Essbase® Administration Services
Release 7.1

- Developer’'sGuide

o3
000
O O

Hyperion® Hyperion Solutions Corporation

Copyright 2001-2004 Hyperion Solutions Corporation. All rights reserved.
U.S. Patent Number: 5,359,724

Hyperion, Essbase, the Hyperion “H” logo, Hyperion Solutions, Esshase X TD, and Administration Servicesareregistered
trademarks or trademarks of Hyperion Solutions Corporation.

All other brand and product names are trademarks or registered trademarks of their respective holders.

No portion of this manua may be reproduced or transmitted in any form or by any means, electronic or mechanical,
including photocopying, recording, or information storage and retrieval systems, for any purpose other than the
purchaser’s personal use, without the express written permission of Hyperion Solutions Corporation.

Notice: Theinformation contained in this document is subject to change without notice. Hyperion Solutions Corporation
shall not be liable for errors contained herein or consequential damages in connection with the furnishing, performance,
or use of this material.

Hyperion Solutions Corporation
1344 Crossman Avenue
Sunnyvale, CA 94089

Printed inthe U.S.A.

Pl BT A ettt ettt et ettt e et et e e e e e enaaen Vii

Chapter 1: INTrOAUCTION ...t 13
About Essbase ADMINIStration SEIVICEScvieieirieiiereeee e 13
About Java Plug-in COMPONENES.......ccieieieireieieeie et e b s se st s sesse e s 14
Requirements for Using Administration Services Java Plug-inNS...........ccccevevenenenenenn 15
PrerequiSite KNOWIEAGEc.viirieeieeeeee ettt 15
Framework CONCEPLS.........ciiuiririerienieie ettt sttt sttt sbe b e et e e saesbeneene e 16
Packaged APIs for AdmiNiStration SErVICEScccvveveeeeierneene e see e 16
Administration Services Java Packagescoceoererieiieineneeee e 16

EX@MPIE ClaSSES......cieieiiiieiiecesie et ee ettt nee st stesresneeneeneas 16

About the Sample Code in thiS GUITE........ccceieiieieerireees e 17
Chapter 2: Writing CHent PIUQ-INS ... 19
PrElIMINGAITES ...ttt b et 19
ACCESS POINE FOr PIUG-INS ...t 20
ClaSS PACKAGES ... ettt ettt sttt sttt st aesse e eseeneesbesteseeetesneeneeneeneas 20
How the Client LOCALES PIUG-INS........ciiiireeieeeesiee et 22
Adding FUNCHONAITTY ..ottt st 23
SEMANTTIC RUIBS ... e 23
Adding a Branch to the ENterprise Tre......cocoierueieriirieie e 24
Adding Children to Other Tree NOUEScceeeeiereresere e 26
Permitting Plug-ins To Add Children To Your Tree NOdES........cccccveieeereiercninnennes 27
Adding Context Menu Items TO Tree NOUES..........oovirirnirererere e 27
Handling the File > New Menu emM ... 29
Adding ItEMS TO MENUScueiuiiiiiiieeerie ettt sr e 31
SEAtiC MENU TTEMS.....ctiiice e 31

Essbase Administration Services Developer’'s Guide | i

Contents

Internal Frame Menu [TEMS..........cccooeiiieceee e 33

Console Tree MeNU ITEMS........ovciiierieee e 33

HaNAIING SAVE AS....o.eeeeie ettt s r et ne et e nae s reere e 34
StANAEIT CONEIOIS ...ttt bbbt 35
The StandardDial0g Class..........ccvieiiiiiie e 35
Name of Standard Dialog Class..........ccccvieieieeiniese e 36

DT oo @ = (o] o P 36

Dialog [NItIaliZaliONccvieieeceeee s 37

Dialog DEfaUIt ACHION........eeieeeee et eee e 38

Dialog Keyboard Handling, Focus Order, Action Maps, and So On................ 38

D= ool LS U R 39

MEthOAS 10 OVEITIAE ... cvieeiieiite et 40

Standard Buttons and Other CONrolScoveveveeiiiiececece e 40
Administration Services CoNS0l@ SEIVICES. ..ot 41
Retrieving the CSS Token from the Console.........cccceveveieee e 41
SENAING E-MAL ...t e 42

R iES g gt L0 r= T o) o (TSR 43
Packaging the PIUG-iNc..oie et 43
Chapter 3: Writing Server-side Command Listeners............ccccoeueuueee. 45
= T a0 TH = =S TS 45
COmMMANG LISIENEIS ..ottt ettt 46
ClaSS HIEIAICHY ...ttt sresnesneenenneas 47
Which Class TO EXIENG........cociiiiiieiice et 47
Which MethodS t0 OVEITITE.cviiiiiii i 47
ReGIStENING COMMANGSccieieeiieiesie ettt se e st re e s 48
ComMMEANASEHNG ClaSScovireeieriresee et snenee s 49
CommandATGUMENE ClaSS.........coirieiieiiiiiiee et re 49
CommaNdDESCIIPLOr ClaSSccviiiieeeieiesie sttt re 50
= 1 0] =S P 50
Command Handling MEthOdS............cccuiieiiieiecc it 55
MENOA SIGNBIUIEScoeieeiiie ettt ne e st eesre e e 55
Grabbing Command ATrQUIMENESccerieireieiesteereeeese e sresse e e sre e eseesesaeeesresrens 56
Sending Results Back to the Client........c.ccovvv v 57
Storing Temporary Data Using the Frameworkccocvevvieenerenee e 58

iv m Essbase Administration Services Developer’s Guide

Contents

Packaging the COOEceciiieeeee et 59
0 7=o [a0 LT oo S 60
ULHIEY ClASSES.....veiveiticie ittt ettt sttt e st e s te st e nesreereeaeeneereense e eneenes 61
TN EX et 63

Essbase Administration Services Developer’'s Guide [Y

Contents

vi | Essbase Administration Services Developer’s Guide

Welcome to the Essbase Administration Services Devel oper’s Guide. This preface
discusses the following topics:

« “Purpose” on page vii

« “Audience’ on page vii

« “Document Structure” on page viii

« “Whereto Find Documentation” on page viii
« “Conventions’ on page x

« “Additiona Support” on page xi

Purpose

This guide provides you with all the information that you need to extend Essbase
Administration Services. It explains the Essbase Administration Services
concepts, processes, procedures, formats, tasks, and examples that you need to
customize the software.

Audience

Thisguideisfor software developers who are responsible for extending Essbase
Administration Services.

Essbase Administration Services Developer’'s Guide H Vvii

Preface

Document Structure

This document contains the following information:

Chapter 1, “ Introduction”, introduces the Essbase Administration Services plug-in
components and shows you how you can use them. It also contains alist of
packaged APIsfor Essbase Administration Services and explains client and server
concepts.

Chapter 2, “Writing Client Plug-ins,” provides general guidelines for developing
an Esshase Administration Services Java plug-in and describes how to add your
Java plug-in to Essbase Administration Services.

Chapter 3, “Writing Server-side Command Listeners,” explains how to write a
command listener for the Essbase Administration Services mid-tier web server.

The Index contains alist of Hyperion Essbase Administration Servicesterms and
their page references.

Where to Find Documentation

All Essbase Administration Services plug-in documentation is accessible from the
following locations:

« TheHTML Information Map is located at:
EASPATH eas/ doc_| auncher. ht m

Launch thisfile, and then provide the name of the computer where
Administration Server isinstalled. Administration Server must be started
when you launch the Information Map.

« TheHyperion SolutionsWeb siteislocated at ht t p: / / www. hyper i on. com

« TheHyperion Download Center can be accessed from
http://hyperion. subscri benet.comor from
http://ww. hyperi on. com

[l To access documentation through the Hyperion Solutions Web site:
1. Logontohttp://wwmn hyperion.com

2. Select the Support link and type your username and password to log on.

Note: New users must register to receive a username and password.

viii m Essbase Administration Services Developer’s Guide

http://www.hyperion.com
http://hyperion.subscribenet.com
http://www.hyperion.com

3.

Where to Find Documentation

Click the Hyperion Download Center link and follow the on-screen
instructions.

[l To access documentation from the Hyperion Download Center:

1.
2.

Logontohttp://hyperion.subscribenet.com

IntheL ogin ID and Passwor d text boxes, enter your assigned login ID name
and password.

In the Language list box, select the appropriate language and click L ogin.

If you are amember on multiple Hyperion Download Center accounts, select
the account that you want to use for the current session.

Perform one of the following actions:

« To access documentation online, from the Product List, select the
appropriate product and follow the on-screen instructions.

« Toorder printed documentation, from the I nfor mation section in the left
frame, select Order Printed Documentation, then follow the on-screen
instructions

[l To order printed documentation if you do not have access to the Hyperion
Download Center:

In the United States, call Hyperion Solutions Customer Support at
877-901-4975.

From outside the United States, including Canada, call Hyperion Solutions
Customer Support at 203-703-3600. Clients who are not serviced by support
from North America should call their local support centers.

Essbase Administration Services Developer’'s Guide m X

http://hyperion.subscribenet.com

Preface

Conventions

The following table shows the conventions that are used in this document:

Table i: Conventions Used in This Document

Item Meaning

> Arrowsindicate the beginning of a procedure consisting of
sequential steps or one-step procedures.

Brackets|[] In examples, brackets indicate that the enclosed elements
are optional.

Bold Bold in procedural steps highlights major interface
elements.

CAPITAL LETTERS | Capital |etters denote commands and various I Ds.
(Example: CLEARBLOCK command)

Ctrl +0 Keystroke combinations shown with the plus sign (+)
indicate that you should press the first key and hold it
while you press the next key. Do not type the + sign.

Exanpl e t ext Courier font indicates that the material shown is acode or
syntax example.

Courieritalics Courier italic text indicates avariable field in command
syntax. Substitute avalue in place of the variable shownin
Courier italics.

ARBORPATH When you see the environment variable ARBORPATH in
italics, substitute the value of ARBORPATH from your site.

EASPATH This environment variableis set to the directory path of
the Administration Servicesinstallation. The default is
C: \ Hyperi on on Windows platforms and

/ home/ hyper i on on UNIX platforms.

When you see the environment variable EASPATH in
italics, substitute the value of EASPATH from your site.

n, X Italic n stands for a variable number; italic x can stand for
avariable number or an alphabet. These variables are
sometimes found in formulas.

X H Essbase Administration Services Developer’'s Guide

Additional Support

Table i: Conventions Used in This Document (Continued)

Item Meaning

Ellipses(...) Ellipsis pointsindicate that text has been omitted from an
example.

Mouse orientation This document provides examples and procedures using

aright-handed mouse. If you use a left-handed mouse,
adjust the procedures accordingly.

Menu options Optionsin menus are shown in the following format.
Substitute the appropriate option names in the
placeholders, asindicated.

Menu name > Menu command > Extended menu
command

For example: 1. Select File > Desktop > Accounts.

Additional Support

In addition to providing documentation and online help, Hyperion offers the
following product information and support. For details on education, consulting,
or support options, click the Services link on the Hyperion Web site at
http://ww. hyperi on.com

Education Services

Hyperion offersinstructor-led training, custom training, and eTraining covering all
Hyperion applications and technologies. Training is geared to administrators, end
users, and information systems (1S) professionals.

