
DB2 Server for VSE &  VM

Performance Tuning Handbook 

 Version 7 Release 5  

GC09-2987-02  

IBM





DB2 Server for VSE &  VM

Performance Tuning Handbook 

 Version 7 Release 5  

GC09-2987-02  

IBM



Before using this  information  and the product it supports, be sure to  read the  general information under “Notices”  on page 219. 

This document contains proprietary  information  of IBM. It is provided under a license  agreement and  is protected 

by copyright  law. The information  contained in this publication  does not include any  product  warranties, and any 

statements provided  in  this manual  should not be  interpreted  as  such.  

Order publications through your IBM  representative  or  the  IBM branch office serving  your locality or  by calling 

1-800-879-2755 in  the  United States or 1-800-IBM-4YOU in Canada.  

When you  send information  to  IBM, you grant IBM a nonexclusive right to  use  or distribute  the  information in  any  

way it believes appropriate without  incurring any obligation  to  you.  

© Copyright International Business Machines Corporation 1993,  2007.  All rights reserved. 

US Government  Users  Restricted Rights  – Use,  duplication or disclosure restricted  by GSA ADP Schedule  Contract 

with IBM Corp.

 



Contents 

About This Manual  . . . .  . . . . . vii  

Who Should Use This Manual  . . . . . . . . vii  

Organization   . . . . . . . . . . . . . . vii 

Prerequisite Reading  . . . . . . . . . . . viii 

Syntax Notation  Conventions   . . . . . . . . viii 

SQL Reserved  Words   . . . . . . . . . . . xii 

Conventions Used  for  Highlighting Examples   . . . xii  

Summary of Changes   .  . . . . . . . xv 

Summary of Changes for DB2  Version 7 Release 5 xv  

Enhancements, New Functions, and  New  

Capabilities  . . . . . . . . . . . . . xv 

Chapter 1.  Improving  Performance   . .  . 1  

Elements of  Performance  . . . . . . . . . . 1 

Tuning  Guidelines   . . . . . . . . . . . 1  

Performance  Improvement  Process  . . . . . . 2 

How  Much Can  a System  be  Tuned?  . . . . . 3 

Workload  . . . . . . . . . . . . . . . 3 

Performance Indicators   . . . . . . . . . . . 3 

Establishing Performance Objectives  . . . . . . 4  

Response Time . . . . . . . . . . . . . 4  

Throughput  . . . . . . . . . . . . . . 5  

Availability  . . . . . . . . . . . . . . 5 

A Less Formal Approach  . . . . . . . . . 5  

Monitoring Performance  . . . . . . . . . . 5 

Creating a Monitoring Plan  . . . . . . . . 6  

Monitoring Interval  . . . . . . . . . . . 6  

Cost  of  Monitoring  . . . . . . . . . . . 6  

Measurements  . . . . . . . . . . . . . 6  

Tools  . . . . . . . . . . . . . . . . 7 

Factors  Affecting Performance  . . . . . . . . 9  

Resources  . . . . . . . . . . . . . . 9  

Overhead   . . . . . . . . . . . . . . 11  

Choosing Between Tuning  Trade-offs  . . . . . . 12 

Chapter 2.  Measuring  Performance   . . 13 

Understanding Performance Measurements . . . . 13 

Relative Measurements  . . . . . . . . . 13 

Sampling Interval  . . . . . . . . . . . 14 

Operating System  Measurements  . . . . . . . 14 

Processor  (CPU) Load  . . . . . . . . . . 14 

Real and Virtual Storage Load   . . . . . . . 14 

System Paging  DASD Load   . . . . . . . . 14 

Machine  or  Partition DASD  I/O  Load  . . . . 15 

Individual Device Utilization  . . . . . . . 15 

Translating Performance Measurements to  

Indicators  . . . . . . . . . . . . . . 15 

CICS Monitoring (CICSPARS  for  VSE)  . . . . 17 

DB2 Server for VSE &  VM Tools  . . . . . . . 19 

Physical Data Locations  . . . . . . . . . 19 

Initialization Parameters  . . . . . . . . . 20 

CIRD Transaction (CICS)   . . . . . . . . . 21 

COUNTER Operator Command  . . . . . . 22 

SHOW Commands  . . . . . . . . . . . 25 

Database catalog  . . . . . . . . . . . . 38 

Chapter 3.  Managing  Storage and 

Configuring the  Operating System  .  . . 43  

Real and Virtual Storage  . . . . . . . . . . 43  

Virtual Addressing  . . . . . . . . . . . 43  

Address Space  Size . . . . . . . . . . . 47  

DASD Storage  . . . . . . . . . . . . . 58 

In VSE  . . . . . . . . . . . . . . . 58  

In VM  . . . . . . . . . . . . . . . 58 

Mapping of  Dbspaces  to DASD . . . . . . . 59  

Logical  To Physical Page  Relationships  . . . . 59 

Storage Pools . . . . . . . . . . . . . 59  

Managing Storage Pool  Space   . . . . . . . 59 

Data Clustering   . . . . . . . . . . . . 66  

Reorganizing Data  . . . . . . . . . . . 70  

Index Fragmentation   . . . . . . . . . . 73 

Invalid Indexes  . . . . . . . . . . . . 74 

DASD Balancing . . . . . . . . . . . . . 75 

Evenly Distributing  Workload across  Physical 

Volumes   . . . . . . . . . . . . . . 75  

VM Specifics  . . . . . . . . . . . . . . 78 

Fair Share  Scheduling  . . . . . . . . . . 78 

VSE Specifics . . . . . . . . . . . . . . 79 

Dispatching Priority   . . . . . . . . . . 79  

Fast CCW Translation  . . . . . . . . . . 79  

Virtual Addressability Extension (VAE)  . . . . 79 

Compile  Partition  Size . . . . . . . . . . 80 

CICS Specifics  . . . . . . . . . . . . . 80 

AMXT/MXT  . . . . . . . . . . . . . 80  

ISQL  . . . . . . . . . . . . . . . 80 

Temporary  storage  . . . . . . . . . . . 81  

Guest Sharing with VSE under VM  . . . . . . 81 

Distributed Configuration Considerations  . . . . 81  

DB2  Server  for non-DRDA Requestors  can  access: 81 

DB2  Server  for VM non-DRDA Servers can be  

accessed  by:  . . . . . . . . . . . . . 81 

DB2  Server  for VM DRDA  Requestors  can  access: 82 

DB2  Server  for VM DRDA  Servers  can  be  

accessed  by:  . . . . . . . . . . . . . 82 

DB2  Server  for VSE non-DRDA Requestors can  

access:  . . . . . . . . . . . . . . . 82 

DB2  Server  for VSE non-DRDA Servers can  be 

accessed  by:  . . . . . . . . . . . . . 82 

DB2  Server  for VSE DRDA  Online (CICS)  

Requestors  can access: . . . . . . . . . . 82  

DB2  Server  for VSE DRDA  Batch Requestors  can 

access:  . . . . . . . . . . . . . . . 83 

DB2  Server  for VSE DRDA  Servers can  be  

accessed  by:  . . . . . . . . . . . . . 83 

Performance Implications . . . . . . . . . 83 

Applications Planning  . . . . . . . . . . 83 

Chapter 4.  Configuring the  Application  

Server and Requester  . .  . . . . .  . 85  

 

© Copyright IBM  Corp. 1993, 2007  iii

|

||



Database Manager Storage  . . . . . . . . . 85  

Database I/O  . . . . . . . . . . . . . 85 

Package Cache   . . . . . . . . . . . . 88 

Concurrency  . . . . . . . . . . . . . . 88 

Agents   . . . . . . . . . . . . . . . 88  

CICS  . . . . . . . . . . . . . . . 90 

Pseudo-Agents  . . . . . . . . . . . . 91 

Dispatching Agents . . . . . . . . . . . 92 

Startup Mode . . . . . . . . . . . . . 93 

Locking  . . . . . . . . . . . . . . . 93 

Locking Contention . . . . . . . . . . . 94  

Lock Escalation  . . . . . . . . . . . . 99 

Deadlock  . . . . . . . . . . . . . . 101  

Recovery  . . . . . . . . . . . . . . . 102 

Logical  Units of  Work  . . . . . . . . . 102  

Checkpoints . . . . . . . . . . . . . 103  

Logging  and Archiving  . . . . . . . . . 105 

Communications   . . . . . . . . . . . . 108 

DRDA Performance Considerations (VM)   . . . 108  

Fetch and Insert  Blocking  . . . . . . . . 110 

Synchronous  Communications (VM)  . . . . . 112  

Considerations  for  ISQL and Adhoc Queries   . . . 112  

AUTOCOMMIT  . . . . . . . . . . . 113  

Isolation Levels  . . . . . . . . . . . . 113 

Temporary  Tables  . . . . . . . . . . . 113  

Views  . . . . . . . . . . . . . . . 113 

DBS Utility  Considerations  . . . . . . . . . 114 

Automatic Statistics Collection . . . . . . . 114 

Suppressing  Automatic Statistics Collection   . . 114  

TAPE Blocking   . . . . . . . . . . . . 114  

Lock Escalation . . . . . . . . . . . . 114 

UNLOAD  and  RELOAD PACKAGE  

Considerations  . . . . . . . . . . . . 115 

Chapter 5.  Improving Data  Access 

Performance  .  . . . . .  . . . . .  . 117  

Access Paths  and  Indexes  . . . . . . . . . 117 

Dbspace Scans  . . . . . . . . . . . . 118 

Index Scans  . . . . . . . . . . . . . 118 

Index-Only Access Scans  . . . . . . . . 119 

Unique  Index with  Key Matching Predicate(s) 120 

Indexes for  Sorting  . . . . . . . . . . 120  

Recommendations for  Indexes . . . . . . . 120 

Disadvantages of  Indexes  . . . . . . . . 121 

Placing Tables into  Dbspaces  . . . . . . . . 121  

Organizing Referential Structures . . . . . . . 121 

Predicate Processing   . . . . . . . . . . . 122 

Column Attributes . . . . . . . . . . . 123  

Key-matching Predicates  . . . . . . . . 123 

Sargable and Residual Predicates . . . . . . 125  

Join Predicates  . . . . . . . . . . . . 126 

Search Conditions  and  Their Processing  

Characteristics   . . . . . . . . . . . . 126  

Filter Factors  . . . . . . . . . . . . 130 

Examples  of  Predicate Processing  . . . . . . 131  

Impact of  CCSIDs on  Sargability   . . . . . . 131  

Tuning Queries  with  Several Tables   . . . . . . 132  

Methods of  Joining Two or More  Tables   . . . 133 

Nested  Loop  Join (Type 1)   . . . . . . . . 133  

Merge Scan  Join  (Type 2)   . . . . . . . . 134 

Choosing an Access  Method  . . . . . . . 135 

Multiple Joins  . . . . . . . . . . . . 136 

Keeping Database Statistics Current   . . . . . . 137 

Using Catalog Statistics  . . . . . . . . . . 139 

Modelling your Production  System   . . . . . 139 

Determining the  Cost  of  Access  Methods   . . . . 140 

Processing Cost . . . . . . . . . . . . 140 

I/O Cost  . . . . . . . . . . . . . . 140 

Using Explanation Tables  to  Evaluate Performance 141 

Explain Processing   . . . . . . . . . . 141 

Estimating Sizes of  Responses  . . . . . . . 153 

Using EXPLAIN for Database  Design  . . . . 154 

Modifying  Table Designs to Enhance Performance 154 

Chapter  6. Data  Spaces Support for  

VM/ESA . .  . . . . .  . . . . .  . . 157 

Improving DB2 Server for  VM Performance  . . . 157 

Understanding VM Data Spaces  . . . . . . 157 

Understanding how VMDSS uses  Data Spaces 159 

Storage Pools   . . . . . . . . . . . . 163 

Internal Dbspaces   . . . . . . . . . . . 163 

Directory . . . . . . . . . . . . . . 164 

Managing Main and Expanded Storage . . . . 166 

Striping  . . . . . . . . . . . . . . 167 

Performance Counters   . . . . . . . . . 168 

Planning Structure  by Storage Pool   . . . . . 169 

Logical and  Physical  Mapping . . . . . . . 170 

VSE Guest  Sharing  . . . . . . . . . . 171 

Enabling Requirements  . . . . . . . . . . 171 

Operating System  Overview  . . . . . . . 171 

Virtual Machine  Overview  . . . . . . . . 171 

Software Requirements   . . . . . . . . . 172 

Virtual Storage Requirements  . . . . . . . 172 

Real Storage Requirements  . . . . . . . . 172 

DASD Storage Requirements  . . . . . . . 173 

Hardware Requirements . . . . . . . . . 175 

Before Enabling  . . . . . . . . . . . . 175 

Program Directory for DB2  Server  for VM . . . 175 

Preventive Service Planning  . . . . . . . 175 

Corrective Service  . . . . . . . . . . . 175 

Enabling Options  . . . . . . . . . . . 175 

Enabling  . . . . . . . . . . . . . . . 176 

Pre-Enable Checklist   . . . . . . . . . . 176 

Enable Checklist   . . . . . . . . . . . 176 

Backing Up, Configuring and  Enabling Your 

Database Machine . . . . . . . . . . . 177 

Disabling VMDSS  . . . . . . . . . . . 188 

Operating  . . . . . . . . . . . . . . 188 

Storage Pool  Specifications  . . . . . . . . 188 

Changing Storage Pool  Specifications at  Startup 189 

Checking Your Current Storage Pool 

Specifications  . . . . . . . . . . . . 191 

Changing Storage Pool  Specifications 

Dynamically . . . . . . . . . . . . . 191 

Using Data Spaces with  Internal Dbspaces   . . . 192 

Unmapped Internal  Dbspaces   . . . . . . . 192 

Mapped Internal  Dbspaces  . . . . . . . . 192 

Using Data Spaces with  the Directory  . . . . . 193 

Reblocking the Database  Directory  . . . . . 193 

Using Data Spaces Support with  a New  

Database  . . . . . . . . . . . . . . 195 

 

iv Performance Tuning Handbook  



Chapter 7.  Tuning  Performance  for  

Data Spaces Support  . . . . .  . . . 197 

Deciding When to  Use  Data Spaces  . . . . . . 197 

Advantages  . . . . . . . . . . . . . 197 

Storage Pool  . . . . . . . . . . . . . 199 

Internal Dbspaces   . . . . . . . . . . . 199 

Directory . . . . . . . . . . . . . . 200 

Managing Your Working Storage Size   . . . . . 200 

Choosing the  Target Working Storage Size  . . . 200 

Choosing Storage Residence  Priorities  . . . . 201 

Unmapped  Internal  Dbspaces  . . . . . . . 202 

Managing Checkpoints  . . . . . . . . . . 202 

Choosing the  Checkpoint Interval  . . . . . 203  

Choosing the  Save Interval  . . . . . . . . 203 

Using Striping   . . . . . . . . . . . . . 204 

With One Dbextent Per Pool   . . . . . . . 204 

One Dbextent Per  Device  . . . . . . . . 204 

Dbextent Size   . . . . . . . . . . . . 204 

Number of  Dbextents  . . . . . . . . . . 205 

Using Striping with Existing  Data  . . . . . 205  

Choosing Logical or  Physical  Mapping . . . . . 205 

Real Storage Requirements for  Data  Spaces   . . . 205 

Appendix A.  Storage  Pool 

Specification File Format   .  . . . . . 207 

File Format  . . . . . . . . . . . . . . 207  

Data Line Syntax  . . . . . . . . . . . . 207 

Ordering Data Lines  . . . . . . . . . . . 208  

Specification File Example  . . . . . . . . . 208 

Appendix B.  Determining Number of 

Data Spaces  . . .  . . . . .  . . . . 211 

Maximum Number  of  Data  Spaces  . . . . . . 211 

Logical  Mapping  . . . . . . . . . . . 211 

Physical  Mapping  . . . . . . . . . . . 212  

Maximum Total Size  . . . . . . . . . . . 214  

Displaying Current Data Spaces  . . . . . . . 214 

Appendix C.  Why  is the  TARGETWS 

Value Frequently  Exceeded?  . . .  . . 215 

VMDSS Usage  Scenario   . . . . . . . . . . 215  

Notices  .  . . . . .  . . . . .  . . . 219  

Trademarks  . . . . . . . . . . . . . . 221  

Bibliography . . . .  . . . . .  . . . 223  

Index  .  . . . . .  . . . . . . . .  . 227 

Contacting IBM  . . .  . . . . . . . 239 

Product information  . . . . . . . . . . . 239

 

Contents v



vi Performance Tuning Handbook  



About This  Manual  

Who Should Use  This  Manual  

This manual will  help you  analyze and tune the  performance  of  the DB2® VSE & 

VM product in  an IBM VM system or in VSE. It is  designed for the person  who 

designs or customizes  any of  the following: 

v    Operating  systems that support the DB2  Server for VSE & VM product  

v    DB2  Server for VSE & VM application servers 

v    DB2  Server for VSE & VM databases 

v    DB2  Server for VSE & VM application programs

Organization 

Before you can make  effective judgements about  how to tune the  DB2 Server  for 

VSE & VM product, you  need  to understand what  happens inside each part of the 

product. This manual will help you  understand:  

v    How each part of the DB2  Server for VSE & VM product  works 

v    How each of those parts affects performance 

v    How to tune the performance of each part 

v    How to monitor how it is  performing.

This manual does  not provide  diagnostic information. (For the symptoms  of  

common performance problems and  potential cures,  refer  to the DB2 Server  for  VSE 

& VM  Diagnosis  Guide  and Reference manual.) 

The chapters  of  this manual are arranged as  follows:  

Summary of Changes: Lists the  changes made to the  product  since Version  6 

Release 1. 

Chapter 1,  “Improving  Performance”: This is an introduction  to the subjects of 

performance  design and  tuning.  It  discusses the basic process including  the 

development of  goals,  strategies and plans.  

Chapter 2,  “Measuring  Performance”: This is  an overview of the various  tools 

available  to measure the  performance  of  the  application server  itself and  as  a part 

of  the entire VM or VSE system.  

Chapter 3,  “Managing  Storage and Configuring the Operating  System”: This 

discusses how  to effectively manage physical (DASD) and  virtual  storage. It  also 

explains various  operating  system parameters and  how to set them to optimize the 

performance  of  a system that includes a DB2 Server  for VSE & VM  application 

server. 

Chapter 4,  “Configuring the  Application Server and  Requester”: This explains the 

various  subsystems  in the application server  and  requester and  how they can  affect 

performance. It discusses how each initialization parameter governs how each 

subsystem operates, and  where to look for performance  indicators that describe 

how  well each subsystem  is  performing. 

 

© Copyright IBM  Corp. 1993, 2007  vii



Chapter 5, “Improving Data  Access Performance”: This discusses how to improve 

performance by changing either how the  data is accessed or by changing  the 

structure of the data  itself. The  first method involves analyzing and  rewriting  SQL  

statements, while the second method involves reorganizing data, effectively 

managing indexes, and working with database statistics. 

Chapter 6, “Data Spaces  Support  for VM/ESA”: This discusses  how to improve  the 

performance of your application  server, by  using the  Data  Spaces facility in 

VM/ESA. 

Chapter 7, “Tuning Performance  for Data  Spaces Support”: This discusses the  

various tuning actions which can  be used  to improve Data Spaces Support  

performance. 

Prerequisite Reading 

This manual assumes that you are familiar  with at least  one  of  the following IBM 

publications: 

v   DB2 Server  for  VSE & VM Application Programming 

v   DB2 Server  for  VM System Administration 

v   DB2 Server  for  VSE System Administration 

v   DB2 Server  for  VSE & VM Operation  

v   DB2 Server  for  VSE & VM Database  Administration 

v   DB2 Server  for  VSE & VM Diagnosis  Guide and Reference 

v   DB2 Server  for  VSE & VM SQL Reference.

It also assumes  you  are familiar with IBM  VM  systems, CMS commands,  and 

EXECs; or VSE, job control  language, and CICS®. 

Syntax Notation  Conventions 

Throughout this manual, syntax is described using the structure defined  below. 

v   Read the syntax diagrams from left to right and  from top  to bottom,  following 

the  path  of  the line.  

The ►►─── symbol indicates the  beginning  of  a statement  or command.  

The ───► symbol indicates that the  statement  syntax is continued  on the  next 

line. 

The ►─── symbol indicates that a statement  is  continued from  the previous  line. 

The ───►◄ symbol indicates the  end of a statement. 

Diagrams  of  syntactical units that are not complete  statements  start with  the 

►─── symbol and end with the  ───► symbol.  

v   Some SQL  statements,  Interactive SQL (ISQL) commands, or database  services 

utility (DBS  Utility)  commands  can stand alone. For  example: 

 

Others must  be followed by  one  or more  keywords or variables.  For example: 

 

►► SAVE ►◄

 

 

viii Performance Tuning Handbook  



v    Keywords  may have  parameters associated with them which represent  

user-supplied names or values.  These names or values can be  specified as  either 

constants or as user-defined  variables called host_variables (host_variables can only  

be used  in  programs). 

 

v    Keywords  appear in  either uppercase  (for  example, SAVE) or mixed  case (for 

example, CHARacter). All uppercase characters in keywords must be present;  

you can omit those in lowercase. 

v    Parameters appear in lowercase  and  in italics (for  example, synonym).  

v    If such symbols as punctuation marks, parentheses, or arithmetic operators are 

shown, you must use them as  indicated by  the syntax diagram. 

v    All items (parameters and keywords) must  be separated by one or more blanks. 

v    Required items appear on the  same  horizontal line (the main path). For  example, 

the parameter  integer is  a required item in the following command:  

 

This command might appear as: 

  SHOW DBSPACE 1 

v    Optional items appear below  the main path. For example: 

 

This statement could appear as  either: 

  CREATE INDEX 

or 

  CREATE UNIQUE  INDEX 

v    If you can choose from  two or more items,  they appear  vertically in a stack. 

If you must choose one  of  the items, one  item appears on the main path. For 

example: 

 

►► SET AUTOCOMMIT OFF ►◄

 

►► DROP SYNONYM synonym ►◄

 

►► SHOW DBSPACE integer ►◄

 

►► CREATE 

UNIQUE
 INDEX ►◄

 

►► SHOW LOCK DBSPACE ALL 

integer

 ►◄

 

 

About  This  Manual  ix



Here,  the command could be either:  

  SHOW LOCK DBSPACE ALL 

or 

  SHOW LOCK DBSPACE 1 

If choosing one  of the items is optional, the  entire stack appears below  the main 

path. For example: 

 

Here,  the command could be:  

  BACKWARD  

or 

  BACKWARD  2 

or 

  BACKWARD  MAX 

v   The repeat symbol  indicates that an item  can be repeated. For example: 

 

This statement  could appear  as: 

  ERASE  NAME1 

or 

  ERASE  NAME1 NAME2  

A repeat symbol  above  a stack indicates that you can  make more than  one  

choice  from the  stacked items,  or repeat  a choice. For  example: 

 

v   If an item  is  above  the  main line,  it represents a default, which means that it will 

be used if  no other  item is specified. In the  following example, the  ASC  keyword 

appears above  the line in a stack with DESC. If neither of  these  values is 

specified,  the  command would  be processed  with option  ASC. 

 

►► BACKWARD 

integer

 

MAX

 ►◄

 

►►

 

ERASE

 

▼

 

name

 

►◄

 

►►

 

VALUES

 

(

 

▼

 , 

constant

 

host_variable_list

 

NULL

 

special_register

 

)

 

►◄

 

 

x Performance  Tuning  Handbook 



v    When  an optional keyword  is followed  on the  same  path by an optional default  

parameter, the default parameter  is assumed  if the  keyword  is not entered. 

However, if this keyword  is entered, one  of  its associated optional parameters 

must also be specified.  

In the  following example, if  you enter the optional keyword PCTFREE =, you 

also have to specify one  of  its associated optional parameters.  If you do  not 

enter PCTFREE =, the database manager will  set it  to the default value  of 10. 

 

v    Words  that are only  used for readability and have  no effect on the  execution of  

the statement  are shown  as  a single uppercase default. For example: 

 

 Here, specifying  either REVOKE ALL or REVOKE ALL PRIVILEGES  means the  

same thing. 

v    Sometimes  a single parameter represents a fragment  of syntax that is  expanded 

below. In  the following example, fieldproc_block is such  a fragment and  it is 

expanded following the  syntax diagram  containing  it. 

   

   

►►
 ASC 

DESC

 

►◄

 

►►
 PCTFREE  = 10 

PCTFREE  = integer

 

►◄

 

►►
 

REVOKE  ALL
 PRIVILEGES 

►◄

 

►► 

NOT  NULL
 

UNIQUE

 

PRIMARY  KEY

 fieldproc_block ►◄

 

fieldproc_block: 

 FIELDPROC program_name 

▼

 

,
 

(

 

constant

 

)

 

 

 

About  This  Manual  xi



SQL Reserved Words 

The following words  are reserved in the SQL language. They cannot be used in 

SQL statements except for their defined meaning in the  SQL  syntax or as host  

variables, preceded by a colon. 

In  particular, they cannot be used  as names for tables, indexes, columns, views, or 

dbspaces unless they are enclosed in double quotation  marks (").  

 ACQUIRE 

ADD 

ALL 

ALTER 

AND 

ANY 

AS 

ASC 

AVG 

  

BETWEEN 

BY 

  

CALL 

CHAR 

CHARACTER 

COLUMN 

COMMENT 

COMMIT 

CONCAT 

CONNECT 

COUNT 

CREATE 

CURRENT 

  

DBA 

DBSPACE 

DELETE 

DESC 

DISTINCT 

DOUBLE 

DROP 

  

EXCLUSIVE 

EXECUTE 

EXISTS 

EXPLAIN 

  

FIELDPROC 

FOR 

FROM 

GRANT 

GRAPHIC 

GROUP 

  

HAVING 

  

IDENTIFIED 

IN 

INDEX 

INSERT 

INTO 

IS 

  

LIKE 

LOCK 

LONG 

  

MAX 

MIN 

MODE 

  

NAMED 

NHEADER 

NOT 

NULL 

  

OF 

ON 

OPTION 

OR 

ORDER 

  

PACKAGE 

PAGE 

PAGES 

PCTFREE 

PCTINDEX 

PRIVATE 

PRIVILEGES 

PROGRAM 

PUBLIC 

RESOURCE 

REVOKE 

ROLLBACK 

ROW  

RUN 

  

SCHEDULE 

SELECT 

SET 

SHARE 

SOME 

STATISTICS 

STORPOOL  

SUM  

SYNONYM 

  

TABLE  

TO 

  

UNION  

UNIQUE  

UPDATE 

USER 

  

VALUES 

VIEW 

  

WHERE 

WITH 

WORK 

  

Conventions  Used  for Highlighting Examples  

Sample commands  and  messages are provided throughout  this manual.  While  you 

will not see  highlighting on your screen, it is  included in this manual for emphasis: 

v   Commands are highlighted using bold type. 

v   Messages are not highlighted 

v   Important parts of some messages are emphasized with underlining.

 

xii Performance Tuning Handbook  



For example: 

set pool 1 seq  

ARI0065I Operator command  processing is  complete. 

show pool  1 

  

POOL NO.   1:      NUMBER  OF  EXTENTS = 2  DS3 SEQ 

  

EXTENT    TOTAL   NO. OF      NO.  OF      NO. OF      % 

 NO.     PAGES PAGES USED FREE PAGES RESV PAGES USED  

   1       855          74       781                8 

   2       855          47       808                5 

TOTAL     1710        121      1589         20     7 

ARI0065I Operator command  processing is  complete.

 

 

About This  Manual xiii



xiv Performance Tuning Handbook  



Summary of  Changes 

This is a summary of  the  technical changes to the  DB2  Server  for VSE & VM  

database management system for this edition of  the  book. Several  manuals  are 

affected by  some  or all of the changes  discussed here. For  your convenience, the 

changes made in  this edition are identified in the  text  by  a vertical  bar (|) in the  

left  margin. This edition may  also include minor corrections and editorial changes  

that  are not identified. 

This summary  does  not list  incompatibilities between  releases of  the DB2 Server  

for VSE & VM  product; see  either  the  DB2 Server for  VSE  & VM SQL Reference, DB2  

Server  for VM System Administration, or the DB2 Server  for  VSE System 

Administration manuals for a discussion of incompatibilities. 

Summary of Changes for DB2 Version 7 Release 5 

Version  7 Release 5 of  the DB2 Server  for VSE & VM database management 

system is  intended  to run on the Z/VM Version  5 Release 2 or later environment  

and  on the  Z/VSE(®) Version  3 Release 1  or later environment.  

Enhancements,  New  Functions, and New Capabilities 

The following have been added to DB2  Version 7 Release 5:  

Explain Option  on DBSU REBIND PACKAGE Command 

This new functionality allows the  EXPLAIN(YES/NO)  option on  REBIND 

PACKAGE  command. If EXPLAIN(YES) is issued, then  all four  update tables 

(structure, plan, cost, reference) will  be updated.  If EXPLAIN(NO) is issued, then 

none  of  the  four update tables  will  be updated. 

For more  information, see  the  following DB2  Server  for VSE & VM  documentation: 

v    DB2  Server for VSE  & VM  Database Services  Utility 

v    DB2  Server for VSE  & VM  Performance Tuning Handbook 

v    DB2  Server for VSE  & VM  Quick Reference 

v    DB2  Server for VSE  & VM  SQL Reference

For Fetch  only  

This new functionality accepts the ″FOR FETCH ONLY″  clause after a cursor  select 

statement. It causes  a cursor to become read-only (no UPDATEs  or DELETEs are 

permitted using this cursor). If a read-only cursor is  referenced in an UPDATE or 

DELETE statement, SQLCODE -510  will  be issued  and  the statement is not 

processed.  In  addition,  under the SBLOCK preprocessor  option,  ″FOR  FETCH  

ONLY″  forces blocking to be used  on the  read-only cursor regardless  of  whether 

there is a COMMIT. If  there is  no ″FOR  FETCH ONLY″  clause, under SBLOCK, 

blocking would only be  done if a COMMIT was  absent.  

For more  information, see  the  following DB2  Server  for VSE & VM  documentation: 

v    DB2  Server for VM  Messages and Codes  

v    DB2  Server for VSE  & VM  Application Programming  

v    DB2  Server for VSE  & VM  Performance Tuning Handbook 

v    DB2  Server for VSE  & VM  Quick Reference 

 

© Copyright IBM  Corp. 1993, 2007  xv

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|



v   DB2 Server  for  VSE & VM SQL Reference

Application  Message Formatter 

This functionality provides an Application Programming Interface (API)  that 

retrieves the descriptive text  for an SQLCODE,  given an SQLCA input parameter. 

The API will  be available for Assembly, COBOL, C, PL/I  and FORTRAN. 

In  DB2  for VM and  DB2  for VSE Online, the  user may specify the language of  the  

returned text. The languages supported by  DB2  for VSE/VM are American English 

(AMENG), uppercase English (UCENG),  German  (GER), French  (FRANC) and  

Japanese (KANJI). VSE Batch  does  not support switching  to another language. 

Therefore the default  will  be used  regardless  of  the user’s  specification.  The values 

of SQLCODE, SQLSTATE, SQLERRD1 and  SQLERRD2  will be  automatically 

appended to the  returned text. The user may also specify to have the entire 

SQLCA included.  If the  SQLCODE could not be found in the  repository, the  entire 

SQLCA will  be returned in the  buffer. 

If the SQLCA was set by  another product (such as  DB2  UBD), the descriptive text  

is retrieved if the  SQLCODE exists in the  DB2 for VM/VSE repositories. However,  

the token substitutions may not be  correct. 

For more information, see DB2 Server  for  VSE & VM Application Programming. 

Convert buffer read/write to compiler  macro  

The DRDA code has over 100 small modules. Each call to an external module  has a 

certain amount  of  overhead associated with it. Certain  modules  are called very 

frequently and  this can add up to a significant amount of time. This functionality 

improves the performance by converting few modules to macros or  internal 

procedures, to reduce this overhead.  

Modify Build  Tree Creation 

This functionality modifies Build Tree  creation used  by DRDA parsing and  

generation. It is  built in such  a way that every code point that is  used  to search 

through the tree must be  converted to a different format before the search can be 

done. If modified build tree  was  created with the  converted point, then the  code 

point would not have to be converted  every  time the tree  must  be searched.  This 

improves the performance of the DRDA code path length with the  minimal search.  

Split code point  search  routines  

When parsing a data stream within each parser action  routine,  a binary  search is  

done to find the specific  code point. Some action  specific routines are quite large, 

so the  binary  search can  be long. Splitting  and  spreading  the code point evenly 

among other  modules  would  reduce the  overheads  and  improves the  performance  

of the DRDA code  path length. 

DRDA Multi-Row Insert 

Multi Row insert is a means of  caching homogenous  insert statements and  sending  

them as a block to the server  for processing.  This reduces the overhead of  sending  

a large number of singular  inserts  and  receiving  as many responses. 

Buffering of  homogenous  inserts  eliminates the need to send an SQL statement  to 

the DB2  server  every time an insert is made, thereby improving  performance  over 

DRDA. 

For more information, see the following DB2 Server  for VSE  & VM documentation: 

v   DB2 Server  for  VSE & VM Application Programming 

 

xvi Performance Tuning Handbook  

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|



v    DB2  Server for VSE  & VM  Database Administration  

v    DB2  Server for VM  System Administration  

v    DB2  Server for VSE  & VM  Performance Tuning Handbook 

v    DB2  Server for VSE  & VM  Quick Reference 

v    DB2  Server for VSE  & VM  SQL Reference

Connection Pooling for  DRDA TCP/IP in Online Resource 

Adapter 

Connection pooling  is a technique that allows multiple users to share a cached  set 

of  pre-established connections  that provide  access to a  database. Establishing a 

connection  between  a user and  a server  takes  a sizeable time. Users who have  

validated their  entry to a database once need not establish  a connection every  time  

a request  is submitted.  Instead, they can use a pre-established connection  from a 

pool of  such  connections  and get their results much  faster.  

From the  user’s  point of view, there is  a considerable  improvement in response 

time  after this line item is  implemented. 

For more  information, see  the  following documentation on DB2  Server for VSE & 

VM:  

v    DB2  Server for VSE  System Administration 

v    DB2  Server for VSE  & VM  Application Programming  

v    DB2  Server for VSE  & VM  Operation 

v    DB2  Server for VSE  & VM  Performance Tuning Handbook

IBM  DB2 Server for VSE,  Client Edition 

This feature allows  the customer the  flexibility to install  and use only the client 

(run-time  support) component of  DB2  Server for VSE without  the  requirement to 

buy and  install the server  component during the installation process of  DB2 server  

for VSE product. The client-only installation enables customers  to reduce the  total 

cost  of  ownership  when they have their databases residing  on a non-local platform 

(like VM,  z/OS, LUW) and have a large number of their DB2  applications on VSE 

(like ISQL  on CICS,  DBSU  on VSE,  other  online/batch applications on VSE). 

For more  information, see  the  following DB2  Server  for VSE & VM  documentation: 

v    DB2  Server for VSE  System Administration 

v    DB2  Server for VSE  Program Directory

IBM  DB2 Server for VM, Client  Edition  

This feature allows  the customer the  flexibility to install  and use only the client 

(run-time  support) component of  DB2  Server for VM without the requirement  to 

buy and  install the server  component during the installation process of  DB2 server  

for VM product. The client-only installation enables our customers to reduce  the 

total cost  of  ownership  when they have their  databases residing on a non-local  

platform (like VM,  z/OS, LUW)  and  have  a large number of  their  DB2  applications  

on VM  (like ISQL,  DBSU,  other user applications on VM).  

For more  information, see  the  following DB2  Server  for VSE & VM  documentation: 

v    DB2  Server for VM  System Administration  

v    DB2  Server for VM  Program Directory

 

Summary  of Changes  xvii

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|



Handling Commit Responses  from DB2 UDB  Stored Procedures 

This feature will allow  DB2  Resource Manager  on VSE/VM to accept and process 

results of  a stored procedure running  in a UDB  server  with a COMMIT statement  

in the  stored procedure. 

Currently, DB2  for VM/VSE client does  not handle responses  from ’COMMIT’  

statements coded  in  DB2 UDB  stored procedures.  Implementation  of this  feature 

will enable  handling responses of COMMIT statements in DB2  UDB stored 

procedures and  thus allow users  to have COMMIT statements in their  stored 

procedures, while using DB2  for VM/VSE client. 

COMMIT statements, however, are not allowed in stored procedures  on the  DB2 

Server for VM/VSE. 

For more information, see DB2 Server  for  VSE & VM Application Programming. 

Make on-line programs AMODE 31 RMODE  ANY 

This feature converts DB2 server  for VSE online program which presently operate  

under 24 bit addressing mode from  AMODE 24,  to AMODE 31 RMODE ANY. 

Presently, all the online programs  are loaded below  16M line.  Implementation  of  

this line item ensures that all  the online program will be  loaded above  the 16M  

line, which  results in more virtual  storage below the line,  which can be utilized by  

other applications.  

For more information, see the following DB2 Server  for VSE  & VM documentation: 

v   DB2 Server  for  VSE System Administration 

v   DB2 Server  for  VSE Program Directory

Provide BIND File Support in VM and in  VSE Batch Environments 

This feature provides the facility of  binding  packages across servers. The  process of  

binding is  achieved by dividing  the program preparation method  into  two steps. 

The first step  does  the precompilation of  the embedded SQL  programs  with the 

prep parameter  ’BIND’. Invocation of  VSE/VM preprocessor creates  a ’bindfile’.  

The bindfile can be bound against any DB2  server  using VSE/VM binder. During 

this process, the access path  is generated,  SQL  statements are verified, 

authorization checks are performed, and  package on the  target  server  is created.  

This line item eliminates the  need  of  re-prepping the source code or porting  of  

packages across  DB2  servers. 

For more information, see the following DB2 Server  for VSE  & VM documentation: 

v   DB2 REXX  SQL  for  VM/ESA Installation and Reference  

v   DB2 Server  for  VM Messages  and Codes 

v   DB2 Server  for  VSE & VM Application Programming 

v   DB2 Server  for  VSE & VM Database  Administration 

v   DB2 Server  for  VM Program Directory 

v   DB2 Server  for  VSE Program Directory

Convert TCP/IP  LE/C  interface  to EZASMI API 

The feature of  converting TCP/IP LE/C interface  to EZASMI API intends to 

replace the  current LE/C  interface and implement the  EZA  Assembler Interface 

(EZASMI)to enhance performance in DB2  Client/Server for VSE over  DRDA. 

Currently, either  LE/C interface or  CSI Assembler Interface  is used  for TCP/IP 

functions. The EZASMI interface  makes  the code all Assembler. 

 

xviii Performance  Tuning Handbook 

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|



For more  information, see  DB2  Server for VSE  Program Directory 

 

Summary  of Changes  xix

|



xx Performance  Tuning  Handbook  



Chapter  1. Improving Performance 

Elements  of Performance  

Performance is  the way  a computer  system behaves given a particular workload.  It 

can be  measured through the system’s  response time, throughput, and  availability; 

and  it is  affected by: 

v    The resources available  

v    How well  they are used  and  shared

In  general, you  should  undertake performance  tuning  when you  want  to improve 

the cost-benefit ratio  of  your system. Specific goals would be: 

v    To process a larger or more demanding work  load without increasing processing 

costs. (For example, without  buying new hardware or using more processor 

time.) 

v    To obtain  faster system response or higher  throughput without increasing 

processing costs. 

v    To reduce processing costs without  affecting service  to your users.

Translating  performance  from technical terms to economic terms  is  difficult.  

Performance  tuning certainly costs  money (through people’s  time and  through 

processor  time),  so  before you  undertake a tuning project, weigh its costs against 

its possible  benefits. Some  of  these benefits are tangible,  such  as  more  efficient use 

of  resources  and the ability to add more users  to the system, others such as greater  

user satisfaction because of  quicker  response time, are intangible. All of these 

benefits  must be  considered.  

Tuning  Guidelines 

The following guidelines should  help you  develop an overall approach  to 

performance  tuning.  

Remember  the Law of Diminishing Returns: Your greatest  performance  benefits  

usually come from your initial efforts. Further changes  generally produce smaller  

and  smaller benefits  and require  more and more  effort.  

Do Not Tune Just for the Sake of  Tuning: Tune to relieve identified constraints. If 

you  tune resources  that are not the  primary cause of performance problems, this 

has little or no effect  on response time until you have  relieved the  major  

constraints,  and  it can actually make subsequent  tuning work  more  difficult. If 

there is any significant improvement potential, it  lies in improving  the performance  

of  the resources that are major factors  in the response time. 

Consider the Whole System: You  can never tune one parameter  or system in 

isolation. Before you  make any adjustments, consider how it  will affect the  system 

as  a whole. 

Change one Parameter  at  a Time:  Do not change  more than one  performance  

tuning parameter  at a time. Even  if you are sure that all the  changes  will be 

beneficial, you  will have no way of evaluating how much  each change  contributed. 

You  also cannot effectively judge  the trade-off you  have made  by  changing  each 

parameter. Every  time you adjust a parameter  to improve one area,  you almost 

always  affect at least one  other  area. 

 

© Copyright IBM  Corp. 1993, 2007  1



Measure and Reconfigure  by Levels:  For the  same  reasons that you should  only  

change one  parameter  at a time, tune one  level  of  your system at a time. You can 

use the  following list  as  a guide:  

v   Hardware 

v   Operating System  (VM or VSE) 

v   CICS (for VSE)  

v   Application Server  and Requester  

v   Database 

v   SQL Statement 

v   Application Program

Check for  Hardware  and Software  Problems: Some performance  problems may be  

corrected by  applying service, either to your  hardware, through an  engineering 

change (EC)  or microcode assists,  or to your  software through a program 

temporary fix (PTF).  Do  not spend excessive  time  monitoring and  tuning your  

system, when simply applying service may  make it unnecessary.  

Understand the Problem Before you Upgrade your  Hardware: Even if it seems 

that  additional  storage or  processor power could immediately improve 

performance, take the  time to understand where your bottlenecks are.  You may 

spend the  money on additional  DASD only  to find that you do  not have  the  

processing power or the  channels to exploit it. 

Put Fallback  Procedures  in Place  Before You Start Tuning: As noted earlier, some  

tuning can cause  unexpected performance  results. If this leads  to poorer 

performance, it should be reversed  and  alternative  tuning tried. If the  former setup 

is saved in  such  a manner  that it can  be recalled, the backing  out  of  the incorrect 

change becomes much simpler.  

Performance Improvement Process 

Use the following process to improve the performance  of  any system:  

1.   Establish performance indicators. 

2.   Define performance  objectives. 

3.   Develop a performance  monitoring plan. 

4.   Carry out the plan. 

5.   Analyze  your  measurements to determine whether you  have met your  

objectives. If you  have,  consider reducing the  number of  measurements you 

make. Performance  monitoring itself uses  system resources. Otherwise continue 

with Step  6. 

6.   Determine the  major  constraints in the  system.  

7.   Decide where you can  afford to make  trade-offs and  which resources can bear 

an additional  load.  (Nearly  all tuning  involves trade-offs among system 

resources  and the various  elements of performance.) 

8.   Adjust the  configuration of your system.  If you  think that it  is feasible to 

change  more than  one  tuning option,  implement one  at a time. If there  are no 

options left  at any level, you  have reached  the limits of your resources  and  

need to upgrade your  hardware. 

9.   Return to Step  4 above  and  continue to monitor your system.

Periodically,  or after significant changes to your system or workload: 

v   Return to Step  1 above  

 

2 Performance  Tuning  Handbook 



v    Reexamine  your objectives and  indicators 

v    Refine  your monitoring and tuning strategy.

How Much Can  a System be Tuned? 

There are limits  to how  much  you can improve the efficiency of a system. Consider 

how  much time and  money you  should  spend  on improving  system performance, 

and  how much the  spending of additional time and  money will  help the  users  of  

the system. 

Your system may perform adequately without  any tuning at all,  but  it probably 

will not perform to its potential.  Unfortunately using the default  tuning parameters 

is usually not a good solution. Each database is unique.  As  soon as you  develop  

your  own database, and applications  to use it, investigate the  tuning parameters  

available  and learn how you  can customize their  settings to reflect your  situation.  

In  some  circumstances,  there will only  be a small benefit from tuning a system,  

however in  most, the  benefit may be significant.  

As your system approaches a performance  bottleneck, it  is more  likely that tuning 

will be effective.  If you  are close to this  and you increase the number of users on 

the system by,  say, 10  percent,  the response time is  likely to rise  by much more  

than 10 percent. However, there is a point beyond  which tuning cannot  help you. 

At  that point, the only  thing to do (other  than adding  new hardware) is to change  

your  objectives. 

Workload 

When  devising a strategy to improve  performance, you  need  to consider the 

workload  in two environments: test, and production. Ideally  you  should  have 

access to both, but  often tuning must  be done without  the benefit of a test  system. 

Test Workload: In  a test  environment  you  can use strictly  defined workloads  to 

model how changes to performance parameters may affect your  production  

system.  Consider modeling your  production  system with a small  subset of  

transactions from it. By running  a wide  variety of  SQL  statements  from different  

applications you  can create  a rough sketch of your system.  While  it  may not 

perform exactly  the way the production  system will, it  can help you  discover 

unexpected effects before they occur  in production. 

Production  Workload: In  contrast,  you probably do  not have a great deal  of  

control over the  size  and nature of the workload  in your  production  

environment—you can measure it, looking for maximums,  minimums,  averages,  

and  variances over time, but  it is  almost  impossible  to accurately predict exactly 

what  it will be.  Instead look  for trends that can  help you predict future capacity 

requirements.  For  example, will you need to buy  hardware or invest  in additional  

performance  tuning to support a rapidly growing workload. 

Performance Indicators  

The first  rule of  control  engineering is:  

If  you cannot  measure it, you cannot  control it .  

When  you set your performance  objectives, take a practical look  at what  you can 

measure. While  you may want  to establish  a high-level throughput  objective  of, 

say, “55 transactions per second” there may  not be an easy way to measure this. 

 

Chapter 1. Improving  Performance 3



Instead, consider using an  indicator that is readily available. For  example, the 

BEGINLUW counter records  how may  logical  units of  work (LUWs) started  during 

the last monitoring period. While  this does  not actually  represent the number of 

transactions per second, it  does  act as a rough indicator of  throughput. 

Establishing Performance Objectives 

How you define good performance  depends on your  particular needs  and 

priorities. Performance  objectives  should be realistic, in line with your budget,  

understandable, and  measurable. 

Response Time 

Response time represents the  elapsed time  between  when a  user submits  an SQL  

request to a server (usually through  an application program), and when the  

response arrives on the user’s screen. It can also represent  the elapsed time  

required to respond to an SQL request  submitted from a batch application 

program. 

The easiest  response time objective to state is a maximum  time, such as, “SQL  

queries will return in  under 2 seconds”. However,  response times can vary for 

many reasons. So, include acceptable tolerances  in your targets. For example, “SQL  

queries will return in  under 2 seconds  80% of the time”. This allows  for unusual  

transactions that have exceptionally heavy processing or database  access 

requirements. 

Components of  Response  Time  

Response time for any database transaction  has three components. The SQL  

statement is generated in an application program;  it travels  through a network to 

an application server; and finally, the  server  generates a response, which is 

returned to the  program through the  network.  

Application server response time  represents the time  it takes for the server  to 

interpret your request  and  retrieve or  update data. This can be affected not only  by 

how well  your database and  SQL  statements are designed, but also by  how well 

the server’s initialization parameters are tuned. 

Network response  time  represents the  communication  delay between the  

application program and  the application server. It also represents any delay 

between a user’s terminal and  the  application program. This usually does  not 

represent a large part of  overall response time, unless  your server and application  

program are physically separated by large distances. 

Application program response time can often be the  fastest part of  the process, 

but do not overlook it. Some programs  can take  more  time  to process data  than 

was required to retrieve this  data from  the server. For example, if you  retrieve 

floating-point data  that needs to be  displayed in scientific notation, your program 

may take longer to perform the conversion than  it took  for the  server  to generate 

the answer set. Therefore,  do  not assume that if you  double the speed of  your  

server, your  end users will  see  their response time  cut  in half. 

You can also use a stored procedure  (user-written application  program that is 

compiled and  stored at the  server) to eliminate many of  the  network send and  

receive operations, and thereby reduce network cost of distributed database access.  

For more information on  stored procedures,  see the DB2  Server  for VSE & VM 

Database Administration  manual.  

 

4 Performance  Tuning  Handbook 



Throughput  

Throughput  measures the  amount of  work  processed  over a period of time (refer  to  

“Workload” on page 3). You  can  measure it  either in a controlled test  system or in 

a production  system. 

In  a test  system you  are able to define representative workloads and measure  how  

many of these transactions  your system can complete  per  unit of  time. For 

example, you  can measure  the  number of  transactions per  second.  

In  a production  environment, look for measurements that are effective as  averages 

over time that will  give you  a rough indicator of  throughput  of  your  overall 

system,  such  as  BEGINLUW. Also look at the  throughput  of  your  various  

subsystems  — for example, the  pages  processed  per  second by  your DASD I/O 

system.  

Availability  

Availability  is a measure  of  the proportion of time a system or resource is ready 

when it is required. 

It is usually measured in hours, weeks,  or months.  For example, you may  want  to  

set an objective of  8 hours downtime (time when your  server  is  unavailable) per 

month, based on a 24-hour  day.  Downtime is  not necessarily caused  by  a 

malfunction. You  may need  to shut  the application server  down  to apply service  or 

perform maintenance. 

A  Less Formal Approach 

If you  do  not have enough time to set performance objectives and  to monitor and  

tune in a comprehensive manner, you can  address performance by listening to  

your  users. Find  out if they are having performance-related problems. You can  

usually locate the  problem, or at least where  to start, by  asking a few simple 

questions. For  example: 

v    What do  you  mean by  “slow response”? Is it 10% slower  than  you expect it to 

be, or tens of  times slower? 

v    When  did you notice the problem? Is it recent or has it  always  been there?  

v    How many  users are complaining?  Is it just one or two individuals, or a whole  

group? 

v    If a whole group of  users  are experiencing  difficulties, are they connected to the  

same terminal  controller? 

v    Are the  problems related  to a specific transaction or application program?  

v    Do the  problems appear during regular  periods, such as lunch hour, or are they 

continuous?

Monitoring Performance 

Performance  monitoring can help you understand  how the various  parts of  your  

overall computer system are working.  There are two  types: 

Real  time  

You can monitor the  immediate state of your system to solve problems 

such as locking contention or storage shortages. 

 

Chapter 1. Improving  Performance 5



Statistical 

You  can also monitor the  performance  of  a system over  a period  of  time  to  

help you  tune the parameters of the system or plan for future capacity 

requirements.

Creating  a Monitoring Plan 

You need  to plan how you will  monitor your system and how you  will analyze the 

data that results. When  you  create  your plan, do  the following:  

v   Create  a master  schedule of  monitoring. Large  batch jobs or maintenance runs  

can cause peaks  in activity.  Coordinate monitoring with other  operations so that 

they do  not conflict with unusual  peaks, unless that is what  you  want  to 

monitor.  

v   Determine the kinds  of  analysis that you  will perform and the tools that you  

will  use. Document  the data that you  will extract from each monitoring tool. 

Some of these tools provide  reports that help to organize data, but in addition 

you  should  create  worksheets or utility programs  to help you  extract and  

organize  the performance indicators specific to your system. 

v   Create  a list  of  people who should  review the results  of  your  monitoring. These  

results  should  be summarized  and  shared with everyone involved with  your 

system.  Consider including application  programmers, operators,  and  your  end 

users. 

v   Determine standards and  criteria for implementing changes  in system 

parameters and workload.  Describe how often  you will permit  changes, and  

outline a strategy to monitor their  effects.

Monitoring Interval 

An important factor affecting the  accuracy of your performance  measurements  is 

the monitoring interval. Most useful performance values,  whether measured 

directly or calculated from other  measures,  are averages over time. 

If the interval that you  use to calculate this average is too long,  you may lose  

significant values. For example, you would not see  a 10-minute peak in DASD  

paging load or a 10-minute drop in the effective  use of  the  local buffers if you only  

look at your  performance  indicators once a day.  

If the interval is  too short, your  results  may not be  statistically valid.  For example, 

if one  checkpoint occurred during one  30-minute interval, you  could not 

confidently say that  the database manager was  performing two  checkpoints  per 

hour. 

Cost of Monitoring  

You need  to weigh the benefits  of  making  performance  measurements against the 

additional overhead involved. While  recording  performance  numbers every 10 

seconds may give you an  excellent picture  of  how your database  manager is  

working, the additional  load  on the  operating system may reduce  your overall 

performance, or consume  large  amounts of DASD space.  

Measurements  

Performance measurements are relative: they tell how a system behaves for a 

particular workload. A system is considered to perform well  if it  can complete  a 

particular workload  faster than other  systems or with fewer resources. 

 

6 Performance  Tuning  Handbook 



In  a test  system,  you  can control the  workload  by  running the same  tasks many 

times.  During each iteration you can  measure how fast your  system completed  the 

tasks and  how much resource  it used. 

However, in a production system it  is difficult  to compare  measurements taken  at 

different times, because  the  workload  is constantly changing.  To  obtain  a 

performance  measurement, you  must compare the  average  performance  of your 

system measured over  a period  of  time  to the workload it processed during that 

time. To make  these comparisons, you  need to calculate two  types of relative 

measurements:  load and  performance. 

Load is  usually measured as a rate, in tasks per  unit of  time. These measurements 

help you  determine the amount of  work  that the database manager or the 

operating  system is  performing  during a period of  time. High load values in some  

areas  and low load in others may suggest  a bottleneck in the  system.  Also,  while 

similar load measurements do  not guarantee  that two  workloads are comparable, 

different ones show  that they are not comparable. 

Performance  can be measured as  a percentage from 0% to 100%, where  100%  is 

optimal.  For practical reasons it is  often  calculated by  comparing the  number of  

successes  compared to the  number of  attempts. For example, if the database  

manager looks in the  local buffers  for a page 100 times, and  finds  the page it is  

looking for 75 times,  the local buffers  are 75% effective.  This measurement  helps 

you  estimate how  effectively various components of the entire system are 

performing. 

The percentage can be calculated in several ways: 

 

You  can also express a performance  measurement as a  hit ratio, with the  following 

calculation: 

 

In  this case,  the  higher the ratio  the better the  performance. The lowest value for a 

hit  ratio  is 1. 

Use the  formula  that makes the  most “sense”  to you. Some formulas  fit some  

measurements better or are easier to understand  than others. Mathematically, they 

are all equivalent. 

Tools 

A wide range  of  tools for monitoring performance  is  available in  both  VM and in 

VSE.  Each tool covers  a particular area or a different  level  of  the overall system.  

VM Tools 

The CP  Monitor  subsystem measures the  performance  of  the VM operating system 

and  its resources  and  the VM/Performance Reporting Facility  (VM/PRF) product 

creates usage and  historical reports from those measurements. You can control the  

Failure

Attempt
= 1 - 100X

Success

Attempt
100 =X

Attempt - Failure

Attempt
100X

  

  

 

Chapter 1. Improving  Performance 7



amount and  nature of  the data collection, based  on the  analysis you  want  to do. To  

create reports from the collected data, you must either do  some  programming, or 

you can  use VM/PRF to produce standard reports.  This facility contains  reports 

helpful in monitoring the overall  DASD I/O performance of your database.  The 

CP Monitor subsystem is  included with  the VM system.  VM/PRF is  available from  

IBM. 

The CP  INDICATE USER  and QUERY TIME commands measure the  resources  

consumed by  your database virtual  machine. Includes measurements of  system 

paging use, database manager DASD I/O,  and  CPU load. Included with VM as a 

part of CP. (Refer  to page 15.)  

The Real  Time Monitor  VM/ESA (RTM VM/ESA) provides on-line  performance  

monitoring. Data is typically gathered  in short intervals, usually one  to three  

minutes. 

You can use this  tool to capture  system level  data about your  system and  the 

database machine. It is  available  from IBM. 

VSE Tools 

The VSE Interactive Interface contains  information  about CPU use, system paging, 

active users,  channel  and  device activity, storage layout,  and system activity. Each  

is presented in a separate dialog. It is included with VSE. Refer  to the DB2  Server  

for VSE  & VM  Operation manual.  

VSAM LISTCAT  provides  information on the location of  VSAM  data sets. It is 

provided with VSE.  (Refer to the  DB2 Server for  VSE  & VM Operation  manual.) 

CICS Tools 

The CICS Monitoring  Facility  measures  the performance of CICS under VSE and  

CICSPARS/VSE creates historical reports. Both  are available from IBM.  (Refer to  

page 17.) 

The CIRD transaction  displays  a snapshot of the links between CICS and your 

application server. It is provided with the  DB2 Server  for VSE & VM  base product. 

(Refer to page 21.) 

The CICS statistics facility  gathers statistical  data on CICS performance. It  is 

provided with CICS.  (Refer to the CICS/VSE Performance  Guide manual.) 

DB2 Server  for  VSE & VM Tools  

As well as the  tools described  below, the  DB2  Family Solutions  Directory manual 

contains descriptions  and  ordering information for a  wide variety  of performance 

monitoring and tuning tools. These tools are available  from a number of  

companies including  IBM and  are included under the  section heading  “Database 

Administration Tools”.  

Whenever the  application server starts, it displays  how its Initialization 

Parameters are set. These  parameters describe how the  server  has been configured. 

It is included  with the DB2  Server for VSE & VM base product. (Refer to page 20.) 

The DB2 Server for VSE &  VM system  catalog contains information about  the 

dbspaces, tables,  indexes, keys, packages, authorities,  and other objects  in the  

database. Much of  the  information is used by the database manager when it  

 

8 Performance  Tuning  Handbook 



decides how to retrieve data  from the  database.  It is  included with  the DB2 Server  

for VSE & VM  base product. (Refer to page 38.) 

The SHOW  operator  commands are available  which  display the status  of  the  

application server. For example, user activity, locking,  log usage, and storage  can  

all be  monitored with these  commands. It is included  with the DB2  Server for VSE 

& VM  base product. (Refer to page 25.)  

The COUNTER  operator command measures the performance of your application  

server  by  recording how often significant events occur  in the database manager.  

These events relate to workload,  locking, and database  manager storage (buffer  

pools). It  is included with the  DB2  Server for VSE & VM base product. (Refer to 

page 22.) 

IBM  DB2 Control Center  for  VSE &  VM automates DBA  functions such  as 

archiving, recovery,  adding  dbextents, deleting dbextents, adding dbspaces,  startup,  

shutdown, startup parameter changing,  dbspace reorganizations,  catalog index 

reorganizations, and database  monitoring. Any of these functions may  be initiated 

immediately  by an automated user (local or remote), or they  may be  scheduled to 

execute  at any specified date and  time, or repetitive  execution interval. It is 

available  from IBM.  

The DB2 Server for  VSE &  VM accounting facility records  how much  CPU time  is 

consumed and  how many buffer pool looks were done  during the time  that  a user 

is signed  onto the application server. The DB2 Server for VSE & VM trace  facility 

records  the  sequence  of  events that occur  in different components  of  the  database 

manager (for  example, you  could trace  the sequence of locks that lead up  to a 

deadlock). While  both these  tools can be extremely  useful  in diagnosing 

performance  problems, use them very sparingly.  Both consume a great deal of  

system resources  and  can actually  severely  affect overall performance  when  they 

have been turned  on.  For more information  on the accounting  facility, refer to the  

DB2 Server for  VSE  System Administration  or the  DB2  Server for VM  System 

Administration manuals. For more  information  on the  trace  facility, refer  to the  DB2 

Server  for VSE & VM  Operation manual.  

The DB2 Server DSS  SHOW TARGETWS operator command measures  the 

amount of main  and expanded storage your  database machine is currently using. It  

is included  with the DB2  Server DSS Feature. (Refer to the  DB2  Server for VSE  & 

VM Operation  manual.) 

The DB2 Server DSS  COUNTER POOL  operator  command measures the  

performance  of  individual storage pools, internal dbspaces and  the  directory. It is  

included  with the  DB2  Server  DSS Feature. (Refer to the  DB2 Server for  VSE  & VM  

Operation  manual.)  

Factors  Affecting Performance  

Resources 

Processor  

The processor  (sometimes  referred to as  the  CPU)  is generally the most expensive 

resource in  a system. As such,  they should  be used as  efficiently and fully as 

possible. In  a highly-utilized, well-tuned system, the processor is  in use at least  

80% of the time. If yours is  already above that level, you  must  either  upgrade your  

processor  or find a more  efficient way to do the  job. For example, rewrite your  

 

Chapter 1. Improving  Performance 9



application program, or investigate the structure of your data  or SQL  statements. 

Refer to Chapter 5,  “Improving Data  Access Performance,” on page 117. 

Storage 

Real and Virtual Storage:    Your system’s performance is directly affected by  how  

well the  database manager and  your  operating  system share a common pool of 

storage between different  processes. 

For example, agent structures, buffer pools,  locks,  and  packages all require storage.  

In  general,  the more storage allocated to a specific component,  the faster it will  

perform (within limits). However,  you  can only  allocate  storage from  the limited 

amount available  in your database  machine or partition.  You need  to trade-off the 

requirements of  each component in order to balance the  entire system. 

For example, if DASD I/O is  a performance  bottleneck during regular  operation 

and locking is not, consider using less storage for locks and  more  for the DASD 

buffer pools. For  more information, refer to “Real and  Virtual Storage”  on page 43. 

(This is  a good example  of  how performance  issues  interrelate.  By increasing the  

number of  buffers  in  the  pool you  decrease your DASD  I/O during regular  

operation, but  increase it during checkpoint processing. If checkpoint processing 

was a problem  you  have just made  it worse.  Refer to “Choosing  the Checkpoint  

Interval” on page 104.) 

The DASD  I/O  System:   The database  manager moves data to and  from DASD as  

required. How efficiently  it does  that has a significant impact on the  overall 

performance of your application  server. How much real storage  is  available, the 

size of the buffer pools,  and  how often a checkpoint is performed all determine 

how often  the database manager needs  to move data between itself and DASD. 

You can also improve the  performance  of  the  DASD I/O subsystem by using 

DASD caching, Virtual Disks  (see “Virtual Disk Support for VSE/ESA  for Internal 

Dbspaces” on page 48 or “Virtual Disk Support  for VM/ESA  for Internal 

Dbspaces” on page 54), or the DB2  DSS Support (see Chapter 6,  “Data  Spaces 

Support for VM/ESA,”  on page 157). 

DASD Storage:    How you  manage DASD storage affects performance in four  

ways: 

Dividing DASD  

How you divide  a limited amount  of  storage between  indexes and  data, 

and  among dbspaces and  among storage pools determines to a large  

degree  how each will perform in different  situations. 

Wasting DASD  

Wasted storage  in itself may not affect the  performance  of  the system that 

is  using it, but it may represent  a resource that could be used  to improve 

performance  elsewhere. 

Distributing DASD I/O  

How well you  balance the  demand for DASD  I/O across  multiple DASD 

devices, controllers and  channels can affect how fast the database  manager 

can retrieve information  from DASD, refer  to “DASD Balancing” on  page 

75.  

Running out of  DASD  

While  running  out of storage can disrupt your users and you are forced to 

bring  down  the  application server  to add storage, just getting close can  

 

10 Performance  Tuning  Handbook  



degrade performance. (If you reach  the  application server’s short on 

storage level you  trigger unnecessary  SOSLEVEL  checkpoints, refer to 

“Short on Storage Cushion” on  page 59.)

For more  information, refer  to “DASD Storage” on page 58. 

Overhead  

Concurrency  

The database  manager uses  agents and pseudo agents to allow concurrent use of 

its resources.  It uses  agent structures  to divide processor  time between multiple  

users  and  its own internal tasks,  such  as  checkpoint processing and  operator  

commands. The  number of  agents available, combined  with how the  agents are 

scheduled and dispatched  can affect  the  overall performance  of  your  system.  For 

more information, refer  to “Concurrency” on page 88. 

Your operating  system must  also divide processor time among  multiple 

applications (your application  server  being  one).  If the  operating  system favors 

your  server  and gives it more  than its  even share of time, your  server  may  perform 

well,  but  at the  expense  of  other applications. For VM,  refer  to “Fair  Share  

Scheduling”  on page 78.  For VSE,  refer  to “Dispatching Priority” on page 79.  

Locking  

In  multiple user mode (MUM), several agents may need to access  the same data  at 

the same  time. This poses  a problem  if one  agent tries to change  data while 

another agent is  still looking at it. 

Consider two application programs, each trying to add ten dollars  to the  same  

account at the  same  time. Both  programs  read the account balance at the same 

time. They both  see 100 dollars in the  account. The first program updates the  value 

in the account with 110 dollars, the  second program does  likewise. The problem is 

that  when both  programs  are finished there  is only  110 dollars  in the  account 

instead of  120.  

To avoid  this problem,  the database manager can  lock  the  account as  soon  as the 

first program looks at it and hold  the lock until the  program is finished updating 

the balance. The second program waits  until the  first is complete. 

Performance  Implications:   Of  course while locking protects your  data, there is a 

performance  cost. Not only  can waiting  for locks increase response time (locks can 

last to the  end of  a logical unit of work), but each lock  requires additional storage 

and  processing time. Refer to “Locking Contention”  on page 94.  

Also, because there  are a set number  of  potential locks defined at initialization 

time, you may run out.  You  may  need more than  were originally defined. If this 

happens,  locks  will be escalated,  (refer to “Lock Escalation”  on page 99)  a  process 

that  requires additional  storage and  processor  time. 

Deadlocks (refer  to “Deadlock” on  page 101) can also be  a problem.  While the 

database manager detects deadlocks before they occur,  the  more potential deadlock 

situations that you create the more  resources  are required to avoid  them. 

Recovery  

Maintaining the  integrity of  your  data means preventing its accidental  or 

intentional destruction, alteration, or loss. If your data  is ever  affected, there are 

three  systems to ensure that you can recover it. 

 

Chapter  1. Improving Performance  11



Checkpoint Processing  

A checkpoint ensures that any modifications to your database, which  are 

temporarily stored in main storage, are written to DASD. This ensures  that 

the  integrity of  your  database is  protected even  if your application  server  

crashes, refer  to “Checkpoints” on page 103. 

Logging  

A log is a file  maintained on DASD that records the old and  new values 

each time  a change  is  made in your  database. If you  lose  any changes 

because  of  a system failure, you can  use the log  to undo or  redo the 

changes  and  restore the data  to its original state.  

Archiving  

A database archive is  a  copy of the entire  database.  A log archive  is an 

archive, or  series of  archives of  the  log. In the case of  a serious  failure you 

can restore the database archive, and instruct the database manager to redo 

any of  the  changes recorded  in the  log archive.

For  information  on both  logging  and  archiving, refer to “Logging and  Archiving”  

on page 105. 

Choosing Between Tuning  Trade-offs 

The art of  tuning  is finding and removing constraints. In  most systems, 

performance is limited by  a single  constraint. However,  removing that constraint, 

while improving  performance, inevitably reveals  a different constraint, and you  

often have to remove a series  of  constraints. Because tuning generally involves  

decreasing the load on one  resource at the expense  of  increasing the  load on a 

different resource,  relieving one  constraint always creates  another. A system will 

always be  constrained. 

When you  choose to remove a constraint, consider which resources  can accept  an 

additional load in  the system without  themselves becoming  worse constraints. 

Tuning usually involves  a variety of  actions  that can be taken, each with its own 

trade-off. 

 

12 Performance  Tuning  Handbook  



Chapter  2. Measuring Performance 

This chapter  discusses some  basic performance  measurements you  need  to make  at 

the operating system level. It also includes descriptions  of  several basic 

measurement tools included with the DB2 Server  for VSE & VM product. 

Understanding Performance Measurements  

Performance  measurements are relative: they tell  how a system behaves for a 

particular workload.  Usually, a system is considered to perform well if it can 

complete  a particular workload faster than other  systems or with fewer  resources. 

In  a test  system,  you  can control the  workload  in your system by running the  same  

tasks many times. During  each iteration  you  can measure  how fast your  system 

completed the tasks and  how much resource it used. 

However, in a production system it  is difficult  to compare  measurements taken  at 

different times because the workload  is  constantly changing. To obtain a 

performance  measurement, you  must compare the  average performance of your 

system measured over  a period  of  time  to the workload it processed during that 

time. To make  these comparisons, you  need to calculate two  types of relative 

measurements:  

v    Load 

v    Effective  use

Relative  Measurements 

Load  

Measured as a  rate, in tasks per  unit time. These measurements help you  

determine the  load on the database  manager or the  operating  system over  a period  

of  time. High load values in some  areas  and  low load in others  may suggest a 

bottleneck in  the system. Also, while  similar load measurements  do not guarantee  

that  two workloads  are comparable, different  ones show  that the workloads are not 

comparable. 

Effective  Use  

Measured in  a  range from  0% to 100% (where 100% indicates optimal  

performance). These measurements help you  estimate how effective the  various  

buffers  in  the  DASD I/O system are performing. 

Effective  use is calculated by  comparing the number of pages the  system looks for 

in a buffer to the  number it  finds there. You  can think  of  this as  the number of  

successes  compared to the  number of  attempts. For example, if the database  

manager looks in the  local buffers  for a page 100 times, and  finds  the page it is  

looking for 75 times,  the local buffers  are 75% effective.  

This percentage can be  calculated in several ways:  

Success          Attempt  - Failure               Failure 

------- X 100% = -----------------  x 100% = 1  -  -------  x 100% 

Attempt               Attempt                   Attempt 

You  can also express effective use as a hit ratio with the following calculation: 

 

© Copyright IBM  Corp. 1993, 2007  13



Attempt 

   ------- 

   Failure 

In  this  case, the higher the  value of  the  hit  ratio  the better  the performance, the  

lowest value for a hit ratio  is 1.  

Sampling Interval  

An important factor affecting the  accuracy of your performance  measurements  is 

the sampling interval. Most  useful performance values, whether measured directly  

or calculated from other measures,  are averages over time. 

If the sampling interval  is too long,  you may lose  significant values.  For example, 

you would  not see a 10-minute peak in DASD paging load or a 10-minute drop in 

the effective  use of  the  local buffers  if you only  looked at the  VMDSS performance  

counters once a day. 

If the interval is  too short, your  results  may not be  statistically valid.  For example, 

if one  checkpoint occurred during one  30 minute interval, you could not 

confidently say that  the database manager was  performing 2 checkpoints per hour.  

You also need to weigh  the benefits of  making  performance  measurements  against 

the additional  overhead involved. While  recording performance numbers every  10 

seconds may give you an  excellent picture  of  how your database  is working,  the  

additional load on the  operating  system may  reduce your  database’s  performance, 

or consume  large amounts of  DASD space. 

Operating  System  Measurements  

There are a wide variety of  tools available  to measure the performance  of  your  

operating system,  some  of  which  are included in “VSE Tools” on page 8,  and  “VM 

Tools” on page 7.  When  you look for performance  measurements in those tools, 

focus on three  questions. How well is  the system performing as  a whole? How 

well is your  database machine or partition performing?  How is  the database 

machine or partition affecting the performance  of  other  processes that are running  

at the same  time?  With that in mind, consider the following generic  measurements:  

Processor (CPU)  Load 

Measure the overall  percent  utilization of your processor  (CPU),  refer  to 

“Processor” on page 9.  You  also need  to measure the  percentage of  the total CPU 

time devoted  to the database machine or partition, refer  to “Concurrency” on  page 

11. 

Real  and Virtual Storage Load 

Measure the number of virtual pages in your database machine or partition that 

have been allocated real storage.  Break the real pages  into  main, and auxiliary 

pages (and in  the case  of VM,  expanded storage pages).  Refer to “Real and Virtual 

Storage” on page 43. Also compare  the number of  virtual pages that have been 

allocated above  the 16MB line to those below, refer  to “Storage  Above 16MB (31  Bit 

Addressing)” on page 47. 

System Paging DASD  Load  

Measure the rate  of  DASD I/O to and  from auxiliary storage,  refer to “Auxiliary 

Storage” on page 43. Pay  special attention  to I/O to and from  system paging 

 

14 Performance  Tuning  Handbook  



DASD.  This is the slowest  type of auxiliary storage and the largest  drain  on 

performance. Also, compare  the  overall system paging DASD load to that required 

by  the database machine or partition. 

Machine  or  Partition  DASD I/O Load 

Measure the  rate of DASD I/O initiated  by  the database machine or the  partition 

itself, refer  to “Database  I/O” on page 85.  The database manager directs the  

operating  system to write and  read pages  to and from its data, directory, log, and  

archive disks or datasets. These I/Os  are independent of  system paging DASD  and  

are always  measured separately. 

Individual Device Utilization  

This includes individual DASD  volumes, channels, and  controllers. Measure the 

percentage of  time that these  individual devices  are busy. This is more effective  

than using a load measurement  because it takes  into  account the capability of the 

device  itself. Refer to “DASD Balancing” on page 75.  

Translating  Performance  Measurements  to Indicators  

The following is a description of  the  CP INDICATE USER and QUERY  TIME 

commands  included with the  VM operating systems. It serves as  an example  of  

how  to extract performance  counters  and simple measurements and  translate  them 

into  useful indicators.  

CP INDICATE  USER  and  QUERY  TIME Commands  

These two commands  enables you  to monitor the overall  performance  of  your  

database machine.  The most important indicators they provide  are: 

RES=nnnn  

Counts the number of virtual machine pages that are currently  in main 

storage. Convert  the  number of  pages  into bytes  by  multiplying the value 

by 4096 (bytes per  page). 

READS=nnnnnn  

Counts the total number of  pages  moved from system paging DASD  to 

main storage for a virtual  machine since  it was  logged on.  (Refer to 

“Auxiliary Storage” on page 43.) 

WRITES=nnnnnn  

Counts the total number of  pages  moved from main storage to system 

paging DASD for a virtual machine since it was logged on.  (Refer to 

“Auxiliary Storage” on page 43.) 

CONNECT=hh:mm:ss  

Records  the  total elapsed time  the virtual machine was logged on the 

system. 

VIRTCPU=mmm:ss   

Records  the  total virtual machine processor time  used  since the  virtual  

machine was logged on. 

TOTCPU=mmm:ss   

Records  the  total virtual machine processor time  plus  the  total CP 

processor time used  (virtual plus  overhead)  since the  virtual  machine was 

logged on.  

 

Chapter  2. Measuring  Performance  15



IO=nnnnnn  

Records  the  total number of  I/O requests issued  by the machine since it 

was  logged on. This includes all I/Os  started  by  the DASD I/O system,  

refer  to “Database  I/O” on page 85. 

Note:   Several IUCV *BLOCKIO requests may be blocked  together to form  

a single IO request. This count includes all the IO requests,  it does  

not count each page or block  moved. 

The IO value will  not equal the DASDIO  counter.

These commands  are only  really useful when you use them together. To  issue 

QUERY TIME  and  INDICATE USER together, type the  following from the operator  

console: 

     #CP QUERY  TIME #CP INDICATE  USER 

Note:  The # symbol is the  default  escape character. It may  be different  depending  

on how  your  system has been customized. 

You also need to compare  two consecutive commands.  For example, consider the  

following two QUERY  TIME and  INDICATE USER commands: 

#cp  query time #cp indicate user 

CP  QUERY TIME 

CP  INDICATE USER 

TIME IS  15:07:20  EST  TUESDAY  02/14/99 

CONNECT= 01:21:45 VIRTCPU= 000:06.28 TOTCPU= 000:09.86 

USERID=SQLDBA    MACH=XC  STOR=0009M VIRT=V  XSTORE=NONE  

IPLSYS=CMS      DEVNUM=00031 

PAGES:  RES=001497 WS=001260 LOCK=000000  RESVD=000000  

NPREF=000000  PREF=000000 READS=000130 WRITES=000018 

CPU  00:  CTIME=01:22  VTIME=000:06 TTIME=000:10 IO=007553 

        RDR=000000 PRT=000738 PCH=000000 

        VVECTIME=000:00 TVECTIME=000:00  

  

#cp  query time #cp indicate user 

CP  QUERY TIME 

CP  INDICATE USER 

TIME IS  15:08:31  EST  TUESDAY  02/14/99 

CONNECT= 01:22:56 VIRTCPU= 000:07.50 TOTCPU= 000:11.82 

USERID=SQLDBA    MACH=XC  STOR=0009M VIRT=V  XSTORE=NONE  

IPLSYS=CMS      DEVNUM=00031 

PAGES:  RES=001499 WS=001472 LOCK=000000  RESVD=000000  

NPREF=000000  PREF=000000 READS=000135 WRITES=000022 

CPU  00:  CTIME=01:23  VTIME=000:08 TTIME=000:12 IO=009049 

        RDR=000000 PRT=000974 PCH=000000 

        VVECTIME=000:00 TVECTIME=000:00

 

The output shows that, during 71 seconds (CONNECT  advanced  from 01:21:45 to 

01:22:56) the  following occurred: 

RES The number of  virtual pages  in main storage increased by  two (1499-1497). 

READS 

Five  reads  from system paging DASD  (135-130) 

WRITES 

Four  writes to system paging DASD (22-18) 

VIRTCPU 

1.22  seconds  of  virtual machine time were used (07.50-06.28) 

 

16 Performance  Tuning  Handbook  



TOTCPU  

1.96 seconds  of  total CPU time were used  (11.82-09.86)  

IO 1496 I/O requests were issued (9049-7553)

There are four  important values that you  can calculate from  these numbers: 

Sampling Interval  

∆ CONNECT. The change in  elapsed  time between  CP  QUERY TIME 

commands. 

Main Storage Load  

(RES+ (∆  RES/2) )(4096)/(Total bytes  of  main storage). Indicates the 

average load on main storage.  

System  Paging DASD  Load  

(∆ READS+∆  WRITES)/sampling  interval. Indicates the  average load on 

system paging DASD.  

Total  Processor (CPU) Load  

(∆ TOTCPU/sampling  interval)x100. Indicates the  average percent of total  

CPU time your  virtual  machine is  using.  While  this looks like  an effective  

use measurement, it is  really  a measure  of  the load your  database machine 

is placing on the CPU.  

DASD  I/O Load  

∆ IO/sampling interval. Indicates the average load on the I/O system (tape  

and console I/O is also included, but not Paging or Spooling I/O).

For example, from the previous example: 

v    Sampling Interval: 71  seconds  (01:21:45  to 01:22:56) 

v    An average  of  1498 pages  of main storage were used. This converts to 6135808  

bytes or 5.85MB. If you knew, for example, that your processor  has 32MB  of  

main storage, you  could calculate  that the database machine was  using almost 

18.3% of it (5.85/32x100).  

v    System  Paging DASD Load:  0.127/second ((4+5)/71) 

v    Total CPU Load:  2.76% ( (1.96/71)x100 ) 

v    DASD I/O Load: 21.07/second (1496/71).

For more  information, refer  to the  VM/ESA:  CP Command and Utility  Reference 

manual.  

CICS  Monitoring  (CICSPARS  for VSE) 

This facility collects  performance  data  during on-line processing for later off-line 

analysis. Monitoring data is  recorded in the  CICS journal data sets. This data  can 

be formatted using the CICS Performance  Analysis Reporting System  (CICSPARS) 

field-developed  program. The  CICSPARS program is  used with  the VSE system for 

generalized performance  analysis reporting (DOS/GPAR)  to print  analysis reports 

and  summary reports of DB2 Server  for VSE  data as  user clocks  and  counters. 

CICSPARS collects performance  class data for two general areas, link usage  and 

call usage: 

v    Link usage  data collected 

–   Total number of link requests.  This corresponds to the  total number  of logical  

units of  work. 

–   Total number of link requests resulting  in a wait because all links are busy. 

–   Total time  waiting for links. 

 

Chapter  2. Measuring  Performance  17



–   Total  time holding links.  This corresponds to the  total time  for all logical units 

of  work.

v   Call usage  data collected 

–   Number  of  calls to the  database manager. This number can be greater than 

the  total number  of SQL statements issued  by  the application programs. This 

can  occur because  of  the  implicit connect support (for  CICS users  not required 

to provide  user ID  and  password information to the database  manager), the  

TPSP  support,  and  the fact that a single  SQL  statement  can result in multiple 

database  manager calls.  Multiple  calls may occur when  an SQL  statement has 

a large amount of  output.  

–   Number  of  failing calls to the database manager.  These are calls that result in 

negative  SQLCODEs.  

–   Total  time waiting for database manager calls to process.

The  CICS  monitoring facility automatically  associates all performance class data 

with the CICS transaction running  at the  time. This allows data reduction  

programs that process this information  to construct a performance  profile  for any 

given transaction  or call  summarized by  transaction  type. With  reference to the 

DB2 Server  for VSE  timings listed  previously, the transaction  profile  shown in 

Figure 1 can be created.  

 

 In  Figure 1, blocks (A) and  (B) represent  intervals during the  lifetime of the 

transaction when  other services within the CICS environment  are being  used. 

