

Hyperion Solutions Corporation

Essbase® Administration Services
Release 7.1

Developer’s Guide

Copyright 2001–2004 Hyperion Solutions Corporation. All rights reserved.

U.S. Patent Number: 5,359,724

Hyperion, Essbase, the Hyperion “H” logo, Hyperion Solutions, Essbase XTD, and Administration Services are registered
trademarks or trademarks of Hyperion Solutions Corporation.

All other brand and product names are trademarks or registered trademarks of their respective holders.

No portion of this manual may be reproduced or transmitted in any form or by any means, electronic or mechanical,
including photocopying, recording, or information storage and retrieval systems, for any purpose other than the
purchaser’s personal use, without the express written permission of Hyperion Solutions Corporation.

Notice: The information contained in this document is subject to change without notice. Hyperion Solutions Corporation
shall not be liable for errors contained herein or consequential damages in connection with the furnishing, performance,
or use of this material.

Hyperion Solutions Corporation
1344 Crossman Avenue
Sunnyvale, CA 94089

Printed in the U.S.A.

■ iiiEssbase Administration Services Developer’s Guide

Contents

Preface ... vii

Chapter 1: Introduction ... 13

About Essbase Administration Services .. 13
About Java Plug-in Components.. 14
Requirements for Using Administration Services Java Plug-ins 15
Prerequisite Knowledge ... 15
Framework Concepts.. 16

Packaged APIs for Administration Services .. 16
Administration Services Java Packages ... 16
Example Classes... 16

About the Sample Code in this Guide.. 17

Chapter 2: Writing Client Plug-ins ... 19

Preliminaries .. 19
Access Point for Plug-ins ... 20
Class Packages ... 20
How the Client Locates Plug-ins.. 22
Adding Functionality ... 23

Semantic Rules ... 23
Adding a Branch to the Enterprise Tree ... 24
Adding Children to Other Tree Nodes ... 26
Permitting Plug-ins To Add Children To Your Tree Nodes...................................... 27
Adding Context Menu Items To Tree Nodes.. 27
Handling the File > New Menu Item.. 29
Adding Items To Menus ... 31

Static Menu Items... 31

Contents

iv ■ Essbase Administration Services Developer’s Guide

Internal Frame Menu Items... 33
Console Tree Menu Items... 33

Handling Save As.. 34
Standard Controls ... 35

The StandardDialog Class... 35
Name of Standard Dialog Class.. 36
Dialog Creation... 36
Dialog Initialization .. 37
Dialog Default Action... 38
Dialog Keyboard Handling, Focus Order, Action Maps, and So On................ 38
Dialog Results... 39
Methods to Override ... 40

Standard Buttons and Other Controls ... 40
Administration Services Console Services ... 41

Retrieving the CSS Token from the Console .. 41
Sending E-mail.. 42

Internationalization ... 43
Packaging the Plug-in ... 43

Chapter 3: Writing Server-side Command Listeners............................ 45

Preliminaries ... 45
Command Listeners .. 46

Class Hierarchy ... 47
Which Class To Extend... 47
Which Methods to Override.. 47
Registering Commands ... 48

CommandString Class .. 49
CommandArgument Class .. 49
CommandDescriptor Class ... 50
Examples... 50

Command Handling Methods... 55
Method Signatures .. 55
Grabbing Command Arguments ... 56
Sending Results Back to the Client... 57
Storing Temporary Data Using the Framework .. 58

Contents

■ vEssbase Administration Services Developer’s Guide

Packaging the Code .. 59
Loading the Code ... 60
Utility Classes... 61

Index .. 63

Contents

vi ■ Essbase Administration Services Developer’s Guide

■ viiEssbase Administration Services Developer’s Guide

Preface

Welcome to the Essbase Administration Services Developer’s Guide. This preface
discusses the following topics:

● “Purpose” on page vii

● “Audience” on page vii

● “Document Structure” on page viii

● “Where to Find Documentation” on page viii

● “Conventions” on page x

● “Additional Support” on page xi

Purpose
This guide provides you with all the information that you need to extend Essbase
Administration Services. It explains the Essbase Administration Services
concepts, processes, procedures, formats, tasks, and examples that you need to
customize the software.

Audience
This guide is for software developers who are responsible for extending Essbase
Administration Services.

viii ■

Preface

Essbase Administration Services Developer’s Guide

Document Structure
This document contains the following information:

Chapter 1, “Introduction”, introduces the Essbase Administration Services plug-in
components and shows you how you can use them. It also contains a list of
packaged APIs for Essbase Administration Services and explains client and server
concepts.

Chapter 2, “Writing Client Plug-ins,” provides general guidelines for developing
an Essbase Administration Services Java plug-in and describes how to add your
Java plug-in to Essbase Administration Services.

Chapter 3, “Writing Server-side Command Listeners,” explains how to write a
command listener for the Essbase Administration Services mid-tier web server.

The Index contains a list of Hyperion Essbase Administration Services terms and
their page references.

Where to Find Documentation
All Essbase Administration Services plug-in documentation is accessible from the
following locations:

● The HTML Information Map is located at:

EASPATH/eas/doc_launcher.htm

Launch this file, and then provide the name of the computer where
Administration Server is installed. Administration Server must be started
when you launch the Information Map.

● The Hyperion Solutions Web site is located at http://www.hyperion.com.

● The Hyperion Download Center can be accessed from
http://hyperion.subscribenet.com or from
http://www.hyperion.com.

➤ To access documentation through the Hyperion Solutions Web site:

1. Log on to http://www.hyperion.com.

2. Select the Support link and type your username and password to log on.

Note: New users must register to receive a username and password.

http://www.hyperion.com
http://hyperion.subscribenet.com
http://www.hyperion.com

Where to Find Documentation

■ ixEssbase Administration Services Developer’s Guide

3. Click the Hyperion Download Center link and follow the on-screen
instructions.

➤ To access documentation from the Hyperion Download Center:

1. Log on to http://hyperion.subscribenet.com.

2. In the Login ID and Password text boxes, enter your assigned login ID name
and password.

3. In the Language list box, select the appropriate language and click Login.

4. If you are a member on multiple Hyperion Download Center accounts, select
the account that you want to use for the current session.

5. Perform one of the following actions:

● To access documentation online, from the Product List, select the
appropriate product and follow the on-screen instructions.

● To order printed documentation, from the Information section in the left
frame, select Order Printed Documentation, then follow the on-screen
instructions

➤ To order printed documentation if you do not have access to the Hyperion
Download Center:

● In the United States, call Hyperion Solutions Customer Support at
877-901-4975.

● From outside the United States, including Canada, call Hyperion Solutions
Customer Support at 203-703-3600. Clients who are not serviced by support
from North America should call their local support centers.

http://hyperion.subscribenet.com

x ■

Preface

Essbase Administration Services Developer’s Guide

Conventions
The following table shows the conventions that are used in this document:

Table i: Conventions Used in This Document

Item Meaning

Arrows indicate the beginning of a procedure consisting of
sequential steps or one-step procedures.

Brackets [] In examples, brackets indicate that the enclosed elements
are optional.

Bold Bold in procedural steps highlights major interface
elements.

CAPITAL LETTERS Capital letters denote commands and various IDs.
(Example: CLEARBLOCK command)

Ctrl + 0 Keystroke combinations shown with the plus sign (+)
indicate that you should press the first key and hold it
while you press the next key. Do not type the + sign.

Example text Courier font indicates that the material shown is a code or
syntax example.

Courier italics Courier italic text indicates a variable field in command
syntax. Substitute a value in place of the variable shown in
Courier italics.

ARBORPATH When you see the environment variable ARBORPATH in
italics, substitute the value of ARBORPATH from your site.

EASPATH This environment variable is set to the directory path of
the Administration Services installation. The default is
C:\Hyperion on Windows platforms and
/home/hyperion on UNIX platforms.

When you see the environment variable EASPATH in
italics, substitute the value of EASPATH from your site.

n, x Italic n stands for a variable number; italic x can stand for
a variable number or an alphabet. These variables are
sometimes found in formulas.

Additional Support

■ xiEssbase Administration Services Developer’s Guide

Additional Support
In addition to providing documentation and online help, Hyperion offers the
following product information and support. For details on education, consulting,
or support options, click the Services link on the Hyperion Web site at
http://www.hyperion.com.

Education Services
Hyperion offers instructor-led training, custom training, and eTraining covering all
Hyperion applications and technologies. Training is geared to administrators, end
users, and information systems (IS) professionals.

Consulting Services
Experienced Hyperion consultants and partners implement software solutions
tailored to clients’ particular reporting, analysis, modeling, and planning
requirements. Hyperion also offers specialized consulting packages, technical
assessments, and integration solutions.

Ellipses (...) Ellipsis points indicate that text has been omitted from an
example.

Mouse orientation This document provides examples and procedures using
a right-handed mouse. If you use a left-handed mouse,
adjust the procedures accordingly.

Menu options Options in menus are shown in the following format.
Substitute the appropriate option names in the
placeholders, as indicated.

Menu name > Menu command > Extended menu
command

For example: 1. Select File > Desktop > Accounts.

Table i: Conventions Used in This Document (Continued)

Item Meaning

http://www.hyperion.com

xii ■

Preface

Essbase Administration Services Developer’s Guide

Technical Support
Hyperion provides enhanced electronic-based and telephone support to clients to
resolve product issues quickly and accurately. This support is available for all
Hyperion products at no additional cost to clients with current maintenance
agreements.

Documentation Feedback
Hyperion strives to provide complete and accurate documentation. We value
your opinions on this documentation and want to hear from you. Send us your
comments by clicking the link for the Documentation Survey, which is located on
the Information Map for your product.

■ 13Essbase Administration Services Developer’s Guide

1

Chapter

1
Introduction

This chapter includes the following topics:

● “About Essbase Administration Services” on page 13

● “About Java Plug-in Components” on page 14

● “Requirements for Using Administration Services Java Plug-ins” on page 15

● “Prerequisite Knowledge” on page 15

● “Framework Concepts” on page 16

● “About the Sample Code in this Guide” on page 17

About Essbase Administration Services
Essbase Administration Services is the new cross-platform framework for
managing and maintaining Essbase. Administration Services provides a single
point of access for viewing, managing, and maintaining Analytic Servers
(formerly OLAP Servers), applications, and databases. This new product
incorporates the functionality of Essbase Application Manager along with other
new administrative features and with Essbase administration tools, such as MaxL.