Consulting Services

Experienced Hyperion consultants and partners implement software solutions
tailored to clients’ particular reporting, analysis, modeling, and planning
requirements. Hyperion a so offers specialized consulting packages, technical
assessments, and integration solutions.

Essbase Administration Services Developer’'s Guide B X

http://www.hyperion.com

Preface

Technical Support

Hyperion provides enhanced el ectronic-based and telephone support to clientsto
resolve product issues quickly and accurately. This support is available for all
Hyperion products at no additional cost to clients with current maintenance

agreements.

Documentation Feedback

Hyperion strives to provide complete and accurate documentation. We value
your opinions on this documentation and want to hear from you. Send us your
comments by clicking the link for the Documentation Survey, which islocated on
the Information Map for your product.

xii | Essbase Administration Services Developer’s Guide

Introduction

This chapter includes the following topics:

“About Essbase Administration Services’ on page 13

“ About Java Plug-in Components’ on page 14

“Requirements for Using Administration Services Java Plug-ins’ on page 15
“Prerequisite Knowledge” on page 15

“Framework Concepts’ on page 16

“About the Sample Code in this Guide” on page 17

About Esshase Administration Services

Essbase Administration Servicesis the new cross-platform framework for
managing and maintaining Essbase. Administration Services provides asingle
point of access for viewing, managing, and maintaining Analytic Servers
(formerly OLAP Servers), applications, and databases. This new product
incorporates the functionality of Essbase Application Manager aong with other
new administrative features and with Essbase administration tools, such asMaxL.

Administration Services consists of two components:

Administration Services Console (client tier)

Thiscomponent isa Javaclient console that enables administrators to manage
the Essbase environment from a robust graphical user interface.

Administration Server (middle tier)

This component is a Java based web application server that communicates
with both Administration Services Console and Essbase Analytic Servers.
Administration Server maintains communication and session information for

Essbase Administration Services Developer’'s Guide m 13

Introduction

each connection to Analytic Servers. Administration Server also stores
documentation files so that consol e users can access the documentation
without having to install it locally.

Administration Server serves as the middle tier between Administration Services
Console and Esshase Analytic Servers, as shown in Figure 1.

Figure 1: Essbase Administration Services Architecture

Client Tier Middla Tier | Datobase Tier

Emnbeamm Emetimnen Emerbunmen
Biehrrirasi rEl kan Ao Analflie Sarsees
Sardces Consoke Servar

= s @ Py

About Java Plug-in Components

Essbase Administration Services Java plug-ins are installable components. They
provide the following benefits to users:

« Enable the Essbase Administration Services devel opment team to easily
provide additional functionality to end users

« Allow other Hyperion internal development groups to easily integrate their
products with Essbase Administration Services

« Enablepartnersand customersto easily integrate their processes into Essbase
Administration Services

« Allow customers to accomplish more because they are not launching severa
applications at once

The following list describes how you can use Essbase Administration Services
plug-ins:

« Customize the Essbase Administration Services Enterprise Tree

« Customize the Essbase Administration Services File > Open dialog box

14 m Essbase Administration Services Developer’'s Guide

Requirements for Using Administration Services Java Plug-ins

« Customize the Essbase Administration Services File > New dialog box
« Customize the Essbase Administration Services File > Save As dialog box
« Change the Essbase Administration Services menus

For each of thesetasks, there are aset of classes, interfaces, and methods that must
be implemented by a plug-in author. There are also a set of guidelines to follow
when implementing plug-ins.

For information about performing the preceding tasks, see “Writing Client
Plug-ins’ on page 19.

Requirements for Using Administration
Services Java Plug-ins

The following list describes the requirements necessary to use Essbase
Administration Services Java plug-in components:

o JavaSDK Version 1.4.1 b06 or later
« Hyperion Essbase Release 7.1 or later
« [Essbase Administration Services Release 7.1 or later

Prerequisite Knowledge

Developers using this guide must have the following prerequisite knowledge:
« XML (Extensible Markup Language)

« HTTP (Hypertext Transfer Protocol)

« JavaZ?

— Introspection
Introspection is a Java technique that Essbase Administration Services
uses to interact and communicate with plug-in components.

— Exception handling
— Packaging of applications (. j ar files)
« Swing

Essbase Administration Services Developer’'s Guide m 15

Introduction

Swing isagraphical user interface (GUI) component kit, part of the Java
Foundation Classes (JFC) integrated into Java 2 platform, Standard Edition
(J2SE). Swing simplifies deployment of applications by providing acomplete
set of user-interface elements written entirely in the Java programming
language. Swing components permit a customizable look and feel without
relying on any specific windowing system.

Because Swing isincorporated in the Java 2 platform, there is no need to
download or install it.

Framework Concepts

Packaged APIs for Administration Services

Administration Services consists of severa packages. For detailed information
about these packages, seethe Essbase Administration Services Java AP| Reference
for the packages and classes described in this guide.

Administration Services Java Packages
com.essbase.eas.ui.* (all packages)

com.essbase.eas.framework.* (all packages)

Example Classes
ConsoleTreeHandler
ConsoleMenuHandler
MiscellaneousHandler
NewDiaogHandler
OpenDialogHandler
OptionsDialogHandle

16 m Essbase Administration Services Developer’'s Guide

About the Sample Code in this Guide

About the Sample Code in this Guide

The code snippets and examples contained in this guide are intended to
demonstrate how plug-ins interact with the Administration Services framework.
They are intended to show how to get an aspect of the interaction to work and, in
some cases, omit details that are not relevant to the topic being discussed. In
addition, while the techniques shown will work, the Java techniques shown may in
some cases not be the best implementati on method when scaling up to aproduction
quality product.

For example, in the section on context menu items, “ Adding Context Menu ltems
To Tree Nodes’ on page 27, the example creates new menu items and action
listeners each time the getContextM enultems() method is called; this might not be
the best mechanism for handling this task. Please consult the appropriate Java
resources (books, Web pages, documentation) for other techniques; in particular,
when dealing with Swing objects, the Swing event model, and associating Swing
event listenersto objects.

Essbase Administration Services Developer’'s Guide m 17

Introduction

18 m Essbase Administration Services Developer’s Guide

Writing Client Plug-ins

This chapter explains how to write aplug-in for Administration Services Console.
Plug-ins are the mechanism for extending the functionality of Administration
Services Console. This chapter includes the following topics:

« “Preliminaries’ on page 19

« “Access Point for Plug-ins’ on page 20

« ‘“ClassPackages’ on page 20

« “How the Client Locates Plug-ins’ on page 22

« “Adding Functionality” on page 23

. “Standard Controls’ on page 35

« “Administration Services Console Services’ on page 41
. ‘“Internationalization” on page 43

« “Packaging the Plug-in” on page 43

Preliminaries
We make the following user presumptions:

« You have some Java experience

« You have access to the Essbase Administration Services Java AP| Reference

Essbase Administration Services Developer’'s Guide m 19

Writing Client Plug-ins

« Sincedifferent developers use different build tools and environments, we do
not discuss how to do anything for specific development environments.
Rather, we describe the desired results, leaving it to the devel oper to know how
to achieve these results with their specific devel opment tools.

Note: For the purposes of this documentation, the terms “client framework”,
“Administration Services Console”, “console”, “Administration Services client”, and
simply, “the client” can generally be taken to refer to the client application.

Access Point for Plug-ins

The implementation of the Administration Services client is contained in the
eas_client.jar andframework_client.jar filesthat areinstalled with
Administration Services. Additional classes arefound intheeas_conmon. j ar
and f r amewor k_conmon. j ar files. The Analytic Services plug-in to
Administration Services Consoleis contained intheessbase_commmon. j ar and
essbase_client.jar files.

Class Packages

20 m

Administration Services Console consists of several packages. The public classes
in these packages are available to the implementor of plug-ins. In particular, the
user interface, print, and mail-related classes. For detailed information about the
packages and classes described in Table 1, see the Essbase Administration
Services Java API Reference.

Table 1: Administration Services Console Class Packages

Package or Class Name Description

com.essbase.eas.client.intf The classes and interfaces that provide an interface

to the console
com.essbase.eas.client. The classesthat provide “ management” servicesfor
manager parts of the console; such as, LoginManager,
CommandManager, ConsoleManager, and so on
com.esshase.eas.client. The classes that the client framework usesto install
plugins plug-ins, track plug-ins, and so on

Essbase Administration Services Developer’'s Guide

Class Packages

Table 1: Administration Services Console Class Packages (Continued)

Package or Class Name

Description

com.esshase.eas.framework.

client.defs.command

The client-specific classes related to sending
commands to the mid-tier. As of Release 7.1, this
consists only of the UlCommandManager class.

com.esshase.eas.framework.

client.defs.login

Thisisthe default login dialog box provided by the
console. It displaysif no plug-in has registered a
different login dialog or if any command is sent to
the Administration Services mid-tier and amid-tier
server name has not been provided.

com.esshase.eas.framework.

client.ui.filedlgs

Implements dial og boxes associated with afile
menu. For example, New, Open, Save As

com.esshase.eas. Ui

Another package with several user interface
components used by the console and by the
Analytic Services plug-in

com.esshase.eas. ui.ctable

An implementation of a standard extension to the
Jrable control

com.esshase.eas. ui.ctree

An implementation of an extension to the JTree
control. Thisisthe control that is used in the
Enterprise Tree and in the custom views of the
console.

com.esshase.eas. ui.editor

An implementation of a standard text editor with
syntax highlighting. This control is used asthe base
class for the calculation script editor, maxL editor,
and report script editor in the Analytic Services

plug-in.

com.esshase.eas.ui.email

An implementation of some e-mail related classes.
The framework provides a service for sending
e-mail; this package contains the implementation of
the service.

com.esshase.eas. ui.font

The classes that provide the font-related utility

com.esshase.eas.ui.print

The classes that provide the print-related utility

com.esshase.eas.ui.ptable

An extension to the JTable control for editing
properties. This table provides extensive editing,
sorting capabilities, and is used by many windows
and dialogs in the Analytic Services plug-in.

Essbase Administration Services Developer’'s Guide m 21

Writing Client Plug-ins

Table 1: Administration Services Console Class Packages (Continued)

Package or Class Name Description

com.esshase.eas.ui.ptree An extension to the JTree control for editing
tree-oriented properties. Thistree provides
extensive editing capabilities and is used by many
windows and dialogs in the Analytic Services
plug-in.

com.esshase.eas.ui.tree The generic utility routines for working with
JTree-based controls

com.esshase.eas.framework. | This package and the packages under it provide
defs services for transferring commands from the
mid-tier to the client, packaging/unpackaging data
to be transferred, alogging mechanism, and so on

com.esshase.eas.i18n Theinternationalization utility classes

com.esshase.eas.utils Various utility classes spanning arange of uses: file
utilities, compression, encryption, array utilities,
and so on

com.esshase.eas.utils.print Utility classes dealing with printing

How the Client Locates Plug-ins

22 m

Theclient tracks plug-ins by maintaining alist of jar filesthat the user has sel ected
using the Configure Plugin Components dialog box. To display this dialog box,
from Administration Services Console, select Tools > Configure components.

