
IBM Software Group Page 1 of 14

®

IBM Software Group

© 2007 IBM Corporation

Large Message Processing

IBM WebSphere® Data Interchange V3.3

The presentation will review WDI processing options for large message processing.

IBM Software Group Page 2 of 14

IBM Software Group

2

WDI Large Message Processing © 2007 IBM Corporation

Agenda

�Parse from file

�Pageable AMM

�XML Split

�EDIWORK and Output paging

�Pageable Translation for Send / Receive

� Limiting trace and audit file output

� Internal Performance Features

� “Best Practices” recommendations

The ability to process very large transactions (2 GB or so) or very large messages (hundreds of
transactions) is an accepted requirement for WebSphere Data Interchange. Processing
telephone bills for large companies with many locations, or all trust accounts handled by a bank
supporting a Fortune 50 company or government entity can lead to this need. The problem is
represented by two basic types: a) a single large transaction, or an interchange or message with
a large number of transactions in the same recovery scope. The hardware resource most
exposed with these data conditions is main storage or memory.

WebSphere Data Interchange has a number of techniques and features available to assist in the
processing of very large messages, that is greater than 200 MB.

The first of these, “Parse from file”, allows a customer with a single large EDI interchange or EDI
transaction to bypass parsing into memory and parse data directly from the file.

The pageable AMM feature, which pages the WDI Abstract Message, is always active, but can
be controlled from the PERFORM command.

Feature three, XML Split, was created to allow a one-to-many output from a large XML
document.

Output paging for DT maps allows the user to tell WDI to write output to a file rather than save in
in memory for the duration of translation.

The pageable translation feature for Send and Receive translations has the similar function of

IBM Software Group Page 3 of 14

IBM Software Group

3

WDI Large Message Processing © 2007 IBM Corporation

� WDI Utility reads the input

� LMA determines the message or interchange

� Message Broker is invoked

� Deenveloper invokes the parser to find a transaction

� WDI Nodes process the data

� Translated output, print file messages, transaction store records are all
saved in memory

� Control returns to the Message Broker

� The next transaction is processed adding to data stored

� At the end of the interchange, control goes back to the Utility where all

data is written to files

� LMA then finds the next message

� Process repeats until all interchanges in the input are processed

Typical WDI processing

The WDI Utility reads the input file. The Logical Message Adapter identifies the input unit of
work, e.g. an EDI Interchange, and passes it to the Message Broker. The Message Broker does
a "lazy parsing" of the Interchange to get Envelope Information and the ST/SE data. This is
passed to the Deenvelope component and subsequent components for processing. The output
from translation, the audit file / print file messages, and transaction store data are all stored in
link lists. Control is then returned back to the Message Broker, and the process is repeated for
the next ST/SE, until all transactions are processed.

After all transactions are processed, the output link lists are then returned to the Utility. The

output files are updated, the print file messages are written, and the Document Store tables are
updated. The Logical Message Adapter then gets the next input unit of work, and repeats the
process until the file is exhausted.

IBM Software Group Page 4 of 14

IBM Software Group

4

WDI Large Message Processing © 2007 IBM Corporation

� Feature is triggered by a PERFORM keyword

� Using this feature can significantly reduce memory requirements

� Keyword on PERFORM TRANSFORM is PARSEFILE(Y)

� PARSEFILE only available for XML in WDI v3.2, SYNTAX(X),

but valid for all syntaxes, SYNTAX(E) and SYNTAX(D), beginning

with WDI v3.3

� Keyword INFILE specifies the input file logical name

� XML is restricted to having one and only one XML document in

the input

� Not valid for WMQ as an input

� Not valid in CICS, and is ignored if specified

� Not valid when used with XMLSPLIT

Parse from File

A PERFORM TRANSFORM keyword named, PARSEFILE, will allow data to be parsed directly
from the input file if the input file contains one logical message. Using this keyword can
significantly reduce the memory needed for processing a large input file. Without this feature,
WDI reads the entire document into a buffer, so if a 500 MB XML document is being processed,
then WDI will use at least 500 MB to parse the data. With this option, the WDI parsing reads
from the file and requires much less memory.