Because most of these other services are also represented in the  performance  class 

data, the use of  these  services can also be broken down, if required, in a manner 

similar to the breakdown shown for the database manager. Consequently,  the 

database manager is  integrated into  a composite picture of  each transaction’s 

performance. This allows  any transaction (or set of  transactions) experiencing 

unacceptable response times to be  investigated in a simple, systematic manner.  

Before the CICS  monitoring facility can be run, CICS must  be set up to process the 

clocks and  counters to be  used and the journals used to record  the  data. For 

information on  the entries required in various CICS tables, see  the  DB2 Server for  

VSE Program Directory. 

After the CICS tables  have been updated, the CICS monitoring facility  can be  

started by  using either  the  CICS CSTT transaction  or the  MONITOR=PER keyword 

of the CICS  DFHSIT macro. These methods are also shown in the DB2  Server for 

VSE Program Directory. 

Table 1 on page 19 shows how to relate the  DB2 Server  for VSE clocks to the 

DFHMCT entries. The specification of  the  keyword  ID maps to the clock definition. 

The specifications of  the  ID  keyword must use the  numeric values shown in 

Not
connected
to a link

(A)
(B)

Waiting
for a
link

Holding a link

CICS/VSE transaction

No pending
DB2/VSE
requests

Waiting
for
DB2/VSE
services

  

Figure 1. CICS  Transaction Time  Usage

 

18 Performance  Tuning  Handbook  



Table  1.  

 Table 1.  Relationship of  CICS DFHMCT ID Keywords to Clocks 

ID Keyword for  CICS/VSE 

DFHMCT Entry 

Defines  the Clock that Measures 

ID=(PP,16) 

ID=(PP,17) 

Time waiting for  a link 

  

ID=(PP,18) 

ID=(PP,19) 

Time holding  a link 

  

ID=(PP,20) 

ID=(PP,21) 

Time for  DB2  Server for VSE  processing 

  

  

The CICS  DFHMCT  entries also define the four  DB2  Server for VSE counters.  The 

argument for the  ID  keyword for these counters  must  be ID=(PP,22).  The order of 

the four counters is:  

v    Counter  1,  the number  of  link allocates 

v    Counter  2,  the number  of  link waits  

v    Counter  3,  the number  of  DB2 Server  for VSE requests 

v    Counter  4,  the number  of  DB2 Server  for VSE errors.

DB2 Server for VSE & VM  Tools 

Physical  Data Locations 

Disk Locations (VM) 

The file  definitions that the  application server uses to point to the directory, log,  

and  dbextent  disks appear in the  start  up message  stream. For example: 

sqlstart DB(SQLMACH1) 

Ready;  T=0.03/0.05  14:22:40  

ARI0717I Start SQLSTART  EXEC: 09/15/99 14:22:40 EDT. 

ARI0663I FILEDEFS in  effect  are: 

ARISQLLD DISK     ARISQLLD  LOADLIB   Q1  

BDISK    DISK     300  

LOGDSK1  DISK     301  

LOGDSK2  DISK     302  

DDSK1    DISK     303  

DDSK2    DISK     304  

DDSK3    DISK     305  

DDSK4    DISK     306  ...

This database has its directory disk  at virtual address 300, its log disks at 301 and  

302, and its  dbextents from 303 to 306. The  physical minidisk locations are defined  

in the VM Directory.  To find out  the  DASD type, volume identifier, and size  of  

each disk, type: #CP Q V DASD from the  operator console.  For example: 

 

Chapter  2. Measuring  Performance  19



#cp  q v dasd ...
DASD 0300 3390 PA326B R/W      6 CYL  ON  DASD  168B 

DASD 0301 3390 PA3268 R/W      3 CYL  ON  DASD  1688 

DASD 0302 3390 PA3268 R/W      3 CYL  ON  DASD  1688 

DASD 0303 3390 PA326A R/W      5 CYL  ON  DASD  168A 

DASD 0304 3390 PA326A R/W      5 CYL  ON  DASD  168A 

DASD 0305 3390 PA326A R/W      2 CYL  ON  DASD  168A 

DASD 0306 3390 PA3269 R/W      2 CYL  ON  DASD  1689 ...

Data Set Placement  (VSE)  

In  DB2  Server for VSE,  dbextents are defined as  VSAM  datasets. To find out  their  

dataset names, look in the database identification procedure  for your server 

(shipped as  an example procedure  ARIS72DB),  which is  executed just before the  

ARISQLDS start up job  step  in the  start up job  stream. (Procedure ARIS72DB is  

only an example. The database identification procedure for your  server  may have a 

different name and  point  to different disks.) 

//  DLBL BDISK,’SQL.BDISK.DBASE.DB’,,VSAM,CAT=SQLCAT  

//  DLBL LOGDSK1,’SQL.LOGDSK1.DBASE.DB’,,VSAM,CAT=SQLCAT  

//  DLBL LOGDSK2,’SQL.LOGDSK2.DBASE.DB’,,VSAM,CAT=SQLCAT  

//  DLBL DDSK1,’SQL.DDSK1.DBASE.DB’,,VSAM,CAT=SQLCAT  

//  DLBL DDSK2,’SQL.DDSK2.DBASE.DB’,,VSAM,CAT=SQLCAT  

//  DLBL DDSK3,’SQL.DDSK3.DBASE.DB’,,VSAM,CAT=SQLCAT  

//  DLBL DDSK4,’SQL.DDSK4.DBASE.DB’,,VSAM,CAT=SQLCAT  

//  DLBL DDSK5,’SQL.DDSK5.DBASE.DB’,,VSAM,CAT=SQLCAT  

//  DLBL DDSK6,’SQL.DDSK6.DBASE.DB’,,VSAM,CAT=SQLCAT

 

You can find the size  and  location  of  the  datasets either by  using the Access 

Method Services  (IDCAMS) utility (part of  VSAM  LISTCAT),  or through the VSE 

interactive interface. Both are documented in the DB2 Server  for  VSE & VM 

Operation manual.  

Initialization  Parameters  

When you  initialize the application  server, important information  is  presented on 

the operator  console: 

 

20 Performance  Tuning  Handbook  



sqlstart DB(SQLMACH1) ...
ARI0020I Virtual machine addressing mode  = 31  

         Virtual machine  storage  size  = 24576KB ...
ARI0015I SYNCPNT parameter value is  Y.  ...
ARI0016I TRACEBUF parameter value is  0. 

ARI0016I CHKINTVL parameter value is  150. 

ARI0016I NCSCANS parameter value is  30. 

ARI0016I NCUSERS parameter value is  5.  

ARI0016I NDIRBUF parameter value is  100. 

ARI0016I NLRBS parameter value is  2520. 

ARI0016I NLRBU parameter value is  1000. 

ARI0016I NPACKAGE parameter value is  10. 

ARI0016I NPACKPCT parameter value is  30. 

ARI0016I NPAGBUF parameter value is  100. 

ARI0016I SLOGCUSH parameter value is  90. 

ARI0016I SOSLEVEL parameter value is  10. 

ARI0016I DISPBIAS parameter value is  7. 

ARI0016I LTIMEOUT parameter value is  0. 

ARI0283I Log analysis is  complete. 

ARI0282I LUW UNDO is  completed. 

ARI0281I LUW REDO is  completed. 

ARI0143I The application server  has  been  initialized  

         with the following values: 

         CHARNAME = INTERNATIONAL, DBCS = NO, CHARSUB = SBCS, 

         CCSIDSBCS = 500, CCSIDMIXED = 0, CCSIDGRAPHIC = 0.  

ARI0060I Database manager  initialization complete. 

ARI0045I Ready for  operator  communications.

 

You  can find the value of  some  of these parameters from the  console log, or from 

the start up  options file in VM,  or from  an options member that is  specified in the 

PARM list  of  the  start up EXEC  statement. You can also use the ’SHOW 

INITPARM’  operator command to display most of the parameters when the  server  

is running  in multiple user mode. For more information,  refer to the DB2  Server  for 

VSE & VM Operation  manual. 

CIRD  Transaction  (CICS)  

CIRD is  a DB2 Server  for VSE-supplied transaction, that lets you  display a 

snapshot of  the  links  between CICS and the  application server. While it does  not 

provide  historical information, it can  help you diagnose problems with individual  

transactions or get an immediate  feel for the  level  of  link contention  between CICS 

and  the server. 

It contains the  following information: 

v    Which users are waiting for a link 

v    Which ones are currently  using a link to access the  server  

v    Which ones are holding a link  but not accessing  the application server  

v    Which ones previously  held  a link,  but  currently  do  not.

For example: 

 

Chapter  2. Measuring  Performance  21



DBDCCICS CONNECTED TO  SERVER  SQLDB1_NEWYORK_INV. 

STATUS  OF  ONLINE  DB2 FOR VSE APPLICATIONS: 

  

TRANSACTIONS  WAITING TO ESTABLISH A LINK TO THE APPLICATION  

SERVER  ARE: 

 TASKNO  TRANID  TERMID  USERID    USERDATA WAIT  TIME 

 ------  ------  ------  -------- -------- --------- 

 000033  MKE2                   L222     00:01:32  

 000025  INV    L224   JIM               00:08:32 

  

TRANSACTIONS  HOLDING A LINK  AND  NOW  ACCESSING THE  APPLICATION  

SERVER  ARE: 

 TASKNO  TRANID  TERMID  USERID    USERDATA TIME  USED    TOTAL LUW  

                                        FOR  CURRENT  TIME 

                                        ACCESS  

 ------  ------  ------  -------- -------- ------------  --------- 

 000019  CISQ          DEPT222  L199     00:01:32      00:03:48 

 000037  INV    L209   TERRY             00:00:01     00:00:03 

  

TRANSACTIONS  HOLDING A LINK  TO  THE APPLICATION SERVER  BUT  NOT 

USING ARE: 

 TASKNO  TRANID  TERMID  USERID    USERDATA TIME  SINCE   TOTAL LUW  

                                        LAST  ACCESS   TIME 

 ------  ------  ------  -------- -------- ------------  --------- 

 000003  CISQ          WILLIAM  L210     00:07:01      00:10:56 

  

TRANSACTIONS  WHICH PREVIOUSLY ACCESSED THE APPLICATION SERVER  

(NOT HOLDING  LINK):  

 TASKNO  TRANID  TERMID  USERID    USERDATA TIME  SINCE 

                                        LAST  ACCESS  

 ------  ------  ------  -------- -------- ------------  

 000003  MKE2          ROBERT    L210     00:20:04  

  

TIME=14:28:23  DATE=04/30/99

 

For information  on how to display CIRD transaction  information, and  detailed 

information on  how to use and  interpret  CIRD display information,  refer to the 

DB2 Server  for  VSE System Administration manual. 

COUNTER Operator  Command 

While a detailed description of  this operator  command is included in the DB2 

Server for  VSE  & VM Operation  manual, this section includes an  example of  how to:  

v   Use the command with the  RESET operator  command 

v   Interpret the counter  values 

v   Turn these values into  performance indicators.

After resetting the counters (with the RESET operator  command) and performing  

several queries, the  COUNTER * command was issued: 

 

22 Performance  Tuning  Handbook  



reset * 

Counters reset at   DATE=’09-06-99’   TIME=’14:27:00’  

ARI0065I Operator command  processing is  complete. 

counter * 

Counter values  at   DATE=’09-06-99’   TIME=’14:58:12’  

 Calls to RDS                   RDSCALL  :  68 

 Calls to DBSS                  DBSSCALL:  139 

 LUWs started                   BEGINLUW:  58  

 LUWs rolled back               ROLLBACK:  11  

 System  checkpoints  taken       CHKPOINT:  1 

 Maximum locks exceeded         LOCKLMT  :  0 

 Lock escalations               ESCALATE:  0 

 Waits for lock                 WAITLOCK:  4 

 Deadlocks detected             DEADLCK  :  1 

 Looks in page buffer            LPAGBUFF:  298722  

 DBSPACE page reads             PAGEREAD:  200134  

 DBSPACE page writes             PAGWRITE:  97451 

 Looks in directory buffer       LDIRBUFF:  5054 

 Directory block reads          DIRREAD  :  4014 

 Directory block writes         DIRWRITE:  120 

 Log page reads                 LOGREAD :  2 

 Log page writes                LOGWRITE:  40  

 Total DASD reads               DASDREAD:  4524 

 Total DASD writes               DASDWRIT:  49 

 Total DASD I/O                  DASDIO   :  3986 

 Lock timeouts detected          LTIMEOUT:  2 

 ARI0065I Operator command  processing is  complete.

 

There are several important values that you can calculate  from the  COUNTER 

command: 

Sampling Interval  

∆ TIME. The elapsed  time between the  RESET and the COUNTER 

command. For more information  on sampling intervals, refer to 

“Monitoring Interval”  on page 6.  

LUW  Load  

BEGINLUW/Sampling Interval. This is  the average  rate at which  the  

database manager receives  logical  units of work. It measures the  average 

load on the  database machine or partition.  You  can also use it as  a relative 

measure of  throughput  (refer to “Throughput” on page 5).  

Checkpoint Load  

CHKPOINT/sampling interval. This is the  average rate of  checkpoints. 

Checkpoints are overhead; they represent an  additional  load on the 

database machine.  For more  information  on checkpoint processing, refer  to 

“Managing Checkpoints” on page 202. 

Deadlock Performance   

( DEADLCK/BEGINLUW )x100.  Indicates the percentage of  time  a logical  

unit of  work  is rolled back  because  of  a potential deadlock. Ranges  from 0 

to 100% where  0% indicates that no LUWs were rolled back. While  some  

potential deadlocks  are a normal  occurrence in any multiple  user system, a 

value above  5% should  be  investigated. For more  information, refer  to 

“Deadlock” on page 101. 

 This information can also be  expressed as the  deadlock hit  ratio 

(BEGINLUW/DEADLCK). Any value over 20 is usually acceptable.  

Waitlock Performance  

( WAITLOCK/RDSCALL )x100.  Indicates the  percentage of time a call to 

 

Chapter  2. Measuring  Performance  23



the  relational data  system had  to wait because it needed  a resource that 

was  blocked by  an incompatible  lock held  by  another call. Ranges from 0 

to 100%  were 0%  indicates no waits.  While  waits are a normal  occurrence 

in  any multiple user system,  a value above 10%  should  be investigated. For 

more  information, refer  to “Locking Contention”  on page 94. 

Note:   While this value gives you  an indication  of  how often an agent 

waits, it does not indicate the  length of  each wait.  Always  listen to 

your users and look  for agents that are stuck in a lock  wait with the  

operator SHOW  LOCK  commands, refer  to “Locking Contention”  on 

page 35. 

This information  can also be expressed as  the waitlock hit  ratio 

(RDSCALL/WAITLOCK).  Any  value over 10 is usually acceptable.  

Lock Request Block Performance  

ESCALATE+LOCKLMT.  Indicates the  number of  times that a logical unit 

of  work  reached  the user (NLRBU) or system (NLRBS) lock limit.  This 

value should be close to zero,  which  indicates that there  was no shortage  

of  lock  request  blocks  during the monitoring interval. For more  

information, refer to “Lock Escalation”  on page 99.  

Local Buffers  Effective Use  

(  1-PAGEREAD/LPAGBUFF  )x100.  Indicates the percentage of  time  the 

database manager found a page in the local  buffers  and  did  not need  to 

retrieve  it from  DASD.  Ranges  from 0 to 100%, where 100% means that  

every  page the  database manager needed was in the local  buffers. For 

more  information  on the  local buffer pool,  refer  to “Database  I/O” on page 

85.  

 This information  can also be expressed as  the local buffers hit ratio  

(LPAGBUFF/PAGEREAD).  

Directory Buffers  Effective Use  

(  1-DIRREAD/LDIRBUFF )x100.  Indicates the  percentage of  time the 

database manager found a page in the directory  buffer pool and  did  not 

need  to retrieve it from DASD. Ranges from 0 to 100%, where 100%  means 

that every  directory page the  database manager needed  was in the 

directory  buffer pool. For more information on the directory buffer pool,  

refer  to “Database  I/O” on page 85. 

 This information  can also be expressed as  the directory buffers  hit ratio 

(LDIRBUFF/DIRREAD).

For  example, from the previous  output: 

v   Sampling  Interval: 1872 seconds  (14:58:12-14:27:00)  

v   LUW Load:  3.54/second (58/1872) 

v   Checkpoint Load:  2/hour  (1/1872*3600) This value is  not statistically valid. You  

need  to monitor checkpoints over  a longer  period  of  time  for an accurate  

calculation. 

v   Deadlock Performance: 1.72% (1/58)X100. While  this value  is statistically 

questionable  it is far enough below  the recommended value of  5% that deadlock 

should  not be considered a significant problem. 

v   Deadlock Hit Ratio: 58 (58/1). 58 is greater  than 20 and  should  be acceptable.  

v   Waitlock Performance  5.88% (4/68)X100.  Below  10% and not a problem. 

v   Lock Request Block Performance: 0 

 

24 Performance  Tuning  Handbook  



v    Local Buffers Effective  Use:  33% ( 1-200134/298722 )x100.  Check the type of  

transactions you are running. Unless  you are performing update  intensive 

transactions,  this  value should  be much higher.  Consider increasing the 

NPAGBUFF initialization  parameter. 

v    Local Buffers Hit Ratio: 1.49 (298722/200134) 

v    Directory  Buffers Effective  Use: 20.58% (  1-4014/5054 )X100. This value  is as  bad 

as the  local buffer use value. Consider increasing the NDIRBUF initialization  

parameter. 

v    Directory  Buffers Hit Ratio: 1.26 (5054/4014).

DB2 VM  Data  Spaces Support  

DB2  VM  Data  Spaces Support also includes additional counters that can help you 

monitor the performance  of  the  DASD I/O systems. Each storage pool has its own 

set of  four  counters.  There is  also  a set for internal dbspaces  and a set for the  

directory.  For a complete description of all these  counters and  how  to use them,  

refer  to the DB2 Server  for  VSE & VM Operation  manual.  

SHOW Commands 

The SHOW  commands, documented in the DB2 Server  for  VSE & VM Operation  

manual,  provide information  on how your  application server is performing. This 

section includes examples of how to use these  commands  to understand how the  

server  is managing:  storage, concurrency, locking. 

Storage 

Available Storage Pool  Space:    The SHOW DBEXTENT  command displays  

physical  storage information about each storage pool defined. For example, 

consider a database with an SOSLEVEL of  10% (refer  to “Short on Storage  

Cushion”  on page 59):  

show dbextent  

POOL    TOTAL     NO. OF       NO. OF       NO.  OF      %     NO. OF 

 NO.    PAGES   PAGES USED  FREE PAGES  RESV PAGES  USED   EXTENTS   SOS 

  1      741       730         11            20        99       1      * 

  2      171       11           160          20        6       1 

  3      114       56           58            20        49       1 

  4      114       0           114          20        0       1 

FREE   22500

 

The asterisk (*) under the SOS column indicates that storage pool number one is  

short on storage. The flag is set if the difference between  the  NO. OF PAGES USED 

and  the TOTAL PAGES is  less than  the  SOSLEVEL  percentage times the TOTAL PAGES. 

In  this case,  pool one has 99%  (730/741 X  100) of  its pages used  or 1%  or its pages 

are free. Because this is less than  the 10% SOSLEVEL, the flag is set. 

Note:   The NO. OF PAGES USED includes the number of  shadow pages  in the pool.

Proportion of  Available Pages:   The SHOW DBSPACE command shows the  

division of pages between  header,  data, and index pages  in a dbspace. For 

example: 

 

Chapter  2. Measuring  Performance  25



show dbspace  3 

 TYPE      NUMBER       NUMBER  OF        % FREE     NUMBER  OF  

OF  PAGES  OF  PAGES   OCCUPIED PAGES    SPACE     EMPTY PAGES 

 HEADER         8         1 ( 12 %)       73  %            0 

 DATA       1365       756  ( 55  %)      25  %           392 

 INDEX       128        27  ( 27  %)      79  %           18 

ARI0065I Operator command processing is complete.

 

(The SYSTEM.SYSDBSPACES catalog table contains additional information  on 

dbspaces, refer  to page 39.)  

This example shows more than half of  the  data page space is occupied. It also  

shows a large number of empty data pages, which indicates that you may  need to 

drop and reacquire (reorganize)  this dbspace. As an alternative  to reorganizing the  

dbspace, you can  use the VM  utility SQLRELEP to release  the  empty pages. In 

VSE, bringing  up the  server  with STARTUP=P can  be used  to release  empty pages. 

For more information, refer  to “Running out of Dbspace Pages” on page 65. 

Note:  This command performs  a dbspace  scan, which  can  take a significant 

amount of  time  and  affect the performance  of  other  users  if the dbspace  is 

large.  Refer to “Dbspace  Scans”  on page 118.

Available  Dbextent Storage:    The SHOW POOL  command displays physical 

storage information about  each dbextent  in a storage pool.  

For example, consider a database  with two  storage pools and  an SOSLEVEL  of  

10% (refer to “Short on Storage Cushion” on  page 59 ): 

show pool 

  

POOL NO.  1:          NUMBER  OF  EXTENTS  =  3 

  

EXTENT   TOTAL    NO.  OF         NO.  OF       NO.  OF     % 

NO.      PAGES  PAGES USED    FREE PAGES  RESV PAGES  USED 

  1      285      274             11                    96  

  2      285       33            252                   11  

  3      741        0           741                     0 

TOTAL   1311       307           1004          20       23  

  

POOL NO.  2:          NUMBER  OF  EXTENTS  =  1        SHORT ON  STORAGE 

  

EXTENT   TOTAL    NO.  OF         NO.  OF       NO.  OF     % 

NO.      PAGES  PAGES USED    FREE PAGES  RESV PAGES  USED 

  4      285      260             25                    91  

TOTAL    285       260            25          20        91 

  

  

FREE AREAS:   NUMBER  OF DELETED  EXTENTS  =  0 

  

EXTENT   TOTAL 

 NO.     PAGES 

 END     10350 

TOTAL   10350 

  

Maximum  number  of  DBEXTENTs = 64  

ARI0065I Operator command processing is complete.

 

 

26 Performance  Tuning  Handbook  



This example  shows that pool number two  is short on storage (SOS).  While 

dbextent  number one  has less storage available  than dbextent  number  four, the  

pool it  belongs to (pool one) is not short of  storage because it still contains two  

dbextents, each containing  a significant amount of  storage. 

Virtual Storage:   The SHOW STORAGE command displays how much  of  the 

database machine or partition’s  virtual  address  space has been allocated to various 

storage queues, refer  to “Storage  Queues”  on page 46.  Two storage  queues  are 

created for: 

v    Each real agent 

v    The OPERATOR agent,  used  to process operator commands  

v    The CHECKPT agent,  used  to process checkpoints 

v    The RECOVERY agent,  used  to write archives  

v    An area called  PROTOTYPE that is used  for global  storage blocks such  as 

accounting records. 

v    The TCPIP agent, used to handle TCP/IP  communications.  This agent is ONLY  

present if you  have TCP/IP  communication started by your  server.

Storage  that has been allocated to control  blocks and programming structures  that 

must  reside below  the 16MB line are indicated by a B in the LOC column. Storage 

that  may be  allocated anywhere  above or below the  line is  indicated by  an A in the 

LOC column.  

The SHOW  STORAGE  command displays  how much of  the  database machine or 

partition’s  address space has been ALLOCATED to each queue. It also displays how 

much of  it  is  actually IN USE and  how much is FREE. “Free space” is space that has 

been reserved  by the  queue but is not currently  in use. 

Space allocated to a specific real agent queue (including “free” space)  is released at 

the end of  a logical unit of work  (LUW). (A minimum  amount of  space,  8KB, 

always  remains allocated  for each real agent queue.)  

The HIGHSTOR column contains the  maximum amount of  storage allocated to a 

queue since  the RESET HIGHSTOR operator command was  last issued. One high 

storage entry exists for storage that is  restricted to below the  16MB  line and  one  

exists  for storage that can reside  either above  or  below the  line. 

A USERID column is  also included  for each real agent.  It indicates the user ID that 

held  the real agent when the A, or B high  storage value was set. 

SUMMARY contains the total amount of  virtual  storage allocated to all the QUEUES.  It 

also contains  the total amount of virtual storage allocated to the entire  database 

manager SYSTEM.  These values include the  storage allocated to the queues  plus  the 

storage used by the database manager itself for structures  such  as trace buffers. 

 

Chapter  2. Measuring  Performance  27



show storage  

Status  of  Storage  at  DATE=’01-15-99’  TIME=’11:57:28’ 

  

AGENT      LOC  ALLOCATED     IN USE       FREE   HIGHSTOR   USERID  

OPERATOR    A        4096       1104       2992        4096 

            B        4096          0       4096       4096  

CHECKPT      A        2048          0       2048        2048 

            B        2048          0       2048       2048  

RECOVERY    A        4096          0       4096        4096 

            B        4096          0       4096       4096  

1           A       16384       1952      14432     144816   MARISSA 

            B        8192          0       8192       8192  

2           A       72776      67360       5416      136472   LAURA 

            B        8192          0       8192       8192  

3           A        8192       2912       5280      161200   ANDREW  

            B        8192          0       8192       8192  

4           A       16384       3936      12448     185016   DAVID 

  

            B        8192          0       8192       8192  

5           A       16384       2992      13392     241600   DANIEL  

            B        8192          0       8192       8192  

PROTOTYPE   A     1154768     1053240     101528     1218784  

            B      307232      299136        8096     307232  

SUMMARY  

QUEUES       A     1295128     1133496     161632     1702992  

            B      358432      299136       59296     358432  

PACKAGES    A      245760      201000      44760     270048  

SYSTEM       A     1295952                           1703816  

            B      388936                            388936  

ARI0065I Operator command processing is complete.

 

Concurrency 

The SHOW  ACTIVE command displays  the status of  active  real agent structures. 

Agents are used  by  the database manager to divide processor  time between 

multiple users and its own internal tasks, such as checkpoint  processing and 

operator commands.  For more  information, refer  to “Agents”  on page 88.  

Use this command to:  

v   Identify the  current state  of  an active agent — for example, whether it is 

currently  processing work or waiting, and  if the  latter,  what  its waiting  for.  

v   How many agents are available, and  how many are currently  being  used.

For example: 

show active  

Status  of  agents:  

   Checkpoint agent is  not  active. 

   User Agent:    1 User ID:  SMITH    is  R/W APPL   7B4  

      Agent is      processing and is  in  I/O       Wait. 

   User Agent:    2 User ID:  MICHAEL  is  R/O SUBS   7B9  

      Agent is  not  processing and is  in  communication Wait. 

   User Agent:    3 User ID:  JESSICA  IS  R/O APPL   5A4  

      Agent is  processing an  operator command. 

   User Agent:    4 User ID:  TESTUSER IS  R/W APPL   7BB  

      Agent is      processing and is  in  I/O       Wait. 

   User Agent:    5 User ID:  MACNIELL IS  R/O APPL   7B9  

      Agent is  not  processing and is  in  communication Wait. 

   0    agent(s)  not  connected to  an APPL or  SUBSYS.  

ARI0065I Operator command processing is complete.

 

 

28 Performance  Tuning  Handbook  



This display shows that there are five real agents available  and they are all 

currently being  used (0     agent(s) not connected). It also shows that agents one, 

two, four, and five are all processing work but  are waiting for either 

communications or an I/O operation.  Agent three  is  currently processing an 

operator  command. 

The SHOW  USERS  command (VM systems only)  displays  the  status  of both 

pseudo and  real agent structures. (For  information  on these  structures,  refer to 

“Agents”  on page 88.) You  can use it to see  how  many, if any,  pseudo agents are 

waiting for real agent structures. For example, consider a database machine that 

owns seven disks:  four  dbextents,  one  directory disk, and  two log disks (do  not 

include the  service or the production  disk): 

show users 

Status  of  connected users: 

  6  users are connected to the application  server.  

  3  Users are active. 

     User ID: DAVE      SQL ID: SMITH  not  processing 

     User ID: POTTS     SQL ID: BRIAN  not  processing 

     User ID: TUNA      SQL ID: FISH 

  2  Users are waiting. 

     User ID: KIM       SQL ID: TASK115 

     User ID: MICHAEL   SQL ID: MIKE2 

  1  Users are inactive. 

     User ID: KOHLMANN  SQL ID: PETER 

  0  Agents  are  available. 

 44   User connections are available. 

ARI0065I Operator command  processing is  complete.

 

This example  shows that: 

v    MAXCONN  is set to 58 (44+6+7+1). 44 connections are available, six users are 

connected, seven  disks are connected to the  machine,  and one for the  connection  

to *IDENT. (Refer to “VM (MAXCONN)” on page 92.) 

v    NCUSERS  is set to 3 (3+0=3). All three real agents are occupied. (Refer to 

“Tuning Parameters (NCUSERS)” on page 89.) 

v    Two users (KIM and  MICHAEL) are waiting for real agents.  Neither KIM nor 

MICHAEL will become active  until DAVE, POTTS, or TUNA complete  their  

current logical  unit of  work. 

v    One user (KOHLMANN)  is inactive; it is  neither waiting for a real agent nor  is 

it processing work. 

v    User ID  TUNA is  currently  processing work.

Not  only  does  the  SHOW  CONNECT command display much  of the information  

included  with the  SHOW  ACTIVE and SHOW  USERS  operator  commands, it also 

includes:  

v    Information  that uniquely identifies DRDA*  application  requestors  

v    The timestamp when the  current state began 

v    The timestamp when the  user was  connected to the application server  

v    The CPU time  used  since the  user was  connected to the server  (only  displayed if 

you start  the server with accounting  on).

 

Chapter  2. Measuring  Performance  29



For the  VSE System  

The  VSE SHOW  CONNECT statement  contains several additional  values.  See  

“VSE  SHOW CONNECT” on  page 33. 

You  can use this information to force specific users to end their work  and  

terminate their conversations  with the  server. Refer to the DB2 Server  for  VSE 

& VM Operation manual.  

show connect  

Status  of  Connected Users                         1999-02-04  10:25:33 

   Checkpoint agent is  not  active. 

   User Agent:    1   User-ID:  SHUM     SQL-ID:  SHUM 

      is  R/W  APPL   7B1 

      Agent is  processing with LPAGEBUF=1032 

                  State started: 1999-02-04  10:15:30 

                  Conversation  started: 1999-02-04  10:12:45 

                  CPU  time: 00:00:01 

   User Agent:    2   User-ID:  SQLUSRSS SQL-ID:  SQLUSRSS 

      is  R/O  APPL  30BD 

      Agent is  not  processing and is  in  communication  wait. 

                  State started: 1999-02-04  09:48:28 

                  Conversation  started: 1999-02-04  09:48:00 

                  CPU  time: 00:00:02 

                  LUWID:  CAIBMOML.*IDENT.A532D460755B.0001 

                  EXTNAM:  SQLUSRSS.1 

                  Requester: SQLDS/VM  V3.3.0    at TORVMLB4 

   User Agent:    3   User-ID:  PETERSON SQL-ID:  PETERSON 

      is  R/O  APPL  3758 

      Agent is  processing and is  in  LOCK  wait. 

                  State started: 1999-02-04  10:23:11 

                  Conversation  started: 1999-02-04  10:22:15 

                  CPU  time: 00:00:01 

                  LUWID:  CAIBMOML.STLLU.A5241A50FABD.0001 

                  EXTNAM:  PETERSON   .BATCH    .PETERSON.DSNESPRR 

                  Requester: DB2    V2.3.0    at  IBMREGRDBSTL0012 

   User-ID: SWAGRMAN SQL-ID:  SQLDBA 

      User is  waiting  for  an agent 

                  State started: 1999-02-04  10:22:11 

                  Conversation  started: 1999-02-04  10:03:05 

                  CPU  time: 00:00:02 

                  LUWID:  IBMNET07.*IDENT.AB457DFF69BC.0001 

                  EXTNAM:  SWAGRMAN.1 

                  Requester: SQLDS/VM   V3.3.0    at  TOROLAB3 

   User-ID: JAVIER   SQL-ID:  JAVIER 

      User is  inactive 

                  State started: 1999-02-04  10:02:11 

                  Conversation  started: 1999-02-04  09:27:49 

                  CPU  time: 00:00:03 

                  LUWID:  IBMNET07.*IDENT.AB457DFF6ABC.0001 

                  EXTNAM:  JAVIER.1 

                  Requester: SQLDS/VM   V3.3.0    at  TOROLAB 

  3  Users are  active.  

  1  Users are  waiting. 

  1  Users are  inactive. 

  0  Agents  are available. 

  94   User connections are  available. 

ARI0065I Operator command processing is complete.

 

 

30 Performance  Tuning  Handbook  



The current  time is 10:25:33. There are three active users:  

v    Agent 1 (SHUM) has been processing for approximately ten  minutes 

(10:25-10:15), and  has used one  second of  CPU time  since it  connected to the 

server. 

v    Agent 2 (SQLUSRSS) has been in a communication wait for almost  37 minutes, 

and has used  two seconds  of  CPU time. 

v    Agent 3 (PETERSON) has been in a lock wait for a little less than two minutes, 

and used  one  second of  CPU time.

There are two  other connected users. One  is waiting  for an agent,  the  other is 

inactive. 

v    User-ID  SWAGRMAN  has been waiting for an agent for a  little over three  

minutes, and  has used two seconds  of  CPU time. 

v    Finally,  User-ID  JAVIER has been inactive for over 23 minutes, and  has used 

three seconds  of  CPU time.

You  can also determine  from the  additional lines of  information  (LUWID, 

EXTNAM,  Requester) that all the  requestors, with the exception  of Agent 1,  are 

DRDA requestors. 

The example  below an agent is  executing a stored procedure. 

 

Chapter  2. Measuring  Performance  31



show connect   

   Status  of  Connected Users                  1999-09-30  08:56:42 

   Checkpoint agent is  not  active. 

   User Agent:    1   User-ID:  SQLUSRKJ SQL-ID:  SQLUSRKJ 

      is  R/O  APPL  1666 

      Agent is  not  processing and is  in  communication  wait. 

        State started: 1999-09-30  08:56:39 

        Conversation started: 1999-09-30  08:56:12 

        Protocol: SQLDS 

        Package: SQLDBA.MAINPGM      Section:  4 

        Procedure: PROC1             Modname:   MYPROC  

        Procedure Package: SQLDBA.MYPROC       Section:  4 

   User Agent:    2   User-ID:  SQLUSRJR SQL-ID:  SQLUSRJR 

      is  R/O  APPL  1667 

      Agent is  not  processing and is  waiting  for a stored  procedure 

      server  in group GROUP1  

        State started: 1999-09-30  08:56:39 

        Conversation started: 1999-09-30  08:56:12 

        Protocol: SQLDS 

        Package: SQLDBA.MAINPGM2     Section:  3 

   User Agent:    3   User-ID:  SQLUSRTH SQL-ID:  SQLUSRTH 

      is  R/O  APPL  1668 

      Agent is  processing with LPAGEBUFF=1032 

        State started: 1999-09-30  08:56:39 

        Conversation started: 1999-09-30  08:56:12 

        Protocol: SQLDS 

        Package: SQLDBA.MAINPGM3     Section:  4 

        Procedure: PROC3             Modname:   MYPROC3  

     Procedure Package: SQLDBA.MYPROC3      Section: 2 

   User Agent:    4   User-ID:  SQLUSRJR SQL-ID:  SQLUSRTL 

      is  R/O  APPL  1669 

      Agent is  not  processing and is  waiting  for stored  procedure 

      PROC4 AUTHID  SQLUSRTL  to  be started  

        State started: 1999-09-30  08:58:00 

        Conversation started: 1999-09-30  08:57:35 

        Protocol: SQLDS 

        Package: SQLDBA.MAINPGM4     Section:  3 

   4  Users are active. 

   0  Users are waiting. 

   0  Users are inactive. 

   2  Agents  are available. 

   2  User connections are  available. 

  

 ARI0065I  Operator command  processing is complete. 

 

In  the  example  above: 

v   The information  for User Agent 1 shows both Package and Procedure Package  

information, which means that the  agent is  currently running  a stored 

procedure. In  this example, Agent 1 is  running the package 

SQLDBA.MAINPGM, and  SQLDBA.MAINPGM  has called the  stored procedure  

executing  the package SQLDBA.MYPROC. The agent is in communication  wait, 

which  in  this case means that the stored procedure  is processing,  and the 

database manager is waiting for the procedure  to end or to pass another SQL  

command. 

v   The information  for User Agent 2 shows Package information, but  no  Procedure 

Package information. This means that the agent is running the main  program, 

which  in  this example  is SQLDBA.MAINPGM2. The  agent is  waiting  for a 

stored procedure  server  in group GROUP1, which means that it has issued  an 

SQL  CALL  statement,  but no stored procedure servers  are available in the  group 

in  which  the procedure  can run (GROUP1). 

 

32 Performance  Tuning  Handbook  



v    The information for User Agent 3 shows both  Package and  Procedure Package 

information, which  means that the agent  is currently running a stored 

procedure. In  this  example, Agent 3 is running  the package 

SQLDBA.MAINPGM3, and SQLDBA.MAINPGM3 has called  the stored 

procedure executing  the package SQLDBA.MYPROC3. The agent is  processing,  

which means  that the  database manager is currently executing an SQL  command 

that was  passed to it by the  stored procedure.

VSE SHOW CONNECT 

If a  CICS user requests that the  operator terminate a CICS transaction  containing 

DB2  Server  for VSE statements, the  operator should first force the associated DB2 

Server  for VSE  agent by  using the  FORCE  command before terminating the  

transaction. Prior to SQLDS Version  3 Release 5, the  operator  may not be able to 

determine which  agent to force, because multiple agents may use the same DB2  

Server  for VSE  user ID. Furthermore,  if the agent  is not forced  before the 

transaction  is terminated, the  resource adapter may  encounter an error and shut  

itself  down. This would cause the links to DB2  Server for VSE through that 

particular resource adapter to be lost.  In SQLDS Version 3  Release 4,  only  the 

CICS  task number  representing the AXE  transaction is  displayed, and  only  for 

remote (DRDA)  users. 

Operators can now identify  which agent should  be forced by  displaying  the CICS 

task number, the  CICS terminal ID, and  the RMID for all local CICS users  as part 

of  the output for the SHOW  CONNECT command.  This information  will be  

displayed for both VSE and  VM  (Guest Sharing) users. 

The additional  information on the SHOW  CONNECT command will  enable  the 

operator  to identify which  agent should be forced. This is  accomplished by  the  

following steps: 

1.    The user tells the operator to cancel  the  task associated with a particular 

terminal  ID. Alternatively, they may  ask that a specific task be  terminated. 

2.    The operator  then  issues  the  SHOW CONNECT command to determine which 

agent  is associated with either the  task ID or  the terminal  ID  that was specified 

by  the  user.  

3.    The operator  can then force the correct  agent and then  terminate the  CICS 

transaction.

The  CICS  task  number, CICS terminal  id,  and  RMID will be displayed for all local 

(VSE  or VM  Guest Sharing) CICS transactions whenever the agent  is in work. The 

CICS  terminal ID may  contain a value  of  'N/A' indicating  that the terminal  ID  is 

not available, such as  when a user issues  queries through ISQL.  The CICS task 

number, the CICS  terminal  id,  and the RMID will not be  displayed for batch users, 

or for agents whose work  status  is NIW (not in work).  For remote (DRDA) users,  

only  the CICS  task number representing the  AXE  transaction will be  displayed; the  

CICS  terminal id and  the RMID will not be  displayed. 

When  a CICS  transaction  is using a release of  the Resource Adapter prior to 

Version  3 Release 5,  the CICS terminal  id and the  RMID are not available  to the  

database server  and  'N/A' will be displayed. 

Included  below are sample outputs for each of  the  cases where  additional  

information  may be  displayed. 

 

Chapter  2. Measuring  Performance  33



SHOW CONNECT for CICS Transaction (Version  3 Release 5):  

 

SHOW CONNECT for ISQL Query: 

 

SHOW CONNECT for Agent Not in Work:  

 

SHOW CONNECT for Batch User: 

 

F4 004 User Agent:  1 User-ID:  JOAO  SQL-ID: JOAO 

F4 004 is R/O  APPL  12BCF 

F4 004 Agent is processing and is in communication wait. 

F4 004 State started: 1999-09-02 15:21:22  

F4 004 Conversation started:  1999-09-02 15:21:22 

F4 004 Task no.:  147 RMID: 32 Term. id:  077D 

Figure 2. CICS  Transaction (Version  3 Release 5 Requester)

F4 004 User Agent:  1 User-ID:  JOAO  SQL-ID: JOAO 

F4 004 is R/O  APPL  12BCF 

F4 004 Agent is processing and is in communication wait. 

F4 004 State started: 1999-09-02 15:21:22  

  

F4 004 Conversation started:  1999-09-02 15:21:22 

F4 004 Task no.:  147 RMID: 32 Term. id:  N/A 

Figure 3. ISQL Query

F4 004 User Agent:  2 User-ID:  DBDCCICS  SQL-ID: DBDCCICS 

F4 004 is NIW  SUBS  

  

F4 004 Agent is not processing and is in communication wait. 

F4 004 State started: 1999-09-03 15:19:57  

F4 004 Conversation started:  1999-09-03 15:19:57 

Figure 4. Agent  Not in  Work

F4 004 User Agent:  2 User-ID:  SQLDBA  SQL-ID: SQLDBA 

F4 004 is R/W  APPL  18D9 

F4 004 Agent is not processing and is in communication wait. 

F4 004 State started: 1999-09-08 15:34:51  

F4 004 Conversation started:  1999-09-08 15:34:41 

Figure 5. Batch User

 

34 Performance  Tuning  Handbook  



SHOW  CONNECT for  DRDA User: 

 

 SHOW  CONNECT for  Guest Sharing: 

 

SHOW  CONNECT for  VM User: 

 

 SHOW  CONNECT for  CICS Transaction  (Version  3 Release 4): 

   

Locking  

Locking Contention:    The SHOW LOCK command can help you  understand and  

resolve immediate locking contention problems. (For  information  on this area, refer  

to “Locking Contention”  on page 94.) Consider the following situation:  

1.    The default  lock  level (PAGE) is in effect. 

2.    PETER, BRIAN,  and  LAURA all select the  salary of  MICHAEL  THOMPSON in 

the  EMPLOYEE table  through ISQL. They are all granted a SHARE (S) lock  on  

F4 004  User  Agent: 2  User-ID:  EDUARDA SQL-ID: EDUARDA  

F4 004  is  R/W APPL 12FC4  

F4 004  Agent  is processing and  is in communication wait. 

F4 004  State  started:  1999-09-02 15:23:17 

F4 004  Conversation started: 1999-09-02 15:23:15  

F4 004  CPU  time: 00:00:01  

F4 004  LUWID:  CAIBMOML.OECGW001.A6773D6F8611.0001 

F4 004  EXTNAM:  EDUARDA.1  

F4 004  Requester: SQLDS/VM  V3.5.0  at  TOIVMLB6 

F4 004  Rmtuser  ID: 2  

F4 004  LU  name: OMPGW001  

F4 004  Task  no.: 0000134  

Figure 6.  DRDA User Accessing VSE Database

User Agent:  1 User-ID:  VSEMCH10  SQL-ID: SQLDBA 

is R/O  SUBS  1796 

Agent is not processing and is in communication wait. 

State started: 1999-09-08 10:42:55  

Conversation started:  1999-09-08 10:42:43 

Task no.:  371 RMID: 12 Term. id:  N/A 

Figure 7.  VSE Guest Sharing  User to VM Database Using ISQL

User Agent:  1 User-ID:  SQLUSRMR  SQL-ID: SQLUSRMR 

is R/O  APPL  178F 

Agent is not processing and is in communication wait. 

State started: 1999-09-08 10:41:11  

Conversation started:  1999-09-08 10:41:04 

Figure 8.  VM Requester  Accessing  VM Database

F4 004  User  Agent: 1  User-ID:  JOAO SQL-ID:  JOAO 

F4 004  is  R/O APPL 12BCF  

F4 004  Agent  is processing and  is in communication wait. 

  

F4 004  State  started:  1999-09-02 15:21:22 

F4 004  Conversation started: 1999-09-02 15:21:22  

F4 004  Task  no.: 147  RMID:  N/A Term.  id: N/A 

Figure 9.  CICS Transaction (Version 3 Release 4 Requester)

 

Chapter  2. Measuring  Performance  35



the pages that  contain Michael’s  salary and the  page that contains  index keys  

used to retrieve it. They are also granted an INTENT SHARE (IS)  lock on the 

table  and dbspace that contain Michael’s  salary. 

3.   Instead of  clearing her query,  LAURA leaves  its results on  her screen. This 

places  her in a communication wait. 

4.   PETER tries to add $1000 to THOMPSON’s salary,  but is  placed  in a lock  wait. 

(While  he  is  granted an UPDATE (U) lock  on the  data page,  the  EXCLUSIVE 

(X)  lock he  needs  on that page is  incompatible  with BRIAN and  LAURA’s 

SHARE  (S)  lock.) 

5.   BRIAN tries to increase THOMPSON’s salary  by 5%, but is  also  placed in a 

lock  wait. (The update lock he  needs  is incompatible  with the update lock  that 

PETER  already holds.)

A SHOW  LOCK ACTIVE command reveals that LAURA  is in a communication  

wait, and  BRAIN and  PETER  are in a lock  wait. (You  can also determine  this with 

a SHOW ACTIVE command.) 

show lock active  

                 WAIT   TOTAL  LONG   WANTLOCK WANTLOCK 

AGENT  USER      STATE  LOCKS  LOCKS  TYPE     DBSPACE 

 C     CHECKPT    NIW    0      0 

 1     BRIAN     LOCK   55     55      PAGE     7 

 2     PETER     LOCK   55     55      PAGE     7 

 3     LAURA     COMM   44     44  

ARI0065I Operator command processing is complete.

 

A SHOW  LOCK MATRIX reveals  that BRIAN is waiting  for PETER, and  PETER  is 

waiting for LAURA. (The number  seven in the  lock  matrix indicates that the 

contention is  in dbspace seven.) 

show lock matrix  

Lock Request  Block (LRB) and Lock Status: 

  NLRBS   IN  USE   FREE   NLRBU  MAX  USED  BY  LUW 

 -------  ------- ------- ------- ---------------  

    2520     213    2307    1000       386 

          ***  THE  LOCKWAIT  TABLE *** 

   ENTRY = DBSPACE  NUMBER  ON  WHICH THERE IS  LOCK CONTENTION 

   The presence of an  entry shows 

   the agent requesting the  lock and 

   the agent contending for  or  holding the lock. 

 AGENT           AGENT CONTENDING FOR OR  HOLDING THE LOCK 

 REQUESTING 

 LOCK 

              1        2        3        4        5 

              BRIAN    PETER    LAURA 

 1   BRIAN    ........ 7        ........ ........ ........ 

 2   PETER    ........ ........ 7        ........ ........ 

 3   LAURA    ........ ........ ........ ........ ........ 

 4            ........ ........  ........ ........ ........ 

 5            ........ ........  ........ ........ ........ 

  

ARI0065I Operator command processing is complete.

 

A SHOW  LOCK GRAPH of BRIAN clearly shows the  chain of  lock  contention 

that  has occurred. Until LAURA clears  her screen and returns her SHARE (S) lock, 

neither PETER nor  BRIAN can leave their lock wait.  

 

36 Performance  Tuning  Handbook  



show lock  graph brian 

LOCK         LOCK         WAIT LOCK DBSP  LOCK        REQ    REQ  

REQUESTER    HOLDER        STAT TYPE NUMBR QUALIFIER   STATE  MODE DUR  

1   BRIAN    2   PETER    LOCK PAGE 7     88           G WAIT U    LONG 

2   PETER    3   LAURA    COMM PAGE 7     88           C WAIT X    LONG 

ARI0065I Operator command  processing is  complete.

 

The SHOW  LOCK USER command displays both  how  many  locks of  each type  

are held  plus  the  number they are waiting for.  

show lock  user 

                DBSPACE   LOCK                                   NUMBER  

AGENT  USER     NUMBER    TYPE   IN   SIX  IS  IX  S   U   X   Z   WAITERS ...
 1     BRIAN     7       DBSP   0   0   1   0   0   0   0   0      0 

 1     BRIAN     7       IPAG   0   0   0   0   1   0   0   0      0 

 1     BRIAN     7       TABL   0   0   1   0   0   0   0   0      0 ...
 2     LAURA     7       DBSP   0   0   1   0   0   0   0   0      0 

 2     LAURA     7       IPAG   0   0   0   0   1   0   0   0      0 

 2     LAURA     7       PAGE   0   0   0   0   2   0   0   0      2 

 2     LAURA     7       TABL   0   0   1   0   0   0   0   0      0 ...
 3     PETER     7       DBSP   0   0   0   1   0   0   0   0      0 

 3     PETER     7       IPAG   0   0   0   0   1   0   0   0      0 

 3     PETER     7       PAGE   0   0   0   0   0   1   0   0      2 

 3     PETER     7       TABL   0   0   0   1   0   0   0   0      0 

ARI0065I Operator command  processing is  complete.

 

In  this case,  PETER  has an UPDATE  (U) lock  on the  page that holds 

THOMPSON’s salary, but it cannot be promoted to an EXCLUSIVE (X)  lock  

because it is  incompatible  with LAURA’s SHARE (S) lock. BRIAN has a SHARE 

lock  but cannot promote it to an  UPDATE lock  because it  is incompatible  with 

PETER’s UPDATE lock. 

Lock Escalation:    The SHOW LOCK MATRIX  command can help you  understand 

and  resolve lock escalation problems. (For information on  this area,  refer to “Lock 

Escalation” on page 99.) Consider the following situation:  

show lock  matrix  

Lock Request  Block (LRB) and  Lock Status:  

  NLRBS   IN USE   FREE   NLRBU  MAX USED BY LUW 

 ------- ------- -------  -------  ---------------  

    2520     213    2307    1000       386  ...

The maximum  number of  lock  request  blocks that can  be held  by  a single agent 

(NLRBU) is  set to 1000. The number that can be held  by  all the  agents (NLRBS) is 

set to 2520.  213 blocks are currently in use and  2307 are free.  The  maximum 

number of  blocks held since the last  lock  escalation is 386. 

Do not rely  on this command alone. The MAX USED BY LUW may appear to be 

significantly  lower than NLRBS, but remember MAX USED is reset to zero after every 

escalation. If the  database manager is constantly escalating locks,  you may be  

unlucky enough to only see  the value immediately following an escalation. Make  

 

Chapter  2. Measuring  Performance  37



sure that  you  consult the  ESCALATE and LOCKLMT  counters as  well. Refer to 

“Lock Request Block Performance” on page 24. 

Database catalog 

Information about  the database is maintained in a set of tables  called the  catalog 

which are created during database generation. They describe tables, columns, 

indexes, keys, packages, authorities and other  objects  in the database. This section 

describes how  to select information from  various  tables that contain performance  

information. 

The catalog also holds statistical  information on the  data stored in the  database.  

The database manager uses it  to select an access path  for each SQL  request it 

processes. Refer to “Keeping Database  Statistics Current” on page 137 for a 

description of each table that contains  this information  and  what  the  values in each 

column means. Also refer to “Using Catalog Statistics” on page 139 for a 

discussion of how  to model a  large production  database with a small test  database 

by altering  the  values in the  catalog. 

SYSTEM.SYSCATALOG 

The following SQL  statement  retrieves performance information from the 

SYSCATALOG table about all the  tables  in the  sample dbspace: 

SELECT  tname,  avgrowlen, rowcount, npages, noverflow 

       FROM system.syscatalog 

       WHERE dbspacename=’sample’ 

       AND creator=’sqldba’ 

  

  

TNAME               AVGROWLEN      ROWCOUNT        NPAGES      NOVERFLOW 

------------------  ---------  ------------  ------------  ------------ 

ACTIVITY                   31             18              2             0 

DEPARTMENT                 39              9             1             0 

EMP_ACT                     36             74              2             0 

EMPLOYEE                   80             32              2             0 

INVENTORY                  21             22              1             0 

OPERATIONS                 44             15              2             0 

PROJ_ACT                   29             77              2             0 

PROJECT                     64             20              1             0 

PROJECTS                   43              5             1             0 

QUOTATIONS                 24             53              1             0 

SUPPLIERS                  57             10              2             0

 

AVGROWLEN  

The average length of all the rows in the table, measured in bytes, refer to 

“Free  Space in Data Pages” on page 61. 

ROWCOUNT and NOVERFLOW   

ROWCOUNT is  the total number of  rows in the table. NOVERFLOW is the 

number of rows in the tables  that have  overflowed from their  original page 

in  storage to another page. This is caused  by variable length rows 

expanding because  of  updates. As a rule of  thumb,  if NOVERFLOW  is 

greater  than 5%  of  ROWCOUNT,  it is  probably time  to reorganize the  

table, refer to “Reorganizing a Single Table”  on page 71.  However, 

remember  that there are no absolute rules in performance  tuning.  You  have  

to balance the cost  of  reorganization  against the performance  impact of  the  

overflow rows. 

 

38 Performance  Tuning  Handbook  



If you  decide to reorganize the  table because of  this,  you  may also want  to 

use the ALTER DBSPACE command to increase the PCTFREE  value of  the  

dbspace that contains the table,  refer to “Free Space in Data  Pages” on 

page 61. 

NPAGES   

An estimate of  the  number of  pages  on which  rows of  this table  appear.

SYSTEM.SYSCOLUMNS  

The following SQL statement retrieves performance  information  from the  

SYSCOLUMNS table  about all columns in the employee table: 

SELECT  cname,  coltype, length, nulls,  ccsid 

       FROM system.syscolumns 

       WHERE tname = ’employee’ 

       AND  creator=’sqldba’  

  

  

  

 CNAME               COLTYPE   LENGTH    NULLS         CCSID 

 ------------------  --------  -------   -----  ------------ 

 BIRTHDATE           DATE               Y                 ? 

 BONUS               DECIMAL   ( 9,  2)  Y                 ? 

 COMM                DECIMAL   ( 9,  2)  Y                 ? 

 EDLEVEL             SMALLINT           N                 ? 

 EMPNO               CHAR            6  N               500 

 FIRSTNME            VARCHAR        12   N               500 

 HIREDATE            DATE               Y                 ? 

 JOB                 CHAR            8  Y               500 

 LASTNAME            VARCHAR        15   N               500 

 MIDINIT             CHAR            1  N               500 

 PHONENO             CHAR            4  Y               500 

 SALARY               DECIMAL   ( 9,  2)  Y                 ? 

 SEX                 CHAR            1  Y               500 

 WORKDEPT            CHAR            3  Y               500

 

COLTYPE and LENGTH   

The datatype and  length of  the  column.  It is  important that the predicates  

in  a WHERE clause  have the  same  data  type  and length, refer  to “Column 

Attributes” on page 123. 

NULLS  

Whether a column can contain NULL values affects how it is  accessed. 

(Refer  to page 119 and page 2 on page 128.) 

CCSID  

The coded  character  set identifier (CCSID) of  the  column. CCSIDs can 

affect whether a predicate becomes sargable or residual, refer to “Impact of 

CCSIDs on Sargability” on page 131.

SYSTEM.SYSDBSPACES  

The following SQL statement retrieves performance  information  from the  

SYSDBSPACES table about the  subscriptions dbspace: 

 

Chapter  2. Measuring  Performance  39



SELECT  dbspaceno, npages,  nactive, pctindx, freepct, lockmode, pool 

       FROM system.sysdbspaces 

       WHERE dbspacename=’subscriptions’ 

       AND creator=’sqldba’ 

  

  

 DBSPACENO        NPAGES        NACTIVE   PCTINDX  FREEPCT  LOCKMODE    POOL 

 ---------  ------------  ------------  -------  -------  --------  ------  

        75         480819          18427       25        0  T              2 

 * End  of  Result *** 1 Rows Displayed ***Cost Estimate is 1*********************

 

NPAGES  

The number of  logical  4KB (kilobyte) pages available  in this dbspace. In 

this case there  are 1.878GB (gigabytes) of  storage in this dbspace, refer to 

“Dbspace  Full”  on page 65. 

NACTIVE  

The number of  active  pages  in the  dbspace. It represents  the number of  

4KB  data pages  that must be read during a dbspace scan.  In this case, the  

database manager must  scan almost  72MB of storage to complete a 

dbspace  scan. For more information refer to “Dbspace  Scans”  on page 118. 

PCTINDX  

The percentage of pages to be reserved for index pages, refer to 

“Proportion of  Index to Data and Header  Pages” on page 61. 

FREEPCT  

The current percentage of  space on each page that is kept free when  data is 

inserted in the  dbspace, refer  to “Free  Space in Data Pages”  on page 61. 

LOCKMODE  

Indicates whether row (T), page (P),  or dbspace (S) level locking is  being 

used  for this dbspace, refer  to “Minimum Lock Level”  on page 96.  

POOL  

The number of  the storage pool where pages from this dbspace are stored. 

You  can use the  SHOW POOL operator command to display information  

about  this pool, refer  to page 26.

SYSTEM.SYSINDEXES 

The following SQL  statement  retrieves performance information from the 

SYSINDEXES table  about all the indexes  in the sample dbspace: 

 

40 Performance  Tuning  Handbook  



SELECT  iname,  cluster, clusterratio, lockmode, ipctfree, release  

        FROM  system.sysindexes, system.syscatalog 

        WHERE system.sysindexes.tname = system.syscatalog.tname 

        AND  dbspacename=’sample’  

        AND  creator=’sqldba’  

  

  

INAME               CLUSTER  CLUSTERRATIO   LOCKMODE  IPCTFREE  RELEASE  

------------------  -------  ------------   --------  --------  -------  

PKEYB1PAIBMXWNCV    W                9375  P               10   7.1.0 

PKEYB1PAIAXH1U6L    F               10000  P               10  7.1.0 

MGRNOI               C               10000  P               10  7.1.0 

PROJNOIN            W                9306  P               10   7.1.0 

EMPNOIN             C               10000  P               10  7.1.0 

PKEYB1PAIA5RUD1W    F               10000  P               10  7.1.0 

WORKDEPTI           N                8667  P               10   7.1.0 

INV1                F               10000  P               10  7.1.0 

OPE1                W                9231  P               10   7.1.0 

PKEYB1PAIBSXHRBH    F               10000  P               10  7.1.0 

DEPTNOI             C               10000  P               10  7.1.0 

PKEYB1PAIBEPN7Y2    F               10000  P               10  7.1.0 

RESPEMPI            C               10000  P               10  7.1.0 

PRO1                F               10000  P               10  7.1.0 

QUO1                F               10000  P               10  7.1.0 

SUP1                F               10000  P               10  7.1.0

 

You  can also retrieve  the same information  for the  indexes of  a  single table. In this  

case the employee table: 

SELECT  iname,  cluster, clusterratio, lockmode, ipctfree, release  

       FROM system.sysindexes 

       WHERE tname=’employee’ 

       AND  creator=’sqldba’  

  

  

INAME               CLUSTER  CLUSTERRATIO   LOCKMODE  IPCTFREE  RELEASE  

------------------  -------  ------------   --------  --------  -------  

PKEYB1PAIA5RUD1W    F               10000  P               10  7.1.0 

WORKDEPTI           N                8667  P               10   7.1.0

 

CLUSTER and CLUSTERRATIO  

CLUSTER indicates whether the index is a clustering index, refer  to “The 

Clustering Index”  on page 67.  You  can also use it to get an  idea of  whether  

an index is clustered, refer to “Clustered  Indexes” on page 66. 

 CLUSTERRATIO is updated  when the index’s statistics are updated 

(SYSTEM.SYSINDEXES catalog table). It indicates the percentage of  time  

that the data  pages  are in a  logical  sequence  in relation  to the index. In this 

case, when the  statistics for WORKDEPTI were last  updated,  the data 

pages it  referred to were in  a  logical  sequence  86.67% of  the  time. 

 For more information on how to interpret CLUSTER and CLUSTERRATIO,  

refer to “Identifying Unclustered Indexes” on page 68. 

LOCKMODE  

Indicates whether page (P) or row level locking (K) is being  used  on this 

index, refer to “Minimum Lock Level”  on page 96. 

IPCTFREE  

The amount of free space  reserved  in the index for later insertions and 

updates, refer  to “Free  Space in Index Pages”  on page 62.  

 

Chapter  2. Measuring  Performance  41



RELEASE  

The release of  the  DB2 Server  for VSE & VM  product that was  installed 

when  the index was created.  If the index  was created prior to Version 2 

Release 2 (2.2) it  should  be dropped and  recreated to take advantage of  

performance  improvements incorporated into the  index structure at that 

time.

 

42 Performance  Tuning  Handbook  



Chapter  3. Managing Storage  and  Configuring the Operating  

System  

Real  and Virtual  Storage 

There are two  types of storage: real and  virtual. 

Real  Storage  

Composed of  main and  auxiliary storage.  Main storage is the fastest 

storage and it  is where  data and programs  must  be before the CPU can 

directly act upon them.  Auxiliary storage comprises expanded storage,  and 

system paging DASD.  Data and  programs  reside in one of  these  two areas 

when there is no room  in main storage. 

Virtual Storage  

Virtual storage is an addressable space image  for the user from which 

instructions and  data are mapped into  real storage locations.  The operating 

system uses real storage (main and auxiliary storage) to create  virtual  

machines  (in the  case of VM) or partitions  (in the  case of VSE).

Virtual Addressing  

In  VM, each virtual  machine has its own virtual  address  space, which is  where you  

load and  run programs.  VSE supports  multiple address spaces that can  each 

contain several partitions. 

Because these  address  spaces are virtual, the  operating  system does  not dedicate  a 

piece of main storage to each virtual  machine or partition. You do  not need  to buy 

8MB  of  main storage for each 8MB  virtual  machine or partition. Instead the 

operating  system only  uses main storage for those parts of virtual storage  you  

need  right  now, or are likely  to need in the  near future.  

Pages 

These parts of  virtual  storage are divided into  4KB (4096  byte) blocks  called  pages.  

When  a virtual  machine or partition needs a page that it has not accessed before,  

the operating system retrieves the  page from its location on DASD, and  loads it 

into  an empty page in main storage. (Before  a page can be used, it must be  in main 

storage.) 

Auxiliary Storage 

When  the operating  system runs out  of  free  pages  in main storage, it moves the  

least recently used  (“oldest”) page to auxiliary storage to create  a free  space for a 

new page.  

The VM operating  system uses  two types of  auxiliary storage: system paging 

DASD,  and optional expanded storage. If your  system has expanded storage, a 

page will  be moved there first. If expanded storage is full, the  least recently used  

page in expanded storage is moved to system paging DASD  by way of  main 

storage. When  a virtual machine needs a page that it has previously used, the 

operating  system moves it back  to main storage from expanded storage or from 

system paging DASD,  if it  is not already in main storage.  

 

 

© Copyright IBM  Corp. 1993, 2007  43



The VSE operating  system only  uses system paging DASD: it  does  not support 

expanded storage. When  the  operating  system runs  out  of free pages in main 

storage, it moves the  least recently used  page directly  to system paging DASD.  

When a partition needs a  page that it has previously  used, the operating system 

moves it back to main storage from system paging DASD,  if  it is  not already in 

main storage. 

 

  

Figure 10. Standard Virtual  Machine Storage

 

44 Performance  Tuning  Handbook  



This paging system accomplishes  two  things.  First,  it allows  each virtual  machine 

or partition to use much  more  storage than could be  accommodated  in main 

storage alone. Second, it keeps the most recently used  pages  in the  storage devices 

that  are the fastest to access.  (The most recently used pages  are the ones most 

likely  to be used  again in the near future.) Main and  expanded  storage are much 

faster than system paging DASD,  and  while expanded storage can be as  fast as  

main storage,  it is  effectively slower  because  the operating system still needs  to 

move the page into main storage before it can use it. 

The Hidden Cost  of System Paging DASD:   Each time the database  machine or 

partition (or the  CICS partition) requires a page that the  operating  system cannot 

find in  main storage, a page fault occurs.  The entire database machine or partition, 

and  therefore the  entire database  manager, must wait until the page is returned 

from auxiliary storage. Consider a system that requires an average  of  50ms to 

return one  page.  So at 6 faults per  second the  database manager is idle 300 out  of  

1000ms, or almost one third  of  the  time. 

Note:   This is  not true for DASD I/O.  A database machine does  not wait for 

*BLOCKIO,  nor does a database partition wait for VSAM. The database 

  

Figure 11. Standard  VSE  Partition Storage

 

Chapter 3. Managing Storage  and Configuring the  Operating System  45



manager will  dispatch  another agent (unless you  are running  in single user 

mode) while  it waits  for the  DASD I/O to complete. Refer  to “Database  

I/O” on page 85.  

This is also not true for Page Faults  that occur  in Data Space (when VMDSS 

is enabled). Only  one  agent  must wait for this kind of  Page Faults. 

Partition Deactivation (VSE):    The TPBAL command (VSE system control 

statement) specifies the  number of  partitions  that are eligible for deactivation. 

Whenever the  TPIN macro  (refer  to the IBM VSE/ESA System Macros Reference 

manual) is executed,  the number  of  partitions  specified by the TPBAL command 

will be  deactivated starting with the  lowest priority partition and proceeding  to the  

highest eligible  partition (excluding  the partition which  executed the  TPIN macro).  

All deactivated partitions are suspended (kept idle) until the TPOUT  macro is 

executed. This can become a severe problem  if, for example, the deactivated 

partition is an application  server  or a requester that is currently holding database 

locks. Whenever possible, ensure that the database partition,  the CICS partition,  or 

any DB2 Server  for VSE batch partitions  are NOT eligible for deactivation. 

Storage Queues  

A storage  queue is a control  structure that the database manager uses  to share its 

virtual space  between  processes. Queues  are created  at startup for: 

v   Each real agent 

v   The operator  

v   For checkpoint processing 

v   Recovery 

v   Global storage blocks such  as accounting records.

The  database manager allocates virtual  storage to the different processes  as they 

require it (within limits). Once  the storage has been allocated, it  cannot be  used by 

any other process  until the owning process releases it. 

Real agent queues  release  all but  8KB  of  their allocated storage at the  end of  a 

logical unit of work (LUW). Even if the real agent no longer requires the  virtual 

storage, it may keep  it  until the  end of  its  current LUW.  

Virtual space may be  allocated either above or below  the  16MB virtual storage line 

(refer to “Storage  Above 16MB (31  Bit Addressing)” on page 47.) However,  because 

certain control  blocks and  program structures  must always reside below the 16MB  

line, two storage queues are created for each process. One storage queue is for 

blocks and structures  that must  always  reside below the  line, the  other  queue is  for 

blocks and structures  that may  reside either below  or above the line. 

When an agent requests virtual storage,  the database manager decides  whether the  

blocks and structures  must  reside  below the  16MB  line or whether  they can reside 

either above or below the  line. If  they must  reside below the  line, space is allocated 

in the  below or B  queue. If they may reside above  or below  the line, space is  

allocated in  the anywhere or A queue.  

When the  database manager  looks for address space for blocks and structures  in 

the B  queue,  it looks below the 16MB  line.  When  the database manager looks for 

address space  for blocks  and  structures  in the  A queue,  it  first tries to find free  

space above  the  16MB  line. If there is none, it  will try to find free space  below  the 

line. If there is no free space  below the  line for either the A queue or for the  B 

 

46 Performance  Tuning  Handbook  



queue,  releasing unused  packages from storage. If it can  no longer  release  

packages, you  will  receive an error message  and  the  database machine or partition 

may abend. 

Address  Space  Size 

While  increasing the size of your virtual  database machine or partition may  

increase your  application server’s capacity, it  does  not necessarily improve its 

performance. This is because the  operating  system has to supply enough fast real 

storage to make  the virtual storage appear to be real storage.  

However, if sufficient real storage is available, you can take advantage of  

additional  virtual  storage, by  increasing:  

v    The number of  concurrent  users  (NCUSERS). Refer to “Agents” on page 88. 

v    In  VM,  the number of pseudo agents (MAXCONN). Refer  to “VM 

(MAXCONN)” on page 92. 

v    In  VSE,  increase the  number of  connections  between  the  CICS partition and the 

database partition (CIRB  transaction). Refer to “Tuning Parameters” on page 90.  

You can also increase the  number of  remote DRDA users  (RMTUSERS). Refer  to 

“VSE (RMTUSERS)”  on page 92.  

v    The size of the  buffers  pools (NPAGBUF,  NDIRBUF).  Refer to “Database I/O” 

on page 85. 

v    The number of  lock request  blocks (NLRBU, NLRBS).  Refer to “Lock  Escalation” 

on page 99. 

v    The size of the  package cache (NPACKAGE).  Refer to “Package  Cache” on page 

88. 

You  need to monitor  the real storage and the I/O in your  system.  If  you do not 

have enough main (and in VM  expanded) storage to support additional virtual 

storage, you  may  dramatically increase the load on your  I/O subsystem  and on 

your  processor. In  extreme cases this  can lead  to thrashing. (The processor  and  I/O 

subsystem spend  most of  their resources moving  pages  from main to auxiliary 

storage and  have little or no resources left  for practical  work.)  

Storage Above 16MB  (31  Bit Addressing)  

In  VM, your  database machine’s  address  space can be larger  than the  old 16MB  

limit.  In  VSE,  you  can use a database  partition larger than the  old 16MB  limit.  

(As mentioned  in  “Address Space Size,” anytime  you increase your virtual storage,  

you  can realize significant performance  improvements  by  using storage  above  

16MB, but  only  if  you have the resources  to support it.)  

Saved Segments  (VM  Only) 

A saved segment  is a range of  pages  of  virtual storage you can define to hold data 

or reentrant code  (programs), which can be shared by multiple  virtual machines.  

For detailed information,  on how to create  saved segments and  which DB2 Server  

for VM components can  be loaded into them,  refer  to the DB2 Server  for  VM System 

Administration manual. 

Loading  frequently used DB2 Server  for VM components  in saved segments  has 

several advantages: 

v    Because several users  can access the  same  physical storage, real storage use is 

minimized. 

v     Using saved segments decreases the I/O rate and  DASD paging space 

requirements, thereby improving  virtual machine performance. 

 

Chapter 3. Managing Storage  and Configuring the  Operating System  47



v   Saved segments attached to a virtual  machine can reside  above  its defined 

virtual  storage. This allows  the  virtual machine to use its defined storage for 

other  purposes.

For  more information on  saved segments, refer  to the  DB2 Server for  VM  System 

Administration manual.  

Virtual Disk Support  for VSE/ESA for  Internal  Dbspaces 

Your internal dbspaces can use a virtual disk to improve  their performance. Virtual 

Disk Support  lets  you  use a data space as a virtual disk. A virtual  disk is much 

faster than  a conventional  disk  because it uses  main storage instead of  DASD.  The 

virtual disk  appears to any program or job  as  just another disk, only  faster. 

However, virtual disk  storage is temporary.  Anything  in a virtual  disk  is lost 

whenever the VSE operating  system is  restarted.  For this reason, DO  NOT use  

virtual disks for anything other  than internal dbspaces. These  dbspaces are only  

used as  temporary workspace, so  it does  not matter if their contents are lost.  The 

storage pool containing the virtual  disk  must NOT be used  for any permanent  

dbspaces. 

While the  use of  virtual disks is limited to internal dbspaces, they can improve  the 

performance of index creation,  joins,  sorts, and  other  operations that require 

temporary workspace.  

Remember, as  mentioned  in “Address Space Size” on page 47, anytime you  

increase your use of  virtual  storage, you can  realize significant performance  

improvements, but  only if you  have  the  real storage to support it. 

Note:  It is  recommended that database generation be done with real minidisks 

only. If you decide to generate a database  which uses a virtual disk, ensure 

that  the virtual disk  is used  in a pool containing only  internal dbspaces.

Using Virtual Disks  with Internal  Dbspaces:   To use a virtual  disk with internal 

dbspaces, you  must: 

1.   Take an archive of your database,  before making  any changes to it. 

2.   Modify the  IPL procedure and  the background initialization procedure to create 

a virtual  disk. 

3.   Define a VSAM  user catalog and  dbextent  on the  virtual disk. 

4.   Add a label for the dbextent  in the  cataloged procedure and  add the  dbextent  

to a NEW storage pool  that will contain only internal dbspaces.  

5.   Move some  of  the  dbextents from the  original pool that contained the internal 

dbspaces into  the new pool or  define additional  physical dbextents to be  added 

to the new pool. 

6.   Add internal dbspaces to the  new storage pool. 

7.   Backup the VSAM user catalog defined on  the virtual disk  so  that it can be 

restored whenever the VSE  system is restarted.  

8.   Modify the  application server startup job  to restore the VSAM  user catalog  if 

the VSE system has been restarted since  the VSAM user catalog and  dbextent  

were created.  

9.   Archive your  database after making  the above changes  so  that you have  an 

archive that reflects  these  changes.

 

48 Performance  Tuning  Handbook  



A detailed example of how to complete  these steps  appears below. For more 

information  on virtual  disks in VSE/ESA, refer  to the IBM VSE/ESA Planning  

manual and  the  IBM VSE/ESA Extended  Addressability manual.  

Note:   All of the  following steps  should  be read before executing  any of  them.

Step  1,  Archive Your Database:   This will be  needed  if problems  arise during the 

setup for using a virtual disk and  you  need  to restore your database to its previous  

state  without  any virtual  disk. 

Step  2,  Modify IPL  Procedure:   Modify  the IPL procedure to do  the  following: 

v    Include ADD  statements for the  virtual  disk addresses 

v    Increase VSIZE and page data set allocation to accommodate the new  virtual 

disk.

For example, consider a system where  a 20MB  virtual  disk is added to a VSE 

system with VSIZE=75MB: 

...
009,$$A$SUPX,VSIZE=95M,VIO=576K,VPOOL=194K,LOG ...
ADD 900:906,FBAV ...
DPD VOLID=DOSRES,CYL=209,NCYL=100,TYPE=N,DSF=N 

DPD VOLID=DOSRES,CYL=398,NCYL=8,TYPE=N,DSF=N 

DPD VOLID=DOSRES,CYL=410,NCYL=29,TYPE=N,DSF=N ...
DLA NAME=AREA1,VOLID=DOSRES,CYL=60,NCYL=3,DSF=N 

SVA PSIZE=640K,SDL=300,GETVIS=768K 

/+ 

/* ...

This example  increases the VSIZE of the VSE operating system from 75MB  to 

95MB. It  reserves virtual addresses 900 through  906 for fixed block architecture 

virtual  disks, and it  sets  aside an additional  29 cylinders of  3390 DASD on 

DOSRES volume starting at address 410 for system paging DASD.  (108 cylinders  

were already  being  used  at addresses 209, and 398.  Also, there  are 180 4KB  pages 

in every 3390 cylinders.  So 29  cylinders  is equal to 20MB.) 

Step  3,  Define and Initialize a Virtual  Disk:    Create a procedure  (to be invoked 

as  part of the background  initialization  JCL, for example $0JCL) that will do the  

following: 

v    Define data space size  using SYSDEF  command 

v    Initialize virtual disks using // VDISK command.

For example: 

 

Chapter 3. Managing Storage  and Configuring the  Operating System  49



...
*  DEFINE  THE  SIZE OF  THE  DATASPACE 

//  SYSDEF  DSPACE,DSIZE=20M  

*  DEFINE  AND  INITIALIZE EACH VIRTUAL DISK 

//  VDISK UNIT=900,BLKS=40320,VOLID=QPVDS1,VTOC=008 

/*  

/+  ...

This example reserves  approximately  20MB of virtual storage for virtual  disks.  

(Remember you  do not need 20MB of  real storage  to support 20MB of  virtual  

storage.) The virtual  disk at address 900 uses approximately  20MB  of  that storage 

(40320 512-byte  blocks, with 8 512-byte  blocks of  that reserved for the  VTOC). (The  

virtual disk  addresses  were defined  in Step 2.) 

Note:  Because of  the structure of  a virtual  disk, blocks must  be allocated in 

multiples  of  960 blocks. So  instead of  2048 512-byte  blocks for 1MB  of  

storage, you  can only allocate  1920 blocks.

Step 4, Define  a Backup File:   Define  a sequential file on a real disk for use later 

when backing up the  VSAM user catalog (defined  on the next step on a virtual  

disk). For example: 

...
*  DEFINE  A SEQUENTIAL FILE  FOR  VDISK UCAT BACKUP  

//  EXEC IDCAMS,SIZE=AUTO  

   DEFINE  NONVSAM  (NAME(VDISK1.UCAT.BKUP) - 

          DEVICETYPES(3390)  VOLUMES(SYSWK1))  

/*  ...

This example creates  a backup file  called VDISK1.UCAT.BKUP. 

Note:  The above  JCL  does  not work  if it is  used  on FBA DASD.  If only  FBA DASD 

is used, do  one  of the  following:  

v   Skip this step  

v   Use a VSAM ESDS file for the  backup file.

Step 5, Define  a VSAM User  Catalog:   Define a VSAM  user catalog  on the  virtual 

disk using the  DEDICATE option.  For  example: 

...
*  DEFINE  A VSAM USER CATALOG  

//  EXEC IDCAMS,SIZE=AUTO  

 DEFINE  USERCATALOG ( - 

        NAME (VDS1.USER.CATALOG  ) - 

        DEDICATE - 

        VOLUME  (QPVDS1))  

/*  ...

This example creates  a VSAM  user catalog called VDS1.USER.CATALOG  on volume 

QPVDS1 and dedicates the  entire volume for this VSAM user catalog. (Volume 

QPVDS1 was defined in Step  3.) 

 

50 Performance  Tuning  Handbook  



Step  6,  Define a Virtual Disk Dbextent:   Define a dbextent  (VSAM cluster)  on the  

virtual  disk. For example: 

...
*  ADD  CLUSTERS FOR THE  DATA BASE VIRTUAL DISK 

// DLBL VDSUC1,’VDS1.USER.CATALOG’,,VSAM 

*  DEFINE  CLUSTERS 

// EXEC IDCAMS,SIZE=AUTO 

   DEFINE  CLUSTER (NAME(SQL34.DDSK8.VDSK.DB) NONINDEXED REUSE - 

            CNVSZ (4096)  BLOCKS(39360) VOL(QPVDS1) - 

            RECSZ (4089 4089) SHR(2)) CAT(VDS1.USER.CATALOG) 

/* ...

This example  defines a dbextent  named  SQL34.DDSK8.VDSK.DB in the  VSAM  user 

catalog VDS1.USER.CATALOG  (The VSAM  user catalog was defined in Step  5.) 

Step  7,  Add a Label  for  the Virtual Disk Dbextent:    Update the cataloged  

procedure to include a DLBL  statement for the new  dbextent. For example: 

...
*  CATALOG  DATABASE DBEXTENT LABELS  

// EXEC LIBR,PARM=’MSHP’ 

ACCESS  S=IJSYSRS.SYSLIB  

CATALOG DTLDVDSK.PROC R=Y 

*  *****************   SQL/DS  DBEXTENT  LABELS   ************** 

// DLBL TSQLUC,’TSQL.USER.CATALOG’,,VSAM 

// DLBL VDSUC1,’VDS1.USER.CATALOG’,,VSAM 

// DLBL BDISK,’SQL34.BDISK.DTLD.DB’,,VSAM,CAT=TSQLUC 

// DLBL LOGDSK1,’SQL34.LOGDSK1.DTLD.DB’,,VSAM,CAT=TSQLUC 

// DLBL DDSK1,’SQL34.DDSK1.DTLD.DB’,,VSAM,CAT=TSQLUC ...
// DLBL DDSK7,’SQL34.DDSK7.DTLD.DB’,,VSAM,CAT=TSQLUC 

// DLBL DDSK8,’SQL34.DDSK8.VDSK.DB’,,VSAM,CAT=VDSUC1 

/+ 

/* ...

This example  adds a DLBL statement  for DDSK8 that identifies  dbextent  

SQL34.DDSK8.VDSK.DB. (The dbextent  was created in  Step  6.) DDSK7 is  one of  the  

dbextents that belonged  to the  original internal dbspace  storage pool. 

Step  8,  Add Dbextents to  a New  Storage Pool:   Add dbextents  to the new storage 

pool by  following instructions  included in the DB2  Server  for VSE System  

Administration manual. (Refer to “adding  and  deleting dbextents”.)  

To avoid  using too  much  real storage, it  is recommended  that you  include at least  

two dbextents in  the new pool.  The first  must  be the virtual  disk. The second, 

should  be a physical dbextent  that can accommodate the  overflow from the virtual  

disk. You  can  use some of  the  dbextents from  the original pool that contained the 

internal dbspaces (in this example DDSK7).  Make the  total size  of  both  dbextents  

large enough  to accommodate your  current internal dbspaces and  make the virtual  

disk  as large as possible without over committing real storage. 

Also, ensure that you add the virtual  dbextent  before you  add any physical  

dbextents. The database  manager searches  the  dbextents for a free page in  the 

order that  they were added.  