When ajar fileis selected, the dialog scans through each packagein the jar file
looking for aclass called MiscellaneousHandler.class. When a class with this
nameisfound, thejar file name and the package name containing that classfile are
retained by the plug-in manager. Therefore, each jar file must contain exactly one
package with a MiscellaneousHandler classin it.

When Administration Services Console starts, the plug-in manager scans each jar
fileinits stored list, looking for the MiscellaneousHandler.class file in the
specified package. If this classis found, the plug-in manager adds this plug-in to
itslist of plug-ins. Other parts of the application, or any other plug-in can then call
the plug-in manager to get alist of al plug-ins.

Basically, each plug-in consists of the following:

Essbase Administration Services Developer’'s Guide

Adding Functionality

A jar file containing a package with a
MiscellaneousHandler class

For the rest of this document, we will use the term “plug-in root” to refer to the
package containing the MiscellaneousHandler class.

For example, the rest of this document uses a plug-in with a class named
com.MyPlugin.MiscellaneousHandler; the plug-in root refers to the package
com.MyPlugin.

Adding Functionality

Thereare many waysto add functionality to Administration Services Console. The
following sections describe how thisis currently implemented:

o “Semantic Rules’ on page 23

« “Adding aBranch to the Enterprise Tree” on page 24

« “Adding Children to Other Tree Nodes’ on page 26

o “Permitting Plug-ins To Add Children To Your Tree Nodes’ on page 27
« “Adding Context Menu Items To Tree Nodes’ on page 27

« “Handling the File > New Menu Item” on page 29

« “Adding Items To Menus” on page 31

o “Handling Save As’ on page 34

Semantic Rules

Many of the foll owing sections have a description of semantic rules. In most cases,
Administration Services Console does not enforce these rules. We expect that
developers writing plug-ins for Administration Services will be “well-behaved
citizens’; philosophically, this means that alot of the consoleis open, accessible,
and plug-ins can have an adverse effect on the application by taking actions that
break these semantic rules.

Essbase Administration Services Developer’'s Guide m 23

Writing Client Plug-ins

24 m

Adding a Branch to the Enterprise Tree

When Administration Services Console starts, a panel is created called the
“Enterprise View”. This panel contains aninstance of the CTreeclass. Thetext for
theroot nodeiscalled “Enterprise View” . Each plug-in getsthe opportunity to add
children to the root node. This permits each plug-in to have its own branch in the
Enterprise Tree view.

In the plug-in root, add a class called ConsoleTreeHandler. In our example, this
would be com.MyPlugin.ConsoleTreeHandler. Add a method called
“populateTree()” to this class. The source code should look something like the
following example:

public class Consol e TreeHandl er {
//a no-argunent constructor is required by the framework.
publ i c Consol eTreeHandl er () {

}

public void popul at eTree(CTreeMddel nodel) {
hj ect root =nodel . get Root () ;

//strictly speaking, this next check should not be

/I necessary; however, we do this to nake sure sone other

//plug-in hasn’t replaced the root node with sonething

/ I unexpect ed.

if ((root!=null) && (root instanceof CTreeNode))
//create any CTreeNode-derived objects, adding them
//as children of the root node.

}

}
}

There are some unenforced semantic rules associated with CTree objects:

« Theonly action aplug-in should perform onthe CTreeModel isto get the root.
The plug-in should never replace the root node, traverse the tree model, or
make changes to any other descendants of the root node.

Essbase Administration Services Developer’'s Guide

Adding Functionality

« Every object added as child of the root node must be derived from a
CTreeNode. Theoretically, any object can be added as a child of the root;
however, other parts of the framework will not respond to those objectsin any
meaningful way.

Note: A plug-in can be called more than once if the console disconnects from the
current server. The code needs to check that the node has already been added and only
append nodes that have not been added previously. The source code should look
something like the following Essbase ConsoleTreeHandler code:

/**
* popul ates the nodel with information required.
*/
public void popul at eTree(CTreeMddel nodel) {
oj ect root=npdel . get Root () ;
CTr eeNode r oot Node=nul | ;
bool ean firstTi me=true;
if (root instanceof CTreeNode) {
r oot Node=(CTr eeNode) root;
i f (rootNode. get ChildCount()!=0) {
CTr eeNode node=(CTr eeNode) r oot Node. get FirstChild();
while (node !'=null) {
i f (node instanceof ServersContainerNode) {
firstTi ne=fal se;
U Factory.refreshServerList();
br eak;

}
node=(CTr eeNode r oot Node. get Chi | dAft er (node) ;

}
}
if (firstTime) {
CTr eeNode essnode=new Ser ver sCont ai ner Node(nul |);
r oot Node. add(essnode) ;
final CTreeNode cont ai ner Node=essnode;

Consol eManager . get Consol el nst ance() . addFr aneLi st ener (new
W ndowAdapter () {
public void w ndowd osed(W ndowEvent e) {
//signal that we are sinply disconnecting instead of
/'l cl osing
if (e.getNewState() == W ndowEvent. W NDOW OPENED &&
e.getd dState() == W ndowEvent. W NDOW OPENED) {
Server[] servers = Ul Factory. getServers();
for (int ii=0; ii<servers.length; ii++) {
U Factory. remnmoveServerlnstance(servers[ii]);

Essbase Administration Services Developer’'s Guide m 25

Writing Client Plug-ins

}

}
Ul Factory. di sconnect Al l ();

})

Adding Children to Other Tree Nodes

When a CTreeNode object is expanded for the first time, each plug-in getsthe
opportunity to add child nodes to the CTreeNode being expanded.

In the plug-in root, add a class called ConsoleTreeHandler. In our example, this
would be com.MyPlugin.ConsoleTreeHandler. Add a method called
“getTreeNodeChildren()” to this class. The source code should ook something
like the following example:

public static CTreeNode[] get TreeNodeChil dren(CTreeNode node) {
/1 strictly speaking, this check for null should never be
/'l necessary
if (node == null)
return new CTreeNode[0] ;
i f (node instanceof SoneSpecificTreeNode) {
CTreeNode[] theChildren = new CTreeNode[5] ;
theChildren[0] = new Chil dNode();
t heChil dren[1] = new Anot her Chi | dNode() ;
/1 and so on...
return theChildren;
}
el se if (node instanceof SomeQ her Tr eeNode) {
/1 different set of children here.
}
/1 and if we're not interested in any other types.
return new CTreeNode[0] .

}
Item of interest for this operation:

« Thismethod could be declared public Object[]
getTreeNodeChildren(CTreeNode node) and it would still get called. The
CTreeNode method that handles this checks the return value for null and also
checks each item returned in the array to ensure that it is an instance of a
CTreeNode object. Declaring the method as in the example enforces to the
implementer of the plug-in that the items returned must be items derived from
the CTreeNode class.

26 ® Essbase Administration Services Developer’'s Guide

Adding Functionality

« Theonly arrangement that currently is done isthat child nodes that cannot
have children are placed before the child nodes that can have children. Nodes
from plug-ins are placed after the nodes that the parent node aready knows
about.

Permitting Plug-ins To Add Children To Your Tree Nodes

By default, all CTreeNode based objects that can have children have this feature
enabled. Currently, thereis no way to prevent plug-ins from adding children to a
tree node if that tree node can have children.

Adding Context Menu Items To Tree Nodes

When the CTree control detects that a popup menu needs to be displayed, it calls
theinstance of the CTreeNodeand asksit for alist of itemsto display inthe context
menu. The following are rules or guidelines for how CTreeNode objects should
build this array:

« Thesignature for the CTreeNode method is:
public Conponent[] get Cont extMenultens();

Even though this method is declared to return an array of Component objects,
it is highly recommended that the objects returned all be instances of the
JMenultem class (or classes derived from JMenultem).

« The state of any menu items returned from the getContextM enultems()
method must be properly initialized; that is, enabled/disabled, checked.

« The JMenultem objects (or whatever objects) must be properly linked to the
specific CTreeNode object that is being called. The event passed in the
actionPerformed() call will contain none of this contextual information.

The CTree then calls each plug-in, retrieving any additional menu items for the
specified CTreeNode object. If there are additional items, the CTree places a
separator after the original menu items, then places all of the plug-in itemsin the
popup menu, and then, if the CTreeNode can be put on custom views, puts another
separator and the menu items related to custom views.

For a plug-in to respond to the CTree properly in this case, add a class called
ConsoleTreeHandler to the plug-in root package. In our example, thiswould be
com.MyPlugin.ConsoleTreeHandler. Add a method called

“getContextM enultemsFor()” to this class. The source code could look something
like the following example:

Essbase Administration Services Developer’'s Guide m 27

Writing Client Plug-ins

public static Conponent[] get ContextMenultnmsFor(CTreeNode node)

/1 strictly speaking, this check for null should never be
/'l necessary
if (node == null)
return new Conponent[O0];
i f (node instanceof SoneSpecificTreeNode) {
JMenultem theltem = new JMenul t enm(" Wal k") ;
JMenul tem anot herltem = new JMenul tem("Don't wal k") ;
t hel t em addActi onLi st ener (new ActionLi stener() {
public void actionPerfornmed(Acti onEvent e) {
/'l take action here.
}
}
return new Conponent[] { theltem anotherltem};
}
else if (node instanceof SonmeQ her TreeNode) {
/1 different set of menu itens here.

}

// and if we're not interested in any other types.
return new Conponent[O0].

28 m

Items of interest for this operation:

This method can be declared to return anything. For instance, for better type
safety within your own code, you could declare the method to be “ public static
JMenultem[] getContextM enultemsFor(CTreeNode node)”; however, the
CTree object making the call will only use items that are derived from the
Component class.

Thisexampleis very bare bones; for instance, the returned JM enultem object
does not know which CTreeNode object it should be working with; even
worse, one of the items does not have an action listener associated with it. For
a complete example of this, please see the sample plug-ins developed by the
Administration Services development team.

CTreeNode (being derived from DefaultM utableTreeNode) objects have a
user object. Thisis available through the getUserObject() method. The intent
isthat the user object for a node represents that data that the node has been
created for and thisisthe data that would need to be associated with the menu
item. For instance, a node might have an object representing an Analytic
Services application. In the above example, we would then perform a
node.getUserObject() call to obtain this Analytic Services application object

Essbase Administration Services Developer’'s Guide

Adding Functionality

« Becauseplug-insare called in the order that the user has arranged them in the
Component Manager dialog box, there currently is no way to force the menu
items from one plug-in to appear before the menu items of another plug-in.

Handling the File > New Menu Item

Obviously, it makes sense that the framework would provide asingle File > New
dialog box; then the issue becomes, “How do we get every conceivabl e object that
can be created into the File > New dialog box?".