PARSEFILE(Y) means parse-from-file. The default is PARSEFILE(N), which means parse-from-

buffer. PARSEFILE is only valid for XML input data in WDI version 3.2.1, and is not valid in
CICS. PARSEFILE may be used with SYNTAX(E) and SYNTAX(D) in WDI version 3.3. If
PARSEFILE(Y) is specified on a PERFORM TRANSFORM command, INFILE must exist and
contain the name of the input file, and INTYPE must not have a value.

There is a restriction when using PARSEFILE(Y). The XMLSPLIT capability is not supported.
This means that PARSEFILE(Y) should only be specified when the input file contains one and

only one XML document. More than one document in the file will result in a fatal error in the
parser.

IBM Software Group Page 5 of 14

IBM Software Group

5

WDI Large Message Processing © 2007 IBM Corporation

� Applies only to DT maps, similar to Pageable Translation of S/R

translator

� Controlled by the PAGETHRESHOLD keyword on a PERFORM

TRANSFORM

� By default always “ON”, can be disabled with
PAGETHRESHOLD(0)

� Allows memory allocated to the AMM to be limited

� Paging of subtree, repeating loops is automatic

� Paged data is stored in required file EDIPAGE; if not defined,

PAMM is disabled

� Not valid for EDI transactions with Hierarchical Loops (HL

segment) in WDI v3.2.1; restriction lifted in WDI v3.3

Pageable AMM

The "Pageable AMM" (PAMM) is similar to the "paging subsystem" called Pageable Translation in the Send / Receive Translator. This
technique "pages out" or writes data that normally resides in memory to a file. Doing so reduces the memory requirement for large EDI
translations. The Abstract Message Model or AMM is a WDI internal representation of data during translation. The PAMM will "page out" AMM
nodes that are part of repeating data. When there is a repeating loop, element, segment, structure, or record, the AMM subtree containing the
repeating data will be paged out of memory when the number of repetitions exceeds a given threshold and the data is no longer immediately
needed. The default threshold is 1000. This threshold may be overridden using the PAGETHRESHOLD keyword. PAGETHRESHOLD(0) turns
paging off.

The page file is named EDIPAGE. The file must be allocated or the Pageable AMM feature will not be used. If EDIPAGE is not defined,
severity-0 message AM0016 will be written to the Print File and processing would continue normally. If an error occurs opening the page file,
transformation would continue normally, though severity-0 message AM0015 would be logged. If an error occurs writing to the page file,
transformation would continue normally, though severity-4 message AM0015 would be logged.

The EDIPAGE file contains the internal representation of both the input and the output data. Typically, you should allow several times the total
of the input and (expected) output file sizes when determining how much space to allocate. This allows for the additional information (name,
data type, parent-child pointers, etc.) that is kept in the file. The actual ratio depends on the document structure and the PAGETHRESHOLD
value. For relatively verbose formats such as XML, the ratio will usually be lower, around 2-3 times the data size. For more condensed formats
such as EDI, the ratio is likely to be higher, such as 3-5 times. If the PAGETHRESHOLD is higher, more of each document is kept in memory
before starting to write data to the EDIPAGE file, so the EDIPAGE file will be smaller.

Note: The Pageable AMM function is primarily intended for reducing the memory used to process large individual documents (EDI transactions,
Data Format transactions, and XML documents). Although it may slightly reduce memory usage when processing large EDI interchanges or
other files with many medium sized transactions (2-10 MB), it may not be worth allocating the large page file produced in this case since the
EDIPAGE file accumulates from one transaction to the next, until the end of the input file is reached. Increasing the PAGETHRESHOLD in this
case can significantly reduce the size of the page file in this case, and keep more of each transaction in memory.

EDIPAGE may be allocated with any technique the user prefers.

