP (WEEK(SALES_DATE), DAYOFWEEK(SALES_DATE), SALES_PERSON)

ORDER BY WEEK, DAY_WEEK, SALES_PERSON

This results in:
WEEK DAY_WEEK SALES_PERSON UNITS_SOLD

----------- ----------- --------------- -----------

 13 6 GOUNOT 11

 13 6 LEE 12

 13 6 LUCCHESSI 4

 13 6 - 27

 13 7 GOUNOT 21

 13 7 LEE 21

 13 7 LUCCHESSI 4

 13 7 - 46

 13 - - 73

 - - - 73

Example C4: If you run the same query as Example C3 on page 312 only replace
ROLLUP with CUBE, you can see additional grouping sets for
(WEEK,SALES_PERSON), (DAY_WEEK,SALES_PERSON), (DAY_WEEK),
(SALES_PERSON) in the result.

312 SQL Reference

SELECT WEEK(SALES_DATE) AS WEEK,

DAYOFWEEK(SALES_DATE) AS DAY_WEEK,

SALES_PERSON, SUM(SALES) AS UNITS_SOLD

 FROM SALES

WHERE WEEK(SALES_DATE) = 13

GROUP BY CUBE (WEEK(SALES_DATE), DAYOFWEEK(SALES_DATE), SALES_PERSON)

ORDER BY WEEK, DAY_WEEK, SALES_PERSON

This results in:
WEEK DAY_WEEK SALES_PERSON UNITS_SOLD

----------- ----------- --------------- -----------

 13 6 GOUNOT 11

 13 6 LEE 12

 13 6 LUCCHESSI 4

 13 6 - 27

 13 7 GOUNOT 21

 13 7 LEE 21

 13 7 LUCCHESSI 4

 13 7 - 46

 13 - GOUNOT 32

 13 - LEE 33

 13 - LUCCHESSI 8

 13 - - 73

 - 6 GOUNOT 11

 - 6 LEE 12

 - 6 LUCCHESSI 4

 - 6 - 27

 - 7 GOUNOT 21

 - 7 LEE 21

 - 7 LUCCHESSI 4

 - 7 - 46

 - - GOUNOT 32

 - - LEE 33

 - - LUCCHESSI 8

 - - - 73

Example C5: Obtain a result set which includes a grand-total of selected rows from the
SALES table together with a group of rows aggregated by SALES_PERSON and
MONTH.

 SELECT SALES_PERSON,

MONTH(SALES_DATE) AS MONTH,

SUM(SALES) AS UNITS_SOLD

 FROM SALES

GROUP BY GROUPING SETS ((SALES_PERSON, MONTH(SALES_DATE)),

 ()

)

ORDER BY SALES_PERSON, MONTH

This results in:

 Chapter 5. Queries 313

 SALES_PERSON MONTH UNITS_SOLD

--------------- ----------- -----------

 GOUNOT 3 35

 GOUNOT 4 14

 GOUNOT 12 1

 LEE 3 60

 LEE 4 25

 LEE 12 6

 LUCCHESSI 3 9

 LUCCHESSI 4 4

 LUCCHESSI 12 1

 - - 155

Example C6: This example shows two simple ROLLUP queries followed by a query
which treats the two ROLLUPs as grouping sets in a single result set and specifies row
ordering for each column involved in the grouping sets.

Example C6-1:

SELECT WEEK(SALES_DATE) AS WEEK,

DAYOFWEEK(SALES_DATE) AS DAY_WEEK,

SUM(SALES) AS UNITS_SOLD

 FROM SALES

GROUP BY ROLLUP (WEEK(SALES_DATE), DAYOFWEEK(SALES_DATE))

ORDER BY WEEK, DAY_WEEK

results in:
 WEEK DAY_WEEK UNITS_SOLD

----------- ----------- -----------

 13 6 27

 13 7 46

 13 - 73

 14 1 31

 14 2 43

 14 - 74

 53 1 8

 53 - 8

 - - 155

Example C6-2:

SELECT MONTH(SALES_DATE) AS MONTH,

 REGION,

SUM(SALES) AS UNITS_SOLD

 FROM SALES

GROUP BY ROLLUP (MONTH(SALES_DATE), REGION);

ORDER BY MONTH, REGION

results in:
 MONTH REGION UNITS_SOLD

----------- --------------- -----------

 3 Manitoba 22

 3 Ontario-North 8

 3 Ontario-South 34

 3 Quebec 40

 3 - 104

 4 Manitoba 17

 4 Ontario-North 1

 4 Ontario-South 14

 4 Quebec 11

 4 - 43

314 SQL Reference

 12 Manitoba 2

 12 Ontario-South 4

 12 Quebec 2

 12 - 8

 - - 155

Example C6-3:

SELECT WEEK(SALES_DATE) AS WEEK,

DAYOFWEEK(SALES_DATE) AS DAY_WEEK,

MONTH(SALES_DATE) AS MONTH,

 REGION,

SUM(SALES) AS UNITS_SOLD

 FROM SALES

GROUP BY GROUPING SETS (ROLLUP(WEEK(SALES_DATE), DAYOFWEEK(SALES_DATE)),

ROLLUP(MONTH(SALES_DATE), REGION))

ORDER BY WEEK, DAY_WEEK, MONTH, REGION

results in:
 WEEK DAY_WEEK MONTH REGION UNITS_SOLD

----------- ----------- ----------- --------------- -----------

 13 6 - - 27

 13 7 - - 46

 13 - - - 73

 14 1 - - 31

 14 2 - - 43

 14 - - - 74

 53 1 - - 8

 53 - - - 8

- - 3 Manitoba 22

- - 3 Ontario-North 8

- - 3 Ontario-South 34

- - 3 Quebec 40

- - 3 - 104

- - 4 Manitoba 17

- - 4 Ontario-North 1

- - 4 Ontario-South 14

- - 4 Quebec 11

- - 4 - 43

 - - 12 Manitoba 2

 - - 12 Ontario-South 4

 - - 12 Quebec 2

 - - 12 - 8

- - - - 155

- - - - 155

Using the two ROLLUPs as grouping sets causes the result to include duplicate rows.
There are even two grand total rows.

Observe how the use of ORDER BY has affected the results:

¹ In the first grouped set, week 53 has been repositioned to the end.

¹ In the second grouped set, month 12 has now been positioned to the end and the
regions now appear in alphabetic order.

¹ Null values are sorted high.

Example C7: In queries that perform multiple rollups in a single pass (such as
Example C6-3 on page 315) you may want to be able to indicate which grouping set
produced each row. The following steps demonstrate how to provide a column (called

 Chapter 5. Queries 315

GROUP) which indicates the origin of each row in the result set. By origin, we mean
which one of the two grouping sets produced the row in the result set.

Step 1: Introduce a way of "generating" new data values, using a query which selects
from a VALUES clause (which is an alternate form of a fullselect). This query shows
how a table can be derived called "X" having 2 columns "R1" and "R2" and 1 row of
data.

 SELECT R1,R2

FROM (VALUES('GROUP 1','GROUP 2')) AS X(R1,R2);

results in:

 R1 R2

 ------- -------

GROUP 1 GROUP 2

Step 2: Form the cross product of this table "X" with the SALES table. This add
columns "R1" and "R2" to every row.

SELECT R1, R2, WEEK(SALES_DATE) AS WEEK,

DAYOFWEEK(SALES_DATE) AS DAY_WEEK,

MONTH(SALES_DATE) AS MONTH,

 REGION,

SALES AS UNITS_SOLD

FROM SALES,(VALUES('GROUP 1','GROUP 2')) AS X(R1,R2)

This add columns "R1" and "R2" to every row.

Step 3: Now we can combine these columns with the grouping sets to include these
columns in the rollup analysis.

SELECT R1, R2,

WEEK(SALES_DATE) AS WEEK,

DAYOFWEEK(SALES_DATE) AS DAY_WEEK,

MONTH(SALES_DATE) AS MONTH,

REGION, SUM(SALES) AS UNITS_SOLD

FROM SALES,(VALUES('GROUP 1','GROUP 2')) AS X(R1,R2)

GROUP BY GROUPING SETS ((R1, ROLLUP(WEEK(SALES_DATE), DAYOFWEEK(SALES_DATE))),

(R2,ROLLUP(MONTH(SALES_DATE), REGION)))

ORDER BY WEEK, DAY_WEEK, MONTH, REGION

results in:
R1 R2 WEEK DAY_WEEK MONTH REGION UNITS_SOLD

------- ------- ----------- ----------- ----------- --------------- -----------

GROUP 1 - 13 6 - - 27

GROUP 1 - 13 7 - - 46

GROUP 1 - 13 - - - 73

GROUP 1 - 14 1 - - 31

GROUP 1 - 14 2 - - 43

GROUP 1 - 14 - - - 74

GROUP 1 - 53 1 - - 8

GROUP 1 - 53 - - - 8

- GROUP 2 - - 3 Manitoba 22

- GROUP 2 - - 3 Ontario-North 8

- GROUP 2 - - 3 Ontario-South 34

- GROUP 2 - - 3 Quebec 40

- GROUP 2 - - 3 - 104

- GROUP 2 - - 4 Manitoba 17

316 SQL Reference

- GROUP 2 - - 4 Ontario-North 1

- GROUP 2 - - 4 Ontario-South 14

- GROUP 2 - - 4 Quebec 11

- GROUP 2 - - 4 - 43

- GROUP 2 - - 12 Manitoba 2

- GROUP 2 - - 12 Ontario-South 4

- GROUP 2 - - 12 Quebec 2

- GROUP 2 - - 12 - 8

- GROUP 2 - - - - 155

GROUP 1 - - - - - 155

Step 4: Notice that because R1 and R2 are used in different grouping sets, whenever
R1 is non-null in the result, R2 is null and whenever R2 is non-null in the result, R1 is
null. That means you can consolidate these columns into a sinlge column using the
COALESCE function. You can also use this column in the ORDER BY clause to keep
the results of the two grouping sets together.

SELECT COALESCE(R1,R2) AS GROUP,

WEEK(SALES_DATE) AS WEEK,

DAYOFWEEK(SALES_DATE) AS DAY_WEEK,

MONTH(SALES_DATE) AS MONTH,

REGION, SUM(SALES) AS UNITS_SOLD

FROM SALES,(VALUES('GROUP 1','GROUP 2')) AS X(R1,R2)

GROUP BY GROUPING SETS ((R1, ROLLUP(WEEK(SALES_DATE), DAYOFWEEK(SALES_DATE))),

(R2,ROLLUP(MONTH(SALES_DATE), REGION)))

ORDER BY GROUP, WEEK, DAY_WEEK, MONTH, REGION;

results in:
 GROUP WEEK DAY_WEEK MONTH REGION UNITS_SOLD

------- ----------- ----------- ----------- --------------- -----------

GROUP 1 13 6 - - 27

GROUP 1 13 7 - - 46

GROUP 1 13 - - - 73

GROUP 1 14 1 - - 31

GROUP 1 14 2 - - 43

GROUP 1 14 - - - 74

GROUP 1 53 1 - - 8

GROUP 1 53 - - - 8

GROUP 1 - - - - 155

GROUP 2 - - 3 Manitoba 22

GROUP 2 - - 3 Ontario-North 8

GROUP 2 - - 3 Ontario-South 34

GROUP 2 - - 3 Quebec 40

GROUP 2 - - 3 - 104

GROUP 2 - - 4 Manitoba 17

GROUP 2 - - 4 Ontario-North 1

GROUP 2 - - 4 Ontario-South 14

GROUP 2 - - 4 Quebec 11

GROUP 2 - - 4 - 43

GROUP 2 - - 12 Manitoba 2

GROUP 2 - - 12 Ontario-South 4

GROUP 2 - - 12 Quebec 2

GROUP 2 - - 12 - 8

GROUP 2 - - - - 155

Example C8: The following example illustrates the use of various column functions
when performing a CUBE. The example also makes use of cast functions and rounding
to produce a decimal result with reasonable precision and scale.

 Chapter 5. Queries 317

SELECT MONTH(SALES_DATE) AS MONTH,

 REGION,

SUM(SALES) AS UNITS_SOLD,

MAX(SALES) AS BEST_SALE,

CAST(ROUND(AVG(DECIMAL(SALES)),2) AS DECIMAL(5,2)) AS AVG_UNITS_SOLD

 FROM SALES

GROUP BY CUBE(MONTH(SALES_DATE),REGION)

ORDER BY MONTH, REGION

This results in:
MONTH REGION UNITS_SOLD BEST_SALE AVG_UNITS_SOLD

----------- --------------- ----------- ----------- --------------

3 Manitoba 22 7 3.14

3 Ontario-North 8 3 2.67

 3 Ontario-South 34 14 4.25

 3 Quebec 40 18 5.00

 3 - 104 18 4.00

4 Manitoba 17 9 5.67

4 Ontario-North 1 1 1.00

4 Ontario-South 14 8 4.67

4 Quebec 11 8 5.50

4 - 43 9 4.78

12 Manitoba 2 2 2.00

12 Ontario-South 4 3 2.00

12 Quebec 2 1 1.00

12 - 8 3 1.60

- Manitoba 41 9 3.73

- Ontario-North 9 3 2.25

 - Ontario-South 52 14 4.00

 - Quebec 53 18 4.42

 - - 155 18 3.87

318 SQL Reference

fullselect

 fullselect

5─ ──┬ ┬─subselect───────── ───5
 ├ ┤─(fullselect)──────

└ ┘─┤ values-clause ├─

 ┌ ┐──
5─ ───6 ┴──┬ ┬── ──────────────────────5
 └ ┘ ──┬ ┬─UNION───────── ──┬ ┬─subselect─────────
 ├ ┤─UNION ALL───── ├ ┤─(fullselect)──────

├ ┤─EXCEPT──────── └ ┘─┤ values-clause ├─
 ├ ┤─EXCEPT ALL────
 ├ ┤─INTERSECT─────
 └ ┘─INTERSECT ALL─

values-clause:
 ┌ ┐─,──────────────
├──VALUES─ ───6 ┴─┤ values-row ├─ ──┤

values-row:
├─ ──┬ ┬──┬ ┬─expression─ ────────── ──┤
 │ │└ ┘─NULL───────
 │ │┌ ┐─,──────────────
 └ ┘ ─(─ ───6 ┴──┬ ┬─expression─ ─)─
 └ ┘─NULL───────

The fullselect is a component of the select-statement, the INSERT statement, and the
CREATE VIEW statement. It is also a component of certain predicates which, in turn
are components of a statement. A fullselect that is a component of a predicate is called
a subquery. A fullselect that is enclosed in parentheses is sometimes called a sub-
query.

The set operators UNION, EXCEPT, and INTERSECT correspond to the relational
operators union, difference, and intersection.

A fullselect specifies a result table. If a set operator is not used, the result of the
fullselect is the result of the specified subselect or values-clause.

values-clause
Derives a result table by specifying the actual values, using expressions, for each
column of a row in the result table. Multiple rows may be specified.

NULL can only be used with multiple values-rows and at least one row in the same
column must not be NULL (SQLSTATE 42826).

A values-row is specified by:

¹ A single expression for a single column result table or,
¹ n expressions (or NULL) separated by commas and enclosed in parentheses,

where n is the number of columns in the result table.

 Chapter 5. Queries 319

fullselect

A multiple row VALUES clause must have the same number of expressions in
each values-row (SQLSTATE 42826).

The following are examples of values-clauses and their meaning.

VALUES (1),(2),(3) - 3 rows of 1 column

VALUES 1, 2, 3 - 3 rows of 1 column

VALUES (1, 2, 3) - 1 row of 3 columns

VALUES (1,21),(2,22),(3,23) - 3 rows of 2 columns

A values-clause that is composed of n values-rows, RE1 to REn, where n is greater
than 1, is equivalent to

RE1 UNION ALL RE2 ... UNION ALL REn

This means that the corresponding expressions of each values-row must be com-
parable (SQLSTATE 42825) and the resulting data type is based on “Rules for
Result Data Types” on page 74.

UNION or UNION ALL
Derives a result table by combining two other result tables (R1 and R2). If UNION
ALL is specified, the result consists of all rows in R1 and R2. If UNION is specified
without the ALL option, the result is the set of all rows in either R1 or R2, with the
duplicate rows eliminated. In either case, however, each row of the UNION table is
either a row from R1 or a row from R2.

EXCEPT or EXCEPT ALL
Derives a result table by combining two other result tables (R1 and R2). If
EXCEPT ALL is specified, the result consists of all rows that do not have a corre-
sponding row in R2, where duplicate rows are significant. If EXCEPT is specified
without the ALL option, the result consists of all rows that are only in R1, with
duplicate rows in the result of this operation eliminated.

INTERSECT or INTERSECT ALL
Derives a result table by combining two other result tables (R1 and R2). If INTER-
SECT ALL is specified, the result consists of all rows that are in both R1 and R2. If
INTERSECT is specified without the ALL option, the result consists of all rows that
are in both R1 and R2, with the duplicate rows eliminated.

The number of columns in the result tables R1 and R1 must be the same (SQLSTATE
42826).

The columns of the result are named as follows:

¹ If the nth column of R1 and the nth column of R2 have the same result column
name, then the nth column of R has the result column name.

¹ If the nth column of R1 and the nth column of R2 have different result column
names, a name is generated. This name cannot be used as the column name in
an ORDER BY or UPDATE clause.

The generated name can be determined by performing a DESCRIBE of the SQL state-
ment and consulting the SQLNAME field.

320 SQL Reference

fullselect

Two rows are duplicates of one another if each value in the first is equal to the corre-
sponding value of the second. (For determining duplicates, two null values are consid-
ered equal.)

When multiple operations are combined in an expression, operations within paren-
theses are performed first. If there are no parentheses, the operations are performed
from left to right with the exception that all INTERSECT operations are performed
before UNION or EXCEPT operations.

In the following example, the values of tables R1 and R2 are shown on the left. The
other headings listed show the values as a result of various set operations on R1 and
R2.

For the rules on how the data types of the result columns are determined, see “Rules
for Result Data Types” on page 74.

For the rules on how conversions of string columns are handled, see “Rules for String
Conversions” on page 76.

R1 R2
UNION
ALL UNION

EXCEPT
ALL EXCEPT

INTER-
SECT
ALL

INTER-
SECT

1 1 1 1 1 2 1 1
1 1 1 2 2 5 1 3
1 3 1 3 2 3 4
2 3 1 4 2 4
2 3 1 5 4
2 3 2 5
3 4 2
4 2
4 3
5 3

3
3
3
4
4
4
5

Examples of a fullselect
Example 1: Select all columns and rows from the EMPLOYEE table.

SELECT * FROM EMPLOYEE

Example 2: List the employee numbers (EMPNO) of all employees in the EMPLOYEE
table whose department number (WORKDEPT) either begins with 'E' or who are
assigned to projects in the EMP_ACT table whose project number (PROJNO) equals
'MA2100', 'MA2110', or 'MA2112'.

 Chapter 5. Queries 321

fullselect

 SELECT EMPNO

 FROM EMPLOYEE

WHERE WORKDEPT LIKE 'E%'

 UNION

 SELECT EMPNO

 FROM EMP_ACT

WHERE PROJNO IN('MA2100', 'MA2110', 'MA2112')

Example 3: Make the same query as in example 2, and, in addition, “tag” the rows
from the EMPLOYEE table with 'emp' and the rows from the EMP_ACT table with
'emp_act'. Unlike the result from example 2, this query may return the same EMPNO
more than once, identifying which table it came from by the associated “tag”.

SELECT EMPNO, 'emp'

 FROM EMPLOYEE

 WHERE WORKDEPT LIKE 'E%'

 UNION

SELECT EMPNO, 'emp_act' FROM EMP_ACT

WHERE PROJNO IN('MA2100', 'MA2110', 'MA2112')

Example 4: Make the same query as in example 2, only use UNION ALL so that no
duplicate rows are eliminated.

 SELECT EMPNO

 FROM EMPLOYEE

WHERE WORKDEPT LIKE 'E%'

 UNION ALL

 SELECT EMPNO

 FROM EMP_ACT

WHERE PROJNO IN('MA2100', 'MA2110', 'MA2112')

Example 5: Make the same query as in Example 3, only include an additional two
employees currently not in any table and tag these rows as "new".

SELECT EMPNO, 'emp'

 FROM EMPLOYEE

 WHEREWORKDEPTLIKE 'E%'

 UNION

SELECT EMPNO, 'emp_act'

 FROM EMP_ACT

WHERE PROJNO IN('MA2100', 'MA2110', 'MA2112')

 UNION

VALUES ('NEWAAA', 'new'), ('NEWBBB', 'new')

Example 6: This example of EXCEPT produces all rows that are in T1 but not in T2.

(SELECT * FROM T1)

 EXCEPT ALL

(SELECT * FROM T2)

If no NULL values are involved, this example returns the same results as

SELECT ALL *

 FROM T1

WHERE NOT EXISTS (SELECT * FROM T2

WHERE T1.C1 = T2.C1 AND T1.C2 = T2.C2 AND...)

322 SQL Reference

fullselect

Example 7: This example of INTERSECT produces all rows that are in both tables T1
and T2, removing duplicates.

(SELECT * FROM T1)

 INTERSECT

(SELECT * FROM T2)

If no NULL values are involved, this example returns the same result as

SELECT DISTINCT * FROM T1

WHERE EXISTS (SELECT * FROM T2

WHERE T1.C1 = T2.C1 AND T1.C2 = T2.C2 AND...)

 where C1, C2, and so on represent the columns of T1 and T2.

 Chapter 5. Queries 323

select-statement

 select-statement

55─ ──┬ ┬─────────────────────────────────── ─fullselect─────────────────────5
 │ │┌ ┐─,───────────────────────
 └ ┘ ─WITH─ ───6 ┴─common-table-expression─

5─ ──┬ ┬─────────────────────────────────────── ──┬ ┬───────────────────── ───5%
 ├ ┤ ─order-by-clause─ ──┬ ┬────────────────── └ ┘ ─optimize-for-clause─
 │ │└ ┘─read-only-clause─
 ├ ┤─update-clause─────────────────────────
 └ ┘─read-only-clause──────────────────────

The select-statement is the form of a query that can be directly specified in a
DECLARE CURSOR statement, or prepared and then referenced in a DECLARE
CURSOR statement. It can also be issued through the use of dynamic SQL statements
using the command line processor (or similar tools), causing a result table to be dis-
played on the user's screen. In either case, the table specified by a select-statement is
the result of the fullselect.

324 SQL Reference

common-table-expression

 common-table-expression

5──table-name─ ──┬ ┬─────────────────────────── ─AS──(──fullselect──)────────5
 │ │┌ ┐─,─────────────
 └ ┘ ─(─ ───6 ┴┬ ┬───────────── ─)───(1)

 └ ┘ ─column-name─

Note:
1 If a common table expression is recursive, or if the fullselect results in duplicate

column names, column names must be specified.

A common table expression permits defining a result table with a table-name that can
be specified as a table name in any FROM clause of the fullselect that follows. Multiple
common table expressions can be specified following the single WITH keyword. Each
common table expression specified can also be referenced by name in the FROM
clause of subsequent common table expressions.

If a list of columns is specified, it must consist of as many names as there are columns
in the result table of the fullselect. Each column-name must be unique and unqualified.
If these column names are not specified, the names are derived from the select list of
the fullselect used to define the common table expression.

The table-name of a common table expression must be different from any other
common table expression table-name in the same statement (SQLSTATE 42726). If the
common table expression is specified in an INSERT statement the table-name cannot
be the same as the table or view name that is the object of the insert (SQLSTATE
42726). A common table expression table-name can be specified as a table name in
any FROM clause throughout the fullselect. A table-name of a common table
expression overrides any existing table, view or alias (in the catalog) with the same
qualified name.

If more than one common table expression is defined in the same statement, cyclic
references between the common table expressions are not permitted (SQLSTATE
42835). A cyclic reference occurs when two common table expressions dt1 and dt2 are
created such that dt1 refers to dt2 and dt2 refers to dt1.

The common table expression is also optional prior to the fullselect in the CREATE
VIEW and INSERT statements.

A common table expression can be used:

¹ In place of a view to avoid creating the view (when general use of the view is not
required and positioned updates or deletes are not used)

¹ To enable grouping by a column that is derived from a scalar subselect or function
that is not deterministic or has external action

¹ When the desired result table is based on host variables

¹ When the same result table needs to be shared in a fullselect

 Chapter 5. Queries 325

common-table-expression

¹ When the result needs to be derived using recursion.

If a fullselect of a common table expression contains a reference to itself in a FROM
clause, the common table expression is a recursive common table expression. Queries
using recursion are useful in supporting applications such as bill of materials (BOM),
reservation systems, and network planning. For an example, see Appendix L,
“Recursion Example: Bill of Materials” on page 847.

The following must be true of a recursive common table expression:

¹ Each fullselect that is part of the recursion cycle must start with SELECT or
SELECT ALL. Use of SELECT DISTINCT is not allowed (SQLSTATE 42925). Fur-
thermore, the unions must use UNION ALL (SQLSTATE 42925).

¹ The column names must be specified following the table-name of the common
table expression (SQLSTATE 42908).

¹ The first fullselect of the first union (the initialization fullselect) must not include a
reference to any column of the common table expression in any FROM clause
(SQLSTATE 42836).

¹ If a column name of the common table expression is referred to in the iterative
fullselect, the data type, length, and code page for the column are determined
based on the initialization fullselect. The corresponding column in the iterative
fullselect must have the same data type and length as the data type and length
determined based on the initialization fullselect and the code page must match
(SQLSTATE 42825). However, for character string types, the length of the two data
types may differ. In this case, the column in the iterative fullselect must have a
length that would always be assignable to the length determined from the initializa-
tion fullselect.

¹ Each fullselect that is part of the recursion cycle must not include any column func-
tions, group-by-clauses, or having-clauses (SQLSTATE 42836).

The FROM clauses of these fullselects can include at most one reference to a
common table expression that is part of a recursion cycle (SQLSTATE 42836).

¹ Subqueries (scalar or quantified) must not be part of any recursion cycles
(SQLSTATE 42836).

When developing recursive common table expressions, remember that an infinite
recursion cycle (loop) can be created. Check that recursion cycles will terminate. This is
especially important if the data involved is cyclic. A recursive common table expression
is expected to include a predicate that will prevent an infinite loop. The recursive
common table expression is expected to include:

¹ In the iterative fullselect, an integer column incremented by a constant.

¹ A predicate in the where clause of the iterative fullselect in the form "counter_col <
constant" or "counter _col < :hostvar".

A warning is issued if this syntax is not found in the recursive common table expression
(SQLSTATE 01605).

326 SQL Reference

order-by-clause

 order-by-clause

 ┌ ┐─,──────────────────
 │ │┌ ┐─ASC──
5─ ─ORDER BY─ ───6 ┴─sort-key─ ──┼ ┼────── ──────────────────────────────────────5
 └ ┘─DESC─

sort-key:
├─ ──┬ ┬─simple-column-name── ───┤
 ├ ┤─simple-integer──────
 └ ┘─sort-key-expression─

The ORDER BY clause specifies an ordering of the rows of the result table. If a single
sort specification (one sort-key with associated direction) is identified, the rows are
ordered by the values of that sort specification. If more than one sort specification is
identified, the rows are ordered by the values of the first identified sort specification,
then by the values of the second identified sort specification, and so on. The length
attribute of each sort-key must not be more than 254 characters for a character column
or 127 characters for a graphic column (SQLSTATE 42907).

A named column in the select list may be identified by a sort-key that is a simple-
integer or a simple-column-name. An unnamed column in the select list must be identi-
fied by an simple-integer or, in some cases, by a sort-key-expression that matches the
expression in the select list (see details of sort-key-expression). A column is unnamed if
the AS clause is not specified and it is derived from a constant, an expression with
operators, or a function.35

Ordering is performed in accordance with the comparison rules described in Chapter 3.
The null value is higher than all other values. If the ORDER BY clause does not com-
pletely order the rows, rows with duplicate values of all identified columns are displayed
in an arbitrary order.

simple-column-name
Usually identifies a column of the result table. In this case, simple-column-name
must be the column name of a named column in the select list.

The simple-column-name may also identify a column name of a table, view or
nested table identified in the FROM clause if the query is a subselect. An error
occurs if the subselect:

¹ specifies DISTINCT in the select-clause (SQLSTATE 42822)
¹ produces a grouped result and the simple-column-name is not a grouping-

expression (SQLSTATE 42803).

35 The rules for determining the name of result columns for a fullselect that involves set operators (UNION, INTERSECT, or EXCEPT)
can be found in “fullselect” on page 319.

 Chapter 5. Queries 327

order-by-clause

Determining which column is used for ordering the result is described under
"Column name in sort keys" (see “Notes” on page 328).

simple-integer
Must be greater than 0 and not greater than the number of columns in the result
table (SQLSTATE 42805). The integer n identifies the nth column of the result
table.

sort-key-expression
An expression that is not simply a column name or an unsigned integer constant.
The query to which ordering is applied must be a subselect to use this form of
sort-key. The sort-key-expression cannot include a correlated scalar-fullselect
(SQLSTATE 42703) or a function with an external action (SQLSTATE 42845).

Any column-name within a sort-key-expression must conform to the rules described
under "Column names in sort keys" (see “Notes”).

There are a number of special cases that further restrict the expressions that can
be specified.

¹ DISTINCT is specified in the SELECT clause of the subselect (SQLSTATE
42822).

The sort-key-expression must match exactly with an expression in the select
list of the subselect (scalar-fullselects are never matched).

¹ The subselect is grouped (SQLSTATE 42803).

The sort-key-expression can:

– be an expression in the select list of the subselect,
– include a grouping-expression from the GROUP BY clause of the subse-

lect
– include a column function, constant or host variable.

ASC
Uses the values of the column in ascending order. This is the default.

DESC
Uses the values of the column in descending order.

 Notes
¹ Column names in sort keys :

– The column name is qualified.

The query must be a subselect (SQLSTATE 42877). The column name must
unambiguously identify a column of some table, view or nested table in the
FROM clause of the subselect (SQLSTATE 42702). The value of the column is
used to compute the value of the sort specification.

– The column name is unqualified.

- The query is a subselect.

328 SQL Reference

order-by-clause

If the column name is identical to the name of more than one column of
the result table, the column name must unambiguously identify a column
of some table, view or nested table in the FROM clause of the ordering
subselect (SQLSTATE 42702). If the column name is identical to one
column, that column is used to compute the value of the sort specification.
If the column name is not identical to a column of the result table, then it
must unambiguously identify a column of some table, view or nested table
in the FROM clause of the fullselect in the select-statement (SQLSTATE
42702).

- The query is not a subselect (it includes set operations such as union,
except or intersect).

The column name must not be identical to the name of more than one
column of the result table (SQLSTATE 42702). The column name must be
identical to exactly one column of the result table (SQLSTATE 42707) and
this column is used to compute the value of the sort specification.

 See “Column Name Qualifiers to Avoid Ambiguity” on page 91 for more infor-
mation on qualified column names.

¹ Limits : The use of a sort-key-expression or a simple-column-name where the
column is not in the select list may result in the addition of the column or
expression to the temporary table used for sorting. This may result in reaching the
limit of the number of columns in a table or the limit on the size of a row in a table.
Exceeding these limits will result in an error if a temporary table is required to
perform the sorting operation.

 Chapter 5. Queries 329

update-clause

 update-clause

5─ ─FOR UPDATE─ ──┬ ┬───────────────────── ───────────────────────────────────5
 │ │┌ ┐─,───────────
 └ ┘ ─OF─ ───6 ┴─column-name─

The FOR UPDATE clause identifies the columns that can be updated in a subsequent
Positioned UPDATE statement. Each column-name must be unqualified and must iden-
tify a column of the table or view identified in the first FROM clause of the fullselect. If
the FOR UPDATE clause is specified without column names, all updatable columns of
the table or view identified in the first FROM clause of the fullselect are included.

The FOR UPDATE clause cannot be used if one of the following is true:

¹ The cursor associated with the select-statement is not deletable (see “Notes” on
page 527).

¹ One of the selected columns is a non-updatable column of a catalog table and the
FOR UPDATE clause has not been used to exclude that column.

330 SQL Reference

read-only-clause

 read-only-clause

5─ ─FOR─ ──┬ ┬─READ── ─ONLY───5
 └ ┘─FETCH─

The FOR READ ONLY clause indicates that the result table is read-only and therefore
the cursor cannot be referred to in Positioned UPDATE and DELETE statements. FOR
FETCH ONLY has the same meaning.

Some result tables are read-only by nature. (For example, a table based on a read-only
view.) FOR READ ONLY can still be specified for such tables, but the specification has
no effect.

For result tables in which updates and deletes are allowed, specifying FOR READ
ONLY (or FOR FETCH ONLY) can possibly improve the performance of FETCH oper-
ations by allowing the database manager to do blocking and avoid exclusive locks. For
example, in programs that contain dynamic SQL statements without the FOR READ
ONLY or ORDER BY clause, the database manager might open cursors as if the FOR
UPDATE clause was specified. It is recommended, therefore, that the FOR READ
ONLY clause be used to improve performance except in cases where queries will be
used in a Positioned UPDATE or DELETE statements.

A read-only result table must not be referred to in a Positioned UPDATE or DELETE
statement, whether it is read-only by nature or specified as FOR READ ONLY (FOR
FETCH ONLY). See “DECLARE CURSOR” on page 525 for more information about
read-only and updatable cursors.

 Chapter 5. Queries 331

optimize-for-clause

 optimize-for-clause

5─ ─OPTIMIZE FOR──integer─ ──┬ ┬─ROWS─ ───────────────────────────────────────5
 └ ┘─ROW──

The OPTIMIZE FOR clause requests special processing of the select statement. If the
clause is omitted, it is assumed that all rows of the result table will be retrieved; if it is
specified, it is assumed that the number of rows retrieved will probably not exceed n
where n is the value for integer. The value of n must be a positive integer. Use of the
OPTIMIZE FOR clause influences query optimization based on the assumption that n
rows will be retrieved. In addition, for cursors that are blocked, this clause will influence
the number of rows that will be returned in each block (ie. no more than n rows will be
returned in each block).

This clause does not limit the number of rows that can be fetched or affect the result in
any other way than performance. Using OPTIMIZE FOR n ROWS can improve the per-
formance if no more than n rows are retrieved, but may degrade performance if more
than n rows are retrieved.

If the value of n multiplied by the size of the row, exceeds the size of the communi-
cation buffer36 the OPTIMIZE FOR clause will have no impact on the data buffers.

36 The size of the communication buffer is defined by the RQRIOBLK or the ASLHEAPSZ configuration parameter. See the Adminis-
tration Guide for details.

332 SQL Reference

Examples of a select-statement
Example 1: Select all columns and rows from the EMPLOYEE table.

SELECT * FROM EMPLOYEE

Example 2: Select the project name (PROJNAME), start date (PRSTDATE), and end
date (PRENDATE) from the PROJECT table. Order the result table by the end date
with the most recent dates appearing first.

SELECT PROJNAME, PRSTDATE, PRENDATE

 FROM PROJECT

 ORDER BY PRENDATE DESC

Example 3: Select the department number (WORKDEPT) and average departmental
salary (SALARY) for all departments in the EMPLOYEE table. Arrange the result table
in ascending order by average departmental salary.

SELECT WORKDEPT, AVG(SALARY)

 FROM EMPLOYEE

GROUP BY WORKDEPT

 ORDER BY 2

Example 4: Declare a cursor named UP_CUR to be used in a C program to update
the start date (PRSTDATE) and the end date (PRENDATE) columns in the PROJECT
table. The program must receive both of these values together with the project number
(PROJNO) value for each row.

EXEC SQL DECLARE UP_CUR CURSOR FOR

SELECT PROJNO, PRSTDATE, PRENDATE

 FROM PROJECT

FOR UPDATE OF PRSTDATE, PRENDATE;

Example 5: This example names the expression SAL+BONUS+COMM as
TOTAL_PAY

SELECT SALARY+BONUS+COMM AS TOTAL_PAY

 FROM EMPLOYEE

ORDER BY TOTAL_PAY

Example 6: Determine the employee number and salary of sales representatives along
with the average salary and head count of their departments. Also, list the average
salary of the department with the highest average salary.

Using a common table expression for this case saves the overhead of creating the
DINFO view as a regular view. During statement preparation, accessing the catalog for
the view is avoided and, because of the context of the rest of the fullselect, only the
rows for the department of the sales representatives need to be considered by the
view.

 Chapter 5. Queries 333

 WITH

DINFO (DEPTNO, AVGSALARY, EMPCOUNT) AS

(SELECT OTHERS.WORKDEPT, AVG(OTHERS.SALARY), COUNT(*)

FROM EMPLOYEE OTHERS

GROUP BY OTHERS.WORKDEPT

),

 DINFOMAX AS

(SELECT MAX(AVGSALARY) AS AVGMAX FROM DINFO)

 SELECT THIS_EMP.EMPNO, THIS_EMP.SALARY,

DINFO.AVGSALARY, DINFO.EMPCOUNT, DINFOMAX.AVGMAX

FROM EMPLOYEE THIS_EMP, DINFO, DINFOMAX

WHERE THIS_EMP.JOB = 'SALESREP'

AND THIS_EMP.WORKDEPT = DINFO.DEPTNO

334 SQL Reference

 Chapter 6. Statements

This chapter contains syntax diagrams, semantic descriptions, rules, and examples of
the use of the SQL statements.

Table 15 (Page 1 of 3). SQL Statements

SQL Statement Function Page

ALTER BUFFERPOOL Changes the definition of a buffer pool. 343

ALTER NODEGROUP Changes the definition of a nodegroup. 345

ALTER TABLE Changes the definition of a table. 348

ALTER TABLESPACE Changes the definition of a table space. 362

BEGIN DECLARE SECTION Marks the beginning of a host variable declaration section. 365

CALL Calls a stored procedure. 367

CLOSE Closes a cursor. 374

COMMENT ON Replaces or adds a comment to the description of an object. 376

COMMIT Terminates a unit of work and commits the database changes
made by that unit of work.

383

Compound SQL Combines one or more other SQL statements into an executable
block.

385

CONNECT (Type 1) Connects to an application server according to the rules for
remote unit of work.

389

CONNECT (Type 2) Connects to an application server according to the rules for
application-directed distributed unit of work.

396

CREATE ALIAS Defines an alias for a table, view, or another alias. 403

CREATE BUFFERPOOL Creates a new buffer pool. 406

CREATE DISTINCT TYPE Defines a distinct data type. 409

CREATE EVENT MONITOR Specifies events in the database to monitor. 415

CREATE FUNCTION Registers a user-defined function. 424

CREATE INDEX Defines an index on a table. 461

CREATE NODEGROUP Defines a nodegroup. 464

CREATE PROCEDURE Registers a stored procedure. 467

CREATE SCHEMA Defines a schema. 475

CREATE TABLE Defines a table. 478

CREATE TABLESPACE Defines a table space. 501

CREATE TRIGGER Defines a trigger. 508

CREATE VIEW Defines a view of one or more tables or views. 517

DECLARE CURSOR Defines an SQL cursor. 525

DELETE Deletes one or more rows from a table. 529

DESCRIBE Describes the result columns of a prepared SELECT statement. 533

 Copyright IBM Corp. 1993, 1997 335

Table 15 (Page 2 of 3). SQL Statements

SQL Statement Function Page

DISCONNECT Terminates one or more connections when there is no active unit
of work.

537

DROP Deletes objects in the database. 540

END DECLARE SECTION Marks the end of a host variable declaration section. 552

EXECUTE Executes a prepared SQL statement. 554

EXECUTE IMMEDIATE Prepares and executes an SQL statement. 559

EXPLAIN Captures information about the chosen access plan. 561

FETCH Assigns values of a row to host variables. 565

FREE LOCATOR Removes the association between a locator variable and its
value.

568

GRANT (Database Authorities) Grants authorities on the entire database. 569

GRANT (Index Privileges) Grants the CONTROL privilege on indexes in the database. 572

GRANT (Package Privileges) Grants privileges on packages in the database. 574

GRANT (Schema Privileges) Grants privileges on a schema. 577

GRANT (Table or View Privi-
leges)

Grants privileges on tables and views. 580

INCLUDE Inserts code or declarations into a source program. 587

INSERT Inserts one or more rows into a table. 589

LOCK TABLE Either prevents concurrent processes from changing a table or
prevents concurrent processes from using a table.

594

OPEN Prepares a cursor that will be used to retrieve values when the
FETCH statement is issued.

596

PREPARE Prepares an SQL statement (with optional parameters) for exe-
cution.

601

RELEASE Places one or more connections in the release-pending state. 609

RENAME TABLE Renames an existing table. 611

REVOKE (Database Authorities) Revokes authorities from the entire database. 613

REVOKE (Index Privileges) Revokes the CONTROL privilege on given indexes. 616

REVOKE (Package Privileges) Revokes privileges from given packages in the database. 618

REVOKE (Schema Privileges) Revokes privileges on a schema. 621

REVOKE (Table or View Privi-
leges)

Revokes privileges from given tables or views. 623

ROLLBACK Terminates a unit of work and backs out the database changes
made by that unit of work.

628

SELECT INTO Specifies a result table of no more than one row and assigns the
values to host variables.

631

SET CONNECTION Changes the state of a connection from dormant to current,
making the specified location the current server.

633

336 SQL Reference

Table 15 (Page 3 of 3). SQL Statements

SQL Statement Function Page

SET CONSTRAINTS Sets the check pending state and checks data for constraint vio-
lations.

635

SET CURRENT DEGREE Changes the value of the CURRENT DEGREE special register. 641

SET CURRENT EXPLAIN
MODE

Changes the value of the CURRENT EXPLAIN MODE special
register.

643

SET CURRENT EXPLAIN
SNAPSHOT

Changes the value of the CURRENT EXPLAIN SNAPSHOT
special register.

645

SET CURRENT FUNCTION
PATH

Changes the value of the CURRENT FUNCTION PATH special
register.

647

SET CURRENT PACKAGESET Sets the schema name for package selection. 649

SET CURRENT QUERY OPTI-
MIZATION

Changes the value of the CURRENT QUERY OPTIMIZATION
special register.

651

SET EVENT MONITOR STATE Activates or deactivates an event monitor. 654

SET transition-variable Assigns values to NEW transition variables. 656

SIGNAL SQLSTATE Signals an error. 659

UPDATE Updates the values of one or more columns in one or more rows
of a table.

661

VALUES INTO Specifies a result table of no more than one row and assigns the
values to host variables.

669

WHENEVER Defines actions to be taken on the basis of SQL return codes. 671

How SQL Statements Are Invoked
The SQL statements described in this chapter are classified as executable or nonexe-
cutable. The Invocation section in the description of each statement indicates whether
or not the statement is executable.

An executable statement can be invoked in three ways:

¹ Embedded in an application program
¹ Dynamically prepared and executed

 ¹ Issued interactively.

Note: Statements embedded in REXX are prepared and executed dynamically.

Depending on the statement, some or all of these methods can be used. The Invoca-
tion section in the description of each statement tells which methods can be used.

A nonexecutable statement can only be embedded in an application program.

In addition to the statements described in this chapter, there is one more SQL state-
ment construct: the select-statement. (See “select-statement” on page 324.) It is not
included in this chapter because it is used differently from other statements.

 Chapter 6. Statements 337

A select-statement can be invoked in three ways:

¹ Included in DECLARE CURSOR and implicitly executed by OPEN, FETCH and
CLOSE

¹ Dynamically prepared, referenced in DECLARE CURSOR, and implicitly executed
by OPEN, FETCH and CLOSE

 ¹ Issued interactively.

The first two methods are called, respectively, the static and the dynamic invocation of
select-statement.

The different methods of invoking an SQL statement are discussed below in more
detail. For each method, the discussion includes the mechanism of execution, inter-
action with host variables, and testing whether or not the execution was successful.

Embedding a Statement in an Application Program
SQL statements can be included in a source program that will be submitted to the pre-
compiler. Such statements are said to be embedded in the program. An embedded
statement can be placed anywhere in the program where a host language statement is
allowed. Each embedded statement must be preceded by the keywords EXEC and
SQL.

 Executable statements
An executable statement embedded in an application program is executed every time a
statement of the host language would be executed if specified in the same place. Thus,
a statement within a loop is executed every time the loop is executed, and a statement
within a conditional construct is executed only when the condition is satisfied.

An embedded statement can contain references to host variables. A host variable refer-
enced in this way can be used in two ways:

¹ As input (the current value of the host variable is used in the execution of the
statement)

¹ As output (the variable is assigned a new value as a result of executing the state-
ment).

In particular, all references to host variables in expressions and predicates are effec-
tively replaced by current values of the variables; that is, the variables are used as
input. The treatment of other references is described individually for each statement.

All executable statements should be followed by a test of an SQL return code. Alterna-
tively, the WHENEVER statement (which is itself nonexecutable) can be used to
change the flow of control immediately after the execution of an embedded statement.

All objects referenced in DML statements must exist when the statements are bound to
a DB2 Universal Database .

338 SQL Reference

 Nonexecutable statements
An embedded nonexecutable statement is processed only by the precompiler. The pre-
compiler reports any errors encountered in the statement. The statement is never proc-
essed during program execution. Therefore, such statements should not be followed by
a test of an SQL return code.

Dynamic Preparation and Execution
An application program can dynamically build an SQL statement in the form of a char-
acter string placed in a host variable. In general, the statement is built from some data
available to the program (for example, input from a workstation). The statement (other
than a select-statement) so constructed can be prepared for execution by means of the
(embedded) statement PREPARE and executed by means of the (embedded) state-
ment EXECUTE. Alternatively, the (embedded) statement EXECUTE IMMEDIATE can
be used to prepare and execute a statement in one step.

A statement that is going to be dynamically prepared must not contain references to
host variables. It can instead contain parameter markers. (See “PREPARE” on
page 601 for rules concerning the parameter markers.) When the prepared statement
is executed, the parameter markers are effectively replaced by current values of the
host variables specified in the EXECUTE statement. (See “EXECUTE” on page 554 for
rules concerning this replacement.) Once prepared, a statement can be executed
several times with different values of host variables. Parameter markers are not allowed
in EXECUTE IMMEDIATE.

The successful or unsuccessful execution of the statement is indicated by the setting of
an SQL return code in the SQLCA after the EXECUTE (or EXECUTE IMMEDIATE)
statement. The SQL return code should be checked as described above. See “SQL
Return Codes” on page 341 for more information.

Static Invocation of a select-statement
A select-statement can be included as a part of the (nonexecutable) statement
DECLARE CURSOR. Such a statement is executed every time the cursor is opened by
means of the (embedded) statement OPEN. After the cursor is open, the result table
can be retrieved one row at a time by successive executions of the FETCH statement.

Used in this way, the select-statement can contain references to host variables. These
references are effectively replaced by the values that the variables have at the moment
of executing OPEN.

Dynamic Invocation of a select-statement
An application program can dynamically build a select-statement in the form of a char-
acter string placed in a host variable. In general, the statement is built from some data
available to the program (for example, a query obtained from a workstation). The state-
ment so constructed can be prepared for execution by means of the (embedded) state-
ment PREPARE, and referenced by a (nonexecutable) statement DECLARE CURSOR.
The statement is then executed every time the cursor is opened by means of the
(embedded) statement OPEN. After the cursor is open, the result table can be retrieved
one row at a time by successive executions of the FETCH statement.

 Chapter 6. Statements 339

Used in this way, the select-statement must not contain references to host variables. It
can contain parameter markers instead. (See “PREPARE” on page 601 for rules con-
cerning the parameter markers.) The parameter markers are effectively replaced by the
values of the host variables specified in the OPEN statement. (See “OPEN” on
page 596 for rules concerning this replacement.)

 Interactive Invocation
A capability for entering SQL statements from a workstation is part of the architecture of
the database manager. A statement entered in this way is said to be issued interac-
tively.

A statement issued interactively must be an executable statement that does not contain
parameter markers or references to host variables, because these make sense only in
the context of an application program.

340 SQL Reference

SQL Return Codes
An application program containing executable SQL statements can use either the
SQLCODE or SQLSTATE values to handle return codes from SQL statements. There
are two ways in which an application can get access to these values.

¹ Include a structure named SQLCA. An SQLCA is provided automatically in REXX.
In other languages, an SQLCA can be obtained by using the INCLUDE SQLCA
statement.

The SQLCA includes an integer variable named SQLCODE and and a character
string variable named SQLSTATE.

¹ When LANGLEVEL SQL92E is specified as a precompile option, a variable
SQLCODE or SQLSTATE may be declared in the SQL declare section of the
program. If neither of these variables is declared in the SQL declare section, it is
assumed that a variable SQLCODE is declared elsewhere in the program. When
using LANGLEVEL SQL92E, the program should not have an INCLUDE SQLCA
statement.

Occasionally, warning conditions are mentioned in addition to error conditions with
respect to return codes. A warning SQLCODE is a positive value and a warning
SQLSTATE has the first two characters set to '01'.

 SQLCODE
An SQLCODE is set by the database manager after each SQL statement is executed.
All database managers conform to the ISO/ANSI SQL standard, as follows:

¹ If SQLCODE = 0 and SQLWARN0 is blank, execution was successful.
¹ If SQLCODE = 100, “no data” was found. For example, a FETCH statement

returned no data, because the cursor was positioned after the last row of the result
table.

¹ If SQLCODE > 0 and not = 100, execution was successful with a warning.
¹ If SQLCODE = 0 and SQLWARN0 = 'W', execution was successful with a

warning.
¹ If SQLCODE < 0, execution was not successful.

The meaning of SQLCODE values other than 0 and 100 is product-specific. See the
Message Reference for the product-specific meanings.

 SQLSTATE
SQLSTATE is also set by the database manager after execution of each SQL state-
ment. Thus, application programs can check the execution of SQL statements by
testing SQLSTATE instead of SQLCODE.

SQLSTATE provides application programs with common codes for common error condi-
tions. Furthermore, SQLSTATE is designed so that application programs can test for
specific errors or classes of errors. The coding scheme is the same for all IBM data-
base managers and is based on the ISO/ANSI SQL92 standard. For a complete list of
the possible values of SQLSTATE, see the Message Reference.

 Chapter 6. Statements 341

 SQL Comments
Static SQL statements can include host language or SQL comments. SQL comments
are introduced by two hyphens.

These rules apply to the use of SQL comments:

¹ The two hyphens must be on the same line, not separated by a space.

¹ Comments can be started wherever a space is valid (except within a delimiter
token or between 'EXEC' and 'SQL').

¹ Comments are terminated by the end of the line.

¹ Comments are not allowed within statements that are dynamically prepared (using
PREPARE or EXECUTE IMMEDIATE).

¹ In COBOL, the hyphens must be preceded by a space.

Example: This example shows how to include comments in an SQL statement within a
C program:

 EXEC SQL

CREATE VIEW PRJ_MAXPER -- projects with most support personnel

AS SELECT PROJNO, PROJNAME -- number and name of project

 FROM PROJECT

WHEREDEPTNO = 'E21' -- systems support dept code

AND PRSTAFF > 1;

342 SQL Reference

ALTER BUFFERPOOL

 ALTER BUFFERPOOL
The ALTER BUFFERPOOL statement is used to do the following:

¹ modify the size of the buffer pool on all partitions (or nodes) or on a single partition
¹ turn on or off the use of extended storage
¹ add this buffer pool definition to a new nodegroup.

 Invocation
This statement can be embedded in an application program or issued interactively. It is
an executable statement that can be dynamically prepared.

 Authorization
The authorization ID of the statement must have SYSCTRL or SYSADM authority.

 Syntax

55──ALTER──BUFFERPOOL──bufferpool-name──5

5─ ──┬ ┬ ──┬ ┬─────────────────── ─SIZE──number-of-pages─ ─────────────────────────────────────5%
 │ │└ ┘ ─NODE──node-number─

├ ┤──┬ ┬─NOT EXTENDED STORAGE─ ────────────────────
 │ │└ ┘─EXTENDED STORAGE─────
 └ ┘─ADD NODEGROUP──nodegroup-name────────────────

 Description
bufferpool-name

Names the buffer pool. This is a one-part name. It is an SQL identifier (either ordi-
nary or delimited). It must be a buffer pool described in the catalog.

NODE node-number
Specifies the partition on which size of the buffer pool is modified. The partition
must be in one of the nodegroups for the buffer pool (SQLSTATE 42729) . If this
clause is not specified, then the size of the buffer pool is modified on all partitions
on which the buffer pool exists that used the default size for the buffer pool (did not
have a size specified in the except-on-nodes-clause of the CREATE buffer pool
statement).

SIZE number-of-pages
The size of the buffer pool specified as the number of pages.37

EXTENDED STORAGE

37 The size can be specified with a value of (-1) which will indicate that the buffer pool size should be taken from the BUFFPAGE
database configuration parameter.

 Chapter 6. Statements 343

ALTER BUFFERPOOL

If the extended storage configuration is turned on 38 , pages that are being
migrated out of this buffer pool, will be cached in the extended storage.

NOT EXTENDED STORAGE
Even if the extended storage configuration is turned on, pages that are being
migrated out of this buffer pool, will NOT be cached in the extended storage.

ADD NODEGROUP nodegroup-name
Adds this nodegroup to the list of nodegroups to which the buffer pool definition is
applicable. Tables spaces in nodegroup-name may specify this buffer pool. The
nodegroup must currently exist in the database (SQLSTATE 42704).

 Notes
¹ Although the buffer pool definition is transactional and the changes to the buffer

pool definition will be reflected in the catalog tables on commit, no changes to the
actual buffer pool will take effect until the next time the database is started. The
current attributes of the buffer pool will exist until then, and there will not be any
impact to the buffer pool in the interim. Tables created in table spaces of new
nodegroups will use the default buffer pool.

¹ There should be enough real memory on the machine for the total of all the buffer
pools, as well as for the rest of the database manager and application require-
ments.

38 Extended storage configuration is turned on by setting the database configuration parameters NUM_ESTORE_SEGS and
ESTORE_SEG_SIZE to non-zero values. See Administration Guide for details.

344 SQL Reference

ALTER NODEGROUP

 ALTER NODEGROUP
The ALTER NODEGROUP statement is used to:

¹ add one or more partitions or nodes to a nodegroup
¹ drop one or more partitions from a nodegroup.

 Invocation
This statement can be embedded in an application program or issued interactively. It is
an executable statement that can be prepared dynamically.

 Authorization
The authorization ID of the statement must have SYSCTRL or SYSADM authority.

 Syntax

55──ALTER NODEGROUP──nodegroup-name───5

 ┌ ┐─,──
5─ ───6 ┴──┬ ┬─ADD─ ──┬ ┬─NODE── ─┤ nodes-clause ├─ ──┬ ┬──────────────────────────── ─────────────5%
 │ │└ ┘─NODES─ ├ ┤ ─LIKE NODE─ ─── ──node-number─
 │ │└ ┘─WITHOUT TABLESPACES────────
 └ ┘─DROP─ ──┬ ┬─NODE── ─┤ nodes-clause ├────────────────────────────────
 └ ┘─NODES─

nodes-clause:
 ┌ ┐─,──────────────────────────────────
├─ ─(─ ───6 ┴ ─node-number1─ ──┬ ┬────────────────── ─)───┤
 └ ┘ ─TO──node-number2─

 Description
nodegroup-name

Names the nodegroup. This is a one-part name. It is an SQL identifier (either ordi-
nary or delimited). It must be a nodegroup described in the catalog.
IBMCATGROUP and IBMTEMPGROUP cannot be specified (SQLSTATE 42832).

ADD NODE
Specifies the specific partition or partitions to add to the nodegroup. NODES is a
synonym for NODE. Any specified partition must not already be defined in the
nodegroup (SQLSTATE 42728).

DROP NODE
Specifies the specific partition or partitions to drop from the nodegroup. NODES is
a synonym for NODE. Any specified partition must already be defined in the
nodegroup (SQLSTATE 42729).

nodes-clause
Specifies the partition or partitions to be added or dropped.

 Chapter 6. Statements 345

ALTER NODEGROUP

node-number1
Specify a specific partition number.

TO node-number2
Specify a range of partition numbers. The value of node-number2 must be
greater than or equal to the value of node-number1 (SQLSTATE 428A9).

LIKE NODE node-number
Specifies that the containers for the existing table spaces in the nodegroup will be
the same as the containers on the specified node-number. The partition specified
must be a partition that existed in the nodegroup prior to this statement and is not
included in a DROP NODE clause of the same statement.

WITHOUT TABLESPACES
Specifies that the default table spaces are not created on the newly added partition
or partitions . The ALTER TABLESPACE using the FOR NODE clause must be
used to define containers for use with the table spaces that are defined on this
nodegroup. If this option is not specified, the default containers are specified on
newly added partitions for each table space defined on the nodegroup.

 Rules
¹ Each partition or node specified by number must be defined in the db2nodes.cfg

file (SQLSTATE 42729). See “Data Partitioning Across Multiple Partitions” on
page 39 for information about this file.

¹ Each node-number listed in the ON NODES clause must be for a unique partition
(SQLSTATE 42728).

¹ A valid partition number is between 0 and 999 inclusive (SQLSTATE 42729).

¹ A partition cannot appear in both the ADD and DROP clauses (SQLSTATE 42728)
.

¹ There must be at least one partition remaining in the nodegroup. The last partition
cannot be dropped from a nodegroup (SQLSTATE 428C0) .

¹ If neither the LIKE NODE clause nor the WITHOUT TABLESPACES clause is
specified when adding a partition , the default is to use the lowest partition number
of the existing partitions in the nodegroup (say it is 2) and proceed as if LIKE
NODE 2 had been specified. For an existing partition to be used as the default it
must have containers defined for all the table spaces in the nodegroup (column
IN_USE of SYSCAT.NODEGROUPDEF is not 'T').

 Notes
¹ When a partition or node is added to a nodegroup, a catalog entry is made for the

partition (see SYSCAT.NODEGROUPDEF). The partitioning map is changed imme-
diately to include the new partition along with an indicator (IN_USE) that the parti-
tion is in the partitioning map if either:

– no table spaces are defined in the nodegroup or
– no tables are defined in the table spaces defined in the nodegroup and the

WITHOUT TABLESPACES clause was not specified.

346 SQL Reference

ALTER NODEGROUP

The partitioning map is not changed and the indicator (IN_USE) is set to indicate
that the partition is not included in the partitioning map if either:

– tables exist in table spaces in the nodegroup or
– table spaces exist in the nodegroup and the WITHOUT TABLESPACES clause

was specified.

To change the partitioning map, the REDISTRIBUTE NODEGROUP command
must be used. This redistributes any data, changes the partitioning map, and
changes the indicator. Table space containers need to be added before attempting
to redistribute data if the WITHOUT TABLESPACES clause was specified.

¹ When a partition is dropped from a nodegroup, the catalog entry for the partition
(see SYSCAT.NODEGROUPDEF) is updated. If there are no tables defined in the
table spaces defined in the nodegroup, the partitioning map is changed imme-
diately to exclude the dropped partition and the entry for the partition in the
nodegroup is dropped. If tables exist, the partitioning map is not changed and the
indicator (IN_USE) is set to indicate that the partition is waiting to be dropped. The
REDISTRIBUTE NODEGROUP command must be used to redistribute the data
and drop the entry for the partition from the nodegroup.

 Example
Assume that you have a six- partition database that has the following partitions : 0, 1,
2, 5, 7, and 8. Two partitions are added to the system with partition numbers 3 and 6.

¹ Assume that you want to add both partitions or nodes 3 and 6 to a nodegroup
called MAXGROUP and have the table space containers like those on partition 2.
The statement is as follows:

 ALTER NODEGROUP MAXGROUP

 ADD NODES (3,6) LIKE NODE2

¹ Assume that you want to drop partition 1 and add partition 6 to nodegroup
MEDGROUP. You will define the table space containers separately for partition 6
using ALTER TABLESPACE. The statement is as follows:

ALTER NODEGROUP MEDGROUP

 ADD NODE(6) WITHOUT TABLESPACES

 DROP NODE(1)

 Chapter 6. Statements 347

ALTER TABLE

 ALTER TABLE
The ALTER TABLE statement modifies existing tables by:

¹ Adding one or more columns to a table
¹ Adding or dropping a primary key
¹ Adding or dropping one or more unique or referential constraints
¹ Adding or dropping one or more check constraint definitions
¹ Adding or dropping a partitioning key
¹ Changing the data capture option.

 Invocation
This statement can be embedded in an application program or issued through the use
of dynamic SQL statements. It is an executable statement that can be dynamically pre-
pared.

 Authorization
The privileges held by the authorization ID of the statement must include at least one of
the following:

¹ ALTER privilege on the table to be altered
¹ CONTROL privilege on the table to be altered
¹ ALTERIN privilege on the schema of the table
¹ SYSADM or DBADM authority.

To create or drop a foreign key, the privileges held by the authorization ID of the state-
ment must include one of the following on the parent table:

¹ REFERENCES privilege on the table
¹ REFERENCES privilege on each column of the specified parent key
¹ CONTROL privilege on the table
¹ SYSADM or DBADM authority.

To drop a primary key or unique constraint of table T, the privileges held by the authori-
zation ID of the statement must include at least one of the following on every table that
is a dependent of T:

¹ ALTER privilege on the table
¹ CONTROL privilege on the table
¹ ALTERIN privilege on the schema of the table
¹ SYSADM or DBADM authority.

 Syntax

348 SQL Reference

ALTER TABLE

 ┌ ┐──
 │ │┌ ┐─COLUMN─
55─ ─ALTER TABLE──table-name─ ───6 ┴──┬ ┬ ─ADD───(1) ──┬ ┬──┴ ┴──────── ─┤ column-definition ├─ ────────5

│ │├ ┤─┤ unique-constraint ├─────────────
│ │├ ┤─┤ referential-constraint ├────────
│ │├ ┤─┤ check-constraint ├──────────────
│ │└ ┘─┤ partitioning-key-definition ├───

 └ ┘ ─DROP─ ──┬ ┬─PRIMARY KEY────────────────────── ──
 ├ ┤ ──┬ ┬─FOREIGN KEY─ ─constraint-name─
 │ │├ ┤─UNIQUE──────
 │ │├ ┤─CHECK───────
 │ │└ ┘─CONSTRAINT──
 └ ┘─PARTITIONING KEY─────────────────

5─ ──┬ ┬─────────────────────────── ──5%
 └ ┘ ─DATA CAPTURE─ ──┬ ┬─NONE────
 └ ┘─CHANGES─

column-definition:
├──column-name──┤ data-type ├───(2) ──5

 ┌ ┐───
5─ ───6 ┴──┬ ┬─── ───────────┤
 ├ ┤ ─NOT NULL───(3) ───
 ├ ┤─┤ default-clause ├──
 ├ ┤─┤ lob-options-clause ├──
 └ ┘ ──┬ ┬─────────────────────────────── ──┬ ┬──┬ ┬─UNIQUE────── ─────────────
 └ ┘ ─CONSTRAINT───(4) ─constraint-name─ │ │└ ┘─PRIMARY KEY─
 ├ ┤─┤ references-clause ├────────
 └ ┘─CHECK──(──check-condition──)─

Notes:
1 For compatibility with Version 1, the ADD keyword is optional for:

¹ unnamed PRIMARY KEY constraints
¹ unnamed referential constraints
¹ referential constraints whose name follows the phrase FOREIGN KEY.

2 Refer to CREATE TABLE syntax for details.
3 A default-clause is required when NOT NULL is specified.
4 For compatibility with Version1, the CONSTRAINT keyword may be omitted in a column-definition

defining a references-clause.

 Chapter 6. Statements 349

ALTER TABLE

default clause:
 ┌ ┐─WITH─
├─ ──┴ ┴────── ─DEFAULT─ ──┬ ┬── ─────────────┤
 ├ ┤─constant───
 ├ ┤─datetime-special-register──────────────────────────
 ├ ┤─USER───
 ├ ┤─NULL───
 └ ┘ ─cast-function──(─ ──┬ ┬─constant────────────────── ─)─
 ├ ┤─datetime-special-register─
 └ ┘─USER──────────────────────

lob-options-clause:
 ┌ ┐─LOGGED───── ┌ ┐─NOT COMPACT─
├─ ──┼ ┼──────────── ─Á─ ──┼ ┼───────────── ──┤
 └ ┘─NOT LOGGED─ └ ┘─COMPACT─────

references-clause:
├──REFERENCES──table-name─ ──┬ ┬─────────────────────── ─┤ rule-clause ├─────────────────────┤
 │ │┌ ┐─,───────────
 └ ┘ ─(─ ───6 ┴─column-name─ ─)─

rule-clause:
┌ ┐─ON DELETE NO ACTION───── ┌ ┐─ON UPDATE NO ACTION─

├─ ──┼ ┼───────────────────────── ─Á─ ──┼ ┼───────────────────── ───────────────────────────────┤
 └ ┘─ON DELETE─ ──┬ ┬─RESTRICT─ └ ┘─ON UPDATE RESTRICT──
 ├ ┤─CASCADE──
 └ ┘─SET NULL─

unique-constraint:
 ┌ ┐─,───────────
├─ ──┬ ┬───────────────────────────── ──┬ ┬─UNIQUE────── ─(─ ───6 ┴─column-name─ ─)────────────────┤
 └ ┘ ─CONSTRAINT──constraint-name─ └ ┘─PRIMARY KEY─

referential-constraint:
 ┌ ┐─,───────────
├─ ──┬ ┬─────────────────────────────── ─FOREIGN KEY──(─ ───6 ┴─column-name─ ─)──────────────────5
 └ ┘─CONSTRAINT──constraint-name───(1)

5──┤ references-clause ├──┤

check-constraint:
├─ ──┬ ┬───────────────────────────── ─CHECK──(──check-condition──)──────────────────────────┤
 └ ┘ ─CONSTRAINT──constraint-name─

partitioning-key-definition:
 ┌ ┐─,─────────── ┌ ┐─USING HASHING─
├─ ─PARTITIONING KEY─ ─(─ ───6 ┴─column-name─ ─)─ ──┴ ┴─────────────── ────────────────────────────┤

Note:
1 For compatibility with Version1, constraint-name may be specified following FOREIGN KEY

(without the CONSTRAINT keyword).

350 SQL Reference

ALTER TABLE

 Description
table-name

Identifies the table to be changed. It must be a table described in the catalog and
must not be a view or a catalog table. If an unqualified name is specified, the
current authorization ID of the statement is used as the qualifier.

ADD
Adds a column, unique constraint, referential constraint, check constraint, or a
partitioning key to the table. If the table has existing rows, every value of the newly
added column is its default value. The new column is the 'last' column of the
table. That is, if initially there are n columns, the added column is column n+1. The
value of n cannot be greater than 499.

Adding the new column must not make the total byte count of all columns exceed
the maximum record size of 4005. See “Notes” on page 495 for more information.

column-definition
Defines the attributes of a column.

column-name
Is the name of the column to be added to the table. Existing column names in
the table cannot be used (SQLSTATE 42711).

data-type
Is one of the data types listed under “CREATE TABLE” on page 478.

NOT NULL
Prevents the column from containing null values. The default-clause must also
be specified (SQLSTATE 42601).

default-clause
Specifies a default value for the column.

WITH
An optional keyword.

DEFAULT
Provides a default value in the event a value is not supplied on INSERT
or is specified as DEFAULT on INSERT or UPDATE. If a specific default
value is not specified following the DEFAULT keyword, the default value
depends on the data type of the column as shown in Table 16.

If a column is defined using a distinct type, then the default value of the
column is the default value of the source data type cast to the distinct
type.

Table 16 (Page 1 of 2). Default Values (when no value specified)

Data Type Default Value

Numeric 0

Fixed-length character string Blanks

Varying-length character string A string of length 0

 Chapter 6. Statements 351

ALTER TABLE

Omission of DEFAULT from a column-definition results in the use of the
null value as the default for the column.

Specific types of values that can be specified with the DEFAULT keyword
are as follows.

constant
Specifies the constant as the default value for the column. The speci-
fied constant must:

¹ represent a value that could be assigned to the column in
accordance with the rules of assignment as described in Chapter
3

¹ not be a floating-point constant unless the column is defined with
a floating-point data type

¹ not have non-zero digits beyond the scale of the column data
type if the constant is a decimal constant (for example, 1.234
cannot be the default for a DECIMAL(5,2) column)

¹ be expressed with no more than 254 characters including the
quote characters, any introducer character such as the X for a
hexadecimal constant, and characters from the fully qualified
function name and parentheses when the constant is the argu-
ment of a cast-function.

datetime-special-register
Specifies the value of the datetime special register (CURRENT DATE,
CURRENT TIME, or CURRENT TIMESTAMP) at the time of INSERT
or UPDATE as the default for the column. The data type of the
column must be the data type that corresponds to the special register
specified (for example, data type must be DATE when CURRENT
DATE is specified). For existing rows, the value is the current date,

Table 16 (Page 2 of 2). Default Values (when no value specified)

Data Type Default Value

Fixed-length graphic string Double-byte blanks

Varying-length graphic string A string of length 0

Date For existing rows, a date corresponding to
January 1, 0001. For added rows, the
current date.

Time For existing rows, a time corresponding to 0
hours, 0 minutes, and 0 seconds. For added
rows, the current time.

Timestamp For existing rows, a date corresponding to
January 1, 0001, and a time corresponding
to 0 hours, 0 minutes, 0 seconds and 0
microseconds. For added rows, the current
timestamp.

Binary string (blob) A string of length 0

352 SQL Reference

ALTER TABLE

current time or current timestamp when the ALTER TABLE statement
is processed.

USER
Specifies the value of the USER special register at the time of
INSERT or UPDATE as the default for the column. If USER is speci-
fied, the data type of the column must be a character string with a
length not less than the length attribute of USER. For existing rows,
the value is the authorization ID of the ALTER TABLE statement.

NULL
Specifies NULL as the default for the column. If NOT NULL was
specified, DEFAULT NULL must not be specified within the same
column definition.

cast-function
This form of a default value can only be used with columns defined
as a distinct type, BLOB or datetime (DATE, TIME or TIMESTAMP)
data type. For distinct type, with the exception of distinct types based
on BLOB or datetime types, the name of the function must match the
name of the distinct type for the column. If qualified with a schema
name, it must be the same as the schema name for the distinct type.
If not qualified, the schema name from function resolution must be the
same as the schema name for the distinct type. For a distinct type
based on a datetime type, where the default value is a constant, a
function must be used and the name of the function must match the
name of the source type of the distinct type with an implicit or explicit
schema name of SYSIBM. For other datetime columns, the corre-
sponding datetime function may also be used. For a BLOB or a dis-
tinct type based on on BLOB, a function must be used and the name
of the function must be BLOB with an implicit or explicit schema
name of SYSIBM. An example using the cast-function is given in
Example 8 on page 360.

constant
Specifies a constant as the argument. The constant must
conform to the rules of a constant for the source type of the dis-
tinct type or for the data type if not a distinct type. If the cast-
function is BLOB, the constant must be a string constant.

datetime-special-register
Specifies CURRENT DATE, CURRENT TIME, or CURRENT
TIMESTAMP. The source type of the distinct type of the column
must be the data type that corresponds to the specified special
register.

USER
Specifies the USER special register. The data type of the source
type of the distinct type of the column must be a string data type
with a length of at least 8 bytes. If the cast-function is BLOB, the
length attribute must be at least 8 bytes.

 Chapter 6. Statements 353

ALTER TABLE

If the value specified is not valid, an error (SQLSTATE 42894) is raised.

lob-options-clause
Specifies options for LOB data types. See lob-options-clause in “CREATE
TABLE” on page 478.

CONSTRAINT constraint-name
Names the constraint. A constraint-name must not identify a constraint that
was already specified within the same ALTER TABLE statement, or as the
name of any other existing constraint on the table (SQLSTATE 42710).

If the constraint name is not specified by the user, an 18-character identifier
unique within the identifiers of the existing constraints defined on the table, is
generated39 by the system.

When used with a PRIMARY KEY or UNIQUE constraint, the constraint-name
may be used as the name of an index that is created to support the constraint.
See “Notes” on page 357 for details on index names associated with unique
constraints.

PRIMARY KEY
This provides a shorthand method of defining a primary key composed of a
single column. Thus, if PRIMARY KEY is specified in the definition of column
C, the effect is the same as if the PRIMARY KEY(C) clause were specified as
a separate clause. The column cannot contain null values, so the NOT NULL
attribute must also be specified (SQLSTATE 42831).

See PRIMARY KEY within the description of the unique-constraint below.

UNIQUE
This provides a shorthand method of defining a unique key composed of a
single column. Thus, if UNIQUE is specified in the definition of column C, the
effect is the same as if the UNIQUE(C) clause were specified as a separate
clause.

See UNIQUE within the description of the unique-constraint below.

references-clause
This provides a shorthand method of defining a foreign key composed of a
single column. Thus, if a references-clause is specified in the definition of
column C, the effect is the same as if that references-clause were specified as
part of a FOREIGN KEY clause in which C is the only identified column.

See references-clause on page 489 under CREATE TABLE.

CHECK (check-condition)
This provides a shorthand method of defining a check constraint that applies to
a single column. See CHECK (check-condition) on page 492 under CREATE
TABLE.

39 The identifier is formed of "SQL" followed by a sequence of 15 numeric characters generated by a timestamp-based function.

354 SQL Reference

ALTER TABLE

unique-constraint
Defines a unique or primary key constraint.

CONSTRAINT constraint-name
Names the primary key or unique constraint. For information on constraint-
name, see page 354.

UNIQUE (column-name,...)
Defines a unique key composed of the identified columns. The identified
columns must be defined as NOT NULL. Each column-name must identify a
column of the table and the same column must not be identified more than
once. The number of identified columns must not exceed 16 and the sum of
their length attributes must not exceed 255. No LOB, LONG VARCHAR, or
LONG VARGRAPHIC column may be used as part of a unique key (even if
the length attribute of the column is small enough to fit within the 255 byte
limit) (SQLSTATE 42962). The set of columns in the unique key cannot be the
same as the set of columns of the primary key or another unique key
(SQLSTATE 01543). Any existing values in the set of identified columns must
be unique (SQLSTATE 23515).

A check is performed to determine if an existing index matches the unique key
definition. An index definition matches if it identifies the same set of columns
without regard to the order of the columns or the direction (ASC/DESC) spec-
ifications. If a matching index definition is found, the description of the index is
changed to indicate that it is required by the system and and it is changed to
unique (after ensuring uniqueness) if it was a non-unique index. If the table
has more than one matching index, an existing unique index is selected (the
selection is arbitrary). If no matching index is found, a unique index will auto-
matically be created for the columns, as described in CREATE TABLE. See
“Notes” on page 357 for details on index names associated with unique con-
straints.

PRIMARY KEY (column-name,...)
Defines a primary key composed of the identified columns. Each column-name
must identify a column of the table, and the same column must not be identi-
fied more than once. The number of identified columns must not exceed 16
and the sum of their length attributes must not exceed 255. The table must not
have a primary key and the identified columns must be defined as NOT NULL.
No LONG VARCHAR, LONG VARGRAPHIC, or LOB column may be used as
part of a primary key (even if the length attribute of the column is small
enough to fit within the 255 byte limit) (SQLSTATE 42962). The set of columns
in the primary key cannot be the same as the set of columns of a unique key
(SQLSTATE 01543). 40 Any existing values in the set of identified columns
must be unique (SQLSTATE 23515).

A check is performed to determine if an existing index matches the primary
key definition. An index definition matches if it identifies the same set of

40 If LANGLEVEL is SQL92E or MIA then an error is returned, SQLSTATE 42891.

 Chapter 6. Statements 355

ALTER TABLE

columns without regard to the order of the columns or the direction
(ASC/DESC) specifications. If a matching index definition is found, the
description of the index is changed to indicate that it is the primary index, as
required by the system, and it is changed to unique(after ensuring uniqueness)
if it was a non-unique index. If the table has more than one matching index, an
existing unique index is selected (the selection is arbitrary). If no matching
index is found, a unique index will automatically be created for the columns, as
described in CREATE TABLE. See “Notes” on page 357 for details on index
names associated with unique constraints.

Only one primary key can be defined on a table.

If the table has a partitioning key, the columns of a unique-constraint must be a
superset of the partitioning key columns; column order is unimportant.

referential-constraint
Defines a referential constraint. See referential-constraint on page 489 under
CREATE TABLE.

check-constraint
Defines a check constraint. See check-constraint in “CREATE TABLE” on
page 478.

partitioning-key-definition
Defines a partitioning key. The table must be defined in a table space on a
single-partition nodegroup and must not already have a partitioning key.

PARTITIONING KEY (column-name...)
Defines a partitioning key using the specified columns. Each column-name
must identify a column of the table, and the same column must not be identi-
fied more than once. No LONG VARCHAR, LONG VARGRAPHIC, or LOB
column may be used as part of a partitioning key (SQLSTATE 42962).

For restrictions related to the partitioning key, see “Rules” on page 357.

USING HASHING
Specifies the use of the hashing function as the partitioning method for data
distribution. This is the only partitioning method supported.

DROP PRIMARY KEY
Drops the definition of the primary key and all referential constraints dependent on
this primary key. The table must have a primary key.

DROP FOREIGN KEY constraint-name
Drops the referential constraint constraint-name. The constraint-name must identify
a referential constraint. For information on implications of dropping a referential
constraint see “Notes” on page 357.

DROP UNIQUE constraint-name
Drops the definition of the unique constraint "constraint-name" and all referential
constraints dependent on this unique constraint. The constraint-name must identify
an existing UNIQUE constraint. For information on implications of dropping a
unique constraint see “Notes” on page 357.

356 SQL Reference

ALTER TABLE

DROP CONSTRAINT constraint-name
Drops the constraint constraint-name. The constraint-name must identify an
existing check constraint, referential constraint, primary key or unique constraint
defined on the table. For information on implications of dropping a constraint see
“Notes” on page 357.

DROP CHECK constraint-name
Drops the check constraint constraint-name. The constraint-name must identify an
existing check constraint defined on the table.

DROP PARTITIONING KEY
Drops the partitioning key. The table must have a partitioning key and must be in a
table space defined on a single-partition nodegroup.

DATA CAPTURE
Indicates whether extra information for data replication is to be written to the log.

NONE
Indicates that no extra information will be logged.

CHANGES
Indicates that extra information regarding SQL changes to this table will be
written to the log. This option is required if this table will be replicated and the
Capture program is used to capture changes for this table from the log.

If the table is defined to allow data on a partition other than the catalog parti-
tion (multiple partition nodegroup or nodgroup with partition other than the
catalog partition), then this option is not supported (SQLSTATE 42997).

Further information about using replication can be found in the Administration
Guide and the Replication Guide and Reference.

 Rules
¹ A partitioning key column of a table cannot be updated (SQLSTATE 42997).

¹ Any unique or primary key constraint defined on the table must be a superset of
the partitioning key, if there is one (SQLSTATE 42997).

¹ A nullable column of a partitioning key cannot be included as a foreign key column
when the relationship is defined with ON DELETE SET NULL (SQLSTATE 42997).

 Notes
¹ ADD column clauses are processed prior to all other clauses. Other clauses are

processed in the order that they are specified.

¹ Any columns added via ALTER TABLE will not automatically be added to any
existing view of the table.

¹ When an index is automatically created for a unique or primary key constraint, the
database manager will try to use the specified constraint name as the index name
with a schema name that matches the schema name of the table. If this matches
an existing index name or no name for the constraint was specified, the index is
created in the SYSIBM schema with a system-generated name formed of "SQL"

 Chapter 6. Statements 357

ALTER TABLE

followed by a sequence of 15 numeric characters generated by a timestamp based
function.

¹ Any table that may be involved in a DELETE operation on table T is said to be
delete-connected to T. Thus, a table is delete-connected to T if it is a dependent of
T or it is a dependent of a table in which deletes from T cascade.

¹ A package has an insert (update/delete) usage on table T if records are inserted
into (updated in/deleted from) T either directly by a statement in the package, or
indirectly through constraints or triggers executed by the package on behalf of one
of its statements. Similarly, a package has an update usage on a column if the
column is modified directly by a statement in the package, or indirectly through
constraints or triggers executed by the package on behalf of one of its statements.

¹ Any changes to primary key, unique keys, or foreign keys may have the following
effect on packages, indexes, and other foreign keys.

– If a primary key or unique key is added:

- There is no effect on packages, foreign keys, or existing unique keys.41

– If a primary key or unique key is dropped:

- The index is dropped if it was automatically created for the constraint.
Any packages dependent on the index are invalidated.

- The index is set back to non-unique if it was converted to unique for the
constraint and it is no longer system-required. Any packages dependent
on the index are invalidated.

- The index is set to no longer system required if it was an existing unique
index used for the constraint. There is no effect on packages.

- All dependent foreign keys are dropped. Further action is taken for each
dependent foreign key, as specified in the next item.

– If a foreign key is added or dropped:

- All packages with an insert usage on the object table are invalidated.

- All packages with an update usage on at least one column in the foreign
key are invalidated.

- All packages with a delete usage on the parent table are invalidated.

- All packages with an update usage on at least one column in the parent
key are invalidated.

¹ Adding a column with a user-defined default value or adding a datetime column
with a system-defined default will result in invalidation of all packages with insert
usage on the object table.

41 If the primary or unique key uses an existing unique index that was created in a previous version and has not been converted to
support deferred uniqueness, then the index is converted and packages with update usage on the associated table are invalidated.

358 SQL Reference

ALTER TABLE

¹ Adding a check or referential constraint to a table that already exists and that is not
in check pending state (see “SET CONSTRAINTS” on page 635) will cause the
existing rows in the table to be immediately evaluated against the constraint. If the
verification fails, an error (SQLSTATE 23512) is raised. If a table is in check
pending state, adding a check or referential constraint will not immediately lead to
the enforcement of the constraint. Instead, the corresponding constraint type flags
used in the check pending operation will be updated. To begin enforcing the con-
straint, the SET CONSTRAINTS statement will need to be issued.

¹ Adding or dropping a check constraint will result in invalidation of all packages with
either an insert usage on the object table or an update usage on at least one of the
columns involved in the constraint.

¹ Adding a partitioning key will result in invalidation of all packages with an update
usage on at least one of the columns of the partitioning key.

¹ A partitioning key that was defined by default as the first column of the primary key
is not affected by dropping the primary key and adding a different primary key.

 Examples
Example 1: Add a new column named RATING, which is one character long, to the
DEPARTMENT table.

ALTER TABLE DEPARTMENT

 ADD RATING CHAR(1)

Example 2: Add a new column named SITE_NOTES to the PROJECT table. Create
SITE_NOTES as a varying-length column with a maximum length of 1000 characters.
The values of the column do not have an associated character set and therefore should
not be translated.

ALTER TABLE PROJECT

 ADD SITE_NOTES VARCHAR(1000) FOR BIT DATA

Example 3: Assume a table called EQUIPMENT exists defined with the following
columns:

 Column Name Data Type

 EQUIP_NO INT

 EQUIP_DESC VARCHAR(50)

 LOCATION VARCHAR(50)

 EQUIP_OWNER CHAR(3)

 Add a referential constraint to the EQUIPMENT table so that the owner
(EQUIP_OWNER) must be a department number (DEPTNO) that is present in the
DEPARTMENT table. DEPTNO is the primary key of the DEPARTMENT table. If a
department is removed from the DEPARTMENT table, the owner (EQUIP_OWNER)
values for all equipment owned by that department should become unassigned (or set
to null). Give the constraint the name DEPTQUIP.

 Chapter 6. Statements 359

ALTER TABLE

ALTER TABLE EQUIPMENT

 ADD CONSTRAINT DEPTQUIP

FOREIGN KEY (EQUIP_OWNER)

 REFERENCES DEPARTMENT

 ON DELETE SET NULL

Also, an additional column is needed to allow the recording of the quantity associated
with this equipment record. Unless otherwise specified, the EQUIP_QTY column should
have a value of 1 and must never be null.

ALTER TABLE EQUIPMENT

ADD COLUMN EQUIP_QTY

SMALLINT NOT NULL DEFAULT 1

Example 4: Alter table EMPLOYEE. Add the check constraint named REVENUE
defined so that each employee must make a total of salary and commission greater
than $30,000.

ALTER TABLE EMPLOYEE

ADD CONSTRAINT REVENUE

CHECK (SALARY + COMM > 30000)

Example 5: Alter table EMPLOYEE. Drop the constraint REVENUE which was previ-
ously defined.

ALTER TABLE EMPLOYEE

DROP CONSTRAINT REVENUE

Example 6: Alter a table to log SQL changes in the default format.

ALTER TABLE SALARY1

DATA CAPTURE NONE

Example 7: Alter a table to log SQL changes in an expanded format.

ALTER TABLE SALARY2

DATA CAPTURE CHANGES

Example 8: Alter the EMPLOYEE table to add 4 new columns with default values.

ALTER TABLE EMPLOYEE

ADD COLUMN HEIGHT MEASURE DEFAULT MEASURE(1)

ADD COLUMN BIRTHDAY BIRTHDATE DEFAULT DATE('01-01-1850')

ADD COLUMN FLAGS BLOB(1M) DEFAULT BLOB(X'01')

ADD COLUMN PHOTO PICTURE DEFAULT BLOB(X'00')

 The default values use various function names when specifying the default. Since
MEASURE is a distinct type based on INTEGER, the MEASURE function is used. The
HEIGHT column default could have been specified without the function since the source
type of MEASURE is not BLOB or a datetime data type. Since BIRTHDATE is a distinct
type based on DATE, the DATE function is used (BIRTHDATE cannot be used here).
For the FLAGS and PHOTO columns the default is specified using the BLOB function
even though PHOTO is a distinct type. To specify a default for BIRTHDAY, FLAGS
and PHOTO columns, a function must be used because the type is a BLOB or a dis-
tinct type sourced on a BLOB or datetime data type.

360 SQL Reference

ALTER TABLE

Example 9: Assume that you have a table called CUSTOMERS that is defined with the
following columns:

 Column Name Data Type

 BRANCH_NO SMALLINT

 CUSTOMER_NO DECIMAL(7)

 CUSTOMER_NAME VARCHAR(50)

In this table, the primary key is made up of the BRANCH_NO and CUSTOMER_NO
columns. You want to partition the table, so you need to create a partitioning key for
the table. The table must be defined in a table space on a single-node nodegroup. The
primary key must be a superset of the partitioning columns: at least one of the columns
of the primary key must be used as the partitioning key. Assume that you want to make
BRANCH_NO the partitioning key. You would do this with the following statement:

ALTER TABLE CUSTOMERS

ADD PARTITIONING KEY (BRANCH_NO)

 Chapter 6. Statements 361

ALTER TABLESPACE

 ALTER TABLESPACE
The ALTER TABLESPACE statement is used to modify an existing table space in the
following ways.

¹ Add a container to a DMS table space (that is, one created with the MANAGED BY
DATABASE option).

¹ Add a container to a SMS table space on a partition (or node) that currently has no
containers.

¹ Modify the PREFETCHSIZE setting for a table space.
¹ Modify the BUFFERPOOL used for tables in the table space.
¹ Modify the OVERHEAD setting for a table space.
¹ Modify the TRANSFERRATE setting for a table space.

 Invocation
This statement can be embedded in an application program or issued interactively. It is
an executable statement that can be dynamically prepared.

 Authorization
The authorization ID of the statement must have SYSCTRL or SYSADM authority.

 Syntax

55──ALTER──TABLESPACE──tablespace-name──5

 ┌ ┐───
5─ ───6 ┴──┬ ┬ ─ADD─ ──┬ ┬─┤ database-container-clause ├─ ──┬ ┬───────────────────── ──────────────5%
 │ ││ │└ ┘─┤ on-nodes-clause ├─
 │ │└ ┘─┤ system-container-clause ├──┤ on-nodes-clause ├───────
 ├ ┤─PREFETCHSIZE──number-of-pages───────────────────────────────────
 ├ ┤─BUFFERPOOL──bufferpool-name─────────────────────────────────────
 ├ ┤─OVERHEAD──number-of-milliseconds────────────────────────────────
 └ ┘─TRANSFERRATE──number-of-milliseconds────────────────────────────

database-container-clause:
 ┌ ┐─,───
├──(─ ───6 ┴──┬ ┬─FILE─── ──'container-string' ─number-of-pages─ ─)──────────────────────────────┤
 └ ┘─DEVICE─

system-container-clause:
 ┌ ┐─,──────────────────
├──(─ ───6 ┴──'container-string' ─)───┤

on-nodes-clause:
 ┌ ┐─,──────────────────────────────────
├─ ─ON─ ──┬ ┬─NODE── ─(─ ───6 ┴ ─node-number1─ ──┬ ┬────────────────── ─)────────────────────────────┤
 └ ┘─NODES─ └ ┘ ─TO──node-number2─

362 SQL Reference

ALTER TABLESPACE

 Description
tablespace-name

Names the table space. This is a one-part name. It is a long SQL identifier (either
ordinary or delimited).

ADD
ADD specifies that a new container is to be added to the table space.

database-container-clause
Adds one or more containers to a DMS table space. The table space must identify
a DMS table space that already exists at the application server. See the description
of container-clause on page 504.

system-container-clause
Adds one or more containers to an SMS table space on the specified partitions or
nodes . The table space must identify an SMS table space that already exists at
the application server. There must not be any containers on the specified partitions
for the table space. (SQLSTATE 42921). See the description of system-containers
on page 503.

on-nodes-clause
Specifies the partition or partitions for the added containers. See the description of
on-nodes-clause on page 505.

PREFETCHSIZE number-of-pages
Specifies the number of 4K pages that will be read from the table space when data
prefetching is being performed. Prefetching reads in data needed by a query prior
to it being referenced by the query, so that the query need not wait for I/O to be
performed.

BUFFERPOOL bufferpool-name
The name of the buffer pool used for tables in this table space. The buffer pool
must currently exist in the database (SQLSTATE 42704). The nodegroup of the
table space must be defined for the bufferpool (SQLSTATE 42735).

OVERHEAD number-of-milliseconds
Any numeric literal (integer, decimal, or floating point) that specifies the I/O con-
troller overhead and disk seek and latency time, in milliseconds. The number
should be an average for all containers that belong to the table space, if not the
same for all containers. This value is used to determine the cost of I/O during
query optimization.

TRANSFERRATE number-of-milliseconds
Any numeric literal (integer, decimal, or floating point) that specifies the time to
read one 4K page into memory, in milliseconds. The number should be an average
for all containers that belong to the table space, if not the same for all containers.
This value is used to determine the cost of I/O during query optimization.

 Chapter 6. Statements 363

ALTER TABLESPACE

 Notes
¹ Guidance on choosing optimal values for the PREFETCHSIZE, OVERHEAD, and

TRANSFERRATE parameters, and information on rebalancing is provided in the
Administration Guide.

¹ Once the new container has been added and the transaction is committed, the
contents of the table space are automatically rebalanced across the containers.
Access to the table space is not restricted during the rebalancing.

¹ If adding more than one container to a table space, it is recommended that they be
added in the same statement so that the cost of rebalancing is incurred only once.
An attempt to add containers to the same table space in separate ALTER
TABLESPACE statements within a single transaction will result in an error
(SQLSTATE 55041).

¹ In a partitioned database if more than one partition resides on the same physical
node, then the same device or specific path cannot be specified for such partitions.
(SQLSTATE 42730). For this environment, either specify a unique container-string
for each partition or use a relative path name.

¹ Although the table space definition is transactional and the changes to the table
space definition are reflected in the catalog tables on commit, the change to a dif-
ferent buffer pool will take effect next time the database is started. The buffer pool
in use, when the ALTER TABLESPACE statement was issued, will continue to be
used in the interim.

 Examples
Example 1: Add a device to the PAYROLL table space.

ALTER TABLESPACE PAYROLL

ADD (DEVICE '/dev/rhdisk9' 10000)

Example 2: Change the prefetch size and I/O overhead for the ACCOUNTING table
space.

ALTER TABLESPACE ACCOUNTING

 PREFETCHSIZE 64

 OVERHEAD 19.3

364 SQL Reference

BEGIN DECLARE SECTION

BEGIN DECLARE SECTION
The BEGIN DECLARE SECTION statement marks the beginning of a host variable
declare section.

 Invocation
This statement can only be embedded in an application program. It is not an executable
statement. It must not be specified in REXX.

 Authorization
None required.

 Syntax

55──BEGIN DECLARE SECTION──5%

 Description
The BEGIN DECLARE SECTION statement may be coded in the application program
wherever variable declarations can appear in accordance with the rules of the host lan-
guage. It is used to indicate the beginning of a host variable declaration section. A host
variable section ends with an END DECLARE SECTION statement (see “END
DECLARE SECTION” on page 552).

 Rules
¹ The BEGIN DECLARE SECTION and the END DECLARE SECTION statements

must be paired and may not be nested.

¹ SQL statements cannot be included within the declare section.

¹ Variables referenced in SQL statements must be declared in a declare section in
all host languages other than REXX. Furthermore, the section must appear before
the first reference to the variable. Generally, host variables are not declared in
REXX with the exception of LOB locators and file reference variables. In this case,
they are not declared within a BEGIN DECLARE SECTION.

¹ Variables declared outside a declare section must not have the same name as var-
iables declared within a declare section.

¹ LOB data types must have their data type and length preceded with the SQL TYPE
IS keywords.

 Examples
Example 1: Define the host variables hv_smint (smallint), hv_vchar24 (varchar(24)),
hv_double (double), and hv_blob_50k (blob(51200)) in a C program.

 Chapter 6. Statements 365

BEGIN DECLARE SECTION

EXEC SQL BEGIN DECLARE SECTION;

 static short hv_smint;

static struct {

 short hv_vchar24_len;

 char hv_vchar24_value[24];

 } hv_vchar24;

 static double hv_double;

static SQL TYPE IS BLOB(50K) hv_blob_50k;

EXEC SQL END DECLARE SECTION;

Example 2: Define the host variables HV-SMINT (smallint), HV-VCHAR24
(varchar(24)), HV-DEC72 (dec(7,2)), and HV-BLOB-50k (blob(51200)) in a COBOL
program.

 WORKING-STORAGE SECTION.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

 01 HV-SMINT PIC S9(4) COMP-4.

 01 HV-VCHAR24.

 49 HV-VCHAR24-LENGTH PIC S9(4) COMP-4.

 49 HV-VCHAR24-VALUE PIC X(24).

 01 HV-DEC72 PIC S9(5)V9(2) COMP-3.

01 HV-BLOB-50K USAGE SQL TYPE IS BLOB(50K).

EXEC SQL END DECLARE SECTION END-EXEC.

Example 3: Define the host variables HVSMINT (smallint), HVVCHAR24 (char(24)),
HVDOUBLE (double), and HVBLOB50k (blob(51200)) in a Fortran program.

EXEC SQL BEGIN DECLARE SECTION

 INTEGER*2 HVSMINT

 CHARACTER*24 HVVCHAR24

 REAL*8 HVDOUBLE

SQL TYPE IS BLOB(50K) HVBLOB50K

EXEC SQL END DECLARE SECTION

Note: In Fortran, if the expected value is greater than 254 characters, then a CLOB
host variable should be used.

Example 4: Define the host variables HVSMINT (smallint), HVBLOB50K (blob(51200)),
and HVCLOBLOC (a CLOB locator) in a REXX program.

DECLARE :HVCLOBLOC LANGUAGE TYPE CLOB LOCATOR

call sqlexec 'FETCH c1 INTO :HVSMINT, :HVBLOB50K'

Note that the variables HVSMINT and HVBLOB50K were implicitly defined by using
them in the FETCH statement.

366 SQL Reference

CALL

 CALL
Invokes a procedure stored at the location of a database. A stored procedure, for
example, executes at the location of the database, and returns data to the client appli-
cation.

Programs using the SQL CALL statement are designed to run in two parts, one on the
client and the other on the server. The server procedure at the database runs within the
same transaction as the client application. If the client application and stored procedure
are on the same partition , the stored procedure is executed locally.

 Invocation
This statement can only be embedded in an application program. It is an executable
statement that cannot be dynamically prepared. However, the procedure name may be
specified via a host variable and this, coupled with the use of the USING
DESCRIPTOR clause, allows both the procedure name and the parameter list to be
provided at run time; thus achieving the same effect as a dynamically prepared state-
ment.

 Authorization
The authorization rules vary according to the server at which the procedure is stored.

DB2 Universal Database:
The privileges held by the authorization ID of the CALL statement at run time
statement must include at least one of the following:

¹ EXECUTE privilege for the package associated with the stored procedure
¹ CONTROL privilege for the package associated with the stored procedure
¹ SYSADM or DBADM authority

DB2 for MVS server:
The privileges held by the authorization ID of the CALL statement at bind time
must include at least one of the following:

¹ EXECUTE privilege for the package associated with the stored procedure
¹ Ownership of the package associated with the stored procedure
¹ PACKADM authority for the package's collection

 ¹ SYSADM authority

DB2/400 server:
The privileges held by the authorization ID of the CALL statement at bind time
must include at least one of the following:

¹ If the stored procedure is written in REXX:
– The system authorities *OBJOPR and *READ on the source file associ-

ated with the procedure
– The system authority *EXECUTE on the library containing the source file

and the system authority *USE to the CL command
¹ If the stored procedure is not written in REXX:

– The system authority *EXECUTE on both the program associated with
the procedure and on the library containing that program

 Chapter 6. Statements 367

CALL

 ¹ Administrative authority

 Syntax

55─ ─CALL─ ──┬ ┬─procedure-name─ ──┬ ┬──────────────────────────────────── ────────────────────5%
 └ ┘─host-variable── ├ ┤ ─(─ ──┬ ┬───────────────────── ─)──────
 │ ││ │┌ ┐─,───────────────
 │ │└ ┘───6 ┴─host-variable───(1)

 └ ┘─USING──DESCRIPTOR──descriptor-name─

Note:
1 Stored procedures located at DB2 for MVS and DB2/400 servers and invoked by DB2 for MVS or

DB2/400 clients support additional sources for procedure arguments (for example constant values).
However, if the stored procedure is located on a DB2 Universal Database or the procedure is
invoked from a DB2 Universal Database client, all arguments must be provided via host variables.

 Description
procedure-name or host-variable

Identifies the procedure to call. The procedure name may be specified either
directly or within a host variable. The procedure identified must exist at the current
server (SQLSTATE 42724).

If procedure-name is specified it must be an ordinary identifier not greater than 254
bytes. Since this can only be an ordinary identifier, it cannot contain blanks or
special characters and the value is converted to upper case. Thus, if it is neces-
sary to use lower case names, blanks or special characters, the name must be
specified via a host-variable.

If host-variable is specified, it must be a character-string variable with a length attri-
bute that is not greater than 254 bytes, and it must not include an indicator vari-
able. Note that the value is not converted to upper case. procedure-name must be
left-justified.

The procedure name can take one of several forms. The forms supported vary
according to the server at which the procedure is stored.

DB2 Universal Database:

procedure-name The name (with no extension) of the procedure to execute.
The procedure invoked is determined as follows.

1. The procedure-name is used both as the name of the stored
procedure library and the function name within that library.
For example, if procedure-name is proclib, the DB2 server
will load the stored procedure library named proclib and
execute the function routine proclib() within that library.

In UNIX-based systems, the DB2 server finds the stored
procedure library in the default directory sqllib/function.

368 SQL Reference

CALL

Unfenced stored procedures are in the
sqllib/function/unfenced directory.

In OS/2, the location of the stored procedures is specified
by the LIBPATH variable in the CONFIG.SYS file. Unfenced
stored procedures are in the sqllib\dll\unfenced directory.

2. If the library or function could not be found, the procedure-
name is used to search the defined procedures (in
SYSCAT.PROCEDURES) for a matching procedure. A
matching procedure is determined using the steps that
follow.

a. Find the procedures from the catalog
(SYSCAT.PROCEDURES) where the PROCNAME
matches the procedure-name specified and the
PROCSCHEMA is a schema name in the function path.

b. Next, eliminate any of these procedures that do not
have the same number of parameters as the number of
arguments specified in the CALL statement.

c. Chose the remaining procedure that is earliest in the
function path.

d. If there are no remaining procedures after step 2, an
error is returned (SQLSTATE 42884).

Once the procedure is selected, DB2 will invoke the proce-
dure defined by the external name.

procedure-library!function-name The exclamation character (!) , acts as a
delimiter between the library name and the function name of the
stored procedure. For example, if proclib!func was specified,
then proclib would be loaded into memory and the function
func from that library would be executed. This allows multiple
functions to be placed in the same stored procedure library.

The stored procedure library is located in the directories or spec-
ified in the LIBPATH variable, as described in procedure-name.

absolute-path!function-name The absolute-path specifies the complete path
to the stored procedure library.

In a UNIX-based system, for example, if /u/terry/proclib!func
was specified, then the stored procedure library proclib would
be obtained from the directory /u/terry and the function func

from that library would be executed.

In OS/2, if d:\terry\proclib!func was specified, then it would
cause the database manager to load the func.dll file from the
d:\terry\proclib directory.

In all these cases, the total length of the procedure name including its implicit
or explicit full path must not be longer than 254 bytes.

 Chapter 6. Statements 369

CALL

DB2 for MVS (V4.1 or later) server:
An implicit or explicit three part name. The parts are as follows.

high order: The location name of the server where the procedure is
stored.

middle: SYSPROC

middle: Some value in the PROCEDURE column of the
SYSIBM.SYSPROCEDURES catalog table.

DB2 for OS/400 (V3.1 or later) server:
The external program name is assumed to be the same as the procedure-
name.

For portability, procedure-name should be specified as a single token no larger
than 8 bytes.

(host-variable,...)
Each specification of host-variable is a parameter of the CALL. The nth parameter
of the CALL corresponds to the nth parameter of the server's stored procedure.

Each host-variable is assumed to be used for exchanging data in both directions
between client and server. In order to avoid sending unnecessary data between
client and server, the client application should provide an indicator variable with
each parameter and set the indicator to -1 if the parameter is not used to transmit
data to the stored procedure. The stored procedure should set the indicator vari-
able to -128 for any parameter that is not used to return data to the client applica-
tion.

If the server is DB2 Universal Database the parameters must have matching data
types in both the client and server program.42

USING DESCRIPTOR descriptor-name
Identifies an SQLDA that must contain a valid description of host variables. The nth
SQLVAR element corresponds to the nth parameter of the server's stored proce-
dure.

Before the CALL statement is processed, the application must set the following
fields in the SQLDA:

¹ SQLN to indicate the number of SQLVAR occurrences provided in the SQLDA

¹ SQLDABC to indicate the number of bytes of storage allocated for the SQLDA

¹ SQLD to indicate the number of variables used in the SQLDA when proc-
essing the statement

¹ SQLVAR occurrences to indicate the attributes of the variables. The following
fields of each Base SQLVAR element passed must be initialized:

42 Both the DB2 for MVS and DB2/400 servers support conversions between compatible data types when invoking their stored proce-
dures. For example, if the client program uses the INTEGER data type and the stored procedure expects FLOAT, the server will
convert the INTEGER value to FLOAT before invoking the procedure.

370 SQL Reference

CALL

 – SQLTYPE
 – SQLLEN
 – SQLDATA
 – SQLIND

The following fields of each Secondary SQLVAR element passed must be
initialized:

 – LEN.SQLLONGLEN
 – SQLDATALEN
 – SQLDATATYPE_NAME

Each SQLDA is assumed to be used for exchanging data in both directions
between client and server. In order to avoid sending unnecessary data between
client and server, the client application should set the SQLIND field to -1 if the
parameter is not used to transmit data to the stored procedure. The stored proce-
dure should set the SQLIND field -128 for any parameter that is not used to return
data to the client application.

 Notes
¹ Use of Large Object (LOB) data types :

If the client and server application needs to specify LOB data from an SQLDA,
allocate double the number of SQLVAR entries.

LOB data types are supported by stored procedures in DB2 Version 5. The LOB
data types are not supported by either down level clients or servers. They are also
not supported for requests made from a DRDA application requestor or to a DRDA
application server.

¹ Returning Result Sets from Stored Procedures :

If the client application program is written using CLI, result sets can be returned
directly to the client application. The stored procedure indicates that a result set is
to be returned by declaring a cursor on that result set, opening a cursor on the
result set, and leaving the cursor open when exiting the procedure.

At the end of a procedure that is invoked via CLI:

– For every cursor that has been left open, a result set is returned to the appli-
cation.

– If more than one cursor is left open, the result sets are returned in the order in
which their cursors were opened.

– Only unread rows are passed back. For example, if the result set of a cursor
has 500 rows, and 150 of those rows have been read by the stored procedure
at the time the stored procedure is terminated, then rows 151 through 500 will
be returned to the stored procedure.

For additional information refer to the Embedded SQL Programming Guide and the
CLI Guide and Reference.

¹ Inter-operability between the CALL statement and the DARI API :

 Chapter 6. Statements 371

CALL

In general, the CALL statement will not work with existing DARI procedures. See
the Embedded SQL Programming Guide for details.

 Examples
Example 1:

In C, invoke a procedure called TEAMWINS in the ACHIEVE library passing it a param-
eter stored in the host variable HV_ARGUMENT.

 strcpy(HV_PROCNAME, "ACHIEVE!TEAMWINS");

CALL :HV_PROCNAME (:HV_ARGUMENT);

Example 2:

In C, invoke a procedure called :SALARY_PROC using the SQLDA named
INOUT_SQLDA.

struct sqlda *INOUT_SQLDA;

/* Setup code for SQLDA variables goes here */

 CALL :SALARY_PROC

USING DESCRIPTOR :*INOUT_SQLDA;

Example 3:

A Java stored procedure is defined in the database using the following statement:

CREATE PROCEDURE PARTS_ON_HAND (IN PARTNUM INTEGER,

 OUT COST DECIMAL(7,2),

OUT QUANTITY INTEGER)

EXTERNAL NAME 'parts!onhand'

LANGUAGE JAVA PARAMETER STYLE DB2GENERAL;

A Java application calls this stored procedure using the following code fragment:

372 SQL Reference

CALL

 ...

CallableStatement stpCall ;

String sql = "CALL PARTS_ON_HAND (?,?,?)" ;

stpCall = con.prepareCall(sql) ; /* con is the connection */

stpCall.setInt(1, variable1) ;

stpCall.setBigDecimal(2, variable2) ;

stpCall.setInt(3, variable3) ;

stpCall.registerOutParameter(2, Types.DECIMAL, 2) ;

stpCall.registerOutParameter(3, Types.INTEGER) ;

 stpCall.execute() ;

variable2 = stpCall.getBigDecimal(2) ;

variable3 = stpCall.getInt(3) ;

 ...

This application code fragment will invoke the Java method onhand in class parts since
the procedure-name specified on the CALL statement is found in the database and has
the external name 'parts!onhand'.

 Chapter 6. Statements 373

CLOSE

 CLOSE
The CLOSE statement closes a cursor. If a result table was created when the cursor
was opened, that table is destroyed.

 Invocation
This statement can be embedded in an application program or issued interactively. It is
an executable statement that cannot be dynamically prepared.

 Authorization
None required. See “DECLARE CURSOR” on page 525 for the authorization required
to use a cursor.

 Syntax

55─ ─CLOSE──cursor-name─ ──┬ ┬────────────── ──5%
 └ ┘ ─WITH RELEASE─

 Description
cursor-name

Identifies the cursor to be closed. The cursor-name must identify a declared cursor
as explained in the DECLARE CURSOR statement. When the CLOSE statement is
executed, the cursor must be in the open state.

WITH RELEASE
When specified then all read locks (if any) that have been held for the cursor are
released.

 Notes
¹ At the end of a unit of work, all cursors that belong to an application process and

that were declared without the WITH HOLD option are implicitly closed.

¹ CLOSE does not cause a commit or rollback operation.

¹ The WITH RELEASE clause has no effect for cursors that are operating under iso-
lation levels CS or UR. When specified for cursors that are operating under iso-
lation levels RS or RR, WITH RELEASE terminates some of the guarantees of
those isolation levels. Specifically, if the cursor is opened again, an RS cursor may
experience the 'nonrepeatable read' phenomenon and an RR cursor may experi-
ence either the 'nonrepeatable read' or 'phantom' phenomenon. Refer to
Appendix G, “Comparison of Isolation Levels” on page 773 for more details.

If a cursor that was originally either RR or RS is reopened after being closed using
the WITH RELEASE clause, then new read locks will be acquired.

374 SQL Reference

CLOSE

¹ Special rules apply to cursors within a stored procedure that have not been closed
before returning to the calling program. See “Notes” on page 371 for more informa-
tion.

 Example
A cursor is used to fetch one row at a time into the C program variables dnum, dname,
and mnum. Finally, the cursor is closed. If the cursor is reopened, it is again located at
the beginning of the rows to be fetched.

EXEC SQL DECLARE C1 CURSOR FOR

SELECT DEPTNO, DEPTNAME, MGRNO

 FROM TDEPT

WHERE ADMRDEPT = 'A00';

EXEC SQL OPEN C1;

while (SQLCODE==0) { .

EXEC SQL FETCH C1 INTO :dnum, :dname, :mnum;

 .

 .

 }

EXEC SQL CLOSE C1;

 Chapter 6. Statements 375

COMMENT ON

 COMMENT ON
The COMMENT ON statement adds or replaces comments in the catalog descriptions
of various objects.

 Invocation
This statement can be embedded in an application program or issued through the use
of dynamic SQL statements. It is an executable statement that can be dynamically pre-
pared.

 Authorization
The privileges that must be held by the authorization ID of the COMMENT ON state-
ment must include one of the following:

¹ SYSADM or DBADM
¹ definer of the object (underlying table for column or constraint) as recorded in the

DEFINER column of the catalog view for the object (OWNER column for a
schema)

¹ ALTERIN privilege on the schema (applicable only to objects allowing more than
one-part names)

¹ CONTROL privilege on the object (applicable to index, package, table and view
objects only)

¹ ALTER privilege on the object (applicable to table objects only)

Note that for table space or nodegroup the authorization ID must have SYSADM or
SYSCTRL authority.

 Syntax

376 SQL Reference

COMMENT ON

55──COMMENT ON──5

5─ ──┬ ┬─┤ objects ├──IS──string-constant─────────────────────────── ───────5%
 │ │┌ ┐─,────────────────────────────────
 └ ┘──┬ ┬─table-name─ ─(─ ───6 ┴─column-name──IS──string-constant─ ─)─
 └ ┘─view-name──

objects:
├─ ─── ──── ─ ──┬ ┬─ALIAS──alias-name────────────────────────────────────── ────┤
 ├ ┤ ─COLUMN─ ──┬ ┬─table-name.column-name─ ────────────────────
 │ │└ ┘─view-name.column-name──
 ├ ┤─CONSTRAINT──table-name.constraint-name─────────────────
 ├ ┤ ─DISTINCT TYPE───(1) ─distinct-type-name────────────────────
 ├ ┤ ─FUNCTION──function-name─ ──┬ ┬───────────────────────── ──
 │ │└ ┘ ─(─ ──┬ ┬─────────────── ─)─
 │ ││ │┌ ┐─,─────────
 │ │└ ┘ ───6 ┴─data-type─
 ├ ┤─SPECIFIC FUNCTION──specific-name───────────────────────
 ├ ┤─INDEX──index-name──────────────────────────────────────
 ├ ┤─NODEGROUP──nodegroup-name──────────────────────────────
 ├ ┤─PACKAGE──package-name──────────────────────────────────
 ├ ┤ ─PROCEDURE──procedure-name─ ──┬ ┬─────────────────────────
 │ │└ ┘ ─(─ ──┬ ┬─────────────── ─)─
 │ ││ │┌ ┐─,─────────
 │ │└ ┘ ───6 ┴─data-type─
 ├ ┤─SPECIFIC PROCEDURE──specific-name──────────────────────
 ├ ┤─SCHEMA──schema-name────────────────────────────────────
 ├ ┤ ─TABLE─ ──┬ ┬─table-name─ ─────────────────────────────────
 │ │└ ┘─view-name──
 ├ ┤─TABLESPACE──tablespace-name────────────────────────────
 └ ┘─TRIGGER──trigger-name──────────────────────────────────

Note:
1 The keyword DATA can be used as a synonym for DISTINCT.

 Description
ALIAS alias-name

Indicates a comment will be added or replaced for an alias. The alias-name must
identify an alias that is described in the catalog (SQLSTATE 42704). The comment
replaces the value of the REMARKS column of the SYSCAT.TABLES catalog view
for the row that describes the alias.

COLUMN table-name.column-name or view-name.column-name
Indicates a comment will be added or replaced for a column. The table-
name.column-name or view-name.column-name combination must identify a
column and table combination that is described in the catalog (SQLSTATE 42704).
The comment replaces the value of the REMARKS column of the
SYSCAT.COLUMNS catalog view for the row that describes the column.

A comment cannot be made on a column of an inoperative view. (SQLSTATE
51024).

 Chapter 6. Statements 377

COMMENT ON

CONSTRAINT table-name.constraint-name
Indicates a comment will be added or replaced for a constraint. The table-
name.constraint-name combination must identify a constraint and the table that it
constrains; they must be described in the catalog (SQLSTATE 42704). The
comment replaces the value of the REMARKS column of the SYSCAT.TABCONST
catalog view for the row that describes the constraint.

DISTINCT TYPE distinct-type-name
Indicates a comment will be added or replaced for a distinct type. The distinct-type-
name must identify a distinct data type that is described in the catalog (SQLSTATE
42704). The comment replaces the value of the REMARKS column of the
SYSCAT.DATATYPES catalog view for the row that describes the distinct type.

If an unqualified name is provided, then the authorization ID of the statement is
used as the qualifier.

FUNCTION
Indicates a comment will be added or replaced for a function. The function instance
specified must be a user-defined function described in the catalog.

There are several different ways available to identify the function instance:

FUNCTION function-name
Identifies the particular function, and is valid only if there is exactly one func-
tion with the function-name. The function thus identified may have any number
of parameters defined for it. If an unqualified name is provided, then the
authorization ID of the statement is used as the qualifier. If no function by this
name exists in the named or implied schema, an error (SQLSTATE 42704) is
raised. If there is more than one specific instance of the function in the named
or implied schema, an error (SQLSTATE 42854) is raised.

FUNCTION function-name (data-type,...)
Provides the function signature, which uniquely identifies the function to be
commented upon. The function selection algorithm is not used.

function-name
Gives the function name of the function to be commented upon. If an
unqualified name is provided, then the authorization ID of the statement is
used.

(data-type,...)
Must match the data types that were specified on the CREATE FUNC-
TION statement in the corresponding position. The number of data types,
and the logical concatenation of the data types is used to identify the spe-
cific function for which to add or replace the comment.

It is not necessary to specify the length, precision or scale for the
parameterized data types. Instead an empty set of parentheses may be
coded to indicate that these attributes are to be ignored when looking for
a data type match.

However, if length, precision, or scale is coded, the value must exactly
match that specified in the CREATE FUNCTION statement.

378 SQL Reference

COMMENT ON

(Note that the FOR BIT DATA attribute is not considered part of the signa-
ture for matching purposes. So, for example, a CHAR FOR BIT DATA
specified in the signature would match a function defined with CHAR only,
and vice versa.)

If no function with the specified signature exists in the named or implied
schema, an error (SQLSTATE 42883) is raised.

SPECIFIC FUNCTION specific-name
Indicates that comments will be added or replaced for a function (see FUNC-
TION for other methods of identifying a function). Identifies the particular user-
defined function that is to be commented upon, using the specific name either
specified or defaulted to at function creation time. If an unqualified name is
specified, the current authorization ID of the statement is used as the qualifier.
The specific-name must identify a specific function instance in the named or
implied schema; otherwise, an error (SQLSTATE 42704) is raised.

It is not possible to comment on a function that is either in the SYSIBM schema or
the SYSFUN schema (SQLSTATE 42832).

The comment replaces the value of the REMARKS column of the
SYSCAT.FUNCTIONS catalog view for the row that describes the function.

INDEX index-name
Indicates a comment will be added or replaced for an index. The index-name must
identify a distinct index that is described in the catalog (SQLSTATE 42704). The
comment replaces the value for the REMARKS column of the SYSCAT.INDEXES
catalog view for the row that describes the index.

NODEGROUP nodegroup-name
Indicates a comment will be added or replaced for a nodegroup. The nodegroup-
name must identify a distinct nodegroup that is described in the catalog
(SQLSTATE 42704). The comment replaces the value for the REMARKS column
of the SYSCAT.NODEGROUPS catalog view for the row that describes the
nodegroup.

PACKAGE package-name
Indicates a comment will be added or replaced for a package. The package-name
must identify a distinct package that is described in the catalog (SQLSTATE
42704). The comment replaces the value for the REMARKS column of the
SYSCAT.PACKAGES catalog view for the row that describes the package.

PROCEDURE
Indicates a comment will be added or replaced for a procedure. The procedure
instance specified must be a stored procedure described in the catalog.

There are several different ways available to identify the procedure instance:

PROCEDURE procedure-name
Identifies the particular procedure, and is valid only if there is exactly one pro-
cedure with the procedure-name in the schema . The procedure thus identified
may have any number of parameters defined for it. If an unqualified name is
provided, then the authorization ID of the statement is used as the qualifier. If

 Chapter 6. Statements 379

COMMENT ON

no procedure by this name exists in the named or implied schema, an error
(SQLSTATE 42704) is raised. If there is more than one specific instance of the
procedure in the named or implied schema, an error (SQLSTATE 42854) is
raised.

PROCEDURE procedure-name (data-type,...)
This is used to provide the procedure signature, which uniquely identifies the
procedure to be commented upon.

procedure-name
Gives the procedure name of the procedure to be commented upon. If a
unqualified name is provided, then the authorization ID of the statement is
used.

(data-type,...)
Must match the data types that were specified on the CREATE PROCE-
DURE statement in the corresponding position. The number of data types,
and the logical concatenation of the data types is used to identify the spe-
cific procedure for which to add or replace the comment.

It is not necessary to specify the length, precision or scale for the
parameterized data types. Instead an empty set of parentheses may be
coded to indicate that these attributes are to be ignored when looking for
a data type match.

However, if length, precision, or scale is coded, the value must exactly
match that specified in the CREATE PROCEDURE statement.

If no procedure with the specified signature exists in the named or implied
schema, an error (SQLSTATE 42883) is raised.

SPECIFIC PROCEDURE specific-name
Indicates that comments will be added or replaced for a procedure (see PRO-
CEDURE for other methods of identifying a procedure). Identifies the particular
stored procedure that is to be commented upon, using the specific name either
specified or defaulted to at procedure creation time. If an unqualified name is
specified, the current authorization ID of the statement is used as the qualifier.
The specific-name must identify a specific procedure instance in the named or
implied schema; otherwise, an error (SQLSTATE 42704) is raised.

The comment replaces the value of the REMARKS column of the
SYSCAT.PROCEDURES catalog view for the row that describes the procedure.

SCHEMA schema-name
Indicates a comment will be added or replaced for a schema. The schema-name
must identify a schema that is described in the catalog (SQLSTATE 42704). The
comment replaces the value of the REMARKS column of the SYSCAT.SCHEMATA
catalog view for the row that describes the schema.

TABLE table-name or view-name
Indicates a comment will be added or replaced for a base table or view. The table-
name or view-name must identify a distinct base table or view that is described in
the catalog (SQLSTATE 42704). The comment replaces the value for the

380 SQL Reference

COMMENT ON

REMARKS column of the SYSCAT.TABLES catalog view for the row that describes
the base table or view.

TABLESPACE tablespace-name
Indicates a comment will be added or replaced for a table space. The tablespace-
name must identify a distinct table space that is described in the catalog
(SQLSTATE 42704). The comment replaces the value for the REMARKS column
of the SYSCAT.TABLESPACES catalog view for the row that describes the table
space.

TRIGGER trigger-name
Indicates a comment will be added or replaced for a trigger. The trigger-name must
identify a distinct trigger that is described in the catalog (SQLSTATE 42704). The
comment replaces the value for the REMARKS column of the SYSCAT.TRIGGERS
catalog view for the row that describes the trigger.

IS string-constant
Specifies the comment to be added or replaced. The string-constant can be any
character string constant of up to 254 bytes. (Carriage return and line feed each
count as 1 byte.)

table-name|view-name ({ column-name IS string-constant } ...)
This form of the COMMENT ON statement provides the ability to specify comments
for multiple columns of a base table or view. The column names must not be quali-
fied, each name must identify a column of the specified base table or view, and the
base table or view must be described in the catalog.

A comment cannot be made on a column of an inoperative view (SQLSTATE
51024).

 Examples
Example 1: Add a comment for the EMPLOYEE table.

COMMENT ON TABLE EMPLOYEE

 IS 'Reflects first quarter reorganization'

Example 2: Add a comment for the EMP_VIEW1 view.

COMMENT ON TABLE EMP_VIEW1

 IS 'View of the EMPLOYEE table without salary information'

Example 3: Add a comment for the EDLEVEL column of the EMPLOYEE table.

COMMENT ON COLUMN EMPLOYEE.EDLEVEL

 IS 'highest grade level passed in school'

Example 4: Add comments for two different columns of the EMPLOYEE table.

COMMENT ON EMPLOYEE

(WORKDEPT IS 'see DEPARTMENT table for names',

EDLEVEL IS 'highest grade level passed in school')

 Chapter 6. Statements 381

COMMENT ON

Example 5: Pellow wants to comment on the CENTRE function, which he created in
his PELLOW schema, using the signature to identify the specific function to be com-
mented on.

COMMENT ON FUNCTION CENTRE (INT,FLOAT)

IS 'Frank''s CENTRE fctn, uses Chebychev method'

Example 6: McBride wants to comment on another CENTRE function, which she
created in the PELLOW schema, using the specific name to identify the function
instance to be commented on:

COMMENT ON SPECIFIC FUNCTION PELLOW.FOCUS92 IS

'Louise''s most triumphant CENTRE function, uses the

Brownian fuzzy-focus technique'

Example 7: Comment on the function ATOMIC_WEIGHT in the CHEM schema, where
it is known that there is only one function with that name:

COMMENT ON FUNCTION CHEM.ATOMIC_WEIGHT

IS 'takes atomic nbr, gives atomic weight'

Example 8: Eigler wants to comment on the SEARCH procedure, which he created in
his EIGLER schema, using the signature to identify the specific procedure to be com-
mented on.

COMMENT ON PROCEDURE SEARCH (CHAR,INT)

IS 'Frank''s mass search and replace algorithm'

Example 9: Macdonald wants to comment on another SEARCH function, which he
created in the EIGLER schema, using the specific name to identify the procedure
instance to be commented on:

COMMENT ON SPECIFIC PROCEDURE EIGLER.DESTROY IS

'Patrick''s mass search and destroy algorithm'

Example 10: Comment on the procedure OSMOSIS in the BIOLOGY schema, where it
is known that there is only one procedure with that name:

COMMENT ON PROCEDURE BIOLOGY.OSMOSIS

IS 'Calculations modelling osmosis'

382 SQL Reference

COMMIT

 COMMIT
The COMMIT statement terminates a unit of work and commits the database changes
that were made by that unit of work.

 Invocation
This statement can be embedded in an application program or issued through the use
of dynamic SQL statements. It is an executable statement that can be dynamically pre-
pared.

 Authorization
None required.

 Syntax

 ┌ ┐ ─WORK─
55─ ─COMMIT─ ──┴ ┴────── ──5%

 Description
The unit of work in which the COMMIT statement is executed is terminated and a new
unit of work is initiated. All changes made by the following statements executed during
the unit of work are committed: ALTER, COMMENT ON, CREATE, DELETE, DROP,
GRANT, INSERT, LOCK TABLE, REVOKE, SET CONSTRAINTS, SET transition-
variable, and UPDATE.

The following statements, however, are not under transaction control and changes
made by them are independent of issuing the COMMIT statement:

 ¹ SET CONNECTION,
¹ SET CURRENT EXPLAIN MODE,
¹ SET CURRENT EXPLAIN SNAPSHOT,
¹ SET CURRENT FUNCTION PATH,
¹ SET CURRENT DEGREE,
¹ SET CURRENT PACKAGESET,
¹ SET CURRENT QUERY OPTIMIZATION,
¹ SET EVENT MONITOR STATE.

All locks acquired by the unit of work subsequent to its initiation are released, except
necessary locks for open cursors that are declared WITH HOLD. All open cursors not
defined WITH HOLD are closed. Open cursors defined WITH HOLD remain open, and
the cursor is positioned before the next logical row of the result table.43 All LOB locators

43 A FETCH must be performed before a Positioned UPDATE or DELETE statement is issued.

 Chapter 6. Statements 383

COMMIT

are freed. Note that this is true even when the locators are associated with LOB values
retrieved via a cursor that has the WITH HOLD property.

 Notes
It is strongly recommended that each application process explicitly ends its unit of work
before terminating. If the application program ends normally without a COMMIT or
ROLLBACK statement then the database manager attempts a commit or rollback
depending on the application environment. Refer to Embedded SQL Programming
Guide for implicitly ending a transaction in different application environments.

See the “Notes” on page 555 for impact of COMMIT on cached dynamic SQL state-
ments.

 Example
Commit alterations to the database made since the last commit point.

 COMMIT WORK

384 SQL Reference

Compound SQL

 Compound SQL
Combines one or more other SQL statements (sub-statements) into an executable
block.

 Invocation
This statement can only be embedded in an application program. The entire Compound
SQL statement construct is an executable statement that cannot be dynamically pre-
pared. The statement is not supported in REXX.

 Authorization
None for the Compound SQL statement itself. The authorization ID of the Compound
SQL statement must have the appropriate authorization on all the individual statements
that are contained within the Compound SQL statement.

 Syntax

55─ ─BEGIN COMPOUND─ ──┬ ┬─ATOMIC───── ─STATIC──5
 └ ┘─NOT ATOMIC─

 ┌ ┐────────────────────
5─ ──┬ ┬─── ───6 ┴┬ ┬──────────────── ─END COMPOUND───5%
 └ ┘─STOP AFTER FIRST──host-variable──STATEMENTS─ └ ┘──sql-statement;

 Description
ATOMIC

Specifies that, if any of the sub-statements within the Compound SQL statement
fails, then all changes made to the database by any of the sub-statements,
including changes made by successful sub-statements, are undone.

NOT ATOMIC
Specifies that, regardless of the failure of any sub-statements, the Compound SQL
statement will not undo any changes made to the database by the other sub-
statements.

STATIC
Specifies that input variables for all sub-statements retain their original value. For
example, if

SELECT ... INTO :abc ...

 is followed by:

UPDATE T1 SET C1 = 5 WHERE C2 = :abc

 the UPDATE statement will use the value that :abc had at the start of the exe-
cution of the Compound SQL statement, not the value that follows the SELECT
INTO.

 Chapter 6. Statements 385

Compound SQL

If the same variable is set by more than one sub-statement, the value of that vari-
able following the Compound SQL statement is the value set by the last sub-
statement.

Note: Non-static behavior is not supported. This means that the sub-statements
should be viewed as executing non-sequentially and sub-statements should
not have interdependencies.

STOP AFTER FIRST
Specifies that only a certain number of sub-statements will be executed.

host-variable
A small integer that specifies the number of sub-statements to be executed.

STATEMENTS
Completes the STOP AFTER FIRST host-variable clause.

sql-statement
All executable statements except the following can be contained within a Com-
pound SQL statement:

If a COMMIT statement is included, it must be the last sub-statement. If COMMIT
is in this position (for example the last of a hundred statements), it will be issued
even if the STOP AFTER FIRST host-variable STATEMENT option indicates that
only the first fifty statements are to be executed. In this case, it will be treated as
the fifty-first sub-statement.

An error will be returned if COMMIT is included when using CONNECT TYPE 2 or
running in an XA distributed transaction processing environment (SQLSTATE
25000).

CALL FETCH
CLOSE OPEN
CONNECT PREPARE
Compound SQL RELEASE
DESCRIBE ROLLBACK
DISCONNECT SET CONNECTION
EXECUTE IMMEDIATE

 Rules
¹ No host language code is allowed within a Compound SQL statement; that is, no

host language code is allowed between the sub-statements that make up the Com-
pound SQL statement.

¹ Only NOT ATOMIC Compound SQL statements will be accepted by DDCS.

¹ Compound SQL statements cannot be nested.

 Notes
One SQLCA is returned for the entire Compound SQL statement. Most of the informa-
tion in that SQLCA reflects the values set by the application server when it processed
the last sub-statement. For instance:

386 SQL Reference

Compound SQL

¹ The SQLCODE and SQLSTATE are normally those for the last sub-statement (the
exception is described in the next point).

¹ If a 'no data found' warning (SQLSTATE '02000') is returned, then that warning
is given precedence over any other warning in order that a WHENEVER NOT
FOUND exception can be acted upon.44

¹ The SQLWARN indicators are an accumulation of the indicators set for all sub-
statements.

If one or more errors occurred during NOT ATOMIC Compound SQL execution and
none of these are of a serious nature, the SQLERRMC will contain information on up to
a maximum of seven of these errors. The first token of the SQLERRMC will indicate the
total number of errors that occurred. The remaining tokens will each contain the ordinal
position and the SQLSTATE of the failing sub-statement within the Compound SQL
statement. The format is a character string of the form:

 nnnXsssccccc

 with the substring starting with X repeating up to six more times and the string ele-
ments defined as follows.

nnn The total number of statements that produced errors. 45 This field is left-
justified and padded with blanks.

X The token separator X'FF'.

sss The ordinal position of the statement that caused the error. 45 For example,
if the first statement failed, this field would contain the number one left-
justified ('1 ').

ccccc The SQLSTATE of the error.

The second SQLERRD field contains the number of statements that failed (returned
negative SQLCODES).

The third SQLERRD field in the SQLCA is an accumulation of the number of rows
affected by all sub-statements.

The fourth SQLERRD field in the SQLCA is a count of the number of successful sub-
statements. If, for example, the third sub-statement in a Compound SQL statement
failed, the fourth SQLERRD field would be set to 2, indicating that 2 sub-statements
were successfully processed before the error was encountered.

The fifth SQLERRD field in the SQLCA is an accumulation of the number of rows
updated or deleted due to the enforcement of referential integrity constraints for all sub-
statements that triggered such constraint activity.

44 This means that the SQLCODE, SQLERRML, SQLERRMC, and SQLERRP fields in the SQLCA that is eventually returned to the
application are those from the sub-statement that triggered the 'no data found'. If there is more than one 'no data found' warning
within the Compound SQL statement, the fields for the last sub-statement will be the fields returned.

45 If the number would exceed 999, counting restarts at zero.

 Chapter 6. Statements 387

Compound SQL

 Examples
Example 1: In a C program, issue a Compound SQL statement that updates both the
ACCOUNTS and TELLERS tables. If there is an error in any of the statements, undo
the effect of all statements (ATOMIC). If there are no errors, commit the current unit of
work.

EXEC SQL BEGIN COMPOUND ATOMIC STATIC

UPDATE ACCOUNTS SET ABALANCE = ABALANCE + :delta

WHERE AID = :aid;

UPDATE TELLERS SET TBALANCE = TBALANCE + :delta

WHERE TID = :tid;

INSERT INTO TELLERS (TID, BID, TBALANCE) VALUES (:i, :branch_id, 0);

 COMMIT;

 END COMPOUND;

Example 2: In a C program, insert 10 rows of data into the database. Assume the host
variable :nbr contains the value 10 and S1 is a prepared INSERT statement. Further,
assume that all the inserts should be attempted regardless of errors (NOT ATOMIC).

EXEC SQL BEGIN COMPOUND NOT ATOMIC STATIC STOP AFTER FIRST

:nbr STATEMENTS

EXECUTE S1 USING DESCRIPTOR :*sqlda0;

EXECUTE S1 USING DESCRIPTOR :*sqlda1;

EXECUTE S1 USING DESCRIPTOR :*sqlda2;

EXECUTE S1 USING DESCRIPTOR :*sqlda3;

EXECUTE S1 USING DESCRIPTOR :*sqlda4;

EXECUTE S1 USING DESCRIPTOR :*sqlda5;

EXECUTE S1 USING DESCRIPTOR :*sqlda6;

EXECUTE S1 USING DESCRIPTOR :*sqlda7;

EXECUTE S1 USING DESCRIPTOR :*sqlda8;

EXECUTE S1 USING DESCRIPTOR :*sqlda9;

 END COMPOUND;

388 SQL Reference

CONNECT (Type 1)

CONNECT (Type 1)
The CONNECT (Type 1) statement connects an application process to the identified
application server according to the rules for remote unit of work.

An application process can only be connected to one application server at a time. This
is called the current server. A default application server may be established when the
application requester is initialized. If implicit connect is available and an application
process is started, it is implicitly connected to the default application server. The appli-
cation process can explicitly connect to a different application server by issuing a
CONNECT TO statement. A connection lasts until a CONNECT RESET statement or a
DISCONNECT statement is issued or until another CONNECT TO statement changes
the application server.

See “Remote Unit of Work Connection Management” on page 25 for concepts and
additional details on connection states. See “Options that Govern Distributed Unit of
Work Semantics” on page 32 for the precompiler options that determine the framework
for CONNECT behavior.

 Invocation
Although an interactive SQL facility might provide an interface that gives the appear-
ance of interactive execution, this statement can only be embedded within an applica-
tion program. It is an executable statement that cannot be dynamically prepared.

 Authorization
The authorization ID of the statement must be authorized to connect to the identified
application server. Depending on the authentication setting for the database, the author-
ization check may be performed by either the client or the server. For a partitioned
database, the user and group definitions must be identical across partitions or nodes.
Refer to the AUTHENTICATION database manager configuration parameter in the
Administration Guide for information about the authentication setting.