When the File > New menu item is invoked, the framework creates and displays
an instance of the com.esshase.eas.framework.client.ui.filedlgs.NewDiaog.java
class. The results look something like the following dia og box:

Figure 2: Example File > New Dialog Box

| Srriptz |/Wi23rds

Anahtic Semices |

Application

Ei]? Databasze

i Llzer
;éﬁ Group

(] Cancel Help

In Figure 2, there are three tabs on this dialog box:

« Analytic Services

Essbase Administration Services Developer’'s Guide m 29

Writing Client Plug-ins

« Scripts
« Wizards

These tabs were added, in this case, by the Analytic Services plug-in and the
Administration Services plug-in. The dialog box itself provides the following
items:

« TheOK, Cancel, and Help buttons
« Aninstance of a JTabbedPaneto act as a container for each of the other panels

« Actionsfor the OK, Cancel, and Help buttons that make the appropriate calls
into the plug-in that provided the active panel

To add a panel and tab to the New dialog box, add a class called
NewDialogHandler to the plug-in root package. In our example, thiswould be
com.MyPlugin.ConsoleTreeHandler. Add a method called “populatePanel ()" to
this class. The source code could look something like the following code:

public voi d popul at ePanel (JTabbedPane panel) {
/1 create an instance of the right kind of panel
CNewDi al ogScrol | Panel s = new CNewDi al ogScr ol | Pane();
s.set Hori zont al Scrol | Bar Pol i cy(Jscrol | Pane. HORI ZONTAL_SCROLLBAR_AS_NEEDED) ;
s.setVertical Scrol | Bar Pol i cy(Jscrol | Pane. VERTI CAL_SCROLLBAR_AS_NEEDED) ;

/] create a list nodel that has sone itens in it.
Def aul t Li st Model nodel = new Def aul t Li st Model () ;
nodel . addEl enent (new JLabel (" XTD Connection");
nodel . addEl enent (new Jl abel ("SQL Connection");

/1 make sure the list box has a selected item
list.setSel ectedl ndex(0);

/1 toss the list into the scroll pane and ensure that the new
/1 dialog box will call this instance when the OK button is
/1 clicked.

s.getViewport().add(list);

s. set kHandl er (thi s);

/1 add this panel to the tabbed panel we were given
panel . add("My Cbjects", s);

For thisto work correctly, you would a so need to add the following method to the
class:

public void handl eCk(Conponent conponent) {
i f (component instanceof CNewDi al ogScrol | Pane) {
CNewDi al ogScrol | Pane scroller = (CNewD al ogScrol | Pane) conponent;

30 m Essbase Administration Services Developer’'s Guide

Adding Functionality

Conponent control = scroller.getViewort().getConmponent (0);
if (control !'=null) && (control instanceof JList)) {

/'l extract the selected itemin the JList.

/1 ensure that it is one of the ones we added.

/1 take the appropriate action.

Items of interest for this operation:

« Itemsadded to the JTabbedPane must be derived from the
CNewDialogScrollPane class.

« Since CNewDialogScrollPane is derived from JScrollPane, the components
that give the best visual presentation when displayed in the new dialog box are
components that are derived from JTable, JTree, and JList.

« For the best visual presentation, the component added to the scroller can have
custom renderers, event handlers, and so on.

« Forthebest behavior, thislist would need aMouseL istener added to it to listen
for double click events. This MouseListener then would need to call the
enclosing dialog box’s handleOk() method.

« A plug-in can add more than one panel to the JTabbedPane instance.

Adding Items To Menus
Menu items are typically displayed in three ways:
. Static
« From aninternal frame

o From aCTreeNode on the console tree

Static Menu Items

Static menuitemsare always displayed. Thefollowing exampleisfor astatic menu
item:
public class XYZ {
private CMenu editorsMenu = new CMenu("Scripts"”,
Consol e. | D_ACTIONS_MENU - 1, this);

private CMenultemoutline = new CMenulten("CQutline", null, 0, this);
private CMenultemreport = new CMenulten{"Report"”, null, 1, this);

Essbase Administration Services Developer’'s Guide m 31

Writing Client Plug-ins

private Cvenultem cal c new Chvenultem("Calc", null, 2, this);
private CMenul tem nmaxl new Chvenultem("Maxl", null, 3, this);
private CMenult em ndx = new CMenul tem("Mx", null, 4, this);
private Cvenultemdataprep = new ChMenultem("DataPrep”, null, 5, this);

voi d createMenu() {
report.addActi onLi st ener (new Abstract Action("createReport") {
public void actionPerformed(Acti onEvent e) {
}
1)

cal c. addAct i onLi st ener (new Abstract Action("createCalc") {
public void actionPerformed(Acti onEvent e) {
}

1)

max| . addAct i onLi st ener (new Abstract Acti on("createMaxl") {
public void actionPerformed(Acti onEvent e) {
}

1

ndx. addActi onLi st ener (new Abstract Action("createMlx") {
public void actionPerfornmed(Acti onEvent e) {
}

1)

outline.addActi onLi stener (new AbstractAction("createQutline") {
public void actionPerfornmed(Acti onEvent e) {
}

1)

dat apr ep. addAct i onLi st ener (new Abstract Acti on("creat eDataPrep”) {
public void actionPerfornmed(Acti onEvent e) {
}

1

edi t orsMenu. add(out |l i ne);
edi t or sMenu. add(dat aprep) ;
edi t orsMenu. add(cal ¢);

edi t orsMenu. add(report);
edi t or sMenu. add(maxl) ;

edi t or sMenu. add(ndx) ;

LocalizeUtils.localizeMenu(resources, editorsMenu);

Consol eManager . get Consol el nst ance() . mer geMenus(new Conponent[] {
edi torsMenu});

32 . Essbase Administration Services Developer’'s Guide

Adding Functionality

Internal Frame Menu Items

Menu itemsfrom an internal frame only display when theinternal frameisactive.
If the internal frame is deactivated or or closed, then these menu items no longer
are displayed. Thefollowing exampleisfor an internal frame menu item:

public class XYZ extends Clnternal Frame {
public Conponent[] getFraneMenus() {
/1 Like the exanpl e above
return (new Conponent[] { editorsMenu});
}
}

Console Tree Menu ltems

These menu items only display when anodeis selected. The following exampleis
for a console tree menu item:

public XYZ extends CTreeNode {
public Conponent[] getActionMenultens() ({
return (new Conponent[] { editorsMenu});

}
}

In general, there are predefined menu positions defined in the Console interface:

public static final
public static final
public static final
public static final
public static final
public static final
public static final
public static final

nt 1D _FILE_MENU = O;

nt 1D EDIT_MENU = 1;

nt 1D VIEWMNU = 2;

nt 1D _ACTI ONS_MENU = 10;
nt 1D TOOLS MENU = 20;
nt 1D W ZARD MENU = 30;
nt 1 D_W NDOW MENU = 90;
nt 1D _HELP_MENU = 99;

If the CMenu item’s (that is returned from the above example) position matches
with one of the predefined ones, then that CMenu item’s submenus are merged in
elsethat CMenuisinserted based on the position. So if the CMenu has a position
of ID_ACTIONS MENU, then the items are merged in to the action menu item
that is already on the main menubar. If the CMenu has a position
(ID_ACTIONS MENU - 1), then the CMenu is inserted before the action menu.

Essbase Administration Services Developer’'s Guide m 33

Writing Client Plug-ins

Handling Save As

Save Asrequires the plug-in to implement the interface SaveAsRequestor. The
following example uses an inner class:

if (saveAsAdapter == null) {

saveAsAdapt er = new SaveAsAdapter();

}

SaveAsDi al og. showDi al og(resources. getString("exportTitle"),
(SaveAsRequest or) saveAsAdapter);

}

TheinitSaveAsDialog is called to alow the dialog/frameto initialize the
SaveAsDiaog asit needs to. By default afile system chooser is added to
mainPanel at index 0. A plug-in can add other panelsto save to other placesin this
method.

When an object is sel ected from any panel, then the saveA sObject methodiscalled
with the selected object. If thefile system panel is selected the object will beaFile
if the plug-in adds a panel of their own it they will haveto perform the stepsto save
the object.

private class SaveAsAdapter inplenments SaveAsRequestor {
public void initSaveAsD al ogConponent s(JTabbedPane nmai nPanel) {
String xm String = ResourceUtilities.getStringSafely(resources, XM__FILES);
DefaultFileFilter xmFilter = new DefaultFileFilter(xm String, "xm",
resul t Action);
JFi | eChooser jfc = (JFi |l eChooser) mminPanel . get Conponent At (0);
jfc.setFil eSel ecti onMode(JFi |l eChooser. FI LES_ONLY) ;
if (jfc.isAcceptAllFileFilterUsed() == true)
jfc.setAcceptAll FileFilterUsed(false);
jfc.setFileFilter(xmFilter);

}

public void initExtraConponents(JPanel extraPanel) {
}

public bool ean saveAsObj ect (Obj ect saveCbject) {
bool ean saved = fal se;
if (saveObject instanceof File) {
File file = (File) savebject;
String exportFile = file.getPath();
if (exportFile !'= null) {
String nmsg = "";
if (Adm nServerPropertiesHel per.request Export DB(exportFile))

{
meg = resources. get String("suceEXDBMVsg");

34 = Essbase Administration Services Developer’'s Guide

Standard Controls

St andar dMessages. showvessage(resources, "exportTitle", msg,
JOpt i onPane. DEFAULT_OPTI ON, JOpti onPane. | NFORVATI ON_MESSAGE) ;
saved = true;

}

el se

{
nmsg = resources. getString("fail EXDBMsG");
St andar dMessages. showvessage(resources, "exportTitle", msg,
JOpt i onPane. DEFAULT_OPTI ON, JOpti onPane. ERROR_MESSACE) ;

}
}

return saved;

}
public void set FocusConponent () {

}

Standard Controls

Whileit is not required that plug-ins use the standard controls provided by the
framework classes, there are some benefits to using them. Namely, some
consistency of look and feel is provided, some housekeeping tasks are performed
by the standard controls, thereis support for internationali zation, accessibility, and
SO on.

The StandardDialog Class

The StandardDid og classis an extension of the JDialog class and was introduced
for the following reasons:

1. Standardize the mechanism for internationalization and localization handling
2. Standardize the position, location, and behavior of dialog “action” buttons

3. Standardize some of the accessibility handling for modal dialogs
4

Standardize the handling of results

Essbase Administration Services Developer’'s Guide m 35

Writing Client Plug-ins

36 ®m

The StandardDialog class contains the following protected (or private) fields:

Table 2: Fields in the StandardDialog Class

Field Description

okBt n Aninstance of an OK button. Thisisone of the standard
controls described in “Dialog Initialization” on page 37.

cancel Btn An instance of a Cancel button. Thisis one of the
standard controls described in “ Dialog Initialization” on
page 37.

hel pBtn Aninstance of aHelp button. Thisisone of the standard

controls described in “Dialog Initialization” on page 37.

but t ons Aninstance of aButtonPanel. The ButtonPanel is one of
the standard controls described in “ Dialog
Initialization” on page 37.

resources An instance of a ResourceBundle object. This resource
bundle is used for internationalization purposes.

adapt er An instance of a StandardDial ogAdapter.

di al ogResul t An instance of a DialogResult object.

saveDi al ogBounds | A boolean value indicating whether the bounds
(location and size) of this dialog should be saved when
itisclosed.

Name of Standard Dialog Class

The name of the Standard Dialog classis StandardDialog. Itisin
com.essbase.easui. StandardDial og.class.

Dialog Creation

Thereareat least 11 constructorsfor the StandardDial og class, most of these chain
to another constructor. The two constructors that should be invoked by derived
classes are the ones with the following signatures:

StandardDial og(Frame owner, String title, boolean modal, Dial ogResullt
result);

StandardDialog(Dialog owner, String title, boolean modal);

Essbase Administration Services Developer’'s Guide

Standard Controls

Most of the other constructors exist only to match constructor names of the
JDialog class.