 

Chapter 3. Managing Storage  and Configuring the  Operating System  51



Attention: Do not accidentally place the virtual disk  in an existing  storage pool 

that  contains  anything  other  than internal dbspaces.  You  will lose  valuable  data  

and a full database or pool level restore will  be required.  

The following is an example of  the  ARISADD member,  which specifies how 

procedure ARIS250D will add and delete dbextents to and  from pools: 

POOL 9 

ADD  8 9 

DELETE  7 

ADD  7 9 

ARCHIVE

 

This example adds  dbextent  8 (DDSK8)  to storage pool 9. (DDSK8 was identified 

in Step  7.) Ensure that you  add the  virtual  disk  dbextent  to a new storage pool 

(reserved only for internal dbspaces).  It also removes dbextent  7 (DDSK7) from the 

original pool that contained the internal dbspaces. It then  adds it to the  new pool 

(pool 9) that contains  the virtual disk dbextent.  

Step 9, Back Up the  Virtual Disk VSAM User Catalog:   Back up the  VSAM user 

catalog defined on  the virtual  disk  into  the sequential file on a real disk. For 

example: 

...
//  LIBDEF  PHASE,SEARCH=IJSYSRS.SYSLIB 

*  THIS JOB  UNLOADS A VSE/VSAM  CATALOG  USING THE  REPRO COMMAND  

//  DLBL IJSYSCT,’VSAM.MASTER.CATALOG’,,VSAM 

//  ASSGN  SYS001,DISK,VOL=SYSWK1,SHR 

//  DLBL   CATOUT,’VDISK1.UCAT.BKUP’,999 

//  EXTENT  SYS001,SYSWK1,1,0,33315,75 

//  DLBL   IJSYSUC,’VDS1.USER.CATALOG’,                                  X 

               ,VSAM 

//  EXEC   IDCAMS,SIZE=AUTO  

       REPRO   INFILE  (IJSYSUC) - 

               OUTFILE  (CATOUT  - 

                 ENVIRONMENT ( - 

                   BLOCKSIZE (2068)  - 

                   RECORDFORMAT  (VARBLK) - 

                   RECORDSIZE (516) - 

                 ) - 

               ) 

/*  ...

This example unloads  the VSAM user catalog VDS1.USER.CATALOG  to the backup file 

VDISK1.UCAT.BKUP. (The backup file  was created in Step  4.) The  backup file will be  

used to restore  the  VSAM user catalog on the virtual  disk  whenever the  VSE 

system is restarted. Restoring the VSAM  user catalog  redefines the VSAM space 

and cluster  previously  defined on the virtual disk  and  sets  the high  used  RBA  to 

what is was before the  system restart,  thus  allowing the database manager to 

successfully use it. 

Step 10, Add Internal Dbspaces to the New Pool:   Invoke the  application  server  

to add only  internal dbspaces into  this new pool. For  example: 

 

52 Performance  Tuning  Handbook  



...
*  ADD  INTERNAL DBSPACES TO  THE  DATABASE  

// LIBDEF  *,SEARCH=PRD2.SQL340 

// EXEC PROC=DTLDVDSK 

// EXEC ARISQLDS,SIZE=AUTO,PARM=’SYSMODE=S,STARTUP=S’ 

   INTERNAL 50  1024 9 

/* ...

This example  JCL  creates 50 internal dbspaces, each of  1024 4KB  pages, in storage 

pool 9.  (Storage pool 9 was  created in Step  8.)  

Step  11, Add Conditional JCL to Application Server Startup:   Create conditional  

JCL  that does  the  following: 

v    Check that the  dbextent  defined earlier  on the virtual  disk  still exists (1  and 2). If 

it does  not, do the  following:  

–   Disconnect the  VSAM user catalog from  the master  catalog (3) 

–   Redefine the VSAM  user catalog  on the  virtual disk (4)  

–   Restore the  VSAM user catalog from the sequential file (5)  

–   If the  restore fails for any reason  cancel the job  (6).

v    Start the application  server.

For example: 

...
// DLBL IJSYSCT,’VSAM.MASTER.CATALOG’,,VSAM 

// ASSGN SYS001,DISK,VOL=SYSWK1,SHR 

// DLBL VDSBKUP,’VDISK1.UCAT.BKUP’ 

// EXTENT  SYS001,SYSWK1,1,0 

// DLBL IJSYSUC,’VDS1.USER.CATALOG’,,VSAM  

// EXEC IDCAMS,SIZE=AUTO 

   LISTCAT  CAT(VDS1.USER.CATALOG) ENT(SQL34.DDSK8.VDSK.DB)  ALL  (1) 

   IF  LASTCC NE  0 THEN DO                                        (2) 

      EXPORT VDS1.USER.CATALOG DISCONNECT                       (3) 

      DEFINE USERCATALOG  ( NAME(VDS1.USER.CATALOG) -            (4)  

                  DEDICATE VOLUME (QPVDS1)) 

      IF LASTCC  NE  0 THEN CANCEL  JOB 

      REPRO  INFILE  (VDSBKUP ENVIRONMENT  -                      (5)  

                 (BLOCKSIZE (2068) - 

                  RECORDFORMAT (VARBLK) - 

                  RECORDSIZE (516)))  - 

             OUTFILE  (IJSYSUC) 

      IF LASTCC  GT  4 THEN CANCEL  JOB                            (6)  

   END  

/* ...

Place this sample JCL in front of  your  current application server  startup job. It 

checks for the existence  of  dbextent  SQL34.DDSK8.VDSK.DB  in the VSAM  user 

catalog VDS1.USER.CATALOG. If it no longer exists, the JCL  restores the  VSAM  user 

catalog from  the backup created in Step  4. The application server  will then  start 

normally and  will use the  virtual  disk for internal dbspaces.  

Step  12, Archive Your Database:   The ADD  DBEXTENT and DELETE  DBEXTENT  

operations  are not recorded  in the log. Since these  operations update the  directory 

(but not the  database itself), problems  can be encountered if  you normally archive 

 

Chapter 3. Managing Storage  and Configuring the  Operating System  53



the database and then try to restore that archive  with the  ADD  DBEXTENT  or 

DELETE DBEXTENT  occurring in between  the archive and  the  restore. Archiving 

before and after  you make changes  to the  virtual disk will  assist  you if problems 

occur. For more information, refer  to the DB2 Server  for  VSE System Administration 

manual. 

Virtual Disk Support  for VM/ESA for Internal Dbspaces 

Your internal dbspaces can use a virtual disk to improve  their performance. Virtual 

Disk Support  lets  you  use a data space as a virtual disk. A virtual  disk is much 

faster than  a conventional  disk  because it uses  main storage instead of  DASD.  The 

virtual disk  appears to any program or job  as  just another disk, only  faster. 

However, virtual  disk  storage is temporary.  All data  on a virtual disk  is  lost when 

it is detached  from  a user ID  or when the  user ID  logs off. For  this reason,  DO 

NOT use virtual  disk  for anything other  than internal dbspaces. These dbspaces 

are only used  as temporary workspace, so it does  not matter if their contents is 

lost. The storage pool  containing the virtual  disk  must NOT be  used for any 

permanent dbspaces. 

While the  use of  a virtual  disk is restricted  to internal dbspaces,  they can be used  

to improve the  performance  of  index creations, joins, sorts, and other  operations  

that  require  temporary workspace. 

Remember, anytime you increase your use of  virtual  storage, you can  realize 

significant performance  improvements,  but  only if you have the real storage to 

support it. 

Note:  It is  recommended that database generation be done with real minidisks 

only. If you decide to generate a database  which uses a virtual disk, ensure 

that  the virtual disk  is used  in a pool containing only  internal dbspaces.

Using Virtual Disks  with Internal  Dbspaces:   To use a virtual  disk with internal 

dbspaces, you  must: 

1.   Take an archive of your database,  before making  any changes to it. 

2.   Define a virtual  disk  in the database manager’s  VM Directory entry.  

3.   Run the SQLADBEX EXEC to add the virtual disk  as  the  first dbextent  of  a 

NEW storage pool. The virtual  disk  must be the first  dbextent  in the  new pool. 

If you  have dbextents  in the old storage pool where your internal dbspaces are 

currently defined, you should  delete  some of  these  dbextents from the old pool 

and  add them to the  new pool. Alternatively, you  could add one or more real 

disk dbextents to the  new pool.  

4.   Run the SQLADBSP EXEC  to move  your internal dbspaces to the  new pool. 

5.   Modify the  'CP  LINK' command for the virtual  disk  in the 'dbname SQLFDEF  

Q' file.  

6.   Modify the  database manager’s  PROFILE EXEC or database start  up EXEC to 

CMS FORMAT and RESERVE  the virtual disk  and  make  a duplicate  LINK to 

this virtual  disk. (this is explained further in the  following detailed steps) 

7.   Archive your  database after making  the above changes, so that you  have an 

archive that reflects  these  changes.

A detailed example of  how to complete  these  steps appears below.  Please read all 

the steps  before executing any of them. 

 

54 Performance  Tuning  Handbook  



Step  1,  Archive Your Database:   This will be  needed  if problems  arise during the 

setup for using a virtual disk and  you  need  to restore your database to its previous  

state  without  any virtual  disk. 

Step  2,  Define a Virtual Disk in the Database Manager’s  VM Directory  Entry:  

 Determine  the size of the virtual  disk  to be added.  It should be large enough  for 

most sorts, but  must  not be  so large as to cause excessive  VM paging. Define this 

virtual  disk in  the  VM Directory, similar to: 

      MDISK 0329 FB-512 V-DISK  nnnnnnnn M 

For information  about defining a virtual  disk  in a VM Directory, refer to the 

VM/ESA:  Planning and Administration manual.  

Step  3,  Add Dbextents to  a New  Storage Pool:   Add the  virtual  disk, and  

possibly  other dbextents, to a new storage  pool.  For information about using the  

SQLADBEX  EXEC, refer  to the  DB2 Server for VM  System Administration manual. 

To avoid  using too  much  real storage, it  is recommended  that you  include at least  

two dbextents in  the new pool.  The virtual  disk  must be the first  dbextent  in the  

new pool. Other  dbextents should be real minidisks to accommodate the overflow 

from the  virtual  disk. You can use some of  the  dbextents from  the pool that 

originally contained the internal dbspaces. Make  the total  size  of  the dbextents in 

the new pool large enough to accommodate your current  internal dbspaces.  

Also, ensure that you add the virtual  dbextent  before you  add any real minidisks.  

The database  manager searches  the  dbextents for a free page in the order they  

were added.  

If you  are also using DB2 Server  DSS, you  should  use SEPINTDB=Y to use your 

internal dbspaces in  a  data space,  instead of  using a virtual disk. If you  still want  

to use a virtual  disk, you  MUST update your  Storage Pool Specification file to 

specify 'BLK' and  'SEQ'  for the storage pool containing the virtual  disk. VM does  

not allow  a virtual  disk  to be mapped  to a data space.  In  this case, message  

ARI2018E will  be issued  identifying the  virtual  disk address. 

Attention: Do not accidentally place the  virtual disk in an existing storage pool 

containing  permanent dbspaces. You will  lose  valuable  data and a full database  or 

pool level  restore will be required. 

When  you run the SQLADBEX EXEC,  you specify the actions to be taken by  

answering  the prompts. When you  see  message ARI6145D, reply 1 (yes),  to view 

the 'dbname SQLADBEX A'  file created from the prompts.  

Assume you  have the  following set up and are changing to use a virtual disk for 

internal dbspaces:  

v    Your internal dbspaces are currently defined  in pool 3,  which  also contains 

permanent dbspaces.  

v    Pool 3 currently has 3 dbextents, addresses 324, 325,  and 326, which correspond  

to dbextent numbers 4,  5,  and  6.  

v    You  have a virtual  disk defined at address  329 and  you want to add it to the 

new pool number 8, as dbextent  number 9. 

v    You  want to 'move' dbextents 5 and  6 in pool 3 to the new  pool 8.  

v    You  DO want to take an archive after these  changes. 

Note:  Running the SQLADBEX EXEC will  cause a  break in the  continuity of  

your log archives,  so  a database archive should  always  be taken.

 

Chapter 3. Managing Storage  and Configuring the  Operating System  55



After starting the  SQLADBEX EXEC and entering the information  at the  prompts,  

reply 1 (yes)  to message ARI6145D. This will  display the 'dbname SQLADBEX A'  

file in  XEDIT; its  contents can be reviewed, modified, or both.  This file specifies the 

sequence of  actions  that SQLADBEX will perform.  Given our assumptions above,  

the file  will appear as  follows:  

 ADD 9 8                              <-- add virtual disk to pool  8 

 DELETE 5  3                            <-- delete dbextent  5 from pool 3 

 DELETE 6  3                            <-- delete dbextent  6 from pool 3 

 ADD 5 8                              <-- add dbextent  5  to pool 8  

 ADD 6 8                              <-- add dbextent  6  to pool 8  

 ARCHIVE                              <-- an archive  will be taken 

Refer to the DB2 Server  for  VM System Administration manual for more  details, 

cautions and  warnings concerning the  adding  and  deleting of  dbextents.  

The last step  of  the SQLADBEX EXEC will update  the 'dbname SQLFDEF Q' file,  

to match dbextents  that have been added, deleted, or both.  The 'CP  LINK'  

command for the virtual  disk  in this file  must be updated; this is documented  in a 

following step. 

Step 4, Move  the Internal Dbspaces  to the New Storage Pool:   This step  will  

'move' the internal dbspaces from the old  pool to the  newly added pool which 

contains the  virtual disk, by  using the  SQLADBSP EXEC. You  may also add 

permanent dbspaces to the database at this time (except into  the new pool) or you  

can simply redefine  the pool  where internal dbspaces will  be placed. Remember,  

this new pool, with  the virtual  disk  dbextent, can ONLY contain internal dbspaces.  

For information  about using the  SQLADBSP EXEC, refer  to the  DB2 Server for  VM  

System Administration manual. 

Step 5, Modify  the  'dbname SQLFDEF Q'  File:    In this step,  you will  edit and 

modify the 'dbname SQLFDEF Q' file to change  the  'CP LINK' mode  for the virtual 

disk dbextent.  This is required to allow the virtual  disk  to only  be formatted and  

reserved once per  IPL CMS of the  database manager. If  this step  is  not performed, 

the virtual  disk  must be formatted and  reserved  prior to each start up of  the  

database manager (for  example, SQLSTART). 

This is done by  having the  virtual  disk linked to the database manager virtual  

machine twice. When  the 'dbname SQLFDEF Q' file detaches  the virtual disk, the 

second link remains attached to the machine and the  formatting  of  the virtual disk  

is not lost.  This second link and  the formatting is  done  from the database 

manager’s PROFILE EXEC (this is set up in the next step). 

Be sure you  have the  production minidisk  (normally 'Q') accessed R/W.  XEDIT the  

'dbname SQLFDEF Q' file. Locate  the  line containing  the 'CP LINK userid cuu  cuu  

W' statement  for the address ('cuu')  of  the  virtual  disk. Change the  CP LINK 

'MODE' character from 'W' to 'M'. 

Attention: If you  delete the  virtual disk extent  and  add it again (through the  

SQLADBEX EXEC), you must again change  the LINK Mode character from 'W' to 

'M'. 

Step 6, Modify  the  PROFILE EXEC:   In this step  you  will modify the database  

manager’s PROFILE EXEC so that the  virtual  disk will be  CMS formatted and  

reserved each time the database  manager virtual  machine IPL’s CMS. In  addition,  

a second link to the  virtual  disk will be  set up (see the previous step). 

 

56 Performance  Tuning  Handbook  



Attention: If an  error occurs such  that the virtual  disk  is not usable,  the  database 

cannot be brought up. In  this situation,  you must  correct  the error to make the  

virtual  disk usable, or you must replace  the  virtual disk with  a real minidisk  at the 

same  address (and  at least the same  size). The replacement minidisk  must  be 

formatted and  reserved,  as usual, before the  database is  brought up. 

It is recommended  that a separate EXEC  be  created to perform the LINK,  FORMAT 

and  RESERVE commands,  and that this  EXEC be called  from the  PROFILE EXEC. 

You  can place the  following statements in your  PROFILE EXEC  to initialize the 

virtual  disk for usage: 

 ’EXEC  PREPVDSK’               /* Call EXEC to Prepare  Virtual  Disk */ 

 If rc ¬= 0 Then Do; Say "PREPVDSK rc =" rc;  Exit rc; End 

Note:   The 'If' statement  above  will cause the PROFILE EXEC to end if an  error is 

returned  from the  PREPVDSK  EXEC. This assumes that the  PROFILE EXEC 

will  eventually invoke  the SQLSTART EXEC after the  virtual disk has been 

initialized.  This is done because  the database cannot be started  if the virtual  

disk  is  not properly initialized. You  may  need to tailor this processing to suit 

your  particular operational environment.  

The following is a sample 'PREPVDSK EXEC':  

/* REXX */ Trace ’O ’;   Address  ’COMMAND’ 

/* Use  this  EXEC to FORMAT and RESERVE  a Virtual Disk,               */ 

/* that is used as  the FIRST Dbextent of a  Storage  Pool containing   */ 

/* ONLY INTERNAL DBSPACES.                                            */ 

/*                                                                   */ 

/* ATTENTION: This  process, to use a Virtual Disk, requires  that the */ 

/*            CP Link Mode letter  be changed from ’W’  to  ’M’ in the  */ 

/*            SQLFDEF file for the  CP LINK command  for the DATABASE   */ 

/*            Address of the Virtual  Disk.                           */ 

/*                                                                   */ 

/*  This EXEC should  be called from the PROFILE EXEC  of the Database  */ 

/* Virtual  Machine,  to prepare the Virtual Disk  for use.             */ 

/*           (once  per LOGON/IPL of the Database  Machine)            */ 

/*                                                                   */ 

/*  The Virtual  Disk MDISK  is Linked  R/O with an unused address,      */ 

/* (which  is refered  to below  as the PERANENT  ADDRESS) so that       */ 

/* that subsequent Detaches of the normal address  (refered  to  below  */ 

/* as the SQLFDEF ADDRESS) by this  EXEC and the  SQLFDEF  file will    */ 

/* NOT  lose  the FORMAT/RESERVE information.                          */ 

/*                                                                   */ 

/*  The Virtual  Disk MDISK  is Linked  again, R/W, with its SQLFDEF     */ 

/* address,  for the FORMAT/RESERVE processing. This address is then  */ 

/* Detached.   It will be Linked  again later  by the  SQLFDEF file when */ 

/* the  database  machine runs the SQLSTART  EXEC.                      */ 

/*                                                                   */ 

/*  If the  R/O Link of the  Virtual Disk  is detached  by mistake,       */ 

/*  you MUST run this EXEC before running  SQLSTART  again.             */ 

/*                                                                   */ 

/********* UPDATE  THE FOLLOWING 5  VARIABLES AS APPROPRIATE:  *********/ 

dbname  =  ’dbname  ’              /* Database  Name                    */ 

pdisk  =  ’0cuu’                  /* Virtual Disk PERMANENT Address    */ 

vdisk  =  ’0cuu’                  /* Virtual Disk SQLFDEF  Address     */ 

vlabel  =  ’DDKnn   ’              /* Virt Disk  Label (Dbextent Number)*/ 

ufm    =  ’Z’                     /* Unused  Filemode  Letter            */ 

  

z=Diagrc(8?,’CP DETACH’  vdisk)   /* Be sure  SQLFDEF Addr is NOT  Linked  */ 

z=Diagrc(8?,’CP LINK  *’ vdisk  pdisk ’RR’)    /* Get  PERMANENT R/O  Link  */ 

Parse Var z cprc .  ;  If cprc ¬= 0  Then Exit cprc 

z=Diagrc(8?,’CP LINK  *’ vdisk  vdisk ’M’)    /*  Get SQLFDEF   R/W Link */ 

Parse Var z cprc .  ;  If cprc ¬= 0  Then Exit cprc 

’SET  CMSTYPE  HT’;  ’RELEASE’ ufm; ’SET CMSTYPE  RT’ 

Push vlabel

 

Chapter 3. Managing Storage  and Configuring the  Operating System  57



Push ’1’  

’FORMAT’ vdisk ufm ’(BLKSIZE 4096 NOERASE’         /*  FORMAT the  Vdisk  */ 

If rc ¬= 0 Then Exit rc 

Push ’1’  

’RESERVE’ dbname  vlabel ufm                       /* RESERVE the  Vdisk  */ 

If rc ¬= 0 Then Exit rc 

’SET CMSTYPE HT’; ’RELEASE’ ufm; ’SET  CMSTYPE RT’  

z=Diagrc(8?,’CP DETACH’  vdisk)   /* Detach the SQLFDEF  address again, */ 

Exit 0        /* ... it will be re-Linked by SQLFDEF  during SQLSTART.  */ 

Step 7, Archive  Your Database:   Neither  the ADD DBEXTENT nor the  DELETE 

DBEXTENT operation is recorded  in the log. Since these  operations update the  

directory (but not the  database itself), problems can be encountered if you 

normally archive the  database and  then  try to restore that archive with  the ADD 

DBEXTENT or DELETE DBEXTENT  occurring in between the  archive and  the  

restore. For more  information  about this  problem, refer  to the  DB2 Server for  VM  

System Administration manual. Archiving before and after  you make changes  to the  

virtual disk  will  assist you  if problems  occur.  

DASD Storage 

How you manage DASD storage affects performance  in four ways: 

How Storage Is  Divided   

How you divide  a limited amount  of  storage between  indexes and  data, 

and  among dbspaces and  among storage pools determines to a large  

degree  how each will perform in different  situations. 

Wasted Storage  

Wasted storage  in itself may not affect the  performance  of  the system that 

is  using it, but it may represent  a resource that could be used  to improve 

performance  elsewhere. 

Distributing DASD I/O   

How well you  balance the  demand for DASD  I/O across  several DASD 

devices, controllers and  channels can affect how fast the database  manager 

can retrieve information  from DASD. 

Running out of  Storage  

While  running  out of storage can disrupt your users because you  are 

forced  to bring  down the  application server to add storage, just  getting  

close can  degrade performance. (If you reach  the  application  server’s short 

on storage level you  trigger unnecessary SOSLEVEL checkpoints, refer to 

“Short  on Storage  Cushion”  on page 59.)

In  VSE 

The directory,  logs, and  dbextents are VSAM Entry Sequenced Data  Sets (ESDS)  

with a control  interval size of 512 bytes for the  directory  and 4096 bytes for the  

logs and dbextents.  The  database manager uses VSAM  Control  Interval processing 

to read and write  records to the VSAM ESDS. 

In  VM  

The directory,  logs, and  dbextents are CMS reserved minidisks with a blocksize of 

512 bytes for the  directory  and  4096 bytes  for the  logs and dbextents (the directory 

may have a blocksize of  4096 bytes, if Data Spaces  Support  is used).  These 

minidisks have CMS-like files that are in a format  to be used  with the  IUCV 

*BLOCKIO I/O system that reads and writes  records  to these  files.  These minidisks 

are called reserved  because they have been processed by the  CMS RESERVE  

 

58 Performance  Tuning  Handbook  



command. It specifies that the  minidisk consists  of  a single  CMS file, which is 

allocated using all available disk blocks. This CMS file  cannot be processed by 

most CMS file  system commands  and  must never be modified,  except by  the  

database manager.  

Mapping of Dbspaces to DASD  

Logical  dbspaces must  be mapped to physical  dbextents  on DASD.  The database 

manager does  this by maintaining page map table(s), for each dbspace, which map 

a given  dbspace page to its location  on DASD.  The  page map table  is  stored in the  

DB2  Server  for VSE & VM  directory.  There can be  multiple page map tables per 

dbspace. Each page map table  block  is equivalent to 128 pages in a dbspace. 

Logical To Physical  Page  Relationships  

Physical  page slots  in the storage pool  are allocated to the  dbspaces dynamically 

upon  first reference. Once a logical page has had  a physical  page slot  allocated  to 

it, it will continue to have a physical  page allocated,  even if  empty, until the 

dbspace is dropped or empty pages  are released.  Empty pages  can be released 

back  to the  storage pool either by  running  the SQLRELEP EXEC  in VM or by  

bringing up  the server using STARTUP=P in VSE.  For more information, refer to 

“Running out  of  Dbspace Pages” on page 65 

Storage Pools 

A storage pool is  a  collection of one or more dbextents, which  can be used  to 

control the distribution  of  the  database across  DASDs. The maximum number of  

storage pools for a given  database is specified by  the database generation  keyword 

MAXPOOLS.  A storage pool does not exist until a dbextent is assigned to it. 

Dbspaces are assigned to a given storage pool when they are defined. That  means 

when physical page slots are allocated to the  dbspace, they are allocated from the  

storage pool to which the  dbspace belongs. 

In  addition,  if  the storage pool contains more than one  dbextent,  the database 

manager allocates  pages  in  a storage pool  in sequence, usually allocating  all the  

pages  in one  dbextent  before using the  next dbextent. With  the DB2 Server  DSS 

Feature,  the  database manager can distribute pages evenly across  all the  extents, 

refer  to “Striping” on page 198. 

Managing Storage Pool Space 

Short on  Storage Cushion 

The short on storage (SOS) cushion helps  you  avoid  completely filling a storage  

pool. If the  database manager  is running: 

v    In  SUM with  LOGMODE not equal to N  or 

v    In  MUM

and the percentage of  space  available  in one  pool falls  below the  SOS level, the 

database manager performs a checkpoint to release  shadow pages  (refer to 

“Shadow  Pages” on page 63). If this does  not release  enough pages  to fall below 

the SOS level, a warning  message  is  sent to the operator. If you  are already short 

on storage and  need  more storage in a pool, refer to “Running out  of  Dbspace 

Pages”  on page 65.  

Tuning  Parameter  (SOSLEVEL):   While it  is acceptable to reach  the  SOSLEVEL 

initialization parameter occasionally,  do not let any of  your storage pools hover 

around it. SOSLEVEL  initiated checkpoints  are unnecessary overhead. If they occur 

 

Chapter 3. Managing Storage  and Configuring the  Operating System  59



frequently, it is a good sign that you should either free space in the  overloaded 

pools, or increase their size by adding  dbextents. 

Do not just lower the SOSLEVEL  to avoid checkpoints. If you  have less than 10%  

free space  in a storage pool the database manager will  initiate a checkpoint  during 

a rollback  even if you  set SOSLEVEL  below  10%. 

Instead, set SOSLEVEL to at least 15% and  try to keep  at least 25%  free  space in 

each storage pool. This ensures that even  if you accumulate a large number of 

shadow pages  in  a pool, the  database manager will not initiate unnecessary 

checkpoints. 

Performance Indicator (SHOW POOL):    Use the  SHOW  POOL operator command 

to determine what  percentage of each storage pool is  full. If the  free space in a  

pool falls below  the SOSLEVEL  parameter,  the SHORT ON STORAGE flag appears in 

the report  for that pool. (Refer to page 26.) 

Also watch the CHKPOINT counter. If  you notice an excessive  number of  

checkpoints occurring during insert or update  transactions, the database  manager 

may be doing the following:  

v   Reaching the SOSLEVEL  and performing  a checkpoint. 

v   The checkpoint releases  just enough shadow pages for the  pool to fall below  the 

SOSLEVEL. 

v   Subsequent processing quickly  refills the  pool to the SOSLEVEL  and another 

checkpoint is taken.

The database manager may spend  so  much time processing SOSLEVEL 

checkpoints that it  can perform little useful work. Changing the SOSLEVEL  will 

not help this problem. Instead, add storage to the pool, refer  to “Running out  of  

Dbspace Pages” on page 65. 

Types of Pages 

There are four types of  pages  that can reside  in a dbspace: 

Header Pages   

These  pages  contain an inventory  of  all the  dbspace attributes,  tables and  

indexes  created in the  dbspace. 

Data Pages  

These  pages  contain table rows  that may  be from several different  tables in 

the  dbspace. 

Index Pages   

These  pages  contain index entries. Each page contains information for one 

specific  index  on one  specific table. 

Shadow Pages  

These  pages  are used to ensure that the  database manager can reconstruct 

changes  to the database after a system failure, refer  to “Shadow  Pages” on 

page 63.

Number  of Header Pages 

Because there are never many header pages  in a single dbspace, never more than 

eight, they do  not represent  a significant impact on performance. We suggest  that 

they remain  at the system default of  eight.  

 

60 Performance  Tuning  Handbook  



Proportion  of  Index to Data  and Header Pages 

The amount  of  space you reserve for index  pages, depends on how many indexes  

you  expect to create  and  on the  number and  size  of  columns included in the  

indexes. You can use the  following as  a guideline:  

Read-Only Data 

Since many indexes are recommended  for read-only data, you  should  

reserve at least the  default  of  33% and  as  much  as 50% for the  pages  in a 

dbspace for index pages. 

Update  Intensive  Data 

You can reserve less than the  default  of  33% of the pages  in a dbspace for 

index pages, since you may not use as many indexes  for this type  of  data. 

(It is expensive  to update indexes  every  time data is  updated,  so  it is  

suggested that you  use fewer  indexes with  this data.)

If you  are unsure  whether your  data is read-only or update  intensive, use the 

default  of  33% index  pages. 

Tuning  Parameter  (PCTINDEX):   You  can set the  proportion of  index to data  and  

header pages  in  a dbspace when you  acquire it using the PCTINDEX parameter. 

For example, the following statement  acquires a dbspace and reserves  50% of its 

pages  as index  pages: 

   ACQUIRE  PUBLIC  dbspace NAMED  test_dbspace (PCTINDEX=50) 

Performance  Indicator (PCTINDX):    To determine  the  current percentage of 

reserved index pages in a dbspace, look in the PCTINDX column of  the  

SYSTEM.SYSDBSPACES catalog table  for your dbspace. 

Free Space in  Data  Pages  

You  can reserve  a percentage of  each data page for updates that make the changed  

row longer than it  was before.  This free space is not used for inserts. You  can 

reclaim the free  space for inserts  through an ALTER DBSPACE statement. The 

percentage of  free space you choose  will  depend on the  type  of  activity being 

carried out on the data  in the dbspace: 

High  Insert/Low Update Activity 

This is the  situation where  there will be few  updates, or all columns are 

fixed length and  non-nullable in the tables. Here,  you  would set the 

percentage of free space  to a  high value before loading  the data; then lower 

it to a low value. The difference between  the  original value and the  final 

value can then be  used by insert activity. 

Low Insert/High Update Activity 

In  this situation,  PCTFREE should be set to a  low to medium value, 

depending on  the likelihood of updated rows increasing in length.  

(Increase PCTFREE in proportion to the  likelihood of  increasing row  

length.) The space saved by PCTFREE will  be used by  the  update activity  

only if the update  increases the size  of  the  row  and the free  space will  

accommodate the new row. 

Low Insert/Low  Update  Activity Or Read-Only Data 

Read-only data  is data  that is loaded into  a dbspace and  then  never 

modified or updated,  only retrieved using query statements. In this 

situation,  set PCTFREE to a low value  or zero,  before you  load any data  

into the  dbspace. 

 

Chapter 3. Managing Storage  and Configuring the  Operating System  61



High Insert/High  Update Activity 

In  this situation,  set PCTFREE to a  high value while you load  data into  the 

database and then lower it. This would  allow space for use by both update 

and  insert activities.

One  purpose  of PCTFREE is  to minimize overflow because of  row  expansion. 

When UPDATE  commands are executed on an existing row and  the  length of  the  

row increases, the row  could expand  into  the free  space reserved  with  PCTFREE. If 

the expansion exceeds the  free space, the  page becomes full, and it causes  an 

overflow. The row  is relocated to a new  page and  a pointer chaining  to the  new 

location is set in  the  old page.  If the  row has to be moved again, the  pointer is  set 

to mark the newest location. Therefore,  the  database manager never reads more 

than two pages for one  row. 

The other purpose of  PCTFREE  is to reserve  space on a page when data is  loaded.  

After loading, PCTFREE can be lowered to allow the free space  to be  used for 

inserts (to help keep  the data  clustered). 

Tuning Parameter (PCTFREE):    You  can set the percentage of  space on each page 

that  is  kept free  when  data is  inserted in the dbspace, when  you acquire it using 

the PCTFREE  parameter. For example, the following statement  acquires a dbspace  

and reserves  20% of the space  on  each page for inserts: 

   ACQUIRE PUBLIC dbspace  NAMED test_dbspace (PCTFREE=20) 

You need  to know  the PCTFREE setting for a dbspace before you can  calculate the 

number of  rows you  can effectively  store on a single  data page.  For a complete  

description of how to calculate this,  refer  to “Estimating the Number  of  Data Pages 

Required” in  the DB2  Server  for VSE & VM Database  Administration manual.  

Performance Indicator (FREEPCT):   To  determine the  current percentage of  space 

on each page that is kept  free  when data  is inserted in the  dbspace, look in the  

FREEPCT column of the SYSTEM.SYSDBSPACES  catalog table  for your  dbspace. 

Performance Indicator (AVGROWLEN):   To  determine average length of the rows  

in a table, look in  the  AVGROWLEN  column of  the  SYSTEM.SYSCATALOG catalog 

table. 

Performance Indicator (NOVERFLOW):   To  determine how many rows  are 

overflowing onto new pages, look in the  NOVERFLOW column of  the 

SYSTEM.SYSCATALOG catalog table. As a rule of thumb, if the number of  

overflow rows in  a table  (NOVERFLOW) exceeds 5% of the total  number of  rows 

in the  table  (ROWCOUNT), it is  probably time  to reorganize the  table. Refer  to 

“Reorganizing Data”  on page 70. 

If you  decide to reorganize the table because of  this,  you  may also  want to alter 

the dbspace  to give it  a larger  PCTFREE value. 

Free Space  in Index Pages  

You can reserve a percentage of space in each index page for future index entries, 

which allows  index maintenance to take place without  splitting  of  index pages. Its 

default is  10 percent, which is a good  value for most purposes.  If  you expect much 

insert or update activity after the  creation of  the  index, you  might want  to override 

the default  by  setting the  percentage to a higher  value. If you  expect no insert or 

update activity after the creation of  the index, you might want to override the 

 

62 Performance  Tuning  Handbook  



default  by setting the  percentage to zero.  Usually, a low value (5% to 10%) is a 

good choice when creating an index, as this allows  enough room  to accommodate 

a low level of  maintenance. 

Tuning  Parameter  (PCTFREE):    You  can  set the percentage of space in each index 

page for future index entries, when you  create  it using the  PCTFREE  parameter. 

For example, the following statement  creates  an index and reserves 20%  of  the 

space on each page for future entries: 

   CREATE  INDEX test_index ON  test_table (test_column) PCTFREE=20 

You  can change  a current PCTFREE value  by either dropping the  index and  

recreating it with a new  PCTFREE, or you  can reorganize it with the DBS Utility. 

For example, the following command will reorganize index index_number_one 

created by smith and give  it a PCTFREE value of  50: 

     REORGANIZE INDEX  (smith.index_number_one) PCTFREE=50 

For more  information  on reorganizing indexes, refer to “Reorganizing Fragmented  

Indexes” on page 73. 

Performance  Indicator (IPCTFREE):   To  determine the current percentage of  space 

in each index page for future index entries, look in the  IPCTFREE column of  the  

SYSTEM.SYSINDEXES catalog table for your index. 

Shadow  Pages 

Shadow  pages  are used whenever you make changes to your  database.  They use 

space in  a storage pool that is  only released during a checkpoint. If  you are not 

careful to leave enough free  space in your  pools, shadow pages  can fill  them before 

the space is reclaimed at the  next checkpoint.  This is  true even if you are only  

modifying  rows and  not adding new ones.  

Each permanent  (not internal) dbspace page has two entries in the page map table. 

One points to the current  page while the other  points to the  shadow page.  The 

current page contains any updates made  to the page since the  last checkpoint.  The 

shadow page contains  the original page as it was  at the time  of  that checkpoint.  

(See “Choosing  the Checkpoint Interval”  on page 104 for a discussion  of  

checkpoints.) If there  have been no changes to the  table  since the  last checkpoint,  

both entries  point  to the current page.  

The database  manager uses  this system to reconstruct changes  to the  database after 

a system failure. When  the  database manager is restarted after a system failure, it  

will use the page map  table entries that point to the  shadow pages. This effectively 

resets the  database to its  state at the last checkpoint. The  LOG is  then used  to 

re-apply updates for LUWs committed  after the  last checkpoint.  

When  the database  manager updates a page the following occurs: 

1.    A new physical  page is  allocated from a storage pool. This uses one physical  

4KB  page in a storage pool. It does not deplete the available data  pages  of  the  

dbspace. 

2.    The current  page map table  entry  is  set to the new  page location. 

3.    The new  page is created  in the local  buffer pool.

At  the next checkpoint the  following occurs: 

1.    The new  page in the buffer pool is  written  to the  new physical  location  in a  

storage pool and the buffer page is released for reuse. 

 

Chapter 3. Managing Storage  and Configuring the  Operating System  63



2.   The shadow page map  entries are set equal  to the current page map entries, 

and  the physical pages  in the shadow page map entries  that have been changed 

are released.

Note:  Do not confuse shadow page recovery  with rollback work processing.  

Shadow  pages  are NOT released during a ROLLBACK. During  a rollback 

the contents of  the  log are read and  any changes  to the database are undone.  

For example  the database manager will  undo  a CREATE TABLE  with a 

DROP TABLE. If a ROLLBACK  were accomplished  by  falling back on 

shadow pages, you  could not recover if a system failure occurred during 

ROLLBACK  processing.

Determining the Number  of Shadow Pages in Use:   If you want to know how 

many pages  are used by a  specific update transaction,  you can compare the 

number of  PAGES USED (SHOW POOL)  before and  after the  transaction. For  

example, consider a storage pool with  two dbextents.  Force  a checkpoint (drop a 

dbspace created  for the  purpose),  and  then enter a SHOW POOL command:  

show pool 

  

POOL NO.  1:      NUMBER  OF  EXTENTS  = 2 

  

EXTENT    TOTAL    NO. OF       NO.  OF       NO.  OF     % 

 NO.      PAGES  PAGES USED  FREE PAGES  RESV PAGES  USED 

   1       855        245          610                28  

   2       855          0         855                 0 

TOTAL     1710        245         1465          20     14  

ARI0065I Operator command processing is complete. ...

This pool has 245 PAGES USED.  This total includes data, header,  and  pages  index. 

However, since you have  just forced a checkpoint it does not include any shadow 

pages. 

If you  now perform a transaction  (for  example an UPDATE statement) you can  

determine how many shadow pages  it uses by  reissuing  the SHOW POOL  

operator command.  For example, enter another SHOW POOL after the  checkpoint:  

show pool 

  

POOL NO.  1:      NUMBER  OF  EXTENTS  = 2 

  

EXTENT    TOTAL    NO. OF       NO.  OF       NO.  OF     % 

 NO.      PAGES  PAGES USED  FREE PAGES  RESV PAGES  USED 

   1       855        249          606                29  

   2       855          0         855                 0 

TOTAL     1710        249         1461          20     14  

ARI0065I Operator command processing is complete. ...

This time the  pool has 249 PAGES USED.  This means that your  transaction  used  4 

shadow pages  (249-245).  

If you  force another checkpoint,  the database manager will  now release all the 

shadow pages  in the pool and  reclaim  the space.  (There  will  be 245 PAGES USED and 

610 FREE PAGES.) 

 

64 Performance  Tuning  Handbook  



Note:   The above  procedure  will not be accurate  if the transaction  performs  enough 

database  modifications to cause a checkpoint to occur.  

Running  out of Dbspace  Pages 

If you  have run out of  pages  in a dbspace it is  because  of  one  of two conditions, 

either  the logical dbspace  is full  or the  storage pool to which is assigned no longer 

has any unallocated physical  pages. 

Storage Pool  Full:   If all the pages in a storage pool have been allocated,  you can  

reorganize the  dbspaces allocated to it by dropping  and  recreating (reorganizing) 

them.  This will reclaim space wasted because  of  fragmentation,  refer to 

“Reorganizing Data” on page 70. You  can also run a utility to free  up the empty 

pages. In  VM,  the utility is invoked via the  SQLRELEP EXEC. In VSE,  it is  invoked 

by  starting the  server  with STARTUP=P. For  more information,  refer to the DB2  

Server  for VSE & VM  Database Administration manual.  

If neither  or these methods reclaims enough space,  you  must add a dbextent  to the  

pool. For instruction  on how to do  this,  refer  to the DB2 Server  for  VM System 

Administration or the DB2 Server  for  VSE System Administration  manuals. 

You  cannot make  more pages available  by  deleting tables or rows in another 

dbspace using the same  pool. Deleted data  pages  are not returned to their  pool.  

After a data page in a storage pool  has been assigned to a specific  dbspace, it  

cannot be used  by  another dbspace using the  same  pool until the  entire dbspace  is 

dropped or the  release  empty pages  utility is run. 

You  can use the SHOW DBEXTENT  operator  command (refer to page 25) to 

monitor the storage available  in each storage pool,  and you can  use the SHOW  

POOL  operator  command (refer to page 26) to monitor the  number of  pages  

available  in each dbextent in the pool.  

Dbspace Full:   A dbspace  cannot be extended after it is  defined  (either during 

initial database generation or when it is added to a storage pool). Your only 

choices are to delete rows or tables in the dbspace  itself, or unload the contents  of  

the dbspace and  reload them into  a new dbspace  that is larger than the  original. 

Alternatively, just over  allocate  the  dbspace when you  acquire it  (refer to the  

ACQUIRE dbspace  command in the DB2 Server  for  VSE & VM SQL Reference 

manual). A dbspace is  only  a logical  allocation of space in the form  of  directory 

page tables.  You will not actually consume the  total number of  pages  in the  storage 

pool that you  defined for all the dbspaces  in the pool. Define the size  of  dbspace  

based on how large they may  become, but define the  size  of  the storage pool based 

on how  much  storage you need right  now, which includes shadow pages. As  your 

tables grow and you need  more pages, just add dbextents to the pool. 

Note:   The amount of  storage you  need right now includes space for shadow 

pages. 

You  can use the SHOW DBSPACE operator  command (refer to page 25)  to monitor 

the number of  header, data, and index pages  allocated to the  dbspace and  the  

percentage of  each actually in use.  

Shadow Pages:   You  may find  that even  though  you have not added a significant 

number of  new  rows to a dbspace  it may  become full. This occurs because every  

time  you modify a existing index or data  page (or create  a new one) a shadow page 

is created.  These  pages  require  additional storage that is not reclaimed until the 

 

Chapter 3. Managing Storage  and Configuring the  Operating System  65



next checkpoint, refer to “Shadow Pages”  on page 63. To avoid  this problem,  

ensure that  there  is enough free space in your  storage pools to accommodate 

shadow pages. You  will usually require between 15% and 25%  free  space measured 

immediately  after  a checkpoint.  For example: 

show dbextent 

  

POOL     TOTAL    NO. OF       NO.  OF       NO.  OF     %    NO. OF  

NO.       PAGES  PAGES USED   FREE PAGES  RESV  PAGES  USED  EXTENTS SOS 

   1      1710     1410         300          20       83       2 

FREE    268626  

ARI0065I Operator command processing is complete.

 

This dbextent has 17% free  space (100-83). You may  want  to add space to ensure 

that  shadow pages will  not become a storage problem. 

Ever Increasing  Index:   One  reason for running  out  of  index pages  is that you are 

using an “ever  increasing index”. For example, consider a table  where you only  

keep data for three months. Every month  you delete any rows that were created 

more than three months earlier. To keep track of  the  creation dates, you use a date 

column, or timestamp and  create  an index  on that column.  

Unfortunately in  this example, even though  you  delete old rows, the  pages  that  

contain their index  keys remain allocated to the table. They are not released for 

reuse. They also remain  allocated to the same  range  of  values (or dates),  so  in this 

example, they may never be reused.  For example, if  one  index page contained keys  

for a range of dates from March 1,  1996 to April 14, 1996,  it will only  ever  be 

reused for that  range. 

If you  have this type  of  index, you  must constantly monitor the percentage of  free  

index pages  in  the  dbspace. You can use the SHOW  DBSPACE operator  command, 

refer to “Proportion of Available Pages” on  page 25. 

To recover  the wasted storage used by  an ever  increasing index, you must  

reorganize it. Refer to “Reorganizing  Fragmented  Indexes” on page 73. 

Data Clustering  

Clustered Indexes 

You can say that an index is clustered if the data  is logically stored in an order 

which closely  matches the  sequence  of  the index. That means that, ideally, when  

you retrieve  the rows following the order of a clustered index, the  database 

manager can do  so  by  looking  at a minimum  number of  pages. 

Consider the following;  all the  rows in a table  are retrieved in the  sequence  of  an 

index. As  the database manager retrieves each row, it  counts the number  of times it 

needs to access a different  page than the  one  it is  currently using.  

In  the  best  case, the number of  pages  accessed is exactly  equal to the number of  

pages occupied  by that table  within the  dbspace. A data  page is  read,  all the  rows 

of the subject  table  in that page are retrieved, and  then  the next page is read.  In 

this case, the  pages  are read sequentially -  each page read only  once. 

Remember that  saying an index is clustered really means that the  table is clustered 

relative to the  index. If the  database manager can use the index to sequentially 

 

66 Performance  Tuning  Handbook  



retrieve the rows  in the  table  by looking  at a minimal number of data pages, the  

index is  clustered. Another  index acting  on the  same  data may  or may not be 

considered clustered.  

The Clustering Index 

The first  index  created on a table  is,  by default, the clustering index. It inserts new 

rows into  data pages  so  that as many  pages  as possible  are clustered relative to the  

clustering index, refer to “Clustered  Indexes” on  page 66. 

Default Clustering versus Clustering Index Strategy:   When  data  is inserted into  

a table, there are two  strategies for finding a place for the data  in the dbspace: 

default  logic and  clustering index logic.  Essentially the default  logic places any 

new rows  at the end  of  the table, while the  clustering index logic places a new row  

in index sequence, as much  as  possible. While  the clustering  strategy tries to keep 

a clustering  index clustered,  the  only way  to ensure that it is  completely clustered 

is to reorganize the data, refer to “Reorganizing  Data”  on page 70. 

The default  logic strategy is  used if  a clustering index is not available  (indicated  

by  a “D” in  the  CLUSTERTYPE column in SYSTEM.SYSCATALOG for the  table).  

This strategy  uses the  value in the  CLUSTERROW column in  

SYSTEM.SYSCATALOG for the  table to determine the starting point to look for 

available  space for the insert. The value in CLUSTERROW is  a pointer to the  end 

of  the table. If the value in CLUSTERROW  is significantly  incorrect, the  database 

manager has to do  extra work  to find a page that has sufficient free  space to hold 

the row to be  inserted.  The  value of  CLUSTERROW  can be  significantly incorrect  if 

UPDATE STATISTICS  has not been executed recently  or an application program 

that  is doing the  insert has not been preprocessed (prepped) recently.  Because a 

preprocessed program that inserts  with  the default logic  stores the  value of 

CLUSTERROW in the  package, you must  periodically  preprocess this kind of  

program to update the CLUSTERROW  value in the  package. 

The clustering  index  strategy  is used  if a clustering index is available (indicated 

by  a “I”  in the CLUSTERTYPE column in SYSTEM.SYSCATALOG for the  table).  

This strategy  attempts to place the new row  on the  same  page as rows with similar 

key values.  This determines the starting point to look  for available space for the 

insert. If there is no available  space on the  pages  at or near this starting point then  

the database manager must  do  additional work  to find a page that has sufficient 

free  space to hold the  row to be inserted.  Insufficient free  space can occur because  

no free  space was  established  for the  dbspace or because inserts have used all the 

free  space.  If  you reorganize the dbspace, refer to “Reorganizing all the Tables in a 

Dbspace”  on page 71, you  can establish  free  space for inserts. 

When  you create a table, CLUSTERTYPE is  set to “D” and  CLUSTERROW is  set to 

zero.  When  you create the first  index  on a table, CLUSTERTYPE is set to “I”. If 

you  reorganize the  clustering index  (refer to “Reorganizing  Fragmented  Indexes” 

on page 73) it will  remain  the  clustering index. If you  drop the clustering index, 

CLUSTERTYPE is  set back to “D”. To  establish  a different  index as the  clustering 

index you  usually drop all  indexes on the table,  create  the new clustering index as  

the first index, and then create  any other  indexes. Refer  to “Reorganizing  a Single 

Table”  on page 71  and  “Reorganizing  all the  Tables in a Dbspace” on page 71.  You  

can also  change the clustering  index by  updating the SYSTEM.SYSINDEXES 

catalog table,  refer to “Changing the Clustering  Index without  Dropping  Indexes”  

on page 72. 

How Indexes Become Unclustered 

Indexes become unclustered when: 

 

Chapter 3. Managing Storage  and Configuring the  Operating System  67



v   A significant number of  rows were added to a table  since the  clustering index 

was  first  created  or since the data  was last reorganized  

v   And there  was insufficient free  space available to put the rows into  their  optimal 

locations.

You can increase the number of  rows that you can add before the  index becomes 

unclustered by increasing the PCTFREE  setting when you  reorganize your  data. 

Refer to “Reorganizing a Single Table”  on page 71. 

Identifying Unclustered Indexes 

Deciding whether an index is clustered requires some  judgement.  First,  you  need 

to execute an UPDATE STATISTICS  statement against the table the index belongs 

to. Second, you need  to look at the CLUSTERRATIO  and the  CLUSTER  column in 

the SYSTEM.SYSINDEXES catalog table. 

The CLUSTERRATIO  value is  used by  the  optimizer to choose  a suitable  index for 

access path  selection. This value represents a percentage, with the two  decimal 

places implied. The value  is calculated by:  

  

                       ROWCOUNT  - PAGE JUMPS  

CLUSTERRATIO = 10000 *  ---------------------  

                       ROWCOUNT  - PAGE COUNT  

  

where: PAGE COUNT  = the number  of pages the table occupies  

       PAGE  JUMPS =  the number of times  a different data page  is 

                    referenced to access  all the data in the table  

                    in index  order 

The CLUSTERRATIO value ranges between  0 and  10000,  and indicates the 

percentage of  time  that the table’s row,  when retrieved using that index, are in 

logical page sequence. 

The CLUSTER value,  in addition to giving a general  idea  about whether the index 

is clustered, is also used  to identify  the  clustering index for the  table. 

 Table  2. CLUSTER  values  

CLUSTER  Value Clustered Clustering 

F Yes Yes 

C Yes No  

W No  Yes 

N No  No

  

The CLUSTER column will show that an index  is not clustered if  the following is 

true: 

         PAGE JUMPS 

110% <   ----------- x 100 

         PAGE COUNTS  

(The number of  jumps per page is greater than  1.1.) 

Clustering VIEW:   You can include all the  important information  about clustering 

and indexes  in  one  VIEW. For example, the  VIEW should  contain the  following 

information: 

v   The name of  the  index and  its creator 

v   The CLUSTERRATIO of  the  index 

 

68 Performance  Tuning  Handbook  



v    The CLUSTER value of the index 

v    The number of  rows in a table  that the index  acts  on 

v    The number of  pages  in the  table  that the index acts on

For example: 

SELECT  i.iname, 

       i.clusterratio,  

       i.cluster, 

       t.rowcount,  

       t.npages 

       FROM system.sysindexes i,  system.syscatalog  t 

       WHERE t.tname  = i.tname and 

             t.creator = i.creator

 

to help you  determine if your index is clustered, your view should  also include: 

v    The number of  jumps 

v    The number of  jumps per page.

While  the CLUSTERRATIO  and CLUSTER  values are very useful in determining  

how  clustered a index  is,  you may  find it useful  to see  how many jumps  the 

database manager makes for each page it reads. Remember each additional jump 

per  page represents an unnecessary I/O.  You  may also want to compare the  

number of  jumps  per  page to the  number of  rows per  page. Unfortunately there  is 

no concrete rule you  can use to decide when  an index is unclustered. However,  the  

more information you have  available  the  better you will  be able to get a “feel” for 

the state of the index. 

To calculate  the number of  jumps, rearrange the clusterratio  calculation to solve for 

jumps instead of  clusterratio. For example: 

                         CLUSTERRATIO 

PAGE JUMPS  = ROWCOUNT  - ------------- X ( ROWCOUNT  -  PAGE  COUNT) 

                            10000  

If the  page jumps  calculation was  included in a SELECT with  the name of the 

index, the SELECT would look  like this:  

SELECT  i.iname, 

       (t.rowcount-(  i.clusterratio/10000.0*(t.rowcount-t.npages))) 

       FROM system.sysindexes i,  system.syscatalog  t 

       WHERE t.tname  = i.tname and 

             t.creator = i.creator

 

The following SELECT statement: 

v    Combines  the previous two  SELECT statements and  adds  the jumps per  page 

ratio. 

v    Orders  the results by  the  jumps  per page ratio, so you can  see the indexes  with 

the worst ratio first 

v    Excludes indexes created  against empty tables.

 

Chapter 3. Managing Storage  and Configuring the  Operating System  69



SELECT  i.iname, 

       i.clusterratio, 

       i.cluster, 

       t.rowcount, 

       t.npages, 

       (t.rowcount-(i.clusterratio/10000.0*(t.rowcount-t.npages))), 

       ((t.rowcount-(i.clusterratio/10000.0*(t.rowcount-t.npages))))/t.npages 

       FROM system.sysindexes i, system.syscatalog t 

       WHERE t.tname = i.tname  and 

             t.creator = i.creator and  

             t.npages > 0 and 

             t.rowcount > 0 

       ORDER BY 7 desc

 

Reorganizing Data 

You should  reorganize data for one  of four reasons: 

v   A table’s clustering index has become unclustered.  Refer to “Identifying 

Unclustered Indexes”  on page 68.  

v   The number of  overflow rows in a table (NOVERFLOW) exceeds 5% of the  total 

number of  rows  in the  table  (ROWCOUNT). Refer to “Free  Space in Data Pages”  

on page 61. 

v   To change which  index  acts  as the clustering  index. 

v   To return once populated  but now empty data  pages  to the storage  pool,  refer  to 

“Storage  Pool Full”  on page 65.

The first two conditions indicate that the rows  can no longer  be efficiently 

retrieved. 

Essentially, reorganizing involves unloading  the  data and  reloading it. Unload the 

data, making  sure that the  clustering index exists. If a clustering  index is  available, 

the data  is unloaded following its sequence. Drop the  clustering index and  reload 

the data  (it will  be reloaded  in the order of the clustering  index). Then  recreate the 

clustering index. This reclusters  the  data according  to the clustering index, and  

reclaims space that was  lost because of  row  overflow. 

The following instructions assume that you are using the DBS utility to unload and  

reload tables.  For more  information  on its use, refer  to the DB2 Server  for  VSE & 

VM Database Services Utility manual.  

There are several questions  you  need to ask before you  choose a  way to reorganize 

your data. 

v   If you  are reorganizing all the tables  in a dbspace at once and there  are not 

many tables in that dbspace with field procedures), and  it is not difficult  for you 

to recreate all the indexes, referential constraints, and unique  keys in that 

dbspace, follow the instructions  in “Reorganizing all the Tables in a Dbspace”  on 

page 71.  While  this set of  instructions requires you to recreate the entire 

dbspace, the  actual process  of reloading the data is  faster than  the following 

alternative. 

v   If you  only  need  to reorganize one or two tables  or if your  table  contains 

columns with field procedures, or if it  is too much  work  to recreate all their 

indexes, referential  constraints, and  unique keys, follow the  instructions in 

“Reorganizing  a Single Table” on  page 71. However,  if you also want to change 

which  index acts  as  the  clustering index, you  will  have to drop and  recreate all 

the  table’s indexes. 

 

70 Performance  Tuning  Handbook  



v    If you only  want  to change the clustering  index in a single  table  that uses 

several other indexes, follow the  instructions in “Changing the  Clustering Index 

without Dropping Indexes”  on page 72.  Unlike the previous  procedure, this set 

of instructions does  not require you to drop and recreate all the table’s indexes.

Reorganizing a Single Table 

The following method reorganizes  a single table. It  uses the DBS Utility RELOAD 

PURGE command. While  it is not as fast as the RELOAD NEW command, you  do  

not need  to manually drop and recreate any indexes, referential constraints, and 

unique keys (unless you  want  to change  the clustering index). 

1.    If you want  to change  which  index acts  as  the  clustering index, do  the  

following:  

a.    Drop  all indexes  for the table  by  issuing a DROP INDEX statement  for each 

one. 

b.    Create a new index  (using the CREATE INDEX statement). This index will  

act as the clustering  index.

2.    Unload the  table  (usually to tape), by  issuing a DBS Utility UNLOAD TABLE 

command.  The rows  are automatically unloaded in the  key sequence  of  the 

clustering  index. 

3.    Set  the  PCTFREE value  of  the dbspace to a high  enough  value to allow space 

on pages  for future clustered insertion of  rows.  

4.    Set  UPDATE STATISTICS ON if you want to automatically collect statistics 

during the RELOAD,  or set it  OFF if  you plan to UPDATE  ALL STATISTICS 

after  the RELOAD. Refer to “Automatic  Statistics Collection” on page 114. 

5.    Reload the table by issuing  a DBS utility RELOAD command with the PURGE  

option  specified. 

During  RELOAD command processing with the PURGE  option specified, all 

rows  of the specified table  are deleted.  As  part of  the PURGE, the DBS utility 

drops  the  clustering index, deactivates any active  primary keys, active  foreign 

keys, and active unique  keys, and  deletes all indexes on the  table  before 

deleting  and  reloading the data. After the  table  has been reloaded, the DBS 

utility recreates the  clustering index, primary  key, and  unique keys, and 

recreates  the  remaining indexes. It then reactivates  all the  foreign keys  it 

dropped.  Since packages are invalidated because  of  table  index deletions,  they 

are dynamically repreprocessed the next time  someone attempts to execute the 

package.  

6.    Reduce  PCTFREE to make the free  space available  for use on normal  INSERT 

activity.  

7.    If you set UPDATE  STATISTICS OFF, collect statistics for all  columns by  issuing 

the  UPDATE ALL STATISTICS command.  

8.    If you changed  which indexes  acts  as the clustering  index, recreate the  other 

table  indexes  required, using CREATE INDEX statements. The definition  of  all 

indexes  on a table can  normally be determined by querying the  

SYSTEM.SYSINDEXES system catalog table, as long  as  the length of  the column 

names on  which  the index is defined is  less than 100 characters.

Reorganizing all the Tables in a Dbspace  

The following method reorganizes  all the tables  in a dbspace. 

 1.   Record any index, referential constraint, unique key definitions,  or field 

procedures authorizations  in the dbspace. 

 2.   If you  want  to change which index  acts  as the clustering  index for any tables  

in the dbspace, do  the  following for those tables: 

 

Chapter 3. Managing Storage  and Configuring the  Operating System  71



a.   Drop all indexes  for the table by  issuing  a DROP INDEX statement  for 

each one. 

b.   Create a new index (using the CREATE INDEX statement). This index will 

act as  the clustering index.

 3.    Unload the  dbspace (usually to tape),  by  issuing a DBS Utility UNLOAD 

DBSPACE command. The tables  will be  unloaded in the order of the 

clustering index. 

 4.    Drop and recreate the dbspace. 

 5.    Set  the  PCTFREE value of  the dbspace to a high enough  value to allow space  

on pages  for future clustered insertion  of  rows.  

 6.    Set  UPDATE STATISTICS ON if you  want  to automatically collect statistics 

during the RELOAD,  or set it  OFF if  you plan to UPDATE  ALL STATISTICS 

after the RELOAD. Refer to “Automatic  Statistics Collection”  on  page 114. 

 7.    Reload the  dbspace by  issuing a DBS Utility RELOAD DBSPACE command 

with the NEW option specified.  

The NEW option assumes that none of  the  tables you  are reloading currently  

exist in the dbspace. A program that accesses a table,  the index of  which  was 

dropped, is re-preprocessed  when it  is next executed,  which  ensures  that it 

takes advantage  of  the new clustering properties. 

If a table  in  the dbspace has field procedures associated with  it, the table 

should be dropped and recreated to include  the field procedures and  reloaded 

using the PURGE  parameter. It  is not necessary  to unload the  table  again, as  

the table  can be reloaded  from the  unloaded dbspace file. 

 8.    Recreate the clustering  index. 

 9.    Reduce  PCTFREE to make the free  space available  for use on normal  INSERT 

activity. 

10.   If you set UPDATE STATISTICS OFF,  collect statistics for all columns by  

issuing the UPDATE  ALL STATISTICS command. 

11.   Recreate the other  table  indexes, any referential  constraints and any unique 

keys.

Changing  the Clustering Index without Dropping Indexes 

The following method  reorganizes  a single table, and  changes which index will act 

as the  clustering index. It eliminates the  need to individually drop and  recreate all 

indexes on the table. (The steps can be performed in a single execution of  the  DBS 

Utility.) 

1.   On the SYSTEM.SYSINDEXES table entry  for the  original clustering index, 

update the  CLUSTER  column value of “F” or “W” to “N”. 

2.   Change the value in the CLUSTERRATIO  column to 1000 (10.00%).  

3.   If the  new clustering  index does  not exist,  create  it with  a CREATE INDEX 

statement. 

4.   On the SYSTEM.SYSINDEXES catalog table  entry, update the  CLUSTER column 

for the new clustering index to the  value “W”.  

5.   Change the value in the CLUSTERRATIO  column to 7500 (75.00%).  

6.   Unload the table by issuing  a DBS Utility UNLOAD  TABLE command. 

7.   Set UPDATE STATISTICS ON  if you want  to automatically  collect statistics 

during the  RELOAD, or set it OFF  if you  plan  to UPDATE ALL STATISTICS 

after the  RELOAD. Refer to “Automatic Statistics Collection”  on page 114. 

8.   Reload the table  by  issuing a DBS Utility RELOAD command with the  PURGE 

option specified.  

 

72 Performance  Tuning  Handbook  



During  RELOAD command processing with the PURGE  option specified, all 

rows  of the specified table  are deleted and the  table  index (if one exists)  is 

dropped and  recreated. A program that accesses  a table, the  index of  which was  

dropped,  is re-preprocessed  when it  is next executed,  which ensures  that it 

takes  advantage  of  the new clustering properties. 

9.    If you set UPDATE  STATISTICS OFF, collect statistics for all  columns by  issuing 

the  UPDATE ALL STATISTICS command.

Index  Fragmentation  

A fragmented index is  characterized by excessive  amounts of  free  space in the 

index pages, which usually is  spread unevenly among  the pages. Free space 

distributed  unevenly implies that index  keys are also distributed  unevenly. Indexes  

can become  fragmented  by insert, delete, and  update activity  on the  table. 

To help prevent  index fragmentation,  indexes  should  be created  after the  data has 

been loaded into  the table, and  an adequate  PCTFREE  value should  be  specified 

for the index. 

If the  index is created before the  data is loaded, page splits occur and the index 

becomes fragmented  when the data  is loaded.  In fact, if the data  is loaded in 

clustering order, each index page of the clustering  index has 50%  free space. 

If a  sufficient PCTFREE value  is specified for the  index when  it is  created, 

subsequent inserts  do  fit on the existing  index page, avoiding index page splits.  

Indexes must either  be  reorganized or dropped and recreated to correct  the  

fragmentation.  If they  are dropped and recreated, any packages with dependencies 

on them are marked invalid.  In  addition,  if a clustering index is  dropped, it no 

longer functions as  the  clustering index if there are other indexes on the table. In 

this case, all indexes would  have to be  dropped, the  clustering index  recreated, and  

then  the rest of the indexes  recreated. If indexes  are reorganized, dependent 

packages  are not marked invalid, and the  clustering properties do  not change. 

Reorganizing Fragmented Indexes 

To determine  whether an index should  be  reorganized, enter  the SHOW DBSPACE 

operator  command to see how many  index pages  are occupied  in the  dbspace, and  

what  the actual percentage of  free  space in the occupied  pages  is. Next, determine  

the expected percentage of  free space by averaging the  PCTFREE  settings of all the  

indexes. If the actual  free space is appreciably  higher than the expected  amount,  

index fragmentation  or skewed  index values are the likely cause.  

There are two  ways to reorganize an index. One is to obtain all  index definitions 

from the  catalog tables, drop the index with the  DROP INDEX statement, then 

recreate it with the  CREATE INDEX statement.  

The other  is  to enter  the following DBS Utility command: 

   REORGANIZE INDEX  (index-name) 

You  must be  the owner of  the  index or have DBA authority. 

The advantages of  the  REORGANIZE INDEX utility are: 

v    A dbspace scan is not required to retrieve the rows  of the table. 

v    A sort  of  the index key columns is  not required. 

 

Chapter 3. Managing Storage  and Configuring the  Operating System  73



v   Dependent  packages  are not invalidated and  therefore do not require  

re-preprocessing.  

v   The clustering property of  a clustering index is not lost.  (If there is more  than 

one  index on a table, and  a clustering  index is  reorganized by being  dropped 

and  re-created,  it is  no longer the  clustering index.)

For  more information on  the REORGANIZE INDEX utility, see  the DB2 Server  for  

VSE & VM  Database Services Utility manual.  

Notes:  

1.   You must  use the ALTER TABLE statement  to reorganize  an index that was  

created by  the  database manager  to enforce  the uniqueness of a primary key or 

a unique  constraint (see the DB2 Server  for  VSE & VM Database  Administration 

manual). 

2.   A different utility is  provided to reorganize the  catalog table indexes  (see the  

DB2 Server for  VSE  & VM  Database  Administration  manual.).  

3.   Reorganizing an index is not a solution for an unclustered index. To  correct  an 

unclustered index, you must reorder the  data to match the  index sequence, 

refer  to “Reorganizing Data” on page 70. In  addition,  issuing the 

REORGANIZE INDEX command does  not return  freed pages  to the storage 

pool. The freed pages are only  returned to the  storage pool if  you drop the 

dbspace.

Invalid Indexes 

An index can become invalid in  the  following ways.  

v   During a ROLLBACK  or UNDO operation,  if the  database manager requires a 

free  index page but  is unable  to reclaim any, the index  is marked  invalid. More 

than one index can become invalid during the  LUW. Rollback,  UNDO,  or REDO  

processing continues, but no updates are made to invalid indexes, and thus  they 

no longer  reflect the data. These indexes  cannot be  used until they have  been 

reorganized, or, dropped and recreated. 

v   An index can be marked  invalid if duplicates have occurred in a unique  index. 

This can only happen if: 

–   a checkpoint occurs during a searched UPDATE deferring  checking of  

uniqueness,  

–   a system failure occurs before the end  of  the statement, and  

–   the  database is started with an empty log.

At  the end of  initialization, any unique  indexes that contain duplicates  are 

marked  invalid. 

v   An index can also be marked invalid if the  following events occur  in order: 

–   A checkpoint occurs during a CREATE or REORGANIZE INDEX.  

–   A system failure  occurs before the  database manager can complete  the  

CREATE or REORGANIZE statement. 

–   The  application server  is  restarted with an empty  log.

When an index is marked  invalid,  packages that use that index are not marked 

invalid; however, the packages  will become invalid if the index is dropped.  If the  

index is reorganized, the packages  will  remain  valid. 

Additional details about invalid indexes can be found under the  SHOW INVALID 

command in the  DB2  Server for VSE  & VM  Operation manual.  

Transient Indexes  

An index can be marked  transient in the following ways.  

 

74 Performance  Tuning  Handbook  



v    An index is marked transient during a CREATE INDEX statement or 

REORGANIZE INDEX command. In this case, the index remains transient  for 

the duration of the statement.  When  the index has been created or reorganized 

successfully, the  index is marked valid. 

v    A unique index can be  marked transient during a searched UPDATE  statement  

where uniqueness checking  is being  deferred.  In this case, the  index remains 

transient for the  duration of the LUW.  The index is marked transient when the  

first duplicate is  inserted.  When  the statement  is  completed, if duplicates still 

exist SQLCODE -803  (SQLSTATE 23505)  is  issued, and the UPDATE statement is 

rolled back. The index is marked  valid at the  end of the  LUW.

Additional  details about transient indexes can be found under the  SHOW 

INVALID  command in the DB2 Server  for  VSE & VM Operation  manual.  

Reorganizing an Invalid Index 

Use the  SHOW  INVALID  operator command to display all  invalid indexes in the 

database,  as well as  the reason why  each index is invalid. 

Use the  REORGANIZE INDEX utility to revalidate an invalid index that is invalid 

because you encountered a NO ROOM IN THE STORAGE POOL message. 

If the  invalid index  was created to support a primary key or a unique  constraint, it  

can be  reorganized  with the  ALTER  TABLE  table_name ACTIVATE  key_name 

command. 

When  reorganizing an invalid index, the database  manager must  scan the  dbspace 

and  sort  the index keys, because  the invalid index may  not contain all the  keys. 

You  cannot use the REORGANIZE INDEX utility to revalidate a unique index that 

contains duplicates causing it  to be marked  invalid.  You  must drop this index, 

remove the duplicates, and re-create  it. If  the index  was created to support a 

primary key or a unique  constraint, you  must deactivate the  primary key or 

unique constraint with  the ALTER TABLE table_name DEACTIVATE key_name 

command, remove the  duplicates,  and  reactivate  the primary key or unique 

constraint  with the  ALTER  TABLE table_name ACTIVATE  key_name command. 

DASD  Balancing  

How well  you balance the demand for DASD I/O across several DASD volumes  

can affect  how  fast the  database manager can retrieve information from  DASD.  

Do not spend  a lot  of time and  effort  balancing the  utilization of  your DASD 

channels and controller. Instead, concentrate  on balancing the  utilization of your 

DASD volumes. You  can then simply allocate  an even number of  volumes  to each 

controller. 

Evenly  Distributing Workload across Physical  Volumes  

Moving Dbextents 

To evenly distribute your workload  across  all volumes  of  DASD,  use the  following 

method  as a guide:  

1.    Measure the  current utilization of  your  DASD volumes. 

2.    Select the  highest  utilized volume.  While  DASD balancing  based on utilization  

may  not necessarily  give optimal  performance  (it assumes  all your  volumes  

perform equally well), it is an excellent  place to start. (You  can also select a 

 

Chapter 3. Managing Storage  and Configuring the  Operating System  75



volume based on  average service  time. Choose  the  volume with the  highest  

average service time. Balancing this way ensures that you  will  drive faster 

DASD harder.) 

3.   If there is more  than one dbextent on  the volume,  move one dbextent  to the  

lowest utilized volume. In VM use DDR, and  in VSE use VSAM  backup and  

restore. (While  you can use the copy dbextent  facility that is supplied with the  

DB2  Server  for VSE & VM  product  to move a  dbextent, DDR and  VSAM  are 

much faster.) 

4.   If there is only one  dbextent, examine the  assignment  of  dbspaces to pools to 

dbextents. Refer to “Reassigning Dbspaces.” 

5.   Measure the current utilization of  your DASD volumes  again. 

a.   If you  find a significant improvement, return to step  2.  

b.   If you  do  not find a significant improvement, return to step  3 and select  a 

different  dbextent  to move. 

c.   If  there is  no significant difference between  the  utilization of  the highest and  

the lowest utilized volumes  they are balanced. Occasionally, measure  the 

utilization  of your DASD  volumes  to ensure that they are still balanced.

Reassigning  Dbspaces 

To reassign your  dbspaces,  first determine which storage pool the  dbextent  belongs 

to, then  choose one of  the  following options: 

v   Move a dbspace from one  storage pool to another. 

v   Move a table  from one  dbspace to another. This choice  is not valid if this is 

already  the only table  in the dbspace. Also make  sure  that if you  move the table  

you  do not put more than one  highly used table in the  same  dbspace. 

v   Change the dbextent(s)  in the storage pool to which  the dbspace is allocated.  

Moving Dbspaces:   

1.   Select a dbspace to move. While  you can  use the SHOW  DBSPACE operator  

command to see  how many pages  from the  storage pool have  been allocated to 

a dbspace, you  cannot easily determine how utilized the dbspace  is.  You  must 

rely  on your  knowledge of how the  table(s)  in the dbspace  are used. 

2.   Unload all the  tables in that dbspace. 

3.   Acquire a dbspace in a new storage pool. This storage pool should have 

dbextents on  the lowest utilized volumes. To  accomplish  this,  you  may have  to 

add a dbextent or dbspace or  both. 

4.   Reload the tables. 

5.   If a table  in the  dbspace has field procedures associated with it, the table 

should  be dropped and  recreated  to include the  field procedures and reloaded  

using the  PURGE parameter. 

6.   Drop the old dbspace. 

7.   Recreate the  indexes, views, and  authorities.  

8.   Recreate any referential  integrity constraints.

Moving  Tables:   

1.   Select a table  to move. While  you  can use the  NPAGES column in the 

SYSTEM.SYSCATALOG table  to see how many pages  from the  dbspace have  

been allocated to a table, you  cannot  easily determine how utilized the table  is. 

You  must rely  on your knowledge  of  how the table(s) in the dbspace are used. 

2.   Unload the table. 

3.   Select a dbspace in a new storage pool.  

 

76 Performance  Tuning  Handbook  



4.    If the table  has field procedures associated with it, recreate the table to include 

the  field procedures.  

5.    Reload the tables. 

6.    Drop the  old table.  

7.    Recreate the indexes, views,  and  authorities. 

8.    Recreate any referential integrity constraints.

Change Dbextents:    You can either let the database manager do  most of  the  work 

for you, or you can  do it yourself:  

Let the  Database Manager  Do it 

1.   Add dbextents to the  storage pool until there is  more free  space in the 

pool than  on the  dbextent  to be deleted (allowing sufficient space for 

shadow pages  and  an adequate  SOSLEVEL). 

2.   Delete the dbextent  on the most used volume. The database manager 

will  automatically move  data from the  extent to be  deleted onto the  

remaining dbextents  in the pool.

Do it Yourself 

1.   Unload all the  tables  in all the dbspaces in a storage pool. 

2.   Drop all the dbspaces in the  storage pool. 

3.   Re-assign dbextents to the storage pool. 

v    One  simple technique is to split  one  dbextent into two  smaller 

dbextents on two separate volumes. One dbextent remains on the  

highly utilized  volume and the other  is  allocated  to a low utilized 

volume. You  cannot use the  DB2  Server  for VSE & VM  copy  dbextent  

facility to do this.  

v    Unless  you are using the DB2 Server  DSS Feature with  striping 

turned on,  do  not just add a new dbextent  to the  pool.  That will  not 

result in any usage  of  the new dbextent  until the  previous  dbextents 

are full.

4.   Acquire dbspaces in the  storage pool. 

5.   Reload the tables. 

Note:   Unless  you  are using striping, data is  added to the dbextents in 

the order that they were created. The database manager  will fill 

the first dbextent  before it  proceeds to the next one. 

6.   If a table in the  dbspace has field procedures  associated with it, the  

table  should  be dropped and  recreated  to include the  field procedures 

and  reloaded using the PURGE parameter. 

7.   Recreate the  indexes, views, and authorities.  

8.   Recreate any referential  integrity  constraints.

General Considerations 

There are other  things to consider when you  organize your dbspaces, storage 

pools,  dbextents and  physical  DASD.  

Place the  database catalog tables into  their own pool. At  database generation  time, 

the catalog is  placed  in pool number one. All other,  non-catalog tables, should  be  

moved to different  pools. 

Place internal  dbspaces in their own pool. Performance  should  benefit greatly for 

large complex  queries if you  use data spaces  with this pool.  Assign the  pool to  a 

set of  dbextents that includes a virtual  disk. Refer to “Virtual Disk Support for 

 

Chapter 3. Managing Storage  and Configuring the  Operating System  77



VSE/ESA for Internal Dbspaces”  on page 48  or  to “Virtual Disk Support  for 

VM/ESA for Internal Dbspaces” on page 54. In  VM/ESA,  if you  have DB2  VM 

Data Spaces  Support, use unmapped data spaces  support for internal dbspaces.  

Refer to Chapter 6,  “Data Spaces Support  for VM/ESA,” on page 157. 

Caching is best  used where  data is frequently reused. For example, the  database 

directory is primarily  read from and  will benefit from caching, while the  log is  

primarily written  to and will not benefit from it. Any highly utilized dbextent  disk  

that  contains  tables that are primarily  used for read only  transactions will  benefit 

from caching. 

Attention: The amount of  frequently-reused-data should not exceed the size  of  the  

cache. 

If you  have faster  storage  devices available, use them for your highest utilized  

dbextents. 

Place the database directory on a separate volume from  your storage pool 

dbextents. Because you may use all of  these  at the  same  time, if  you do not 

separate them you  may create a bottleneck. You  can place the  directory and  the 

log(s) in  the  same  volume,  but it  is better to separate them.  If you  use dual 

logging, be sure  to put  each log on a different physical  device (and controller and  

channel, if possible).  

If you  are using the DB2 Server  DSS Feature with striping  turned on, make sure 

that  each dbextent in a storage pool is on a separate volume.  Refer to “Striping” on 

page 198. 

If you  are not using DB2  Server DSS striping, place  dbextents consecutively on the  

same physical  volume. This avoids unnecessary head movement. In  a VM system, 

you can  control exactly  where a  minidisk is  placed. However, if you want  to place 

dbextents consecutively in a VSE system, you  need to backup all VSAM  datasets 

on a particular disk and  then  reallocate them consecutively.  

VM Specifics 

Fair Share Scheduling  

VM was  originally  designed to support a  large number of  equally  important 

virtual machines.  To ensure that each user receives an equal allotment of its 

resources, VM’s  scheduler attempts to give each machine in the  system a fair share 

of the processor’s  time. 

However, if you are only using one  or two database machines  that use most of  

your system’s  resources, fair  share scheduling may keep them from receiving the 

processor time  they need. The database and user machines  may receive  

approximately the  same  resources to perform their tasks.  However because  the 

database machines  are performing  work for many users  they  may need  much  more 

resource than the users.  The database machines may become  a bottleneck, because 

the user machines are spending more  time waiting for them than  for processor  

time. 

Fortunately, there are several parameters that let you shift fair  share scheduling in 

the database machine’s favor. Use these  carefully. It  is easy to over  adjust  them and 

virtually lockout all other  users  in your system. 

 

78 Performance  Tuning  Handbook  



SET SHARE  

You can use the SET  SHARE command or the SHARE directory  statement 

to control the  percentage of  system resources  a virtual  machine receives.  

These resources  include processors, real storage,  and paging I/O capability. 

A virtual machine receives a proportion of  any scarce  resource according to 

its share setting.  

 You can use this command to ensure that a database machine receives an 

absolute minimum share of system resources and that the  remaining 

resources are divided among the  rest of  the user machines. (However, 

remember that by  allocating  an absolute share of  system resources to  a  

single machine,  you will also  limit its share to that amount. 

 If the  database machine is  not the only multiple user server  on the system,  

give it  a relative (instead of absolute share). 

SET QUICKDSP  

You can use either the  SET  QUICKDSP  command or the  QUICKDSP  

operand of  the  OPTION directory statement  to designate  virtual machines  

that will not wait in the  eligible list when they have work to do. Instead,  a 

virtual machine with a quick dispatch setting (QUICKDSP) is  added to the 

dispatch list immediately without  first  waiting  in  the eligible list. 

 You should  always  use this command to ensure that a database machine 

never waits  longer than absolutely necessary for another machine when it  

has work to do.

For  more  information  on either QUICKDSP  or SHARE,  refer to the VM/ESA:  

Planning  and Administration manual. 

VSE Specifics 

Dispatching  Priority 

The database  partition should  be configured according to the following guidelines: 

v    Set  its priority  lower than any CICS partitions  that are accessing it. 

v    Set  its priority  immediately below  the CICS partition with the  lowest priority 

that is  accessing it. 

v    Set  its priority  higher  than any batch partitions  accessing  it. 

v    Do not include it in a partition  balancing pool.

Fast CCW Translation  

Do not use fast CCW  translation (FASTTR  job  control option) in the database or 

CICS  partitions. Include the  following option  card in the  application server start up  

job: 

   // OPTION NOFASTTR  

With  DB2 Server  for VSE, the VSAM  I/O buffer address  normally changes  every  

time  it does  an I/O, hence  will  suffer from using FASTTR.  It performs  I/O directly 

from its  local buffer.  

Virtual  Addressability  Extension  (VAE)  

While  there is  a performance  advantage to placing  the database partition and  the 

CICS  partition in the same address  space,  it is  nearly  impossible. Instead,  place the 

database partition and the  CICS partition in separate address spaces.  This will 

 

Chapter 3. Managing Storage  and Configuring the  Operating System  79



increase the contention between  these  two partitions  and  introduce additional 

overhead for address  space switching.  However,  you  will have a significant 

amount of  space for: 

v   Additional agent structures  

v   Larger buffer pools 

v   More locks 

v   A larger package cache 

All of these will improve  your server’s performance  if you  have enough  main 

storage to avoid increased  paging.  