 Syntax

 Chapter 6. Statements 389

CONNECT (Type 1)

55─ ─CONNECT─ ──┬ ┬── ───────5%
 ├ ┤ ─TO─ ──┬ ┬─server-name─── ──┬ ┬──────────────── ──┬ ┬───────────────────
 │ │└ ┘─host-variable─ └ ┘─┤ lock-block ├─ └ ┘─┤ authorization ├─
 ├ ┤─RESET──
 └ ┘─┤ authorizaton ├───(1) ──

authorization:
├─ ─USER─ ──┬ ┬─authorization-name─ ─USING─ ──┬ ┬─password────── ────────────────────────────────┤
 └ ┘─host-variable────── └ ┘─host-variable─

lock-block:
 ┌ ┐─IN SHARE MODE─────────────────────────
├─ ──┼ ┼─────────────────────────────────────── ───┤
 └ ┘─IN EXCLUSIVE MODE─ ──┬ ┬────────────────

└ ┘─ON SINGLE NODE─

Note:
1 This form is only valid if implicit connect is enabled.

 Description
CONNECT (with no operand)

Returns information about the current server. The information is returned in the
SQLERRP field of the SQLCA as described in “Successful Connection”.

If a connection state exists, the authorization ID and database alias are placed in
the SQLERRMC field of the SQLCA. If no connection exists and implicit connect is
possible, then an attempt to make an implicit connection is made. If implicit
connect is not available, this attempt results in an error (no existing connection). If
no connection, then the SQLERRMC field is blank.

The country code and code page of the application server are placed in the
SQLERRMC field (as they are with a successful CONNECT TO statement).

This form of CONNECT:

¹ Does not require the application process to be in the connectable state.
¹ If connected, does not change the connection state.
¹ If unconnected and implicit connect is available, a connection to the default

application server is made. In this case, the country code and code page of
the application server are placed in the SQLERRMC field, like a successful
CONNECT TO statement.

¹ If unconnected and implicit connect is not available, the application process
remains unconnected.

¹ Does not close cursors.

TO server-name or host-variable
Identifies the application server by the specified server-name or a host-variable
which contains the server-name.

If a host-variable is specified, it must be a character string variable with a length
attribute that is not greater than 8, and it must not include an indicator variable.

390 SQL Reference

CONNECT (Type 1)

The server-name that is contained within the host-variable must be left-justified and
must not be delimited by quotation marks.

Note that the server-name is a database alias identifying the application server. It
must be listed in the application requester's local directory.

Note: DB2 for MVS supports a 16 byte location-name and both SQL/DS and
DB2/400 support a 18 byte target database name. DB2 Version 5 only sup-
ports the use of 8 byte database-alias name on the SQL CONNECT state-
ment. However, the database-alias name can be mapped to an 18 byte
database name through the Database Connection Service Directory.

When the CONNECT TO statement is executed, the application process must be in
the connectable state (see “Remote Unit of Work Connection Management” on
page 25 for information about connection states with Type 1 CONNECT).

Successful Connection:

If the CONNECT TO statement is successful:

¹ All open cursors are closed, all prepared statements are destroyed, and all
locks are released from the previous application server.

¹ The application process is disconnected from its previous application server, if
any, and connected to the identified application server.

¹ The actual name of the application server (not an alias) is placed in the
CURRENT SERVER special register.

¹ Information about the application server is placed in the SQLERRP field of the
SQLCA. If the application server is an IBM product, the information has the
form pppvvrrm, where:

– ppp identifies the product as follows:

DSN for DB2 for MVS
ARI for SQL/DS
QSQ for DB2/400
SQL for DB2 Universal Database

– vv is a two-digit version identifier such as '02'

– rr is a two-digit release identifier such as '01'

– m is a one-digit modification level identifier such as '0'.

For example, if the application server is Version 1 Release 1 of DB2 for OS/2,
the value of SQLERRP is 'SQL01010'.46

¹ The SQLERRMC field of the SQLCA is set to contain the following values
(separated by X'FF')

1. the country code of the application server (or blanks if using DDCS),

2. the code page of the application server (or CCSID if using DDCS),

46 This release of DB2 Universal Database Version 5 is 'SQL05000'.

 Chapter 6. Statements 391

CONNECT (Type 1)

3. the authorization ID,

4. the database alias,

5. the platform type of the application server. Currently identified values are:

Token Server
QAS DB2/400
QDB2 DB2 for MVS
QDB2/2 DB2 Universal Database for OS/2
QDB2/6000 DB2 Universal Database for AIX
QDB2/HPUX DB2 Universal Database for HP-UX
QDB2/NT DB2 Universal Database for NT
QDB2/SNI DB2 Universal Database for Siemens Nixdorf
QDB2/SUN DB2 Universal Database for Solaris
QOS/2 DBM ES 1.0 DBM (note that there is a single space

between QOS/2 and DBM)
QSQLDS/VM SQL/DS for VM
QSQLDS/VSE SQL/DS for VSE

6. The agent ID. It identifies the agent executing within the database
manager on behalf of the application. This field is the same as the
agent_id element returned by the database monitor.

7. The agent index. It identifies the index of the agent and is used for
service.

8. Partition number. For a non-partitioned database, this is always 0, if
present.

9. The code page of the application client.

10. Number of partitions in a partitioned database. If the database cannot be
partitioned, the value is 0 (zero). Token is present only with Version 5 or
later.

¹ The SQLERRD(1) field of the SQLCA indicates the maximum expected differ-
ence in length of mixed character data (CHAR data types) when converted to
the database code page from the application code page. A value of 0 or 1
indicates no expansion; a value greater than 1 indicates a possible expansion
in length; a negative value indicates a possible contraction. 47

¹ The SQLERRD(2) field of the SQLCA indicates the maximum expected differ-
ence in length of mixed character data (CHAR data types) when converted to
the application code page from the database code page. A value of 0 or 1
indicates no expansion; a value greater than 1 indicates a possible expansion
in length; a negative value indicates a possible contraction. 47

¹ The SQLERRD(3) field of the SQLCA indicates whether or not the database
on the connection is updatable. A database is initially updatable, but is

47 See the “Character Conversion Expansion Factor” section of the “Programming in Complex Environments” chapter in the Embedded
SQL Programming Guide for details.

392 SQL Reference

CONNECT (Type 1)

changed to read only if a unit of work determines the authorization ID cannot
perform updates. The value is one of:

1 - updatable
2 - read-only

¹ The SQLERRD(4) field of the SQLCA returns certain characteristics of the
connection. The value is one of:

0 - N/A (only possible if running from a down-level client which is one
phase commit and is an updater).

1 - one-phase commit.
2 - one-phase commit; read-only (only applicable to connections to

DRDA1 databases in TP Monitor environment).
3 - two-phase commit.

¹ The SQLERRD(5) field of the SQLCA returns the authentication type of the
connection. The value is one of:

0 - Authenticated on the server.
1 - Authenticated on the client.
2 - Authenticated using DB2 Connect.
3 - Authenticated using Distributed Computing Environment security ser-

vices.
255 - Authentication not specified.

See "Controlling Database Access" in the Administration Guide for details on
authentication types.

¹ The SQLERRD(6) field of the SQLCA returns the partition number of the parti-
tion to which the connection was made if the database is partitioned. Other-
wise, a value of 0 is returned.

Unsuccessful Connection:

If the CONNECT TO statement is unsuccessful:

¹ The SQLERRP field of the SQLCA is set to the name of the module at the
application requester that detected the error. Note that the first three charac-
ters of the module name identifies the product. For example, if the application
requester is on the OS/2 database manager, the first three characters are
'SQL'.

¹ If the CONNECT TO statement is unsuccessful because the application
process is not in the connectable state, the connection state of the application
process is unchanged.

¹ If the CONNECT TO statement is unsuccessful because the server-name is
not listed in the local directory, an error message (SQLSTATE 08001) is
issued and the connection state of the application process remains
unchanged:

– If the application requester was not connected to an application server
then the application process remains unconnected.

 Chapter 6. Statements 393

CONNECT (Type 1)

– If the application requester was already connected to an application
server, the application process remains connected to that application
server. Any further statements are executed at that application server.

¹ If the CONNECT TO statement is unsuccessful for any other reason, the appli-
cation process is placed into the unconnected state.

IN SHARE MODE
Allows other concurrent connections to the database and prevents other users from
connecting to the database in exclusive mode.

IN EXCLUSIVE MODE 48

Prevents concurrent application processes from executing any operations at the
application server, unless they have the same authorization ID as the user holding
the exclusive lock.

ON SINGLE NODE
Specifies that the coordinator partition is connected in exclusive mode and all
other partitions are connected in share mode. This option is only effective in a
partitioned database .

RESET
Disconnects the application process from the current server. A commit opera-
tion is performed. If implicit connect is available, the application process
remains unconnected until an SQL statement is issued.

USER authorization-name/host-variable
Identifies the userid trying to connect to the application server. If a host-
variable is specified, it must be a character string variable with a length attri-
bute that is not greater than 8, and it must not include an indicator variable.
The userid that is contained within the host-variable must be left justified and
must not be delimited by quotation marks.

USING password/host-variable
Identifies the password of the userid trying to connect to the application server.
Password or host-variable may be up to 18 characters. If a host variable is
specified, it must be a character string variable with a length attribute not
greater than 18 and it must not include an indicator variable.

 Notes
¹ It is good practice for the first SQL statement executed by an application process

to be the CONNECT TO statement.

¹ If a CONNECT TO statement is issued to the current application server with a dif-
ferent userid and password then the conversation is deallocated and reallocated.
All cursors are closed by the database manager (with the loss of the cursor posi-
tion if the WITH HOLD option was used).

48 This option is not supported by DDCS.

394 SQL Reference

CONNECT (Type 1)

¹ If a CONNECT TO statement is issued to the current application server with the
same userid and password then the conversation is not deallocated and reallo-
cated. Cursors, in this case, are not closed.

¹ To use DB2 Universal Database Extended Enterprise Edition, the user or applica-
tion must connect to one of the partitions listed in the db2nodes.cfg file (see “Data
Partitioning Across Multiple Partitions” on page 39 for information about this file).
You should try to ensure that not all users use the same partition as the coordi-
nator partition.

 Examples
Example 1: In a C program, connect to the application server TOROLAB3, where
TOROLAB3 is a database alias of the same name, with the userid FERMAT and the
password THEOREM.

EXEC SQL CONNECT TO TOROLAB3 USER FERMAT USING THEOREM;

Example 2: In a C program, connect to an application server whose database alias is
stored in the host variable APP_SERVER (varchar(8)). Following a successful con-
nection, copy the 3 character product identifier of the application server to the variable
PRODUCT (char(3)).

EXEC SQL CONNECT TO :APP_SERVER;

 if (strncmp(SQLSTATE,'00000',5))

 strncpy(PRODUCT,sqlca.sqlerrp,3);

 Chapter 6. Statements 395

CONNECT (Type 2)

CONNECT (Type 2)
The CONNECT (Type 2) statement connects an application process to the identified
application server and establishes the rules for application-directed distributed unit of
work. This server is then the current server for the process.

See “Application-Directed Distributed Unit of Work” on page 29 for concepts and addi-
tional details.

Most aspects of a CONNECT (Type 1) statement also apply to a CONNECT (Type 2)
statement. Rather than repeating that material here, this section describes only those
elements of Type 2 that differ from Type 1.

 Invocation
The invocation is the same as “Invocation” on page 389.

 Authorization
The authorization is the same as “Authorization” on page 389.

 Syntax
The syntax is the same as “Syntax” on page 389. The selection between Type 1 and
Type 2 is determined by precompiler options. See “Options that Govern Distributed Unit
of Work Semantics” on page 32 for an overview of these options. Further details are
provided in the Command Reference and API Reference manuals.

 Description
TO server-name/host-variable

The rules for coding the name of the server are the same as for Type 1.

If the SQLRULES(STD) option is in effect, the server-name must not identify an
existing connection of the application process, otherwise an error (SQLSTATE
08002) is raised.

If the SQLRULES(DB2) option is in effect and the server-name identifies an
existing connection of the application process, that connection is made current and
the old connection is placed into the dormant state. That is, the effect of the
CONNECT statement in this situation is the same as that of a SET CONNECTION
statement.

See “Options that Govern Distributed Unit of Work Semantics” on page 32 for
information about the specification of SQLRULES.

Successful Connection

If the CONNECT TO statement is successful:

¹ A connection to the application server is either created (or made non-dormant)
and placed into the current and held states.

¹ If the CONNECT TO is directed to a different server than the current server,
then the current connection is placed into the dormant state.

396 SQL Reference

CONNECT (Type 2)

¹ The CURRENT SERVER special register and the SQLCA are updated in the
same way as for Type 1 CONNECT; see page on page 391.

Unsuccessful Connection

If the CONNECT TO statement is unsuccessful:

¹ No matter what the reason for failure, the connection state of the application
process and the states of its connections are unchanged.

¹ As with an unsuccessful Type 1 CONNECT, the SQLERRP field of the SQLCA
is set to the name of the module at the application requester or server that
detected the error.

CONNECT (with no operand), IN SHARE/EXCLUSIVE MODE, USER, and USING
If a connection exists, Type 2 behaves like a Type 1. The authorization ID and
database alias are placed in the SQLERRMC field of the SQLCA. If a connection
does not exist, no attempt to make an implicit connection is made and the
SQLERRP and SQLERRMC fields return a blank. (Applications can check if a
current connection exists by checking these fields.)

A CONNECT with no operand that includes USER and USING can still connect an
application process to a database using the DB2DBDFT environment variable.
This method is equivalent to a Type 2 CONNECT RESET, but permits the use of a
userid and password.

RESET
Equivalent to an explicit connect to the default database if it is available. If a
default database is not available, the connection state of the application process
and the states of its connections are unchanged.

Availability of a default database is determined by installation options, environment
variables, and authentication settings. See the Installation and Operation Guide for
information on setting implicit connect on installation and environment variables,
and the Administration Guide for information on authentication settings.

 Rules
¹ As outlined in “Options that Govern Distributed Unit of Work Semantics” on

page 32 a set of connection options governs the semantics of connection manage-
ment. Default values are assigned to every preprocessed source file. An applica-
tion can consist of multiple source files precompiled with different connection
options.

Unless a SET CLIENT command or API has been executed first, the connection
options used when preprocessing the source file containing the first SQL statement
executed at run-time become the effective connection options.

If a CONNECT statement from a source file preprocessed with different connection
options is subsequently executed without the execution of any intervening SET
CLIENT command or API, an error (SQLSTATE 08001) is raised. Note that once a
SET CLIENT command or API has been executed, the connection options used
when preprocessing all source files in the application are ignored.

Example 1 on page 400 illustrates these rules.

 Chapter 6. Statements 397

CONNECT (Type 2)

¹ Although the CONNECT TO statement can be used to establish or switch con-
nections, CONNECT TO with the USER/USING clause will only be accepted when
there is no current or dormant connection to the named server. The connection
must be released before issuing a connection to the same server with the
USER/USING clause, otherwise it will be rejected (SQLSTATE 51022). Release
the connection by issuing a DISCONNECT statement or a RELEASE statement
followed by a COMMIT statement.

 Notes
¹ Implicit connect is supported for the first SQL statement in an application with Type

2 connections. In order to execute SQL statements on the default database, first
the CONNECT RESET or the CONNECT USER/USING statement must be used to
establish the connection. The CONNECT statement with no operands will display
information about the current connection if there is one, but will not connect to the
default database if there is no current connection.

Comparing Type 1 and Type 2 CONNECT Statements:

The semantics of the CONNECT statement are determined by the CONNECT precom-
piler option or the SET CLIENT API (see “Options that Govern Distributed Unit of Work
Semantics” on page 32). CONNECT Type 1 or CONNECT Type 2 can be specified
and the CONNECT statements in those programs are known as Type 1 and Type 2
CONNECT statements respectively. Their semantics are described below:

Use of CONNECT TO:

Type 1 Type 2

Each unit of work can only establish con-
nection to one application server.

Each unit of work can establish connection to
multiple application servers.

The current unit of work must be committed or
rolled back before allowing a connection to
another application server.

The current unit of work need not be com-
mitted or rolled back before connecting to
another application server.

The CONNECT statement establishes the
current connection. Subsequent SQL requests
are forwarded to this connection until changed
by another CONNECT.

Same as Type 1 CONNECT if establishing the
first connection. If switching to a dormant con-
nection and SQLRULES is set to STD, then
the SET CONNECTION statement must be
used instead.

Connecting to the current connection is valid
and does not change the current connection.

Same as Type 1 CONNECT if the SQLRULES
precompiler option is set to DB2. If
SQLRULES is set to STD, then the SET CON-
NECTION statement must be used instead.

398 SQL Reference

CONNECT (Type 2)

Use of CONNECT...USER...USING:

Use of Implicit CONNECT, CONNECT RESET , and Disconnecting :

Type 1 Type 2

Connecting to another application server dis-
connects the current connection. The new con-
nection becomes the current connection. Only
one connection is maintained in a unit of work.

Connecting to another application server puts
the current connection into the dormant state.
The new connection becomes the current con-
nection. Multiple connections can be main-
tained in a unit of work.

If the CONNECT is for an application server
on a dormant connection, it becomes the
current connection.

Connecting to a dormant connection using
CONNECT is only allowed if SQLRULES(DB2)
was specified. If SQLRULES(STD) was speci-
fied, then the SET CONNECTION statement
must be used instead.

SET CONNECTION statement is supported for
Type 1 connections, but the only valid target is
the current connection.

SET CONNECTION statement is supported for
Type 2 connections to change the state of a
connection from dormant to current.

Type 1 Type 2

Connecting with the USER...USING clauses
disconnects the current connection and estab-
lishes a new connection with the given authori-
zation name and password.

Connecting with the USER/USING clause will
only be accepted when there is no current or
dormant connection to the same named
server.

Type 1 Type 2

CONNECT RESET can be used to disconnect
the current connection.

CONNECT RESET is equivalent to connecting
to the default application server explicitly if one
has been defined in the system.

Connections can be disconnected by the appli-
cation at a successful COMMIT. Prior to the
commit, use the RELEASE statement to mark
a connection as release-pending. All such con-
nections will be disconnected at the next
COMMIT.

An alternative is to use the precompiler options
DISCONNECT(EXPLICIT),
DISCONNECT(CONDITIONAL),
DISCONNECT(AUTOMATIC), or the DISCON-
NECT statement instead of the RELEASE
statement.

 Chapter 6. Statements 399

CONNECT (Type 2)

CONNECT Failures :

Type 1 Type 2

After using CONNECT RESET to disconnect
the current connection, if the next SQL state-
ment is not a CONNECT statement, then it will
perform an implicit connect to the default appli-
cation server if one has been defined in the
system.

CONNECT RESET is equivalent to an explicit
connect to the default application server if one
has been defined in the system.

It is an error to issue consecutive CONNECT
RESETs.

It is an error to issue consecutive CONNECT
RESETs ONLY if SQLRULES(STD) was speci-
fied because this option disallows the use of
CONNECT to existing connection.

CONNECT RESET also implicitly commits the
current unit of work.

CONNECT RESET does not commit the
current unit of work.

If an existing connection is disconnected by
the system for whatever reasons, then subse-
quent non-CONNECT SQL statements to this
database will receive an SQLSTATE of 08003.

If an existing connection is disconnected by
the system, COMMIT, ROLLBACK, and SET
CONNECTION statements are still permitted.

The unit of work will be implicitly committed
when the application process terminates suc-
cessfully.

Same as Type 1.

All connections (only one) are disconnected
when the application process terminates.

All connections (current, dormant, and those
marked for release pending) are disconnected
when the application process terminates.

Type 1 Type 2

Regardless of whether there is a current con-
nection when a CONNECT fails (with an error
other than server-name not defined in the local
directory), the application process is placed in
the unconnected state. Subsequent
non-CONNECT statements receive an
SQLSTATE of 08003.

If there is a current connection when a
CONNECT fails, the current connection is
unaffected.

If there was no current connection when the
CONNECT fails, then the program is then in
an unconnected state. Subsequent
non-CONNECT statements receive an
SQLSTATE of 08003.

 Examples
Example 1: This example illustrates the use of multiple source programs (shown in the
boxes), some preprocessed with different connection options (shown above the code)
and one of which contains a SET CLIENT API call.

PGM1: CONNECT(2) SQLRULES(DB2) DISCONNECT(CONDITIONAL)

 ...

exec sql CONNECT TO OTTAWA;

exec sql SELECT col1 INTO :hv1

 FROM tbl1;

 ...

400 SQL Reference

CONNECT (Type 2)

PGM2: CONNECT(2) SQLRULES(STD) DISCONNECT(AUTOMATIC)

 ...

exec sql CONNECT TO QUEBEC;

exec sql SELECT col1 INTO :hv1

 FROM tbl2;

 ...

PGM3: CONNECT(2) SQLRULES(STD) DISCONNECT(EXPLICIT)

 ...

SET CLIENT CONNECT 2 SQLRULES DB2 DISCONNECT EXPLICIT 1

exec sql CONNECT TO LONDON;

exec sql SELECT col1 INTO

:hv1 FROM tbl3;

 ...

1 Note: not the actual syntax of the SET CLIENT API

PGM4: CONNECT(2) SQLRULES(DB2) DISCONNECT(CONDITIONAL)

 ...

exec sql CONNECT TO REGINA;

exec sql SELECT col1 INTO

:hv1 FROM tbl4;

 ...

If the application executes PGM1 then PGM2:

¹ connect to OTTAWA runs: connect=2, sqlrules=DB2, disconnect=CONDITIONAL
¹ connect to QUEBEC fails with SQLSTATE 08001 because both SQLRULES and

DISCONNECT are different.

If the application executes PGM1 then PGM3:

¹ connect to OTTAWA runs: connect=2, sqlrules=DB2, disconnect=CONDITIONAL
¹ connect to LONDON runs: connect=2, sqlrules=DB2, disconnect=EXPLICIT

This is OK because the SET CLIENT API is run before the second CONNECT state-
ment.

If the application executes PGM1 then PGM4:

¹ connect to OTTAWA runs: connect=2, sqlrules=DB2, disconnect=CONDITIONAL
¹ connect to REGINA runs: connect=2, sqlrules=DB2, disconnect=CONDITIONAL

This is OK because the preprocessor options for PGM1 are the same as those for
PGM4.

Example 2:

This example shows the interrelationships of the CONNECT (Type 2), SET CON-
NECTION, RELEASE, and DISCONNECT statements. S0, S1, S2, and S3 represent
four servers.

 Chapter 6. Statements 401

CONNECT (Type 2)

Sequence Statement
Current
Server

Dormant
Con-
nections

Release
Pending

0 No statement None None None

1. SELECT * FROM TBLA S0 (default) None None

2 CONNECT TO S1 SELECT
* FROM TBLB

S1 S1 S0 S0 None None

3 CONNECT TO S2 UPDATE
TBLC SET ...

S2 S2 S0, S1 S0,
S1

None None

4 CONNECT TO S3 SELECT
* FROM TBLD

S3 S3 S0, S1, S2
S0, S1, S2

None None

5 SET CONNECTION S2 S2 S0, S1, S3 None

6 RELEASE S3 S2 S0, S1 S3

7 COMMIT S2 S0, S1 None

8 SELECT * FROM TBLE S2 S0, S1 None

9 DISCONNECT S1 SELECT
* FROM TBLF

S2 S2 S0 S0 None None

402 SQL Reference

CREATE ALIAS

 CREATE ALIAS
The CREATE ALIAS statement defines an alias for a table, view, or another alias.

 Invocation
This statement can be embedded in an application program or issued through the use
of dynamic SQL statements. It is an executable statement that can be dynamically pre-
pared.

 Authorization
The privileges held by the authorization ID of the statement must include as least one
of the following:

¹ SYSADM or DBADM authority
¹ IMPLICIT_SCHEMA authority on the database, if the implicit or explicit schema

name of the alias does not exist
¹ CREATEIN privilege on the schema, if the schema name of the alias refers to an

existing schema .

To use the referenced object via the alias, the same privileges are required on that
object as would be necessary if the object itself were used.

 Syntax

55─ ─CREATE─ ──┬ ┬─ALIAS───── ─alias-name─ ─FOR─ ──┬ ┬─table-name── ─────────────────────────────5%
 └ ┘─SYNONYM───(1) ├ ┤─view-name───
 └ ┘─alias-name2─

Note:
1 CREATE SYNONYM is accepted as an alternative for CREATE ALIAS for syntax toleration of

existing CREATE SYNONYM statements of other SQL implementations.

 Description
alias-name

Names the alias. The name must not identify a table, view, or alias that exists in
the current database.

If no qualifier is supplied, the current SQL authorization ID of the statement is used
as the schema name. If a two-part name is specified, the schema name cannot
begin with "SYS" (SQLSTATE 42939).

The rules for defining an alias name are the same as those used for defining a
table name.

 Chapter 6. Statements 403

CREATE ALIAS

FOR table-name, view-name, or alias-name2
Identifies the table, view, or alias for which alias-name is defined. If another alias
name is supplied (alias-name2), then it must not be the same as the new alias-
name being defined (in its fully-qualified form).

 Notes
¹ The definition of the newly created alias is stored in SYSCAT.TABLES.

¹ An alias can be defined for an object that does not exist at the time of the defi-
nition. If it does not exist, a warning is issued (SQLSTATE 01522). However, the
referenced object must exist when a SQL statement containing the alias is com-
piled, otherwise an error is issued (SQLSTATE 52004).

¹ An alias can be defined to refer to another alias as part of an alias chain but this
chain is subject to the same restrictions as a single alias when used in an SQL
statement. An alias chain is resolved in the same way as a single alias. If an alias
used in a view definition, a statement in a package, or a trigger points to an alias
chain, then a dependency is recorded for the view, package, or trigger on each
alias in the chain. Repetitive cycles in an alias chain are not allowed and are
detected at alias definition time.

¹ Creating an alias with a schema name that does not already exist will result in the
implicit creation of that schema provided the authorization ID of the statement has
IMPLICIT_SCHEMA authority. The schema owner is SYSIBM. The CREATEIN
privilege on the schema is granted to PUBLIC.

 Examples
Example 1: HEDGES attempts to create an alias for a table T1 (both unqualified).

CREATE ALIAS A1 FOR T1

The alias HEDGES.A1 is created for HEDGES.T1.

Example 2: HEDGES attempts to create an alias for a table (both qualified).

CREATE ALIAS HEDGES.A1 FOR MCKNIGHT.T1

The alias HEDGES.A1 is created for MCKNIGHT.T1.

Example 3: HEDGES attempts to create an alias for a table (alias in a different
schema; HEDGES is not a DBADM; HEDGES does not have CREATEIN on schema
MCKNIGHT).

CREATE ALIAS MCKNIGHT.A1 FOR MCKNIGHT.T1

This example fails (SQLSTATE 42501).

Example 4: HEDGES attempts to create an alias for an undefined table (both qualified;
FUZZY.WUZZY does not exist).

CREATE ALIAS HEDGES.A1 FOR FUZZY.WUZZY

This statement succeeds but with a warning (SQLSTATE 01522).

404 SQL Reference

CREATE ALIAS

Example 5: HEDGES attempts to create an alias for an alias (both qualified).

CREATE ALIAS HEDGES.A1 FOR MCKNIGHT.T1

CREATE ALIAS HEDGES.A2 FOR HEDGES.A1

The first statement succeeds (as per example 2).

The second statement succeeds and an alias chain is created, consisting of
HEDGES.A2 which refers to HEDGES.A1 which refers to MCKNIGHT.T1. Note that it
does not matter whether or not HEDGES has any privileges on MCKNIGHT.T1. The
alias is created regardless of the table privileges.

 Chapter 6. Statements 405

CREATE BUFFERPOOL

 CREATE BUFFERPOOL
The CREATE BUFFERPOOL statement creates a new buffer pool to be used by the
database manager. Although the buffer pool definition is transactional and the entries
will be reflected in the catalog tables on commit, the buffer pool will not become active
until the next time the database is started.

In a partitioned database , a default buffer pool definition is specified for each partition
or node , with the capability to override the size on specific partitions or nodes . Also, in
a partitioned database , the buffer pool is defined on all partitions unless nodegroups
are specified. If nodegroups are specified, the buffer pool will only be created on parti-
tions that are in those nodegroups.

 Invocation
This statement can be embedded in an application program or issued interactively. It is
an executable statement that can be dynamically prepared.

 Authorization
The authorization ID of the statement must have SYSCTRL or SYSADM authority.

 Syntax

 ┌ ┐─ALL NODES─────────────────────
55──CREATE──BUFFERPOOL──bufferpool-name─ ──┼ ┼─────────────────────────────── ───────────────5
 │ │┌ ┐─,──────────────
 └ ┘ ─NODEGROUP─ ───6 ┴─nodegroup-name─

┌ ┐─NOT EXTENDED STORAGE─
5─ ─SIZE──number-of-pages─ ──┬ ┬──────────────────────────── ──┼ ┼────────────────────── ──────5%
 └ ┘─┤ except-on-nodes-clause ├─ └ ┘─EXTENDED STORAGE─────

except-on-nodes-clause:
├─ ─EXCEPT ON─ ──┬ ┬─NODE── ──5
 └ ┘─NODES─

 ┌ ┐─,───
5─ ─(─ ───6 ┴─node-number1─ ──┬ ┬────────────────── ─SIZE──number-of-pages─ ─)────────────────────┤
 └ ┘ ─TO──node-number2─

 Description
bufferpool-name

Names the buffer pool. This is a one-part name. It is an SQL identifier (either ordi-
nary or delimited). The bufferpool-name must not identify a buffer pool that already
exists in a catalog (SQLSTATE 42710). The bufferpool-name must not begin with
the characters "SYS" or "IBM" (SQLSTATE 42939).

406 SQL Reference

CREATE BUFFERPOOL

ALL NODES
This buffer pool will be created on all partitions in the database.

NODEGROUP nodegroup-name, ...
Identifies the nodegroup or nodegroups to which the buffer pool definition is appli-
cable. If this is specified, this buffer pool will only be created on partitions in these
nodegroups. Each nodegroup must currently exist in the database (SQLSTATE
42704). If the NODEGROUP keyword is not specified, then this buffer pool will be
created on all partitions (and any partitions subsequently added to the database).

SIZE number-of-pages
The size of the buffer pool specified as the number of pages.49 In a partitioned
database , this will be the default size for all partitions where the buffer pool exists.

except-on-nodes-clause
Specifies the partition or partitions for which the size of the buffer pool will be dif-
ferent than the default. If this clause is not specified, then all partitions will have the
same size as specified for this buffer pool.

EXCEPT ON NODES
Keywords that indicate that specific partitions are specified. NODE is a
synonym for NODES.

node-number1
Specifies a specific partition number that is included in the partitions for
which the buffer pool is created.

TO node-number2
Specify a range of partition numbers. The value of node-number2 must be
greater than or equal to the value of node-number1 (SQLSTATE 428A9).
All partitions between and including the specified partition numbers must
be included in the partitions for which the buffer pool is created
(SQLSTATE 42729).

SIZE number-of-pages
The size of the buffer pool specified as the number of pages.

EXTENDED STORAGE
If the extended storage configuration is turned on50 , pages that are being migrated
out of this buffer pool, will be cached in the extended storage.

NOT EXTENDED STORAGE
Even if the database extended storage configuration is turned on, pages that are
being migrated out of this buffer pool, will NOT be cached in the extended storage.

49 The size can be specified with a value of (-1) which will indicate that the buffer pool size should be taken from the BUFFPAGE
database configuration parameter.

50 Extended storage configuration is turned on by setting the database configuration parameters NUM_ESTORE_SEGS and
ESTORE_SEG_SIZE to non-zero values. See Administration Guide for details.

 Chapter 6. Statements 407

CREATE BUFFERPOOL

 Notes
¹ Until the next time the database is started, any table space that is created will use

the default buffer pool while any table space that is altered will use the previously
defined buffer pool. The database has to be restarted for the table space assign-
ment to the new buffer pool to take effect.

¹ The page size for buffer pools is 4 096 bytes.

¹ There should be enough real memory on the machine for the total of all the buffer
pools, as well as for the rest of the database manager and application require-
ments. If DB2 is unable to obtain the total memory for all buffer pools, it will
attempt to start up only the default buffer pool. If this is unsuccessful, it will start up
a minimal default buffer pool. In either of these cases, a warning will be returned to
the user (SQLSTATE 01626) and the pages from all table spaces will use the
default buffer pool.

408 SQL Reference

CREATE DISTINCT TYPE

CREATE DISTINCT TYPE
The CREATE DISTINCT TYPE statement defines a distinct type. The distinct type is
always sourced on one of the built-in data types. Successful execution of the statement
also generates functions to cast between the distinct type and its source type and,
optionally, generates support for the comparison operators (=, <>, <, <=, >, and >=) for
use with the distinct type.

 Invocation
This statement can be embedded in an application program or issued through the use
of dynamic SQL statements. It is an executable statement that can be dynamically pre-
pared.

 Authorization
The privileges held by the authorization ID of the statement must include as least one
of the following:

¹ SYSADM or DBADM authority
¹ IMPLICIT_SCHEMA authority on the database, if the schema name of the distinct

type does not refer to an existing schema.
¹ CREATEIN privilege on the schema, if the schema name of the distinct type refers

to an existing schema .

 Syntax

 Chapter 6. Statements 409

CREATE DISTINCT TYPE

55──CREATE DISTINCT TYPE──distinct-type-name──AS──┤ source-data-type ├────────────────────5

5─ ─WITH COMPARISONS───(1) ───5%

source-data-type:
├─ ──┬ ┬──┬ ┬─INTEGER─ ─────────────────────────────────────── ────────────────────────────────┤
 │ │└ ┘─INT─────
 ├ ┤─SMALLINT───
 ├ ┤──┬ ┬ ─FLOAT─ ──┬ ┬─────────────── ──────────────────────
 │ ││ │└ ┘─(──integer──)─
 │ │├ ┤─REAL─────────────────────
 │ ││ │┌ ┐─PRECISION─
 │ │└ ┘ ─DOUBLE─ ──┴ ┴─────────── ───
 ├ ┤ ──┬ ┬─DECIMAL─ ──┬ ┬───────────────────────────── ──────
 │ │├ ┤─DEC───── └ ┘ ─(──integer─ ──┬ ┬────────── ─)─
 │ │├ ┤─NUMERIC─ └ ┘ ─,integer─
 │ │└ ┘─NUM─────
 ├ ┤ ──┬ ┬ ──┬ ┬─CHARACTER─ ──┬ ┬─────────── ──┬ ┬──────────────
 │ ││ │└ ┘─CHAR────── └ ┘─(integer)─ └ ┘─FOR BIT DATA─
 │ │├ ┤─VARCHAR(integer)─────────────
 │ │└ ┘─LONG VARCHAR─────────────────
 ├ ┤ ─GRAPHIC─ ──┬ ┬─────────── ────────────────────────────
 │ │└ ┘ ─(integer)─
 ├ ┤─VARGRAPHIC(integer)────────────────────────────────
 ├ ┤─LONG VARGRAPHIC────────────────────────────────────
 ├ ┤─DATE───
 ├ ┤─TIME───
 ├ ┤─TIMESTAMP──
 └ ┘ ──┬ ┬─BLOB─── ─(──integer─ ──┬ ┬─── ─)───────────────────
 ├ ┤─CLOB─── ├ ┤─K─
 └ ┘─DBCLOB─ ├ ┤─M─
 └ ┘─G─

Note:
1 Required for all source-data-types except LOBs, LONG VARCHAR and LONG VARGRAPHIC,

which are not supported.

 Description
distinct-type-name

Names the distinct type. The name, including the implicit or explicit qualifier must
not identify a distinct type described in the catalog. The unqualified name must not
be the same as the name of a source-data-type or BOOLEAN (SQLSTATE 42918).

A number of names used as keywords in predicates are reserved for system use,
and may not be used as a distinct-type-name. The names are SOME, ANY, ALL,
NOT, AND, OR, BETWEEN, NULL, LIKE, EXISTS, IN, UNIQUE, OVERLAPS,
SIMILAR, MATCH and the comparison operators as described in “Basic Predicate”
on page 124 . Failure to observe this rule will lead to an error (SQLSTATE 42939).

If a two-part distinct-type-name is specified, the schema name cannot begin with
"SYS"; otherwise, an error (SQLSTATE 42939) is raised.

410 SQL Reference

CREATE DISTINCT TYPE

source-data-type
Specifies the data type used as the basis for the internal representation of the dis-
tinct type. For information about the association of distinct types with other data
types, see “Distinct Types” on page 60. For information about data types, see
“CREATE TABLE” on page 478.

WITH COMPARISONS
Specifies that system-generated comparison operators are to be created for com-
paring two instances of a distinct type. These keywords should not be specified if
the source-data-type is BLOB, CLOB, DBCLOB, LONG VARCHAR, or LONG
VARGRAPHIC, otherwise a warning will be returned (SQLSTATE 01596) and the
comparison operators will not be generated. For all other source-data-types, the
WITH COMPARISONS keywords are required.

 Notes
¹ Creating a distinct type with a schema name that does not already exist will result

in the implicit creation of that schema provided the authorization ID of the state-
ment has IMPLICIT_SCHEMA authority. The schema owner is SYSIBM. The
CREATEIN privilege on the schema is granted to PUBLIC.

¹ The following functions are generated to cast to and from the source type:

– One function to convert from the distinct type to the source type
– One function to convert from the source type to the distinct type
– One function to convert from INTEGER to the distinct type if the source type is

SMALLINT
– one function to convert from VARCHAR to the distinct type if the source type

is CHAR
– one function to convert from VARGRAPHIC to the distinct type if the source

type is GRAPHIC.

In general these functions will have the following format:

CREATE FUNCTION source-type-name (distinct-type-name)

RETURNS source-type-name ...

CREATE FUNCTION distinct-type-name (source-type-name)

RETURNS distinct-type-name ...

In cases in which the source type is a parameterized type, the function to convert from
the distinct type to the source type will have as function name the name of the source
type without the parameters (see Table 17 on page 412 for details). The type of the
return value of this function will include the parameters given on the CREATE DIS-
TINCT TYPE statement. The function to convert from the source type to the distinct
type will have an input parameter whose type is the source type including its parame-
ters. For example,

CREATE DISTINCT TYPE T_SHOESIZE AS CHAR(2)

 WITH COMPARISONS

CREATE DISTINCT TYPE T_MILES AS DOUBLE

 WITH COMPARISONS

 Chapter 6. Statements 411

CREATE DISTINCT TYPE

will generate the following functions:

FUNCTION CHAR (T_SHOESIZE) RETURNS CHAR (2)

FUNCTION T_SHOESIZE (CHAR (2))

 RETURNS T_SHOESIZE

FUNCTION DOUBLE (T_MILES) RETURNS DOUBLE

FUNCTION T_MILES (DOUBLE) RETURNS T_MILES

The schema of the generated cast functions is the same as the schema of the distinct
type. No other function with this name and with the same signature may already exist in
the database (SQLSTATE 42710).

The following table gives the names of the functions to convert from the distinct type to
the source type and from the source type to the distinct type for all predefined data
types.

Table 17 (Page 1 of 2). CAST functions on distinct types

Source Type Name Function Name Parameter Return-type

CHAR <distinct> CHAR (n) <distinct>

CHAR <distinct> CHAR (n)

<distinct> VARCHAR (n) <distinct>

VARCHAR <distinct> VARCHAR (n) <distinct>

VARCHAR <distinct> VARCHAR (n)

LONG VARCHAR <distinct> LONG VARCHAR <distinct>

LONG_VARCHAR <distinct> LONG VARCHAR

CLOB <distinct> CLOB (n) <distinct>

CLOB <distinct> CLOB (n)

BLOB <distinct> BLOB (n) <distinct>

BLOB <distinct> BLOB (n)

GRAPHIC <distinct> GRAPHIC (n) <distinct>

GRAPHIC <distinct> GRAPHIC (n)

<distinct> VARGRAPIC (n) <distinct>

VARGRAPHIC <distinct> VARGRAPHIC (n) <distinct>

VARGRAPHIC <distinct> VARGRAPHIC (n)

LONG VARGRAPHIC <distinct> LONG VARGRAPHIC <distinct>

LONG_VARGRAPHIC <distinct> LONG VARGRAPHIC

DBCLOB <distinct> DBCLOB (n) <distinct>

DBCLOB <distinct> DBCLOB (n)

412 SQL Reference

CREATE DISTINCT TYPE

Table 17 (Page 2 of 2). CAST functions on distinct types

Source Type Name Function Name Parameter Return-type

SMALLINT <distinct> SMALLINT <distinct>

<distinct> INTEGER <distinct>

SMALLINT <distinct> SMALLINT

INTEGER <distinct> INTEGER <distinct>

INTEGER <distinct> INTEGER

DECIMAL <distinct> DECIMAL (p,s) <distinct>

DECIMAL <distinct> DECIMAL (p,s)

NUMERIC <distinct> DECIMAL (p,s) <distinct>

DECIMAL <distinct> DECIMAL (p,s)

REAL <distinct> REAL <distinct>

<distinct> DOUBLE <distinct>

REAL <distinct> REAL

FLOAT(n) where n<=24 <distinct> REAL <distinct>

<distinct> DOUBLE <distinct>

REAL <distinct> REAL

FLOAT(n) where n>24 <distinct> DOUBLE <distinct>

DOUBLE <distinct> DOUBLE

FLOAT <distinct> DOUBLE <distinct>

DOUBLE <distinct> DOUBLE

DOUBLE <distinct> DOUBLE <distinct>

DOUBLE <distinct> DOUBLE

DOUBLE PRECISION <distinct> DOUBLE <distinct>

DOUBLE <distinct> DOUBLE

DATE <distinct> DATE <distinct>

DATE <distinct> DATE

TIME <distinct> TIME <distinct>

TIME <distinct> TIME

TIMESTAMP <distinct> TIMESTAMP <distinct>

TIMESTAMP <distinct> TIMESTAMP

Note: NUMERIC and FLOAT are not recommended when creating a user-defined type for a portable application.
DECIMAL and DOUBLE should be used instead.

The functions described in the above table are the only functions that are generated
automatically when distinct types are defined. Consequently, none of the built-in func-
tions (AVG, MAX, LENGTH, etc.) are supported on distinct types until the CREATE
FUNCTION statement (see “CREATE FUNCTION” on page 424) is used to register
user-defined functions for the distinct type, where those user-defined functions are

 Chapter 6. Statements 413

CREATE DISTINCT TYPE

sourced on the appropriate built-in functions. In particular, note that it is possible to
register user-defined functions that are sourced on the built-in column functions.

When a distinct type is created using the WITH COMPARISONS clause, system-
generated comparison operators are created. Creation of these comparison operators
will generate entries in the SYSCAT.FUNCTIONS catalog view for the new functions.

The schema name of the distinct type must be included in the function path (see “SET
CURRENT FUNCTION PATH” on page 647 or the FUNCPATH BIND option as
described in the Embedded SQL Programming Guide) for successful use of these oper-
ators and cast functions in SQL statements.

 Examples
Example 1: Create a distinct type named SHOESIZE that is based on an INTEGER
data type.

CREATE DISTINCT TYPE SHOESIZE AS INTEGER WITH COMPARISONS

This will also result in the creation of comparison operators (=, <>, <, <=, >, >=) and
cast functions INTEGER(SHOESIZE) returning INTEGER and SHOESIZE(INTEGER)
returning SHOESIZE.

Example 2: Create a distinct type named MILES that is based on a DOUBLE data
type.

CREATE DISTINCT TYPE MILES AS DOUBLE WITH COMPARISONS

This will also result in the creation of comparison operators (=, <>, <, =, >, >=) and cast
functions DOUBLE(MILES) returning DOUBLE and MILES(DOUBLE) returning MILES.

414 SQL Reference

CREATE EVENT MONITOR

CREATE EVENT MONITOR
The CREATE EVENT MONITOR statement defines a monitor that will record certain
events that occur when using the database. The definition of each event monitor also
specifies where the database should record the events.

 Invocation
This statement can be embedded in an application program or issued interactively. It is
an executable statement that can be dynamically prepared.

 Authorization
The privileges held by the authorization ID must include either SYSADM or DBADM
authority (SQLSTATE 42502).

 Syntax

 Chapter 6. Statements 415

CREATE EVENT MONITOR

5──CREATE──EVENT──MONITOR──event-monitor-name──FOR──5

 ┌ ┐─,──
5─ ───6 ┴──┬ ┬──┬ ┬─DATABASE──── ───────────────────────────────── ──────────────────────────────5
 │ │├ ┤─TABLES──────
 │ │├ ┤─DEADLOCKS───
 │ │├ ┤─TABLESPACES─
 │ │└ ┘─BUFFERPOOLS─
 └ ┘ ──┬ ┬─CONNECTIONS── ──┬ ┬────────────────────────────
 ├ ┤─STATEMENTS─── └ ┘─WHERE──┤ Event Condition ├─
 └ ┘─TRANSACTIONS─

 ┌ ┐─MANUALSTART─
5─ ─WRITE──TO─ ──┬ ┬─PIPE──pipe-name─────────────────── ──┼ ┼───────────── ─────────────────────5
 └ ┘─FILE──path-name──┤ File Options ├─ └ ┘─AUTOSTART───

 ┌ ┐─LOCAL──
5─ ──┬ ┬────────────────────── ──┼ ┼──────── ──5
 └ ┘ ─ON NODE──node-number─ └ ┘─GLOBAL─

Event Condition:
┌ ┐─AND | OR───

├─ ───6 ┴──┬ ┬───── ──┬ ┬ ──┬ ┬─APPL_ID─── ──┬ ┬─=───────── ─comparison-string─ ──────────────────────┤
 └ ┘─NOT─ │ │├ ┤─AUTH_ID─── ├ ┤ ─<>───(1) ─────
 │ │└ ┘─APPL_NAME─ ├ ┤─>─────────
 │ │├ ┤ ─>=───(1) ─────
 │ │├ ┤─<─────────
 │ │├ ┤ ─<=───(1) ─────
 │ │├ ┤─LIKE──────
 │ │└ ┘ ─NOT──LIKE─

└ ┘──(Event Condition) ──────────────────────────────

File Options:
├─ ──┬ ┬─────────────────────────────── ──┬ ┬──────────────────────── ─────────────────────────5
 │ │┌ ┐─NONE──────────── │ │┌ ┐─pages─
 └ ┘ ─MAXFILES─ ──┴ ┴─number-of-files─ └ ┘ ─MAXFILESIZE─ ──┴ ┴─NONE──

 ┌ ┐─BLOCKED──── ┌ ┐─APPEND──
5─ ──┬ ┬─────────────────── ──┼ ┼──────────── ──┼ ┼───────── ────────────────────────────────────┤
 └ ┘ ─BUFFERSIZE──pages─ └ ┘─NONBLOCKED─ └ ┘─REPLACE─

Note:
1 Other forms of these operators are also supported. See “Basic Predicate” on page 124 for more

details.

 Description
event-monitor-name

Names the event monitor. This is a one-part name. It is an SQL identifier (either
ordinary or delimited). The event-monitor-name must not identify an event monitor
that already exists in the catalog (SQLSTATE 42710).

FOR
Introduces the type of event to record.

416 SQL Reference

CREATE EVENT MONITOR

DATABASE
Specifies that the event monitor records a database event when the last appli-
cation disconnects from the database.

TABLES
Specifies that the event monitor records a table event for each active table
when the last application disconnects from the database. An active table is a
table that has changed since the first connection to the database.

DEADLOCKS
Specifies that the event monitor records a deadlock event whenever a dead-
lock occurs.

TABLESPACES
Specifies that the event monitor records a table space event for each table
space when the last application disconnects from the database.

BUFFERPOOLS
Specifies that the event monitor records a buffer pool event when the last
application disconnects from the database.

CONNECTIONS
Specifies that the event monitor records a connection event when an applica-
tion disconnects from the database.

STATEMENTS
Specifies that the event monitor records a statement event whenever a SQL
statement finishes executing.

TRANSACTIONS
Specifies that the event monitor records a transaction event whenever a trans-
action completes (that is, whenever there is a commit or rollback operation).

WHERE event condition
Defines a filter that determines which connections cause a CONNECTION,
STATEMENT or TRANSACTION event to occur. If the result of the event con-
dition is TRUE for a particular connection, then that connection will generate
the requested events.

This clause is a special form of the WHERE clause that should not be con-
fused with a standard search condition.

To determine if an application will generate events for a particular event
monitor, the WHERE clause is evaluated:

1. For each active connection when an event monitor is first turned on.

2. Subsequently for each new connection to the database at connect time.

The WHERE clause is not evaluated for each event.

If no WHERE clause is specified then all events of the specified event type will
be monitored.

 Chapter 6. Statements 417

CREATE EVENT MONITOR

APPL_ID
Specifies that the application ID of each connection should be compared
with the comparison-string in order to determine if the connection should
generate CONNECTION, STATEMENT or TRANSACTION events (which-
ever was specified).

AUTH_ID
Specifies that the authorization ID of each connection should be compared
with the comparison-string in order to determine if the connection should
generate CONNECTION, STATEMENT or TRANSACTION events (which-
ever was specified).

APPL_NAME
Specifies that the application program name of each connection should be
compared with the comparison-string in order to determine if the con-
nection should generate CONNECTION, STATEMENT or TRANSACTION
events (whichever was specified).

The application program name is the first 20 bytes of the application
program file name, after the last path separator.

comparison-string
A string to be compared with the APPL_ID, AUTH_ID, or APPL_NAME of
each application that connects to the database. comparison-string must be
a string constant (that is, host variables and other string expressions are
not permitted).

WRITE TO
Introduces the target for the data.

PIPE
Specifies that the target for the event monitor data is a named pipe. The event
monitor writes the data to the pipe in a single stream (that is, as if it were a
single, infinitely long file). When writing the data to a pipe, an event monitor
does not perform blocked writes. If there is no room in the pipe buffer, then the
event monitor will discard the data. It is the monitoring application's responsi-
bility to read the data promptly if it wishes to ensure no data loss.

pipe-name
The name of the pipe (FIFO on AIX) to which the event monitor will write
the data.

The naming rules for pipes are platform specific. On UNIX operating
systems pipe names are treated like file names. As a result, relative pipe
names are permitted, and are treated like relative path-names (see path-
name below). However, on OS/2, Windows 95 and Windows NT , there is
a special syntax for a pipe name. As a result, on OS/2, Windows 95 and
Windows NT absolute pipe names are required.

The existence of the pipe will not be checked at event monitor creation
time. It is the responsibility of the monitoring application to have created
and opened the pipe for reading at the time that the event monitor is acti-

418 SQL Reference

CREATE EVENT MONITOR

vated. If the pipe is not available at this time, then the event monitor will
turn itself off, and will log an error. (That is, if the event monitor was acti-
vated at database start time as a result of the AUTOSTART option, then
the event monitor will log an error in the system error log.) If the event
monitor is activated via the SET EVENT MONITOR STATE SQL state-
ment, then that statement will fail (SQLSTATE 58030).

FILE
Indicates that the target for the event monitor data is a file (or set of files).
The event monitor writes out the stream of data as a series of 8 character
numbered files, with the extension “evt”. (for example, 00000000.evt,
00000001.evt, 00000002.evt, etc). The data should be considered to be
one logical file even though the data is broken up into smaller pieces (that
is, the start of the data stream is the first byte in the file 00000000.evt; the
end of the data stream is the last byte in the file nnnnnnnn.evt).

The maximum size of each file can be defined as well as the maximum
number of files. An event monitor will never split a single event record
across two files. However, an event monitor may write related records in
two different files. It is the responsibility of the application that uses this
data to keep track of such related information when processing the event
files.

path-name
The name of the directory in which the event monitor should write the
event files data. The path must be known at the server, however, the
path itself could reside on another partition or node (for example, in a
UNIX-based system, this might be an NFS mounted file). A string
constant must be used when specifying the path-name.

The directory does not have to exist at CREATE EVENT MONITOR
time. However, a check is made for the existence of the target path
when the event monitor is activated. At that time, if the target path
does not exist, an error (SQLSTATE 428A3) is raised.

If an absolute path (a path that starts with the root directory on AIX,
or a disk identifier on OS/2, Windows 95 and Windows NT) is speci-
fied, then the specified path will be the one used. If a relative path (a
path that does not start with the root) is specified, then the path rela-
tive to the DB2EVENT directory in the database directory will be
used.

When a relative path is specified, the DB2EVENT directory is used to
convert it into an absolute path. Thereafter, no distinction is made
between absolute and relative paths. The absolute path is stored in
the SYSCAT.EVENTMONITORS catalog view.

It is possible to specify two or more event monitors that have the
same target path. However, once one of the event monitors has been
activated for the first time, and as long as the target directory is not
empty, it will be impossible to activate any of the other event moni-
tors.

 Chapter 6. Statements 419

CREATE EVENT MONITOR

File Options
Specifies the options for the file format.

MAXFILES NONE
Specifies that there is no limit to the number of event files that
the event monitor will create. This is the default.

MAXFILES number-of-files
Specifies that there is a limit on the number of event monitor files
that will exist for a particular event monitor at any time. When-
ever an event monitor has to create another file, it will check to
make sure that the number of .evt files in the directory is less
than number-of-files. If this limit has already been reached, then
the event monitor will turn itself off.

If an application removes the event files from the directory after
they have been written, then the total number of files that an
event monitor can produce can exceed number-of-files. This
option has been provided to allow a user to guarantee that the
event data will not consume more than a specified amount of
disk space.

MAXFILESIZE pages
Specifies that there is a limit to the size of each event monitor
file. Whenever an event monitor writes a new event record to a
file, it checks that the file will not grow to be greater than pages
(in units of 4K pages). If the resulting file would be too large, then
the event monitor switches to the next file. The default for this
option is:

¹ OS/2, Windows 95 and Windows NT - 200 4K pages

¹ UNIX - 1000 4K pages

The number of pages must be greater than at least the size of
the event buffer in pages. If this requirement is not met, then an
error (SQLSTATE 428A4) is raised.

MAXFILESIZE NONE
Specifies that there is no set limit on a file's size. If
MAXFILESIZE NONE is specified, then MAXFILES 1 must also
be specified. This option means that one file will contain all of the
event data for a particular event monitor. In this case the only
event file will be 00000000.evt.

BUFFERSIZE pages
Specifies the size of the event monitor buffers (in units of 4K
pages). All event monitor file I/O is buffered to improve the per-
formance of the event monitors. The larger the buffers, the less
I/O will be performed by the event monitor. Highly active event
monitors should have larger buffers than relatively inactive event
monitors. When the monitor is started, two buffers of the speci-

420 SQL Reference

CREATE EVENT MONITOR

fied size are allocated. Event monitors use double buffering to
permit asynchronous I/O.

The minimum and default size of each buffer (if this option is not
specified) is 1 page (that is, 2 buffers, each 4 K in size). The
maximum size of the buffers is limited by the size of the data-
base heap (DBHEAP) since the buffers are allocated from the
heap. If using a lot of event monitors at the same time, increase
the size of the DBHEAP database configuration parameter.

Event monitors that write their data to a pipe also have two
internal (non-configurable) buffers that are each 1 page in size.
These buffers are also allocated from the database heap
(DBHEAP). For each active event monitor that has a pipe target,
increase the size of the database heap by 2 pages.

BLOCKED
Specifies that each agent that generates an event should wait for
an event buffer to be written out to disk if the agent determines
that both event buffers are full. BLOCKED should be selected to
guarantee no event data loss. This is the default option.

NONBLOCKED
Specifies that each agent that generates an event should not wait
for the event buffer to be written out to disk if the agent deter-
mines that both event buffers are full. NONBLOCKED event mon-
itors do not slow down database operations to the extent of
BLOCKED event monitors. However, NONBLOCKED event moni-
tors are subject to data loss on highly active systems.

APPEND
Specifies that if event data files already exist when the event
monitor is turned on, then the event monitor will append the new
event data to the existing stream of data files. When the event
monitor is re-activated, it will resume writing to the event files as
if it had never been turned off. APPEND is the default option.

The APPEND option does not apply at CREATE EVENT
MONITOR time, if there is existing event data in the directory
where the newly created event monitor is to write its event data.

REPLACE
Specifies that if event data files already exist when the event
monitor is turned on, then the event monitor will erase all of the
event files and start writing data to file 00000000.evt.

MANUALSTART
Specifies that the event monitor not be started automatically each time the
database is started. Event monitors with the MANUALSTART option must be
activated manually using the SET EVENT MONITOR STATE statement. This
is the default option.

 Chapter 6. Statements 421

CREATE EVENT MONITOR

AUTOSTART
Specifies that the event monitor be started automatically each time the data-
base is started.

ON NODE
Keyword that indicates that specific partitions are specified.

node-number
Specifies a partition number where the event monitor runs and write the
events. With the monitoring scope defined as GLOBAL, all partitions
report to the specified partition number. The I/O component will physically
run on the specified partition, writing its records to /tmp/dlocks direcotry on
that partition.

GLOBAL
Event monitor reports from all partitions. For a partitioned database in DB2
Universal Database Version 5, only deadlock event monitors can be defined as
GLOBAL. The global event monitor will report deadlocks for all nodes in the
system.

LOCAL
Event monitor reports only on the partition that is running. It gives a partial
trace of the database activity. This is the default.

 Rules
¹ Each of the event types (DATABASE, TABLES, DEADLOCKs,...) can only be spec-

ified once in a particular event monitor definition.

 Notes
¹ Event monitor definitions are recorded in the SYSCAT.EVENTMONITORS catalog

view. The events themselves are recorded in the SYSCAT.EVENTS catalog view.

¹ For detailed information on using the database monitor and on interpreting data
from pipes and files, see the System Monitor Guide and Reference.

 Examples
Example 1: The following example creates an event monitor called SMITHPAY. This
event monitor, will collect event data for the database as well as for the SQL state-
ments performed by the PAYROLL application owned by the JSMITH authorization ID.
The data will be appended to the absolute path /home/jsmith/event/smithpay/. A
maximum of 25 files will be created. Each file will be a maximum of 1024 4K pages
long. The file I/O will be non-blocked.

CREATE EVENT MONITOR SMITHPAY

FOR DATABASE, STATEMENTS

WHERE APPL_NAME = 'PAYROLL' AND AUTH_ID = 'JSMITH'

WRITE TO FILE '/home/jsmith/event/smithpay'

 MAXFILES 25

 MAXFILESIZE 1024

 NONBLOCKED

 APPEND

422 SQL Reference

CREATE EVENT MONITOR

Example 2: The following example creates an event monitor called
DEADLOCKS_EVTS. This event monitor will collect deadlock events and will write them
to the relative path DLOCKS. One file will be written, and there is no maximum file size.
Each time the event monitor is activated, it will append the event data to the file
00000000.evt if it exists. The event monitor will be started each time the database is
started. The I/0 will be blocked by default.

CREATE EVENT MONITOR DEADLOCK_EVTS

 FOR DEADLOCKS

WRITE TO FILE 'DLOCKS'

 MAXFILES 1

 MAXFILESIZE NONE

 AUTOSTART

Example 3: This example creates an event monitor called DB_APPLS. This event
monitor collects connection events, and writes the data to the named pipe
/home/jsmith/applpipe.

CREATE EVENT MONITOR DB_APPLS

 FOR CONNECTIONS

WRITE TO PIPE '/home/jsmith/applpipe'

 Chapter 6. Statements 423

CREATE FUNCTION

 CREATE FUNCTION
This statement is used to register a user-defined function with an application server.

There are three different types of functions that can be created using this statement.
Each of these is described separately.

 ¹ External Scalar

The function is written in a programming language and returns a scalar value. The
external executable is registered in the database along with various attributes of
the function. See “CREATE FUNCTION (External Scalar)” on page 425.

 ¹ External Table

The function is written in a programming language and returns a complete table.
The external executable is registered in the database along with various attributes
of the function. See “CREATE FUNCTION (External Table)” on page 441.

 ¹ Sourced

The function is implemented by invoking another function (either built-in, external or
sourced) that is already registered in the database. See “CREATE FUNCTION
(Sourced)” on page 454.

424 SQL Reference

CREATE FUNCTION (External Scalar)

CREATE FUNCTION (External Scalar)
This statement is used to register a user-defined external scalar function with an appli-
cation server.

A scalar function returns a single value each time it is invoked, and is in general valid
wherever an SQL expression is valid.

 Invocation
This statement can be embedded in an application program or issued through the use
of dynamic SQL statements. It is an executable statement that can be dynamically pre-
pared.

 Authorization
The privileges held by the authorization ID of the statement must include at least one of
the following:

¹ SYSADM or DBADM authority
¹ IMPLICIT_SCHEMA authority on the database, if the schema name of the function

does not refer to an existing schema.
¹ CREATEIN privilege on the schema, if the schema name of the function refers to

an existing schema.

To create a not-fenced function, the privileges held by the authorization ID of the state-
ment must also include at least one of the following:

¹ CREATE_NOT_FENCED authority on the database
¹ SYSADM or DBADM authority.

To create a fenced function, no additional authorities or privileges are required.

If the authorization ID has insufficient authority to perform the operation, an error
(SQLSTATE 42502) is raised.

 Syntax

 Chapter 6. Statements 425

CREATE FUNCTION (External Scalar)

55─ ─CREATE FUNCTION──function-name─ ─(─ ──┬ ┬──────────────────────────────── ─)──Á───────────5
 │ │┌ ┐─,──────────────────────────
 └ ┘ ───6 ┴ ─data-type1─ ──┬ ┬────────────
 └ ┘ ─AS LOCATOR─

5─ ─RETURNS─ ──┬ ┬ ─data-type2─ ──┬ ┬──────────── ─────────────────────── ─Á──────────────────────5
 │ │└ ┘ ─AS LOCATOR─
 └ ┘ ─data-type3──CAST FROM──data-type4─ ──┬ ┬────────────
 └ ┘ ─AS LOCATOR─

5─ ──┬ ┬───────────────────────── ─Á──EXTERNAL─ ──┬ ┬────────────────────── ─Á──────────────────5
 └ ┘ ─SPECIFIC──specific-name─ └ ┘ ─NAME─ ──┬ ┬─'string'───
 └ ┘─identifier─

5─ ─LANGUAGE─ ──┬ ┬─C──── ─Á─ ─PARAMETER STYLE─ ──┬ ┬─DB2SQL───── ─Á─ ──┬ ┬ ─DETERMINISTIC───(1) ── ─Á────5
 ├ ┤─JAVA─ └ ┘─DB2GENERAL─ └ ┘─NOT DETERMINISTIC─
 └ ┘─OLE──

┌ ┐─FENCED───── ┌ ┐─NOT NULL CALL─
5─ ──┼ ┼──────────── ─Á─ ──┼ ┼─────────────── ─Á──NO SQL──Á─ ──┬ ┬─NO EXTERNAL ACTION─ ─Á──────────5
 └ ┘─NOT FENCED─ └ ┘─NULL CALL───── └ ┘─EXTERNAL ACTION────

┌ ┐─NO SCRATCHPAD─ ┌ ┐─NO FINAL CALL─ ┌ ┐─ALLOW PARALLEL──── ┌ ┐─NO DBINFO─
5─ ──┼ ┼─────────────── ─Á─ ──┼ ┼─────────────── ─Á─ ──┼ ┼─────────────────── ─Á─ ──┼ ┼─────────── ───5
 └ ┘─SCRATCHPAD──── └ ┘─FINAL CALL──── └ ┘─DISALLOW PARALLEL─ └ ┘─DBINFO────

5──Á───5%

Note:
1 NOT VARIANT may be specified in place of DETERMINISTIC and VARIANT may be specified in

place of NOT DETERMINISTIC.

 Description
function-name

Names the function being defined. It is a qualified or unqualified name that desig-
nates a function. The unqualified form of function-name is an SQL identifier (with a
maximum length of 18). An unqualified function-name is implicitly qualified by the
authorization ID. The qualified form is a schema-name followed by a period and an
SQL identifier.

The name, including the implicit or explicit qualifiers, together with the number of
parameters and the data type of each parameter (without regard for any length,
precision or scale attributes of the data type) must not identify a function described
in the catalog (SQLSTATE 42723). The unqualified name, together with the
number and data types of the parameters, while of course unique within its
schema, need not be unique across schemas.

If a two-part name is specified, the schema-name cannot begin with “SYS”. Other-
wise, an error (SQLSTATE 42939) is raised.

A number of names used as keywords in predicates are reserved for system use,
and may not be used as a function-name. The names are SOME, ANY, ALL, NOT,
AND, OR, BETWEEN, NULL, LIKE, EXISTS, IN, UNIQUE, OVERLAPS, SIMILAR,

426 SQL Reference

CREATE FUNCTION (External Scalar)

MATCH and the comparison operators as described in “Basic Predicate” on
page 124. Failure to observe this rule will lead to an error (SQLSTATE 42939).

In general, the same name can be used for more than one function if there is some
difference in the signature of the functions.

Although there is no prohibition against it, an external user-defined function should
not be given the same name as a built-in function, unless it is an intentional over-
ride. To give a function having a different meaning the same name (for example,
LENGTH, VALUE, MAX), with consistent arguments, as a built-in scalar or column
function, is to invite trouble for dynamic SQL, or when static SQL applications are
rebound; the application may fail, or perhaps worse, may appear to run success-
fully while providing a different result.

(data-type1,...)
Identifies the number of input parameters of the function, and specifies the data
type of each parameter. One entry in the list must be specified for each parameter
that the function will expect to receive. No more than 90 parameters are allowed. If
this limit is exceeded, an error (SQLSTATE 54023) is raised.

It is possible to register a function that has no parameters. In this case, the paren-
theses must still be coded, with no intervening data types. For example,

CREATE FUNCTION WOOFER() ...

No two identically-named functions within a schema are permitted to have exactly
the same type for all corresponding parameters. Lengths, precisions and scales are
not considered in this type comparison. Therefore CHAR(8) and CHAR(35) are
considered to be the same type, as are DECIMAL(11,2) and DECIMAL (4,3). There
is some further bundling of types that causes them to be treated as the same type
for this purpose, such as DECIMAL and NUMERIC. A duplicate signature raises an
SQL error (SQLSTATE 42723).

For example, given the statements:

CREATE FUNCTION PART (INT, CHAR(15)) ...

CREATE FUNCTION PART (INTEGER, CHAR(40)) ...

CREATE FUNCTION ANGLE (DECIMAL(12,2)) ...

CREATE FUNCTION ANGLE (DEC(10,7)) ...

 the second and fourth statements would fail because they are considered to be
duplicate functions.

data-type1
Specifies the data type of the parameter.

¹ SQL data type specifications and abbreviations which may be specified in
the data-type1 definition of a CREATE TABLE statement and have a cor-
respondence in the language that is being used to write the function may
be specified. See the language-specific sections of the Embedded SQL
Programming Guide for details on the mapping between the SQL data
types and host language data types with respect to user-defined functions.

 Chapter 6. Statements 427

CREATE FUNCTION (External Scalar)

¹ DECIMAL (and NUMERIC) are invalid with LANGUAGE C and OLE
(SQLSTATE 42815). For alternatives to using DECIMAL refer to
Embedded SQL Programming Guide.

AS LOCATOR
For the LOB types or distinct types which are based on a LOB type, the
AS LOCATOR clause can be added. This indicates that a LOB locator is
to be passed to the UDF instead of the actual value. This saves greatly in
the number of bytes passed to the UDF, and may save as well in perform-
ance, particularly in the case where only a few bytes of the value are
actually of interest to the UDF. Use of LOB locators in UDFs are
described in Embedded SQL Programming Guide.

Here is an example which illustrates the use of the AS LOCATOR clause
in parameter definitions:

CREATE FUNCTION foo (CLOB(10M) AS LOCATOR, IMAGE AS LOCATOR)

 ...

which assumes that IMAGE is a distinct type based on one of the LOB
types.

Note also that for argument promotion purposes, the AS LOCATOR
clause has no effect. In the example the types are considered to be CLOB
and IMAGE respectively, which would mean that a CHAR or VARCHAR
argument could be passed to the function as the first argument. Likewise,
the AS LOCATOR has no effect on the function signature, which is used
in matching the function (a) when referenced in DML, by a process called
"function resolution", and (b) when referenced in a DDL statement such as
COMMENT ON or DROP. In fact the clause may or may not be used in
COMMENT ON or DROP with no significance.

An error (SQLSTATE 42601) is raised if AS LOCATOR is specified for a
type other than a LOB or a distinct type based on a LOB.

If the function is FENCED, the AS LOCATOR clause cannot be specified
(SQLSTATE 42613).

RETURNS
This mandatory clause identifies the output of the function.

data-type2
Specifies the data type of the output.

In this case, exactly the same considerations apply as for the parameters of
external functions described above under data-type1 for function parameters.

AS LOCATOR
For LOB types or distinct types which are based on LOB types, the AS
LOCATOR clause can be added. This indicates that a LOB locator is to
be passed from the UDF instead of the actual value.

428 SQL Reference

CREATE FUNCTION (External Scalar)

data-type3 CAST FROM data-type4
Specifies the data type of the output.

This form of the RETURNS clause is used to return a different data type to the
invoking statement from the data type that was returned by the function code.
For example, in

CREATE FUNCTION GET_HIRE_DATE(CHAR(6))

RETURNS DATE CAST FROM CHAR(10)

 ...

the function code returns a CHAR(10) value to the database manager, which,
in turn, converts it to a DATE and passes that value to the invoking statement.
The data-type4 must be castable to the data-type3 parameter. If it is not
castable, an error (SQLSTATE 42880) is raised (for the definition of castable,
see “Casting Between Data Types” on page 62).

A distinct type is not valid as the type specified in data-type4 (SQLSTATE
42815).

The cast operation is also subject to run-time checks that might result in con-
version errors being raised.

AS LOCATOR
For data-type4 specifications that are LOB types or distinct types which
are based on LOB types, the AS LOCATOR clause can be added. This
indicates that a LOB locator is to be passed back from the UDF instead of
the actual value. Use of LOB locators in UDFs are described in
Embedded SQL Programming Guide.

SPECIFIC specific-name
Provides a unique name for the instance of the function that is being defined. This
specific name can be used when sourcing on this function, dropping the function,
or commenting on the function. It can never be used to invoke the function. The
unqualified form of specific-name is an SQL identifier (with a maximum length of
18). The qualified form is a schema-name followed by a period and an SQL identi-
fier. The name, including the implicit or explicit qualifier, must not identify another
function instance that exists at the application server; otherwise an error
(SQLSTATE 42710) is raised.

The specific-name may be the same as an existing function-name.

If no qualifier is specified, the qualifier that was used for function-name is used. If a
qualifier is specified, it must be the same as the explicit or implicit qualifier of
function-name or an error (SQLSTATE 42882) is raised.

If specific-name is not specified, a unique name is generated by the database
manager. The unique name is SQL followed by a character timestamp,
SQLyymmddhhmmsshhn.

EXTERNAL
This clause indicates that the CREATE FUNCTION statement is being used to reg-
ister a new function based on code written in an external programming language
and adhering to the documented linkage conventions and interface.

 Chapter 6. Statements 429

CREATE FUNCTION (External Scalar)

If NAME clause is not specified "NAME function-name" is assumed.

NAME 'string'
This clause identifies the name of the user-written code which implements the
function being defined.

The 'string' option is a string constant with a maximum of 254 characters.
The format used for the string is dependent on the LANGUAGE specified.

¹ For LANGUAGE C:

The string specified is the library name and function within library, which
the database manager invokes to execute the user-defined function being
CREATEd. The library (and the function within the library) do not need to
exist when the CREATE FUNCTION statement is performed. However,
when the function is used in an SQL statement, the library and function
within the library must exist and be accessible from the database server
machine, otherwise an error (SQLSTATE 42724) is raised .

5─ ─'─ ──┬ ┬─library_id─────── ──┬ ┬──────────── ─'──5
 └ ┘─absolute_path_id─ └ ┘ ─!──func_id─

The name must be enclosed in single quotes. Extraneous blanks are not
permitted within the single quotes.

library_id
Identifies the library name containing the function. The database
manager will look for the library in the .../sqllib/function directory
(UNIX-based systems), or ...\sqllib\function directory (OS/2, Windows
95 and Windows NT), where the database manager will locate the
controlling sqllib directory which is being used to run the database
manager. For example, the controlling sqllib directory in UNIX-based
systems is /u/$DB2INSTANCE/sqllib.

If 'myfunc' were the library_id in a UNIX-based system it would cause
the database manager to look for the function in library
/u/production/sqllib/function/myfunc, provided the database manager
is being run from /u/production.

absolute_path_id
Identifies the full path name of the function.

In a UNIX-based system, for example, '/u/jchui/mylib/myfunc' would
cause the database manager to look in /u/jchui/mylib for the myfunc
function.

In OS/2, Windows 95 and Windows NT , 'd:\mylib\myfunc' would
cause the database manager to load the myfunc.dll file from the
d:\mylib directory.

! func_id
Identifies the entry point name of the function to be invoked. The !
serves as a delimiter between the library id and the function id. If !

430 SQL Reference

CREATE FUNCTION (External Scalar)

func_id is omitted, the database manager will use the default entry
point established when the library was linked.

In a UNIX-based system, for example, 'mymod!func8' would direct the
database manager to look for the library
$inst_home_dir/sqllib/function/mymod and to use entry point func8
within that library.

In OS/2, Windows 95 and Windows NT , 'mymod!func8' would direct
the database manager to load the mymod.dll file and call the func8()
function in the dynamic link library (DLL).

If the string is not properly formed, an error (SQLSTATE 42878) is raised.

The body of every external function should be in a directory which is
mounted and available on every partition of the database.

¹ For LANGUAGE JAVA:

The string specified is the class identifier and method identifier, which the
database manager invokes to execute the user-defined function being
CREATEd. The class identifier and method identifier do not need to exist
when the CREATE FUNCTION statement is performed. However, when
the function is used in an SQL statement, the method identifier must exist
and be accessible from the database server machine, otherwise an error
(SQLSTATE 42724) is raised .

5──'──class_id──!──method_id──'──5

The name must be enclosed in single quotes. Extraneous blanks are not
permitted within the single quotes.

class_id
Identifies the class identifier of the Java object. If the class is part of a
package, the class identifier part must include the complete package
prefix, for example, "myPacks.UserFuncs". The Java virtual
machine will look in directory "../myPacks/UserFuncs/" for the classes.
In OS/2 and Windows 95 and Windows NT, the Java virtual machine
will look in directory "..\myPacks\UserFuncs\".

method_id
Identifies the method name of the Java object to be invoked.

¹ For LANGUAGE OLE:

The string specified is the OLE programmatic identifier (progid) or class
identifier (clsid), and method identifier, which the database manager
invokes to execute the user-defined function being CREATEd. The
programmatic identifier or class identifier, and method identifier do not
need to exist when the CREATE FUNCTION statement is performed.
However, when the function is used in an SQL statement, the method
identifier must exist and be accessible from the database server machine,
otherwise an error (SQLSTATE 42724) is raised .

 Chapter 6. Statements 431

CREATE FUNCTION (External Scalar)

5──'─ ──┬ ┬─progid─ ─!──method_id──'──5
 └ ┘─clsid──

The name must be enclosed in single quotes. Extraneous blanks are not
permitted within the single quotes.

progid
Identifies the programmatic identifier of the OLE object.

progid is not interpreted by the database manager but only forwarded
to the OLE APIs at run time. The specified OLE object must be
creatable and support late binding (also called IDispatch-based
binding).

clsid
Identifies the class identifier of the OLE object to create. It can be
used as an alternative for specifying a progid in the case that an OLE
object is not registered with a progid. The

clsid has the form:

{nnnnnnnn-nnnn-nnnn-nnnn-nnnnnnnnnnnn}

where 'n' is an alphanumeric character. clsid is not interpreted by the
database manager but only forwarded to the OLE APIs at run time.

method_id
Identifies the method name of the OLE object to be invoked.

NAME identifier
This identifier specified is an SQL identifier. The SQL identifier is used as the
library-id in the string. Unless it is a delimited identifier, the identifier is folded
to upper case. If the identifier is qualified with a schema name, the schema
name portion is ignored. This form of NAME can only be used with LAN-
GUAGE C.

LANGUAGE
This mandatory clause is used to specify the language interface convention to
which the user-defined function body is written.

C This means the database manager will call the user-defined function
as if it were a C function. The user-defined function must conform to
the C language calling and linkage convention as defined by the
standard ANSI C prototype.

JAVA This means the database manager will call the user-defined function
as a method in a Java class.

OLE This means the database manager will call the user-defined function
as if it were a method exposed by an OLE automation object. The
user-defined function must conform with the OLE automation data
types and invocation mechanism as described in the OLE Automation
Programmer's Reference.

432 SQL Reference

CREATE FUNCTION (External Scalar)

LANGUAGE OLE is only supported for user-defined functions stored in
DB2 for Windows 95 and Windows NT.

PARAMETER STYLE
This clause is used to specify the conventions used for passing parameters to and
returning the value from functions.

DB2SQL Used to specify the conventions for passing parameters to and
returning the value from external functions that conform to C language
calling and linkage conventions or methods exposed by OLE auto-
mation objects. This must be specified when LANGUAGE C or LAN-
GUAGE OLE is used.

DB2GENERAL Used to specify the conventions for passing parameters to and
returning the value from external functions that are defined as a
method in a Java class. This must be specified when LANGUAGE
JAVA is used.

The value DB2GENRL may be used as a synonym for DB2GENERAL.

Refer to Embedded SQL Programming Guide for details on passing parameters.

DETERMINISTIC or NOT DETERMINISTIC
This mandatory clause specifies whether the function always returns the same
results for given argument values (DETERMINISTIC) or whether the function
depends on some state values that affect the results (NOT DETERMINISTIC). That
is, a DETERMINISTIC function must always return the same result from successive
invocations with identical inputs. Optimizations taking advantage of the fact that
identical inputs always produce the same results are prevented by specifying NOT
DETERMINISTIC. An example of a NOT DETERMINISTIC function would be a
random-number generator. An example of a DETERMINISTIC function would be a
function that determines the square root of the input.

FENCED or NOT FENCED
This clause specifies whether or not the function is considered “safe” to run in the
database manager operating environment's process or address space (NOT
FENCED), or not (FENCED).

If a function is registered as FENCED, the database manager insulates its internal
resources (e.g. data buffers) from access by the function. Most functions will have
the option of running as FENCED or NOT FENCED. In general, a function running
as FENCED will not perform as well as a similar one running as NOT FENCED.

Warning: Use of NOT FENCED for functions not adequately checked out can
compromise the integrity of DB2. DB2 takes some precautions against
many of the common types of inadvertent failures that might occur, but
cannot guarantee complete integrity when NOT FENCED user defined func-
tions are used.

Most user-defined functions should be able to run either as FENCED or NOT
FENCED. Only FENCED can be specified for a function with LANGUAGE OLE
(SQLSTATE 42613) .

 Chapter 6. Statements 433

CREATE FUNCTION (External Scalar)

To change from FENCED to NOT FENCED, the function must be re-registered (by
first dropping it and then re-creating it). Either SYSADM authority, DBADM
authority or a special authority (CREATE_NOT_FENCED) is required to register a
user-defined function as NOT FENCED.

NOT NULL CALL or NULL CALL
This optional clause may be used to avoid a call to the external function if any of
the arguments is null.

If NOT NULL CALL is specified and if at execution time any one of the function's
arguments is null, the user-defined function is not called and the result is the null
value.

If NULL CALL is specified, then regardless of whether any arguments are null, the
user-defined function is called. It can return a null value or a normal (non-null)
value. But responsibility for testing for null argument values lies with the UDF.

NO SQL
This mandatory clauses indicates that the function cannot issue any SQL state-
ments. If it does, an error (SQLSTATE 38502) is raised at run time.

NO EXTERNAL ACTION or EXTERNAL ACTION
This mandatory clause specifies whether or not the function takes some action that
changes the state of an object not managed by the database manager. Optimiza-
tions that assume functions have no external impacts are prevented by specifying
EXTERNAL ACTION. For example: sending a message, ringing a bell, or writing a
record to a file.

NO SCRATCHPAD or SCRATCHPAD
This optional clause may be used to specify whether a scratchpad is to be pro-
vided for an external function. (It is strongly recommended that user-defined func-
tions be re-entrant, so a scratchpad provides a means for the function to “save
state” from one call to the next.)

If SCRATCHPAD is specified, then at first invocation of the user-defined function,
memory is allocated for a scratchpad to be used by the external function. This
scratchpad has the following characteristics:

¹ It is 100 bytes in size.

¹ It is initialized to all X'00''s.

¹ Its scope is the SQL statement. There is one scratchpad per reference to the
external function in the SQL statement. So if the UDFX function in the fol-
lowing statement is defined with the SCRATCHPAD keyword, three scratch-
pads would be assigned.

SELECT A, UDFX(A) FROM TABLEB

WHERE UDFX(A) > 103 OR UDFX(A) < 19

If ALLOW PARALLEL is specified or defaulted to, then the scope is different
from the above. If the function is executed in multiple partitions, a scratchpad
would be assigned in each partition where the function is processed, for each
reference to the function in the SQL statement.

434 SQL Reference

CREATE FUNCTION (External Scalar)

¹ It is persistent. Its content is preserved from one external function call to the
next. Any changes made to the scratchpad by the external function on one call
will be there on the next call. The database manager initializes scratchpads at
the beginning of execution of each SQL statement. The database manager
may reset scratchpads at the beginning of execution of each subquery. The
system issues a final call before resetting a scratchpad if the FINAL CALL
option is specified.

¹ It can be used as a central point for system resources (for example, memory)
which the external function might acquire. The function could acquire the
memory on the first call, keep its address in the scratchpad, and refer to it in
subsequent calls.

(In such a case where system resource is acquired, the FINAL CALL keyword
(described below) should also be specified; this causes a special call to be
made at end-of-statement to allow the external function to free any system
resources acquired.)

If SCRATCHPAD is specified, then on each invocation of the user-defined function
an additional argument is passed to the external function which addresses the
scratchpad.

If NO SCRATCHPAD is specified then no scratchpad is allocated or passed to the
external function.

NO FINAL CALL or FINAL CALL
This optional clause specifies whether a final call is to be made to an external func-
tion. The purpose of such a final call is to enable the external function to free any
system resources it has acquired. It can be useful in conjunction with the
SCRATCHPAD keyword in situations where the external function acquires system
resources such as memory and anchors them in the scratchpad. If FINAL CALL is
specified, then at execution time:

An additional argument is passed to the external function which specifies the
type of call. The types of calls are:

¹ Normal call: SQL arguments are passed and a result is expected to be
returned.

¹ First call: the first call to the external function for this reference to the
user-defined function in this SQL statement. The first call is a normal call.

¹ Final call: a final call to the external function to enable the function to free
up resources. The final call is not a normal call. This final call occurs at
the following times:

– End-of-statement: This case occurs when the cursor is closed for
cursor-oriented statements, or when the statement is through exe-
cuting otherwise

– End-of-transaction: This case occurs when the normal end-of-
statement does not occur. For example, the logic of an application
may for some reason bypass the close of the cursor.

 Chapter 6. Statements 435

CREATE FUNCTION (External Scalar)

If a commit or rollback operation occurs while a cursor defined as WITH
HOLD is open, a final call is made at the subsequent close of the cursor
or at the end of the application.

If NO FINAL CALL is specified then no “call type” argument is passed to the
external function, and no final call is made.

ALLOW PARALLEL or DISALLOW PARALLEL
This optional clause specifies whether, for a single reference to the function, the
invocation of the function can be parallelized. In general, the invocations of most
scalar functions should be parallelizable, but there may be functions (such as those
depending on a single copy of a scratchpad) that cannot. If either ALLOW PAR-
ALLEL or DISALLOW PARALLEL are specified for a scalar function, then DB2 will
accept this specification. The following questions should be considered in deter-
mining which keyword is appropriate for the function.

¹ Are all the UDF invocations completely independent of each other? If YES,
then specify ALLOW PARALLEL.

¹ Does each UDF invocation update the scratchpad, providing value(s) that are
of interest to the next invocation? (For example, the incrementing of a
counter.) If YES, then specify DISALLOW PARALLEL.

¹ Is there some external action performed by the UDF which should happen only
on one partition ? If YES, then specify DISALLOW PARALLEL.

¹ Is the scratchpad used, but only so that some expensive initialization proc-
essing can be performed a minimal number of times? If YES, then specify
ALLOW PARALLEL.

In any case, the body of every external function should be in a directory that is
mounted and available on every partition of the database.

NO DBINFO or DBINFO
This optional clause specifies whether certain specific information known by DB2
will be passed to the UDF as an additional invocation-time argument (DBINFO) or
not (NO DBINFO). NO DBINFO is the default. DBINFO is not supported for LAN-
GUAGE OLE (SQLSTATE 42613).

If DBINFO is specified, then a structure is passed to the UDF which contains the
following information:

¹ Data base name - the name of the currently connected database.

¹ Application Authorization ID - the application run-time authorization ID, regard-
less of the nested UDFs in between this UDF and the application.

¹ Code page - identifies the database code page.

¹ Schema name - under the exact same conditions as for Table name, contains
the name of the schema; otherwise blank.

¹ Table name - if and only if the UDF reference is either the right-hand side of a
SET clause in an UPDATE statement or an item in the VALUES list of an

436 SQL Reference

CREATE FUNCTION (External Scalar)

INSERT statement, contains the unqualified name of the table being updated
or inserted; otherwise blank.

¹ Column name - under the exact same conditions as for Table name, contains
the name of the column being updated or inserted; otherwise blank.

¹ Database version/release - identifies the version, release and modification
level of the database server invoking the UDF.

¹ Platform - contains the server's platform type.

¹ Table function result column numbers - not applicable to external scalar func-
tions.

Please see the Embedded SQL Programming Guide for detailed information on the
structure and how it is passed to the user-defined function.

 Notes
¹ Determining whether one data type is castable to another data type does not con-

sider length or precision and scale for parameterized data types such as CHAR
and DECIMAL. Therefore, errors may occur when using a function as a result of
attempting to cast a value of the source data type to a value of the target data
type. For example, VARCHAR is castable to DATE but if the source type is actually
defined as VARCHAR(5), an error will occur when using the function.

¹ When choosing the data types for the parameters of a user-defined function, con-
sider the rules for promotion that will affect its input values (see “Promotion of Data
Types” on page 61). For example, a constant which may be used as an input
value could have a built-in data type different from the one expected and, more
significantly, may not be promoted to the data type expected. Based on the rules
for promotion, it is generally recommended to use the following data types for
parameters:

– INTEGER instead of SMALLINT
– DOUBLE instead of REAL
– VARCHAR instead of CHAR
– VARGRAPHIC instead of GRAPHIC

¹ For portability of UDFs across platforms the following data types should not be
used:

– FLOAT- use DOUBLE or REAL instead.
– NUMERIC- use DECIMAL instead.
– LONG VARCHAR- use CLOB (or BLOB) instead.

¹ For information on writing, compiling, and linking an external user-defined function,
see the Embedded SQL Programming Guide.

¹ Creating a function with a schema name that does not already exist will result in
the implicit creation of that schema provided the authorization ID of the statement
has IMPLICIT_SCHEMA authority. The schema owner is SYSIBM. The
CREATEIN privilege on the schema is granted to PUBLIC.

 Chapter 6. Statements 437

CREATE FUNCTION (External Scalar)

 Examples
Example 1: Pellow is registering the CENTRE function in his PELLOW schema. Let
those keywords that will default default, and let the system provide a function specific
name:

CREATE FUNCTION CENTRE (INT,FLOAT)

 RETURNS FLOAT

EXTERNAL NAME 'mod!middle'

 LANGUAGE C

PARAMETER STYLE DB2SQL

 DETERMINISTIC

 NO SQL

NO EXTERNAL ACTION

Example 2: Now, McBride (who has DBADM authority) is registering another CENTRE
function in the PELLOW schema, giving it an explicit specific name for subsequent data
definition language use, and explicitly providing all keyword values. Note also that this
function uses a scratchpad and presumably is accumulating data there that affects sub-
sequent results. Since DISALLOW PARALLEL is specified, any reference to the func-
tion is not parallelized and therefore a single scratchpad is used to perform some
one-time only initialization and save the results.

CREATE FUNCTION PELLOW.CENTRE (FLOAT, FLOAT, FLOAT)

RETURNS DECIMAL(8,4) CAST FROM FLOAT

 SPECIFIC FOCUS92

EXTERNAL NAME 'effects!focalpt'

LANGUAGE C PARAMETER STYLE DB2SQL

DETERMINISTIC FENCED NOT NULL CALL NO SQL NO EXTERNAL ACTION

SCRATCHPAD NO FINAL CALL

 DISALLOW PARALLEL

Example 3: The following is the C language user-defined function program written to
implement the rule:

output = 2 * input - 4

 returning NULL if and only if the input is null. It could be written even more simply
(that is, without the null checking), if the CREATE FUNCTION statement had used NOT
NULL CALL. Further examples of user-defined function programs can be found in the
Embedded SQL Programming Guide. The CREATE FUNCTION statement:

CREATE FUNCTION ntest1 (SMALLINT)

 RETURNS SMALLINT

EXTERNAL NAME 'ntest1!nudft1'

LANGUAGE C PARAMETER STYLE DB2SQL

 DETERMINISTIC NOT FENCED NULL CALL

NO SQL NO EXTERNAL ACTION

The program code:

438 SQL Reference

CREATE FUNCTION (External Scalar)

#include "sqlsystm.h"

/* NUDFT1 IS A USER_DEFINED SCALAR FUNCTION */

/* udft1 accepts smallint input

and produces smallint output

implementing the rule:

if (input is null)

set output = null;

 else

set output = 2 * input - 4;

*/

void SQL_API_FN nudft1

(short *input, /* ptr to input arg */

short *output, /* ptr to where result goes */

short *input_ind, /* ptr to input indicator var */

short *output_ind, /* ptr to output indicator var */

char sqlstate[6], /* sqlstate, allows for null-term */

char fname[28], /* fully qual func name, nul-term */

char finst[19], /* func specific name, null-term */

char msgtext[71]) /* msg text buffer, null-term */

{

/* first test for null input */

if (*input_ind == -1)

 {

/* input is null, likewise output */

*output_ind = -1;

 }

 else

 {

/* input is not null. set output to 2*input-4 */

*output = 2 * (*input) - 4;

/* and set out null indicator to zero */

*output_ind = 0;

 }

/* signal successful completion by leaving sqlstate as is */

/* and exit */

 return;

}

/* end of UDF: NUDFT1 */

Example 4: The following registers a Java UDF which returns the position of the first
vowel in a string. The UDF is written in Java, is to be run fenced, and is the findvwl
method of class javaUDFs.

 Chapter 6. Statements 439

CREATE FUNCTION (External Scalar)

CREATE FUNCTION findv (CLOB(100K))

 RETURNS INTEGER

 FENCED

 LANGUAGE JAVA

PARAMETER STYLE DB2GENERAL

EXTERNAL NAME 'javaUDFs!findvwl'

NO EXTERNAL ACTION

 NULL CALL

 DETERMINISTIC

 NO SQL

440 SQL Reference

CREATE FUNCTION (External Table)

CREATE FUNCTION (External Table)
This statement is used to register a user-defined external table function with an applica-
tion server.

A table function may be used in the FROM clause of a SELECT, and returns a table to
the SELECT by returning one row at a time.

 Invocation
This statement can be embedded in an application program or issued through the use
of dynamic SQL statements. It is an executable statement that can be dynamically pre-
pared.

 Authorization
The privileges held by the authorization ID of the statement must include at least one of
the following:

¹ SYSADM or DBADM authority
¹ IMPLICIT_SCHEMA authority on the database, if the implicit or explicit schema

name of the function does not exist
¹ CREATEIN privilege on the schema, if the schema name of the function exists.

To create a not-fenced function, the privileges held by the authorization ID of the state-
ment must also include at least one of the following:

¹ CREATE_NOT_FENCED authority on the database
¹ SYSADM or DBADM authority.

To create a fenced function, no additional authorities or privileges are required.

If the authorization ID has insufficient authority to perform the operation, an error
(SQLSTATE 42502) is raised.

 Syntax

 Chapter 6. Statements 441

CREATE FUNCTION (External Table)

55─ ─CREATE FUNCTION──function-name─ ─(─ ──┬ ┬──────────────────────────────── ─)──Á───────────5
 │ │┌ ┐─,──────────────────────────
 └ ┘ ───6 ┴ ─data-type1─ ──┬ ┬────────────
 └ ┘ ─AS LOCATOR─

 ┌ ┐─,───────────────────────────────────────
5─ ─RETURNS TABLE──(─ ───6 ┴ ─column-name──data-type2─ ──┬ ┬──────────── ─)──Á────────────────────5
 └ ┘ ─AS LOCATOR─

5─ ──┬ ┬───────────────────────── ─Á──EXTERNAL─ ──┬ ┬────────────────────── ─Á──────────────────5
 └ ┘ ─SPECIFIC──specific-name─ └ ┘ ─NAME─ ──┬ ┬─'string'───
 └ ┘─identifier─

5─ ─LANGUAGE─ ──┬ ┬─C──── ─Á─ ─PARAMETER STYLE─ ──┬ ┬─DB2SQL───── ─Á─ ──┬ ┬ ─DETERMINISTIC───(1) ── ─Á────5
 ├ ┤─JAVA─ └ ┘─DB2GENERAL─ └ ┘─NOT DETERMINISTIC─
 └ ┘─OLE──

┌ ┐─FENCED───── ┌ ┐─NOT NULL CALL─
5─ ──┼ ┼──────────── ─Á─ ──┼ ┼─────────────── ─Á──NO SQL──Á─ ──┬ ┬─NO EXTERNAL ACTION─ ─Á──────────5
 └ ┘─NOT FENCED─ └ ┘─NULL CALL───── └ ┘─EXTERNAL ACTION────

 ┌ ┐─NO SCRATCHPAD─ ┌ ┐─NO DBINFO─
5─ ──┼ ┼─────────────── ─Á─ ─FINAL CALL──Á─ ─DISALLOW PARALLEL─ ─Á─ ──┼ ┼─────────── ─Á────────────5
 └ ┘─SCRATCHPAD──── └ ┘─DBINFO────

5─ ──┬ ┬────────────────────── ─Á───5%
 └ ┘ ─CARDINALITY──integer─

Note:
1 NOT VARIANT may be specified in place of DETERMINISTIC and VARIANT may be specified in

place of NOT DETERMINISTIC.

 Description
function-name

Names the function being defined. It is a qualified or unqualified name that desig-
nates a function. The unqualified form of function-name is an SQL identifier (with a
maximum length of 18). An unqualified function-name is implicitly qualified by the
authorization ID. The qualified form is a schema-name followed by a period and an
SQL identifier.

The name, including the implicit or explicit qualifiers, together with the number of
parameters and the data type of each parameter (without regard for any length,
precision or scale attributes of the data type) must not identify a function described
in the catalog (SQLSTATE 42723). The unqualified name, together with the
number and data types of the parameters, while of course unique within its
schema, need not be unique across schemas.

If a two-part name is specified, the schema-name cannot begin with “SYS”. Other-
wise, an error (SQLSTATE 42939) is raised.

A number of names used as keywords in predicates are reserved for system use,
and may not be used as a function-name. The names are SOME, ANY, ALL, NOT,
AND, OR, BETWEEN, NULL, LIKE, EXISTS, IN, UNIQUE, OVERLAPS, SIMILAR,

442 SQL Reference

CREATE FUNCTION (External Table)

MATCH and the comparison operators as described in “Basic Predicate” on
page 124 . Failure to observe this rule will lead to an error (SQLSTATE 42939).

The same name can be used for more than one function if there is some difference
in the signature of the functions. Although there is no prohibition against it, an
external user-defined table function should not be given the same name as a
built-in function.

(data-type1,...)
Identifies the number of input parameters of the function, and specifies the data
type of each parameter. One entry in the list must be specified for each parameter
that the function will expect to receive. No more than 90 parameters are allowed. If
this limit is exceeded, an error (SQLSTATE 54023) is raised.

It is possible to register a function that has no parameters. In this case, the paren-
theses must still be coded, with no intervening data types. For example,

CREATE FUNCTION WOOFER() ...

No two identically-named functions within a schema are permitted to have exactly
the same type for all corresponding parameters. Lengths, precisions and scales are
not considered in this type comparison. Therefore CHAR(8) and CHAR(35) are
considered to be the same type, as are DECIMAL(11,2) and DECIMAL (4,3). There
is some further bundling of types that causes them to be treated as the same type
for this purpose, such as DECIMAL and NUMERIC. A duplicate signature raises an
SQL error (SQLSTATE 42723).

For example, given the statements:

CREATE FUNCTION PART (INT, CHAR(15)) ...

CREATE FUNCTION PART (INTEGER, CHAR(40)) ...

CREATE FUNCTION ANGLE (DECIMAL(12,2)) ...

CREATE FUNCTION ANGLE (DEC(10,7)) ...

 the second and fourth statements would fail because they are considered to be a
duplicate functions.

data-type1
Specifies the data type of the parameter.

¹ SQL data type specifications and abbreviations which may be specified in
the data-type definition of a CREATE TABLE statement and have a corre-
spondence in the language that is being used to write the function may be
specified. See the language-specific sections of the Embedded SQL Pro-
gramming Guide for details on the mapping between the SQL data types
and host language data types with respect to user-defined functions.

¹ DECIMAL (and NUMERIC) are invalid with LANGUAGE C and OLE
(SQLSTATE 42815). For alternatives to using DECIMAL refer to
Embedded SQL Programming Guide.

 Chapter 6. Statements 443

CREATE FUNCTION (External Table)

AS LOCATOR
For the LOB types or distinct types which are based on a LOB type, the
AS LOCATOR clause can be added. This indicates that a LOB locator is
to be passed to the UDF instead of the actual value. This saves greatly in
the number of bytes passed to the UDF, and may save as well in perform-
ance, particularly in the case where only a few bytes of the value are
actually of interest to the UDF. Use of LOB locators in UDFs are
described in Embedded SQL Programming Guide.

Here is an example which illustrates the use of the AS LOCATOR clause
in parameter definitions:

CREATE FUNCTION foo (CLOB(10M) AS LOCATOR, IMAGE AS LOCATOR)

 ...

which assumes that IMAGE is a distinct type based on one of the LOB
types.

Note also that for argument promotion purposes, the AS LOCATOR
clause has no effect. In the example the types are considered to be CLOB
and IMAGE respectively, which would mean that a CHAR or VARCHAR
argument could be passed to the function as the first argument. Likewise,
the AS LOCATOR has no effect on the function signature, which is used
in matching the function (a) when referenced in DML, by a process called
"function resolution", and (b) when referenced in a DDL statement such as
COMMENT ON or DROP. In fact the clause may or may not be used in
COMMENT ON or DROP with no significance.

An error (SQLSTATE 42601) is raised if AS LOCATOR is specified for a
type other than a LOB or a distinct type based on a LOB.

If the function is FENCED, the AS LOCATOR clause cannot be specified
(SQLSTATE 42613).

RETURNS TABLE
Specifies that the output of the function is a table. The parentheses that follow this
keyword delimit a list of the names and types of the columns of the table, resem-
bling the style of a simple CREATE TABLE statement which has no additional
specifications (constraints, for example).

column-name
Specifies the name of this column. This is a long-identifier, unique within the
table function.

data-type2
Specifies the data type of the column, and can be any data type supported for
a parameter of a UDF, i.e. any type, including a distinct type but excluding
DECIMAL and NUMERIC.

AS LOCATOR
When data-type2 is a LOB type or distinct type based on a LOB type, the
use of this option indicates that the function is returning a locator for the
LOB value that is instantiated in the result table.

444 SQL Reference

CREATE FUNCTION (External Table)

The valid types for use with this clause are discussed on page 427.

SPECIFIC specific-name
Provides a unique name for the instance of the function that is being defined. This
specific name can be used when sourcing on this function, dropping the function,
or commenting on the function. It can never be used to invoke the function. The
unqualified form of specific-name is an SQL identifier (with a maximum length of
18). The qualified form is a schema-name followed by a period and an SQL identi-
fier. The name, including the implicit or explicit qualifier, must not identify another
function instance that exists at the application server; otherwise an error
(SQLSTATE 42710) is raised.

The specific-name may be the same as an existing function-name.

If specific-name is not specified, a unique name is generated by the database
manager. The unique name is SQL followed by a character timestamp,
SQLyymmddhhmmsshhn.

EXTERNAL
This clause indicates that the CREATE FUNCTION statement is being used to reg-
ister a new function based on code written in an external programming language
and adhering to the documented linkage conventions and interface.

If NAME clause is not specified "NAME function-name" is assumed.

NAME 'string'
This clause identifies the user-written code which implements the function
being defined.

The 'string' option is a string constant with a maximum of 254 characters.
The format used for the string is dependent on the LANGUAGE specified.

¹ For LANGUAGE C:

The string specified is the library name and function within library, which
the database manager invokes to execute the user-defined function being
CREATEd. The library (and the function within the library) do not need to
exist when the CREATE FUNCTION statement is performed. However,
when the function is used in an SQL statement, the library and function
within the library must exist and be accessible from the database server
machine.

5─ ─'─ ──┬ ┬─library_id─────── ──┬ ┬──────────── ─'──5
 └ ┘─absolute_path_id─ └ ┘ ─!──func_id─

The name must be enclosed in single quotes. Extraneous blanks are not
permitted within the single quotes.

library_id
Identifies the library name containing the function. The database
manager will look for the library in the .../sqllib/function directory
(UNIX-based systems), or ...\sqllib\function directory (OS/2, , Windows
95 and Windows NT), where the database manager will locate the
controlling sqllib directory which is being used to run the database

 Chapter 6. Statements 445

CREATE FUNCTION (External Table)

manager. For example, the controlling sqllib directory in UNIX-based
systems is /u/$DB2INSTANCE/sqllib.

If 'myfunc' were the library_id in a UNIX-based system it would cause
the database manager to look for the function in library
/u/production/sqllib/function/myfunc, provided the database manager
is being run from /u/production.

absolute_path_id
Identifies the full path name of the function.

In a UNIX-based system, for example, '/u/jchui/mylib/myfunc' would
cause the database manager to look in /u/jchui/mylib for the myfunc
function.

In OS/2, Windows 95 and Windows NT 'd:\mylib\myfunc' would cause
the database manager to load the myfunc.dll file from the d:\mylib
directory.

! func_id
Identifies the entry point name of the function to be invoked. The !
serves as a delimiter between the library id and the function id. If !
func_id is omitted, the database manager will use the default entry
point established when the library was linked.

In a UNIX-based system, for example, 'mymod!func8' would direct the
database manager to look for the library
$inst_home_dir/sqllib/function/mymod and to use entry point func8
within that library.

In OS/2, Windows 95 and Windows NT , 'mymod!func8' would direct
the database manager to load the mymod.dll file and call the func8()
function in the dynamic link library (DLL).

If the string is not properly formed, an error (SQLSTATE 42878) is raised.

In any case, the body of every external function should be in a directory
which is mounted and available on every partition of the database.

¹ For LANGUAGE JAVA:

The string specified is the class identifier and method identifier, which the
database manager invokes to execute the user-defined function being
CREATEd. The class identifier and method identifier do not need to exist
when the CREATE FUNCTION statement is performed. However, when
the function is used in an SQL statement, the method identifier must exist
and be accessible from the database server machine.

5──'──class_id──!──method_id──'──5

The name must be enclosed in single quotes. Extraneous blanks are not
permitted within the single quotes.

446 SQL Reference

CREATE FUNCTION (External Table)

class_id
Identifies the class identifier of the Java object.

method_id
Identifies the method name of the Java object to be invoked.

¹ For LANGUAGE OLE:

The string specified is the OLE programmatic identifier (progid) or class
identifier (clsid), and method identifier, which the database manager
invokes to execute the user-defined function being CREATEd. The
programmatic identifier or class identifier, and method identifier do not
need to exist when the CREATE FUNCTION statement is performed.
However, when the function is used in an SQL statement, the method
identifier must exist and be accessible from the database server machine,
otherwise an error (SQLSTATE 42724) is raised .

5──'─ ──┬ ┬─progid─ ─!──method_id──'──5
 └ ┘─clsid──

The name must be enclosed in single quotes. Extraneous blanks are not
permitted within the single quotes.

progid
Identifies the programmatic identifier of the OLE object.

progid is not interpreted by the database manager but only forwarded
to the OLE APIs at run time. The specified OLE object must be
creatable and support late binding (also called IDispatch-based
binding).

clsid
Identifies the class identifier of the OLE object to create. It can be
used as an alternative for specifying a progid in the case that an OLE
object is not registered with a progid. The clsid has the form:

{nnnnnnnn-nnnn-nnnn-nnnn-nnnnnnnnnnnn}

where 'n' is an alphanumeric character. clsid is not interpreted by the
database manager but only forwarded to the OLE APIs at run time.

method_id
Identifies the method name of the OLE object to be invoked.

NAME identifier
This clause identifies the name of the user-written code which implements the
function being defined. The identifier specified is an SQL identifier. The SQL
identifier is used as the library-id in the string. Unless it is a delimited identifier,
the identifier is folded to upper case. If the identifier is qualified with a schema
name, the schema name portion is ignored. This form of NAME can only be
used with LANGUAGE C.

 Chapter 6. Statements 447

CREATE FUNCTION (External Table)

LANGUAGE
This mandatory clause is used to specify the language interface convention to
which the user-defined function body is written.

C This means the database manager will call the user-defined function
as if it were a C function. The user-defined function must conform to
the C language calling and linkage convention as defined by the
standard ANSI C prototype.

JAVA This means the database manager will call the user-defined function
as a method in a Java class.

OLE This means the database manager will call the user-defined function
as if it were a method exposed by an OLE automation object. The
user-defined function must conform with the OLE automation data
types and invocation mechanism as described in the OLE Automation
Programmer's Reference.

LANGUAGE OLE is only supported for user-defined functions stored in
DB2 for Windows 95 and Windows NT.

PARAMETER STYLE
This clause is used to specify the conventions used for passing parameters to and
returning the value from functions.

DB2SQL Used to specify the conventions for passing parameters to and
returning the value from external functions that conform to C language
calling and linkage conventions. This must be specified when LAN-
GUAGE C or LANGUAGE OLE is used.

DB2GENERAL Used to specify the conventions for passing parameters to and
returning the value from external functions that are defined as a
method in a Java class. This must be specified when LANGUAGE
JAVA is used.

The value DB2GENRL may be used as a synonym for DB2GENERAL.

Refer to Embedded SQL Programming Guide for details on passing parameters.

DETERMINISTIC or NOT DETERMINISTIC
This mandatory clause specifies whether the function always returns the same
results for given argument values (DETERMINISTIC) or whether the function
depends on some state values that affect the results (NOT DETERMINISTIC). That
is, a DETERMINISTIC function must always return the same table from successive
invocations with identical inputs. Optimizations taking advantage of the fact that
identical inputs always produce the same results are prevented by specifying NOT
DETERMINISTIC. An example of a NOT DETERMINISTIC table function would be
a function that retrieves data from a data source such as a file.

FENCED or NOT FENCED
This clause specifies whether or not the function is considered “safe” to run in the
database manager operating environment's process or address space (NOT
FENCED), or not (FENCED).

448 SQL Reference

CREATE FUNCTION (External Table)

If a function is registered as FENCED, the database manager insulates its internal
resources (e.g. data buffers) from access by the function. Most functions will have
the option of running as FENCED or NOT FENCED. In general, a function running
as FENCED will not perform as well as a similar one running as NOT FENCED.

Warning: Use of NOT FENCED for functions not adequately checked out can
compromise the integrity of DB2. DB2 takes some precautions against
many of the common types of inadvertent failures that might occur, but
cannot guarantee complete integrity when NOT FENCED user defined func-
tions are used.

Most user-defined functions should be able to run either as FENCED or NOT
FENCED. Only FENCED can be specified for a function with LANGUAGE OLE
(SQLSTATE 42613).

To change from FENCED to NOT FENCED, the function must be re-registered (by
first dropping it and then re-creating it). Either SYSADM authority, DBADM
authority or a special authority (CREATE_NOT_FENCED) is required to register a
user-defined function as NOT FENCED.

NOT NULL CALL or NULL CALL
This optional clause may be used to avoid a call to the external function if any of
the arguments is null.

If NOT NULL CALL is specified and if at execution time any one of the function's
arguments is null, the user-defined function is not called and the result is the empty
table, i.e. a table with no rows.

If NULL CALL is specified, then at execution time regardless of whether any argu-
ments are null, the user-defined function is called. It can return an empty table or
not, depending on its logic. But responsibility for testing for null argument values
lies with the UDF.

NO SQL
This mandatory clauses indicates that the function cannot issue any SQL state-
ments. If it does, an error (SQLSTATE 38502) is raised at run time.

NO EXTERNAL ACTION or EXTERNAL ACTION
This mandatory clause specifies whether or not the function takes some action that
changes the state of an object not managed by the database manager. Optimiza-
tions that assume functions have no external impacts are prevented by specifying
EXTERNAL ACTION. For example: sending a message, ringing a bell, or writing a
record to a file.

NO SCRATCHPAD or SCRATCHPAD
This optional clause may be used to specify whether a scratchpad is to be pro-
vided for an external function. (It is strongly recommended that user-defined func-
tions be re-entrant, so a scratchpad provides a means for the function to “save
state” from one call to the next.)

If SCRATCHPAD is specified, then at first invocation of the user-defined function,
memory is allocated for a scratchpad to be used by the external function. This
scratchpad has the following characteristics:

 Chapter 6. Statements 449

CREATE FUNCTION (External Table)

¹ It is 100 bytes in size.

¹ It is initialized to all X'00''s.

¹ Its scope is the SQL statement. There is one scratchpad per reference to the
external function in the SQL statement. So if the UDFX function in the fol-
lowing statement is defined with the SCRATCHPAD keyword, two scratchpads
would be assigned.

SELECT A.C1, B.C2 FROM

TABLE (UDFX(:hv1))AS A,

TABLE (UDFX(:hv1))AS B

 WHERE ...

¹ It is persistent. Its content is preserved from one external function call to the
next. Any changes made to the scratchpad by the external function on one call
will be there on the next call. The database manager initializes scratchpads at
the beginning of execution of each SQL statement. The database manager
may reset scratchpads at the beginning of execution of each subquery. The
system issues a final call before resetting a scratchpad if the FINAL CALL
option is specified.

¹ It can be used as a central point for system resources (for example, memory)
which the external function might acquire. The function could acquire the
memory on the first call, keep its address in the scratchpad, and refer to it in
subsequent calls.

(In such a case where system resource is acquired, the FINAL CALL keyword
(described below) should also be specified; this causes a special call to be
made at end-of-statement to allow the external function to free any system
resources acquired.)

If SCRATCHPAD is specified, then on each invocation of the user-defined function
an additional argument is passed to the external function which addresses the
scratchpad.

If NO SCRATCHPAD is specified then no scratchpad is allocated or passed to the
external function.

FINAL CALL
This specifies that a final call is to be made to an external table function. The
purpose of such a final call is to enable the function to distinguish the three types
of calls (open, fetch and close) which DB2 makes to a table function. Refer to
Embedded SQL Programming Guide for details.

DISALLOW PARALLEL
This clause specifies that, for a single reference to the function, the invocation of
the function can not be parallelized. Table functions are always run on a single
partition.

NO DBINFO or DBINFO
This optional clause specifies whether certain specific information known by DB2
will be passed to the UDF as an additional invocation-time argument (DBINFO) or

450 SQL Reference

CREATE FUNCTION (External Table)

not (NO DBINFO). NO DBINFO is the default. DBINFO is not supported for LAN-
GUAGE OLE (SQLSTATE 42613).

If DBINFO is specified, then a structure is passed to the UDF which contains the
following information:

¹ Data base name - the name of the currently connected database.

¹ Application Authorization ID - the application run-time authorization ID, regard-
less of the nested UDFs in between this UDF and the application.

¹ Code page - identifies the database code page.

¹ Schema name - not applicable to external table functions.

¹ Table name - not applicable to external table functions.

¹ Column name - not applicable to external table functions.

¹ Database version/release- identifies the version, release and modification level
of the database server invoking the UDF.

¹ Platform - contains the server's platform type.

¹ Table function result column numbers - an array of the numbers of the table
function result columns actually needed for the particular statement referencing
the function. Only provided for table functions, it enables the UDF to optimize
by only returning the required column values instead of all column values.

Please see the Embedded SQL Programming Guide for detailed information on the
structure and how it is passed to the UDF.

CARDINALITY integer
This optional clause provides an estimate of the expected number of rows to be
returned by the function for optimization purposes. Valid values for integer range
from 0 to 2147483647 inclusive.

If the CARDINALITY clause is not specified for a table function, DB2 will assume a
finite value as a default- the same value assumed for tables for which the
RUNSTATS utility has not gathered statistics.

Warning: if a function does in fact have infinite cardinality, i.e. it returns a row
every time it is called to do so, never returning the "end-of-table" condition, then
queries which require the "end-of-table" condition to correctly function will be infi-
nite, and will have to be interrupted. Examples of such queries are those involving
GROUP BY and ORDER BY. The user is advised to not write such UDFs.

 Notes
¹ Determining whether one data type is castable to another data type does not con-

sider length or precision and scale for parameterized data types such as CHAR
and DECIMAL. Therefore, errors may occur when using a function as a result of
attempting to cast a value of the source data type to a value of the target data
type. For example, VARCHAR is castable to DATE but if the source type is actually
defined as VARCHAR(5), an error will occur when using the function.

 Chapter 6. Statements 451

CREATE FUNCTION (External Table)

¹ When choosing the data types for the parameters of a user-defined function, con-
sider the rules for promotion that will affect its input values (see “Promotion of Data
Types” on page 61). For example, a constant which may be used as an input
value could have a built-in data type different from the one expected and, more
significantly, may not be promoted to the data type expected. Based on the rules
for promotion, it is generally recommended to use the following data types for
parameters:

– INTEGER instead of SMALLINT
– DOUBLE instead of REAL
– VARCHAR instead of CHAR
– VARGRAPHIC instead of GRAPHIC

¹ For portability of UDFs across platforms the following data types should not be
used:

– FLOAT- use DOUBLE or REAL instead.
– NUMERIC- use DECIMAL instead.
– LONG VARCHAR- use CLOB (or BLOB) instead.

¹ For information on writing, compiling, and linking an external user-defined function,
see the Embedded SQL Programming Guide.

¹ Creating a function with a schema name that does not already exist will result in
the implicit creation of that schema provided the authorization ID of the statement
has IMPLICIT_SCHEMA authority. The schema owner is SYSIBM. The
CREATEIN privilege on the schema is granted to PUBLIC.

 Examples
Example 1: The following registers a table function written to return a row consisting of
a single document identifier column for each known document in a text management
system. The first parameter matches a given subject area and the second parameter
contains a given string.

Within the context of a single session, the UDF will always return the same table, and
therefore it is defined as DETERMINISTIC. Note the RETURNS clause which defines
the output from DOCMATCH. FINAL CALL must be specified for each table function. In
addition, the DISALLOW PARALLEL keyword is added as table functions cannot
operate in parallel. Although the size of the output for DOCMATCH is highly variable,
CARDINALITY 20 is a representative value, and is specified to help the DB2 optimizer.

452 SQL Reference

CREATE FUNCTION (External Table)

CREATE FUNCTION DOCMATCH (VARCHAR(30), VARCHAR(255))

RETURNS TABLE (DOC_ID CHAR(16))

EXTERNAL NAME '/common/docfuncs/rajiv/udfmatch'

 LANGUAGE C

PARAMETER STYLE DB2SQL

 NO SQL

 DETERMINISTIC

NO EXTERNAL ACTION

 NOT FENCED

 SCRATCHPAD

 FINAL CALL

 DISALLOW PARALLEL

 CARDINALITY 20

Example 2: The following registers an OLE table function that is used to retrieve
message header information and the partial message text of messages in Microsoft
Exchange. For an example of the code that implements this table function, see the
Embedded SQL Programming Guide.

CREATE FUNCTION MAIL()

RETURNS TABLE (TIMERECIEVED DATE,

 SUBJECT VARCHAR(15),

 SIZE INTEGER,

 TEXT VARCHAR(30))

EXTERNAL NAME 'tfmail.header!list'

 LANGUAGE OLE

PARAMETER STYLE DB2SQL

 NOT DETERMINISTIC

 FENCED

 NULL CALL

 SCRATCHPAD

 FINAL CALL

 NO SQL

 EXTERNAL ACTION

 DISALLOW PARALLEL

 Chapter 6. Statements 453

CREATE FUNCTION (Sourced)

CREATE FUNCTION (Sourced)
This statement is used to register a user-defined function, based on another existing
scalar or column function, with an application server.

 Invocation
This statement can be embedded in an application program or issued through the use
of dynamic SQL statements. It is an executable statement that can be dynamically pre-
pared.

 Authorization
The privileges held by the authorization ID of the statement must include at least one of
the following:

¹ SYSADM or DBADM authority
¹ IMPLICIT_SCHEMA authority on the database, if the implicit or explicit schema

name of the function does not exist
¹ CREATEIN privilege on the schema, if the schema name of the function exists.

If the authorization ID has insufficient authority to perform the operation, an error
(SQLSTATE 42502) is raised.

No authority is required on a function referenced in the SOURCE clause.

 Syntax

55─ ─CREATE FUNCTION──function-name─ ─(─ ──┬ ┬──────────────── ─)─ ─Á─ ─RETURNS──data-type2──Á───5
 │ │┌ ┐─,──────────
 └ ┘ ───6 ┴─data-type1─

5─ ──┬ ┬───────────────────────── ─Á─ ─SOURCE─ ──┬ ┬─function-name────────────────────────── ────5
 └ ┘ ─SPECIFIC──specific-name─ ├ ┤─SPECIFIC──specific-name────────────────
 └ ┘ ─function-name──(─ ──┬ ┬─────────────── ─)─
 │ │┌ ┐─,─────────
 └ ┘ ───6 ┴─data-type─

5──Á───5%

 Description
function-name

Names the function being defined. It is a qualified or unqualified name that desig-
nates a function. The unqualified form of function-name is an SQL identifier (with a
maximum length of 18). An unqualified function-name is implicitly qualified by the
authorization ID. The qualified form is a schema-name followed by a period and an
SQL identifier.

The name, including the implicit or explicit qualifiers, together with the number of
parameters and the data type of each parameter (without regard for any length,

454 SQL Reference

CREATE FUNCTION (Sourced)

precision or scale attributes of the data type) must not identify a function described
in the catalog (SQLSTATE 42723). The unqualified name, together with the
number and data types of the parameters, while of course unique within its
schema, need not be unique across schemas.

If a two-part name is specified, the schema-name cannot begin with “SYS”. Other-
wise, an error (SQLSTATE 42939) is raised.

A number of names used as keywords in predicates are reserved for system use,
and may not be used as a function-name. The names are SOME, ANY, ALL, NOT,
AND, OR, BETWEEN, NULL, LIKE, EXISTS, IN, UNIQUE, OVERLAPS, SIMILAR,
MATCH and the comparison operators as described in “Basic Predicate” on
page 124. Failure to observe this rule will lead to an error (SQLSTATE 42939).

When naming a user-defined function that is sourced on an existing function with
the purpose of supporting the same function with a user-defined distinct type, the
same name as the sourced function may be used. This allows users to use the
same function with a user-defined distinct type without realizing that an additional
definition was required. In general, the same name can be used for more than one
function if there is some difference in the signature of the functions.

(data-type,...)
Identifies the number of input parameters of the function, and specifies the data
type of each parameter. One entry in the list must be specified for each parameter
that the function will expect to receive. No more than 90 parameters are allowed. If
this limit is exceeded, an error (SQLSTATE 54023) is raised.

It is possible to register a function that has no parameters. In this case, the paren-
theses must still be coded, with no intervening data types. For example,

CREATE FUNCTION WOOFER() ...

No two identically-named functions within a schema are permitted to have exactly
the same type for all corresponding parameters. Lengths, precisions and scales are
not considered in this type comparison. Therefore CHAR(8) and CHAR(35) are
considered to be the same type, as are DECIMAL(11,2) and DECIMAL (4,3). There
is some further bundling of types that causes them to be treated as the same type
for this purpose, such as DECIMAL and NUMERIC. A duplicate signature raises an
SQL error (SQLSTATE 42723).

For example, given the statements:

CREATE FUNCTION PART (INT, CHAR(15)) ...

CREATE FUNCTION PART (INTEGER, CHAR(40)) ...

CREATE FUNCTION ANGLE (DECIMAL(12,2)) ...

CREATE FUNCTION ANGLE (DEC(10,7)) ...

 the second and fourth statements would fail because they are considered to be a
duplicate functions.

data-type1
Specifies the data type of the parameter.

With a sourced scalar function any valid SQL data type may be used provided

 Chapter 6. Statements 455

CREATE FUNCTION (Sourced)

it is castable to the type of the corresponding parameter of the function identi-
fied in the SOURCE clause (for the definition of castable, see “Casting
Between Data Types” on page 62).

Since the function is sourced, it is not necessary (but still permitted) to specify
length, precision, or scale for the parameterized data types. Instead, empty
parentheses may be used (for example CHAR() may be used). A
parameterized data type is any one of the data types that can be defined with
a specific length, scale, or precision. The parameterized data types are the
string data types and the decimal data types.

RETURNS
This mandatory clause identifies the output of the function.

data-type2
Specifies the data type of the output.

Any valid SQL data type is valid, as is a distinct type, provided it is castable
from the result type of the source function (for the definition of castable, see
“Casting Between Data Types” on page 62).

The parameter of a parameterized type need not be specified, as above for
parameters of a sourced function. Instead, empty parentheses may be used,
for example, VARCHAR().

Also see page on page 458 for additional considerations and rules that apply
to the specification of the data type in the RETURNS clause when the function
is sourced on another.

SPECIFIC specific-name
Provides a unique name for the instance of the function that is being defined. This
specific name can be used when sourcing on this function, dropping the function,
or commenting on the function. It can never be used to invoke the function. The
unqualified form of specific-name is an SQL identifier (with a maximum length of
18). The qualified form is a schema-name followed by a period and an SQL identi-
fier. The name, including the implicit or explicit qualifier, must not identify another
function instance that exists at the application server; otherwise an error
(SQLSTATE 42710) is raised.

The specific-name may be the same as an existing function-name.

If specific-name is not specified, a unique name is generated by the database
manager. The unique name is SQL followed by a character timestamp,
SQLyymmddhhmmsshhn.

SOURCE
Specifies that the function being created is to be implemented by another function
(the source function) already known to the database manager. The source function
can be either a built-in function51 or a previously created user-defined scalar func-
tion (including a sourced function).

51 With the exception of COALESCE, NULLIF, and VALUE.

456 SQL Reference

CREATE FUNCTION (Sourced)

The SOURCE clause may be specified only for scalar or column functions; it may
not be specified for table functions.

The SOURCE clause provides the identity of the other function.

function-name
Identifies the particular function that is to be used as the source and is valid
only if there is exactly one specific function in the schema with this function-
name. This syntax variant is not valid for a source function that is a built-in
function.

If an unqualified name is provided, then the authorization ID's current function
path (the value of the CURRENT FUNCTION PATH special register) is used to
locate the function. The first schema in the function path that has a function
with this name is selected.

If no function by this name exists in the named schema or if the name is not
qualified and there is no function with this name in the function path, an error
(SQLSTATE 42704) is raised. If there is more than one specific instance of the
function in the named or located schema, an error (SQLSTATE 42725) is
raised.

SPECIFIC specific-name
Identifies the particular user-defined function that is to be used as the source,
by the specific-name either specified or defaulted to at function creation time.
This syntax variant is not valid for a source function that is a built-in function.

If an unqualified name is provided, then the authorization ID's current function
path is used to locate the function. The first schema in the function path that
has a function with this specific name is selected.

If no function by this specific-name exists in the named schema or if the name
is not qualified and there is no function with this specific-name in the function
path, an error (SQLSTATE 42704) is raised.

function-name (data-type,...)
Provides the function signature, which uniquely identifies the source function.
This is the only valid syntax variant for a source function that is a built-in func-
tion.

The rules for function resolution (as described in “Function Resolution” on
page 102) are applied to select one function from the functions with the same
function name, given the data types specified in the SOURCE clause.
However, the data type of each parameter in the function selected must have
the exact same type as the corresponding data type specified in the source
function.

function-name
Gives the function name of the source function. If an unqualified name is
provided, then the schemas of the user's function path are considered.

data-type
Must match the data type that was specified on the CREATE FUNCTION
statement in the corresponding position (comma separated).

 Chapter 6. Statements 457

CREATE FUNCTION (Sourced)

It is not necessary to specify the length, precision or scale for the
parameterized data types. Instead an empty set of parentheses may be
coded to indicate that these attributes are to be ignored when looking for
a data type match. For example, DECIMAL() will match a parameter
whose data type was defined as DECIMAL(7,2)).

However, if length, precision, or scale is coded, the value must exactly
match that specified in the CREATE FUNCTION statement. This can be
useful in assuring that the exact intended function will be used. Also note
that synonyms for data types will be considered a match (for example
DEC and NUMERIC will match).

If no function with the specified signature exists in the named or implied
schema, an error (SQLSTATE 42883) is raised.

 Rules
¹ Rules for Functions Created with the SOURCE Clause :

For convenience, in this section we will call the function being created CF and the
function identified in the SOURCE clause SF, no matter which of the three allow-
able syntaxes was used to identify SF.

– The unqualified name of CF and the unqualified name of SF can be different.

– A function named as the source of another function can, itself, use another
function as its source. Extreme care should be exercised when exploiting this
facility because it could be very difficult to debug an application if an indirectly
invoked function raises an error.

– The following clauses are invalid if specified in conjunction with the SOURCE
clause (because CF will inherit these attributes from SF):

CAST FROM ...,
 EXTERNAL ...,
 LANGUAGE ...,

PARAMETER STYLE ...,
DETERMINISTIC / NOT DETERMINISTIC,
FENCED / NOT FENCED,
NULL CALL / NOT NULL CALL.
EXTERNAL ACTION / NO EXTERNAL ACTION

 NO SQL
SCRATCHPAD / NO SCRATCHPAD
FINAL CALL / NO FINAL CALL
RETURNS TABLE (...)

 CARDINALITY ...
ALLOW PARALLEL / DISALLOW PARALLEL
DBINFO / NO DBINFO

An error (SQLSTATE 42613) will result from violation of these rules.

¹ The number of input parameters in CF must be the same as those in SF; otherwise
an error (SQLSTATE 42624) is raised.

458 SQL Reference

CREATE FUNCTION (Sourced)

¹ It is not necessary for CF to specify length, precision, or scale for a parameterized
data type in the case of:

– The function's input parameters,
– Its RETURNS parameter

Instead, empty parentheses may be specified as part of the data type (for example:
VARCHAR()) in order to indicate that the length/precision/scale will be the same as
those of the source function, or determined by the casting.

However, if length, precision, or scale is specified then the value in CF is checked
against the corresponding value in SF as outlined below for input parameters and
returns value.

¹ The specification of the input parameters of CF are checked against those of SF.
The data type of each parameter of CF must either be the same as or be castable
to the data type of the corresponding parameter of SF. For the definition of
castable, see “Casting Between Data Types” on page 62. If any parameter is not
the same type or castable, an error (SQLSTATE 42879) is raised.

Note that this rule provides no guarantee against an error occurring when CF is
used. An argument that matches the data type and length or precision attributes of
a CF parameter may not be assignable if the corresponding SF parameter has a
shorter length or less precision. In general, parameters of CF should not have
length or precision attributes that are greater than the attributes of the corre-
sponding SF parameters.

¹ The specifications for the RETURNS data type of CF are checked against that of
SF. The final RETURNS data type of SF, after any casting, must either be the
same as or castable to the RETURNS data type of CF. Otherwise an error
(SQLSTATE 42866) is raised.

Note that this rule provides no guarantee against an error occurring when CF is
used. A result value that matches the data type and length or precision attributes of
the SF RETURNS data type may not be assignable if the CF RETURNS data type
has a shorter length or less precision. Caution should be used when choosing to
specify the RETURNS data type of CF as having length or precision attributes that
are less than the attributes of the SF RETURNS data type.

 Notes
¹ Determining whether one data type is castable to another data type does not con-

sider length or precision and scale for parameterized data types such as CHAR
and DECIMAL. Therefore, errors may occur when using a function as a result of
attempting to cast a value of the source data type to a value of the target data
type. For example, VARCHAR is castable to DATE but if the source type is actually
defined as VARCHAR(5), an error will occur when using the function.

¹ When choosing the data types for the parameters of a user-defined function, con-
sider the rules for promotion that will affect its input values (see “Promotion of Data
Types” on page 61). For example, a constant which may be used as an input
value could have a built-in data type different from the one expected and, more
significantly, may not be promoted to the data type expected. Based on the rules

 Chapter 6. Statements 459

CREATE FUNCTION (Sourced)

for promotion, it is generally recommended to use the following data types for
parameters:

– INTEGER instead of SMALLINT
– DOUBLE instead of REAL
– VARCHAR instead of CHAR
– VARGRAPHIC instead of GRAPHIC

¹ Creating a function with a schema name that does not already exist will result in
the implicit creation of that schema provided the authorization ID of the statement
has IMPLICIT_SCHEMA authority. The schema owner is SYSIBM. The
CREATEIN privilege on the schema is granted to PUBLIC.

 Examples
Example 1: Some time after the creation of Pellow's original CENTRE external scalar
function, another user wants to create a function based on it, except this function is
intended to accept only integer arguments.

CREATE FUNCTION MYCENTRE (INTEGER, INTEGER)

 RETURNS FLOAT

SOURCE PELLOW.CENTRE (INTEGER, FLOAT)

Example 2: You have created a distinct type HATSIZE which is based on the built-in
INTEGER data type, and now would find it useful to have an AVG function to compute
the average hat size of different departments. This is easily done as follows:

CREATE FUNCTION AVG (HATSIZE) RETURNS (HATSIZE)

SOURCE SYSIBM.AVG (INTEGER)

The creation of the distinct type has generated the required cast function, allowing the
cast from HATSIZE to INTEGER for the argument and from INTEGER to HATSIZE for
the result of the function.

460 SQL Reference

CREATE INDEX

 CREATE INDEX
The CREATE INDEX statement creates an index on a table.

 Invocation
This statement can be embedded in an application program or issued through the use
of dynamic SQL statements. It is an executable statement that can be dynamically pre-
pared.

 Authorization
The privileges held by the authorization ID of the statement must include at least one of
the following:

¹ SYSADM or DBADM authority.
 ¹ One of:

– CONTROL privilege on the table
– INDEX privilege on the table

and one of:
– IMPLICIT_SCHEMA authority on the database, if the implicit or explicit schema

name of the index does not exist
– CREATEIN privilege on the schema, if the schema name of the index refers to

an existing schema .

 Syntax

55─ ─CREATE─ ──┬ ┬──────── ─INDEX──index-name───5
 └ ┘ ─UNIQUE─

 ┌ ┐─,─────────────────────
 │ │┌ ┐ ─ASC──
5─ ─ON──table-name──(─ ───6 ┴─column-name─ ──┼ ┼────── ─)───────────────────────────────────────5%
 └ ┘─DESC─

 Description
UNIQUE

Prevents the table from containing two or more rows with the same value of the
index key. The uniqueness is enforced at the end of the SQL statement that
updates rows or inserts new rows. For details refer to Appendix H, “ Interaction of
Triggers and Constraints” on page 775.

The uniqueness is also checked during the execution of the CREATE INDEX state-
ment. If the table already contains rows with duplicate key values, the index is not
created.

 Chapter 6. Statements 461

CREATE INDEX

When UNIQUE is used, null values are treated as any other values. For example, if
the key is a single column that may contain null values, that column may contain
no more than one null value.

If the UNIQUE option is specified and the table has a partitioning key, the columns
in the index must be a superset of the partitioning key. That is, the columns speci-
fied for a unique index must include all the columns of the partitioning key
(SQLSTATE 42997).

INDEX index-name
Names the index. The name, including the implicit or explicit qualifier, must not
identify an index described in the catalog. The qualifier must not be SYSIBM,
SYSCAT, SYSFUN, or SYSSTAT (SQLSTATE 42939)

ON table-name
Names the table on which the index is to be created. The table-name must name a
base table (not a view) described in the catalog. It must not name a catalog table.

column-name
Identifies a column that is to be part of the index key. Each column-name must be
an unqualified name that identifies a column of the table. 16 columns or less may
be specified. No column-name may be repeated.

The sum of the length attributes of the specified columns must not be greater than
255. Note that this figure can be reduced by system overhead which varies
according to the data type of the column and whether it is nullable. See Byte
Counts on page 496 for more information on overhead affecting this limit. No
LONG VARCHAR, LONG VARGRAPHIC, or LOB column may be used as part of
an index (even if the length attribute of the column is small enough to fit within the
255 byte limit (SQLSTATE 42962)).

ASC
Puts the index entries in ascending order by the column. This is the default.

DESC
Puts the index entries in descending order by the column.

 Rules
¹ The CREATE INDEX statement will fail (SQLSTATE 01550) if attempting to create

an index that matches an existing index. Two index descriptions are considered
duplicates if:

– the set of columns and their order in the key is the same as that of an existing
index AND

– the ordering attributes are the same AND
– both the previously existing index and the one being created are non-unique

OR the previously existing index is unique.

462 SQL Reference

CREATE INDEX

 Notes
¹ If the named table already contains data, CREATE INDEX creates the index

entries for it. If the table does not yet contain data, CREATE INDEX creates a
description of the index; the index entries are created when data is inserted into
the table.

¹ Once the index is created and data is loaded into the table, it is advisable to issue
the RUNSTATS command. (See Command Reference for information about
RUNSTATS.) The RUNSTATS command updates statistics collected on the data-
base tables, columns, and indexes. These statistics are used to determine the
optimal access path to the tables. By issuing the RUNSTATS command, the data-
base manager can determine the characteristics of the new index.

¹ Creating an index with a schema name that does not already exist will result in the
implicit creation of that schema provided the authorization ID of the statement has
IMPLICIT_SCHEMA authority. The schema owner is SYSIBM. The CREATEIN
privilege on the schema is granted to PUBLIC.