Administration Services consists of two components:

● Administration Services Console (client tier)

This component is a Java client console that enables administrators to manage
the Essbase environment from a robust graphical user interface.

● Administration Server (middle tier)

This component is a Java based web application server that communicates
with both Administration Services Console and Essbase Analytic Servers.
Administration Server maintains communication and session information for

14 ■

Introduction

Essbase Administration Services Developer’s Guide

each connection to Analytic Servers. Administration Server also stores
documentation files so that console users can access the documentation
without having to install it locally.

Administration Server serves as the middle tier between Administration Services
Console and Essbase Analytic Servers, as shown in Figure 1.

Figure 1: Essbase Administration Services Architecture

About Java Plug-in Components
Essbase Administration Services Java plug-ins are installable components. They
provide the following benefits to users:

● Enable the Essbase Administration Services development team to easily
provide additional functionality to end users

● Allow other Hyperion internal development groups to easily integrate their
products with Essbase Administration Services

● Enable partners and customers to easily integrate their processes into Essbase
Administration Services

● Allow customers to accomplish more because they are not launching several
applications at once

The following list describes how you can use Essbase Administration Services
plug-ins:

● Customize the Essbase Administration Services Enterprise Tree

● Customize the Essbase Administration Services File > Open dialog box

Requirements for Using Administration Services Java Plug-ins

1

■ 15Essbase Administration Services Developer’s Guide

● Customize the Essbase Administration Services File > New dialog box

● Customize the Essbase Administration Services File > Save As dialog box

● Change the Essbase Administration Services menus

For each of these tasks, there are a set of classes, interfaces, and methods that must
be implemented by a plug-in author. There are also a set of guidelines to follow
when implementing plug-ins.

For information about performing the preceding tasks, see “Writing Client
Plug-ins” on page 19.

Requirements for Using Administration
Services Java Plug-ins

The following list describes the requirements necessary to use Essbase
Administration Services Java plug-in components:

● Java SDK Version 1.4.1_b06 or later

● Hyperion Essbase Release 7.1 or later

● Essbase Administration Services Release 7.1 or later

Prerequisite Knowledge
Developers using this guide must have the following prerequisite knowledge:

● XML (Extensible Markup Language)

● HTTP (Hypertext Transfer Protocol)

● Java 2

– Introspection
Introspection is a Java technique that Essbase Administration Services
uses to interact and communicate with plug-in components.

– Exception handling

– Packaging of applications (.jar files)

● Swing

16 ■

Introduction

Essbase Administration Services Developer’s Guide

Swing is a graphical user interface (GUI) component kit, part of the Java
Foundation Classes (JFC) integrated into Java 2 platform, Standard Edition
(J2SE). Swing simplifies deployment of applications by providing a complete
set of user-interface elements written entirely in the Java programming
language. Swing components permit a customizable look and feel without
relying on any specific windowing system.

Because Swing is incorporated in the Java 2 platform, there is no need to
download or install it.

Framework Concepts

Packaged APIs for Administration Services
Administration Services consists of several packages. For detailed information
about these packages, see the Essbase Administration Services Java API Reference
for the packages and classes described in this guide.

Administration Services Java Packages
com.essbase.eas.ui.* (all packages)

com.essbase.eas.framework.* (all packages)

Example Classes
ConsoleTreeHandler

ConsoleMenuHandler

MiscellaneousHandler

NewDialogHandler

OpenDialogHandler

OptionsDialogHandle

About the Sample Code in this Guide

1

■ 17Essbase Administration Services Developer’s Guide

About the Sample Code in this Guide
The code snippets and examples contained in this guide are intended to
demonstrate how plug-ins interact with the Administration Services framework.
They are intended to show how to get an aspect of the interaction to work and, in
some cases, omit details that are not relevant to the topic being discussed. In
addition, while the techniques shown will work, the Java techniques shown may in
some cases not be the best implementation method when scaling up to a production
quality product.

For example, in the section on context menu items, “Adding Context Menu Items
To Tree Nodes” on page 27, the example creates new menu items and action
listeners each time the getContextMenuItems() method is called; this might not be
the best mechanism for handling this task. Please consult the appropriate Java
resources (books, Web pages, documentation) for other techniques; in particular,
when dealing with Swing objects, the Swing event model, and associating Swing
event listeners to objects.

18 ■

Introduction

Essbase Administration Services Developer’s Guide

■ 19Essbase Administration Services Developer’s Guide

2

Chapter

2
Writing Client Plug-ins

This chapter explains how to write a plug-in for Administration Services Console.
Plug-ins are the mechanism for extending the functionality of Administration
Services Console. This chapter includes the following topics:

● “Preliminaries” on page 19

● “Access Point for Plug-ins” on page 20

● “Class Packages” on page 20

● “How the Client Locates Plug-ins” on page 22

● “Adding Functionality” on page 23

● “Standard Controls” on page 35

● “Administration Services Console Services” on page 41

● “Internationalization” on page 43

● “Packaging the Plug-in” on page 43

Preliminaries
We make the following user presumptions:

● You have some Java experience

● You have access to the Essbase Administration Services Java API Reference

20 ■

Writing Client Plug-ins

Essbase Administration Services Developer’s Guide

● Since different developers use different build tools and environments, we do
not discuss how to do anything for specific development environments.
Rather, we describe the desired results, leaving it to the developer to know how
to achieve these results with their specific development tools.

Note: For the purposes of this documentation, the terms “client framework”,
“Administration Services Console”, “console”, “Administration Services client”, and
simply, “the client” can generally be taken to refer to the client application.

Access Point for Plug-ins
The implementation of the Administration Services client is contained in the
eas_client.jar and framework_client.jar files that are installed with
Administration Services. Additional classes are found in the eas_common.jar
and framework_common.jar files. The Analytic Services plug-in to
Administration Services Console is contained in the essbase_common.jar and
essbase_client.jar files.

Class Packages
Administration Services Console consists of several packages. The public classes
in these packages are available to the implementor of plug-ins. In particular, the
user interface, print, and mail-related classes. For detailed information about the
packages and classes described in Table 1, see the Essbase Administration
Services Java API Reference.

Table 1: Administration Services Console Class Packages

Package or Class Name Description

com.essbase.eas.client.intf The classes and interfaces that provide an interface
to the console

com.essbase.eas.client.
manager

The classes that provide “management” services for
parts of the console; such as, LoginManager,
CommandManager, ConsoleManager, and so on

com.essbase.eas.client.
plugins

The classes that the client framework uses to install
plug-ins, track plug-ins, and so on

Class Packages

2

■ 21Essbase Administration Services Developer’s Guide

com.essbase.eas.framework.
client.defs.command

The client-specific classes related to sending
commands to the mid-tier. As of Release 7.1, this
consists only of the UICommandManager class.

com.essbase.eas.framework.
client.defs.login

This is the default login dialog box provided by the
console. It displays if no plug-in has registered a
different login dialog or if any command is sent to
the Administration Services mid-tier and a mid-tier
server name has not been provided.

com.essbase.eas.framework.
client.ui.filedlgs

Implements dialog boxes associated with a file
menu. For example, New, Open, Save As

com.essbase.eas.ui Another package with several user interface
components used by the console and by the
Analytic Services plug-in

com.essbase.eas.ui.ctable An implementation of a standard extension to the
JTable control

com.essbase.eas.ui.ctree An implementation of an extension to the JTree
control. This is the control that is used in the
Enterprise Tree and in the custom views of the
console.

com.essbase.eas.ui.editor An implementation of a standard text editor with
syntax highlighting. This control is used as the base
class for the calculation script editor, maxL editor,
and report script editor in the Analytic Services
plug-in.

com.essbase.eas.ui.email An implementation of some e-mail related classes.
The framework provides a service for sending
e-mail; this package contains the implementation of
the service.

com.essbase.eas.ui.font The classes that provide the font-related utility

com.essbase.eas.ui.print The classes that provide the print-related utility

com.essbase.eas.ui.ptable An extension to the JTable control for editing
properties. This table provides extensive editing,
sorting capabilities, and is used by many windows
and dialogs in the Analytic Services plug-in.

Table 1: Administration Services Console Class Packages (Continued)

Package or Class Name Description

22 ■

Writing Client Plug-ins

Essbase Administration Services Developer’s Guide

How the Client Locates Plug-ins
The client tracks plug-ins by maintaining a list of jar files that the user has selected
using the Configure Plugin Components dialog box. To display this dialog box,
from Administration Services Console, select Tools > Configure components.

When a jar file is selected, the dialog scans through each package in the jar file
looking for a class called MiscellaneousHandler.class. When a class with this
name is found, the jar file name and the package name containing that class file are
retained by the plug-in manager. Therefore, each jar file must contain exactly one
package with a MiscellaneousHandler class in it.

When Administration Services Console starts, the plug-in manager scans each jar
file in its stored list, looking for the MiscellaneousHandler.class file in the
specified package. If this class is found, the plug-in manager adds this plug-in to
its list of plug-ins. Other parts of the application, or any other plug-in can then call
the plug-in manager to get a list of all plug-ins.

Basically, each plug-in consists of the following:

com.essbase.eas.ui.ptree An extension to the JTree control for editing
tree-oriented properties. This tree provides
extensive editing capabilities and is used by many
windows and dialogs in the Analytic Services
plug-in.

com.essbase.eas.ui.tree The generic utility routines for working with
JTree-based controls

com.essbase.eas.framework.
defs

This package and the packages under it provide
services for transferring commands from the
mid-tier to the client, packaging/unpackaging data
to be transferred, a logging mechanism, and so on

com.essbase.eas.i18n The internationalization utility classes

com.essbase.eas.utils Various utility classes spanning a range of uses: file
utilities, compression, encryption, array utilities,
and so on

com.essbase.eas.utils.print Utility classes dealing with printing

Table 1: Administration Services Console Class Packages (Continued)

Package or Class Name Description

Adding Functionality

2

■ 23Essbase Administration Services Developer’s Guide

A jar file containing a package with a
MiscellaneousHandler class

For the rest of this document, we will use the term “plug-in root” to refer to the
package containing the MiscellaneousHandler class.

For example, the rest of this document uses a plug-in with a class named
com.MyPlugin.MiscellaneousHandler; the plug-in root refers to the package
com.MyPlugin.