31 Bit Addressing  

You can use 31  bit  addressing to increase the database  partition size  above the 

normal 16MB  limit  (refer to “Storage  Above  16MB (31  Bit Addressing)”  on page 

47). However,  because only  one  partition in  the address  space can use storage  

above the  16MB  line, it is still impractical to place CICS and  the  database partition 

in one  address  space.  Fortunately,  with 31 bit addressing the  cost  of  address  space 

switching becomes a relatively  minor  performance  concern. 

Compile Partition  Size 

Ensure that the partition you intend  to use to compile application programs is 

large enough.  Preprocessing tends  to produce relatively  large source programs, and 

compiles can take as  much as ten  times longer  than necessary  if your  partition is  

too small. Start with a  partition size  of  1.2MB and  expand  it if necessary.  

CICS Specifics  

AMXT/MXT  

If you  are adding  DB2 Server  for VSE work  to an existing  CICS environment, 

consider increasing the CICS DFHSIT macro  AMXT value. The optimal level of  

CICS subtasking may  now be higher  than it  was.  Each active ISQL user requires 

two active  tasks within CICS. If  the AMXT limit is  reached, response time is 

adversely affected. 

Note:  If you  are using the  new CICS Transaction  Server  under VSE/ESA  2.4, the 

DFHSIT AMXT  parameter  is obsolete.  Please see  the CICS TS documentation 

for more information. 

ISQL 

Transaction Name 

Use transaction name ISQ2  rather than CISQ for ISQL. The ISQL transaction will 

attempt to start a second transaction  called ISQ2. If it cannot find ISQ2  it will  look 

for the CISQ transaction. Using the  name ISQ2  avoids the  additional processing 

involved in  searching for both ISQ2 and  CISQ.  (The ISQL transaction first looks for 

a second transaction  whose name is constructed  by  replacing the last  character  of  

the first transaction  ID  with 2.  In  this case  it would be ISQ2.) 

Number of Concurrent Users 

Consider limiting the  number of  concurrent  ISQL  users.  If the  database manager is 

only used  from the  CICS environment  through ISQL,  you  can limit  the number of  

concurrent users by limiting the  number of  links  to the  application server  when 

you start  the DB2 Server  for VSE online support (CIRB  transaction).  

 

80 Performance  Tuning  Handbook  



If you  plan  to use the database manager from the CICS environment  through both 

ISQL and preplanned transactions,  you  can do  this using the CICS CMXT 

parameter. This is  done by assigning the  CISQ transaction  to its own CICS class 

and  setting CMXT  for that class to the desired limit. 

Do not place a CMXT  limit on the ISQL  transaction  ID. It  may cause  problems 

with long  queries. The  ISQL transaction will  temporarily end  in the middle  of  a 

long  query, leaving the CISQ transaction active while  it waits  for a reply from the 

application server. If more  ISQL users  logon, the  number of  ISQL transactions can 

reach  the CMXT limit.  When  the CISQ transaction eventually  gets  a reply from the  

server, it  try’s to restart its partner  ISQL  transaction. This will fail if  the CMXT 

limit has been reached. 

You  can use CMXT to allocate  CICS-DB2 Server  for VSE  links for CICS production  

work  that requires access to DB2 Server  for VSE  data. For example, if 6 CICS-DB2 

Server  for VSE  links are defined, and CMXT limits the number of  ISQL users to 4, 

at least  2 links  are always  available  for other DB2 Server  for VSE  requests.  

Instead of  limiting  the total number of  ISQL  users, you can  also limit the number 

of  ISQL users  by group. For more information  refer  to the  DB2 Server for  VSE  

System Administration  manual.  

Temporary  storage 

Auxiliary versus Main  

Consider using AUXILIARY storage  if  you expect to run large  routines. All ISQL 

routines are read into CICS temporary storage (either MAIN  or AUXILIARY) 

before the  first command in the routine  is run.  Using MAIN temporary storage 

improves performance  but  uses more  virtual  storage. Using AUXILIARY  temporary 

storage slightly degrades  performance, but  reduces the amount  of  virtual storage 

required. 

To use MAIN storage,  code TSP=1$ on the CICS SIT or to use AUXILIARY  storage, 

code TSP=2$.  

Guest  Sharing with VSE under VM  

VSE users  can  access a VM application  server  if the  VSE system is running as a 

second level  guest under VM.  While all the tuning  suggestions for a native  VSE 

application server also apply to a second level  guest, there is an additional 

consideration. The VM  system must  be tuned to provide sufficient resources  to 

both the  VSE guest and the database server. 

Distributed Configuration Considerations 

DB2  Server for non-DRDA Requestors can access:  

v    DB2  Server for VM Servers on the  local processor or on a processor  within a 

TSAF collection  

v    DB2  Server for VM Servers on a remote processor  in an SNA network

DB2  Server for VM  non-DRDA Servers can be accessed by:  

v    DB2  Server for VM non-DRDA Requestors on the local processor  or on a 

processor within a TSAF collection 

 

Chapter 3. Managing Storage  and Configuring the  Operating System  81



v   DB2 Server  for VM non-DRDA Requestors on a  remote processor  in an SNA 

network 

v   DB2 Server  for VSE non-DRDA Requestors in a VSE guest  machine in the local 

VM processor or on a processor within  a TSAF collection (guest sharing) 

v   DB2 Server  for VSE non-DRDA Requestors in a VSE guest  machine on a  remote 

processor  in  an SNA network (guest sharing to remote VM)

DB2 Server for VM DRDA Requestors can access:  

v   DB2 Server  for VM DRDA Servers on the  local processor  or on  a processor  

within a TSAF  collection  

v   DB2 Server  for VM DRDA Servers on a remote  processor in an SNA network 

v   DB2 Server  for VM DRDA Servers in an SNA network or in a TCP/IP network 

v   DB2 Server  for VSE DRDA Servers in  an SNA network (via the CICS AXE  

transaction) or in a TCP/IP  network 

v   non-DB2 Server  for VSE & VM  DRDA Servers in an SNA network or in a 

TCP/IP  network

DB2 Server for VM DRDA Servers  can be accessed by: 

v   DB2 Server  for VM DRDA and  non-DRDA Requestors on the local processor or 

on a  processor within a TSAF  collection 

v   DB2 Server  for VM DRDA Requestors on a remote processor  in an SNA network  

or in  a TCP/IP network 

v   DB2 Server  for VSE non-DRDA Requestors in a VSE guest  machine in the local 

VM processor or on a processor within  a TSAF collection (guest sharing) 

v   DB2 Server  for VSE Online  (CICS) DRDA Requestors in an SNA network or in a 

TCP/IP  network 

v   DB2 Server  for VSE Batch  DRDA Requestors in a TCP/IP  network 

v   non-DB2 Server  for VSE & VM  DRDA Requestors in an SNA network or in a 

TCP/IP  network

DB2 Server for VSE non-DRDA Requestors can access: 

v   DB2 Server  for VSE DRDA and  non-DRDA Servers on the local  processor 

v   DB2 Server  for VM DRDA and  non-DRDA Servers via guest sharing from a VSE 

guest machine on the  local processor  or on a processor  within a TSAF  collection

DB2  Server for VSE non-DRDA Servers can be accessed by:  

v   DB2 Server  for VSE non-DRDA Online  (CICS) Requestors on the  local processor 

v   DB2 Server  for VM non-DRDA Batch  Requestors on the  local processor

DB2 Server for VSE DRDA Online (CICS) Requestors can 

access:  

v   DB2 Server  for VSE DRDA and  non-DRDA Servers on the local  processor 

v   DB2 Server  for VSE & VM DRDA Servers in an SNA network or in a TCP/IP  

network 

v   non-DB2 Server  for VSE & VM  DRDA Servers in an SNA network or in a 

TCP/IP  network

 

82 Performance  Tuning  Handbook  



DB2  Server for VSE  DRDA Batch Requestors  can access:  

v    DB2  Server for VSE DRDA and non-DRDA Servers on the  local processor  

v    DB2  Server for VSE & VM DRDA Servers in a  TCP/IP network 

v    non-DB2 Server for VSE & VM DRDA Servers in a TCP/IP network

DB2  Server for VSE  DRDA Servers can be accessed by:  

v    DB2  Server for VSE DRDA and non-DRDA Requestors on the local  processor 

(Online and  Batch)  

v    non-DB2 Server for VSE & VM DRDA Requestors in  an SNA network (via  the 

CICS AXE  transaction) 

v    non-DB2 Server for VSE & VM DRDA Requestors in  a TCP/IP network

Performance  Implications  

How you  configure a distributed  system can have  a significant impact on the 

performance  of  all the  processors in the  network. While  this  guide cannot describe 

all possible  distributed  installations, nor can it suggest  the  best  possible installation 

for you, it  does  include some  basic guidelines and several simple examples. 

See the VM/ESA:  Connectivity  Planning, Administration, and Operation manual for 

your  operating system for details on optimizing  performance in a TSAF collection 

or SNA network.  For information on both  SNA networks and the  connectivity 

issues  that are relevant in  IBM distributed  database systems, see the Distributed  

Relational  Database Connectivity  Guide manual.  

Applications  Planning  

If your  application  program needs to interact  with a remote processor, there  are 

several things that you can do to minimize the  communication traffic between the  

requester and  the  server. 

Fetch  and Insert Blocking  

Blocking groups multiple row insertions  or retrievals into one  request. Instead of  

sending a separate instruction  for each insert or fetch done by  a cursor,  instructions  

are grouped together  and  sent in one  communication block. This reduces message 

traffic and overhead. (However, it  is not supported in single  user mode, or with 

DRDA.) For more information, refer to “Fetch and  Insert Blocking” on page 110. 

Hold File 

The creation of hold files is  a technique allowing you to save  the  results  of  a query 

(database information) in CMS or CICS files. Subsequent requests  for this 

information  are satisfied by  retrieving  it from the CMS or CICS files. 

Local Copy 

If your  application  requires information  from a database on another processor  that 

is not periodically  updated, consider copying  the information into temporary tables  

in a local database. For example, if you need  access to a monthly sales summary, 

simply unload the  summary  data from the remote server  once a month and  load it  

into  your local  server. 

Stored Procedures 

Your applications can use stored procedures  on the  remote server.  This can reduce  

the amount of  data  that must be  moved over the network.  For more information, 

see the DB2  Server  for VSE & VM Application Programming  and  DB2 Server for  VSE  

& VM  Database Administration  manuals. 

 

Chapter 3. Managing Storage  and Configuring the  Operating System  83



84 Performance  Tuning  Handbook  



Chapter  4. Configuring the Application Server and Requester 

Database  Manager Storage 

Database  I/O 

Before a page of  data  can be  used by the database manager, it  must  be located  in 

its data  page buffers. The buffers are two  areas  of storage in your  database machine 

or partition,  which are allocated when  you start the  database manager. One  area 

called the directory  buffer pool  is reserved for pages  from the  DB2 Server  for VSE & 

VM directory disk. The size of the pool  is determined by  the  NDIRBUF 

initialization parameter. The other  area called  the local buffer pool  is reserved for 

pages  from the  storage pools. Its  size  is determined by  the  NPAGBUF initialization 

parameter. 

When  the database  manager needs  a page,  it looks for it  in its buffer pool. If it 

does  not find it there, it uses  a service (IUCV  *BLOCKIO or paging in VM,  and  

VSAM  in  VSE) to read the page from DASD into  a free  space in its pool.  

Since the buffer pools are part of  a primary address space,  the  operating system 

treats  them like  part of the database  manager code.  If a buffer page is not 

referenced frequently, it  may be  moved out  to system paging DASD  by the VM  or 

VSE paging system.  In VM the  page may also be moved out to expanded storage if 

it is available. (Refer to “Auxiliary Storage”  on page 43.) 

 

 

© Copyright IBM  Corp. 1993, 2007  85



When the  database manager  needs a buffer for another page, it  overwrites the 

“oldest” unmodified  page in the pool with a new page.  This is referred to as 

releasing a page or stealing a buffer. 

While a page is in  the buffer pool, the database manager may modify it. To ensure 

the integrity  of your  data, a modified page will  not be released until it has been 

written back  to DASD. If the database manager needs a buffer occupied  by a  

modified page, it  first writes the page to DASD, then  loads  the buffer with a new  

page. 

  

Figure 12. The Standard DB2 Server  for VM DASD I/O System. The database manager 

explicitly directs  the operating system  to move  pages to  and from DASD.  Once database 

machine pages  are in  main storage, they  may  be moved  out  to system paging DASD by the  

paging system. In VSE, pages are  moved  by VSAM and the database machine is a database  

partition.

 

86 Performance  Tuning  Handbook  



Tuning Parameters  

The sizes  of  these buffer pools are among  the more important factors  determining 

performance. You  can significantly  improve  performance  by  optimizing  these 

values.  Unless  your  system’s main  storage is extremely  constrained, the  default 

values are probably  too low. 

Buffer pool sizes  are set by  initialization parameters: 

v    NDIRBUF,  which is the number of  512-byte blocks in the directory  buffer pool 

v    NPAGBUF, which  is the  number of  4KB  pages  in the  local buffer pool.

The optimal  buffer pool size  is  governed by  the trade-off between  database I/O 

and  system paging I/O (refer  to “Auxiliary Storage”  on page 43).  In general, an 

increase in the  buffer pool sizes  improves performance  only  if the  resulting  

increase in system paging is  small. Stated another way, the  buffer pools should  be  

backed  up by  a corresponding amount of  available  main storage.  

Using a Large  Buffer  Pool:   The  database manager is designed to efficiently 

manage its buffer pools no matter how large they are. Very large  buffer pools can 

be an excellent tuning choice if sufficient virtual and real storage is  available. 

Using a Small  Buffer Pool:   At  the other extreme,  if your environment  is  

characterized by  limited real storage and  a relatively  high  paging rate, consider 

using smaller buffer pool sizes. Avoid extremely  small  buffer pools: they  increase 

the likelihood that work has to be backed  out  because of  buffer pool contention. 

Twenty buffer pages per  real agent (20*NCUSERS) is  an  absolute minimum, and  is 

usually too  low for most applications. 

Performance Indicator 

The performance  information  available  through the  COUNTER operator  command 

is helpful in  guiding the  selection of  buffer pool sizes. Two especially useful  

measurements are the local  buffers  effective  use and  the  directory  buffer effective 

use values. (Refer  to “COUNTER Operator Command” on page 22.) 

There are no fixed guidelines as  to what  constitutes a good  or bad value, because 

this depends  upon  the availability of  main storage to back up the  buffer pools,  as 

described above. Of more  interest are their  relative values under different 

conditions. For example, before and after observations can be used  to find out  how 

effective an increase in the buffer pool size  was in reducing database  I/O. A large 

decrease in I/O indicates that the change  was  effective,  whereas a small increase 

would suggest that the change  was  not worthwhile.  Alternatively, calculate  your 

buffer hit  ratios (see “Measurements” on page 6)  before and  after your  change. 

Because directory  buffers are eight times smaller  than  the local buffer pages, you  

can afford to be much  more generous with them.  Consider increasing NDIRBUF  

enough to cause the directory read rate  (DIRREAD/sampling interval) to be very 

low. On a well  tuned  system, the  directory pool effective use tends  to be  much 

higher than the  local buffer effective  use. 

Using  Virtual  Disks 

Your internal dbspaces can use a virtual  disk  to improve their  performance. Virtual 

Disk Support  lets you use a data  space as  a virtual  disk. A virtual  disk  is much  

faster than a conventional disk because  it uses main storage instead of  DASD.  A 

virtual  disk appears to any program or job  as just another disk, only faster. Refer 

to “Virtual Disk  Support  for VSE/ESA  for Internal Dbspaces” on page 48 and 54.  

 

Chapter  4. Configuring the Application  Server and Requester  87



Package  Cache  

The package cache works  much  the  same  as the  buffer pools,  except that instead of  

storing data pages, the package cache stores packages. When  a package is loaded 

into the  database machine’s  virtual  storage, users  can use it consecutively  without  

reloading it each time. Unfortunately,  separate users  cannot  use the same package 

at the same  time. If a package is already in use when  a user requests  it, an 

additional copy will be  loaded. 

You need  to trade-off the advantage  of  reducing your  DASD I/O by  having a large 

cache capable  of  storing a large number of  packages, against the storage the  

packages consume.  

Tuning Parameters  

The package cache has a series  of  slots  that contains information about the  

packages loaded into the  database machine or  partition. One slot is  used  for each 

package. The total  number of  slots  available is determined at application  server  

startup by  two initialization  parameters:  

v   NPACKAGE, which defines the  maximum number of  packages  available for 

each real agent.  

v   NCUSERS, which  is the  number of  real agent structures.

The number of  slots  in the package cache is calculated as  follows:  

     NPACKAGE  X NCUSERS 

For example, if NPACKAGE is  10  and  NCUSERS  is 5,  the  number of  slots  in the 

cache is 50 (10X5). While  NCUSERS  is part of  the  calculation, do not use it to tune 

the size  of  the  cache. Instead, increase  or decrease NPACKAGE and  set NCUSERS  

based on your  requirements for real agents. (Refer to “Agents.”)  

You can also set a package cache threshold that limits the number of  packages that 

will remain  in  the cache.  At the end  of  a logical  unit of  work  (LUW), the  database 

manager checks the number of packages in the  cache. If that number exceeds  the 

threshold, the  database manager releases the  package that has been in the  cache 

the longest  to make room for a new  one. 

The package cache threshold is  determined at startup by  an initialization  

parameter (NPACKPCT) and  is  calculated as follows:  

                          NPACKPCT 

    NPACKAGE  X NCUSERS X  ---------- 

                            100 

For example, if there are 50 slots  in the cache and NPACKPCT is 80%, the package 

cache threshold is 40 packages  (50X80/100). While  NPACKAGE  and  NCUSERS 

appear in  the calculation, do  not tune the threshold with  them, rather, use 

NPACKPCT. 

Concurrency 

Agents 

The database manager uses a set of  control blocks  called  an agent  structure (or real 

agent) to service requests from  multiple users  accessing  a common database. 

There are always  at least two agent structures created: the Operator and the  

Checkpoint agents. (The initialization process is executed under the Operator 

 

88 Performance  Tuning  Handbook  



agent.  The checkpoint  agent is  activated whenever a checkpoint is to be taken.) In  

single user mode, there is  also a User agent structure under which the  user’s  SQL  

requests are executed. In multiple  user mode, one  or more real agent structures  are 

allocated;  the number is equal to the  value of the NCUSERS  initialization 

parameter. 

Allocating Users to Agent Structures  

There are differences in agent  handling between  single and  multiple user mode. 

In  single user mode (SUM) this process  is quite simple. There are three  agents 

created:  the  Operator, Checkpoint,  and  User. At  initialization time, the  Operator 

agent performs  the  initialization functions. When  initialization is  complete, it  

becomes dormant  and  control is  passed to the User agent,  which is said to be 

“dispatched”. The User agent executes until a checkpoint or archive  is required, at 

which  point the  Checkpoint agent is dispatched, and  the  User agent  waits until the 

checkpoint has been completed.  

The User and Checkpoint agent alternate until the User agent finishes its work.  

Then the  Checkpoint agent performs  a final checkpoint  and the Operator agent 

shuts down  the  application  server. 

In  multiple user mode (MUM), when initialization  has been completed,  all the  user 

agents start dormant. When  a  user first issues  an SQL  statement, a connection is  

established  between  the user and the  database manager. The connection remains in 

effect  until an explicit  or implicit  (COMMIT WORK RELEASE)  release  occurs. 

VSE:   In  VSE, a batch user is connected to the application  server  by connecting a 

batch partition directly  to a real agent in  the database partition. An interactive user 

is connected to the  server  by  establishing at least  one  link between  the CICS 

partition and  a real agent  in the database  partition. A remote DRDA user is 

connected to a pseudo agent in  the server. The pseudo agent then  connects  to a 

real agent when  one  becomes available (refer to “Pseudo-Agents”  on page 91).  

VM:   In an IBM VM system, a connection is established between the  user machine 

and  a pseudo-agent in the  database machine.  The pseudo agent then connects to a 

real agent when  one  becomes available (refer to “Pseudo-Agents”  on page 91).  

Tuning Parameters  (NCUSERS) 

In  both VSE and  VM the number of real agents is determined by  the DB2 Server  

for VSE & VM  initialization parameter NCUSERS. If you have the resources to 

support more users, increase NCUSERS. For example, ten users  want  to share the  

server, but  there are only  four  real agents available. Six  users  must  wait for one  of 

the four to finish a logical  unit  of work before they receive  access to a  real agent.  If 

you  have the processing power to concurrently service  all ten, there is no reason to 

make  some  wait.  

However, remember that by  increasing the  level of concurrency in your  system,  

you  are also increasing overhead.  Each additional  real agent requires a minimum  

of  110KB of  storage and, if you  use the default  size  for your  buffer pools,  an 

additional  18KB of storage (four 4KB  local buffers  and four 512-byte  directory  

buffers).  Additional  real agents can  also: 

v    Increase the  system paging in your  database machine or partition, “Auxiliary 

Storage” on page 43 

v    Increase overall  DASD I/O and buffer looks, “Database  I/O” on page 85 

v    Increase locking contention, deadlocks, and  lock escalations,  refer  to “Locking” 

on page 93 

 

Chapter  4. Configuring the Application  Server and Requester  89



v   Increase the size of the package cache,  “Package Cache” on page 88.

Performance Indicator  

SHOW CONNECT:   Use the  SHOW CONNECT or SHOW  USERS  operator 

command to see how many  real agents are in use, and  when appropriate  how 

many pseudo agents are waiting  for real agents. If all your  real agents are never in 

use at the  same  time, you should  reduce  NCUSERS  to save  resources. If you 

consistently have more than  five pseudo agents waiting for a real agent consider 

increasing NCUSERS by one if you have  the resources  to support an additional 

real agent. Refer to page 29.  

For CICS  users, refer  to the  performance  indicator discussion  under the  heading  

“CICS.” 

CICS 

Before a CICS user can access  your application server, you must  establish  at least  

one link between the  CICS partition and  the database partition.  

Tuning Parameters  

CONNPOOL is a DBNAME directory entry  for REMOTE type DBNAME entries 

with TCPPORT parameter. This parameter if set to ″Y″ activates the  Connection 

pooling feature for online users conntected to the remote  application server  via 

DRDA over TCP/IP. 

The CIRB  transaction  defines one or more links  (in  the case  of  local application  

servers and  remote application  servers connected via DRDA over TCP/IP), each of 

which is  exclusively attached to a real agent until it is terminated by the  CIRT 

transaction. 

Because each link requires its own real agent it is important to establish  an 

appropriate number of  links. If you  establish  too many links  for the  number of  

concurrent users you expect  to access your  server  through CICS, you  will 

needlessly tie up  real agents, and  the  resources they require. However, if you  do 

not establish  enough  links, CICS users  will  be forced  to wait for a free link.  As 

well as  causing a delay,  not having enough links  increases  your overhead. Storage  

and processor  time  are consumed to concurrently manage these links. CICS must 

manage all the links in a queue and select one  user each time  a link becomes 

available. 

To help you decide  whether you should  err on the  side of  too  many  links or not 

enough, consider which  resources  are more  constrained,  —  those of CICS or those 

of your application  server. If  CICS resources are constrained, increase the  number 

of links. If your  server’s resources  are constrained,  decrease the  number of  links. 

Performance Indicator  

There are two tools for CICS links, the CICSPARS/VSE  report,  and the CIRD 

transaction. The CICSPARS/VSE  report presents  historical information  on how  

many waits  for links  occurred during a monitoring interval. In contrast, the  CIRD 

transaction provides a snapshot of  the  same  information. Note that these  tools 

work closely  with host  OS VSE and  hence  reflects  more accurate statistics for links 

to local application servers than links to remote application servers. 

 

90 Performance  Tuning  Handbook  

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|



Pseudo-Agents  

Pseudo-agents allow many users  to share,  but not concurrently, a few  real agent 

structures. This saves a significant amount of  storage because  each real agent 

requires a minimum of  110KB  of  storage, a pseudo-agent uses less than 600 bytes. 

(The  110KB value  increases depending on how the real agent  is currently being 

used, refer to the DB2  Server  for VM System Administration  or the  DB2  Server for 

VSE System Administration  manuals.) 

 

 

Differences between VM and VSE 

While  pseudo agents are always  used in a VM system,  they are only  used in  

a VSE system for remote DRDA users.  

 When  a user CONNECTs to an application server, that user is allocated a  

pseudo-agent. The pseudo-agent is assigned  to a real agent (assuming  one  is 

available) when  the user sends an SQL  statement  to the  server. If  all real agents are 

in use, any users  having sent messages to the  database machine have their 

pseudo-agents  placed on a  “wait” queue until a real agent is  available. A real agent 

becomes available  whenever an active user (one whose pseudo-agent already owns  

a real agent) completes  a logical  unit of  work. 

 Table 3.  Real and Pseudo Agents 

Real Agent Pseudo Agent 

Storage per Agent  Minimum 110KB  600 bytes  

Number (VM)  NCUSERS (DB2 Server for  

VM initialization  parameter) 

MAXCONN − minidisks  − # 

of  active  Stored Procedure  

Servers - 1 (CP directory)  

Number (VSE) NCUSERS (DB2 Server for  

VSE initialization  parameter) 

RMTUSERS (remote DRDA  

users) 

When assigned At SQL command request  At CONNECT 

When freed End of LUW End of  connection  

When no  agents are 

available 

Pseudo agent  waits in  FIFO 

queue 

No  connection, error message

  

Guest Sharing: With  Guest Sharing, the  DB2  Server  for VSE Online  Resource  

Adapter, running  under the control  of  CICS, can establish  the  number of  

communication links specified during online Resource  Adapter  Initialization. Each 

of  the links is associated with a pseudo-agent to which a real agent is  permanently 

assigned. These pseudo and  real agents are not available  to other  users until the  

Online  Resource  Adapter  is terminated. 

Note:   For CMS users  to simultaneously access the  database, NCUSERS must be  

greater  than the number of CICS links.  

Tuning Parameter 

The only  reason you  would want to restrict the number of pseudo agents is to 

send an error message  to a user indicating  that no real agents are available  instead 

of  putting  this user in a queue.  

 

Chapter  4. Configuring the Application  Server and Requester  91



If this is  not a problem, set the number  of  pseudo-agents to the  maximum  number 

of users that could possibly  wish to connect to the application server  at one  time. 

The virtual  storage requirement of  600 bytes  per  connection should be negligible.  

VM (MAXCONN):   The number of pseudo-agents  allocated is  equal to the  value 

of MAXCONN specified in the CP  directory minus  the  number of  CMS minidisks 

used for the  database machine and minus  one  for the  connection to *IDENT. 

VSE (RMTUSERS):   Pseudo-agents are not used  for CICS users  nor  are they used  

for batch partition users. However, they are used for remote  DRDA users. The 

RMTUSERS initialization parameter sets  the number of  pseudo agents available to 

remote DRDA users.  This limits the number of  remote DRDA users that can access 

the server  at any one  time  because each DRDA user requires one  pseudo agent.  To  

calculate the  number of  real agents that can be shared between remote  DRDA 

users, subtract the number of active batch partition users  and  the number of  CIRB 

initiated CICS  connections  from  the number of  real agents (NCUSERS). For  

example, consider the following: 

v   NCUSERS is 10, refer  to “Tuning Parameters (NCUSERS)” on page 89  

v   There are 5 CIRB  initiated  CICS connections, refer to “Tuning Parameters” on 

page 90 

v   Two batch partitions  are active  

v   RMTUSERS is  20.

This means that  there are three  (10-5-2)  real agents that must be  shared between  as  

many as  20 pseudo agents (each  connected to a remote  DRDA user). 

Privileged Remote DRDA  User  (VSE Server)  

You can specify that a remote DRDA user is privileged.  Normally, a remote DRDA 

user is assigned  one  pseudo agent during the time  it is connected to an application  

server, and  shares the available  real agents with the other  pseudo agents.  It always  

releases a real agent at the end of  a logical  unit of  work  (LUW)  (refer to “Agents”  

on page 88). However, a privileged remote  DRDA user holds a real agent until it 

disconnects from the server.  Only specify a  user as  privileged if you expect it to 

constantly submit work  to the  server. For example, large batch applications.  

Interactive applications are not good candidates. 

To specify a privileged  remote DRDA user, you need  to update the LOCALAXE  

entry in the  DBNAME  directory for that user.  For instructions, refer to the DB2  

Server for  VSE  System Administration  manual.  

Performance Indicator  (SHOW  USERS) 

You can use the  SHOW  USERS  operator command to look for consistently free  

pseudo agents. This indicates that you  could probably  reduce MAXCONN  for VM, 

or RMTUSERS for VSE.  However,  constantly busy pseudo agents may indicate  that 

you should  increase them. 

The most effective indicator that either  parameter  is set too  low is  to look for 

complaints from your users  that they cannot connect to the application  server. 

They will receive  SQLCODE=-933  with SQLSTATE=57030.  

Dispatching Agents 

Real agents are placed in a queue and  wait there until they receive  a slice  of  the 

processor time  from the database manager (referred to as  being  dispatched). Before  

an agent is  dispatched, it must: 

 

92 Performance  Tuning  Handbook  



v    Not  be in  a wait state. For example it cannot be  waiting for an I/O operation to 

complete or waiting for a lock  held  by  another user.  

v    Be at the  top  of  the queue. This is determined by two  processes: Prioritization,  

and Fair  Share  Auditing.

Prioritization 

After each dispatch,  the agents in the  queue are reprioritized  so that shorter  LUWs 

are moved to the  top  of  the queue. “Special purpose”  or “system” agents,  such as 

the operator or  checkpoint agents, are not reprioritized after each dispatch; rather,  

they permanently reside  at the  top  of  the dispatch queue so that they receive the 

highest  priority assigned  to any agent.  

Fair Share  Auditing  

Fair  Share Auditing is invoked at regular  intervals,  during which the dispatch  

queue is  scanned for a “deprived” agent and, if  one  is found, it is  moved to the 

top  of  the queue. A deprived agent is  one  that has referenced the buffer pools less 

than a calculated fair  value. This value is  based on the  average number of  

references per  LUW  and  per  real agent.  

Tuning Parameter (DISPBIAS) 

You  can affect the frequency of Fair Share  Auditing with the DISPBIAS 

initialization parameter. You  can set it from 1  to 10 and it defaults  to 7.  The higher 

the number the  less frequent the audits. A setting of 10 causes short  LUWs to be 

strongly favored and  long  LUWs to be strongly disfavored  whereas a setting of  1 

causes  less favoritism  to short LUWs. 

Performance Indicator 

While  there are no quantifiable indicators for this parameter,  you can determine if 

it needs tuning by listening to your  users. Can you  differentiate between  users  that 

use short LUWs and  those that use long LUWs? If people with short LUWs 

complain, try increasing DISPBIAS. If  people with long LUWs complain, try 

decreasing DISPBIAS.  

Startup Mode 

If there  are periods where  you  only  need  to support large  sequential jobs (for  

example, an overnight batch window or long DBS utility job),  consider running  

your  application server  in single user mode (SUM). You  will reduce the  overhead 

of  both  concurrent  processing and  in communications. 

In  single user mode, pseudo agents are not created and there  is no overhead 

associated with prioritizing  real agents or with fair share auditing.  Also, since  the 

application server does not need to communicate  with a user machine or partition,  

you  reduce overhead by  eliminating the APPC/VM  (in  VM) or XPCC  (in  VSE) or  

TCP/IP  conversations. 

Locking  

To optimize  your application server’s performance, you  need to minimize the  

overhead of  locking, while you  maintain the integrity of  your data. Concentrate  on 

three  areas: 

v    Reduce  lock  contention by  reducing the  number of  locks  you require and  the 

duration of  each lock, refer  to “Locking Contention”  on page 94.  

v    Reduce  the number of  lock  escalations, refer  to “Lock  Escalation” on page 99. 

v    Reduce  the number of  potential deadlocks, refer to “Deadlock” on page 101.

 

Chapter  4. Configuring the Application  Server and Requester  93



There are a number of techniques to help you with  each area. 

Locking  Contention 

Lock contention occurs when an agent tries to lock  an object that is  already locked  

with a conflicting  mode  by  another agent. The more locks the  database manager 

uses and  the  longer each lock  lasts the greater  the probability that contention will 

occur. 

To understand when locks come into  contention, you  must first understand: 

v   Locking Hierarchy 

v   Lock Modes  

v   Lock Compatibility

Locking Hierarchy  

The database manager locks objects  in the database according to a hierarchy. 

 

 The database manager grants locks in the order of the hierarchy.  Thus,  an agent 

accessing a row, has to first obtain a lock  on the dbspace, the table  and  the  page 

that  contain the row  before it can obtain a lock  on  the row itself. (After the first 

row is  locked, it is  not necessary to get  the DBSPACE and table  locks again since 

they will be held  until the  end of the LUW.) 

Lock Modes  

There are eight  types of  locks,  or lock modes:  

Share (S)  

This type  locks an object (dbspace,  table, page or row) for reading when 

using the  repeatable read (RR) or  the cursor  stability  (CS) isolation  levels.  

Other  agents can obtain  share locks on the same  object and  look at it 

simultaneously.  

Exclusive (X)   

This type  locks an object for updating.  Objects locked in X  mode can be 

read by  applications using isolation  level UR. 

Super Exclusive (Z)   

This type  locks an object (dbspace,  table, page or row) for updating.  Other 

agents cannot  obtain any other  locks on the same  object and cannot  read or 

manipulate  it in any way,  even if using isolation  UR. 

DBSPACE

TABLE

DATA PAGE

ROW INDEX KEY VALUE

INDEX PAGE

  

Figure 13. Locking  Hierarchy

 

94 Performance  Tuning  Handbook  



Intent Share (IS)   

This type indicates that a share lock  is being  used on an object lower in the  

hierarchy. For  example, if an  agent needs  a share lock  on a table  it  first 

needs to obtain  an intent  share lock  on the  dbspace that contains  the table. 

Intent Exclusive (IX)  

This type indicates that an exclusive lock  is being  used on an object lower 

in  the hierarchy.  

Intent None (IN)  

This type indicates that no locks are held on objects  lower in the hierarchy  

for reading using isolation  level  UR. For example, an application using 

isolation level  UR to read a row will get an IN lock on the  dbspace and 

table, but  will  then  not hold any locks  on the  page or row.  See the  DB2  

Server for  VSE  & VM  Diagnosis  Guide  and Reference manual for more 

information. 

Share with Intent Exclusive  (SIX)   

This type indicates that a share lock  was held  on this object but that an 

exclusive lock is  now being  used  on an  object lower in the hierarchy. 

Update  (U)  

This type of lock is  used  during a FETCH when the  cursor is  declared FOR  

UPDATE. It locks an object for reading, but  indicates that an update may 

be required. If the  agent finishes with an object without  updating it, the 

lock is  downgraded to share. If an update is required, the  lock  is upgraded 

to exclusive. While  the update lock  is held, other agents can obtain share 

locks on the  same  object to look at it simultaneously, but they cannot  

obtain update  or exclusive locks on it.

Lock Duration 

Locks can  be held  and  released almost  instantly or held  until the  end of  the  current 

logical  unit of  work. The  lock duration depends on the lock  mode, the  type of 

internal data  manipulation call, and the isolation  level  (refer to “Isolation  Level” on 

page 97). A detailed table  including the  relationships between  all  of  these is 

included  in  the DB2  Server  for VSE & VM Diagnosis  Guide and Reference  manual. 

Lock Compatibility 

The main  purpose of  having  different lock modes is to be able to define which 

requests to access a certain  object are compatible  with  other requests and  which are 

incompatible. The matrix in Table  4 indicates which lock modes are compatible  

with each other. Yes means the  requested  lock  is  compatible with the held lock 

(and therefore is granted). No means the  request  is denied or the  requesting agent 

is put  in a LOCK WAIT. Either way a lock contention  occurs. 

 Table 4. Compatibility of  Lock Modes  

MODE  OF  LOCK  REQUEST 

MODE  OF  LOCK 

HOLD 

IN IS IX S U  SIX  X Z 

IN Yes Yes Yes Yes Yes Yes Yes No 

IS Yes Yes Yes Yes Yes Yes No  No 

IX Yes Yes Yes No No  No  No  No 

S Yes Yes No  Yes Yes No  No  No 

U Yes Yes No  Yes No  No  No  No 

SIX Yes Yes No  No No  No  No  No 

 

Chapter  4. Configuring the Application  Server and Requester  95



Table 4. Compatibility of Lock Modes (continued) 

MODE OF LOCK REQUEST  

X Yes No  No No  No No  No No  

Z No  No  No No  No No  No No

  

Public and Private Dbspaces:   More  than one  user can  have concurrent  access to a 

private dbspace, but  for read operations only.  That  is,  multiple users  can  hold a 

shared lock  on the dbspace. 

Number of Concurrent Users 

The amount of  locking contention is  directly  related  to the  number of  concurrent 

users allowed to access the  application server (NCUSERS). While  you  could reduce 

locking contention by  reducing NCUSERS, this would  affect your overall  response 

time, refer  to “Tuning  Parameters (NCUSERS)” on page 89. You need  to find a 

balance between  having users  wait for a lock and  having them wait for access to  

the server. 

Minimum  Lock Level 

The smallest possible  lock  level is  a single row in a table. However, you  can 

increase the minimum lock  level in a dbspace to be  a single  page or the  dbspace 

itself. Using a larger minimum  lock  level reduces the  number of  locks required, 

which reduces locking overhead but  may increase locking contention. (The default 

lock level  is a single page.) 

Tuning Parameter:   You  can define a larger  lock  level with  the ACQUIRE 

DBSPACE statement or change an existing size with ALTER DBSPACE.  

The default  lock level  (PAGE) should  be  appropriate for most applications.  

However, you  may consider using the DBSPACE lock  level if your  application is 

read-only and accesses the data primarily  through dbspace scans. 

Only consider ROW level  locking for applications that access small answer sets  

through index scans. Also,  this level should  not be  used with an application  

performing a dbspace scan using cursor stability.  

Performance Indicator:   You  can find the  minimum  lock  size  for a given dbspace  

in the  SYSTEM.SYSDBSPACES catalog table  in the LOCKMODE column.  Refer to 

“SYSTEM.SYSDBSPACES” on page 39. 

Indexes 

Remember that  index pages and  key values are locked for any SQL statement  that 

uses the  index or whenever the  table that they are indexing is updated.  If your  

indexes are not critical  to fast access to your data, you can  reduce lock  contention 

by reducing  the number of  indexes defined  on your  data. In  other words, do not 

create unnecessary indexes. 

Unique Indexes and Row Level Locking:   If  you are using row level locking,  

make sure  that  your tables contain a unique index. They perform better, with 

respect to locking contention, because  the database manager is  able to determine 

the exact row it  needs to lock. Without a unique index  it may  unnecessarily  lock 

several rows at once. If you  cannot create  a  unique index  on a single column,  

create a unique multicolumn index. For example if you want to sort the  

EMPLOYEE table by the JOB column,  create  an index  on JOB and  EMPNO  

(JOB,EMPNO). The index will still sort by JOB, but  it  can also be a UNIQUE index. 

 

96 Performance  Tuning  Handbook  



Access Path 

You  can usually reduce the number of locks required for a particular SQL 

statement  by  ensuring that it is accessing  the data as  efficiently as possible.  For 

information  on access path selection, refer  to Chapter 5,  “Improving  Data Access 

Performance,” on page 117. 

Logical  Unit  of Work 

Since a lock  will never last longer than a logical  unit of work (refer to “Logical  

Units of  Work”  on page 102), it is critical  that you make your  LUWs as  short as  

possible. Commit work frequently, even  if you  are only  reading tables.  

Do not use ROLLBACK  WORK to release locks.  While  rolling back a LUW  also  

releases locks,  a roll back  involves  more  work  and  processor time than  a commit  

work  and should only be  used when  you want to undo updates,  inserts, or 

deletions.  

Isolation Level 

You  can set the  isolation level  for a particular application program during 

preprocessing. It represents the  degree of independence that the application  

program will have from other  programs. A lower isolation level  maximizes 

concurrency and  performance  but increases  the risk of  inconsistent data  appearing  

in applications. There are three isolation levels: repeatable  read, cursor stability, and 

uncommitted read. 

Repeatable  Read  (default):    A repeatable read application program locks every  

object it accesses until the  end of  the  current logical unit of work. It guarantees  

that  within a logical  unit of  work  it can  repeatedly read the same  row of data 

without  having it  changed by  some  other user. With repeatable read, a user is 

completely isolated  from interference  by  other applications. Other  users  must  wait 

until your  logical  unit of  work  is complete  before they can modify the  data you 

were using.  

Cursor Stability:   A cursor  stability application program only  locks an object for 

as  long as  it is directly accessing  it. This allows more  than one  user to work  on the 

same  data at the  same  time. It is possible  to issue the  same  query twice within  a 

logical  unit of  work  and get different results. That  is,  rows  in a table, or pages  in a 

DBSPACE, that you  have already read are subject  to change  by  other users. It also 

means that  the data may  appear “inconsistent”.  If this is not a problem, and  will  

not affect the integrity  of your application  program, seriously  consider using cursor  

stability.  It can  significantly reduce  the locking contention in your  system. 

Cursor stability only  applies  to tables in PUBLIC  DBSPACEs with PAGE  or ROW 

level  locking. An application  program that accesses tables in PRIVATE DBSPACEs  

or PUBLIC  DBSPACEs  with DBSPACE level  locking always  act like  a repeatable 

read program. 

Note:   When  the  database manager uses a DBSPACE scan (does not use an index) 

to access  a table  in a DBSPACE with ROW level locking using isolation level 

cursor  stability,  the effect  is  similar to repeatable read: no other  logical  unit 

of  work  can update the  table until the logical  unit of work performing the  

DBSPACE scan ends. Also, if one  logical unit of work has updated  a table, 

another logical  unit of  work  (using  cursor stability)  cannot access  that table 

with  a DBSPACE scan until the updating  logical  unit of  work ends. This 

reduced  concurrency for DBSPACE scans  does  not apply for tables  in 

DBSPACEs  with PAGE level locking,  or when  accessing  through indexes.

 

Chapter  4. Configuring the Application  Server and Requester  97



Uncommitted Read:    Many uncommitted read (UR)  application programs can 

query the same  data simultaneously  while the  data  is being  updated  by  another 

application. This isolation level  prevents  read-only applications from waiting on 

applications that have  changed or may  change the data  about to be  read. 

Uncommitted read provides the  lowest degree  of  isolation and hence  greater  

concurrency and throughput.  

Since isolation  level  UR gives applications the  ability to read data  that is not 

necessarily committed, data can appear to be inconsistent. For example, it is 

possible for you  to issue the  same  query twice within  a logical  unit of work and 

get different results. You  must  be very careful when deciding to use uncommitted 

read for your applications.  Only choose  it for an  application if  it is  not important 

that  the  data read is necessarily committed. 

Note:  Uncommitted read applies only  to tables in PUBLIC  DBSPACEs with page 

or row  level  locking. Tables  in PRIVATE DBSPACEs or PUBLIC DBSPACEs 

with DBSPACE level  locking always  have  the  repeatable read isolation  level. 

Isolation level  uncommitted read (UR)  is defined  as follows: 

v   An application can  see uncommitted changes made by  other  application 

processes 

v   An application cannot  update uncommitted changes made by  other  application 

processes 

v   The re-execution of  a statement  can  be affected  by other application  processes 

v   Uncommitted updated rows  cannot  be updated by other  application  processes 

v   Uncommitted updated rows  can  only be  read by  application processes  using UR 

v   Accessed rows can be  updated  by  other application processes 

v   Accessed rows can be  read by  other application processes 

v   The current row of  a read-only cursor can be changed  by other  application  

processes 

v   The current row of  an updatable cursor cannot be  changed by  other  application 

processes.

User Defined:   While  you  normally set the  isolation level for a program when you  

preprocess it, you  may allow the  application program to dynamically set its 

isolation levels  during execution.  For more  information on this,  refer  to the USER 

isolation level  in the DB2  Server  for  VSE & VM Application Programming manual.  

Isolation Level and Updates:  

Note:  The isolation  level does not affect the  duration of  the  locks held  on  data that 

have been inserted,  deleted, or updated  in an LUW. Locks on this data  are 

always  held  until the  end of  the  LUW, regardless of  the  isolation level.

Guidelines for  Selecting an  Isolation Level:   We recommend  that you use cursor  

stability whenever  possible because it reduces the duration  of locks for the  

application program that uses it. For even  further reductions  in locking and  lock  

durations, you may consider using uncommitted  read. Only  use this isolation level 

for applications in which  data  integrity is not important.  The effects of  cursor 

stability and  uncommitted read can be very subtle. Specific guidelines  for selecting  

isolation levels  are in the appropriate  DB2  Server  for VSE & VM  manuals. For 

guidelines on selecting an isolation level in application programs, see  the DB2 

Server for  VSE  & VM Application  Programming manual. For  guidelines that apply to 

the DBS utility, see the  DB2 Server for  VSE  & VM  Database Services  Utility or the  

 

98 Performance  Tuning  Handbook  



DB2 Server for  VSE  & VM  Database  Services  Utility manuals. For ISQL guidelines, 

see the DB2  Server  for VSE & VM Interactive SQL Guide and Reference or the DB2  

Server  for VSE & VM  Interactive SQL Guide and Reference  manuals. 

Catalog Tables 

Catalog tables can be  exclusively locked by: 

v    Data  definition  statements 

v    Data  control statements (granting authorizations)  

v    Preprocessing 

v    Dynamic repreprocessing  

v    Inserts  (loading tables  and dbspaces)  

v    Extended dynamic  CREATE PROGRAM, PREPARE,  or DROP STATEMENT  

v    UPDATE STATISTICS

Try to avoid  any or all of these during peak load periods and try not to include 

them in  your  application programs.  If you  cannot avoid them, at least  COMMIT 

WORK after each statement. 

Performance Indicator 

To display locking contention as it occurs, use the SHOW  LOCK operator 

commands. They can help you identify agents that are locking other  agents out  of  

critical data and  solve immediate locking problems. 

To test  the frequency of  lock  contentions after they occur,  use the  COUNTER 

operator  command. Specify the  WAITLOCK counter  to get the  number of  lock  

requests that resulted in a wait. 

Lock Escalation 

The database  manager uses  internal control blocks called lock  request  blocks 

(LRBs) to manage locking. Each time  a lock  is acquired one  or more LRBs are used. 

The number of LRBs that can be  held  by any given agent  is defined by  the  

initialization parameter NLRBU.  The sum of  the  number of  LRBs held by all  agents 

cannot exceed the limit  defined by  the  NLRBS initialization  parameter. When  either  

of  these  limits  is reached, lock  escalation is  initiated for the  agent that caused  the 

limit to be exceeded. 

Lock escalation  is the  act of  trading low level locks  (page, row,  table, index page, or 

key value locks) for the appropriate DBSPACE lock  for one of  the  DBSPACEs in 

which  the victim agent holds locks. The DBSPACE chosen  is the  one  in which the  

agent holds the most locks.  

Note:   The lock manager is selective about the  locks it escalates. A request  for data 

in  DBSPACE X  does not necessarily cause  escalation to go  after a lock  on 

DBSPACE X. 

The lock  manager requests  a lock  on the chosen DBSPACE. The lock mode  

requested  is the  same  as  the  most restrictive lock that the agent holds in the  

DBSPACE. For example, if the agent holds any Z locks,  a Z lock  is  requested. The 

next choice  would be  an X  lock, followed by an S lock. If  the DBSPACE lock 

cannot be granted,  the system checks for a possible deadlock.  If no deadlock is  

found,  the DBSPACE lock request  is queued. After the DBSPACE lock is  granted,  

the lower level locks are freed.  

 

Chapter  4. Configuring the Application  Server and Requester  99



As the  user resumes access to the  DBSPACE (which is  now locked  at the  DBSPACE 

level), lower level locks are not required and are not obtained. Thus,  for any given 

LUW, the  user can escalate only once on  a particular DBSPACE.  Or another way of 

looking at it, the maximum number of times an LUW  can  be escalated  is the  

number of  DBSPACEs accessed during that LUW. 

Tuning Parameters  (NLRBU,  NLRBS):  If an application program is  causing too 

many lock  escalations, consider the following alternatives: 

v   Change the locking level of  some  of  the dbspace(s) used  by  the application (for  

example, from ROW to PAGE) by using either the  SQL  ALTER DBSPACE or the  

SQL  LOCK  statement. This will reduce  the number of  locks required by  the  

application. 

Note:   Using a larger minimum lock  level  can increase locking contention. Refer 

to “Minimum Lock Level”  on page 96. 

v   Reduce the duration of the locks by changing the application: add SQL  

COMMIT WORK statements to the application. 

v   If appropriate,  consider running the application  by itself: either in single user 

mode, where  no locking is  required, or in multiple user mode with a reduced 

NCUSERS. 

v   If you  are currently using the repeatable read isolation level, consider using 

cursor stability or uncommitted read.

If  you  cannot reduce  the number of  lock  escalations,  you  may need to increase the 

number of  available lock request  blocks by increasing the the NLRBU,  and  NLRBS 

initialization parameters.  

To establish  the  lock  request block  requirements for running  an DB2  Server for VSE 

& VM preprocessor, or for an application  that is causing escalation problems: 

1.   Start the  application server  in multiple user mode with NCUSERS=1, NLRBU 

about five  times its current setting,  and  NLRBS set to the same value as 

NLRBU. 

2.   Start the  application and  allow it to complete processing. 

3.   Verify that no escalation occurred by  displaying  the ESCALATE and  LOCKLMT 

counters.  If no  escalation occurred, enter the  SHOW LOCK MATRIX  operator  

command. MAX USED  BY LUW  will show  the number of  lock  request  blocks 

required. 

4.   If an escalation  did occur, set NLRBU to a value  greater than  or equal  to MAX 

USED  BY LUW,  then start the  application server again, and rerun the 

application.

Performance Indicators  (COUNTER, SHOW LOCK MATRIX): To test the 

frequency of  lock escalations,  use the  COUNTER operator  command, refer  to 

“COUNTER Operator Command” on page 22. Specify both  the  ESCALATE and the  

LOCKLMT counters to get the number of successful escalations and the  number of  

unsuccessful escalation attempts respectively. (An escalation can fail if the  LUW 

that  reached  the  lock  limit  is rolled back  because  of  a deadlock,  or if  a sufficient 

number of  lock  request  blocks cannot be freed.) 

Note:  ESCALATE and LOCKLMT  may  increase during preprocessing,  because 

locks are required then  as  well.  

You can also use the SHOW LOCK MATRIX operator  command that displays 

information about  lock  request  block usage, refer to “Lock Escalation”  on page 37.  

 

100 Performance Tuning Handbook  



You  can determine whether unexpected delays are caused  by  locking; monitor how  

the database manager is  using lock  request  blocks; and determine  the lock  request  

blocks required to preprocess a  single application. 

One of the values displayed by SHOW  LOCK  MATRIX is called MAX USED BY 

LUW. It is  the  maximum  number of  lock  request blocks used  by  any one  

application during a logical  unit of  work. (When  any LUW exceeds  NLRBU and 

the escalation process occurs, MAX  USED BY LUW is  set to zero.) 

In  addition you  can look for SQLCODE -912  (SQLSTATE 57028),  or SQLCODE -915  

(SQLSTATE 57029). These indicate  rollbacks that occur because of, insufficient lock 

request  blocks for the database  manager, or insufficient lock request  blocks for a 

user application, respectively. 

Deadlock  

The database  manager performs  deadlock detection prior to placing any agent into 

a lock  wait. A deadlock occurs when  agent A holds resource X  and agent  B wants 

resource X  while holding  resource Y, which  agent A wants. There is an impasse, 

which  the system removes by  rolling  back  the  youngest LUW.  For example, 

consider two users, LAWRENCE  and  VERONICA: 

1.    LAWRENCE  selects rows from the  EMPLOYEE table,  placing a SHARE (S) lock  

on the table.  

2.    VERONICA also selects from  the same  table, also placing a SHARE (S) lock on 

it. 

3.    LAWRENCE  tries to UPDATE the employee table,  but cannot  because he  is  

placed  in  a lock  wait. The EXCLUSIVE (X)  lock he  needs  before he  can update  

the  table  is incompatible  with VERONICA’s  SHARE (S) lock. 

4.    VERONICA also tries to UPDATE the same  table, but cannot. The EXCLUSIVE 

(X)  lock  she needs before she can update the  table is incompatible  with  

LAWRENCE’s  SHARE (S) lock. However, before she  is placed in a  lock wait,  

the  database manager detects a potential  deadlock. 

5.    The database  manager rolls  back  VERONICA’s  logical unit of work  because  it 

is  younger than LAWRENCE’s  LUW. 

6.    LAWRENCE  receives the  lock  he needs because  VERONICA loses her SHARE  

(S)  lock  when her LUW  ends, and  VERONICA receives the  following message:

 UPDATE  SQLDBA.EMPLOYEE  SET SALARY=60000 WHERE LASTNAME=’HAAS’ 

 ARI7955I THE SYSTEM  ENDED YOUR QUERY RESULT TO  PROCESS  YOUR COMMAND.  

 ARI0503E AN SQL ERROR HAS OCCURRED. 

          THE CURRENT LOGICAL UNIT OF  WORK HAS BEEN 

          ROLLED BACK DUE TO  A DEADLOCK.  IT WAS WAITING  

          FOR A PAGE  LOCK IN  DBSPACE  = 17  

          HELD BY  USER LAWRENCE. 

 ARI0505I SQLCODE = -911 ROWCOUNT = 0 

 ARI0504I SQLERRP: ARIXRSS  SQLERRD1: -110 SQLERRD2: -99  

 ARI0502I FOLLOWING SQL WARNING CONDITIONS ENCOUNTERED:  

          NULLWHERE NOLUW 

 ARI7021E THE APPLICATION SERVER  HAS  ISSUED A ROLLBACK 

          STATEMENT. ALL  WORK ENTERED  FOR  PROCESSING SINCE 

          THE LAST COMMIT  STATEMENT WAS ROLLED  BACK. 

          YOU MAY HAVE TO REENTER SOME STATEMENTS.

 

While  the database  manager does  not allow deadlocks  to occur,  the more potential  

deadlock situations that you  create  the more resources  are required to avoid  them.  

 

Chapter  4. Configuring the Application Server and Requester  101



Note:  The time  required to detect potential deadlocks increases exponentially 

(power  of  two) with the number of real agent structures  in your database 

manager. For example, it  takes 100 times longer to process deadlocks when  

NCUSERS=20 than  it does  when  NCUSERS=2.  

Tuning Parameters  

Application Design: Look  for two applications  that access the same  data in the 

opposite order. If you can, switch the order of  access  for one  application  so  they 

both use the  same  order. 

Reschedule Applications: If you  find that two applications often create  deadlocks, 

try to reschedule them to run at different  times of  the  day. 

Reduce Lock Contention: The  other way to reduce potential deadlocks  is to simply 

reduce the  number and  duration of  locks that your database manager needs to use, 

refer to “Locking Contention” on  page 94. 

Reduce Lock Escalation: Escalation can also cause  deadlocks. For example, 

suppose two users  are updating  tables in a dbspace. When  the  lock size  is  

escalated to a dbspace level, both  users  can be locked out, with each waiting for 

the other  to complete  a logical unit of work.  Refer to “Lock Escalation” on page 99. 

Performance Indicator  

To determine if deadlocks  are a problem, look for users receiving SQLCODE -911 

(SQLSTATE 40001, rollback due to deadlock).  

Note:  This message  may  also be  received during preprocessing,  as  the locks  are 

required then as well.  

To test the frequency of deadlocks, use the COUNTER operator  command and  

specify the DEADLOCK counter. It displays the  number of  deadlocks  detected,  

each of which  causes  a rollback. 

Recovery  

Logical Units  of Work 

When a user or an application program has made a change or a group of related 

changes to the  database,  and  if the  application in question  completed  successfully,  

the user or program issues  an SQL  COMMIT WORK statement  to the application 

server, to commit  these changes to the  database.  If the  application  did not complete 

successfully, the  user instead issues an SQL  ROLLBACK WORK statement, which 

undoes all the changes  made  up to the  point of the error since the last COMMIT  

WORK statement, or since  the start  of  the  program or session.  

A group of SQL statements is  called a logical unit of work (LUW). An LUW  can be 

as small  as one statement, or as  large as  an entire application execution (or ISQL 

session). All SQL statements are executed  within an LUW.  If no LUW exists when 

a statement  is issued, then  the  database manager creates one  implicitly. 

CMS Work  Units (VM) 

Users working on a VM operating system can take advantage of CMS work units, 

which allow  them to maintain more than  one  logical unit of work (LUW)  at a time. 

With separate  CMS work  units, application programs  can be independent of  one  

another. For example, a user can  run a program,  and in the middle  of an LUW, 

 

102 Performance Tuning Handbook  



have that  program call a second program which runs in a separate  CMS work  unit. 

When  work is committed in the  second program, it does  not affect  the active LUW  

in the first program. 

Note:   CMS work units require extra processing overhead,  so should  only  be used  

when  necessary.  If an application does  not need  this support,  set the  

WORKUNIT  option of  the  SQLINIT command to NO. 

Checkpoints  

A checkpoint is  an internal operation where  the  database manager writes modified 

data and status  information  to DASD,  and  writes a summary status  record  to the  

log. 

What occurs during the Checkpoint  Process?  

When  the database  manager takes  a checkpoint:  

v    It writes the  contents of  the  local and directory  buffer pools to DASD.  

v    It frees all shadow pages.  (Whenever it “modifies” a page in a storage pool, it  

creates a new  page in the same pool,  and  keeps the  original as a shadow page.  

Refer to “Shadow  Pages”  on page 63). 

v    If LOGMODE=Y (no archive), the database manager clears space in the  log up to 

the beginning  of  the oldest LUW still active when the checkpoint is  taken.  

v    It updates the directory  pages to account  for released  shadow pages and  

updated page allocation maps.

When do  Checkpoints Occur?  

A checkpoint is  scheduled when: 

v    The number of  log pages  specified by  the CHKINTVL initialization parameter  

have been written  to the log, refer to “Choosing  the  Checkpoint Interval”  on 

page 104. 

v    During  rollback, the  total number of free pages in a storage pool is less than or 

equal to 10. (This does  not apply when LOGMODE= N.) 

v    A COMMIT WORK  is  processed in single user mode with  no logging  

(LOGMODE=N) 

v    The percentage of  free  pages  in a storage pool reaches the  minimum  specified by  

the SOSLEVEL  initialization parameter, refer  to “Short  on Storage  Cushion”  on 

page 59. (This  does  not apply when LOGMODE=N.) 

v    A DROP DBSPACE is  issued. 

v    Soft recovery  processing is complete  during startup.  

v    An archive  (both before and after) is performed. 

v    Before switching  to an inactive  log  and after the  switch has completed 

successfully. (This  only  applies when alternate  logging is enabled.) 

v    A shutdown is issued, either  in multiple user mode  (MUM) or  single user mode 

(SUM). 

v    A log-full condition occurs, refer  to “Log  Cushion and Automatically Initiated  

Archives” on page 107. 

v    An LUW  that updates data  in a nonrecoverable  storage pool ends.

Performance Implications 

A checkpoint has two performance implications: 

v    It performs a high  amount of  I/O to DASD. It writes all the modified buffer 

pages and  data space pages back  to DASD,  and  updates the directory disk. 

v    It holds up processing.  User agents must  wait until the  checkpoint is  finished 

before they can proceed.

 

Chapter  4. Configuring the Application Server and Requester  103



Choosing the Checkpoint  Interval 

To control the  duration between  checkpoints, use the  CHKINTVL initialization 

parameter. This parameter  specifies how many log pages the  database manager  

will fill  before it takes  its next checkpoint. 

Setting the Time Between Checkpoints: The time  between  checkpoints depends  on 

the number of modifications you make to the database.  If logging is  turned on, the 

database manager writes  to the log every  time you perform an insert, update, or 

delete. The  more modifications  you make, the faster you will  reach  a checkpoint.  If 

you only  perform queries, the  database manager may never perform a checkpoint.  

We recommend that you  adjust  the CHKINTVL  parameter  so that the database 

manager takes  a checkpoint every 10 to 15 minutes.  Should you  experience a 

system failure, it should  take  you  no longer than 10 to 15 minutes to restart the 

database manager once you  have recovered  your system. If you  adjust  CHKINTVL 

so that  checkpoints  occur less frequently, for example every  four  hours, it  may take  

up to or more than four hours to restart your database. 

Many installations find that the  optimum CHKINTVL setting is  between 50 and  

300. Installations  with large, randomly modified databases are in the  lower end of  

that  range, and installations with small databases tend to be in the upper end  of  

that  range. Large databases having a relatively low frequency of random 

modifications also tend to be in the upper end of  that range. 

If you  set the CHKINTVL parameter too low,  you  minimize the risk  of filling the 

log or storage pools.  However, while each checkpoint  is faster, you increase  the 

overall number of checkpoints.  

If you  set it too high, you lower the overhead associated with checkpoint  

processing. However,  consider the following adverse affects: 

v   It may take longer to recover from a system failure. 

v   You risk  filling the log  and storage pools if you  are running  with LOGMODE=Y.  

This consideration  does not apply if  you are doing archiving (LOGMODE=A or 

L),  because in  that  situation  log space  is  reclaimed only  when the database or 

log is archived. 

v   You may  see an  increase in the time required to complete  a  single checkpoint.  

However,  unless your  standard workload  includes a  significant amount of 

random  data modifications over a  relatively  large  area (more than 100MB), you 

probably will not notice significant delays. The effect  is unimportant  if the 

database is small or if  there is  very little random data modification  activity. Bulk 

sequential data  modifications also do not generally cause problems. 

v   You will  probably require  more storage to support additional shadow pages. 

Whenever the database  manager modifies a page in a storage pool, it creates  a 

new page in  the same  pool,  and keeps the original as a shadow page. Therefore 

the  longer the  period between  checkpoints,  the more modified pages  will 

accumulate in  your  storage pools. 25% free  storage in each storage pool is  

generally sufficient,  refer to “Short  on Storage Cushion”  on page 59.

Forcing Checkpoints: You  can  avoid  checkpoint processing during peak periods  by 

manually forcing them to occur  when required. For example, consider a bank  that 

processes a large  number of  transactions when  its customers are on break  for 

lunch, between  11:00AM and  1:00PM.  A checkpoint  could lock  tellers out  of  the  

database for several minutes frustrating  both  the  tellers and the bank’s  customers. 

 

104 Performance Tuning Handbook  



To avoid  a checkpoint,  the  checkpoint interval  is set very high. Just before the 

lunch rush, an empty dbspace, created for the purpose, is  dropped to force a 

checkpoint.  After the  rush, the  dbspace is recreated and dropped again  to force 

another checkpoint and  ensure that the lunch time work is  saved to DASD.  

If you  plan  to use this method  to control when checkpoints  occur,  create  a plan  

that  specifically indicates when  each is to occur  and  make sure that it is followed. 

Not  performing any checkpoints can  cause more  performance  problems in the  long  

run than you will avoid  in the short run. 

DB2 VM  Data Spaces Support: The DB2  Server DSS feature can make checkpoint 

processing faster by  limiting the  number of modified pages in main and expanded  

storage. When  the  number of  modified pages  in a data  space exceeds an 

initialization parameter called the save  interval  (SAVEINTV), the  database manager  

directs the  operating system to save  all the  modified pages  in that data space to 

DASD.  Unlike the  save  that occurs during checkpoint,  the database manager can  

continue to service  users  while this is  being  done.  For more information on the 

save  interval, refer  to Chapter 6,  “Data  Spaces Support for VM/ESA,” on page 157.  

Logging and Archiving  

Log  

A log is  a file maintained on DASD that records  all the changes to the  database.  

Each time a DML  statement (for  example, INSERT, DELETE, UPDATE) is 

processed by the  database manager, the  old and  new values are written  in the log. 

If any changes  to the  database must  be undone or redone, you can use the log  to 

restore  the data to its proper state. 

Archive 

An archive  is a copy  of  data  in your database at the time the  archive  was made. 

You  can archive an entire database,  a portion of the database,  or even the  log. 

Typically, you  use archives to recover from a DASD  failure. 

You  can create  three  different archives: 

Selective Archive  

Is a copy  of  individual tables  or even dbspaces. You can create a selective  

archive using either the  DBS utility or IBM DB2  for VM  Control  Center 

(refer to page 9).  

Database Archive   

Is a copy  of  the  entire database at a specific time. A database archive 

includes the database directory  and  all dbextents, but excludes the  log. 

Log Archive   

Is a copy  of  the  current log  on either  tape or disk. 

 Note: By  using the DB2 for VSE & VM Data  Restore Feature, you can also 

create incremental archives  and restore individual storage pools.

Alternate Logging  

A database must  have at least  one  log. Optionally, you can define a second log to 

be used once the  first log is full. This can prevent log archives from occurring at 

unscheduled times.  

For information  on the alternate  logging  option,  see the DB2  Server  for VM System 

Administration or the DB2 Server  for  VSE System Administration  manuals. 

 

Chapter  4. Configuring the Application Server and Requester  105



Dual Logs 

Dual logging protects the database in case of a  DASD failure  on the  log. With  

single logging, any I/O error on the log minidisk  causes  the  database manager to 

end. With dual logging, database updates are recorded  in the active log  and its 

dual copy. If alternate  logging is enabled, a dual copy of the alternate  log is also 

maintained. This reduces the  risk of  losing  the log, as an unrecoverable error is  

unlikely to occur  on both logs at the  same  time. 

Note:  To ensure that  you really have true dual log protection, each log  file or  

minidisk must  reside  on a separate  DASD volume.  For information  on the 

dual logging  option,  see the DB2  Server  for VM System Administration  or the  

DB2 Server for  VSE  System Administration  manuals. 

Choosing a  Logmode  

You can choose from four different  log mode values:  

LOGMODE=Y 

A log records all changes  to the  database.  These are stored in the  log until 

a checkpoint saves  the changes to DASD.  It is  totally your  responsibility to 

schedule  archives  of  the database,  because  the  database manager never 

initiates  any for you. If the application server  or your operating  system 

abends,  you  can recover up to and  including  the last complete LUW. If  you 

suffer a database DASD failure, you can  recover from your last archive. 

This value  is the default. 

LOGMODE=A 

A log records all changes  to the  database.  These are stored in the  log until 

a database archive occurs. This ensures  that you  can recover from either an 

abend or a DASD failure up to and including the  last complete  LUW.  The 

database manager automatically initiates a database archive  when the  log 

is  nearly full. While you can wait for this to occur, it is more  efficient to 

perform regular  archives  yourself, refer  to “Log  Cushion and 

Automatically Initiated Archives” on page 107.  

LOGMODE=L 

A log records all changes  to the  database.  These are stored in the  log until 

a log archive occurs. This lets  you  recover using the  last database archive  

plus  subsequent log archives.  You  can recover up  to and  including the last 

complete  LUW.  

Note:   Before you can use LOGMODE=L, you  must  create  a database 

archive. 

If alternate logging is  not enabled, the database manager automatically  

initiates  a log archive when it is nearly full. When  alternate  logging is 

enabled,  an attempt is  made to switch to the inactive  log. While  you can  

wait for a log archive  or alternate  log switch to occur,  it is  more efficient to 

perform regular  archives  yourself, refer  to “Log  Cushion and 

Automatically Initiated Archives” on page 107.  

LOGMODE=N 

Indicates that nothing  is recorded  in the log. This option is  not 

recommended  for normal  operation and  it  is only  available in single user 

mode.

When you  choose a log mode, decide how much  protection you want,  and  the  

amount of  time  you can spend  in  recovering data. 

 

106 Performance Tuning Handbook  



If you are  running in single user  mode (SUM) and you do not need to  protect 

your data from either  system or  DASD  failures, specify  LOGMODE=N. The 

application server will run faster because  it will not require  the extra  time to create  

archives or maintain a log. 

If you do not need to protect your  data from DASD failures,  specify  

LOGMODE=Y. The application server  will  run faster because it will  not require 

the extra time to create archives and  you  can maintain a  smaller log. 

LOGMODE=Y cannot  protect  you from DASD failures because the contents  of the 

log are only saved until the next checkpoint. After the  checkpoint,  the current 

contents of  the  log can be overwritten by new changes. If several checkpoints  have 

occurred since your  last database archive, you cannot use the  contents of  the  log to 

recover. 

If you must have  the ability to recover  from DASD  failures, choose  either mode  

A or L. With LOGMODE=A  an archive of the entire database is created  

periodically, so you  can restore your entire  database or individual storage pools by 

using the  latest database archive along  with the  contents of the current log. With 

LOGMODE=L, archives are also taken but  you  can create archives of  the  database 

less frequently  than with  mode A, because you  have log  archives as  well.  If a 

DASD failure occurs,  you can restore the entire database or  individual storage 

pools by  using the  latest database  archive, the sequence of log archives that follow  

it, and  the contents of  the  current log. If you are doing a log archive  for the  first 

time  you will be prompted to do  a database archive first. You will  not be 

prompted again. You  must schedule any subsequent archives yourself. 

To decide between LOGMODE=A or L, consider: 

v    How important it is  to recover quickly after a  DASD failure. You  recover more 

quickly with LOGMODE=A.  

v    How much  time  you can devote to taking archives. Because the log  is usually 

smaller than the  database,  log archives  require less time to create  than  database 

archives. You can create both archives when you stop the application server, or 

while users  are still accessing  data  in the database. If  you create a database 

archive when users are accessing  data in the database, they must  wait longer for 

the application  server  to process their  requests.

When  you choose a log  mode, use it whenever  you start the  system.  Do not 

change  the log mode without thought and  planning.  If you must  do  so, you  may 

have to carry  out  additional  procedures.  For more  information, see  the  DB2 Server 

for  VM System Administration or the DB2  Server for VSE System Administration 

manuals. 

Tuning Parameters  

Log Cushion and  Automatically  Initiated Archives:   The SLOGCUSH 

initialization parameter defines  when automatically  initiated  log-full processing 

begins. It is expressed in terms  of  a percentage of the log. When  the log fills to the 

SLOGCUSH value,  the  database manager aborts the  oldest active  logical  units of  

work  until enough log space is  freed to bring the percentage of  the  log below  the 

SLOGCUSH level. 

The ARCHPCT  initialization  parameter  defines  when automatically initiated  

archives will occur  or, when alternate logging  is enabled,  when we attempt to 

switch to the  inactive  log disk. It  is also expressed  in terms  of  a percentage of  the  

log. When  alternate logging is  not enabled and  the log fills to the  ARCHPCT  value,  

 

Chapter  4. Configuring the Application Server and Requester  107



the database manager forces either a log or  database archive  depending on 

whether it is  running in LOGMODE  A or L. 

Ideally, you  should  never reach  SLOGCUSH or ARCHPCT. Log-full processing and 

automatically initiated  archives or switching to the  inactive log reduce 

performance, and  often occur  during peak workloads, so  avoid  them by: 

v   Ensuring that  your log  is large enough.  

v   Trying to maintain enough free  log space through  regular log or database 

archives (LOGMODE=A or L) and  through regular checkpoints  (LOGMODE=Y).  

Note:   Checkpoints only  free space in the log  when you  run your  application 

server with LOGMODE=Y. 

v   COMMITing WORK frequently to avoid  long  running LUWs. 

v   Running very long LUWs in single  user mode without logging (LOGMODE=N).

Since  performing  an archive impacts  performance less than log-full processing 

avoid the  latter by: 

v   Setting SLOGCUSH >  ARCHPCT. 

v   Ensure that there is  a comfortable difference  between SLOGCUSH and 

ARCHPCT. (If the SLOGCUSH percentage is reached during an online archive  

operation,  all SQL  processing is suspended until the  archive operation is 

complete.) 

v   Setting SLOGCUSH high  enough to avoid log—full processing but not too  high  

to risk  completely filling the log. 

v   Enable archiving  (LOGMODE=A or L). SLOGCUSH has no effect if archiving  is 

disabled.

Using  VSAM Buffers  (VSE):    In  VSE, you can use the BUFND  startup parameter  

for the directory,  data, and  log disks. By  using VSAM-controlled buffers  and 

sequential processing, VSAM  is  able to read multiple records with a  single I/O 

request. The number of  records  read together will depend on the number of  

buffers available  to VSAM, which are specified when  the Access Method Control 

Block (ACB) is created for the directory,  data, and  log disks. A second set of  ACBs  

is required to avoid interfering with normal  I/O processing during an online 

archival. 

The default  number of  ACB  buffers  in DB2 Server  for VSE is 40. To change this 

value, use the  BUFND parameter  in the  DLBL statement  of  the  JCL  for the  

directory, data, and log  disks. 

Performance Indicator  (SHOW  LOG)  

You can use the  SHOW  LOG operator command to determine  if archiving  has 

been enabled and  what  percentage of  the active log  is full. Also, if  archiving is 

enabled, it displays the  percentage of  the log remaining before ARCHPCT  is 

reached. If archiving  is  disabled, it displays the percentage of  the  log remaining 

before SLOGCUSH is reached. 

Communications 

DRDA Performance  Considerations (VM) 

This section discusses how to use the PROTOCOL parameter  and  different  block 

sizes in  a DRDA protocol environment to obtain maximum  performance  from the  

 

108 Performance Tuning Handbook  



database manager.  For information on setting up  this type  of  environment, refer  to 

the DB2 Server  for  VM System Administrationor the  DB2  Server for VSE  System 

Administration manuals. 

PROTOCOL Performance Considerations  

The PROTOCOL parameter  specifies the types  of  protocols  that the  application 

server  can process  and the types  of  protocol under which the  application requester 

runs. 

On the application server, the PROTOCOL parameter is  specified in the SQLSTART 

EXEC. The  PROTOCOL parameter  has two options on the application  server, 

SQLDS and  AUTO. When  PROTOCOL=SQLDS is  specified, the DB2 Server  for VM 

application server allows access  from DB2  Server for VM  application requesters 

only. (The application requesters and  application  servers can  be in either a local  or 

remote environment.) This is the default option. When PROTOCOL=AUTO is  

specified,  the  DB2  Server for VM application server  allows  access from DB2  Server  

for VM application requesters and  non-DB2  Server for VM  application requesters. 

On the application requester, the  PROTOCOL parameter  is specified in the  

SQLINIT EXEC. The PROTOCOL parameter  has three  options on the  application 

requester, SQLDS,  AUTO  and DRDA. When  PROTOCOL(SQLDS) is specified, the  

DB2  Server  for VM application requester  cannot  connect to a non-DB2 Server  for 

VM application server. This is the default option. When PROTOCOL(AUTO)  or 

PROTOCOL(DRDA) is  specified, the DB2 Server  for VM application  requester can 

connect to DB2  Server for VM  application servers and  non-DB2 Server  for VM 

application servers. 

When  a connection  is made  between  the application  requester and  the  application 

server, the  combination specified by  these  parameters determines the protocol to be  

used (either SQLDS protocol or DRDA protocol). 

Table  5 shows the protocol used  between  the application requester  and the  

application server. 

 Table  5. Protocol Used  Between the  application requester and the  application server 

Application Requester 

Application Server  

DB2  Server  for VM (SQLSTART) 

Non-DB2 Server 

for VM 

(including DB2 

Server for VSE)  

SQLDS AUTO 

DB2  Server for  

VM (SQLINIT) 

SQLDS SQLDS SQLDS Not  Allowed  

AUTO SQLDS SQLDS DRDA  

DRDA  Not  Allowed DRDA DRDA  

Non-DB2  Server  for  VM Not  Allowed DRDA Not Applicable
  

When  the DB2  Server  for VM  application server is started with 

PROTOCOL=AUTO, DRDA “handshaking” occurs (unless the  application 

requester is  a DB2  Server  for VM application  requester  that has been initialized 

with PROTOCOL(SQLDS)).  Handshaking  is an identification exchange between the  

application server and the  application  requester. During this handshaking 

sequence, information  is  exchanged  between the application  requester and  the  

application server. This exchange includes CCSID  information  and  generation of an 

LU 6.2  LUWID. 

 

Chapter  4. Configuring the Application Server and Requester  109



For more information on  handshaking, see  the  discussion  on accessing  a remote 

relational database manager in the  Distributed  Relational  Database  Architecture  

Reference manual.  

The PROTOCOL parameters  used also affect CCSID conversion.  If either the  

application requester  or application server  specifies SQLDS for the PROTOCOL 

parameter, the application requester  default CCSIDs  are ignored, and the  

application server  CCSIDs  are assumed. 

Application requester CCSIDs  are used when: 

v   Both the  application server and the  application requester specify the  AUTO 

option,  or 

v   The application server is started  with PROTOCOL=AUTO option,  and  the 

application requester specifies PROTOCOL(DRDA) on the SQLINIT EXEC.

When communication  is between  a DB2  Server for VM  application server  and a 

DB2 Server  for VM  application requester, the AUTO option  yields  the  same  

performance advantages as the  SQLDS option  except that it has a  slight  overhead 

when establishing a connection with the  application server.  Specifying the  AUTO  

option on the  DB2  Server for VM application server  has many advantages. This 

option allows  the application server  to receive  both  SQLDS protocol or DRDA 

protocol, from both DB2 Server  for VM application  requesters and  non-DB2 Server  

for VM application  requesters. If  you specify the AUTO option  on the  DB2  Server  

for VM application  requester, it makes  the  necessary adjustments for both  DB2  

Server for VM application servers and non-DB2 Server  for VM application  servers. 

When PROTOCOL(DRDA) is specified on the  application  requester, DRDA 

protocol is forced for connections, even if  the target is a DB2  Server for VM 

application server. The DRDA option is useful when you  are doing prototype 

testing between  a DB2  Server for VM application requester  and a  DB2 Server  for 

VM application  server  to model problems that may  occur in communications with 

a non-DB2 Server for VM application server. You  can also use the  DRDA option to  

test SQL  extensions only  available  in a DRDA protocol environment, for example, a 

larger block  size. 

Fetch  and Insert Blocking  

The database manager lets you  use blocking for row  insertion  and  row  retrieval. 

Blocking improves performance in multiple  user mode because  data is sent 

between your  program and  the database manager in blocks  of rows (rather than one  

row at a time). This reduces overhead from communications between  the  

application server  and  the requester. Most  applications that do multiple-row 

insertions or retrievals  would benefit from blocking. 

Implementing Blocking 

To use blocking, specify the  BLOCK,  SBLOCK or IBLOCK  parameter  when 

preprocessing the program.  (For  extended dynamic  statements, specify the  BLOCK 

parameter on the  CREATE PROGRAM  statement.) When  you  run the  program, 

blocking is automatically used for:  

v   Insert cursors (those that use OPEN, PUT,  and  CLOSE  statements) 

v   Fetch cursors (those  that use OPEN, FETCH, and  CLOSE  statements) 

v   Select cursors (those that with FOR  FETCH ONLY or FOR  READ  ONLY clause 

when SBLOCK is  in  effect)

When you  run the  program with IBLOCK,  blocking is automatically used for:  

 

110 Performance  Tuning Handbook 

|

|

|

|

|

|

|

|



v    Normal Insert statements

It is unnecessary for programs  to explicitly handle the blocks because  they are 

managed  by  the  database manager.  With  the SQLDS protocol, 8KB blocks are used  

for both fetch and insert blocking.  The IBLOCK option is applicable  with  the 

DRDA protocol.  The block  size  for fetch blocking can  be set by  the  one  who 

requests the application  from 1KB  to 32KB by  using the  QRYBLKSIZE  option of  

the SQLINIT EXEC  (see the  DB2 Server for  VSE  & VM  Database  Administration  

manual). 

 

 

For VSE Users  

In  VSE the block size  for fetch blocking can be set by  the application 

requester from a minimum value of  512 bytes  to a maximum  value of  

32KB -  1 byte (32767).  

Note:   Blocking  is only  useful  if the block size  is  sufficiently  large that many rows 

can  be blocked  (that is,  it must  be  greater than  the maximum row  length). 

For retrievals,  as  many rows as the block  will hold are sent to the  application 

requester on the first  fetch  (with the DRDA protocol, the first block  is sent with the 

OPEN statement). When  the program fetches  all the  rows in the block, the next 

fetch that  it  issues  causes another block to be sent. The  program never needs to 

explicitly request  a block. 

For insertions, the  blocks are also handled automatically.  Whenever the program 

issues  a PUT or a normal  INSERT, a row  is added to the  block. When  another row 

cannot fit into  the  block, the  resource adapter sends  the block to the  database 

manager.  

Suppressed  Blocking  

Single User  Mode:    The database manager does not do blocking for single user 

mode applications. Since the  database manager and the  application run in the 

same  partition (for  VSE)  or  machine (for  VM), there is no cross-partition/machine  

communication overhead to be saved.  Programs  that have been preprocessed  using 

the BLOCK or IBLOCK  parameter  do not need  to be re-preprocessed to run in 

single user mode. There is  an automatic suppression of the blocking and  no 

warning  is sent to the  program at run time. Some programs, however, process SQL 

statements dynamically  at run time  by  using the  PREPARE statement.  These 

programs, when  preprocessed with the BLOCK option,  will receive a  runtime 

warning, if  a dynamically  processed statement is  disqualified for blocking. 