To execute WDI without the PAMM feature, issue

PERFORM TRANSFORM WHERE PAGETHRESHOLD(0)

To execute WDI and reduce the memory used during transformation, i.e. start using the PAMM sooner, issue

PERFORM TRANSFORM WHERE PAGETHRESHOLD(500)

To execute WDI and delay using the PAMM, utilize

PERFORM TRANSFORM WHERE PAGETHRESHOLD(1500)

A typical z/OS DD statement to allocate the EDIPAGE dataset

//EDIPAGE DD DSN=&&tempfile,UNIT=SYSDA,SPACE=(CYL,XXX)

A typical Windows command file statement to allocate the EDIPAGE file

set file(EDIPAGE,..\..\..\edipage.text);

Restrictions: The Pageable AMM feature is not available when using WDI inside CICS. The primary reason for this is the use of a sequential
file as the EDIPAGE file and handling of sequential files within CICS. A design point is also that Very Large Transactions, as those suited for

IBM Software Group Page 6 of 14

IBM Software Group

6

WDI Large Message Processing © 2007 IBM Corporation

Internal features to improve WDI performance are:

1) WDI has a caching subsystem for objects such as Control Strings,
Rules, and Trading Partners. This subsystem allowed subsequent calls to
DB2 to be eliminated as long as the same object was being requested.

Up to 5 instances of an object can be cached in a PERFORM cycle

2) On z/OS, a single the DB Connection request is made rather than in
each logical node, this reduced the calls to the STEPLIB and DSNLOAD
from 222,000 to 46. Each DB Connect accesses the Call Attachment

Facility module (CAF).

3) WDI has a Node memory pool, so that the AMM does not have to issue
"new" and "free" memory acquisition instructions, but can reuse existing,
acquired storage.

Internal Performance Features

Internal performance features incorporated into WDI are shown on this slide and the next.

IBM Software Group Page 7 of 14

IBM Software Group

7

WDI Large Message Processing © 2007 IBM Corporation

4) WDI reuses Parser instances; instead of creating a new instance of a parser for
each time a parser is used, a previously initialized, loaded parser is used

5) WDI avoids repeatedly loading DLL's. WDI does not destroy the Message Flow

until the WDI message broker is terminated.

6) WDI provides an ability to suppress repetitive messages from the print file

(RU0003, UT0008, FF0007); suppression is based on the attribute VERBOSE_NO;

7) WDI avoids repeated allocation of output buffer by keeping the output buffer intact
between calls.

8) For large message processing, if the parsing work file is allocated and the input
file contains multiple messages, the logical message adapter will begin using the

parsing work file to hold the logical message. This replaces the buffer allocation to
hold the logical message.

Internal Performance Features

IBM Software Group Page 8 of 14

IBM Software Group

8

WDI Large Message Processing © 2007 IBM Corporation

� XML SPLIT(Y) splits a single XML document into smaller individual

documents, creating the ability to do one-to-many processing for

XML

� Split points are identified by XML tags in the XML General tab of an

XML schema or DTD

� WDI saves Headers and Trailers to be wrapped around the

repetitive data to create “internal transactions” to be processed

� An XMLWORK file is required and used to construct the internal

messages

� The header element tag must be at loop level 1

XML Split Logic

The WDI XML logical message adapter (LMA) allows splitting of a single XML document into smaller individual documents. This
provides a one-to-many capability for large XML documents with repeating groups. Using this feature greatly reduces the
amount of memory used to process a very large XML document, but it is a special case use.

When XMLSPLIT(Y) is specified, the LMA will go through the XML LMA to get the beginning/ending of the XML document. New
functions are called to split the XML document using these 2 pointers. The functions save the XML Header and Trailer
information in a Virtual Array (VA) to reconstruct the split XML documents. WDI uses tag names to identify how to split the XML
document - the tag names are specified on the XML General tab of WDI Client.

The first header area is the beginning of the XML document starting with <?XML up to the Header Element tag. For each Header
Element tag in the input file, the data will be replaced in the Header VA without replacing the <?XML portion of the VA. The split
messages from Message Element up to Message Element end tag will be written to the XMLWORK file. The data at Trailer
Element tag up to the next Header Element tag - will be placed in the trailer VA. If the Trailer Element tag is not equal to the
Root end tag, the root end tag is moved to the trailer VA. This tag should be the tag immediately following all the split XML
documents. Header Element is optional. There is still a Header area VA but it contains the beginning of the document up to the
first Message Element tag.