 Examples
Example 1: Create an index named UNIQUE_NAM on the PROJECT table. The
purpose of the index is to ensure that there are not two entries in the table with the
same value for project name (PROJNAME). The index entries are to be in ascending
order.

CREATE UNIQUE INDEX UNIQUE_NAM

 ON PROJECT(PROJNAME)

Example 2: Create an index named JOB_BY_DPT on the EMPLOYEE table. Arrange
the index entries in ascending order by job title (JOB) within each department
(WORKDEPT).

CREATE INDEX JOB_BY_DPT

 ON EMPLOYEE (WORKDEPT, JOB)

 Chapter 6. Statements 463

CREATE NODEGROUP

 CREATE NODEGROUP
The CREATE NODEGROUP statement creates a new nodegroup within the database
and assigns partitions or nodes to the nodegroup, and records the nodegroup definition
in the catalog.

 Invocation
This statement can be embedded in an application program or issued interactively. It is
an executable statement that can be prepared dynamically.

 Authorization
The authorization ID of the statement must have SYSCTRL or SYSADM or authority.

 Syntax

55──CREATE NODEGROUP──nodegroup-name──5

 ┌ ┐─ON ALL NODES──
5─ ──┼ ┼─── ──────────────────────5%
 │ │┌ ┐─,──────────────────────────────────
 └ ┘ ─ON─ ──┬ ┬─NODES─ ─(─ ───6 ┴ ─node-number1─ ──┬ ┬────────────────── ─)─
 └ ┘─NODE── └ ┘ ─TO──node-number2─

 Description
nodegroup-name

Names the nodegroup. This is a one-part name. It is an SQL identifier (either ordi-
nary or delimited). The nodegroup-name must not identify a nodegroup that already
exists in the catalog (SQLSTATE 42710). The nodegroup-name must not begin
with the characters "SYS" or "IBM" (SQLSTATE 42939).

ON ALL NODES
Specifies that the nodegroup is defined over all partitions defined to the database
(db2nodes.cfg file) at the time the nodegroup is created.

If a partition is added to the database system, the ALTER NODEGROUP statement
should be issued to include this new partition in a nodegroup (including
IBMDEFAULTGROUP). Furthermore, the REDISTRIBUTE NODEGROUP
command must be issued to move data to the partition. Refer to the API Refer-
ence or the Command Reference for more information.

ON NODES
Specifies the specific partitions that are in the nodegroup. NODE is a synonym for
NODES.

node-number1

464 SQL Reference

CREATE NODEGROUP

Specify a specific partition number.52

TO node-number2
Specify a range of partition numbers. The value of node-number2 must be
greater than or equal to the value of node-number1 (SQLSTATE 428A9). All
partitions between and including the specified partition numbers are included in
the nodegroup.

 Rules
¹ Each partition or node specified by number must be defined in the db2nodes.cfg

file (SQLSTATE 42729).

¹ Each node-number listed in the ON NODES clause must be appear at most once
(SQLSTATE 42728).

¹ A valid node-number is between 0 and 999 inclusive (SQLSTATE 42729).

 Notes
¹ This statement creates a partitioning map for the nodegroup (Refer to “Data Parti-

tioning Across Multiple Partitions” on page 39 for more information) . A partitioning
map identifier (PMAP_ID) is generated for each partitioning map. This information
is recorded in the catalog and can be retrieved from SYSCAT.NODEGROUPS and
SYSCAT.PARTITIONMAPS. Each entry in the partitioning map specifies the target
partition on which all rows that are hashed reside. For a single-partition nodegroup,
the corresponding partitioning map has only one entry. For a multiple partition
nodegroup, the corresponding partitioning map has 4 096 entries, where the parti-
tion numbers are assigned to the map entries in a round-robin fashion, by default.

 Example
Assume that you have a partitioned database with six partitions defined as: 0, 1, 2, 5,
7, and 8.

¹ Assume that you want to create a nodegroup call MAXGROUP on all six partitions
. The statement is as follows:

 CREATE NODEGROUP MAXGROUP

 ON ALL NODES

¹ Assume that you want to create a nodegroup MEDGROUP on partitions 0, 1, 2, 5,
8. The statement is as follows:

CREATE NODEGROUP MEDGROUP

 ON NODES (0 TO 2, 5, 8)

¹ Assume that you want to create a single-partition nodegroup MINGROUP on parti-
tion (or node) 7. The statement is as follows:

CREATE NODEGROUP MINGROUP

 ON NODE (7)

52 node-name of the form 'NODEnnnnn' may be specified for compatibility with the previous version.

 Chapter 6. Statements 465

CREATE NODEGROUP

Note: The singular form of the keyword NODES is also accepted.

466 SQL Reference

CREATE PROCEDURE

 CREATE PROCEDURE
This statement is used to register a stored procedure with an application server.

 Invocation
This statement can be embedded in an application program or issued through the use
of dynamic SQL statements. It is an executable statement that can be dynamically pre-
pared.

 Authorization
The privileges held by the authorization ID of the statement must include as least one
of the following:

¹ SYSADM or DBADM authority

¹ IMPLICIT_SCHEMA authority on the database, if the implicit or explicit schema
name of the procedure does not exist

¹ CREATEIN privilege on the schema, if the schema name of the procedure refers to
an existing schema .

To create a not-fenced stored procedure, the privileges held by the authorization ID of
the statement must also include at least one of the following:

¹ CREATE_NOT_FENCED authority on the database

¹ SYSADM or DBADM authority.

To create a fenced stored procedure, no additional authorities or privileges are
required.

If the authorization ID has insufficient authority to perform the operation, an error
(SQLSTATE 42502) is raised.

 Syntax

 Chapter 6. Statements 467

CREATE PROCEDURE

55──CREATE PROCEDURE──5

5─ ─procedure-name──(─ ──┬ ┬── ─)──Á──────────────────5
 │ │┌ ┐─,────────────────────────────────────
 │ ││ │┌ ┐─IN────
 └ ┘───6 ┴──┼ ┼─────── ─parameter-name──data-type─
 ├ ┤─OUT───
 └ ┘─INOUT─

┌ ┐─RESULT SETS 0────────
5─ ──┬ ┬───────────────────────── ─Á─ ──┼ ┼────────────────────── ─Á────────────────────────────5
 └ ┘ ─SPECIFIC──specific-name─ └ ┘ ─RESULT SETS──integer─

5─ ─EXTERNAL─ ──┬ ┬────────────────────── ─Á──LANGUAGE─ ──┬ ┬─C──── ─────────────────────────────5
 └ ┘ ─NAME─ ──┬ ┬─'string'─── └ ┘─JAVA─
 └ ┘─identifier─

 ┌ ┐─NOT DETERMINISTIC─ ┌ ┐─FENCED─────
5─ ─Á─ ─PARAMETER STYLE─ ──┬ ┬─DB2DARI──── ─Á─ ──┼ ┼─────────────────── ─Á─ ──┼ ┼──────────── ───────5
 └ ┘─DB2GENERAL─ └ ┘─DETERMINISTIC───── └ ┘─NOT FENCED─

 ┌ ┐─NULL CALL─
5──Á─ ──┴ ┴─────────── ─Á───5%

 Description
procedure-name

Names the procedure being defined. It is a qualified or unqualified name that des-
ignates a stored procedure. The unqualified form of procedure-name is an SQL
identifier (with a maximum length of 18). An unqualified procedure-name is implic-
itly qualified by the authorization ID. The qualified form is a schema-name followed
by a period and an SQL identifier.

The name, including the implicit or explicit qualifiers, together with the number of
parameters must not identify a procedure described in the catalog (SQLSTATE
42723). The unqualified name, together with the number of the parameters, while
of course unique within its schema, need not be unique across schemas.

The result can name is specified, the schema-name cannot begin with “SYS”. Oth-
erwise, an error (SQLSTATE 42939) is raised.

(IN | OUT | INOUT parameter-name data-type,...)
Identifies the parameters of the procedure, and specifies the mode, name and data
type of each parameter. One entry in the list must be specified for each parameter
that the procedure will expect. No more than 500 parameters are allowed. If this
limit is exceeded, an error (SQLSTATE 54023) is raised.

It is possible to register a procedure that has no parameters. In this case, the
parentheses must still be coded, with no intervening data types. For example,

CREATE PROCEDURE SUBWOOFER() ...

No two identically-named procedures within a schema are permitted to have
exactly the same number of parameters. Lengths, precisions and scales are not
considered in this type comparison. Therefore CHAR(8) and CHAR(35) are consid-

468 SQL Reference

CREATE PROCEDURE

ered to be the same type, as are DECIMAL(11,2) and DECIMAL (4,3). There is
some further bundling of types that causes them to be treated as the same type for
this purpose, such as DECIMAL and NUMERIC. A duplicate signature raises an
SQL error (SQLSTATE 42723).

For example, given the statements:

CREATE PROCEDURE PART (IN NUMBER INT, OUT PART_NAME CHAR(35)) ...

CREATE PROCEDURE PART (IN COST DECIMAL(5,3), OUT COUNT INT) ...

the second statement will fail because the number of parameters of the procedure
are the same even if the data types are not.

IN | OUT | INOUT
Specifies the mode of the parameter.

¹ IN - parameter is input only

¹ OUT - parameter is output only

¹ INOUT - parameter is both input and output

parameter-name
Specifies the name of the parameter.

data-type
Specifies the data type of the parameter.

¹ SQL data type specifications and abbreviations which may be specified in
the data-type definition of a CREATE TABLE statement and have a corre-
spondence in the language that is being used to write the procedure may
be specified. See the language-specific sections of the Embedded SQL
Programming Guide for details on the mapping between the SQL data
types and host language data types with respect to store procedures.

¹ DECIMAL (and NUMERIC) are invalid with LANGUAGE C (SQLSTATE
42815).

SPECIFIC specific-name
Provides a unique name for the instance of the procedure that is being defined.
This specific name can be used when dropping the procedure or commenting on
the procedure. It can never be used to invoke the procedure. The unqualified form
of specific-name is an SQL identifier (with a maximum length of 18). The qualified
form is a schema-name followed by a period and an SQL identifier. The name,
including the implicit or explicit qualifier, must not identify another procedure
instance that exists at the application server; otherwise an error (SQLSTATE
42710) is raised.

The specific-name may be the same as an existing procedure-name.

If no qualifier is specified, the qualifier that was used for procedure-name is used. If
a qualifier is specified, it must be the same as the explicit or implicit qualifier of
procedure-name or an error (SQLSTATE 42882) is raised.

 Chapter 6. Statements 469

CREATE PROCEDURE

If specific-name is not specified, a unique name is generated by the database
manager. The unique name is SQL followed by a character timestamp,
SQLyymmddhhmmsshhn.

RESULT SETS integer
Indicates the estimated upper bound of returned result sets for the stored proce-
dure. Refer to Returning Result Sets from Stored Procedures on page 371 for
more information.

EXTERNAL
This clause indicates that the CREATE PROCEDURE statement is being used to
register a new procedure based on code written in an external programming lan-
guage and adhering to the documented linkage conventions and interface.

If NAME clause is not specified "NAME procedure-name" is assumed.

NAME 'string'
This clause identifies the name of the user-written code which implements the
procedure being defined.

The 'string' option is a string constant with a maximum of 254 characters.
The format used for the string is dependent on the LANGUAGE specified.

¹ For LANGUAGE C:

The string specified is the library name and procedure within the library,
which the database manager invokes to execute the stored procedure
being CREATEd. The library (and the procedure within the library) do not
need to exist when the CREATE PROCEDURE statement is performed.
However, when the procedure is called, the library and procedure within
the library must exist and be accessible from the database server
machine.

5─ ─'─ ──┬ ┬─library_id─────── ──┬ ┬──────────── ─'──5
 └ ┘─absolute_path_id─ └ ┘ ─!──proc_id─

The name must be enclosed in single quotes. Extraneous blanks are not
permitted within the single quotes.

library_id
Identifies the library name containing the procedure. The database
manager will look for the library in the .../sqllib/function/unfenced
directory and the .../sqllib/function directory (UNIX-based systems), or
...\sqllib\function\unfenced directory and the...\sqllib\function directory
(OS/2, Windows 95 and Windows NT), where the database manager
will locate the controlling sqllib directory which is being used to run
the database manager. For example, the controlling sqllib directory in
UNIX-based systems is /u/$DB2INSTANCE/sqllib.

If 'myproc' were the library_id in a UNIX-based system it would cause
the database manager to look for the procedure in library
/u/production/sqllib/function/unfenced/myfunc and

470 SQL Reference

CREATE PROCEDURE

/u/production/sqllib/function/myfunc, provided the database manager
is being run from /u/production.

Stored procedures located in any of these directories do not use any
of the registered attributes.

absolute_path_id
Identifies the full path name of the procedure.

In a UNIX-based system, for example, '/u/jchui/mylib/myproc' would
cause the database manager to look in /u/jchui/mylib for the myproc
procedure.

In OS/2, Windows 95 and Windows NT 'd:\mylib\myproc' would cause
the database manager to load the myproc.dll file from the d:\mylib
directory.

If absolute path is specified, the procedure will run as fenced, ignoring
the FENCED or NOT FENCED attribute.

! proc_id
Identifies the entry point name of the procedure to be invoked. The !
serves as a delimiter between the library id and the procedure id. If !
proc_id is omitted, the database manager will use the default entry
point established when the library was linked.

In a UNIX-based system, for example, 'mymod!proc8' would direct the
database manager to look for the library
$inst_home_dir/sqllib/function/mymod and to use entry point proc8
within that library.

In OS/2, Windows 95 and Windows NT 'mymod!proc8' would direct
the database manager to load the mymod.dll file and call the proc8()
procedure in the dynamic link library (DLL).

If the string is not properly formed, an error (SQLSTATE 42878) is raised.

The body of every stored procedure should be in a directory which is
mounted and available on every partition of the database.

¹ For LANGUAGE JAVA:

The string specified is the class identifier and method identifier, which the
database manager invokes to execute the stored procedure being
CREATEd. The class identifier and method identifier do not need to exist
when the CREATE PROCEDURE statement is performed. However, when
the procedure is called, the class identifier and the method identifier must
exist and be accessible from the database server machine, otherwise an
error (SQLSTATE 42884) is raised .

5──'──class_id──!──method_id──'──5

The name must be enclosed in single quotes. Extraneous blanks are not
permitted within the single quotes.

 Chapter 6. Statements 471

CREATE PROCEDURE

class_id
Identifies the class identifier of the Java object. If the class is part of a
package, the class identifier part must include the complete package
prefix, for example, "myPacks.StoredProcs". The Java virtual machine
will look in directory "../myPacks/StoredProcs/" for the classes. In
OS/2 and Windows 95 and Windows NT, the Java virtual machine will
look in directory "..\myPacks\StoredProcs\".

method_id
Identifies the method name with the Java class to be invoked.

NAME identifier
This identifier specified is an SQL identifier. The SQL identifier is used as the
library-id in the string. Unless it is a delimited identifier, the identifier is folded
to upper case. If the identifier is qualified with a schema name, the schema
name portion is ignored. This form of NAME can only be used with LAN-
GUAGE C.

LANGUAGE
This mandatory clause is used to specify the language interface convention to
which the stored procedure body is written.

C This means the database manager will call the stored procedure as if it
were a C procedure. The stored procedure must conform to the C lan-
guage calling and linkage convention as defined by the standard ANSI
C prototype.

JAVA This means the database manager will call the stored procedure as a
method in a Java class.

PARAMETER STYLE
This clause is used to specify the conventions used for passing parameters to and
returning the value from stored procedures.

DB2DARI This means that the stored procedure will use a parameter passing
convention that conforms to C language calling and linkage con-
ventions. This must be specified when LANGUAGE C is used.

DB2GENERAL This means that the stored procedure will use a parameter passing
convention that is defined for use with Java methods. This must be
specified when LANGUAGE JAVA is used.

The value DB2GENRL may be used as a synonym for DB2GENERAL.

Refer to Embedded SQL Programming Guide for details on passing parameters.

DETERMINISTIC or NOT DETERMINISTIC
This clause specifies whether the function always returns the same results for
given argument values (DETERMINISTIC) or whether the function depends on
some state values that affect the results (NOT DETERMINISTIC). That is, a
DETERMINISTIC function must always return the same result from successive
invocations with identical inputs.

472 SQL Reference

CREATE PROCEDURE

FENCED or NOT FENCED
This clause specifies whether or not the stored procedure is considered “safe” to
run in the database manager operating environment's process or address space
(NOT FENCED), or not (FENCED).

If a stored procedure is registered as FENCED, the database manager insulates its
internal resources (e.g. data buffers) from access by the procedure. All procedures
have the option of running as FENCED or NOT FENCED. In general, a procedure
running as FENCED will not perform as well as a similar one running as NOT
FENCED.

If the stored procedure is located in ...\sqllib\function\unfenced directory and the
...\sqllib\function directory (UNIX-based systems), or ...\sqllib\function\unfenced
directory and the ...\sqllib\function directory (OS/2, Windows 95 and Windows NT),
then the FENCED or NOT FENCED registered attribute (and every other registered
attribute) will be ignored.

Warning: Use of NOT FENCED for procedures not adequately checked out can
compromise the integrity of DB2. DB2 takes some precautions against
many of the common types of inadvertent failures that might occur, but
cannot guarantee complete integrity when NOT FENCED stored procedures
are used.

To change from FENCED to NOT FENCED, the procedure must be re-registered
(by first dropping it and then re-creating it). Either SYSADM authority, DBADM
authority or a special authority (CREATE_NOT_FENCED) is required to register a
stored procedures as NOT FENCED.

NULL CALL
NULL CALL always applies to stored procedures. This means that regardless if any
arguments are null, the stored procedure is called. It can return a null value or a
normal (non-null) value. Responsibility for testing for null argument values lies with
the stored procedure.

 Notes
¹ For information on creating the programs for a stored procedure, see the

Embedded SQL Programming Guide.

¹ Creating a procedure with a schema name that does not already exist will result in
the implicit creation of that schema provided the authorization ID of the statement
has IMPLICIT_SCHEMA authority. The schema owner is SYSIBM. The
CREATEIN privilege on the schema is granted to PUBLIC.

 Examples
Example 1: Create the procedure definition for a stored procedure, written in Java, that
is passed a part number and returns the cost of the part and the quantity that are cur-
rently available.

 Chapter 6. Statements 473

CREATE PROCEDURE

CREATE PROCEDURE PARTS_ON_HAND (IN PARTNUM INTEGER,

 OUT COST DECIMAL(7,2),

OUT QUANTITY INTEGER)

EXTERNAL NAME 'parts!onhand'

LANGUAGE JAVA PARAMETER STYLE DB2GENERAL

Example 2: Create the procedure definition for a stored procedure, written in C, that is
passed an assembly number and returns the number of parts that make up the
assembly, total part cost and a result set that lists the part numbers, quantity and unit
cost of each part.

CREATE PROCEDURE ASSEMBLY_PARTS (IN ASSEMBLY_NUM INTEGER,

 OUT NUM_PARTS INTEGER,

OUT COST DOUBLE)

EXTERNAL NAME 'parts!assembly'

RESULT SETS 1 NOT FENCED

LANGUAGE C PARAMETER STYLE DB2DARI

474 SQL Reference

CREATE SCHEMA

 CREATE SCHEMA
The CREATE SCHEMA statement defines a schema. It is also possible to create some
objects and grant privileges on objects within the statement.

 Invocation
This statement can be embedded in an application program or issued through the use
of dynamic SQL statements. It is an executable statement that can be dynamically pre-
pared.

 Authorization
An authorization ID that holds SYSADM or DBADM authority can create a schema with
any valid schema-name or authorization-name.

An authorization ID that does not hold SYSADM or DBADM authority can only create a
schema with a schema-name or authorization-name that matches the authorization ID
of the statement.

If the statement includes any schema-SQL-statements the privileges held by the
authorization-name (if not specified, it defaults to the authorization ID of the statement)
must include at least one of the following:

¹ The privileges required to perform each of the schema-SQL-statements
¹ SYSADM or DBADM authority.

 Syntax

55─ ─CREATE SCHEMA─ ──┬ ┬─schema-name──────────────────────────────────── ────────────────────5
 ├ ┤─AUTHORIZATION──authorization-name──────────────
 └ ┘─schema-name──AUTHORIZATION──authorization-name─

5─ ──┬ ┬────────────────────────── ───5%
 │ │┌ ┐────────────────────────
 └ ┘ ───6 ┴─schema-SQL-statement─

 Description
schema-name

Names the schema. The name must not identify a schema already described in the
catalog (SQLSTATE 42710). The name cannot begin with "SYS" (SQLSTATE
42939). The owner of the schema is the authorization ID that issued the statement.

AUTHORIZATION authorization-name
Identifies the user that is the owner of the schema. The value authorization-name
is also used to name the schema. The authorization-name must not identify a
schema already described in the catalog (SQLSTATE 42710). The authorization-
name cannot begin with "SYS" (SQLSTATE 42602) .

 Chapter 6. Statements 475

CREATE SCHEMA

schema-name AUTHORIZATION authorization-name
Identifies a schema called schema-name with the user called authorization-name
as the schema owner. The schema-name must not identify a schema-name for a
schema already described in the catalog (SQLSTATE 42710). The schema-name
cannot begin with "SYS" (SQLSTATE 42939).

schema-SQL-statements
SQL statements that can be included as part of the CREATE SCHEMA statement
are:

¹ CREATE TABLE statement (see “CREATE TABLE” on page 478)
¹ CREATE VIEW statement (see “CREATE VIEW” on page 517)
¹ CREATE INDEX statement (see “CREATE INDEX” on page 461)
¹ COMMENT ON statement (see “COMMENT ON” on page 376)
¹ GRANT statement (see “GRANT (Table or View Privileges)” on page 580).

 Notes
¹ The owner of the schema is determined as follows:

– If an AUTHORIZATION clause is specified, the specified authorization-name is
the schema owner

– If an AUTHORIZATION clause is not specified, the authorization ID that issued
the CREATE SCHEMA statement is the schema owner.

¹ The schema owner is assumed to be a user (not a group).

¹ When the schema is explicitly created with the CREATE SCHEMA statement, the
schema owner is granted CREATEIN, DROPIN, and ALTERIN privileges on the
schema with the ability to grant these privileges to other users.

¹ The definer of any object created as part of the CREATE SCHEMA statement is
the schema owner. The schema owner is also the grantor for any privileges
granted as part of the CREATE SCHEMA statement.

¹ Unqualified object names in any SQL statement within the CREATE SCHEMA
statement are implicitly qualified by the name of the created schema.

¹ If the CREATE statement contains a qualified name for the object being created,
the schema name specified in the qualified name must be the same as the name
of the schema being created (SQLSTATE 42875). Any other objects referenced
within the statements may be qualified with any valid schema name.

¹ If the AUTHORIZATION clause is specified and DCE authentication is used, the
group membership of the authorization-name specified will not be considered in
evaluating the authorizations required to perform the statements that follow the
clause. If the authorization-name specified is different than the authorization id cre-
ating the schema, an authorization failure may result during the execution of the
CREATE SCHEMA statement.

476 SQL Reference

CREATE SCHEMA

 Examples
Example 1: As a user with DBADM authority, create a schema called RICK with the
user RICK as the owner.

CREATE SCHEMA RICK AUTHORIZATION RICK

Example 2: Create a schema that has an inventory part table and an index over the
part number. Give authority on the table to user JONES.

CREATE SCHEMA INVENTRY

CREATE TABLE PART (PARTNO SMALLINT NOT NULL,

 DESCR VARCHAR(24),

 QUANTITY INTEGER)

CREATE INDEX PARTIND ON PART (PARTNO)

GRANT ALL ON PART TO JONES

Example 3: Create a schema called PERS with two tables that each have a foreign
key that references the other table. This is an example of a feature of the CREATE
SCHEMA statement that allows such a pair of tables to be created without the use of
the ALTER TABLE statement.

CREATE SCHEMA PERS

CREATE TABLE ORG (DEPTNUMB SMALLINT NOT NULL,

 DEPTNAME VARCHAR(14),

 MANAGER SMALLINT,

 DIVISION VARCHAR(10),

 LOCATION VARCHAR(13),

 CONSTRAINT PKEYDNO

PRIMARY KEY (DEPTNUMB),

 CONSTRAINT FKEYMGR

FOREIGN KEY (MANAGER)

REFERENCES STAFF (ID))

CREATE TABLE STAFF (ID SMALLINT NOT NULL,

 NAME VARCHAR(9),

 DEPT SMALLINT,

 JOB VARCHAR(5),

 YEARS SMALLINT,

 SALARY DECIMAL(7,2),

 COMM DECIMAL(7,2),

 CONSTRAINT PKEYID

PRIMARY KEY (ID),

 CONSTRAINT FKEYDNO

FOREIGN KEY (DEPT)

REFERENCES ORG (DEPTNUMB))

 Chapter 6. Statements 477

CREATE TABLE

 CREATE TABLE
The CREATE TABLE statement defines a table. The definition must include its name
and the names and attributes of its columns. The definition may include other attributes
of the table, such as its primary key or check constraints.

 Invocation
This statement can be embedded in an application program or issued through the use
of dynamic SQL statements. It is an executable statement that can be dynamically pre-
pared.

 Authorization
The privileges held by the authorization ID of the statement must include at least one of
the following:

¹ SYSADM or DBADM authority
¹ CREATETAB authority on the database and one of:

– IMPLICIT_SCHEMA authority on the database, if the implicit or explicit schema
name of the table does not exist

– CREATEIN privilege on the schema, if the schema name of the table refers to
an existing schema .

To define a foreign key, the privileges held by the authorization ID of the statement
must include one of the following on the parent table:

¹ REFERENCES privilege on the table
¹ REFERENCES privilege on each column of the specified parent key
¹ CONTROL privilege on the table
¹ SYSADM or DBADM authority.

 Syntax

478 SQL Reference

CREATE TABLE

 ┌ ┐─,──────────────────────────────
55──CREATE TABLE──table-name──(─ ───6 ┴──┬ ┬─┤ column-definition ├────── ─)────────────────────5

├ ┤─┤ unique-constraint ├──────
├ ┤─┤ referential-constraint ├─
└ ┘─┤ check-constraint ├───────

┌ ┐─DATA CAPTURE NONE────
5─ ──┼ ┼────────────────────── ──┬ ┬── ────────────5

└ ┘─DATA CAPTURE CHANGES─ └ ┘─IN──tablespace-name1──┤ tablespace-options ├─

5─ ──┬ ┬─── ──┬ ┬────────────────────── ──5%
 │ │┌ ┐─,────── ┌ ┐─USING HASHING─ └ ┘─NOT LOGGED INITIALLY─
 └ ┘ ─PARTITIONING KEY──(─ ───6 ┴─column─ ─)─ ──┴ ┴───────────────

tablespace-options:
├─ ──┬ ┬────────────────────────────── ──┬ ┬─────────────────────────── ───────────────────────┤
 └ ┘─INDEX IN──tablespace-name2───(1) └ ┘ ─LONG IN──tablespace-name3─

column-definition:
├──column-name──┤ data-type ├───5

 ┌ ┐───
5─ ───6 ┴┬ ┬─── ─────────────┤
 ├ ┤─NOT NULL──

├ ┤─┤ default-clause ├──
├ ┤─┤ lob-options-clause ├───(2) ───

 └ ┘ ──┬ ┬─────────────────────────────── ──┬ ┬──┬ ┬─PRIMARY KEY─ ─────────────
 └ ┘ ─CONSTRAINT───(3) ─constraint-name─ │ │└ ┘─UNIQUE──────

├ ┤─┤ references-clause ├────────
 └ ┘─CHECK──(──check-condition──)─

Notes:
1 Specifying which table space will contain a table's index can only be done when the table is

created.
2 The lob-options-clause only applies to large object types (BLOB, CLOB and DBCLOB) and distinct

types based on large object types.
3 For compatibility with Version 1, the CONSTRAINT keyword may be omitted in a column-definition

defining a references-clause.

 Chapter 6. Statements 479

CREATE TABLE

data-type:
├─ ──┬ ┬──┬ ┬─INTEGER─ ─── ────────────────┤
 │ │└ ┘─INT─────
 ├ ┤─SMALLINT───
 ├ ┤──┬ ┬ ─FLOAT─ ──┬ ┬─────────────── ──────────────────────────────────────
 │ ││ │└ ┘─(──integer──)─
 │ │├ ┤─REAL─────────────────────
 │ ││ │┌ ┐─PRECISION─
 │ │└ ┘ ─DOUBLE─ ──┴ ┴─────────── ───
 ├ ┤ ──┬ ┬─DECIMAL─ ──┬ ┬───────────────────────────── ──────────────────────
 │ │├ ┤─DEC───── └ ┘ ─(──integer─ ──┬ ┬────────── ─)─
 │ │├ ┤─NUMERIC─ └ ┘ ─,integer─
 │ │└ ┘─NUM─────
 ├ ┤ ──┬ ┬ ──┬ ┬─CHARACTER─ ──┬ ┬─────────── ───────────── ───(1) ──┬ ┬──────────────
 │ ││ │└ ┘─CHAR────── └ ┘ ─(integer)─ └ ┘─FOR BIT DATA─
 │ │├ ┤ ──┬ ┬─VARCHAR──────────────── ─(──integer──)─
 │ ││ │└ ┘ ──┬ ┬─CHARACTER─ ─VARYING─
 │ ││ │└ ┘─CHAR──────
 │ │└ ┘─LONG VARCHAR──────────────────────────────
 ├ ┤ ──┬ ┬─BLOB─── ─(──integer─ ──┬ ┬─── ─)───────────────────────────────────
 │ │├ ┤─CLOB─── ├ ┤─K─
 │ │└ ┘─DBCLOB─ ├ ┤─M─
 │ │└ ┘─G─
 ├ ┤ ─GRAPHIC─ ──┬ ┬─────────── ──
 │ │└ ┘ ─(integer)─
 ├ ┤─VARGRAPHIC(integer)──
 ├ ┤─LONG VARGRAPHIC──
 ├ ┤─DATE───
 ├ ┤─TIME───
 ├ ┤─TIMESTAMP──
 └ ┘─distinct-type-name───

Note:
1 The FOR BIT DATA clause may be specified in random order with the other column constraints

that follow.

480 SQL Reference

CREATE TABLE

default-clause:
 ┌ ┐─WITH─
├─ ──┴ ┴────── ─DEFAULT─ ──┬ ┬── ─────────────┤
 ├ ┤─constant───
 ├ ┤─datetime-special-register──────────────────────────
 ├ ┤─USER───
 ├ ┤─NULL───
 └ ┘ ─cast-function──(─ ──┬ ┬─constant────────────────── ─)─
 ├ ┤─datetime-special-register─
 └ ┘─USER──────────────────────

lob-options-clause:
 ┌ ┐─LOGGED───── ┌ ┐─NOT COMPACT─
├─ ──┼ ┼──────────── ─Á─ ──┼ ┼───────────── ──┤
 └ ┘─NOT LOGGED─ └ ┘─COMPACT─────

references-clause:
├──REFERENCES──table-name─ ──┬ ┬─────────────────────── ─┤ rule-clause ├─────────────────────┤
 │ │┌ ┐─,───────────
 └ ┘ ─(─ ───6 ┴─column-name─ ─)─

rule-clause:
┌ ┐─ON DELETE NO ACTION───── ┌ ┐─ON UPDATE NO ACTION─

├─ ──┼ ┼───────────────────────── ─Á─ ──┼ ┼───────────────────── ───────────────────────────────┤
 └ ┘─ON DELETE─ ──┬ ┬─RESTRICT─ └ ┘─ON UPDATE RESTRICT──
 ├ ┤─CASCADE──
 └ ┘─SET NULL─

unique-constraint:
 ┌ ┐─,───────────
├─ ──┬ ┬───────────────────────────── ──┬ ┬─UNIQUE────── ─(─ ───6 ┴─column-name─ ─)────────────────┤
 └ ┘ ─CONSTRAINT──constraint-name─ └ ┘─PRIMARY KEY─

referential-constraint:
 ┌ ┐─,───────────
├─ ──┬ ┬─────────────────────────────── ─FOREIGN KEY──(─ ───6 ┴─column-name─ ─)──────────────────5
 └ ┘─CONSTRAINT──constraint-name───(1)

5──┤ references-clause ├──┤

check-constraint:
├─ ──┬ ┬───────────────────────────── ─CHECK──(──check-condition──)──────────────────────────┤
 └ ┘ ─CONSTRAINT──constraint-name─

Note:
1 For compatibility with Version 1, constraint-name may be specified following FOREIGN KEY

(without the CONSTRAINT keyword).

 Description
table-name

Names the table. The name, including the implicit or explicit qualifier, must not
identify a table, view, or alias described in the catalog. The qualifier must not be
SYSIBM, SYSCAT, SYSFUN, or SYSSTAT (SQLSTATE 42939) .

 Chapter 6. Statements 481

CREATE TABLE

If no qualifier is supplied, the authorization ID of the statement is used as the qual-
ifier.

column-definition
Defines the attributes of a column.

column-name
Names a column of the table. The name cannot be qualified and the same
name cannot be used for more than one column of the table.

A table may contain up to 500 columns. The sum of the byte counts of the
columns must not be greater than 4005.

data-type
Is one of the types in the following list. Use:

INTEGER or INT
For a large integer.

SMALLINT
For a small integer.

FLOAT(integer)
For a single or double precision floating-point number, depending on the
value of the integer. The value of the integer must be in the range 1
through 53. The values 1 through 24 indicate single precision and the
values 25 through 53 indicate double precision.

You can also specify:

REAL For single precision floating-point.
DOUBLE For double precision floating-point.
DOUBLE PRECISION For double precision floating-point.
FLOAT For double precision floating-point.

DECIMAL (precision-integer,scale-integer) or DEC(precision-integer,scale-
integer)
For a decimal number. The first integer is the precision of the number;
that is, the total number of digits; it may range from 1 to 31. The second
integer is the scale of the number; that is, the number of digits to the right
of the decimal point; it may range from 0 to the precision of the number.

If precision and scale are not specified, the default values of 5,0 are used.
The words NUMERIC and NUM can be used as synonyms for DECIMAL
and DEC.

CHARACTER (integer) or CHAR(integer)

CHARACTER or CHAR
For a fixed-length character string of length integer, which may range from
1 to 254. If the length specification is omitted, a length of 1 character is
assumed.

482 SQL Reference

CREATE TABLE

VARCHAR (integer), or CHARACTER VARYING (integer), or CHAR
VARYING(integer)
For a varying-length character string of maximum length integer, which
may range from 1 to 4000.

LONG VARCHAR
For a varying-length character string with a maximum length of 32700.

FOR BIT DATA
Specifies that the contents of the column are to be treated as bit (binary)
data. During data exchange with other systems, code page conversions
are not performed. Comparisons are done in binary, irrespective of the
database collating sequence.

BLOB (integer [K | M | G])
For a binary large object string of the specified maximum length in bytes.

The length may be in the range of 1 byte to 2 147 483 647 bytes.

If integer by itself is specified, that is the maximum length.

If integer K (in either upper or lower case) is specified, the maximum
length is 1 024 times integer. The maximum value for integer is 2 097
152.

If integer M is specified, the maximum length is 1 048 576 times integer.
The maximum value for integer is 2 048.

If integer G is specified, the maximum length is 1 073 741 824 times
integer. The maximum value for integer is 2.

Any number of spaces is allowed between the integer and K, M, or G.
Also, no space is required. For example, all the following are valid.

 BLOB(50K) BLOB(50 K) BLOB (50 K)

CLOB (integer [K | M | G])53

For a character large object string of the specified maximum length in
bytes.

The meaning of the integer K | M | G is the same as for BLOB.

DBCLOB (integer [K | M | G])
For a double-byte character large object string of the specified maximum
length in double-byte characters.

The meaning of the integer K | M | G is similar to that for BLOB. The
differences are that the number specified is the number of double-byte
characters and that the maximum size is 1 073 741 823 double-byte char-
acters.

53 Observe that it is not possible to specify the FOR BIT DATA clause for CLOB columns. However, a CHAR FOR BIT DATA string can
be assigned to a CLOB column and a CHAR FOR BIT DATA string can be concatenated with a CLOB string.

 Chapter 6. Statements 483

CREATE TABLE

GRAPHIC(integer)
For a fixed-length graphic string of length integer which may range from 1
to 127. If the length specification is omitted, a length of 1 is assumed.

VARGRAPHIC (integer)
For a varying-length graphic string of maximum length integer, which may
range from 1 to 2000.

LONG VARGRAPHIC
For a varying-length graphic string with a maximum length of 16350.

DATE
For a date.

TIME
For a time.

TIMESTAMP
For a timestamp.

distinct-type-name
Specifies the name of the distinct type of the column. If a distinct type
name is specified without a schema name, the distinct type name is
resolved by searching the schemas on the function path (defined by the
FUNCPATH preprocessing option for static SQL and by the CURRENT
FUNCTION PATH register for dynamic SQL).

If a column is defined using a distinct type, then the data type of the
column is the distinct type. The length and the scale of the column are
respectively the length and the scale of the source type of the distinct
type.

If a column defined using a distinct type is a foreign key of a referential
constraint, then the data type of the corresponding column of the primary
key must have the same distinct type.

NOT NULL
Prevents the column from containing null values.

If NOT NULL is not specified, the column can contain null values, and its
default value is either the null value or the value provided by the WITH
DEFAULT clause.

default-clause
Specifies a default value for the column.

WITH
An optional keyword.

DEFAULT
Provides a default value in the event a value is not supplied on INSERT
or is specified as DEFAULT on INSERT or UPDATE. If a specific default
value is not specified following the DEFAULT keyword, the default value

484 SQL Reference

CREATE TABLE

depends on the data type of the column as shown in Table 16 on
page 351.

If a column is defined using a distinct type, then the default value of the
column is the default value of the source data type cast to the distinct
type.

Omission of DEFAULT from a column-definition results in the use of the
null value as the default for the column.

Specific types of values that can be specified with the DEFAULT keyword
are as follows.

constant
Specifies the constant as the default value for the column. The speci-
fied constant must:

¹ represent a value that could be assigned to the column in
accordance with the rules of assignment as described in Chapter
3

¹ not be a floating-point constant unless the column is defined with
a floating-point data type

¹ not have non-zero digits beyond the scale of the column data
type if the constant is a decimal constant (for example, 1.234
cannot be the default for a DECIMAL(5,2) column)

¹ be expressed with no more than 254 characters including the
quote characters, any introducer character such as the X for a
hexadecimal constant, and characters from the fully qualified
function name and parentheses when the constant is the argu-
ment of a cast-function.

datetime-special-register
Specifies the value of the datetime special register (CURRENT DATE,
CURRENT TIME, or CURRENT TIMESTAMP) at the time of INSERT
or UPDATE as the default for the column. The data type of the
column must be the data type that corresponds to the special register
specified (for example, data type must be DATE when CURRENT
DATE is specified).

USER
Specifies the value of the USER special register at the time of
INSERT or UPDATE as the default for the column. If USER is speci-
fied, the data type of the column must be a character string with a
length not less than the length attribute of USER.

NULL
Specifies NULL as the default for the column. If NOT NULL was
specified, DEFAULT NULL may be specified within the same column
definition but will result in an error on any attempt to set the column
to the default value.

 Chapter 6. Statements 485

CREATE TABLE

cast-function
This form of a default value can only be used with columns defined
as a distinct type, BLOB or datetime (DATE, TIME or TIMESTAMP)
data type. For distinct type, with the exception of distinct types based
on BLOB or datetime types, the name of the function must match the
name of the distinct type for the column. If qualified with a schema
name, it must be the same as the schema name for the distinct type.
If not qualified, the schema name from function resolution must be the
same as the schema name for the distinct type. For a distinct type
based on a datetime type, where the default value is a constant, a
function must be used and the name of the function must match the
name of the source type of the distinct type with an implicit or explicit
schema name of SYSIBM. For other datetime columns, the corre-
sponding datetime function may also be used. For a BLOB or a dis-
tinct type based on on BLOB, a function must be used and the name
of the function must be BLOB with an implicit or explicit schema
name of SYSIBM. An example using the cast-function is given in
Example 8 on page 360.

constant
Specifies a constant as the argument. The constant must
conform to the rules of a constant for the source type of the dis-
tinct type or for the data type if not a distinct type. If the cast-
function is BLOB, the constant must be a string constant.

datetime-special-register
Specifies CURRENT DATE, CURRENT TIME, or CURRENT
TIMESTAMP. The source type of the distinct type of the column
must be the data type that corresponds to the specified special
register.

USER
Specifies the USER special register. The data type of the source
type of the distinct type of the column must be a string data type
with a length of at least 8 bytes. If the cast-function is BLOB, the
length attribute must be at least 8 bytes.

If the value specified is not valid, an error (SQLSTATE 42894) is raised.

lob-options-clause
Specifies options for LOB data types.

LOGGED
Specifies that changes made to the column are to be written to the
log. The data in such columns is then recoverable with database utili-
ties (such as RESTORE DATABASE). LOGGED is the default.

LOBs greater than 1 gigabyte cannot be logged (SQLSTATE 42993)
and LOBs greater than 10 megabytes should probably not be logged.

486 SQL Reference

CREATE TABLE

NOT LOGGED
Specifies that changes made to the column are not to be logged.

NOT LOGGED has no effect on a commit or rollback operation; that
is, the database’s consistency is maintained even if a transaction is
rolled back, regardless of whether or not the LOB value is logged.
The implication of not logging is that during a roll forward operation,
after a backup or load operation, the LOB data will be replaced by
zeros for those LOB values that would have had log records replayed
during the roll forward. During crash recovery, all committed changes
and changes rolled back will reflect the expected results. See the
Administration Guide for the implications of not logging LOB columns.

COMPACT
Specifies that the values in the LOB column should take up minimal
disk space (free any extra disk pages in the last group used by the
LOB value), rather than leave any left-over space at the end of the
LOB storage area that might facilitate subsequent append operations.
Note that storing data in this way may cause a performance penalty
in any append (length-increasing) operations on the column.

NOT COMPACT.
Specifies some space for insertions to assist in future changes to the
LOB values in the column. This is the default.

CONSTRAINT constraint-name
Names the constraint. A constraint-name must not identify a constraint
that was already specified within the same CREATE TABLE statement.
(SQLSTATE 42710).

If this clause is omitted, an 18-character identifier unique within the identi-
fiers of the existing constraints defined on the table, is generated54 by the
system.

When used with a PRIMARY KEY or UNIQUE constraint, the constraint-
name may be used as the name of an index that is created to support the
constraint.

PRIMARY KEY
This provides a shorthand method of defining a primary key composed of
a single column. Thus, if PRIMARY KEY is specified in the definition of
column C, the effect is the same as if the PRIMARY KEY(C) clause is
specified as a separate clause.

See PRIMARY KEY within the description of the unique-constraint below.

UNIQUE
This provides a shorthand method of defining a unique key composed of a
single column. Thus, if UNIQUE is specified in the definition of column C,

54 The identifier is formed of "SQL" followed by a sequence of 15 numeric characters generated by a timestamp-based function.

 Chapter 6. Statements 487

CREATE TABLE

the effect is the same as if the UNIQUE(C) clause is specified as a sepa-
rate clause.

See UNIQUE within the description of the unique-constraint below.

references-clause
This provides a shorthand method of defining a foreign key composed of a
single column. Thus, if a references-clause is specified in the definition of
column C, the effect is the same as if that references-clause were speci-
fied as part of a FOREIGN KEY clause in which C is the only identified
column.

See references-clause under referential-constraint below.

CHECK (check-condition)
This provides a shorthand method of defining a check constraint that
applies to a single column. See CHECK (check-condition) below.

unique-constraint
Defines a unique or primary key constraint. If the table has a partitioning key,
then any unique or primary key must be a superset of the partitioning key.

CONSTRAINT constraint-name
Names the primary key or unique constraint. See page 487.

UNIQUE (column-name,...)
Defines a unique key composed of the identified columns. The identified
columns must be defined as NOT NULL. Each column-name must identify
a column of the table and the same column must not be identified more
than once. The number of identified columns must not exceed 16 and the
sum of their length attributes must not exceed 255. No LOB, LONG
VARCHAR, or LONG VARGRAPHIC column may be used as part of a
unique key (even if the length attribute of the column is small enough to fit
within the 255 byte limit) (SQLSTATE 42962). The set of columns in the
unique key cannot be the same as the set of columns of the primary key
or another unique key (SQLSTATE 01543). 55

The description of the table as recorded in the catalog includes the unique
key and its unique index. A unique index will automatically be created for
the columns in the sequence specified with ascending order for each
column. The name of the index will be the same as the constraint-name if
this does not conflict with an existing index in the schema where the table
is created. If the index name conflicts, the name will be SQL, followed by
a character timestamp (yymmddhhmmssxxx), with SYSIBM as the schema
name.

PRIMARY KEY (column-name,...)
Defines a primary key composed of the identified columns. The clause
must not be specified more than once and the identified columns must be

55 If LANGLEVEL is SQL92E or MIA then an error is returned, SQLSTATE 42891.

488 SQL Reference

CREATE TABLE

defined as NOT NULL. Each column-name must identify a column of the
table and the same column must not be identified more than once. The
number of identified columns must not exceed 16 and the sum of their
length attributes must not exceed 255. No LOB, LONG VARCHAR, or
LONG VARGRAPHIC column may be used as part of a primary key (even
if the length attribute of the column is small enough to fit within the 255
byte limit) (SQLSTATE 42962). The set of columns in the primary key
cannot be the same as the set of columns of a unique key (SQLSTATE
01543). 55

Only one primary key can be defined on a table.

The description of the table as recorded in the catalog includes the
primary key and its primary index. A unique index will automatically be
created for the columns in the sequence specified with ascending order
for each column. The name of the index will be the same as the
constraint-name if this does not conflict with an existing index in the
schema where the table is created. If the index name conflicts, the name
will be SQL, followed by a character timestamp (yymmddhhmmssxxx),
with SYSIBM as the schema name.

If the table has a partitioning key, the columns of a unique-constraint must be
a superset of the partitioning key columns; column order is unimportant.

referential-constraint
Defines a referential constraint.

CONSTRAINT constraint-name
Names the referential constraint. See page 487.

FOREIGN KEY (column-name,...)
Defines a referential constraint with the specified constraint-name.

Let T1 denote the object table of the statement. The foreign key of the
referential constraint is composed of the identified columns. Each name in
the list of column names must identify a column of T1 and the same
column must not be identified more than once. The number of identified
columns must not exceed 16 and the sum of their length attributes must
not exceed 255 minus the number of columns that allow null values. No
LOB, LONG VARCHAR, or LONG VARGRAPHIC column may be used as
part of a foreign key (SQLSTATE 42962). There must be the same
number of foreign key columns as there are in the parent key and the
data types of the corresponding columns must be compatible (SQLSTATE
42830). Two column descriptions are compatible if they have compatible
data types (both columns are numeric, character strings, graphic,
date/time, or have the same distinct type).

references-clause
Specifies the parent table and parent key for the referential constraint.

 Chapter 6. Statements 489

CREATE TABLE

REFERENCES table-name
The table specified in a REFERENCES clause must identify a base
table that is described in the catalog, but must not identify a catalog
table.

A referential constraint is a duplicate if its foreign key, parent key, and
parent table are the same as the foreign key, parent key and parent
table of a previously specified referential constraint. Duplicate referen-
tial constraints are ignored and a warning is issued (SQLSTATE
01543).

In the following discussion, let T2 denote the identified parent table
and let T1 denote the table being created56 (T1 and T2 may be the
same table).

The specified foreign key must have the same number of columns as
the parent key of T2 and the description of the nth column of the
foreign key must be comparable to the description of the nth column
of that parent key. Datetime columns are not considered to be com-
parable to string columns for the purposes of this rule.

(column-name,...)
The parent key of a referential constraint is composed of the
identified columns. Each column-name must be an unqualified
name that identifies a column of T2. The same column must not
be identified more than once.

The list of column names must match the set of columns (in any
order) of the primary key or a unique constraint that exists on T2
(SQLSTATE 42890). If a column name list is not specified, then
T2 must have a primary key (SQLSTATE 42888). Omission of
the column name list is an implicit specification of the columns of
that primary key in the sequence originally specified.

The referential constraint specified by a FOREIGN KEY clause
defines a relationship in which T2 is the parent and T1 is the
dependent.

rule-clause
Specifies what action to take on dependent tables.

ON DELETE
Specifies what action is to take place on the dependent tables
when a row of the parent table is deleted. There are four possible
actions:

¹ NO ACTION (default)
 ¹ RESTRICT
 ¹ CASCADE

56 or altered, in the case where this clause is referenced from the description of the ALTER TABLE statement.

490 SQL Reference

CREATE TABLE

 ¹ SET NULL

The delete rule applies when a row of T2 is the object of a
DELETE or propagated delete operation and that row has depen-
dents in T1. Let p denote such a row of T2.

¹ If RESTRICT or NO ACTION is specified, an error occurs
and no rows are deleted.

¹ If CASCADE is specified, the delete operation is propagated
to the dependents of p in T1.

¹ If SET NULL is specified, each nullable column of the foreign
key of each dependent of p in T1 is set to null.

SET NULL must not be specified unless some column of the
foreign key allows null values. Omission of the clause is an
implicit specification of ON DELETE NO ACTION.

A cycle involving two or more tables must not cause a table to be
delete-connected to itself unless all of the delete rules in the
cycle are CASCADE. Thus, if the new relationship would form a
cycle and T2 is already delete connected to T1, then the con-
straint can only be defined if it has a delete rule of CASCADE
and all other delete rules of the cycle are CASCADE.

If T1 is delete-connected to T2 through multiple paths, those
relationships in which T1 is a dependent and which form all or
part of those paths must have the same delete rule and it must
not be SET NULL. The NO ACTION and RESTRICT actions are
treated identically. Thus, if T1 is a dependent of T3 in a relation-
ship with a delete rule of r, the referential constraint cannot be
defined when r is SET NULL if any of these conditions exist:

¹ T2 and T3 are the same table

¹ T2 is a descendant of T3 and the deletion of rows from T3
cascades to T2

¹ T3 is a descendant of T2 and the deletion of rows from T2
cascades to T3

¹ T2 and T3 are both descendants of the same table and the
deletion of rows from that table cascades to both T2 and T3.

If r is other than SET NULL, the referential constraint can be
defined, but the delete rule that is implicitly or explicitly specified
in the FOREIGN KEY clause must be the same as r.

ON UPDATE
Specifies what action is to take place on the dependent tables
when a row of the parent table is updated. The clause is optional.
ON UPDATE NO ACTION is the default and ON UPDATE
RESTRICT is the only alternative.

 Chapter 6. Statements 491

CREATE TABLE

The difference between NO ACTION and RESTRICT is described
under CREATE TABLE in “Notes” on page 495.

check-constraint
Defines a check constraint. A check-constraint is a search-condition that must
evaluate to not false.

CONSTRAINT constraint-name
Names the check constraint. See page 487.

CHECK (check-condition)
Defines a check constraint. A check-condition is a search-condition except
as follows:

¹ A column reference must be to a column of the table being created

¹ It cannot contain any of the following:

 – subqueries
 – column functions

– variant user-defined functions
– user-defined functions using the EXTERNAL ACTION option
– user-defined functions using the SCRATCHPAD option

 – host variables
 – parameter markers
 – special registers
 – an alias

If a check constraint is specified as part of a column-definition then a
column reference can only be made to the same column. Check con-
straints specified as part of a table definition can have column references
identifying columns previously defined in the CREATE TABLE statement.

Check constraints are not checked for inconsistencies, duplicate condi-
tions or equivalent conditions. Therefore, contradictory or redundant check
constraints can be defined resulting in possible errors at execution time.

The check-condition "IS NOT NULL" can be specified, however it is
recommended that nullability be enforced directly using the NOT NULL
attribute of a column. For example, CHECK (salary + bonus > 30000) is
accepted if salary is set to NULL, because CHECK constraints must be
either satisfied or unknown and in this case salary is unknown. However,
CHECK (salary IS NOT NULL) would be considered false and a violation of
the constraint if salary is set to NULL.

Check constraints are enforced when rows in the table are inserted or
updated.

DATA CAPTURE
Indicates whether extra information for data replication is to be written to the
log.

492 SQL Reference

CREATE TABLE

NONE
Indicates that no extra information will be logged.

CHANGES
Indicates that extra information regarding SQL changes to this table will
be written to the log. This option is required if this table will be replicated
and the Capture program is used to capture changes for this table from
the log.

If the table is defined to allow data on a partition other than the catalog
partition (multiple partition nodegroup or nodegroup with a partition other
than the catalog partition), then this option is not supported (SQLSTATE
42997).

Further information about using replication can be found in the Adminis-
tration Guide and the Replication Guide and Reference.

IN tablespace-name1
Identifies the table space in which the table will be created. The table space
must exist, and be a REGULAR table space. If no other table space is speci-
fied, then all table parts will be stored in this table space. If this clause is not
specified a table space for the table is determined as follows:

IF table space IBMDEFAULTGROUP exists THEN use it

ELSE IF user created table space exists THEN use it

ELSE IF table space USERSPACE1 exists THEN use it

ELSE issue an error (SQLSTATE 42727).

tablespace-options:
Specifies the table space in which indexes and/or long column values will be
stored. See “CREATE TABLESPACE” on page 501 for details on types of
table spaces.

INDEX IN tablespace-name2
Identifies the table space in which any indexes on the table will be
created. This option is allowed only when the primary table space speci-
fied in the IN clause is a DMS table space. The specified table space
must exist, be a REGULAR DMS table space and must be in the same
nodegroup as tablespace-name1 (SQLSTATE 42838) .

Note that specifying which table space will contain a table's index can only
be done when the table is created.

LONG IN tablespace-name3
Identifies the table space in which the values of any long columns (LONG
VARCHAR, LONG VARGRAPHIC, LOB data types, or distinct types with
any of these as source types) will be stored. This option is allowed only
when the primary table space specified in the IN clause is a DMS table
space. The table space must exist, be a LONG DMS table space and
must be in the same nodegroup of tablspace-name1 (SQLSTATE 42838)
.

 Chapter 6. Statements 493

CREATE TABLE

PARTITIONING KEY (column-name,...)
Specifies the partitioning key used when data in the table is partitioned . Each
column-name must identify a column of the table and the same column must
not be identified more than once. No LOB, LONG VARCHAR, or LONG
VARGRAPHIC column may be used as part of a partitioning key (SQLSTATE
42962).

If this clause is not specified, and this table resides in a multiple partition
nodegroup, then the partitioning key is defined as follows:

¹ if a primary key is specified, the first column of the primary key is the par-
titioning key.

¹ otherwise, the first non-long column (LOB or long column type) is the par-
titioning key.

If none of the columns satisfy the requirement of the default partitioning key,
the table is created without one. Such tables are allowed only in table spaces
defined on single-partition nodegroups.

For tables in table spaces defined on single-partition nodegroups, any col-
lection of non-long type columns can be used to define the partitioning key. If
you do not specify this parameter, no partitioning key is created.

For restrictions related to the partitioning key, see “Rules.”

USING HASHING
Specifies the use of the hashing function as the partitioning method for data
distribution. This is the only partitioning method supported.

NOT LOGGED INITIALLY
Any changes made to the table by an Insert, Delete, Update, Create Index,
Drop Index, or Alter Table operation in the same unit of work in which the
table is created are not logged. See “Notes” on page 495 for other consider-
ations when using this option.

All catalog changes and storage related information are logged, as are all
operations that are done on the table in subsequent units of work.

A foreign key constraint cannot be defined on a table that references a parent
with the NOT LOGGED INITIALLY attribute.

Note: An error in any operation in the unit of work in which the table is
created will result in the entire unit of work being rolled back.

 Rules
¹ The sum of the byte counts of the column must not be greater than 4005

(SQLSTATE 54010). Refer to Byte Counts on page 496 and Table 24 on
page 674 for more information.

¹ A partitioning key column of a table cannot be updated (SQLSTATE 42997).

¹ Any unique or primary key constraint defined on the table must be a superset of
the partitioning key (SQLSTATE 42997).

494 SQL Reference

CREATE TABLE

¹ A nullable column of a partitioning key cannot be included as a foreign key column
when the relationship is defined with ON DELETE SET NULL (SQLSTATE 42997).

The following rules only apply to partitioned databases .

¹ Tables composed of only long columns can only be created in table spaces defined
on single-partition nodegroups.

¹ The partitioning key definition of a table in a table space defined on a multiple par-
tition nodegroup cannot be altered.

 Notes
¹ Creating a table with a schema name that does not already exist will result in the

implicit creation of that schema provided the authorization ID of the statement has
IMPLICIT_SCHEMA authority. The schema owner is SYSIBM. The CREATEIN
privilege on the schema is granted to PUBLIC.

¹ If a foreign key is specified:

– All packages with a delete usage on the parent table are invalidated.
– All packages with an update usage on at least one column in the parent key

are invalidated.

¹ The use of NO ACTION or RESTRICT as delete or update rules for referential con-
straints determines when the constraint is enforced. A delete or update rule of
RESTRICT is enforced before all other constraints including those referential con-
straints with modifying rules such as CASCADE or SET NULL. A delete or update
rule of NO ACTION is enforced after other referential constraints. There are very
few cases where this can make a difference during a delete or update. One
example where different behavior is evident involves a DELETE of rows in a view
that is defined as a UNION ALL of related tables.

Table T1 is a parent of table T3, delete rule as noted below

Table T2 is a parent of table T3, delete rule CASCADE

CREATE VIEW V1 AS SELECT * FROM T1 UNION ALL SELECT * FROM T2

DELETE FROM V1

If table T1 is a parent of table T3 with delete rule of RESTRICT, a restrict violation
will be raised (SQLSTATE 23001) if there are any child rows for parent keys of T1
in T3.

If table T1 is a parent of table T3 with delete rule of NO ACTION, the child rows
may be deleted by the delete rule of CASCADE when deleting rows from T2 before
the NO ACTION delete rule is enforced for the deletes from T1. If deletes from T2
did not result in deleting all child rows for parent keys of T1 in T3, then a constraint
violation will be raised (SQLSTATE 23504).

Note that the SQLSTATE returned is different depending on whether the delete or
update rule is RESTRICT or NO ACTION.

 Chapter 6. Statements 495

CREATE TABLE

¹ For tables in table spaces defined on multiple partition nodegroups, table
collocation should be considered in choosing the partitioning keys. Following is a
list of items to consider:

– The tables must be in the same nodegroup for collocation. The table spaces
may be different, but must be defined in the same nodegroup.

– The partitioning keys of the tables must have the same number of columns,
and the corresponding key columns must be partition compatible for
collocation. For more information, see “Partition Compatibility” on page 78.

– The choice of partitioning key also has an impact on performance of joins. If a
table is frequently joined with another table, you should consider the joining
column(s) as a partitioning key for both tables.

¹ The NOT LOGGED INITIALLY option is useful for situations where a large result
set needs to be created with data from an alternate source (another table or a file)
and recovery of the table is not necessary. Using this option will save the over-
head of logging the data. The following considerations apply when this option is
specified:

– When the unit of work is committed, all changes that were made to the table
during the unit of work are flushed to disk.

– When you run the Rollforward utility and it encounters a log record that indi-
cates that a table in the database was either populated by the Load utility or
created with the NOT LOGGED INITIALLY option, the table will be marked as
unavailable. The table will be dropped by the Rollforward utility if it later
encounters a DROP TABLE log. Otherwise, after the database is recovered,
an error will be issued if any attempt is made to access the table (SQLSTATE
55019). The only operation permitted is to drop the table.

– Once such a table is backed up as part of a database or table space back up,
recovery of the table becomes possible.

¹ Byte Counts: The following list contains the byte counts of columns by data type
for columns that do not allow null values. For a column that allows null values the
byte count is one more than shown in the list.

Data type Byte count

INTEGER 4

SMALLINT 2

REAL 4

DOUBLE 8

DECIMAL The integral part of (p/2)+1, where p is the precision.

CHAR(n) n

VARCHAR(n) n+4

LONG VARCHAR 24

GRAPHIC(n) n*2

496 SQL Reference

CREATE TABLE

VARGRAPHIC(n) (n*2)+4

LONG VARGRAPHIC 24

DATE 4

TIME 3

TIMESTAMP 10

LOB types Each LOB value has a LOB descriptor in the base
record that points to the location of the actual value.
The size of the descriptor varies according to the
maximum length defined for the column. The following
table shows typical sizes:

Maximum LOB Length LOB Descriptor Size

 1 024 72

 8 192 96

 65 536 120

 524 000 144

4 190 000 168

134 000 000 200

536 000 000 224

1 070 000 000 256

1 470 000 000 280

2 147 483 647 316

 Examples
Example 1: Create table TDEPT in the DEPARTX table space. DEPTNO,
DEPTNAME, MGRNO, and ADMRDEPT are column names. CHAR means the column
will contain character data. NOT NULL means that the column cannot contain a null
value. VARCHAR means the column will contain varying-length character data. The
primary key consists of the column DEPTNO.

CREATE TABLE TDEPT

 (DEPTNO CHAR(3) NOT NULL,

DEPTNAME VARCHAR(36) NOT NULL,

 MGRNO CHAR(6),

 ADMRDEPT CHAR(3) NOT NULL,

 PRIMARY KEY(DEPTNO))

 IN DEPARTX

Example 2: Create table PROJ in the SCHED table space. PROJNO, PROJNAME,
DEPTNO, RESPEMP, PRSTAFF, PRSTDATE, PRENDATE, and MAJPROJ are column
names. CHAR means the column will contain character data. DECIMAL means the
column will contain packed decimal data. 5,2 means the following: 5 indicates the
number of decimal digits, and 2 indicates the number of digits to the right of the
decimal point. NOT NULL means that the column cannot contain a null value.
VARCHAR means the column will contain varying-length character data. DATE means
the column will contain date information in a three-part format (year, month, and day).

 Chapter 6. Statements 497

CREATE TABLE

CREATE TABLE PROJ

 (PROJNO CHAR(6) NOT NULL,

 PROJNAME VARCHAR(24) NOT NULL,

 DEPTNO CHAR(3) NOT NULL,

 RESPEMP CHAR(6) NOT NULL,

 PRSTAFF DECIMAL(5,2) ,

 PRSTDATE DATE ,

 PRENDATE DATE ,

 MAJPROJ CHAR(6) NOT NULL)

 IN SCHED

Example 3: Create a table called EMPLOYEE_SALARY where any unknown salary is
considered 0. No table space is specified, so that the table will be created in a table
space selected by the system based on the rules descirbed for the IN
tablespace-name1 clause.

CREATE TABLE EMPLOYEE_SALARY

 (DEPTNO CHAR(3) NOT NULL,

 DEPTNAME VARCHAR(36) NOT NULL,

 EMPNO CHAR(6) NOT NULL,

SALARY DECIMAL(9,2) NOT NULL WITH DEFAULT)

Example 4: Create distinct types for total salary and miles and use them for columns
of a table created in the default table space. Assume the current authorization ID is
JOHNDOE and the CURRENT FUNCTION PATH is the default
("SYSIBM","SYSFUN","JOHNDOE").

If a value for SALARY is not specified it must be set to 0 and if a value for
LIVING_DIST is not specified it must to set to 1 mile.

CREATE DISTINCT TYPE JOHNDOE.T_SALARY AS INTEGER WITH COMPARISONS

CREATE DISTINCT TYPE JOHNDOE.MILES AS FLOAT WITH COMPARISONS

CREATE TABLE EMPLOYEE

(ID INTEGER NOT NULL,

 NAME CHAR (30),

 SALARY T_SALARY NOT NULL WITH DEFAULT,

LIVING_DIST MILES DEFAULT MILES(1))

Example 5: Create distinct types for image and audio and use them for columns of a
table. No table space is specified, so that the table will be created in a table space
selected by the system based on the rules descirbed for the IN tablespace-name1
clause. Assume the CURRENT FUNCTION PATH is the default.

498 SQL Reference

CREATE TABLE

CREATE DISTINCT TYPE IMAGE AS BLOB (10M)

CREATE DISTINCT TYPE AUDIO AS BLOB (1G)

CREATE TABLE PERSON

(SSN INTEGER NOT NULL,

 NAME CHAR (30),

 VOICE AUDIO,

 PHOTO IMAGE)

Example 6: Create table EMPLOYEE in the HUMRES table space. The constraints
defined on the table are the following:

¹ The values of department number must lie in the range 10 to 100.
¹ The job of an employee can only be either 'Sales', 'Mgr' or 'Clerk'.
¹ Every employee that has been with the company since 1986 must make more than

$40,500.

Note: If the columns included in the check constraints are nullable they could also be
NULL.

CREATE TABLE EMPLOYEE

(ID SMALLINT NOT NULL,

 NAME VARCHAR(9),

DEPT SMALLINT CHECK (DEPT BETWEEN 10 AND 100),

JOB CHAR(5) CHECK (JOB IN ('Sales','Mgr','Clerk')),

 HIREDATE DATE,

 SALARY DECIMAL(7,2),

 COMM DECIMAL(7,2),

PRIMARY KEY (ID),

CONSTRAINT YEARSAL CHECK (YEAR(HIREDATE) > 1986 OR SALARY > 40500)

)

 IN HUMRES

Example 7: Create a table that is wholly contained in the PAYROLL table space.

CREATE TABLE EMPLOYEE

 IN PAYROLL

Example 8: Create a table with its data part in ACCOUNTING and its index part in
ACCOUNT_IDX.

CREATE TABLE SALARY.....

IN ACCOUNTING INDEX IN ACCOUNT_IDX

Example 9: Create a table and log SQL changes in the default format.

CREATE TABLE SALARY1

 or

CREATE TABLE SALARY1

DATA CAPTURE NONE

Example 10: Create a table and log SQL changes in an expanded format.

 Chapter 6. Statements 499

CREATE TABLE

CREATE TABLE SALARY2

DATA CAPTURE CHANGES

Example 11: Create a table EMP_ACT in the SCHED table space. EMPNO, PROJNO,
ACTNO, EMPTIME, EMSTDATE, and EMENDATE are column names. Constraints
defined on the table are:

¹ The value for the set of columns, EMPNO, PROJNO, and ACTNO, in any row must
be unique.

¹ The value of PROJNO must match an existing value for the PROJNO column in
the PROJECT table and if the project is deleted all rows referring to the project in
EMP_ACT should also be deleted.

CREATE TABLE EMP_ACT

(EMPNO CHAR(6) NOT NULL,

PROJNO CHAR(6) NOT NULL,

 ACTNO SMALLINTNOT NULL,

 EMPTIME DECIMAL(5,2),

 EMSTDATE DATE,

 EMENDATE DATE,

CONSTRAINT EMP_ACT_UNIQ UNIQUE (EMPNO,PROJNO,ACTNO),

CONSTRAINT FK_ACT_PROJ FOREIGN KEY (PROJNO)

REFERENCES PROJECT (PROJNO) ON DELETE CASCADE

)

 IN SCHED

A unique index called EMP_ACT_UNIQ is automatically created in the same schema to
enforce the unique constraint.

500 SQL Reference

CREATE TABLESPACE

 CREATE TABLESPACE
The CREATE TABLESPACE statement creates a new table space within the database,
assigns containers to the table space, and records the table space definition and attri-
butes in the catalog.

 Invocation
This statement can be embedded in an application program or issued interactively. It is
an executable statement that can be dynamically prepared.

 Authorization
The authorization ID of the statement must have SYSCTRL or SYSADM authority

 Syntax

 Chapter 6. Statements 501

CREATE TABLESPACE

 ┌ ┐─REGULAR───
55─ ─CREATE─ ──┼ ┼─────────── ─TABLESPACE──tablespace-name────────────────────────────────────5
 ├ ┤─LONG──────
 └ ┘─TEMPORARY─

5─ ──┬ ┬─────────────────────────────────── ───5
 │ │┌ ┐─NODEGROUP─
 └ ┘ ─IN─ ──┴ ┴─────────── ─nodegroup-name─

5─ ─MANAGED BY─ ──┬ ┬─SYSTEM──┤ system-containers ├───── ──┬ ┬───────────────────────────── ────5
 └ ┘─DATABASE──┤ database-containers ├─ └ ┘ ─EXTENTSIZE──number-of-pages─

5─ ──┬ ┬─────────────────────────────── ──┬ ┬───────────────────────────── ────────────────────5
 └ ┘ ─PREFETCHSIZE──number-of-pages─ └ ┘ ─BUFFERPOOL──bufferpool-name─

5─ ──┬ ┬────────────────────────────────────── ──5
 │ │┌ ┐─24.1───────────────────
 └ ┘ ─OVERHEAD─ ──┴ ┴─number-of-milliseconds─

5─ ──┬ ┬── ───5%
 │ │┌ ┐─0.9────────────────────
 └ ┘ ─TRANSFERRATE─ ──┴ ┴─number-of-milliseconds─

system-containers:
 ┌ ┐──
 │ │┌ ┐─,──────────────────
├─ ───6 ┴─USING──(─ ───6 ┴──'container-string' ─)─ ──┬ ┬───────────────────── ──────────────────────┤
 └ ┘─┤ on-nodes-clause ├─

database-containers:
 ┌ ┐──
├─ ───6 ┴─USING──┤ container-clause ├─ ──┬ ┬───────────────────── ──────────────────────────────┤
 └ ┘─┤ on-nodes-clause ├─

container-clause:
 ┌ ┐─,───
├──(─ ───6 ┴──┬ ┬─FILE─── ──'container-string' ─number-of-pages─ ─)──────────────────────────────┤
 └ ┘─DEVICE─

on-nodes-clause:
 ┌ ┐─,──────────────────────────────────
├─ ─ON─ ──┬ ┬─NODE── ─(─ ───6 ┴ ─node-number1─ ──┬ ┬────────────────── ─)────────────────────────────┤
 └ ┘─NODES─ └ ┘ ─TO──node-number2─

 Description
REGULAR

Stores all data except for temporary tables.

LONG
Stores long or LOB table columns. The table space must be a DMS table space.

TEMPORARY
Stores temporary tables. (Temporary tables are work areas used by the database
manager to perform operations such as sorts or joins.) Note that a database must
always have at least one TEMPORARY table space, as temporary tables can only

502 SQL Reference

CREATE TABLESPACE

be stored in such a table space. A temporary table space is created automatically
when a database is created.

(See CREATE DATABASE in the Command Reference.)

tablespace-name
Names the table space. This is a one-part name. It is an SQL identifier (either ordi-
nary or delimited). The tablespace-name must not identify a table space that
already exists in the catalog (SQLSTATE 42710). The tablespace-name must not
begin with the characters SYS (SQLSTATE 42939).

IN NODEGROUP nodegroup-name
Specifies the nodegroup for the table space. The nodegroup must exist. The only
nodegroup that can be specified when creating a TEMPORARY table space is
IBMTEMPGROUP. The NODEGROUP keyword is optional.

If the nodegroup is not specified, the default nodegroup (IBMDEFAULTGROUP) is
used unless TEMPORARY is specified and then IBMTEMPGROUP is used.

MANAGED BY SYSTEM
Specifies that the table space is to be a system managed space (SMS) table
space.

system-containers
Specify the containers for an SMS table space.

USING ('container-string',...)
For a SMS table space, identifies one or more containers that will belong to
the table space and into which the table space's data will be stored. The
container-string cannot exceed 240 bytes in length.

Each container-string can be an absolute or relative directory name. The direc-
tory name, if not absolute, is relative to the database directory. If any compo-
nent of the directory name does not exist, it is created by the database
manager. When a table space is dropped, all components created by the data-
base manager are deleted.

The format of container-string is dependent on the operating system. The con-
tainers are specified in the normal manner for the operating system. For
example, an OS/2 Windows 95 and Windows NT directory path begins with a
drive letter and a “:”, while on UNIX-based systems, a path begins with a “/”.

Note that remote resources (such as LAN-redirected drives on OS/2, Windows
95 and Windows NT or NFS-mounted file systems on AIX) are not supported.

on-nodes-clause
Specifies the partition or partitions on which the containers are created in a
partitioned database . If this clause or any other on-nodes-clause of this state-
ment is not specified, then the containers are created on all partitions or nodes
currently in the nodegroup. For a TEMPORARY table space when the clause
is not specified, the containers will also be created on all new partitions or
nodes added to the database. See page 505 for details on specifying this
clause.

 Chapter 6. Statements 503

CREATE TABLESPACE

MANAGED BY DATABASE
Specifies that the table space is to be a database managed space (DMS) table
space.

database-containers
Specify the containers for a DMS table space.

USING
Introduces a container-clause.

container-clause
Specifies the containers for a DMS table space.

(FILE|DEVICE 'container-string' number-of-pages,...)
For a DMS table space, identifies one or more containers that will belong
to the table space and into which the table space's data will be stored.
The type of the container (either FILE or DEVICE) and its size (in 4K
pages) are specified. A mixture of FILE and DEVICE containers can be
specified. The container-string cannot exceed 254 bytes in length.

For a FILE container, the container-string must be an absolute or relative
file name. The file name, if not absolute, is relative to the database direc-
tory. If any component of the directory name does not exist, it is created
by the database manager. If the file does not exist, it will be created and
initialized to the specified size by the database manager. When a table
space is dropped, all components created by the database manager are
deleted.

Note: If the file exists it is overwritten and if it is smaller than specified it
is extended. The file will not be truncated if it is larger than speci-
fied.

For a DEVICE container, the container-string must be a device name. The
device must already exist. Note that device containers are not supported
on OS/2, Windows 95 and Windows NT .

All containers must be unique across all databases; a container can
belong to only one table space. The size of the containers can differ,
however optimal performance is achieved when all containers are the
same size. The exact format of container-string is dependent on the oper-
ating system. The containers will be specified in the normal manner for
the operating system. For more detail on declaring containers, refer to the
Administration Guide.

Remote resources (such as LAN-redirected drives on OS/2, Windows 95
and Windows NT or NFS-mounted file systems on AIX) are not supported.

on-nodes-clause
Specifies the partition or partitions on which the containers are created in
a partitioned database . If this clause or any other on-nodes-clause of this
statement is not specified, then the containers are created on all partitions
currently in the nodegroup. For a TEMPORARY table space when the
clause is not specified, the containers will also be created on all new parti-

504 SQL Reference

CREATE TABLESPACE

tions added to the database. See page 505 for details on specifying this
clause.

on-nodes-clause
Specifies the partitions on which containers are created in a partitioned database .

ON NODES
Keywords that indicate that specific partitions are specified. NODE is a
synonym for NODES.

node-number1
Specify a specific partition (or node) number.

TO node-number2
Specify a range of partition (or node) numbers. The value of
node-number2 must be greater than or equal to the value of
node-number1 (SQLSTATE 428A9). All partitions between and including
the specified partition numbers are included in the partitions for which the
containers are created if the node is included in the nodegroup of the
table space.

The partition specified by number and every partition (or node) in the range of
partition must exist in the nodegroup on which the table space is defined
(SQLSTATE 42729) . A partition -number may only appear explicitly or within a
range in exactly one on-nodes-clause for the statement (SQLSTATE 42613).

EXTENTSIZE number-of-pages
Specifies the number of 4K pages that will be written to a container before
skipping to the next container. The database manager cycles repeatedly
through the containers as data is stored.

The default value is provided by the DFT_EXTENT_SZ configuration param-
eter.

PREFETCHSIZE number-of-pages
Specifies the number of pages that will be read from the table space when
data prefetching is being performed. Prefetching reads in data needed by a
query prior to it being referenced by the query, so that the query need not wait
for I/O to be performed.

The default value is provided by the DFT_PREFETCH_SZ configuration
parameter. (This configuration parameter, like all configuration parameters, is
explained in detail in the Administration Guide.)

BUFFERPOOL bufferpool-name
The name of the buffer pool used for tables in this table space. The buffer pool
must exist (SQLSTATE 42704). If not specified, the default buffer pool
(IBMDEFAULTBP) is used. The nodegroup of the table space must be defined
for the bufferpool (SQLSTATE 42735).

OVERHEAD number-of-milliseconds
Any numeric literal (integer, decimal, or floating point) that specifies the I/O
controller overhead and disk seek and latency time, in milliseconds. The

 Chapter 6. Statements 505

CREATE TABLESPACE

number should be an average for all containers that belong to the table space,
if not the same for all containers. This value is used to determine the cost of
I/O during query optimization.

TRANSFERRATE number-of-milliseconds
Any numeric literal (integer, decimal, or floating point) that specifies the time to
read one 4K page into memory, in milliseconds. The number should be an
average for all containers that belong to the table space, if not the same for all
containers. This value is used to determine the cost of I/O during query opti-
mization.

 Notes
¹ For information on how to determine the correct EXTENTSIZE, PREFETCHSIZE,

OVERHEAD, and TRANSFERRATE values, refer to the Administration Guide.

¹ Choosing between a database-managed space or a system-managed space for a
table space is a fundamental choice involving tradeoffs. See the Administration
Guide for a discussion of those tradeoffs.

¹ When more than one TEMPORARY table space exists in the database, they will be
used in round-robin fashion in order to balance their usage. See the Administration
Guide for information on using more than one table space, rebalancing and recom-
mended values for EXTENTSIZE, PREFETCHSIZE, OVERHEAD, and
TRANSFERRATE.

¹ In a partitioned database if more than one partition resides on the same physical
node, then the same device or specific path cannot be specified for such partitions
(SQLSTATE 42730). For this environment, either specify a unique container-string
for each partition or use a relative path name.

 Examples
Example 1: Create a regular DMS table space on a UNIX-based system using 3
devices of 10 000 4K pages each. Specify their I/O characteristics.

CREATE TABLESPACE PAYROLL

MANAGED BY DATABASE

USING (DEVICE'/dev/rhdisk6' 10000,

DEVICE '/dev/rhdisk7' 10000,

DEVICE '/dev/rhdisk8' 10000)

 OVERHEAD 24.1

 TRANSFERRATE 0.9

Example 2: Create a regular SMS table space on OS/2 or Windows NT using 3 direc-
tories on three separate drives, with a 64-page extent size, and a 32-page prefetch
size.

CREATE TABLESPACE ACCOUNTING

MANAGED BY SYSTEM

USING ('d:\acc_tbsp', 'e:\acc_tbsp', 'f:\acc_tbsp')

 EXTENTSIZE 64

 PREFETCHSIZE 32

506 SQL Reference

CREATE TABLESPACE

Example 3: Create a temporary DMS table space on Unix using 2 files of 50,000
pages each, and a 256-page extent size.

CREATE TEMPORARY TABLESPACE TEMPSPACE2

MANAGED BY DATABASE

USING (FILE '/tmp/tempspace2.f1' 50000,

FILE '/tmp/tempspace2.f2' 50000)

 EXTENTSIZE 256

Example 4: Create a DMS table space on nodegroup ODDNODEGROUP (nodes
1,3,5) on a Unix partitioned database . On all partitions (or nodes) , use the device
/dev/rhdisk0 for 10 000 4K pages. Also specify a partition specific device for each parti-
tion with 40 000 4K pages.

CREATE TABLESPACE PLANS

MANAGED BY DATABASE

USING (DEVICE '/dev/rhdisk0' 10000, DEVICE '/dev/rn1hd01' 40000) ON NODE 1

USING (DEVICE '/dev/rhdisk0' 10000, DEVICE '/dev/rn3hd03' 40000) ON NODE 3

USING (DEVICE '/dev/rhdisk0' 10000, DEVICE '/dev/rn5hd05' 40000) ON NODE 5

 Chapter 6. Statements 507

CREATE TRIGGER

 CREATE TRIGGER
The CREATE TRIGGER statement defines a trigger in the database.

 Invocation
This statement can be embedded in an application program or issued through the use
of dynamic SQL statements. It is an executable statement that can be dynamically pre-
pared.

 Authorization
The privileges held by the authorization ID of the statement when the trigger is created
must include at least one of the following:

¹ SYSADM or DBADM authority.
¹ ALTER privilege on the table on which the trigger is defined, or ALTERIN privilege

on the schema of the table on which the trigger is defined and one of:
– IMPLICIT_SCHEMA authority on the database, if the implicit or explicit schema

name of the trigger does not exist
– CREATEIN privilege on the schema, if the schema name of the trigger refers

to an existing schema .

If the authorization ID of the statement does not have SYSADM or DBADM authority,
the privileges that the authorization ID of the statement holds (without considering
PUBLIC or group privileges) must include all of the following as long as the trigger
exists:

¹ SELECT privilege on the table on which the trigger is defined, if any transition vari-
ables or tables are specified

¹ SELECT privilege on any table or view referenced in the triggered action condition
¹ Necessary privileges to invoke the triggered SQL statements specified.

If a trigger definer can only create the trigger because the definer has SYSADM
authority, then the definer is granted explicit DBADM authority for the purpose of cre-
ating the trigger.

 Syntax

508 SQL Reference

CREATE TRIGGER

55──CREATE TRIGGER──trigger-name─ ──┬ ┬─NO CASCADE BEFORE─ ──────────────────────────────────5
 └ ┘─AFTER─────────────

5─ ──┬ ┬─INSERT────────────────────────── ─ON──table-name────────────────────────────────────5
 ├ ┤─DELETE──────────────────────────
 └ ┘ ─UPDATE─ ──┬ ┬─────────────────────
 │ │┌ ┐─,───────────
 └ ┘──OF ───6 ┴─column-name─

5─ ──┬ ┬── ────────────────────────────5
 │ │┌ ┐─────────────────────────────────────
 │ ││ │┌ ┐─AS─
 └ ┘─REFERENCING─ ──── (1, 2) ───6 ┴──┬ ┬ ─OLD─ ──┴ ┴──── ─correlation-name─
 │ │┌ ┐─AS─
 ├ ┤ ─NEW─ ──┴ ┴──── ─correlation-name─
 │ │┌ ┐─AS─
 ├ ┤ ─OLD_TABLE─ ──┴ ┴──── ─identifier─
 │ │┌ ┐─AS─
 └ ┘ ─NEW_TABLE─ ──┴ ┴──── ─identifier─

5─ ──┬ ┬─FOR EACH ROW────────── ─MODE DB2SQL──┤ triggered-action ├──────────────────────────5%
 └ ┘───(3)─FOR EACH STATEMENT─

triggered-action:
├─ ──┬ ┬────────────────────────────── ──5
 └ ┘─WHEN──(──search-condition──)─

5─ ──┬ ┬ ─triggered-SQL-statement─────────────────────────── ─────────────────────────────────┤
 │ │┌ ┐──────────────────────────────
 └ ┘ ─BEGIN ATOMIC─ ───6 ┴─triggered-SQL-statement──;─ ─END─

Notes:
1 OLD and NEW may only be specified once each.
2 OLD_TABLE and NEW_TABLE may only be specified once each and only for AFTER triggers.
3 FOR EACH STATEMENT may not be specified for BEFORE triggers.

 Description
trigger-name

Names the trigger. The name, including the implicit or explicit schema name must
not identify a trigger already described in the catalog (SQLSTATE 42710). If no
schema name is supplied, the authorization ID of the statement is used as the
schema name. If a two part name is specified, the schema name cannot begin with
"SYS" (SQLSTATE 42939).

NO CASCADE BEFORE
Specifies that the associated triggered action is to be applied before any changes
caused by the actual update of the subject table are applied to the database. It
also specifies that the triggered action of the trigger will not cause other triggers to
be activated.

AFTER
Specifies that the associated triggered action is to be applied after the changes
caused by the actual update of the subject table are applied to the database.

 Chapter 6. Statements 509

CREATE TRIGGER

INSERT
Specifies that the triggered action associated with the trigger is to be executed
whenever an INSERT operation is applied to the designated base table.

DELETE
Specifies that the triggered action associated with the trigger is to be executed
whenever a DELETE operation is applied to the designated base table.

UPDATE
Specifies that the triggered action associated with the trigger is to be executed
whenever an UPDATE operation is applied to the designated base table subject to
the columns specified or implied.

If the optional column-name list is not specified, every column of the table is
implied. Therefore, omission of the column-name list implies that the trigger will be
activated by the update of any column of the table.

OF column-name,...
Each column-name specified must be a column of the base table (SQLSTATE
42703). No column-name shall appear more than once in the column-name list
(SQLSTATE 42711). The trigger will only be activated by the update of a
column identified in the column-name list.

ON table-name
Designates the subject table of the trigger definition. The name must specify a
base table or an alias that resolves to a base table (SQLSTATE 42809). The name
must not specify a catalog table (SQLSTATE 42832).

REFERENCING
Specifies the correlation names for the transition variables and the table names for
the transition tables. Correlation names identify a specific row in the set of rows
affected by the triggering SQL operation. Table names identify the complete set of
affected rows. Each row affected by the triggering SQL operation is available to the
triggered action by qualifying columns with correlation-names specified as follows.

OLD AS correlation-name
Specifies a correlation name which identifies the row state prior to the trig-
gering SQL operation.

NEW AS correlation-name
Specifies a correlation name which identifies the row state as modified by the
triggering SQL operation and by any SET statement in a BEFORE trigger that
has already executed.

The complete set of rows affected by the triggering SQL operation is available to
the triggered action by using a temporary table name specified as follows.

OLD_TABLE AS identifier
Specifies a temporary table name which identifies the set of affected rows prior
to the triggering SQL operation.

510 SQL Reference

CREATE TRIGGER

NEW_TABLE AS identifier
Specifies a temporary table name which identifies the affected rows as modi-
fied by the triggering SQL operation and by any SET statement in a BEFORE
trigger that has already executed.

The following rules apply to the REFERENCING clause:

¹ None of the OLD and NEW correlation names and the OLD_TABLE and
NEW_TABLE names can be identical (SQLSTATE 42712).

¹ Only one OLD and one NEW correlation-name may be specified for a trigger
(SQLSTATE 42613).

¹ Only one OLD_TABLE and one NEW_TABLE identifier may be specified for a
trigger (SQLSTATE 42613).

¹ The OLD correlation-name and the OLD_TABLE identifier can only be used if
the trigger event is either a DELETE operation or an UPDATE operation
(SQLSTATE 42898). If the operation is a DELETE operation, OLD correlation-
name captures the value of the deleted row. If it is an UPDATE operation, it
captures the value of the row before the UPDATE operation. The same applies
to the OLD_TABLE identifier and the set of affected rows.

¹ The NEW correlation-name and the NEW_TABLE identifier can only be used if
the trigger event is either an INSERT operation or an UPDATE operation
(SQLSTATE 42898). In both operations, the value of NEW captures the new
state of the row as provided by the original operation and as modified by any
BEFORE trigger that has executed to this point. The same applies to the
NEW_TABLE identifier and the set of affected rows.

¹ OLD_TABLE and NEW_TABLE identifiers cannot be defined for a BEFORE
trigger (SQLSTATE 42898).

¹ OLD and NEW correlation-names cannot be defined for a FOR EACH STATE-
MENT trigger (SQLSTATE 42899).

¹ Transition tables cannot be modified (SQLSTATE 42807).

¹ The total of the references to the transition table columns and transition vari-
ables in the triggered-action cannot exceed the limit for the number of columns
in a table or the sum of their lengths cannot exceed the maximum length of a
row in a table (SQLSTATE 54040).

¹ The scope of each correlation-name and each identifier is the entire trigger
definition.

FOR EACH ROW
Specifies that the triggered action is to be applied once for each row of the subject
table that is affected by the triggering SQL operation.

FOR EACH STATEMENT
Specifies that the triggered action is to be applied only once for the whole state-
ment. This type of trigger granularity cannot be specified for a BEFORE trigger
(SQLSTATE 42613). If specified, an UPDATE or DELETE trigger is activated even
when no rows are affected by the triggering UPDATE or DELETE statement.

 Chapter 6. Statements 511

CREATE TRIGGER

MODE DB2SQL
This clause is used to specify the mode of triggers. This is the only valid mode
currently supported.

triggered-action
Specifies the action to be performed when a trigger is activated. A triggered-action
is composed of one or several triggered-SQL-statements and by an optional condi-
tion for the execution of the triggered-SQL-statements. If there is more than one
triggered-SQL-statement in the triggered-action for a given trigger, they must be
enclosed within the BEGIN ATOMIC and END keywords, separated by a semi-
colon,57 and are executed in the order they are specified.

WHEN (search-condition)
Specifies a condition that is true, false, or unknown. The search-condition pro-
vides a capability to determine whether or not a certain triggered action should
be executed.

The associated action is performed only if the specified search condition evalu-
ates as true. If the WHEN clause is omitted, the associated
triggered-SQL-statements are always performed.

triggered-SQL-stmt
If the trigger is a BEFORE trigger, then a triggered SQL statement must be
one of the following (SQLSTATE 42987):

¹ a fullselect 58

¹ a SET transition-variable SQL statement.
¹ a SIGNAL SQLSTATE statement

If the trigger is an AFTER trigger, then a triggered SQL statement must be one
of the following (SQLSTATE 42987):

¹ an INSERT SQL statement
¹ a searched UPDATE SQL statement
¹ a searched DELETE SQL statement
¹ a SIGNAL SQLSTATE statement
¹ a fullselect 58

The triggered-SQL-statement can not reference an undefined transition vari-
able (SQLSTATE 42703).

 Notes
¹ Adding a trigger to a table that already has rows in it will not cause any triggered

actions to be activated. Thus, if the trigger is designed to enforce constraints on
the data in the table, those constraints may not be satisfied by the existing rows.

57 When using this form in the Command Line Processor, the statement terminating character cannot be the semi-colon. See the
Command Reference for information on specifying an alternative terminating character.

58 A common-table-expression may precede a fullselect.

512 SQL Reference

CREATE TRIGGER

¹ If the events for two triggers occur simultaneously (for example, if they have the
same event, activation time, and subject tables), then the first trigger created is the
first to execute.

¹ If a column is added to the subject table after triggers have been defined, the fol-
lowing rules apply:

– If the trigger is an UPDATE trigger that was specified without an explicit
column list, then an update to the new column will cause the activation of the
trigger.

– The column will not be visible in the triggered action of any previously defined
trigger.

– The OLD_TABLE and NEW_TABLE transition tables will not contain this
column. Thus, the result of performing a "SELECT *" on a transition table will
not contain the added column.

¹ If a column is added to any table referenced in a triggered action, the new column
will not be visible to the triggered action.

¹ The result of a fullselect specified as a triggered-SQL-statement is not available
inside or outside of the trigger.

¹ A before delete trigger defined on a table involved in a cycle of cascaded referen-
tial constraints should not include references to the table on which it is defined or
any other table modified by cascading during the evaluation of the cycle of referen-
tial integrity constraints. The results of such a trigger are data dependent and
therefore may not produce consistent results.

In its simplest form, this means that a before delete trigger on a table with a self-
referencing referential constraint and a delete rule of CASCADE should not include
any references to the table in the triggered-action.

¹ The creation of a trigger causes certain packages to be marked invalid:

– If an update trigger without an explicit column list is created, then packages
with an update usage on the target table are invalidated.

– If an update trigger with a column list is created, then packages with update
usage on the target table are only invalidated if the package also has an
update usage on at least one column in the column-name list of the CREATE
TRIGGER statement.

– If an insert trigger is created, packages that have an insert usage on the target
table are invalidated.

– If a delete trigger is created, packages that have a delete usage on the target
table are invalidated.

¹ A package remains invalid until the application program is explicitly bound or
rebound, or it is executed and the database manager automatically rebinds it.

¹ Inoperative triggers : An inoperative trigger is a trigger that is no longer available
and is therefore never activated. A trigger becomes inoperative if:

– A privilege that the creator of the trigger was required to have for the trigger to
execute is revoked.

 Chapter 6. Statements 513

CREATE TRIGGER

– An object such as a table, view or alias, upon which the triggered action is
dependent, is dropped.

– A view, upon which the triggered action is dependent, becomes inoperative.

– An alias that is the subject table of the trigger is dropped.

In practical terms, an inoperative trigger is one in which a trigger definition has
been dropped as a result of cascading rules for DROP or REVOKE statements.
For example, when an view is dropped, any trigger with a triggered-SQL-statement
defined using that view is made inoperative.

When a trigger is made inoperative, all packages with statements performing oper-
ations that were activating the trigger will be marked invalid. When the package is
rebound (explicitly or implicitly) the inoperative trigger is completely ignored .
Similarly, applications with dynamic SQL statements performing operations that
were activating the trigger will also completely ignore any inoperative triggers.

The trigger name can still be specified in the DROP TRIGGER and COMMENT ON
TRIGGER statements.

An inoperative trigger may be recreated by issuing a CREATE TRIGGER state-
ment using the definition text of the inoperative trigger. This trigger definition text is
stored in the TEXT column of SYSCAT.TRIGGERS. Note that there is no need to
explicitly drop the inoperative trigger in order to recreate it. Issuing a CREATE
TRIGGER statement with the same trigger-name as an inoperative trigger will
cause that inoperative trigger to be replaced with a warning (SQLSTATE 01595).

Inoperative triggers are indicated by an X in the VALID column of the
SYSCAT.TRIGGERS catalog view.

¹ Errors executing triggers : Errors that occur during the execution of
triggered-SQL-statements are returned using SQLSTATE 09000 unless the error is
considered severe. If the error is severe, the severe error SQLSTATE is returned.
The SQLERRMC field of the SQLCA for non-severe error will include the trigger
name, SQLCODE, SQLSTATE and as many tokens as will fit from the tokens of
the failure.

A triggered-SQL-statement could be a SIGNAL SQLSTATE statement or contain a
RAISE_ERROR function. In both these cases, the SQLSTATE returned is the one
specified in the SIGNAL SQLSTATE statement or the RAISE_ERROR condition.

¹ Creating a trigger with a schema name that does not already exist will result in the
implicit creation of that schema provided the authorization ID of the statement has
IMPLICIT_SCHEMA authority. The schema owner is SYSIBM. The CREATEIN
privilege on the schema is granted to PUBLIC.

 Examples
Example 1: Create two triggers that will result in the automatic tracking of the number
of employees a company manages. The triggers will interact with the following tables:

EMPLOYEE table with these columns: ID, NAME, ADDRESS, and POSITION.
COMPANY_STATS table with these columns: NBEMP, NBPRODUCT, and
REVENUE.

514 SQL Reference

CREATE TRIGGER

The first trigger increments the number of employees each time a new person is hired;
that is, each time a new row is inserted into the EMPLOYEE table:

CREATE TRIGGER NEW_HIRED

AFTER INSERT ON EMPLOYEE

FOR EACH ROW MODE DB2SQL

UPDATE COMPANY_STATS SET NBEMP = NBEMP + 1

The second trigger decrements the number of employees each time an employee
leaves the company; that is, each time a row is deleted from the table EMPLOYEE:

CREATE TRIGGER FORMER_EMP

AFTER DELETE ON EMPLOYEE

FOR EACH ROW MODE DB2SQL

UPDATE COMPANY_STATS SET NBEMP = NBEMP - 1

Example 2: Create a trigger that ensures that whenever a parts record is updated, the
following check and (if necessary) action is taken:

If the on-hand quantity is less than 10% of the maximum stocked quantity, then
issue a shipping request ordering the number of items for the affected part to be
equal to the maximum stocked quantity minus the on-hand quantity.

The trigger will interact with the PARTS table with these columns: PARTNO,
DESCRIPTION, ON_HAND, MAX_STOCKED, and PRICE.

ISSUE_SHIP_REQUEST is a user-defined function that sends an order form for addi-
tional parts to the appropriate company.

CREATE TRIGGER REORDER

AFTER UPDATE OF ON_HAND, MAX_STOCKED ON PARTS

REFERENCING NEW AS N

FOR EACH ROW MODE DB2SQL

WHEN (N.ON_HAND < 0.10 * N.MAX_STOCKED)

 BEGIN ATOMIC

VALUES(ISSUE_SHIP_REQUEST(N.MAX_STOCKED - N.ON_HAND, N.PARTNO));

 END

Example 3: Create a trigger that will cause an error when an update occurs that would
result in a salary increase greater than ten percent of the current salary.

CREATE TRIGGER RAISE_LIMIT

AFTER UPDATE OF SALARY ON EMPLOYEE

REFERENCING NEW AS N OLD AS O

FOR EACH ROW MODE DB2SQL

WHEN (N.SALARY > 1.1 * O.SALARY)

SIGNAL SQLSTATE '75000' ('Salary increase>10%')

Example 4: Consider an application which records and tracks changes to stock prices.
The database contains two tables, CURRENTQUOTE and QUOTEHISTORY.

Tables: CURRENTQUOTE (SYMBOL, QUOTE, STATUS)

QUOTEHISTORY (SYMBOL, QUOTE, QUOTE_TIMESTAMP)

 Chapter 6. Statements 515

CREATE TRIGGER

 When the QUOTE column of CURRENTQUOTE is updated, the new quote should be
copied, with a timestamp, to the QUOTEHISTORY table. Also, the STATUS column of
CURRENTQUOTE should be updated to reflect whether the stock is:

1. rising in value;
2. at a new high for the year;
3. dropping in value;
4. at a new low for the year;
5. steady in value.

CREATE TRIGGER statements that accomplish this are as follows.

¹ Trigger Definition to set the status:

CREATE TRIGGER STOCK_STATUS

NO CASCADE BEFORE UPDATE OF QUOTE ON CURRENTQUOTE

REFERENCING NEW AS NEWQUOTE OLD AS OLDQUOTE

FOR EACH ROW MODE DB2SQL

 BEGIN ATOMIC

SET NEWQUOTE.STATUS =

 CASE

WHEN NEWQUOTE.QUOTE >

(SELECT MAX(QUOTE) FROM QUOTEHISTORY

WHERE SYMBOL = NEWQUOTE.SYMBOL

AND YEAR(QUOTE_TIMESTAMP) = YEAR(CURRENT DATE))

 THEN 'High'

WHEN NEWQUOTE.QUOTE <

(SELECT MIN(QUOTE) FROM QUOTEHISTORY

WHERE SYMBOL = NEWQUOTE.SYMBOL

AND YEAR(QUOTE_TIMESTAMP) = YEAR(CURRENT DATE))

 THEN 'Low'

WHEN NEWQUOTE.QUOTE > OLDQUOTE.QUOTE

 THEN 'Rising'

WHEN NEWQUOTE.QUOTE < OLDQUOTE.QUOTE

 THEN 'Dropping'

WHEN NEWQUOTE.QUOTE = OLDQUOTE.QUOTE

 THEN 'Steady'

 END;

 END

¹ Trigger Definition to record change in QUOTEHISTORY table:

CREATE TRIGGER RECORD_HISTORY

AFTER UPDATE OF QUOTE ON CURRENTQUOTE

REFERENCING NEW AS NEWQUOTE

FOR EACH ROW MODE DB2SQL

 BEGIN ATOMIC

INSERT INTO QUOTEHISTORY

VALUES (NEWQUOTE.SYMBOL, NEWQUOTE.QUOTE, CURRENT TIMESTAMP);

 END

516 SQL Reference

CREATE VIEW

 CREATE VIEW
The CREATE VIEW statement creates a view on one or more tables or views.

 Invocation
This statement can be embedded in an application program or issued through the use
of dynamic SQL statements. It is an executable statement that can be dynamically pre-
pared.

 Authorization
The privileges held by the authorization ID of the statement must include at least one of
the following:

¹ SYSADM or DBADM authority or
¹ For each table or view identified in any fullselect:

– CONTROL privilege on that table or view, or
– SELECT privilege on that table or view

and at least one of the following:
– IMPLICIT_SCHEMA authority on the database, if the implicit or explicit schema

name of the view does not exist
– CREATEIN privilege on the schema, if the schema name of the view refers to

an existing schema .

Group privileges are not considered for any table or view specified in the CREATE
VIEW statement.

If a view definer can only create the view because the definer has SYSADM authority,
then the definer is granted explicit DBADM authority for the purpose of creating the
view.

 Syntax

55─ ─CREATE VIEW──view-name─ ──┬ ┬─────────────────────── ─AS─────────────────────────────────5
 │ │┌ ┐─,───────────
 └ ┘ ─(─ ───6 ┴─column-name─ ─)─

5─ ──┬ ┬─────────────────────────────────── ─fullselect──────────────────────────────────────5
 │ │┌ ┐─,───────────────────────
 └ ┘ ─WITH─ ───6 ┴─common-table-expression─

5─ ──┬ ┬────────────────────────────────── ───5%
 │ │┌ ┐─CASCADED─
 └ ┘ ─WITH─ ──┼ ┼────────── ─CHECK OPTION─
 └ ┘─LOCAL────

Note: See Chapter 5, “Queries” on page 285 for the syntax of common-table-
expression and fullselect.

 Chapter 6. Statements 517

CREATE VIEW

 Description
view-name

Names the view. The name, including the implicit or explicit qualifier, must not
identify a table, view, or alias described in the catalog. The qualifier must not be
SYSIBM, SYSCAT, SYSFUN, or SYSSTAT (SQLSTATE 42939) .

The name can be the same as the name of an inoperative view (see Inoperative
views on page 521). In this case the new view specified in the CREATE VIEW
statement will replace the inoperative view. The user will get a warning
(SQLSTATE 01595) when an inoperative view is replaced. No warning is returned
if the application was bound with the bind option SQLWARN set to NO.

column-name
Names the columns in the view. If a list of column names is specified, it must
consist of as many names as there are columns in the result table of the fullselect.
Each column-name must be unique and unqualified. If a list of column names is
not specified, the columns of the view inherit the names of the columns of the
result table of the fullselect.

A list of column names must be specified if the result table of the fullselect has
duplicate column names or an unnamed column (SQLSTATE 42908). An
unnamed column is a column derived from a constant, function, expression, or set
operation that is not named using the AS clause of the select list.

AS Identifies the view definition.

WITH common-table-expression
Defines a common table expression for use with the fullselect that follows. See
“common-table-expression” on page 325.

fullselect
Defines the view. At any time, the view consists of the rows that would result if the
SELECT statement were executed. Fullselect must be the fullselect form of a
SELECT statement that does not reference host variables or parameter markers.
See Chapter 5, “Queries” on page 285 for an explanation of fullselect.

WITH CHECK OPTION
Specifies the constraint that every row that is inserted or updated through the view
must conform to the definition of the view. A row that does not conform to the defi-
nition of the view is a row that does not satisfy the search conditions of the view.

WITH CHECK OPTION must not be specified if the view is read-only (SQLSTATE
42813). If WITH CHECK OPTION is specified for an updatable view that does not
allow inserts, then the constraint applies to updates only.

If WITH CHECK OPTION is omitted, the definition of the view is not used in the
checking of any insert or update operations that use the view. Some checking
might still occur during insert or update operations if the view is directly or indirectly
dependent on another view that includes WITH CHECK OPTION. Because the
definition of the view is not used, rows might be inserted or updated through the
view that do not conform to the definition of the view.

518 SQL Reference

CREATE VIEW

CASCADED
The WITH CASCADED CHECK OPTION constraint on a view V means that V
inherits the search conditions as constraints from any updatable view on which
V is dependent. Furthermore, every updatable view that is dependent on V is
also subject to these constraints. Thus, the search conditions of V and each
view on which V is dependent are ANDed together to form a constraint that is
applied for an insert or update of V or of any view dependent on V.

LOCAL
The WITH LOCAL CHECK OPTION constraint on a view V means the search
condition of V is applied as a constraint for an insert or update of V or of any
view that is dependent on V.

The difference between CASCADED and LOCAL is shown in the following
example. Consider the following updatable views (substituting for Y from column
headings of the table that follows):

V1 defined on table T

V2 defined on V1 WITH Y CHECK OPTION

V3 defined on V2

V4 defined on V3 WITH Y CHECK OPTION

V5 defined on V4

The following table shows the search conditions against which inserted or updated
rows are checked:

Consider the following updatable view which shows the impact of the WITH
CHECK OPTION using the default CASCADED option:

CREATE VIEW V1 AS SELECT COL1 FROM T1 WHERE COL1 > 10

CREATE VIEW V2 AS SELECT COL1 FROM V1 WITH CHECK OPTION

CREATE VIEW V3 AS SELECT COL1 FROM V2 WHERE COL1 < 100

The following INSERT statement using V1 will succeed because V1 does not have
a WITH CHECK OPTION and V1 is not dependent on any other view that has a
WITH CHECK OPTION.

INSERT INTO V1 VALUES(5)

The following INSERT statement using V2 will result in an error because V2 has a
WITH CHECK OPTION and the insert would produce a row that did not conform to
the definition of V2.

INSERT INTO V2 VALUES(5)

Y is LOCAL Y is CASCADED

V1 checked against: no view no view
V2 checked against: V2 V2, V1
V3 checked against: V2 V2, V1
V4 checked against: V2, V4 V4, V3, V2, V1
V5 checked against: V2, V4 V4, V3, V2, V1

 Chapter 6. Statements 519

CREATE VIEW

The following INSERT statement using V3 will result in an error even though it
does not have WITH CHECK OPTION because V3 is dependent on V2 which does
have a WITH CHECK OPTION (SQLSTATE 44000).

INSERT INTO V3 VALUES(5)

The following INSERT statement using V3 will succeed even though it does not
conform to the definition of V3 (V3 does not have a WITH CHECK OPTION); it
does conform to the definition of V2 which does have a WITH CHECK OPTION.

INSERT INTO V3 VALUES(200)

 Notes
¹ Creating a view with a schema name that does not already exist will result in the

implicit creation of that schema provided the authorization ID of the statement has
IMPLICIT_SCHEMA authority. The schema owner is SYSIBM. The CREATEIN
privilege on the schema is granted to PUBLIC.

¹ View columns inherit the NOT NULL WITH DEFAULT attribute from the base table
or view except when columns are derived from an expression. When a row is
inserted or updated into an updatable view, it is checked against the constraints
(primary key, referential integrity, and check) if any are defined on the base table.

¹ A new view cannot be created if it uses an inoperative view in its definition.
(SQLSTATE 51024)

¹ Deletable views: A view is deletable if all of the following are true:

– each FROM clause of the outer fullselect identifies only one base table,
deletable view, deletable nested table expression, or deletable common table
expression

– the outer fullselect does not include a VALUES clause

– the outer fullselect does not include a GROUP BY clause or HAVING clause

– the outer fullselect does not include column functions in the select list

– the outer fullselect does not include SET operations (UNION, EXCEPT or
INTERSECT) with the exception of UNION ALL

– the base tables in the operands of a UNION ALL must not be the same table
and each operand must be deletable

– the select list of the outer fullselect does not include DISTINCT

¹ Updatable views: A column of a view is updatable if all of the following are true:

– the view is deletable

– the column resolves to a column of a base table

– all the corresponding columns of the operands of a UNION ALL have exactly
matching data types (including length or precision and scale) and matching
default values if the fullselect of the view includes a UNION ALL

A view is updatable if ANY column of the view is updatable.

520 SQL Reference

CREATE VIEW

 ¹ Insertable views:

A view is insertable if ALL columns of the view are updatable and the fullselect of
the view does not include UNION ALL.

¹ Read-only views: A view is read-only if it is NOT deletable.

The READONLY column in the SYSCAT.VIEWS catalog view indicates if a view is
read-only.

¹ Common table expressions and nested table expressions follow the same set of
rules for determining whether they are deletable, updatable, insertable or read-only.

¹ Inoperative views: An inoperative view is a view that is no longer available for
SQL statements. A view becomes inoperative if:

– A privilege, upon which the view definition is dependent, is revoked.

– An object such as a table, alias or function, upon which the view definition is
dependent, is dropped.

– A view, upon which the view definition is dependent, becomes inoperative.

In practical terms, an inoperative view is one in which the view definition has been
unintentionally dropped. For example, when an alias is dropped, any view defined
using that alias is made inoperative. All dependent views also become inoperative
and packages dependent on the view are no longer valid.

Until the inoperative view is explicitly recreated or dropped, a statement using that
inoperative view cannot be compiled (SQLSTATE 51024) with the exception of the
CREATE ALIAS, CREATE VIEW, DROP VIEW, and COMMENT ON TABLE state-
ments. Until the inoperative view has been explicitly dropped, its qualified name
cannot be used by another view, table or alias. (SQLSTATE 42710)

An inoperative view may be recreated by issuing a CREATE VIEW statement using
the definition text of the inoperative view. This view definition text is stored in the
TEXT column of the SYSCAT.VIEWS catalog. When recreating an inoperative
view, it is necessary to explicitly grant any privileges required on that view by
others, due to the fact that all authorization records on a view are deleted if the
view is marked inoperative. Note that there is no need to explicitly drop the inoper-
ative view in order to recreate it. Issuing a CREATE VIEW statement with the same
view-name as an inoperative view will cause that inoperative view to be replaced,
and the CREATE VIEW statement will return a warning (SQLSTATE 01595).

Inoperative views are indicated by an X in the VALID column of the
SYSCAT.VIEWS catalog view and an X in the STATUS column of the
SYSCAT.TABLES catalog view.

 ¹ Privileges

The definer of a view always receives the SELECT privilege on the view as well as
the right to drop the view. The definer of a view will get CONTROL privilege on the
view only if the definer has CONTROL privilege on every base table or view identi-
fied in the fullselect, or if the definer has SYSADM or DBADM authority.

 Chapter 6. Statements 521

CREATE VIEW

The definer of the view is granted INSERT, UPDATE, column level UPDATE or
DELETE privileges on the view if the view is not read-only and the definer has the
corresponding privileges on the underlying objects.

The definer of a view only acquires privileges if the privileges from which they are
derived exist at the time the view is created. The definer must have these privi-
leges either directly or because PUBLIC has the privilege. Privileges held by
groups of which the view definer is a member, are not considered.

 Examples
Example 1: Create a view named MA_PROJ upon the PROJECT table that contains
only those rows with a project number (PROJNO) starting with the letters ‘MA’.

CREATE VIEW MA_PROJ AS SELECT *

 FROM PROJECT

 WHERE SUBSTR(PROJNO, 1, 2) = 'MA'

Example 2: Create a view as in example 1, but select only the columns for project
number (PROJNO), project name (PROJNAME) and employee in charge of the project
(RESPEMP).

CREATE VIEW MA_PROJ

AS SELECTPROJNO, PROJNAME, RESPEMP

 FROM PROJECT

WHERE SUBSTR(PROJNO, 1, 2) = 'MA'

Example 3: Create a view as in example 2, but, in the view, call the column for the
employee in charge of the project IN_CHARGE.

CREATE VIEW MA_PROJ

(PROJNO, PROJNAME, IN_CHARGE)

AS SELECTPROJNO, PROJNAME, RESPEMP

 FROM PROJECT

WHERE SUBSTR(PROJNO, 1, 2) = 'MA'

Note: Even though only one of the column names is being changed, the names of all
three columns in the view must be listed in the parentheses that follow MA_PROJ.

Example 4: Create a view named PRJ_LEADER that contains the first four columns
(PROJNO, PROJNAME, DEPTNO, RESPEMP) from the PROJECT table together with
the last name (LASTNAME) of the person who is responsible for the project
(RESPEMP). Obtain the name from the EMPLOYEE table by matching EMPNO in
EMPLOYEE to RESPEMP in PROJECT.

CREATE VIEW PRJ_LEADER

AS SELECT PROJNO, PROJNAME, DEPTNO, RESPEMP, LASTNAME

FROM PROJECT, EMPLOYEE

WHERE RESPEMP = EMPNO

Example 5: Create a view as in example 4, but in addition to the columns PROJNO,
PROJNAME, DEPTNO, RESPEMP, and LASTNAME, show the total pay (SALARY +
BONUS + COMM) of the employee who is responsible. Also select only those projects
with mean staffing (PRSTAFF) greater than one.

522 SQL Reference

CREATE VIEW

CREATE VIEW PRJ_LEADER

(PROJNO, PROJNAME, DEPTNO, RESPEMP, LASTNAME, TOTAL_PAY)

AS SELECT PROJNO, PROJNAME, DEPTNO, RESPEMP, LASTNAME, SALARY+BONUS+COMM

FROM PROJECT, EMPLOYEE

WHERE RESPEMP = EMPNO

AND PRSTAFF > 1

Specifying the column name list could be avoided by naming the expression
SALARY+BONUS+COMM as TOTAL_PAY in the fullselect.

CREATE VIEW PRJ_LEADER

AS SELECT PROJNO, PROJNAME, DEPTNO, RESPEMP,

LASTNAME, SALARY+BONUS+COMM AS TOTAL_PAY

FROM PROJECT, EMPLOYEE

WHERE RESPEMP = EMPNO AND PRSTAFF > 1

Example 6: Given the set of tables and views shown in the following chart:

COLA COLB

INTEGERCHAR(5)

COLC COLD

INTEGERCHAR(5)

COLE COLF

INTEGERCHAR(5)

...SELECT * FROM S1.T1 ...SELECT * FROM S1.T2 ...SELECT * FROM S1.T3

table: S1.T1 table: S1.T2 table: S1.T3

view: S1.V1 view: S1.V2 view: S1.V3

(SELECT, INSERT) (CONTROL) (SELECT)

(CONTROL) (none) (SELECT)

Figure 13.

User ZORPIE (who does not have either DBADM or SYSADM authority) has been
granted the privileges shown in brackets below each object:

1. ZORPIE will get CONTROL privilege on the view that she creates with:

CREATE VIEW VA AS SELECT * FROM S1.V1

 because she has CONTROL on S1.V1.59 It it does not matter which, if any, privi-
leges she has on the underlying base table.

2. ZORPIE will not be allowed to create the view:

CREATE VIEW VB AS SELECT * FROM S1.V2

 because she has neither CONTROL nor SELECT on S1.V2. It does not matter
that she has CONTROL on the underlying base table (S1.T2).

3. ZORPIE will get CONTROL privilege on the view that she creates with:

59 CONTROL on S1.V1 must have been granted to ZORPIE by someone with DBADM or SYSADM authority.

 Chapter 6. Statements 523

CREATE VIEW

CREATE VIEW VC (COLA, COLB, COLC, COLD)

AS SELECT * FROM S1.V1, S1.T2

WHERE COLA = COLC

 because the fullselect of ZORPIE.VC references view S1.V1 and table S1.T2 and
she has CONTROL on both of these. Note that the view VC is read-only, so
ZORPIE does not get INSERT, UPDATE or DELETE privileges.

4. ZORPIE will get SELECT privilege on the view that she creates with:

CREATE VIEW VD (COLA,COLB, COLE, COLF)

AS SELECT * FROM S1.V1, S1.V3

WHERE COLA = COLE

 because the fullselect of ZORPIE.VD references the two views S1.V1 and S1.V3,
one on which she has only SELECT privilege, and one on which she has
CONTROL privilege. She is given the lesser of the two privileges, SELECT, on
ZORPIE.VD.

5. ZORPIE will get INSERT, UPDATE and DELETE privilege WITH GRANT OPTION
and SELECT privilege on the view VE in the following view definition.

CREATE VIEW VE

AS SELECT * FROM S1.V1

WHERE COLA > ANY

(SELECT COLE FROM S1.V3)

ZORPIE's privileges on VE are determined primarily by her privileges on S1.V1.
Since S1.V3 is only referenced in a subquery, she only needs SELECT privilege on
S1.V3 to create the view VE. The definer of a view only gets CONTROL on the
view if they have CONTROL on all objects referenced in the view definition.
ZORPIE does not have CONTROL on S1.V3, consequently she does not get
CONTROL on VE.

524 SQL Reference

DECLARE CURSOR

 DECLARE CURSOR
The DECLARE CURSOR statement defines a cursor.

 Invocation
Although an interactive SQL facility might provide an interface that gives the appear-
ance of interactive execution, this statement can only be embedded within an applica-
tion program. It is not an executable statement and cannot be dynamically prepared.

 Authorization
The term “SELECT statement of the cursor” is used in order to specify the authorization
rules. The SELECT statement of the cursor is one of the following:

¹ The prepared select-statement identified by the statement-name
¹ The specified select-statement.

For each table or view identified (directly or using an alias) in the SELECT statement of
the cursor, the privileges held by the authorization ID of the statement must include at
least one of the following:

¹ SYSADM or DBADM authority.
¹ For each table or view identified in the select-statement:

– SELECT privilege on the table or view, or
– CONTROL privilege of the table or view.

If statement-name is specified:

¹ The authorization ID of the statement is the run-time authorization ID.
¹ The authorization check is performed when the select-statement is prepared.
¹ The cursor cannot be opened unless the select-statement is successfully prepared.

If select-statement is specified:

¹ GROUP privileges are not checked.
¹ The authorization ID of the statement is the authorization ID specified during

program preparation.

 Syntax

55──DECLARE──cursor-name──CURSOR─ ──┬ ┬─────────── ─FOR─ ──┬ ┬─select-statement─ ──────────────5%
 └ ┘ ─WITH HOLD─ └ ┘─statement-name───

 Description
cursor-name

Specifies the name of the cursor created when the source program is run. The
name must not be the same as the name of another cursor declared in the source
program. The cursor must be opened before use (see “OPEN” on page 596).

 Chapter 6. Statements 525

DECLARE CURSOR

WITH HOLD
Maintains resources across multiple units of work. The effect of the WITH HOLD
cursor attribute is as follows:

¹ For units of work ending with COMMIT:

– Open cursors defined WITH HOLD remain open. The cursor is positioned
before the next logical row of the results table.

If a DISCONNECT statement is issued after a COMMIT statement for a
connection with WITH HOLD cursors, the held cursors must be explicitly
closed or the connection will be assumed to have performed work (simply
by having open WITH HELD cursors even though no SQL statements
were issued) and the DISCONNECT statement will fail.

– All locks are released, except locks protecting the current cursor position
of open WITH HOLD cursors. The locks held include the locks on the
table, and for parallel environments, the locks on rows where the cursors
are currently positioned. Locks on packages and dynamic SQL sections (if
any) are held.

– Valid operations on cursors defined WITH HOLD immediately following a
COMMIT request are:

- FETCH: Fetches the next row of the cursor.

- CLOSE: Closes the cursor.

– UPDATE and DELETE CURRENT OF CURSOR are valid only for rows
that are fetched within the same unit of work.

– LOB locators are freed.

¹ For units of work ending with ROLLBACK:

– All open cursors are closed.

– All locks acquired during the unit of work are released.

– LOB locators are freed.

¹ For special COMMIT case:

– Packages may be recreated either explicitly, by binding the package, or
implicitly, because the package has been invalidated and then dynamically
recreated the first time it is referenced. All held cursors are closed during
package rebind. This may result in errors during subsequent execution.

select-statement: Identifies the SELECT statement of the cursor. The select-
statement must not include parameter markers, but may include references to host vari-
ables. The declarations of the host variables must precede the DECLARE CURSOR
statement in the source program. See “select-statement” on page 324 for an explana-
tion of select-statement.

statement-name: The SELECT statement of the cursor is the prepared SELECT
statement identified by the statement-name when the cursor is opened. The statement-

526 SQL Reference

DECLARE CURSOR

name must not be identical to a statement-name specified in another DECLARE
CURSOR statement of the source program.

For an explanation of prepared SELECT statements, see “PREPARE” on page 601.

 Notes
¹ A program called from another program or from a different source file within the

same program cannot use the cursor that was opened by the calling program.

¹ If the SELECT statement of a cursor contains CURRENT DATE, CURRENT TIME,
or CURRENT TIMESTAMP, all references to these special registers will yield the
same value on each FETCH. This value is determined when the cursor is opened.

¹ For more efficient processing of data, the database manager can block data for
read-only cursors when retrieving data from a remote server. The use of the FOR
UPDATE clause helps the database manager decide whether a cursor is updatable
or not. Updatability is also used to determine the access path selection as well. If a
cursor is not going to be used in a Positioned UPDATE or DELETE statement, it
should be declared as FOR READ ONLY.

¹ A cursor in the open state designates a result table and a position relative to the
rows of that table. The table is the result table specified by the SELECT statement
of the cursor.

¹ A cursor is deletable if all of the following are true:

– each FROM clause of the outer fullselect identifies only one base table or
deletable view (cannot identify a nested or common table expression)

– the outer fullselect does not include a VALUES clause

– the outer fullselect does not include a GROUP BY clause or HAVING clause

– the outer fullselect does not include column functions in the select list

– the outer fullselect does not include SET operations (UNION, EXCEPT, or
INTERSECT, with or without the ALL option)

– the select list of the outer fullselect does not include DISTINCT

– the select-statement does not include an ORDER BY clause

– the select-statement does not include a FOR READ ONLY clause 61

– one or more of the following is true:

- the FOR UPDATE clause 60 is specified
- the cursor is statically defined
- the LANGLEVEL bind option is MIA or SQL92E

A column in the select list of the outer fullselect associated with a cursor is
updatable if all of the following are true:

60 The FOR UPDATE clause is defined in the “update-clause” on page 330.

61 The FOR READ ONLY clause is defined in the “read-only-clause” on page 331.

 Chapter 6. Statements 527

DECLARE CURSOR

– the cursor is deletable

– the column resolves to a column of the base table

– the LANGLEVEL bind option is MIA, SQL92E or the select-statement includes
the FOR UPDATE clause 60 (the column must be specified explicitly or implic-
itly in the FOR UPDATE clause).

A cursor is read-only if it is not deletable.

A cursor is ambiguous if all of the following are true:

– the select-statement is dynamically prepared
– the select-statement does not include either the FOR READ ONLY clause 61 or

the FOR UPDATE clause 60

– the LANGLEVEL bind option is SAA1
– the cursor otherwise satisfies the conditions of a deletable cursor.

An ambiguous cursor is considered read-only if the BLOCKING bind option is ALL,
otherwise it is considered deletable.

¹ Cursors in stored procedures that are called by application programs written using
CLI can be used to define result sets that are returned directly to the client applica-
tion. See the “Notes” on page 371.

 Example
The DECLARE CURSOR statement associates the cursor name C1 with the results of
the SELECT.

EXEC SQL DECLARE C1 CURSOR FOR

SELECT DEPTNO, DEPTNAME, MGRNO

 FROM DEPARTMENT

WHERE ADMRDEPT = 'A00';

528 SQL Reference

DELETE

 DELETE
The DELETE statement deletes rows from a table or view. Deleting a row from a view
deletes the row from the table on which the view is based.

There are two forms of this statement:

¹ The Searched DELETE form is used to delete one or more rows (optionally deter-
mined by a search condition).

¹ The Positioned DELETE form is used to delete exactly one row (as determined by
the current position of a cursor).

 Invocation
A DELETE statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be dynam-
ically prepared.

 Authorization
To execute either form of this statement, the privileges held by the authorization ID of
the statement must include at least one of the following:

¹ DELETE privilege on the table or view for which rows are to be deleted
¹ CONTROL privilege on the table or view for which rows are to be deleted
¹ SYSADM or DBADM authority.

To execute a Searched DELETE statement, the privileges held by the authorization ID
of the statement must also include at least one of the following for each table or view
referenced by a subquery:

 ¹ SELECT privilege
 ¹ CONTROL privilege
¹ SYSADM or DBADM authority.

When the package is precompiled with SQL92 rules62 and the searched form of a
DELETE includes a reference to a column of the table or view in the search-condition,
the privileges held by the authorization ID of the statement must also include at least
one of the following:

 ¹ SELECT privilege
 ¹ CONTROL privilege
¹ SYSADM or DBADM authority.

Group privileges are not checked for static DELETE statements.

62 The package used to process the statement is precompiled using option LANGLEVEL with value SQL92E or MIA.

 Chapter 6. Statements 529

DELETE

 Syntax

Searched DELETE:

55─ ─DELETE FROM─ ──┬ ┬─table-name─ ──┬ ┬────────────────────────── ────────────5
 └ ┘─view-name── │ │┌ ┐─AS─
 └ ┘ ──┴ ┴──── ─correlation-name─

5─ ──┬ ┬───────────────────────── ──5%
 └ ┘ ─WHERE──search-condition─

Positioned DELETE:

55─ ─DELETE FROM─ ──┬ ┬─table-name─ ─WHERE CURRENT OF──cursor-name───────────5%
 └ ┘─view-name──

 Description
FROM table-name or view-name

Identifies the table or view from which rows are to be deleted. The name must
identify a table or view that exists in the catalog, but it must not identify a catalog
table, a catalog view, or a read-only view. (For an explanation of read-only views,
see “CREATE VIEW” on page 517.)

correlation-name
May be used within the search-condition to designate the table or view. (For an
explanation of correlation-name, see Chapter 3, “Language Elements” on
page 43.)

WHERE
Specifies a condition that selects the rows to be deleted. The clause can be
omitted, a search condition specified, or a cursor named. If the clause is omitted,
all rows of the table or view are deleted.

search-condition
Is any search condition as described in “Search Conditions” on page 140.
Each column-name in the search condition, other than in a subquery must
identify a column of the table or view.

The search-condition is applied to each row of the table or view and the
deleted rows are those for which the result of the search-condition is true.

If the search condition contains a subquery, the subquery can be thought of as
being executed each time the search condition is applied to a row, and the
results used in applying the search condition. In actuality, a subquery with no
correlated references is executed once, whereas a subquery with a correlated
reference may have to be executed once for each row. If a subquery refers to
the object table of a DELETE statement or a dependent table with a delete
rule of CASCADE or SET NULL, the subquery is completely evaluated before
any rows are deleted.

530 SQL Reference

DELETE

CURRENT OF cursor-name
Identifies a cursor that is defined in a DECLARE CURSOR statement of the
program. The DECLARE CURSOR statement must precede the DELETE
statement.

The table or view named must also be named in the FROM clause of the
SELECT statement of the cursor, and the result table of the cursor must not
be read-only. (For an explanation of read-only result tables, see “DECLARE
CURSOR” on page 525.)

When the DELETE statement is executed, the cursor must be positioned on a
row: that row is the one deleted. After the deletion, the cursor is positioned
before the next row of its result table. If there is no next row, the cursor is
positioned after the last row.

 Rules
¹ If the identified table or the base table of the identified view is a parent, the rows

selected for delete must not have any dependents in a relationship with a delete
rule of RESTRICT, and the DELETE must not cascade to descendent rows that
have dependents in a relationship with a delete rule of RESTRICT.

If the delete operation is not prevented by a RESTRICT delete rule, the selected
rows are deleted. Any rows that are dependents of the selected rows are also
affected:

– The nullable columns of the foreign keys of any rows that are their dependents
in a relationship with a delete rule of SET NULL are set to the null value.

– Any rows that are their dependents in a relationship with a delete rule of
CASCADE are also deleted, and the above rules apply, in turn, to those rows.

The delete rule of NO ACTION is checked to enforce that any non-null foreign key
refers to an existing parent row after the other referential constraints have been
enforced.

 Notes
¹ If an error occurs during the execution of a multiple row DELETE, no changes are

made to the database.

¹ Unless appropriate locks already exist, one or more exclusive locks are acquired
during the execution of a successful DELETE statement. Issuing a COMMIT or
ROLLBACK statement will release the locks. Until the locks are released by a
commit or rollback operation, the effect of the delete operation can only be per-
ceived by:

– The application process that performed the deletion
– Another application process using isolation level UR.

 The locks can prevent other application processes from performing operations on
the table.

¹ If an application process deletes a row on which any of its cursors are positioned,
those cursors are positioned before the next row of their result table. Let C be a

 Chapter 6. Statements 531

DELETE

cursor that is positioned before row R (as a result of an OPEN, a DELETE through
C, a DELETE through some other cursor, or a searched DELETE). In the presence
of INSERT, UPDATE, and DELETE operations that affect the base table from
which R is derived, the next FETCH operation referencing C does not necessarily
position C on R. For example, the operation can position C on R', where R' is a
new row that is now the next row of the result table.

¹ SQLERRD(3) in the SQLCA shows the number of rows deleted from the object
table after the statement executes. It does not include rows that were deleted as a
result of a CASCADE delete rule. SQLERRD(5) in the SQLCA shows the number
of rows affected by referential constraints and by triggered statements. It includes
rows that were deleted as a result of a CASCADE delete rule and rows in which
foreign keys were set to NULL as the result of a SET NULL delete rule. With
regards to triggered statements, it includes the number of rows that were inserted,
updated, or deleted. (For a description of the SQLCA, see Appendix B, “SQL Com-
munication Area (SQLCA)” on page 679.)

¹ If an error occurs that prevents deleting all rows matching the search condition and
all operations required by existing referential constraints, no changes are made to
the table and the error is returned.

 Examples
Example 1: Delete department (DEPTNO) ‘D11’ from the DEPARTMENT table.

DELETE FROM DEPARTMENT

WHERE DEPTNO = 'D11'

Example 2: Delete all the departments from the DEPARTMENT table (that is, empty
the table).

DELETE FROM DEPARTMENT

532 SQL Reference

DESCRIBE

 DESCRIBE
The DESCRIBE statement obtains information about a prepared statement. For an
explanation of prepared statements, see “PREPARE” on page 601.

 Invocation
This statement can be embedded only in an application program. It is an executable
statement that cannot be dynamically prepared.

 Authorization
None required.

 Syntax

55──DESCRIBE──statement-name──INTO──descriptor-name──────────────────────────────────────5%

 Description
statement-name

Identifies the statement about which information is required. When the DESCRIBE
statement is executed, the name must identify a prepared statement.

INTO descriptor-name
Identifies an SQL descriptor area (SQLDA), which is described in Appendix C,
“SQL Descriptor Area (SQLDA)” on page 683. Before the DESCRIBE statement is
executed, the following variables in the SQLDA must be set:

SQLN Indicates the number of variables represented by SQLVAR. (SQLN
provides the dimension of the SQLVAR array.) SQLN must be set to
a value greater than or equal to zero before the DESCRIBE state-
ment is executed.

When the DESCRIBE statement is executed, the database manager assigns values to
the variables of the SQLDA as follows:

SQLDAID The first 6 bytes are set to 'SQLDA ' (that is, 5 letters followed by the
space character).

The seventh byte, called SQLDOUBLED, is set to '2' if the SQLDA con-
tains two SQLVAR entries for every select-list item (or, column of the
result table). This technique is used in order to accommodate LOB
and/or distinct type result columns. Otherwise, SQLDOUBLED is set to
the space character.

The doubled flag is set to space if there is not enough room in the
SQLDA to contain the entire DESCRIBE reply.

The eighth byte is set to the space character.

 Chapter 6. Statements 533

DESCRIBE

SQLDABC Length of the SQLDA.

SQLD If the prepared statement is a SELECT, the number of columns in its
result table; otherwise, 0.

SQLVAR If the value of SQLD is 0, or greater than the value of SQLN, no values
are assigned to occurrences of SQLVAR.

If the value is n, where n is greater than 0 but less than or equal to the
value of SQLN, values are assigned to the first n occurrences of
SQLVAR so that the first occurrence of SQLVAR contains a description
of the first column of the result table, the second occurrence of SQLVAR
contains a description of the second column of the result table, and so
on. The description of a column consists of the values assigned to
SQLTYPE, SQLLEN, SQLNAME, SQLLONGLEN, and
SQLDATATYPE_NAME.

Basic SQLVAR

SQLTYPE A code showing the data type of the column and whether
or not it can contain null values.

SQLLEN A length value depending on the data type of the result
columns. SQLLEN is 0 for LOB data types.

SQLNAME If the derived column is not a simple column reference,
then sqlname contains an ASCII numeric literal value,
which represents the derived column's original position
within the select list; otherwise, sqlname contains the
name of the column.

Secondary SQLVAR

These variables are only used if the number of SQLVAR entries are
doubled to accommodate LOB or distinct type columns.

SQLLONGLEN
The length attribute of a BLOB, CLOB, or DBCLOB
column.

SQLDATATYPE_NAME
For a distinct type column, the database manager sets
this to the fully qualified distinct type name. Otherwise,
schema name is SYSIBM and the low order portion of the
name is the name in the TYPENAME column of the
SYSCAT.DATATYPES catalog view.

 Notes
¹ Before the DESCRIBE statement is executed, the value of SQLN must be set to

indicate how many occurrences of SQLVAR are provided in the SQLDA and
enough storage must be allocated to contain SQLN occurrences. To obtain the
description of the columns of the result table of a prepared SELECT statement, the
number of occurrences of SQLVAR must not be less than the number of columns.

534 SQL Reference

DESCRIBE

¹ If a large object is expected, that is, a LOB value greater than 1 megabyte, then
remember that manipulating this large object will affect application memory. Given
this condition, consider using locators or file reference variables. Modify the
SQLDA after the DESCRIBE statement is executed but prior to allocating storage
so that an SQLTYPE of SQL_TYP_xLOB is changed to
SQL_TYP_xLOB_LOCATOR or SQL_TYP_xLOB_FILE with corresponding
changes to other fields such as SQLLEN. Then allocate storage based on
SQLTYPE and continue.

See the Embedded SQL Programming Guide for more information on using loca-
tors and file reference variables with the SQLDA.

¹ Code page conversions between extended Unix code (EUC) code pages and
DBCS code pages can result in the expansion and contraction of character lengths.
See the Embedded SQL Programming Guide for information on handling such situ-
ations.

¹ Allocating the SQLDA: Among the possible ways to allocate the SQLDA are the
three described below.

First Technique: Allocate an SQLDA with enough occurrences of SQLVAR to
accommodate any select list that the application will have to process. If the table
contains any LOB or distinct type columns, the number of SQLVARs should be
double the maximum number of columns; otherwise the number should be the
same as the maximum number of columns. Having done the allocation, the appli-
cation can use this SQLDA repeatedly.

This technique uses a large amount of storage that is never deallocated, even
when most of this storage is not used for a particular select list.

Second Technique: Repeat the following two steps for every processed select list:

1. Execute a DESCRIBE statement with an SQLDA that has no occurrences of
SQLVAR; that is, an SQLDA for which SQLN is zero. The value returned for
SQLD is the number of columns in the result table. This is either the required
number of occurrences of SQLVAR or half the required number. Because
there were no SQLVAR entries, a warning with SQLSTATE 01005 will be
issued. If the SQLCODE accompanying that warning is equal to one of +237,
+238 or +239, the number of SQLVAR entries should be double the value
returned in SQLD.63

2. Allocate an SQLDA with enough occurrences of SQLVAR. Then execute the
DESCRIBE statement again, using this new SQLDA.

This technique allows better storage management than the first technique, but it
doubles the number of DESCRIBE statements.