Multiple  User Mode:    In some  instances, there is  also  suppressed blocking in 

multiple user mode. Suppressed  blocking for a cursor  occurs when: 

v    There is  not enough virtual  storage to get one  block. 

v    Two rows cannot fit into one  block. 

v    The cursor retrieves long  fields (LONG VARCHAR or LONG VARGRAPHIC or 

VARCHAR(n) or VARGRAPHIC(n) where  n  is greater  than 254,  or 127,  

respectively). 

v    The cursor contains a FOR  UPDATE clause. 

v    The cursor is operated on by  a DELETE  ...  WHERE CURRENT OF  CURSOR 

statement. 

 

Chapter 4. Configuring the  Application Server and Requester 111

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|



v   The cursor is operated on by an  UPDATE ...  WHERE CURRENT  OF CURSOR 

statement.

In  all cases, a warning is  sent to the program, in the SQLCA, to let it know  that 

blocking was suppressed,  and  execution continues.  Notice  that the  database 

manager suppresses blocking on a cursor level. It may be doing blocking for some 

cursors in a program even though  the  blocking for other  cursors  is suppressed.  

The advantages of  fetch and  insert blocking are not limited to user programs. DB2 

Server for VSE & VM facilities take advantage of  blocking as  well.  The DBS utility 

and ISQL  take advantage of blocking. Refer  to the DB2  Server for VSE & VM  

Database Administration, and the  DB2  Server for VSE  & VM  Interactive SQL Guide and 

Reference manuals. (ISQL use of blocking is limited to fetch  blocking.) 

One minor  performance  disadvantage to using blocking is  that the  database 

manger uses extra virtual storage (equal to the block  size) for every open  cursor. 

The storage is freed when  the user closes  the  cursor or when the  user ends the  

logical unit of work (whichever comes first). This not only  applies to user 

applications, but  to the DBS utility. (ISQL only  has one  cursor open  at a time  

because a user can only  issue one  SELECT statement at a time.)  

Another minor  performance  disadvantage is that in not using a block worth of  

data, you pay  the  overhead of  that block. For example, only  10 rows are returned  

in a block capable  of  holding  200 rows.  

For more information on  using fetch or put operations in programs with  blocking, 

refer to the  DB2  Server for VSE  & VM  SQL Reference and  DB2  Server for VSE  & VM  

Application Programming  manuals. 

Synchronous  Communications  (VM) 

The SYNCHRONOUS parameter  of  SQLINIT EXEC  determines whether 

synchronous or asynchronous communication  is used  between  the user and 

database machines. Synchronous communication performs  better  than 

asynchronous communication but has the following restrictions: 

v   You cannot  use SQLHX or CANCEL to cancel SQL  statements. The only  ways to 

terminate an unwanted LUW  is to use the operator command FORCE, or to 

re-IPL CMS.  

v   You cannot  use the SQLQRY  command to query the  status  of  the  application 

that you are currently running  on the DB2  Server for VSE & VM user machine.

We recommend that you  use synchronous communication  primarily when running 

a well-tested  production batch application  against local application servers. Always 

use the  default, asynchronous communication, with interactive programs such  as  

ISQL. 

Considerations  for ISQL and Adhoc Queries 

Adhoc queries  or the Interactive SQL facility (ISQL)  can significantly  affect how 

your database  system performs. 

 

112 Performance  Tuning Handbook 



AUTOCOMMIT  

You  should do all ISQL work  in AUTOCOMMIT  ON mode, the default.  In 

AUTOCOMMIT  ON  mode, ISQL internally issues  a COMMIT WORK, thus  freeing 

DB2  Server  for VSE & VM  resources  between  query requests for possible  use by 

others. 

The COMMIT  WORK is done immediately after a  statement completes 

successfully.  The only  exception is  for INSERT, DELETE, or UPDATE statements  

that  change more than  one  row.  For these  statements, ISQL  will give you  a chance  

to rollback. 

Use AUTOCOMMIT OFF mode, if  you must have  explicit control  over committing 

work. For  example, if two  SQL  statements update data  in two tables  

simultaneously (as with debit and credit operations) and these  updates must  be 

synchronized to prevent inconsistent data, use AUTOCOMMIT OFF  mode. If you  

are using this mode, package SQL  statements into  an ISQL  routine  so that terminal  

read delays are minimized or  eliminated. 

You  can cancel any SQL statement  if it  is still in progress  by  issuing the  ISQL 

CANCEL  statement. (This statement  causes  a ROLLBACK WORK RELEASE  to be 

executed.) That is,  you can enter CANCEL if you  are prompted to clear the  screen, 

or prompted  to enter CANCEL. You  can  also enter CANCEL to any ISQL message  

requesting a reply. 

Isolation Levels 

To minimize  contention on shared resources, do all  adhoc query work with the 

isolation level set to cursor stability  (CS) unless  the work  being  performed requires 

the repeatable read (RR) isolation level to ensure consistent data. 

Alternatively, if it is  not important that the data  you are reading has necessarily  

been committed, consider setting  the isolation level  to uncommitted read (UR). 

Adhoc  users  should  be aware  that when they  are viewing  a query result they may 

be delaying other  users especially if querying the catalog tables. 

Temporary  Tables 

If a  long series  of  adhoc queries is  expected against certain  data in a  large 

database,  it may  be best to copy  that data into one  or more  temporary tables and  

query the copy. The queries will run faster and indexes can be created without 

being  concerned  with the  effect  of  additional index maintenance  on production 

work  that is updating the  data. 

If a  series of  adhoc queries is expected against data in several related  tables, 

consider creating  a temporary table  that contains the  joined  results  of  those tables. 

Queries run against this  temporary table will run faster and  be easier to formulate.  

An added benefit is  that the temporary table  can be  created in a PRIVATE 

DBSPACE where locking overhead during query execution is negligible.  The 

INSERT using subselect form  of  the SQL INSERT statement can  be used  to create  

the copy. 

Views 

Instead of  giving end users  access  to an entire table, provide  them with a view on 

just the  portion of the table  that they need. In addition to the  security benefits, this 

 

Chapter 4. Configuring the  Application Server and Requester 113



is an effective strategy  for reducing the  amount of processor and  input/output  

usage that can be  generated by indiscriminate querying of the  data. 

DBS Utility Considerations 

Automatic Statistics Collection  

Unless you  specify otherwise,  statistics are automatically collected and  updated 

during execution of the RELOAD,  and RELOAD DBSPACE commands. If you are 

performing a DATALOAD, statistics will  also be  automatically collected if you load 

data into  a single empty table  with no indexes. The database manager 

automatically issues  an implicit UPDATE STATISTICS statement  following the  

DATALOAD. This can  be time-consuming,  if the  number of  active  data  pages  in 

that  DBSPACE is  large. 

Note:  This type  of automatic collection only updates statistics for columns with 

indexes. For multicolumn  indexes  it only  updates the leading column. If you  

want  to ensure that all the  columns have their  statistics up to date, suppress 

automatic  collections and  enter UPDATE  ALL STATISTICS immediately 

following a dataload. Refer  to page 138. 

Suppressing Automatic Statistics Collection  

The automatic  collection of statistics can be suppressed  by  specifying SET UPDATE 

STATISTICS OFF in the  DBS input file  before the DATALOAD. In cases where  the 

database manager will  not implicitly issue the  UPDATE STATISTICS statement  (but 

rather collects statistics during the load),  there is  no advantage in explicitly 

suppressing statistics collection.  Otherwise,  consider suppressing  the UPDATE 

STATISTICS statement  if either of  the  following conditions  apply: 

v   There are many DATALOADs into  the same table. UPDATE STATISTICS could 

be executed after the last one, or  on a periodic  basis. 

v   You know  the  statistics are not going to change  significantly  (for  example, a 

small  amount  of  data is being  added to a large  table). In  such cases, you  could 

postpone updating the  statistics until more substantial changes have  occurred.

TAPE  Blocking 

In  the  case of UNLOAD, a block size greater than 8244 bytes for tape output files 

is recommended  for improved performance. Specify the  block size in the  CMS 

FILEDEF command associated with  the OUTFILE statement.  

Lock Escalation  

When running  the  DBS utility in multiple user mode  to load (INSERT) or unload 

(SELECT) rows from a  database, you may encounter lock  escalation. SQL  LOCK  

DBSPACE or LOCK TABLE statements override the  automatic locking mechanism; 

they can be  used to avoid deadlock conditions. 

A user-issued  SQL  LOCK statement  is  useful  only  during multiple user mode  

processing for table data  in a public  dbspace that is  not defined with locking at the 

dbspace level. A user-acquired database lock  remains in effect  until the  end of  the  

logical unit of work in  which it was issued. 

DATALOAD and RELOAD  Locking  Considerations 

If you  insert many rows  into the  database with a RELOAD command or a  

DATALOAD command without  the COMMITCOUNT option  specified, consider 

using the SQL  LOCK DBSPACE statement  to eliminate  or reduce lock  escalation. 

 

114 Performance  Tuning Handbook 



An exclusive lock  on the  dbspace where  the tables being  loaded are defined  does 

not appreciably  increase lock  contention and  reduces the likelihood of  deadlock 

with another user.  

Note:   An exclusive lock  on a table being  loaded does  not prevent lock  escalation 

and  is  not recommended. 

You  can also avoid  lock  escalation during multiple  user mode DATALOAD 

processing by  issuing a SET  AUTOCOMMIT ON command before the  DATALOAD 

command and  specifying a sufficiently low COMMITCOUNT value in  the 

DATALOAD INFILE  subcommand.  Use of  DATALOAD COMMITCOUNT  

processing reduces the likelihood of  the locking required by DATALOAD 

processing delaying  other users accessing  the  table  being  loaded or other tables  in 

the same  dbspace  where the table  being  defined resides. If the  target  table is in a 

dbspace defined with ROW level locking,  a COMMITCOUNT  value of 

approximately  200 should  be sufficiently  low. If the  dbspace is defined with  PAGE 

locking, the COMMITCOUNT  value can be higher (1000, for example)  and lock 

escalation is  still avoided. Do not arbitrarily set the COMMITCOUNT  value too 

low because  frequent commit points increase DATALOAD run time. 

SELECT,  DATAUNLOAD, and UNLOAD  Locking Considerations 

If you  are running  with an isolation level setting  of  repeatable read (the default  

processing mode) and  you  know  that a particular SELECT,  DATAUNLOAD, or 

UNLOAD  operation is going to access many  rows from one  or more  tables in the  

database,  lock  escalation then normally occurs. You  should consider acquiring a 

SHARE  lock  on the table(s)  being  accessed. If all the  tables being  accessed reside in 

the same  dbspace, you  should  consider acquiring a SHARE lock  on the dbspace  

being  accessed.  This action  can reduce lock contention  and the likelihood that a 

SELECT,  DATAUNLOAD, or UNLOAD  causes a deadlock with another user. Other 

users  can modify other tables in the same  dbspace where  the  table being  accessed 

resides.  

UNLOAD and RELOAD PACKAGE  Considerations  

To obtain the best  performance  when using the UNLOAD PACKAGE command 

and  the RELOAD PACKAGE command,  consider doing the following: 

v    Unload or reload large  numbers of  packages  in your system’s off-peak  usage  

time or in  single  user mode. 

v    If you are unloading  or reloading packages in multiple  user mode, use blocking 

(by ensuring  that the DBS utility was initialized with the  BLOCK option).

These actions improve performance by preventing interruptions  by  other users. 

PROGRAM is  a synonym for PACKAGE. Therefore, UNLOAD or RELOAD 

PROGRAM, and UNLOAD or RELOAD PACKAGE  are equivalent commands. 

When  unloading or reloading a modifiable  package, an exclusive lock  is held  on 

the catalog table  SYSACCESS.  This may cause a performance  deterioration for 

other  users  wanting to run the  exclusively locked  package. 

 

Chapter 4. Configuring the  Application Server and Requester 115



116 Performance  Tuning Handbook 



Chapter  5. Improving Data  Access  Performance  

User applications  can  access data  without  being  dependent on how the data is  

stored or on the types of  access paths available  to locate the data. The optimizer 

determines an efficient access  path  to the data. This capability makes  data more  

readily  available  for use by many diverse applications; however, you  can 

experience a wide range  of  performance  characteristics for the variety of  possible  

application requests. 

Ideally,  the user of a relational database need not be concerned  with how data  is 

accessed.  This is probably true for end users  who write SQL  queries quickly  for 

one-time  or occasional use. However, for those who plan transaction programs  that 

may be executed thousands of  times a day, some  knowledge about the database 

manager and  how  it chooses among various  access  paths and  evaluation sequences 

can enable  them to significantly  improve performance. 

You  can directly  influence the  access path  to data  in several ways (the first five are 

discussed in this chapter): 

v    Creating or dropping indexes 

v    Maintaining up-to-date  statistical  information  on your  database 

v    Changing the  number of  tables  in a  dbspace 

v    Updating the catalog  statistics used to estimate  access costs 

v    Rewriting  a query in a more efficient form 

v    Reorganizing  data, refer to “Reorganizing Data”  on page 70 

v    Reorganizing  indexes, refer to “Index Fragmentation” on page 73.

Access Paths and Indexes 

To evaluate  a query,  the database manager determines an access plan that consists  

of  a set of  access  paths (one for each table  listed  in the  query) and other  actions  (for  

example, a sort). Five types  of  access paths  are described here: 

v    Dbspace scans  

v    Nonselective index scans  

v    Selective index scans  

v    Index-only  access scans  

v    Unique  index with key matching predicate(s).

For each method, a model query is  given that refers to a generic table  T,  with 

columns C1, C2, C3, and  so  on.  

Notes:   

1.    The examples below use SELECT *  because they  are modeling arbitrary  queries. 

For  actual queries, the  use of  SELECT * is  not recommended:  all queries should  

only  select the  columns that are required in the answer set, in order to reduce 

the  cost  of  processing the  query,  and to provide additional  access path 

opportunities. 

2.    Considerations regarding the number of data pages  read may not apply to  

tables  with long  fields.

 

© Copyright IBM  Corp. 1993, 2007  117



Dbspace Scans 

Assuming that  T  has no indexes, the  model query is:  

   SELECT  *  FROM  T WHERE C1 = 42 

Because a page can contain rows from any table  in a dbspace, the  database 

manager must read every active data  page in the dbspace to locate every  row of T 

and to determine  whether its value  of  C1 matches the  given value. If there are 

other tables  besides T in the  dbspace, they will  have to be  read as well. If the  

fraction of  the  dbspace occupied by  T is small, then most of the pages  read will 

contain few  or no rows from T. 

It is a good idea  to make a dbspace scan  as inexpensive as  possible. This can be 

accomplished by  having one table  in a dbspace and reorganizing its rows  so  that 

there are none  that overflow from their original page onto another page. For 

information, see “Reorganizing a Single Table”  on page 71. Another  factor is the 

amount of  free  space left on each page.  For information, see the  DB2  Server for VSE  

& VM Database Administration manual. 

Index Scans 

For an index scan, the model query is:  

   SELECT  *  FROM  T WHERE C2 = 42 

An index scan improves  performance  by enabling the  database manager to avoid  

the following:  

v   Reading all of  the active data pages  in the dbspace. 

v   Reading data pages  that do not contain desired rows. 

v   Sorting the result.

An index scan performs  better  than a dbspace scan in many situations. However, it  

has the  following drawbacks: 

v   If VARCHAR  or VARGRAPHIC columns are selected, or if not all  columns 

referenced are in  the index, then the  index scan  must read the index pages as  

well as the  data pages. (A dbspace  scan reads  only  data pages.)  

v   If the  index is  not clustered (even if the index  is a clustering  index), some data  

pages  may be  read more than  once. Refer to “Clustered Indexes”  on page 66.  

There are two types  of  index scans: nonselective and  selective. An index scan on T 

is selective if C2 is  the  first column of  the  index key. All other  index scans are 

nonselective. 

Nonselective Index Scans 

If T has an index on C1, the database  manager can use the  index to pick out  only 

those pages  that contain rows  of table T. 

Be aware that  if T is  the  only  table in its dbspace, this method  may be no better  

than a dbspace  scan. It is  only more efficient in those cases where only  a portion  of  

the pages  in  the dbspace  contain rows from table T, the result needs to be  sorted  

on the index key, or index sargs can  be applied  to the  index keys. 

Selective Index Scans 

If T has an index on C2, the database  manager will  be able to use the  index to pick 

out only  those rows from table T where  C2 =  42. That  is,  the only  pages  that will  

be accessed are index leaf pages that contain keys  where C2 =  42, and  non-leaf  

pages that  must  be traversed to navigate to these  leaf  pages. 

 

118 Performance  Tuning Handbook 



A selective  index scan is  generally the most efficient access  path. This is true even 

in the case where  T is  the only  table  in the dbspace, if  only a portion of the data  

pages  contain rows where C2 = 42. (If all or  nearly all pages  contained rows 

where C2 =  42, then  a dbspace scan would likely be  more efficient). 

Index-Only  Access Scans 

Although in  general  the  database manager has to read data  pages  for a table  to 

evaluate  a query,  there are cases where all the columns referenced are present in 

the index and  the predicates do  not require the  data page. If  these conditions are 

met, then  only  index pages  will be  read. This is called index-only  access,  and  is 

possible  for both selective  and nonselective index scans. The  model query is: 

   SELECT  C2, C3 FROM T WHERE C2 = 50 

(It is  assumed  here  that an index exists on columns C2 and C3.)  

Clustering Index 

There is  no  advantage to using a clustered index with  index-only access, because 

clustered indexes  are only  valuable  when  the database manager uses  an index  to 

access data pages. 

Examples of Index  only  Access 

The following are examples of  queries that use index-only  access.  It is assumed 

that  a multicolumn  index exists on columns C1, C2, C3, and  C4. 

   SELECT COUNT(*) FROM T WHERE C2 =  5 

The database manager scans  the  entire index looking for C2=5, but  no data 

pages  are read. 

   SELECT C2 FROM T 

The database manager scans  the  entire index, but  no data pages are read.  

   SELECT MIN(C1) FROM T 

The database manager does  not read the  entire index; just  a  single value. 

   SELECT MAX(C1) FROM T 

For MAX column functions, C1 must  be defined as  NOT NULL  so  that a single 

value is read rather than the entire index. 

   SELECT C1 FROM T WHERE C1 =  42 AND C4 = 100 

The database manager reads  only  the index  entries where  C1 =  42 and then 

scans  for C4=100, but no data  pages  are read.

Index-only access is  not possible when  a VARCHAR  or VARGRAPHIC column 

appears in  the SELECT list  or in a residual predicate. 

Creating  Indexes  

In  some  cases,  it may be reasonable to create  an index that includes data just  to 

improve the performance  of  certain  common queries. For example, the sample 

ACTIVITY  table  identifies  each activity by  an activity number (ACTNO). It  also 

contains a 6-character activity keyword (ACTKWD).  If the  table  were often used to 

decode activity  numbers by retrieving  the  corresponding keywords,  it might be 

useful  to have an index  on both  columns.  The model query would  be:  

   SELECT  ACTKWD FROM ACTIVITY WHERE  ACTNO =  42 

Another  case where  index-only access is  beneficial  is a table with  very long  rows,  

where the portion  of  the  row retrieved is small  compared to the size  of  the  row. If 

 

Chapter  5. Improving  Data Access Performance  119



a query needs only  three  or four  relatively  short columns of that data, an index on  

those columns might be worthwhile merely  to avoid  the cost of scanning all data 

pages and  extracting  the  useful data. 

Unique Index with Key Matching Predicate(s) 

The model query is:  

   SELECT  *  FROM  T WHERE C1 = 42 

Here, access  is most direct  if there  is a unique  index on  column C1. In this case, 

the database manager reads  only  as  much  of  the index as  needed  to locate one  

entry, and  then  at most one  data page.  Furthermore,  instead of  using a scan, it  uses 

a more efficient operation  to return a single row. Refer to “Key-matching 

Predicates” on page 123.  

Indexes for Sorting 

The primary use of  indexes is to provide  selective  access to data, but they are also 

used to sort  data  in  a specified way.  Consider this query: 

   SELECT  *  FROM  EMPLOYEE  

     WHERE WORKDEPT LIKE ’A%’ 

       ORDER  BY EMPNO  

The database manager can access the rows  needed through  an index on 

WORKDEPT, but then  it would  have to sort  all of those rows by  EMPNO. It might 

estimate that it would  be more  efficient to access all  rows in order by an index on  

EMPNO, then check the  value of WORKDEPT in each one, but  eliminate the sort. 

The database manager can use indexes for ORDER BY and GROUP BY, but  not 

always for SELECT DISTINCT. It can avoid a sort  for SELECT DISTINCT if a 

unique index is used, or if there  is a GROUP BY list  that is a subset  of  the SELECT 

list. 

Note:  If an application program contains  a SELECT DISTINCT  statement  that is 

preprocessed using a unique index, the preprocessor  records  that the  

package has a dependency on the unique index. If the unique  index ever  

becomes invalid,  the  entire package will  be invalidated and  it will be  

dynamically repreprocessed the next time it is executed.  

Recommendations  for Indexes 

The nature and  purpose of your  data  will determine what  indexes you  should  

create, but the  following very general  guidelines may be of some help:  

v   If you  delete rows from or update the primary key on parent tables, define 

indexes on foreign keys. 

v   Define primary keys or unique constraints  wherever they apply.  The database 

manager automatically  defines  unique indexes  for these. 

v   Use indexes to speed up the  most frequent  queries to tables with more than  15 

data pages; and for tables with more  than 10 pages that are primarily  accessed 

for reading only. 

v   Create  indexes on fixed-length rather than varying length columns. 

v   Create  indexes to include  columns frequently queried  to allow for index-only  

access.  

v   Whenever possible, create  unique  indexes. If you  cannot  create  a unique index 

on a  single column,  create  a unique  multicolumn  index. For example  if you  want  

 

120 Performance Tuning Handbook  



to sort the EMPLOYEE table by  the  JOB column, create  an index on JOB and 

EMPNO (JOB,EMPNO). The index will  still sort  by  JOB,  but it can also be  a 

UNIQUE index. 

v    In  a multicolumn  index, place the  “most” unique column first.

Disadvantages of Indexes 

The above  descriptions  of  the  various  types of access paths should  suggest  to you 

that  indexes can  reduce access  time significantly. But before you begin creating 

them,  carefully  consider their costs: 

v    They require storage space. 

v    It takes time  to create  and  maintain them.  

v    There is  overhead associated with keeping them synchronized with the tables  

they index. It takes  more  time for the database  manager to update a table  that 

uses an index or insert new  data into it. 

v    They may increase locking contention. 

v    They increase the  time  required for recovery.

Placing Tables  into  Dbspaces 

Each large table  should  be placed in its own dbspace, so  that rows from other  

tables do  not have to be  examined during a dbspace scan.  Another  advantage is 

that  if you  later wish to eliminate that table, you can do  so with a DROP  

DBSPACE statement, which  will  run very fast because the  data, index, and  header 

pages  do not have to be examined. 

Very small  tables  may be  grouped together  in the same dbspace, because  relatively  

few  additional  pages  have to be read during a dbspace scan. However,  avoid  page 

level  locking in  this situation.  

Dbspace  scans  are done during CREATE INDEX, DROP  TABLE,  and UPDATE 

STATISTICS processing,  and  may be  used to satisfy other SQL requests,  depending 

on index  availability. 

By default,  locking takes  place at the page-level. This is usually the best  trade-off  

between  concurrency and locking overhead. You should  consider locking at the  

row-level  when many  applications access one  small  part of  the  database.  The tables  

there could be put  in their  own dbspaces, for which  you  would  request  row-level  

locking (using  an ACQUIRE DBSPACE or ALTER  DBSPACE statement). 

When  you request row-level locking for a dbspace, key-level locking is  also done 

for indexes in  that dbspace. Key-level  locking on indexes  reduces contention, but 

increases  overhead. 

Organizing  Referential Structures 

Because referential  operations (update of  a primary or foreign key, deletion of  a 

parent row,  or insertion  of  a foreign key)  involve access  to more than one  table, 

when organizing a referential structure you should  carefully  consider the  

implications of concurrency. (The issues  discussed here are equally  applicable  to 

any set of  related  tables.) 

Referential operations  require access  to multiple tables, and possibly  to multiple 

rows of  dependent tables. This characteristic increases  the possibility of deadlock 

situations. When the  primary key of a parent table  is modified (DELETE,  

 

Chapter 5. Improving  Data Access Performance  121



UPDATE), all dependent rows are accessed (and possibly  also modified). 

Conversely, when a foreign key in a dependent table  is  modified (INSERT, 

UPDATE), the  parent table  is accessed.  If two  such  operations run concurrently in 

different logical  units of  work  (LUWs), a deadlock situation could result,  which 

would trigger the  automatic rollback of the later LUW. 

Note:  A similar potential deadlock situation would  be encountered whenever 

logically related  data is concurrently accessed in opposing  ways.  

Similarly, when  multiple users  access referential  structures,  lock  contention  

increases (because the users  are accessing the  same  tables, and  the  number of  rows  

accessed can be  quite large).  This contention may  reduce concurrency. 

A user who understands the nature of referential operations  can minimize their  

effect on  concurrency, by  reducing the  chances of  multiple users  performing  

logically unrelated operations contending for locks.  (Contention cannot be  avoided 

if users  are performing  logically conflicting operations.)  Consider the  following 

ways to improve concurrency: 

v   Do not put tables from different referential  structures  in the  same  dbspace. In 

general  always  try to place only  one table  in each dbspace. 

v   Create  an index on a foreign key. (Whenever possible  this should  be  a unique  

index that exactly  matches the columns of the foreign key. If necessary  make  the 

index unique by  creating  a multicolumn  index.) This provides the  most selective  

access path possible to dependent  rows whose foreign key has a particular 

value.  Operations on a parent row can use this index to scan the dependent  

table, thus  avoiding the need  for a dbspace  scan or a nonselective index scan. 

You  should use discretion in creating  such  indexes, especially  on tables  with  

several foreign keys. For example, you may  consider creating them only  on the 

most often referenced foreign  keys. These indexes will  be of  particular use in 

reducing deadlock situations in environments where parent tables and  

dependent tables are being  modified concurrently, and will also provide faster 

execution of  all referential operations against parent rows.

Predicate  Processing  

Search conditions  contain predicates joined  with AND, OR,  and  NOT. A predicate  

is a search condition in a WHERE or HAVING  clause  of  an SQL  statement. 

Examples include C1 = 10, C2 BETWEEN 10 AND 20, EXISTS(subquery), and  C4 NOT 

LIKE ’A%’. Only those rows  that satisfy a predicate are returned.  

Predicates are resolved in one  of two categories:  residual or sargable. (Sargable is  a 

term derived from  the words “search  argument”.) Sargable predicates are applied  

at the Database  Storage  Subsystem  (DBSS)  level; residual predicates are applied  at 

the Relational  Data System  (RDS) level. 

Figure 14 on page 123 shows the hierarchy  of  predicates.  

 

 

122 Performance Tuning Handbook  



Sargable predicates are further divided into  two categories:  those that use the 

index, and  those that do not. The former are called either key-matching predicates 

or index  page sargs. The latter are called data  page sargs.  

A key-matching predicate, which  is applied  directly to the index  key, is  created  

when the columns referenced in the  predicate form  an initial substring of  an index 

on the  table. 

An index page sarg is  resolved using the index  page, but  is not used  to search the  

index key.  It is  created when the columns referenced in the  predicate are not  an 

initial substring of  an index, but are contained in the index. 

A data page sarg does  not use the index, and always  requires the data  pages  be 

read. It is created  when the  columns referenced in the predicate are not contained 

in the index. 

Column Attributes 

The next sections deal  with predicates in the  WHERE clause. For these  predicates,  

it is important that the data types  and CCSIDs of  any columns and  literals match 

whenever possible. That  is,  numeric values should  use the  same  representation,  

including the same  precision and  scale for DECIMAL values. Character  and  

graphic  values should  have the  same  length. Columns and  literals should  use the  

same  CCSID, refer  to “Impact of  CCSIDs  on  Sargability” on page 131.  Adhering to 

this rule will  always  give the database manager the  greatest flexibility in choosing 

an efficient access  path. All the examples assume that this rule has been followed. 

For more  information, refer  to note  number one  on page 127. 

Key-matching  Predicates  

Before a predicate  can be considered key-matching  it must  be  in the correct  form 

and  a suitable  index must  be available. 

Form  of Key-matching Predicates 

Some types  of  predicates can  match  index entries; other  types cannot. For example, 

if the  EMPLOYEE table  has an index  on the  column SEX, it  matches the predicate  

in this query: 

   SELECT  * FROM EMPLOYEE  WHERE SEX  = ’M’ 

Predicate

residual
sargable

index page

index page
sarg

key-matching
predicate

data page

data page
sarg

  

Figure 14.  Predicate  Hierarchy

 

Chapter 5. Improving  Data Access Performance  123



On the  other  hand, the  same  index does  not  match  the  predicate in this query: 

   SELECT  *  FROM  EMPLOYEE  WHERE  SEX < > ’F’  

We call a predicate  key-matching  if it can match  the entries in  a suitable  index. 

Table 6 on page 126 shows which  predicate types  are key-matching. 

If a predicate  fails to match  the  index, it may  still be applied to the index, but  not 

used to search  it. 

Only one  predicate per  column can be chosen  as  the  key, however, other  predicates 

on that  column are eligible to be a sargable predicate. For predicates that are joined 

with AND, one  per  column is chosen  as the key. The one  with the  best  filter factor 

establishes the  path  and  the other is  turned into a sargable predicate. For example, 

consider a table with three  columns C1, C2, and  C3. A multi-column index is 

created (C3,  C2, C1) and  the following WHERE clause  is used  in a SELECT 

statement: 

    ...WHERE  C1>1 AND 

           C1<2 AND 

           C2=2 AND 

           C3=3 

Only the first, third,  and fourth predicates are chosen  as  key-matching  predicates 

(C1>1, C2=2, C3=3).  The second predicate (C1<2) is  not chosen  as  key-matching  

but it is  sargable. 

For maximum efficiency, use key-matching  predicates  and create suitable 

indexes. The database manager may  not always  use an index to apply a 

key-matching predicate—other factors may  intervene. But the first step in reducing 

the processing cost  of  a query is  to use key-matching predicates where possible 

and then  create  suitable  indexes. 

In  general,  when you  create  an multi-column  index, put the  column with the most 

distinct values first,  and  continue in order to the least distinct  values.  

One exception to this rule is the  case where  the  index provides a necessary 

ordering of  the  data. With  this query: 

   SELECT  *  FROM  EMPLOYEE  

     WHERE EDLEVEL >  14 AND JOB = ’CLERK’  

       ORDER  BY EDLEVEL  

an index on EDLEVEL,JOB enables the  database manager to access data  in the 

order required by the  ORDER  BY clause, thus saving  a sort at the end.  This may  

be enough to justify scanning  index entries  for rows that are rejected. 

Suitable Index for Key-matching  Predicate  

For a simple  predicate, an index is fully matched if the column in the predicate  is 

the first column of the index. For example, the predicate C1=10 matches an index  

on columns C1, C2, C3, as  well as an index on column  C1 alone.  If there  are 

additional predicates on columns C2 and  C3, they may  also be  evaluated through 

the multicolumn  index. 

For a search  condition where all the predicates are joined  by  an AND, it is  enough 

if the index includes the  set of  columns as  an initial substring. For example, an 

index on columns C1, C3, C4, and C6 is fully  matched by the search condition 

 

124 Performance Tuning Handbook  



C1=10 AND C4='A'  AND C3=7 AND C6=9, as  long  as all  but the  last column are 

matched  with equality  predicates.  The last  predicate  can be  either an equality  or a 

range predicate. 

The same  index is  not  fully  matched by the search  condition C1=10 AND C4='A'  

AND C6=9, because  the set of columns in that search condition (C1,C4,C6) is not 

an initial  substring of C1, C3, C4, C6. However, the database manager can use the  

index for the  parts  of  the search condition that do  form an  initial substring; in the  

example, it can apply the  predicate C1=10 through  the index. In addition,  it can 

still use the  index to evaluate  the predicates on C4  and  C6, so that data  pages  do 

not need  to be accessed.  

Similarly, such  an index is not  fully  matched  by the search  condition C1=10 AND 

C3=7 AND C4>'A'  AND C6=9,  because the predicate  C4>'A'  is  not an equality  

predicate. An index can only be  matched up to and  including  the first non-equality 

predicate. Thus,  the database manager can  apply the predicates  C1=10 AND C3=7 

AND C4>'A' as  key-matching  predicates to the index. Again, the predicate  on C6  

can be  evaluated as  an index sarg so  that data pages do  not need  to be accessed.  

Hence,  the  order of  the  index columns is  important; it  should  take into  account the 

kinds  of  queries used. For example, suppose the  Spiffy Computer department 

intends to query its employee table  regularly with predicates  such  as EDLEVEL > 

14 AND JOB =  'CLERK'. With  an index on EDLEVEL,JOB,  the database manager 

finds  the first index entry  with EDLEVEL  greater than 14 and scans  the  remainder 

of  the index from there upward.  But with an index on JOB,EDLEVEL, it scans  only  

the entries for clerks having EDLEVEL > 14, giving a shorter  access path. 

Note:   If you created an index  in order to improve the  performance  of  an SQL  

statement,  you should probably check that the database  manager actually  

uses  the  index for that statement. To find out what  access  and processing 

methods it has chosen, use the EXPLAIN statement  (see “Using  Explanation 

Tables  to Evaluate Performance” on page 141). 

Sargable  and Residual  Predicates  

Rows  that  are retrieved go  through two  stages of  processing. Predicates can be 

applied  at the first stage are called sargable  predicates;  those that cannot be applied  

until the  second stage  are called residual predicates. Predicates in the HAVING 

clause  are always  residual. Resolution of  predicates  and the predicate  hierarchy are 

detailed in  “Predicate Processing” on page 122. Table 6 on page 126 shows which 

predicates are sargable and which are not.  

There is  a  definite performance  advantage  in  using sargable predicates:  they 

require fewer  CPU instructions  than do  residual  predicates, because they eliminate 

rows that would otherwise be passed  from first to second stage  processing. Thus, 

whenever possible, avoid  a residual predicate by rewriting your SQL statement. 

Example 

Table  T contains 1000 rows,  and  column C6 contains the  integers from  1 to 1000.  

Consider this query: 

   SELECT  * FROM T  WHERE  INTEGER(C6/7) = 2 

Because the  column in the predicate is  involved  in an arithmetic expression, the  

predicate is residual. The first  stage  must  access 1000 rows and pass them all back 

to the  second stage. If you instead write the predicate as  WHERE C6 BETWEEN 14 

AND 20, then  only  seven  rows are passed back to the second stage. Furthermore,  

 

Chapter 5. Improving  Data Access Performance  125



the predicate  C6 BETWEEN  14 AND 20 is  key-matching.  If there  is an index  on C6, 

the first stage  need  only  access seven rows. 

Sargable predicates are better than  residual predicates,  but a suitable index  is 

better still. Avoiding the  processing cost  of  a residual  predicate won’t  help you  

much if you have to access ten  million rows  without  an  index. (You can use 

EXPLAIN to tell  whether a sargable predicate exists for a particular column, refer 

to the REFERENCE  EXPLAIN table in the  DB2 Server for  VSE  & VM SQL  Reference  

manual.) 

Join  Predicates  

In  general,  any predicate involving more  than one  table  is a join predicate. In  the 

database manager, a condition of  the  form T1.C1=T2.C2 (the equijoin)  is handled 

specially by  the  optimizer. For information on joins,  see  “Methods of Joining Two 

or More Tables”  on page 133.  

Search Conditions  and Their Processing Characteristics 

Table 6 shows the  different types of  search  conditions, and  their processing 

characteristics. The following conventions are used: 

v   A search condition consists  of  one  or more predicates 

v   Predicates are combined  using the logical operators AND/OR 

v   NOT can be applied to either predicates or search conditions 

v   Expression is  any expression involving arithmetic operators,  concatenation, scalar  

functions, or column functions 

v   Value is  a literal or host variable  

v   Litexpr is any value  or expression 

v   Anyexpr is any column, value or expression 

v   Char is any character  string  that does not begin  with the  ‘%’ or ‘_’  special 

characters 

v   pattern is any character  string that begins with the '%' or ‘_’ special characters 

v   Op is one  of the operators:  <, <=, >, >=, =, <>, ¬= 

v   Rop is one  of  the  range  operators: <, <=, >, >=  

v   Q is one  of the quantifiers: ANY, ALL, SOME 

v   <> represents <> or ¬= 

v   [ ] indicates parts of the predicate that are optional.

Note:  If the  predicate falls in two different  categories,  choose the  more  specific 

category.

 Table 6. Search  Conditions and Their Processing Characteristics 

Search Conditions Key- 

Matching? 

Sargable? Default Filter  Factor 

(FF)  

Notes 

COL = value  

COL IS NULL 

COL rop value 

COL BETWEEN value1 AND value2 

COL LIKE 'char'  

COL IN (value1,...)  

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

1/25 

1/25 

1/3 

1/10 

1/10 

1/25*size 

1,16 

2 

1,16,19  

1,4,16,19  

5,19 

1,3,6,16,17  

COL <> value 

COL IS NOT NULL 

COL NOT BETWEEN value1 AND value2 

COL NOT IN (value1,...)  

COL NOT LIKE  'value' 

COL LIKE 'pattern'  

COL LIKE host variable 

No 

No 

No 

No 

No 

No 

No 

Yes 

Yes 

No 

Yes 

No 

No 

No 

24/25 

24/25 

9/10 

1 - 1/25*size 

9/10 

1/10 

1/10 

1,7,16  

2 

7,8,19  

1,7,9,16,17  

19 

19 

16,19  

 

126 Performance Tuning Handbook  



Table 6. Search Conditions and Their Processing Characteristics (continued) 

Search Conditions Key- 

Matching? 

Sargable? Default  Filter Factor 

(FF)  

Notes 

T1.COL  = T2.COL (different tables)  

T1.COL  rop T2.COL (different tables) 

T1.COL  <> T2.COL (different tables)  

Yes 

Yes 

No  

Yes 

Yes 

Yes 

1/25  

1/3  

24/25  

1,15 

1,15,19 

1,15 

T1.COL1 = T1.COL2 (same  table) 

T1.COL1 rop T1.COL2 (same table) 

T1.COL1 <> T1.COL2 (same table) 

No  

No  

No  

No  

No  

No  

1/25  

1/3  

24/25  

  

19 

  

COL = [Q] (uncorrelated scalar subquery) 

COL rop [Q] (uncorrelated scalar subquery)  

COL <> [Q] (uncorrelated scalar  subquery) 

Yes 

Yes 

No  

Yes 

Yes 

Yes 

1/25  

1/3  

24/25  

1,10 

1,10,19 

1,10 

litexpr = [Q] (uncorrelated scalar subquery) 

litexpr rop [Q] (uncorrelated scalar subquery) 

litexpr <> [Q] (uncorrelated scalar subquery) 

No  

No  

No  

No  

No  

No  

1  

1/3  

1  

10 

10,19 

10 

COL = (subquery) 

COL <> (subquery) 

COL rop (subquery) 

litexpr = (subquery) 

litexpr <> (subquery) 

anyexpr  op  Q (subquery) 

No  

No  

No  

No  

No  

No  

No  

No  

No  

No  

No  

No  

1/25  

24/25  

1/3  

1  

1  

1  

11 

11 

11,19 

11 

11 

11 

anyexpr  [NOT]  IN (subquery) 

[NOT] EXISTS (subquery) 

No  

No  

No  

No  

1  

1  

11 

11 

COL = expression  

COL <> expression  

COL rop expression 

anyexpr  NOT BETWEEN anyexpr AND anyexpr  

anyexpr  BETWEEN anyexpr AND anyexpr  

anyexpr  <> expression 

litexpr rop anyexpr 

litexpr = anyexpr 

litexpr <> anyexpr 

litexpr NOT  IN (value,...) 

litexpr IN (value,...) 

No  

No  

No  

No  

No  

No  

No  

No  

No  

No  

No  

No  

No  

No  

No  

No  

No  

No  

No  

No  

No  

No  

1/25  

24/25  

1/3  

9/10  

1/10  

24/25  

1/3  

1  

∼0  

∼0  

1  

12 

12 

12,19 

12,18,19 

12,18,19 

12 

12 

12 

12 

12,17 

12,17 

search condition  AND  search condition 

search condition  OR search  condition  

NOT search condition  

Yes 

No  

No  

Yes 

Yes 

No  

FF1*FF2  

FF1+FF2-FF1*FF2 

1-FF  

13 

14 

  

  

Notes to  Table  6  on page 126: Search conditions which are listed as  key-matching 

or sargable are only potentially  so; they may not be treated as such because of  the  

following factors: 

 1.   The value must be  of  the same or compatible type  as  the  column. Adhere to 

this rule whenever possible. Numeric data  types have the following hierarchy: 

   SMALLINT  < INTEGER < DECIMAL <  FLOAT  

A value’s  data type can  be converted  to any higher data type. For example, 

INTEGER can  be converted  to a DECIMAL (given sufficient precision)  or 

FLOAT,  but not to SMALLINT.  Similar compatibility considerations exist for 

character and  graphic  data lengths, as  well as  for the  precision and  scale of  

decimal data. 

If the  data type of the  column is  CHAR(n) or GRAPHIC(n), the predicate  that 

references it is sargable if the length of that predicate  value is  less than or 

equal to “n”.  The column and  the predicate should  also have  the same  CCSID, 

refer to “Impact of  CCSIDs on Sargability” on page 131.  

 

Chapter 5. Improving  Data Access Performance  127



If the data type  of  the column is DECIMAL(m,n), it must  be possible  to 

accommodate the number  of decimal digits before and  after the  decimal point 

in the  target  decimal field (P1-S1  <= P2-S2 and  S1<=S2 where P  is precision 

and S  is scale). 

Even-precision DECIMAL variables are supported by  the  DB2 Server  for VSE 

& VM product  for the  assembler preprocessor.  You  can use even-precision 

DECIMAL columns in tables that are referenced by  Assembler  programs. Host 

variables in even-precision  will be left  as  is by  the preprocessor. Therefore, 

when these  programs access even-precision DECIMAL data, predicates  

become sargable instead of  RESIDUAL.  Your performance  may  improve when 

using SQL statements that use even-precision packed DECIMAL columns. 

 2.    The NULL predicate must  be applied to a column without the NOT NULL  

attribute in order to be key-matching  or sargable. Otherwise,  the predicate is 

residual. 

 3.    If a multicolumn index exists, at most one  IN  predicate can  be used  to match  

columns of the index. For example, if a table T1(C1, C2, C3) and  an index C1, 

C2, C3 exist,  the following query will have  only  one  key-matching predicate, 

not three: 

SELECT * from T1  where C1 IN (:HV1,  :HV2)  AND C2 IN (:HV3,  :HV4)  AND C3=5 

 4.    If value1 and  value2 are equal, then for filter  factor calculation purposes the 

predicate is treated as  though  it were the equality predicate  COL  =  value1. 

 5.    Although the LIKE  predicate is a residual  predicate, the database manager 

takes advantage  of  the character argument to generate  a BETWEEN predicate 

which is  both key-matching and sargable.  This BETWEEN predicate is  then  

applied by  the  first stage  either  as a key-matching  or a sargable predicate. 

This transformation does not apply if  the pattern is a host variable or the  

ESCAPE clause  exists. It  also does  not apply if the character  data is  mixed 

data. 

 6.    If there are no host variables in the  list, then a BETWEEN predicate will be  

generated using the lowest and  highest  values.  This predicate is sargable,  and  

can be used  to reduce the number of rows returned to the second stage. 

 7.    Whenever  possible, avoid negating a predicate using NOT. Instead,  use an 

equivalent form that distributes the  negation. In  some  cases, the  database 

manager will perform this transformation for you. For example, the predicate 

NOT COL =  value is  treated like COL  ¬= value. 

 8.    This predicate, although  residual  as  stated,  can be  rewritten to eliminate  the 

NOT BETWEEN into  COL < value1 OR COL  >  value2, which is  sargable.  (See 

note 14.) 

 9.    Because this predicate is  residual  when more than  one  value  is used, it might 

be beneficial to rewrite it as  COL  ¬=  value1  AND COL  ¬= value2  AND ... 

which is  sargable. 

10.   An uncorrelated scalar  subquery can  return at most one  value,  and  can be  

evaluated before the query that contains  it. This returned value is  then  used  to  

replace the  subquery. The predicate is scalar  only  if the  subquery statement  

specifies a COLUMN function  and the subquery does not contain a GROUP  

BY clause, or if the predicate containing  the subquery is not quantified.  

11.   Predicates that  reference  correlated subqueries or subqueries that can  return 

more  than one row  are always  residual. 

12.   An expression makes  any predicate residual. Sometimes a query can be  

rewritten to avoid  the presence of  an  expression. For example, instead of  

“SALARY+200 = 20000”,  write “SALARY =  198000”. The  second form is  

executed more efficiently. 

 

128 Performance Tuning Handbook  



13.    For this kind of  search condition to be key-matching, all predicates must  refer  

to columns that form an  initial substring  of  the  index columns.  All but  the last  

column must  be matched with  equality predicates; the last predicate  can be 

either  an equality  or a range predicate. 

In  search conditions  containing  multiple predicates on the same  column,  only  

one  predicate can be chosen  as  the key. The predicate  providing the best  

filtering establishes the path, and  the others are turned into  sargable 

predicates.  

14.    All predicates in a search  condition that contains an OR remain  sargable only 

if all the individual predicates are sargable; otherwise, they are all treated as  

residual. In  other words, a single  residual OR will cause all the predicates in a 

search condition to be residual. 

If all the predicates  refer to the same  column and  the  column is  indexed, the 

search condition can be rewritten using the  IN predicate. 

For example, instead of: 

   SELECT  * FROM EMP_ACT  

     WHERE  ACTNO=90  OR  ACTNO=100 

write: 

   SELECT  * FROM EMP_ACT  

     WHERE  ACTNO IN (90,100)  

If different  columns are referenced and  the  columns are indexed, then  a 

UNION  may be  a more  efficient form of  the  query.  

In  the following example, the database manager will  have to examine all rows  

in the EMPLOYEE table to find those that satisfy the two predicates:  

   SELECT  * FROM EMPLOYEE  

     WHERE  JOB = ’CLERK’  

     OR LASTNAME = ’JONES’  

The same  request  can be processed more  efficiently if it is  reformulated as  the  

UNION  of two SELECT statements: 

   SELECT  * FROM EMPLOYEE  WHERE JOB  = ’CLERK’ 

   UNION  

   SELECT  * FROM EMPLOYEE  WHERE LASTNAME  = ’JONES’  

15.    A join is  accomplished by  first accessing  the outer table  and  looking  for rows 

that  satisfy all predicates on that table only. For each such  row, the  inner  table  

is then  accessed to find all rows there that match  that row’s join  column 

value.  Because a specific  value is being  used, a join predicate of 

“colname = colname” becomes “colname =  value”. This is why  join  

predicates can give selective access to a table, if  the table is  the inner  table. 

A join  predicate  is only  sargable if the  data types of  the  two columns are 

identical (disregarding whether  the columns support NULLS). If the data  

types are CHAR(n), VARCHAR(n),  GRAPHIC(n),  and  VARGRAPHIC(n), the  

lengths must match. If they are DECIMAL(m,n), precision and  scale must  both 

match. 

The database manager path  selection takes  this into  account when it decides 

which  table should be accessed first.  

16.    Predicates using indicator  variables are sargable only if  they meet the 

following criteria:  

v   The predicate  is of  the  form COL  =  :HV1:IND1 or of  the form COL  =  ? 

v   COL  is  a  nullable column

Predicates using indicator variables which  do not meet  the above criteria are 

always  residual. 

 

Chapter 5. Improving  Data Access Performance  129



17.   When  the  IN predicate  contains only  one  value in the list, it is converted to  an 

EQUAL predicate. 

18.   All BETWEEN and  NOT BETWEEN predicates  that do not have a column as  

the first argument and values as the  second and  third  arguments, are residual. 

19.   For the following cases the default  filter  factor is determined from the 

COLCOUNT value  in the SYSTEM.SYSCOLUMNS  catalog table (refer  to 

“SYSTEM.SYSCOLUMNS” on page 39): 

v   COL rop host  variable 

v   COL rop COL  

v   COL like predicate  

v   COL BETWEEN anyexpr  AND  anyexpr

Filter Factors  

The objective  of  a predicate is to return to the  user only  those rows satisfying  a 

particular search condition.  Every  predicate is  treated like a filter that reduces the 

number of  rows returned. The degree to which the predicate reduces the  size  of  

the answer set is the  filter factor (FF). The filter  factor is an estimate of  the 

proportion of rows that remain  after a predicate has “filtered  out”  the  rows that do  

not satisfy it. 

The filter factor is a value between  0 and 1. If  it is  1, the  whole table  is selected,  

and the  predicate has no  filtering effect; if it is  0,  no rows are returned.  

The database manager estimates a filter  factor for every predicate. If the  predicate 

is either  too  complex (contains an expression), uses  disjunction (OR), uses  host  

variables, or if there are no statistics available for the columns it  references, then a 

default filter  factor is used. The defaults for various  predicates are shown in 

Table 6 on page 126. 

Sometimes the  optimizer will  not use the index when a predicate uses  host  

variables. This is  because the  optimizer is forced  to make  assumptions about the  

values that  are not available when the  statement  is being  preprocessed. In such 

cases, you  can usually improve  performance  by  executing the SQL  statement 

dynamically with  fixed values. 

 Table  7. Filter Factors 

COLCOUNT Value Filter  Factor for  rop Filter Factor for LIKE,  

BETWEEN 

>=100,000,000 1/10000 3/100000  

>=10,000,000 1/3000  1/10000 

>=1,000,000  1/1000  3/10,000 

>=100,000 1/300  1/1000  

>=10,000 1/100  3/1000  

>=1000 1/30 1/100  

>=100  1/10 3/100  

<100 1/3 1/10 

=-1 1/3 1/10

 

 

130 Performance Tuning Handbook  



Examples  of Predicate Processing 

The following examples of predicates illustrate the general  rules  shown  in Table 6 

on page 126. In  each case, assume that there  is an index  on columns C1, C2, C3, C4 

of  the table. 

WHERE  C1 =  5 AND C2 = 7 

Both predicates are sargable, and  both  can  be applied  as  key-matching 

predicates to the  index. 

WHERE  C1 =  5 AND C2 > 7 

Both predicates are sargable, and  both  can  be applied  as  key-matching 

predicates to the  index. 

WHERE  C1 >  5 AND C2 = 7 

Both predicates are sargable, but  only  the  first can be applied  as  a 

key-matching predicate. Because all the  predicates reference columns in the 

index, the second predicate  will be applied  as  an index page predicate. 

WHERE  C1 >  5 OR  C2 =  7 

Both predicates are sargable, and  the  combination is sargable.  The OR 

prevents the  use of  key-matching predicates.  The index can not  be used  for 

a selective  index scan.  However, both  predicates will  be applied  as  index 

page predicates. 

WHERE  C1 IN (subquery)  AND C2 = C1 

Both predicates are residual. The index  is not considered for a selective  

index scan,  and  both  predicates are evaluated residually. 

WHERE  C1 =  5 AND C2 = 7 AND C3+5  = 7 

Only the  first two predicates  are sargable and  can be  applied  as 

key-matching predicates. The third  predicate is  residual. The index is 

considered for selective  access. All rows satisfying  those two  predicates are 

passed to residual processing to evaluate the  third  predicate. 

WHERE  C1 =  5 OR  C2 =  7 OR C3+5  =  7 

The third  predicate is residual; hence, the  combination is residual. All three 

predicates are evaluated residually. 

WHERE  C1 =  5 OR  (C2  =  7 AND C3 = C4)  

The third  predicate is residual, so, the  combination  of  the second and third 

predicates (in  parentheses) is also residual. Hence, the total combination  is 

residual. All predicates are evaluated residually.  

WHERE  (C1  > 5 OR  C2 =  7)  AND C3 =  C4 

The combination of  the first two predicates is sargable, but the OR 

prevents the  use of  key-matching predicates.  The third  predicate is 

residual. The index is not considered for a selective index  scan, but the 

combined predicate  (in parentheses) is  sargable and will be  applied  as 

index page predicates.  All rows satisfying those two predicates are passed 

to residual processing to evaluate  the third predicate. 

WHERE  C1 >  5 AND C2 = 7 AND C5 =  8 

All predicates are sargable,  but  only  the first can be applied as a 

key-matching predicate. Because the remaining predicates reference 

columns in  both the index  and data pages, the  remaining two  predicates 

are applied as data page sargs.

Impact  of CCSIDs  on Sargability 

The DB2  Server  for VSE & VM SQL Reference manual  lists the  rules used to decide 

which  operand will  undergo Coded Character Set  Identifier (CCSID) conversion in 

 

Chapter 5. Improving  Data Access Performance  131



a comparison operation.  These rules will  help you  to maintain sargability  

whenever possible. The rules  were defined  to ensure that a column operand  will 

only undergo CCSID conversion if it is absolutely necessary.  

Whenever a column operand is  chosen to undergo CCSID  conversion, the 

predicate becomes residual  because CCSID conversion is performed from RDS, and  

not from DBSS. In  most cases, this  is a necessary  consequence of using the CCSID  

support. In  other  cases, it  can be  avoided by  understanding  how the  rules  apply 

and by  changing  the  application or the  data. 

Consider the search  condition: COL =  value (where value is  a  host variable). This 

search condition is  normally sargable (see Table  6 on page 126). The database 

manager attempts to keep  this  search condition sargable by always performing  

CCSID conversion on the host variable operand.  There is  a case, however, when 

the rules  state  that  the column operand is  the one  that should  be converted: when  

the subtype of  the  column is  SBCS and the  subtype of  the  host variable CCSID  is  

mixed. 

If it is possible that  the  host  variable will contain mixed data, then the  column 

operand must  undergo CCSID  conversion and  the  predicate must  become residual. 

One way to make this  predicate sargable is to set the column subtype to mixed. 

This may not always  be possible or desirable, but you  should  consider this 

situation when setting the  subtype of  new columns.  

If the host variable will  never contain mixed  data, then  it is possible to make this 

predicate sargable by  changing  the  subtype of  the host variable from mixed to 

SBCS. To do  this,  change the default  CCSID  values on  the application  requester. 

Refer to the DB2 Server  for  VM System Administration or the DB2  Server for VSE 

System Administration manuals for information  on how to change  the  CHARNAME  

setting for an application  requester. This situation  may not be  possible or desirable, 

especially if graphic  or mixed data is used  elsewhere in the query.  

Tuning Queries with Several  Tables  

The process of  combining rows  of one table  with rows  of another is  called a join. It 

is often possible  to write a query against two or more tables  either as  a join or as  

one or more nested SELECT clauses. The  first method is usually more efficient, as  

this gives the  optimizer more choices during access  path  selection. 

The following query retrieves data  about all designers in departments  that are 

responsible for projects that are part of  a major  project  MA2100. It  will be used  

here to illustrate  different  access methods in detail.  

   FROM   EMPLOYEE  E, PROJECT  P 

   WHERE  E.JOB  = ’DESIGNER’ 

     AND  E.WORKDEPT =  P.DEPTNO  

     AND  P.MAJPROJ  = ’MA2100’ 

In  this  example, the following assumptions are made: 

v   Each table is  in  its own dbspace 

v   Table EMPLOYEE 

–   Has 10 000 rows on 500 pages  

–   Has an index on EMPNO  with 25 pages  

–   Has an index on WORKDEPT with 10 pages

v    Table PROJECT 

 

132 Performance Tuning Handbook  



–   Has 3000 rows  on  60 pages  

–   Has an index on PROJNO  with 8 pages 

–   Has an index on RESPEMP  with 8 pages

v    COLCOUNT  for MAJPROJ is  100.  

v    COLCOUNT  for WORKDEPT  is 1000; for JOB, 50

Methods of Joining Two or More Tables  

To join  two tables  in a single query,  the  database manager chooses the less costly 

of  a nested  loop  join  and  a merge scan  join. The two methods are described below. 

Nested Loop Join  (Type 1) 

In  nested loop joins, the rows  of  one  table  (the “outer” table) are retrieved one  by 

one. Sargable  and  residual predicates are applied  to eliminate unqualified  rows.  

For each qualified row of  the  outer table,  the database manager opens a cursor on 

the second table (the “inner”  table), and retrieves all rows  that satisfy both the join  

predicate connecting the  two tables  and any local  predicates on the inner  table. 

Either table  can be  scanned by  a dbspace or index scan. The outer table is scanned 

once, while the  inner  table is scanned as  many  times as  the number of  qualifying 

rows in  the outer table. Hence, the  nested loop join is  most efficient  when  the inner 

table  has an efficient access path,  and  when only  a few  rows  of  the  outer table 

remain  after applying predicates to it. For a nested loop join: 

  Join  cost =  cost  of outer table scan 

            +  ((Estimated number  of qualifying records in outer table)  x  

               (cost  of inner  table scan))  

If the  inner  table  is small  enough to fit into  its share of  the  buffer pool,  the 

database manager anticipates that the entire inner table will remain  in buffers 

throughout  the  operation. On this  assumption, the  I/O cost  in the second term of  

the join cost  is  estimated as  no more than the cost  of  scanning  the  inner  table  once. 

The nested  loop join  is illustrated in Figure 15.  

 

 

Chapter 5. Improving  Data Access Performance  133



Merge Scan  Join  (Type 2)  

For this method, there must  be one or more predicates of the form 

TABLE1.COL1 =  TABLE2.COL2, where  the two columns have the  same  data type  

and length attribute.  One of  the  predicates is  chosen as the  merge  join  predicate. The 

approach is  to scan both  tables in the  order of  the merge join columns,  and to 

merge the result together whenever  matching rows are found.  

If the outer table  has no efficient index on the join columns,  an intermediate  table  

is built by sorting the outer table  on the  join  columns, applying any local 

predicates, and  eliminating  unused columns.  The inner  table  is  handled  similarly.  

The database manager then reads  the  first row  of both  ordered tables (applying 

any predicates that remain).  If the merge join predicate  matches, the  database 

manager returns the  combined result. It  then reads the next row  of  the  inner table, 

which might match the  same  row of  the  outer table, and continues  to read rows 

from the inner table and  return the results  until the merge join  predicate fails  to 

match. When  there is no longer a match,  the  database manager reads  the next 

outer table  row. If that row has the  same  join predicate  value, the database 

manager goes back  and  reads  the matching  group of  records from the inner  table  

again. If the  outer row  has a new join predicate  value,  the database manager 

searches ahead in the inner table until it finds  either: 

v   A matching inner  row, in which  case the matching process is repeated. 

v   An inner  row with  a higher  value than  the join predicate. Then the database 

manager discards  the  unmatched row of  the  outer table and  searches  through  

the  outer table  until either  a matching row or a row  with a higher join  predicate 

value is found. If a matching row is  found, the  matching process  is again 

repeated.  If a higher join predicate is found,  the search  moves back  into the  

inner  table.

Hence, for a merge scan join, 

SELECT A, B, X, Y
FROM   OUTER, INNER
WHERE A=10 AND B=X

Table:
Columns:

The nested loop join
produces this result.

Scan the outer table.
For each qualifying row..............................scan the inner

table to find all
matching rows..

Method: Nested Loop Join

OUTER INNER
A B X Y A B     X Y

COMPOSITE

10

10

10
10

10

3

1

2
6

1

5
3
2
1
2
9
7

A
B
C
D
E
F
G

10
10
10
10
10

3
1
2
2
1

3
1
2
2
1

B
D
C
E
D

  

Figure 15. Nested Loop Join

 

134 Performance Tuning Handbook  



Join cost = cost of outer table scan 

             + cost of sorting and reading outer  table (if needed) 

             + cost of inner table scan 

             + cost of sorting and reading inner  table (if needed) 

If an  efficient index does  exist on the join column,  and  this index  has been used to 

retrieve the rows  of  either table,  the rows  of that table  are already in sequence. In 

this case, no sort  of the table  is  required. 

Merge  scan  join  is  illustrated in Figure 16.  

   

Choosing  an Access Method 

When  choosing an access method  for the query shown on page 134, which entails  

a simple  join  of  only two  tables, four access  methods must  be considered: the  

nested loop join and  the  merge scan join, each with  both  possible choices of  the  

outer and inner  table. The choice  will be based on a comparison of their costs. 

Nested  Loop, with EMPLOYEE as Outer  Table 

With  no index on JOB, a  scan occurs on all 10000 (500  pages) rows of  the  employee 

table. For  each row, it  first evaluates the  predicate JOB = 'DESIGNER';  an estimated 

200 (1/50 x 10000)  rows remain.  For each of  those 200 rows,  a scan takes place on 

all 3000 rows (60 pages)  of the project  table  to find rows with WORKDEPT = 

DEPTNO and  MAJPROJ =  'MA2100'. The  major costs are: 

   Join cost = 10 000 row scan (500 page I/Os) 

             + (200 x 60 page I/Os)                = 12 500  page  I/Os 

SELECT A, B, X, Y
FROM   OUTER, INNER
WHERE A=10 AND B=X

Condense and sort the
outer table, or access
it through an index on
column B.

Condense and sort the
inner table, or access
it through an index on
column X.

Table:
Columns:

The merge scan join
produces this result.

Scan the outer table.
For each row,.............................................scan a group of matching

rows in the inner table.

Method: Merge Scan Join

OUTER INNER
A B X Y A B     X Y

COMPOSITE

10
10
10
10
10

1
1
2
3
6

1
2
2
3
5
7
9

D
C
E
B
A
G
F

10
10
10
10
10

1
1
2
2
3

1
1
2
2
3

D
D
C
E
B

  

Figure 16.  Merge Scan Join

 

Chapter 5. Improving  Data Access Performance  135



Nested  Loop, with  PROJECT as Outer Table 

With no index on MAJPROJ,  the database manager must  scan all  3000 rows of  the  

project table. For each row,  it first evaluates the predicate MAJPROJ='MA2100'; an 

estimated  30  (1/100  x 3000)  rows remain.  For  each of  those 30 rows,  the database 

manager must find all the rows in the EMPLOYEE table with WORKDEPT  = 

DEPTNO and JOB = 'DESIGNER'.  But instead of scanning  the  entire employee 

table, it can  use the index  on WORKDEPT  each time. Each department  has an 

average of  10 employees (10  000 rows  / 1000 distinct departments),  so the I/O cost 

is 1 index leaf page and 10  data  pages  for each value of  WORKDEPT. The  major 

costs are: 

   Join cost = 3000 row scan (60 page I/Os)  

             + (30 x 11 page I/Os)                 =  390  page I/Os 

Merge Scan,  with EMPLOYEE as  Outer  Table  

Here the database manager reads  the  project  table and applies the  local predicate 

MAJPROJ = 'MA2100'. The remaining 30 rows are sorted  and placed  into  a 

temporary table  (a  write and  read of  1 page). Then,  the database manager reads  

the employee table  in department  number order using the index  on WORKDEPT  

(10 index pages +  500 data pages). For each row of the employee table, the 

database manager first evaluates the predicate  JOB = 'DESIGNER'; if  the row 

qualifies, it reads rows  in the  inner  (temporary) table  that match  on department  

number. The costs are:  

   Join cost = cost of outer  table index scan        510  page  I/Os 

             + cost of accessing  inner  table          60 page  I/Os 

             + cost of sorting  and reading  inner       2 page I/Os  

  

                                                   = 572 page I/Os  

Merge Scan,  with PROJECT as  Outer  Table  

If the outer table  is the  project  table, it  cannot be accessed in department  number 

order, and  thus must be  sorted. Before sorting,  the  database manager eliminates 

the rows  that do  not satisfy MAJPROJ = 'MA2100',  leaving 30 rows. The estimated 

costs are: 

   Join cost = cost of outer  table scan               60 page  I/Os 

             + cost of sorting  and reading  outer       2 page I/Os  

             + cost of accessing  inner  table         510 page I/Os  

  

                                                   = 572 page I/Os  

The nested loop scan with the  project  table  as the outer  table  would be  the best  

choice here. Only this access  path  makes use of  the  employee table  index on 

WORKDEPT to avoid  a scan of  the entire table  while not requiring a sort  of  the 

project table. 

The two merge scan costs are shown  as  identical here  because CPU costs  and  the 

presence of  duplicates  have been ignored.  In  reality, both  would  affect the actual 

cost calculated by the database  manager. 

Multiple Joins 

Multiple joins are performed by  logically joining two tables  at a time, using either 

the nested loop or merge scan join method. This does not mean that each join  

necessarily produces an actual intermediate table;  in a number of  cases,  no 

intermediate tables are required. 

For example, a query joining tables T1, T2, and  T3  may use a nested loop join  to 

join T1  to T2, and  a merge  scan join to join  the logical result (T1-T2) to T3. In this 

 

136 Performance Tuning Handbook  



case, an intermediate  or  composite  table  might be  created,  and  would appear  in 

PLAN_TABLE if you  examined the  query with EXPLAIN.  In  addition,  the 

composite table  may require sorting to participate in the merge scanjoin. T3 may  

also require  sorting (unless an index exists over the join  columns). If the query has 

no ORDER  BY clause, requiring sorting of the final result,  then  the  T1-T2 

composite table  can be joined  (using merge scan) with T3, returning each 

qualifying result row as it  is found.  

In  short, whether composite tables are formed  or not depends  on a number of  

factors, including  the SQL statement  in question, the  availability and type of 

indexes, and  the catalog statistics. Any number of  access plans can produce the 

correct  answer, but the optimizer will choose the  lowest estimated total cost  

solution. 

Keeping Database Statistics  Current  

The catalog  tables hold statistical  information  on data stored in the  database,  and 

the database manager uses  these  statistics to determine how it will access data for 

each individual SQL  request. If the  statistics are unavailable, then default values 

are used. Table  8 shows the key statistics used  for access path selection, and  

identifies which  catalog  table they are in. 

 Table 8. Key Catalog  Statistics Used  for Path Selection  

Table Name 

Column  Name 

Description Default  Value Used by 

Optimizer  When Catalog 

Value  is  -1  

SYSCATALOG  

    ROWCOUNT 

    NPAGES 

  

Total number  of  rows for  this table. 

Number  of  pages in  the  dbspace that  contain rows  

of  this table.  

  

100  

3  

SYSDBSPACES  

    NTABS  

    NACTIVE 

    NPAGES 

  

Number  of  tables in  the dbspace. 

Number  of  active pages in the  dbspace. 

Number  of  usable pages in  the dbspace.  

  

  

3*NTABS  

SYSCOLUMNS 

    COLCOUNT 

    HIGH2KEY 

    LOW2KEY 

    AVGCOLLEN 

  

Number  of  distinct  values in  this column. 

Second highest value  in  this column. 

Second lowest value  in this column.  

Average  length  of  the  column. 

    

SYSINDEXES  

    FULLKEYCOUNT  

    FIRSTKEYCOUNT  

      

    NLEAF 

    NLEVELS 

    CLUSTERRATIO 

  

Number  of  distinct  values of  the full  key.  

Number  of  distinct  values of  the first column of  the key.  

Equals  COLCOUNT  for  the index column. 

Number  of  leaf pages in the  index. 

Number  of  levels in  the index. 

Measure of  how clustered an index is. 

              

SYSCOLSTATS 

    VAL10 

    VAL50 

    VAL90 

    FREQ1VAL 

    FREQ1PCT  

  

  

    FREQ2VAL 

    FREQ2PCT  

  

The value  at  the  tenth percentile. 

The value  at  the  fiftieth percentile.  

The value  at  the  ninetieth percentile. 

The most frequent value  in  the  column. 

Number  of  rows that contain that column  value, 

given as a percentage of  the total  number of rows.  

The second most frequent value in  the column. 

Number  of  rows that contain that column  value, 

given as a percentage of  the total  number of rows.  

  

 

Chapter 5. Improving  Data Access Performance  137



Table 8. Key Catalog  Statistics  Used  for Path Selection (continued) 

Table Name  

Column Name 

Description  Default Value Used  by 

Optimizer When  Catalog  

Value is  -1 

Notes:  

v   Default values are only assigned to  the  base table. The values of  NPAGES  and NACTIVE determine  PCTPAGES. 

v   Column statistics are used primarily  for calculating filter factors. When these statistics are not available (a value  

of -1), the optimizer uses a  default  filter factor. These default  filter factors are  listed in  Table 6 on  page  126.

  

It is impractical  for these  statistics to be maintained on every INSERT,  UPDATE, 

and DELETE  operation;  therefore, you must periodically  update them in the 

catalog tables with the UPDATE  STATISTICS or the UPDATE  ALL STATISTICS 

statement. 

Update your  statistics  whenever a table’s contents change significantly.  

Suppose you  enter the following UPDATE STATISTICS statement:  

   UPDATE  STATISTICS FOR  TABLE MYTABLE  

The database manager updates the statistics for MYTABLE in  the  catalog tables. 

However, the  statistics  are updated  only  for indexed  columns. (For indexes having 

multicolumn keys, only the  first column is  updated.) Similarly, whenever you 

create a new index, the  database manager  automatically updates the  statistics for 

index columns. 

To update the  statistics for all columns in MYTABLE (even those that are not 

indexed), enter  the following statement: 

   UPDATE  ALL  STATISTICS FOR TABLE MYTABLE  

The complete  set of  statistics produced  by the ALL option  may result  in a better 

access strategy being  selected by  the optimizer component.  However, the ALL 

option can greatly increase the  processing time required to run the UPDATE 

STATISTICS statement. UPDATE  ALL STATISTICS is recommended  where queries 

have non-indexed columns with local predicates or queries have multi-column 

indexes with local or join  predicates that are not on the first  column of  an index. 

The DB2 Server for  VSE  & VM  SQL  Reference  manual describes  exactly  what  

operations affect  each statistic.  The SYS0001 DBSPACE, which contains the  catalog 

tables, is  a candidate for UPDATE  ALL STATISTICS processing. 

It is recommended  that you  schedule  UPDATE STATISTICS  activities during 

off-peak hours.  

When working  with preplanned  application programs,  ensure that the programs  

are re-preprocessed whenever the tables accessed by  the  application have  

significantly changed (for  example, a 10%-20% or more change). Before 

re-preprocessing, ensure that statistics have been updated so that the  optimizer is 

provided with the  new characteristics of the data. 

The DBS utility DATALOAD and  RELOAD commands  automatically  collect the 

statistics for a table as part of  the  load operation;  thus, it  is not necessary  to issue a 

separate UPDATE STATISTICS  statement  (although see the  DB2  Server for VSE  & 

VM Database Services Utility or the DB2  Server  for VSE & VM  Database Services 

Utility manuals for restrictions). If you  want, you  can suppress this automatic  

updating of  statistics  through the  DBS Utility SET  UPDATE STATISTICS command. 

 

138 Performance Tuning Handbook  



Note:   Statistics  are not  updated when you  use DATALOAD to load data into  a 

view.  

Using Catalog  Statistics  

The following suggestions introduce the techniques of using the catalog statistics  to 

influence the  choice of access methods made  by  the database manager.  For more  

information  see “Tuning Queries with Several Tables” on page 132.  

Modelling your Production System  

If you  have DBA  authority, you  are allowed  to update the statistical  values stored 

in the catalog tables.  See Table  8 on page 137 for a description of  the columns in 

question. This ability lets you create  a model of  your production system on a 

smaller test  system. You  can  then use the  EXPLAIN statement to determine how 

your  production tables  would  be accessed for some  set of SQL statements. In the 

same  way, you  can model a future production system by making  assumptions 

about the size  and  nature of  the  database structure.  

To create  a model of your production  system, the  same  database  structure must  be 

in place on your  test  system. This means the  same  dbspaces, tables, indexes, 

referential  constraints,  and  so on must  be defined on the  test system. You can then 

modify the  statistics in your test  system catalog  tables to be identical to those in 

the production system.  The  optimizer will  choose the  same  paths to access  your 

tables on the test  system as it  would on the production  system. 

After you  have a model of the production  system established, you  can discover 

how  the optimizer will react to changes  in the database  structure, such as adding  

new indexes  by  updating the  catalog table statistics. Using EXPLAIN will  tell  you 

whether (and  how) a new index would be used for a particular SQL  statement, 

and  how it impacts  the expected  costs of  executing  that statement. With this  

information, you  can decide whether you should add the index to the production 

system.  

Similarly, you can now use your test  system to discover how rewriting an SQL  

statement  into  an alternate form affects the  path  chosen  and  the estimated cost  for 

executing  the statement. 

A Warning about Updating Statistics 

If you  supply the COLCOUNT  value for an index column without running 

UPDATE STATISTICS,  you  should  also supply HIGH2KEY and  LOW2KEY for the 

index. If the  data is not uniformly distributed  you should  also supply the  

additional  values in the  SYSCOLSTATS table. These columns are defined as  CHAR,  

so  an UPDATE statement must provide  a character  or hexadecimal value. 

Although the  columns have  a length of  12, only 8 bytes  of  information  should  be 

stored. Entering a character value is quite straightforward—SET LOW2KEY =  

'ALAS', for instance.  But to enter a numeric,  date,  or time  value you  must  use the 

hexadecimal value  of  the DB2 Server  for VSE & VM internal format. To determine 

the proper hexadecimal data to use for these  data  types, create  a table with  

columns of  the  required types and  insert the  values you  want  to use for 

HIGH2KEY and  LOW2KEY into  it. Then display the internal format of  these  

values by  using the  HEX  column function in the  select list. For example: 

SELECT  HEX(column_name)  FROM ... 

 

Chapter 5. Improving  Data Access Performance  139



Be sure to allow  for a NULL indicator in keys that allow NULLS by  making  the  

first character '00'X.  If values being set are less than  8 bytes  long  (including the 

'00'X NULL indicator byte) pad them on the right  with '00'X bytes. 

If the NPAGES column of  SYSTEM.SYSDBSPACES is updated  (to allow testing  of  

the access  plan generation) and  then an ACQUIRE DBSPACE command attempts 

to acquire this dbspace, an  error message may result. Updating NPAGES  does  not 

actually change  the  size  of  a dbspace, it changes the  information  supplied to the 

optimizer used in access  plan generation. 

Determining  the  Cost of Access Methods 

The access method  cost  has two parts: a processing cost  and  an I/O cost. 

Depending on  the hardware environment, a query can be either CPU or I/O 

bound. You may  want  to compare the cost  characteristics of  your  queries to 

equivalent alternatives.  

Processing Cost  

The database manager estimates processing cost  as a result of:  

v   The number of  rows  considered 

v   The number of  residual  predicates checked  for each row  

v   The number of  rows  that satisfy the residual  predicates.

This estimate of  the number of  rows that remain  after applying all  the predicates  is 

dependent on assumptions on the distribution  of  data within the column.  For the 

first column of  an index, the  database manager records additional  information  to 

help it recognize non-uniform data distributions.  Otherwise, it assumes  that the 

data values are evenly distributed, and  uses the following rules: 

For a predicate of the form WHERE  column  =  value: The number of rows is 

estimated  as  either  ROWCOUNT/COLCOUNT or ROWCOUNT*(1/COLCOUNT); 

that  is,  the  total number of rows divided by the number of distinct values in the  

column. The  term 1/COLCOUNT is  the filter  factor. 

For a predicate that uses a range operator: The number of  rows  is  estimated using 

the ratio  of  the range encompassed  in the predicate to the  range of values in the 

column. Thus,  if LOW2KEY and  HIGH2KEY are respectively 10 and  90, then  the  

predicate column  > 70 is given a filter factor of,  approximately, (90  -  70)/(90 -  10), 

or 0.25. Only the  first 8 bytes of  the  column are stored for HIGH2KEY and  

LOW2KEY so  it is important that columns be distinct within the  first 8 bytes. (7 

bytes if  the column is nullable.) 

I/O Cost  

The I/O cost  is  estimated by  the  number of  index pages, the number of data 

pages, and the number of directory pages  to be read. 

For a dbspace  scan, the number of index pages  read is zero.  Otherwise, it  is 

determined from the  number of  leaf  pages  and levels  in the index (NLEAF and  

NLEVELS) and the filter  factors of  the  matching predicates.  

A dbspace  scan reads  all data  pages. The total number of  pages  is given  by 

NACTIVE. 

 

140 Performance Tuning Handbook  



If access  is through an index, the proportion of pages read depends  on the  filter 

factor for the  predicates applied  through the indexes  and  on the  extent to which 

the data rows  are clustered by the index. 

Using Explanation Tables  to Evaluate Performance 

The explanation tables produced by the EXPLAIN  statement  allow you to get 

information  about the  structure and  execution performance  of  SQL  statements. This 

information  can help you  analyze how existing database designs perform, or how 

future designs will perform. Specifically, you can use explanation tables to: 

v    Find out  the  indexes that are used for a given statement, the number of index 

columns used selectively,  whether index-only  access was  sufficient to fulfill the 

request, and whether a fetch operation was required 

v    Find out  the  sorts  that are required,  and the reason  for the sorts 

v    Analyze  request  loads 

v    Estimate the size  of  responses  

v    Separate queries  into  their subquery structures 

v    Obtain costs for statements and  access paths  

v    Assist in  database design 

v    Determine  when a  program must be preprocessed again.

After you  complete  your  design,  and construct  a prototype,  you can use 

explanation tables  to see how  well real queries will work  against the  design.  (You 

can select  explain processing explicitly using the EXPLAIN statement, or implicitly 

using the  EXPLAIN(YES)  preprocessing parameter  or  the USING EXPLAIN(YES) 

option of the CREATE PACKAGE  statement.) 

Explain  Processing  

Explain processing accepts an SQL  statement  as  an argument, analyzes  it, and  

inserts  information  about the  structure and  execution of  that statement  into  the 

explanation tables,  that are created.  (This  includes the  cost  of internally generated 

statements.) You  can then  query the explanation tables. 

You  can select explain  processing explicitly by  using the EXPLAIN statement, or 

implicitly using the  EXPLAIN(YES) preprocessor  parameter  or  the EXPLAIN(YES) 

USING  OPTION  of  the  CREATE PACKAGE  statement or the  EXPLAIN(YES)  

option of the DBSU  REBIND  PACKAGE  command. 

Note:   Explain  processing does  not execute  the SQL statement. It  only explains how  

the  statement  will  work when you  actually execute it. 

Using  the EXPLAIN Statement 

You  can use the SQL EXPLAIN statement  in an application  program, the  DBS 

utility, or ISQL to estimate  execution performance. For  the syntax of the EXPLAIN 

statement  and  the structure of the explanation tables produced, refer  to the  DB2 

Server  for VSE & VM  SQL Reference manual.  

To explicitly process the EXPLAIN  statement, you  must  either: 

v    Preprocess the program every  time  you change the  statement  that EXPLAIN is  

to analyze; or, 

v    Use multiple  EXPLAIN  statements; or, 

v    Have  the program build  the EXPLAIN statement  and  then execute it using the  

dynamic prepare statements. 

 

Chapter 5. Improving  Data Access Performance  141

|

|

|

|



v   Replace all the  host variables with parameter  markers and then issue an 

EXPLAIN for it. For specific rules  regarding the  use of parameter markers,  see 

the  DB2 Server for  VSE  & VM SQL Reference  manual.

Each time the  EXPLAIN statement  is  executed, rows are appended to the specified 

explanation tables. Any  existing  rows are not affected. 

When the  EXPLAIN statement is  issued for INSERT, UPDATE, and  DELETE  

statements that change tables in a referential  structure, information is returned not 

only on the  INSERT,  UPDATE, and  DELETE statements, but also on internally 

generated statements. Refer  to the DB2  Server  for VSE & VM Application 

Programming manuals  for more information on internally generated statements. 

Each of the  explanation tables  has a column called  QUERYNO (query  number). 

The QUERYNO column has a data type of  INTEGER. With  the  SET QUERYNO 

clause, you can place an integer value in the  QUERYNO columns of  the rows 

inserted by the EXPLAIN  statement. Thus,  you  can use QUERYNO  to identify  new  

rows, and  to mark  them as  corresponding to a particular statement. 

For integer in  SET  QUERYNO, you  must  specify an integer  constant  that is not 

preceded by  a sign.  You cannot use a host  variable in the  SET QUERYNO clause, 

even in  application programs. However,  you can use the “&n” place-holder  

variables in ISQL.  

The SET  QUERYNO clause  is  optional.  If you omit it, a  NULL value is  placed in 

the fields  of  the rows inserted by  the EXPLAIN statement. If you set the 

QUERYNO to some  initial value,  this value identifies the query for which  the  

EXPLAIN is issued. Because QUERYNO is  an  INTEGER field,  an error is  returned  

if its value  exceeds 2 147 483 647.  