After the header/trailer have been located, the XMLWORK file is opened and read to construct the split XML documents. These
are placed in a message VA as needed. The Header VA data is moved to offset 0 with each XML split message so the start of
the message should always be at offset 0.

WDI will scan through the message VA looking for the next XML tag specified in the Message Element tag to identify the Detail
area. This returns Detail Start/Detail End or an indicator that WDI is finished with the current XML document or needs to process
a new XML document. After the XMLWORK file has been processed, the LMA will return an indicator to read more data from the
original input file and begin the process again, searching for the next header/message/detail areas in the document.

This Header Element tag MUST be at a looping level of 1 (NO NESTED LOOPS) or unpredictable results will occur. WDI then
constructs the XML document using the Header/Detail/Trailer virtual arrays and passes this back to the DT Utility in a buffer.

IBM Software Group Page 9 of 14

IBM Software Group

9

WDI Large Message Processing © 2007 IBM Corporation

Additional Keywords for PERFORM TRANSFORM with Syntax(X)

� XMLSPLIT(indicator) (Y or N)

� XMLDTDS(XML DTD path)

� XMLEBCDIC(EBDCDIC indicator) (Y or N)

� XMLNS(XML namespace indicator) (Y or N)

� XMLSCHEMAVAL(XML schema validation) (Y, N, or A)

� XMLVALIDATE(XML validation indicator) (0, 1, or 2)

XML Split Logic

Keywords for PERFORM TRANSFORM with Syntax(X)

XMLSPLIT(indicator) (Y or N)
XMLDTDS(XML DTD path)
XMLEBCDIC(EBDCDIC indicator) (Y or N)
XMLNS(XML namespace indicator) (Y or N)
XMLSCHEMAVAL(XML schema validation) (Y, N, or A)
XMLVALIDATE(XML validation indicator) (0, 1, or 2)

The XML Split feature is available for XML Schemas and XML DTDs. To identify the XML tags
used during the splitting process, use the Overview tab on the XML Schema. A right mouse click
allow you to access a drop down list that populates the XML General tab with the tag names.

The XMLSPLIT keyword must be set to Y on the PERFORM TRANSFORM to sue XMLSPLIT.
This is a default.

IBM Software Group Page 10 of 14

IBM Software Group

10

WDI Large Message Processing © 2007 IBM Corporation

?xml

Root element

header 1 element

header 2 element

...

/header n end

Tag1 Loop start (service provider) document header

tag2

tag3

tag4

tag5

tag6

tag7 loop start (natuurlikpersen) message header

tag8

tag9

tag10 loop start

tag 11

tag 12

tag 13

/tag 10 loop end

tag14

/tag7 loop end

tag 15

/tag6 end message trailer

tag16

/tag 1 loop end

trailer 1 document trailer

trailer 2

...

/trailer n end

/root end

XML Data Structure for splitting

An example of a data structure that can be used with XMLSPLIT is shown above. The
constructs in red are not supported

IBM Software Group Page 11 of 14

IBM Software Group

11

WDI Large Message Processing © 2007 IBM Corporation

A government agency receives a single XML transaction with one
iteration of a loop for each employee in an organization. Some

organizations have several million employees on which they report in this
transaction. The XML transaction, defined in a Schema, can be 2 GB or
more.

The agency requires that the single XML transaction be translated into

one XML transaction for each employee, and a second, summary XML
transaction be created for organization totals.

The solution is to be run on an AIX machine, using file input. The
employee XML transactions will be output to a file, and the summary

organization XML transaction is to be sent to a WMQ Queue.

XML Split Example

This is the scenario for an example which XMLSPLIT is required.

IBM Software Group Page 12 of 14

IBM Software Group

12

WDI Large Message Processing © 2007 IBM Corporation

Input data WDI

company data

Worker data

WMQ

Queue

Agency

Batch

Process

Agency Flow

In this example, the input data is processed by WDI and split into company data and worker
data. Those individual data outputs can be routed as needed.