Dialog Initialization

During the call to the StandardDial og constructor, thefollowing initialization steps
will occur:

An OK button, a Cancel button, and a Help button are created

These are the standard buttons used by most dialogs. If the dialog being
implemented uses a different set of buttons (for instance, Close, Apply, Next,
and so on) the derived class should implement instances of those buttons.

A ButtonPanel containing the OK, Cancel, and Help buttonsiis created

If the dialog being implemented wants the button panel to contain a different
set of buttons, it should call buttonPanel.changeButtons(new Joutton[] {
closeBtn, helpBtn }); // as an example.

A ResourceBundle instance is created

Thisresource bundleis used to perform localization work within the dialog. It
isimportant to know where the standard dialog looks for the instance of the

resource bundle. For example, if the dialog classis MyFunnyDialog, then the
resource bundle must bein afile called resourcessMyFunnyDial og.properties.

A StandardDialogAdapter is created and is added as awindow listener to the
dialog

CAUTION: Because of the implementation of the StandardDialogAdapter
class, there should never be a reason for a descendant class of
StandardDialog to attach a WindowListener to itself. Routing of all window
events should be handled by the StandardDialogAdapter. If the
descendant class needs to take action when a window close, window open,
and so on, event occurs then override the methods in StandardDialog that
the StandardDialogAdapter calls.

Sets the instance of the dialog result to the value passed in, if any
To understand how this works, see “Dialog Results’ on page 39.
Sets the dialog's default close operation to DISPOSE_ON_CLOSE

Essbase Administration Services Developer’'s Guide m 37

Writing Client Plug-ins

38 m

In most cases, thisisthe desired behavior; for a dialog that needs a different
behavior, this can be changed by the constructor in the descendant class.

« Setsthedialog's content pane layout to be a BoxL ayout oriented vertically
If necessary, this can be changed by the derived class.

« Addsentriesto the action and input maps of the dialog’s root pane to take a
“default action” when the Enter key is pressed by the user

For more information on what this default action is, and why thisstepis
necessary, see the section of this document titled “ Dialog default action”.

Dialog Default Action

The Microsoft Windows operating environment has the concept of adefault button
when modal dialog windows are open. The default button is painted in away that
makes it stand out visually to the user. Normally, that is the OK button; however,
it can be any action button on the dialog. To handle this concept, the
StandardDialog adds entries to the action and input maps of its root pane for
handling the enter keystroke.

If your dialog box does not have an OK button or, if at any time, the default button
should be some other button, then a call like the following needs to be performed:

dl g. get Root Pane() . set Def aul t Butt on(cl oseBtn);

Dialog Keyboard Handling, Focus Order, Action
Maps, and So On

Depending on which buttons are inserted into a dialog, certain keystrokes will be
mapped automatically:

« TheEnter key
« TheEsckey
« TheF1key (for help)

These are the primary keystrokes that are mapped by the standard dialog and the
standard buttons.

To add handling when these keystrokes are pressed, do the following:

Essbase Administration Services Developer’'s Guide

Standard Controls

« For the Enter key, override the handleOk() method. If everything finishes
correctly and the dialog needs to be rel eased, then call super.handleOk(). This
will ensure that the dialog shuts down properly.

« For the Esc key, override the handleCancel () method. The standard dialog
behavior closes the dia og, releases al the controls, disposes of contained
components, and so on. In most cases, this method will not need to be
overridden.

« For the F1 key, override the handleHelp() method. If the dialog has been
connected viathe Administration Services hel p system viathe normal manner,
this step should not be necessary.

By default, the Java Swing implementation sets the focus order of controls to
correspond to the order in which they were added to their container, and then those
container’'sto their container, and so on. This can be overridden by making a call
to the method Dial ogUtils.setFocusOrder(). This mechanism should beusedin al
dialogsto ensure the focus order of controlsis correct and doesn’t rely on how the
code for building the containment models was written.

Dialog Results

In many cases, adialog needs to return a significant amount of information to the
calling mechanism. Unfortunately, the method Dial og.show() is declared as void
and does not return any data.

If, when implementing a dialog, results from the dialog are needed, the
recommended way to get those is by doing the following tasks:

. Extend the DialogResult class to contain references and additional data
needed by the dialog and/or returned by the dialog.

« Before creating the dialog, create an instance of the DialogResult class.

« Ensurethat the dialog has at least one constructor that accepts an instance of
aDialogResult object.

« Inthe constructor for the dialog class derived from StandardDial og, pass the
DialogResult object to the correct StandardDial og constructor.

« During the handling of the OK button, set the results back into this instance.

Essbase Administration Services Developer’'s Guide m 39

Writing Client Plug-ins

40 m

Methods to Override

The StandardDialog class has a set of methods that can be overridden. Whether
each of these methods are overridden will depend on the needs of each derived
class. See the Essbase Administration Services Java AP| Reference for detailed
information about each of the following methods:

dispose()
handleCancel()
handleOk()
handleWindowClosed()
handleWindowClosing()
handleWindowOpened()

Standard Buttons and Other Controls

There are alarge number of standard controls provided by the client framework.
Thefollowing is arepresentative list; for more complete information, see the
Essbase Administration Services Java API Reference for the com.esshase.eas.ui
package and descendant packages.

Note: This is not a complete list of controls. The plug-in developer should browse the
Java API Reference for the com.essbase.eas.ui package and other packages under this
one for additional standard components.

ActivateButton
ApplyButton
BackButton
BooleanComboBox
ButtonPanel
CancelButton
CloseButton
DoneButton
FinishButton
HelpButton

Essbase Administration Services Developer’'s Guide

Administration Services Console Services

« ListMoverPanel

« NextButton

« NumericTextField

« OkButton

« ReadOnlyTextFrame
« RefreshButton

o ResetButton

« SimpleWizardPanel

« VerticalPairPanel

« WizardPanel

Administration Services Console Services

The client framework provides the following Administration Services Console
services:

« Retrieving the CSS Token from the Console
« Sending E-mail

Retrieving the CSS Token from the Console

The CSS token is retrieved from the FrameworkUser object which is returned on
successful login to Administration Server.

i mport com essbase.eas.client.intf.Login;

i nport com essbase. eas. cli ent. manager . Logi nManager ;
i nport com essbase. eas. adni n. defs. *;

i nport com essbase. eas. admi n.client.*;

i mport com essbase. eas. f ranewor k. def s. Fr anewor kUser ;

private String get Token() {
String | oginToken = null;
Logi n 1 ogi n = Logi nManager . get Logi nl nstance();
if (login!=null) {
Franmewor kUser u = (Franewor kUser)
| ogi n. get Property("Franmewor kUser");
if (u'l=null) {
| ogi nToken = u. get Token();

Essbase Administration Services Developer’'s Guide m 41

Writing Client Plug-ins

}
}

return | ogi nToken;

Sending E-mail

Administration Services Console has integrated support for sending e-mail using
the JavaMail API. We have wrapped the classes and provide adialog for sending
e-mail. Thereis also support in the Internal Frame class to send from any class
derived from the Clnternal Frame class.

Thefollowing is asimple example of how to send the contents of atext areain an
e-mail from adialog.

| nport com essbase. eas. ui.enmail . *;

public void email () {
JFrane fr = Consol eManager. get Consol eFrane();

SendEmai | email = new SendEmmil (fr, fr.getTitle(), new
bj ect[] {

get Text Area().getText()});
emai | . send();

}
The following exampleis for awindow derived from ClnternalFrame. The
methods, isEmailable() and getObjectsToEmail, are methodsin the
Clnternal Frame class.

publ i c bool ean isEnail able() {
return true;

}

public Object[] getnjectsToEmail () {
HTMLDoc doc = new HTM.Doc();

doc.setTitle(getTitle());

doc. addOhj ect (doc. get Headi ng(2, doc.getStyleText(getTitle(),
doc. BOLD | doc. UNDERLI NE), doc. CENTER));

doc. addObj ect (doc. BR) ;

doc. addObj ect (Tabl eUtilities. get HTM.((Def aul t Tabl eMbdel) | ocksTabl e. get Mod
el ()));

42 m Essbase Administration Services Developer’'s Guide

Internationalization

return (new Qobject[] { new Email Attachment (doc.toString(),
"Locks. htn', Email Attachnment. HTMLTEXT, "", Email Attachnment. ATTACHVENT)});
}

Note: Sending an e-mail puts an entry in the background process table showing the
outcome of the e-mail.

Internationalization

The framework provides a set of internationalization and localization utilitiesin
the package com.essbase.eas.i 18n. These classes provide amechanism for locating
resources associated with awindow or dialog box, loading resource bundles based
onthelocale, locaizing collections, arrays of components, or containers. Thereis
also an i18n-friendly string collator class.

Packaging the Plug-in

The only packaging requirement isthat all classes and resources necessary for a
client plug-in must be contained in the same jar file. You must include an entry in
thejar file which defines the other jar filesit depends on. For example, lets say the
plug-injar file xyz. j ar dependsonabc. jar andcde. j ar, include the
following entry in the manifest file for the plug-in jar file:

Class-Path: xyz. j ar cde.jar

Essbase Administration Services Developer’'s Guide B 43

Writing Client Plug-ins

44 m Essbase Administration Services Developer’s Guide

Writing Server-side
Command Listeners

This chapter explains how to write a command listener for the Esshase
Administration Services mid-tier web server. Installable command listenersarethe
mechanism for extending the functionality of the Administration Services Web
server. This chapter includes the following topics:

“Preliminaries” on page 45

“Command Listeners’ on page 46
“Command Handling Methods” on page 55
“Packaging the Code” on page 59
“Loading the Code” on page 60

“Ultility Classes” on page 61

Preliminaries

We make the following user presumptions:

You have some Java experience
You have access to the Essbase Administration Services Java APl Reference

Since different devel opers use different build tools and environments, we do
not discuss how to do anything for specific development environments.
Rather, we describethe desired results, leaving it to the devel oper to know how
to achieve these results with their specific development tools.

Note: For the purposes of this documentation, the terms “Administration Services web
server”, “Administration Services servlet”, “Administration Services mid-tier”,
“Administration Services framework”, and, simply, “the framework” can generally be
taken to refer to the same object.

Essbase Administration Services Developer’'s Guide m 45

Writing Server-side Command Listeners

The framework is the Administration Services servlet and associated classes that
receive commands, handle housekeeping duties, return results, and route
commands to the registered listener.

Command Listeners

46 ®

A command listener is an instance of any class that implements the
CommandL istener interface; however, for practical purposes, al plug-incommand
listeners should extend one of these classes:

o EssbaseCommandListener
« AppManCommandListener
« AbstractCommandListener

The framework uses command listeners as the mechanism to properly route
commands to be handled.

When the Administration Services servlet starts up, it builds atable of command
listeners, the commands that each command listener can handle, and the method

in the command listener for that command. As client applications send commands
(http requests), the Administration Services servlet uses the command's operation
parameter to determine the command listener and method to route the request to.