Third Technique: Allocate an SQLDA that is large enough to handle most, and
perhaps all, select lists but is also reasonably small. Execute DESCRIBE and

63 The return of these positive SQLCODES assumes that the SQLWARN bind option setting was YES (return positive SQLCODEs). If
SQLWARN was set to NO, +238 is still returned to indicate that the number of SQLVAR entries must be double the value returned
in SQLD.

 Chapter 6. Statements 535

DESCRIBE

check the SQLD value. Use the SQLD value for the number of occurrences of
SQLVAR to allocate a larger SQLDA, if necessary.

This technique is a compromise between the first two techniques. Its effectiveness
depends on a good choice of size for the original SQLDA.

 Example
In a C program, execute a DESCRIBE statement with an SQLDA that has no occur-
rences of SQLVAR. If SQLD is greater than zero, use the value to allocate an SQLDA
with the necessary number of occurrences of SQLVAR and then execute a DESCRIBE
statement using that SQLDA.

EXEC SQL BEGIN DECLARE SECTION;

 char stmt1_str[200];

EXEC SQL END DECLARE SECTION;

 EXEC SQL INCLUDE SQLDA;

EXEC SQL DECLARE DYN_CURSOR CURSOR FOR STMT1_NAME;

... /* code to prompt user for a query, then to generate */

/* a select-statement in the stmt1_str */

EXEC SQL PREPARE STMT1_NAME FROM :stmt1_str;

... /* code to set SQLN to zero and to allocate the SQLDA */

EXEC SQL DESCRIBE STMT1_NAME INTO :sqlda;

... /* code to check that SQLD is greater than zero, to set */

/* SQLN to SQLD, then to re-allocate the SQLDA */

EXEC SQL DESCRIBE STMT1_NAME INTO :sqlda;

... /* code to prepare for the use of the SQLDA */

/* and allocate buffers to receive the data */

 EXEC SQL OPEN DYN_CURSOR;

... /* loop to fetch rows from result table */

EXEC SQL FETCH DYN_CURSOR USING DESCRIPTOR :sqlda;

 .

 .

 .

536 SQL Reference

DISCONNECT

 DISCONNECT
The DISCONNECT statement destroys one or more connections when there is no
active unit of work (that is, after a commit or rollback operation).64

 Invocation
Although an interactive SQL facility might provide an interface that gives the appear-
ance of interactive execution, this statement can only be embedded within an applica-
tion program. It is an executable statement that cannot be dynamically prepared.

 Authorization
None Required.

 Syntax

55─ ─DISCONNECT─ ──┬ ┬─server-name───(1) ───5%
 ├ ┤─host-variable─
 ├ ┤─CURRENT───────
 │ │┌ ┐─SQL─
 └ ┘──ALL ──┴ ┴───── ─

Note:
1 Note that an application server named CURRENT or ALL can only be identified by a host variable.

 Description
server-name or host-variable

Identifies the application server by the specified server-name or a host-variable
which contains the server-name.

If a host-variable is specified, it must be a character string variable with a length
attribute that is not greater than 8, and it must not include an indicator variable.
The server-name that is contained within the host-variable must be left-justified and
must not be delimited by quotation marks.

Note that the server-name is a database alias identifying the application server. It
must be listed in the application requester's local directory.

The specified database-alias or the database-alias contained in the host variable
must identify an existing connection of the application process. If the database-
alias does not identify an existing connection, an error (SQLSTATE 08003) is
raised.

64 If a single connection is the target of the DISCONNECT statement, then the connection is destroyed only if the database has partic-
ipated in any existing unit of work, not whether there is an active unit of work. For example, if several other databases have done
work but the target in question has not, it can still be disconnected without destroying the connection.

 Chapter 6. Statements 537

DISCONNECT

CURRENT
Identifies the current connection of the application process. The application process
must be in the connected state. If not, an error (SQLSTATE 08003) is raised.

ALL
Indicates that all existing connections of the application process are to be
destroyed. An error or warning does not occur if no connections exist when the
statement is executed. The optional keyword SQL is included to be consistent with
the syntax of the RELEASE statement.

 Rules
¹ Generally, the DISCONNECT statement cannot be executed while within a unit of

work. If attempted, an error (SQLSTATE 25000) is raised. The exception to this
rule is if a single connection is specified to be disconnected and the database has
not participated in an existing unit of work. In this case, it does not matter if there is
an active unit of work when the DISCONNECT statement is issued.

¹ The DISCONNECT statement cannot be executed at all in the Transaction Proc-
essing (TP) Monitor environment (SQLSTATE 25000). It is used when the
SYNCPOINT precompiler option is set to TWOPHASE.

 Notes
¹ If the DISCONNECT statement is successful, each identified connection is

destroyed.

If the DISCONNECT statement is unsuccessful, the connection state of the applica-
tion process and the states of its connections are unchanged.

¹ If DISCONNECT is used to destroy the current connection, the next executed SQL
statement should be CONNECT or SET CONNECTION.

¹ Type 1 CONNECT semantics do not preclude the use of DISCONNECT. However,
though DISCONNECT CURRENT and DISCONNECT ALL can be used, they will
not result in a commit operation like a CONNECT RESET statement would do.

If server-name or host-variable is specified in the DISCONNECT statement, it must
identify the current connection because Type 1 CONNECT only supports one con-
nection at a time. Generally, DISCONNECT will fail if within a unit of work with the
exception noted in “Rules”.

¹ Resources are required to create and maintain remote connections. Thus, a remote
connection that is not going to be reused should be destroyed as soon as possible.

¹ Connections can also be destroyed during a commit operation because the con-
nection option is in effect. The connection option could be AUTOMATIC, CONDI-
TIONAL, or EXPLICIT, which can be set as a precompiler option or through the
SET CLIENT API at run time. See “Options that Govern Distributed Unit of Work
Semantics” on page 32 for information about the specification of the DISCON-
NECT option.

538 SQL Reference

DISCONNECT

 Examples
Example 1: The SQL connection to IBMSTHDB is no longer needed by the applica-
tion. The following statement should be executed after a commit or rollback operation to
destroy the connection.

EXEC SQL DISCONNECT IBMSTHDB;

Example 2: The current connection is no longer needed by the application. The fol-
lowing statement should be executed after a commit or rollback operation to destroy the
connection.

EXEC SQL DISCONNECT CURRENT;

Example 3: The existing connections are no longer needed by the application. The
following statement should be executed after a commit or rollback operation to destroy
all the connections.

EXEC SQL DISCONNECT ALL;

 Chapter 6. Statements 539

DROP

 DROP
The DROP statement deletes an object. Any objects that are directly or indirectly
dependent on that object are either deleted or made inoperative. (See Inoperative
Trigger on page 513 and Inoperative views on page 521 for details.) Whenever an
object is deleted, its description is deleted from the catalog and any packages that ref-
erence the object are invalidated.

 Invocation
This statement can be embedded in an application program or issued through the use
of dynamic SQL statements. It is an executable statement that can be dynamically pre-
pared.

 Authorization
The privileges that must be held by the authorization ID of the DROP statement when
dropping objects that allow two-part names must include one of the following:

¹ SYSADM or DBADM authority
¹ DROPIN privilege on the schema for the object
¹ definer of the object as recorded in the DEFINER column of the catalog view for

the object
¹ CONTROL privilege on the object (applicable to index, package, table and view

objects only).

The authorization ID of the DROP statement when dropping a schema must have
SYSADM or DBADM authority or be the schema owner as recorded in the OWNER
column of SYSCAT.SCHEMATA.

The authorization ID of the DROP statement when dropping a buffer pool, nodegroup,
or table space must have SYSADM or SYSCTRL authority.

The authorization ID of the DROP statement when dropping an event monitor must
have SYSADM or DBADM authority

 Syntax

540 SQL Reference

DROP

55─ ─DROP─ ──┬ ┬ ─ALIAS───(1) ─alias-name──────────────────────────────────── ────────────────────5%
 ├ ┤─BUFFERPOOL──bufferpool-name────────────────────────────
 ├ ┤─DISTINCT───(2) ─TYPE──distinct-type-name───────────────────
 ├ ┤─EVENT──MONITOR──event-monitor-name─────────────────────
 ├ ┤ ─FUNCTION──function-name─ ──┬ ┬───────────────────────── ──
 │ │└ ┘ ─(─ ──┬ ┬─────────────── ─)─
 │ ││ │┌ ┐─,─────────
 │ │└ ┘ ───6 ┴─data-type─
 ├ ┤─SPECIFIC FUNCTION──specific-name───────────────────────
 ├ ┤─INDEX──index-name──────────────────────────────────────
 ├ ┤─NODEGROUP──nodegroup-name──────────────────────────────
 ├ ┤ ─PACKAGE───(3) ─package-name────────────────────────────────
 ├ ┤ ─PROCEDURE──procedure-name─ ──┬ ┬─────────────────────────
 │ │└ ┘ ─(─ ──┬ ┬─────────────── ─)─
 │ ││ │┌ ┐─,─────────
 │ │└ ┘ ───6 ┴─data-type─
 ├ ┤─SPECIFIC PROCEDURE──specific-name──────────────────────
 ├ ┤─SCHEMA──schema-name──RESTRICT──────────────────────────
 ├ ┤─TABLE──table-name──────────────────────────────────────
 ├ ┤─TABLESPACE──tablespace-name────────────────────────────
 ├ ┤─TRIGGER──trigger-name──────────────────────────────────
 └ ┘─VIEW──view-name──

Notes:
1 SYNONYM can be used as a synonym for ALIAS.
2 DATA can be used as a synonym for DISTINCT.
3 PROGRAM can be used as a synonym for PACKAGE.

 Description
ALIAS alias-name

Identifies the alias that is to be dropped. The alias-name must identify an alias that
is described in the catalog (SQLSTATE 42704). If an unqualified name is specified,
the current authorization ID of the statement is used as the qualifier. The specified
alias is deleted.

All tables, views and triggers65 that reference the alias are made inoperative.

BUFFERPOOL bufferpool-name
Identifies the buffer pool that is to be dropped. The bufferpool-name must identify a
buffer pool that is described in the catalog (SQLSTATE 42704). There can be no
table spaces assigned to the buffer pool (SQLSTATE 42893) . The
IBMDEFAULTBP buffer pool cannot be dropped (SQLSTATE 42832). The storage
for the buffer pool will not be released until the database is stopped.

65 This includes both the table referenced in the ON clause of the CREATE TRIGGER statement and all tables referenced within the
triggered SQL statements.

 Chapter 6. Statements 541

DROP

DISTINCT TYPE distinct-type-name
Identifies the distinct type to be dropped. The distinct-type-name must identify a
distinct type described in the catalog. If the distinct-type-name is not qualified, the
authorization ID of the statement is used as the qualifier. The distinct type is not
dropped (SQLSTATE 42893) if:

¹ It is used in the definition of columns of tables
¹ It is a parameter type or a return value type of a function that cannot be

dropped.

If the distinct type can be dropped, then for every function, F, that has parameters
or a return value of the type being dropped, the following DROP FUNCTION state-
ment is effectively executed:

DROP FUNCTION F

It is possible that this statement also would cascade to drop dependent functions. If
all of these functions are also in the list to be dropped because of a dependency
on the distinct type, the drop of the distinct type will succeed (otherwise it fails with
SQLSTATE 42855).

EVENT MONITOR event-monitor-name
Identifies the event monitor that is to be dropped. The event-monitor-name must
identify an event monitor that is described in the catalog (SQLSTATE 42704).

If the identified event monitor is ON, an error (SQLSTATE 55034) is raised. Other-
wise, the event monitor is deleted.

If there are event files in the target path of the event monitor when the event
monitor is dropped, the event files are not deleted. However, if a new event
monitor is created which specifies the same target path, then the event files are
deleted.

FUNCTION
Identifies an instance of a user-defined function that is to be dropped. The function
instance specified must be a user-defined function described in the catalog. Func-
tions implicitly generated by the CREATE DISTINCT TYPE statement cannot be
dropped.

There are several different ways available to identify the function instance:

FUNCTION function-name
Identifies the particular function, and is valid only if there is exactly one func-
tion instance with the function-name. The function thus identified may have
any number of parameters defined for it. If an unqualified name is provided,
the current authorization ID of the statement is used as the qualifier. If no func-
tion by this name exists in the named or implied schema, an error (SQLSTATE
42704) is raised. If there is more than one specific instance of the function in
the named or implied schema, an error (SQLSTATE 42854) is raised.

FUNCTION function-name (data-type,...)
Provides the function signature, which uniquely identifies the function to be
dropped. The function selection algorithm is not used.

542 SQL Reference

DROP

function-name
Gives the function name of the function to be dropped. If an unqualified
name is specified, the current authorization ID of the statement is used as
the qualifier.

(data-type,...)
Must match the data types that were specified on the CREATE FUNC-
TION statement in the corresponding position. The number of data types,
and the logical concatenation of the data types is used to identify the spe-
cific function instance which is to be dropped.

It is not necessary to specify the length, precision or scale for the
parameterized data types. Instead, an empty set of parentheses may be
coded to indicate that these attributes are to be ignored when looking for
a data type match.

However, if length, precision, or scale is coded, the value must exactly
match that specified in the CREATE FUNCTION statement.

If no function with the specified signature exists in named or implied schema,
an error (SQLSTATE 42883) is raised.

SPECIFIC FUNCTION specific-name
Identifies the particular user-defined function that is to be dropped, using the
specific name either specified or defaulted to at function creation time. If an
unqualified name is specified, the current authorization ID of the statement is
used as the qualifier. The specific-name must identify a specific function
instance in the named or implied schema; otherwise, an error (SQLSTATE
42704) is raised.

It is not possible to drop a function that is in either the SYSIBM schema or the
SYSFUN schema (SQLSTATE 42832).

Other objects can be dependent upon a function. All such dependencies must be
removed before the function can be dropped, with the exception of packages which
are marked inoperative. An attempt to drop a function with such dependencies will
result in an error (SQLSTATE 42893). See page 546 for a list of these dependen-
cies.

If the function can be dropped, it is dropped.

Any package dependent on the specific function being dropped is marked as inop-
erative. Such a package is not implicitly rebound. It must either be rebound by use
of the BIND or REBIND command or it must be reprepared by use of the PREP
command. See the Command Reference for information on these commands.

INDEX index-name
Identifies the index that is to be dropped. The index-name must identify an index
that is described in the catalog (SQLSTATE 42704). It cannot be an index required
by the system for a primary key or unique constraint (SQLSTATE 42917). If an
unqualified name is specified, the current authorization ID of the statement is used
as the qualifier. The specified index is deleted.

Packages having a dependency on a dropped index will be invalidated.

 Chapter 6. Statements 543

DROP

NODEGROUP nodegroup-name
Identifies the nodegroup that is to be dropped. nodegroup-name must identify a
nodegroup that is described in the catalog (SQLSTATE 42704). This is a one-part
name.

Dropping a nodegroup drops all table spaces defined in the nodegroup. All existing
database objects with dependencies on the tables in the table spaces (such as
packages, referential constraints, etc.) are dropped or invalidated (as appropriate),
and dependent views and triggers are made inoperative.

System defined nodegroups cannot be dropped (SQLSTATE 42832).

If a DROP NODEGROUP is issued against a nodegroup that is currently under-
going a data redistribution, the DROP NODEGROUP operation fails an error is
returned (SQLSTATE 55038) . However, a partially redistributed nodegroup can be
dropped. A nodegroup can become partially redistributed if a REDISTRIBUTE
NODEGROUP command does not execute to completion. This can happen if it
gets interrupted by either an error or a force application all command66.

PACKAGE package-name
Identifies the package that is to be dropped. The package-name must identify a
package that is described in the catalog (SQLSTATE 42704). If an unqualified
name is specified, the current authorization ID of the statement is used as the qual-
ifier. The specified package is deleted. All privileges on the package are also
deleted.

PROCEDURE
Identifies an instance of a stored procedure that is to be dropped. The procedure
instance specified must be a stored procedure described in the catalog.

There are several different ways available to identify the procedure instance:

PROCEDURE procedure-name
Identifies the particular procedure, and is valid only if there is exactly one pro-
cedure instance with the procedure-name in the schema . The procedure thus
identified may have any number of parameters defined for it. If an unqualified
name is provided, the current authorization ID of the statement is used as the
qualifier. If no procedure by this name exists in the named or implied schema,
an error (SQLSTATE 42704) is raised. If there is more than one specific
instance of the procedure in the named or implied schema, an error
(SQLSTATE 42854) is raised.

PROCEDURE procedure-name (data-type,...)
Provides the procedure signature, which uniquely identifies the procedure to
be dropped. The procedure selection algorithm is not used.

66 For a partially redistributed nodegroup, the REBALANCE_PMAP_ID in the SYSCAT.NODEGROUPS catalog is not −1.

544 SQL Reference

DROP

procedure-name
Gives the procedure name of the procedure to be dropped. If an unquali-
fied name is specified, the current authorization ID of the statement is
used as the qualifier.

(data-type,...)
Must match the data types that were specified on the CREATE PROCE-
DURE statement in the corresponding position. The number of data types,
and the logical concatenation of the data types is used to identify the spe-
cific procedure instance which is to be dropped.

It is not necessary to specify the length, precision or scale for the
parameterized data types. Instead, an empty set of parentheses may be
coded to indicate that these attributes are to be ignored when looking for
a data type match.

However, if length, precision, or scale is coded, the value must exactly
match that specified in the CREATE FUNCTION statement.

If no procedure with the specified signature exists in named or implied
schema, an error (SQLSTATE 42883) is raised.

SPECIFIC PROCEDURE specific-name
Identifies the particular stored procedure that is to be dropped, using the spe-
cific name either specified or defaulted to at procedure creation time. If an
unqualified name is specified, the current authorization ID of the statement is
used as the qualifier. The specific-name must identify a specific procedure
instance in the named or implied schema; otherwise, an error (SQLSTATE
42704) is raised.

SCHEMA schema-name RESTRICT
Identifies the schema that is to be dropped. The schema-name must identify a
schema that is described in the catalog (SQLSTATE 42704). The RESTRICT
keyword enforces the rule that no objects can be defined in the specified schema
for the schema to be deleted from the database (SQLSTATE 42893) .

TABLE table-name
Identifies the base table that is to be dropped. The table-name must identify a table
that is described in the catalog (SQLSTATE 42704). If an unqualified name is
specified, the current authorization ID of the statement is used as the qualifier. The
specified table is deleted from the database.

All indexes, primary keys, foreign keys, and check constraints referencing the table
are dropped. All views and triggers67 that reference the table are made inoperative.
All packages depending on any object dropped or marked inoperative will be invali-
dated.

67 This includes both the table referenced in the ON clause of the CREATE TRIGGER statement and all tables referenced within the
triggered SQL statements.

 Chapter 6. Statements 545

DROP

TABLESPACE tablespace-name
Identifies the table space that is to be dropped. tablespace-name must identify a
table space that is described in the catalog (SQLSTATE 42704). This is a one-part
name.

The table space will not be dropped (SQLSTATE 55024) if there is any table that
stores at least one of its parts in this table space and has one or more of its parts
in another table space (these tables would need to be dropped first). System table
spaces cannot be dropped (SQLSTATE 42832). A temporary table space can not
be dropped (SQLSTATE 55026) if it is the only temporary table space that exists in
the database.

Dropping a table space drops all objects defined in the table space. All existing
database objects with dependencies on the table space, such as packages, refer-
ential constraints, etc. are dropped or invalidated (as appropriate), and dependent
views and triggers are made inoperative.

Containers created by the user are not deleted. Any directories in the path of the
container name that were created by the database manager on CREATE
TABLESPACE will be deleted. All containers that are below the database directory
are deleted.

TRIGGER trigger-name
Identifies the trigger that is to be dropped. The trigger-name must identify a trigger
that is described in the catalog (SQLSTATE 42704). If an unqualified name is
specified, the current authorization ID of the statement is used as the qualifier. The
specified trigger is deleted.

Dropping triggers causes certain packages to be marked invalid. See the “Notes”
section in “CREATE TRIGGER” on page 508 concerning the creation of triggers
(which follows the same rules).

VIEW view-name
Identifies the view that is to be dropped. The view-name must identify a view that is
described in the catalog (SQLSTATE 42704). If an unqualified name is specified,
the current authorization ID of the statement is used as the qualifier. The specified
view is deleted. The definition of any view or trigger that is directly or indirectly
dependent on that view is marked inoperative. Any packages dependent on a view
that is dropped or marked inoperative will be invalidated.

 Rules
¹ Dependencies: Table 18 on page 548 shows the dependencies68 that objects

have on each other. Four different types of dependencies are shown:

R Restrict semantics. The underlying object cannot be dropped as long as the
object that depends on it exists.

68 Not all dependencies are explicitly recorded in the catalog. For example, there is no record of which constraints a package has a
dependency on.

546 SQL Reference

DROP

C Cascade semantics. Dropping the underlying object causes the object that
depends on it (the depending object) to be dropped as well. However, if the
depending object cannot be dropped because it has a Restrict dependency
on some other object, the drop of the underlying object will fail.

X Inoperative semantics. Dropping the underlying object causes the object
that depends on it to become inoperative. It remains inoperative until a user
takes some explicit action.

A Automatic Invalidation/Revalidation semantics. Dropping the underlying
object causes the object that depends on it to become invalid. The data-
base manager attempts to revalidate the invalid object.

 Chapter 6. Statements 547

DROP

Table 18. Dependencies

Object Type →

Statement ↓

A
L
I
A
S

B
U
F
F
E
R
P
O
O
L

C
O
N
S
T
R
A
I
N
T

D
I
S
T
I
N
C
T

T
Y
P
E

F
U
N
C
T
I
O
N

I
N
D
E
X

P
A
C
K
A
G
E

P
A
R
T
I
T
I
O
N
I
N
G

K
E
Y

P
R
I
V
I
L
E
G
E

P
R
O
C
E
D
U
R
E

N
O
D
E
G
R
O
U
P

T
A
B
L
E

T
A
B
L
E
S
P
A
C
E

T
R
I
G
G
E
R

V
l
E
W

DROP ALIAS - - - - - - A3 - - - - - - X3 X3

DROP BUFFERPOOL - - - - - - - - - - - - R - -

ALTER TABLE DROP
CONSTRAINT

- - C - - - A1 - - - - - - - -

DROP DISTINCT TYPE4 - - - - C5 - - - - - - R - - -

DROP FUNCTION - - R - R7 - X - - - - - - R R

DROP INDEX - - R - - - A - - - - - - - -

DROP PACKAGE - - - - - - - - - - - - - - -

ALTER TABLE DROP
PARTITIONING KEY

- - - - - - A1 - - - - - - - -

REVOKE a privilege10 - - - - - - A1 - - - - - - X X8

DROP PROCEDURE - - - - - - - - - - - - - - -

DROP NODEGROUP - - - - - - - - - - - - C - -

DROP TABLE - - C - - C A9 - - - - - - X X

DROP TABLESPACE - - - - - C6 - - - - - CR6 - - -

DROP TRIGGER - - - - - - A1 - - - - - - - -

DROP VIEW - - - - - - A2 - - - - - - X X

1 This dependency is implicit in depending on a table with these constraints, trig-
gers or a partitioning key.

2 If a package has an INSERT, UPDATE, or DELETE statement acting upon a
view, then the package has an insert, update or delete usage on the underlying
base table of the view. In the case of UPDATE, the package has an update
usage on each column of the underlying base table that is modified by the
UPDATE.

548 SQL Reference

DROP

3 If a package, view, or trigger uses an alias, it becomes dependent both on the
alias and the object that the alias references. If the alias is in a chain, then a
dependency is created on each alias in the chain.

Aliases themselves are not dependent on anything. It is possible for an alias to
be defined on an object that does not exist.

4 Data types are not dependent on anything. A distinct type can have a source
type, but the source type must be a built-in type and built-in data types cannot
be dropped.

5 Dropping a data type cascades to drop the functions that use that data type.
Dropping of these functions will not be prevented by the fact that they depend
on each other.

6 Dropping a table space causes all tables that are completely contained in the
table space to be dropped. However, if a table spans table spaces (indexes or
long columns in different table spaces) none of those table spaces can be
dropped as long as the table exists.

7 A function can depend on another specific function if the depending function
names the base function in a SOURCE clause.

8 Only loss of SELECT privilege will cause a view to become inoperative.

9 If a package has an INSERT, UPDATE, or DELETE statement acting on table
T, then the package has an insert, update or delete usage on T. In the case of
UPDATE, the package has an update usage on each column of T that is modi-
fied by the UPDATE.

10 Dependencies do not exist at the column level because privileges on columns
cannot be revoked individually.

 Notes
¹ It is valid to drop a user-defined function while it is in use. Also, a cursor can be

open over a statement which contains a reference to a user-defined function, and
while this cursor is open the function can be dropped without causing the cursor
fetches to fail.

¹ If a package which depends on a user-defined function is executing, it is not pos-
sible for another authorization ID to drop the function until the package completes
its current unit of work. At that point, the function is dropped and the package
becomes inoperative. The next request for this package results in an error indi-
cating that the package must be explicitly rebound.

¹ The removal of a function body (this is very different from dropping the function)
can occur while an application which needs the function body is executing. This
may or may not cause the statement to fail, depending on whether the function
body still needs to be loaded into storage by the database manager on behalf of
the statement.

 Chapter 6. Statements 549

DROP

 Examples
Example 1: Drop table TDEPT.

DROP TABLE TDEPT

Example 2: Drop the view VDEPT.

DROP VIEW VDEPT

Example 3: The authorization ID HEDGES attempts to drop an alias.

DROP ALIAS A1

The alias HEDGES.A1 is removed from the catalogs.

Example 4: Hedges attempts to drop an alias, but specifies T1 as the alias-name,
where T1 is the name of an existing table (not the name of an alias).

DROP ALIAS T1

This statement fails (SQLSTATE 42809).

Example 5:

Drop the BUSINESS_OPS nodegroup. To drop the nodegroup, the two table spaces
(ACCOUNTING and PLANS) in the nodegroup must first be dropped.

DROP TABLESPACE ACCOUNTING

DROP TABLESPACE PLANS

DROP NODEGROUP BUSINESS_OPS

Example 6: Pellow wants to drop the CENTRE function, which he created in his
PELLOW schema, using the signature to identify the function instance to be dropped.

DROP FUNCTION CENTRE (INT,FLOAT)

Example 7: McBride wants to drop the FOCUS92 function, which she created in the
PELLOW schema, using the specific name to identify the function instance to be
dropped.

DROP SPECIFIC FUNCTION PELLOW.FOCUS92

Example 8: Drop the function ATOMIC_WEIGHT from the CHEM schema, where it is
known that there is only one function with that name.

DROP FUNCTION CHEM.ATOMIC_WEIGHT

Example 9: Drop the trigger SALARY_BONUS, which caused employees under a
specified condition to receive a bonus to their salary.

DROP TRIGGER SALARY_BONUS

Example 10: Drop the distinct data type named shoesize, if it is not currently in use.

DROP DISTINCT TYPE SHOESIZE

550 SQL Reference

DROP

Example 11: Drop the SMITHPAY event monitor.

DROP EVENT MONITOR SMITHPAY

Example 12: Drop the schema from Example 2 under CREATE SCHEMA using
RESTRICT. Notice that the table called PART must be dropped first.

DROP TABLE PART

DROP SCHEMA INVENTRY RESTRICT

Example 13: Macdonald wants to drop the DESTROY procedure, which he created in
the EIGLER schema, using the specific name to identify the procedure instance to be
dropped.

DROP SPECIFIC PROCEDURE EIGLER.DESTROY

Example 14: Drop the procedure OSMOSIS from the BIOLOGY schema, where it is
known that there is only one procedure with that name.

DROP PROCEDURE BIOLOGY.OSMOSIS

 Chapter 6. Statements 551

END DECLARE SECTION

END DECLARE SECTION
The END DECLARE SECTION statement marks the end of a host variable declare
section.

 Invocation
This statement can only be embedded in an application program. It is not an executable
statement. It must not be specified in REXX.

 Authorization
None required.

 Syntax

55──END DECLARE SECTION──5%

 Description
The END DECLARE SECTION statement can be coded in the application program
wherever declarations can appear according to the rules of the host language. It indi-
cates the end of a host variable declaration section. A host variable section starts with
a BEGIN DECLARE SECTION statement (see “BEGIN DECLARE SECTION” on
page 365).

The BEGIN DECLARE SECTION and the END DECLARE SECTION statements must
be paired and may not be nested.

Host variable declarations can be specified by using the SQL INCLUDE statement. Oth-
erwise, a host variable declaration section must not contain any statements other than
host variable declarations.

Host variables referenced in SQL statements must be declared in a host variable
declare section in all host languages, other than REXX.69 Furthermore, the declaration
of each variable must appear before the first reference to the variable.

Variables declared outside a declare section must not have the same name as vari-
ables declared within a declare section.

69 See “Rules” on page 365 for information on how host variables can be declared in REXX in the case of LOB locators and file
reference variables.

552 SQL Reference

END DECLARE SECTION

 Example
See “BEGIN DECLARE SECTION” on page 365 for examples that use the END
DECLARE SECTION statement.

 Chapter 6. Statements 553

EXECUTE

 EXECUTE
The EXECUTE statement executes a prepared SQL statement.

 Invocation
This statement can be embedded only in an application program. It is an executable
statement that cannot be dynamically prepared.

 Authorization
For statements where authorization checking is performed at statement execution time
(DDL, GRANT, and REVOKE statements), the privileges held by the authorization ID of
the statement must include those required to execute the SQL statement specified by
the PREPARE statement. For statements where authorization checking is performed at
statement preparation time (DML), no authorization is required to use this statement.

 Syntax

55─ ─EXECUTE──statement-name─ ──┬ ┬─────────────────────────────────── ──────────────────────5%
 │ │┌ ┐─,─────────────
 ├ ┤ ─USING─ ───6 ┴─host-variable─ ─────────
 └ ┘ ─USING DESCRIPTOR──descriptor-name─

 Description
statement-name

Identifies the prepared statement to be executed. The statement-name must iden-
tify a statement that was previously prepared and the prepared statement must not
be a SELECT statement.

USING
Introduces a list of host variables for which values are substituted for the parameter
markers (question marks) in the prepared statement. (For an explanation of param-
eter markers, see “PREPARE” on page 601.) If the prepared statement includes
parameter markers, USING must be used.

host-variable, ...
Identifies a host variable that is declared in the program in accordance with the
rules for declaring host variables. The number of variables must be the same
as the number of parameter markers in the prepared statement. The nth vari-
able corresponds to the nth parameter marker in the prepared statement.
Locator variables and file reference variables, where appropriate, can be pro-
vided as the source of values for parameter markers.

DESCRIPTOR descriptor-name
Identifies an input SQLDA that must contain a valid description of host vari-
ables.

554 SQL Reference

EXECUTE

Before the EXECUTE statement is processed, the user must set the following
fields in the input SQLDA:

¹ SQLN to indicate the number of SQLVAR occurrences provided in the
SQLDA

¹ SQLDABC to indicate the number of bytes of storage allocated for the
SQLDA

¹ SQLD to indicate the number of variables used in the SQLDA when proc-
essing the statement

¹ SQLVAR occurrences to indicate the attributes of the variables.

The SQLDA must have enough storage to contain all SQLVAR occurrences.
Therefore, the value in SQLDABC must be greater than or equal to 16 +
SQLN*(N), where N is the length of an SQLVAR occurrence.

If LOB input data needs to be accommodated, there must be two SQLVAR
entries for every parameter marker.

SQLD must be set to a value greater than or equal to zero and less than or
equal to SQLN. For more information, see Appendix C, “SQL Descriptor Area
(SQLDA)” on page 683.

 Notes
¹ Before the prepared statement is executed, each parameter marker is effectively

replaced by the value of its corresponding host variable. For a typed parameter
marker, the attributes of the target variable are those specified by the CAST spec-
ification. For an untyped parameter marker, the attributes of the target variable are
determined according to the context of the parameter marker. See “Rules” on
page 602 for the rules affecting parameter markers.

Let V denote a host variable that corresponds to parameter marker P. The value of
V is assigned to the target variable for P in accordance with the rules for assigning
a value to a column. Thus:

– V must be compatible with the target.

– If V is a string, its length must not be greater than the length attribute of the
target.

– If V is a number, the absolute value of its integral part must not be greater
than the maximum absolute value of the integral part of the target.

– If the attributes of V are not identical to the attributes of the target, the value is
converted to conform to the attributes of the target.

When the prepared statement is executed, the value used in place of P is the
value of the target variable for P. For example, if V is CHAR(6) and the target is
CHAR(8), the value used in place of P is the value of V padded with two blanks.

¹ Dynamic SQL Statement Caching:

The information required to execute dynamic and static SQL statements is placed
in the database package cache when static SQL statements are first referenced or

 Chapter 6. Statements 555

EXECUTE

when dynamic SQL statements are first prepared. This information stays in the
package cache until it becomes invalid, the cache space is required for another
statement, or the database is shut down.

When an SQL statement is executed or prepared, the package information relevant
to the application issuing the request is loaded from the system catalog into the
package cache. The actual executable section for the individual SQL statement is
also placed into the cache: static SQL sections are read in from the system catalog
and placed in the package cache when the statement is first referenced; Dynamic
SQL sections are placed directly in the cache after they have been created.
Dynamic SQL sections can be created by an explicit statement, such as a
PREPARE or EXECUTE IMMEDIATE statement. Once created, sections for
dynamic SQL statements may be recreated by an implicit prepare of the statement
performed by the system if the original section has been deleted for space man-
agement reasons or has become invalid due to changes in the environment.

Each SQL statement is cached at a database level and can be shared among
applications. Static SQL statements are shared among applications using the same
package; Dynamic SQL statements are shared among applications using the same
compilation environment and the exact same statement text. The text of each SQL
statement issued by an application is cached locally within the application for use
in the event that an implicit prepare is required. Each PREPARE statement in the
application program can cache one statement. All EXECUTE IMMEDIATE state-
ments in an application program share the same space and only one cached state-
ment exists for all these EXECUTE IMMEDIATE statements at a time. If the same
PREPARE or any EXECUTE IMMEDIATE statement is issued multiple times with a
different SQL statement each time, only the last statement will be cached for reuse.
The optimal use of the cache is to issue a number of different PREPARE state-
ments once at the start of the application and then to issue an EXECUTE or OPEN
statement as required.

With the caching of dynamic SQL statements, once a statement has been created,
it can be reused over multiple units of work without the need to prepare the state-
ment again. The system will recompile the statement as required if environment
changes occur.

The following events are examples of environment or data object changes which
can cause cached dynamic statements to be implicitly prepared on the next
PREPARE, EXECUTE, EXECUTE IMMEDIATE, or OPEN request:

 – ALTER TABLE
 – ALTER TABLESPACE
 – CREATE FUNCTION
 – CREATE INDEX
 – CREATE TABLE

– CREATE TEMPORARY TABLESPACE
 – CREATE TRIGGER

– DROP (all objects)
– RUNSTATS on any table or index
– any action that causes a view to become inoperative
– UPDATE of statistics in any system catalog table

556 SQL Reference

EXECUTE

– SET CURRENT DEGREE
– SET FUNCTION PATH
– SET QUERY OPTIMIZATION

The following list outlines the behavior that can be expected from cached dynamic
SQL statements:

– PREPARE Requests: Subsequent preparations of the same statement will not
incur the cost of compiling the statement if the section is still valid. The cost
and cardinality estimates for the current cached section will be returned. These
values may differ from the values returned from any previous PREPARE for
the same SQL statement.

There will be no need to issue a PREPARE statement subsequent to a
COMMIT or ROLLBACK statement.

– EXECUTE Requests: EXECUTE statements may occasionally incur the cost
of implicitly preparing the statement if it has become invalid since the original
PREPARE. If a section is implicitly prepared, it will use the current environ-
ment and not the environment of the original PREPARE statement.

– EXECUTE IMMEDIATE Requests: Subsequent EXECUTE IMMEDIATE state-
ments for the same statement will not incur the cost of compiling the statement
if the section is still valid.

– OPEN Requests: OPEN requests for dynamically defined cursors may occa-
sionally incur the cost of implicitly preparing the statement if it has become
invalid since the original PREPARE statement. If a section is implicitly pre-
pared, it will use the current environment and not the environment of the ori-
ginal PREPARE statement.

– FETCH Requests: No behavior changes should be expected.

– ROLLBACK: Only those dynamic SQL statements prepared or implicitly pre-
pared during the unit of work affected by the rollback operation will be invali-
dated.

– COMMIT: Dynamic SQL statements will not be invalidated but any locks
acquired will be freed. Cursors not defined as WITH HOLD cursors will be
closed and their locks freed. Open WITH HOLD cursors will hold onto their
package and section locks to protect the active section during, and after,
commit processing.

If an error occurs during an implicit prepare, an error will be returned for the
request causing the implicit prepare (SQLSTATE 56098).

 Examples
Example 1: In this C example, an INSERT statement with parameter markers is pre-
pared and executed. h1 - h4 are host variables that correspond to the format of
TDEPT.

 Chapter 6. Statements 557

EXECUTE

strcpy (s,"INSERT INTO TDEPT VALUES(?,?,?,?)");

EXEC SQL PREPARE DEPT_INSERT FROM :s;

 .

 .

(Check for successful execution and put values into :h1, :h2, :h3, :h4)

 .

 .

EXEC SQL EXECUTE DEPT_INSERT USING :h1, :h2,

 :h3, :h4;

Example 2: This EXECUTE statement uses an SQLDA.

EXECUTE S3 USING DESCRIPTOR :sqlda3

558 SQL Reference

EXECUTE IMMEDIATE

 EXECUTE IMMEDIATE
The EXECUTE IMMEDIATE statement:

¹ Prepares an executable form of an SQL statement from a character string form of
the statement.

¹ Executes the SQL statement.

EXECUTE IMMEDIATE combines the basic functions of the PREPARE and EXECUTE
statements. It can be used to prepare and execute SQL statements that contain neither
host variables nor parameter markers.

 Invocation
This statement can be embedded only in an application program. It is an executable
statement that cannot be dynamically prepared.

 Authorization
The authorization rules are those defined for the SQL statement specified by EXECUTE
IMMEDIATE.

 Syntax

55──EXECUTE IMMEDIATE──host-variable───5%

 Description
host-variable

A host variable must be specified and it must identify a host variable that is
described in the program in accordance with the rules for declaring character-string
variables. It must be a character-string variable (either fixed-length or varying-
length) and if it is a CLOB it must be less than 32 765 bytes.

The value of the identified host variable is called the statement string.

The statement string must be one of the following SQL statements:

ALTER ROLLBACK
COMMENT ON SET CONSTRAINTS
COMMIT SET CURRENT EXPLAIN MODE
CREATE SET CURRENT EXPLAIN SNAPSHOT
DELETE SET CURRENT FUNCTION PATH
DROP SET CURRENT QUERY OPTIMIZATION
GRANT SET EVENT MONITOR STATE
INSERT SIGNAL SQLSTATE
LOCK TABLE UPDATE
REVOKE

 Chapter 6. Statements 559

EXECUTE IMMEDIATE

The statement string must not include parameter markers or references to host vari-
ables, and must not begin with EXEC SQL. It must not contain a statement terminator
with the exception of the CREATE TRIGGER statement which can contain a semi-colon
(;) to separate triggered SQL statements.

When an EXECUTE IMMEDIATE statement is executed, the specified statement string
is parsed and checked for errors. If the SQL statement is invalid, it is not executed and
the error condition that prevents its execution is reported in the SQLCA. If the SQL
statement is valid, but an error occurs during its execution, that error condition is
reported in the SQLCA.

 Notes
¹ Statement caching affects the behavior of an EXECUTE IMMEDIATE statement.

See Dynamic SQL Statement Caching on page 555 for information.

 Example
Use C program statements to move an SQL statement to the host variable qstring
(char[80]) and prepare and execute whatever SQL statement is in the host variable
qstring.

if (strcmp(accounts,"BIG") == 0)

strcpy (qstring,"INSERT INTO WORK_TABLE SELECT *

FROM EMP_ACT WHERE ACTNO < 100");

 else

strcpy (qstring,"INSERT INTO WORK_TABLE SELECT *

FROM EMP_ACT WHERE ACTNO >= 100");

 .

 .

 .

EXEC SQL EXECUTE IMMEDIATE :qstring;

560 SQL Reference

EXPLAIN

 EXPLAIN
The EXPLAIN statement captures information about the access plan chosen for the
supplied explainable statement and places this information into the Explain tables. (See
Appendix J, “ Explain Tables and Definitions” on page 821 for information on the
Explain tables and table definitions.)

An explainable statement is a DELETE, INSERT, SELECT, SELECT INTO, UPDATE,
VALUES, or VALUES INTO SQL statement.

 Invocation
This statement can be embedded in an application program or issued interactively. It is
an executable statement that can be dynamically prepared.

The statement to be explained is not executed.

 Authorization
The authorization rules are those defined for the SQL statement specified in the
EXPLAIN statement. For example, if a DELETE statement was used as the
explainable-sql-statement (see statement syntax that follows), then the authorization
rules for a DELETE statement would be applied when the DELETE statement is
explained.

The authorization rules for static EXPLAIN statements are those rules that apply for
static versions of the statement passed as the explainable-sql-statement. Dynamically
prepared EXPLAIN statements use the authorization rules for the dynamic preparation
of the statement provided for the explainable-sql-statement parameter.

The current authorization ID must have insert privilege on the Explain tables.

 Syntax

55─ ─EXPLAIN─ ──┬ ┬─PLAN SELECTION─ ──┬ ┬──────────────────── ──┬ ┬───────────────────────── ─────5
 ├ ┤─ALL──────────── └ ┘ ──┬ ┬─FOR── ─SNAPSHOT─ └ ┘ ─SET─ ─QUERYNO =──integer─
 └ ┘─PLAN───(1) ──────── └ ┘─WITH─

5─ ──┬ ┬────────────────────────────────── ─FOR──explainable-sql-statement──────────────────5%
 └ ┘ ─SET─ ─QUERYTAG =──string-constant─

Note:
1 The PLAN option is supported only for syntax toleration of existing DB2 for MVS EXPLAIN state-

ments. There is no PLAN table. Specifying PLAN is equivalent to specifying PLAN SELECTION.

 Chapter 6. Statements 561

EXPLAIN

 Description
PLAN SELECTION

Indicates that the information from the plan selection phase of SQL compilation is
to be inserted into the Explain tables.

ALL
Specifying ALL is equivalent to specifying PLAN SELECTION.

PLAN
The PLAN option provides syntax toleration for existing database applications from
other systems. Specifying PLAN is equivalent to specifying PLAN SELECTION.

FOR SNAPSHOT
This clause indicates that only an Explain Snapshot is to be taken and placed into
the SNAPSHOT column of the EXPLAIN_STATEMENT table. No other Explain
information is captured other than that present in the EXPLAIN_INSTANCE and
EXPLAIN_STATEMENT tables.

The Explain Snapshot information is intended for use with Visual Explain.

WITH SNAPSHOT
This clause indicates that, in addition to the regular Explain information, an Explain
Snapshot is to be taken.

The default behavior of the EXPLAIN statement is to only gather regular Explain
information and not the Explain Snapshot.

The Explain Snapshot information is intended for use with Visual Explain.

default (neither FOR SNAPSHOT nor WITH SNAPSHOT specified)
Puts Explain information into the Explain tables. No snapshot is taken for use with
Visual Explain.

SET QUERYNO = integer
Associates integer, via the QUERYNO column in the EXPLAIN_STATEMENT
table, with explainable-sql-statement. The integer value supplied must be a positive
value.

If this clause is not specified for a dynamic EXPLAIN statement, a default value of
one (1) is assigned. For a static EXPLAIN statement, the default value assigned is
the statement number assigned by the precompiler.

SET QUERYTAG = string-constant
Associates string-constant, via the QUERYTAG column in the
EXPLAIN_STATEMENT table, with explainable-sql-statement. string-constant can
be any character string up to 20 bytes in length. If the value supplied is less than
20 bytes in length, the value is padded on the right with blanks to the required
length.

If this clause is not specified for an EXPLAIN statement, blanks are used as the
default value.

562 SQL Reference

EXPLAIN

FOR explainable-sql-statement
Specifies the SQL statement to be explained. This statement can be any valid
DELETE, INSERT, SELECT, SELECT INTO, UPDATE, VALUES, or VALUES
INTO SQL statement. If the EXPLAIN statement is embedded in a program, the
explainable-sql-statement can contain references to host variables (these variables
must be defined in the program). Similarly, if EXPLAIN is being dynamically pre-
pared, the explainable-sql-statement can contain parameter markers.

The explainable-sql-statement must be a valid SQL statement that could be pre-
pared and executed independently of the EXPLAIN statement. It cannot be a state-
ment name or host variable. SQL statements referring to cursors defined through
CLP are not valid for use with this statement.

To explain dynamic SQL within an application, the entire EXPLAIN statement must
be dynamically prepared.

 Notes
The following table shows the interaction of the snapshot keywords and the Explain
information.

If neither the FOR SNAPSHOT nor WITH SNAPSHOT clause is specified, then no
Explain snapshot is taken.

The Explain tables must be created by the user prior to the invocation of EXPLAIN.
(See Appendix J, “ Explain Tables and Definitions” on page 821 for information on the
Explain tables and table definitions.) The information generated by this statement is
stored in these explain tables in the schema designated by the current authorization ID
at the time the statement is compiled. For static EXPLAIN statements, this is the bind-
er's authorization ID and for dynamic EXPLAIN statements, the authorization ID is that
of the user executing the statement.

If any errors occur during the compilation of the explainable-sql-statement supplied,
then no information is stored in the Explain tables.

The access plan generated for the explainable-sql-statement is not saved and thus,
cannot be invoked at a later time. The Explain information for the explainable-sql-
statement is inserted when the EXPLAIN statement itself is compiled.

For a static EXPLAIN SQL statement, the information is inserted into the Explain tables
at bind time and during an explicit rebind (see REBIND in the Command Reference).
During precompilation, the static EXPLAIN statements are commented out in the modi-
fied application source file. At bind time, the EXPLAIN statements are stored in the
SYSCAT.STATEMENTS catalog. When the package is run, the EXPLAIN statement is

Keyword Specified
Capture Explain Informa-
tion?

Take Snapshot for Visual
Explain?

none Yes No

FOR SNAPSHOT No Yes

WITH SNAPSHOT Yes Yes

 Chapter 6. Statements 563

EXPLAIN

not executed. Note that the section numbers for all statements in the application will be
sequential and will include the EXPLAIN statements. An alternative to using a static
EXPLAIN statement is to use a combination of the EXPLAIN and EXPLSNAP
BIND/PREP options. Static EXPLAIN statements can be used to cause the Explain
tables to be populated for one specific static SQL statement out of many; simply prefix
the target statement with the appropriate EXPLAIN statement syntax and bind the appli-
cation without using either of the Explain BIND/PREP options. The EXPLAIN statement
can also be used when it is advantageous to set the QUERYNO or QUERYTAG field at
the time of the actual Explain invocation.

For dynamic EXPLAIN statements, the Explain tables are populated at the time the
EXPLAIN statement is submitted for compilation. An Explain statement can be prepared
with the PREPARE statement but, if executed, will perform no processing (though the
statement will be successful (SQLSTATE 00000)). An alternative to issuing dynamic
EXPLAIN statements is to use a combination of the CURRENT EXPLAIN MODE and
CURRENT EXPLAIN SNAPSHOT special registers to explain dynamic SQL statements.
The EXPLAIN statement should be used when it is advantageous to set the QUERYNO
or QUERYTAG field at the time of the actual Explain invocation.

 Examples
Example 1: Explain a simple SELECT statement and tag with QUERYNO = 13.

EXPLAIN PLAN SET QUERYNO = 13 FOR SELECT C1 FROM T1;

This statement is successful.

Example 2:

Explain a simple SELECT statement and tag with QUERYTAG = 'TEST13'.

EXPLAIN PLAN SELECTION SET QUERYTAG = 'TEST13'

FOR SELECT C1 FROM T1;

This statement is successful.

Example 3: Explain a simple SELECT statement and tag with QUERYNO = 13 and
QUERYTAG = 'TEST13'.

EXPLAIN PLAN SELECTION SET QUERYNO = 13 SET QUERYTAG = 'TEST13'

FOR SELECT C1 FROM T1;

This statement is successful.

Example 4: Attempt to get Explain information when Explain tables do not exist.

EXPLAIN ALL FOR SELECT C1 FROM T1;

This statement would fail as the Explain tables have not been defined (SQLSTATE
42704).

564 SQL Reference

FETCH

 FETCH
The FETCH statement positions a cursor on the next row of its result table and assigns
the values of that row to host variables.

 Invocation
Although an interactive SQL facility might provide an interface that gives the appear-
ance of interactive execution, this statement can only be embedded within an applica-
tion program. It is an executable statement that cannot be dynamically prepared.

 Authorization
See “DECLARE CURSOR” on page 525 for an explanation of the authorization
required to use a cursor.

 Syntax

 ┌ ┐─,─────────────
55─ ─FETCH──cursor-name─ ──┬ ┬─INTO─ ───6 ┴─host-variable─ ────────── ───────────────────────────5%
 └ ┘ ─USING DESCRIPTOR──descriptor-name─

 Description
cursor-name

Identifies the cursor to be used in the fetch operation. The cursor-name must iden-
tify a declared cursor as explained in “DECLARE CURSOR” on page 525. The
DECLARE CURSOR statement must precede the FETCH statement in the source
program. When the FETCH statement is executed, the cursor must be in the open
state.

If the cursor is currently positioned on or after the last row of the result table:

¹ SQLCODE is set to +100, and SQLSTATE is set to '02000'.
¹ The cursor is positioned after the last row.
¹ Values are not assigned to host variables.

If the cursor is currently positioned before a row, it will be repositioned on that row,
and values will be assigned to host variables as specified by INTO or USING.

If the cursor is currently positioned on a row other than the last row, it will be repo-
sitioned on the next row and values of that row will be assigned to host variables
as specified by INTO or USING.

INTO host-variable, ...
Identifies one or more host variables that must be described in accordance with the
rules for declaring host variables. The first value in the result row is assigned to the
first host variable in the list, the second value to the second host variable, and so

 Chapter 6. Statements 565

FETCH

on. For LOB values in the select-list, the target can be a regular host variable (if it
is large enough), a locator variable, or a file-reference variable.

USING DESCRIPTOR descriptor-name
Identifies an SQLDA that must contain a valid description of zero or more host vari-
ables.

Before the FETCH statement is processed, the user must set the following fields in
the SQLDA:

¹ SQLN to indicate the number of SQLVAR occurrences provided in the SQLDA.

¹ SQLDABC to indicate the number of bytes of storage allocated for the SQLDA.

¹ SQLD to indicate the number of variables used in the SQLDA when proc-
essing the statement.

¹ SQLVAR occurrences to indicate the attributes of the variables.

The SQLDA must have enough storage to contain all SQLVAR occurrences.
Therefore, the value in SQLDABC must be greater than or equal to 16 +
SQLN*(N), where N is the length of an SQLVAR occurrence.

If LOB result columns need to be accommodated, there must be two SQLVAR
entries for every select-list item (or column of the result table). See “Effect of
DESCRIBE on the SQLDA” on page 687, which discusses SQLDOUBLED and
LOB columns.

SQLD must be set to a value greater than or equal to zero and less than or equal
to SQLN. For more information, see Appendix C, “SQL Descriptor Area (SQLDA)”
on page 683.

The nth variable identified by the INTO clause or described in the SQLDA corresponds
to the nth column of the result table of the cursor. The data type of each variable must
be compatible with its corresponding column.

Each assignment to a variable is made according to the rules described in Chapter 3. If
the number of variables is less than the number of values in the row, the SQLWARN3
field of the SQLDA is set to 'W'. Note that there is no warning if there are more vari-
ables than the number of result columns. If an assignment error occurs, the value is not
assigned to the variable, and no more values are assigned to variables. Any values that
have already been assigned to variables remain assigned.

 Notes
¹ An open cursor has three possible positions:

– Before a row
– On a row
– After the last row.

¹ If a cursor is on a row, that row is called the current row of the cursor. A cursor
referenced in an UPDATE or DELETE statement must be positioned on a row. A
cursor can only be on a row as a result of a FETCH statement.

566 SQL Reference

FETCH

¹ When retrieving into LOB locators in situations where it is not necessary to retain
the locator across FETCH statements, it is good practice to issue a FREE
LOCATOR statement before issuing the next FETCH statement, as locator
resources are limited.

¹ It is possible for an error to occur that makes the state of the cursor unpredictable.

¹ Statement caching affects the behavior of an EXECUTE IMMEDIATE statement.
See the “Notes” on page 555 for information.

¹ DB2 CLI supports additional fetching capabilities. For instance when a cursor's
result table is read-only, the SQLFetchScroll() function can be used to position the
cursor at any spot within that result table.

 Examples
Example 1: In this C example, the FETCH statement fetches the results of the
SELECT statement into the program variables dnum, dname, and mnum. When no more
rows remain to be fetched, the not found condition is returned.

EXEC SQL DECLARE C1 CURSOR FOR

SELECT DEPTNO, DEPTNAME, MGRNO FROM TDEPT

WHERE ADMRDEPT = 'A00';

EXEC SQL OPEN C1;

while (SQLCODE==0) {

EXEC SQL FETCH C1 INTO :dnum, :dname, :mnum;

 }

EXEC SQL CLOSE C1;

Example 2: This FETCH statement uses an SQLDA.

FETCH CURS USING DESCRIPTOR :sqlda3

 Chapter 6. Statements 567

FREE LOCATOR

 FREE LOCATOR
The FREE LOCATOR statement removes the association between a locator variable
and its value.

 Invocation
This statement can only be embedded in an application program. It is an executable
statement that cannot be dynamically prepared.

 Authorization
None required.

 Syntax

 ┌ ┐─,─────────────
55─ ─FREE──LOCATOR─ ───6 ┴─variable-name─ ──5%

 Description
LOCATOR variable-name, ...

Identifies one or more locator variables that must be declared in accordance with
the rules for declaring locator variables.

The locator-variable must currently have a locator assigned to it. That is, a locator
must have been assigned during this unit of work (by a FETCH statement or a
SELECT INTO statement) and must not subsequently have been freed (by a FREE
LOCATOR statement); otherwise, an error is raised (SQLSTATE 0F001).

If more than one locator is specified, all locators that can be freed will be freed,
regardless of errors detected in other locators in the list.

 Example
In a COBOL program, free the BLOB locator variables TKN-VIDEO and TKN-BUF and
the CLOB locator variable LIFE-STORY-LOCATOR.

 EXEC SQL

FREE LOCATOR :TKN-VIDEO, :TKN-BUF, :LIFE-STORY-LOCATOR

 END-EXEC.

568 SQL Reference

GRANT (Database Authorities)

GRANT (Database Authorities)
This form of the GRANT statement grants authorities that apply to the entire database
(rather than privileges that apply to specific objects within the database).

 Invocation
This statement can be embedded in an application program or issued through the use
of dynamic SQL statements. It is an executable statement that can be dynamically pre-
pared.

 Authorization
To grant DBADM authority, SYSADM authority is required. To grant other authorities,
either DBADM or SYSADM authority is required.

 Syntax

 ┌ ┐─,─────────────────────
55─ ─GRANT─ ───6 ┴──┬ ┬─BINDADD─────────── ─ON DATABASE───5
 ├ ┤─CONNECT───────────
 ├ ┤─CREATETAB─────────
 ├ ┤─CREATE_NOT_FENCED─
 ├ ┤─IMPLICIT_SCHEMA───
 └ ┘─DBADM─────────────

 ┌ ┐─,───────────────────────────────
5─ ─TO─ ───6 ┴┬ ┬ ──┬ ┬─────── ─authorization-name─ ──5%
 │ │├ ┤─USER──
 │ │└ ┘─GROUP─
 └ ┘─PUBLIC────────────────────────

 Description
BINDADD

Grants the authority to create packages. The creator of a package automatically
has the CONTROL privilege on that package and retains this privilege even if the
BINDADD authority is subsequently revoked.

CONNECT
Grants the authority to access the database.

CREATETAB
Grants the authority to create base tables. The creator of a base table automat-
ically has the CONTROL privilege on that table. The creator retains this privilege
even if the CREATETAB authority is subsequently revoked.

There is no explicit authority required for view creation. A view can be created at
any time if the authorization ID of the statement used to create the view has either
CONTROL or SELECT privilege on each base table of the view.

 Chapter 6. Statements 569

GRANT (Database Authorities)

CREATE_NOT_FENCED
Grants the authority to register functions that execute in the database manager's
process. Care must be taken that functions so registered will not have adverse side
effects (see the FENCED or NOT FENCED clause on page 433 for more informa-
tion.)

Once a function has been registered as not fenced, it continues to run in this
manner even if CREATE_NOT_FENCED is subsequently revoked.

IMPLICIT_SCHEMA
Grants the authority to implicitly create a schema.

DBADM
Grants the database administrator authority. A database administrator has all privi-
leges against all objects in the database and may grant these privileges to others.

BINDADD, CONNECT, CREATETAB, CREATE_NOT_FENCED and
IMPLICIT_SCHEMA are automatically granted to an authorization-name that is
granted DBADM authority.

TO Specifies to whom the authorities are granted.

USER
Specifies that the authorization-name identifies a user.

GROUP
Specifies that the authorization-name identifies a group name.

authorization-name,...
Lists the authorization IDs of one or more users or groups.

The list of authorization IDs cannot include the authorization ID of the user
issuing the statement. (It is not possible to grant authorities to an
authorization-name that is the same as the authorization ID of the GRANT
statement.)

PUBLIC
Grants the authorities to all users. DBADM cannot be granted to PUBLIC.

 Rules
¹ If neither USER nor GROUP is specified, then

If the authorization-name is defined in the operating system only as GROUP,
then GROUP is assumed.
If the authorization-name is defined in the operating system only as USER or if
it is undefined, USER is assumed.
If the authorization-name is defined in the operating system as both, or DCE
authentication is used, an error (SQLSTATE 56092) is raised.

570 SQL Reference

GRANT (Database Authorities)

 Examples
Example 1: Give the users WINKEN, BLINKEN, and NOD the authority to connect to
the database.

GRANT CONNECT ON DATABASE TO USER WINKEN, USER BLINKEN, USER NOD

Example 2: GRANT BINDADD authority on the database to a group named D024.
There is both a group and a user called D024 in the system.

GRANT BINDADD ON DATABASE TO GROUP D024

Observe that, the GROUP keyword must be specified; otherwise, an error will occur
since both a user and a group named D024 exist. Any member of the D024 group will
be allowed to bind packages in the database, but the D024 user will not be allowed
(unless this user is also a member of the group D024, had been granted BINDADD
authority previously, or BINDADD authority had been granted to another group of which
D024 was a member).

 Chapter 6. Statements 571

GRANT (Index Privileges)

GRANT (Index Privileges)
This form of the GRANT statement grants the CONTROL privilege on indexes.

 Invocation
This statement can be embedded in an application program or issued through the use
of dynamic SQL statements. It is an executable statement that can be dynamically pre-
pared.

 Authorization
The privileges held by the authorization ID of the statement must include at least one of
the following:

 ¹ DBADM authority
 ¹ SYSADM authority.

 Syntax

 ┌ ┐─,───────────────────────────────
55──GRANT──CONTROL──ON INDEX──index-name─ ─TO─ ───6 ┴┬ ┬ ──┬ ┬─────── ─authorization-name─ ───────5%
 │ │├ ┤─USER──
 │ │└ ┘─GROUP─
 └ ┘─PUBLIC────────────────────────

 Description
CONTROL

Grants the privilege to drop the index. This is the CONTROL authority for indexes,
which is automatically granted to creators of indexes.

ON INDEX index-name
Identifies the index for which the CONTROL privilege is to be granted.

TO Specifies to whom the privileges are granted.

USER
Specifies that the authorization-name identifies a user.

GROUP
Specifies that the authorization-name identifies a group name.

authorization-name,...
Lists the authorization IDs of one or more users or groups.

The list of authorization IDs cannot include the authorization ID of the user
issuing the statement. (It is not possible to grant authorities to an
authorization-name that is the same as the authorization ID of the GRANT
statement.)

572 SQL Reference

GRANT (Index Privileges)

PUBLIC
Grants the privileges to all users.

 Rules
¹ If neither USER nor GROUP is specified, then

If the authorization-name is defined in the operating system only as GROUP,
then GROUP is assumed.
If the authorization-name is defined in the operating system only as USER or if
it is undefined, USER is assumed.
If the authorization-name is defined in the operating system as both, or DCE
authentication is used, an error (SQLSTATE 56092) is raised.

 Example
GRANT CONTROL ON INDEX DEPTIDX TO USER USER4

 Chapter 6. Statements 573

GRANT (Package Privileges)

GRANT (Package Privileges)
This form of the GRANT statement grants privileges on a package.

 Invocation
This statement can be embedded in an application program or issued through the use
of dynamic SQL statements. It is an executable statement that can be dynamically pre-
pared.

 Authorization
The privileges held by the authorization ID of the statement must include at least one of
the following:

¹ CONTROL privilege on the referenced package
¹ SYSADM or DBADM authority.

To grant the CONTROL privilege, SYSADM or DBADM authority is required.

 Syntax

 ┌ ┐─,─────────────
55─ ─GRANT─ ───6 ┴──┬ ┬─BIND────── ─ON──PACKAGE───(2) ─package-name─────────────────────────────────5
 ├ ┤─CONTROL───
 └ ┘─EXECUTE───(1)

 ┌ ┐─,───────────────────────────────
5─ ─TO─ ───6 ┴┬ ┬ ──┬ ┬─────── ─authorization-name─ ──5%
 │ │├ ┤─USER──
 │ │└ ┘─GROUP─
 └ ┘─PUBLIC────────────────────────

Notes:
1 RUN can be used as a synonym for EXECUTE.
2 PROGRAM can be used as a synonym for PACKAGE.

 Description
BIND

Grants the privilege to bind a package. The BIND privilege is really a rebind privi-
lege, because the package must have already been bound (by someone with
BINDADD authority) to have existed at all.

In addition to the BIND privilege, the user must hold the necessary privileges on
each table referenced by static DML statements contained in the program. This is
necessary because authorization on static DML statements is checked at bind time.

574 SQL Reference

GRANT (Package Privileges)

CONTROL
Grants the privilege to rebind, drop, or execute the package, and extend package
privileges to other users. The CONTROL privilege for packages is automatically
granted to creators of packages

BIND and EXECUTE are automatically granted to an authorization-name that is
granted CONTROL privilege.

EXECUTE
Grants the privilege to execute the package.

ON PACKAGE package-name
Specifies the name of the package on which privileges are to be granted.

TO Specifies to whom the privileges are granted.

USER
Specifies that the authorization-name identifies a user.

GROUP
Specifies that the authorization-name identifies a group name.

authorization-name,...
Lists the authorization IDs of one or more users or groups.

The list of authorization IDs cannot include the authorization ID of the user
issuing the statement. (It is not possible to grant authorities to an
authorization-name that is the same as the authorization ID of the GRANT
statement.)

PUBLIC
Grants the privileges to all users.

 Rules
¹ If neither USER nor GROUP is specified, then

If the authorization-name is defined in the operating system only as GROUP,
then GROUP is assumed.
If the authorization-name is defined in the operating system only as USER or if
it is undefined, USER is assumed.
If the authorization-name is defined in the operating system as both, or DCE
authentication is used, an error (SQLSTATE 56092) is raised.

 Examples
Example 1: Grant the EXECUTE privilege on PACKAGE CORPDATA.PKGA to
PUBLIC.

 GRANT EXECUTE

ON PACKAGE CORPDATA.PKGA

 TO PUBLIC

Example 2: GRANT EXECUTE privilege on package CORPDATA.PKGA to a user
named EMPLOYEE. There is neither a group nor a user called EMPLOYEE.

 Chapter 6. Statements 575

GRANT (Package Privileges)

GRANT EXECUTE ON PACKAGE

CORPDATA.PKGA TO EMPLOYEE

 or

GRANT EXECUTE ON PACKAGE

CORPDATA.PKGA TO USER EMPLOYEE

576 SQL Reference

GRANT (Schema Privileges)

GRANT (Schema Privileges)
This form of the GRANT statement grants privileges on a schema.

 Invocation
This statement can be embedded in an application program or issued through the use
of dynamic SQL statements. It is an executable statement that can be dynamically pre-
pared.

 Authorization
The privileges held by the authorization ID of the statement must include at least one of
the following:

¹ the WITH GRANT OPTION for each identified privilege
¹ SYSADM or DBADM authority

 Syntax

 ┌ ┐─,────────────
55─ ─GRANT─ ───6 ┴──┬ ┬─ALTERIN── ─ON SCHEMA──schema-name───────────────────────────────────────5
 ├ ┤─CREATEIN─
 └ ┘─DROPIN───

 ┌ ┐─,───────────────────────────────
5─ ─TO─ ───6 ┴┬ ┬ ──┬ ┬─────── ─authorization-name─ ──┬ ┬─────────────────── ───────────────────────5%

│ │├ ┤─USER── └ ┘─WITH GRANT OPTION─
 │ │└ ┘─GROUP─
 └ ┘─PUBLIC────────────────────────

 Description
ALTERIN

Grants the privilege to alter or comment on all objects in the schema. The owner of
an explicitly created schema automatically receives ALTERIN privilege.

CREATEIN
Grants the privilege to create objects in the schema. Other authorities or privileges
required to create the object (such as CREATETAB) are still required. The owner
of an explicitly created schema automatically receives CREATEIN privilege. An
implicitly created schema has CREATEIN privilege automatically granted to
PUBLIC.

DROPIN
Grants the privilege to drop all objects in the schema. The owner of an explicitly
created schema automatically receives DROPIN privilege.

ON SCHEMA schema-name
Identifies the schema on which the privileges are to be granted.

 Chapter 6. Statements 577

GRANT (Schema Privileges)

TO Specifies to whom the privileges are granted.

USER
Specifies that the authorization-name identifies a user.

GROUP
Specifies that the authorization-name identifies a group name.

authorization-name,...
Lists the authorization IDs of one or more users or groups.

The list of authorization IDs cannot include the authorization ID of the user
issuing the statement. (It is not possible to grant authorities to an
authorization-name that is the same as the authorization ID of the GRANT
statement.)

PUBLIC
Grants the privileges to all users.

WITH GRANT OPTION
Allows the specified authorization-names to GRANT the privileges to others.

If the WITH GRANT OPTION is omitted, the specified authorization-names can
only grant the privileges to others if they:

¹ have DBADM authority or
¹ received the ability to grant privileges from some other source.

 Rules
¹ If neither USER nor GROUP is specified, then

If the authorization-name is defined in the operating system only as GROUP,
then GROUP is assumed.
If the authorization-name is defined in the operating system only as USER or if
it is undefined, USER is assumed.
If the authorization-name is defined in the operating system as both, or DCE
authentication is used, an error (SQLSTATE 56092) is raised.

¹ Privileges cannot be granted on schema names SYSIBM, SYSCAT, SYSFUN and
SYSSTAT by any user.

¹ In general, the GRANT statement will process the granting of privileges that the
authorization ID of the statement is allowed to grant, returning a warning
(SQLSTATE 01007) if one or more privileges was not granted. If no privileges were
granted, an error is returned (SQLSTATE 42501).70

70 If the package used for processing the statement was precomplied with LANGLEVEL set to SQL92E for MIA, a warning is returned
(SQLSTATE 01007) unless the grantor has NO privileges on the object of the grant.

578 SQL Reference

GRANT (Schema Privileges)

 Examples
Example 1: Grant USER2 to the ability to create objects in schema CORPDATA.

GRANT CREATEIN ON SCHEMA CORPDATA TO USER2

Example 2: Grant user BIGGUY the ability to create and drop objects in schema
CORPDATA.

GRANT CREATEIN, DROPIN ON SCHEMA CORPDATA TO BIGGUY

 Chapter 6. Statements 579

GRANT (Table or View Privileges)

GRANT (Table or View Privileges)
This form of the GRANT statement grants privileges on a table or view.

 Invocation
This statement can be embedded in an application program or issued through the use
of dynamic SQL statements. It is an executable statement that can be dynamically pre-
pared.

 Authorization
The privileges held by the authorization ID of the statement must include at least one of
the following:

¹ CONTROL privilege on the referenced table or view
¹ The WITH GRANT OPTION for each identified privilege. If ALL is specified, the

authorization ID must have some grantable privilege on the identified table or view.
¹ SYSADM or DBADM authority.

To grant the CONTROL privilege, SYSADM or DBADM authority is required.

To grant privileges on catalog tables and views, either SYSADM or DBADM authority is
required.

 Syntax

580 SQL Reference

GRANT (Table or View Privileges)

 ┌ ┐ ─PRIVILEGES─
55─ ─GRANT─ ──┬ ┬─ALL─ ──┴ ┴──────────── ────────────────────────── ─────────────────────────────5
 │ │┌ ┐─,───
 └ ┘───6 ┴┬ ┬ ─ALTER───(1) ────────────────────────────────
 ├ ┤─CONTROL─────────────────────────────────
 ├ ┤─DELETE──────────────────────────────────
 ├ ┤ ─INDEX───(1) ────────────────────────────────
 ├ ┤─INSERT──────────────────────────────────
 ├ ┤ ─REFERENCES───(1) ──┬ ┬───────────────────────
 │ ││ │┌ ┐─,───────────
 │ │└ ┘ ─(─ ───6 ┴─column-name─ ─)─
 ├ ┤─SELECT──────────────────────────────────
 └ ┘ ─UPDATE─ ──┬ ┬─────────────────────── ──────
 │ │┌ ┐─,───────────
 └ ┘ ─(─ ───6 ┴─column-name─ ─)─

 ┌ ┐ ─TABLE─ ┌ ┐─,───────────────────────────────
5─ ─ON─ ──┴ ┴─────── ──┬ ┬─table-name─ ─TO─ ───6 ┴┬ ┬ ──┬ ┬─────── ─authorization-name─ ────────────────5
 └ ┘─view-name── │ │├ ┤─USER──
 │ │└ ┘─GROUP─
 └ ┘─PUBLIC────────────────────────

5─ ──┬ ┬─────────────────── ──5%
└ ┘─WITH GRANT OPTION─

Note:
1 ALTER, INDEX, and REFERENCES privileges are not applicable to views.

 Description
ALL or ALL PRIVILEGES

Grants all the appropriate privileges, except CONTROL, on the base table or view
named in the ON clause.

If the authorization ID of the statement has CONTROL privilege on the table or
view, or DBADM or SYSADM authority, then all the privileges applicable to the
object (except CONTROL) are granted. Otherwise, the privileges granted are all
those grantable privileges that the authorization ID of the statement has on the
identified table or view.

If ALL is not specified, one or more of the keywords in the list of privileges must be
specified.

ALTER
Grants the privilege to:

¹ Add columns to a base table definition.

¹ Create or drop a primary key or unique constraint on a base table. For more
information on the authorization required to create or drop a primary key or a
unique constraint, see “ALTER TABLE” on page 348.

¹ Create or drop a foreign key on a base table.

 Chapter 6. Statements 581

GRANT (Table or View Privileges)

The REFERENCES privilege on each column of the parent table is also
required.

¹ Create or drop a check constraint on a base table.

¹ Create a trigger on a base table.

¹ Add or change a comment on a base table or view.

CONTROL
Grants:

¹ All of the appropriate privileges in the list, that is:

ALTER, CONTROL, DELETE, INSERT, INDEX, REFERENCES, SELECT,
and UPDATE to base tables
CONTROL, DELETE, INSERT, SELECT, and UPDATE to views

¹ The ability to grant the above privileges (except for CONTROL) to others.

¹ The ability to drop the base table or view.

This ability cannot be extended to others on the basis of holding CONTROL
privilege. The only way that it can be extended is by granting the CONTROL
privilege itself and that can only be done by someone with SYSADM or
DBADM authority.

¹ The ability to execute the RUNSTATS utility on the table and indexes. See the
Command Reference for information on RUNSTATS.

The definer of a base table automatically receives the CONTROL privilege.

The definer of a view automatically receives the CONTROL privilege if the definer
holds the CONTROL privilege on all tables and views identified in the fullselect.

DELETE
Grants the privilege to delete rows from the table or updatable view.

INDEX
Grants the privilege to create an index on the table. The creator of an index auto-
matically has the CONTROL privilege on the index (authorizing the creator to drop
the index), and retains this privilege even if the INDEX privilege is revoked.

INSERT
Grants the privilege to insert rows into the table or updatable view, and run the
IMPORT utility.

REFERENCES
Grants the privilege to create and drop a foreign key referencing the table as the
parent.

If the authorization ID of the statement has one of:

¹ DBADM or SYSADM authority
¹ CONTROL privilege on the table
¹ REFERENCES WITH GRANT OPTION on the table

582 SQL Reference

GRANT (Table or View Privileges)

then the grantee(s) can create referential constraints using all columns of the table
as parent key, even those added later using the ALTER TABLE statement. Other-
wise, the privileges granted are all those grantable column REFERENCES privi-
leges that the authorization ID of the statement has on the identified table. For
more information on the authorization required to create or drop a foreign key, see
“ALTER TABLE” on page 348.

REFERENCES (column-name,...)
Grants the privilege to create and drop a foreign key using only those columns
specified in the column list as a parent key. Each column-name must be an
unqualified name that identifies a column of the table identified in the ON clause.

SELECT
Grants the privilege to retrieve rows from the table or view, create views on the
table, and run the EXPORT utility. See the Command Reference for information on
EXPORT.

UPDATE
Grants the privilege to use the UPDATE statement on the table or updatable view
identified in the ON clause.

If the authorization ID of the statement has one of:

¹ DBADM or SYSADM authority
¹ CONTROL privilege on the table or view
¹ UPDATE WITH GRANT OPTION on the table or view

then the grantee(s) can can update all updatable columns of the table or view on
which the grantor has with grant privilege as well as those columns added later
using the ALTER TABLE statement. Otherwise, the privileges granted are all those
grantable column UPDATE privileges that the authorization ID of the statement has
on the identified table or view.

UPDATE (column-name,...)
Grants the privilege to use the UPDATE statement to update only those columns
specified in the column list. Each column-name must be an unqualified name that
identifies a column of the table or view identified in the ON clause.

ON TABLE table-name or view-name
Specifies the table or view on which privileges are to be granted.

No privileges may be granted on an inoperative view (SQLSTATE 51024).

TO Specifies to whom the privileges are granted.

USER
Specifies that the authorization-name identifies a user.

GROUP
Specifies that the authorization-name identifies a group name.

authorization-name,...

 Chapter 6. Statements 583

GRANT (Table or View Privileges)

Lists the authorization IDs of one or more users or groups.71

A privilege granted to a group is not used for authorization checking on static
DML statements in a package. Nor is it used when checking authorization on a
base table while processing a CREATE VIEW statement.

In DB2 Universal Database, table privileges granted to groups only apply to
statements that are dynamically prepared. For example, if the INSERT privi-
lege on the PROJECT table has been granted to group D204 but not
UBIQUITY (a member of D204) UBIQUITY could issue the statement:

EXEC SQL EXECUTE IMMEDIATE :INSERT_STRING;

 where the content of the string is:

INSERT INTO PROJECT (PROJNO, PROJNAME, DEPTNO, RESPEMP)

VALUES ('AD3114', 'TOOL PROGRAMMING', 'D21', '000260');

 but could not precompile or bind a program with the statement:

EXEC SQL INSERT INTO PROJECT (PROJNO, PROJNAME, DEPTNO, RESPEMP)

VALUES ('AD3114', 'TOOL PROGRAMMING', 'D21', '000260');

PUBLIC
Grants the privileges to all users.72

WITH GRANT OPTION
Allows the specified authorization-names to GRANT the privileges to others.

If the specified privileges include CONTROL, the WITH GRANT OPTION applies to
all the applicable privileges except for CONTROL (SQLSTATE 01516).

 Rules
¹ If neither USER nor GROUP is specified, then

If the authorization-name is defined in the operating system only as GROUP,
then GROUP is assumed.
If the authorization-name is defined in the operating system only as USER or if
it is undefined, USER is assumed.
If the authorization-name is defined in the operating system as both, or DCE
authentication is used, an error (SQLSTATE 56092) is raised.

¹ In general, the GRANT statement will process the granting of privileges that the
authorization ID of the statement is allowed to grant, returning a warning
(SQLSTATE 01007) if one or more privileges was not granted. If no privileges were
granted, an error is returned (SQLSTATE 42501).73 If CONTROL privilege is speci-
fied, privileges will only be granted if the authorization ID of the statement has
SYSADM or DBADM authority (SQLSTATE 42501).

71 Restrictions in previous versions on grants to authorization ID of the user issuing the statement have been removed.

72 Restrictions in previous versions on the use of privileges granted to PUBLIC for static SQL statements and CREATE VIEW state-
ments have been removed.

73 If the package used for processing the statement was precompiled with LANGLEVEL set to SQL92E or MIA, a warning is returned
(SQLSTATE 01007) unless the grantor has NO privileges on the object of the grant.

584 SQL Reference

GRANT (Table or View Privileges)

 Examples
Example 1: Grant all privileges on the table WESTERN_CR to PUBLIC.

GRANT ALL ON WESTERN_CR

 TO PUBLIC

Example 2: Grant the appropriate privileges on the CALENDAR table so that users
PHIL and CLAIRE can read it and insert new entries into it. Do not allow them to
change or remove any existing entries.

GRANT SELECT, INSERT ON CALENDAR

 TO USER PHIL, USER CLAIRE

Example 3: Grant all privileges on the COUNCIL table to user FRANK and the ability
to extend all privileges to others.

GRANT ALL ON COUNCIL

 TO USER FRANK WITH GRANT OPTION

Example 4: GRANT SELECT privilege on table CORPDATA.EMPLOYEE to a user
named JOHN. There is a user called JOHN and no group called JOHN.

GRANT SELECT ON CORPDATA.EMPLOYEE TO JOHN

 or

 GRANT SELECT

ON CORPDATA.EMPLOYEE TO USER JOHN

Example 5: GRANT SELECT privilege on table CORPDATA.EMPLOYEE to a group
named JOHN. There is a group called JOHN and no user called JOHN.

GRANT SELECT ON CORPDATA.EMPLOYEE TO JOHN

 or

GRANT SELECT ON CORPDATA.EMPLOYEE TO GROUP JOHN

Example 6: GRANT INSERT and SELECT on table T1 to both a group named D024
and a user named D024.

GRANT INSERT, SELECT ON TABLE T1

TO GROUP D024, USER D024

In this case, both the members of the D024 group and the user D024 would be allowed
to INSERT into and SELECT from the table T1. Also, there would be two rows added to
the SYSCAT.TABAUTH catalog view.

Example 7: GRANT INSERT, SELECT, and CONTROL on the CALENDAR table to
user FRANK. FRANK must be able to pass the privileges on to others.

GRANT CONTROL ON TABLE CALENDAR

TO FRANK WITH GRANT OPTION

The result of this statement is a warning (SQLSTATE 01516) that CONTROL was not
given the WITH GRANT OPTION. Frank now has the ability to grant any privilege on

 Chapter 6. Statements 585

GRANT (Table or View Privileges)

CALENDAR including INSERT and SELECT as required. FRANK cannot grant
CONTROL on CALENDAR to other users unless he has SYSADM or DBADM authority.

586 SQL Reference

INCLUDE

 INCLUDE
The INCLUDE statement inserts declarations into a source program.

 Invocation
This statement can only be embedded in an application program. It is not an executable
statement.

 Authorization
None required.

 Syntax

55─ ─INCLUDE─ ──┬ ┬─SQLCA─ ──5%
 ├ ┤─SQLDA─
 └ ┘─name──

 Description
SQLCA

Indicates the description of an SQL communication area (SQLCA) is to be
included. For a description of the SQLCA, see Appendix B, “SQL Communication
Area (SQLCA)” on page 679.

SQLDA
Indicates the description of an SQL descriptor area (SQLDA) is to be included. For
a description of the SQLDA, see Appendix C, “SQL Descriptor Area (SQLDA)” on
page 683.

name
Identifies an external file containing text that is to be included in the source
program being precompiled. It may be an SQL identifier without a filename exten-
sion or a literal in single quotes (' '). An SQL identifier assumes the filename
extension of the source file being precompiled. If a filename extension is not pro-
vided by a literal in quotes then none is assumed.

For host language specific information, see the Embedded SQL Programming
Guide.

 Notes
¹ When a program is precompiled, the INCLUDE statement is replaced by source

statements. Thus, the INCLUDE statement should be specified at a point in the
program such that the resulting source statements are acceptable to the compiler.

¹ The external source file must be written in the host language specified by the
name. If it is greater than 18 characters or contains characters not allowed in an
SQL identifier then it must be in single quotes. INCLUDE name statements may be

 Chapter 6. Statements 587

INCLUDE

nested though not cyclical (for example, if A and B are modules and A contains an
INCLUDE name statement, then it is not valid for A to call B and then B to call A).

¹ When the LANGLEVEL precompile option is specified with the SQL92E value,
INCLUDE SQLCA should not be specified. SQLSTATE and SQLCODE variables
may be defined within the host variable declare section.

 Example
Include an SQLCA in a C program.

EXEC SQL INCLUDE SQLCA;

EXEC SQL DECLARE C1 CURSOR FOR

SELECT DEPTNO, DEPTNAME, MGRNO FROM TDEPT

WHERE ADMRDEPT = 'A00';

EXEC SQL OPEN C1;

while (SQLCODE==0) {

EXEC SQL FETCH C1 INTO :dnum, :dname, :mnum;

 (Print results)

 }

EXEC SQL CLOSE C1;

588 SQL Reference

INSERT

 INSERT
The INSERT statement inserts rows into a table or view. Inserting a row into a view
also inserts the row into the table on which the view is based.

 Invocation
This statement can be embedded in an application program or issued through the use
of dynamic SQL statements. It is an executable statement that can be dynamically pre-
pared.

 Authorization
To execute this statement, the privileges held by the authorization ID of the statement
must include at least one of the following:

¹ INSERT privilege on the table or view where rows are to be inserted
¹ CONTROL privilege on the table or view where rows are to be inserted
¹ SYSADM or DBADM authority.

In addition, for each table or view referenced in any fullselect used in the INSERT
statement, the privileges held by the authorization ID of the statement must include at
least one of the following:

 ¹ SELECT privilege
 ¹ CONTROL privilege
¹ SYSADM or DBADM authority.

GROUP privileges are not checked for static INSERT statements.

 Syntax

55─ ─INSERT INTO─ ──┬ ┬─table-name─ ──┬ ┬─────────────────────── ───────────────────────────────5
 └ ┘─view-name── │ │┌ ┐─,───────────
 └ ┘ ─(─ ───6 ┴─column-name─ ─)─

 ┌ ┐─,────────────────────────────
5─ ──┬ ┬ ─VALUES─ ───6 ┴──┬ ┬──┬ ┬─expression─ ────────── ───────── ────────────────────────────────5%
 │ ││ │├ ┤─NULL───────
 │ ││ │└ ┘─DEFAULT────
 │ ││ │┌ ┐─,──────────────
 │ │└ ┘ ─(─ ───6 ┴──┬ ┬─expression─ ─)─
 │ │├ ┤─NULL───────
 │ │└ ┘─DEFAULT────
 └ ┘ ──┬ ┬─────────────────────────────────── ─fullselect─
 │ │┌ ┐─,───────────────────────
 └ ┘ ─WITH─ ───6 ┴─common-table-expression─

Note: See Chapter 5, “Queries” on page 285 for the syntax of common-table-expression and fullselect.

 Chapter 6. Statements 589

INSERT

 Description
INTO table-name or view-name

Identifies the object of the insert operation. The name must identify a table or view
that exists at the application server, but it must not identify a catalog table, a view
of a catalog table, or a read-only view.

A value cannot be inserted into a view column that is derived from:

¹ A constant, expression, or scalar function
¹ The same base table column as some other column of the view.

If the object of the insert operation is a view with such columns, a list of column
names must be specified, and the list must not identify these columns.

(column-name,...)
Specifies the columns for which insert values are provided. Each name must be an
unqualified name that identifies a column of the table or view. The same column
must not be identified more than once. A view column that cannot accept insert
values must not be identified.

Omission of the column list is an implicit specification of a list in which every
column of the table or view is identified in left-to-right order. This list is established
when the statement is prepared and therefore does not include columns that were
added to a table after the statement was prepared.

The implicit column list is established at prepare time. Hence an INSERT statement
embedded in an application program does not use any columns that might have
been added to the table or view after prepare time.

VALUES
Introduces one or more rows of values to be inserted.

Each host variable named must be described in the program in accordance with
the rules for declaring host variables.

The number of values for each row must equal the number of names in the column
list. The first value is inserted in the first column in the list, the second value in the
second column, and so on.

expression
An expression can be as defined in “Expressions” on page 107.

NULL
Specifies the null value and should only be specified for nullable columns.

DEFAULT
Specifies that the default value is to be used. The value that is inserted
depends on how the column was defined, as follows:

¹ If the WITH DEFAULT clause is used, the default inserted is as defined
for the column (see default-clause in “ALTER TABLE” on page 348).

¹ If the WITH DEFAULT clause or the NOT NULL clause is not used, the
value inserted is NULL.

590 SQL Reference

INSERT

¹ If the NOT NULL clause is used and the WITH DEFAULT clause is not
used or DEFAULT NULL is used, the DEFAULT keyword cannot be speci-
fied for that column (SQLSTATE 23502).

WITH common-table-expression
Defines a common table expression for use with the fullselect that follows. See
“common-table-expression” on page 325 for an explanation of the common-table-
expression.

fullselect
Specifies a set of new rows in the form of the result table of a fullselect. There may
be one, more than one, or none. If the result table is empty, SQLCODE is set to
+100 and SQLSTATE is set to '02000'.

When the base object of the INSERT and the base object of the fullselect or any
subquery of the fullselect, are the same table, the fullselect is completely evaluated
before any rows are inserted.

The number of columns in the result table must equal the number of names in the
column list. The value of the first column of the result is inserted in the first column
in the list, the second value in the second column, and so on.

 Rules
¹ Default values: The value inserted in any column that is not in the column list is

either the default value of the column or null. Columns that do not allow null
values and are not defined with NOT NULL WITH DEFAULT must be included in
the column list. Similarly, if you insert into a view, the value inserted into any
column of the base table that is not in the view is either the default value of the
column or null. Hence, all columns of the base table that are not in the view must
have either a default value or allow null values.

¹ Length: If the insert value of a column is a number, the column must be a numeric
column with the capacity to represent the integral part of the number. If the insert
value of a column is a string, the column must either be a string column with a
length attribute at least as great as the length of the string, or a datetime column if
the string represents a date, time, or timestamp.

¹ Assignment: Insert values are assigned to columns in accordance with the assign-
ment rules described in Chapter 3.

¹ Validity: If the table named, or the base table of the view named, has one or more
unique indexes, each row inserted into the table must conform to the constraints
imposed by those indexes. If a view whose definition includes WITH CHECK
OPTION is named, each row inserted into the view must conform to the definition
of the view. For an explanation of the rules governing this situation, see “CREATE
VIEW” on page 517.

¹ Referential Integrity: For each constraint defined on a table, each non-null insert
value of the foreign key must be equal to a primary key value of the parent table.

 Chapter 6. Statements 591

INSERT

¹ Check Constraint: Insert values must satisfy the check conditions of the check
constraints defined on the table. An INSERT to a table with check constraints
defined has the constraint conditions evaluated once for each row that is inserted.

¹ Triggers: Insert statements may cause triggers to be executed. A trigger may
cause other statements to be executed or may raise error conditions based on the
insert values.

 Notes
¹ After execution of an INSERT statement that is embedded within a program, the

value of the third variable of the SQLERRD(3) portion of the SQLCA indicates the
number of rows that were inserted. SQLERRD(5) contains the count of all triggered
insert, update and delete operations.

¹ Unless appropriate locks already exist, one or more exclusive locks are acquired at
the execution of a successful INSERT statement. Until the locks are released, an
inserted row can only be accessed by:

– The application process that performed the insert.
– Another application process using isolation level UR through a read-only

cursor, SELECT INTO statement, or subselect used in a subquery.

¹ For further information about locking, see the description of the COMMIT,
ROLLBACK, and LOCK TABLE statements.

¹ If an application is running against a partitioned database, and it is bound with
option INSERT BUF, then INSERT with VALUES statements which are not proc-
essed using EXECUTE IMMEDIATE may be buffered. DB2 assumes that such an
INSERT statement is being processed inside a loop in the application's logic.
Rather than execute the statement to completion, it attempts to buffer the new row
values in one or more buffers. As a result the actual insertions of the rows into the
table are performed later, asynchronous with the application's INSERT logic. Be
aware that this asynchronous insertion may cause an error related to an INSERT
to be returned on some other SQL statement that follows the INSERT in the appli-
cation.

This has the potential to dramatically improve INSERT performance, but is best
used with clean data, due to the asynchronous nature of the error handling. See
buffered insert in the Embedded SQL Programming Guide for further details.

 Examples
Example 1: Insert a new department with the following specifications into the
DEPARTMENT table:

¹ Department number (DEPTNO) is ‘E31’
¹ Department name (DEPTNAME) is ‘ARCHITECTURE’
¹ Managed by (MGRNO) a person with number ‘00390’
¹ Reports to (ADMRDEPT) department ‘E01’.

INSERT INTO DEPARTMENT

 VALUES ('E31', 'ARCHITECTURE', '00390', 'E01')

592 SQL Reference

INSERT

Example 2: Insert a new department into the DEPARTMENT table as in example 1,
but do not assign a manager to the new department.

INSERT INTO DEPARTMENT (DEPTNO, DEPTNAME, ADMRDEPT)

VALUES ('E31', 'ARCHITECTURE', 'E01')

Example 3: Insert two new departments using one statement into the DEPARTMENT
table as in example 2, but do not assign a manager to the new department.

INSERT INTO DEPARTMENT (DEPTNO, DEPTNAME, ADMRDEPT)

 VALUES ('B11', 'PURCHASING', 'B01'), ('E41', 'DATABASE ADMINISTRATION', 'E01')

Example 4: Create a temporary table MA_EMP_ACT with the same columns as the
EMP_ACT table. Load MA_EMP_ACT with the rows from the EMP_ACT table with a
project number (PROJNO) starting with the letters ‘MA’.

 CREATE TABLEMA_EMP_ACT

 (EMPNO CHAR(6) NOT NULL,

 PROJNO CHAR(6) NOT NULL,

 ACTNO SMALLINT NOT NULL,

 EMPTIME DEC(5,2),

 EMSTDATE DATE,

 EMENDATE DATE)

 INSERT INTOMA_EMP_ACT

SELECT * FROM EMP_ACT

WHERE SUBSTR(PROJNO, 1, 2) = 'MA'

Example 5: Use a C program statement to add a skeleton project to the PROJECT
table. Obtain the project number (PROJNO), project name (PROJNAME), department
number (DEPTNO), and responsible employee (RESPEMP) from host variables. Use
the current date as the project start date (PRSTDATE). Assign a NULL value to the
remaining columns in the table.

EXEC SQL INSERT INTO PROJECT (PROJNO, PROJNAME, DEPTNO, RESPEMP, PRSTDATE)

VALUES (:PRJNO, :PRJNM, :DPTNO, :REMP, CURRENT DATE);

 Chapter 6. Statements 593

LOCK TABLE

 LOCK TABLE
The LOCK TABLE statement either prevents concurrent application processes from
changing a table or prevents concurrent application processes from using a table.

 Invocation
This statement can be embedded in an application program or issued through the use
of dynamic SQL statements. It is an executable statement that can be dynamically pre-
pared.

 Authorization
The privileges held by the authorization ID of the statement must include at least one of
the following:

¹ SELECT privilege on the table
¹ CONTROL privilege on the table
¹ SYSADM or DBADM authority.

 Syntax

55──LOCK TABLE──table-name──IN─ ──┬ ┬─SHARE───── ─MODE──────────────────────────────────────5%
 └ ┘─EXCLUSIVE─

 Description
table-name

Identifies the table. The table-name must identify a base table that exists at the
application server, but it must not identify a catalog table.

IN SHARE MODE
Prevents concurrent application processes from executing any but read-only oper-
ations on the table.

IN EXCLUSIVE MODE
Prevents concurrent application processes from executing any operations on the
table. Note that EXCLUSIVE MODE does not prevent concurrent application proc-
esses that are running at isolation level Uncommitted Read (UR) from executing
read-only operations on the table.

 Notes
¹ Locking is used to prevent concurrent operations. A lock is not necessarily

acquired during the execution of the LOCK TABLE statement if a suitable lock
already exists. The lock that prevents concurrent operations is held at least until
the termination of the unit of work.

¹ In a partitioned database, a table lock is first acquired at the first partition in the
nodegroup (the partition with the lowest number) and then at other partitions . If the

594 SQL Reference

LOCK TABLE

LOCK TABLE statement is interrupted, the table may be locked on some partitions
but not on others. If this occurs, either issue another LOCK TABLE statement to
complete the locking on all partitions , or issue a COMMIT or ROLLBACK state-
ment to release the current locks.

¹ This statement affects all partitions in the nodegroup.

 Example
Obtain a lock on the table EMP. Do not allow other programs either to read or update
the table.

LOCK TABLE EMP IN EXCLUSIVE MODE

 Chapter 6. Statements 595

OPEN

 OPEN
The OPEN statement opens a cursor so that it can be used to fetch rows from its result
table.

 Invocation
Although an interactive SQL facility might provide an interface that gives the appear-
ance of interactive execution, this statement can only be embedded within an applica-
tion program. It is an executable statement that cannot be dynamically prepared.

 Authorization
See “DECLARE CURSOR” on page 525 for the authorization required to use a cursor.

 Syntax

55─ ─OPEN──cursor-name─ ──┬ ┬─────────────────────────────────── ────────────────────────────5%
 │ │┌ ┐─,─────────────
 ├ ┤ ─USING─ ───6 ┴─host-variable─ ─────────
 └ ┘ ─USING DESCRIPTOR──descriptor-name─

 Description
cursor-name

Names a cursor that is defined in a DECLARE CURSOR statement that was stated
earlier in the program. When the OPEN statement is executed, the cursor must be
in the closed state.

The DECLARE CURSOR statement must identify a SELECT statement, in one of
the following ways:

¹ Including the SELECT statement in the DECLARE CURSOR statement

¹ Including a statement-name that names a prepared SELECT statement.

The result table of the cursor is derived by evaluating that SELECT statement,
using the current values of any host variables specified in it or in the USING clause
of the OPEN statement. The rows of the result table may be derived during the
execution of the OPEN statement and a temporary table may be created to hold
them; or they may be derived during the execution of subsequent FETCH state-
ments. In either case, the cursor is placed in the open state and positioned before
the first row of its result table. If the table is empty the state of the cursor is effec-
tively “after the last row”.

USING
Introduces a list of host variables whose values are substituted for the parameter
markers (question marks) of a prepared statement. (For an explanation of param-
eter markers, see “PREPARE” on page 601.) If the DECLARE CURSOR statement
names a prepared statement that includes parameter markers, USING must be

596 SQL Reference

OPEN

used. If the prepared statement does not include parameter markers, USING is
ignored.

host-variable
Identifies a variable described in the program in accordance with the rules for
declaring host variables. The number of variables must be the same as the
number of parameter markers in the prepared statement. The nth variable cor-
responds to the nth parameter marker in the prepared statement. Where
appropriate, locator variables and file reference variables can be provided as
the source of values for parameter markers.

DESCRIPTOR descriptor-name
Identifies an SQLDA that must contain a valid description of host variables.

Before the OPEN statement is processed, the user must set the following
fields in the SQLDA:

¹ SQLN to indicate the number of SQLVAR occurrences provided in the
SQLDA

¹ SQLDABC to indicate the number of bytes of storage allocated for the
SQLDA

¹ SQLD to indicate the number of variables used in the SQLDA when proc-
essing the statement

¹ SQLVAR occurrences to indicate the attributes of the variables.

The SQLDA must have enough storage to contain all SQLVAR occurrences.
Therefore, the value in SQLDABC must be greater than or equal to 16 +
SQLN*(N), where N is the length of an SQLVAR occurrence.

If LOB result columns need to be accommodated, there must be two SQLVAR
entries for every select-list item (or column of the result table). See “Effect of
DESCRIBE on the SQLDA” on page 687, which discusses SQLDOUBLED
and LOB columns.

SQLD must be set to a value greater than or equal to zero and less than or
equal to SQLN. For more information, see Appendix C, “SQL Descriptor Area
(SQLDA)” on page 683.

 Rules
¹ When the SELECT statement of the cursor is evaluated, each parameter marker in

the statement is effectively replaced by its corresponding host variable. For a typed
parameter marker, the attributes of the target variable are those specified by the
CAST specification. For an untyped parameter marker, the attributes of the target
variable are determined according to the context of the parameter marker. See
“Rules” on page 602 for the rules affecting parameter markers.

¹ Let V denote a host variable that corresponds to parameter marker P. The value of
V is assigned to the target variable for P in accordance with the rules for assigning
a value to a column. Thus:

– V must be compatible with the target.

 Chapter 6. Statements 597

OPEN

– If V is a string, its length must not be greater than the length attribute of the
target.

– If V is a number, the absolute value of its integral part must not be greater
than the maximum absolute value of the integral part of the target.

– If the attributes of V are not identical to the attributes of the target, the value is
converted to conform to the attributes of the target.

When the SELECT statement of the cursor is evaluated, the value used in place of
P is the value of the target variable for P. For example, if V is CHAR(6), and the
target is CHAR(8), the value used in place of P is the value of V padded with two
blanks.

¹ The USING clause is intended for a prepared SELECT statement that contains
parameter markers. However, it can also be used when the SELECT statement of
the cursor is part of the DECLARE CURSOR statement. In this case the OPEN
statement is executed as if each host variable in the SELECT statement were a
parameter marker, except that the attributes of the target variables are the same as
the attributes of the host variables in the SELECT statement. The effect is to over-
ride the values of the host variables in the SELECT statement of the cursor with
the values of the host variables specified in the USING clause.

 Notes
¹ Closed state of cursors: All cursors in a program are in the closed state when

the program is initiated and when it initiates a ROLLBACK statement.

All cursors, except open cursors declared WITH HOLD, are in a closed state when
a program issues a COMMIT statement.

A cursor can also be in the closed state because a CLOSE statement was exe-
cuted or an error was detected that made the position of the cursor unpredictable.

¹ To retrieve rows from the result table of a cursor, execute a FETCH statement
when the cursor is open. The only way to change the state of a cursor from closed
to open is to execute an OPEN statement.

¹ Effect of temporary tables: In some cases, the result table of a cursor is derived
during the execution of FETCH statements. In other cases, the temporary table
method is used instead. With this method the entire result table is transferred to a
temporary table during the execution of the OPEN statement. When a temporary
table is used, the results of a program can differ in these two ways:

– An error can occur during OPEN that would otherwise not occur until some
later FETCH statement.

– INSERT, UPDATE, and DELETE statements executed in the same transaction
while the cursor is open cannot affect the result table.

Conversely, if a temporary table is not used, INSERT, UPDATE, and DELETE
statements executed while the cursor is open can affect the result table if issued
from the same unit of work. The Embedded SQL Programming Guide describes
how locking can be used to control the effect of INSERT, UPDATE, and DELETE
operations executed by concurrent units of work. Your result table can also be

598 SQL Reference

OPEN

affected by operations executed by your own unit of work, and the effect of such
operations is not always predictable. For example, if cursor C is positioned on a
row of its result table defined as SELECT * FROM T, and a new row is inserted
into T, the effect of that insert on the result table is not predictable because its
rows are not ordered. Thus a subsequent FETCH C may or may not retrieve the
new row of T.

¹ Statement caching affects cursors declared open by the OPEN statement. See the
“Notes” on page 555 for information.

 Examples
Example 1: Write the embedded statements in a COBOL program that will:

1. Define a cursor C1 that is to be used to retrieve all rows from the DEPARTMENT
table for departments that are administered by (ADMRDEPT) department ‘A00’.

2. Place the cursor C1 before the first row to be fetched.

EXEC SQL DECLARE C1 CURSOR FOR

SELECT DEPTNO, DEPTNAME, MGRNO

 FROM DEPARTMENT

WHERE ADMRDEPT = 'A00'

 END-EXEC.

 EXEC SQL OPEN C1

 END-EXEC.

Example 2: Code an OPEN statement to associate a cursor DYN_CURSOR with a
dynamically defined select-statement in a C program. Assuming two parameter markers
are used in the predicate of the select-statement, two host variable references are sup-
plied with the OPEN statement to pass integer and varchar(64) values between the
application and the database. (The related host variable definitions, PREPARE state-
ment, and DECLARE CURSOR statement are also shown in the example below.)

EXEC SQL BEGIN DECLARE SECTION;

 static short hv_int;

 char hv_vchar64[64];

 char stmt1_str[200];

EXEC SQL END DECLARE SECTION;

EXEC SQL PREPARE STMT1_NAME FROM :stmt1_str;

EXEC SQL DECLARE DYN_CURSOR CURSOR FOR STMT1_NAME;

EXEC SQL OPEN DYN_CURSOR USING :hv_int, :hv_vchar64;

Example 3: Code an OPEN statement as in example 2, but in this case the number
and data types of the parameter markers in the WHERE clause are not known.

 Chapter 6. Statements 599

OPEN

EXEC SQL BEGIN DECLARE SECTION;

 char stmt1_str[200];

EXEC SQL END DECLARE SECTION;

 EXEC SQL INCLUDE SQLDA;

EXEC SQL PREPARE STMT1_NAME FROM :stmt1_str;

EXEC SQL DECLARE DYN_CURSOR CURSOR FOR STMT1_NAME;

EXEC SQL OPEN DYN_CURSOR USING DESCRIPTOR :sqlda;

600 SQL Reference

PREPARE

 PREPARE
The PREPARE statement is used by application programs to dynamically prepare an
SQL statement for execution. The PREPARE statement creates an executable SQL
statement, called a prepared statement, from a character string form of the statement,
called a statement string.

 Invocation
This statement can be embedded only in an application program. It is an executable
statement that cannot be dynamically prepared.

 Authorization
For statements where authorization checking is performed at statement preparation
time (DML), the privileges held by the authorization ID of the statement must include
those required to execute the SQL statement specified by the PREPARE statement.
For statements where authorization checking is performed at statement execution (DDL,
GRANT, and REVOKE statements), no authorization is required to use the statement;
however, the authorization is checked when the prepared statement is executed.

 Syntax

55─ ─PREPARE──statement-name─ ──┬ ┬─────────────────────── ─FROM──host-variable──────────────5%
 └ ┘ ─INTO──descriptor-name─

 Description
statement-name

Names the prepared statement. If the name identifies an existing prepared state-
ment, that previously prepared statement is destroyed. The name must not identify
a prepared statement that is the SELECT statement of an open cursor.

INTO
If INTO is used, and the PREPARE statement is successfully executed, information
about the prepared statement is placed in the SQLDA specified by the descriptor-
name.

descriptor-name
Is the name of an SQLDA.74

FROM
Introduces the statement string. The statement string is the value of the specified
host variable.

74 The DESCRIBE statement may be used as an alternative to this clause. See “DESCRIBE” on page 533.

 Chapter 6. Statements 601

PREPARE

host-variable
Must identify a host variable that is described in the program in accordance
with the rules for declaring character string variables. It must be a character-
string variable (either fixed-length or varying-length).

 Rules
¹ Rules for statement strings: The statement string must be one of the following

SQL statements:

The statement string must not:

– Be a SELECT statement with an INTO clause
– Be a VALUES statement with an INTO clause
– Begin with EXEC SQL and end with a statement terminator
– Include references to host variables

 – Include comments.

¹ Parameter Markers: Although a statement string cannot include references to
host variables, it may include parameter markers; those can be replaced by the
values of host variables when the prepared statement is executed. A parameter
marker is a question mark (?) that is declared where a host variable could be
stated if the statement string were a static SQL statement. For an explanation of
how parameter markers are replaced by values, see “OPEN” on page 596 and
“EXECUTE” on page 554.

There are two types of parameter markers:

Typed parameter marker
A parameter marker that is specified along with its target data type. It has the
general form:

CAST(? AS data-type)

 This notation is not a function call, but a “promise” that the type of the param-
eter at run time will be of the data type specified or some data type that can
be converted to the specified data type. For example, in:

 UPDATE EMPLOYEE

SET LASTNAME = TRANSLATE(CAST(? AS VARCHAR(12)))

WHERE EMPNO = ?

ALTER ROLLBACK
COMMENT ON select-statement
COMMIT SET CONSTRAINTS
CREATE SET CURRENT EXPLAIN MODE
DELETE SET CURRENT EXPLAIN SNAPSHOT
DROP SET CURRENT FUNCTION PATH
GRANT SET CURRENT QUERY OPTIMIZATION
INSERT SET EVENT MONITOR STATE
LOCK TABLE SIGNAL SQLSTATE
REVOKE UPDATE

602 SQL Reference

PREPARE

 the value of the argument of the TRANSLATE function will be provided at run
time. The data type of that value will either be VARCHAR(12), or some type
that can be converted to VARCHAR(12).

Untyped parameter marker
A parameter marker that is specified without its target data type. It has the
form of a single question mark. The data type of an untyped parameter marker
is provided by context. For example, the untyped parameter marker in the
predicate of the above update statement is the same as the data type of the
EMPNO column.

Typed parameter markers can be used in dynamic SQL statements wherever a
host variable is supported and the data type is based on the promise made in the
CAST function.

Untyped parameters markers can be used in dynamic SQL statements in selected
locations where host variables are supported. These locations and the resulting
data type are found in Table 19. The locations are grouped in this table into
expressions, predicates and functions to assist in determining applicability of an
untyped parameter marker. When an untyped parameter marker is used in a func-
tion (including arithmetic operators, CONCAT and datetime operators) with an
unqualified function name, the qualifier is set to 'SYSIBM' for the purposes of func-
tion resolution.

Table 19 (Page 1 of 5). Untyped Parameter Marker Usage

Untyped Parameter Marker Location Data Type

Expressions (including select list, CASE and VALUES)

Alone in a select list Error

Both operands of a single arithmetic operator,
after considering operator precedence and
order of operation rules.

Includes cases such as:

? + ? + 10

Error

One operand of a single operator in an arith-
metic expression (not a datetime expression)

Includes cases such as:

? + ? * 10

The data type of the other operand.

Labelled duration within a datetime expression.
(Note that the portion of a labelled duration
that indicates the type of units cannot be a
parameter marker.)

DECIMAL(15,0)

Any other operand of a datetime expression
(for instance 'timecol + ?' or '? - datecol').

Error

Both operands of a CONCAT operator Error

 Chapter 6. Statements 603

PREPARE

Table 19 (Page 2 of 5). Untyped Parameter Marker Usage

Untyped Parameter Marker Location Data Type

One operand of a CONCAT operator where
the other operand is a non-CLOB character
data type

If one operand is either CHAR(n) or
VARCHAR(n), where n is less than 128, then
other is VARCHAR(254 - n). In all other cases
the data type is VARCHAR(254).

One operand of a CONCAT operator where
the other operand is a non-DBCLOB graphic
data type.

If one operand is either GRAPHIC(n) or
VARGRAPHIC(n), where n is less than 64,
then other is VARCHAR(127 - n). In all other
cases the data type is VARCHAR(127).

One operand of a CONCAT operator where
the other operand is a large object string.

Same as that of the other operand.

As a value on the right hand side of a SET
clause of an UPDATE statement.

The data type of the column. If the column is
defined as a user-defined distinct type, then it
is the source data type of the user-defined dis-
tinct type.

The expression following CASE in a simple
CASE expression

Error

At least one of the result-expressions in a
CASE expression (both Simple and Searched)
with the rest of the result-expressions either
untyped parameter marker or NULL.

Error

Any or all expressions following WHEN in a
simple CASE expression.

Result of applying the “Rules for Result Data
Types” on page 74 to the expression following
CASE and the expressions following WHEN
that are not untyped parameter markers.

.A result-expression in a CASE expression
(both Simple and Searched) where at least
one result-expression is not NULL and not an
untyped parameter marker.

Result of applying the Rules for Result Data
Types to all result-expressions that are other
than NULL or untyped parameter markers.

Alone as a column-expression in a single-row
VALUES clause that is not within an INSERT
statement.

Error

Alone as a column-expression in a multi-row
VALUES clause that is not within an INSERT
statement, and for which the column-
expressions in the same position in all other
row-expressions are untyped parameter
markers.

Error

Alone as a column-expression in a multi-row
VALUES clause that is not within an INSERT
statement, and for which the expression in the
same position of at least one other row-
expression is not an untyped parameter
marker or NULL.

Result of applying the “Rules for Result Data
Types” on page 74 on all operands that are
other than untyped parameter markers.

604 SQL Reference

PREPARE

Table 19 (Page 3 of 5). Untyped Parameter Marker Usage

Untyped Parameter Marker Location Data Type

Alone as a column-expression in a single-row
VALUES clause within an INSERT statement.

The data type of the column. If the column is
defined as a user-defined distinct type, then it
is the source data type of the user-defined dis-
tinct type.

Alone as a column-expression in a multi-row
VALUES clause within an INSERT statement.

The data type of the column. If the column is
defined as a user-defined distinct type, then it
is the source data type of the user-defined dis-
tinct type.

Predicates

Both operands of a comparison operator Error

One operand of a comparison operator where
the other operand other than an untyped
parameter marker.

The data type of the other operand

All operands of a BETWEEN predicate Error

Either

1st and 2nd, or
1st and 3rd

 operands of a BETWEEN predicate

Same as that of the only non-parameter
marker.

Remaining BETWEEN situations (i.e. one
untyped parameter marker only)

Result of applying the “Rules for Result Data
Types” on page 74 on all operands that are
other than untyped parameter markers.

All operands of an IN predicate Error

Both the 1st and 2nd operands of an IN predi-
cate.

Result of applying the Rules for Result Data
Types on all operands of the IN list (operands
to the right of IN keyword) that are other than
untyped parameter markers.

The 1st operand of an IN predicate where the
right hand side is a fullselect.

Data type of the selected column

Any or all operands of the IN list of the IN
predicate

Data type of the 1st operand (left hand side)

The 1st operand and zero or more operands in
the IN list excluding the 1st operand of the IN
list

Result of applying the Rules for Result Data
Types on all operands of the IN list (operands
to the right of IN keyword) that are other than
untyped parameter markers.

All three operands of the LIKE predicate. Match expression (operand 1) and pattern
expression (operand 2) are VARCHAR(4000).
Escape expression (operand 3) is
VARCHAR(2).

The match expression of the LIKE predicate
when either the pattern expression or the
escape expression is other than an untyped
parameter marker.

Either VARCHAR(4000) or
VARGRAPHIC(2000) depending on the data
type of the first operand that is not an untyped
parameter marker.

 Chapter 6. Statements 605

PREPARE

Table 19 (Page 4 of 5). Untyped Parameter Marker Usage

Untyped Parameter Marker Location Data Type

The pattern expression of the LIKE predicate
when either the match expression or the
escape expression is other than an untyped
parameter marker.

Either VARCHAR(4000) or
VARGRAPHIC(2000) depending on the data
type of the first operand that is not an untyped
parameter marker. If the data type of the
match expression is BLOB, the data type of
the pattern expression is assumed to be
BLOB(4000).

The escape expression of the LIKE predicate
when either the match expression or the
pattern expression is other than an untyped
parameter marker.

Either VARCHAR(2) or VARGRAPHIC(1)
depending on the data type of the first operand
that is not an untyped parameter marker. If the
data type of the match expression or pattern
expression is BLOB, the data type of the
escape expression is assumed to be BLOB(1).

Operand of the NULL predicate error

Functions

All operands of COALESCE (also called
VALUE) or NULLIF

Error

.Any operand of COALESCE where at least
one operand is other than an untyped param-
eter marker.

Result of applying the “Rules for Result Data
Types” on page 74 on all operands that are
other than untyped parameter markers.

An operand of NULLIF where the other
operand is other than an untyped parameter
marker.

The data type of the other operand

POSSTR (both operands) Both operands are VARCHAR(4000).

POSSTR (one operand where the other
operand is a character data type).

VARCHAR(4000).

POSSTR (one operand where the other
operand is a graphic data type).

VARGRAPHIC(2000).

POSSTR (the search-string operand when the
other operand is a BLOB).

BLOB(4000).

SUBSTR (1st operand) VARCHAR(4000)

SUBSTR (2nd and 3rd operands) INTEGER

The 1st operand of the TRANSLATE scalar
function.

Error

The 2nd and 3rd operands of the TRANSLATE
scalar function.

VARCHAR(4000) if the first operand is a char-
acter type. VARGRAPHIC(2000) if the first
operand is a graphic type.

The 4th operand of the TRANSLATE scalar
function.

VARCHAR(1) if the first operand is a character
type. VARGRAPHIC(1) if the first operand is a
graphic type.

The 2nd operand of the TIMESTAMP scalar
function.

TIME

Unary minus DOUBLE PRECISION

606 SQL Reference

PREPARE

Table 19 (Page 5 of 5). Untyped Parameter Marker Usage

Untyped Parameter Marker Location Data Type

Unary plus DOUBLE PRECISION

All other operands of all other scalar functions
including user-defined functions.

Error

Operand of a column function Error

 Notes
¹ When a PREPARE statement is executed, the statement string is parsed and

checked for errors. If the statement string is invalid, the error condition is reported
in the SQLCA. Any subsequent EXECUTE or OPEN statement that references this
statement will also receive the same error (due to an implicit prepare done by the
system) unless the error has been corrected.

¹ Prepared statements can be referred to in the following kinds of statements, with
the restrictions shown:

In... The prepared statement ...
DECLARE CURSOR must be SELECT
EXECUTE must not be SELECT

¹ A prepared statement can be executed many times. Indeed, if a prepared state-
ment is not executed more than once and does not contain parameter markers, it
is more efficient to use the EXECUTE IMMEDIATE statement rather than the
PREPARE and EXECUTE statements.

¹ Statement caching affects repeated preparations. See the “Notes” on page 555 for
information.

¹ See the Embedded SQL Programming Guide for examples of dynamic SQL state-
ments in the supported host languages.

 Examples
Example 1: Prepare and execute a non-select-statement in a COBOL program.
Assume the statement is contained in a host variable HOLDER and that the program
will place a statement string into the host variable based on some instructions from the
user. The statement to be prepared does not have any parameter markers.

EXEC SQL PREPARE STMT_NAME FROM :HOLDER

 END-EXEC.

 EXEC SQL EXECUTE STMT_NAME

 END-EXEC.

Example 2: Prepare and execute a non-select-statement as in example 1, except code
it for a C program. Also assume the statement to be prepared can contain any number
of parameter markers.

EXEC SQL PREPARE STMT_NAME FROM :holder;

EXEC SQL EXECUTE STMT_NAME USING DESCRIPTOR :insert_da;

 Chapter 6. Statements 607

PREPARE

Assume that the following statement is to be prepared:

INSERT INTO DEPT VALUES(?, ?, ?, ?)

The columns in the DEPT table are defined as follows:

 DEPT_NO CHAR(3) NOT NULL, -- department number

DEPTNAME VARCHAR(29), -- department name

MGRNO CHAR(6), -- manager number

ADMRDEPT CHAR(3) -- admin department number

To insert department number G01 named COMPLAINTS, which has no manager and
reports to department A00, the structure INSERT_DA should have the following values
before issuing the EXECUTE statement.

SQLDAID
SQLDABC
SQLN
SQLD

SQLTYPE
SQLLEN
SQLDATA
SQLIND
SQLNAME

SQLTYPE
SQLLEN
SQLDATA
SQLIND
SQLNAME

SQLTYPE
SQLLEN
SQLDATA
SQLIND
SQLNAME

SQLTYPE
SQLLEN
SQLDATA
SQLIND
SQLNAME

192
4
4

452
3

G01

COMPLAINTS
0

-1

A00
0

449
29

453
6

453
3

608 SQL Reference

RELEASE

 RELEASE
The RELEASE statement places one or more connections in the release-pending state.

 Invocation
Although an interactive SQL facility might provide an interface that gives the appear-
ance of interactive execution, this statement can only be embedded within an applica-
tion program. It is an executable statement that cannot be dynamically prepared.

 Authorization
None Required.

 Syntax

55─ ─RELEASE─ ──┬ ┬─server-name───(1) ──5%
 ├ ┤─host-variable─
 ├ ┤─CURRENT───────
 │ │┌ ┐─SQL─
 └ ┘──ALL ──┴ ┴───── ─

Note:
1 Note that an application server named CURRENT or ALL can only be identified by a host variable.

 Description
server-name or host-variable

Identifies the application server by the specified server-name or a host-variable
which contains the server-name.

If a host-variable is specified, it must be a character string variable with a length
attribute that is not greater than 8, and it must not include an indicator variable.
The server-name that is contained within the host-variable must be left-justified and
must not be delimited by quotation marks.

Note that the server-name is a database alias identifying the application server. It
must be listed in the application requester's local directory.

The specified database-alias or the database-alias contained in the host variable
must identify an existing connection of the application process. If the database-
alias does not identify an existing connection, an error (SQLSTATE 08003) is
raised.

CURRENT
Identifies the current connection of the application process. The application process
must be in the connected state. If not, an error (SQLSTATE 08003) is raised.

ALL
Identifies all existing connections of the application process. This form of the
RELEASE statement places all existing connections of the application process in

 Chapter 6. Statements 609

RELEASE

the release-pending state. All connections will therefore be destroyed during the
next commit operation. An error or warning does not occur if no connections exist
when the statement is executed. The optional keyword SQL is included to be com-
patible with DB2/MVS SQL syntax.

 Notes
¹ If the RELEASE statement is successful, the identified connection is placed in the

release-pending state and will therefore be destroyed during the next commit oper-
ation.

If the RELEASE statement is unsuccessful, the connection state of the application
process and the states of its connections are unchanged.

¹ If the current connection is in the release-pending state when a commit operation is
performed, the destruction of that connection places the application process into
the unconnected state. In this case, the next executed SQL statement should be
CONNECT or SET CONNECTION.

¹ Type 1 CONNECT semantics do not preclude the use of RELEASE. The con-
nection will be disconnected when the unit of work is committed.

¹ RELEASE does not close cursors, does not release any resources, and does not
prevent further use of the connection.

¹ A rollback operation does not reset the state of a connection from release-pending
to held.

¹ Resources are required to create and maintain remote connections. Thus, a remote
connection that is not going to be reused should be destroyed as soon as possible.

¹ Connections can also be destroyed during a commit operation because the option
DISCONNECT(AUTOMATIC) or the option DISCONNECT(CONDITIONAL) is in
effect. See “Options that Govern Distributed Unit of Work Semantics” on page 32
for information about the specification of the DISCONNECT option.

 Examples
Example 1: The SQL connection to IBMSTHDB is no longer needed by the applica-
tion. The following statement will cause it to be destroyed during the next commit
operation:

EXEC SQL RELEASE IBMSTHDB;

Example 2: The current connection is no longer needed by the application. The fol-
lowing statement will cause it to be destroyed during the next commit operation:

EXEC SQL RELEASE CURRENT;

Example 3: If an application has no need to access the databases after a commit but
will continue to run for a while, then it is better not to tie up those connections unneces-
sarily. The following statement can be executed before the commit to ensure all con-
nections will be destroyed at the commit:

EXEC SQL RELEASE ALL;

610 SQL Reference

RENAME TABLE

 RENAME TABLE
The RENAME TABLE statement renames an existing table.

 Invocation
This statement can be embedded in an application program or issued through the use
of dynamic SQL statements. It is an executable statement that can be dynamically pre-
pared.

 Authorization
The privileges held by the authorization ID of the statement must include either
SYSADM or DBADM authority or CONTROL privilege.

 Syntax

 ┌ ┐─TABLE─
55──RENAME─ ──┴ ┴─────── ─source-table-name──TO──target-identifier──────────────────────────5%

 Description
source-table-name

Names the existing table that is to be renamed. The name, including the schema
name, must identify a table that already exists in the database (SQLSTATE
42704). It can be an alias identifying the table. It must not be the name of a
catalog table (SQLSTATE 42832) or an object of any type other than table or alias
(SQLSTATE 42809).

target-identifier
Specifies the new name for the table without a schema name. The schema name
of the source-table-name is used to qualify the new name for the table. The quali-
fied name must not identify a table, view, or alias that already exists in the data-
base (SQLSTATE 42710).

 Rules
The source table must not:

¹ be referenced in any existing view definitions
¹ be referenced in any triggered SQL statements in existing triggers or be the subject

table of an existing trigger
¹ have any check constraints
¹ be a parent or dependent table in any referential integrity constraints.

An error (SQLSTATE 42986) is returned if the source table violates one or more of
these conditions.

 Chapter 6. Statements 611

RENAME TABLE

 Notes
¹ Catalog entries are updated to reflect the new table name.

¹ All authorizations associated with the source table name are transferred to the new
table name (the authorization catalog tables are updated appropriately).

¹ Indexes defined over the source table are transferred to the new table (the index
catalog tables are updated appropriately).

¹ Any packages that are dependent on the source table are invalidated.

¹ If an alias is used for the source-table-name, it must resolve to a table name. The
table is renamed within the schema of this table. The alias is not changed by the
RENAME statement and continues to refer to the old table name.

¹ A table with primary key or unique constraints may be renamed if none of the
primary key or unique constraints are referenced by any foreign key.

 Example
Change the name of the EMP table to EMPLOYEE.

RENAME TABLE EMP TO EMPLOYEE

612 SQL Reference

REVOKE (Database Authorities)

REVOKE (Database Authorities)
This form of the REVOKE statement revokes authorities that apply to the entire data-
base.

 Invocation
This statement can be embedded in an application program or issued through the use
of dynamic SQL statements. It is an executable statement that can be dynamically pre-
pared.

 Authorization
The privileges held by the authorization ID of the statement must include at least one of
the following:

 ¹ DBADM authority
 ¹ SYSADM authority.

To revoke DBADM authority, SYSADM authority is required.

 Syntax

 ┌ ┐─,───────────────────
55─ ─REVOKE─ ───6 ┴┬ ┬─BINDADD─────────── ─ON DATABASE──5
 ├ ┤─CONNECT───────────
 ├ ┤─CREATETAB─────────
 ├ ┤─CREATE_NOT_FENCED─
 ├ ┤─IMPLICIT_SCHEMA───
 └ ┘─DBADM─────────────

 ┌ ┐─,───────────────────────────────
5─ ─FROM─ ───6 ┴┬ ┬ ──┬ ┬─────── ─authorization-name─ ──5%
 │ │├ ┤─USER──
 │ │└ ┘─GROUP─
 └ ┘─PUBLIC────────────────────────

 Description
BINDADD

Revokes the authority to create packages. The creator of a package automatically
has the CONTROL privilege on that package and retains this privilege even if his
BINDADD authority is subsequently revoked.

The BINDADD authority cannot be revoked from an authorization-name holding
DBADM authority without also revoking the DBADM authority.

CONNECT
Revokes the authority to access the database.

Revoking the CONNECT authority from a user does not affect any privileges that
were granted to that user on objects in the database. If the user is subsequently

 Chapter 6. Statements 613

REVOKE (Database Authorities)

granted the CONNECT authority again, all previously held privileges are still valid
(assuming they were not explicitly revoked).

The CONNECT authority cannot be revoked from an authorization-name holding
DBADM authority without also revoking the DBADM authority (SQLSTATE 42504).

CREATETAB
Revokes the authority to create tables. The creator of a table automatically has the
CONTROL privilege on that table, and retains this privilege even if his
CREATETAB authority is subsequently revoked.

The CREATETAB authority cannot be revoked from an authorization-name holding
DBADM authority without also revoking the DBADM authority (SQLSTATE 42504).

CREATE_NOT_FENCED
Revokes the authority to register functions that execute in the database manager's
process. However, once a function has been registered as not fenced, it continues
to run in this manner even if CREATE_NOT_FENCED is subsequently revoked
from the authorization ID that registered the function.

The CREATE_NOT_FENCED authority cannot be revoked from an authorization-
name holding DBADM authority without also revoking the DBADM authority
(SQLSTATE 42504).

IMPLICIT_SCHEMA
Revokes the authority to implicitly create a schema. It does not affect the ability to
create objects in existing schemas or to process a CREATE SCHEMA statement.

DBADM
Revokes the DBADM authority.

DBADM authority cannot be revoked from PUBLIC (because it cannot be granted
to PUBLIC).

Revoking DBADM authority does not automatically revoke any privileges that
were held by the authorization-name on objects in the database, nor does it
revoke BINDADD, CONNECT, CREATETAB, IMPLICIT_SCHEMA, or
CREATE_NOT_FENCED authority.

FROM
Indicates from whom the authorities are revoked.

USER
Specifies that the authorization-name identifies a user.

GROUP
Specifies that the authorization-name identifies a group name

authorization-name,...
Lists one or more authorization IDs.

The authorization ID of the REVOKE statement itself cannot be used. (It is not
possible to revoke the authorities from an authorization-name that is the same
as the authorization ID of the REVOKE statement.)

614 SQL Reference

REVOKE (Database Authorities)

PUBLIC
Revokes the authorities from PUBLIC.

 Rules
¹ If neither USER nor GROUP is specified, then:

If all rows for the grantee in the SYSCAT.DBAUTH catalog view have a
GRANTEETYPE of U, then USER will be assumed.
If all rows have a GRANTEETYPE of G, then GROUP will be assumed.
If some rows have U and some rows have G, then an error (SQLSTATE
56092) is raised.
If DCE authentication is used, then an error is raised (SQLSTATE 56092).

 Notes
¹ Revoking a specific privilege does not necessarily revoke the ability to perform the

action. A user may proceed with their task if other privileges are held by PUBLIC or
a group, or if they have a higher level authority such as DBADM.

 Examples
Example 1: Given that USER6 is only a user and not a group, revoke the privilege to
create tables from the user USER6.

REVOKE CREATETAB ON DATABASE FROM USER6

Example 2: Revoke BINDADD authority on the database from a group named D024.
There are two rows in the SYSCAT.DBAUTH catalog view for this grantee; one with a
GRANTEETYPE of U and one with a GRANTEETYPE of G.

REVOKE BINDADD ON DATABASE FROM GROUP D024

In this case, the GROUP keyword must be specified; otherwise an error will occur
(SQLSTATE 56092).

 Chapter 6. Statements 615

REVOKE (Index Privileges)

REVOKE (Index Privileges)
This form of the REVOKE statement revokes the CONTROL privilege on an index.

 Invocation
This statement can be embedded in an application program or issued through the use
of dynamic SQL statements. It is an executable statement that can be dynamically pre-
pared.

 Authorization
The authorization ID of the statement must hold either SYSADM or DBADM authority
(SQLSTATE 42501).

 Syntax

 ┌ ┐─,───────────────────────────────
55──REVOKE──CONTROL──ON INDEX──index-name─ ─FROM─ ───6 ┴┬ ┬ ──┬ ┬─────── ─authorization-name─ ────5%
 │ │├ ┤─USER──
 │ │└ ┘─GROUP─
 └ ┘─PUBLIC────────────────────────

 Description
CONTROL

Revokes the privilege to drop the index. This is the CONTROL privilege for
indexes, which is automatically granted to creators of indexes.

ON INDEX index-name
Specifies the name of the index on which the CONTROL privilege is to be revoked.

FROM
Indicates from whom the privileges are revoked.

USER
Specifies that the authorization-name identifies a user.

GROUP
Specifies that the authorization-name identifies a group name

authorization-name,...
Lists one or more authorization IDs.

The authorization ID of the REVOKE statement itself cannot be used. (It is not
possible to revoke the privileges from an authorization-name that is the same
as the authorization ID of the REVOKE statement.)

PUBLIC
Revokes the privileges from PUBLIC.

616 SQL Reference

REVOKE (Index Privileges)

 Rules
¹ If neither USER nor GROUP is specified, then:

If all rows for the grantee in the SYSCAT.INDEXAUTH catalog view have a
GRANTEETYPE of U, then USER will be assumed.
If all rows have a GRANTEETYPE of G, then GROUP will be assumed.
If some rows have U and some rows have G, then an error (SQLSTATE
56092) is raised.
If DCE authentication is used, then an error is raised (SQLSTATE 56092).

 Notes
¹ Revoking a specific privilege does not necessarily revoke the ability to perform the

action. A user may proceed with their task if other privileges are held by PUBLIC or
a group, or if they have authorities such as ALTERIN on the schema of an index.

 Examples
Example 1: Given that USER4 is only a user and not a group, revoke the privilege to
drop an index DEPTIDX from the user USER4.

REVOKE CONTROL ON INDEX DEPTIDX FROM USER4

Example 2: Revoke the privilege to drop an index LUNCHITEMS from the user CHEF
and the group WAITERS.

REVOKE CONTROL ON INDEX LUNCHITEMS

FROM USER CHEF, GROUP WAITERS

 Chapter 6. Statements 617

REVOKE (Package Privileges)

REVOKE (Package Privileges)
This form of the REVOKE statement revokes CONTROL, BIND, and EXECUTE privi-
leges against a package.

 Invocation
This statement can be embedded in an application program or issued through the use
of dynamic SQL statements. It is an executable statement that can be dynamically pre-
pared.

 Authorization
The privileges held by the authorization ID of the statement must include at least one of
the following:

¹ CONTROL privilege on the referenced package
¹ SYSADM or DBADM authority.

To revoke the CONTROL privilege, SYSADM or DBADM authority are required.

 Syntax

 ┌ ┐─,───────────
55─ ─REVOKE─ ───6 ┴┬ ┬─BIND────── ─ON──PACKAGE───(2) ─package-name──────────────────────────────────5
 ├ ┤─CONTROL───
 └ ┘─EXECUTE───(1)

 ┌ ┐─,───────────────────────────────
5─ ─FROM─ ───6 ┴┬ ┬ ──┬ ┬─────── ─authorization-name─ ──5%
 │ │├ ┤─USER──
 │ │└ ┘─GROUP─
 └ ┘─PUBLIC────────────────────────

Notes:
1 RUN can be used as a synonym for EXECUTE.
2 PROGRAM can be used as a synonym for PACKAGE.

 Description
BIND

Revokes the privilege to execute BIND or REBIND on the referenced package.

The BIND privileges cannot be revoked from an authorization-name that holds
CONTROL privilege on the package without also revoking the CONTROL privilege.

CONTROL
Revokes the privilege to drop the package and to extend package privileges to
other users.

Revoking CONTROL does not revoke the other package privileges.

618 SQL Reference

REVOKE (Package Privileges)

EXECUTE
Revokes the privilege to execute the package.

The EXECUTE privilege cannot be revoked from an authorization-name that holds
CONTROL privilege on the package without also revoking the CONTROL privilege.

ON PACKAGE package-name
Specifies the package on which privileges are revoked.

FROM
Indicates from whom the privileges are revoked.

USER
Specifies that the authorization-name identifies a user.

GROUP
Specifies that the authorization-name identifies a group name.

authorization-name,...
Lists one or more authorization IDs.

The authorization ID of the REVOKE statement itself cannot be used. (It is not
possible to revoke the privileges from an authorization-name that is the same
as the authorization ID of the REVOKE statement.)

PUBLIC
Revokes the privileges from PUBLIC.

 Rules
¹ If neither USER nor GROUP is specified, then:

If all rows for the grantee in the SYSCAT.PACKAGEAUTH catalog view have
a GRANTEETYPE of U, then USER will be assumed.
If all rows have a GRANTEETYPE of G, then GROUP will be assumed.
If some rows have U and some rows have G, then an error (SQLSTATE
56092) is raised.
If DCE authentication is used, then an error is raised (SQLSTATE 56092).

 Notes
¹ Revoking a specific privilege does not necessarily revoke the ability to perform the

action. A user may proceed with their task if other privileges are held by PUBLIC or
a group, or if they have privileges such as ALTERIN on the schema of a package.

 Examples
Example 1: Revoke the EXECUTE privilege on package CORPDATA.PKGA from
PUBLIC.

 REVOKE EXECUTE

ON PACKAGE CORPDATA.PKGA

 FROM PUBLIC

 Chapter 6. Statements 619

REVOKE (Package Privileges)

Example 2: Revoke CONTROL authority on the RRSP_PKG package for the user
FRANK and for PUBLIC.

 REVOKE CONTROL

ON PACKAGE RRSP_PKG

FROM USER FRANK, PUBLIC

620 SQL Reference

REVOKE (Schema Privileges)

REVOKE (Schema Privileges)
This form of the REVOKE statement revokes the privileges on a schema.

 Invocation
This statement can be embedded in an application program or issued through the use
of dynamic SQL statements. It is an executable statement that can be dynamically pre-
pared.

 Authorization
The authorization ID of the statement must hold either SYSADM or DBADM authority
(SQLSTATE 42501).

 Syntax

 ┌ ┐─,──────────
55─ ─REVOKE─ ───6 ┴┬ ┬─ALTERIN── ─ON SCHEMA──schema-name──5
 ├ ┤─CREATEIN─
 └ ┘─DROPIN───

 ┌ ┐─,───────────────────────────────
5─ ─FROM─ ───6 ┴┬ ┬ ──┬ ┬─────── ─authorization-name─ ──5%
 │ │├ ┤─USER──
 │ │└ ┘─GROUP─
 └ ┘─PUBLIC────────────────────────

 Description
ALTERIN

Revokes the privilege to alter or comment on objects in the schema.

CREATEIN
Revokes the privilege to create objects in the schema.

DROPIN
Revokes the privilege to drop objects in the schema.

ON SCHEMA schema-name
Specifies the name of the schema on which privileges are to be revoked.