Adding Functionality
There are many ways to add functionality to Administration Services Console. The
following sections describe how this is currently implemented:

● “Semantic Rules” on page 23

● “Adding a Branch to the Enterprise Tree” on page 24

● “Adding Children to Other Tree Nodes” on page 26

● “Permitting Plug-ins To Add Children To Your Tree Nodes” on page 27

● “Adding Context Menu Items To Tree Nodes” on page 27

● “Handling the File > New Menu Item” on page 29

● “Adding Items To Menus” on page 31

● “Handling Save As” on page 34

Semantic Rules
Many of the following sections have a description of semantic rules. In most cases,
Administration Services Console does not enforce these rules. We expect that
developers writing plug-ins for Administration Services will be “well-behaved
citizens”; philosophically, this means that a lot of the console is open, accessible,
and plug-ins can have an adverse effect on the application by taking actions that
break these semantic rules.

24 ■

Writing Client Plug-ins

Essbase Administration Services Developer’s Guide

Adding a Branch to the Enterprise Tree
When Administration Services Console starts, a panel is created called the
“Enterprise View”. This panel contains an instance of the CTree class. The text for
the root node is called “Enterprise View”. Each plug-in gets the opportunity to add
children to the root node. This permits each plug-in to have its own branch in the
Enterprise Tree view.

In the plug-in root, add a class called ConsoleTreeHandler. In our example, this
would be com.MyPlugin.ConsoleTreeHandler. Add a method called
“populateTree()” to this class. The source code should look something like the
following example:

public class Console TreeHandler {
//a no-argument constructor is required by the framework.
public ConsoleTreeHandler() {
}

public void populateTree(CTreeModel model) {
Object root=model.getRoot();

//strictly speaking, this next check should not be
//necessary; however, we do this to make sure some other
//plug-in hasn’t replaced the root node with something
//unexpected.
if ((root!=null) && (root instanceof CTreeNode))

//create any CTreeNode-derived objects, adding them
//as children of the root node.

}
}

}

There are some unenforced semantic rules associated with CTree objects:

● The only action a plug-in should perform on the CTreeModel is to get the root.
The plug-in should never replace the root node, traverse the tree model, or
make changes to any other descendants of the root node.

Adding Functionality

2

■ 25Essbase Administration Services Developer’s Guide

● Every object added as child of the root node must be derived from a
CTreeNode. Theoretically, any object can be added as a child of the root;
however, other parts of the framework will not respond to those objects in any
meaningful way.

Note: A plug-in can be called more than once if the console disconnects from the
current server. The code needs to check that the node has already been added and only
append nodes that have not been added previously. The source code should look
something like the following Essbase ConsoleTreeHandler code:

/**
* populates the model with information required.
*/
public void populateTree(CTreeModel model) {

Object root=model.getRoot();
CTreeNode rootNode=null;
boolean firstTime=true;
if (root instanceof CTreeNode) {

rootNode=(CTreeNode) root;
if (rootNode.getChildCount()!=0) {

CTreeNode node=(CTreeNode) rootNode.getFirstChild();
while (node !=null) {

if (node instanceof ServersContainerNode) {
firstTime=false;
UIFactory.refreshServerList();
break;

}
node=(CTreeNode rootNode.getChildAfter(node);

}
}

}
if (firstTime) {

CTreeNode essnode=new ServersContainerNode(null);
rootNode.add(essnode);
final CTreeNode containerNode=essnode;

ConsoleManager.getConsoleInstance().addFrameListener(new
WindowAdapter() {

public void windowClosed(WindowEvent e) {
//signal that we are simply disconnecting instead of
//closing
if (e.getNewState() == WindowEvent.WINDOW_OPENED &&

e.getOldState() == WindowEvent.WINDOW_OPENED) {
Server[] servers = UIFactory.getServers();
for (int ii=0; ii<servers.length; ii++) {

UIFactory.removeServerInstance(servers[ii]);

26 ■

Writing Client Plug-ins

Essbase Administration Services Developer’s Guide

}
}
UIFactory.disconnectAll();

}
})

}
}

Adding Children to Other Tree Nodes
When a CTreeNode object is expanded for the first time, each plug-in gets the
opportunity to add child nodes to the CTreeNode being expanded.

In the plug-in root, add a class called ConsoleTreeHandler. In our example, this
would be com.MyPlugin.ConsoleTreeHandler. Add a method called
“getTreeNodeChildren()” to this class. The source code should look something
like the following example:

public static CTreeNode[] getTreeNodeChildren(CTreeNode node) {
// strictly speaking, this check for null should never be
// necessary
if (node == null)

return new CTreeNode[0];
if (node instanceof SomeSpecificTreeNode) {

CTreeNode[] theChildren = new CTreeNode[5];
theChildren[0] = new ChildNode();
theChildren[1] = new AnotherChildNode();
// and so on...
return theChildren;

}
else if (node instanceof SomeOtherTreeNode) {

// different set of children here.
}
// and if we're not interested in any other types.
return new CTreeNode[0].

}

Item of interest for this operation:

● This method could be declared public Object[]
getTreeNodeChildren(CTreeNode node) and it would still get called. The
CTreeNode method that handles this checks the return value for null and also
checks each item returned in the array to ensure that it is an instance of a
CTreeNode object. Declaring the method as in the example enforces to the
implementer of the plug-in that the items returned must be items derived from
the CTreeNode class.

Adding Functionality

2

■ 27Essbase Administration Services Developer’s Guide

● The only arrangement that currently is done is that child nodes that cannot
have children are placed before the child nodes that can have children. Nodes
from plug-ins are placed after the nodes that the parent node already knows
about.

Permitting Plug-ins To Add Children To Your Tree Nodes
By default, all CTreeNode based objects that can have children have this feature
enabled. Currently, there is no way to prevent plug-ins from adding children to a
tree node if that tree node can have children.

Adding Context Menu Items To Tree Nodes
When the CTree control detects that a popup menu needs to be displayed, it calls
the instance of the CTreeNode and asks it for a list of items to display in the context
menu. The following are rules or guidelines for how CTreeNode objects should
build this array:

● The signature for the CTreeNode method is:

public Component[] getContextMenuItems();

Even though this method is declared to return an array of Component objects,
it is highly recommended that the objects returned all be instances of the
JMenuItem class (or classes derived from JMenuItem).

● The state of any menu items returned from the getContextMenuItems()
method must be properly initialized; that is, enabled/disabled, checked.

● The JMenuItem objects (or whatever objects) must be properly linked to the
specific CTreeNode object that is being called. The event passed in the
actionPerformed() call will contain none of this contextual information.

The CTree then calls each plug-in, retrieving any additional menu items for the
specified CTreeNode object. If there are additional items, the CTree places a
separator after the original menu items, then places all of the plug-in items in the
popup menu, and then, if the CTreeNode can be put on custom views, puts another
separator and the menu items related to custom views.

For a plug-in to respond to the CTree properly in this case, add a class called
ConsoleTreeHandler to the plug-in root package. In our example, this would be
com.MyPlugin.ConsoleTreeHandler. Add a method called
“getContextMenuItemsFor()” to this class. The source code could look something
like the following example:

28 ■

Writing Client Plug-ins

Essbase Administration Services Developer’s Guide

public static Component[] getContextMenuItmsFor(CTreeNode node) {
// strictly speaking, this check for null should never be
// necessary
if (node == null)

return new Component[0];
if (node instanceof SomeSpecificTreeNode) {

JMenuItem theItem = new JMenuItem("Walk");
JMenuItem anotherItem = new JMenuItem("Don't walk");
theItem.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {
// take action here.

}
}
return new Component[] { theItem, anotherItem };

}
else if (node instanceof SomeOtherTreeNode) {

// different set of menu items here.
}
// and if we're not interested in any other types.
return new Component[0].

}

Items of interest for this operation:

● This method can be declared to return anything. For instance, for better type
safety within your own code, you could declare the method to be “public static
JMenuItem[] getContextMenuItemsFor(CTreeNode node)”; however, the
CTree object making the call will only use items that are derived from the
Component class.

● This example is very bare bones; for instance, the returned JMenuItem object
does not know which CTreeNode object it should be working with; even
worse, one of the items does not have an action listener associated with it. For
a complete example of this, please see the sample plug-ins developed by the
Administration Services development team.

● CTreeNode (being derived from DefaultMutableTreeNode) objects have a
user object. This is available through the getUserObject() method. The intent
is that the user object for a node represents that data that the node has been
created for and this is the data that would need to be associated with the menu
item. For instance, a node might have an object representing an Analytic
Services application. In the above example, we would then perform a
node.getUserObject() call to obtain this Analytic Services application object

Adding Functionality

2

■ 29Essbase Administration Services Developer’s Guide

● Because plug-ins are called in the order that the user has arranged them in the
Component Manager dialog box, there currently is no way to force the menu
items from one plug-in to appear before the menu items of another plug-in.

Handling the File > New Menu Item
Obviously, it makes sense that the framework would provide a single File > New
dialog box; then the issue becomes, “How do we get every conceivable object that
can be created into the File > New dialog box?”.

When the File > New menu item is invoked, the framework creates and displays
an instance of the com.essbase.eas.framework.client.ui.filedlgs.NewDialog.java
class. The results look something like the following dialog box:

Figure 2: Example File > New Dialog Box

In Figure 2, there are three tabs on this dialog box:

● Analytic Services

30 ■

Writing Client Plug-ins

Essbase Administration Services Developer’s Guide

● Scripts

● Wizards

These tabs were added, in this case, by the Analytic Services plug-in and the
Administration Services plug-in. The dialog box itself provides the following
items:

● The OK, Cancel, and Help buttons

● An instance of a JTabbedPane to act as a container for each of the other panels

● Actions for the OK, Cancel, and Help buttons that make the appropriate calls
into the plug-in that provided the active panel

To add a panel and tab to the New dialog box, add a class called
NewDialogHandler to the plug-in root package. In our example, this would be
com.MyPlugin.ConsoleTreeHandler. Add a method called “populatePanel()” to
this class. The source code could look something like the following code:

public void populatePanel(JTabbedPane panel) {
// create an instance of the right kind of panel
CNewDialogScrollPanel s = new CNewDialogScrollPane();
s.setHorizontalScrollBarPolicy(JscrollPane.HORIZONTAL_SCROLLBAR_AS_NEEDED);
s.setVerticalScrollBarPolicy(JscrollPane.VERTICAL_SCROLLBAR_AS_NEEDED);

// create a list model that has some items in it.
DefaultListModel model = new DefaultListModel();
model.addElement(new JLabel("XTD Connection");
model.addElement(new Jlabel("SQL Connection");

// make sure the list box has a selected item
list.setSelectedIndex(0);

// toss the list into the scroll pane and ensure that the new
// dialog box will call this instance when the OK button is
// clicked.
s.getViewport().add(list);
s.setOkHandler(this);

// add this panel to the tabbed panel we were given
panel.add("My Objects", s);

}

For this to work correctly, you would also need to add the following method to the
class:

public void handleOk(Component component) {
if (component instanceof CNewDialogScrollPane) {

CNewDialogScrollPane scroller = (CNewDialogScrollPane) component;

Adding Functionality

2

■ 31Essbase Administration Services Developer’s Guide

Component control = scroller.getViewport().getComponent(0);
if (control != null) && (control instanceof JList)) {

// extract the selected item in the JList.
// ensure that it is one of the ones we added.
// take the appropriate action.