For example, atypical command might beto log in to the Administration Services
servlet. When expressed as an http request, this command will look something like
this:

http://Local Host/ EAS?op=l ogi n&nane=user 1&passwor d=hel | o

When all of the http information is parsed out, the part that would be of interest to
the Administration Services servlet are the following parameters:

op=login
name=userl
password=hello

The framework uses the “op” parameter to route the command to the correct
command listener. If the command listener has been registered correctly, the
framework will also collect the “name=" and “ password=" parameters and pass
them as arguments to the method in the command listener.

Essbase Administration Services Developer’'s Guide

Command Listeners

Class Hierarchy
The class hierarchy for the command listenersis:

com esshase. eas. framewor k. server. appl i cati on. Abstract CommandLi st ener
com esshase. eas. server. AppManCommandLi st ener
com essbhase. eas. esshase. server. EssbaseConmandLi st ener

All three of these classes are declared as abstract. You must extend from one of
these three classes in order to have the framework find your command listener.

The AbstractCommandL istener class provides the basic functionality that is
needed for the framework. Most of the methods in this class are either final or
protected; for most practical purposes, implementers of derived classes should not
override the protected methods of this class. For a description of those methods
that can be useful to implement in aderived class, see the section “Which Methods
to Override” on page 47.

The AppManCommandL istener class adds some small functionality to the
AbstractCommandL istener, mostly dealing with EAS servlet session validation
and exception handling during command routing.

The EssbaseCommandL istener class adds some Analytic Services-specific
functionality, primarily Analytic Services session validation.

Which Class To Extend

Do not extend the AbstractCommandListener class, even though it is declared
public. The EsshaseCommandL.istener.handleEventPrep() method checks some
standard parameters for an Analytic Server name, application name, and database
name and ensures a connection to that database if those parameters exist. If the
implementer of the new command listener wishes to take advantage of the session
handling performed by the EssbaseCommandL istener, then they should extend this
class; however, if thisisn't necessary, the new command listener can extend the
AppManCommandListener class.

Which Methods to Override

AbstractCommandListener.getCommands() must be overridden. We explain more
about this method in the section, “Registering Commands” on page 48.

Essbase Administration Services Developer’'s Guide m 47

Writing Server-side Command Listeners

48 m

ThehandleEventPrep(), handleEventPost(), and handleEventException() methods
may be overridden. These three methods, along with

AbstractCommandL istener.handleEvent(), form the core processing for any
command received by the framework.

Once the framework determines which command listener to route a command to,
it callsthat command listener’s handleEvent() method. Since the
AbstractCommandListener declares this method as final, the framework always
calls the method in AbstractCommandListener. This method then performs the
following sequence of steps:

1. CallshandleEventPrep(); if this method returns true, then continues with step
2.

2. Getsthe command listener's method that handles this specific command. If
this method cannot be located, logs an error with the logging utility.

3. Converts the arguments from the http command into an array of Java objects.
4. Using Javaintrospection, invokes the method.

5. If no exceptions were thrown, invokes handleEventPost().

6. If exceptions were thrown in steps 4 or 5, calls handleEventException().

Any change to the processing of events before they arrive at a specific method in
the command listener must be done by overriding the handleEventPrep() method.
For instance, this is where the EssbaseCommandListener class checks Essbase
sessions and the AppManCommandL istener checks for avalid servlet session.

In most cases, the handleEventPost() method is empty and the
handleEventException() method is empty.

Registering Commands

After acommand listener isinstantiated by the framework, the framework callsthe
getCommands() method. This method returns an array of CommandDescriptor
objects. The CommandDescriptor objects describe each command that the
CommandL istener isdesigned to handle. The CommandDescriptor object consists
of three main parts:

« A string for the command
« The method in the command listener to call

« Thelist of arguments expected for this command.

Essbase Administration Services Developer’'s Guide

Command Listeners

The next few sections describe the classes used by the framework when registering
commands.

Note: All of these classes are in the package
com.essbase.eas.framework.defs.command.

CommandString Class

When most people write a command listener, they think of it handling commands
like “GetDatabasel ist”, “ GetUsers’, “DeleteUsers’, and so on. Since each
command must be unique, it is easy to see how thiswould lead to confusion. The
CommandString class was introduced to let each programmer of command
listeners think of their commandsin the simplest way. The CommandString class
is declared as:

public abstract class CommandString
The only constructors are declared as:

private CommandString() { ... }
protected CommandString(String original) { ... }

These two declarations combined mean that instances of this class can never be
instantiated and derived classes must call the CommandString(String original)
constructor with avalid String object as the parameter.

The most important action that instances of this classdo istake the original String
object and prepend the class name, including the package name, to the front of the
String. This new value is then returned when the object’s toString() method is
caled.

CommandArgument Class

The CommandArgument class describes individual arguments to commands. It
contains the following fields:

« String name (available through the getName() method)
Thisisthe name of the http parameter corresponding to this argument.
« boolean required (available through the isRequired() method)

Indicates whether this argument is required. The intent is that the framework
can check this field when routing a command and return a pre-defined error
status to the client if arequired field is missing.

Essbase Administration Services Developer’'s Guide m 49

Writing Server-side Command Listeners

50 m

Class ClassType (avail able through the getClassType() method)

Thisisused so the framework can convert the incoming text value to an
appropriate object type.

Object defaultValue (available through the getDefaultVal ue() method)

The framework will substitute this object for the argument if the argument is
missing from the command.

Boolean hidden (available through the isHidden() method)

The framework can log the retrieval and routing of commands and their
parameters. Setting thisfield to true means the framework will not echo the
value of thisargument in thelog file. Thiswould be useful for passwords, and
SO on.

Thesefields are all declared as private and, since there are no setX XX () methods,
cannot be changed after a CommandArgument object is constructed.

CommandDescriptor Class

The CommandDescriptor class combines the CommandArgument and
CommandString classesinto a cohesive value so that the framework can construct
itsinternal tables and route the commands as they are received.

The examples in the following sections show how al of this fits together.

Examples

This section includes the following sample code:

“Examplejava’ on page 51
“ ExampleCommandString.java’ on page 52
“ExampleDescriptor.java’ on page 53

“ ExampleCommandListener.java’ on page 54

Essbase Administration Services Developer’'s Guide

Command Listeners

Example.java

/1 this is a sinple class used as a paraneter to show how the
/1 framework can separate out command argunents that are object
/1 types enmbedded in XM.. For nore information on how the
/1 framework uses XM. to transport "generic" objects between the
/1l mid-tier and the client, please see the Java Docs references
/1 for the XM.TransferCbject class.
public Exanpl e extends bject {

private String name = "";

private String[] text = new String[O0];

/1 no-argument constructor. Mist be public for XM. Transfer

/1 to work.

public Exanple() {

}

public String getName() {
return nane;

}

public void setNane(String value) {
nane = val ue;

}

public String[] getSanpleText() {
String[] result = new String[text.length];
for (int i =0; i <result.length; ++i)
result[i] = text[i];
return result;

}
public void setSanpl eText(String[] values) {
if (values '= null) {
text = new String[val ues. | ength];
for (int i =0; i < values.length; ++i)
text[i] = values[i];
}
el se {
text = new String[0];
}

}
}

Essbase Administration Services Developer’'s Guide m 51

Writing Server-side Command Listeners

ExampleCommandString.java

publ i ¢ Exanpl eConmmandString extends CommandString {
/1 declare sonme static String objects in a way that we know t hese
/! objects do not need to be translated to different |ocales.
public static final String GET_EXAMPLES TEXT = " Get Exanpl es";
public static final String ADD EXAMPLE TEXT = "AddExanpl e";
public static final String DELETE EXAMPLE TEXT = "Del et eExanpl e";

/1 now we decl are the actual comrands
public static final Exanpl eCommandString GET_EXAMPLES =

new Exanpl eCommandSt ri ng(GET_EXAMPLES_TEXT) ;
public static final Exanpl eCommandString ADD _EXAVPLE =

new Exanpl eCommandSt ri ng(ADD_EXAMPLE_TEXT) ;
public static final Exanpl eCommandString DELETE_EXAMPLE =

new Exanpl eCommandSt ri ng(DELETE_EXAMPLE TEXT) ;

/1 for organizational purposes, we al so declare the paraneters for each
/1 of these commands in this file.

public static final String PARAM LOCATION = "l ocation";

public static final String PARAM EXAMPLE = "exanpl e";

public static final String PARAM NAME = "exanpl enanme";

/1 declare a ConmandArgunment object for each of these paraneters
private static final CommandArgunent ARGUVMENT LOCATI ON =
new CommandAr gunment (PARAM_LOCATI ON,
true,
String. cl ass,
nul I');
private static final ComrandArgument ARGUVMENT EXAMPLE =
new CommandAr gunent (PARAM_EXAMPLE,
true,
Exanpl e. cl ass,
nul I');
private static final ComrandArgument ARGUVENT _NAME =
new ComandAr gunent (PARAM_NAME,
true,
String. cl ass,
nul I');

/! declare an array of argunments for each command.
public static final ConmandArgument[] GET_EXAMPLES ARGS =
new CommandAr gunent [] { ARGUMENT_LOCATI ON };
public static final CommandArgunent[] ADD EXAMPLE ARGS =
new CommandAr gunent [] { ARGUVMENT_LOCATI ON,
ARGUMENT_EXAMPLE };
public static final ConmandArgument[] DELETE _EXAMPLE_ARGS =

52 m Essbase Administration Services Developer’'s Guide

Command Listeners

New CommandAr gunent [] { ARGUMENT_LOCATI ON,
ARGUMENT_NAME };

This class declares command strings and describes the arguments for three
commands that will be supported by the ExampleCommandListener class. If the
toString() method of each ExampleCommandString object declared in this source
code file were called, the results would be:

Exanpl eCommandsSt ri ng. Get Exanpl es
Exanpl eConmandsSt ri ng. AddExanpl e
Exanpl eConmandsSt ri ng. Del et eExanpl e

Every CommandDescriptor object contains a reference to an object derived from
CommandString; it is through this mechanism that the framework guarantees
every command name is unique.