FROM
Indicates from whom the privileges are revoked.

USER
Specifies that the authorization-name identifies a user.

GROUP
Specifies that the authorization-name identifies a group name

 Chapter 6. Statements 621

REVOKE (Schema Privileges)

authorization-name,...
Lists one or more authorization IDs.

The authorization ID of the REVOKE statement itself cannot be used. (It is not
possible to revoke the privileges from an authorization-name that is the same
as the authorization ID of the REVOKE statement.)

PUBLIC
Revokes the privileges from PUBLIC.

 Rules
¹ If neither USER nor GROUP is specified, then:

If all rows for the grantee in the SYSCAT.SCHEMAAUTH catalog view have a
GRANTEETYPE of U, then USER will be assumed.
If all rows have a GRANTEETYPE of G, then GROUP will be assumed.
If some rows have U and some rows have G, then an error (SQLSTATE
56092) is raised.
If DCE authentication is used, then an error is raised (SQLSTATE 56092).

 Notes
¹ Revoking a specific privilege does not necessarily revoke the ability to perform the

action. A user may proceed with their task if other privileges are held by PUBLIC or
a group, or if they have a higher level authority such as DBADM.

 Examples
Example 1: Given that USER4 is only a user and not a group, revoke the privilege to
create objects in schema DEPTIDX from the user USER4.

REVOKE CREATEIN ON SCHEMA DEPTIDX FROM USER4

Example 2: Revoke the privilege to drop objects in schema LUNCH from the user
CHEF and the group WAITERS.

REVOKE DROPIN ON SCHEMA LUNCH

FROM USER CHEF, GROUP WAITERS

622 SQL Reference

REVOKE (Table or View Privileges)

REVOKE (Table or View Privileges)
This form of the REVOKE statement revokes privileges on a table or view.

 Invocation
This statement can be embedded in an application program or issued through the use
of dynamic SQL statements. It is an executable statement that can be dynamically pre-
pared.

 Authorization
The privileges held by the authorization ID of the statement must include at least one of
the following:

¹ SYSADM or DBADM authority
¹ CONTROL privilege on the referenced table or view.

To revoke the CONTROL privilege, either SYSADM or DBADM authority is required.

To revoke the privileges on catalog tables and views, either SYSADM or DBADM
authority is required.

 Syntax

 ┌ ┐ ─PRIVILEGES─ ┌ ┐ ─TABLE─
55─ ─REVOKE─ ──┬ ┬ ─ALL─ ──┴ ┴──────────── ─ON─ ──┴ ┴─────── ──┬ ┬─table-name─ ───────────────────────5
 │ │┌ ┐─,──────────── └ ┘─view-name──
 └ ┘ ───6 ┴┬ ┬─ALTER────── ───
 ├ ┤─CONTROL────
 ├ ┤─DELETE─────
 ├ ┤─INDEX──────
 ├ ┤─INSERT─────
 ├ ┤─REFERENCES─
 ├ ┤─SELECT─────
 └ ┘─UPDATE─────

 ┌ ┐─,───────────────────────────────
5─ ─FROM─ ───6 ┴┬ ┬ ──┬ ┬─────── ─authorization-name─ ──5%
 │ │├ ┤─USER──
 │ │└ ┘─GROUP─
 └ ┘─PUBLIC────────────────────────

 Description
ALL or ALL PRIVILEGES

Revokes all privileges held by an authorization-name for the specified tables or
views.

If ALL is not used, one or more of the keywords listed below must be used. Each
keyword revokes the privilege described, but only as it applies to the tables or

 Chapter 6. Statements 623

REVOKE (Table or View Privileges)

views named in the ON clause. The same keyword must not be specified more
than once.

ALTER
Revokes the privilege to add columns to the base table definition, create or drop a
primary key or unique constraint on the table, create or drop a foreign key on the
table, add/change a comment on the table, create or drop a check constraint, or
create a trigger .

CONTROL
Revokes the ability to drop the table or view, and the ability to execute the
RUNSTATS utility on the table and indexes.

Revoking CONTROL privilege from an authorization-name does not revoke other
privileges granted to the user on that object.

DELETE
Revokes the privilege to delete rows from the table or updatable view.

INDEX
Revokes the privilege to create an index on the table. The creator of an index auto-
matically has the CONTROL privilege over the index (authorizing the creator to
drop the index), and retains this privilege even if the INDEX privilege is revoked.

INSERT
Revokes the privilege to insert rows into the table or updatable view and the privi-
lege to run the IMPORT utility.

REFERENCES
Revokes the privilege to create or drop a foreign key referencing the table as the
parent. Any column level REFERENCES privileges are also revoked.

SELECT
Revokes the privilege to retrieve rows from the table or view, create a view on a
table, and run the EXPORT utility. Revoking SELECT privilege may cause some
views to be marked inoperative. For information on inoperative views, see “Notes”
on page 520.

UPDATE
Revokes the privilege to update rows in the table or updatable view. Any column
level UPDATE privileges are also revoked.

ON TABLE table-name or view-name
Specifies the table or view on which privileges are to be revoked.

FROM
Indicates from whom the privileges are revoked.

USER
Specifies that the authorization-name identifies a user.

GROUP
Specifies that the authorization-name identifies a group name.

624 SQL Reference

REVOKE (Table or View Privileges)

authorization-name,...
Lists one or more authorization IDs.

The ID of the REVOKE statement itself cannot be used. (It is not possible to
revoke the privileges from an authorization-name that is the same as the
authorization ID of the REVOKE statement.)

PUBLIC
Revokes the privileges from PUBLIC.

 Rules
¹ If neither USER nor GROUP is specified, then:

If all rows for the grantee in the SYSCAT.TABAUTH and SYSCAT.COLAUTH
catalog views have a GRANTEETYPE of U, then USER will be assumed.
If all rows have a GRANTEETYPE of G, then GROUP will be assumed.
If some rows have U and some rows have G, then an error (SQLSTATE
56092) is raised.
If DCE authentication is used, then an error is raised (SQLSTATE 56092).

 Notes
¹ If a privilege is revoked from the authorization-name used to create a view (this is

called the view's DEFINER in SYSCAT.VIEWS), that privilege is also revoked from
any dependent views.

¹ If the DEFINER of the view loses a SELECT privilege on some object on which the
view definition depends, (or an object upon which the view definition depends is
dropped (or made inoperative in the case of another view)), then the view will be
made inoperative. (see the “Notes” section in “CREATE VIEW” on page 517 for
information on inoperative views).

However, if a DBADM or SYSADM explicitly revokes all privileges on the view from
the DEFINER, then the record in SYSTABAUTH for the DEFINER will be deleted,
but nothing will happen to the view - it remains operative.

¹ Privileges on inoperative views cannot be revoked.

¹ All packages dependent upon an object for which a privilege is revoked are marked
invalid. A package remains invalid until a bind or rebind operation on the applica-
tion is successfully executed, or the application is executed and the database
manager successfully rebinds the application (using information stored in the cata-
logs). Packages marked invalid due to a revoke may be successfully rebound
without any additional grants.

For example, if a package owned by USER1 contains a SELECT from table T1
and the SELECT privilege for table T1 is revoked from USER1, then the package
will be marked invalid. If SELECT authority is re-granted, or if the user holds
DBADM authority, the package is successfully rebound when executed.

¹ Table or view privileges cannot be revoked from an authorization-name with
CONTROL on the object without also revoking the CONTROL privilege
(SQLSTATE 42504).

 Chapter 6. Statements 625

REVOKE (Table or View Privileges)

¹ Revoking a specific privilege does not necessarily revoke the ability to perform the
action. A user may proceed with their task if other privileges are held by PUBLIC or
a group, or if they have privileges such as ALTERIN on the schema of a table or a
view.

Note: “Rules” on page 546 lists the dependencies that objects such as tables and
views can have on one another.

 Examples
Example 1: Revoke SELECT privilege on table EMPLOYEE from user ENGLES.
There is one row in the SYSCAT.TABAUTH catalog view for this table and grantee and
the GRANTEETYPE value is U.

 REVOKE SELECT

ON TABLE EMPLOYEE

 FROM ENGLES

Example 2: Revoke update privileges on table EMPLOYEE previously granted to all
local users. Note that grants to specific users are not affected.

 REVOKE UPDATE

 ON EMPLOYEE

 FROM PUBLIC

Example 3: Revoke all privileges on table EMPLOYEE from users PELLOW and MLI
and from group PLANNERS.

 REVOKE ALL

 ON EMPLOYEE

FROM USER PELLOW, USER MLI, GROUP PLANNERS

Example 4: Revoke SELECT privilege on table CORPDATA.EMPLOYEE from a user
named JOHN. There is one row in the SYSCAT.TABAUTH catalog view for this table
and grantee and the GRANTEETYPE value is U.

 REVOKE SELECT

ON CORPDATA.EMPLOYEE FROM JOHN

 or

 REVOKE SELECT

ON CORPDATA.EMPLOYEE FROM USER JOHN

Note that an attempt to revoke the privilege from GROUP JOHN would result in an
error, since the privilege was not previously granted to GROUP JOHN.

Example 5: Revoke SELECT privilege on table CORPDATA.EMPLOYEE from a group
named JOHN. There is one row in the SYSCAT.TABAUTH catalog view for this table
and grantee and the GRANTEETYPE value is G.

 REVOKE SELECT

ON CORPDATA.EMPLOYEE FROM JOHN

 or

626 SQL Reference

REVOKE (Table or View Privileges)

 REVOKE SELECT

 ON CORPDATA.EMPLOYEE FROM GROUP JOHN

 Chapter 6. Statements 627

ROLLBACK

 ROLLBACK
The ROLLBACK statement is used to terminate a unit of work and back out the data-
base changes that were made by that unit of work.

 Invocation
This statement can be embedded in an application program or issued through the use
of dynamic SQL statements. It is an executable statement that can be dynamically pre-
pared.

 Authorization
None required.

 Syntax

 ┌ ┐ ─WORK─
55─ ─ROLLBACK─ ──┴ ┴────── ──5%

 Description
The unit of work in which the ROLLBACK statement is executed is terminated and a
new unit of work is initiated. All changes made to the database during the unit of work
are backed out.

The following statements, however, are not under transaction control and changes
made by them are independent of issuing the ROLLBACK statement:

 ¹ SET CONNECTION,
¹ SET CURRENT DEGREE,
¹ SET CURRENT EXPLAIN MODE,
¹ SET CURRENT EXPLAIN SNAPSHOT,

 ¹
¹ SET CURRENT FUNCTION PATH,
¹ SET CURRENT PACKAGESET,
¹ SET CURRENT QUERY OPTIMIZATION,
¹ SET EVENT MONITOR STATE.

 Notes
¹ All locks held by the unit of work are released. All open cursors are closed. All LOB

locators are freed.

¹ Executing a ROLLBACK statement does not affect either the SET statements that
change special register values or the RELEASE statement.

¹ The termination of a unit of work is an implicit rollback if the program terminates
abnormally due to a program check.

628 SQL Reference

ROLLBACK

¹ Statement caching is affected by the rollback operation. See the “Notes” on
page 555 for information.

 Example
Delete the alterations made since the last commit point or rollback.

 ROLLBACK WORK

 Chapter 6. Statements 629

SELECT

 SELECT
The SELECT statement is a form of query. It can be embedded in an application
program or issued interactively. For detailed information, see “select-statement” on
page 324.

630 SQL Reference

SELECT INTO

 SELECT INTO
The SELECT INTO statement produces a result table consisting of at most one row,
and assigns the values in that row to host variables. If the table is empty, the statement
assigns +100 to SQLCODE and '02000' to SQLSTATE and does not assign values to
the host variables. If more than one row satisfies the search condition, statement proc-
essing is terminated, and an error occurs (SQLSTATE 21000).

 Invocation
This statement can be embedded only in an application program. It is an executable
statement that cannot be dynamically prepared. The statement is not supported in
REXX.

 Authorization
The privileges held by the authorization ID of the statement must include, for each table
or view referenced in the SELECT INTO statement, at least one of the following:

 ¹ SELECT privilege
 ¹ CONTROL privilege
¹ SYSADM or DBADM authority.

GROUP privileges are not checked for static SELECT INTO statements.

 Syntax

 ┌ ┐─,─────────────
55─ ─select-clause──INTO─ ───6 ┴─host-variable─ ─from-clause───────────────────────────────────5

5─ ──┬ ┬────────────── ──┬ ┬───────────────── ──┬ ┬─────────────── ─────────────────────────────5%
 └ ┘─where-clause─ └ ┘─group-by-clause─ └ ┘─having-clause─

 Description
See Chapter 5, “Queries” on page 285 for a description of the select-clause, from-
clause, where-clause, group-by-clause, and having-clause.

INTO
Introduces a list of host variables.

host-variable
Identifies a variable that is described in the program under the rules for
declaring host variables.

The first value in the result row is assigned to the first variable in the list, the
second value to the second variable, and so on. If the number of host vari-
ables is less than the number of column values, the value 'W' is assigned to
the SQLWARN3 field of the SQLCA. (See Appendix B, “SQL Communication
Area (SQLCA)” on page 679.)

 Chapter 6. Statements 631

SELECT INTO

Each assignment to a variable is made according to the rules described in
“Assignments and Comparisons” on page 64. Assignments are made in
sequence through the list.

If an error occurs, no value is assigned to any host variable.

 Examples
Example 1: This C example puts the maximum salary in EMP into the host variable
MAXSALARY.

EXEC SQL SELECT MAX(SALARY)

 INTO :MAXSALRY

 FROM EMP;

Example 2: This C example puts the row for employee 528671, from EMP, into host
variables.

EXEC SQL SELECT * INTO :h1, :h2, :h3, :h4

 FROM EMP

WHERE EMPNO = '528671';

632 SQL Reference

SET CONNECTION

 SET CONNECTION
The SET CONNECTION statement changes the state of a connection from dormant to
current, making the specified location the current server. It is not under transaction
control.

 Invocation
Although an interactive SQL facility might provide an interface that gives the appear-
ance of interactive execution, this statement can only be embedded within an applica-
tion program. It is an executable statement that cannot be dynamically prepared.

 Authorization
None Required.

 Syntax

55─ ─SET CONNECTION─ ──┬ ┬─server-name─── ───5%
 └ ┘─host-variable─

 Description
server-name or host-variable

Identifies the application server by the specified server-name or a host-variable
which contains the server-name.

If a host-variable is specified, it must be a character string variable with a length
attribute that is not greater than 8, and it must not include an indicator variable.
The server-name that is contained within the host-variable must be left-justified and
must not be delimited by quotation marks.

Note that the server-name is a database alias identifying the application server. It
must be listed in the application requester's local directory.

The server-name or the host-variable must identify an existing connection of the
application process. If they do not identify an existing connection, an error
(SQLSTATE 08003) is raised.

If SET CONNECTION is to the current connection, the states of all connections of
the application process are unchanged.

Successful Connection

If the SET CONNECTION statement executes successfully:

¹ No connection is made. The CURRENT SERVER special register is updated
with the specified server-name.

¹ The previously current connection, if any, is placed into the dormant state
(assuming a different server-name is specified).

 Chapter 6. Statements 633

SET CONNECTION

¹ The CURRENT SERVER special register and the SQLCA are updated in the
same way as documented under Type 1 CONNECT; details on page 391.

Unsuccessful Connection

If the SET CONNECTION statement fails:

¹ No matter what the reason for failure, the connection state of the application
process and the states of its connections are unchanged.

¹ As with an unsuccessful Type 1 CONNECT, the SQLERRP field of the SQLCA
is set to the name of the module that detected the error.

 Notes
¹ The use of type 1 CONNECT statements does not preclude the use of SET CON-

NECTION, but the statement will always fail (SQLSTATE 08003), unless the SET
CONNECTION statement specifies the current connection, because dormant con-
nections cannot exist.

¹ The SQLRULES(DB2) connection option (see “Options that Govern Distributed Unit
of Work Semantics” on page 32) does not preclude the use of SET CON-
NECTION, but the statement is unnecessary because type 2 CONNECT state-
ments can be used instead.

¹ When a connection is used, made dormant, and then restored to the current state
in the same unit of work, that connection reflects its last use by the application
process with regard to the status of locks, cursors, and prepared statements.

 Examples
Execute SQL statements at IBMSTHDB, execute SQL statements at IBMTOKDB, and
then execute more SQL statements at IBMSTHDB.

EXEC SQL CONNECT TO IBMSTHDB;

/* Execute statements referencing objects at IBMSTHDB */

EXEC SQL CONNECT TO IBMTOKDB;

/* Execute statements referencing objects at IBMTOKDB */

EXEC SQL SET CONNECTION IBMSTHDB;

/* Execute statements referencing objects at IBMSTHDB */

Note that the first CONNECT statement creates the IBMSTHDB connection, the second
CONNECT statement places it in the dormant state, and the SET CONNECTION state-
ment returns it to the current state.

634 SQL Reference

SET CONSTRAINTS

 SET CONSTRAINTS
The SET CONSTRAINTS statement is used to do one of the following:

¹ Turn off check constraint and referential constraint checking for one or more tables.
Note that this places the table(s) into a check pending state where only limited
access by a restricted set of statements and commands is allowed. Primary key
and unique constraints continue to be checked.

¹ Both turn the constraint checking back on for one or more tables and to carry out
all the deferred checking.

¹ Turn on referential constraints and/or check constraints for one or more tables
without first carrying out any deferred constraint checking.

The SET CONSTRAINTS statement is under transaction control.

 Invocation
This statement can be embedded in an application program or issued through the use
of dynamic SQL statements. It is an executable statement that can be dynamically pre-
pared.

 Authorization
The privileges required to execute SET CONSTRAINTS depend on the use of the
statement, as outlined below:

1. Turn off constraint checking.

The privileges of the authorization ID of the statement must include at least one of
the following:

¹ CONTROL privilege on the tables and all their dependents and descendants in
referential integrity constraints.

¹ SYSADM or DBADM authority.

2. Both turn on constraints and carry out checking.

The privileges of the authorization ID of the statement must include at least one of
the following:

¹ SYSADM or DBADM authority.

¹ CONTROL privilege on the tables that are being checked and if exceptions
are being posted to one or more tables, INSERT privilege on the exception
tables.

3. Turn on constraints without first carrying out checking.

The authorization ID of the statement must have at least one of the following:

¹ SYSADM or DBADM authority
¹ CONTROL privilege on the tables that are being checked.

 Chapter 6. Statements 635

SET CONSTRAINTS

 Syntax

55──SET──CONSTRAINTS──5

 ┌ ┐─,──────────
5─ ──┬ ┬ ─FOR─ ───6 ┴─table-name─ ──┬ ┬─OFF─── ─────────────5%
 │ │└ ┘ ─IMMEDIATE CHECKED─ ──┬ ┬──────────────────────
 │ │└ ┘─┤ exception-clause ├─
 │ │┌ ┐─,─────────────────────────────────
 └ ┘ ─FOR─ ───6 ┴─table-name─ ──┬ ┬─ALL─────────────── ─IMMEDIATE UNCHECKED──────
 │ │┌ ┐─,─────────────
 └ ┘ ───6 ┴┬ ┬─────────────
 ├ ┤─FOREIGN KEY─
 └ ┘─CHECK───────

exception-clause:
 ┌ ┐─,───────────────────────────────
├──FOR──EXCEPTION─ ───6 ┴─IN──table-name──USE──table-name─ ───────────────────────────────────┤

 Description
table-name

Identifies a base table for which constraint checking is to be turned either on or off.
It must be a table described in the catalog and must not be a view or a catalog
table.

OFF
Specifies that the tables are to have their foreign key constraints and check con-
straints turned off and are, therefore to be placed into the check pending state.

Note that it is possible that a table may already be in the check pending state with
only one type of constraint checking turned off; in such a situation the other type of
constraint checking will also be turned off.

If any table in the list is a parent table, the check pending state for foreign key
constraints is extended to all dependent and descendent tables.

Only very limited activity is allowed on a table that is in the check pending state.
“Notes” on page 638 lists the restrictions.

IMMEDIATE CHECKED
Specifies that the table is to have its constraints turned on and that the constraint
checking that was deferred is to be carried out. This is done in accordance with the
information set in the STATUS and CONST_CHECKED columns of the
SYSCAT.TABLES catalog. That is:

¹ The value in STATUS must be C (the table is in the check pending state) or
an error (SQLSTATE 51027) is returned.

¹ The value in CONST_CHECKED indicates which constraints are to be
checked.

636 SQL Reference

SET CONSTRAINTS

exception-clause

FOR EXCEPTION
Indicates that any row that is in violation of a foreign key constraint or a check
constraint will be copied to an exception table and deleted from the original
table. See Appendix M, “Exception Tables” on page 853 for more information
on these user-defined tables. Even if errors are detected the constraints are
turned back on again and the table is taken out of the check pending state. A
warning (SQLSTATE 01603) is issued to indicate that one or more rows have
been moved to the exception tables.

If the FOR EXCEPTION clause is not specified and any constraints are vio-
lated, then only the first violation detected is returned to the user (SQLSTATE
23514). In the case of a violation in any table, all the tables are left in the
check pending state, as they were before the execution of the statement.

IN table-name
Specifies the table from which rows that violate constraints are to be copied.
There must be one exception table specified for each table being checked.

USE table-name
Specifies the exception table into which error rows are to be copied.

ALL
This indicates that both foreign key constraints and check constraints are to be
turned on.

FOREIGN KEY
This indicates that foreign key constraints are to be turned on.

CHECK
This indicates that check constraints are to be turned on.

IMMEDIATE UNCHECKED
Specifies one of the following:

¹ The table is to have its constraints turned on (and, thus, are to be taken out of
the check pending state) without having the table checked for constraint vio-
lations.

This is specified for a given table either by specifying ALL, or by specifying
CHECK when only check constraints are off for that table, or by specifying
FOREIGN KEY when only foreign key constraints are off for that table.

¹ The table is to have one type of constraint turned on but is to be left in the
check pending state.

This is specified for a given table by specifying only CHECK or FOREIGN KEY
when both types of constraints are off for that table.

The state change is not extended to any tables not explicitly included in the list.

 Chapter 6. Statements 637

SET CONSTRAINTS

If the parent of a dependent table is in the check pending state, the foreign key
constraints of a dependent table cannot be marked to bypass checking (the check
constraints checking can be bypassed).

The implications with respect to data integrity should be considered before using
this option. See the Notes section below.

 Notes
¹ Effects on tables in the check pending state:

– Use of SELECT, INSERT, UPDATE, or DELETE is disallowed on a table that
is either:

- in the check pending state itself

- or requires access to another table that is in the check pending state.

For example, a DELETE of a row in a parent table that cascades to a
dependent table that is in the check pending state is not allowed.

– New constraints added to a table are normally enforced immediately.
However, if the table is in check pending state the checking of any new con-
straints is deferred until the table is taken out of the check pending state.

– The CREATE INDEX statement cannot reference any tables that are in the
check pending state. Similarly, ALTER TABLE to add a primary key or unique
constraint cannot reference any tables that are in the check pending state.

– The utilities EXPORT, IMPORT, REORG, and REORGCHK are not allowed to
operate on a table in the check pending state. Note that the IMPORT utility
differs from the LOAD utility in that it always checks the constraints imme-
diately.

– The utilities LOAD, BACKUP, RESTORE, ROLLFORWARD, UPDATE STA-
TISTICS, RUNSTATS, LIST HISTORY, and ROLLFORWARD are allowed on
a table in the check pending state.

– The statements ALTER TABLE, COMMENT ON, DROP TABLE, CREATE
ALIAS, CREATE TRIGGER, CREATE VIEW, GRANT, REVOKE, and SET
CONSTRAINTS can reference a table that is in the check pending state.

– Packages, views and any other objects that depend on a table that is in the
check pending state will return an error when the table is accessed at run
time.

The removal of violating rows by the SET CONSTRAINTS statement is not a
delete event. Therefore, triggers are never activated by a SET CONSTRAINTS
statement.

¹ Warning about the use of the IMMEDIATE UNCHECKED clause:

This clause is intended to be used by utility programs and its use by applica-
tion programs is not recommended.

The fact that constraints were turned on without doing deferred checking will
be recorded in the catalog (the value in the CONST_CHECKED column in the

638 SQL Reference

SET CONSTRAINTS

SYSCAT.TABLES view will be set to 'U'). This indicates that the user has
assumed responsibility for data integrity with respect to the specific constraints.
This value remains until either:

– The table is put back into the check pending state (by referencing the
table in a SET CONSTRAINTS statement with the OFF clause).

– All unchecked constraints for the table are dropped.

¹ While constraints are being checked an exclusive lock is held on each table speci-
fied in the SET CONSTRAINTS invocation.

¹ A shared lock on each table that is not listed in the SET CONSTRAINTS invocation
but is a parent table of one of the dependent tables being checked.

¹ If an error occurs during constraint checking, all the effects of the checking
including deleting from the original and inserting into the exception tables will be
rolled back.

 Example
Example 1: The following is an example of a query that gives us information about the
check pending state of tables. SUBSTR is used to extract the first 2 bytes of the
CONST_CHECKED column of SYSCAT.TABLES. The first byte represents foreign key
constraints, and the second byte represents check constraints.

 SELECT TABNAME,

SUBSTR(CONST_CHECKED, 1, 1) AS FK_CHECKED,

SUBSTR(CONST_CHECKED, 2, 1) AS CC_CHECKED

 FROM SYSCAT.TABLES

WHERE STATUS = 'C';

Example 2: Set tables T1 and T2 in the check pending state:

SET CONSTRAINTS FOR T1, T2 OFF;

Example 3: Check the constraints for T1 and get the first violation only:

SET CONSTRAINTS FOR T1 IMMEDIATE CHECKED

Example 4: Check the constraints for T1 and T2 and put the violating rows into excep-
tion tables E1 and E2:

SET CONSTRAINTS FOR T1, T2 IMMEDIATE CHECKED

FOR EXCEPTION IN T1 USE E1,

IN T2 USE E2;

Example 5: Enable FOREIGN KEY constraint checking in T1 and CHECK constraint
checking in T2 to be bypassed with the IMMEDIATE CHECKED option:

SET CONSTRAINTS FOR T1 FOREIGN KEY,

T2 CHECK IMMEDIATE UNCHECKED;

Example 6: Add a check constraint and a foreign key to the EMP_ACT table, using
two ALTER TABLE statements. To perform constraint checking in a single pass of the
table, constraint checking is turned off before the ALTER statements and checked after
execution.

 Chapter 6. Statements 639

SET CONSTRAINTS

SET CONSTRAINTS FOR EMP_ACT OFF;

ALTER TABLE EMP_ACT ADD CHECK (EMSTDATE <= EMENDATE);

ALTER TABLE EMP_ACT ADD FOREIGN KEY (EMPNO) REFERENCES EMPLOYEE;

SET CONSTRAINTS FOR EMP_ACT IMMEDIATE CHECKED;

640 SQL Reference

SET CURRENT DEGREE

SET CURRENT DEGREE
The SET CURRENT DEGREE statement assigns a value to the CURRENT DEGREE
special register. This statement is not under transaction control.

 Invocation
This statement can be embedded in an application program or issued through the use
of dynamic SQL statements. It is an executable statement that can be dynamically pre-
pared.

 Authorization
No authorization is required to execute this statement.

 Syntax

 ┌ ┐─=─
55──SET──CURRENT──DEGREE─ ──┴ ┴─── ──┬ ┬─string-constant─ ────────────────────────────────────5%
 └ ┘─host-variable───

 Description
The value of CURRENT DEGREE is replaced by the value of the string constant or
host variable. The value must be a character string that is not longer than 5 bytes. The
value must be the character string representation of an integer between 1 and 32767
inclusive or 'ANY'.

If the value of CURRENT DEGREE represented as an integer is 1 when an SQL state-
ment is dynamically prepared, the execution of that statement will not use intra-partition
parallelism .

If the value of CURRENT DEGREE is a number when an SQL statement is dynamically
prepared, the execution of that statement can involve intra-partition parallelism with the
specified degree.

If the value of CURRENT DEGREE is 'ANY' when an SQL statement is dynamically
prepared, the execution of that statement can involve intra-partition parallelism using a
degree determined by the database manager.

host-variable
The host-variable must be of data type CHAR or VARCHAR and the length must
not exceed 5. If a longer field is provided, an error will be returned (SQLSTATE
42815). If the actual value provided is larger than the replacement value specified,
the input must be padded on the right with blanks. Leading blanks are not allowed
(SQLSTATE 42815). All input values are treated as being case-insensitive. If a
host-variable has an associated indicator variable, the value of that indicator vari-
able must not indicate a null value (SQLSTATE 42815).

 Chapter 6. Statements 641

SET CURRENT DEGREE

string-constant
The string-constant length must not exceed 5.

 Notes
The degree of intra-partition parallelism for static SQL statements can be controlled
using the DEGREE option of the PREP or BIND command. Refer to the Command
Reference for details on these commands.

The actual runtime degree of intra-partition parallelism will be the lower of:

¹ Maximum query degree (max_querydegree) configuration parameter
¹ Application runtime degree
¹ SQL statement compilation degree

The intra_parallel database manager configuration must be on to use intra-partition
parallelism . If it is set to off, the value of this register will be ignored and the statement
will not use intra-partition parallelism for the purpose of optimization (SQLSTATE
01623).

Some SQL statements cannot use intra-partition parallelism . See the Administration
Guide for a description of degree of intra-partition parallelism and a list of restrictions.

 Example
Example 1: The following statement sets the CURRENT DEGREE to inhibit intra-
partition parallelism .

SET CURRENT DEGREE = '1'

Example 2: The following statement sets the CURRENT DEGREE to allow intra-
partition parallelism .

SET CURRENT DEGREE = 'ANY'

642 SQL Reference

SET CURRENT EXPLAIN MODE

SET CURRENT EXPLAIN MODE
The SET CURRENT EXPLAIN MODE statement changes the value of the CURRENT
EXPLAIN MODE special register. It is not under transaction control.

 Invocation
This statement can be embedded in an application program or issued interactively. It is
an executable statement that can be dynamically prepared.

 Authorization
No special authorization is required to execute this statement.

 Syntax

 ┌ ┐─=─
55──SET──CURRENT──EXPLAIN──MODE─ ──┴ ┴─── ──┬ ┬─NO──────────── ───────────────────────────────5%
 ├ ┤─YES───────────
 ├ ┤─EXPLAIN───────
 └ ┘─host-variable─

 Description
NO

Disables the Explain facility. No Explain information is captured. NO is the initial
value of the special register.

YES
Enables the Explain facility and causes Explain information to be inserted into the
Explain tables for eligible dynamic SQL statements. All dynamic SQL statements
are compiled and executed normally.

EXPLAIN
Enables the Explain facility and causes Explain information to be captured for any
eligible dynamic SQL statement that is prepared. However, dynamic statements are
not executed.

host-variable
The host-variable must be of data type CHAR or VARCHAR and the length must
not exceed 8. If a longer field is provided, an error will be returned (SQLSTATE
42815). The value specified must be NO, YES, or EXPLAIN. If the actual value
provided is larger than the replacement value specified, the input must be padded
on the right with blanks. Leading blanks are not allowed (SQLSTATE 42815). All
input values are treated as being case-insensitive. If a host-variable has an associ-
ated indicator variable, the value of that indicator variable must not indicate a null
value (SQLSTATE 42815).

 Chapter 6. Statements 643

SET CURRENT EXPLAIN MODE

 Notes
Explain information for static SQL statements can be captured by using the EXPLAIN
option of the PREP or BIND command. If the ALL value of the EXPLAIN option is spec-
ified, and the CURRENT EXPLAIN MODE register value is NO, explain information will
be captured for dynamic SQL statements at runtime. If the value of the CURRENT
EXPLAIN MODE register is not NO, then the value of the EXPLAIN bind option is
ignored. For more information on the interaction between the EXPLAIN option and the
CURRENT EXPLAIN MODE special register, see Table 86 on page 844.

If the Explain facility is activated, the current authorization ID must have INSERT privi-
lege for the Explain tables or an error (SQLSTATE 42501) is raised. The current
authorization ID is used to qualify the Explain tables.

For further information, see the Administration Guide.

 Example
Example 1: The following statement sets the CURRENT EXPLAIN MODE special reg-
ister, so that Explain information will be captured for any subsequent eligible dynamic
SQL statements and the statement will not be executed.

SET CURRENT EXPLAIN MODE = EXPLAIN

644 SQL Reference

SET CURRENT EXPLAIN SNAPSHOT

SET CURRENT EXPLAIN SNAPSHOT
The SET CURRENT EXPLAIN SNAPSHOT statement changes the value of the
CURRENT EXPLAIN SNAPSHOT special register. It is not under transaction control.

 Invocation
This statement can be embedded in an application program or issued interactively. It is
an executable statement that can be dynamically prepared.

 Authorization
No authorization is required to execute this statement.

 Syntax

 ┌ ┐─=─
55──SET──CURRENT──EXPLAIN──SNAPSHOT─ ──┴ ┴─── ──┬ ┬─NO──────────── ───────────────────────────5%
 ├ ┤─YES───────────
 ├ ┤─EXPLAIN───────
 └ ┘─host-variable─

 Description
NO

Disables the Explain snapshot facility. No snapshot is taken. NO is the initial value
of the special register.

YES
Enables the Explain snapshot facility, creating a snapshot of the internal represen-
tation for each eligible dynamic SQL statement. This information is inserted in the
SNAPSHOT column of the EXPLAIN_STATEMENT table (see Appendix J, “
Explain Tables and Definitions” on page 821).

The EXPLAIN SNAPSHOT facility is intended for use with Visual Explain.

EXPLAIN
Enables the Explain snapshot facility, creating a snapshot of the internal represen-
tation for each eligible dynamic SQL statement that is prepared. However,
dynamic statements are not executed.

host-variable
The host-variable must be of data type CHAR or VARCHAR and the length of its
contents must not exceed 8. If a longer field is provided, an error will be returned
(SQLSTATE 42815). The value contained in this register must be either NO, YES,
or EXPLAIN. If the actual value provided is larger than the replacement value spec-
ified, the input must be padded on the right with blanks. Leading blanks are not
allowed (SQLSTATE 42815). All input values are treated as being case-insensitive.

 Chapter 6. Statements 645

SET CURRENT EXPLAIN SNAPSHOT

If host-variable has an associated indicator variable, the value of that indicator vari-
able must not indicate a null value (SQLSTATE 42815).

 Notes
Explain snapshots for static SQL statements can be captured by using the EXPLSNAP
option of the PREP or BIND command. If the ALL value of the EXPLSNAP option is
specified, and the CURRENT EXPLAIN SNAPSHOT register value is NO, Explain
snapshots will be captured for dynamic SQL statements at runtime. If the value of the
CURRENT EXPLAIN SNAPSHOT register is not NO, then the EXPLSNAP option is
ignored. For more information on the interaction between the EXPLSNAP option and
the CURRENT EXPLAIN SNAPSHOT special register, see Table 87 on page 845.

If the Explain snapshot facility is activated, the current authorization ID must have
INSERT privilege for the Explain tables or an error (SQLSTATE 42501) is raised.

For further information, see the Administration Guide.

 Example
Example 1: The following statement sets the CURRENT EXPLAIN SNAPSHOT special
register, so that an Explain snapshot will be taken for any subsequent eligible dynamic
SQL statements and the statement will be executed.

SET CURRENT EXPLAIN SNAPSHOT = YES

Example 2: The following example retrieves the current value of the CURRENT
EXPLAIN SNAPSHOT special register into the host variable called SNAP.

EXEC SQL VALUES (CURRENT EXPLAIN SNAPSHOT) INTO :SNAP;

646 SQL Reference

SET CURRENT FUNCTION PATH

SET CURRENT FUNCTION PATH
The SET CURRENT FUNCTION PATH statement changes the value of the CURRENT
FUNCTION PATH special register. It is not under transaction control.

 Invocation
This statement can be embedded in an application program or issued interactively. It is
an executable statement that can be dynamically prepared.

 Authorization
No authorization is required to execute this statement.

 Syntax

 ┌ ┐─=─ ┌ ┐─,───────────────────────
55──SET─ ─── ──CURRENT FUNCTION PATH─ ──┴ ┴─── ───6 ┴┬ ┬─schema-name─────────── ──────────────────5%
 ├ ┤─SYSTEM PATH───────────
 ├ ┤─USER──────────────────

├ ┤─CURRENT FUNCTION PATH─
 ├ ┤─host-variable─────────
 └ ┘─string-constant───────

 Description
schema-name

This one-part name identifies a schema that exists at the application server. It must
be a short SQL identifier (SQLSTATE 42815). No validation that the schema exists
is made at the time that the path is set. If a schema-name is, for example, mis-
spelled, it will not be caught, and it could affect the way subsequent SQL operates.

SYSTEM PATH
This value is the same as specifying the schema names "SYSIBM","SYSFUN".

USER
The value in the USER special register.

CURRENT FUNCTION PATH
The value of the CURRENT FUNCTION PATH before the execution of this state-
ment.

host-variable
A variable of type CHAR or VARCHAR. The length of the contents of the host-
variable must not exceed 8 (SQLSTATE 42815). It cannot be set to null. If host-
variable has an associated indicator variable, the value of that indicator variable
must not indicate a null value (SQLSTATE 42815).

 Chapter 6. Statements 647

SET CURRENT FUNCTION PATH

The characters of the host-variable must be left justified. When specifying the
schema-name with a host-variable, all characters must be specified in the exact
case intended as there is no conversion to uppercase characters.

string-constant
A character string constant with a maximum length of 8.

 Rules
¹ A schema name cannot appear more than once in the function path (SQLSTATE

42732).

¹ The number of schemas that can be specified is limited by the total length of the
CURRENT FUNCTION PATH special register. The special register string is built by
taking each schema name specified and removing trailing blanks, delimiting with
double quotes, doubling quotes within the schema name as necessary, and then
separating each schema name by a comma. The length of the resulting string
cannot exceed 254 bytes (SQLSTATE 42907).

 Notes
¹ The initial value of the CURRENT FUNCTION PATH special register is

"SYSIBM","SYSFUN","X" where X is the value of the USER special register.

¹ The schema SYSIBM does not need to be specified. If it is not included in the
function path, it is implicitly assumed as the first schema (in this case, it is not
included in the CURRENT FUNCTION PATH special register).

¹ The CURRENT FUNCTION PATH special register is used to resolve user-defined
distinct types and functions in dynamic SQL statements. The FUNCPATH bind
option specifies the function path to be used for resolving user-defined distinct
types and functions in static SQL statements. See the Administration Guide for
further information on the FUNCPATH option.

 Example
Example 1: The following statement sets the CURRENT FUNCTION PATH special
register.

SET CURRENT FUNCTION PATH = FERMAT, "McDrw #8", SYSIBM

Example 2: The following example retrieves the current value of the CURRENT
FUNCTION PATH special register into the host variable called CURPATH.

EXEC SQL VALUES (CURRENT FUNCTION PATH) INTO :CURPATH;

The value would be "FERMAT","McDrw #8","SYSIBM" if set by the previous example.

648 SQL Reference

SET CURRENT PACKAGESET

SET CURRENT PACKAGESET
The SET CURRENT PACKAGESET statement sets the schema name (collection identi-
fier) that will be used to select the package to use for subsequent SQL statements. This
statement is not under transaction control.

 Invocation
This statement can be embedded only in an application program. It is an executable
statement that cannot be dynamically prepared. This statement is not supported in
REXX.

 Authorization
None required.

 Syntax

 ┌ ┐─=─
55─ ─SET──CURRENT PACKAGESET─ ──┴ ┴─── ──┬ ┬─string-constant─ ─────────────────────────────────5%
 └ ┘─host-variable───

 Description
string-constant

A character string constant with a maximum length of 8. If more than the
maximum, it will be truncated at run time.

host-variable
A variable of type CHAR or VARCHAR with a maximum length of 8. It cannot be
set to null. If more than the maximum, it will be truncated at run time.

 Notes
¹ This statement allows an application to specify the schema name used when

selecting a package for an executable SQL statement. The statement is processed
at the client and does not flow to the application server.

¹ The COLLECTION bind option can be used to create a package with a specified
schema name. See the Command Reference for details.

¹ Unlike DB2 for MVS/ESA, the SET CURRENT PACKAGESET statement is imple-
mented without support for a special register called CURRENT PACKAGESET.

 Example
Assume an application called TRYIT is precompiled by userid PRODUSA, making
'PRODUSA' the default schema name in the bind file. The application is then bound
twice with different bind options. The following command line processor commands
were used:

 Chapter 6. Statements 649

SET CURRENT PACKAGESET

DB2 CONNECT TO SAMPLE USER PRODUSA

DB2 BIND TRYIT.BND DATETIME USA

DB2 CONNECT TO SAMPLE USER PRODEUR

DB2 BIND TRYIT.BND DATETIME EUR COLLECTION 'PRODEUR'

 This creates two packages called TRYIT. The first bind command created the package
in the schema named 'PRODUSA'. The second bind command created the package in
the schema named 'PRODEUR' based on the COLLECTION option.

Assume the application TRYIT contains the following statements:

EXEC SQL CONNECT TO SAMPLE;

 .

 .

EXEC SQL SELECT HIREDATE INTO :HD FROM EMPLOYEE WHERE EMPNO='000010'; .1/
 .

 .

EXEC SQL SET CURRENT PACKAGESET 'PRODEUR'; .2/
 .

 .

EXEC SQL SELECT HIREDATE INTO :HD FROM EMPLOYEE WHERE EMPNO='000010'; .3/

.1/ This statement will run using the PRODUSA.TRYIT package because it is the
default package for the application. The date is therefore returned in USA format.

.2/ This statement sets the schema name to 'PRODEUR' for package selection.

.3/ This statement will run using the PRODEUR.TRYIT package as a result of the SET
CURRENT PACKAGESET statement. The date is therefore returned in EUR format.

650 SQL Reference

SET CURRENT QUERY OPTIMIZATION

SET CURRENT QUERY OPTIMIZATION
The SET CURRENT QUERY OPTIMIZATION statement assigns a value to the
CURRENT QUERY OPTIMIZATION special register. The value specifies the current
class of optimization techniques enabled when preparing dynamic SQL statements. It is
not under transaction control.

 Invocation
This statement can be embedded in an application program or issued through the use
of dynamic SQL statements. It is an executable statement that can be dynamically pre-
pared.

 Authorization
No authorization is required to execute this statement.

 Syntax

 ┌ ┐─=─
55──SET──CURRENT──QUERY──OPTIMIZATION─ ──┴ ┴─── ──┬ ┬─0───────────── ─────────────────────────5%
 ├ ┤─1─────────────
 ├ ┤─2─────────────
 ├ ┤─3─────────────
 ├ ┤─5─────────────
 ├ ┤─7─────────────
 ├ ┤─9─────────────
 └ ┘─host-variable─

 Description
optimization-class

optimization-class can be specified either as an integer constant or as the name of
a host variable that will contain the appropriate value at run time. An overview of
the classes follows (for details refer to the Administration Guide).

0 Specifies that a minimal amount of optimization is performed to
generate an access plan. This class is most suitable for simple
dynamic SQL access to well-indexed tables.

1 Specifies that optimization roughly comparable to DB2 Version 1
is performed to generate an access plan.

2 Specifies a level of optimization higher than that of DB2 Version
1, but at significantly less optimization cost than levels 3 and
above, especially for very complex queries.

3 Specifies that a moderate amount of optimization is performed to
generate an access plan.

 Chapter 6. Statements 651

SET CURRENT QUERY OPTIMIZATION

5 Specifies a significant amount of optimization is performed to
generate an access plan. For complex dynamic SQL queries,
heuristic rules are used to limit the amount of time spent
selecting an access plan.

7 Specifies a significant amount of optimization is performed to
generate an access plan. Similar to 5 but without the heuristic
rules.

9 Specifies a maximal amount of optimization is performed to gen-
erate an access plan. This can greatly expand the number of
possible access plans that are evaluated. This class should be
used to determine if a better access plan can be generated for
very complex and very long-running queries using large tables.
Explain and performance measurements can be used to verify
that a better plan has been generated.

host-variable The data type is INTEGER. The value must be in the range 0 to
9 (SQLSTATE 42815) but should be 0, 1, 2, 3, 5, 7, or 9
(SQLSTATE 01608). If host-variable has an associated indicator
variable, the value of that indicator variable must not indicate a
null value (SQLSTATE 42815).

 Notes
¹ When the CURRENT QUERY OPTIMIZATION register is set to a particular value,

a set of query rewrite rules are enabled, and certain optimization variables take on
particular values. This class of optimization techniques is then used during prepara-
tion of dynamic SQL statements.

¹ In general, changing the optimization class impacts the execution time of the appli-
cation, the compilation time, and resources required. Most statements will be ade-
quately optimized using the default query optimization class. Lower query
optimization classes, especially classes 1 and 2, may be appropriate for dynamic
SQL statements for which the resources consumed by the dynamic PREPARE are
a significant portion of those required to execute the query. Higher optimization
classes should be chosen only after considering the additional resources that may
be consumed and verifying that a better access plan has been generated. For
additional detail on the behavior associated with each query optimization class see
Administration Guide.

¹ Query optimization classes must be in the range 0 to 9. Classes outside this range
will return an error (SQLSTATE 42815). Unsupported classes within this range will
return a warning (SQLSTATE 01608) and will be replaced with the next lowest
query optimization class. For example, a query optimization class of 6 will be
replaced by 5.

¹ Dynamically prepared statements use the class of optimization that was set by the
most recently executed SET CURRENT QUERY OPTIMIZATION statement. In
cases where a SET CURRENT QUERY OPTIMIZATION statement has not yet
been executed, the query optimization class is determined by the value of the data-
base configuration parameter, dft_queryopt.

652 SQL Reference

SET CURRENT QUERY OPTIMIZATION

¹ Statically bound statements do not use the CURRENT QUERY OPTIMIZATION
special register; therefore this statement has no effect on them. The QUERYOPT
option is used during preprocessing or binding to specify the desired class of opti-
mization for statically bound statements. If QUERYOPT is not specified then, the
default value specified by the database configuration parameter, dft_queryopt, is
used. Refer to the BIND command in the Command Reference for details.

¹ The results of executing the SET CURRENT QUERY OPTIMIZATION statement
are not rolled back if the unit of work in which it is executed is rolled back.

 Examples
Example 1: This example shows how the highest degree of optimization can be
selected.

SET CURRENT QUERY OPTIMIZATION 9

Example 2: The following example shows how the CURRENT QUERY OPTIMIZA-
TION special register can be used within a query.

Using the SYSCAT.PACKAGES catalog view, find all plans that were bound with the
same setting as the current value of the CURRENT QUERY OPTIMIZATION special
register.

EXEC SQL DECLARE C1 CURSOR FOR

SELECT PKGNAME, PKGSCHEMA FROM SYSCAT.PACKAGES

WHERE QUERYOPT = CURRENT QUERY OPTIMIZATION

 Chapter 6. Statements 653

SET EVENT MONITOR STATE

SET EVENT MONITOR STATE
The SET EVENT MONITOR STATE statement activates or deactivates an event
monitor. The current state of an event monitor (active or inactive) is determined by
using the EVENT_MON_STATE built-in function. The SET EVENT MONITOR STATE
statement is not under transaction control.

 Invocation
This statement can be embedded in an application program or issued through the use
of dynamic SQL statements. It is an executable statement that can be dynamically pre-
pared.

 Authorization
The authorization ID of the statement most hold either SYSADM or DBADM authority
(SQLSTATE 42815).

 Syntax

 ┌ ┐─=─
55──SET──EVENT──MONITOR──event-monitor-name──STATE─ ──┴ ┴─── ──┬ ┬─0───────────── ────────────5%
 ├ ┤─1─────────────
 └ ┘─host-variable─

 Description
event-monitor-name

Identifies the event monitor to activate or deactivate. The name must identify an
event monitor that exists in the catalog (SQLSTATE 42704).

new-state
new-state can be specified either as an integer constant or as the name of a host
variable that will contain the appropriate value at run time. The following may be
specified:

0 Indicates that the specified event monitor should be deacti-
vated.

1 Indicates that the specified event monitor should be activated.
The event monitor should not already be active; otherwise a
warning (SQLSTATE 01598) is issued.

host-variable The data type is INTEGER. The value specified must be 0 or 1
(SQLSTATE 42815). If host-variable has an associated indi-
cator variable, the value of that indicator variable must not indi-
cate a null value (SQLSTATE 42815).

654 SQL Reference

SET EVENT MONITOR STATE

 Rules
¹ Although an unlimited number of event monitors may be defined, there is a limit of

32 event monitors that can be simultaneously active (SQLSTATE 54030).

¹ In order to activate an event monitor, the transaction in which the event monitor
was created must have been committed (SQLSTATE 55033). This rule prevents (in
one unit of work) creating an event monitor, activating the monitor, then rolling
back the transaction.

¹ If the number or size of the event monitor files exceeds the values specified for
MAXFILES or MAXFILESIZE on the CREATE EVENT MONITOR statement, an
error (SQLSTATE 54031) is raised.

¹ If the target path of the event monitor (that was specified on the CREATE EVENT
MONITOR statement) is already in use by another event monitor, an error
(SQLSTATE 51026) is raised.

 Notes
¹ Activating an event monitor performs a reset of any counters associated with it.

 Example
The following example activates an event monitor called SMITHPAY.

SET EVENT MONITOR SMITHPAY STATE = 1

 Chapter 6. Statements 655

SET transition-variable

 SET transition-variable
The SET transition-variable statement assigns values to new transition variables. It is
under transaction control.

 Invocation
This statement can only be used as a triggered SQL statement in the triggered action
of a BEFORE trigger whose granularity is FOR EACH ROW (see “CREATE TRIGGER”
on page 508).

 Authorization
The privileges held by the authorization ID of the creator of the trigger must include at
least one of the following:

¹ UPDATE of the columns referenced on the left hand side of the assignment and
SELECT for any columns referenced on the right hand side.

¹ CONTROL privilege on the table (subject table of the trigger)
¹ SYSADM or DBADM authority.

To execute this statement with a row-fullselect as the right hand side of the assignment,
the privileges held by the authorization ID of the creator of the trigger must also include
at least one of the following for each table or view referenced:

 ¹ SELECT privilege
 ¹ CONTROL privilege
¹ SYSADM or DBADM.

 Syntax

 ┌ ┐─,──
55─ ─SET─ ───6 ┴──┬ ┬─┤ transition-variable ├──=─ ──┬ ┬─expression─ ──────────────────────── ─────5%
 │ │├ ┤─NULL───────
 │ │└ ┘─DEFAULT────
 │ │┌ ┐─,─────────────────────── ┌ ┐─,──────────────
 └ ┘─(─ ───6 ┴─┤ transition-variable ├─ ─)──=──(─ ──┬ ┬───6 ┴┬ ┬─expression───(1) ─)─
 │ │├ ┤─NULL─────────
 │ │└ ┘─DEFAULT──────
 └ ┘ ─row-fullselect───(2) ──

transition-variable:
├─ ──┬ ┬─────────────────── ─column-name───┤
 └ ┘─correlation-name.─

Notes:
1 The number of expressions, NULLs and DEFAULTs must match the number of transition-variables.
2 The number of columns in the select list must match the number of transition-variables.

656 SQL Reference

SET transition-variable

 Description
transition-variable

Identifies a column in the set of affected rows for the trigger.

correlation-name
The correlation-name given for referencing the NEW transition variables. This
correlation-name must match the correlation name specified following NEW in
the REFERENCING clause of the CREATE TRIGGER.

If OLD is not specified in the REFERENCING clause, the correlation-name will
default to the correlation-name specified following NEW. If both NEW and OLD
are specified in the REFERENCING clause, then a correlation-name is
required with each column-name (SQLSTATE 42702).

column-name
Identifies the column to be updated. The column-name must identify a column
of the subject table of the trigger (SQLSTATE 42703). A column must not be
specified more than once (SQLSTATE 42701).

expression
Indicates the new value of the column. The expression is any expression of the
type described in “Expressions” on page 107. The expression can not include a
column function except when it occurs within a scalar fullselect (SQLSTATE
42903). An expression may contain references to OLD and NEW transition vari-
ables and must be qualified by the correlation-name to specify which transition vari-
able (SQLSTATE 42702).

NULL
Specifies the null value and can only be specified for nullable columns (SQLSTATE
23502).

DEFAULT
Specifies that the default value should be used based on how the corresponding
column is defined in the table. The value that is inserted depends on how the
column was defined.

¹ If the column was defined using the WITH DEFAULT clause, then the value is
set to the default defined for the column (see default-clause in “ALTER
TABLE” on page 348).

¹ If the column was defined without specifying the WITH DEFAULT clause or the
NOT NULL clause, then the value inserted is NULL.

¹ If the column was defined using the NOT NULL clause and the WITH
DEFAULT clause was not used or DEFAULT NULL was used, the DEFAULT
keyword cannot be specified for that column (SQLSTATE 23502).

row-fullselect
A fullselect that returns a single row with the number of columns corresponding to
the number of column-names specified for assignment. The values are assigned to
each corresponding column-name. If the result of the row-fullselect is no rows, then
null values are assigned. A row-fullselect may contain references to OLD and NEW
transition variables which must be qualified by the correlation-name to specify

 Chapter 6. Statements 657

SET transition-variable

which transition variable to use. (SQLSTATE 42702). An error is returned if there is
more than one row in the result (SQLSTATE 21000).

 Rules
¹ The number of values to be assigned from expressions, NULLs and DEFAULTs or

the row-fullselect must match the number of columns specified for assignment
(SQLSTATE 42802).

¹ If the statement is used in a BEFORE UPDATE trigger, the column-name specified
as a transition-variable cannot be a partitioning key column (SQLSTATE 42997).

 Notes
¹ If more than one assignment is included, all the expressions and row-fullselects are

evaluated before the assignments are performed. Thus references to columns in an
expression or row fullselect are always the value of the transition variable prior to
any assignment in the single SET transition-variable statement.

 Examples
Example 1: Set the salary column of the row for which the trigger action is cur-
rently executing to 50000.

SET NEW_VAR.SALARY = 50000;

 or

SET (NEW_VAR.SALARY) = (50000);

Example 2: Set the salary and the commission column of the row for which the
trigger action is currently executing to 50000 and 8000 respectively.

SET NEW_VAR.SALARY = 50000, NEW_VAR.COMM = 8000;

 or

SET (NEW_VAR.SALARY, NEW_VAR.COMM) = (50000, 8000);

Example 3: Set the salary and the commission column of the row for which the
trigger action is currently executing to the average of the salary and of the commis-
sion of the employees of the updated row's department respectively.

SET (NEW_VAR.SALARY, NEW_VAR.COMM)

= (SELECT AVG(SALARY), AVG(COMM)

FROM EMPLOYEE E

WHERE E.WORKDEPT = NEW_VAR.WORKDEPT);

Example 4: Set the salary and the commission column of the row for which the
trigger action is currently executing to 10000 and the original value of salary
respectively (i.e., before the SET statement was executed).

SET NEW_VAR.SALARY = 10000, NEW_VAR.COMM = NEW_VAR.SALARY;

 or

SET (NEW_VAR.SALARY, NEW_VAR.COMM) = (10000, NEW_VAR.SALARY);

658 SQL Reference

SIGNAL SQLSTATE

 SIGNAL SQLSTATE
The SIGNAL SQLSTATE statement is used to signal an error. It causes an error to be
returned with the specified SQLSTATE and the specified diagnostic-string.

 Invocation
The SIGNAL SQLSTATE statement can only be used as a triggered SQL statement
within a trigger.

 Authorization
No authorization is required to execute this statement.

 Syntax

55──SIGNAL──SQLSTATE──string-constant──(──diagnostic-string──)───────────────────────────5%

 Description
string-constant

The specified string-constant represents an SQLSTATE. It must be a character
string constant with exactly 5 characters that follow the rules for application-defined
SQLSTATEs as follows:

¹ Each character must be from the set of digits ('0' through '9') or non-accented
upper case letters ('A' through 'Z')

¹ The SQLSTATE class (first two characters) cannot be '00', '01' or '02' since
these are not error classes.

¹ If the SQLSTATE class (first two characters) starts with the character '0'
through '6' or 'A' through 'H', then the subclass (last three characters) must
start with a letter in the range 'I' through 'Z'

¹ If the SQLSTATE class (first two characters) starts with the character '7', '8', '9'
or 'I' though 'Z', then the subclass (last three characters) can be any of '0'
through '9' or 'A' through 'Z'.

If the SQLSTATE does not conform to these rules an error occurs (SQLSTATE
428B3).

diagnostic-string
An expression with a type of CHAR or VARCHAR that returns a character string of
up to 70 bytes that describes the error condition. If the string is longer than 70
bytes, it will be truncated.

 Chapter 6. Statements 659

SIGNAL SQLSTATE

 Example
Consider an order system that records orders in an ORDERS table (ORDERNO,
CUSTNO, PARTNO, QUANTITY) only if there is sufficient stock in the PARTS tables.

 CREATE TRIGGER check_avail

NO CASCADE BEFORE INSERT ON orders

REFERENCING NEW AS new_order

FOR EACH ROW MODE DB2SQL

WHEN (new_order.quantity > (SELECT on_hand FROM parts

 WHERE new_order.partno=parts.partno))

 BEGIN ATOMIC

SIGNAL SQLSTATE '75001' ('Insufficient stock for order');

 END

660 SQL Reference

UPDATE

 UPDATE
The UPDATE statement updates the values of specified columns in rows of a table or
view. Updating a row of a view updates a row of its base table.

The forms of this statement are:

¹ The Searched UPDATE form is used to update one or more rows (optionally deter-
mined by a search condition).

¹ The Positioned UPDATE form is used to update exactly one row (as determined by
the current position of a cursor).

 Invocation
An UPDATE statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be dynam-
ically prepared.

 Authorization
The privileges held by the authorization ID of the statement must include at least one of
the following:

¹ UPDATE privilege on the table or view where rows are to be updated
¹ UPDATE privilege on each of the columns to be updated.
¹ CONTROL privilege on the table or view where rows are to be updated
¹ SYSADM or DBADM authority.
¹ If a row-fullselect is included in the assignment, at least one of the following for

each referenced table or view:
 – SELECT privilege
 – CONTROL privilege

– SYSADM or DBADM authority.

For each table or view referenced by a subquery, the privileges held by the authori-
zation ID of the statement must also include at least one of the following:

 ¹ SELECT privilege
 ¹ CONTROL privilege
¹ SYSADM or DBADM authority.

When the package is precompiled with SQL92 rules75 and the searched form of an
UPDATE includes a reference to a column of the table or view in the right side of the
assignment-clause or anywhere in the search-condition, the privileges held by the
authorization ID of the statement must also include at least one of the following:

 ¹ SELECT privilege
 ¹ CONTROL privilege
¹ SYSADM or DBADM authority.

75 The package used to process the statement is precompiled using option LANGLEVEL with value SQL92E or MIA.

 Chapter 6. Statements 661

UPDATE

GROUP privileges are not checked for static UPDATE statements.

 Syntax

Searched UPDATE:

55─ ─UPDATE─ ──┬ ┬─table-name─ ──┬ ┬────────────────────────── ─SET──┤ assignment-clause ├──────5
 └ ┘─view-name── │ │┌ ┐─AS─
 └ ┘ ──┴ ┴──── ─correlation-name─

5─ ──┬ ┬───────────────────────── ──5%
 └ ┘ ─WHERE──search-condition─

Positioned UPDATE:

55─ ─UPDATE─ ──┬ ┬─table-name─ ─SET──┤ assignment-clause ├──WHERE CURRENT OF──cursor-name────5%
 └ ┘─view-name──

assignment-clause:
 ┌ ┐─,───
├─ ───6 ┴──┬ ┬ ─column-name──=─ ──┬ ┬─expression─ ─────────────────────────── ─────────────────────┤
 │ │├ ┤─NULL───────
 │ │└ ┘─DEFAULT────
 │ │┌ ┐─,─────────── ┌ ┐─,─────────────────
 └ ┘─(─ ───6 ┴─column-name─ ─)──=──(─ ──┬ ┬───6 ┴───(1) ──┬ ┬─expression─ ─)─
 │ │├ ┤─NULL───────
 │ │└ ┘─DEFAULT────
 └ ┘ ─row-fullselect───(2) ─────

Notes:
1 The number of expressions, NULLs and DEFAULTs must match the number of column-names.
2 The number of columns in the select list must match the number of column-names.

 Description
table-name or view-name

Is the name of the table or view to be updated. The name must identify a table or
view described in the catalog, but not a catalog table, a view of a catalog table
(unless it is one of the updatable SYSSTAT views), or a read-only view. (For an
explanation of read-only views, see “CREATE VIEW” on page 517. For an expla-
nation of updatable catalog views, see Appendix D, “Catalog Views” on page 693.)

AS Optional keyword to introduce the correlation-name.

correlation-name
May be used within search-condition to designate the table or view. (For an expla-
nation of correlation-name, see “Correlation Names” on page 89.)

SET
Introduces the assignment of values to column names.

662 SQL Reference

UPDATE

assignment-clause

column-name
Identifies a column to be updated. The column-name must identify an
updatable column of the specified table or view.76 A column must not be speci-
fied more than once.

For a Positioned UPDATE:

¹ If the UPDATE clause was specified in the select-statement of the cursor,
each column name in the assignment-clause must also appear in the
UPDATE clause.

¹ If the UPDATE clause was not specified in the select-statement of the
cursor and LANGLEVEL MIA or SQL92E was specified when the applica-
tion was precompiled, the name of any updatable column may be speci-
fied.

¹ If the UPDATE clause was not specified in the select-statement of the
cursor and LANGLEVEL SAA1 was specified either explicitly or by default
when the application was precompiled, no columns may be updated.

expression
Indicates the new value of the column. The expression is any expression of
the type described in “Expressions” on page 107. The expression can not
include a column function except when it occurs within a scalar fullselect
(SQLSTATE 42903).

An expression may contain references to columns of the target table of the
UPDATE statement. For each row that is updated, the value of such a column
in an expression is the value of the column in the row before the row is
updated.

NULL
Specifies the null value and can only be specified for nullable columns
(SQLSTATE 23502).

DEFAULT
Specifies that the default value should be used based on how the corre-
sponding column is defined in the table. The value that is inserted depends on
how the column was defined.

¹ If the column was defined using the WITH DEFAULT clause, then the
value is set to the default defined for the column (see default-clause in
“ALTER TABLE” on page 348).

¹ If the column was defined without specifying the WITH DEFAULT clause
or the NOT NULL clause, then the value inserted is NULL.

76 A column of a partitioning key is not updatable (SQLSTATE 42997). The row of data must be deleted and inserted to change
columns in a partitioning key.

 Chapter 6. Statements 663

UPDATE

¹ If the column was defined using the NOT NULL clause and the WITH
DEFAULT clause was not used or DEFAULT NULL was used, the
DEFAULT keyword cannot be specified for that column (SQLSTATE
23502).

row-fullselect
A fullselect that returns a single row with the number of columns corre-
sponding to the number of column-names specified for assignment. The values
are assigned to each corresponding column-name. If the result of the row-
fullselect is no rows, then null values are assigned.

A row-fullselect may contain references to columns of the target table of the
UPDATE statement. For each row that is updated, the value of such a column
in an expression is the value of the column in the row before the row is
updated. An error is returned if there is more than one row in the result
(SQLSTATE 21000).

WHERE
Introduces a condition that indicates what rows are updated. You can omit the
clause, give a search condition, or name a cursor. If the clause is omitted, all rows
of the table or view are updated.

search-condition
Is any search condition as described in Chapter 3, “Language Elements” on
page 43. Each column-name in the search condition, other than in a subquery,
must name a column of the table or view. When the search condition includes
a subquery in which the same table is the base object of both the UPDATE
and the subquery, the subquery is completely evaluated before any rows are
updated.

The search-condition is applied to each row of the table or view and the
updated rows are those for which the result of the search-condition is true.

If the search condition contains a subquery, the subquery can be thought of as
being executed each time the search condition is applied to a row, and the
results used in applying the search condition. In actuality, a subquery with no
correlated references is executed only once, whereas a subquery with a corre-
lated reference may have to be executed once for each row.

CURRENT OF cursor-name
Identifies the cursor to be used in the update operation. The cursor-name must
identify a declared cursor as explained in “DECLARE CURSOR” on page 525.
The DECLARE CURSOR statement must precede the UPDATE statement in
the program.

The table or view named must also be named in the FROM clause of the
SELECT statement of the cursor, and the result table of the cursor must not
be read-only. (For an explanation of read-only result tables, see “DECLARE
CURSOR” on page 525.)

When the UPDATE statement is executed, the cursor must be positioned on a
row; that row is updated.

664 SQL Reference

UPDATE

 Rules
¹ Assignment : Update values are assigned to columns under the assignment rules

described in Chapter 3.

¹ Validity : The updated row must conform to any constraints imposed on the table
(or on the base table of the view) by any unique index on an updated column.

If a view is used that is not defined using WITH CHECK OPTION, rows can be
changed so that they no longer conform to the definition of the view. Such rows are
updated in the base table of the view and no longer appear in the view.

If a view is used that is defined using WITH CHECK OPTION, an updated row
must conform to the definition of the view. For an explanation of the rules gov-
erning this situation, see “CREATE VIEW” on page 517.

¹ Check Constraint : Update value must satisfy the check-conditions of the check
constraints defined on the table.

An UPDATE to a table with check constraints defined has the constraint conditions
for each column updated evaluated once for each row that is updated. When proc-
essing an UPDATE statement, only the check constraints referring to the updated
columns are checked.

¹ Referential Integrity : The value of the parent unique keys cannot be changed if
the update rule is RESTRICT and there are one or more dependent rows.
However, if the update rule is NO ACTION, parent unique keys can be updated as
long as every child has a parent key by the time the update statement completes.
A non-null update value of a foreign key must be equal to a value of the primary
key of the parent table of the relationship.

 Notes
¹ If an update value violates any constraints, or if any other error occurs during the

execution of the UPDATE statement, no rows are updated. The order in which mul-
tiple rows are updated is undefined.

¹ When an UPDATE statement completes execution, the value of SQLERRD(3) in
the SQLCA is the number of rows updated. The SQLERRD(5) field contains the
number of rows inserted, deleted, or updated by all activated triggers. (For a
description of the SQLCA, see Appendix B, “SQL Communication Area (SQLCA)”
on page 679.)

¹ Unless appropriate locks already exist, one or more exclusive locks are acquired
by the execution of a successful UPDATE statement. Until the locks are released,
the updated row can only be accessed by the application process that performed
the update (except for applications using the Uncommitted Read isolation level).
For further information on locking, see the descriptions of the COMMIT,
ROLLBACK, and LOCK TABLE statements.

 Examples
¹ Example 1: Change the job (JOB) of employee number (EMPNO) ‘000290’ in the

EMPLOYEE table to ‘LABORER’.

 Chapter 6. Statements 665

UPDATE

 UPDATE EMPLOYEE

 SET JOB = 'LABORER'

 WHERE EMPNO = '000290'

¹ Example 2: Increase the project staffing (PRSTAFF) by 1.5 for all projects that
department (DEPTNO) ‘D21’ is responsible for in the PROJECT table.

 UPDATE PROJECT

 SET PRSTAFF = PRSTAFF + 1.5

 WHERE DEPTNO = 'D21'

¹ Example 3: All the employees except the manager of department (WORKDEPT)
‘E21’ have been temporarily reassigned. Indicate this by changing their job (JOB)
to NULL and their pay (SALARY, BONUS, COMM) values to zero in the
EMPLOYEE table.

 UPDATE EMPLOYEE

SET JOB=NULL, SALARY=0, BONUS=0, COMM=0

WHERE WORKDEPT = 'E21' AND JOB <> 'MANAGER'

This statement could also be written as follows.

 UPDATE EMPLOYEE

SET (JOB, SALARY, BONUS, COMM) = (NULL, 0, 0, 0)

WHERE WORKDEPT = 'E21' AND JOB <> 'MANAGER'

¹ Example 4: Update the salary and the commission column of the employee with
employee number 000120 to the average of the salary and of the commission of
the employees of the updated row's department respectively.

 UPDATE EMPLOYEE EU

SET (EU.SALARY, EU.COMM)

 =

(SELECT AVG(ES.SALARY), AVG(ES.COMM)

FROM EMPLOYEE ES

WHERE ES.WORKDEPT = EU.WORKDEPT)

WHERE EU.EMPNO = '000120'

¹ Example 5: In a C program display the rows from the EMPLOYEE table and then,
if requested to do so, change the job (JOB) of certain employees to the new job
keyed in.

666 SQL Reference

UPDATE

EXEC SQL DECLARE C1 CURSOR FOR

 SELECT *

 FROM EMPLOYEE

 FOR UPDATE OF JOB;

 EXEC SQL OPEN C1;

EXEC SQL FETCH C1 INTO ... ;

if (strcmp (change, "YES") == 0)

 EXEC SQL UPDATE EMPLOYEE

SET JOB = :newjob

WHERE CURRENT OF C1;

 EXEC SQL CLOSE C1;

 Chapter 6. Statements 667

VALUES

 VALUES
The VALUES statement is a form of query. It can be embedded in an application
program or issued interactively. For detailed information, see “fullselect” on page 319.

668 SQL Reference

VALUES INTO

 VALUES INTO
The VALUES INTO statement produces a result table consisting of at most one row
and assigns the values in that row to host variables.

 Invocation
This statement can be embedded only in an application program. It is an executable
statement that cannot be dynamically prepared. The statement is not supported in
REXX.

 Authorization
None required.

 Syntax

 ┌ ┐─,─────────────
55─ ─VALUES─ ──┬ ┬ ─expression─────────── ─INTO─ ───6 ┴─host-variable─ ───────────────────────────5%
 │ │┌ ┐─,──────────
 └ ┘ ─(─ ───6 ┴─expression─ ─)─

 Description
VALUES

Introduces a single row consisting of one of more columns.

expression
An expression that defines a single value of a one column result table.

(expression,...)
One or more expressions that define the values for one or more columns of
the result table.

INTO
Introduces a list of host variables.

host-variable
Identifies a variable that is described in the program under the rules for
declaring host variables.

The first value in the result row is assigned to the first variable in the list, the
second value to the second variable, and so on. If the number of host vari-
ables is less than the number of column values, the value 'W' is assigned to
the SQLWARN3 field of the SQLCA. (See Appendix B, “SQL Communication
Area (SQLCA)” on page 679.)

Each assignment to a variable is made according to the rules described in
“Assignments and Comparisons” on page 64. Assignments are made in
sequence through the list.

 Chapter 6. Statements 669

VALUES INTO

If an error occurs, no value is assigned to any host variable.

 Examples
Example 1: This C example retrieves the value of the CURRENT FUNCTION PATH
special register into a host variable.

EXEC SQL VALUES(CURRENT FUNCTION PATH)

 INTO :hvl;

Example 2: This C example retrieves a portion of a LOB field into a host variable,
exploiting the LOB locator for deferred retrieval.

EXEC SQL VALUES (substr(:locator1,35))

 INTO :details;

670 SQL Reference

WHENEVER

 WHENEVER
The WHENEVER statement specifies the action to be taken when a specified exception
condition occurs.

 Invocation
This statement can only be embedded in an application program. It is not an executable
statement. The statement is not supported in REXX.

 Authorization
None required.

 Syntax

55─ ─WHENEVER─ ──┬ ┬─NOT FOUND── ──┬ ┬─CONTINUE───────────────────── ──────────────────────────5%
 ├ ┤─SQLERROR─── └ ┘ ──┬ ┬─GOTO── ──┬ ┬─── ─host-label─

└ ┘─SQLWARNING─ └ ┘─GO TO─ └ ┘ ─:─

 Description
The NOT FOUND, SQLERROR, or SQLWARNING clause is used to identify the type of
exception condition.

NOT FOUND
Identifies any condition that results in an SQLCODE of +100 or an SQLSTATE of
'02000'.

SQLERROR
Identifies any condition that results in a negative SQLCODE.

SQLWARNING
Identifies any condition that results in a warning condition (SQLWARN0 is 'W'), or
that results in a positive SQL return code other than +100.

The CONTINUE or GO TO clause is used to specify what is to happen when the identi-
fied type of exception condition exists.

CONTINUE
Causes the next sequential instruction of the source program to be executed.

GOTO or GO TO host-label
Causes control to pass to the statement identified by host-label. For host-label,
substitute a single token, optionally preceded by a colon. The form of the token
depends on the host language.

 Chapter 6. Statements 671

WHENEVER

 Notes
There are three types of WHENEVER statements:

WHENEVER NOT FOUND
 WHENEVER SQLERROR
 WHENEVER SQLWARNING

Every executable SQL statement in a program is within the scope of one implicit or
explicit WHENEVER statement of each type. The scope of a WHENEVER statement is
related to the listing sequence of the statements in the program, not their execution
sequence.

An SQL statement is within the scope of the last WHENEVER statement of each type
that is specified before that SQL statement in the source program. If a WHENEVER
statement of some type is not specified before an SQL statement, that SQL statement
is within the scope of an implicit WHENEVER statement of that type in which CON-
TINUE is specified.

 Example
In the following C example, if an error is produced, go to HANDLERR. If a warning
code is produced, continue with the normal flow of the program. If no data is returned,
go to ENDDATA.

EXEC SQL WHENEVER SQLERROR GOTO HANDLERR;

EXEC SQL WHENEVER SQLWARNING CONTINUE;

EXEC SQL WHENEVER NOT FOUND GO TO ENDDATA;

672 SQL Reference

SQL Limits

 Appendix A. SQL Limits

The following tables describe certain SQL limits. Adhering to the most restrictive case
can help the programmer design application programs that are easily portable.

Table 20. Identifier Length Limits

 Description Limit in Bytes

1 Longest authorization name (can only be single-byte
characters)

8

2 Longest constraint name 18

3 Longest correlation name 18

4 Longest cursor name 18

5 Longest external program name 8

6 Longest host identifier a 255

7 Longest schema name 8

8 Longest server (database alias) name 8

9 Longest statement name 18

10 Longest unqualified column name 18

11 Longest unqualified package name 8

12 Longest unqualified user-defined type, user-defined
function, stored procedure, buffer pool, table space,
nodegroup, table, view, alias, trigger or index name.

18

Notes:

a Individual host language compilers may have a more restrictive limit on variable
names.

Table 21 (Page 1 of 2). Numeric Limits

 Description Limit

1 Smallest INTEGER value −2 147 483 648

2 Largest INTEGER value +2 147 483 647

3 Smallest SMALLINT value −32 768

4 Largest SMALLINT value +32 767

5 Largest decimal precision 31

6 Smallest DOUBLE value −1.79769E+308

7 Largest DOUBLE value +1.79769E+308

8 Smallest positive DOUBLE value +2.225E−307

9 Largest negative DOUBLE value −2.225E−307

10 Smallest REAL value −3.402E+38

11 Largest REAL value +3.402E+38

 Copyright IBM Corp. 1993, 1997 673

SQL Limits

Table 21 (Page 2 of 2). Numeric Limits

 Description Limit

12 Smallest positive REAL value +1.175E−37

13 Largest negative REAL value −1.175E−37

Table 22. String Limits

 Description Limit

1 Maximum length of CHAR (in bytes) 254

2 Maximum length of VARCHAR (in bytes) 4 000

3 Maximum length of LONG VARCHAR (in bytes) 32 700

4 Maximum length of CLOB (in bytes) 2 147 483 647

5 Maximum length of GRAPHIC (in characters) 127

6 Maximum length of VARGRAPHIC (in characters) 2 000

7 Maximum length of LONG VARGRAPHIC (in
characters)

16 350

8 Maximum length of DBCLOB (in characters) 1 073 741 823

9 Maximum length of BLOB (in bytes) 2 147 483 647

10 Maximum length of character constant 4 000

11 Maximum length of graphic constant 2 000

12 Maximum length of concatenated character string 2 147 483 647

13 Maximum length of concatenated graphic string 1 073 741 823

14 Maximum length of concatenated binary string 2 147 483 647

15 Maximum number of hex constant digits 4 000

16 Maximum size of a catalog comment (in bytes) 254

Table 23. Datetime Limits

 Description Limit

1 Smallest DATE value 0001-01-01

2 Largest DATE value 9999-12-31

3 Smallest TIME value 00:00:00

4 Largest TIME value 24:00:00

5 Smallest TIMESTAMP value 0001-01-01-00.00.00.000000

6 Largest TIMESTAMP value 9999-12-31-24.00.00.000000

Table 24 (Page 1 of 4). Database Manager Limits

 Description Limit

1 Most columns in a table 500

2 Most columns in a view a 5 000

674 SQL Reference

SQL Limits

Table 24 (Page 2 of 4). Database Manager Limits

 Description Limit

3 Maximum length of a row including all overhead b 4 005

4 Maximum size of a table per partition (in
gigabytes) c

64

5 Maximum size of an index per partition (in
gigabytes)

64

6 Most rows in a table per partition 4 x 109

7 Longest index key including all overhead (in
bytes)

255

8 Most columns in an index key 16

9 Most indexes on a table 32 767 or storage

10 Most tables referenced in an SQL statement or a
view

storage

11 Most host variable declarations in a precompiled
program c

storage

12 Most host variable references in an SQL state-
ment

32 767

13 Longest host variable value used for insert or
update (in bytes)

2 147 483 647

14 Longest SQL statement (in bytes) 32 765

15 Most elements in a select list 500

16 Most predicates in a WHERE or HAVING clause storage

17 Maximum number of columns in a GROUP BY
clause

500

18 Maximum total length of columns in a GROUP BY
clause (in bytes)

4 005

19 Maximum number of columns in an ORDER BY
clause

500

20 Maximum total length of columns in an ORDER
BY clause (in bytes)

4 005

21 Maximum size of an SQLDA (in bytes) storage

22 Maximum number of prepared statements storage

23 Most declared cursors in a program storage

24 Maximum number of cursors opened at one time storage

25 Most tables in a relational database 65 534

26 Maximum number of constraints on a table storage

27 Maximum level of subquery nesting storage

28 Maximum number of subqueries in a single state-
ment

storage

29 Most values in an INSERT statement 500

 Appendix A. SQL Limits 675

SQL Limits

Table 24 (Page 3 of 4). Database Manager Limits

 Description Limit

30 Most SET clauses in a single UPDATE statement 500

31 Most columns in a UNIQUE constraint (supported
via a UNIQUE index)

16

32 Maximum combined length of columns in a
UNIQUE constraint (supported via a UNIQUE
index) (in bytes)

255

33 Most referencing columns in a foreign key 16

34 Maximum combined length of referencing columns
in a foreign key (in bytes)

255

35 Maximum length of a check constraint specifica-
tion (in bytes)

32765

36 Maximum number of columns in a partitioning key
e

500

37 Maximum number of rows changed in a unit of
work

storage

38 Maximum number of packages storage

39 Most constants in a statement storage

40 Maximum concurrent users of server d 64 000

41 Maximum number of parameters in a stored pro-
cedure

32 767

42 Maximum number of parameters in a user defined
function

90

43 Maximum run-time depth of cascading triggers 16

44 Maximum number of simultaneously active event
monitors

32

45 Maximum size of a regular DMS table space (in
gigabytes)c

64

46 Maximum size of a long DMS table space (in
terabytes)c

2

47 Maximum size of a temporary DMS table space
(in terabytes)c

2

48 Maximum number of databases per instance con-
currently in use

256

49 Maximum number of concurrent users per
instance

64 000

50 Maximum number of concurrent applications per
database

1 000

51 Maximum depth of cascaded triggers 16

52 Maximum partition number 999

676 SQL Reference

SQL Limits

Table 24 (Page 4 of 4). Database Manager Limits

 Description Limit

Notes:

a This maximum can be achieved using a join in the CREATE VIEW statement.
Selecting from such a view is subject to the limit of most elements in a select list.

b The actual data for BLOB, CLOB, LONG VARCHAR, DBCLOB, and LONG
VARGRAPHIC columns is not included in this count. However information about the
location of that data does take up some space in the row.

c The numbers shown are architectural limits and approximations. The practical limits
may be less.

d The actual value will be the value of the MAXAGENTS configuration parameter. See
the Administration Guide for information on MAXAGENTS.

e This is an architectural limit. The limit on the most columns in an index key should be
used as a practical limit.

 Appendix A. SQL Limits 677

SQL Limits

678 SQL Reference

SQLCA

Appendix B. SQL Communication Area (SQLCA)

An SQLCA is a collection of variables that is updated at the end of the execution of
every SQL statement. A program that contains executable SQL statements (except for
DECLARE, INCLUDE, and WHENEVER) and is precompiled with option LANGLEVEL
SAA1 (the default) or MIA must provide exactly one SQLCA, though more than one
SQLCA is possible by having one SQLCA per thread in a multi-threaded application.

When a program is precompiled with option LANGLEVEL SQL92E, an SQLCODE or
SQLSTATE variable may be declared in the SQL declare section or an SQLCODE vari-
able can be declared somewhere in the program.

An SQLCA should not be provided when using LANGLEVEL SQL92E (see the Road
Map to DB2 Programming for information on declaring SQLSTATE or SQLCODE vari-
ables in specific programming languages). The SQL INCLUDE statement can be used
to provide the declaration of the SQLCA in all languages but REXX. The SQLCA is
automatically provided in REXX (see the Road Map to DB2 Programming for informa-
tion on declaring the SQLCA in REXX).

Viewing the SQLCA Interactively
To display the SQLCA after each command you use in the command line processor,
use the command db2 -a . The SQLCA is then provided as part of the output for subse-
quent commands. The SQLCA is also dumped in the db2diag.log file.

SQLCA Field Descriptions

Table 25 (Page 1 of 4). Fields of SQLCA

Name 77 Data Type Field values

sqlcaid CHAR(8) An "eye catcher" for storage dumps containing 'SQLCA'.

sqlcabc INTEGER Contains the length of the SQLCA, 136.

sqlcode INTEGER Contains the SQL return code. For specific meanings of SQL return
codes, see the message section of the Message Reference.

Code Means
0 Successful execution (although one or more SQLWARN

indicators may be set).
positive Successful execution, but with a warning condition.
negative Error condition.

sqlerrml SMALLINT Length indicator for sqlerrmc, in the range 0 through 70. 0 means
that the value of sqlerrmc is not relevant.

77 The field names shown are those present in an SQLCA that is obtained via an INCLUDE statement.

 Copyright IBM Corp. 1993, 1997 679

SQLCA

Table 25 (Page 2 of 4). Fields of SQLCA

Name 77 Data Type Field values

sqlerrmc VARCHAR (70) Contains one or more tokens, separated by X'FF', that are substi-
tuted for variables in the descriptions of error conditions.

This field is also used when a successful connection is completed.

When a NOT ATOMIC compound SQL statement is issued, it may
contain information on up to 7 errors.

For specific meanings of SQL return codes, see the message
section of the Message Reference.

sqlerrp CHAR(8) Begins with a three-letter identifier indicating the product, followed by
five digits indicating the version, release, and modification level of
the product. For example, SQL05000 means DB2 Universal Data-
base versions for Version 5 Release 0 Modification level 0.

If SQLCODE indicates an error condition, then this field identifies the
module that returned the error.

This field is also used when a successful connection is completed.

sqlerrd ARRAY Six INTEGER variables that provide diagnostic information. These
values are generally empty if there are no errors, except for
sqlerrd(6) from a parititioned database.

sqlerrd(1) INTEGER If connection is invoked and successful, contains the maximum
expected difference in length of mixed character data (CHAR data
types) when converted to the database code page from the applica-
tion code page. A value of 0 or 1 indicates no expansion; a value
greater than 1 indicates a possible expansion in length; a negative
value indicates a possible contraction. a

sqlerrd(2) INTEGER If connection is invoked and successful, contains the maximum
expected difference in length of mixed character data (CHAR data
types) when converted to the application code page from the data-
base code page. A value of 0 or 1 indicates no expansion; a value
greater than 1 indicates a possible expansion in length; a negative
value indicates a possible contraction. a If the SQLCA results from a
NOT ATOMIC compound SQL statement that encountered one or
more errors, the value is set to the number of statements that failed.

sqlerrd(3) INTEGER If PREPARE is invoked and successful , contains an estimate of the
number of rows that will be returned. After INSERT, UPDATE, and
DELETE, contains the actual number of rows affected. If compound
SQL is invoked, contains an accumulation of all sub-statement rows.
If CONNECT is invoked, contains 1 if the database can be updated;
2 if the database is read only.

sqlerrd(4) INTEGER If PREPARE is invoked and successful , contains a relative cost esti-
mate of the resources required to process the statement. If com-
pound SQL is invoked, contains a count of the number of successful
sub-statements. If CONNECT is invoked, contains 0 for a one-phase
commit from a down-level client; 1 for a one-phase commit; 2 for a
one-phase, read-only commit; and 3 for a two-phase commit.

680 SQL Reference

SQLCA

Table 25 (Page 3 of 4). Fields of SQLCA

Name 77 Data Type Field values

sqlerrd(5) INTEGER Contains the total number of rows deleted, inserted, or updated as a
result of both:

¹ The enforcement of constraints after a successful delete opera-
tion

¹ The processing of triggered SQL statements from activated trig-
gers.

If compound SQL is invoked, contains an accumulation of the
number of such rows for all substatements. In some cases when an
error is encountered, this field contains a negative value that is an
internal error pointer. If CONNECT is invoked, contains an
authentication type value of 0 for a server authentication; 1 for client
authentication; 2 for authentication using DB2 Connect; 3 for DCE
security services authentication; 255 for unspecified authenticaion.

sqlerrd(6) INTEGER For a partitioned database, contains the partition number of the parti-
tion that encountered the error or warning. If no errors or warnings
were encountered, this field contains the partition number of the
coordinator node. The number in this field is the same as that speci-
fied for the partition in the db2nodes.cfg file.

sqlwarn Array A set of warning indicators, each containing a blank or W. If com-
pound SQL is invoked, contains an accumulation of the warning indi-
cators set for all substatements.

sqlwarn0 CHAR(1) Blank if all other indicators are blank; contains W if at least one other
indicator is not blank.

sqlwarn1 CHAR(1) Contains W if the value of a string column was truncated when
assigned to a host variable. Contains N if the null terminator was
truncated.

sqlwarn2 CHAR(1) Contains W if null values were eliminated from the argument of a
function. b

sqlwarn3 CHAR(1) Contains W if the number of columns is not equal to the number of
host variables.

sqlwarn4 CHAR(1) Contains W if a prepared UPDATE or DELETE statement does not
include a WHERE clause.

sqlwarn5 CHAR(1) Reserved for future use.

sqlwarn6 CHAR(1) Contains W if the result of a date calculation was adjusted to avoid
an impossible date.

sqlwarn7 CHAR(1) Reserved for future use.

sqlwarn8 CHAR(1) Contains W if a character that could not be converted was replaced
with a substitution character.

sqlwarn9 CHAR(1) Contains W if arithmetic expressions with errors were ignored during
column function processing.

sqlwarn10 CHAR(1) Contains W if there was a conversion error when converting a char-
acter data value in one of the fields in the SQLCA.

sqlstate CHAR(5) A return code that indicates the outcome of the most recently exe-
cuted SQL statement.

 Appendix B. SQL Communication Area (SQLCA) 681

SQLCA

Table 25 (Page 4 of 4). Fields of SQLCA

Name 77 Data Type Field values

Note:

a See the “Character Conversion Expansion Factor” section of the “Programming in Complex
Environments” chapter in the Embedded SQL Programming Guide for details.

b Some functions may not set SQLWARN2 to W even though null values were eliminated because the
result was not dependent on the elimination of null values.

Order of Error Reporting
The order of error reporting is as follows:

1. Severe error conditions are always reported. When a severe error is reported,
there are no additions to the SQLCA.

2. If no severe error occurs, a deadlock error takes precedence over other errors.

3. For all other errors, the SQLCA for the first negative SQL code is returned.

4. If no negative SQL codes are detected, the SQLCA for the first warning (that is,
positive SQL code) is returned.

For DB2 Extended Enterprise Edition, the exception to this rule occurs if a data
manipulation operation is issued on a table that is empty on one partition, but has
data on other nodes. The SQLCODE +100 is only returned to the application if
agents from all partitions return SQL0100W, either because the table is empty on
all partitions or there are no rows that satisfy the WHERE clause in an UPDATE
statement.

DB2 Extended Enterprise Edition Usage of the SQLCA
In DB2 Universal Database Extended Enterprise Edition, one SQL statement may be
executed by a number of agents on different partitions, and each agent may return a
different SQLCA for different errors or warnings. The coordinator agent also has its
own SQLCA.

To provide a consistent view for applications, all SQLCA values are merged into one
structure and SQLCA fields indicate global counts. For example:

¹ For all errors and warnings, the sqlwarn field contains the warning flags received
from all agents.

¹ Values in the sqlerrd fields indicating row counts are accumulations from all agents.

Note that SQLSTATE 09000 may not be returned in all cases of an error occurring
while processing a triggered SQL statement.

682 SQL Reference

SQLDA

Appendix C. SQL Descriptor Area (SQLDA)

An SQLDA is a collection of variables that is required for execution of the SQL
DESCRIBE statement. The SQLDA variables are options that can be used by the
PREPARE, OPEN, FETCH, EXECUTE, and CALL statements. An SQLDA communi-
cates with dynamic SQL; it can be used in a DESCRIBE statement, modified with the
addresses of host variables, and then reused in a FETCH statement.

SQLDAs are supported for all languages, but predefined declarations are provided only
for C, REXX, FORTRAN, and COBOL. In REXX, the SQLDA is somewhat different than
in the other languages; for information on the use of SQLDAs in REXX see the
Embedded SQL Programming Guide

The meaning of the information in an SQLDA depends on its use. In PREPARE and
DESCRIBE, an SQLDA provides information to an application program about a pre-
pared statement. In OPEN, EXECUTE, FETCH, and CALL, an SQLDA describes host
variables.

In DESCRIBE and PREPARE, if any one of the columns being described is either a
LOB type, 78 or a distinct type, the number of SQLVAR entries for the entire SQLDA will
be doubled. For example:

When describing a table with 3 VARCHAR columns and 1 INTEGER column, there
will be 4 SQLVAR entries
When describing a table with 2 VARCHAR columns, 1 CLOB column, and 1 integer
column, there will be 8 SQLVAR entries

In EXECUTE, FETCH, OPEN, and CALL, if any one of the variables being described is
a LOB type, 78 the number of SQLVAR entries for the entire SQLDA needs to be
doubled.79

 Field Descriptions
An SQLDA consists of four variables followed by an arbitrary number of occurrences of
a sequence of variables collectively named SQLVAR. In OPEN, FETCH, EXECUTE,
and CALL each occurrence of SQLVAR describes a host variable. In DESCRIBE and
PREPARE, each occurrence of SQLVAR describes a column of a result table. There
are two types of SQLVAR entries:

1. Base SQLVARs: These entries are always present. They contain the base infor-
mation about the column or host variable such as data type code, length attribute,
column name, host variable address, and indicator variable address.

2. Secondary SQLVARs: These entries are only present if the number of SQLVAR
entries is doubled as per the rules outlined above. For distinct types they contain

78 LOB locators and file reference variables do not require doubled SQLDAs.

79 Distinct types are not relevant in these cases since a host variable cannot be a distinct type.

 Copyright IBM Corp. 1993, 1997 683

SQLDA

the distinct type name. For LOBs, they contain the length attribute of the host vari-
able and a pointer to the buffer that contains the actual length.80 If locators or file
reference variables are used to represent LOBs, these entries are not necessary.

In SQLDAs that contain both types of entries, the base SQLVARs are in a block before
the block of secondary SQLVARs. In each, the number of entries is equal to value in
SQLD (even though many of the secondary SQLVAR entries may be unused).

The circumstances under which the SQLVAR entries are set by DESCRIBE is detailed
in “Effect of DESCRIBE on the SQLDA” on page 687.

Fields in the SQLDA Header

Table 26. Fields in the SQLDA Header

C Name
SQL Data
Type

Usage in DESCRIBE and PREPARE
(set by the database manager except
for SQLN)

Usage in FETCH, OPEN, EXECUTE,
and CALL (set by the application prior
to executing the statement)

sqldaid CHAR(8) The seventh byte of this field is a flag
byte named SQLDOUBLED. The data-
base manager sets SQLDOUBLED to
the character '2' if two SQLVAR entries
have been created for each column;
otherwise it is set to a blank (X'20' in
ASCII, X'40' in EBCDIC). See “Effect
of DESCRIBE on the SQLDA” on
page 687 for details on when
SQLDOUBLED is set.

The seventh byte of this field is used
when the number of SQLVARs is
doubled. It is named SQLDOUBLED. If
any of the host variables being described
is a BLOB, CLOB, or DBCLOB, the
seventh byte must be set to the character
'2'; otherwise it can be set to any char-
acter but we advise the use of a blank.

When used with the CALL statement and
one or more SQLVARs define of data
field as FOR BIT DATA, the sixth byte
must be set to the '+' character; otherwise
it can be set to any character but we
advise the use of blank.

sqldabc INTEGER Length of the SQLDA, equal to
SQLN*44+16.

Length of the SQLDA, >= to
SQLN*44+16.

sqln SMALLINT Unchanged by the database manager.
Must be set to a value greater than or
equal to zero before the DESCRIBE
statement is executed. Indicates the
total number of occurrences of
SQLVAR.

Total number of occurrences of SQLVAR
provided in the SQLDA. SQLN must be
set to a value greater than or equal to
zero.

sqld SMALLINT Set by the database manager to the
number of columns in the result table
(or to zero if the statement being
described is not a select-statement).

The number of host variables described
by occurrences of SQLVAR.

80 The distinct type and LOB information does not overlap, so distinct types can be based on LOBs without forcing the number of
SQLVAR entries on a DESCRIBE to be tripled.

684 SQL Reference

SQLDA

Fields in an Occurrence of a Base SQLVAR

Table 27 (Page 1 of 2). Fields in a Base SQLVAR

Name
Data
Type Usage in DESCRIBE and PREPARE

Usage in FETCH, OPEN, EXECUTE,
and CALL

sqltype SMALLINT Indicates the data type of the column
and whether it can contain nulls.
Table 29 on page 688 lists the allow-
able values and their meanings.

Note that for a distinct type, the data
type of the base type is placed into this
field. There is no indication in the Base
SQLVAR that it is part of the
description of a distinct type.

Same for host variable. Host variables for
datetime values must be character string
variables. For FETCH, a datetime type
code means a fixed-length character
string.

sqllen SMALLINT The length attribute of the column. For
datetime columns, the length of the
string representation of the values. See
Table 29 on page 688.

Note that the value is set to 0 for large
object strings (even for those whose
length attribute is small enough to fit
into a two byte integer).

The length attribute of the host variable.
See Table 29 on page 688.

Note that the value is ignored by the
database manager for CLOB, DBCLOB,
and BLOB columns. The len.sqllonglen
field in the Secondary SQLVAR is used
instead.

sqldata pointer For character-string SQLVARs, sqldata
contains 0 if the column is defined with
the FOR BIT DATA attribute. If the
column does not have the FOR BIT
DATA attribute, the value depends on
the encoding of the data. For single-
byte SBCS encoded data, sqldata con-
tains the SBCS code page. For mixed
DBCS encoded data, sqldata contains
the SBCS code page associated with
the composite DBCS code page. For
Japanese or Traditional-Chinese EUC
encoded data, sqldata contains the
composite EUC code page.

For all other column types, sqldata is
undefined.

Contains the address of the host variable
(where the fetched data will be stored).

sqlind pointer For character-string SQLVARs, sqlind
contains 0 except for mixed DBCS
encoded data when sqlind contains the
DBCS code page associated with the
composite DBCS code page.

For all other column types, sqlind is
undefined.

Contains the address of an associated
indicator variable, if there is one; other-
wise, not used.

 Appendix C. SQL Descriptor Area (SQLDA) 685

SQLDA

Table 27 (Page 2 of 2). Fields in a Base SQLVAR

Name
Data
Type Usage in DESCRIBE and PREPARE

Usage in FETCH, OPEN, EXECUTE,
and CALL

sqlname VARCHAR
(30)

Contains the unqualified name of the
column.

For columns that have a system gener-
ated name (the result column was not
directly derived from a single column
and did not specify a name using the
AS clause), the thirtieth byte is set to
X'FF'. For column names specified by
the AS clause, this byte is X'00'.

When used with the CALL statement to
access a DRDA application server,
sqlname can be set to indicate a FOR
BIT DATA string as follows:

¹ the length of sqlname is 8
¹ the first four bytes of sqlname are

X'00000000'
¹ the remaining four bytes of sqlname

are reserved (and currently ignored).

In addition, the sqltype must indicate a
CHAR, VARCHAR or LONG VARCHAR
and the sixth byte of the sqldaid field is
set to the '+' character.

This technique can also be used with
OPEN and EXECUTE when using DB2
Connect to access the server.

Fields in an Occurrence of a Secondary SQLVAR

Table 28 (Page 1 of 2). Fields in a Secondary SQLVAR

Name Data Type
Usage in DESCRIBE and
PREPARE

Usage in FETCH, OPEN, EXECUTE, and
CALL

len.sqllonglen INTEGER The length attribute of a
BLOB, CLOB, or DBCLOB
column.

The length attribute of a BLOB, CLOB, or
DBCLOB host variable. The database manager
ignores the SQLLEN field in the Base SQLVAR
for the data types. The length attribute stores
the number of bytes for a BLOB or CLOB, and
the number of characters for a DBCLOB.

len.reserve[1] INTEGER Not used. Not used.

sqldatalen pointer Not used. Used for BLOB, CLOB, and DBCLOB host vari-
ables only.

If this field is NULL, then the actual length (in
characters) should be stored in the 4 bytes
immediately before the start of the data and
SQLDATA should point to the first byte of the
field length.

If this field is not NULL, it contains a pointer to a
4 byte long buffer that contains the actual length
in bytes (even for DBCLOB) of the data in the
buffer pointed to from the SQLDATA field in the
matching Base SQLVAR.

Note that, whether or not this field is used, the
len.sqllonglen field must be set.

686 SQL Reference

SQLDA

Table 28 (Page 2 of 2). Fields in a Secondary SQLVAR

Name Data Type
Usage in DESCRIBE and
PREPARE

Usage in FETCH, OPEN, EXECUTE, and
CALL

sqldatatype_name VARCHAR(27) For a distinct type column,
the database manager sets
this to the fully qualified dis-
tinct type name.2

Not used.

reserved CHAR(3) Not used. Not used.

Note:

1. The first 8 bytes contain the schema name of the distinct type (extended to the right with spaces, if neces-
sary). Byte 9 contains a dot (.). Bytes 10 to 27 contain the low order portion of the distinct type name
which is not extended to the right with spaces.

Note that, although the prime purpose of this field is for the name of distinct types, the field is also set for IBM prede-
fined data types. In this case, the schema name is SYSIBM and the low order portion of the name is the name stored
in TYPENAME column of the DATATYPES catalog view. For example:

type name length sqldatatype_name

--------- ------ ----------------

A.B 10 A .B

INTEGER 16 SYSIBM .INTEGER

"Frank's".SMINT 13 Frank's .SMINT

MY."type " 15 MY .type

Effect of DESCRIBE on the SQLDA
For a DESCRIBE or PREPARE INTO statement, the database manager always sets
SQLD to the number of columns in the result set.

The SQLVARs in the SQLDA are set in the following cases:

¹ SQLN >= SQLD and no column is either a LOB or distinct type

The first SQLD SQLVAR entries are set and SQLDOUBLED is set to blank.

¹ SQLN >= 2*SQLD and at least one column is a LOB or distinct type

Two times SQLD SQLVAR entries are set and SQLDOUBLED is set to '2'.

¹ SQLD <= SQLN < 2*SQLD and at least one column is a distinct type but there are
no LOB columns

The first SQLD SQLVAR entries are set and SQLDOUBLED is set to blank. If the
SQLWARN bind option is YES, a warning SQLCODE +237 (SQLSTATE 01594) is
issued.

The SQLVARs in the SQLDA are NOT set (requiring allocation of additional space and
another DESCRIBE) in the following cases:

¹ SQLN < SQLD and no column is either a LOB or distinct type

No SQLVAR entries are set and SQLDOUBLED is set to blank. If the SQLWARN
bind option is YES, a warning SQLCODE +236 (SQLSTATE 01005) is issued.

 Appendix C. SQL Descriptor Area (SQLDA) 687

SQLDA

Allocate SQLD SQLVARs for a successful DESCRIBE.

¹ SQLN < SQLD and at least one column is a distinct type but there are no LOB
columns

No SQLVAR entries are set and SQLDOUBLED is set to blank. If the SQLWARN
bind option is YES, a warning SQLCODE +239 (SQLSTATE 01005) is issued.

Allocate 2*SQLD SQLVARs for a successful DESCRIBE including the names of the
distinct types.

¹ SQLN < 2*SQLD and at least one column is a LOB

No SQLVAR entries are set and SQLDOUBLED is set to blank. A warning
SQLCODE +238 (SQLSTATE 01005) is issued (regardless of the setting of the
SQLWARN bind option).

Allocate 2*SQLD SQLVARs for a successful DESCRIBE.

References in the above lists to LOB columns include distinct type columns whose
source type is a LOB type.

The SQLWARN option of the BIND or PREP command is used to control whether the
DESCRIBE (or PREPARE INTO) will return the warning SQLCODEs +236, +237, +239.
It is recommended that your application code always consider that these SQLCODEs
could be returned. The warning SQLCODE +238 is always returned when there are
LOB columns in the select list and there are insufficient SQLVARs in the SQLDA. This
is the only way the application can know that the number of SQLVARs must be doubled
because of a LOB column in the result set.

SQLTYPE and SQLLEN
Table 29 shows the values that may appear in the SQLTYPE and SQLLEN fields of the
SQLDA. In DESCRIBE and PREPARE INTO, an even value of SQLTYPE means the
column does not allow nulls, and an odd value means the column does allow nulls. In
FETCH, OPEN, EXECUTE, and CALL, an even value of SQLTYPE means no indicator
variable is provided, and an odd value means that SQLIND contains the address of an
indicator variable.

Table 29 (Page 1 of 3). SQLTYPE and SQLLEN values for DESCRIBE, FETCH, OPEN, EXECUTE, and CALL

For DESCRIBE and PREPARE INTO For FETCH, OPEN, EXECUTE, and CALL

SQLTYPE
Column Data
Type SQLLEN

Host Variable
Data Type SQLLEN

384/385 date 10 fixed-length char-
acter string repre-
sentation of a date

length attribute of the
host variable

388/389 time 8 fixed-length char-
acter string repre-
sentation of a time

length attribute of the
host variable

688 SQL Reference

SQLDA

Table 29 (Page 2 of 3). SQLTYPE and SQLLEN values for DESCRIBE, FETCH, OPEN, EXECUTE, and CALL

For DESCRIBE and PREPARE INTO For FETCH, OPEN, EXECUTE, and CALL

SQLTYPE
Column Data
Type SQLLEN

Host Variable
Data Type SQLLEN

392/393 timestamp 26 fixed-length char-
acter string repre-
sentation of a
timestamp

length attribute of the
host variable

400/401 N/A N/A NUL-terminated
graphic string

length attribute of the
host variable

404/405 BLOB 0 * BLOB Not used. *

408/409 CLOB 0 * CLOB Not used. *

412/413 DBCLOB 0 * DBCLOB Not used. *

448/449 varying-length
character string

length attribute of
the column

varying-length
character string

length attribute of the
host variable

452/453 fixed-length char-
acter string

length attribute of
the column

fixed-length char-
acter string

length attribute of the
host variable

456/457 long varying-length
character string

length attribute of
the column

long varying-length
character string

length attribute of the
host variable

460/461 N/A N/A NUL-terminated
character string

length attribute of the
host variable

464/465 varying-length
graphic string

length attribute of
the column

varying-length
graphic string

length attribute of the
host variable

468/469 fixed-length
graphic string

length attribute of
the column

fixed-length
graphic string

length attribute of the
host variable

472/473 long varying-length
graphic string

length attribute of
the column

long graphic string length attribute of the
host variable

480/481 floating point 8 for double preci-
sion, 4 for single
precision

floating point 8 for double preci-
sion, 4 for single pre-
cision

484/485 packed decimal precision in byte 1;
scale in byte 2

packed decimal precision in byte 1;
scale in byte 2

496/497 large integer 4 large integer 4

500/501 small integer 2 small integer 2

804/805 Not applicable Not applicable BLOB file refer-
ence variable.

267

808/809 Not applicable Not applicable CLOB file refer-
ence variable.

267

812/813 Not applicable Not applicable DBCLOB file refer-
ence variable.

267

960/961 Not applicable Not applicable BLOB locator 4

964/965 Not applicable Not applicable CLOB locator 4

 Appendix C. SQL Descriptor Area (SQLDA) 689

SQLDA

Table 29 (Page 3 of 3). SQLTYPE and SQLLEN values for DESCRIBE, FETCH, OPEN, EXECUTE, and CALL

For DESCRIBE and PREPARE INTO For FETCH, OPEN, EXECUTE, and CALL

SQLTYPE
Column Data
Type SQLLEN

Host Variable
Data Type SQLLEN

968/969 Not applicable Not applicable DBCLOB locator 4

Note:

* The len.sqllonglen field in the secondary SQLVAR contains the length attribute of the column.

Packed Decimal Numbers
Packed decimal numbers are stored in a variation of Binary Coded Decimal (BCD)
notation. In BCD, each nybble (four bits) represents one decimal digit. For example,
0001 0111 1001 represents 179. Therefore, read a packed decimal value nybble by
nybble. Store the value in bytes and then read those bytes in hexadecimal represen-
tation to return to decimal. For example, 0001 0111 1001 becomes 00000001
01111001 in binary representation. By reading this number as hexadecimal, it becomes
0179.

The decimal point is determined by the scale. In the case of a DEC(12,5) column, for
example, the rightmost 5 digits are to the right of the decimal point.

Sign is indicated by a nybble to the right of the nybbles representing the digits. A posi-
tive or negative sign is indicated as follows:

In summary:

1. To store any value, allocate p/2+1 bytes, where p is precision.
2. Assign the nybbles from left to right to represent the value. If a number has an

even precision, a leading zero nybble is added. This assignment includes leading
(insignificant) and trailing (significant) zero digits.

3. The sign nybble will be the second nybble of the last byte.

There is an alternative way to perform packed decimal conversions, see “CHAR” on
page 181.

For example:

Table 30. Values for Sign Indicator of a Packed Decimal Number

Sign

Representation

Binary Decimal Hexadecimal

Positive (+) 1100 12 C

Negative (-) 1101 13 D

690 SQL Reference

SQLDA

Column Value Nybbles in Hexadecimal Grouped by Bytes

DEC(8,3) 6574.23 00 65 74 23 0C

DEC(6,2) -334.02 00 33 40 2D

DEC(7,5) 5.2323 05 23 23 0C

DEC(5,2) -23.5 02 35 0D

SQLLEN Field for Decimal
The SQLLEN field contains the precision (first byte) and scale (second byte) of the
decimal column. If writing a portable application, the precision and scale bytes should
be set individually, versus setting them together as a short integer. This will avoid
integer byte reversal problems.

For example, in C:

((char *)&(sqlda->sqlvar[i].sqllen))[0] = precision;
((char *)&(sqlda->sqlvar[i].sqllen))[1] = scale;

In REXX, the scale and precision fields are referenced as follows:

 sqllen.scale

 sqllen.precision

 Appendix C. SQL Descriptor Area (SQLDA) 691

SQLDA

692 SQL Reference

Catalog Views

 Appendix D. Catalog Views

The database manager creates and maintains two sets of system catalog views. This
appendix contains a description of each system catalog view, including column names
and data types. All the system catalog views are created when a database is created
with the CREATE DATABASE command. The catalog views cannot be explicitly
created or dropped. The system catalog views are updated during normal operation in
response to SQL data definition statements, environment routines, and certain utilities.
Data in the system catalog views is available through normal SQL query facilities. The
system catalog views cannot be modified using normal SQL data manipulation com-
mands with the exception of some specific updatable catalog views.

The catalog views are supported in addition to the catalog base tables from Version 1.
The views are within the SYSCAT schema and SELECT privilege on all views is
granted to PUBLIC by default. Application programs should be written to these views
rather than the base catalog tables.81 A second set of views formed from a subset of
those within the SYSCAT schema, contain statistical information used by the optimizer.
The views within the SYSSTAT schema contain some updatable columns.

The catalog views are designed to use more consistent conventions than the underlying
catalog base tables. Columns have consistent names based on the type of objects that
they describe:

Described Object Column Names

Table TABSCHEMA, TABNAME
Index INDSCHEMA, INDNAME
View VIEWSCHEMA, VIEWNAME
Constraint CONSTSCHEMA, CONSTNAME
Trigger TRIGSCHEMA, TRIGNAME
Package PKGSCHEMA, PKGNAME
Type TYPESCHEMA, TYPENAME, TYPEID
Function FUNCSCHEMA, FUNCNAME, FUNCID
Column COLNAME
Schema SCHEMANAME
Table Space TBSPACE
Nodegroup NGNAME
Buffer pool BPNAME
Event Monitor EVMONNAME
Creation Timestamp CREATE_TIME

81 Most existing applications using the base tables, however, will continue to run.

 Copyright IBM Corp. 1993, 1997 693

Catalog Views

Updatable Catalog Views
The updatable views contain statistical information used by the optimizer. Some
columns in these views may be changed to investigate the performance of hypothetical
databases. An object (table, column, function, or index) will appear in the updatable
catalog view for a given user only if that user created the object, holds CONTROL privi-
lege on the object, or holds explicit DBADM privilege. These views are found in the
SYSSTAT schema. They are defined on top of the SYSCAT views.

Before changing any statistics for the first time, it is advised to issue the RUNSTATS
command so that all statistics will reflect the current state.

“Roadmap” to Catalog Views
Description Catalog View Page

authorities on database SYSCAT.DBAUTH 706

Buffer pool configuration on nodegroup SYSCAT.BUFFERPOOLS 696

Buffer pool size on node SYSCAT.BUFFERPOOLNODES 697

check constraints SYSCAT.CHECKS 698

column privileges SYSCAT.COLAUTH 699

columns SYSCAT.COLUMNS 702

columns referenced by check constraints SYSCAT.COLCHECKS 700

columns used in keys SYSCAT.KEYCOLUSE 716

constraint dependencies SYSCAT.CONSTDEP 704

datatypes SYSCAT.DATATYPES 705

event monitor definitions SYSCAT.EVENTMONITORS 707

events currently monitored SYSCAT.EVENTS 708

function parameters SYSCAT.FUNCPARMS 709

index privileges SYSCAT.INDEXAUTH 713

indexes SYSCAT.INDEXES 714

detailed column statistics SYSCAT.COLDIST 701

nodegroup definitions SYSCAT.NODEGROUPS 718

nodegroup nodes SYSCAT.NODEGROUPDEF 717

partitioning maps SYSCAT.PARTITIONMAPS 724

package dependencies SYSCAT.PACKAGEDEP 720

package privileges SYSCAT.PACKAGEAUTH 719

packages SYSCAT.PACKAGES 721

stored procedures SYSCAT.PROCEDURES 725

procedure parameters SYSCAT.PROCPARMS 726

referential constraints SYSCAT.REFERENCES 727

694 SQL Reference

Catalog Views

Description Catalog View Page

schema privileges SYSCAT.SCHEMAAUTH 728

schemas SYSCAT.SCHEMATA 729

statements in packages SYSCAT.STATEMENTS 730

table constraints SYSCAT.TABCONST 733

table privileges SYSCAT.TABAUTH 731

tables SYSCAT.TABLES 734

table spaces SYSCAT.TABLESPACES 736

trigger dependencies SYSCAT.TRIGDEP 737

triggers SYSCAT.TRIGGERS 738

user-defined functions SYSCAT.FUNCTIONS 710

view dependencies SYSCAT.VIEWDEP 739

views SYSCAT.TABLES SYSCAT.VIEWS 734 740

“Roadmap” to Updatable Catalog Views
Description Catalog View Page

columns SYSSTAT.COLUMNS 742

indexes SYSSTAT.INDEXES 745

detailed column statistics SYSSTAT.COLDIST 741

tables SYSSTAT.TABLES 748

user-defined functions SYSSTAT.FUNCTIONS 743

 Appendix D. Catalog Views 695

SYSCAT.BUFFERPOOLS

 SYSCAT.BUFFERPOOLS
Contains a row for every buffer pool in every nodegroup.

Table 31. SYSCAT.BUFFERPOOLS Catalog View

Column Name Data Type Nullable Description

BPNAME VARCHAR(18) Name of buffer pool

BUFFERPOOLID INTEGER Internal buffer pool identifier

NGNAME VARCHAR(18) Yes Nodegroup name (NULL if the buffer pool exists on all
nodes in the database)

NPAGES INTEGER Number of pages in the buffer pool

PAGESIZE INTEGER Pagesize for this buffer pool

ESTORE CHAR(1) N=This buffer pool does not use extended storage
Y=This buffer pool uses extended storage

696 SQL Reference

SYSCAT.BUFFERPOOLNODES

 SYSCAT.BUFFERPOOLNODES
Contains a row for each node in the buffer pool for which the size of the buffer pool on
the node is different from the default size in SYSCAT.BUFFERPOOLS column
NPAGES.

Table 32. SYSCAT.BUFFERPOOLNODES Catalog View

Column Name Data Type Nullable Description

BUFFERPOOLID INTEGER Internal buffer pool identifier

NODENUM SMALLINT Node Number

NPAGES INTEGER Number of pages in this buffer pool on this node

 Appendix D. Catalog Views 697

SYSCAT.CHECKS

 SYSCAT.CHECKS
Contains one row for each CHECK constraint.

Table 33. SYSCAT.CHECKS Catalog View

Column Name Data Type Nullable Description

CONSTNAME VARCHAR(18) Name of the check constraint (unique within a table.)

DEFINER CHAR(8) Authorization ID under which the check constraint was
defined.

TABSCHEMA CHAR(8) Qualified name of the table to which this constraint
applies.

TABNAME VARCHAR(18)

CREATE_TIME TIMESTAMP The time at which the constraint was defined. Used in
resolving functions that are used in this constraint. No
functions will be chosen that were created after the defi-
nition of the constraint.

FUNC_PATH VARCHAR(254) The current function path that was used when the con-
straint was created.

TEXT CLOB(32K) The text of the CHECK clause.

698 SQL Reference

SYSCAT.COLAUTH

 SYSCAT.COLAUTH
Contains one or more rows for each user or group who is granted a column level privi-
lege, indicating the type of privilege and whether or not it is grantable.

Table 34. SYSCAT.COLAUTH Catalog View

Column Name Data Type Nullable Description

GRANTOR CHAR(8) Authorization ID of the user who granted the privileges
or SYSIBM.

GRANTEE CHAR(8) Authorization ID of the user or group who holds the privi-
leges.

GRANTEETYPE CHAR(1) U=Grantee is an individual user
G=Grantee is a group

TABSCHEMA CHAR(8) Qualified name of the table or view.

TABNAME VARCHAR(18)

COLNAME VARCHAR(18) Name of the column to which this privilege applies.

COLNO SMALLINT Number of this column in the table or view.

PRIVTYPE CHAR(1) Indicates the type of privilege held on the table or view:

 U=update privilege.
 R=reference privilege.

GRANTABLE CHAR(1) Indicates if the privilege is grantable.

 G=grantable.
 N=not grantable.

 Appendix D. Catalog Views 699

SYSCAT.COLCHECKS

 SYSCAT.COLCHECKS
Each row represents some column that is referenced by a CHECK constraint.

Table 35. SYSCAT.COLCHECKS Catalog View

Column Name Data Type Nullable Description

CONSTNAME VARCHAR(18) Name of the check constraint. (Unique within a table.
May be system generated.)

TABSCHEMA CHAR(8) Qualified name of table containing referenced column.

TABNAME VARCHAR(18)

COLNAME VARCHAR(18) Name of column.

700 SQL Reference

SYSCAT.COLDIST

 SYSCAT.COLDIST
Contains detailed column statistics for use by the optimizer. Each row describes the
Nth-most-frequent value of some column.

Table 36. SYSCAT.COLDIST Catalog View

Column Name Data Type Nullable Description

TABSCHEMA CHAR(8) Qualified name of the table to which this entry applies.

TABNAME VARCHAR(18)

COLNAME VARCHAR(18) Name of the column to which this entry applies.

TYPE CHAR(1) F=Frequency (most frequent value) Q=Quantile value

SEQNO SMALLINT If TYPE=F, then N in this column identifies the Nth most
frequent value. If TYPE=Q, then N in this column identi-
fies the Nth quantile value.

COLVALUE VARCHAR(33) Yes The data value, as a character literal or a null value.

VALCOUNT INTEGER If TYPE=F, then VALCOUNT is the number of occur-
rences of COLVALUE in the column. If TYPE=Q, then
VALCOUNT is the number of rows whose value is less
than or equal to COLVALUE.

DISTCOUNT INTEGER Yes If TYPE=Q, this column records the number of distinct
values that are less than or equal to COLVALUE (null if
unavailable).

 Appendix D. Catalog Views 701

SYSCAT.COLUMNS

 SYSCAT.COLUMNS
Contains one row for each column that is defined for a table or view. All of the catalog
views have entries in the SYSCAT.COLUMNS table.

Table 37 (Page 1 of 2). SYSCAT.COLUMNS Catalog View

Column Name Data Type Nullable Description

TABSCHEMA CHAR(8) Qualified name of the table or view that contains the
column.

TABNAME VARCHAR(18)

COLNAME VARCHAR(18) Column name.

COLNO SMALLINT Numerical place of column in table or view, beginning at
zero.

TYPESCHEMA CHAR(8) Contains the qualified name of the type, if the data type
of the column is distinct. Otherwise TYPESCHEMA con-
tains the value SYSIBM and TYPENAME contains the
data type of the column (in long form, for example,
CHARACTER). If FLOAT or FLOAT(n) with n greater
than 24 is specified, TYPENAME is renamed to
DOUBLE. If FLOAT(n) with n less than 25 is specified,
TYPENAME is renamed to REAL. Also, NUMERIC is
renamed to DECIMAL.

TYPENAME VARCHAR(18)

LENGTH INTEGER Maximum length of data. 0 for distinct types. The
LENGTH column indicates precision for DECIMAL fields.

SCALE SMALLINT Scale for DECIMAL fields; 0 if not DECIMAL.

DEFAULT VARCHAR(254) Yes Default value for the column of a table expressed as a
constant, special register, or cast-function appropriate for
the data type of the column. May also be the keyword
NULL.

Values may be converted from what was specified as a
default value. For example, date and time constants are
presented in ISO format and cast-function names are
qualified with schema name and the identifiers are delim-
ited (see Note 3).

Null value if a DEFAULT clause was not specified or the
column is a view column.

NULLS CHAR(1) Y=Column is nullable.
N=Column is not nullable.

The value can be N for a view column that is derived
from an expression or function. Nevertheless, such a
column allows nulls when the statement using the view
is processed with warnings for arithmetic errors.

See Note 1.

CODEPAGE SMALLINT Code page of the column. For character-string columns
not defined with the FOR BIT DATA attribute, the value
is the database code page. For graphic-string columns,
the value is the DBCS code page implied by the (com-
posite) database code page. Otherwise, the value is 0.

702 SQL Reference

SYSCAT.COLUMNS

Table 37 (Page 2 of 2). SYSCAT.COLUMNS Catalog View

Column Name Data Type Nullable Description

LOGGED CHAR(1) Applies only to columns whose type is LOB or distinct
based on LOB (blank otherwise).

Y=Column is logged.
N=Column is not logged.

COMPACT CHAR(1) Applies only to columns whose type is LOB or distinct
based on LOB (blank otherwise).

Y=Column is compacted in storage.
N=Column is not compacted.

COLCARD INTEGER Number of distinct values in the column; −1 if statistics
are not gathered.

HIGH2KEY VARCHAR(33) Second highest value of the column. This field is empty
if statistics are not gathered. See Note 2.

LOW2KEY VARCHAR(33) Second lowest value of the column. Empty if statistics
not gathered. See Note 2.

AVGCOLLEN INTEGER Average column length. -1 if a long field or LOB, or sta-
tistics have not been collected.

KEYSEQ SMALLINT Yes The column's numerical position within the table's
primary key. This field is null or 0 if the column is not
part of the primary key.

PARTKEYSEQ SMALLINT Yes The column's numerical position within the table's parti-
tioning key. This field is null or 0 if the column is not part
of the partitioning key.

NQUANTILES SMALLINT Number of quantile values recorded in
SYSCAT.SYSCOLDIST for this column; -1 if no statis-
tics.

NMOSTFREQ SMALLINT Number of most-frequent values recorded in
SYSCAT.COLDIST for this column; -1 if statistics not
gathered.

REMARKS VARCHAR(254) Yes User-supplied comment.

Note:

1. Starting with Version 2, value D (indicating not null with a default) is no longer used. Instead, use of WITH
DEFAULT is indicated by a non-null value in the DEFAULT column.

2. Starting with Version 2, representation of numeric data has been changed to character literals. The size
has been enlarged from 16 to 33 bytes.

3. For Version 2.1.0, cast-function names were not delimited and may still appear this way in the DEFAULT
column. Also, some view columns included default values which will still appear in the DEFAULT column.

 Appendix D. Catalog Views 703

SYSCAT.CONSTDEP

 SYSCAT.CONSTDEP
Contains a row for every dependency of a constraint on some other object.

Table 38. SYSCAT.CONSTDEP Catalog View

Column Name Data Type Nullable Description

CONSTNAME VARCHAR(18) Name of the constraint.

TABSCHEMA CHAR(8) Qualified name of the table to which the constraint
applies.

TABNAME VARCHAR(18)

BTYPE CHAR(1) Type of object that the constraint depends on. Possible
values:

 F=function instance. I=index instance.

BSCHEMA CHAR(8) Qualified name of object that the constraint depends on.

BNAME VARCHAR(18)

704 SQL Reference

SYSCAT.DATATYPES

 SYSCAT.DATATYPES
Contains a row for every data type, including built-in and user-defined types.

Table 39. SYSCAT.DATATYPES Catalog View

Column Name Data Type Nullable Description

TYPESCHEMA CHAR(8) Qualified name of the data type (for built-in types,
TYPESCHEMA is SYSIBM).

TYPENAME VARCHAR(18)

DEFINER CHAR(8) Authorization ID under which type was created.

SOURCESCHEMA CHAR(8) Yes Qualified name of the source type for distinct types. Null
for other types.

SOURCENAME VARCHAR(18) Yes

METATYPE CHAR(1) S=System predefined type
 T=Distinct type

TYPEID SMALLINT Internal type ID.

SOURCETYPEID SMALLINT Yes Internal type ID of source type (null for built-in types).

LENGTH INTEGER Maximum length of the type. 0 for system predefined
parameterized types (for example, DECIMAL and
VARCHAR).

SCALE SMALLINT Scale for distinct types based on the system predefined
DECIMAL type. 0 for all other types (including DECIMAL
itself).

CODEPAGE SMALLINT Code page for character and graphic distinct types; 0
otherwise.

CREATE_TIME TIMESTAMP Creation time of the data type.

REMARKS VARCHAR(254) Yes User-supplied comment, or null.

 Appendix D. Catalog Views 705

SYSCAT.DBAUTH

 SYSCAT.DBAUTH
Records the database authorities held by users.

Table 40. SYSCAT.DBAUTH Catalog View

Column Name Data Type Nullable Description

GRANTOR CHAR(8) SYSIBM or authorization ID of the user who granted the
privileges.

GRANTEE CHAR(8) Authorization ID of the user or group who holds the privi-
leges.

GRANTEETYPE CHAR(1) U=Grantee is an individual user
G=Grantee is a group

DBADMAUTH CHAR(1) Whether grantee holds DBADM authority over the
database:

Y=Authority is held
N=Authority is not held

CREATETABAUTH CHAR(1) Whether grantee can create tables in the database
(CREATETAB):

Y=Privilege is held
N=Privilege is not held

BINDADDAUTH CHAR(1) Whether grantee can create new packages in the data-
base (BINDADD):

Y=Privilege is held
N=Privilege is not held

CONNECTAUTH CHAR(1) Whether grantee can connect to the database
(CONNECT):

Y=Privilege is held
N=Privilege is not held

NOFENCEAUTH CHAR(1) Whether grantee holds privilege to create non-fenced
functions.

Y=Privilege is held
N=Privilege is not held

IMPLSCHEMAAUTH CHAR(1) Whether grantee can implicitly create schemas in the
database (IMPLICIT_SCHEMA):

Y=Privilege is held
N=Privilege is not held

706 SQL Reference

SYSCAT.EVENTMONITORS

 SYSCAT.EVENTMONITORS
Contains a row for every event monitor that has been defined.

Table 41. SYSCAT.EVENTMONITORS Catalog View

Column Name Data Type Nullable Description

EVMONNAME VARCHAR(18) Name of event monitor.

DEFINER CHAR(8) Authorization ID of definer of event monitor.

TARGET_TYPE CHAR(1) The type of the target to which event data is written.
Values:

 F=File
 P=Pipe

TARGET VARCHAR(246) Name of the target to which event data is written. Abso-
lute pathname of file, or absolute name of pipe.

MAXFILES INTEGER Yes Maximum number of event files that this event monitor
permits in an event path. Null if there is no maximum, or
if the target-type is not FILE.

MAXFILESIZE INTEGER Yes Maximum size (in 4K pages) that each event file can
reach before the event monitor creates a new file. Null if
there is no maximum, or if the target-type is not FILE.

BUFFERSIZE INTEGER Yes Size of buffers (in 4K pages) used by event monitors
with file targets; otherwise null.

IO_MODE CHAR(1) Yes Mode of file I/O.

 B=Blocked
 N=Not blocked.

 Null if target-type is not FILE.

WRITE_MODE CHAR(1) Yes Indicates how this monitor handles existing event data
when the monitor is activated. Values:

 A=Append
 R=Replace

 Null if target-type is not FILE.

AUTOSTART CHAR(1) The event monitor will be activated automatically when
the database starts.

 Y=Yes
 N=No

NODENUM SMALLINT The number of the partition (or node) on which the event
monitor runs and logs events

MONSCOPE CHAR(1) Monitoring scope:

 L=Local
 G=Global

REMARKS VARCHAR(254) Yes Reserved for future use.

 Appendix D. Catalog Views 707

SYSCAT.EVENTS

 SYSCAT.EVENTS
Contains a row for every event that is being monitored. An event monitor, in general,
monitors multiple events.

Table 42. SYSCAT.EVENTS Catalog View

Column Name Data Type Nullable Description

EVMONNAME VARCHAR(18) Name of event monitor that is monitoring this event.

TYPE VARCHAR(18) Type of event being monitored. Possible values:

 DATABASE
 CONNECTIONS
 TABLES
 STATEMENTS
 TRANSACTIONS
 DEADLOCKS
 TABLESPACES

FILTER CLOB(32K) Yes The full text of the WHERE-clause
that applies to this event.

708 SQL Reference

SYSCAT.FUNCPARMS

 SYSCAT.FUNCPARMS
Contains a row for every parameter or result of a function defined in
SYSCAT.FUNCTIONS.

Table 43. SYSCAT.FUNCPARMS Catalog View

Column Name Data Type Nullable Description

FUNCSCHEMA CHAR(8) Qualified function name.

FUNCNAME VARCHAR(18)

SPECIFICNAME VARCHAR(18) The name of the function instance (may be system-
generated).

ROWTYPE CHAR(1) P=parameter
R=result before casting
C=result after casting

ORDINAL SMALLINT If ROWTYPE=P, the parameter's numerical position
within the function signature. Otherwise 0.

PARMNAME VARCHAR(18) Name of parameter or result column, or null if no name
exists.

TYPESCHEMA CHAR(8) Qualified name of data type of parameter or result.

TYPENAME VARCHAR(18)

LENGTH INTEGER Length of parameter or result. 0 if parameter or result is
a distinct type. See Note 1.

SCALE SMALLINT Scale of parameter or result. 0 if parameter or result is a
distinct type. See Note 1.

CODEPAGE SMALLINT Code page of parameter. 0 denotes either not applicable
or a column for character data declared with the FOR
BIT DATA attribute.

CAST_FUNCID INTEGER Yes Internal function ID.

AS_LOCATOR CHAR(1) Y=Parameter or result is passed in
the form of a locator

N=Not passed in the form of a locator.

Note:

1. LENGTH and SCALE are set to 0 for sourced functions (functions defined with a reference to another
function) because they inherit the length and scale of parameters from their source.

 Appendix D. Catalog Views 709

SYSCAT.FUNCTIONS

 SYSCAT.FUNCTIONS
Contains a row for each user-defined function (scalar, table or sourced). Does not
include built-in functions.

Table 44 (Page 1 of 3). SYSCAT.FUNCTIONS Catalog View

Column Name Data Type Nullable Description

FUNCSCHEMA CHAR(8) Qualified function name.

FUNCNAME VARCHAR(18)

SPECIFICNAME VARCHAR(18) The name of the function instance (may be
system-generated).

DEFINER CHAR(8) Authorization ID of function definer.

FUNCID INTEGER Internally-assigned function ID.

RETURN_TYPE SMALLINT Internal type code of return type of function.

ORIGIN CHAR(1) B=Built-in
 E=User-defined, external

U=User-defined, based on a source
 S=System-generated

TYPE CHAR(1) S=Scalar function
 C=Column function
 T=Table function

PARM_COUNT SMALLINT Number of function parameters.

PARM_SIGNATURE VARCHAR(180)
FOR BIT
DATA

Concatenation of up to 90 parameter types, in
internal format. Zero length if function takes no
parameters.

CREATE_TIME TIMESTAMP Timestamp of function creation. Set to 0 for
Version 1 functions.

VARIANT CHAR(1) Y=Variant (results may differ)
N=Invariant (results are consistent)
Blank if ORIGIN is not E

SIDE_EFFECTS CHAR(1) E=Function has external side-effects
(number of invocations is important)

 N=No side-effects
Blank if ORIGIN is not E

FENCED CHAR(1) Y=Fenced
 N=Not fenced

Blank if ORIGIN is not E

NULLCALL CHAR(1) Y=Nullcall
N=No nullcall (function result is

implicitly null if operand(s) are null).
Blank if ORIGIN is not E.

CAST_FUNCTION CHAR(1) Y=This is a cast function
N=This is not a cast function

ASSIGN_FUNCTION CHAR(1) Y=Implicit assignment function
N=Not an assignment function

710 SQL Reference

SYSCAT.FUNCTIONS

Table 44 (Page 2 of 3). SYSCAT.FUNCTIONS Catalog View

Column Name Data Type Nullable Description

SCRATCHPAD CHAR(1) Y=This function has a scratch pad
N=This function does not have a scratch pad
Blank if ORIGIN is not E

FINAL_CALL CHAR(1) Y=Final call is made to this function at run time
 end-of-statement.

N=No final call is made.
Blank if ORIGIN is not E

PARALLELIZABLE CHAR(1) Y=Function can be executed in parallel
N=Function cannot be executed in parallel
Blank if ORIGIN is not E

CONTAINS_SQL CHAR(1) Indicates wheter an external function contains
SQL.

N=Function does not contain SQL statements.
R=Contains read-only SQL statements.
M=Contains SQL statements that modify data.
Blank if ORIGIN is not E

DBINFO CHAR(1) Indicates whether a DBINFO parameter is passed
to an external function.

Y=DBINFO is passed.
N=DBINFO is not passed.
Blank if ORIGIN is not E

RESULT_COLS SMALLINT For a table function (TYPE=T) contains the
number of columns in the result table; otherwise
contains 1.

LANGUAGE CHAR(8) Implementation language of function body. Pos-
sible values are C, JAVA or OLE. Blank if ORIGIN
is not E.

IMPLEMENTATION VARCHAR(254) Yes If ORIGIN=E, identifies the path/module/function
that implements this function. If ORIGIN=U and
the source function is built-in, this column contains
the name and signature of the source function.
Null otherwise.

PARM_STYLE CHAR(8) Indicates the parameter style declared in the
CREATE FUNCTION statement. Values:

 DB2SQL
 DB2GENRL

SOURCE_SCHEMA CHAR(8) Yes If ORIGIN=U and the source function is a user-
defined function, contains the qualified name of
the source function. If ORIGIN=U and the source
function is built-in, SOURCE_SCHEMA is
'SYSIBM' and SOURCE_SPECIFIC is 'N/A for
built-in'. Null if ORIGIN is not U.

SOURCE_SPECIFIC VARCHAR(18) Yes

IOS_PER_INVOC DOUBLE Estimated number of I/Os per invocation; -1 if not
known (0 default).

 Appendix D. Catalog Views 711

SYSCAT.FUNCTIONS

Table 44 (Page 3 of 3). SYSCAT.FUNCTIONS Catalog View

Column Name Data Type Nullable Description

INSTS_PER_INVOC DOUBLE Estimated number of instructions per invocation;
-1 if not known (450 default).

IOS_PER_ARGBYTE DOUBLE Estimated number of I/O's per input argument
byte; -1 if not known (0 default).

INSTS_PER_ARGBYTE DOUBLE Estimated number of instructions per input argu-
ment byte; -1 if not known (0 default).

PERCENT_ARGBYTES SMALLINT Estimated average percent of input argument
bytes that the function will actually read; -1 if not
known (100 default).

INITIAL_IOS DOUBLE Estimated number of I/O's performed the first/last
time the function is invoked; -1 if not known (0
default).

INITIAL_INSTS DOUBLE Estimated number of instructions executed the
first/last time the function is invoked; -1 if not
known (0 default).

CARDINALITY INTEGER Yes The predicted cardinality of a table function. −1 if
not known or if function is not a table function.

REMARKS VARCHAR(254) Yes User-supplied comment, or null.

712 SQL Reference

SYSCAT.INDEXAUTH

 SYSCAT.INDEXAUTH
Contains a row for every privilege held on an index.