}
}

}

Items of interest for this operation:

● Items added to the JTabbedPane must be derived from the
CNewDialogScrollPane class.

● Since CNewDialogScrollPane is derived from JScrollPane, the components
that give the best visual presentation when displayed in the new dialog box are
components that are derived from JTable, JTree, and JList.

● For the best visual presentation, the component added to the scroller can have
custom renderers, event handlers, and so on.

● For the best behavior, this list would need a MouseListener added to it to listen
for double click events. This MouseListener then would need to call the
enclosing dialog box’s handleOk() method.

● A plug-in can add more than one panel to the JTabbedPane instance.

Adding Items To Menus
Menu items are typically displayed in three ways:

● Static

● From an internal frame

● From a CTreeNode on the console tree

Static Menu Items
Static menu items are always displayed. The following example is for a static menu
item:

public class XYZ {
private CMenu editorsMenu = new CMenu("Scripts",
Console.ID_ACTIONS_MENU - 1, this);
private CMenuItem outline = new CMenuItem("Outline", null, 0, this);
private CMenuItem report = new CMenuItem("Report", null, 1, this);

32 ■

Writing Client Plug-ins

Essbase Administration Services Developer’s Guide

private CMenuItem calc = new CMenuItem("Calc", null, 2, this);
private CMenuItem maxl = new CMenuItem("Maxl", null, 3, this);
private CMenuItem mdx = new CMenuItem("Mdx", null, 4, this);
private CMenuItem dataprep = new CMenuItem("DataPrep", null, 5, this);

void createMenu() {
report.addActionListener(new AbstractAction("createReport") {

public void actionPerformed(ActionEvent e) {
}

});

calc.addActionListener(new AbstractAction("createCalc") {
public void actionPerformed(ActionEvent e) {
}

});

maxl.addActionListener(new AbstractAction("createMaxl") {
public void actionPerformed(ActionEvent e) {
}

});

mdx.addActionListener(new AbstractAction("createMdx") {
public void actionPerformed(ActionEvent e) {
}

});

outline.addActionListener(new AbstractAction("createOutline") {
public void actionPerformed(ActionEvent e) {
}

});

dataprep.addActionListener(new AbstractAction("createDataPrep") {
public void actionPerformed(ActionEvent e) {
}

});

editorsMenu.add(outline);
editorsMenu.add(dataprep);
editorsMenu.add(calc);
editorsMenu.add(report);
editorsMenu.add(maxl);
editorsMenu.add(mdx);

LocalizeUtils.localizeMenu(resources, editorsMenu);
ConsoleManager.getConsoleInstance().mergeMenus(new Component[] {
editorsMenu});

Adding Functionality

2

■ 33Essbase Administration Services Developer’s Guide

}
}

Internal Frame Menu Items
Menu items from an internal frame only display when the internal frame is active.
If the internal frame is deactivated or or closed, then these menu items no longer
are displayed. The following example is for an internal frame menu item:

public class XYZ extends CInternalFrame {
public Component[] getFrameMenus() {

// Like the example above
return (new Component[] { editorsMenu});

}
}

Console Tree Menu Items
These menu items only display when a node is selected. The following example is
for a console tree menu item:

public XYZ extends CTreeNode {
public Component[] getActionMenuItems() {

return (new Component[] { editorsMenu});
}

}

In general, there are predefined menu positions defined in the Console interface:

public static final int ID_FILE_MENU = 0;
public static final int ID_EDIT_MENU = 1;
public static final int ID_VIEW_MENU = 2;
public static final int ID_ACTIONS_MENU = 10;
public static final int ID_TOOLS_MENU = 20;
public static final int ID_WIZARD_MENU = 30;
public static final int ID_WINDOW_MENU = 90;
public static final int ID_HELP_MENU = 99;

If the CMenu item’s (that is returned from the above example) position matches
with one of the predefined ones, then that CMenu item’s submenus are merged in
else that CMenu is inserted based on the position. So if the CMenu has a position
of ID_ACTIONS_MENU, then the items are merged in to the action menu item
that is already on the main menubar. If the CMenu has a position
(ID_ACTIONS_MENU - 1), then the CMenu is inserted before the action menu.

34 ■

Writing Client Plug-ins

Essbase Administration Services Developer’s Guide

Handling Save As
Save As requires the plug-in to implement the interface SaveAsRequestor. The
following example uses an inner class:

if (saveAsAdapter == null) {
saveAsAdapter = new SaveAsAdapter();
}
SaveAsDialog.showDialog(resources.getString("exportTitle"),
(SaveAsRequestor) saveAsAdapter);

}

The initSaveAsDialog is called to allow the dialog/frame to initialize the
SaveAsDialog as it needs to. By default a file system chooser is added to
mainPanel at index 0. A plug-in can add other panels to save to other places in this
method.

When an object is selected from any panel, then the saveAsObject method is called
with the selected object. If the file system panel is selected the object will be a File
if the plug-in adds a panel of their own it they will have to perform the steps to save
the object.

private class SaveAsAdapter implements SaveAsRequestor {
public void initSaveAsDialogComponents(JTabbedPane mainPanel) {

String xmlString = ResourceUtilities.getStringSafely(resources, XML_FILES);
DefaultFileFilter xmlFilter = new DefaultFileFilter(xmlString, "xml",
resultAction);
JFileChooser jfc = (JFileChooser) mainPanel.getComponentAt(0);
jfc.setFileSelectionMode(JFileChooser.FILES_ONLY);
if (jfc.isAcceptAllFileFilterUsed() == true)

jfc.setAcceptAllFileFilterUsed(false);
jfc.setFileFilter(xmlFilter);

}

public void initExtraComponents(JPanel extraPanel) {
}

public boolean saveAsObject(Object saveObject) {
boolean saved = false;
if (saveObject instanceof File) {

File file = (File) saveObject;
String exportFile = file.getPath();
if (exportFile != null) {

String msg = "";
if (AdminServerPropertiesHelper.requestExportDB(exportFile))
{

msg = resources.getString("sucEXDBMsg");

Standard Controls

2

■ 35Essbase Administration Services Developer’s Guide

StandardMessages.showMessage(resources, "exportTitle", msg,
JOptionPane.DEFAULT_OPTION, JOptionPane.INFORMATION_MESSAGE);
saved = true;

}
else
{

msg = resources.getString("failEXDBMsg");
StandardMessages.showMessage(resources, "exportTitle", msg,
JOptionPane.DEFAULT_OPTION, JOptionPane.ERROR_MESSAGE);

}
}

}
return saved;

}
public void setFocusComponent() {
}

}

Standard Controls
While it is not required that plug-ins use the standard controls provided by the
framework classes, there are some benefits to using them. Namely, some
consistency of look and feel is provided, some housekeeping tasks are performed
by the standard controls, there is support for internationalization, accessibility, and
so on.

The StandardDialog Class
The StandardDialog class is an extension of the JDialog class and was introduced
for the following reasons:

1. Standardize the mechanism for internationalization and localization handling

2. Standardize the position, location, and behavior of dialog “action” buttons

3. Standardize some of the accessibility handling for modal dialogs

4. Standardize the handling of results

36 ■

Writing Client Plug-ins

Essbase Administration Services Developer’s Guide

The StandardDialog class contains the following protected (or private) fields:

Name of Standard Dialog Class
The name of the Standard Dialog class is StandardDialog. It is in
com.essbase.easui.StandardDialog.class.

Dialog Creation
There are at least 11 constructors for the StandardDialog class; most of these chain
to another constructor. The two constructors that should be invoked by derived
classes are the ones with the following signatures:

StandardDialog(Frame owner, String title, boolean modal, DialogResult
result);

StandardDialog(Dialog owner, String title, boolean modal);

Table 2: Fields in the StandardDialog Class

Field Description

okBtn An instance of an OK button. This is one of the standard
controls described in “Dialog Initialization” on page 37.

cancelBtn An instance of a Cancel button. This is one of the
standard controls described in “Dialog Initialization” on
page 37.

helpBtn An instance of a Help button. This is one of the standard
controls described in “Dialog Initialization” on page 37.

buttons An instance of a ButtonPanel. The ButtonPanel is one of
the standard controls described in “Dialog
Initialization” on page 37.

resources An instance of a ResourceBundle object. This resource
bundle is used for internationalization purposes.

adapter An instance of a StandardDialogAdapter.

dialogResult An instance of a DialogResult object.

saveDialogBounds A boolean value indicating whether the bounds
(location and size) of this dialog should be saved when
it is closed.

Standard Controls

2

■ 37Essbase Administration Services Developer’s Guide

Most of the other constructors exist only to match constructor names of the
JDialog class.

Dialog Initialization
During the call to the StandardDialog constructor, the following initialization steps
will occur:

● An OK button, a Cancel button, and a Help button are created

These are the standard buttons used by most dialogs. If the dialog being
implemented uses a different set of buttons (for instance, Close, Apply, Next,
and so on) the derived class should implement instances of those buttons.

● A ButtonPanel containing the OK, Cancel, and Help buttons is created

If the dialog being implemented wants the button panel to contain a different
set of buttons, it should call buttonPanel.changeButtons(new Jbutton[] {
closeBtn, helpBtn }); // as an example.

● A ResourceBundle instance is created

This resource bundle is used to perform localization work within the dialog. It
is important to know where the standard dialog looks for the instance of the
resource bundle. For example, if the dialog class is MyFunnyDialog, then the
resource bundle must be in a file called resources/MyFunnyDialog.properties.