ExampleDescriptor.java

public class Exanpl eDescri ptor extends ConmmandDescri ptor {
private static final String GET_EXAMPLES METHOD = "get Exanpl es";
private static final String ADD_EXAMPLE METHOD = "addExanpl e";
private static final String DELETE EXAMPLE METHOD = "del et eExanpl e";

public static final ConmandDescriptor GET_EXAMPLES =
new ComandDescr i pt or (Exanpl eCommands. GET_EXAMPLES,
GET_EXAMPLES_METHOD,
Exanpl eCommands. GET_EXAMPLES_ARGS) ;
public static final CommandDescriptor ADD EXAMPLE =
new CommandDescr i pt or (Exanpl eCommands. ADD_EXAMPLE,
ADD_EXAMPLE_METHOD,
Exanpl eCommands. ADD_EXAMPLE_ARGS) ;
public static final ConmandDescri ptor DELETE _EXAMPLE =
new CommandDescr i pt or (Exanpl eCommands. DELETE_EXAMPLE,
DELETE_EXAMPLE_METHOD,
Exanpl eConmands. DELETE_EXAMPLE_ARGS) ;

Essbase Administration Services Developer’'s Guide m 53

Writing Server-side Command Listeners

ExampleCommandListener.java

public class Exanpl eCommandLi st ener extends AppManCommandLi st ener {
/1 the nmethod cal |l ed when the Get Exanpl es comand is received.
publ i ¢ bool ean get Exanpl es(ConmandEvent theEvent,
Ser vi ceCont ext t heCont ext,
String thelLocation) {
/1 the details will be filled in later
return true;

}

/1 the nmethod call ed when the AddExanpl e command is received.
Publ i ¢ Bool ean addExanpl e(CommandEvent theEvent,
Servi ceCont ext theContext,
String thelLocation,
Exanpl e t heExanpl e) {
/1 the details will be filled in later
return true;

}

/1 the nethod call ed when the Del et eExanpl e conmand is
/1 received.
publi c bool ean del et eExanpl e(CommandEvent theEvent,
Ser vi ceCont ext t heCont ext,
String thelLocation,
String theNane) {
/1 the details will be filled in later.
return true;

}

/1 the framework calls this nethod to get the descriptors for
/1 the commands supported by this comand |istener.
publ i ¢ ConmmandDescri ptor[] get Commands() ({
return new CommandDescriptor[] {
Exanpl eDescri pt or. GET_EXAMPLES,
Exanpl eDescri pt or. ADD_EXAMPLE,
Exanpl eDescri pt or. DELETE_EXAMPLE };

The preceding example shows the skeleton of a command listener:
1. Extend the correct class
2. Add the command handling methods

3. Override the getCommands() method to return the descriptors for those
commands.

54 m Essbase Administration Services Developer’'s Guide

Command Handling Methods

Thedifficulty isinthe details of the command handling methods, whichis covered
in the next section.

Command Handling Methods

This section includes the following topics:

o “Method Signatures’ on page 55

o “Grabbing Command Arguments’ on page 56

« “Sending Results Back to the Client” on page 57

o “Storing Temporary Data Using the Framework” on page 58

Method Signatures

If you were looking carefully at the example code in the preceding section, you
might be saying something along the lines of, “Wait aminute, in
GET_EXAMPLES_ARGS, | defined one argument, the location argument. What
are these other two arguments, theEvent and theContext? Where did they come
from and what do | do with them?’ The answer partly liesin the older version of
the Administration Servicesframework. Thefirst version of the framework did not
do all the type checking and parameter parsing that the new level does, so all
command handling methods had the following signature:

publ i c bool ean handl er Met hod(CormandEvent theEvent) { }

It was up to each method to then extract and handle the arguments along the lines
of:

String theLocation = theEvent. get RawPar anet er ("Locati on");
if (theLocation == null) {

/1 oops - this shouldn't happen!

return fal se;

}
Or, if the parameter was supposed to be a numeric value:

int theNunber = O;
String theVal ue = theEvent. get RawPar anet er (" Val ue") ;
if (thevalue == null) {
/1 oops - this shouldn't happen!
return fal se;
}
try {

Essbase Administration Services Developer’'s Guide m 55

Writing Server-side Command Listeners

56 m

t heNunber = Integer. parsel nt(theVal ue)

}
catch (Exception ex) {

return fal se;

}

In most cases, theEvent object was used mostly to get the parameters for the
command. When the framework was upgraded, theEvent object wasretained asthe
first argument to the command handler methods, even though it is rarely used.

The second argument, theContext, is actually afield in theEvent object; if you
want to return results to the client, you must do so through the ServiceContext
reference. Since every command handling method at some time would call
theEvent.getServiceContext(), we decided to add it as a second parameter to every
command handling method.

Asaresult of these decisions, every command handling method has the following
signature:

publ i c bool ean handl er Met hod(CommandEvent theEvent,
Ser vi ceCont ext t heCont ext,
Cl assO val ueO,

Cl assN, Val ueN);

Where the ClassX parameters are described by the CommandDescriptor for the
method.

In addition, even though the method is declared boolean, the framework never
looks at the return value from a command handler method. Return values are
handled within each method by a mechanism explained later in this document.

Grabbing Command Arguments

In most cases, the command arguments will have been extracted and parsed by the
framework; however, special circumstances can arise whereby extraargumentsare
sent with each command that, for whatever reason, the programmer doesn't want

to include in the CommandDescriptor object.

An example is the EssbaseCommandListener; the

EsshaseCommandL istener.handleEventPrep() method calls a validateSession()
method that looks for the standard parameters “ servername”, “appname”,
“dbname”, then attempts to validate an EssbaseSession against those parameters.
If thisfails, then the handleEventPrep() method returns a standard error status to

the client. In most cases, any EssbhaseCommandL istener will need these arguments

Essbase Administration Services Developer’'s Guide

Command Handling Methods

when handling commands. However, there are cases (such as in the outline editor)
when those arguments aren't used. If, during implementation of a command
listener method, a similar situation arises, the parameters can be retrieved by the
following cal:

String aVal ue = t heEvent . get RawPar anet er (" SonePar anet er Nane") ;

This should be arare necessity and should raise caution alarmsif an implementer
finds themselves needing to do this.

Sending Results Back to the Client
There are two types of resultsto return to aclient:
1. Status of the command
2. Datathat the client needs to display

The CommandStatus classis used to return the success/failure of the command to
the client. The CommandStatus class only understands two types of status:
SUCCESS and FAILURE. Theoriginal intent of this classwasto indicate whether
acommand was routed successfully by the framework. However, thiswasn’t made
explicit and, as aresult, many existing command handling methods use this
SUCCESS/FAILURE to indicate the status of their specific processing.

It would be a good practice to always extend this class to enable returning more
specific error codes than just SUCCESS/FAILURE.

So, let’sreturn to our example and fill in one of the command handling methodsto
return data and a SUCCESSFUL status to the client.

publ i ¢ bool ean get Exanpl es(CommandEvent theEvent,
Ser vi ceCont ext t heCont ext,
String thelLocation) {
//object used to transmit results back to the client
XM.Tr ansf er Obj ect xt o=new XM.Tr ansf er Gbj ect () ;
Exanpl e [] theResul t s=sonmeMet hod(t heLocati on);
if (theResults == null) {
//this is sinplistic, but it shows what we need
xt 0. set ConmandsSt at us(CommandSt at us. SI MPLE_FAI LURE) ;
}
el se {
if (theResults.length = 0)
xt 0. addAl | (t heResul ts);
xt 0. set ConmandSt at us(ConmandSt at us. SI MPLE_SUCCESS) ;
}

this.storeService. set (t heCont ext,

Essbase Administration Services Developer’'s Guide m 57

Writing Server-side Command Listeners

58 m

Def aul t ScopeType. REQUEST _SCOPE,
AppManSer vl et . RESULT,
xto. export Xm ());

return true;

}

The XMLTransferObject is used to transmit the data and the command status back
to the client; we use the defined CommandStatus.SIMPLE_FAILURE or
CommandStatus.SIMPLE_SUCCESS objectsto returnthe correct status. If results
wereavailable, they werethen added to the XM LTransferObject using the addAll()
method. The resultswere then placed in the command listener's store service using
the REQUEST_SCOPE and using the key AppManServliet. RESULT. After this
method returnsto the framework, the framework will take any datastored using the
combination DefaultScopeType.REQUEST _SCOPE and

AppManServlet. RESULT and send that data back to the client asthe results of the
command.

Storing Temporary Data Using the Framework

In the preceding section, we gave an example of how to place datain the
framework’s storage so that the data would be returned to the client as the results
of acommand. The storeServicefield in each command manager can storedatafor
additional purposes. There are six defined DefaultScopeTypes:

1. CONFIG_SCOPE

Thisisused by the framework asitisinitializing. It should never be used by
command handler methods.

2. BUILDER_SCOPE

Thisisused by the framework asit isinitiaizing. It should never be used by
command handler methods.

3. APP_SCOPE

Using this scope type will cause the datato be stored for the life of the servlet.
This should be very, very rarely used by command listeners.

4. SESSION_SCOPE

Using this scope type will cause the data to be stored until the current
client/server session is no longer valid. At that point, the framework will
remove all data stored in this scope. If storing information in this scope that
needs to be recovered during processing of alater command.

Essbase Administration Services Developer’'s Guide

Packaging the Code

5. USER_SCOPE

Using this scope makes the data available to any client connected using the
same EA S user id. When all sessions associated with this user are no longer
valid, the framework will remove data stored in this scope. In the current
implementation, thisis never used and it probably will never be used very
often.

6. REQUEST SCOPE

Using this scope makes the data available until the framework has bundled the
results of the command and returned them to the client. The framework then
removes all data stored in this scope associated with the request that just
finished.

Storing dataisdonethrough acommand listener’s store service, asin the preceding
example. The StoreService interface has several get(), set(), and remove()
methods. However, there is only one of each of these methods that a command
listener (or other plug-in code) should call; the other methods were put in place for
use by some of the framework code itself. The three method signatures are;

public Object get(ServiceContext context, ScopeType type, Object key);
public Object set(ServiceContext context, ScopeType type,

hj ect key, bject value);
public Object renove(ServiceContext context, ScopeType type, Cbject key);

For more information about these methods, see the Essbase Administration
Services Java APl Reference.

Packaging the Code

When packaging the code into jar files for aplug-in, follow these guidelines:
« Separate the code into three distinct pieces:

— Codethat isonly used on the client

— Codethat isonly used on the server

— Codethat isused in both places

« Setupthebuildtoolsto compile and package these different pieces separately
in order to prevent crossover compilation. For example, the framework is
packaged into the following jar files:

framework _client.jar
framewor k_common. j ar

Essbase Administration Services Developer’'s Guide m 59

Writing Server-side Command Listeners

framewor k_server.jar
« Package the command listener classesin the server jar

« Packagethe command descriptor classesin the server jar. Thisis because they
contain references to the method names in the command listeners and this
should not be publicly available on the client.

« Packagethe CommandString derived classesin the common jar file. Whilethe
framework does not currently take advantage of this on the client, it will be
upgraded to do the packaging of parameters and commands for client
applications.

« Place any classes extending CommandStatus in the common jar file.
« Placeany specialized classes (such asExanpl e. j ava) inthecommonjar file.

The server jar file must contain amanifest file. Each command listener must have
an entry in this manifest file that looks like the following:

Name: Exanpl eCommandLi st ener. cl ass
EAS-Framework-CommandListener: True

If, asislikely, the command listener has a package name that must be prepended
to the name in the example above, like this:

Name: contf essbase/ eas/ exanpl es/ server/ Exanpl eCormandLi st ener. cl ass

EAS-Framework-CommandListener: True

Note: Even though this is a class name, use slashes (/") instead of dots (“") to
separate the package names.

Loading the Code

60 m

After all of this, to get theframework to recognize the command listeners and route
the commands to the correct place, the jar file containing the command listeners
and any other jar filesthat this code depends on must be placed into
Administration Server’sl i b directory. The exact location is dependent upon each
particular installation. However, in the default installation using the Tomcat web
server, the location will be:

EAS_HOVE/ server/tontat/ webapps/ eas/ WVEB-I NF/ | i b

Essbase Administration Services Developer’'s Guide

Utility Classes

After putting the jar filesin thislocation, you must stop and restart Administration
Server. To determine if the new command listeners have been installed, set the
Administration Services logging level to between 5000 and 9999.