You can enter the EXPLAIN statement  from ISQL. When  you  enter EXPLAIN from 

ISQL, you must  use a character  constant if you  execute  the statement immediately.  

Alternatively, you can store the EXPLAIN  statement  by  placing it in a  routine  or 

by using an ISQL STORE statement.  This lets you use a place-holder (for example, 

&1) for explainable_sql_statement  (refer to the DB2  Server  for VSE & VM SQL 

Reference manual for the syntax of  the  EXPLAIN statement,  including 

explainable_sql_statement). Thus, you  can execute EXPLAIN for different SQL 

statements without  having to key in the entire EXPLAIN statement  each time. 

When using this  technique, however, you should keep ISQL limits in mind. For 

example, when the  place-holder  is in a routine  table, the  length of  input to a 

parameter is  limited by the length of the COMMAND column of  the  routine  table. 

At most,  input to a place-holder can be 254 characters. This number is further 

reduced if you  do not put the “&n” place-holder  on a line by itself.  

When you  enter EXPLAIN from the  DBS utility, you must use a character 

constant for explainable_sql_statement.  The utility does  not allow the  use of host 

variables or place-holders in any SQL  statement.  

Using the EXPLAIN  Option  

You can select explain processing implicitly using the EXPLAIN(YES)  

preprocessing parameter or the EXPLAIN(YES)  using option  of  the CREATE 

PACKAGE statement  or the EXPLAIN(YES)  option  of  the DBSU REBIND  

PACKAGE command.  If you  select explain processing implicitly, explanatory  

information is  provided for all internally  generated SQL statements in  a package. 

The name of  the  package and the name of the owner  of  the package are stored in 

the explanation tables. 

 

142 Performance Tuning Handbook  

|

|

|

|

|

|

|



You  cannot assign a QUERYNO  when you  select explain processing implicitly and  

hence  the section number assigned to the  statement  being  preprocessed is used as 

the query number. This number  corresponds to the  position  of  the  query in the 

application. Using the  preprocessor  listing file, you  can determine  the section 

number assigned  to a statement and use it  to determine the  corresponding rows in 

the explanation tables. The following variable  names are used  as section numbers 

for the languages specified. 

 Table 9.  Variable  Names for Section Number  (Query  Number) 

Language Structure Name Variable Name 

ASM RDIIN  RDISECT# 

COBOL RDIIN  SQL-SECTION-NUM  

C RDIIN  SECTION_NUM 

PLI RDIIN  SECTION_NUM 

Fortran SQLCTL  SQLSTMT

  

For further  information, see  the  DB2 Server for  VSE  & VM SQL Reference  and DB2 

Server  for VSE & VM  Application Programming  manuals. 

Comparing  Implicit  and Explicit Explain  Processing 

Implicit  and  explicit  explain  processing insert the same kind of information into  

the explanation tables during explain  processing. The  package name and  package 

owner  columns of the explanation tables, however, contain information only if 

implicit  explain processing is  used. 

There is  also  a difference between  implicit  and  explicit  explain processing for the 

query number of  an application. For explicit  explain processing, if you  do not 

supply the  query number,  it is  set to NULL. For implicit explain processing, you 

cannot provide query numbers  for SQL  statements in the  middle of an application, 

so  the section number assigned to the  statement  when it  is processed is used as the  

query number. You  can then  use the preprocessor  listing  file to determine the 

section number assigned to each statement and the corresponding rows  in the  

explanation tables.  

During explicit explain processing, rows  are added to the explanation tables when 

a program is  preprocessed, or dynamically  repreprocessed. During implicit  explain 

processing, rows are added when a program is preprocessed, but  not when it is 

dynamically  repreprocessed. In all situations, explicit  explain processing overrides  

implicit  explain processing.  

When  you processes an application  program using the  implicit EXPLAIN(YES) 

option,  the  preprocessor checks for the  existence of the EXPLAIN  tables once. If it 

does  not find them,  processing is terminated  and SQLCODE -649 (SQLSTATE = 

42704)  is issued. 

Each time the preprocessor  encounters an explicit EXPLAIN  statement, it  checks 

for the existence of  the  explain tables. If its does  not find them the  explicit  

EXPLAIN is  not processed and, SQLCODE -204  (SQLSTATE =  42704) or 

SQLWARNING +204 (SQLSTATE = 01532) is  issued. This check  is repeated for 

every  explicit  EXPLAIN  statement  that the preprocessor  encounters.  

Using  Explanation Tables 

There are four  explanation tables: REFERENCE_TABLE, STRUCTURE_TABLE, 

COST_TABLE, and  PLAN_TABLE. The  definitions of  these  tables and  the  

 

Chapter 5. Improving  Data Access Performance  143



EXPLAIN statement  syntax are in the DB2 Server  for  VSE & VM SQL Reference  

manual. A DBS utility job  file, ARISEXP, to generate  explanation tables, indexes, 

and views is  shipped with the  DB2  Server  for VSE & VM  product. Instructions  for 

generating the  tables using the  ARISEXP  file are provided at the top of  the  file. For 

further information  on the  contents of the explanation tables, refer  to the  DB2 

Server for  VSE  & VM SQL  Reference  manual.  

When you  execute  an EXPLAIN  statement, information  is  placed  in your tables, 

and is  independent of any other user’s explanation tables. You  can review and 

summarize the information  placed in your explanation tables just as you can  other 

tables. However,  because explanation tables only  insert rows, you also have the 

responsibility to delete  unnecessary  information  yourself. 

In  the  following descriptions  of  each table, the term query block is used. A query 

block is a part of a query.  Query blocks are used to distinguish the  parts of a 

subquery. For example, when  a query does  not involve a subquery, there is  only 

one query block: query block 1. When there  is a subquery, there are two query 

blocks, the  outer-level query and  the subquery. They are referred to as  query block 

1 and query block 2,  respectively. Because subqueries may be nested within each 

other, there may be many query blocks in a statement;  each query block 

corresponds to separate (but  interacting)  parts  of  the statement. 

The SELECT statement  in Figure 17 is used  in the following descriptions of the 

explanation tables. This SELECT statement has only one  query block. 

 

Assume that user Smith owns tables  DEPARTMENT and  EMPLOYEE where: 

v   DEPARTMENT has columns DEPTNO,  DEPTNAME, MGRNO, and  

ADMRDEPT.  

v   EMPLOYEE has columns EMPNO, FIRSTNME,  MIDINIT, LASTNAME, 

WORKDEPT, PHONENO, HIREDATE, JOB, EDLEVEL, SEX, BIRTHDATE, 

SALARY,  BONUS,  and COMM.

Using the Cost  Table:   This table  is  updated by EXPLAIN  COST or EXPLAIN  

ALL. The information in this table provides the cost estimate of  the statement for 

which the  EXPLAIN is issued and  for any internally  generated statement used to 

enforce referential integrity.  In addition,  you can compute the  contribution of  each 

subquery (if any) to the total cost estimate of  the statement. (To  compute the  

subquery cost estimates, you  will  need to use information provided by the 

EXPLAIN STRUCTURE statement.) 

For each query block in the  statement, EXPLAIN inserts  one  row into  

COST_TABLE. The information  depends  on the  existing indexes and  catalog 

statistics. If indexes  are added or dropped after you issue EXPLAIN for the  

statement, then  the COST_TABLE entry  for the  command is not valid.  

If you  need a description of  the columns in the COST_TABLE, refer to the DB2  

Server for  VSE  & VM SQL  Reference  manual.  

   SELECT  X.DEPTNAME, Y.FIRSTNME, Y.MIDINIT, Y.LASTNAME, Y.PHONENO 

   FROM  DEPARTMENT X, EMPLOYEE  Y 

   WHERE  X.MGRNO  = Y.EMPNO 

     AND X.DEPTNO  = Y.WORKDEPT 

Figure 17. SELECT Statement for Explanation  Table  Descriptions

 

144 Performance Tuning Handbook  



The value  in  COST is referred to as the  cost  estimate  (occasionally  referred to as  

the optimizer cost  estimate or the resource  cost estimate). All of  these  terms  refer  

to the  same  thing: the internal value that the optimizer uses to represent the  

resource cost  of  executing  an SQL statement  for which the EXPLAIN  is issued and 

for any internally  generated statement  used  to enforce  referential  integrity. The 

value is  a relative value that incorporates I/O requirements with a weighted  factor 

of  processor  requirements for a query.  

Aside from the COST column, there  are two other ways to get this value  for a 

given SQL statement. One  way is  to examine the SQLCA after preparing a 

dynamically  defined SQL  statement.  The cost  estimate  is kept in the SQLERRD(4) 

field. A second way to see  the  cost  estimate is  using ISQL. ISQL displays  the query 

cost  estimate integer. The integer results from dividing the  real internal value by 

1000 and  adding  1 to it. This produces a number that is easier  to grasp. This is  a 

valid technique because the  numbers  are relative to each other; they do  not 

represent  real physical consumption directly. 

It follows, then, that it is futile to try to develop  an algorithm that directly maps 

the cost estimate to a real physical  unit such as time. Too  many other factors  are 

involved (for example, overall  system workload). It  is best  to use the cost  estimate  

as  a general  indicator.  

For the  SELECT statement  in Figure 17,  there would be  only one  row entered into  

COST_TABLE, because  there is only one  query block: 

 

Using the Plan Table:    This table is updated  by  EXPLAIN PLAN  or EXPLAIN 

ALL. The information  in this table  describes  the order in which  tables are accessed 

by  the statement for which the  EXPLAIN is issued and  by  any internally  generated 

statement  used to enforce referential integrity. In addition,  the PLAN_TABLE  table  

describes  the indexes  used to access the  tables, and specifies whether indexes alone 

were used, the  methods that the database manager used  to do  joins,  the sorts done 

as  part of runtime processing,  and  the reasons for the  sorts. 

As with the  COST_TABLE, the  PLAN_TABLE results depend on the existing 

indexes and catalog  statistics at the time  the  EXPLAIN statement  is  executed. If 

indexes are added or deleted,  then  the  PLAN_TABLE entry for the  statement  is not 

valid.  

For each step in the  plan  determined by  the database manager for processing the  

query,  EXPLAIN inserts  one  row into the  PLAN_TABLE. There is  one  step  for each 

table  reference in a query block. There are additional  steps if the database  manager 

must  perform additional  sorts  at the end of processing for the query block, or if 

any internally  generated statements  are to be processed. 

The steps  in  the plan  are ordered by the  value of the PLANNO column of  

PLAN_TABLE, and  for each step,  the  TNAME  column identifies  the table accessed.  

The phrase  “previous steps of  the plan” refers to PLAN_TABLE  rows with smaller 

   QUERYNO  RINO   QBLOCKNO   PKGNAME  PKGOWNER   COST 

   -------  ----   --------   -------  --------   ------------------  

         1     0         1                     1.4388885498046E+01 

  

   TIMESTAMP 

   -------------------------- 

   1999-08-26-09.49.25.601721 

Figure 18.  Results of  COST_TABLE Query

 

Chapter 5. Improving  Data Access Performance  145



values of  PLANNO. The action  described in a step is either a join  of  a table  to 

those previously joined, or it  is a sort.  (Joins  themselves may  involve performing  

sorts.) The term “composite” refers to the result of all previous steps; the term 

“new” refers to the new table that is  being accessed and  joined as part of  a 

particular plan step. 

If you  need a description of  the columns in the PLAN_TABLE, refer to the  DB2  

Server for  VSE  & VM SQL  Reference  manual.  

The PLAN_TABLE for the query in Figure 17  is  shown below.  Because there are 

many columns in  PLAN_TABLE, the  display of  the table is  split to fit on the page: 

 

A Type  1 (or nested loop) join  is performed on tables  EMPLOYEE and  

DEPARTMENT. The database  manager accesses  DEPARTMENT  as  the outer table  

of the join  (the first table  accessed), and EMPLOYEE as the inner  table  of  the join. 

The row with PLANNO=1  indicates that the  database manager accesses 

DEPARTMENT using the  index MGRNOI (which, as  it happens, was created on 

the MGRNO column). 

The entry with PLANNO=2  indicates that the  database manager has performed an 

action on the EMPLOYEE table, based upon the  conditions  included  in the query.  

An index has been generated internally  on the primary key EMPNO  of  the 

EMPLOYEE table. This index performs the matching of EMPNO  (in  the 

EMPLOYEE table) to MGRNO (in the  DEPARTMENT table). This index can be  

used because  the value in MGRNO of  DEPARTMENT, which must  be matched by 

the EMPNO  value of  EMPLOYEE.  Retrieval of  rows  from an inner  table  of  a join  

will often,  though  not always, use an index on a join  column of  the  inner table. 

  

  QUERYNO  RINO  QBLOCKNO  PKGNAME  PKGOWNER   PLANNO   METHOD  CREATOR  

  -------  ----  --------  -------  --------   ------   ------  -------  

        1     0          1                          1        0  SMITH  

        1     0          1                          2        1  SMITH  

  

  TNAME       TABNO   ACCESSTYPE  MATCHCOLS  ACCESSCREATOR 

  ----------  -----   ----------  ---------  ------------- 

  DEPARTMENT      1  W                    0  SMITH  

  EMPLOYEE        2  I                    0  SMITH  

  

  ACCESSNAME        INDEXONLY   SORTNEW   SORTCOMP  SORTN_UNIQ  SORTN_JOIN 

  ----------        ---------   -------   --------  ----------  ---------- 

  MGRNOI            N          N        N         N            N  

  PKEYB1H9ZR8CD51W  N          N        N         N            N  

  

  SORTN_ORDERBY  SORTN_GROUPBY  SORTC_UNIQ  SORTC_JOIN  SORTC_ORDERBY 

  -------------  -------------  ----------  ----------  ------------- 

  N              N              N           N           N 

  N              N              N           N           N 

  

  SORTC_GROUPBY  TIMESTAMP                   REMARKS  

  -------------  --------------------------  -------  

  N              1999-08-26-09.49.25.601721 

  N              1999-08-26-09.49.25.601721 

Figure 19. Results of PLAN_TABLE Query

 

146 Performance Tuning Handbook  



No sorts are used  in the plan  for this query. However, if the query had  demanded 

SELECT DISTINCT, instead of SELECT,  the  plan  would have  an additional row, 

with PLANNO=3,  which would have  TABNO=0,  METHOD=3, SORTC_UNIQ=‘Y’ 

and  SORTCOMP=‘U’. 

Using the Reference Table:    This table  is updated  by  EXPLAIN REFERENCE or 

EXPLAIN ALL. The  database manager inserts one  row  in  REFERENCE_TABLE for 

each column referenced in  the  statement  (in certain  ways,  as explained below) and  

for any internally  generated statement  used  to enforce  referential  integrity. Even if  

the column is referenced more  than once for a table, there is still only  one  row  

inserted for the  column and  that row is for the most selective predicate. However,  

multiple appearances  of  a table  in a query (as when a table  is  joined  to itself)  can 

lead to multiple descriptions of their columns.  

One row is  entered for each table  reference, one  for the statement  as  a whole, and  

one  that indicates the way  in which the column is used in the  query.  For a 

description of  the  columns in the REFERENCE_TABLE, refer  to the  DB2 Server for 

VSE & VM SQL Reference  manual. 

For the  example  statement presented in Figure 17 on page 144,  the new rows 

entered into REFERENCE_TABLE by EXPLAIN REFERENCE  might be:  

 

 

Chapter 5. Improving  Data Access Performance  147



These rows indicate  that the  statement  is  a SELECT statement with no subqueries,  

joining two tables,  SMITH.DEPARTMENT and SMITH.EMPLOYEE.  The columns 

MGRNO, DEPTNO from  DEPARTMENT, and  the  columns EMPNO, WORKDEPT  

from EMPLOYEE appear together in the  'WHERE' clause  (identified by  a Y in the 

DBSSPRED column), permitting  indexes to be used. These columns are the JOIN 

columns (identified by  a Y in the  JOINPRED column). FILTER may be  misleading, 

because the  filtering depends on the order in which tables  are processed. 

 

  

  QUERYNO  RINO  QBLOCKNO  PKGNAME  PKGOWNER   REFTYPE  CREATOR   TNAME 

  -------  ----  --------  -------  --------   -------  -------   ---------- 

        1     0          1                     SELECT  

        1     0          1                     TABLE    SMITH     DEPARTMENT 

        1     0          1                     TABLE    SMITH     EMPLOYEE  

        1     0          1                     COLUMN    SMITH     DEPARTMENT 

        1     0          1                     COLUMN    SMITH     DEPARTMENT 

        1     0          1                     COLUMN    SMITH     DEPARTMENT 

        1     0          1                     COLUMN    SMITH     EMPLOYEE  

        1     0          1                     COLUMN    SMITH     EMPLOYEE  

        1     0          1                     COLUMN    SMITH     EMPLOYEE  

        1     0          1                     COLUMN    SMITH     EMPLOYEE  

        1     0          1                     COLUMN    SMITH     EMPLOYEE  

        1     0          1                     COLUMN    SMITH     EMPLOYEE  

  

  TABNO  CNAME  COLNO  FILTER                DBSSPRED   JOINPRED  ORDERCOL  

  -----  -----  -----  -------------------  --------   --------  --------  

      0             0                0.0E0                             0  

      1             0                0.0E0                             0  

      2             0                0.0E0                             0  

      1  DEPTNAME    2              1.0E+00   N         N                0 

      1  DEPTNO      1   1.111111448837E-01   Y         Y                0 

      1  MGRNO      3            3.125E-02   Y         Y                0 

      2  EMPNO      1            3.125E-02   Y         Y                0 

      2  FIRSTNME    2              1.0E+00   N         N                0 

      2  LASTNAME    4              1.0E+00   N         N                0 

      2  MIDINIT     3              1.0E+00   N         N                0 

      2  PHONENO     6              1.0E+00   N         N                0 

      2  WORKDEPT    5  1.1111110448837E-01   Y         Y                0 

  

  GROUPCOL  UPDATECOL   TIMESTAMP  

  --------  ---------   ------------------------- 

         0             1999-08-26-09.49.25.601721 

         0             1999-08-26-09.49.25.601721 

         0             1999-08-26-09.49.25.601721 

         0             1999-08-26-09.49.25.601721 

         0             1999-08-26-09.49.25.601721 

         0             1999-08-26-09.49.25.601721 

         0             1999-08-26-09.49.25.601721 

         0             1999-08-26-09.49.25.601721 

         0             1999-08-26-09.49.25.601721 

         0             1999-08-26-09.49.25.601721 

         0             1999-08-26-09.49.25.601721 

         0             1999-08-26-09.49.25.601721 

Figure 20. Results of the  REFERENCE_TABLE  Query

 

148 Performance Tuning Handbook  



Using the Structure Table:   This table  is updated  by  EXPLAIN STRUCTURE  or 

EXPLAIN ALL. The  database manager inserts one  row  in  STRUCTURE_TABLE for 

each query block in the  statement. 

If you  need  a description of  the  columns in the  STRUCTURE_TABLE, refer to the 

DB2 Server for  VSE  & VM  SQL  Reference  manual.  

If the  following SELECT statement  is  issued, only one  row is entered in 

STRUCTURE_TABLE,  as shown in Figure 21 on page 150, because there  is only  one 

query block. 

   EXPLAIN  ALL FOR  SELECT  * FROM EMPLOYEE  

 

 

 

Referential Integrity  (RINO Value)  

RINO  is set to  zero  for the  original  statement and is automatically incremented by one  for  each 

internally-generated statement that is processed for referential  integrity or cascade delete.  For example  if  you 

perform an EXPLAIN against a statement that  deletes  a department from the  DEPARTMENT table, the  

following REFERENCE  table  is generated.  

        QNO   RINO  QBLOCK  REFTYPE  TNAME              CNAME              ... 

----------- ------  ------ ------- ------------------ ------------------...  

          1      0       0 DELETE                                        ...  

          1      0       1 TABLE   DEPARTMENT                           ...  

          1      1       0 UPDATE                                        ...  

          1      1       1 TABLE   EMPLOYEE                             ...  

          1      1       1 COLUMN   EMPLOYEE           WORKDEPT           ...  

          1      2       0 SELECT                                        ...  

          1      2       1 TABLE   PROJECT                              ...  

          1      2       1 COLUMN   PROJECT            DEPTNO             ...

 

Notice  that  the DELETE statement that was written (RINO=0) produces two other statements:  First an UPDATE  

that changes the WORKDEPT  column  for  any employee in  the  deleted department  to  NULL (RINO=1), and  

second a SELECT that  checks that  any departments  to  be deleted do not have any projects assigned to  them 

(RINO=2). 

The REFERENCE_TABLE and  the  PLAN-TABLE can  be used together to  indicate whether materialization  was 

used to  generate a view. View materialization lifts a number of  restrictions  on the use  of  views,  including the  

use of  column  functions operating  on  the  column of a view when the definition of  the  view already  contains  a 

column function. For example: 

   CREATE VIEW V1(DPT,MAXSAL) AS 

       SELECT    WORKDEPT,  MAX(SALARY) 

       FROM     EMPLOYEE  

       GROUP BY WORKDEPT  

   EXPLAIN ALL  FOR SELECT DPT  FROM  V1 

Because view materialization  is used for view V1, the  TNAME column  in the REFERENCE_TABLE and 

PLAN_TABLE will contain  the  name of the view. Keeping  in  mind that  view materialization is generally more 

expensive than merging the  SELECT statement of the view with that  of the query,  the information on  the 

EXPLAIN tables can  be  helpful  in  performance tuning.  

 

Chapter 5. Improving  Data Access Performance  149



A more  complicated  example is provided in the  following sections, where  we show  

how to separate  the costs for individual query blocks using STRUCTURE_TABLE 

and COST_TABLE  together. 

Using Subquery Blocks:   A query may have subqueries, which in turn may  have 

subqueries. The database manager separates this tree  of  subqueries into  pieces, 

called query blocks. Each query block  has its own tables, columns, and rowcount. 

EXPLAIN STRUCTURE, COST lets  you  look at combined  information, or  to 

separately examine the  information  for each query block. 

The PARENT  field gives the  logical  parent for each query block, which  is not 

always obvious  from the  query itself. Sometimes, a  query block has no correlation  

to the query where  it immediately appears, so it is executed only once,  when some  

ancestor query block  is first entered, rather than many times. 

The following example  has a large number of query blocks,  but references only one  

table (many times). It illustrates the meanings  of  PARENT and  ATOPEN, as  well as 

the method  for decomposing  COST values into  separate costs for query blocks. 

 

Here are results  from STRUCTURE_TABLE for this query.  (ROWCOUNT  is not 

shown.) 

 

   QUERYNO   RINO  QBLOCKNO  PKGNAME   PKGOWNER   ROWCOUNT      TIMES 

   -------   ----  --------  -------   --------   --------  --------- 

               0         1                            32      0.0E0  

  

   PARENT   ATOPEN   TIMESTAMP 

   ------   ------   -------------------------- 

        0  N       1999-08-26-09.49.26.001720 

Figure 21. Results of the  STRUCTURE_TABLE  Query

                                           QBLOCKNO 

                                          --------- 

   SELECT  * FROM DEPT  X                   ***  1  *** 

   WHERE  DNAME > ALL 

     (SELECT DNAME FROM DEPT              *** 2  ***  

      WHERE X.DNO  = DNO 

      AND LOC = 32) 

   AND  DNO = 

     (SELECT DNO FROM DEPT Y              *** 3 *** 

      WHERE MGR  = 

        (SELECT MGR FROM DEPT Z            ***  4  *** 

         WHERE DNAME IN 

           (SELECT  DNAME FROM  DEPT        *** 5 *** 

            WHERE  NEMP =  X.NEMP)  

         AND DNO  =  

           (SELECT  DNO FROM DEPT  W        ***  6  *** 

            WHERE  NEMP >  Z.NEMP  

            AND  LOC IN 

              (SELECT  LOC FROM DEPT       *** 7 *** 

               WHERE DNAME  = Y.DNAME))  

          AND  LOC  = 32 ) 

      AND Y.NEMP  <  

        (SELECT AVG(NEMP) FROM DEPT       *** 8 *** 

         WHERE Y.MGR =  MGR  )); 

 

150 Performance Tuning Handbook  



Note:   A ? indicates a NULL  value.  

Although query block  5 is  physically  nested  within query block 4,  it references 

neither Y  nor  Z. Hence,  its value can be computed once each time query block 3 is 

first entered, with a particular X  row. 

Query block 5 is executed once, at open  time of query block  3.  

Query block 7 is physically within query block 6, but  can be  evaluated once when  

the database manager first  enters query block  4. Query block 7 does not need to be  

re-executed again  until new values for rows outside  query block 4 are required. 

This is different  from query block  2,  for example, which  must be executed once for 

each row  of  query block 1,  rather than  just once when execution of query block 1 

begins. 

TIMES may  be a  fraction (and may be less than 1)  because it represents the 

estimated  number of  times,  per execution of  a query block, that its dependent  

query blocks will be executed.  

The most important use of this  query block breakdown involves computation  of 

costs for individual query blocks,  instead of  costs for the query as  a whole.  This is 

described next. 

Computing Block Costs:   Here are the COST_TABLE  entries  for the query in the  

preceding  section: 

 

   QUERYNO  RINO   QBLOCKNO   PKGNAME  PKGOWNER    TIMES   PARENT 

   -------  ----   --------   -------  --------   ------   ------ 

         ?     0         1                      9.000       0 

         ?     0         2                      0.500       1 

         ?     0         3                      9.000       1 

         ?     0         4                      0.500       3 

         ?     0         5                      2.000       3 

         ?     0         6                      1.500       4 

         ?     0         7                      1.000       4 

         ?     0         8                      1.000       3 

  

   ATOPEN   TIMESTAMP 

   ------   -------------------------- 

        N   1999-08-26-09.49.27.011719 

        N   1999-08-26-09.49.27.011719 

        N   1999-08-26-09.49.27.011719 

        N   1999-08-26-09.49.27.011719 

        Y   1999-08-26-09.49.27.011719 

        N   1999-08-26-09.49.27.011719 

        Y   1999-08-26-09.49.27.011719 

        N   1999-08-26-09.49.27.011719 

Figure 22.  Example STRUCTURE_TABLE

 

Chapter 5. Improving  Data Access Performance  151



The cost  displayed is the  total cost  for each query block, including  costs associated 

with all query blocks that are below  it in the  logical  tree of  query blocks.  Thus, the 

cost of executing the  statement  is approximately  3021.  (For  simplicity in the 

calculations that follow, the  values are shown as  integers,  but  they  need not be.) 

The cost  for executing  the entire statement  helps  you understand the effect of the 

statement on system load,  but  it  hides the  blocks of  the query that are contributing 

the most to the  cost  of  the  query.  

A more  useful  set of  figures  might be those listed  in the  following table: 

Note:  The following table  is  only  an example. It is not stored in the  database,  and 

INDIVCOST and MULTCOST are not columns in COST_TABLE. 

 

INDIVCOST represents  the cost  of  one  execution of  the  individual query block 

itself, not including the costs  of  any of  its subqueries.  MULTCOST not only  counts  

the cost  of  the  individual query block, but  multiplies  INDIVCOST by the number 

of times the query block  is expected to be executed  in the query.  This is  a better 

measure of  the  cost  importance of the query block  than either COST or  

INDIVCOST. Notice  that the MULTCOST column adds up  to COST(1), the  total 

cost of the entire query. 

   QUERYNO   RINO  QBLOCKNO  PKGNAME   PKGOWNER        COST 

   -------   ----  --------  -------   --------   --------- 

         ?     0         1                       3021.000  

         ?     0         2                         10.000  

         ?     0         3                        324.000  

         ?     0         4                         24.000  

         ?     0         5                          4.000 

         ?     0         6                          6.000 

         ?     0         7                         10.000  

         ?     0         8                         10.000  

  

   TIMESTAMP  

   --------------------------  

   1999-08-26-09.49.27.011719  

   1999-08-26-09.49.27.011719  

   1999-08-26-09.49.27.011719  

   1999-08-26-09.49.27.011719  

   1999-08-26-09.49.27.011719  

   1999-08-26-09.49.27.011719  

   1999-08-26-09.49.27.011719  

   1999-08-26-09.49.27.011719  

Figure 23. Results of COST_TABLE  Query

   QBLOCKNO   INDIVCOST      MULTCOST  

   --------   ---------    ---------- 

          1      15.000        15.000  

          2      10.000        90.000  

          3      14.000       126.000 

          4      11.000       891.000 

          5       4.000       36.000 

          6       6.000      243.000 

          7      10.000       810.000 

          8      10.000       810.000 

Figure 24. Example COST_TABLE

 

152 Performance Tuning Handbook  



Thus,  the following formula can be used to derive INDIVCOST: 

 

For example: 

   COST(3)  = 324 =  INDIVCOST(3) +  9*24 + 4 + 9*10,  

so  INDIVCOST(3) is 14.  

Here is  another example: 

   COST(4)  = 24 =  INDIVCOST(4) + 0.5*6 +  10,  

so  INDIVCOST(4) is 11.  

This formula  can be  used to derive MULTCOST from INDIVCOST: 

 

For example: 

   MULTCOST(7) = 10 * TIMES(3) * TIMES(1)  = 810. 

We do  not multiply TIMES(4)  into  that product, because 4 is 7’s immediate parent,  

and  7 is  done  AT OPEN of  4.  

This demonstrates that the most important component of  the estimated cost  comes 

from block  4,  and you might choose indexes  that make processing this  query block 

cheaper. By inspecting the query, or from the  rows in REFERENCE_TABLE, you 

might decide  that  indexes on one of  DNAME,  DNO or LOC might reduce the  cost  

of  processing. 

Estimating Sizes of Responses  

Because ROWCOUNT (estimated  number of  rows in result,  for queries, or of 

affected rows,  for updates and  deletes) is stored in STRUCTURE_TABLE,  it is  easy 

to gauge  the estimated size  of  responses. If your  structure includes a DELETE 

     

   COST(I) = INDIVCOST(I) + the  sum, over  all blocks  J  that have 

                            I as  logical parent, of either:  

     

                                 TIMES(I) *  COST(J) 

     

                            if J is not done AT  OPEN of I,  or 

     

                                 COST(J) 

     

                            if J is done AT OPEN of  I.  

     

   MULTCOST(I) = 

      INDIVCOST(I) * the product of  TIMES(I) for 

            all logical ancestors of  I,  

                  if  I is not done AT OPEN of  its  parent, 

              or 

      INDIVCOST(I) * the product of  TIMES(I) for 

            all logical ancestors of  I  EXCEPT its  parent, 

                  if  I is done AT OPEN of its  parent.  

 

Chapter 5. Improving  Data Access Performance  153



CASCADE rule,  EXPLAIN will  include the  cost  of  the cascading effects of  a 

DELETE. This can help you  understand whether  requests are reasonable,  and 

whether the statistics in the  database catalog  tables that estimate ROWCOUNT 

seem up-to-date. 

ROWCOUNT can also help  determine  space requirements when responses are 

being stored in program data structures.  However, ROWCOUNT, like  all estimates 

made by  the  system, is  neither  precisely accurate, nor even an upper bound on the 

actual number of  rows  in the  response. 

Using EXPLAIN for Database  Design 

A systematic  analysis of many  statements in the  workload  of  the system can help 

the administrator plan the  access paths for the database. The analysis should  

consider costs when different combinations  of  indexes exist.  It should also consider 

the costs of performing updates,  which are not reflected in the  COST column of  

COST_TABLE, and  limits on space for indexes. 

You may load the  database with tables ordered on certain columns.  Indexes on 

such columns (called CLUSTERING indexes) enable  the database manager to 

maintain this ordering.  Because the  ordering of rows within tables strongly  affects 

the costs of execution, it may be worthwhile to reload the  database to improve  

performance. For each statement, join, ORDER  BY, and  GROUP  BY columns may 

be good candidates for ordering. Also,  tables that are often joined might be 

interleaved on join  columns when the  database is loaded. 

If the cost of executing a statement  (as determined by  EXPLAIN  COST, or by 

running the  statement) is higher than expected,  a user or administrator may  want  

to look at the  procedure that the  database manager chose to execute  that statement. 

Building additional  access  paths or altering the  layout of  tables  may be necessary 

to achieve good performance for the statement. For example, if a relation  scan, that 

is ACCESS  TYPE=‘R’, is performed on a large  table,  it may  be better  to build an 

index on some  column of  that table; EXPLAIN  REFERENCE provides hints  about  

which indexes  might help. Adding  new indexes  makes updates more expensive, so 

this decision must  be  considered carefully. 

The PLAN_TABLE can also help  the  administrator determine  which indexes are 

not being  used, so  that he  or she may decide which indexes might be  dropped. 

This assumes that the  administrator knows not only the  significant statements in 

programs, but also the significant statements issued  by users directly at their 

terminals. 

Modifying  Table  Designs to Enhance  Performance  

The primary consideration  for the performance  of  access  to data in the  database is  

the number of DASD input/output  requests required to access  the table rows.  The 

indexing and clustering  techniques discussed in the  previous sections  enhance  data 

access performance  by  reducing DASD  input/output requests without  impacting 

your logical  data (table) design.  However,  other  techniques can be used, if you  are 

willing to reconsider your  logical  table design.  

Keeping Together  Frequently Updated Columns:  Keep  frequently updated columns 

close together in the  same  row. This helps  to reduce the amount  of  data that has to 

be logged because  only  the portion  of  the  row from the first column updated  to 

the last column updated is recorded  in the  log. 

 

154 Performance Tuning Handbook  



Storing Joins of Tables (Redundant Data): The  evaluation of a join  of two tables  

involves  combining information from  corresponding rows of  the  tables. Ideally, the  

corresponding rows are on the same  page.  However, such  clustering  of  rows from 

separate tables  is difficult  to establish  and maintain. Then,  such  clustering  may not 

be in the  best  interest of  query accesses to the individual tables. Assuming tables  

are clustered on different pages, multiple input/output requests  are required to 

evaluate  the join  of  corresponding rows of  the  two tables. 

For example, suppose the PROJECT  table  is clustered on DEPTNO. Retrieving 

information  about a department  (a  DEPARTMENT row)  and its corresponding 

project  name (PROJECT rows), involves  an access to one  page to get the 

DEPARTMENT row and  another access to a different page to get the  

corresponding PROJECT  rows. 

If most of such  joins are done just to pick up the  DEPTNAME information  out of 

the DEPARTMENT row,  it may be worthwhile to store  DEPTNAME in both  tables. 

This eliminates  the  need to join the  two tables to obtain department names 

(DEPTNAMEs) in retrieval  of  project  names. This,  in turn, eliminates accesses to 

the DEPARTMENT table  pages. This,  in effect, reduces database input/output 

requests by “storing  the join” of  the  two tables. 

You  can use the ISQL INSERT  with Subselect  (Format  2)  to combine  tables. 

The extreme  case of “storing  joins” is to replace both tables with the  complete  join  

(SELECT *) of the two  tables. This is rarely  cost  effective.  

The cost  of  storing  joins is  the DASD  space consumed and  the  extra activity 

required to maintain the  redundant data. Table  10 shows the cost of storing  the 

DEPTNAME column in the  PROJECT table. 

 Table 10.  Cost of Storing DEPTNAME in  the  PROJECT Table  

Cost Factor Approximate Cost  

DASD Storage The average column length of the DEPTNAME  values  

times the number  of rows  in  PROJECT (approximately 

20-bytes per PROJECT row)  or  approximately a 35% 

increase in  the average row length for PROJECT 

INSERT into PROJECT This requires the  application  to first access  the  PROJECT 

table to obtain  the DEPTNAME  for inclusion  in  the 

PROJECT row. 

UPDATE of  DEPTNAME  This requires an update to  the PROJECT table (but this is 

not a frequent operation).  

DELETE of  a  PROJECT No extra cost.  

DELETE of  a  DEPTNAME  No extra cost.

  

The cost  of  storing  the DEPTNAME information redundantly  is not excessive  when 

compared to the  input/output cost for frequent selecting  of  department  names 

with queries  on project information. The cost  of  DASD  storage looks high  (about a 

35% increase in the size  of  the  PROJECT  table). However, a dbspace page will still 

hold about  140 PROJECT rows. Because most departments have less than 140 

project  names, it is still reasonable to expect all  project  names for a department  to 

be on the same page for most departments. 

Storing a Logical Table as Two  Tables:  Another  way to reduce  the number of  

pages  occupied by  a table  is  to reduce  the size of the table. There is not much  you 

 

Chapter 5. Improving  Data Access Performance  155



can do  to make a table  smaller than it  really is; however, you  can achieve a similar 

effect by  separating  frequently used columns from  the infrequently  used  columns.  

You can do this  by splitting  the  table  into  two (or more) tables. One  table would 

contain the frequently  used columns and the other(s)  would  contain the 

infrequently used columns.  You  could then cluster the  rows of  frequently used 

columns on a fewer  number of pages. 

The cost  of  splitting  a table  is the  overhead added to queries that need all columns 

(which, by definition,  is  infrequent). Splitting  a table  also produces redundant data. 

That is,  both (all) tables would have  to contain the necessary column(s)  to support 

the join. 

 

156 Performance Tuning Handbook  



Chapter  6. Data Spaces  Support  for VM/ESA 

Read this  chapter before you implement VM  Data Spaces Support  (VMDSS). It  

briefly describes  the concept of  data  spaces, how they work, and  how they can 

improve performance; it outlines what options you have  as a VMDSS user; and it  

lists the  prerequisite  hardware and  software. 

Improving  DB2 Server for VM Performance 

VMDSS can dramatically increase the performance of your application  server, by  

using the  Data Spaces facility found in VM/ESA. Data  spaces  give your  

application server access to vast amounts of  fast storage,  and uses a high 

performance  DASD I/O system that has many advantages over the standard  I/O 

system (IUCV  *BLOCKIO). 

VMDSS can also distribute data across  multiple dbextents, which helps to balance 

the load on your  system’s DASD and  allows  the operating system to read and 

write  data in  parallel. Finally, you  can monitor  the  performance of your DASD  I/O 

system for individual storage pools,  and  control the  amount of system-resource it  

uses. 

Understanding  VM  Data Spaces 

To understand how data  spaces  work  and why they  are an improvement  over 

existing systems, you first need to understand how VM uses  its paging system to 

manage virtual machine storage. 

Standard Virtual Machine Storage 

Each virtual machine within a VM  system has its own virtual  address space (also 

called a primary address  space)  which  is where you load and run programs. 

Because this space is virtual, the  operating  system does  not dedicate  a piece  of  

main storage  (also called  real storage)  to each virtual machine. You  do  not need  to 

buy 16MB  of  main storage for each 16MB virtual machine.  Instead the  operating  

system only  uses main  storage for those parts  of  virtual storage you need  right  

now, or are likely to need  in the near future. 

These parts of  storage are divided into  4KB  (4096 byte) blocks called pages.  When a 

virtual  machine needs a page that it has not accessed before, the  operating  system 

retrieves it  from its  location on DASD,  and  loads  it into  an empty page in main 

storage. (Before  a virtual  machine can  use a page, it must  be in main  storage.) 

When  the operating  system runs out  of  free  pages  in main storage, it moves the  

least recently used  (“oldest”) page to auxiliary storage to create  a free  space for a 

new page.  While  the virtual machine is still active  (logged  on), the page will 

remain  in either  main  or auxiliary storage.  

VM/ESA  uses two types  of  auxiliary storage: system paging DASD,  and  optional  

expanded storage. If your system has expanded  storage, a  page will be moved 

there first. If expanded storage is full, the least  recently used page in expanded  

storage is moved to system paging DASD by  way of main storage. When  a virtual 

machine needs  a page that it has previously used, the  operating  system moves it 

back  to main storage from  expanded storage,  or from system paging DASD,  if it is 

 

© Copyright IBM  Corp. 1993, 2007  157



not already in main storage. 

 

 This paging system accomplishes  two things. First, it  allows each virtual machine 

to use much  more  storage than could be  accommodated  in main storage alone. 

Second, it keeps the most recently used  pages  in the  storage devices that are the 

fastest to access. (The most recently used  pages  are the ones most likely  to be used 

again in  the near future.) Main and  expanded storage are much  faster than system 

paging DASD, and  while expanded storage can be as  fast as  main storage,  it is  

effectively slower  because  the operating system still needs to move the  page into  

main storage before it can  use it. 

Data Spaces Storage  

In  VM/ESA, a program running  in  a machine’s  primary space can dynamically 

create additional address spaces for data, called data spaces. Like a virtual 

machine’s primary  address space, a data space is  a  virtual space with its real pages  

in main  storage, in expanded storage, and  on DASD.  However, unlike a primary 

space, you  cannot run a program in a data  space.  Also, in VMDSS the VM paging 

system manages data space pages  differently than virtual  machine pages. This 

means that  data  spaces  do  not use system paging DASD.  (Unmapped internal 

Physical Storage

Expanded
Storage

4K

4K

DASD

Main Storage

Virtual Storage

Control Program (CP)

Virtual Machine

4K

Physical Move

Pointer From Virtual
to Physical Page

4K

4K

  

Figure 25. Standard Virtual  Machine Storage

 

158 Performance Tuning Handbook  



dbspaces are the exception.  Refer to “Unmapped Internal Dbspaces” on page 164). 

 

 With  VMDSS, if there is no longer any free  space in main or  expanded storage,  the 

operating  system will  simply replace an old data  space page in main or  expanded 

storage with a new page.  If the  old page is  needed again, it is  reread from its 

original DASD source. If the  old page was modified while it was in main storage, 

the operating system ensures that the modified page is written  back  to its original 

DASD source before it is  overwritten. 

This expands a machine’s effective virtual storage by providing  additional 

addresses  for data, thereby making  room  in the primary space for larger programs. 

Understanding  how VMDSS uses Data Spaces 

Reading  Pages 

Before a page of  data  can be  used by the database manager, it  must  be located  in 

its data  page buffers. The buffers are two  areas  of storage in your  primary address  

space,  which  are created when you start  the database manager.  One area is 

Physical Storage

Expanded
Storage

4K

4K

4K

4K

Main Storage

Virtual Storage

Physical Move

Pointer From Virtual
to Physical Page

Control Program (CP)DASD

Data Space
Virtual

Machine

4K

4K

4K

4K

4K

4K

4K

  

Figure 26.  Data Spaces Storage

 

Chapter 6. Data Spaces  Support for  VM/ESA 159



reserved for pages  from  the directory disk, and  the  other for pages from storage 

pools. They are called the  directory buffer pool and  the local buffer pool, respectively. 

With Data Spaces  Support off:   When the  database manager  needs a page, it  

looks for it in  its buffer pool. If it does  not find it there, it uses  a VM  service called  

IUCV *BLOCKIO to read the page from DASD into a free  space in  its pool.  

Since the  buffer pools are part of a primary address  space,  the operating  system 

treats them like part of  the  database manager code. If  a buffer page is  not 

referenced frequently,  it may  be moved out to expanded storage or system paging 

DASD by  the VM paging system (for more  information  refer to “Asynchronous 

Page Fault Processing” on page 197). 

 

  

Figure 27. Page  Movement  in  the Standard DASD I/O  System. The database manager 

explicitly directs  the operating system  to move  pages to  and from DASD with the  IUCV 

*BLOCKIO instruction. Once database  machine pages are in  main storage, they  may  be 

moved out to either  expanded storage or system paging DASD by the  VM paging  system.

 

160 Performance Tuning Handbook  



With Data  Spaces Support on:   If the database manager cannot  find a page in its 

buffer pools,  it “retrieves”  it from a data  space and  stores it in a free  buffer in its 

pool. When  this happens,  the operating  system actually  does  most of  the work. If 

the page is already  in main storage, the database  manager can move it directly to 

the buffer pool. If the  page is in expanded storage or in DASD,  the operating  

system moves it into  main storage, and then copies  it  into  a buffer. If your 

processor  supports  Enhanced Move Page for  VM, pages  are moved from expanded 

storage directly  into  a buffer. 

 

 This system has several advantages over  the standard DASD I/O system, which 

uses the IUCV *BLOCKIO service.  In the latter, each page move must  be explicitly 

requested  by the database  manager, whereas here paging is done by  the VM 

paging system.  This is faster and more efficient for several reasons, including: 

v    Shorter path length 

v    Asynchronous page fault  processing 

v    Striping  

Physical Storage

Expanded
Storage

4K

Main Storage

Virtual Storage

Control Program (CP)Storage
Pool

4K Data Space
Database
Machine

Virtual Move

Physical Move

Pointer From Virtual
to Physical Page

4K

4K

4K

  

Figure 28.  Page  Movement with Data Spaces Support. The figure shows a page being  read 

into main storage from DASD and then into a buffer  pool. The page will  be in two places in  

main storage until  either the data  space page is  released or  the  database manager releases 

the buffer  page (refer  to “Releasing Pages” on page 162).

 

Chapter 6. Data Spaces  Support for  VM/ESA 161



v   Blocking and  prefetching  

v   Dynamic storage size  management 

v   More asynchronous writes.

Refer to “Deciding When  to Use Data  Spaces”  on page 197 for a detailed 

description of each advantage.  

Releasing Pages 

With Data Spaces  Support off:   When the  database manager  needs a buffer for 

another page,  it overwrites the  “oldest” unmodified page in the pool with a new  

page. This is  referred to as  releasing  a page or stealing a buffer.  

With Data Spaces  Support on:    When  the database manager needs  a buffer for 

another page,  it does so in the  same  way that it would  with Data  Spaces  Support  

off. 

When the  operating  system needs  main or expanded storage for itself or for other  

virtual machines,  it may release  data space pages  from main storage. Pages  may 

also be released  at the request  of  the database manager. There are several 

parameters you  can use to control when the  database manager will start  releasing  

pages and  which  pages  it  will choose (refer  to “Managing Main and Expanded  

Storage” on page 166). 

Modifying Pages 

With Data Spaces  Support off:   While a page is in the buffer pool, the database 

manager may modify it. To ensure the integrity of your data, a modified page will  

not be released until it  has been written  back  to DASD.  If the database manager 

needs a buffer occupied by  a modified page, it first writes the  page to DASD,  then 

loads the  buffer with a new page. 

With Data Spaces  Support on:    Instead of  writing the  modified page to DASD,  

the database manager moves it to a data  space.  

Once again, the  operating  system does  most of  the  work. It  takes the modified 

page from the  database manager and moves  it into  main or  expanded storage.  

If the operating system needs a  main storage page that is  occupied  by that page, it 

will move  it to expanded  storage or to DASD  before it uses the  main storage page.  

Similarly, if it needs  an expanded  storage page that is occupied  by  a modified 

page, it  will move  the  modified page to DASD  by way of  main storage. 

Checkpoints 

At checkpoints,  the database manager writes  a summary  status  record  to the log 

and makes  sure  that all modified buffer pages  and  status information are written 

to DASD. This ensures  that you  have a permanent  record  of  your  data on DASD.  

With Data Spaces  Support off:   The database manager writes all the modified 

pages that  are still in  the  buffer pools to DASD. Until it is finished it  cannot serve  

any users. 

With Data Spaces  Support on:    The database  manager moves modified pages  that 

are still in  the buffer pools to data spaces. It then directs the  operating  system to 

save all the data space pages  that were modified by  the  database manager to 

DASD. Until the operating  system is  finished, the  database manager is forced to 

wait: it cannot serve  any users  until the  checkpoint is  complete. 

 

162 Performance Tuning Handbook  



Storage Pools 

Individual storage pools can be used  with or without Data Spaces  Support. 

Note:   A storage pool used only  for internal dbspaces and  which  has a dbextent  on 

a virtual disk cannot  be used  with Data Spaces  Support  turned on for this 

pool. For more information  on virtual disk  support for VM/ESA  for internal 

dbpsaces,  refer  to “Virtual Disk Support for VM/ESA  for Internal Dbspaces”  

on page 54.
 

 For a description of  how to turn on Data  Spaces Support, refer  to “Specifying 

Either Data  Spaces Support or Standard DASD I/O” on page 189. For information  

on when  to use data spaces  with storage pools, refer  to “Storage  Pool” on page 

199. 

Internal  Dbspaces  

Internal dbspaces can be used with or without  Data  Spaces Support. 

Mapped Internal Dbspaces 

Since internal dbspaces are assigned to a specific storage pool, you can turn Data  

Spaces Support on and  off for them by  turning  support on and  off for that pool.  

This type  of  Data Spaces Support  is  similar to the support for any other storage  

  

Figure 29.  Storage  Pools with  Data Spaces Support on and off

 

Chapter 6. Data Spaces  Support for  VM/ESA 163



pool. Since the  system assigns, or “maps” each data space page to a physical  page 

in a dbextent (contained in a storage  pool),  it is  referred to as  mapped support. 

Unmapped Internal  Dbspaces 

VMDSS also supports  unmapped internal dbspaces.  Instead of  mapping  pages  onto 

dbextents, VM/ESA manages them as normal  virtual  storage paged to VM system 

paging DASD (see Figure 30). 

 

 The internal dbspaces are still assigned to a storage pool,  but  they do  not use any 

DASD in  that pool. Rather they use system paging DASD.  To make up for this, 

you must  allocate  more DASD  to system paging.  Refer to “VM/ESA  Paging 

DASD” on page 173.  

For a description of  how to turn on  Data Spaces Support  for internal dbspaces,  

refer to “Using Data Spaces with Internal Dbspaces” on  page 192. For information  

on when to use data  spaces  with internal dbspaces,  refer  to “Internal Dbspaces” on 

page 199. 

Directory 

You can use the  directory with Data  Spaces Support either on or off. 

  

Figure 30. Unmapped and mapped internal dbspaces

 

164 Performance Tuning Handbook  



With Data Spaces Support  off  

The database  manager stores directory data on the directory disk  (B-disk) in 

512-byte  blocks and reads these  blocks into  the directory buffers  from the  B-disk  as 

necessary.  

With Data Spaces Support  on  

The directory  uses data  spaces  as  a storage pool would. If the database manager 

cannot find a block of  directory  data in the  directory buffers, it  gets  the block from 

a data  space.  If the directory block is not already in main storage, the  operating  

system locates  the  page on the  B-disk  that contains the  directory  block and  copies  

it into main storage (each  4KB  page contains eight 512-byte directory  blocks). 

Any DASD accessed through a data  space must  have a 4KB  block size. This means 

that  if you  want  to use the directory with Data  Spaces  Support, you  must  reblock 

the directory minidisk  from 512-byte blocks to 4KB pages. 

For information  on how to reblock  and  start Data Spaces  Support  for the  directory, 

refer  to “Using Data  Spaces with the  Directory” on page 193. For information on 

when to use Data  Spaces  Support  with the  directory, refer to “Directory” on page 

200. 

   

B Disk
Buffers

Data SpaceDASD

512

Directory Using
Data Spaces Support

Database 1

Database 2

Directory Not Using
Data Spaces Support

512

512512

4K
4K

  

Figure 31.  The Database Directory with  Data Spaces Support On  and Off

 

Chapter 6. Data Spaces  Support for  VM/ESA 165



Managing Main and Expanded Storage 

If unchecked, VMDSS may ask for large amounts of main and  expanded storage 

from the operating system. If it  gets it, your database machine may be very fast 

but other virtual machines in the  system may  perform poorly. 

The operating  system always  maintains control of  its main and  expanded storage,  

and will  limit how much  your  database machine can use. If  your machine tries to 

use more  storage than is available, the  operating system will release some  of your 

pages (or pages  from other  virtual  machines) from main or expanded storage to 

make room  for the new ones.  

Instead of  waiting for the  operating  system to release  pages, you can instruct the  

database manager to do  so  before your machine reaches its storage limits.  Pages to 

be released will  be selected based on the  parameters you set.  You  can also  limit the  

number of  modified pages  in main  and  expanded storage to improve  checkpoint 

processing. 

The four primary parameters provided are: 

v   Target working  storage size 

v   Working storage residency priority  

v   Checkpoint interval  

v   Save interval.

Target Working Storage Size Parameter  

The target working  storage size parameter controls the  amount of main and  

expanded storage that your database machine uses. When the  amount of storage 

reaches this target, the database  manager will  start to release certain  data space  

pages immediately  after they  have been copied  into  the  buffer pools.  

While you  may exceed this target, the database manager will try to keep you  at or 

below it if possible. (Of course,  you  may never reach it if the operating  system is  

heavily loaded.) 

You can set this parameter  at start up  time, or dynamically  while the  database 

manager is running. 

For information  on how to change  this parameter, refer to the  DB2  Server for VSE  

& VM Operation  manual.  For information on how to choose a value for it, refer  to  

“Choosing the  Target Working Storage Size” on page 200. 

Working Storage Residency Priorities 

The database manager decides which data  space pages  to release based on the 

working storage  residency  priority of each pool. 

Priorities range from  a value of 1 where all pages  are released, to a value of  5 

where none  are.  The priorities in between  allow a page to be  released depending 

on whether your  current working storage size  is above or below  your target, and  

whether the page is an index  or a data  page.  

For information  on how to change  storage priorities, refer  to “Specifying  Storage 

Residence Priorities” on page 190. For information  on how to choose a storage 

priority, refer  to “Choosing Storage Residence Priorities” on page 201. 

The Checkpoint  Interval  

The checkpoint interval  controls the  duration between  database checkpoints.  At  a 

checkpoint, the database manager makes sure that all the modified pages  in main 

 

166 Performance Tuning Handbook  



and  expanded storage  are written to DASD.  (Refer to “Checkpoints” on page 162.) 

If there  are many modified pages, it can take a long  time to complete the 

checkpoint,  and  until it is complete  the database manager cannot  serve any users. 

For information  on how to change  the  checkpoint interval, refer to DB2 Server  for  

VSE & VM Operation. For information on how to choose a value for it, refer to 

“Choosing the Checkpoint  Interval”  on page 203. 

The Save Interval  

To make  checkpoint processing faster,  you  can limit the number of modified pages  

in main and  expanded storage by setting the save interval.  When  the number of 

modified pages  in  a data space exceeds this parameter,  the database manager 

directs the  operating system to save  all the  modified pages  in that data space to 

DASD.  Unlike the  save  that occurs during checkpoint,  the database manager can  

continue to service  users  while this is  being  done.  

For information  on how to change  the  save  interval, refer  to the  DB2 Server for  VSE  

& VM  Operation  manual. For information  on how to choose  a value for it, refer to 

“Choosing the Save  Interval” on page 203. 

Striping  

VMDSS will  attempt to evenly distribute,  or “stripe”, your data across  all the  

dbextents in a storage pool. 

 

 

Chapter 6. Data Spaces  Support for  VM/ESA 167



With striping switched off 

The database manager allocates pages  in a storage pool in sequence, usually 

allocating all  the pages in one  dbextent before using the next dbextent. 

With striping switched on  

The database manager allocates 16 pages  in sequence on each dbextent  in the 

storage pool. The  operating system can then  read and  write the pages  to and  from 

DASD in  parallel.  This may significantly improve DASD performance, depending 

on how you configure your controllers, channels, and  DASD.  The optimal  

configuration would  include several dbextents in the storage pool, each on a 

separate channel, controller, and physical  storage device. 

For a description of  how to use striping, refer  to “Turning  Striping On and  Off”  on 

page 190. For information on how to decide when to use it, refer  to “Using 

Striping” on page 204. 

Performance Counters 

Several counters are available  that can help you  monitor the performance  of  the  

DASD I/O systems. Each storage  pool  has its own  set of  four counters. There is 

also a set of  four  counters for unmapped internal dbspaces,  and  a set for the  

Storage Pools

17-32

01-16

33-48

17-32

33-48

01-16

48
4KB

Pages

48
4KB

Pages

Striping Off

Striping On

  

Figure 32. A storage pool with striping switched on and off.  The figure  shows 48 4KB  pages 

written to DASD with  striping on and off.

 

168 Performance Tuning Handbook  



directory.  These counters  are different depending on  whether a particular  

component is  using data spaces.  (Unmapped  internal dbspaces always  use them.) 

For more  information  refer to the DB2  Server  for  VSE & VM Operation manual.  For 

information  on performance  measurements in general,  refer to Chapter 2,  

“Measuring  Performance,” on page 13. 

Planning  Structure  by Storage Pool 

You  will need  to design the structure of  your  database so that you  can control  it 

effectively.  

 

 We suggest  in  DB2 Server for  VM  System Administration that you have  one  table  per  

dbspace. Also, you  may want to assign only one  dbspace to each storage pool 

because many of  the  VMDSS configuration options are grouped by  storage pool:  

for example, you  can turn Data Spaces  Support  and  striping on and  off for a 

particular storage pool, set residence  priorities by storage pool, and display 

counters by storage pool. By associating one  table  per storage pool, you can 

determine how a specific  table will  use the VMDSS functions. 

However, you should  not do this for every table in your  database.  If you  have 

several tables  that you  always  access together, place each one  in a  dbspace and  

assign all the  dbspaces to one  storage pool. Only special tables where performance 

and  control are critical should  have their  own storage pool. 

Table 1

Table 4

Dbspace 1

DbspacesStorage Pools

More Control

Less Control

Dbspace 2

Table 2

Dbspace 3

Storage Pool 1

Storage Pool 2 Dbspace 4

Table 3

  

Figure 33.  Planning for Critical Tables

 

Chapter 6. Data Spaces  Support for  VM/ESA 169



Logical and Physical  Mapping 

When you  start  the database  manager, you can  choose whether  it will  map data  

space pages to physical  pages, physical  mapping, or virtual  pages, logical mapping 

(see below). The type of  mapping you choose will  apply to all the  storage pools in 

the database that are using Data Spaces Support. 

For a description of  how to set the  type  of  mapping, refer  to the  DB2 Server for  

VSE & VM  Operation manual.  For more  information  on how to choose one type, 

refer to “Choosing  Logical  or Physical  Mapping” on  page 205. 

   

Logical Mapping 

This associates (maps) each logical page in a dbspace to a data  space page. Since 

the logical  pages  are mapped onto a data  space in the order they appear in the 

dbspace, a contiguous  set of  pages  in a data space will  correspond  to a contiguous  

series of pages in a dbspace. This is the default and  recommended  mapping  for 

most applications. 

Physical Mapping 

This maps each physical  page in a dbextent  to a data space page.  Since the 

physical pages  are mapped onto a data space in the  order they appear on DASD,  a 

contiguous series  of pages  in a data  space will correspond to a contiguous series in 

physical storage.  

5

2

4

1

6

5

2

3

Database 1

Database 2

Logical Mapping

Physical Mapping

Dbspace 1

Data Space

Data Space

6 5

4 23 1

6 5

4 23 1

6 5

4 23 1

6 5

4 23 1

Dbspace 2

3

1

6

4

Dbspace 1

  

Figure 34. Logical and Physical Mapping

 

170 Performance Tuning Handbook  



VSE  Guest  Sharing 

Although VMDSS does not support application servers  running in VSE,  VSE users 

can access  a VMDSS database in VM/ESA through guest sharing. The database  

manager runs  in  one  virtual  machine,  while the VSE users run under a VSE  guest 

system in  another virtual machine. Since VMDSS only affects the  database 

manager,  VSE guest sharing users will benefit from  the same performance  

improvements as  VM users.  

For more  information  on VSE guest sharing  refer  to the DB2 Server  for  VM Program 

Directory.  

Enabling  Requirements 

This section describes  the operating system, virtual machines, software,  virtual 

storage, and  hardware  you need to enable  and operate VMDSS. 

Operating System Overview  

To support all of VMDSS’s functions,  you must: 

v    Enable it in VM/ESA  Version  2 Release 3 (or later) 

v    Configure your  database machine for Extended Configuration (XC) mode.

Operating in Non-XC Mode 

If you  are not operating  in XC  mode, you  will not be able to use:  

v    Data  Spaces Support for storage  pools and the  directory  

v    Unmapped internal dbspaces 

v    Working storage residency  priorities 

v    Data  space performance  counters 

v    The target working storage size  parameter

You  will be  able to use striping, and  the storage pool performance  counters for the 

standard DASD I/O system.  

Virtual  Machine  Overview 

This section describes  the virtual machines  you need  to enable  and operate  

VMDSS.  

MAINT Machine 

The MAINT  machine,  or its  equivalent, already exists in all VM  systems. It is 

suggested  that you use this machine to update the CP directory, although you can 

use any machine with write access to the  database minidisks and authority to 

update the CP directory. 

SQLMACH Database Machine 

The database  machine, usually called SQLMACH, owns the  database minidisks.  It 

acts  as  an application server, either locally  or remotely,  within a TSAF  collection  or 

SNA network.  For more  information, refer  to DB2  Server for VM  System 

Administration. 

To support all VMDSS’s functions,  you  must configure the database machine to 

operate  in XC  mode. Refer to “Step 2: Update the  CP Directory”  on page 177.  

You  can configure the  database machine to operate in ESA mode, but you  will then  

only  be able to use a subset  of VMDSS’s capabilities, as  described  in “Operating in 

Non-XC Mode.” 

 

Chapter 6. Data Spaces  Support for  VM/ESA 171



Software  Requirements 

To enable and  operate  VMDSS, you must  first install  DB2 Server  for VM Version  7 

Release 5.  

Virtual Storage Requirements 

This section describes  the virtual  storage the MAINT and SQLMACH  machines  

needed to use VMDSS.  

MAINT Machine  

You do  not require any additional virtual storage for the  MAINT machine. 

SQLMACH Database  Machine 

You may need to add  additional virtual storage to your database  machine. To 

calculate how  much: 

1.   Add 41KB for additional  VMDSS code. 

2.   Add 20KB if  you are using data spaces  

3.   Add 2.5KB for each data space required. Refer to Appendix B, “Determining  

Number of Data Spaces,” on page 211.  

4.   Add CUREXTNT  X 16 bytes.  CUREXTNT is the  number  of  dbextents defined 

during database generation. 

5.   Add MAXPOOLS  X 8 bytes.  MAXPOOLS is the maximum  number of  storage 

pools that will ever  be  defined for a database. 

6.   Add MAXEXTNT  X 8 bytes.  MAXEXTNT is the  maximum  number of dbextents 

that  will ever  be  defined for a database. 

7.   Add MAXDBSPC  X 8 bytes.  MAXDBSPC is the maximum number of  dbspaces  

that  will ever  be  defined for a database.

For example, consider a database  generated with:  

v   CUREXTNT = 20 

v   MAXPOOLS =  256 

v   MAXEXTNT = 256 

v   MAXDBSPC = 10240

It is also currently using 10  data  spaces  for public  and  private dbspaces. The  

database machine will  use an additional 171KB  of  virtual storage: 

         41×1024 =       41,984  

         20×1024 =       20,480  

     2.5×10×1024 =       25,600 

           20×16 =         320 

           256×8 =        2,048 

           256×8 =        2,048 

       +  10240×8 =     + 81,920  

          174,400  =      174,400 = 170.40KB  ∼ 171KB 

Real  Storage Requirements 

While you  do  not require additional real storage (main or expanded storage) to use 

VMDSS, any storage you  add will  be used by  VMDSS to help  improve  the 

performance of your database.  Several  facilities are included with VMDSS to help 

you manage how much  real storage you use. For more  information  refer to 

“Managing Your Working Storage Size” on page 200. 

 

172 Performance Tuning Handbook  



DASD  Storage Requirements 

This section describes  how much DASD space the  VM system,  the MAINT 

machine,  and the SQLMACH  machine need  in order to use VMDSS. 

Fixed Block Storage Devices 

The device  number for a minidisk residing  on an FBA DASD  must start and  end 

on a 4K block boundary. The starting FBA block number and the  ending  FBA block  

number +1  of  the  minidisk must  be evenly divisible by  8. Refer to the MAPMDISK 

information  in  the VM/ESA:  CP Programming  Services manual. 

You  can turn Data  Spaces Support off for the Storage  Pool residing on the FBA 

device  not on a 4K block boundary by updating  the storage pool specification  file.  

To continue using an  FBA device, use DDR  or use the SQLCDBEX  EXEC to copy 

the extent to a new minidisk  that is  formatted on a 4K block boundary. Alternately, 

you  can move  to a non-FBA device using the  SQLCDBEX  EXEC.  Refer to the  DB2 

Server  for VM System Administration  for details on how to use the SQLCDBEX  

EXEC. 

VM/ESA  Paging  DASD  

Before you can use separate internal dbspaces (unmapped),  you may need  to 

allocate  more DASD  for VM system paging. 

 Attention:  If VM  runs  out of  system paging DASD, CP  will abend if it does not 

have sufficient spool DASD  to accommodate the  overflow. 

To calculate  the maximum number of additional cylinders you  need  for unmapped 

internal dbspaces,  divide the number of pages currently  in all your  internal 

dbspaces by  the  conversion ratio  for your type  of  DASD,  listed  in Table  11 and 

round up to the  nearest integer. 

 Table 11.  Additional Paging Cylinders  

DASD Type 3350 3375 3380  3390 9345 

Conversion Ratio 

  

(Blocks per  Cylinder)  

120 96 150  180 150 

  

For example, if you  are currently using 80 internal dbspaces of  1024 pages  each for 

your  internal dbspaces,  the calculation for 3380 DASD is  as follows:  

     80*1024/150=546.133  cylinders 

                ∼547      cylinders 

Thus,  you may need  as  many as  547 additional 3380 cylinders  if you  want  to use 

unmapped internal dbspaces.  Remember,  that the number you calculate will  be the 

maximum you will ever  need. While  you  may actually  use far fewer cylinders on a  

day to day basis, you  still need  enough cylinders in either  system paging DASD  or 

spool DASD  to accommodate your  peak requirements.  If  you cannot supply this 

maximum value, you can  still use mapped data  spaces. 

To assess your  peak requirements,  assign your internal dbspaces to their own 

storage pool and  use mapped internal dbspaces,  refer  to “Mapped  Internal 

Dbspaces” on page 192. You  can then  use the SHOW  POOL  operator  command 

(refer to DB2 Server  for  VSE & VM Operation) to see  how many pages your  

production  system is really using for internal dbspaces. This will probably  be 

much lower than your  maximum  calculation. You  can then  allocate  the number of  

 

Chapter 6. Data Spaces  Support for  VM/ESA 173



pages the  database manager is really using for the internal dbspace pool to system 

paging DASD and  start using unmapped internal dbspaces (refer to “Unmapped 

Internal Dbspaces” on page 192). 

 Attention:  The  SHOW POOL command only displays  the number of  pages  a pool 

is currently using. 

You must  carefully  monitor page usage  over  a relatively  long  period  until you are 

confident that the  database manager  will not use more  pages  than you  will allocate 

to system paging DASD.  Also,  remember to continue monitoring SHOW POOL 

when you  start using unmapped internal dbspaces in case  your requirements 

increase. 

SQLMACH Database  Machine 

VMDSS requires a minimum  amount of free space  on the system minidisks. 

System Disks:    The system disks are the  service and  production  minidisks or SFS  

directories of  the SQLMACH database  machine. No additional DASD  is required. 

Database Disks:    There are three  types  of  database disks:  

v   Directory 

v   Log 

v   Data Extent.

While there  is no change  to the  amount of DASD  you  require for your  log or  data 

extent disks,  the DASD you  require for the  directory  disk  may  change depending 

on how you use VMDSS.  

If you  use Data Spaces  Support  with the  directory,  you must move the  directory 

from a disk  formatted with 512-byte blocks to one with 4KB blocks. Since 4KB 

blocks use real DASD  storage more efficiently than do 512-byte  blocks, you do  not 

need as  much  real DASD storage.  

To calculate the  number of cylinders  you need, multiply the  number currently  in 

your directory  disk by the  conversion ratio  for your type of  DASD,  listed  in 

Table 12 and round up to the nearest  integer. 

 Table  12. Conversion  from 512 byte to 4K byte  blocks 

DASD Type 3350 3375  3380 3390 9345  

Conversion  Ratio  0.85 0.63  0.57 0.51 0.52  

  

For example, if you are currently using 34 cylinders  of  3380 DASD for your  

directory disk, the  calculation is as  follows:  

     34·0.57=19.38 cylinders 

            ∼20    cylinders 

Thus, you  will  only  need  a 20 cylinder disk  after you  move  to 4KB  pages. 

You can also move the directory  from a 4KB-block  disk to a 512-byte-block disk. To  

calculate how  many  cylinders you  will then need,  divide the  number you  need  

when the  directory is  in 4KB  blocks by the conversion and  round  up to the  nearest 

integer. 

 

174 Performance Tuning Handbook  



Hardware  Requirements 

To support all of VMDSS’s functions you  must  enable  it  in a ESA/390 processor 

within the ES/9000® family that supports  VM/ESA  in XC  mode. 

Before Enabling  

This section describes  what  you need to read and what  decisions you  should  make  

before you  enable VMDSS.  

Program Directory for DB2 Server for VM 

Study the DB2  Server  for VM Program Directory which contains  important service  

information  and special instructions. 

Preventive  Service Planning 

Before you enable VMDSS,  you should check whether  there is  any additional 

Preventive Service Planning (PSP) information that you  should  know; check with 

your  IBM Support  Center or use IBMLINK (ServiceLink). 

This program release  is maintained through the  use of PTF tapes. An updated 

Version  or Release replaces the  entire program code;  a PTF tape only replaces the  

changed portion  of  the  program code. 

For more  information, refer  to the  DB2 Server for  VM  Program Directory. 

Corrective  Service  

Follow the same  corrective service procedures for VMDSS that you follow  for DB2  

Server  for VM.  For more information, refer to the DB2  Server for VM Program 

Directory.  

Enabling  Options 

You  have several options when you  enable  VMDSS. Read the following to help 

you  evaluate which  one  you should use. 

Using  in  a  Production  System  

If you  are using VMDSS on an existing  production  database,  you  may want to 

carefully  control which, if any, VMDSS functions you use. While  the default 

settings will turn all the  functions on (with the  exception of  Data  Spaces  Support  

for the directory), you  can reset  your operating parameters to turn everything off 

before you  restart your  database.  

With  all the  VMDSS functions off,  you can ensure that your production system is  

working as  it  was before you  installed VMDSS. You can  then selectively turn on 

various  components  (you may  need to stop and  restart the  database manager) and  

monitor their effect. 

Disabling  Data Spaces Support  

You  can move your database  manager to an operating system or hardware 

platform that  does not support VMDSS but does  support DB2  Server for VM.  You  

may need to do  this if you  have a backup system that does not meet all of 

VMDSS’s  requirements.  

Complete the  steps listed  in “Disabling VMDSS” on page 188; then, move your  

database manager following your normal procedures. 

 

Chapter 6. Data Spaces  Support for  VM/ESA 175



Resaving DB2 Server  for VM in Saved Segments  

If you  previously stored the DB2 Server  for VM  DBSS  component in a saved 

segment, you  can resave it after you enable  VMDSS. Because VMDSS only affects 

the DBSS  component, and does  not significantly  increase its size (41KB), you  can 

use the  default  saved segment definition  included  with the base product. Refer to 

“Step 10: Resave the  DBSS Saved Segment” on page 181 for a description of  how  

to use VMSES/E and  the  ARISAVES  EXEC to resave the  DBSS component in a 

saved segment. 

Enabling 

Perform the steps  in  this chapter  to enable  the  VMDSS code  onto the service  and 

production disks and  to configure a database machine (SQLMACH) for VMDSS.  

Pre-Enable Checklist  

Before beginning, make sure that you  have completed the following:  

__ 1.    Read Chapter 1, “Improving Performance.” 

__ 2.    Make  sure that you  have installed DB2 Server  for VM Version  7 Release 5 

with at least one 7.5.0 database available. You  need this  database to verify  

the  enabling of VMDSS. 

__ 3.    Decide whether you will configure the database machine for ESA or XC  

mode. 

__ 4.    Make  sure you  have enough space on DASD to complete every step. 

__ 5.    Decide whether you will resave DB2 Server  for VM  components  in saved 

segments  after you  enable. 

__ 6.    Read the DB2  Server  for VM Program Directory to check for any prerequisite  

Program Temporary  Fixes (PTFs) that need to be  installed. 

__ 7.    See  whether there is any additional Preventive Service Planning (PSP) 

information  that you should be aware  of. Check  with your  IBM Support  

Center  or use IBMLink (ServiceLink).

Enable  Checklist  

 

 1.    u  Log onto the MAINT  Machine  (  177) 

 2.    V  Update the CP Directory (  177)  

 3.    u  Log off the MAINT Machine  (  178) 

 4.    u  Log onto the SQLMACH  Machine  ( 178) 

 5.    u  Archive your  Database  ( 178) 

 6.    u  Activate VMDSS (  179)  

 7.    u  Log off the SQLMACH  Machine  ( 179) 

 8.    u  Log onto the DB2  for VM Installation User ID (5697F42X) ( 179) 

 9.    u  Link-Edit the  Load Library ( 180) 

10.   V  Resave the DBSS  Saved Segment  ( 181) 

a.   V Prepare  to Build the  DB2 for VM  Segments (  181)  

b.   V Build the  DB2  for VM Segments ( 182)  

c.   V  Create a Bootstrap Package (  182)  

Notes: 

v   Perform the steps in order. 

v   Mandatory  steps are preceded by  squares  (u) 

v   Conditional steps are preceded by circles (V) 

v   Page references  appear in  parentheses.

 

176 Performance Tuning Handbook  



d.   V  Restart the  Application Server (  184)
11.   u Log  off the DB2 for VM  Installation User ID  ( 184) 

12.    u Log onto the  SQLMACH Machine (  184)  

13.    V  Verify the Installation (  184)  

a.   V  Verify non-XC Mode Installation ( 184) 

b.   V  Verify XC  Mode Installation (  186)
14.    V  Optional  System  Activities ( 187)

   

Backing Up, Configuring and Enabling  Your Database  Machine 

Perform the  following steps to: 

v    ensure that you have a current backup of  your  database 

v    update your database  machine for VMDSS 

v    enable  the VMDSS code.

Step 1:  Log  onto  the MAINT  Machine 

Log onto the MAINT  machine.  

Step  2:  Update  the CP Directory 

Skip this step  if you  plan  to configure your  database machine for ESA mode or if 

you  already updated the CP  directory for XC  mode  when you  planned  the  initial 

install of DB2  Server  for VM.  

Storage
Pool

Database

Application Server

Communication Link (IUCV or APPC/VM)

MDISK LINK

Database Manager

Database
Machine

User
Machine

Applications

Application Requester

Interactive SQL

Preprocessors

DBS Utility

User
Machine

Applications

Application Requester

Interactive SQL

Preprocessors

DBS Utility

  

Figure 35.  Typical  DB2 Server  for VM System Setup

 

Chapter 6. Data Spaces  Support for  VM/ESA 177



To use all the VMDSS functions, you  must  add the  statements shown  in Figure 36 

to the CP  directory entry  for the database machine.  

 

Statement 1:  MACHINE XC  

Specifies  that the  database machine will  simulate  the VM/ESA  XC  

architecture. 

Statement 2:  XCONFIG  ACCESSLIST ALSIZE 1022 

  

Statement 3:  XCONFIG  ADDRSPACE MAXNUMBER  1022 TOTSIZE 2044G  

The ALSIZE and  MAXNUMBER  parameters in these  two statements  

specify the  maximum  number of  data  spaces that the database machine 

can create and have existing concurrently. For VMDSS,  ALSIZE and  

MAXNUMBER  should  be set to the same  value. 

 The value in this example, 1022, is  the  upper limit  for these parameters. 

Since there is no cost  in setting this value high,  the value 1022 should  be 

acceptable  for most applications. To  precisely calculate  the  maximum 

number of data spaces  that your database machine will  use, refer  to 

Appendix  B, “Determining Number of  Data  Spaces,” on  page 211. 

 TOTSIZE specifies the maximum  total size, in bytes, of  all the data  spaces  

that the  database machine can  create  and have existing concurrently. 

 Since each data  space is 2GB,  your  maximum  total size  for 1022 data  

spaces  will  be 2044GB.  For a description of how to precisely calculate the 

maximum  total size  of  the  data spaces for your database,  refer  to 

Appendix  B, “Determining Number of  Data  Spaces,” on  page 211.

 For more information on  the MACHINE and XCONFIG directory  statements, refer 

to the VM/ESA:  Planning  and Administration. 

When you  have finished adding  the  CP directory  control statements  for the 

database machine, update the  CP directory using your  current operating  

procedures. 

Step 3: Log off the MAINT  Machine 

Log off the  MAINT  machine. 

Step 4: Log onto  the SQLMACH Machine 

Log onto the  database machine (SQLMACH).  Refer to “SQLMACH  Database  

Machine” on page 174 for information  on this virtual machine.  

Step 5: Archive your Database 

While installing VMDSS does not affect the  data in your  database,  it is always  

good practice  to archive  your  database before installing new  code or applying  

service. If you do not archive  your  database on a regular  basis, LOGMODE=Y  or N 

(Y is the  default), skip  this step.  

1              MACHINE XC
2              XCONFIG ACCESSLIST ALSIZE 1022
3              XCONFIG ADDRSPACE MAXNUMBER 1022 TOTSIZE 2044G

  

Figure 36. Additional Directory  Control Statements for the Database Machine

 

178 Performance Tuning Handbook  



If your  application  server  is currently running with LOGMODE=L or A,  you  can 

perform a user archive or a database archive. To create a database archive, type: 

     SQLEND  ARCHIVE 

As with any archive, the  database manager requests that you  mount the  required 

tape volume to contain the  database archive (or log archive, if LOGMODE=L,  and  

you  are not archiving  the log to disk).  The database manager then  creates the 

archive. When  the database manager prompts you to mount and  ready the  archive  

volume, you should  respond  with the  virtual  device number. Unless you  have 

issued your own  CMS FILEDEF command before starting the database manager, 

the virtual device number for database archives is 181. The  virtual device number 

for log archives  is 183.  

For more  information  on the  SQLEND command, or information on user archives,  

refer  to DB2 Server for  VM  System  Administration. 

Step  6:  Activate VMDSS 

To enable  (or remove) the VMDSS code, perform the following steps on the  

database machine user ID. These  steps must  be performed on every  database 

machine on which you  wish to use VMDSS.  

1.    Be sure  you are logged on to the  database machine (SQLMACH). 

2.    Stop the  application server using your normal operating  procedures.  

3.    Ensure that  the  database machine production disk and service disk are linked 

in  write  mode. If  not, enter: 

     LINK machid  195 195 W 

     LINK machid  193 193 W 

4.    Access the  production  disk with file mode  Q  and the service  disk with  file 

mode  V.  

     ACCESS 195  Q  

     ACCESS 193  V  

If  you are using SFS directories instead of  minidisks,  access them with file  

modes  Q and V. 

5.    Run the  ARISDBMA  EXEC to identify  whether you  want DSS code enabled on 

your  production  disk. Its syntax is:  

 

Specify the  following parameters:  

Y  Enable the DSS code.  This is the  default. 

N  Disable the  DSS code.

For example, to identify  that you  want  to enable  or disable  the DSS code, type: 

     ARISDBMA  DSS(Y)  

     ARISDBMA  DSS(N)  

Step  7:  Log  off  the SQLMACH Machine 

Log off the database machine. 

Step  8:  Log  onto  the DB2  for VM Installation User  ID (5697F42X) 

Log onto the DB2  Server for VM  Installation user ID, 5697F42X.  

►► ARISDBMA DSS( Y ) 

N
 ►◄

 

 

Chapter 6. Data Spaces  Support for  VM/ESA 179



Step 9: Link-Edit the Load Library 

Rebuild the database  manager with VMDSS by link-editing the  DBSS  component 

in the  ARISQLLD loadlib. 

1.   Make sure you have  read access to the  VMSES/E code (MAINT 5E5 disk) and  

read/write access  to the Software Inventory  disk  (MAINT 51D)  or SFS 

directory.  

2.   Establish the access  order. 

vmfsetup  5697F42X {DB2VM|DB2VMSFS} 

5697F42X  is the  PPF that was  shipped with the  product. If you have  your  own  

PPF override,  substitute that name for 5697F42X shown  in this command.  You  

also need  to substitute your  PPF name in the VMSES/E commands  in any 

subsequent steps. 

Use DB2VM for installing on minidisks or DB2VMSFS for installing in Shared File 

System  directories. 

3.   Rebuild DB2 Server  for VM DBSS  member or component in the  ARISQLLD 

LOADLIB. You must  do  both  steps 3a  and  3b. 

a.   Rebuild the  ARISQLLD LOADLIB. 

vmfbld  ppf 5697F42X  {DB2VM | DB2VMSFS}  ARIBLLLD  ARISQLDS  (all 

vmfview  build 

Use DB2VM for installing on minidisks or DB2VMSFS for installing in Shared 

File  System  directories. 

ARIBLLLD  is  the name of the  VMSES/E build  list used to build  the 

ARISQLLD  LOADLIB. 

Review the  build message log ($VMFBLD $MSGLOG). If necessary,  correct 

any problems  before you continue. Use the F2  key, ALL, to review all of the 

messages.  