● A StandardDialogAdapter is created and is added as a window listener to the
dialog

CAUTION: Because of the implementation of the StandardDialogAdapter
class, there should never be a reason for a descendant class of
StandardDialog to attach a WindowListener to itself. Routing of all window
events should be handled by the StandardDialogAdapter. If the
descendant class needs to take action when a window close, window open,
and so on, event occurs then override the methods in StandardDialog that
the StandardDialogAdapter calls.

● Sets the instance of the dialog result to the value passed in, if any

To understand how this works, see “Dialog Results” on page 39.

● Sets the dialog’s default close operation to DISPOSE_ON_CLOSE

38 ■

Writing Client Plug-ins

Essbase Administration Services Developer’s Guide

In most cases, this is the desired behavior; for a dialog that needs a different
behavior, this can be changed by the constructor in the descendant class.

● Sets the dialog’s content pane layout to be a BoxLayout oriented vertically

If necessary, this can be changed by the derived class.

● Adds entries to the action and input maps of the dialog’s root pane to take a
“default action” when the Enter key is pressed by the user

For more information on what this default action is, and why this step is
necessary, see the section of this document titled “Dialog default action”.

Dialog Default Action
The Microsoft Windows operating environment has the concept of a default button
when modal dialog windows are open. The default button is painted in a way that
makes it stand out visually to the user. Normally, that is the OK button; however,
it can be any action button on the dialog. To handle this concept, the
StandardDialog adds entries to the action and input maps of its root pane for
handling the enter keystroke.

If your dialog box does not have an OK button or, if at any time, the default button
should be some other button, then a call like the following needs to be performed:

dlg.getRootPane().setDefaultButton(closeBtn);

Dialog Keyboard Handling, Focus Order, Action
Maps, and So On
Depending on which buttons are inserted into a dialog, certain keystrokes will be
mapped automatically:

● The Enter key

● The Esc key

● The F1 key (for help)

These are the primary keystrokes that are mapped by the standard dialog and the
standard buttons.

To add handling when these keystrokes are pressed, do the following:

Standard Controls

2

■ 39Essbase Administration Services Developer’s Guide

● For the Enter key, override the handleOk() method. If everything finishes
correctly and the dialog needs to be released, then call super.handleOk(). This
will ensure that the dialog shuts down properly.

● For the Esc key, override the handleCancel() method. The standard dialog
behavior closes the dialog, releases all the controls, disposes of contained
components, and so on. In most cases, this method will not need to be
overridden.

● For the F1 key, override the handleHelp() method. If the dialog has been
connected via the Administration Services help system via the normal manner,
this step should not be necessary.

By default, the Java Swing implementation sets the focus order of controls to
correspond to the order in which they were added to their container, and then those
container’s to their container, and so on. This can be overridden by making a call
to the method DialogUtils.setFocusOrder(). This mechanism should be used in all
dialogs to ensure the focus order of controls is correct and doesn’t rely on how the
code for building the containment models was written.

Dialog Results
In many cases, a dialog needs to return a significant amount of information to the
calling mechanism. Unfortunately, the method Dialog.show() is declared as void
and does not return any data.

If, when implementing a dialog, results from the dialog are needed, the
recommended way to get those is by doing the following tasks:

● Extend the DialogResult class to contain references and additional data
needed by the dialog and/or returned by the dialog.

● Before creating the dialog, create an instance of the DialogResult class.

● Ensure that the dialog has at least one constructor that accepts an instance of
a DialogResult object.

● In the constructor for the dialog class derived from StandardDialog, pass the
DialogResult object to the correct StandardDialog constructor.

● During the handling of the OK button, set the results back into this instance.

40 ■

Writing Client Plug-ins

Essbase Administration Services Developer’s Guide

Methods to Override
The StandardDialog class has a set of methods that can be overridden. Whether
each of these methods are overridden will depend on the needs of each derived
class. See the Essbase Administration Services Java API Reference for detailed
information about each of the following methods:

● dispose()

● handleCancel()

● handleOk()

● handleWindowClosed()

● handleWindowClosing()

● handleWindowOpened()

Standard Buttons and Other Controls
There are a large number of standard controls provided by the client framework.
The following is a representative list; for more complete information, see the
Essbase Administration Services Java API Reference for the com.essbase.eas.ui
package and descendant packages.

Note: This is not a complete list of controls. The plug-in developer should browse the
Java API Reference for the com.essbase.eas.ui package and other packages under this
one for additional standard components.

● ActivateButton

● ApplyButton

● BackButton

● BooleanComboBox

● ButtonPanel

● CancelButton

● CloseButton

● DoneButton

● FinishButton

● HelpButton

Administration Services Console Services

2

■ 41Essbase Administration Services Developer’s Guide

● ListMoverPanel

● NextButton

● NumericTextField

● OkButton

● ReadOnlyTextFrame

● RefreshButton

● ResetButton

● SimpleWizardPanel

● VerticalPairPanel

● WizardPanel

Administration Services Console Services
The client framework provides the following Administration Services Console
services:

● Retrieving the CSS Token from the Console

● Sending E-mail

Retrieving the CSS Token from the Console
The CSS token is retrieved from the FrameworkUser object which is returned on
successful login to Administration Server.

import com.essbase.eas.client.intf.Login;
import com.essbase.eas.client.manager.LoginManager;
import com.essbase.eas.admin.defs.*;
import com.essbase.eas.admin.client.*;
import com.essbase.eas.framework.defs.FrameworkUser;

private String getToken() {
 String loginToken = null;
 Login login = LoginManager.getLoginInstance();
 if (login != null) {
 FrameworkUser u = (FrameworkUser)
login.getProperty("FrameworkUser");
 if (u != null) {
 loginToken = u.getToken();

42 ■

Writing Client Plug-ins

Essbase Administration Services Developer’s Guide

 }
 }
 return loginToken;
 }

Sending E-mail
Administration Services Console has integrated support for sending e-mail using
the JavaMail API. We have wrapped the classes and provide a dialog for sending
e-mail. There is also support in the InternalFrame class to send from any class
derived from the CInternalFrame class.

The following is a simple example of how to send the contents of a text area in an
e-mail from a dialog.

Import com.essbase.eas.ui.email.*;

public void email() {
JFrame fr = ConsoleManager.getConsoleFrame();

SendEmail email = new SendEmail(fr, fr.getTitle(), new
Object[] {

getTextArea().getText()});
email.send();

}

The following example is for a window derived from CInternalFrame. The
methods, isEmailable() and getObjectsToEmail, are methods in the
CInternalFrame class.

public boolean isEmailable() {
return true;

}

public Object[] getObjectsToEmail() {
HTMLDoc doc = new HTMLDoc();

doc.setTitle(getTitle());
doc.addObject(doc.getHeading(2, doc.getStyleText(getTitle(),

doc.BOLD | doc.UNDERLINE), doc.CENTER));

doc.addObject(doc.BR);

doc.addObject(TableUtilities.getHTML((DefaultTableModel)locksTable.getMod
el()));

Internationalization

2

■ 43Essbase Administration Services Developer’s Guide

return (new Object[] { new EmailAttachment(doc.toString(),
"Locks.htm", EmailAttachment.HTMLTEXT, "", EmailAttachment.ATTACHMENT)});

}

Note: Sending an e-mail puts an entry in the background process table showing the
outcome of the e-mail.

Internationalization
The framework provides a set of internationalization and localization utilities in
the package com.essbase.eas.i18n. These classes provide a mechanism for locating
resources associated with a window or dialog box, loading resource bundles based
on the locale, localizing collections, arrays of components, or containers. There is
also an i18n-friendly string collator class.

Packaging the Plug-in
The only packaging requirement is that all classes and resources necessary for a
client plug-in must be contained in the same jar file. You must include an entry in
the jar file which defines the other jar files it depends on. For example, lets say the
plug-in jar file xyz.jar depends on abc.jar and cde.jar, include the
following entry in the manifest file for the plug-in jar file:

Class-Path: xyz.jar cde.jar

44 ■

Writing Client Plug-ins

Essbase Administration Services Developer’s Guide

■ 45Essbase Administration Services Developer’s Guide

3

Chapter

3
Writing Server-side
Command Listeners

This chapter explains how to write a command listener for the Essbase
Administration Services mid-tier web server. Installable command listeners are the
mechanism for extending the functionality of the Administration Services Web
server. This chapter includes the following topics:

● “Preliminaries” on page 45

● “Command Listeners” on page 46

● “Command Handling Methods” on page 55

● “Packaging the Code” on page 59

● “Loading the Code” on page 60

● “Utility Classes” on page 61

Preliminaries
We make the following user presumptions:

● You have some Java experience

● You have access to the Essbase Administration Services Java API Reference

● Since different developers use different build tools and environments, we do
not discuss how to do anything for specific development environments.
Rather, we describe the desired results, leaving it to the developer to know how
to achieve these results with their specific development tools.

Note: For the purposes of this documentation, the terms “Administration Services web
server”, “Administration Services servlet”, “Administration Services mid-tier”,
“Administration Services framework”, and, simply, “the framework” can generally be
taken to refer to the same object.

46 ■

Writing Server-side Command Listeners

Essbase Administration Services Developer’s Guide

The framework is the Administration Services servlet and associated classes that
receive commands, handle housekeeping duties, return results, and route
commands to the registered listener.

Command Listeners
A command listener is an instance of any class that implements the
CommandListener interface; however, for practical purposes, all plug-in command
listeners should extend one of these classes:

● EssbaseCommandListener

● AppManCommandListener

● AbstractCommandListener

The framework uses command listeners as the mechanism to properly route
commands to be handled.

When the Administration Services servlet starts up, it builds a table of command
listeners, the commands that each command listener can handle, and the method
in the command listener for that command. As client applications send commands
(http requests), the Administration Services servlet uses the command's operation
parameter to determine the command listener and method to route the request to.

For example, a typical command might be to log in to the Administration Services
servlet. When expressed as an http request, this command will look something like
this:

http://LocalHost/EAS?op=login&name=user1&password=hello

When all of the http information is parsed out, the part that would be of interest to
the Administration Services servlet are the following parameters:

op=login

name=user1

password=hello

The framework uses the “op” parameter to route the command to the correct
command listener. If the command listener has been registered correctly, the
framework will also collect the “name=” and “password=” parameters and pass
them as arguments to the method in the command listener.