Utility Classes

There are many utility classes provided by the Administration Services
framework. In particular, there are utility classesin some of the following

packages:

com essbhase.
com esshase.
com essbhase.
com essbhase.
com essbhaes.
com esshase.

eas.
eas.

eas

f ramewor k. def s
f ramewor k. server

.utils
eas.
eas.
eas.

ui
i 18n
net

The Essbase Administration Services Java API Reference makesit easy to
navigate through these classes and learn what is available.

Essbase Administration Services Developer’'s Guide m 61

Writing Server-side Command Listeners

62 m Essbase Administration Services Developer’s Guide

ABCDEFGHIJKLMNOPQRSTUVWXYZ

A ApplyButton control, 40
AppManCommandListener class, 46 to 47
ARBORPATH environment variable, described, x
architecture, 14

AbstractCommandL.istener class, 46 to 47
AbstractCommandL i stener.getCommands method,

47
accessing
client plug-ins, 20 B
ActivateButton control, 40 BackButton control, 40
adapter field, 36 Boolean hidden field, 50
addAll method, 58 boolean required field, 49
adding BooleanComboBox control, 40
abranch to the Enterprise Tree, 24 BUILDER SCOPE, 58
children to tree nodes, 26 ButtonPanel control, 40
console tree menu items, 33 buttons
context menu items to tree nodes, 27 standard, 40
internal frame menu items, 33 buttons field, 36
items to menus, 31
items to the File > New menu, 29
static menu items, 31 C
Administration Server cancelBtn field, 36
described, 13 Cancel Button control, 40
Administration Services children
described, 13 adding to tree nodes, 26
Java packages, 16 permitting plug-ins to add to tree nodes, 27
logging level, 61 Class ClassTypefield, 50
Administration Services Console class hierarchy
adding abranch to the tree, 24 for command listeners, 47
adding functiondity, 23 class packages
class packages, 20 Administration Services Console, 20
described, 13 client
locating plug-ins, 22 adding functionality, 23
retrieving the CSS token, 41 class packages, 20
services, 41 locating plug-ins, 22
writing plug-insfor, 19 sending results to, 57
APP_SCOPE, 58 writing plug-insfor, 19

Essbase Administration Services Developer’s Guide m 63

Index, D

ABCDEFGHIJKLMNOPQRSTUVWXYZ

client plug-ins

access point, 20
client tier, 13
CloseButton control, 40
code

compiling, 59

loading, 60

packaging, 59
code samples

about, 17
com.essbase.eas.client.intf, 20
com.esshase.eas.client.manager, 20
com.esshase.eas.client.plugins, 20
com.esshase.eas.framework.client.defs.command,

21

com.essbase.eas.framework.client.defs.login, 21
com.esshase.eas.framework.client.ui.filedlgs, 21
com.esshase.eas.framework.defs, 22
com.esshase.eas.i18n, 22
com.esshase.eas.i18n package, 43
com.essbase.eas.ui, 21
com.essbase.eas.ui.ctable, 21
com.essbase.eas.ui.ctree, 21
com.esshase.eas.ui.editor, 21
com.esshase.eas.ui.email, 21
com.esshase.eas.ui.font, 21
com.esshase.eas.ui.print, 21
com.esshase.eas.ui.ptable, 21
com.essbase.eas.ui.ptree, 22
com.esshase.eas.ui.tree, 22
com.esshase.eas.utils, 22
com.essbase.eas.utils.print, 22
com.MyPlugin.MiscellaneousHandler, 23
command arguments

grabbing, 56
command handling methods

described, 55
command listener

class hierarchy, 47
command listeners

defined, 46

writing, 45
CommandArgument class, 49
CommandArgument object, 50
CommandDescriptor class, 50
CommandDescriptor objects, 48

64 m

commands, registering, 48
CommandStatus class, 57
CommandString class, 49
CONFIG_SCOFPE, 58
Configure Plugin Components dialog box, 22
consol e tree menu items, adding, 33
constructors for the StandardDialog class, 36
consulting services, xi
context menu items

adding to tree nodes, 27
controls

setting focus order, 39

standard, 40
CSStoken

retrieving from the Console, 41

D

data
storing temporary using the framework, 58
DefaultScopeTypes, 58
dialog results, 39
Dialog.show method, 39
DialogResult class, 39
dialogResult field, 36
DialogUtils.setFocusOrder method, 39
dispose method, 40
documents
feedback, xii
ordering print documents, ix
documents, accessing
Hyperion Download Center, ix
Hyperion Solutions Web site, viii
DoneButton control, 40

E

eas client.jar file, 20
eas_common.jar file, 20
EASPATH environment variable, described, x
education services, Xi
e-mail
support for sending, 42
Enterprise Tree
adding abranch, 24
essbase_client.jar file, 20

Essbase Administration Services Developer’'s Guide

Index, L

ABCDEFGHIJKLMNOPQRSTUVWXYZ

esshase_common.jar file, 20
EssbaseCommandL istener, 56
EssbaseCommandListener class, 46 to 47
EssbaseCommandL istener.handleEventPrepmethod,
47

example classes, 16
example code

about, 17
example.java sample code, 51
ExampleCommandListener class, 53
exampleCommandL.istener.java sample code, 54
exampleCommandString.java sample code, 52
exampleDescriptor.java sample code, 53
extending Administration Services Console, 19

F

File > New menu

adding itemsto, 29
FinishButton control, 40
focus order of controls, setting, 39
framework

using to store temporary data, 58
framework_client.jar file, 20, 59
framework_common.jar file, 20, 59
framework_server jar file, 60
functionality

adding to Administration Services Console, 23

G

get method, 59

getClassType method, 50
getCommands method, 48, 54
getContextM enultemsFor method, 27
getDefaultV alue method, 50
getName method, 49
getObjectsToEmail method, 42
getTreeNodeChildren method, 26
grabbing command arguments, 56

H

handleCancel method, 39 to 40
handleEvenPost method, 48
handleEvent method, 48

handl eEventException method, 48

handleEventPrep method, 48, 56

handleHelp method, 39

handleOk method, 30, 39 to 40

handleWindowClosed method, 40

handleWindowClosing method, 40

handleWindowOpened method, 40

helpBtn field, 36

HelpButton control, 40

Hyperion Consulting Services, xi

Hyperion Download Center
accessing documents, ix

Hyperion Education Services, xi

Hyperion product information, xi

Hyperion Solutions Web Site
accessing documents, viii

Hyperion support, xi

Hyperion Technical Support, xii

internal frame menu items, 33
Internal Frame class, 42
internationalization utilities, 43
isEmailable method, 42
isHidden method, 50
isRequired method, 49

J

Java Introspection, 15
Java packages
for Administration Services, 16
Java plug-in components
described, 14
requirements for using, 15
Javaplug-ins
packaging, 43
Java Swing, 15

L

lib directory, 60
ListMoverPanel control, 41
loading code, 60
localization utilities, 43

Essbase Administration Services Developer’'s Guide

Index, M

ABCDEFGHIJKLMNOPQRSTUVWXYZ

logging level, 61

M

manifest file, 60
menu items
adding, 31
adding internal frame, 33
adding to tree nodes, 27
consoletreg, 33
menus
adding itemsto, 31
method signatures, 55
methods
command handling, 55
middletier, 13
MiscellaneousHandler.class, 22

N

name parameter, 46
NextButton control, 41
nodes
adding children, 26
adding context menu itemsto, 27
permitting plug-ins to add children to, 27
NumericTextField control, 41

O

Object defaultValuefield, 50
okBtn field, 36

OkButton control, 41

op parameter, 46

P
packaging plug-ins, 43
packaging the code, 59
password parameter, 46

permitting plug-insto add children to tree nodes, 27

plug-ins
access point for client, 20
how the client locates, 22
packaging, 43
writing client, 19

66 ®

populatePanel method, 30
populateTree method, 24
public classes
Administration Services Console, 20

R

ReadOnlyTextFrame control, 41
RefreshButton control, 41
registering commands, 48
remove method, 59
REQUEST_SCOPE, 59
requirements
for using Java plug-in components, 15
ResetButton control, 41
resources field, 36

S

sample code
about, 17
examplejava, 51
exampleCommandListener.java, 54
exampleCommandString.java, 52
exampleDescriptor.java, 53
Save As, handling, 34
SaveAsRequestor interface, 34
saveDiaogBounds field, 36
sending e-mail, 42
sending results back to the client, 57
server-side command listeners
writing, 45
services
for Administration Services Console, 41
SESSION_SCOPE, 58
set method, 59
setting
focus order of controls, 39
SimpleWizardPanel control, 41
standard buttons and controls, 40
standard controls, 35
StandardDialog class, 35
methods that can be overriden, 40
StandardDialog class constructors, 36
StandardDialog class name, 36
StandardDial og default action, 38

Essbase Administration Services Developer’'s Guide

Index, W

ABCDEFGHIJKLMNOPQRSTUVWXYZ

StandardDialog initialization, 37
StandardDialog results, 39
static menu items, adding, 31
StoreService interface, 59

String namefield, 49

T

technical support, xii
temporary data
storing using the framework, 58
toString method, 49, 53
tree nodes
adding children, 26
adding context menu itemsto, 27
permitting plug-ins to add children to, 27

U

USER_SCOPE, 59
utilities for localization, 43
utility classes, 61

V

validateSession method, 56
VerticalPairPanel control, 41

wW

WizardPanel control, 41
writing server-side command listeners, 45

Essbase Administration Services Developer’'s Guide

Index, W

ABCDEFGHIJKLMNOPQRSTUVWXYZ

68 m Essbase Administration Services Developer’'s Guide

	Contents
	Preface
	Introduction
	About Essbase Administration Services
	About Java Plug-in Components
	Requirements for Using Administration Services Java Plug-ins
	Prerequisite Knowledge
	Framework Concepts
	Packaged APIs for Administration Services
	Administration Services Java Packages
	Example Classes

	About the Sample Code in this Guide

	Writing Client Plug-ins
	Preliminaries
	Access Point for Plug-ins
	Class Packages
	How the Client Locates Plug-ins
	Adding Functionality
	Semantic Rules
	Adding a Branch to the Enterprise Tree
	Adding Children to Other Tree Nodes
	Permitting Plug-ins To Add Children To Your Tree Nodes
	Adding Context Menu Items To Tree Nodes
	Handling the File > New Menu Item
	Adding Items To Menus
	Static Menu Items
	Internal Frame Menu Items
	Console Tree Menu Items

	Handling Save As

	Standard Controls
	The StandardDialog Class
	Name of Standard Dialog Class
	Dialog Creation
	Dialog Initialization
	Dialog Default Action
	Dialog Keyboard Handling, Focus Order, Action Maps, and So On
	Dialog Results
	Methods to Override

	Standard Buttons and Other Controls

	Administration Services Console Services
	Retrieving the CSS Token from the Console
	Sending E-mail

	Internationalization
	Packaging the Plug-in

	Writing Server-side Command Listeners
	Preliminaries
	Command Listeners
	Class Hierarchy
	Which Class To Extend
	Which Methods to Override
	Registering Commands
	CommandString Class
	CommandArgument Class
	CommandDescriptor Class
	Examples

	Command Handling Methods
	Method Signatures
	Grabbing Command Arguments
	Sending Results Back to the Client
	Storing Temporary Data Using the Framework

	Packaging the Code
	Loading the Code
	Utility Classes

	Index