Note:   The following message  is normal if you  are NOT  running DB2 Server  

for VM with  the DB2 Data Spaces Support:  

VMFLLB2074I Part xxxxxxx TXT in object  ARISQLDS 

            in build list ARIBLLLD  

            EXEC will be ignored 

b.   Build the  related  files. 

vmfbld  ppf 5697F42X  {DB2VM | DB2VMSFS}  (serviced 

vmfview  build 

Use DB2VM for installing on minidisks or DB2VMSFS for installing in Shared 

File  System  directories. 

Review the  build message log ($VMFBLD $MSGLOG). If necessary,  correct 

any problems  before you continue.

4.   Link and  access the  database machine user ID production and  service disks or 

SFS  directories.  

link SQLMACH  195 295  MR 

acc 295 l  

link SQLMACH  193 293  MR 

acc 293 m  

You  will be prompted for the  password to the  disks. 

Substitute  your minidisk addresses, if different. 

Substitute  in  the appropriate  SFS  directory names.  

 

180 Performance Tuning Handbook  



You  also need  to substitute your  minidisk  addresses or  SFS directory names in 

the  VMSES/E  commands  in any subsequent steps. 

5.    Copy the  new ARISQLLD LOADLIB  to SQLMACH’s production  and service 

disk  or directory. 

a.    If  installing on minidisks,  enter the following commands:  

access 195  i  

vmfcopy arisqlld L* i  =  = l (prodid 5697F42X%DB2VM olddate replace  

access 193  j  

vmfcopy arisqlld L*  j =  =  m  (prodid 5697F42X%DB2VM olddate  replace  

The VMFCOPY command updates the VMSES PARTCAT file  on the  

production disk  (195) and  the  service disk  (193). 

b.    If  installing using Shared File  System, enter the following commands: 

access 5697F42X.sql.production i 

access SQLMACH.sql.production l 

vmfcopy arisqlld L*  i =  =  l  (prodid 5697F42X%DB2VM olddate  replace  

access 5697F42X.sql.service  j 

access SQLMACH.sql.service   m 

vmfcopy arisqlld L*  j =  =  m  (prodid 5697F42X%DB2VM olddate  replace  

The VMFCOPY command updates the VMSES PARTCAT file.

Step  10:  Resave the DBSS Saved Segment  

If you  are using a  saved segment for DBSS  then you  need  to resave it. Use the 

following steps to resave the saved segment, otherwise continue with Step 11. 

Step  10a. Prepare to  Build  the DB2 Server for  VM Segments:    Before building  the 

new DB2  Server  for VM  segment, following these steps: 

1.    Clear  your virtual machine by entering the following IPL command. This 

command bypasses  the  execution of  the  system profile  (SYSPROF EXEC)  and 

without  loading  the installation saved segment (CMSINST). 

ipl  cms parm clear  nosprof instseg  no 

Note:   ** DO NOT press ENTER  at the VM  READ!**  

2.    Bypass  the execution  of the PROFILE EXEC by entering  the  following 

command:  

access  (noprof 

3.    Access the  VMSES/E code by  entering  the  following command: 

access  5e5 b 

4.    Link and  access  the Software  Inventory  disk  by entering  the following 

commands:  

link  MAINT 51d  51d mr 

access  51d d 

5.    Access the  database machine, SQLMACH, production minidisk or SFS directory 

by  entering  the  following command: 

access  vdev k  

vdev  is the  address  the database machine production  minidisk is linked as  by  

the  installation user ID, or vdev is the name of  the database  machine production  

SFS  directory.  You need  write access to this minidisk or directory. 

6.    Before running  the VMFBLD command to save  the segments, activate the  user 

language  files by  entering  the  following CMS command:  

set  language ameng  (add ari user 

 

Chapter 6. Data Spaces  Support for  VM/ESA 181



7.   Release the  database machine, SQLMACH, production minidisk  or SFS 

directory by  entering  the  following command: 

rel k 

Step 10b. Build the DB2 Server for VM Segments:    To  build  the DB2 Server  for 

VM segments, enter the following command: 

vmfbld ppf segbld  esasegs segblist  SQLSQLDS  (serviced  

If you  are using a different  name for the  DBSS saved  segment substitute your  

name in  place of SQLSQLDS in the  VMFBLD command. The ARISAVES  is called  

by the  VMFBLD command.  

Step 10c. Create a Bootstrap Package:   If you responded YES when prompted by  

the ARISAVES EXEC  to use the saved segments you that loaded as  defaults, you  

do not have  to do this  step, as  ARISAVES  would have generated a default  

bootstrap package (SQLDBA) for you. Continue with “Step 11: Log off the DB2 for 

VM Installation User ID”  on page 184. 

If you  answered NO  to the  prompt, you must run the SQLGENLD  EXEC  to create  

a bootstrap package for the  saved segments  you loaded. To run SQLGENLD EXEC, 

you must  log off of the installation user ID and  log on to the  database machine.  

Because SQLGENLD prompts you for certain  information  about the new  bootstrap, 

you should  determine  the contents  of  the bootstrap package before you run the 

SQLGENLD EXEC. For more information, see  “Contents of a Bootstrap Package.” 

Contents of a Bootstrap  Package:   A bootstrap package contains modules  created by  

the SQLGENLD  EXEC. SQLGENLD  places  the  modules on the production  

minidisk (Q-disk).  Note that, even  though  the  DBSS and  RDS  components are 

loaded in  different saved segments, there is  only one  bootstrap module for them. 

All of those components  are needed  to run the  DB2 Server  for VM system code in 

a database machine.  Thus,  one  bootstrap identifies the  location  of  the  DBSS  and 

RDS components. 

Not all  modules are needed  because  the database manager uses  defaults when a 

module of a bootstrap is missing.  For more  information  on the  defaults, see  “Using 

SQLGENLD” on page 183. 

Figure 37 summarizes the  different  bootstrap modules  that you  can have.  

 

 The dcssid  (saved segment ID) is the name you give to the  bootstrap package with 

SQLGENLD. It is  the dcssid  that you  use in the DCSSID  parameter  of  various  

IBM-supplied execs (such  as, SQLSTART or SQLINIT). When  dcssid  is specified in a 

DCSSID parameter, the bootstrap package production disk  entries  are copied to the  

Resource adapter
DBSS/RDS ...
ISQL

dcssid

dcssid

dcssid

SQLRMBT
SQLDBBT
SQLISBT

Q
Q
Q

fn                 ft            fm

  

Figure 37. Bootstrap Package Contents

 

182 Performance Tuning Handbook  



execution machine’s  A-disk  as shown in Figure 38.  

 

 The resource  adapter bootstrap is incomplete when it is copied to the A-disk of  the 

user machine.  It is completed when  the user runs  the  SQLINIT EXEC,  which 

supplies the  missing server  name to be accessed.  

Use SQLGENLD  to generate bootstrap packages for running the  database manager  

in saved segments. You  cannot  use this EXEC  to generate a bootstrap package for 

running  the database manager in a default  mode. The  SQLDBA bootstrap package 

identifies the default  mode, which can be default  saved segments  (if you have 

defined them)  or user free storage. 

Using SQLGENLD:   When  you  identify the  bootstraps  to be contained in  the  

package you are creating  and the location  where you  want  them to load the code,  

you  can use the  SQLGENLD EXEC.  To use SQLGENLD, obtain read access to the  

service minidisk  by entering the following command:  

access  193  v 

You  can run SQLGENLD  only  from  the database machine: 

sqlgenld  

When  it runs, the  SQLGENLD  EXEC  obtains both  read and  write access to the  

production  minidisk. Both  kinds of access are available  to a defined  database 

machine.  You  should  ensure that no other  machine has write access to the 

production  minidisk  when you  run SQLGENLD. 

If you  are running  SQLGENLD  from a database machine that does  not own the 

production  minidisk, SQLGENLD  prompts you  for the  write password. 

The SQLGENLD  EXEC  prompts you  for dcssid. This is the name of  the new 

bootstrap package. If a bootstrap package with this name already exists, 

SQLGENLD replaces the existing bootstraps.  The EXEC does  not let you  replace 

the initial SQLDBA bootstrap package. The SQLDBA bootstrap package is used  as 

a default  by  many IBM-supplied execs. Do not modify or erase the SQLDBA 

bootstrap package. 

When  you supply dcssid, SQLGENLD prompts if you  want to create  a resource 

adapter  bootstrap, a DBSS/RDS bootstrap, and  an ISQL bootstrap.  For each 

bootstrap that you  choose to create, you are prompted for the  saved segment name 

(or,  in  the case  of  DBSS/RDS, names). The  name is the  name you  used in the 

DEFSEG command. 

The database  manager prompts if  you want this bootstrap package to be  the 

default  DCSSID  for user machines  that have a link  to this production  (Q) disk. 

Specify this as  the  default  if you  have users  linking  to this Q-disk who will  be 

  

            Production        |              |  Execution Machine  

           Q-disk Entry       |             |   A-disk  Entry  

        ---------------------  |             |--------------------- 

          FN       FT      FM |  COPY/RENAME |   FN       FT     FM 

        ------    -------   -- |-------------| --------   ------   -- 

        dcssid    SQLRMBT   Q  |     TO      | ARISRMBT   MODULE   A 

        dcssid    SQLDBBT   Q  |     TO      | ARISDBBT   MODULE   A 

        dcssid    SQLISBT   Q  |     TO      | ARISISBT   MODULE   A 

Figure 38.  Bootstraps Copied  to  the  Execution Machine A-disk

 

Chapter 6. Data Spaces  Support for  VM/ESA 183



accessing a database machine that does  not own this production  (Q) disk, and  if 

you do  not have  saved  segments identified  by  the SQLDBA bootstrap package. 

Because the database  manager provides a default DCSSID, these users are not 

required to specify the DCSSID  parameter when they run the  SQLINIT EXEC. 

Note:  The SQLDCSID DEFAULT  file  cannot be used  by a user if the file  resid  

SQLDBN  exists on the  production (Q) disk  they are linked to. This is 

because the default  bootstrap package for a database is identified  in the resid  

SQLDBN  file. The SQLDCSID DEFAULT  file is used by users that are 

accessing  an application server other than  the one that owns  the Q-disk to 

which  they are linked.  

If you  say that  you  want  this bootstrap to be  the default for users with a link to  

this production (Q) disk, a new file SQLDCSID DEFAULT  will  be created  on the  

production (Q) disk  to contain the  default DCSSID. When  the bootstraps  are 

created, SQLGENLD places  them on the production minidisk. They are then  erased 

from the database machine A-disk.  

Step 10d. Restart the Application  Server:    Restart  the application server  in 

multiple user mode with the required PROTOCOL parameter. 

Step 11: Log  off the DB2 for  VM Installation User ID 

Log off the  DB2 Server  for VM installation machine (if not already done). 

Step 12:  Log onto  the SQLMACH Machine 

Log onto the  SQLMACH machine (if not already done). 

Step 13:  Verify the  Installation 

You must  now  verify that you enabled the VMDSS code successfully.  

Perform either Step 13A or 13B, depending on whether you chose to enable  in 

non-XC mode  or XC  mode. 

Step 13A: Verify non-XC Mode Installation  

Check that  your database machine is  not in XC  mode  by  typing #cp query set. For 

example: 

#cp  query set  

cp  query set 

MSG  ON   , WNG  ON   , EMSG ON   , ACNT OFF, RUN  OFF  

LINEDIT  ON  , TIMER ON   , ISAM OFF, ECMODE  ON  

ASSIST  OFF           , PAGEX OFF, AUTOPOLL OFF 

IMSG ON   , SMSG ON  , AFFINITY  NONE   , NOTRAN  OFF 

VMSAVE  OFF, 370E OFF  

STBYPASS OFF    , STMULTI OFF   00/000 

MIH  OFF  , VMCONIO  OFF  , CPCONIO  OFF  , SVCACCL  OFF  , CONCEAL  OFF  

MACHINE  XA,  SVC76 CP,  NOPDATA  OFF, IOASSIST OFF  

CCWTRAN  ON

 

If you  are in  XC mode (MACHINE  XC), go  to “Step  2: Update the  CP Directory” 

on page 177 and  check that the CP  directory entries  listed in that step  are not 

included in  your  database machines  directory entries. 

Start the  application server  in multiple user mode by  entering: 

     SQLSTART  DB(server_name) 

 

184 Performance Tuning Handbook  



Replace  server_name with the  name of  your  database. This name is specified in the  

IUCV *IDENT statement  contained in the CP directory  for the database machine. For 

more information on the SQLSTART command, refer  to the  DB2 Server for  VSE  & 

VM Operation  manual. 

For example: 

sqlstart db(sqldba) 

ARI0717I Start SQLSTART  EXEC: 05/28/99 11:05:52 EDT. 

ARI0320I The default database name is  SQLDBA. ...
ARI2015I The storage pool specification input file was not  

         found.  The  database manager  will use  the  default  values. 

ARI2020I The machine is  not  in  XC-mode. 

         Data spaces  will not be  used. 

ARI2027I No storage pools will use data spaces. 

ARI0283I Log analysis is  complete. 

ARI0282I LUW UNDO is  completed. 

ARI0281I LUW REDO is  completed. 

ARI0143I The application server  has  been  initialized  

         with the following values: 

         CHARNAME = INTERNATIONAL, DBCS = NO, CHARSUB = SBCS, 

         CCSIDSBCS = 500, CCSIDMIXED = 0, CCSIDGRAPHIC = 0.  

ARI0134I Application server  FTMACH6  has  been 

         identified as a global resource. 

ARI0060I database manager  initialization complete. 

ARI0045I Ready for  operator  communications.

 

Note, the underlined  messages show  that VMDSS is installed. Because the database 

machine is  not in  XC  mode, the database manager will use the  standard DASD 

I/O system instead of Data Spaces  Support. To confirm this,  type  counter pool 1. 

You  should see something like the  following: 

counter pool 1 

Counter values  at   DATE=’05-28-99’   TIME=’11:14:35’. 

  

Pool No.  1:  *BLOCKIO 

Pages looked at  in  the buffer   LBUFLOOK:  121 

Page reads                     PGREAD   :  26  

Page writes                     PGWRITE :  0 

IUCV *BLOCKIO  I/O  requests      IUCVBIO :  26  

ARI0065I Operator command  processing is  complete.

 

If *BLOCKIO  appears,  this tells you  that the  database manager is using the standard 

DASD I/O system for storage pool 1.  

While  you cannot use data spaces in non-XC  mode, you  can use striping. Since it  is 

the default setting for the database manager to use striping, you should see 

something like  the following if you  type  show pool 1: 

 

Chapter 6. Data Spaces  Support for  VM/ESA 185



show pool 1 

  

POOL NO.  1:      NUMBER  OF  EXTENTS  = 2  BLK  STR 

  

EXTENT    TOTAL   NO.  OF      NO. OF      NO.  OF      % 

 NO.      PAGES PAGES USED FREE PAGES RESV  PAGES USED 

   1       855         77        778               9 

   2       855          0       855                0 

TOTAL     1710         77       1633         20     7 

ARI0065I Operator command processing is complete.

 

If STR appears, this tells you  that the database  manager is  using striping for storage 

pool 1.  

Continue with “Step  14: Optional  System  Activities” on page 187. 

Step 13B: Verify XC  Mode Installation 

Check that  your database machine is  in XC  mode  by typing #cp query set. For 

example: 

#cp  query set  

CP  QUERY SET 

MSG  ON   , WNG  ON   , EMSG ON   , ACNT OFF, RUN  OFF  

LINEDIT  ON  , TIMER OFF  , ISAM OFF, ECMODE  ON  

ASSIST  OFF           , PAGEX OFF, AUTOPOLL OFF 

IMSG ON   , SMSG ON  , AFFINITY  NONE   , NOTRAN  OFF 

VMSAVE  OFF, 370E OFF  

STBYPASS OFF    , STMULTI OFF   00/000 

MIH  OFF  , VMCONIO  OFF  , CPCONIO  OFF  , SVCACCL  OFF  , CONCEAL  OFF  

MACHINE  XC  , SVC76 CP,  NOPDATA  OFF, IOASSIST  OFF  

CCWTRAN  ON

 

If you  are not in XC mode, return to “Step  2: Update the  CP Directory” on page 

177 and check  the  CP directory entries for your  database machine.  

Start the  application server  in multiple user mode by  entering: 

     SQLSTART  DB(server_name) 

Note:  A storage pool used  only for internal dbspaces and which has a dbextent on 

a virtual  disk  cannot be used with data  spaces turned on for that pool. This 

storage pool must be  specified with the BLK and SEQ options in the  storage 

pool specification  file. See Appendix  A, “Storage  Pool Specification  File  

Format,” on page 207.  

Replace server_name with the name of your database.  This name is specified in the 

IUCV *IDENT statement contained in the  CP directory for the  database machine.  For 

more information  on the  SQLSTART command,  refer to the DB2  Server  for VSE & 

VM Operation manual.  

For example: 

 

186 Performance Tuning Handbook  



sqlstart db(sqldba) 

ARI0717I Start SQLSTART  EXEC: 05/28/99 10:51:06 EDT. 

ARI0320I The default database name is  SQLDBA. ...
ARI0015I SEPINTDB parameter value is  Y. 

ARI0016I SAVEINTV parameter value is  10. 

ARI0015I MAPPING parameter value is  L.  

ARI0016I TARGETWS parameter value is  32. 

ARI2015I The storage pool specification input file was not  

         found.  The  database manager  will use  the  default  values. 

ARI2026I Some or  all storage pools will use data spaces.  

ARI0283I Log analysis is  complete. 

ARI0282I LUW UNDO is  completed. 

ARI0281I LUW REDO is  completed. 

ARI0143I The application server  has  been  initialized  

         with the following values: 

         CHARNAME = INTERNATIONAL, DBCS = NO, CHARSUB = SBCS, 

         CCSIDSBCS = 500, CCSIDMIXED = 0, CCSIDGRAPHIC = 0.  

ARI0134I Application server  FTMACH6  has  been 

         identified as a global resource. 

ARI0060I database manager  initialization complete. 

ARI0045I Ready for  operator  communications.

 

Note, the underlined  messages show  that VMDSS is installed  and, because  the 

database machine is in XC-mode, the  database manager is using Data  Spaces 

Support. To confirm this,  type  counter pool 1.  You  should  see  something like  the  

following: 

counter pool 1 

Counter values  at   DATE=’05-28-99’   TIME=’10:59:24’. 

  

Pool No.  1:  Data Spaces  

Pages looked at  in  the buffer   LBUFLOOK:  121 

Pages moved from DS  to buffer   DSREAD   :  26 

Pages moved from buffer  to DS   DSWRITE  :  0 

DS page fault notifications    DSFAULT  :  6 

ARI0065I Operator command  processing is  complete.

 

If Data Spaces appears, this tells you that the database manager is  using Data 

Spaces Support for storage pool 1.  

Step  14:  Optional  System Activities 

You  may now  choose any of the following options:  

v    Create  a new database to use Data  Spaces  Support (refer to “Using Data Spaces  

Support with  a New Database” on page 195). 

v    Reblock the  directory disk  of  an existing  database to use Data  Spaces  Support 

(refer to “Using Data  Spaces  with the  Directory” on page 193). 

v    Change the  VMDSS storage pool specifications (refer to “Storage  Pool 

Specifications” on page 188). These specifications turn Data Spaces Support  on 

and off,  set storage residency  priorities, and  turn striping on and off. 

v    Change the  VMDSS initialization parameters (refer to the  DB2  Server for VSE  & 

VM Operation manual). These parameters set your application server’s save 

interval, target  working storage, and whether it will  use mapped or unmapped 

internal dbspaces.

 

Chapter 6. Data Spaces  Support for  VM/ESA 187



Disabling VMDSS  

If you  want to disable VMDSS from your  service  and  production  disks perform the 

Steps 1-4  and 6 in the database machine (SQLMACH), and  Step  5 from the  

installation user machine. 

Disable Step 1:  Archive your  Database  

If you  regularly archive your  database,  type  the following at the operator console:  

     SQLEND  ARCHIVE  

For more information on  the SQLEND command,  refer  to “Step 2:  Update  the CP 

Directory” on page 177 or see  the DB2 Server  for  VSE & VM Operation  manual.  

Disable Step 2:  Access the Service  Disk or Directory 

Accesses the  DB2 Server  for VM service  minidisk with file  mode V. 

     ACCESS  193  V 

If you  are using a service  SFS directory  instead of  a minidisk, access  it with file 

mode V.  

Disable Step 3:  Reblock the Directory  Disk 

Your directory disk must be formatted with a block size of 512-bytes in order for 

the database manager to be able to use it without  VMDSS.  If it  is formatted with 

the 4KB  size, you  must  reblock it. Follow the  instructions in “Reblocking  the  

Database Directory” on page 193. 

Disable Step 4:  Remove the VMDSS Files 

To remove the VMDSS files you need  to run ARISDBMA with the  DSS(N) option.  

See “Step 6: Activate VMDSS” on  page 179. 

Disable Step 5:  Link-Edit  the Load  Library 

Rebuild the database  manager without  VMDSS by  link-editing  the DBSS 

component. To do the  link-edit on the load library follow  “Step 8:  Log onto the 

DB2 for VM Installation User ID (5697F42X)” on page 179 through “Step 10: 

Resave the  DBSS Saved Segment”  on page 181. These steps will  include the  

rebuilding of  the DBSS saved segment.  

Disable Step 6:  Restart  the  Application  Server 

Start the  application server  in multiple user mode using your  normal  operating  

procedures. 

Operating  

This section describes  how to complete  the  tasks associated with operating and  

customizing VMDSS. 

Storage Pool Specifications  

There are three  VMDSS specifications that you  can set for storage pools: 

v   Whether Data  Spaces Support or the standard DASD I/O system is  used  

v   The working storage residency  priority, for those pools that use Data Spaces 

v   Whether or not striping is used.

The default  settings are that every storage pool  will use data  spaces, a working 

storage residency priority of  3,  and  striping. 

 

188 Performance Tuning Handbook  



Note:   A storage pool used only  for internal dbspaces and  which  as a dbextent  on a  

virtual  disk  cannot be used  with data  spaces  turned on for that pool. This 

storage pool must be specified with the  BLK and  SEQ  options in the storage 

pool  specification file. See  Appendix A, “Storage Pool  Specification File 

Format,” on page 207. 

You  can change  these settings either at database startup,  or (except for the  first 

one) dynamically  while the database is running. 

Changing  Storage Pool Specifications at  Startup 

To change  the storage pool specifications of  your  database at startup, you  need  to 

create  a storage  pool specification file. You  can read the next few  sections to learn 

how  to do this, or you can refer  to Appendix  A, “Storage  Pool Specification File  

Format,” on page 207 for a  summary of the file’s syntax.  

At  startup,  the application server  looks for the  storage pool specification  file. It 

should  have a file name that corresponds to your database’s  server_name, a file type 

of  ARISPOOL  and  a file  mode of  *.  

If you  want  to use a different  file name or file  type, enter a CMS FILEDEF  

command to identify  a file as the  storage pool specification  file. For example: 

     FILEDEF  ARISPOOL  DISK SPSPEC  FILE A 

where SPSPEC FILE A identifies the storage pool specification  file. The FILEDEF  

syntax is:  

 

filename filetype filemode  

Specifies the file  name,  file type,  and file mode  of  the storage pool 

specification file.

Add your  specifications to the  specification  file as described  below, and start  the  

application server. If you  want  to add or change any specifications, you must: 

1.    Stop the  application server (SQLEND) 

2.    Update the storage pool specification file 

3.    Restart the application  server  (SQLSTART)

Specifying Either Data Spaces Support or Standard DASD I/O  

To change  this setting  for a particular storage  pool,  add a line to the specification 

file to specify either  Data Spaces Support  (DS)  or standard  DASD I/O (BLK). (DS 

is the  default.) 

Note:   If your internal dbspaces reside in a storage pool which  contains a virtual 

disk, you MUST  specify BLK and  SEQ  for that storage pool. A virtual  disk  

cannot  be mapped to a Data Space. 

For example, consider a database with five storage pools.  To  use Data  Spaces 

Support  for storage pool 1 and standard  DASD I/O for pools 2 to 5,  your  

specification  file would look like: 

 

►► FILEDEF  ARISPOOL  DISK filename filetype filemode ►◄

 

 

Chapter 6. Data Spaces  Support for  VM/ESA 189



The text  is optional comments. If you add any comments, precede them by  two 

dashes. 

Note that  DS is  the  default  parameter, so  you  can also code the file like: 

 

 For information  on when to use data spaces  with storage  pools,  refer  to “Storage  

Pool” on page 199. 

Specifying Storage Residence  Priorities  

To set the storage residence  priority of  a storage pool that uses  Data  Spaces 

Support, add an integer (from  1 to 5) to the end  of  the DS parameter  in your 

specification file. (3  is  the default.) 

For example, to use priority 1 with  pools 3 and  4,  priority 3 with  pool 2,  and  

priority 4 with pool 5, your specification  file  would look like: 

 

 Pool 1 is  not using Data Spaces Support, so it is not assigned any priority.  Pool 2 is 

using the default  value,  so  the integer 3 does not have to be included.  

For a description of  the  five priorities and how to choose  one, refer  to “Choosing  

Storage Residence  Priorities” on page 201. 

Turning Striping On  and Off  

To turn striping  on for a particular storage pool, add the three-letter code STR to  

the end  of the line for that pool.  To  turn it off, add the code SEQ. 

For example, to turn striping  on for storage pools 1, 3, and 5,  and  to turn it  off for 

pools 2 and  4,  your specification file would  look like: 

 

     -- Storage  Pool Specification File 

  

     1   DS  -- This line turns  on Data Spaces Support  for pool 1  

     2-5 BLK -- This line turns  off Data Spaces Support 

             -- for pools  2 to 5 

     -- Storage  Pool Specification File 

  

     2-5 BLK -- This line turns  off Data Spaces Support 

             -- for pools  2 to 5 

     -- Storage  Pool Specification File 

  

     1   BLK -- This line turns  off Data Spaces Support for pool 1  

     2   DS  -- This line uses  residency priority 3 for pool 2 

     3-4 DS1 -- This line uses  residency priority 1 for pools  3 and 4 

     5   DS4 -- This line uses  residency priority 4 for pool 5 

 

190 Performance Tuning Handbook  



For information  on when to use striping, refer  to “Using Striping” on page 204. 

Checking Your Current  Storage Pool Specifications  

You  can display your current storage pool specifications  from the  operator console, 

or through  ISQL,  with the  SHOW  POOL operator command. 

For example, the following screen  shows you  that pool 2 is using Data  Spaces 

Support  with a storage residency priority  of  3,  and  striping: 

show pool  2 

  

POOL NO.   2:      NUMBER  OF  EXTENTS = 6  DS3 STR 

  

EXTENT    TOTAL   NO. OF      NO.  OF      NO. OF      % 

 NO.     PAGES PAGES USED FREE PAGES RESV PAGES USED  

   1    200070       55821    144249               27 

   2    200070       54645    145425               27 

   3    200070       56965    143105               28 

   4    200070       56336    143734               28 

   5    200070       55210    144860               27 

   6    200070       56267    143803               28 

TOTAL  1200420      335244     865176          20    27 

ARI0065I Operator command  processing is  complete.

 

For a detailed description of  this command,  refer to the DB2  Server  for VSE & VM 

Operation  manual.  

Changing  Storage Pool Specifications Dynamically  

Once the application  server  is running, if you  want  to change the setting  for Data 

Spaces Support (DS or BLK)  you  must  shut down and restart the database 

manager as  described  in  “Changing Storage Pool Specifications at Startup” on page 

189. However, the  two other specifications —working storage residency priority 

and  striping—  can  be changed  dynamically by issuing  the SET  POOL  command 

from the  operator  console. For example: 

set pool 1 ds2  seq  

ARI0065I Operator command  processing is  complete. 

show pool  1 

  

POOL NO.   1:      NUMBER  OF  EXTENTS = 2  DS2 SEQ 

  

EXTENT    TOTAL   NO. OF      NO.  OF      NO. OF      % 

 NO.     PAGES PAGES USED FREE PAGES RESV PAGES USED  

   1       855          74       781                8 

   2       855          47       808                5 

TOTAL     1710        121      1589         20     7 

ARI0065I Operator command  processing is  complete.

 

     -- Storage Pool  Specification File 

  

     1    BLK STR  -- Striping  turned  on  

     2    DS  SEQ  -- Striping  turned  off  

     3    DS1 STR  -- Striping  turned  on  

     4    DS1 SEQ  -- Striping  turned  off  

     5    DS4      -- Striping  left on by default 

 

Chapter 6. Data Spaces  Support for  VM/ESA 191



Note:  Any changes you  make  using the  SET POOL command are only  in effect  

while the  application  server  is running. If  you stop and  restart the  

application server, it will use the settings in the storage pool specification 

file,  which  are unchanged by the SET  POOL  command.  

For a detailed description of  the  SET  POOL  command, refer to the DB2  Server for 

VSE & VM  Operation manual.  

Using Data Spaces with Internal  Dbspaces 

This section describes  how to use internal dbspaces  with data  spaces. For 

information on  whether these  dbspaces should  be  mapped or unmapped,  refer to  

“Internal Dbspaces” on  page 199. 

Unmapped Internal  Dbspaces 

To use separate (unmapped) internal dbspaces, set the initialization parameter  

SEPINTDB to “Y” (Y is the  default). For example: 

sqlstart db(SQLDBA) parm(sepintdb=Y) 

ARI0717I Start SQLSTART EXEC: 05/23/99 09:44:24  EDT. 

ARI0320I The  default  database  name is  SQLDBA.  ...
ARI0015I SEPINTDB parameter value is Y.  ...

Message  ARI0015I should  tell  you  that the SEPINTDB parameter is  set to Y. If it 

does not, check  that you are operating your database machine in XC mode. You  

cannot use unmapped internal dbspaces in ESA mode. 

Before you use unmapped internal dbspaces, you  must  allocate  more DASD  to VM 

system paging. Refer  to “VM/ESA Paging DASD” on page 173.  

 Attention:  If  VM runs  out  of  system paging DASD,  CP will  abend if it does  not 

have sufficient spool DASD to accommodate the overflow. 

Mapped Internal Dbspaces 

To use mapped internal dbspaces, turn Data Spaces Support  on for the storage 

pool containing internal dbspaces and  set the  initialization parameter SEPINTDB to  

“N”. For example: 

sqlstart db(SQLDBA) parm(sepintdb=N) 

ARI0717I Start SQLSTART EXEC: 05/23/99 09:39:02  EDT. 

ARI0320I The  default  database  name is  SQLDBA.  ...
ARI0015I SEPINTDB parameter value is N.  ...

Note,  just setting  SEPINTDB=N does  not turn Data Spaces  Support  on or off for 

your internal dbspaces. You can use either Data  Spaces  Support or the  standard 

DASD I/O system with internal dbspaces.  Because internal dbspaces are assigned 

to one storage pool, they will  use whichever DASD I/O system is specified for that 

pool (see “Specifying  Either Data  Spaces Support or Standard DASD I/O” on page 

189). 

 

192 Performance Tuning Handbook  



Note:   A storage pool used only  for internal dbspaces and  which  as a dbextent  on a  

virtual  disk  cannot be used  with data  spaces  turned on for that pool. This 

storage pool must be specified with the  BLK and  SEQ  options in the storage 

pool  specification file. See  Appendix A, “Storage Pool  Specification File 

Format,” on page 207. 

Using Data Spaces with the Directory  

You  can use the directory with either Data  Spaces  Support or the standard DASD 

I/O system.  

To use Data Spaces Support,  format your  directory disk  with a block size  of  4096 

bytes  (4KB). The database manager will  automatically use data  spaces  when it  

detects the  4KB  blocks.  If the  directory  disk  is  formatted with a 512-byte block  size, 

the standard I/O system will be  used instead. 

If your  directory  disk is  currently formatted for 512-byte blocks and  you  want  to 

use Data Spaces Support,  you can reblock your disk  with the SQLCDBEX  EXEC 

(refer to “Reblocking the  Database  Directory”). 

If the  database manager is using Data  Spaces  Support with the  directory, you will  

see the following message at startup time: 

...
ARI2022I the database manager  is using data spaces for the  directory. ...

You can also check this information by  displaying  the storage  pool  counters for the  

directory.  For example: 

counter pool dir 

Counter values  at   DATE=’05-23-99’   TIME=’15:41:07’  

  

Directory:  Data Spaces  

Pages looked at  in  the buffer   LBUFLOOK:  21 

Pages moved from DS  to buffer   DSREAD   :  44 

Pages moved from buffer  to DS   DSWRITE  :  27 

DS page fault notifications    DSFAULT  :  4 

ARI0065I Operator command  processing is  complete.

 

For information  on when to use data spaces with  the directory, refer  to “Directory”  

on page 200. 

Reblocking  the Database  Directory 

The SQLCDBEX  EXEC is updated  for VMDSS, and now asks you which block size 

you  want the output  directory  to be.  For a block size  of  512 bytes, type  512;  for a 

block size of 4KB bytes, type  4096.  If you  do  not type  in a size  and just press Enter, 

the EXEC will make  the  output directory disk  the same block  size  as the input 

directory  disk. 

For more  information  on the  standard SQLCDBEX  EXEC refer to DB2 Server  for  

VM System Administration. 

Note that if you  reblock  the directory from 512-bytes blocks to 4KB blocks,  you 

will not need as much  DASD storage on the new directory  disk; if you  reblock 

 

Chapter 6. Data Spaces  Support for  VM/ESA 193



from 4K to 512, you will  need  more. To  calculate  the number of  cylinders you will  

need, refer to “Database Disks”  on page 174. 

If you  plan to switch between blocking sizes often,  you may want  to keep  one disk  

reserved for the 512-byte blocked  directory and  one  for the 4KB  directory. You  can 

define each disk to the  appropriate size for its blocking, and copy the  directory  

back and forth between disks.  

If you  plan to move from a 512-byte to a 4KB  disk of  the  same  size, you  can take 

advantage of  the  4KB blocking by  expanding  the  directory  to fit the new  disk. 

However, if you need  to return to a 512-byte  disk, you  will have to copy it back to 

a larger disk. 

(When the SQLCDBEX EXEC  finds that there is more  room  on a new disk than  it 

needs for the  current directory,  it will ask  you whether it should expand the  

directory to fit the  new disk. If you  tell it not to expand  the  directory, you cannot  

take advantage of  the  unused portion  of  the  new disk.)  

Example 

Consider a database with  a directory  disk (B-disk) at address 300 and a block size  

of 512 bytes. To reblock the B-disk  to 4096 bytes, run the  SQLCDBEX EXEC  to 

copy the directory  onto a new disk (305) blocked to 4KB  as shown  in the following 

example: 

 

194 Performance Tuning Handbook  



sqlcdbex db(SQLDBA) 

ARI0717I Start SQLCDBEX  EXEC: 05/23/99 08:58:36 EDT. 

ARI6102A Enter DBEXTENT  number  (or LOGDSK1, LOGDSK2, 

         or  BDISK)  to  copy. 

         (Enter  a null response to end  input or  

         enter QUIT to exit.)  

bdisk 

ARI6188A Enter the  output  block size of the directory. 

         (Enter  512  or 4096, 

         or  a null response to use the  original size, 

         or  111(Quit) to  exit) 

4096 

ARI6103A Enter virtual  address for new BDISK.  

         (Enter  a null response to end  input or  

         enter QUIT to exit.)  

305 

ARI6110D Disk 305  is  already formatted. Continuing will erase 

         all data on  this disk. Do you  want to  use  the  disk? 

         Enter 0(No),  1(Yes),  or  111(Quit). 

yes 

ARI6146D Are you expanding the SQL/DS™ directory? 

         Enter 0(No),  1(Yes),  or  111(Quit). 

no 

ARI0647D Do you want to  do  a CMS  FORMAT/RESERVE command  on  disk 305? 

         Enter 0(No) or 1(Yes). 

yes 

ARI6118I Formatting in  progress. Please  wait... 

ARI6131I Copying in progress. Please  wait... 

ARI6108I Minidisk copied  successfully. The SQLDBA  SQLFDEF  file 

         will be updated. 

ARI6109I SQLDBA SQLFDEF  file has been updated on  the  A disk. 

  

ARI6102A Enter DBEXTENT  number  (or LOGDSK1, LOGDSK2, 

         or  BDISK)  to  copy. 

         (Enter  a null response to end  input or  

         enter QUIT to exit.)  

  

ARI0620I SQLDBA SQLFDEF  file 

         successfully copied  to production disk. 

ARI0673I All COPY DBEXTENT  processing completed successfully. 

ARI0796I End SQLCDBEX EXEC: 05/23/99 09:09:43 EDT 

Ready;  T=14.66/24.00  09:09:43

 

The database  manager will  now use the  new directory disk  at address 305. You can  

confirm this when you  start  it. For example: 

  

sqlstart db(SQLDBA) 

ARI0717I Start SQLSTART  EXEC: 05/23/99 16:06:02 EDT. 

ARI0320I The default database name is  SQLDBA. 

ARI0663I FILEDEFS in  effect  are: 

ARISPOOL DISK     SPSPEC    FILE     A1  

ARISQLLD DISK     TEMSQLLD  LOADLIB   Q1  

ARISQLLD DISK     ARISQLLD  LOADLIB   T1  

BDISK    DISK     305  ...

Using Data Spaces Support  with a New Database  

If you  are creating  a new database,  you can specify whether it will  use Data Spaces 

Support  or the  standard DASD  I/O system with  the directory. 

 

Chapter 6. Data Spaces  Support for  VM/ESA 195



To use Data Spaces  Support, you  must  format the  directory  disk  in 4KB  blocks 

when you  create  the database. Run the SQLDBINS EXEC and include  the 

parameter: 

   DIRBLK  (4096)  

The SQLDBINS  and  the SQLDBGEN EXECs  are updated  in VMDSS to accept this 

new parameter. For  example: 

sqldbins db(SQLDBA) dirblk(4096) 

ARI0717I Start SQLDBINS EXEC: 07/19/99 15:02:24  EDT. 

ARI6010D Do  you want to  install English SQL/DS  HELP text? 

         Enter 0(No),  1(Yes), or  111(Quit). 

no  

ARI0720I Default  DB2  Server  for VM  bootstrap file SQLDBA  SQLRMBT  created 

         on the production disk. 

ARI0720I Default  DB2  Server  for VM  bootstrap file SQLDBA  SQLDBBT  created 

         on the production disk. 

ARI0720I Default  DB2  Server  for VM  bootstrap file SQLDBA  SQLISBT  created 

         on the production disk. 

ARI0721I Get  DB2  Server  for VM  production minidisk READ access:  SQLDBA 195. 

  

ARI0717I Start SQLDBGEN EXEC: 07/19/99 15:02:33  EDT. 

  

ARI0633A Please  enter the  CUU of the 

         BDISK disk. 

300  

ARI0647D Do  you want to  do  a CMS FORMAT/RESERVE command on  disk 300? 

         Enter 0(No) or  1(Yes). 

yes  ...

Note:  Make sure  that you answer Yes when asked if you want  to do  a CMS 

FORMAT/RESERVE  (message  ARI0647D).  

To use the standard I/O system, either  include the parameter: 

DIRBLK (512) 

or omit the DIRBLK parameter  entirely.  The default value for DIRBLK is  512. 

For more information on  the standard SQLDBINS and  SQLDBGEN EXEC refer to 

DB2 Server  for  VM System Administration. 

 

196 Performance Tuning Handbook  



Chapter  7. Tuning Performance for Data Spaces  Support  

This chapter  describes  the  various  configuration options and  tuning parameters  

that  you can use to optimize  the performance of  your  application  server  with 

VMDSS.  

Deciding  When to Use Data Spaces 

This section describes  the advantages of using Data Spaces Support  over the 

standard DASD I/O system,  and when  to use Data Spaces Support  with:  

v    Storage  Pools 

v    Internal Dbspaces  

v    The Directory.

Advantages 

The paging system in Data Spaces  Support  can be  much faster and  more  efficient 

than the standard DASD I/O system.  

The data  spaces  act like a large DASD  cache, keeping the most recently  used data 

in the fastest storage. While this is  similar to using a large  pool of  buffers  or DASD 

caching, there are significant advantages to using Data Spaces Support  over these 

two methods. (Refer to DB2  Server for VM  System Administration  for more 

information  on buffer pools.)  

Some of  the  advantages are:  

v    Shorter path length 

v    Asynchronous page fault  processing 

v    Striping  

v    Blocking and prefetching 

v    Dynamic working  storage size management 

v    More asynchronous writes.

These are described in turn below.  

Shorter Path  Length  

There is  a  series of  internal processes between when  the database manager 

requests a page from DASD,  and  when the  operating  system transfers it  to main 

storage. This series is shorter  when you  use Data Spaces  Support  than when you  

use the standard DASD I/O system. 

Asynchronous  Page  Fault  Processing 

Since the operating system treats the buffers  like part of  the  database manager 

code, it may  page them out  to system paging DASD  if it  needs main  storage. 

Whenever the database  manager needs a piece  of code (or a buffer)  that has been 

moved to paging DASD,  it and  all its users  must  wait for that page to return from  

DASD.  

With  Data Spaces Support, you can use a smaller pool of local buffers, decreasing 

the chance of  a buffer being  paged out. If a page fault occurs in a data  space (the 

operating  system cannot find the page in main  or expanded  storage)  the  database 

manager can  proceed with other  users  and  return to the original user when the  

fault  has been resolved.  

 

© Copyright IBM  Corp. 1993, 2007  197



Striping 

When you  use striping, the  database system tries to keep related  data pages 

physically close together on DASD.  (It allocates pages  in groups of 16.) Thus, when 

the operating  system needs  to retrieve related pages from DASD, there  is a good  

chance that the pages  will be located  together. The operating system can then  read 

in a whole series of  pages  with  one  I/O operation, which improves the 

performance of your system.  

Striping also spreads these groups of 16 pages across  all the  dbextents in a storage 

pool. If  the dbextents are on separate physical  devices, the  operating system can 

read several groups  of pages at the  same  time (asynchronously). This improves 

blocking and prefetching (see below), and  helps  you  balance the  load between 

DASD packs. 

Blocking and Prefetching 

When you  use the Data Spaces  Support, the operating  system tracks  the  way you 

access pages. It records which pages  you have  used together  (in  a block) and  the 

order in  which  you  use them. Then, when the database manager requests  a page 

from a data  space,  if the page is on DASD,  CP will start  retrieving  (prefetching) 

other pages  in  the same block in the order you  previously  followed. Since DASD 

I/O can proceed in parallel  (because of  striping),  this effectively places  pages  in 

main storage before the database manager needs  them.  

In  some  cases, the database manager will pass information to the operating  system 

about how  it expects to use pages. The operating  system uses  this information  to 

modify its own  reference pattern and thereby further improve  prefetching. 

Dynamic Working  Storage Size Management  

You can dynamically manage how the  database manager uses main and expanded 

storage: 

v   You can set a target  working storage size (refer to “Target  Working Storage Size 

Parameter”  on page 166)  to control how much main and expanded storage your  

database machine uses. 

v   You can favor some  storage pools over others by  setting their working storage 

residence  priority (refer to “Working  Storage Residency Priorities” on page 166). 

This lets  you improve the  performance  of  critical storage pools,  even  if you  have 

a limited amount of  main and expanded  storage. 

v   You can set a save  interval  (refer to “The  Save Interval”  on page 167). When  the  

number of  blocks  of  modified pages in a data  space exceeds  this  parameter, the  

database manager directs the operating system to write all the  modified pages  in 

that data space to DASD. This reduces the  number of  modified pages in storage. 

As a result,  there are fewer pages  to be saved during checkpoint processing, 

which  reduces checkpoint processing time.

More  Asynchronous  Writes  

With Data  Spaces  Support, the  database manager can write modified pages  back  to 

DASD (refer to “Modifying Pages” on page 162 )  “more”  asynchronously  than  

without it. 

With Data Spaces  Support off:   If the database manager needs  a buffer occupied 

by a  modified page, it first writes  the page to DASD,  then  loads  the buffer with a 

new page. 

 

198 Performance Tuning Handbook  



When  it does  this,  it puts the current agent into  an I/O Wait State until the write  is 

complete. Since the  database manager continues  to service agents that are not in 

wait states, this process  is asynchronous between  agents. 

With Data  Spaces Support on:   When the  database manager writes a modified 

page to a data space,  the current  agent is  not put into  a wait state. The  operating 

system ensures  that the page is eventually written  to DASD (before the  next 

checkpoint)  without  stopping  the current agent. This process is  asynchronous 

within an agent and  therefore more  asynchronous than without Data Spaces  

Support. 

Storage Pool 

We suggest  that you  turn Data  Spaces Support on  for all your  storage pools. Even 

without  adding  main or expanded storage to facilitate  caching, you should see 

performance  improve due to the  advantages of  shorter  path length, striping, 

blocking, and prefetching. 

If you  want  the  additional  benefit of  caching,  you should first consider the cost  in 

main and  expanded  storage. Whenever  you  use Data Spaces  Support, the 

operating  system will  use main and  expanded storage to cache any data the  

database manager uses. If the  database manager needs this  data again, the 

operating  system can retrieve it quickly. However,  if the  cached data is  not used 

very often,  it may be swapped  out  of  main or expanded storage before it  is 

referenced again. If this  happens, you  are using main or expanded storage to cache 

pages  without receiving any of  the  benefit.  Thus, if the  main and  expanded  storage 

in your system is limited,  you should only use caching for your  most active  pools. 

(You can effectively turn caching off for a particular storage pool  without  turning 

Data  Spaces Support off,  by  using working storage residence  priority “1”. Refer  to 

“Choosing Storage Residence Priorities” on  page 201.) 

Internal  Dbspaces  

You  can improve the performance  of  your  database by  using unmapped internal 

dbspaces.  We suggest that you do so  unless  you do  not have enough  VM paging 

DASD (refer to “VM/ESA  Paging DASD” on page 173). 

Unmapped internal dbspaces have the  following advantages over mapped  ones: 

v    You  can use all the  space in your storage pools for public  and private dbspaces.  

v    The database manager never writes  unmapped internal dbspace  pages  to DASD. 

This reduces your overall  DASD I/O, without  affecting the  integrity  of  your  

system. (You do  not need  a record  of  the internal dbspaces to recover your 

database.) Note that the  operating system may still  swap unmapped internal 

dbspace pages  to VM paging DASD.

If you  want  to manage your  internal dbspaces the same  way you  manage all your  

other  dbspaces, you may  want  to use mapped internal dbspaces.  If you  place your  

internal dbspaces in  a  separate storage pool,  you  can turn Data Spaces  Support  on 

or off,  and  set a working  storage residence priority for them.  

For information  on how to customize your database  for internal dbspaces,  refer  to 

“Using Data  Spaces  with Internal Dbspaces”  on page 192. 

 

Chapter 7. Tuning Performance  for Data Spaces  Support 199



Directory 

We suggest that you use Data  Spaces Support with the directory. However, you  

may choose not to if you  need  to switch your  database machine between  XC  mode  

and ESA mode. 

Every time  you switch to a processor  or operating system that does not support 

XC mode (for  example a backup system)  you  must reblock the  directory  disk. 

(Refer to “Reblocking  the  Database  Directory” on  page 193.) 

For information  on how to customize a database to use Data Spaces Support  with 

the directory,  refer  to “Using Data  Spaces  with the  Directory” on page 193. 

Managing  Your Working Storage Size 

Working storage is composed of: 

v   The database manager  code and  the storage it  uses to hold control information 

(control blocks)  

v   The directory  buffers  

v   The local buffers 

v   Data space  pages in main and  expanded  storage, including  those in public, 

private  and internal dbspaces.

While you  do  not have direct  control over  how much storage  the  database 

manager and its control blocks use (refer to DB2  Server for VM  System 

Administration under “virtual storage requirements”), you can control the  amount 

of storage used  by  the  directory buffers, the  local buffers, and by data  space pages. 

The amount of  storage used  by  the directory buffers  is NDIRBUF*560 bytes, where 

NDIRBUF is  the number of directory buffers. This applies whether you are using 

Data Spaces  Support  or not.  The storage used  by  the local buffers  is NPAGBUF*4144 

bytes. (Each  buffer page requires 48 bytes  of  overhead. For example a 4KB page 

requires 4096+48 bytes or 4144 bytes  of  storage.) By reducing or increasing the  

number of  directory and  local buffers you  are using you  can reduce  or increase 

your working  storage. 

There are five parameters to help you manage the number of data space pages  in 

main and  expanded storage  that your  database machine uses. 

v   Target working  storage size 

v   Working storage residency priority  

v   SEPINTDB (mapped  or unmapped internal dbspaces)  

v   Checkpoint interval  

v   Save interval.

These  parameters are discussed in the following sections. 

Choosing  the  Target Working  Storage Size 

The target  working storage  parameter  (TARGETWS) helps you  to balance the  

amount of  main and  expanded  storage used by your  database machine, with  the 

amount used  by other virtual  machines  in your  VM system. 

If you  set TARGETWS too low,  you  may unnecessarily restrict  the amount of  

available storage your  database machine can use. You  may also find  that the  

operating system does not release pages  fast enough and your  current storage size 

always exceeds  your target. If this happens,  some working storage residence 

priorities are not effective. Remember, the  database manager starts releasing  most 

 

200 Performance Tuning Handbook  



pages  when the  target  working storage size  is  reached: if your  current storage size 

is always  greater  than your  target, the database  manager only  keeps those pages  

with a  residence priority of  4 or 5. In this  case, pages  with any other  priority will 

not be differentiated. 

If you  set it  too high, your  database machine may never reach  the  target  you  set. 

VM may not give  your database machine the  amount of  main  and expanded 

storage it asks  for. You  may find that the operating system restricts your  working 

storage size  before the database manager does.  If this happens,  the database 

manager only  releases those pages  with a  residence priority of  1 or 2. 

Once you find  an acceptable target  working storage  size,  it is  important not to let 

your  current size  exceed  it by too much. If it  does  it can  have the same effect  as  

setting TARGETWS too high (VM restricts storage). If your  working storage  is  too 

high, it  means that you are either: 

v    Keeping too many modified pages  in main or expanded storage (reduce 

SAVEINTV) 

v    Using too  many  unmapped internal dbspace  pages  (use mapped internal 

dbspaces instead) 

v    Setting your  storage residence  priorities too high (use a setting  of  3 or less).

For information  on managing modified pages, refer  to “Managing  Checkpoints” on 

page 202,  and for information on  unmapped pages  refer to “Unmapped Internal 

Dbspaces” on page 202. For more information about how  the TARGETWS 

mechanism works, refer to Appendix C, “Why is the  TARGETWS Value  Frequently 

Exceeded?,” on page 215. 

Choosing  Storage Residence  Priorities 

If you  set a realistic  target  working storage size  (large enough to be effective  but  

not so  large as  to overload the operating  system), you  will be able to use storage 

residence  priorities to favor pages  from certain  storage pools. When the  database 

manager copies  a page from a data space into  its buffers, it  checks the  residence  

priority of  that  page. At the default  value of 3, it  releases the  data space page from 

main and  expanded  storage if the  current working storage size  is greater than the  

target. However, the  buffer page stays in the  buffer pool until the database 

manager needs  the space for a new page. 

For most applications,  the default priority should be correct. However,  if you can  

identify  certain storage pools as “high  priority” pools that contain 

performance-critical  dbspaces,  you can favor them by assigning them a  high 

residence  priority.  Low priority pools can  be assigned a  low residence  priority.  

You  can assign one  of five  storage residence  priorities:  

1 The  database manager always releases  pages  when  possible, 

regardless  of  the  current working storage size. This effectively  

turns  caching off.  (For  low re-used  pages.) 

2 The  database manager always releases  pages, except index pages, 

when  possible. It will  only  release index pages  when the current  

working  storage size  exceeds your  target. (For low re-used pages, 

randomly accessed using indexes.) 

3 The  database manager releases pages  when the current working 

storage size  exceeds  your target. This is  the  default  priority. 

4 The  database manager releases data pages when the current  

 

Chapter 7. Tuning Performance  for Data Spaces  Support 201



working storage size  exceeds  your target. It does not release index 

pages. (For  high  re-used pages, randomly accessed using indexes.)  

5 The database  manager never releases pages. (For  only the  most 

re-used or most important pages  where dbscans are frequent.)

Table 13 summarizes the  five storage residence  priorities. An R indicates that the 

database manager releases a page from main and  expanded storage  after  it has 

been moved to a local  buffer. 

 Table 13.  Storage Residence Priorities 

Page Type 

Current  Working 

Storage  Size Working  Storage Residence Priority 

1 2 3 4 5  

Data ≤ target R R 

> target R R R R 

Index ≤ target R 

> target R R R 

  

Unmapped Internal  Dbspaces 

Whether you  are using mapped or unmapped internal dbspaces also affects your 

current working storage size.  (The operating  system controls it by moving pages  

from main storage to and  from system paging DASD.) However,  unmapped pages  

are included in  your  total current working storage  size,  and  can inflate it beyond  

your target.  

For example, if you are performing operations  that use large amounts of  internal 

dbspace storage (creating large indexes, or sorting  large tables), you may  fill  

unmapped internal dbspaces with  pages  that are not released until the index  or 

sort is complete. Even  if this increases  your current working storage above your  

target, the  database manager will not release  internal dbspace pages internal 

dbspace pages  when it no longer needs  the internal dbspace; frequently not until 

the end  of a logical  unit of  work. 

Managing  Checkpoints  

A checkpoint  is an internal operation where the database  manager writes modified 

data and  status  information  to DASD,  and writes  a summary  status  record  to the 

log. 

When the  database manager  takes a checkpoint:  

v   It writes all modified data  and directory pages  back  to DASD.  

v   It frees all  shadow pages.  (Whenever it “modifies” a page in a storage pool,  it 

creates a new page in the  same  pool, and keeps the original as  a shadow page.) 

v   It writes the log  buffer out  to the log disks.  

v   If LOGMODE=Y  (no archive),  the  database manager clears space in the log up to 

the  beginning of the oldest LUW  still active  when the checkpoint is taken.  

v   It updates the  directory pages  to account for released shadow pages  and 

updated  page allocation maps.

A checkpoint  has two performance  implications: 

 

202 Performance Tuning Handbook  



v    It performs a high  amount of  I/O to DASD. It writes all the modified buffer 

pages and  data space pages back  to DASD,  and  updates the directory disk. 

v    It holds up processing.  User agents must  wait until the  checkpoint is  finished 

before they can proceed.

Choosing  the Checkpoint Interval 

To control the duration  between  database checkpoints, use the  CHKINTVL 

initialization parameter. This parameter  specifies how many log pages the  database 

manager will  fill  before it takes  its next checkpoint.  

Setting  the Time  Between Checkpoints 

The time  between  checkpoints  depends on the number of modifications you  make 

to the  database. If logging  is turned on,  the database manager writes  to the  log 

every  time you perform an  insert, update,  or delete. The more modifications you  

make, the  faster you will reach  a  checkpoint. If you  only  perform queries, the 

database manager may never perform a checkpoint.  

We recommend  that you adjust the  CHKINTVL parameter so  that the database 

manager takes  a checkpoint every 10 to 15 minutes. Should  you experience a 

system error,  it should  take  you no longer than 10 to 15  minutes to restart the 

database manager after you  have recovered your system.  If you  adjust  CHKINTVL  

so  that  checkpoints occur  less frequently, for example every four hours,  it may  take 

up to or more than four  hours to restart your  database.  

If you  set the  CHKINTVL parameter  too low, you minimize  the  risk of  filling the  

log or storage pools. However, while each checkpoint is  faster,  you  increase the  

overall number of  checkpoints. 

If you  set it  too high, you  lower the overhead associated with  checkpoint 

processing. However, you  risk filling the  log and storage pools,  and  you increase 

the time required to complete  a checkpoint.  It may  also take longer  to recover  from 

a system error. 

Choosing  the Save Interval 

The SAVEINTV  parameter limits the  number of  modified pages  in main and  

expanded storage. When  the number of  blocks of  modified pages  in a  data space  

exceeds  this  parameter, the  database manager directs the operating system to write 

all the  modified pages  in that data space to DASD.  

This is done  asynchronously,  meaning  that the database manager can continue 

servicing other users while  the save completes. 

If you  set the  save  interval  appropriately, you can reduce the  time it takes  to 

perform a checkpoint.  While the  checkpoints will take  place at the same  intervals 

(the database  manager still fills log pages  at the same  rate),  they will be  shorter  

because there will  be fewer  modified pages  to write to DASD.  

While  the default  setting  should  work well for most databases, you may  consider 

changing  it. If you find that your  checkpoints  take too  long, reduce SAVEINTV. If 

checkpoint processing is  not a problem, consider increasing it. 

You  may also need  to reduce  SAVEINTV if your current  working storage size  is  

always  much larger than  your target. The database manager does  not release  

modified pages  from main storage until a save  interval  or a checkpoint. So  if you 

 

Chapter 7. Tuning Performance  for Data Spaces  Support 203



are using a high  SAVEINTV, and  performing  many inserts,  updates,  or deletes,  the 

database machine may keep too  many  modified pages  in main  storage. 

You can compare the  number of  times the  database manager requests the  operating  

system to save  pages  to the number of times it performs  a checkpoint, by  using the  

COUNTER and  COUNTER INTERNAL  operator  commands. The  COUNTER 

command displays the  CHKPOINT counter,  which records the  number of  

checkpoints that occurred since the last  time  you  reset the  counter. The  COUNTER 

INTERNAL command displays the  SAVEGNRL counter. SAVEGNRL counts  the  

number of  times the  database manager directs the operating  system to write all the 

modified pages  in  a data space to DASD.  If you  reset both  the CHKPOINT and 

SAVEGNRL counters  at the same time, you  can monitor  the number of  save  

requests between  each checkpoint.  

For more information on  the COUNTER and  COUNTER INTERNAL  operator  

commands, refer  to the DB2 Server  for  VSE & VM Operation  manual.  

Using Striping  

Striping evenly distributes all new and  modified pages  across all  the dbextents in a 

storage pool. We suggest  that you  use striping, even  if you are not using Data 

Spaces Support. 

For information  on how to use striping, refer  to “Turning  Striping On and  Off” on 

page 190. 

With One Dbextent Per Pool 

You may choose not to use striping  for a particular storage pool if it  has only one  

dbextent, because in that case the database manager cannot distribute your  data 

across several dbextents  in the storage  pool. 

However, even  with only  one  dbextent you may  find a small  performance 

improvement. The database manager  still allocates space on the disk in blocks of  

16 4KB-pages. By doing  this  it improves  the probability that the pages you  need  

are close together. 

One Dbextent Per Device 

For the storage pools that will use striping, it is recommended  that you  assign each 

dbextent in the  pool to a separate physical  storage device. While the  database 

manager distributes pages  across dbextents, it  does not recognize whether those 

dbextents are on the same  physical  device or several different  ones.  If you  assign 

two dbextents to one physical  storage device, performance  will  be degraded, 

because the  database manager cannot retrieve  pages  from both  dbextents in 

parallel. 

Dbextent Size 

If you  plan to use striping,  you should define several dbextents of  the  same  size in 

each storage pool. If you have large and  small  dbextents  mixed  in the same  pool,  

you may  find that  the database  manager does  not distribute pages evenly across  

them. Rather,  it distributes pages  across  all the  dbextents until the smallest one  is 

full. It then  continues  to fill  the larger  dbextents.  

 

204 Performance Tuning Handbook  



Number  of Dbextents  

For best  performance, use at least four  dbextents per storage pool. CP will only  

prefetch pages  from four  dbextents in a storage pool simultaneously. Any less than 

four  means that CP does  not have  as  many  devices as  possible  to prefetch from in 

parallel.  (Refer to “Blocking and Prefetching”  on page 198 for more information on 

prefetching.)  

Using Striping with Existing Data 

Striping only evenly distributes new or modified pages. It  does  not reallocate 

existing pages. To ensure that striping works with all  your pages, unload all the  

dbspaces in  your  database,  and reload them with striping  turned on. This makes 

all the  pages  “new pages”. 

Choosing  Logical or Physical  Mapping 

Logical  mapping is  the default  and  recommended  type  of  mapping  for most 

applications. However, applications that perform mostly  updates may perform 

better with physical  mapping. 

Because you  can only  change the mapping  parameter  at startup time, you  should  

always  use logical  mapping  for your  production  applications,  and  consider 

physical  for single-user-mode dataloads. 

Real  Storage Requirements for Data Spaces 

For each data space,  CP must  keep  one  real storage page until the  database is shut 

down. If you  are using VMDSS with many databases or with a very large 

database,  and  have a constrained real storage environment, this will further reduce 

any real storage availability and increase system paging.  

The only  way to increase real storage availability in these  situations is  to reduce 

the number of  databases using data spaces, or reduce  the number of  storage pools 

which  are mapped to data spaces, or both.  

For each data space which is less than or equal  to 1024 megabytes,  CP must  keep  

one  real storage page until the database is  shut  down. 

 

Chapter 7. Tuning Performance  for Data Spaces  Support 205



206 Performance Tuning Handbook  



Appendix A.  Storage  Pool  Specification File Format 

This appendix describes  the format and syntax  of the  control  file used  to tailor 

VMDSS.  

For an overview of  storage pool specifications, refer to “Storage Pool 

Specifications” on page 188. For a step  by  step  description of  how to use the 

storage pool specification  file, refer  to “Changing Storage Pool Specifications at 

Startup”  on page 189.  

File Format  

The storage pool specification file must  have a fixed record length of  80 characters. 

It can include three  types  of  lines: 

Data Specifies a storage pool or a series of  pools,  and each pool’s VMDSS 

operating parameters. (See below.) 

Blank Allowed anywhere in the file. 

Comment 

Any line that begins  with two  dashes  (--)  is  a comment  line. You  can  also 

include a comment  at the  end of a data line by adding  two  dashes there. 

(See below.) The comment  ends at the  end of the line.

Data Line Syntax  

Each data line of the storage pool specification file  follows the following syntax:  

 

n1  Specifies that you want  to change  the  specifications for storage pool n1. 

Valid values are integers from 1 to 999. 

n2  Specifies a range  of  storage pools from n1  to n2.  Valid values are integers 

from 1 to 999. n2  must  be greater  than or equal to n1.  

BLK  Turns Data  Spaces  Support  off for the storage pools you specify. 

DS Turns Data  Spaces  Support  on for the  storage pools you specify. This is the  

default. 

n  Sets the  working storage residency  priority of  the storage pools you specify 

to n. Valid values are integers from 1 to 5.  The default value  for n  is 3.  

STR Turns on striping for the storage pools you  specify. This is the default. 

►►
 

n1

 

-n2

 (1) 

BLK

 

3

 

DS

 

n

 (1) 

STR

 

SEQ

 

--comment

 

►◄

 

Notes:   

1 You must include at  least one of  these  blocks.

 

© Copyright IBM  Corp. 1993, 2007  207



SEQ Turns  off striping  for the storage pools you specify. The database system 

will  allocate  pages sequentially on DASD.  

comment 

You  can include a comment  at the end of  the  data line.  Precede  it with two 

dashes  (--).

Note:  If you  do  not include a storage pool in the storage  pool  specification file, the  

database system will use all the  default  settings for that storage pool. 

Ordering Data Lines 

The database manager reads the storage pools specification  file  from the  top  down, 

reading each specification  in sequence. It  starts with  every pool’s specifications set 

to the default  values,  and updates the  current settings with every  line it 

encounters. For example, consider the following specification  file: 

 

 As the  database manager reads the file, pools 1 through 5 will  all start  with Data  

Spaces Support  on,  a working  storage residency priority of 3, and  striping  on.  

Line 1 Turns  striping  off for pools 4 and  5 

Line 2 Sets the working  storage residency priority for pool 1 to 2 

Line 3 Sets the priority  for pool  4 to 5.  

Line 4 Turns  Data Spaces Support  off for pools 2 and  3.

You can also achieve the  same  results with the following specification file: 

 

 While both files are effectively the  same, the  second file defines each pool without  

relying on default  values and  is much  easier  to read and decipher. 

Specification File Example 

Consider a database where  you  want  to: 

v   Turn on striping  for storage pools 1 to 10 

v   Turn off striping  for storage pools 11 to 20 

v   Only use Data Spaces Support  for storage pools 2,  5,  10, 11, and  15 to 20 

v   Set the working  storage residency priority to 2 for storage pools 10, 11, and  15 to  

19 

     -- Storage  Pool Specification File 

  

     4-5   SEQ  -- Line 1 

     1     DS2  -- Line 2 

     4     DS5  -- Line 3 

     2-3   BLK  -- Line 4 

     -- Storage  Pool Specification File 

  

     1     DS2 STR 

     2     BLK STR 

     3     BLK STR 

     4     DS5 SEQ 

     5     DS3 SEQ 

 

208 Performance Tuning Handbook  



v    Use the  default  residency priority (3) for pools 2, 5,  and  20.

Your storage pool specification  file  should  look like  this:  

 

 While  you could have also coded  your  file like the  following example, you  may 

find it difficult  to interpret: 

   

     -- Storage Pool  Specification File 

  

     1      BLK STR  

     2      DS  STR  

     3-4    BLK STR  

     5      DS  STR  

     6-9    BLK STR  

     10    DS2 STR  

     11    DS2 SEQ  

     12-14  BLK SEQ  

     15-19  DS2 SEQ  

     20    DS  SEQ  

     -- Storage Pool  Specification File 

  

     11-20  SEQ 

     1      BLK 

     3-4    BLK 

     6-9    BLK 

     12-14  BLK 

     10-11  DS2 

     15-19  DS2 

 

Appendix A. Storage Pool Specification File Format  209



210 Performance Tuning Handbook  



Appendix B.  Determining Number  of Data  Spaces 

This appendix describes  how to calculate  the  maximum number of  data spaces 

your  database machine will  need, and  their  total size.  It also describes how to 

determine how many spaces your database  machine is currently  using. 

Maximum  Number  of Data Spaces 

To calculate  the maximum number of data spaces  that your database may use, 

follow the instructions  for the type of  mapping  you  are using (logical  or physical). 

(Logical is  the default  and  suggested  type of mapping for most applications.) 

Logical Mapping 

If you  are using logical  mapping, you  can calculate the  maximum  number of  data  

spaces  by  selecting  the correct formula  from Table 14. Substitute the total  number 

of  public, private  and internal dbspaces in your  database into  the formula. You  

should  also substitute Number of  Data  Pages by 262144 and 131072 for 32 bit and  

64 bit CP addressing mode  respectively.When  appropriate also substitute the 

number of  cylinders  in your directory  disk and the  conversion factor for your  

directory  disk  s  DASD type.  (Use  Table 15 to look up the  directory conversion 

factor for your  database.) 

 Table 14.  Calculating the  maximum number of data  spaces your  database will use with 

logical mapping.  

Unmapped 

Internal 

Dataspaces 

Data  Spaces 

used  with the 

SQL/DS  

directory  

Formula for  Maximum Data Spaces (Round up to the 

nearest interger) 

No No  Total of  Public,  Private and Internal dbspaces divided by 

Number  of  Data Pages 

No Yes (Total of  Public, Private and Internal dbspaces divided by 

Number  of  Data Pages) + (Total  Directory dbspaces 

divided by the Conversion  Factor)  

Yes No  (Total of  Public  and Private dbspaces divided  by Number 

of  Data Pages)  + (Total Internal  dbspaces divided  by 

Number  of  Data Pages) 

Yes Yes (Total of  Public  and Private dbspaces divided  by Number 

of  Data Pages)  + (Total Internal  dbspaces divided  by 

Number  of  Data Pages) + (Total  Directory dbspaces 

divided by Conversion Factor)

  

 Table 15.  Directory Conversion Factor (For use with 4KB  directory  pages) 

DASD Type 3350 3375 3380  3390 9345 

Conversion Ratio 4369 5461 3495  2912 3495 

  

Example 

Consider a database  where you are planning  to use the directory  with data  spaces, 

and  unmapped internal dbspaces.  It has a total of  640,000  pages allocated to public 

and  private dbspaces, and  80 internal dbspaces of  1024 pages  each. It also has a 

40-cylinder 3380 directory disk. 

 

© Copyright IBM  Corp. 1993, 2007  211



Choosing the  bottom formula  for 32 bit CP addressing mode, you  would  perform 

the following calculation:  

 

Note:  If you  have a storage constrained environment,  please see “Real Storage  

Requirements for Data Spaces”  on page 205. 

Physical  Mapping 

If you  are using physical  mapping, you  can calculate  the  maximum number of  

data spaces from the results  of a SHOW POOL operator  command.  Add the total 

number of  pages  in  each pool  to the total number of  pages  in free areas  (deleted  

dbextents) and substitute this number into  the  correct formula in Table  16.  When 

appropriate also substitute the number of internal dbspace pages, the number of 

cylinders in  your directory disk, and  the  conversion factor for your  directory  disk’s  

DASD type. (Use  Table  15 on page 211 to look  up the  directory  conversion factor 

for your database.)  

 Table  16. Calculating the maximum number of  data spaces your database  will  use  with  

physical mapping.  

Unmapped  

Internal 

Dataspaces  

Data Spaces 

used with the 

SQL/DS  

directory  

Formula  for  Maximum  Data  Spaces (Round  up to the 

nearest  interger) 

No  No  Total  number  of  pages from SHOW POOL  divided by 

Number  of  Data Pages 

No  Yes (Total  number of  pages from SHOW POOL  divided by 

Number  of  Data Pages)  + (Total Directory dbspaces 

divided  by the  Conversion Factor) 

Yes No  (Total  number of  pages from SHOW POOL  divided by 

Number  of  Data Pages)  + (Total Internal  dbspaces divided  

by Number  of Data Pages)  

Yes Yes (Total  number of  pages from SHOW POOL  divided by 

Number  of  Data Pages)  + (Total Internal  dbspaces divided  

by Number  of Data Pages)  + (Total Directory dbspaces 

divided  by Conversion  Factor)

  

Example 

Consider a database in 32 bit CP addressing mode where  you are not planning to 

use the  directory  with data spaces or  unmapped internal dbspaces.  The following 

SHOW POOL was  performed for the  database:  

 640000      81920      40 

 -------     ------    -----  

 262144      262144    3496  

  

 = 2.441 + 0.312 + 0.011  

  

 = 3 + 1 + 1 =  5  Data  Space 

 

212 Performance Tuning Handbook  



show pool  

  

POOL NO.   1:          NUMBER  OF  EXTENTS =  3 

  

EXTENT   TOTAL    NO. OF         NO. OF       NO. OF      % 

NO.     PAGES  PAGES USED    FREE PAGES  RESV PAGES  USED 

  1      285      274            11                    96  

  2      285       33            252                    11  

  6      741        0           741                    0 

TOTAL   1311      307          1004          20        23  

  

POOL NO.   2:          NUMBER  OF  EXTENTS =  3 

  

EXTENT   TOTAL    NO. OF         NO. OF       NO. OF      % 

NO.     PAGES  PAGES USED    FREE PAGES  RESV PAGES  USED 

  3      114        2           112                    1 

  4      114        0           114                    0 

  9      114        0           114                    0 

TOTAL    342        2           340           20        0 

  

POOL NO.   4:          NUMBER  OF  EXTENTS =  1       SHORT ON  STORAGE 

  

EXTENT   TOTAL    NO. OF         NO. OF       NO. OF      % 

NO.     PAGES  PAGES USED    FREE PAGES  RESV PAGES  USED 

 10       285      260            25                    91  

TOTAL    285      260             25           20        91  

  

  

FREE AREAS:   NUMBER OF  DELETED EXTENTS =  3 

  

EXTENT   TOTAL 

 NO.    PAGES 

  (2+)     57 

  5      171 

  7      228 

  8      342 

 END    9552 

TOTAL  10350 

  

Maximum number  of  DBEXTENTs = 64  

ARI0065I Operator command  processing is  complete.

 

By adding  the  underlined values you get the total number of  data  spaces  pages  

required. 

     1311  

      342 

      285 

       57 

      171 

      228 

    + 342 

     2336   data space  pages 

Since this number is less than  262144 (as 32  CP  environment) , you  will  only  

require one  data space. (Select  the  first formula. Divide  2336 by 262144 and round 

up to the nearest  integer.)  

Note:   If you have a storage constrained environment, please see  “Real Storage 

Requirements  for Data  Spaces” on page 205.

 

Appendix  B. Determining  Number of  Data Spaces  213



Maximum Total  Size 

To determine the maximum total size of the data  spaces, multiply  the total number 

of data spaces  by  1 gigabytes. For  example, if you required 4 data spaces  your  total 

size would be:  

 4 × 1 = 4GB 

Remember that  this value is the  maximum  amount of  virtual  storage that your 

database machine will  use. You do  not need  to purchase 8GB  of  main  storage. 

Displaying Current  Data  Spaces 

You can display information  on the current  address spaces available for your  

database machine with the CP  QUERY SPACES command. For example, the 

following command was issued at the operator console:  

#cp  query spaces  

CP  QUERY SPACES 

ASIT               STORAGE   P/S  SPACE IDENTIFICATION 

03EF750000000002        17M   PRV  SQLDBA:BASE 

03EF758000000004     29952K   PRV   SQLDBA:DIR0000000000  

03EF75C000000003        87M   PRV  SQLDBA:MAP0000000000 

03EF754000000005       200M   PRV   SQLDBA:UNM0000000000

 

The first address  space,  BASE, is  the primary space for the database  machine. DIR, 

MAP, and  UNM  identify  data spaces  for the  directory, storage pools, and  

unmapped internal dbspaces respectively. (Remember that a data  space is an 

address space  that contains  only  data. You cannot  run programs  from a data space;  

they must  first be loaded into a primary  address space.) 

If the database machine required an additional data space  for its  storage pools, it  

would be identified as  MAP0000000001. The size of each address space is listed  

under STORAGE. 

Do not be surprised if you do  not see  all the  data spaces you expect. VMDSS 

creates spaces  as  it needs  them. For example, a data space will  only  be  created for 

unmapped internal dbspaces when  you request a sort that cannot  be contained in 

the local  buffer pool. 

For more information on  this command refer  to VM/ESA:  CP Command and Utility 

Reference. 

 

214 Performance Tuning Handbook  



Appendix C.  Why is  the TARGETWS Value Frequently  

Exceeded?  

To understand why the  TARGETWS value  is exceeded  by the amount  of  real 

storage actually used by  the  database when  it is  using DB2 Data  Space Support 

(known as VMDSS),  let’s look  at how TARGETWS operates and  how VM/ESA  

manages  real storage. 

First,  remember that CP  controls real storage. However,  VMDSS can  influence how  

CP manages the  real storage that DSS uses (by  the TARGETWS value, REFPAGE 

macro, and  RELPAGE macro).  

Second, VMDSS does not remember all of the pages  that are or have been in real 

storage. This is partly a trade off—if VMDSS remembered everything,  a lot  of  CPU 

time  would be  spent keeping track. In  addition,  it is not possible  for VMDSS to  

actually know everything that is in real storage. For example, VMDSS does  not 

know  what  CP does  for the  database machine.  CP may be  stealing away pages 

before VMDSS can release them.  This is usually not a  problem, and  can reduce the  

database’s  storage usage. 

There is  another CP  effect that is frequently overlooked. When  VMDSS references a 

data space page that is not in real storage, CP brings in that page from DASD,  and  

may also bring in other pages  in a block. In  some  cases, these  are extra pages  that 

the database expects will  be needed and has told CP to block together  using the  

REFPAGE macro. However, CP may  bring in extra  pages based  on its own 

estimation of previous page usage. In  both  of  these  cases, VMDSS does  not know  if 

CP brought in extra  pages or not. Even  if the database gives CP some  REFPAGE 

information, CP  uses the current  system load to decide if it will  bring  in extra 

pages  or not, and if  so, how many. 

What this really means is  that VMDSS does not know exactly what  real storage is 

being  used  for which data space pages  at any moment  in time. 

Third, VMDSS has only  one method  of  reducing the usage  of  real 

storage—releasing pages using the  RELPAGE macro. The RELPAGE  macro notifies 

CP that  a specific data space  page (or range of  pages)  is no longer  needed  and that 

CP can immediately  reuse the  real storage frame that currently holds that virtual 

data space page (assuming CP has not already stolen that page frame). Also,  

remember that VMDSS uses RELPAGE at specific points when  using data space 

pages. 

Most  important, is when a  data space  page is moved from the  data space into  a 

database local  buffer. Once  the  page’s contents are copied into  the local buffer,  it 

can be  released.  This implies that a page is  NOT released unless it is  moved into a 

local buffer. Also (ignoring the extra  complications caused by the Working Storage  

Residency Priorities), page releasing also only occurs when  the TARGETWS setting 

is exceeded. 

VMDSS Usage Scenario 

Let’s take  a look at a VMDSS usage  scenario to see  how both VMDSS and  CP react  

to changing  circumstances.  

 

© Copyright IBM  Corp. 1993, 2007  215



Assume that the system is  initially lightly  loaded. There is an abundance of  real 

storage available for use, and the  database is brought up. Of course,  the  database 

storage usage starts small -  less than  the TARGETWS value.  At  this point, assume 

that  there  is light usage  of  the database. So, data space pages  are referenced, paged  

in, moved to the  local buffers  and  NOT RELEASED  (assuming  the  Working 

Storage Residency  Priorities are all 3). 

As time  passes,  the storage size  of  the  database increases. In  this unconstrained  

environment, CP may bring  in extra pages  (beyond those requested  by  the 

database). CP will not be  stealing pages; there  is still free real storage  available  and  

no contention for it. Eventually, the database storage size  exceeds the  TARGETWS 

value. Now, VMDSS begins  to release  NEW data space pages  as  they are used, but  

it cannot release any of  the  previously used pages. Note that, at this point, the 

database storage size  still exceeds  the TARGETWS,  and  nothing  will be  done at 

this time to reduce this.  VMDSS cannot  release  old pages, CP is not stealing them,  

and CP  may still  be bringing  in extra pages  (there is still free  real storage 

available). 

So the  storage size  continues  to increase and  continues  to exceed  the  TARGETWS. 

Eventually the amount of  free  real storage becomes scarce,  and this causes  CP to 

do two  things.  First,  CP will  reduce,  and  finally stop, bringing in extra pages  when 

a page is requested  by  VMDSS (and will also  begin  ignoring REFPAGE  requests by 

VMDSS). Second, CP  will begin stealing pages  away from the database,  so  that real 

storage page frames can  be reused  by  other  data space pages needed  by  the 

database (at this point, the  database and  the  VM system are handling light loads). 

However, these  actions all have no overall effect  on the  database storage size.  It 

still greatly exceeds  the TARGETWS value, even though VMDSS has been doing 

RELPAGE’s for quite  a while now. In general, VMDSS is  releasing pages  as fast as 

it requests them, and  CP is only  stealing away pages  as  fast as  the database needs 

new ones.  The net  effect  is to simply maintain the database  storage size  at a 

constant value,  which  still exceeds the TARGETWS value. 

Now, let’s assume that the VM  load starts  to increase.  More real storage will  be 

needed for other users  besides  the database.  CP will begin  stealing away more  and  

more of  the  database’s  storage for use by other users.  Therefore, the database  

storage size finally begins to decrease. CP is  stealing pages  and VMDSS is releasing 

pages faster than VMDSS is requesting them.  Eventually, the  database storage size  

will decrease  until it is less than the TARGETWS value. Therefore, VMDSS stops 

releasing pages. At  this point, VMDSS is requesting pages  and CP is  stealing 

others. 

If the VM system load remains relatively  constant, the  database storage size  will  

remain close to (but usually exceeding  slightly) the TARGETWS value because  CP 

will be  stealing away pages about  as fast as VMDSS can request  them. 

However, if the VM  system load continues to increase, CP will  be stealing away 

pages faster than VMDSS can request  them. The database storage size  will  

continue to decrease and  will  now remain below  the TARGETWS value because  

VMDSS cannot request  pages  faster than CP can steal  them. Eventually, some  

minimum database storage size will be  reached where the  rate  of  CP stealing pages 

equals the rate of  VMDSS page requests, which will be  below the  TARGETWS.  

In  certain  storage-constrained environments, CP never seems  to be able to prevent 

VMDSS from taking ″too much″  storage. In  this context, ″too  much″ simply means 

that  other  VM  users  must wait for storage and thus their  response time suffers. In 

 

216 Performance Tuning Handbook  



these  cases, the  only  solution (without adding  extra real storage)  is to issue the  CP 

SET  SRM MAXWSS n%  command to set a system-wide  storage size  restriction 

AND to remove the QUICKDSP  option from the  database user ID.  This is a fairly  

drastic measure  because removing QUICKDSP will degrade  the database user’s  

response times.  If QUICKDSP  is  not removed, then  the  ″SET SRM MAXWSS″ 

setting will NOT affect  the database machine’s  real storage usage. 

 

Appendix C. Why is the  TARGETWS Value Frequently Exceeded? 217



218 Performance Tuning Handbook  



Notices 

IBM may  not offer the products,  services,  or features  discussed in this document  in 

all countries.  Consult your  local IBM representative for information  on the  

products and services currently available  in your area. Any reference to an IBM 

product, program,  or service  is  not intended to state or imply that only  that  IBM 

product, program,  or service  may  be used. Any  functionally equivalent product, 

program, or service that does  not infringe any IBM intellectual property  right  may  

be used instead.  However, it is  the  user’s  responsibility to evaluate and  verify  the  

operation of  any non-IBM product, program, or service. 