IBM Software Group Page 13 of 14

IBM Software Group

13

WDI Large Message Processing © 2007 IBM Corporation

Setting up for XML Split
� Within the Document Split

�Define the Tag for the end of

the header portion of the

XML transaction

�Define the Repeating area

by Tab

�Define the Tag starting

“trailer” portion

�Use a right mouse click on

the Overview tab to place

the tag names in the general

tab fields

Define the fields as indicated on the XML General tab. The fields are easily populated from the
Overview tab using a right mouse click on the desired tag, and then specifying the general tab
field into which the tag name should be placed.

The “header portion” starts with the start of the XML document and continues until the tag name
specified in the Header Element field. The repeating portion is specified by the tag name of the
“message element” field. The “trailer portion” is specified by putting the tag name of the first
element in the trailer, or by specifying the last tag name in the repeating element structure and

checking the box at the end. This indicates that there are no segments after the repeating
portion.

IBM Software Group Page 14 of 14

IBM Software Group

14

WDI Large Message Processing © 2007 IBM Corporation

� Pages output between transactions of a large interchange

� Available for DT maps with all syntax types

� Activated by keyword PAGE(Y) on PERFORM TRANSFORM command

� Has an internal threshold before workfile is used

� A single transaction of 10MB or more, or,

� A collection of smaller documents with a memory usage of 10MB

� Requires EDIWORK file to be allocated to hold output, print messages,

and transaction store output

� If not allocated, then a warning message is issued and processing

continues as if PAGE(N)

� If an error occurs writing to EDIWORK (no space), then the translation

is terminated abnormally

� Not valid in CICS

EDIWORK and output paging

The purpose of this capability is to reduce the amount of memory used during DT translations by "paging out" output
data to a work file. The PAGE(Y) keyword on PERFORM TRANSFORM will cause output data to be paged to a
work file named EDIWORK once a size threshold is met.
With PAGE(N), output data is collected in a buffer in the Message Broker as translation takes place. When the
translation is complete, the output data buffer is passed back to the WDI Utility component where it is written to the
user specified output file, as before.

With PAGE(Y) the Message Broker will write the output data to a work file after a size threshold is met. The workfile
offset is passed back to the Utility, where the data is read from the work file, and written to the user specified output
file, as before.

There are two places in the Message Broker that check the output size threshold in order to possibly page the
output. If a single output document reaches 10 MB, then the document will be released from memory and written to
the work file. If a collection of smaller output documents reach 10 MB, then any remaining output documents are
written to the work file.

If PAGE(Y) is specified on a PERFORM TRANSFORM command and file EDIWORK is not defined, not allocated,
or if there is a problem opening the file, a severity-4 message, MB0003 or MB0004, will be logged in the print file. In
this case, processing would continue as if PAGE(N) was specified. If an error occurs writing to EDIWORK, then a
severity-8 message, MB0005, will be logged and the translation will terminate.

The type of output data that may potentially be paged is not restricted. PAGE(Y) applies to ADF, EDI, and XML
output data. There is a size restriction on the amount of data that can be paged to EDIWORK. The current restriction
is 2 GB on z/OS. If this size is exceeded, a severity-8 message, MB0005, will be logged and the translation will
terminate.

On z/OS, because EDIWORK may be reused each time the Utility calls the Message Broker (which occurs multiple
times during a PERFORM command), EDIWORK cannot be defined as DISP=MOD or as an append-to-end-of-file
file. The base EDIWORK offset is reset to zero each time the Utility calls the Message Broker.

PAGE(Y) is not valid in CICS on PERFORM TRANSFORM commands.