Table 45. SYSCAT.INDEXAUTH Catalog View

Column Name Data Type Nullable Description

GRANTOR CHAR(8) Authorization ID of the user who granted the privileges.

GRANTEE CHAR(8) Authorization ID of the user or group who holds the privi-
leges.

GRANTEETYPE CHAR(1) U=Grantee is an individual user
G=Grantee is a group

INDSCHEMA CHAR(8) Name of the index.

INDNAME VARCHAR(18)

CONTROLAUTH CHAR(1) Whether grantee holds CONTROL privilege over the
index:

Y=Privilege is held
N=Privilege is not held

 Appendix D. Catalog Views 713

SYSCAT.INDEXES

 SYSCAT.INDEXES
Contains one row for each index that is defined for a table.

Table 46 (Page 1 of 2). SYSCAT.INDEXES Catalog View

Column Name Data Type Nullable Description

INDSCHEMA CHAR(8) Name of the index.

INDNAME VARCHAR(18)

DEFINER CHAR(8) User who created the index.

TABSCHEMA CHAR(8) Qualified name of the table on which the index is
defined.

TABNAME VARCHAR(18)

COLNAMES VARCHAR(320) List of column names, each preceded by + or − to
indicate ascending or descending order respectively.

UNIQUERULE CHAR(1) Unique rule:

 D=duplicates allowed
U=unique entries only allowed

 P=primary index.

MADE_UNIQUE CHAR(1) Y=Index was originally
non-unique but was converted
to a unique index to support
a unique or primary key constraint.
If the constraint is dropped, the
index will revert to non-unique.

N=Index remains as it was created.

COLCOUNT SMALLINT Number of columns in the key.

UNIQUE_COLCOUNT SMALLINT The number of columns required for
a unique key.
Always <=COLCOUNT.
−1 if index has no unique key
(permits duplicates)

INDEXTYPE CHAR(4) Type of index.
REG =Regular

PCTFREE SMALLINT Percentage of each index page to
be reserved during initial building of the
index. This space is available for future
inserts after the index is built.

IID SMALLINT Internal index ID.

NLEAF INTEGER Number of leaf pages;
−1 if statistics are not gathered.

NLEVELS SMALLINT Number of index levels;
−1 if statistics are not gathered.

FIRSTKEYCARD INTEGER Number of distinct first key values;
−1 if statistics are not gathered.

FIRST2KEYCARD INTEGER Number of distinct keys using the first
two columns of the index (−1 if no statistics
or inapplicable)

714 SQL Reference

SYSCAT.INDEXES

Table 46 (Page 2 of 2). SYSCAT.INDEXES Catalog View

Column Name Data Type Nullable Description

FIRST3KEYCARD INTEGER Number of distinct keys using the first
three columns of the index (−1 if no statistics
or inapplicable)

FIRST4KEYCARD INTEGER Number of distinct keys using the first
four columns of the index (−1 if no statistics
or inapplicable)

FULLKEYCARD INTEGER Number of distinct full key values;
−1 if statistics are not gathered.

CLUSTERRATIO SMALLINT Degree of data clustering with the index;
−1 if statistics are not gathered
or if detailed index statistics are gathered
(in which case, CLUSTERFACTOR will be used instead).

CLUSTERFACTOR DOUBLE Finer measurement of degree of
clustering, or -1
if detailed index statistics have not been gathered.

SEQUENTIAL_PAGES INTEGER Number of leaf pages located on disk in index
key order with few or no large gaps between them.
(−1 if no statistics are available.)

DENSITY INTEGER Ratio of SEQUENTIAL_PAGES to number
of pages in the range of pages occupied by the index,
expressed as a percent (integer between 0 and 100,
−1 if no statistics are available.)

USER_DEFINED SMALLINT 1 if this index was defined by a
user and has not been dropped;
otherwise 0.

SYSTEM_REQUIRED SMALLINT 1 if this index is required for
primary key or unique key
constraint; otherwise 0.

CREATE_TIME TIMESTAMP Time when the index was created.

STATS_TIME TIMESTAMP Yes Last time when any change was
made to recorded statistics for this
index. Null if no statistics available.

PAGE_FETCH_PAIRS VARCHAR(254) A list of pairs of integers, represented
in character form.
Each pair represents the number of
pages in a hypothetical buffer, and
the number of page fetches
required to scan the table with this index using
that hypothetical buffer.
(Zero-length
string if no data available.)

REMARKS VARCHAR(254) Yes User-supplied comment, or null.

TEXT CLOB(32K) Yes Reserved for future use.

 Appendix D. Catalog Views 715

SYSCAT.KEYCOLUSE

 SYSCAT.KEYCOLUSE
Lists all columns that participate in a key defined by a unique, primary key, or foreign
key constraint.

Table 47. SYSCAT.KEYCOLUSE Catalog View

Column Name Data Type Nullable Description

CONSTNAME VARCHAR(18) Name of the constraint (unique within a table).

TABSCHEMA CHAR(8) Qualified name of the table containing the column.

TABNAME VARCHAR(18)

COLNAME VARCHAR(18) Name of the column.

COLSEQ SMALLINT Numeric position of the column in the
key (initial position=1).

716 SQL Reference

SYSCAT.NODEGROUPDEF

 SYSCAT.NODEGROUPDEF
Contains a row for each partition that is contained in a nodegroup.

Table 48. SYSCAT.NODEGROUPDEF Catalog View

Column Name Data Type Nullable Description

NGNAME VARCHAR(18) The name of the nodegroup that contains the partition
(or node) .

NODENUM SMALLINT The partition (or node) number of a partition contained in
the nodegroup. A valid partition number is between 0
and 999 inclusive.

IN_USE CHAR(1) Status of the partition (or node) .

A The newly added partition is not in the partitioning
map but the containers for the table spaces in the
nodegroup are created. The partition is added to
the partitioning map when a Redistribute
Nodegroup operation is successfully completed.

D The partition will be dropped when a Redistribute
Nodegroup operation is completed.

T The newly added partition is not in the partitioning
map and it was added using the WITHOUT
TABLESPACES clause. Containers must be specif-
ically added to the table spaces for the nodegroup.

Y The partition is in the partitioning map.

 Appendix D. Catalog Views 717

SYSCAT.NODEGROUPS

 SYSCAT.NODEGROUPS
Contains a row for each nodegroup.

Table 49. SYSCAT.NODEGROUPS Catalog View

Column Name Data Type Nullable Description

NGNAME VARCHAR(18) Name of the nodegroup.

DEFINER CHAR(8) Authorization ID of the nodegroup definer.

PMAP_ID SMALLINT Identifier of the partitioning map in
SYSCAT.PARTITIONMAPS.

REBALANCE_PMAP_ID SMALLINT Identifier of the partitioning map currently being
used for re-distribution. Value is -1 if re-
distribution is currently not in progress.

CREATE_TIME TIMESTAMP Creation time of nodegroup.

REMARKS VARCHAR(254) Yes User-provided comment.

718 SQL Reference

SYSCAT.PACKAGEAUTH

 SYSCAT.PACKAGEAUTH
Contains a row for every privilege held on a package.

Table 50. SYSCAT.PACKAGEAUTH Catalog View

Column Name Data Type Nullable Description

GRANTOR CHAR(8) Authorization ID of the user who granted the privileges.

GRANTEE CHAR(8) Authorization ID of the user or group who holds the privi-
leges.

GRANTEETYPE CHAR(1) U=Grantee is an individual user
G=Grantee is a group

PKGSCHEMA CHAR(8) Name of the package on which the privileges are held.

PKGNAME CHAR(8)

CONTROLAUTH CHAR(1) Indicates whether grantee holds CONTROL privilege on
the package:

Y=Privilege is held.
N=Privilege is not held.

BINDAUTH CHAR(1) Indicates whether grantee holds BIND privilege on the
package:

Y=Privilege is held.
N=Privilege is not held.

EXECUTEAUTH CHAR(1) Indicates whether grantee holds EXECUTE privilege on
the package:

Y=Privilege is held.
N=Privilege is not held.

 Appendix D. Catalog Views 719

SYSCAT.PACKAGEDEP

 SYSCAT.PACKAGEDEP
Contains a row for each dependency that packages have on indexes, tables, views,
functions, and aliases.

Table 51. SYSCAT.PACKAGEDEP Catalog View

Column Name Data Type Nullable Description

PKGSCHEMA CHAR(8) Name of the package.

PKGNAME CHAR(8)

BINDER CHAR(8) Yes Binder of the package.

BTYPE CHAR(1) Type of object BNAME:

 A=alias
 F=function-instance
 I=index
 T=table
 V=view

BSCHEMA CHAR(8) Qualified name of an object on which the package is
dependent.

BNAME VARCHAR(18)

TABAUTH SMALLINT Yes If BTYPE is T(table) or V(view),
encodes the privileges that are
required by this package (Select, Insert, Delete, Update).

Note:

1. When a depended-on function-instance is dropped, the package is placed into an “inoperative” state from
which it must be explicitly rebound. When any other depended-on object is dropped, the package is
placed into an “invalid” state from which the system will attempt to rebind it automatically when a package
is first referenced.

720 SQL Reference

SYSCAT.PACKAGES

 SYSCAT.PACKAGES
Contains a row for each package that has been created by binding an application
program.

Table 52 (Page 1 of 3). SYSCAT.PACKAGES Catalog View

Column Name Data Type Nullable Description

PKGSCHEMA CHAR(8) Name of the package.

PKGNAME CHAR(8)

BOUNDBY CHAR(8) Authorization ID of the binder of the package.

DEFINER CHAR(8) Userid under which package was bound.

DEFAULT_SCHEMA CHAR(8) Default schema name used for unqualified names
in static SQL statements.

VALID CHAR(1) Y=Valid
 N=Not valid

X=Package is inoperative because some
function instance that it depends on
has been dropped. Explicit rebind
is needed. See Note 1 on

 “SYSCAT.PACKAGEDEP” on page 720

UNIQUE_ID CHAR(8) Internal date and time information indicating when
the package was first created.

TOTAL_SECT SMALLINT Total number of sections in the package.

FORMAT CHAR(1) Date and time format associated with the
package:

0=Format associated with country code
of the database

1=USA date and time
2=EUR date, EUR time
3=ISO date, ISO time.
4=JIS date, JIS time.
5=LOCAL date, LOCAL time.

ISOLATION CHAR(2) Yes Isolation level:

 RR=Repeatable read
 RS=Read stability
 CS=Cursor stability
 UR=Uncommitted read.

BLOCKING CHAR(1) Yes Cursor blocking option:

 N=No blocking
U=Block unambiguous cursors
B=Block all cursors

INSERT_BUF CHAR(1) Insert option used during bind:

Y=Inserts are buffered
N=Inserts are not buffered

 Appendix D. Catalog Views 721

SYSCAT.PACKAGES

Table 52 (Page 2 of 3). SYSCAT.PACKAGES Catalog View

Column Name Data Type Nullable Description

LANG_LEVEL CHAR(1) Yes LANGLEVEL value used during BIND:

 0=SAA1
1=SQL92E or MIA

FUNC_PATH VARCHAR(254) The function path used by the last BIND
command for this package. This is used as the
default path for REBIND. SYSIBM for pre-Version
2 packages.

QUERYOPT INTEGER Optimization class under which this package was
bound. Used for rebind. The classes are: 0, 1, 3,
5 and 9. See .

EXPLAIN_LEVEL CHAR(1) Indicates whether Explain was requested using
the EXPLAIN or EXPLSNAP bind option.

Blank=No Explain requested
P=Plan Selection level

EXPLAIN_MODE CHAR(1) Value of EXPLAIN bind option:

 Y=Yes (static)
 N=No

A=All (static and dynamic)

EXPLAIN_SNAPSHOT CHAR(1) Value of EXPLSNAP bind option:

 Y=Yes (static)
 N=No

A=All (static and dynamic)

SQLWARN CHAR(1) Are positive SQLCODES resulting from dynamic
SQL statements returned to the application?

 Y=Yes
N=No, they are suppressed

SQLMATHWARN CHAR(1) Value of database configuration parameter
DFT_SQLMATHWARN at time of bind. Are arith-
metic errors and retrieval conversion errors in
static SQL statements handled as nulls with a
warning?

 Y=Yes
N=No, they are suppressed

EXPLICIT_BIND_TIME TIMESTAMP The time at which this package was last explicitly
bound or rebound. When the package is implicitly
rebound, no function instance will be selected that
was created later than this time.

LAST_BIND_TIME TIMESTAMP Time at which the package last explicitly or implic-
itly bound or rebound.

CODEPAGE SMALLINT Application codepage at bind time (-1 if not
known).

722 SQL Reference

SYSCAT.PACKAGES

Table 52 (Page 3 of 3). SYSCAT.PACKAGES Catalog View

Column Name Data Type Nullable Description

DEGREE CHAR(5) Indicates the limit on intra-partition parallelism (as
a bind option) when package was bound.

1 = No intra-partition parallelism.
2 - 32767 = Degree of intra-partition parallelism.
ANY = Degree was determined by the database manager.

MULTINODE_PLANS CHAR(1) Y =Package was bound in a multiple partition environment.
N =Package was bound in a single partition environment.

INTRA_PARALLEL CHAR(1) Indicates the use of intra-partition parallelism by
static SQL statements within the package.

Y = one or more static SQL statement in package
uses intra-partition parallelism.

N = no static SQL statement in package uses
 intra-partition parallelism.
F = one or more static SQL statement in package can

use intra-partition parallelism; this parallelism has been
disabled for use on a system that is not configured for

 intra-partition parallelism.

REMARKS VARCHAR(254) Yes User-supplied comment, or null.

 Appendix D. Catalog Views 723

SYSCAT.PARTITIONMAPS

 SYSCAT.PARTITIONMAPS
Contains a row for each partitioning map that is used to distribute the rows of tables
among the partitions in a nodegroup, based on hashing the tables partitioning key.

Table 53. SYSCAT.PARTITIONMAPS Catalog View

Column Name Data Type Nullable Description

PMAP_ID SMALLINT Identifier of the partitioning map.

PARTITIONMAP LONG
VARCHAR
FOR BIT
DATA

The actual partitioning map, a vector of 4096 two-byte
integers for a multiple node nodegroup. For a single
node nodegroup, there is one entry denoting the partition
(or node) number of the single node.

724 SQL Reference

SYSCAT.PROCEDURES

 SYSCAT.PROCEDURES
Contains a row for each stored procedure that is created.

Table 54. SYSCAT.PROCEDURES Catalog View

Column Name Data Type Nullable Description

PROCSCHEMA CHAR(8) Qualified procedure name.

PROCNAME VARCHAR(18)

SPECIFICNAME VARCHAR(18) The name of the procedure instance (may be
system generated).

PROCEDURE_ID INTEGER Internal ID of stored procedure.

DEFINER CHAR(8) Authorization of the procedure definer.

PARM_COUNT SMALLINT Number of procedure parameters.

PARM_SIGNATURE VARCHAR(180)
FOR BIT
DATA

Concatenation of up to 90 parameter types, in
internal format. Zero length if procedure takes no
parameters.

ORIGIN CHAR(1) Always 'E' = User defined, external

CREATE_TIME TIMESTAMP Timestamp of procedure registration.

DETERMINISTIC CHAR(1) Y=Results are deterministic.
N=Results are not deterministic.

FENCED CHAR(1) Y=Fenced
 N=Not Fenced

NULLCALL CHAR(1) Always Y=NULLCALL

LANGUAGE CHAR(8) Implementation language of procedure body. Pos-
sible values are C and JAVA.

IMPLEMENTATION VARCHAR(254) Yes Identifies the path/module/function or class/method
that implements the procedure.

PARM_STYLE CHAR(8) DB2DARI=Language is C
DB2GENRL=Language is Java

RESULT_SETS SMALLINT Estimated upper limit of returned result sets.

REMARKS VARCHAR(254) Yes User supplied comment, or null.

 Appendix D. Catalog Views 725

SYSCAT.PROCPARMS

 SYSCAT.PROCPARMS
Contains a row for each parameter of a stored procedure.

Table 55. SYSCAT.PROCPARMS Catalog View

Column Name Data Type Nullable Description

PROCSCHEMA CHAR(8) Qualified procedure name.

PROCNAME VARCHAR(18)

SPECIFICNAME VARCHAR(18) The name of the procedure instance (may be system
generated).

ORDINAL SMALLINT The parameter's numerical position within the procedure
signature.

PARMNAME VARCHAR(18) Parameter name.

TYPESCHEMA CHAR(8) Qualified name of data type of the parameter.

TYPENAME VARCHAR(18)

LENGTH INTEGER Length of the parameter.

SCALE SMALLINT Scale of the parameter.

CODEPAGE SMALLINT Code page of parameter. 0 denotes either not applicable
or a parameter for character data declared with the FOR
BIT DATA attribute.

PARM_MODE VARCHAR(5) IN=Input, OUT=Output, INOUT=Input/output

AS_LOCATOR CHAR(1) Always 'N'

726 SQL Reference

SYSCAT.REFERENCES

 SYSCAT.REFERENCES
Contains a row for each defined referential constraint.

Table 56. SYSCAT.REFERENCES Catalog View

Column Name Data Type Nullable Description

CONSTNAME VARCHAR(18) Name of constraint.

TABSCHEMA CHAR(8) Qualified name of the constraint.

TABNAME VARCHAR(18)

DEFINER CHAR(8) User who created the constraint.

REFKEYNAME VARCHAR(18) Name of parent key.

REFTABSCHEMA CHAR(8) Name of the parent table.

REFTABNAME VARCHAR(18)

COLCOUNT SMALLINT Number of columns in the foreign key.

DELETERULE CHAR(1) Delete rule:

 A=NO ACTION
 C=CASCADE
 N=SET NULL
 R=RESTRICT

UPDATERULE CHAR(1) Update rule:

 A=NO ACTION
 R=RESTRICT

CREATE_TIME TIMESTAMP The timestamp when the referential constraint was
defined.

FK_COLNAMES VARCHAR(320) List of foreign key column names.

PK_COLNAMES VARCHAR(320) List of parent key column names.

Note:

1. The SYSCAT.REFERENCES view is based on the SYSIBM.SYSRELS table from Version 1.

 Appendix D. Catalog Views 727

SYSCAT.SCHEMAAUTH

 SYSCAT.SCHEMAAUTH
Contains one or more rows for each user or group who is granted a privilege on a
particular schema in the database. All schema privileges for a single schema granted
by a specific grantor to a specific grantee appear in a single row.

Table 57. SYSCAT.SCHEMAAUTH Catalog View

Column Name Data Type Nullable Description

GRANTOR CHAR(8) Authorization ID of the user who granted the privileges
or SYSIBM.

GRANTEE CHAR(8) Authorization ID of the user or group who holds the privi-
leges.

GRANTEETYPE CHAR(1) U=Grantee is an individual user
G=Grantee is a group

SCHEMANAME CHAR(8) Name of the schema.

ALTERINAUTH CHAR(1) Indicates whether grantee holds ALTERIN privilege on
the schema:

Y=Privilege is held
G=Privilege is held and grantable
N=Privilege is not held.

CREATEINAUTH CHAR(1) Indicates whether grantee holds CREATEIN privilege on
the schema:

Y=Privilege is held
G=Privilege is held and grantable
N=Privilege is not held.

DROPINAUTH CHAR(1) Indicates whether grantee holds DROPIN privilege on
the schema:

Y=Privilege is held
G=Privilege is held and grantable
N=Privilege is not held.

728 SQL Reference

SYSCAT.SCHEMATA

 SYSCAT.SCHEMATA
Contains a row for each schema.

Table 58. SYSCAT.SCHEMATA Catalog View

Column Name Data Type Nullable Description

SCHEMANAME CHAR(8) Name of the schema.

OWNER CHAR(8) Authorization id of the schema. The value for implicitly
created schemas is SYSIBM.

DEFINER CHAR(8) User who created the schema.

CREATE_TIME TIMESTAMP Timstamp indicating when the object was created.

REMARKS VARCHAR(254) Yes User-provided comment.

 Appendix D. Catalog Views 729

SYSCAT.STATEMENTS

 SYSCAT.STATEMENTS
Contains one or more rows for each SQL statement in each package in the database.

Table 59. SYSCAT.STATEMENTS Catalog View

Column Name Data Type Nullable Description

PKGSCHEMA CHAR(8) Name of the package.

PKGNAME CHAR(8)

STMTNO SMALLINT Line number of the SQL statement in the source module
of the application program.

SECTNO SMALLINT Number of the package section containing the SQL
statement.

SEQNO SMALLINT Sequence number of this row; the first portion of the
SQL text is stored on row one, and successive rows
have increasing values for SEQNO.

TEXT VARCHAR
(3600)

Text or portion of the text of the SQL statement.

730 SQL Reference

SYSCAT.TABAUTH

 SYSCAT.TABAUTH
Contains one or more rows for each user or group who is granted a privilege on a
particular table or view in the database. All the table privileges for a single table or view
granted by a specific grantor to a specific grantee appear in a single row.

Table 60 (Page 1 of 2). SYSCAT.TABAUTH Catalog View

Column Name Data Type Nullable Description

GRANTOR CHAR(8) Authorization ID of the user who granted the privileges
or SYSIBM.

GRANTEE CHAR(8) Authorization ID of the user or group who holds the privi-
leges.

GRANTEETYPE CHAR(1) U=Grantee is an individual user
G=Grantee is a group

TABSCHEMA CHAR(8) Qualified name of the table or view.

TABNAME VARCHAR(18)

CONTROLAUTH CHAR(1) Indicates whether grantee holds CONTROL privilege on
the table or view:

Y=Privilege is held.
N=Privilege is not held.

ALTERAUTH CHAR(1) Indicates whether grantee holds ALTER privilege on the
table:

Y=Privilege is held.
N=Privilege is not held.
G=Privilege is held and grantable.

DELETEAUTH CHAR(1) Indicates whether grantee holds DELETE privilege on
the table or view:

Y=Privilege is held.
N=Privilege is not held.
G=Privilege is held and grantable.

INDEXAUTH CHAR(1) Indicates whether grantee holds INDEX privilege on the
table:

Y=Privilege is held.
N=Privilege is not held.
G=Privilege is held and grantable.

INSERTAUTH CHAR(1) Indicates whether grantee holds INSERT privilege on the
table or view:

Y=Privilege is held.
N=Privilege is not held.
G=Privilege is held and grantable.

SELECTAUTH CHAR(1) Indicates whether grantee holds SELECT privilege on
the table or view:

Y=Privilege is held.
N=Privilege is not held.
G=Privilege is held and grantable.

 Appendix D. Catalog Views 731

SYSCAT.TABAUTH

Table 60 (Page 2 of 2). SYSCAT.TABAUTH Catalog View

Column Name Data Type Nullable Description

REFAUTH CHAR(1) Indicates whether grantee holds REFERENCE privilege
on the table or view:

Y=Privilege is held.
N=Privilege is not held.
G=Privilege is held and grantable.

UPDATEAUTH CHAR(1) Indicates whether grantee holds UPDATE privilege on
the table or view:

Y=Privilege is held.
N=Privilege is not held.
G=Privilege is held and grantable.

732 SQL Reference

SYSCAT.TABCONST

 SYSCAT.TABCONST
Each row represents a table constraint of type CHECK, UNIQUE, PRIMARY KEY, or
FOREIGN KEY.

Table 61. SYSCAT.TABCONST Catalog View

Column Name Data Type Nullable Description

CONSTNAME VARCHAR(18) Name of the constraint (unique within a table).

TABSCHEMA CHAR(8) Qualified name of the table to which this constraint
applies.

TABNAME VARCHAR(18)

DEFINER CHAR(8) Authorization ID under which the constraint was defined.

TYPE CHAR(1) Indicates the constraint type:

 K=CHECK
 P=PRIMARY KEY
 F=FOREIGN KEY
 U=UNIQUE

REMARKS VARCHAR(254) Yes User-supplied comment, or null.

 Appendix D. Catalog Views 733

SYSCAT.TABLES

 SYSCAT.TABLES
Contains one row for each table, view, or alias that is created. All of the catalog tables
and views have entries in the SYSCAT.TABLES catalog view.

Table 62 (Page 1 of 2). SYSCAT.TABLES Catalog View

Column Name Data Type Nullable Description

TABSCHEMA CHAR(8) Qualified name of the table, view, or alias.

TABNAME VARCHAR(18)

DEFINER CHAR(8) User who created the table, view, or alias.

TYPE CHAR(1) The type of object:

 A=Alias
 T=Table
 V=View

STATUS CHAR(1) The type of object:

N=Normal table, view or alias
C=Check pending on table

 X=Inoperative view

BASE_TABSCHEMA CHAR(8) Yes If TYPE=A, these columns identify the table, view, or
alias that is referenced by this alias; otherwise they are
null.

BASE_TABNAME VARCHAR(18) Yes

CREATE_TIME TIMESTAMP The timestamp indicating when the object was created.

STATS_TIME TIMESTAMP Yes Last time when any change was made to recorded sta-
tistics for this table. Null if no statistics available.

COLCOUNT SMALLINT Number of columns in table.

TABLEID SMALLINT Internal table identifier.

TBSPACEID SMALLINT Internal identifier of primary table space for this table.

CARD INTEGER Total number of rows in the table; −1 if statistics are not
gathered or the row describes a view or alias.

NPAGES INTEGER Total number of pages on which the rows of the table
exist; −1 if statistics are not gathered or the row
describes a view or alias.

FPAGES INTEGER Total number of pages; −1 if statistics are not gathered
or the row describes a view or alias.

OVERFLOW INTEGER Total number of overflow records in the table; −1 if sta-
tistics are not gathered or the row describes a view or
alias.

TBSPACE VARCHAR(18) Yes Name of primary table space for the table. If no other
table space is specified, all parts of the table are stored
in this table space. Null for aliases and views.

INDEX_TBSPACE VARCHAR(18) Yes Name of table space that holds all indexes created on
this table. Null for aliases and views, or if the INDEX IN
clause was omitted or specified with the same value as
the IN clause of the CREATE TABLE statement.

734 SQL Reference

SYSCAT.TABLES

Table 62 (Page 2 of 2). SYSCAT.TABLES Catalog View

Column Name Data Type Nullable Description

LONG_TBSPACE VARCHAR(18) Yes Name of table space that holds all long data (LONG or
LOB column types) for this table. Null for aliases and
views, or if the LONG IN clause was omitted or specified
with the same value as the IN clause of the CREATE
TABLE statement.

PARENTS SMALLINT Yes Number of parent tables of this table (the number of ref-
erential constraints in which this table is a dependent).

CHILDREN SMALLINT Yes Number of dependent tables of this table (the number of
referential constraints in which this table is a parent).

SELFREFS SMALLINT Yes Number of self-referencing referential constraints for this
table (the number of referential constraints in which this
table is both a parent and a dependent).

KEYCOLUMNS SMALLINT Yes Number of columns in the primary key of the table.

KEYINDEXID SMALLINT Yes Index ID of the primary index. This field is null or 0 if
there is no primary key.

KEYUNIQUE SMALLINT Number of unique constraints (other than primary key)
defined on this table.

CHECKCOUNT SMALLINT Number of check constraints defined on this table.

DATACAPTURE CHAR(1) Y=Table participates in data
 replication

N=Does not participate

CONST_CHECKED CHAR(32) Byte 1 represents foreign key constraints. Byte 2 repres-
ents check constraints. Other bytes are reserved.
Encodes constraint information on checking. Values:

Y=Checked by system
U=Checked by user
N=Not checked (pending)

PMAP_ID SMALLINT Yes Identifier of the partitioning map used by this table. Null
for aliases and views.

PARTITION_MODE CHAR(1) Mode used for tables in a partitioned database.

H hash on the partitioning key

Blank for aliases, views and tables in single partition
nodegroups with no partitioning key defined.

LOG_ATTRIBUTE CHAR(1) 0=Default logging
N=Table created not

 logged initially

PCTFREE SMALLINT Percentage of each page to be reserved for future
inserts. Can be changed by ALTER TABLE.

REMARKS VARCHAR(254) Yes User-provided comment.

 Appendix D. Catalog Views 735

SYSCAT.TABLESPACES

 SYSCAT.TABLESPACES
Contains a row for each table space.

Table 63. SYSCAT.TABLESPACES Catalog View

Column Name Data Type Nullable Description

TBSPACE VARCHAR(18) Name of table space.

DEFINER CHAR(8) Authorization ID of table space definer.

CREATE_TIME TIMESTAMP Creation time of table space.

TBSPACEID INTEGER Internal table space identifier.

TBSPACETYPE CHAR(1) The type of the table space:

S=System managed space
D=Database managed space

DATATYPE CHAR(1) Type of data that can be stored:

A=All types of permanent data
L=Long data only
T=Temporary tables only

EXTENTSIZE INTEGER Size of extent, in 4K pages. This many pages are written
to one container in the table space before switching to
the next container.

PREFETCHSIZE INTEGER Number of 4K pages to be read when prefetch is per-
formed.

OVERHEAD DOUBLE Controller overhead and disk seek and latency time in
milliseconds.

TRANSFERRATE DOUBLE Time to read one 4K page into the buffer.

PAGESIZE INTEGER Size (in bytes) of pages in the table space.

NGNAME VARCHAR(18) Name of the nodegroup for the table space.

BUFFERPOOLID INTEGER ID of buffer pool used by this tablespace (1 indicates
default buffer pool).

REMARKS VARCHAR(254) Yes User-provided comment.

736 SQL Reference

SYSCAT.TRIGDEP

 SYSCAT.TRIGDEP
Contains a row for every dependency of a trigger on some other object.

Table 64. SYSCAT.TRIGDEP Catalog View

Column Name Data Type Nullable Description

TRIGSCHEMA CHAR(8) Qualified name of the trigger.

TRIGNAME VARCHAR(18)

BTYPE CHAR(1) Type of object that is depended on.

 A=Alias
 F=Function instance
 T=Table
 V=View

BSCHEMA CHAR(8) Qualified name of object depended on by a trigger.

BNAME VARCHAR(18)

TABAUTH SMALLINT Yes If BTYPE=T or V, encodes the privileges on the table or
view that are required by this trigger; otherwise null.

 Appendix D. Catalog Views 737

SYSCAT.TRIGGERS

 SYSCAT.TRIGGERS
Contains one row for each trigger.

Table 65. SYSCAT.TRIGGERS Catalog View

Column Name Data Type Nullable Description

TRIGSCHEMA CHAR(8) Qualified name of the trigger.

TRIGNAME VARCHAR(18)

DEFINER CHAR(8) Authorization ID under which the trigger was defined.

TABSCHEMA CHAR(8) Qualified name of the table to which this trigger applies.

TABNAME VARCHAR(18)

TRIGTIME CHAR(1) Time when triggered actions are applied to the base
table, relative to the event that fired the trigger:

B=Trigger applied before event
A=Trigger applied after event

TRIGEVENT CHAR(1) Event that fires the trigger.

 I=Insert
 D=Delete
 U=Update

GRANULARITY CHAR(1) Trigger is executed once per:

 S=Statement
 R=Row

VALID CHAR(1) Y=Trigger is valid
X=Trigger is inoperative;

must be re-created.

TEXT CLOB(32K) The full text of the CREATE TRIGGER statement,
exactly as typed.

CREATE_TIME TIMESTAMP Time at which the trigger was defined. Used in resolving
functions and types.

FUNC_PATH VARCHAR(254) Function path at the time the trigger was defined. Used
in resolving functions and types.

REMARKS VARCHAR(254) Yes User-supplied comment, or null.

738 SQL Reference

SYSCAT.VIEWDEP

 SYSCAT.VIEWDEP
Contains a row for every dependency of a view on some other object. Also encodes
how privileges on this view depend on privileges on underlying tables and views.

Table 66. SYSCAT.VIEWDEP Catalog View

Column Name Data Type Nullable Description

VIEWSCHEMA CHAR(8) Name of the view.

VIEWNAME VARCHAR(18)

DEFINER CHAR(8) Yes Authorization ID of the creator of the view.

BTYPE CHAR(1) Type of object that the specified view has a dependency
on.

 T=Table
 V=View
 F=Function instance
 A=Alias

BSCHEMA CHAR(8) Qualified name of object depended on by the view.

BNAME VARCHAR(18)

TABAUTH SMALLINT Yes Encodes the privileges on the underlying table or view
that this view depends on. Otherwise null.

 Appendix D. Catalog Views 739

SYSCAT.VIEWS

 SYSCAT.VIEWS
Contains one or more rows for each view that is created.

Table 67. SYSCAT.VIEWS Catalog View

Column Name Data Type Nullable Description

VIEWSCHEMA CHAR(8) Name of the view.

VIEWNAME VARCHAR(18)

DEFINER CHAR(8) Authorization ID of the creator of the view.

SEQNO SMALLINT Sequence number of this row; the first portion of the
view is on row one, and successive rows have
increasing values of SEQNO.

VIEWCHECK CHAR(1) States the type of view checking:

N=No check option
L=Local check option
C=Cascaded check option

READONLY CHAR(1) Y=View is read-only because of its definition.
N=View is not read-only.

VALID CHAR(1) Y=View definition is valid.
X=View definition is inoperative;

must be re-created.

FUNC_PATH VARCHAR(254) The function path of the view creator at the time the view
was defined. When the view is used in data manipu-
lation statements, this path must be used to resolve
function calls in the view. SYSIBM for views created
before Version 2.

TEXT VARCHAR(3600) Text or portion of the text of the CREATE VIEW state-
ment.

740 SQL Reference

SYSSTAT.COLDIST

 SYSSTAT.COLDIST
Each row describes the Nth-most-frequent value or Nth quantile value of some column.

Table 68. SYSSTAT.COLDIST Catalog View

Column
Name Data Type Nullable Description Updatable

TABSCHEMA CHAR(8) Qualified name of the table to which this entry
applies.

TABNAME VARCHAR(18)

COLNAME VARCHAR(18) Name of the column to which this entry
applies.

TYPE CHAR(1) Type of statistic collected:

F=Frequency (most frequent value)
 Q=Quantile value

SEQNO SMALLINT If TYPE=F, then N in this column identifies the
Nth most frequent value. If TYPE=Q, then N
in this column identifies the Nth quantile
value.

COLVALUE VARCHAR(33) Yes The data value, as a character literal or a null
value.

This column can be updated with a valid rep-
resentation of the value appropriate to the
column that the statistic is associated with. If
null is the required frequency value, the
column should be set to NULL.

Yes

VALCOUNT INTEGER If TYPE=F, then VALCOUNT is the number of
occurrences of COLVALUE in the column. If
TYPE=Q, then VALCOUNT is the number of
rows whose value is less than or equal to
COLVALUE.

This column can be only updated with the fol-
lowing values:

¹ >= 0 (zero)

Yes

DISTCOUNT INTEGER If TYPE=q, this column records the number of
distinct values that are less than or equal to
COLVALUE (null iv unavailable.) the number
of rows whose value is less than or equal to
COLVALUE.

Yes

 Appendix D. Catalog Views 741

SYSSTAT.COLUMNS

 SYSSTAT.COLUMNS
Contains one row for each column that is defined for the specified table.

Table 69. SYSSTAT.COLUMNS Catalog View

Column
Name Data Type Nullable Description Updatable

TABSCHEMA CHAR(8) Qualified name of the table that contains the
column.

TABNAME VARCHAR(18)

COLNAME VARCHAR(18) Column name.

COLCARD INTEGER Number of distinct values in the column; −1 if
statistics are not gathered.

For any column, COLCARD cannot have a
value higher than the cardinality of the table
containing that column.

This column can only be updated with the fol-
lowing values:

¹ -1 or >= 0 (zero)

Yes

HIGH2KEY VARCHAR(33) Second highest value of the column. This field
is empty if statistics are not gathered.

This column can be updated with a valid rep-
resentation of the value appropriate to the
column that the statistic is associated with.

LOWKEY2 should not be greater than
HIGH2KEY.

Yes

LOW2KEY VARCHAR(33) Second lowest value of the column. Empty if
statistics not gathered.

This column can be updated with a valid rep-
resentation of the value appropriate to the
column that the statistic is associated with.

Yes

AVGCOLLEN INTEGER Average column length. -1 if a long field or
LOB, or statistics have not been collected.

This column can only be updated with the fol-
lowing values:

¹ -1 or >= 0 (zero)

Yes

742 SQL Reference

SYSSTAT.FUNCTIONS

 SYSSTAT.FUNCTIONS
Contains a row for each user-defined function (scalar or aggregate). Does not include
built-in functions.

Table 70 (Page 1 of 2). SYSSTAT.FUNCTIONS Catalog View

Column Name Data Type Nullable Description Updatable

FUNCSCHEMA CHAR(8) Qualified function name.

FUNCNAME VARCHAR(18)

SPECIFICNAME VARCHAR(18) Function specific (instance) name.

IOS_PER_INVOC DOUBLE Estimated number of I/Os per invocation; -1 if
not known (0 default).

This column can only be updated with the fol-
lowing values:

¹ -1 or >= 0 (zero)

Yes

INSTS_PER_INVOC DOUBLE Estimated number of instructions per invoca-
tion; -1 if not known (450 default).

This column can only be updated with the fol-
lowing values:

¹ -1 or >= 0 (zero)

Yes

IOS_PER_ARGBYTE DOUBLE Estimated number of I/O's per input argument
byte; -1 if not known (0 default).

This column can only be updated with the fol-
lowing values:

¹ -1 or >= 0 (zero)

Yes

INSTS_PER_ARGBYTE DOUBLE Estimated number of instructions per input
argument byte; -1 if not known (0 default).

This column can only be updated with the fol-
lowing values:

¹ -1 or >= 0 (zero)

Yes

PERCENT_ARGBYTES SMALLINT Estimated average percent of input argument
bytes that the function will actually read; -1 if
not known (100 default).

This column can only be updated with the fol-
lowing values:

¹ -1 or between 100 and 0 (zero)

Yes

INITIAL_IOS DOUBLE Estimated number of I/O's performed the
first/last time the function is invoked; -1 if not
known (0 default).

This column can only be updated with the fol-
lowing values:

¹ -1 or >= 0 (zero)

Yes

 Appendix D. Catalog Views 743

SYSSTAT.FUNCTIONS

Table 70 (Page 2 of 2). SYSSTAT.FUNCTIONS Catalog View

Column Name Data Type Nullable Description Updatable

INITIAL_INSTS DOUBLE Estimated number of instructions executed the
first/last time the function is invoked; -1 if not
known (0 default).

This column can only be updated with the fol-
lowing values:

¹ -1 or >= 0 (zero)

Yes

CARDINALITY INTEGER The predicted cardinality of a table function.
−1 if not known, or if function is not a table
function.

Yes

744 SQL Reference

SYSSTAT.INDEXES

 SYSSTAT.INDEXES
Contains one row for each index that is defined for a table.

Table 71 (Page 1 of 3). SYSSTAT.INDEXES Catalog View

Column Name Data Type Nullable Description Updatable

INDSCHEMA CHAR(8) Qualified name of the index.

INDNAME VARCHAR(18)

NLEAF INTEGER Number of leaf pages; −1 if statistics are not
gathered.

This column can only be updated with the fol-
lowing values:

¹ -1 or > 0 (zero)

Yes

NLEVELS SMALLINT Number of index levels; −1 if statistics are not
gathered.

This column can only be updated with the fol-
lowing values:

¹ -1 or > 0 (zero)

Yes

FIRSTKEYCARD INTEGER Number of distinct first key values; −1 if statis-
tics are not gathered.

This column can only be updated with the fol-
lowing values:

¹ -1 or >= 0 (zero)

Yes

FIRST2KEYCARD INTEGER Number of distinct keys using the first two
columns of the index (−1 if no statistics or
inapplicable)

This column can only be updated with the fol-
lowing values:

¹ -1 or >= 0 (zero)

Yes

FIRST3KEYCARD INTEGER Number of distinct keys using the first three
columns of the index (−1 if no statistics or
inapplicable)

This column can only be updated with the fol-
lowing values:

¹ -1 or >= 0 (zero)

Yes

FIRST4KEYCARD INTEGER Number of distinct keys using the first four
columns of the index (−1 if no statistics or
inapplicable)

This column can only be updated with the fol-
lowing values:

¹ -1 or >= 0 (zero)

Yes

 Appendix D. Catalog Views 745

SYSSTAT.INDEXES

Table 71 (Page 2 of 3). SYSSTAT.INDEXES Catalog View

Column Name Data Type Nullable Description Updatable

FULLKEYCARD INTEGER Number of distinct full key values; −1 if statis-
tics are not gathered.

This column can only be updated with the fol-
lowing values:

¹ -1 or >= 0 (zero)

Yes

CLUSTERRATIO SMALLINT This is used by the optimizer. It indicates the
degree of data clustering with the index; −1 if
statistics are not gathered or if detailed index
statistics have been gathered.

This column can only be updated with the fol-
lowing values:

¹ −1 or between 0 and 100

Yes

CLUSTERFACTOR DOUBLE This is used by the optimizer. It is a finer
measurement of degree of clustering, or -1 if
detailed index statistics have not been gath-
ered.

This column can only be updated with the fol-
lowing values:

¹ -1 or between 0 and 1

Yes

SEQUENTIAL_PAGES INTEGER Number of leaf pages located on disk in index
key order with few or no large gaps between
them. (−1 if no statistics are available.)

This column can only be updated with the fol-
lowing values:

¹ -1 or >= 0 (zero)

Yes

DENSITY INTEGER Ratio of SEQUENTIAL_PAGES to number of
pages in the range of pages occupied by the
index, expressed as a percent (integer
between 0 and 100, −1 if no statistics are
available.)

This column can only be updated with the fol-
lowing values:

¹ −1 or between 0 and 100

Yes

746 SQL Reference

SYSSTAT.INDEXES

Table 71 (Page 3 of 3). SYSSTAT.INDEXES Catalog View

Column Name Data Type Nullable Description Updatable

PAGE_FETCH_PAIRS VARCHAR(254) A list of pairs of integers, represented in char-
acter form. Each pair represents the number
of pages in a hypothetical buffer, and the
number of page fetches required to scan the
index using that hypothetical buffer. (Zero-
length string if no data available.)

This column can be updated with the following
input values:

¹ The pair delimiter and pair separator
characters are the only non-numeric char-
acters accepted

¹ Blanks are the only characters recog-
nized as a pair delimiter and pair sepa-
rator

¹ Each number entry must have an accom-
panying partner number entry with the
two being separated by the pair separator
character

¹ Each pair must be separated from any
other pairs by the pair delimiter character

¹ Each expected number entry must
between 0-9 (only positive values)

Yes

 Appendix D. Catalog Views 747

SYSSTAT.TABLES

 SYSSTAT.TABLES
Contains one row for each base table. Views or aliases are, therefore, not included.

Table 72. SYSSTAT.TABLES Catalog View

Column
Name Data Type Nullable Description Updatable

TABSCHEMA CHAR(8) Qualified name of the table.

TABNAME VARCHAR(18)

CARD INTEGER Total number of rows in the table; −1 if statis-
tics are not gathered.

An update to CARD for a table should not
attempt to assign it a value less than the
COLCARD value of any of the columns in that
table.

This column can only be updated with the fol-
lowing values:

¹ -1 or >= 0 (zero)

Yes

NPAGES INTEGER Total number of pages on which the rows of
the table exist; −1 if statistics are not gath-
ered.

This column can only be updated with the fol-
lowing values:

¹ -1 or >= 0 (zero)

Yes

FPAGES INTEGER Total number of pages in the file; −1 if statis-
tics are not gathered.

This column can only be updated with the fol-
lowing values:

¹ -1 or >= 0 (zero)

Yes

OVERFLOW INTEGER Total number of overflow records in the table;
−1 if statistics are not gathered.

This column can only be updated with the fol-
lowing values:

¹ -1 or >= 0 (zero)

Yes

748 SQL Reference

Sample Tables

 Appendix E. Sample Tables

This appendix shows the information contained in the sample tables, and how to install
and remove them. The sample tables are used in the examples that appear in this
manual and other manuals in this library. In addition, the data contained in the sample
files with BLOB and CLOB data types is shown.

The following sections are included in this appendix:.

“The Sample Database”
“To Install the Sample Database”
“To Erase the Sample Database” on page 750
“CL_SCHED Table” on page 750
“DEPARTMENT Table” on page 750
“EMPLOYEE Table” on page 751
“EMP_ACT Table” on page 755
“EMP_PHOTO Table” on page 757
“EMP_RESUME Table” on page 757
“IN_TRAY Table” on page 758
“ORG Table” on page 758
“PROJECT Table” on page 758
“SALES Table” on page 759
“STAFF Table” on page 760
“STAFFG Table” on page 762
“Sample Files with BLOB and CLOB Data Type” on page 763
“Quintana Photo” on page 763
“Quintana Resume” on page 763
“Nicholls Photo” on page 764
“Nicholls Resume” on page 764
“Adamson Photo” on page 765
“Adamson Resume” on page 766
“Walker Photo” on page 767
“Walker Resume” on page 767.

In the sample tables, a question mark (-) indicates a null value.

The Sample Database
The examples in this book use a sample database. To use these examples, you must
install the SAMPLE database. To use it, the database manager must be installed.

To Install the Sample Database
An executable file installs the sample database.82 To install a database you must have
SYSADM authority.

82 For information related to this command, see the DB2SAMPL command in the Command Reference.

 Copyright IBM Corp. 1993, 1997 749

Sample Tables

¹ When Using UNIX-based Systems

If you are using the operating system command prompt, type:

 sqllib/misc/db2sampl <path>

 from the home directory of the database manager instance owner, where path is
an optional parameter specifying the path where the sample database is to be
created. Press Enter.83 The schema of the authorization ID that invoked
DB2SAMPL is the default schema.

¹ When Using DB2 for OS/2

If you are using the operating system command prompt, type:

db2sampl e

where e is an optional parameter specifying the drive where the database is to be
created. Press Enter.84

If you are not logged on to your workstation through User Profile Management, you
will be prompted to do so.

To Erase the Sample Database
If you do not need to access the sample database, you can erase it by using the DROP
DATABASE command.

db2 drop database sample

 CL_SCHED Table

Name: CLASS_CODE DAY STARTING ENDING

Type: char(7) smallint time time

Desc: Class Code
(room:teacher)

Day # of 4 day
schedule

Class Start Time Class End Time

 DEPARTMENT Table

Name: DEPTNO DEPTNAME MGRNO ADMRDEPT LOCATION

Type: char(3) not
null

varchar(29) not null char(6) char(3) not
null

char(16)

Desc: Department
number

Name describing general activ-
ities of department

Employee
number
(EMPNO) of
department
manager

Department
(DEPTNO) to
which this
department
reports

Name of the
remote location

83 If the path parameter is not specified, the sample tables are installed in the default path specified by the DFTDBPATH parameter in
the database manager configuration file.

84 If the drive parameter is not specified, the sample tables are installed on the same drive as DB2 for OS/2.

750 SQL Reference

Sample Tables

Name: DEPTNO DEPTNAME MGRNO ADMRDEPT LOCATION

Values: A00 SPIFFY COMPUTER SERVICE
DIV.

000010 A00 -

 B01 PLANNING 000020 A00 -

 C01 INFORMATION CENTER 000030 A00 -

 D01 DEVELOPMENT CENTER - A00 -

 D11 MANUFACTURING SYSTEMS 000060 D01 -

 D21 ADMINISTRATION SYSTEMS 000070 D01 -

 E01 SUPPORT SERVICES 000050 A00 -

 E11 OPERATIONS 000090 E01 -

 E21 SOFTWARE SUPPORT 000100 E01 -

 EMPLOYEE Table

Names: EMPNO FIRSTNME MIDINIT LASTNAME WORKDEPT PHONENO HIREDATE

Type: char(6) not
null

varchar(12)
not null

char(1) not
null

varchar(15)
not null

char(3) char(4) date

Desc: Employee
number

First name Middle
initial

Last name Department
(DEPTNO)
in which
the
employee
works

Phone
number

Date of hire

JOB EDLEVEL SEX BIRTHDATE SALARY BONUS COMM

char(8) smallint not null char(1) date dec(9,2) dec(9,2) dec(9,2)

Job Number of years of
formal education

Sex (M
male, F
female)

Date of birth Yearly
salary

Yearly
bonus

Yearly com-
mission

See the following page for the values in the EMPLOYEE table.

 Appendix E. Sample Tables 751

Sample Tables
 C

O
M

M

de
c(

9,
2)

42
20

33
00

30
60

32
14

25
80

28
93

23
80

20
92

37
20

23
40

19
04

22
74

20
22

17
80

19
74

 B
O

N
U

S

de
c(

9,
2)

10
00

80
0

80
0

80
0

50
0

70
0

60
0

50
0

90
0

60
0

50
0

60
0

50
0

40
0

50
0

 S
A

LA
R

Y

de
c(

9,
2)

52
75

0

41
25

0

38
25

0

40
17

5

32
25

0

36
17

0

29
75

0

26
15

0

46
50

0

29
25

0

23
80

0

28
42

0

25
28

0

22
25

0

24
68

0

B

IR
T

H
D

A
T

E

da
te

19
33

-0
8-

24

19
48

-0
2-

02

19
41

-0
5-

11

19
25

-0
9-

15

19
45

-0
7-

07

19
53

-0
5-

26

19
41

-0
5-

15

19
56

-1
2-

18

19
29

-1
1-

05

19
42

-1
0-

18

19
25

-0
9-

15

19
46

-0
1-

19

19
47

-0
5-

17

19
55

-0
4-

12

19
51

-0
1-

05

 S
E

X

ch
ar

(1
)

F M F M M F F M M M F F M F M

E
D

LE
V

E
L

sm
al

lin
t

no
t

nu
ll

18 18 20 16 16 16 16 14 19 14 16 18 16 17 16

JO

B

ch
ar

(8
)

P
R

E
S

M
A

N
A

G
E

R

M
A

N
A

G
E

R

M
A

N
A

G
E

R

M
A

N
A

G
E

R

M
A

N
A

G
E

R

M
A

N
A

G
E

R

M
A

N
A

G
E

R

S
A

LE
S

R
E

P

C
LE

R
K

A
N

A
LY

S
T

A
N

A
LY

S
T

D
E

S
IG

N
E

R

D
E

S
IG

N
E

R

D
E

S
IG

N
E

R

H

IR
E

D
A

T
E

da
te

19
65

-0
1-

01

19
73

-1
0-

10

19
75

-0
4-

05

19
49

-0
8-

17

19
73

-0
9-

14

19
80

-0
9-

30

19
70

-0
8-

15

19
80

-0
6-

19

19
58

-0
5-

16

19
63

-1
2-

05

19
71

-0
7-

28

19
76

-1
2-

15

19
72

-0
2-

12

19
77

-1
0-

11

19
78

-0
9-

15

P
H

O
N

E
N

O

ch
ar

(4
)

39
78

34
76

47
38

67
89

64
23

78
31

54
98

09
72

34
90

21
67

45
78

17
93

45
10

37
82

28
90

W
O

R
K

D
E

P
T

ch
ar

(3
)

A
00

B
01

C
01

E
01

D
11

D
21

E
11

E
21

A
00

A
00

C
01

C
01

D
11

D
11

D
11

LA

S
T

N
A

M
E

va
rc

ha
r(

15
)

no
t

nu
ll

H
A

A
S

T
H

O
M

P
S

O
N

K
W

A
N

G
E

Y
E

R

S
T

E
R

N

P
U

LA
S

K
I

H
E

N
D

E
R

S
O

N

S
P

E
N

S
E

R

LU
C

C
H

E
S

S
I

O
'C

O
N

N
E

LL

Q
U

IN
T

A
N

A

N
IC

H
O

LL
S

A
D

A
M

S
O

N

P
IA

N
K

A

Y
O

S
H

IM
U

R
A

M
ID

IN
IT

ch
ar

(1
)

no
t

nu
ll

I L A B F D W Q G M A R J

F

IR
S

T
N

M
E

va
rc

ha
r(

12
)

no
t

nu
ll

C
H

R
IS

T
IN

E

M
IC

H
A

E
L

S
A

LL
Y

JO
H

N

IR
V

IN
G

E
V

A

E
IL

E
E

N

T
H

E
O

D
O

R
E

V
IN

C
E

N
Z

O

S
E

A
N

D
O

LO
R

E
S

H
E

A
T

H
E

R

B
R

U
C

E

E
LI

Z
A

B
E

T
H

M
A

S
A

T
O

S
H

I

 E
M

P
N

O

ch
ar

(6
)

no
t

nu
ll

00
00

10

00
00

20

00
00

30

00
00

50

00
00

60

00
00

70

00
00

90

00
01

00

00
01

10

00
01

20

00
01

30

00
01

40

00
01

50

00
01

60

00
01

70

752 SQL Reference

Sample Tables
 C

O
M

M

17
07

16
36

22
17

14
62

23
87

17
74

23
01

15
34

13
80

21
90

21
00

12
27

14
20

12
72

15
96

20
30

 B
O

N
U

S

50
0

40
0

60
0

40
0

60
0

40
0

60
0

40
0

30
0

50
0

50
0

30
0

40
0

30
0

40
0

50
0

 S
A

LA
R

Y

21
34

0

20
45

0

27
74

0

18
27

0

29
84

0

22
18

0

28
76

0

19
18

0

17
25

0

27
38

0

26
25

0

15
34

0

17
75

0

15
90

0

19
95

0

25
37

0

B

IR
T

H
D

A
T

E

19
49

-0
2-

21

19
52

-0
6-

25

19
41

-0
5-

29

19
53

-0
2-

23

19
48

-0
3-

19

19
35

-0
5-

30

19
54

-0
3-

31

19
39

-1
1-

12

19
36

-1
0-

05

19
53

-0
5-

26

19
36

-0
3-

28

19
46

-0
7-

09

19
36

-1
0-

27

19
31

-0
4-

21

19
32

-0
8-

11

19
41

-0
7-

18

 S
E

X

F M M M F M M M F F F M M F M M

E
D

LE
V

E
L

17 16 16 17 18 14 17 15 16 15 17 12 14 12 16 14

JO

B

D
E

S
IG

N
E

R

D
E

S
IG

N
E

R

D
E

S
IG

N
E

R

D
E

S
IG

N
E

R

D
E

S
IG

N
E

R

C
LE

R
K

C
LE

R
K

C
LE

R
K

C
LE

R
K

C
LE

R
K

O
P

E
R

A
T

O
R

O
P

E
R

A
T

O
R

O
P

E
R

A
T

O
R

O
P

E
R

A
T

O
R

F
IE

LD
R

E
P

F
IE

LD
R

E
P

H

IR
E

D
A

T
E

19
73

-0
7-

07

19
74

-0
7-

26

19
66

-0
3-

03

19
79

-0
4-

11

19
68

-0
8-

29

19
66

-1
1-

21

19
79

-1
2-

05

19
69

-1
0-

30

19
75

-0
9-

11

19
80

-0
9-

30

19
67

-0
3-

24

19
80

-0
5-

30

19
72

-0
6-

19

19
64

-0
9-

12

19
65

-0
7-

07

19
76

-0
2-

23

P
H

O
N

E
N

O

16
82

29
86

45
01

09
42

06
72

20
94

37
80

09
61

89
53

90
01

89
97

45
02

20
95

33
32

99
90

21
03

W
O

R
K

D
E

P
T

D
11

D
11

D
11

D
11

D
11

D
21

D
21

D
21

D
21

D
21

E
11

E
11

E
11

E
11

E
21

E
21

LA

S
T

N
A

M
E

S
C

O
U

T
T

E
N

W
A

LK
E

R

B
R

O
W

N

JO
N

E
S

LU
T

Z

JE
F

F
E

R
S

O
N

M
A

R
IN

O

S
M

IT
H

JO
H

N
S

O
N

P
E

R
E

Z

S
C

H
N

E
ID

E
R

P
A

R
K

E
R

S
M

IT
H

S
E

T
R

IG
H

T

M
E

H
T

A

LE
E

M
ID

IN
IT

S H T K J M S P L R R X F V

F

IR
S

T
N

M
E

M
A

R
IL

Y
N

JA
M

E
S

D
A

V
ID

W
IL

LI
A

M

JE
N

N
IF

E
R

JA
M

E
S

S
A

LV
A

T
O

R
E

D
A

N
IE

L

S
Y

B
IL

M
A

R
IA

E
T

H
E

L

JO
H

N

P
H

IL
IP

M
A

U
D

E

R
A

M
LA

L

W
IN

G

 E
M

P
N

O

00
01

80

00
01

90

00
02

00

00
02

10

00
02

20

00
02

30

00
02

40

00
02

50

00
02

60

00
02

70

00
02

80

00
02

90

00
03

00

00
03

10

00
03

20

00
03

30

 Appendix E. Sample Tables 753

Sample Tables
 C

O
M

M

19
07

 B
O

N
U

S

50
0

 S
A

LA
R

Y

23
84

0

B

IR
T

H
D

A
T

E

19
26

-0
5-

17

 S
E

X

M

E
D

LE
V

E
L

16

JO

B

F
IE

LD
R

E
P

H

IR
E

D
A

T
E

19
47

-0
5-

05

P
H

O
N

E
N

O

56
98

W
O

R
K

D
E

P
T

E
21

LA

S
T

N
A

M
E

G
O

U
N

O
T

M
ID

IN
IT

R

F

IR
S

T
N

M
E

JA
S

O
N

 E
M

P
N

O

00
03

40

754 SQL Reference

Sample Tables

 EMP_ACT Table

Name: EMPNO PROJNO ACTNO EMPTIME EMSTDATE EMENDATE

Type: char(6) not
null

char(6) not
null

smallint not
null

dec(5,2) date date

Desc: Employee
number

Project
number

Activity
number

Proportion of
employee's

time spent on
project

Date activity
starts

Date activity
ends

Values: 000010 AD3100 10 .50 1982-01-01 1982-07-01

 000070 AD3110 10 1.00 1982-01-01 1983-02-01

 000230 AD3111 60 1.00 1982-01-01 1982-03-15

 000230 AD3111 60 .50 1982-03-15 1982-04-15

 000230 AD3111 70 .50 1982-03-15 1982-10-15

 000230 AD3111 80 .50 1982-04-15 1982-10-15

 000230 AD3111 180 1.00 1982-10-15 1983-01-01

 000240 AD3111 70 1.00 1982-02-15 1982-09-15

 000240 AD3111 80 1.00 1982-09-15 1983-01-01

 000250 AD3112 60 1.00 1982-01-01 1982-02-01

 000250 AD3112 60 .50 1982-02-01 1982-03-15

 000250 AD3112 60 .50 1982-12-01 1983-01-01

 000250 AD3112 60 1.00 1983-01-01 1983-02-01

 000250 AD3112 70 .50 1982-02-01 1982-03-15

 000250 AD3112 70 1.00 1982-03-15 1982-08-15

 000250 AD3112 70 .25 1982-08-15 1982-10-15

 000250 AD3112 80 .25 1982-08-15 1982-10-15

 000250 AD3112 80 .50 1982-10-15 1982-12-01

 000250 AD3112 180 .50 1982-08-15 1983-01-01

 000260 AD3113 70 .50 1982-06-15 1982-07-01

 000260 AD3113 70 1.00 1982-07-01 1983-02-01

 000260 AD3113 80 1.00 1982-01-01 1982-03-01

 000260 AD3113 80 .50 1982-03-01 1982-04-15

 000260 AD3113 180 .50 1982-03-01 1982-04-15

 000260 AD3113 180 1.00 1982-04-15 1982-06-01

 000260 AD3113 180 .50 1982-06-01 1982-07-01

 000270 AD3113 60 .50 1982-03-01 1982-04-01

 000270 AD3113 60 1.00 1982-04-01 1982-09-01

 000270 AD3113 60 .25 1982-09-01 1982-10-15

 000270 AD3113 70 .75 1982-09-01 1982-10-15

 000270 AD3113 70 1.00 1982-10-15 1983-02-01

 000270 AD3113 80 1.00 1982-01-01 1982-03-01

 000270 AD3113 80 .50 1982-03-01 1982-04-01

 000030 IF1000 10 .50 1982-06-01 1983-01-01

 Appendix E. Sample Tables 755

Sample Tables

Name: EMPNO PROJNO ACTNO EMPTIME EMSTDATE EMENDATE

 000130 IF1000 90 1.00 1982-01-01 1982-10-01

 000130 IF1000 100 .50 1982-10-01 1983-01-01

 000140 IF1000 90 .50 1982-10-01 1983-01-01

 000030 IF2000 10 .50 1982-01-01 1983-01-01

 000140 IF2000 100 1.00 1982-01-01 1982-03-01

 000140 IF2000 100 .50 1982-03-01 1982-07-01

 000140 IF2000 110 .50 1982-03-01 1982-07-01

 000140 IF2000 110 .50 1982-10-01 1983-01-01

 000010 MA2100 10 .50 1982-01-01 1982-11-01

 000110 MA2100 20 1.00 1982-01-01 1982-03-01

 000010 MA2110 10 1.00 1982-01-01 1983-02-01

 000200 MA2111 50 1.00 1982-01-01 1982-06-15

 000200 MA2111 60 1.00 1982-06-15 1983-02-01

 000220 MA2111 40 1.00 1982-01-01 1983-02-01

 000150 MA2112 60 1.00 1982-01-01 1982-07-15

 000150 MA2112 180 1.00 1982-07-15 1983-02-01

 000170 MA2112 60 1.00 1982-01-01 1983-06-01

 000170 MA2112 70 1.00 1982-06-01 1983-02-01

 000190 MA2112 70 1.00 1982-02-01 1982-10-01

 000190 MA2112 80 1.00 1982-10-01 1983-10-01

 000160 MA2113 60 1.00 1982-07-15 1983-02-01

 000170 MA2113 80 1.00 1982-01-01 1983-02-01

 000180 MA2113 70 1.00 1982-04-01 1982-06-15

 000210 MA2113 80 .50 1982-10-01 1983-02-01

 000210 MA2113 180 .50 1982-10-01 1983-02-01

 000050 OP1000 10 .25 1982-01-01 1983-02-01

 000090 OP1010 10 1.00 1982-01-01 1983-02-01

 000280 OP1010 130 1.00 1982-01-01 1983-02-01

 000290 OP1010 130 1.00 1982-01-01 1983-02-01

 000300 OP1010 130 1.00 1982-01-01 1983-02-01

 000310 OP1010 130 1.00 1982-01-01 1983-02-01

 000050 OP2010 10 .75 1982-01-01 1983-02-01

 000100 OP2010 10 1.00 1982-01-01 1983-02-01

 000320 OP2011 140 .75 1982-01-01 1983-02-01

 000320 OP2011 150 .25 1982-01-01 1983-02-01

 000330 OP2012 140 .25 1982-01-01 1983-02-01

 000330 OP2012 160 .75 1982-01-01 1983-02-01

 000340 OP2013 140 .50 1982-01-01 1983-02-01

 000340 OP2013 170 .50 1982-01-01 1983-02-01

 000020 PL2100 30 1.00 1982-01-01 1982-09-15

756 SQL Reference

Sample Tables

 EMP_PHOTO Table

Name: EMPNO PHOTO_FORMAT PICTURE

Type: char(6) not null varchar(10) not null blob(100k)

Desc: Employee number Photo format Photo of employee

Values: 000130 bitmap db200130.bmp

000130 gif db200130.gif

000130 xwd db200130.xwd

000140 bitmap db200140.bmp

000140 gif db200140.gif

000140 xwd db200140.xwd

000150 bitmap db200150.bmp

000150 gif db200150.gif

000150 xwd db200150.xwd

000190 bitmap db200190.bmp

000190 gif db200190.gif

000190 xwd db200190.xwd

¹ “Quintana Photo” on page 763 shows the picture of the employee, Delores
Quintana.

¹ “Nicholls Photo” on page 764 shows the picture of the employee, Heather Nicholls.

¹ “Adamson Photo” on page 765 shows the picture of the employee, Bruce
Adamson.

¹ “Walker Photo” on page 767 shows the picture of the employee, James Walker.

 EMP_RESUME Table

Name: EMPNO RESUME_FORMAT RESUME

Type: char(6) not null varchar(10) not null clob(5k)

Desc: Employee number Resume Format Resume of employee

Values: 000130 ascii db200130.asc

000130 script db200130.scr

000140 ascii db200140.asc

000140 script db200140.scr

000150 ascii db200150.asc

000150 script db200150.scr

000190 ascii db200190.asc

000190 script db200190.scr

¹ “Quintana Resume” on page 763 shows the resume of the employee, Delores
Quintana.

 Appendix E. Sample Tables 757

Sample Tables

¹ “Nicholls Resume” on page 764 shows the resume of the employee, Heather
Nicholls.

¹ “Adamson Resume” on page 766 shows the resume of the employee, Bruce
Adamson.

¹ “Walker Resume” on page 767 shows the resume of the employee, James Walker.

 IN_TRAY Table

Name: RECEIVED SOURCE SUBJECT NOTE_TEXT

Type: timestamp char(8) char(64) varchar(3000)

Desc: Date and Time
received

User id of person
sending note

Brief description The note

 ORG Table

Name: DEPTNUMB DEPTNAME MANAGER DIVISION LOCATION

Type: smallint not null varchar(14) smallint varchar(10) varchar(13)

Desc: Department
number

Department
name

Manager number Division of cor-
poration

City

Values: 10 Head Office 160 Corporate New York

15 New England 50 Eastern Boston

20 Mid Atlantic 10 Eastern Washington

38 South Atlantic 30 Eastern Atlanta

42 Great Lakes 100 Midwest Chicago

51 Plains 140 Midwest Dallas

66 Pacific 270 Western San Francisco

84 Mountain 290 Western Denver

 PROJECT Table

Name: PROJNO PROJNAME DEPTNO RESPEMP PRSTAFF PRSTDATE PRENDATE MAJPROJ

Type: char(6) not
null

varchar(24)
not null

char(3) not
null

char(6) not
null

dec(5,2) date date char(6)

Desc: Project
number

Project
name

Depart-
ment
responsible

Employee
responsible

Estimated
mean
staffing

Estimated
start date

Estimated
end date

Major project,
for a sub-
project

Values: AD3100 ADMIN
SERVICES

D01 000010 6.5 1982-01-01 1983-02-01 -

 AD3110 GENERAL
ADMIN
SYSTEMS

D21 000070 6 1982-01-01 1983-02-01 AD3100

 AD3111 PAYROLL
PRO-
GRAMMING

D21 000230 2 1982-01-01 1983-02-01 AD3110

758 SQL Reference

Sample Tables

Name: PROJNO PROJNAME DEPTNO RESPEMP PRSTAFF PRSTDATE PRENDATE MAJPROJ

 AD3112 PER-
SONNEL
PRO-
GRAMMING

D21 000250 1 1982-01-01 1983-02-01 AD3110

 AD3113 ACCOUNT
PRO-
GRAMMING

D21 000270 2 1982-01-01 1983-02-01 AD3110

 IF1000 QUERY
SERVICES

C01 000030 2 1982-01-01 1983-02-01 -

 IF2000 USER
EDUCA-
TION

C01 000030 1 1982-01-01 1983-02-01 -

 MA2100 WELD
LINE
AUTO-
MATION

D01 000010 12 1982-01-01 1983-02-01 -

 MA2110 W L PRO-
GRAMMING

D11 000060 9 1982-01-01 1983-02-01 MA2100

 MA2111 W L
PROGRAM
DESIGN

D11 000220 2 1982-01-01 1982-12-01 MA2110

 MA2112 W L
ROBOT
DESIGN

D11 000150 3 1982-01-01 1982-12-01 MA2110

 MA2113 W L PROD
CONT
PROGS

D11 000160 3 1982-02-15 1982-12-01 MA2110

 OP1000 OPERA-
TION
SUPPORT

E01 000050 6 1982-01-01 1983-02-01 -

 OP1010 OPERA-
TION

E11 000090 5 1982-01-01 1983-02-01 OP1000

 OP2000 GEN
SYSTEMS
SERVICES

E01 000050 5 1982-01-01 1983-02-01 -

 OP2010 SYSTEMS
SUPPORT

E21 000100 4 1982-01-01 1983-02-01 OP2000

 OP2011 SCP
SYSTEMS
SUPPORT

E21 000320 1 1982-01-01 1983-02-01 OP2010

 OP2012 APPLICA-
TIONS
SUPPORT

E21 000330 1 1982-01-01 1983-02-01 OP2010

 OP2013 DB/DC
SUPPORT

E21 000340 1 1982-01-01 1983-02-01 OP2010

 PL2100 WELD
LINE
PLANNING

B01 000020 1 1982-01-01 1982-09-15 MA2100

 SALES Table

Name: SALES_DATE SALES_PERSON REGION SALES

Type: date varchar(15) varchar(15) int

Desc: Date of sales Employee's last name Region of sales Number of sales

Values: 12/31/1995 LUCCHESSI Ontario-South 1

 12/31/1995 LEE Ontario-South 3

 Appendix E. Sample Tables 759

Sample Tables

Name: SALES_DATE SALES_PERSON REGION SALES

 12/31/1995 LEE Quebec 1

 12/31/1995 LEE Manitoba 2

 12/31/1995 GOUNOT Quebec 1

 03/29/1996 LUCCHESSI Ontario-South 3

 03/29/1996 LUCCHESSI Quebec 1

 03/29/1996 LEE Ontario-South 2

 03/29/1996 LEE Ontario-North 2

 03/29/1996 LEE Quebec 3

 03/29/1996 LEE Manitoba 5

 03/29/1996 GOUNOT Ontario-South 3

 03/29/1996 GOUNOT Quebec 1

 03/29/1996 GOUNOT Manitoba 7

 03/30/1996 LUCCHESSI Ontario-South 1

 03/30/1996 LUCCHESSI Quebec 2

 03/30/1996 LUCCHESSI Manitoba 1

 03/30/1996 LEE Ontario-South 7

 03/30/1996 LEE Ontario-North 3

 03/30/1996 LEE Quebec 7

 03/30/1996 LEE Manitoba 4

 03/30/1996 GOUNOT Ontario-South 2

 03/30/1996 GOUNOT Quebec 18

 03/30/1996 GOUNOT Manitoba 1

 03/31/1996 LUCCHESSI Manitoba 1

 03/31/1996 LEE Ontario-South 14

 03/31/1996 LEE Ontario-North 3

 03/31/1996 LEE Quebec 7

 03/31/1996 LEE Manitoba 3

 03/31/1996 GOUNOT Ontario-South 2

 03/31/1996 GOUNOT Quebec 1

 04/01/1996 LUCCHESSI Ontario-South 3

 04/01/1996 LUCCHESSI Manitoba 1

 04/01/1996 LEE Ontario-South 8

 04/01/1996 LEE Ontario-North -

 04/01/1996 LEE Quebec 8

 04/01/1996 LEE Manitoba 9

 04/01/1996 GOUNOT Ontario-South 3

 04/01/1996 GOUNOT Ontario-North 1

 04/01/1996 GOUNOT Quebec 3

 04/01/1996 GOUNOT Manitoba 7

 STAFF Table

Name: ID NAME DEPT JOB YEARS SALARY COMM

Type: smallint not
null

varchar(9) smallint char(5) smallint dec(7,2) dec(7,2)

760 SQL Reference

Sample Tables

Name: ID NAME DEPT JOB YEARS SALARY COMM

Desc: Employee
number

Employee
name

Department
number

Job type Years of
service

Current
salary

Commission

Values: 10 Sanders 20 Mgr 7 18357.50 -

20 Pernal 20 Sales 8 18171.25 612.45

30 Marenghi 38 Mgr 5 17506.75 -

40 O'Brien 38 Sales 6 18006.00 846.55

50 Hanes 15 Mgr 10 20659.80 -

60 Quigley 38 Sales - 16808.30 650.25

70 Rothman 15 Sales 7 16502.83 1152.00

80 James 20 Clerk - 13504.60 128.20

90 Koonitz 42 Sales 6 18001.75 1386.70

100 Plotz 42 Mgr 7 18352.80 -

110 Ngan 15 Clerk 5 12508.20 206.60

120 Naughton 38 Clerk - 12954.75 180.00

130 Yamaguchi 42 Clerk 6 10505.90 75.60

140 Fraye 51 Mgr 6 21150.00 -

150 Williams 51 Sales 6 19456.50 637.65

160 Molinare 10 Mgr 7 22959.20 -

170 Kermisch 15 Clerk 4 12258.50 110.10

180 Abrahams 38 Clerk 3 12009.75 236.50

190 Sneider 20 Clerk 8 14252.75 126.50

200 Scoutten 42 Clerk - 11508.60 84.20

210 Lu 10 Mgr 10 20010.00 -

220 Smith 51 Sales 7 17654.50 992.80

230 Lundquist 51 Clerk 3 13369.80 189.65

240 Daniels 10 Mgr 5 19260.25 -

250 Wheeler 51 Clerk 6 14460.00 513.30

260 Jones 10 Mgr 12 21234.00 -

270 Lea 66 Mgr 9 18555.50 -

280 Wilson 66 Sales 9 18674.50 811.50

290 Quill 84 Mgr 10 19818.00 -

300 Davis 84 Sales 5 15454.50 806.10

310 Graham 66 Sales 13 21000.00 200.30

320 Gonzales 66 Sales 4 16858.20 844.00

330 Burke 66 Clerk 1 10988.00 55.50

340 Edwards 84 Sales 7 17844.00 1285.00

350 Gafney 84 Clerk 5 13030.50 188.00

 Appendix E. Sample Tables 761

Sample Tables

 STAFFG Table
Note: STAFFG is only created for double-byte code pages.

Name: ID NAME DEPT JOB YEARS SALARY COMM

Type: smallint not
null

vargraphic(9) smallint graphic(5) smallint dec(9,0) dec(9,0)

Desc: Employee
number

Employee
name

Department
number

Job type Years of
service

Current
salary

Commission

Values: 10 Sanders 20 Mgr 7 18357.50 -

20 Pernal 20 Sales 8 18171.25 612.45

30 Marenghi 38 Mgr 5 17506.75 -

40 O'Brien 38 Sales 6 18006.00 846.55

50 Hanes 15 Mgr 10 20659.80 -

60 Quigley 38 Sales - 16808.30 650.25

70 Rothman 15 Sales 7 16502.83 1152.00

80 James 20 Clerk - 13504.60 128.20

90 Koonitz 42 Sales 6 18001.75 1386.70

100 Plotz 42 Mgr 7 18352.80 -

110 Ngan 15 Clerk 5 12508.20 206.60

120 Naughton 38 Clerk - 12954.75 180.00

130 Yamaguchi 42 Clerk 6 10505.90 75.60

140 Fraye 51 Mgr 6 21150.00 -

150 Williams 51 Sales 6 19456.50 637.65

160 Molinare 10 Mgr 7 22959.20 -

170 Kermisch 15 Clerk 4 12258.50 110.10

180 Abrahams 38 Clerk 3 12009.75 236.50

190 Sneider 20 Clerk 8 14252.75 126.50

200 Scoutten 42 Clerk - 11508.60 84.20

210 Lu 10 Mgr 10 20010.00 -

220 Smith 51 Sales 7 17654.50 992.80

230 Lundquist 51 Clerk 3 13369.80 189.65

240 Daniels 10 Mgr 5 19260.25 -

250 Wheeler 51 Clerk 6 14460.00 513.30

260 Jones 10 Mgr 12 21234.00 -

270 Lea 66 Mgr 9 18555.50 -

280 Wilson 66 Sales 9 18674.50 811.50

290 Quill 84 Mgr 10 19818.00 -

300 Davis 84 Sales 5 15454.50 806.10

310 Graham 66 Sales 13 21000.00 200.30

320 Gonzales 66 Sales 4 16858.20 844.00

330 Burke 66 Clerk 1 10988.00 55.50

340 Edwards 84 Sales 7 17844.00 1285.00

350 Gafney 84 Clerk 5 13030.50 188.00

762 SQL Reference

Sample Tables

Sample Files with BLOB and CLOB Data Type
This section shows the data found in the EMP_PHOTO files (pictures of employees)
and EMP_RESUME files (resumes of employees).

 Quintana Photo

Figure 14. Delores M. Quintana

 Quintana Resume
The following text is found in the db200130.asc and db200130.scr files.

Resume: Delores M. Quintana

Personal Information

Address: 1150 Eglinton Ave Mellonville, Idaho 83725
Phone: (208) 555-9933
Birthdate: September 15, 1925
Sex: Female
Marital Status: Married
Height: 5'2"
Weight: 120 lbs.

Department Information

Employee Number: 000130
Dept Number: C01
Manager: Sally Kwan
Position: Analyst
Phone: (208) 555-4578
Hire Date: 1971-07-28

 Appendix E. Sample Tables 763

Sample Tables

Education

1965 Math and English, B.A. Adelphi University

1960 Dental Technician Florida Institute of Technology

Work History

10/91 - present Advisory Systems Analyst Producing documentation tools for
engineering department.

12/85 - 9/91 Technical Writer Writer, text programmer, and planner.

1/79 - 11/85 COBOL Payroll Programmer Writing payroll programs for a
diesel fuel company.

Interests

 ¹ Cooking
 ¹ Reading
 ¹ Sewing
 ¹ Remodeling

 Nicholls Photo

Figure 15. Heather A. Nicholls

 Nicholls Resume
The following text is found in the db200140.asc and db200140.scr files.

Resume: Heather A. Nicholls

Personal Information

Address: 844 Don Mills Ave Mellonville, Idaho 83734

764 SQL Reference

Sample Tables

Phone: (208) 555-2310
Birthdate: January 19, 1946
Sex: Female
Marital Status: Single
Height: 5'8"
Weight: 130 lbs.

Department Information

Employee Number: 000140
Dept Number: C01
Manager: Sally Kwan
Position: Analyst
Phone: (208) 555-1793
Hire Date: 1976-12-15

Education

1972 Computer Engineering, Ph.D. University of Washington

1969 Music and Physics, M.A. Vassar College

Work History

2/83 - present Architect, OCR Development Designing the architecture of
OCR products.

12/76 - 1/83 Text Programmer Optical character recognition (OCR) pro-
gramming in PL/I.

9/72 - 11/76 Punch Card Quality Analyst Checking punch cards met quality
specifications.

Interests

 ¹ Model railroading
 ¹ Interior decorating
 ¹ Embroidery
 ¹ Knitting

 Adamson Photo

 Appendix E. Sample Tables 765

Sample Tables

Figure 16. Bruce Adamson

 Adamson Resume
The following text is found in the db200150.asc and db200150.scr files.

Resume: Bruce Adamson

Personal Information

Address: 3600 Steeles Ave Mellonville, Idaho 83757
Phone: (208) 555-4489
Birthdate: May 17, 1947
Sex: Male
Marital Status: Married
Height: 6'0"
Weight: 175 lbs.

Department Information

Employee Number: 000150
Dept Number: D11
Manager: Irving Stern
Position: Designer
Phone: (208) 555-4510
Hire Date: 1972-02-12

Education

1971 Environmental Engineering, M.Sc. Johns Hopkins University

1968 American History, B.A. Northwestern University

Work History

766 SQL Reference

Sample Tables

8/79 - present Neural Network Design Developing neural networks for
machine intelligence products.

2/72 - 7/79 Robot Vision Development Developing rule-based systems to
emulate sight.

9/71 - 1/72 Numerical Integration Specialist Helping bank systems commu-
nicate with each other.

Interests

 ¹ Racing motorcycles
 ¹ Building loudspeakers
¹ Assembling personal computers

 ¹ Sketching

 Walker Photo

Figure 17. James H. Walker

 Walker Resume
The following text is found in the db200190.asc and db200190.scr files.

Resume: James H. Walker

Personal Information

Address: 3500 Steeles Ave Mellonville, Idaho 83757
Phone: (208) 555-7325
Birthdate: June 25, 1952
Sex: Male
Marital Status: Single
Height: 5'11"

 Appendix E. Sample Tables 767

Sample Tables

Weight: 166 lbs.

Department Information

Employee Number: 000190
Dept Number: D11
Manager: Irving Stern
Position: Designer
Phone: (208) 555-2986
Hire Date: 1974-07-26

Education

1974 Computer Studies, B.Sc. University of Massachusetts

1972 Linguistic Anthropology, B.A. University of Toronto

Work History

6/87 - present Microcode Design Optimizing algorithms for mathematical func-
tions.

4/77 - 5/87 Printer Technical Support Installing and supporting laser
printers.

9/74 - 3/77 Maintenance Programming Patching assembly language com-
piler for mainframes.

Interests

 ¹ Wine tasting
 ¹ Skiing
 ¹ Swimming
 ¹ Dancing

768 SQL Reference

Reserved Schema Names and Reserved Words

Appendix F. Reserved Schema Names and Reserved Words

This appendix describes the restrictions of certain names used by the database
manager. In some cases, names are reserved and cannot be used by application pro-
grams. In other cases, certain names are not recommended for use by application pro-
grams though not prevented by the database manager.

 Reserved Schemas
The following schema names are reserved:

 ¹ SYSCAT
 ¹ SYSFUN
 ¹ SYSIBM
 ¹ SYSSTAT

In addition, it is strongly recommended that schema names never begin with the SYS
prefix, as SYS is by convention used to indicate an area reserved by the system.

No user-defined functions, user-defined distinct types, triggers, or aliases can be placed
into a schema whose name starts with SYS (SQLSTATE 42939).

 Reserved Words
There are no words that are specifically reserved words in DB2 Version 5.

Keywords can be used as ordinary identifiers, except in a context where they could also
be interpreted as SQL keywords. In such cases, the word must be specified as a delim-
ited identifier. For example, COUNT cannot be used as a column name in a SELECT
statement unless it is delimited.

IBM SQL and ISO/ANSI SQL92 include reserved words, listed in the following section.
These reserved words are not enforced by DB2 Universal Database, however it is
recommended that they not be used as ordinary identifiers, since this reduces porta-
bility.

IBM SQL Reserved Words
The IBM SQL reserved words are as follows.

 Copyright IBM Corp. 1993, 1997 769

Reserved Schema Names and Reserved Words

ACQUIRE DATABASE IDENTIFIED OBID SCHEDULE
ADD DATE IMMEDIATE OF SCHEMA
ALL DAY IN ON SECOND
ALLOCATE DAYS INDEX ONLY SECONDS
ALTER DBA INDICATOR OPTIMIZE SECQTY
AND DBSPACE INNER OPTION SELECT
ANY DEFAULT INOUT OR SET
AS DELETE INSERT ORDER SHARE
ASC DESC INTERSECT OUT SIMPLE
AUDIT DESCRIPTOR INTO OUTER SOME
AUTHORIZATION DISTINCT IS STATISTICS
AVG DOUBLE ISOLATION PACKAGE STOGROUP

DROP PAGE STORPOOL
BETWEEN JOIN PAGES SUBPAGES
BUFFERPOOL EDITPROC PART SUBSTRING
BY END-EXEC KEY PCTFREE SUM

ELSE PCTINDEX SYNONYM
CALL ERASE LABEL PLAN
CAPTURE ESCAPE LEFT PRECISION TABLE
CASE EXCEPT LIKE PRIMARY TABLESPACE
CAST EXCEPTION LOCK PRIQTY TO
CCSID EXCLUSIVE LOCKSIZE PRIVATE TRANSACTION
CHAR EXECUTE LONG PRIVILEGES TRIM
CHARACTER EXISTS PROCEDURE
CHECK EXPLAIN MAX PROGRAM UNION
CLUSTER EXTERNAL MICROSECOND PUBLIC UNIQUE
COLLECTION MICROSECONDS UPDATE
COLUMN FETCH MIN REFERENCES USER
COMMENT FIELDPROC MINUTE RELEASE USING
COMMIT FOR MINUTES RESET
CONCAT FOREIGN MODE RESOURCE VALIDPROC
CONNECT FROM MONTH REVOKE VALUES
CONNECTION FULL MONTHS RIGHT VARIABLE
CONSTRAINT ROLLBACK VCAT
COUNT GO NAMED ROW VIEW
CREATE GOTO NHEADER ROWS VOLUMES
CROSS GRANT NOT RRN
CURRENT GRAPHIC NULL RUN WHERE
CURRENT_DATE GROUP NUMPARTS WITH
CURRENT_SERVER WORK
CURRENT_TIME HAVING
CURRENT_TIMESTAMP HOUR YEAR
CURRENT_TIMEZONE HOURS YEARS
CURRENT_USER
CURSOR

ISO/ANS SQL92 Reserved Words
The ISO/ANS SQL92 reserved words that are not also in the IBM SQL list are as
follows.

770 SQL Reference

Reserved Schema Names and Reserved Words

ABSOLUTE FALSE OCTET_LENGTH UNKNOWN
ACTION FIRST OPEN UPPER
ARE FLOAT OUTER USAGE
ASSERTION FOUND OUTPUT
AT FULL OVERLAPS VALUE

VARCHAR
BEGIN GET PAD VARYING
BIT_LENGTH GLOBAL PARTIAL
BOTH POSITION WHEN

IDENTITY PREPARE WHENEVER
CASCADED INITIALLY PRESERVE WRITE
CATALOG INNER PRIOR
CHAR_LENGTH INPUT ZONE
CHARACTER_LENGTH INSENSITIVE READ
CLOSE INTERVAL REAL
COALESCE RELATIVE
COLLATE JOIN RIGHT
COLLATION
CONSTRAINTS LANGUAGE SCROLL
CONTINUE LAST SECTION
CONVERT LEADING SESSION
CORRESPONDING LEFT SESSION_USER

LEVEL SIZE
DEALLOCATE LOCAL SMALLINT
DEC LOWER SPACE
DECIMAL SQL
DECLARE MATCH SQLCODE
DEFERRABLE MODULE SQLERROR
DEFERRED SQLSTATE
DESCRIBE NAMES SYSTEM_USER
DIAGNOSTICS NATIONAL
DISCONNECT NATURAL TEMPORARY
DOMAIN NCHAR THEN

NEXT TIMEZONE_HOUR
END NO TIMEZONE_MINUTE
EXTRACT NULLIF TRAILING

NUMERIC TRANSLATION
TRUE

 Appendix F. Reserved Schema Names and Reserved Words 771

Reserved Schema Names and Reserved Words

772 SQL Reference

Isolation Levels

Appendix G. Comparison of Isolation Levels

The following table summarizes information about isolation levels described in “Isolation
Level” on page 21.

 UR CS RS RR

Can the application see uncommitted changes made by other
application processes?

Yes No No No

Can the application update uncommitted changes made by
other application processes?

No No No No

Can the re-execution of a statement be affected by other appli-
cation processes? See phenomenon P3 (phantom) below.

Yes Yes Yes No

Can “updated” rows be updated by other application proc-
esses?

No No No No

Can “updated” rows be read by other application processes that
are running at an isolation level other than UR and NC?

No No No No

Can “updated” rows be read by other application processes that
are running at the UR or NC isolation level?

Yes Yes Yes Yes

Can “accessed” rows be updated by other application proc-
esses? See phenomenon P2 (nonrepeatable read) below.

Yes Yes No No

Can “accessed” rows be read by other application processes? Yes Yes Yes Yes

Can “current” row be updated or deleted by other application
processes? See phenomenon P1 (dirty-read) below.

See
Note
below

See
Note
below

No No

Note:

1. If the cursor is not updatable, with CS the current row may be updated or deleted by other application processes
in some cases.

Examples of Phenomena:

P1 Dirty Read. Unit of work UW1 modifies a row. Unit of work UW2 reads that row before UW1 performs a
COMMIT. If UW1 then performs a ROLLBACK, UW2 has read a nonexistent row.

P2 Nonrepeatable Read. Unit of work UW1 reads a row. Unit of work UW2 modifies that row and performs a
COMMIT. If UW1 then re-reads the row, it might receive a modified value.

P3 Phantom. Unit of work UW1 reads the set of n rows that satisfies some search condition. Unit of work
UW2 then INSERTs one or more rows that satisfies the search condition. If UW1 then repeats the initial
read with the same search condition, it obtains the original rows plus the inserted rows.

 Copyright IBM Corp. 1993, 1997 773

Isolation Levels

774 SQL Reference

Interaction of Triggers and Constraints

Appendix H. Interaction of Triggers and Constraints

This appendix describes the interaction of triggers with referential constraints and check
constraints that may result from an update operation. Figure 18 and the associated
description are representative of the processing that is performed for an SQL statement
that updates data in the database.

SQL statement S1 Determine set of
affected rows (SAR)

Process
BEFORE triggers

Apply SAR to
the target table

Apply
Constraints

Process
AFTER triggers

error

error

violation

error

cascaded SQL statement

= rollback changes to before S1

R

R

R

R

R

Figure 18. Processing an SQL statement with associated triggers and constraints

Figure 18 shows the general order of processing for an SQL statement that updates a
table. It assumes a situation where the table includes before triggers, referential con-
straints, check constraints and after triggers that cascade. The following is a
description of the boxes and other items found in Figure 18.

¹ SQL statement S1

This is the DELETE, INSERT, or UPDATE statement that begins the process. The
SQL statement S1 identifies a table (or an updatable view over some table)
referred to as the target table throughout this description.

¹ Determine set of affected rows (SAR)

This step is the starting point for a process that repeats for referential constraint
delete rules of CASCADE and SET NULL and for cascaded SQL statements from
after triggers.

The purpose of this step is to determine the set of affected rows for the SQL state-
ment. The set of rows included in SAR is based on the statement:

– for DELETE, all rows that satisfy the search condition of the statement (or the
current row for a positioned DELETE)

– for INSERT, the rows identified by the VALUES clause or the fullselect

 Copyright IBM Corp. 1993, 1997 775

Interaction of Triggers and Constraints

– for UPDATE, all rows that satisfy the search condition (or the current row for a
positioned update).

If SAR is empty, there will be no BEFORE triggers, changes to apply to the target
table, or constraints to process for the SQL statement.

¹ Process BEFORE triggers

All BEFORE triggers are processed in ascending order of creation. Each BEFORE
trigger will process the triggered action once for each row in SAR.

An error may occur during the processing of a triggered action in which case all
changes made as a result of the original SQL statement S1 (so far) are rolled back.

If there are no BEFORE triggers or the SAR is empty, this step is skipped.

¹ Apply SAR to the target table

The actual delete, insert, or update is applied using SAR to the target table in the
database.

An error may occur when applying SAR (such as attempting to insert a row with a
duplicate key where a unique index exists) in which case all changes made as a
result of the original SQL statement S1 (so far) are rolled back.

 ¹ Apply Constraints

The constraints associated with the target table are applied if SAR is not empty.
This includes unique constraints, unique indexes, referential constraints, check con-
straints and checks related to the WITH CHECK OPTION on views. Referential
constraints with delete rules of cascade or set null may cause additional triggers to
be activated.

A violation of any constraint or WITH CHECK OPTION results in an error and all
changes made as a result of S1 (so far) are rolled back.

¹ Process AFTER triggers

All AFTER triggers activated by S1 are processed in ascending order of creation.

FOR EACH STATEMENT triggers will process the triggered action exactly once,
even if SAR is empty. FOR EACH ROW triggers will process the triggered action
once for each row in SAR.

An error may occur during the processing of a triggered action in which case all
changes made as a result of the original S1 (so far) are rolled back.

The triggered action of a trigger may include triggered SQL statements that are
DELETE, INSERT or UPDATE statements. For the purposes of this description,
each such statement is considered a cascaded SQL statement.

A cascaded SQL statement is a DELETE, INSERT, or UPDATE statement that is
processed as part of the triggered action of an AFTER trigger. This statement
starts a cascaded level of trigger processing. This can be thought of as assigning
the triggered SQL statement as a new S1 and performing all of the steps described
here recursively.

776 SQL Reference

Interaction of Triggers and Constraints

Once all triggered SQL statements from all AFTER triggers activated by each S1
have been processed to completion, the processing of the original S1 is completed.

¹ .R/ = roll back changes to before S1

Any error (including constraint violations) that occurs during processing results in a
roll back of all the changes made directly or indirectly as a result of the original
SQL statement S1. The database is therefore back in the same state as imme-
diately prior to the execution of the original SQL statement S1

 Appendix H. Interaction of Triggers and Constraints 777

Interaction of Triggers and Constraints

778 SQL Reference

Appendix I. Incompatibilities Between Releases

This appendix identifies the incompatibilities that exist between DB2 Universal Data-
base and previous releases of DB2.

An “incompatibility” is defined to be a part of DB2 Universal Database that works differ-
ently than it did in a previous release of DB2 in such a way that if it used in an existing
application it will produce a different result, necessitate a change to the application, or
reduce performance. In this definition, “application” can apply to a broad range of
things, such as:

¹ Application program code
 ¹ Third-party utilities
¹ Interactive SQL queries
¹ Command and/or API invocation.

This appendix does not describe incompatibilities where certain operations in the
current release are less likely to generate an error condition than they did in the pre-
vious release, as those changes will only have a positive impact on existing applica-
tions.

This appendix lists incompatibilities in the following categories:

¹ “System Catalog Tables/Views” on page 780

¹ “Application Programming” on page 782

¹ “SQL” on page 793

¹ “Database Security and Tuning” on page 803

¹ “Utilities and Tools” on page 805

¹ “Connectivity and Coexistence” on page 808

¹ “Configuration Parameters” on page 811

Each incompatibility includes a description of the change in DB2 Version 5 that causes
an incompatibility with previous releases, the symptom or effect this will have on your
environment if no changes are made to it, and the possible resolutions that are avail-
able. There is also an indicator at the beginning of each incompatibility telling you what
platforms are applicable as follows:

DB2 PE DB2 Parallel Edition, Version 1.2

OS/2 OS/2

UNIX Unix-based operating systems supported by DB2

WIN Microsoft Windows platforms supported by DB2

 Copyright IBM Corp. 1993, 1997 779

System Catalog Tables/Views

System Catalog Views
UNIX OS/2 WIN DB2 PE

 Change
A set of views have been created in DB2 Version 2 with the qualifiers (also known as
schema names) of SYSCAT and SYSSTAT. For this reason, the SYSCAT and
SYSSTAT schemas are now reserved.

 Symptom
If there are any objects belonging to these schemas in a Version 1 database, migration
will fail with SQLCODE SQL1704N (reason code 1).

 Resolution
The only way to get through the migration successfully will be to recreate the objects
currently under the SYSCAT and SYSSTAT schemas under new high level qualifiers.

System Catalog Tables
UNIX OS/2 WIN

 Change
A variety of changes have been made to the SYSIBM tables. This section will discuss
the subset which could cause incompatibilities. To see a description of all changes (for
example, new columns, new values in a column, and so on) refer to the SQL
Reference.

SYSCOLUMNS

COLTYPE: Changed values: “FLOAT” to “DOUBLE”
NULLS: Changed values: “D” to “N”. (Default flag now found in

SYSCAT.COLUMNS.DEFAULT)
HIGH2KEY: Changed type: VARCHAR(16) to VARCHAR(33).

Changed values: Values now stored in printable format
rather than binary format

LOW2KEY: Changed type: VARCHAR(16) to VARCHAR(33).
Changed values: Values are now stored in printable
format rather than binary format for all datatypes.

SYSINDEXES

CLUSTERRATIO: Changed value: Value will always be -1 if the columns
CLUSTERFACTOR and PAGE_FETCH_PAIRS are
populated.

SECT_INFO: Changed type: LONG VARCHAR to BLOB(1M).
HOST_VARS: Changed type: LONG VARCHAR to BLOB(1M).

780 SQL Reference

ISOLATION: Changed type: CHAR(1) to CHAR(2). Changed values:
“R” to “RR”, “S” to “RS”, “C” to “CS”, “U” to “UR”.

SYSRELS

RELNAME: Changed type: CHAR(8) to VARCHAR(18).

SYSSECTION

SECTION: Changed type: VARCHAR(3900) to VARCHAR(3600)

SYSSTMT

TEXT: Changed type: VARCHAR(3900) to VARCHAR(3600)

SYSTABLES

PACKED_DESC: Changed type: LONG VARCHAR to BLOB(10M)
VIEW_DESC: Changed type: LONG VARCHAR to BLOB(32K)
REL_DESC Changed type: LONG VARCHAR to BLOB(32K)
FID Will no longer uniquely identify a table on its own. Must

be used with TID to uniquely identify a table.

SYSVIEWS

CHECK: Changed values: "Y" to "L".

TEXT: Changed type: VARCHAR(3900) to VARCHAR(3600). Con-
tains the full text of the create view statement (including the
CREATE VIEW). In Version 1, only the select portion was
shown.

 Symptom
A variety of symptoms could occur.

If you have an application which has a qualified search on a field that has had a value
change (for example, ISOLATION in SYSIBM.SYSPLAN) this will cause your applica-
tion to react differently than you would want.

If you have an application which accesses some field where the field type or size has
changed (such as SECTION in SYSIBM.SYSSECTION), you could retrieve an incom-
plete set of data, too much data, or have the wrong type defined in your application to
represent the data type of the table column.

 Resolution
If you use the SYSIBM tables for application processing or anything else, you must
review the changes listed above to decide whether or not you are affected and what the
appropriate action to correct the situation is. You may need to refer to the SQL Refer-
ence to understand what the new columns, new values for columns and other changes
that were made to these tables.

If you need a rough approximation of the degree of clustering, select both
CLUSTERRATIO and CLUSTERFACTOR and choose the “greater” one.

 Appendix I. Incompatibilities Between Releases 781

Unique Table Identification
UNIX OS/2 WIN

 Change
With the introduction of table spaces, the TID column of SYSIBM.SYSTABLES is now
used to identify a table space. The FID column of SYSIBM.SYSTABLES will no longer
uniquely identify a table is a database. FID now uniquely identifies a table in a table
space. This means that to uniquely identify a table in a database you need the combi-
nation of TID and FID.

 Symptom
Any application which assumes FID will uniquely identify a table in a database may
process incorrectly should the FID be duplicated in multiple table spaces.

 Resolution
Change the application to use TBSPACEID and TABLEID from the SYSCAT.TABLES
view as the unique identifier. You can also use the columns TID and FID from
SYSIBM.SYSTABLES.

 Application Programming

NS and NX Lock Modes
UNIX OS/2 WIN DB2 PE

 Change
Due to the addition of NS and NX lock modes in DB2 Version 5, there is a difference in
the behaviour of index scans with isolation level Cursor Stability (CS) or Read Stability
(RS).

 Symptom
In DB2 Version 5, an index scan with isolation level, CS or RS, will not see an
uncommited delete of a row that is within the scanned range. In DB2 Version 2, the
scanner would not see an uncommitted delete of a row that was at the end of the
scanned range. However, if the deleted row was within the range, the scanner would
remain in a lock wait until the delete was committed or rolled back.

For example in DB2 Version 5, the following can occur with an index on Column A:

782 SQL Reference

Sequence Application 1 Application 2

1 delete from t1 where a=3
2 select a from t1 where a>1 and a<5

 A

 2

 4

 5

3 rollback
4 select a from t1 where a>1 and a<5

 A

 2

 3

 4

 5

The same scenario in previous versions of DB2 would result in application 2 being in
lock wait until Application 1 committed or rolled back.

 Resolution
There is no resolution as this is an enhancement to isolation level Cursor Stability or
Read Stability.

CREATE TABLE NOT LOGGED INITIALLY
UNIX OS/2 WIN DB2 PE

 Change
In DB2 PE V1.2, in the unit of work in which a table is created with the NOT LOGGED
INITIALLY option, an error on this table will cause the unit of work to be rolled back. In
Version 5, the range of errors that will cause a roll back has been increased.

 Symptom
In Version 5, in the unit of work in which a table is created with the NOT LOGGED
INITIALLY option, an error in any operation involving any table will cause the unit of
work to be rolled back.

 Resolution
Correct the error and run the transaction again.

DB2 Call Level Interface (DB2 CLI) Defaults
UNIX OS/2 WIN

 Change
The default values for AUTOCOMMIT and CURSORHOLD have changed. Both
AUTOCOMMIT and CURSORHOLD will now default to ON.

 Appendix I. Incompatibilities Between Releases 783

 Symptom
If an application was written assuming that AUTOCOMMIT was OFF or that WITH
HOLD semantics was NOT used for cursors, then these default changes could cause
the application to fail.

 Resolution
Add one or both of the following two lines to your DB2CLI.INI file.

¹ AUTOCOMMIT = 0
¹ CURSORHOLD = 0

Obsolete DB2 CLI Keywords
UNIX OS/2 WIN

 Change
You can control DB2 configurable features by specifying a set of optional keywords in
an DB2 CLI initialization file. In DB2 Version 2, some of these keywords become obso-
lete, as follows:

 1. UNDERSCORE
 2. TRANSLATEDLL
 3. TRANSLATIONOPTION

 Symptom
These keywords will be ignored if they still exist. You may notice behavioral changes
based on the removal of these settings.

 Resolution
You will need to review the new list of valid parameters to decide what the appropriate
keywords and settings are for your environment. See the CLI Guide and Reference for
information on these keywords.

DB2 CLI SQLSTATEs
UNIX OS/2 WIN

 Change
A more explicit set of SQLSTATEs (in the S1090 to S1110 range) has replaced the
generic SQLSTATE S1009.

 Symptom
SQLSTATE values returned to the application calling DB2 CLI APIs have changed.

 Resolution
Update your application to check for the new SQLSTATEs. Refer to the Message Ref-
erence for a complete list of these SQLSTATEs.

784 SQL Reference

DB2 CLI Mixing Embedded SQL, Without CONNECT RESET
UNIX OS/2 WIN

 Change
DB2 CLI's Version 2 support of multiple connections may affect your existing applica-
tions. If your application connects to a database using any non-CLI interface (including
embedded SQL using the command line processor or administrative APIs) and does
NOT issue a reset before connecting to a database using DB2 CLI, your applications
will be affected by this change.

 Symptom
The second connect will fail with an SQLSTATE of 08001 since it is not same type of
connection as the first connect.

 Resolution
The application must issue a CONNECT RESET before calling a DB2 CLI connect
function.

DB2 CLI Use of VARCHAR FOR BIT DATA
UNIX OS/2 WIN

 Change
Character data defined with the FOR BIT DATA clause is now by default mapped to the
new C buffer type, SQL_C_BINARY. If data is defined as FOR BIT DATA, it is trans-
ferred to:

¹ SQL_C_BINARY buffers unchanged

¹ SQL_C_CHAR buffers as a character representation of the hexadecimal value of
the data. Each byte is represented by two ASCII characters, (meaning the
SQL_C_CHAR buffer must be double the size of the FOR BIT DATA string.)

 Symptom
Existing applications that explicitly use SQL_C_CHAR with data defined as FOR BIT
DATA, will get a different result and may receive only half of the original data.

 Resolution
In order to have DB2 CLI treat FOR BIT DATA the same as it did in Version 1, add the
following line to DB2CLI.INI:

BITDATA = 0

DB2 CLI Data Conversion Values for SQLGetInfo
UNIX OS/2 WIN

 Appendix I. Incompatibilities Between Releases 785

 Change
The SQL_CONVERT_xxxx fInfoType is defined by ODBC to indicate supported conver-
sion functions. A change has been made in how we handle SQL_CONVERT_xxxx
fInfoTypes which were used with the corresponding SQL_CVT_xxx comparison masks
to correctly follow ODBC standards.

 Symptom
DB2 CLI will no longer return bit masks for the SLQ_CONVERT_xxx fInfoTypes and
corresponding SQL_CVT_xxx comparison masks. DB2 CLI Version 2 now returns zero
for all SQL_CONVERT_xxx fInfoTypes.

 Resolution
This is to correct Version 1 processing which was not ODBC compliant. There is no
resolution.

DB2 CLI/ODBC Configuration Keyword Defaults
UNIX OS/2 WIN

 Change
The default value for the CLI/ODBC configuration keyword DEFERREDPREPARE has
changed. In DB2 CLI Version 5 deferred prepare is now on by default.

 Symptom
Applications that rely on the prepare to be executed as soon as it is issued will not
function as expected. In particular, the row and cost estimates normally returned in the
SQLERRD(3) and SQLERRD(4) of the SQLCA of a prepare statement may become
zeros. The application will not be able to use this information to decide whether or not
to continue the execution of the SQL statement.

 Resolution
Add the following line to your db2cli.ini file:

DEFERREDPREPARE = 0

Obsolete DB2 CLI/ODBC Configuration Keywords
UNIX OS/2 WIN

 Change
You can change the behavior of the DB2 CLI/ODBC driver by specifying a set of
optional keywords in the db2cli.ini file. In Version 5, the AUTOCOMMIT keyword has
become obsolete.

 Symptom
These keywords will be ignored if they still exist. You may notice behavioral changes
based on the removal of these settings.

786 SQL Reference

 Resolution
You will need to review the new list of valid parameters to decide what the appropriate
keywords and settings are for your environment. See the CLI Guide and Reference for
information on these keywords.

DB2 CLI SQLSTATEs
UNIX OS/2 WIN

 Change
The category of SQLSTATEs that started with S1 in DB2 CLI Version 2 have been
renamed to begin with HY in Version 5. For example, the SQLSTATE S1010 is now
HY010.

 Symptom
SQLSTATE values returned to the application calling DB2 CLI APIs have changed.

 Resolution
Applications should be updated to expect the new HY class of SQLSTATEs. Alterna-
tively, the environment attribute SQL_ATTR_ODBC_VERSION can be set to
SQL_OV_ODBC2 using the DB2 CLI function SQLSetEnvAttr(). The DB2 CLI/ODBC
driver will then return the S1 class of SQLSTATEs.

Stored Procedure Catalog Table
UNIX OS/2 WIN

 Change
Version 5 now has 2 system catalog views used to store information about all the
stored procedures on the server (SYSCAT.PROCEDURES and
SYSCAT.PROCPARMS). These replace the Version 2 pseudo catalog table for stored
procedures

 Symptom
By default the server will look in the new system catalog views for information about
stored procedures, not the older pseudo catalog table. DB2 CLI functions such as
SQLProcedureColumns() and SQLProcedures() will therefore not return the appropriate
information.

 Resolution
Register the stored procedures using the CREATE PROCEDURE SQL command. See
the SQL Reference for more information. Alternatively, the DB2 CLI/ODBC configuration
keyword PATCH1 can be set to 262144 to force the DB2 CLI/ODBC driver to use the
pseudo catalog table as it did in Version 2.

 Appendix I. Incompatibilities Between Releases 787

PREP Command - LANGLEVEL
UNIX OS/2 WIN

 Change
When the LANGLEVEL MIA option of the PREP command is used, all C null-terminated
strings are padded with blanks and the null-terminating character is placed in the last
byte of the string.

 Symptom
Although this change was made for MIA compliance, it has caused a change to the way
C null-terminated strings are handled.

 Resolution
There is another LANGLEVEL setting (SAA1) which may cause the behavior to better
match your needs. You should review the options and decide what is best for your envi-
ronment.

Change to SMALLINT Constants
UNIX OS/2 WIN

 Change
Integer constants in the range -32,768 to 32,767 are now treated as INTEGER types,
rather than SMALLINT. This resolves an incompatibility with IBM SQL, as well as sim-
plifying the rules for determining literal types.

It is also worth mentioning that the smallest INTEGER constant in Version 1
(-2147483638) is a DECIMAL constant with precision 10 and scale 0 in Version 5.

 Symptom
This affects the result precision and scale of decimal operations. (Which impacts, for
example, the print width of decimal fields.)

 Resolution
There is no resolution. This change in handling integers results in an increase in preci-
sion.

 Error Handling
UNIX OS/2 WIN

 Change
Errors which were previously reported at bind time may now not occur until statement
execution. For instance, if you create a table using incorrect SQL syntax such as:

CREATE TABLE T1 (C1 CHAR(5), C1 CHAR(10))

788 SQL Reference

The error that a duplicate column name was used will be flagged at run time instead of
bind time. For all DDL statements, syntax errors are reported at bind time and semantic
errors are reported at run time.

 Symptom
Some errors which were reported at bind time in Version 1 will now be reported at
execution time.

 Resolution
As long as the application has proper error handling routines, this should not cause a
problem. There will be some additional errors which can now occur during execution.

Maximum Number of Sections in a Package
UNIX OS/2 WIN

 Change
The limit for the maximum number of sections in a package has changed from 400 to
whatever the storage allows. This limit used to be hard-coded at 400, but now depends
on the type of SQL statements in the program. As a result of this change, the constant
for the maximum number of SQL statements has been removed from the common
include files sql.h, sql.cbl, and sql.f.

 Symptom
If an application program references the following constants, it will not compile success-
fully in Version 5:

¹ SQL_MAXSTMTS (in sql.h)
¹ SQL-MAXSTMTS (in sql.cbl)
¹ SQL_MAXSTMTS (in sql.f)

 Resolution
Remove references to these constants or define them directly within your application.

 Bind Warnings
UNIX OS/2 WIN

 Change
Version 1 reports a warning at bind time if the number of host variables in an INTO
clause is less than the number of select list items. Version 2 reports the same bind
time warning if there are more or less host variables than select list items.

 Symptom
You will receive bind time warning messages where one was not received in Version 1.

 Appendix I. Incompatibilities Between Releases 789

 Resolution
Rebind the application with the new bind option SQLWARN NO and warnings will not
be reported.

 Bind Options
UNIX OS/2 WIN

 Change
The new SQLWARN bind option has a default value of ‘YES’.

 Symptom
By default, positive SQLCODEs may now be returned on DESCRIBE, PREPARE, and
EXECUTE IMMEDIATE requests which were previously not returned. (For instance, a
SQLCODE of +236 may be returned).

 Resolution
Rebind with SQLWARN NO if your application cannot tolerate positive SQLCODEs or
treats them as errors.

PREP with BINDFILE
UNIX OS/2 WIN

 Change
In Version 2, under certain circumstances, the DB2 PREP (precompile) command
allows a bind file to be created even if certain errors occur. If the BINDFILE option, but
not the PACKAGE option, is specified on the prep command, the following object exist-
ence and authority errors will be tolerated:

SQL0117N The number of values assigned is not the same as the number of specified
or implied columns.

SQL0204N "<name>" is an undefined name.

SQL0205N "<name>" is not a column of table "<table-name>".

SQL0206N "<name>" is not a column in an inserted table, updated table, or any table
identified in a FROM clause or is not a valid transition variable for the
subject table of a trigger.

SQL0440N No function by the name "<function-name>" having compatible arguments
was found in the function path.

SQL0551N "<authorization-ID>" does not have the privilege to perform operation
"<operation>" on object "<name>".

SQL0552N "<authorization-ID>" does not have the privilege to perform operation
"<operation>".

790 SQL Reference

 Symptom
This may cause precompilation of some applications to succeed with errors where they
failed in previous versions. The resultant bind file will fail if it is bound to a database
with similar omissions of objects or authorities.

 Resolution
Check bind errors instead of precompiler errors for this condition.

Varchar Structures in COBOL
UNIX OS/2 WIN

 Change
The COBOL precompiler in Version 2 and Version 5 supports declaration of group data
items as host variables. (Refer to the Embedded SQL Programming Guide for more
information.) This may cause some incompatibility with existing applications which did
not adhere to the precise declaration format for VARCHAR host variables in COBOL.

The level numbers for subordinate items, as documented in DB2 manuals, must be 49.
The following declaration would be accepted by the COBOL precompiler in Version 1,
but not in Version 2 or Version 5:

 01 MY-VAR.

10 MY-LENGTH PIC S9(4) COMP-5.

 10 MY-DATA PIC X(100).

If not coded correctly, the Version 2 and Version 5 precompiler will treat declarations
like the above as structures with two members, a short integer and a fixed-length char-
acter string. When such a variable is used in an SQL statement, the reference to the
would-be VARCHAR would be replaced with references to the two subordinates.

 Symptom
Depending on the situation, this may result in the following message:

SQL0087N Host variable "<name>" is a structure used where
structure references are not permitted.

 Resolution
Applications being migrated to Version 5 that contain host variables which are intended
to be VARCHARs should be declared with the subordinates at level 49.

 Incompatible APIs
UNIX OS/2

 Change
Several APIs have been changed or removed since Version 1. See the charts in the
API Reference showing descriptions of the changes.

 Appendix I. Incompatibilities Between Releases 791

 Symptom
In most cases, the original API call will still work, however, you cannot take advantage
of any of the new Version 5 functionality while using the old API calls or parameters.

 Resolution
Applications should be upgraded to use the new Version 5 API calls as described in the
API Reference.

Supported Level of JDBC
UNIX OS/2 WIN

 Change
The supported level of the JDBC (Java Database Connectivity) API has changed. DB2
Version 5 provides a driver for JDBC 1.1 instead of JDBC 1.0, which came with DB2
Version 2.1.2.

 Symptom
Compiled JDBC 1.0 clients fail when executed directly as a DB2 Version 5 client. Old
Java classes are not found.

 Resolution
To continue using JDBC 1.0 clients, run them on a DB2 Version 2.1.2 client, with a
remote DB2 Version 5 server. Modify the client source code to upgrade to the JDBC
1.1 API. Run the JDBC 1.1 clients on a Java Development Kit Version 1.1-compatible
virtual machine.

Calling Convention for Java Stored Procedures and UDFs
UNIX OS/2 WIN

 Change
The calling convention for Java stored procedures and user-defined functions (UDFs)
has changed in DB2 Version 5.

 Symptom
Java stored procedures and UDFs written for DB2 Version 2.1.2 will not be found when
run on DB2 Version 5.

 Resolution
Change the Java stored procedure and UDF source code to use the new calling con-
vention. Refer to the Embedded SQL Programming Guide for details.

792 SQL Reference

Java Runtime Environment
UNIX OS/2 WIN

 Change
The level of the Java runtime environment required for Java stored procedures, user-
defined functions, and JDBC clients has changed in DB2 Version 5.

 Symptom
The JDBC DLL will not load when JDBC 1.1 clients are run. Java stored procedures
and UDFs will fail.

 Resolution
Install a compatible Java 1.1 runtime environment at the client and server. At the
server, set the jdk11_path configuration parameter.

Obsolete System Monitor Requests for DB2 PE Version 1.2
DB2 PE

 Change
Some request types that were available with the DB2 PE Version 1.2 system monitor
are no longer supported. See the tables in the System Monitor Guide and Reference
showing descriptions of the changes.

 Symptom
The old request types will not work.

 Resolution
Applications should be upgraded to use the new DB2 Version 5 requests types as
described in the System Monitor Guide and Reference.

 SQL

Updating Partitioning Key Columns
UNIX OS/2 WIN DB2 PE

 Change
In DB2 PE Version 1.2, partitioning key columns could be updated if the table was in a
single-node nodegroup. In DB2 Version 5, partitioning key columns can be updated if
the table is in a table space in a single-node nodegroup, and there is no partitioning
key defined.

 Appendix I. Incompatibilities Between Releases 793

 Symptom
An update statement fails with SQL270N (SQLCODE -270, SQLSTATE 42997) with
reason code 2. The same error is returned if the table is in a table space in a single or
multiple node nodegroup.

 Resolution
If the table is in a table space in a single node nodegroup, then use the ALTER TABLE
statement to DROP the partitioning key. As with DB2 PE Version 1.2, if the table is in a
table space in a multiple node nodegroup, the nodegroup must be changed to a single-
node nodegroup and REDISTRIBUTE NODEGROUP must be issued before attempting
to update partitioning key columns.

 Column NGNAME
UNIX OS/2 WIN DB2 PE

 Change
In DB2 PE Version 1.2, a table was directly associated with a nodegroup. In DB2
Version 5, a table is in a table space, which is within a nodegroup. Since there is no
longer a direct relationship with a nodegroup, there is no need for a column, named
NGNAME in the SYSIBM.SYSTABLES catalog table.

 Symptom
An SQL statement that refers to the NGNAME column from SYSIBM.SYSTABLES
catalog table will return an SQLCODE of −206 (SQLSTATE 42703).

 Resolution
Remove the column NGNAME from the SQL statement. To determine the nodegroup
name for the table, refer to NGNAME in the row of SYSCAT.TABLESPACES catalog
view, that relates to the table space in which the table is stored.

Node Number Temporary Space Usage
UNIX OS/2 WIN DB2 PE

 Change
When using a temporary table that requires row identifiers, the amount of space
needed is increased to include the node number. The space limit for temporary tables
is 4005 bytes. If temporary tables are close to the 4005 byte limit, any further increase
can exceed this limit.

 Symptom
There are two possible symptoms of this change.

¹ An SQL statement may fail to compile and return an SQLCODE of SQL0670N
(SQLSTATE 54010).

¹ The temporary table is not used which may effect the performance of the query.

794 SQL Reference

 Resolution
You should review and use the directions in the Actions section of the message details
for SQL0670N to fix the error.

Authorities for Create and Drop Nodegroups
UNIX OS/2 WIN DB2 PE

 Change
The authorization required for creating or dropping a nodegroup has changed from
SYSADM or DBADM to SYSADM or SYSCTRL. This means that a user ID with
DBADM authority cannot create, alter, or drop nodegroups.

 Symptom
A user ID, with DBADM authority, issuing a CREATE NODEGROUP or DROP
NODEGROUP statement will receive an SQL00551N (SQLSTATE 42501).

 Resolution
Issue the statement using a user ID that has SYSADM or SYSCTRL authority. For
your convenience, you may wish to include the user ID in the SYSCTRL group. Refer
to the Administration Guide for further information.

Target Map in REDISTRIBUTE NODEGROUP
UNIX OS/2 WIN DB2 PE

 Change
The specification of a target map in the REDISTRIBUTE NODEGROUP command or
API no longer causes database partitions to be implicitly added or dropped from the
node group. This means that the target map cannot include nodes that are not defined
to the node group. An undefined node that is included in the target map file will cause
an error to be returned. A database partition, which has been defined to the node
group, can be excluded from the target map file and will not appear in the partition
map.

 Symptom
If a node is included in the target map file and was not defined to the node group, the
REDISTRIBUTE NODEGROUP command will return an SQLCODE–6053 with a reason
code 6.

 Resolution
Before issuing the REDISTRIBUTE NODEGROUP command, add the database parti-
tion to the node group, using the ALTER NODEGROUP statement. You can also drop
the node from the node group using the ALTER NODEGROUP statement, either before
or after issuing the REDISTRIBUTE NODEGROUP command. Refer to the SQL Refer-
ence for further information on the ALTER NODEGROUP statement.

 Appendix I. Incompatibilities Between Releases 795

Node Group for Create Table
UNIX OS/2 WIN DB2 PE

 Change
In DB2 PE Version 1, a table was directly associated with a node group. In DB2
Version 5, a table is in a table space within a node group. When a user issues a
CREATE TABLE statement, the name following the IN keyword is a table space name,
not a node group name. The default table space selected may not be defined in the
IBMDEFAULTGROUP node group, which was the default node group in DB2 PE
Version 1.

 Symptom
If you use existing CREATE TABLE statements from DB2 PE Version 1, they may fail
with an SQLCODE of SQL0204N (SQLSTATE 42704), with the name specified fol-
lowing the IN keyword in the message. This will occur if a table space with the same
name as the node group has not been automatically created during database migration.

If you are using CREATE TABLE statements that do not specify the IN keyword, the
table space selected, by default, may not be using the node group,
IBMDEFAULTGROUP, and will not include data on all the database nodes. You can
check the partition map for the table to confirm this.

 Resolution
Ensure that any name specified following the IN keyword on the CREATE TABLE state-
ment is the name of a defined table space. For existing statements, you could set up a
table space for each node group with the same name.

To ensure that tables default to the IBMDEFAULTGROUP for all users, define a table
space called IBMDEFAULTGROUP, defined in the node group, IBMDEFAULTGROUP.
This ensures that tables created by any users will default to use this table space.

Note: This is done automatically during database migration from DB2 PE Version 1 to
DB2 Version 5.

Revoking CONTROL on Tables or Views
UNIX OS/2 WIN DB2 PE

 Change
A user can grant privileges on a table or view using the CONTROL privilege. In DB2
Version 5, the WITH GRANT OPTION provides a mechanism to determine a user's
authorization to grant privileges on tables and views to other users. This mechanism is
used in place of CONTROL to determine whether a user may grant privileges to others.
When CONTROL is revoked, users will continue to be able to grant privileges to others.

796 SQL Reference

 Symptom
A user can still grant privileges on tables or views, following the revocation of
CONTROL privilege.

 Resolution
If a user should no longer be authorized to grant privileges on tables or views to others,
revoke all privileges on the table or view and grant only those required.

High Level Qualifiers for Objects in DB2 Version 5
UNIX OS/2 WIN DB2 PE

 Change
In DB2 PE Version 1, users would create a table, view, index or package with any
schema name or qualifier with the exception of SYSIBM. This differs from other IBM
database products and is not compliant with SQL92. In DB2 Version 5, there are limits
of the schema names that you can use.

¹ The schema names for tables, views, indexes, and packages cannot be SYSIBM,
SYSCAT, SYSSTAT, OR SYSFUN.

Note: The schema names for all other objects must not start with SYS.

¹ Each schema is an object defined in the database catalog.

Users require IMPLICIT_SCHEMA authority to implicitly create a schema. Once a
schema is created, specific privileges allow users to create objects (CREATEIN
privilege), drop any object in the schema (DROPIN privilege), or alter (comment
on) any object in the schema (ALTERIN privilege). The change to supporting
schemas, as objects with privileges, has resulted in changes to privileges associ-
ated with various statements.

– For creating objects in an existing schemas, you must have CREATEIN privi-
lege.

– For creating objects in a schema that does not exist, you must have
IMPLICIT_SCHEMA authority.

– For dropping objects in a schema, you must be the definer of the object, have
CONTROL privilege, or have DROPIN privilege on the schema.

– For altering, including commenting on, objects in a schema you must be the
definer of the object, have CONTROL privilege, or have ALTERIN privilege on
the schema.

Note: For altering or commenting on a table, the ALTER privilege on the
table is also valid.

 Symptom
If you create an object with an invalid schema name, the CREATE statement returns an
SQLCODE of SQL0553N. This message indicates that the object cannot be created
with the schema name.

 Appendix I. Incompatibilities Between Releases 797

If a CREATE, ALTER, COMMENT ON or DROP statement returns an SQLCODE of
SQL0551N, you did not have the necessary privilege. This may be the result of
schema-related privileges and could indicate that:

¹ The object cannot be created because the schema does exist and you do not have
the IMPLICIT_SCHEMA authority.

¹ The object cannot be created because the schema does not exist and you do not
have the CREATEIN privilege.

¹ The object cannot be dropped because another user created the object and you do
not have the DROPIN privilege.

¹ The object cannot be altered (commented on) because another user created the
object and you do not have ALTERIN privilege.

 Resolution
Depending on the symptom:

¹ Do not create schema names with SYS.
¹ If a user can create a table, view, index or package, grant the necessary authority

or privilege using the GRANT (Database Authorities) statement for
IMPLICIT_SCHEMA authority, or the GRANT (Schema Privileges) statement for
CREATEIN, DROPIN or ALTERIN privilege on the schema. A user with DBADM
authority must first create the schema.

 Inoperative VIEWs
UNIX OS/2 WIN

 Change
In DB2 Version 2, a view is made inoperative if a SELECT privilege upon which the
view definition is dependent is revoked or if an object upon which the view definition is
dependent was dropped (or possibly made inoperative in the case of another view).
This is in contrast to the behavior in DB2 Version 1 where the view would have been
dropped under the same circumstances.

 Symptom
If the use of an inoperative VIEW is attempted, an SQL0575N will be returned to the
application.

 Resolution
To resolve this problem, you will need to do two things:

1. Resolve the dependency (such as CREATE the dropped table).

2. Execute a CREATE VIEW.

Since the view is only inoperative and not dropped, you can query the TEXT
column of SYSCAT.VIEWS to retrieve the current definition of the view.

798 SQL Reference

 Unusable VIEWs
UNIX OS/2 WIN

 Change
If you currently have a view defined with SELECT * on a table as part of the view
definition, the view may be unusable after migration.

 Symptom
You will receive an SQL0158N error if you attempt to use a view that is unusable.

 Resolution
In order to resolve this problem you will need to:

1. Drop the existing view (DROP VIEW command).
2. Re-create the view (CREATE VIEW command), specifying column names in place

of “*”.

 SQLCODE Changes
UNIX OS/2 WIN

 Change
The SQLCODEs returned for an INSERT or UPDATE statement resulting in data being
out of range have changed. These are:

¹ SQL0406N is now SQL0413N
¹ SQL0404N is now SQL0433N

The message has changed from “A numeric value/string in the UPDATE or INSERT
statement is ...” to “Overflow occurred during numeric data type conversion”. Note that
there have been no changes to the corresponding SQLSTATEs.

 Symptom
These SQLCODEs are caused by trying to place a value in a column that is outside a
limit that exists on the data in that column. For applications, different values will now be
returned in SQLCA.SQLCODE. In any interactive situation (such as using the command
line processor), a different error code will be reported to the user.

 Resolution
If your application specifically looks for the old SQLCODEs, you will need to change the
comparison to use the new codes.

WITH CHECK OPTION on CREATE VIEW
UNIX OS/2 WIN

 Appendix I. Incompatibilities Between Releases 799

 Change
The default used when WITH CHECK OPTION is specified without keywords has
changed from LOCAL in Version 1 to CASCADED in Version 2.

 Symptom
This will cause the constraints of all dependant views to be applied.

 Resolution
Explicitly specify the LOCAL keyword with the WITH CHECK OPTION to get the same
behavior as in Version 1.

 SQLSTATE Changes
UNIX OS/2 WIN

 Change
With DB2 Version 2, the SQLSTATEs have been updated to comply with the final pub-
lished SQL92 standard.

 Symptom
In some cases, the value of SQLCA.SQLSTATE will be different than it would be in
Version 1 for the same error or situation.

 Resolution
If your application is expecting a specific SQLSTATE, you may need to update the
value in the comparison.

FOR BIT DATA Comparisons
UNIX OS/2 WIN

 Change
In Version 1, all character strings, including FOR BIT DATA, were compared according
to the database collating sequence. In Version 2, character strings with the FOR BIT
DATA attribute will be compared according to their bit values, irrespective of the data-
base collating sequence.

Whenever the database manager compares two character strings, if either comparand
has the FOR BIT DATA attribute, the comparison is performed with the bit values of the
comparands, without consideration of the database collating sequence. If the
comparands are of different lengths, there is a logical blank padding (with X'20' on the
right) of the shorter string to the length of the longer string.

 Symptom
Comparison results will differ from results in Version 1 when the collating sequence and
the bit values are in different orders (only for FOR BIT DATA columns). For example,
'A' = x'41' and 'a' = x'61'. 'A' > 'a', however, x'41' < x'61'.

800 SQL Reference

Keep in mind that comparisons take place in many situations including:

¹ Evaluation of basic predicates
¹ Use of the ORDER BY clause
¹ Use of the MIN and MAX column functions

 Resolution
You should replicate the data from the FOR BIT DATA column to a column with type
CHAR. This will allow the data to be sorted according to the collating sequence instead
of their bit values.

Code Page Conversion
UNIX OS/2 WIN

 Change
Code page conversion rules for operands changed in Version 2. These changes
improve DB2 compliance with SQL92 standards. It is important to understand that in
most cases this will not affect result sets, however, it is possible to find scenarios where
output would be different from DB2 Version 1 to Version 2 or to Version 5. In these
cases, the output in Version 1 would be the incorrect output from the standpoint of the
SQL92 standards compliance.

A few scenarios will be discussed where different output may be experienced:

¹ When using the LIKE predicate, it will always be the second operand which is con-
verted to the first operand's code page.

¹ The result type for a UNION ALL set operation is determined in a binary fashion.
For queries involving two or more UNION operations, and a mixture of fixed length
and varying length character columns, intermediate fixed length datatypes may
result in additional trailing blanks. If unequal code pages or columns defined FOR
BIT DATA are part this type of operation, the conversion rules are applied to each
intermediate result instead of using the final code page throughout the operation.

¹ The change to consistent conversion rules for result types means that the VALUE
scalar function could have a result with a different code page than in previous ver-
sions of DB2.

 Symptom
The result set may be different since DB2 now adheres to SQL92 standards.

 Resolution
There is no resolution as this is an improvement for compliance with SQL92 standards.

Isolation Levels and Blocking All
UNIX OS/2 WIN

 Appendix I. Incompatibilities Between Releases 801

 Change
When a cursor is declared without either the FOR UPDATE or FOR READ ONLY
clause, it is considered to be an ambiguous cursor. If a package containing dynamically
declared cursors is bound with the bind option BLOCKING=ALL, but without the bind
option LANGLVL=MIA, then any ambiguous cursors will be treated as if FOR READ
ONLY had been specified.

 Symptom
Your application may receive an SQLCODE of SQL0510N (SQLSTATE 42828) when
performing a DELETE WHERE CURRENT OF CURSOR.

 Resolution
Rebind with the BLOCKING=UNAMBIG or LANGLVL=MIA options or add a FOR
UPDATE clause to the cursor.

ORDER BY Temporary Space Usage
UNIX OS/2 WIN

 Change
Whenever an ORDER BY is performed on a column which does not have an index, a
temporary table is used to perform the sort. Beginning in Version 2, LONG VARCHAR
and LONG VARGRAPHIC column types will use an increased amount of space as
compared to Version 1 in these temporary tables. This may cause the query result rows
to exceed the maximum row size (4005 bytes).

 Symptom
ORDER BY queries with one or more LONG VARCHAR (or LONG VARGRAPHIC)
columns in the SELECT list and for which the select list is physically large, may fail to
execute in Version 2 with SQLCODE SQL0670N (SQLSTATE 54010).

 Resolution
The following are some ways of attempting to resolve or avoid this scenario:

¹ Reduce the size of the SELECT list by removing some SELECT items (such as the
LONG VARCHAR column(s))

¹ Apply the SUBSTR function to CHAR, GRAPHIC, VARCHAR, or VARGRAPHIC
select items

¹ Create an index on the ORDER BY fields.

Using Quotes in SQL Statements
UNIX OS/2 WIN

 Change
A defect in previous versions of DB2 allowed double quotes to be used in SQL state-
ments as delimiters of some keywords and operators. For instance, though this is

802 SQL Reference

unpredictable, a query of the form SELECT C1 “FROM” T1 was processed as if the
FROM was not delimited.

Beginning in Version 2, this behaviour has been corrected.

 Symptom
SQL statements which incorrectly use double quotes to delimit keywords or operators
will return errors during statement parsing.

 Resolution
The statement syntax should be changed to removed the unnecessary double quotes.
For static SQL, if the application source code is unavailable, bind files can be carefully
edited to remove the unnessary quotes from the statements. Note that SQL identifiers
may require the use of double quotes (these are called delimited identifiers).

Database Security and Tuning

 GROUP Authorizations
UNIX OS/2

 Change
In DB2 Version 1, there was no way to indicate whether a privilege being granted was
applicable to a user or to a group. In Version 2, a new field, called GRANTEETYPE,
has been added to SYSCAT.DBAUTH, SYSCAT.INDEXAUTH, SYSCAT.PLANAUTH
and SYSCAT.TABAUTH. GRANTEETYPE is either a 'U' to represent the GRANTEE is
a user or 'G' to represent that the GRANTEE is a group.

During database migration, an attempt is made to determine whether existing privileges
defined in the SYSIBM tables are for a user or a group. If the current privileges are for
both a user and a group, only the user portion will be represented in the Version 2
database.

 Symptom
Loss of authorization if you are a member of a group which is also defined in the oper-
ating system as a user.

 Resolution
If this access is meant for groups (that is, where the environment variable
DB2GROUPS=ON was used in Version 1), then execute the appropriate GRANT
command for the appropriate access to the group.

 Authentication Type
UNIX OS/2 WIN

 Appendix I. Incompatibilities Between Releases 803

 Change
In Version 1, you could provide an authentication type on the CREATE DATABASE
command. Beginning in Version 2, this option is ignored. All databases now have the
same authentication type as the instance.

 Symptom
If the DB2 Version 5 instance authentication type is different than the Version 1 data-
base authentication type, then authentication will behave differently after migration.

 Resolution
Make sure that the instance authentication type is the type you want for the databases
within that instance.

 SYSADM Groups
UNIX OS/2

 Change
The SYSADM group must be explicitly set in the database manager configuration file.

 Symptom
This is automatically taken care of during migration, but a problem could arise if you
use a script or command file to change SYSADM groups.

 Resolution
Update the script or command file to include the required changes in the database
manager configuration file.

 Security Enhancements
UNIX OS/2

 Change
Several security enhancements have been made to the product to make Version 2 and
following versions more secure than Version 1. A few of the changes are listed here,
however, this is not a complete list.

¹ Authorization is no longer automatically inferred from file permissions (AIX).

¹ A general user can execute any DB2 executable, but will not be able to perform
the function of that executable unless they have the correct authority. Examples
include: db2start and db2trc. See the Command Reference for information on
db2start and the Troubleshooting Guide for information on db2trc.

¹ Authorization for some commands, such as MIGRATE DATABASE, have changed.
You should refer to the Command Reference and the API Reference for the
authorization requirements for an individual command or API.

804 SQL Reference

 Symptom
You may not be able to execute a DB2 command or API that you used to be able to
execute. You will receive a “not authorized” type of SQLCODE.

 Resolution
Acquire the proper authorization for the task to be performed.

Utilities and Tools

Executable Name Changes
 OS/2

 Change
The following executables have changed names:

¹ STARTDBM.EXE is now DB2START.EXE
¹ STOPDBM.EXE is now DB2STOP.EXE
¹ SQLPREP.EXE is now the DB2 PREP command
¹ SQLBIND.EXE is now the DB2 BIND command
¹ SQLTRC.EXE is now DB2TRC.EXE
¹ EXPLAIN.EXE is now DB2EXPLN.EXE

 Symptom
The original executable names will still be accepted; however, some Version 2 functions
are not available (such as new PREP and BIND options).

 Resolution
Use the Version 2 executables or commands.

Backup and Restore - BUFF_SIZE Parameter
UNIX OS/2

 Change
The parameter BUFF_SIZE has changed for the backup and restore APIs. The
minimum is now 16 allocation units (of 4K) instead of 8 units, and the increments must
be in steps of 16 instead of 1.