Command Listeners

3

■ 47Essbase Administration Services Developer’s Guide

Class Hierarchy
The class hierarchy for the command listeners is:

com.essbase.eas.framework.server.application.AbstractCommandListener
com.essbase.eas.server.AppManCommandListener
com.essbase.eas.essbase.server.EssbaseCommandListener

All three of these classes are declared as abstract. You must extend from one of
these three classes in order to have the framework find your command listener.

The AbstractCommandListener class provides the basic functionality that is
needed for the framework. Most of the methods in this class are either final or
protected; for most practical purposes, implementers of derived classes should not
override the protected methods of this class. For a description of those methods
that can be useful to implement in a derived class, see the section “Which Methods
to Override” on page 47.

The AppManCommandListener class adds some small functionality to the
AbstractCommandListener, mostly dealing with EAS servlet session validation
and exception handling during command routing.

The EssbaseCommandListener class adds some Analytic Services-specific
functionality, primarily Analytic Services session validation.

Which Class To Extend
Do not extend the AbstractCommandListener class, even though it is declared
public. The EssbaseCommandListener.handleEventPrep() method checks some
standard parameters for an Analytic Server name, application name, and database
name and ensures a connection to that database if those parameters exist. If the
implementer of the new command listener wishes to take advantage of the session
handling performed by the EssbaseCommandListener, then they should extend this
class; however, if this isn’t necessary, the new command listener can extend the
AppManCommandListener class.

Which Methods to Override
AbstractCommandListener.getCommands() must be overridden. We explain more
about this method in the section, “Registering Commands” on page 48.

48 ■

Writing Server-side Command Listeners

Essbase Administration Services Developer’s Guide

The handleEventPrep(), handleEventPost(), and handleEventException() methods
may be overridden. These three methods, along with
AbstractCommandListener.handleEvent(), form the core processing for any
command received by the framework.

Once the framework determines which command listener to route a command to,
it calls that command listener’s handleEvent() method. Since the
AbstractCommandListener declares this method as final, the framework always
calls the method in AbstractCommandListener. This method then performs the
following sequence of steps:

1. Calls handleEventPrep(); if this method returns true, then continues with step
2.

2. Gets the command listener's method that handles this specific command. If
this method cannot be located, logs an error with the logging utility.

3. Converts the arguments from the http command into an array of Java objects.

4. Using Java introspection, invokes the method.

5. If no exceptions were thrown, invokes handleEventPost().

6. If exceptions were thrown in steps 4 or 5, calls handleEventException().

Any change to the processing of events before they arrive at a specific method in
the command listener must be done by overriding the handleEventPrep() method.
For instance, this is where the EssbaseCommandListener class checks Essbase
sessions and the AppManCommandListener checks for a valid servlet session.

In most cases, the handleEventPost() method is empty and the
handleEventException() method is empty.

Registering Commands
After a command listener is instantiated by the framework, the framework calls the
getCommands() method. This method returns an array of CommandDescriptor
objects. The CommandDescriptor objects describe each command that the
CommandListener is designed to handle. The CommandDescriptor object consists
of three main parts:

● A string for the command

● The method in the command listener to call

● The list of arguments expected for this command.

Command Listeners

3

■ 49Essbase Administration Services Developer’s Guide

The next few sections describe the classes used by the framework when registering
commands.

Note: All of these classes are in the package
com.essbase.eas.framework.defs.command.

CommandString Class
When most people write a command listener, they think of it handling commands
like “GetDatabaseList”, “GetUsers”, “DeleteUsers”, and so on. Since each
command must be unique, it is easy to see how this would lead to confusion. The
CommandString class was introduced to let each programmer of command
listeners think of their commands in the simplest way. The CommandString class
is declared as:

public abstract class CommandString

The only constructors are declared as:

private CommandString() { ... }
protected CommandString(String original) { ... }

These two declarations combined mean that instances of this class can never be
instantiated and derived classes must call the CommandString(String original)
constructor with a valid String object as the parameter.

The most important action that instances of this class do is take the original String
object and prepend the class name, including the package name, to the front of the
String. This new value is then returned when the object’s toString() method is
called.

CommandArgument Class
The CommandArgument class describes individual arguments to commands. It
contains the following fields:

● String name (available through the getName() method)

This is the name of the http parameter corresponding to this argument.

● boolean required (available through the isRequired() method)

Indicates whether this argument is required. The intent is that the framework
can check this field when routing a command and return a pre-defined error
status to the client if a required field is missing.

50 ■

Writing Server-side Command Listeners

Essbase Administration Services Developer’s Guide

● Class ClassType (available through the getClassType() method)

This is used so the framework can convert the incoming text value to an
appropriate object type.

● Object defaultValue (available through the getDefaultValue() method)

The framework will substitute this object for the argument if the argument is
missing from the command.

● Boolean hidden (available through the isHidden() method)

The framework can log the retrieval and routing of commands and their
parameters. Setting this field to true means the framework will not echo the
value of this argument in the log file. This would be useful for passwords, and
so on.

These fields are all declared as private and, since there are no setXXX() methods,
cannot be changed after a CommandArgument object is constructed.

CommandDescriptor Class
The CommandDescriptor class combines the CommandArgument and
CommandString classes into a cohesive value so that the framework can construct
its internal tables and route the commands as they are received.

The examples in the following sections show how all of this fits together.

Examples
This section includes the following sample code:

● “Example.java” on page 51

● “ExampleCommandString.java” on page 52

● “ExampleDescriptor.java” on page 53

● “ExampleCommandListener.java” on page 54

Command Listeners

3

■ 51Essbase Administration Services Developer’s Guide

Example.java

// this is a simple class used as a parameter to show how the
// framework can separate out command arguments that are object
// types embedded in XML. For more information on how the
// framework uses XML to transport "generic" objects between the
// mid-tier and the client, please see the Java Docs references
// for the XMLTransferObject class.
public Example extends Object {

private String name = "";
private String[] text = new String[0];
// no-argument constructor. Must be public for XML Transfer
// to work.
public Example() {
}

public String getName() {
return name;

}

public void setName(String value) {
name = value;

}

public String[] getSampleText() {
String[] result = new String[text.length];
for (int i = 0; i < result.length; ++i)

result[i] = text[i];
return result;

}

public void setSampleText(String[] values) {
if (values != null) {

text = new String[values.length];
for (int i = 0; i < values.length; ++i)

text[i] = values[i];
}
else {

text = new String[0];
}

}
}

52 ■

Writing Server-side Command Listeners

Essbase Administration Services Developer’s Guide

ExampleCommandString.java

public ExampleCommandString extends CommandString {
// declare some static String objects in a way that we know these
// objects do not need to be translated to different locales.
public static final String GET_EXAMPLES_TEXT = "GetExamples";
public static final String ADD_EXAMPLE_TEXT = "AddExample";
public static final String DELETE_EXAMPLE_TEXT = "DeleteExample";

// now we declare the actual commands
public static final ExampleCommandString GET_EXAMPLES =

new ExampleCommandString(GET_EXAMPLES_TEXT);
public static final ExampleCommandString ADD_EXAMPLE =

new ExampleCommandString(ADD_EXAMPLE_TEXT);
public static final ExampleCommandString DELETE_EXAMPLE =

new ExampleCommandString(DELETE_EXAMPLE_TEXT);

// for organizational purposes, we also declare the parameters for each
// of these commands in this file.
public static final String PARAM_LOCATION = "location";
public static final String PARAM_EXAMPLE = "example";
public static final String PARAM_NAME = "examplename";

// declare a CommandArgument object for each of these parameters
private static final CommandArgument ARGUMENT_LOCATION =

new CommandArgument(PARAM_LOCATION,
true,
String.class,
null);

private static final CommandArgument ARGUMENT_EXAMPLE =
new CommandArgument(PARAM_EXAMPLE,
true,
Example.class,
null);

private static final CommandArgument ARGUMENT_NAME =
new CommandArgument(PARAM_NAME,
true,
String.class,
null);

// declare an array of arguments for each command.
public static final CommandArgument[] GET_EXAMPLES_ARGS =

new CommandArgument[] { ARGUMENT_LOCATION };
public static final CommandArgument[] ADD_EXAMPLE_ARGS =

new CommandArgument[] { ARGUMENT_LOCATION,
ARGUMENT_EXAMPLE };

public static final CommandArgument[] DELETE_EXAMPLE_ARGS =

Command Listeners

3

■ 53Essbase Administration Services Developer’s Guide

New CommandArgument[] { ARGUMENT_LOCATION,
ARGUMENT_NAME };

}

This class declares command strings and describes the arguments for three
commands that will be supported by the ExampleCommandListener class. If the
toString() method of each ExampleCommandString object declared in this source
code file were called, the results would be:

ExampleCommandString.GetExamples
ExampleCommandString.AddExample
ExampleCommandString.DeleteExample

Every CommandDescriptor object contains a reference to an object derived from
CommandString; it is through this mechanism that the framework guarantees
every command name is unique.

ExampleDescriptor.java

public class ExampleDescriptor extends CommandDescriptor {
private static final String GET_EXAMPLES_METHOD = "getExamples";
private static final String ADD_EXAMPLE_METHOD = "addExample";
private static final String DELETE_EXAMPLE_METHOD = "deleteExample";

public static final CommandDescriptor GET_EXAMPLES =
new CommandDescriptor(ExampleCommands.GET_EXAMPLES,

GET_EXAMPLES_METHOD,
ExampleCommands.GET_EXAMPLES_ARGS);

public static final CommandDescriptor ADD_EXAMPLE =
new CommandDescriptor(ExampleCommands.ADD_EXAMPLE,

ADD_EXAMPLE_METHOD,
ExampleCommands.ADD_EXAMPLE_ARGS);

public static final CommandDescriptor DELETE_EXAMPLE =
new CommandDescriptor(ExampleCommands.DELETE_EXAMPLE,

DELETE_EXAMPLE_METHOD,
ExampleCommands.DELETE_EXAMPLE_ARGS);

}

54 ■

Writing Server-side Command Listeners

Essbase Administration Services Developer’s Guide

ExampleCommandListener.java

public class ExampleCommandListener extends AppManCommandListener {
// the method called when the GetExamples command is received.
public boolean getExamples(CommandEvent theEvent,

ServiceContext theContext,
String theLocation) {

// the details will be filled in later
return true;

}

// the method called when the AddExample command is received.
Public Boolean addExample(CommandEvent theEvent,

ServiceContext theContext,
String theLocation,
Example theExample) {

// the details will be filled in later
return true;

}

// the method called when the DeleteExample command is
// received.
public boolean deleteExample(CommandEvent theEvent,

ServiceContext theContext,
String theLocation,
String theName) {

// the details will be filled in later.
return true;

}

// the framework calls this method to get the descriptors for
// the commands supported by this command listener.
public CommandDescriptor[] getCommands() {

return new CommandDescriptor[] {
ExampleDescriptor.GET_EXAMPLES,
ExampleDescriptor.ADD_EXAMPLE,
ExampleDescriptor.DELETE_EXAMPLE };

}
}

The preceding example shows the skeleton of a command listener:

1. Extend the correct class

2. Add the command handling methods

3. Override the getCommands() method to return the descriptors for those
commands.

Command Handling Methods

3

■ 55Essbase Administration Services Developer’s Guide

The difficulty is in the details of the command handling methods, which is covered
in the next section.