IBM Software Group Page 15 of 14

IBM Software Group

15

WDI Large Message Processing © 2007 IBM Corporation

� Triggered by using the keyword PAGE(Y) on a

� PERFORM DEENVELOPE command

� PERFORM DEENVELOPE AND TRANSLATE command

� PERFORM TRANSLATE AND ENVELOPE command

� PERFORM ENVELOPE command

� PERFORM ENVELOPE AND SEND command

� And others

� Can be activated by the TRCB VAXFLAG in the translator API

� Requires the EDIVAX dataset be allocated

� Has an internal threshold value before initiating, 28MB

� Not valid in CICS or MP, only available in z/OS batch

� Allows a transaction up to 2 GB to be processed

Pageable translation for Send Receive

Pageable translation is designed to better utilize system memory during translation by transferring incoming data buffers to
DASD once the allotted number (1000) of internal buffers has been exhausted. The maximum buffer size is 28,632 bytes. This
means that approximately 28 MB of virtual storage can be used to hold data before pageable translation is triggered.

The PAGE keyword indicates whether pageable translation should be enabled. Valid values for Pageable Translation are: Y
Enables Pageable Translation, and. N Disables Pageable Translation This keyword is used with the following commands:

DEENVELOPE

DEENVELOPE AND TRANSLATE

ENVELOPE

ENVELOPE AND SEND

RECEIVE

RECEIVE AND DEENVELOPE

RECEIVE AND TRANSLATE

RECONSTRUCT AND SEND

REENVELOPE

REENVELOPE AND SEND

RETRANSLATE TO APPLICATION

TRANSLATE AND ENVELOPE

TRANSLATE AND SEND

TRANSLATE TO APPLICATION

TRANSLATE TO STANDARD

EDIVAX is the name of the pageable translation work file. This temporary work file is used by WebSphere Data Interchange
when pageable translation is enabled and virtual storage usage for EDI or application data reaches 28 MB. For API applications,
setting the VAXFLAG field in the TRCB to X enables pageable translation.

IBM Software Group Page 16 of 14

IBM Software Group

16

WDI Large Message Processing © 2007 IBM Corporation

� FILTERMSGS – suppress a specified message from being written during
translation

� IGNOREINFO – suppress all informational (severity 0) messages

� IGNOREWARN – suppress all warning level (severity 4) messages

� TRACELEVEL – suppress or limit the amount of trace entries collected
during execution of a PERFORM TRANSFORM

Limiting trace and audit file output

Several keywords are available on the PERFORM TRANSFORM command to aid in reducing the amount of printed
output (and its associated storage) during translation. These keywords are:

FILTERMSGS
IGNOREINFO
IGNOREWARN
TRACELEVEL

FILTERMSGS allows the specification of up to 10 WDI message Ids. For each ID specified, the corresponding
message text is not written to the print file. With an interchange with hundreds of transactions this means selected
informational messages or specific error messages can be suppressed.
For example,
PERFORM TRANSFORM
WHERE INFILE(ADF_IN) ... OUTFILE(EDIOUT) ...
FILTERMSGS(RU0003 UT0008)
SYNTAX(D);

IGNOREINFO is a Y or N keyword that will suppress all informational level (type I) messages. These might be the
name of the file, rule selected, PERFORM command, etc. For interchanges with a number of transactions, this can
greatly reduce the number of messages printed. It is both a memory saver and a CPU consumption reducer.

IGNOREWARN is a Y or N keyword that will suppress all warning level (type W) messages. It has a similar impact
as IGNOREINFO.

TRACELEVEL(xy) where x is component and y is detail level of trace. This option should not be used except in
problem determination situations. It has a large impact on processing time and resources when used at its most
comprehensive levels. TRACELEVEL(C1) produces a fairly minimal trace in EDIDTTRC that shows heap storage in
use at various points during DT processing. If a customer wants to use the various features discussed to effect
memory usage, TRACELEVEL(C1) can be used as a tool to monitor such effects.

IBM Software Group Page 17 of 14

IBM Software Group

17

WDI Large Message Processing © 2007 IBM Corporation

WDI has features for handling very large messages in both S/R and DT.