IBM may  have patents  or pending patent applications covering subject matter 

described in  this  document. The furnishing  of  this document does  not give  you 

any license to these  patents. You  can send license inquiries, in writing,  to: 

IBM Director  of  Licensing 

IBM Corporation 

North Castle Drive 

Armonk, NY 10594-1785 

U.S.A.

For license inquiries regarding double-byte  (DBCS)  information, contact the IBM  

Intellectual Property  Department in your  country or send inquiries, in writing, to: 

IBM World Trade Asia Corporation 

Licensing 

2-31 Roppongi 3-chome,  Minato-ku 

Tokyo 106,  Japan

The following paragraph does  not apply to the United Kingdom  or any other  

country where  such provisions are  inconsistent with local law: 

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS  

PUBLICATION  “AS IS” WITHOUT  WARRANTY OF ANY KIND, EITHER 

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE  IMPLIED 

WARRANTIES  OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS 

FOR  A PARTICULAR  PURPOSE.  Some states  do not allow disclaimer of  express or 

implied warranties in certain transactions, therefore, this statement  may not apply 

to you. 

This information  could include technical inaccuracies or typographical  errors. 

Changes  are periodically made to the  information  herein; these  changes will be  

incorporated in  new editions of  the  publication.  IBM may  make improvements 

and/or  changes in the  product(s)  and/or the program(s) described in this 

publication at any time without  notice.  

Any references in  this information  to non-IBM Web sites are provided for 

convenience only and  do  not in any manner serve  as  an endorsement  of  those Web 

sites.  The materials at those Web  sites  are not part of  the materials for this IBM 

product  and use of  those Web sites is  at your own  risk.  

IBM may  use or distribute any of the information  you  supply in any way it 

believes  appropriate without  incurring  any obligation to you. 

 

© Copyright IBM  Corp. 1993, 2007  219



Licensees of  this program who  wish to have  information  about  it for the  purpose 

of enabling: (i) the exchange of information between  independently  created 

programs and  other  programs  (including this one) and (ii) the  mutual  use of  the  

information which  has been exchanged, should  contact:  

IBM Corporation 

Mail Station  P300  

522 South Road  

Poughkeepsie, NY 12601-5400  

U.S.A

Such information  may  be available, subject to appropriate  terms  and  conditions, 

including in  some  cases, payment  of a fee. 

The licensed program described in this information and  all licensed material 

available for it  are provided by  IBM  under terms  of  the IBM Customer  Agreement, 

IBM International Program License Agreement,  or any equivalent agreement 

between us. 

Any performance  data  contained herein was determined in a controlled 

environment. Therefore, the results  obtained in other  operating  environments may 

vary significantly.  Some  measurements may  have been made  on development-level  

systems and  there is no guarantee  that these measurements will be the  same  on 

generally available systems. Furthermore, some measurement  may have  been 

estimated  through  extrapolation. Actual results  may vary. Users of  this document  

should verify the applicable data for their  specific environment. 

Information concerning non-IBM products was obtained from  the suppliers of  

those products,  their published  announcements, or other  publicly available  sources. 

IBM has not tested  those products and cannot confirm  the accuracy  of  

performance, compatibility, or any other claims  related  to non-IBM products.  

Questions on the capabilities of  non-IBM products  should  be addressed to the 

suppliers of  those products.  

All statements regarding IBM’s future direction or intent are subject  to change or 

withdrawal without  notice,  and represent goals and objectives  only. 

This information may contain examples of  data  and  reports used in daily  business  

operations. To illustrate them as completely as possible, the examples include the 

names of individuals, companies, brands, and  products.  All of  these  names are 

fictitious and  any similarity to the names and addresses used  by  an actual  business  

enterprise is entirely  coincidental.  

COPYRIGHT LICENSE: 

This information may contain sample application  programs in source language, 

which illustrates programming techniques on various  operating  platforms.  You  

may copy,  modify, and  distribute these sample programs in any form  without  

payment to IBM,  for the purposes of  developing, using, marketing,  or distributing 

application programs  conforming to the application  programming interface  for the 

operating platform  for which the sample programs are written. These examples 

have not been thoroughly  tested  under all conditions.  IBM, therefore, cannot  

guarantee or imply reliability,  serviceability, or  function of  these  programs. 

 

220 Performance Tuning Handbook  



Trademarks  

The following terms are trademarks of  International Business Machines  

Corporation in  the  United States,  or other countries,  or both:  

   CICS  

   CICS/VSE  

   DataPropagator  

   DATABASE 2 

   DB2  

   DRDA 

   IBM  

   QMF  

   OS/390  

   SQL/DS  

   VM/ESA  

   VSE/ESA  

Microsoft, Windows, Windows  NT,  and the Windows  logo are trademarks of  

Microsoft  Corporation in  the United States,  other countries, or both. 

Other company, product, and service names may be  trademarks or service marks 

of  others. 

 

Notices 221



222 Performance Tuning Handbook  



Bibliography  

This bibliography lists publications that are 

referenced in  this manual or that may be helpful. 

DB2 Server for VM Publications 

v   DB2  Server for VSE  & VM  Application 

Programming, SC09-2889  

v   DB2  Server for VSE  & VM  Database 

Administration, SC09-2888  

v   DB2  Server for VSE  & VM  Database Services  

Utility, SC09-2983 

v   DB2  Server for VSE  & VM  Diagnosis Guide and 

Reference, LC09-2907  

v   DB2  Server for VSE  & VM  Overivew, GC09-2995 

v   DB2  Server for VSE  & VM  Interactive SQL Guide 

and Reference, SC09-2990  

v   DB2  Server for VSE  & VM  Master Index and 

Glossary, SC09-2890  

v   DB2  Server for VM  Messages and Codes, 

GC09-2984 

v   DB2  Server for VSE  & VM  Operation, SC09-2986 

v   DB2  Server for VSE  & VM  Quick Reference, 

SC09-2988 

v   DB2  Server for VM  System Administration, 

SC09-2980 

v   DB2  Server for VSE  & VM  Performance Tuning 

Handbook, GC09-2987 

v   DB2  Server for VSE  & VM  SQL Reference, 

SC09-2989

DB2 Server for VSE Publications 

v   DB2  Server for VSE  & VM  Application 

Programming, SC09-2889  

v   DB2  Server for VSE  & VM  Database 

Administration, SC09-2888  

v   DB2  Server for VSE  & VM  Database Services  

Utility, SC09-2983 

v   DB2  Server for VSE  & VM  Diagnosis Guide and 

Reference, LC09-2907  

v   DB2  Server for VSE  & VM  Overivew, GC09-2995 

v   DB2  Server for VSE  & VM  Interactive SQL Guide 

and Reference, SC09-2990  

v   DB2  Server for VSE  & VM  Master Index and 

Glossary, SC09-2890  

v   DB2  Server for VSE  Messages and Codes, 

GC09-2985 

v   DB2  Server for VSE  & VM  Operation, SC09-2986 

v   DB2 Server  for  VSE System Administration, 

SC09-2981 

v   DB2 Server  for  VSE & VM Performance Tuning  

Handbook, GC09-2987 

v   DB2 Server  for  VSE & VM SQL Reference, 

SC09-2989

Related Publications 

v   DB2 Server  for  VSE & VM Data Restore,  

SC09-2991 

v   DRDA: Every Manager's Guide,  GC26-3195 

v   IBM SQL Reference, Version  2,  Volume  1, 

SC26-8416 

v   IBM SQL Reference, SC26-8415

VM/ESA  Publications 

v   VM/ESA: General Information, GC24-5745 

v   VM/ESA: VMSES/E  Introduction and Reference, 

GC24-5837 

v   VM/ESA: Installation Guide, GC24-5836 

v   VM/ESA: Service Guide, GC24-5838 

v   VM/ESA: Planning  and Administration, 

SC24-5750 

v   VM/ESA: CMS  File Pool Planning, 

Administration, and Operation, SC24-5751 

v   VM/ESA: REXX/EXEC Migration Tool for 

VM/ESA, GC24-5752  

v   VM/ESA: Conversion  Guide and Notebook, 

GC24-5839 

v   VM/ESA: Running Guest Operating Systems, 

SC24-5755 

v   VM/ESA: Connectivity  Planning, Administration, 

and Operation, SC24-5756 

v   VM/ESA: Group Control System,  SC24-5757 

v   VM/ESA: System  Operation, SC24-5758 

v   VM/ESA: Virtual Machine Operation, SC24-5759 

v   VM/ESA: CP Programming Services, SC24-5760  

v   VM/ESA: CMS  Application Development Guide,  

SC24-5761 

v   VM/ESA: CMS  Application Development 

Reference, SC24-5762 

v   VM/ESA: CMS  Application Development Guide for  

Assembler, SC24-5763 

v   VM/ESA: CMS  Application Development Reference 

for Assembler, SC24-5764 

 

© Copyright IBM  Corp. 1993, 2007  223



v   VM/ESA: CMS  Application Multitasking, 

SC24-5766 

v   VM/ESA: CP Command and Utility  Reference, 

SC24-5773 

v   VM/ESA: CMS  Primer, SC24-5458 

v   VM/ESA: CMS  User’s Guide,  SC24-5775 

v   VM/ESA: CMS  Command Reference, SC24-5776 

v   VM/ESA: CMS  Pipelines User’s Guide, SC24-5777 

v   VM/ESA: CMS  Pipelines Reference, SC24-5778 

v   VM/ESA: XEDIT  User’s Guide,  SC24-5779 

v   VM/ESA: XEDIT  Command and Macro Reference, 

SC24-5780 

v   VM/ESA: Quick  Reference, SX24-5290 

v   VM/ESA: Performance,  SC24-5782  

v   VM/ESA: Dump  Viewing Facility, GC24-5853 

v   VM/ESA: System  Messages and Codes, GC24-5841 

v   VM/ESA: Diagnosis  Guide,  GC24-5854 

v   VM/ESA: CP Diagnosis Reference, SC24-5855 

v   VM/ESA: CP Diagnosis Reference Summary,  

SX24-5292 

v   VM/ESA: CMS  Diagnosis  Reference, SC24-5857 

v   CP and CMS control  block information  is  not 

provided  in  book form. This information is  

available on  the IBM VM/ESA operating 

system  home page (http://www.ibm.com/
s390/vm). 

v   IBM VM/ESA: CP Exit Customization, SC24-5672 

v   VM/ESA REXX/VM User’s Guide,  SC24-5465 

v   VM/ESA REXX/VM Reference, SC24-5770

C for VM/ESA  Publications 

v   IBM C for VM/ESA Diagnosis  Guide,  SC09-2149 

v   IBM C for VM/ESA Language Reference, 

SC09-2153 

v   IBM C for VM/ESA Compiler and Run-Time 

Migration Guide,  SC09-2147 

v   IBM C for VM/ESA Programming  Guide,  

SC09-2151 

v   IBM C for VM/ESA User’s  Guide,  SC09-2152

Virtual Storage Extended/Enterprise  Systems 

Architecture (VSE/ESA) Publications 

v   IBM VSE/ESA Administration, SC33-6505 

v   IBM VSE/ESA Diagnosis  Tools, SC33-6514 

v   IBM VSE/ESA General Information, GC33-6501 

v   IBM VSE/ESA Guide for  Solving  Problems, 

SC33-6510 

v    IBM VSE/ESA Guide to System Functions,  

SC33-6511  

v    IBM VSE/ESA Installation, SC33-6504  

v    IBM VSE/ESA Messages & Codes, SC33-6507 

v    IBM VSE/ESA Networking Support,  SC33-6508 

v    IBM VSE/ESA Operation, SC33-6506 

v    IBM VSE/ESA Planning, SC33-6503 

v    IBM VSE/ESA System Control  Statements, 

SC33-6513 

v    IBM VSE/ESA System Macros User’s  Guide,  

SC33-6515 

v    IBM VSE/ESA System Macros Reference, 

SC33-6516 

v    IBM VSE/ESA System Utilities, SC33-6517 

v    IBM VSE/ESA Unattended Node Support, 

SC33-6512 

v    IBM VSE/ESA Using IBM Workstations, 

SC33-6509

CICS/VSE  Publications 

v    CICS/VSE Application  Programming Reference, 

SC33-0713 

v    CICS/VSE Application  Programming Guide, 

SC33-0712 

v    CICS Application  Programming Primer (VS  

COBOL  II),  SC33-0674 

v    CICS/VSE CICS-Supplied  Transactions, SC33-0710 

v    CICS/VSE Customization Guide, SC33-0707  

v    CICS/VSE Facilities and Planning Guide,  

SC33-0718 

v    CICS/VSE Intercommunication  Guide, SC33-0701 

v    CICS/VSE Performance Guide, SC33-0703 

v    CICS/VSE Problem Determination Guide, 

SC33-0716 

v    CICS/VSE Recovery  and Restart Guide, SC33-0702 

v    CICS/VSE Release Guide, GC33-1645 

v    CICS/VSE Report Controller  User’s Guide, 

SC33-0705 

v    CICS Transaction  Server  for  VSE/ESA V1R1.0 

Resource  Definition Guide,  SC33-0709 

v    CICS/VSE Resource  Definition (Online), 

SC33-0708 

v    CICS/VSE System Definition and Operations  

Guide,  SC33-0706 

v    CICS/VSE System Programming Reference, 

SC33-0711  

v    CICS/VSE User’s  Handbook,  SX33-6079 

v    CICS/VSE XRF Guide, SC33-0704

 

224 Performance Tuning Handbook  



CICS/ESA Publications 

v   CICS/ESA General Information, GC33-0803

VSE/Virtual Storage Access Method (VSE/VSAM) 

Publications 

v   VSE/VSAM Commands  and Macros,  SC33-6532 

v   VSE/VSAM Introduction, GC33-6531 

v   VSE/VSAM Messages  and Codes, SC24-5146 

v   VSE/VSAM Programmer’s Reference, SC33-6535

VSE/Interactive Computing and Control Facility 

(VSE/ICCF) Publications 

v   VSE/ICCF Administration  and Operation, 

SC33-6562 

v   VSE/ICCF Primer, SC33-6561 

v   VSE/ICCF User’s  Guide,  SC33-6563

VSE/POWER Publications 

v   VSE/POWER Administration  and Operation, 

SC33-6571 

v   VSE/POWER Application  Programming, 

SC33-6574 

v   VSE/POWER Networking, SC33-6573 

v   VSE/POWER Remote Job Entry, SC33-6572

Distributed Relational Database Architecture 

(DRDA) Library 

v   Application Programming Guide,  SC26-4773 

v   Architecture  Reference, SC26-4651 

v   Connectivity  Guide,  SC26-4783 

v   DRDA:  Every  Manager's  Guide,  GC26-3195 

v   Planning for  Distributed Relational Database, 

SC26-4650 

v   Problem Determination Guide, SC26-4782

C/370 for VSE  Publications 

v   IBM C/370 General Information, GC09-1386 

v   IBM C/370 Programming Guide for VSE, 

SC09-1399 

v   IBM C/370 Installation and Customization Guide 

for VSE, GC09-1417 

v   IBM C/370 Reference Summary for VSE, 

SX09-1246  

v   IBM C/370 Diagnosis Guide and Reference for 

VSE, LY09-1805

VSE/REXX  Publication 

v   VSE/REXX Reference, SC33-6642

Other Distributed Data Publications 

v   IBM Distributed  Data Management  (DDM) 

Architecture, Architecture Reference, Level 4,  

SC21-9526 

v   IBM Distributed  Data Management  (DDM) 

Architecture, Implementation Programmer’s Guide,  

SC21-9529 

v   VM/Directory Maintenance Licensed Program 

Specification, GC20-1836 

v   IBM Distributed  Relational  Database Architecture  

Reference, SC26-4651 

v   IBM Systems  Network Architecture, Format and 

Protocol Reference, SC30-3112  

v   SNA LU  6.2 Reference: Peer Protocols,  SC31-6808 

v   Reference Manual:  Architecture Logic for LU Type  

6.2, SC30-3269 

v   IBM Systems  Network Architecture, Logical Unit 

6.2 Reference: Peer Protocols,  SC31-6808 

v   Distributed Data Management (DDM)  General 

Information, GC21-9527

CCSID Publications 

v   Character Data Representation Architecture, 

Executive Overview, GC09-2207 

v   Character Data Representation Architecture  

Reference and Registry,  SC09-2190

DB2  Server  RXSQL Publications 

v   DB2 REXX  SQL  for  VM/ESA Installation and 

Reference, SC09-2891

C/370 Publications 

v   IBM C/370  Installation and Customization Guide, 

GC09-1387 

v   IBM C/370  Programming  Guide,  SC09-1384

Communication Server  for OS/2 Publications 

v   Up and Running!, GC31-8189  

v   Network Administration and Subsystem 

Management Guide,  SC31-8181 

v   Command Reference, SC31-8183 

v   Message Reference, SC31-8185 

v   Problem Determination Guide,  SC31-8186

Distributed Database Connection  Services 

(DDCS) Publications 

v   DDCS  User’s  Guide for Common Servers, 

S20H-4793 

v   DDCS  for  OS/2 Installation and Configuration 

Guide, S20H-4795

VTAM Publications 

 

Bibliography 225



v   VTAM Messages and Codes, SC31-6493 

v   VTAM Network Implementation  Guide, SC31-6494 

v   VTAM Operation, SC31-6495  

v   VTAM Programming, SC31-6496 

v   VTAM Programming  for LU 6.2, SC31-6497 

v   VTAM Resource  Definition Reference, SC31-6498 

v   VTAM Resource  Definition Samples, SC31-6499

CSP/AD  and CSP/AE Publications 

v   Developing Applications,  SH20-6435  

v   CSP/AD  and CSP/AE Installation Planning  Guide,  

GH20-6764 

v   Administering  CSP/AD and CSP/AE  on VM, 

SH20-6766 

v   Administering  CSP/AD and CSP/AE  on VSE, 

SH20-6767 

v   CSP/AD  and CSP/AE Planning, SH20-6770  

v   Cross System Product General Information, 

GH23-0500

Query Management Facility (QMF) Publications 

v   Introducing QMF, GC27-0714 

v   Installing  and Managing QMF for  VSE, 

GC27-0721  

v   QMF Reference,  SC27-0715 

v   Installing  and Managing QMF for  VM, 

GC27-0720  

v   Developing QMF Applications,  SC27-0718 

v   QMF Messages and Codes, GC27-0717 

v   Using QMF, SC27-0716

Query Management Facility (QMF) for Windows 

Publications 

v   Getting Started with QMF for  Windows,  

SC27-0723 

v   Installing  and Managing QMF for  Windows, 

GC27-0722

DL/I DOS/VS Publications  

v   DL/I DOS/VS  Application  Programming, 

SH24-5009

COBOL Publications 

v   VS COBOL II Migration Guide  for VSE, 

GC26-3150  

v   VS COBOL II Migration Guide  for MVS and 

CMS, GC26-3151 

v   VS COBOL II General Information, GC26-4042 

v   VS COBOL II Language Reference, GC26-4047 

v    VS COBOL  II Application Programming  Guide,  

SC26-4045 

v    VS COBOL  II Application Programming  

Debugging, SC26-4049  

v    VS COBOL  II Installation and Customization for  

CMS, SC26-4213 

v    VS COBOL  II Installation and Customization for  

VSE, SC26-4696  

v    VS COBOL  II Application Programming  Guide for  

VSE, SC26-4697

Data  Facility Storage  Management  

Subsystem/VM  (DFSMS/VM) Publications 

v    DFSMS/VM RMS  User’s Guide and Reference, 

SC35-0141

Systems Network Architecture (SNA) 

Publications 

v    SNA  Transaction Programmer’s Reference Manual 

for  LU  Type 6.2, GC30-3084  

v    SNA  Format and Protocol Reference: Architecture 

Logic for  LU  Type 6.2, SC30-3269 

v    SNA  LU 6.2  Reference: Peer Protocols, SC31-6808 

v    SNA  Synch Point Services Architecture Reference, 

SC31-8134

Miscellaneous Publications 

v    IBM 3990 Storage  Control Planning,  Installation, 

and Storage  Administration Guide, GA32-0100 

v    Dictionary of Computing, ZC20-1699  

v    APL2  Programming: Using Structured Query  

Language,  SH21-1056 

v    ESA/390  Principles of Operation, SA22-7201

Related Feature Publications 

v    DB2  for VM Control  Center Operations  Guide,  

GC09-2993 

v    DB2  for VSE Control  Center Operations  Guide,  

GC09-2992 

v    DB2  Replication Guide and Reference, SC26-9920

 

226 Performance Tuning Handbook  



Index 

Special  characters
*IDENT 29 

Numerics
16MB line

storage  above  47  

storage  queue  46 

virtual addressability extension  80 

31 bit addressing
advantages  47 

storage  queue  46 

virtual addressability extension  80 

31-bit addressing 27 

5697F42 MEMO 175 

loading 175  

A
absolute  share  79  

access path
choosing  135 

dbspace scan 118 

disadvantages of  indexes 121 

index scan  118 

index-only access 119 

influencing  117 

locking 97  

types  117, 119 

unique  index  with key matching  

predicate  120 

with  unclustered  index 118 

ACCESSLIST directory statement  178 

accounting
measurement tool 9 

ACQUIRE  DBSPACE
allocating dbspace  storage  65 

minimum lock level 96  

ADD 49  

address space
size 47 

virtual addressability extension  79 

virtual disk 48, 54 

addressability extension
virtual  79 

addressing 43 

ADDRSPACE directory statement  178  

adhoc query
isolation level 113 

temporary table 113 

view 113 

agent
checkpoint 88  

deprived 93 

dispatching  92  

operator  88 

pseudo 91  

real 88 

agent (continued)
structure

virtual  addressability 

extension  80  

user  88 

allocating  users to  agents  89 

ALTER  DBSPACE
free space in a data page 61  

lock  escalation 100 

alternate  logging 105 

AMXT/MXT
CICS  80  

analyzing
SQL statements 141  

application  program
adhoc query 112 

DBS  utility  considerations  114 

deadlock 102  

distributed database 83 

ISQL considerations  112 

response time  4 

application  requester
configuring 85  

DRDA 81 

PROTOCOL  parameter 109 

application  server
configuring 85  

DRDA 81 

PROTOCOL  parameter 109 

response time  4 

archive  179 

checkpoint 103 

database  49, 53, 55, 58 

log  105  

selective  105 

archiving
as  overhead 12 

ARCHPCT
tuning parameter  107  

ARIS72DB  20 

ARISDBMA  EXEC  179  

ARISQLDS  20  

arithmetic  operator
in syntax diagrams  ix 

asynchronous
communication  112 

page  fault processing  197  

writes 198 

auditing
fair  share  93 

AUTO PROTOCOL  option 110 

AUTOCOMMIT
command  113 

ISQL 112 

automatic  statistics  collection 114 

suppressing 114 

auxiliary  storage
CICS temporary  81 

expanded storage 43 

system  paging DASD  43  

availability  1, 5 

average row length 38  

AVGROWLEN 38  

B
back-up

file 50  

virtual  disk 52 

VSAM  76  

balancing
DASD 75 

batch  user,  VSE 89  

BEGINLUW counter  23 

BLOCK
initialization  parameter 110 

blocking  193, 198  

disadvantages  112 

DRDA  protocol 110 

fetch and  insert 110 

ISQL 112 

maximum  row length  111 

single user  mode (SUM)  111 

suppressed  111 

bootstrap  module, contents  182 

bootstrap  package
contents 182  

copied  to  A-disk 183  

creating  182  

buffer pool 197  

checkpoint  103  

data page  85  

NCUSERS  87, 89 

size  87 

BUFND startup parameter  108  

build the database  manager 179  

C
caching

minidisk 78  

package 88 

NCUSERS 89  

CANCEL
ISQL 112 

synchronous communication 112  

catalog
procedure

virtual disk 51  

table 38 

catalog table
automatic  statistics  collection 114 

column information  39 

dbspace  information 39  

description 8 

index  information 40  

locking  99, 113 

placement  77 

statement 137 

statistics  137  

influencing data access  139 

 

© Copyright IBM  Corp. 1993, 2007  227



catalog table (continued)
statistics (continued)

updating  139 

SYSTEM.SYSCATALOG  38, 62 

SYSTEM.SYSCOLUMNS 39 

SYSTEM.SYSDBSPACES 39, 61, 62 

SYSTEM.SYSINDEXES 40  

table information 38 

UPDATE STATISTICS 137 

CCSID
CHARNAME  132 

column 39  

conversion
PROTOCOL 110 

DRDA handshaking 109  

impact on  sargability  131 

CCW
fast translation 79 

channel 75 

CHARNAME
CCSID 132 

checklist
enable 176 

pre-enable 176 

checkpoint
agent 88  

as overhead 12 

forcing 64, 104 

interval 104 

choosing  203  

default  value 203 

invalid index 74 

load measurement  23 

managing  202 

occurrence 103 

overview  103 

performance  implication 103  

process 63 

save interval 203  

shadow page  63, 103  

short on storage 59 

storage queue 46  

checkpoint interval
understanding  166  

CHKINTVL
checkpoint 103 

choosing a value 104 

CHKPOINT  counter 23  

choose
in syntax diagrams  ix 

CICSPARS 8, 17 

CIRB
initiated CICS connections

concurrency 92  

transaction 90 

CIRD transaction 8, 21 

CIRT transaction 90 

CISQ
transaction name 80 

cluster ratio
catalog table 41 

evaluating 68 

clustered
catalog table 41 

index 66 

access path  118 

unclustered  index 67 

clustering index 67  

catalog table 41  

changing
while reorganizing a dbspace 71  

while reorganizing a table 71 

without dropping  indexes  72 

data 66 

PCTFREE 62 

reorganize index 74 

unclustered 68 

view 68 

CLUSTERTYPE
clustering 67  

column
> 254 111 

catalog information 39  

length 39  

null type 39  

type 39  

COMMIT WORK
checkpoint 103  

ISQL 112 

lock escalation  100  

log cushion 108  

statement  102 

COMMITCOUNT
locking 114  

communication
blocking 110 

DRDA protocol  108 

synchronous 112 

compatibility
lock 95 

compile partition size 80 

concurrency
agent 88 

allocating  agent structure  89 

as overhead 11 

CICS 90 

CICSPARS 90  

CIRB transaction 90 

concurrent ISQL users 80 

cost of additional real agents 89 

description 88  

differences between real and pseudo  

agents  91  

dispatching agents 92 

DISPBIAS 93 

fair share auditing  93 

guest sharing 91  

long versus short LUW 93  

MAXCONN 92 

NCUSERS 89  

operator SHOW  commands 28 

prioritization 93  

privileged remote  DRDA user 92  

pseudo-agents 91  

RMTUSERS 92 

SHOW CONNECT 90 

SHOW USERS 90, 92 

startup mode 93 

VM user  89 

VSE batch user  89 

VSE interactive user  89  

VSE remote DRDA user  89 

conditional  JCL
startup for virtual  disk 53 

configuration
consideration, distributed 81  

console log  21  

constraint
removing 12 

controller 75  

conventions
example xii  

syntax diagram notation viii 

Conversational Monitor System (CMS)
work unit 102  

corrective service 175 

cost
estimating

obtaining 151  

explain  table 144 

of monitoring 6 

cost-benefit ratio  1 

counter
CP indicate user

I/O  16  

READS 15 

RES 15 

WRITES 15  

CP query  time
CTIME 15 

TOTCPU  15 

VTIME 15 

directory 169  

storage pool performance
understanding 168 

COUNTER
example 22  

operator command  9, 22 

COUNTER POOL
DB2  Server DSS 9 

CP
monitor 7 

time 15  

CP directory
maximum 211 

statement
ACCESSLIST 178 

ADDRSPACE 178 

MACHINE 178 

XCONFIG  178 

update 178  

CP QUERY TIME 8 

CPU
as a resource 9 

load  measurement 14, 17 

time used  29 

CREATE INDEX
reorganize a single  table 71 

CREATE PROGRAM
blocking 110 

creating
bootstrap package 182 

CSTT transaction  18 

CTIME counter  15 

cursor
fetch 110 

insert 110  

stability (CS)
isolation level 97 

ISQL 113 

minimum lock level 96  

 

228 Performance Tuning Handbook  



cursor (continued)
suppressed blocking  111  

cushion
log 107  

Customer Information Control  System 

(CICS)
AMXT/MXT  80 

CICS partition
31  bit addressing 80 

CCW translation 79 

connection 89 

dispatching  priority 79 

system  paging DASD  45  

virtual addressability 

extension 79 

CICS statistics  8 

CICSPARS 8, 17, 90 

CIRB transaction 90 

CIRD  transaction  8, 21 

CMXT  parameter 80 

concurrent ISQL users 80  

CSTT transaction 18 

DFHMCT ID  keywords  and 

clocks 19 

DFHMCT macro  19 

DFHSIT macro 18 

link to  database partition 90  

measurement tools  8 

online  resource adapter 91 

pseudo agent 92  

temporary storage 81 

transaction time usage 18 

D
DASD

cache 197 

DASD I/O
*BLOCKIO 45 

as a resource 10 

balancing 75 

channel  75 

checkpoint 103  

controller 75 

DASD I/O  system 85  

general  consideration 77 

load measurement 15, 17  

NCUSERS  89 

package cache 88 

page format 58  

VSAM 45 

DASD storage
as a resource 10 

CMS reserved minidisk  58 

cost of monitoring 6 

dbextent placement in  a volume  78 

distributing 58  

dividing  58 

failure 105 

running  out 58, 65 

VSAM entry sequenced data sets 

(ESDS) 58 

wasting  58 

DASDIO counter  23 

DASDREAD counter 23  

DASDWRIT counter 23  

data clustering 66 

data location
physical 19  

data page
description 60 

free  space 61 

proportion to  other pages 61  

data set placement (VSE) 20  

data space
virtual  disk 48, 54 

data spaces
directory 164  

internal dbspace  163  

removing  175  

storage pool 163 

turning on  and off  189  

understanding  157  

database
archive  105,  179  

creating new  195  

design
using EXPLAIN 154 

generation
MAXPOOLS keyword 59 

machine
31 bit addressing 47 

address space size  47 

auxiliary storage 43 

buffer pool 85 

CPU load 17 

DASD I/O  load 15 

fair share scheduling  78  

load on  23 

overall performance  15  

SHOW STORAGE  27  

virtual storage load  14  

manager
storage  85  

database  machine
DASD requirement 174 

logoff 178 

logon  177 

modes of  operation 171 

overview 171  

virtual  storage 172  

database  manager
building 179 

verifying  179 

database  partition
31 bit  addressing 47,  80  

address  space size 47  

auxiliary  storage 44  

balancing pool 79 

batch  79  

buffer pool 85  

CICS
dispatching  priority 79  

fast CCW translation 79 

virtual addressability 

extension  79  

compile  size 80  

DASD  I/O load  15  

deactivation  46  

load  on 23  

overall performance  15 

SHOW  STORAGE 27 

DATALOAD
automatic statistics  collection 114 

DATALOAD  (continued)
clustering index 67 

free  page space 40  

locking  114 

PCTFREE 62 

DATAUNLOAD
locking 115 

date
ever  increasing index 66 

DB2 for VM  Control  Center Operations 

Guide, IBM  9 

DB2 for VM  directory
data spaces  support 164  

performance  counter  169 

understanding  164 

DB2 Server DSS
checkpoint 105  

counters 25 

DB2 Server for VM directory
reblocking  193  

using  193 

dbextent
adding 65  

allocation to  dbspace  76 

caching 78 

consecutive  placement 78 

mapping to dbspace  59  

moving  75  

number  204, 205  

number  per device 204  

restructuring  77  

size  204 

splitting 77 

storage  26 

virtual  disk 51, 56 

DBNAME  directory 92  

DBS utility  (Database  Services utility)
automatic  statistics  collection 114 

lock  escalation  114 

performance  considerations  114 

reorganize  73 

REORGANIZE  INDEX 73 

tape  blocking 114 

unload  and reload package 115  

UNLOAD  block size  114 

dbspace
active  pages 40 

adding  65  

available pages 40 

catalog information 39  

DROP
checkpoint 103 

dropping  59  

dropping  for  force a checkpoint 64  

extending 65 

forcing  checkpoint 104 

full  65 

over allocating  65 

shadow page  65 

LOCK DBSPACE statement  114  

lockmode  40 

mapping to dbextent  59 

move  76 

pages for  indexes  40  

PCTFREE 62 

percentage  of  page free  40  

 

Index 229



dbspace (continued)
private

lock 96 

reassign 76  

releasing empty pages 59  

reorganize  65, 71 

scan 118 

minimum lock  level 96 

reorganize index  75 

row level locking 97 

storage pool 40 

table placement 121 

DBSSCALL counter  23 

DDR 76 

deactivation of  partition 46 

DEADLCK counter 23  

deadlock
application  design  102 

COUNTER 102  

example 101  

hit ratio  23  

lock contention  102 

lock escalation 102 

NCUSERS 89, 101 

overview  101 

performance  indicator 23, 102 

reschedule applications 102  

rollback 102 

time required to detect 101 

DEDICATE parameter  50  

default
in syntax diagrams  x 

deprived agent 93 

design
data 141  

database 154 

evaluation 141 

modifying tables  154  

device utilization
load measurement  15 

DFHMCT CICS macro  19 

DFHSIT
macro instruction for  CICS

AMXT/MXT  80  

CICSPARS 18 

diminishing  returns, law  of 1 

directory
buffer

DASD  I/O system  85 

NDIRBUF  87 

performance indicator 24 

caching 78  

checkpoint 103 

page map table 59 

placement 78 

solutions 8 

DIRREAD counter 23 

DIRWRITE counter 23  

disabling VMDSS 188 

disk locations, VM 19  

dispatching
agents 92 

fair share  auditing 93 

prioritization 93 

priority (VSE)  79 

SET QUICKDSP 79  

DISPBIAS
agent dispatching 93  

distributed configuration
application  planning  83  

performance implication 83 

VM 81 

VSE 81  

distributing
DASD  58 

distribution tape 179 

dividing
DASD  58 

processor time 78, 79 

DRDA protocol
blocking 110 

distributed consideration 81  

DRDA option  110 

fetch and insert blocking  83  

handshaking 109  

performance considerations  108  

PROTOCOL parameter  109  

DRDA user
privileged remote  92  

RMTUSERS 92 

VSE pseudo agent 89 

DROP DBSPACE
checkpoint 103  

command 121  

dual  log  106  

duration
lock 95 

dynamic
page allocation 59  

dynamic storage size management 198  

E
effective use  measurement

description 13  

elapsed time 4, 15 

elements of  performance 1 

empty log
invalid  index 74  

enable 176  

enable checklist  176 

enable code 179 

engineering change  (EC)  2 

ESCALATE 23  

counter 37, 100  

estimating
size of response 153 

evaluating
logical data design 141 

example
conventions xii 

exclusive lock
description 94  

EXEC
SQLGENLD  183 

SQLSTART 184, 186  

existing data
striping 205 

expanded storage 166  

auxiliary storage 43 

buffer pool  85 

EXPLAIN
cost table 144  

EXPLAIN (continued)
database design 154 

explicit and implicit 143  

plan table 145 

reference table 147 

referential constraint 148 

statement 141  

structure table 149 

explanation table
general description 141 

using  141, 143  

extension
virtual addressability  79 

F
fair share

auditing 93 

scheduling 78 

fallback procedures 2 

fast CCW translation 79  

FASTTR
job control option 79  

fault
page 45 

FB-512 storage devices 173 

fetch blocking 110 

distributed database 83  

filter factor 130 

fold file
distributed database 83  

forcing
a checkpoint  64 

fragment of syntax
in syntax diagrams  xi 

fragmentation
index 73 

G
guest sharing

concurrency 91  

distributed database 81  

guidelines
tuning 1 

H
handshaking

DRDA 109 

hardware
problems 2 

upgrading 2 

header page
description 60  

number 60 

proportion to other pages 61 

hierarchy of  locks 94  

HIGHSTOR 27 

hit ratio
deadlock  23  

description 7, 13 

directory buffer 24  

local buffer 24 

waitlock 24 

 

230 Performance Tuning Handbook  



hold file
distributed database 83 

host variable
in syntax diagrams ix 

I
I/O

cost 140 

counter 16  

DASD balancing 75 

DASD I/O  as a resource 10 

DASD I/O  system 85  

fast CCW translation 79  

general  consideration 77 

IBM DB2  for  VM  Control Center  9 

IDCAMS
backup 50  

dataset  location 20 

improvement process
performance 2 

index
access  path 117 

catalog  information 40  

causes of invalid 75  

cluster ratio  41 

clustered 41, 66 

clustering 41, 67  

default versus clustering 67 

unclustered 70  

clustering strategy 67 

creating  119 

default strategy 67 

disadvantages 121  

ever increasing 66  

foreign  key 122 

fragmentation 73 

free space
catalog table 41 

fragmentation 73 

fully matched 124 

index-only access 119 

invalid 74  

lock contention 96  

lockmode  41 

page
description 60 

free space 62 

proportion to  other pages 61  

reserved in  a dbspace 40 

running  out 66 

PCTFREE 73 

recommendation  120 

release level 42  

reorganize 73 

invalid 75  

scan 118 

minimum lock level 96  

sorting  120 

transient  74 

unclustered
identifying 68  

unique
access  path  type 120 

row level locking  96  

with key matching predicate 120 

INDICATE USER
command 15 

description 8 

example 16  

indicators
performance  2 

indicators, performance  3 

individual  device  utilization
load measurement 15 

influencing  data access
with catalog statistics 139 

initialization  parameter
BLOCK 110 

CHKINTVL 103 

LOGMODE 103 

NCUSERS 88, 89 

NDIRBUF  85  

NLRBS  99, 100  

NLRBU  99, 100 

NPACKAGE  88  

NPACKPCT  88  

NPAGBUF 85 

PCTFREE 63,  72  

PROTOCOL  108 

retrieval  8, 20 

inner table 133 

insert
blocking  83, 110 

distributed database 83 

multiple  row 110 

INSERT  logic  67  

installation  option
overview 175  

production system  175 

removing  VMDSS 175  

saved segment 176  

installation  requirement
CP directory 211 

DASD  173  

database  disk 174  

database  machine  171, 172  

database  machine  DASD  174  

dbextent  174  

directory 174  

FBA  173  

hardware  175  

log  174  

MAINT machine 171,  172  

operating  system 171  

real storage 172 

software 172 

virtual  storage 172  

VM  paging DASD  173 

intent
exclusive  lock

description  95 

none  lock
description  95 

share lock
description 95 

interactive
interface

VSE  8 

user
VSE  89  

Interactive  Structured Query Language  

(ISQL)
asynchronous communication 112 

AUTOCOMMIT  112,  113 

blocking  112 

CANCEL  112 

CICS 80  

concurrent users 80 

isolation level 113 

performance  considerations  112 

temporary  table 113 

transaction  name 80  

view 113 

internal dbspace
adding  to  a virtual  disk pool  52 

data spaces  77  

mapped
choosing  199  

understanding  163 

using  192 

placement  77 

unmapped
choosing  199  

understanding  164 

using  192 

virtual  disk 48, 54, 77 

interval
sampling  14 

interval, monitoring 6 

invalid index 74 

package 74 

SHOW  INVALID 74 

IPL  procedure 49 

isolation level
considerations  for adhoc users 113 

description 97 

ISQL 113 

lock  duration 98  

lock  escalation  100  

selecting  98 

user  defined 98  

ISQ2
transaction  name 80  

IUCV *BLOCKIO
DASD I/O  system 85  

page  format 58  

IUCV conversations 93 

J
join

merge scan 134 

multiple  136  

performance  considerations  132 

predicate  126  

stored 113,  155 

K
key-matching 123 

keyword
in syntax diagrams viii 

 

Index 231



L
law of diminishing  returns 1 

LDIRBUFF counter  23 

length, column 39 

limits
system tuning 3 

link-edit 180 

LISTCAT 8, 20 

load
leveling  46  

workload  3 

load measurement
checkpoint 23 

CPU 14,  17  

DASD I/O 17 

database machine  or partition DASD 

I/O load 15  

description 7, 13 

I/O 140 

individual device  utilization 15 

logical unit of work 23 

main storage  17 

operating system 14  

processor 14, 17 

real and virtual  storage 14  

system paging DASD  14, 17  

tools 14 

loading
saved segments 182 

local
buffer

DASD  I/O system  85 

new page 63  

NPAGBUF 87 

performance indicator 24 

virtual addressability 

extension 80  

copy
distributed database  83  

LOCALAXE  entry
privileged remote DRDA user 92 

locations
physical data 19  

LOCK
lock escalation 100 

lock contention
access path  97 

catalog table 99 

deadlock 102  

index 96 

isolation level 97  

lock compatibility 95 

logical unit of work 97 

measurement  35 

minimum lock  level 96 

NCUSERS 96 

operator SHOW  command  35 

row level locking  96 

lock escalation
ALTER DBSPACE 100 

COUNTER operator command  100 

DBS utility 114  

deadlock 102  

isolation level 100  

LOCK 100  

measurement  37 

NCUSERS 89 

lock  escalation  (continued)
operator SHOW  command 37  

overview 99 

SHOW LOCK MATRIX  100  

trading lock  level 99  

lock  request  block
determining number  required 100 

insufficient 101  

NLRBS 99 

NLRBU 99  

number in  use 37 

performance indicator  24,  100  

locking
as overhead 11 

compatibility 95 

considerations
reducing lock escalation  114 

contention
overview 94  

performance  indicator 99 

cost of 11 

DBS utility
DATALOAD  and RELOAD  114 

deadlock 115 

UNLOAD  PACKAGE and 

RELOAD PACKAGE 115 

duration 95  

isolation level 98 

hierarchy 94 

lock level 96  

lockmode
dbspace  40 

index 41 

minimum lock  level 121 

mode 94 

NCUSERS 89  

operator SHOW  commands 35 

overview 93 

private dbspace 96 

SHARE lock
DBS  utility  115  

virtual addressability extension  80  

LOCKLMT
counter 37  

example 23 

log 202 

alternate 105 

archive  105 

caching 78  

checkpoint 103  

cushion 107 

dual 106 

file 105  

full
checkpoint 103 

inactive
checkpoint 103 

invalid index 74  

placement 78  

SHOW LOG 108  

log buffer 202 

log disk 202  

logging
as overhead 12  

logical data design
evaluation  of  141 

logical unit  of  work
load  measurement 23 

lock  duration 95 

locking 97 

long versus short 93  

recovery 102 

storage queue 46  

logmode
changing 107  

selecting  106  

short on storage 59 

LOGMODE
initialization parameter  103  

LOGMODE startup  parameter  202  

LOGREAD counter 23  

LOGWRITE counter 23  

LPAGBUFF counter 23  

LU 6.2 LUWID
DRDA handshaking 109  

M
MACHINE directory statement 178 

main storage 166 

buffer pool 87  

dedicating 43 

load  measurement 17 

page count 15  

temporary  CICS 81  

virtual  addressability  extension 80 

virtual  disk 48, 54 

MAINT machine
installation 171 

overview 171 

virtual  storage  172 

maintenance
statistics 137 

manual
organization vii 

prerequisite  viii 

who should use vii 

mapping
choosing 202,  205  

understanding  163  

matched index 124 

MAXCONN 29 

increasing virtual  storage 47  

pseudo agent 92 

MAXPOOLS
keyword 59 

measurement
production system  6 

relative  nature 6 

test system 6 

to  indicators 15 

tools  7, 8 

catalog table 8 

CICS 8 

CICS monitoring facility  8 

CICS statistics  8 

CICSPARS  8 

CIRD  transaction  8 

COUNTER operator command 9 

CP INDICATE USER  8 

CP monitor 7 

CP QUERY TIME 8 

database  manager 19  

 

232 Performance Tuning Handbook  



measurement  (continued)
tools (continued)

DB2 Server DSS COUNTER 

POOL 9 

DB2 Server DSS SHOW  

TARGETWS 9 

DB2 Server for  VSE & VM  8 

DB2 Server for  VSE & VM  

accounting 9 

DB2 Server for  VSE & VM  trace 9 

IBM DB2  for VM  Control  

Center 9 

initialization  parameter  8 

operating system  14 

RTM VM/ESA 8 

SHOW operator command  9 

VM 7 

VM/PRF 7 

VMMAP 8 

VSAM LISTCAT 8 

VSE  8 

VSE  interactive  interface  8 

measuring performance 13 

memo-to-users 175 

merge scan join 134 

message traffic
fetch and insert blocking  83 

microcode  assists 2 

minidisk
caching 78 

minimum lock  level 96 

modifying table designs  154  

Monitor Analysis Program (VMMAP) 8 

monitor, CP 7 

monitoring
cost 6 

interval 6 

master  schedule  6 

plan 6 

performance 2, 6 

real time  5 

statistical  5 

most recently used  pages 45  

multiple  join 136  

multiple  user mode
starting DB2 Server for  VM  184, 186  

multiple  user mode  (MUM)
allocating user  to agents  89  

blocking 110 

running  93  

N
NCUSERS

buffer pool 87 

deadlock 101 

determining number of  real 

agents  89  

example 29 

increasing virtual storage 47 

lock contention 96  

number of real agents  88  

package cache 88 

RMTUSERS 92 

NDIRBUF
directory buffer 87 

directory buffer pool 85 

NDIRBUF  (continued)
increasing virtual  storage 47 

nested loop join 133 

network
distributed 83 

response time  4 

SNA  81 

NLRBS
increasing virtual  storage 47 

initialization parameter  100  

NLRBU
increasing virtual  storage 47 

initialization parameter  100  

NOFASTTR
job  control option  79 

non-XC  mode
database  machine  171  

hardware  175  

SQL/DS  directory 200  

verify 184  

nonrecoverable storage  pool
checkpoint 103 

nonselective index scan  118 

NOVERFLOW 38 

NPACKAGE
increasing virtual  storage 47 

package cache 88  

NPACKPCT
package  cache 88  

NPAGBUF
increasing virtual  storage 47 

local  buffer 87  

local  buffer pool 85  

null 39  

O
objectives

performance  2, 4 

obtaining  costs for  statements 151  

operating
mode

XA  47  

XC 47 

system  measurements 14  

operating  system
non-XC mode 171 

requirement 171  

operator
command  25, 33 

operator agent 88 

storage queue 46  

optimizer 117 

optional
default  parameter

in syntax diagrams  xi 

installation  steps 187  

item
in syntax diagrams  ix 

keyword
in syntax diagrams  xi 

options  file, start up 21 

outer  table 133  

overflow
catalog table 62 

reorganization 70 

row expansion  62 

overhead 11 

overview
checkpoint interval 166 

data space 157  

database  machine 171 

directory 164 

internal dbspace 163 

logical  mapping 170  

MAINT  machine 171 

operating  system  171 

performance  counter  168 

physical mapping 170 

save  interval 167 

storage  management  166  

storage  pool  163 

storage  pool  structure  169 

striping 167 

target  working  storage size 

parameter  166  

working  storage  residence  

priority 166 

P
package

cache 88 

NCUSERS 89  

threshold 88 

virtual addressability 

extension 80  

invalid 74  

unload  and reload 115 

page
active  in  a dbspace  40  

allocating  from storage pool 59  

available in a dbspace  40  

DASD  I/O  system 85  

data
description  60  

free  space 61 

dbspace
running  out 65  

dynamic allocation 59  

fault
system paging  DASD  45 

free  percentage 40 

header  60 

index  60  

reserved in a dbspace 40  

running out 66  

jumps  68 

logical  and physical 59 

map  table 59 

shadow page  63 

modified  86 

most  recently  used 45  

number  used  by  a table 39 

releasing 86 

shadow
checkpoint 63 

description 60  

number in  use 64 

size  58 

stealing  86  

storage  43 

type  60  

update 63 

 

Index 233



page fault processing,  asynchronous 197  

PAGEREAD counter 23  

PAGWRITE counter 23  

parentheses
in syntax diagrams  ix 

path length  197 

PCTFREE
initialization parameter  62  

reorganize  a dbspace 72 

reorganize  a single  table 71 

PCTINDEX
proportion of page types 61 

PCTINDX
proportion of page types 61 

performance
elements  of  1 

improvement process  2 

improving 157 

indicator  3 

measurement
description 7 

translating  to indicators 15  

monitoring plan 2, 6 

objectives  2, 4 

trade-off 2 

performance indicator
AVGROWLEN 62  

CICSPARS 90 

CIRD transaction 90 

COUNTER 87  

deadlock 23, 102  

directory buffer 24  

FREEPCT 62  

IPCTFREE 63 

local buffer  24 

lock contention  99 

lock request block 24,  100  

lockmode 96 

NOVERFLOW 62  

operating system 14  

PCTINDX 61  

performance  improvement process  2 

SHOW POOL 60 

SHOW USERS  92  

tools 14 

waitlock 23 

Performance Reporting  Facility,  VM  7 

performance tuning
asynchronous  processing  197  

blocking  198  

buffer pool 197  

checkpoint 202, 203 

checkpoint interval 203  

DASD cache  197 

data space 197 

dynamic storage management 198 

internal dbspace  199  

mapping 205  

more asynchronous writes 198 

path length 197  

prefetching 198  

save interval 203  

SQL/DS directory 200 

storage pool 199 

storage size 200  

striping 198, 204  

target working storage size 200 

permanent dbspace
shadow page 63 

physical data locations 19  

placement in  dbspace 121  

plan explain  table 145 

plan, performance monitoring 2, 6 

planning
storage pool structure 169  

post installation  187  

pre-enable checklist  176 

predicate
CCSID 39  

column attribute 123  

filter  factors  130  

join 126 

key-matching 123 

processing 122 

examples  131 

residual 125 

sargable 125  

suitable indexes for 124 

prefetch
improving performance  198 

preprocessing
compile partition size  80 

prerequisite  manual viii 

preventive service 175  

priority
agent prioritization 93  

dispatching (VSE) 79 

private dbspace
cursor stability 97 

privileged remote DRDA user, VSE 92 

procedures
stored 83  

process
performance improvement  2 

processing cost  140 

processor
as a resource 9 

load measurement 14, 17 

time used  29 

processor requirement 175  

production workload  3, 6 

PROFILE EXEC, modifying 56  

program directory
loading 175  

program temporary fix (PTF) 2 

proportion
of available pages 25 

of index  to data and header pages 61  

proportion of index  to  data and header  

pages
PCTINDEX 61  

PCTINDX 61  

PROTOCOL
AUTO option 110 

CCSID conversion  110 

DRDA
communications 108 

option 109, 110 

SQLDS option 109 

pseudo agent
description  91  

number waiting 90 

PTF  tape 175 

punctuation mark
in  syntax diagrams  ix 

Q
QRYBLKSIZE

blocking 111  

query
adhoc

isolation level 113 

performance  considerations  112 

temporary  table 113 

view 113 

separating into subquery  

structures 150 

several tables 132 

query set 184,  186  

QUERY TIME
command  15 

description 8 

example 16  

queue, storage 27 

quick dispatch
SET  QUICKDSP  79  

R
ratio

cost-benefit 1 

hit 7 

RDSCALL counter  23 

READS counter  15  

real agent
description 88  

number available 90 

storage queue 46  

real storage
as a resource 10  

description 43  

increasing virtual  storage 47  

load  measurement 14 

Real Time  Monitor VM/ESA program,  

(RTM VM/ESA)  8 

real time monitoring 5 

reblocking directory 193  

recovery
archive 105  

as  overhead 11 

checkpoint 103 

log  105 

logical unit of work 102 

shadow page  63  

storage queue 46  

reducing
lock escalation 114 

redundant data 155  

reentrant code 47 

reference explain  table 147  

referential structure
EXPLAIN 148 

organization 121  

relative performance  measurement 13 

relative share 79 

release level 42  

releasing, page  86 

 

234 Performance Tuning Handbook  



RELOAD
automatic  statistics collection  114 

clustering index 67 

free page  space 40  

locking 114 

NEW 72 

PCTFREE 62 

PURGE 71 

single table 71 

RELOAD  PACKAGE
DBS  utility 115 

usage considerations  115 

remote, privileged  DRDA user 92  

reorganize
all  the tables  in a dbspace 71  

clustering index 74 

dbspace 65  

index 73  

invalid index  75 

PCTFREE 71, 72 

reasons  to reorganize  data 70 

selecting a method  70  

single table 71 

REORGANIZE INDEX
advantages 73 

DBS utility command 73  

invalid index  75 

repeat symbol
in syntax diagrams x 

repeatable read (RR)
isolation level 97 

ISQL 113 

required item
in  syntax diagrams ix 

requirements
real storage  205  

RES counter 15 

resave the saved segment 181  

reserved words
SQL xii  

RESET
example 22 

operator  command 22 

residual predicate  122, 125 

resources  9 

response size
estimating 153 

response time
application  program 4 

application server 4 

components 4 

network 4 

performance 1, 4 

restarting
the application  server 184 

restore virtual  disk backup 53  

RINO
EXPLAIN 148  

RMTUSERS
concurrency 92 

ROLLBACK 23 

ROLLBACK WORK
checkpoint 103  

invalid index  74 

ISQL 112 

locking 97  

statement 102 

row
expansion 62 

length
blocking 111 

level locking
unique  index  96  

overflow  38 

total number 38 

ROWCOUNT
catalog table 38 

estimating response size 154  

running  out of
DASD 58  

S
sampling interval 14 

sargable
affect  of CCSID 131 

predicate 122, 125 

save  interval
choosing 203 

understanding  167  

saved  segment
resaving 176 

saved  segments 47  

loading 182 

SAVEINTV
DB2  Server DSS 105  

saving
segments  182  

scan
dbspace  118 

index 118 

scheduling
fair  share  78 

second  level guest 81 

segment  saving 182 

segments,  saved 47  

selective
archive  105  

index
scan 118 

separating queries into  subquery 

structures 150 

SEPINTDB
unmapped internal dbspaces 192 

service
corrective 175 

preventive 175  

SET  POOL 191 

SET  QUICKDSP
fair  share  scheduling 79 

SET  SHARE
fair  share  scheduling 79 

shadow  page 202  

accumulating 60  

checkpoint 104 

checkpoint process  103 

dbspace  full  65 

description 60, 63, 103 

number  in  use  64 

page  map table 63 

short on storage 59 

share
description 95 

share (continued)
lock

description 94  

with  intent exclusive lock  95  

SHARE lock 115 

short on storage
checkpoint  103  

example 27 

initialization  parameter 59 

managing  pool space 59  

SHOW  POOL 60  

SOSLEVEL 59 

shorter path length  197 

SHOW
operator  command 9, 25 

SHOW  ACTIVE
operator  command 28  

SHOW  CONNECT
concurrency 90 

operator  command 29,  33,  35  

SHOW  DBEXTENT
available storage pool space 65 

operator  command 25  

SHOW  DBSPACE
operator command 25  

SHOW  INVALID
invalid index  74 

transient  index 75  

SHOW  LOCK
operator command 35  

SHOW  LOCK ACTIVE
operator command 36  

SHOW  LOCK GRAPH
operator command 36  

SHOW  LOCK MATRIX
lock escalation  100  

operator  command 36,  37  

SHOW  LOCK USER
operator command 37  

SHOW  LOG
log cushion  108  

SHOW  POOL
available dbextent space 65  

operator  command 26  

shadow  page 64 

short on  storage 60  

SHOW  STORAGE
operator command 27  

SHOW  TARGETWS
DB2 Server DSS 9  

SHOW  USERS
concurrency 90 

operator  command 29  

pseudo-agents 92 

shutdown
checkpoint 103  

single user mode  (SUM)
allocating users to  agents  89  

blocking  111 

fetch and  insert blocking 83 

logmode 106 

running  93  

size of  responses, estimating 153 

SLOGCUSH
tuning parameter 107 

SNA network
distributed database 81 

 

Index 235



software problems 2 

software requirement 172  

Solutions Directory  8 

sorting
index 120 

specification  file
storage pool

changing  188  

format 207, 208 

identifying  189 

writing 208  

SQL statements, analyzing 141  

SQLCODE
-649 143  

-911 102 

-912 101  

-915 101  

SQLDS protocol 109  

SQLGENLD EXEC  183 

SQLHX
synchronous communication 112 

SQLINIT
PROTOCOL parameter  108  

QRYBLKSIZE 111  

SYNCHRONOUS 112 

SQLMACH machine
DASD requirement 174 

modes of operation 171 

overview  171 

virtual storage  172  

SQLQRY
synchronous communication 112 

SQLSTART 19 

SQLSTATE
40001 102 

42704 143 

57028 101 

57029 101 

start up
mode 93 

options file  21  

statements
obtaining costs 151 

statistics
automatic collection 114 

catalog table 38 

CICS 8 

influencing data access  139 

maintenance 137 

monitoring 5 

update all 138  

stealing, page  86  

storage
16MB line 27  

31-bit addressing 27 

address space size 47 

allocation above 16MB 27 

as a resource 10  

auxiliary  43 

available dbextent  storage 26  

available storage pool space 25  

DASD 58  

DASD I/O system  85 

database manager  85  

main and  expanded 166 

operator SHOW  commands 25  

package cache 88  

storage (continued)
page 43  

paging system  45 

proportion of available pages 25 

queue 27, 46 

real and virtual  43  

saved segments 47  

short on storage 59  

temporary CICS 81  

virtual 27 

virtual disk 48, 54  

virtual machine  43  

virtual partition 43  

storage pool
allocating  page  from 59  

assign DASD  76 

assigning dbextent  59 

available space 25 

catalog placement 77 

Data Spaces Support  189  

dbspace 40 

description 59  

directory and log  placement 78  

existing pool and virtual disk 51  

free allocated  pages 65  

full 65  

internal dbspace placement 77 

managing space 59  

nonrecoverable
checkpoint 103 

performance 199 

reassign dbspace  76  

specification
checking 191  

dynamically changing 191  

specification file
changing 188  

example 208  

format 207 

identifying  189  

writing 208 

virtual disk 51, 56  

storage pool 

planning structure 169 

understanding 163 

stored procedure
executing 31 

stored procedures program 4 

storing
joins of  tables  155 

logical table as  two tables  155 

striping
choosing 204  

dbextent size  204 

existing data 205 

number of dbextents 205  

one dbextent  204 

performance 198 

physical device 204  

turning on an off  190  

understanding 167 

structure explain  table 149  

subquery structures,  determining 150 

super exclusive lock
description 94  

supervisor  mode
ESA 47  

supervisor mode  (continued)
VMESA 47 

suppressed blocking  111  

suppressing
automatic statistics collection 114  

SYNCHRONOUS
communication 112 

syntax diagram
notation  conventions viii 

SYSDEF 49 

system paging  DASD
auxiliary  storage  43 

buffer pool 85  

hidden cost  45 

increasing virtual  storage 47  

load  measurement 14, 17 

monitoring load  47 

NCUSERS 89 

saved segments 47 

virtual  disk 48, 54 

SYSTEM.SYSCATALOG
average row length 38,  62  

catalog table 38 

clustering 67 

number of  page used  by a table 39 

overflow  rows 38,  62  

total number of rows 38  

SYSTEM.SYSCOLUMNS
catalog table 39 

CCSID 39 

column length  39 

column type 39 

null 39  

SYSTEM.SYSDBSPACES
active pages 40  

available pages 40  

catalog table 39 

ever increasing index 66  

free  space in a data page  40, 62  

lockmode 40,  96  

percentage of reserved index 

pages 40, 61 

storage pool number 40 

SYSTEM.SYSINDEXES
catalog table 40 

changing clustering index  67 

cluster ratio  41, 68  

cluster value 68  

clustered 41  

clustering 41 

free  index space 41, 63  

lockmode 41  

page jumps  68  

release level 42 

row count 68  

T
table

allocation to  dbspace 76 

average row length 38  

catalog
automatic  statistics  collection 114 

information 38 

locking  99  

design modification 154 

explanation 143  

 

236 Performance Tuning Handbook  



table (continued)
LOCK TABLE statement  114 

methods  of joining  133  

moving 76  

nested loop join 133 

number of pages 39 

overflow rows 38 

placement  in dbspace  121 

reorganize 71 

total number  of rows  38 

tape blocking
DBS utility 114 

target working storage size 215 

choosing  200 

understanding 166 

temporary  storage
local copy 83  

virtual disk 48, 54 

test workload 3, 6 

thrashing 46 

throughput 1, 5 

time
components 4 

elapsed 4 

response 4 

tools
measurement 7, 8 

catalog table 8 

CICS 8 

CICS monitoring facility 8 

CICS statistics  8 

CICSPARS  8 

CIRD transaction  8 

COUNTER operator command 9 

CP INDICATE USER  8 

CP monitor 7 

CP QUERY TIME 8 

database  manager 19  

DB2 Server DSS COUNTER 

POOL 9 

DB2 Server DSS SHOW  

TARGETWS 9 

DB2 Server for  VSE & VM  8 

DB2 Server for  VSE & VM  

accounting 9 

DB2 Server for  VSE & VM  trace 9 

IBM DB2  for VM  Control  

Center 9 

initialization  parameter  8 

operating system  14 

RTM VM/ESA 8 

SHOW operator command  9 

VM 7 

VM/PRF 7 

VMMAP 8 

VSAM LISTCAT 8 

VSE  8 

VSE  interactive  interface  8 

TOTCPU counter  15 

trace
measurement tool 9 

trade-off, performance 2 

trading
lock level 99  

transaction
CIRB 90 

CIRD  8, 21 

transaction  (continued)
CIRT  90 

CSTT  18  

name
ISQL  80 

per second  5 

time,  CICS 18 

transient index 74  

SHOW  INVALID 75  

translation
fast CCW 79 

of  performance measurements to 

indicators 15 

TSAF  collection
distributed database 81 

tuning
by levels 2 

guidelines 1 

queries 132 

trade-off 12 

tuning parameter
access path, lock contention 97  

ARCHPCT 107 

CIRB transaction  90  

CONNPOOL 90 

deadlock 102  

DISPBIAS 93  

index lock contention 96  

isolation level 97 

lock  level 96 

logical  unit of work, lock  

contention 97  

MAXCONN 92  

minimum lock  level 96 

NCUSERS 87, 88, 96 

NDIRBUF  87  

NLRBS  100  

NLRBU  100 

NPACKAGE  88  

NPACKPCT  88  

NPAGBUF 87 

PCTFREE 62,  63  

PCTINDEX 61 

PROTOCOL  109 

RMTUSERS 92  

SLOGCUSH  107 

SOSLEVEL 59  

U
unclustered index  67 

uncommitted  read (UR)
isolation level 98 

ISQL 113 

UNDO
invalid  index 74 

unique constraint
invalid  index 75 

unique index
invalid  index 74 

row level locking  96 

with key matching  predicate 120 

UNLOAD
block  size 114  

locking 115 

UNLOAD  PACKAGE
DBS  utility  115  

update lock
description 95 

UPDATE STATISTICS
ALL 138 

automatic  statistics  collection 114 

clustered index  68  

DBS  utility 114 

reorganize  a dbspace  72 

reorganize  a single table 71  

upgrading hardware  2 

user  agent 88 

USER  isolation level 98 

V
VDISK  49 

verify the database  manager 179 

view 113 

virtual
addressability extension 79 

dbextent
virtual disk 55  

virtual  disk
ADD 49 

adding  internal dbspace  52  

backing  up  52  

backup  file 50 

cataloged procedure  51 

conditional  startup JCL 53  

define  49, 55 

existing pools  51  

increasing virtual storage 48, 54 

internal dbspace 48, 54 

MDISK  55  

number  of dbextents  52 

procedure  to create 48, 54  

PROFILE  EXEC 56 

restore backup 53  

storage  pool  51, 55, 56 

storage  pools  163  

SYSDEF  49  

temporary  storage 48,  54  

VDISK  49  

virtual  and real dbextents 52 

virtual  dbextent  51, 55, 56  

virtual  VSAM  cluster 51 

VSAM  user  catalog 50 

VSIZE  49  

virtual  machine
fair  share scheduling  78 

time  15 

virtual  storage  27, 43 

as  a resource 10 

blocking  111 

load  measurement 14  

requirement 172 

virtual  addressing 43 

VM Monitor Analysis Program 

(VMMAP) 8 

VM system paging  DASD
internal dbspace 164 

requirement 173 

VM/ESA
31 bit addressing 47 

distributed  database 81 

requirement 171 

SET  QUICKDSP 79 

 

Index 237



VM/ESA (continued)
SET SHARE 79  

virtual disk 54 

VM/Performance Reporting  Facility 

(VM/PRF) 7  

VMMAP 8 

VSAM
backup 78 

backup and restore 76  

cluster
virtual disk 51  

DASD I/O system  85 

I/O buffer address  79  

LISTCAT  8, 20  

user catalog
virtual disk 50  

VSE interactive interface  8 

VSE/ESA
31 bit addressing 47  

virtual addressability 

extension 80  

virtual disk 48 

VSIZE 49 

VTIME counter 15  

W
waitlock

performance  indicator 23 

WAITLOCK
example 23  

waitlock hit  ratio  24 

wasting
DASD 58  

working storage  residence priority
changing 190  

choosing 201  

understanding  166  

working storage  size 215 

improving performance  198  

management 200 

workload 13 

considerations 3 

distributing  75 

production 3 

test 3 

throughput 5 

WRITES counter 15  

writing asynchronously 198 

X
XC mode

CP directory statement  178 

database machine  171  

hardware  175 

SQL/DS directory 200 

verify 186  

XCONFIG directory statement  178 

XPCC conversations  93

 

238 Performance Tuning Handbook  



Contacting  IBM 

Before you contact DB2  customer support,  check the product  manuals  for help 

with your  specific technical problem. 

For information  or to order any of the DB2  Server for VSE & VM products,  contact 

an IBM  representative at a local branch office or contact any authorized IBM  

software remarketer. 

If you  live in the U.S.A., then you  can call one  of the following numbers: 

v    1-800-237-5511  for customer  support 

v    1-888-426-4343  to learn about  available service options

Product information 

DB2  Server  for VSE & VM  product  information is available by telephone or by the 

World Wide  Web  at http://www.ibm.com/software/data/db2/vse-vm  

This site  contains the  latest information on  the technical library, product  manuals, 

newsgroups, APARs, news, and  links  to web resources. 

If you  live in the U.S.A., then you  can call one  of the following numbers: 

v    1-800-IBM-CALL (1-800-426-2255)  to order products  or to obtain  general  

information. 

v    1-800-879-2755  to order publications. 

For information  on how to contact  IBM outside  of  the  United States, go  to the  IBM 

Worldwide page at http://www.ibm.com/planetwide 

In  some  countries,  IBM-authorized  dealers should contact their dealer support 

structure for information.
 

 

© Copyright IBM  Corp. 1993, 2007  239



240 Performance Tuning Handbook  





IBMR

File Number: S370/4300-50  

Program Number: 5697-F42

  

Printed in USA 

 

  

GC09-2987-02 

              



Spine  information: 

 IBM  DB2 Server for VSE  & VM Performance  Tuning  Handbook Version 7 Release 5 


	Contents
	About This Manual
	Who Should Use This Manual
	Organization
	Prerequisite Reading
	Syntax Notation Conventions
	SQL Reserved Words
	Conventions Used for Highlighting Examples

	Summary of Changes
	Summary of Changes for DB2 Version 7 Release 5
	Enhancements, New Functions, and New Capabilities
	Explain Option on DBSU REBIND PACKAGE Command
	For Fetch only
	Application Message Formatter
	Convert buffer read/write to compiler macro
	Modify Build Tree Creation
	Split code point search routines
	DRDA Multi-Row Insert
	Connection Pooling for DRDA TCP/IP in Online Resource Adapter
	IBM DB2 Server for VSE, Client Edition
	IBM DB2 Server for VM, Client Edition
	Handling Commit Responses from DB2 UDB Stored Procedures
	Make on-line programs AMODE 31 RMODE ANY
	Provide BIND File Support in VM and in VSE Batch Environments
	Convert TCP/IP LE/C interface to EZASMI API



	Chapter 1. Improving Performance
	Elements of Performance
	Tuning Guidelines
	Performance Improvement Process
	How Much Can a System be Tuned?

	Workload
	Performance Indicators
	Establishing Performance Objectives
	Response Time
	Components of Response Time

	Throughput
	Availability
	A Less Formal Approach

	Monitoring Performance
	Creating a Monitoring Plan
	Monitoring Interval
	Cost of Monitoring
	Measurements
	Tools
	VM Tools
	VSE Tools
	CICS Tools
	DB2 Server for VSE & VM Tools


	Factors Affecting Performance
	Resources
	Processor
	Storage

	Overhead
	Concurrency
	Locking
	Recovery


	Choosing Between Tuning Trade-offs

	Chapter 2. Measuring Performance
	Understanding Performance Measurements
	Relative Measurements
	Load
	Effective Use

	Sampling Interval

	Operating System Measurements
	Processor (CPU) Load
	Real and Virtual Storage Load
	System Paging DASD Load
	Machine or Partition DASD I/O Load
	Individual Device Utilization
	Translating Performance Measurements to Indicators
	CP INDICATE USER and QUERY TIME Commands

	CICS Monitoring (CICSPARS for VSE)

	DB2 Server for VSE & VM Tools
	Physical Data Locations
	Disk Locations (VM)
	Data Set Placement (VSE)

	Initialization Parameters
	CIRD Transaction (CICS)
	COUNTER Operator Command
	DB2 VM Data Spaces Support

	SHOW Commands
	Storage
	Concurrency
	VSE SHOW CONNECT
	Locking

	Database catalog
	SYSTEM.SYSCATALOG
	SYSTEM.SYSCOLUMNS
	SYSTEM.SYSDBSPACES
	SYSTEM.SYSINDEXES



	Chapter 3. Managing Storage and Configuring the Operating System
	Real and Virtual Storage
	Virtual Addressing
	Pages
	Auxiliary Storage
	Storage Queues

	Address Space Size
	Storage Above 16MB (31 Bit Addressing)
	Saved Segments (VM Only)
	Virtual Disk Support for VSE/ESA for Internal Dbspaces
	Virtual Disk Support for VM/ESA for Internal Dbspaces


	DASD Storage
	In VSE
	In VM
	Mapping of Dbspaces to DASD
	Logical To Physical Page Relationships
	Storage Pools
	Managing Storage Pool Space
	Short on Storage Cushion
	Types of Pages
	Number of Header Pages
	Proportion of Index to Data and Header Pages
	Free Space in Data Pages
	Free Space in Index Pages
	Shadow Pages
	Running out of Dbspace Pages

	Data Clustering
	Clustered Indexes
	The Clustering Index
	How Indexes Become Unclustered
	Identifying Unclustered Indexes

	Reorganizing Data
	Reorganizing a Single Table
	Reorganizing all the Tables in a Dbspace
	Changing the Clustering Index without Dropping Indexes

	Index Fragmentation
	Reorganizing Fragmented Indexes

	Invalid Indexes
	Transient Indexes
	Reorganizing an Invalid Index


	DASD Balancing
	Evenly Distributing Workload across Physical Volumes
	Moving Dbextents
	Reassigning Dbspaces
	General Considerations


	VM Specifics
	Fair Share Scheduling

	VSE Specifics
	Dispatching Priority
	Fast CCW Translation
	Virtual Addressability Extension (VAE)
	31 Bit Addressing

	Compile Partition Size

	CICS Specifics
	AMXT/MXT
	ISQL
	Transaction Name
	Number of Concurrent Users

	Temporary storage
	Auxiliary versus Main


	Guest Sharing with VSE under VM
	Distributed Configuration Considerations
	DB2 Server for non-DRDA Requestors can access:
	DB2 Server for VM non-DRDA Servers can be accessed by:
	DB2 Server for VM DRDA Requestors can access:
	DB2 Server for VM DRDA Servers can be accessed by:
	DB2 Server for VSE non-DRDA Requestors can access:
	DB2 Server for VSE non-DRDA Servers can be accessed by:
	DB2 Server for VSE DRDA Online (CICS) Requestors can access:
	DB2 Server for VSE DRDA Batch Requestors can access:
	DB2 Server for VSE DRDA Servers can be accessed by:
	Performance Implications
	Applications Planning
	Fetch and Insert Blocking
	Hold File
	Local Copy
	Stored Procedures



	Chapter 4. Configuring the Application Server and Requester
	Database Manager Storage
	Database I/O
	Tuning Parameters
	Performance Indicator
	Using Virtual Disks

	Package Cache
	Tuning Parameters


	Concurrency
	Agents
	Allocating Users to Agent Structures
	Tuning Parameters (NCUSERS)
	Performance Indicator

	CICS
	Tuning Parameters
	Performance Indicator

	Pseudo-Agents
	Tuning Parameter
	Privileged Remote DRDA User (VSE Server)
	Performance Indicator (SHOW USERS)

	Dispatching Agents
	Prioritization
	Fair Share Auditing
	Tuning Parameter (DISPBIAS)
	Performance Indicator

	Startup Mode

	Locking
	Locking Contention
	Locking Hierarchy
	Lock Modes
	Lock Duration
	Lock Compatibility
	Number of Concurrent Users
	Minimum Lock Level
	Indexes
	Access Path
	Logical Unit of Work
	Isolation Level
	Catalog Tables
	Performance Indicator

	Lock Escalation
	Deadlock
	Tuning Parameters
	Performance Indicator


	Recovery
	Logical Units of Work
	CMS Work Units (VM)

	Checkpoints
	What occurs during the Checkpoint Process?
	When do Checkpoints Occur?
	Performance Implications
	Choosing the Checkpoint Interval

	Logging and Archiving
	Log
	Archive
	Alternate Logging
	Dual Logs
	Choosing a Logmode
	Tuning Parameters
	Performance Indicator (SHOW LOG)


	Communications
	DRDA Performance Considerations (VM)
	PROTOCOL Performance Considerations

	Fetch and Insert Blocking
	Implementing Blocking
	Suppressed Blocking

	Synchronous Communications (VM)

	Considerations for ISQL and Adhoc Queries
	AUTOCOMMIT
	Isolation Levels
	Temporary Tables
	Views

	DBS Utility Considerations
	Automatic Statistics Collection
	Suppressing Automatic Statistics Collection
	TAPE Blocking
	Lock Escalation
	DATALOAD and RELOAD Locking Considerations
	SELECT, DATAUNLOAD, and UNLOAD Locking Considerations

	UNLOAD and RELOAD PACKAGE Considerations


	Chapter 5. Improving Data Access Performance
	Access Paths and Indexes
	Dbspace Scans
	Index Scans
	Nonselective Index Scans
	Selective Index Scans

	Index-Only Access Scans
	Clustering Index
	Examples of Index only Access
	Creating Indexes

	Unique Index with Key Matching Predicate(s)
	Indexes for Sorting
	Recommendations for Indexes
	Disadvantages of Indexes

	Placing Tables into Dbspaces
	Organizing Referential Structures
	Predicate Processing
	Column Attributes
	Key-matching Predicates
	Form of Key-matching Predicates
	Suitable Index for Key-matching Predicate

	Sargable and Residual Predicates
	Example

	Join Predicates
	Search Conditions and Their Processing Characteristics
	Filter Factors
	Examples of Predicate Processing
	Impact of CCSIDs on Sargability

	Tuning Queries with Several Tables
	Methods of Joining Two or More Tables
	Nested Loop Join (Type 1)
	Merge Scan Join (Type 2)
	Choosing an Access Method
	Nested Loop, with EMPLOYEE as Outer Table
	Nested Loop, with PROJECT as Outer Table
	Merge Scan, with EMPLOYEE as Outer Table
	Merge Scan, with PROJECT as Outer Table

	Multiple Joins

	Keeping Database Statistics Current
	Using Catalog Statistics
	Modelling your Production System
	A Warning about Updating Statistics


	Determining the Cost of Access Methods
	Processing Cost
	I/O Cost

	Using Explanation Tables to Evaluate Performance
	Explain Processing
	Using the EXPLAIN Statement
	Using the EXPLAIN Option
	Comparing Implicit and Explicit Explain Processing
	Using Explanation Tables

	Estimating Sizes of Responses
	Using EXPLAIN for Database Design

	Modifying Table Designs to Enhance Performance

	Chapter 6. Data Spaces Support for VM/ESA
	Improving DB2 Server for VM Performance
	Understanding VM Data Spaces
	Standard Virtual Machine Storage
	Data Spaces Storage

	Understanding how VMDSS uses Data Spaces
	Reading Pages
	Releasing Pages
	Modifying Pages
	Checkpoints

	Storage Pools
	Internal Dbspaces
	Mapped Internal Dbspaces
	Unmapped Internal Dbspaces

	Directory
	With Data Spaces Support off
	With Data Spaces Support on

	Managing Main and Expanded Storage
	Target Working Storage Size Parameter
	Working Storage Residency Priorities
	The Checkpoint Interval
	The Save Interval

	Striping
	With striping switched off
	With striping switched on

	Performance Counters
	Planning Structure by Storage Pool
	Logical and Physical Mapping
	Logical Mapping
	Physical Mapping

	VSE Guest Sharing

	Enabling Requirements
	Operating System Overview
	Operating in Non-XC Mode

	Virtual Machine Overview
	MAINT Machine
	SQLMACH Database Machine

	Software Requirements
	Virtual Storage Requirements
	MAINT Machine
	SQLMACH Database Machine

	Real Storage Requirements
	DASD Storage Requirements
	Fixed Block Storage Devices
	VM/ESA Paging DASD
	SQLMACH Database Machine

	Hardware Requirements

	Before Enabling
	Program Directory for DB2 Server for VM
	Preventive Service Planning
	Corrective Service
	Enabling Options
	Using in a Production System
	Disabling Data Spaces Support
	Resaving DB2 Server for VM in Saved Segments


	Enabling
	Pre-Enable Checklist
	Enable Checklist
	Backing Up, Configuring and Enabling Your Database Machine
	Step 1: Log onto the MAINT Machine
	Step 2: Update the CP Directory
	Step 3: Log off the MAINT Machine
	Step 4: Log onto the SQLMACH Machine
	Step 5: Archive your Database
	Step 6: Activate VMDSS
	Step 7: Log off the SQLMACH Machine
	Step 8: Log onto the DB2 for VM Installation User ID (5697F42X)
	Step 9: Link-Edit the Load Library
	Step 10: Resave the DBSS Saved Segment
	Step 11: Log off the DB2 for VM Installation User ID
	Step 12: Log onto the SQLMACH Machine
	Step 13: Verify the Installation
	Step 13A: Verify non-XC Mode Installation
	Step 13B: Verify XC Mode Installation
	Step 14: Optional System Activities

	Disabling VMDSS
	Disable Step 1: Archive your Database
	Disable Step 2: Access the Service Disk or Directory
	Disable Step 3: Reblock the Directory Disk
	Disable Step 4: Remove the VMDSS Files
	Disable Step 5: Link-Edit the Load Library
	Disable Step 6: Restart the Application Server


	Operating
	Storage Pool Specifications
	Changing Storage Pool Specifications at Startup
	Specifying Either Data Spaces Support or Standard DASD I/O
	Specifying Storage Residence Priorities
	Turning Striping On and Off

	Checking Your Current Storage Pool Specifications
	Changing Storage Pool Specifications Dynamically

	Using Data Spaces with Internal Dbspaces
	Unmapped Internal Dbspaces
	Mapped Internal Dbspaces

	Using Data Spaces with the Directory
	Reblocking the Database Directory
	Example

	Using Data Spaces Support with a New Database


	Chapter 7. Tuning Performance for Data Spaces Support
	Deciding When to Use Data Spaces
	Advantages
	Shorter Path Length
	Asynchronous Page Fault Processing
	Striping
	Blocking and Prefetching
	Dynamic Working Storage Size Management
	More Asynchronous Writes

	Storage Pool
	Internal Dbspaces
	Directory

	Managing Your Working Storage Size
	Choosing the Target Working Storage Size
	Choosing Storage Residence Priorities
	Unmapped Internal Dbspaces

	Managing Checkpoints
	Choosing the Checkpoint Interval
	Setting the Time Between Checkpoints

	Choosing the Save Interval

	Using Striping
	With One Dbextent Per Pool
	One Dbextent Per Device
	Dbextent Size
	Number of Dbextents
	Using Striping with Existing Data

	Choosing Logical or Physical Mapping
	Real Storage Requirements for Data Spaces

	Appendix A. Storage Pool Specification File Format
	File Format
	Data Line Syntax
	Ordering Data Lines
	Specification File Example

	Appendix B. Determining Number of Data Spaces
	Maximum Number of Data Spaces
	Logical Mapping
	Example

	Physical Mapping
	Example


	Maximum Total Size
	Displaying Current Data Spaces

	Appendix C. Why is the TARGETWS Value Frequently Exceeded?
	VMDSS Usage Scenario

	Notices
	Trademarks

	Bibliography
	Index
	Contacting IBM
	Product information