Command Handling Methods
This section includes the following topics:

● “Method Signatures” on page 55

● “Grabbing Command Arguments” on page 56

● “Sending Results Back to the Client” on page 57

● “Storing Temporary Data Using the Framework” on page 58

Method Signatures
If you were looking carefully at the example code in the preceding section, you
might be saying something along the lines of, “Wait a minute, in
GET_EXAMPLES_ARGS, I defined one argument, the location argument. What
are these other two arguments, theEvent and theContext? Where did they come
from and what do I do with them?” The answer partly lies in the older version of
the Administration Services framework. The first version of the framework did not
do all the type checking and parameter parsing that the new level does, so all
command handling methods had the following signature:

public boolean handlerMethod(CommandEvent theEvent) { }

It was up to each method to then extract and handle the arguments along the lines
of:

String theLocation = theEvent.getRawParameter("Location");
if (theLocation == null) {

// oops - this shouldn't happen!
return false;

}

Or, if the parameter was supposed to be a numeric value:

int theNumber = 0;
String theValue = theEvent.getRawParameter("Value");
if (theValue == null) {

// oops - this shouldn't happen!
return false;

}
try {

56 ■

Writing Server-side Command Listeners

Essbase Administration Services Developer’s Guide

theNumber = Integer.parseInt(theValue)
}
catch (Exception ex) {

return false;
}

In most cases, theEvent object was used mostly to get the parameters for the
command. When the framework was upgraded, theEvent object was retained as the
first argument to the command handler methods, even though it is rarely used.

The second argument, theContext, is actually a field in theEvent object; if you
want to return results to the client, you must do so through the ServiceContext
reference. Since every command handling method at some time would call
theEvent.getServiceContext(), we decided to add it as a second parameter to every
command handling method.

As a result of these decisions, every command handling method has the following
signature:

public boolean handlerMethod(CommandEvent theEvent,
ServiceContext theContext,
Class0 value0,
...,
ClassN, ValueN);

Where the ClassX parameters are described by the CommandDescriptor for the
method.

In addition, even though the method is declared boolean, the framework never
looks at the return value from a command handler method. Return values are
handled within each method by a mechanism explained later in this document.

Grabbing Command Arguments
In most cases, the command arguments will have been extracted and parsed by the
framework; however, special circumstances can arise whereby extra arguments are
sent with each command that, for whatever reason, the programmer doesn't want
to include in the CommandDescriptor object.

An example is the EssbaseCommandListener; the
EssbaseCommandListener.handleEventPrep() method calls a validateSession()
method that looks for the standard parameters “servername”, “appname”,
“dbname”, then attempts to validate an EssbaseSession against those parameters.
If this fails, then the handleEventPrep() method returns a standard error status to
the client. In most cases, any EssbaseCommandListener will need these arguments

Command Handling Methods

3

■ 57Essbase Administration Services Developer’s Guide

when handling commands. However, there are cases (such as in the outline editor)
when those arguments aren't used. If, during implementation of a command
listener method, a similar situation arises, the parameters can be retrieved by the
following call:

String aValue = theEvent.getRawParameter("SomeParameterName");

This should be a rare necessity and should raise caution alarms if an implementer
finds themselves needing to do this.

Sending Results Back to the Client
There are two types of results to return to a client:

1. Status of the command

2. Data that the client needs to display

The CommandStatus class is used to return the success/failure of the command to
the client. The CommandStatus class only understands two types of status:
SUCCESS and FAILURE. The original intent of this class was to indicate whether
a command was routed successfully by the framework. However, this wasn’t made
explicit and, as a result, many existing command handling methods use this
SUCCESS/FAILURE to indicate the status of their specific processing.

It would be a good practice to always extend this class to enable returning more
specific error codes than just SUCCESS/FAILURE.

So, let’s return to our example and fill in one of the command handling methods to
return data and a SUCCESSFUL status to the client.

public boolean getExamples(CommandEvent theEvent,
ServiceContext theContext,
String theLocation) {

//object used to transmit results back to the client
XMLTransferObject xto=new XMLTransferObject();
Example [] theResults=someMethod(theLocation);
if (theResults == null) {

//this is simplistic, but it shows what we need
xto.setCommandStatus(CommandStatus.SIMPLE_FAILURE);

}
else {

if (theResults.length != 0)
xto.addAll(theResults);

xto.setCommandStatus(CommandStatus.SIMPLE_SUCCESS);
}
this.storeService.set(theContext,

58 ■

Writing Server-side Command Listeners

Essbase Administration Services Developer’s Guide

DefaultScopeType.REQUEST_SCOPE,
AppManServlet.RESULT,
xto.exportXml());

return true;
}

The XMLTransferObject is used to transmit the data and the command status back
to the client; we use the defined CommandStatus.SIMPLE_FAILURE or
CommandStatus.SIMPLE_SUCCESS objects to return the correct status. If results
were available, they were then added to the XMLTransferObject using the addAll()
method. The results were then placed in the command listener's store service using
the REQUEST_SCOPE and using the key AppManServlet.RESULT. After this
method returns to the framework, the framework will take any data stored using the
combination DefaultScopeType.REQUEST_SCOPE and
AppManServlet.RESULT and send that data back to the client as the results of the
command.

Storing Temporary Data Using the Framework
In the preceding section, we gave an example of how to place data in the
framework’s storage so that the data would be returned to the client as the results
of a command. The storeService field in each command manager can store data for
additional purposes. There are six defined DefaultScopeTypes:

1. CONFIG_SCOPE

This is used by the framework as it is initializing. It should never be used by
command handler methods.

2. BUILDER_SCOPE

This is used by the framework as it is initializing. It should never be used by
command handler methods.

3. APP_SCOPE

Using this scope type will cause the data to be stored for the life of the servlet.
This should be very, very rarely used by command listeners.

4. SESSION_SCOPE

Using this scope type will cause the data to be stored until the current
client/server session is no longer valid. At that point, the framework will
remove all data stored in this scope. If storing information in this scope that
needs to be recovered during processing of a later command.

Packaging the Code

3

■ 59Essbase Administration Services Developer’s Guide

5. USER_SCOPE

Using this scope makes the data available to any client connected using the
same EAS user id. When all sessions associated with this user are no longer
valid, the framework will remove data stored in this scope. In the current
implementation, this is never used and it probably will never be used very
often.

6. REQUEST_SCOPE

Using this scope makes the data available until the framework has bundled the
results of the command and returned them to the client. The framework then
removes all data stored in this scope associated with the request that just
finished.

Storing data is done through a command listener’s store service, as in the preceding
example. The StoreService interface has several get(), set(), and remove()
methods. However, there is only one of each of these methods that a command
listener (or other plug-in code) should call; the other methods were put in place for
use by some of the framework code itself. The three method signatures are:

public Object get(ServiceContext context, ScopeType type, Object key);
public Object set(ServiceContext context, ScopeType type,

Object key, Object value);
public Object remove(ServiceContext context, ScopeType type, Object key);

For more information about these methods, see the Essbase Administration
Services Java API Reference.

Packaging the Code
When packaging the code into jar files for a plug-in, follow these guidelines:

● Separate the code into three distinct pieces:

– Code that is only used on the client

– Code that is only used on the server

– Code that is used in both places

● Set up the build tools to compile and package these different pieces separately
in order to prevent crossover compilation. For example, the framework is
packaged into the following jar files:

framework_client.jar
framework_common.jar

60 ■

Writing Server-side Command Listeners

Essbase Administration Services Developer’s Guide

framework_server.jar

● Package the command listener classes in the server jar

● Package the command descriptor classes in the server jar. This is because they
contain references to the method names in the command listeners and this
should not be publicly available on the client.

● Package the CommandString derived classes in the common jar file. While the
framework does not currently take advantage of this on the client, it will be
upgraded to do the packaging of parameters and commands for client
applications.

● Place any classes extending CommandStatus in the common jar file.

● Place any specialized classes (such as Example.java) in the common jar file.

The server jar file must contain a manifest file. Each command listener must have
an entry in this manifest file that looks like the following:

Name: ExampleCommandListener.class

EAS-Framework-CommandListener: True

If, as is likely, the command listener has a package name that must be prepended
to the name in the example above, like this:

Name: com/essbase/eas/examples/server/ExampleCommandListener.class

EAS-Framework-CommandListener: True

Note: Even though this is a class name, use slashes (“/”) instead of dots (“.”) to
separate the package names.

Loading the Code
After all of this, to get the framework to recognize the command listeners and route
the commands to the correct place, the jar file containing the command listeners
and any other jar files that this code depends on must be placed into
Administration Server’s lib directory. The exact location is dependent upon each
particular installation. However, in the default installation using the Tomcat web
server, the location will be:

EAS_HOME/server/tomcat/webapps/eas/WEB-INF/lib

Utility Classes

3

■ 61Essbase Administration Services Developer’s Guide

After putting the jar files in this location, you must stop and restart Administration
Server. To determine if the new command listeners have been installed, set the
Administration Services logging level to between 5000 and 9999.

Utility Classes
There are many utility classes provided by the Administration Services
framework. In particular, there are utility classes in some of the following
packages:

com.essbase.eas.framework.defs
com.essbase.eas.framework.server
com.essbase.eas.utils
com.essbase.eas.ui
com.essbaes.eas.i18n
com.essbase.eas.net

The Essbase Administration Services Java API Reference makes it easy to
navigate through these classes and learn what is available.