 Symptom
You may receive a SQLCODE of SQL5130N.

 Resolution
Upgrade your application to use a BUFF_SIZE value which is valid for Version 2.

 Appendix I. Incompatibilities Between Releases 805

Backup and Restore - Changes Only Option
 OS/2

 Change
In Version 1 there was the ability to backup and restore “Changes Only” to a database.
This ability no longer exists. However, applications making the Version 1 API calls will
not fail. DB2 simply ignores the second parameter (TYPE) in the sqluback() API call
and performs a full backup.

 Symptom
A full backup will be taken when specifying a “Changes Only” backup.

 Resolution
None exist. “Changes Only” backups are no longer supported.

Backup and Restore - User Exits
 OS/2

 Change
Due to the table space capabilities available beginning in Version 2, it is no longer pos-
sible to determine the original location of the backup files. For this reason, user exits
which use XCOPY or relied on the database sub-directory format in Version 1 will no
longer function beginning in Version 2.

 Symptom
If you continue to use User Exits that move the backup files to another location, the
restore may not function correctly.

 Resolution
User Exits can still be used for log archiving and retrieving. Use the supported parame-
ters and options on the backup command to define the location the backup files will
reside.

Backup and Restore - Authority
UNIX OS/2

 Change
You must have SYSADM, SYSCTRL, or SYSMAINT authority to use the BACKUP
command. DBADM authority is no longer sufficient.

 Symptom
If you attempt a backup with DBADM authority only, you will be told that you do not
have sufficient authority to perform the backup.

806 SQL Reference

 Resolution
There are two choices:

1. Log on with an ID that has the proper authority.
2. Set the proper authority for the current ID.

Import - IMPORT REPLACE Option
UNIX OS/2 WIN

 Change
A downlevel client cannot issue an IMPORT REPLACE command to a Version 2
server.

 Symptom
If this is attempted, the application will receive an SQL3188N error.

 Resolution
There are three possible resolutions to this scenario:

1. Upgrade the client to DB2 Version 5.
2. Execute this command from the DB2 Version 5 server.
3. Split the IMPORT REPLACE into two commands:

¹ A DELETE from the table
¹ An IMPORT INSERT into the table

REORG - Alternate Path Option
UNIX OS/2

 Change
The REORG command and API no longer support an “alternate path” as a work area,
but rather support the name of a table space to be used as a work area. APIs and
commands will not fail, however, this option will be ignored.

 Symptom
REORG invocations from downlevel clients will ignore the alternate work path and arbi-
trarily choose a temporary table space to use as a work area.

Another symptom is you may run out of disk space.

 Resolution
Your applications will continue to function, but you should consider upgrading to the
DB2 Version 5 calls which contain valid options.

 Appendix I. Incompatibilities Between Releases 807

Connectivity and Coexistence

Distributed Transaction Processing - Connect Type
UNIX OS/2

 Change
In an XA Distributed Transaction Processing environment, such as CICS, applications
will always run with connect type 2 as the connection setting. In the last release,
connect type 1 was used.

 Symptom
It will not be possible to modify the authorization ID on a database connection when the
connection already exists.

 Resolution
Modification of the authorization ID on a database connection will have to be performed
when the connection does not exist.

Distributed Transaction Processing - SQLERRD Changes
UNIX OS/2

 Change
In an XA Distributed Transaction Processing environment such as CICS, information
returned in SQLERRD after a CONNECT has changed. In Version 1, SQLERRD(6) was
used to indicate one of the following:

 ¹ Non-XA
¹ DB2/6000 but not supporting XA
¹ DB2/6000 supporting XA

Beginning in Version 2, SQLERRD(6) is no longer used, but SQLERRD(3) and
SQLERRD(4) are used as follows:

SQLERRD(3) Updateablility in the unit of work

 ¹ Updateable
 ¹ Read Only

SQLERRD(4) Commit type

¹ One phase commit
¹ One phase commit, read only
¹ Two phase commit

 Symptom
The sixth SQLERRD element will no longer contain the information wanted by the appli-
cation.

808 SQL Reference

 Resolution
Change the application to look at the third and fourth SQLERRD fields.

DDCS - SQLJSETP
 OS/2

 Change
DDCS for OS/2 used to have a SQLJSETP environment variable. This item had two
uses. Each is listed with the DDCS Version 2.3 and DB2 Connect replacement. (In DB2
Version 5, DDCS changed to DB2 Connect.)

1. By placing /s=e in the environment variable, bind files containing errors could be
bound to DRDA servers. The default is to not allow errors. The /s=e function has
been replaced by the SQLERROR CONTINUE bind/prep option.

/s=c meant to prep/bind and perform syntax checking only without actually creating
a package. This has been replaced by the SQLERROR CHECK bind/prep option.

/s=n meant no errors were allowed during prep/bind. A package would only be
created if there were no errors. This has been replaced by the SQLERROR
NOPACKAGE prep/bind option.

2. This environment variable also captured prep/bind messages in a file for SQL
statements which produced errors. This was needed because when the /s=e was
specified, all errors were masked and missing from the precompiler generated
message file. There is no longer a need for this because all messages are now
revealed to the precompiler (and hence its message file) regardless of using
SQLERROR CONTINUE or not.

 Symptom
The SQLJSETP environment variable and options are ignored, causing prep/bind to
work according to their defaults.

 Resolution
Use the SQLERROR NOPACKAGE and/or SQLERROR CONTINUE options as
needed.

DDCS - DDCSSETP
UNIX

 Change
The DDCSSETP utility has been removed. There is no longer a need for this because
all messages are now revealed to the precompiler (and hence its message file) regard-
less of using SQLERROR CONTINUE or not. Refer to the prep/bind options discussed
in “DDCS - SQLJSETP” for information.

 Appendix I. Incompatibilities Between Releases 809

DDCS - SQLJTRC.CMD
 OS/2

 Change
DDCS for OS/2 had a utility called sqljtrc.cmd. It has been replaced by the
ddcstrc.exe executable. The invocation syntax has changed.

 Symptom
Attempting to trace DB2 Connect will fail if the old utility and parameters are used.

 Resolution
Execute the command ddcstrc.exe with valid parameters. See the DB2 Connect User's
Guide for the new syntax.

DDCS - SQLJBIND.CMD
 OS/2

 Change
The DDCS for OS/2 utility called sqljbind.cmd has been removed.

 Symptom
Attempts to use this utility with DB2 Connect will fail.

 Resolution
This utility has been replaced by a three step set of instructions which are described in
“Chapter 4, Binding Applications and Utilities” in the DB2 Connect User's Guide.

APPC and APPN Nodes
 OS/2

 Change
When using APPC, DB2 for OS/2 Version 1 supported the following commands for cat-
aloging entries in the node directory:

¹ CATALOG APPN NODE
¹ CATALOG APPC NODE

 ¹ CATALOG NODE

Beginning in Version 2, support for the following has been removed:

¹ CATALOG APPN NODE
 ¹ CATALOG NODE

The CATALOG APPC NODE command has been changed to represent the APPC
communication parameters required for the Communications Manager for OS/2 CPI
Communications (CPIC) Side Information Profile.

810 SQL Reference

The symbolic destination name parameter, in the CATALOG APPC NODE, contains
the CPIC Side Information profile name in Communications Manager for OS/2. Refer to
the Command Reference for details on this command.

 Symptom
All of the current connections using APPC will continue to work correctly and DB2 will
accept the current catalog information after migration. This is true whether you migrate
your server, clients or both.

The current catalogs cannot be modified. If you need to modify the information, you will
have to UNCATALOG the node entry, and then recatalog using the new CATALOG
APPC command.

If you have existing applications that call the CATALOG NODE API to catalog APPC
and APPN node directory entries, these applications will still work. The CATALOG
NODE API still supports the Version 1 APPC and APPN API structures.

 Resolution
When you try execute the CATALOG APPC node you will need to:

¹ Create a CPIC Side Information Profile.
¹ Reference the above profile in the CATALOG APPC NODE command.

Refer to the DB2 Connect Personal Edition Quick Beginnings for details on setting
these nodes.

 Configuration Parameters

 ADSM_PASSWORD
OS/2 WIN UNIX DB2 PE

 Change
In DB2 Version 5, ADSM_PASSWORD is a database configuration parameter. In DB2
Version 2, it was a database manager configuration parameter.

Note: In DB2 PE Version 1, this parameter was spelled ADSM_PASWD.

 Symptom
Any attempt to update or retrieve the DATABASE MANAGER CONFIGURATION value
for ADSM_PASSWORD will be a no-op; that is, no error or value will be returned.

 Resolution
You will have to set the ADSM_PASSWORD for any databases for which you want to
use the parameter.

 Appendix I. Incompatibilities Between Releases 811

MAXDARI and MAXCAGENTS
OS/2 WIN UNIX DB2 PE

 Change
In Version 2, the value of the MAXDARI and MAXCAGENTS parameters were limited
by the value of the MAXAGENTS configuration parameter. The default value of -1
means “equal to MAXAGENTS.”

Beginning in DB2 Version 5, the value of these two parameters are limited by the value
of the MAX_COORDAGENTS configuration parameter. The default value of -1 means
“equal to MAX_COORDAGENTS.”

Note: On non-Partitioned (non-MPP) configurations, the configuration parameter
MAX_COORDAGENTS can only have a value of -1, meaning “equal to
MAXAGENTS.”

 Symptom
Updates to MAXDARI and MAXCAGENTS to values greater than −1 may fail if the
value specified is greater than MAX_COORDAGENTS.

 Resolution
Be aware of how MAX_COORDAGENTS is set. MAXDARI and MAXCAGENTS cannot
be greater than MAX_COORDAGENTS.

 LOGFILSIZ
OS/2 WIN UNIX DB2 PE

 Change
The data type of this database configuration parameter has changed from being an
unsigned 2-byte integer to an unsigned 4-byte integer. A new token has been added
for the configuration APIs indicating a 4-byte integer.

For DB2 Version 5, the token is SQLF_DBTN_LOGFIL_SIZ
For DB2 Version 2, the token is SQLF_DBTN_LOGFILSIZ

The configuration API will still recognize the Version 2 token, but the full range of
values of this parameter is greater than what is supported by a 2-byte integer.

 Symptom
Existing applications will continue to work using the configuration API or via REXX, but
the results might be unpredictable because of the larger range in DB2 Version 5.

 Resolution
Recode the application or REXX script to use the new token. For users of the
Command Line Processor or the Control Center, this change in the token would not
affect your applications.

812 SQL Reference

 PCKCACHEFILSIZ
OS/2 WIN UNIX DB2 PE

 Change
The data type of this database configuration parameter has changed from being an
unsigned 2-byte integer to an unsigned 4-byte integer. A new token has been added
for the configuration APIs indicating a 4-byte integer.

For DB2 Version 5, the token is SQLF_DBTN_PCKCACHE_SIZ
For Version 2, the token is SQLF_DBTN_PCKCACHE_SZ

In Version 2, the value of this parameter was limited by the size of the APPLHEAPSZ
configuration parameter and indicated the size of a per-agent parameter. In DB2
Version 5, this parameter limits the size of a global per-database cache. Therefore, its
value is no longer limited by the size of the APPLHEAPSZ configuration parameter.

In DB2 PE Version 1.2, the value of this parameter was limited by 7/8 of the value of
the DPHEAP configuration parameter, since the cache was allocated from DBHEAP. In
DB2 Version 5, the value of the cache is allocated out of its own heap. Therefore, the
value of the PCKCACHESZ configuration parameter is no longer limited by the size of
the DBHEAP configuration parameter.

 Symptom
The following might occur:

¹ Existing applications will continue to work using the configuration API or via REXX,
but the results might be unpredictable because of the larger range in DB2 Version
5.

¹ Applications might get error code SQL0973, indicating that the PCKCACHE heap
has been exhaused.

 Resolution
Depending on the symptoms, do one of the following:

¹ Recode the application to REXX script to use the new token.
¹ Check the settings of this parameter so that the application reflects the new value.

APPLHEAPSZ and APP_CTL_HEAP_SZ
OS/2 WIN UNIX DB2 PE

 Change
Beginning in DB2 Version 5, the use of these parameters has changed significantly.

 Symptom
Applications might receive an SQL0973 indicating that the APPLHEAP heap or
APP_CTL_HEAP has been exhausted.

 Appendix I. Incompatibilities Between Releases 813

 Resolution
You will have to reconfigure these parameters for optimum performance. Refer to the
Administration Guide and the online help for the Control Center for recommendations
on tuning these parameters.

BUFFPAGE and Multiple Buffer Pools
UNIX OS/2 WIN DB2 PE

 Change
In previous versions of DB2, each database had one buffer pool, which was created
when the database was created. You could change the size of the buffer pool using the
buffpage parameter. In DB2 Version 5, each database can have multiple buffer pools.
You can create additional buffer pools or change the size of a buffer pool through the
CREATE BUFFERPOOL or ALTER BUFFERPOOL statements or through the Control
Center using the appropriate command.

If the buffer pool size is specified to be −1, then the value of the database configuration
parameter is used as the size of the buffer pool.

Note: When the BUFFPAGE database configuration parameter is updated, you will
receive an SQLCODE SQL1482W warning.

 Symptom
In DB2 Version 5, a new or migrated database has a default buffer pool. For a new
database created in DB2 Version 5, the size of the default buffer pool is determined by
the operating system. For a migrated database, the size of the buffer pool is set to −1,
which then refers to the buffpage configuration parameter.

 Resolution
To resolve this problem, you will need to do the following:

1. For a new database created in DB2 Version 5, you may change the size of the
buffer pool using the ALTER BUFFERPOOL statement.

2. Following the creation or migration of a database, you can then create additional
buffer pools for the database using the CREATE BUFFERPOOL statement.

 NEWLOGPATH
OS/2 WIN UNIX DB2 PE

 Change
In DB2 Version 5, in a partitioned database, the node number is appended to the path
in the form path_name \NODExxxx (path_name /NODExxxx on UNIX-based systems),
where xxxx is the 4 digit node number. This maintains the uniqueness of the path
across the database partitions.

814 SQL Reference

 Symptom
When updating the NEWLOGPATH configuration parameter, the node number is auto-
matically appended to the path name. This may result in path names that are too long
(greater than 242 characters), and the configuration parameter update may fail.

 Resolution
Be aware that the log files will reside in the path that includes the node numbering
designation. If the configuration parameter update failed, ensure that the path length,
including the node number designation, is less than or equal to 242 characters.

 MULTIPAGE_ALLOC
DB2 PE

 Change
In DB2 PE Version 1.2, this database configuration parameter was known as
MULTIPGAL and the data type of this database configuration parameter was an
unsigned 1-byte integer. In DB2 Version 5, the data type of this parameter is an
unsigned 2-byte integer, using a new token.

For DB2 Version 5, the token is SQLF_DBTN_MULTIPAGE_ALLOC
For DB2 PE Version 1, the token is SQLF_DBTN_MULTIPGAL

 Symptom
Existing applications will continue to work using either the SQLF_DBTN_MULTIPGAL or
the SQLF_DBNR_MULTIPAGE_ALLOC tokens.

 Resolution
While the configuration APIs support both tokens, applications should be updated to
use the new tokens.

EXTENTSIZE vs SEGPAGES
UNIX

 Change
Beginning in Version 2, new dft_extent_sz configuration parameter serves as the
default EXTENTSIZE setting for table spaces where this is not specified.

¹ default value: 32 4K pages
¹ range: 2-256 4K pages

It is modifiable.

 Symptom
If an application attempts to specify the SEGPAGES parameter in the CREATE DATA-
BASE command, the command will still work; however, the parameter will be ignored.
The EXTENTSIZE will be set to the default.

 Appendix I. Incompatibilities Between Releases 815

 Resolution
Update the command to specify the new EXTENTSIZE parameter when creating a
table space.

 LOCKLIST
UNIX OS/2

 Change
In DB2 Version 5, the size of a lock request block has been changed to 36 bytes. As a
result, fewer lock request blocks will fit in the configured amount of space allocated for
the lock list.

 Symptom
This may result in more frequent lock escalations.

 Resolution
You should increase the setting of the LOCKLIST configuration parameter accordingly.

BUFFPAGE and SORTHEAP
UNIX OS/2

 Change
The tokens for database configuration parameters buffpage and sortheap have
changed.

 For buffpage:
from SQLF_DBTN_BUFFPAGE to SQLF_DBTN_BUFF_PAGE
For sortheap on OS/2:
from SQLF_DBTN_SORTHEAP to SQLF_DBTN_SORT_HEAP
For sortheap on AIX:
from SQLF_DBTN_SORTHEAPSZ_P to SQLF_DBTN_SORT_HEAP

The names of the parameters as identified in command line processor or in the Control
Center remain the same (buffpage and sortheap). The old tokens are maintained for
backlevel binary compatibility.

On AIX, the configuration APIs treat the new token and the old token as indicating a 32
byte unsigned integer. On OS/2 however, the configuration APIs will treat the old token
as indicating a 16 byte unsigned integer. This is consistent with Version 1 behavior.
The new tokens will be treated as indicating an unsigned 32 byte integer.

 Symptom
Version 1 applications which specify the old token names will not work against a
Version 2 or later database.

816 SQL Reference

 Resolution
In order to migrate old application code the token names need to be changed. Addi-
tionally, on OS/2, the data type of the variable being passed to the configuration APIs
will have to be changed to an unsigned 32 byte integer.

Numeric Values for Database Manager Configuration Tokens
UNIX

 Change
In DB2 for AIX Version 1, the numerical values for the database manager configuration
parameter tokens SQLF_KTN_MAXDARI and SQLF_KTN_KEEPDARI were 22 and 23
respectively. Beginning in Version 2, they are 80 and 81 respectively. Binaries from
Version 1 will be supported despite this discrepancy.

 Symptom
Applications which perform a DATABASE MANAGER CONFIGURATION operation and
specify the changed parameters by explicitly stating their numeric values will no longer
work as desired.

 Resolution
If code is being migrated and the token name is used, nothing needs to be changed. If
however, the token values were coded explicitly in the application, the application will
have to be changed to reflect the new values.

To protect the application from future changes of this type, it is recommended that the
token is coded, rather than the actual value.

Numeric Values for Database Manager Configuration Tokens
 OS/2

 Change
In DB2 for OS/2 Version 1.2, the numerical values for the database manager configura-
tion parameter tokens SQLF_KTN_FILESERVER and SQLF_KTN_OBJECTNAME were
22 and 23 respectively. Beginning in Version 2, they are 47 and 48 respectively. Bina-
ries from Version 1 will be supported despite this discrepancy.

 Symptom
Applications which perform a DATABASE MANAGER CONFIGURATION operation and
specify the changed parameters by explicitly stating their numeric values will no longer
work as desired.

 Resolution
If code is being migrated and the token name is used, nothing need be changed. If
however, the token values were coded explicitly in the application, the application will
have to be changed to reflect the new values.

 Appendix I. Incompatibilities Between Releases 817

To protect the application from future changes of this type, it is recommended that the
token is coded, rather than the actual value.

New Generic Out-of-Range Return Codes
UNIX OS/2 WIN

 Change
Many return codes indicating an attempt to set a specific parameter outside of its valid
range were replaced with generic out-of-range return codes.

The following return codes have been replaced with a return code of -5130
(SQLF_RC_INV_RANGE as defined in sqlutil.h):

 ¹ SQLF_RC_INVDB
 ¹ SQLF_RC_INVRIO
 ¹ SQLF_RC_INVSHPTHR
 ¹ SQLF_RC_INVNLL
 ¹ SQLF_RC_INVNDBF
 ¹ SQLF_RC_INVSCP
 ¹ SQLF_RC_INVNAP
 ¹ SQLF_RC_INVAHP
 ¹ SQLF_RC_INVDHP
 ¹ SQLF_RC_INVDLT
 ¹ SQLF_RC_INVTAF
 ¹ SQLF_RC_INVSHP
 ¹ SQLF_RC_INVMAL
 ¹ SQLF_RC_INVSTMTHP
 ¹ SQLF_RC_INVLOGPRIM
 ¹ SQLF_RC_INVLOG2ND
 ¹ SQLF_RC_INVLOGFSZ
 ¹ SQLF_RC_INVNBP

and SQLF_RC_INV_DBMENT (-5126) is returned, beginning in Version 2, instead of
SQLF_RC_INVK3 (-5105) which is no longer returned.

 Symptom
If an application is looking for a specific error code which has been replaced by a new
one, then this will cause the application to function incorrectly.

 Resolution
Update the application to look for valid return codes.

Segments versus 4KB Pages
 OS/2

818 SQL Reference

 Change
All configuration parameters in OS/2 that were expressed in segments in Version 1 are
now expressed in 4KB pages.

 Symptom
Beginning in Version 2, when you specify a configuration parameter which used to be a
measure of segments, it is treated as a measure of 4KB pages. This will result in a
different total amount of space in most cases.

 Resolution
Migration takes care of this incompatibility by allocating the same amount of storage
that was allocated before the migration. Existing applications that specify parameter
values should be converted to specify the proper number of 4KB page units.

Obsolete Database Configuration Parameters
 OS/2

 Change
The following database configuration parameters are obsolete:

 ¹ AGENTHEAP
¹ MAXTOTFILOP (there is now a new database manager level configuration param-

eter by the same name)
 ¹ SQLSTMTSZ

Version 1 binary applications attempting to update or get the value of these parameters
will result in a no-operation with a return code of 0.

 Resolution
Applications should be updated to not reference these parameters.

If you are updating or viewing the value for MAXTOTFILOP, then you can now use
Database Manager Configuration commands.

Obsolete Database Manager Configuration Parameters
UNIX OS/2

 Change
The following database manager configuration parameters are obsolete:

 ¹ COMHEAPSZ
 ¹ RSHEAPSZ
 ¹ SVRIOBLK
 ¹ NUMRC
¹ SQLENSEG (OS/2 only)

 ¹ CUINTERVAL

 Appendix I. Incompatibilities Between Releases 819

 Symptom
Version 1 binary applications attempting to update or get the value of these parameters
will result in a no-operation with a return code of 0.

 Resolution
Applications should be updated to not reference these parameters.

820 SQL Reference

Explain Tables

Appendix J. Explain Tables and Definitions

The Explain tables capture access plans when the Explain facility is activated. The fol-
lowing Explain tables and definitions are described in this section:

 ¹ “EXPLAIN_ARGUMENT Table”

¹ “EXPLAIN_INSTANCE Table” on page 824

¹ “EXPLAIN_OBJECT Table” on page 826

¹ “EXPLAIN_OPERATOR Table” on page 828

¹ “EXPLAIN_PREDICATE Table” on page 830

¹ “EXPLAIN_STATEMENT Table” on page 831

¹ “EXPLAIN_STREAM Table” on page 833

The Explain tables must be created before Explain can be invoked. To create them,
use the sample command line processor input script provided in the EXPLAIN.DDL file
located in the 'misc' subdirectory of the 'sqllib' directory. Connect to the database
where the Explain tables are required. Then issue the command: db2 -tf EXPLAIN.DDL

and the tables will be created. See “Table Definitions for Explain Tables” on page 835
for more information.

The population of the Explain tables by the Explain facility will neither activate any trig-
gers nor activate any referential or check constraints. For example, if an insert trigger
were defined on the EXPLAIN_INSTANCE table and an eligible statement were
explained, the trigger would not be activated.

For more details on the Explain facility, see the Administration Guide.

Legend for the Explain Tables:

Heading Explanation
Column name Name of the column
Data Type Data type of the column
Nullable? Yes: Nulls are permitted

No: Nulls are not permitted
Key? PK: Column is part of a primary key

FK: Column is part of a foreign key
Description Description of the column

 EXPLAIN_ARGUMENT Table
The EXPLAIN_ARGUMENT table represents the unique characteristics for each indi-
vidual operator, if there are any.

For the definition of this table, see “EXPLAIN_ARGUMENT Table Definition” on
page 836.

 Copyright IBM Corp. 1993, 1997 821

Explain Tables

Table 73. EXPLAIN_ARGUMENT Table

Column Name Data Type Nullable? Key? Description

EXPLAIN_REQUESTER CHAR(8) No FK Authorization ID of initiator of this Explain request.

EXPLAIN_TIME TIMESTAMP No FK Time of initiation for Explain request.

SOURCE_NAME CHAR(8) No FK Name of the package running when the dynamic state-
ment was explained or name of the source file when static
SQL was explained.

SOURCE_SCHEMA CHAR(8) No FK Schema, or qualifier, of source of Explain request.

EXPLAIN_LEVEL CHAR(1) No FK Level of Explain information for which this row is relevant.

STMTNO SMALLINT No FK Statement number within package to which this explain
information is related.

SECTNO SMALLINT No FK Section number within package to which this explain infor-
mation is related.

OPERATOR_ID SMALLINT No No Unique ID for this operator within this query.

ARGUMENT_TYPE CHAR(8) No No The type of argument for this operator.

ARGUMENT_VALUE VARCHAR(30) No No The value of the argument for this operator.

Table 74 (Page 1 of 3). ARGUMENT_TYPE and ARGUMENT_VALUE Column Values

ARGUMENT_TYPE
Value

Possible ARGUMENT_VALUE Values Description

AGGMODE COMPLETE
PARTIAL
INTERMEDIATE
FINAL

Partial aggregation indicators.

CSETEMP TRUE
FALSE

Temporary Table over Common Subexpression
Flag.

DIRECT TRUE Direct fetch indicator.

DUPLWARN TRUE
FALSE

Duplicates Warning flag.

EARLYOUT TRUE
FALSE

Early out indicator.

FETCHMAX IGNORE
INTEGER

Override value for MAXPAGES argument on
FETCH operator.

GROUPBYC TRUE
FALSE

Whether Group By columns were provided.

GROUPBYN Integer Number of comparison columns.

GROUPBYR Each row of this type will contain:

¹ Ordinal value of column in group by clause
(followed by a colon and a space)

¹ Name of Column

Group By requirement.

822 SQL Reference

Explain Tables

Table 74 (Page 2 of 3). ARGUMENT_TYPE and ARGUMENT_VALUE Column Values

ARGUMENT_TYPE
Value

Possible ARGUMENT_VALUE Values Description

INNERCOL Each row of this type will contain:

¹ Ordinal value of column in order (followed
by a colon and a space)

¹ Name of Column

 ¹ Order Value

(A) Ascending

(D) Descending

Inner order columns.

ISCANMAX IGNORE
INTEGER

Override value for MAXPAGES argument on
ISCAN operator.

JN_INPUT INNER
OUTER

Indicates if operator is the operator feeding the
inner or outer of a join.

LISTENER TRUE
FALSE

Listener Table Queue indicator.

MAXPAGES ALL
NONE
INTEGER

Maximum pages expected for Prefetch.

NUMROWS INTEGER Number of rows expected to be sorted.

ONEFETCH TRUE
FALSE

One Fetch indicator.

OUTERCOL Each row of this type will contain:

¹ Ordinal value of column in order (followed
by a colon and a space)

¹ Name of Column

 ¹ Order Value

(A) Ascending

(D) Descending

Outer order columns.

OUTERJN LEFT
RIGHT

Outer join indicator.

PARTCOLS Name of Column Partitioning columns for operator.

PREFETCH LIST
NONE
SEQUENTIAL

Type of Prefetch Eligible.

ROWLOCK EXCLUSIVE
NONE
REUSE
SHARE
SHORT (INSTANT) SHARE
UPDATE

Row Lock Intent.

ROWWIDTH INTEGER Width of row to be sorted. ***

SCANDIR FORWARD
REVERSE

Scan Direction.

SHARED TRUE Intra-partition parallelism, shared TEMP indicator.

SCANGRAN INTEGER Intra-partition parallelism, granularity of the intra-
partition parallel scan, expressed in SCANUNITs.

SCANTYPE LOCAL PARALLEL intra-partition parallelism, Index or Table scan.

 Appendix J. Explain Tables and Definitions 823

Explain Tables

Table 74 (Page 3 of 3). ARGUMENT_TYPE and ARGUMENT_VALUE Column Values

ARGUMENT_TYPE
Value

Possible ARGUMENT_VALUE Values Description

SCANUNIT ROW
PAGE

Intra-partition parallelism, scan granularity unit.

SLOWMAT TRUE
FALSE

Slow Materialization flag.

SORTKEY Each row of this type will contain:

¹ Ordinal value of column in key (followed by
a colon and a space)

¹ Name of Column

 ¹ Order Value

(A) Ascending

(D) Descending

Sort key columns.

TABLOCK EXCLUSIVE
INTENT EXCLUSIVE
INTENT NONE
INTENT SHARE
REUSE
SHARE
SHARE INTENT EXCLUSIVE
SUPER EXCLUSIVE
UPDATE

Table Lock Intent.

TQDEGREE INTEGER intra-partition parallelism, number of subagents
accessing Table Queue.

TQMERGE TRUE
FALSE

Merging (sorted) Table Queue indicator.

TQREAD READ AHEAD
STEPPING
SUBQUERY STEPPING

Table Queue reading property.

TQSEND BROADCAST
DIRECTED
SCATTER
SUBQUERY DIRECTED

Table Queue send property.

TQTYPE LOCAL intra-partition parallelism, Table Queue.

UNIQUE TRUE
FALSE

Uniqueness indicator.

UNIQKEY Each row of this type will contain:

¹ Ordinal value of column in key (followed by
a colon and a space)

¹ Name of Column

Unique key columns.

 EXPLAIN_INSTANCE Table
The EXPLAIN_INSTANCE table is the main control table for all Explain information.
Each row of data in the Explain tables is explicitly linked to one unique row in this table.
The EXPLAIN_INSTANCE table gives basic information about the source of the SQL
statements being explained as well as information about the environment in which the
explanation took place.

824 SQL Reference

Explain Tables

For the definition of this table, see “EXPLAIN_INSTANCE Table Definition” on
page 837.

Table 75 (Page 1 of 2). EXPLAIN_INSTANCE Table

Column Name Data Type Nullable? Key? Description

EXPLAIN_REQUESTER CHAR(8) No PK Authorization ID of initiator of this Explain request.

EXPLAIN_TIME TIMESTAMP No PK Time of initiation for Explain request.

SOURCE_NAME CHAR(8) No PK Name of the package running when the dynamic state-
ment was explained or name of the source file when the
static SQL was explained.

SOURCE_SCHEMA CHAR(8) No PK Schema, or qualifier, of source of Explain request.

EXPLAIN_OPTION CHAR(1) No No Indicates what Explain Information was requested for this
request.

Possible values are:

P PLAN SELECTION

SNAPSHOT_TAKEN CHAR(1) No No Indicates whether an Explain Snapshot was taken for this
request.

Possible values are:

Y Yes, an Explain Snapshot(s) was taken and
stored in the EXPLAIN_STATEMENT table.
Regular Explain information was also cap-
tured.

N No Explain Snapshot was taken. Regular
Explain information was captured.

O Only an Explain Snapshot was taken. Regular
Explain information was not captured.

DB2_VERSION CHAR(7) No No Product release number for DB2 Universal Database
which processed this explain request. Format is vv.rr.m,
where:

vv Version Number
rr Release Number
m Maintenance Release Number

SQL_TYPE CHAR(1) No No Indicates whether the Explain Instance was for static or
dynamic SQL.

Possible values are:

S Static SQL
D Dynamic SQL

QUERYOPT INTEGER No No Indicates the query optimization class used by the SQL
Compiler at the time of the Explain invocation. The value
indicates what level of query optimization was performed
by the SQL Compiler for the SQL statements being
explained.

BLOCK CHAR(1) No No Indicates what type of cursor blocking was used when
compiling the SQL statements. For more information, see
the BLOCK column in SYSCAT.PACKAGES.

Possible values are:

N No Blocking
U Block Unambiguous Cursors
B Block All Cursors

 Appendix J. Explain Tables and Definitions 825

Explain Tables

Table 75 (Page 2 of 2). EXPLAIN_INSTANCE Table

Column Name Data Type Nullable? Key? Description

ISOLATION CHAR(2) No No Indicates what type of isolation was used when compiling
the SQL statements. For more information, see the ISO-
LATION column in SYSCAT.PACKAGES.

Possible values are:

RR Repeatable Read
RS Read Stability
CS Cursor Stability
UR Uncommitted Read

BUFFPAGE INTEGER No No Contains the value of the BUFFPAGE database configura-
tion setting at the time of the Explain invocation.

AVG_APPLS INTEGER No No Contains the value of the AVG_APPLS configuration
parameter at the time of the Explain invocation.

SORTHEAP INTEGER No No Contains the value of the SORTHEAP database config-
uration setting at the time of the Explain invocation.

LOCKLIST INTEGER No No Contains the value of the LOCKLIST database configura-
tion setting at the time of the Explain invocation.

MAXLOCKS SMALLINT No No Contains the value of the MAXLOCKS database config-
uration setting at the time of the Explain invocation.

LOCKS_AVAIL INTEGER No No Contains the number of locks assumed to be available by
the optimizer for each user. (Derived from LOCKLIST and
MAXLOCKS.)

CPU_SPEED DOUBLE No No Contains the value of the CPUSPEED database manager
configuration setting at the time of the Explain invocation.

REMARKS VARCHAR(254) Yes No User-provided comment.

DBHEAP INTEGER No No Contains the value of the DBHEAP database configuration
setting at the time of Explain invocation.

COMM_SPEED DOUBLE No No Contains the value of the COMM_BANDWIDTH database
configuration setting at the time of Explain invocation.

PARALLELISM CHAR(2) No No Possible values are:

N No parallelism
P Intra-partition parallelism
IP Inter-partition parallelism
BP Intra-partition parallelism and inter-partition

parallelism

 EXPLAIN_OBJECT Table
The EXPLAIN_OBJECT table identifies those data objects required by the access plan
generated to satisfy the SQL statement.

For the definition of this table, see “EXPLAIN_OBJECT Table Definition” on page 838.

Table 76 (Page 1 of 3). EXPLAIN_OBJECT Table

Column Name Data Type Nullable? Key? Description

EXPLAIN_REQUESTER CHAR(8) No FK Authorization ID of initiator of this Explain request.

EXPLAIN_TIME TIMESTAMP No FK Time of initiation for Explain request.

826 SQL Reference

Explain Tables

Table 76 (Page 2 of 3). EXPLAIN_OBJECT Table

Column Name Data Type Nullable? Key? Description

SOURCE_NAME CHAR(8) No FK Name of the package running when the dynamic state-
ment was explained or name of the source file when the
static SQL was explained.

SOURCE_SCHEMA CHAR(8) No FK Schema, or qualifier, of source of Explain request.

EXPLAIN_LEVEL CHAR(1) No FK Level of Explain information for which this row is relevant.

STMTNO SMALLINT No FK Statement number within package to which this explain
information is related.

SECTNO SMALLINT No FK Section number within package to which this explain infor-
mation is related.

OBJECT_SCHEMA CHAR(8) No No Schema to which this object belongs.

OBJECT_NAME VARCHAR(18) No No Name of the object.

OBJECT_TYPE CHAR(2) No No Descriptive label for the type of object.

CREATE_TIME TIMESTAMP Yes No Time of Object's creation; null if a table function.

STATISTICS_TIME TIMESTAMP Yes No Last time of update to statistics for this object; null if statis-
tics do not exist for this object.

COLUMN_COUNT SMALLINT No No Number of columns in this object.

ROW_COUNT INTEGER No No Estimated number of rows in this object.

WIDTH INTEGER No No The average width of the object in bytes. Set to -1 for an
index.

PAGES INTEGER No No Estimated number of pages that the object occupies in the
buffer pool. Set to -1 for a table function.

DISTINCT CHAR(1) No No Indicates if the rows in the object are distinct (i.e. no dupli-
cates)

Possible values are:

Y Yes

N No

TABLESPACE_NAME VARCHAR(18) Yes No Name of the table space in which this object is stored; set
to null if no table space is involved.

OVERHEAD DOUBLE No No Total estimated overhead, in milliseconds, for a single
random I/O to the specified table space. Includes con-
troller overhead, disk seek, and latency times. Set to -1 if
no table space is involved.

TRANSFER_RATE DOUBLE No No Estimated time to read a data page, in milliseconds, from
the specified table space. Set to -1 if no table space is
involved.

PREFETCHSIZE INTEGER No No Number of data pages to be read when prefetch is per-
formed. Set to -1 for a table function.

EXTENTSIZE INTEGER No No Size of extent, in data pages. This many pages are written
to one container in the table space before switching to the
next container. Set to -1 for a table function.

CLUSTER DOUBLE No No Degree of data clustering with the index. If >= 1, this is the
CLUSTERRATIO. If >= 0 and < 1, this is the
CLUSTERFACTOR. Set to -1 for a table, table function, or
if this statistic is not available.

NLEAF INTEGER No No Number of leaf pages this index object's values occupy.
Set to -1 for a table, table function, or if this statistic is not
available.

 Appendix J. Explain Tables and Definitions 827

Explain Tables

Table 76 (Page 3 of 3). EXPLAIN_OBJECT Table

Column Name Data Type Nullable? Key? Description

NLEVELS INTEGER No No Number of index levels in this index object's tree. Set to -1
for a table, table function, or if this statistic is not available.

FULLKEYCARD INTEGER No No Number of distinct full key values contained in this index
object. Set to -1 for a table, table function, or if this sta-
tistic is not available.

OVERFLOW INTEGER No No Total number of overflow records in the table. Set to -1 for
an index, table function, or if this statistic is not available.

Table 77. Possible OBJECT_TYPE Values

Value Description

IX Index

TA Table

TF Table Function

 EXPLAIN_OPERATOR Table
The EXPLAIN_OPERATOR table contains all the operators needed to satisfy the SQL
statement by the SQL compiler.

For the definition of this table, see “EXPLAIN_OPERATOR Table Definition” on
page 839.

Table 78 (Page 1 of 2). EXPLAIN_OPERATOR Table

Column Name Data Type Nullable? Key? Description

EXPLAIN_REQUESTER CHAR(8) No FK Authorization ID of initiator of this Explain request.

EXPLAIN_TIME TIMESTAMP No FK Time of initiation for Explain request.

SOURCE_NAME CHAR(8) No FK Name of the package running when the dynamic state-
ment was explained or name of the source file when the
static SQL was explained.

SOURCE_SCHEMA CHAR(8) No FK Schema, or qualifier, of source of Explain request.

EXPLAIN_LEVEL CHAR(1) No FK Level of Explain information for which this row is relevant.

STMTNO SMALLINT No FK Statement number within package to which this explain
information is related.

SECTNO SMALLINT No FK Section number within package to which this explain infor-
mation is related.

OPERATOR_ID SMALLINT No No Unique ID for this operator within this query.

OPERATOR_TYPE CHAR(6) No No Descriptive label for the type of operator.

TOTAL_COST DOUBLE No No Estimated cumulative total cost (in instructions) of exe-
cuting the chosen access plan up to and including this
operator.

IO_COST DOUBLE No No Estimated cumulative I/O cost (in data page I/Os) of exe-
cuting the chosen access plan up to and including this
operator.

828 SQL Reference

Explain Tables

Table 78 (Page 2 of 2). EXPLAIN_OPERATOR Table

Column Name Data Type Nullable? Key? Description

CPU_COST DOUBLE No No Estimated cumulative CPU cost (in instructions) of exe-
cuting the chosen access plan up to and including this
operator.

FIRST_ROW_COST DOUBLE No No Estimated cumulative cost (in timerons) of fetching the first
row for the access plan up to and including this operator.
This value includes any initial overhead required.

RE_TOTAL_COST DOUBLE No No Estimated cumulative cost (in timerons) of fetching the
next row for the chosen access plan up to and including
this operator.

RE_IO_COST DOUBLE No No Estimated cumulative I/O cost (in data page I/Os) of
fetching the next row for the chosen access plan up to and
including this operator.

RE_CPU_COST DOUBLE No No Estimated cumulative CPU cost (in timerons) of fetching
the next row for the chosen access plan up to and
including this operator.

COMM_COST DOUBLE No No Estimated cumulative communication cost (in TCP/IP
frames) of executing the chosen access plan up to and
including this operator.

FIRST_COMM_COST DOUBLE No No Estimated cumulative communications cost (in TCP/IP
frames) of fetching the first row for the chosen access plan
up to and including this operator. This value includes any
initial overhead required.

NODES_USED CLOB(64K) Yes No Cumulative list of nodes involved in executing the chosen
access plan up to and including this operator.

Table 79 (Page 1 of 2). OPERATOR_TYPE Values

Value Description

DELETE Delete

FETCH Fetch

FILTER Filter rows

GENROW Generate Row

GRPBY Group By

INSERT Insert

IXAND Dynamic Bitmap Index ANDing

IXSCAN Index Scan

MSJOIN Merge Scan Join

NLJOIN Nested loop Join

RETURN Result

RIDSCN Row Identifier (RID) Scan

SORT Sort

TBSCAN Table Scan

TEMP Temporary Table Construction

TQ Table Queue

UNION Union

 Appendix J. Explain Tables and Definitions 829

Explain Tables

Table 79 (Page 2 of 2). OPERATOR_TYPE Values

Value Description

UNIQUE Duplicate Elimination

UPDATE Update

 EXPLAIN_PREDICATE Table
The EXPLAIN_PREDICATE table identifies which predicates are applied by a specific
operator.

For the definition of this table, see “EXPLAIN_PREDICATE Table Definition” on
page 840.

Table 80 (Page 1 of 2). EXPLAIN_PREDICATE Table

Column Name Data Type Nullable? Key? Description

EXPLAIN_REQUESTER CHAR(8) No FK Authorization ID of initiator of this Explain request.

EXPLAIN_TIME TIMESTAMP No FK Time of initiation for Explain request.

SOURCE_NAME CHAR(8) No FK Name of the package running when the dynamic state-
ment was explained or name of the source file when the
static SQL was explained.

SOURCE_SCHEMA CHAR(8) No FK Schema, or qualifier, of source of Explain request.

EXPLAIN_LEVEL CHAR(1) No FK Level of Explain information for which this row is relevant.

STMTNO SMALLINT No FK Statement number within package to which this explain
information is related.

SECTNO SMALLINT No FK Section number within package to which this explain infor-
mation is related.

OPERATOR_ID SMALLINT No No Unique ID for this operator within this query.

PREDICATE_ID SMALLINT No No Unique ID for this predicate for the specified operator.

HOW_APPLIED CHAR(5) No No How predicate is being used by the specified operator.

WHEN_EVALUATED CHAR(3) No No Indicates when the subquery used in this predicate is eval-
uated.

Possible values are:

blank This predicate does not contain a subquery.

EAA The subquery used in this predicate is evalu-
ated at application (EAA). That is, it is re-
evaluated for every row processed by the
specified operator, as the predicate is being
applied.

EAO The subquery used in this predicate is evalu-
ated at open (EAO). That is, it is re-evaluated
only once for the specified operator, and its
results are re-used in the application of the
predicate for each row.

MUL There is more than one type of subquery in
this predicate.

RELOP_TYPE CHAR(2) No No The type of relational operator used in this predicate.

830 SQL Reference

Explain Tables

Table 80 (Page 2 of 2). EXPLAIN_PREDICATE Table

Column Name Data Type Nullable? Key? Description

SUBQUERY CHAR(1) No No Whether or not a data stream from a subquery is required
for this predicate. There may be multiple subquery
streams required.

Possible values are:

N No subquery stream is required

Y One or more subquery streams is required

FILTER_FACTOR DOUBLE No No The estimated fraction of rows that will be qualified by this
predicate.

PREDICATE_TEXT CLOB(64K) Yes No The text of the predicate as recreated from the internal
representation of the SQL statement.

Null if not available.

Table 81. Possible HOW_APPLIED Values

Value Description

JOIN Used to join tables

RESID Evaluated as a residual predicate

SARG Evaluated as a sargable predicate for index or data page

START Used as a start condition

STOP Used as a stop condition

Table 82. Possible RELOP_TYPE Values

Value Description

blanks Not Applicable

EQ Equals

GE Greater Than or Equal

GT Greater Than

IN In list

LE Less Than or Equal

LK Like

LT Less Than

NE Not Equal

NL Is Null

NN Is Not Null

 EXPLAIN_STATEMENT Table
The EXPLAIN_STATEMENT table contains the text of the SQL statement as it exists
for the different levels of Explain information. The original SQL statement as entered by
the user is stored in this table along with the version used (by the optimizer) to choose
an access plan to satisfy the SQL statement. The latter version may bear little resem-

 Appendix J. Explain Tables and Definitions 831

Explain Tables

blance to the original as it may have been rewritten and/or enhanced with additional
predicates as determined by the SQL Compiler.

For the definition of this table, see “EXPLAIN_STATEMENT Table Definition” on
page 841.

Table 83 (Page 1 of 2). EXPLAIN_STATEMENT Table

Column Name Data Type Nullable? Key? Description

EXPLAIN_REQUESTER CHAR(8) No PK,
FK

Authorization ID of initiator of this Explain request.

EXPLAIN_TIME TIMESTAMP No PK,
FK

Time of initiation for Explain request.

SOURCE_NAME CHAR(8) No PK,
FK

Name of the package running when the dynamic state-
ment was explained or name of the source file when the
static SQL was explained.

SOURCE_SCHEMA CHAR(8) No PK,
FK

Schema, or qualifier, of source of Explain request.

EXPLAIN_LEVEL CHAR(1) No PK Level of Explain information for which this row is relevant.

Valid values are:

O Original Text (as entered by user)
P PLAN SELECTION

STMTNO SMALLINT No PK Statement number within package to which this explain
information is related. Set to 1 for dynamic Explain SQL
statements. For static SQL statements, this value is the
same as the value used for the SYSCAT.STATEMENTS
catalog view.

SECTNO SMALLINT No PK Section number within package that contains this SQL
statement. For dynamic Explain SQL statements, this is
the section number used to hold the section for this state-
ment at runtime. For static SQL statements, this value is
the same as the value used for the
SYSCAT.STATEMENTS catalog view.

QUERYNO INTEGER No No Numeric identifier for explained SQL statement. For
dynamic SQL statements (excluding the EXPLAIN SQL
statement) issued through CLP or CLI, the default value is
a sequentially incremented value. Otherwise, the default
value is the value of STMTNO for static SQL statements
and 1 for dynamic SQL statements.

QUERYTAG CHAR(20) No No Identifier tag for each explained SQL statement. For
dynamic SQL statements issued through CLP (excluding
the EXPLAIN SQL statement), the default value is 'CLP'.
For dynamic SQL statements issued through CLI
(excluding the EXPLAIN SQL statement), the default value
is 'CLI'. Otherwise, the default value used is blanks.

STATEMENT_TYPE CHAR(2) No No Descriptive label for type of query being explained.

Possible values are:

S Select
D Delete
DC Delete where current of cursor
I Insert
U Update
UC Update where current of cursor

832 SQL Reference

Explain Tables

Table 83 (Page 2 of 2). EXPLAIN_STATEMENT Table

Column Name Data Type Nullable? Key? Description

UPDATABLE CHAR(1) No No Indicates if this statement is considered updatable. This is
particularly relevant to SELECT statements which may be
determined to be potentially updatable.

Possible values are:

' ' Not applicable (blank)
N No
Y Yes

DELETABLE CHAR(1) No No Indicates if this statement is considered deletable. This is
particularly relevant to SELECT statements which may be
determined to be potentially deletable.

Possible values are:

' ' Not applicable (blank)
N No
Y Yes

TOTAL_COST DOUBLE No No Estimated total cost (in timerons) of executing the chosen
access plan for this statement; set to 0 (zero) if
EXPLAIN_LEVEL is O (original text) since no access plan
has been chosen at this time.

STATEMENT_TEXT CLOB(64K) No No Text or portion of the text of the SQL statement being
explained. The text shown for the Plan Selection level of
Explain has been reconstructed from the internal repre-
sentation and is SQL-like in nature; that is, the recon-
structed statement is not guaranteed to follow correct SQL
syntax.

SNAPSHOT BLOB(10M) Yes No Snapshot of internal representation for this SQL statement
at the Explain_Level shown.

This column is intended for use with DB2 Visual Explain.
Column is set to null if EXPLAIN_LEVEL is 0 (original
statement) since no access plan has been chosen at the
time that this specific version of the statement is captured.

QUERY_DEGREE INTEGER No No Indicates the degree of intra-partition parallelism at the
time of Explain invocation. For the original statement, this
contains the directed degree of intra-partition parallelism.
For the PLAN SELECTION, this contains the degree of
intra-partition parallelism generated for the plan to use.

 EXPLAIN_STREAM Table
The EXPLAIN_STREAM table represents the input and output data streams between
individual operators and data objects. The data objects themselves are represented in
the EXPLAIN_OBJECT table. The operators involved in a data stream are to be found
in the EXPLAIN_OPERATOR table.

For the definition of this table, see “EXPLAIN_STREAM Table Definition” on page 842.

Table 84 (Page 1 of 3). EXPLAIN_STREAM Table

Column Name Data Type Nullable? Key? Description

EXPLAIN_REQUESTER CHAR(8) No FK Authorization ID of initiator of this Explain request.

 Appendix J. Explain Tables and Definitions 833

Explain Tables

Table 84 (Page 2 of 3). EXPLAIN_STREAM Table

Column Name Data Type Nullable? Key? Description

EXPLAIN_TIME TIMESTAMP No FK Time of initiation for Explain request.

SOURCE_NAME CHAR(8) No FK Name of the package running when the dynamic state-
ment was explained or name of the source file when the
static SQL was explained.

SOURCE_SCHEMA CHAR(8) No FK Schema, or qualifier, of source of Explain request.

EXPLAIN_LEVEL CHAR(1) No FK Level of Explain information for which this row is relevant.

STMTNO SMALLINT No FK Statement number within package to which this explain
information is related.

SECTNO SMALLINT No FK Section number within package to which this explain infor-
mation is related.

STREAM_ID SMALLINT No No Unique ID for this data stream within the specified oper-
ator.

SOURCE_TYPE CHAR(1) No No Indicates the source of this data stream:

O Operator

D Data Object

SOURCE_ID SMALLINT No No Unique ID for the operator within this query that is the
source of this data stream. Set to -1 if SOURCE_TYPE is
'D'.

TARGET_TYPE CHAR(1) No No Indicates the target of this data stream:

O Operator

D Data Object

TARGET_ID SMALLINT No No Unique ID for the operator within this query that is the
target of this data stream. Set to -1 if TARGET_TYPE is
'D'.

OBJECT_SCHEMA CHAR(8) Yes No Schema to which the affected data object belongs. Set to
null if both SOURCE_TYPE and TARGET_TYPE are 'O'.

OBJECT_NAME VARCHAR(18) Yes No Name of the object that is the subject of data stream. Set
to null if both SOURCE_TYPE and TARGET_TYPE are
'O'.

STREAM_COUNT DOUBLE No No Estimated cardinality of data stream.

COLUMN_COUNT SMALLINT No No Number of columns in data stream.

PREDICATE_ID SMALLINT No No If this stream is part of a subquery for a predicate, the
predicate ID will be reflected here, otherwise the column is
set to -1.

COLUMN_NAMES CLOB(64K) Yes No This column contains the names and ordering information
of the columns involved in this stream.

These names will be in the format of:

 NAME1(A)+NAME2(D)+NAME3+NAME4

Where (A) indicates a column in ascending order, (D) indi-
cates a column in descending order, and no ordering infor-
mation indicates that either the column is not ordered or
ordering is not relevant.

PMID SMALLINT No No Partitioning map ID.

834 SQL Reference

Explain Tables

Table 84 (Page 3 of 3). EXPLAIN_STREAM Table

Column Name Data Type Nullable? Key? Description

SINGLE_NODE CHAR(5) Yes No Indicates if this data stream is on a single or multiple
partitions:

MULT On multiple partitions

COOR On coordinator node

HASH Directed using hashing

RID Directed using the row ID

FUNC Directed using a function (PARTITION() or
NODENUMBER())

CORR Directed using a correlation value

PARTITION_COLUMNS CLOB(64K) Yes No List of columns this data stream is partitioned on.

Table Definitions for Explain Tables
The Explain tables must be created before Explain can be invoked. The following defi-
nitions specify how to create the necessary Explain tables:

¹ “EXPLAIN_ARGUMENT Table Definition” on page 836
¹ “EXPLAIN_INSTANCE Table Definition” on page 837
¹ “EXPLAIN_OBJECT Table Definition” on page 838
¹ “EXPLAIN_OPERATOR Table Definition” on page 839
¹ “EXPLAIN_PREDICATE Table Definition” on page 840
¹ “EXPLAIN_STATEMENT Table Definition” on page 841
¹ “EXPLAIN_STREAM Table Definition” on page 842

Alternately, create them by using the sample command line processor input script pro-
vided in the EXPLAIN.DDL file located in the 'misc' subdirectory of the 'sqllib' direc-
tory. Connect to the database where the Explain tables are required. Then issue the
command: db2 -tf EXPLAIN.DDL and the tables will be created.

 Appendix J. Explain Tables and Definitions 835

Explain Tables

EXPLAIN_ARGUMENT Table Definition
CREATE TABLE EXPLAIN_ARGUMENT (EXPLAIN_REQUESTER CHAR(8) NOT NULL,

 EXPLAIN_TIME TIMESTAMP NOT NULL,

 SOURCE_NAME CHAR(8) NOT NULL,

 SOURCE_SCHEMA CHAR(8) NOT NULL,

 EXPLAIN_LEVEL CHAR(1) NOT NULL,

 STMTNO SMALLINT NOT NULL,

 SECTNO SMALLINT NOT NULL,

 OPERATOR_ID SMALLINT NOT NULL,

 ARGUMENT_TYPE CHAR(8) NOT NULL,

 ARGUMENT_VALUE VARCHAR(30) NOT NULL,

FOREIGN KEY (EXPLAIN_REQUESTER,

 EXPLAIN_TIME,

 SOURCE_NAME,

 SOURCE_SCHEMA,

 EXPLAIN_LEVEL,

 STMTNO,

 SECTNO)

 REFERENCES EXPLAIN_STATEMENT

ON DELETE CASCADE)

836 SQL Reference

Explain Tables

EXPLAIN_INSTANCE Table Definition
CREATE TABLE EXPLAIN_INSTANCE (EXPLAIN_REQUESTER CHAR(8) NOT NULL,

EXPLAIN_TIME TIMESTAMP NOT NULL,

 SOURCE_NAME CHAR(8) NOT NULL,

 SOURCE_SCHEMA CHAR(8) NOT NULL,

 EXPLAIN_OPTION CHAR(1) NOT NULL,

 SNAPSHOT_TAKEN CHAR(1) NOT NULL,

 DB2_VERSION CHAR(7) NOT NULL,

 SQL_TYPE CHAR(1) NOT NULL,

 QUERYOPT INTEGER NOT NULL,

 BLOCK CHAR(1) NOT NULL,

 ISOLATION CHAR(2) NOT NULL,

 BUFFPAGE INTEGER NOT NULL,

 AVG_APPLS INTEGER NOT NULL,

 SORTHEAP INTEGER NOT NULL,

 LOCKLIST INTEGER NOT NULL,

 MAXLOCKS SMALLINT NOT NULL,

 LOCKS_AVAIL INTEGER NOT NULL,

 CPU_SPEED DOUBLE NOT NULL,

 REMARKS VARCHAR(254),

 DBHEAP INTEGER NOT NULL,

 COMM_SPEED DOUBLE NOT NULL,

 PARALLELISM CHAR(2) NOT NULL,

PRIMARY KEY (EXPLAIN_REQUESTER,

 EXPLAIN_TIME,

 SOURCE_NAME,

 SOURCE_SCHEMA))

 Appendix J. Explain Tables and Definitions 837

Explain Tables

EXPLAIN_OBJECT Table Definition
CREATE TABLE EXPLAIN_OBJECT (EXPLAIN_REQUESTER CHAR(8) NOT NULL,

 EXPLAIN_TIME TIMESTAMP NOT NULL,

 SOURCE_NAME CHAR(8) NOT NULL,

SOURCE_SCHEMA CHAR(8) NOT NULL,

EXPLAIN_LEVEL CHAR(1) NOT NULL,

 STMTNO SMALLINT NOT NULL,

 SECTNO SMALLINT NOT NULL,

OBJECT_SCHEMA CHAR(8) NOT NULL,

OBJECT_NAME VARCHAR(18) NOT NULL,

 OBJECT_TYPE CHAR(2) NOT NULL,

 CREATE_TIME TIMESTAMP,

 STATISTICS_TIME TIMESTAMP,

 COLUMN_COUNT SMALLINT NOT NULL,

 ROW_COUNT INTEGER NOT NULL,

 WIDTH INTEGER NOT NULL,

 PAGES INTEGER NOT NULL,

 DISTINCT CHAR(1) NOT NULL,

 TABLESPACE_NAME VARCHAR(18),

 OVERHEAD DOUBLE NOT NULL,

 TRANSFER_RATE DOUBLE NOT NULL,

 PREFETCHSIZE INTEGER NOT NULL,

 EXTENTSIZE INTEGER NOT NULL,

 CLUSTER DOUBLE NOT NULL,

 NLEAF INTEGER NOT NULL,

 NLEVELS INTEGER NOT NULL,

 FULLKEYCARD INTEGER NOT NULL,

 OVERFLOW INTEGER NOT NULL,

FOREIGN KEY (EXPLAIN_REQUESTER,

 EXPLAIN_TIME,

 SOURCE_NAME,

 SOURCE_SCHEMA,

 EXPLAIN_LEVEL,

 STMTNO,

 SECTNO)

 REFERENCES EXPLAIN_STATEMENT

ON DELETE CASCADE)

838 SQL Reference

Explain Tables

EXPLAIN_OPERATOR Table Definition
CREATE TABLE EXPLAIN_OPERATOR (EXPLAIN_REQUESTER CHAR(8) NOT NULL,

 EXPLAIN_TIME TIMESTAMP NOT NULL,

 SOURCE_NAME CHAR(8) NOT NULL,

SOURCE_SCHEMA CHAR(8) NOT NULL,

EXPLAIN_LEVEL CHAR(1) NOT NULL,

 STMTNO SMALLINT NOT NULL,

 SECTNO SMALLINT NOT NULL,

 OPERATOR_ID SMALLINT NOT NULL,

OPERATOR_TYPE CHAR(6) NOT NULL,

 TOTAL_COST DOUBLE NOT NULL,

 IO_COST DOUBLE NOT NULL,

 CPU_COST DOUBLE NOT NULL,

 FIRST_ROW_COST DOUBLE NOT NULL,

 RE_TOTAL_COST DOUBLE NOT NULL,

 RE_IO_COST DOUBLE NOT NULL,

 RE_CPU_COST DOUBLE NOT NULL,

 COMM_COST DOUBLE NOT NULL,

 FIRST_COMM_COST DOUBLE NOT NULL,

 NODES_USED CLOB(64K),

FOREIGN KEY (EXPLAIN_REQUESTER,

 EXPLAIN_TIME,

 SOURCE_NAME,

 SOURCE_SCHEMA,

 EXPLAIN_LEVEL,

 STMTNO,

 SECTNO)

 REFERENCES EXPLAIN_STATEMENT

ON DELETE CASCADE)

 Appendix J. Explain Tables and Definitions 839

Explain Tables

EXPLAIN_PREDICATE Table Definition
CREATE TABLE EXPLAIN_PREDICATE (EXPLAIN_REQUESTER CHAR(8) NOT NULL,

 EXPLAIN_TIME TIMESTAMP NOT NULL,

 SOURCE_NAME CHAR(8) NOT NULL,

SOURCE_SCHEMA CHAR(8) NOT NULL,

EXPLAIN_LEVEL CHAR(1) NOT NULL,

 STMTNO SMALLINT NOT NULL,

 SECTNO SMALLINT NOT NULL,

 OPERATOR_ID SMALLINT NOT NULL,

 PREDICATE_ID SMALLINT NOT NULL,

 HOW_APPLIED CHAR(5) NOT NULL,

 WHEN_EVALUATED CHAR(3) NOT NULL,

 RELOP_TYPE CHAR(2) NOT NULL,

 SUBQUERY CHAR(1) NOT NULL,

 FILTER_FACTOR DOUBLE NOT NULL,

 PREDICATE_TEXT CLOB(64K),

FOREIGN KEY (EXPLAIN_REQUESTER,

 EXPLAIN_TIME,

 SOURCE_NAME,

 SOURCE_SCHEMA,

 EXPLAIN_LEVEL,

 STMTNO,

 SECTNO)

 REFERENCES EXPLAIN_STATEMENT

ON DELETE CASCADE)

840 SQL Reference

Explain Tables

EXPLAIN_STATEMENT Table Definition
CREATE TABLE EXPLAIN_STATEMENT (EXPLAIN_REQUESTER CHAR(8) NOT NULL,

 EXPLAIN_TIME TIMESTAMP NOT NULL,

 SOURCE_NAME CHAR(8) NOT NULL,

SOURCE_SCHEMA CHAR(8) NOT NULL,

EXPLAIN_LEVEL CHAR(1) NOT NULL,

 STMTNO SMALLINT NOT NULL,

 SECTNO SMALLINT NOT NULL,

 QUERYNO INTEGER NOT NULL,

 QUERYTAG CHAR(20) NOT NULL,

 STATEMENT_TYPE CHAR(2) NOT NULL,

 UPDATABLE CHAR(1) NOT NULL,

 DELETABLE CHAR(1) NOT NULL

 TOTAL_COST DOUBLE NOT NULL,

 STATEMENT_TEXT CLOB(64K) NOT NULL,

 SNAPSHOT BLOB(10M),

 QUERY_DEGREE INTEGER NOT NULL,

PRIMARY KEY (EXPLAIN_REQUESTER,

 EXPLAIN_TIME,

 SOURCE_NAME,

 SOURCE_SCHEMA,

 EXPLAIN_LEVEL,

 STMTNO,

 SECTNO),

FOREIGN KEY (EXPLAIN_REQUESTER,

 EXPLAIN_TIME,

 SOURCE_NAME,

 SOURCE_SCHEMA)

 REFERENCES EXPLAIN_INSTANCE

ON DELETE CASCADE)

 Appendix J. Explain Tables and Definitions 841

Explain Tables

EXPLAIN_STREAM Table Definition
CREATE TABLE EXPLAIN_STREAM (EXPLAIN_REQUESTER CHAR(8) NOT NULL,

 EXPLAIN_TIME TIMESTAMP NOT NULL,

 SOURCE_NAME CHAR(8) NOT NULL,

SOURCE_SCHEMA CHAR(8) NOT NULL,

EXPLAIN_LEVEL CHAR(1) NOT NULL,

 STMTNO SMALLINT NOT NULL,

 SECTNO SMALLINT NOT NULL,

 STREAM_ID SMALLINT NOT NULL,

 SOURCE_TYPE CHAR(1) NOT NULL,

 SOURCE_ID SMALLINT NOT NULL,

 TARGET_TYPE CHAR(1) NOT NULL,

 TARGET_ID SMALLINT NOT NULL,

 OBJECT_SCHEMA CHAR(8),

 OBJECT_NAME VARCHAR(18),

STREAM_COUNT DOUBLE NOT NULL,

 COLUMN_COUNT SMALLINT NOT NULL,

 PREDICATE_ID SMALLINT NOT NULL,

 COLUMN_NAMES CLOB(64K),

 PMID SMALLINT NOT NULL,

 SINGLE_NODE CHAR(5),

 PARTITION_COLUMNS CLOB(64K),

FOREIGN KEY (EXPLAIN_REQUESTER,

 EXPLAIN_TIME,

 SOURCE_NAME,

 SOURCE_SCHEMA,

 EXPLAIN_LEVEL,

 STMTNO,

 SECTNO)

 REFERENCES EXPLAIN_STATEMENT

ON DELETE CASCADE)

842 SQL Reference

Appendix K. Explain Register Values

This appendix describes the interaction of the CURRENT EXPLAIN MODE and
CURRENT EXPLAIN SNAPSHOT special register values with each other and with the
PREP and BIND commands.

The CURRENT EXPLAIN MODE and CURRENT EXPLAIN SNAPSHOT special reg-
ister values interact in the following way for dynamic SQL.

The CURRENT EXPLAIN MODE special register interacts with the EXPLAIN bind
option in the following way for dynamic SQL.

Table 85. Interaction of Explain Special Register Values for Dynamic SQL

EXPLAIN
MODE
values

EXPLAIN SNAPSHOT values

NO YES EXPLAIN

NO ¹ Results of query
returned.

¹ Explain tables pop-
ulated

¹ Results of query
returned.

¹ Explain tables popu-
lated.

¹ Results of query not
returned (Dynamic
statements not exe-
cuted).

YES ¹ Explain Snapshot
taken.

¹ Results of query
returned.

¹ Explain tables pop-
ulated

 ¹ Explain Snapshot
taken

¹ Results of query
returned.

¹ Explain tables popu-
lated

 ¹ Explain Snapshot
taken

¹ Results of query not
returned (Dynamic
statements not exe-
cuted).

EXPLAIN ¹ Explain Snapshot
taken

¹ Results of query
not returned
(Dynamic state-
ments not exe-
cuted).

¹ Explain tables pop-
ulated

 ¹ Explain Snapshot
taken

¹ Results of query
not returned
(Dynamic state-
ments not exe-
cuted).

¹ Explain tables popu-
lated

 ¹ Explain Snapshot
taken

¹ Results of query not
returned (Dynamic
statements not exe-
cuted).

 Copyright IBM Corp. 1993, 1997 843

The CURRENT EXPLAIN SNAPSHOT special register interacts with the EXPLSNAP
bind option in the following way for dynamic SQL.

Table 86. Interaction of EXPLAIN Bind Option and CURRENT EXPLAIN MODE

EXPLAIN
Bind

option
values

EXPLAIN MODE values

NO YES ALL

NO ¹ Results of
query returned.

 ¹ Explain tables
populated for
static SQL

 ¹ Results of
query returned.

 ¹ Explain tables
populated for
static SQL

 ¹ Explain tables
populated for
dynamic SQL

 ¹ Results of
query returned.

YES ¹ Explain tables
populated for
dynamic SQL

 ¹ Results of
query returned.

 ¹ Explain tables
populated for
static SQL

 ¹ Explain tables
populated for
dynamic SQL

 ¹ Results of
query returned.

 ¹ Explain tables
populated for
static SQL

 ¹ Explain tables
populated for
dynamic SQL

 ¹ Results of
query returned.

EXPLAIN ¹ Explain tables
populated for
dynamic SQL

 ¹ Results of
query not
returned
(Dynamic state-
ments not exe-
cuted).

 ¹ Explain tables
populated for
static SQL

 ¹ Explain tables
populated for
dynamic SQL

 ¹ Results of
query not
returned
(Dynamic state-
ments not exe-
cuted).

 ¹ Explain tables
populated for
static SQL

 ¹ Explain tables
populated for
dynamic SQL

 ¹ Results of
query not
returned
(Dynamic state-
ments not exe-
cuted).

Table 87. Interaction of EXPLSNAP bind Option and CURRENT EXPLAIN SNAPSHOT

EXPLSNAP
Bind

option
values

EXPLAIN SNAPSHOT values

NO YES ALL

NO ¹ Results of query
returned.

 ¹ Explain Snapshot
taken for static
SQL

¹ Results of query
returned.

 ¹ Explain Snapshot
taken for static SQL

 ¹ Explain Snapshot
taken for dynamic
SQL

¹ Results of query
returned.

844 SQL Reference

Table 87. Interaction of EXPLSNAP bind Option and CURRENT EXPLAIN SNAPSHOT

EXPLSNAP
Bind

option
values

EXPLAIN SNAPSHOT values

NO YES ALL

YES ¹ Explain Snapshot
taken for dynamic
SQL

¹ Results of query
returned.

 ¹ Explain Snapshot
taken for static
SQL

 ¹ Explain Snapshot
taken for dynamic
SQL

¹ Results of query
returned.

 ¹ Explain Snapshot
taken for static SQL

 ¹ Explain Snapshot
taken for dynamic
SQL

¹ Results of query
returned.

EXPLAIN ¹ Explain Snapshot
taken for dynamic
SQL

¹ Results of query
not returned
(Dynamic state-
ments not exe-
cuted).

 ¹ Explain Snapshot
taken for static
SQL

 ¹ Explain Snapshot
taken for dynamic
SQL

¹ Results of query
not returned
(Dynamic state-
ments not exe-
cuted).

 ¹ Explain Snapshot
taken for static SQL

 ¹ Explain Snapshot
taken for dynamic
SQL

¹ Results of query not
returned (Dynamic
statements not exe-
cuted).

 Appendix K. Explain Register Values 845

846 SQL Reference

Recursion Example: Bill of Materials

Appendix L. Recursion Example: Bill of Materials

Bill of materials (BOM) applications are a common requirement in many business envi-
ronments. To illustrate the capability of a recursive common table expression for BOM
applications, consider a table of parts with associated subparts and the quantity of sub-
parts required by the part. For this example, create the table as follows.

CREATE TABLE PARTLIST

 (PART VARCHAR(8),

 SUBPART VARCHAR(8),

 QUANTITY INTEGER);

In order to give query results for this example, assume the PARTLIST table is popu-
lated with the following values.

 PART SUBPART QUANTITY

-------- -------- -----------

 00 01 5

 00 05 3

 01 02 2

 01 03 3

 01 04 4

 01 06 3

 02 05 7

 02 06 6

 03 07 6

 04 08 10

 04 09 11

 05 10 10

 05 11 10

 06 12 10

 06 13 10

 07 14 8

 07 12 8

Example 1: Single Level Explosion
The first example is called single level explosion. It answers the question, “What parts
are needed to build the part identified by '01'?.” The list will include the direct subparts,
subparts of the subparts and so on. However, if a part is used multiple times, its sub-
parts are only listed once.

 Copyright IBM Corp. 1993, 1997 847

Recursion Example: Bill of Materials

WITH RPL (PART, SUBPART, QUANTITY) AS

(SELECT ROOT.PART, ROOT.SUBPART, ROOT.QUANTITY

FROM PARTLIST ROOT

WHERE ROOT.PART = '01'

 UNION ALL

SELECT CHILD.PART, CHILD.SUBPART, CHILD.QUANTITY

FROM RPL PARENT, PARTLIST CHILD

WHERE PARENT.SUBPART = CHILD.PART

)

SELECT DISTINCT PART, SUBPART, QUANTITY

 FROM RPL

ORDER BY PART, SUBPART, QUANTITY;

The above query includes a common table expression, identified by the name RPL, that
expresses the recursive part of this query. It illustrates the basic elements of a recur-
sive common table expression.

The first operand (fullselect) of the UNION, referred to as the initialization fullselect,
gets the direct children of part '01'. The FROM clause of this fullselect refers to the
source table and will never refer to itself (RPL in this case). The result of this first
fullselect goes into the common table expression RPL (Recursive PARTLIST). As in this
example, the UNION must always be a UNION ALL.

The second operand (fullselect) of the UNION uses RPL to compute subparts of sub-
parts by having the FROM clause refer to the common table expression RPL and the
source table with a join of a part from the source table (child) to a subpart of the current
result contained in RPL (parent). The result goes back to RPL again. The second
operand of UNION is then used repeatedly until no more children exist.

The SELECT DISTINCT in the main fullselect of this query ensures the same
part/subpart is not listed more than once.

The result of the query is as follows:

 PART SUBPART QUANTITY

-------- -------- -----------

 01 02 2

 01 03 3

 01 04 4

 01 06 3

 02 05 7

 02 06 6

 03 07 6

 04 08 10

 04 09 11

 05 10 10

 05 11 10

 06 12 10

 06 13 10

 07 12 8

 07 14 8

848 SQL Reference

Recursion Example: Bill of Materials

Observe in the result that from part '01' we go to '02' which goes to '06' and so on.
Further, notice that part '06' is reached twice, once through '01' directly and another
time through '02'. In the output, however, its subcomponents are listed only once (this is
the result of using a SELECT DISTINCT) as required.

It is important to remember that with recursive common table expressions it is possible
to introduce an infinite loop. In this example, an infinite loop would be created if the
search condition of the second operand that joins the parent and child tables was
coded as:

PARENT.SUBPART = CHILD.SUBPART

This example of causing an infinite loop is obviously a case of not coding what is
intended. However, care should also be exercised in determining what to code so that
there is a definite end of the recursion cycle.

The result produced by this example query could be produced in an application
program without using a recursive common table expression. However, this approach
would require starting of a new query for every level of recursion. Furthermore, the
application needs to put all the results back in the database to order the result. This
approach complicates the application logic and does not perform well. The application
logic becomes even harder and more inefficient for other bill of material queries, such
as summarized and indented explosion queries.

Example 2: Summarized Explosion
The second example is a summarized explosion. The question posed here is, what is
the total quantity of each part required to build part '01'. The main difference from the
single level explosion is the need to aggregate the quantities. The first example indi-
cates the quantity of subparts required for the part whenever it is required. It does not
indicate how many of the subparts are needed to build part '01'.

WITH RPL (PART, SUBPART, QUANTITY) AS

 (

SELECT ROOT.PART, ROOT.SUBPART, ROOT.QUANTITY

FROM PARTLIST ROOT

WHERE ROOT.PART = '01'

 UNION ALL

SELECT PARENT.PART, CHILD.SUBPART, PARENT.QUANTITY*CHILD.QUANTITY

FROM RPL PARENT, PARTLIST CHILD

WHERE PARENT.SUBPART = CHILD.PART

)

SELECT PART, SUBPART, SUM(QUANTITY) AS "Total QTY Used"

 FROM RPL

GROUP BY PART, SUBPART

ORDER BY PART, SUBPART;

In the above query, the select list of the second operand of the UNION in the recursive
common table expression, identified by the name RPL, shows the aggregation of the
quantity. To find out how much of a subpart is used, the quantity of the parent is multi-
plied by the quantity per parent of a child. If a part is used multiple times in different

 Appendix L. Recursion Example: Bill of Materials 849

Recursion Example: Bill of Materials

places, it requires another final aggregation. This is done by the grouping over the
common table expression RPL and using the SUM column function in the select list of
the main fullselect.

The result of the query is as follows:

PART SUBPART Total Qty Used

-------- -------- --------------

 01 02 2

 01 03 3

 01 04 4

 01 05 14

 01 06 15

 01 07 18

 01 08 40

 01 09 44

 01 10 140

 01 11 140

 01 12 294

 01 13 150

 01 14 144

Looking at the output, consider the line for subpart '06'. The total quantity used value of
15 is derived from a quantity of 3 directly for part '01' and a quantity of 6 for part '02'
which is needed 2 times by part '01'.

Example 3: Controlling Depth
The question may come to mind, what happens when there are more levels of parts in
the table than you are interested in for your query? That is, how is a query written to
answer the question, “What are the first two levels of parts needed to build the part
identified by '01'?” For the sake of clarity in the example, the level is included in the
result.

WITH RPL (LEVEL, PART, SUBPART, QUANTITY) AS

 (

SELECT 1, ROOT.PART, ROOT.SUBPART, ROOT.QUANTITY

FROM PARTLIST ROOT

WHERE ROOT.PART = '01'

 UNION ALL

SELECT PARENT.LEVEL+1, CHILD.PART, CHILD.SUBPART, CHILD.QUANTITY

FROM RPL PARENT, PARTLIST CHILD

WHERE PARENT.SUBPART = CHILD.PART

AND PARENT.LEVEL < 2

)

 SELECT PART, LEVEL, SUBPART, QUANTITY

 FROM RPL;

This query is similar to example 1. The column LEVEL was introduced to count the
levels from the original part. In the initialization fullselect, the value for the LEVEL
column is initialized to 1. In the subsequent fullselect, the level from the parent is incre-
mented by 1. Then to control the number of levels in the result, the second fullselect

850 SQL Reference

Recursion Example: Bill of Materials

includes the condition that the parent level must be less than 2. This ensures that the
second fullselect only processes children to the second level.

The result of the query is:

 PART LEVEL SUBPART QUANTITY

-------- ----------- -------- -----------

 01 1 02 2

 01 1 03 3

 01 1 04 4

 01 1 06 3

 02 2 05 7

 02 2 06 6

 03 2 07 6

 04 2 08 10

 04 2 09 11

 06 2 12 10

 06 2 13 10

 Appendix L. Recursion Example: Bill of Materials 851

Recursion Example: Bill of Materials

852 SQL Reference

 Appendix M. Exception Tables

Exception tables are user-created tables that mimic the definition of the tables that are
specified to be checked using SET CONSTRAINTS with the IMMEDIATE CHECKED
option. They are used to store copies of the rows that violate constraints in the tables
being checked.

The exception tables used with LOAD are identical to the ones used here. They can
therefore be reused during checking with the SET CONSTRAINTS statement.

Rules for Creating an Exception Table
The rules for creating an exception table are as follows:

1. The first “n” columns of the exception table are the same as the columns of the
table being checked. All column attributes including name, type and length should
be identical.

2. All the columns of the exception table must be free of any constraints and triggers.
Constraints include referential integrity, check constraints as well as unique index
constraints that could cause errors on insert.

3. The “(n+1)” column of the exception table is an optional TIMESTAMP column. This
serves to identify successive invocations of checking by the SET CONSTRAINTS
statement on the same table, if the rows within the exception table have not been
deleted before issuing the SET CONSTRAINTS statement to check the data.

4. The “(n+2)” column should be of type CLOB(32K) or larger. This column is optional
but recommended, and will be used to give the names of the constraints that the
data within the row violates. If this column is not provided (as could be warranted
if, for example, the original table had the maximum number of columns allowed),
then only the row where the constraint violation was detected is copied.

5. There is no enforcement of any particular name for the above additional columns.
However, the type specification must be exactly followed.

6. No additional columns are allowed.

7. It should also be noted that users invoking SET CONSTRAINTS to check the data
must have INSERT privilege on the exception tables.

The information in the “message” column will be according to the following structure :

Table 88 (Page 1 of 2). Exception Table Message Column Structure

Field
number Contents Size Comments

1 Number of constraint violations 5 characters Right justified padded with '0'

2 Type of first constraint violation 1 character 'K' - Check Constraint violation 'F' -
Foreign Key violation 'I' - Unique
Index violation (See Note)

 Copyright IBM Corp. 1993, 1997 853

Table 88 (Page 2 of 2). Exception Table Message Column Structure

Field
number Contents Size Comments

3 Length of constraint/index ID a 5 characters Right justified padded with '0'

4 Constraint name/index ID a length from the previous
field

5 Separator 3 characters <space><colon><space>

6 Type of next constraint violation 1 character 'K' - Check Constraint violation 'F' -
Foreign Key violation 'I' - Unique
Index violation

7 Length of constraint/index name 5 characters Right justified padded with '0'

8 Constraint name/ Index name length from the previous
field

..... Repeat Field 5 through 8 for each
violation

Note:

¹ In DB2 Version 5, unique index violations will not occur with checking using SET CONSTRAINTS. This will be
reported, however, when running LOAD if the FOR EXCEPTION option is chosen. LOAD on the other hand will
not report check constraint and foreign key violations in the exception tables in DB2 Version 5.

¹ a To retrieve an index ID from the catalog views, use a select statement. For example, SELECT IID FROM

SYSCAT.INDEXES, JOHNSON.FINANCES WHERE ITEMS='Car'.

Handling Rows in the Exception Tables
The information in the exception tables can be processed in any manner desired. The
rows could be used to correct the data and re-insert the rows into the original tables.

If there are no INSERT triggers on the original table, transfer the corrected rows by
issuing an INSERT statement with a subquery on the exception table.

If there are INSERT triggers and you wish to complete the load with the corrected rows
from exception tables without firing the triggers, the following ways are suggested:

¹ Design the INSERT triggers to be fired depending on the value in a column defined
explicitly for the purpose.

¹ Unload the data from the exception tables and append them using LOAD. In this
case if we re-check the data, it should be noted that in DB2 Version 5 the con-
straint violation checking is not confined to the appended rows only.

¹ Save the trigger text from the relevant catalog table. Then drop the INSERT trigger
and use INSERT to transfer the corrected rows from the exception tables. Finally
recreate the trigger using the saved information.

In DB2 Version 5, no explicit provision is made to prevent the firing of triggers when
inserting rows from the exception tables.

854 SQL Reference

Only one violation per row will be reported for unique index violations.

If values with long string or LOB data types are in the table, the values will not be
inserted into the exception table in case of unique index violation.

Querying the Exception Tables
The message column structure in an exception table is a concatenated list of constraint
names, lengths and delimiters as described earlier. You may wish to write a query on
this information.

For example, let’s write a query to obtain a list of all the violations, repeating each row
with only the constraint name along with it. Let us assume that our original table T1
had two columns C1 and C2. Assume also, that the corresponding exception table E1
has columns C1, C2 pertaining to those in T1 and MSGCOL as the message column.
The following query (using recursion) will list one constraint name per row (repeating
the row for more than one violation):

WITH IV (C1, C2, MSGCOL, CONSTNAME, I, J) AS

 (SELECT C1, C2, MSGCOL,

 CHAR(SUBSTR(MSGCOL, 12,

 INTEGER(DECIMAL(VARCHAR(SUBSTR(MSGCOL,7,5)),5,0)))),

 1,

 15+INTEGER(DECIMAL(VARCHAR(SUBSTR(MSGCOL,7,5)),5,0))

 FROM E1

 UNION ALL

SELECT C1, C2, MSGCOL,

 CHAR(SUBSTR(MSGCOL, J+6,

 INTEGER(DECIMAL(VARCHAR(SUBSTR(MSGCOL,J+1,5)),5,0)))),

 I+1,

 J+9+INTEGER(DECIMAL(VARCHAR(SUBSTR(MSGCOL,J+1,5)),5,0))

 FROM IV

WHERE I < INTEGER(DECIMAL(VARCHAR(SUBSTR(MSGCOL,1,5)),5,0))

) SELECT C1, C2, CONSTNAME FROM IV;

If we want all the rows that violated a particular constraint, we could extend this query
as follows:

 Appendix M. Exception Tables 855

WITH IV (C1, C2, MSGCOL, CONSTNAME, I, J) AS

 (SELECT C1, C2, MSGCOL,

 CHAR(SUBSTR(MSGCOL, 12,

 INTEGER(DECIMAL(VARCHAR(SUBSTR(MSGCOL,7,5)),5,0)))),

 1,

 15+INTEGER(DECIMAL(VARCHAR(SUBSTR(MSGCOL,7,5)),5,0))

 FROM E1

 UNION ALL

SELECT C1, C2, MSGCOL,

 CHAR(SUBSTR(MSGCOL, J+6,

 INTEGER(DECIMAL(VARCHAR(SUBSTR(MSGCOL,J+1,5)),5,0)))),

 I+1,

 J+9+INTEGER(DECIMAL(VARCHAR(SUBSTR(MSGCOL,J+1,5)),5,0))

 FROM IV

WHERE I < INTEGER(DECIMAL(VARCHAR(SUBSTR(MSGCOL,1,5)),5,0))

) SELECT C1, C2, CONSTNAME FROM IV WHERE CONSTNAME = 'constraintname';

To obtain all the Check Constraint violations, one could execute the following:

WITH IV (C1, C2, MSGCOL, CONSTNAME, CONSTTYPE, I, J) AS

(SELECT C1, C2, MSGCOL,

 CHAR(SUBSTR(MSGCOL, 12,

 INTEGER(DECIMAL(VARCHAR(SUBSTR(MSGCOL,7,5)),5,0)))),

CHAR(SUBSTR(MSGCOL, 6, 1)),

 1,

 15+INTEGER(DECIMAL(VARCHAR(SUBSTR(MSGCOL,7,5)),5,0))

 FROM E1

 UNION ALL

SELECT C1, C2, MSGCOL,

 CHAR(SUBSTR(MSGCOL, J+6,

 INTEGER(DECIMAL(VARCHAR(SUBSTR(MSGCOL,J+1,5)),5,0)))),

CHAR(SUBSTR(MSGCOL, J, 1)),

 I+1,

 J+9+INTEGER(DECIMAL(VARCHAR(SUBSTR(MSGCOL,J+1,5)),5,0))

 FROM IV

WHERE I < INTEGER(DECIMAL(VARCHAR(SUBSTR(MSGCOL,1,5)),5,0))

) SELECT C1, C2, CONSTNAME FROM IV WHERE CONSTTYPE = 'K';

856 SQL Reference

Japanese and Traditional-Chinese EUC Considerations

Appendix N. Japanese and Traditional-Chinese EUC
Considerations

Extended Unix Code (EUC) for Japanese and Traditional-Chinese defines a set of
encoding rules that can support from 1 to 4 character sets. In some cases, such as
Japanese EUC (eucJP) and Traditional-Chinese EUC (eucTW), a character may be
encoded using more than two bytes. Use of such an encoding scheme has implications
when used as the code page of the database server or the database client. The key
considerations involve the following:

¹ expansion or contraction of strings when converting between EUC code pages and
double-byte code pages

¹ use of Universal Character Set-2 (UCS-2) as the code page for graphic data stored
in a database server defined with the eucJP (Japanese) or eucTW (Traditional-
Chinese) code pages.

With the exception of these considerations, the use of EUC is consistent with the
double-byte character set (DBCS) support. Throughout this book (and others), refer-
ences to double-byte have been changed to multi-byte to reflect support for encoding
rules that allow for character representations that require more than 2 bytes. Detailed
considerations for support of Japanese and Traditional-Chinese EUC are included here,
organized in the same way as the contents of the chapters of this book. This informa-
tion should be considered by anyone using SQL with an EUC database server or an
EUC database client and used in conjunction with application development information
in the Application Programming Guide

 Language Elements

 Characters
Each multi-byte character is considered a letter with the exception of the double-byte
blank character which is considered a special character.

 Tokens
Multi-byte lowercase alphabetic letters are not folded to uppercase. This differs from
the single byte lowercase alphabetic letters in tokens which are generally folded to
uppercase.

 Identifiers

 SQL Identifiers
Conversion between a double-byte code page and an EUC code page may result in the
conversion of double-byte characters to multi-byte characters encoded with more than 2
bytes. As a result, an identifier that fits the length maximum in the double-byte code
page may exceed the length in the EUC code page. Selecting identifiers for this type of

 Copyright IBM Corp. 1993, 1997 857

Japanese and Traditional-Chinese EUC Considerations

environment must be done carefully to avoid expansion beyond the maximum identifier
length.

 Data Types

 Character Strings
In an MBCS database, character strings may contain a mixture of characters from a
single-byte character set (SBCS) and from multi-byte character sets (MBCS). When
using such strings, operations may provide different results if they are character based
(treat the data as characters) or byte based (treat the data as bytes). Check the func-
tion or operation description to determine how mixed strings are processed.

 Graphic Strings
A graphic string is defined as a sequence of double-byte character data. In order to
allow Japanese or Traditional-Chinese EUC data to be stored in graphic columns, EUC
characters are encoded in UCS-2. Characters that are not double-byte characters under
all supported encoding schemes (for example, PC or EBCDIC DBCS) should not be
used with graphic columns. The results of using other than double-byte characters may
result in replacement by substitution characters during conversion. Retrieval of such
data will not return the same value as was entered. Refer to the Application Program-
ming Guide programming language sections for details on handling graphic data in host
variables.

Assignments and Comparisons

 String Assignments
Conversion of a string is performed prior to the assignment. In cases involving an
eucJP/eucTW code page and a DBCS code page, a character string may become
longer (DBCS to eucJP/eucTW) or shorter (eucJP/eucTW to DBCS). This may result in
errors on storage assignment and truncation on retrieval assignment. When the error on
storage assignment is due to expansion during conversion, SQLSTATE 22524 is
returned instead of SQLSTATE 22001.

Similarly, assignments involving graphic strings may result in the conversion of a UCS-2
encoded double-byte character to a substitution character in a PC or EBCDIC DBCS
code page for characters that do not have a corresponding double-byte character.
Assignments that replace characters with substitution characters will indicate this by
setting the SQLWARN10 field of the SQLCA to 'W'.

In cases of truncation during retrieval assignment involving multi-byte character strings,
the point of truncation may be part of a multi-byte character. In this case, each byte of
the character fragment is replaced with a single-byte blank. This means that more than
one single-byte blank may appear at the end of a truncated character string.

 String Comparisons
String comparisons are performed on a byte basis. Character strings also use the col-
lating sequence defined for the database. Graphic strings do not use the collating

858 SQL Reference

Japanese and Traditional-Chinese EUC Considerations

sequence and, in an eucJP or eucTW database, are encoded using UCS-2. Thus, the
comparison of two mixed character strings may have a different result from the compar-
ison of two graphic strings even though they contain the same characters. Similarly, the
resulting sort order of a mixed character column and a graphic column may be different.

Rules for Result Data Types
The resulting data type for character strings is not affected by the possible expansion of
the string. For example, a union of two CHAR operands will still be a CHAR. However,
if one of the character string operands will be converted such that the maximum expan-
sion makes the length attribute the largest of the two operands, then the resulting char-
acter string length attribute is affected. For example, consider the result expressions of
a CASE expression that have data types of VARCHAR(100) and VARCHAR(120).
Assume the VARCHAR(100) expression is a mixed string host variable (that may
require conversion) and the VARCHAR(120) expression is a column in the eucJP data-
base. The resulting data type is VARCHAR(200) since the VARCHAR(100) is doubled
to allow for possible conversion. The same scenario without the involvement of an
eucJP or eucTW database would have a result type of VARCHAR(120).

Notice that the doubling of the host variable length is based on the fact that the data-
base server is Japanese EUC or Traditional-Chinese EUC. Even if the client is also
eucJP or eucTW, the doubling is still applied. This allows the same application package
to be used by double-byte or multi-byte clients.

Rules for String Conversions
The types of operations listed in the corresponding section of the SQL Reference may
convert operands to either the application or the database code page.

If such operations are done in a mixed code page environment that includes Japanese
or Traditional-Chinese EUC, expansion or contraction of mixed character string oper-
ands may occur. Therefore the resulting data type has a length attribute that
accomodates the maximum expansion, if possible. In the cases where there are
restrictions on the length attribute of the data type, the maximum allowed length for the
data type is used. For example in an environment where maximum growth is double, a
VARCHAR(200) host variable is treated as if it is a VARCHAR(400), but CHAR(200)
host variable is treated as if it is a CHAR(254). A run-time error may occur when con-
version is performed if the converted string would exceed the maximum length for the
data type. For example, the union of CHAR(200) and CHAR(10) would have a result
type of CHAR(254). When the value from the left side of the UNION is converted, if
more than 254 characters are required, an error occurs.

In some cases, allowing for the maximum growth for conversion will cause the length
attribute to exceed a limit. For example, UNION only allows columns up to 254 bytes.
Thus, a query with a union that included a host variable in the column list (call it :hv1)
that was a DBCS mixed character string defined as a varying length character string
128 bytes long, would set the data type to VARCHAR(256) resulting in an error pre-
paring the query, even though the query in the application does not appear to have any
columns greater than 254. In a situation where the actual string is not likely to cause
expansion beyond 254 bytes the following can be used to prepare the statement.

 Appendix N. Japanese and Traditional-Chinese EUC Considerations 859

Japanese and Traditional-Chinese EUC Considerations

SELECT CAST(:hv1 CONCAT ' AS VARCHAR(254)), C2 FROM T1

 UNION

SELECT C1, C2 FROM T2

 The concatenation of the null string with the host variable will force the conversion to
occur before the cast is done. This query can be prepared in the DBCS to
eucJP/eucTW environment although a truncation error may occur at run-time.

This technique (null string concat with cast) can be used to handle the similar 254 byte
limit for SELECT DISTINCT or use of the column in ORDER BY or GROUP BY
clauses.

 Constants

Graphic String Constants
A graphic string constant, in the case of a Japanese or Traditional-Chinese EUC client,
may contain single or multi-byte characters (like a mixed character string). The string
should not contain more than 2000 characters. It is recommended that only characters
that convert to double-byte characters in all related PC and EBCDIC double-byte code
pages be used in graphic constants. A graphic string constant in an SQL statement is
converted from the client code page to the double-byte encoding at the database
server. For a Japanese or Traditional-Chinese EUC server, the constant is converted
to UCS-2, the double-byte encoding used for graphic strings. For a double-byte server,
the constant is converted from the client code page to the DBCS code page of the
server.

 Functions
The design of user-defined functions should consider the impact of supporting
Japanese or Tradition-Chinese EUC on the parameter data types. One part of function
resolution considers the data types of the arguments to a function call. Mixed character
string arguments involving a Japanese or Traditional-Chinese EUC client may require
additional bytes to specify the argument. This may require that the data type change to
allow the increased length. For example, it may take 4001 bytes to represent a char-
acter string in the application (a LONG VARCHAR) that fits into a VARCHAR(4000)
string at the server. If a function signature is not included that allows the argument to
be a LONG VARCHAR, function resolution will fail to find a function.

Some functions exist that do not allow long strings for various reasons. Use of LONG
VARCHAR or CLOB arguments with such functions will not succeed. For example,
LONG VARCHAR as the second argument of the built-in POSSTR function, will fail
function resolution (SQLSTATE 42884).

 Expressions

With the Concatenation Operator
The potential expansion of one of the operands of concatenation may cause the data
type and length of concatenated operands to change when in an environment that
includes a Japanese or Traditional-Chinese EUC database server. For example, with an

860 SQL Reference

Japanese and Traditional-Chinese EUC Considerations

EUC server where the value from a host variable may double in length, consider the
following example.

CHAR200 CONCAT :char50

The column CHAR200 is of type CHAR(200). The host variable char50 is defined as
CHAR(50). The result type for this concatenation operation would normally be
CHAR(250). However, given an eucJP or eucTW database server, the assumption is
that the string may expand to double the length. Hence char50 is treated as a
CHAR(100) and the resulting data type is VARCHAR(300). Note that even though the
result is a VARCHAR, it will always have 300 bytes of data including trailing blanks. If
the extra trailing blanks are not desired, define the host variable as VARCHAR(50)
instead of CHAR(50).

 Predicates

 LIKE Predicate
For a LIKE predicate involving mixed character strings in an EUC database:

¹ single-byte underscore represents any one single-byte character

¹ single-byte percent represents a string of zero or more characters (single-byte or
multi-byte characters).

¹ double-byte underscore represents any one multi-byte character

¹ double-byte percent represents a string of zero or more characters (single-byte or
multi-byte characters).

The escape character must be one single-byte character or one double-byte character.

Note that use of the underscore character may produce different results depending on
the code page of the LIKE operation. For example, Katakana characters in Japanese
EUC are multi-byte characters (CS2) but in the Japanese DBCS code page they are
single-byte characters. A query with the single-byte underscore in the pattern-
expression would return occurrences of Katakana character in the position of the under-
score from a Japanese DBCS server. However, the same rows from the equivalent
table in a Japanese EUC server would not be returned, since the Katakana characters
will only match with a double-byte underscore.

For a LIKE predicate involving graphic strings in an EUC database:

¹ the character used for underscore and percent must map to the underscore and
percent character respectively

¹ underscore represents any one UCS-2 character

¹ percent represents a string of zero or more UCS-2 characters.

 Appendix N. Japanese and Traditional-Chinese EUC Considerations 861

Japanese and Traditional-Chinese EUC Considerations

 Functions

 LENGTH
The processing of this function is no different for mixed character strings in an EUC
environment. The value returned is the length of the string in the code page of the
argument. When using this function to determine the length of a value, careful consider-
ation should be given to how the length is used. This is especially true for mixed string
constants since the length is given in bytes, not characters. For example, the length of
a mixed string column in a DBCS database returned by the LENGTH function may be
less than the length of the retrieved value of that column on an eucJP or eucTW client
due to the conversion of some DBCS characters to multi-byte eucJP or eucTW charac-
ters.

 SUBSTR
The SUBSTR function operates on mixed character strings on a byte basis. The
resulting string may therefore include fragments of multi-byte characters at the begin-
ning or end of the resulting string. No processing is provided to detect or process frag-
ments of characters.

 TRANSLATE
The TRANSLATE function supports mixed character strings including multi-byte charac-
ters. The corresponding characters of the to-string-exp and the from-string-exp must
have the same number of bytes and cannot end with part of a multi-byte character.

The pad-char-exp must result in a single-byte character when the char-string-exp is a
character string. Since TRANSLATE is performed in the code page of the
char-string-exp, the pad-char-exp may be converted from a multi-byte character to a
single-byte character.

A char-string-exp that ends with part of a multi-byte character will not have those bytes
translated.

 VARGRAPHIC
The VARGRAPHIC function on a character string operand in a Japanese or Traditional-
Chinese EUC code page returns a graphic string in the UCS-2 code page.

¹ Single-byte characters are converted first to their corresponding double-byte char-
acter in the code set to which they belong (eucJP or eucTW). Then, they are con-
verted to the corresponding UCS-2 representation. If there is no double-byte
representation, the character is converted to the double-byte substitution character
defined for that code set before being converted to UCS-2 representation.

¹ Characters from eucJP that are Katakana (eucJP CS2) are actually single byte
characters in some encoding schemes. They are thus converted to corresponding
double-byte characters in eucJP or to the double-byte substitution character before
converting to UCS-2.

¹ Multi-byte characters are converted to their UCS-2 representations.

862 SQL Reference

Japanese and Traditional-Chinese EUC Considerations

 Statements

 CONNECT
The processing of a successful CONNECT statement returns information in the SQLCA
that is important when the possibility exists for applications to process data in an envi-
ronment that includes a Japanese or Traditional-Chinese EUC code page at the client
or server. The SQLERRD(1) field gives the maximum expansion of a mixed character
string when converted from the application code page to the database code page. The
SQLERRD(2) field gives the maximum expansion of a mixed character string when con-
verted from the database code page to the application code page. The value is positive
if expansion could occur and negative if contraction could occur. If the value is nega-
tive, the value is always -1 since the worst case is that no contraction occurs and the
full length of the string is required after conversion. Positive values may be as large as
2, meaning that in the worst case, double the string length may be required for the
character string after conversion.

The code page of the application server and the application client are also available in
the SQLERRMC field of the SQLCA.

 PREPARE
The data types determined for untyped parameter markers (as described in Table 19
on page 603) are not changed in an environment that includes Japanese or Traditional-
Chinese EUC. As a result, it may be necessary in some cases to use typed parameter
markers to provide sufficient length for mixed character strings in eucJP or eucTW. For
example, consider an insert to a CHAR(10) column. Preparing the statement:

INSERT INTO T1 (CH10) VALUES (?)

 would result in a data type of CHAR(10) for the parameter marker. If the client was
eucJP or eucTW, more than 10 bytes may be required to represent the string to be
inserted but the same string in the DBCS code page of the database is not more than
10 bytes. In this case, the statement to prepare should include a typed parameter
marker with a length greater than 10. Thus, preparing the statement:

INSERT INTO T1 (CH10) VALUES (CAST(? AS VARCHAR(20))

 would result in a data type of VARCHAR(20) for the parameter marker.

 Appendix N. Japanese and Traditional-Chinese EUC Considerations 863

Japanese and Traditional-Chinese EUC Considerations

864 SQL Reference

Glossary

 Appendix O. Glossary

A
abnormal termination . (1) The cessation of processing prior to planned termination.
(T) (2) A system failure or operator action that causes a job to end unsuccessfully.
(3) In DB2, exits that are not under program control, such as a trap or segv.

access path . The method that is selected by the optimizer for retrieving data from a
specific table. For example, an access path can involve the use of an index, a sequen-
tial scan, or a combination of the two.

access plan . The set of access paths that are selected by the optimizer to evaluate a
particular SQL statement. The access plan specifies the order of operations to resolve
the execution plan, the implementation methods (such as JOIN), and the access path
for each table referenced in the statement.

accounting string . User-defined accounting information that is sent to DRDA servers
by DB2 Connect. This information can be specified at one of these locations:

¹ The client workstation using the SQLESACT API or the DB2ACCOUNT environ-
ment variable

¹ The DB2 Connect workstation using the DFT_ACCOUNT_STR database manager
configuration parameter.

active log . The subset of files consisting of primary and secondary log files that are
currently needed by the database manager for crash recovery and rollback. Contrast
with archive log.

adjacent nodes . Two nodes connected together by at least one path that connects no
other nodes. (T)

administrative authority . A level of authority that gives a user privileges over a set of
objects. For example, DBADM authority gives privileges over all objects in a database,
and SYSADM authority gives privileges over all objects in a system.

ADSM. ADSTAR Distributed Storage Manager.

ADSTAR Distributed Storage Manager (ADSM) . A client/server product that provides
storage management and data access services in a heterogeneous environment. It sup-
ports various communication methods, provides administrative facilities to manage the
backup and storage of files, and provides facilities for scheduling backup operations.

Advanced Peer-to-Peer Networking (APPN) . An extension to SNA that features
greater distributed network control, dynamic definition of network resources, and auto-
mated resource registration and directory lookup.

 Copyright IBM Corp. 1993, 1997 865

Glossary

Advanced Peer-to-Peer Networking (APPN) network . A collection of interconnected
network nodes and their client end nodes. See also network node.

Advanced program-to-program communication (APPC) . The general facility that
characterizes the LU 6.2 architecture and its various implementations in products.

after-image . The updated content of a source table element that is recorded in a
change data table or in a database log or journal. Contrast with before-image.

agent . A separate process or thread that carries out all DB2 requests that are made
by a particular client application.

aggregate function . Synonym for column function.

alert . An action, such as a beep or warning, that is generated when a performance
variable exceeds or falls below its warning or alarm threshold.

alias . In DB2, an alternative name used to identify a table, view, or database.

alias chain . A series of table aliases that refer to each other in a sequential, non-
repeating fashion.

alphanumeric . Pertaining to data that consists of letters, digits, and usually other
characters, such as punctuation marks. (T) (A)

ambiguous cursor . A cursor that cannot be determined to be updateable or read-only
from its definition or context.

API. Application programming interface.

APPC. Advanced program-to-program communication.

application ID . A string that uniquely identifies an application across networks. An ID
is generated at the time that the application connects to the database. This ID is known
on both the client and the server and can be used to correlate the two parts of the
application.

application process . The unit to which resources and locks are allocated. An applica-
tion process involves the running of one or more programs.

application programming interface (API) . (1) A functional interface supplied by the
operating system or by a separately orderable licensed program. It allows an applica-
tion program written in a high-level language to use specific data or functions of the
operating system or the licensed programs. (2) In DB2, a function within the interface.
For example, the get error message API.

application requester . A facility that accepts a database request from an application
process and passes it to an application server.

866 SQL Reference

Glossary

application server . The local or remote database manager to which the application
process is connected.

Apply program . A replication program that is used to refresh or update a target table,
depending on the applicable source-to-target rules. Contrast with Capture program.

Apply qualifier . A character string that identifies subscription definitions that are
unique to each instance of the Apply program.

Apply trail table . A replication source table at the control server that records a history
of the refreshes and updates performed against target tables.

APPN. Advanced Peer-to-Peer Networking.

APPN network node . Advanced Peer-to-Peer Networking (APPN) network node.
Synonymous with network node.

archive log . The set of log files that are closed and are no longer needed for normal
processing. These files are retained for use in roll-forward recovery. Contrast with
active log.

argument . A value passed to or returned from a function or procedure at run time.

asynchronous . Without regular time relationship; unexpected and unpredictable with
respect to the processing of program instructions. Contrast with synchronous.

asynchronous batched update . A process in which all changes to the source are
recorded and applied to existing target data at specified intervals. Contrast with asyn-
chronous continuous update.

asynchronous continuous update . A process in which all changes to the source are
recorded and applied to existing target data after being committed in the base table.
Contrast with asynchronous batched update.

attach . In DB2, to remotely access objects at the instance level.

audit trail . Data, in the form of a logical path linking a sequence of events, used for
tracing the transactions that have affected the contents of a record. (T)

authorization . In computer security, the right granted to a user to communicate with
or make use of a computer system. (T)

authorization ID . A character string in a statement that designates a set of privileges.
It is used by the database manager for authorization checking and as an implicit qual-
ifier for the names of objects such as tables, views, and indexes.

autocommit . To automatically commit the current unit of work after each SQL state-
ment.

 Appendix O. Glossary 867

Glossary

automatic rebind . A feature that automatically rebinds an invalidated package without
requiring a bind command to be entered manually or a bind file to be present.

auto-registration . A process in which replica and consistent change data tables are
automatically defined as replication sources at the target server.

B
backup pending . The state of a database or table space that prevents an operation
from being performed until a backup is made of the database or table space.

base aggregate table . A target table type that contains data aggregated from a
source table or a point-in-time table at intervals.

base table . A table created with the CREATE TABLE statement. Such a table has
both its description and data physically stored in the database. Contrast with view.

basic conversation . An LU 6.2 conversation type between two transaction programs
using the APPC basic conversation API. Contrast with mapped conversation.

basic predicate . A predicate that compares two values.

before-image . The content of a source table element prior to a refresh or update, as
recorded in a change data table, or in a database log or journal. Contrast with after-
image.

binary large object (BLOB) . A sequence of bytes, where the size of the sequence
ranges from 0 bytes to 2 gigabytes. This string does not have an associated code page
and character set. Image, audio, and video objects are stored in BLOBs.

bind . In SQL, the process by which the output from the SQL precompiler is converted
to a usable structure called an access plan. During this process, access paths to the
data are selected and some authorization checking is performed.

bindery object name . A 48-byte character string that contains the name of a bindery
object on the NetWare** file server. The database manager configuration field,
objectname, uniquely represents a DB2 server instance, and is stored as an object in
the bindery on a NetWare file server.

bind file . A file produced by the precompiler when the bind command or API is used
with the BINDFILE option. This file includes information on all SQL statements in the
application program.

bit data . Data that is not associated with a coded character set and is therefore never
converted.

BLOB . Binary large object.

block . A string of data elements recorded or transmitted as a unit.

868 SQL Reference

Glossary

blocking . An option that is specified when binding an application. It allows caching of
multiple rows of information by the communications subsystem so that each FETCH
statement does not require the transmission of one row for each request across the
network.

broadcast join . A join in which all partitions of a table are sent to all nodes.

built-in function . An SQL function that is provided by DB2 and appears in the
SYSIBM schema. Contrast with user-defined function.

byte reversal . A technique in which numeric data is stored with the least significant
byte first.

C
cache . A buffer that contains frequently accessed instructions and data; it is used to
reduce access time.

 Call Level Interface (CLI) . A callable API for database access, which is an alterna-
tive to an embedded SQL API. In contrast to embedded SQL, CLI does not require
precompiling or binding by the user, but instead provides a standard set of functions to
process SQL statements and related services at run time.

Capture program . A replication program that reads database log or journal records to
capture data about changes made to source tables. Contrast with Apply program.

cardinality . The number of rows in a database table.

cascade rejection . The process of rejecting a replication transaction because it is
associated with a transaction that had a conflict detected and was itself rejected.

cast function . A function used to convert instances of a data type (origin) into
instances of a different data type (target). In general, cast functions have the name of
the target data type. They have one single argument whose type is the origin data type;
their return type is the target data type.

catalog . A set of tables and views maintained by the database manager. These tables
and views contain information such as descriptions of tables, views, and packages.

catalog node . The node at which the catalog tables reside. The catalog node can be
a different node for each database.

CCSID. Coded character set identifier.

CDRA. Character Data Representation Architecture.

change aggregate table . A type of target table that contains data aggregations based
on changes recorded for a source table.

 Appendix O. Glossary 869

Glossary

change data (CD) table . A replication control table at the source server that contains
changed data for a replication source table. The Capture program populates the CD
table by copying the changes from the database log or journal. The contents of the CD
table are then copied by the Apply program to the target table.

Character Data Representation Architecture (CDRA) . An architecture used to
achieve consistent representation, processing, and interchange of string data.

character large object (CLOB) . A sequence of characters (single-byte, multi-byte, or
both) where the length can be up to 2 gigabytes. A data type that can be used to store
large text objects. Also called character large object string.

character string . A sequence of bytes or characters.

character string delimiter . The characters used to enclose character strings in delim-
ited ASCII files that are imported or exported. See delimiter.

check condition . A restricted form of search condition used in check constraints.

check constraint . Specifies a check condition that is not false for each row of the
table on which the constraint has been defined.

check pending . A state into which a table can be put where only limited activity is
allowed on the table and constraints are not checked when the table is updated.

circular log . A database log in which records are overwritten if they are no longer
needed by an active database. Consequently, if a failure occurs, lost data cannot be
restored during forward recovery. Contrast with recoverable log.

CLI. Call Level Interface.

client . Any program (or workstation it is running on) that communicates with and
accesses a database server.

CLOB . Character large object.

CLP. Command Line Processor.

clustered index . An index whose sequence of key values closely corresponds to the
sequence of rows stored in a table. The degree to which this correspondence exists is
measured by statistics that are used by the optimizer.

coded character set . A set of unambiguous rules that establishes a character set and
the one-to-one relationships between the characters of the set and their coded repres-
entations.

coded character set identifier (CCSID) . A number that includes an encoding scheme
identifier, character set identifiers, code page identifiers, and other information that
uniquely identifies the coded graphic character representation.

870 SQL Reference

Glossary

code page . A set of assignments of characters to code points.

code point . In CDRA, a unique bit pattern that represents a character in a code page.

code set . Encoding values for a character set that provides the interface between the
system and its input and output devices. ISO uses code set as the term equivalent to
the IBM-defined term code page.

cold start . A system start, using an initial program load procedure. Contrast with
warm start.

collating sequence . The sequence in which the characters are ordered for the
purpose of sorting, merging, comparing, and processing indexed data sequentially.

collocated join . The result of two tables being joined in which:

¹ The tables reside in a single-partition nodegroup in the same database partition; or
they are in the same partitioned nodegroup and have the same number of parti-
tioning columns, the columns are partition compatible, and both tables use the
same partitioning function.

¹ All pairs of the corresponding partitioning key columns participate in the equijoin
predicates.

column distribution value . Statistics describing the most frequent values of some
column or the quantile values. These values are used in the optimizer to help determine
the best access plan.

column function . An operation used in queries that applies to the values from several
rows. Column functions include SUM, AVG, MIN, MAX, COUNT, STDDEV, and VARI-
ANCE. Synonymous with aggregate function.

Command Line Processor (CLP) . A character-based interface for entering SQL
statements and database manager commands.

commit . The operation that ends a unit of work by releasing locks so that the data-
base changes made by that unit of work can be perceived by other processes. This
operation makes the data changes permanent.

commit point . A point in time when data is considered to be consistent.

common critical section table . A replication control table at the source server that is
used to establish concurrency control between the Capture and Apply programs and to
prevent an update replication cycle.

Common Programming Interface Communications (CPI-C) . An API for applications
that require program-to-program communication, making use of SNA's LU 6.2 to create
a set of interprogram services.

common pruning control table . A replication control table at the source server that
coordinates the pruning of the change data and unit-of-work control tables. The values

 Appendix O. Glossary 871

Glossary

in this table indicate how much data has been replicated by the Apply program and can
be safely pruned by the Capture program.

common registrations table . A replication control table at the source server that
relates each source table or view to an associated change data table and consistent
change data table, if applicable.

common subscription columns table . A replication control table that contains
column details of target tables.

common subscription events table . A replication control table that defines the
events that trigger replication, including the event name and time.

common subscription set table . A replication control table that defines the members
of a subscription set including the set name, Apply qualifier, source server, target
server, and status.

common subscription statements table . A replication control table used to store the
optional SQL statements that can be run at the beginning or end of the set subscription
cycle.

common subscription targets member table . A replication control table that maps
the source and target table relationships within a subscription set.

common table expression . An expression that defines a result table with a name
(qualified SQL identifier) that can be specified as a table name in any FROM clause in
the fullselect that follows the WITH clause.

comparison operator . An infix operator used in comparison expressions. Compar-
ison operators are ¬< (not less than), <= (less than or equal to), ¬= (not equal to), =
(equal to), >= (greater than or equal to), > (greater than), and ¬> (not greater than).

complete . A table attribute indicating that the table contains a row for every primary
key value of interest. As a result, a complete source table can be used to perform a
refresh of a target table.

composite key . A key composed of more than one column from a database table.

compound SQL statement . A block of SQL statements that are executed in a single
call to the application server.

concurrency . The shared use of resources by multiple interactive users or application
processes at the same time.

condensed . A table attribute indicating that the table contains current data rather than
a history of changes to the data. A condensed table includes no more than one row for
each primary key value in the table. As a result, a condensed table can be used to
supply current information for a refresh.

872 SQL Reference

Glossary

conflict detection . The process of detecting an out-of-date row in a replica that was
updated by a user application. When a conflict is detected, the transaction that caused
the conflict is rejected. See also enhanced conflict detection, standard conflict detection.

connect . In DB2, to access objects at the database level.

connection . (1) An association between an application process and an application
server. (2) In data communications, an association established between functional
units for conveying information.

connection handle . Within the CLI, the data object that contains information associ-
ated with a connection. This includes general status information, transaction status, and
diagnostic information.

consistent change data (CCD) table . A replication table that is used for staging data,
with four replication control columns. It can be one of the following types:

¹ An internal CCD table that is a join of the change data table and the unit-of-work
table at the source server.

¹ A regular CCD table that is a copy of the internal CCD table on a remote server.

¹ An external source table that is not a DB2 origin table; it is manually updated with
four replication columns and defined as a replication source table.

consolidation replication . A replication model in which the data from multiple source
tables is replicated to a single target table. Contrast with fan-out replication.

constraint . A rule that limits the values that can be inserted, deleted, or updated in a
table. See check constraint, referential constraint, and unique constraint.

container . See table space container.

contention . In the database manager, a situation in which a transaction attempts to
lock a row or table that is already locked.

Control Center . A graphical interface that shows database objects (such as data-
bases and tables) and their relationship to each other. From the Control Center you can
perform the tasks provided by the DBA Utility, Visual Explain, and Performance Monitor
tools.

control point . (1) In APPN, a component of a node that manages resources of that
node and optionally provides services to other nodes in the network. Examples are a
system services control point (SSCP) in a type 5 node, a physical unit control point
(PUCP) in a type 4 node, a network node control point (NNCP) in a type 2.1 (T2.1)
network node, and an end node control point (ENCP) in a T2.1 end node. An SSCP
and an NNCP can provide services to other nodes. (2) A component of a T2.1 node
that manages the resources of that node. If the T2.1 node is an APPN node, the control
point is capable of engaging in control point-to-control point sessions with other APPN
nodes. If the T2.1 node is a network node, the control point also provides services to
adjacent end nodes in the T2.1 network. See physical unit.

 Appendix O. Glossary 873

Glossary

control privilege . The authority to completely control an object. This includes the
authority to access, drop, or alter an object, and the authority to extend or revoke privi-
leges on the object to other users.

control server . The database location of the applicable subscription definitions and
apply trail table.

control table . A table in which replication source and subscription definitions or other
replication control information is stored.

conversation . In APPC, a connection between two transaction programs over a
logical unit-logical unit (LU-LU) session that allows them to communicate with each
other while processing a transaction.

conversational transaction . In APPC, two or more programs communicating using
the services of logical units (LUs).

conversation security . In APPC, a process that allows validation of a user ID or
group ID and password before establishing a connection.

conversation security profile . The set of user IDs or group IDs and passwords that
are used by APPC for conversation security.

Coordinated Universal Time (UTC) . Synonym for Greenwich Mean Time.

coordinating agent . The agent that is spawned when a request is received by the
database manager from an application. It remains associated with the application during
the life of the application. This agent coordinates subagents that work for the applica-
tion. See also subagent.

coordinator node . The node to which the application originally connected and on
which the coordinating agent resides.

coordinator subsection . The subsection of an application that starts other sub-
sections (if any) and returns results to the application.

copy table . See target table.

correlated reference . Reference to a column of a table that is outside of a subquery.

correlated subquery . A subquery that contains a correlated reference to a column of
a table that is outside of the subquery.

correlation name . An identifier designating a table or view within a single SQL state-
ment. It can be defined in any FROM clause or in the first clause of an UPDATE or
DELETE statement.

country code . When accessing the database, the country code of the application is
used to determine the date and time presentation (display and print) formats. It is also
used with the code page to determine the default collating sequence for the database.

874 SQL Reference

Glossary

CP. Control point.

CPI-C. Common Programming Interface Communications.

CPI-C side information profile . In SNA, the profile that specifies the conversation
characteristics to use when allocating a conversation with a remote transaction
program. The profile is used by local transaction programs that communicate through
CPI Communications. It specifies the partner LU name (the name of the connection
profile that contains the remote LU name), the mode name, and the remote transaction
program name.

CP name . Control point name. A network-qualified name of a control point consisting
of a network ID qualifier identifying the network to which the control point node belongs.

crash recovery . The process of recovering from an immediate failure.

CS. Cursor stability.

current function path . An ordered list of schema names used in the resolution of
unqualified references to functions and data types. In dynamic SQL, the current function
path is found in the CURRENT FUNCTION PATH special register. In static SQL, it is
defined in the FUNCPATH option for PREP and BIND commands.

cursor . A named control structure used by an application program to point to a spe-
cific row within some ordered set of rows. The cursor is used to retrieve rows from a
set. See also unambiguous cursor, ambiguous cursor.

cursor stability (CS) . An isolation level that locks any row accessed by a transaction
of an application while the cursor is positioned on the row. The lock remains in effect
until the next row is fetched or the transaction is terminated. If any data is changed in a
row, the lock is held until the change is committed to the database.

D
DARI. Database Application Remote Interface. Former term for stored procedure.

data area . A memory area used by a program to hold information.

database administrator (DBA) . An individual responsible for the design, develop-
ment, operation, safeguarding, maintenance, and use of a database. (T)

Database Application Remote Interface (DARI) . Former term for stored procedure.

database client . A workstation used to access a database residing on a database
server.

database connection services (DCS) directory . A directory that contains entries for
remote databases and the corresponding application requester used to access them.

 Appendix O. Glossary 875

Glossary

database directory . A directory that contains database access information for all
databases to which a client can connect.

database engine . The part of the database manager providing the base functions and
configuration files needed to use the database.

database log . A set of primary and secondary log files consisting of log records that
record all changes to a database. The database log is used to roll back changes for
units of work that are not committed and to recover a database to a consistent state.
See also primary log, secondary log.

database managed space (DMS) table space . A table space whose space is
managed by the database. Contrast with system managed space (SMS) table space.

database management system (DBMS) . Synonym for database manager.

database manager . A computer program that manages data by providing the services
of centralized control, data independence, and complex physical structures for efficient
access, integrity, recovery, concurrency control, privacy, and security.

database manager instance . A logical database manager environment similar to an
image of the actual database manager environment. You can have several instances of
the database manager product on the same workstation. You can use these instances
to separate the development environment from the production environment, tune the
database manager to a particular environment, and protect sensitive information from a
particular group of people.

database object . Anything that can be created or manipulated with SQL—for
example, tables, views, indexes, packages, triggers, or table spaces.

database partition . A part of the database that consists of its own user data, indexes,
configuration files, and transaction logs. Sometimes called a node or database node.

database server . A functional unit that provides database services for databases.

database system monitor . A collection of programming APIs that monitor perform-
ance and status information about the database manager, databases, and applications
using the database manager and DB2 Connect.

data definition language (DDL) . A language for describing data and its relationships
in a database. Synonymous with data description language. (T)

data description language . Synonym for data definition language. (T)

data enhancement . The modification of data as it is copied between the base table
and the target table, including:

¹ Subsetting of data

¹ Generating multiple copies of data

876 SQL Reference

Glossary

¹ Converting data, such as code translation and value substitution

¹ Combining data in base tables

¹ Producing sums or averages of data

DataJoiner . A separately available product that provides client applications integrated
access to distributed data and provides a single database image of a heterogeneous
environment. With DataJoiner, a client application can join data that is distributed
across multiple database management systems (using a single SQL statement) or
update a single remote data source, as if the data were local.

data link control (DLC) . In SNA, the protocol layer that consists of the link stations
that schedule data transfer over a link between two nodes and perform error control for
the link.

data manipulation language (DML) . A subset of SQL statements used to manipulate
data.

date . A three-part value that designates a day, month, and year.

date duration . A DECIMAL(8,0) value that represents a number of years, months, and
days.

datetime value . A value of the data type DATE, TIME, or TIMESTAMP.

DB2 CLI . DB2 Call Level Interface. An alternative SQL interface for the DB2 family of
products that takes full advantage of DB2 capability.

DB2 Connect . A product that provides the function necessary (DRDA application
requester support) for client applications to read and update data stored in DRDA appli-
cation servers, such as other members of the DB2 family.

DB2 SDK . DB2 Software Developer's Kit.

DB2 Software Developer's Kit (DB2 SDK) . A collection of tools that help developers
create database applications.

DB2UEXIT. An optional, user-written executable program that the database manager
invokes to move or retrieve archive log files.

DBA . Database administrator.

DBA Utility . A tool that lets DB2 users configure databases and database manager
instances, manage the directories necessary for accessing local and remote databases,
back up and recover databases or table spaces, and manage media on a system using
a graphical interface. The tasks provided by this tool can be accessed from the Control
Center.

DBCLOB . Double-byte character large object.

 Appendix O. Glossary 877

Glossary

DBCS. Double-byte character set.

DBMS. Database management system.

DBMS instance connection . A logical connection between an application and an
agent process or thread owned by a DB2 instance.

DCE**. Distributed Computing Environment.

DDL. Data definition language.

deadlock . A condition under which a transaction cannot proceed because it is
dependent on exclusive resources that are locked by some other transaction, which in
turn is dependent on exclusive resources in use by the original transaction.

deadlock detector . A process within the database manager that monitors the states
of the locks to determine if a deadlock condition has occurred. When a deadlock condi-
tion is detected, the detector stops one of the transactions involved in the deadlock.
This transaction is rolled back and the other transactions proceed.

delete rule . A rule associated with a referential constraint that either restricts the
deletion of a parent row or specifies the effect of such a deletion on the dependent
rows.

delimited identifier . A sequence of characters enclosed within quotation marks (").
The sequence must consist of a letter followed by zero or more characters, each of
which is a letter, digit, or the underscore character.

delimiter . A character or flag that groups or separates items of data.

delimiter token . A string constant, a delimited identifier, an operator symbol, or any of
the special characters shown in syntax diagrams.

dependent logical unit (DLU) . An LU that requires assistance from a system services
control point (SSCP) to instantiate an LU-LU session.

dependent row . A row containing a foreign key that matches the value of a parent
key in the parent row. The foreign key value thus represents a reference from the
dependent row to the parent row.

dependent table . A table that is a dependent in at least one referential constraint.

descendent row . A row that is dependent on another row or a row that is a
descendent of a dependent row.

descendent table . A table that is a dependent of another table or a descendent of a
dependent table.

deterministic function . See not-variant function.

878 SQL Reference

Glossary

device name . A name reserved by the system, or a device driver that refers to a
specific device.

directed join . A relational operation in which all of the rows in one or both of the
joined tables are rehashed and directed to new database partitions based on the join
predicate. If all of the partitioning key columns in a table participate in the equijoin pred-
icates, the other table is rehashed; otherwise (if there is at least one equijoin predicate),
both tables are rehashed.

directory services . A portion of the APPN protocols that maintains information about
the location of resources in an APPN network.

distinct type . A user-defined data type that is internally represented as an existing
type (its source type), but is considered to be a separate and incompatible type for
semantic purposes.

Distributed Computing Environment (DCE**) . A set of services and tools that
support the creation, use, and maintenance of distributed applications in a heteroge-
neous computing environment. DCE is independent of the operating system and
network; it provides interoperability and portability across heterogeneous platforms.

distributed directory database . The complete listing of all the resources in the
network as maintained in the individual directories scattered throughout an APPN
network. Each node has a piece of the complete directory, but it is not necessary for
any one node to have the entire list. Entries are created, modified, and deleted through
system definition, operator action, automatic registration, and ongoing network search
procedures. Synonymous with distributed network directory.

distributed network directory . Synonym for distributed directory database.

distributed relational database . A database whose tables are stored on different but
interconnected computing systems.

Distributed Relational Database Architecture (DRDA) . Architecture that defines
formats and protocols for providing transparent access to remote data. DRDA defines
two types of functions, the application requester function and the application server
function.

distributed unit of work (DUOW) . A unit of work that allows SQL statements to be
submitted to multiple relational database management systems, but no more than one
system per SQL statement.

DLC. Data link control.

DLU. Dependent logical unit.

DML. Data manipulation language.

DMS table space . Database managed space table space.

 Appendix O. Glossary 879

Glossary

DNS. Domain name system.

Domain Name . A mechanism, in TCP/IP, that tracks the host names in a network. A
domain name consists of a sequence of names separated by dots.

Domain Name System . The distributed database system used by TCP/IP to map
human-readable machine names into IP addresses.

double-byte character large object (DBCLOB) . A sequence of double-byte charac-
ters, where the size can be up to 2 gigabytes. A data type that can be used to store
large double-byte text objects. Also called double-byte character large object string.
Such a string always has an associated code page.

double-byte character set (DBCS) . A set of characters in which each character is
represented by two bytes.

DRDA. Distributed Relational Database Architecture.

DUOW. Distributed unit of work.

dynamic SQL . SQL statements that are prepared and run within a running program.
In dynamic SQL, the SQL source is contained in host language variables rather than
being coded into the program. The SQL statement might change several times while
the program is running.

E
EBCDIC. Extended binary-coded decimal interchange code. A coded character set of
256 8-bit characters.

embedded SQL . SQL statements coded within an application program. See static
SQL.

EN. End node.

encoding scheme . A set of rules to represent character data.

end node (EN) . In APPN, a node that supports sessions between its local control
point (CP) and the CP in an adjacent network node.

enhanced conflict detection . Conflict detection that guarantees data integrity among
all replicas and the origin table. The Apply program locks all replicas in the subscription
set against further transactions, and begins detection after all changes made prior to
locking have been captured. See also standard conflict detection, conflict detection.

environment handle . A handle that identifies the global context for database access.
All data that is pertinent to all objects in the environment is associated with this handle.

880 SQL Reference

Glossary

equijoin . A join in which the predicate contains an equals operator. For example,
T1.C1 = T2.C2.

EUC. Extended UNIX code.

event monitor . A database object for monitoring and collecting data on database
activities over a period of time.

exclusive lock . A lock that prevents concurrently executing application processes
from accessing database data.

executable statement . An SQL statement that can be embedded in an application
program, dynamically prepared and executed, or issued interactively.

explain . To capture detailed information about the access plan that was chosen by the
SQL compiler to resolve an SQL statement. The information describes the decision cri-
teria used to choose the access plan.

explainable statement . An SQL statement for which the explain operation can be per-
formed. Explainable statements are SELECT, UPDATE, INSERT, DELETE, and
VALUES.

explained statement . An SQL statement for which an explain operation was per-
formed.

explained statistics . Statistics for a database object that was referenced in an SQL
statement at the time the statement was explained.

explain snapshot . A capture of the current internal representation of an SQL query
and related information. This information is required by the Visual Explain tool.

export . To copy data from database manager tables to a file using formats such as
PC/IXF, DEL, WSF, or ASC. Contrast with import.

exposed name . A correlation name, a table, or a view name specified in a FROM
clause for which a correlation name is not specified.

Extended UNIX Code (EUC) . A protocol that can support sets of characters from 1 to
4 bytes in length. EUC is a means of specifying a collection of code pages rather than
actually being a code page encoding scheme itself. This is the UNIX alternative to the
PC double-byte (DBCS) code page encoding schemes.

extent . An allocation of space, within a container of a table space, to a single data-
base object. This allocation consists of multiple pages.

extent map . A meta-data structure stored within a table space that records the allo-
cation of extents to each object in the table space.

 Appendix O. Glossary 881

Glossary

external source table . A non-DB2 table that is manually updated to match the con-
sistent change data table structure and defined as a replication source. See also con-
sistent change data (CCD) table.

F
fan-out replication . A replication model in which data from one source table is copied
to multiple target tables, thereby distributing the data to multiple locations. Contrast with
consolidation replication.

fast communication manager (FCM) . A group of functions that provide internodal
communication support.

fenced . A type of user-defined function or stored procedure that is defined to protect
the DBMS from modifications by the function. The DBMS is isolated from the function
or stored procedure by a barrier. Contrast with not-fenced.

file reference variable . A host variable that is used to indicate that data resides in a
file on the client rather than in a client memory buffer.

file server . A workstation that runs the NetWare** operating system software and acts
as a network server. DB2 uses the file server to store DB2 server address information,
which a DB2 client retrieves to establish an IPX**/SPX client-server connection.

filter . A device or program that separates data, signals, or material in accordance with
specified criteria. (A)

First Failure Service Log . A file (db2diag.log) that contains diagnostic messages,
diagnostic data, alert information, and related dump information. This file is used by
database administrators.

fixed-length string . A character or graphic string whose length is specified and
cannot be changed. Contrast with varying-length string.

flagger . A precompiler option that identifies SQL statements in applications that do not
conform to selected validation criteria (for example, the ISO/ANSI SQL92 Entry level
standard).

foreign key . A key that is part of the definition of a referential constraint and that
consists of one or more columns of a dependent table.

foreign update . An update that was applied to a target table and replicated to the
local table.

forward recovery . A process used to roll forward a database or table space. It allows
a restored database or table space to be rebuilt to a specified point in time by applying
the changes recorded in the database log.

882 SQL Reference

Glossary

fullselect . A subselect, a values-clause, or a number of both that are combined by set
operators.

fully qualified LU name . See network-qualified name.

function . A mapping, embodied as a program (the function body), invocable by means
of zero or more input values (arguments) to a single value (the result).

function body . The piece of code that implements a function.

function family . A set of functions with the same function name. The context deter-
mines whether the usage refers to a set of functions within a particular schema, or all
the relevant functions with the same name within the current function path.

function invocation . The use of a function together with any argument values being
passed to the function body. The function is invoked by its name.

function path . An ordered list of schema names that restricts the search scope for
unqualified function invocations and provides a final arbiter for the function selection
process.

function path family . All the functions of the given name in all the schemas identified
(or used by default) in the user's function path.

function resolution . The process, internal to the DBMS, for which a particular func-
tion instance is selected for invocation. The function name, the data types of the argu-
ments, and the function path are used to make the selection. Synonymous with function
selection.

function selection . Synonym for function resolution.

function shipping . The shipping of the subsections of a request to the specific node
that contains the applicable data.

function signature . The logical concatenation of a fully qualified function name with
the data types of all of its parameters. Each function in a schema must have a unique
signature.

G
gap . A situation in which the Capture program is not able to read a range of log or
journal records and there is potential loss of change data.

global table lock . A table lock that is acquired on all nodes in a table's nodegroup.

global transaction . A unit of work in a distributed transaction processing environment
in which multiple resource managers are required.

grant . To give a privilege or authority to an authorization ID.

 Appendix O. Glossary 883

Glossary

graphic character . Synonym for DBCS character.

graphic string . A sequence of DBCS characters.

group . A logical organization of users that have IDs according to activity or resource
access authority.

H
handle . A variable that represents an internal structure within a software system.

hash partitioning . A partitioning strategy in which a hash function is applied to the
partitioning key value to determine the database partition to which the row is assigned.

hop . In APPN, a portion of a route that has no intermediate nodes. A hop consists of
only a single transmission group connecting adjacent nodes.

host computer . (1) In a computer network, a computer providing services such as
computation, database access, and network control functions. (2) The primary or con-
trolling computer in a multiple computer installation.

host identifier . A name declared in the host program.

host language . Any programming language in which you can embed SQL statements.

host node . In SNA, a subarea node that contains a system services control point
(SSCP); for example, an IBM System/390 computer with MVS and VTAM.

host program . A program written in a host language that contains embedded SQL
statements.

host variable . In an application host program, a variable referenced by embedded
SQL statements. Host variables are programming variables in the application program
and are the primary mechanism for transmitting data between tables in the database
and application program work areas.

I
identifier . One or more characters used to identify or name a data element and pos-
sibly to indicate certain properties of that data element. (A)

ILU. Independent logical unit.

import . To copy data from an external file, using formats such as PC/IXF, DEL, WSF
or ASC, into database manager tables. Contrast with export.

import utility . Transactional utility that inserts user-supplied record data into a table.

884 SQL Reference

Glossary

independent logical unit (ILU) . An LU that is able to activate an LU-LU session
without assistance from a system services control point (SSCP). It does not have an
SSCP-LU session. Contrast with dependent logical unit.

index . A set of pointers that are logically ordered by the values of a key. Indexes
provide quick access to data and can enforce uniqueness on the rows in the table.

index key . The set of columns in a table used to determine the order of index entries.

index partition . The part of an index that is associated with a table partition at a given
node. An index defined on a table is implemented by multiple index partitions, one per
table partition.

index sargable predicates . Predicates that are applied to index entries, in index leaf
pages, to reduce the number of index entries that qualify the SQL request. This helps
reduce the number of data rows accessed.

indicator variable . A variable used to represent the null value in an application
program. If the value for the selected column is null, a negative value is placed in the
indicator variable.

indoubt transaction . Pertains to a transaction in which one phase of a two-phase
commit completes successfully but the system fails before a subsequent phase can
complete.

initialization fullselect . The first fullselect in a recursive common table expression
that gets the direct children of the initial value from the source table.

inner join . A join method in which a column that is not common to all of the tables
being joined is dropped from the resultant table. Contrast with outer join.

inoperative package . A package that cannot be used because one or more functions
that it depends on have been dropped. Such a package must be explicitly rebound.
Contrast with invalid package.

inoperative trigger . A trigger that is no longer usable. A trigger will be marked inoper-
ative when an object on which it depends is dropped (or made inoperative) or a privi-
lege on which it depends is revoked.

inoperative view . A view that is no longer usable. A view will be marked as inopera-
tive when either:

¹ SELECT privilege on a table or view that the view is dependent on is revoked from
the definer of the view.

¹ An object on which the view definition is dependent was dropped (or possibly made
inoperative in the case of another view).

insert rule . A condition enforced by the database manager that must be met before a
row can be inserted into a table.

 Appendix O. Glossary 885

Glossary

instance . See database manager instance.

intermediate network node . In APPN, a node that is part of a route between an
origin LU (OLU) and a destination LU (DLU) but that neither contains the OLU or the
DLU nor serves as the network server for either the OLU or DLU.

internal CCD table . A consistent change data table that is a join of the change data
table and the unit-of-work table at the source server.