The features are controlled by the user, usually for a single execution

� run with Pageable AMM on at all times. Select a default
PAGETHRESHOLD value that is consistent with company resources and
imperatives.
� only use TRACELEVEL in problem determination situations;
� use printed output limiting keyword options after evaluating the impact
on staff problem determination abilities and needs
� use XMLSPLIT on a case by case basis
� use PARSEFILE on demand when large XML files are input; traditional
delivery mechanisms choke when a 1 or 2 GB input file enters the
environment so special handling or setup is expected;
� run with the EDIWORK feature on at all times; again, this feature has a
threshold trigger that indicates a potential memory resource issue;
� If possible, do not save transaction images in the transaction store
when processing large EDI Interchanges. Saving the images to the
transaction store causes an additional copy of each image to be held in
memory

Best practices

WDI has features for handling very large messages during both S/R and DT translations. The features are generally

controlled by the user, usually for a single execution or setup.

As a "Best Practice" recommendation, the user should consider

-- running with Pageable AMM on at all times. The dynamic initiation of PAMM logic based on message size means

smaller messages will be processed as usual, but large messages will invoke the special handling techniques in a

"dark room" environment. Select a default PAGETHRESHOLD value that is consistent with company resources and

imperatives. Increasing the PAGETHRESHOLD may be particularly useful if processing large EDI interchanges that

contain many small to medium sized transactions.

-- only using TRACELEVEL in problem determination situations;

-- using printed output limiting keyword options after evaluating the impact of messages on staff problem

determination abilities and needs and frequency of message need

-- using XMLSPLIT on a case by case basis; while XMLSPLIT is on by default, the feature is activated with the "split

tags" specified with the XML DTD or schema.

-- using PARSEFILE on demand when large XML files are input; while WDI can process the file, traditional delivery

mechanisms choke when a 1 or 2 GB input file enters the environment; it is anticipated that a message of this size

will need special handling to make the file available to WDI

running with the EDIWORK feature on at all times; again, this feature has a threshold trigger that indicates a

potential memory resource issue; using the feature as a default prevents unforeseen issues.

-- If possible, do not save transaction images in the transaction store - at least when processing large EDI

Interchanges. Saving the images to the transaction store causes an additional copy of each transaction image to be

held in memory during the DT processing.

IBM Software Group Page 18 of 14

18

IBM Software Group

WDI Large Message Processing © 2007 IBM Corporation

Trademarks, copyrights, and disclaimers
The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

IBM CICS IMS WMQ Tivoli
IBM(logo) Cloudscape Informix OS/390 WebSphere
e(logo)business DB2 iSeries OS/400 xSeries
AIX DB2 Universal Database Lotus pSeries zSeries

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are registered trademarks of Microsoft Corporation in the United States, other countries, or both.

Intel, ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a registered trademark of Linus Torvalds.

Other company, product and service names may be trademarks or service marks of others.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include technical inaccuracies or
typographical errors. IBM may make improvements and/or changes in the product(s) and/or program(s) described herein at any time without notice. Any statements regarding IBM's
future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only. References in this document to IBM products, programs, or
services does not imply that IBM intends to make such products, programs or services available in all countries in which IBM operates or does business. Any reference to an IBM Program
Product in this document is not intended to state or imply that only that program product may be used. Any functionally equivalent program, that does not infringe IBM's intellectual
property rights, may be used instead.

Information is provided "AS IS" without warranty of any kind. THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY WARRANTY, EITHER
EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IBM shall
have no responsibility to update this information. IBM products are warranted, if at all, according to the terms and conditions of the agreements (e.g., IBM Customer Agreement,
Statement of Limited Warranty, International Program License Agreement, etc.) under which they are provided. Information concerning non-IBM products was obtained from the suppliers
of those products, their published announcements or other publicly available sources. IBM has not tested those products in connection with this publication and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. IBM makes no representations or warranties, express or implied, regarding non-IBM products and
services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding patent or copyright
licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples described are presented as illustrations of
how those customers have used IBM products and the results they may have achieved. The actual throughput or performance that any user will experience will vary depending upon
considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance
can be given that an individual user will achieve throughput or performance improvements equivalent to the ratios stated here.

© Copyright International Business Machines Corporation 2006. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract and IBM Corp.

Template Revision: 04/25/2006 11:09 AM