62 ■

Writing Server-side Command Listeners

Essbase Administration Services Developer’s Guide

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

■ 63Essbase Administration Services Developer’s Guide

In
d

ex

Index

A
AbstractCommandListener class, 46 to 47
AbstractCommandListener.getCommands method,

47
accessing

client plug-ins, 20
ActivateButton control, 40
adapter field, 36
addAll method, 58
adding

a branch to the Enterprise Tree, 24
children to tree nodes, 26
console tree menu items, 33
context menu items to tree nodes, 27
internal frame menu items, 33
items to menus, 31
items to the File > New menu, 29
static menu items, 31

Administration Server
described, 13

Administration Services
described, 13
Java packages, 16
logging level, 61

Administration Services Console
adding a branch to the tree, 24
adding functionality, 23
class packages, 20
described, 13
locating plug-ins, 22
retrieving the CSS token, 41
services, 41
writing plug-ins for, 19

APP_SCOPE, 58

ApplyButton control, 40
AppManCommandListener class, 46 to 47
ARBORPATH environment variable, described, x
architecture, 14

B
BackButton control, 40
Boolean hidden field, 50
boolean required field, 49
BooleanComboBox control, 40
BUILDER_SCOPE, 58
ButtonPanel control, 40
buttons

standard, 40
buttons field, 36

C
cancelBtn field, 36
CancelButton control, 40
children

adding to tree nodes, 26
permitting plug-ins to add to tree nodes, 27

Class ClassType field, 50
class hierarchy

for command listeners, 47
class packages

Administration Services Console, 20
client

adding functionality, 23
class packages, 20
locating plug-ins, 22
sending results to, 57
writing plug-ins for, 19

Index, D

64 ■ Essbase Administration Services Developer’s Guide

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

client plug-ins
access point, 20

client tier, 13
CloseButton control, 40
code

compiling, 59
loading, 60
packaging, 59

code samples
about, 17

com.essbase.eas.client.intf, 20
com.essbase.eas.client.manager, 20
com.essbase.eas.client.plugins, 20
com.essbase.eas.framework.client.defs.command,

21
com.essbase.eas.framework.client.defs.login, 21
com.essbase.eas.framework.client.ui.filedlgs, 21
com.essbase.eas.framework.defs, 22
com.essbase.eas.i18n, 22
com.essbase.eas.i18n package, 43
com.essbase.eas.ui, 21
com.essbase.eas.ui.ctable, 21
com.essbase.eas.ui.ctree, 21
com.essbase.eas.ui.editor, 21
com.essbase.eas.ui.email, 21
com.essbase.eas.ui.font, 21
com.essbase.eas.ui.print, 21
com.essbase.eas.ui.ptable, 21
com.essbase.eas.ui.ptree, 22
com.essbase.eas.ui.tree, 22
com.essbase.eas.utils, 22
com.essbase.eas.utils.print, 22
com.MyPlugin.MiscellaneousHandler, 23
command arguments

grabbing, 56
command handling methods

described, 55
command listener

class hierarchy, 47
command listeners

defined, 46
writing, 45

CommandArgument class, 49
CommandArgument object, 50
CommandDescriptor class, 50
CommandDescriptor objects, 48

commands, registering, 48
CommandStatus class, 57
CommandString class, 49
CONFIG_SCOPE, 58
Configure Plugin Components dialog box, 22
console tree menu items, adding, 33
constructors for the StandardDialog class, 36
consulting services, xi
context menu items

adding to tree nodes, 27
controls

setting focus order, 39
standard, 40

CSS token
retrieving from the Console, 41

D
data

storing temporary using the framework, 58
DefaultScopeTypes, 58
dialog results, 39
Dialog.show method, 39
DialogResult class, 39
dialogResult field, 36
DialogUtils.setFocusOrder method, 39
dispose method, 40
documents

feedback, xii
ordering print documents, ix

documents, accessing
Hyperion Download Center, ix
Hyperion Solutions Web site, viii

DoneButton control, 40

E
eas_client.jar file, 20
eas_common.jar file, 20
EASPATH environment variable, described, x
education services, xi
e-mail

support for sending, 42
Enterprise Tree

adding a branch, 24
essbase_client.jar file, 20

Index, L

■ 65Essbase Administration Services Developer’s Guide

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

essbase_common.jar file, 20
EssbaseCommandListener, 56
EssbaseCommandListener class, 46 to 47
EssbaseCommandListener.handleEventPrep method,

47
example classes, 16
example code

about, 17
example.java sample code, 51
ExampleCommandListener class, 53
exampleCommandListener.java sample code, 54
exampleCommandString.java sample code, 52
exampleDescriptor.java sample code, 53
extending Administration Services Console, 19

F
File > New menu

adding items to, 29
FinishButton control, 40
focus order of controls, setting, 39
framework

using to store temporary data, 58
framework_client.jar file, 20, 59
framework_common.jar file, 20, 59
framework_server.jar file, 60
functionality

adding to Administration Services Console, 23

G
get method, 59
getClassType method, 50
getCommands method, 48, 54
getContextMenuItemsFor method, 27
getDefaultValue method, 50
getName method, 49
getObjectsToEmail method, 42
getTreeNodeChildren method, 26
grabbing command arguments, 56

H
handleCancel method, 39 to 40
handleEvenPost method, 48
handleEvent method, 48

handleEventException method, 48
handleEventPrep method, 48, 56
handleHelp method, 39
handleOk method, 30, 39 to 40
handleWindowClosed method, 40
handleWindowClosing method, 40
handleWindowOpened method, 40
helpBtn field, 36
HelpButton control, 40
Hyperion Consulting Services, xi
Hyperion Download Center

accessing documents, ix
Hyperion Education Services, xi
Hyperion product information, xi
Hyperion Solutions Web Site

accessing documents, viii
Hyperion support, xi
Hyperion Technical Support, xii

I
internal frame menu items, 33
InternalFrame class, 42
internationalization utilities, 43
isEmailable method, 42
isHidden method, 50
isRequired method, 49

J
Java Introspection, 15
Java packages

for Administration Services, 16
Java plug-in components

described, 14
requirements for using, 15

Java plug-ins
packaging, 43

Java Swing, 15

L
lib directory, 60
ListMoverPanel control, 41
loading code, 60
localization utilities, 43

Index, M

66 ■ Essbase Administration Services Developer’s Guide

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

logging level, 61

M
manifest file, 60
menu items

adding, 31
adding internal frame, 33
adding to tree nodes, 27
console tree, 33

menus
adding items to, 31

method signatures, 55
methods

command handling, 55
middle tier, 13
MiscellaneousHandler.class, 22

N
name parameter, 46
NextButton control, 41
nodes

adding children, 26
adding context menu items to, 27
permitting plug-ins to add children to, 27

NumericTextField control, 41

O
Object defaultValue field, 50
okBtn field, 36
OkButton control, 41
op parameter, 46

P
packaging plug-ins, 43
packaging the code, 59
password parameter, 46
permitting plug-ins to add children to tree nodes, 27
plug-ins

access point for client, 20
how the client locates, 22
packaging, 43
writing client, 19

populatePanel method, 30
populateTree method, 24
public classes

Administration Services Console, 20

R
ReadOnlyTextFrame control, 41
RefreshButton control, 41
registering commands, 48
remove method, 59
REQUEST_SCOPE, 59
requirements

for using Java plug-in components, 15
ResetButton control, 41
resources field, 36

S
sample code

about, 17
example.java, 51
exampleCommandListener.java, 54
exampleCommandString.java, 52
exampleDescriptor.java, 53

Save As, handling, 34
SaveAsRequestor interface, 34
saveDialogBounds field, 36
sending e-mail, 42
sending results back to the client, 57
server-side command listeners

writing, 45
services

for Administration Services Console, 41
SESSION_SCOPE, 58
set method, 59
setting

focus order of controls, 39
SimpleWizardPanel control, 41
standard buttons and controls, 40
standard controls, 35
StandardDialog class, 35

methods that can be overriden, 40
StandardDialog class constructors, 36
StandardDialog class name, 36
StandardDialog default action, 38

Index, W

■ 67Essbase Administration Services Developer’s Guide

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

StandardDialog initialization, 37
StandardDialog results, 39
static menu items, adding, 31
StoreService interface, 59
String name field, 49

T
technical support, xii
temporary data

storing using the framework, 58
toString method, 49, 53
tree nodes

adding children, 26
adding context menu items to, 27
permitting plug-ins to add children to, 27

U
USER_SCOPE, 59
utilities for localization, 43
utility classes, 61

V
validateSession method, 56
VerticalPairPanel control, 41

W
WizardPanel control, 41
writing server-side command listeners, 45

Index, W

68 ■ Essbase Administration Services Developer’s Guide

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

	Contents
	Preface
	Introduction
	About Essbase Administration Services
	About Java Plug-in Components
	Requirements for Using Administration Services Java Plug-ins
	Prerequisite Knowledge
	Framework Concepts
	Packaged APIs for Administration Services
	Administration Services Java Packages
	Example Classes

	About the Sample Code in this Guide

	Writing Client Plug-ins
	Preliminaries
	Access Point for Plug-ins
	Class Packages
	How the Client Locates Plug-ins
	Adding Functionality
	Semantic Rules
	Adding a Branch to the Enterprise Tree
	Adding Children to Other Tree Nodes
	Permitting Plug-ins To Add Children To Your Tree Nodes
	Adding Context Menu Items To Tree Nodes
	Handling the File > New Menu Item
	Adding Items To Menus
	Static Menu Items
	Internal Frame Menu Items
	Console Tree Menu Items

	Handling Save As

	Standard Controls
	The StandardDialog Class
	Name of Standard Dialog Class
	Dialog Creation
	Dialog Initialization
	Dialog Default Action
	Dialog Keyboard Handling, Focus Order, Action Maps, and So On
	Dialog Results
	Methods to Override

	Standard Buttons and Other Controls

	Administration Services Console Services
	Retrieving the CSS Token from the Console
	Sending E-mail

	Internationalization
	Packaging the Plug-in

	Writing Server-side Command Listeners
	Preliminaries
	Command Listeners
	Class Hierarchy
	Which Class To Extend
	Which Methods to Override
	Registering Commands
	CommandString Class
	CommandArgument Class
	CommandDescriptor Class
	Examples

	Command Handling Methods
	Method Signatures
	Grabbing Command Arguments
	Sending Results Back to the Client
	Storing Temporary Data Using the Framework

	Packaging the Code
	Loading the Code
	Utility Classes

	Index