Internet Protocol (IP) . A protocol used to route data from its source to its destination
in an Internet environment.

Internetwork Packet Exchange** (IPX**) . A connectionless datagram protocol, used
in a NetWare** LAN environment, to transfer data to a remote node. IPX makes a best-
effort attempt to send data packets, but does not guarantee reliable delivery of the data.

inter-partition parallelism . Refers to the ability to perform multiple database oper-
ations (such as index creation, database load, and SQL queries) at the same time
across multiple partitions of a partitioned database. Contrast with intra-partition
parallelism.

Inter-Process Communication (IPC) . A mechanism of an operating system that
allows processes to communicate with each other.

intra-partition parallelism . Refers to the ability to perform multiple database oper-
ations (such as index creation, database load, SQL queries) at the same time within a
single database partition. Contrast with inter-partition parallelism.

intra-query parallelism . Processing parts of a single query at the same time using
either intra-partition parallelism, inter-partition parallelism, or both.

invalid package . A package that becomes invalid when an object that the package
depends on is dropped. (The object is of a type other than function; for example,
index.) Such a package is implicitly rebound upon invocation. Contrast with inoperative
package.

I/O parallelism . See parallel I/O.

IP. Internet Protocol.

IPX**. Internetwork Packet Exchange**.

isolation level . An attribute that defines the degree to which an application process is
isolated from other concurrently executing application processes.

886 SQL Reference

Glossary

J
job scheduler . A program used to automate certain tasks for running and managing
database jobs.

join . A relational operation that allows for retrieval of data from two or more tables
based on matching column values.

K
key . A column or an ordered collection of columns that are identified in the description
of a table, index, or referential constraint.

key-value based partitioning strategy . A strategy for assigning rows in a table to
database partitions. Rows are assigned based on the values of the partitioning key
columns.

keyword . One of the predefined words of a computer, command language, or an
application.

L
labeled duration . A number that represents a duration of years, months, days, hours,
minutes, seconds, or microseconds.

large object (LOB) . A sequence of bytes, where the length can be up to 2 gigabytes.
It can be any of three types: BLOB (binary), CLOB (single-byte character or mixed) or
DBCLOB (double-byte character).

length attribute . A value associated with a string that represents the declared fixed
length or maximum length of the string.

LEN node . Low-entry networking node.

list prefetch . An access method that takes advantage of prefetching even in queries
that do not access data sequentially. This is done by scanning the index and collecting
RIDs in advance of accessing any data pages. These RIDs are then sorted, and data is
prefetched using this list.

load copy . A backup image of data that was loaded at a previous time and can be
restored during roll-forward recovery.

load utility . A nontransactional utility that performs block updates of table data. Con-
trast with import utility.

LOB . Large object.

 Appendix O. Glossary 887

Glossary

LOB locator . A mechanism that allows an application program to manipulate a large
object value in the database system. A LOB locator is a simple token value that repres-
ents a single LOB value. An application program retrieves a LOB locator into a host
variable and can then apply SQL functions to the associated LOB value via the locator.

local database . A database that is physically located on the workstation in use. Con-
trast with remote database.

local database directory . A directory where a database physically resides. Data-
bases that are displayed in the local database directory are located on the same node
as the system database directory.

local table lock . A table lock that is acquired only on a single database partition.

local update . An update to the base table, not to the replica.

locator . See LOB locator.

lock . (1) A means of serializing events or access to data. (2) A means of preventing
uncommitted changes made by one application process from being perceived by
another application process and for preventing one application process from updating
data that is being accessed by another process.

lock escalation . In the database manager, the response that occurs when the number
of locks issued for one agent exceeds the limit specified in the database configuration;
the limit is defined by the MAXLOCKS configuration parameter. During a lock esca-
lation, locks are freed by converting locks on rows of a table into one lock on a table.
This is repeated until the limit is no longer exceeded.

locking . The mechanism used by the database manager to ensure the integrity of
data. Locking prevents concurrent users from accessing inconsistent data.

log . (1) See database log. (2) A file used to record changes made in a system.

log head . The oldest written log record in the active log.

logical node . A node on a processor when more than one node is assigned to that
processor. See also node.

logical operator . A keyword that specifies how multiple search conditions are to be
evaluated (AND, OR) or if the logical sense of a search condition is to be inverted
(NOT).

logical unit (LU) . In SNA, a port through which an end user accesses the SNA
network to communicate with another end user. An LU may be capable of supporting
many sessions with other LUs.

logical unit 6.2 (LU 6.2) . The LU type that supports sessions between two applica-
tions using APPC.

888 SQL Reference

Glossary

log partition . The log file on each database partition that records database activity for
that database partition.

log record . A record of an update to a database performed during a unit of work. This
record is written after the log tail of the active log.

log tail . The log record that was written most recently in an active log.

long string . A varying-length string whose maximum length is greater than 254 bytes.

long table space . A table space that can store only long string or large object (LOB)
data.

low-entry networking node (LEN node) . A type 2.1 node that supports independent
LU protocols but does not support CP-CP sessions. It can be a peripheral node
attached to a boundary node in a subarea network, an end node attached to an APPN
network node in an APPN network, or a peer-connected node directly attached to
another LEN node or APPN end node.

LU. Logical unit.

LU 6.2. See logical unit 6.2.

LU type . The classification of a logical unit in terms of the specific subset of SNA
protocols and options it supports for a given session, specifically:

¹ The values allowed in the session activation request

¹ The usage of data stream controls, function management headers, request unit
parameters, and sense data values

¹ Presentation services protocols such as those associated with function manage-
ment headers

M
mapped conversation . In APPC, a conversation between two transaction programs
(TPs) using the APPC mapped conversation API. In typical situations, end-user TPs
use mapped conversation and service TPs use basic conversations. However, either
type of program can use either type of conversation. Contrast with basic conversation.

masking character . A character used to represent optional characters at the front,
middle, and end of a search term. Masking characters are normally used for finding
variations of a term in a precise index.

MBCS. Multi-byte character set.

migration . (1) The process of moving data from one computer system to another
without converting the data. (2) Installation of a new version or release of a program to
replace an earlier version or release.

 Appendix O. Glossary 889

Glossary

mixed-character string . A string containing a mixture of single-byte and multi-byte
characters.

mixed-data string . Synonym for mixed-character string.

mobile client . The node, usually a lap top computer, where the mobile enabler and
replication source and target tables used in a mobile environment are located. The
mobile replication mode is invoked from the mobile client.

mobile replication enabler . A replication program that starts the mobile replication
mode at the mobile client.

mobile replication mode . A mode of replication in which the Capture and Apply pro-
grams operate as needed rather than autonomously and continuously. This mode is
invoked from the mobile client and allows data to be replicated when the mobile client
is available for a connection to the source or target server.

modelled statistics . Statistics for a database object that may or may not be refer-
enced in an SQL statement, yet currently exist in an explain model. The object may or
may not currently exist in the database.

mode name . In APPC, the name used by the initiator of a session to designate the
characteristics desired for the session, such as message length limits, sync point, class
of service within the transport network, and session routing and delay characteristics.

monitoring session . The act of monitoring a database manager or of playing back
information from a previously monitored database manager. The DB2 Performance
Monitor is used for creating a monitoring session and for selecting which database
objects to monitor.

monitor switch . Database manager parameters manipulated by the user to control
the type of information and the quantity of information returned in performance snap-
shots.

multi-byte character set (MBCS) . A set of characters in which each character is
represented by two or more bytes. Those using only two bytes are more commonly
known as double-byte character sets.

multitasking . A mode of operation that provides for concurrent performance, or inter-
leaved execution of two or more tasks. (I) (A)

890 SQL Reference

Glossary

N
NAU. Network addressable unit.

NDS. Network Directory Services.

nested table expression . A result table obtained directly or indirectly from one or
more other tables through the evaluation of a fullselect that is specified in the FROM
clause.

NETID. Network identifier. Synonym for network name.

network address . An identifier for a node in a network.

network addressable unit (NAU) . A logical unit (LU), physical unit (PU), control point
(CP), or system services control point (SSCP). It is the origin or the destination of infor-
mation transmitted by the path control network. See also network name.

Network Directory Services (NDS) . A global, distributed, replicated database intro-
duced in NetWare** Version 4.0 that maintains information about, and provides access
to, every resource on the network. The NetWare Directory database organizes objects,
independent of their physical location, in a hierarchical tree structure called the directory
tree.

network name . In SNA, a symbolic name by which end users refer to a network
addressable unit (NAU), a link station, or a link. Synonymous with NETID.

network node (NN) . In APPN, a node on the network that provides distributed direc-
tory services, topology database exchanges with other APPN network nodes, and
session and routing services. Synonym for APPN network node.

network node server . An APPN network node that provides network services for its
local logical units and adjacent end nodes.

network-qualified name . The name by which an LU is known throughout an intercon-
nected SNA network. A network-qualified name consists of a network name identifying
the individual subnetwork, and a network LU name. Network-qualified names are
unique throughout an interconnected network. Also known as the network-qualified LU
name, or fully qualified LU name.

network services . The services within network addressable units that control network
operation through SSCP-SSCP, SSCP-PU, SSCP-LU, and CP-CP sessions.

NN. Network node.

node . (1) In database partitioning, synonymous with database partition. (2) In hard-
ware, a uniprocessor or symmetric multiprocessor (SMP) computer that is part of a
clustered system or a massively parallel processing (MPP) system. For example,
RS/6000 SP is an MPP system that consists of a number of nodes connected by a

 Appendix O. Glossary 891

Glossary

high-speed network. (3) In communications, an end point of a communications link, or
a junction common to two or more links in a network. Nodes can be processors, com-
munication controllers, cluster controllers, terminals, or workstations. Nodes can vary in
routing and other functional capabilities.

node directory . A directory that contains information necessary to establish communi-
cations from a client workstation to all applicable database servers.

nodegroup . A named group of one or more database partitions.

noncondensed attribute . A table attribute indicating that the table contains a history
of changes to the data, not current data. A table that has this attribute set includes
more than one row for each key value.

nondelimited ASCII (ASC) format . A file format used to import data. Nondelimited
ASCII is a sequential ASCII file with row delimiters used for data exchange with any
ASCII product.

normalization . In databases, the process of restructuring a data model by reducing its
relations to their simplest forms. (T)

not-fenced . A type of user-defined function or stored procedure that is defined to be
run in the DBMS process. Contrast with fenced.

not-variant function . A user-defined function whose result is solely dependent on the
values of the input arguments. Successive invocations with the same argument values
always produce the same results. Contrast with variant function.

nullable . The condition where a value for a column, function parameter, or result can
have an absence of a value. For example, a field for a person's middle initial does not
require a value.

null value . A parameter position for which no value is specified.

O
object . (1) Anything that can be created or manipulated with SQL—for example,
tables, views, indexes, or packages. (2) In object-oriented design or programming, an
abstraction consisting of data and operations associated with that data. (3) For
NetWare**, an entity that is defined on the network and thus given access to the file
server.

object property . A property that identifies a category of information associated with
an object. A NetWare** bindery object can be assigned one or more properties. The
DB2 server instance object has an object property NET_ADDR, which denotes the
location of the record within the object.

object type . (1) A 2-byte number that classifies an object in the bindery on a
NetWare** file server. 062B represents the DB2 database server object type. (2) A

892 SQL Reference

Glossary

categorization or grouping of object instances that share similar behaviors and charac-
teristics.

ODBC. Open Database Connectivity.

ODBC driver . A driver that implements ODBC function calls and interacts with a data
source.

offline backup . A backup of the database or table space that was made when the
database or table space was not being accessed by applications. The Backup Data-
base utility acquires exclusive use of the database until the backup is complete. Con-
trast with online backup.

offline restore . A restoration of a copy of a database or table space from a backup.
The Backup Database utility has exclusive use of the database until the restore is com-
pleted.

online backup . A backup of the database or table space that is made while the data-
base or table space is being accessed by other applications. Contrast with offline
backup.

online monitor . See Snapshot Monitor.

online restore . A restoration of a copy of a database or table space while the data-
base or table space is being accessed by other applications. Contrast with offline
restore.

Open Database Connectivity (ODBC) . An API that allows access to database man-
agement systems using callable SQL, which does not require the use of a SQL pre-
processor. The ODBC architecture allows users to add modules, called database
drivers, that link the application to their choice of database management systems at run
time. Applications do not have to be linked directly to the modules of all the supported
database management systems.

operand . An entity on which an operation is performed.

optimized SQL text . SQL text, produced by the Explain facility, based on the query
actually used by the optimizer to choose the access plan. This query has been supple-
mented and rewritten by the various components of the SQL compiler during statement
compilation. The text has been reconstructed from its internal representation, and
differs from the original SQL text. The optimized statement produces the same result as
the original statement.

optimizer . A component of the SQL compiler that chooses an access plan for a DML
statement by modelling the execution cost of many alternative access plans and
choosing the one with the minimal estimated cost.

ordinary identifier . In SQL, a letter, which might be followed by zero or more charac-
ters, each of which is a letter (a-z and A-Z), a symbol, a number, or the underscore
character, used to form a name.

 Appendix O. Glossary 893

Glossary

ordinary token . A numeric constant, an ordinary identifier, a host identifier, or a
keyword.

outer join . A join method in which a column that is not common to all of the tables
being joined becomes part of the resultant table. Contrast with inner join.

output file . A database or device file that is opened with the option to allow the writing
of records.

overflow record . (1) On an indirectly addressed file, a record whose key is random-
ized to the address of a full track or to the address of a home record. (2) In DB2, an
updated record that is too large to fit on the page it is currently stored in. The record is
copied to a different page and its original location is replaced with a pointer to the new
location. (3) In Database Monitor, a record inserted in the event monitor data stream
to indicate that records were discarded because the named pipe was full and records
were not processed in time. An overflow record indicates how many records were dis-
carded.

overloaded function name . A function name for which there are multiple functions
within a function path or schema. Those within the same schema must have different
signatures.

P
package . A control structure produced during program preparation that is used to
execute SQL statements.

packet . In data communication, a sequence of binary digits, including data and control
signals, that is transmitted and switched as a composite whole.

page . A block of storage within a table or index whose size is 4096 bytes (4 K).

parallel I/O . Refers to the process of reading from or writing to two or more I/O
devices at the same time to reduce response time.

parallelism . The ability to perform multiple database operations at the same time (in
parallel). See inter-partition parallelism, intra-partition parallelism, and parallel I/O.

parallel session . In SNA, two or more concurrently active sessions between the same
two logical units (LUs). Each session can have different session parameters. Contrast
with session.

parameterized data type . A data type that can be defined with a specific length,
scale, or precision. These are the string and decimal data types.

parameter marker . A question mark (?) that appears in a statement string of a
dynamic SQL statement. The question mark can appear where a host variable could
appear if the statement string was a static SQL statement.

894 SQL Reference

Glossary

parent key . A primary key or unique key that is used in a referential constraint. The
values of a parent key determine the valid values of the foreign key in the constraint.

parent row . A row that has at least one dependent row.

parent table . A table that is a parent in at least one referential constraint.

partition compatible join . A join where all of the rows that are joined reside in the
same database partition.

partitioned database . A database with two or more database partitions. Data in user
tables can be located in one or more database partitions. When a table is on multiple
partitions, some of its rows are stored in one partition and others are stored in other
partitions. See database partition.

partitioning function . A function that takes a partitioning key value of a row as input
and produces a partition number as output.

partitioning key . (1) An ordered set of one or more columns in a given table. For
each row in the table, the values in the partitioning key columns are used to determine
on which database partition the row belongs. (2) In replication, an ordered set of one
or more columns in a given table. For each row in the source table, the values in the
partitioning key columns are used to determine in which target table the row belongs.

partitioning map . A vector of partition numbers that maps a partitioning map index to
database partitions in the nodegroup.

partitioning map index . A number assigned to a hash partition or range partition.

partner logical unit (LU) . In SNA, the remote participant in a session.

peer-to-peer communication . Communication between two SNA logical units (LUs)
that is not managed by a host; commonly used when referring to LU 6.2 nodes.

performance metrics . A collection of all performance variables belonging to the same
database object.

Performance Monitor . A tool that lets database administrators use a graphical inter-
face to monitor the performance of a DB2 system for tuning purposes. The tasks pro-
vided by this tool can be accessed from the Control Center.

performance snapshot . Performance data for a set of database objects that is
retrieved from the database manager at a point in time.

performance variable . A statistic derived from performance data obtained from the
database manager. The expression for this variable can be user-defined.

performance variable profile . A flat file that contains definitions of performance vari-
ables. This file can be edited, copied, and shared. Different profiles can be used by the
same Snapshot Monitor so that different calculations can be performed.

 Appendix O. Glossary 895

Glossary

phantom row . A table row that can be read by application processes that are exe-
cuting with any isolation level except repeatable read. When an application process
issues the same query multiple times within a single unit of work, additional rows can
appear between queries because of the data being inserted and committed by applica-
tion processes that are running concurrently.

physical unit . The component that manages and monitors the resources (such as
attached links and adjacent link stations) associated with a node, as requested by an
SSCP through an SSCP-PU session. An SSCP activates a session with the PU in order
to indirectly manage, through PU, resources of the node such as attached links. This
term applies to types 2.0, 4, and 5 nodes only. See also control point.

point-in-time table . A type of target table whose content matches all or part of a
source table, with an added system column that identifies the approximate time when
the particular row was inserted or updated at the source system.

point of consistency . A point in time when all the recoverable data a program
accesses is consistent. The point of consistency occurs when updates, inserts, and
deletions are either committed to the physical database or rolled back. Synonym for
commit point and sync point. See also rollback.

precision . In numeric data types, the total number of binary or decimal digits
excluding the sign.

precompile . To process programs containing SQL statements before they are com-
piled. SQL statements are replaced with statements that will be recognized by the host
language compiler. The output from a precompile includes source code that can be
submitted to the compiler and used in the bind process.

predicate . An element of a search condition that expresses or implies a comparison
operation.

prefetch . To read data ahead of, and in anticipation of, its use.

prepare . To convert an SQL statement from text form to an executable form, by sub-
mitting it to the SQL compiler.

primary key . A unique key that is part of the definition of a table. A primary key is the
default parent key of a referential constraint definition.

primary log . A set of one or more log files used to record changes to a database.
Storage for these files is allocated in advance. Contrast with secondary log.

privilege . The right to access a specific database object in a specific way. These
rights are controlled by users with SYSADM (system administrator) authority or DBADM
(database administrator) authority or by creators of objects. Privileges include rights
such as creating, deleting, and selecting data from tables.

procedure . Synonym for stored procedure.

896 SQL Reference

Glossary

protocol.ini . A file that contains LAN configuration and binding information for all the
protocol and medium access control (MAC) system modules.

PU. Physical unit.

public authority . The authority for an object granted to all users.

PU type . In SNA, the classification of a physical unit (PU) according to the type of
node on which it resides.

Q
quantified predicate . A predicate that compares a value with a set of values.

query . A request for information from the database based on specific conditions; for
example, a request for a list of all customers in a customer table whose balance is
greater than $1000.

quiesce . To end a process by allowing operations to complete normally, while
rejecting any new requests for work.

quoted name . Synonym for delimited identifier.

R
RDBMS. Relational database management system.

read stability (RS) . An isolation level that locks only those rows that an application
retrieves within a transaction. It ensures that any qualifying row read during a trans-
action is not changed by other application processes until the transaction is completed,
and that any row changed by another application process is not read until the change is
committed by that process. Read stability allows more concurrency than repeatable
read, and less than cursor stability.

rebind . To create a new package for an application program that was previously
bound. For example, if an index is added for a table accessed by a program, the
package must be rebound for it to take advantage of the new index.

record . The storage representation of a single row of a table.

recording . The information from performance snapshots that can be viewed at a later
time.

recoverable log . A database log in which all log records are retained so that, in the
event of a failure, lost data can be recovered during forward recovery. Contrast with
circular log.

 Appendix O. Glossary 897

Glossary

recovery . (1) The act of resetting a system, or data that is stored in a system, to an
operable state following damage. (2) The process of rebuilding databases by restoring
a backup and rolling forward the logs associated with it.

recovery log . See database log.

recovery pending . A state of the database or table space. A database or table space
is put in recovery pending state when it is restored from a backup. While the database
or table space is in this state, its data cannot be accessed.

recursion cycle . The cycle that occurs when a fullselect within a common table
expression includes the name of the common table expression in a FROM clause.

recursive common table expression . A common table expression that refers to itself
in a FROM clause from the fullselect. Recursive common table expressions are used to
write recursive queries.

recursive query . A fullselect that uses a recursive common table expression.

referential constraint . The referential integrity rule that the nonnull values of the
foreign key are valid only if they also appear as values of a parent key.

referential integrity . The state of a database in which all values of all foreign keys
are valid.

refresh . A process in which all of the data of interest in a user table is copied to the
target table, replacing existing data.

regular table space . A table space that can store any nontemporary data.

rejected transaction . A transaction containing one or more updates from replica
tables that are out of date in comparison to the origin table.

relational database . A database that can be perceived as a set of tables and manipu-
lated in accordance with the relational model of data.

remote database . A database that is physically located on a workstation other than
the one in use. Contrast with local database.

remote unit of work (RUOW) . A unit of work that allows for the remote preparation
and execution of SQL statements.

repeatable read (RR) . An isolation level that locks all the rows in an application that
are referenced within a transaction. When a program uses repeatable read protection,
rows referenced by the program cannot be changed by other programs until the
program ends the current transaction.

replica . A type of target table that can be updated locally and receives updates from a
user table through a subscription definition. It can be a source for updating the user
table or read-only target tables.

898 SQL Reference

Glossary

replication . The process of taking changes that are stored in the database log or
journal at the source server and applying them to the target server.

replication administrator . The user responsible for defining replication sources and
subscriptions. This user can also run the Capture and Apply programs.

replication source . A database table that is defined as a source for replication. This
type of table can accept copy requests and is the source table in a replication sub-
scription set. See also subscription set.

replication subscription . A specification for copying changed data from replication
sources to target tables at a specified time and frequency, with the option of enhancing
data. It defines all of the information that is required by the Apply program to copy data.

reserved word . (1) In programming languages, a keyword that may not be used as
an identifier. (I) (2) A word used in a source program to describe an action to be taken
by the program or compiler. It must not appear in the program as a user-defined name
or a system name. (3) A word that has been set aside for special use in the SQL
standard.

restore . To return a backup copy to the active storage location for use.

restore set . A backup copy of a database or table space plus zero or more log files
that, when restored and rolled forward, bring the database or table space back to a
consistent state.

result set . Synonym for result table.

result table . The set of rows produced by the evaluation of a SELECT statement.
Synonymous with result set.

revoke . To remove a privilege or authority from an authorization ID.

RID (Record ID) . A number that is used internally by DB2 to uniquely identify a record
in a table. It contains enough information to address the page in which the record is
stored.

rollback . The process of restoring data changed by SQL statements to the state at its
last commit point. See also point of consistency.

roll-forward . The process of updating the data in a restored database by applying
changes recorded in the database log. See forward recovery.

row . The horizontal component of a table consisting of a sequence of values, one for
each column of the table.

RR. Repeatable read.

RS. Read stability.

 Appendix O. Glossary 899

Glossary

RUOW. Remote unit of work.

S
sargable . A predicate that can be evaluated as a search argument. See predicate.

SBCS. Single-byte character set.

scalar fullselect . A fullselect that returns a single value— one row of data consisting
of exactly one column.

scalar function . An SQL operation that produces a single value from another value
and is expressed as a function name followed by a list of arguments enclosed in paren-
theses.

scale . The number of digits in the fractional part of a number.

schema . A collection of database objects such as tables, views, indexes, or triggers. It
provides a logical classification of database objects.

SDK. Software Developer's Kit.

search condition . A criterion for selecting rows from a table. A search condition con-
sists of one or more predicates.

secondary log . A set of one or more log files used to record changes to a database.
Storage for these files is allocated as needed when the primary log is full.

self-referencing row . A row that is a parent of itself.

self-referencing subquery . A subselect or fullselect within a DELETE, INSERT, or
UPDATE statement that refers to the same table that is the object of the SQL state-
ment.

self-referencing table . A table that is both a parent and a dependent table in the
same referential constraint.

server . In a network, a node that provides facilities to other stations; for example, a
file server, a printer server, a mail server.

service name . A name that provides a symbolic method of specifying the port number
to be used at a remote node. The TCP/IP connection requires:

¹ The address of the remote node.

¹ The port number to be used on the remote node to identify an application.

session . A logical connection between two stations or SNA network addressable units
(NAUs) that allows the two stations or NAUs to communicate.

900 SQL Reference

Glossary

session limit . In SNA, the maximum number of concurrently active logical unit-logical
unit (LU-LU) sessions that a particular logical unit (LU) can support.

session partner . In SNA, one of the two network addressable units (NAUs) partic-
ipating in an active session.

session security . For LU 6.2, partner LU verification and session data encryption. A
Systems Network Architecture (SNA) function that allows data to be transmitted in
encrypted form.

set operator . The SQL operators UNION, EXCEPT, and INTERSECT corresponding
to the relational operators union, difference, and intersection. A set operator derives a
result table by combining two other result tables.

shadowing . A recovery technique in which current page contents are never over-
written. Instead, new pages are allocated and written while the pages whose values are
being replaced are retained as shadow copies until they are no longer needed to
support the restoration of the system state due to a transaction rollback.

share lock . A lock that limits concurrently executing application processes to read-
only operations on database data.

short string . A fixed-length string or a varying-length string whose maximum length is
less than or equal to 254 bytes.

single-byte character set (SBCS) . A character set in which each character is repres-
ented by a one-byte code. Contrast with double-byte character set, multi-byte character
set.

SMS table space . System managed space table space.

SNA. Systems Network Architecture.

SNA network . The part of the user application network that conforms to the formats
and protocols of Systems Network Architecture (SNA). It enables reliable transfer of
data among users and provides protocols for controlling the resources of various
network configurations. The SNA network consists of network addressable units
(NAUs), gateway function, intermediate session routing function components, and the
transport network.

snapshot . See performance snapshot, explain snapshot.

Snapshot Monitor . An API used to assess the status of the database manager, indi-
vidual databases, tables, table spaces, and individual applications.

soft checkpoint . The process of writing some information to the log file header; this
information is used to determine the starting point in the log in case a database restart
is required.

 Appendix O. Glossary 901

Glossary

Software Developer's Kit (SDK) . An application development product that allows
applications to be developed on a client workstation to access remote database servers
including host relational databases through the DB2 Connect products.

source function . A user-defined function (UDF) whose body is used to implement one
or more other UDFs.

source server . The database location of the replication source and the Capture
program.

source table . A table that contains the data that is to be copied to a target table. The
source table can be a replication source table, a change data table, or a consistent
change data table. Contrast with target table.

source type . An existing type that is used to internally represent a distinct type.

special register . A storage area that is defined for an application process by the data-
base manager and is used to store information that can be referenced in SQL state-
ments. Examples are USER and CURRENT DATE.

specific function name . The name that uniquely identifies a function to the system.

SQL. A standardized language for defining and manipulating data in a relational data-
base.

SQLCA . SQL communication area.

SQL communication area (SQLCA) . A set of variables that provides an application
program with information about the execution of its SQL statements or its requests from
the database manager.

SQLDA . SQL descriptor area.

SQL descriptor area (SQLDA) . A set of variables that is used in the processing of
certain SQL statements. The SQLDA is intended for dynamic SQL programs.

SSCP. System services control point.

stack . An area in memory that stores temporary register information, parameters, and
return addresses of subroutines.

staging table . A consistent change target table that is used as the source for updating
data to multiple target tables.

standard conflict detection . Conflict detection in which the Apply program searches
for conflicts in rows that are already captured in the replica's change data tables. See
also conflict detection, enhanced conflict detection.

statement . An instruction in a program or procedure.

902 SQL Reference

Glossary

statement handle . In CLI, a handle that refers to the data object that contains infor-
mation about an SQL statement. This includes information such as dynamic arguments,
bindings for dynamic arguments and columns, cursor information, result values, and
status information. Each statement handle is associated with a connection handle.

static SQL . SQL statements that are embedded within a program, and are prepared
during the program preparation process before the program is executed. After being
prepared, a static SQL statement does not change, although values of host variables
specified by the statement may change.

stored procedure . A block of procedural constructs and embedded SQL statements
that is stored in a database and can be called by name. Stored procedures allow an
application program to be run in two parts. One part runs on the client and the other on
the server. This allows one call to produce several accesses to the database. Synony-
mous with procedure.

string . In programming languages, the form of data used for storing and manipulating
text.

Structured Query Language . See SQL.

subagent . A type of agent that works on subrequests. A single application can make
many requests, and each request can be broken into many subrequests. Therefore,
there can be multiple subagents working on behalf of the same application. All suba-
gents working for the application are coordinated by the coordinating agent for that
application. See also coordinating agent.

subordinate agent . See subagent.

subquery . A fullselect used within a search condition of an SQL statement.

subscription cycle . The processing of a subscription set by the Apply program.

subscription set . The specification of a group of source tables, target tables, and the
control information that governs the replication of changed data. Updates are committed
in the same transaction.

subselect . That form of a query that does not include an ORDER BY clause, an
UPDATE clause, or UNION operators.

symbolic destination name . Specifies the name of a remote partner. The name cor-
responds to an entry in the CPI Communications side information table that contains
the necessary information (partner LU name, mode name, partner TP name) for the
client to set up an APPC connection to the server.

synchronization level . In APPC, the specification indicating whether the corre-
sponding transaction programs exchange confirmation requests and replies.

synchronous . Pertaining to two or more processes that depend upon the occurrences
of specific events, such as a common timing signal. Contrast with asynchronous.

 Appendix O. Glossary 903

Glossary

sync point . Synonym for point of consistency.

system catalog . See catalog.

system database directory . A directory that contains entries for every database that
can be accessed using the database manager. It is created when the first database is
created or cataloged on the system.

system managed space (SMS) table space . A table space whose space is managed
by the operating system. This storage model is based on files created under subdirecto-
ries, and managed by the file system. Contrast with database managed space (DMS)
table space.

system services control point (SSCP) . The control point in a SNA network that pro-
vides network services for dependent nodes.

Systems Network Architecture (SNA) . The description of the logical structure,
formats, protocols, and operational sequences for transmitting information units through
the networks and also the operational sequences for controlling the configuration and
operation of networks.

T
table . A named data object consisting of a specific number of columns and some
unordered rows. See also base table.

table designator . A column name qualifier that designates a specific object table.

table queue . A mechanism for transferring rows between database nodes. Table
queues are distributed row streams with simplified rules for the insertion and removal of
rows. Table queues can also be used to deliver rows between different processes in
the serial database.

table space . An abstraction of a collection of containers into which database objects
are stored. A table space provides a level of indirection between a database and the
tables stored within the database. A table space:

¹ Has space on media storage devices assigned to it.

¹ Has tables created within it. These tables will consume space in the containers that
belong to the table space. The data, index, long field, and LOB portions of a table
can be stored in the same table space, or can be individually broken out into sepa-
rate table spaces.

See also system managed space (SMS) table space, database managed space (DMS)
table space, long table space, regular table space, temporary table space.

table space container . A generic term describing an allocation of space to a table
space. Depending on the table space type, the container can be a directory, device, or
file.

904 SQL Reference

Glossary

target server . The database location of the target table. Normally this is also the
location of the Apply program.

target table . The table on the target server to which data is copied. It can be a user
copy table, a point-in-time table, a base aggregate table, a change aggregate table, a
consistent change data table, or a replica table.

TCP/IP. Transmission Control Protocol/Internet Protocol.

temporary table . A table created during the processing of an SQL statement to hold
intermediate results.

temporary table space . A table space that can store only temporary tables.

territory . A portion of the POSIX** locale that is mapped to the country code for
internal processing by the database manager.

thread . In some operating systems, the smallest unit of operation to be performed in a
process.

threshold trigger . An event occurring when the value of a performance variable
exceeds or falls below a user-defined threshold value. The action that occurs as a
result of a threshold trigger could be:

¹ Logging information in an alert log file

¹ Displaying information in an alert log window

¹ Generating an audio alarm

¹ Issuing a message window

¹ Invoking a predefined command or program

time . A three-part value that designates a time of day in hours, minutes, and seconds.

time duration . A DECIMAL(6,0) value that represents a number of hours, minutes,
and seconds.

timeron . A unit of measurement used to give a rough relative estimate of the
resources, or cost, required by the database server to execute two plans for the same
query. The resources calculated in the estimate include weighted CPU and I/O costs.

timestamp . A seven-part value that consists of a date and time expressed in years,
months, days, hours, minutes, seconds, and microseconds.

timestamp duration . A DECIMAL(20,6) value that represents a number of years,
months, days, hours, minutes, seconds, and microseconds.

TM Database . Transaction Manager Database.

TP. Transaction program.

 Appendix O. Glossary 905

Glossary

token . The basic syntactic unit of a computing language. A token consists of one or
more characters, excluding the blank character, and excluding characters within a string
constant or delimited identifier.

topology and routing services (TRS) . An APPN control point component that
manages the topology database and computes routes.

trace table . A table that contains a high-level record of the execution of the Capture
program.

transaction . An exchange between a workstation and a program, two workstations, or
two programs that accomplish a particular action or result. An example is the entry of a
customer's deposit and the update of the customer's balance. Synonym for unit of work.

transaction compensation . A process that restores rows that are affected by a com-
mitted transaction that is rejected. When a committed transaction is rejected, the rows
are restored to the state that they were in before the transaction was committed.

transaction manager . Assigns identifiers to transactions, monitors their progress, and
takes responsibility for transaction completion and failure recovery.

Transaction Manager Database (TM Database) . A database that is used to log
transactions when a two-phase commit (SYNCPOINT TWOPHASE) is used with DB2
databases. In the event of transaction failure, the TM Database information can be
accessed to resynchronize databases involved in the failed transaction.

transaction program (TP) . An application program that uses APPC to communicate
with a partner application program.

transition table . A named temporary table that contains the transition values for each
row affected by the triggering modification. An old transition table contains the values of
affected rows before the modification is applied, and a new transition table contains the
values of the affected rows after the modification is applied.

transition variable . A variable that is valid only in FOR EACH ROW triggers. It
allows access to the transition values for the current row. An old transition variable is
the value of the row before the modification is applied, and the new transition variable
is the value of the row after the modification is applied.

Transmission Control Protocol/Internet Protocol (TCP/IP) . A set of communications
protocols that provide peer-to-peer connectivity functions for both local and wide area
networks.

trigger . In DB2, an object in a database that is invoked indirectly by the database
manager when a particular SQL statement is run.

triggered action . The action that is executed when the trigger event occurs.

triggered-action condition . The search condition that controls the execution of the
SQL statements within the triggered action.

906 SQL Reference

Glossary

trigger event . In a trigger definition, an update operation (INSERT, UPDATE, or
DELETE statement) that causes the trigger to be run.

truncation . The process of discarding part of a result from an operation when it
exceeds memory or storage capacity.

tuning parameters table . A table at the source server that contains timing information
used by the Capture program. The information includes:

¹ How long to keep rows in the change data table.

¹ How much time can elapse before changes are stored in a database log or journal.

¹ How often to commit changed data to the unit of work tables.

two-phase commit . A two-step process by which recoverable resources and an
external subsystem are committed. During the first step, the database manager subsys-
tems are polled to ensure that they are ready to commit. If all subsystems respond
positively, the database manager instructs them to commit.

typed parameter marker . A parameter marker that is specified along with its target
data type. It has the general form:

CAST(? AS data-type)

U
UDF. User-defined function.

UDT. User-defined type.

unambiguous cursor . A cursor that has been defined in a manner that allows a rela-
tional database to determine whether blocking can be used with the answer set. A
cursor defined FOR FETCH ONLY or FOR READ ONLY can be used with blocking,
whereas a cursor defined FOR UPDATE cannot.

unbind session (UNBIND) . A request to deactivate a session between two logical
units (LUs).

uncommitted read (UR) . An isolation level that allows an application to access
uncommitted changes of other transactions. The application does not lock other appli-
cations out of the row it is reading, unless the other application attempts to drop or alter
the table.

uncoordinated transaction . A transaction that accesses more than one resource but
its commit or rollback is not being coordinated by a Transaction Manager.

Unicode** . An international character encoding scheme that is a subset of the ISO
10646 standard. Each character supported is defined using a unique 2-byte code.

 Appendix O. Glossary 907

Glossary

unique constraint . The rule that no two values in a primary key or key of a unique
index can be the same.

unique index . An index that ensures that no identical key values are stored in a table.

unique key . A key that is constrained so that no two of its values are equal.

unit of work . A recoverable sequence of operations within an application process. At
any time, an application process is a single unit of work, but the life of an application
process can involve many units of work as a result of commit or rollback operations.
Synonym for transaction.

unit-of-work table . A replication control table at the source server that contains
commit records read from the database log or journal. The records include a unit-of-
recovery ID that can be used to join the unit-of-work table and the change data table to
produce transaction-consistent change data. For DB2, the unit-of-work table optionally
includes the correlation ID, which can be useful for auditing purposes.

untyped parameter marker . A parameter marker that is specified without its target
data type. It has the form of a single question mark.

update rule . A condition enforced by the database manager that must be met before
a column can be updated.

UR. Uncommitted read.

user copy table . A target table whose content matches all or part of a source table
and contains only user data columns.

user-defined distinct type . See distinct type.

user-defined function (UDF) . A function that is defined to the database management
system and can be referenced thereafter in SQL queries. It can be one of the following
functions:

¹ An external function, in which the body of the function is written in a programming
language whose arguments are scalar values and a scalar result is produced for
each invocation.

¹ A sourced function, implemented by another built-in or user-defined function
already known to the DBMS. This function can be either a scalar function or
column (aggregating) function, and returns a single value from a set of values (for
example, MAX or AVG).

user-defined performance variable . A performance variable created by a user and
added to the performance variable profile.

user-defined target table . Any type of target table that is created by a user for an
application and can be used in the replication process.

908 SQL Reference

Glossary

user-defined type (UDT) . A data type that is not native to the database manager and
was created by a user. See also distinct type.

user table . A table created for and used by an application before it is defined as a
replication source. It is used as the source for updates to read-only target tables, con-
sistent change data tables, and replicas.

UTC. Coordinated Universal Time.

V
value . (1) Smallest unit of data manipulated in SQL. (2) A specific data item at the
intersection of a column and a row.

variable . A data element that specifies a value that can be changed.

variant function . A user-defined function whose result is dependent on its input
parameter values as well as other factors. Successive invocations with the same
parameter values might produce different results. Contrast with not-variant function.

varying-length string . A character, graphic, or binary string whose length is not fixed
but can range within set limits.

view . A logical table that consists of data that is generated by a query. Contrast with
base table.

Visual Explain . A tool that lets database administrators and application programmers
use a graphical interface to display and analyze detailed information on the access plan
of a given SQL statement. The tasks provided by this tool can be accessed from the
Control Center.

W
warm start . A restart that allows reuse of previously initialized input and output work
queues. Contrast with cold start.

warm start table . A table used by the Capture program to save position in a DBMS
log for later reference during warm start.

well known address . An address used to uniquely identify a particular node in the
network to establish connections between nodes. The well known address is a combi-
nation of the network address and the port used on the logical node.

X
XID. Exchange station ID.

 Appendix O. Glossary 909

Glossary

910 SQL Reference

Appendix P. How the DB2 Library Is Structured

The DB2 Universal Database library consists of SmartGuides, online help, and books.
This section describes the information that is provided, and how to access it.

To help you access product information online, DB2 provides the Information Center on
OS/2, Windows 95, and the Windows NT operating systems. You can view task infor-
mation, DB2 books, troubleshooting information, sample programs, and DB2 information
on the Web. “About the Information Center” on page 918 has more details.

 SmartGuides
SmartGuides help you complete some administration tasks by taking you through each
task one step at a time. SmartGuides are available on OS/2, Windows 95, and the
Windows NT operating systems. The following table lists the SmartGuides.

SmartGuide Helps you to... How to Access...

Add Database Catalog a database on a client workstation. From the Client Configuration
Assistant, click on Add .

Create Database Create a database, and to perform some basic
configuration tasks.

From the Control Center, click with the
right mouse button on the Databases
icon and select Create ->New.

Performance Config-
uration

Tune the performance of a database by
updating configuration parameters to match your
business requirements.

From the Control Center, click with the
right mouse button on the database
you want to tune and select Configure
performance .

Backup Database Determine, create, and schedule a backup plan. From the Control Center, click with the
right mouse button on the database
you want to backup and select
Backup ->Database using
SmartGuide .

Restore Database Recover a database after a failure. It helps you
understand which backup to use, and which logs
to replay.

From the Control Center, click with the
right mouse button on the database
you want to restore and select
Restore ->Database using
SmartGuide .

Create Table Select basic data types, and create a primary
key for the table.

From the Control Center, click with the
right mouse button on the Tables icon
and select Create ->Table using
SmartGuide .

Create Table Space Create a new table space. From the Control Center, click with the
right mouse button on the Table
spaces icon and select Create ->Table
space using SmartGuide .

 Copyright IBM Corp. 1993, 1997 911

 Online Help
Online help is available with all DB2 components. The following table describes the
various types of help.

Type of Help Contents How to Access...

Command Help Explains the syntax of
commands in the
command line
processor.

From the command line processor in interac-
tive mode, enter:

? command

where command is a keyword or the entire
command.

For example, ? catalog displays help for all
the CATALOG commands, whereas ?
catalog database displays help for the
CATALOG DATABASE command.

Control Center
Help

Explains the tasks
you can perform in a
window or notebook.
The help includes pre-
requisite information
you need to know,
and describes how to
use the window or
notebook controls.

From a window or notebook, click on the
Help push button or press the F1 key.

Message Help Describes the cause
of a message
number, and any
action you should
take.

From the command line processor in interac-
tive mode, enter:

? message number

where message number is a valid message
number.

For example, ? SQL30081 displays help
about the SQL30081 message.

To view message help one screen at a time,
enter:

? XXXnnnnn | more

where XXX is the message prefix, such as
SQL, and nnnnn is the message number,
such as 30081.

To save message help in a file, enter:

? XXXnnnnn > filename.ext

where filename.ext is the file where you want
to save the message help.

Note: On UNIX-based systems, enter:

\? XXXnnnnn | more or

\? XXXnnnnn > filename.ext

912 SQL Reference

Type of Help Contents How to Access...

SQL Help Explains the syntax of
SQL statements.

From the command line processor in interac-
tive mode, enter:

help statement

where statement is an SQL statement.

For example, help SELECT displays help
about the SELECT statement.

SQLSTATE Help Explains SQL states
and class codes.

From the command line processor in interac-
tive mode, enter:

? sqlstate or ? class-code

where sqlstate is a valid five digit SQL state
and class-code is a valid two digit class
code.

For example, ? 08003 displays help for the
08003 SQL state, whereas ? 08 displays
help for the 08 class code.

 Appendix P. How the DB2 Library Is Structured 913

 DB2 Books
The table in this section lists the DB2 books. They are divided into two groups:

¹ Cross-platform books: These books are for DB2 on any of the supported platforms.

¹ Platform-specific books: These books are for DB2 on a specific platform. For
example, there is a separate Quick Beginnings book for DB2 on OS/2, Windows
NT, and UNIX-based operating systems.

Most books are available in HTML and PostScript format, and in hardcopy that you can
order from IBM. The exceptions are noted in the table.

You can obtain DB2 books and access information in a variety of different ways:

View To view an HTML book, you can do the following:

¹ If you are running DB2 administration tools on OS/2, Windows 95, or
the Windows NT operating systems, you can use the Information
Center. “About the Information Center” on page 918 has more details.

¹ Use the open file function of the Web browser supplied by DB2 (or one
of your own) to open the following page:

 sqllib/doc/html/index.htm

The page contains descriptions of and links to the DB2 books. The
path is located on the drive where DB2 is installed.

You can also open the page by double-clicking on the DB2 Online
Books icon. Depending on the system you are using, the icon is in the
main product folder or the Windows Start menu.

Search To search for information in the HTML books, you can do the following:

¹ Click on Search the DB2 Books at the bottom of any page in the
HTML books. Use the search form to find a specific topic.

¹ Click on Index at the bottom of any page in an HTML book. Use the
Index to find a specific topic in the book.

¹ Display the Table of Contents or Index of the HTML book, and then
use the find function of the Web browser to find a specific topic in the
book.

¹ Use the bookmark function of the Web browser to quickly return to a
specific topic.

¹ Use the search function of the Information Center to find specific
topics. “About the Information Center” on page 918 has more details.

Print To print a book on a PostScript printer, look for the file name shown in the
table.

Order To order a hardcopy book from IBM, use the form number.

914 SQL Reference

Book Name Book Description Form Number

File Name

Cross-Platform Books

Administration Getting Started Introduces basic DB2 database administration con-
cepts and tasks, and walks you through the primary
administrative tasks.

S10J-8154

db2k0x50

Administration Guide Contains information required to design, implement,
and maintain a database to be accessed either locally
or in a client/server environment.

S10J-8157

db2d0x50

API Reference Describes the DB2 application programming interfaces
(APIs) and data structures you can use to manage
your databases. Explains how to call APIs from your
applications.

S10J-8167

db2b0x50

CLI Guide and Reference Explains how to develop applications that access DB2
databases using the DB2 Call Level Interface, a call-
able SQL interface that is compatible with the Micro-
soft ODBC specification.

S10J-8159

db2l0x50

Command Reference Explains how to use the command line processor, and
describes the DB2 commands you can use to manage
your database.

S10J-8166

db2n0x50

DB2 Connect Enterprise Edition
Quick Beginnings

Provides planning, installing, configuring, and using
information for DB2 Connect Enterprise Edition. Also
contains installation and setup information for all sup-
ported clients.

S10J-7888

db2cyx50

DB2 Connect Personal Edition
Quick Beginnings

Provides planning, installing, configuring, and using
information for DB2 Connect Personal Edition.

S10J-8162

db2c1x50

DB2 Connect User's Guide Provides concepts, programming and general using
information about the DB2 Connect products.

S10J-8163

db2c0x50

DB2 Connectivity Supplement Provides setup and reference information for cus-
tomers who want to use DB2 for AS/400, DB2 for
OS/390, DB2 for MVS, or DB2 for VM as DRDA Appli-
cation Requesters with DB2 Universal Database
servers, and customers who want to use DRDA Appli-
cation Servers with DB2 Connect (formerly DDCS)
application requesters.

Note: Available in HTML and PostScript formats
only.

No form number

db2h1x50

Embedded SQL Programming
Guide

Explains how to develop applications that access DB2
databases using embedded SQL, and includes dis-
cussions about programming techniques and perform-
ance considerations.

S10J-8158

db2a0x50

Glossary Provides a comprehensive list of all DB2 terms and
definitions.

Note: Available in HTML format only.

No form number

db2t0x50

 Appendix P. How the DB2 Library Is Structured 915

Book Name Book Description Form Number

File Name

Installing and Configuring DB2
Clients

Provides installation and setup information for all DB2
Client Application Enablers and DB2 Software Devel-
oper's Kits.

Note: Available in HTML and PostScript formats
only.

No form number

db2iyx50

Master Index Contains a cross reference to the major topics
covered in the DB2 library.

Note: Available in PostScript format and hardcopy
only.

S10J-8170

db2w0x50

Message Reference Lists messages and codes issued by DB2, and
describes the actions you should take.

S10J-8168

db2m0x50

Replication Guide and Reference Provides planning, configuring, administering, and
using information for the IBM Replication tools sup-
plied with DB2.

S95H-0999

db2e0x50

Road Map to DB2 Programming Introduces the different ways your applications can
access DB2, describes key DB2 features you can use
in your applications, and points to detailed sources of
information for DB2 programming.

S10J-8155

db2u0x50

SQL Getting Started Introduces SQL concepts, and provides examples for
many constructs and tasks.

S10J-8156

db2y0x50

SQL Reference Describes SQL syntax, semantics, and the rules of the
language. Also includes information about release-to-
release incompatibilities, product limits, and catalog
views.

S10J-8165

db2s0x50

System Monitor Guide and Ref-
erence

Describes how to collect different kinds of information
about your database and the database manager.
Explains how you can use the information to under-
stand database activity, improve performance, and
determine the cause of problems.

S10J-8164

db2f0x50

Troubleshooting Guide Helps you determine the source of errors, recover
from problems, and use diagnostic tools in consulta-
tion with DB2 Customer Service.

S10J-8169

db2p0x50

What's New Describes the new features, functions, and enhance-
ments in DB2 Universal Database.

Note: Available in HTML and PostScript formats
only.

No form number

db2q0x50

Platform-Specific Books

Building Applications for UNIX
Environments

Provides environment setup information and step-by-
step instructions to compile, link, and run DB2 applica-
tions on a UNIX system.

S10J-8161

db2axx50

Building Applications for
Windows and OS/2 Environ-
ments

Provides environment setup information and step-by-
step instructions to compile, link, and run DB2 applica-
tions on a Windows or OS/2 system.

S10J-8160

db2a1x50

916 SQL Reference

Book Name Book Description Form Number

File Name

DB2 Extended Enterprise Edition
Quick Beginnings

Provides planning, installing, configuring, and using
information for DB2 Universal Database Extended
Enterprise Edition for AIX.

S72H-9620

db2v3x50

DB2 Personal Edition Quick
Beginnings

Provides planning, installing, configuring, and using
information for DB2 Universal Database Personal
Edition on OS/2, Windows 95, and the Windows NT
operating systems.

S10J-8150

db2i1x50

DB2 SDK for Macintosh Building
Your Applications

Provides environment setup information and step-by-
step instructions to compile, link, and run DB2 applica-
tions on a Macintosh system.

Note: Available in PostScript format and hardcopy
for DB2 Version 2.1.2 only.

S50H-0528

sqla7x02

DB2 SDK for SCO OpenServer
Building Your Applications

Provides environment setup information and step-by-
step instructions to compile, link, and run DB2 applica-
tions on a SCO OpenServer system.

Note: Available for DB2 Version 2.1.2 only.

S89H-3242

sqla9x02

DB2 SDK for Silicon Graphics
IRIX Building Your Applications

Provides environment setup information and step-by-
step instructions to compile, link, and run DB2 applica-
tions on a Silicon Graphics system.

Note: Available in PostScript format and hardcopy
for DB2 Version 2.1.2 only.

S89H-4032

sqlaax02

DB2 SDK for SINIX Building
Your Applications

Provides environment setup information and step-by-
step instructions to compile, link, and run DB2 applica-
tions on a SINIX system.

Note: Available in PostScript format and hardcopy
for DB2 Version 2.1.2 only.

S50H-0530

sqla8x00

Quick Beginnings for OS/2 Provides planning, installing, configuring, and using
information for DB2 Universal Database on OS/2. Also
contains installing and setup information for all sup-
ported clients.

S10J-8147

db2i2x50

Quick Beginnings for UNIX Provides planning, installing, configuring, and using
information for DB2 Universal Database on
UNIX-based platforms. Also contains installing and
setup information for all supported clients.

S10J-8148

db2ixx50

Quick Beginnings for Windows
NT

Provides planning, installing, configuring, and using
information for DB2 Universal Database on the
Windows NT operating system. Also contains
installing and setup information for all supported
clients.

S10J-8149

db2i6x50

 Appendix P. How the DB2 Library Is Structured 917

Notes:

1. The character in the sixth position of the file name indicates the language of a
book. For example, the file name db2d0e50 indicates that the Administration Guide
is in English. The following letters are used in the file names to indicate the lan-
guage of a book:

2. For late breaking information that could not be included in the DB2 books, see the
README file. Each DB2 product includes a README file which you can find in the
directory where the product is installed.

Language Identifier Language Identifier
Brazilian Portuguese B Hungarian H
Bulgarian U Italian I
Czech X Norwegian N
Danish D Polish P
English E Russian R
Finnish Y Slovenian L
French F Spanish Z
German G Swedish S

About the Information Center
The Information Center provides quick access to DB2 product information. The Informa-
tion Center is available on OS/2, Windows 95, and the Windows NT operating systems.
You must install the DB2 administration tools to see the Information Center.

Depending on your system, you can access the Information Center from the:

¹ Main product folder
¹ Toolbar in the Control Center
¹ Windows Start menu.

The Information Center provides the following kinds of information. Click on the appro-
priate tab to look at the information:

Tasks Lists tasks you can perform using DB2.

Reference Lists DB2 reference information, such as keywords, commands,
and APIs.

Books Lists DB2 books.

Troubleshooting Lists categories of error messages and their recovery actions.

Sample Programs Lists sample programs that come with the DB2 Software Devel-
oper's Kit. If the Software Developer's Kit is not installed, this tab
is not displayed.

Web Lists DB2 information on the World Wide Web. To access this
information, you must have a connection to the Web from your
system.

918 SQL Reference

When you select an item in one of the lists, the Information Center launches a viewer to
display the information. The viewer might be the system help viewer, an editor, or a
Web browser, depending on the kind of information you select.

The Information Center provides search capabilities so you can look for specific topics,
and filter capabilities to limit the scope of your searches.

 Appendix P. How the DB2 Library Is Structured 919

920 SQL Reference

 Appendix Q. Notices

Any reference to an IBM licensed program in this publication is not intended to state or
imply that only IBM’s licensed program may be used. Any functionally equivalent
product, program or service that does not infringe any of IBM’s intellectual property
rights may be used instead of the IBM product, program, or service. Evaluation and
verification of operation in conjunction with other products, except those expressly des-
ignated by IBM, is the user’s responsibility.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to the

IBM Director of Licensing,
 IBM Corporation,

500 Columbus Avenue,
Thornwood, NY, 10594

 USA.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs and
other programs (including this one) and (ii) the mutual use of the information which has
been exchanged, should contact:

IBM Canada Limited
 Department 071

1150 Eglinton Ave. East
North York, Ontario

 M3C 1H7
 CANADA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

This publication may contain examples of data and reports used in daily business oper-
ations. To illustrate them as completely as possible, the examples include the names of
individuals, companies, brands, and products. All of these names are fictitious and any
similarity to the names and addresses used by an actual business enterprise is entirely
coincidental.

 Trademarks
The following terms are trademarks or registered trademarks of the IBM Corporation in
the United States and/or other countries:

 Copyright IBM Corp. 1993, 1997 921

ACF/VTAM
ADSTAR
AISPO
AIX
AIXwindows
AnyNet
APPN
AS/400
CICS
C Set++
C/370
DATABASE 2
DatagLANce
DataHub
DataJoiner
DataPropagator
DataRefresher
DB2
Distributed Relational Database Architecture
DRDA
Extended Services
FFST
First Failure Support Technology
IBM
IMS
Lan Distance

MVS/ESA
MVS/XA
NetView
OS/400
OS/390
OS/2
PowerPC
QMF
RACF
RISC System/6000
SAA
SP
SQL/DS
SQL/400
S/370
System/370
System/390
SystemView
VisualAge
VM/ESA
VSE/ESA
VTAM
WIN-OS/2

Trademarks of Other Companies
The following terms are trademarks or registered trademarks of the companies listed:

C-bus is a trademark of Corollary, Inc.

HP-UX is a trademark of Hewlett-Packard.

Java and HotJava are trademarks of Sun Microsystems, Inc.

Microsoft, Windows, Windows NT, and the Windows 95 logo are trademarks or regis-
tered trademarks of Microsoft Corporation.

PC Direct is a trademark of Ziff Communications Company and is used by IBM Corpo-
ration under license.

Solaris is a trademark of Sun Microsystems, Inc.

UNIX is a registered trademark in the United States and other countries licensed exclu-
sively through X/Open Company Limited.

Other company, product, or service names, which may be denoted by a double asterisk
(**), may be trademarks or service marks of others.

922 SQL Reference

 Index

Special Characters
? (question mark) 554

See also parameter marker
* (asterisk)

in subselect column names 287
naming columns, use in select 287

A
ABS or ABSVAL function 143

detailed format description 173
values and arguments, rules for 173

ACOS function 144
detailed format description 174
values and arguments, rules for 174

ADD clause in ALTER TABLE 351
ADD column clause, order of processing 357
alias

comment descriptions, adding to catalog 376
CREATE ALIAS statement 403
deleting, using DROP statement 540
description 11, 48
TABLE_NAME function 263
TABLE_SCHEMA function 264

ALIAS clause
COMMENT ON statement 377
DROP statement 541

alias-name 46
ALL clause

SELECT statement, use in 287, 298
ALL in quantified predicate 125
ALL option

comparison, set operator, effect on 320
ALL PRIVILEGES clause

GRANT statement (table or view) 581
REVOKE statement, table and view privileges 623

ALTER BUFFERPOOL statement 343, 344
ALTER clause

GRANT statement (table or view) 581
REVOKE statement, removing privilege for 624

ALTER NODEGROUP statement 345, 347
ALTER TABLE statement 361

authorization required, summary 348
examples of usage 359
syntax diagram 350

ALTER TABLESPACE statement 362, 364
ambiguous cursor 528
ambiguous reference, error conditions for 92
AND truth table 140
ANY in quantified predicate 125
application process, definition of 19
application program

concurrency 19
uses SQLDA 683

application requester, overview 24
application server

overview 24
role of in connections 24

arguments of COALESCE
result data type 74

arithmetic
AVG function, operation of 158
columns, adding values (SUM) 170
constants

definition of 79
NOT NULL, required attribute for 79

date operations, rules for 116
datetime, SQL rules for 114
decimal operations, scale and precision

formulas 112
decimal value, precision and scale 56
decimal values from numeric expressions 199
distinct type operands 112
expressions, adding values (SUM) 170
floating point operands

rules and precision values 112
with integers, result of 112

floating point values from numeric expressions 205,
247

floating point, range and precision 56
integer

large integer, range and precision 56
small integer, range and precision 56

integer values, returning from expressions 218
maximum value, finding 165
minimum value, finding 167
operators, summary of results 110
parameter marker, syntax and operations 602
remote use of, conversions, overview 33
small integer values, returning from

expressions 256

 Copyright IBM Corp. 1993, 1997 923

arithmetic (continued)
STDDEV function, operation of 169
time operations, rules for 116, 117
timestamp operations, rules for 117
unary minus sign, effect on operand 110
unary plus sign, effect on operand 110
VARIANCE function, operation of 171

AS clause
CREATE VIEW statement 518
in SELECT clause 287, 289
ORDER BY clause 327

ASC clause
CREATE INDEX statement 462
of select-statement 328

ASCII function 144
detailed format description 175
values and arguments, rules for 175

ASIN function 144
detailed format description 176
values and arguments, rules for 176

Assembler application host variable 559
assigning a string to a column, rules for 66
assignments

character strings to datetime columns, rules for 64
datetime to character string value 68
datetime values, rules for 68
fragmenting a MBCS character, rules for 68
mixed character string blank padding 67
mixed character string to host variables 67
mixed character string truncation 67
numbers 66
retrieval 67
storage 66, 121
strings, basic rules for 66
user-defined type 69

asterisk (*)
in COUNT 160
in COUNT_BIG 161
in subselect column names 287

ATAN function 144
detailed format description 177
values and arguments, rules for 177

ATAN2 function 144
detailed format description 178
values and arguments, rules for 178

authority level
authorization name, syntax rules for 46

authorization
definition 37
granting control on database operations 569

authorization (continued)
granting control on index 572
granting create on schema 577
public control on index 572
public create on schema 577

authorization ID, overview of 49
authorization-name

restrictions governing 46
use of in Grant and Revoke 49

AVG function 144
AVG function, detailed description 158

B
base table 10
basic operations in SQL 64
basic predicate, detailed format 124
BEGIN DECLARE SECTION statement 365, 366

authorization required 365
invocation rules for 365

BETWEEN predicate, detailed format diagram 128
binary integer, as data type 51
Binary Large OBject 52

See also BLOB
BINDADD parameter, GRANT...ON DATABASE state-

ment 569
binding 574

bound statement, overview of 25
data retrieval, role in optimizing 7
revoking all privileges 618

bit data
BLOB string 52
definition 54

blank 44
blanks

definition of 43
BLOB

data type 483
scalar function description 179
string 52

BLOB function 144
bound statement, use of 25
buffer insert 592
buffer pool

deleting, using DROP statement 540
description 39
extended storage use 343, 407
setting size 343, 407

bufferpool
naming conventions 46

924 SQL Reference

BUFFERPOOL clause
ALTER TABLESPACE statement 363
CREATE TABLESPACE statement 505
DROP statement 541

built-in function 143
See also function
description 100

byte length values, list for data types 222

C
caching

EXECUTE statement 555
call level interface 8
CALL statement 367, 373
cancelling a unit of work 628
CASCADE delete rule 489

description 15
case

expression 119
case sensitive identifiers, SQL 45
CAST

expression as operand 121
NULL as operand 121
parameter marker as operand 121

CAST specification 121
casting

between data types 62
user-defined types 62

catalog
adding comments on tables, views, columns 376
COMMENT ON, detailed syntax 376

catalog views
BUFFERPOOLNODES 697
BUFFERPOOLS 696
CHECKS 698
COLAUTH 699
COLCHECKS 700
COLDIST 701
COLUMNS 702
CONSTDEP 704
DATATYPES 705
DBAUTH 706
definition 19
EVENTMONITORS 707
EVENTS 708
FUNCPARMS 709
FUNCTIONS 710
INDEXAUTH 713
INDEXES 714

catalog views (continued)
KEYCOLUSE 716
NODEGROUPDEF 717
NODEGROUPS 718
overview 693
PACKAGEAUTH 719
PACKAGEDEP 720
PACKAGES 721
PARTITIONMAPS 724
PROCEDURE PARAMETERS 726
PROCEDURES 725
read-only 694
REFERENCES 727
SCHEMAAUTH 728
SCHEMATA 729
STATEMENTS 730
SYSSTAT.COLUMNS 742
SYSSTAT.FUNCTIONS 743
SYSSTAT.INDEXES 745
SYSSTAT.TABLES 748
TABAUTH 731
TABCONST 733
TABLES 734
TABLESPACES 736
TRIGDEP 737
TRIGGERS 738
updatable 694
VIEWDEP 739
VIEWS 740

CEIL or CEILING function 144
CEIL or CEILINGfunction

detailed format description 180
values and arguments, rules for 180

CHAR
function description 181

CHAR function 144
CHAR VARYING data type 483
character conversion

character set 34
code page 34
code point 35
encoding scheme 35
rules for assignments 67
rules for comparison 71
rules for operations combining strings 76
rules when comparing strings 76

CHARACTER data type 482
Character Large OBject 52

See also CLOB string

 Index 925

character set 34
character string

arithmetic operators, prohibited use of 110
as data type 51
assignment, overview 66
bit data

definition 54
BLOB string representation 179
CLOB 52
comparisons, rules for 70
constants, range and precision 80
detailed description 53
double byte character string, returning 278
empty, compared to null value 53
equality, collating sequence examples 70
equality, definition of 70
fixed length 51
fixed length, description 53
hexadecimal constant 81
mixed data 54
POSSTR scalar function 239
returning from host variable name 272
SBCS data, definition 54
SQL statement string, rules for creating 559
SQL statement, execution as 559
translating string syntax 272
VARCHAR scalar function, using 277
VARGRAPHIC scalar function, using 278
varying length 51
varying length, description 53

CHARACTER VARYING data type 483
characters, SQL, range of 43
CHECK clause in CREATE VIEW statement 518
check constraint

ALTER TABLE statement 354, 356
CREATE TABLE statement 492
INSERT statement 592

check pending state 16, 635
CHR function 144

detailed format description 186
values and arguments, rules for 186

CL_SCHED sample table 750
client/server

server name, description of 47
CLOB data type 483
CLOB function 145

detailed format description 187
values and arguments, rules for 187

CLOB string 52

CLOSE statement 374, 375
closed state of cursor 598
COALESCE

function description 188
COALESCE function 145
code page 34
code point 35
collating sequence, string comparison, rules for 70
column

adding to a table, ALTER TABLE 351
adding values (SUM) 170
adding with ALTER TABLE statement 348
adding, privileges for, granting 581
ambiguous name reference, error conditions 92
averaging a column set of values (AVG) 158
BASIC predicate, use in matching strings 124
BETWEEN predicate, use in matching strings 128
column name, qualified, conditions for 93
column name, unqualified, conditions for 93
comment descriptions, adding to catalog 376
constraint name, FOREIGN KEY, rules 489
definition of 10
DISTINCT keyword, queries, role of 157
EXISTS predicate, use in matching strings 130
fixed length character strings, attributes 53
GROUP BY, use in limiting in SELECT clause 288
grouping column name, use in GROUP BY 298
HAVING clause, search names, rules for 305
HAVING, use in limiting in SELECT clause 288
IN predicate, fullselect, values returned 131
index key, column-name, use in 462
inserting values, INSERT statement 590
LIKE predicate, use in matching strings 134
maximum value, finding 165
minimum value, finding 167
naming conventions 46
naming conventions, applications of

in CREATE INDEX statement 88
in CREATE TABLE statement 88
in expressions 88
in GROUP BY or ORDER BY statements 88

nested table expression, use of 93
null values in result columns, rules for 289
null values, ALTER TABLE, prevention of 351
qualified column names, rules for 89
result data, expression type, table of 290
scalar fullselect, use of 93
searching using WHERE clause 297
SELECT clause, select list notation 287
standard deviation of a column set of values

(STDDEV) 169

926 SQL Reference

column (continued)
string assignment, basic rules for 66
subquery, use of 93
undefined name reference, error conditions 92
updating row values, UPDATE statement 661
variance of a column set of values

(VARIANCE) 171
varying length character strings, attributes 53

COLUMN clause
COMMENT ON statement 377

column function, arguments for 143
column name

in ORDER BY clause 327
rules for 46

column name qualification in the COMMENT ON state-
ment 89

column name, uses for 88
column-name

in INSERT statement 590
combining grouping sets 302
comment

SQL static statements, use in 342
comment in catalog table 376
COMMENT ON statement 376, 382
comments

host language, format for 45
SQL, format for 45

commit processing
locks, relation to uncommitted changes 19

COMMIT statement 383, 384
common table expression 325

description 18
recursive 326

common-table-expression
select-statement 325

comparing a value with a collection 128
comparing LONG VARGRAPHIC strings, restricted use

of 72
comparing two predicates, truth conditions 124
comparison

compatibility rules 64
compatibility rules, data types, summary 64
datetime values, rules for 72
graphic strings, rules for 72
LONG VARGRAPHIC, restricted use of 72
numbers, rules for 69
SBCS/MBCS, rules for 71
strings, rules for 70
user-defined type 73

compatibility
data types 64
data types, summary 64
rules 64
rules for operation types 64

composite column value 301
composite key 11
Compound SQL statement 388

combining statements into a block 385
CONCAT function

detailed format description 189
values and arguments, rules for 189

CONCAT or || function 145
concatenation

distinct type 110
operator 107
result data type 109
result length 109

concurrency
application 19
prevention of

LOCK TABLE statement 594
tables with NOT LOGGED INITIALLY parameter,

restriction 494
CONNECT parameter, GRANT...ON DATABASE state-

ment 569
CONNECT statement

disconnecting from current server 394
implicit connect 389
IMPLICIT connect, diagram of state transitions 27
information on application server, getting 394
non-IMPLICIT connect, diagram of state

transitions 28
overview 25
with no operand, returning information 394

CONNECT statement (Type 1) 389, 395
CONNECT statement (Type 2) 396, 402
CONNECT TO statement

successful connection, detailed description 391, 396
unsuccessful connection, detailed description 393,

397
connected state 31
connection states

application process 30
distributed unit of work 29
remote unit of work 25

constants
character string, range and precision 80
decimal 80
floating-point, rules for 80

 Index 927

constants (continued)
hexadecimal 81
integer, definition of 80
with user-defined types 81

constants, overview of 79
constraint

comment descriptions, adding to catalog 376
Explain tables 821
referential 12, 13
table check 12, 16
unique 12, 13

CONSTRAINT clause
COMMENT ON statement 378

constraint-name, definition 46
constraints

adding or dropping, ALTER TABLE 348
container

CREATE TABLESPACE statement 503
description 39

container-clause
CREATE TABLESPACE statement 504

CONTINUE clause in WHENEVER statement 671
CONTROL clause

GRANT statement (table or view) 582
CONTROL clause in GRANT statement, revoking 624
CONTROL parameter

revoking privileges for packages 618
conversion

character string to executable SQL 559
datetime to character string variable 68
integer to decimal, mixed expression, rules 111

conversion rules
for assignments 67
for comparison 71
for operations combining strings 76
for string comparisons 76

conversions
CHAR, returning converted datetime values 181
character string to timestamp 268
DBCS from mixed SBCS and DBCS 278
decimal values from numeric expressions 199
double byte character string, returning 278
floating point values from numeric expressions 205,

247
numeric, scale and precision, summary 66

correlated reference 297
correlated reference, use in nested table expression 93
correlated reference, use in scalar fullselect 93
correlated reference, use in subquery 93

correlation name
FROM clause, subselect, rules for use 291

correlation-name
 detailed description 46
in SELECT clause, syntax diagram 287
qualified reference of column name 89

correlation-name, rules for 89
COS function 145

detailed format description 190
values and arguments, rules for 190

COT function 145
detailed format description 191
values and arguments, rules for 191

COUNT function 145
detailed format description 160
values and arguments, rules for 160

COUNT_BIG function 145, 161
detailed format description 161
values and arguments, rules for 161

CREATE ALIAS statement 403, 405
CREATE BUFFERPOOL statement 406, 408
CREATE DISTINCT TYPE statement 409, 414
CREATE EVENT MONITOR statement 415, 423
CREATE FUNCTION (External Scalar) statement 425
CREATE FUNCTION (External Table) statement 441
CREATE FUNCTION (Sourced Scalar) statement 460
CREATE FUNCTION (Sourced) statement 454
CREATE FUNCTION statement 424, 440, 453
CREATE INDEX statement 461, 463

column-name, rules for key creation 462
CREATE NODEGROUP statement 464, 466
CREATE SCHEMA statement 475, 477
CREATE TABLE statement 478, 500

syntax diagram 478
CREATE TABLESPACE statement 501, 507
CREATE TRIGGER statement 508, 516
CREATE VIEW statement 517, 524
CREATE VIEW statement, definition of 10
CREATETAB parameter, GRANT...ON DATABASE

statement 569
creating a database, granting authority for 570
cross tabulation rows 301
CS (cursor stability) isolation level 23, 773
CUBE 301

examples of 311
current connection state 31
CURRENT DATE special register 82
CURRENT DEGREE special register 82

SET CURRENT DEGREE statement 641

928 SQL Reference

CURRENT EXPLAIN MODE special register 83
SET CURRENT EXPLAIN MODE statement 643

CURRENT EXPLAIN SNAPSHOT special register 84
SET CURRENT EXPLAIN SNAPSHOT

statement 645
CURRENT FUNCTION PATH special register 85

SET CURRENT FUNCTION PATH statement 647
CURRENT NODE special register 85
CURRENT QUERY OPTIMIZATION special register 86

SET CURRENT QUERY OPTIMIZATION
statement 651

CURRENT SERVER special register 86
CURRENT TIME special register 87
CURRENT TIMESTAMP special register 87
CURRENT TIMEZONE special register 87
cursor

See also DECLARE CURSOR statement
active set, associated with 596
ambiguous 528
closed state, pre-conditions for 598
closing, CLOSE statement 374
current row 566
declaring, SQL statement syntax for 525
defining 525
deleting, search condition details 530
location in table, results of FETCH 565
moving position, using FETCH 565
opening a cursor, OPEN statement 596
positions for open 566
preparing for application use 596
program usage, rules for 527
read-only status, conditions for 527
result table, relation to 525
terminating for unit of work, ROLLBACK 628
unit of work, conditional states of 525
updatability, determining 527
WITH HOLD lock clause, COMMIT statement,

effect 383
cursor stability 23, 773
cursor-name, definition of 46

D
data integrity

concurrent updates, preventing, LOCK TABLE 594
point of consistency, example of 20

data representation considerations 33
data structure

column, definition of 10
constants

character string, rules for 80

data structure (continued)
constants (continued)

decimal, rules for 80
floating point, rules for 80
graphic string (DBCS), rules for 80
integer, rules for 80

date syntax and range 57
index, derived values of 11
numeric data, overview 56
packed decimal 690
row, definition of 10
time syntax and range 57
value, definition of 10
values

data types 51
sources 51

data type 78
character string 53
datetime 57
distinct 60, 409
overview 51
partition compatibility 78
result column data, SELECT, table of 290
result columns 290

data types
casting between 62
promotion 61

database access
authority to access database, granting 569

database administration privilege 38
database identifier in SQL 45
database managed space 38

See also DMS table space
database management

control, granting authority, SQL statement for 569
DBADM creation authority, granting 570
saving changes, COMMIT statement 383
switching tasks, COMMIT statement 383

database manager
catalog views

overview of 19
distributed relational database, use in 24
limits 673
SQL, interpretation of 7

database manager limits 674
database-containers

CREATE TABLESPACE statement 504
date

arithmetic operations 115
CHAR, use of in format conversion 181

 Index 929

date (continued)
day durations, finding from range (DAYS) 197
day, returning from value (DAY function) 193
duration, format of 113
month, returning from datetime value 234
strings 58
value to date, format conversion (DATE) 192
WEEK scalar function, using 280
year, using in expressions 281

DATE data type 484
DATE function 145
DATE function, returning dates from values 192
datetime

arithmetic operations 114
data types

description 57
string representation 57, 58

format
EUR, ISO, JIS, LOCAL, USA 58

limits 674
VARCHAR scalar function, using 277

datetime format 58
DAY function 145
DAY function, returning day part of values 193
DAYNAME function 145

detailed format description 194
values and arguments, rules for 194

DAYOFMONTH function 145
DAYOFWEEK function 145

detailed format description 195
values and arguments, rules for 195

DAYOFYEAR function 146
detailed format description 196
values and arguments, rules for 196

DAYS function 146
DAYS function, returning integer durations 197
db2nodes.cfg

ALTER NODEGROUP 346
CONNECT (Type 1) 395
CREATE NODEGROUP 464
CURRENT NODE 85
NODENUMBER function 236

DBADM parameter, GRANT...ON DATABASE
statement 570

DBCLOB data type 483
DBCLOB function 146

detailed format description 198
values and arguments, rules for 198

DBCLOB string 52

decimal
arithmetic formulas, scale and precision 112
constants, range and precision 80
data type, overview 56
implicit decimal point 56
numbers 56
packed decimal 56

decimal conversion from integer, summary 66
DECIMAL function, returning decimal values 199
DECIMAL or DEC function 146
decimal, as data type 51
declaration

inserting into a program 587
DECLARE

BEGIN DECLARE SECTION statement 365
END DECLARE SECTION statement 552

DECLARE CURSOR statement 525, 528
authorization, conditions for 525
program usage, notes for 527

decrementing a date, rules for 115
decrementing a time, rules for 117
default value

column
ALTER TABLE statement 351
CREATE TABLE statement 485

DEGREES function 146
detailed format description 202
values and arguments, rules for 202

deletable
view 520

DELETE clause
GRANT statement (table or view) 582
REVOKE statement, revoking privilege for 624

delete rule for referential constraint 16
DELETE statement 529, 532

authorization, searched or positioned format 529
delete-connected table 16
deleting SQL objects 540
delimited identifier in SQL 45
delimited identifier, SQL statement 45
delimiter tokens, definition of 44
DEPARTMENT sample table 750
dependency

of objects on each other 546
dependent row 14
dependent table 14
DESC clause

CREATE INDEX statement 462
of select-statement 328

930 SQL Reference

descendent row 14
descendent table 14
DESCRIBE statement 533, 536

prepared statements, destruction conditions 534
DESCRIPTOR

host variables, parameter substitution list 554
descriptor-name 47

in FETCH statement 566
diagnostic string

in RAISE_ERROR function 244
in SIGNAL SQLSTATE statement 659

DIFFERENCE function 146
detailed format description 203
values and arguments, rules for 203

DIGITS function 146, 204
digits, range of 44
dirty read 773
DISCONNECT statement 537, 539
DISTINCT clause

of subselect 287
DISTINCT keyword

AVG function, relation to 158
column function 157
COUNT function, relationship to 160
COUNT_BIG function, relationship to 161
MAX function, restriction for 165
MIN function 167
STDDEV function, relation to 169
SUM function 170
VARIANCE function, relation to 171

DISTINCT keyword, overview 157
distinct type

as arithmetic operands 112
comment descriptions, adding to catalog 376
comparison 73
concatenation 110
constants 81
CREATE DISTINCT TYPE statement 409
description 47, 60
DROP statement 540

DISTINCT TYPE clause
COMMENT ON statement 378
DROP statement 542

distributed relation database, definition 24
distributed relational database

application requester, overview 24
application server, overview 24
data representation considerations 33
environment, illustration of 24
remote unit of work, overview 25

distributed relational database (continued)
requester-server protocols, overview 24

distributed relational database architecture (DRDA) 24
DMS table space

CREATE TABLESPACE statement 504
description 38

dormant connection state 31
DOUBLE

CHAR, use of in format conversion 181
double byte character string (DBCS), returning 278
DOUBLE data type 482

precision 56
range 56

DOUBLE function 146
DOUBLE function, double precision conversion 205
DOUBLE or DOUBLE_PRECISION function 146
DOUBLE PRECISION data type 482
double precision float data type 482
double-byte character

truncated during assignment 68
Double-Byte Character Large OBject 52

See also DBCLOB string
double-precision floating-point 56
DRDA (Distributed Relational Database

Architecture) 24
DROP CHECK clause of ALTER TABLE statement 357
DROP CONSTRAINT clause of ALTER TABLE state-

ment 357
DROP FOREIGN KEY clause 356
DROP PARTITIONING KEY clause of ALTER TABLE

statement 357
DROP PRIMARY KEY clause 356
DROP statement 540, 551
DROP UNIQUE clause 356
duration

adding, results of 115
date, format of 113
labeled 113
subtracting, results of 115
time, format of 114
timestamp 114

durations 113
dynamic select

host variables, restrictions on 339
parameter markers, usage in 339

dynamic SQL 8, 683
DECLARE CURSOR statement, usage in 339
definition of 7
description, preparation methods 338
execution 339

 Index 931

dynamic SQL (continued)
FETCH statement, usage in 339
OPEN statement, usage in 339
preparation 339
PREPARE statement, execution of 601
PREPARE statement, usage in 339
prepared statement information, using

DESCRIBE 533
preparing and executing, commands for 7
SQLDA used with 683

E
embedded SQL statement

executing character strings, EXECUTE
IMMEDIATE 559

embedded SQL, requirements overview 338
EMP_ACT sample table 755
EMP_PHOTO sample table 757
EMP_RESUME sample table 757
EMPLOYEE sample table 751
empty character string 53
encoding scheme 35
END DECLARE SECTION statement 552, 553
erasing the sample database 750
error

closes cursor 598
during FETCH 566
during UPDATE, 664
return code, language overview 341

errors
executing triggers 514

escape character in SQL 45
ESCAPE clause

LIKE predicate 136
EUC considerations 857
EUR 58

See also datetime format
European (EUR) date format 58
European (EUR) time format 58
evaluation order, expressions 118
event monitor

CREATE EVENT MONITOR statement 415
description 18
DROP statement 540
EVENT_MON_STATE function 207
name description 47
SET EVENT MONITOR STATE statement 654

EVENT_MON_STATE function 146, 207

EXCEPT clause of fullselect 320
except-on-nodes-clause

CREATE BUFFERPOOL statement 407
exception tables 637

SET CONSTRAINTS statement 637
structure 853

EXCLUSIVE
IN EXCLUSIVE MODE 389

exclusive locks 21
EXCLUSIVE option, LOCK TABLE statement 594
executable statement, methods overview 337
executable statement, processing summary 338
EXECUTE IMMEDIATE statement 560

detailed instructions for 559
embedded usage, detailed description 339
use in dynamic SQL 7

EXECUTE statement 558
detailed instructions for 554
embedded usage, detailed description 339
use in dynamic SQL 7

executing, revoking package privileges 618
execution

package, necessary privileges, granting 574
EXISTS predicate, detailed format description 130
EXP function 146

detailed format description 208
values and arguments, rules for 208

EXPLAIN statement 561, 564
EXPLAIN_ARGUMENT table 821
EXPLAIN_ARGUMENT table definition 836
EXPLAIN_INSTANCE table 824
EXPLAIN_INSTANCE table definition 837
EXPLAIN_OBJECT table 826
EXPLAIN_OBJECT table definition 838
EXPLAIN_OPERATOR table 828
EXPLAIN_OPERATOR table definition 839
EXPLAIN_PREDICATE table 830
EXPLAIN_PREDICATE table definition 840
EXPLAIN_STATEMENT table 831
EXPLAIN_STATEMENT table definition 841
EXPLAIN_STREAM table 833
EXPLAIN_STREAM table definition 842
explainable statement

definition 561
exposed name, correlation-name, FROM clause 90
expression

case 119
CAST specification 121
concatenation operator 107
datetime operands, summary of 113

932 SQL Reference

expression (continued)
decimal operands 111
floating-point operands, rules for 112
format and rules 107
grouping-expression, use in GROUP BY 298
in CAST specification 121
in DIGITS function 204
in ORDER BY clause 328
in SELECT clause, syntax diagram 287
in subselect 287
integer operands 111
operators, mathematical, listing 107
precedence of operation 118
sign of, values 107
string 107
substitution operators, listing 107
with arithmetic operators 110
without operators 107

extended character set 43
extended storage 343, 407
external function

description 101

F
FETCH statement 565, 567

cursor prerequisites for executing 565
file reference variables

BLOB 98
CLOB 98
DBCLOB 98

FLOAT data type 56, 482
FLOAT function 147
FLOAT function, double precision conversion 209
floating point numbers

as data type 51
precision 56
range 56

floating-point constants 80
floating-point to decimal conversion 66
FLOOR function 147

detailed format description 210
values and arguments, rules for 210

FOR BIT DATA clause
CREATE TABLE statement 483

FOR FETCH ONLY clause
select-statement 331

FOR READ ONLY clause
select-statement 331

foreign key 12, 13
adding or dropping, ALTER TABLE 348
constraint name, conventions for 489
view, referential constraints in 10

FOREIGN KEY clause
CASCADE clause, propagation summary 491
constraint name, conventions for 489
CREATE TABLE statement 489
delete rule, conventions for 491
multiple paths, consequences of using 491
RESTRICT clause, prohibition 491
SET NULL clause, operation of 491

fragments in SUBSTR function, warning 262
FREE LOCATOR statement 568
FROM clause

correlation name, use of, example 90
exposed and non-exposed names, explanation 90
PREPARE statement 601
subselect syntax 291

FROM clause in DELETE statement 530
FROM clause, use in correlation-name, example 89
fullselect

examples of 321
multiple operations, order of execution 320
ORDER BY clause 327
subquery role, search condition, overview 93
table-reference 292
used in CREATE VIEW statement 518

fullselect, detailed syntax 319
function 100, 143, 161, 172

arguments 143
built-in 100
column 148, 157

AVG 144
AVG, options and results 158
COUNT 145, 160
COUNT_BIG 145, 161
COUNT_BIG, values returned 161
COUNT, values returned 160
MAX 165
MAX, values returned 165
MIN 149, 167
SMALLINT 218
STDDEV 151, 169
STDDEV, options and results 169
SUM 151, 170
VAR, options and results 171
VARIANCE or VAR 154, 171
VARIANCE, options and results 171

comment descriptions, adding to catalog 376

 Index 933

function (continued)
description 100, 143
expression 143
external

description 101
HOUR 147
INTEGER or INT 147
LCASE 148
LN 148
LOG 148
MICROSECOND 149
MIDNIGHT_SECONDS 149
MONTH 149
MONTHNAME 149
name description 47
nesting 172
resolution 102
scalar 148, 149

ABS or ABSVAL 143, 173
ACOS 144, 174
ASCII 144, 175
ASIN 144, 176
ATAN 144, 177
ATAN2 144, 178
AVG 158
BLOB 144, 179
CEIL or CEILING 144, 180
CHAR 144, 181
CHAR, use in datetime conversion 181
CHR 144, 186
CLOB 145, 187
COALESCE 145, 188
CONCAT 189
CONCAT or || 145
COS 145, 190
COT 145, 191
DATE 145, 192
DATE, returning dates from values 192
DAY 145, 193
DAY, returning day part of value 193
DAYNAME 145, 194
DAYOFMONTH 145
DAYOFWEEK 145, 195
DAYOFYEAR 146, 196
DAYS 146, 197
DAYS, returning integer durations 197
DBCLOB 146, 198
DECIMAL or DEC 146, 199
DECIMAL, returning decimal equivalents 199
definition 172
DEGREES 146, 202

function (continued)
scalar (continued)

DIFFERENCE 146, 203
DIGITS 146, 204
DOUBLE 146
DOUBLE or DOUBLE_PRECISION 146, 205
DOUBLE, returning floating point values 205
EVENT_MON_STATE 146, 207
EVENT_MON_STATE, returning event monitor

states 207
EXP 146, 208
FLOAT 147, 209
FLOAT, returning floating point values 209
FLOOR 147, 210
GENERATE_UNIQUE 147, 211
GRAPHIC 147, 213
GROUPING 147, 163
HEX 147, 214
HOUR 216
HOUR, returning hour part of values 216
INSERT 217
INTEGER or INT 218
INTEGER, returning integer values 218
JULIAN_DAY 219
LCASE 220
LEFT 221
LENGTH 148, 222
LENGTH, length values from expressions 222
LN 223
LOCATE 148, 224
LOG 225
LOG10 226
LONG_VARCHAR 148, 227
LONG_VARGRAPHIC 148, 228
LTRIM 148, 229
MICROSECOND 230
MICROSECOND, returning microsecond part of

values 230
MIDNIGHT_SECONDS 231
MINUTE 232
MINUTE, returning minute part of values 232
MOD 233
MONTH 234
MONTH, returning month part of values 234
MONTHNAME 235
NODENUMBER 149, 236
NULLIF 149, 237
PARTITION 149, 238
POSSTR 150, 239
POWER 150, 241
QUARTER 150, 242

934 SQL Reference

function (continued)
scalar (continued)

RADIANS 150, 243
RAISE_ERROR 150, 244
RAND 150, 246
REAL 150, 247
REAL, returning floating point values 247
REPEAT 150, 248
REPLACE 150, 249
restrictions, overview of 172
RIGHT 150, 250
ROUND 150, 251
RTRIM 151, 252
SECOND 151, 253
SECOND, returning second from values 253
SIGN 151, 254
SIN 151, 255
SMALLINT 151, 256
SMALLINT, returning small integer values 256
SOUNDEX 151, 257
SPACE 151, 258
SQRT 151, 259
SUBSTR 151, 260
SUBSTR, returning substring from string 260
TABLE_NAME 152, 263
TABLE_SCHEMA 152, 264
TAN 152, 266
TIME 152, 267
TIME, using time in an expression 267
TIMESTAMP 152, 268
TIMESTAMP_ISO 152, 270
TIMESTAMP, returning timestamp from

values 268
TIMESTAMPDIFF 153, 271
TRANSLATE 153, 272
TRUNC or TRUNCATE 153, 274
UCASE 153, 275
user-defined 282
VALUE 153, 276
VALUE, returning non-null result 276
VARCHAR 153, 277
VARGRAPHIC 154, 278
WEEK 154, 280
YEAR 154, 281
YEAR, returning values based on year 281

signature 101
sourced

description 101
user-defined 100

FUNCTION clause
COMMENT ON statement 378

function path
CURRENT FUNCTION PATH special register 85
resolution 102

G
GENERATE_UNIQUE function 147, 211

detailed format description 211
GO TO clause

WHENEVER statement 671
grand total row 302
GRANT

CONTROL ON INDEX 572
CREATE ON SCHEMA 577
Database Authorities 569
Package Privileges 574
Table Privileges 580, 586
View Privileges 580, 586

GRANT (Schema Privileges) statement 577, 579
grant statement

authorization name, use in 49
GRAPHIC data type

 for CREATE TABLE 484
GRAPHIC function 147

detailed format description 213
values and arguments, rules for 213

graphic string
returning from host variable name 272
translating string syntax 272

graphic string, as data type
fixed length 51
varying length 51

graphic strings
fixed length, description 55
varying length, description 55

GROUP BY clause
of subselect, rules and syntax 298
results with subselect 289

group-by-clause, rules and syntax 298
GROUPING function 147, 163
grouping sets

examples of 311
grouping-expression 298
grouping-sets 299

 Index 935

H
hash partitioning 40
hashing on partition keys 494
HAVING clause

of subselect, use of search conditions 305
results with subselect 289

held connection state 31
HEX

function 214
hexadecimal 214

HEX function 147
host identifier

definition 46
in a host variable 47
SQL statement 45

host variable
active set, linking with cursor 596
assigning values from a row 631, 669
BLOB 97
CLOB 97
DBCLOB 97
declaration rules, related to cursor 526
description 95
description of 47
embedded SQL statements, end declaration 552
embedded statements, usage in 338
embedded use, BEGIN DECLARE SECTION,

rules 365
EXECUTE IMMEDIATE statement 559
FETCH statement, identifying 565
host identifier in 47
indicator variable, uses of 96
inserting in rows, INSERT statement 590
PREPARE statement 602
REXX applications, special case 365
statement string, restricted listing, PREPARE state-

ment 602
substitution for parameter markers 554
syntax, diagram of 95

host-identifier
in host variable 96

host-label 671
HOUR function 147
HOUR function, returning hour part of values 216

I
identifiers

limits 673

identifiers in SQL
description 45
host identifiers, syntax for 45
long identifiers, definition 45
ordinary 45
short identifiers, definition 45

IMMEDIATE
EXECUTE IMMEDIATE statement 559, 560

implicit connect
CONNECT statement 389

implicit decimal number 56
implicit schema

GRANT (Database Authorities) statement 570
REVOKE (Database Authorities) statement 614

IMPLICIT_SCHEMA authority 9
IN EXCLUSIVE MODE clause, LOCK TABLE

statement 594
IN predicate, detailed format description 131
IN SHARE MODE clause, LOCK TABLE statement 594
IN_TRAY sample table 758
INCLUDE statement 587
incompatibilities

description 779
incrementing a date, rules for 115
incrementing a time, rules for 117
index

authorization ID, use in name 49
comment descriptions, adding to catalog 376
control, granting 582
control(to drop), granting, SQL statement for 572
correspondence to inserted row values, rules

for 591
definition of 11
deleting, using DROP statement 540
primary key, use in matching 355
unique key, use in matching 355
uses of 11
view, relationship to 11

INDEX clause
COMMENT ON statement 379
CREATE INDEX statement 461, 462
DROP statement 543
GRANT statement (table or view) 582
REVOKE statement, removing privileges for 624

index name
primary key constraint 489
unique constraint 488

index-name, qualified and unqualified naming 47
indicator

variable 96, 559

936 SQL Reference

indicator variable
host variable, uses in declaring 96

infix operators 110
inoperative trigger

CREATE TRIGGER statement 513
inoperative view

CREATE VIEW statement 521
INSERT clause

GRANT statement (table or view) 582
REVOKE statement, removing privileges for 624
values, restrictions leading to failure 591

INSERT function 147
detailed format description 217
values and arguments, rules for 217

insert rule with referential constraint 14
INSERT statement 589, 593
insertable

view 521
installing the sample database 749
integer

in ORDER BY clause 328
integer constants

definition of 80
syntax example 80

INTEGER data type 482
description 56
precision 56
range 56

INTEGER function, integer values from
expressions 218

INTEGER or INT function 147
integer to decimal conversion, summary 66
interactive entry of SQL statements 340
interactive SQL 9

CLOSE, use in, example 9
DECLARE CURSOR, use in, example 9
DESCRIBE, use in, example 9
FETCH, use in, example 9
OPEN, use in, example 9
PREPARE, use in, example 9
SELECT statement, dynamic example 9

interactive SQL, definition of 7
intermediate result table 291, 297, 298, 305
International Standards Organization (ISO) date

format 58
International Standards Organization (ISO) time

format 58
INTERSECT clause

duplicate rows, use of ALL, effect of 320
of fullselect, role in comparison 320

INTO clause
DESCRIBE statement, SQLDA area name 533
FETCH statement, host variable substitution 565
FETCH statement, use in host variable 95
INSERT statement, naming table or view 590
PREPARE statement 601
restrictions on using, list of 590
SELECT INTO statement 631
SELECT INTO statement, use in host variable 95
values from applications programs 95
VALUES INTO statement 669

invoking SQL statements 337
IS clause

COMMENT ON statement 381
ISO 58

See also datetime format
ISO/ANSI standards

SQLCODE, use of SQL 341
SQLSTATE, use of SQL92 341

isolation level
comparison 773
cursor stability 23, 773
description 21
none 773
read stability 22, 773
repeatable read 22, 773
uncommitted read 23, 773

J
Japanese Industrial Standard (JIS) date format 58
Japanese Industrial Standard (JIS) time format 58
JIS 58

See also datetime format
join

examples of 308
examples of a subselect 306
full outer 295
inner 295
left outer 295
partitioning key considerations 496
right outer 295
table collocation 41

joined-table 295
table-reference 292

JULIAN_DAY function 147
detailed format description 219
values and arguments, rules for 219

 Index 937

K
key

composite 11
foreign 12, 13
parent 14
partitioning 12
primary 12
unique 11, 12, 13

L
labeled duration, detailed description 113
labelled durations, in expressions, diagram

labelled duration values, listing 113
large integers 56
large object location, definition 52
LCASE function 148

detailed format description 220
values and arguments, rules for 220

LEFT function 148
detailed format description 221
values and arguments, rules for 221

length attributes of columns 53
LENGTH function 148
LENGTH function, length values from expressions 222
lengths of expressions, rules for 222
letters, range of 44
LIKE predicate, rules for 134
limits

database manager 674
datetime 674
identifier 673
numeric 673
SQL 673
string 674

literals, overview of 79
LN function 148

detailed format description 223
values and arguments, rules for 223

LOB
locator, definition 52
string, definition 52

LOCAL 58
See also datetime format

LOCAL datetime format 58
LOCAL time format 58
LOCATE function 148

detailed format description 224
values and arguments, rules for 224

locator
definition 52
FREE LOCATOR statement 568

locator variable
description 98

LOCK TABLE statement 594, 595
locking

COMMIT statement, effect on 383
definition of 19
LOCK TABLE statement 594
table rows and columns, restricting access 594

locks
during UPDATE 664
exclusive 21
INSERT statement, default rules for 592
share 21
terminating for unit of work, ROLLBACK 628
update 22

LOG function 148
detailed format description 225
values and arguments, rules for 225

LOG10 function 148
detailed format description 226
values and arguments, rules for 226

logging
creating table without initial logging 494

logical operators, rules for search conditions 140
long identifier, SQL statement, definition 45
LONG VARCHAR data type

for CREATE TABLE 483
LONG VARCHAR strings

attributes, summary 53
restrictions on usage 53

LONG VARGRAPHIC strings
attributes, summary 55
restrictions on usage 55

LONG_VARCHAR function 148
detailed format description 227
values and arguments, rules for 227

LONG_VARGRAPHIC function 148
detailed format description 228
values and arguments, rules for 228

LTRIM function
detailed format description 229
values and arguments, rules for 229

M
MANAGED BY clause

CREATE TABLESPACE statement 501

938 SQL Reference

MAX function 148
detailed format description 165
values and arguments, rules for 165

MBCS (double-byte character set) data
within mixed data 54

MICROSECOND function 149
MICROSECOND function, returning microsecond from

value 230
MIDNIGHT_SECONDS function 149

detailed format description 231
values and arguments, rules for 231

MIN function 149
detailed format description 167
values and arguments, rules for 167

MINUTE function 149
MINUTE function, returning minute from value 232
mixed data

See also SBCS (single-byte character set) data
description 54
LIKE predicate 136

MOD function
detailed format description 233
values and arguments, rules for 233

MODE keyword, LOCK TABLE statement 594
MONTH function 149
MONTH function, returning month from value 234
MONTHNAME function 149

detailed format description 235
values and arguments, rules for 235

multi-byte character set (MBCS), support for 44
multiple row VALUES clause

result data type 74

N
name

identifying columns in subselect 288
name, use of in deleting a row 531
names for columns, rules governing 46
names in SQL, rules for, summary 46
names, qualified column, rules for 89
naming conventions in SQL 46
nested table expression 292
new unit of work, initiating 628
NO ACTION delete rule 489
node number of row, obtaining 236
nodegroup

adding a node 345
adding a partition 345
creation 464

nodegroup (continued)
description 39
dropping a node 345
dropping a partition 345
naming conventions 47
partitioning map created with 465

NODEGROUP clause
COMMENT ON statement 379
CREATE BUFFERPOOL statement 407
DROP statement 544

nodegroup name, syntax for 47
nodegroups

comment descriptions, adding to catalog 376
NODENUMBER function 149, 236
non-exposed name, re. correlation-name, FROM

clause 90
nonexecutable statement

precompiler requirements summary 339
nonexecutable statement, methods overview 337
nonrepeatable read 773
NOT FOUND clause

WHENEVER statement 671
NOT NULL clause

CREATE TABLE statement 484
NOT NULL, use in NULL predicate 139
NULL

in CAST specification 121
keyword SET NULL delete rule

description 15
NULL predicate, rules for 139
null value in SQL

assignment, rules governing 65
column names in a result 289
in duplicate rows 287
in grouping-expressions, allowable uses 298
in result columns 289
specified by indicator variable 96
unknown condition 140

null value in SQL, definition of 51
NULLIF

function description 237
NULLIF function 149
numbers, summary of types 56
numeric

assignments in SQL operations 65
comparisons, rules for 69
limits 673

numeric data
data types, overview 56

 Index 939

numeric data, remote conversions of 33

O
object table 91
ON clause

CREATE INDEX statement 462
ON TABLE clause

GRANT statement 583
REVOKE statement 624

ON UPDATE clause 491
on-nodes-clause

CREATE TABLESPACE statement 503, 504, 505
OPEN statement 596, 600
operand

string 107
operands

datetime
date duration 113
labelled duration 113
time duration 113

decimal 111
decimal, rules governing 111
floating-point, rules for 112
integer 111
integer, rules governing 111

operands of in list
result data type 74

operation
assignment 64, 69
assignments, general description 64
comparison 69, 73
comparisons, general description 64
datetime, SQL rules for 114

operators
arithmetic, summary of results 110

OPTION clause
CREATE VIEW statement 518

OR truth table 140
ORDER BY clause

of select-statement 327
order of evaluation, expressions 118
order-by-clause 327
ordinary identifier, SQL statement 45
ordinary tokens, definition of 44
ORG sample table 758
outer join

joined-table 292, 295

P
package

access plan, relation to term 18
authority to create, granting 569
authorization ID, use in name 49
binding, overview of relationship 25
comment descriptions, adding to catalog 376
COMMIT statement, effect on cursor 383
definition of 18
deleting, using DROP statement 540
DROP FOREIGN KEY, effect on dependencies 358
DROP PRIMARY KEY, effect on dependencies 358
DROP UNIQUE key, effect on dependencies 358
naming conventions 47
necessary privileges, granting 574
plan, relation to term 18
revoking all privileges 618
validity and usage rules when revoking

privilege 625
PACKAGE clause

COMMENT ON statement 379
DROP statement 544

package name, syntax for 47
packed decimal number, locating decimal point 56
parameter marker

host variables in dynamic SQL 95
in CAST specification 121
in EXECUTE statement 554
in OPEN statement 597
in PREPARE statement 602
rules, syntax and operations 602
substitution for, OPEN statement 596
typed 602
untyped 602
usage in expressions, predicates and functions 602

parent key 14
parent row 14
parent table 14
parentheses

precedence of operation, use 118
partial declustering 40
partition compatibility

definition 78
PARTITION function 149, 238
partition number of row, obtaining 236
partitioned relational database, definition 7
partitioning data

compatibility table 79
description 39

940 SQL Reference

partitioning data (continued)
hash partitioning 40
partial declustering 40
partition compatibility 78
partitioning map, definition 40

partitioning key 12
adding or dropping, ALTER TABLE 348
ALTER TABLE statement 356
considerations 496
defining when creating table 494
purpose 39

partitioning map
created with nodegroup 465

partitioning map index of row, obtaining 238
partitioning of data 7
performance

partitioning key recommendation 496
phantom row 22, 773
positional updating of columns by row 662
POSSTR function 150
POSSTR scalar function

description 239
POWER function 150

detailed format description 241
values and arguments, rules for 241

precedence
level operators, rules for 118
operation, order of evaluating 118

precision of numbers
determined by SQLLEN variable 688

precision-integer, DECIMAL function
default values for data types 199

precision, as a numeric attribute 56
precompiler

INCLUDE statement, trigger for 587
non-executable statements, usage overview 339
static SQL, use in Run-Time Service calls 8

precompiling
including external text file 587
initiating and setting up SQLDA and SQLCA 587

predicate
basic, detailed format, diagram 124
BETWEEN, detailed format diagram 128
description 123
EXISTS, detailed format description 130
IN, detailed format description 131
LIKE 134
NULL, detailed format, diagram 139
quantified, usage and rules 125

prefix operator 110
PREPARE statement 601, 608

embedded usage, detailed description 339
use in dynamic SQL 7

prepared SQL statement 683
dynamically declaring, PREPARE statement 601
dynamically prepared by PREPARE 608
executing 554, 558
host variables, substitution of 554
information, obtaining with DESCRIBE 533

prepared statement
OPEN statement, use in variable substitution 596
SQLDA provides information about 683

primary key 12
adding or dropping, ALTER TABLE 348
adding, privileges for, granting 581
CREATE TABLE statement 487
dropping, privileges for, granting 581

PRIMARY KEY clause
ALTER TABLE statement 355
CREATE TABLE statement 488

privilege 623
privileges

CONTROL privilege, overview of 37
database, effects of revoking 615, 622
DBADM, scope of 38
definition 37
index, effects of revoking 617
overview 37
package, effects of revoking 619
packages, validity rules when revoking 625
SYSADM, scope of 37
SYSCTRL, scope of 38
SYSMAINT, scope of 38
table or view, effects of revoking 626
views, cascading effects of revoking 625

procedure
naming conventions 47

PROCEDURE clause
COMMENT ON statement 379

procedure name, syntax for 47
PROJECT sample table 758
promotion

of data types 61
PUBLIC clause

GRANT statement 570, 573, 575, 578, 584
REVOKE statement 615, 616, 619, 622
REVOKE statement, removing privileges for 625

 Index 941

Q
qualified column names, rules for 89
qualifier

reserved 769
quantified predicate, detailed rules for 125
QUARTER function 150

detailed format description 242
values and arguments, rules for 242

query 285, 334
authorization IDs required for issuing 285
definition 285
recursive 326

example 847
query (SQL)

subquery, use in WHERE clause 297
question mark (?) 554

See also parameter marker

R
RADIANS function 150

detailed format description 243
values and arguments, rules for 243

RAISE_ERROR function 150, 244
raising errors

RAISE_ERROR function 244
SIGNAL SQLSTATE statement 659

RAND function 150
detailed format description 246
values and arguments, rules for 246

read stability 22, 773
read-only

view 521
read-only cursor

ambiguous 528
REAL data type 482

precision 56
range 56

REAL function 150
REAL function, single precision conversion 247
Record Blocking

locks to row data, INSERT statement 592
recovery of applications 19
recursion

example 847
query 326

recursive common table expression 326
REFERENCES clause

GRANT statement 582

REFERENCES clause (continued)
REVOKE statement, removing privileges for 624

referential constraint 13
referential cycle 14
referential integrity 13, 14
register 82

See also special register
relational database, definition 7
RELEASE statement 610
release to release incompatibilities

description 779
release-pending connection state 31
remote access

application server, role in 24
character strings, conversions 33
CONNECT statement

EXCLUSIVE MODE, dedicated connection 394
ON SINGLE NODE, dedicated connection 394
server information only, no operand 394
SHARE MODE, read only for non-connector 394

IMPLICIT connect, diagram of state transitions 27
non-IMPLICIT connect, diagram of state

transitions 28
numeric data, conversions 33
successful connection, detailed description 391
unsuccessful connection, detailed description 393

remote execution of SQL 29
remote unit of work, overview 25
RENAME TABLE statement 611, 612
REPEAT function 150

detailed format description 248
values and arguments, rules for 248

repeatable read 22, 773
REPLACE function 150

detailed format description 249
values and arguments, rules for 249

reserved
qualifiers 769
schema names 769
words 769

RESTRICT delete rule 489
description 15

result columns of subselect 290
result data type

arguments of COALESCE 74
multiple row VALUES clause 74
operands of in list 74
result expressions of CASE expression 74
set operator 74

942 SQL Reference

result expressions of CASE expression
result data type 74

result table 10
result table, result from query 285
return code

embedded statements, language instructions
for 341

executable statements, usage summary 338
REVOKE

CONTROL ON INDEX 616
CREATEIN ON SCHEMA 621
Database Authorities 613
DROPIN ON SCHEMA 621
Package Privileges 618
Table Privileges 623, 627
View Privileges 623, 627

REVOKE (Schema Privileges) statement 621, 622
revoke statement

authorization-name, use in 49
REXX

END DECLARE SECTION, prohibition 552
RIGHT function 150

detailed format description 250
values and arguments, rules for 250

ROLLBACK
cursor, effect on 628
SQL statement, detailed usage instructions for 628

rollback description 19
ROLLBACK statement 629

detailed syntax instructions 628
ROLLUP 300

examples of 311
ROUND function 150

detailed format description 251
values and arguments, rules for 251

row
as syntax component, diagram 287
assigning values to host variable, SELECT

INTO 631
assigning values to host variable, VALUES

INTO 669
COUNT function, values returned 160
COUNT_BIG function, values returned 161
cursor, effect of closing on FETCH 374
cursor, FETCH statement, relation to 598
cursor, location in result table 526
definition of 10
deleting, privilege for, granting 582
deleting, SQL statement, details 529
dependent 14

row (continued)
descendent 14
exporting row data, privilege for, granting 583
FETCH request, cursor row selection 526
GROUP BY clause, result table from 298
GROUP BY, use in limiting in SELECT clause 288
HAVING clause, results from search, rules for 305
HAVING, use in limiting in SELECT clause 288
importing values, privilege for, granting 582
index, role of key 461
inserting into table or view 589
inserting values, INSERT statement 590
inserting, privilege for, granting 582
locks to row data, INSERT statement 592
locks, effect on cursor of WITH HOLD 526
parent 14
retrieving row data, privilege for, granting 583
search conditions, detailed syntax 140
SELECT clause, select list notation 287
self-referencing 14
UNIQUE clause, table index, effect on key 461
updating column values, UPDATE statement 661
values, insertion, restrictions leading to failure 591

row fullselect
UPDATE statement 664

RR (repeatable read) isolation level 22, 773
RS (read stability) isolation level 22, 773
RTRIM function 151

detailed format description 252
values and arguments, rules for 252

run-time authorization ID 49
Run-Time Services, static SQL support for 8

S
SALES sample table 759
sample database

erasing 750
installing 749

sample tables 749, 768
SBCS (single-byte character set) data

within mixed data 54
SBCS (single-byte character set) data, description 54
scalar

INSERT 147
JULIAN_DAY 147
LEFT 148
MINUTE 149

scalar fullselect 107

 Index 943

scalar function 172
See also function

scalar function, arguments for 143
scale of data 683

comparisons in SQL, overview 70
conversion of numbers in SQL 66
determined by SQLLEN variable 685
in results of arithmetic operations 111

scale of numbers
determined by SQLLEN variable 688

scale-integer, DECIMAL function 199
schema

controlling use of 9
CREATE SCHEMA statement 475
creating implicit schema, granting authority for 570
creating implicit schema, revoking authority for 614
definition of 9
privileges 10

SCHEMA clause
COMMENT ON statement 380
DROP statement 545

schema-name
description 47
reserved names 769

schemas
comment descriptions, adding to catalog 376
definition of 9

search condition
description 140
HAVING clause, arguments and rules 305
order of evaluation 140
using WHERE clause, rules for 297
with DELETE, row selection 530
with UPDATE, applying changes to a match 664

SECOND function 151
SECOND function, returning second from value 253
security

CONNECT statement 394
SELECT clause

DISTINCT keyword, use in 287
GRANT statement (table or view) 583
list notation, column reference 287
REVOKE statement, removing privileges for 624

SELECT INTO statement 631, 632
select list

application of, rules and syntax 289
description 287
notation rules and conventions 287

SELECT statement
cursor, rules regarding parameter markers 526

SELECT statement (continued)
dynamic invocation, execution overview 339
fullselect, detailed syntax 319
interactive invocation, limitations on 340
invoking, usage summary 337
result table, OPEN statement, relation to cursor 596
select-statement 324
static invocation, execution overview 339
subselect 286
VALUES clause 319

select-statement
examples of 333

self-referencing row 14
self-referencing table 14
sequence values

generating 211
server-name, description of 47
SET clause

UPDATE statement, column names and values 662
SET CONNECTION statement 633, 634

successful connection, detailed description 633
unsuccessful connection, detailed description 634

SET CONSTRAINTS statement 635, 640
SET CURRENT DEGREE statement 641, 642
SET CURRENT EXPLAIN MODE statement 643, 644
SET CURRENT EXPLAIN SNAPSHOT statement 645,

646
SET CURRENT FUNCTION PATH statement 647, 648
SET CURRENT QUERY OPTIMIZATION

statement 651, 653
SET DEFAULT delete rule

description 15
SET EVENT MONITOR STATE statement 654, 655
SET NULL delete rule 489

description 15
set operator

EXCEPT, comparing differences only 320
INTERSECT, role of AND in comparisons 320
result data type 74
UNION, correspondence to OR 320

SET transition-variable statement 656, 658
SHARE

IN SHARE MODE 389
share locks 21
SHARE option, LOCK TABLE statement 594
shift-in character

not truncated by assignments 68
short identifier, SQL statement, definition 45
SIGN function 151

detailed format description 254

944 SQL Reference

SIGN function (continued)
values and arguments, rules for 254

sign, as a numeric attribute 56
SIGNAL SQLSTATE statement 659, 660
SIN function 151

detailed format description 255
values and arguments, rules for 255

single precision float data type 482
single row select 631
single-byte character set (SBCS) 54

See also SBCS (single-byte character set) data
single-byte character set (SBCS), support for 44
single-precision floating-point 56
small integer

description 56
precision 56
range 56

SMALLINT data type 482
description 56
precision 56
range 56

SMALLINT function 151
SMALLINT function, small integer values from

expressions 256
SMS table space

CREATE TABLESPACE statement 503
description 38

SOME in quantified predicate 125
sorting

ordering of results 71
string comparisons 70

SOUNDEX function 151
detailed format description 257
values and arguments, rules for 257

sourced function
description 101

space 44
SPACE function 151

detailed format description 258
values and arguments, rules for 258

spaces
rules governing 44

special characters, range of 44
special register 82

CURRENT DATE 82, 87
CURRENT DEGREE 82
CURRENT EXPLAIN MODE 83
CURRENT EXPLAIN SNAPSHOT 84
CURRENT FUNCTION PATH 85
CURRENT NODE 85

special register (continued)
CURRENT QUERY OPTIMIZATION 86
CURRENT SERVER 86
CURRENT TIME 87
CURRENT TIMESTAMP 87
CURRENT TIMEZONE 87
interaction of Explain special registers 843
USER 88

specific function
comment descriptions, adding to catalog 376

SPECIFIC FUNCTION clause
COMMENT ON statement 379

SPECIFIC PROCEDURE clause
COMMENT ON statement 380

specific-name, description of 48
specification

CAST 121
SQL (Structured Query Language)

numbers 56
tokens 44

SQL comments, static statements, rules for 342
SQL identifiers

database identifier 45
long identifier 45
short identifier 45

SQL return code 341
SQL statement

ALTER BUFFERPOOL 343, 344
ALTER NODEGROUP 345
ALTER TABLE 348, 361
ALTER TABLESPACE 362, 364
BEGIN DECLARE SECTION 365, 366
CALL 367, 373
CLOSE 374, 375
COMMENT ON 376, 382
COMMIT 383, 384
Compound SQL 385, 388
CONNECT (Type 1) 389, 395
CONNECT (Type 2) 396, 402
CONTINUE, response to exception 671
CREATE ALIAS 403, 405
CREATE BUFFERPOOL 406, 408
CREATE DISTINCT TYPE 409, 414
CREATE EVENT MONITOR 415, 423
CREATE FUNCTION 424, 440, 453
CREATE FUNCTION (External Scalar) 425
CREATE FUNCTION (External Table) 441
CREATE FUNCTION (Sourced Scalar) 460
CREATE FUNCTION (Sourced) 454
CREATE INDEX 461, 463

 Index 945

SQL statement (continued)
CREATE NODEGROUP 464
CREATE SCHEMA 475, 477
CREATE TABLE 478, 500
CREATE TABLESPACE 501, 507
CREATE TRIGGER 508, 516
CREATE VIEW 517, 524
DECLARE CURSOR 525, 528
DELETE 529, 532
DESCRIBE 533, 536
DISCONNECT 537, 539
DROP 540, 551
dynamic SQL, definition of 7
END DECLARE SECTION 552, 553
EXECUTE 554, 558
EXECUTE IMMEDIATE 559, 560
EXPLAIN 561, 564
FETCH 565, 567
FREE LOCATOR 568
GRANT (Schema Prilvileges) 579
GRANT (Schema Privileges) 577
GRANT (Table Privileges) 580, 586
GRANT (View Privileges) 580, 586
immediate execution of dynamic SQL 7
INCLUDE 587
INSERT 589, 593
interactive SQL, definition of 7
LOCK TABLE 594, 595
OPEN 596, 600
pg=end.ALTER NODEGROUP 347
pg=end.CREATE NODEGROUP 466
PREPARE 601, 608
preparing and executing dynamic SQL 7
RELEASE 610
RENAME TABLE 611, 612
REVOKE (Schema Prilvileges) 622
REVOKE (Schema Privileges) 621
REVOKE (Table Privileges) 623, 627
REVOKE (View Privileges) 623, 627
ROLLBACK 628, 629
SELECT INTO 631, 632
SET CONNECTION 633, 634
SET CONSTRAINTS 635, 640
SET CURRENT DEGREE 641, 642
SET CURRENT EXPLAIN MODE 643, 644
SET CURRENT EXPLAIN SNAPSHOT 645, 646
SET CURRENT FUNCTION PATH 647, 648
SET CURRENT QUERY OPTIMIZATION 651, 653
SET EVENT MONITOR STATE 654, 655
SET transition-variable 656, 658

SQL statement (continued)
SIGNAL SQLSTATE 659, 660
specific-name, conventions for 48
statement name, conventions for 47
static SQL, definition of 7
syntax conventions for 2
UPDATE 661, 667
VALUES INTO 669, 670
WHENEVER 671, 672
WITH HOLD, cursor attribute 525

SQL statement syntax
case sensitive identifiers, rule for 45
cursor-name, definition of 46
escape character 45
specific-name, conventions for 48
statement name, conventions for 47

SQL syntax
AVG function, results on column set 158
basic predicate, detailed diagram 124
BETWEEN predicate, rules for 128
comparing two predicates, truth conditions 124
COUNT function, arguments and results 160
COUNT_BIG function, arguments and results 161
data types, overview 51
dates, detailed description 57
DISTINCT keyword, queries, role of 157
executable statements, embedded usage 339
EXISTS predicate, detailed format description 130
GENERATE_UNIQUE function, arguments and

results 211
GROUP BY clause, use in subselect 298
IN predicate, detailed format description 131
LIKE predicate, rules for 134
multiple operations, order of execution 320
naming conventions, listing of, definitions 46
non-executable statements, embedded usage 339
null value, definition of 51
scale of data in SQL 56
search conditions, detailed formats and rules 140
SELECT clause, detailed description 287
SELECT statement, invocation methods 337
STDDEV function, results on column set 169
times, detailed description 57
values, overview 51
VARIANCE function, results on column set 171
WHERE clause, search conditions for 297

SQLCA (SQL communication area) 679
entry changed by UPDATE 664

SQLCA (SQL communication area) clause
INCLUDE statement 587

946 SQL Reference

SQLCA structure, overview 341
SQLCODE

description 341
return code values, table 341

SQLD field in SQLDA 683
description 684

SQLDA
host variable descriptions, OPEN statement 597
prepared statement information, storing 601

SQLDA (SQL descriptor area) 683
contents 683
FETCH statement 566

SQLDA (SQL descriptor area) clause
INCLUDE statement, specifying 587

SQLDA area, required variables for DESCRIBE 533
SQLDABC field in SQLDA 683

description 684
SQLDAID field in SQLDA

description 684
SQLDATALEN field in SQLDA

description 686
SQLDATATYPE_NAME field in SQLDA

description 687
SQLERROR clause

WHENEVER statement 671
SQLIND field in SQLDA 683

description 685
SQLLEN field in SQLDA 683

description 685
SQLLONGLEN field in SQLDA

description 686
SQLN field in SQLDA 683

description 684
SQLNAME field in SQLDA 683

description 686
sqlstate

description 341
in RAISE_ERROR function 244
in SIGNAL SQLSTATE statement 659
ISO/ANSI SQL92 standard, relation to 341

SQLTYPE field in SQLDA 683
description 685

SQLVAR field in SQLDA 683
base 685
secondary 686

SQLWARNING clause
WHENEVER statement 671

SQRT function 151
detailed format description 259
values and arguments, rules for 259

STAFF sample table 760
STAFFG sample table 762
starting a new unit of work 628
statement string, PREPARE statement, rules for 602
statement string, rules for creating 559
statement-name, description of 47
states

connection 31
static select 339
static SQL

DECLARE CURSOR statement, usage in 339
definition of 7
FETCH statement, usage in 339
invoking 338, 339
OPEN statement, usage in 339
source code, differences from dynamic SQL 7

statistics
updating 741, 748

STDDEV function 151
STDDEV function, detailed description 169
storage

backing out, unit of work, ROLLBACK 628
storage structures

ALTER BUFFERPOOL statement 343
ALTER TABLESPACE statement 362
buffer pool 39
CREATE BUFFERPOOL statement 406
CREATE TABLESPACE statement 501
description 38
nodegroup 39
table space 38

stored procedures
CALL statement 367

string
assignment

conversion rules 67
BLOB 52
CLOB 52
constant

character 80
hexadecimal 81

definition 34
expression 107
LOB 52
operand 107

string limits 674
Structured Query Language (SQL)

assignment operation, overview 64
basic operands, assignments and comparisons 64
character strings, overview of 53

 Index 947

Structured Query Language (SQL) (continued)
characters, range of 43
comments, rules for 43
comparison operation, overview 64
constants, definition of 79
double byte character set (DBCS),

considerations 43
identifiers, definition of

delimited identifier, description 45
ordinary identifiers, description 45

spaces, definition of 43
tokens, definition of

delimiter tokens 43
ordinary tokens 43

values
data types for 51
overview 51
sources of 51

variable names used 46
sub-total rows 300
subject table of trigger 17
subquery

HAVING clause 305
in HAVING clause, execution of 305
in WHERE clause 297

subquery, fullselect use as, search conditions 93
subselect 286

definition 286
examples of 306
FROM clause, relation to subselect 286
sequence of operations, example 286

SUBSTR function 151
SUBSTR function, returning substring from string 260
substrings

cautions and restrictions 262
length, defining 260
locating in string 260
start, setting 260

SUM function 151
detailed format description 170
values and arguments, rules for 170

super-aggregate rows 301
super-groups 300
symetric super-aggregate rows 301
synonym

CREATE ALIAS statement 403
DROP ALIAS statement 541
qualifying a column name 89

syntax diagrams
description 2

system administration privilege 37
system control privilege 38
system maintenance privilege 38
system managed space 38

See also SMS table space
system-containers

CREATE TABLESPACE statement 503

T
table 7, 749

adding a column, ALTER TABLE 351
alias 403, 541
authorization for creating 478
authorization ID, use in name 49
base table 10
catalog views on system tables 693
changing definition 348
collocation 41
comment descriptions, adding to catalog 376
common table expression 18
control privilege, granting 582
creating a table, granting authority for 569
creating, SQL statement instructions 478
definition of 10
deleting, using DROP statement 540
dependent 14
descendent 14
designator, use to avoid ambiguity 91
exception 637, 853
exposed or non-exposed names, FROM clause 90
foreign key 12
FROM clause, subselect, naming conventions 291
index creation, requirements of 461
nested table expression, use of 93
parent 13, 14
partitioning key 12
partitioning map 40
primary key 12
privileges, granting 580
qualifying a column name 89
renaming, requirements of 611
restricting shared access, LOCK TABLE

statement 594
result table 10
revoking privileges for 623
row, inserting 589
sample 749
scalar fullselect, use of 93
schema 475

948 SQL Reference

table (continued)
self-referencing 14
space 38, 406, 501, 546
subquery, use of 93
table name, conventions for 48
table-reference 292
temporary, OPEN statement, use of 598
unique correlation names as table designators 93
unique key 12
updating by row and column, UPDATE

statement 661
table check constraint

description 16
TABLE clause

COMMENT ON statement 380
DROP statement 545

table expression
common-table-expression 325
description 18

table join
partitioning key considerations 496

table space
comment descriptions, adding to catalog 376
deleting, using DROP statement 540
description 38
identification

CREATE TABLE statement 493
index

CREATE TABLE statement 493
name description 48

table-name
in ALTER TABLE statement 351
in CREATE TABLE statement 481
in FROM clause 291
in LOCK TABLE statement 594
in SELECT clause, syntax diagram 287

table-name, description 48
table-reference

alias 292
nested table expressions 292
table-name 292
view-name 292

TABLE_NAME function 152
alias 263

TABLE_SCHEMA function 152
alias 264

tables
distributed relational database, use in 24

TABLESPACE clause
COMMENT ON statement 381

tablespace-name, description 48
TAN function 152

detailed format description 266
values and arguments, rules for 266

temporary tables in OPEN 598
terminating

unit of work 383, 628
terminating a unit of work 628
time

arithmetic operations, rules for 116
as data type 51
CHAR, use of in format conversion 181
duration, format of 114
expression, using in 267
hour values, using in an expression (HOUR) 216
microsecond, returning from datetime value 230
minute, returning from datetime value 232
returning values based on time 267
second, returning from datetime value 253
strings 58
timestamp

internal representation of 57
length of string 57

timestamp, as data type 51
timestamp, returning from values 268

time data type 57, 484
TIME function 152
TIME function, using time in an expression 267
timestamp

arithmetic operations 117
as data type 51
data definition 57
duration 114
from GENERATE_UNIQUE result 211
multi-byte character string (MBCS) restriction 60
string representation format 59
WEEK scalar function, using 280

TIMESTAMP data type 484
TIMESTAMP function 152
TIMESTAMP function, returning from values 268
TIMESTAMP_ISO function 152

detailed format description 270
values and arguments, rules for 270

TIMESTAMPDIFF function 153
detailed format description 271
values and arguments, rules for 271

TO clause
GRANT statement 570, 572, 575, 578, 583

tokens
as language element 43

 Index 949

tokens (continued)
delimiter tokens, definition of 44
ordinary tokens, definition of 44
spaces, rules governing 44
upper and lower case, support for 45

transition tables in triggers 17
transition variables in triggers 17
TRANSLATE function 153

character string, using with 272
graphic string, using with 272
rules and restrictions 272

translation table 272
trigger

and constraints 775
CREATE TRIGGER statement 508
DROP statement 546
errors executing 514
Explain tables 821
inoperative 513
interactions 775
name description 48

TRIGGER clause
COMMENT ON statement 381

triggered SQL statement
SET transition-variable statement 656
SIGNAL SQLSTATE statement 659

triggers
activation 16
activation time 17
cascading 17
comment descriptions, adding to catalog 376
description 16
event 17
granularity 17
INSERT statement 592
set of affected rows 17
subject table 17
triggered action 17
uses of 16

TRUNC or TRUNCATE function 153
detailed format description 274
values and arguments, rules for 274

truncation of numbers 65
truth table 140
truth valued logic, search conditions, rules for 140

U
UCASE function 153

detailed format description 275

UCASE function (continued)
values and arguments, rules for 275

unary
minus sign, results of 110
plus sign, results of 110

uncommitted changes, relation to locks 19
uncommitted read 23, 773
unconnected state 31
undefined reference, error conditions for 92
UNION clause, role in comparison

of fullselect 320
UNIQUE clause

ALTER TABLE statement 355
CREATE INDEX statement 461
CREATE TABLE statement 488

unique constraint 12, 13
adding or dropping, ALTER TABLE 348
ALTER TABLE statement 355
CREATE TABLE statement 488

unique correlation names as table designators 93
unique key 11, 12, 13

ALTER TABLE statement 354
CREATE TABLE statement 487

unique values
generating 211

unit of work
COMMIT 383
description 19
destroying prepared statements 608
initiating closes cursors 598
referring to prepared statements 601
ROLLBACK statement, effect of 628
terminating 383
terminating destroys prepared statements 608
terminating without saving changes 628

unknown condition
null value 140

updatable
view 520

UPDATE clause
GRANT statement 583
REVOKE statement, removing privileges for 624

update locks 22
UPDATE statement 661, 667

row fullselect 664
updating statistics 741, 748
uppercase, folding to 45
UR (uncommitted read) isolation level 23, 773
USA 58

See also datetime format

950 SQL Reference

USA date format 58
USA time format 58
USER special register 88
user-defined data type

distinct-type-name
CREATE TABLE statement 484

user-defined function 282
CREATE FUNCTION (External Scalar)

statement 425
CREATE FUNCTION (External Table)

statement 441
CREATE FUNCTION (Sourced) statement 454
CREATE FUNCTION statement 424
description 100
DROP statement 540
GRANT (Database Authorities) statement 570
REVOKE (Database Authorities) statement 614

user-defined types
casting 62

USING clause
EXECUTE statement 554
FETCH statement 566
OPEN statement, listing host variables 596

USING DESCRIPTOR 554
USING DESCRIPTOR clause

EXECUTE statement 554
OPEN statement 597

V
VALUE function 153, 276
value in SQL 51
value, data definition of 10
VALUES clause

fullselect 319
INSERT statement, loading one row 590
number of values, rules for 590

VALUES INTO statement 669, 670
VARCHAR

DOUBLE scalar function, using 205
function 277

VARCHAR data type 483
VARCHAR function 153
VARCHAR strings

attributes, summary 53
restrictions on usage 53

VARCHAR(26)
WEEK scalar function, using 280

VARGRAPHIC
function 278

VARGRAPHIC function 154
VARGRAPHIC strings

attributes, summary 55
restrictions on usage 55

VARIANCE function, detailed description 171
VARIANCE or VAR function 154
view

alias 403, 541
authorization ID, use in name 49
comment descriptions, adding to catalog 376
control privilege

granting 582
limitations on 582

creating 517
deletable 520
deleting, using DROP statement 540
description 10
exposed or non-exposed names, FROM clause 90
foreign key, referential constraints 10
FROM clause, subselect, naming conventions 291
index, relation to view 11
inoperative 521
insertable 521
preventing view definition loss, WITH CHECK

OPTION 665
privileges, granting 580
qualifying a column name 89
read-only 521
revoking privileges for 623
row, inserting in viewed table 589
schema 475
updatable 520
updating rows by columns, UPDATE statement 661
validity and usage rules when revoking

privilege 625
view name, conventions for 48
WITH CHECK OPTION, effect on UPDATE 665

VIEW clause
CREATE VIEW statement 517
DROP statement 546

view-name
description of 48
in FROM clause 291
in SELECT clause, syntax diagram 287

W
warning return code 341
WEEK

function 280

 Index 951

WEEK function 154
WHENEVER statement 671, 672
WHENEVER statement, changing flow of control 338
WHERE clause

DELETE statement, row selection 530
search function, subselect, rules for 297
UPDATE statement, conditional search 664

WHERE CURRENT OF clause
DELETE statement, use of DECLARE

CURSOR 531
UPDATE statement 664

wildcard character
LIKE predicate, values for 134

WITH CHECK OPTION clause
CREATE VIEW statement 518

WITH clause
CREATE VIEW statement 518
INSERT statement 591

WITH common-table-expression 324
WITH DEFAULT clause

ALTER TABLE statement 351
WITH GRANT OPTION clause

GRANT statement 584
WITH HOLD clause

DECLARE CURSOR statement 525
WORK

in COMMIT statement 383
in ROLLBACK statement 628

Y
YEAR function 154
YEAR function, using in expressions 281

952 SQL Reference

 Contacting IBM

This section lists ways you can get more information
from IBM.

If you have a technical problem, please take the time to
review and carry out the actions suggested by the Trou-
bleshooting Guide before contacting DB2 Customer
Support. Depending on the nature of your problem or
concern, this guide will suggest information you can
gather to help us to serve you better.

For information or to order any of the DB2 Universal
Database products contact an IBM representative at a
local branch office or contact any authorized IBM soft-
ware remarketer.

Telephone

If you live in the U.S.A., call one of the following
numbers:

¹ 1-800-237-5511 to learn about available service
options.

¹ 1-800-IBM-CALL (1-800-426-2255) or
1-800-3IBM-OS2 (1-800-342-6672) to order pro-
ducts or get general information.

¹ 1-800-879-2755 to order publications.

For information on how to contact IBM outside of the
United States, see Appendix A of the IBM Software
Support Handbook. You can access this document by
selecting the "Roadmap to IBM Support" item at:
http://www.ibm.com/support/.

Note that in some countries, IBM-authorized dealers
should contact their dealer support structure instead of
the IBM Support Center.

World Wide Web
http://www.software.ibm.com/data/
http://www.software.ibm.com/data/db2/library/

The DB2 World Wide Web pages provide current DB2
information about news, product descriptions, education
schedules, and more. The DB2 Product and Service
Technical Library provides access to frequently asked
questions, fixes, books, and up-to-date DB2 technical
information. (Note that this information may be in English
only.)

Anonymous FTP Sites
ftp.software.ibm.com

Log on as anonymous. In the directory /ps/products/db2,
you can find demos, fixes, information, and tools con-
cerning DB2 and many related products.

Internet Newsgroups
comp.databases.ibm-db2, bit.listserv.db2-l

These newsgroups are available for users to discuss
their experiences with DB2 products.

CompuServe
GO IBMDB2 to access the IBM DB2 Family forums

All DB2 products are supported through these forums.

To find out about the IBM Professional Certification
Program for DB2 Universal Database, go to
http://www.software.ibm.com/data/db2/db2tech/db2cert.html

 Copyright IBM Corp. 1993, 1997 953

ÉÂÔÙ

Part Number: 10J8165

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

S10J-8165-00

1
0
J
8
1
6
5

DSMMOM395I '.EDFPO' LINE 70: .po @E@P@S
DSMMOM397I '.EDFPO' WAS IMBEDDED AT LINE 910 OF '.EDFAWRK'
DSMMOM397I '.EDFAWRK' WAS IMBEDDED AT LINE 2460 OF '.EDF#CVX'
DSMMOM397I '.EDF#CVX' WAS IMBEDDED AT LINE 270 OF '.EDF#BCX5'
DSMMOM397I '.EDF#BCX5' WAS IMBEDDED AT LINE 680 OF '.EDF#END'
DSMMOM397I '.EDF#END' WAS IMBEDDED AT LINE 187 OF 'EDFPRF40'
DSMBEG323I STARTING PASS 2 OF 3.
+++EDF119E Syntax diagram exceeds column boundary - information discarded. (Page 295 File: DB2
S0 SCRIPT)
DSMMOM397I '.EDF#SDGN' WAS IMBEDDED AT LINE 80 OF '.EDF#SDFM'
DSMMOM397I '.EDF#SDFM' WAS IMBEDDED AT LINE 210 OF '.EDFESD'
DSMMOM397I '.EDFESD' WAS IMBEDDED AT LINE 21885 OF 'DB2S0'
DSMKPO653E POSTSCRIPT FILE '@E@P@S' NOT FOUND.
DSMMOM395I '.EDFPO' LINE 70: .po @E@P@S
DSMMOM397I '.EDFPO' WAS IMBEDDED AT LINE 910 OF '.EDFAWRK'
DSMMOM397I '.EDFAWRK' WAS IMBEDDED AT LINE 2460 OF '.EDF#CVX'
DSMMOM397I '.EDF#CVX' WAS IMBEDDED AT LINE 270 OF '.EDF#BCX5'
DSMMOM397I '.EDF#BCX5' WAS IMBEDDED AT LINE 680 OF '.EDF#END'
DSMMOM397I '.EDF#END' WAS IMBEDDED AT LINE 187 OF 'EDFPRF40'
DSMBEG323I STARTING PASS 3 OF 3.
+++EDF119E Syntax diagram exceeds column boundary - information discarded. (Page 295 File: DB2
S0 SCRIPT)
DSMMOM397I '.EDF#SDGN' WAS IMBEDDED AT LINE 80 OF '.EDF#SDFM'
DSMMOM397I '.EDF#SDFM' WAS IMBEDDED AT LINE 210 OF '.EDFESD'
DSMMOM397I '.EDFESD' WAS IMBEDDED AT LINE 21885 OF 'DB2S0'
DSMKPO653E POSTSCRIPT FILE '@E@P@S' NOT FOUND.
DSMMOM395I '.EDFPO' LINE 70: .po @E@P@S
DSMMOM397I '.EDFPO' WAS IMBEDDED AT LINE 910 OF '.EDFAWRK'
DSMMOM397I '.EDFAWRK' WAS IMBEDDED AT LINE 2460 OF '.EDF#CVX'
DSMMOM397I '.EDF#CVX' WAS IMBEDDED AT LINE 270 OF '.EDF#BCX5'
DSMMOM397I '.EDF#BCX5' WAS IMBEDDED AT LINE 680 OF '.EDF#END'
DSMMOM397I '.EDF#END' WAS IMBEDDED AT LINE 187 OF 'EDFPRF40'

